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Preface

The papers in this volume were accepted for presentation at the 32nd Computational
Complexity Conference (CCC 2017), held July 6 to July 9 in Riga, Latvia. The conference
is organized by the Computational Complexity Foundation (CCF) in cooperation with the
European Association for Theoretical Computer Science (EATCS) and the ACM Special
Interest Group on Algorithms and Computation Theory (SIGACT). CCC 2017 is sponsored
by Microsoft Research and the University of Latvia.

The call for papers sought original research papers in all areas of computational complexity
theory. Of the 98 submissions, the program committee selected 33 for presentation at the
conference.

The program committee would like to thank everyone involved in the conference, including:
all those who submitted papers for consideration, as well as the reviewers for their scientific
contributions; the board of trustees of the Computational Complexity Foundation, most
especially its president Dieter van Melkebeek for extensive advice and assistance; the Local
Arrangements Committee chair Andris Ambainis for help with scheduling; Avi Wigderson for
contributing three two-hour tutorials on the topic of “Operator Scaling: theory, applications
and connections”; and, Marc Herbstritt for coordinating the production of these proceedings.

Ryan O’Donnell
Program Committee Chair, on behalf of the Program Committee
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Random Resolution Refutations∗†

Pavel Pudlák1 and Neil Thapen2

1 Institute of Mathematics, Czech Academy of Sciences, Prague, Czech Republic
pudlak@math.cas.cz

2 Institute of Mathematics, Czech Academy of Sciences, Prague, Czech Republic
thapen@math.cas.cz

Abstract
We study the random resolution refutation system defined in [Buss et al. 2014]. This attempts
to capture the notion of a resolution refutation that may make mistakes but is correct most of
the time. By proving the equivalence of several different definitions, we show that this concept
is robust. On the other hand, if P 6= NP, then random resolution cannot be polynomially
simulated by any proof system in which correctness of proofs is checkable in polynomial time.

We prove several upper and lower bounds on the width and size of random resolution re-
futations of explicit and random unsatisfiable CNF formulas. Our main result is a separation
between polylogarithmic width random resolution and quasipolynomial size resolution, which
solves the problem stated in [Buss et al. 2014]. We also prove exponential size lower bounds on
random resolution refutations of the pigeonhole principle CNFs, and of a family of CNFs which
have polynomial size refutations in constant depth Frege.

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.1.3 Complexity Measures and
Classes

Keywords and phrases Proof complexity, random, resolution

Digital Object Identifier 10.4230/LIPIcs.CCC.2017.1

1 Introduction

The following system for refuting propositional CNFs was introduced in [3]. Let F be a CNF
in variables x1, . . . , xn and let 0 < ε < 1.

I Definition 1. An ε-random resolution distribution, or ε-RR distribution, of F is a probab-
ility distribution D on pairs (Bi,Πi)i∼D such that
1. for each i ∈ D, Bi is a CNF in variables x1, . . . , xn and Πi is a resolution refutation

of F ∧Bi
2. for every α ∈ {0, 1}n, Pri∼D[Bi is satisfied by α] ≥ 1− ε.
The size and the width of D are defined respectively as the maximum size and maximum
width of the refutations Πi (if these maxima exist).

This is sound as a refutational system, in the sense that if F has an ε-RR distribution
then F is unsatisfiable. To see this, consider any assignment α ∈ {0, 1}n. Since ε < 1, there
is at least one pair (Bi,Πi) such that α satisfies Bi and Πi is a resolution refutation of F ∧Bi.
So α cannot also satisfy F , by the soundness of resolution. The system is also complete,

∗ The full version of the paper is available as [13], https://eccc.weizmann.ac.il/report/2016/175/.
† Partially supported by the European Research Council under the European Union’s Seventh Framework

Programme (FP7/2007-2013) / ERC grant agreement 339691. The Institute of Mathematics of the
Czech Academy of Sciences is supported by RVO:67985840.

© Pavel Pudlák and Neil Thapen;
licensed under Creative Commons License CC-BY
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since resolution is complete and we can take D to consist of a single pair (B,Π) where B is
any tautology and Π is a (possibly exponential sized) resolution refutation of F .

On the other hand, as defined, it is not a propositional proof system in the sense of
Cook and Reckhow [6], because it is defined by a semantic condition that presumably cannot
be tested in polynomial time (see Proposition 10). Nevertheless it makes perfect sense
to compare the complexity of proofs in it with proofs in the standard proof systems, in
particular with resolution and bounded depth Frege. We prove some results in this direction
in this work. Note also that the definition is particular to resolution, and we must take care
if we try to generalize it. For example, if we instead define a random Frege distribution
system, in which B and Π can contain arbitrary formulas, then we can trivially refute any
unsatisfiable F by setting B = ¬F .

As with some concepts of probabilistic computation studied in computation complexity
theory, one can use the linear programming duality to give an equivalent definition of
the system based on probability distributions over inputs rather than over proofs (see
Definition 3). This is very useful if one needs to prove lower bounds. Another essentially
equivalent formulation is in terms of semantic resolution derivations. This means, roughly
speaking, that instead of having an auxiliary formula that is satisfied with high probability,
we consider semantic derivations with respect to a large subset of inputs, where lines in the
proof are clauses. In a sense, this captures better the intuitive idea of a proof with errors.

Let us also mention that while we tend to think of the error ε as something small, there
is a simple amplification lemma that allows us to shrink the error at some cost in proof size.
Thus, for the questions we are interested in, without loss of generality we can take ε = 1

2 .
The definition was first proposed by Stefan Dantchev. Its appearance in [3] is ultimately

motivated by an open problem in bounded arithmetic. We will not go into detail about
the connection to bounded arithmetic in this abstract, and instead will discuss the problem
in terms of constant depth Frege proof systems. One of the longstanding open problems
in proof complexity is to prove (or disprove) that the set of polylogarithmic width CNFs
with quasipolynomial size refutations in depth i Frege strictly increases as i increases.1 The
simplest instance of this problem is to separate R(log), which is effectively a low depth
Frege system, from higher levels of the constant depth Frege hierarchy. The system R(log),
introduced in [10], is an extension of resolution in which in place of literals one can use small
conjunctions, of logarithmic size in the length of the proof. We can separate R(log) from
weaker fragments of constant depth Frege, but not from stronger ones (see for example [14]).

The system R(log) corresponds to a particular fragment T 2
2 of bounded arithmetic. Since

this problem has been notoriously open for many years, it was proposed in [3] to consider, in
place of T 2

2 , theories of similar strength but of a rather different nature, based on Jeřábek’s
approximate counting [8]. Interestingly, it turned out that although there are no proof
systems associated in the usual sense with these theories, one could use random resolution
to prove separation of one of them from higher fragments. It suffices to find a narrow CNF
which does not have a narrow 1/2-random resolution distribution, but has a quasipolynomial
size refutation in some constant depth Frege system. The problem of separating the theory
from other fragments of bounded arithmetic was eventually solved by different means [2],
but the problem of proving lower bounds on the width of random resolution distributions
remained open.

1 We emphasize that we are interested in this question for quasipolynomial size proofs. This matches
the natural question in bounded arithmetic, and a separation for polynomial size is known [7], using
a padded pigeonhole principle PHP(log n)k which has short proofs in some depth i, but is such that
the exponential size lower bound for PHP in depth i − 1 gives a quasipolynomial lower bound for the
padded version.
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In this paper we solve this problem by proving that the propositional translation of the
coloured polynomial local search principle CPLS, introduced in [12], which has polynomial size
resolution refutations, does not have narrow 1/2-random resolution distributions. Previously,
lower bounds on random resolution have only been known for treelike refutations [3] or for
relatively small errors ε [11].

The proof is based on a lemma that looks like a rudimentary version of the switching
lemmas used in propositional proof complexity (see the discussion at the start of Section 3).
Although this does not solve the big open problem of giving a new separation in constant
depth Frege, we believe that our result may pave the way to a solution. It has been
conjectured that in order to separate constant depth Frege system, we need only to prove
switching lemmas for certain more complicated tautologies, generalizations of CPLS (see for
example [15]). Nevertheless, all attempts in this direction have failed so far because of the
complexity of the associated combinatorial problems. Our proof gives us some hope that
eventually it will be possible to prove such lemmas.

The full version of the paper is available as an ECCC technical report [13]. In this
extended abstract we present definitions and statements of the main results. We state our
theorems without detailed proofs with one exception, which is the simplest lower bound from
the full paper and is intended to demonstrate our lower bound technique.

2 Basic properties and alternative definitions

We first introduce some notation. We identify CNF formulas with sets of clauses. We will
use 0 (false) and 1 (true) to represent truth values. For a formula F and an assignment α
of truth values to its variables, we denote by F [α] the truth value to which the formula
is evaluated by α. If ρ is a partial assignment, we denote by F ρ the formula obtained by
substituting ρ into F and simplifying the formula (that is, replacing a conjunction by 0 if
one conjunct is 0, etc.).

The width of a clause is the number of literals it contains. The width and size of a
refutation are respectively the width of its widest clause and the total number of clauses. A
k-CNF is a CNF in which every clause has width at most k.

We will often use the notation p1 ∧ · · · ∧ pr → q1 ∨ · · · ∨ qs to stand for the clause
¬p1 ∨ · · · ∨¬pr ∨ q1 ∨ · · · ∨ qs, where p1, . . . , pr, q1, . . . , qr can be any literals. In this notation
the resolution rule can, for example, have the form: from A ∧ p → C and A ∧ ¬p → D

conclude A → C ∨D, where p is a literal, A is a conjunction of literals and C and D are
clauses.

If p is a literal, we will sometimes write p = 1 instead of the literal p and p = 0 instead of
the literal ¬p. Similarly we will write p 6= 1 or p 6= 0 to mean respectively ¬p or p. If p1, . . . , pr
are literals and β ∈ {0, 1}r we write p̄ = β to stand for the conjunction

∧
1≤i≤k pi = βi where

each conjunct is formally either pi or its negation, as above; and p̄ 6= β to stand for the
disjunction

∨
1≤i≤k pi 6= βi.

We write [n] for {0, . . . , n−1}. When we formalize combinatorial principles as CNFs, if the
principle involves a function f : [n]→ [m] we will often formalize f by introducing variables for
its “bit-graph”. That is, for each x < n we introduce logm variables (f(x))0, . . . , (f(x))logm−1
representing the value of f(x) in binary. For the sake of simplicity, in this situation we will
assume that m is a power of 2. For y < m we will write f(x) = y to stand for the conjunction∧
i(f(x))i = βi, where β ∈ {0, 1}logm is y written in binary, and we will write f(x) 6= y for

the disjunction
∨
i(f(x))i 6= βi.

Because we deal with propositional refutation systems, rather than proof systems, for
us the natural translation into propositional logic of a true first order principle, such as the
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pigeonhole principle PHP, is a family of unsatisfiable CNFs that we want to refute, rather
than a family of tautologous DNFs that we want to prove. Therefore we will use the same
name, PHP, for both this family of CNFs and the original principle. It should be clear from
the context which is meant, and the propositional version will often be written with a size
parameter, for example as PHPn.

In the rest of this section, let F be a CNF in variables x1, . . . , xn and let 0 < ε < 1. Our
definition of the size of an ε-RR distribution above does not take into account the size of the
sample space (that is, of the set of pairs (B,Π) appearing in D) but one can show that the
size of the sample space can be bounded, at the cost of slightly increasing the error ε. Also
we can decrease the error ε at the cost of increasing the width and size.

I Lemma 2. Suppose F has an ε-RR distribution of width w and size s. Then
1. it also has 2ε-RR distribution of the same size and width, in which the sample space has

size O(n/ε), and
2. for every k ≥ 1 it also has an εk-RR distribution of width at most kw and size O(sk).

We will now give two more definitions equivalent to random resolution distributions.

I Definition 3. Let ∆ be a probability distribution on {0, 1}n. An (ε,∆)-random resolution
refutation, or (ε,∆)-RR refutation, of F is a pair (B,Π) such that
1. B is a CNF in variables x1, . . . , xn and Π is a resolution refutation of F ∧B
2. Prα∼∆[B[α] = 1] ≥ 1− ε.

This definition is in general not sound, for a fixed ∆. However, if an (ε,∆)-RR refutation
exists for all distributions ∆, then this is equivalent to the existence of an ε-RR distribution,
as follows.

I Proposition 4. The following are equivalent.
1. F has an ε-RR distribution of width w and size s.
2. F has an (ε,∆)-RR refutation of width w and size s for every distribution ∆ on {0, 1}n.

Proof. One direction is just an averaging argument. The other is a consequence of the
minimax theorem. J

The following generalization of this will be useful for proving lower bounds.

I Proposition 5. Proposition 4 still holds if we allow ∆ to range over distributions on partial
assignments, rather than total assignments. In this case we change item 2 in Definition 3 to
Prρ∼∆[B[ρ] = 0] ≤ ε.

Semantic derivations were introduced in [9]. We will use the special case defined by
clauses.

I Definition 6. Let A ⊆ {0, 1}n be a nonempty set of truth assignments. We say that a
formula C is a semantic consequence over A of formulas C1, . . . , Cr, written C1, . . . , Cr �A C,
if every assignment in A that satisfies C1, . . . , Cr also satisfies C.

A semantic resolution refutation of F over A is a sequence Π of clauses, ending with the
empty clause, in which every clause either belongs to F or is a semantic consequence over A
of at most two earlier clauses.

I Definition 7. Let ∆ be a probability distribution on {0, 1}n. An (ε,∆)-semantic refutation
of F is a pair (A,Π) such that
1. Π is a semantic refutation of F over A, and
2. Prα∼∆[α ∈ A] ≥ 1− ε.
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I Proposition 8. If F has an (ε,∆)-RR refutation of width w and size s, then it also has
an (ε,∆)-semantic resolution refutation of width ≤ w and size ≤ s.

In the opposite direction, if F has an (ε,∆)-semantic refutation of width w and size s,
then it also has an (ε,∆)-RR refutation of width O(w) and size at most O(sw2).

We show that random 3-CNFs with sufficiently high density have small RR distributions,
while as is well-known, they only have exponentially large resolution refutations [5].

I Proposition 9. A random 3-CNF F with n variables and 64n clauses has a 1/2-RR
distribution of constant width and constant size with probability exponentially close to 1.

Proof. With exponentially high probability, F has the property that no single assignment
satisfies more than a fraction 15/16 of its clauses. We define a distribution as follows: choose
a clause Ci of the form y1 ∨ y2 ∨ y3 from F uniformly at random, let the auxiliary formula Bi
be the CNF ¬y1 ∧ ¬y2 ∧ ¬y3, and let Πi be the three-step derivation of the empty clause
from Ci and Bi. Then with high probability this is a 15/16-RR distribution for F , which
can be amplified to a 1/2-RR distribution using Lemma 2. J

This gives a separation of narrow random resolution from resolution in one direction
(Theorem 16 will give the opposite direction). We can also prove such a separation for an
explicit sequence of CNFs, the retraction weak pigeonhole principle (see [4, 8]) that asserts
that there is no pair of functions f : [2n]→ [n] and g : [n]→ [2n] such that g(f(x)) = x for
all x < n.

We can now address the natural question of whether random resolution can be presented
as a standard propositional proof system in the sense of Cook and Reckhow [6], or at least
whether it can be polynomially simulated by such a system. Because we want to compare
other systems with random resolution, we adapt the definition to refutation systems – this
makes no difference to the result, since any proof system can be considered as a refutation
system and vice versa. The essential property of Cook and Reckhow’s definition is that one
can test the correctness of refutations in polynomial time, that is, that the binary relation “Π
is a refutation of F ” is decidable in deterministic polynomial time. The other two properties,
soundness and completeness, are satisfied by random resolution.

In order to state our question formally, we must say which object we choose to represent
a refutation in random resolution, and what polynomial simulation means. We will consider
1/2-RR distributions in which all samples have the same weight. Such a distribution can be
written down simply as a list of pairs (Bi,Πi), and by Lemma 2 we do not lose anything
important if we only consider 1/2-RR distributions in this form. Polynomial simulation of
refutation systems can be defined in our situation, where correctness may not be decidable
in polynomial time, in essentially the same way as for standard refutation systems.

I Proposition 10. If P 6= NP, then 1/2-RR cannot be polynomially simulated by any
Cook-Reckhow refutation system, and in particular is not itself a Cook-Reckhow refutation
system.

Proof. This is a corollary of the PCP Theorem, which can be stated as follows (see The-
orem 11.9 in [1]): there exists a polynomial time computable function g and a constant δ < 1
such that for every CNF formula F , g(F ) is a 3-CNF formula such that
1. if F is satisfiable, then g(F ) is also satisfiable
2. otherwise, every assignment satisfies at most a fraction δ of the clauses of g(F ).

Using the construction from the proof of Lemma 9, this implies that if F is unsatisfiable
then g(F ) has a δ-RR distribution, which furthermore is constructable in polynomial time.
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The error δ can be reduced to 1/2 by Lemma 2 and, again, this can be done in polynomial
time. Let h denote the polynomial time computable function h that from a given unsatisfiable
CNF formula F produces a 1/2-RR distribution that refutes g(F ).

Suppose that 1/2-RR can be polynomially simulated by a refutation system given by a
polynomial time binary relation R and let f be the simulation. Then we can test whether F
is satisfiable by computing R(f(h(F ), g(F )), g(F )). J

3 Lower bounds for the bit pigeonhole principle

We present the first of our three main lower bounds on RR distributions. Before going into
details, we outline the basic structure that the proofs will follow.

To prove width lower bounds on a 1/2-RR distribution for a CNF F , we use Proposition 5
to convert the distribution into a (1/2,R)-RR refutation (B,Π) with respect to a distribu-
tion R on partial assignments (we will use the terms “restriction” and “partial assignment”
interchangeably). The crucial thing is to choose the distribution R carefully.

The ideal would be that there are many restrictions ρ from R which make the auxiliary
formula B true, thus making it vanish and leaving us with a resolution refutation for which we
already have a lower bound. To this end we use a sort of rudimentary version of the switching
lemma, which we call a fixing lemma (a different lemma in each case, because it depends
on the formula F ). Intuitively this shows that, with reasonably high probability, ρ fixes the
value of B to either true or false. From the definition of a (1/2,R)-RR refutation we know
that Bρ = 0 with probability at most a half, so we can conclude that many restrictions ρ
make B true.

However, in practice it is not possible to achieve the ideal that ρ makes B true. Instead
we only ask that the restricted formula Bρ cannot be falsified by any “legal” extension σ ⊇ ρ.
What counts as a legal extension depends on F – for example, for the pigeonhole principle it
will be a partial assignment that encodes a matching. The definition is chosen so so that we
can both prove the fixing lemma and then prove a width lower bound on Π by an adversary
argument, in which the adversary only works with legal extensions of ρ.

The proof of a fixing lemma should, in principle, be a special case of a proof of a switching
lemma, since we are essentially switching a CNF to a decision tree of height 0, or to a trivial
DNF. However in the one case we consider in which a switching lemma is known, for the
(non-bit) pigeonhole principle, we do not use it directly, but rather prove our own fixing
lemma. One reason is that the usual lemma works with syntactic transformations of formulas
and does not seem to guarantee that our semantic condition on B, that B is satisfied with
high probability, is preserved. For the CPLS formula in the next section, there is unlikely to
be any traditional switching lemma. This is because, understood very broadly, such a lemma
would imply strong size lower bounds on CPLS in constant depth Frege, while we know that
CPLS already has polynomial size refutations in resolution.

We continue with our lower bound proof for the bit pigeonhole principle. Let n = 2k.
BPHPn is contradictory CNF asserting that a function f is an injection from [n+ 1] to [n].
It has variables (f(x))j for each x < n+ 1 and j < k, for the jth bit of the value of f(x),
and consists of clauses

f(x) 6= y ∨ f(x′) 6= y

for all x < x′ < n+ 1 and all y < n, using the bit-graph notation described in Section 2.
In our proof, we will only consider partial assignments in which, for every x, either all or

none of the variables (f(x))j are set. We identify such assignments with the corresponding
partial functions from n+ 1 pigeons to n holes.
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Given a probability p, define the distribution Rp of partial injections ρ from [n+1] into [n]
as follows: choose the domain of ρ by putting each pigeon into the domain independently at
random with probability 1− p, then choose uniformly at random from all possible partial
injections with this domain (if all n+ 1 pigeons get put into the domain, we just take ρ to
be empty). For the rest of the proof, set p = n−2/3 and w = n1/4.

I Lemma 11 (Fixing Lemma). Let n be sufficiently large. Suppose B is a w-CNF such that
Pr[Bρ = 0] ≤ 1/2. Then

Pr[there exists a partial injection σ ⊇ ρ with Bσ = 0] ≤ 3/4.

Proof. Let S be the set of ρ ∈ Rp for which there exists a partial injection σ ⊇ ρ which
falsifies B. Partition S into the set S0 of restrictions which falsify B, and the set S1 of
restrictions which do not falsify B themselves, but which have an extension to a partial
injection which falsifies B. We know Pr[S0] ≤ 1/2, so it remains to bound the size of S1.

Consider any ρ ∈ S1. No clause in B is falsified by ρ, but there must be at least one
clause which is falsified in some partial injection σ ⊇ ρ. Let C be the first such clause and
let σ be such an extension of ρ falsifying it. The literals in C appear in some fixed order.
Let x be the first pigeon mentioned in C which is not in the domain of ρ, and let i < w be
the position in C at which the first variable from pigeon x appears. Let σ′ be σ restricted to
the pigeons in the domain of ρ together with pigeon x, that is, σ′ = ρ ∪ {〈x, σ(x)〉}.

Define a function θ on S1 by θ : ρ 7→ (σ′, i), where σ′ and i are chosen as above. Then θ
is an injection, because we can first recover C from θ(ρ) as the first clause of B which is
falsified in some extension of σ′ to a partial injection; then we can recover x as the pigeon
associated with the variable at position i in C; and finally we can recover ρ from σ′ by
unsetting pigeon x.

If a restriction ρ sets m > 0 pigeons, then the probability of ρ is

Pr[ρ] = (1− p)mpn+1−m (n−m)!
n! .

Hence Pr[σ′]/Pr[ρ] = (1− p)/p(n−m). By the Chernoff bound, the number n−m of unset
pigeons is smaller than 2pn with exponentially high probability in n. Let Sbad be the set
of restrictions for which this bound fails, so that Pr[σ′]/Pr[ρ] > (1 − p)/2p2n > 1/4p2n

for ρ ∈ S1 \ Sbad. Partition S1 \ Sbad into subsets S0, . . . , Sw−1 according to the second
component i of θ. On each Si, the first component θ1 of θ is an injection from Rp to Rp
which increases probability by at least 1/4p2n. Therefore

Pr[θ1[Si]] =
∑
ρ∈Si

Pr[θ1(ρ)] > 1
4p2n

∑
ρ∈Si

Pr[ρ] = 1
4p2n

Pr[Si].

Since Pr[θ1[Si]] ≤ 1 we can conclude that Pr[Si] < 4p2n, and hence that Pr[S1 \ Sbad] <
4p2nw = 4n−1/12. Since Pr[Sbad] is also exponentially small, the result follows. J

I Theorem 12. BPHPn has no 1/2-RR distribution of width w = n1/4.

Proof. We will show that BPHPn has no (1/2,Rp)-RR refutation with this width. Suppose
for a contradiction that there is such a refutation (B,Π), where B is the auxiliary w-CNF
which is false in Rp with probability at most 1/2.

By Lemma 11, for a random ρ ∈ Rp with probability at least 1/4 there is no extension of
ρ to a partial injection which falsifies any clause from B. Thus by the Chernoff bound we
can fix one such restriction ρ which also leaves at least pn/2 = n1/3/2 holes free.
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Now consider any clause C in the refutation Π. Suppose we have a partial injection σ ⊇ ρ
that falsifies C, and suppose that C is derived by resolution from clauses D ∨ v and E ∨ ¬v,
where v is a variable (f(x))j for some x < n + 1 and j < k. Since |C| ≤ n1/4 we can find
σ′ ⊆ σ that falsifies C and sets at most n1/4 pigeons not set in ρ. Hence we can find a free
hole to assign to pigeon x, thus extending σ′ to a partial injection which falsifies either D ∨ v
or E ∨ ¬v.

In this way, working inductively up through the refutation, we can find a partial injec-
tion σ ⊇ ρ which falsifies some initial clause. But this is a contradiction, since a partial
injection cannot falsify any clause from BPHPn, and by our choice of ρ a partial injection
extending ρ cannot falsify any clause from B. J

We show size lower bounds by combining the argument of Theorem 12 with a standard
application of random restrictions to remove clauses mentioning many pigeons from Π.

I Theorem 13. BPHPn has no 1/2-RR distribution of subexponential size, that is, of size
less than 2nε for some ε > 0.

4 Main lower bounds and separations

4.1 A separation of resolution from narrow RR
The coloured polynomial local search principle (CPLS) was introduced in [12]. The proposi-
tional version of it was studied in [16]. We refer to those two papers for more on the principle,
and only remark here that it is a good candidate for proving separations of this kind because
it is in some sense “complete” among narrow CNFs with short resolution refutations [12],
while at the same time its combinatorial structure is simple enough that we are able to come
up with useful random restrictions. We take our definitions from [16].

Consider a leveled directed graph whose nodes consist of all pairs (i, x) from [a] × [b].
We refer to (i, x) as node x on level i. If i < a− 1, this node has a single neighbour in the
graph, node fi(x) on level i+ 1. Every node in the graph is coloured with some set of colours
from [c]. CPLS expresses that the following three sentences cannot all be true at once.
1. Node 0 on level 0 has no colours.
2. For every node x on every level i < a− 1, if the neighbour fi(x) of x on level i+ 1 has

any colour y, then x also has colour y.
3. Every node x on the bottom level a− 1 has at least one colour, u(x).

We will express this principle as a family of propositional contradictions. Let a be any
natural number and let b and c be powers of two. We will define a CNF formula CPLSa,b,c,
in the following propositional variables.

For each i < a, x < b and y < c, there is a variable Gi(x, y), expressing whether colour y
is present at node (i, x).
For each i < a, x < b and j < log b, there is a variable (fi(x))j , standing for the jth bit
of the value of fi(x).
For each x < b and j < log c, there is a variable (u(x))j , standing for the jth bit of the
value of u(x).

I Definition 14. The formula CPLSa,b,c consists of the following three sets of clauses, which
we will call Axioms 1, 2 and 3:
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Axiom 1. For each y < c, the clause ¬G0(0, y).
Axiom 2. For each i < a− 1, each pair x, x′ < b and each y < c, the clause

fi(x) = x′ ∧Gi+1(x′, y)→ Gi(x, y) .

Axiom 3. For each x < b and each y < c, the clause

u(x) = y → Ga−1(x, y) .

I Proposition 15. CPLSa,b,c has polynomial size resolution refutations.

Proof. For i < a, let Mi be the set of clauses {
∨
y<cGi(x, y) : x < b} expressing that every

node at level i has a colour. We can derive Ma−1 from Axiom 3. Then repeatedly using
Axiom 2 we can derive Ma−2, Ma−3, etc. Once we have M0 we can derive a contradiction
from Axiom 1. For more detail see [16]. J

I Theorem 16. For all sufficiently large n, the formula CPLSn,n,bn1/7c does not have a
1/2-RR distribution of width n1/8.

4.2 A separation of constant-depth Frege from RR

We exhibit a narrow CNF which requires exponential size 1/2-RR distributions but which,
unlike the pigeonhole principle, has polynomial size refutations in constant depth Frege,
in fact in Res(2). Here Res(2) is an extension of resolution in which clauses may contain
conjunctions of pairs of literals (see [10]).

The formula is CPLS2, a variant of CPLS. For each i, x, y, instead of the single variable
Gi(x, y) it has two variables G0

i (x, y) and G1
i (x, y). To express that colour y is present at

node (i, x) we now use the conjunction G0
i (x, y) ∧G1

i (x, y).
As before, the formula expresses that node (0, 0) has no colours; that every colour

present at node (i+ 1, fi(x)) is also present at node (i, x); and that colour u(x) is present at
node (a− 1, x).

I Proposition 17. CPLS2
a,b,c has polynomial size Res(2) refutations.

I Theorem 18. For all sufficiently large n, the formula CPLS2
n,n,bn1/7c does not have a

1/2-RR distribution of size ≤ 2n1/17 .

4.3 Lower bounds for the pigeonhole principle

We now consider the usual formalization of the pigeonhole principle, rather than the bit-graph
version. The CNF formula PHPn has variables pij for i ∈ [n+ 1] and j ∈ [n] and consists of
clauses

∨n
j=1 pij for all i ∈ [n+ 1] and ¬pij ∨ ¬pi′j for all i, i′ ∈ [n+ 1] with i 6= i′ and all

j ∈ [n].

I Theorem 19. PHPn has no 1/2-RR distribution of size less than 2Ω(n1/12).

Acknowledgments. We would like to thank Pavel Hrubeš and Jan Krajíček for discussions
and valuable suggestions.
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Abstract
We consider the graph k-colouring problem encoded as a set of polynomial equations in the
standard way. We prove that there are bounded-degree graphs that do not have legal k-colourings
but for which the polynomial calculus proof system defined in [Clegg et al. 1996, Alekhnovich et
al. 2002] requires linear degree, and hence exponential size, to establish this fact. This implies a
linear degree lower bound for any algorithms based on Gröbner bases solving graph k-colouring
using this encoding. The same bound applies also for the algorithm studied in a sequence of
papers [De Loera et al. 2008, 2009, 2011, 2015] based on Hilbert’s Nullstellensatz proofs for a
slightly different encoding, thus resolving an open problem mentioned, e.g., in [De Loera et al.
2009] and [Li et al. 2016]. We obtain our results by combining the polynomial calculus degree
lower bound for functional pigeonhole principle (FPHP) formulas over bounded-degree bipartite
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3-colouring runs in time O(1.3289n) [8]. A survey on various algorithms and techniques for
so-called exact algorithms is [26].

Many graph colouring instances of interest might not exhibit worst-case behaviour,
however, and therefore it makes sense to study algorithms without worst-case guarantees and
examine how they perform in practice. Dually, it can be of interest to study weak models of
computation, which are nevertheless strong enough to capture the power of such algorithms,
and prove unconditional lower bounds for these models. Obtaining such lower bounds is the
goal of this work.

1.1 Brief Background
Since current state-of-the-art algorithms for propositional satisfiability such as conflict-driven
clause learning (CDCL) [4, 32, 38] are ultimately based on resolution [11], it is perhaps not
so surprising that this approach can be used to solve colouring problems as well. According
to [6], McDiarmid developed a method for deciding k-colourability that captures many
concrete algorithms [35]. This method, viewed as a proof system, is simulated by resolution.

There are exponential lower bounds for resolution proofs of non-k-colourability that apply
to any such method. In particular, [6] presents average-case exponential lower bounds for
random graph k-colouring instances sampled so that the graphs are highly likely not to be
k-colourable. This ultimately boils down to proving width lower bounds, i.e., lower bounds
on the size of a largest clause in any resolution refutation of the formula, and then using
that linear width lower bounds implies exponential size lower bounds [10].

Another possible approach is to attack the k-colouring problem using algebra. Various
algebraic methods have been considered in [3, 31, 33, 34]. The thesis [5] contains the first
explicit attempt we know of to encode the 3-colouring problem using Hilbert’s Nullstel-
lensatz. At a high level, the idea is to write the problem as a set of polynomial equations
{fi(x1, . . . , xn) = 0 | i ∈ [m]} over a suitable field F so that legal colourings correspond to
solutions, and if this is done in the right way it holds that this system of equations has
no solution if and only if there are polynomials g1, . . . , gm such that

∑m
i=1 gifi = 1. This

latter equality is referred to as a Nullstellensatz certificate of non-colourability, and the
degree of this certificate is the largest degree of any polynomial gifi in the sum. Later
papers based on Nullstellensatz and Gröbner bases such as [17, 25, 37] have attracted a fair
amount of attention. For this work, we are particularly interested in the sequence of papers
[19, 21, 20, 18], which uses an encoding of the k-colouring problem that will be discussed
more in detail later in the paper.

There seem to be no formally proven lower bounds for these algebraic methods. On the
contrary, the authors of [21] report that essentially all of the benchmarks they have studied
have Nullstellensatz certificates of constant (and very small) degree. Indeed, no lower bounds
for graph colouring is known for the corresponding proof systems Nullstellensatz [7] or the
stronger system polynomial calculus [1, 15]. Intriguingly, in a close parallel to the case for
resolution it is known that strong enough lower bounds on polynomial calculus degree imply
exponential lower bounds on proof size [27], but the techniques for proving degree lower
bounds are much less developed than the width lower bound techniques for resolution.

Even if there are no know degree lower bounds for graph colouring, a sequence of such
results exists for other formulas, although in most cases these formula are obviously false and
do not express any hard computational problem. In some cases, degree lower bounds can be
obtained by making an affine transformation from {0, 1}-valued variables to {−1,+1}-valued
variables [9, 13], but this only works for polynomial equations with the right structure and
only for fields of characteristic distinct from 2. A general and powerful method, which is
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independent of the field characteristic, was developed in [2], but has turned out to be not so
easy to to apply (except in a few papers such as [22, 23]). A slightly different, and in some
aspects more general, version of the approach in [2] was recently presented in [36], which also
highlighted the similarities and differences between resolution width lower bound techniques
and polynomial calculus degree lower bound techniques. This new framework yielded a new
degree lower bound which plays a key role in our paper.

1.2 Our Contributions
We exhibit families of non-k-colourable graphs of bounded degree such that the canonical
encoding of the corresponding k-colouring instances into systems of polynomial equations
over {0, 1}-valued variables require linear degree to be refuted in polynomial calculus.

I Theorem 1.1 (informal). For any constant k ≥ 3 there are explicit families of graphs
{Gn}n∈N of size O(n) and constant vertex degree, which are not k-colourable but for which
the polynomial calculus proof system requires linear degree, and hence exponential size, to
prove this fact, regardless of the underlying field.

Our degree lower bound also applies to a slightly different encoding with primitive kth
roots of unity used in [19, 20] to build k-colouring algorithms based on Hilbert’s Nullstellensatz.
These algorithms construct certificates of non-k-colourability by solving linear systems of
equations over the coefficients of all monomials up to a certain degree.

Just as the algorithms in [19, 20], our lower bound does not work for all fields (the
field must have an extension field in which there is a primitive kth root of unity). For
simplicity, we state below a concrete result for Nullstellensatz certificates over GF(2) for
non-3-colourability, which is one of the main cases considered in [19, 20]. We remark that
this answers an open question raised in, for example, [21, 30].

I Corollary 1.2. There are explicit families of non-3-colourable graphs such that the algorithms
based on Hilbert’s Nullstellensatz over GF(2) in [19, 20] need to find certificates of linear
degree, and hence must solve systems of linear equations of exponential size, in order to
certify non-3-colourability.

Finally, we want to mention that the graph colouring instances that we construct turn
out to be easy for the proof system cutting planes [16], which formalizes the integer linear
programming algorithm in [14, 24] and underlies so-called pseudo-Boolean SAT solvers such
as, for instance, Sat4j [29, 40].

I Proposition 1.3. The graph colouring instances for the non-k-colourable graphs in The-
orem 1.1 have polynomial-size refutations in the cutting planes proof system.

1.3 Techniques
Perhaps somewhat surprisingly, no heavy-duty machinery is required to establish Theorem 1.1.
Instead, all that is needed is a nifty reduction. Our starting point is the so-called functional
pigeonhole principle (FPHP) formula restricted to a bipartite graph of bounded left degree k.
This formula expresses the claim that a set of pigeons i ∈ I can be mapped to a set of
pigeonholes j ∈ J in a one-to-one fashion, where in addition the pigeons are constrained so
that every pigeon can choose not between all available holes but only between a set of k holes
as specified by the bipartite graph. Clearly, FPHP formulas are unsatisfiable when |I| > |J |.

Any instance of a graph FPHP formula can be viewed as a constraint satisfaction problem
by ordering the available holes for every pigeon in some arbitrary but fixed way, and then
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keeping track of where each pigeon is mapped by recording the ordinal number of its chosen
pigeonhole. If the cth hole for pigeon i and the c′th hole for pigeon i′ is one and the same
hole j, then pigeons i and i′ cannot be allowed to make choices c and c′ simultaneously. If
we view this constraint as an edge in graph with the pigeons I as vertices, this is already
close to a graph colouring instance, except that what is forbidden for the neighbours i and i′
is not the same colour c but some arbitrary pair of possibly distinct colours (c, c′). However,
the idea outlined above can be turned into a proper reduction from graph FPHP formulas to
k-colouring instances by using appropriately constructed gadgets of constant size.

We then combine this reduction with the recent polynomial calculus degree lower bound
in [36], which works as long as the underlying bipartite graph is a boundary expander
(a.k.a. unique-neighbour expander). More precisely, we show that the reduction from FPHP
to graph k-colouring sketched above can be computed in polynomial calculus in low degree.
Therefore, any low-degree polynomial calculus refutations of the graph k-colouring instances
could be used to obtain low-degree refutations of FPHP instances, but [36] tells us that
FPHP instances over expander graphs require linear degree.

In order to obtain Corollary 1.2, we assume that we have a low-degree Nullstellensatz
certificate (or, more generally, a polynomial calculus proof) of non-colourability for the roots-
of-unity encoding in [19, 20]. Then it is not hard to show that if the field we are working in
contains a primitive kth root of unity, we can apply a linear variable substitution to obtain a
polynomial calculus refutation in essentially the same degree of the colouring instance in the
encoding with {0, 1}-valued variables. The corollary now follows from Theorem 1.1.

As should be clear from the discussion above, the hardness of our graph colouring instances
ultimately derives from the pigeonhole principle. However, this combinatorial principle is
well-known to be easy for cutting planes. We establish Proposition 1.3 by showing that
cutting planes can unpack the reduction described above to recover the original pigeonhole
principle instance, after which this instance can be efficiently refuted.

1.4 Outline of This Paper
The rest of this paper is organized as follows. We start by presenting some proof complexity
preliminaries and discussing how to encode the graph colouring problem in Section 2. In
Section 3 we describe our graph k-colouring instances and prove that they are hard for
polynomial calculus, and in Section 4 we show that the same instances are easy for cutting
planes. We conclude in Section 5 by discussing some directions for future research. We refer
to the upcoming full-length version for all missing proofs.

2 Preliminaries

Throughout this paper x1, . . . , xn denote {0, 1}-valued variables, where we think of 1 as true
and 0 as false. We write N = {0, 1, 2, . . .} for the natural numbers and denote N+ = N \ {0}.
For n ∈ N+ we use the standard notation [n] = {1, 2, . . . , n}. For a set E, we use the
shorthand e 6= e′ ∈ E to index over pairs of distinct elements e, e′ ∈ E, e 6= e′.

2.1 Proof Complexity
Polynomial calculus (PC) [15] is a proof system based on algebraic reasoning where one
expresses constraints over Boolean variables as polynomial equations and applies algebraic
manipulations to deduce new equations. The constraints are over {0, 1}-valued variables
x1, . . . , xn, and each constraint is encoded as a polynomial Q in the ring F[x1, . . . , xn], where
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F is some fixed field. The intended meaning is that Q = 0 if and only if the constraint
is satisfied, but we omit “= 0” below and only write the polynomial Q. A PC derivation
of a polynomial R from a set of polynomials S = {Q1, . . . , Qm} is a sequence (P1, . . . , Pτ )
such that Pτ = R and for 1 ≤ t ≤ τ the polynomial Pt is obtained by one of the following
derivation rules:

Boolean axiom: Pt is x2 − x for some variable x;
Initial axiom: Pt is one of the polynomials Qj ∈ S;
Linear combination: Pt = αPi + βPj for 1 ≤ i, j < t and some α, β ∈ F;
Multiplication: Pt = xPi for 1 ≤ i < t and some variable x.

A PC refutation of S is a derivation of the multiplicative identity 1 of F from S. Note that
the Boolean axioms make sure that variables can only take values 0 and 1. For this reason,
we can assume without loss of generality that all polynomials appearing in PC derivations
are multilinear.

The size of a polynomial P is the number of distinct monomials in it when it is expanded
out as a linear combination of monomials,1 and the degree of P is the largest (total) degree of
any monomial in P . The size of a PC derivation π is the sum of the sizes of all polynomials
in π, and the degree is the maximal degree of any polynomial in π. One can also define the
length of a PC derivation as the number of derivation steps in it, but this not so interesting a
measure since it may fail to take account of polynomials of exponential size.2 A fundamental
fact about PC is that the size and degree measures are tightly related as stated next.

I Theorem 2.1 ([27]). For any set S of inconsistent polynomials of degree at most d′ over
n variables it holds that if the minimum degree of any PC refutation for S is at least d, then
any PC refutation of S has size exp

(
Ω
(
(d− d′)2/n

))
.

In particular, if the polynomials in S have constant degree but require refutations of degree
linear in the number of variables n, then any refutation must have exponential size.

We remark that there is also a slightly more general version of this proof system known
as polynomial calculus (with) resolution (PCR) [1]. The difference is that PCR has separate
formal variables x and x to represent both positive and negative literals when translating
CNF formulas into sets of polynomials, as well as complementarity axioms x+x−1 to ensure
that x and x take opposite values. This yields a nicer and more well-behaved proof system.
The change from PC to PCR does not affect the degree needed to refute an inconsistent set
of polynomial equations, however, and Theorem 2.1 holds also for PCR. Therefore, the lower
bounds we show in this paper apply both to PC and PCR.

Another aspect worth noticing is that it makes perfect sense to define polynomial calculus
also for sets of polynomial equations that do not include Boolean axioms x2−x. One variant
studied in the literature is to include axioms xk − 1 instead, i.e., insisting that the value
of x is a kth root of unity. In such a setting it is no longer necessarily true that large degree
implies large space, however.

In this paper we will also consider cutting planes (CP) [16], which is a proof system based
on manipulation of inequalities

∑
i aixi ≥ γ where ai and γ are integers and x1, . . . , xn are

{0, 1}-valued variables. A CP derivation of an inequality B from a set of inequalities S =

1 Just to make terminology precise, in this paper a monomial is a product of variables, a term is a
monomial multiplied by a non-zero coefficient from the field F, and a polynomial is always considered as
a linear combinations of terms over pairwise distinct monomials.

2 Indeed, if multiplication is defined to multilinearize polynomials automatically, as in, e.g., [2], then any
unsatisfiable CNF formula encoded into polynomials in the natural way can be refuted in linear length –
see [36] for details.
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2:6 Graph Colouring is Hard for Hilbert’s Nullstellensatz and Gröbner Bases

{A1, . . . , Am} is a sequence (B1, . . . , Bτ ) such that Bτ = B and for 1 ≤ t ≤ τ the inequality
Bt is obtained by one of the following derivation rules:

Variable axiom: Bt is either x ≥ 0 or −x ≥ −1 for some variable x.
Initial axiom: Bt is some Aj ∈ S;
Sum: Bt = Bi +Bj for 1 ≤ i, j < t.
Scalar multiplication: Bt = cBi for 1 ≤ i < t and c ∈ N;
Division: The inequality Bt is∑

i

ai
c
xi ≥

⌈γ
c

⌉
(1)

where c divides all a1, . . . , an and
∑
i aixi ≥ γ is some inequality Bi for 1 ≤ i < t.

A CP refutation of S = {A1, . . . , Am} is a derivation from S of the inequality 0 ≥ 1. In what
follows, we will often write

∑
i aixi ≤ γ as an alias for

∑
i−aixi ≥ −γ, and we will also use∑

i aixi = γ as a shorthand for the two inequalities
∑
i aixi ≤ γ and

∑
i aixi ≥ γ.

The length of a CP derivation is the number of derivation steps in it. The size of a linear
inequality

∑
i aixi ≥ γ is the number of variables plus the bit size of representations of the

constant term γ and all coefficients ai, and the size of a CP derivation π is the sum of the
sizes of all inequalities in π. We do not know of any degree-like measure for CP that would
yield relation as that between size and degree for PC in Theorem 2.1. One usually does not
distinguish too carefully between length and size for CP since by [12] all coefficients in a CP
refutation can be assumed to have at most exponential size, and are hence representable
with a linear number of bits.

For a partial mapping ρ : D → R from a domain D to a range R we let dom(ρ) denote
the set of element with an image. For d ∈ D \ dom(ρ) we write ρ(d) = ∗. Given a partial
assignment or restriction ρ of variables x1, . . . , xn to values in {0, 1} and a polynomial P
or a linear inequality A, we denote by P�ρ and A�ρ the polynomial and linear inequality
obtained from P and A by restricting the variables in the domain of ρ to the corresponding
values and making obvious syntactic simplifications. Given a derivation π in PC or CP, we
denote by π�ρ the sequence of restricted polynomials or linear inequalities, respectively. It is
straightforward to verify that if π is a CP derivation of an inequality A from S, then π�ρ
can be viewed (after simple syntactic manipulations) as a derivation of A�ρ from S�ρ of at
most the same length, and the same holds for PC with respect to size and degree.

2.2 The Graph Colouring Problem
A legal k-colouring of an undirected graph G = (V,E) with vertices V (G) = V and edges
E(G) = E is a mapping χ : V → [k] such that for every edge (u, v) ∈ E it holds that
χ(u) 6= χ(v). The chromatic number χ(G) of G is the smallest k such that a legal k-colouring
of G exists. In the rest of this paper, colourings will often be assumed to be legal unless
specified otherwise, so we will sometimes omit this prefix when no misunderstanding can
occur. Also, it will sometimes be convenient to number the k colours 0, 1, . . . , k − 1 instead
of 1, 2, . . . , k, and we will be fairly relaxed about this issue, implicitly identifying colours 0
and k whenever convenient.

Given a graph G we can encode the k-colourability problem in a natural way as a system
of polynomial equations over Boolean variables

k∑
j=1

xv,j = 1 v ∈ V (G), (2a)

xv,jxv,j′ = 0 v ∈ V (G), j 6= j′ ∈ [k], (2b)
xu,jxv,j = 0 (u, v) ∈ E(G), j ∈ [k], (2c)
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with the intended meaning that xv,j = 1 if vertex v has colour χ(v) = j. It is clear that this
system of equations has a solution if and only if the graph G is k-colourable.

We will also be interested in an alternative algebraic representation of the k-colouring
problem appearing, e.g., in [19, 20, 21]. In this encoding every vertex v ∈ V has a single
associated variable yv which takes values in {1, ω, ω2, . . . , ωk−1}, where ω is a primitive
kth root of unity. The intended meaning is that yv = ωj if vertex v has colour j ∈
{0, 1, . . . , k − 1}. The colouring constraints are enforced by the polynomial equations

ykv = 1 v ∈ V (G), (3a)
k−1∑
j=0

(yu)j(yv)k−1−j = 0 (u, v) ∈ E(G), (3b)

where the polynomials live in a polynomial ring over a field of characteristic that is not a
positive number dividing k. Clearly, Equation (3a) forces the vertex v to take some colour.
A moment of thought reveals that Equation (3b) correctly encodes an edge constraint: if
yu = ωa and yv = ωb, then the sum evaluates to ωb(k−1)∑k−1

j=0 ω
j(a−b), which equals 0 when

a 6= b and kωb(k−1) 6= 0 otherwise. The latter formulation of k-colouring only makes sense
if the characteristic of the underlying field F is either 0 or a positive integer that does not
divide k. In this case, we also know that there exists an extension field E of F that contains
a primitive kth root of unity ω [28, Chapter VI.3].

A simple but important observation for us is that the choice of the polynomial encoding is
not too important if we want to study how large degree is needed in polynomial calculus when
proving that some graph G is not k-colourable, provided that the field we are in contains, or
can be extended to contain, a primitive kth root of unity.

I Proposition 2.2. Suppose that Equations (3a)–(3b) have a polynomial calculus refutation
of degree d over some field F of characteristic that is not a positive number dividing k. Then
F can be extended to a field E containing a primitive kth root of unity ω, and it holds that
Equations (2a)–(2c) have a polynomial calculus refutation over E of degree max{k, d}.

Proof Sketch. Given any polynomial calculus refutation π of Equations (3a)–(3b), we apply
the linear substitutions

yv 7→
k∑
j=1

xv,jω
j (4)

to all variables in all polynomials in this refutation to obtain a new sequence of polynomials π′
in variables xv,j . All applications of the linear combination rule in π remain valid in π′, and all
applications of multiplication in π can be carried out in π′ by a combination of multiplication
and linear combination steps. The final line of the refutation, i.e., the multiplicative identity 1,
is the same in π and π′. What remains to argue is that the substituted versions of the initial
axioms (3a)–(3b) in π can be derived from the axioms (2a)–(2c) available to π′. We refer to
the upcoming full-length version for the details. J

For later use, we note that we can also encode the k-colourability problem for a graph G
as a system of linear inequalities

k∑
j=1

xv,j ≥ 1 v ∈ V (G), (5a)

xv,j + xv,j′ ≤ 1 v ∈ V (G), j 6= j′ ∈ [k], (5b)
xu,j + xv,j ≤ 1 (u, v) ∈ E(G), j ∈ [k], (5c)

in a format amenable to cutting planes reasoning.
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3 Worst-Case Lower Bound for Polynomial Calculus

We now show how to explicitly construct a family of graphs which are not k-colourable but
for which polynomial calculus proofs of this fact (over any field) require degree linear in the
number of vertices in the graphs. We do this in three steps:
1. First, we show how to reduce instances of functional pigeonhole principle (FPHP) formulas

defined over bipartite graphs of bounded degree to graph colouring instances so that
there is a one-to-one mapping of pigeons to holes if and only if the graph is k-colourable.

2. Then we show that polynomial calculus is able to carry out this reduction in constant
degree, so that a low-degree PC proof of graph non-colourability can be used to obtain a
low-degree refutation of the corresponding FPHP instance.

3. Finally, we appeal to a linear lower bound on degree for refuting FPHP instances over
bipartite expander graphs from [36].

Let us start by giving a precise description of our functional pigeonhole principle instances.
We have a set of pigeons I which want to fly into a set of holes J , with each pigeon flying into
exactly one hole in a one-to-one fashion. However, the choices of holes for the pigeons are
constrained, so that pigeon i can fly only to the holes in J(i) ⊆ J , where we have |J(i)| = k.
If we use variables pi,j to denote that pigeon i flies into hole j, we can write the constraints
on such a mapping as a set of polynomial equations∑

j∈J(i)

pi,j = 1 i ∈ I, (6a)

pi,jpi,j′ = 0 i ∈ I, j 6= j′ ∈ J(i). (6b)
pi,jpi′,j = 0 i 6= i′ ∈ I, j ∈ J(i) ∩ J(i′). (6c)

Note that an instance encoded by Equations (6a)–(6c) can also be naturally viewed as a
bipartite graph B with left vertex set I, right vertex set J , and edges from each i ∈ I to all
j ∈ J(i). In what follows, we will mostly reason about FPHP instances in terms of their
representations as bipartite graphs.

In the standard setting, we let I = [n] and J = [n − 1] for some n ∈ N, in which case
the collection of constraints (6a)–(6c) is clearly unsatisfiable. Nevertheless, it was shown
in [36] that if the underlying bipartite graph is a so-called boundary expander, then any PC
refutation of Equations (6a)–(6c) requires Ω(n) degree and thus, by Theorem 2.1, exponential
size. For our results, we do not need to go into the technical details of this lower bound, but
it suffices to use the following claim as a black box.

I Theorem 3.1 ([36]). For any integer k ≥ 3 there is an efficiently constructible family of
bipartite graphs {Bn}n∈N with n vertices on the left side, n − 1 vertices on the right side,
left degree k, and right degree O(k), such that any polynomial calculus refutation of the
corresponding constraints (6a)–(6c) requires degree Ω(n).

To be precise, the lower bound in Theorem 3.1 was proven for a slightly different encoding
of Equations (6a)–(6c) – namely the one obtained from the natural translation of CNF
formulas into polynomial equations – but the two encodings imply each other and can be
used to derive each other in degree O(k) by the implicational completeness of polynomial
calculus. Hence, the lower bound holds for both encodings.

We proceed to describe the reduction from functional pigeonhole principle instances to
graph colouring instances. Our starting point is an FPHP instance on a bipartite graph B
with pigeons I = [n] and holes J where every pigeon has exactly dI = k holes to choose from
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(a) Forbidding i← c and i′ ← c.
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(b) Forbidding i← c and i′ ← c′ for c 6= c′.

Figure 1 Injectivity constraint gadgets G(i,i′)6←(c,c′) for k = 4.

and every hole can take O(k) pigeons; i.e., the bipartite graph B is left-regular of degree k
and has right degree O(k). Based on this instance we construct a graph G = G(B) such that
G is k-colourable if and only if the functional pigeonhole principle on B is satisfiable.

By way of overview, the graph G(B) has n special vertices corresponding to the pigeons,
and the colours of these vertices encode how the pigeons are mapped to holes. For every
pair of pigeons i, i′ that can be mapped to the same hole j we add a gadget that forbids the
colouring of the pigeon vertices i and i′ that corresponds to them being mapped to hole j.
These gadgets have a couple of pre-coloured vertices, but we eliminate such pre-colouring by
adding one more simple gadget.

In more detail, the main idea behind the reduction is to view the choices J(i) for each
pigeon i ∈ I as taking the first, second, . . . , kth edge. We fix an arbitrary enumeration of the
elements of J(i) for each i ∈ I, associating distinct numbers 1, 2, . . . , k to the edges out of the
vertex i in B. We say that pigeon i flies to hole j using its cth edge if the edge connecting
pigeon i to hole j is labelled by c ∈ [k], and use the notation i ← c for this (suppressing
the information about the hole j). Pigeon i taking the cth edge corresponds to the special
ith pigeon vertex being coloured with colour c.

Consider two distinct pigeons i 6= i′ ∈ I and a hole j ∈ J(i) ∩ J(i′). If pigeon i flies to
hole j using its cth edge and pigeon i′ flies to hole j using its c′th edge, then the translation
of the injectivity constraint (6c) expressed in terms of k-colourings is that vertices i and i′
cannot be simultaneously coloured by colours c and c′, respectively.

Let us now give a precise description of the graph gadgets we employ to enforce such
injectivity constraints. These will be partially pre-coloured graphs G(i,i′) 6←(c,c′) as depicted
in Figures 1a and 1b. The gadget constructions start with two disjoint k-cliques for pigeons i
and i′, which we will refer to as the left and right cliques, respectively. We refer to the
vertices in the left clique as `1, . . . , `k numbered in a clockwise fashion starting with the first
vertex at the bottom, and in a symmetric fashion the vertices in the right clique are referred
to as r1, . . . , rk numbered anti-clockwise starting at the bottom.

To the first vertex `1 in the left k-clique we connect the vertex i. To vertices `2, . . . , `k−1
we connect a new vertex pre-coloured with colour c. For the right k-clique we do a similar
construction: to the first vertex r1 we connect the vertex i′ and to the next k − 2 vertices
r2, . . . , rk−1 we connect a new vertex pre-coloured with colour c′.

The final step of the construction depends on whether c = c′ or not. If c = c′, then we
add an edge between the final two vertices `k and rk in the cliques. If c 6= c′, then we instead
merge these two vertices into a single vertex as shown in Figure 1b. We want to stress that
except for i and i′ all vertices in the construction are new vertices that do not occur in any
other gadget. Let us collect for the record some properties of this gadget construction.
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2:10 Graph Colouring is Hard for Hilbert’s Nullstellensatz and Gröbner Bases

I Claim 3.2. The pre-coloured graph gadget G(i,i′) 6←(c,c′) has the following properties:
1. G(i,i′)6←(c,c′) has O(k) vertices.
2. G(i,i′)6←(c,c′) has two pre-coloured vertices of degree O(k).
3. For every (b, b′) 6= (c, c′) there is a legal k-colouring χ of G(i,i′)6←(c,c′) extending the pre-

colouring and satisfying χ(i) = b and χ(i′) = b′. No such legal k-colouring of G(i,i′)6←(c,c′)
exists for (b, b′) = (c, c′).

Proof. The first two properties obviously hold by construction.
To prove Property 3, let us focus on the left clique in either of the two variant of the

gadget. If χ(i) = c, then clearly vertex `1 in the left clique cannot take colour c. Since the
pre-coloured vertex connected to vertices `2, . . . , `k−1 of the clique also has colour c, and
since any legal colouring must use all available colours for the clique, this forces χ(`k) = c.
If χ(i) 6= c, however, then we can colour vertex `1 with colour c, and then choose any
permutation of the remaining colours for the other vertices in the left clique, giving the
vertex `k at least two distinct colours to choose between.

Consider now the case c = c′, so that we have the graph gadget G(i,i′) 6←(c,c) in Figure 1a.
By symmetry, if χ(i′) = c′, then this forces χ(rk) = c, but there are at least two choices for
the colour of rk if χ(i′) 6= c′. It follows that if i← c and i′ ← c, then vertices `k and rk both
have to get the same colour c to avoid conflicts in the left and right k-cliques, respectively,
which causes a conflict along the edge (`k, rk). As long as one of i and i′ is assigned a
colour other than c, however, G(i,i′) 6←(c,c) can be legally k-coloured. For c 6= c′ we reason
analogously but use instead the graph gadget G(i,i′) 6←(c,c′) in Figure 1b. J

We write Ĝ = Ĝ(B) to denote the graph consisting of the union of all gadgets G(i,i′)6←(c,c′)
for all i 6= i′ ∈ I and all c, c′ such that if pigeon i uses its cth edge and pigeon i′ uses its
c′th edge in B, then they both end up in the same hole j ∈ J . All vertices corresponding to
pigeons i ∈ I are shared between gadgets G(i,i′)6←(c,c′) in Ĝ, but apart from this all subgraphs
G(i,i′) 6←(c,c′) are vertex-disjoint. We next state some properties of Ĝ.

I Lemma 3.3. Consider an FPHP instance encoded by Equations (6a)–(6c) for a left-regular
bipartite graph with left degree dI = k and bounded right degree dJ = O(k), and let Ĝ be
the partially k-coloured graph obtained as described above. Then Ĝ has O

(
k4|I|

)
vertices

and maximal vertex degree O(k2), and the number of pre-coloured vertices is O
(
k2|I|

)
.

Furthermore, the partial k-colouring of Ĝ can be extended to a complete, legal k-colouring
of Ĝ if and only if there is a way to map each pigeon i ∈ I to some hole j ∈ J without
violating any constraint in (6a)–(6c).

Proof. Without loss of generality we can assume that |J | ≤ k|I| (otherwise there are holes
that cannot be used by any pigeon). Each gadget G(i,i′)6←(c,c′) has O(k) vertices and there are
at most (dJ )2 = O

(
k2) distinct pairs of pigeons that can fly to any single hole j, meaning that

we have a total of at most O
(
k2|J |

)
injectivity constraint gadgets G(i,i′)6←(c,c′). Therefore,

by a crude estimate Ĝ has at most O
(
k4|I|

)
vertices in total.

By Claim 3.2 at most O
(
k2|I|

)
vertices in Ĝ are pre-coloured. Each pigeon vertex labelled

by i ∈ I is involved in at most dIdJ = O
(
k2) injectivity constraint gadgets, so such vertices

have degree O
(
k2), while all other vertices have degree O(k).

For any complete colouring of Ĝ extending the pre-colouring, the colours χ(i) = ci
assigned to pigeon vertices i ∈ I define a mapping from pigeons to holes via the chosen
edges ci. It follows from Claim 3.2 that this colouring is legal only if pigeons are mapped to
holes in a one-to-one fashion, which implies that Equations (6a)–(6c) are satisfiable. In the
other direction, for any one-to-one mapping of pigeons to holes we can colour vertex i by the
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Figure 2 Pre-colouring gadget with vertices to be identified with the pre-coloured vertices in Ĝ.

colour ci corresponding to the edge it uses to fly to its hole, and such a colouring can be
combined with the pre-colouring complete, to produce a legal k-colouring. J

To finalize our reduction we need to get rid of the pre-coloured vertices in Ĝ. To this end,
we first make the following observation. Recall that for every every pigeon i ∈ I we fixed an
enumeration of the edges to holes j ∈ J(i) in B, so that the choice of an edge corresponds to
the choice of a colour. Suppose we apply some arbitrary but fixed permutation σ on [k] to
all such enumerations for the pigeons i ∈ I. Clearly, this does not change the instance in any
significant way. If it was the case before that pigeon i and i′ could not simultaneously take
the cth and c′th edges, respectively, then now these pigeons cannot simultaneously take the
σ(c)th and σ(c′)th edges, respectively. In other words, Lemma 3.3 is invariant with respect
to any permutation of the colours [k], and we could imagine the reduction as first picking
some permutation σ and then constructing Ĝ with respect to this permutation.

A simple way of achieving this effect would be to construct a separate “pre-colouring
k-clique” consisting of k special vertices γ1, . . . , γk, and then identify all vertices in Ĝ pre-
coloured with colour c with the vertex γc. It is not hard to see that the resulting graph would
be k-colourable if and only if the pre-colouring of Ĝ could be extended to a complete, legal
k-colouring, and using Lemma 3.3 we would obtain a valid reduction from the functional
pigeonhole principle to graph k-colouring. However, the final graph would have degree
Ω
(
k3|I|

)
, and we would like to obtain a graph of bounded degree.

To keep the vertex degrees independent of the size |I| of the left-hand side of the FPHP
bipartite graph B, we instead construct a pre-colouring gadget using a slight modification
of the above idea. Consider a set {γ1, γ2, . . . , γM} of new vertices, for M to be fixed
later. For every segment of k consecutive vertices {γt, γt+1, . . . , γt+k−1} we add all edges{

(γc, γc′)
∣∣c 6= c′ ∈ {t, t + 1, . . . , t + k − 1}

}
so that they form a k-clique as illustrated in

Figure 2 (where as in Figure 1 we have k = 4). Next, we go through all the pre-coloured
vertices in Ĝ: if a vertex should be pre-coloured by c, then we identify it with the first
vertex γt such that t ≡ c (mod k) and such that γt has not already been used at a previous
step. If we choose M = O

(
k3|I|

)
, then we are guaranteed to have enough vertices γt to be

able to process all pre-coloured vertices in this way.
Our final graph G = G(B) is the previous graph Ĝ with pre-coloured vertices identified

with (uncoloured) vertices in the additional pre-colouring gadget as just described. Clearly,
G is k-colourable if and only if the pre-colouring of Ĝ can be completed to a legal k-colouring.
We summarize the properties of our reduction in the following proposition, stated here
without proof.

I Proposition 3.4. Given a graph FPHP formula over a left-regular bipartite graph B with
left degree dI = k and bounded right degree dJ = O(k), there is an explicit construction of a
graph G = G(B) such that G has O

(
k4|I|

)
vertices of maximal vertex degree O(k2) and is

k-colourable if and only if Equations (6a)–(6c) are simultaneously satisfiable.
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Since our reduction encodes local injectivity constraints into local colouring constraints,
it stands to reason that we should be able to translate between these two types of constraints
using low degree derivations. In particular, it seems reasonable to expect that any low-degree
refutation of the k-colouring problem for G(B) should yield a low-degree refutation for the
functional pigeohole principle on B. This is indeed the case, as stated in the next lemma.

I Lemma 3.5. Consider the graph G = G(B) obtained from a bipartite graph B as in
Proposition 3.4. If the k-colourability constraints (2a)–(2c) for G have a PC refutation in
degree d, then the functional pigeonhole principle constraints (6a)–(6c) defined over B have
a PC refutation of degree at most 2d.

We will spend what remains of this section on proving this lemma. The proof is quite
similar in spirit to that of Proposition 2.2. We start by assuming that we have a PC refutation
of Equations (2a)–(2c) in degree d. Our first step is to substitute all variables xv,j in this
refutation with polynomials of degree at most 2 in variables pi,j . In the second step, we
argue that if we apply this substitution to the axioms in (2a)–(2c), then we can derive the
resulting substituted polynomials from Equations (6a)–(6c) by PC derivations in low degree.
Taken together, this yields a PC refutation in low degree of the FPHP instance (6a)–(6c).

To describe the substitution, let us focus on a single gadget G(i,i′)6←(c,c′). The first step is
to express all equations for this gadget as equations over variables xi,1, . . . xi,k, xi′,1, . . . xi′,k.
Note that these variables are essentially the same as those from the pigeonhole principle
instance, except that instead of pi,j we use the variable xi,c where c is the number of the
edge pigeon i uses to fly to hole j, but for the sake of exposition we want to keep using the
language of colourings.

Let w and w′ be the vertices that are supposed to be pre-coloured with colours c and c′,
respectively. We stress that now we are considering the graph G which has no pre-coloured
vertices, and in particular all the variables mentioning the vertices w and w′ are unassigned.
Recall that w and w′ also appear in the gadget depicted in Figure 2, where they are identified
with some vertices γt and γt′ such that t ≡ c and t′ ≡ c′ (mod k).

For any pair (b, b′) of colours different from (c, c′), Claim 3.2 guarantees that we can
pick some colouring χ(b,b′) for the gadget G(i,i′)6←(c,c′) such that χ(b,b′)(i) = b, χ(b,b′)(i′) = b′,
χ(b,b′)(w) = c and χ(b,b′)(w′) = c′. Fix for the rest of this proof such a colouring χ(b,b′)
for the gadget G(i,i′)6←(c,c′) for every (b, b′) 6= (c, c′). Then we can write the colour of any
vertex v in G(i,i′)6←(c,c′) other than the pigeon vertices i and i′ as a function of (b, b′). In more
detail, we can express every variable xv,j , for v 6∈ {i, i′}, as a degree-2 polynomial over the
variables xi,1, . . . xi,k, xi′,1, . . . xi′,k by summing over the monomials xi,bxi′,b′ corresponding
to the choices of colours (b, b′) for (i, i′) for which the colouring χ(b,b′) assigns colour j to
vertex v, or in symbols

xv,j 7→
∑

(b,b′) 6=(c,c′), χ(b,b′)(v)=j

xi,bxi′,b′ . (7)

Notice that for the vertices w and w′ the substitutions we obtain from (7) are

xw,c 7→
∑

(b,b′)6=(c,c′)

xi,bxi′,b′ , (8a)

xw′,c′ 7→
∑

(b,b′)6=(c,c′)

xi,bxi′,b′ , (8b)

xw,b 7→ 0 (for c 6= b), (8c)
xw′,b′ 7→ 0 (for c′ 6= b′), (8d)

since w always gets colour c and w′ always gets colour c′ in any colouring χ(b,b′).
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Let us next discuss how the polynomials obtained from (2a)–(2c) after the substitution (7)
can be derived in PC from (6a)–(6c). More precisely we argue that all substituted axioms
can be derived from the equations

k∑
b=1

xi,b = 1 , (9a)

xi,bxi,b′ = 0 (for b 6= b′), (9b)
k∑

b′=1
xi′,b′ = 1 , (9c)

xi′,bxi′,b′ = 0 (for b 6= b′), (9d)
xi,cxi′,c′ = 0 , (9e)

which are just the same, except for variables renaming, as the pigeon axioms (6a) and (6b)
for pigeons i and i′ plus the collision axiom (6c) for the hole which is the common neighbour
of i and i′. In what follows we will need the equation

k∑
b=1

k∑
b′=1

xi,bxi′,b′ − xi,cxi′,c′ − 1 = 0 (10)

which has the degree-2 proof

k∑
b=1

xi,b

(
k∑

b′=1
xi′,b′ − 1

)
+
(

k∑
b=1

xi,b − 1
)
− xi,cxi′,c′ = 0 (11)

from (9a)–(9e).
We consider first axioms

∑k
j=1 xv,j = 1 as in (2a) for vertices v that are not a pigeon

vertex i or i′. It is straightforward to verify that such an axiom after substitution as in (7)
becomes an equality on the form (10). If v is a pigeon vertex i or i′, then no substitution is
made and we simply keep the axiom (9a) or (9c), respectively.

Next, we consider axioms (2b) on the form xv,jxv,j′ = 0, where we assume that v is not
a pigeon vertex i or i′ since in that case we have one of the axioms (9b) and (9d). After
substitution an axiom (2b) for v /∈ {i, i′} becomes a sum of degree-4 terms of the form
xi,b1xi′,b′

1
xi,b2xi′,b′

2
. Recall that the substitution associates disjoint sets of pairs (b, b′) to the

colours for v. Therefore, for each term xi,b1xi′,b′
1
xi,b2xi′,b′

2
it must be that either b1 6= b2 or

b′1 6= b′2 holds, and such a term can be derived from (9b) or (9d) by multiplication.
Let us finally consider axioms on the form xu,jxv,j = 0 for (u, v) ∈ E(G) as in (2c).

There is no edge between i and i′ in our constructed graph, so for the size of the intersection
between {u, v} and {i, i′} it holds that 0 ≤

∣∣{u, v} ∩ {i, i′}∣∣ ≤ 1.
If
∣∣{u, v} ∩ {i, i′}∣∣ = 0, then after substitution the axiom (2c) becomes a sum of degree-4

terms of the form xi,b1xi′,b′
1
xi,b2xi′,b′

2
. Consider any such term. If either b1 6= b2 or b′1 6= b′2,

then the term can be derived from (9b) or (9d). We claim that no term can have b1 = b2 and
b′1 = b′2. To see this, note that this would imply that when performing substitution as in (7)
the variables xu,j and xv,j both get expanded to a sum containing xi,b1xi′,b′

1
. But this would

in turn mean that the colouring χ(b1,b′
1) that we fixed for the gadget G(i,i′)6←(c,c′) at the start

of the proof assigned colours χ(b1,b′
1)(u) = χ(b1,b′

1)(v), which is impossible since there is an
edge between u and v and χ(b1,b′

1) was chosen to be a legal colouring.
The remaining case is when we have intersection size

∣∣{u, v} ∩ {i, i′}∣∣ = 1. Without loss
of generality because of symmetry we can assume that we have an axiom xu,jxv,j = 0 for
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u /∈ {i, i′} and v = i. The axiom becomes after substitution a sum of terms of the form
xi,bxi′,b′xi,j . If for some term we would have b = j, then χ(j,b′) would assign the same colour
j to both u and i. This is again impossible since χ(j,b′) is a legal colouring of the gadget by
construction. Hence we have b 6= j and it follows that xi,bxi′,b′xi,j is derivable from (9b).

We are now almost done with the proof of Lemma 3.5. We have defined how to substitute
variables xv,j in (2a)–(2c) and have shown that the equations that we obtain after these
substitutions can be derived from Equations (6a)–(6c) in low degree. The final issue that
remains it to get rid of all vertices γt in the pre-colouring gadget in Figure 2 that are not
members of any injectivity constraint gadget G(i,i′)6←(c,c′). For such variables the substitution
is simply an assignment: we let xγt,b 7→ 1 when t ≡ b (mod k) and xγt,b 7→ 0 otherwise.3
This immediately satisfies all axioms (2a) and (2b) for these vertices, removing these axioms
from the refutation. It remains to check the axioms (2c) for any pair of connected vertices γt
and γt′ . But by construction, if γt and γt′ are connected it holds that t 6≡ t′ (mod k).
Therefore, for every b ∈ [k] we have that either xγt,b 7→ 0 or xγt′ ,b 7→ 0 holds, regardless of
whether these two vertices are in some gadget G(i,i′)6←(c,c′) or not.

To summarize what we have done, we started with any arbitrary refutation of (2a)–(2c)
and substituted all variables with degree-2 polynomials over the variables xi,j for i ∈ [n].
Then we proved that all these substituted axioms (and therefore the whole refutation) follow
from Equations (9a)–(9c). It is straightforward to verify that, up to variable renaming, these
axioms are nothing other than the FPHP axioms in (6a)–(6c). This concludes the proof of
Lemma 3.5. Putting everything together, we can now state and prove our main theorem.

I Theorem 3.6. For any integer k ≥ 3 there is an efficiently constructible family of graphs
{Gn}n∈N with O(k4n) vertices of degree O(k2) that do not possess k-colourings, but for which
the corresponding system of polynomial equations (2a)–(2c) require degree Ω(n), and hence
size exp(Ω(n)), to be refuted in polynomial calculus.

Proof. Take the family of bipartite graphs {Bn}n∈N as in Theorem 3.1 and apply Proposi-
tion 3.4 to this family. This yields a family of graphs {Gn}n∈N as in the theorem statement.
Any sublinear degree refutation for k-colouring of Gn would imply, by Lemma 3.5, a sublinear
degree refutation for the functional pigeonhole principle for Bn, but this is impossible by the
choice of Bn. J

4 Short Proofs for k-Colouring Instances in Cutting Planes

Theorem 3.6 tells us that there are non-k-colourable graphs Gn for which it is impossible for
polynomial calculus to certify non-k-colourability efficiently. As is clear from our reduction,
the k-colouring formulas for these graphs are essentially obfuscated instances of the functional
pigeonhole principle.

It is well-known that cutting planes can easily prove that pigeonhole principle formulas
are unsatisfiable by just counting the number of pigeons and holes and deduce that the
pigeons are too many to fit in the holes [16]. As we show in this section, the instances of
k-colouring obtained via the reduction from FPHP also have short cutting planes refutations.
What these refutations do is essentially to “de-obfuscate” the k-colouring formulas to recover
the original functional pigeonhole principle instances, which can then be efficiently refuted.

3 Note that here the substitution for xγt,b where t ≡ b (mod k) is different from the one used for vertices
that are members of some gadget G(i,i′)6←(c,c′) in (8a) and (8b). For variables xγt,b where t 6≡ b (mod k)
the substitution is the same as in (8c) and (8d), though.
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We are going to describe our cutting planes refutation as a decision tree such that at every
leaf we have a cutting planes refutation of the formula restricted by the partial assignment
defined by the tree branch reaching that leaf. These refutations of the restricted versions of
the formula can then be combined to yield a refutation of the original, unrestricted formula
as stated in Lemma 4.1 and Proposition 4.2. The proofs of these statements are fairly routine
and we omit them in this conference version of the paper.

We recall that as discussed in Section 2 we will use
∑
i aixi ≤ γ as an alias for∑

i−aixi ≥ −γ and
∑
i aixi = γ as an alias for the combination of

∑
i aixi ≤ γ and∑

i aixi ≥ γ. In particular, we will frequently write x = b for some variable x and b ∈ {0, 1}
as a shorthand for the pair of inequalities x ≤ b and −x ≤ −b.

I Lemma 4.1. Let b ∈ {0, 1} and suppose that there exists a cutting planes derivation
(B1, . . . , BL) in length L of the inequality

∑
i aixi ≤ γ from the system of inequalities

S ∪{x = b}. Then for some K ∈ N there is a CP derivation in length O(L) of the inequality

(−1)1−bK · (x− b) +
∑
i

aixi ≤ γ (12)

from S.

I Proposition 4.2. Let G be a graph and k ≥ 2 be a positive integer, and let S be the set of
inequalities (5a)–(5c) for G and k. If for a fixed set of vertices u1, u2, . . . , u` in G and every
choice of colours (c1, c2, . . . , c`) ∈ [k]` for these vertices there is a CP refutation in length at
most L of the set of inequalities S ∪ {xu1,c1 = 1, xu2,c2 = 1, . . . , xu`,c`

= 1}, then there is a
CP refutation of S in length kO(`) · L.

We can now state the main result of this section, namely that the hard k-colouring
instances for polynomial calculus constructed in Section 3 are easy for cutting planes.

I Proposition 4.3. Let B be a left-regular bipartite graph B with left degree k and bounded
right degree O(k), and consider the graph G = G(B) in Proposition 3.4. Then if there is
no complete matching of the left-hand side of B into the right-hand side, then the set of
inequalities (5a)–(5c) encoding the k-colouring problem on G has a cutting planes refutation
in length kO(k) · |V (B)|O(1).

Proof Sketch. Consider the first k vertices γ1, . . . , γk in the pre-colouring gadget in G as
depicted in Figure 2, which form a k-clique. For every partial colouring (c1, c2, . . . , ck) ∈ [k]k
of this k-clique we build a cutting planes refutation of

S ∪ {xγ1,c1 = 1, xγ2,c2 = 1, . . . , xγk,ck
= 1} . (13)

The result then follows by combining all of these refutations using Proposition 4.2.
Fix a choice of colours (c1, c2, . . . , ck) ∈ [k]k. Notice that if some colour occurs twice in

this tuple, then we can derive contradiction in length O(1) from (13) since one of the edge
axioms (5c) is violated. Suppose therefore that (c1, c2, . . . , ck) is a permutation of [k]. We
will construct a CP refutation of (13) in length kO(k) · |V (B)|O(1).

The system of inequalities S is symmetric which respect to the permutation of the colour
indices, so without loss of generality we focus on giving a refutation for

S ∪ {xγ1,1 = 1, xγ2,2 = 1, . . . , xγk,k = 1} . (14)

The equations {xγ1,1 = 1, xγ2,2 = 1, . . . , xγk,k = 1} taken together with S allow us to
efficiently infer xγi,i mod k = 1 for all the vertices γi, i ∈ [M ], in the gadget in Figure 2 (where
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we recall from Section 2 that we identify colours 0 and k when convenient). The resulting set
of equalities and inequalities S ∪ {xγi,i mod k = 1 | i ∈ [M ]} is essentially an encoding of the
k-colouring problem for the partially colored graph Ĝ in Lemma 3.3 consisting of the gadgets
in Figure 1. Indeed, since the partial assignment {xγ1,1 = 1, xγ2,2 = 1, . . . , xγk,k = 1} forces
the colours of all vertices γi, i ∈ [M ], in Figure 2, this gives us back the pre-coloured vertices
in the gadgets in Figure 1.

As argued in (the proof of) Lemma 3.3, Ĝ is the union of at most O
(
k2|V (B)|

)
injectivity

constraint gadgets G(i,i′)6←(c,c′) that forbid pigeons i and i′ taking their cth and c′th edges,
respectively, colliding in some hole j. If we introduce the alias pi,j for xi,c, where j is the
hole to which the cth edge from pigeon i leads, then our goal can be described as deriving the
pigeonhole axiom pi,j+pi′,j = xi,c+xi′,c′ ≤ 1 from the set of inequalities of the corresponding
gadget G(u,v)6←(c,c′). We will see shortly how to do so in length O

(
kO(k)). Once we extract

these pigeonhole inequalities we observe that the collection of these inequalities together
with the inequalities (5a) form a cutting plane encoding∑

j∈J(i)

pi,j ≥ 1 i ∈ I, (15a)

pi,j + pi′,j ≤ 0 i 6= i′ ∈ I, j ∈ J(i) ∩ J(i′). (15b)

of the graph pigeonhole principle on the bipartite graph B with left-hand side I and right-hand
side J . Such a system of inequalities has a cutting plane refutation in length O

(
|V (B)|3

)
[16].

In order to derive xi,c + xi′,c′ ≤ 1 we consider the inequalities involving vertices of
G(i,i′) 6←(c,c′) plus the equations xi,c = 1 and xi,c′ = 1. By Claim 3.2 this is an unsatisfiable
system of inequalities of size O(k). By the refutational completeness of cutting planes, and
using Lemma 4.1 twice, we obtain a derivation of K1(xi,c − 1) + K2(xi′,c′ − 1) ≤ −1 in
length exp(O(k)). Adding multiples of axioms on the form x− 1 ≤ 0 we get the inequality
K(xi,c − 1) + K(xi′,c′ − 1) ≤ −1 for some positive integer K, and division by K yields
xi,c + xi′,c′ ≤ 1.

We have shown how to derive contradiction is length kO(k)|V (B)|O(1) for any given
colouring of the vertices γ1, . . . , γk. We take such refutations for all kk possible ways of
assigning colours to these vertices and joint them together using Proposition 4.2 into a
refutation of the original, unrestricted formula. The proposition follows. J

5 Concluding Remarks

In this work we exhibit explicitly constructible graphs which are non-k-colourable but which
require large degree in polynomial calculus to certify this fact for the canonical encoding
of the k-colouring problem into polynomial equations over {0, 1}-valued variables. This, in
turn, implies that the size of any polynomial calculus proof of non-k-colourability for these
graphs must be exponential measured in the number of vertices.

Our degree lower bound also applies to a slightly different encoding with primitive kth
roots of unity used in [19, 20] to build k-colouring algorithms based on Hilbert’s Nullstellensatz.
These algorithms construct certificates of non-k-colourability by solving linear systems of
equations over the coefficients of all monomials up to a certain degree. The current paper
yields explicit instances for which this method needs to consider monomials up to a very
large degree, and therefore has to produce a linear system of exponential size. This answers
an open question raised in, e.g., [21, 30].

This leads to an important observation, however. The degree lower bound applies to both
polynomial encodings discussed above, but the size lower bound only applies to the encoding
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using {0, 1}-valued variables. It is still conceivable that proofs of non-k-colourability in the
roots of unity encoding can be small although they must have large degree. This raises the
following question.

I Open Problem 5.1. Is there a family of non-3-colourable graphs such that any polynomial
calculus proof of non-3-colourability using the roots of unity encoding must require large size?

If the answer to the question is positive, then no matter how we choose the monomials to
consider for the linear system construction in [19, 20], the size of the system will have to be
large.

To further reduce the size of the linear system, the algorithms in [19] make use of the
symmetries in the graphs. It is a natural question how much such an approach could help
for our non-k-colourable instances. It seems plausible that if we apply our construction to a
randomly generated bipartite graph with appropriate parameters, then the final graph will
not have many symmetries except for the local symmetries inside the gadgets. In that case
our lower bound might apply for the improved version of the algorithm as well.

One serious limitation of our result is that our hard graphs are very specific, and arguably
somewhat artificial. For the weaker resolution proof system an average-case exponential lower
bound has been shown for Erdős–Rényi random graphs G(n, p) where p is slightly above the
threshold value pk(n) at which the graph becomes highly likely to be non-k-colourable [6]. It
is natural to ask whether these instances are hard for polynomial calculus too.

I Open Problem 5.2. Consider a random graph sampled according to G(n, p) with p > pk(n),
so that the graph is non-k-colourable with high probability. Does polynomial calculus require
large degree to certify non-k-colourability of such graphs with high probability?

In this paper, we also show that the graph colouring instances that are provably hard
for polynomial calculus are very easy for the cutting planes proof system. We do not
quite believe that graph colouring is an easy problem for cutting planes, however, and it
would be interesting to find explicit candidates for hard instances for cutting planes, even if
proving the actual lower bounds may be very hard. This question is also interesting for the
Lasserre/Sums-of-Squares proof system. Our instances seem likely to be easy for Lasserre,
since they are based on the hardness of the pigeonhole principle and this combinatorial
principle is easy for Lasserre.

I Open Problem 5.3. Find candidates for explicit hard instances of non-3-colourability for
cutting planes and for Lasserre/Sums-of-squares proof systems, and then prove formally that
these instances are indeed hard.

An intriguing observation is that even though the graph colouring instances in our paper
are easy for cutting planes, results from the Pseudo-Boolean Competition 2016 indicate that
they are quite hard in practice for state-of-the-art pseudo-Boolean solvers [39]. This is even
more interesting considering that the cutting planes refutations that we construct have small
rank (i.e., the maximum number of application of the division rules along any path in the
proof graph is small).

Acknowledgements. We are grateful to Mladen Mikša and Alexander Razborov for stimu-
lating discussions and helpful feedback during various stages of this project. We would also
like to thank Jan Elffers for running experiments with pseudo-Boolean solvers on instances
obtained from our reduction from functional pigeonhole principle formulas to graph colouring,
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Abstract
We introduce the notion of monotone linear-programming circuits (MLP circuits), a model of
computation for partial Boolean functions. Using this model, we prove the following results.
1. MLP circuits are superpolynomially stronger than monotone Boolean circuits.
2. MLP circuits are exponentially stronger than monotone span programs.
3. MLP circuits can be used to provide monotone feasibility interpolation theorems for Lovász-

Schrijver proof systems, and for mixed Lovász-Schrijver proof systems.
4. The Lovász-Schrijver proof system cannot be polynomially simulated by the cutting planes

proof system. This is the first result showing a separation between these two proof systems.

Finally, we discuss connections between the problem of proving lower bounds on the size of
MLPs and the problem of proving lower bounds on extended formulations of polytopes.
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1 Introduction

Superpolynomial lower bounds on the size of Boolean circuits computing explicit Boolean
functions have only been proved for circuits from some specific families of circuits. A
prominent role among these families is played by monotone Boolean circuits. Exponential
lower bounds on monotone Boolean circuits were proved already in 1985 by Razborov [26].
In 1997 Krajíček discovered that lower bounds on monotone complexity of particular partial
Boolean functions can be used to prove lower bounds on resolution proofs [18]. Incidentally,
the functions used in Razborov’s lower bound were just of the form needed for resolution
lower bounds. Exponential lower bounds on resolution proofs had been proved before
(coincidentally about at the same time as Razborov’s lower bounds). Krajíček came up
with a new general method, the so called feasible interpolation, that potentially could
be used for other proof systems. Indeed, soon after his result, this method was used to
prove exponential lower bounds on the cutting-planes proof system [22, 15]. That lower
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bound is based on a generalization of Razborov’s lower bounds to a more general monotone
computational model, the monotone real circuits. Another monotone computational model
for which superpolynomial lower bounds have been obtained is the monotone span program
model [2, 11]. An exponential lower bound on the size of monotone span programs have
been recently obtained in [7]. For a long time the best known lower bound for this model
of computation was of the order of nΩ(logn) [2]. Again, superpolynomial lower bounds on
the size of monotone span programs can be used to derive lower bounds on the degree of
Nullstellensatz proofs, as shown in [23].1

The results listed above suggest that proving lower bounds on stronger and stronger
models of monotone computation may be a promising approach towards proving lower bounds
on stronger proof systems. Indeed, in his survey article [27] Razborov presents the problem
of understanding feasible interpolation for stronger systems as one of the most challenging
ones.

In this work we introduce several computational models based on the notion of monotone
linear program. In particular, we introduce the notion of monotone linear-programming gate
(MLP gate). In its most basic form, an MLP gate is a partial function g : R → R of the
form g(y) = max{c · x | Ax ≤ b+By, x ≥ 0} where y is a set of input variables, and B is a
non-negative matrix. The complexity of such a gate is defined as the number of rows plus
the number of columns in the matrix A. For each assignment α ∈ Rn of the variables y,
the value g(α) is the optimal value of the linear program with objective function c · x, and
constraints Ax ≤ b+Bα. The requirement that B ≥ 0 guarantees monotonicity, i.e., that
g(α) ≤ g(α′) whenever g(α) is defined and α ≤ α′. We note that the value g(α) is considered
to be undefined if the associated linear program max{c · x | Ax ≤ b+Bα} has no solution.
Other variants of MLP gates are defined in a similar way by allowing the input variables to
occur in the objective function, and by allowing the corresponding linear programs to be
minimizing or maximizing. We say that an MLP gate is weak if the input variables occur
either in the objective function or in the constraints. We say that an MLP gate is strong if
the input variables occur in both the objective function and in the constraints.

An MLP circuit is a straightforward generalization of the notion of unbounded-fan-in
(monotone) Boolean circuit where MLP gates are used instead of Boolean gates. In Theorem 3
we show that if all gates of an MLP circuit C are weak, then this circuit can be simulated by
a single weak MLP gate `C whose size is polynomial on the size of C. Since the AND and
OR gates can be faithfully simulated by weak MLP gates, we have that monotone Boolean
circuits can be polynomially simulated by weak MLP circuits (Theorem 4). In contrast, we
show that weak MLP gates are super-polynomially stronger than monotone Boolean circuits.
On the one hand, Razborov has shown that that any monotone Boolean circuit computing
the bipartite perfect matching function BPMn : {0, 1}n2 → {0, 1} must have size at least
nΩ(logn). On the other hand, a classical result in linear programming theory [29] can be used
to show that the same function can be computed by weak MLP gates of polynomial size.

In [2], Babai, Gál and Wigderson showed that there is a function that can be computed
by span programs of linear size but which requires superpolynomial-size monotone Boolean
circuits. Recently, Cook et al. [7] showed that there is a function that can be computed
by polynomial-size monotone Boolean circuits, but that requires exponential-size monotone
span programs over the reals. Therefore, monotone span programs (which we will abbreviate
by MSPs) and monotone Boolean circuits are incomparable in the sense that neither of these

1 We note however that strong degree lower bounds for Nullstellensatz proofs can be proved using more
direct methods [3, 6, 13, 1].
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models can polynomially simulate the other. In Theorem 7 we show that a particular type
of weak MLP gate can polynomially simulate monotone span programs over the reals. On
the other hand, by combining the results in [7] with Theorem 7, we have that these weak
MLP gates are exponentially stronger than monotone span programs over reals. Therefore,
while monotone Boolean circuits are incomparable with MSPs, weak MLP-gates are strictly
stronger than both models of computation.

Next we turn to the problem of proving a monotone interpolation theorem for Lovász-
Schrijver proof systems [20]. Currently, size lower bounds for these systems have been
proved only with respect to tree-like proofs [21], and therefore, it seems reasonable that a
monotone interpolation theorem for this system may be a first step towards proving size
lower bounds for general LS proof systems. Towards this goal we show that MLP circuits
which are constituted by strong MLP gates can be used to provide a monotone feasible
interpolation theorem for LS proof systems. In other words, we reduce the problem of proving
superpolynomial lower bounds for the size of LS proofs, to the problem of proving lower
bounds on the size of MLP circuits with strong gates.

While circuits with weak MLP gates can be collapsed to a single weak MLP gate, we do not
know how to collapse MLP circuits with strong gates into a single strong gate. Nevertheless,
in Theorem 10 we show that a single weak MLP gate suffices in a monotone interpolation
theorem for mixed LS proofs. These are proofs in which, on top of variables representing 0s
and 1s, there are also variables that range over real numbers. This interpolation theorem
implies two things. First, the cutting-planes proof system cannot polynomially simulate the
LS proof system (Corollary 18). Understanding the mutual relation between the power of the
cutting-planes proof system and the LS proof system is a longstanding open problem in proof
complexity theory. Our result solves one direction of this mutual relation by showing that
for some tautologies, LS proofs can be superpolynomially more concise than cutting-planes
proofs. Second, using this interpolation theorem, and a size lower bound for monotone real
circuits due to Fu [10], we can show that MLP-circuits cannot be polynomially simulated by
monotone real circuits (Theorem 19).

Monotone linear programs programs may be regarded as a generalization of both monotone
Boolean circuits and monotone span programs. Since superpolynomial lower bounds for these
two latter formalisms were proved via rather distinct formalisms, it is reasonable to expect
that new lower bound methods will need to be developed in order to prove superpolynomial
lower bounds for the size of weak monotone linear programs. A possible approach is to try
to strength recent lower bounds obtained for the extension complexity of polytopes whose
vertices correspond to minterms of certain monotone Boolean functions [28, 9, 4, 5]. To prove
a lower bound on the size of weak MLP gates, it will be necessary to prove lower bounds on
the size of extended formulations for all polytopes of a certain form that separate minterms
from maxterms. This is clearly a harder problem than proving lower bounds on the extension
complexity of a single polytope. Nevertheless, there are certain results that point in this
direction [4, 5]. In any case, Theorem 19 suggests that this will not be an easy task. The
theorem gives an example of a monotone function whose set of ones requires exponentially
large extended formulation, but whose minterms can be separated from a large subset of
maxterms by a polynomial size weak MLP gate.

In this extended abstract all proofs are omitted.
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2 Monotone Linear-Programming Gates

I Definition 1 (MLP Gate). A monotone linear-programming gate, or MLP gate, is a partial
function ` : Rn → R ∪ {∗} whose value at each point y ∈ Rn is specified via a monotone
linear program. More precisely, we consider the following six types of MLP gates:

max-right: `(y) = max{cT · x | Ax ≤ b + By, x ≥ 0}

min-right: `(y) = min{cT · x | Ax ≥ b + By, x ≥ 0}

max-left: `(y) = max{(c + Cy)T · x | Ax ≤ b, x ≥ 0}

min-left: `(y) = min{(c + Cy)T · x | Ax ≥ b, x ≥ 0}

max: `(y) = max{(c + Cy)T · x | Ax ≤ b + By, x ≥ 0}

min: `(y) = min{(c + Cy)T · x | Ax ≥ b + By, x ≥ 0}

where A is a matrix in Rm×k, b is a vector in Rm, c is a vector in Rk, and B and C are
nonnegative matrices in Rm×n, i.e., B ≥ 0 and C ≥ 0.

Intuitively, the variables y should be regarded as input variables, while the variables x
should be regarded as internal variables. If the linear program specifying a gate `(y) has no
solution when setting y to a particular point α ∈ Rn, then we set `(α) = ∗. In other words,
in this case we regard the value `(α) as being undefined. We note that the requirement
B ≥ 0, C ≥ 0 guarantees that the gates introduced above are monotone. More precisely, if
α ≤ α′, and both `(α) and `(α′) are well defined, then `(α) ≤ `(α′). The size |`| of an MLP
gate ` is defined as the number of rows plus the number of columns in the matrix A.

The gates of type max-right, max-left, min-right and min-left are called weak gates.
Note that in these gates, the input variables y occur either only in the objective function, or
only in the constraints. The gates of type max and min are called strong gates. The input
variables in strong gates occur both in the constraints and in the objective function.

Circuits that are constituted of MLP gates are called MLP circuits.

I Definition 2 (MLP-Circuit Representation). We say that an MLP circuit C represents a
partial Boolean function F : {0, 1}n → {0, 1, ∗} if the following conditions are satisfied for
each a ∈ {0, 1}n.
1. C(a) > 0 if F (a) = 1.
2. C(a) ≤ 0 if F (a) = 0.

We say that an MLP-circuit C sharply represents F : {0, 1}m → {0, 1, ∗} if C(a) = 1
whenever F (a) = 1 and C(a) = 0 whenever F (a) = 0. We define the size of an MLP circuit
C as the sum of the sizes of MLP gates occurring in C. The next theorem states that if all
gates in an MLP circuit C are weak MLP gates with the same type τ , then this circuit can
be polynomially simulated by a single MLP gate `C of type τ .

I Theorem 3 (From Circuits to Gates). Let C be an MLP circuit of size s where all gates
in C are weak MLP gates of type τ . Then there is an MLP gate `C of type τ and size O(s)
such that for each a ∈ Rn for which C(a) is defined, `C(a) = C(a).
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3 Weak MLP Gates vs Monotone Boolean Circuits

In this section we show that partial Boolean functions that can be represented by monotone
Boolean circuits of size s can also be sharply represented by weak MLP gates of size O(s).
On the other hand, we exhibit a partial function that can be represented by polynomial-size
max-right MLP gates, but which require Boolean circuits of superpolynomial size.

I Theorem 4. Let F : {0, 1}n → {0, 1, ∗} be a partial Boolean function, and let C be
a Boolean circuit of size s representing F . Then for any weak type τ , F can be sharply
represented by an MLP gate of type τ and size O(s).

Let BPMn : {0, 1}n2 → {0, 1} be the Boolean function that evaluates to 1 on an input
p ∈ {0, 1}n2 if and only if p represents a bipartite graph with a perfect matching. The next
theorem, whose proof is based on a classical result in linear programming theory (Theorem
18.1 of [29]) states that the function BPMn has small max-right MLP representations.

I Theorem 5. The Boolean function BPMn : {0, 1}n2 → {0, 1} can be represented by a
max-right MLP gate of size nO(1).

In a celebrated result, Razborov proved a lower bound of nΩ(logn) for the size of monotone
Boolean circuits computing the function BPMn [26]. By combining this result with Theorem 5,
we have the following corollary.

I Corollary 6. max-right MLP gates cannot be polynomially simulated by monotone Boolean
circuits.

We note that the gap between the complexity of max-right MLP gates and the complexity
of Boolean formulas computing the BPMn function is even exponential, since Raz and
Wigderson have shown a linear lower-bound on the depth of monotone Boolean circuits
computing BPMn [24].

3.1 Monotone Span Programs
Monotone span programs (MSP) were introduced by Karchmer and Wigderson [17]. Such
a program, which is defined over an arbitrary field F, is specified by a vector c ∈ Fk and a
labeled matrix Aρ = (A, ρ) where A is a matrix in Fm×k, and ρ : {1, ...,m} → {p1, ..., pn, ∗}
labels rows in A with variables in pi or with the symbol ∗ (meaning that the row is unlabeled).
For an assignment p := w, let Aρ〈w〉 be the matrix obtained from A by deleting all rows
labeled with variables which are set to 0. A span program (Aρ, c) represents a partial Boolean
function F : {0, 1}n → {0, 1, ∗} if the following conditions are satisfied for each w ∈ {0, 1}n.

F (w) =
{

1 ⇒ ∃y, yTAρ〈w〉 = cT

0 ⇒ ¬∃y, yTAρ〈w〉 = cT
(1)

That is, if F (p) = 1 then c is a linear combination of the rows of A〈w〉, while if F (p) = 0, then
c cannot be cast as such linear combination. We define the size of a span program (Aρ, c) as
the number of rows plus the number of columns in the matrix A. The next theorem states
that functions that can be represented by small MSPs over the reals can also be represented
by small min-right MLP gates.

I Theorem 7. Let F : {0, 1}n → {0, 1} be a Boolean function. If F can be represented by
an MSP of size s over the reals, then F can be represented by a min-right MLP gate of size
O(s).
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It has been recently shown that there is a family of functions GENn : {0, 1}n → {0, 1}
which can be computed by polynomial-size monotone Boolean circuits but which require
monotone span programs over the reals of size exp(nΩ(1)) [7]. On the other hand, since by
Theorem 4, monotone Boolean circuits can be polynomially simulated by weak MLP gates of
any type, we have that weak MLP gates of size polynomial in n can represent the function
GENn : {0, 1}n → {0, 1}. Therefore, we have the following corollary.

I Corollary 8. Weak MLP gates cannot be polynomially simulated by monotone span programs
over the reals.

4 Lovász-Schrijver and Cutting-Planes Proof Systems

4.1 The Lovász-Schrijver Proof System
The Lovász-Schrijver proof system is a refutation system based on the Lovász-Schrijver
method for solving integer linear programs [20]. During the past two decades several variants
(probably nonequivalent) of this system have been introduced. In this work we will be only
concerned with the basic system LS. In Lovász-Schrijver systems the domain of variables is
restricted to {0, 1}, i.e., they are Boolean variables. Given an unfeasible set of inequalities Φ,
the goal is to use the axioms and rules of inference defined below to show that the inequality
0 ≥ 1 is implied by Φ.

Axioms:
1. 0 ≥ 0, 1 ≥ 0, 1 ≥ 1,
2. 0 ≤ pj ≤ 1,
3. p2

i − pi = 0 (integrality).
Rules:
1. Positive linear combinations of linear and quadratic inequalities,
2. Multiplication: Given a linear inequality

∑
i cipi − d ≥ 0, and a variable pj , derive

pj(
∑
i

cipi − d) ≥ 0 and (1− pj)(
∑
i

cipi − d) ≥ 0.

Note that using multiplication we may produce quadratic inequalities, but we can only
apply the multiplication rule to linear inequalities, hence all inequalities are at most quadratic.
Axiom (3) corresponds to two inequalities, but it suffices to use p2

i − pi ≥ 0, since the other
inequality p2

i − pi ≤ 0 follows from Axiom (2) and Rule (2). We also observe that the
inequality 1 ≥ 0 can be derived from the axioms pi ≥ 0 and 1− pi ≥ 0.

A proof Π of an inequality
∑
i cipi − d ≥ 0 from Φ is a sequence of inequalities such that

every inequality in the sequence is either an element of Φ or is derived from previous ones
using some LS rule. We say that Π is a refutation of the set of inequalities Φ, if the last
inequality is −d ≥ 0 for some d > 0.

The LS proof system is implicationally complete. This means that if an inequality∑
i cipi − d ≥ 0 is semantically implied by an initial set of inequalities Φ, then

∑
i cipi−d ≥ 0

can be derived from Φ by the application of a sequence of LS-rules [20].
Superpolynomial lower bounds on the size of LS proofs have been obtained only in the

restricted case of tree-like proofs [21]. The problem of obtaining superpolynomial lower
bounds for the size of DAG-like LS proofs remains a tantalizing open problem in proof
complexity theory.

The LS proof system is stronger than Resolution. It can be shown that resolution proofs
can be simulated by LS proofs with just a linear blow up in size. Additionally, the Pigeonhole
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principle has LS proofs of polynomial size, while this principle requires exponentially long
resolution proofs [14]. On the other hand, the relationship between the power of the LS proof
system and other well studied proof system is still elusive. For instance, previous to this work,
nothing was known about how the LS proof system relates to the cutting-planes proof system
with respect to polynomial-time simulations. In Subsection 4.4 we will show that there is a
family of sets of inequalities which have polynomial-size DAG-like LS refutations, but which
require superpolynomial-size cutting-planes refutations. This shows that the cutting-planes
proof system cannot polynomially simulate the LS proof system. The converse problem, of
determining whether the LS proof system polynomially simulates the cutting-planes proof
system, remains open.

4.2 Feasible interpolation
Feasible interpolation is a method that can sometimes be used to translate circuit lower
bounds into lower bounds for the size of refutations of Boolean formulas and linear inequalities.
Let Φ(p, q, r) be an unsatisfiable Boolean formula which is a conjunction of formulas Φ1(p, q)
and Φ2(p, r) where q and r are disjoint sets of variables. Since Φ(p, q, r) is unsatisfiable, it
must be the case that for each assignment a of the variables p, either Φ1(a, q) or Φ2(a, r) is
unsatisfiable, or both. Given a proof Π of unsatisfiability for Φ(p, q, r), an interpolant is a
Boolean circuit C(p) such that for every assignment a to the variables p:
1. if C(a) = 0, then Φ1(x, a) is unsatisfiable, and
2. if C(a) = 1, then Φ2(y, a) is unsatisfiable.

If both formulas are unsatisfiable, then C(a) can be either of the two values. Krajíček has
shown that given a resolution refutation Π of a CNF formula, one can construct an interpolant
C(p) whose size is polynomial in the size of Π [18]. Krajíček ’s interpolation theorem has
been generalized, by himself and some other authors, to other proof systems such as the
cutting-planes proof system and the Lovász-Schrijver proof system [8].

In principle, such feasible interpolation theorems could be used to prove lower bounds
on the size of proofs if we could prove lower bounds on circuits computing some particular
functions. But since we are not able to prove essentially any lower bounds on general Boolean
circuits, feasible interpolation gives us only conditional lower bounds. For instance, the
assumption that P 6= NP ∩ coNP, an apparently weaker assumption than NP 6= coNP,
implies that certain tautologies require superpolynomial-size proofs on systems that admit
feasible interpolation.

However, in some cases, one can show that there exist monotone interpolating circuits of
polynomial size provided that all variables p appear positively in Φ1(p, q), (or negatively in
Φ2(p, r)). In the case of resolution proofs, such circuits are simply monotone Boolean circuits
[18, 19]. In the case of cutting-planes proofs, the interpolants are monotone real circuits [22].
Monotone real circuits are circuits with Boolean inputs and outputs, but whose gates are
allowed to be arbitrary 2-input functions over the reals. Razborov’s lower bound on the
clique function has been generalized to monotone real circuits [22, 15]. Another proof system
for which one can prove superpolynomial lower bounds using monotone feasible interpolation
is the Nullstellensatz Proof System [23]. In this proof system, the monotone interpolants are
given in terms of monotone span programs2 [23].

2 In the context of polynomial calculus, alternative methods (e.g. [1, 16]) yield stronger lower bounds
than the monotone interpolation technique.
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3:8 Representations of Monotone Boolean Functions by Linear Programs

The results mentioned above suggest that if a proof system has the feasible interpolation
property, then it may also have monotone feasible interpolation property for a suitable kind
of monotone computation. The next theorem states that LS-proofs can be interpolated using
MLP circuits constituted of max MLP gates.

I Theorem 9. Let Φ(p, q)∪Γ(p, r) be an unsatisfiable set of inequalities such that the variables
p = (p1, ..., pn) occur in Φ only with negative coefficients. Let Π be an LS refutation of
Φ(p, q)∪ Γ(p, r). Then one can construct an MLP circuit C containing only max MLP gates
which represents a Boolean function F : {0, 1}n → {0, 1} such that for each a ∈ {0, 1}n:
1. if F (a) = 1, then Φ(a, q) is unsatisfiable,
2. if F (a) = 0, then Γ(a, r) is unsatisfiable,
and the size of the circuit C is polynomial in the size of Π.

4.3 Lovász-Schrijver Refutations of Mixed LP Problems

While proof systems for integer linear programming have been widely studied, very little is
known about proof systems for mixed linear programming. In mixed linear programming
part of variables range over integers and part of them range over reals. The Lovász-Schrijver
system can naturally be adapted for mixed linear programming by disallowing the use of
axioms and of the multiplication rule for variables ranging over reals. One can easily prove
that the such a system is a complete refutation system (i.e., a family of inequalities is
unsatisfiable iff a contradiction is derivable).

We will prove a monotone interpolation theorem for systems of mixed linear inequalities
(inequalities with both types of variables) of a particular form. The advantage of this
theorem, compared with the previous one, is that is uses a single max-left MLP gate (or,
by linear-programming duality, a single min-right MLP gate). While proving lower bounds
on the size of general MLP circuits may be beyond the reach of current methods, proving a
lower bound on the size of single weak MLP gate seems to be feasible, because this problem
is closely related to lower bounds on extended formulations.

I Theorem 10. Let Φ(p, q) ∪ Γ(p, r) be a set of inequalities where p, q range over 0s and 1s,
r range over reals, and the common variables p = (p1, ..., pn) occur in Φ only with negative
coefficients. Let Π be an LS-refutation of Φ(p, q) ∪ Γ(p, r). Then there exists a max-left
MLP gate ` that represents a Boolean function F : {0, 1}n → {0, 1} such that for every
a ∈ {0, 1}n:
1. if F (a) = 1, then Φ(a, q) is unsatisfiable, and
2. if F (a) = 0, then Γ(a, r) is unsatisfiable,
and the size of the MLP gate ` is polynomial in the size of Π.

In the next subsection we will give a natural example of a set of inequalities of the form
used in the theorem. We will show that it has polynomial-size mixed LS-refutations, but it
requires superpolynomial-size cutting-plane refutations.

4.4 Cutting-Planes vs. Lovász-Schrijver Refutations and Monotone
Real Circuits vs MLP Gates

In this subsection we will define a family Ψn of unsatisfiable sets of inequalities that admit
polynomial-size mixed LS-refutations, but which require superpolynomial refutations in the
cutting-planes proof system.
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I Definition 11 (Monotone Real Circuit). A monotone real circuit is a circuit C whose gates
are monotone real functions of at most two variables. The size of the circuit is the number
of the gates.

The following theorem can be used to translate superpolynomial lower bounds on the size
of monotone real circuits computing certain partial Boolean functions into superpolynomial
lower bounds for the size of cutting plane proofs.

I Theorem 12 (Monotone Interpolation for the cutting-planes Proof System [22]). Let Ψ(p, q, r) ≡
Φ(p, q) ∪ Γ(p, r) be an unsatisfiable set of inequalities where the common variables p =
(p1, ..., pn) occur in Φ only with negative coefficients. Let Π be a cutting-planes refutation for
Ψ. Then one can construct a monotone real circuit C such that for every a ∈ {0, 1}n:
1. if C(a) = 1 then Φ(p, q) is unsatisfiable,
2. if C(a) = 0 then Γ(p, q) is unsatisfiable,
and the size of the circuit is at most constant time the size of the proof.

Let Kn = {{i, j} | 1 ≤ i < j ≤ n} be the complete undirected graph with vertex set
[n] = {1, ..., n}. We say that a subgraph X ⊆ Kn is a perfect matching if the edges in
X are vertex-disjoint and each vertex i ∈ [n] belongs to some edge of X. We say that a
subgraph B ⊆ Kn is an unbalanced complete bipartite graph if there exist sets V,U ⊆ [n]
with V ∩ U = ∅, |V | > |U |, and B = {{i, j} | i ∈ V, j ∈ U}. Let W ⊆ Kn be a graph. We
let V(W ) = {i | ∃j ∈ [n], {i, j} ∈ W} be the vertex set of W . For each vertex i ∈ V(W ),
we let N (i) = {j | {i, j} ∈ W} be the set of neighbors of i in W . For a subset V ⊆ V(W ),
we let N (V ) =

⋃
v∈V N (v) be the set of neighbors of vertices in N (V ). We say that W is

unbalanced if there exists V,U ⊆ V(W ) such that N (V ) ⊆ U and |V | > |U |. Note that such
an unbalanced graph W cannot contain a perfect matching X, since the existence of such a
perfect matching would imply the existence of an injective mapping from V to U . We also
note that unbalanced complete bipartite graphs are by definition a special case of unbalanced
graphs.

Razborov showed that any monotone Boolean circuit which decides whether a graph has
a perfect matching must have size at least nΩ(logn) [25]. This lower bound was generalized by
Fu to the context of monotone real circuits [10]. More precisely, Fu proved that any monotone
real circuit distinguishing graphs with a perfect matching from unbalanced complete bipartite
graphs must have size at least nΩ(logn).

I Theorem 13 ([10]). Let F : {0, 1}(
n
2) → {0, 1, ∗} be a partial Boolean function such that

for each w ∈ {0, 1}(
n
2):

F (w) = 1 if w encodes a graph with a perfect matching,
F (w) = 0 if w encodes an unbalanced complete bipartite graph.

Then any monotone real circuit computing F must have size at least nΩ(logn).

Since unbalanced complete bipartite graphs are a special case of unbalanced graphs,
monotone real circuits distinguishing graphs with a perfect matching from unbalanced graphs
must have size at least nΩ(logn) gates.

I Corollary 14. Let g : {0, 1}(
n
2) → {0, 1, ∗} be a partial Boolean function such that for each

w ∈ {0, 1}(
n
2):

g(w) = 1 if w has a perfect matching.
g(w) = 0 if w is unbalanced.

Then any monotone real circuit computing g must have size at least nΩ(logn).
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Below we will define a set Ψn of unsatisfiable inequalities on variables:

p = {wi,j | 1 ≤ i < j ≤ n},
q = {ui, vi | i ∈ [n]},
r = {xij | 1 ≤ i < j ≤ n}.

Intuitively each assignment of the variables in p defines a graphW ⊆ Kn such that {i, j} ∈W
if and only if wij = 1. Each assignment to the variables in q defines subsets U, V ⊆ [n] where
i ∈ U if and only if ui = 1, and i ∈ V if and only if vi = 1. Finally, each assignment to the
variables in r defines a subset of edges X in such a way that {i, j} ∈ X if and only if xij = 1.
The set of inequalities Ψn would be satisfiable by an assignment α of the variables in p,q and
r only if α defined a graph W ⊆ Kn which contained, at the same time, a perfect matching
X and a pair of subsets of vertices V,U ⊆ V(W ) certifying that W is unbalanced. Since no
such graph exists, the set Ψn is unsatisfiable.

I Definition 15 (Unbalanced Graphs vs Perfect Matching Inequalities). Let Ψn(p, q, r) =
Φn(p, q) ∪ Γn(p, r) be a set of inequalities on variables p = {wij}, q = {ui, vi} and r = {xij}
defined as follows.

Inequalities in Φ(p, q): W is unbalanced.

1) uj − vi − wij + 1 ≥ 0 N (V ) ⊆ U . If i ∈ V ∧ {i, j} ∈W ⇒ j ∈ U .

2)
∑

j
vj −

∑
i
ui − 1 ≥ 0 |V | > |U |.

Inequalities in Γ(p, r): Existence of a perfect matching.

3) wij − xij ≥ 0 X is a subset of edges of W .

4)
∑

i,i 6=j
xij − 1 = 0 X defines a perfect matching.

Note that we can interpret the system in two alternative ways. First, all variables range over
0s and 1s. Second, variables p, q range over 0s and 1s, while r range over reals. In the second
case the meaning of Γ(p, q) is that X defines a fractional perfect matching. The system is,
clearly, unsatisfiable also in the second case.

Note also that the variables in wij ∈ p, which occur both in Φn(p, q) and in Γn(p, r),
only occur negatively in Φn(p, q). A combination of Fu’s size lower-bound for monotone
real circuits (Theorem 13) with the monotone interpolation theorem for cutting-planes
(Theorem 12) was used in [10] to show that a suitable unsatisfiable set of inequalities Ψ′n
requires cutting-planes refutations of size nΩ(logn). The next theorem states that a similar
lower bound can be proved with respect to the inequalities introduced in Definition 15.

I Theorem 16. Let Ψ(p, q, r) be the set of inequalities of Definition 15 . Then any cutting-
planes refutation of Ψ(p, q, r) must have size at least nΩ(logn).

On the other hand, the following theorem states that the set inequalities Ψn(p, q, r) has
LS-refutations of size polynomial in n. In fact, these refutations are for the case where
variables r are real (which means that axioms and the multiplication rule is not used for
variables r).
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I Theorem 17. Let Ψn(p, q, r) = Φn(p, q)∪Γn(p, r) be the set of inequalities of Definition 15.
Then Ψn(p, q, r) has a mixed LS-refutation of size polynomial in n where r are the real
variables.

By combining Theorem 16 with Theorem 17 we have the following corollary separating
cutting-planes from LS proof systems.

I Corollary 18. The cutting-planes proof system does not polynomially simulate the Lovász-
Schrijver proof system.

Previous to our work, the problem of determining whether the cutting-planes proof system
can polynomially simulate the LS-proof system had been open for almost two decades. We
note that to the best of our knowledge, the converse problem, of determining whether the
LS-proof system can polynomially simulate the cutting-planes proof system remains open.

By combining Theorem 17 with Theorem 10, we have that max-left MLP gates can
separate graphs with a perfect matching from unbalanced graphs superpolynomially faster
than monotone real circuits. In other words, monotone real circuits cannot polynomially
simulate max-left MLP gates. We leave open the question of whether MLP gates (of any
type) can polynomially simulate monotone real circuits.

I Theorem 19. Let gn : {0, 1}(
n
2) → {0, 1, ∗} be the partial Boolean function of Corollary 14.

Then gn can be represented by a single max-left MLP gate of size polynomial in n.

5 Monotone Linear Programs and Extended Formulations

A polytope is the convex hull of a nonempty finite set of vectors in Rn; in particular, a
polytope is nonempty and bounded. If a polytope P ⊆ Rn is given by a polynomial number of
inequalities3, then we can easily decide whether a vector v ∈ Rn belongs to P . An important
observation is that even if P requires an exponential number of inequalities to be defined, we
may still be able to test whether v ∈ P efficiently if we can find a polytope R ⊆ Rn+m in a
higher dimension with m = nO(1) such that P is a projection of P ′ and P ′ can be described
by a polynomial number of inequalities3.

More precisely, let P ⊆ Rn be a polytope, and let P ′ ⊆ Rn+m be a polytope defined via a
system of inequalities4 A(v, y) ≤ b. Then we say that the system A(v, y) ≤ b is an extended
formulation of P if for each v ∈ Rn, v ∈ P ⇔ ∃y ∈ Rm, A(v, y) ≤ b. We define the size of such
extended formulation as the number of rows plus the number of columns in A. For instance, it
can be shown that the permutahedron polytope Pn ⊆ Rn, which is defined as the convex-hull
of all permutations of the set [n] = {1, ..., n}, requires exponentially many inequalities to be
defined. Nevertheless, Pn has extended formulations of size O(n logn) [12]. On the other
hand, it has been shown that for some polytopes, such as the cut polytope, the TSP polytope,
etc., even extended formulations require exponentially many inequalities [9, 28].

The process of defining partial Boolean functions via linear programs is closely related,
but not equivalent, to the process of defining polytopes via extended formulations. For a
partial Boolean function F , let Ones(F ), and Zeros(F ) denote the set of all inputs a ∈ {0, 1}n
such that F (a) = 1, and F (a) = 0 respectively. Let P 1

F denote the convex hull of Ones(F )
and P 0

F denote the convex hull of Zeros(F ). Defining F via a linear program is equivalent
to finding an extended formulation of some polyhedron Q1 that contains P 1

F and is disjoint

3 With coefficients specified by nO(1) bits.
4 For column vectors v ∈ Rn and y ∈ Rm, (v, y) denotes the column vector (v1, ..., vn, y1, ..., ym).
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3:12 Representations of Monotone Boolean Functions by Linear Programs

from Zeros(F ), or an extended formulation of some polyhedron Q0 that contains P 0
F and is

disjoint from Ones(F ). Finding such an extended formulation for Q1 (resp. Q0) with a small
number of inequalities is clearly, a simpler task than finding a small extended formulation
for the polyhedron P 1

F (resp. P 0
F ) itself. For instance, if F is the matching function for

general graphs, then F is computable by a polynomial-size Boolean circuit (containing
negation gates), and hence this function can be defined via (not necessarily monotone) linear
programs of polynomial size5. Nevertheless, the corresponding polytope P 1

F requires extended
formulations of exponential size [28].

Let F : {0, 1}n → {0, 1, ∗} be a partial monotone Boolean function. A minterm of F is a
vector v ∈ {0, 1}n such that F (v) = 1 and such that F (v′) 6= 1 for each v′ ≤ v. Intuitively, a
minterm is a minimal vector which causes F to evaluate to 1. Analogously, a maxterm is a
vector v ∈ {0, 1}n such that F (v) = 0 and F (v′) 6= 0 for each v ≥ 0. Intuitively, a maxterm is
a maximal vector that causes F to evaluate to 0. We let P̂ 1

F be the convex-hull of minterms
of F , and let P̂ 0

F be the convex-hull of maxterms of F . Let H1 be a hyperplane containing
P̂ 1
F . For each maxterm v we define the set S1

v = H1 ∩ {u | u ≤ v}. Analogously, let H0 be
an hyperplane containing P̂ 0

F . We define the set S0
v = H0 ∩ {u | u ≥ v}.

I Definition 20 (Monotone Extension Complexity). Let F : {0, 1}n → {0, 1, ∗} be a partial
monotone Boolean function. Below we define two notions of monotone extension complexity
(mxc) for F .
1. We let mxc1 (F) denote the minimum size of an extended formulation for a polytope Q1

such that

P̂ 1
F ⊆ Q1, and Q ∩

⋃
v

S1
v = ∅. (2)

2. We let mxc0 (F) denote the minimum size of an extended formulation for a polytope Q0

such that

P̂ 0
F ⊆ Q0, and Q ∩

⋃
v

S0
v = ∅. (3)

The next theorem relates the monotone extension complexity of a partial monotone
Boolean function F to the size of MLP representations for F .

I Theorem 21. Let F : {0, 1}n → {0, 1, ∗} be a partial monotone Boolean function. Then
mxc1 (F) is up to a constant factor equal to the minimum size of a max-right MLP
representation of F . Analogously, the mxc0 (F ) is up to a constant factor equal to the
minimum size of a min-left MLP representation of F .

6 Conclusion

In this work we introduced several models of computation based on the notion of monotone
linear programs. In particular, we introduced the notions of weak and strong MLP gates.
We reduced the problem of proving lower bounds for the size of LS proofs to the problem
of proving lower bounds for the size of MLP circuits with strong gates, and the problem of
proving lower bounds on the size of mixed LS proofs to the problem of proving lower bounds
on the size of single weak MLP gates.

5 Note that any function in PTIME can be defined by polynomial-size non-monotone LP programs, due
to the fact that linear programming is PTIME complete.
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When it comes to comparing MLP gates with other models of computation, we have
shown that weak MLP gates are strictly more powerful than monotone Boolean circuits and
monotone span programs. Additionally, these gates cannot be polynomially simulated by
monotone real circuits. Finally, by combining some results mentioned above, we proved that
the cutting-planes proof system is not powerful enough to polynomially simulate the LS proof
system. This is the first result showing a separation between the power of these two systems.

Acknowledgments. We would like to thank Pavel Hrubeš and Massimo Lauria for discussion
and their valuable suggestions.
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Abstract
In this paper, we show that while almost all functions require exponential size branching programs
to compute, for all functions f there is a branching program computing a doubly exponential
number of copies of f which has linear size per copy of f . This result disproves a conjecture
about non-uniform catalytic computation, rules out a certain type of bottleneck argument for
proving non-monotone space lower bounds, and can be thought of as a constructive analogue of
Razborov’s result that submodular complexity measures have maximum value O(n).
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1 Introduction

In amortized analysis, which appears throughout complexity theory and algorithm design,
rather than considering the worst case cost of an operation, we consider the average cost
of the operation when it is repeated many times. This is very useful in the situation where
operations may have a high cost but if so, this reduces the cost of future operations. In this
case, the worst-case rarely occurs and the average cost of the operation is much lower. A
natural question we can ask is as follows. Does amortization only help for specific operations,
or can any operation/function be amortized?

For boolean circuits, which are closely related to time complexity, Uhlig [12],[13] showed
that for any function f , as long as m is 2o( n

log n ) there is a circuit of size O( 2n

n ) computing f
on m different inputs simultaneously. As shown by Shannon [11] and Lupanov [6], almost all
functions require circuits of size Θ( 2n

n ) to compute, which means that for almost all functions
f , the cost to compute many inputs of f is essentially the same as the cost to compute one
input of f !

In this paper, we consider a similar question for branching programs, which are closely
related to space complexity. In particular, what is the minimum size of a branching program
which computes many copies of a function f on the same input? This question is highly
non-trivial because branching programs are not allowed to copy bits, so we cannot just
compute f once and then copy it. In this paper, we show that for m = 22n−1, there is a
branching program computing m copies of f which has size O(mn) and thus has size O(n)
per copy of f .

This work has connections to several other results in complexity theory. In catalytic
computation, introduced by Buhrman, Cleve, Koucký, Loff, and Speelman [2], we have an
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additional tape of memory which is initially full of unknown contents. We are allowed to
use this tape, but we must restore it to its original state at the end of our computation. As
observed by Girard, Koucký, and McKenzie [5], the model of a branching program computing
multiple instances of a function is a non-uniform analogue of catalytic computation and our
result disproves Conjecture 25 of their paper. Our result also rules out certain approaches
for proving general space lower bounds. In particular, any lower bound technique which
would prove a lower bound on amortized branching program complexity as well as branching
program size cannot prove non-trivial lower bounds. Finally, our result is closely related to
Razborov’s result [10] that submodular complexity measures have maximum size O(n) and
can be thought of as a constructive analogue of Razborov’s argument.

1.1 Outline
In Section 2 we give some preliminary definitions. In section 3 we give our branching program
construction, proving our main result. In section 4 we briefly describe the relationship
between our work and catalytic computation. In section 5 we discuss which lower bound
techniques for proving general space lower bounds are ruled out by our construction. Finally,
in section 6 we describe how our work relates to Razborov’s result [10] on submodular
complexity measures.

2 Preliminaries

In this section, we define branching programs, branching programs computing multiple copies
of a function, and the amortized branching program complexity of a function.

I Definition 1. We define a branching program to be a directed acyclic multi-graph B with
labeled edges and distinguished start nodes, accept nodes, and reject nodes which satisfies
the following conditions.
1. Every vertex of B has outdegree 0 or 2. For each vertex v ∈ V (B) with outdegree 2,

there exists an i ∈ [1, n] such that one of the edges going out from v has label xi = 0 and
the other edge going out from v has label xi = 1.

2. Every vertex with outdegree 0 is an accept node or a reject node.
Given a start node s of a branching program and an input x ∈ {0, 1}n, we start at s and do
the following at each vertex v that we reach. If v is an accept or reject node then we accept
or reject, respectively. Otherwise, for some i, one of the labels going out from v has label
xi = 0 and the other edge going out from v has label xi = 1. If xi = 0 then we take the edge
with label xi = 0 and if xi = 1 then we take the edge with label xi = 1. In other words, we
follow the path starting at s whose edge labels match x until we reach an accept or reject
node and accept or reject accordingly.

Given a branching program B and start node s, let fB,s(x) = 1 if we reach an accept
node when we start at s on input x and let fB,s = 0 if we reach a reject node when we start
at s on input x. We say that (B, s) computes fB,s.

We define the size of a branching program B to be |V (B)|, the number of vertices/nodes
of B.

I Remark. We can consider branching programs whose start nodes all compute different
functions, but for this note we will focus on branching programs whose nodes all compute
the same function.

I Definition 2. We say that a branching program B computes f m times if B has m start
nodes s1, · · · , sm and fB,si

= f for all i.
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I Remark. In the case where m = 1 we recover the usual definition of a branching program
B computing a function f : if f(x) = 1 then B goes from s to an accept node on input x and
if f(x) = 0 then B goes from s to a reject node on input x.

I Definition 3. We say that a branching program B is index-preserving if there is an m
such that:
1. B has m, start nodes s1, · · · , sm, m accept nodes a1, · · · , am, and m reject nodes

r1, · · · , rm,
2. for all i and all inputs x, if B starts at si on input x then it will either end on ai or ri.

I Definition 4. Given a function f .
1. We define bm(f) to be the minimal size of an index-preserving branching program which

computes f m times.
2. We define the amortized branching program complexity bavg(f) of f to be

bavg(f) = lim
m→∞

bm(f)
m

.

I Proposition 5. For all functions f , bavg(f) is well-defined and is equal to inf { bm(f)
m : m ≥ 1}.

Proof. Note that for all m1,m2 ≥ 1, bm1+m2(f) ≤ bm1(f) + bm2(f) as if we are given a
branching program computing f m1 times and a branching program computing f m2 times,
we can take their disjoint union and this will be a branching program computing f m1 +m2
times. Thus for all m0 ≥ 1, k ≥ 1, and 0 ≤ r < m0, bkm0+r(f) ≤ kbm0(f) + br(f). This
implies that limm→∞

bm(f)
m ≤ bm0 (f)

m0
and the result follows. J

3 The Construction

In this section, we give our construction of a branching program computing doubly expo-
nentially many copies of a function f which has linear size per copy of f , proving our main
result.

I Theorem 6. For all f , bavg(f) ≤ 64n. In particular, for all f , taking m = 22n−1,
bm(f) ≤ 32n22n .

Proof. Our branching program has several parts. We first describe each of these parts and
how we put them together and then we will describe how to construct each part. The first
two parts are as follows:
1. A branching program which simultaneously identifies all functions g : {0, 1}n → {0, 1}

that have value 1 for a given x. More preceisely, it has start nodes s1, · · · , sm where
m = 22n−1 and has one end node tg for each possible function g : {0, 1}n → {0, 1}, with
the guarantee that if g(x) = 1 for a given g and x then there exists an i such that that
the branching program goes from si to tg on input x.

2. A branching program which simultaneously evaluates all functions g : {0, 1}n → {0, 1}.
More precisely, it has one start node sg for each function g and has end nodes a′1, · · · , a′m
and r′1, · · · , r′m, with the guarantee that for a given g and x, if g(x) = 1 then the branching
program goes from sg to a′i for some i and if g(x) = 0 then the branching program goes
from sg to r′i for some i.

If f is the function which we actually want to compute, we combine these two parts as
follows. The first part gives us paths from {si : i ∈ [1,m]} to {tg : g(x) = 1}. We now
take each tg from the first part and set it equal to s(f∧g)∨(¬f∧¬g) in the second part. Once
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Figure 1 This figure illustrates part 1 of our construction for n = 2. The functions for the top
vertices are given by the truth tables at the top and each other vertex corresponds to the function
inside it. Blue edges can be taken when the corresponding variable has value 1, red edges can be
taken when the corresponding variable has value 0, and purple edges represent both a red edge and
a blue edge (which are drawn as one edge to make the diagram cleaner). Note that for all inputs x,
there are paths from the start nodes to the functions which have value 1 on input x at each level.

we do this, if f(x) = 1 then for all g, g(x) = 1 ⇐⇒ (f ∧ g) ∨ (¬f ∧ ¬g) = 1 so we will
have paths from {tg : g(x) = 1} = {s(f∧g)∨(¬f∧¬g) : g(x) = 1} to {ai : i ∈ [1,m]}. If
f(x) = 0 then for all g, g(x) = 1 ⇐⇒ (f ∧ g) ∨ (¬f ∧ ¬g) = 0, so we will have paths
from {tg : g(x) = 1} = {s(f∧g)∨(¬f∧¬g) : g(x) = 1} to {ri : i ∈ [1,m]}. Putting everything
together, when f(x) = 1 we will have paths from {si : i ∈ [1,m]} to {ai : i ∈ [1,m]} and
when f(x) = 0 we will have paths from {si : i ∈ [1,m]} to {ri : i ∈ [1,m]}.

Combining these two parts gives us a branching program B which computes f m times.
However, these paths do not have to map si to a′i or r′i, they can permute the final destinations.
In other words, B will not be index-preserving. To fix this, we construct a final part which
runs the branching program we have so far in reverse. If we added this final part to B, this
would fix the permutation issue but would get us right back where we started! To avoid this,
we instead have two copies of the final part, one applied to {a′i : i ∈ [1,m]} and one applied
to {r′i : i ∈ [1,m]}. This separates the case when f(x) = 1 and the case f(x) = 0, giving us
our final branching program.

We now describe how to construct each part. For the first part, which simultaneously
identifies the functions which have value 1 on input x, we have a layered branching program
with n+ 1 levels going from 0 to n. At level j, for each function g : {0, 1}j → {0, 1}, we have
22n−2j nodes corresponding to g. For all j ∈ [1, n] we draw the arrows from level j − 1 to
level j as follows. For a node corresponding to a function g : {0, 1}j−1 → {0, 1}, we draw an
arrow with label xj = 1 from it to a node corresponding to a function g′ : {0, 1}j → {0, 1}
such that g′(x1, · · · , xj−1, 1) = g(x1, · · · , xj−1). Similarly, we draw an arrow with label
xj = 0 from it to a node corresponding to a function g′ : {0, 1}j → {0, 1} such that
g′(x1, · · · , xj−1, 0) = g(x1, · · · , xj−1). We make these choices arbitrarily but make sure that
no two arrows with the same label have the same destination.
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Figure 2 This figure illustrates part 2 of our construction for n = 2. The functions for the
bottom vertices are given by the truth tables at the bottom and each other vertex corresponds to
the function inside it. Note that for all inputs x, the paths go between the functions which evaluate
to 1 on input x and the accept nodes and between the functions which evaluate to 0 on input x and
the reject nodes.

For the second part, which simultaneously evaluates each function, we have a layered
branching program with n + 1 levels going from 0 to n. At level n − j, for each function
g : {0, 1}j → {0, 1}, we have 22n−2j nodes corresponding to g. For all j ∈ [1, n] we draw the
arrows from level n− j to level n− j + 1 as follows. For a node corresponding to a function
g : {0, 1}j → {0, 1}, we draw an arrow with label xj = 1 from it to a node corresponding
to the function g(x1, · · · , xj−1, 1) and draw an arrow with label xj = 0 from it to a node
corresponding to the function g(x1, · · · , xj−1, 0). Again, we make these choices arbitrarily
but make sure that no two edges with the same label have the same destination.

For the final part, note that because we made sure not to have any two edges with the
same label have the same destination and each level has the same number of nodes, our
construction so far must have the following properties:
1. Every vertex has indegree 0 or 2. For the vertices v with indegree 2, there is a j such that

one edge going into v has label xj = 1 and the other edge going into v has label xj = 0.
2. The vertices which have indegree 0 are precisely the vertices in the bottom level.
These conditions imply that if we reverse the direction of each edge in the branching program
we have so far, this gives us a branching program which runs our branching program in
reverse. As described before, we now take two copies of this reverse program. For one copy,
we take its start nodes to be a′1, · · · , a′m and relabel its copies of s1, · · · , sm as a1, · · · , am.
For the other copy, we take its start nodes to be r′1, · · · , r′m and relabel its copies of s1, · · · , sm
as r1, · · · , rm. J

4 Relationship to catalytic computation

In catalytic computation, we have additional memory which we may use but this memory
starts with unknown contents and we must restore this memory to its original state at the
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4:6 A Note on Amortized Branching Program Complexity

end. Our result is related to catalytic computation through Proposition 9 of [5], which says
the following

I Proposition 7. Let f be a function which can be computed in space s(n) using catalytic
tape of size l(n) ≤ 2s(n). Then b2l(n)(f) is 2l(n) · 2O(s(n)).

For convenience, we give a proof sketch of this result here.

Proof Sketch. This can be proved using the same reduction that is used to reduce a Turing
machine using space s(n) to a branching program of size 2O(s(n)), with the following differences.
There are 2l(n) possibilities for what is in the catalytic tape at any given time, so the resulting
branching program is a factor of 2l(n) times larger. The requirement that the catalytic tape
is restored to its original state at the end implies that there must be 2l(n) disjoint copies
of the start, accept, and reject nodes, one for each possibility for what is in the catalytic
tape originally. This means that the branching program computes f 2l(n) times. Finally, the
condition that l(n) ≤ 2s(n) is necessary because otherwise the branching program would have
to be larger in order to keep track of where the pointer to the catalytic tape is pointing! J

Girard, Koucký, and McKenzie [5] conjectured that for a random function f , for all m ≥ 1,
bm(f) is Ω(mb1(f)). If true, this conjecture would imply (aside from issues of non-uniformity)
that a catalytic tape does not significantly reduce the space required for computing most
functions. However, our construction disproves this conjecture.

That said, our construction requires m to be doubly exponential in n. It is quite possible
that log( bm(f)

m ) is Ω(log(b1(f))) for much smallerm, which would still imply (aside from issues
of non-uniformity) that a catalytic tape does not reduce the space required for computing
most functions by more than a constant factor.

5 Barrier for input-based bottleneck arguments

As noted in the introduction, our result rules out any general lower bound approach which
would prove lower bounds on amortized branching program complexity as well as branching
program size. In this section, we discuss one such class of techniques.

One way we could try to show lower bounds on branching programs is as follows. We
could argue that for the given function f and a given branching program B computing f ,
for every YES input x the path that B takes on input x contains a vertex giving a lot of
information about x and thus G must be large to accomodate all of the possible inputs.
We observe that this kind of argument would show lower bounds on amortized branching
program complexity as well as on branching program size and thus cannot show nontrivial
general lower bounds. We assume for the remainder of the section that we are trying to
compute some function f : {0, 1}n → {0, 1} with a branching program of a given type.

I Definition 8. We define a function description h to be a mapping which takes a branching
program B and assigns a funtion hv : {0, 1}n → Ω to every vertex v of B. Here Ω can be an
arbitrary set but we will focus on the case when Ω = {0, 1}.

I Example 9. A particularly useful function description is the reachability function descrip-
tion which sets hv(x) = 1 if it is possible to reach v from a start node on input x and sets
hv(x) = 0 otherwise.

I Definition 10. We define a bottleneck criterion c to be a mapping which takes a function
g : {0, 1}n → Ω and an x ∈ {0, 1}n and outputs 0 or 1. The idea is that c(g, x) = 1 if g gives
a lot of information about x and c(g, x) = 0 otherwise.
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I Definition 11. We say that a function description and bottleneck criterion (h, c) are valid
for a given type of branching program if for any branching program B of this type, any YES
input x, and any path P in B from a start node to an accept node on input x there is a
vertex v ∈ V (P ) such that c(hv, x) = 1.

I Definition 12. We say that a bottleneck criterion c has selectivity Sc if there is a set of
YES inputs I such that for all g, there are at most |I|Sc

inputs x ∈ I such that c(g, x) = 1

We note that bottleneck criteria with high selectivity imply large lower size bounds on the
given type of branching program.

I Proposition 13. If there exists a valid function description and bottleneck criterion (h, c)
for a given type of branching program and c has selectivity Sc then any branching program of
the given type computing f must have size at least Sc.

We now observe that bottleneck criteria with high selectivity also imply large lower size
bounds on amortized branching programs.

I Lemma 14. If there exists a valid function description and bottleneck criterion (h, c) for
a given type of branching program and c has selectivity Sc then any branching program of the
given type computing f m times has size at least mSc

Proof. Let B be a branching program computing f m times. Let N be the total number of
times that we have a vertex v ∈ V (B) and an input x ∈ I such that c(hv, x) = 1. On the one
hand, N ≥ m|I| as for each x ∈ I there are m disjoint paths in B from a start node to an
accept node, each of which must contain a vertex v such that c(hv, x) = 1 (as otherwise (h, c)
wouldn’t be valid). On the other hand, since c has selectivity Sc, for each v ∈ V (B) there
are at most |I|Sc

x ∈ I such that c(hv, x) = 1. Thus, N ≤ |V (B)|·|I|
Sc

. Putting these two bounds
together, we have that |V (B)|·|I|

Sc
≥ m|I| which implies that |V (B)| ≥ mSc, as needed. J

I Corollary 15. Given a valid function description and bottleneck criterion (h, c) for general
branching programs, Sc ≤ 64n

Proof. By Lemma 14, if (h, c) is a valid function description and bottleneck criterion and c
has selectivity Sc then for all m, bm(f) ≥ mSc. However, Theorem 6 says that for m = 22n−1,
bm(f) ≤ 64mn. Thus, we must have that Sc ≤ 64n, as needed. J

I Remark. To prove such an upper bound on Sc it is sufficient to find a B which computes
f m times. B does not have to be index-preserving. As noted in the proof of Theorem 6, the
first two parts of the construction in Theorem 6 are sufficient to construct such a B. Thus,
we have the same upper bound on Sc even for oblivious read-twice branching programs (a
branching program is oblivious if it reads the input bits in the same order regardless of the
input)!

5.1 Examples of input-based bottleneck arguments
In this subsection, we briefly discuss which lower bound approaches can be viewed as input-
based bottleneck arguments. In particular, we note that the current framework of Potechin
and Chan [3] for analyzing monotone switching networks can be seen as an input-based
bottleneck argument, as can many lower bounds on read-once branching programs.

I Example 16 (Fourier analysis on monotone switching networks). At a high level, the current
framework of Potechin and Chan [3] for analyzing monotone switching networks works as
follows:

CCC 2017
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1. Take I to be a large set of minimal YES inputs which are almost disjoint from each other.
2. Use the reachability function description, focusing on the maximal NO instances (the

cuts).
3. Carefully construct a set of functions gxi for each x ∈ I and use the criterion c(hv, x) = 1

if |〈gxi, hv〉| ≥ a
l for some i and is 0 otherwise, where a > 0 is a constant and l is the

maximum length of an accepting path in the switching network. The intuition is that the
functions gxi pick out high-degree information about the input x which much be processed
to accept x, so any accepting path for x must contain a vertex v where |〈gxi, hv〉| is large
for some i.

4. Use Fourier analysis to argue that c has high selectivity.

I Example 17 (k-clique). Wegener [14] and Zak [15] independently proved exponential lower
bounds on the size of read-once branching programs solving the problem of whether a graph
G has a clique of linear size. To prove their lower bounds, they argue that near the start
node, the branching program must branch off like a tree or else it cannot be completely
accurate. This kind of argument is not captured with an input-based bottleneck argument,
as it uses the structure of the given braching program. That said, we can prove a (n

k)
n−k+1

lower size bound on read-once branching programs for k-clique with the following input-based
bottleneck argument:
1. We take c to be the following bottleneck criterion. We take I to be the set of minimal

YES instances, i.e. graphs which have a clique of size k and no other edges. Since we
are considering a read-once branching program, for each node v we have a partition of
the input bits based on whether they are examined before or after reaching v (input bits
which are never examined on any computation path containing v can be put in either
side). Given an x ∈ I, this induces a partition (E1, E2) of the edges of the k-clique in x.
We take c(v, x) = 1 if there is a path from a start node to an accept node on input x
which passes through v and we have that E1 contains k− 2 of the edges incident to some
vertex u in the k-clique but there is no vertex u in the k-clique such that E1 contains all
k − 1 edges incident with u.

2. We argue that c has high selectivity as follows. If c(v, x) = c(v, x′) = 1 for some v, x, x′
then consider the corresponding partitions (E1, E2) and (E′1, E′2). E1 ∪ E′2 and E′1 ∪ E2
must form k-cliques so we must have that |E1| = |E′1| and |E2| = |E′2| and E1∪E′2, E′1∪E2
contain no extra edges.
Now let A be the set of vertices w of the k-clique in x such that both E1 and E2 contain
some but not all of the edges incident to w in x. We observe that the k-clique in x′

contains A as otherwise the edges in E1 ∪E′2 and E′1 ∪E2 incident to w are wasted which
is impossible as E1 ∪ E′2 and E′1 ∪ E2 can have no extra edges. Thus, we can only have
c(v, x′) = 1 for the x′ such that the k-clique contains A.
From the definition of c, A must include some vertex u in the k-clique of x and k − 2 of
its neighbors, so |A| ≥ k − 1. This implies that c(v, x′) = 1 for at most n− k + 1 distinct
x′. The total number of x′ ∈ I is

(
n
k

)
so our lower bound is (n

k)
n−k+1 .

I Example 18 (Majority). In his master’s thesis introducing branching programs, Masek
[7] proved a quadratic lower bound on the size of read-once branching programs computing
the majority function. With an input-based bottleneck argument, we obtain a lower bound
of Ω(n 3

2 ), which is lower, but there is a reason for this. We can prove our lower bound as
follows. Here we assume that n ≥ 3 is odd.
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1. We take I to be the set of inputs with exactly n+1
2 ones.

2. We note that in order for the branching program to be read-once and be correct on
all inputs from all starting nodes, we must have that for each node v of the branching
program, there is a partition (A,B) of the inputs bits such that on all paths from a start
node to v, only input bits in A are examined and on all paths from v to an accept node
or reject node, only inputs in B are examined. Moreover, if |A| < n

2 then every path
from a start node to v must examine all of the bits in A and must have the same number
of these bits equal to one.

3. We choose an m < n
2 and take c(v, x) = 1 if |A| = m and there is a path from a start

node to v on input x and we take c(v, x) = 0 otherwise. Note that for any vertex v, all of
the x such that c(v, x) = 1 have the same number of ones in A so there can be at most
O( |I|√

m
) such x and c has selectivity Ω(

√
m).

4. We sum this over all m < n
2 obtaining our final lower bound of Ω(n 3

2 )

I Remark. With a more complicated argument, it can be shown that this lower bound applies
even if we allow the branching program to reject a small portion of the YES inputs (while
still requiring that it rejects all NO inputs). This is a reason why we only obtain a lower
bound of Ω(n 3

2 ) rather than Ω(n2); we can probabilistically choose a branching program of
size O(n 3

2 log(n)) for majority which rejects all NO inputs and accepts any given YES input
with very high probability.
I Remark. If we assume that our branching program is oblivious as well as read-once (in
which case we can assume without loss of generality that the input bits are read in order)
then we can prove an Ω(n2) lower bound using an input-based bottleneck argument. The
idea is that we can take a different set of inputs I in order to increase the selectivity of our
bottleneck criterion c. In particular, for each m we can take a set of inputs Im such that Im
contains m+ 1 minimal YES inputs, each with a different number of ones in the first m bits.
This c now has selectivity m and summing over all m < n

2 gives a lower bound of Ω(n2)
As these examples show, input-based bottleneck arguments are effective for proving lower

bounds on read-once branching programs. Thus, Theorem 6 and Lemma 14, which together
rule out input-based bottleneck arguments even for oblivious read-twice branching programs,
provide considerable insight into the spike in difficulty between proving lower bounds for
read-once branching programs and read-twice branching programs which can be seen in
Razborov’s survey [9] on branching programs and related models. That said, Theorem 6 and
Lemma 14 do not say anything about lower bounds based on counting functions such as
Nechiporuk’s quadratic lower bound [8] or lower bounds based on communication complexity
arguments such as Babai, Nisan, and Szegedy’s result [1] proving an exponential lower bound
on oblivious read-k branching programs for arbitrary k. We also note that Cook, Edmonds,
Medabalimi, and Pitassi [4] give another explanation for the failure of bottleneck arguments
past read-once branching programs.

6 Linear upper bound on complexity measures

Another way we could try to lower bound branching program size is through a complexity
measure on functions. However, Razborov [10] showed that submodular complexity measures
cannot have superlinear values. In this section we show that this is also true for a similar
class of complexity measures, branching complexity measures, which correspond more closely
to branching programs. We then show that all submodular complexity measures are also
branching complexity measures, so Theorem 6 is a constructive analogue and a slight
generalization of Razborov’s result [10].
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I Definition 19. We define a branching complexity measure µb to be a measure on functions
which satisfies the following properties:
1. ∀i, µb(xi) = µb(¬xi) = 1,
2. ∀f, µb(f) ≥ 0,
3. ∀f, i, µb(f ∧ xi) + µb(f ∧ ¬xi) ≤ µb(f) + 2,
4. ∀f, g, µb(f ∨ g) ≤ µb(f) + µb(g).

I Definition 20. Given a node v in a branching program, define fv(x) to be the function
such that fv(x) is 1 if there is a path from some start node to v on input x and 0 otherwise.
Note that for any start node s, fs = 1.

I Lemma 21. If µb is a branching complexity measure then for any branching program, the
number of non-end nodes which it contains is at least

1
2

( ∑
t:t is an end node

µb(ft)−
∑

s:s is a start node
µb(fs)

)
.

Proof. Consider what happens to
∑
t:t is an end node µb(ft) −

∑
s:s is a start node µb(fs) as we

construct the branching program. At the start, when we only have the start nodes and these
are also our end nodes, this expression has value 0. Each time we merge end nodes together,
this can only decrease this expression. Each time we branch off from an end node, making
the current node a non-end node and creating two new end nodes, this expression increases
by at most 2. Thus, the final value of this expression is at most twice the number of non-end
nodes in the final branching program, as needed. J

I Corollary 22. For any branching complexity measure µb and any function f , µb(f) ≤ 130n

Proof. By Lemma 21 we have that for all m ≥ 1, mµb(f)−mµb(1)
2 ≤ m · bm(f). Using

Theorem 6 and noting that µb(1) ≤ 2 we obtain that µb(f) ≤ 130n. J

Finally, we note that every submodular complexity measure µs is a branching complexity
measure, so Corollary 22 is a slight generalization of Razborov’s result [10] (though with a
worse constant).

I Definition 23. A submodular complexity measure µs is a measure on functions which
satisfies the following properties:
1. ∀i, µ(xi) = µ(¬xi) = 1,
2. ∀f, µ(f) ≥ 0,
3. ∀f, g, µs(f ∨ g) + µs(f ∧ g) ≤ µs(f) + µs(g).

I Lemma 24. Every submodular complexity measure µs is a branching complexity measure.

Proof. Note that

µs(f ∨ xi) + µs(f ∧ xi) ≤ µs(f) + µs(xi)

and

µs((f ∨ xi) ∧ ¬xi) + µs((f ∨ xi) ∨ ¬xi) = µs(f ∧ ¬xi) + µs(1) ≤ µs(f ∨ xi) + µs(¬xi) .

Combining these two inequalities we obtain that

µs(f ∧ ¬xi) + µs(1) + µs(f ∧ xi) ≤ µs(f) + µs(xi) + µs(¬xi)

which implies that µs(f ∧ ¬xi) + µs(f ∧ xi) ≤ µs(f) + 2− µs(1) ≤ µs(f) + 2, as needed. J
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7 Conclusion

In this paper, we showed that for any function f , there is a branching program computing a
doubly exponential number of copies of f which has linear size per copy of f . This result
shows that in the branching program model, any operation/function can be amortized with
sufficiently many copies. This result also disproves a conjecture about nonuniform catalytic
computation, rules out certain approaches for proving general lower space bounds, and gives
a constructive analogue of Razborov’s result [10] on submodular complexity measures.

However, the number of copies required in our construction is extremely large. A remaining
open problem is to determine whether having a doubly exponential number of copies is
necessary or there a construction with a smaller number of copies. Less ambitiously, if we
believe but cannot prove that a doubly exponential number of copies is necessary, can we
show that a construction with fewer copies would have surprising implications?

Acknowledgments. The author would like to thank Avi Wigderson and Venkatesh Medabalimi
for helpful conversations.
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Abstract
We study the possibility of deterministic and randomness-efficient isolation in space-bounded
models of computation: Can one efficiently reduce instances of computational problems to equi-
valent instances that have at most one solution? We present results for the NL-complete problem
of reachability on digraphs, and for the LogCFL-complete problem of certifying acceptance on
shallow semi-unbounded circuits.

A common approach employs small weight assignments that make the solution of minimum
weight unique. The Isolation Lemma and other known procedures use Ω(n) random bits to
generate weights of individual bitlength O(logn). We develop a derandomized version for both
settings that uses O((logn)3/2) random bits and produces weights of bitlength O((logn)3/2) in
logarithmic space. The construction allows us to show that every language in NL can be accepted
by a nondeterministic machine that runs in polynomial time and O((logn)3/2) space, and has at
most one accepting computation path on every input. Similarly, every language in LogCFL can
be accepted by a nondeterministic machine equipped with a stack that does not count towards
the space bound, that runs in polynomial time and O((logn)3/2) space, and has at most one
accepting computation path on every input.

We also show that the existence of somewhat more restricted isolations for reachability on
digraphs implies that NL can be decided in logspace with polynomial advice. A similar result
holds for certifying acceptance on shallow semi-unbounded circuits and LogCFL.
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1 Introduction

Isolation is the process of singling out a solution to a problem that may have many solutions.
It is used in algorithms with an algebraic flavor in order to prevent cancellations from
happening. Examples include reductions of multivariate to univariate polynomial identity
testing [39, 2] and recent approaches to the hamiltonicity problem [11, 29, 20, 19]. The
process also plays an important role in the design of parallel algorithms, where it ensures that
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the various parallel processes all work towards a single global solution rather than towards
individual solutions that may not be compatible with one another. Both uses culminate in
the asymptotically best known parallel algorithms for finding perfect matchings in graphs [47]
and related problems [37, 1, 44]. A wide range of other algorithmic applications of isolation
exist [58, 9, 10, 35, 56, 63, 50, 3, 46, 21, 59, 7, 27, 36, 31, 14, 38, 54, 12, 22, 32, 23, 45, 33].
In complexity theory isolation constitutes a key tool to show that in some computational
models hard problems are no easier to solve on instances with unique solutions [16, and
references further in this section].

Becoming more precise, let us define a computational (promise)1 problem as a mapping
Π ∶ X ↦ 2Y from an instance x ∈ X to a set Π(x) of solutions y ∈ Y , where x and y are
strings that typically represent other types of objects. Given an instance x ∈X, the decision
version of Π asks to determine whether Π(x) is nonempty. We denote by L(Π) the set
(language) of all instances x ∈ X for which the decision is positive. The search version of
Π asks to to produce a solution y ∈ Π(x), or report that no solution exists. For example,
for the NP-complete problem of Satisfiability, x represents a Boolean formula, and Π(x)
its satisfying assignments. For the NL-complete problem of Reachability, x represents a
triple (G,s, t) consisting of a directed graph G, a start vertex s, and a target vertex t, and
Π(x) is the set of paths from s to t in G.

A nondeterministic machine M is said to accept Π (or L(Π)) if for every x ∈ X, M
on input x has an accepting computation path if and only if x ∈ Π. We say that the
machine M decides Π (or L(Π)) if M has an accepting computation path on every x ∈ X,
and on each such path M outputs a bit indicating whether Π(x) ≠ ∅. Note that the
existence of a nondeterministic machine M that decides L(Π) is equivalent to the existence
of nondeterministic machines M+ and M− of the same complexity that accept L(Π) and the
complement of L(Π), respectively. We say that M computes Π if it decides Π and on each
accepting computation paths additionally outputs some y ∈ Π(x) (which can depend on the
path).

Within this framework we formalize the notion of isolation and distinguish between two
types.

I Definition 1 (Notions of isolation). An isolation for a computational problem Π ∶X ↦ 2Y
is a mapping reduction f that transforms x ∈X into an “equivalent” instance f(x) ∈X with
∣Π(f(x))∣ ≤ 1. A disambiguation is an isolation where equivalence requires that Π(x) is empty
if and only if Π(f(x)) is. A pruning is a disambiguation where equivalence additionally
requires that Π(f(x)) ⊆ Π(x).

Disambiguations are isolations geared towards decision problems. Prunings are isolations
geared towards search problems. Actually, for search problems it suffices to have an inter-
mediate notion, namely a recoverable disambiguation f , i.e, one for which there exists an
efficient transformation f ′ that takes any solution y ∈ Π(f(x)) and turns it into a solution
f ′(x, f(x), y) ∈ Π(x).

A closely related notion in the machine realm is that of unambiguity. A nondeterministic
machine M is called unambiguous on an input x if it has at most one accepting computation
path on input x. The machine is called unambiguous if it is unambiguous on every input x.

A common way to achieve isolation is by introducing a weight function ω ∶ X × Y ↦ N
and restricting the set of solutions to those of minimum weight, in the hope that there is

1 We use the prefix “promise” when we want to make it clear that the domain X of Π may be restricted,
i.e., may not equal the set of all strings.
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unique solution of minimum weight (or none in the case where there are no solutions). We
use the following terminology.

I Definition 2 (Min-isolation). Given ω ∶X × Y ↦ N, the min-weight of x ∈X is defined as

ω(x) = { miny∈Π(x)(ω(x, y)) if Π(x) ≠ ∅
∞ otherwise.

We call ω min-isolating for x if there is at most one y ∈ Π(x) with ω(x, y) = ω(x).

In order to construct an actual isolation for Π, we need to express the restricted search on
input x for a solution of weight µ = ω(x) as an instance f(x) of Π.

In many cases a suitable min-isolating weight function can be obtained by viewing the
solutions y for a given instance x as subsets of a finite universe U = U(x), assigning small
weights w(u) ∈ N to the elements u ∈ U , and defining ω(x, y) as a linear combination of the
weights w(u) of the elements u ∈ y. In fact, the trivial linear combination (all coefficients
1) often suffices. If the linear combination is clear from context, we often abuse notation
and use w in lieu of ω, e.g., writing w(y) for ω(x, y), or w(x) for ω(x), or applying the term
“min-isolating” to w.

The known generic isolation procedures [60, 47, 18] are all randomized. A randomized
isolation with success probability p is a randomized mapping reduction f that, on every
instance x ∈X, satisfies the defining requirements for an isolation on input x with probability
at least p. In the min-isolation approach via a weight assignment to the underlying universe,
randomness comes into play in the construction of the weight assignment. The following
well-known mathematical fact (rephrased using our terminology) forms the basis.

I Fact 3 (Isolation Lemma [47]). Suppose that Π(x) ⊆ 2U and that ω(x, y) = ∑u∈y w(u) for
y ∈ Π(x). For any positive integer q, if w ∶ U ↦ [q ⋅ ∣U ∣] is picked uniformly at random then
ω is min-isolating for x with probability at least 1 − 1/q.

An important feature of the Isolation Lemma is that it keeps the range of the min-weight
small, namely within [c ⋅ ∣U ∣2]. Once we have a min-isolating weight assignment of small
range, we can further pick an integer µ uniformly at random within that range, and look for
a solution y ∈ Π(x) with ω(x, y) = µ. If µ happens to equal ω(x), there is a unique such y.
The small range of the min-weight guarantees a reasonable probability of success p.

We can apply this process to Satisfiability with U denoting the set of variables of the
formula x, and q = 2, say. The probability of success is Ω(1/n2), where n denotes the number
of variables of x. Since the weight restriction can be translated in polynomial time into a
Boolean formula on the variables of the original formula, the resulting randomized isolation
can be computed in polynomial time and is of the pruning type. The former implies that
NP ⊆ R ⋅PromiseUP [60].2 Intuitively, the result means that, in the randomized time-bounded
setting, having unique solutions does not make instances of NP-complete problems easier.
Formally, R denotes the one-sided error (no false positives) probabilistic operator on classes
C of languages: R ⋅ C is the class of languages L for which there exists a constant c ∈ N and a
language C ∈ C such that for all inputs x:

x ∈ L ⇒ Prρ[⟨x, ρ⟩ ∈ C] ≥ 1/nc
x /∈ L ⇒ Prρ[⟨x, ρ⟩ ∈ C] = 0,

2 The original argument in [60] uses a different randomized isolation for Satisfiability; it has a success
probability of Ω(1/n).
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where ρ is picked uniformly at random from {0, 1}n
c

, and n denotes the input length ∣x∣. The
operator extends to classes of promise problems in a natural way. PromiseUP represents the
class of promise decision problems that can be accepted by nondeterministic polynomial-time
machines that are unambiguous on every input satisfying the promise.

Isolation in Space-Bounded Settings. Gal and Wigderson [30] obtained a randomized
isolation for Reachability by applying the Isolation Lemma in a similar fashion with
the edges for the graph G as the universe U . Since the weighted reachability problem
with polynomially bounded weights is also in NL, one can translate the weight restricted
instance into an equivalent instance in logarithmic space, though on a graph with more
vertices. This results in a randomized disambiguation with success probability 1/poly(n)
that is computable in logarithmic space with two-way access to the random bits. (The
disambiguation is recoverable in deterministic logspace, but is not a pruning.) It follows that
NL ⊆ R ⋅PromiseUL, where PromiseUL is the logspace equivalent of PromiseUP. Thus, in
the randomized space-bounded setting, having unique solutions does not make instances of
NL-complete problems easier.

Reinhardt and Allender [51] strengthened this result to NL ⊆ R ⋅ (UL ∩ coUL). The class
UL consists of the problems in PromiseUL for which the promise holds for all inputs. In
other words, UL is the class of languages accepted by unambiguous logspace machines. The
significance of the strengthening is that within the class R ⋅ (UL ∩ coUL) the probability of
error can be reduced to exponentially small levels, allowing the randomness to be replaced by
polynomial advice, i.e., R ⋅ (UL ∩ coUL) ⊆ (UL ∩ coUL)/poly. It follows that Reachability
has a randomized disambiguation with exponentially small error that is computable in
logspace with two-way access to the random bits, as well as a disambiguation that is
computable in logspace with polynomial advice.

The construction in [51] needs a stronger property of the weight assignment w than
merely being min-isolating on the given input (G,s, t). It requires w to be min-isolating for
G, i.e., min-isolating for (G,s, t) for all choices of vertices s and t. By setting q = 2n2 in the
Isolation Lemma, a union bound guarantees that with probability at least 50%, a random
weight assignment w ∶ E ↦ [2n2m] is min-isolating for any given graph G = (V,E) with n
vertices and m edges. The randomness in NL ⊆ R ⋅ (UL ∩ coUL) is still only used to generate
random weight assignments. The new ingredients in [51] that enable the strengthening from
R ⋅PromiseUL to R ⋅ (UL ∩ coUL) are unambiguous logspace machines to (i) decide whether
or not a given weight assignment is min-isolating for a given graph G, and (ii) compute the
min-weight w(G,s, t) under a given min-isolating weight assignment w.

Gal and Wigderson [30] and Reinhardt and Allender [51] developed analogous results for
the complexity class LogCFL, where the role of Reachability is taken over by the problem
Circuit Certification of finding a certificate that a given Boolean circuit accepts a given
input. We refer to Section 3.1 for the definition of a certificate and for background, and defer
further discussion of this setting to that section.

Derandomizing Isolation. The number of random bits needed for an application of the
Isolation Lemma as stated is Θ(n log(qn)), namely Θ(log(qn)) bits for each of the n ≐
∣U ∣ elements of the universe U . In order to develop variants that require fewer random
bits, we introduce the notion of a weight assignment generator, which can be viewed as a
structured form of a pseudorandom generator geared towards the setting of the Isolation
Lemma. Whereas a pseudorandom generator is parameterized by the desired length of the
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pseudorandom sequence, a weight assignment generator is parameterized by the desired
domain D of the weight assignments.

I Definition 4 (Weight assignment generator). A weight assignment generator Γ for a family
of domains D is a family of mappings (ΓD)D∈D such that ΓD takes a string σ ∈ {0,1}s(D)

for some function s ∶ D ↦ N, and maps it to a weight assignment w ∶ D ↦ N. We say that
w is chosen uniformly at random from ΓD if it is obtained as w = ΓD(σ) where σ is chosen
uniformly at random from {0,1}s(D).

The family of domains D in Definition 4 is usually indexed by one or more integer parameters,
in which case we also index Γ that way. For example, for a derandomization of the Isolation
Lemma we can equate the universe U with [∣U ∣] ≐ {1, 2, . . . , ∣U ∣} by ordering the elements of
U in some way, e.g., lexicographically. We can then choose D = (Dn)n∈N with Dn ≐ [n], and
write Γn for ΓDn .

The relevant characteristics of a weight assignment generator are the following:
The seed length s(D), which is the number of random bits we need when we pick a weight
assignment from ΓD uniformly at random.
The maximum weight assigned by ΓD, the logarithm of the maximum weight is called the
bitlength of the generator. A bound on the weights is sometimes also used as a parameter
indexing the generator (in addition to the domain D).
The computational complexity of Γ, by which we mean the complexity of the deciding,
on input the parameters p, σ ∈ {0,1}s, z ∈D, i ∈ N, and b ∈ {0,1}, whether the ith bit of
w(z) for w = Γp(σ) is b.

The Isolation Lemma can be viewed as a generic weight assignment generator (for the
family of domains ([n])n∈N) that has seed length O(n log(qn)), bitlength O(logn), and
trivial complexity. By allowing weights that are polynomially larger than in the Isolation
Lemma, one can achieve seed length O(log(qn) + log(∣Π(x)∣)), which is provably optimal for
a generic Π(x) [18]. In our setting this yields seed length O(n) and bitlength O(logn). In
order to do better, one needs to exploit the specifics of the set systems. Doing so generically
in the time-bounded setting seems difficult. There are implications from derandomizing the
Isolation Lemma for generic Π(x) of small circuit complexity to circuit lower bounds of
various sorts [6], and vice versa [40]. The circuit lower bounds are arguably reasonable but
have been open for a long time. There may be ways to obtain deterministic or derandomized
isolations other than by derandomizing the Isolation Lemma, but for Satisfiability the
existence of a deterministic polynomial-time pruning implies that NP ⊆ P/poly. In fact, the
collapse follows from the existence of a randomized polynomial-time pruning that has success
probability p > 2/3 [26].

In the space-bounded setting there is more hope to obtain unconditional derandomizations.
An implication from lower bounds to derandomization still holds: If there exists a problem
in DSPACE(n) that requires Boolean circuits of linear-exponential size, then there exists a
logspace computable weight assignment generator with seed length and bitlength O(logn) [40,
4]. There is no known result showing that deterministic isolations in the space-bounded setting
imply circuit (or branching program) lower bounds that are open. Moreover, unconditional
results already exist for certain restricted classes of digraphs. For Reachability on directed
planar grid graphs, min-isolating weight assignments of bitlength O(logn) are known to be
computable in deterministic logspace [13]. Those assignments have been used to construct
disambiguations that are logspace computable and logspace recoverable for larger classes of
graphs [13, 57, 43].
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5:6 Derandomizing Isolation in Space-Bounded Settings

There have also been related successes for isolating PerfectMatching, the problem of
deciding/finding perfect matchings in graphs, restricted to certain special types of graphs
[24, 25, 5]. Recently, Fenner, Gurjar, and Thierauf [28] constructed a weight assignment
generator with seed length and bitlength O((logn)2) that is computable in logspace and that
produces a min-isolating weight assignment for PerfectMatching on a given bipartite graph
with probability at least 1−log(n)/n. This allowed them to prove that PerfectMatching on
bipartite graphs has logspace-uniform circuits of polylogarithmic depth and quasi-polynomial
size.

Main Results. We present positive and negative results regarding the possibility of deran-
domized isolations for Reachability and for Circuit Certification.

The crux for our positive results are logspace min-isolating weight assignment generators
with seed length and bitlength O((logn)3/2). We actually shift the paradigm a bit – we
assign weights to the (internal) vertices rather than to the edges. This is not an essential
difference,3 but it facilitates a natural iterative/recursive approach towards the construction
of the weight assignment, and allows for a cleaner and unified treatment.

Recall that in the context of Reachability we call a weight assignment w min-isolating
for an instance (G,s, t) if G has at most one path from s to t of minimum weight under w. For
technical reasons we only consider the restriction of Reachability to layered digraphs G.

I Theorem 5. There exists a weight assignment generator Γ(reach) = (Γ(reach)
n,d )n,d∈N that is

computable in space O(logn) and has seed length and bitlength O(
√

log d logn) such that for
every layered digraph G of depth d with n vertices

Pr
w
[w is min-isolating for G] ≥ 1 − 1/n,

where w is chosen uniformly at random from Γ(reach)
n,d .

The domain underlying Γ(reach)
n,d is [n] × JdK ≐ {1,2, . . . , n} × {0,1,2, . . . , d}. We refer to

Section 2.1 for more details.
We use Theorem 5 to derive the following isolation result for NL, where the notation

UTISP(t, s) stands for the class of languages accepted by unambiguous nondeterministic
machines that run in time t and space s.

I Theorem 6. NL ⊆ UTISP(poly(n), (logn)3/2).

In words: Every language in NL can be accepted by a nondeterministic machine that runs in
polynomial time and O((logn)3/2) space, and has at most one accepting computation path
on every input.

Theorem 6 should be contrasted with the most space efficient simulation of NL on
deterministic machines, which is given by Savitch’s Theorem [53]: NL ⊆ DSPACE((logn)2).
That simulation does not run in polynomial time. In fact, the best upper bound on the
running time is the one for generic computations in DSPACE((logn)2), namely nO(logn).
Reachability can be solved in linear time and space using depth-first search or breadth-first
search. The smallest known space bound for an algorithm that decides Reachability in
polynomial time is only slightly sublinear, namely n/2Θ(

√
logn) [8].

On the “negative” side we show:

3 We could alternately assign the weight of a vertex to each of its outgoing edges without affecting the
total weight of any solution.
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I Theorem 7. Either one of the following hypotheses implies that NL ⊆ L/poly:
1. Reachability on layered digraphs has a logspace pruning.
2. Reachability on layered digraphs has a logspace weight function ω that is min-isolating,

and there exists a logspace function µ such that µ(x) equals the min-weight ω(x) of x
under ω on positive instances x.4

In fact, the conclusion holds even if the algorithms are randomized, as long as the probability
of success exceeds 2

3 +
1

poly(n) and the algorithms run in logspace when given two-way access
to the random bits.

It is not clear to us that Theorem 7 should be viewed as a roadblock towards reducing the
seed length and bitlength in Theorem 5 from O((logn)3/2) down to O(logn), and thereby
show that NL = UL. Regarding the first part of Theorem 7, none of the known randomized
isolations for Reachability are of the pruning type. This is because they map an instance
x ≐ (G,s, t) to an instance f(x) where the underlying graph contains more vertices than G,
which makes it impossible to meet the pruning requirement that Π(f(x)) ⊆ Π(x).

The corresponding results for Circuit Certification and the complexity class LogCFL
are stated in Section 3 (positive) and Section 4 (negative).

Techniques. The crux for our positive results is an iterative/recursive construction of a
min-isolating weight assignment generator Γ. In both settings there are Θ(logn) levels
of recursion. In the case of Reachability the subproblems at the kth level correspond
to the subgraphs induced by blocks of 2k successive layers of G. In the case of Circuit
Certification the kth level corresponds to the kth level of AND gates of the given circuit.

We develop several methods to build out of a min-isolating weight assignment wk at
the kth level, a min-isolating weight assignment wk+1 at the (k + 1)st level. The methods
represent different trade-offs between the seed length and the bitlength. Our starting point is
two simple constructions, namely one based on shifting, and one based on universal families
of hash functions. The shifting approach does not need any randomness at all but yields
bitlength Θ((logn)2). Hashing yields the smaller bitlength O(logn) but needs Θ((logn)2)
random bits. Either one of those simple approaches on its own is sufficient to establish weaker
versions of our positive results, namely where the randomness or space bound is increased
from O((logn)3/2) to O((logn)2), i.e.,

NL ⊆ UTISP(poly(n), (logn)2). (1)

The Θ((logn)2) bits of randomness in the hashing-based approach are composed of
Θ(logn) bits to describe a fresh hash function at each of the Θ(logn) levels of recursion.
The reason one needs a fresh hash function at each level is to avoid potential stochastic
dependencies. We show how to use shifting to preclude the existence of such dependencies,
allowing us to reuse the same hash function at Θ(

√
logn) levels. This combination of

shifting and hashing balances the seed length and bitlength to Θ((logn)3/2) each, and yields
Theorem 5 and its counterpart for Circuit Certification.

For Theorem 6 and its counterpart for LogCFL we need to get rid of the randomness
completely. We could do so by exhaustively trying all random seeds, and employing the
unambiguous logspace machine of [51] to select one that yields a min-isolating weight
assignment. However, given that the number of random bits is Θ((logn)3/2), an exhaustive

4 If µ(x) = ω(x) on all instances x, we can easily decide Reachability in logspace as there exists a path
from s to t in G if and only if ω(G, s, t) <∞.
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5:8 Derandomizing Isolation in Space-Bounded Settings

search would require time nΘ(
√

logn). In order to do better, we exploit the structure of
the randomness – it consists of Θ(

√
logn) hash functions requiring Θ(logn) random bits

each. Using the unambiguous logspace machines from [51] this allows us to pick the hash
functions one by one, maintaining the invariant that the resulting weight assignments are
min-isolating for the corresponding levels, and then use the final assignment to decide
reachability unambiguously. As we can cycle through all possibilities for a hash function at a
given level in polynomial time, this yields a full derandomization running in polynomial time
and space O((logn)3/2).

The “negative” results, Theorem 7 and its counterpart for Circuit Certification,
follow along the lines of the argument for a similar result from [26] in the time-bounded
setting. The first part is the space-bounded equivalent of the main result in [26]; it suffices
to verify that the argument from the time-bounded setting carries over to the space-bounded
setting. The second part does not have a counterpart in [26] but follows from a similar
argument and some additional observations.

Related Papers. There is a remarkable correspondence in terms of statements and high-
level approach between Theorem 6 and the result by Saks and Zhou [52] that BPL ⊆
DSPACE((logn)3/2). Both have a recursive structure, use hashing,5 need to get rid of
stochastic dependencies so as to enable the reuse of the same hash function at multiple
levels of recursion, exploit the leeway created by the discrepancy between the randomness
and processing space (bitlength), and ultimately balance them to Θ((logn)3/2) bits each.
In contrast to [52], we do obtain the equivalent of a pseudorandom generator. As another
contrast we are able to improve the running time to polynomial, which remains open in the
case of BPL [15]. Our high-level approach for the improvement is similar to the one for the
improvement from BPL ⊆ DSPACE((logn)2) in [48] to BPL ⊆ DTISP(poly(n), (logn)2) in
[49].

The recent derandomization results for PerfectMatching on bipartite graphs [28] and
for polynomial identity testing (PIT) for read-once arithmetic branching programs [2] also
employ a combination of hashing and shifting but no balancing. They need O((logn)2)
random bits as opposed to our O((logn)3/2). It is an open question whether our approach
can be used to reduce the number of random bits in those settings. This question is related
to the reduction from multivariate (multilinear) PIT to univariate PIT based on isolation: If
w ∶ [n]↦ N is a weight assignment to the variables that is min-isolating for the monomials that
occur in a nonzero n-variate polynomial P (x1, x2, . . . , xn), then the substituted polynomial
Q(t) ≐ P (tw(1), tw(2), . . . , tw(n)) remains nonzero.

Recently, Kalampalli and Tewari [34] independently proved the weaker inclusion (1) that
follows from either of our starting points (the pure shifting approach that needs no randomness
and bitlength Θ((logn)2), and the pure hashing approach that needs Θ((logn)2) random
bits and yields bitlength O(logn)). In their construction both quantities are Θ((logn)2).

Very recently, Krishnan and Limaye [42] posted a report on ECCC in which they
independently prove part 1 of our “negative” results (Theorem 7 and its counterpart for
LogCFL), which follow from a space-bounded rendering of the main argument in [26].6

5 [52] does so via Nisan’s pseudorandom generator [48].
6 The current version of the report claims that the arguments also rely on [51], but the authors agree
that [51] is not needed there (personal communication).
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Organization. In Section 2 we derive our positive results for Reachability and NL.
The results essentially also follow as corollaries to the corresponding results for Circuit
Certification and LogCFL, which we prove from scratch in Section 3. This organization
allows us to develop our ideas in the more familiar setting of Reachability and NL in a
gradual and somewhat informal way, and suffice with a formal proof without much intuition
in the more general setting of Circuit Certification and LogCFL. In Section 4 we present
our negative results for both settings.

2 Reachability and NL

In this section we develop our min-isolating weight assignment generator for Reachability
(Theorem 5), and derive our positive isolation result for NL (Theorem 6).

2.1 Weight Assignment Generator
Recall the notion of min-isolation in the context of Reachability:

I Definition 8 (Min-isolating weight assignment for Reachability). Let G = (V,E) be a
digraph. A weight assignment for G is a mapping w ∶ V ↦ N. The weight w(P ) of a path
P in G is the sum of w(v) over all vertices v on the path. For s, t ∈ V , w(G,s, t) denotes
the minimum of w(P ) over all paths from s to t, or ∞ if no such path exists. The weight
assignment w is min-isolating for (G,s, t) if there is at most one path P from s to t with
w(P ) = w(G,s, t). For A ⊆ V × V , w is min-isolating for (G,A) if w is min-isolating for
(G,s, t) for each (s, t) ∈ A. We call w min-isolating for G if w is min-isolating for (G,V ×V ).

We restrict attention to layered digraphs. A layered digraph G = (V,E) of depth d consists
of d + 1 layers of vertices such that edges only go from one layer to the next. More formally,
with n ≐ ∣V ∣ we have that V ⊆ [n]×JdK ≐ {1, 2, . . . , n}×{0, 1, 2, . . . , d} and E ⊆ ⊍i∈[d](Vi−1×Vi).
We denote by Vi ≐ V ∩ [n] × {i} the ith layer of G.

In fact, we only need to consider layered digraphs of depths that are powers of two. For
d = 2` with ` ∈ N, and k ∈ J`K, such a digraph can be viewed as consisting of d/2k = 2`−k
consecutive blocks of depth 2k, where the ith block is the subgraph induced by the vertices
in layers (i − 1)2k through i2k, i.e., ∪i⋅2

k

j=(i−1)⋅2kVj .
We need to design a randomness efficient process that, given d = 2` and n, generates

small weight assignments w ∶ [n] × JdK ↦ N that are min-isolating for any layered digraph
G = (V,E) of depth d on n vertices with high probability. Note that the use of the domain
[n] × JdK rather than merely [n] enables the weight assignment to depend on the layer a
vertex is in.

Iterative Approach. Given the recursive nesting structure of the blocks, there is a natural
iterative/recursive approach towards the construction of w, based on the following simple
observation:

A min-weight path from s to t that passes through a vertex u is the concatenation of
a min-weight path from s to u and a min-weight path from u to t.

We present an iterative (i.e., bottom-up) version, where in the kth iteration we try to
construct a weight assignment wk that is min-isolating for each block of depth 2k and only
assigns nonzero weights to the vertices that are internal to those blocks, i.e., to V ∖∪2`−k

i=0 Vi⋅2k .
We start with w0 ≡ 0, and end with w = w`. Here is how we move from wk to wk+1 in

iteration k + 1 for k ∈ J`− 1K. Consider a block B of depth 2k+1. It consists of two consecutive
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blocks B1 and B2 of depth 2k that have the middle layer M of B in common (see Figure 1).
The assignment wk gives weights to all vertices of B except the initial layer, the middle layer
M , and the final layer. We construct the assignment wk+1 by extending wk, i.e., wk+1 keeps
the values of wk on the layers internal to B1 or B2, and additionally assigns weights to the
vertices in M . We refer to the union of the middle layers M over all blocks of depth 2k+1 as
the set Lk+1 of vertices at level k + 1, i.e.,

Lk+1 ≐ ∪odd i∈[2`−k]Vi⋅2k . (2)

The new weights are assigned so as the maintain the invariant – Assuming that wk is
min-isolating for B1 and B2 individually, we want to make sure that wk+1 is min-isolating
for all of B. Consider two vertices s and t in B such that s appears in an earlier layer than t.

If t is internal to B1 then wk+1 is min-isolating for (B,s, t) no matter how wk+1 assigns
weights to M . This follows from the hypothesis and the fact that wk+1 and wk agree on
the vertices of B1 other than M . The case where s is internal to B2 is similar.
Otherwise, s belongs to B1 and t belongs to B2. In that case every path from s to
t has to cross layer M . We claim that among the paths (if any) that cross M in a
fixed vertex v, there is a unique one of minimum weight with respect to wk+1, say
Pv. This follows from the above observation, the hypothesis, and the fact that wk+1
and wk agree on the vertices of B other than M . Indeed, any such path Pv is the
concatenation of a path Psv in B1 from s to v, and a path Pvt in B2 from v to t. Since
wk+1(Pv) = wk(Pv)+wk+1(v) = wk(Psv)+wk(Pvt)+wk+1(v), both Psv and Pvt need to be
min-weight with respect to wk. By hypothesis, both those min-weight paths are uniquely
determined, whence so is Pv.
Thus, in order to guarantee that wk+1 is min-isolating for (B,s, t), it suffices to ensure
that for all vertices u, v ∈M that are on a path from s to t,

µk(s, u) + µk(u, t) +wk+1(u) ≠ µk(s, v) + µk(v, t) +wk+1(v), (3)

where µk(s, t) ≐ wk(G,s, t) denotes the minimum weight of a path from s to t under wk,
or ∞ if no such path exists. We refer to condition (3) as a disambiguation requirement.
See Figure 1 for an illustration.

We now consider three ways to meet the disambiguation requirements: shifting, hashing,
and a combination of both. For each construction we track:
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the number Rk of random bits that wk needs, and
the maximum weight Wk of paths in G under wk.

The quantity R ≐ R` corresponds to the seed length of the weight assignment generator Γ.
The logarithm of the quantity W ≐W` equals the bitlength of Γ up to an additive term of
O(log d). As we will see in Section 2.2, the simulations of NL on unambiguous machines
that we obtain via Γ run in space O(R + log(W ) + log(n)). Thus, our aim is to minimize
the quantity R + log(W ) up to constant factors. We will ultimately succeed in making it
as small as O((logn)3/2). Ideally, we would like to reduce it further to O(logn) so as to
establish NL ⊆ UL.

Shifting. For v ∈M ⊆ Lk+1 we set wk+1(v) = index(u) ⋅ b, where b is an integer that exceeds
Wk, and index is an injective function from M to N. As the vertices in V are represented as
pairs (i, j) ∈ JdK × [n] and all vertices in M have the same first component, we can simply
use the projection (i, j) ↦ j as the index function. This guarantees distinct values for the
two sides of (3) for different u and v, irrespective of the values of µk(s, u) + µk(u, t) and
µk(s, v) + µk(v, t). In terms of binary representations, if b is a power of 2, this construction
can be interpreted as shifting the index function into a region of the binary representation
that has not been used before.

We have that Rk+1 = Rk and Wk+1 ≤ Wk + 2`−k−1 ⋅ n ⋅ b ≤ (dn + 1)(Wk + 1) − 1. When
we use shifting at all levels, we end up with R = 0 and W ≤ (dn + 1)` = nO(logn), so
R + log(W ) = O((logn)2).

Hashing. When wk+1(u) and wk+1(v) are picked uniformly at random from a sufficiently
large range, independently from each other and from the values µk(s, u) + µk(u, t) and
µk(s, v)+µk(v, t), the disambiguation requirement (3) holds with high probability. We make
use of universal hashing to obtain the random values we need using few random bits, and in
particular of the following well-known family and property. We cast the notion in terms of a
weight assignment generator with a bound on the weights as an additional parameter.

I Fact 9 (Universal hashing [17]). There exists a logspace computable weight assignment gen-
erator (Γ(hashing)

m,r )m,r∈N with seed length s(m,r) = O(log(mr)) such that Γ(hashing)
m,r produces

functions h ∶ [m] ↦ [r] with the following property: For every u, v ∈ [m] with u ≠ v, and
every a, b ∈ N

Pr
h
[a + h(u) = b + h(v)] ≤ 1/r, (4)

where h is chosen uniformly at random from Γ(hashing)
m,r .

We identify D ≐ JdK× [n] with [m] = [d ⋅n] in a natural way. If we pick h ∶D ↦ [r] uniformly
at random from Γ(hashing)

m,r and set wk+1 = h on Lk+1, (4) guarantees that each individual
disambiguation requirement (3) holds with probability at least 1 − 1/r. As there are at most
n4 choices for (s, t, u, v), a union bound shows that all disambiguation conditions are met
simultaneously with probability at least 1 − n4/r. It suffices to pick r as a sufficiently large
polynomial in n in order to guarantee high success probability. In particular, r = n6 suffices
for probability of success at least 1 − 1/n2.

Based on the charateristics of the family of hash functions Γ(hashing) from Fact 9, we have
that Rk+1 = Rk+O(log(dnr)) = Rk+O(logn) andWk=1 ≤Wk+2`−k−1 ⋅r ≤Wk+dr =Wk+nO(1).
When we use a fresh uniform sample h = hk from Γ(hashing) for each iteration k ∈ [`], we end up
with R = O(` log(n)) = O((logn)2), and W = ` ⋅ nO(1) = nO(1), so R + log(W ) = O((logn)2)
again.
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Combined Approach. The shifting approach is ideal in terms of the amount of randomness
R but leads to weights that are too large. The hashing approach is ideal in terms of the
bound W on the path weights but requires too many random bits. We now combine the two
approaches so as to balance R and log(W ). The construction can be viewed as incorporating
shifting into the hashing approach, or vice versa. Our presentation follows the former
perspective.

In order to reduce the number of random bits in the hashing approach, we attempt to
employ the same hash function h in multiple successive iterations, say iterations k+1 through
k′, going from wk to wk′ . This does not work as such because the minimum path weights in
the disambiguation requirements (3) for iterations above k + 1 depend on h, and we cannot
guarantee the bound (4) if a or b depend on h. However, the influence of the choice of h on
those minimum path weights is limited. More specifically, in iteration k + 2 we have that for
any s and t that belong to the same block of depth 2k+1

µk(s, t) ≤ µk+1(s, t) ≤ µk(s, t) + r. (5)

The first inequality follows because wk+1 ≥ wk. The second one follows by considering a
minimum-weight path P from s to t under wk and realizing that

µk+1(s, t) ≤ wk+1(P ) = wk(P ) + h(v) = µk(s, t) + h(v) ≤ µk(s, t) + r,

where v is the unique vertex in P ∩Lk+1.
Let b be a power of two to be determined later. Equation (5) implies that µk(s, t)

and µk+1(s, t) are the same after truncating the log b lowest-order bits, i.e., ⌊µk(s, t)/b⌋ =
⌊µk+1(s, t)/b⌋, unless adding r to µk(s, t) results in a carry into bit position log b (the
position corresponding to the power 2log b = b). Suppose we can prevent such carries
from happening. Conceptually, in iteration k + 2 we can then apply the hashing approach
with the same hash function h as in iteration k + 1 provided we use the truncated values
µ′k+1(s, t) ≐ ⌊µk(s, t)/b⌋ = ⌊µk+1(s, t)/b⌋ as the minimum path weights. Indeed, since the
values µ′k+1 are independent of h, (4) in Fact 9 shows that the disambiguations requirements
with respect to µ′k+1, i.e.,

µ′k+1(s, u) + µ′k+1(u, t) + h(u) ≠ µ′k+1(s, v) + µ′k+1(v, t) + h(v), (6)

hold with high probability. Undoing the truncation, (6) implies that

µk+1(s, u) + µk+1(u, t) + h(u) ⋅ b ≠ µk+1(s, v) + µk+1(v, t) + h(v) ⋅ b.

Thus, by setting wk+2(v) = h(v) ⋅ b for v ∈ Lk+2 we realize the actual disambiguation
requirements for iteration k + 2 with high probability in conjunction with the disambiguation
requirements for iteration k + 1. The setting of wk+2 on Lk+2 can be interpreted as using a
shifted version of the same hash function h instead of h itself.

We can repeat the process for iterations k + 3 through k′. In iteration k + i, the bound
(5) becomes

µk(s, t) ≤ µk+i−1(s, t) ≤ µk(s, t) + r ⋅ (bi−2 + 2bi−3 + . . . + 2i−2) ≤ µk(s, t) + 2rbi−2,

where the last inequality assumes that b ≥ 4. We set wk+i(v) = h(v) ⋅ bi−1 for v ∈ Lk+i, and
achieve our goal if h satisfies the disambiguation requirements

⌊µk(s, u)/bi−1⌋ + ⌊µk(u, t)/bi−1⌋ + h(u) ≠ ⌊µk(s, v)/bi−1⌋ + ⌊µk(v, t)/bi−1⌋ + h(v) (7)
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for all appropriate choices of s, t, u, v. Equation (4) in Fact 9 and a union bound show that
the requirements (7) are all met simultaneously by the same hash function h for all iterations
k + 1 through k′ with probability at least 1 −∆/n2 for r = n6, where ∆ ≐ k′ − k.

In iteration k + 2 we made the assumption that there are no carries into position log b
when adding r to the values µk. More generally, in iteration k + i, we assumed there are
no carries into position (i − 1) ⋅ log b when adding 2rbi−2 to the values µk. The assumption
holds if b ≥ 4r and the values µk have a 0 in the position right before each of the positions
(i−1) ⋅ log b. We can maintain the latter condition as an invariant throughout the construction
by setting b = O(r) sufficiently large.

Alternately, b ≥ 2r is enough to ensure that the carries are no larger than 1. We can
handle such carries by strengthening the disambiguation requirements (7) and impose that
the left-hand side and right-hand side are not just distinct but are separated by a small
constant. This only involves a constant factor more of applications of (4) in the union bound,
and guarantees that the values remain distinct after undoing the truncation. In fact, it
suffices to require for all i ∈ [k′ − k] that

⌊(µk(s, u) + µk(u, t))/bi−1⌋ + h(u) /∈ ⌊(µk(s, v) + µk(v, t))/bi−1⌋ + h(v) + {−1,0,1}

for some b ≥ 4r. We refer to the formal proof of Lemma 15 in Section 3.2 for more details
(in the setting of Circuit Certification instead of Reachability), in particular to the
argument for Claim 16.

We obtain the following characteristics: Rk′ = Rk + O(log(dnr)) = Rk + O(logn) and
Wk′ ≤Wk + 2`−k

′

⋅ 2rb∆−1 ≤Wk + drb∆−1 =Wk +O(n∆), where ∆ ≐ k′ − k.

Final Construction. Starting from w0 ≡ 0, for any ∆ ∈ [`] we can apply the combined
construction `/∆ times consecutively to obtain w = w`. Each application uses a fresh
hash function to bridge the next ∆ levels. The setting ∆ = 1 corresponds to the pure
hashing approach, and the setting ∆ = ` essentially to the pure shifting approach.7 We can
interpolate between the parameters of the pure shifting and pure hashing approaches by
considering intermediate values of ∆. We have R = O(∆/` ⋅ logn) and W = O(∆/` ⋅ n∆),
so R + log(W ) = O((∆/` + ∆) logn). The latter expression is minimized up to constant
factors when ∆/` = `, i.e., when ∆ =

√
`, yielding a value of R + log(W ) = O(

√
` logn) =

O(
√

log d logn) = O((logn)3/2).
The above construction yields a weight assignment generator Γ(reach) that is indexed by

the number of vertices n and the depth d, with Dn,d ≐ [n]× JdK as the domain for the weight
functions given by Γ(reach)

n,d . The construction works for any d that is a power of 2 and any
n ∈ N, and has the properties stated in Theorem 5. We already analyzed the seed length and
bitlength. For any given layered digraph of depth d on n vertices, the failure probability at
each level of the construction is at most 1/n2. As there are ` ≐ log d ≤ logn levels, the overall
failure probability is at most log(n)/n2 ≤ 1/n. The logspace computability follows from the
logspace computability of the underlying universal family of hash functions and the fact that
iterated addition is in logspace (see, e.g., [62]).

Values of d that are not powers of 2 can be handled by first extending the given layered
digraph G with identity matchings (for each i connect the ith gate in the next layer with the
ith gate in the previous layer) until the depth reaches a power of 2, and then applying the
above construction.

7 In this setting the hash function h from the “combined” approach can be replaced by an index function.
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This concludes a somewhat informal proof of Theorem 5. Section 3.2 contains a more
formal proof (in the setting of Circuit Certification instead of Reachability).

2.2 Isolation
We now establish Theorem 6. The following proposition8 shows that it suffices to construct
a Turing machine that accepts Reachability unambiguously on layered digraphs in time
poly(n) and space O((logn)3/2).

I Proposition 10. Reachability on layered digraphs is hard for NL under logspace mapping
reductions that preserve the number of solutions.

Given our weight assignment generator Γ(reach), a natural approach towards computing
Reachability unambiguously on a given layered instance (G,s, t) is to go over the list of
all weight assignments w produced by Γ(reach), pick the first one that is min-isolating for
G, and use it to decide the given instance (G,s, t). In fact, the earlier improvement from
Reachability ∈ R ⋅PromiseUL [30] to Reachability ∈ R ⋅ (UL∩ coUL) [51] can be viewed
as following the same approach. Instead of the list of weight assignments obtained from
Γ(reach) (which is guaranteed to contain a min-isolating one), [51] uses a list of 2n2 random
weight assignments of bitlength O(logn) (which contains a min-isolating one with probability
at least 50%). The following ingredients are essential to get the approach to work.

I Lemma 11 ([51]). There exist unambiguous nondeterministic machines WeightEval(reach)

and WeightCheck(reach) such that for every digraph G = (V,E) on n vertices, weight as-
signment w ∶ V ↦ N, and s, t ∈ V :

WeightCheck(reach)(G,w) decides whether or not w is min-isolating for G, and
WeightEval(reach)(G,w, s, t) computes w(G,s, t) provided w is min-isolating for G.

Both machines run in time poly(log(W ), n) and space O(log(W )+ log(n)), where W denotes
an upper bound on the finite values of w(G,u, v) for u, v ∈ V .

Note that the machine WeightEval(reach) does not simply go over all integers µ from 0 to
W and check whether a path from s to t of weight µ exists (knowing that it is unique if it
exists) until the first success or the weight range is exhausted. That process would take at
least W steps in the worst case, whereas the machine WeightEval(reach) from Lemma 11
runs in time poly(log(W ), n).

Like [51], we call WeightCheck(reach)(G,w) for each w from the list up and until the
first success, and then call WeightEval(reach)(G,w, s, t) with that first successful w. This
describes a deterministic machine for Reachability on layered digraphs that makes calls to
the unambiguous nondeterministic machines WeightCheck(reach) and WeightEval(reach).
The result is an unambiguous nondeterministic machine assuming the following general
convention regarding the behavior of a machine M making a call to a nondeterministic
machine N : On any computation path on which N rejects, M halts and rejects; on any
accepting computation path of N , M continues the path assuming the output of N as the
result of the call.

Going over the list of all weight assignments produced by Γ(reach) is done by going
over all seeds σ, and producing the required bits of w = Γ(reach)(σ) from σ on the fly
whenever they are needed, without storing them. Given the logspace computability of

8 The property that the mapping reductions preserve the number of solutions is not needed here but will
be used later.
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Γ(reach), the resulting unambiguous machine for Reachability on layered digraphs runs
in time 2R ⋅ poly(log(W ), n) and space O(R + log(W ) + logn), where R denotes the seed
length of Γ(reach), and W the maximum path length under a weight assignment that Γ(reach)

produces. With the parameters of Γ(reach) stated in Theorem 5 this gives time nO(
√

logn)

and space O((logn)3/2).
In order to reduce the running time to nO(1) while keeping the space bound O((logn)3/2),

we improve over the exhaustive search over all seeds of Γ(reach) by exploiting the internal
structure of Γ(reach). Recall from the final construction in Section 2.1 that the seed σ consists
of ∆ = O(

√
logn) parts of O(logn) bits, each describing a hash function hi from the family

Γ(hashing) from Fact 9. The hash functions h1, . . . , hi define a weight assignment wi⋅∆ that is
intended to have the following property: wi⋅∆ is min-isolating for each block of depth 2i⋅∆
of G. We construct (the seeds σi for) the hash functions hi one by one, maintaining the
intended property as an invariant for i = 0,1, . . . ,∆. The invariant trivially holds for i = 0.
In the step from i − 1 to i for i ∈ [∆], we go over all possible seeds σi for Γ(hashing)

m,r , consider
hi ≐ Γ(hashing)

m,r (σi), check whether or not the weight assignment wi⋅∆ defined by the already
determined h1, . . . , hi−1 and the current choice for hi maintains the invariant, and select the
first σi for which it does. Each check is performed by running WeightCheck(reach)(B,w)
for each of the blocks B of depth 2i, passing if and only if all of them pass. The correctness
argument from Section 2.1 guarantees that the search always succeeds. Once we arrive at
w = w∆, we run WeightEval(reach)(G,w, s, t) as before. Note that the number of choices
for σi that need to be examined for each i ∈ [∆] is nO(1). It follows that the resulting machine
runs in time nO(1) and space O((logn)3/2), and unambiguously decides Reachability on
layered digraphs.

This finishes the proof of Theorem 6. A more formal proof in the setting of Circuit
Certification and LogCFL is given in Section 3.3.

3 Circuit Certification and LogCFL

We start this section with some background on Circuit Certification and LogCFL,
including known isolation results. We then state and formally prove our positive results for
this setting.

3.1 Background
Gal and Wigderson [30] applied their approach for isolating Reachability also to the
following computational problem.

I Definition 12 (Circuit certification). Circuit Certification denotes the computational
problem that maps an input x ≐ (C, z, g) composed of a Boolean circuit C, an input z for C,
and a gate g of C, to the set of certificates for g in C on input z.

A certificate for a gate g in a Boolean circuit C on an input z is a minimal9 subcircuit F
of C with output gate g that accepts z, written F (z) = 1. Based on De Morgan’s laws, one
can always push the negations in a circuit to the inputs without changing the input/output
behavior or the depth of the circuit, while at most doubling its size. On any given input z,

9 The restriction of minimality is imposed in some references (e.g., [51]) but not in others (e.g., [30]).
We impose it as it allows for a bijection between certificates and accepting computation paths in the
machine characterization of LogCFL.
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5:16 Derandomizing Isolation in Space-Bounded Settings

there is a simple bijection between the certificates for the transformed circuit and for the
original one. Thus, it suffices to consider circuits where negations appear on the inputs only.
In such a circuit C on input z, a certificate for a gate g satisfying g(z) = 1 can be constructed
in the following recursive fashion, starting from the subcircuit of C rooted at g: If g is an
AND gate, keep each incoming wire but replace its originating gate by a certificate for that
gate. If g is an OR gate, keep a single incoming wire from a gate v satisfying v(z) = 1, and
replace v by a certificate for v. If g is a leaf (necessarily evaluating to 1), keep it.

[30] assigns random weights w to the wires E of C. In order to facilitate the translation
of the search for a certificate F for x ≐ (C, z, g) of a given weight τ into an equivalent
instance f(x) of Circuit Certification, the certificate is conceptually first expanded into
an equivalent formula in the standard way by duplicating gates, wires, and their weights. The
weight of the certificate F is then defined as the weight of this formula seen as a weighted
tree. Equivalently, along the lines of the above process for constructing a certificate, the
weight of a certificate F for g can be defined recursively as the sum of the weights of the
wires feeding into g and the weights of the certificates that F induces for their originating
gates. Thus, the weight of a certificate is not merely the sum of the weights of the edges in
the certificate, but a linear combination of those weights with nonnegative integer coefficients.
The Isolation Lemma can be extended to this setting, namely to families of multisets over the
universe E, and guarantees with probability at least 1− 1/q that g has a unique certificate of
minimum weight when w ∶ E ↦ [q ⋅ ∣E∣] is chosen uniformly at random. The number of times
a wire can appear in the multiset (the coefficient in the linear combination) can be as large
as the maximum product of the fan-ins of the AND gates on a path in C from the inputs to
g. As a consequence, only circuits of low depth in which the fan-in of the AND gates is small
can be handled efficiently. More specifically, [30] considers shallow semi-unbounded circuits.
“Shallow” means that the depth is bounded by log2(n), where n denotes the number of gates.
“Semi-unbounded” means that the fan-in of the AND gates is bounded by two (and that
negations appear on the inputs only).

Shallow semi-unbounded circuits are intimately connected to the complexity class LogCFL
of languages that reduce to a context-free language under logspace mapping reductions. The
class can be defined equivalently as the languages accepted by logspace-uniform families
of shallow semi-unbounded circuits of polynomial size, the non-uniform version of which
is denoted as SAC1 [61]. The class LogCFL can also be characterized as the languages
accepted by nondeterministic machines that run in polynomial time and logarithmic space,
and are equipped with an auxiliary stack that does not count towards the space bound
[55]. Such machines are sometimes called auxiliary pushdown automata, and the class
of languages accepted by such machines running in time t and space s is denoted as
AuxPDA-TISP(t, s). The corresponding subclass for unambiguous machines is written
as UAuxPDA-TISP(t, s). For any given problem in LogCFL and any input x, there is a
logspace computable and logspace invertible bijection between the certificates for the circuits
underlying the logspace-uniform SAC1 characterization, and the accepting computation
paths of the machine underlying the AuxPDA-TISP(poly(n),O(logn)) characterization. It
follows that the restriction of Circuit Certification to shallow semi-unbounded circuits
is complete for LogCFL under logspace mapping reductions, and that logspace computable
and recoverable disambiguations for that problem and for the entire class are equivalent.

Gal and Wigderson obtained a randomized disambiguation for Circuit Certification
on shallow semi-bounded circuits that has success probability 1/poly(n), is computable in
logspace with two-way access to the random bits, and is recoverable in logspace. This implies
that LogCFL ⊆ R ⋅PromiseC where C ≐ UAuxPDA-TISP(poly(n),O(logn)). Reinhardt and
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Allender [51] strengthened this result to LogCFL ⊆ R ⋅ (C ∩ coC), replacing the condition on
the weight assignment w by the requirement that w is min-isolating for every gate of C on
input z (not just the specified gate g). This implies that LogCFL ⊆ (C ∩ coC)/poly and that
a disambiguation for Circuit Certification on shallow semi-unbounded circuits can be
computed in logspace with polynomial advice.

3.2 Weight Assignment Generator
Analogous to the setting of Reachability and NL, our isolations for Circuit Certifica-
tion and LogCFL hinge on an efficient min-isolating weight assignment generator. Although
not essential, it is more convenient for us to assign weights to the gates rather than the wires.

Let us formally define what min-isolation means in the context of Circuit Certifica-
tion. We view a Boolean circuit C as an acyclic digraph C = (V,E), where V represents
the gates of the circuit, and E the wires. Each leaf (vertex of indegree zero) is labeled with
a literal (input variable or its negation) or a Boolean constant (0 or 1); each other vertex is
labeled with AND or OR. We consider circuits with and without a single designated output
gate.

I Definition 13 (Min-isolating weight assignment for Circuit Certification). Let C =
(V,E) be a circuit. A weight assignment for C is a mapping w ∶ V ↦ N. The weight w(F )
of a certificate F with output v equals w(v) plus the sum over all gates u that feed into
v in F , of the weight of the certificate with output u induced by F . For an input z for C,
and g ∈ V , w(C, z, g) denotes the minimum of w(F ) over all certificates F for (C, z, g), or ∞
if no certificate exists. The weight assignment w is min-isolating for (C, z, g) if there is at
most one certificate F for (C, z, g) with w(F ) = w(C, z, g). For U ⊆ V , w is min-isolating for
(C, z,U) if w is min-isolating for (C, z, u) for each u ∈ U . We call w min-isolating for (C, z)
if w is min-isolating for (C, z, V ).

Note that the weight w(F ) of a certificate F for a gate g is a linear combination of the
weights w(v) for v ∈ V with coefficients that are natural numbers. The sum of the coefficients
in any given layer below g is at most 2`, where ` denotes the number of AND layers between
that layer and g (inclusive).

We restrict attention to semi-unbounded circuits that are layered and alternating. A
circuit is layered if the underlying digraph is layered and all leaves appear in the same layer.
A circuit is alternating if on every path the non-leaves alternate between AND and OR. More
formally, for a circuit C = (V,E) of depth d with n gates we have that V = ⊍i∈JdKVi where
Vi ⊆ [n] × {i} and E ⊆ ⊍i∈[d](Vi−1 × Vi). Vertices in V0 are labeled with literals and constants
only. Every other layer Vi contains only AND gates or only OR gates, depending on the
parity of i.

With the above conventions we can view weight assignments to the gates as mappings
w ∶ [n] × JdK ↦ N. We construct such assignments inside the following weight assignment
generator Γ(cert) = (Γ(cert)

n,d )n,d∈N, which is indexed by the number of gates n and the depth
d. The domain of the weight assignments given by Γ(cert)

n,d is Dn,d ≐ [n] × JdK, enabling the
weight assignment of a gate to depend on the layer the gate belongs to.

I Theorem 14. There exists a weight assignment generator Γ(cert) = (Γ(cert)
n,d )n,d∈N that is

computable in space O(logn) and has seed length and bitlength O(
√
d logn) such that for

every layered alternating semi-unbounded Boolean circuit C of depth d with n gates and any
input z for C,

Pr
w
[w is min-isolating for (C, z)] ≥ 1 − 1/n,

where w is chosen uniformly at random from Γ(cert)
n,d .
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The essential ingredient in the proof of Theorem 14 is the following formalization of the
combined approach from Section 2.1 for the setting of Circuit Certification. It turns
a weight assignment that is min-isolating for all gates up to some layer into one that is
min-isolating for all gates up to some higher layer, and only assigns new weights to the AND
gates of the layers in between. For ease of notation, we assume that the depth is even (say
d = 2` for some ` ∈ N), that we jump from an even layer 2k to some higher even layer 2k′,
and that the layer V1 next to the leaves consists of ANDs. Thus, odd layers consist of AND
gates, and positive even layers of OR gates.

I Lemma 15. There exists a weight assignment generator Γ(cert,step) = (Γ(cert,step)
n,`,k,k′ ) for

n, `, k, k′ ∈ N with k ≤ k′ ≤ ` and domain Dn,`,k,k′ ≐ [n] × J2`K that is computable in space
O(logn), has seed length O(logn) and bitlength O((k′ − k) logn), and has the following
property for every layered alternating semi-unbounded Boolean circuit C = (V,E) of depth
d ≐ 2` with n gates and layers V0, V1, . . . , Vd where layer V1 consists of AND gates, and for
every input z for C: If w ∶ V ↦ N is a weight assignment that is min-isolating for (C, z, V≤2k),
where V≤i ≐ ∪j≤iVj, then

Pr
σ
[w + Γ(cert,step)

n,`,k,k′ (σ) is min-isolating for (C, z, V≤2k′)] ≥ 1 − 1/n2,

where the seed σ is chosen uniformly at random. Moreover, Γ(cert,step)
n,`,k,k′ (σ) assigns nonzero

weights only to ∪j∈[k+1,k′]Lj, where Lj ≐ V2j−1 denotes the jth AND layer.

Proof. Let C be a circuit as in the statement of the lemma, z an input for C, and w ∶ V ↦ N
a weight assignment that is min-isolating for (C, z, V≤2k).

Pick h ∶ D ↦ [r] with D = Dn,`,k,k′ ≐ [n] × J2`K uniformly at random from Γ(hashing)
n(2`+1),r,

identifying [n(2`+ 1)] and [n]× J2`K in a natural way. For a given h, we define a sequence of
weight assignments wj ∶ V ↦ N for j = k, k + 1, . . . , k′ as follows: wk = w, and for i ∈ [k′ − k]
and g ∈ V :

wk+i(g) = { wk+i−1(g) + h(g) ⋅ bi−1 if g ∈ Lk+i
wk+i−1(g) otherwise,

where b is a positive integer to be determined.
For g ∈ V , we denote by µj(g) ≐ wj(C, z, g) the minimum weight of a certificate for

(C, z, g) with respect to wj , or ∞ if no certificate exists. We show that if b and r are
sufficiently large polynomials in n, then with probability at least 1 − 1/n2 the following
invariant holds for i ∈ Jk′ − kK:

wk+i is min-isolating for (C, z, V≤2(k+i)). (8)

We make the following observations:
By the hypothesis on w the invariant holds for i = 0.
For i ∈ [k′−k], the invariant for i−1 implies that wk+i is min-isolating for (C, z, V≤2(k+i−1)).
The reason is that for gates g ∈ V≤2(k+i−1), whether a weight assignment is min-isolating
for (C, z, g) only depends on the weights of the gates in V≤2(k+i−1). As wk+i−1 and wk+i
agree on that set, the invariant for i − 1 implies that wk+i is min-isolating for (C, z, g).
For i ∈ [k′−k], the invariant for i−1 implies that wk+i is min-isolating for (C, z, V2(k+i)−1).
This follows because V2(k+i)−1 is an AND layer. A certificate for an AND gate g ∈ V2(k+i)−1
is the AND of certificates for gates u, v ∈ V2(k+i−1) feeding into g, and wk+i(C, z, g) =
wk+i(g) + wk+i(C, z, u) + wk+i(C, z, v). Since wk+i and wk+i−1 agree on V2(k+i−1), the
invariant for i − 1 implies that wk+i is min-isolating for (C, z, g).
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Figure 2

Thus, in order to show that the invariant is maintained from i − 1 to i for i ∈ [k′ − k], it
suffices to show that wk+i is min-isolating for (C, z, V2(k+i)) assuming the invariant holds for
i − 1. The following claim provides a sufficient condition.

I Claim 16. Let i ∈ [k′ − k], and g ∈ V2(k+i) with g(z) = 1. Suppose that b ≥ 4r and that
wk+i−1 is min-isolating for (C, z, V≤2(k+i−1)). If for all distinct u, v ∈ Lk+i ≐ V2(k+i)−1 that
feed into g

⌊µk(u)
bi−1 ⌋ + h(u) /∈ ⌊µk(v)

bi−1 ⌋ + h(v) + {−1,0,1}, (9)

then wk+i is min-isolating for (C, z, g).

See Figure 2 for an illustration.

Proof of Claim 16. Since g is an OR gate, a certificate Fg for (C, z, g) consists of an
edge from g to one of its inputs v for which v(z) = 1, and a certificate Fv for v. As
wk+i(Fv) = wk+i−1(Fv) + h(v) ⋅ bi−1, it follows that the min-weight certificates for v under
wk+i−1 and under wk+i are the same. Thus, v has a unique min-weight certificate under wk+i,

µk+i(v) = µk+i−1(v) + h(v) ⋅ bi−1, (10)

and the following condition is sufficient to guarantee that wk+i is min-isolating for (C, z, g):
For all distinct inputs u, v ∈ Lk+i ≐ V2(k+i)−1 that feed into g

µk+i(u) ≠ µk+i(v). (11)

We argue that (11) follows from (9) as long as b ≥ 4r.
For v ∈ Lk+i with v(z) = 1, let Fv denote a min-weight certificate for v under wk. We

have that

µk(v) ≤ µk+i−1(v) ≤ wk+i−1(Fv) ≤ wk(Fv) + 4r ⋅ bi−2 = µk(v) + 4r ⋅ bi−2. (12)

The first inequality follows because wk+i−1 ≥ wk, and the second one and the last one from
the definition of µ. For the third inequality, note that wk+i−1 is obtained from wk by adding
weights to the vertices in the AND layers below Lk+i. In particular, for a u ∈ Lk+i−j we have
that wk+i−1(u) = wk(u) + h(v) ⋅ bi−1−j ≤ wk(u) + r ⋅ bi−1−j . The sum of the coefficients that
the weights of the vertices in Lk+i−j receive in wk+i−1(Fv) is at most 2j . Summing over all
such layers with j > 0 we have that

wk+i−1(Fv) ≤ wk(Fv) + r ⋅
i−1
∑
j=1

2jbi−1−j ≤ wk(Fv) + 4r ⋅ bi−2

for b ≥ 4.
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After division by bi−1, (12) shows that

µk(v)
bi−1 ≤ µk+i−1(v)

bi−1 ≤ µk(v)
bi−1 + 4r

b
,

which implies that

⌊µk(v)
bi−1 ⌋ ≤ ⌊µk+i−1(v)

bi−1 ⌋ ≤ ⌊µk(v)
bi−1 ⌋ + 1 (13)

for b ≥ 4r. In combination with the hypothesis (9), (13) implies that

⌊µk+i−1(u)
bi−1 ⌋ + h(u) ≠ ⌊µk+i−1(v)

bi−1 ⌋ + h(v),

which by (10) in turn implies (11) after undoing the division. This finishes the proof of
Claim 16. J

Each individual disambiguation requirement (9) can be written as three conditions of the
form (4). By Fact 9, each of these three conditions individually holds with probability at
least 1 − 1/r. There are at most n3 disambiguation requirements over all i ∈ [k′ − k], namely
n choices for each of g, u, and v. A union bound shows that they all hold simultaneously
with probability at least 1 − 3n3/r, which is at least 1 − 1/n2 for r ≥ 3n5. Whenever they
hold, we know that the invariant (8) holds for each i ∈ Jk′ − kK, and in particular that wk′ is
min-isolating for (C, z, V≤2k′).

This leads to the following definition of Γ(cert,step): Γ(cert,step)
n,`,k,k′ takes a seed σ for Γ(hashing)

n(2`+1),r,
considers h = Γ(hashing)

n(2`+1),r(σ) as a function h ∶ D ↦ [r] with D = Dn,`,k,k′ ≐ [n] × J2`K, and for
g ∈ [n] × {j} sets

(Γ(cert,step)
n,`,k,k′ (σ))(g) = { h(g) ⋅ b(j−1)/2−k for odd j ∈ [2k + 1,2k′ − 1]

0 otherwise.

The above analysis shows that Γ(cert,step) has the required min-isolating property. By
setting b to the first power of 2 that is at least 4r with r = 3n5, the bitlength becomes
O((k′−k) log b)) = O((k′−k) logn). The other required properties follow from the properties
of the universal family Γ(hashing)

m,r given in Fact 9. They imply that Γ(cert,step)
n,`,k.k′ has seed length

O(log(∣Dn,`,k,k′ ∣ ⋅r) = O(logn). As each bit of (Γ(cert,step)(σ))(g) equals an easily determined
bit of h(g), the logspace computability of the universal family of hash functions implies the
logspace computability of Γ(cert,step)

n,`,k,k′ . This completes the proof of Lemma 15. J

We now turn to the proof of the theorem.

Proof of Theorem 14. Let C be a circuit as in the statement of the theorem with layers
Vj ⊆ [n]× {j} for j ∈ JdK, and let z be an input for C. Consider first the case where the layer
V1 of C next to the leaves consists of ANDs.10

If d is even and of the form d = 2` with ` = ∆2 for some ∆ ∈ N, we can apply Lemma 15
∆ times successively, starting from an arbitrary weight assignment w0. The ith application
sets k = ki ≐ (i − 1) ⋅ ∆ and k′ = k′i ≐ i ⋅ ∆, uses a fresh seed σi for Γ(cert,step)

n,`,ki,k′i
, sets wi⋅∆ =

10This is the only case we need for the proof of Theorem 17.
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w(i−1)⋅∆ + Γ(cert,step)
n,`,ki,k′i

(σi), and tries to maintain the invariant that wi⋅∆ is min-isolating for

(C, z, V≤2i⋅∆). We end up with w` = w0 + Γ(cert,odd)
n,d (σ1, σ2, . . . , σ∆), where

Γ(cert,odd)
n,d (σ1, σ2, . . . , σ∆) ≐ ∑

i∈[∆]
Γ(cert,step)
n,`,ki,k′i

(σi). (14)

The superscript “odd” in Γ(cert,odd) refers to the fact that only odd layers receive nonzero
values under weight assignments generated by Γ(cert,odd). The probability that the ith
application breaks the invariant is at most 1/n2. By a union bound, the probability that
the invariant fails at the end is at most ∆/n2 ≤ 1/n. Thus, for any fixed w0 ∶ [n] × JdK↦ N,
w0 + Γ(cert,odd)

n,d is min-isolating for (C, z) with probability at least 1 − 1/n. The seed length
of Γ(cert,odd)

n,d is ∆ times the one of Γ(cert,step)
n,d,⋅,⋅ , i.e., O(∆ logn) = O(

√
d logn). The maximum

weight assigned by Γ(cert,odd)
n,d is at most ∆ times the one assigned by Γ(cert,step)

n,d,⋅,⋅ , so the
bitlength of Γ(cert,odd)

n,d is O(log(∆)+∆ ⋅ logn) = O(
√
d logn). The logspace computability of

Γ(cert,step) and the fact that iterated addition can be computed in logspace (see, e.g., [62]
imply that Γ(cert,odd)

n,d is computable in space O(logn).
Other values of d can be handled by conceptually extending the circuit with successive

matchings until the depth is of the form 2∆2, applying the above construction, and then
only using the part needed. As the smallest such ∆ still satisfies ∆ = Θ(

√
d), the parameters

remain the same up to constant factors. Thus, we have a weight assignment generator
Γ(cert,odd) with all the properties required of Γ(cert) in the case where the layer V1 of C
consists of ANDs.

To handle the case where V1 consists of ORs, we can conceptually split every wire (u, v)
from a leaf u to v ∈ V1 into two by inserting a fresh AND gate g and replacing (u, v) by
(u, g) and (g, v). We then apply the construction for the case where V1 consists of ANDs,
and finally undo the splitting again, transfering the weight of each fresh AND gate g to the
leaf u that feeds into it. This results in a weight assignment generator Γ(cert,even) that only
assigns nonzero weights to the even layers, and has all the properties required of Γ(cert) for
circuits C where the layer V1 next to the leaves consists of ORs. For any such circuit C,
input z for C, and any fixed w′

0 ∶ [n]× JdK↦ N, we have that w′
0 +Γ(cert,even)

n,d is min-isolating
for (C, z) with probability at least 1 − 1/n.

We claim that

Γ(cert)
n,d ≐ Γ(cert,odd)

n,d + Γ(cert,even)
n,d

satisfies all requirements irrespective of the type of V1, provided that we pick the seeds for
Γ(cert,odd)
n,d and Γ(cert,even)

n,d independently. This follows from the above analysis by setting
w0 = Γ(cert,even)

n,d and w′
0 = Γ(cert,odd)

n,d , and finishes the proof of Theorem 14. J

3.3 Isolation
We use the weight assignment generator from Theorem 14 to establish the following result

I Theorem 17. LogCFL ⊆ UAuxPDA-TISP(poly(n), (logn)3/2).

In words: Every language in the class LogCFL can be accepted by a nondeterministic machine
equipped with a stack that does not count towards the space bound, that runs in polynomial
time and O((logn)3/2) space, and has at most one accepting computation path on every
input.

By the following proposition, it suffices to construct such a machine for Circuit Certi-
fication on shallow layered alternating semi-unbounded circuits.
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I Proposition 18. Circuit Certification on shallow layered alternating semi-unbounded
Boolean circuits is hard for LogCFL under logspace mapping reductions that preserve the
number of solutions.

Our unambiguous machine for Circuit Certification hinges on our weight assignment
generator for the problem as well as the following unambiguous machines.

I Lemma 19. There exist unambiguous nondeterministic machines WeightCheck(cert)

and WeightEval(cert), each equipped with a stack that does not count towards the space
bound, such that for every layered semi-unbounded Boolean circuit C = (V,E) of depth d with
n gates, every input z for C, weight assignment w ∶ V ↦ N, and g ∈ V :

WeightCheck(cert)(C, z,w) decides whether or not w is min-isolating for (C, z), and
WeightEval(cert)(C, z,w, g) computes w(C, z, g) provided w is min-isolating for (C, z).

Both machines run in time poly(2d, log(W ), n) and space O(d + log(W ) + log(n)), where W
denotes an upper bound on the finite values w(C, z, g) for g ∈ V .

Lemma 19 is an improvement of a result in [51] that follows along the same lines but has
a better dependency of the running time on W , namely polynomial in log(W ) instead of
polynomial in W . As our weight assignment generator yields values of W = nΘ(

√
logn),

the improvement is necessary to make sure that our unambiguous machine for Circuit
Certification on shallow layered alternating semi-unbounded circuits run in polynomial
time.

We now have all the ingredients to establish our efficient unambiguous machines for
LogCFL.

Proof of Theorem 17. By way of Proposition 18, it suffices to construct an unambiguous
machine that decides11 Circuit Certification on layered alternating semi-unbounded
Boolean circuits C = (V,E) of size n and depth d ≤ log(n), and runs in time nO(1) and space
O((logn)3/2) when equipped with a stack that does not count towards the space bound. In
fact, thanks to simple manipulations described earlier, it suffices to consider the case where
the depth d is of the form d = 2∆2 for ∆ ∈ N, and where the layer next to the leaves consists
of ANDs. We claim that the machine CircuitEval described in Algorithm 1 does the job.

Consider the version of our weight assignment generator Γ(cert) from Theorem 14 that
is geared towards such circuits, namely Γ(cert,odd) given by (14). We know that on most
seeds Γ(cert,odd)

n,d produces a weight assgnment w that is min-isolating for (C, z). The
machine CircuitEval in Algorithm 1 constructs such a seed. In fact, it constructs the
lexicographically first such seed.

Recall that the seed σ consists of ∆ parts σi ∈ {0,1}s(n,d) for i ∈ [∆], where s(n, d)
denotes the seed length of Γ(cert,step)

n,d,⋅,⋅ . Note that w ≐ Γ(cert,odd)
n,d (σ1, . . . , σ∆) is min-isolating

for (C, z) if and only if

wi⋅∆ ≐
i

∑
j=1

Γ(cert,step)
n,d,(j−1)∆,j∆(σj) is min-isolating for (C,V≤2i∆) (15)

for each i ∈ [∆]. This enables a prefix search for the lexicographically first σ for which w is
min-isolating for (C, z). The first part of Algorithm 1 implements this search. In the ith
iteration it finds the lexicographically first σi satisfying the invariant (15), given values for

11 In fact, we only need to construct a machine that accepts the language, but we naturally get the stronger
notion of one that decides the language.
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Algorithm 1: CircuitEval(C, z, g)
Input :C = (V,E): layered semi-unbounded circuits of depth d with layers

V0, V1, . . . , Vd
z: input for C
g ∈ V

Promise : d = 2∆2 for ∆ ∈ N and V1 consists of ANDs
Output : g(z)

1 for i← 1 to ∆ do
2 foreach σi ∈ {0,1}s(n,d) in lex order do
3 isolating ← true;
4 foreach v ∈ V≤2i∆ in lex order do
5 if not WeightCheck(cert)(Cv, z,∑ij=1 Γ(cert,step)

n,d,(j−1)⋅∆,j⋅∆(σj)) then
6 isolating ← false;
7 exit the for loop over v;
8 end
9 if isolating then exit the loop over σi;

10 end
11 end
12 if WeightEval(cert)(C, z,∑∆

j=1 Γ(cert,step)
n,d,(j−1)⋅∆,j⋅∆(σj), g) <∞ then

13 accept and return 1
14 else accept and return 0;

σ1, . . . , σi−1 from prior iterations. In order to check whether a given candidate σi works, it
runs the machine WeightCheck(cert)(Cv, z,wi⋅∆) for each v ∈ V≤2i∆, where Cv denotes the
subcircuit of C rooted at v.

Once σ is determined, CircuitEval calls WeightEval(cert)(C, z,w, g) to compute
w(C, z, g), which is finite if and only if g(z) = 1.

The correctness of CircuitEval follows from maintaining the invariant (15) and the
specifications of WeightCheck(cert) and WeightEval(cert). The unambiguity of Cir-
cuitEval follows from the unambiguity of WeightCheck(cert) and WeightEval(cert)

(and the usual conventions regarding composing unambiguous machines).
We end with a time and space analysis of CircuitEval. Each run of line 5 takes time

poly(2d, log(W ), n) and space O(d+log(W )+log(n)), whereW is a bound on the path weights
under w. This follows from the complexities of Γ(cert,odd) and WeightCheck(cert), and the
fact that iterated addition is in logspace (see, e.g., [62]). The three loops add a multiplicative
term of ∆ ⋅ 2s(n,d) ⋅ n to the running time, and an additive term of log(∆) + s(n, d) + log(W )
to the space bound. The time and space needed for the call to WeightEval(cert) at the end
is dominated by the rest of the computation. Since ∆ = Θ(

√
d) ≤

√
logn, s(n, d) = O(logn),

and W = 2O(∆⋅log(n)), the overall running time is poly(2d, n) and the space is O(
√
d log(n)).

This yields the stated complexities in the case of shallow circuits, for which d ≤ n. J

4 Limitations

In this section we prove our “negative result” for isolating Reachability (Theorem 7) and
a corresponding result for Circuit Certification.

Recall that we view a computational problem as a mapping Π ∶ X ↦ 2Y , where Π(x)
for x ∈X represents the set of solutions on input x. One can also think of Π as defining a
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relation π ∶X × Y ↦ {0,1}, where π(x, y) indicates whether y ∈ Π(x). We use the notation
L(Π) to denote the set (language) of instances x ∈X for which Π(x) ≠ ∅.

The first part of Theorem 7 follows by verifying that the main result of Dell, Kabanets,
Van Melkebeek, and Watanable [26] carries over to the space-bounded setting: If Π has an
efficient pruning and π is efficiently computable, then L(Π) can be decided efficiently. The
prunings in this statement are deterministic or, more generally, randomized with probability
of success at least 2

3 +
1

poly(n) . [26] showed that the statement holds when “efficient” means
polynomial-time for any Π that satisfies certain additional properties, which all the classical
problems like Satisfiability do. We observe that the argument in [26] also works when
“efficient” means logspace, and that both Reachability and Circuit Certification have
the required additional properties. This yields the first part of Theorem 7 and its counterpart
for Circuit Certification. The second part follows from a slight modification of the
argument.

The proof in [26] relies on a proposition of Ko’s [41].

I Proposition 20 ([41]). Suppose that there exists a predicate T ∶D ×D ↦ {0,1} for some
D ⊆X with the following properties:

(∀x, z ∈D ∩L(Π)) T (x, z) ∨ T (z, x) (16)
(∀x, z ∈D) z ∈ L(Π) ∧ T (z, x)⇒ x ∈ L(Π) (17)

Then for some ` ∈ J⌈log(∣D∣ + 1)⌉K there exists a sequence z∗1 , . . . , z∗` ∈ D ∩ Π such that for
every x ∈D

x ∈ L(Π)⇔ (∃i ∈ [`])T (z∗i , x). (18)

If the ∨ in (16) were replaced by an exclusive or, T would be a tournament, where T (z, x)
(an edge from z to x) means that x wins the duel between z and x. Equation (16) requires
the digraph T to contain a tournament (and have a selfloop at every vertex), so every duel
has at least one winner and can have two. Equation (17) can be interpreted as saying that
winners of duels are more likely be to in L(Π) in the following sense: If at least one of x or z
is in L(Π), then any winner of the duel between x and z is.

Proposition 20 follows from the fact that a tournament on D ∩Π has a dominating set
of logarithmic size. In the case where D represents all instances of a given size n (of which
there are at most 2n), Proposition 20 shows us via (18) how to decide L(Π) efficiently on D
with the help of the predicate T and the ` ⋅ n ≤ n2 bits of advice z∗i for i ∈ [`].

[26] constructs a (sufficiently) efficient predicate T satisfying (16) and (17) assuming the
existence of an efficient deterministic pruning f for Π, that π is efficiently computable, and
that Π allows an efficient disjoint union operator.

I Definition 21 (Disjoint union of computational problems). Let Π ∶X ↦ 2Y be a computa-
tional problem. A disjoint union operator for Π consists of a mapping ⊔ ∶X ×X ↦X and a
mapping τ ∶X ×X × [2]× Y ↦ Y such that for all x1, x2 ∈X, ∣Π(x1 ⊔ x2)∣ = ∣Π(x1)∣+ ∣Π(x2)∣
and Π(x1 ⊔ x2) = ⊍i∈[2]τ(x1, x2, i,Π(xi)), where τ(x1, x2, i,W ) ≐ ⊍y∈W {τ(x1, x2, i, y)} for
any W ⊆ Y .

⊔ maps a pair of instances (x1, x2) to an instance x1 ⊔ x2 whose solutions can be viewed
as the disjoint union of the solutions of x1 and of x2, where τ(x1, x2, i, yi) describes the
translation of the solution yi ∈ Π(xi) into the corresponding solution in Π(x1 ⊔ x2).

Several of the classical computational problems Π allow simple disjoint union operators
that are computable in logspace, meaning that both ⊔ and τ in Definition 21 are computable
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in logspace. Often times the underlying predicate π is computable in logspace as well. This is
the case, among others, for Satisfiability, Reachability, and Circuit Certification.

I Proposition 22. Reachability and Circuit Certification on shallow semi-unbounded
circuits have disjoint union operators as well as underlying predicates that are computable in
logspace. The same holds for their restrictions to layered digraphs, and to layered alternating
circuits, respectively.

The key insight in [26] is (i) that a pruning f applied to the disjoint union x1⊔x2 implicitly
selects an instance among x1 and x2 that is more likely to be positive in the above sense,
and (ii) that the corresponding predicate T satisfying Ko’s requirements (16) and (17) can
be decided sufficiently efficiently on instances with few solutions provided that f is efficiently
computable and that Π allows an efficient disjoint union operator. The corresponding
predicate T can formally be defined as follows on all pairs of instances (z, x) ∈X ×X:

T (z, x)⇔ { τ(z, x,1,Π(z)) ∩Π(f(z ⊔ x)) = ∅ for z ≤lex x
τ(x, z,2,Π(z)) ∩Π(f(x ⊔ z)) = ∅ for x ≤lex z,

where ≤lex denotes the lexicographic ordering. The isolation property ∣Π(f(⋅))∣ ≤ 1 implies
condition (16). The pruning property Π(f(⋅)) ⊆ Π(⋅) implies condition (17). In the case of
an instance z∗ with a unique solution, say Π(z∗) = {y∗}, we can evaluate T (z∗, z) as

T (z∗, x)⇔ { ¬π(f(z∗ ⊔ x), τ(z∗, x,1, y∗)) for z∗ ≤lex x
¬π(f(x ⊔ z∗), τ(x, z∗,2, y∗)) for x ≤lex z∗.

(19)

Given x, z∗, and y∗, the latter expression can be computed efficiently when all of π, f , ⊔, and
τ can. This leads to an efficient algorithm with advice for deciding L(Π) on the instances of
size n with at most one solution, where the advice consists of the strings (z∗i , y∗i ) for i ∈ [`].
In order to decide L(Π) on any instance x ∈X, we first apply the pruning f , and then run
the algorithm for instances with at most one solution on f(x). This results in an efficient
algorithm with polynomial advice for deciding L(Π).

The above argument works for polynomial-time efficiency as well as for logspace efficiency.
The polynomial-time incarnation yields the main result of [26] regarding the existence of
deterministic polynomial-time prunings for Satisfiability. The logspace incarnation yields
the first part of Theorem 7 regarding the existence of deterministic logspace prunings for
Reachability as well as a corresponding result for Circuit Certification.

As for the second part of Theorem 7 and its counterpart for Circuit Certification, a
min-isolating weight assignment ω(x, y) applied to the disjoint union x1 ⊔ x2 selects between
x1 and x2 in a similar way as a pruning does. Given a function µ(x) that agrees with the
min-weight ω(x) on positive instances x, this leads to the following predicate T satisfying
the requirements (16) and (17) on instances (z∗, x) where z∗ has a unique solution y∗:

T (z∗, x)⇔ { ω(z∗ ⊔ x, τ(z∗, x,1, y∗)) ≠ µ(z∗ ⊔ x) for z∗ ≤lex x
ω(x ⊔ z∗, τ(x, z∗,2, y∗)) ≠ µ(x ⊔ z∗) for x ≤lex z∗.

(20)

As in the setting of part 1, we obtain an efficient algorithm with polynomial advice for
deciding L(Π) on instances with at most one solution. To handle all inputs, we no longer
have access to a pruning as we did in the case of part 1 of the theorem. However, whereas
access to the functions ω and µ does not immediately yield an efficient pruning, it does
yield an efficient disambiguation in case the search for a solution of a given weight can be
efficiently reduced to Π under a reduction that preserves the number of solutions. This is the
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case for each of Satisfiability, Reachability, and Circuit Certification on shallow
semi-unbounded circuits, both for polynomial-time efficiency and for logspace efficiency.

This completes the argument for parts 1 and 2 of Theorem 7 (as well as their counterparts
for Circuit Certification) in the case where the pruning f and the functions ω and µ are
deterministic. For the more general case where they can be randomized and have probability
of success at least 2

3 +
1

poly(n) , some additional properties of Π are needed and the predicate T
has to be generalized in the appropriate way. The following lemma captures the general case.
We view a randomized mapping as a determinstic one that gets a random bit string ρ ∈ {0, 1}r
as an additional input, and often write ρ as a subscript to the name of the procedure.

We state the lemma for logspace efficiency for concreteness, but the proof only requires
mild properties of the underlying notion of efficiency. In particular, it also applies to
polynomial-time efficiency.

I Lemma 23. Let Π ∶X ↦ 2Y be a computational problem with an underlying predicate π
that is computable in logspace and has the following additional properties:

Π has a disjoint union operator given by ⊔ and τ in Definition 21 where ⊔ and τ are
computable in logspace.
Π has a randomized disambiguation g with probability of success at least 1/poly(n) that
is computable and recoverable in logspace.
There exists a logspace mapping reduction h from the following decision problem to Π:
On input an instance x ∈X and an index i ∈ N, decide whether there exists y ∈ Π(x) such
that the ith bit of y is 1. Furthermore, the instances h(x, i) have at most one solution if
the instance x does, and there exists a constant c such that the solutions to instances of
Π of size n are strings of length nc.

For any p = 2
3 +

1
poly(n) either of the following hypotheses imply that L(Π0 can be decided

in logspace with polynomial advice, where ρ is chosen uniformly at random from {0,1}r for
some r = poly(n):
1. There exists a randomized mapping f ∶X ↦X computable in logspace such that for every

input x ∈X:

Pr
ρ
[ fρ satisfies the pruning requirement on input x ] ≥ p. (21)

2. There exist randomized mappings ω ∶X × Y ×↦ N and µ ∶X ↦ N that are computable in
space O(logn) such that for every x ∈ L(Π)

Pr
ρ
[ ωρ(x, ⋅) is min-isolating for x and µρ(x) = ωρ(x) ] ≥ p. (22)

Proof. Let us first focus on the instances of Π that have at most one solution. Consider the
predicate T defined as follows on input (z∗, x) whereΠ(z∗) = {y∗} and q denotes a fraction
to be set:

T (z∗, x)⇔ { Prρ[ right-hand side of (19) holds ] > q for part 1
Prρ[ right-hand side of (20) holds ] > q for part 2, (23)

where ρ ∈ {0,1}r is chosen uniformly at random for some r = poly(n), and is used as the
randomness for all randomized mappings involved.

I Claim 24. Both (16) and (17) hold for q = 1/3 as long as p > 2/3, where D represents the
set of all instances of Π with at most one solution.
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Proof. We argue by contradiction that T satisfies condition (16). Consider part 1 first,
and suppose that neither T (x, z∗) nor T (z∗, x) hold for some x, z∗ ∈D ∩L(Π). Then with
probability at most 2q the translation of the unique solution for at least one of x or z∗ is
not a solution for f(x∗) where x∗ ≐ min(x, z∗) ⊔max(x, z∗) and max and min refer to the
lexicographic order ≤lex. By complementing, with probability at least 1 − 2q it is the case
that both are solutions for f(x∗), which therefore has at least two distinct solutions. Thus, f
fails the pruning condition on input x∗ with probability at least 1− 2q, which contradicts the
hypothesis that f has success probability p as long as q < p/2. In the case of part 2, a similar
argument by contradiction leads to the conclusion that with probability at least 1 − 2q two
distinct solutions for x∗ achieve the value µ(x∗) under ω, which contradicts the hypothesis
(22) as long as q < p/2.

We argue condition (17) by contradiction also. For part 1, consider z∗ ∈D ∩L(Π) and
x ∈D ∖L(Π), and let x∗ ≐ min(x, z∗) ⊔max(x, z∗). Note that if the right-hand side of (19)
holds then f fails the pruning property on input x∗. Thus, if T (z∗, x) holds, then f fails the
pruning property on input x∗ with probability more than q, which contradicts the hypothesis
(21) as long as q ≥ 1 − p. For part 2, a similar argument leads to a contradiction with the
hypothesis (22) as long as q ≥ 1 − p.

The conditions q < p/2 and q ≥ 1 − p imply that p > 2/3, which is where the bound of 2/3
in the statement of the lemma comes from. Setting q = 1/3 satisfies both requirements when
p > 2/3. This finishes the proof of Claim 24. J

Note that the statement of the lemma entails some leeway in that p does not just exceeds
2/3 but does so with some margin, namely p ≥ 2

3 +
1

poly(n) . We now exploit this leeway to
replace the randomness in the definition of T by advice. More specifically, an application
of the Chernoff bound shows that a subset R of a sufficiently large polynomial number
of random strings ρ ∈ {0,1}r has the following property with high probability: All of the
conditions (21) (in the case of part 1) or (22) (in the case of part 2) hold for all inputs x of
length n simultaneously when the uniform distribution of ρ over {0,1}r is replaced by the
uniform distribution over R, and p is replaced by p̃ for some p̃ = 2

3 +
1

poly(n) . By fixing a good
set R and giving it as advice, the predicates (23) become computable in logspace.

This shows the existence of an algorithm A that runs in logspace with polynomial advice
and correctly decides L(Π) on instances x ∈X with at most one solution. In order to handle
all instances x ∈ X we employ the randomized disambiguation g to reduce to the case of
at most one solution, the predicate h to retrieve a solution in case it is unique, and the
predicate π to check purported solutions.

Denoting by σ the random bit string of the randomized disambiguation g, another
application of the Chernoff bound shows that for every size n there exists a set S of poly(n)
strings of length poly(n) each such that for every instance x ∈X of size n there exists at least
one σ ∈ S such that gσ satisfies the disambiguation requirement on input x, i.e., xσ ≐ gσ(x)
is an instance of Π that is equivalent with respect to membership to L(Π), and has at most
one solution. Thus, we can apply our algorithm A to decide L(Π) on xσ.

We do not know which σ works but we do know that there is at least one and that for
anyone that does, the only possible solution for the instance xσ of Π is (L(Π)(h(xσ, i)))n

c

i=1.
This follows because if xσ has a unique solution then the ith bit of that solution is 1 if and
only if there exists a solution whose ith bit is 1, and by definition h(xσ, i) is an instance of
Π whose memberhip to L(Π) is equivalent to the latter decision. Moreover, the instances
h(xσ, i) of Π each have at most one solution themselves, so we can use our algorithm A to
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decide L(Π) on those instances and retrieve the only candidate solution for xσ as

yσ ≐ (A(h(xσ, i)))n
c

i=1.

Finally, we try all possible σ ∈ S, and check whether g′(x,xσ, yσ) is a valid solution for x,
where g′ ∶X ×X ×Y ↦ Y denotes the logspace recovery algorithm underlying the recoverable
disambiguation g. More formally, we evaluate the predicate

⋁
σ∈S

π(x, g′(x,xσ, yσ)). (24)

If x ∈ L(Π) then we know that for at least one σ ∈ S, yσ is the unique solution to xσ,
and g′(x,xσ, yσ) is a valid solution to x, so (24) evaluates to true. If x /∈ L(Π), then there
is no string y for which π(x, y) holds, so (24) evaluates to false no matter what. Thus,
(24) correctly decides L(Π) on all instances x ∈ X. As all the algorithms involved run in
logspace with access to their random bit strings, which are given as advice, it follows that
the predicate (24) can be evaluated in logspace with polynomial advice. This concludes the
proof of Lemma 23. J

Theorem 7 follows from an instantiation of Lemma 23 with Reachability on layered
digraphs as the computational problem Π.

Proof of Theorem 7. Since Reachability on layered digraphs is hard for NL under log-
space mapping reductions (see Proposition 10), it suffices to verify that Reachability
on layered digraphs has all the properties required of the computational problem Π in
Lemma 23. The properties regarding the predicate π and the disjoint union operator follow
from Proposition 22. The existence of the required randomized disambiguation g follows
from the Isolation Lemma (as explained in the introduction). Finally, here is how we can
compute the required retrieving predicate h(x, i) for x ≐ (G,s, t). The index i corresponds
to a bit position, say the jth one, of the label of an edge in some layer, say the `th one, of G.
The instance h(x, i) is obtained by removing from G all edges in layer ` whose jth bit is not
1. This operation can be performed in logspace. J

A similar argument for Circuit Certification on shallow layered alternating semi-
unbounded circuits yields the following equivalent to Theorem 7.

I Theorem 25. Either of the following hypotheses imply that LogCFL ⊆ L/poly:
1. Circuit Certification on shallow layered alternating semi-unbounded circuits has a

logspace pruning.
2. Circuit Certification on shallow layered alternating semi-unbounded circuits has a

logspace weight function ω that is min-isolating, and there exists a logspace function µ
such that µ(x) equals the min-weight ω(x) of x under ω on positive instances x.

In fact, the conclusion holds even if the algorithms are randomized, as long as the probability
of success exceeds 2

3 +
1

poly(n) and the algorithms run in logspace when given two-way access
to the random bits.

Acknowledgements. We thank the anonymous reviewers of the conference submission for
their helpful suggestions.



D. van Melkebeek and G. Prakriya 5:29

References
1 A. Aggarwal, R. J. Anderson, and M.-Y. Kao. Parallel depth-first search in general directed

graphs. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pages
297–308, 1989. doi:10.1145/73007.73035.

2 M. Agrawal, R. Gurjar, A. Korwar, and N. Saxena. Hitting-sets for ROABP and sum of
set-multilinear circuits. SIAM Journal on Computing, 44(3):669–697, 2015. doi:10.1137/
140975103.

3 E. Allender and U. Hertrampf. Depth reduction for circuits of unbounded fan-in. Inform-
ation and Computation, 112(2):217–238, 1994.

4 E. Allender, K. Reinhardt, and S. Zhou. Isolation, matching, and counting uniform and
nonuniform upper bounds. Journal of Computer and System Sciences, 59(2):164–181, 1999.
doi:10.1006/jcss.1999.1646.

5 R. Arora, A. Gupta, R. Gurjar, and R. Tewari. Derandomizing Isolation Lemma for K3,3-
free and K5-free Bipartite Graphs. In Proceedings of the 33rd Symposium on Theoretical
Aspects of Computer Science, pages 10:1–10:15, 2016. doi:10.4230/LIPIcs.STACS.2016.
10.

6 V. Arvind and P. Mukhopadhyay. Derandomizing the isolation lemma and lower bounds for
circuit size. In Proceedings of the 12th Intl. Workshop on Randomization and Computation,
pages 276–289, 2008. doi:10.1007/978-3-540-85363-3_23.

7 V. Arvind, P. Mukhopadhyay, and S. Srinivasan. New results on noncommutative and
commutative polynomial identity testing. Computational Complexity, 19(4):521–558, 2010.
doi:10.1007/s00037-010-0299-8.

8 G. Barnes, J. F. Buss, W. L. Ruzzo, and B. Schieber. A sublinear space, polynomial time
algorithm for directed s-t connectivity. SIAM Journal on Computing, 27(5):1273–1282,
1998.

9 R. Beigel, N. Reingold, and D. Spielman. The perceptron strikes back. In Proceedings of
the Sixth Annual Structure in Complexity Theory Conference, pages 286–291, 1991. doi:
10.1109/SCT.1991.160270.

10 S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the theory of average case com-
plexity. Journal of Computer and System Sciences, 44(2):193–219, 1992. doi:10.1016/
0022-0000(92)90019-F.

11 A. Björklund. Determinant sums for undirected hamiltonicity. SIAM Journal on Comput-
ing, 43(1):280–299, 2014. doi:10.1137/110839229.

12 A. Björklund and T. Husfeldt. Shortest two disjoint paths in polynomial time. In Pro-
ceedings of the 41st International Colloquium on Automata, Languages, and Programming,
pages 211–222, 2014. doi:10.1007/978-3-662-43948-7_18.

13 C. Bourke, R. Tewari, and N.V. Vinodchandran. Directed planar reachability is in
unambiguous log-space. ACM Transactions on Computation Theory, 1(1), 2009. doi:
10.1145/1490270.1490274.

14 T. Brunsch, K. Cornelissen, B. Manthey, and H. Röglin. Smoothed analysis of belief
propagation for minimum-cost flow and matching. In Proceedings of the 7th Interna-
tional Workshop on Algorithms and Computation, pages 182–193, 2013. doi:10.1007/
978-3-642-36065-7_18.

15 J.-Y. Cai, V.T. Chakaravarthy, and D. van Melkebeek. Time-space tradeoff in de-
randomizing probabilistic logspace. Theory Comput. Syst., 39(1):189–208, 2006. doi:
10.1007/s00224-005-1264-9.

16 C. Calabro, R. Impagliazzo, V. Kabanets, and R. Paturi. The complexity of unique k-SAT:
an isolation lemma for k-CNFs. In Proceedings of the 18th Annual IEEE Conference on
Computational Complexity, pages 135–141, 2003. doi:10.1109/CCC.2003.1214416.

CCC 2017

http://dx.doi.org/10.1145/73007.73035
http://dx.doi.org/10.1137/140975103
http://dx.doi.org/10.1137/140975103
http://dx.doi.org/10.1006/jcss.1999.1646
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.10
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.10
http://dx.doi.org/10.1007/978-3-540-85363-3_23
http://dx.doi.org/10.1007/s00037-010-0299-8
http://dx.doi.org/10.1109/SCT.1991.160270
http://dx.doi.org/10.1109/SCT.1991.160270
http://dx.doi.org/10.1016/0022-0000(92)90019-F
http://dx.doi.org/10.1016/0022-0000(92)90019-F
http://dx.doi.org/10.1137/110839229
http://dx.doi.org/10.1007/978-3-662-43948-7_18
http://dx.doi.org/10.1145/1490270.1490274
http://dx.doi.org/10.1145/1490270.1490274
http://dx.doi.org/10.1007/978-3-642-36065-7_18
http://dx.doi.org/10.1007/978-3-642-36065-7_18
http://dx.doi.org/10.1007/s00224-005-1264-9
http://dx.doi.org/10.1007/s00224-005-1264-9
http://dx.doi.org/10.1109/CCC.2003.1214416


5:30 Derandomizing Isolation in Space-Bounded Settings

17 J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of Computer
and System Sciences, 18(2):143–154, 1979. doi:10.1016/0022-0000(79)90044-8.

18 S. Chari, P. Rohatgi, and A. Srinivasan. Randomness-optimal unique element isolation
with applications to perfect matching and related problems. SIAM Journal on Computing,
24(5):1036–1050, 1995. doi:10.1137/S0097539793250330.

19 M. Cygan, S. Kratsch, and J. Nederlof. Fast hamiltonicity checking via bases of perfect
matchings. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing,
pages 301–310, 2013. doi:10.1145/2488608.2488646.

20 M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J.M.M. van Rooij, and J.O. Wo-
jtaszczyk. Solving connectivity problems parameterized by treewidth in single exponential
time. In Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer
Science, pages 150–159, 2011. doi:10.1109/FOCS.2011.23.

21 S. I. Daitch and D.A. Spielman. Faster approximate lossy generalized flow via interior point
algorithms. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing,
pages 451–460, 2008. doi:10.1145/1374376.1374441.

22 S. Datta, W. Hesse, and R. Kulkarni. Dynamic complexity of directed reachability and other
problems. In Proceedings of the 41st International Colloquium on Automata, Languages,
and Programming, pages 356–367, 2014. doi:10.1007/978-3-662-43948-7_30.

23 S. Datta, R. Kulkarni, A. Mukherjee, T. Schwentick, and T. Zeume. Reachability is in
DynFO. In Proceedings of the 42nd International Colloquium on Automata, Languages,
and Programming, pages 159–170, 2015. doi:10.1007/978-3-662-47666-6_13.

24 S. Datta, R. Kulkarni, and S. Roy. Deterministically isolating a perfect matching in
bipartite planar graphs. Theory Comput. Syst., 47(3):737–757, 2010. doi:10.1007/
s00224-009-9204-8.

25 S. Datta, R. Kulkarni, R. Tewari, and N.V. Vinodchandran. Space complexity of perfect
matching in bounded genus bipartite graphs. Journal of Computer and System Sciences,
78(3):765–779, 2012.

26 H. Dell, V. Kabanets, D. van Melkebeek, and O. Watanabe. Is Valiant-Vazirani’s isolation
probability improvable? Computational Complexity, 22(2):345–383, 2013. doi:10.1007/
s00037-013-0059-7.

27 J. Erickson and P. Worah. Computing the shortest essential cycle. Discrete and Computa-
tional Geometry, 44(4):912–930, 2010. doi:10.1007/s00454-010-9241-8.

28 S. A. Fenner, R. Gurjar, and T. Thierauf. Bipartite perfect matching is in quasi-NC. In
Proceedings of the 48th Annual ACM Symposium on Theory of Computing, pages 754–763,
2016. doi:10.1145/2897518.2897564.

29 F.V. Fomin and P. Kaski. Exact exponential algorithms. Communications of the ACM,
56(3):80–88, March 2013. doi:10.1145/2428556.2428575.

30 A. Gál and A. Wigderson. Boolean complexity classes vs. their arithmetic analogs. Random
Struct. Algorithms, 9(1-2):99–111, 1996. doi:10.1002/(SICI)1098-2418(199608/09)9:
1/2<99::AID-RSA7>3.0.CO;2-6.

31 D. Gamarnik, D. Shah, and Y. Wei. Belief propagation for min-cost network flow: Con-
vergence and correctness. Operations Research, 60(2):410–428, 2012. doi:10.1287/opre.
1110.1025.

32 I. Haviv and O. Regev. On the lattice isomorphism problem. In Proceedings of the 25th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 391–404, 2014. URL: http:
//dl.acm.org/citation.cfm?id=2634074.2634103.

33 H. Hirai and H. Namba. Shortest (A +B)-path packing via hafnian. Computing Research
Repository, abs/1603.08073, 2016. URL: http://arxiv.org/abs/1603.08073.

http://dx.doi.org/10.1016/0022-0000(79)90044-8
http://dx.doi.org/10.1137/S0097539793250330
http://dx.doi.org/10.1145/2488608.2488646
http://dx.doi.org/10.1109/FOCS.2011.23
http://dx.doi.org/10.1145/1374376.1374441
http://dx.doi.org/10.1007/978-3-662-43948-7_30
http://dx.doi.org/10.1007/978-3-662-47666-6_13
http://dx.doi.org/10.1007/s00224-009-9204-8
http://dx.doi.org/10.1007/s00224-009-9204-8
http://dx.doi.org/10.1007/s00037-013-0059-7
http://dx.doi.org/10.1007/s00037-013-0059-7
http://dx.doi.org/10.1007/s00454-010-9241-8
http://dx.doi.org/10.1145/2897518.2897564
http://dx.doi.org/10.1145/2428556.2428575
http://dx.doi.org/10.1002/(SICI)1098-2418(199608/09)9:1/2<99::AID-RSA7>3.0.CO;2-6
http://dx.doi.org/10.1002/(SICI)1098-2418(199608/09)9:1/2<99::AID-RSA7>3.0.CO;2-6
http://dx.doi.org/10.1287/opre.1110.1025
http://dx.doi.org/10.1287/opre.1110.1025
http://dl.acm.org/citation.cfm?id=2634074.2634103
http://dl.acm.org/citation.cfm?id=2634074.2634103
http://arxiv.org/abs/1603.08073


D. van Melkebeek and G. Prakriya 5:31

34 V.A.T. Kallampally and R. Tewari. Trading Determinism for Time in Space Bounded
Computations. In Proceedings of the 41st International Symposium on Mathematical Found-
ations of Computer Science, pages 10:1–10:13, 2016. doi:10.4230/LIPIcs.MFCS.2016.10.

35 R. Kannan, H. Venkateswaran, V. Vinay, and A.C. Yao. A circuit-based proof of Toda’s
theorem. Information and Computing, 104(2):271–276, 1993.

36 Y. Kanoria, M. Bayati, C. Borgs, J. Chayes, and A. Montanari. Fast convergence of
natural bargaining dynamics in exchange networks. In Proceedings of the 22nd Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1518–1537, 2011. URL: http://dl.
acm.org/citation.cfm?id=2133036.2133154.

37 R.M. Karp, E. Upfal, and A. Wigderson. Constructing a perfect matching is in random
nc. Combinatorica, 6(1):35–48, 1986. doi:10.1007/BF02579407.

38 S. Kiefer, A. S. Murawski, J. Ouaknine, B. Wachter, and J. Worrell. On the complexity
of equivalence and minimisation for Q-weighted automata. Logical Methods in Computer
Science, 9(1), 2013. doi:10.2168/LMCS-9(1:8)2013.

39 A. Klivans and D.A. Spielman. Randomness efficient identity testing of multivariate poly-
nomials. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing,
pages 216–223, 2001. doi:10.1145/380752.380801.

40 A. Klivans and D. van Melkebeek. Graph nonisomorphism has subexponential size proofs
unless the polynomial-time hierarchy collapses. SIAM Journal on Computing, 31(5):1501–
1526, 2002. doi:10.1137/S0097539700389652.

41 K. Ko. On self-reducibility and weak P-selectivity. Journal of Computer and System
Sciences, 26(2):209–211, 1983.

42 V. Krishan and N. Limaye. Isolation lemma for directed reachability and NL vs. L.
Electronic Colloquium on Computational Complexity, 23:155, 2016. URL: http://eccc.
hpi-web.de/report/2016/155.

43 J. Kynčl and T. Vyskočil. Logspace reduction of directed reachability for bounded genus
graphs to the planar case. ACM Transactions on Computation Theory, 1(3):8:1–8:11, March
2010. doi:10.1145/1714450.1714451.

44 A. Lingas and M. Karpinski. Subtree isomorphism is NC reducible to bipartite per-
fect matching. Information Processing Letters, 30(1):27–32, 1989. doi:10.1016/
0020-0190(89)90170-1.

45 A. Lingas and M. Persson. A fast parallel algorithm for minimum-cost small integral flows.
Algorithmica, 72(2):607–619, 2015. doi:10.1007/s00453-013-9865-1.

46 R. Majumdar and J. L. Wong. Watermarking of SAT using combinatorial isolation lemmas.
In Proceedings of the 38th Annual Design Automation Conference, pages 480–485, 2001.
doi:10.1145/378239.378566.

47 K. Mulmuley, U. V. Vazirani, and V.V. Vazirani. Matching is as easy as matrix inversion. In
Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pages 345–354,
1987. doi:10.1145/28395.383347.

48 N. Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992. doi:10.1007/BF01305237.

49 N. Nisan. RL subseteq SC. In Proceedings of the 24th Annual ACM Symposium on Theory
of Computing, May 4-6, 1992, Victoria, British Columbia, Canada, pages 619–623, 1992.
doi:10.1145/129712.129772.

50 J. B. Orlin and C. Stein. Parallel algorithms for the assignment and minimum-cost flow
problems. Operations research letters, 14(4):181–186, 1993.

51 K. Reinhardt and E. Allender. Making nondeterminism unambiguous. SIAM Journal on
Computing, 29(4):1118–1131, 2000. doi:10.1137/S0097539798339041.

52 M.E. Saks and S. Zhou. BPHSPACE(S) ⊆ DSPACE(S3/2). Journal of Computer and
System Sciences, 58(2):376–403, 1999. doi:10.1006/jcss.1998.1616.

CCC 2017

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.10
http://dl.acm.org/citation.cfm?id=2133036.2133154
http://dl.acm.org/citation.cfm?id=2133036.2133154
http://dx.doi.org/10.1007/BF02579407
http://dx.doi.org/10.2168/LMCS-9(1:8)2013
http://dx.doi.org/10.1145/380752.380801
http://dx.doi.org/10.1137/S0097539700389652
http://eccc.hpi-web.de/report/2016/155
http://eccc.hpi-web.de/report/2016/155
http://dx.doi.org/10.1145/1714450.1714451
http://dx.doi.org/10.1016/0020-0190(89)90170-1
http://dx.doi.org/10.1016/0020-0190(89)90170-1
http://dx.doi.org/10.1007/s00453-013-9865-1
http://dx.doi.org/10.1145/378239.378566
http://dx.doi.org/10.1145/28395.383347
http://dx.doi.org/10.1007/BF01305237
http://dx.doi.org/10.1145/129712.129772
http://dx.doi.org/10.1137/S0097539798339041
http://dx.doi.org/10.1006/jcss.1998.1616


5:32 Derandomizing Isolation in Space-Bounded Settings

53 W.J. Savitch. Relationships between nondeterministic and deterministic tape complex-
ities. Journal of Computer and System Sciences, 4(2):177–192, 1970. doi:10.1016/
S0022-0000(70)80006-X.

54 Y. Strozecki. On enumerating monomials and other combinatorial structures by polyno-
mial interpolation. Theory of Computing Systems, 53(4):532–568, 2013. doi:10.1007/
s00224-012-9442-z.

55 I. H. Sudborough. On the tape complexity of deterministic context-free languages. Journal
of the ACM, 25(3):405–414, July 1978. doi:10.1145/322077.322083.

56 J. Tarui. Probabilistic polynomials, AC0 functions and the polynomial-time hierarchy.
Theoretical Computer Science, 113(1):167–183, 1993.

57 T. Thierauf and F. Wagner. Reachability inK3,3-free andK5-free graphs is in unambiguous
logspace. Chicago Journal of Theoretical Computer Science, 2015, 2015. URL: http:
//cjtcs.cs.uchicago.edu/articles/2015/2/contents.html.

58 S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing,
20(5):865–877, 1991. doi:10.1137/0220053.

59 P. Traxler. The time complexity of constraint satisfaction. In Proceedings of the 3rd
International Workshop on Parameterized and Exact Computation, pages 190–201, 2008.
doi:10.1007/978-3-540-79723-4_18.

60 L.G. Valiant and V.V. Vazirani. NP is as easy as detecting unique solutions. Theoretical
Computer Science, 47(3):85–93, 1986. doi:10.1016/0304-3975(86)90135-0.

61 H. Venkateswaran. Properties that characterize LOGCFL. Journal of Computer and Sys-
tem Sciences, 43(2):380–404, October 1991. doi:10.1016/0022-0000(91)90020-6.

62 H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer-Verlag
New York, 1999.

63 O. Watanabe and S. Toda. Structural analysis of the complexity of inverse functions.
Mathematical Systems Theory, 26(2):203–214, 1993.

http://dx.doi.org/10.1016/S0022-0000(70)80006-X
http://dx.doi.org/10.1016/S0022-0000(70)80006-X
http://dx.doi.org/10.1007/s00224-012-9442-z
http://dx.doi.org/10.1007/s00224-012-9442-z
http://dx.doi.org/10.1145/322077.322083
http://cjtcs.cs.uchicago.edu/articles/2015/2/contents.html
http://cjtcs.cs.uchicago.edu/articles/2015/2/contents.html
http://dx.doi.org/10.1137/0220053
http://dx.doi.org/10.1007/978-3-540-79723-4_18
http://dx.doi.org/10.1016/0304-3975(86)90135-0
http://dx.doi.org/10.1016/0022-0000(91)90020-6


The Computational Complexity of Integer
Programming with Alternations∗

Danny Nguyen1 and Igor Pak2

1 Department of Mathematics, UCLA, Los Angeles, CA, USA
ldnguyen@math.ucla.edu

2 Department of Mathematics, UCLA, Los Angeles, CA, USA
pak@math.ucla.edu

Abstract
We prove that integer programming with three alternating quantifiers is NP-complete, even for
a fixed number of variables. This complements earlier results by Lenstra and Kannan, which
together say that integer programming with at most two alternating quantifiers can be done in
polynomial time for a fixed number of variables. As a byproduct of the proof, we show that for
two polytopes P,Q ⊂ R4, counting the projection of integer points in Q\P is #P-complete. This
contrasts the 2003 result by Barvinok and Woods, which allows counting in polynomial time the
projection of integer points in P and Q separately.
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1 Introduction

1.1 Background
In a pioneer paper [19], Lenstra showed that Integer Programming in a bounded dimension
can be solved in polynomial time. The next breakthrough was obtained by Kannan in 1990
and until recently remained the most general result in this direction (see [11]).

I Theorem 1 (Parametric Integer Programming [16]). Fix d1 and d2. Given a polyhedron
P ⊆ Rd1 , a matrix A ∈ Zm×(d1+d2) and a vector b ∈ Zm, the following sentence can be
decided in polynomial time:

∀x ∈ P ∩ Zd1 ∃y ∈ Zd2 : A (x,y) ≤ b. (1.1)

Here P is given by a system C x ≤ γ, with C ∈ Zn×d1 and γ ∈ Zn. The numbers m,n are
part of the input.

In [17], Kannan asked if Theorem 1 can be extended to three alternating quantifiers. We
give an answer in the negative direction to this question:

I Theorem 2. Fix d1 ≥ 1, d2 ≥ 2 and d3 ≥ 3. Given two polyhedra P ⊆ Rd1 , Q ⊆ Rd2 , a
matrix A ∈ Zm×(d1+d2+d3) and a vector b ∈ Zm, then deciding the sentence

∃x ∈ P ∩ Zd1 ∀y ∈ Q ∩ Zd2 ∃z ∈ Zd3 : A (x,y, z) ≤ b (1.2)

is an NP-complete problem. Here P and Q are given by two systems C x ≤ γ and D y ≤ δ,
with C ∈ Zn×d1 , γ ∈ Zn, D ∈ Zq×d2 , and δ ∈ Zq.
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6:2 The Computational Complexity of Integer Programming with Alternations

Let us emphasize that in both Theorem 1 and 2, there is no bound on the number of
inequalities involved. In other words, the parameters m,n and q are not fixed. Theorem 2
is especially surprising for the following reasons. First, in [22], we gave strong evidence
that (1.2) is decidable in polynomial time if m,n and q are fixed. Second, by an easy
application of the Doignon–Bell–Scarf theorem, (1.1) is polynomial time reducible to the case
with m and n fixed. Unfortunately, this simple reduction breaks down when there are more
than two quantifiers (see Section 7.1) as in (1.2). Still, in [22], we speculated that a more
involved reduction argument might still apply to (1.2). Theorem 2 refutes the possibility of
any reduction from (1.2) to an easier form with m,n and q bounded for which decision could
be in polynomial time, unless P = NP. In fact, Theorem 2 holds even when P is an interval
and Q is an axis-parallel rectangles (see Theorem 9 and §7.8). Thus, the problem (1.2) is
already hard when n, q are fixed and only m is unbounded.

In [25], Schöning proved that it is NP-complete to decide whether

∃x ∈ Z ∀y ∈ Z : Ψ(x, y). (1.3)

Compared to (1.2), this has only two quantifiers. However, here the expression Ψ(x, y) is
allowed to contain both conjunctions and disjunctions of many inequalities. So Theorem 2
tells us that disjunctions can be discarded at the cost of adding one extra alternation. In the
next subsection, we generalize this observation.

1.2 Presburger sentences
In [14], Grädel considered the theory of Presburger Arithmetic, and proved many completeness
results in this theory when the number of variables and quantifiers are bounded. Those
results were later strengthened by Schöning in [25]. They can be summed up as follows:

I Theorem 3 ([25]). Fix k ≥ 1. Let Ψ(x,y) be a Boolean combination of linear inequalities
with integer coefficients in the variables x = (x1, . . . , xk) ∈ Zk and y = (y1, . . . , y3) ∈ Z3.
Then deciding the sentence

Q1 x1 ∈ Z . . . Qk xk ∈ Z Qk+1 y ∈ Z3 : Ψ(x,y)

is ΣP
k-complete if Q1 = ∃, and ΠP

k-complete if Q1 = ∀. Here Q1, . . . , Qk+1 ∈ {∀ ,∃} are
m+ 1 alternating quantifiers.

This result characterizes the complexity of so called Presburger sentences with k + 1
quantifiers in a fixed number of variables. The main difference between Presburger Arithmetic
versus integer programming is that the expression Ψ allows both conjunction and disjunction
of many inequalities. This flexibility allows effective reductions of classical decision problems
such as QSAT. For some time, it remains a question whether such reductions can be carried
with only conjunctions, and at the same time keeping the number of variables fixed. We
prove the following result, which generalizes Theorem 2:

I Theorem 4. Integer programming in a fixed number of variables with k + 2 alternating
quantifiers is ΣP

k/ΠP
k-complete, depending on whether Q1 = ∃/∀. Here the problem is allowed

to contain only a system of inequalities.

We refer to Theorem 13 for the precise statement. Thus, we see that integer programming
requires only one more quantifier alternation to achieve the same complexity as Presburger
Arithmetic. Again, we emphasize that while the number of variables and quantifiers are fixed
in Theorem 4, the linear system is still allowed many inequalities.
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P

Q

P

Q QP

Figure 1 Three examples of convex polygons P,Q ⊂ R2.

1.3 Counting points in projections of non-convex polyhedra
For polytopes in arbitrary dimension, counting the number of integer points is classically
#P-complete, even for 0/1 polytopes. In a fixed dimension d, Barvinok famously showed
this can be done in polynomial time:

I Theorem 5 ([2]). Fix d. Given a polytope P ⊂ Rd, the number of integer points in
P ∩ Zd can be computed in polynomial time. Here P is described by a system Ax ≤ b, with
A ∈ Zm×d, b ∈ Zm.

For a set S ⊂ Rd, denote by E(S) := S ∩ Zd. The previous results say that |E(P )|
is computable in polynomial time. Given two polytopes P ⊂ Q ⊂ Rd, we clearly have
|E(Q\P )| = |E(Q)| − |E(P )|. So the number of integer points in a complement can also be
computed effectively.

Theorem 5 was later generalized by Barvinok and Woods to count the number of integer
points in projections of polytopes:

I Theorem 6 ([5]). Fix d1 and d2. Given a polytope P ⊂ Rd1 , and a linear transformation
T : Zd1 → Zd2 , the number of integer points in T (P ∩ Zd1) can be computed in polynomial
time. Here P is described by a system Ax ≤ b and T is described by a matrix M , where
A ∈ Zm×d1 , b ∈ Zm and M ∈ Zd2×d1 .

For a set S ⊂ Rd, denote by E1(S) the projection of S ∩ Zd on the first coordinate, i.e.,

E1(S) := {x ∈ Z : ∃z ∈ Zd−1 (x, z) ∈ S}.

By Theorem 6, |E1(P )| can be computed in polynomial time for every polytope P ⊂ Rd.

We prove the following result:

I Theorem 7. Given two polytopes P ⊂ Q ⊂ R4, computing |E1(Q\P )| is #P-complete.

In other words, it is #P-complete to compute the size of the set

E1(Q\P ) = {x ∈ Z : ∃z ∈ Z3 (x, z) ∈ Q\P} . (1.4)

Note that the corresponding decision problem |E1(Q\P )| ≥ 1 is equivalent to |E(Q\P )| ≥ 1,
and thus can be decided in polynomial time by applying Theorem 5.

The contrast between Theorem 6 and our negative result can be explained as follows.
The proof Theorem 6 depends on the polytopal structure of P and exploited convexity in
a crucial way. By taking the complement Q\P , we no longer have a convex set. In other
words, we show that projection of the complement Q\P is complicated enough to allow
encoding of hard counting problems, even in R4 (see also §7.5).
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6:4 The Computational Complexity of Integer Programming with Alternations

I Remark 1. To understand the theorem, consider three examples of polygons P,Q ⊂ R2

as in Figure 1. Note that the sets of integer points of the vertical projections of P,Q and
P ∪Q are the same in all three cases, but the sets number of integer points of the vertical
projections of Q\P are quite different.

As an easy consequence of Theorem 7 we obtain:

I Corollary 8. Given r simplices T1, . . . , Tr ⊂ R4, computing |E1(T1 ∪ · · · ∪ Tr)| is #P-
complete.

1.4 Outline of the paper
We begin with notations (Section 2) and a geometric construction of certain polytopes based
on Fibonacci numbers (Section 3). In Section 4 we use this construction to prove Theorem 2
via a reduction of the GOOD SIMULTANEOUS APPROXIMATION (GSA) Problem
in Number Theory, which is known to be NP-complete. The proof of Theorem 4 is via a
reduction of QSAT (Section 5). The proof of Theorem 7 follows a similar route via reduction
of #GSA (Section 6). Finally, we conclude with final remarks and open problems (Section 7).

2 Notations

We a use N = {0, 1, 2, . . .} and Z+ = {1, 2, . . .}.
All constant vectors are denoted a, b, x, y, t etc.
Matrices are denoted A,B,C, etc.
Variables are denoted x, y, z, etc.; vectors of variables are denoted x,y, z, etc.
We write x ≤ y if xj ≤ yj for all i.
A polyhedron is an intersection of finitely many closed half-spaces in Rn.
A polytope is a bounded polyhedron.
Polyhedra and polytopes are denoted by P,Q,R, etc.

3 Geometric constructions and properties

3.1 Fibonacci points
We consider the first 2d Fibonacci numbers:

F0 = 0, F1 = 1, F2 = 1, . . . , F2d−1.

From these, we construct d integer points:

φ1 = (F1, F0), φ2 = (F3, F2), . . . , φd = (F2d−1, F2d−2). (3.1)

Let

Φ = {φ1, . . . , φd} ⊂ Z2 and J = [1, F2d−1]× [0, F2d−2] ∩ Z2. (3.2)

We have Φ ⊂ J . Denote by C the curve consisting of d− 1 segments connecting φi to φi+1
for i = 1, . . . , i− 1.

We also define the following two polygons. Their properties will be mentioned later.

R1 =
{

y = (y1, y2) ∈ R2 :
[

y1 ≥ 1
y2 ≤ F2d−2

y2F2d−1−y1F2d−2 ≥ 1

]}
, (3.3)
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and

R2 =
{

y ∈ R2 :
[
y1 ≤ F2d−1
y2 ≥ 0

]
and y2F2i − y1F2i−1 ≤ −2 for i = 1, . . . , d

}
. (3.4)

The following properties are straightforward from the above definitions:
(F1) The points φ1, . . . , φd are in convex position. The curve C connecting them is convex

(upwards). See Figure 2.
(F2) Each segment (φi φi+1) and each triangle ∆i = (0φi φi+1) has no interior integer points.

This can be deduced from the facts that two consecutive Fibonacci numbers are coprime,
and also

FiFi+3 − Fi+1Fi+2 = (−1)i−1 for all i ≥ 0.

(F3) The set of integer points in J \Φ can be partitioned into 2 parts: those lying strictly
above the convex curve C, and those lying strictly below it.

(F4) The part of J \Φ lying above C is exactly R1 ∩ Z2. This can be seen as follows. The
line ` connecting 0 and φd is defined by:

y2F2d−1 − y1F2d−2 = 0.

So every integer point y = (y1, y2) lying above ` satisfies:

y2F2d−1 − y1F2d−2 ≥ 1.

By property (F2), there are no integer points y between C and `. The other two edges of
R1 come from J . See Figure 2.

(F5) The part of J \Φ lying below C is exactly R2 ∩ Z2. This can be seen as follows. The
line connecting φi and φi+1 is defined by

y2F2i − y1F2i−1 = −1.

So all integer points below that line satisfies:

y2F2i − y1F2i−1 ≤ −2.

This gives d− 1 faces for R2, one for each 1 ≤ i ≤ d− 1. The other two faces of R2 come
from J . See Figure 2.

3.2 The polytopes
Given α = (α1, . . . , αd) ∈ Qd and ε ∈ (0, 1

2 )∩Q, for each 1 ≤ i ≤ d, we define two polygons:

Pi = {(x,w) ∈ R2 : 1 ≤ x ≤ N, αix− ε ≤ w ≤ αix+ ε}, (3.5)

and

Qi = {(x,w) ∈ R2 : 1 ≤ x ≤ N, αix+ ε− 1 < w ≤ αix+ ε}. (3.6)

Next, for each 1 ≤ i ≤ d, we define two new polytopes

P ′i = {(x, φi, w) : (x,w) ∈ Pi} ⊂ R4, (3.7)

CCC 2017
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R1

R2

0

y2

y1

φd

φ1

. .
.

Figure 2 The points φ1, . . . , φd ∈ Φ form a convex curve C (blue).

and

Q′i = {(x, φi, w) : (x,w) ∈ Qi} ⊂ R4, (3.8)

where φi is from (3.1). Finally, we define the convex hulls:

P = conv(P ′1, . . . , P ′d) ⊂ R4, (3.9)

and

Q = conv(Q′1, . . . , Q′d) ⊂ R4. (3.10)

The following properties are straightforward from the above definitions:
(P1) Each Pi is a parallelogram with vertices

{
(1, αi ± ε), (N,αiN ± ε)

}
.

(P2) Each Qi is a (partially open) parallelogram with vertices{
(1, αi + ε), (1, αi + ε− 1), (N,αiN + ε), (N,αiN + ε− 1)

}
.

(P3) Each P ′i is a parallelogram in R4 (i.e., a Minkowski sum of two intervals), with vertices{
(1, φi, αi ± ε), (N,φi, αiN ± ε)

}
.

(P4) Each Q′i is a (partially open) parallelogram in R4, with vertices{
(1, φi, αi + ε), (1, φi, αi + ε− 1), (N,φi, αiN + ε), (N,φi, αiN + ε− 1)

}
.

(P5) We have Pi ( Qi, P ′i ( Q′i and P ( Q. Each P ′i forms a 2-dimensional face of P . Each
Q′i forms a 2-dimensional face of Q.

(P6) All the vertices of P ′1, . . . , P ′d are in convex position. This follows from (3.7) and (F1).
(P7) The polytope P has 4d vertices, which are all the vertices of P ′1, . . . , P ′d. For every

vertex (x,y, w) of P , we have y ∈ Φ, by (P3) and (P6).
(P8) For every φi ∈ Φ, we have:{

(x,w) ∈ R2 : (x, φi, w) ∈ P
}

= Pi.

(P9) All the vertices Q′1, . . . , Q′d are also in convex position, by (3.8) and (F1).
(P10) The polytope Q has 4d vertices, which are all the vertices of Q′1, . . . , Q′d. For every

vertex (x,y, w) of Q, we have y ∈ Φ, by (P4) and (P9).
(P11) For every φi ∈ Φ, we have:{

(x,w) ∈ R2 : (x, φi, w) ∈ Q
}

= Qi.

(P12) For every point (x,y, w) ∈ P ∩ Z4, we have either y ∈ Φ or y ∈ R2. This follows
from (3.9), (F1) and (F5). The same holds for Q.

We will be using these properties in the latter sections.
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4 Proof of Theorem 2

4.1
By a box in Zd, we mean the set of integer points of the form [α1, β1]× · · · × [αd, βd] ∩ Zd.
We will prove the following stronger version of Theorem 2.

I Theorem 9. Given a polytope U ⊂ R6 and two finite boxes I ⊂ Z, J ⊂ Z2, deciding the
sentence

∃x ∈ I ∀y ∈ J ∃z ∈ Z3 : (x,y, z) ∈ U (4.1)

is an NP-complete problem. Here U is described by a system A (x,y, z) ≤ b, where A ∈ Zm×6

and b ∈ Zm.

Since low dimensional boxes can be easily embedded into higher dimensions, the above
implies Theorem 2 for every d1 ≥ 1, d2 ≥ 3 and d3 ≥ 3. Compared to Theorem 2, all
parameters in the above theorem are fixed, except for m. So from now on, the symbols n
and d will be reused for other purposes. For a vector α = (α1, . . . , αd) ∈ Qd and an integer
x ∈ Z, we define

{{xα}} = max
1≤i≤d

{{qαi}}, (4.2)

where for each rational β ∈ Q, the quantity {β} is defined as:

{{β}} := min
n∈Z
|β − n| = min

{
β − bβc, dβe − β

}
.

GOOD SIMULTANEOUS APPROXIMATION (GSA)
Input: A rational vector α = (α1, . . . , αd) ∈ Qd and N ∈ N, ε ∈ Q.
Decide: Is an integer x ∈ [1, N ] such that {{xα}} ≤ ε?

Note that GSA is only non-trivial for ε < 1/2. We need the following result by Lagarias:

I Theorem 10 ([18]). GSA is NP-complete.

Let us emphasize that in GSA, the number d is part of the input. If d is fixed instead,
then the problem can be decided in polynomial time (see [18] and [15, Ch. 5]). What follows
is a reduction of GSA to a sentence of the form (4.1). GSA can be expressed as an integer
programming problem:

∃ x,w1, . . . , wd ∈ Z : 1 ≤ x ≤ N, −ε ≤ αix− wi ≤ ε. (4.3)

The inequalities on wi can be expressed as (x,wi) ∈ Pi, where Pi was defined in (3.5). Letting
I = [1, N ] ∩ Z, we see that GSA is equivalent to deciding:

∃x ∈ I :
d∧
i=1

[
∃w ∈ Z : (x,w) ∈ Pi

]
. (4.4)

I Lemma 11. Let Φ = {φ1, . . . , φd} be as in (3.2) and P be as in (3.9). We have:

{{xα}} ≤ ε ⇐⇒ ∀y ∈ Φ ∃w ∈ Z : (x,y, w) ∈ P. (4.5)

CCC 2017
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Proof. Indeed, assume {{xα}} ≤ ε, i.e., x satisfies GSA. By (4.4), for every i = 1, . . . , d,
there exists wi ∈ Z with (x,wi) ∈ Pi. Now (P8) implies that (x, φi, wi) ∈ P . Since this holds
for every φi ∈ Φ, the RHS in (4.5) is satisfied. For the other direction, assume the RHS
in (4.5) holds. Then for every φi ∈ Φ, there exists wi ∈ Z with (x, φi, wi) ∈ P . By (P8), we
have (x,wi) ∈ Pi. By (4.4), x satisfies GSA, i.e., {{xα}} ≤ ε. J

By the above lemma, GSA is equivalent to:

∃x ∈ I ∀y ∈ Φ ∃w ∈ Z : (x,y, w) ∈ P. (4.6)

Consider J from (3.2), which contains Φ. We can rewrite the above sentence as:

∃x ∈ I ∀y ∈ J
[
(y ∈ J \Φ) ∨ ∃w ∈ Z : (x,y, w) ∈ P

]
. (4.7)

Recall the polygons R1 and R2 defined in (3.3) and (3.4). By properties (F3), (F4) and (F5),
we can rewrite y ∈ J \Φ as (y ∈ R1) ∨ (y ∈ R2). Now, we can rewrite (4.7) as:

∃x ∈ I ∀y ∈ J
[

(y ∈ R1) ∨ (y ∈ R2) ∨ ∃w ∈ Z : (x,y, w) ∈ P
]
. (4.8)

Next, define two polytopes R′1 and R′2 as follows:

R′i :=
{

(x,y, 0) ∈ R4 : 0 ≤ x ≤ N, y ∈ Ri
}
⊂ R4 for i = 1, 2. (4.9)

Polytopes R′1 and R′2 are defined in such a way so that for every x ∈ I and y ∈ J , we have
y ∈ Ri if and only if there exists w ∈ Z such that (x,y, w) ∈ R′i.1 Now, it is clear that (4.8)
is equivalent to:

∃x ∈ I ∀y ∈ J
[( 2∨

i=1
∃w ∈ Z : (x,y, w) ∈ R′i

)
∨

(
∃w ∈ Z : (x,y, w) ∈ P

)]
.

which is equivalent to:

∃x ∈ I ∀y ∈ J ∃w ∈ Z : (x,y, w) ∈ R′1 ∪R′2 ∪ P. (4.10)

The difference between (4.10) and (4.1) is that we have 3 polytopes instead of just one.

4.2
The final step is two compress three polytopes R′1, R′2 and P into one polytope. Recall from
(P7) that P has 4d vertices, which correspond to the vertices of all Pi for 1 ≤ i ≤ d. The
vertices of R1 and R2 can be computed in polynomial time from systems (3.3) and (3.4).
From there we easily get the vertices of R′1 and R′2. Since P,R′1 and R′2 are in the fixed
dimension 4, we can write down all their facets in polynomial time using their vertices. So
we can represent:

P =
{

(x,y, w) ∈ R4 : A1 (x,y, w) ≤ b1
}
,

R′1 =
{

(x,y, w) ∈ R4 : A2 (x,y, w) ≤ b2
}
,

R′2 =
{

(x,y, w) ∈ R4 : A3 (x,y, w) ≤ b3
}
.

(4.11)

The above three systems all have lengths polynomial in the input α, N and ε. Next, we need
the following lemma:

1 Such a w must automatically be 0 by the definition of R′
i.
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I Lemma 12. Fix n and r. Given r polytopes R1, . . . , Rr ⊂ Rn described by r systems

Ri = {x ∈ Rn : Ai x ≤ bi},

there is a polytope U ∈ Rn+`, where ` = dlog2 re, such that

x ∈
r⋃
i=1

Ri ∩ Zn ⇐⇒ ∃t ∈ Z` : (x, t) ∈ U ∩ Zn+`. (4.12)

Furthermore, the system A (x, t) ≤ b that describes U can be found in polynomial time, given
Ai’s and bi’s as input.
Proof. Let ` = dlog2 re, we have 2` ≥ r. Pick t1, . . . , tr ∈ {0, 1}` as r different vertices of
the `-dimensional unit cube. Define

Uj = {(x, tj) ∈ Rn+` : x ∈ Rj} for j = 1, . . . , r ,

and

U = conv(U1, . . . , Ur).

In other words, we form Uj by augmenting each Rj with ` coordinates of tj . Since t1, . . . , tr
are in convex position, so are the new polytopes U1, . . . , Uj . So the vertices of U are all
the vertices of all Uj . Note that for every t ∈ conv(t1, . . . , tr), we have t ∈ Z` if and only if
t = tj for some j. This implies that the only integer points in U are those in Uj ’s. In other
words:

(x, t) ∈ U ∩ Zn+` ⇐⇒ x ∈ Rj ∩ Zn and t = tj for some j = 1, . . . , r.

So we have (4.12).
For each Rj , its vertices can be computed in polynomial time from the system Ai x ≤ bi.

From these, we easily get the vertices for each Uj . Thus, we can find all vertices of U in
polynomial time. Note that U is in a fixed dimension n+`, since n and r are fixed. Therefore,
we can find in polynomial time all the facets of U using those vertices. This gives us a system
A (x, t) ≤ b of polynomial length that describes U . J

Applying the above lemma for three polytopes R′1, R′2 and P with n = 4 and r = 3, we
find a polytope U ⊂ R4+` such that:

(x,y, w) ∈ (R′1 ∪R′2 ∪ P ) ∩ Z4 ⇐⇒ ∃t ∈ Z` : (x,y, w, t) ∈ U ∩ Z4+`. (4.13)

Here we have ` = dlog2 3e = 2, which means t ∈ Z2 and U ⊂ R6. The lemma also allows us
to find a system A (x,y, w, t) ≤ b that describes U , which has size polynomial in the systems
in (4.11). Now, we can rewrite (4.10) as:

∃x ∈ I ∀y ∈ J ∃w ∈ Z : ∃t ∈ Z2 (x,y, w, t) ∈ U,

which is equivalent to

∃x ∈ I ∀y ∈ J ∃z ∈ Z3 : A (x,y, z) ≤ b.

Here z = (w, t) ∈ Z3. The final system A (x,y, z) ≤ b still has size polynomial in the original
input α, N and ε. Therefore, the original GSA problem is equivalent to (4.1). This implies
that (4.1) is NP-hard.

It remains to show that (4.1) is in NP. We argue that more general sentence (1.2) is also
in NP. From a result in [14], if (1.2) is true, there must be an x satisfying it with length
polynomial in the input P,A and b. For such an x, we can apply Theorem 1 to check the rest
of the sentence, which has the form ∀y∃z, in polynomial time. This shows that deciding (1.2)
is in NP, and thus NP-complete. J
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5 Proof of Theorem 4

Recall the definition of boxes from Section 4. In this section, we prove:

I Theorem 13. Fix k ≥ 1. Given a polytope U ⊂ Rk+7 and finite boxes I1, . . . , Ik ⊂ Z,
J ⊂ Z2, K ⊂ Z5, then the problem of deciding:

Q1 x1 ∈ I1 . . . Qk xk ∈ Ik ∀y ∈ J ∃z ∈ K : (x,y, z) ∈ U (5.1)

is ΣP
k complete if Q1 = ∃, and ΠP

k complete if Q1 = ∀. Here Q1, . . . , Qk ∈ {∃ ,∀} are k
alternating quantifiers with Qk = ∃. The polytope U is described by a system A (x,y, z) ≤ b,
where A ∈ Zm×(k+7) and b ∈ Zm.

For the proof, we work with the canonical problem Q3SAT. Let Ψ a Boolean expression
of the form:

Ψ(u1, . . . ,uk) =
N∧
i=1

(ai ∨ bi ∨ ci). (5.2)

Here each uj = (uj1, . . . , uj`) ∈ {0, 1}` is a tuple of ` Boolean variables, and each ai, bi, ci is
a literal in the set {ujs, ¬ujs : 1 ≤ j ≤ k, 1 ≤ s ≤ `}. From Ψ, we construct a sentence:

Q1 u1 ∈ {0, 1}` Q2 u2 ∈ {0, 1}` . . . Qk uk ∈ {0, 1}` : Ψ(u1, . . . ,uk). (5.3)

Here Q1, Q2, . . . , Qk ∈ {∀ ,∃} are k alternating quantifiers with Qk = ∃ . The numbers ` and
N are part of the input.

QUANTIFIED 3-SATISFIABILITY (Q3SAT)
Input: A Boolean expression Ψ of the form (5.2).
Decide: The truth of the sentence (5.3).

For clarity, we use the notation Q3SATk to emphasize problem (5.3) for a fixed k. It is well-
known that Q3SATk is ΣP

k -complete if Q1 = ∃ and ΠP
k -complete if Q1 = ∀ (see e.g. [23, 20]

and [1]). We proceed to reduce (5.3) to (5.1). In fact, by representing each Boolean string
uj ∈ {0, 1}` as an integer xj ∈ [0, 2`), we will only need to use I1 = I2 = · · · = Ik = [0, 2`)∩Z.

For every string uj = (uj1, . . . , uj`) ∈ {0, 1}` , let xj ∈ [0, 2`) be the corresponding
integer in binary. Then ujs is true or false respectively when the s-th binary digit of xj is 1
or 0. In other words, ujs is true or false respectively when bxj/2s−1c is odd or even. Observe
that t = bxj/2s−1c is the only integer that satisfies xj/2s−1 − 1 < t ≤ xj/2s−1. Now, each
term ujs or ¬ujs can be expressed in xj as follows:

ujs ⇐⇒ ∃w ∈ Z :
{

2w + 1 > xj/2s−1 − 1
2w + 1 ≤ xj/2s−1

}
,

¬ujs ⇐⇒ ∃w ∈ Z :
{

2w > xj/2s−1 − 1
2w ≤ xj/2s−1

}
.

(5.4)

Let x = (x1, . . . , xk) ∈ [0, 2`)k. Recall that each term ai, bi, ci in (5.2) is ujs or ¬ujs for
some j and s. So each clause ai ∨ bi ∨ ci can be expressed in x as:

ai ∨ bi ∨ ci ⇐⇒ ∃w ∈ Z :
[
Di (x, w) ≤ di

]
∨
[
Ei(x, w) ≤ ei

]
∨
[
Fi (x, w) ≤ f i

]
, (5.5)
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where three systems Di (x, w) ≤ di, Ei(x, w) ≤ ei, Fi (x, w) ≤ f i are of the form (5.4)
(with different j and s for each). Note that the strict inequalities in (5.4) can be sharpened
without losing any integer solutions (see Remark 2). We define the polytopes:

Ki =
{

(x, w) ∈ Rk+1 : x1, . . . , xk, w ∈ [0, 2`), Di (x, w) ≤ di
}
,

Li =
{

(x, w) ∈ Rk+1 : x1, . . . , xk, w ∈ [0, 2`), Ei (x, w) ≤ ei
}
,

Mi =
{

(x, w) ∈ Rk+1 : x1, . . . , xk, w ∈ [0, 2`), Fi (x, w) ≤ f i
}
.

So the RHS in (5.5) can be rewritten as:

∃w ∈ Z : (x, w) ∈ Ki ∪ Li ∪Mi.

Let I1 = I2 = · · · = Ik = [0, 2`) ∩ Z, we see that (5.3) is equivalent to:

Q1 x1 ∈ I1 . . . Qk xk ∈ Ik :
N∧
i=1

[
∃w ∈ Z : (x, w) ∈ Ki ∪ Li ∪Mi

]
. (5.6)

For each i, we apply Lemma 12 (with n = k + 1, r = 3) to the polytopes Ki, Li,Mi ⊂ Rk+1.
This gives us another polytope Gi ⊂ Rk+3 that satisfies:

(x, w) ∈ Ki ∪ Li ∪Mi ⇐⇒ ∃v ∈ Z2 : (x, w,v) ∈ Gi.

Substituting this into (5.6), we have an equivalent sentence:

Q1 x1 ∈ I1 . . . Qk xk ∈ Ik :
N∧
i=1

[
∃w ∈ Z3 : (x,w) ∈ Gi

]
, (5.7)

where w = (w,v) ∈ Z3, and each Gi ⊂ Rk+3.

Notice that apart from the outer quantifiers, (5.7) is a direct analogue of (4.4), with Gi
playing the role of Pi and (x,w) in place of (x,w). The proof now proceeds similarly to the
rest of Section 4 after (4.4). Along the proof, we need to define G′i and G in similar manners
to (3.7) and (3.9). The variable y ∈ Z2 is again needed to define G′i. Φ and J from (3.2) are
reused without change. This gives us G′i, G ⊂ Rk+5. At the end of the proof, we also need
to apply Lemma 12 one more time to produce a single polytope U , just like in (4.13). The
dimension 4 in (4.13) is now k + 5. As a result, the final polytope U has dimension k+ 7. In
the final form (5.1), we will have x ∈ Zk,y ∈ Z2 and z = (w, t) ∈ Z5.

We have converted (5.3) to an equivalent sentence (5.1) with polynomial size. This shows
that (5.1) is ΣP

k/ΠP
k-hard depending when Q1 = ∃/∀ . For each tuple x = (x1, . . . , xk), we

can check in polynomial time whether ∀y ∈ J ∃z ∈ K : A (x,y, z) ≤ b by applying
Theorem 1. This shows the membership of (5.1) in ΣP

k/ΠP
k . We conclude that (5.1) is

ΣP
k/ΠP

k -complete when Q1 = ∃/∀ . J

6 Proof of Theorem 7

6.1
Now we prove Theorem 7. We use the same construction as in the proof of Theorem 2.
Recall the definition of {{xα}} from Section 4. We reduce the following counting problem to
a problem of the form (1.4):
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#GOOD SIMULTANEOUS APPROXIMATIONS (#GSA)
Input: A rational vector α = (α1, . . . , αd) ∈ Qd and positive integers N, s1, s2.
Output: The number of integers x ∈ [1, N ] that satisfy {{xα}} ≤ s1/s2 .

The argument in [18] is based on a parsimonious reduction. Namely, it gives a bijection
between solutions for #GSA and the following problem:

#WEAK PARTITIONS
Input: An integer vector a = (a1, . . . , ad) ∈ Zd.
Output: The number of y ∈ {−1, 0, 1}d for which a · y = 0.

It is well known and easy to see that #WEAK PARTITIONS is #P-complete. The
decision version WEAK PARTITION was earlier shown by [27] to be NP-complete with
a parsimonious reduction from KNAPSACK. Together with Lagarias’s reduction, we
conclude:

I Theorem 14. #GSA is #P-complete.

6.2
Now we proceed with the reduction of #GSA to (1.4).

Recall Φ and J from (3.2). We use the notations from section 3.1 and 3.2. Let Pi, P ′i
and P be from (3.5), (3.7) and (3.9). Let Qi, Q′i and Q be from (3.6), (3.8) and (3.10). Let
I = [1, N ] ∩ Z. We have:

I Observation 15. For every x ∈ I, there is a unique w ∈ Z such that (x,w) ∈ Qi.

Indeed, from (3.6), we have (x,w) ∈ Qi if and only if x ∈ I and:

αix+ ε− 1 < w ≤ αix+ ε.

For each x ∈ I, we get a half-open interval of length 1 for w, which has a unique integer.

I Remark 2. Note that each Qi has an open edge defined by αix+ε−1 < w. This can actually
be sharpened without losing any integer point. Indeed, we can multiply the inequality with
the denominators in αi and ε, which have polynomial length. Then the resulting strict integer
inequality of the form a < b is equivalent to a ≤ b− 1. Therefore, we can replace Qi with a
(smaller) closed parallelogram containing the same integer points. Taking the convex hull as
in (3.10), we can similarly replace Q with a (smaller) closed polyhedron, without losing any
integer points in Q.

I Observation 16. For every x ∈ I and φi ∈ Φ, there is a unique integer point (x, φi, wi) ∈ Q.

Indeed, by (P11), for every φi ∈ Φ, we have (x, φi, w) ∈ Q if and only if (x,w) ∈ Qi.
Together with Observation 15, we have Observation 16.

Recall from (P5) that P ⊂ Q. Now consider the following set:

S =
{
x ∈ I : ∃(y, w) ∈ Φ× Z (x,y, w) ∈ Q\P

}
.2 (6.1)

I Lemma 17. For every x ∈ I, we have {{xα}} > ε if and only if x ∈ S.
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Proof. Assume x ∈ S, then there exist some φj ∈ Φ and wj ∈ Z so that (x, φi, wi) ∈ Q\P .
By Observation 16 and the fact that P ⊂ Q, there is no w ∈ Z for which (x, φi, w) ∈ P .
By (4.5), we have {{xα}} > ε. Conversely, assume {{xα}} > ε. By (4.5), there exist φi ∈ Φ
so that there is no w ∈ Z with (x, φi, w) ∈ P . By Observation 16, the unique point (x, φi, wi)
in Q must be outside of P , i.e., (x, φi, wi) ∈ Q\P . We conclude that x ∈ S by (6.1). J

By the above lemma, counting S is equivalent to #GSA. The formulation (6.1) is very
similar to (1.4), with (y, w) in place of z. We cannot conclude directly that S is E1(Q\P )
because of the restricted quantifier ∃y ∈ Φ instead of ∃y ∈ Z2. To turn S into the form (1.4),
we need to convert ∃y ∈ Φ to ∃y ∈ Z2.

6.3
The final step is to modify the polytopes P and Q. In (6.1), we only consider projections of
integer points (x,y, w) ∈ Q\P with y restricted to the set Φ. In general, the complement
Q\P has some other integer points (x,y, w) with y not lying in Φ. By (P12) such a point
must necessarily have y ∈ R2. We can eliminate all of them by taking the convex hulls of P
and Q with a “high enough” box over R2. Below are the details.

Let T = 1 + N maxi αi. By (3.5) and (3.6), we have Pi, Qi ⊂ [1, N ] × [−1, T ]. Recall
from (3.7) and (3.9) that P is the convex hull of all P ′i , which is simply Pi with an added
second component φi. This leads to the following observation:

I Observation 18. For every vector γ ∈ R2, we have:{
(x,y, w) ∈ P : y = γ

}
⊆ [1, N ]× {γ} × [−1, T ].

The same holds for Q.

Next, consider the rectangular box J containing Φ and the complement J \Φ, where J is
from (3.2). From properties (F3), (F4) and (F5), integer points in the complement J \Φ lie
in two separate convex polygons R1 and R2, as described in (3.3) and (3.4). We will only
need R2, which contains integer points below Φ. Define

R =
{

(x,y, w) ∈ R4 : x ∈ [1, N ], y ∈ R2, w ∈ [−1, T ]
}
. (6.2)

and

P̃ = conv(P,R) , Q̃ = conv(Q,R) ⊂ R4. (6.3)

For γ ∈ R2, we denote by Pγ the set:

Pγ =
{

(x,y, w) ∈ P : y = γ
}
,

and analogously for P̃γ , Qγ , Q̃γ and Rγ .

By Observation 18, for every γ, we have Pγ , Qγ ⊆ [1, N ]× {γ} × [−1, T ]. From (6.2), we
have Rγ = [1, N ]×{γ}×[−1, T ] for every γ ∈ R2. Since P̃ = conv(P,R) and Q̃ = conv(Q,R),
we have

P̃γ = Q̃γ = [1, N ]× {γ} × [−1, T ] for every γ ∈ R2. (6.4)

For γ ∈ Φ, we claim that:

P̃γ = Pγ and Q̃γ = Qγ . (6.5)

CCC 2017



6:14 The Computational Complexity of Integer Programming with Alternations

Indeed, since γ ∈ Φ, we have γ = φi and Pγ = Pφi for some i. By (3.7) and (P8), we have
Pφi

= P ′i . Since R2 ∩Φ = ∅, we have φi /∈ R2. This implies P ′i ∩R = ∅, because R is a box
over R2, and P ′i is a parallelogram over φi. Recall from (P5) that P ′i forms a 2-dimensional
face of P . Therefore, it still remains a 2-dimensional face of the convex hull P̃ = conv(P,R).
So P̃γ = Pγ = P ′i . The same argument applies to Q̃γ and Qγ .

Note that we also have P̃ ⊂ Q̃, because P ⊂ Q. Consider the complement Q̃\P̃ . Assume
(x,y, w) ∈ Z3 is an integer point in Q̃\P̃ . By (6.4), such a point cannot exist for y ∈ R2. So
we must have y ∈ Φ. Now by (6.5), we also have (x,y, w) ∈ Q\P . Therefore, from (6.1), we
conclude that:

S =
{
x ∈ [1, N ] ∩ Z : ∃(y, w) ∈ Z3 (x,y, w) ∈ Q̃\P̃

}
=

{
x ∈ [1, N ] ∩ Z : ∃z ∈ Z3 (x, z) ∈ Q̃\P̃

}
.

Here z = (y, w). The systems describing Q̃ and P̃ can be obtained in polynomial time
from the input α, N and ε. First, the vertices of P and Q are given by (P7) and (P10).
The vertices of R directly come from those of R2, which can be found from (3.4). By (6.3),
we can obtain the vertices of P̃ and Q̃. The facets of P̃ and Q̃ can be found from their
vertices in polynomial time, since both polytopes are in the fixed dimension 4. In summary,
problem (1.4) applied to P̃ and Q̃ is #P-complete. This proves Theorem 7. J

6.4 Proof of Corollary 8
By Theorem 7, counting |E1(Q\P )| is #P-complete for P ⊂ Q ⊂ R4. Nevertheless, the
complement Q\P can still be triangulated into polynomially many simplices T1 t · · · t Tr.
In fact, by an application of Proposition 5.2.2 in [29], the systems describing all such Ti
can be found in polynomial time. Therefore, counting |E1(T1 t · · · t Tr)| = |E1(Q\P )| is
#P-complete. J

7 Final remarks and open problems

7.1
It is sufficient to prove Theorem 1 for the case when m,n are also bounded. In the system
A (x,y) ≤ b, we view x as the parameters and y as the variables to be solved for. For a
fixed d2 and m ≥ 2d2 , the Doignon–Bell–Scarf theorem [26, §16.5] implies that the system
A (x,y) ≤ b is solvable in y ∈ Zd2 if and only if every subsystem A′ (x,y) ≤ b′ is solvable.
Here A′ is a submatrix with 2d2 rows from A with b′ the corresponding subvector from b. In
other words:

∃y ∈ Zd2 A (x,y) ≤ b ⇐⇒
∧

(A′, b′)

[
∃y ∈ Zd2 A′ (x,y) ≤ b′

]
.

The total number of pairs (A′, b′) is
(
m

2d2

)
, which is polynomial in m.

Note that the conjunction over all (A′, b′) commutes with the universal quantifier ∀x.
Therefore:

∀x ∈ P ∩Zd1 ∃y ∈ Zd2 A (x,y) ≤ b ⇐⇒
∧

(A′, b′)

[
∀x ∈ P ∩Zd1 ∃y ∈ Zd2 A′ (x,y) ≤ b′

]
.
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Thus, it is equivalent to check each of the smaller subproblems, each of which has m = 2d2 .
Recall that the number of facets in P is n, which can still be large. However, given the
system C x ≤ γ describing P , we can triangulate P into to a union of simplices P1 t · · · tPk.
Since the dimension d1 is bounded, we can find such a triangulation in polynomial time (see
e.g. [9]). Now for each pair (A′, b′), we have:

∀x ∈ P ∩Zd1 ∃y ∈ Zd2 A′ (x,y) ≤ b′ ⇐⇒
k∧
i=1

[
∀x ∈ Pi∩Zd1 ∃y ∈ Zd2 A′ (x,y) ≤ b′

]
.

Each simplex Pi ⊂ Rd1 has d1 + 1 facets. Each subsentence in the RHS now has m = 2d2

and d1 + 1. Note that the total number of such subsentences is still polynomial, so it suffices
to check each of them individually.

For three quantifiers ∃x ∀y ∃z, this argument breaks down because the existential
quantifier ∃x no longer commutes with a long conjunction.

7.2

By taking finite Boolean combinations, we see that Theorem 5 also allows counting integer
points in a union of k polytopes, where k is bounded (see [3, 4]). In fact, Woods proved
in [29, Prop. 5.3.1] that it is still possible to count all such points in polynomial time when k
is arbitrary. By Corollary 8, we see that this is not the case for projection.

7.3

The GSA Problem plays an important role in both Number Theory and Integer Programming
especially in connection to lattice reduction algorithms (see e.g. [15]). Let us mention that
via a chain of parsimonious reductions one can show that #GSA is also hard to approximate
(cf. [13]). Note also that GSA has been recently used in a somewhat related geometric
context in [12].

7.4

An easy consequence of Lemma 12 proves the first part of the following result:

I Proposition 19. Every set S = {p1, . . . , pr} ⊂ Z2 is a projection of integer points of some
convex polytope P ⊂ R2+d, where d ≤ dlog2 re. Moreover, the bound d ≤ dlog2 re is tight.

We only use the proposition to reduce the dimension of variable z in Theorem 9 from 4
to 3, but it is perhaps of independent interest. Note that a weaker inequality d ≤ r is trivial.

Proof of the Second Part of Proposition 19. Consider a set S = {p1, . . . , pr} of integer
points in convex position and with even coordinates. Assume there is a polytope P ⊂ R2+`

with ` < dlog2 re so that S is exactly the projection of P ∩ Z2+` on Z2. Then there are
integer points q1, . . . , qr ∈ Z` so that (pi, qi) ∈ P . Since r > 2`, by the pigeonhole principle,
we have qi − qj ∈ 2Z` for some i 6= j. Then the midpoint of (pi, qi) and (pj , qj) is an integer
point in Z2+`, which also lies in P by convexity. The projection of this midpoint on Z2 is
(pi + pj)/2, which must lie in S. However, the points in S are in convex positions and thus
contain no midpoints, a contradiction. J
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7.5
Let us give another motivation behind Theorem 7 and put it into context of our other work.
In this paper, we bypass the “short generating function” technology developed for computing
|E1(P )| for convex polytopes P ⊂ Rd. Note, however, that for X = Q\P as in the theorem,
the corresponding short GF fX(t) is simply the difference fQ(t)− fP (t), which can still be
computed in polynomial time (see [2]). Thus, if one could efficiently present the projection
of fX(t) on Z as a short generating function of polynomial size, then one would be able to
compute |E1(Q\P )|, a contradiction. In other words, Theorem 7 is an extension of a result
by Woods [28], which shows that computing projecting short generating functions is NP-hard.
It is also an effective but weaker version of the main result in [21, Th. 1.3], which deals with
the size of short GFs of the projections rather than complexity of their computation.

7.6
Corollary 8 says that computing |E1(T1∪· · ·∪Tk)| is #P-complete even for simplices Ti ⊂ R4.
By a stronger version of Theorem 6 (see [5]), for each polytope Ti, there is a short generating
function gi(t) representing E1(Ti). The union of all those generating functions correspond to
E1(T1 ∪ · · · ∪ Tk). As a corollary we conclude that the union operation on short generating
functions is #P-hard to compute. As in §7.5 above, one should compare this to a stronger
result [21, Th. 1.1], which says that the union of short generating functions can actually have
super-polynomial lengths unless #P ⊆ FP/poly.

7.7
It would be interesting to see if the dimension 4 in Theorem 7 is sharp and cannot be reduced
to 3. One can argue both in favor and against this possibility. First, one can think of the
result as a claim about complexity of nonconvex polyhedra Q\P in Rd. For d = 3, the three
dimensional nonconvex polyhedra are well known to be notoriously complicated to study via
triangulations (see e.g. [24], the proof of the Th. 1.2 in [7] and a lengthly discussion in [9]).
This suggests that for the “long” first coordinate dimensions of Q, it is unlikely that there is
a good way to triangulate Q\P which would allow to compute |E1(Q\P )| efficiently.

To argue in the opposite direction, the problem of computing the number of integer points
for polytopes in Rd becomes simpler for d ≤ 3 (see e.g. [6, 8, 10]), so perhaps there is an ad
hoc approach in this case.

7.8
Note that Theorem 9 was proved for dimensions d1 = 1, d2 = 2 and d3 = 3. One can ask
if the problem still remains NP-complete when some of these dimensions are lowered. In
particular, it would be interesting to see if the following problem is still NP-complete:

∃x ∈ P ∩ Z ∀y ∈ Q ∩ Z2 ∃z ∈ Z2 : (x,y, z) ∈ U,

where P ⊂ R, Q ⊂ R2 and U ⊂ R5 are convex polytopes.
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Abstract
We prove various results on the complexity of MCSP (Minimum Circuit Size Problem) and the
related MKTP (Minimum Kolmogorov Time-Bounded Complexity Problem):

We observe that under standard cryptographic assumptions, MCSP has a pseudorandom self-
reduction. This is a new notion we define by relaxing the notion of a random self-reduction to
allow queries to be pseudorandom rather than uniformly random. As a consequence we derive
a weak form of a worst-case to average-case reduction for (a promise version of) MCSP. Our
result also distinguishes MCSP from natural NP-complete problems, which are not known to
have worst-case to average-case reductions. Indeed, it is known that strong forms of worst-
case to average-case reductions for NP-complete problems collapse the Polynomial Hierarchy.
We prove the first non-trivial formula size lower bounds for MCSP by showing that MCSP
requires nearly quadratic-size De Morgan formulas.
We show average-case superpolynomial size lower bounds for MKTP against AC0[p] for any
prime p.
We show the hardness of MKTP on average under assumptions that have been used in much
recent work, such as Feige’s assumptions, Alekhnovich’s assumption and the Planted Clique
conjecture. In addition, MCSP is hard under Alekhnovich’s assumption. Using a version of
Feige’s assumption against co-nondeterministic algorithms that has been conjectured recently,
we provide evidence for the first time that MKTP is not in coNP. Our results suggest
that it might worthwhile to focus on the average-case hardness of MKTP and MCSP when
approaching the question of whether these problems are NP-hard.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases minimum circuit size problem, average-case complexity, circuit lower
bounds, time-bounded Kolmogorov complexity, hardness

Digital Object Identifier 10.4230/LIPIcs.CCC.2017.7
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Circuit-SAT problem and its instantiations for restricted classes of circuits such as CNFs
have had a major impact on complexity theory. These include the Cook-Levin theorem
showing that CNF-SAT is NP-complete, the PCP theorem showing that CNF-SAT is hard to
approximate, and more recently the connection established by Ryan Williams [35] between
“non-trivial” algorithms for Circuit-SAT and circuit lower bounds, which has led to a new
algorithmic paradigm for proving new circuit lower bounds.

A meta-computational problem that is in a sense dual to Circuit-SAT is MCSP: given
the truth table of a Boolean function f and a parameter s, determine if f has circuits of
size at most s. While Circuit-SAT asks about a property of the Boolean function encoded
by a given circuit, MCSP asks about whether an explicitly given Boolean function can be
encoded by a small circuit. It is easy to see that MCSP, like Circuit-SAT, is in NP; however,
its precise complexity is much less well understood. This is despite the fact that MCSP was
recognized as fundamental by theoretical computer scientists in the Soviet Union as early
as the 1950s, as discussed in a fascinating survey by Trakhtenbrot [34]. In the more recent
past, interest in MCSP was reawakened by a paper of Kabanets and Cai [24], building on
the “Natural Proofs” work of Razborov and Rudich [30], and there have been several papers
[5, 7, 10, 6, 9, 3, 27, 19, 18, 8] since on the complexity of the problem.

We do not have clear answers even to some basic questions about the complexity of
MCSP. These questions include: Is MCSP NP-complete? Does the MCSP problem have
similar structural properties to Circuit-SAT and other standard NP-complete problems, such
as paddability and downward self-reducibility, or does it have properties such as random
self-reducibility which are characteristic of problems such as Factoring and DiscreteLogarithm
which are used in cryptography? What is the strongest evidence we can provide that MCSP
is not in polynomial time? Are there formal connections between variants of MCSP which
arise from using different circuit classes or fixing the parameter s in advance? Can we show
unconditional complexity lower bounds for MCSP, for restricted classes of circuits such as
sub-quadratic size formulas and sub-exponential size constant depth circuits with prime
modular gates?

Our main argument in this paper is that it is valuable to look at MCSP through the lens
of average-case complexity. By adopting this perspective, we are able to make progress on all
of the questions above. We must first explain, however, what we mean by the average-case
complexity of MCSP. Rather than studying MCSP itself, we study its parameterized version
MCSP[s], where the size function s is given in advance. We consider the complexity of this
problem under the uniform distribution on inputs to the problem. Note that an input to the
problem is simply the truth table of a Boolean function, so the distribution on inputs we
consider corresponds to the uniform distribution on n-bit Boolean functions, which is fairly
natural in this context. When the size function s(n) = o(2n/n), most Boolean functions do
not have circuits of size s, and hence most inputs to the problem MCSP[s] are NO inputs.
Thus the problem is highly biased, and the algorithm just outputting NO on all instances
has a very high probability of success. This means that it is uninteresting to consider a
version of average-case complexity where the algorithm is allowed to make errors. Instead,
we consider the standard zero-error notion, where the algorithm never outputs an incorrect
answer, but is allowed to output ’?’ when it doesn’t know the answer for an input.

Why do we believe studying the average-case complexity is more fruitful than studying
the worst-case complexity? For one thing, it makes the theory cleaner. Let C1 and C2 be
classes of circuits such that C1 ⊆ C2, and for a size function s = o(2n/n), let MCSP-C1[s] and
MCSP-C2[s] be the variants of MCSP corresponding to the classes C1 and C2 respectively.
Intuitively, it seems that MCSP-C2[s] must be at least as hard a problem as MCSP-C1[s]
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given that it concerns a more general class of circuits; however, in the setting of worst-case
complexity, no formal connection between the two problems is known. In the setting of
average-case complexity, in contrast, it is quite easy to show that the identity function is a
reduction from the latter to the former. Similarly, given size functions s1 and s2 such that
s1 ≤ s2, it seems that MCSP[s2] should be at least as hard as MCSP[s1]. Again, no formal
reduction is known in the worst-case setting, but the identity function works as a reduction
in the average-case setting. Thus the average-case setting seems to correspond more closely
to our intuitions about the complexity of the problem.

A second point is that current techniques for proving results about the complexity of
MCSP almost invariably yield results also on the average-case complexity. Most techniques
we know go through some notion of pseudorandomness, and pseudorandomness is intrinsically
an average-case notion. Thus, if we aim to prove results on the hardness of MCSP using
current techniques, we should first aim for average-case hardness rather than worst-case
hardness.

We now proceed to give a more detailed description of our results. In some cases, our
results are not about MCSP but about a surrogate of it called MKTP. Rather than asking if
the input has small circuits when interpreted as the truth table of a Boolean function, the
MKTP problem asks if the input is compressible by a program from which individual bits of
the input can be efficiently computed. Thus, while MCSP is a question about compression
by circuits, MKTP is a question about compression by programs. For a formal definition,
we refer to Section 2. Using known strong relationships between uniform and non-uniform
complexity, MCSP and MKTP are closely related, and until recently all known results about
one problem also applied to the other. A recent exception is [3], and our paper is another
exception - it seems that hardness results are occasionally easier to show for MKTP because
it corresponds to a more fine-grained notion of compressibility than MCSP.

1.1 Our Results
We first investigate the possibility of worst-case to average-case connections for MCSP. It is
known that nonadaptive worst-case to average-case connections for NP-complete problems
collapse the Polynomial Hierarchy [12]. Hence, if we could show a worst-case to average-case
connection for MCSP, it would give strong evidence against the NP-hardness of MCSP. We
are not able to do this; however, under standard cryptographic assumptions, we give a
pseudorandom self-reduction for a promise version of MCSP. Recall that a random self-
reduction is a reduction from a computational problem to itself where the queries are
uniformly distributed and of the same length as the input. A random self-reduction gives a
strong worst-case to average-case connection for a problem. Our notion of pseudorandom self-
reduction relaxes the original notion by allowing the queries to be pseudorandomly distributed
rather than randomly distributed. While our result does not give evidence that MCSP is not
NP-complete, it does distinguish the MCSP problem from natural NP-complete problems,
for which pseudorandom self-reductions are unknown even under standard cryptographic
assumptions, to the best of our knowledge.

I Theorem 1 (Pseudorandom self-reductions: Informal Version). Suppose exponentially hard
one-way functions exist. Let s be a size function such that s(n) = nω(1) and s(n) = o(2n/n).
There is a constant c such that there is a pseudorandom self-reduction for the promise version
of MCSP, where the YES instances are truth tables of Boolean functions of circuit complexity
at most s(n) − nc and the NO instances are truth tables of Boolean functions of circuit
complexity at least s(n) + nc.

CCC 2017
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Though pseudorandom self-reductions do not give worst-case to average-case reductions
in full generality as random self-reductions, they do give a weak version of such reductions,
as described in more detail in Section 3. The proof idea we use to establish Theorem 1 is a
twist on the idea used by [30] to rule out natural proofs under cryptographic assumptions.

Next we attempt to prove unconditional lower bounds for MCSP, and MKTP. We show
such lower bounds in two settings where lower bounds were unknown. The first is a lower
bound for MCSP against subquadratic De Morgan formulae, and the second is an average-case
lower bound for MKTP against polynomial-size constant depth circuits with Mod p gates, for
prime p. Both proofs exploit connections with pseudorandom generators, in the first case the
pseudorandom generators of [20] against formulas, and in the second case the pseudorandom
generators of [14] against AC0[p] using resamplability. Note that in both settings traditional
lower bound techniques such as the method of random restrictions, the Neciporuk technique
and the polynomial method do not appear to be directly applicable.

I Theorem 2 (Unconditional lower bounds: Informal Version). There are size functions s and
s′ such that MCSP[s] does not have De Morgan formulae of size N2−Ω(1), and MKTP[s′]
cannot be decided with Ω(1) success on average by polynomial-size constant-depth circuits
with Mod p gates, where p is any prime.

Finally, and perhaps most strikingly, we show the hardness of MKTP on average under
various assumptions that have been intensively studied recently, such as Feige’s hypothesis
[15], Alekhnovich’s hypothesis [2] and the Planted Clique conjecture [23, 26]. These are
the first hardness results for MCSP or MKTP under assumptions for problems that are not
known to be in SZK. The fact that MKTP is hard on average under average-case hardness
assumptions about NP-complete problems such as SAT and Clique might be taken as providing
mild evidence in favour of the problem being NP-hard. Also, it has been conjectured by
Ryan O’Donnell (personal communication) that Feige’s hypothesis holds even with respect to
co-nondeterministic polynomial time algorithms, and under this conjecture MKTP is not in
coNP. We note that [5] observe that MKTP is not in coNP under a conjecture of Rudich [31],
but the conjecture of O’Donnell is in our opinion more natural and plausible, relating as it
does to Random Satisfiability, which is a problem that has been well studied algorithmically.

I Theorem 3 (Hardness on Average under Popular Conjectures, Informal Version). MKTP is
hard on average assuming Feige’s hypothesis, Alekhnovich’s hypothesis or the Planted Clique
conjecture. MCSP is hard on average assuming Alekhnovich’s hypothesis.

2 Preliminaries and Notation

2.1 Boolean Function Complexity
We use Fm to denote the set of all Boolean functions f : {0, 1}m → {0, 1}. If W is a
probability distribution, we use w ∼ W to denote an element sampled according to W .
Similarly, for a finite set A, we use a ∼ A to denote that a is selected uniformly at random
from A. Under this notation, f ∈ Fm represents a fixed function, while f ∼ Fm is a
uniformly random function. For convenience, we let Un

def= {0, 1}n. Following standard
notation, X ≡ Y denotes that random variables X and Y have the same distribution. We
use standard asymptotic notation such as o(·) and O(·), and it always refer to a parameter
n→∞, unless stated otherwise.

We say that f, g ∈ Fn are ε-close if Prx∼Un
[f(x) = g(x)] ≥ 1− ε. We say that h ∈ Fn

computes f with advantage δ if Prx∼Un [f(x) = h(x)] ≥ 1/2 + δ. It will sometimes be
convenient to view a Boolean function f ∈ Fm as a subset of {0, 1}m in the natural way.
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We often represent Boolean functions as strings via the truth table mapping. Given a
Boolean function f ∈ Fn, tt(f) is the 2n-bit string which represents the truth table of f in
the standard way, and conversely, given a string y ∈ {0, 1}2n , fn(y) is the Boolean function
in Fn whose truth table is represented by y.

We identify each Boolean function f : {0, 1}∗ → {0, 1} with a language L ⊆ {0, 1}∗,
where for any x ∈ {0, 1}∗, x ∈ L iff f(x) = 1. A promise problem is a pair (ΠY ES ,ΠNO)
of languages over {0, 1}, such that ΠY ES ∩ ΠNO = ∅. We say a language L ⊆ {0, 1}∗ is
consistent with a promise problem (ΠY ES ,ΠNO) if ΠY ES ⊆ L and ΠNO ⊆ L̄.

Let C = {Cn}n∈N be a class of Boolean functions, where each Cn ⊆ Fn. Given a language
L ⊆ {0, 1}∗, we write L ∈ C if for every large enough n we have that Ln

def= {0, 1}n ∩ L is in
Cn. Often we will abuse notation and view C as a class of Boolean circuits. For convenience,
we use number of wires to measure circuit size. We denote by C[s(n)] the set of n-variable
C-circuits of size at most s(n). As usual, we say that a uniform complexity class Γ is contained
in C[poly(n)] if for every L ∈ Γ there exists k ≥ 1 such that L ∈ C[nk].

Given a sequence of Boolean functions {fn}n∈N with fn : {0, 1}n → {0, 1}, we let Cf

denote the extension of C that allows Cn-circuits to have oracle gates computing fn.
We will use a few other standard notions, and we refer to standard textbooks in compu-

tational complexity and circuit complexity for more details.

2.2 Natural Proofs and the Minimum Circuit Size Problem
We say that R = {Rn}n∈N is a combinatorial property (of Boolean functions) if Rn ⊆ Fn
for all n. We use LR to denote the language of truth-tables of functions in R. Formally,
LR = {y | y = tt(f) for some f ∈ Rn and n ∈ N}.

I Definition 4 (Natural Properties [30]). Let R = {Rn} be a combinatorial property, C
a circuit class, and D a (uniform or non-uniform) complexity class. We say that R is a
D-natural property useful against C[s(n)] if there is n0 ∈ N such that the following holds:
(i) Constructivity. LR ∈ D.
(ii) Density. For every n ≥ n0, Prf∼Fn

[f ∈ Rn] ≥ 1/2O(n).
(iii) Usefulness. For every n ≥ n0, we have Rn ∩ Cn[s(n)] = ∅.

I Definition 5 (Minimum Circuit Size Problem). Let C be a circuit class. The Minimum
Circuit Size Problem for C, abbreviated as MCSP-C, is defined as follows:

Input. A pair (y, s), where y ∈ {0, 1}2n for some n ∈ N, and 1 ≤ s ≤ 2n is an integer
(inputs not of this form are rejected).
Question. Does fn(y) have C-circuits of size at most s?

We also define variants of this problem, where the circuit size is not part of the input.

I Definition 6 (Parameterized Minimum Circuit Size Problem). Let C be a circuit class, and
s : N → N be a function. The Minimum Circuit Size Problem for C with parameter s,
abbreviated as MCSP-C[s], is defined as follows:

Input. A string y ∈ {0, 1}2n , where n ∈ N (inputs not of this form are rejected).
Question. Does fn(y) have C-circuits of size at most s(n)?

I Definition 7 (Parameterized Minimum Circuit Size Gap Problem). Let C be a circuit class,
and let c, s : N→ N be functions such that c(n) ≥ s(n) for all n ∈ N. The Minimum Circuit
Size Gap Problem for C with parameters c and s, abbreviated as MCSP-C[c, s] is a promise
problem defined as follows:

CCC 2017
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YES Instance. Any string y ∈ {0, 1}2n , where n ∈ N, such that fn(y) has C-circuits of
size at most s(n).
NO Instance. Any string y ∈ {0, 1}2n , where n ∈ N, such that fn(y) has no C-circuits of
size at most c(n).

When C is not explicitly specified, we take C to be the class of Boolean circuits.
Note that a dense property useful against C[s(n)] is a dense subset of the complement of

MCSP-C[s].

2.3 Time-Bounded Kolmogorov Complexity and MKTP
KT-complexity was proposed in [5] in order to model circuit complexity in terms of time-
bounded Kolmogorov complexity: it is known that KT(tt(f)) and the minimum circuit
size of f are polynomially-related to each other. As usual, we fix a universal random-access
Turing machine U that simulates all Turing machines efficiently. The KT-complexity of a
string x is the minimum of |d|+ t, where d is a string for describing x implicitly and t is the
time it takes to output x. More formally, we have the definition below, where Ud denotes
the Turing machine U with random access to the string d:

I Definition 8 (KT-complexity [5]). Let x = x1 · · ·xn ∈ {0, 1}n. The KT-complexity of x is
defined as follows.

KT(x) := min{|d|+ t | Ud(i) = xi in t steps for any 1 ≤ i ≤ n+ 1 }.

Here, xn+1 is defined as ⊥ (a stop symbol).

For this complexity measure, a problem related to MCSP is defined as follows.

I Definition 9 (Minimum Kolmogorov Time-bounded Complexity Problem). The Minimum
Kolmogorov Time-bounded Complexity Problem, abbreviated as MKTP, is defined as follows:

Input. A pair (y, s), where y ∈ {0, 1}∗ and s ∈ N (inputs not of this form are rejected).
Question. KT(y) ≤ s ?

I Definition 10 (Parameterized Minimum Kolmogorov Time-bounded Complexity Problem).
Let s : N→ N be a function. The Minimum Kolmogorov Time-bounded Complexity Problem
with parameter s, abbreviated as MKTP[s], is defined as follows:

Input. A string y ∈ {0, 1}∗.
Question. KT(y) ≤ s(|y|) ?

2.4 Average-Case Complexity
We require various notions of easiness on average. Let D = {Dn}, n ∈ N, be a sequence
of distributions, where each Dn has support in {0, 1}n. A distributional problem is a pair
(L,D), where L ⊆ {0, 1}∗ and D is a sequence of distributions.

I Definition 11 (Easiness on Average). Let C be a (uniform or non-uniform) complexity
class, and let ε : N→ [0, 1] be a success parameter. We say a distributional problem (L,D)
is solvable in C on average with success ε if there is a C-algorithm A such that for each
x ∈ {0, 1}∗, A(x) = L(x) or A(x) =′?′, and for each n ∈ N, with probability at least ε(n)
over x ∼ Dn, A(x) = L(x). We say that a language L is in C on average with success ε if
(L,Un) is in C on average with success ε.
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We observe that the easiness on average of certain variants of MCSP is equivalent to
natural proofs, and moreover that the easiness on average is robust with regard to the success
parameter.

I Proposition 12 (Natural Proofs and Easiness of MCSP on Average). Let s : N → N be a
size function such that s(n) = 2n/nω(1). The following are equivalent:
1. For all c > 0 there are P-natural (resp. SIZE(poly)-natural) properties useful against

SIZE(s(cn)).
2. For all c > 0 MCSP[s(cn)] is solvable in P (resp. SIZE(poly)) on average with success

1/ poly(N), where N = 2n is the input size for the MCSP problem.
3. For all c > 0 MCSP[s(cn)] is solvable in P (resp. SIZE(poly)) on average with success

probability 1− 1/poly(N).

Proof. We provide just a sketch. Let C be P or SIZE(poly). The proof is based on two
observations. The first is that a C-natural property of density ε useful against s(n)-size
Boolean circuits immediately yields that MCSP[s] is in C on average with success ε, simply
by using the constructivity of the property and answering ’?’ on any input truth table that
does not satisfy the property. Conversely, if MCSP[s] is in C on average with success ε, this
implies a C-natural property with density ε− 1/Nω(1), where a truth table is in the property
iff the average-case algorithm answers 0 on the truth table. Since s(n) = 2n/nω(1), the
algorithm can only answer 1 on a 1/Nω(1) fraction of inputs, and hence the density of inputs
on which the algorithm answers 0 is at least ε− 1/Nω(1).

The second observation is that the density for natural properties can be amplified, with
some cost to the usefulness. Given a natural property R, we define a property R′ by splitting
up the input truth table for R′ into independent blocks, and accepting iff at least one of the
blocks satisfies R. A simple calculation shows that by choosing the block size appropriately,
a property with density 1/ poly(N) can be transformed into one with density 1− 1/ poly(N),
with the new property being useful against circuits of size s(cn) for some c > 0 if the original
property is useful against circuits of size s(n). J

We also introduce and use a more refined definition of easiness on average, where we
separate the complexity of the algorithm solving the problem on average from the complexity
of the error set (or more precisely a not too large superset of the error set).

I Definition 13 (Easiness on Average with Bounded Complexity Error Set). Let B and C be
(uniform or non-uniform) complexity classes, and let ε : N→ [0, 1] be a success parameter.
We say a distributional problem (L,D) is solvable in C on average with B-bounded success ε
if there is a C-algorithm A and a B-algorithm A′ such that for each x ∈ {0, 1}∗, A(x) = L(x)
or A(x) =′?′, A(x) =′?′ implies A′(x) = 1, and for each n ∈ N, with probability at least
ε(n) over x ∼ Dn, A′(x) = 0. We say that a language L is in C on average with B-bounded
success ε if (L,Un) is in C on average with B-bounded success ε. We say that a language L
is feasibly in C on average with success ε if L is in C on average with SIZE(poly)-bounded
success ε.

We observe that the above notion is equivalent to the notion in Definition 11 when B = C

and C is a standard complexity class such as P or SIZE(poly).

I Proposition 14 (Specialization of the Refined Notion of Average-Case Easiness to the Standard
Notion). Let C = P or SIZE(poly), and ε : N→ [0, 1] be a success parameter. L is in C on
average with C-bounded success ε iff L is in C on average with success ε.

CCC 2017
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Proof. The forward direction is immediate. For the backward direction, let A be a C-
algorithm solving L on average with success ε. We define a C-algorithm A′ as follows:
A′(x) = 1 iff A(x) =′?′. It is easy to see that A and A′ satisfy the conditions in Definition 13,
showing that L is in C on average with C-bounded success ε. J

2.5 Randomness and Pseudorandomness
I Definition 15 (Indistinguishability). Let C be a (uniform or non-uniform) complexity class,
and {Dn}, {D′n}, n ∈ N be sequences of distributions such that for each n, Dn and D′n are
supported on {0, 1}n. Let ε : N→ [0, 1] be an error parameter. We say {Dn} and {D′n} are
ε-indistinguishable by C if for all L ∈ C and all large enough n,∣∣∣∣ Pr

w∼Dn

[L(w) = 1]− Pr
w∼D′n

[L(w) = 1]
∣∣∣∣ ≤ ε(n).

By default, the parameter ε(n) in the above definition is taken to be 1/n.

I Definition 16 (Pseudorandom Generators). Let ` : N → N, h : N → N and ε : N → [0, 1]
be functions, and let C be a circuit class. A sequence {Gn} of functions Gn : {0, 1}`(n) →
{0, 1}n is an (`, ε) pseudorandom generator (PRG) against C if {Gn(U`(n))} and {Un} are ε-
indistinguishable by C. The pseudorandom generator is called quick if its range is computable
in time 2O(`(n)).

We define random reducibility between languages, and random self-reducibility.

I Definition 17 (Random Self-Reducibility). Let L,L′ ⊆ {0, 1}∗ be languages. L is said to
be randomly reducible to L′ if there are constants k, ` and polynomial-time computable
functions g : {0, 1}∗ → {0, 1}∗ and h : {0, 1}∗ → {0, 1} satisfying the following conditions:
1. For large enough n, for every x ∈ {0, 1}n and for each i ∈ N such that 1 ≤ i ≤ nk,

g(i, x, r) ∼ Un when r ∼ Un` .
2. For large enough n and for every x ∈ {0, 1}n:

L(x) = h(x, r, L′(g(1, x, r)), L′(g(2, x, r)), . . . , L′(g(nk, x, r)))

with probability ≥ 1− 2−n when r ∼ Un` .

We say L is randomly self-reducible if L is randomly reducible to L. Also, given a promise
problem Q = (ΠY ES ,ΠNO) and a language L, we say Q is randomly reducible to L if the first
condition above holds for all large enough strings but the second condition is only required
to hold for strings x ∈ ΠY ES ∪ΠNO.

We also define a new notion of pseudorandom reducibility by relaxing the first condition
in the above definition.

I Definition 18 (Pseudorandom Self-Reducibility). Let C be a complexity class. Let Q =
(ΠY ES ,ΠNO) be a promise problem, where ΠY ES ,ΠNO ⊆ {0, 1}∗, and let L ⊆ {0, 1}∗ be
a language. Q is said to be pseudorandomly reducible to L with respect to C if there
are constants k, ` and polynomial-time computable functions g : {0, 1}∗ → {0, 1}∗ and
h : {0, 1}∗ → {0, 1} satisfying the following conditions:
1. For every sequence {(xn, in)}, n ∈ N where xn ∈ {0, 1}n and 1 ≤ in ≤ nk for all n ∈ N,
{g(in, xn, Un`)} and {Un} are indistinguishable by C.
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2. For large enough n and for every x ∈ (ΠY ES ∪ΠNO) ∩ {0, 1}n:

L(x) = h(x, r, L(g(1, x, r)), L(g(2, x, r)), . . . , L(g(nk, x, r)))

with probability ≥ 1− 2−n when r ∼ Un` .

Q is said to be pseudorandomly self-reducible with respect to C if there is a language L
consistent with Q such that Q is pseudorandomly reducible to L with respect to C.

I Definition 19 (Pseudorandom Functions). Let s : N→ N be a size function, and let C be a
complexity class. A pseudo-random function generator (PRFG) with seed length ` against
C is a sequence of functions {Fn}, Fn : {0, 1}`(n) → {0, 1}2n such that the function Gn(z, i)
giving the i’th bit of Fn(z) is computable in time poly(n), and the distributions Fn(U`(n))
and U2n are 1/2n -indistinguishable by C.

We note that the definition of pseudorandom functions given here is somewhat different
from the standard notion [16], where the distinguisher circuit only gets oracle access to the
function it is trying to distinguish from random. Our notion is stronger, and more relevant to
the current setting. As shown by [30], the construction of [16] gives pseudorandom functions
according to Definition 19, under the assumption that exponentially hard one-way functions
exist. We now define this concept.

I Definition 20 (Exponentially Hard One-way Functions). A sequence {fn}, n ∈ N of functions,
where fn : {0, 1}n → {0, 1}n is said to be a exponentially hard one-way function if {fn}
is polynomial-time computable, and there is a constant ε > 0 such that for any sequence
{Cn} of circuits, where Cn has size at most 2nε for large enough n, Pry∼Un

(fn(Cn(fn(y))) =
fn(y)) < 1/2nε .

I Theorem 21 (PRFG from One-Way Functions; Goldwasser-Goldreich-Micali [16]). If expo-
nentially hard one-way functions exist, then there is a PRFG with seed length poly(n) against
SIZE(poly).

In a seminal result with significant implications for the provability of circuit lower
bounds, Razborov and Rudich [30] showed that the existence of pseudorandom functions is
incompatible with the existence of natural properties.

I Theorem 22 (Ruling out Natural Properties using Pseudorandom Function [30]). If exponen-
tially hard one-way functions exist, then there are no SIZE(poly)-natural properties useful
against SIZE(poly).

3 Pseudorandom Self-Reducibility for MCSP

I Theorem 23. Suppose exponentially hard one-way functions exist. Let s : N→ N be a size
bound such that s(n) = nω(1). Then there is a constant c > 0 such that MCSP[s+ nc, s− nc]
is pseudorandomly self-reducible with respect to SIZE(poly).

Proof. Suppose that exponentially hard one-way functions exist. By Theorem 21, there
is a PRFG {Fn} with seed length poly(n) against SIZE(poly). Let c be a constant such
that the function Gn corresponding to Fn in Definition 19 is computable in time nd for
some constant d < c, and hence by Boolean circuits of size < nc, using the standard
simulation of deterministic time by circuit size. We show that there is a pseudorandom
reduction from MCSP[s + nc, s − nc] to MCSP[s]. As the language MCSP[s] is consistent
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with the promise problem MCSP[s+ nc, s− nc], this yields a pseudorandom self-reduction
for MCSP[s+ nc, s− nc].

The idea is that the pseudorandom self-reduction is a 1-query reduction which uses its
randomness to generate a function pseudorandomly and then XORs the pseudorandom
function with the input truth table. It is not hard to see that the output of this process is
still pseudorandom; however, the circuit size of the Boolean function corresponding to the
output differs from the circuit size of the function corresponding to the input by at most nc.

We define functions g and h which define a pseudorandom reduction by Definition 18. We
choose the constant k to be 0, i.e., this is a pseudorandom reduction which makes just 1 query.
Hence we can assume that g has just 2 parameters y and r. Let y ∈ {0, 1}N be an input,
where N = 2n. This is the only case we need to argue about – when N is not a power of 2,
we can define g(y, r) to be a uniformly random string of length N , and h(y, r, b) = b for any y
of length N , random string r and bit b; then, the conditions of Definition 18 are satisfied, as
no strings of length N are YES instances of either the promise problem MCSP[s+ nc, s− nc]
or the language MCSP[s]. In what follows, we assume N = 2n.

The pseudorandom reduction uses a random string r of length `(n), where ` is the seed
length for the PRFG given by Theorem 21 against SIZE(poly). We define g(y, r) = y⊕Fn(r).
As in the previous paragraph, we define h(y, r, b) = b for any y of length N , random string r
of length `(n) and bit b.

We argue that this is indeed a valid pseudorandom reduction from MCSP[s+nc, s−nc] to
MCSP[s] for any size function s(n) = nω(1). First we need to show that for any sequence {yN}
of inputs, where |yN | = N , g(yN , U`(n)) and UN are 1/N -indistinguishable by SIZE(poly).
Suppose, to the contrary, that there is a sequence of circuits {CN} 1/N -distinguishing the
two distributions, where the size of CN is poly(n). Consider the sequence of circuits {C ′N},
where C ′N (z) = CN (z ⊕ yN ) for any input z of length N . The circuits {C ′N} are also of size
poly(N), and it is easy to see that they 1/2n-distinguish the distributions Fn(U`(n)) and UN ,
using the fact that N = 2n. But this is a contradiction to the assumption that {Fn} is a
PRFG against SIZE(poly).

Next, we need to show that for any y of length N , if y is a YES instance of MCSP[s+nc, s−
nc], then h(y, r,MCSP[s](g(y, r))) = 1 with probability at least 1− 2−n over the choice of r,
and similarly, if y is a NO instance of MCSP[s+nc, s−nc], then h(y, r,MCSP[s](g(y, r))) = 0
with probability at least 1−2−n over the choice of r. In the former case, we have that fn(y) has
circuit complexity at most s−nc, as y is a YES instance. Hence for any r, f ′ = fn(y⊕Fn(r))
has circuit complexity at most s, since the function Gn corresponding to Fn is computable
by circuits of size less than nc by assumption, for any r. Therefore MCSP[s](g(y, r) =
MCSP[s](tt(f ′)) = 1 with probability 1 over r, and hence h(y, r,MCSP[s](g(y, r))) = 1 with
probability 1 over r, as h just outputs its last parameter. A completely analogous argument
establishes the claim for an arbitrary NO instance. J

I Theorem 24. Let B and C be complexity classes such that C contains BPP and is closed
under probabilistic polynomial-time disjunctive truth-table reductions, and let s : N→ N be a
size function. Let ε : N→ [0, 1] be a success parameter such that ε ≥ 2/N . Suppose there is a
pseudorandom function generator against B. There is a constant c > 0 such that if MCSP[s]
is in C on average with B-bounded success ε, then MCSP[s+ nc, s− nc] is in C.

Proof. By assumption, there is a pseudorandom function generator {Fn} against B; without
loss of generality, the sequence of functions {Gn} corresponding to this generator is computable
in size < nc for some constant c. Let A be the C-algorithm solving MCSP[s] on average, and
let A′ be the B-algorithm bounding the error set of A. As in the proof of Theorem 23, there is
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a pseudorandom reduction from MCSP[s+nc, s−nc] to MCSP[s] given by g(y, r) = y⊕Fn(r)
and h(y, r, b) = b, where |y| = 2n. The key idea is that because {Fn} is pseudorandom against
B, A′ cannot distinguish the output of the pseudorandom reduction from a purely random
string of the same length, and this means that with noticeable probability, the output of the
reduction must fall outside the error set. More precisely, let SN be the set of N -bit inputs
on which A′ outputs 0, i.e., SN does not intersect the error set. The density of SN is at least
ε, and this means that the probability that the output of the pseudorandom reduction is
in SN is at least ε − 1/N ≥ 1/N by assumption on ε, for if not, D(z) = A′(y ⊕ z) would
1/N -distinguish UN from the distribution given by the pseudorandom function generator.
By running the reduction O(N) times independently, and each time simulating A on the
output and outputting the answer if it is not ’?’, we get a C-algorithm for MCSP, using the
assumed closure properties of C. J

I Corollary 25. Suppose exponentially hard one-way functions exist. Let s : N→ N be a size
function such that s(n) = nω(1). There is a constant c such that if MCSP[s] is feasibly on
average in SZK, then MCSP[s+ nc, s− nc] is in SZK.

Corollary 25 follows from Theorem 24 by using Theorem 21 and the fact that SZK is
known to be closed under disjunctive truth-table reductions.

4 De Morgan Formula Lower Bounds for MCSP

In this section, we will prove an unconditional formula lower bound for computing MCSP.

I Theorem 26. MCSP[s] requires a de Morgan formula of size n2−O(1/
√

logn) for s(n) =
n1/2
√

logn.

Throughout this section, Γ denotes the shrinkage exponent (i.e. Γ = 2 [17]). For a Boolean
function f , L(f) denotes the minimum size of a de Morgan formula that computes f . We say
that a random restriction ρ : [n]→ {0, 1, ∗} is p-regular if Pr[ρ(xi) = ∗] = p for any i ∈ [n].

4.1 A Review of Impagliazzo, Meka and Zuckerman [20]
The proof is based on the results by Impagliazzo, Meka and Zuckerman [20], which show
that a pseudorandom restriction is enough to shrink de Morgan formulas:

I Lemma 27 (Impagliazzo, Meka and Zuckerman [20]). Let f : {0, 1}n → {0, 1} and pΓL(f) ≥
1. Let Rp,l be a distribution of p-regular l-wise random restrictions. Then, Eρ∼Rp,l

[L(f)] ≤
O(pΓL(f)) for l := p−Γ.

Proof Sketch (based on [25]). The idea is to decompose the formula of size L(f) into the
small subformulas of size at most l := p−Γ, which enables us to argue that each subformula
shrinks under l-wise random restriction. Specifically, by using the fact that a tree of leaf size
s can be decomposed into two trees each of which is of size between s/3 and 2s/3 (as in the
proof of Spira’s theorem [33]), we can decompose a de Morgan formula computing f into
subformulas g1, . . . gm such that l/6 ≤ L(gi) ≤ l for each i ∈ [m]. Note that m ≤ 6L(f)/l.
The variables of these subformulas consist of, in addition to the original variables of f , special
variables1 which refer to the other subtrees. Thus, we have L(f |ρ) ≤

∑m
i=1 L(gi|ρ′) for any

1 In this proof, we do not count the number of special variables in the size L(gi) of subformulas.
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restriction ρ, where ρ′ denotes the restriction such that ρ′(xi) = ∗ if xi is a special variable
and ρ′(xi) = ρ(xi) otherwise. Furthermore, by some appropriate conversion, we may assume
that each gi has at most two special variables.

From now on the goal is, instead of upper bounding Eρ∼Rp,l
[L(f |ρ)], to bound

Eρ∼Rp,l
[L(gi|ρ′)]. By using a formula for computing the addressing function, we have

L(gi|ρ′) ≤
∑
σ∈{0,1}S (L(gi|σρ′) + |S|), where S denotes the set of special variables in gi and

σ denotes an arbitrary assignment to special variables. Once the special variables are removed
from gi by applying a restriction σ, it holds that

E
ρ∼Rp,l

[L(gi|σρ′)] = E
ρ∼Rp,∞

[L(gi|σρ′)] ≤ pΓL(gi),

where the first equality holds because gi|σ depends on at most l variables and the second
equality holds because of the definition of the shrinkage exponent. To summarize,

E
ρ∼Rp,l

[L(f |ρ)] ≤
m∑
i=1

E
ρ∼Rp,l

[L(gi|ρ′)]

≤
m∑
i=1

∑
σ∈{0,1}S

(
E
ρ
[L(gi|σρ′)] + |S|

)

≤
m∑
i=1

4
(
pΓL(gi) + 2

)
≤ m · 4(pΓl + 2)
≤ m · 4(pΓl + 2pΓl) (since l ≥ p−Γ)
= 12pΓml

≤ 72pΓL(f) (since m ≤ 6L(f)/l) . J

In the standard situation, we set p = n−Ω(1), and hence we require as large independence
as nΩ(1)-wise in the previous lemma. However, we can significantly reduce the number of
random bits needed to generate pseudorandom restrictions by composing l = 2O(

√
logn)-wise

independent random restriction r = O(
√

logn) times:

I Theorem 28 (Impagliazzo, Meka and Zuckerman [20]). Let f : {0, 1}n → {0, 1} and
pΓL(f) ≥ 1. Let q = p1/r for some nonnegative integer r ≥ 1. Let Rrp,l be a distribu-
tion of the composition of r independent q-regular l-wise random restrictions. (Hence, the
composed random restriction is p-regular.) Then, Eρ∼Rr

p,l
[L(f)] ≤ crpΓL(f) for l := q−Γ and

for some constant c.

Proof. By induction on r ≥ 1. Let c = 72 be the universal constant in Lemma 27. The
base case is exactly the same with Lemma 27. Now let us assume r > 1. Fix a composition
ρ0 ∈ supp(Rr−1

p,l ) of r − 1 restrictions. We pick a l-wise independent random restriction
ρ1 ∼ Rp,l. By applying Lemma 27 for f |ρ0 , we obtain

E
ρ1∼Rp,l

[L(f |ρ0ρ1)] ≤ cqΓL(f |ρ0).

By averaging this inequality under distribution ρ0 ∼ Rr−1
p,l , it holds that

E
ρ∼Rr

p,l

[L(f)] ≤ cqΓ E
ρ0∼Rr−1

p,l

[L(f |ρ0)]

≤ cqΓ · cr−1qΓ(r−1)L(f) (by the induction hypothesis)
= crpΓL(f). J
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4.2 Proof of Theorem 26
Now we are ready to prove the unconditional formula lower bound for MCSP. First, note
that a q-regular l-wise independent random restriction can be sampled by using random
O(l logn log 1

q ) bits, and that each coordinate of a random restriction can be computed in
time a polynomial in the number of random bits (see [11]). Hence, the output of a composition
of r q-regular l-wise independent random restrictions has circuit complexity at most s :=
poly(r, l, logn, log 1

q ) when regarded as a truth table. The circuit complexity s is significantly
smaller than the expected number pn of the unrestricted inputs under p-regular random
restrictions, for some appropriate parameters. Specifically, let p := 2

√
logn/n, q := p1/r,

l := q−Γ and r := C
√

logn for some large constant C so that s = poly(r, p−Γ/r, logn, log 1
p ) ≤

2 1
2

√
logn � pn.
By Theorem 28, we have Eρ∼Rr

p,l
[L(f |ρ)] ≤ crpΓL(f). Hence, the goal is to obtain a lower

bound on Eρ∼Rr
p,l

[L(f |ρ)]. We claim that a pseudorandom restriction does not shrink the
formula for computing MCSP:

I Lemma 29. Let ρ : [n]→ {0, 1, ∗} be a restriction such that ρ can be computed by a circuit
of size s, and let V := ρ−1(∗). Then, for f = MCSP[s], we have L(f |ρ) ≥ |V | −O(s log s).

Proof. Let V0 ⊂ V be the set of variables on which f |ρ does not depend. It suffices to claim
that |V0| = O(s log s) because L(f |ρ) ≥ |V | − |V0|.

Indeed, let σ : V → {0, 1} denote an assignment for variables in V . For σ ≡ 0, the circuit
size of the truth table ρ◦σ ∈ {0, 1}n is at most s. Hence, ρ◦σ is an YES instance of MCSP[s].
Since f |ρ does not depend on V0, any assignment σ such that V \ V0 ⊂ σ−1(0) is also an
YES instance of MCSP[s]. The number of such assignments is 2|V0|, whereas the number of
circuits of size at most s is sO(s). Therefore, we have 2|V0| ≤ 2O(s log s). J

We can easily show that |ρ−1(∗)| ≥ pn/2 with probability at least 1
2 by using pairwise

independence of ρ and Chebyshev’s inequality. Therefore,

E
ρ∼Rr

p,l

[L(f |ρ)] ≥ Pr
ρ

[
|ρ−1(∗)| ≥ pn

2

]
· E
ρ∼Rr

p,l

[
L(f |ρ)

∣∣∣ |ρ−1(∗)| ≥ pn

2

]
≥ 1

2 · (
pn

2 −O(s log s)) ≥ pn

8 ,

where the last inequality holds since O(s log s) � pn. Thus, pn8 ≤ Eρ [L(f |ρ)] ≤ crpΓL(f)
and hence L(f) ≥ np−Γ+1/8c−r = n2 · 2−O(

√
logn).

5 Average-case AC0[p] Lower Bound of MKTP

In this section, we show an unconditional average-case AC0[p] circuit lower bound of MKTP.
Our result improves a previous result [8] showing a worst-case AC0[p] circuit lower bound of
MKTP. The whole section is devoted to proving the following result:

I Theorem 30. There exists some function s(n) such that MKTP[s] is not in AC0[p] on
average with error ε, for any prime p and any constant ε ∈ (0, 1).

Our proof is based on the techniques of Fefferman, Shaltiel, Umans and Viola [14] They
gave a pseudorandom generator against AC0[p] that is implicitly computable (i.e. each output
bit of the pseudorandom generator is easy to compute, or in other words, the KT-complexity
is small). We first focus on the case when p 6= 2. In this case, we use the following
pseudorandom generator G based on PARITY.
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I Definition 31 ([14]). Define G : ({0, 1}n)k → {0, 1}nk+k as

G(x1, . . . , xk) := x1 · · ·xk · PARITY(x1) · · ·PARITY(xk)

for (x1, . . . , xk) ∈ ({0, 1}n)k.

I Lemma 32 (implicit in [14]). If there is an oracle A that distinguishes G from the uniform
distribution with advantage a constant ε > 0, then there is an AC0 circuit C with A-oracle
gates such that CA(x) = PARITY(x) for any x ∈ {0, 1}n.

Proof Sketch. For completeness, we include a brief proof sketch. They showed that, by
using resamplability of PARITY, there is an NC0 circuit C0 with one A-oracle gate such that
Prx∼Un

[CA0 (x) = PARITY(x)] ≥ 1+ε
2 ([14, Lemma 4.5]). By using resamplability again for

t independent choices of randomness (for some appropriately chosen t), we obtain circuits
CA1 , . . . , C

A
t each of which approximates PARITY. Now taking the majority vote of these

circuits, we can compute PARITY on all inputs. Here, the majority can be implemented by
using Approximate Majority [1] in AC0, because the advantage of approximating PARITY is
at least a constant ε. As a result, we obtain an AC0 circuit with A-oracle gates that computes
PARITY on all inputs ([14, Proposition 4.21]). J

Therefore, it is sufficient to claim that an average-case easiness of MKTP[s] implies that
the pseudorandom generator G can be broken. We first claim that the KT-complexity of any
output of the pseudorandom generator G in Lemma 32 is small.

I Claim 33. KT(G(x1, . . . , xk)) ≤ nk + n · polylog(n) for any seed (x1, . . . , xk) ∈ ({0, 1}n)k.

Proof. We use a description d := (x1, . . . , xk). Given an index i ∈ {1, . . . nk + k} of
G(x1, . . . , xk), if i ≤ nk then output the ith bit of the description d; if i > nk then compute
and output PARITY(xi−nk), which takes O(n) steps. A universal machine simulates this
computation in time n · polylog(n). J

Therefore, for k := n3, it holds that KT(G(x1, . . . , xk)) ≤ nk + o(k) (and thus an MKTP
oracle distinguishes G from the uniform distribution).

Now let us assume, towards a contradiction, that there is an AC0[p] circuit A0 that
computes MKTP[s] all but an ε fraction of inputs with zero-sided error. We define another
circuit A as A(x) := 1 if A0(x) = 1 or ?; otherwise A(x) := 0. Note that A does not err on
yes instances of MKTP[s]. We claim that that A breaks G.

I Claim 34. Let s(n) := n−
√
n. The following holds.

1. Pr[A(G(Un, . . . ,Un)) = 1] = 1.
2. Pr[A(Unk+k) = 1] ≤ ε+ o(1).

Proof.
1. By Claim 33, for any y = G(x1, . . . , xk) ∈ {0, 1}nk+k, we have KT(y) = nk + Õ(n) �

n4 + n3 −
√
n4 + n3 = s(nk + k); hence, y is an yes instance of MKTP[s] and A(y) = 1.

2. The point is that, under the uniform distribution, there are few yes instances in MKTP[s].
Hence, the algorithm A that solves MKTP[s] on a 1− ε fraction of instances must have a
substantial fractions of no instances on which A succeeds. Formally,

Pr
x∼Unk+k

[A(x) = 0] = Pr
x

[A0(x) = 0]

= Pr
x

[A0(x) 6=? ∧ x 6∈ MKTP[s]]

≥ Pr
x

[A0(x) 6=?]− Pr
x

[x ∈ MKTP[s]]

≥ 1− ε− 2−
√
nk+k. J
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In particular, A distinguishes the output ofG from the uniform distribution with advantage
1− ε−o(1) ≥ 1−ε

2 . Now we apply Lemma 32 to obtain an AC0 circuit CA with A-oracle gates
that solves PARITY. Since A ∈ AC0[p], it shows that PARITY ∈ AC0[p], which contradicts
the lower bounds of Razborov-Smolensky [29, 32] for odd prime p.

When p = 2, we use a pseudorandom generator GCMD based on a problem called CMD
(connectivity matrix determinant), which was introduced by Ishai and Kushilevitz [21, 22].
For the exact definition of GCMD, the reader is referred to [14]. Here we only need the
following property, which easily follows from the fact that CMD is computable in polynomial
time.

I Fact 35 (Revised Claim 33). KT(GCMD(x1, . . . , xk)) ≤ nk+nO(1) for any seed (x1, . . . , xk) ∈
({0, 1}n)k.

I Lemma 36 ([14]). If there is an oracle A that distinguishes GCMD from the uniform
distribution with advantage a constant ε > 0, then there is an AC0[2] circuit C with A-oracle
gates such that CA(x) = MAJORITY(x) for any x ∈ {0, 1}n.

Proof Sketch. The problem CMD is resamplable in AC0[2] ([14]), and hence as in Lemma 32,
CMD can be solved by an AC0[2] circuit with A-oracle gates. Since CMD is ⊕L-complete
under NC0 reductions ([22]), MAJORITY can be also solved by an AC0[2] circuit with A-oracle
gates. J

Combining Fact 35 and Lemma 36, we obtain an AC0[2] circuit that solves MAJORITY,
which contradicts the lower bound of [29, 32] for the majority function. This completes the
proof of Theorem 30.

6 MKTP and Average-case Hardness Conjectures

In this section, we show hardness of MKTP and MCSP under popular hypotheses on average-
case hardness of various problems.

6.1 Random 3SAT Hardness of MKTP
Let us consider the distribution of a random 3CNF formula on n variables such that the
formula is the conjunction of m = ∆n clauses sampled from all the possible 23(n

3
)
3-literal

clauses independently and uniformly at random. Given such a formula, Feige’s hypothesis
states that there is no polynomial-time algorithm that (1) accepts every formula for which
all but εm clauses are satisfiable (henceforth, call such a formula ε-almost satisfiable), and
(2) rejects most formulas (i.e. with probability 1

2 over the choice of a random 3CNF formula).

I Hypothesis 37 (Feige [15]). For every fixed ε > 0 and sufficiently large constant ∆ (which
are independent of n), there is no polynomial time algorithm that accepts every ε-almost
satisfiable formula, and rejects most formulas.

Note that there is a variant of the hypothesis stating that there is no polynomial time
algorithm that accepts every satisfiable formula and rejects most formulas. This variant is
stronger than Hypothesis 37 and may be sensitive to minor model changes (see [15] for more
details). Here we refute the weaker hypothesis under MKTP oracle, and hence our result is
stronger.

I Theorem 38. MKTP is random 3SAT-hard in the sense of [15]. That is, there is a
polynomial-time algorithm with oracle access to MKTP that refutes Hypothesis 37.
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Proof. We construct a many-one reduction from random 3SAT to MKTP. The reduction is
simple: given a formula ϕ, map it to (ϕ, θ) for some threshold θ chosen later. The idea is
that any ε-almost satisfiable formula is atypical, and hence it can be described efficiently
given an almost satisfying assignment (i.e. the KT-complexity of any ε-almost satisfiable
formula is small). More specifically, given an assignment x that satisfies all but εm clauses of
the formula ϕ, each clause of ϕ that is satisfied by x has (23− 1)

(
n
3
)
possibilities; hence, each

clause of ϕ (except for εm clauses) is of description length at most log 7
(
n
3
)
. On the other

hand, random 3SAT instance are chosen from the space of cardinality [23(n
3
)
]m, and thus

it has KT-complexity roughly m log 8
(
n
3
)
with high probability. Hence, the MKTP oracle

enables us to distinguish ε-almost satisfiable formulas from random formulas, by exploiting
the difference m log 8

(
n
3
)
−m log 7

(
n
3
)
in KT-complexity. Details follow.

Define θ := m log 8
(
n
3
)
−m/20. We first claim that a random 3SAT formula has KT-

complexity at least θ with high probability. Indeed, the number of strings with KT-complexity
less than θ is at most 2θ by simple counting. Thus, since a random 3SAT formula ϕ is chosen
uniformly at random out of the space of cardinarity [23(n

3
)
]m = 2θ+m/20, the probability that

KT(ϕ) < θ is at most 2−m/20.
The rest of the proof is devoted to proving ε-almost satisfiable formula is of low KT-

complexity:

I Claim 39. For sufficiently small ε > 0 and any ε-almost satisfiable formula ϕ, KT(ϕ) < θ.

In order to claim that the KT-complexity of ϕ is small, we need to implement an efficient
procedure that, given an index, outputs the clause of ϕ specified by the index, with random
access to a description of ϕ. We will describe ϕ by using an ε-almost satisfying assignment
x ∈ {0, 1}n, a subset S ∈

( [m]
≤εm

)
of clauses not satisfied by x, (1−ε)m log 7

(
n
3
)
bits to describe

clauses satisfied by x, and εm log
(
n
3
)
bits to describe clauses not satisfied by x.

In order to describe each clause of ϕ efficiently (i.e. in time polylog(m)), there are two issues
for which we need ideas from succinct data structures. One is an efficient representation of S.
Information theoretically, S can be described in log

(
m
εm

)
≤ εm log(em/εm) = mε log(e/ε) <

m/100 bits for sufficiently small ε > 0. However, a naive representation of S may not enable
us to answer a query i

?
∈ S efficiently; thus, we need the following result.

I Lemma 40 (Brodnik and Munro [13]). There exists a string dS of length log
(
m
εm

)
+o(log

(
m
εm

)
)

and an algorithm that, given random access to dS and index i, answers a query i
?
∈ S in time

polylog(m).

The other issue is the use of the ceiling function (c.f. [28, 3]). For each clause satisfied by
x, we need dlog 7

(
n
3
)
e bits (if we represent each clause separately), which is not necessarily

smaller than log 8
(
n
3
)
bits. We thus group consecutive b := 11 clauses of ϕ into one block so

that each block encodes b clauses by using at most db log 7
(
n
3
)
e bits. Since ( 7

8 )b ≤ 1
4 , we have

db log 7
(
n
3
)
e ≤ b log 8

(
n
3
)
− 1; thus, we can dispense with 1 bit for each block.

Hence, the KT-complexity of ϕ is

KT(ϕ) ≤ n+ log
(
m

εm

)
+ o

(
log
(
m

εm

))
+
⌈m
b

⌉
·
⌈
b log 7

(
n

3

)⌉
+ polylog(m)

≤ m

∆ + m

100 +m log 8
(
n

3

)
− m

b
+ o(m)

≤ m log 8
(
n

3

)
− m

20 = θ

for sufficiently large ∆ and m. J
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Recently Ryan O’Donnell (personal communication) conjectured a co-nondeterministic
version of Feige’s hypothesis, i.e., that Hypothesis 37 holds even with respect to co-
nondeterministic polynomial-time algorithms. It follows from the proof of Theorem 38
that MKTP is not in coNP under O’Donnell’s conjecture. This is the first evidence of any
kind that MCSP or MKTP is not in coNP. There has been some speculation about whether
MCSP ∈ SZK, for example this is posed as an open problem in Allender’s recent survey [4].
Under a standard derandomization hypothesis, SZK ⊆ NP ∩ coNP, hence if MKTP ∈ SZK,
either this hypothesis fails or O’Donnell’s conjecture fails.

It should be noted that our proof does not seem to carry over to the case of MCSP.
The gap between the KT-complexity of almost satisfiable formulas and random formulas is
smaller than m = o(|ϕ|), and it is not clear how to construct a small circuit which simulates
the random access machine with additive overhead smaller than m. We leave as an open
question to extend Theorem 38 to the case of MCSP.

6.2 Hardness of MCSP under Alekhnovich’s hypothesis
While we were not able to prove that MCSP is random 3SAT-hard, we can refute a strong
hypothesis about average-case complexity proposed by Alekhnovich [2] under MCSP oracle.
He considered a problem of solving linear equations under a certain noise e. Let A be an
m× n matrix over GF(2). Let Dk(A) be the distribution of a random vector Av + e, where
v is a uniform sample from GF(2)n and e ∈ GF(2)n is a uniform sample from the vectors of
Hamming weight k (i.e. the number of ones in e is k). Alekhnovich conjectured that there is
a matrix such that it is infeasible to distinguish Dk(A) from Dk+1(A) efficiently.

I Hypothesis 41 (Alekhnovich [2, Conjecture 4.5]). For every m(n) = Θ(n), there exists
a family of m(n) × n matrices {An}n∈N such that, for every function k(n) which satisfies
nε < k(n) < n1−ε for some constant ε > 0, for every efficient algorithm M , the success
probability

|Pr [M(Dk(An)) = 1]− Pr [M(Dk+1(An)) = 1] |

is negligible.

I Theorem 42. There is a polynomial-time algorithm with oracle access to MCSP that
refutes Hypothesis 41.

Proof Sketch. Alekhnovich showed that Hypothesis 41 implies the existence of a crypto-
graphic pseudorandom generator ([2, Lemma 4.14]). Now we can construct a pseudorandom
function generator as in [16], based on Hypothesis 41. On the other hand, an MCSP oracle can
distinguish the output distribution of the pseudorandom function generator from the uniform
distribution (see, e.g., [5]). Hence, there is an efficient algorithm that refutes Hypothesis 41
with oracle access to MCSP. J

6.3 Planted Clique Hardness of MKTP
Now we move on to planted clique conjectures [23, 26].

Let G(n, 1
2 ) denote the distribution of an n-vertex graph whose edges are placed with

probability 1
2 independently (i.e. an Erdős-Rényi random graph). Let G(n, 1

2 , k) be the
distribution of a random graph such that a graph is chosen from G(n, 1

2 ) and then a clique
of size k is randomly placed in the graph. The decision version of planted clique conjectures
states that there is no polynomial time algorithm that distinguishes G(n, 1

2 , k) from G(n, 1
2 ).

CCC 2017
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On average, there is a clique of size 2 logn on G(n, 1
2 ), and thus there is a quasipolynomial-

time algorithm for solving the planted clique problem by a brute force search. We show that
there is a polynomial-time algorithm with oracle access to MKTP that solves the planted
clique problem.

I Theorem 43. For any k ≥ polylog(n), there is a polynomial-time algorithm with oracle
access to MKTP that accepts every graph chosen from G(n, 1

2 , k), and rejects most random
graphs chosen from G(n, 1

2 ).

Proof. The idea is the same with the proof of random 3SAT-hardness. As a many-one
reduction from the planted clique problem to MKTP, given a random graph G, we map G to
(G, θ) for a certain parameter θ.

We first claim that the KT-complexity of most random graphs G chosen from G(n, 1
2 ) is

large. Indeed, the graph is chosen uniformly at random from the space of cardinarity 2(n
2);

thus, the probability that KT(G) is less than
(
n
2
)
− k is at most 2−k = 1/nω(1), which is

negligible. Define θ :=
(
n
2
)
− k.

Next, we claim that the KT-complexity of any graph G with k-clique is less than θ. For
this purpose, we present an efficient algorithm that, on input a pair (v, w) of vertices and
random access to a description, outputs whether G has an edge between v and w. Let S be a
k-clique of G. The description for G consists of the clique S (which is encoded in k logn bits
as the sorted list of vertices in S), and the adjacency matrix of G except for edges connecting
vertices in S (which can be encoded in

(
n
2
)
−
(
k
2
)
bits). The algorithm for describing G is as

follows: Given the description and a pair (v, w), we first check whether v ∈ S and w ∈ S by
a binary search. If v and w are in S, then we claim that there is an edge (since S is a clique).
Otherwise, we compute an index of the description of an adjacency matrix to which (v, w)
corresponds (which can be done in polylog(n) time), and then output the corresponding bit
of the description.

The length of the description is roughly k logn+
(
n
2
)
−
(
k
2
)
� θ, and the time it takes to

describe each bit of G is at most polylog(n). Hence, KT(G) < θ for any G with a k-clique. J
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Abstract
We present new consequences of the assumption that time-bounded algorithms can be “com-
pressed” with non-uniform circuits. Our main contribution is an “easiness amplification” lemma
for circuits. One instantiation of the lemma says: if n1+ε-time, Õ(n)-space computations have
n1+o(1) size (non-uniform) circuits for some ε > 0, then every problem solvable in polynomial time
and Õ(n) space has n1+o(1) size (non-uniform) circuits as well. This amplification has several
consequences:

An easy problem without small LOGSPACE-uniform circuits. For all ε > 0, we give a natural
decision problem General Circuit nε-Composition that is solvable in n1+ε time, but we
prove that polynomial-time and logarithmic-space preprocessing cannot produce n1+o(1)-size
circuits for the problem. This shows that there are problems solvable in n1+ε time which are
not in LOGSPACE-uniform n1+o(1) size, the first result of its kind. We show that our lower
bound is non-relativizing, by exhibiting an oracle relative to which the result is false.
Problems without low-depth LOGSPACE-uniform circuits. For all ε > 0, 1 < d < 2, and
e < d we give another natural circuit composition problem computable in Õ(n1+ε) time, or
in O((logn)d) space (though not necessarily simultaneously) that we prove does not have
SPACE[(logn)e]-uniform circuits of Õ(n) size and O((logn)e) depth. We also show SAT does
not have circuits of Õ(n) size and log2−o(1) n depth that can be constructed in log2−o(1) n

space.
A strong circuit complexity amplification. For every ε > 0, we give a natural problem
Circuit nε-Composition and show that if it has Õ(n)-size circuits (uniform or not), then
every problem solvable in 2O(n) time and 2O(

√
n logn) space (simultaneously) has 2O(

√
n logn)-

size circuits (uniform or not). We also show the same consequence holds assuming SAT has
Õ(n)-size circuits.
As a corollary, if n1.1 time computations (or O(n) nondeterministic time computations) have
Õ(n)-size circuits, then all problems in exponential time and subexponential space (such as
quantified Boolean formulas) have significantly subexponential-size circuits. This is a new
connection between the relative circuit complexities of easy and hard problems.
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1 Introduction

Boolean circuit complexity and machine-based computation are nicely bridged by the notion
of uniform circuits. These are circuit families where any particular circuit in the family
can be efficiently generated on demand, by an algorithm consuming few resources. We use
C-uniform SIZE[s(n)] to (informally) denote the class of problems computable by a circuit
family {Cn} of s(n)-size such that the description of Cn is computable in C for all n. (The
choice of circuit description/encoding can vary, and the results of our paper do not depend on
these choices. See Section 2 for formal definitions.) Borrowing some terminology from data
structures, one can say that uniform circuits naturally capture preprocessing/query tradeoffs
in a static model: putting a problem in C-uniform SIZE[s(n)] means that we can preprocess
with C resources to build a size-s(n) circuit, so that every subsequent n-bit instance of the
problem can be computed (queried) with that circuit.

Most work on uniform circuit complexity over the last several decades has studied
either the case where the class C is extremely weak, or is extremely strong. The extremely
weak uniform models, such as LOGTIME-uniform circuits, are the closest to machine-based
computation: any particular wire or gate of a size-s circuit Cn in the family can be computed
in only O(log s) time, proportional to the sizes of pointers to the wires/gates. The measures
of “LOGTIME-uniform circuit size” and “time” are known to coincide up to polylogarithmic
factors [22], hence there are problems solvable in n1.002 that are not in LOGTIME-uniform
SIZE[n1.001], by the time hierarchy theorem [13, 33]. On the other end of the uniformity
spectrum, non-uniform circuits require no computable bounds on generating the circuits,
and far less is known: for example, no functions in huge classes like TIME[2O(n)]SAT are
known to require even 4n-size non-uniform circuits over the basis of all Boolean functions on
two inputs, although some progress has recently been made on this front [9].

A few years ago, Santhanam and Williams [25] studied so-called “medium-uniform”
circuits, where the complexity of generating a circuit is neither very weak nor very strong,
e.g., LOGSPACE, P, and PNP-uniformity. Among other results, Santhanam and Williams [25]
proved that for some k, there is a problem solvable in nk time that does not have P-uniform
linear-size circuits; that is, they proved P 6⊂ P-uniform SIZE[O(n)]. (In fact, they proved the
stronger result that for every c, there is a kc and a problem in TIME[nkc ] that does not have
P-uniform nc-size circuits.) That is, they prove a super-polynomial time lower bound on
preprocessing linear-size circuits for solving a problem in P. (It is believed there are problems
in P without linear-size circuits period, no matter how much preprocessing is used, but this
is an infamously difficult and famous open problem.) Their techniques led to similar results
for LOGSPACE-uniform branching programs, and lower bounds for NP versus PNP

|| -uniform
linear size circuits.

There are two major drawbacks of the lower bound method of Santhanam and Williams.
The first is its extreme non-constructivity: their method is a (very) indirect diagonalization
argument. No particular problem in nk time is known to exhibit the circuit size lower bound,
and in fact the proof provides no explicit bound on k. That is, we cannot point to any
problem in P satisfying the lower bound; we cannot even point to an upper bound on the time
complexity of such a problem. This non-constructive phenomenon holds for all lower bounds
in their work, creating a frustrating state of affairs. The second more serious drawback of
their method is that it relativizes, which implies that there are hard barriers to what it can
possibly prove. In particular, we cannot expect to prove results like P 6⊂ SIZE[O(n)] via such
techniques.
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1.1 Our Results
We introduce a non-relativizing method for exploiting the weakness of small-space computa-
tions, and for “amplifying” assumptions on the circuit complexity of easy problems. Using
this method, we identify natural circuit composition problems which can easily be solved in
low-polynomial time, yet we can prove non-trivial LOGSPACE-uniform circuit lower bounds
for computing them. That is, no small-space algorithm can generate small circuits for solving
the problems, despite their tractability. Our techniques give new insight into how to prove
limitations on small-space computation. It is possible that similar ideas could potentially
apply to non-uniform models of small-space computation, such as branching programs.

I Definition 1. In the k(n)-IO Circuit t-Composition problem, we are given a Boolean
circuit C over AND/OR/NOT of size n with k(n) inputs and k(n) outputs, an input
x ∈ {0, 1}k(n), and integer t ≥ 1. The task is to output

Ct(x) := (C ◦ · · · ◦ C)︸ ︷︷ ︸
t

(x),

i.e., C composed for t times on the input x.
The k(n)-IO Circuit t-Composition problem can also be expressed as a decision

problem, by including an index i = 1, . . . , k(n) as input, and outputting the ith bit of Ct(x).
When k(n) = no(1), we simply call the problem Circuit t-Composition.

Observe that k(n)-IO Circuit t-Composition can be easily solved in Õ(n · t) time
and Õ(n) space, by straightforward simulation of the given size-n circuit for t times. (As is
standard, we let Õ(t(n)) denote t(n) · (log t(n))c for an unspecified constant c > 0.)

The circuit composition problem defined above is a sequential “chain” of circuit evaluations.
A more general version of the composition problem, which we call General Circuit t-
Composition (defined in the Preliminaries), permits connections between multiple inputs
and outputs of a given circuit; Circuit t-Composition is a special case of it. General
Circuit t-Composition is also solvable in Õ(n · t) time (see Section 2); it also requires
Ω̃(n · t) time to be solved (see Theorem 14). (We let Ω̃(s(n)) denote s(n)/(log s(n))c for a
constant c > 0.)

LOGSPACE-Uniform Circuit Lower Bounds

First, we prove circuit lower bounds for generically composing nε copies of a circuit, which is
an Õ(n1+ε)-time task:

I Theorem 2. For all ε ∈ (0, 1), General Circuit nε-Composition does not have
n1+o(1)-size circuits constructible in logarithmic space.

We stress that Theorem 2 does not relativize. In Appendix A, we exhibit (for every
constant k ≥ 1) an oracle A such that every language in TIME(nk)A has O(n)-size A-oracle
circuits constructible in LOGSPACEA.

It is well known that every problem solvable in t time does have LOGTIME-uniform
circuits of O(t log t) size [22], and that there are problems solvable in t time that do not
have LOGTIME-uniform O(t/ log3 t)-size circuits, by the time hierarchy theorem [13, 14].
Theorem 2 is a significantly stronger lower bound than what is provided by the time hierarchy:
it shows that arbitrary logarithmic space preprocessing (running in, say, n101010

time) is not
enough to reduce the resources needed to solve Circuit nε-Composition even slightly less
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8:4 Easiness Amplification and Uniform Circuit Lower Bounds

than Õ(n1+ε). That is, LOGSPACE-uniform circuits cannot be made noticeably smaller than
the time-bounded computations they may simulate, in general.

Theorem 2 is interesting not only because it does not relativize, but because there are
few non-trivial lower bounds known against LOGSPACE, even as a uniformity condition. For
random-access models, it is known that SAT is not solvable in (simultaneous) n1.8 time
and no(1) space, but there are concrete limitations on known proof methods [11, 30, 6].
Slightly non-linear time lower bounds (for n1−Ω(1) space) are known for some functions in
P [1, 5]. Fortnow [10] proved (along with follow-up work by [3, 28]) that SAT does not
have LOGSPACE-uniform n1+o(1)-size O(logn)-depth circuits. Santhanam and Williams [25]
proved there is a language in LOGSPACE which does not have LOGSPACE-uniform branching
programs of O(nk) size for every k, but (as mentioned earlier) the argument yields no explicit
language and no explicit resource bounds on the language. (On the other hand, small
branching programs seem to be a weaker model than small O(logn)-depth circuits.)

Super-Logarithmic Space Lower Bounds

Turning to the more restricted model of polylog-depth circuits, we can obtain stronger
lower bounds than prior work. Informally, we define the problem d(n)-Depth Circuit
t-Composition analogously to Circuit t-Composition, except the inputs are restricted to
circuits of d(n) depth and d(n) input/output bits. The d(n)-Depth Circuit t-Composition
problem can be solved in about n · t time (like Circuit t-Composition) or in about d(n) · t
space. We note that it is open whether d(n)-Depth Circuit t-Composition can be solved
in polynomial time and d(n)c space simultaneously for d(n) > ω(logn); this is the heart of
the NC versus SC question [7, 21].

I Theorem 3. For every ε ∈ (0, 1), c ≥ 1, d ∈ (1, 2), and d′ < d, the problem (logn)d-Depth
Circuit nε-Composition does not have SPACE[(logn)d′ ]-uniform circuits of n · (logn)c
size and O((logn)d′) depth.1

In other words, we have a problem in TIME[n1+ε] ∩ SPACE[log2−ε/2] that does not have
Õ(n)-size O(log2−ε n)-depth circuits constructible in nO(log1−ε n) time and O(log2−ε n) space,
for every ε ∈ (0, 1). Theorem 3 is a significant advance over prior results in the area, which
could only prove lower bounds of this form against NP-hard and coNP-hard problems such
as SAT and SAT [10, 3], or against non-explicitly given problems in NC [25]. We stress that
O(n)-size O(logn)-depth lower bounds are in general far more difficult to reason about than
one might think: it is open whether every language in NTIME[2n] has non-uniform O(n)-size
O(logn)-depth circuits.

“Easiness Amplification” for Small Circuits

While the problem of proving P does not have O(n)-size circuits is notoriously hard, one
may try assuming that P ⊂ SIZE(O(n)), and record absurd conclusions that follow from it.
Might we be able to reach something so absurd that it is provably contradictory? A string of
work [17, 12, 25, 8] has established consequences of this form.

1 One might initially believe that Theorem 3 follows quickly from the space hierarchy [26]. It does not:
recall the problem (log n)2−o(1)-Depth Circuit nε-Composition being lower-bounded is solvable in
n1+ε time, yet we are proving nearly-quadratic space lower bounds for constructing nearly-quadratic
depth circuits for it.
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The key to the above lower bounds is a lemma which demonstrates how small circuits
for these composition problems can be applied to construct small circuits for many more
(presumably harder) problems. Let TISP[t(n), s(n)] denote the class of languages decidable
in t(n) time and s(n) space (simultaneously).

I Lemma 4 (Easiness Amplification). Let ε > 0 and let s(n) ≤ Õ(n).
If s(n)-IO Circuit nε-Composition has Õ(n) size circuits, then every problem in
TISP[nk(n), s(n)] has n ·(logn)O(k(n)/ε) size circuits, for all constructible functions k(n) ≤
O(logn/ log logn).2
If s(n)-IO Circuit nε-Composition has n1+o(1) size circuits, then for every constant
k ≥ 1, every problem in TISP[nk, s(n)] has n1+o(1)-size circuits.

That is, assuming a single problem (solvable in Õ(n1+ε) time) has nearly-linear-size
circuits, we prove that a much larger class of problems also has very small circuits (note
that s(n)-IO Circuit nε-Composition is in TISP[n1+ε, s(n)]). We call this phenomenon
easiness amplification, in contrast with the study of hardness amplification. Let us carefully
explain our choice of this term.

In hardness amplification, one shows that if a problem from a class C is “hard” in one
sense, one can find another problem from C that is even “harder.” That is, in a hardness
amplification theorem, the class of problems being solved remains about the same, but the
computational lower bound is strengthened in the conclusion (we are amplifying the hardness).
However, in what we call easiness amplification, the computational model remains about
the same, but the class of problems being solved is strictly increased in the conclusion: one
strictly increases the set of problems which are shown to be easy. To give a specific example
and a non-example of easiness amplification, we would say that NP ⊂ P/poly⇒ PH ⊂ P/poly
is an easiness amplification, because the notion of “easy” in the conclusion is unchanged
from that of the hypothesis. but the set of problems being solved has (probably) strictly
increased in the conclusion. On the other hand, NP = P⇒ NEXP = EXP is not an easiness
amplification: the computational model P “blows up” to the larger class EXP.

Lemma 4 says that if the above circuit composition problem (which is in n1+ε time and
Õ(n) space) had Õ(n)-size circuits, then every problem in no(logn/ log logn) time and Õ(n)
space has n1+o(1) size circuits. That is, from a modest speed-up of the circuit composition
problem with non-uniform circuits, one obtains an incredible non-uniform simulation of a
much larger complexity class. The following is immediate from Lemma 4.

I Corollary 5. If n-IO Circuit nε-Composition has Õ(n) size circuits, then

TISP
[
n(logn)/ log logn, Õ(n)

]
⊆ SIZE[O(n2)].

By a standard padding argument, we also have TISP
[
2n, 2
√
n logn

]
⊆ SIZE

[
2O(
√
n logn)

]
.

That is, nearly-linear size circuits for circuit composition imply polynomial-size circuits
for some problems that are only known to be solvable in super-polynomial time, such as
detecting a clique of O(logn/ log logn) nodes. The second part of Corollary 5 shows that
a small improvement on the circuit complexity of a problem solvable in n1+ε time implies
truly subexponential circuit upper bounds on all problems solvable in 2n time and 2

√
n

2 As usual in machine-based complexity, one must worry if the functions under consideration are con-
structible within the resource bounds of the corresponding complexity classes. Throughout the paper,
we say a function is “constructible” when it satisfies precisely that condition.
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8:6 Easiness Amplification and Uniform Circuit Lower Bounds

space. For example, the quantified Boolean formula problem on formulas of k variables
and 2

√
k log k · poly(k) size would have a circuit family of 2O(

√
k log k) size. This consequence

is in stark contrast to general beliefs regarding exponential time computation, e.g., the
Exponential Time Hypothesis of Impagliazzo, Paturi, and Zane [16] which posits that 3-SAT
does not have 2o(n)-time algorithms. Previously, it was only known that P ⊂ SIZE[O(n)]
implies TIME[2O(n)] ⊂ SIZE[2o(n)] (by a simple padding argument).

It is interesting to contrast the circuit upper bound consequences of Corollary 5 with
the fact that P ⊂ SIZE[O(n)] also implies the negative consequence P 6= NP [17]. It would
be interesting if NP ⊂ SIZE[O(n)] implied even smaller circuit constructions for PSPACE
problems.

Circuit Lower Bounds for SAT

Some of our results extend to the (much harder) SAT problem; in that setting, we can use
old proof techniques that are similar to those in prior work on SAT time-space tradeoffs.
First we show (Section 4.1) that SAT requires superlogarithmic-space uniform circuits of
Õ(n) size and nearly log2 n depth:

I Theorem 6. For all d < 2, and all c ≥ 1, SAT 6∈ SPACE[logd n]-uniform SIZE-DEPTH[n ·
(logn)c, (logn)d].

With respect to the depth measure, Theorem 6 is an improvement over previous uniform
circuit lower bounds for SAT, which established O(logn)-depth limitations (for bounded
fan-in and “semi-unbounded” fan-in models). The proof uses the machinery of “alternation-
trading proofs” for SAT lower bounds [10, 11, 30], where one assumes a very good SAT
algorithm exists, and uses it along with known alternating “speed-up” theorems to derive
a contradiction to a known result (generally, some time hierarchy theorem). We show how
to use the assumed SAT circuits to obtain a contradiction to the space hierarchy theorem,
rather than a time hierarchy. This alternate approach leads to stronger results.

Finally, we observe (via old ideas) that the easiness amplification results of Lemma 4 also
hold for SAT:

I Theorem 7. If SAT has Õ(n)-size circuits, then QBF has 2Õ(
√
n)-size circuits.

This is evidently a new connection between the relative circuit complexity of NP and
PSPACE problems. The proof of this theorem can be found in Appendix B.

1.2 Intuition and Comparison
While our lower bounds do apply some ideas from prior work, the proofs of Theorem 2 and 3
have a particular inductive structure that is new to circuit lower bound proofs.3 The key
idea in our lower bounds is encapsulated by the following special case of Lemma 4:

I Lemma 8 (Amplification From Circuit Composition: Special Case). For every ε > 0, if Cir-
cuit nε-Composition has n1+o(1) size circuits, then every problem solvable in LOGSPACE
has n1+o(1) size circuits.

Note there are no uniformity assumptions on the circuits in the lemma: the circuits may
be arbitrary. This is a strong lower bound amplification result for a particular problem

3 Readers who doubt this claim are invited to read the “Comparison With Prior Work” below.
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in n1+ε time: small circuits for Circuit nε-Composition imply small circuits for all of
LOGSPACE.

Let us sketch how the lemma is proved. Let M be a machine running in logarithmic
space, and assume that small n1+o(1)-size circuits exist for Circuit nε-Composition. Such
circuits take two inputs: the description of a smaller circuit C, and an input y to C. We first
set the input circuit C to be a Õ(n)-size circuit C0(x, ·) which simulates one step of M on
an arbitrary input x of length n: treating the input y as an O(logn)-bit configuration of M
on x, C0(x, y) outputs the configuration y′ corresponding to the next step of M on x. Then,
n1+o(1)-size circuits for Circuit nε-Composition can be used to construct n1+o(1)-size
circuits {C ′n} which can simulate M on x for about nε steps, by composing C on the input
y for nε times (using O(logn) copies, one for each bit of the output configuration).

Now suppose we feed the C ′n circuits as input to Circuit nε-Composition instead of
the C0 circuits, and repeat the above argument. Note that the C ′n’s are only slightly larger
than the C0’s. The circuits C ′n (which simulate nε steps) are being composed for nε times on
the input y. Thus we obtain n1+o(1)-size circuits {C ′′n} which can simulate arbitrary logspace
computations for about n2ε steps. (Please note that this is not obviously true, and our
wording here should be taken only as intuition. For example, we have not specified here how
to handle arbitrary inputs x of length n.) Once we have the right setup, we can “repeat” the
argument for O(k/ε) times, each time with the new circuit family obtained from the previous
iteration plugged in. From this it will follow that nk-time log-space computations have
n1+o(1)-size circuits. In particular, given that small-space computations always have small
configurations, and assuming we have nearly-linear size circuits that can simulate LOGSPACE
for a moderate number of steps, we can concoct new circuits which can simulate LOGSPACE
for an arbitrary polynomial number of steps, while keeping the circuit size around n1+o(1).

To prove the main circuit lower bound of Theorem 2, we start by assuming that General
Circuit nε-Composition has logspace-uniform n1+o(1)-size circuits, and wish to derive a
contradiction. First we note that General Circuit nε-Composition is “complete” for
n1+ε time in a certain precise sense, and thus cannot be solved faster than this bound. Using
the argument of the above paragraph, we derive that every language in LOGSPACE also has
almost-linear-size circuits. But if every language in LOGSPACE has small circuits, it can be
shown that every logspace-uniform circuit family can be produced by very small circuits, by
a “de-padding”’ trick of Santhanam and Williams [25] which gives the uniform algorithm
much smaller inputs. Indeed, assuming LOGSPACE has almost-linear-size circuits, it can
be shown that every problem with small logspace-uniform circuits can also be decided very
efficiently, with only o(n) bits of advice. We can use this consequence to prove that General
Circuit nε-Composition is solvable so efficiently that it contradicts our earlier time lower
bound for the problem.

Note that if the original circuits for Circuit nε-Composition are assumed to be uniform
(or of low depth, respectively) then the composition circuits in the above iterated constructed
are also uniform (or of low depth, respectively). The main goal in the proof of the depth lower
bound (Theorem 3) is to extend the above amplification lemma to simulate all problems in
SPACE[(logn)d] with uniform circuits of depth only o(logn)d. But such circuits can always
be evaluated in SPACE[o((logn)d)], so this consequence contradicts the space hierarchy.

We observe that (in contrast to the techniques of Santhanam and Williams) the proof
technique in the amplification lemma looks to be inherently non-relativizing. The first circuit
in our composition only simulates a logspace machine for one step, and our composition
problem only simulates a given circuit for some nε steps, crucially using the fact that the
output of the circuit (the configuration size) is only no(1) bits at every stage of the induction.
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8:8 Easiness Amplification and Uniform Circuit Lower Bounds

Informally, there is no “room” in our circuit simulation of LOGSPACE to write down long
oracle queries. To confirm this intuition, we construct an oracle relative to which our main
lower bound is false, in Appendix A.

The analogous lower bound results for SAT follow from the fact that the circuit composition
problem can also be solved using alternations rather than computing it serially: one can
simply (existentially) guess the intermediate values output in the circuit composition, and
(universally) verify the outputs in parallel. If SAT has nearly-linear-size circuits, then ΣkSAT
also has nearly-linear-size circuits, which also allows for a very efficient circuit simulation of
small-space computation.

Comparison With Prior Arguments

We argue that the above proof technique (behind Lemma 4, Theorem 2, and Theorem 3) is
a fundamentally different way to derive an efficient simulation of small-space computation,
compared to earlier arguments.

1. SAT Time-Space Lower Bounds. In the SAT time-space lower bounds based on extending
Savitch’s theorem (such as Fortnow-Lipton-Van Melkebeek-Viglas [10, 11]), the use of
alternating computation is critical: generalizing Savitch’s Theorem, one constructs a
simulation which “guesses” a few configurations of a small-space machine that will be
visited later in the computation, then “universally verifies” the guesses independently.
In this way, the simulation problem for a small-space computation is partitioned into
small parts which can then be solved independently (in parallel). The proof of the
Easiness Amplification Lemma (Lemma 4) uses no alternation or parallelism. Indeed,
Lemma 4 shows how the serial process of simulating a small-space computation for t
steps can be self-improved by assuming that n1+ε steps can be simulated with n1+o(1)

-size circuits, and repeatedly feeding “small circuit copies” into circuits which perform
this efficient step simulation. Note that in our later lower bounds for SAT, we do
use alternations, showing that this methodology can derive similar results but under a
seemingly stronger assumption (namely, the assumption “SAT has small circuits” instead
of “circuit composition has small circuits”).

2. Hardness Amplification From Self-Reducibility. The proof technique here is also different
from earlier arguments based on the self-reducibility of a problem (such as those found in
Lipton-Viglas, Allender-Koucky, and Lipton-Williams [18, 2, 19]). In those arguments,
one decomposes a given computation into disjoint “parts”, applies an assumed “good”
simulation to each part separately, then proves that the new overall simulation is now
similarly “good.” The results proven in these papers are hardness amplifications: given a
“pretty good” simulation of some particular kind of resource-bounded computation, we can
obtain an extremely efficient simulation of the same bounded computation. (For example,
if the NC1-complete formula evaluation problem has TC0 circuits of polynomial size, then
it also has TC0 circuits of n1.0001 size [2]. Thus a weak TC0 size lower bound against this
NC1 problem would separate NC1 from TC0.) Our results have a different character: we
show that if one can simulate ultra-efficient computations with small circuits, then one can
simulate all “pretty good” computations with small circuits. We are improving the class
of computations being simulated, instead of improving the simulation itself. Again, this is
the difference between hardness amplification and what we call “easiness amplification.”

3. Top-Down Versus Bottom-Up. In Lemma 4, we begin with a small circuit that simulates
one step of the computation correctly, and apply the hypothesis in a way that lets us
build a (slightly larger) circuit simulating nε steps correctly. From that circuit, and our
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hypothesis, we build another (slightly larger) circuit simulating n2ε steps correctly, and
so on, until we have obtained a small circuit which can simulate nk steps correctly for
any desired k. Methodologically, this is a “bottom-up” way of simulating small-space
computations faster: building up small circuits for simulating long running times, starting
with a trivial circuit for simulating one step.
This should be contrasted with the “top-down” approach of extensions of Savitch’s
Theorem in item 1 above, where one guesses a way to partition the computation into
pieces, then verifies the pieces recursively. The arguments based on self-reducibility
in item 2 above also have a “top-down” form: they start by decomposing the entire
computation into small parts, then substitute small copies of an improved circuit in place
of each of the parts. Because we view the machine simulation problem in a bottom-up way,
this allows us to prove a lower bound on a much simpler problem (a circuit composition
problem solvable in n1+ε time) compared to earlier unconditional lower bounds of this
type (for SAT and for QBF).

The most canonical results in the same spirit of our work are classical theorems such as
NP ⊂ P/poly⇒ PH ⊂ P/poly, where one replaces the quantifiers in a Σk computation by
larger circuits. Of course there are other obvious differences there: in our setting, we want to
keep the circuit size basically fixed (around n1+o(1)) and we want to increase the running
times of the problems we can solve with such circuits, in each inductive step. As far as we
can tell, we need to be simulating small-space computations to pull off this kind of easiness
amplification. It would be highly desirable to remove the small-space restriction in these
lower bounds.

2 Preliminaries

We assume basic familiarity with concepts in complexity theory [4]. Below are some definitions
and notions specific to this paper.

I Definition 9. A language L is in the class TISP[t(n), s(n)] if it can be decided in O(t(n))
time and O(s(n)) space simultaneously on a multitape Turing machine.

In our results on the SAT problem, we also use standard notions of alternating Turing
machines:

I Definition 10. A language L is in the class Σa(n)TISP[t(n), s(n)] if it can be decided in
O(t(n)) time and O(s(n)) space simultaneously on a multitape Turing machine using at most
a(n) alternations.

Sometimes we say “algorithm” instead of “multitape Turing machine.” These should be
thought of as synonymous. We need the multitape model to ensure that our algorithmic
computational model has an efficient translation to small-size circuits.

In the following, let C be any time or space complexity class (such as TIME[n2], P,
SPACE[log2 n], etc.). For a circuit C, let |C| be the length of its description in binary.

I Definition 11. A C-uniform circuit family {Cn} has the property that there is a multitape
Turing machine A implementable in C, such that for every n, A(1n) prints the |Cn|-length
description of Cn in binary. (Strictly speaking, as the class C consists of decision problems,
A should output only one bit. This is easily accommodated by requiring for all n and
i = 1, . . . , |Cn| that A(1n, i) outputs the ith bit of the description of Cn.)

CCC 2017



8:10 Easiness Amplification and Uniform Circuit Lower Bounds

For example, a P-uniform circuit family comes with a polynomial-time multitape Turing
machine A which on 1n prints the nth circuit in the family.

For a language L ⊆ {0, 1}?, define Ln = L ∩ {0, 1}n to be the strings in L of length n. A
language L is in SIZE[s(n)] if for every n ≥ 0, there is a circuit of at most s(n) gates that
computes Ln. L is in DEPTH[d(n)] if for every n ≥ 0 there is a circuit that computes Ln
such that the longest path from source to sink in this circuit has length at most d(n). L
is in SIZE-DEPTH[s(n), d(n)] if for every n ≥ 0 there is a circuit with at most s(n) gates
computing Ln such that the longest path in the circuit has length at most d(n). For example,
the class NC1 can be rewritten as SIZE-DEPTH[nO(1), O(logn)]. The following observation
is useful in our depth lower bounds:

I Proposition 12. SPACE[s(n)]-uniform DEPTH[s(n)] ⊆ SPACE[s(n)].

Proof. For a circuit family {Cn} that is s(n)-space uniform, on an n-bit input we can
always use O(s(n)) space to generate any gate information of the circuit Cn necessary for a
simulation. Because Cn also has s(n) depth, we only require O(s(n)) additional space to
simulate it (for a reference, see Vollmer [29]). J

Generalized Circuit Composition

In the following, let Z : {0, 1}k → {0, 1}k be a function that always returns 0k.

I Definition 13. In the General Circuit t-Composition problem, we are given:
A k-bit input x.
A circuit Cin of size n over the basis {AND,OR,NOT} implementing a function from
3k bits to k bits (where k can range up to n).
A circuit Cout of size t over the basis {Cin, Z}, implementing a function from k bits to k
bits. In particular, Cout is presented as a DAG, where every node has indegree 0, 1, or 3;
every edge of Cout carries a k-bit string.
An integer j in 1, . . . , k.

The input is accepted iff the jth bit printed by Cout(x) is 1.

That is, every node in Cout of indegree 3 implements Cin, taking in 3k bits and outputting
k bits.) We need indegree 3 in order to carry out a multitape TM simulation effectively.)

In our lower bound proofs, we only require two key properties of General Circuit
t-Composition.
1. The first is that n-IO Circuit t-Composition for a circuit C is a special case of the

General Circuit-t-Composition Problem. This is true because n-IO Circuit
t-Composition corresponds to the case where Cout is simply a straight line of t copies
of Cin, where Cin(x, 0k, 0k) = C(x) for all x.

2. The second property is that General Circuit t-Composition is essentially complete
for Õ(nt) time, as the below theorem demonstrates.

I Theorem 14. Let L ∈ TIME[n1+ε]. L can be reduced in Õ(n) time to General Circuit
nε-Composition.

Proof (Sketch). Let M be multitape Turing machine for L. We follow the proof of the
Size Reduction Lemma (Lemma 3.2) in Lipton and Williams [19], which shows how to
“decompose” an arbitrary time n1+ε computation into circuits of size nε in which every gate
takes a constant number of O(n)-bit “blocks” of input, simulates an O(n)-time machine M ′
on the blocks, and outputs an O(n)-bit block.
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In particular, they convert M into an equivalent two-tape oblivious M ′ (where, for every
n and input x of length n, the tape head movements of M ′(x) depend only on n). M ′

runs in t = Õ(n1+ε) time, via the Hennie-Stearns simulation [14]. This oblivious two-tape
simulation is polylog-time uniform, in that we can determine the head positions in any given
step i = 1, . . . , t in poly(log t) time.

Next, M ′ is made block-respecting in the sense of Hopcroft-Paul-Valiant [15]. This is a
machine M ′′ running in t′(n) = O(t(n)) time, whose computation can be neatly partitioned
into t′(n)

b(n) time blocks of O(b(n)) steps each, and each tape is partitioned into O( t
′(n)
b(n) ) tape

blocks of O(b(n)) cells each, for any constructible b(n) ≤ t(n). We set b(n) = O(n). For each
time block, and each tape head, the head stays within exactly one tape block. Therefore each
time block can be viewed as running on an input of O(b(n)) bits, and each block outputs
O(b(n)) bits (the new content of those tape blocks). The Hopcroft-Paul-Valiant simulation
maintains the obliviousness of M ′.

For our generalized circuit composition instance, the circuit Cin simply simulates a time
block of length b(n), assuming the initial input is of length n. It takes O(n) bits and outputs
O(n) bits, having Õ(n) size. The circuit Cout connects these nε time blocks together: each
gate of Cout implements a time block. Cout is built by determining the head movements of
the oblivious M ′′ spaced nε steps apart, and wiring together time blocks that share common
tape blocks (or adjacent time blocks that share adjacent tape blocks, depending on the head
position). By design, the resulting circuit Cout is equivalent to the original Turing machine
M on n-bit inputs. J

As a corollary, there is a constant c > 0 such that General Circuit nε-Composition
needs at least n1+ε/(logn)c time, by the time hierarchy theorem.

2.1 Simulating Bounded Space
Many results we obtain stem from composing circuits that simulate space-bounded computa-
tions. The following notion is useful:

I Definition 15. Fix a machine M , and an input length n. The simulation machine
Simt(n)(x, c, i) takes a string x of length n, configuration c of M on x, and an index bit i,
simulates M(x) from configuration c for t(n) steps, then outputs the ith bit of the resulting
configuration c′.

For machines M running in space s(n), Simt(n) has circuits of size Õ(t(n) · (n+ s(n))).
In our amplification lemma (Lemma 4), we construct much more efficient circuits, assuming
circuit composition has small circuits.

3 LOGSPACE-Uniform Circuit Lower Bounds

We begin this section with our amplification lemma, which is used to prove most of the
following results.
I Reminder of Lemma 4. Let ε > 0 and let s(n) ≤ Õ(n).

If s(n)-IO Circuit nε-Composition has Õ(n) size circuits, then every problem in
TISP[nk(n), s(n)] has n ·(logn)O(k(n)/ε) size circuits, for all constructible functions k(n) ≤
O(logn/ log logn).
If s(n)-IO Circuit nε-Composition has n1+o(1) size circuits, then for every constant
k ≥ 1, every problem in TISP[nk, s(n)] has n1+o(1)-size circuits.
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Proof. We start by proving the first bullet. Assume s(n)-IO Circuit nε-Composition has
Õ(n) size circuits. Recall that s(n)-IO Circuit nε-Composition takes as input a circuit C
with s(n) inputs and s(n) outputs, a string y ∈ {0, 1}k, and an index i, then prints the ith
bit of the nε-fold composition of C on y.

By assumption, s(n)-IO Circuit nε-Composition has a circuit family {En} of O(n ·
(logn)d) size.

Now take an arbitrary L ∈ TISP[nk(n), s(n)] for some function k(n) ≤ O(logn/ log logn),
and let M be a machine recognizing L in nk(n) time and s(n) space. We will show that L
has circuits of size n · (logn)O(k(n)/ε), by constructing the circuit inductively.

For the base case, let M0(x, c, i) = Sim1 (from Definition 15) be a machine which
simulates M on x from the configuration c for one step, then outputs the ith bit of the next
configuration. This simulation can easily be done in linear time, by first looking up the input
bit read by the input head, simulating one step of the computation, then outputting the ith
bit of the resulting configuration. By the usual conversion of algorithms into circuits, there
is a circuit family that is equivalent to Sim1 with n · (logn)a size for some constant a. Let
C0(x, c, i) denote a generic circuit from this family. We choose a convention for expressing
the description of C0 such that, given a bit string D which is the description of C0, and
given an n-bit input x, a description Dx of the circuit C0(x, ·) (i.e., the first n inputs of C0
are filled in with the bits of x) is obtained by substituting the n bits of x into n particular
bit positions i1, . . . , in of the description D. Such a description only takes O(z log z) bits to
describe, where z the circuit size.

Now fix b ≥ 0. Suppose we have constructed a circuit Cb(x, c, i) = Simnε·b of size
n · (logn)a+b·(d+1) that simulates nε·b steps of the machine M on x of length n. Consider
the circuit

Cb+1(x, c, i) := En·(logn)a+b·(d+1)+1(Cb(x, ·), c, i) .

(Note that by our convention for encoding circuits, Cb(x, ·) should be construed as a bit string
but with n bit positions that are unassigned free variables.) Since the language s(n)-IO
Circuit nε-Composition simulates nε·b steps of M with each evaluation of the circuit Cb,
and the circuit Cb is being composed for nε times, Cb+1(x, c, i) simulates nε·b · nε = nε·(b+1)

steps of M on x.
Furthermore, since the circuit Cb is of size O(n·(logn)a+b·(d+1)), the binary representation

of Cb has length ` = O(n · (logn)a+b·(d+1)+1). Therefore the input to the circuit Cb+1 has
length O(`), and the size of the circuit Cb+1 would then be of size

O(` · (log `)d) ≤ O(n · (logn)a+b·(d+1)+1 · (log(n(logn)a+b·(d+1)+1)d)).

For b < logn/ log logn, we have n loga+b·d n ≤ n1+d loga n; in that case, the size bound can
be simplified to

O(n · (loga+b·(d+1)+1 n) · (logn)d) = O(n loga+b·(d+1)+(d+1) n) = O(n loga+(b+1)·(d+1) n).

We have shown that given a circuit Cb of size O(n · (logn)a+b·(d+1)) that simulates nε·b
steps of M on x, we can construct a circuit Cb+1 of size O(n loga+(b+1)·(d+1)) that simulates
nε·(b+1) steps of M on x. Therefore for every b ≤ o(logn/ log logn), there is a circuit Cb of
size n · (logn)O(b) that simulates nε·b steps of the space-s(n) machine M . Setting b = k(n)/ε
and c to be the initial configuration of M on inputs of length n, we obtain a circuit Ck(n)/ε
of size n · (logn)O(k(n)/ε) that can simulate the entire computation of M and output the
final configuration of M(x), which can then be used to decide L. Since L was arbitrary, we
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conclude that

TISP[nk(n), s(n)] ⊆ SIZE[n · (logn)O(k(n)/ε)],

which completes the proof of the first bullet.
To prove the second bullet, let ε ∈ (0, 1) and k ≥ 1 be constant. We run the same

argument on an arbitrary machine M using nk-time and s(n)-space, but instead we assume
there are n1+1/f(n)-size circuits for the nε-composition problem, where f(n) is an unbounded
function. For every constant b ≥ 0, tracking the growth of Cb in the above argument, we
obtain a circuit Cb(x, c, i) of size at most n(1+1/f(n))db (for some universal constant d > 0)
for simulating nεb steps of M on an input of length n. By setting b := k/ε as in the previous
case, the resulting circuit Cb can then simulate M entirely on all inputs of length n. We can
define an unbounded function g : N→ N such that

(1 + 1/f(n))log f(n) ≤ 1 + 1/g(n)

for all n. Then for all constants b and for all sufficiently large n, the size of Cb is n(1+1/f(n))db ≤
n(1+1/f(n))log f(n) ≤ n1+1/g(n) ≤ n1+o(1). J

One property of note in the above proof is that uniformity can be applied to the circuits,
without changing the argument. For example, if the small circuits for nε-circuit composition
are LOGSPACE-uniform, then the small circuits for TISP[nk, s(n)] are also LOGSPACE-
uniform, assuming that k is constant (the argument becomes more complicated when adding
an unbounded number of iterations).
I Reminder of Theorem 2. For 0 < ε < 1, the decision problem General Circuit
nε-Composition does not have LOGSPACE-uniform n1+o(1) size circuits.

Proof. Assume there is an ε > 0 such that General Circuit nε-Composition has
LOGSPACE-uniform circuits of n1+o(1) size. Since Circuit nε-Composition is a special
case of the general problem, it must also have such circuits. Therefore by Lemma 4, our
assumption implies that for every constant c ≥ 1, every problem in TISP[nc, O(logn)] has
n1+o(1)-size circuits as well. That is, we have

LOGSPACE ⊂ SIZE[n1+o(1)]. (1)

Since the circuits for General Circuit nε-Composition are LOGSPACE-uniform,
there is an O(logn)-space algorithm A that on input 1n prints a n1+o(1)-size circuit Cn
computing General Circuit nε-Composition on n-bit instances. We are going to prove
that General Circuit nε-Composition can be simulated in n1+ε/2 time with about nε/2
bits of advice, implying a contradiction.

Similar to Santhanam and Williams [25], our next move is to define, for every rational α ∈
(0, 1), a padded language Lα = {(1nα , n, i) | the ith bit of the circuit printed by A(1n) is 1}.

When α ∈ (0, 1) is a fixed constant, we note the following properties of Lα:
(a) Lα is in LOGSPACE: on an m-bit instance (1nα , n, i), a machine deciding Lα only has to

simulate A on 1n in O((logm)/α) space, and maintain a (1 + o(1)) logn-bit counter for
i, until the ith output bit of A(1n) is printed. (Note that (1 + o(1)) logn ≤ O(logm).)
Hence by (1), Lα has an n1+o(1)-size circuit family {Dm}, for every α > 0.

(b) For an integer n > 0, if we want to know bits of the circuit printed by A(1n), the length
of a relevant instance of Lα is only |(1nα , n, i)| ≤ O(nα). Let m(n) be the length of such
an instance. On m(n)-bit instances, Lα outputs bits describing an n1+o(1)-size circuit
Cn which in turn solves n-bit instances of General Circuit nε-Composition.
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Let α = ε/2. We can decide General Circuit nε-Composition in Õ(n1+ε/2) time
with only nε/2+o(1) bits of advice, as follows. On n-bit instances of the problem, our advice
string is a description of the circuit Dm(n) of size m(n)1+o(1) for Lε/2 from item (a) above.
From item (b), the length of the advice string is m(n)1+o(1) ≤ nε/2+o(1). Given Dm(n), our
machine for circuit composition will evaluate Dm(n) on (1nα , n, i) for all i = 1, . . . , n1+o(1).
This evaluation will, by definition, generate a description of an n1+o(1)-size circuit Cn that
solves n-bit instances of our problem. Sending the n-bit input to Cn, we can decide General
Circuit nε-Composition in time n1+o(1) ·m(n)1+o(1) ≤ n1+ε/2+o(1), with nε/2+o(1) bits of
advice.

However, since General Circuit nε-Composition is hard for TIME[n1+ε] under Õ(n)-
time reductions (Lemma 14), it follows from our simulation that every language in TIME[n1+ε]
is contained in TIME[n1+ε/2+o(1)]/nε/2+o(1). This contradicts the time hierarchy theorem
with sub-linear advice (which is folklore; see [25] for a proof). J

I Reminder of Corollary 5. If n-IO Circuit nε-Composition has Õ(n) size circuits, then

TISP
[
n(logn)/ log logn, Õ(n)

]
⊆ SIZE[O(n2)].

By a standard padding argument, we also have TISP
[
2n, 2
√
n logn

]
⊆ SIZE

[
2O(
√
n logn)

]
.

Proof. We wish to maximize the time bound nk(n) in the consequence of Lemma 4 such that
the hypothesis impliesO(n2)-size circuits for that time bound. This can be done by setting n =
(logn)c1·k(n)/ε for a constant c1 > 0. Solving for k(n), we find k(n) = c2 · ε(logn)/(log logn)
for a constant c2 > 0. By Lemma 4, when s(n)-IO Circuit nε-Composition has Õ(n)
size circuits we have TISP[2cε(logn)2/ log logn, O(n)] ⊆ SIZE[n2]. By padding the input by
n 7→ 2O(

√
n logn), we also conclude that TISP[2n, 2O(

√
n logn)] ⊆ SIZE[2O(

√
n logn)]. J

4 Log-Depth Circuit Lower Bounds

We now turn to proving uniform lower bounds for composing circuits of low depth. We can
also prove an amplification lemma in this regime:

I Lemma 16. Let ε > 0, c, d ≥ 1, and e ∈ [1, d). Let k(n) = o(logn/ log logn) be
constructible. If (logn)d-Depth Circuit nε-Composition has SPACE[(logn)e]-uniform
circuits of n · (logn)c size and O((logn)e) depth, then every problem in TISP[nk(n), (logn)d]
has SPACE[(logn)e]-uniform circuits of n · (logn)(c+1)·k(n)/ε size and O((logn)e) depth.

Proof. The proof is similar to Lemma 4. If we assume that (logn)d-Depth Circuit nε-
Composition has SPACE[(logn)e]-uniform circuits of n · (logn)c size and O((logn)e depth,
then we know that (logn)d-Depth Circuit nε-Composition can compose its own circuit
in the same way that Circuit nε-Composition can, since the depth of the circuit is
(logn)e = o((logn)d).

As a result, if one step of a SPACE[s(n)] computation can be simulated with a O(n)-
size (logn)d-depth circuit, then nε steps can be simulated with a O(n · (logn)c+1) size
circuit, n2ε steps can be simulated with a O(n · (logn)2·(c+1)) size circuit, and so on, using
the (logn)d-Depth Circuit nε-Composition circuits. Since these are constructed by
simply composing (logn)d-Depth Circuit nε-Composition circuits, if the original is
SPACE[(logn)e]-uniform and O((logn)e) depth then all of the constructed circuits will be
as well, as long as the circuit size remains polynomial-sized. By composing k(n)/ε times,
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we can construct SPACE[(logn)e]-uniform n · (logn)O(k(n)/ε)-size O(logn)e-depth circuits for
TISP[nk(n), s(n)]. Setting s(n) = (logn)d completes the proof. J

I Reminder of Theorem 3. For every ε ∈ (0, 1), c ≥ 1, d ∈ (1, 2), and e < d, the problem
(logn)d-Depth Circuit nε-Composition does not have SPACE[(logn)e]-uniform circuits
of n · (logn)c size and O((logn)e) depth.

Proof. Assume there are ε > 0, d ∈ (1, 2), and e < d that (logn)d-Depth Circuit
nε-Composition has SPACE[(logn)e]-uniform circuits of n · (logn)c size and O((logn)e)
depth. Setting k(n) := (logn)d−1, we have d − 1 < 1 by assumption, therefore k(n) =
o(logn/ log logn). Applying Lemma 16 to our assumption, we can infer that the class
SPACE[(logn)d] = TISP[nO((logn)d−1), (logn)d] has SPACE[(logn)e]-uniform circuits of n ·
(logn)c size and O((logn)e) depth. That is, every problem in SPACE[(logn)d] also has
SPACE[(logn)e]-uniform circuits of O((logn)e) depth. But by Proposition 12,

SPACE[(logn)e]-uniform DEPTH[(logn)e] ⊆ SPACE[(logn)e],

so we have actually derived SPACE[(logn)d] ⊆ SPACE[(logn)e]. This contradicts the space
hierarchy theorem [27], because e < d. J

4.1 Depth Lower Bound for SAT
Now we show that the SAT problem does not have subquadratic-space-uniform Õ(n)-size
circuits of log2−ε n depth, for all ε > 0. The results here will take the typical form of
“alternation-trading proofs” [31], where one quickly simulates a space-bounded computation
with alternations, removes the alternations using efficient (assumed) SAT circuits, and
attempts to prove a contradiction. The key difference between our proof approach and prior
ones is that we are able to use the space hierarchy theorem to establish the contradiction,
which leads to a stronger space and depth lower bound.

We will use the following powerful simulation lemma of Reischuk (based on Nepomn-
jascii [20]) in our proof.

I Lemma 17 ([23], p.282). For constructible functions t1(n), t2(n), s(n) and a(n), we have
the containment

Σa(n)TISP[t1(n)t2(n), s(n)] ⊆ Σa(n)+t2(n)TISP[a(n) · s(n) + t1(n) · t2(n) · s(n), t1(n) · s(n)].

In general, Reischuk’s lemma shows how alternating computations with large time bounds
and small space bounds can be converted into alternating computations with much lower
time bounds and slightly larger space bounds.

We need another lemma showing how good SAT circuits can yield circuits for alternating
computations. It is similar to other arguments of this kind, but we include it for completeness:

I Lemma 18. Let c, d > 0. If SAT ∈ SPACE[(logn)d]-uniform SIZE-DEPTH[n · (logn)c,
(logn)d], then for k ≥ 1

ΣkTIME[n] ⊆ SPACE[(logn)d]-uniform SIZE-DEPTH[n · (logn)(c+1)·k, (logn)d].

Proof. The proof is by induction on k, the number of alternations. For k = 1, the statement
becomes NTIME[n] ⊆ SPACE[(logn)d]-uniform SIZE-DEPTH[n · (logn)c+1, (logn)d], which is
true by assumption.
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Suppose that for some fixed value of k the lemma holds. Consider some L ∈ Σk+1TIME[n].
We can then construct a circuit of size n · (logn)(c+1)·(k+1) and depth O((logn)d) using
O((logn)d) space that computes L. Since L is verified in linear time, the number of bits of
nondeterminism in the first alternation is at most linear, so there is a ΠkTIME[n] verifier
V (x, y) for L that takes both the input x to L and the first set of nondeterministic bits
y as input and checks whether y is a valid witness that x ∈ L. By assumption, V has
SPACE[(logn)d]-uniform SIZE-DEPTH[n · (logn)(c+1)·k, (logn)d circuits.

Consider the Circuit-SAT instance that consists of the above circuit that computes
V as well as the input x that is meant to be the input of the original language L. The
description of this circuit is of size N = n · (logn)(c+1)·k+1, so by assumption there is a
circuit of size N · (logN)c = n · (logn)(c+1)·k+1 · (O(logn))c = n · (logn)(c+1)·(k+1) and depth
O((logN)d) = O((logn)d) computable in SPACE[(logN)d] = SPACE[(logn)d] that solves
this SAT instance.

Both the Πk verifier circuit for L and the Circuit-SAT circuit can be constructed in
SPACE[(logn)d], and by hard-coding the description of the verifier circuit as input to the
Circuit-SAT instance, the resulting circuit will solve L. Furthermore the size and depth of
the circuit is simply the size and depth of the Circuit-SAT instance, since the Πk circuit is
fed as a description (only the size of the description matters). This circuit then exists for
every L ∈ Σk+1TIME[n]. Therefore if

ΣkTIME[n] ⊆ SPACE[(logn)d]-uniform SIZE-DEPTH[n · (logn)(c+1)·k, (logn)d]

then

Σk+1TIME[n] ⊆ SPACE[(logn)d]-uniform SIZE-DEPTH[n · (logn)(c+1)·(k+1), (logn)d]

and the induction holds for all k ≥ 1.
Note that the above argument holds even if the circuits are non-uniform. Furthermore,

as long as the size of the circuits remain fairly small, k can also be a function of the input
size. If k(n) = o(logn/ log logn), then the circuits produced will still have n1+o(1)-length
descriptions at every step of the induction, since

n · (logn)(c+1)·o(logn/ log logn) ≤ n · no(c+1) = n1+o(1).

The main factor that determines the size, depth and uniformity of the next alternation in
the induction is the size of the previous circuit in the induction. Therefore, as long as that
circuit has Õ(n) size, the inductive step will hold. J

I Reminder of Theorem 6. For all d < 2, and all c ≥ 1,

SAT 6∈ SPACE[logd n]-uniform SIZE-DEPTH[n · (logn)c, (logn)d] .

Proof. Assume that SAT ∈ SPACE[(logn)d]-uniform SIZE-DEPTH[n · (logn)c, (logn)d]. We
will show that this assumption contradicts the space hierarchy theorem.

By Lemma 18, we conclude for constructible k(n) = o(logn/ log logn) that

Σk(n)TIME[n] ⊆ SPACE[(logn)d]-uniform SIZE-DEPTH[n · (logn)(c+1)·k(n), (logn)d]. (2)

Set s(n) = (logn)d′ in the following, where d < d′ < 2. Applying Lemma 17 with
a(n) = 0, t1(n) = O(n), t2(n) = s(n)/ logn, and s(n) arbitrary, we have the containment

SPACE[s(n)] = TISP[2O(s(n)), s(n)] ⊆ Σs(n)/ lognTIME[n · s(n)2/ logn].
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Setting k(n) = s(n)/ logn and noting that s(n)/ logn = (logn)d′−1 = o(logn/ log logn), we
derive from the containment (2) that

Σs(n)/ lognTIME[n · s(n)2/ logn]

is contained in

SPACE[(logn)d]-uniform SIZE-DEPTH[n · s(n)2 · (logn)(c+1)·s(n)/ logn, O((logn)d)]
⊆ SPACE[(logn)d]-uniform DEPTH[O((logn)d)]
⊆ SPACE[o(s(n))]-uniform DEPTH[o(s(n))]
⊆ SPACE[o(s(n))]. (Proposition 12)

We have derived SPACE[s(n)] ⊆ SPACE[o(s(n))], which contradicts the space hierarchy
theorem [27]. J

5 Conclusion

In this paper, we showed how to “amplify” small-circuit upper bounds in a new way: if a
simple circuit composition problem has nearly-linear size circuits, then a much larger class
of problems also has nearly-linear size circuits. This led to new circuit lower bounds and
connections between lower bound problems. Many open problems have naturally arisen.

We have shown that TIME[n1+ε] does not have LOGSPACE-uniform linear-size circuits,
and the lower bound is non-relativizing. Can this be strengthened to P-uniform linear
circuits? Alternatively, can our lower bounds for circuit composition be generalized to
prove that TIME[nk] 6⊆ LOGSPACE-uniform SIZE[nk−ε], for any constant k?
We conjecture that the circuit composition problems defined in this paper, especially
General Circuit n-Composition, require non-uniform super-linear-size circuits. The
fact that we can at least rule out LOGSPACE-uniform circuits gives some hope that future
work can relax the uniformity conditions.
What additional consequences can be derived from assuming NP ⊂ SIZE[O(n)]? How well
can PSPACE-complete problems like QBF be solved with circuits, under this assumption?
From the results of this paper, we have that QBF has 2Õ(

√
n)-size circuits, assuming

SAT is in SIZE[O(n)] or assuming TIME[n1+ε] is in SIZE[O(n)]. Is it possible that
NP ⊂ SIZE[O(n)] implies PSPACE ⊂ P/poly?
Can we prove P 6⊂ PNP-uniform SIZE(O(n))? Is the problem equivalent to P 6⊂
SIZE(O(n))? A yes-answer would show that constructing these linear-size circuits cannot
even be done by a PNP process, progressing even closer to P 6⊂ SIZE(O(n)). We observe
that P 6⊂ SIZE(O(n)) is in fact equivalent to P 6⊂ PΣ2P-uniform SIZE(O(n)): in PΣ2P one
can guess and verify a linear-size circuit for a polynomial-time computation.
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A Oracle Relative to Which Polytime has Small Constructible
Circuits

In the following, we use the standard model of oracle computation for logarithmic space of
Ruzzo, Simon, and Tompa [24]: there is an special oracle tape that is write-only, its content
does not count towards the space bound, and the oracle tape is erased after each oracle query.

I Theorem 19. For every k ≥ 1, there is an oracle B such that every language solvable
in time nk with an oracle for B has O(n)-size B-oracle circuits constructible in logspace
equipped with an oracle for B.

Proof. Our construction is very similar to that of Wilson [32], who shows there are oracles
relative to which P has size O(n) circuits. To make the circuits logspace-constructible as
well, we add a simple but crucial modification to the oracle, which relies on having a fixed
polynomial upper bound on the running time.

Fix a constant k ≥ 1. In the following, let {Mi} be an enumeration of machines running
in at most nk + k steps, and let 〈·, ·〉 be an efficient pairing function. We construct the oracle
B in stages. In stage 0, we assign B to be the empty set.

In stage n:
Start with an empty set Sn. For every integer 1 ≤ i ≤ n and n-bit string x, execute Mi

on x with the current oracle B for nk + k steps. If Mi accepts x, put the pair 〈i, x〉 in Sn.
“Mark” every string that is queried by the Mi’s among these 2n executions. Note there
are at most (nk + k)n2n strings marked in this step, and the total number of marked
strings (over all stages 0, . . . , n) at this point is at most (nk + k)n2n+1.
Let yn be a string of length n+(k+1) logn+3k such that {〈i, x〉yn | 〈i, x〉 ∈ Sn} contains
no marked strings. There are t = nk+12n+3k such strings yn, so we are considering
t > (nk + k)n2n+1 different sets of strings over {0, 1}2n+(k+1) logn+3k. Hence at least one
of the sets does not contain a marked string. Put all 〈i, x〉yn in the oracle B.
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Finally, put the set of strings {0nk+1+k+11j | the jth bit of yn is 1} in B as well, where
the j’s are construed as dlog2(n+ k logn+ 3k + 1)e-bit strings. Note that none of the
strings in this set can be marked in stage n, because all of them have length greater than
nk+1 + (k+ 1), and no Mi can query a string longer than nk + k over inputs x of length n.

Now, for any machine Mi and sufficiently large n� i, our circuit Cn computing Mi on
all inputs of length n consists of the single gate

B(〈i, x〉yn),

with the index i and the string yn hard-coded in Cn. By our construction of B, there is a
chosen string yn of length O(n) for which deciding 〈i, x〉yn ∈ B is equivalent to deciding if
Mi accepts x. The total number of wires (and hence size) in the circuit Cn is O(n).

Furthermore, for every machine Mi running in nk time, the circuits Cn for Mi can also
be constructed in O(k logn) space with an oracle for B. Given the string 1n, our logspace
machine Li for printing Cn first prints the index i of Mi in some natural encoding, and prints
n “sources” of Cn, indicating the inputs x1, . . . , xn. To construct the string yn, Li uses the
oracle B. In particular, the logspace machine Li has a counter which holds some integer
j = 1, . . . , n+ k logn+ 3k. For each j, Li prints 0nk+1+k+11j on the write-only oracle tape
(by maintaining a counter ` = 1, . . . , nk+1 + k + 1 for printing the zeroes) then queries B.
The j-th query answer tells Li the j-th bit of yn, so Li can output these bits as part of the
description of Cn. J

This oracle is especially interesting when contrasted with the lower bound of Santhanam
and Williams [25] that P 6⊂ P-uniform SIZE(O(n)). The proof of that lower bound does rela-
tivize (and thus is true for all oracles). The key difference between P 6⊂ P-uniform SIZE(O(n))
and the (non-relativizing) lower bound of Theorem 2 (general circuit composition is not in
LOGSPACE-uniform n1+o(1) size) seems to be that in the former, there is no fixed polynomial
upper bound on the complexity class (P) that is being simulated.

B Subexponential-Size Circuits for QBF from Small-Size Circuits for
SAT

We can also derive interesting new consequences from the assumption that the SAT problem
has Õ(n)-size circuits. They follow without much difficulty from the literature on SAT
time-space tradeoffs, but we feel the connections are worth recording.

I Claim 20 ([10]). If SAT ∈ TIME[O(n)] then there is a c > 0 such that for all k,
ΣkTIME[O(n)] ⊆ TIME[n · (logn)ck].

Proof. It is enough to show that SAT ∈ TIME[O(n)] implies that

ΣkTIME[O(n)] ⊆ Σk−1TIME[n · (logn)d]

for a fixed constant d > 0. Suppose SAT ∈ TIME[O(n)]. Then by an efficient Cook-Levin
Theorem (see for example [11]), we have NTIME[O(n)] ⊆ TIME[Õ(n)] and coNTIME[O(n)] ⊆
TIME[Õ(n)]. Let L ∈ ΣkTIME[O(n)] have an acceptance condition of the form:

∃x1∀x2 . . . QkxkM(x, x1, x2, . . . , xk) (3)



C.D. Murray and R. R. Williams 8:21

where M is a deterministic O(n)-time machine, and all xi’s are O(n)-length strings. Then
on the tuple of strings (x, x1, x2, . . . , xk−1), the expression

QkxkM(x, x1, x2, . . . , xk) (4)

represents a computation in coNTIME[O(n)], which by hypothesis is computable in Õ(n)
time. Let N be a deterministic machine that computes the value of (4) in Õ(n) time, given
(x, x1, x2, . . . , xk−1) as input. Then deciding the truth of

∃x1∀x2 . . . Qk−1xk−1N(x, x1, . . . , xk−1)

is equivalent to deciding (3). Thus L can be decided in Σk−1TIME[Õ(n)], which completes
the proof. J

I Corollary 21. If SAT ∈ TIME[O(n)] then LOGSPACE ⊆
⋃
k TIME[n · (logn)k].

Proof. We know that for every L ∈ LOGSPACE there is a k such that L ∈ ΣkTIME[O(n)].
Apply the above claim. J

I Claim 22. If SAT ∈ SIZE[O(n)] then there is a c such that for all k, ΣkTIME[O(n)] ∈
SIZE[n(logn)ck].

Proof. Similar to Claim 20. If SAT ∈ SIZE[O(n)] then NTIME[O(n)] ⊆ SIZE[Õ(n)], which
means that

ΣkTIME[O(n)] ⊆ Σk−1TIME[n logc n]/(n logc n) ⊆ . . .

⊆ TIME[n logck n]/(n logck n) ⊆ SIZE[n(logn)ck] . J

I Corollary 23. If SAT ∈ SIZE[O(n)] then LOGSPACE ⊆
⋃
k SIZE[n · (logn)k].

Specifically, we can relate the circuit complexity of SAT and QBF as follows:

I Reminder of Theorem 7. If SAT is in SIZE[Õ(n)] then QBF is in SIZE[2O(
√
n logn)].

Proof. Suppose SAT ∈ SIZE[Õ(n)]. By Claim 22, we have

Σk(n)TIME[O(n)] ⊆ SIZE[n(logn)c·k(n)]. (5)

Let a(n) = 0, s(n) = O((logn)2/ log logn), t2(n) = k(n), and t1(n) = n. Applying Lemma 17,
we have

TISP[nk(n), O((logn)2/ log logn)] ⊆ Σk(n)TIME[Õ(n)]. (6)

Setting k(n) = ε logn/(log logn) for sufficiently small ε > 0, we have

SPACE[ε(logn)2/ log logn] ⊆ TISP[n · 2ε(logn)2/ log logn), ε(logn)2/ log logn]

⊆ TISP[n1+ε logn/ log logn), ε(logn)2/ log logn] ⊆ Σ1+ε logn/ log logn)TIME[Õ(n)]

⊂ SIZE[n(logn)1+ε logn/ log logn)] = SIZE[n1+2ε].

By padding each language in SPACE[ε(logn)2/ log logn] to size N = 2O(
√
n logn), we have

(logN)2/ log logN ≤ O(n logn/ logn) ≤ O(n) and N2 ≤ 2O(
√
n logn), we can conclude that

SPACE[O(n)], which includes QBF, has circuits of size 2O(
√
n logn). J
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Abstract
The currently fastest known algorithm for k-SAT is PPSZ named after its inventors Paturi,
Pudlák, Saks, and Zane [7]. Analyzing its running time is much easier for input formulas with a
unique satisfying assignment.

In this paper, we achieve three goals. First, we simplify Hertli’s 2011 analysis [1] for input
formulas with multiple satisfying assignments. Second, we show a “translation result”: if you
improve PPSZ for k-CNF formulas with a unique satisfying assignment, you will immediately
get a (weaker) improvement for general k-CNF formulas.

Combining this with a result by Hertli from 2014 [2], in which he gives an algorithm for
Unique-3-SAT slightly beating PPSZ, we obtain an algorithm beating PPSZ for general 3-SAT,
thus obtaining the so far best known worst-case bounds for 3-SAT.
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1 Introduction

The problem of SAT, deciding whether a proposition formula conjunctive normal form has a
satisfying assignment (or even constructing such a solution) enjoys a central position among
NP-complete problems. The case of k-SAT, in which the input is restricted to k-CNF
formulas, i.e., formulas of clause width bounded by k, has drawn special attention. An
obvious brute-force algorithm solves SAT in time O (2npoly(n)), where n is the number of
variables. For k-SAT, this running time has been improved quite a bit. Two approaches
stand out: local search algorithms and encoding based algorithms. In 1999, Schöning [11]
gave a simple local search algorithm for k-SAT. Paturi, Pudlák, and Zane [8] came up with
an encoding-based algorithm, called PPZ in their honor. PPZ is not as good as Schöning,
but has interesting applications in circuit complexity [8] and complexity of exponential
algorithms [4].

Most importantly for this paper, there exists a “PPZ 2.0 version” called PPSZ (Paturi,
Pudlák, Saks, and Zane [7]). This is the currently fastest randomized algorithm for k-SAT.
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It is quite simple to state but challenging to analyze. We should state that its actual worst-
case running time is not understood at all: Chen, Scheder, Talebanfard, Tang [10] construct
exponentially hard instances, but their bounds are quite poor. Perhaps counterintuitively,
the analysis in [7] incurs an exponential loss if the input formula has multiple solutions.
Only in 2011, Timon Hertli [1] closed this gap in a breakthrough paper by a better (and
simpler, yet still quite challenging) analysis. Still, PPSZ continued to be the best algorithm.
A first crack in the wall appeared in 2014, when Hertli [2] combined PPSZ with several other
algorithms, and showed that this improves the running time of Unique-3-SAT by a small
but exponential amount. By Unique-k-SAT we mean k-SAT where the input formula F can
have at most one satisfying assignment. If F may have multiple solutions, we write general
k-SAT.

In this paper we first give a simpler analysis of Hertli’s 2011 result [1]. This analysis
also yields a translation result: if you improve PPSZ for Unique-k-SAT, you immediately
get a (smaller) improvement for general k-SAT. Thus, researchers who want to “crack the
PPSZ barrier” can focus on Unique-k-SAT for the time being. This, together with Hertli’s
2014 improvement for Unique-3-SAT [2], gives the currently fastest known running time for
general 3-SAT.

To give the reader an impression of which running time we are talking about, let
us state some bounds for 3-SAT, ignoring subexponential factors. PPZ [8] runs in time
O
(
22n/3) ≈ O (1.59n), Schöning [11] in time O

(( 4
3
)n) ≈ O (1.334n), and PPSZ [7] in time

O
(
2(2 ln(2)−1)n) ≈ O (1.308n). The improvements by Hertli [2] and this paper are quite small

(think of in the ballpark of tenth digit after the dot) and serve more as a demonstration
that PPSZ can be improved, even if they do not improve it by much.

1.1 The PPSZ Algorithm
PPSZ is a probabilistic algorithm that tries to incrementally construct a satisfying assign-
ment of F . The “generic PPSZ algorithm” is easy to state. Given a k-CNF formula F ,
choose a variable x therein uniformly at random; then choose a value b ∈ {0, 1}. Choose b
uniformly at random, unless we can determine the “correct” truth value of x by some correct
yet incomplete proof heuristic.

Let us state things more formally. A proof heuristic is a deterministic procedure P which
on input F and x outputs a value b ∈ {0, 1, ?}. Correctness means that P (F, x) = b ∈ {0, 1}
means that F |= (x = b), i.e., b is really the correct value of x; incompleteness means that
we allow P (F, x) to output “?”, even if only one value b ∈ {0, 1} for x is feasible. From now
on, when we say proof heuristic, we always mean a correct but possibly incomplete heuristic.

Suppose now that α ∈ sat(F ), i.e., it is a satisfying assignment. Below we give procedure
Encode that, given access to α, F , the heuristic P , and a permutation π of the variables
of F , encodes α into a bit string c, hopefully using fewer than n bits. Intuitively, it iterates
through the variables in the order given by π and outputs α(x) for every variable, unless
this value is already implied by F and the bits output so far. This encoding is reversible:
the procedure Decode can recover α when given access to F , P , π, and the encoding c.
The generic algorithm RandomDecode then is simply to choose π and c randomly, start
decoding and hoping for the best.

Note that the running time of RandomDecode is dominated by the running time of P .
Thus, as long as P runs in polynomial (subexponential) time, so does RandomDecode.
Consequently, we measure the goodness of RandomDecode not in terms of running time,
but in terms of success probability, which will usually be of the form 2−pn for some constant
p. To make RandomDecode into an algorithm, we still have to specify P . Here are some
examples:
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Algorithm 1 Generic Encoding Procedure
1: procedure Encode(α, π, F, P )
2: β := the empty assignment on V
3: for x ∈ V in the order of π do
4: if P (F |β , x) =? then
5: output α(x)
6: end if
7: add [x 7→ α(x)] to β
8: end for
9: end procedure

Algorithm 2 Generic Decoding Procedure
1: procedure Decode(c, π, F, P )
2: β := the empty assignment on V
3: for x ∈ V in the order of π do
4: if P (F |β , x) = b ∈ {0, 1} then
5: β(x) := b

6: else
7: β(x) := the next bit of c
8: end if
9: end for
10: return β

11: end procedure

Algorithm 3 Generic Random Decoding Procedure
1: procedure RandomDecode(F, P )
2: π := a random permutation on V
3: c := a random string in {0, 1}n
4: β := Decode(c, π, F, P )
5: return β if it satisfies F , else failure
6: end procedure

Example: P0. This heuristic always outputs “?”. Obviously, RandomDecode(F, P0) is
just random guessing, and each solution α appears with probability 2−n. This is not a very
good algorithm.

Example: P1. This heuristic answers P1(F, x) = b ∈ {0, 1} if F is a CNF formula and F
contains the unit clause (x = b)1 RandomDecode(F, P1) is the algorithm PPZ, invented
by Paturi, Pudlák, and Zane [7]. Its success probability on k-CNF formulas is 2−(1−1/k)n.

Example: Pd. This heuristic generalizes P1. It answers Pd(F, x) = b if F is a CNF formula
and it contains a subset G of at most d clauses for which G |= (x = b). With this heuristic,
RandomDecode(F, Pd) becomes PPSZ, although Paturi, Pudlák, Saks, and Zane[7] state

1 If F contains both (x = 0) and (x = 1) then P1(F, x) can be either 0 or 1, but in this case F is
unsatisfiable anyway.
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it slightly differently. Its success probability is much higher than that of PPZ (we will give
more details below) but it is still not completely understood.

Example: P∞. This heuristic employs the whole power of propositional logic. It answers
P∞(F, x) = b ∈ {0, 1} if F implies (x = b). Obviously, determining this is itself NP-hard,
so this is not an efficient heuristic. Still, it will be important in this paper. Note that
for satisfiable F , RandomDecode(F, P∞) always outputs a solution. Thus, it defines a
distribution Q on pairs (π, α), where π is the permutation is chooses and α the solution it
outputs. The distribution Q will be very important in our proofs below.

1.2 Gauging the Strength of the Proof Heuristic P

Towards an analysis of its success probability time, let Cx(α, π) be the indicator variable
which is 1 if Encode outputs a bit for x., i.e., if P (F |β , x) = ? in Line 4 of Encode. So
C(π, α) :=

∑
x Cx(π, α) is the length of the encoding, i.e., |c| = C(π, α). Note that Cx(π, α)

also depends on F and P . Since they are usually fixed throughout, we choose to drop them
for the sake of readability.

I Observation 1. Pr[RandomDecode(F, P ) returns α] = Eπ
[
2−C(π,α)].

Proof. Let c∗ := Encode(α, π, F, P ). RandomDecode returns α iff the first C(π, α) bits
of its random string c ∈ {0, 1}n agree with c∗. J

We write F |= T as a shorthand of “F implies T”, i.e., every satisfying assignment of
F satisfies T . If F |= (x = 0) or F |= (x = 1) we say that x is frozen in F . Equivalently,
all satisfying assignments of F agree on x. Otherwise, we say that x is liquid. Note that
Cx(π, α) can be 1 for two reasons. First, it could be that in Line 4 of Encode, x is liquid
in F |β and thus every correct proof heuristic P must answer P (F |β , x) = ?. In this case we
set Ix(π, α) = 1. Second, it could be that x is frozen in F |β and therefore P (F |β , x) = ?
is due to the incompleteness of P . In this case we set Jx(π, α) = 1. Thus, Cx(π, α) =
Ix(π, α) + Jx(π, α). We also set I(π, α) =

∑
x Ix(π, α) and J(π, α) =

∑
x J(π, α)x. Note

that I(π, α) = 0 if F has a unique satisfying assignment, since all variables are frozen. Also,
J(π, α) = 0 for P∞, since this heuristic never fails. Here is a plausible notion of strength for
proof heuristics: if P is a strong proof heuristic, then Jx(π, α) = 1 should not happen too
often:

I Definition 2 (Error of P ). Let C be a class of formulas and P be a proof heuristic. P has
error at most p against C if Eπ [Jx(π, α)] ≤ p for every F ∈ C, solution α, and variable x
in F .

I Theorem 3 ([8]). P1 has error 1− 1/k against k-CNF formulas.

Paturi, Pudlák, Saks, and Zane[7] prove the following bound on the error of Pd (although
they do not use this exact wording). Consider the infinite (k − 1)-ary rooted tree. For
each vertex v in this tree, choose πv ∈ [0, 1] uniformly at random. Delete each vertex v

with πv < πroot. Let sk be probability that the root is contained in an infinite connected
component. It is easy to see that s2 = 0. A simple calculation shows that s3 = 2 ln(2)− 1.

I Theorem 4 ([7]). Pd has error sk + εd,k against k-CNF formulas, where εd,k → 0 as
d→∞.
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I Observation 5. Let P be a proof heuristic of error at most p against C. If F ∈ C has a
unique satisfying assignment α, then RandomDecode(F, P ) = α with probability at least
2−pn.

Proof. We use Observation 1 and Jensen’s Inequality:

Pr[ PPSZ succeeds] = E
π

[
2−C(π,α)

]
≥ 2−Eπ [C(π,α)] (Jensen’s Inequality)

= 2−Eπ [J(π,α)] (I = 0 since only one assignment)
≥ 2−pn (P has error at most p)

J

1.3 Previous Work
In case F has multiple satisfying assignments, the proof of Observation 5 breaks down, and
it is not clear why a proof heuristic of error at most p should give an algorithm of success
probability 2−pn. A series of authors have improved PPSZ for the general case of multiple
satisfying assignments. Paturi, Pudlák, Saks, and Zane [7] already gave an analysis, which
has an exponential loss for k = 3, 4. Iwama and Tamaki [6] combine PPSZ for Schöning’s
random walk algorithm [11] to obtain a better algorithm. This combination was then further
explored by Rolf [9], Iwama, Seto, Takai, and Tamaki [5], and Hertli, Moser, and Scheder [3].
All these improvements have serious drawbacks: they still have an exponential loss compared
to the Unique-k-SAT bound for k = 3, 4; they are extremely technical; they use detailed
knowledge of the proof heuristic P ; finally, the latter four have to combine PPSZ with a
second algorithm (Schöning’s random walk algorithm [11]) to achieve their improvement. In
2011, Timon Hertli achieved a breakthrough by proving the following theorem:

I Theorem 6 (Hertli [1]). Suppose P has error at most p against C, and p ≥ p∗ := 2−log(e)
2 ≈

0.279. For every satisfiable F ∈ C, RandomDecode(F, P ) returns a satisfying assignment
with probability at least 2−pn.

Note the mysterious p∗ in the theorem. We suspect that it is an artefact of the proof and
make the following conjecture:

I Conjecture 7. Theorem 6 holds for all p ≥ 0.

Currently, the only supporting evidence for the conjecture is (1) our failure to construct
a counterexample, despite some trying, and (2) that it would simply be very weird if it
were false. Anyway, since 1 − sk ≥ p∗ for all k ≥ 3, Hertli’s theorem works for the current
version of PPSZ, for all k ≥ 3. It might be, however, that future research brings about proof
heuristics of error probability less than p∗, in which case the above theorem would again
incur an exponential loss. Ingenious as it is, Hertli’s proof is quite long and tedious.

1.4 Our Contribution
The first contribution of this paper is to give a much simpler proof of Theorem 6. Our proof
in fact highlights why certain previous attempts fail, demonstrates more clearly “what is
going on”, and also points towards further improvements.

As a second contribution, we show that any improvement of PPSZ for Unique-k-SAT
translates into a (weaker) improvement for General k-SAT. In particular, we will prove a
stronger version of Theorem 6, which we now explain.
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I Definition 8. A class C of formulas or circuits is closed under restrictions if F ∈ C implies
that F |x=b ∈ C, for every variable x and value b ∈ {0, 1}.

Note that this applies to most “reasonable” circuit classes, in particular to k-CNF formulas.

I Definition 9. A proof heuristic P is called monotone if P (F, x) ∈ {0, 1} implies that
P (F |y=b, x) ∈ {0, 1}, for every F , y 6= x, and b ∈ {0, 1}.

In other words, if P can deduce the value of x, then it can also do so after we add the
additional information that y = b. Note that P0, P1, Pd, P∞ define above are all monotone.
Recall that RandomDecode(F, P∞) chooses a uniformly random permutation π ∈ Sym(V )
and always outputs a satisfying assignment. Thus, it defines a distribution Q on Sym(V )×
sat(F ) with Q(π, α) = 1

n! · 2
−I(π,α).

I Theorem 10. Suppose P has error at most p against C, and set q := p − p∗ for p∗ :=
2−log(e)

2 ≈ 0.279. Let F ∈ C be satisfiable. Then RandomDecode returns a satisfying
assignment with probability at least 2−pn+q E(π,α)∼Q[I(π,α)], where q := p− p∗.

Since sk > p∗ for all k ≥ 3, the value q above is positive, which immediately reproves
Hertli’s Theorem (Theorem 6). As pointed out by one of the referees, the “bonus term”
E(π,α)∼Q[I(π, α)] has an information-theoretic interpretation: it is the conditional entropy
H(α|π). Our theorem has a nice by-product, a “translation result” from Unique-k-SAT to
General k-SAT: suppose you have an algorithm A which is exponentially better than PPSZ
for Unique-k-SAT. Given an input k-CNF formula F , there are two cases: first, it could
be that EQ[I] is “large” for this F , in which case Theorem 10 already gives an exponential
bonus; or it is “small”, in which case there is a small restriction ρ such that F |ρ has a unique
satisfying assignment. We can now guess ρ and apply A to F |ρ. Formally, we obtain the
following theorem:

I Theorem 11. Suppose P is a monotone proof heuristic with error probability at most p
against class C. We assume that C is closed under restrictions.
1. If RandomDecode(P, ·) solves Unique-C-SAT with probability at least 2(−p+ε)n, then

it solves C-SAT with probability at least 2(−p+ε′)n.
2. If there is an algorithm A for Unique-C-SAT with success probability 2(−p+ε)n, then there

is an algorithm A′ for C-SAT with success probability at least 2(−p+ε′)n and running time
n times that of A.

3. If there is Monte Carlo algorithm B solving Unique-C-SAT running in time 2(p−ε)n,
then there exists a Monte Carlo algorithm B′ solving C-SAT in time 2(p−ε′)n.

Here, ε′ > 0 if ε > 0.

I Theorem 12 (Hertli [2]). There exists a Monte-Carlo algorithm solving Unique-3-SAT in
time O

(
2(s3−ε)n

)
for some ε > 0.

Together with Theorem 11 we immediately obtain improvement for general 3-SAT and
achieve the currently best running time.

I Theorem 13. There is a Monte-Carlo algorithm solving 3-SAT in time O
(

2(s3−ε′)n
)
for

some ε′ > 0.
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2 Proof of Theorem 10

In addition toQ(π, α) = 1
n! ·2

−I(π,α), we consider another distribution R on Sym(V )×sat(F ).
We estimate the success probability of RandomDecode:

Pr[success] =
∑

α∈sat(F )

E
π

[
2−C(π,α)

]
=

∑
α∈sat(F )

1
n!
∑
π

2−I(π,α)−J(π,α)

=
∑

α∈sat(F )

∑
π

R(π, α)2−I(π,α)−J(π,α)

n!R(π, α)

= E
(π,α)∼R

[
Q(π, α)
R(π, α) · 2

−J(π,α)
]

≥ 2ER
[
− log2

(
R(π,α)
Q(π,α)

)
−J(π,α)

]
( by Jensen’s inequality)

= 2−D(R||Q)−ER[J(π,α)] ,

where D(R||Q) is called the Kullback-Leibler divergence from Q to R. We can now plug in
any distribution R and aim to minimize the expression

D(R||Q) + E
(π,α)∼R

[J(π, α)] . (1)

Here we face a tradeoff. If we choose R to be uniform over Sym(V ) × sat(F ), we get
ER[J(π, α)] = Eα [

∑
x Eπ[Jx(π, α)]] ≤ pn, since P has error at most p; however, D(R||Q)

might be too large. Choosing R = Q makes D(R||Q) = 0, but the second term can become
larger than pn. Informally speaking, the problem is that for certain F , P , and α, if we sample
π from the conditional distribution Q|α, frozen variables x tend to come earlier (compared
to a uniformly sampled π). Thus, when we call P (F |β , x), we have less information (β tends
to be a shorter partial assignment), and Jx is more likely to be 1. In Section B we provide
examples where these phenomena actually happen.

The process Sample-R below defines a distribution R on pairs (π, α) that resembles
Q (and thus keeps the divergence D(R||Q) small) while showing a moderate preference
for moving frozen variables to the back of π (keeping ER[J(π, α)] small). Note that unlike
under Q, the marginal distribution on permutations induced by R is not necessarily uniform.
Indeed, if we call sample-R(F, V ) for F = x and V = {x, y} then π is (y, x) with probability
2/3 and (x, y) with probability 1/3. On the other hand, R and Q induce the same marginal
distribution on satisfying assignments. The reader is encouraged to verify this, but this
property is not required for the proof. We call the resulting distribution RF to highlight its
dependency on F . If F is understood from the context, we simply write R.

I Lemma 14. D(R||Q) ≤ p∗ ER[I] for every F .

This is where the mysterious p∗ =
(

2−log(e)
2

)
comes from. The proof of Lemma 14 is a

little bit technical but rather straightforward for somebody familiar with information theory,
and can be found in the appendix.

I Lemma 15. Let C be a formula class closed under restrictions, P a monotone proof
heuristic with error at most p against C. Then for every F ∈ C and every frozen variable x
of F it holds that ER[Jx] ≤ p.

This lemma is in some way the heart of our proof. Its proof studies how the conditional
distribution R(π|α) differs from the uniform distribution over π and applies two careful

CCC 2017
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Algorithm 4 Sampling from the distribution R
1: procedure Sample-R(F, V )
2: if V = ∅ then
3: return (∅, ∅)
4: end if
5: S(F ) := {(x, b) ∈ V × {0, 1} | F |x=b is satisfiable }
6: (x, b) := a random element from S

7: (π, α) := sample-R(F |x=b, V \ {x})
8: return (xπ, α ∪ [x = b])
9: end procedure

coupling arguments. It is also the place where we use that P is monotone. Lemma 15 has
the following consequence:

I Lemma 16. ER[pIx + Jx] ≤ p for every x ∈ V , and ER[pI + J ] ≤ pn.

Proof. Imagine we run the process Sample-R but pause when (1) x becomes frozen or (2)
x, as a non-frozen variable, is chosen in line 6. Everything what happens before the pause
is called the past. If (2) happens, then Ix = 1, Jx = 0 and thus ER[pIx + Jx|the past] =
ER[p · 1 + 0] = p. Otherwise, if (1) happens, then I = 0 since x becomes frozen, and
ER[pIx+Jx|the past] = ER[Jx|the past]. After the past has happened, the sampling process
has arrived at a new formula F ′ ∈ C, and x is frozen in F ′. Since C is closed under restrictions,
F ′ ∈ C, too, and we can apply Lemma 15 to conclude that ERF [Jx|the past] = ERF ′ [Jx] ≤ p.
Thus, ER[pIx + Jx] ≤ p. J

I Lemma 17. ER[I] = EQ[I].

Let us put everything together. D(R||Q) + ER[J ] ≤ p∗ ER[I] + ER[J ] = ER[pI + J ] −
(p − p∗)ER[I] ≤ pn − q EQ[I]. Thus, RandomDecode succeeds with probability at least
2−pn+q EQ[I]. This proves Theorem 10.

3 Unique to General

We are now ready to prove Theorem 11, which claims that if you can beat PPSZ for Unique-
C-SAT, then you can beat it for C-SAT.

Proof of Theorem 11. Let δ > 0 be a fixed number, to be determined later. If EQ[I] ≥ δ ·n,
then

Pr[RandomDecode(F, P ) successful] ≥ 2−pn+δcn , (2)

which is exponentially larger than 2−pn.
Otherwise, assume that EQ[I] ≤ δn. In particular, I(π, α) ≤ δn for some permutation

π and assignment α. This means that there is a partial assignment ρ fixing δn variables
such that F |ρ has a unique satisfying assignment. We prove Point 1 of the theorem. When
running RandomDecode on F , with probability

(
n
≤δn
)−1 · 2δn the first δn steps produce

exactly ρ, and the remaining (1− δ)n steps are like running RandomDecode(F |ρ, P ). F |ρ,
has the unique solution α, and thus RandomDecode(F |ρ, P ) finds α with probability at
least 2(−p+ε)(n−δ). Altogether,

Pr[RandomDecode(F, P ) = α] ≥
(
n

δn

)−1
· 2−δn · 2(−p+ε)(n−δ) . (3)



D. Scheder and J. Steinberger 9:9

By choosing δ > 0 optimally, we can make sure that both (2) and (3) are at least 2(−p+ε′)n,
for some ε′ > 0. This proves Point 1 of the theorem. The proofs of the other two points are
similar. J

4 Open Questions

Can we show that formulas with a unique solution are the worst case for RandomDecode
under every “reasonable” heuristic P?

Can we show that the success probability of RandomDecode is exponentially larger
than 2−pn if F has an exponential number of solutions? Unfortunately, the current “bonus
term” EQ[I]” can be constant for some formulas with a large number of solutions, for example
for F = (x1 ∧ · · · ∧ xn/2) ∨ (|x| ≤ 100) (note that EQ[I] only depends on the underlying
boolean function, not on its representation as a CNF formula).

Acknowledgements. Dominik Scheder want to thank Navid Talebanfard for inspiring dis-
cussions.
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A Proof of the lemmas

For a formula F over variable set V , recall that S(F, V ) is the set of all pairs (x, b) ∈ V ×{0, 1}
for which F |x=b is satisfiable. Note that if F is satisfiable then |S(F, V )| is n plus the number
of liquid variables.

I Lemma 14 (restated). D(R||Q) ≤
(

2−log(e)
2

)
ER[I], for every formula F .

Proof. Let us spell out a pair (π, α) as (x1 . . . xn, b1 . . . bn), where xi is the ith variable under
π and bi = α(xi). Let τi := (x1 . . . xi, b1 . . . bi) be a “prefix” of (π, α). Define Rτi be the
distribution of (bi+1, xi+1) under R conditioned on τi. Similarly define Qτi . By the chain
rule for the divergence we get

D(R||Q) =
n−1∑
i=0

E
τi∼R

[D(Rτi ||Qτi) .

So let us fix a “past” τi and bound D(Rτi ||Qτi). Let Fi := F |x1 7→b1...xi 7→bi and Vi :=
{xi+1, . . . , xn}. So Fi is a CNF formula over Vi, and it is exactly the formula for which
Sample-R is called in its ith call. Let ni = |Vi|, si := |S(Fi, Vi)|, fi the number of frozen
variables in Vi and li the number of liquid variables. Thus fi + li = ni and fi + 2li = si.
Note that Ri is uniform over S(Fi, Vi). Qτi picks xi+1 uniformly at random from Vi and
assigns it a random value from the (one or two) allowed values. Thus, Qτi(x, b) is 0 if
(x, b) 6∈ S(Fi, Vi); otherwise, it is 1/ni if x is frozen and 1/2ni if x is liquid.

D(Rτi ||Qτi) =
∑

(x,b)∈S(Fi,Vi)

Rτi(x, b) log
(
Rτi(x, b)
Qτi(x, b

)

=
∑

(x,b)∈S(Fi,Vi)

1
si

log
(

1/si
[1/ni if x frozen, 1/2ni if x liquid ]

)

= 2li
si

log
(

1/si
1/2ni

)
+ fi
si

log
(

1/si
1/ni

)
= 2li

s
log
(

2ni
si

)
+ fi
si

log
(
ni
si

)
= 2li

s
+ log

(
ni
si

)
= 2li

s
+ log

(
1− li

si

)
≤ 2li

s
− log(e) li

si
= li
si

(2− log(e)) .

Let Ĩi(π, α) := Ixi(π, α), i.e., an indicator variable which is 1 if the ith variable under
π is liquid in Fi−1. We observe that ERτi [Ĩi+1] = 2li

si
, since there are exactly 2li pairs

(x, b) ∈ S(Fi, Vi) for which the variable x is liquid. Putting everything together, we get

D(R||Q) ≤
n−1∑
i=0

E
τi∼R

[
li
si

(2− log(e))
]

= 2− log(e)
2

n−1∑
i=0

E
τi∼R

[
2li
si

]
.

As we have just seen, the latter sum equals ER
[∑n

i=1 Ĩi
]
, which again equals ER[I], since

Ĩi, i = 1, . . . , n simply counts Ix, x ∈ V in a different order. J
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A.1 Permutations that delay x – Proof of Lemma 15

Before we prove Lemma 15, we have to introduce some notation. We call a function g :
2V → R monotone if g(A) ≤ g(B) for any A ⊆ B ⊆ V . Let x ∈ V be a fixed variable,
π ∈ Sym(V ) a permutation. We denote by W (π) the set of variables appearing after x in π.
Observe that Jx(π, α) only depends on W (π), not on the particular order of the variables
coming before x and of those coming after x.

I Observation 18. Jx is a monotone function in W , since P is a monotone heuristic.

For two strings σ, π, we write σ � π if σ is a prefix of π. A permutation π on set V of
size n can be viewed as a string in V n without repeated letters. A string σ ∈ V ∗ without
repeated letters is called a partial permutation. If D is a distribution over permutations on
V and σ is a partial permutation, we write D(σ) := Prπ∼D(σ � π).

I Definition 19. Let D be a distribution over permutations on V , and let x ∈ V . We say
D delays x if for all y ∈ V and all partial permutations σ not containing x or y, it holds
that D(σx) ≤ D(σy).

Informally, at every stage, x is among the least likely elements to come next. For example,
the uniform distribution delays x; so does the distribution that samples a permutation of
V \ {x} and places x at the end. Lemma 15 will follow from the next two lemmas:

I Lemma 20. The distribution (R|α) delays x, for every frozen variable x.

Here, (R|α) is the distribution on permutations conditioned on this fixed satisfying assign-
ment α, i.e., (R|α)(π) = R(π, α|α).

I Lemma 21. Let V be a finite set, x ∈ V , D a distribution over permutations of V that
delays x, and f : V → R a monotone function. Denote by W = W (π) the set of elements
coming after x in π. Then

E
π∼D

[f(W )] ≤ E
π∼U

[f(W )] ,

where U is the uniform distribution over permutations.

Proof Idea. Since D delays x, the set W tends to be smaller under D than under U . Since
f is monotone this means the expectation f(W ) is smaller, too. This is the intuition. The
formal proof uses a coupling argument. J

I Lemma 15 (restated). Let C be a formula class closed under restrictions, P a monotone
proof heuristic with error at most p against C. Then for every F ∈ C and every frozen
variable x of F it holds that ER[Jx] ≤ p.

Proof. By assumption on P we have Eπ[Jx(π, α)] ≤ p when π is uniform. Thus, we have
to compare how the uniform distribution and (R|α) differ in their treatment of x, and how
Jx(π, α) reacts to these differences. By Lemma 20, (R|α) delays x. By Observation 18, J
is a monotone function in W , where W = W (π) is the set of elements coming after x in π.
Thus, by Lemma 21 we obtain that Eπ∼R[Jx(π, α)] ≤ Eπ∼U [Jx(π, α)] ≤ p. J

CCC 2017
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A.2 Remaining proofs – Lemma 20 and Lemma 21

Proof of Lemma 20. By assumption, x is frozen and σ is a partial permutation not con-
taining x nor y. Assume first that σ is empty. We have to show that R(x|α) ≤ R(y|α) or,
equivalently, R(x, α) ≤ R(y, α).2

Consider the following alternative but equivalent way to sample R: order the s elements
of S(F, V ) randomly into a sequence τ = (x1, b1), . . . , (xs, bs) and then add the unit clauses
(xi = bi) to F , in this order, skipping a unit clause if adding it would make F unsatisfiable.
This adds n unit clauses in some order (xi1 = bi1), . . . , (xin = bin) and thus defines a
permutation π of V and an assignment α. The pair (π, α) has distribution R.

Let Tz,α denote the set of all such sequences τ that (1) result in α and (2) place z at the
beginning of π. So R(z, α) = |Tz,α|

|S(F,V )|! . Since the first unit clause (x1 = b1) in a sequence
is always consistent with F , every sequence in Tz,α starts with (z = α(z)). For a sequence
τ ∈ Tx,α define f(τ) to be the sequence τ ′ where we switch the positions of (x = α(x)) and
(y = α(y)) (note that both must appear in τ , and (x = α(x)) appears at the beginning).
A minute of thought shows that the sequence f(τ) leads to α as well (the key observation
is that x is frozen, so logically (x = α(x)) is already present in F , whether it occurs at the
beginning of τ or not). Thus f(τ) ∈ Ty,α and we have just defined an injection from Tx,α
into Ty,α. This shows that |Tx,α| ≤ |Ty,α| and thus R(x, α) ≤ R(y, α).

If σ is not empty we write α = ασασ̄, where ασ is the α restricted to the variables
appearing in σ, and ασ̄ is the rest. Write F ′ := F |ασ Now R(σz, α) is the probability that
Sample-R follows σ and α in its first |σ| steps, times RF ′(z, ασ̄). Thus, we have reduced
non-empty σ case to the empty σ case. J

I Lemma 21 (restated). Let V be a finite set, x ∈ V , D be a distribution over permutations
of V that delays x, and f : V → R be a monotone function. Denote by W = W (π) the set
of elements coming after x in π. Then

E
π∼D

[f(W )] ≤ E
π∼U

[f(W )] ,

where U is the uniform distribution over permutations.

Proof. Let WD denote a random variable distributed like W (π) with π ∼ D, and similarly
WU = W (π) where π is uniform. Below, we define a process Sample-W which simultan-
eously samples WD and WU and guarantees WD ⊆WU . In other words, Sample-W defines
a coupling under which WD ⊆ WU We write D(z|σ) := D(σz|σ) = D(σz)

D(σ) . This is the
probability that z is chosen next, conditioned on σ having been sampled so far.

The process Sample-W clearly samples WD from the correct distribution. Note that
an element z gets removed from WU whenever t < D(x|σ), and then a uniformly random
element is removed. Also, the process terminates when x has been removed from WD.
Obviously, it will be removed from WU in the same iteration. So WD and WU have the
correct distribution. Lastly, since D(x|σ) ≤ D(z|σ), when the element z is removed from
WU , it has already been removed from WD. Thus, WD ⊆ WU holds in every step. Thus,
f(WD) ≤ f(WU ) with probability 1 and therefore Eπ∼D[f(W )] ≤ Eπ∼U [f(W )]. J

2 We have not formally introduced this notation. It is the probability that Sample-R outputs α and a
permutation π starting with x (respectively, y)
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Algorithm 5 Sampling WD and WU
1: procedure sample-W(V, x)
2: σ := the empty string
3: WD = WU = V

4: while x ∈WD do
5: (z, t) ∈ V × [0, 1], uniformly at random
6: if t < D(z|σ) and z ∈WD then
7: remove z from WD

8: append z to σ
9: end if
10: if t < D(x|σ) then
11: remove z from WU
12: end if
13: end while
14: return WD,WU
15: end procedure

B Bad Examples

B.1 Why s Direct Application of Jensen’s Does Not Work
We will demonstrate why proving Theorem 6 requires nontrivial effort. Let us proceed as
in the proof of Observation 5. Let sat(F ) be the set of all satisfying assignments of F . The
success probability of Decode is

Pr
c,π

[success] =
∑

α∈sat(F )

Pr
c,π

[Decode(c, π, F, P ) = α]

=
∑

α∈sat(F )

E
π

[
2−C(π,α)

]
(4)

≥
∑

α∈sat(F )

2−Eπ [C(π,α)] , (5)

where last line follows from Jensen’s inequality.
We will construct an example in which Pr[success] = 1 but (5) is exponentially small.

Consider P = P∞, the complete proof heuristic, which has error 0 against, well, every circuit
class. Also note that (4) is 1, as Decode always returns a satisfying assignment if given
access to P∞. Let F be the Boolean function defined by F (x) = 1 if |x| = 1, i.e., exactly one
of the n positions of x is 1. So sat(F ) = {e1, . . . , en}. Note that since P∞ is the complete
prover, it does not really matter in which way we represent F .

By symmetry, Pr[Decode(c, π, F ) = ei] = 1/n for every i. What is C(ei, π)? Let j be
the position of xi in π. A minute of thought shows that C(ei, π) = min(j, n− 1). Therefore

E
π

[C(ei, π)] = 1
n
·
n−1∑
j=1

j + 1
n

(n− 1) ≥
(
n
2
)
n

= n− 1
2 .

Summing up over all sat(F ) we see that

(5) =
∑

α∈sat(F )

2−Eπ [C(π,α)] ≤ n · 2−
n−1

2 .

CCC 2017
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Thus, there is an exponential gap between (5) and 2−pn = 2−0·n = 1, the bound in the
conjecture. We conclude that this “naive” application of Jensen’s inequality will not work.

B.2 A Smarter Application of Jensen’s Inequality
Suppose we run Decode(c, π, F ) with random c and π and the complete prover P∞. It will
always return a satisfying assignment, and thus defines a probability distribution Q over
Sym(V )× sat(F ). It is easy to see that

Q(π, α) = Q(π) ·Q(α|π) = 1
n! · 2

−I(π,α) .

We can now rewrite the success probability of Decode (using some incomplete proof heur-
istic P ) as

Pr[success] =
∑

α∈sat(F )

E
π

[
2−C(π,α)

]
=
∑
π,α

1
n! 2
−I(π,α)−J(π,α)

= E
(π,α)∼Q

[
2−J

]
(6)

≥ 2−EQ[J] . (7)

Sadly, (7) can be exponentially smaller than 2−pn, as we will show now.

B.3 Another Bad Example
Consider the following function:

Exactly-Two(x, y, z) ∧
n∧
i=1

(At-Least-Two(x, y, z)→ ai) .

We can express this as a 3-CNF formula:

(x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x̄ ∨ ȳ ∨ z̄)∧
n∧
i=1

((x̄ ∨ ȳ ∨ ai) ∧ (x̄ ∨ z̄ ∨ ai) ∧ (ȳ ∨ z̄ ∨ ai)) .

Enumerating our variables as x, y, z, a1, . . . , an, the satisfying assignments are α1 = (0111n),
α2 = (1011n), and α3 = (1101n). Consider the prover P = P1, i.e., it checks whether the
variable in question is contained in a unit clause. Since this is a 3-CNF, the error probability
of P is at most 2/3. What is EQ[J ]?

E
Q

[J ] = E
α∼Q

[ E
π∼Q|α

[J ]] = E
π∼Q|α1

[J(α1, π)] (by symmetry between the αi)

≥ n E
π∼Q|α1

[Ja1(α1, π)] . (by symmetry between the ai)

One can now show by a straightforward calculation that Eπ∼Q|α1 [Ja1(α1, π)] = 11
16 > 2/3.

Thus, the expression 2−EQ[J] can be exponentially smaller than 2− 2
3 ·n, which is the true

worst-case success probability of PPZ (i.e., PPSZ with proof heuristic P1) on 3-CNF for-
mulas. We strongly encourage the reader to compute Eπ∼Q|α1 [Ja1(α1, π)] for the above
example.
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Problem Assessment

Since π is uniform under Q, it holds that Q(π|α) is proportional to Q(α|π) = 2−I(π,α). For
α1 = (0111n), the latter term is largest when x comes first (as setting x to 0 implies the
values of both y and z). Informally speaking, y and z tend to come later among x, y, z. When
can P1 tell the value of a1? The clause (ȳ∨ z̄∨a1) reduces to the unit clause (a1) if y, z come
before a1. Normally, this happens with probability 1/3. Under Q|α1, however, y and z tend
to come later, and the probability decreases to 5/16, and thus Eπ∼Q|α1 [Ja1(α1, π)] = 11/16.
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Abstract
Questions of noise stability play an important role in hardness of approximation in computer
science as well as in the theory of voting. In many applications, the goal is to find an optimizer
of noise stability among all possible partitions of Rn for n ≥ 1 to k parts with given Gaussian
measures µ1, . . . , µk. We call a partition ε-optimal, if its noise stability is optimal up to an
additive ε. In this paper, we give an explicit, computable function n(ε) such that an ε-optimal
partition exists in Rn(ε). This result has implications for the computability of certain problems
in non-interactive simulation, which are addressed in a subsequent work.
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1 Introduction

1.1 Isoperimetric Theory and Noise Stability
Isoperimetric problems have been studied in mathematics since antiquity. The solution to
the isoperimetric problem in the two dimensional Euclidean plane was known in ancient
Greece. The study of isoperimetric problems is central in modern mathematics and theoretical
computer science. Some central examples include the study of expanders and mixing of
Markov chains.

Our interest in this work is in a central modern isoperimetric problem, i.e, the problem
of noise stability. This problem, originally studied by Borell in relation to the study of the
heat equation in mathematical physics [3], has emerged as a central problem in theoretical
computer science [13], as well as in combinatorics and in voting theory [11] as we elaborate
below.

The fundamental question in this area is to find a partition of Gaussian space (with
prescribed measures) which maximizes the noise stability of the partition. We equip Rn
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with the standard Gaussian measure γn, i.e. the measure with density (2π)−n/2 exp(−|x|2/2),
where |x| denotes the Euclidean norm. The Ornstein-Uhlenbeck operator Pt is defined for
t ∈ [0,∞) and (sufficiently integrable) f : Rn → R by

(Ptf)(x) =
∫
y∈Rn

f(e−t · x+
√

1− e−2t · y)dγn(y).

The resulting notion of noise stability is defined by Stabt(f) := E[fPtf ], where the expectation
is with respect to γn. If f denotes the indicator function of a set (call it Af ), then Stabt(f)
is the probability that two e−t-correlated Gaussian random variables x, y both fall in Af .
In the limit t→ 0, noise stability captures the Gaussian surface area of the set Af [15]. In
particular, we have the following relation for any set:

GAS(Af ) = lim
t↓0

√
2π

arccos(e−t) ·E[f · (f − Ptf)],

where GAS(Af ) denotes the Gaussian surface area of the set Af .

1.2 Halfspaces are most stable sets
For both noise stability and surface area, halfspaces are known to be the optimal sets [2, 20,
3, 1]. We will state this fact in a slightly convoluted way, in order to more easily generalize
it. Let ∆k denote the probability simplex in Rk (i.e. the convex hull formed by the standard
unit vector {e1, . . . , ek}). Any function with range [k] := {1, . . . , k} naturally embeds in
∆k by identifying i ∈ [k] with ei. Moreover, we extend the Ornstein-Uhlenbeck operator
to act on vector valued functions in the obvious way: if f = (f1, . . . , fk) : Rn → Rk then
Ptf = (Ptf1, . . . , Ptfk). Finally, say that f = (f1, f2) : Rn → ∆2 is a halfspace if there exist
a, b ∈ Rn such that f1(x) = 1{〈x−a,b〉≤0}, where 〈·, ·〉 denotes the Euclidean inner product.

I Theorem 1 (Borell). For any g : Rn → ∆2, a halfspace f : Rn → ∆2 with E[f ] = E[g]
satisfies

E[〈f, Ptf〉] ≥ E[〈g, Ptg〉].

Theorem 1 has many applications in computational complexity. Most famously, it
can be combined with an invariance principle [16] in order to prove a number of tight
hardness-of-approximation results under the unique games conjecture [12].

1.3 More parts?
It is straightforward to extend the notion of noise stability to partitions with many parts.
Namely, a partition of Rn can be described by f : Rn → [k]. Identifying [k] with {e1, . . . , ek}
as above, we define the noise stability of such a partition by E[〈f, Ptf〉]. One may then ask
for an analogue of Theorem 1, but where ∆2 is replaced by ∆k for some k ≥ 3.

Even the three-part version of Theorem 1 turns out to be rather harder than the two-part
one. We will try to explain why, by analogy with isoperimetric problems. First of all, in the
limit as t ↓ 0, the Euclidean analogue of Theorem 1 for k = 3 is known as the “double bubble”
problem. The well-known “double bubble conjecture” states that the minimum total surface
area of two bodies separating and enclosing two given (Lebesgue) volumes is achieved by
two spheres meeting at 120◦. After being open for more than a century, this problem was
settled rather recently in R2, R3, and R4 [9, 10, 19]. For the Gaussian space, [4] showed that
for some small but positive constant c > 0, the Gaussian surface area of three partitions is
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minimized by the “standard simplex partition” as long as the measures of all the three parts
is within 1/3± c; a standard simplex partition is one with three flat boundaries which meet
at a single point at 120◦ angles.

Since halfspaces both maximize noise stability and minimize Gaussian surface area, and
since the standard simplex partition is known to minimize multi-part Gaussian surface area
in certain cases, it seems natural to guess that the standard simplex partition also maximizes
multi-part noise stability. This was explicitly conjectured in [12], in the special case that all
of the parts in the partition have equal measure. However, a somewhat surprising (at least
to the authors) recent work [7] showed that the standard simplex partition fails to maximize
multi-part noise stability unless all of the parts have equal measure. On the other hand,
there is also some support for the conjecture in the equal-measure case: Heilman [8] showed
that the conjecture is true in Rn for n ≤ n0(t).

1.4 Approximate noise stability of multipartitions?
In light of the uncertainty about optimal partitioning for k ≥ 3, one can ask a more modest
question. Given k ≥ 3, t > 0, and prescribed measures for the k parts, let αn be the optimal
noise stability that can be obtained in Rn under these constraints. Since the Gaussian
measure is a product measure, αn is clearly non-increasing in n. Since it is bounded below
by zero, it has a limit as n→∞.

Our main result is that there is an explicitly computable n0 = n0(k, t, ε) such that
αn0 ≥ αm − ε for all m ∈ N. Although the bound on n0 that we give is not particularly
good, the key point is that it is explicitly computable. As a consequence, up to error ε, the
noise stable partition is also explicitly computable. We conclude the introduction by an open
question:

I Question. Does there exists n0 such that αn0 = αn for n > n0?

Our current techniques are not suitable for addressing the question above.

2 Main theorem and overview of proof technique

In order to state the main theorem, we first need to recall the notion of a polynomial threshold
function. A function f : Rn → {0, 1} is said to be a degree-d PTF if there exists a polynomial
p : Rn → R of degree d such that f(x) = 1 if and only if p(x) > 0. We will need a k-ary
generalization of this definition. We note that there are several possible ways to generalize
the notion of PTFs to k-ary PTFs and our particular choice is dictated by the convenience of
using the relevant results from [5].

I Definition 2. A function f : Rn → [k] is said to be a multivariate PTF if there exist
polynomials p1, . . . , pk : Rn → R such that

f(x) =
{
j if pj(x) > 0 and for i 6= j, pi(x) ≤ 0 ,
1 otherwise .

In this case, we denote f = PTF(p1, . . . , pk). Further, f is said to be a degree-d multivariate
PTF if p1, . . . , pk are degree d polynomials.

We now state the main theorem of this paper. We set the convention, that unless explicitly
mentioned otherwise, the underlying distribution is γn, the standard n-dimensional Gaussian
measure. Likewise, given any random variable X over Rk, E[X] denotes its (vector-valued)
expectation and Var(X) denotes its covariance matrix.

CCC 2017
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I Theorem 3. Let f : Rn → [k] such that E[f ] = µ ∈ Rk. Then, given any t > 0, ε > 0,
there exists an explicitly computable n0 = n0(t, k, ε) and d = d(t, k, ε) such that there is a
degree-d PTF g : Rn0 → [k] such that:
1. ‖E[f ]−E[g]‖1 ≤ ε,
2. E[〈g, Ptg〉] ≥ E[〈f, Ptf〉]− ε.

Note that the above theorem automatically implies that a function g satisfying the above
properties can be explicitly computed (up to some additional error ε). This is because the
set of degree-d PTFs on Rn0 admits a finite sized explicitly enumerable ε-cover.

2.1 From general partitions to PTF
The first step in the proof of Theorem 3 is to show that given any f : Rn → [k], there
is a multivariate PTF g′ : Rn → [k] which meets the two criteria in Theorem 3 and
has degree d = d(t, k, ε), for some explicit function d(t, k, ε). In other words, g′ satisfies
‖E[f ]−E[g′]‖1 ≤ ε and Stabt(g′) ≥ Stabt(f ′)− ε. Note that the main difference between the
desired conclusion of Theorem 3 and what is accomplished in this step is that the ambient
dimension remains n as opposed to a bounded dimension n0.

Why is this true? The basic intuition is that if f is noise stable then it should have most
of its Hermite expansion weight at low degree. Therefore we should be able to replace f
with the PTF where the polynomial is the truncated expansion of f . There are a number of
challenges in formalizing this intuition:
1. We cannot rule out that a positive fraction of the weight of f is at high degrees (perhaps

as large as n);
2. it is not clear that the PTF obtained this way is noise stable; nor that
3. it has the right expected value.

Our analysis proceeds as follows. We would like to construct g′ from f by “rounding” Ptf
for some small t. The advantage of Ptf over f is that Ptf is guaranteed to have decaying
tails. The rounding of Ptf can be performed given some a ∈ Rn by considering the function
ga : Rn → [k] which takes the value i whenever i is the largest coordinate of Ptf − a. It is
not hard to prove that it is possible to choose a such that E[ga] = E[f ]; moreover, one can
show that this function ga has better noise stability than f does. The main obstacle is that
the function ga is not a PTF. Unfortunately the Hermite decay of Ptf does not translate
to Hermite decay of ga. Instead we use smoothed analysis to show that for most a’s, ga
has Hermite decay and can therefore be well approximated by PTF. The smoothed analysis
argument uses the co-area formula and gradient bounds and draws on ideas from [17, 14].

2.2 From PTF in dimensionn to a small PTF of bounded degree
polynomials

Given the function g′ : Rn → [k] of degree d = d(t, k, ε), our next goal is show it is possible
to obtain a PTF g on some n0 = n0(t, k, ε) variables such that (i) ‖E[g]−E[g′]‖1 ≤ ε and
(ii) Z|〈g, Ptg〉 − 〈g′, Ptg′〉| ≤ ε. This part builds on and extends the theory and results of [5].
The key notion introduced in [5] is that of an eigenregular polynomial. Namely, a polynomial
is said to be δ-eigenregular if for the canonical tensor Ap associated with the polynomial, the
ratio of the maximum singular value to its Frobenius norm is at most δ (the tensor notions
are explicitly defined later).

The key advantage of this definition is that as shown in [5], when δ → 0, the distribution
of p (under γn) converges to a normal. In other words, eigenregular polynomials obey a
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central limit theorem. In fact, given k polynomials p1, . . . , pk which are δ-eigenregular, they
also obey a multidimensional central limit theorem.

The regularity lemma from [5] implies that the polynomials p1, . . . , pk can be jointly
expressed as bounded (in terms of t, k and ε) size polynomials in eigenregular homogenous
polynomials {In(ps,q,`)} where 1 ≤ s ≤ k, 1 ≤ q ≤ d and 1 ≤ ` ≤ num(s, q). In other words,
we may write ps = Out(ps)({In(ps,q,`)}q∈[d],`∈[num(s,q)]), where num(s) =

∑d
q=1 num(s, q) is

bounded in terms of t, k and ε and all the Inner polynomials are δ-eigenregular.
[5] used the statement above to conclude that the joint distribution of p1, . . . , pk can be

approximated in a bounded dimension as we can replace each of the inner polynomials by a
one dimensional Gaussian. For our application things are more delicate, as we are not only
interested in the joint distribution of p1, . . . , pk but also in the noise stability of p1, . . . , pk.
For this reason it is important for us to maintain the degrees of the inner polynomials (each
of which is homogenous) and not replace them with Gaussians.

2.3 A small PTF representation
In the final step of the proof, we maintain Out(ps) and show how that polynomials {In(ps,q,`)}
can be replaced by a collection of polynomials {In(rs,q,`)} in bounded dimensions (in t, k
and ε) thus completing the proof. The fact that a collection of homogenous polynomials
can be replaced by polynomials in bounded dimensions is a tensor analogue of the fact that
for any k vectors in Rn, there exist k vectors in Rk with the same matrix of inner products.
Once such polynomials are found, it is not hard to construct eigenregular polynomials from
them by averaging the polynomials over independent copies of random variables.

3 Applications

Given the wide applicability of Borell’s isoperimetric result to combinatorics and theoretical
computer science, we believe that Theorem 3 will also be widely applicable. We will now
point out some applications of this theorem. First, by combining Theorem 3 with the
invariance principle [16], we derive a weak k-ary analogue of “Majority is Stablest”. The
analogue of the Ornstein-Uhlenbeck operator is the so-called Bonami-Beckner operator
defined as follows: for ρ ∈ [−1, 1] and x ∈ {−1, 1}n, let Dρ(x) be the product distribution
over {−1, 1}n such that for y ∼ Dρ(x), for all 1 ≤ i ≤ n, E[xiyi] = ρ. Then, for any
f : {−1, 1}n → Rk, Tρf(x) = Ey∼Dρ(x)[f(y)]. Likewise, for any i ∈ [n] and z ∈ {−1, 1}n−1,
let fz,−i : {−1, 1} → Rk denote the function obtained by restricting all but the ith coordinate
to z. Then, Var(fz,−i) = Ez[‖fz,−i −Ez[fz,−i]‖2

2]. Define the influence of the ith coordinate
on f by

Infi(f) = Ez∈{−1,1}n−1 [Var(fz,−i)].

I Theorem 4. Given any k ∈ N and ρ ∈ [0, 1], ε > 0, ∃n0 = n0(k, ε, ρ), C = C(k, ε, ρ) (which
is explicitly computable) such that the following holds: For any µ = (µ1, . . . , µk) ∈ ∆k and
n ≥ n0, there is an explicitly computable g = gµ,ρ,ε : {−1, 1}n → [k] such that maxi Infi(g) ≤
C/
√
n and |Prx∈{−1,1}n0 [g(x) = i]− µi| ≤ C/

√
n and for any f : {−1, 1}n → [k] such that

|Prx∈{−1,1}n [f(x) = i]− µi| ≤ ε and maxi Infi(f) ≤ ε,

E[〈f, Tρf〉] ≤ E[〈g, Tρg〉] + 2kε.

We give a brief sketch of the proof, which is a straightforward consequence of the invariance
principle in one direction and the central limit theorem in the other. First, the invariance

CCC 2017



10:6 Noise Stability Is Computable and Approximately Low-Dimensional

principle implies that the discrete noise stability cannot be much larger than the best Gaussian
noise stability. It remains, then, to construct a boolean function g whose noise stability is
almost the same as the best possible Gaussian noise stability. For this, suppose that n = n1n2
(for some n1 and n2 that will need to be sufficiently large), and let h : Rn1 → [k] have almost
optimal Gaussian noise stability. Then define the boolean function g(x) = h(z(x)), where
z ∈ Rn1 has ith coordinate n−1/2

2
∑(i+1)n2
j=in2+1 xj . When n2 is sufficiently large, the central

limit theorem implies that the boolean noise stability of g is approximately the Gaussian
noise stability of h, and so it is almost optimal.

The same result holds for other domains, for example for f, g : [k]n → [k]. In particular,
the case where (µ1, . . . , µk) = (1/k, . . . , 1/k) implies that in a tied elections between k

alternatives, we can find an ε-optimally robust noise stable voting rule, where the stability is
with respect of each candidate randomizing their vote independently with probability 1− ρ.

3.1 Relationship to rounding of SDPs
To the best of our knowledge our results are independent of the the results of Raghavendra
and Steurer [18] who showed that for any CSP, there is an a rounding algorithm that is
optimal up to ε, whose running time is polynomial in the instance size and doubly exponential
in 1/ε. It is natural to suspect that the two results are related, since there are well-known
connections between SDP rounding and Gaussian noise stability.

However, the usual analysis relating rounding to Gaussian noise stability seems to require
that halfspaces maximize noise stability for all possible values of the noise. In our results,
this property does not necessarily hold.

In the other direction, it is tempting to try to cast the noise stability problem as
an optimization problem on Gaussian graphs and then apply the results of Steurer and
Raghavendra to obtain explicit bounds on the dimension where an almost optimal solution
can be achieved. It is hard to implement this approach for two reasons: first, we do not
know the SDP solution for the Gaussian graph; second, we are interested in the optimal
solution and it is not clear what is the relation between the best integral solution and the
SDP solution for the Gaussian graph.

While we do not see how to formally relate the two works, connecting the two (if possible)
would surely yield important insights.

3.2 Non-interactive correlation distillation
Next, we talk about a basic problem in information theory and communication complexity
which was recently considered in the work of Ghazi, Kamath and Sudan [6]. Let there be two
non-communicating players Alice and Bob who have access to independent samples from a
joint distribution P = (X,Y) on the set A×B. In other words, Alice (resp. Bob) have access
to (x1, x2, . . . , ) (resp. (y1, y2, . . .)) such that xi ∈ A, yi ∈ B and for each i ∈ N, (xi, yi) is
distributed according to P, and the random variables {(xi, yi)}ni=1 are mutually independent.
Let µ = (µ1, . . . , µk) ∈ ∆k and ν = (ν1, . . . , νk) ∈ ∆k. What is the maximum κ ∈ [0, 1] such
that Alice and Bob can non-interactively jointly sample a distribution Q on [k]× [k] such
that the distribution of the marginals of Alice and Bob are µ and ν respectively and they
sample the same output with probability κ?

To formulate this problem more precisely, we introduce some notation. Let Xn =
(X1, . . . ,Xn) and Yn = (Y1, . . . ,Yn), where (Xi,Yi) are independently drawn from P.
Now, note that a non-interactive protocol for Alice and Bob is equivalent to a pair (f, g)
where f : An → [k] and g : Bn → [k] (for some n ∈ N). In this terminology, the question
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now becomes the following: given µ, ν, do there exist n and f : An → [k] and g : Bn → [k]
such that f(Xn) ∼ µ, g(Yn) ∼ ν, and Pr(f(Xn) = g(Yn)) = κ?

Before we state the main result of [6] and our extension, we consider a motivating example.
Let A = B = R and let P = (X,Y) be two ρ-correlated standard Gaussians. Let k = 2
and µ = ν. Then, Borell’s isoperimetric theorem (Theorem 1) states that the maximum
achievable κ is given by

κ = Pr
X,Y

[f(X) = f(Y)],

where f : R → ∆2 is a halfspace with measure µ. Thus, in the above case, n = 1 suffices
and f = g is the halfspace whose measure is µ. We now state the main result of [6]. For
the result below, for probability distribution P, we let |P| denote the size of some standard
encoding of P.

I Theorem 5. [Ghazi-Kamath-Sudan] Let (A×B,P) be a probability space, and let Xn and
Yn be as above. There is an algorithm running in time O|P|,δ(1) such that given µ and ν in
∆2 and a parameter κ ∈ [0, 1], it distinguishes between the following two cases:
1. There exist n ∈ N, f : An → {0, 1} and g : Bn → {0, 1} such that f(Xn) ∼ µ, g(Yn) ∼ ν,

and Pr(f(Xn) = g(Yn)) ≥ κ− δ. In this case, there is an explicit n0 = n0(|P|, δ) such
that we may choose n ≤ n0. Further, the functions f and g are explicitly computable.

2. For any n ∈ N and f : An → {0, 1} and g : Bn → {0, 1}, if g : Bn → {0, 1} satisfy
f(Xn) ∼ µ and g(Yn) ∼ ν then Pr(f(Xn) = g(Yn)) ≤ κ− 8δ.

In other words, the above theorem states that there is an algorithm which, given P, target
marginals µ, ν, and correlation κ, can distinguish between two cases: (a) In the first case, it
is possible for Alice and Bob to non-interactively simulate a distribution which has the correct
marginals and achieves the correlation κ up to δ. In this case, there is an explicit bound
on the number of copies of P required and the algorithm also outputs the functions f, g
used for the non-interactive simulation. (b) In the second case, no non-interactive protocol
between Alice and Bob can simulate a distribution that has the correct marginals and target
correlation to error at most 8δ.

We remark that the requirement for the marginals to match exactly is unimportant.
Indeed, any protocol where the marginals match approximatly can be “fixed” to have exact
marginals, with a small loss in the correlation.

The main restriction of Theorem 5 is that the output of the non-interactive protocol
is a pair of bits. Theorem 3 immediately implies the following modification of Theorem 5:
we may replace {0, 1} by [k] wherever it appears, provided that we also assume that P is
a Gaussian measure. In the best of both worlds, we would be able to replace {0, 1} by [k]
without adding the assumption that P is a Gaussian measure. Using the methods we develop
here, this also turns out to be possible; we provide details in a follow-up work.

4 Reduction from arbitrary functions to PTFs

In this section, we will prove that given any k-ary function with a given set of measures for
each of the k-partitions, there is a multivariate PTF with nearly the same measures for the
induced partitions which is a multivariate PTF and (up to an error ε), no less noise stable at
a fixed noise rate t. This is the first step (“from general partitions to PTF”) of the proof
sketch in Section 2.

For technical reasons, we will also require the PTFs to satisfy a property which we refer
to as (d, δ)-balanced defined below.
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I Definition 6. A degree-d multivariate PTF f = PTF(p(1), . . . , p(k)) is said to be (d, δ)-
balanced if each p(i) has variance 1 and |E[p(i)]| ≤ logd/2(k · d/δ).

We ask the reader to observe that the first condition (namely, Var(p(i)) = 1) can be achieved
without loss of generality by simply scaling all the polynomials to have variance 1. This
scaling does not change the value of the PTF at any point x. While the condition on
expectation is non-trivial, the next proposition says that any multivariate PTF can be
assumed to be (d, δ)-balanced while only changing the value of the PTF at δ-fraction of
places.

I Lemma 7. Let f : Rn → [k] defined as f = PTF(p(1), . . . , p(k)). Then, there is a
(d, δ)-balanced multivariate PTF g : Rn → [k] defined as g = PTF(q(1), . . . , q(k)) such that
Prx[g(x) 6= f(x)] ≤ δ. Further, Prx[x ∈ Collision(g)] ≤ Prx[x ∈ Collision(f)] + δ. In fact, the
polynomials {q(i)} are linear translations of the polynomials {p(i)}.

The proof of the lemma is deferred to the full version of the paper. The next theorem is the
main result of this section namely, that given any function f : Rn → [k], it is possible to
obtain a multivariate (d, ε) balanced PTF g (for some explicit d = Oε,k(1)) such that the
resulting PTF g has nearly the same partition sizes and noise stability. Further, Collision(g)
has small probability.

I Theorem 8. Let f : Rn → [k] satisfy E[f ] = µ where µ = (µ1, . . . , µk). Then, for every
ε > 0, there exists a multivariate PTF g : Rn → [k] of degree d = d(k, ε) such that
‖E[g]− µ‖1 ≤ ε,
〈g, Ptg〉 ≥ 〈f, Ptf〉 − ε,
Pr[x ∈ Collision(g)] ≤ ε, and
g is (d, ε)-balanced.

We will prove Theorem 8 in two parts. The first step is to show that we can replace f by
a function with explicit Hermite decay:

I Lemma 9. For every f : Rn → [k] and every ε > 0, there exists a function h : Rn → [k]
satisfying the following:

E[h] = E[f ],
〈h, Pth〉 ≥ 〈f, Ptf〉 − ε,
W>d[h] ≤ ε for some explicit d = d(k, ε).

The second step in the proof of Theorem 8 goes from explicit Hermite decay to an actual
PTF:

I Lemma 10. Let h : Rn → [k] such that W>d[h] ≤ ε. Then, there is a PTF g : Rn → [k]
of degree d such that Ex[g(x) 6= h(x)] ≤ k2 · ε. Further, Prx[x ∈ Collision(h)] ≤ k2 · ε.

It is easy to see that Theorem 8 follows in a straightforward way by combining Lemma 9 and
Lemma 10. Note that the condition of g being (d, ε)-balanced is obtained by simply applying
Proposition 7.

While we defer the proof of both Lemma 9 and Lemma 10 to the full version, as the proof
of Lemma 9 is more non-standard, we give a brief overview here. The first observation is that
bounding E[|∇h|] implies a bound on W>d[h]. This follows a standard spectral argument
stated below.

I Lemma 11. Let f : Rn → [0, 1] be of bounded variation. Then,

W≥d[f ] ≤ O
(

1√
d

)
·E[|∇f |].



A. De, E. Mossel, and J. Neeman 10:9

The second observation is that the function h obtained by thresholding Ptf at a suitable
value (chosen, for example, so that E[h] = E[f ]) satisfies 〈h, Pth〉 ≥ 〈f, Ptf〉. This is stated
below.

I Lemma 12. Let f : Rn → {e1, . . . , ek} and take t > 0. If g ∈ Tz(f) for some z ∈ Rk
satisfies E[g] = E[f ] then Stabt(g) ≥ Stabt(f).

Based on the previous paragraph, it seems like we would like to bound E[|∇h|] where h is
obtained by thresholding Ptf ; let a ∈ Rk be the desired threshold value, so that thresholding
Ptf at a produces a partition with the right measures. It turns out, unfortunately, that for h
defined in this way, E[|∇h|] could be arbitrarily large. A key insight of [14] is that (using the
co-area formula and gradient bounds on Ptf) the partition produced by thresholding at a
random value near a has bounded expected surface area. In particular, although thresholding
exactly at a might be a bad idea, there exist many good nearby values at which to threshold.
Based on this observation, we construct h in two steps. In the first step, we define h by
thresholding Ptf , but only on the set of x ∈ Rn for which Ptf(x) is not too close to a. By
choosing “not too close” in a suitable random way, the observation of [14] implies that this
step only contributes a bounded amount to E[|∇h|]. Since the first step is almost the same
as just thresholding Ptf at a, it is consistent with our desire that 〈h, Pth〉 ≥ 〈f, Ptf〉 − ε.

In the second step, we partition the remaining part of Rn by chopping it with halfspaces
of the correct size. Since halfspaces have a bounded surface area, this also contributes a
bounded amount to E[|∇h|]. Crucially, this step does not destroy the value of 〈h, Pth〉;
fundamentally, this is because Ptf is almost constant on the set we are partitioning. The
actual details of the proof of Lemma 10 can be found in the full version. Let us now move to
the second major technical ingredient of this paper.

5 Reduction from PTFs to PTFs on a constant number of variables

The second big technical ingredient required in the paper is the following:

I Theorem 13. Let f : Rn → [k] be a degree-d, (d, ε)-balanced PTF with Ex[f(x)] = µ where
µ = (µ1, . . . , µk). Further, let us assume that Pr[x ∈ Collision(f)] ≤ ε/(40k2). Then, for
every ε > 0, there exists a degree-d PTF fjunta : Rn0 → [k] such that:
‖Ex[fjunta(x)]− µ‖1 ≤ ε,
〈fjunta, Ptfjunta〉 ≥ 〈f, Ptf〉 − ε.

Further, n0 = n0(d, k, ε) is an explicitly defined function.

The above theorem states that given a degree-d multivariate PTF over n variables, there
is another multivariate PTF which induces approximately the same partition sizes and has
approximately the same noise stability (at any fixed noise rate t) but the new PTF is only
over some (explicitly defined) Od,t(1) variables. The main workhorse for proving this thoerem
are two structural theorems for low-degree polynomials proven in [5]. Unfortunately, even
stating these theorems require significantly cumbersome technical definitions. In particular,
we will need to define the relation between polynomials and tensors and then define the
notion of an ε-eigenregular polynomial. We avoid doing that in this version of the paper and
refer the reader to the full version of the paper. However, we observe that Theorem 3 follows
very easily by combining Theorem 13 and Theorem 8.

Proof of Theorem 3

Let us us assume that given measure µ = (µ1, . . . , µk) and noise rate t > 0, the most
noise stable partition is f : Rn → [k]. Then, applying Theorem 8 (with error parameter
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ε/(40k2)), we obtain a PTF g1 of degree d = Ok,ε(1) such that it is (d, ε/2) balanced and
Pr[x ∈ Collision(g1)] ≤ ε/(40k2). Further, note that ‖E[g1]−E[f ]‖1 ≤ ε/2 and 〈g1, Ptg1〉 ≥
〈f, Ptf〉 − ε/2.

We next apply Theorem 13 on this function g1 to obtain fjunta which is a degree-d
PTF on n0 = Od,ε,k(1) variables such that ‖E[g1]−E[fjunta]‖1 ≤ ε/2 and 〈fjunta, Ptfjunta〉 ≥
〈g1, Ptg1〉 − ε/2.

Combining these two facts, we obtain ‖E[g1] − E[fjunta]‖1 ≤ ε and 〈fjunta, Ptfjunta〉 ≥
〈f, Ptf〉 − ε. Setting g = fjunta concludes the proof.
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Abstract
We study the approximability of constraint satisfaction problems (CSPs) by linear programming
(LP) relaxations. We show that for every CSP, the approximation obtained by a basic LP
relaxation, is no weaker than the approximation obtained using relaxations given by Ω

(
logn

log logn

)
levels of the Sherali-Adams hierarchy on instances of size n.

It was proved by Chan et al. [FOCS 2013] (and recently strengthened by Kothari et al. [STOC
2017]) that for CSPs, any polynomial size LP extended formulation is no stronger than relaxations
obtained by a super-constant levels of the Sherali-Adams hierarchy. Combining this with our
result also implies that any polynomial size LP extended formulation is no stronger than simply
the basic LP, which can be thought of as the base level of the Sherali-Adams hierarchy. This
essentially gives a dichotomy result for approximation of CSPs by polynomial size LP extended
formulations.

Using our techniques, we also simplify and strengthen the result by Khot et al. [STOC 2014] on
(strong) approximation resistance for LPs. They provided a necessary and sufficient condition
under which Ω(log logn) levels of the Sherali-Adams hierarchy cannot achieve an approxima-
tion better than a random assignment. We simplify their proof and strengthen the bound to
Ω
(

logn
log logn

)
levels.
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1 Introduction

Given a finite alphabet [q] = {0, . . . , q − 1} and a predicate f : [q]k → {0, 1}, an instance of
the problem MAX k-CSP(f) consists of (say) m constraints over a set of n variables x1, . . . , xn
taking values in the set [q]. Each constraint Ci is of the form f(xi1 + bi1 , . . . , xik + bik)
for some k-tuple of variables (xi1 , . . . xik) and bi1 , . . . , biq ∈ [q], and the addition is taken
to be modulo q. We say an assignment σ to the variables satisfying the constraint Ci if
Ci(σ(xi1), . . . , σ(xik)) = 1. Given an instance Φ of the problem, the goal is to find an
assignment σ to the variables satisfying as many constraints as possible. The approximability
of the MAX k-CSP(f) problem has been extensively studied for various predicates f (see e.g.,
[29] for a survey), and special cases include several interesting and natural problems such as
MAX 3-SAT, MAX 3-XOR and MAX-CUT.
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A topic of much recent interest has been the efficacy of Linear Programming (LP) and
Semidefinite Programming (SDP) relaxations. For a given instance Φ of MAX k-CSP(f),
let OPT(Φ) denote the fraction of constraints satisfied by an optimal assignment, and let
FRAC(Φ) denote the value of the convex (LP/SDP) relaxation for the problem. Then, the
performance guarantee of this algorithm is given by the integrality gap which equals the
supremum of FRAC(Φ)

OPT(Φ) , over all instances Φ.
The study of unconditional lower bounds for general families of LP relaxations was

initiated by Arora, Bollobás and Lovász [2] (see also [3]). They studied the Lovász-Schrijver
[24] LP hierarchy and proved lower bounds on the integrality gap for Minimum Vertex Cover
(their technique also yields similar bounds for MAX-CUT). De la Vega and Kenyon-Mathieu
[13] and Charikar, Makarychev and Makarychev [12] proved a lower bound of 2− o(1) for
the integrality gap of the LP relaxations for MAX-CUT given respectively by Ω(log logn) and
nΩ(1) levels of the Sherali-Adams LP hierarchy [28]. Several follow-up works have also shown
lower bounds for various other special cases of the MAX k-CSP problem, both for LP and
SDP hierarchies [1, 27, 32, 26, 7, 5, 21].

A recent result by Chan et al. [8] shows a connection between strong lower bounds for the
Sherali-Adams hierarchy, and lower bounds on the size of LP extended formulations for the
corresponding problem. In fact, their result proved a connection not only for a lower bound
on the worst case integrality gap, but for the entire approximability curve. We say that Φ is
(c, s)-integrality gap instance for a relaxation of MAX k-CSP(f), if we have FRAC(Φ) ≥ c and
OPT(Φ) < s. And we say that Φ is (c, s)-approximable by a relaxation of MAX k-CSP(f),
if for instances with OPT(φ) < s, we have FRAC(Φ) ≤ c. They showed that for any fixed
t ∈ N, if there exist (c, s)-integrality gap instances of size n for the relaxation given by t levels
of the Sherali-Adams hierarchy, then for all ε > 0 and sufficiently large N , there exists a
(c− ε, s+ ε) integrality gap instance of size (number of variables) N , for any linear extended
formulation of size at most N t/2. They also give a tradeoff when t is a function of n. This
was recently improved by Kothari et al. [20] and we describe the improved tradeoff later.

We strengthen the above results by showing that for all c, s ∈ [0, 1], (c, s)-integrality gap
instances for a “basic LP” can be used to construct (c− ε, s+ ε) integrality gap instances
for Ωε

(
logn

log logn

)
levels of the Sherali-Adams hierarchy. The basic LP uses only a subset

of the constraints in the relaxation given by k levels of the Sherali-Adams hierarchy for
MAX k-CSP(f). In particular, this shows that a lower bound on the integrality gap for even
the basic LP, implies a similar lower bound on the integrality gap of any polynomial size
extended formulation. This can also be viewed as a dichotomy result showing that for any
predicate f , either MAX k-CSP(f) is (c, s)-approximable by the basic LP relaxation (which
is of size linear in the size of the instance) or for all ε > 0, a (c− ε, s+ ε) cannot be achieved
by any polynomial sized LP extended formulation. We note that both the above results and
our result apply to all f, q and all c, s ∈ [0, 1].

1.1 Comparison with (implications of) Raghavendra’s UGC hardness
result

A remarkable result by Raghavendra [25] shows that a (c, s)-integrality gap instance for
a “basic SDP” relaxation of MAX k-CSP(f) implies hardness of distinguishing instances Φ
with OPT(Φ) < s from instances with OPT(Φ) ≥ c, assuming the Unique Games Conjecture
(UGC) of Khot [15]. The basic SDP considered by Raghavendra involves moments for all pairs
of variables, and all subsets of variables included in a constraint. The basic LP we consider
is weaker than this SDP and does not contain the positive semidefiniteness constraint.
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Combining Raghavendra’s result with known constructions of integrality gaps for Unique
Games by Raghavendra and Steurer [26], and by Khot and Saket [16], one can obtain a result
qualitatively similar to ours, for the mixed hierarchy. In particular, a (c, s) integrality gap
for the basic SDP implies a (c − ε, s + ε) integrality gap for Ω((log logn)1/4) levels of the
mixed hierarchy.

Note however, that the above result is incomparable to our result, since it starts with
stronger hypothesis (a basic SDP gap) and yields a gap for the mixed hierarchy as opposed
to the Sherali-Adams hierarchy. While the above can also be used to derive lower bounds for
linear extended formulations, one needs to start with an SDP gap instance to derive an LP
lower bound. The basic SDP is known to be provably stronger than the basic LP for several
problems including various 2-CSPs. Also, for the worst case f for q = 2, the integrality gap
of the basic SDP is O(2k/k) [11], while that of the basic LP is 2k−1.

A recent result by Khot and Saket [17] shows a connection between the integrality gaps
for the basic LP and those for the basic SDP. They prove that, assuming the UGC, a (c, s)
integrality gap instance for the basic LP implies an NP-hardness of distinguishing instances Φ
with OPT(Φ) ≥ Ω

(
c

k3·log(q)

)
from instances with OPT(Φ) ≤ 4s. Their result also shows that

a (c, s) integrality gap instance for the basic LP can be used to produce a
(

Ω
(

c
k3·log(q)

)
, 4s
)

integrality gap instance for the basic SDP, and hence for Ω((log logn)1/4) levels of the mixed
hierarchy.

1.2 Other related work
The power of the basic LP for solving valued CSPs to optimality has been studied in several
previous works. These works consider the problem of minimizing the penalty for unsatisfied
constraints, where the penalties take values in Q ∪ {∞}. Also, they study the problem not
only in terms of single predicate f , but rather in terms of the constraint language generated
by a given set of (valued) predicates.

It was shown by Thapper and Živný [30] that when the penalties are finite-valued, if the
problem of finiding the optimum solution cannot be solved by the basic LP, then it is NP-hard.
Kolmogorov, Thapper and Živný [19] give a characterization of CSPs where the problem of
minimizing the penalty for unsatisfied constraints can be solved exactly by the basic LP. Also,
a recent result by Thapper and Živný [31] shows the valued CSP problem for a constraint
language can be solved to optimality by a bounded number of levels of the Sherali-Adams
hierarchy if and only if it can be solved by a relaxation obtained by augmenting the basic
LP with contraints implied by three levels of the Sherali-Adams hierarchy. However, the
above works only consider the case when the LP gives an exact solution, and do not focus on
approximation.

The techniques from [12] used in our result, were also extended by Lee [23] to prove a
hardness for the Graph Pricing problem. Kenkre et al. [14] also applied these to show the
optimality of a simple LP-based algorithm for Digraph Ordering.

1.3 Our results
Our main result is the following.

I Theorem 1. Let f : [q]k → {0, 1} be any predicate. Let Φ0 be a (c, s) integrality gap
instance for basic LP relaxation of MAX k-CSP (f). Then for every ε > 0, there exists cε > 0
such that for infinitely many N ∈ N, there exist (c− ε, s+ ε) integrality gap instances of size
N for the LP relaxation given by cε · logN

log logN levels of the Sherali-Adams hierarchy.
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Combining the above with the connection between Sherali-Adams gaps and extended
formulations by [8, 20] yields the following corollary:

I Corollary 2. Let f : [q]→ {0, 1} be any predicate. Let Φ0 be a (c, s) integrality gap instance
for basic LP relaxation of MAX k-CSP (f). Then for every ε > 0, there exists c′ε > 0 such
that for infinitely N ∈ N, there exist (c − ε, s + ε) integrality gap instances of size N , for
every linear extended formulation of size at most N c′ε·

logN
log logN .

As an application of our methods, we also simplify and strengthen the approximation
resistance results for LPs proved by Khot et al. [18]. They studied predicates f : {0, 1}k →
{0, 1} and provided a necessary and sufficient condition for the predicate to be strongly
approximation resistant for the Sherali-Adams LP hierarchy. We say a predicate is strongly
approximation resistant if for all ε > 0, it is hard to distinguish instances Φ for which∣∣OPT(Φ)− Ex∈{0,1}k [f(x)]

∣∣ ≤ ε from instances with OPT(Φ) ≥ 1 − ε. In the context of
the Sherali-Adams hierarchy, they showed that when this condition is satisfied, there exist
instances Φ satisfying

∣∣OPT(Φ)− Ex∈{0,1}k [f(x)]
∣∣ ≤ ε and FRAC(Φ) ≥ 1−ε, where FRAC(Φ)

is the value of the relaxation given by Oε(log logn) levels of the Sherali-Adams hierarchy.
We strengthen their result (and provide a simpler proof) to prove the following.

I Theorem 3. Let f : {0, 1}k → {0, 1} be any predicate satisfying the condition for strong
approximation resistance for LPs, given by [18]. Then for every ε > 0, there exists cε > 0
such that infinitely many N ∈ N, there exists an instance Φ of MAX k-CSP(f) of size N ,
satisfying∣∣∣∣OPT(Φ)− E

x∈{0,1}k
[f(x)]

∣∣∣∣ ≤ ε FRAC(Φ) ≥ 1− ε ,

where FRAC(Φ) is the value of the relaxation given by cε · logN
log logN levels of the Sherali-Adams

hierarchy.

As before, the above theorem also yields a corollary for extended formulations.

1.4 Proof overview and techniques
1.4.1 The gap instance
The construction of our gap instances is inspired by the construction by Khot et al. [18].
They gave a generic construction to prove integrality gaps for any approximation resistant
predicate (starting from certificates of hardness in form of certain “vanishing measures”),
and we use similar ideas to give a construction which can start from a basic LP integrality
gap instance as a certificate, to produce a gap instance for a large number of levels. This
construction is discussed in Section 5.

Given an integrality gap instance Φ0 on n0 variables, we treat this as a “template” (as in
Raghavendra [25]) and generate a random instance using this. Concretely, we generate a
new instance Φ on n0 sets of n variables each. To generate a contraint, we sample a random
constraint C0 ∈ Φ0, and pick a variable randomly from each of the sets corresponding to
variables in C0. Thus, the instances generated are n0-partite random hypergraphs, with each
edge being generated according to a specified “type” (indices of sets to chose vertices from).

Note that previous instances of gap constructions for LP and SDP hierarchies were
(hyper)graphs generated according to the model Gn,p with the signs of the literals chosen
independently at random. However, proving an LP/SDP lower bound using such instances
implies a strong result: it in fact proves that the predicate f is useless for the corresponding
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relaxation, in the sense defined by [4]. Assuming the UGC, uselessness only holds for a limited
class of predicates f (when f−1(1) supports a balanced pairwise independent distribution
on [q]k) [4]. Thus, proving an SDP lower bound for predicates which are not expected to
be useless requires a new construction of instances, which cannot be generated uniformly
at random. Our construction provides such a generalization, and may be useful in proving
new SDP lower bounds. The properties of random Gn,p hypergraphs easily carry over to our
instances, and we collect these properties in Section 3.

The above construction ensures that if the instance Φ0 does not have an assignment
satisfying more than an s fraction of the constraints, then OPT(Φ) ≤ s + ε with high
probability. Also, it is well-known that providing a good LP solution to the relaxation given
by t levels of the Sherali-Adams hierarchy is equivalent to providing distributions DS on [q]S
for all sets of variables S with |S| ≤ t, such that the distributions are consistent restricted to
subsets i.e., for all S with |S| ≤ t and all T ⊆ S, we have DS|T = DT . Thus, in our case, we
need to produce such consistent local distributions such that the expected probability that a
random constraint C ∈ Φ is satisfied by the local distribution on the set of variables involved
in C (which we denote as SC) is at least c− ε.

1.4.2 Local distributions from local structure
Most works on integrality gaps for CSPs utilize the local structure of random hypergraphs to
produce such distributions. Since the girth of a sparse random hypergraph is Ω(logn), any
induced subgraph on o(logn) vertices is simply a forest. In case the induced (hyper)graph
GS on a set S is a tree, there is an easy distribution to consider: simply choose an arbitrary
root and propagate down the tree by sampling each child conditioned on its parent. It is
also easy to see that for T ⊆ S, if the induced (hyper)graph GT is a subtree of GS , then the
distributions DS and DT produced as above are consistent.

The extension of this idea to forests requires some care. One can consider extending the
distribution to forests by propagating independently on each tree in the forest. However, if
for T ⊆ S GT is a forest while GS is a tree, then a pair of vertices disconnected in GT will
have no correlation in DT but may be correlated in DS . This was handled, for example, in
[18] by adding noise to the propagation and using a large ball B(S) around S to define DS .
Then, if two vertices of T are disconnected in B(T ) but connected in B(S), then they must
be at a large distance from each other. Thus, because of the noise, the correlation between
them (which is zero in DT ) will be very small in DS . However, correcting approximate
consistency to exact consistency incurs a cost which is exponential in the number of levels
(i.e., the sizes of the sets), which is what limits the results in [18, 13] to O(log logn) levels.
This also makes the proof more involved since it requires a careful control of the errors in
consistency.

1.4.3 Consistent partitioning schemes
We resolve the above consistency issue by first partitioning the given set S into a set of
clusters, each of which have diameter ∆H = o(logn) in the underlying hypergraph H. Since
each cluster has bounded diameter, it becomes a tree when we add all the missing paths
between any two vertices in the cluster. We then propagate independently on each cluster
(augmented with the missing paths). This preserves the correlation between any two vertices
in the same cluster, even if the path between them was not originally present in GS .

Of course, the above plan requires that the partition obtained for T ⊆ S, is consistent with
the restriction to T of partition obtained for the set S. In fact, we construct distributions over
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partitions {PS}|S|≤t, which satisfy the consistency property PS|T = PT . These distributions
over partitions, which we call consistent partitioning schemes, are constructed in Section 4.

In addition to being consistent, we require that the partitioning scheme cuts only a small
number of edges in expectation, since these contribute to a loss in the LP objective. We remark
that such low-diameter decompositions (known as separating and padded decompositions)
have been used extensively in the theory metric embeddings (see e.g., [22] and the references
therein). The only additional requirement in our application is consistency.

We obtain the decompositions by proving the (easy) hypergraph extensions the results of
Charikar, Makarychev and Makarychev [10], who exhibit a metric which is similar to the
shortest path metric on graphs at small distances, and has the property that its restriction
to any subset of size at most nε′ (for an appropriate ε′ < 1) is `2 embeddable. This is proved
in Section 3. A variant of this metric was used by Charikar, Makarychev and Makarychev
[12] to prove lower bounds for MAX-CUT, for nε′ levels of the Sherali-Adams hierarchy. They
used the embedding to construct a “local SDP solution” for any nε′ variables (with value
1 − ε′) and produced the distributions required for Sherali-Adams by rounding the SDP
solutions (which gives value 1−O(

√
ε′)). However, rounding an SDP solution with a high

value does not always produce a good integral solution for other CSPs.
Instead, we use these metrics in Section 4 to construct the consistent partitioning schemes

as described above, by applying a result of Charikar et al. [9] giving separating decompositions
for finite subsets of `2. We remark that it is the consistency requirement of the partitioning
procedure that limits our results to O

(
logn

log logn

)
levels. The separation probability in the

decomposition procedure grows with the dimension of the `2 embedding, while (to the best
of our knowledge) dimension reduction procedures seem to break consistency.

2 Preliminaries

We use [n] to denote the set {1, . . . , n}. The only exception is [q], where we overload
this notation to denote the set {0, . . . , q − 1}, which corresponds to the the alphabet for
the Constraint Satisfaction Problem under consideration. We use DS and PS to denote
probability distributions over (assignments to or partitions of) a set S. For T ⊆ S, the
notation DS|T is used to denote the restriction (marginal) of the distribution DS to the set
T (and similarly for PS|T ).

2.1 Constraint Satisfaction Problems
I Definition 4. Let [q] denote the set {0, . . . , q − 1}. For a predicate f : [q]k → {0, 1},
an instance Φ of MAX k-CSPq (f) consists of a set of variables {x1, . . . , xn} and a set of
constraints C1, . . . , Cm. Each constraint Ci is over a k-tuple of variables (xi1 , . . . , xik) and is
of the form

Ci ≡ f(xi1 + bi1 , . . . , xik + bik)

for some bi1 , . . . , bik ∈ [q], where the addition is modulo q. For an assignment σ : {x1, . . . , xn} 7→
[q], let sat(σ) denote the fraction of constraints satisfied by σ. The maximum fraction of
constraints that can be simultaneously satisfied is denoted by OPT(Φ), i.e.

OPT(Φ) = max
σ:{x1,...,xn}7→[q]

sat(σ).

For a constraint C of the above form, we use xC to denote the tuple of variables
(xi1 , . . . , xik) and bC to denote the tuple (bi1 , . . . , bik). We then write the constraint as
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maximize E
C∈Φ

 ∑
α∈[q]k

f(α · bC) · x(SC ,α)


∑
α∈[q]S
α|T=β

x(S,α) = x(T,β) ∀T ⊆ S ⊆ [n], |S| ≤ t, ∀β ∈ [q]T

x(S,α) ≥ 0 ∀S ⊆ [n], |S| ≤ t, ∀α ∈ [q]S

x(∅,∅) = 1

Figure 1 Level-t Sherali-Adams LP for MAX k-CSPq (f).

maximize E
C∈Φ

 ∑
α∈[q]k

f(α+ bC) · x(SC ,α)


∑
j∈[q]

x(i,b) = 1 ∀i ∈ [n]

∑
α∈[q]SC
α(i)=b

x(SC ,α) = x(i,b) ∀C ∈ Φ, i ∈ SC , b ∈ [q]

x(SC ,α) ≥ 0 ∀C ∈ Φ, ∀α ∈ [q]SC

Figure 2 Basic LP relaxation for MAX k-CSPq (f).

f(xC + bC). We also denote by SC the set of indices {i1, . . . , ik} of the variables participating
in the constraint C.

2.2 The LP Relaxations for Constraint Satisfaction Problems
Below we present various LP relaxations for the MAX k-CSPq (f) problem that are relevant
in this paper.

We start with the level-t Sherali-Adams relaxation. The intuition behind it is the following.
Note that an integer solution to the problem can be given by an assignment σ : [n] → [q].
Using this, we can define {0, 1}-valued variables x(S,α) for each S ⊆ [n], 1 ≤ |S| ≤ t and
α ∈ [q]S , with the intended solution x(S,α) = 1 if σ(S) = α and 0 otherwise. We also introduce
a variable x(∅,∅), which equals to 1. We relax the integer program and allow variables to take
real values in [0, 1]. Now the variables {x(S,α)}α∈[q]S give a probability distribution DS over
assignments to S. We can enforce consistency between these local distributions by requiring
that for T ⊆ S, the distribution over assignments to S, when marginalized to T , is precisely
the distribution over assignments to T i.e., DS|T = DT . The relaxation is shown in Figure 1.

The basic LP relaxation is a reduced form of the above relaxation where only those
variables x(S,α) are included for which S = SC is the set of CSP variables for some constraint
C. The consistency constraints are included only for singleton subsets of the sets SC . Note
that the all the constraints for the basic LP are implied by the relaxation obtained by level
k of the Sherali-Adams hierarchy.

For an LP/SDP relaxation of MAX k-CSPq, and for a given instance Φ of the problem,
we denote by FRAC(Φ) the LP/SDP (fractional) optimum. A relaxation is said to have a
(c, s)-integrality gap if there exists a CSP instance Φ such that FRAC(Φ) ≥ c and OPT(Φ) < s.

CCC 2017
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2.3 Hypergraphs
An instance Φ of MAX k-CSP defines a natural associated hypergraph H = (V,E) with V
being the set of variables in Φ and E containing one k-hyperedge for every constraint C ∈ Φ.
We remind the reader of the familiar notions of degree, paths, and cycles for the case of
(k-uniform) hypergraphs:

I Definition 5. Let H = (V,E) be a hypergraph.
For a vertex v ∈ V , the degree of the vertex v is defined to be the number of distinct
hyperedges containing it.
A simple path P is a finite alternate sequence of distinct vertices and distinct edges starting
and ending at vertices, i.e., P = v1, e1, v2, . . . , vl, el, vl+1, where vi ∈ V ∀i ∈ [l + 1] and
ei ∈ E ∀i ∈ [l]. Furthermore, ei contains vi, vi+1 for each i. Here l is called the length of
the path P . All paths discussed in this paper will be simple paths.
A sequence C = (v1, e1, v2, . . . , vl, el, v1) is called a cycle of length l if the initial segment
v1, e1, . . . , vl is a (simple) path, el+1 6= ei for all i ∈ [l], and v1 ∈ el. For a path P (or
cycle C), we use V(P ) (or V(C)) to denote the set of all the vertices that occur in the
edges, i.e., the set {v : (∃i ∈ [h])(v ∈ ei)}, where e1, . . . , eh are the hyperedges included
in P (or C).
For a given hypergraph H, the length of the smallest cycle in H is called the girth of H.

To observe the difference the notions of cycle in graphs and hypergraphs, it is instructive to
consider the following example: let u, v be two distinct vertices in a k-uniform hypergraph for
k ≥ 3, and let e1, e2 be two distinct hyperedges both containing u and v. Then u, e1, v, e2, u

is a cycle of length 2, which cannot occur in a graph.
We shall also need the following notion of the closure of a set S ⊆ V in a given hypergraph

H, defined by [12] for the case of graphs. A stronger notion of closure was also considered by
[5].

I Definition 6. For a given hypergraph H and R ∈ N, and a set S ⊆ V(H), we denote by
clR(S) the R-closure of S obtained by adding all the vertices in all the paths of length at
most R connecting two vertices of S, i.e.,

clR(S) = S ∪
⋃

P :P is a path in H
P connects u,v∈S

|P |≤R

V(P ) .

For ease of notation, we use cl(S) to denote cl1(S).

3 Properties of random hypergraphs

In this section we collect various properties of the hypergraphs corresponding to our integrality
gap instances. The gap instances we generate contain several disjoint collections of variables.
Each constraint in the instance has a specified “type”, which specifies which of the collections
each of the participating k variables much be sampled from. The constraint is generated by
randomly sampling each of the k variables, from the collections specified by its type. This is
captured by the generative model described below.

In the model below and in the construction of the gap instance, the parameter n0 should
be thought of as constant, while the parameters n and m should be though of a growing to
infinity. We will choose m = γ · n for γ = Ok,q(1).
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I Definition 7. Let n0, k ∈ N with k ≥ 2. Let m,n > 0 and let Γ be a distribution on [n0]k.
We define a distribution Hk (m,n, n0,Γ) on k-uniform n0-partite hypergraphs with m edges
and N = n0 ·n vertices, divided in n0 sets X1, . . . , Xn0 of size n each. A random hypergraph
H ∼ Hk (m,n, n0,Γ) is generated by sampling m random hyperedges independently as
follows:

Sample a random type (i1, . . . , ik) ∈ [n0]k from the distribution Γ.
For all j ∈ [k], sample vij independently and uniformly in Xij .
Add the edge ei = {vi1 , . . . , vik} to H.

Note that as specified above, the model may generate a multi-hypergraph. However, the
number of such repeated edges is likely to be small, and we will bound these, and in fact the
number of cycles of size o(logn) in Lemma 26.

We will study the following metrics (similar to the ones defined in [10]):

IDefinition 8. Given a hypergraphH with vertex set V , we define two metrics dHµ (·, ·), ρHµ (·, ·)
on V as

dHµ (u, v) := 1− (1− µ)2·dH(u,v) and ρHµ (u, v) :=

√
2 · dHµ (u, v) + µ

1 + µ
,

for u 6= v, where dH(·, ·) denotes the shortest path distance in H.

We primarily need the fact the local `2-embeddability of the metric ρµ. The following
theorem captures various properties of random hypergraphs required for our construction.
The proof of the theorem heavily uses results proved in [3] and [12] and we defer the details
to Appendix A.

I Theorem 9. Let H ′ ∼ Hk (m,n, n0,Γ) with m = γ · n edges and let ε > 0. Then for large
enough n, with high probability (at least 1 − ε, over the choice of H ′), there exists δ > 0,
constant c = c(k, γ, n0, ε), θ = θ(k, γ, n0, ε) and a subhypergraph H ⊂ H ′ with V (H) = V (H ′)
satisfying the following:

H has girth g ≥ δ · logn.
|E(H ′) \ E(H)| ≤ ε ·m.
For all t ≤ nθ, for µ ≥ c · log t+log logn

logn , for all S ⊆ V(H ′) with |S| ≤ t, the metric ρHµ
restricted to S is isometrically embeddable into the unit sphere in `2,

4 Decompositions of hypergraphs from local geometry

We will construct the Sherali-Adams solution by partitioning the given subset of vertices in
to trees, and then creating a natural distribution over satisfying assignments on trees. We
define below the kind of partitions we need.

I Definition 10. Let X be a finite set. For a set S, let PS denote a distribution over
partitions of S. For T ⊆ S, let PS|T be the distribution over partitions of T obtained
by restricting the partitions in PS to the set T . We say that a collection of distributions
{PS}|S|≤t forms a consistent partitioning scheme of order t, if

∀S ⊆ X, |S| ≤ t and ∀T ⊆ S PT = PS|T .

In addition to being consistent as described above, we also require the distributions to have
small probability of cutting the hyperedges for the hypergraphs corresponding to our CSP
instances. We define this property below.

CCC 2017
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I Definition 11. Let H = (V,E) be a k-uniform hypergraph. Let {PS}|S|≤t be a consistent
partitioning scheme of order t for the vertex set V , with t ≥ k. We say the scheme {PS}|S|≤t
is ε-sparse for H if

∀e ∈ E P
P∼Pe

[P 6= {e}] ≤ ε .

In this section, we will prove that the hypergraphs arising from random CSP instances
admit sparse and consistent partitioning schemes. Recall that for a hypergraph H, we define
(Definition 8) the metrics dHµ and ρHµ as:

dHµ (u, v) := 1− (1− µ)2·dH(u,v) and ρHµ (u, v) :=

√
2 · dHµ (u, v) + µ

1 + µ
,

I Lemma 12. Let H = (V,E) be k-uniform hypergraph and let dµ be the metric as defined
above. Let H be such that for all sets S ⊆ V with |S| ≤ t, the metric induced on ρµ on S

is isometrically embeddable into `2. Then, there exists ε ≤ 10k ·
√
µ · t and ∆H = O(1/µ)

such that H admits an ε-sparse consistent partitioning scheme of order t, with each partition
consisting of clusters of diameter at most ∆H in H.

We use the following result of Charikar et al. [9] which shows that low-dimensional metrics
have good separating decompositions with bounded diameter, i.e., decompositions which have
a small probability of separating points at a small distance.

I Theorem 13 ([9]). Let W be a finite collection of points in Rd and let ∆ > 0 be given.
Then there exists a distribution P over partitions of W such that
∀P ∈ Supp(P), each cluster in P has `2 diameter at most ∆.
For all x, y ∈W

P
P∼P

[P separates x and y] ≤ 2
√
d ·
‖x− y‖2

∆ .

We also need the observation that the partitions produced by the above theorem are consistent,
assuming the set S considered above lie in a fixed bounded set (using a trivial modification
of the procedure in [9]). For the sequel, we use B(x, δ) to denote the `2 ball around x of
radius δ and BH(u, r) to denote a ball of radius r around a vertex u ∈ V (H). Thus,

B(x, δ) := {y | ‖x− y‖2 ≤ δ} and BH(u, r) := {v ∈ V | dH(u, v) ≤ r} .

The balls B(S, δ) and BH(S, r) are defined similarly.

I Claim 14. Let S and T be sets such that T ⊆ S. Let WS = {wu}u∈S and WT = {w′u}u∈T
be `2-embeddings of S and T satisfying φ(WT ) ⊆ WS ⊆ B(0, R0) ⊂ Rd, for some unitary
transformation φ and R0 > 0. Let PS and PT be distributions over partitions of S and T
respectively, induced by partitions on WS and WT as given by Theorem 13. Then

PS|T = PT .

Proof. The claim follows simply by considering (a trivial modification of) the algorithm of
[9]. For a given set W and a parameter ∆, they produce a partition using the following
procedure:

Let W ′ = W .
Repeat until W ′ = ∅
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Pick a random point x in B(W,∆/2) according to the Haar measure. Let Cx =
B(x,∆/2) ∩W ′.
If Cx 6= ∅, set W ′ = W ′ \ Cx. Output Cx as a cluster in the partition.

[9] show that the above procedure produces a distribution over partitions satisfying the
conditions in Theorem 13. We simply modify the procedure to sample a random point x in
B(0, R0 + ∆/2) instead of B(S,∆/2). This does not affect the separation probability of any
two points, since the only non-empty clusters are still produced by the points in B(S,∆/2).

Let P be a partition of S produced by the above procedure when applied to the point set
WS , and let P ′ be a random partition produced when applied to the point set φ(WT ). It is
easy to see from the above procedure that the distribution PT is invariant under a unitary
transformation of WT . By coupling the random choice of a point in B(0, R0 + ∆/2) chosen
at each step in the procedures applied to WS and φ(WT ) ⊆WS , we get that P (T ) = P ′ i.e.,
the partition P restricted to T equals P ′. Thus, we get PS|T = PT . J

We can use the above to prove Lemma 12.

Proof of Lemma 12. Given a set S, let WS be an `2 embedding of the metric ρµ restricted
to S. Since, |S| ≤ t, we can assume WS ∈ Rt. We apply partitioning procedure of Charikar
et al. from Theorem 13 with ∆ = 1/2. From the definition of the metric ρHµ , we get that
there exists a ∆H = O(1/µ) such that ρHu,v ≤ 1/2 =⇒ dH(u, v) ≤ ∆H . Moreover, for u, v
contained in an edge e, we have that ρµ(u, v) ≤

√
5µ and hence the probability that u and v

are separated is at most 10
√
µ · t. Thus, the probability that any vertex in e is separated

from u is at most 10k ·
√
µ · t.

Finally, for any S ⊆ T , if WS and WT denote the corresponding `2 embeddings, by the
rigidity of `2 we have that for φ(WT ) ⊆ WS for some unitary transformation φ. Thus, by
Claim 14, we get that this is a consistent partitioning scheme of order t. J

5 The Sherali-Adams Integrality Gaps construction

5.1 Integrality Gaps from the Basic LP
Recall that the basic LP relaxation for MAX k-CSPq (f) as given in Figure 2. In this section,
we will prove Theorem 1. We recall the statement below.

I Theorem 1. Let f : [q]k → {0, 1} be any predicate. Let Φ0 be a (c, s) integrality gap
instance for basic LP relaxation of MAX k-CSP (f). Then for every ε > 0, there exists cε > 0
such that for infinitely many N ∈ N, there exist (c− ε, s+ ε) integrality gap instances of size
N for the LP relaxation given by cε · logN

log logN levels of the Sherali-Adams hierarchy.

Let Φ0 be a (c, s) integrality gap instance for the basic LP relaxation for MAX k-CSPq (f)
with n0 variables and m0 constraints. We use it to construct a new integrality gap instance
Φ. The construction is similar to the gap instances constructed by Khot et al. [18] discussed
in the next section. However, we describe this construction first since it’s simpler. The
procedure for constructing the instance Φ is described in Figure 3.

5.1.1 Soundness
We first prove that no assignment satisfies more than s+ ε fraction of constraints for the
above instance.

CCC 2017
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Given: A (c, s) gap instance Φ0 on n0 variables, for the basic LP.
Output: An instance Φ with N = n · n0 variables and m constraints.

The variables are divided into n0 sets X1, . . . , Xn0 , one for each variable in Φ0. We
generate m constraints independently at random as follows:
1. Sample a random constraint C0 ∼ Φ0. Let SC0 = {i1, . . . , ik} ⊆ [n0] denote the set

of variables in this constraint.
2. For each j ∈ [k], sample a random variable xij ∈ Xij .
3. Add the constraint f((xi1 , . . . , xik) + bC0) to the instance Φ.

Figure 3 Construction of the gap instance Φ.

I Lemma 15. For every ε > 0, there exists γ = γ(ε, n0, q) such that for an instance Φ
generated by choosing at least γ · n constraints independently at random as above, we have
with probability 1− exp (−Ω(n)), OPT(Φ) < s+ ε.

Proof. Fix an assignment σ ∈ [q]N . We will first consider E [satΦ (σ)] for a randomly
generated Φ as above.

E
Φ

[satΦ (σ)] = E
C0∈Φ0

E
xi1∈Xi1

· · · E
xik∈Xik

[f(σ(xi1) + bi1 , . . . , σ(xik) + bik)]

= E
C0∈Φ0

E
Z1,...Zn0

[f(ZC0 + bC0)] ,

where for each i ∈ [n0], Zi is an independent random variable with the distribution

P [Zi = b] := E
x∈Xi

[
1{σ(x)=b}

]
,

and ZC0 denotes the collection of variables in the constraint C0, i.e., ZC0 = {Zi}i∈SC0
. Thus,

the random variables Z1, . . . , Zn0 define a random assignment to the variables in Φ0, which
gives, for any σ

E
Φ

[satΦ (σ)] = E
C0∈Φ0

E
Z1,...Zn0

[f(ZC0 + bC0)] < s .

Consider a randomly added constraint C to the instance Φ. We have that

P [C(σ) = 1] = E
Φ

[satΦ(σ)] < s ,

for any fixed σ over random choice of the constraint C. Thus, for an instance Φ with m
independently and randomly generated constraints, we have

P
Φ

[satΦ(σ) ≥ s+ ε] ≤ P
Φ

[
satΦ(σ) ≥ E

Φ
[satΦ(σ)] + ε

]
= P

Φ

[
E

C∈Φ

[
1{C(σ)=1}

]
≥ E

Φ
[satΦ(σ)] + ε

]
≤ exp

(
−Ω(ε2 ·m)

)
.

Taking a union bound over all assignments, we get

P
Φ

[∃σ satΦ(σ) ≥ s+ ε] ≤ qn·n0 · exp
(
−ε2 ·m

)
,

which is at most exp (−Ω(n)) for m = O(((log q)/ε2) · n · n0). J



M. Ghosh and M. Tulsiani 11:13

5.1.2 Completeness
To prove the completeness, we first observe that the instance Φ as constructed above is also
a gap instance for the basic LP. We will then “boost” this hardness to many levels of the
Sherali-Adams hierarchy.

I Lemma 16. For every ε > 0, there exists γ = γ(ε) such that for an instance Φ generated
by choosing at least γ · n constraints independently at random as above, with probability
1− exp (−Ω(n)) there exist distributions DSC over [q]SC for each C ∈ Φ, and distributions
Di over [q] for each variable xi ∈ [n · n0], satisfying

For all C ∈ Φ and all i ∈ SC , DSC |{i} = Di.
The distributions satisfy EC∈Φ Eα∼DSC [f(α+ bC)] ≥ c− ε

10 .

Proof. For each C0 ∈ Φ0 and each j ∈ [n0], let D(0)
SC0

and D(0)
j denote the basic LP solution

satisfying

D(0)
SC0 |j

= D(0)
j ∀C0 ∈ Φ0 ∀j ∈ SC0 and E

C0∈Φ0
E

α∼D(0)
SC0

[f(α+ bC0)] ≥ c .

Each constraint C ∈ Φ is sampled according to some constraint C0 ∈ Φ0, and we take
DSC := D(0)

SC0
for the corresponding contraint C0 ∈ Φ0. Also, each variable xi for i ∈ [n0 · n],

belongs to one of the sets Xj for j ∈ [n0], and we take Di := D(0)
j for the corresponding

j ∈ [n0].
The consistency of the distributions follows immediately from the construction of the

instance Φ. Let C ∈ Φ be any constraint and let C0 be the corresponding constraint in Φ0.
If SC0 = (j1, . . . , jk), then SC = (i1, . . . , ik) where each ir ∈ {jr} × [n] for all r ∈ [k]. Thus,
for any r ∈ [k],

DSC |ir = D(0)
SC0 |jr

= D(0)
jr

= Dir .

To bound the objective value, we again consider its expectation over a randomly generated
instance Φ. Let C be a random constraint added to Φ. Then, if we define DSC as above for
this constraint, we have

E
C

E
α∈DSC

[f(α+ bC)] = E
C0∈Φ0

E
α∼D(0)

[f(α+ bC0)] ≥ c .

Thus, the expected contribution of each constraint is at least c. The probability that
the average of m constraints deviates by at least ε/10 from the expectation, is at most
exp

(
−Ω(ε2 ·m)

)
. There exists γ = O(1/ε2) such that for m ≥ γ · n, the probability is at

most exp(−Ω(n)). J

To construct local distributions for the Sherali-Adams hierarchy, we will consider (a slight
modification) the hypergraph H corresponding to the instance Φ. We first show that
distributions on hyperedges of this hypergraph can be consistently propagated in a tree,
provided they agree on intersecting vertices.

For a set U ⊆ V(H) in a hypergraph H, recall that cl(U) includes all paths of lengths at
most 1 between any two vertices in U . Thus, E(cl(U)) = {e ∈ E | |e ∩ U | ≥ 2}. Note that
Lemma 16 implies that hyperedges forming a tree in H satisfy the hypothesis of Lemma 17
below.
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I Lemma 17. Let H = (V,E) be a k-uniform hypergraph. Let U ⊆ V and let the set
of hyperedges E(cl(U)) form a tree. For each e ∈ E(cl(U)), let De be a distribution on
[q]e such that for any u ∈ U and e1, e2 ∈ E(cl(U)) such that e1 ∩ e2 = {u}, we have
De1|u = De2|u = Du. Then,

there exists a distribution DU on [q]U such that DU |e∩U = De|e∩U for all e ∈ E(U).
If U ′ ⊆ U is such that the hyperedges in E(cl(U ′)) form a subtree of E(cl(U)), then
DU |U ′ = DU ′ .

Proof. We define the distribution by starting with an arbitrary hyperedge and traversing
the tree in an arbitrary order. Let e1, . . . , er be a traversal of the hyperedges in E(cl(U))
such that for all i, |(∪j<iej) ∩ ei| = 1. Let U0 = ∪j<iej be the set of vertices for which we
have already sampled an assignment and let ei be the next hyperedge in the traversal, with u
being the unique vertex in ei ∩U0. We sample an assignment to the vertices in e, conditioned
on the value for the vertex u. Formally, we extend the distribution DU0 to U0 ∪ e by taking,
for any α ∈ [q]U0∪e

DU0∪e(α) = DU0(α(U0)) · De(α(e))
De|u(α(u))

= DU0(α(U0)) · De(α(e))
Du(α(u))

.

The above process defines a distribution Dcl(U) on cl(U), with

Dcl(U)(α) =
∏
e∈E(U)De(α(e))∏

u∈cl(U)
(
Du(α(u))

)deg(u)−1 .

In the above expression, we use deg(u) to denote the degree of vertex u in tree formed
by the hyperedges in E(cl(U)) i.e., deg(u) = |{e ∈ E(cl(U)) | u ∈ e}|. We then define the
distribution DU as the marginalized distribution Dcl(U)|U i.e.,

DU (α) =
∑

β∈[q]cl(U)
β(U)=α

Dcl(U)(β) .

Note that the distribution Dcl(U) and hence also the distribution DU are independent of
the order in which we traverse the hyperedges in E(cl(U)). Also, since the above process
samples each hyperedge according to the distribution De, we have that for any e ∈ E(U),
Dcl(U)|e = De. Thus, also for any e ∈ E(U), DU |e∩U = De|e∩U .

Let U ′ ⊆ U be any set such that E(cl(U ′)) forms a subtree of E(cl(U)). Then there exists
a traversal e1, . . . , er, and i ∈ [r] such that ej ∈ E(cl(U ′)) ∀j ≤ i and ej /∈ E(cl(U ′)) ∀j > i.
However, the distribution defined by the partial traversal e1, . . . , ei is precisely Dcl(U ′). Thus,
we get that Dcl(U)| cl(U ′) = Dcl(U ′) which implies DU |U ′ = DU ′ . J

We can now prove the completeness for our construction using consistent decompositions.

I Lemma 18. Let ε > 0 and let Φ be a random instance of MAX k-CSPq (f) generated
by choosing γ · n constraints independently at random as above. Then, there is a t =
Ωε,k,n0

(
logn

log logn

)
, such that with probability 1−ε over the choice of Φ, there exist distributions

{DS}|S|≤t satisfying:
For all S ⊆ V with |S| ≤ t, DS is a distribution on [q]S.
For all T ⊆ S ⊆ V with |S| ≤ t, DS|T = DT .
The distributions satisfy

E
C∈Φ

E
αC∼DSC

[f(αC + bC)] ≥ c− ε .
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Proof. By Theorem 9, we know that there exists δ such that with probability 1− ε/4, after
removing a set of constraints CB of size at most (ε/4) ·m, we can assume that the remaining
instance has girth at least g = δ · logn. Also, there exists θ, c > 0 such that for all t ≤ nθ,
the metric ρHµ restricted to any set S of size at most t embeds isometrically into the unit
sphere in `2, for all µ ≥ c · log t+log logn

logn .

We choose µ = 2c · log logn
logn and t = ε2

400k2 · 1
µ so that

µ ≥ c · log t+ log logn
logn and

√
µ · t ≤ ε

20k .

Thus, by Lemma 12, H admits an (ε/2)-sparse partitioning scheme of order t with each
cluster in the partition having diameter at most ∆H = O(1/µ). Let {PS}|S|≤t denote this
partitioning scheme.

Given a set S, the distribution DS is a convex combination of several distributions DS,P ,
corresponding to different partitions P sampled from PS . We describe the distribution DS
by giving the procedure to sample an α ∈ [q]S . Given the set S with |S| ≤ t:

Sample a partition P = (U1, . . . , Ur) from the distribution PS .

For each set Ui, consider the set C (Ui) obtained by including the vertices contained in
all the hyperedges in the shortest path between all u, v ∈ Ui. Note that since Ui has
diameter at most ∆H in H, C (Ui) is connected and in fact C (U) = cl∆H

(U). Also, since
the each vertex in an included path is within distance at most ∆H/2 of an end-point,
and Ui has diameter at most ∆H , we know that the diameter of C (Ui) is at most 2 ·∆H .
Hence, C (Ui) is a tree. Finally, we must have cl(C (Ui)) = C (Ui) since any additional
path of length 1 would create a cycle of length at most 2 ·∆H + 1.
Thus, by Lemma 16 and Lemma 17 (with probability at least 1 − ε/4) there exists a
distribution DC(Ui) for each Ui, satisfying DC(Ui)|e = De for all e ∈ E (C (Ui)). Here, De
are the distributions given by Lemma 16, which form a solution to the basic LP for Φ,
with value at least c− ε/4. For each Ui, define the distribution

D′Ui := DC(Ui)|Ui .

Sample α ∈ [q]S according to the distribution

DS,P := D′U1
× · · · × D′Ur .

Thus, we have

DS := E
P=(U1,...,Ur)∼PS

[
r∏
i=1
D′Ui

]
,

where the distributions D′Ui are defined as above.
We first prove the distributions are consistent on intersections i.e., DS|T = DT for any

T ⊆ S. Note that by Lemma 12, the distributions PS and PT satisfy PS|T = PT . Each
partition (U1, . . . , Ur) also produces a partition T . For ease of notation, we assume that the
first (say) r′ clusters have non-empty intersection with S. Let Vi = Ui ∩ T for 1 ≤ i ≤ r′
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(Vi = ∅ for i > r′). Then, we have

DS|T = E
P=(U1,...,Ur)∼PS

[
r∏
i=1
D′Ui|Vi

]
= E

P=(U1,...,Ur)∼PS

 r′∏
i=1
DC(Ui)|Vi


= E

P=(U1,...,Ur)∼PS

 r′∏
i=1
DC(Vi)|Vi


= E

P ′=(V1,...,Vr′ )∼PT

 r′∏
i=1
DC(Vi)|Vi

 .
The second to last equality above uses the fact that C (Vi) is a subtree of C (Ui) and thus
DC(Ui)|C(Vi) = DC(Vi) by Lemma 17. The last equality uses the fact that PS|T = PT by
Lemma 12.

We now argue that the LP solution corresponding to the above distributions {DS}|S|≤t
has value at least c− ε. Recall that the value of the LP solution is given by

E
C∈Φ

E
α∼DSC

[f(α+ bC)] .

Consider any constraint C in Φ, with the corresponding set of variables SC and the corre-
sponding hyperedge e. When defining the distribution DSC , we will partition SC according
to the distribution PSC . By Lemma 12 and our choice of parameters

P
P∼PSC

[P 6= {SC}] ≤ 10k ·
√
µ · t ≤ ε

2 .

For a constraint set which is not in the deleted set CB , if the hyperedge e corresponding to
the constraint C is not split by a partition P sampled according to PSC , then by Lemma 17
DSC ,P = DSC . Here, DSC is the distribution given by Lemma 16. Since f is Boolean, we
have that for C /∈ CB ,

E
α∼DSC

[f(α+ bC)] ≥ E
α∼DSC

[f(α+ bC)]− ε

2 .

Using Lemma 16 again, we get

E
C∼Φ

E
α∼DSC

[f(α+ bC)] ≥ E
C∼Φ

[(
1− 1{C∈CB}

)
·

(
E

α∼DSC
[f(α+ bC)]− ε

2

)]
≥ E

C∼Φ
E

α∼DSC
[f(α+ bC)]− ε

2 − E
C∼Φ

[
1{C∈CB}

]
≥ c− ε

4 −
ε

2 −
ε

4
≥ c− ε ,

where the penultimate inequality uses the fact that the fraction of constraints in the initially
deleted set CB is at most ε/4 (for large enough n). J

5.2 Integrality Gaps for resistant predicates

Let f : {0, 1}k → {0, 1} be a boolean predicate and let ρ(f) = f−1(1)
2k be the fractions of

satisfying assignments to f . Then f is approximation resistant if it is hard to distinguish the
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MAX-CSP instances on f between which are at least 1− o(1) satisfiable vs which are at most
ρ(f) + o(1) satisfiable.

In [18] the authors introduce the notion of vanishing measure (on a polytope defined by f)
and use it to characterize a variant of approximation resistance, called strong approximation
resistance, assuming the Unique Games conjecture. They also show gave a weaker notion
of vanishing measures, which they used to characterize strong approximation resistance for
LP hierarchies. In particular, they proved that when the condition in their characterization
is satisfied, there exists a (1 − o(1), ρ(f) + o(1)) integrality gap for O(log logn) levels of
Sherali-Adams hierarchy for predicates f . Here, we show that using Theorem 1, their result
can be simplified and strengthened 1 to O

(
logn

log logn

)
levels.

Let us first recall some useful notation defined by Khot et al. [18] before we define the
notion of vanishing measure:

I Definition 19. For a predicate f : {0, 1}k → {0, 1}, let C(f) be the convex polytope of
first moments (biases) of distributions supported on satisfying assignments of f i.e.,

C(f) :=
{
ζ ∈ Rk | ∀i ∈ [k], ζi = E

α∼ν
[(−1)αi ] , Supp(ν) ⊆ f−1(1)

}
.

For a measure Λ on C(f), S ⊆ [k], b ∈ {0, 1}S and permutation π : S → S, let ΛS,π,b denote
the induced measure on RS by considering vectors with coordinates

{
(−1)bπ(i) · ζπ(i)

}
i∈S ,

where ζ ∼ Λ.

We recall below the definition of vanishing measure for LPs from [18] (see Definition 1.3) :

I Definition 20. A measure Λ on C(f) is called vanishing (for LPs) if for every 1 ≤ t ≤ k,
the following signed measure

E
|S|=t

E
π:S→S

E
b∈{0,1}t

[(
t∏
i=1

(−1)bi
)
· f̂(S) · ΛS,π,b

]
is identically 0. We say f has a vanishing measure if there exists a vanishing measure Λ on
C(f).

In particular, they prove the following theorem:

I Theorem 21. Let f : {0, 1}k → {0, 1} be a k-ary boolean predicate that has a vanishing
measure. Then for every ε > 0, there is a constant cε > 0 such that for infinitely may N ∈ N,
there exists an instance Φ of MAX k-CSP(f) on N variables satisfying the following:

OPT(Φ) ≤ ρ(f) + ε.
The optimum for the LP relaxation given by cε · log logN levels of Sherali-Adams hierarchy
has FRAC(Φ) ≥ 1−O(k ·

√
ε).

Combining this with our Theorem 1 already gives us the following stronger result:

I Corollary 22. Let f : {0, 1}k → {0, 1} be a k-ary boolean predicate that has a vanishing
measure. Then for every ε > 0, there is a constant cε > 0 such that for infinitely may N ∈ N,
there exists an instance Φ of MAX k-CSP(f) on N variables satisfying the following:

All integral assignment of Φ satisfies at most ρ(f) + ε fraction of constraints.
The LP relaxation given by cε · logN

log logN levels of Sherali-Adams hierarchy has FRAC(Φ) ≥
1−O(k

√
ε).

1 The LP integrality gap result of Khot et al. is in fact slightly stronger than stated above. They show
that LP value is at least 1− o(1) while there is no integer solution achieving a value outside the range
[ρ(f)− o(1), ρ(f) + o(1)]. It is easy to see that the same also holds for the instance constructed here.
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Let n0 = d 1
εe. Partition the interval [0, 1] into n0 + 1 disjoint intervals I0, I1, . . . , In0

where I0 = {0} and Ii = (i−1/n0, i/n0] for 1 ≤ i ≤ n0. For each interval Ii, let Xi be a
collection of n variables (disjoint from all Xj for j 6= i).
Generate m constraints independently according to the following procedure:

Sample ζ ∼ Λ.
For each j ∈ [k], let ij be the index of the interval which contains |ζ(j)|. Sample
uniformly a variable yj from the set Xj .
If ζ(j) < 0, then negate yj . If ζ(j) = 0, then negate yj w.p. 1

2 .
Introduce the constraint f on the sampled k tuple of literals.

Figure 4 Sherali-Adams integrality gap instance for vanishing measure.

However, note that to apply Theorem 1, one only needs a gap for the basic LP, which is
much weaker requirement than the O(log logN)-level gap given by Theorem 21. We observe
below that the gap for the basic LP follows very simply from the construction by Khot et al.
[18]. One can then directly use this gap for applying Theorem 1 instead of going through
Theorem 21.

Khot et al. [18] use the probabilistic construction given in Figure 4, for a given ε > 0.
The construction actually requires Λ to be a vanishing measure over the polytope Cδ(f) :=
(1 − δ) · C(f), for δ =

√
ε. However, since Cδ(f) is simply a scaling of C(f), a vanishing

measure over C(f) also gives a vanishing measure over Cδ(f). Note that each ζ0 ∈ C(f)
corresponds to a distribution ν0 supported in f−1(1). For each ζ ∈ Cδ, let ζ0 = 1

1−δ · ζ be
the point in C(f) with distribution ν0. Then the distribution ν = (1− δ) · ν0 + δ · Uk (where
Uk denotes the uniform distribution on {0, 1}k) satisfies ∀i ∈ [k]Eα∼ν [(−1)αi ] = ζi.

They show for a sufficiently large constant γ, an instance Φ with m = γ · n constraints
satisfies with high probability, that for all assignments σ, |satΦ(σ)− ρ(f)| ≤ ε (see Lemma
4.4 in [18]). The proof is similar to that of of Lemma 15.

Additionally, we need the following claim from [18] (see Claim 4.7 there), which allows one
to “round” coordinates of the vectors ζ ∈ Cδ(f) to the end-points of the intervals I0, . . . , In0 .
This ensures that any two variables in the same collection Xi have the same bias. The
proof of the claim follows simply from a hybrid argument. We include it in the appendix for
completeness.

I Claim 23. Let ζ ∈ Cδ(f) and let ν be the corresponding distribution supported in f−1(1)
such that for all i ∈ [k], we have ζi = Eα∼ν [(−1)αi ]. Let t1, . . . , tk ∈ [0, 1] be such that for
all i ∈ [k], |ti − |ζi|| ≤ ε for ε < δ/2. Then there exists a distribution ν′ on {0, 1}k such that

‖ν − ν′‖1 = O(k · (ε/δ)) and ∀i ∈ [k], E
α∼ν′

[(−1)αi ] = sign(ζi) · ti .

We can now use the above to give a simplified proof of Corollary 22.

Proof of Corollary 22. Here we exhibit a solution of the basic LP Figure 2 for the instance
given in Figure 4. For each variable yj coming from the set Xj for j ∈ {0, 1, . . . , n0},
we set the bias tj of the variable to be the rightmost point of the interval Ij i.e., set
x(yj ,−1) = 1

2 ·
(

1− i
n0

)
and x(yj ,1) = 1

2 ·
(

1 + i
n0

)
.

For each constraint C of the form f(yi1 + b1, . . . , yik + bk), let ζ(C) ∈ Cδ(f) be the point
used to generate it, and let ν(C) denote the corresponding distribution on {0, 1}k. By
Claim 23, there exists a distribution ν′(C) such that ‖ν(C)− ν′(C)‖1 = O(kε/δ) and such
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that the biases of the literals satisfy Eα∼ν′(C) [(−1)αj ] = sign(ζj) · tij , where tij denotes the
bias for the interval to which yij belongs. When tij 6= 0, we negate a variable only when
sign(ζj) < 0. Thus, we have Eα∼ν′(C)

[
(−1)αj+bj

]
= tij , which is consistent with the bias

given by the singleton variables x(yij ,1) and x(yij ,−1). We thus define the local distribution
on the set SC as DSC (α) = (ν′(C))(α+ bC).

For all C ∈ Φ, since ζ(C) ∈ Cδ(f), we have that Eα∼ν(C) [f(α)] ≥ 1 − δ. Also, since
‖ν(C)− ν′(C)‖1 = O(kε/δ), we get that Eα∼ν′(C) [f(α)] ≥ 1− δ −O(kε/δ). Thus, we have
for all C ∈ Φ, Eα∼DSC [f(α+ bC)] ≥ 1− δ −O(kε/δ). Taking δ =

√
ε proves the claim. J

5.3 Lower bounds for LP extended formulations
A connection between LP integrality gaps for the Sheral-Adams hierarchy, and lower bounds
on the size of LP extended formulations, was first established by Chan et al. [8] and later
improved by Kothari et al. [20]. In [20], the authors proved the following:

I Theorem 24 ([20], Theorem1.2). There exist constants 0 < h < H such that the following
holds. Consider a function f : N→ N. Suppose that the f(n)-level Sherali-Adams relaxation
for a CSP cannot achieve a (c, s)-approximation on instances on n variables. Then, no
LP extended formulation (of the original LP) of size at most nh·f(n) can achieve a (c, s)-
approximation for the CSP on nH variables.

Combining Theorem 1 with Theorem 24 yields (with f(N) = cε · logN
log logN ):

I Corollary 2. Let f : [q]→ {0, 1} be any predicate. Let Φ0 be a (c, s) integrality gap instance
for basic LP relaxation of MAX k-CSP (f). Then for every ε > 0, there exists c′ε > 0 such
that for infinitely N ∈ N, there exist (c − ε, s + ε) integrality gap instances of size N , for
every linear extended formulation of size at most N c′ε·

logN
log logN .
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A Local `2-embeddability of the metric ρHµ
The goal of this section is to prove the following result about the local `2-embeddability of
the metric ρHµ .

I Theorem 9. Let H ′ ∼ Hk (m,n, n0,Γ) with m = γ · n edges and let ε > 0. Then for large
enough n, with high probability (at least 1 − ε, over the choice of H ′), there exists δ > 0,
constant c = c(k, γ, n0, ε), θ = θ(k, γ, n0, ε) and a subhypergraph H ⊂ H ′ with V (H) = V (H ′)
satisfying the following:

H has girth g ≥ δ · logn.
|E(H ′) \ E(H)| ≤ ε ·m.
For all t ≤ nθ, for µ ≥ c · log t+log logn

logn , for all S ⊆ V(H ′) with |S| ≤ t, the metric ρHµ
restricted to S is isometrically embeddable into the unit sphere in `2,
To prove the above theorem, we will use the local structure of random hypergraphs. We

first prove that with high probability for random hypergraphs (sampled from Hk (m,n, n0,Γ))
a few hyperedges can be removed to obtain a hypergraph whose girth is Ω(logn) and the
degree is bounded. The following lemma shows a possible trade-off between the degree of
the hypergraph vs the number of hyperedges required to be removed.
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I Lemma 25. Let H ′ ∼ Hk (m,n, n0,Γ) be a random hypergraph with m = γ · n hyperedges.
Then for any ε > 0, with probability 1−ε, there exists a sub-hypergraph H with V (H) = V (H ′)
such that ∀u ∈ V (H), degH(u) ≤ 100 · log

(
n0
ε

)
· k · γ and |E(H ′) \ E(H)| ≤ ε ·m.

Proof. By linearity of expectation, the expected degree of any vertex v in H ′ is at most k · γ.
Let D = 100·log

(
n0
ε

)
·k ·γ, and let S be the set of all vertices u with degH′(u) > D. Let ES be

the set of all hyperedges with at least one vertex in S. We shall take E(H) = E(H ′)\ES . Note
that for any u ∈ V (H ′), P [u ∈ S] = P [degH′(u) ≥ D] ≤ exp(−D/4) by a Chernoff-Hoeffding
bound. We use this to bound the expected number of edges deleted.

E [ES ] ≤
∑

u∈V (H′)

E
[
deg(u) · 1{u∈S}

]
=

∑
u∈V (H′)

E [deg(u) | u ∈ S] · P [u ∈ S]

≤
∑

u∈V (H′)

E [deg(u) | u ∈ S] · exp (−D/4)

≤
∑

u∈V (H′)

(D + kγ) · exp (−D/4)

≤ (n · n0) · 2D · exp (−D/4) .

The penultimate inequality uses the independence of the hyperedges in the generation
process, which gives E [degH′(u) | degH′(u) ≥ D] ≤ D + E [degH′(u)]. From our choice of
the parameter D, we get that E [ES ] ≤ ε2 · γ · n = ε2 ·m. Thus, the number of edges deleted
is at most ε ·m with probability at least 1− ε. J
The following lemma shows that the expected number of small cycles in random hypergraph
is small.

I Lemma 26. Let H ∼ Hk (m,n, n0,Γ) be a random hypergraph and for l ≥ 2, let Zl(H)
denote the number of cycles of length at most l in H. For m,n and k such that k2 ·(m/n) > 1,
we have

E
H∼Hk(m,n,n0,Γ)

[Zl(H)] ≤
(
k2 · m

n

)2l
.

Proof. Let the vertices of H correspond to the set [n0]× [n]. Suppose we contract the set of
[n0]×{j} vertices into a single vertex j ∈ [n] to get a random multi-hypergraph H ′ on vertex
set [n]. An equivalent way to view the sampling to H ′ is: for each i ∈ [m], the i-th hyperedge
ei of H ′ is sampled by independently sampling k vertices (with replacement) uniformly at
random from [n]. Note that the sampling of H ′ is independent of Γ in the definition of
Hk (m,n, n0,Γ). Clearly, a cycle of length at most l in H produces a cycle of length at most
l in H ′. Hence, it suffices to bound the expected number of cycles in H ′

Given any pair (u′, v′) of vertices of H ′, for u′ 6= v′, the probability of the pair (u′, v′)
belonging together in some hyperedge of H ′ is at most mk2

n2 . Consider a given h-tuple of
vertices u = (ui1 , · · ·uih). Note that we require that hyperedges participating in a cycle
be distinct. So, the probability that u is part of a cycle in H ′, i.e., there exists distinct
hyperedges ej ∈ H ′ for j ∈ [h] such that uij , uij+1 ∈ ej for j ∈ [h− 1], and ui1 , uih ∈ eh is at

most
(
mk2

n2

)h
. As a result, expected number of cycles of length h in H ′ is bounded above by:(

n

h

)(
mk2

n2

)h
≤ nh

(
mk2

n2

)h
=
(
k2 · m

n

)h
From the geometric form of the bound, it follows that expected number of cycles of length at
most l in H ′ is at most (k2·mn )l+1

(k2·mn )−1
<
(
k2 · mn

)2l
. J
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Using the above lemma, it is easy to show that one can remove all small cycles in a random
hypergraph by deleting only a small number of hyperedges.

I Corollary 27. Let H ∼ Hk (m,n, n0,Γ) be a random hypergraph with m = γ · n for γ > 1
and k ≥ 2. Then, there exists δ = δ(γ) > 0 such that with probability 1− n−1/6, all cycles of
length at most δ · logn in H can be removed by deleting at most n2/3 hyperedges.

Proof. As above, let Zl denote the number of cycles of length at most l. With the choice of
m,n, and k, we have k2 · mn ≥ 2. By Lemma 26, E [Zl] ≤

(
k2 · mn

)2l. Since m = γ · n, there
exists a g = δ · logn such that E [Zl] ≤

√
n. By Markov’s inequality, P

[
Zl ≥ n2/3] ≤ n−1/6.

Thus, with probability 1 − n−1/6, one can remove all cycles of length at most δ · logn by
deleting at most n2/3 edges. J

One can also extend the analysis in [3] to show that the hypergraphs are locally sparse, i.e.,
the number of hyperedges contained in a small set of vertices is small. For a hypergraph H
and a set S ⊆ V(H), we use E(S) to denote the edges contained in the set S.

I Definition 28. We say that S ⊆ V (H) is η-sparse if |E(S)| ≤ |S|
k−1−η . We call a k-uniform

hypergraph H on N vertices to be (τ, η)-sparse if all subsets S ⊂ V(H), |S| ≤ τ · |V(H)|, S
is η-sparse. We call H to be η-sparse if it is (1, η)-sparse, i.e., all subsets of vertices of H are
sparse.

We note here that while this notion of sparsity is a generalization of that considered in [3],
it is also identical to the notions of expansion considered in works in proof complexity (see
e.g., [6]) and later in works on integrality gaps [1, 7, 5]. We prove that random hypergraphs
generated with our model are locally sparse:

I Lemma 29. Let η < 1/4 and m = γ · n for γ > 1. Then for τ ≤ 1
n0
·
(

1
e·k3k·γ

)1/η
the

following holds:

P
H∼Hk(m,n,n0,Γ)

[H is not (τ, η)-sparse] ≤ 3 ·
(
k3k · γ
nη/4

)1/k

.

We note that we will require the sparsity η to be Ok,γ(1/ logn). This gives sparsity
only for sublinear size sets, as compared to sets of size Ω(n) in previous works where η is a
constant. For the proof of the lemma, we follow an approach similar to that of Lemma 26: we
collapse the vertices of H of the form [n0]× {j} to vertex j ∈ [n] to construct H ′, and thus
reducing the problem to random multi-hypergraph form a random multipartite hypergraph.
The rest proof of the lemma is along the lines of several known proofs [1, 7].

Proof. As in the proof of Lemma 26, given a random hypergraph H, we construct a
hypergraph H ′ ( by contracting all the vertices in [n0]× {j} to j ∈ [n] ).

Consider a subset of vertices S ⊆ V(H) and let S′ ⊆ V(H ′) be the corresponding con-
tracted set in H ′. Since each edge in H corresponds to an edge in H ′ (counting multiplicities),
we have

|E(S)| ≥ |S|
k − 1− η ⇒ |E(S′)| ≥ |S|

k − 1− η ≥
|S′|

k − 1− η .

Thus, it suffices to show that H ′ is (τ ′, η)-sparse for τ ′ = τ ·n0, since |S′| ≤ τ ·N = (τ ·n0) ·n.
Given any multiset in [n]k, the probability that it corresponds to an edge in H ′ is at most
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(k!) · (m/nk). Thus, the probability that there exists a set T of size at most τ ′ · n, containing
at least |T | /(k − 1− η) edges (counting multiplicities) is at most

τ ′·n∑
h=1

(
n

h

)
·
(
hk

r

)
·
(
k! ·m
nk

)r
,

where r = h
k−1−η . Note that we also need to consider h = 1 as edges in H ′ correspond to

multisets of size k, and so may not have all distinct vertices. Simplifying the above using(
a
b

)
≤
(
a·e
b

)b and k! ≤ kk gives

τ ′·n∑
h=1

(
n

h

)
·
(
hk

r

)
·
(
k! ·m
nk

)r
≤

τ ′·n∑
h=1

(n · e
h

)h
·
(
hk · e
r

)r
·
(
kk ·m
nk

)r

=
τ ′·n∑
h=1

(
ek−η · (k − 1− η) · kk · γ ·

(
h

n

)η)h/(k−1−η)

≤
τ ′·n∑
h=1

(
k3k · γ ·

(
h

n

)η)h/(k−1−η)

Let θ = η/(2k). We divide the above summation in two parts and first consider

τ ′·n∑
h=nθ

(
k3k · γ ·

(
h

n

)η)h/(k−1−η)

≤
τ ′·n∑
h=nθ

(
k3k · γ · (τ ′)η

)nθ/(k−1−η)

≤ 2 · exp
(
−n

θ

k

)
≤ 2 · k

nθ
,

for τ ′ ≤
(
e · k3k · γ

)−1/η. Considering the first half of the summation, we get

nθ∑
h=1

(
k3k · γ ·

(
h

n

)η)h/(k−1−η)

≤ nθ ·
(
k3k · γ
n(1−θ)·η

)1/k

≤
(
k3k · γ
nη/4

)1/k

= k3 · γ1/k · n−θ/2 .

Combining the two bounds gives that the probability is at most 3k3 · γ1/k · n−θ/2, which
equals the desired bound. J

Charikar et al. [10] prove an analogue of Theorem 9 for metrics defined on locally-sparse
graphs. In fact, they use a consequence of sparsity, which they call `-path decomposability.
To this end, we define the incidence graph2 associated with a hypergraph, on which we will
apply their result.

2 This is the same notion as the constraint-variable graph considered in various works on lower bounds
for CSPs.
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I Definition 30. Let H = (V (H), E(H)) be a k-uniform hypergraph. We define its incidence
graph as the bipartite graph GH defined on vertex sets V (H) and E(H), and edge set E
defined as

E := {(v, e) | v ∈ V (H), e ∈ E(H), v ∈ e} .

Note that for any u, v ∈ V (H), we have dGH (u, v) = 2 · dH(u, v). We prove that for a locally
sparse hypergraph H, its incidence graph GH is also locally sparse.

I Lemma 31. Let H be a k-uniform (τ, η)-sparse hypergraph on N vertices with m = γ · n
hyperedges. Then the incidence graph GH is (τ ′, η′) sparse for τ ′ = τ/k·(1+γ) and η′ = η/(1+η).

Proof. Let τ ′ = τ/k·(1+γ) and let GH be the incidence graph with N + m = (1 + γ) · N
vertices. Let G′ be is the densest subgraph of GH , among all subgraphs of size at most
τ ′ · (N +m). Let the vertex set of G′ be V ′ ∪E′ where V ′ ⊆ V (H) and E′ ⊆ E(H), and let
the edge-set be E ′. There cannot be any isolated vertices in G′ since removing those will
only increase the density.

Let S ⊆ V (H) be the set of all vertices contained in all edges in E′ i.e., S := {v ∈ V (H) |
∃e ∈ E′ s.t. v ∈ e}. Note that V ′ ⊆ S, since there are no isolated vertices, and E′ ⊆ E(S),
where E(S) denotes the set of hyperedges contained in S.

By our choice of parameters, |S| ≤ k · |E′| ≤ k · τ ′ · (N + m) ≤ τ ·N . Thus, using the
sparsity of H, we have

|E′| ≤ |E(S)| ≤ |S|
k − 1− η .

Also, since each hyperedge of E′ can include at most k vertices in S, and since each edge in
E ′ is incident on a vertex in V ′, we have

|S| − |V ′| ≤ k · |E′| − |E ′| .

Combining the two inequalities gives

(k − 1− η) · |E′| ≤ |V ′|+ k · |E′| − |E ′| =⇒ |E ′| ≤ (1 + η) · |E′|+ |V ′| .

Hence, we get that |E ′| ≤ |V
′|+|E′|

(1−η′) for η′ = η
(1+η) . J

Charikar et al. [10] defined the following structural property of a graph.

I Definition 32 ([10]). A graph G is `-path decomposable if every 2-connected subgraph G′
of G, such that G′ is not an edge, contains a path of length ` such that every vertex of the
path has degree at most 2 in G′.

The above property was also implicitly used by Arora et al. ([3]), who proved the following
(see Lemma 2.12 in [3]):

I Lemma 33. Let ` > 0 be an integer and 0 < η < 1
3`−1 < 1. Let G be a η-sparse graph

with girth g > `. Then G is `-path decomposable.

Recall that we defined the metrics dµ and ρµ on H as (for u 6= v) :

dHµ (u, v) := 1− (1− µ)2·dH(u,v) and ρHµ (u, v) :=

√
2 · dHµ (u, v) + µ

1 + µ
,
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For a graph G, we define the following two metrics, for u 6= v:

dGµ (u, v) := 1− (−1)dG(u,v)(1− µ)dG(u,v) and ρGµ (u, v) :=

√
2 · dGµ (u, v) + µ

1 + µ
.

We note that if H is a hypergraph and GH is its incidence graph, then the metrics dGHµ and
ρGHµ restricted to V (H), coincide with the metrics dµ and ρµ defined on H. Charikar et al.
proved the following theorem (see Theorem 5.2) in [12].

I Theorem 34 ([12]). Let G be a graph on n′ vertices with maximum degree D. Let t <
√
n′

and ` > 0 be such that for t′ = D`+1 · t, every subgraph of G on at most t′ vertices is `-path
decomposable. Also, let µ, t and ` satisfy the relation (1− µ)`/9 ≤ µ

2(t+1) . Then for every
subset S of at most t vertices there exists a mapping ψS from S to unit sphere in `2 such
that all u, v ∈ S:

‖ψS(u)− ψS(v)‖2 = ρGµ (u, v) .

We use this theorem to prove the main theorem of the section.

Proof of Theorem 9. Let H ′ ∼ Hk (m,n, n0,Γ) with m = γ · n hyperedges and N = n0 · n
vertices. Given ε > 0, from Lemma 25 we have that with high probability at least 1− ε/2,
there exists H1 such that the maximum degree of H1 is at most D = 100 · log

( 2n0
ε

)
· k · γ

with |E(H ′) \ E(H1)| ≤ (ε/2) ·m.
Using Corollary 27 we also have that there exists δ > 0, such that with probability

at least 1 − ε/4 (for large enough n) H ′ has a sub-hypergraph H2 with g ≥ δ · logn and
|E(H ′) \ E(H2)| ≤ (ε/4) ·m. By Lemma 29, there exists η = Ωn0,k,γ,ε(1/(logn)) such that
H ′ is (τ, η)-sparse with probability at least 1− ε/4, for τ ≥ n−1/4.

Hence with probability 1− ε, we have that H = (V (H ′), E(H1) ∩ E(H2)) satisfies:
Degree of H is bounded above by D.
H is (τ, η)-sparse (for τ ≥ n−1/4 and η = Ωn0,k,γ,ε(1/(logn)).
Girth of H is at least g > δ · logn.
|E(H ′) \ E(H)| ≤ ε ·m.

We now show that the metric ρHµ is locally `2 embeddable.
Let G = GH be the incidence graph for the hypergraph H. Note that N ≤ |V(G)| ≤

N · (1 + γ) and degree of G is also bounded by D. Since a cycle in G is also a cycle in H,
the girth of G is at also least g ≥ δ · logn.

By Lemma 31, we have G is ( τ
k(1+γ) ,

η
1+η )-sparse. By Lemma 33, any subgraph of G on

at most τ
k(1+γ) · (N +m) vertices is `-path decomposable for any ` ≤ min{g, 1/(4η)}. Since

D = 100 · kγ · log(2n0/ε), there exists `0 = Ωk,γ,n0,ε(logn) such that D`0+1 ≤ n1/6. We
choose ` = min {g, 1/(4η), `0}.

Let µ0 be the smallest µ such that exp (−µ`/9) ≤ µ
2(t+1) (note that 1

µ · exp (−µ`/9) is
decreasing in µ). Since we must have µ ≥ 1/`, there exists a µ0 satisfying

µ0 ≤
9
`
· (ln(2(t+ 1)) + ln `) .

From our choice of `, there exist constants c = c(k, γ, n0, ε) and θ = θ(k, γ, n0, ε) < 1/2
such that µ0 ≤ c · log t+log logn

logn < 1 when t ≤ nθ. Then, for any µ ∈ [µ0, 1), we have
(1− µ)`/9 ≤ exp(−µ`/9) ≤ µ

2(t+1) .
We can now apply Theorem 34 to construct the embedding. Given any subset S of

V(H) of size at most t ≤ nθ, note that S is also a subset of V(G). Moreover, we have
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t ≤ nθ ≤ (N +m)1/2. Also, we have t ·D`+1 ≤ n1/2 · n1/6 = n2/3 ≤ τ
k(γ+1) · (N +m). Thus,

any subgraph of G on t ·D`+1 vertices is `-path decomposable.
Thus, when µ ≥ µ0, by Theorem 34 there exists a mapping ψS from S to the unit sphere,

such that for all u, v ∈ S, we have

‖ψS(u)− ψS(v)‖2 = ρGµ (u, v) = ρHµ (u, v) ,

where the last equality uses the fact that for all u, v ∈ V(H), ρHµ (u, v) = ρGµ (u, v) since
dG(u, v) = 2 · dH(u, v). J

B Omitted proofs Section 5

I Claim 23. Let ζ ∈ Cδ(f) and let ν be the corresponding distribution supported in f−1(1)
such that for all i ∈ [k], we have ζi = Eα∼ν [(−1)αi ]. Let t1, . . . , tk ∈ [0, 1] be such that for
all i ∈ [k], |ti − |ζi|| ≤ ε for ε < δ/2. Then there exists a distribution ν′ on {0, 1}k such that

‖ν − ν′‖1 = O(k · (ε/δ)) and ∀i ∈ [k], E
α∼ν′

[(−1)αi ] = sign(ζi) · ti .

Proof. Let rj = sign(ζj) · tj be the desired bias of the jth coordinate. Then, |ζ(j)− rj | ≤ ε
for all j ∈ [k] We construct a sequence of distributions ν0, . . . , νk such that ν0 = ν and
νk = ν′. In ν̄j , the biases are (r1, . . . , rj , ζj+1, . . . , ζk).

The biases in ν0 satisfy the above by definition. We obtain ν̄j from ν̄j−1 as,

νj = (1− τj) · νj−1 + τj ·Dj ,

where Dj is the distribution in which all bits, except for the jth one, are set independently
according to their biases in ν̄j−1. For the jth bit, we set it to sign(rj−ζj) (if rj−ζ(j) = 0, we
can simply proceed with ν̄j = ν̄j−1). The biases for all except for the jth bit are unchanged.
For the jth bit, the bias now becomes rj if

rj = (1− τj) · ζj + τj · sign(rj − ζj) =⇒ τj · (sign(rj − ζj)− rj) = (1− τj) · (rj − ζj) .

Since ζ ∈ Cδ(f), we know that |sign(rj − ζ(j))− rj | ≥ δ/2. Also, |rj − ζ(j))| ≤ ε by
assumption. Thus, we can choose τj = O(ε/δ) which gives that ‖ν̄j − ν̄j−1‖1 = O(ε/δ). The
final bound then follows by triangle inequality. J
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Abstract
We prove that the PNP-type query complexity (alternatively, decision list width) of any boolean
function f is quadratically related to the PNP-type communication complexity of a lifted version
of f . As an application, we show that a certain “product” lower bound method of Impagliazzo
and Williams (CCC 2010) fails to capture PNP communication complexity up to polynomial
factors, which answers a question of Papakonstantinou, Scheder, and Song (CCC 2014).

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases Communication Complexity, Query Complexity, Lifting Theorem, PNP

Digital Object Identifier 10.4230/LIPIcs.CCC.2017.12

1 Introduction

Broadly speaking, a query-to-communication lifting theorem (a.k.a. communication-
to-query simulation theorem) translates, in a black-box fashion, lower bounds on some type of
query complexity (a.k.a. decision tree complexity) [38, 6, 19] of a boolean function f : {0, 1}n →
{0, 1} into lower bounds on a corresponding type of communication complexity [23, 19, 27]
of a two-party version of f . Table 1 lists several known results in this vein.

In this work, we provide a lifting theorem for PNP-type query/communication complexity.

PNP decision trees. Recall that a deterministic (i.e., P-type) decision tree computes an
n-bit boolean function f by repeatedly querying, at unit cost, individual bits xi ∈ {0, 1}
of the input x until the value f(x) is output at a leaf of the tree. A PNP decision tree is
more powerful: in each step, it can query/evaluate a width-k DNF of its choice, at the cost
of k. Here k is simply the nondeterministic (i.e., NP-type) decision tree complexity of the
predicate being evaluated at a node. The overall cost of a PNP decision tree is the maximum
over all inputs x of the sum of the costs of the individual queries that are made on input x.
The PNP query complexity of f , denoted PNPdt(f), is the least cost of a PNP decision tree
that computes f .
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x3?
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0 1

0 1
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I Example 1. Consider the fabled odd-max-bit function [3, 7, 33, 36, 8] defined by Omb(x) :=
1 iff x 6= 0n and the largest index i ∈ [n] such that xi = 1 is odd. This function admits an
efficient O(logn)-cost PNP decision tree: we can find the largest i with xi = 1 by using a
binary search that queries 1-DNFs of the form

∨
a≤j≤n xj for different a ∈ [n].

PNP communication protocols. Let F : X × Y → {0, 1} be a two-party function, i.e.,
Alice holds x ∈ X , Bob holds y ∈ Y. A deterministic communication protocol can be
viewed as a decision tree where in each step, at unit cost, it evaluates either an arbitrary
predicate of Alice’s input x or an arbitrary predicate of Bob’s input y. A PNP communication
protocol [2, 15] is more powerful: in each step, it can evaluate an arbitrary predicate of the
form (x, y) ∈

⋃
i∈[2k]Ri (“oracle query”) at the cost of k (we always assume k ≥ 1). Here

each Ri is a rectangle (i.e., Ri = Xi × Yi for some Xi ⊆ X , Yi ⊆ Y) and k is just the usual
nondeterministic communication complexity of the predicate being evaluated. The overall
cost of a PNP protocol is the maximum over all inputs (x, y) of the sum of the costs of the
individual oracle queries that are made on input (x, y). The PNP communication complexity
of F , denoted PNPcc(F ), is the least cost of a PNP protocol computing F .

Note that if F : {0, 1}n × {0, 1}n → {0, 1} can be written as a k-DNF on 2n variables,
then the nondeterministic communication complexity of F , denoted NPcc(F ), is at most
O(k logn) bits: we can guess one of the ≤ 2k

(
n
k

)
many terms in the k-DNF and verify that

the term evaluates to true. Consequently, any PNP decision tree for a function f can be
simulated efficiently by a PNP protocol, regardless of how the input bits of f are split between
Alice and Bob. That is, letting F be f equipped with any bipartition of the input bits, we
have

PNPcc(F ) ≤ PNPdt(f) ·O(logn). (1)

1.1 Main result
Our main result establishes a rough converse to inequality (1) for a special class of composed,
or lifted, functions. For an n-bit function f and a two-party function g : X × Y → {0, 1}
(called a gadget), their composition F := f ◦ gn : Xn × Yn → {0, 1} is given by F (x, y) :=
f(g(x1, y1), . . . , g(xn, yn)). We use as a gadget the popular index function Indm : [m]×{0, 1}m

defined by Indm(x, y) := yx.

I Theorem 2 (Lifting for PNP). Let m = m(n) := n4. For every f : {0, 1}n → {0, 1},

PNPcc(f ◦ Indn
m) ≥

√
PNPdt(f) · Ω(logn).
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Table 1 Some query-to-communication lifting theorems. The first four are formulated in the
language of boolean functions (as in this paper); the last two are formulated in the language of
combinatorial optimization.

Query model Communication model References

deterministic deterministic [28, 14, 10, 17]
nondeterministic nondeterministic [13, 11]
polynomial degree rank [35, 34, 29, 31]
conical junta degree nonnegative rank [13, 22]

Sherali–Adams LP extension complexity [9, 22]
sum-of-squares SDP extension complexity [24]

The lower bound is tight up to the square root, since (1) can be adapted for composed
functions to yield PNPcc(f ◦ Indn

m) ≤ PNPdt(f) · O(logm + logn). The reason we incur a
quadratic loss is because we actually prove a lossless lifting theorem for a related complexity
measure that is known to capture PNP query/communication complexity up to a quadratic
factor, namely decision lists, discussed shortly in subsection 1.3.

1.2 Application
Impagliazzo and Williams [18] gave the following criteria – we call it the product method –
for a function F to have large PNP communication complexity. Here, a product distribution µ
over X × Y is such that µ(x, y) = µX (x) · µY(y) for some distributions µX , µY . A rectangle
R ⊆ X × Y is monochromatic (relative to F ) if F is constant on R.

Product method [18]: Let F : X ×Y → {0, 1} and suppose µ is a product distribution
over X × Y such that µ(R) ≤ δ for every monochromatic rectangle R. Then

PNPcc(F ) ≥ Ω(log(1/δ)).

This should be compared with the well-known rectangle size method [20], [23, §2.4] (µ over
F−1(1) such that µ(R) ≤ δ for all monochromatic R implies NPcc(F ) ≥ Ω(log(1/δ))), which
is known to characterize nondeterministic communication complexity up to an additive
Θ(logn) term.

Papakonstantinou, Scheder, and Song [25, Open Problem 1] asked whether the product
method can yield a tight PNP communication lower bound for every function. This is
especially relevant in light of the fact that all existing lower bounds against PNPcc (proved
in [18, 25]) have used the product method (except those lower bounds that hold against an
even stronger model: unbounded error randomized communication complexity, UPPcc [26]).
We show that the product method can fail exponentially badly, even for total functions.

I Theorem 3. There exists a total F : {0, 1}n × {0, 1}n → {0, 1} satisfying the following.
F has large PNP communication complexity: PNPcc(F ) ≥ nΩ(1).
For any product distribution µ over {0, 1}n × {0, 1}n, there exists a monochromatic
rectangle R that is large: log(1/µ(R)) ≤ logO(1) n.

1.3 Decision lists (DLs)
Conjunction DLs. The following definition is due to Rivest [30]: a conjunction decision list
of width k is a sequence (C1, `1), . . . , (CL, `L) where each Ci is a conjunction of ≤ k literals
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12:4 Query-to-Communication Lifting for PNP

and `i ∈ {0, 1} is a label. We assume for convenience that CL is the empty conjunction
(accepting every input). Given an input x, the conjunction decision list finds the least i ∈ [L]
such that Ci(x) = 1 and outputs `i. We define the conjunction decision list width of f ,
denoted DLdt(f), as the minimum k such that f can be computed by a width-k conjunction
decision list. For example, DLdt(Omb) = 1. This complexity measure is quadratically related
to PNP query complexity (for details, see full version of this paper [12]).

I Fact 4. For all f : {0, 1}n → {0, 1}, Ω(DLdt(f)) ≤ PNPdt(f) ≤ O(DLdt(f)2 · logn).

x2x5? x3x4x6? x1x3? x4x5x6? x1x2x3? ∅

A conjunction decision list of width 3

1 1 0 1 0 1

0 0 0 0 0

1 1 1 1 1 1

Rectangle DLs. A communication complexity variant of decision lists was introduced by
Papakonstantinou, Scheder, and Song [25] (they called them rectangle overlays). A rectangle
decision list of cost k is a sequence (R1, `1), . . . , (R2k , `2k ) where each Ri is a rectangle and
`i ∈ {0, 1} is a label. We assume for convenience that R2k contains every input. Given
an input (x, y), the rectangle decision list finds the least i ∈ [2k] such that (x, y) ∈ Ri and
outputs `i. We define the rectangle decision list complexity of F , denoted DLcc(F ), as the
minimum k such that F can be computed by a cost-k rectangle decision list. We again have
a quadratic relationship [25, Theorem 3] (for details, see full version of this paper [12]).

I Fact 5. For all F : {0, 1}n × {0, 1}n → {0, 1}, Ω(DLcc(F )) ≤ PNPcc(F ) ≤ O(DLcc(F )2).

DLs are combinatorially slightly more comfortable to work with than PNP decision
trees/protocols. This is why our main lifting theorem (Theorem 2) is in fact derived as a
corollary of a lossless lifting theorem for DLs.

I Theorem 6 (Lifting for DL). Let m = m(n) := n4. For every f : {0, 1}n → {0, 1},

DLcc(f ◦ Indn
m) = DLdt(f) ·Θ(logn).

Indeed, Theorem 2 follows because PNPcc(f ◦ Indn
m) ≥ Ω(DLcc(f ◦ Indn

m)) ≥ Ω(DLdt(f) ·
logn) ≥ Ω((PNPdt(f)/ logn)1/2 · logn) = (PNPdt(f) · Ω(logn))1/2, where the first inequality
is by Fact 5, the second is by Theorem 6, and the third is by Fact 4. We mention that
Theorems 2 and 6, as well as Facts 4 and 5, in fact hold for all partial functions.

As a curious aside, we mention that a time-bounded analogue of decision lists (capturing
PNP) has also been studied in a work of Williams [39].

1.4 Separation between PNP and DL
Facts 4 and 5 show that decision lists can be converted to PNP decision trees/protocols with
a quadratic overhead. Is this conversion optimal? In other words, are there functions that
witness a quadratic gap between PNP and DL? We at least show that if a lossless lifting
theorem holds for PNP, then such a quadratic gap indeed exists for communication complexity.

I Conjecture 7. There is an m = m(n) := nΘ(1) such that for every f : {0, 1}n → {0, 1},

PNPcc(f ◦ Indn
m) = PNPdt(f) ·Θ(logn).
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Our bonus contribution here (proof deferred to the full version [12]) shows that the simple
O(logn)-cost PNP decision tree for the odd-max-bit function is optimal:

I Theorem 8. PNPdt(Omb) ≥ Ω(logn).

I Corollary 9. The second inequality of Fact 4 is tight (i.e., PNPdt(f) ≥ Ω(DLdt(f)2 · logn)
for some f), and assuming Conjecture 7, the second inequality of Fact 5 is tight (i.e.,
PNPcc(F ) ≥ Ω(DLcc(F )2) for some F ).

This corollary is witnessed by f := Omb (which has DLdt(f) ≤ O(1) and PNPdt(f) ≥
Ω(logn)) and its lifted version F := Omb ◦ Indn

m (which has DLcc(F ) ≤ O(logn) and
PNPcc(F ) ≥ Ω(log2 n) under Conjecture 7). One caveat is that we have only shown the
corollary for an extreme setting of parameters (constant DLdt(f) and logarithmic DLcc(F )).
It would be interesting to show a separation for functions of nΩ(1) decision list complexity.

2 Preliminaries: Decision List Lower Bound Techniques

We present two basic lemmas in this section that allow one to prove lower bounds on
conjunction/rectangle decision lists. First we recall the proof of the product method, which
will be important for us, as we will extend the proof technique in both section 3 and section 4.

I Lemma 10 (Product method for DLcc). Let F : X ×Y → {0, 1} and suppose µ is a product
distribution over X × Y. Then F admits a monochromatic rectangle R with log(1/µ(R)) ≤
O(DLcc(F )).

Proof (from [18, 25]). Let (R1, `1), . . . , (R2k , `2k ) be an optimal rectangle decision list of
cost k := DLcc(F ) computing F . Recall we assume that R2k = X × Y contains every input.
We find a monochromatic R with µ(R) ≥ 2−2k via the following process.

We initialize X := X and Y := Y and iterate the following for i = 1, . . . , 2k rounds,
shrinking the rectangle X × Y in each round.

(†) Round i: (loop invariant: Ri ∩X × Y is a monochromatic rectangle)
Write Ri ∩ X × Y = Xi × Yi and test whether µ(Xi × Yi) = µX (Xi) · µY(Yi) is at
least 2−2k. Suppose not, as otherwise we are successful. Then either µX (Xi) < 2−k

or µY(Yi) < 2−k; say the former. We now “delete” the rows Xi from consideration by
updating X ← X rXi.

Note that since Ri ∩ X × Y is removed from X × Y in each unsuccessful round, it must
hold (inductively) that

⋃
j<i Rj is disjoint from X × Y at the start of the i-th round, and

so Ri ∩X × Y is indeed monochromatic (since it only contains points for which Ri is the
first rectangle in the decision list to contain them, which means F evaluates to `i). The
process starts out with µ(X × Y ) = 1 and in each unsuccessful round the quantity µ(X × Y )
decreases by < 2−k. Some round must succeed, as otherwise the process would finish with
X × Y = ∅ and hence µ(X × Y ) = 0 in 2k rounds, which is impossible. J

Recall that our Theorem 3 states that the product method is not complete for the measure
DLcc. By contrast, we are able to give an alternative characterization for the analogous query
complexity measure DLdt. We do not know if this characterization has been observed in the
literature before.

I Lemma 11 (Characterization for DLdt). Let f : {0, 1}n → {0, 1}. Then DLdt(f) ≤ k iff for
every nonempty Z ⊆ {0, 1}n there exists an ` ∈ {0, 1} and a width-k conjunction that accepts
an input in Z` := Z ∩ f−1(`) but none in Z1−`.
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12:6 Query-to-Communication Lifting for PNP

Proof. Suppose f has a width-k conjunction decision list (C1, `1), (C2, `2), . . . , (CL, `L). The
first Ci that accepts an input in Z (such an i must exist since the last CL accepts every
input) must accept an input in Z`i

but none in Z1−`i
(since all inputs in C−1

i (1) ∩ Z are
such that Ci is the first conjunction in the decision list to accept them).

Conversely, assume the right side of the “iff” holds. Then we can build a conjunction
decision list for f iteratively as follows. Start with Z = {0, 1}n. Let C1 be a width-k
conjunction that accepts an input in some Z`1 but none in Z1−`1 , and remove from Z all
inputs accepted by C1. Then continue with the new Z: let C2 be a width-k conjunction
that accepts an input in some Z`2 but none in Z1−`2 , and further remove from Z all inputs
accepted by C2. Once Z becomes empty (this must happen since the right side of the iff holds
for all nonempty Z), we have constructed a conjunction decision list (C1, `1), (C2, `2), . . .
for f . J

3 Proof of the Lifting Theorem

In this section we prove Theorem 6, restated here for convenience.

I Theorem 6 (Lifting for DL). Let m = m(n) := n4. For every f : {0, 1}n → {0, 1},

DLcc(f ◦ Indn
m) = DLdt(f) ·Θ(logn).

We use the abbreviations g := Indm : [m]× {0, 1}m → {0, 1} and F := f ◦ gn.
The upper bound of Theorem 6 is straightforward: given a width-k conjunction decision

list for f (which necessarily has length ≤ 2k
(

n
k

)
≤ nO(k)), we can form a rectangle decision

list for F by transforming each labeled conjunction into a set of same-labeled rectangles
(which can be ordered arbitrarily among themselves), one for each of the mk ways of choosing
a row from each of the copies of g corresponding to bits read by the conjunction – for a total
of nO(k) ·mk ≤ nO(k) rectangles and hence a cost of k ·O(logn). For example, if k = 2 and
the conjunction is z1z2, then for each x1, x2 ∈ [m] there would be a rectangle consisting of
all inputs with that value of x1, x2 and with y1, y2 such that g(x1, y1) = 1 and g(x2, y2) = 0.
For the rest of this section, we prove the matching lower bound.

3.1 Overview

Fix an optimal rectangle decision list (R1, `1), . . . , (R2k , `2k ) for F . By our characterization
of DLdt (Theorem 11) it suffices to show that for every nonempty Z ⊆ {0, 1}n there is a
width-O(k/ logn) conjunction that accepts an input in Z` := Z ∩ f−1(`) for some ` ∈ {0, 1},
but none in Z1−`. Thus fix some nonempty Z henceforth.

Write G := gn for short. We view the communication matrix of F as being partitioned
into slices G−1(z) = {(x, y) : G(x, y) = z}, one for each z ∈ {0, 1}n; see (a) below. We focus
naturally on the slices corresponding to Z, namely G−1(Z) =

⋃
z∈Z G

−1(z), which is further
partitioned into G−1(Z0) and G−1(Z1); see (b) below. Our goal is to find a rectangle R
that touches G−1(Z`) (for some `) but not G−1(Z1−`), and such that G(R) = C−1(1) for a
width-O(k/ logn) conjunction C; see (c) below. Thus C−1(1) touches Z` but not Z1−`, as
desired.
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[m]n

({0, 1}m)n

G −1(Z
0 )

G −1(Z
1 )

R

(a) (b) (c)

We find such an R as follows. We maintain a rectangle X × Y , which is initially the whole
domain of F and which we iteratively shrink. In each round, we consider the next rectangle
Ri in the decision list, and one of two things happens. Either:

The round is declared unsuccessful, in which case we remove from X × Y a small number
of rows and columns that together cover all of Ri ∩X × Y ∩G−1(Z). This guarantees
that throughout the whole execution, by the i-th round,

⋃
j<i(Rj ∩G−1(Z)) has been

removed from X × Y – thus every input in Ri ∩X × Y ∩G−1(Z) is such that Ri is the
first rectangle in the decision list that contains it, so it is in G−1(Z`i

) ⊆ F−1(`i) by the
definition of decision lists.

Or,
Success is declared, in which case it will hold that Ri ∩ X × Y touches G−1(Z) – in
fact, it touches G−1(Z`i) but not G−1(Z1−`i), by the above – and we can restrict
Ri ∩X ×Y to a subrectangle R that still touches G−1(Z`i

) but is such that G(R) is fixed
on O(k/ logn) coordinates and has full support on the remaining coordinates. In other
words, G(R) = C−1(1) for a width-O(k/ logn) conjunction C.

This process is a variation of the process (†) from the product method (Theorem 10). The
difference is that the Z-slices, G−1(Z), now play the role of the product distribution, and
we maintain the monochromatic property for Ri ∩X × Y only inside the Z-slices. Another
difference is that in each unsuccessful round we remove both rows and columns from X × Y
(not either–or as in (†)).

To flesh out this outline, we need to specify how to determine whether a round is successful,
which rows and columns to remove if not, and how to restrict to the desired R if so, and we
need to argue that the process will terminate with success.

3.2 Tools
We will need to find a rectangle R such that G(R) is fixed on few coordinates and has full
support on the remaining coordinates. We now describe some tools that help us achieve
this. First of all, under what conditions on R = A×B can we guarantee that G(R) has full
support over all n coordinates?

I Definition 12 (Blockwise-density [13]). A ⊆ [m]n is called δ-dense if the uniform random
variable x over A satisfies the following: for every nonempty I ⊆ [n], the blocks xI have
min-entropy rate at least δ, that is, H∞(xI) ≥ δ · |I| logm. Here, xI is marginally distributed
over [m]I , and H∞(x) := minx log(1/Pr[x = x]) is the usual min-entropy of a random
variable (see, e.g., Vadhan’s monograph [37] for an introduction).

I Definition 13 (Deficiency). For B ⊆ ({0, 1}m)n, we define D∞(B) := mn − log |B|
(equivalently, |B| = 2mn−D∞(B)), representing the log-size deficiency of B compared to the
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12:8 Query-to-Communication Lifting for PNP

universe ({0, 1}m)n. (The notation D∞ was chosen partly because this corresponds to the
Rényi max-divergence between the uniform distributions over B and over ({0, 1}m)n.)

I Lemma 14 (Full support). If A ⊆ [m]n is 0.9-dense and B ⊆ ({0, 1}m)n satisfies D∞(B) ≤
m0.3, then G(A×B) = {0, 1}n (i.e., for every z ∈ {0, 1}n there are x ∈ A and y ∈ B with
G(x, y) = z).

We prove Theorem 14 in subsection 3.4 using the probabilistic method: we show for a
suitably randomly chosen rectangle U ×V ⊆ G−1(z), (i) U intersects A with high probability,
and (ii) V intersects B with high probability. The proof of (i) uses the second moment
method (which is different from how blockwise-density was employed in previous work [13]).
The proof of (ii) is a tightened analysis of a combination of arguments from [28, 14] (which
were not stated in those papers with the high-probability guarantee we need). The latter
papers proved the full support property under a different assumption on A, which they called
“thickness”.

Theorem 14 gives us the full support property assuming A is blockwise-dense and B has
low deficiency. How can we get blockwise-density? Our tool for this is the following claim,
which follows from [13]; we provide the simple argument.

I Claim 15. If A ⊆ [m]n satisfies |A| ≥ mn/2O(k) then there exists an I ⊆ [n] of size
|I| ≤ O(k/ logn) and an A′ ⊆ A such that A′ is fixed on I and 0.9-dense on I := [n] r I.

Proof. If A is 0.9-dense, then we can take I = ∅ and A′ = A, so assume not. Letting x be
the uniform random variable over A, take I ⊆ [n] to be a maximal subset for which there is a
violation of blockwise-density: H∞(xI) < 0.9 · |I| logm. From H∞(x) ≥ n logm−O(k) we
deduce H∞(xI) ≥ |I| logm−O(k) since marginalizing out |I| logm bits may only cause the
min-entropy to go down by |I| logm. Combining these, we get |I| logm−O(k) < 0.9·|I| logm,
so |I| ≤ O(k/ logn).

Let α ∈ [m]I be an outcome for which Pr[xI = α] > 2−0.9·|I| log m, and take A′ := {x ∈
A : xI = α}, which is fixed on I. To see that A′ is 0.9-dense on I, let x′ be the uniform
random variable over A′ and note that if H∞(x′J ) < 0.9 · |J | logm for some nonempty J ⊆ I,
a straightforward calculation shows that then xI∪J would also have min-entropy rate < 0.9,
contradicting the maximality of I. J

3.3 Finding R

We initialize X := [m]n and Y := ({0, 1}m)n and iterate the following for i = 1, . . . , 2k

rounds.
(‡) Round i: (loop invariant: Ri ∩X × Y ∩G−1(Z) is monochromatic)

Define a set A ⊆ X of weighty rows as

A := {x ∈ X : |Yx| ≥ 2mn−3n log m} where Yx := {y ∈ Y : (x, y) ∈ Ri ∩G−1(Z)}.

Test whether there are many weighty rows: |A| ≥ mn/2k+1?
If no, we update X ← XrA and Y ← Y r

⋃
x∈XrA Yx and proceed to the next round.

Since Ri ∩G−1(Z) has been removed from X × Y , this ensures our loop invariant, as
explained in subsection 3.1.
If yes, we declare this round a success and halt.
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X

Y

Ri

Ri ∩
X×Y ∩
G−1(Z)

G
−

1(Z
)

A

⋃
x∈XrA Yx

We shortly argue that the process halts with success. First, we show how to find a
desired R assuming the process is successful in round i (with associated sets Ri, X × Y ,
A, and Yx for x ∈ X). Using Claim 15, obtain A′ ⊆ A which is fixed to α on some
I ⊆ [n] of size O(k/ logn) and is 0.9-dense on I. Pick any x′ ∈ A′, and define γ ∈ {0, 1}I

to be a value that maximizes the size of B := {y ∈ Yx′ : gI(α, yI) = γ}. Note that
|B| ≥ |Yx′ |/2|I| ≥ 2mn−3n log m−O(k/ log n) ≥ 2mn−m0.3 since x′ ∈ A and k ≤ n log(2m).

We claim that R := A′ × B can serve as our desired rectangle. Certainly, R touches
G−1(Z`i) (at (x′, y) for any y ∈ B) but not G−1(Z1−`i) by the loop invariant (since R ⊆
Ri ∩X × Y ). Also, G(R) is fixed to γ on I. Defining

A′
I

:= {xI ∈ [m]I : αxI ∈ A
′} and BI

:= {yI ∈ ({0, 1}m)I : ∃yI s.t. yIyI ∈ B}

to be the projections of A′ and B to the coordinates I, we have that

A′
I
is 0.9-dense and D∞(BI) ≤ D∞(B) ≤ m0.3

(noting that D∞(BI) is relative to ({0, 1}m)I). Applying Theorem 14 to A′
I
×BI shows that

G(R) has full support on I. In summary, “zI = γ” is the conjunction we were looking for.
We now argue that the process halts with success. In each unsuccessful round, we remove

|A| < mn/2k+1 rows from X and at most
∑

x∈XrA |Yx| < mn · 2mn−3n log m ≤ 2mn/2k+1

columns from Y (since k + 1 ≤ 2n logm). Suppose for contradiction that all 2k rounds are
unsuccessful; then at most half of the rows and half of the columns are removed altogether.
Supposedly the set X×Y we finish with is disjoint from

⋃
i∈[2k](Ri∩G−1(Z)) = G−1(Z). But

since Z is nonempty, this contradicts the fact that G(X ×Y ) has full support by Theorem 14
(as it is straightforward to check that since X × Y contains at least half the rows and half
the columns, it also satisfies the assumptions of the lemma).

This concludes the proof of Theorem 6, except for the proof of Theorem 14.

3.4 Full Support Lemma
I Lemma 16 (Full support). If A ⊆ [m]n is 0.9-dense and B ⊆ ({0, 1}m)n satisfies D∞(B) ≤
m0.3, then G(A×B) = {0, 1}n (i.e., for every z ∈ {0, 1}n there are x ∈ A and y ∈ B with
G(x, y) = z).

For coordinates I ⊆ [n] we define BI := {yI ∈ ({0, 1}m)I : ∃yI s.t. yIyI ∈ B} as the
projection of B onto I. Moreover, for V ⊆ {0, 1}m and i ∈ [n] we let Bi,V := {y ∈ B : yi ∈ V }
be the restriction of the i-th coordinate to be in V . We will often use combinations of these
notations; e.g., Bn,V

[n−1] denotes the restriction of the n-th coordinate to be in V , subsequently
projected on the coordinates in [n− 1].
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We write random variables as bold letters. For a random variable y supported on B, yI

denotes the marginal distribution of y on the coordinates in I. In contrast, BI only denotes
the set obtained by projecting B on the coordinates in I, without any distribution associated
to it. Note that while D∞(B) is the deficiency relative to ({0, 1}m)n, the quantity D∞(BI)
is the deficiency relative to ({0, 1}m)I ; i.e., D∞(BI) = m|I| − log |BI |.

Theorem 14 follows from the following two claims.

I Claim 17 (Alice side). Suppose A ⊆ [m]n is 0.9-dense. Choose U := U1× · · · ×Un ⊆ [m]n
uniformly at random where each Ui ⊆ [m] is of size |Ui| = m0.36. Then

Pr[A ∩U 6= ∅] ≥ 1− 2m−0.01.

I Claim 18 (Bob side). Let z ∈ {0, 1} and suppose B ⊆ ({0, 1}m)n satisfies D∞(B) ≤ m0.31.
Choose U ⊆ [m], |U | = m0.36, uniformly at random and let V := {y ∈ {0, 1}m : ∀j ∈ U ,

yj = z}. Then

for n ≥ 2: Pr
[
D∞

(
Bn,V

[n−1]

)
≤ D∞(B) + 1

]
≥ 1− 60m−0.28,

for n = 1: Pr [B ∩ V 6= ∅] ≥ 1− 60m−0.28.

We prove the Alice side claim shortly using the second moment method. The Bob side
claim follows by a tightened analysis of arguments from [28, 14], which we provide in the full
version of the paper [12]. Let us see why these two claims imply Theorem 14.

Proof of Theorem 14. Our goal is to show that for each z ∈ {0, 1}n we have A × B ∩
G−1(z) 6= ∅. Choose U := U1 × · · · × Un ⊆ [m]n, |Ui| = m0.36, uniformly at random.
Correspondingly, define V := V1 × · · · × Vn where Vi := {y ∈ {0, 1}m : ∀j ∈ Ui, yj = zi}.
We have U × V ⊆ G−1(z) by construction so it suffices to show that A × B ∩ U × V is
nonempty with positive probability. To this end, we show that the events A ∩U 6= ∅ and
B ∩V 6= ∅ both happen with high probability, and hence, by a union bound, A×B ∩U ×V

is nonempty with high probability. The Alice side claim (Claim 17) already shows A∩U 6= ∅
w.h.p., so it remains to consider B ∩ V .

Define BBi := B ∩ (({0, 1}m)i×Vi+1× · · · ×Vn). That is, BBi is obtained by restricting
the j-th coordinate to be in Vj for i+ 1 ≤ j ≤ n. Note that BBn = B, BBi−1 = (BBi)i,Vi

and BB0 = B ∩ V . Let B̂Bi := BBi
[i] be the projection of BBi onto [i]. We define the

following events Ei:

for i ≥ 2: Ei ⇐⇒ D∞(B̂Bi−1) ≤ D∞(B̂Bi) + 1,

for i = 1: E1 ⇐⇒ B̂B1 ∩ V1 6= ∅.

Note that B̂B1 ∩ V1 6= ∅ implies that BB0 = B ∩ V 6= ∅. Conditioned on En ∩ · · · ∩ Ei+1,
we have

D∞
(
B̂Bi

)
≤ D∞

(
B̂Bn

)
+ n− i− 1 ≤ m0.3 + n ≤ m0.31

and thus for i ≥ 2, we have from Claim 18 that D∞(B̂Bi−1) ≤ D∞(B̂Bi) + 1 holds with
probability at least 1− 60m−0.28. Thus

Pr[Ei | En ∩ · · · ∩ Ei+1] ≥ 1− 60m−0.28.

Also, conditioned on En ∩ · · · ∩ E2, we have D∞(B̂B1) ≤ m0.31, and hence using the case of
n = 1 in Claim 18, Pr[B̂B1 ∩ V1 6= ∅] ≥ 1− 60m−0.28. That is,

Pr[E1 | En ∩ · · · ∩ E2] ≥ 1− 60m−0.28.
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Now we are able to show B ∩ V 6= ∅ w.h.p., which concludes the proof:

Pr[B ∩ V 6= ∅] ≥ Pr[E1]
≥ Pr[En ∩ · · · ∩ E1]
=
∏n

i=1 Pr[Ei | En ∩ · · · ∩ Ei+1]
≥ (1− 60m−0.28)n

≥ 1− 60nm−0.28

= 1− 60m−0.03. J

Proof of Claim 17. For each x ∈ A consider the indicator random variable 1x ∈ {0, 1}
indicating whether x ∈ U . Let s :=

∑
x∈A 1x so that s = |A ∩U | and E[s] = δ|A|, where

δ = |U |/mn = m−0.64n. We use the second moment method to estimate

Pr[A ∩U 6= ∅] = 1−Pr[s = 0] ≥ 1− Var[s]
E[s]2 .

Thus, to prove the claim it suffices to show that Var[s] ≤ 2m−0.01 ·E[s]2 = 2m−0.01 · δ2|A|2.
Since

Var[s] =
∑

x,x′ Cov[1x,1x′ ] =
∑

x,x′ (E[1x1x′ ]−E[1x]E[1x′ ]) ,

it suffices to show that, for each fixed x∗ ∈ A,∑
x∈A Cov[1x,1x∗ ] ≤ 2m−0.01 · δ2|A|.

Fix x∗ ∈ A. Let Ix ⊆ [n] denote the set of all blocks i such that xi = x∗i . First note that
under Ix = ∅ it holds that Cov[1x,1x∗ ] < 0, i.e., the events “x ∈ U” and “x∗ ∈ U” are
negatively correlated. The interesting case is thus Ix 6= ∅ when the two events are positively
correlated. We note that

Pr[x ∈ U | x∗ ∈ U ] =
(

m0.36−1
m−1

)n−|Ix|
≤ m0.64|Ix| · δ. (2)

Let I be the distribution of Ix when x ∈ A is chosen uniformly at random. We have∑
x∈A Cov[1x,1x∗ ] ≤

∑
x:Ix 6=∅Cov[1x,1x∗ ]

≤
∑

x:Ix 6=∅E[1x1x∗ ]

=
∑

x:Ix 6=∅Pr[x ∈ U and x∗ ∈ U ]

= Pr[x∗ ∈ U ] ·
∑

x:Ix 6=∅Pr[x ∈ U | x∗ ∈ U ]

= δ ·
∑

x:Ix 6=∅Pr[x ∈ U | x∗ ∈ U ]

= δ|A| ·
∑
∅6=I⊆[n] Pr[I = I] ·Ex∼A|Ix=I Pr[x ∈ U | x∗ ∈ U ]

≤ δ|A| ·
∑
∅6=I⊆[n] Prx∼A[xI = x∗I ] ·Ex∼A|Ix=I Pr[x ∈ U | x∗ ∈ U ]

≤ δ|A| ·
∑
∅6=I⊆[n] 2−0.9|I| log m ·m0.64|I| · δ (0.9-density and (2))

= δ2|A| ·
∑
∅6=I⊆[n] 2−0.26|I| log m

= δ2|A| ·
∑

k∈[n]
(

n
k

)
2−0.26k log m

≤ δ2|A| ·
∑

k∈[n](m0.25)k · 2−0.26k log m

≤ δ2|A| · 2 · 2−0.01 log m

≤ 2m−0.01 · δ2|A|. J
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4 Application

In this section we prove Theorem 3, restated here for convenience.

I Theorem 3. There exists a total F : {0, 1}n × {0, 1}n → {0, 1} satisfying the following.
F has large PNP communication complexity: PNPcc(F ) ≥ nΩ(1).
For any product distribution µ over {0, 1}n × {0, 1}n, there exists a monochromatic
rectangle R that is large: log(1/µ(R)) ≤ logO(1) n.
The function witnessing the separation is F := f ◦ gn where g := Indm is the index

function with m := n4 and f : {0, 1}n → {0, 1} is defined as follows. We interpret the input
M to f as a

√
n×
√
n boolean matrix, and set

f(M) := 1 iff every row of M contains a unique 1-entry.

Complexity class aficionados [1] can recognize f as the canonical complete problem for the
decision tree analogue of ∀·US (⊆ Π2P) where US is the class of functions whose 1-inputs
admit a unique witness [5]. We have F : {0, 1}n log m × {0, 1}nm → {0, 1}, but we can
polynomially pad Alice’s input length to match Bob’s (as in the statement of Theorem 3).

4.1 Lower bound
It is proved in several sources [32, 21, 16] that f cannot be computed by an efficient Σ2P-type
decision tree (i.e., quasi-polynomial-size depth-3 circuit with an Or-gate at the top and small
bottom fan-in), let alone an efficient PNP decision tree. However, for completeness, we might
as well give a simple proof using our characterization (Theorem 11). Applying the lifting
theorem to the following lemma yields the lower bound.

I Lemma 19. DLdt(f) ≥
√
n.

Proof. By Theorem 11 it is enough to exhibit a nonempty subset Z ⊆ {0, 1}n of inputs such
that each conjunction C of width

√
n− 1 accepts an input in Z1 := Z ∩ f−1(1) iff it accepts

an input in Z0 := Z ∩ f−1(0). We define Z as the set of
√
n×
√
n matrices with at most one

1-entry in each row. If C accepts an input M ∈ Z1, then there is some row of M none of
whose entries are read by C; we may modify that row to all-0 and conclude that C accepts
an input in Z0. If C accepts an input M ∈ Z0, then for each all-0 row of M there is some
entry that is not read by C; we may modify each of those entries to a 1 and conclude that C
accepts an input in Z1. J

4.2 Upper bound
Let µ be a product distribution over the domain of F = f ◦ gn. Call a matrix M heavy if
it contains a row with at least two 1-entries. Hence f(M) = 0 for every heavy matrix M .
There is an efficient nondeterministic protocol of cost k ≤ O(logn), call it Π, that checks
whether a particular (x, y) describes a heavy matrix M = gn(x, y). Namely, Π guesses a
row index i ∈ [

√
n] and two column indices 1 ≤ j < j′ ≤

√
n, and then communicates

2 logm+ 1 ≤ O(logn) bits to check that Mij = Mij′ = 1. We view Π as defining a rectangle
covering

⋃
i∈[2k]Ri of all those (x, y) that describe heavy matrices. Note that each Ri is

monochromatic for F .
If there is an Ri with µ(Ri) ≥ 2−4k, the theorem is proved. So suppose not: µ(Ri) < 2−4k

for all i. Starting with S := domain of F and iterating over the Ri exactly as in the proof of
Theorem 10, we can delete from S either the rows or the columns of each Ri, ending up with
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a rectangle S still of measure µ(S) ≥ 1− 2k · 2−2k ≥ 0.99. We will complete the argument
by showing that FS (i.e., F restricted to the rectangle S) admits a large monochromatic
rectangle relative to µS , the conditional distribution of µ given S (which is also product).

∀·US

∀·UP

∀·P

coNP

Large monochr.
rectangle

restrict to S

Yannakakis

=

product
method

All (x, y) ∈ S are such that M = gn(x, y) is not heavy. This means that the function FS is
easier than the (∀·US-complete) function F in the following sense: for each row i ∈ [

√
n]

there is an efficient O(logn)-cost nondeterministic protocol, call it Πi, to check whether the
i-th row of M = gn(x, y) contains a 1-entry, and moreover, this protocol is unambiguous
in that it has at most one accepting computation on any input. (In complexity lingo, FS

admits an efficient ∀·UP protocol.) It is a well-known theorem of Yannakakis [40, Lemma 1]
that any such unambiguous Πi can be made deterministic with at most a quadratic blow-up
in cost; let Πdet

i be that O(log2 n)-bit deterministic protocol. But now ¬FS (negation of FS)
is computed by the following O(log2 n)-bit nondeterministic protocol: on input (x, y) guess a
row index i ∈ [

√
n] and run Πdet

i accepting iff Πdet
i (x, y) = 0. (That is, FS admits an efficient

∀·P = coNP protocol.) We proved NPcc(¬FS) ≤ O(log2 n); in particular,

DLcc(FS) ≤ O(PNPcc(FS)) ≤ O(NPcc(¬FS)) ≤ O(log2 n).

Hence we can apply (as a black box) the product method (Theorem 10) to find a monochro-
matic rectangle R ⊆ S with log(1/µS(R)) ≤ O(log2 n) and hence log(1/µ(R)) ≤ O(log2 n).
This completes the proof of Theorem 3.

5 Conclusion

Let PM(F ) denote the best lower bound on DLcc(F ) that can be derived by the product
method (Theorem 10). For any communication complexity measure C(F ), we use the
convention that C by itself refers to the class of (families of) functions F : {0, 1}n×{0, 1}n →
{0, 1} with C(F ) ≤ polylog(n). Then our application (Theorem 3) shows that the inclusion
PNPcc ⊆ PM is strict: there is an F ∈ PMr PNPcc. Here are some open questions.
1. Is there an F ∈ PMrUPPcc? This would be a stronger result since PNPcc ⊆ UPPcc. Note

that our ∀·US-complete function does not witness this, since it is in PPcc. One way to
see this is to note that it is the intersection of a coNPcc function (does each row have at
most one 1?) and a PPcc function (is the number of 1’s at least the number of rows?),
and use the closure of PP under intersection [4].
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2. Is there any reasonable upper bound for PM? For example, does PM ⊆ PSPACEcc hold?
3. Does BPPcc ⊆ PM or even BPPcc ⊆ PNPcc hold for total functions? The separation

BPPcc 6⊆ PM was shown for partial functions implicitly in [25].
4. Is there a lossless PNPdt-to-PNPcc lifting theorem (Conjecture 7)?
5. Can the quadratic upper bounds in Facts 4 and 5 be shown tight for more general

parameters (beyond constant DLdt(f) and logarithmic DLcc(F ) as in subsection 1.4)?
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Abstract
This work studies the question of quantified derandomization, which was introduced by Goldreich
and Wigderson (STOC 2014). The generic quantified derandomization problem is the following:
For a circuit class C and a parameter B = B(n), given a circuit C ∈ C with n input bits, decide
whether C rejects all of its inputs, or accepts all but B(n) of its inputs. In the current work we
consider three settings for this question. In each setting, we bring closer the parameter setting
for which we can unconditionally construct relatively fast quantified derandomization algorithms,
and the “threshold” values (for the parameters) for which any quantified derandomization algo-
rithm implies a similar algorithm for standard derandomization.

For constant-depth circuits, we construct an algorithm for quantified derandomization
that works for a parameter B(n) that is only slightly smaller than a “threshold” parameter, and
is significantly faster than the best currently-known algorithms for standard derandomization.
On the way to this result we establish a new derandomization of the switching lemma, which
significantly improves on previous results when the width of the formula is small. For constant-
depth circuits with parity gates, we lower a “threshold” of Goldreich and Wigderson from
depth five to depth four, and construct algorithms for quantified derandomization of a remaining
type of layered depth-3 circuit that they left as an open problem. We also consider the question
of constructing hitting-set generators for multivariate polynomials over large fields that
vanish rarely, and prove two lower bounds on the seed length of such generators.

Several of our proofs rely on an interesting technique, which we call the randomized tests tech-
nique. Intuitively, a standard technique to deterministically find a “good” object is to construct
a simple deterministic test that decides the set of good objects, and then “fool” that test using a
pseudorandom generator. We show that a similar approach works also if the simple deterministic
test is replaced with a distribution over simple tests, and demonstrate the benefits in using a
distribution instead of a single test.
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13:2 Improved Bounds for Quantified Derandomization

1 Introduction

For a circuit class C, the standard (one-sided error) derandomization problem is the following:
Given a circuit C ∈ C, distinguish in deterministic polynomial time between the case that
C rejects all of its inputs and the case that C accepts most of its inputs. Impagliazzo
and Wigderson [12], following Nisan and Wigderson [15], showed that under reasonable
complexity-theoretic assumptions, the standard derandomization problem can be solved
even for a class as large as C = P/poly. However, at this time we do not know how to
unconditionally solve this problem even when C is the class of polynomial-sized CNFs.

A couple of years ago, Goldreich and Wigderson [9] put forward a potentially easier
problem, which they call quantified derandomization. Given a class C and a parameter
B = B(n), the problem is to decide whether a circuit C ∈ C over n input bits rejects all of its
inputs, or accepts all but B(n) of its inputs (rather than just “most” of its inputs). We call
B(n) the “badness” parameter, since it represents the number of bad random strings (i.e., the
ones that lead the algorithm to an incorrect decision). Indeed, the standard derandomization
problem is captured by the parameter B(n) = 2n/2, but we are typically interested in B(n)’s
that are much smaller. On the other hand, polynomially-bounded values (e.g., B(n) = O(n))
can be easily handled by an algorithm that simply evaluates C on B(n) + 1 fixed inputs.

Goldreich and Wigderson constructed algorithms that solve the quantified derandomiza-
tion problem for various classes C and parameters B = B(n). For example, they constructed
a polynomial time hitting-set generator for AC0 circuits that accept all but B(n) = 2n1−ε

of their inputs, for any ε > 0. On the other hand, they showed that for some classes C and
a sufficiently high badness parameter B(n), the quantified derandomization problem is as
difficult as the standard derandomization problem (since the latter can be reduced to the
former). We call such parameter values threshold values, since a quantified derandomization
with a badness parameter B(n) that surpasses this threshold will yield a result for a standard
derandomization problem.

Our contributions in this work are of two types. On the one hand, we construct quantified
derandomization algorithms that work for a broader range of parameters, compared to [9]
(e.g., larger values of B(n), or broader circuit classes). On the other hand, we show that
quantified derandomization of circuit classes that are more limited (compared to [9]) is still
at least as difficult as certain standard derandomization problems.

The “take-home” message: Considered together, our results bring closer two settings of
parameters: The parameter setting for which we can unconditionally construct relatively
fast quantified derandomization algorithms, and the “threshold” values (for the parameters)
for which any quantified derandomization algorithm implies a similar algorithm for standard
derandomization.

1.1 Brief overview of our results
Let us informally state the main results in this work, which we later outline in more detail:

Constant-depth circuits (see Section 1.2): For circuits of depth D, the badness param-
eter B(n) = exp

(
n/ logD−O(1)(n)

)
is a threshold value, since an algorithm for quantified

derandomization with such a B(n) implies an algorithm for standard derandomization of
circuits of smaller depth d ≤ D − 12 (see Theorem 1).
We show that taking B(n) to be only slightly smaller than the threshold value allows
for derandomization that is significantly faster than the best currently-known standard
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derandomization. Specifically, we construct a hitting-set generator for depth-D circuits
with badness B(n) = exp

(
n/ logD−2(n)

)
that has seed length Õ(log3(n)); in particular,

the seed length does not depend on the depth D (see Theorem 2).
The latter is a special case of a more general result that we prove, which extends the
main theorem of Goldreich and Wigderson [9]: We establish a trade-off between the
badness parameter and the seed length of hitting-set generators for AC0. This is done
by constructing a parametrized hitting-set generator that can work with large badness
parameters, at the expense of a super-logarithmic seed (see Theorem 3). The key part in
this construction is a new derandomization of the switching lemma, which is our main
technical contribution in the context of constant-depth circuits. The seed length in the
new derandomization is significantly shorter than in previous derandomizations when the
width w of the formula is small (i.e., w = o(log(n))).
Constant-depth circuits with parity gates (see Section 1.3): We show that a threshold
for derandomization of AC0[⊕] exists at depth four with the parameter 2nc , for any
c > 0. Hence, an appealing frontier is AC0[⊕] circuits of depth three with the parameter
B(n) = 2nc . Goldreich and Wigderson derandomized various types of such circuits, and
left one last type as an open problem. We make significant progress on the last remaining
type: Specifically, we construct a whitebox hitter for circuits with a top ⊕ gate, a middle
layer of ∧ gates, and a bottom layer of ⊕ gates, under various sub-quadratic bounds on
the number of gates in the different layers (see Theorem 6).
We also affirm a conjecture from [9], by showing a reduction of the problem of hitting such
⊕∧⊕-circuits to the problem of hitting biased F2-polynomials of bounded (non-constant)
degree (see Theorem 7).
Polynomials that vanish rarely (see Section 1.4): We study the problem of constructing
hitting-set generators for polynomials Fn → F that vanish rarely, where F is an arbitrary
finite field. We prove two lower bounds on the seed length of such hitting-set generators.
The main result is that any hitting-set generator for degree-d polynomials that vanish on
at most 1/poly(|F|) of their inputs requires a seed of length similar to that of hitting-set
generators for all degree-d polynomials (see Theorem 8).
As part the proofs, we reduce the task of constructing a hitting-set generator for degree-d
polynomials to the task of constructing a hitting-set generator for polynomials of degree
d′ that vanish rarely, where d ≤ d′ ≤ poly(d); this is a form of “error reduction” for
polynomials that incurs only a mild increase in the degree.

Several of our results are based on a general technique that might be of independent
interest, which we call the randomized tests technique (see Section 2.1). Intuitively, a
standard approach to deterministically find an object in some predetermined set G ⊆ {0, 1}n
is to construct a simple deterministic test that decides G, and then “fool” the test using a
pseudorandom generator. We show that a similar approach works if the simple deterministic
test is replaced with a distribution over simple tests, and the pseudorandom generator is
required to “fool” the residual deterministic tests. In many settings, the fact that we use
randomness (i.e., use a distribution over tests) yields residual tests that are simpler than any
corresponding deterministic test (see Section 2.2 for a concrete example).

Towards stating the results, recall that a hitting-set generator for a class of functions F
from {0, 1}n to {0, 1} is an algorithm G : {0, 1}` → {0, 1}n, for some ` = `(n), such that for
every f ∈ F there exists some s ∈ {0, 1}` such that f(G(s)) 6= 0. We say that the hitting-set
generator has density ε > 0 if for every f ∈ F it holds that Prs∈{0,1}` [f(G(s)) 6= 0] ≥ ε

(see Definition 10). The definition of hitting-set generators extends naturally to functions
Fn → F, for any field F (see Definition 11).

CCC 2017
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1.2 Constant-depth circuits
Let us first state the threshold values for quantified derandomization of AC0, and then turn
to describe our algorithms for quantified derandomization. Goldreich and Wigderson showed
that the value B(n) = 2n/ log0.99·D(n) is a threshold value for quantified derandomization
of depth-D circuits. Specifically, they reduced the standard derandomization problem of
depth-d circuits to the problem of quantified derandomization of circuits of depth D � d

with B(n) = 2n/ logD−O(d)(n) (see [9, Thm 3.4 (full version)]). Since their work, Cheng and
Li [5] improved the known techniques for error-reduction within AC0, which allows us to
further decrease the threshold value, as follows:

I Theorem 1 (Threshold for Quantified Derandomization of AC0). For any d ≥ 2 and
D > d+11, the standard derandomization problem of depth-d circuits reduces in deterministic
polynomial-time to the quantified derandomization problem of circuits of depth D that accept
all but B(n) = 2n/ logD−d−11(n) of their inputs.

Our main result for AC0 circuits is a derandomization of depth-D circuits with the badness
parameter B(n) = 2n/ logD−2(n), which is only slightly smaller than the threshold value in
Theorem 1. The quantified derandomization algorithm runs in time that is significantly
faster than the current state-of-the-art for derandomizing AC0:

I Theorem 2 (Quantified Derandomization of AC0 with Badness 2n/ logD−2(n)). For any D ≥ 2,
there exists a hitting-set generator with seed length Õ(log3(n)) for the class of depth-D circuits
over n input bits that accept all but at most B(n) = 2Ω(n/ logD−2(n)) of their inputs.

We stress that the power of the poly-logarithm in the seed length in Theorem 2 does not
depend on the depth D. Any standard hitting-set generator for AC0 (i.e., with B(n) = 2n/2)
with such a seed length would be a major breakthrough, and in particular would significantly
improve the lower bounds of Håstad for AC0 [11] (see, e.g., [24, Prob. 7.1] and [23, “Barriers
to Further Progress”]).

The badness parameters in Theorems 1 and 2 are indeed very close, yet the smaller
badness parameter allows for derandomization in time 2Õ(log3(n)) whereas the larger badness
parameter is a threshold for standard derandomization. This represents a progress towards
the goal of the quantified derandomization approach, which is to close the gap between the
two parameters: That is, to either increase the badness parameter in Theorem 2, or decrease
the parameter in Theorem 1, and obtain a standard derandomization of AC0.

Theorem 2 is a special case of the following, more general result, which extends the main
theorem of Goldreich and Wigderson [9]. Their algorithm works with logarithmic seed and
badness parameter B(n) = 2n1−Ω(1) . The following result is parametrized (by the parameter
t), and can work with badness parameters that are larger than 2n1−Ω(1) , at the expense of a
longer (i.e., super-logarithmic) seed; Theorem 2 is the special case where both the badness
parameter and the seed are the largest possible in this result.

I Theorem 3 (Quantified Derandomization of AC0: A General Trade-Off). For any D ≥ 2
and t : N → N such that t(n) ≤ O(log(n)), there exists a hitting-set generator that uses a
seed of length Õ(t2 · log(n)) for the class of depth-D circuits over n input bits that accept all
but at most B(n) = exp

(
n1−1/Ω(t)/td−2) of their inputs.

Indeed, the main result in [9] is essentially obtained (up to a poly log log(n) factor in the
seed length) by setting t = O(1), whereas Theorem 2 is obtained by setting t = O(log(n)).
Theorem 3 is based on a new derandomization of Hastad’s switching lemma, which is our
main technical contribution in this section.
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I Proposition 4 (New Derandomization of the Switching Lemma; Informal). Let n ∈ N
and w ≤ O(log(n)). Then, there exists an algorithm that on an input random seed of
length Õ(w2 · log(n)) outputs a restriction ρ ∈ {0, 1, ?}n such that for every depth-2 formula
F : {0, 1}n → {0, 1} of size poly(n) and width w the following holds:

There exist two formulas F low and F up such that for every x ∈ {0, 1}n it holds that
F low(x) ≤ F (x) ≤ F up(x).
With probability 1 − 1/poly(n) it holds that both F low�ρ and F up�ρ can be computed
by decision trees of depth O(log(n)), and that both F low�ρ and F up�ρ agree with F on
1− 1/poly(n) of the inputs in the subcube that corresponds to the living variables under ρ.

Note that the seed length of the algorithm from Proposition 4 depends on the width of
the formula F . Previous derandomizations of the switching lemma can also be adapted to
depend on the width, but when the width is o(log(n)) the seed length in Proposition 4 is
significantly shorter than in these adaptations; see Section 2.2 for further details.

1.3 Constant-depth circuits with parity gates
The next circuit class that we study is that of constant-depth circuits that also have gates
computing the parity function or the negated parity function (i.e., AC0[⊕]). Specifically, we
consider AC0[⊕] circuits that are layered, in the sense that all gates at a particular distance
from the input gates are of the same gate-type.

We first observe that the standard derandomization problem of CNFs can be reduced to
the problem of derandomizing layered AC0[⊕] circuits of depth four with B(n) = 2nc , which
yields a “threshold” at depth four with such a badness parameter. This improves on a similar
result of [9] that refers to depth five.

I Theorem 5 (A Threshold for Quantified Derandomization of AC0[⊕] at Depth Four). Assume
that, for some c > 0, there exists a polynomial-time algorithm A such that, when A is given as
input a layered depth-four AC0[⊕] circuit C over n input bits that accepts all but B(n) = 2nc

of its inputs, then A finds a satisfying input for C. Then, there exists a polynomial-time
algorithm A′ that, when given as input a polynomial-size CNF that accepts most of its inputs,
then A′ finds a satisfying input for the CNF.

An appealing way to approach this “threshold” at depth four (with B(n) = 2nc) is to
derandomize AC0[⊕] circuits of depth three with B(n) = 2nc . Goldreich and Wigderson
derandomized most types of layered depth-3 AC0[⊕] circuits with B(n) = 2nc , for any c < 1,
with the exception of circuits of the form ⊕ ∧ ⊕ (i.e., top ⊕ gate, middle layer of ∧ gates,
and a bottom layer of ⊕ gates), which they left as an open problem.

Our main result in this section is an algorithm that makes significant progress on this
problem, by derandomizing ⊕ ∧ ⊕ circuits with B(n) = 2nc under various sub-quadratic
upper bounds on the circuit size, where some of these bounds refer to each layer separately.

I Theorem 6 (Hitting Biased ⊕ ∧ ⊕ Circuits). Let ε > 0 be an arbitrary constant. Let C
be the class of circuits of depth three with a top ⊕ gate, a middle layer of ∧ gates, and a
bottom layer of ⊕ gates, such that every C ∈ C over n input bits satsifies (at least) one of
the following:
1. The size of C is O(n).
2. The number of ∧-gates is at most n2−ε, and the number of ⊕-gates is at most n+ nε/2.
3. The number of ⊕-gates is at most n1+ε, and the number of ∧-gates is at most 1

5 · n
1−ε.

Then, for some c = c(ε) > 0, there exists a polynomial-time algorithm that, when given a
circuit C ∈ C that accepts all but B(n) = 2nc of its inputs, outputs a satisfying input for C.

CCC 2017
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We stress that the algorithm from Theorem 6 makes essential use of the specific circuit C
that is given to the algorithm as input. For further details see Section 2.3.

1.4 Polynomials that vanish rarely
We now turn our attention to quantified derandomization of polynomials, and specifically
to the problem of constructing hitting-set generators for polynomials Fn2 → F2 that vanish
rarely. In this setting it is more convenient to work with a normalized badness parameter
b(n) = B(n)/2n: For an integer n and a degree bound d < n, we want to construct a hitting-
set generator (with seed length O(log(n))) for the class of polynomials p : Fn2 → F2 of total
degree d that vanish on at most a b(n) fraction of their inputs (i.e., Prx∈Fn2 [p(x) = 0] ≤ b(n)).

The problem is trivial when b(n) < 2−d, since in this case p is constant, and Goldreich
and Wigderson solved this problem when b(n) = O

(
2−d

)
; we provide an alternative proof

of their result in Appendix A. They suggested to try and extend this result to also handle
b(n) = m(n) · 2−d, where m(n) = poly(n), and conjectured that such a result would imply
a quantified derandomization of ⊕ ∧⊕ circuits of size m(n). 1 We affirm their conjecture,
by showing that any sufficiently dense hitting-set generator for degree-d polynomials with
b(n) = m(n) · 2−d also hits ⊕ ∧⊕ circuits of size m(n) with B(n) = Ω (2n).

I Theorem 7 (Reducing Hitting ⊕ ∧ ⊕ Circuits to Hitting Biased Polynomials of Bounded
Degree). Let C be the class of ⊕ ∧⊕ circuits over n input bits with m = m(n) ∧-gates that
accept all but B(n) = ε · 2n of their inputs, where m(n) = o(2n) and ε = ε(n) ≤ 1/8. Let P
be the class of polynomials Fn2 → F2 of degree d = blog(m(n)) + log(1/ε)c that accept all but
a b(n) = (4 ·m(n)) · 2−d = 4 · ε fraction of their inputs. Then, any hitting-set generator with
density 1/2 + 2 · ε for P is also a hitting-set generator for C.

Our main focus in the current section is an extension of the problem of hitting polynomials
that vanish rarely to fields larger than F2. Specifically, let F be a finite field of size |F| =
q ≤ poly(n), and let 1 ≤ d ≤ (q − 1) · n. We consider the problem of constructing hitting-set
generators for polynomials Fn → F of degree d that vanish on at most a b(n) fraction of
their inputs. Recall that any hitting-set generator for the class of all polynomial of total
degree d (i.e., regardless of the fraction of inputs on which they vanish) requires a seed of
log
((
n+d
d

))
bits, and that there exists a non-explicit pseudorandom generator for this class

with a seed of O
(

log
((
n+d
d

)))
bits. 2 Moreover, for d = O(1) and a sufficiently large q,

explicit constructions of pseudorandom generators with a seed of O(log(n)) bits are known
(see, e.g. [2, 6]).

Our question is whether it is possible to use a shorter seed if we only require that
the generator will hit degree-d polynomials that vanish on b(n) of their inputs. More
accurately, we ask how low must b(n) be in order for a hitting-set generator with seed length
o
(

log
((
n+d
d

)))
to exist, even non-explicitly. The setting of b(n) < q−d is trivial, since any

degree-d polynomial that has at least one root vanishes on at least q−d of its inputs (this
follows from Warning’s second theorem; see, e.g., [19, Sec. 4]). On the other hand, the

1 In [9, Sec. 6 (full version)] it is suggested to prove this result by modifying any ⊕ ∧ ⊕ circuit to a
bounded-degree polynomial, where the modification amounts to the removal of all ∧-gates with high
fan-in. However, as explained in Section 2.3, since the top gate is a ⊕-gate, we cannot simply remove
∧-gates with high fan-in (or remove some of the wires that feed into them).

2 For proof of the lower bound see, e.g., the proof of Theorem 41, and for the upper bound note that a
polynomial Fn → F of degree d can be represented by

(
n+d
d

)
· log(q) bits.
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setting of b(n) = d/q is essentially the standard (i.e., non-quantified) problem, since any
non-zero degree-d polynomial vanishes on at most d/q of its inputs.

Our first result for this problem is that for any degree d ≤ 0.99·q, any hitting-set generator
for degree-d polynomials with b(n) = O(1/q) requires a seed of Ω

(
log
((
n+d
d

)))
bits; that is,

the value b(n) = O(1/q) yields essentially no relaxation at all (with respect to seed length),
compared to the standard problem. Indeed, most polynomials of degree d vanish on at most
a O(1/q) fraction of their inputs, but the fact that this is the typical case does not a-priori
imply that it is not easier to handle.

Our main result for this problem, however, goes much further: It turns out that even
when considering the parameter b(n) = 1/poly(q), any hitting-set generator for degree-d
polynomials that vanish on b(n) of their inputs still requires a seed of length similar to that
of a hitting-set generator for all degree-d polynomials. Specifically, any hitting-set generator
for degree-d polynomials with b(n) = 1/poly(q) requires a seed of Ω

(
log
((
n+d1/O(1)

d1/O(1)

)))
bits.

It follows that for any super-constant degree d = ω(1), there does not exist a hitting-set
generator with seed length O(log(n)) for degree-d polynomials with b(n) = 1/poly(q).

I Theorem 8 (Hitting Polynomials that Vanish Rarely Over Large Fields; Informal). For a
constant k ∈ N, let n ∈ N, and let F be a field of size |F| = q ≤ nk. Then:
1. For any degree d ≤ 0.99 · q, any hitting-set generator with constant density for the class

of polynomials Fn → F of degree d that vanish on at most b(n) = O (1/q) their inputs
requires a seed of Ω

(
log
((
n+d
d

)))
bits.

2. For any even constant t ≥ 2 and degree d′ ≤ 0.99 · qt+1, any hitting-set generator for the
class of polynomials Fn → F of degree d′ that vanish on at most b(n) = O

(
q−t

2/4
)
of

their inputs requires a seed of Ω
(

log
((
n+d
d

)))
bits, where d = (d′)1/(t+1).

The proofs of both items of Theorem 8 consist of reducing the problem of constructing a
hitting-set generator for all polynomials of degree d ∈ N to the problem of constructing a
hitting-set generator for polynomials that vanish rarely and are of degree d′, where d′ = d in
the proof of Item (1) and d′ = poly(d) in the proof of Item (2). See Section 2.4 for details.

1.5 Organization of the paper
In Section 2 we explain, in high level, the techniques used to obtain our results. Section 3
contains preliminary definitions and statements of some well-known facts, and in Section 4
we prove two lemmas related to the technique of randomized tests that will be used in the
paper. Then, each of the subsequent sections includes proofs for a corresponding section from
the introduction: In Section 5 we prove Theorems 1 and 2; in Section 6 we prove Theorems 5
and 6; and in Section 7 we prove Theorems 7 and 8. In Appendix A we provide an alternative
proof of [9, Thm. 1.6], and in Appendices B and C we provide proofs for several claims from
Sections 5 and 7, respectively.

2 Our Techniques

In this section we give overviews of the proofs of the main theorems for each of the three
settings: Theorems 2 and 3 for constant-depth circuits; Theorem 6 for constant-depth circuits
with parity gates; and Theorem 8 for polynomials over large fields. Since several of our
proofs rely on a common technique, we will begin by describing this technique in general
terms (the results that use this technique are Theorems 3 and 7, Item (1) of Theorem 8, and
also Theorem 42 in Appendix A).

CCC 2017
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2.1 A general technique: Randomized tests

Let G ⊆ {0, 1}n be a set of good objects, and assume that we want to efficiently and
deterministically find some x ∈ G. A known technique to do so is to design a simple
deterministic test T : {0, 1}n → {0, 1} such that T (x) = 1 if and only if x ∈ G. The existence
of such a test T is useful, since if T is sufficiently simple such that we are able to construct
a hitting-set generator for T , then the generator outputs x ∈ G with positive probability
(because the output distribution of the generator contains x ∈ {0, 1}n such that T (x) = 1).
Indeed, this approach reduces the task of finding x ∈ G to the task of designing a test T for
G that is sufficiently simple such that we are able to construct a hitting-set generator for T .

Intuitively, the randomized tests technique is based on the observation that an argument
similar to the one above holds also when we replace the deterministic test T by a distribution
T over simple (deterministic) tests such that, for every fixed x ∈ {0, 1}n, it holds that T(x)
computes the indicator function of G, with high probability (say, 0.9). To see this, assume
that T is indeed such a distribution, and let w be a distribution over {0, 1}n that is a
hitting-set with density 1− ε for every T ∈ T. Then, on the one hand, Pr[T(w) = 1] ≥ 1− ε
(because for every T ∈ T it holds that Pr[T (w) = 1] ≥ 1 − ε); and on the other hand,
Pr[T(w) = 0] ≥ Pr[w /∈ G] · maxx/∈G{Pr[T(x) = 0]}. Combining the two statements,
and recalling that for every x /∈ G it holds that Pr[T(x) = 0] ≥ 0.9, it follows that
Pr[w /∈ G] ≤ ε/0.9, which allows us to deduce that w contains an object in G.

Indeed, this approach reduces the task of finding x ∈ G to the tasks of designing a
distribution T over simple tests as above, and of constructing a hitting-set generator with
high density for the residual (deterministic) tests T ∈ T. The main benefit in this approach
over the previous one (in which we had a single deterministic test) is that in some cases, the
use of randomness allows us to obtain very simple residual tests, which are simpler than any
deterministic test for G; one appealing example for such a case appears in Section 2.2. We
stress that when designing the distribution T we can be wasteful in the use of randomness,
because the existence of T is only a part of the analysis: The actual algorithm for finding
x ∈ G is merely a hitting-set generator (for the residual tests T ∈ T), whereas only the proof
that the generator outputs x ∈ G relies on the existence of the distribution T.

Two relaxations of the hypotheses for the argument above can immediately be made.
First, in our argument we only used the fact that T(x) = 0 with high probability for every
x /∈ G (and did not explicitly rely on the hypothesis that T(x) = 1 with high probability
for every x ∈ G). And secondly, we do not have to assume that w is a hitting-set with high
density for every T ∈ T, but rather only need the hypothesis that Pr[T(w) = 1] is high.

Let us demonstrate one appealing setting in which the two relaxed hypotheses above
hold, which simplifies and abstracts the setting in the proof of Theorem 3. Assume that
there exists a set E ⊆ G of excellent objects, and that almost all objects are excellent; that
is, a random x ∈ {0, 1}n is not only good, but also has additional useful properties. Also
assume that we are able to construct a distribution T over simple tests that distinguishes
between excellent objects and bad ones (i.e., T solves a promise problem with some “gap”
between the “yes” instances and the “no” instances). Denoting the uniform distribution over
{0, 1}n by un, in this case we have that Pr[T(un) = 1] is high, whereas Pr[T(x) = 0] is high
for every x /∈ G. Indeed, in such a setting, in order to find x ∈ G it suffices to construct a
pseudorandom generator for the residual tests T ∈ T (see Lemma 15).
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2.2 Constant-depth circuits: Overview of the proofs of Theorems 2
and 3

Theorem 2 is a special case of the more general Theorem 3. However, since there is a simple
and more direct way to prove Theorem 2, we describe this simpler way first, and only then
turn to the describe the proof of the more general theorem.

Let C be a depth-D circuit that accepts all but B(n) = Ω
(

2n/ logD−2(n)
)
of its inputs. The

hitting-set generator first uses pseudorandom restrictions to simplify C to a depth-2 circuit,
by fixing values for all but n′ = Ω(n/ logD−2(n)) of the variables. These pseudorandom
restrictions are chosen using an adaptation of the derandomized switching lemma of Trevisan
and Xue [23] (either Tal’s [20] improvement or the adapted version in Proposition 26),
which requires a seed of length Õ(log3(n)). At this point, there are n′ ≥ log(B(n)) + 1
living variables, and therefore the simplified circuit (over n′ input bits) has acceptance
probability at least 1/2 (since C has at most B(n) unsatisfying inputs). Hence, we can use
any pseudorandom generator for depth-2 circuits with seed length at most Õ(log3(n)) (e.g.,
that of De et al. [7]) in order to fix values for the remaining n′ variables, thus finding a
satisfying input for C, with high probability. 3

Turning to the more general Theorem 3, the high-level structure of its proof is similar
to that of the proof of Theorem 2: We first use a derandomized switching lemma to
radically simplify the circuit, while keeping more than log(B(n)) variables alive, and then
use a pseudorandom generator for the simplified circuit to find a satisfying input. The key
difference from Theorem 2 is that the first step uses a new derandomization of the switching
lemma, which we establish.

The new derandomization of the switching lemma depends on the width (i.e., bottom
fan-in) of the depth-2 formula that we want the restriction to simplify. Previous known
derandomizations of the lemma can also be adapted to depend on the width of the formula:
For typical settings of the parameters (e.g., polynomially-small error), the derandomization
of Goldreich and Wigderson [9] can be adapted to yield a seed length of Õ(2w) · log(n) for
formulas of width w (see Proposition 44), and the derandomization of Trevisan and Xue [23]
can be adapted (using the pseudorandom generator of Gopalan, Meka, and Reingold [10]) to
yield a seed length of Õ(w) · log2(n) (see Proposition 26). We show a derandomization that
requires a seed of length Õ(w2 · log(n)) (see Proposition 28). Indeed, in this new result, the
dependency of the seed length on w is exponentially better than in [9], and the seed length is
shorter than in [23] for any w = o(log(n)). The caveat, however, is that we do not show that
the formula itself is simplified in the subcube corresponding to the restriction; instead, we
show that the formula is approximated by a decision tree of bounded depth in this subcube
(i.e., there exists such a decision tree that agrees with the formula on almost all inputs in the
subcube). This weaker conclusion suffices for our main application (i.e., for Theorem 3) as
well as for all other applications of derandomized switch lemmas that we are aware of.

Our starting point in the proof of this lemma is a result of Gopalan, Meka, and Rein-
gold [10], which asserts that for any depth-2 formula F of width w and any β > 0, there
exists a formula F low of width at most w and size at most m′ = 2Õ(w)·log log(1/β) such
that F low is “lower-sandwiching” for F (i.e., F low(x) ≤ F (x) for all x ∈ {0, 1}n) and

3 Actually, there is one minor subtlety in this description: In the derandomizations of [23, 20], the
expected number of living variables is close to n/ logd−2(n), but it is not guaranteed that approximately
this many variables remain alive with high (or even constant) probability. Nevertheless, the latter does
hold when instantiating their generic construction in a specific manner; see the proof of Theorem 3 for
further details.
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Prx∈{0,1}n [F (x) 6= F low(x)] ≤ β. Now, since F low is both small (i.e., m′ is upper bounded)
and of bounded width, we can find a restriction that simplifies it using a relatively short
seed; specifically, we can use an adapted version of the lemma of [23] (see Proposition 26),
and the required seed length (when we want the probability of error to be 1/poly(n)) is only
Õ(w) · log(m′) · log(n) = Õ(w2) · log(n) · log log(1/β).

The main challenge that underlies this approach is that, while F low agrees with F on
most inputs x ∈ {0, 1}n, it is not clear that F low also agrees with F on most inputs in the
subcube that corresponds to ρ; that is, it is not guaranteed that F low�ρ will agree with F �ρ on
most of their inputs. To make sure that F low�ρ will agree with F �ρ on most of their inputs,
we will choose ρ such that it “fools” additional tests that check whether or not F low�ρ and
F �ρ indeed typically agree. To design these tests we use the randomized tests technique:
Specifically, a natural randomized test to decide whether or not F low�ρ and F �ρ typically
agree is to sample random inputs inside the subcube that corresponds to ρ, and accept if
and only if F low�ρ and F �ρ agree on the sampled inputs.

Indeed, the residual tests under this distribution are simpler (in any reasonable sense)
than any deterministic test that decides whether or not F low�ρ and F �ρ agree on most of their
inputs. The remaining task is thus to construct a hitting-set generator with high density for
these residual tests. We will now describe how to do so, relying both on the specific details
of the construction of F low from [10], in order to construct circuits with a specific structure
that will be convenient for us for each residual test, and on relaxations of the randomized
tests technique that follow the ones suggested in the end of Section 2.1.

We want to use the lemma to simplify polynomially-many depth-2 formulas (i.e., simplify
an entire “layer” of a constant-depth circuit). Thus, we want that for every fixed formula
F it will hold that F low�ρ and F �ρ agree on an all but an α-fraction of their inputs, where
α = 1/poly(n). We say that a restriction ρ is good if F low�ρ and F �ρ agree with probability at
least 1− α. If we start from a formula F low with the approximation parameter β = poly(α),
then almost all restrictions ρ′ are excellent, in the sense that F low�ρ′ and F �ρ′ agree with
probability 1 −

√
β � 1 − α. For each fixed F and F low, to distinguish between excellent

restrictions and restrictions that are not good, the distribution T of tests uniformly samples
poly(α) inputs inside the subcube that corresponds to its input restriction ρ, and accepts ρ
if and only if F and F low agree on the sampled inputs.

The next step is to show that each residual test T ∈ T can be computed by a circuit
with a convenient structure. To do so, we observe that the construction of F low in [10] is
based on a sequence of specific syntactic modifications to F : Each syntactic modification is a
simplification of a quasi-sunflower, a notion introduced by Rossman [18] (for more specific
details see Section 5.2.1). We define the tests T ∈ T to accept if and only if the specific
syntactic modifications used to transform F into F low did not affect the formula at the
relevant inputs. Then, we show that each such test T can be decided by a depth-3 circuit
with a top AND gate and bottom fan-in w (relying on the hypothesis that the original
formula F has width w; see Claim 29.3).

Now, since almost all restrictions are excellent, and each excellent restriction is accepted
with high probability by T, it follows that almost all tests in T belong to the subset T′ ⊆ T of
tests that accept almost all of their input restrictions. We will in fact construct a hitting-set
generator for the residual tests T ∈ T′. This can be done relying both on the fact that
T ∈ T′ has very high acceptance probability and on the fact that it can be computed by a
depth-3 circuit with a top AND gate and bottom fan-in w (the latter allows us to use the
pseudorandom generator of [10] for formulas of small width; see Claim 29.4).

To prove Theorem 3, we will repeat the following step: First reduce the width of the
formulas in the next-to-bottom layer by a pseudorandom restriction (see Claim 30.1), and
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then use the new switching lemma to approximate the circuit by a circuit in which all the
formulas in the next-to-bottom layer are simplified (and thus the latter circuit has smaller
depth). Since all our approximations are “lower-sandwiching”, any satisfying input for the
latter circuit is also satisfying for the former circuit.

2.3 Constant-depth circuits with parity gates: Overview of the proof of
Theorem 6

Let us now describe the high-level strategy of the algorithms of Theorem 6. First observe
that any ⊕ ∧ ⊕ circuit C computes an n-variate polynomial over F2, and that the total
degree of this polynomial equals the maximal fan-in of ∧-gates in the circuit. Our approach
will be to find an affine subspace W of dimension more than log(B(n)) such that when C
is restricted to the affine subspace, the fan-in of all ∧-gates becomes constant. Thus, when
restricted to W , the circuit C becomes a non-zero polynomial of constant degree, which
means that we can then hit it using a pseudorandom generator for polynomials of constant
degree (i.e., Viola’s [25]).

In order to find the affine subspace W , we use affine restrictions, which are obtained by
fixing values to some of the bottom ⊕-gates. These are analogous to standard “bit-fixing”
restrictions, but in contrast to the latter, we cannot consider any sequence of fixed values
to the bottom ⊕-gates: This is the case because the bottom ⊕-gates might not be linearly
independent (and thus the values of some ⊕-gates might depend on the values of other
⊕-gates). In particular, this means that we cannot use random (or pseudorandom) restrictions
in which the value of each ⊕-gate is chosen obliviously of the ⊕-gates of the circuit.

Our algorithm circumvents this problem by constructing a restriction that corresponds to
the specific ⊕∧⊕ circuit that is given to the algorithm as input. For concreteness, let us now
describe the construction of Item (2) of Theorem 6, and let us also fix specific parameter
values to work with: We assume, for simplicity, that the number of bottom ⊕-gates is exactly
n; and we assume that the number of ∧-gates is n1.1, and that the circuit accepts all but
Ω
(

2n1/3
)
of its inputs.

First assume, for a moment, that the fan-in of each ∧-gate in the middle layer of the
circuit is upper bounded by

√
n. In this case we can restrict the ⊕-gates as follows. Consider

a random restriction process in which each bottom ⊕-gate is fixed independently with
probability 1− p = 1− n−2/3, and the values for the fixed gates are chosen afterwards, in an
arbitrary consistent manner. With high probability, the restriction will yield a subspace of
dimension approximately p · n = n1/3 > log(B(n)). Also, since each ∧-gate g has fan-in at
most w =

√
n, and p = 1/w1+Ω(1), with high probability, all but O(1) of the gates that feed

into g are fixed by this process.4 In fact, the above two statements hold even if we choose
the restriction according to an O(1)-independent distribution, rather than uniformly.

Needless to say, we cannot actually assume that the fan-in of ∧-gates is bounded by
√
n.

Thus, our strategy will be to first mildy reduce the fan-in of ∧-gates (from n to
√
n), and

then invoke the restriction process described above. A standard approach to mildly reduce
the fan-in of ∧-gates is to simply remove some of the incoming wires to each ∧-gate. However,
this approach does not work in our setting, since the top gate is a ⊕-gate, which means that
such a modification might turn unsatisfying inputs into satisfying ones (and thus hitting the
modified circuit might not yield a satisfying input to the original circuit).

4 For any ∧-gate g with initial fan-in d∧, the probability that there exists a set of size c of ⊕-gates that
feed into g that are all unfixed is at most

(
d∧
c

)
· pc = 1/poly(n), for a sufficiently large c = O(1).
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To reduce the fan-in of ∧-gates to
√
n, we follow Kopparty and Srinivasan [13] in adapting

the approach of Chaudhuri and Radhakrishnan [4] to the setting of⊕∧⊕ circuits. 5 Specifically,
we first iteratively fix each ⊕-gate that has fan-out more than n1/4 to a non-accepting value;
note that such an action also fixes n1/4 ∧-gates in the middle layer, and hence in this step
we fix values for at most n1.1/n1/4 = o(n) bottom ⊕-gates (because afterwards there are no
more living ∧-gates). At this point, the number of wires feeding the middle layer is at most
n ·n1/4 = n1.25. Now, for each ∧-gate g with fan-in more than

√
n, we fix a ⊕-gate that feeds

into g to a non-accepting value, thereby also fixing g; each such action eliminates
√
n wires

that feed into the middle layer, and therefore in this step we fix at most n1.25/
√
n = o(n)

bottom ⊕-gates. Overall, the fan-in of each ∧-gate has been reduced to
√
n, and we imposed

at most o(n) affine conditions.
To see that the final subspace W is of dimension more than log(B(n)), note that the

dimension of W equals the number of living ⊕-gates (because we assumed that the initial
number of ⊕-gates is exactly n). After the first step of the algorithm (i.e., reducing the
fan-in of ∧-gates to

√
n), we are left with (1− o(1)) · n living ⊕-gates, and the second step

(i.e., the pseudorandom restriction) leaves a fraction of p = n−2/3 of them alive. Thus, the
expected dimension of W is Ω(p · n) = Ω

(
n1/3) > log(B(n)).

The approach above actually works for a broader range of parameters, and in particular
when the number of ∧-gates is n2−ε, for any constant ε > 0, and when the number of ⊕-gates
is n + nc, for any c < ε (see details in Section 6.2.3). In Items (1) and (3), we consider
circuits in which the number of ⊕-gates is significantly larger than n, namely O(n) and
O
(
n1+ε), respectively. The proofs of both these items use algorithms that are variations of

the first step of the algorithm described above, and these proofs are detailed in Sections 6.2.2
and 6.2.4, respectively.

2.4 Polynomials that vanish rarely: Overview of the proof of
Theorem 8

The main component in the proof of Theorem 8 is a reduction of the task of constructing
a hitting-set generator for polynomials Fn → F of degree d ≤ 0.99 · |F| to the task of
constructing a hitting-set generator for polynomials FO(n) → F of degree d′ ≥ d that vanish
rarely. Since any hitting-set generator for all polynomials of degree d requires a seed of
Ω
(

log
((
n+d
d

)))
bits, we obtain the lower bound on hitting-set generators for polynomials

FO(n) → F of degree d′ that vanish rarely. The aforementioned reduction can be thought of
as a form of “randomness-efficient error reduction” for polynomials such that the increase in
degree from d to d′ is mild (or even d′ = d).

Let p : Fn → F be of degree d. The first observation is that since d ≤ 0.99 · |F|, it holds
that Prx∈Fn [p(x) = 0] ≤ 0.99, which implies that the probability over a random subspace
W ⊆ Fn of constant dimension that p�W ≡ 0 is very small (because such a subspace consists
of poly(|F|) points that are O(1)-wise independent). Our strategy will be to try and construct
a polynomial p′ : FO(n) → F that satisfies the following: The polynomial p′ gets as input a
tuple ~u ∈ FO(n) that defines a subspace W = W~u, and outputs zero if and only if p�W ≡ 0.
Note that any polynomial p′ that satisfies this condition vanishes rarely, because p�W 6≡ 0

5 Originally, [4] applied their approach to AC0 circuits, and [13] later adapted this approach to AC0[⊕]
circuits. Our adaptation is slightly different technically than in [13], to suit the specific circuit structure
⊕∧⊕; but more importantly, while both [4, 13] use the approach as part of the analysis (to prove lower
bounds), we use this approach as a (non-black-box) algorithm for derandomization.



R. Tell 13:13

for almost all subspaces W . And indeed, hitting p′ yields a subspace W such that p�W 6≡ 0,
which allows us to hit p, by using additional O(log(|F|)) ≤ O(log(n)) random bits to choose
w ∈ W . (This approach is reminiscent of Bogdanov’s [2] reduction of the construction of
pseudorandom generators to the construction of hitting-set generators.)

The main challenge in constructing such a polynomial p′ is the following: Given a tuple
~u ∈ FO(n) that defines a subspace W = W~u ⊆ Fn, how can we test efficiently (i.e., with
degree d′ that is not much larger than d) whether or not p�W 6≡ 0? Indeed, a naive solution
is to compute the OR function of the values {p(w) : w ∈W} (i.e., compute the polynomial
that outputs 1 if and only if there exists w ∈ W such that p(w) 6= 0), but this solution
requires a very high degree d′ ≥ poly(|F|). We present two solutions for this problem: The
first yields d′ = poly(d), and corresponds to Item (2) of Theorem 8, and the second yields
d′ = d, and corresponds to Item (1) of Theorem 8.

The first solution relies on the observation that instead of testing whether or not there
exists w ∈ W such that p(w) 6= 0, we can test whether or not there exists a non-zero
coefficient in the representation of p�W as a polynomial FO(1) → F. Since p�W is of degree
d, the number of coefficients of p�W is poly(d). Moreover, each of the coefficients of p�W is
actually a polynomial of degree d in ~u (see Claim 39.1). Thus, instead of taking an OR of
poly(|F|) values (i.e., of the values in {p(w) : w ∈W}), we can take an OR of poly(d) values,
where each of these values can be computed by a polynomial of degree d in ~u.

The first solution is not complete yet, since computing the OR function of k = poly(d)
values requires degree (|F| − 1) · k. To solve this problem, observe that we do not actually
need to output 1 on every non-zero input; in fact, it suffices that on every non-zero input, we
output some non-zero value in F. We call such functions multivalued OR functions, and show
that there exists a polynomial Fk → F of degree less than 2 · k that computes a multivalued
OR function of its inputs (see Proposition 38). It follows that there exists a polynomial
p′ : FO(n) → F of degree d′ = poly(d) that vanishes on at most 1/poly(|F|) of its inputs
(corresponding to the probability that p�W ≡ 0) such that every non-zero input ~u to p′ yields
a subspace W = W~u such that p�W 6≡ 0.

The solution described above yields the lower bound in Item (2) of Theorem 8, which
refers to the badness parameter b(n) = 1/poly(|F|). To obtain the lower bound in Item (1),
we will again reduce the task of hitting p : Fn → F to the task of finding a subspace W
such that p�W 6≡ 0, but we will then further reduce the latter task to the task of hitting
polynomials of degree d that vanish on at most O(1/|F|) of their inputs. To do so, we use a
variation on the technique of randomized tests. Specifically, we construct a distribution h
over polynomials FO(n) → F that satisfies: (1) For every ~u ∈ FO(n) such that p�W~u

≡ 0 it
holds that h(~u) = 0, with probability one; (2) The distribution h is typically in the class P
of degree-d polynomials that vanish on at most O(1/|F|) of their inputs. We will then rely
on arguments similar to those in Section 2.1, to deduce that any sufficiently dense hitting-set
generator for P outputs ~u such that p�W~u

6≡ 0 (see Lemma 16).
Recall that the coefficients of p�W~u

are degree-d polynomials in ~u. The aforementioned
distribution, denoted by h, is simply a random F-linear combination of these degree-d
polynomials. Note that h is supported on polynomials of degree d, and indeed for every ~u
such that p�W~u

≡ 0 it holds that h(~u) = 0, with probability one. Moreover, since almost all
~u’s are such that p�W~u

6≡ 0, and for each such ~u it holds that Pr[h(~u) 6= 0] = 1− 1/|F|, the
expected fraction of inputs on which a polynomial in h vanishes is at most O(1/|F|). Thus,
most of the polynomials in the support of h are in P. We can therefore deduce that any
sufficiently dense hitting-set generator for P also outputs ~u such that p�W~u

6≡ 0, which allows
us to hit p using additional O(log(|F|)) = O(log(n)) bits.
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3 Preliminaries

Throughout the paper, the letter n will always denote the number of input variables to a
function or a circuit. We denote by {D→ R} the set of functions from domain D to range R.
Distributions and random variables will always be denoted by boldface letters. Given a set Σ,
which will typically be clear from the context, we denote by uk the uniform distribution over
Σk. Given a distribution d, we write x ∼ d to denote a value x that is sampled according to
d; when we write x ∈ Σk in probabilistic expressions, we mean the uniform distribution over
Σk.

3.1 Circuit classes and restrictions
We will consider Boolean circuit families {Cn}n∈N such that Cn gets n input bits and outputs
a single bit. The circuit class AC0 consists of all circuit families over the De-Morgan basis
(i.e., the gates of the circuit can compute the ∧,∨, and ¬ functions) such that the circuit
gates have unbounded fan-in and fan-out, and for every n ∈ N, the size of Cn (i.e., number
of gates) is at most poly(n), and the depth of Cn (i.e., longest path from an input gate to
the output gate) is upper bounded by a constant. We also assume that for every n ∈ N it
holds that Cn has 2 · n input gates that correspond to the input literals (i.e., the input bits
x1, ..., xn and their negations ¬x1, ...,¬xn); and that Cn is layered, in the sense that in a
fixed circuit, for every integer d, all gates at distance d from the input gates are of the same
gate-type (i.e., either ∧ or ∨).

The circuit class AC0[⊕] is defined similarly to AC0, the only difference being that the
basis is extended: The gates can compute the ∧,∨,¬, and ⊕ functions (rather than only
∧,∨, and ¬). We stress that a ⊕-gate can compute either the parity of its input gates, or
the negated parity of its input gates. We also assume that all AC0[⊕] circuits are layered, in
the sense that in a fixed circuit, for every integer d, all gates at distance d from the input
gates are of the same gate-type (i.e., either ∧, or ∨, or ⊕).

Given a function f : {0, 1}n → {0, 1}, a restriction of f is a subset W ⊆ {0, 1}n. We say
that a function f simplifies under a restriction W to a function from a class H if there exists
h ∈ H such that for every w ∈W it holds that h(w) = f(w). A restriction to a subcube is
represented by a string ρ ∈ {0, 1, ?}n, where the subcube consists of all x ∈ {0, 1}n such that
for every i ∈ [n] for which ρi 6= ? it holds that xi = ρi. The living variables under ρ are the
input bits indexed by the set {i ∈ [n] : ρi = ?}. The restricted function f�ρ : {0, 1}n → {0, 1}
is defined by f�ρ(x) = f(y), where for every i ∈ [n] it holds that yi = xi if ρi = ? and
yi = ρi otherwise. We will also consider the composition of restrictions, where a composition
ρ = ρ1 ◦ ρ2 yields the restricted function f�ρ =

(
f�ρ2

)
�ρ1 .

3.2 Pseudorandom generators and hitting-set generators
We will use the following two standard definitions of pseudorandom generators and of
hitting-set generators.

I Definition 9 (Pseudorandom Generators). Let F =
⋃
n∈N Fn, where for every n ∈ N it

holds that Fn is a set of functions {0, 1}n → {0, 1}, and let ε : N → [0, 1] and ` : N → N.
An algorithm G is a pseudorandom generator for F with error parameter ε and seed length
` if for every n ∈ N, when G is given as input 1n and a random seed of length `(n), it
outputs a string in {0, 1}n such that for every f ∈ Fn it holds that

∣∣∣Prx∈{0,1}n [f(x) =

1]− Pry∈{0,1}`(n) [f(G(1n, y)) = 1]
∣∣∣ < ε.
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If G is a pseudorandom generator with error parameter ε for a class of functions F , then
we say that functions from F are ε-fooled by G.

I Definition 10 (Hitting-Set Generators). Let F =
⋃
n∈N Fn, where for every n ∈ N it holds

that Fn is a set of functions {0, 1}n → {0, 1}, and let ` : N → N. An algorithm G is a
hitting-set generator for F with seed length ` if for every n ∈ N, when G is given as input 1n
and a random seed of length `(n), it outputs a string in {0, 1}n such that for every f ∈ Fn it
holds that Pry∈{0,1}`(n) [f(G(1n, y)) 6= 0] > 0. For ε : N→ (0, 1], we say that G has density ε
if for every n ∈ N and f ∈ Fn it holds that Pry∈{0,1}`(n) [f(G(1n, y)) 6= 0] ≥ ε(n).

We now extend Definition 10 by defining hitting-set generators for functions over fields
larger than F2. The following definition requires that the generator G will output a value x
such that the relevant function evaluates to any non-zero value on x.

I Definition 11 (Hitting-Set Generators Over Large Fields). For every n ∈ N, let F be a
finite field of size that may depend on n, and let Fn be a set of functions Fn → F. Let
F =

⋃
n∈N Fn. For a function ` : N→ N, an algorithm G is a hitting-set generator for F with

seed length ` if for every n ∈ N, when G is given as input 1n and a random seed of `(n) bits
(i.e., a random string in {0, 1}`(n)), it outputs n elements of F such that for every f ∈ Fn it
holds that Pry∈{0,1}`(n) [f(G(1n, y)) 6= 0] > 0. For ε : N→ (0, 1], we say that G has density ε
if for every n ∈ N and f ∈ Fn it holds that Pry[f(G(1n, y)) 6= 0] ≥ ε(n).

In Definition 11, the generator G gets a seed from {0, 1}`, rather than from F` (as is also
common in some texts); indeed, the seed length `(n) of the generator G might depend on the
size of F. This choice was made because it is more general, and because we want to measure
the seed length in bits.

3.3 Distributions with limited independence
We say that random variables x1, ...,xn ∈ {0, 1}n are t-wise independent if for every set
S ⊆ [n] of size |S| = t, the marginal distribution (xi)i∈S is uniform over {0, 1}t. We will use
the following well-known tail bound (for a proof see [1, Lemma 2.3]):

I Fact 12 (Tail Bound for t-Wise Independent Distributions). Let n ∈ N, and let t ≥ 4 be an
even number. Let x1, ...,xn be random variables in {0, 1} that are t-wise independent, and
denote µ = E

[
1
n ·
∑
i∈[n] xi

]
. Then, for any ζ > 0 it holds that Pr

[∣∣∣ 1
n ·
∑
i∈[n] xi − µ

∣∣∣ ≥ ζ] ≤
8 ·
(
t·µ·n+t2
ζ2·n2

)t/2
.

We say that x1, ...,xn ∈ {0, 1}n are δ-almost t-wise independent if for every set S ⊆ [n] of
size |S| = t, the statistical distance between (xi)i∈S and the uniform distribution over {0, 1}t
is at most δ. Then, the following well-known tail bound holds:

I Fact 13 (Tail Bound for Almost t-Wise Independent Distributions). Let n ∈ N, let t ≥ 4 be
an even number, and let δ > 0. Let x1, ...,xn be random variables in {0, 1} that are δ-almost
t-wise independent, and denote µ = E

[
1
n ·
∑
i∈[n] xi

]
. Then, for any ζ > 0 it holds that

Pr
[∣∣∣ 1
n ·
∑
i∈[n] xi − µ

∣∣∣ ≥ ζ] < 8 ·
(
t·µ·n+t2
ζ2·n2

)t/2
+ (2 · n)t · δ.

For a proof of Fact 13 see, e.g., [14, Lemma 18]. We will frequently use Fact 13 with the
parameters t = O(1), and ζ = µ/2, and δ = 1/p(n) where p is a sufficiently large polynomial;
in this case, we have that Pr

[
1
n ·
∑
i∈[n] xi 6∈ µ± (µ/2)

]
= O

(
1/ (µ · n)t/2

)
.
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We will also need the following fact, which, loosely speaking, asserts that concatenating two
independently-chosen distributions that are almost t-wise independent yields a distribution
that is still almost t-wise independent.

I Fact 14 (Concatenating Almost t-Wise Independent Distributions). Let n, n′ ∈ N, let δ, δ′ < 1
2 ,

and let t ∈ N. Let y be a distribution over {0, 1}n that is δ-almost t-wise independent, and
let z be a distribution over {0, 1}n′ that is δ′-almost t-wise independent. Let r = y ◦ z be a
distribution that is obtained by concatenating a sample from y and an independent sample
from z. Then, the distribution r is (δ + δ′)-almost t-wise independent.

Proof. Fix a set S ⊆ [n+ n′] of size |S| = t, and let us prove that the `1-distance between
rS and the uniform distribution is at most 2 · (δ + δ′) (which implies that the statistical
distance between them is at most δ + δ′). Partition S into W = S ∩ [n] and W ′ = S \ [n],
and denote w = |W | and w′ = |W ′|. Then, we have that:

‖rS − ut‖1 = ‖yW ◦ zW ′ − uw ◦ uw′‖1
≤ ‖yW ◦ zW ′ − yW ◦ uw′‖1 + ‖yW ◦ uw′ − uw ◦ uw′‖1
= ‖zW ′ − uw′‖1 + ‖yW − uw‖1 ,

which is upper-bounded by 2 · δ′ + 2 · δ. J

4 Randomized tests

In this section we state and prove three lemmas that are related to the technique of
randomized tests. The first lemma (i.e., Lemma 15) corresponds to the high-level description
in Sections 2.1 and 2.2, and will be useful for us in Section 5. The next two lemmas (i.e.,
Lemmas 16 and 18) are variations that will be useful for us in Section 7.

Towards stating Lemma 15, let us recall the setting that was described in Sections 2.1
and 2.2: For a set G ⊆ {0, 1}n of good objects, our goal is to find some x ∈ G; almost all
objects are excellent, i.e. not only good but also in a subset E ⊆ G with additional useful
properties; there exists a distribution T over simple tests that distinguishes between excellent
objects and objects that are not good; and the distribution w “fools” almost all tests T ∈ T.
In this case, w contains an object in G.

I Lemma 15 (Randomized Tests). Let n ∈ N, and let ε1, ε2, ε3, ε4, ε5 > 0 be error parameters.
Let G ⊆ {0, 1}n, and let E ⊆ G such that Prx∈{0,1}n [x ∈ E] ≥ 1− ε1.
Let T be a distribution over functions T : {0, 1}n → {0, 1} such that for every x ∈ E it
holds that PrT∼T[T (x) = 1] ≥ 1 − ε2 and for every x /∈ G it holds that PrT∼T[T (x) =
0] ≥ 1− ε3.
Let w be a distribution that ε5-fools all but an ε4-fraction of the tests in T; that is, the
probability over T ∼ T that

∣∣∣Pr[T (un) = 1]− Pr[T (w) = 1]
∣∣∣ > ε5 is at most ε4.

Then, the probability that w ∈ G is at least 1− (ε1 + ε2 + ε3 + 2ε4 + ε5).

Recall that in the proof of Theorem 3, the set of tests that are “fooled” by w is the set of
tests that accept almost all of their inputs.

Proof of Lemma 15. Let T be the set of tests in the support of T that are ε5-fooled by
w; that is, T =

{
T ∈ supp(T) :

∣∣∣Pr[T (un) = 1]− Pr[T (w) = 1]
∣∣∣ ≤ ε5}. To upper-bound
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the probability that w /∈ G, first note that a random test T ∼ T accepts a random input
x ∈ {0, 1}n with high probability; this is the case because

Pr
T∼T

[T (un) = 1] ≥ Pr[un ∈ E] ·min
x∈E

{
Pr
T∼T

[T (x) = 1]
}
≥ 1− (ε1 + ε2) . (4.1)

It follows that a random test T ∼ T also accepts a pseudorandom input from the
distribution w with high probability, since

Pr
T∼T

[T (w) = 1] ≥ Pr
T∼T

[T ∈ T ] · Pr
T∼T

[T (w) = 1|T ∈ T ]

≥ (1− ε4) ·
(

Pr
T∼T

[T (un) = 1|T ∈ T ]− ε5
)

≥ (1− ε4) ·
(

Pr
T∼T

[T (un) = 1]− ε4 − ε5
)

,

which, relying on Eq. (4.1), is lower-bounded by 1− ε1 − ε2 − 2ε4 − ε5.
However, if Pr[w /∈ G] is high, then there is significant probability that a random test

from T will reject a pseudorandom input from w. Specifically,

Pr
T∼T

[T (w) = 0] ≥ Pr[w /∈ G] ·min
x/∈G

{
Pr
T∼T

[T (x) = 0]
}
≥ Pr[w /∈ G]− ε3 ,

and it follows that Pr[w /∈ G] ≤ ε1 + ε2 + ε3 + 2ε4 + ε5. J

We now present two variations on the argument above that are applicable in the setting
of polynomials over finite fields. For a finite field F, let G ⊆ Fn, and assume that there exists
a distribution h over polynomials Fn → F such that for every x /∈ G it holds that h(x) = 0,
with high probability. Further assume that there exists a hitting-set generator with high
density for the polynomials h in the support of h. Then, using an argument similar to the
one in the beginning of Section 2.1, the hitting-set generator contains x ∈ G. 6

I Lemma 16 (Randomized Tests Over Finite Fields). Let n ∈ N, let F be any finite field, and
let ε1, ε2, ε3 > 0 be three parameters. Assume that, for some G ⊆ Fn, it holds that:
1. There exists a distribution h over {Fn → F} such that for every x /∈ G it holds that

Prh∼h[h(x) = 0] ≥ 1− ε1.
2. There exists a set H ⊆ {Fn → F} such that Prh∼h[h ∈ H] ≥ 1− ε2.
3. There exists a distribution w over Fn such that for every h ∈ H it holds that Pr[h(w) 6=

0] ≥ 1− ε3.
Then, Pr[w ∈ G] ≥ 1− ε1 − ε2 − ε3.

Proof. We first show that Pr[w ∈ G] ≥ Eh∼h[Pr[h(w) 6= 0]]− ε1. This is the case because

Eh∼h [Pr[h(w) 6= 0]] = Ex∼w

[
Pr
h∼h

[h(x) 6= 0]
]

≤ Pr
x∼w

[x ∈ G] + Pr
x∼w

[x /∈ G] ·max
x/∈G

{
Pr
h∼h

[h(x) 6= 0]
}

≤ Pr[w ∈ G] + ε1 .

6 Recall that this argument is different than the argument in Lemma 15: On the one hand, we do not
assume that G is dense, or that for every x ∈ G it holds that h(x) 6= 0, with high probability; but on
the other hand, we require a hitting-set generator with high density for h ∈ supp(h) (rather than a
pseudorandom generator).
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Now, by our hypothesis, the probability that h ∈ H is at least 1− ε2, and for every h ∈ H
it holds that Pr[h(w) 6= 0] ≥ 1− ε3. Therefore,

Eh∼h[Pr[h(w) 6= 0]] ≥ Pr
h∼h

[h ∈ H] · Pr
h∼h

[h(w) 6= 0|h ∈ H] ≥ 1− ε2 − ε3 ,

which implies that Pr[w ∈ G] ≥ 1− ε1 − ε2 − ε3. J

In the next argument, instead of trying to hit a fixed set G ⊆ Fn, we will fix a polynomial
p : Fn → F, and try to “fool” p (i.e., we want to construct a pseudorandom generator for
p). Indeed, we will need to explain exactly what we mean by “fooling” in the context of
functions over finite fields. Towards presenting the argument, let us first define the notion of
randomly computing p by a distribution of functions that is typically over simpler functions.

I Definition 17 (Randomly Computing a Function). Let F be a finite field, let p : Fn → F,
and let H be a class of functions Fn → F. For ρ, ρ′ > 0, we say that p can be randomly
computed with error ρ by a distribution h that is (1− ρ′)-typically in H, if:
1. For every x ∈ Fn it holds that Pr [p(x) = h(x)] ≥ 1− ρ.
2. The probability that h ∈ H is at least 1− ρ′.

The following claim extends an argument that is implicit in the work of Bogdanov and
Viola [3, Proof of Lemma 23]. Loosely speaking, our claim is the following: If p can be
computed with small error by a distribution h that is typically in H, then any distribution
w over Fn that “fools” every h ∈ H also “fools” p, where “fooling” a function f means that
for some (fixed) mapping ξ : F→ C it holds that

∣∣∣E[ξ(f(w))]− E[ξ(f(un))]
∣∣∣ is small. 7

I Lemma 18 (An Extension of a Claim that is Implicit in [3]). Let n ∈ N, and let F be any
finite field. Let ε1, ε2, ε3 > 0 be three parameters. Let p : Fn → F, let H ⊆ {Fn → F}, and
assume that p can be randomly computed with error ε1 by a distribution h over {Fn → F}
that is (1− ε2)-typically in H.

Let ξ : F → C be any mapping, and let δ = maxv,w∈F {|ξ(v)− ξ(w)|}. Let w be a
distribution over Fn such that for every h ∈ H it holds that

∣∣∣E[ξ(h(un))]− E[ξ(h(w))]
∣∣∣ < ε3.

Then,
∣∣∣E[ξ(p(un))]− E[ξ(p(w))]

∣∣∣ < 2δ · ε1 + δ · ε2 + ε3.

Proof. For simplicity of notation, define p′ = ξ ◦ p : Fn → C and h′ = ξ ◦ h : Fn → C. By
the triangle inequality, we have that∣∣∣E[p′(un)]− E[p′(w)]

∣∣∣ ≤∣∣∣E[p′(un)]− Eh∼h [h′(un)]
∣∣∣+∣∣∣Eh∼h [h′(un)]− Eh∼h [h′(w)]
∣∣∣+∣∣∣Eh∼h [h′(w)]− E[p′(w)]

∣∣∣ . (4.2)

To upper bound the first term in Eq. (4.2), note that∣∣∣E[p′(un)]− Eh∼h [h′(un)]
∣∣∣ ≤ Eu∈Fn,h∼h

[∣∣∣p′(u)− h′(u)
∣∣∣]

≤ Eu∈Fn
[

Pr
h∼h

[h(u) 6= p(u)] · max
v,w∈F

{|ξ(v)− ξ(w)|}
]

≤ δ · ε1 ,

7 A standard choice for ξ is any fixed non-trivial character e : F→ C.
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where the last inequality holds because for every fixed u ∈ Fn it holds that Prh∼h[h(u) 6=
p(u)] ≤ ε1. The third item is similarly upper bounded by δ · ε1, by replacing the uniform
choice of u ∈ Fn with a choice of u according to the distribution w.

To upper bound the second term in Eq. (4.2), note that∣∣∣Eh∼h[h′(un)]− Eh∼h[h′(w)]
∣∣∣ ≤ Eh∼h

[∣∣∣E[h′(un)]− E[h′(w)]
∣∣∣]

≤ Pr
h∼h

[h /∈ H] · max
v,w∈F

{|ξ(v)− ξ(w)|}

+ Eh∼h

[
|E[h′(un)]− E[h′(w)]|

∣∣∣h ∈ H] ,

which is upper bounded by δ · ε2 + ε3. (Specifically, the first term is upper bounded by δ · ε2,
whereas to bound the second term by ε3 we use the hypothesis that for every h ∈ H it holds
that

∣∣∣E[h′(un)]− E[h′(w)]
∣∣∣ < ε3.) J

5 Constant-depth circuits

5.1 Proof of Theorem 1

Let c = D−d−11. Starting from a depth-d circuit C : {0, 1}n → {0, 1}, we will employ error-
reduction within AC0, by first sampling inputs for C using the seeded extractor of Cheng and
Li [5], and then taking the disjunction of the evaluation of C on these inputs. The extractor
will be of depth c+ 10, and will work for min-entropy n′/ logc(n′), where n′ is the number of
random bits that it uses. Thus, this construction will yield a circuit C ′ : {0, 1}n′ → {0, 1} of
depth D = d+ (c+ 10) + 1 that accepts all but 2n′/ logc(n′) = 2n′/ logD−d−11(n′) of its inputs.
Details follow.

Let C : {0, 1}n → {0, 1} be a circuit of depth d. We will rely on the following theorem
from [5], which we cite with minor changes of notation:

I Theorem 19 (An AC0-Computable Seeded Extractor [5, Thm 1.5]). For any constant c ∈ N,
and k = Ω (n′/ logc(n′)) and any ε = 1/poly(n′), there exists an explicit construction of a
strong (k, ε)-extractor Ext : {0, 1}n′ × {0, 1}d → {0, 1}n that can be computed by an AC0

circuit of depth c+ 10, where d = O(log(n)), n = kΩ(1) and the extractor family has locality
O(logc+5(n)).

We will not need the strongness property or the locality property in the current proof.
Let n′ = poly(n) such that for k = Ω (n′/ logc(n′)) it holds that n = kΩ(1), and let Ext :
{0, 1}n′ ×{0, 1}d → {0, 1}n be the seeded extractor from Theorem 19, instantiated with error
parameter ε = 1/4. We construct a circuit C ′ : {0, 1}n′ → {0, 1} that first computes the
values Ext(x, z), for each possible seed z ∈ {0, 1}d, then evaluates C on each value E(x, z),
and finally takes an OR of these evaluations; that is, C ′(x) = ∨z∈{0,1}sC (Ext(x, z)).

Note that C ′ has depth D and size poly(n). Also note that the number of inputs
x ∈ {0, 1}n′ for which Prz[C(Ext(x, z))] < 1/4 is at most 2n′/ logc(n′). 8 In particular, C ′
accepts all but at most 2n′/ logc(n′) of its inputs, and for each satisfying input x for C ′, we
can find a corresponding satisfying input for C among {Ext(x, z)}z∈{0,1}s .

8 Otherwise, the uniform distribution on such inputs yields a source X of min-entropy n′/ logc(n′) such
that C distinguishes Ext(X) from the uniform distribution over {0, 1}n with probability 1/4.
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5.2 Proofs of Theorems 2 and 3
The first step towards proving Theorems 2 and 3 is to establish a derandomized switching
lemma that simplifies depth-2 formulas of bounded-width; after presenting several required
definitions in Section 5.2.1, we prove the lemma in Section 5.2.2. Then, in Section 5.2.3, we
use the lemma to prove Theorems 2 and 3.

5.2.1 Preliminary definitions, and results from [10]
For any restriction ρ ∈ {0, 1, ?}n, denote by C(ρ) the subcube that corresponds to the living
variables under ρ; that is, C(ρ) = {x ∈ {0, 1}n : ∀i ∈ [n] s.t. ρi 6= ? it holds that xi = ρi}.
We identify strings r ∈ {0, 1}(q+1)·n, where n, q ∈ N, with restrictions ρ = ρr ∈ {0, 1, ?}n, as
follows: Each variable is assigned a block of q+ 1 bits in the string; the variable remains alive
if the first q bits in the block are all zeroes, and otherwise takes the value of the (q+ 1)th bit.
When we refer to a “block” in the string that corresponds to a restriction, we mean a block
of q + 1 bits that corresponds to some variable. When we say that a restriction is chosen
from a distribution r over {0, 1}(q+1)·n, we mean that a string is chosen according to r, and
interpreted as a restriction. Moreover, when we say that an algorithm “reads bits” in the
restriction, we mean that it reads bits in the corresponding string.

In addition, we will sometimes identify a pair of strings y ∈ {0, 1}q·n and z ∈ {0, 1}n
with a restriction ρ = ρy,z. In this case, the restriction ρ = ρy,z is the restriction ρr that is
obtained by combining y and z to a string r in the natural way (i.e., appending a bit from z

to each block of q bits in y). Note that the string y determines which variables ρ keeps alive,
and the string z determines the values that ρ assigns to the fixed variables.

Throughout the section, whenever we consider a depth-2 formula for a function F :
{0, 1}n → {0, 1}, we allow the formula to be a redundant representation of F (i.e., not
necessarily the most concise representation of F as a formula), and in particular we allow
formulas in which some clauses are simply constants. We will identify any clause of a depth-2
formula with the corresponding subset of the literals; the clause is a conjunction of the
literals if the formula is a DNF, and otherwise it is a disjunction of the literals. We say that
a function F low : {0, 1}n → {0, 1} is lower-sandwiching for F if for every x ∈ {0, 1}n it holds
that F low(x) ≤ F (x). Similarly, we say that F up : {0, 1}n → {0, 1} is upper-sandwiching for
F if for every x ∈ {0, 1}n it holds that F (x) ≤ F up(x).

5.2.1.1 Refinements: Definition and basic facts

We need several definitions that are related to the results of Gopalan, Meka, and Reingold [10].
Their main theorem involves a process of sparsification of a depth-2 formula. The sparsification
process is iterative: In each iteration, they identify a quasi-sunflower in the formula (a notion
that was introduced by Rossman [18]), and simplify the quasi-sunflower using one of two
operations. The first operation is simply the removal of a clause from the formula; and the
second operation is the removal of a set f1, ..., fu of u ≥ 2 clauses, replacing them with a new
clause that consists of the set of literals that are shared by all the u clauses (i.e., replacing
f1, ..., fu with the clause

⋂
j∈[u] fj). The following definition generalizes this sparsification

process. 9

9 The reason that we need this generalization is in order to facilitate the proof of Claim 23; this is also
the reason that we allow formulas to have redundant clauses that compute constant functions.
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I Definition 20 (Refinements of a Depth-2 Formula). Let F : {0, 1}n → {0, 1} be a depth-2
formula with at least two clauses. We define the following three syntactic operations on F ,
which we call refinement steps.
1. A removal step is simply the removal of a clause from F .
2. A merging step is the removal of u ≥ 2 clauses f1, ..., fu from F , and the addition of a new

clause that consists of the set of literals that appear in all the u clauses (i.e., replacing
f1, ..., fu with the new clause

⋂
j∈[u] fj). If

⋂
j∈[u] fj = ∅, then the new clause computes

the constant one function if F is a DNF, and the constant zero function if F is a CNF.
3. A clean-up step is the removal of one or more clauses that compute the constant zero

function from a DNF, or of one or more clauses that compute the constant one function
from a CNF.

We say that a depth-2 formula F ′ : {0, 1}n → {0, 1} is a refinement of another depth-2
formula F : {0, 1}n → {0, 1} if F ′ can be obtained from F either by a sequence of removal
steps and clean-up steps, or by a sequence of merging steps and clean-up steps.

We now state some basic facts about refinements, which will be useful for us later on.
The following two facts follow from Definition 20:

I Fact 21 (Refinements Under Negations). Let F : {0, 1}n → {0, 1} and F ′ : {0, 1}n → {0, 1}
be depth-2 formulas. Then, F ′ is a refinement of F if and only if ¬(F ′) is a refinement of
¬F .

I Fact 22 (Sandwiching Refinements). Let F : {0, 1}n → {0, 1} be a DNF. Then, any
refinement of F that is obtained by a sequence of removal steps and clean-up steps is lower-
sandwiching for F , and any refinement of F that is obtained by a sequence of merging steps
clean-up steps is upper-sandwiching for F .

Loosely speaking, the following claim asserts that if F ′ is a refinement of F , then for any
restriction ρ it holds that (F ′)�ρ is a refinement of F �ρ. That is, intuitively, restricting both
F and F ′ by ρ does not affect the fact that the latter formula is a refinement of the former.

I Claim 23 (Refinements Under Restrictions). Let F : {0, 1}n → {0, 1} be a depth-2 formula
of width w and size m, and let F ′ : {0, 1}n → {0, 1} be a refinement of F . Then, for any
restriction ρ ∈ {0, 1, ?}n it holds that F �ρ can be computed by a depth-2 formula Φ of width
w and size m such that F ′�ρ is a refinement of Φ.

The proof of Claim 23 relies on an elementary (and tedious) case analysis, so we defer it
to Appendix B.

5.2.1.2 Two theorems from [10]

For ε > 0 and two Boolean functions F and F ′ over a domain D, we say that F and F ′

are ε-close if Prx∈D[F (x) = F ′(x)] ≥ 1− ε. We say that F ′ is an ε-refinement of F if F ′ is
both a refinement of F , and ε-close to F . Similarly, we say that F ′ is an ε-lower-sandwiching
refinement (resp., ε-upper-sandwiching refinement) of F if F ′ is both ε-close to F and a
lower-sandwiching (resp., upper-sandwiching) refinement of F . Then, the main result of
Gopalan, Meka, and Reingold [10] can be stated as follows:

I Theorem 24 ([10, Thm 1.2]). Let F : {0, 1}n → {0, 1} be a depth-2 formula of width w,
and let β > 0. Then, there exist β-lower-sandwiching and β-upper-sandwiching refinements
of F , denoted by F low and F up, respectively, such that the size of F low and of F up is at most
m′ = 2Õ(w)·log log(1/β), and their width is at most w.
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We will also need a pseudorandom generator construction from [10]. In fact, we will rely
on an assertion from the proof of their generator construction.

I Theorem 25 ([10, In the proof of Thm 3.1]). Let F : {0, 1}n → {0, 1} be a depth-2 formula
of width w, and let δ0 > 0. Then, every δ-almost t-wise independent distribution δ0-fools F ,
where log(1/δ) = O(w2 · log2(w)+w · log(w) · log(1/δ0)) and t = O(w2 · log(w)+w · log(1/δ0)).

5.2.2 Width-dependent derandomizations of the switching lemma
In the proposition statements in this section, the letter n denotes the number of input bits
for a formula, the number of clauses (i.e., size) is denoted by m, the width is denoted by
w, and δ > 0 is an error parameter (which will typically take the value δ = 1/poly(n) in
our applications). As a first step, we need to adapt the derandomized switching lemma of
Trevisan and Xue [23] such that it will depend on the width of the depth-2 formula that we
wish to “switch”. Then, we will state and prove our new derandomized switching lemma,
which is the main technical part in this section.

I Proposition 26 (An Adaptation of the Derandomized Switching Lemma of [23]). Let m :
N → N, let w : N → N such that w(n) ≤ O (log(m(n))), and let δ : N → [0, 1) such that
δ(n) ≤ 2−O(w(n)). Let r be a distribution over {0, 1}O(log(w))·n that is δ′-almost t′-wise
independent, where log(1/δ′) = O(t′) = Õ(w) · log(1/δ) · log(m) +O(log(n/δ)). Then, for any
depth-2 formula F : {0, 1}n → {0, 1} of width w = w(n) and size m = m(n), with probability
at least 1− 2δ (where δ = δ(n)) over choice of ρ ∼ r it holds that:
1. The restricted formula F �ρ can be computed by a decision tree of depth D = O(log(1/δ)).
2. The number of variables that are kept alive by ρ is at least Ω (n/w).
In particular, a restriction ρ ∼ r can be sampled using a seed of length Õ(w) · log(1/δ) ·
log(m) +O(log(n/δ)).

Proof. Loosely speaking, the main lemma of Trevisan and Xue [23] reduces the task of
finding a restriction that simplifies F to the task of “fooling” a large number of auxiliary
CNFs. Going through their proof, we observe is that if F has width w, then each of the
auxiliary CNFs also has width (roughly) w; that is, their proof can be adapted to show the
following:

I Lemma 27 (A Variation on [23, Lemma 7]). Let F : {0, 1}n → {0, 1} be a depth-2 formula of
size m and width w. For q ∈ N and p = 2−q, let ρ ∈ {0, 1, ?}n be a restriction that is chosen
according to a distribution over {0, 1}(q+1)·n that δ0-fools all CNFs of width w′ = w · (q + 1).
Then, the probability that F �ρ cannot be computed by a decision tree of depth D is at most
2D+w+1 · (5pw)D + δ0 · 2(D+1)·(2·w+log(m)).

The proof of Lemma 27 is a relatively straightforward adaptation of the original proof
in [23], so we defer it to Appendix B. We will use the lemma with the parameters p = 1/O(w)
and δ0 = 2−O(D·(w+log(m))), in order to get the probability of error down to δ. Relying
on Theorem 25, the auxiliary CNFs of width w′ are δ0-fooled by r, 10 and therefore with
probability 1− δ it holds that F �ρ can be computed by a decision tree of depth D.

The expected number of variables that the pseudorandom restriction leaves alive is
Ω(n/w) (because the distribution on each block of O(log(w)) bits in r, which corresponds

10This is because according to Theorem 25, CNFs of width w′ are δ0-fooled by any distribution that is
δ′′-almost t′′-wise independent, where t′′ = O

(
(w′)2 · log(w′) + w′ · log(1/δ0)

)
= Õ(w) · log(1/δ) · log(m)

and log(1/δ′′) = O
(
(w′)2 · log2(w′) + w′ · log(w′) · log(1/δ0)

)
= Õ(w) · log(1/δ) · log(m).
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to a variable, is of statistical distance at most δ′ from uniform, where δ′ < 2−w). Since r
is δ′-almost t′-wise independent, where δ′ < 1/poly(n/δ) and t′ > O(log(w)), the blocks in
r that correspond to each variable are 1

poly(n/δ) -almost O(1)-wise independent. Relying on
Fact 13, the probability that Ω(n/w) variables remain alive is at least 1− δ. J

We mention that the derandomized switching lemma of Goldreich and Wigderson [9,
second step of the proof of Lemma 3.3] can also be adapted to depend on the width w of the
formula that we want to “switch”; in this case, the required seed length is Õ(w) ·2w · log(1/δ),
where δ is the probability of error (and the target depth of the decision tree is D =
O(log(1/δ))). We provide the details in Appendix B. We now turn to state the new width-
dependent derandomization of the switching lemma and prove it:

I Proposition 28 (A New Width-Dependent Derandomization of the Switching Lemma). Let
m : N → N, let w : N → N such that w(n) ≤ O (log(m(n))), let δ : N → [0, 1), and let
α : N → [0, 1). Let δ′ > 0 and t′ ∈ N such that log(1/δ′) = O(t′) = Õ(w2) · log(1/δ) ·
log log(m/αδ)+ Õ(w) · log(m/αδ)+O(log(n/δ)). Let y be a distribution over {0, 1}O(log(w))·n

that is δ′-almost t′-wise independent, and let z be a distribution over {0, 1}n that is δ′-almost
t′-wise independent. Finally, let ρ = ρy,z be a restriction that is chosen by using a sample
from y to determine which variables are kept alive, and an independent sample from z to
determine values for the fixed variables.

Then, for any depth-2 formula F : {0, 1}n → {0, 1} of width w = w(n) with m = m(n)
clauses, with probability at least 1− 4δ (where δ = δ(n)) over choice of ρ it holds that:
1. There exists a lower-sandwiching refinement F low of F such that F low�ρ and F �ρ are

α-close (i.e., Prx∈C(ρ)[F low(x) = F (x)] ≥ 1− α) and such that the restricted refinement
F low�ρ can be computed by a decision tree of depth D = O(log(1/δ)).

2. There exists an upper-sandwiching refinement F up of F such that F up�ρ and F �ρ are
α-close and such that F up�ρ can be computed by a decision tree of depth D = O(log(1/δ)).

3. The number of variables that are kept alive by ρ is at least Ω (n/w).
In particular, a restriction ρ can be sampled using a seed of length Õ(w2) · log(1/δ) ·
log log(m/αδ) + Õ(w) · log(m/αδ) +O(log(n/δ)).

Note that when m = Θ(1/δ) = Θ(1/α) = poly(n), the seed length in Proposition 28 is
Õ(w2 · log(n)). As in the overview in Section 2.2, our strategy in the proof of Proposition 28
will be as follows. Let F low and F up be the refinements of F from Theorem 24. Using the fact
that F low and F up are of width w and of size 2Õ(w)·log log(m/αδ), we will rely on Proposition 26
to prove that, with high probability, both F low�ρ and F up�ρ simplify to depth-D decision
trees. The main challenge will be to prove that with high probability it holds that F low�ρ
(resp., F up�ρ) and F �ρ are α-close. The following lemma is the key one needed to establish
the latter assertion, and after proving the lemma, we will use it to prove Proposition 28.

I Lemma 29. Let m : N → N, let w : N → N such that w(n) ≤ O (log(m(n))), and let
δ : N → [0, 1). Let F : {0, 1}n → {0, 1} be a depth-2 formula of size m = m(n) and width
w = w(n). For α > 0 and β ≤ α6·(δ/4)4

m4·log6(1/δ) , let F
′ : {0, 1}n → {0, 1} be a β-refinement of F .

Fix I ⊆ [n], and let z be a distribution over {0, 1}n that β-fools all DNFs of width w.
Let ρ = ρI,z ∈ {0, 1, ?}n be the restriction that is obtained by fixing values to the variables
indexed by [n] \ I according to the corresponding bits of z. Then, with probability at least
1− δ over choice of z it holds that F ′�ρ is an α-refinement of a depth-2 formula of size m
and width w for F �ρ.

Proof. We will prove the claim assuming that F is a DNF; if F is a CNF, then we can rely
on Fact 21 to deduce that the assertion of the lemma holds for F if and only if it holds
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for the DNF ¬F . Also note that by Claim 23, for any ρ ∈ {0, 1, ?}n it holds that F ′�ρ is a
refinement of a depth-2 formula of size m and width w for F �ρ. Thus, we only need to prove
that with probability at least 1− δ it holds that F ′�ρ is α-close to F �ρ. Recall that I ⊆ [n]
is fixed throughout the proof; for brevity of notation, for any z ∈ {0, 1}n denote ρz = ρI,z.

In high-level, the proof follows the overview that was presented in Section 2.2, and in
particular relies on Lemma 15. We first define a set E of excellent restrictions, which are
restrictions ρ such that F ′�ρ is

√
β-close to F �ρ, and show that almost all restrictions are

excellent. We will then define a set B of bad restrictions, which are restrictions ρ such
that F ′�ρ is not α-close to F �ρ. After defining E and B we will define the distribution
T over tests that accepts, with high probability, every restriction in E, and rejects, with
high probability, every restriction in B. Then, we will show that the residual tests T ∈ T
are relatively “simple”, in the sense that they can be computed by depth-3 circuits with a
specific structure (i.e., top AND gate and bottom fan-in w). And finally, we will show a
hitting-set generator for the set of tests in the support of T that accept almost all of their
input restrictions, and conclude the argument using Lemma 15.

Excellent restrictions and bad restrictions. For any ρ ∈ {0, 1, ?}n, let err(ρ) =
Prx∈C(ρ)[F ′(x) 6= F (x)] be the fraction of inputs in C(ρ) on which F and F ′ disagree.
Our goal is to show that Prz∼z [err(ρz) ≤ α] ≥ 1− δ. Consider the following two sets:

I Definition 29.1 (Excellent and Bad Restrictions). Let E = {z ∈ {0, 1}n : err(ρz) ≤
√
β}

be the set of excellent choices of restrictions, and let B = {z ∈ {0, 1}n : err(ρz) > α} be the
set of bad choices of restrictions.

Since F ′ is β-close to F , a random restriction ρI,un is excellent with probability at least
1 −
√
β. 11 We want to show that a pseudorandom restriction ρz = ρI,z is not bad, with

probability at least 1− δ.

A distribution over simple tests. Let t = O(log(1/δ)/α). We now define a distribution T
over tests {0, 1}n → {0, 1}, such that the random variable T(z) will essentially be the result
of the following random test: Given z ∈ {0, 1}n, the test uniformly samples t inputs in C(ρz),
and accepts z if and only if F and F ′ agree on all the t inputs.

For x ∈ {0, 1}|I| and z ∈ {0, 1}n, denote by x�z ∈ C(ρz) the string that is obtained by
fixing the variables indexed by I according to x, and the rest of the variables (i.e., the ones
indexed by [n] \ I) according to the corresponding bits from z. For any x ∈ {0, 1}|I|, let
Tx : {0, 1}n → {0, 1} be the function such that Tx(z) = 1 if and only if F ′(x�z) = F (x�z).
Also, for x̄ = x(1), ..., x(t) ∈ {0, 1}t·|I|, let Tx̄ be the function Tx̄(z) = ∧ti=1Tx(i)(z). Finally,
let T be the distribution over tests that is obtained by uniformly choosing x̄ ∈ {0, 1}t·|I| and
outputing Tx̄. Note that T(z) is indeed the result of uniformly sampling t inputs in C(ρz),
and accepting z if and only if F ′ and F agree on all the t sampled inputs.

By our choice of the parameter t, and since β is sufficiently small, the distribution T
indeed distinguishes between E and B:

I Fact 29.2. For any z ∈ E it holds that PrT∼T[T (z) = 1] ≥ (1−
√
β)t ≥ 1− t ·

√
β, and

for any z ∈ B it holds that PrT∼T[T (z) = 1] < (1− α)t < δ/3.

For η =
√
t+ 1 · β1/4, let T′ be the set of tests Tx̄ ∈ T that accept at least 1 − η of

their inputs (i.e., T′ = {Tx̄ : Prz∈{0,1}n [Tx̄(z) = 1] ≥ 1− η}). We will abuse the notations T

11Because E[err(ρI,un )] = Prx∈{0,1}n [F ′(x) 6= F (x)] ≤ β, which implies that Pr[err(ρI,un ) >
√
β] <

√
β.
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and T′, by using them both to denote sets and to denote the uniform distribution over the
corresponding set. To see that the set T′ is dense in T, note that

ETx̄∈T

[
Pr

z∈{0,1}n
[Tx̄(z) = 1

]
= Ez∈{0,1}n

[
Pr
Tx̄∈T

[Tx̄(z) = 1]
]

≥ Pr
z∈{0,1}n

[z ∈ E] ·min
z∈E

{
Pr
Tx̄∈T

[Tx̄(z) = 1]
}

,

which is at least 1−
√
β − t ·

√
β = 1− η2. Therefore, the probability over Tx̄ ∈ T that Tx̄

rejects more than η of its input restrictions is at most η.

A hitting-set generator for T′. Towards designing a hitting-set generator with high density
for every Tx̄ ∈ T′, we first show that each Tx̄ ∈ T can be computed by a depth-3 circuit
with a top AND gate and small bottom fan-in. To do so, we first show that for a single
x ∈ {0, 1}|I| (rather than for x̄ = x(1), ..., x(t)) it holds that Tx can be computed by a depth-3
circuit with a top AND gate and small bottom fan-in.

I Claim 29.3. For every fixed x ∈ {0, 1}|I|, the function Tx : {0, 1}n → {0, 1} can be
computed by a depth-3 circuit with a top AND gate of fan-in at most m such that the bottom
fan-in of the circuit is at most w.

Proof. Denote the number of refinement steps that were applied to F to obtain F ′ by k ≤ m.
For any i ∈ [k], let F (i) be the formula in the beginning of the ith refinement step in the
transformation of F to F ′, and let F (k+1) = F ′. Note that Tx(z) = 1 if and only if for every
i ∈ [k] it holds that F (i)(x�z) = F (i+1)(x�z) (one direction is immediate, whereas the other
direction follows by the monotonicity of the sequence F (1)(x�z), ..., F (k+1)(x�z) 12).

For every i ∈ [k], let Tx,i be the function such that Tx,i(z) = 1 if and only if F (i)(x�z) =
F (i+1)(x�z). We will show that each Tx,i can be computed by a DNF of width w. This claim
suffices to conclude the proof, since it implies that Tx can be computed by a circuit with a
top AND gate that is connected to k ≤ m DNFs of width w. To prove the claim, fix i ∈ [k],
and let us conduct a case analysis:

If the ith refinement step was a clean-up step, then Tx,i ≡ 1.
If the ith step was a removal step, then let f (i) be the clause that was removed from
F (i) in the ith step, and let F (i+1) =

(
F (i) \ f (i)) be the formula that is obtained by

dropping the clause f (i) from F (i). Note that F (i+1)(x�z) = F (i)(x�z) if and only if either
f (i)(x�z) = 0 or

(
F (i) \ f (i)) (x�z) = 1. The latter event is a disjunction of at most m

events (because
(
F (i) \ f (i)) is a DNF of size at most m− 1), each of which depends on

the values of at most w bits in x�z. Thus, each of the (at most m) events depends on at
most w bits in z, and can therefore be decided by a DNF of width w. It follows that Tx,i
is the disjunction of width-w DNFs, which is a width-w DNF.
If the ith refinement step in the transformation of F to F ′ was a merging step, denote the
u ≥ 2 clauses that were removed from F (i) in the step by f (i)

1 , ..., f
(i)
u , and the new clause

that was added in their stead by h(i). Note that F (i+1)(x�z) = F (i)(x�z) if and only if
either h(i)(x�z) = 0 or F (i)(x�z) = 1. This is a disjunction of at most m+ 1 events, each
of which depends on at most w bits in x�z (and thus on at most w bits in z). Thus, in
this case too it holds that Tx,i can be computed by a DNF of width w. J

12 If F ′ was obtained by merging steps and clean-up steps, then F (1)(x�z) ≤ ... ≤ F (k+1)(x�z), whereas if
F ′ was obtained by removal steps and clean-up steps, then F (1)(x�z) ≥ ... ≥ F (k+1)(x�z).
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For a fixed x̄ = x(1), ..., x(t) ∈ {0, 1}t·|I|, we can compute Tx̄ by taking a conjunction
of t circuits for the corresponding Tx’s (i.e., ∧i∈[t]Tx(i)), which is a depth-3 circuit with
bottom fan-in at most w and top fan-in at most t ·m. We are now ready to prove that z is a
hitting-set generator with density 1− δ/3 for every Tx̄ ∈ T′:

I Claim 29.4. For every Tx̄ ∈ T′ it holds that Pr[T (z) = 1] ≥ 1− δ/3.

Proof. Fix Tx̄ ∈ T′, and recall that by the definition of T′ it holds that Tx̄ accepts at
least 1− η of its inputs. Thus, each of the DNFs in the middle layer of the circuit that we
constructed for Tx̄ accepts 1− η of the inputs. It follows that when using the distribution z,
which is β-pseudorandom for such DNFs, each of these DNFs accepts with probability at
least 1− η − β. By a union-bound, it follows that

Pr
z∼z

[Tx̄(z) = 1] ≥ 1− (η + β) · (t ·m)

> 1− (2 · t ·m) · η

= 1−O
(

(log(1/δ)/α)3/2 ·m · β1/4
)

,

which is larger than 1− δ/3 by the hypothesis that β is sufficiently small. J

Invoking Lemma 15. We now conclude the argument by invoking Lemma 15. Let E
be as in Definition 29.1, and let G = {0, 1}n \ B; recall that for ε1 =

√
β it holds that

Prz∈{0,1}n [z ∈ E] ≥ 1 − ε1. Denoting ε2 = t ·
√
β and ε3 = δ/3, according to Fact 29.2,

for any z ∈ E it holds that PrTx̄∼T[Tx̄(z) = 1] ≥ 1 − ε2 and for any z /∈ G it holds that
PrTx̄∼T[Tx̄(z) = 0] ≥ 1− ε3.

Finally, for ε4 = η it holds that the set T′ is of density at least 1 − ε4 in T, and for
every Tx̄ ∈ T′, by Claim 29.4 it holds that z fools Tx̄ with error at most ε5 = δ/3 (because
Prz∈{0,1}n [Tx̄(z) = 1] ≥ 1 − η ≥ 1 − δ/3 and Prz∼z[Tx̄(z) = 1] ≥ 1 − δ/3). Relying on
Lemma 15, the probability that z /∈ G is at most√

β + t ·
√
β + δ/3 + 2 · η + δ/3 = 2δ/3 + η2 + 2 · η < δ ,

where the inequality relied on the fact that β (and hence also η) is sufficiently small. J

We are now ready to prove Proposition 28.

Proof of Proposition 28. Let F : {0, 1}n → {0, 1} be a depth-2 formula of width w and size
m. Let F low : {0, 1}n → {0, 1} and F up : {0, 1}n → {0, 1} be the β-lower-sandwiching and the
β-upper-sandwiching formulas for F from Theorem 24, respectively, where β = α6·(δ/4)4

m4·log6(1/δ) .
Note that the width of F low and of F up is at most w, and that their size is at most
2Õ(w)·log log(m/αδ).

According to Fact 14, the distribution of strings r over {0, 1}O(log(w))·n, which is obtained
by combining y and z and represents the pseudorandom restriction ρ = ρy,z, is (2 · δ′)-almost
t′-wise independent. Hence, relying on Proposition 26, with probability at least 1 − 2δ it
holds both that F low�ρ and F up�ρ can be computed by decision trees of depth D, and that ρ
keeps at least Ω(n/w) variables alive.

According to Theorem 25, all DNFs of width w are β-fooled by the distribution z. 13

Therefore, relying on Lemma 29, for any fixed choice of y ∼ y, with probability at least 1−2δ

13Theorem 25 requires that the distribution z will be δ′′-almost t′′-wise independent, where t′′ = O(w2 ·
log(w) +w · log(1/β)) = Õ(w) · log(m/αδ) < t′ and log(1/δ′′) = O(w2 · log2(w) +w · log(w) · log(1/β)) =
Õ(w) · log(m/αδ) < log(1/δ′).
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over z ∼ z it holds that both F low�ρ and F up�ρ are α-close to F �ρ. Thus, the probability
over choice of both y and z that F low�ρ and F up�ρ are α-close to F �ρ is at least 1− 2δ. J

5.2.3 Proofs of Theorems 2 and 3
We are now ready to prove Theorem 3. Recall that Theorem 3 asserts the existence of a
hitting-set generator that is parametrized by a parameter t > 0.

I Theorem 30. (Theorem 3, restated). Let d ≥ 2, let m : N→ N such that m(n) ≤ poly(n),
and let t : N → N such that c0 ≤ t(n) ≤ 2 · log(m(n)), where c0 is a sufficiently large
constant. For every n ∈ N, let Cn be the class of circuits C : {0, 1}n → {0, 1} of size
m = m(n) and of depth at most d that accept all but at most B(n) of their inputs, where
log(B(n)) = Ω

(
n1−1/Ω(t)/td−2) and t = t(n). Then, there exists a hitting-set generator for

C = ∪n∈NCn with seed length ` = `(n) = Õ
(
t2 · log(n)

)
.

Theorem 2 follows as a corollary of Theorem 30, by using the specific parameter value
t = 2 · log(m), in which case B(n) = 2Ω(n/ logd−2(n)) and the seed length is Õ

(
log3(n)

)
.

Proof. Given input 1n and a random seed in {0, 1}`, the hitting-set generator works in two
steps. In the first step, the generator outputs a restriction ρ̄ ∈ {0, 1, ?}n such that for any
circuit C over n input bits of depth d and size m = m(n), with high probability it holds that
there exists a depth-2 formula C ′ of size poly(n) and width t that is both (1/2)-close to C�ρ̄
and lower-sandwiching for C�ρ̄. Moreover, with high probability the restriction ρ̄ keeps at
least log(B(n)) + 2 variables alive.

Since the subcube C(ρ̄) contains at least 4 ·B(n) inputs, the acceptance probability of
C�ρ̄ is at least 3/4. Hence, the acceptance probability of C ′ is at least 1/4 (because C ′ is
(1/2)-close to C�ρ̄), and every satisfying input for C ′ is also satisfying for C (because C ′ is
lower-sandwiching for C�ρ̄). Thus, in the second step, we use a pseudorandom generator for
depth-2 circuits to “fool” C ′: The pseudorandom generator outputs a satisfying input for C ′
in C(ρ̄) with positive probability, and any such input yields a satisfying input for C.

Parameter settings. Let ε > 0 be a sufficiently small constant, and let δ = (ε/m). Let
D = O(log(1/δ)) > 2 · log(2m/δ), and let m′ = m · 2D = poly(n). Let β =

(
δ

2dm
)102d

; we will
use β as the approximation parameter whenever using Theorem 24. Let δ′ > 0 and t′ ∈ N
such that log(1/δ′) = O(t′) = Õ

(
t2 · log(n)

)
.

The pseudorandom choice of restrictions. The algorithm that we will describe below
constructs a sequence of restrictions. We mention in advance that when describing the
algorithm, whenever we will say that we choose a restriction with a parameter p = 2−q, the
pseudorandom choice of restriction is the following:

Let y be a distribution over {0, 1}log(1/p)·n that is δ′-almost t′-wise independent.
Let z be a distribution over {0, 1}n that is δ′-almost t′-wise independent.
The restriction ρ = ρy,z is chosen by sampling y ∼ y in order to determine which variables
are kept alive, and independently sampling z ∼ z in order to determine values for the
fixed variables.

Note that such a restriction keeps every variable alive with probability approximately p
(i.e., with probability p±δ′). The above process yields a distribution r over {0, 1}(log(1/p)+1)·n,
which is obtained by combining y and z as detailed in the beginning of Section 5.2.1; according
to Fact 14, the distribution r is (2 · δ′)-almost t′-wise independent.
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The first step. The generator constructs the restriction ρ̄ as the composition of 2d − 2
retrictions ρ̄ = ρ(2d−3) ◦ ρ(2d−4) ◦ ... ◦ ρ(1) ◦ ρ(0). The initial restriction ρ(0) is chosen with
parameter p = 1/O(1), and with probability 1− ε it reduces the bottom fan-in of the circuit
to D = O(log(1/δ)). 14 The next 2 · (d − 2) restrictions are applied in d − 2 iterations.
Loosely speaking, in each iteration, we apply a restriction that reduces the bottom fan-in
to t, then define an approximating circuit (by replacing the formulas in the next-to-bottom
layer, which have small width at this point, with small lower-sandwiching refinements, using
Theorem 24), and finally apply a second restriction in order to “switch” the formulas in the
next-to-bottom layer of the approximating circuit, and reduce the depth of the circuit.

Let C(0) = C�ρ(0) be the circuit in the beginning of the first iteration, and note that
C(0) is of depth d, size at most m < m′, and bottom fan-in at most D. For i ∈ [d − 2],
let us describe the ith iteration. Assuming all previous iterations were successful, in the
beginning of the ith iteration we start with a circuit C(i−1) of depth at most d − (i − 1),
bottom fan-in at most D, and with at most m′ = m · 2D gates in its bottom layer. We will
produce two restrictions, denoted ρ(2i−1) and ρ(2i), and define a circuit C(i) whose domain is
C(ρ(2i) ◦ ρ(2i−1) ◦ ... ◦ ρ(0)) such that with probability 1−O(ε) it holds that C(i) is of depth
at most d− i, bottom fan-in D, and the number of gates in its bottom layer is at most m′.
(After we finish the description of a single iteration, we will also prove that for any i ∈ [d− 2]
it holds that C(i)�ρ̄ is close to C(i−1)�ρ̄; see Claim 30.2 below.)

The first restriction in iteration i, denoted ρ(2i−1), is chosen with the parameter p =(
ε/
(
m · 22D+1))1/t = n−1/Ω(t). We now show that with probability at least 1 − O(ε) the

bottom fan-in of the circuit C(i−1)�ρ(2i−1) is less than t. To do so, first note the following:

I Claim 30.1. Let S be a fixed set of at most D variables. Then, with probability at least
1− ε/m′ it holds that less than t variables in S are kept alive by ρ(2i−1).

Proof. Recall that the restriction ρ(2i−1) is chosen such that the distribution y over
{0, 1}log(1/p)·n, which determines which variables will be kept alive, is δ′-almost t′-wise
independent. We will only need the fact that the blocks of size dlog(1/p)e in y are (pt)-
almost t-wise independent; this holds because t · dlog(1/p)e < O(log(m/ε)) < t′, and
δ′ < pt = 1/poly(n).

For any fixed set of t variables in S, the probability that all variables in the set remain
alive after applying a uniformly-chosen restriction with the parameter p is pt. Since the
blocks of size dlog(1/p)e in y are (pt)-almost t-wise independent, the probability that ρ(2i−1)

keeps all t variables alive is at most 2 · (pt). Thus, the probability that ρ(2i−1) keeps t
variables in S alive is at most

(|S|
t

)
· 2 · pt < 2D+1 · pt < ε/m′. J

Recall that the number of gates in the bottom layer of C(i−1) is at most m′, and that
each of them is of fan-in at most D. Using Claim 30.1 and a union-bound, with probability
at least 1− ε it holds that the bottom fan-in of C(i−1)�ρ(2i−1) is less than t.

Assuming that the bottom fan-in of C(i−1)�ρ(2i−1) is indeed less than t, we now use
Theorem 24 to replace each formula F in the next-to-bottom layer of C(i−1)�ρ(2i−1) with a

14To see that such a restriction indeed reduces the bottom fan-in, fix a gate in the bottom layer of fan-in
more than 2 · log(2m/ε). The probability under a uniformly-chosen restriction with p = 1/4 that none
of the lexicographically-first 2 · log(2m/ε) variables feeding into the gate is fixed to a satisfying value
is
( 1+p

2

)2·log(2m/ε)
< ε/2m. Since this event depends only on the values that the restriction assigns

to 2 · log(2m/ε) variables, and the value for each variable depends on log(1/p) = O(1) bits, the event
depends on at most O(log(m/ε)) bits of the restriction. Thus, the event happens with probability at
most ε/m when the restriction is chosen from a 1/poly(m/ε)-biased set.
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Table 1 Summary of the restrictions that are applied in the first step.

Value of p Goal of the restriction

ρ(0) 1/O(1) Reduce the bottom fan-in to D

i = 1, ..., d− 2 :

ρ(2i−1) n−1/Ω(t) Reduce the bottom fan-in to t

ρ(2i) 1/O(t) “Switch” the width-t formulas

at the next-to-bottom-layer

ρ(2d−3) n−1/Ω(t) Reduce the bottom fan-in to t

β-lower-sandwiching refinement F low such that the size of F low is at most 2Õ(t)·log log(1/β).
Let ˜C(i−1)�ρ(2i−1) be the circuit that is obtained by replacing all the formulas in the next-to-
bottom layer of C(i−1)�ρ(2i−1) in this manner.

The final step in the ith iteration is to apply a restriction ρ(2i) with parameter p = 1/O(t)
that is intended to simplify each formula F low in the next-to-bottom layer of ˜C(i−1)�ρ(2i−1)

to a decision tree of depth at most D. Let C(i) =
(

˜C(i−1)�ρ(2i−1)

)
�ρ(2i) . Relying on

Proposition 26, the restriction ρ(2i) is successful with probability at least 1−O(ε), and in
this case the circuit C(i) is of depth at most d− i, and the bottom layer of C(i) has at most
m′ = m · 2D gates, each of fan-in at most D. 15

We now apply one final restriction ρ(2d−3), with parameter p =
(
ε/
(
m · 22D+1))1/t, in

order to reduce the bottom fan-in of C(d−2) to t. Using Claim 30.1 and a union-bound,
with probability at least 1−O(ε) it holds that the width of C(d−2)�ρ(2d−3) is at most t. For
convenience, in Table 1 we summarize the restrictions that were applied in the first step.

Let C(d−1) = C(d−2)�ρ(2d−3) , and recall that ρ̄ = ρ(2d−3) ◦ ρ(2d−2) ◦ ... ◦ ρ(0). The above
shows that if all the iterations are successful, then C(d−1) is a formula of depth 2, size at
most m′, and width t. Also note that if all the iterations are successful, then C(d−1) is
lower-sandwiching for C�ρ̄. This is because for every i ∈ [d− 2] it holds that ˜C(i−1)�ρ(2i−1)

is lower-sandwiching for C(i−1)�ρ(2i−1) (since ˜C(i−1)�ρ(2i−1) is obtained by replacing every
formula F in the next-to-bottom-layer of C(i−1)�ρ(2i−1) with a lower-sandwiching refinement

F low), which implies that C(i)�ρ̄ =
(

˜C(i−1)�ρ(2i−1)

)
�ρ̄ is lower-sandwiching for C(i−1)�ρ̄.

The main thing that is left to prove in the analysis of the first step is that with probability
at least 1−O(ε) it holds that C(d−1) is (1/2)-close C�ρ̄. To do so, we will show that with
probability at least 1− O(ε), for every i ∈ [d− 2] it holds that C(i−1)�ρ̄ is (1/2d)-close to
C(i)�ρ̄. Assuming that the latter holds, we can deduce that C�ρ̄ = C(0)�ρ̄ is 1/2-close to
C(d−1) = C(d−2)�ρ̄. Thus, it suffices to prove the following claim:

I Claim 30.2. For any i ∈ [d− 2], with probability at least 1−O(ε) it holds that C(i)�ρ̄ is
(1/2d)-close to C(i−1)�ρ̄.

15Specifically, we rely on Proposition 26 with width parameter t, error parameter δ, size parameter
2Õ(t)·log log(1/β), and depth bound D for the decision trees. Proposition 26 requires that the distribution
r of restrictions will be δ′′-almost t′′-wise independent, where log(1/δ′′) = O(t′′) = Õ(t2) · log(1/δ) ·
log log(1/β) = Õ(t2 · log(n)). The latter holds by our choice of δ′ and t′.
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Proof. Let i ∈ [d− 2], let F be a formula in the next-to-bottom layer of C(i−1)�ρ(2i−1) , and
let F low be a β-refinement of F . We will prove that with probability 1−O(δ) it holds that
F low�ρ̄ is (1/2dm)-close to F �ρ̄. This suffices to prove Claim 30.2, since by a union-bound
over m formulas it follows that with probability at least 1−O(ε) it holds that the circuit(

˜C(i−1)�ρ(2i−1)

)
�ρ̄ = C(i)�ρ̄ is (1/2d)-close to

(
C(i−1)�ρ(2i−1)

)
�ρ̄ = C(i−1)�ρ̄.

For every j ∈ {2i, ..., 2d− 3}, let ρ(2i,...,j) be the composed restriction ρ(2i,...,j) = ρ(j) ◦
... ◦ ρ(2i), and let βj = (δ/2dm)102d−3−j

. We will prove the following statement: For every
j ∈ {2i, ..., 2d − 3}, with probability at least 1 − O(δ) it holds that F low�ρ(2i,...,j) is a βj-
refinement of a depth-2 formula of size m′ and width t for F �ρ(2i,...,j) . Invoking this statement
with j = 2d− 3, we can deduce that with probability at least 1−O(δ) it holds that F low�ρ̄
is β2d−3-close to F �ρ̄, where β2d−3 < 1/2dm.

We prove the aforementioned statement by induction on j. For the base case j = 2i,
we start with a formula F of size m′ and width t, and a β-refinement F low of F , where
β < β0 ≤ βj−1. Now, ρ(j) is chosen according to a distribution such that for every fixed
choice of variables to keep alive (i.e., every fixed y ∼ y), the choice of values for the fixed
variables (i.e., z ∼ z) is δ′-almost t′-wise independent. Relying on Theorem 25 and on our
choice of δ′ and t′, the distribution distribution z β-fools all DNFs of width w. We can
therefore rely on Lemma 29 to deduce that with probability at least 1−O(δ) it holds that
F low�ρ(j) is a βj-refinement of F �ρ(j) . 16

The induction step, for j ≥ 2i + 1, is very similar to the base case. By the induction
hypothesis, with probability at least 1 − O(δ) it holds that F low�ρ(2i,...,j−1) is a (βj−1)-
refinement of a size m′ and width w′ depth-2 formula for F �ρ(2i,...,j−1) . We can then use
Theorem 25 and Lemma 29 similarly to the base case. J

To conclude the analysis of the first step, note that with probability at least 1−O(ε) it
holds that at least log(B(n)) + 2 = Ω

(
n1−1/Ω(t)/td−2) variables remain alive. To see that

this is the case, recall that ρ̄ is comprised of one restriction with parameter p0 = 1/O(1),
and d− 1 restrictions with parameter p1 = n−1/Ω(t), and d− 2 restrictions with parameter
p2 = 1/O(t). Let p̄ = p0 · pd−1

1 · pd−2
2 · n, and note that p̄ = Ω

(
n1−1/Ω(t)/td−2).

The expected number of living variables under ρ̄ is Θ(p̄) (because in each restriction with
parameter p, every variable is kept alive with probability p±O(δ′) ∈ p± (p/2)). Since all
the choices of variables to keep alive are according to distributions that are δ′-almost t′-wise
independent, we can use Fact 13 to deduce that with probability at least 1−O(ε) it holds
that at least Ω (p̄) = Ω

(
n1−1/Ω(t)/td−2) > log(B(n)) + 2 variables remain alive after the first

step. (When using Fact 13, we relied on the fact that t is larger than a sufficiently large
constant c0 to deduce that n1−1/Ω(t)/td−2 > nΩ(1)).

The second step. We now invoke the pseudorandom generator from Theorem 25 for depth-2
circuits of width t, instantiated with error parameter 1/8, and output the string that the
generator outputs, completed to a string of length n according to ρ̄. The generator requires
a seed of length O(t2 · log2(t)) = Õ(t2).

16We invoke Lemma 29 with width parameter t, size bound m′, and error parameter δ. We know that
F low is a βj−1-refinement of F , and we want to deduce that with probability at least 1−O(δ) it holds
that F low�ρ(j) is an α-refinement of F �ρ(j) , where α = βj . The lemma requires that the distribution z

will (βj−1)-fool all DNFs of width t, and that βj−1 ≤
β6
j ·(δ/4)4

m4·log6(1/δ) , both of which indeed hold.
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Let us now prove this yields a satisfying input for C, with positive probability. If the
first step was successful, then ρ̄ kept more than log(B(n)) + 2 live variables, and hence the
acceptance probability of C�ρ̄ is at least 3/4. Since C(d−1) is 1/2-close to C�ρ̄, it follows that
Prx∈C(ρ̄)[C(d−1)(x) = 1] ≥ 1/4. Thus, the generator outputs a satisfying input for C(d−1),
with positive probability, and this input (when completed to a string of length n according
to ρ̄) is satisfying for C, because C(d−1) is lower-sandwiching for C�ρ̄. J

6 Constant-depth circuits with parity gates

In this section we prove the claims made in Section 1.3: In Section 6.1 we prove Theorem 5,
and in Section 6.2 we prove Theorem 6.

6.1 Proof of Theorem 5
The proof is similar to the proof of Theorem 1, and is a variation on [9, Thm 4.2 and Remark
4.4]. Starting from a CNF C, we will employ error-reduction within AC0[⊕], by first sampling
inputs for C using Trevisan’s extractor [22], and then taking the disjunction of the evaluation
of C on these inputs (rather than an approximate majority, as in [9]). This will yield a
layered circuit of the form ∨∧∨⊕ that accepts all but 2nc of its inputs, for any desired c > 0.
Details follow.

Let C : {0, 1}n → {0, 1} be a CNF that accepts most of its inputs. For n′ = n(1/c)+1

and s = O(log(n)), let E : {0, 1}n′ × {0, 1}s → {0, 1}n be Trevisan’s extractor instantiated
for min-entropy (n′)c = n1+Ω(1) and error parameter 1/4. We construct a circuit C ′ :
{0, 1}n′ → {0, 1} that first computes the values E(x, z), for each possible seed z ∈ {0, 1}s,
then evaluates C on each value E(x, z), and finally takes an OR of these evaluations; that is,
C ′(x) = ∨z∈{0,1}sC (E(x, z)).

Note that C ′ is a layered depth-4 circuit of the form ∨∧∨⊕, since for each seed z ∈ {0, 1}s,
the residual function Ez(x) = E(x, z) is just a linear transformation of x. Also note that
the number of inputs x ∈ {0, 1}n′ for which Prz[C(E(x, z))] < 1/4 is at most 2(n′)c . In
particular, C ′ accepts all but at most 2(n′)c of its inputs, and for each satisfying input x for
C ′, we can find a corresponding satisfying input for C among {E(x, z)}z∈{0,1}s .

6.2 Proof of Theorem 6
The current section is organized as follows. In Section 6.2.1 we present two algorithmic
tools that will be used in the proof: An adaptation of the approach of Chaudhuri and
Radhakrishnan [4] to the setting of ⊕∧⊕ circuits, and an adaptation of Viola’s pseudorandom
generator [25] to polynomials that are defined over an affine subspace. Then, in the next
three sections, we prove the corresponding three items of Theorem 6.

We rely on the notion of affine restrictions. A restriction of a circuit C : {0, 1}n → {0, 1}
to an affine subspace W ⊆ {0, 1}n will be constructed by accumulating a list of (independent)
affine conditions that defines W . That is, each of the various algorithms will construct a
full-rank matrix A and a vector b such that W = {x : Ax = b}. For an affine function g,
when we say that an algorithm “adds g = 0 to the list of affine conditions”, we mean that it
extends A by adding the linear part of g as an additional row to A, and extends b by adding
the constant term of g as an additional bit to b (i.e., if g(x) =

∑n
i=1 cixi + c0 then the row

c = (c1, ..., cn) is added to A and c0 is added to b). After each addition of a condition, we
will say that the algorithm “simplifies the circuit accordingly”; by this we mean that for
any ⊕-gate g′ in the bottom layer whose linear function is dependent on the rows of A, the
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algorithm fixes g′ to the appropriate value determined by A and b, and, if g′ was fixed to
zero, then the algorithm removes all the ∧-gates that g′ feeds into.

6.2.1 Two algorithmic tools
Let us first adapt the approach of Chaudhuri and Radhakrishnan [4], which was originally
used to construct “bit-fixing” restrictions for AC0 circuits, to the setting of ⊕ ∧⊕ circuits
and affine restrictions.

I Proposition 31 (Whitebox Affine Restrictions for ⊕ ∧ ⊕ Circuits). For two integers m∧
and m⊕, let C be the class of ⊕ ∧⊕ circuits over n input bits with m∧ gates in the middle
layer and m⊕ gates in the bottom layer. Then, for any two integers d⊕ and d∧, there exists
a polynomial-time algorithm that, when given as input a circuit C ∈ C, outputs an affine
subspace W ⊆ {0, 1}n such that:
1. In the restriction of C to W , each ∧-gate in the middle layer has fan-in at most d∧.
2. The subspace W is of co-dimension at most m∧

d⊕
+ d⊕·m⊕

d∧
.

Proof. The algorithm operates in two steps. In the first step, as long as there exists a ⊕-gate
g in the bottom layer with fan-out at least d⊕, the algorithm adds the condition g = 0 to
the list of affine conditions, and simplifies the circuit accordingly. Note that each addition of
a condition as above fixes at least d⊕ of the ∧-gates in the middle layer, and thus at most
m∧/d⊕ conditions are added (or else the entire circuit simplifies to a constant). Hence, after
the first step concludes, the fan-out of each ⊕-gate in the bottom layer is d⊕, and at most
m∧/d⊕ affine conditions have been accumulated.

In the second step, as long as there exists an ∧-gate g in the middle layer with fan-in
at least d∧, the algorithm (arbitrarily) chooses one ⊕-gate g′ that feeds into g, adds the
condition g′ = 0 to the list of affine conditions, and simplifies the circuit accordingly. Note
that, in the beginning of the second step, the number of wires feeding the middle layer is
at most d⊕ ·m⊕ (since there are at most m⊕ gates in the bottom layer, each of them with
fan-out at most d⊕). Now, note that each addition of an affine condition in the second step
eliminates at least d∧ wires; thus, the algorithm adds at most d⊕

d∧
·m⊕ conditions in the

second step. After the second step is complete, each ∧-gate in the middle layer has fan-in at
most d∧, and the list of affine conditions contains at most m∧/d⊕ + d⊕

d∧
·m⊕ conditions. J

We now verify that we can use Viola’s pseudorandom generator [25] in order to “fool”
⊕∧⊕ circuits that, when restricted to an affine subspace, have a constant maximal fan-in of
the ∧-gates.

I Proposition 32 (Invoking Viola’s PRG in an Affine Subspace). There exists an algorithm G

that, for every n ∈ N, when G is given as input an integer D, a seed of ` = O(log(n)) bits,
and a basis for an affine subspace W ⊆ {0, 1}n, then G runs in time poly(n) and satisfies
the following: For every ⊕ ∧⊕ circuit C over n input bits such that C simplifies under the
restriction W to a ⊕ ∧⊕ circuit in which the maximal fan-in of ∧-gates is D and such that
C�W 6≡ 0, it holds that Pr[C(G(u`)) = 1] > 0.

Proof. Denote the dimension of W by m = dim(W ). The algorithm G first finds a full-rank
n × m matrix B and s ∈ {0, 1}n such that x 7→ Bx + s maps {0, 1}m to W . Then, the
algorithm G uses its random seed to invoke Viola’s pseudorandom generator for polynomials
Fm2 → F2 of degree D, with error parameter 2−(D+1), thus obtaining a string x ∈ {0, 1}m.
Finally, the algorithm G outputs the string Bx+ s.
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Now, let C be ⊕∧⊕ circuit as in the hypothesis, and consider the polynomial p : Fm2 → F2
such that p(x) = C(Bx + s). Note that p is of degree D, because C computes an sum of
monomials of degree D over F2, and the affine transformation does not increase the degree.
Also, using our hypothesis that p is non-zero, it follows that the acceptance probability of p
is at least 2−D. Thus, the probability that Viola’s generator will output x such that p(x) = 1
is at least 2−(D+1) > 0, and each such x yields a string y = Bx+ s such that C(y) = 1. J

6.2.2 Linear-sized circuits with B(n) = 2−Ω(n)

We prove the first item of Theorem 6 by invoking the whitebox algorithm from Proposition 31
with appropriate parameters d∧, d⊕ = O(1), and then using the generator from Proposition 32.

I Proposition 33 (Theorem 6, Item (1): Hitting Biased Linear-Sized ⊕∧⊕ Circuits). Let ε > 0
be an arbitrarily small constant, and let c > 0 be an arbitrarily large constant. Let C be
the class of ⊕ ∧ ⊕ circuits such that any circuit C ∈ C over n input bits has at most c · n
gates and accepts all but at most 2(1−ε)·n of its inputs. Then, there exists a polynomial-time
algorithm that, when given any circuit C ∈ C, finds a satisfying input for C.

Proof. The algorithm first invokes the algorithm from Proposition 31 with parameters
d⊕ = 4·c

ε and d∧ = d2
⊕, to obtain an affine subspace W of co-dimension at most

m∧
d⊕

+ d⊕ ·m⊕
d∧

< 2 · c · n
(4 · c)/ε = ε

2 · n

such that in the restriction of C to W , every ∧-gate in the middle layer has fan-in at most
d∧ = O(1). Since the circuit C has at most 2(1−ε)·n unsatisfying inputs, it follows that
Prw∈W [C(w) = 1] ≥ 1− 2−(ε/2)·n. Thus, the algorithm concludes by invoking the algorithm
from Proposition 32. J

6.2.3 Sub-quadratic circuits with (1 + o(1)) · n bottom ⊕-gates and
B(n) = 2nc

We now prove the second item of Theorem 6.

I Proposition 34 (Theorem 6, Item (2): Hitting Biased Sub-quadratic ⊕ ∧ ⊕ Circuits). Let
ε > 0 and let 0 < c < ε. Let C be the class of ⊕ ∧ ⊕ circuits such that any C ∈ C over n
input bits has at most n+ nc bottom ⊕-gates, and at most n2−ε middle ∧-gates, and accepts
all but B(n) = 2nc of its inputs. Then, there exists a polynomial-time algorithm that, when
given any circuit C ∈ C, finds a satisfying input for C.

Proof. Recall that a high-level overview of the proof, which used the parameter values
m∧ = n1.1 and m⊕ = n, appeared in Section 2.3. Let us first explain, in high-level, how
to handle the setting of m∧ ≤ n2−ε; for the moment, we are still assuming that m⊕ = n.
As in the overview in Section 2.3, the algorithm works in two steps. In the first step, we
use Proposition 31 to fix o(m⊕) of the ⊕-gates such that after the restriction, the fan-in
of the ∧-gates is bounded by w = n1−α·ε, where α < 1 is a constant slightly smaller than
1; this is possible because m∧ ≤ n2−ε (see the proof details below). In the second step,
we restrict the ⊕-gates using an O(1)-independent distribution, keeping each ⊕-gate alive
with probability p = n−(1−β·ε), where β < α (and recall that we choose arbitrary consistent
values for the gates that are fixed). The crucial point is the following: On the one hand,
since p ≤ 1/w1+Ω(1), after the second step the fan-in of the ∧-gates is upper-bounded by a
constant (as explained in Section 2.3); and on the other hand, the number of living ⊕-gates
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after the second step is approximately p · (1− o(1)) · n = Ω
(
nβ·ε

)
> nc = log(B(n)), where

the inequality holds if we choose β > c/ε (which is possible if we initially choose α ∈ (c/ε, 1)).
To see how we handle the setting of m⊕ ≤ n+ nc (rather than m⊕ = n), note that the

overall number of affine conditions that the algorithm imposes is m⊕ − Ω(p ·m⊕). Since
m⊕ ≤ n+ o(p · n), the number of affine conditions is at most n−Ω(p · n), which means that
the affine subspace W is of dimension Ω(p · n) > log(B(n)).

Let us now provide the full details for the proof. Assume, without loss of generality,
that m⊕ ≥ n (we can add dummy gates if necessary). We first invoke the algorithm from
Proposition 31 with parameters d∧ = n1−α·ε, where α = (c/ε)+1

2 , and d⊕ = n1−α′·ε, where
α′ = (c/ε) + (2/3) · (1− c/ε) > α. The algorithm outputs an affine subspace of co-dimension
at most

m∧
d⊕

+ d⊕ ·m⊕
d∧

≤ n2−ε−(1−α′·ε) + n1−α′·ε−(1−α·ε) ·m⊕

= n1−(1−α′)·ε + n−(α′−α)·ε ·m⊕ ,

which is o(m⊕), such that in the restriction of C to the subspace, every ∧-gate in the middle
layer has fan-in at most d∧ = n1−α·ε.

Denote the number of ⊕-gates that were not fixed in the previous step by m′, and
consider the following pseudorandom restriction process. For a sufficiently large constant
γ > 1 (which will be determined later), we use a γ-wise independent distribution over [1/p]n′ ,
where p = n−(1−β·ε) and β = (c/ε) + (1/3) · (1− c/ε) < α. 17 Denote the random variable
that is the output string of this distribution by ρ ∈ [1/p]n′ . For every ⊕-gate that has not
been restricted by the algorithm from Proposition 31, the algorithm now marks the gate
as “alive” if and only if the corresponding element in the string ρ equals zero; otherwise, it
marks the gate as “fixed”.

For any ∧-gate g in the middle-layer, the probability that at least γ gates that feed into
g are marked “alive” is at most(

d∧
γ

)
· pγ < n(1−α·ε)·γ · n−(1−β·ε)·γ = n−(α−β)·ε·γ ,

which can be made less than 1/m∧ = n−(2−ε) by an appropriate choice of γ (i.e., γ > 2−ε
(α−β)·ε ).

After union-bounding over all ∧-gates, we have that with probability at least 0.99, each
∧-gate is fed by less than γ of the “alive” ⊕-gates. Also note that with probability at least
0.99, the number of ⊕-gates that were marked as “alive” is at least (p ·m′) /2; this is because
the distribution is γ-wise independent (so we can use Fact 12). The algorithm and finds a
choice of ρ, denoted by ρ0, that meets both these conditions (by enumerating the outputs
of the γ-wise independent distribution). Then, the algorithm iteratively fixes values for
the ⊕-gates that are marked as “fixed” by ρ0. Specifically, as long as there is a ⊕-gate g
that is marked as “fixed” by ρ0, the algorithm adds the condition g = 0 to the list of affine
conditions that defines W , and simplifies the circuit accordingly.

Let us now count the number of affine conditions that the algorithm imposed (i.e., the
co-dimension of W ). After all the restrictions, the number of living variables is at least
(p/2) ·m′ ≥ (p/2) · (1 − o(1)) ·m⊕ ≥ (p/3) ·m⊕, which implies that the number of affine

17We will actually use the value p = 2−d(1−β·ε)·log(n)e, such that 1/p is a power of 2, but the difference
between this value and n−(1−β·ε) is insignificant in what follows.
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conditions is at most m⊕ − (p/3) ·m⊕. Since m⊕ ≤ n+ nc, we have that

m⊕ − (p/3) ·m⊕ < n+ nc − (p/3) · n

= n+ nc − 1
3 · n

β·ε ,

which is less than n− nc, because nc = o(nβ·ε) (since β · ε = c+ Ω(1)).
Thus, the algorithm is left with a subspace W of dimension more than nc = log(B(n))

such that when the circuit C is restricted to the subspace W , the fan-in of every ∧-gate in
the middle layer is at most γ = O(1). Hence, at this point the algorithm can invoke the
algorithm from Proposition 32, and find a satisfying input for C in W . J

6.2.4 Circuits with a slightly super-linear number of bottom ⊕-gates
and slightly sub-linear number of ∧-gates

We now prove the third item of Theorem 6. The crucial observation here is that after invoking
the algorithm from Proposition 31, the number of ⊕-gates is at most m∧ · d∧, since this is
the number of wires that feed into the middle layer.

I Proposition 35 (Theorem 6, Item (3): Hitting Biased ⊕ ∧ ⊕ Circuits with a Super-Linear
Number of ⊕-Gates). For any constant ε > 0, let C be the class of ⊕ ∧⊕ circuits such that
any circuit C ∈ C over n input bits has at most n1+ε gates in the bottom layer and at most
(1/5) · n1−ε gates in the middle layer, and accepts all but at most B(n) = 2n/15 of its inputs.
Then, there exists a polynomial-time algorithm that, when given any circuit C ∈ C, finds a
satisfying input for C.

Proof. We first invoke the algorithm from Proposition 31 with parameters d⊕ = 1 and
d∧ = (5/2) · nε. The algorithm outputs an affine subspace W ′ of co-dimension at most

m∧
d⊕

+ d⊕ ·m⊕
d∧

≤ (1/5) · n1−ε + (2/5) · n

such that in the restriction of C to W ′, every ∧-gate in the middle layer has fan-in at most
d∧ = (5/2) · nε. Since there are at most m∧ = (1/5) · n1−ε gates in the middle layer, it
follows that there are at most m∧ · d∧ = n/2 bottom ⊕-gates that influence the output
of C�W ′ . By fixing values for these gates, we obtain a subspace W of dimension at least
(1/2− (2/5)− o(1)) · n > n/15 such that C�W is constant. Since B(n) = 2n/15, it follows
that C�W ≡ 1, and thus we can output any w ∈W . J

7 Polynomials that vanish rarely

In the current section we prove Theorem 7 (in Section 7.1) and Theorem 8 (in Section 7.2).
Recall that throughout the currnet section we consider a normalized “badness” parameter
b(n) = B(n)/2n.

7.1 Proof of Theorem 7
We now prove a more general version of Theorem 7, which depends on additional parameters;
after stating this general version, we will spell out the parameter choices that yield Theorem 7.
The proof relies on Lemma 16.
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I Proposition 36 (Theorem 7, Parametrized Version). For m : N → N and b : N → [0, 1
2 ],

let C be the class of ⊕ ∧⊕ circuits over n input bits with m = m(n) ∧-gates that accept all
but a b(n) fraction of their inputs. For any d ≥ 2 and c′ ≤ 2d/m, let Pc′d be the class of
polynomials Fn2 → F2 of degree d that accept all but a c′ ·

(
m · 2−d

)
fraction of their inputs.

Let d be an integer such that log(m) < d ≤ min {log(m) + log (1/b(n)) , n}, and let
2 < c′ ≤ 2d/m be a real number. Assume that there exists a hitting-set generator G with
density more than (2/c′) +m · 2−d for Pc′d . Then, G is a hitting-set generator for C.

To obtain parameters as in Theorem 7, let ε = ε(n) such that 2−n/2 ≤ ε ≤ 1/8, and let
m = m(n) ≤ 2n/2. For d = blog(m) + log(1/ε)c ≤ n and c′ = 4 ≤ 2d/m, assume that there
exists a hitting-set generator G for the class Pc′d with density 1/2 + 2 · ε ≥ (2/c′) +m · 2−d.
Then, Proposition 36 asserts that G is a hitting-set generator for the class of ⊕ ∧⊕ circuits
with m ∧-gates that accept all but ε · 2n of their inputs.

Proof. Let C : {0, 1}n → {0, 1} be a ⊕ ∧ ⊕ circuit with m ∧-gates that accepts all but a
b(n) fraction of its inputs. We will show how to randomly compute C by a distribution that
is typically in the class Pc′d , and then rely on Lemma 16 to deduce that any sufficiently dense
hitting-set generator for Pc′d also hits C.

The distribution over polynomials is obtained using Razborov’s approximating polynomials
method [17]. Our goal is to randomly replace each ∧-gate g that has fan-in more than d with a
polynomial g′ : {0, 1}n → {0, 1} of degree d such that for every fixed input x ∈ {0, 1}n it holds
that g(x) = g′(x) with probability at least 1− 2−d. To this purpose, given g(x) = ∧kj=1Lj(x),
where k > d and the Lj ’s are linear functions, we randomly choose d subsets S1, ..., Sd ⊆ [k],
and replace g with the F2-polynomial g′(x) = Πd

i=1

(
1 +

∑
j∈Si (Li(x) + 1)

)
. 18

The above yields a random polynomial p : Fn2 → F2 of degree at most d such that for
every fixed x ∈ {0, 1}n it holds that Pr[p(x) = C(x)] ≥ 1−m · 2−d. The expected fraction of
unsatisfying inputs for p is at most 2m · 2−d; this is because

Ep
[
Pr
x

[p(x) = 0]
]

= Ex
[
Pr
p

[p(x) = 0]
]

≤ Pr
x

[C(x) = 0] + Pr
x

[C(x) = 1] ·max
x

{
Pr
p

[p(x) 6= C(x)]
}

≤ b(n) +m · 2−d ,

and since d ≤ log(m) + log(1/b(n)) we have that m · 2−d ≥ b(n). Thus, the probability that
the fraction of unsatisfying inputs for p is more than c′ ·

(
m · 2−d

)
is at most 2/c′.

Thus, there exists a distribution that is (1− 2/c′)-typically in Pc′d and that rejects every
x /∈ C−1(1) with probability at least 1−m · 2−d. Now, let w be the output distribution of a
hitting-set generator with density 1− c > (2/c′) +m · 2−d for Pc′d . Relying on Lemma 16,

Pr[C(w) = 1] ≥ 1−m · 2−d − (2/c′)− c > 0 ,

which concludes the proof. J

18Using the standard analysis, if g(x) = 1, then Lj(x) = 1 for all j ∈ [k], which implies that g′(x) = 1
with probability one; and if g(x) = 0, then for every i ∈ [d], with probability 1/2 over choice of Si it
holds that

∑
j∈Si

(Li(x) + 1) = 1, which implies that g′(x) = 0 with probability 1− 2−d.
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7.2 Proof of Theorem 8
For this section, we first define and construct multivalued OR functions. We say that a
function f : Fk → F is a multivalued OR function if f(0, ..., 0) = 0, and for every x 6= (0, ..., 0)
it holds that f(x) 6= 0. Indeed, for any non-zero input x 6= (0, ..., 0), we require that f
outputs some non-zero value.

I Definition 37 (Multivalued OR Functions). Let F be a finite field, and let k be an integer. We
say that f : Fk → F is a multivalued OR function if for every x ∈ Fk such that x 6= (0, 0, ..., 0)
it holds that f(x) 6= 0.

Note that the function that outputs 1 on all non-zero inputs (and vanishes at (0, ..., 0))
satisfies Definition 37, but this function has a very high degree as a polynomial (i.e., it has
degree k · |F − 1|, which is in fact the maximal degree). In contrast, we are interested in
computing multivalued OR functions by polynomials of much lower degree. We now show
that for any k, there exists a polynomial Fk → F of degree at most 2 · k that computes a
multivalued OR function of its k variables.

I Proposition 38 (Construction of a Multivalued OR Function). Let F be a finite field, and let
k be an integer. Then, there exists a polynomial p : Fk → F of degree 2dlog(k)e that computes
a multivalued OR function of its k variables.

Proof. Let us first assume that k is a power of two. We want to construct a k-variate
polynomial of degree k that vanishes only at (0, ..., 0). We will first construct a bivariate
polynomial that vanishes only at (0, 0), and then recurse the construction, to repeatedly
double the number of variables as well as the degree, while maintaining the invariant that
the polynomial vanishes if and only if all of its inputs are zero.

Let α ∈ F be a quadratic non-residue (i.e., for every c ∈ F it holds that c2 6= α). The
initial bivariate polynomial is defined by f (2)(x1, x2) = x2

1 + α · x2
2. Observe that there

does not exist a solution other than (0, 0) to the equation f (2)(x1, x2) = 0, since α is not
a quadratic residue. Now, for every k ≥ 4 that is a power of two, let f (k)(x1, ..., xk) =(
f (k/2)(x1, ..., xk/2)

)2 + α ·
(
f (k/2)(xk/2+1, ..., xk)

)2. Observe that f (k)(x1, ..., xk) = 0 if and
only if xi = 0 for every i ∈ [k], whereas deg(f (k)) = k. Finally, for any k that is not a power
of two, we can use a straightforward padding argument to obtain a polynomial of degree
2dlog(k)e. J

We are now ready to prove the main claim that will be used in the proof of Theorem 8.
The following proposition reduces the task of hitting any polynomial p : Fn → F of degree d
to the task of hitting a polynomial p′ : Ft·n → F of degree d′ = poly(d) that vanishes very
rarely.

I Proposition 39 (Reducing Hitting Polynomials to Hitting Polynomials that Vanish Rarely).
Let t ≥ 2 be an even integer, and let ε > 0 be a real number. Let n ∈ N, let F be a finite
field of cardinality |F| = q, and let 1 ≤ d ≤ (1− ε) · q. Assume that there exists a hitting-set
generator with seed length s for the class of polynomials Ft·n → F of degree d′ = (2 · d)t that
vanish on at most a b(n) = O

(
q−t

2/4
)
fraction of their inputs, where the O-notation hides

a constant that depends on t and on ε. Then, there exists a hitting-set generator with seed
length s′ = s+ (t− 1) · dlog(q)e for the class of all polynomials Fn → F of degree d.

A high-level overview of the proof of Proposition 39 appeared in Section 2.4. We stress
that the field size |F| = q is the same both for the polynomials Fn → F and for the polynomials
Ft·n → F.
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Proof. For any tuple of t elements ~u =
(
u(0), u(1), ..., u(t−1)) ∈ Ft·n, denote by W~u ⊆ Fn the

affine subspace W~u = {u(0) + α1 · u(1) + ...+ αt−1 · u(t−1) : α1, ..., αt−1 ∈ F}. Also, denote
by Pd′ the class of polynomials Ft·n → F of degree d′ that vanish on at most b(n) of their
inputs.

Our proof strategy is as follows. For any polynomial p : Fn → F of degree d, we will
construct a corresponding polynomial p′ : Ft·n → F of degree at most d′ = (2 · d)t such that
p′(~u) = 0 if and only if p�W~u

≡ 0. We will show that with high probability over choice of ~u it
holds that p�W~u

6≡ 0, which implies that the polynomial p′ vanishes rarely; that is, we will
show that p′ ∈ Pd′ . Thus, for every p : Fn → F of degree d, a hitting-set generator G for Pd′
also hits p′, which means that the generator finds a subspace W~u such that p�W~u

6≡ 0. This
allows us to find a satisfying input for p by invoking G and then choosing a random input in
W~u. Details follow.

Let us first fix an arbitrary p : Fn → F, and construct the corresponding polynomial
p′ : Ft·n → F. For an input ~u ∈ Ft·n and i ∈ [t], denote u(i) = (u(i)

1 , ..., u
(i)
n ) ∈ Fn, and

observe that the polynomial p�W~u
(α1, ..., αt−1) is of the form

p�W~u
(α1, ..., αt−1) = p

(
u(0) + α1 · u(1) + ...+ αt−1 · u(t−1)

)
= p

(
u

(0)
1 + α1 · u(1)

1 + ...+ αt−1 · u(t−1)
1 , ...,

u(0)
n + α1 · u(1)

n + ...+ αt−1 · u(t−1)
n

)
=

∑
i1+i2+...+it−1≤d

ci1,...,it−1(~u) · αi11 · ... · α
it−1
t−1 , (7.1)

where for every i1 + i2 + ... + it−1 ≤ d it holds that ci1,...,it−1(~u) is the coefficient of the
monomial αi11 · ... · α

it−1
t−1 in p�W~u

.
Note that p�W~u

≡ 0 if and only if for every tuple (i1, ..., it−1) such that i1 + ...+ it−1 ≤ d it
holds that ci1,...,it−1(~u) = 0. Thus, we wish to construct a polynomial p′ such that p′(~u) 6= 0
if and only if there exists (i1, ..., it−1) such that i1 + ... + it−1 ≤ d and ci1,...,it−1(~u) 6= 0.
Note that the number of coefficients of p�W~u

is k =
(
d+t−1
t−1

)
. The polynomial p′ : Ft·n → F

is a multivalued OR function of these k coefficients ci1,...,it−1(~u), which we construct using
Proposition 38. To upper-bound the degree of p′ (by d′), note that each ci1,...,it−1 is a
polynomial of degree at most d in ~u.

I Claim 39.1. For every (i1, ..., it−1) such that i1 + ...+ it−1 ≤ d it holds that ci1,...,it−1 , as
defined in Eq. (7.1), is a polynomial of degree at most d in ~u = (u(0), ..., u(t−1)) ∈ Ft·n.

Proof. Consider the polynomial p�W~u
[α1, ..., αt−1] as a function of ~u. By the definition of

p�W~u
, it holds that p�W~u

[α1, ..., αt−1] = p[β1, ..., βn], where for every i ∈ [n] it holds that
βi = u

(0)
i +αi · u(1)

i + ...+αt−1 · u(t−1)
i . Note that for every i ∈ [n] it holds that βi is a linear

function of ~u. Since p is of total degree d, the polynomial p[β1, ...βn] is a sum of monomials
of degree at most d in β1, ..., βn, and because each βi is linear in ~u, each such monomial is a
polynomial of degree at most d in ~u. J

Therefore, the degree of p′ is less than 2 ·
(
d+t−1
t−1

)
· d < (2 · d)t = d′. Finally, let us

upper-bound the probability that p′ vanishes, in order to show that p′ ∈ Pd′ . To do so, note
that Prx∈Fn [p(x) = 0] ≤ d/q ≤ 1 − ε (where the first inequality is by the Schwartz-Zippel
lemma, and the second inequality is by the hypothesis that d ≤ (1− ε) · q). Also recall that
when uniformly choosing ~u ∈ Ft·n, the points in W~u are t-wise independent. Relying on
Fact 12, we deduce that:
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I Claim 39.2. The probability over choice of ~u that p�W~u
≡ 0 is at most O

(
dt/2 · q−t2/2

)
,

where the O-notation hides a constant that depends on t and on ε.

The proof of Claim 39.2 amounts to a straightforward calculation, so we defer it to
Appendix C. Relying on Claim 39.2 and on the hypothesis that d ≤ (1− ε) · q, we deduce
that Pr~u [p′(~u) = 0] = Pr~u

[
p�W~u

≡ 0
]
< O

(
q−t

2/2+t/2
)
≤ O

(
q−t

2/4
)

= b(n).
Now, assuming that we have a hitting-set generator G for Pd′ , we construct a hitting-set

generator for degree-d polynomials as follows. We invoke G to obtain a tuple ~u ∈ Ft·n, and
then use additional (t− 1) · dlog(q)e bits of randomness to choose an element in the affine
subspace W~u. Since G finds ~u such that p�W~u

6≡ 0, with positive probability, our hitting-set
generator hits p, with positive probability. J

Proposition 39 reduces the task of hitting a polynomial Fn → F of degree d to the task of
hitting of a polynomial p′ : Ft·n → F of higher degree d′ = poly(d) that vanishes very rarely.
The following proposition shows how to reduce the task of hitting p to the task of hitting
polynomials of the same degree as p that vanish with probability at most O(1/|F|).

I Proposition 40 (Reducing Hitting Polynomials to Hitting Polynomials of the Same Degree
that Vanish Infrequently). Let n ∈ N, and let F be a finite field of cardinality |F| = q. For any
c′ > 0 and d ≥ 1, let Pd,c′ be the class of polynomials F2·n → F of degree d that vanish on at
most a b(n) = c′/q fraction of their inputs. Then, for any integer d such that d+ 2

√
d ≤ q

and any 2 ≤ c′ ≤ d, the following holds:
If there exists a hitting-set generator for the class Pd,c′ with seed length s = s(n, q, d, c′)

and density more than 2/c′, then there exists a hitting-set generator for polynomials Fn → F
of degree d with seed length s′ = s+ dlog(q)e.

Proof. The starting point of the current proof is the proof of Proposition 39, with the fixed
parameter t = 2. 19 Let G =

{
~u ∈ F2·n : p�W~u

6≡ 0
}
be the set of subspaces on which p is not

identically zero. Our goal is to show a distribution h over polynomials F2·n → F of degree d
that satisfies the following:

For every ~u /∈ G it holds that Pr[h(~u) = 0] = 1.
The probability that h ∼ h vanishes on more than c′/q of its inputs is at most 2/c′.

We can then rely on Lemma 16, to deduce that any sufficiently dense hitting-set generator
for degree-d polynomials that vanish on at mos c′/q of their inputs also hits G, which allows
us to hit p with additional dlog(q)e random bits.

Towards constructing h, recall that for every fixed ~u ∈ F2·n, the d+ 1 coefficients of p�W~u

are degree-d polynomials in ~u, denoted c1(~u), ..., cd+1(~u). The distribution h is simply a
random F-linear combination of the ci’s. That is, for a random tuple ~β = (β0, β1, ..., βd) ∈
F(d+1)·n, we define h~β(~u) =

∑d
i=0 βi · ci(~u). Note that for every ~β ∈ F(d+1)·n it holds that h~β

is of degree d. Also, if ~u /∈ G (i.e., all the ci(~u)’s equal zero), then h~β(~u) = 0 with probability
one, and otherwise, h~β(~u) 6= 0 with probability 1− 1/q.

We now show that at least a (1− 2/c′) fraction of the h~β ’s vanish on at most c′/q of their
inputs. Since the points in W are pairwise-independent, we have that:

19Larger values of t will not help to reduce the vanishing probability of the polynomials in the target of
the reduction, due to the error of 1/q in the randomized computation of p′. However, larger values of t
can help us relax the requirement that d+ 2

√
d ≤ q, and allow for slightly larger values of d (that are

still below q). We do not pursue this direction in the current text.
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I Claim 40.1. For any ε > 0, if d ≤ (1 − ε) · q, then the probability over choice of ~u that
p�W~u

≡ 0 is at most 4 ·
(

d
ε2·q2

)
.

The proof of Claim 40.1 appears in Appendix C. In our case, we have that d ≤ (1− ε) · q,
where ε = 2

√
d
q (because d+ 2

√
d ≤ q); therefore, Claim 40.1 implies that Pr~u[~u /∈ G] ≤ 1/q.

Hence, over a random choice of ~β, the expected fraction of inputs on which h~β vanishes is

E~β

[
Pr
~u

[
h~β(~u) = 0

]]
= E~u

[
Pr
~β

[
h~β(~u) = 0

]]

≤ Pr
~u

[~u /∈ G] + Pr
~u

[~u ∈ G] ·max
~u∈G

{
Pr
~β

[h~β(~u) = 0]
}

,

which is upper bounded by 2/q. It follows that the probability that h~β vanishes on more
than c′/q fraction of its inputs is at most 2/c′.

Now, let w be the output distribution of a hitting-set generator with density µ > 2/c′
for Pd,c′ ; then, Lemma 16 implies that Pr[w ∈ G] > µ− 2/c′ > 0. Finally, similarly to the
proof of Proposition 39, after obtaining ~u ∈ F2·n we can use another log(q) bits to uniformly
choose an element in W~u, thus hitting p with positive probability. J

Let us now formally state Theorem 8, and prove it as a corollary of Propositions 39
and 40.

I Theorem 41 (Theorem 8, Restated). Let k ∈ N, let t ≥ 2 be an even integer, and let ε > 0
be a real number. Let n ∈ N be sufficiently large, and let F be a field of size |F| = q ≤ nk.
Then, the following holds:
1. Let d ∈ N such that d ≥ k+ 1 and d+ 2 ·

√
d ≤ q, and let c′ ∈ (2, d]. Then, any hitting-set

generator with density more than 2/c′ for polynomials Fn → F of degree d that vanish on
at most a b(n) = c′/q fraction of their inputs requires seed of Ω

(
log
((
n+d
d

)))
bits.

2. Let d′ be an integer such that (2k)t(t+1) ≤ d′ ≤ (1 − ε) · qt+1. Then, any hitting-set
generator for the class of polynomials Fn → F of degree d′ that vanish on at most a
b(n) = O

(
q−t

2/4
)
fraction of their inputs requires seed of Ω

(
log
((
n+d
d

)))
bits, where

d = (d′)1/(t+1).
In the two items above, the constants hidden in the Ω-notation of the lower bound may depend
on k, on ε, and (in the first item) on t.

Proof. Recall that any hitting-set generator for the class of all polynomials Fn → F of degree
d (i.e., without any assumption about their vanishing probability) must use a seed of at least
s′ ≥ log

((
n+d
d

))
bits. This is the case because otherwise we can interpolate the 2s′ <

(
n+d
d

)
points in the image of the hitting-set generator by a non-zero degree-d polynomial. Also
note that it suffices to prove the lower bounds for n that is a multiple of t = O(1), due to a
padding argument (i.e., because any hitting-set generator for polynomials Fn → F that vanish
on at most O

(
q−t

2/4
)
of their inputs can be used as a hitting-set generator for polynomials

Fn−O(1) → F that vanish on the same fraction of inputs, by adding dummy variables; and
ditto for O(1/q)).

To prove Item (1), assume that there exists a hitting-set generator with seed length s
and density more than 2/c′ for polynomials of degree d that vanish on c′/q of their inputs.
Relying on Proposition 40, there exists a hitting-set generator for all polynomials Fn/2 → F
of degree d with seed length s′ = s + dlog qe. Since s′ ≥ log

((
n/2+d
d

))
, we deduce that
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s ≥ log
((
n/2+d
d

))
− dlog(q)e = Ω

(
log
((
n/2+d
d

)))
, where the equality holds because q ≤ nk

and d ≥ k + 1. Finally, we rely on the following elementary fact:

I Fact 41.1. Let t be a constant integer. Let n and d be two integers such that the sum
n+ d is sufficiently large. Then, we have that log

((
n/t+d
d

))
= Ω

(
log
((
n+d
d

)))
, where the

constant hidden inside the Ω-notation depends on t.

The proof of Fact 41.1 appears in Appendix C. It follows from Fact 41.1 that s ≥ Ω
(

log
((
n+d
d

)))
,

which concludes the proof of Item (1).
The proof of Item (2) is similar to that of Item (1). Assume that there exists a hitting-set

generator with seed length s for the class of degree-d′ polynomials Fn → F that vanish on
at most a O

(
q−t

2/4
)
fraction of their inputs. Let d =

⌊
(d′)1/t/2

⌋
(such that d′ ≥ (2 · d)t).

According to Proposition 39, there exists a hitting-set generator for all polynomials Fn/t → F
of degree d with seed length s′ = s+ (t− 1) · dlog(q)e. Since we know that s′ ≥ log

((
n/t+d
d

))
,

it holds that s is lower bounded by

log
((

n/t+ d

d

))
− (t− 1) · dlog(q)e = Ω

(
log
((

n/t+ d

d

)))
= Ω

(
log
((

n+ d

d

)))
= Ω

(
log
((

n+ (d′)1/(t+1)

(d′)1/(t+1)

)))
,

where the first equality is because q ≤ nk and d ≥ (2k)t+1

2 ≥ (t+ 1) · k, the second equality is
due to Fact 41.1, and the last equality is because d ≥ (d′)1/(t+1). J
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A An alternative proof for Theorem 1.6 in [9]

Goldreich and Wigderson [9, Thm 1.6] proved that for any d < n, there exists a pseudorandom
generator with seed length O(log(n)) for the class of polynomials p : Fn2 → F2 of degree d
that vanish at most a b(n) = O

(
2−d

)
fraction of their inputs (the theorem statement in [9]

asserts the existence of a hitting-set generator, but in their proof they actually construct
a pseudorandom generator). Their proof is based on a refinement of a lemma of Viola [25,
Lemma 4]. We present an alternative proof of their result, which relies on Lemma 18.

High-level outline

Let p : Fn2 → F2 be a polynomial of degree d that vanishes on at most b(n) = O
(
2−d

)
of

its inputs. We will randomly compute p by a distribution over polynomials of constant
degree, and rely on Lemma 18 to deduce that any pseudorandom generator for polynomials
of constant degree also “fools” p.

The family of polynomials of constant degree that we will use to randomly compute p is
defined as follows. For d′ = d− O(1) and a tuple ~r = (r1, ..., rd′) ∈ Fd′·n2 , let h~r : Fn2 → F2
be defined by

h~r(x) = 1 + ∆~rp(x) = 1 +
∑
S⊆[d′]

p

(
x+

∑
i∈S

ri

)
, (A.1)

where ∆~rp(x) is the iterated directional derivative of p in directions r1, ..., rd′ (for a definition
see, e.g., [16, Def. 6.48]). Note that h~r is a polynomial of degree at most d− d′ = O(1). The
family H of polynomials that we will use to randomly compute p is induced by all possible
choices of ~r ∈ Fd′·n2 ; that is, H =

{
h~r : ~r ∈ Fd′·n2

}
.

The key argument is that for every fixed input x ∈ Fn2 , when uniformly choosing h~r ∈ H,
with sufficiently good probability it holds that p(x) = h~r(x). To see this, note that if for every
non-empty S ⊆ [d′] it holds that p

(
x+

∑
i∈S ri

)
= 1, then ∆~rp(x) = p(x)+(2d′−1) = p(x)+1,

which implies that h~r(x) = p(x). Since p vanishes on at most b(n) of its inputs, the latter
event happens with probability at least 1− 2d′ · b(n) = Ω(1). Thus, relying on Lemma 18,
any pseudorandom generator for H also “fools” p. Let us now formalize and parametrize this
argument.

I Theorem 42 (F2-Polynomials with b(n) = O(2−d)). Let c > 0 be an arbitrarily large
constant. Let n ∈ N, let d < n, and let p : Fn2 → F2 be a polynomial of degree d that vanishes
on at most b(n) = c ·

(
2−d

)
of its inputs. Then, for every δ > 0, any pseudorandom generator

with error δ/2 for polynomials of degree dlog(2c/δ)e is also a pseudorandom generator with
error δ for p, where pseudorandom generators for F2-polynomials are defined in Definition 9.

Proof. Let d′ = d − blog(2c/δ)c, let H =
{
h~r : ~r ∈ Fd′·n2

}
such that for every ~r ∈ Fd′·n2

the function h~r is defined as in Eq. (A.1), and let h be the uniform distribution over H.
Note that for every fixed x ∈ Fn2 it holds that Pr[h(x) = p(x)] > 1 − δ/2; this is the case
because for every non-empty S ⊆ [d′], the probability that p(x +

∑
i∈S ri) = 0 is at most

b(n), which implies that with probability at least 1− b(n) · (2d′ − 1) > 1− δ
2 we have that

h(x) = 1 + p(x) +
(

2d′ − 1
)

= p(x).
Now, let ξ : F2 → C be the character ξ(x) = (−1)x. Let w be a distribution that

(δ/2)-fools polynomials of degree dlog(2c/δ)e (which implies that for every such polynomial p′

it holds that
∣∣∣E[ξ(p′(w))]−E[ξ(p′(un))]

∣∣∣ ≤ δ). According to Lemma 18, using the parameter
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values δ = maxx∈F2{|ξ(x)|} = 1, and ε1 = (δ/2), and ε2 = 0, and ε3 = δ, it holds that∣∣∣Pr[p(w) = 1]− Pr[p(un) = 1]
∣∣∣ = 1

2 ·
∣∣∣E[ξ(p(w))]− E[ξ(p(un))]

∣∣∣ ≤ δ. J

B Proofs of claims from Section 5

We prove two claims from Section 5.2.2 (i.e., Lemma 27 and a generalization of the switching
lemma of [9]) and a technical claim from Section 5.2.1 (i.e., Claim 23). Lemma 27 is an
adaptation of the main lemma of Trevisan and Xue [23]. Let us now recall the statement of
Lemma 27, and prove the lemma.

I Lemma 43 (Lemma 27, Restated). Let F be a CNF over n inputs with m clauses, each
clause of width at most w. For a positive parameter p = 2−q, where q ∈ N, let ρ ∈ {0, 1, ?}n
be a restriction that is chosen according to a distribution over {0, 1}(q+1)·n that δ0-fools all
CNFs of width w′ = w · (q + 1). Then, the probability that F �ρ cannot be computed by a
decision tree of depth D is at most 2D+w+1 · (5pw)D + δ0 · 2(D+1)·(2·w+log(m)).

Proof Sketch. We rely on the proof of Lemma 7 in [23], and in particular use the same
definitions of canonical decision tree, path, and segment. The proof in [23] reduces the task
of finding a restriction ρ such that F �ρ can be computed by a shallow decision tree to the
task of “fooling” less than 2(D+1)·(2w+log(m)) tests: For each path of length D + 1 (i.e., a
sequence of D + 1 segments), there is a corresponding test TP : {0, 1}(q+1)·n → {0, 1} that
gets as input a restriction ρ ∈ {0, 1}(q+1)·n, and accepts ρ if and only if the canonical decision
tree for F �ρ contains the path P . Indeed, if all the tests reject ρ, it means that no path of
length D + 1 exists in the canonical decision tree for F �ρ, which implies that the canonical
decision tree for F �ρ is of depth D.

The key claim in the proof is Claim 8, which asserts that for each path P , the test TP
can be computed by a CNF. The goal in [23] is to show that the CNF for TP has few clauses;
we focus on showing that the CNF for TP has small width. To see that this holds, note
that TP is constructed as a conjunction of conditions, where each condition depends only
on the assignment that ρ gives to the variables of a single clause of F (either a clause that
belongs to a segment in the path, or a clause whose index is between the indices of clauses
that belong to segments in the path). Thus, each condition depends only on the assignment
that ρ gives to w variables, which means that each condition depends only on w′ = w · (q+ 1)
bits of ρ. Hence, each condition can be decided by a CNF of width w′, and TP (which is
their conjunction) can also be decided by a CNF of width w′. J

Let us now formally state the generalization of the switching lemma of Goldreich and
Wigderson [9] and prove it.

I Proposition 44 (A Generalization of the Derandomized Switching Lemma of [9]). Let
m : N→ N, let w : N→ N, and let δ : N→ [0, 1). Let z be a distribution over {0, 1}O(log(w))·n

that is δ′-almost t′-wise independent, where log(1/δ′) = O(t′) = Õ(w) · 2w · log(1/δ).
Then, for any depth-2 formula F : {0, 1}n → {0, 1} of width w = w(n) with m = m(n)

clauses, with probability at least 1− 4δ (where δ = δ(n)) over choice of ρ ∼ z it holds that
the restricted formula F �ρ can be computed by a decision tree of depth D = O(log(1/δ)).

Proof. Let δ0 = δ · 2−D = poly(δ), and fix a depth-2 formula F : {0, 1}n → {0, 1}; without
loss of generality, assume that F is a CNF. 20 Consider a uniformly-chosen restriction ρ that

20This is without loss of generality since if F is a DNF, then F �ρ can be computed by a depth-D decision
tree if and only if (¬F )�ρ can be computed by such a tree.
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keeps each variable alive with probability p = 1/O(w); Hastad’s switching lemma asserts
that with probability at least 1− 2−O(D) ≥ 1− δ0, the canonical decision tree of F �ρ is of
depth D = O(log(1/δ)) (the canonical decision tree is the decision tree that is constructed
by the algorithm in Hastad’s original proof; for a definition see, e.g., [23, Def. 4]).

Given a restriction ρ, we consider the following way to decide whether the canonical
decision tree of F �ρ is of depth D. Associate each string P ∈ {0, 1}D with a potential
positional path of depth D in the canonical decision tree of F ; that is, the string P induces a
path from the root to a specific node of depth D in a full binary tree of depth D or more.
For each P ∈ {0, 1}D, we consider a corresponding test TP that gets ρ as input, and tests
whether or not one of the nodes in the path induced by P along the canonical decision tree of
F �ρ is a leaf node (i.e., whether or not the path ends at depth at most D); if there is indeed
a leaf then TP accepts ρ, and otherwise (i.e., if the path continues to depth D + 1) then TP
rejects ρ. We will describe TP in detail in a moment, but for now observe that the canonical
decision tree of F �ρ is of depth D if and only if for each P ∈ {0, 1}D it holds that TP (ρ) = 1.

To describe how each TP works, fix P ∈ {0, 1}D, and let TP be the following recursive
algorithm. The algorithm gets as input a CNF F ′, a restriction ρ′ and a string P ′ (in the
first recursive call F ′ = F , ρ′ = ρ, and P ′ = P ). If the CNF is empty (i.e., has no clauses),
then the algorithm accepts; otherwise, the algorithm examines the values that ρ′ assigns to
the variables in the first clause of F ′:

If the first clause is unsatisfied by ρ′ (i.e., all variables are fixed to unsatisfying values)
then the algorithm accepts and halts.
If the first clause is satisfied by ρ′ (i.e., one or more variables are assigned to satisfying
values), then the algorithm simplifies F ′ by omitting the first clause, and by simplifying
the other clauses according to the values that ρ′ assigned to the variables in the first
clause. Then, the algorithm recurses with with the simplified CNF and with the same
restriction ρ′ and string P ′.
Otherwise, the first clause is undetermined by ρ′. If the number of living variables in the
clause, denoted by k, is greater than the length of P ′, then the algorithm rejects. 21 If
k ≤ |P ′|, let ρ′′ be the restriction that fixes the k variables to values according to the
k-prefix of P ′. The algorithm simplifies F ′ according to the composition ρ′′ ◦ ρ′, and
recurses with the simplified CNF, with the restriction ρ′′ ◦ρ′, and with the string obtained
from P ′ by omitting its first k bits.

The main point to note in the above description is that in each recursive call, the
test TP needs to read at most w blocks of dlog(1/p)e = O(log(w)) bits in the restriction,
corresponding to the (at most w) variables in the clause that it examines. The key observation
in [9, Lemma 3.3], which we now state in a more general form, is that for each P ∈ {0, 1}D,
with high probability it holds that TP makes at most D′ = O (2w · log (1/δ0))) recursive
calls; that is, with high probability TP examines the values that ρ assigns to variables of at
most D′ clauses. This is the case because for each recursive call, the probability that the
clause that is examined is unsatisfied is at least 2−w; thus, the probability that after D′
recursive calls the algorithm encountered an unsatisfied clause, and thus stopped, is more
than 1− (1− 2−w)D

′
≥ 1− δ0. It follows that for each P ∈ {0, 1}D, with probability at least

21This event means that the path induced by P in the canonical decision tree of F �ρ is of depth more
than |P | = D. Recall that by the definition of the canonical decision tree, whenever the algorithm that
constructs the canonical decision tree encounters an undetermined clause, it adds the full sub-tree that
corresponds to all living variables in the clause to the canonical decision tree.
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1− 2δ0 over a uniformly-chosen restriction ρ it holds that TP accepts ρ without making more
than D′ recursive calls.

Now, consider “truncated” versions of these tests: For each P ∈ {0, 1}D, consider
a modified version T ′P of TP that, in addition to the description above, rejects ρ if the
depth of the recursion exceeds D′. According to previous paragraph, the test T ′P accepts a
uniformly-chosen restriction with probability at least 1− 2δ0. Since each T ′P reads at most
D′′ = O (D′ · w · log(w)) = Õ (w) · (2w · log(1/δ)) bits in the restriction, if instead of the
uniform distribution we choose a restriction from the distribution z, which is δ′-almost t′-wise
independent, where δ′ <

(
δ0 · 2−D

′′
)
and t′ ≥ D′′, then the probability that T ′P will accept is

at least 1− 3δ0. 22 Thus, the probability that all the tests accept (i.e., ∧P∈{0,1}DTP (ρ) = 1)
is at least 1− 3δ. J

Let us now recall the statement of Claim 23 and prove it.

I Claim 45 (Claim 23, Restated). Let F : {0, 1}n → {0, 1} be a depth-2 formula of width w
and size m, and let F ′ : {0, 1}n → {0, 1} be a refinement of F . Then, for any restriction
ρ ∈ {0, 1, ?}n it holds that F �ρ can be computed by a depth-2 formula Φ of width w and size
m such that F ′�ρ is a refinement of Φ.

Proof. We prove the claim for the case where F is a DNF; the proof for the case where F is
a CNF follows by reduction to the DNF ¬F , relying on Fact 21. Let Φ be the DNF for F �ρ
that is obtained by fixing the variables in each clause of F according to ρ, without omitting
any clause from the formula (even if a clause becomes a constant function).

When F ′ was obtained by a sequence of removal steps and clean-up steps, then F ′ is
simply a sub-formula of F . In this case, we can apply the same sequence of removal steps
and clean-up steps to Φ, to obtain a corresponding sub-formula of Φ that computes F ′�ρ. 23
We thus focus on proving the claim when F ′ was obtained by a sequence of k ≤ m merging
steps and clean-up steps.

For every i ∈ [k], let F (i) be the formula in the beginning of the ith refinement step in the
transformation of F to F ′, and let F (k+1) = F ′. We will show a sequence of k merging steps
and clean-up steps that, when applied to Φ, induce a corresponding sequence of formulas
Φ = Φ(1), ...,Φ(k+1), such that the following holds: For every i ∈ [k] there exists a bijection
between the clauses of Φ(i) and the clauses of F (i)�ρ such that every clause ϕ of the former is
mapped to a clause f of the latter such that ϕ computes the function f�ρ. In particular, this
claim implies that for every i ∈ [k] it holds that Φ(i) ≡ F (i)�ρ, and therefore F ′�ρ ≡ Φ(k+1)

is a refinement of Φ = Φ(1).
The claim is proved by induction on i. The base case i = 1 follows immediately from

the definition of Φ(1) = Φ. For the induction step, assume that there is a bijection as above
between the clauses of Φ(i) and the clauses of F (i)�ρ, and let us define the ith refinement
step that is applied to Φ(i). If the ith refinement step of F (i) was a clean-up step, then we

22The reason that we use the error parameter δ0 · 2−D
′′
instead of the more natural parameter δ0 is that

the tests that we are trying to “fool” are adaptive; that is, for each P ∈ {0, 1}D, the test TP does not
examine a fixed set of D′′ bits in ρ, but rather adaptively chooses which bits to read according to the
values of the bits that it read so far. We rely on the fact that any distribution that is

(
δ0 · 2−D

′′)
-almost

D′′-wise independent also δ0-fools adaptive tests that only read D′′ bits (see, e.g., [8, Exer. 7.4]).
23That is, let F = ∨mi=1fi, and assume that F ′ = ∨mi=k+1fi was obtained from F by removing the clauses
f1, ..., fk. Then it holds that Φ = ∨mi=1(fi�ρ) and F ′�ρ = ∨mi=k+1(fi�ρ), which implies that we can apply
k removal steps to Φ in order to obtain F ′�ρ.
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can apply an analogous clean-up step to Φ(i). 24 Otherwise, if the ith refinement step of F (i)

was a merging step, let f (i)
1 , ..., f

(i)
u be the set of clauses that were removed in this step, and

let h(i) be the new clause that was added in their stead. For every j ∈ [u], let ϕ(i)
j be the

clause in Φ(i) that computes f (i)
j �ρ and exists by the induction hypothesis. We show how

apply a single refinement step to Φ(i) that replaces the clauses ϕ(i)
1 , ..., ϕ

(i)
u with a new clause

ϕ(i) that computes the function h(i)�ρ. This is proved by a case analysis:
1. If h(i)�ρ is not a constant function, then it follows that

⋂
j∈[u](f

(i)
j �ρ) =

⋂
j∈[u] ϕ

(i)
j 6= ∅.

In this case, we apply a merging step to the clauses ϕ(i)
1 , ..., ϕ

(i)
u in Φ(i), and they are

replaced with the non-constant clause ϕ(i) =
⋂
j∈[u] ϕ

(i)
j =

⋂
j∈[u](f

(i)
j �ρ) = h(i)�ρ.

2. If h(i)�ρ ≡ 0, then for every j ∈ [u] it holds that f (i)
j �ρ ≡ ϕ

(i)
j ≡ 0. This is the case because⋂

j∈[u] f
(i)
j 6= ∅ (otherwise h(i) ≡ 1 and also h(i)�ρ ≡ 1), whereas

(⋂
j∈[u] f

(i)
j

)
�ρ ≡ 0,

which implies that for every j ∈ [u] there exists a literal in f (i)
j that is fixed by ρ to an

unsatisfying value. Therefore, in this case we can apply a clean-up step to Φ(i) to remove
all but a single constant zero clause among the f (i)

j ’s.
3. If h(i)�ρ ≡ 1, then it holds that

⋂
j∈[u] ϕ

(i)
j = ∅. To see that this is the case, note

that if
⋂
j∈[u] f

(i)
j = ∅ then the latter assertion holds immediately; and otherwise (i.e.,⋂

j∈[u] f
(i)
j 6= ∅), it follows by the assumption that h(i)�ρ ≡ 1 that ρ fixes all the literals

that are shared by all the u clauses f (i)
1 , ..., f

(i)
u to satisfying values, which indeed implies

that
⋂
j∈[u] ϕ

(i)
j = ∅. Thus, we can apply a merging step to ϕ(i)

1 , ..., ϕ
(i)
u to obtain the

constant one function. J

C Proofs of technical claims from Section 7

In this appendix we prove several technical claims that were made in the proofs of Proposi-
tion 39, Proposition 40, and Theorem 41.

Let us first prove a claim that generalizes Claims 39.2 and 40.1, which were made in
the proofs of Proposition 39 and Proposition 40, respectively. Recall that for any tuple
of t elements ~u = (u(0), ..., u(t−1)) ∈ Ft·n, we denote by W~u ⊆ Fn the affine subspace
W~u = {u(0) + α1 · u(1) + ...+ αt−1 · u(t−1) : α1, ..., αt−1 ∈ F}. Then, the following holds:

I Claim 46 (Claims 39.2 and 40.1, Generalized). Let t ≥ 2 be an even integer, and let
ε ∈ (0, 1). Let n ∈ N, let F be a field of size |F| = q, and let p : Fn → F be a polynomial of
degree d ≤ (1− ε) · q. Uniformly choose ~u = (u(0), ..., u(t−1)) ∈ Ft·n, and let W = W~u. Then,
the probability that p�W ≡ 0 is at most O

(
dt/2 · q−t2/2 · ε−t

)
, where the O-notation hides a

constant that depends on t; in particular, when t = 2, the hidden constant is just 4.

Proof. For i = 1, ..., qt−1, let µ(i)
W be the indicator variable of whether p vanishes on the

ith point in W (according to some canonical ordering of points in Fn), and let µW =
Ei∈[qt−1]

[
µ

(i)
W

]
= Pr~x∈W [p(~x) = 0]. Denote by b = Prx∈Fn [p(x) = 0], and note that

24 Specifically, denote by f (i)
1 , ..., f

(i)
u the constant zero clauses that were removed from F (i) in the ith step.

For every j ∈ [u], let ϕ(i)
j be the clause in Φ(i) that computes f (i)

j �ρ ≡ 0 and exists by the induction
hypothesis. Then, the ith refinement step of Φ(i) is a clean-up step that removes the constant zero
clauses ϕ(i)

1 , ..., ϕ
(i)
u .
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b ≤ d/q ≤ 1− ε, where the first inequality is by the Schwartz-Zippel lemma, and the second
inequality is by the hypothesis that d ≤ (1− ε) · q.

We handle the case of t = 2 and the case of t ≥ 4 separately. Starting with the former, note
that for every i 6= j ∈ [q] it holds that µ(i)

W and µ(j)
W are independent, and that V ar

(
µ

(i)
W

)
≤ b.

Relying on Chebyshev’s inequality, we have that

Pr
W

[|µW − b| > ε/2] ≤ b

(ε/2)2 · q
≤ 4 ·

(
d

ε2 · q2

)
.

For the case of t ≥ 4, we rely on Fact 12. In our case, the t-wise independent variables
are µ(1)

W , ..., µ
(qt−1)
W , their average is 1

qt−1 ·
∑
i∈[qt−1] µ

(i)
W = µW , and their expected average is

b ≤ 1− ε. Using Fact 12 with ζ = ε/2, we have that

Pr
W

[|µW − b| ≥ ε/2] ≤ 8 ·
(
t · b · qt−1 + t2

(ε/2)2 · (qt−1)2

)t/2
≤ 8 ·

(
2 · t2 ·max

{
b, q−(t−1)}

(ε/2)2 · qt−1

)t/2

≤
(

8 · 2t/2 · (2t)t
)
·
(

d/q

ε2 · qt−1

)t/2
,

which is O
(
dt/2 · q−t2/2 · ε−t

)
. J

We now prove Fact 41.1, which was stated in the proof of of Theorem 41:

I Fact 47 (Fact 41.1, Restated). Let t be a constant integer. Let n and d be two integers such
that the sum n+ d is sufficiently large. Then, we have that log

((
n/t+d
d

))
= Ω

(
log
((
n+d
d

)))
,

where the constant hidden inside the Ω-notation depends on t.

Proof. Let c = 1
t·e , where e = 2.71... . If d ≤ c · (n/t+ d), then the assertion follows from the

standard bound
(
n
k

)k ≤ (nk) ≤ (n·ek )k. 25 Similarly, if (n/t) ≤ c′ · (n/t+ d), where c′ = 1/e,
then the assertion follows by showing that log

((
n/t+d
n/t

))
= Ω

(
log
((
n+d
n

)))
, relying on the

same standard bound. 26
Otherwise, we have that d > c · (n/t + d) and n/t > c′ · (n/t + d). In this case we use

Stirling’s approximation: Let H2(·) be the binary entropy function, and denote α = d
d+n

and α′ = d
d+(n/t) . Note that c

t < α < 1 − c′, and that c < α′ < 1 − c′, which implies that

H2(α) = Ω(1) and H2(α′) = Ω(1). Hence, we deduce that log
((
n+d
d

))
≤ H2(α) · (n + d),

whereas log
((
n/t+d
d

))
≥ (H2(α′)− o(1)) · (n/t+ d) = Ω (H2(α) · (n+ d)). J

25Specifically, log
((
n+d
d

))
≤ d ·

(
log
(
n+d
d

)
+ log(e)

)
< d ·

(
log
( (n/t)+d

d

)
+ log(t · e)

)
≤ 2 · d ·

log
( (n/t)+d

d

)
≤ 2 · log

((
n/t+d
d

))
, where the penultimate inequality relies on the fact that (n/t)+d

d ≥ t ·e.
26 Specifically, log

((
n+d
n

))
≤ n·

(
log
(
n+d
n

)
+ log(e)

)
< n·

(
log
( (n/t)+d

(n/t)

)
+ log(e)

)
≤ 2·n·log

( (n/t)+d
(n/t)

)
≤

(2 · t) · log
((

n/t+d
n/t

))
, where the penultimate inequality relies on the fact that (n/t)+d

n/t ≥ e.
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Abstract
Let D be a b-wise independent distribution over {0, 1}m. Let E be the “noise” distribution over
{0, 1}m where the bits are independent and each bit is 1 with probability η/2. We study which
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14:2 Bounded Independence Plus Noise Fools Products

circuits [11, 44, 16, 49], and halfspaces [22, 30, 23], to name a few. We say that such tests
are fooled by distributions with bounded independence.

In this work we consider fooling tests which are a product of several functions on disjoint
inputs, and hence are called product tests.

I Definition 1 (Product Tests). A product test with k functions of input length n and
alphabet size s is a function f : ([s]n)k → C1 which is the product of k functions f1, f2, . . . , fk
on disjoint inputs, where each fi maps [s]n to C1, the complex unit disk {z ∈ C : |z| ≤ 1}.

We note that these tests make sense already for n = 1 and large s (and in fact as we will
see have been considered for such parameters in the literature). But it is essential for our
applications that the input set of the fi has a product structure, so we think of n being large.
We can choose s = 2 for almost all of our results. In this case, each fi simply has domain
{0, 1}n.

Product tests include as a special case several classes of tests which have been studied in
the literature. Specifically, as mentioned in Definition 1, product tests include as a special
case the important class of combinatorial rectangles [2, 42, 43, 37, 25, 8, 40, 52, 28, 31, 27].

I Definition 2 (Combinatorial Rectangles). A combinatorial rectangle is a product test where
each fi has output in {0, 1}.

Product tests also include as a special case combinatorial checkerboards [53], corresponding
to functions fi with range {−1, 1}. More generally, the recent work [27] highlights the unifying
role of product tests (which are called Fourier shapes in [27]) by showing that any distribution
that fools product tests also fools a number of other tests considered in the literature, including
generalized halfspaces [30] and combinatorial shapes [29, 21]. For the main points in this
paper it suffices to consider combinatorial rectangles, but we get broader results working
with products.

Bounded independence vs. products. A moment’s thought reveals that bounded inde-
pendence completely fails to fool product tests. Indeed, note that the parity function on
m := nk bits is a product test: set s = 2 and let each of the k functions compute the parity
of their n-bit input, with output in {−1, 1}. However, consider the distribution D which is
uniform on m− 1 bits and has the last bit equal to the parity of the first m− 1 bits. D has
independence m− 1, which is just one short of maximum. And yet the expectation of parity
under D is 1, whereas the expectation of parity under uniform is 0.

This parity counterexample is the simplest example of a general obstacle which has more
manifestations. For another example define gi := (1 − fi)/2, where the fi are as in the
previous example. Each gi has range in {0, 1}, and so

∏
gi is a combinatorial rectangle. But

the expectations of
∏
i gi under D and uniform differ by 2−k. This error is too large for

the applications in communication complexity and streaming where we have to sum over 2k
rectangles. Indeed, jumping ahead, having a much lower error is critical for our applications.
Finally, the obstacle arises even if we consider distributions with small bias [41] instead of
bounded independence. Indeed, the uniform distribution D over m bits whose inner product
modulo 2 is one has bias 2−Ω(m), but inner product is a nearly balanced function which
can be written as product, implying that the expectations under D and uniform differ by
1/2− o(1).

The starting point of this work is the observation that all these examples break completely
if we perturb just a few bits of D randomly. For parity, it suffices to perturb one bit and the
expectation under D will be 0. For inner product, the distance between the expectations
shrinks exponentially with the number of perturbed bits.
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Our main result is that this is a general phenomenon: If we add a little noise to any
distribution with bounded independence, or with small-bias, then we fool product tests with
good error bounds. We first state the results for bounded independence. We begin with two
definitions which are used extensively in this paper.

I Definition 3. A distribution D over [s]m is b-wise independent, or b-uniform, if any b
symbols of D are uniformly distributed over [s]b.

I Definition 4 (Noise). We denote by E(s,m, η) the noise distribution over [s]m where the
symbols are independent and each of them is set to uniform with probability η and is 0
otherwise. We simply write E when the parameters are clear from the context.

I Theorem 5 (Bounded Independence Plus Noise Fools Products). Let f1, . . . , fk : [s]n → C1
be k functions with µi = E[fi]. Set m := nk and let D be a b-uniform distribution over [s]m.
Let E be the noise distribution from Definition 4. Write D = (D1, D2, . . . , Dk) where each
Di is in [s]n, and similarly for E. Then∣∣∣∣∣∣E

∏
i≤k

fi(Di + Ei)

−∏
i≤k

µi

∣∣∣∣∣∣ ≤ ε
for the following choices:
(1) If b ≥ n then ε = k(1− η)Ω(b2/m).
(2) If b < n and each Di is uniform over [s]n then ε = k(1− η)Ω(b/k).
(3) If b < n then ε = ke−Ω(ηb/k) + 2k

(
n
n−b
)
e−Ω(ηb).

Moreover, there exist fi and D such that ε ≥ (1− η)b. In particular, the bounds are tight up
to the constants in the Ω when b = Ω(m) and η ≥ (log k)/m.

It is an interesting question whether the bounds are tight even for b = o(m). We stress
that the Di ∈ [s]n in this theorem may not even be pairwise independent; only the m symbols
of D are b-wise independent. We use (1) in most of our applications. Occasionally we use (3)
with b = n− 1, in which case the error bound is O(nke−Ω(ηn/k)).

Also note that the theorem is meaningful for a wide range of the noise parameter η: we
can have η constant, which means that we are perturbing a constant fraction of the symbols,
or we can have η = O(1/m) which means that we are only perturbing a constant number of
symbols, just like in the observation mentioned above. To illustrate this setting, consider for
example k = O(1) and b = n. We can have an error bound of ε by setting η = c/m for a c
that depends only on ε.

We now move to our results for small-bias distributions. A distribution D over m bits has
bias δ if any parity of the bits (with range {−1, 1}) has expectation at most δ in magnitude.
The following definition extends this to larger alphabets.

I Definition 6. A distribution D = (D1, D2, . . . , Dm) over [s]m is (b, δ)-biased if, for every
nonzero α ∈ [s]m with at most b non-zero coordinates we have |ED[ω

∑
i
αiDi ]| ≤ δ where

ω := e2πi/s. When b = m we simply call D δ-biased.

In the case of small-bias distribution our bound on the error is a bit more complicated.
We state next one possible tradeoff and defer a more general statement to §2.

I Theorem 7. Let f1, . . . , fk : [s]n → C1 be k functions with µi = E[fi]. Assume δ ≤ s−n.
Let D be an (n, δ)-biased distribution over [s]m. Let E be the noise distribution from
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Definition 4. Write D = (D1, D2, . . . , Dk) where each Di is in [s]n, and similarly for E.
Then∣∣∣∣∣∣E

∏
i≤k

fi(Di + Ei)

−∏
i≤k

µi

∣∣∣∣∣∣ ≤ 2k(1− η)Ω(log(1/δ)/(k log sk)) +
√
δ.

Note that [7] show that a (b, δ)-biased distribution over {0, 1}m is ε-close in statistical
distance to a b-uniform distribution, for ε = δ

∑b
i=1
(
m
i

)
. (See [4] for a similar bound.) One

can apply their results in conjunction with Theorem 5 to obtain a result for small-bias
distribution, but only if δ ≤ 1/

(
m
b

)
. Via a direct proof we derive useful bounds already for

δ = Ω(2−b), and this will be used in §1.2.
We note that summing a noise vector to a string x is equivalent to taking a random

restriction of x. With this interpretation our results show that on average a random restriction
of a product test is a function f ′ that is simpler in the sense that f ′ is fooled by any (n, δ)-
biased distribution, for certain values of δ. (The latter property has equivalent formulations
in terms of the Fourier coefficients of f ′, see [11].) Thus, our results fall in the general theme
“restrictions simplify functions” that has been mainstream in complexity theory since at least
the work of Subbotovskaya [48]. For an early example falling in this theme, consider AC0

circuits. There are distributions with super-constant independence which do not fool AC0

circuits of bounded depth and polynomial size. (Take the uniform distribution conditioned on
the parity of the first log many bits equal to 1, and use the fact that such circuits can compute
parity on log many bits.) On the other hand, the switching lemma [26, 1, 54, 33, 34, 35]
shows that randomly restricting all but a 1/polylog fraction of the variables collapses the
circuit to a function that depends only on c = O(1) variables, and such a function is fooled
by any c-wise independent distribution. Thus, adding noise dramatically reduces the amount
of independence that is required to fool AC0 circuits. For a more recent example, Lemma
7.2 in [28] shows that for a special case of AC0 circuits – read-once CNF – one can restrict
all but a constant fraction of the variables and then the resulting function is fooled by any
ε-bias distribution for a certain ε = 1/nω(1) which is seen to be larger than the bias that
would be required had we not applied a restriction.

We are not aware of prior work which applies to arbitrary functions as in our theorems.
Another difference between our results and all the previous works that we are aware of lies
in the parameter η. In previous works η is large, in particular η = Ω(1), which corresponds
to restricting many variables. We can instead set η arbitrarily, and this flexibility is used in
both of our applications.

1.1 Application: The complexity of decoding

Error-correcting codes are a fundamental concept with myriad applications in computer
science. It is relevant to several of these, and perhaps also natural, to ask what is the
complexity of basic procedures related to error-correcting codes. In this paper we focus
on decoding. The question of the complexity of decoding has already been addressed in
[9, 10, 32]. However, all previous lower bounds that we are aware of are perhaps not as
strong as one may hope. First, they provide no better negative results for decoding than for
encoding. But common experience shows that decoding is much harder! Second, they do not
apply to decision problems, but only to multi-output problems such as computing the entire
message. Third, they apply to small-space algorithms but not to stronger models such as
communication protocols.



E. Haramaty, C.H. Lee, and E. Viola 14:5

In this work we obtain new lower bounds for decoding which overcome these limitations.
First, we obtain much stronger bounds for decoding than for encoding. For example, we
prove below that decoding a message symbol from Reed–Solomon codeword of length q

with Ω(q) errors requires Ω(q) communication. On the other hand, encoding is a linear
map, and so one can compute any symbol with just O(log q) communication (or space).
This exponential gap may provide a theoretical justification for the common experience
that decoding is harder than encoding. Second, our results apply to decision problems.
Third, our results apply to stronger models than space-bounded algorithms. Specifically,
our lower bounds are proved in the k-party “number-in-hand” communication complexity
model, where each of k collaborating parties receives a disjoint portion of the input. The
parties communicate by broadcast (a.k.a. writing on a blackboard). For completeness we
give next a definition. Although we only define deterministic protocols, our lower bounds in
fact bound the correlation between such protocols and the hard problem, and so also hold
for distributions of protocols (a.k.a. allowing the parties to share a random string).

I Definition 8 (Number-in-Hand Protocols). A k-party number-in-hand, best-partition, com-
munication protocol for a function f : [s]m → Y , where k divides m, is given by a partition
of m into k sets S1, S2, . . . , Sk of equal size m/k and a binary tree. Each internal node v of
the tree is labeled with a set Sv ∈ {S1, S2, . . . , Sk} and a function fv : [s]m/k → {0, 1}, and
has two outgoing edges labeled 0 and 1. The leaves are labeled with elements from Y . On
input x ∈ [s]m the protocol computes y ∈ Y following the root-to-leaf path where from node
v we follow the edge labeled with the value of fv on the m/k symbols of x corresponding to
Sv. The communication cost of the protocol is the depth of the tree.

Note that we insisted that k divides m, but all the results can be generalized to the case
when this does not hold. However this small additional generality makes the statements
slightly more cumbersome, so we prefer to avoid it. Jumping ahead, for Reed–Solomon codes
this will mean that the claims do not apply as stated to prime fields (but again can be
modified to apply to such fields).

Again for completeness, we give next a definition of space-bounded algorithms. For
simplicity we think of the input as being encoded in bits.

I Definition 9 (One-Way, Bounded-Space Algorithm). A width-W (a.k.a. space-logW ) one-
way algorithm (or branching program or streaming algorithm) on m bits consists of a layered
directed graph with m+ 1 layers. Each layer has W nodes, except the first layer, which has
1 node, and the last layer, which has 2W . Each node in layer i ≤ m has two edges, labeled
with 0 and 1, connecting to nodes in layer i+ 1. Each node on layer m+ 1 is labeled with an
output element. On an m-bit input, the algorithm follows the path corresponding to the
input, reading the input in a one-way fashion (so layer i reads the i-th input bit), and then
outputs the label of the last node.

We note that a space-s one-way algorithm can be simulated by a k-party protocol with
communication sk. Thus our negative results apply to space-bounded algorithms as well. In
fact, this simulation only uses one-way communication and a fixed partition (corresponding
to the order in which the algorithm reads the input). But our communication lower bounds
hold even for two-way communication and for any partition of the input into k parties, as in
Definition 8.

Our lower bound holds when the uniform distribution over the code is b-uniform.

I Definition 10. A code C ⊆ Fmq is b-uniform if the uniform distribution over C is b-uniform.

The following standard fact relates the above definition to the dual distance of the code.
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14:6 Bounded Independence Plus Noise Fools Products

I Fact 11. Let X be the uniform distribution over a linear code C ⊆ Fmq . Then X is d-wise
independent if and only if the dual of C has minimum distance ≥ d+ 1.

We state next a lower bound for distinguishing a noisy codeword from uniform. The “-1”
in the assumption on b will be useful later.

I Theorem 12 (Distinguishing Noisy Codewords from Uniform is Hard). Let C ⊆ Fmq be a
b-uniform code. Let E be the noise distribution from Definition 4. Let k be an integer
dividing m such that b ≥ m/k − 1. Let P : Fmq → {0, 1} be a k-party protocol using c bits of
communication. Then

|Pr[P (C + E) = 1]− Pr[P (U) = 1]| ≤ ε for ε = 2c+log(m)+O(1)−Ω(ηb2/m),

where C and U denote the uniform distributions over the code C and Fmq respectively.

We now make some remarks on this theorem. First, we note that a (ck)-party protocol
can be simulated by a k-party protocol, so in this sense the lower the number of parties the
stronger the lower bound. Also, the smallest number of parties to which the theorem can
apply is k = m/b, because for k = m/b − 1 one can design b-uniform codes such that the
distribution C +E can be distinguished well from uniform by just one party, cf. §A. And our
lower bound applies for that number. The theorem is non-trivial whenever b = ω(

√
m), but

we illustrate it in the setting of b = Ω(m) which is typical in coding theory as we are also
going to discuss. In this setting we can also set k = m/b = O(1). Hence the communication
lower bound is

c ≥ Ω(ηm)

when η ≥ C logm/m for a universal constant C. When η = Ω(1) this becomes Ω(m). Note
that this bound is within an O(log q) factor of the bit-length of the input, which is O(m log q),
and within a constant factor if q = O(1).

We prove an essentially matching upper bound in terms of η, stated next. The corre-
sponding distinguisher is a simple variant of syndrome decoding which we call “truncated
syndrome decoding.” It can be implemented as a small-space algorithm with one-sided error,
and works even against adversarial noise. So the theorems can be interpreted as saying that
syndrome decoding uses an optimal amount of space. We denote by V (t) the volume of the
q-ary Hamming ball in m dimensions of radius t, i.e., the number of x ∈ Fmq with at most t
non-zero coordinates.

I Theorem 13 (Truncated Syndrome Decoding). Let C ⊆ Fmq be a linear code with dimension
d. Given t and δ > 0 define s := dlogq(V (t)/δ)e. If d ≤ m− s there is a one-way algorithm
A that runs in space s log q such that
(1) for every x ∈ C and for every e of Hamming weight ≤ t, A(x+ e) = 1, and
(2) Pr[A(U) = 1] ≤ δ, where U is uniform in Fmq .
Moreover, the space bound s log q is at most O(t log(mq/t)) + log 1/δ.

Note that when t = O(ηm) and δ is constant the space bound is O(ηm log(q/η)), which
matches our Ω(ηm) lower bound up to the O(log(q/η)) factor.

These results in particular apply to Reed–Solomon codes. Recall that a Reed–Solomon
code of dimension b is the linear code where a message in Fbq is interpreted as a polynomial p
of degree b− 1 and encoded as the q evaluations of p over any element in the field. (In some
presentations, the element 0 is excluded.) Such a code is b-uniform because for any b points
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(xi, yi) where the xi’s are different, there is exactly one polynomial p of degree b− 1 such
that p(xi) = yi for every i.

For several binary codes C ⊆ Fm2 and constant η we can obtain a communication lower
bound of Ω(m) which is tight up to constant factors. This is true for example for random,
linear codes (with bounded rate). The complexity of decoding such codes is intensely studied,
also because the assumed intractability of their decoding is a basis for several cryptographic
applications. See for example [12], a slight improvement on the running time which already
has more than 100 citations. We also obtain a tight lower bound of Ω(m) for several
explicitly-defined binary codes. For example, we can pick an explicit binary code C ⊆ Fm2
which is Ω(m)-uniform and that can be decoded in polynomial time for a certain constant
noise parameter η (with high probability), see [46] for a construction.

Lower bounds for decoding one symbol. The lower bound in Theorem 12 is for the problem
of distinguishing noisy codewords from uniform. Intuitively, this is a strong lower bound
saying that no bit of information can be obtained from a noisy codeword. We next use
this result to obtain lower bounds for decoding one symbol of the message given a noisy
codeword. Some care is needed because some message symbols may just be copied in the
codeword. This would allow one party to decode those symbols with no communication,
even though the noisy codeword may be indistinguishable from uniform. The lower bound
applies to codes that remain b-uniform even after fixing some input symbol. For such codes, a
low-communication protocol cannot decode that symbol significantly better than by guessing
at random.

I Theorem 14. Let C ′ ⊆ Fmq be a linear code with an m × r generator matrix G. Let
i ∈ {1, 2, . . . , r} be an index, and let C be the code defined as C := {Gx | xi = 0}. Let E be
the noise distribution from Definition 4. Let k be an integer. Suppose that C is b-uniform for
b ≥ m/k − 1. Let P : Fmq → Fq be a k-party protocol using c bits of communication. Then

Pr[P (GU + E) = Ui] ≤ 1/q + ε,

where U = (U1, U2, . . . , Ur) is the uniform distribution and ε is as in Theorem 12.

We remark that whether C is b-uniform in general depends on both G and i. For example,
let C ′ be a Reed–Solomon code of dimension b = m/k. Recall that C ′ is b-uniform. Note that
if we choose i = 0 (corresponding to the evaluation of the polynomial at the point 0 ∈ Fq,
which as we remarked earlier is a point we consider) then C has a fixed symbol and so is not
even 1-uniform. On the other hand, if i = b− 1 then we obtain a Reed–Solomon code with
dimension b− 1, which is (b− 1)-uniform, and the lower bound in Theorem 14 applies.

We again obtain an almost matching upper bound. In fact, the corresponding protocol
recovers the entire message.

I Theorem 15 (Recovering Messages from Noisy Codewords). Let C ⊆ Fmq be a code with
distance d. Let t be an integer such that 2t < d, and let k be an integer dividing q.

There is a k-party protocol P : Fmq → Fbq communicating max{m−d+2t+1−m/k, 0}dlog2 qe
bits such that for every x ∈ C and every e of Hamming weight ≤ t, P (x+ e) = x.

A Reed–Solomon code with dimension b has distance d = m− b+ 1. Hence we obtain
communication max{b+ 2t−m/k, 0}dlog2 qe, for any t such that 2t < m− b+ 1. This upper
bound matches the lower bound in Theorem 14 up to a log q factor. For example, when
k = O(1) and b = q/k our upper bound is O(ηq log q) and our lower bound is Ω(ηq)−O(log q).
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1.2 Application: Pseudorandomness
The construction of explicit pseudorandom generators against restricted classes of tests is a
fundamental challenge that has received a lot of attention at least since the 80’s, cf. [3, 2].
One class of tests extensively considered in the literature is concerned with algorithms that
read the input bits in a one-way fashion in a fixed order. A leading goal is to prove RL=L
by constructing generators with logarithmic seed length that fool one-way, space-bounded
algorithms, but here the seminal papers [42, 37, 43] remain the state of the art and have larger
seed lengths. However, somewhat better generators have been obtained for several special
cases, including for example combinatorial rectangles [2, 42, 43, 37, 25, 8, 40, 52, 28, 31],
combinatorial shapes [29, 21, 27], and product tests [27]. In particular, for combinatorial
rectangles f : ({0, 1}n)k → {0, 1} two incomparable results are known. For context, the
minimal seed length up to constant factors is O(n+log(k/ε)). One line of research culminating
in [40] gives generators with seed length O(n+log k+log3/2(1/ε)). More recently, [28] (cf. [31])
improve the dependence on ε while making the dependence on the other parameters a bit worse:
they achieve seed length O((logn)(n+ log(k/ε))) +O(log(1/ε) log log(1/ε) log log log(1/ε)).
The latter result is extended to products in [27] (with some other lower-order losses).

Recently there has been considerable interest in extending tests by allowing them to read
the bits in any order : [13, 14, 36, 45, 47]. This extension is significantly more challenging,
and certain instantiations of generators against one-way tests are known to fail [13].

We contribute new pseudorandom generators that fool product tests in any order.

I Definition 16 (Fooling). A generator G : {0, 1}` → {0, 1}m ε-fools (or fools with error ε) a
class T of tests on m bits if for every function f ∈ T we have |E[f(G(U`))− E[f(Um)]| ≤ ε,
where U` and Um are the uniform distributions on ` and m bits respectively. We call ` the
seed length of G. We call G explicit if it is computable in time polynomial in m.

I Definition 17 (Any order). We say that a generator G : {0, 1}` → {0, 1}m ε-fools a class T of
tests in any order if for every permutation π on m bits the generator π ◦G : {0, 1}` → {0, 1}m
ε-fools T .

The next theorem gives some of our generators. The notation Õ() hides logarithmic
factors in k and n. In this section we only consider alphabet size s = 2. We write the range
{0, 1}nk of the generators as ({0, 1}n)k to indicate the parameters of the product tests.

I Theorem 18 (PRG for Any-Order Products, I). There exist explicit pseudorandom generators
G : {0, 1}` → ({0, 1}n)k that ε-fool product tests in any order, with the following seed
lengths:
(1) ` = 2n+O(k2 log k log(k/ε) logn) = 2n+ Õ(k2 log(1/ε)), and
(2) ` = O(n) +O(n2/3(k2 log k log(k/ε) logn)1/3) = O(n) + Õ((nk)2/3 log1/3(1/ε)).
Moreover, the generators’ output has the form D +E′, where D is a small-bias distribution
and E′ is statistically close to a noise vector.

One advantage of these generators is their simplicity. Constructions in the literature tend
to be somewhat more involved. In terms of parameters, we note that when k = O(1) we
achieve in (1) seed length ` = 2n+O(log 1/ε) logn, which is close to the value of n+O(log 1/ε),
which is optimal even for the case of fixed order and k = 2. Our result is significant already
for k = 3, but not for k = 2. In the latter case the seed length of (2− Ω(1))n obtained in
[13] remains the best known. For k ≥

√
n our generator in (2) has polynomial stretch, using

a seed length Õ(m2/3) for output length m.
We note that for the special case of combinatorial rectangles f : ({0, 1}n)k → {0, 1} a

pseudorandom generator with seed length O((n+ log k) log(1/ε)) follows from previous work.
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The generator simply outputs m bits such that any d ·n of them are 1/kd close to uniform in
statistical distance, where d = c log(1/ε) for an appropriate constant c. Theorem 3 in [6] shows
how to generate these bits from a seed of length O(n log(1/ε) + log logm+ log(1/ε) log k) =
O((n+ log k) log(1/ε)). The analysis of this generator is as follows. The induced distribution
on the outputs of the fi is a distribution on {0, 1}k such that any d bits are 1/kd close to
the distribution of independent variables whose expectations are equal to the E[fi]. Now
Lemma 5.2 in [18] (cf. [24]) shows that the probability that the And of the output is 1 equals the
product of the expectations of the fi plus an error which is ≤ 2−Ω(d) + d

(
k
d

)
/kd ≤ ε. However

this generator breaks down if the output of the functions is {−1, 1} instead of {0, 1}. Moreover,
its parameters are incomparable with those in Theorem 18.(I). In particular, for k = O(1) its
seed length is ≥ n log(1/ε), while as remarked above we achieve O(n+ log(n) log(1/ε)).

We are able to improve the seed length of (2) in Theorem 18 to Õ(
√
m), but then the

resulting generator is more complicated and in particular it does not output a distribution
of the form D + E′. For this improvement we “derandomize” our theorems 5 and 7 and
then combine them with a recursive technique originating in [28] (cf. [3]) and used in several
subsequent works including [45, 47, 19]. Our context and language are somewhat different
from previous work, and this fact may make this paper useful to readers who wish to learn
the technique.

I Theorem 19 (PRG for Any-Order Products, II). There exists an explicit pseudorandom
generator G : {0, 1}` → ({0, 1}n)k that ε-fools product tests in any order and seed length
` = O(n+

√
nk log k log(k/ε)) = O(n) + Õ(

√
nk log 1/ε).

Recall that for b = n the error bound in our Theorem 5 is k(1− η)Ω(b/k), and that it is
open whether the exponent can be improved to Ω(b). We show that if such an improvement
is achieved for the derandomized version of the theorem (stated later in Theorem 37) then
one would get much better seed length: ` = O((n+ log k log(m/ε)) logm).

Reingold, Steinke, and Vadhan [45] give a generator that ε-fools width-W space algorithms
on m bits in any order, with seed length ` = Õ(

√
m log(W/ε)). Every combinatorial rectangle

f : ({0, 1}n)k → {0, 1} can be computed by a one-way algorithm with width 2n−1 + 1 on
m = nk bits. Hence they also get seed length Õ(

√
nk(n + log 1/ε)) for combinatorial

rectangles. Our Theorem 19 improves upon this by removing a factor of n.
Going in the other direction, if D is a distribution on ({0, 1}n)k bits that ε-fools com-

binatorial rectangles, then D also fools width-W one-way algorithms on m = nk bits with
error W kε.

I Corollary 20 (Bounded Independence Plus Noise Fools Space). Let D be a b-uniform
distribution on m bits. Let E be the noise distribution from Definition 4. If b ≥ m2/3 logm
and η is any constant then D + E fools O(logm)-space algorithms in any order with error
o(1).

As mentioned earlier, [27] show that if a generator fools products then it also fools several
other computational models, with some loss in parameters. As a result, we obtain generators
for the following two models, extended to read bits in any order.

I Definition 21 (Generalized halfspaces and combinatorial shapes). A generalized halfspace is
a function h : ({0, 1}n)k → {0, 1} defined by h(x) := 1 if and only if

∑
i≤k gi(xi) ≥ θ, where

g1, . . . , gk : {0, 1}n → R are arbitrary functions and θ ∈ R.
A combinatorial shape is a function f : ({0, 1}n)k → {0, 1} defined by f(x) := g(

∑
i≤k gi(xi)),

where g1, . . . , gk : {0, 1}n → {0, 1} and g : {0, . . . , k} → {0, 1} are arbitrary functions.
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I Theorem 22 (PRG for Generalized Halfspaces and Combinatorial Shapes, in Any-Order). There
exists an explicit pseudorandom generator G : {0, 1}` → ({0, 1}n)k that ε-fools both generalized
halfspaces and combinatorial shapes in any order with seed length ` = Õ(n

√
k+
√
nk log(1/ε)).

Note that for ε = 2−O(n) the seed length simplifies to Õ(n
√
k).

An original motivation for this work is the study of the sum of small-bias distributions
[38]. However the relationship between the results in this work and [38] is somewhat technical,
applying only to certain settings of parameters. Hence we defer the discussion to §6.

1.3 Techniques

We now give an overview of the proof of Theorem 5. The natural high-level idea, which our
proof adopts as well, is to apply Fourier analysis and use noise to bound high-degree terms
and independence to bound low-degree terms. Part of the difficulty is finding the right way
to decompose the product

∏
i≤k fi. We proceed as follows. For a function f let fH be its

“high-degree” Fourier part and fL be its “low-degree” Fourier part, so that f = fH + fL.
Our goal is to go from

∏
fi to

∏
fLi . The latter is a product of low-degree functions and

hence has low degree. Therefore, its expectation will be close to
∏
i µi by the properties of

the distribution D; here we do not use the noise E.
To move from

∏
fi to

∏
fLi we pick one fj and we decompose it as fHj + fLj . Iterating

this process we indeed arrive to
∏
fLi , but we also obtain k extra terms of the form

f1f2 . . . fj−1f
H
j f

L
j+1f

L
j+2 . . . f

L
k

for j = 1, . . . , k. We show that each of these terms is close to 0 thanks to the presence of the
high-degree factor fHj . Here we use both D and E.

We conclude this section with a brief technical comparison with the recent papers
[28, 31, 27] which give generators for combinatorial rectangles (and product tests). We
note that the generators in those papers only fool tests f = f1 · f2 · · · fk that read the
input in a fixed order (whereas our results allow for any order). Also, they do not use
noise, but rather hash the functions fi in a different way. Finally, a common technique in
those papers is, roughly speaking, to use hashing to reduce the variance of the functions,
and then show that bounded independence fools functions with small variance. We note
that the noise parameters we consider in this work are too small to be used to reduce the
variance. Specifically, for a product test f those papers define a new function g = g1 ·g2 · · · gk
which is the average of f over t independent inputs. While g has the same expectation as
f , the variance of each gi is less than that of fi by a factor of t. Their goal is to make
the variance of each gi less than 1/k so that the sum of the variances is less than 1. In
order to achieve this reduction with noise we would have to set η ≥ 1 − 1/

√
k. This is

because if fi simply is (−1)x where x is one bit, then the variance of fi perturbed by noise is
Ex[E2

E [(−1)x+E ]]− Ex,E [(−1)x+E ] = Ex,E,E′ [(−1)E+E′ ] = (1− η)2.

Organization. In §2 we prove our main theorems, 5 and 7. In §3 we give the proof details
for the results in §1.1. The details for the results in §1.2 are spread over three sections. In §4
we prove Theorem 18. In §5 we prove Theorem 19, and discuss the potential improvement.
In §6 we prove Theorem 22, and discuss the relationship between this paper and an original
motivation [38]. We conclude in §7. In §A we include for completeness a lower bound on the
values of b and η for which Theorem 5 can apply.
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2 Bounded independence plus noise fools products

In this section we prove Theorem 5 and Theorem 7. They both follow easily from the next
theorem which is the main result in this section.

I Theorem 23. Let t ∈ [0, n]. Let f1, . . . , fk : [s]n → C1 be k functions with µi = E[fi]. Let
D be a (b, δ)-biased distribution over [s]m for b ≥ max{n, 2(k − 1)t}. Let E be the noise
distribution from Definition 4. Write D = (D1, D2, . . . , Dk) where each Di is in [s]n, and
similarly for E. Then∣∣∣∣∣∣E

∏
i≤k

fi(Di + Ei)

−∏
i≤k

µi

∣∣∣∣∣∣ ≤ k(1− η)t
√

(1 + snδ)(1 + V (t)k−1δ) + V (t)k/2δ.

Let us quickly derive Theorem 5 and 7 in the introduction.

Proof of Theorem 5. Setting δ = 0 and t = b/2(k − 1) in Theorem 23 gives the bound

k(1− η)b/2(k−1) (?)

which proves the theorem in the case n ≤ b = O(n).
To prove (1) we need to handle larger b. For this, let c := bb/nc, and group the k

functions into k′ ≤ k/c+ 1 functions on input length n′ := cn. Note that b ≥ n′, and so we
can apply (?) to

k′(1− η)Ω(b/k′) ≤ k(1− η)Ω(b2/kn).

To prove (2) one can observe that in the proof of (?) the condition b ≥ n is only used to
guarantee that each Di is uniform. The latter is now part of our assumption.

To prove (3) view the noise vector E as the sum of two noise vectors E′ and E′′ with
parameter α such that 1− η = (1−α)2. Note this implies α = Ω(η). If E′ sets to uniform at
least n− b coordinates in each function then we can apply (?) to functions on ≤ b symbols
with η replaced by α. The probability that E′ does not set to uniform that many coordinates
is at most

k

(
n

n− b

)
(1− α)b ≤ k

(
n

n− b

)
e−Ω(ηb),

and in that case the distance between the expectations is at most two.
To show the “moreover” part let the fi compute parity on the first b+ 1 bits, and let D

be the b-wise independent distribution which is uniform on strings whose parity of the b+ 1
bits is 0. The other bits are irrelevant. The expectation of parity under uniform is 0. The
expectation of parity under D is 1 if no symbol is perturbed with noise, and is 0 otherwise.
Hence the error is ≥ (1− η)b+1. In particular, if b = Ω(m) then an upper bound on the error
of the form k(1− η)cm is false for sufficiently large c, using that η ≥ (log k)/m. J

Proof of Theorem 7. Let c := b
√

log(1/δ)/(n log s)c. Note that c ≥ 1 because δ ≤ s−n. We
group the k functions into k′ = dk/ce functions on input length n′ := cn. The goal is to make
sn

′ ≈ 1/δ. By Claim 33, Vn′(t) ≤ (en′s/t)t. Hence Vn′(t)k′/2 ≤ Vn′(t)k′−1 ≤ (en′s/t)k′t.
Now let t = αn′ log s/(k′ log sk′) for a small constant α > 0 so that the latter bound is
≤ sn′/2 ≈ 1/

√
δ.

The error bound in Theorem 23 now becomes at most

k(1− η)t(1 + sn
′
δ) + sn

′/2δ.
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14:12 Bounded Independence Plus Noise Fools Products

And so the bound is at most

2k(1− η)Ω(log(1/δ)/(k log sk)) +
√
δ. J

We now turn to the proof of Theorem 23. We begin with some preliminaries.

2.1 Preliminaries
Denote by U the uniform distribution. Let s be any positive integer. We write [s] for
{0, 1, 2, . . . , s− 1}. Let ω := e2πi/s be a primitive s-th root of unity. For any α ∈ [s]u, we
define χα(x) : [s]u → C to be

χα(x) := ω〈α,x〉,

where α and x are viewed as vectors in Zus and 〈α, x〉 :=
∑
i αixi.

For any function f : [s]u → C, its Fourier expansion is

f(x) :=
∑
α∈[s]u

f̂αχα(x),

where f̂α ∈ C is given by

f̂α := E
x∼[s]u

[f(x)χα(x)].

Here and elsewhere, random variables are uniformly distributed unless specified otherwise.
The Fourier L1-norm of f is defined as

∑
α|fα|, and is denoted by L1[f ]. The degree

of f is defined as max{|α| : f̂α 6= 0}, where |α| is the number of nonzero coordinates of α,
and is denoted by deg(f). Note that we have L1[f ] = L1[f ]. The following fact bounds the
L1-norm and degree of product functions.

I Fact 24. For any two functions f, g : [s]u → C, we have
(1) deg(fg) ≤ deg(f) + deg(g), and
(2) L1[fg] ≤ L1[f ]L1[g].

Proof. We have

f(x)g(x) =

 ∑
α∈[s]n

f̂αχα(x)

 ∑
β∈[s]n

ĝβχβ(x)


=
∑
α,β

f̂αĝβχα+β(x) =
∑
α

∑
β

f̂α−β ĝβ

χα(x).

Hence the α-th Fourier coefficient of f · g is
∑
β f̂α−β ĝβ .

To see (1), note that in the latter expression the sum over β can be restricted to those β
with |β| ≤ deg(g). Now note that if |α| > deg(f) + deg(g) then |α− β| > deg(f) and hence
f̂α−β will be zero for every β.

To show (2) write L1[fg] =
∑
α|
∑
β f̂α−β ĝβ | ≤

∑
α,β |f̂α−β ||ĝβ | = (

∑
α|f̂α|)(

∑
β |ĝβ |) =

L1[f ]L1[g]. J

I Fact 25 (Parseval’s Identity).
∑
α∈[s]n |f̂α|2 = Ex∼[s]n [|f(x)|2]. In the case of f ∈ C1, this

quantity is at most 1.
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Proof.

E
x∼[s]n

[f(x)f(x)] = E
x∼[s]n

[
∑
α∈[s]n

f̂αχα(x) ·
∑

α′∈[s]n
f̂α′χα′(x)]

=
∑

α,α′∈[s]n
f̂αf̂α′ E

x∼[s]n
[χα−α′(x)] =

∑
α∈[s]n

|f̂α|2.

where the last equality holds because we have Ex∼[s]n [χα−α′(x)] equals 0 if α 6= α′ and equals
1 otherwise. J

I Fact 26. Let E = (E1, . . . , Ek) be the distribution over [s]k, where the symbols are
independent and each of them is set to uniform with probability η and is 0 otherwise. Then
for every α ∈ [s]n, E[χα(E)] = (1− η)|α|.

Proof. The expectation conditioned on the event “E sets none of the nonzero positions
of α to uniform” is 1. This event happens with probability (1− η)|α|. Conditioned on its
complement, the expectation is 0. To see this, assume that the noise vector sets to uniform
position i of α, and that αi 6= 0. Let β := ωαi . Then the expectation can be written as a
product where a factor is

E
x∼{0,1,...,s−1}

[βx] = 1
s
· β

s − 1
β − 1 = 0,

using the fact that β 6= 1 because αi ∈ {1, 2, . . . , s− 1} and that βs = (ωs)αi = 1. Therefore
the total expectation is (1− η)|α|. J

Note that this lemma includes the uniform η = 1 case, with the convention 00 = 1.
We will use the following facts multiple times.

I Fact 27. Let f : [s]n → C be a function with degree b. We have:
(1) For any (b, δ)-biased distribution D over [s]n, |E[f(D)]− E[f(U)]| ≤ L1[f ]δ,
(2) For any (2b, δ)-biased distribution D over [s]n, |E[|f(D)|2]− E[|f(U)|2]| ≤ L1[f ]2δ, and
(3) the bound in (2) holds even if D is (n, δ) biased.

Proof. For (1), note that

|E[f(D)]− E[f(U)]| =

∣∣∣∣∣∣
∑

0<|α|≤b

f̂α E[χα(D)]

∣∣∣∣∣∣ ≤
∑

0<|α|≤b

|f̂α||E[χα(D)]| ≤ L1[f ]δ.

For (2), recall that |f(x)|2 = f(x)f(x). By Fact 24, the function |f(x)|2 has degree ≤ 2b.
Also, again by Fact 24 the L1-norm of that function is at most L1[f ] · L1[f̄ ] = L1[f ]2. Now
the result follows by (1).

Finally, (3) is proved like (2), noting that a function on [s]n always has degree ≤ n. J

Actually the bounds hold with
∑
α6=0 |f̂α| instead of L1[f ], but we will not use that.

2.2 Proof of Theorem 23
For a function f : [s]n → C1, consider its Fourier expansion f(x) :=

∑
α f̂αχα(x), and let

fL(x) :=
∑
α:|α|≤t f̂αχα(x) and fH(x) :=

∑
α:|α|>t f̂αχα(x). Define Fi : ([s]n)k → C to be

Fi(x1, . . . , xk) :=

∏
j<i

fj(xj)

 · fHi (xi) ·
(∏
`>i

fL` (x`)
)
.
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Pick fk and write it as fLk + fHk . We can then rewrite

∏
1≤i≤k

fi = Fk +

 ∏
1≤i≤k−1

fi

 · fLk .
We can reapply the process to (

∏
1≤i≤k−1 fi). Continuing this way, we eventually have what

we want to bound, i.e. |E[
∏
i≤k fi(Di + Ei)]−

∏
i≤k µi|, is at most∣∣∣∣∣∣

∑
i≤k

E[Fi(D + E)]

∣∣∣∣∣∣+

∣∣∣∣∣∣E[
∏
i≤k

fLi (Di + Ei)]−
∏
i≤k

µi

∣∣∣∣∣∣.
The theorem follows readily from the next two lemmas, the second of which has a longer

proof.

I Lemma 28. |E[
∏
i≤k f

L
i (Di + Ei)]−

∏
i≤k µi| ≤ V (t)k/2δ.

Proof. Fix E arbitrarily. Each fLi has degree at most t, and by the Cauchy–Schwarz
inequality, it has L1-norm

∑
|α|≤t|f̂α| ≤ V (t)1/2(

∑
α|f̂α|2)1/2 ≤ V (t)1/2. Here we use the

fact that f maps to C1 and Fact 25. Hence, by Fact 24,
∏

0<i≤k f
L
i has degree at most

kt and L1-norm at most V (t)k/2. By hypothesis, D is (b, δ)-biased, and this also holds for
D + E for any fixed E. Moreover, b ≥ 2(k − 1)t ≥ kt, and so by (1) in Fact 27 we have∣∣∣∣∣∣ED[

∏
i≤k

fLi (Di + Ei)]−
∏
i≤k

µi

∣∣∣∣∣∣ ≤ V (t)k/2δ.

Averaging over E proves the claim. J

I Lemma 29. For every i ∈ {1, 2, . . . , k}, we have

|E[Fi(D + E)]| ≤ (1− η)t
√

(1 + snδ)(1 + V (t)k−1δ).

Proof. We have

|E[Fi(D + E)]| =

∣∣∣∣∣∣E
∏
j<i

fj(Dj + Ej) · fHi (Di + Ei) ·
∏
`>i

fL` (D` + E`)

∣∣∣∣∣∣
≤ E
D

∏
j<i

∣∣∣∣EEj

[fj(Dj + Ej)]
∣∣∣∣ · ∣∣∣∣EEi

[fHi (Di + Ei)]
∣∣∣∣ ·∏

`>i

∣∣∣∣EE`

[fL` (D` + E`)]
∣∣∣∣


≤ E
D

[∣∣∣∣EEi

[fHi (Di + Ei)]
∣∣∣∣ ·∏

`>i

∣∣∣∣EE`

[fL` (D` + E`)]
∣∣∣∣
]
,

where the last inequality holds because |EEj
[fj(Dj +Ej)]| ≤ EEj

[|fj(Dj +Ej)|] ≤ 1 for every
j < i, by Jensen’s inequality, convexity of norms, and the fact that the range of fj is C1.

By the Cauchy–Schwarz inequality, we get

|E[Fi(D + E)]| ≤ E
D

[∣∣∣∣EEi

[fHi (Di + Ei)]
∣∣∣∣2
]1/2

· E
D

[∏
`>i

∣∣∣∣EE`

[fL` (D` + E`)]
∣∣∣∣2
]1/2

.

In claims 31 and 32 below we bound above the square of the two terms on the right-hand
side. In both cases, we view our task as bounding |ED[g(D)]| for a certain function g, and
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we proceed by computing the L1-norm, average over uniform, and degree of g, and then we
apply Fact 27.

We start with a claim that is useful in both cases.

I Claim 30. Let f : [s]n → C be a function. Then:
(1) for every x, EE [f(x+ E)] =

∑
α f̂αχα(x)(1− η)|α|, and

(2) EU
[
|EE [f(U + E)]|2

]
=
∑
α |f̂α|2(1− η)2|α|.

Proof. For (1), write EE [f(x+E)] = EE [
∑
α f̂αχα(x+E)] =

∑
α f̂αχα(x) EE [χα(E)]. Then

apply Fact 26.
For (2), write |EE [f(x+ E)]|2 as EE [f(x + E)]EE [f(x+ E)]. Then apply (1) twice to

further write it as

E
U

∑
α,α′

f̂αf̂α′χα−α′(U)(1− η)|α|+|α
′|

 =
∑
α,α′

f̂αf̂α′ E
U

[χα−α′(U)](1− η)|α|+|α
′|.

The claim then follows because U is uniform. J

We can now bound our terms.

I Claim 31. For every i, ED
[∣∣EEi [fHi (Di + Ei)]

∣∣2] ≤ (1− η)2t(1 + snδ).

Proof. Let g(x) be the function g(x) = EEi
[fHi (x+ Ei)]. By (1) in Claim 30, the L1-norm

of g is at most
∑
α:|α|>t |f̂α|(1 − η)|α| ≤ (1 − η)t

∑
α |f̂α| ≤ (1 − η)tsn/2, where we used

Cauchy–Schwarz and Fact 25.
By (2) in Claim 30 and Fact 25, EU [|g(U)|2] under uniform is at most (1− η)2t.
Because b ≥ n we can apply (3) in Fact 27 to obtain that ED[|g(D)|2] ≤ (1− η)2t + (1−

η)2tsnδ as claimed. J

I Claim 32. ED
[∏

`>i

∣∣EE`
[fL` (D` + E`)]

∣∣2] ≤ 1 + V (t)k−1δ.

Proof. Pick any ` > i and let g`(x) := EE [fL` (x+ E`)].
The L1-norm of g` is at most V (t)1/2 by (1) in Claim 30 and Cauchy–Schwarz. Also

by (2) in the same claim we have EU [|g`(U)|2] ≤ 1. Moreover, g` has degree at most t by (1)
in the same claim.

Now define g : ([s]n)k−i → C as g(xi+1, xi+2, . . . , xk) := gi+1(xi+1) · gi+2(xi+2) · · · gk(xk).
Note that g has L1-norm at most V (t)(k−i)/2 ≤ V (t)(k−1)/2 and degree (k − i)t ≤ (k − 1)t,
by Fact 24 applied with u = n(k − i). Moreover, EUi+1,Ui+2,...,Uk

[|g(Ui+1, Ui+2, . . . , Uk)|2] =
EUi+1 [|gi+1|2] · EUi+2 [|gi+2|2] · · ·EUk

[|gk|2] ≤ 1.
Because b ≥ 2(k − 1)t, we can apply (2) in Fact 27 to obtain

E
D

[|g(D)|2] ≤ 1 + V (t)k−1δ

as desired. J

Lemma 29 follows by combining Claims 31 and 32. J
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3 Proofs for §1.1

In this section we provide the proofs for the claims made in §1.1.

Proof of Theorem 12. Let L be the set of the 2c leaves of the protocol tree. For ` ∈ L,
note that the set of inputs that lead to ` forms a rectangle, denoted R`. Moreover, these
rectangles are disjoint.

Hence, applying Theorem 5 to each R` we can write

|Pr[P (C + E) = 1]− Pr[P (U) = 1]| = |
∑
`

Pr[C + E ∈ R`]−
∑
`

Pr[U ∈ R`]|

≤
∑
`

|Pr[C + E ∈ R`]− Pr[U ∈ R`]|,

from which the result follows. J

Recall that we denote by V (t) the number of x ∈ Fmq with at most t non-zero coordinates.

I Claim 33. The following two inequalities hold: V (t) ≤
(
m
t

)
qt ≤ (emq/t)t.

Proof. The second is standard. To see the first, note that to specify a string with Hamming
weight ≤ t we can specify a super-set of size t of the non-zero positions, and then values for
those positions, including 0. J

Proof of Theorem 13. Let H ∈ F(m−d)×m
q be the parity-check matrix of C. Let H ′ be the

matrix consisting of the first s rows of H. Note that we do have at least this many rows by
our hypothesis on d. Also note that H ′ has full rank.

On input x ∈ Fmq , the algorithm computes H ′x, and accepts if and only if H ′x equals to
H ′e for any e ∈ Fmq of Hamming weight at most t.

To analyze the correctness, let y be a codeword with at most t errors. Then H(y− e) = 0
for some e ∈ Fmq with Hamming weight at most t, and so the algorithm always accepts.
On the other hand if U is uniform, then as H ′ has full rank, H ′U is uniform in Fsq. Since
there are V (t) vectors in Fmq with Hamming weight at most t, the algorithm accepts with
probability ≤ V (t)/qs ≤ δ.

Now we show how to compute H ′x using s symbols of space (and so s log q bits). For
i ≤ s, let hi be the i-th row of H ′. Note that the i-th symbol of H ′x equals

∑
j≤n hi,jxj ,

which can be computed with one symbol of space by keeping the partial sum. The result
follows.

The “moreover” part follows from Claim 33. J

Proof of Theorem 14. Suppose

Pr [P (GU + E) = Ui] ≥ 1/q + ε.

Let Da be the uniform distribution over {Gx | xi = a}. We can rewrite the inequality as

E
a∈Fq

[Pr[P (Da + E) = a]− Pr[P (U) = a]] ≥ ε.

Therefore, there exists an a such that Pr[P (Da + E) = a]− Pr[P (U) = a] ≥ ε.
We now use P to construct a protocol P ′ that distinguishes D0 +E from uniform. Given

y ∈ Fmq , the parties add to y the ith column Gi of G multiplied by a. This can be done
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without communication. Then they run the protocol P on y + aGi and accept if and only if
the output is a. We have

Pr[P ′(D0 + E) = 1]− Pr[P ′(U) = 1] = Pr[P (D0 + aGi + E) = a]− Pr[P (U) = a]
= Pr[P (Da + E) = a]− Pr[P (U) = a]
≥ ε.

So the result follows from Theorem 12. J

Proof of Theorem 15. Let n := q/k be the input length to a party. The parties communicate
m−d+2t+1−n symbols that the first does not have, and no symbol if m−d+2t+1−n ≤ 0.
The first party then outputs the unique message whose encoding is at distance ≤ t with the
m− d+ 2t+ 1 symbols z they have, i.e., the symbols they received plus the n they already
have. The message corresponding to x clearly is such a message. Also no other such message
exists, because if two encodings are at distance ≤ t with z then they agree with each other
in ≥ m− d+ 1 symbols, and so they cannot differ in d positions and must be the same. J

4 Pseudorandomness: I

In this section we prove our first theorem on pseudorandom generators, Theorem 18.
First, we shall need the following lemma to sample our noise vectors, which is also used

in the next section. We write SD for statistical distance.

I Lemma 34. There is a polynomial-time computable function f mapping O(η log(1/η)m)
bits to {0, 1}m such that SD(f(U), E) ≤ e−Ω(ηm).

In turn, that will use the following lemma to sample arbitrary distributions through
discretization. A version of the lemma appears in [51], Lemma 5.2. That version only bounds
the number of bits of the sampler. Here we also need that the sampler is efficient.

I Lemma 35. Let D be a distribution on S := {1, 2, . . . , n}. Suppose that given i ∈ S we
can compute in time polynomial in |i| = O(logn) the cumulative distribution Pr[D ≤ i].

Then there is a polynomial-time computable function f such that given any t ≥ 1 uses
dlog2 nte bits to sample a string in the support of D such that SD(f(U), D) ≤ 1/t.

Proof. Following [51, Lemma 5.2], partition the interval [0, 1] into n intervals Ii of lengths
Pr[D = i], i = 1, . . . , n. Also partition [0, 1] in ` := 2dlog2 nte ≥ nt intervals of size 1/` each,
which we call blocks. The function f interprets an input as a choice of a block b, and outputs
i if b ⊆ Ii and, say, outputs 1 if b is not contained in any interval.

For any i we have |Pr[D = i] − Pr[f(U) = i]| ≤ 2/`. Hence the statistical distance is
≤ (1/2)

∑
i |Pr[D = i]− Pr[f(U) = i]| ≤ (1/2)n2/` ≤ 1/t.

To show efficiency we have to explain how given b we determine the i such that b ⊆ Ii.
We perform binary search. This requires O(logn) steps, and in each step we compute the
cumulative distribution function of D, which by assumption is in polynomial time. J

Proof of Lemma 34. Our function f first samples a weight distribution W on {0, . . . ,m}
so that SD(W, |E|) ≤ e−Ω(ηm). By Lemma 35, this uses a seed of length O(ηm+ log(m+ 1))
and runs in polynomial time. Given a sample w ∼W . If w ≥ 2ηm, we output the all-zero
string. Otherwise we sample a string in {0, 1}m with Hamming weight w almost uniformly.
To do this, first we index the

(
m
w

)
strings in lexicographical order. We then use Lemma 35

again to sample an index in {1, . . . ,
(
m
w

)
} from a distribution that is e−Ω(ηm)-close to uniform.
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This takes another seed of length at most O(ηm+ log
(
m

2ηm
)
) = O(ηm+ η log(1/η)m) and

can be computed in polynomial time.
Given an index i, we output the corresponding string efficiently using the following recur-

rence. Let s(m, k, i) denote the i-th m-bit string with Hamming weight k, in lexicographical
order. We have

s(m, k, i) =
{

0 ◦ s(m− 1, k, i) if i ≤
(
m−1
k

)
1 ◦ s(m− 1, k − 1, i−

(
m−1
k

)
) otherwise.

Note that s(m, k, i) outputs the string by m comparisons of d
(
m

2ηm
)
e-bit strings, and thus

can be computed in polynomial time.
Therefore f has input length O(ηm+ η log(1/η)m+ log(m+ 1)) = O(η log(1/η)m). Let

D := f(U). We now bound above the statistical distance between D and E. Denote Dw as
the distribution D conditioned on |D| = w and denote Ew analoguously. We have

∑
x∈{0,1}m

|Pr[D(x)]− Pr[E(x)]| =
m∑
w=0

∑
|x|=w

|Pr[D(x)]− Pr[E(x)]|

=
m∑
w=0

∑
|x|=w

|Pr[Dw(x)] Pr[|D| = w]− Pr[Ew(x)] Pr[|E| = w]|,

Adding −Pr[Dw(x)] Pr[|E| = w] + Pr[Dw(x)] Pr[|E| = w] = 0 in each summand, this is at
most
m∑
w=0

∑
|x|=w

Pr[Dw(x)]·|Pr[|D| = w]−Pr[|E| = w]|+
m∑
w=0

∑
|x|=w

|Pr[Dw(x)]−Pr[Ew(x)]|·Pr[|E| = w].

The first double summation is at most 2 SD(|D|, |E|) = 2 SD(W, |E|). We now bound above
the second summation as follows. We separate the outer sum into w > 2ηm and w ≤ 2ηm.
For the first case, we have∑

w>2ηm

∑
|x|=w

|Pr[Dw(x)]− Pr[Ew(x)]| · Pr[|E| = w] ≤ 2 Pr[|E| > 2ηm].

By the Chernoff Bound, this is at most 2e−Ω(ηm). For the other case, we have∑
w≤2ηm

∑
|x|=w

|Pr[Dw(x)]− Pr[Ew(x)]| · Pr[|E| = w] ≤ 2 max
w≤2ηm

SD(Dw, Ew).

Therefore,

SD(D,E) ≤ SD(W, |E|) + max
w≤2ηm

SD(Dw, Ew) + e−Ω(ηm) ≤ 3e−Ω(ηm). J

We can now prove our first theorem on pseudorandom generators.

Proof of Theorem 18. (1) We apply Theorem 23. Known constructions [6, Theorem 2] (see
also [41]) produce a δ-biased distribution over m bits using 2 log(1/δ) +O(logm) bits. We
set δ = O(2−nε), resulting in a seed length of 2n+ 2 log(1/ε) +O(logm) bits.

For the noise we set η = O(k log k log(k/ε)/n). Note that η ≤ 1 because we can assume
k2 log k log(k/ε) logn ≤ n, for else (2) gives a better bound.

By Lemma 34, the seed length to generate the noise vector is O(k2 log k log(k/ε) log(n/k)).
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In Theorem 23 set t = cn/(k log k) for a small enough constant c. Then we can
bound V (t)k/2 ≤ V (t)k−1 ≤ 2n. Thus the error bound from Theorem 23 is at most
k(1− η)cn/(k log k)(1 + 2nδ) + 2nδ ≤ 2k(1− η)cn/(k log k) + ε/4 ≤ ε/2.

The error from Lemma 34 is e−Ω(ηm) ≤ ε/2. Thus overall the error is at most ε.
The fact that we can apply any permutation π follows from the fact that applying such

a permutation does not change the noise distribution, and preserves the property of being
b-wise independent.

(2) Let c := b(k2 log k log(k/ε) logn/n)1/3c. We can assume c ≥ 1 for else (1) gives a
better bound. Group the k functions into k′ = dk/ce functions on input length n′ := cn. We
can now apply (1) to n′ and k′ to get the desired seed length. J

5 Pseudorandomness, II

We now move to our second theorem on pseudorandom generators, Theorem 19. We begin
by modifying Theorem 23 to allow us to sample the noise in a certain pseudorandom way.
Specifically, we can write our noise vector E in the previous sections as E = T ∧U , where U is
uniform, T is a distribution of i.i.d. bits where each comes 1 with probability η, and ∧ denotes
bit-wise And. In the derandomized way, we keep U uniform but select T using an almost
n-wise independent distribution. The analogue of Theorem 23 with this derandomization is
proved below as Theorem 37. Finally, we show how to recurse on U in §5.2.

At the end of the section we show that a certain improvement in the error bound of
Theorem 37 would yield much better pseudorandom generators.

I Definition 36. A distribution T on m bits is γ-almost d-wise independent if for every d
indices i1, . . . , id and any S ⊆ {0, 1}d we have∣∣∣∣∣∣

∑
x∈S

Pr[
∧
j≤d

Tij = xj ]−
∏
j≤d

Pr[Tij = xj ]

∣∣∣∣∣∣ ≤ γ.
I Theorem 37 (Bounded Independence Plus Derandomized Noise Fools Products). Let t ∈ [0, n].
Let f1, . . . , fk : {0, 1}n → C1 be k functions with µi = E[fi]. Let D be an δ-biased distribution
over ({0, 1}n)k. Let T be a γ-almost n-wise distribution over ({0, 1}n)k which sets each bit
to 1 with probability η and 0 otherwise. Assume γ ≤ η. Let U be the uniform distribution
over ({0, 1}n)k. Write D = (D1, D2, . . . , Dk) where each Di is in {0, 1}n, and similarly for
T and U . Then∣∣∣∣∣∣E
∏
i≤k

fi(Di + Ti ∧ Ui)

−∏
i≤k

µi

∣∣∣∣∣∣ ≤ k((1−η)t+γ)1/2
√

(1 + 2nδ)(1 + V (t)k−1δ)+V (t)k/2δ.

5.1 Proof of Theorem 37
We begin exactly as in the proof of Theorem 23. For a function f : {0, 1}n → C1, consider its
Fourier expansion f(x) :=

∑
α f̂αχα(x), and let fL(x) :=

∑
α:|α|≤t f̂αχα(x) and fH(x) :=∑

α:|α|>t f̂αχα(x). Define Fi : ({0, 1}n)k → C to be

Fi(x1, . . . , xk) :=

∏
j<i

fj(xj)

 · fHi (xi) ·
(∏
`>i

fL` (x`)
)
.
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Pick fk and write it as fLk + fHk . We can then rewrite

∏
1≤i≤k

fi = Fk +

 ∏
1≤i≤k−1

fi

 · fLk .
We can reapply the process to (

∏
1≤i≤k−1 fi). Continuing this way, we eventually have what

we want to bound, i.e. |E[
∏
i≤k fi(Di + Ti ∧ Ui)]−

∏
i≤k µi|, is at most∣∣∣∣∣∣

∑
i≤k

E[Fi(D + T ∧ U)]

∣∣∣∣∣∣+

∣∣∣∣∣∣E[
∏
i≤k

fLi (Di + Ti ∧ Ui)]−
∏
i≤k

µi

∣∣∣∣∣∣.
The theorem follows readily from the next two lemmas, the second of which has a longer

proof. The first one has the same proof as Lemma 28.

I Lemma 38. |ED,T,U [
∏
i≤k f

L
i (Di + Ti ∧ Ui)]−

∏
i≤k µi| ≤ V (t)k/2δ.

I Lemma 39. For every i ∈ {1, 2, . . . , k}, we have

| E
D,T,U

[Fi(D + T ∧ U)]| ≤ ((1− η)t + γ)1/2
√

(1 + 2nδ)(1 + V (t)k−1δ).

Proof. We have

|E[Fi(D + T ∧ U)]|

=

∣∣∣∣∣∣E
∏
j<i

fj(Dj + Tj ∧ Uj) · fHi (Di + Ti ∧ Ui) ·
∏
`>i

fL` (D` + T` ∧ U`)

∣∣∣∣∣∣
≤ E
D,T

∏
j<i

∣∣∣∣EUj

[fj(Dj + Tj ∧ Uj)]
∣∣∣∣ · ∣∣∣∣EUi

[fHi (Di + Ti ∧ Ui)]
∣∣∣∣ ·∏

`>i

∣∣∣∣EU`

[fL` (D` + T` ∧ U`)]
∣∣∣∣


≤ E
D,T

[∣∣∣∣EUi

[fHi (Di + Ti ∧ Ui)]
∣∣∣∣ ·∏

`>i

∣∣∣∣EU`

[fL` (D` + T` ∧ U`)]
∣∣∣∣
]
,

where the last inequality holds because |EUj
[fj(Dj +Tj ∧Uj)]| ≤ EUj

[|fj(Dj +Tj ∧Uj)|] ≤ 1
for every j < i, by Jensen’s inequality, convexity of norms, and the fact that the range of fj
is C1.

By the Cauchy–Schwarz inequality, we get

|E[Fi(D + T ∧ U)]| ≤ E
D,T

[∣∣∣∣EUi

[fHi (Di + Ti ∧ Ui)]
∣∣∣∣2
]1/2

· E
D,T

[∏
`>i

∣∣∣∣EU`

[fL` (D` + T` ∧ U`)]
∣∣∣∣2
]1/2

.

In claims 41 and 42 below we bound from above the square of the two terms on the
right-hand side. In both cases, we view our task as bounding |ED[g(D)]| for a certain
function g, and we proceed by computing the L1-norm, average over uniform, and degree of
g, and then we apply Fact 27.

We start with a claim that is useful in both cases.

I Claim 40 (Replacing Claim 30). Let f : {0, 1}n → C be a function. Let T be a γ-almost
n-wise independent distribution which sets each bit to 1 with probability η and 0 otherwise.
Let U and U ′ be two independent uniform distributions over n bits. Then:
(1) for every x, ET,U [f(x+ T ∧ U)] =

∑
α f̂αχα(x)((1− η)|α| + γ), and

(2) EU,T
[
|EU ′ [f(U + T ∧ U ′)]|2

]
=
∑
α |f̂α|2((1− η)|α| + γ).
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Proof. For (1), write

E
T,U

[f(x+ T ∧ U)] = E
T,U

[
∑
α

f̂αχα(x+ T ∧ U)] =
∑
α

f̂αχα(x) E
T,U

[χα(T ∧ U)].

If T does not intersect α then the expectation is one, and this happens with probability at
most (1− η)|α| + γ. Otherwise, the expectation is 0.

For (2), write EU,T [|EU ′ [f(x+ T ∧ U ′)]|2] as

E
U,T

∑
α,α′

f̂αf̂α′χα−α′(U) E
U ′,U ′′

[χα(T ∧ U ′)χα′(T ∧ U ′′)]

 .
Since U is uniform this becomes

∑
α|f̂α|2 ET,U ′,U ′′ [χα(T∧(U ′−U ′′))] =

∑
α|fα|2 E[χα(T∧U)].

The claim then follows as in (1). J

We can now bound our terms.

I Claim 41 (Replacing Claim 31). For every i, ED,T [|EU [fHi (Di + Ti ∧ Ui)]|2] ≤ ((1− η)t +
γ)(1 + 2nδ).

Proof. Let g(x) be the function g(x) = ETi,Ui
[fHi (x+ Ti ∧ Ui)]. By (1) in Claim 40, the L1-

norm of g is at most
∑
α:|α|>t |f̂α|((1−η)|α|+γ) ≤ ((1−η)t+γ)

∑
α |f̂α| ≤ ((1−η)t+γ)2n/2,

where we used Cauchy–Schwarz and Fact 25.
Also, by (2) in Claim 40 and Fact 25, EU [|g(U)|2] under uniform is at most (1− η)t + γ.
Because nk ≥ n we can apply (3) in Fact 27 to obtain that ED[|g(D)|2] ≤ ((1− η)t + γ) +

((1− η)t + γ)22nδ ≤ ((1− η)t + γ)(1 + 2nδ) as claimed. J

I Claim 42. ED,T
[∏

`>i

∣∣EU`
[fL` (D` + T` ∧ U`)]

∣∣2] ≤ 1 + V (t)k−1δ.

Proof. Pick any ` > i and let g`(x) := EE [fL` (x+ E`)].
The L1-norm of g` is at most V (t)1/2 by (1) in Claim 30 and Cauchy–Schwarz. Also by

(2) in the same claim we have EU [|g`(U)|2] ≤ 1. Moreover, g` has degree at most t by (1) in
the same claim.

Now define g : ([s]n)k−i → C as g(xi+1, xi+2, . . . , xk) := gi+1(xi+1) · gi+2(xi+2) · · · gk(xk).
Note that g has L1-norm at most V (t)(k−i)/2 ≤ V (t)(k−1)/2 and degree (k − i)t ≤ (k − 1)t,
by Fact 24 applied with u = n(k − i). Moreover, EUi+1,Ui+2,...,Uk

[|g(Ui+1, Ui+2, . . . , Uk)|2] =
EUi+1 [|gi+1|2] · EUi+2 [|gi+2|2] · · ·EUk

[|gk|2] ≤ 1.
Because b ≥ 2(k − 1)t, we can apply (2) in Fact 27 to obtain

E
D

[|g(D)|2] ≤ 1 + V (t)k−1δ

as desired. J

Proof. Pick any ` > i and let g`(x) := ET,U`
[fL` (x+ T` ∧ U`)].

The L1-norm of g` is at most V (t)1/2 by (1) in Claim 40, Cauchy–Schwarz, and the
assumption that γ ≤ η. Also by (2) in the same claim we have EU [|g`(U)|2] ≤ 1. Moreover,
g` has degree at most t by (1) in the same claim.

Now define g : ([s]n)k−i → C as g(xi+1, xi+2, . . . , xk) := gi+1(xi+1) · gi+2(xi+2) · · · gk(xk).
Note that g has L1-norm at most V (t)(k−i)/2 ≤ V (t)(k−1)/2 and degree (k − i)t ≤ (k − 1)t,
by Fact 24 applied with u = n(k − i). Moreover, EUi+1,Ui+2,...,Uk

[|g(Ui+1, Ui+2, . . . , Uk)|2] =
EUi+1 [|gi+1|2] · EUi+2 [|gi+2|2] · · ·EUk

[|gk|2] ≤ 1.
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Because nk ≥ 2(k − 1)t, we can apply (2) in Fact 27 to obtain

E
D

[|g(D)|2] ≤ 1 + V (t)k−1δ

as desired. J

Lemma 39 follows by combining Claims 41 and 42. J

5.2 A recursive generator
I Lemma 43. Suppose n ≥ Ck log k log(k/ε) for a universal constant C. Let c be an integer.
If there is an explicit generator Gcn/4,k/c : {0, 1}` → ({0, 1}cn/4)k/c that ε-fools product tests
that read bits in any order and uses a seed of length `, then there is an explicit generator
Gn,k : {0, 1}`′ → ({0, 1}n)k that fools product tests in any order with error ε/k + ε and uses
a seed of length `′ = O(n) + `.

Proof. Our generator Gn,k : {0, 1}`′ → ({0, 1}n)k samples a 2−2n-biased distribution D on
m bits, and a 2−2n-almost n-wise independent distribution T = (T1, . . . , Tk) on m bits which
sets each bit to 1 with probability 1/8 and 0 otherwise. If |Ti| > n/4 for some 1 ≤ i ≤ k, let
G output the all-zero m-bit string. Otherwise, output D + T ∧ PADT (Gcn/4,k/c(U`)), where
PADT (x)j is defined as follows: If j ∈ T , PADT (x)j equals the first bit of x that has not
appeared in the first j− 1 bits of PADT (x). Otherwise PADT (x)j = 0. Note that |T | ≤ m/4.

Now we analyze the seed length of Gn,k. Standard constructions [41, 6] use a seed of
O(n) bits to sample D. To sample T , we will use the following lemma from [45].

I Lemma 44 (Lemma B.2 in [45]). There is an explicit sampler that samples a γ-almost
n-wise independent distribution T on m bits which sets each bit to 1 with probability η and 0
otherwise and uses a seed of length O(n log(1/η) + log((logm)/γ)).

Applying the lemma with γ = 2−2n and η = 1/8, we can sample T with O(n) bits. So the
total seed length of Gn,k is `′ = O(n) + `.

We now analyze the error of Gn,k. Let f : ({0, 1}n)k → C1 be a product test. We bound
above |E[f(Um)]− E[f(Gn,k(U`′))]| by

|E[f(Um)]− E[f(D + T ∧ Um)]|+ |E[f(D + T ∧ Um)]− E[f(Gn,k(U`′)]|.

The first term is at most ε/2k by Theorem 37 with the following choice of parameters. We
set t = cn/(k log k) for a small enough constant c. Then we can bound V (t)k/2 ≤ V (t)k−1 ≤
2n. We set η = 1/8. Thus, by the condition n ≥ Ck log k log(k/ε) the error bound from
Theorem 37 is at most k((1−η)cn/(k log k) +γ)1/2(1+2nδ)+2nδ ≤ O(k((ε/k)100 +2−2n)1/2)+
2−n ≤ ε/2k.

For the second term, let T ′ be T conditioned on |Ti| ≤ n/4 for every 1 ≤ i ≤ k. For
every fixed y ∈ D and t ∈ T ′, consider the function fy,t : ({0, 1}n/4)k → C1 by fy,t(x) :=
f(y + t ∧ PADt(x)). Note that we can group every c functions into one and think of fy,t
as a product test of k/c functions on cn/4 bits, which can be fooled by Gcn/4,k/c. Thus,
|E[f(D + T ′ ∧ Um)]− E[f(Gn,k(U`′))]| equals

|E[f(D + T ′ ∧ PADT ′(Um/4))]− E[f(D + T ′ ∧ PADT ′(Gcn/4,k/c(U`)))]|
≤ E
y∼D,t∼T ′

[|E[fy,t(Um/4)]− E[fy,t(Gcn/4,k/c(U`))]|]

≤ ε.

Now let E denote the event |Ti| > n/4 for some 1 ≤ i ≤ k. We bound above Pr[E]. We will
use the following tail bound for almost d-wise independence.
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I Lemma 45 (Lemma B.1 in [45]). Let T = (T1, . . . , Tn) be a γ-almost d-wise independent
distribution on n bits where E[Tj ] = η for every 1 ≤ j ≤ n. Then for any ε ∈ (0, 1),

Pr[|
∑
i≤n

Xi − ηn| ≥ εn] ≤
(

ed

2ε2n

)d/2
+ γ/εd.

We apply Lemma 45 with η = ε = 1/8, γ = 2−2n, and d = Ω(n). This guarantees that
for each 1 ≤ i ≤ k the probability of |Ti| ≤ n/4 is at most 2−Ω(n). By a union bound over
T1, . . . , Tk, we have Pr[E] ≤ k2−Ω(n) ≤ ε/2k.

Putting everything together we have error ε/k + ε. J

Finally, we combine these results to prove Theorem 19.

Proof of Theorem 19. Let C be the universal constant in Lemma 43. Suppose n ≥
Ck log k log(k/ε). We will first apply Lemma 43 with c = 2 for t := O(log k) times un-
til we are left with a product test of O(1) functions on O(n/k) bits, and then we output the
uniform O(n/k)-bit string. Note that the condition n ≥ Ck log k log(k/ε) holds throughout
because n and k are both divided by 2 at each step.

Note that in each application of Lemma 43, we reduce n by at least a half. Hence, the total
seed length is at most

∑t
i=0O(n/2i) +O(n/k) = O(n). The error is at most

∑t
i=0 2iε/k ≤ ε.

If n ≤ Ck log k log(k/ε), pick an integer c = O(
√
k log k log(k/ε)/n) so that c2n ≥

O(Ck log k log(k/ε)). By grouping every c functions into one, f is also a product test of k/c
functions on cn bits. Hence, by the previous result we have a generator with seed length
` = O(cn) = O(

√
nk log k log(k/ε)). J

A potential improvement. We now show that an improvement in the error bound of
Theorem 37 would yield much better pseudorandom generators.

I Claim 46. Let D be an n-wise independent distribution on m := nk bits. Let T be an
n-wise independent distribution on m bits which sets each bit to 1 with probability η. Let U
be the uniform distribution on m bits.

Suppose that for any product test f : ({0, 1}n)k → C1 on m bits we have |E[f(U)] −
E[f(D + T ∧ U)]| ≤ k(1− η)Ω(n).

Then there is an explicit generator G : {0, 1}` → ({0, 1}n)k that ε-fools product tests in
any order with seed length ` = O((n+ log k log(m/ε)) logm).

To prove Claim 46, first we replace Lemma 43 with the following lemma.

I Lemma 47. Suppose n ≥ C log(m/ε) for a universal constant C. Let c be an integer. If
there is an explicit generator Gcn/4,k/c that fools product tests that read bits in any order on
(cn/4) · (k/c) bits with error ε and uses a seed of length `, then there is an explicit generator
Gn,k : {0, 1}`′ → ({0, 1}n)k that fools product tests that read bits in any order on m := nk

bits with error ε/m+ ε and uses a seed of `′ = O(n logm) + ` bits.

Proof. The generator is very similar to the one in Lemma 43 except that G now samples an
n-wise independent distribution D on m bits and an n-wise independent distribution T on
m bits that sets each bit to 1 with probability 1/8 and 0 otherwise. Now sampling D and T
takes a seed of length O(n logm) [20, 5].

Now we analyze the error of Gn,k. Let f : ({0, 1}n)k → C1 be a product test. As in the
proof of Lemma 43 we bound above |E[f(Um)]− E[f(Gn,k(U`′))]| by

|E[f(Um)]− E[f(D + T ∧ Um)]|+ |E[f(D + T ∧ Um)]− E[f(Gn,k(U`′))]|.
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By our assumption, the first term is at most k(1− η)Ω(n) ≤ ε/2m. For the second term,
let T ′ be T conditioned on |Ti| ≤ n/4 for every 1 ≤ i ≤ k. For every fixed y ∈ D and t ∈ T ′,
consider the function fy,t : ({0, 1}n/4)k → C1 by fy,t(x) := f(y+ t∧PADt(x)). Note that we
can group every c functions into one and think of fy,t as a product test of k/c functions on
cn/4 bits, which can be fooled by Gcn/4,k/c. Thus, |E[f(D + T ′ ∧ Um)]− E[f(Gn,k(U`′))]|
equals

|E[f(D + T ′ ∧ PADT ′(Um/4))]− E[f(D + T ′ ∧ PADT ′(Gcn/4,k/c(U`)))]|
≤ E
y∼D,t∼T ′

[|E[fy,t(Um/4)]− E[fy,t(Gcn/4,k/c(U`))]|]

≤ ε.

Now let E denote the event |Ti| > n/4 for some 1 ≤ i ≤ k. We bound above Pr[E]. Since T
is n-wise independent, by the Chernoff bound the probability of |Ti| ≤ n/4 is at most 2−Ω(n).
By a union bound over T1, . . . , Tk, we have Pr[E] ≤ k2−Ω(n) ≤ ε/2m.

Putting everything together we have error ε/m+ ε. J

Proof of Claim 46. Suppose n ≥ C log(m/ε). We apply Lemma 47 recursively, in two
different ways. One way reduces n and the other reduces k. First, we apply the lemma with
c = 1 for t1 := O(logn) times to bring n down to n′ = O(log(m/ε)). This takes a seed of
`1 :=

∑t
i=0O(n logm/4i) = O(n logm) bits. Now we have a product test of k functions

on n′ bits. We will instead think of it as a product test of k/2 functions on 2n′ bits, and
apply Lemma 47 with c = 2, which will reduce it to a product test of k/4 functions on n′
bits. Now we repeat t2 := O(log k) steps to reduce k to k′ = O(1). This takes a seed of
`2 := t2 ·O(n′ logm) = O(log k log(m/ε) logm) bits. Now we are left with a product test of
k′ functions on n′ bits, and we can output the uniform string. Therefore the total seed length
is ` = `1 + `2 +O(log(m/ε)) = O((n+ log k log(m/ε)) logm). Because in each application of
Lemma 47 the input length of the product test decreases by at least half, the error bound is
at most

∑t1+t2
i=0 2iε/m ≤ 2O(logm)ε/m ≤ ε.

If n ≤ C log(m/ε), we can group the functions and have a product test of k′ functions on
C log(m/ε) bits where k′ ≤ k, and reason as before. J

6 Pseudorandomness, III

In this section we prove Theorem 22, giving generators for generalized halfspaces and
combinatorial shapes. After that, we discuss the relationship between the results in this
paper and an original motivation [38].

I Lemma 48 ([27]). Suppose G : {0, 1}` → ({0, 1}n)k is an explicit generator that ε-fools
any product test on nk bits that reads bits in any order, then
1. G fools any generalized halfspace h : ({0, 1}n)k → {0, 1} on nk bits that reads bits in any

order with error O(k2n(n+ log k)ε).
2. G fools any combinatorial shape g : ({0, 1}n)k → {0, 1} on nk bits that reads bits in any

order with error O(k22n(n+ log k)ε).

Proof of Lemma 48. (1) Let U = (U1, . . . , Uk) be the uniform distribution over ({0, 1}n)k
and X = (X1, . . . , Xk) = πG(U`) ⊆ ({0, 1}n)k, where U` is uniform over {0, 1}` and π is
some permutation on nk bits. Let Z1 :=

∑
i≤k gi(Ui), and Z2 :=

∑
i≤k gi(Xi). Since G fools

product tests with error ε, we have for every α ∈ [0, 1],

|E[e2πiαZ1 ]− E[e2πiαZ2 ]| = |E[
∏
i≤k

e2πiαgi(Ui)]− E[
∏
i≤k

e2πiαgi(Xi)]| ≤ ε.
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By [27, Lemma 9.3], we may assume each gi(j) and θ are integers of absoluate value
B := (2nk)O(2nk), and so −kB ≤ Z1, Z2 ≤ kB. It follows form [27, Lemma 9.2] that

|E[h(πG(U`))]− E[h(U)]| ≤ max
−kB≤t≤kB

|Pr(Z1 ≤ t)− Pr(Z2 ≤ t)| ≤ O(log(kB))ε.

(2) Since
∑
i≤k gi(xi) ∈ {0, . . . , k}, it suffices to fool the generalized halfspaces h(x) :=∑

i≤k gi(xi)− θ for θ ∈ {0, . . . , k}, the rest follows from (1) and a union bound. J

Proof of Theorem 22. Combine Lemma 48 and Theorem 19. J

Motivation: The sum of small-bias distributions. One motivation for this work comes
from the paper [38]. That paper shows that the study of bounded independence plus noise is
useful in understanding the limitations of the sum of two or more independent small-bias
distributions. We refer the reader to [38] for background, but we mention briefly that while
the latter distributions have been shown to fool low-degree polynomials in [15, 39, 50] they
are also candidate to giving new circuit lower bounds or RL=L. The paper [38] lays two
approaches to exhibit distinguishers for the sum of small-bias distributions, and one approach
is related to this work, as discussed next.

Let D be a linear b-wise independent distribution over {0, 1}m, and for a parameter η
let E(η) be a vector of m independent bits which are set to uniform with probability η and
0 otherwise. [38] makes two observations. First, the distribution X = D + E(η), where +
denotes bit-wise xor, is ε = (1− η)b+1-biased. Second, by the linearity of D we have

X +X = D + E(η) +D + E(η) = D + E(η′)

where η′ = 1− (1− η)2 = (2− η)η < 2η. Hence, the distribution X +X is of the same form
as X except for a slight increase in the noise parameter. This structure is useful in exhibiting
tests which are not fooled by the xor of two small-bias distributions, see [38]. However, it
was left open in [38] whether it can be useful to answer a question posed more than 10 years
ago by Reingold and Vadhan, and which we can state in the following form: is it true that
for every c there exists a d such that the xor of two m−d-biased distributions on m bits fools
one-way algorithms using space c logm? (An affirmative answer implies RL=L.)

The approach in [38] cannot answer this question in the negative if it turns out that
whenever the bias of X is m−d then X +X does fools c logm-space algorithms.

This paper shows that this does turn out to be the case whenever b = Ω(m), which is also
the setting where our bounds are tight. Indeed, in this setting we need η = Ω(d(logm)/m) to
have bias m−d. But then Theorem 5 gives an error bound of 2−Ω(d logm). This can be made
less than m−ck for a constant k by choosing d large enough. And this bound is sufficient to
fool one-way space c logm, as remarked in §1.2 before Corollary 20.

This being the failure of an approach to show a limitation, it can be interpreted with
optimism.

However, already when b = m/ logm our bounds are not strong enough to show that the
[38] approach fails. The bias condition gives η = c(log2m)/m, and in this case our bound
becomes only 2−Ω(c), which is not sufficient to fool space. This provides further motivation
for understanding whether the bounds in Theorem 5 are tight even for b = o(m), and to
extend the theorem to other tests.

Bonus results. We note that for fixed order we have the following simple construction that
fools product tests.
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I Claim 49. Let U1 be the uniform distribution on n bits and D2, . . . , Dk be k−1 independent
ε/(k−1)-biased distributions on n bits, then the distribution D := (U1, U1 +D2, . . . , U1 +Dk)
ε-fools any product test f : ({0, 1}n)k → C1.

An ε-biased distribution can be sampled using O(log(n/ε)) bits [41, 6]. Hence, D can be
sampled using n+O(k log(nk/ε)) bits, which is optimal when k = O(1).

Proof of Claim 49. We will use the hybrid argument. Let f :=
∏
i≤k fi be any product

test and µi = E[fi]. For 1 ≤ i ≤ k, define the hybrid distribution Hi := (U1, . . . , Ui, U1 +
Di+1, . . . , U1 +Dk), where each Ui is independently uniformly distributed over {0, 1}n. Note
that H1 = D and Hk is the uniform distribution U . The goal is to show that for 2 ≤ j ≤ k,
we have |E[Hi−1]− E[Hi]| ≤ ε/(k − 1). Then it follows that

|E[f(D)]− E[f(U)]| = |E[f(H1)]− E[f(Hk)]| ≤
∑

2≤j≤k
|E[f(Hi−1)]− E[f(Hi)]| ≤ ε.

We now show that |E[Hi−1]− E[Hi]| ≤ ε/(k − 1). Note that once we have fixed the values
of Dj for j ≥ i, the corresponding fj ’s has the same input as f1. Thus we can write
their products as one function. That is, for every zj ∈ Dj where j > i, we can define
gzi+1,...,zk

: {0, 1}n → C1 by gzi+1,...,zk
(x) := f1(x)

∏
j>i fj(x+ zj). Then

|E[f(Hi−1)]− E[f(Hi)]|

= |E[f1(U1) ·
i−1∏
j=2

fj(Uj) · (fi(U1 +Di)− fi(Ui)) ·
∏
j>i

fj(U1 +Dj)]|

≤ (
i−1∏
j=2

µj) · |E[(f1(U1) ·
∏
j>i

fj(U1 +Dj)) · (fi(U1 +Di)− fi(Ui))]|

≤ | E
zj∼Dj ,∀j>i

[E
U1

[gzi+1,...,zk
(U1)fi(U1 +Di)]− E[gzi+1,...,zk

] · µi]|

≤ E
zj∼Dj ,∀j>i

[|E
U1

[gzi+1,...,zk
(U1)fi(U1 +Di)]− E[gzi+1,...,zk

· µi]|].

It follows from Claim 50 below that the inner expectation is at most ε/(k − 1), and the rest
follows by averaging over the choices of the zj ’s. J

I Claim 50. Let U be the uniform distribution over n bits. Let D be an ε-biased distribution
over n bits. Let f, g : {0, 1}n → C1 be two functions. We have |E[f(U)g(U+D)]−E[f ] E[g]| ≤
ε.
Proof. We write f and g in their Fourier expansion. We have

|E[f(U)g(U +D)]− E[f ] E[g]| = |E[(
∑
α

f̂αχα(U))(
∑
β

ĝβχβ(U +D))]− f̂∅ĝ∅|

= |
∑
α,β

f̂αĝβ E[χα+β(U)] E[χβ(D)]− f̂∅ĝ∅|

= |
∑
α6=∅

f̂αĝα E[χα(D)]|

≤ ε
∑
α6=∅

|f̂α||ĝα|

≤ ε,

where the last equality is because E[χα(U)] = 0 if α 6= 0 and equals 1 otherwise, the first
inequality is because D is ε-biased, and the last inequality is by Cauchy–Schwarz and the
fact that f and g are bounded by 1. J
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7 Conclusion

We have shown that distributions with bounded independence (or small-bias) perturbed with
noise fool products. We ask for tight bounds on the error ε as a function of the amount
of independence and the error parameter η, in any computational model. For products,
an immediate question is to understand whether we can remove the factor of 1/k in the
exponent in our main theorems. This would improve significantly our applications.

Our study also leads us to the following question. For simplicity we focus on the binary
case q = 2.

I Question. Let X = (X1, X2, . . . , Xk) be an ε-biased distribution over (Fn2 )k. Let U be
uniform over Fn2 . Let f1, f2, . . . , fk be functions from {0, 1}n → {0, 1} with expectations
µ1, µ2, . . . , µk. Is it true that

| E
U,X

[
∏
i≤k

fi(U +Xi)]−
∏
i≤k

µi| ≤ ε′

for an ε′ which is independent of n and that, say, goes to 0 for any fixed k and vanishing ε?

Note that the Xi may be correlated. It can be shown that the distribution D + E in
Theorem 1.1, when D is linear, has the above format, by writing the generator matrix in
systematic form. (In fact, it is the sum of several independent samples of such distributions.)
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A A lower bound on b and η

For completeness we now prove by standard arguments a lower bound on b and η such that a
result as in Theorem 5 may apply. We obviously require b ≥ n if η = 0, whereas for general
η one requires a more elaborate argument. Let k = 1 and let M be a uniformly chosen n× t
matrix over Fq. The probability that the corresponding code has minimum distance ≤ d is at
most qtVq(d)/qn. Hence a code C ′ exists with minimum distance > d for n− t = dlogq Vq(d)e.
By Fact 11 the uniform distribution D over the dual C of C ′ is d-uniform. This distribution
can be generated by an n × (n − t) matrix. Hence the support size of this distribution is
qn−t ≤ O(Vq(d)).

Moreover, by Lemma 34 we can sample with O(η log(q/η)n) bits a distribution that is
2−Ω(ηn)-close to the noise vector E.

Hence D + E is 2−Ω(ηn)-close to a distribution supported on a set S whose size is
O(Vq(d))2O(η log(q/η)n) ≤ 2d logO(enq/d)+O(η log(q/η)n) . The function f1 is taken to be the
characteristic function of S. By the lemma the function outputs 1 on D+E with probability
1− 2−Ω(ηn).

On the other hand, the function outputs 1 on a uniform input with probability 1− |S|/qn.
In particular, for any d = (1− ε)n and sufficiently large q this shows that f1 has a constant
distinguishing advantage for all η less ε′, where ε′ depends only on ε.
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Abstract
We show that AC0 circuits on n variables with depth d and sizem have at most 2−Ω(k/ logd−1 m) of
their Fourier mass at level k or above. Our proof builds on a previous result by Håstad (SICOMP,
2014) who proved this bound for the special case k = n. Our result improves the seminal result
of Linial, Mansour and Nisan (JACM, 1993) and is tight up to the constants hidden in the Ω
notation.

As an application, we improve Braverman’s celebrated result (JACM, 2010). Braverman
showed that any r(m, d, ε)-wise independent distribution ε-fools AC0 circuits of size m and
depth d, for

r(m, d, ε) = O(log(m/ε))2d2+7d+3.

Our improved bounds on the Fourier tails of AC0 circuits allows us to improve this estimate to

r(m, d, ε) = O(log(m/ε))3d+3.

In contrast, an example by Mansour (appearing in Luby and Velickovic’s paper – Algorithmica,
1996) shows that there is a logd−1(m) · log(1/ε)-wise independent distribution that does not ε-fool
AC0 circuits of size m and depth d. Hence, our result is tight up to the factor 3 in the exponent.
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1 Introduction

In this paper we discuss Boolean circuits in which every gate computes an unbounded
fan-in OR or AND function of its inputs, and every leaf is marked with a literal from
x1, . . . , xn,¬x1, . . . ,¬xn. The number of gates in the circuit is called the circuit size and is
denoted by m. The longest path in the circuit is called the circuit depth and is denoted by d.
AC0 is the class of functions that can be realized by Boolean circuits of constant depth and
polynomial size. (We also call Boolean circuits of polynomial size and constant depth AC0

circuits).
The study of bounded depth circuits flourished in the 1980s, culminating in the tight

exp(Ω(n1/(d−1))) size lower bound for Boolean circuits of depth d computing the parity
function [2, 11, 36, 14].1 The main idea behind this lower bound was the following – Boolean
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1 Lower bounds for the DNF-size of the parity function were known long before [24].
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circuits with size m and depth d become constant with high probability under random
restrictions keeping each variable alive with probability p = 1/O(logm)d−1. In contrast, the
parity function does not become a constant with probability at least 0.5 as long as pn ≥ 1.
Since the restricted circuit should compute the restricted function, we reach a contradiction
if m = exp(o(n1/(d−1))). The main idea is carried through a sequence of d− 1 steps, where in
each step the circuit depth is decreased by one with high probability, by applying Håstad’s
switching lemma [14].

In their seminal paper, Linial, Mansour, and Nisan [22] showed that AC0 circuits can
be learned in quasipolynomial time, nO(logd n), using random samples, under the uniform
distribution. They combined Håstad’s switching lemma with Fourier analysis, to show
that AC0 circuits may be well approximated (in L2 norm) by low degree polynomials,
namely polynomials of degree O(logd n). Boppana [6] improved their bound on the degree
to O(logd−1 n), which is optimal for constant error. The existence of an approximating low
degree polynomial implies a learning algorithm for AC0 circuits, using random examples.
For polynomial size DNFs (depth 2 circuits), Mansour [25] showed that only nO(log logn) out
of the

(
n

≤O(logn)
)
monomials are needed to approximate the DNF, and achieved a nO(log logn)

time learning algorithm for DNFs, using membership queries, via the Goldreich-Levin [12],
Kushilevitz-Mansour [21] method.

The main technical result in [22] was a bound on the Fourier tails of Boolean circuits.
Namely, for any circuit f of size m and depth d,∑

S⊆[n]:|S|≥k

f̂(S)2 ≤ m · 2−Ω(k1/d) ,

where the LHS is called the Fourier tail of f at level k. This was later improved by Håstad
[15] to∑

S⊆[n]:|S|≥k

f̂(S)2 ≤ max{2−Ω((k/ logm)1/(d−1)), 2−Ω(k/ logd−1(m))} ,

which is tight for k ≤ O(logd(m)), however not for larger values of k. Recently, Håstad [16]
and Impagliazzo, Matthews, and Paturi [18] showed that any Boolean circuit f agrees with
parity on at most a 1/2 + 2−n/O(logm)d−1 fraction of the inputs. In other words, they showed
that |f̂([n])| ≤ 2−n/O(logm)d−1 .

1.1 Our Results
Based on the main lemma of [16], we extend the results of [16, 18] for all k ∈ [0, n] and show
the following.

I Theorem 1 (Main Theorem). Let f be an Boolean circuit with depth d and size m. Then,∑
S:|S|≥k

f̂(S)2 ≤ 2 · 2−k/O(logm)d−1
.

A few things to note first. Increasing k from 0 to n, the first time that Theorem 1 is
meaningful is at k = Θ(logd−1(m)), which is only marginally better than in [22] and exactly
the same as in [6, 15]. Nonetheless, for larger values, our bound decreases much faster, and
in particular for m = poly(n) we get a 2−n/poly log(n) tail at level k = Ω(n) as opposed to a
2−Ω((n/ logn)1/(d−1)) tail by [15]. In addition, while [16] and [18] give bounds on an individual
coefficient, |f̂(S)|, we give bounds on the sum of exp(Ω(n)) many squares of coefficients (e.g.,
for k = n/2).
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We point out that the results of [16], [18], and ours are quite surprising, considering the
fact that most proofs for Boolean circuits follow by induction on the depth d; performing
d − 1 consecutive steps of Håstad’s switching lemma. Our main theorem is equivalent to
saying that degree O(logd−1(m) · log(1/ε)) polynomials ε-approximates Boolean circuits of
size m and depth d, as opposed to degree O(logd(m/ε)) polynomials by [22]. It seems at first
glance that one must pay a factor of log(m/ε) for each step in the induction to ensure error
at most ε, thus resulting in degree at least logd−1(m/ε). However, Håstad and Impagliazzo
et al. managed to avoid that. Håstad performs random restrictions keeping each variable
alive with probability p = 1/O(logm) that does not depend on ε. This only guarantee that
the switching succeeds with probability 1− 1/poly(m), as opposed to probability of 1− ε/m
in the original proof of [22]. However, in the cases where the switching “fails”, Håstad fixes
D additional variables using a decision tree of depth D. Under these additional fixings,
the probability that the switching fails reduces to m · 2−D. We show that the parameters
p and D translate into a multiplicative term of 1/p and an additive term of D in the
degree, correspondingly. Choosing D to be roughly log(m/ε) and applying induction gives
the desired dependency on m and ε.

Theorem 1 shows that the Fourier tail above level k decreases exponentially fast in k. In
Section 5, we show that such behavior is related to three other properties of concentration.
We establish many connections between these four properties, and show that three of them
are essentially equivalent. We think that these connections are of independent interest.2 As
a result of these connections we establish the following theorem.

I Theorem 2. Let f be an Boolean circuit with depth d and size m. Then,
1. For all k, p, if ρ is a p-random restriction, then Prρ[deg(f |ρ) ≥ k] ≤ O(p · logd−1(m))k.
2. For all k,∑

S:|S|=k

|f̂(S)| ≤ O(logd−1(m))k . (1)

3. f is ε-concentrated on at most 2O(log log(m)·logd−1(m)·log(1/ε)) Fourier coefficients.

In Section 6, we show that Equation (1) gives new proofs for the following known results:
Correlation bounds for the Majority function. If f is a size m depth d circuit, then
Pr[f(x) = MAJ(x)] ≤ 1

2 +O(logd−1(m))√
n

. Our result holds for logd−1(m) = O((n/ logn)1/3),
which is an artifact of the proof. This result was originally proved by Smolensky [32] (see
also [10]) and by O’Donnell and Wimmer [28], for the entire range of parameters.
Boolean circuits cannot distinguish between fair coins and coins with bias at most

1
O(logd−1(m)) . This result was previously proved by Cohen, Ganor and Raz [8], improving
the results of Aaronson [1], and Shaltiel and Viola [31].

1.2 Applications to Pseudorandomness and Learning

Since the result of [22] had many applications, our main theorem improves some of
them as well.

2 In fact, some of these connections have been already used in the context of de Morgan formulae [33].
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k-wise independence fools bounded-depth circuits. The most significant improvement is
to the work of Braverman [7] who proved a longstanding conjecture, showing that poly-
logarithmic independent distributions fool AC0 circuits. To be more precise, Braverman
showed that any k-wise independent distribution, where k = O(log(m/ε))2d2+7d+3, ε-fools
circuits of size m and depth d. In addition, it was long known [23] that k must be larger
than Ω(logd−1(m) · log(1/ε)); otherwise, there is a k-wise independent distribution that is
ε-distinguishable from the uniform distribution by a depth d, size m circuit. Our theorem
improves Braverman’s bounds to k = O (log(m/ε))3d+3, answering an open question posed
by Braverman on the affirmative. In particular, our result is non-trivial for polynomial size
circuits of depth d ≤ 0.3 log(n)/ log log(n). Since NC1 circuits can be computed by Boolean
circuits of depth O(log(n)/ log log(n)) and polynomial size, constructing a non trivial PRG
for all d = O(log(n)/ log log(n)) is a major open challenge. While the dependence of k on m
and d is close to optimal, we conjecture that the dependence on ε could be much better.3

I Conjecture 3. Any k-wise independence ε-fools circuits of size m and depth d, for

k = (logm)O(d) · log(1/ε) .

k-wise independence fools DNFs. We improve in Section 4.2 the earlier result of Bazzi [4],
who showed that O(log2(m/ε))-wise independence ε-fools DNFs of size m. We improve the
dependence on ε and get that O(log(m) · log(m/ε))-wise independence suffices. Note that by
[23] this is optimal for ε ≤ 1/mΩ(1). The range ε ≥ 1/mo(1) is still not tightly understood.

PRGs for AC0 and DNFs. We improve the results of De et al. [9] (see Appendix C) and of
Trevisan and Xue [35] (see Appendix D) that give the best known PRGs for DNFs and AC0

circuits respectively. In the PRG of De et al., we improve the dependency of the seed-length
in ε, as seen in Figure 1. Since Trevisan and Xue used De et al.’s generator as a black-box
in their construction, we also improve the seed length of their PRG for AC0 circuits. We
observe two more improvements in the Trevisan-Xue generator to reduce the seed-length to
Õ(logd+1(m/ε) · log(n)). This seed-length comes closer to the barrier O(logd(m/ε)) noted
by [35].

Sparse polynomial approximations of Boolean circuits. Theorem 2 shows that any Boolean
circuit f of size m and depth d can be ε-approximated in L2 by a polynomial p(x) of sparsity
(logm)O(logd−1(m)·log(1/ε)), improving the results of [22] and [25]. As the inner product on
k = logd−1m variables can be realized by a size poly(m) depth d circuit, and requires at
least Ω(2k) coefficients in order to Ω(1) approximate in L2, one cannot achieve sparsity
2o(logd−1 m).
A table summarizing all of the improvements mentioned above is presented in Figure 1.

1.3 Organization
In Section 2, we lay out some preliminary definitions and results that will be used in the rest
of the paper. In Section 3, we prove our main theorem, i.e. Theorem 1. In Section 4, we
improve Braverman’s and Bazzi’s results in the field of pseudorandomness. In Section 5, we
prove Theorem 2, by relating different notions of Fourier concentration. Then, in section 6,
we use Theorem 2 to deduce simpler proofs for two known results: the inapproximability of

3 We have learned that subsequent to this work, Harsha and Srinivasan [13] proved this conjecture.
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Task Reference Bound

k-wise ind. fooling DNFs [4] k = O(log2(m/ε))

This Work k = O(log(m/ε) · log(m))

Lower Bound k ≥ log(m) · log(1/ε)

k-wise ind. fooling AC0 [7] k = O((log(m/ε))d
2+3d · (logm)d

2+4d+3)

This Work k = O
(
(log(m/ε))d · (logm)2d+3)

Lower Bound k ≥ logd−1(m) · log(1/ε)

sparse polynomial [25] sparsity = (m/ε)O(log log(m/ε)·log(1/ε))

approximating DNFs in L2 This Work sparsity = mO(log log(m)·log(1/ε))

sparse polynomial [22] sparsity = 2O(log(n)·logd(m/ε))

approximating AC0 in L2 [15] sparsity = 2O(log(n)·logd−2(m/ε)·log(m)·log(1/ε))

This Work sparsity = 2O(log log(m)·logd−1(m)·log(1/ε))

Lower Bound sparsity ≥ 2Ω(logd−1(m))

PRGs for DNFs [9] seed = O(logn+ log2(m/ε) · log log(m/ε))

This Work seed = O(logn+ log(m/ε) · log(m) · log logm)

PRGs for AC0 [35] seed = Õ(logd+4(m/ε))

This Work seed = Õ(logd+1(m/ε) · logn)

Figure 1 Summary of Applications.

the Majority function by bounded-depth circuits, and the indistinguishability of biased-coins
from uniform coins by bounded-depth circuits. In Section 7, we give a self-contained new
proof of the main lemma in the work of Håstad [16], that plays a crucial role in the proof
of Theorem 1. This serves two purposes. First, it makes the main result in our paper
self-contained. Second, in our opinion, it gives a simpler proof of Håstad’s main lemma ([16]).

In the appendices, we revisit the works of Braverman [7] (Appendix B), De et al. [9]
(Appendix C), and Trevisan and Xue [35] (Appendix D) in the field of pseudorandomness. We
show how our main results (Theorem 1 and Theorem 2) improve these results. Furthermore,
we reduce the seed-length of the PRG of [35] even further using several other observations.

2 Preliminaries

We denote by [n] = {1, . . . , n}. We denote by log and ln the logarithms in bases 2 and e,
respectively. For f : {−1, 1} → R we denote by ‖f‖p =

(
Ex∈{−1,1}n [|f(x)|p]

)1/p.
2.1 Restrictions
I Definition 4 (Restriction). Let f : {0, 1}n → {0, 1} be a Boolean function. A restriction ρ
is a vector of length n of elements from {0, 1, ∗}. We denote by f |ρ : {0, 1}n → {0, 1} the
function f restricted according to ρ, defined by

f |ρ(x) = f(y), where yi =
{
xi, ρi = ∗
ρi, otherwise

.

We say that the variable xi is fixed if ρi ∈ {0, 1}, and that xi is unassigned (or alive) if ρi = ∗.

CCC 2017
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Note that the function f |ρ is defined as a function with n variables, although it depends
only on the non-fixed variables. When fixing only one bit to a constant, we may denote the
restricted function by f |xi=b.

I Definition 5 (p-Random Restriction). A p-random restriction is a restriction as in Definition 4
that is sampled in the following way. For every i ∈ [n], independently, with probability p
set ρi = ∗ and with probability 1−p

2 set ρi to be −1 and 1, respectively. We denote this
distribution of restrictions by Rp.

2.2 Fourier Analysis of Boolean Functions
Any function f : {−1, 1}n → R has a unique Fourier representation:

f(x) =
∑
S⊆[n]

f̂(S) ·
∏
i∈S

xi ,

where the coefficients f̂(S) ∈ R are given by f̂(S) = Ex[f(x) ·
∏
i∈S xi]. Parseval’s

identity states that
∑
S f̂(S)2 = Ex[f(x)2] = ‖f‖22, and in the case that f is Boolean

(i.e., f : {−1, 1}n → {−1, 1}), all are equal to 1. The Fourier representation is the unique
multilinear polynomial which agrees with f on {−1, 1}n. We denoted by deg(f) the degree
of this polynomial, which also equals max{|S| : f̂(S) 6= 0}. We denote by

Wk[f ] ,
∑

S⊆[n],|S|=k

f̂(S)2

the Fourier weight at level k of f . Similarly, we denote W≥k[f ] ,
∑
S⊆[n],|S|≥k f̂(S)2. The

truncated Fourier expansion of degree k of f is simply f≤k(x) =
∑
|S|≤k f̂(S)

∏
i∈S xi. By

Parseval, ‖f − f≤k‖22 = W≥k+1[f ]. The following fact relates the Fourier coefficients of f
and f |ρ, where ρ is a p-random restriction.4

I Fact 6 (Proposition 4.17, [27]). Let f : {−1, 1}n → R, S ⊆ [n], and p > 0. Then,

E
ρ∼Rp

[
f̂ |ρ(S)

]
= f̂(S)p|S|

and

E
ρ∼Rp

[
f̂ |ρ(S)2

]
=
∑
U⊆[n]

f̂(U)2 · Pr
ρ∼Rp

[{i ∈ U : ρ(i) = ∗} = S] .

Summing the last equation over all sets S of size d gives the following corollary.

I Fact 7. Denote by Bin(k, p) a binomial random variable with parameters k and p. Then,

E
ρ∼Rp

[
Wd[f |ρ]

]
=

n∑
k=d

Wk[f ] ·Pr [Bin(k, p) = d] .

I Definition 8 (Fourier Sparsity, Spectral Norm). We define the sparsity of f : {−1, 1}n → R
as sparsity(f) , |{S : f̂(S) 6= 0}|; the spectral norm of f as L1(f) ,

∑
S |f̂(S)|; and the

spectral norm of the k-th level of f as L1,k(f) ,
∑
S:|S|=k |f̂(S)|.

4 Note that f̂ |ρ(S) = 0 if ρ fixes one of the variables in S.
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We state the following known fact regarding the Fourier sparsity, spectral norm and
granularity of low degree Boolean functions.

I Fact 9 (Ex. 1.11, [27]). Let f : {−1, 1}n → {−1, 1} with deg(f) = d. Then:
1. ∀S : |f̂(S)| = kS · 2−d where kS ∈ Z.
2. sparsity(f) ≤ 22d.
3. L1(f) ≤ 2d.

3 Exponentially Small Fourier Tails for Bounded Depth Circuits

We generalize the proof of Håstad ([16]), who showed that the correlation between the parity
function and any Boolean circuit of depth d and size m is at most 2−Ω(n/ logd−1(m)). This
bound is tight up to the constants in the exponent, as shown by an example in [16], and
improves upon previous bounds from [22, 15].

We will use two simple lemmata which explain the behavior of Fourier tails with respect
to random restrictions, and arbitrary restrictions.

I Lemma 10 ([22]). For any f : {−1, 1}n → R, k ∈ N ∪ {0} and p ∈ [0, 1],

W≥k[f ] ≤ 2 · E
ρ∼Rp

[
W≥bkpc[f |ρ]

]
.

Proof. Let k ∈ N ∪ {0} and p ∈ [0, 1]. We have

E
ρ∼Rp

[
W≥bkpc[f |ρ]

]
=

∑
`≥bkpc

W`[f ] ·Pr[Bin(`, p) ≥ bkpc] (Fact 7)

≥
∑
`≥k

W`[f ] ·Pr[Bin(`, p) ≥ bkpc]

≥
∑
`≥k

W`[f ] · 1/2 (median(Bin(`, p)) ≥ b`pc ≥ bkpc, [19])

= 1/2 ·W≥k[f ]. J

The second lemma, taken from [17], states that if, for some bit, we have Fourier tail
bounds for both restrictions fixing that bit to either +1 or −1, then we have Fourier tail
bounds for the unrestricted function.

I Lemma 11 ([17]). Let f : {−1, 1}n → R and i ∈ [n]. Then,

W≥k[f ] ≤ 1
2 ·W

≥k−1[f |xi=−1] + 1
2 ·W

≥k−1[f |xi=1].

In order to generalize the last lemma, we introduce the following definition, which is very
similar to the definition of a decision tree, except we are not making any decision!

I Definition 12 (Restriction Tree). A restriction tree is a rooted directed binary tree such
that each internal node is labeled by a variable from x1, . . . , xn and has two outgoing edges:
one marked with 1 and one marked with −1. The leaves of the tree are not labeled. Each
leaf in the tree, `, corresponds to a restriction τ` on the variables x1, . . . , xn in the most
natural way: we fix the variables along the path from the root to the leaf ` according to the
values on the path edges.

Using induction, Lemma 11 implies (informally) that if, for some restriction tree, we have
Fourier tail bounds for restrictions corresponding to all root-leaf paths in the tree, then we
have Fourier tail bounds for the unrestricted function as well. The exact statement follows.
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I Lemma 13. Let f : {−1, 1}n → R be a function, and let T be a restriction tree of depth
≤ D such that for any leaf `, under the corresponding restriction W≥k[f |τ`

] ≤ ε. Then,
W≥k+D[f ] ≤ ε.

Proof. Apply induction on the depth of the restriction tree. For depth 0 this obviously holds.
For depth D, consider both subtrees that are rooted by the children of the original root.
If the root queries xi, these are restriction trees for {x : xi = 1} and {x : xi = −1}, and
we may apply the induction hypothesis on each subtree to get W≥k+(D−1)[f |xi=1] ≤ ε and
W≥k+(D−1)[f |xi=−1] ≤ ε. Finally, applying Lemma 11 gives W≥k+D[f ] ≤ ε

2 + ε
2 = ε. J

Our proof relies on the main lemma in Håstad’s work [16]. We begin with a definition
from [16] and the statement of his main lemma.

I Definition 14 (Common Partial Decision Tree). A set of functions (gi)mi=1 has a common
s-partial decision tree of depth D, if there is a restriction tree of depth D such that at each
leaf ` of this restriction tree, each function gi, restricted by τ`, is computable by an ordinary
decision tree of depth s.

I Lemma 15 ([16], Lemma 3.8). Let (fi)mi=1 be a collection of depth-2 circuits, each of bottom
fan-in t. Let ρ be a random restriction from Rp. Then the probability that (fi|ρ)mi=1 is not
computable by a common log(2m)-partial decision tree of depth D is at most m · (24pt)D.

In Appendix 7 we give a new proof for Lemma 15 (with constant 49 instead of 24)
following the proof approach of [29], [5] and [34] for the original switching lemma.

We are ready to prove the Fourier tail bounds for Boolean circuits. We define the effective
size of a Boolean circuit as the number of gates in the circuit at distance 2 or more from the
inputs.

I Theorem 16. Let f be a Boolean circuit of depth d, effective size m, and bottom fan-in t.
Then, W≥k[f ] ≤ 8d−1 · 2−k/(20t(96 log(2m))d−2).

Proof. We prove by induction on d. The base case d = 2 was proved by Mansour [25], who
showed that DNFs with bottom fan-in t have

W≥k[f ] ≤ 4 · 2−k/20t .

For the induction step, we apply a p-random restriction with p = 1/48t. Consider the
gates at distance 2 from the inputs: f1, . . . , fm′ , for m′ ≤ m. These gates compute functions
given by depth-2 circuits with bottom fan-in ≤ t. Setting D = bkp/2c and using Lemma 15
gives that with probability at least 1−m · 2−D ≥ 1− 2log(m)−D over the random restrictions,
(fi|ρ)m

′

i=1 can be computed by a common log(2m)-partial decision tree of depth D. In this case,
we say that the restriction ρ is good. Using Lemma 10 we have W≥k[f ] ≤ 2 ·Eρ[W≥bkpc[f |ρ]].
Since W≥bkpc[f |ρ] is a random variable bounded in [0, 1] we have

W≥k[f ] ≤ 2 · E
ρ∼Rp

[W≥bkpc[f |ρ]]

= 2 · E
ρ∼Rp

[
W≥bkpc[f |ρ] | ρ is good

]
· Pr
ρ∼Rp

[ρ is good]

+ 2 · E
ρ∼Rp

[
W≥bkpc[f |ρ] | ρ is bad

]
· Pr
ρ∼Rp

[ρ is bad]

≤ 2 · E
ρ∼Rp

[
W≥bkpc[f |ρ] | ρ is good

]
+ 2 · Pr

ρ∼Rp

[ρ is bad] ,

where Prρ[ρ is bad] ≤ 2log(m)−bk/96tc ≤ 2log(2m)−k/96t. Using the following simple claim, we
get Prρ[ρ is bad] ≤ 2 · 2−k/(96t log(2m)).
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I Claim 17. If 0 ≤ X ≤ 1 and X ≤ 2a−b, where a ≥ 1, then X ≤ 21−b/a.

Proof. Since 0 ≤ X ≤ 1 and a ≥ 1, we have X ≤ X1/a, and X1/a is at most 21−b/a. J

We are left to analyze E[W≥bkpc[f |ρ] | ρ is good]. Fixing ρ to be some specific good
restriction, we will bound W≥bkpc[f |ρ] for this specific ρ. By the definition of good restrictions,
we have a common log(2m)-partial decision tree of depth D = bkp/2c computing (fi|ρ)m

′

i=1.
For each leaf ` of the common partial decision tree, let τ` be the restriction defined by
the path leading to this leaf. We have that fi|ρ|τ`

for i = 1, . . . ,m′ can be expressed as a
decision tree of depth ≤ log(2m), hence as a CNF/DNF formula of bottom fan-in at most
log(2m). This means that applying the restriction ρ ◦ τ`, the circuit f collapses to a depth
d− 1 Boolean circuit with bottom fan-in t′ ≤ log(2m) and effective size at most m.5 By the
induction hypothesis, for any k′ we have W≥k′ [f |ρ|τ`

] ≤ 8d−2 · 2−Ω(k′/(t′ logd−3(2m))). Setting
k′ = bkpc −D ≥ bkp/2c ≥ k

96t − 1 and applying Lemma 13 we have

W≥bkpc[f |ρ] ≤ max
`

W≥k′ [f |ρ|τ`
] ≤ 8d−2 · 2−k

′/(20t′·(96 log(2m))d−3)

≤ 8d−2 · 21−k/(20t(96 log(2m))d−2) ,

and

W≥k[f ] ≤ 4·8d−2·2−k/(20t(96 log(2m))d−2)+4·2−k/(96t log(2m)) ≤ 8d−1·2−k/(20t(96 log(2m))d−2) .J

I Theorem 18 (Theorem 1, restated). Let f be an Boolean circuit of depth d and size
m > 1. Then, W≥k[f ] ≤ 2 · 2−k/(cd logd−1(m)) where cd = 60d · 192d−1 ≤ 216d. Equivalently,
W≥k[f ] ≤ 2 · e−k/(c′d logd−1(m)) where c′d = log2(e) · 60d · 192d−1 ≤ 2 · 216d.

Proof. Let f be a function computed by a Boolean circuit of depth d and m gates. We add
a dummy layer of fan-in 1 gates in between the inputs and the layer next to them. Thus, f is
realized by an Boolean circuit of depth d+ 1, effective size m and bottom fan-in 1. Plugging
this into Theorem 16 gives W≥k[f ] ≤ 23d−k/(20·96d−1·logd−1(2m)). Hence, by Claim 17, we get

W≥k[f ] ≤ 2 · 2−k/(3d·20·96d−1·logd−1(2m)) ≤ 2 · 2−k/(60d·96d−1·2d−1·logd−1(m)) ,

where we used log(2m) ≤ 2 log(m) for m > 1. J

4 Applications to Pseudorandomness

4.1 Improving Braverman’s Analysis
I Definition 19. Denote by tail(m, d, k) the maximal W≥k[F ] over all Boolean circuits F
of size ≤ m and depth ≤ d.

By Theorem 18, tail(m, d, k) ≤ 2 · 2−k/(cd logd−1(m)). Braverman’s Theorem can be
rephrased as follows (we show that this is indeed the case in Appendix B).

I Theorem 20 ([7]). Let s1, s2 ≥ logm be any parameters. Let F be a Boolean function
computed by a circuit of depth d and size m. Let µ be an r-independent distribution where

r = r(s1, s2, d) = 2((s1 · logm)d + s2)

5 We only introduce new gates with distance 1 from the inputs – which does not increase the effective size.
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then

|E
µ

[F ]− E[F ]| < ε(s1, s2, d),

where ε(s1, s2, d) = 0.82s1 · (6m) + 24(s1·logm)d logm · tail(m3, d+ 3, s2)

Picking s1 := 5 log(12m/ε) and s2 :=
(
cd+3 log(m3)d+2) · 8 · (s1 · logm)d · log(m) we get

the following corollary.

I Theorem 21. r(m, d, ε)-independence ε-fools Boolean circuits of depth d and size m, where

r(m, d, ε) = 2((s1 · logm)d + s2) ≤ 4s2

= 32 · cd+3 · (5 log(12m/ε))d · 3d+2 · (logm)2d+3

≤ O(log(m/ε))d · (logm)2d+3 .

4.2 Improving Bazzi’s Analysis
Bazzi [4] showed that O(log2(m/ε)) independence ε-fools DNFs of size m. We show that
O(log(m/ε) · log(m)) independence suffices. For ε ≤ 1/mΩ(1) this bound is tight, due to the
example of Mansour from [23].

I Theorem 22 ([4], [30]). Let F be a DNF with m terms, and t be some parameter. Then,
F is m3 · tail(m, 2, (k − 3t)/2) +m2−t fooled by any k-wise independence.

Picking t := log(2m/ε) and k := 3t+ 2c2 log(m) log(4m3/ε) = O(log(m) log(m/ε)) , we get
that k-wise independence ε-fools DNFs with m terms since

m3 · tail(2,m, (k − 3t)/2) +m2−t ≤ m3 · 2 · 2
−c2 log(m) log(4m3/ε)

c2 log(m) + ε

2 ≤ ε .

5 On Fourier Concentration, Switching Lemmas and Influence
Moments

In this section, we connect different notions of Fourier concentration of Boolean functions. We
begin by introducing some new definitions, and then move to state and prove the connections
between the different notions. We end this Section, with the proof of Theorem 2, which is a
result of Theorem 1 and the connections established in this section.

5.1 Influence Moments
In this section we introduce derivatives and influences of sets of variables. A different
definition to the influence of a set was made in [20]. There, the influence of a set J was
defined to be the probability that under a uniform restriction of Jc to constants, the function’s
value is still undetermined. We choose a different variant, which has a much nicer Fourier
expression.

We start with the standard definition of discrete derivatives and influences of Boolean
functions.

I Definition 23 (Discrete Derivative, Influence). Let f : {−1, 1}n → R and i ∈ [n]. The i-th
discrete derivative operator Di maps the function f to the function Dif : {−1, 1}n → R
defined by

Dif(x) = f(x(i 7→1))− f(x(i7→−1))
2 .
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where x(i7→b) = (x1, . . . , xi−1, b, xi+1, . . . , xn). The influence of coordinate i on f is defined as

Infi(f) = E
x

[(Dif(x))2] .

The generalization to sets of more than one variable is the following.

I Definition 24 (Discrete Derivative and Influence of a Set). Let f : {−1, 1}n → R and T ⊆ [n],
and write T = {j1, . . . , jk}. The T -th (discrete) derivative operator, DT , maps the function f
to the function DT f : {−1, 1}n → R defined by

DT f(x) = Dj1Dj2 . . . Djk
f(x) .

The influence of subset T on f is defined as

InfT (f) = E
x

[
(DT f(x))2] .

The following claim gives equivalent formulations for the function DT f (and also implies
that DT is well defined, i.e., that DT f does not depend on the order of indices in T ).

I Claim 25.

DT f(x) = 1
2|T |

∑
z∈{−1,1}T

f(x(T 7→z)) ·
∏
i∈T

zi =
∑
S⊇T

f̂(S) ·
∏

i∈S\T

xi

where x(T 7→z) is the vector in {−1, 1}n whose i-th coordinate equals zi whenever i ∈ T , and
equals xi otherwise.

The proof uses a straightforward inductive argument, and is given for completeness in
Appendix A. Note that if f : {−1, 1}n → {−1, 1}, then the T -th derivative of f is 2−|T |
granular (i.e., DT f(x) is an integer times 2−|T |), since DT f(x) is a sum of integers divided
by 2|T |. The following claim follows from Parseval’s identity and the previous claim.

I Claim 26. InfT (f) =
∑
S⊇T f̂(S)2 .

I Definition 27 (Total Degree-k Influence). The total degree-k influence is defined as

Infk(f) ,
∑

T :|T |=k

InfT (f) .

Claim 26 gives the following Fourier expression for the total degree-k influence:

Infk(f) =
∑

S:|S|≥k

f̂(S)2 ·
(
|S|
k

)
=
∑
d≥k

Wd[f ] ·
(
d

k

)
. (2)

We state the following simple lemma expressing Infk(f) in terms of W≥d[f ] instead of Wd[f ].

I Lemma 28. Infk(f) =
∑
d≥k W≥d[f ] ·

(
d−1
k−1
)
for all k ∈ N.

Proof. We perform some algebraic manipulations on Equation (2):

Infk(f) =
∑
d≥k

Wd[f ] ·
(
d

k

)
=
∑
d≥k

(
W≥d[f ]−W≥d+1[f ]

)
·
(
d

k

)

= W≥k[f ] +
∑
d≥k+1

W≥d[f ] ·
((

d

k

)
−
(
d− 1
k

))

= W≥k[f ] +
∑
d≥k+1

W≥d[f ] ·
(
d− 1
k − 1

)

=
∑
d≥k

W≥d[f ] ·
(
d− 1
k − 1

)
J
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5.2 Connections between Four Fourier Concentration Properties
In this section we show connections between four attributes of Boolean functions, and
establish equivalence between three of them. The properties, each relative to a parameter t,
are the following:

ESFT: Exponentially small Fourier tails.

∀k : W≥k[f ] ≤ e−Ω(k/t) .

SLTP: Switching lemma type property / degree shrinkage

∀d, p : Pr
ρ∼Rp

[deg(f |ρ) = d] ≤ O(pt)d .

L1: Bounded spectral norm of the k-th level.

∀k :
∑
|S|=k

|f̂(S)| ≤ O(t)k .

InfK: Bounded total degree-k influence.

∀k : Infk[f ] ≤ O(t)k .

In Lemmata 29, 31, 32, 33, 34, 35, we show the following connections:

ESFT
32 ,,

29

��

SLTP
33

ll

35

��
InfK

31

JJ

34 // L1

We remark that Lemma 35 is due to Mansour [25], and Lemma 33 is due to Linial et
al. [22]. Note that L1 does not imply any other property, because one can take for example
the parity function, which has the L1 property with t = 1. However, this function has
very large Fourier tails, very high degree under random restriction, and

(
n
k

)
total degree-k

influence. Anything that implies SLTP and L1 needs f to be Boolean. Other relations
generalize to bounded real-valued functions.

In the remainder of this section we state Lemmata 29, 31, 32, 33, 34, 35 more accurately
and prove them.

I Lemma 29. Let t > 0, C > 0. If W≥d[f ] ≤ C · e−d/t for all d, then Infk[f ] ≤ C · tk for
all k.

In the proof of Lemma 29, we use the following simple fact that follows from Newton’s
generalized binomial theorem.

I Fact 30. Let |x| < 1, and k ∈ N. Then,
∑∞
d=k

(
d−1
k−1
)
· xd = xk

(1−x)k .

Proof of Lemma 29. We shall prove for C = 1, the proof generalizes for all C. Denote
a := e−1/t. Using Lemma 28 we bound the total degree-k influence:

Infk(f) =
∑
d≥k

W≥d[f ] ·
(
d− 1
k − 1

)
≤
∑
d≥k

e−d/t ·
(
d− 1
k − 1

)
=
∑
d≥k

ad ·
(
d− 1
k − 1

)
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Using Fact 30 with x := a gives

Infk(f) ≤ ak

(1− a)k = 1
(1/a− 1)k = 1(

e1/t − 1
)k ≤ 1

(1/t)k
= tk

where in the last inequality we used the fact that ex − 1 ≥ x for all x ∈ R. J

The reverse relation holds too, i.e. InfK implies ESFT.

I Lemma 31. Let t > 0, C > 0. If Infk[f ] ≤ C ·tk for all k, then W≥d[f ] ≤ C ·e·t·e−(d−1)/et

for all d.

Proof. We shall prove for C = 1, the proof generalizes for all C. By Lemma 28,
W≥d[f ] ·

(
d−1
k−1
)
≤ Infk[f ] ≤ tk. Hence W≥d[f ] ≤ tk/

(
d−1
k−1
)
. We can pick any k to optimize

this bound. Picking k = b(d− 1)/etc+ 1 we get

W≥d[f ] ≤ tk/
(
d− 1
k − 1

)k−1
≤ t · e−(k−1) ≤ e · t · e−(d−1)/et . J

In our previous work [33], the following relation (ESFT implies SLTP) was established.

I Lemma 32 ([33]). Let t, C > 0, and f : {−1, 1}n → {−1, 1}. If W≥k[f ] ≤ C · e−k/t for
all k, then Prρ∼Rp

[deg(f |ρ) = d] ≤ C · (4pt)d for all p, d.

We give a slightly shorter proof, using the total degree-d influence.

Proof. We shall prove for C = 1, the proof generalizes for all C. The proof goes by showing
that

E
ρ

[Wd[f |ρ]] ≤ (pt)d (3)

and

E
ρ

[Wd[f |ρ]] ≥ 4−d ·Pr
ρ

[deg(f |ρ) = d] . (4)

Equation (4) is true since

E
ρ

[Wd[f |ρ]] ≥ E
ρ

[Wd[f |ρ]| deg(f |ρ) = d] ·Pr
ρ

[deg(f |ρ) = d] .

and the (random) Boolean function f |ρ has Fourier mass at least 4−d if deg(f |ρ) = d, by the
granularity of low degree functions – Fact 9.

We are left to prove Equation (3). Using Fact 7, we have

E
ρ

[Wd[f |ρ]] =
n∑
k=d

Wk[f ]
(
k

d

)
pd(1−p)k−d ≤ pd

n∑
k=d

Wk[f ]
(
k

d

)
= pd · Infd[f ] ≤ (pt)d ,

where in the last inequality we used Lemma 29. J

Linial, Mansour and Nisan [22] proved that SLTP implies ESFT.

I Lemma 33 ([22], restated slightly). Let t > 0, C > 0, and f : {−1, 1}n → [−1, 1]. If for all
d ∈ N, p ∈ (0, 1), Prρ∼Rp

[deg(f |ρ) ≥ d] ≤ C (tp)d, then for any k, W≥k[f ] ≤ 2e · C · e−k/te.

The proof is given in [22]; we give it here for completeness.
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Proof. Pick p = 1/et, then by Lemma 10, and the fact that W≥bkpc[f |ρ] is always at most 1
and equals 0 whenever deg(f |ρ) < bkpc, we get

W≥k[f ] ≤ 2 E
ρ

[
W≥bkpc[f |ρ]

]
≤ 2 E

ρ
[Pr[deg(f |ρ) ≥ bkpc]] ≤ 2C(1/e)bk/etc . J

The next lemma proves that InfK implies L1.

I Lemma 34. If f is Boolean, then L1,k[f ] ≤ 2k · Infk[f ].

Proof. It is easy to see from Claim 25 that for any subset T ⊆ [n],

E
x

[DT f(x)] = E
x

∑
S⊇T

f̂(S)
∏

i∈S\T

xi

 = f̂(T ) .

Recall that if f is Boolean, then DT f(x) is 2−|T | granular, which implies that ∀x : |DT f(x)| ≤
2|T |(DT f(x))2. Hence,

|f̂(T )| = |E
x

[DT f(x)]| ≤ E
x

[|DT f(x)|] ≤ 2|T |E
x

[(DT f(x))2] = 2|T |InfT (f) .

Summing over all sets T of size k completes the proof. J

Remark: It is necessary that f is Boolean in Lemma 34, since otherwise we can have the
function

ft,k(x) =
∑

S⊆[n],|S|=k

1√(
n
k

)
ek/2t

∏
i∈S

xi

which maps {−1, 1}n to R, has W≥k[ft,k] = Wk[ft,k] = e−k/t, and Infk[ft] ≤ tk, but

L1,k[ft] =

√(
n

k

)
e−k/2t ≥

( n

ke1/t

)k/2
is much larger than O(t)k for n = ω(kt2e1/t).

Next, Mansour [25] proved that SLTP implies L1.

I Lemma 35 ([25]). Let t > 0, and f : {−1, 1}n → {−1, 1}. If for all d, p,
Prρ∼Rp [deg(f |ρ) = d] ≤ C(pt)d, then ∀k : L1,k[f ] ≤ 2C(4t)k.

Proof. We shall prove for C = 1, the proof generalizes for all C. We first prove that for any
function f : {−1, 1}n → R, p ∈ [0, 1], k ∈ N we have L1,k(f) ≤ 1

pk Eρ∼Rp [L1,k[f |ρ]].

L1,k[f ] =
∑

S:|S|=k

|f̂(S)| =
∑

S:|S|=k

∣∣∣∣ 1
pk

E
ρ∼Rp

[
f̂ |ρ(S)

]∣∣∣∣ (Fact 6)

≤
∑

S:|S|=k

1
pk

E
ρ∼Rp

[
|f̂ |ρ(S)|

]
= 1
pk

E
ρ∼Rp

 ∑
S:|S|=k

|f̂ |ρ(S)|


= 1
pk

E
ρ∼Rp

[L1,k[f |ρ]] . (5)
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Next, we show that for f : {−1, 1}n → {−1, 1}, if there exists t > 0 such that for all
d, p, Pr[deg(f |ρ) = d] ≤ (pt)d, then Eρ∼Rp

[L1[f |ρ]] ≤ 2 for p = 1/4t. Conditioning on
deg(f |ρ) = d and using Fact 9, we have L1[f |ρ] ≤ 2d. Hence,

E
ρ∼Rp

[L1[f |ρ]] =
n∑
d=0

E
ρ∼Rp

[L1[f |ρ]|deg(f |ρ) = d] ·Pr[deg(f |ρ) = d] ≤
n∑
d=0

2d ·
( 1

4
)d ≤ 2 . (6)

Plugging Equation (6) in Equation (5) with p = 1/4t we get

L1,k[f ] ≤ 1
pk

E
ρ∼Rp

[L1,k[f |ρ]] ≤
1
pk

E
ρ∼Rp

[L1[f |ρ]] ≤ (4t)k · 2 . J

The next lemma is relevant to the learnability results given in [25] and [22].

I Lemma 36. Let f be a Boolean function, let t ≥ 1 and C be some positive constant.
If W≥k[f ] ≤ C · e−k/t for all k, then f is ε-concentrated on at most tO(t log(1/ε)) Fourier
coefficients.

Here, by ε-concentrated on r coefficients we mean that there exist r subsets of [n], {S1, . . . , Sr},
which captures 1− ε of the Fourier mass of f , i.e.

∑r
i=1 f̂(Si)2 ≥ 1− ε.

Proof. We shall prove for C = 1, the proof generalizes for all constant C. Let w := t · ln(2/ε).
First it is enough to consider Fourier coefficients of sets of size ≤ w, since the sum of squares
of Fourier coefficients of larger sets is at most ε/2. Now

∑
S:|S|≤w |f̂(S)| =

∑w
i=0 L1,i[f ].

Using Lemmata 29 and 34 we get
w∑
i=0

L1,i[f ] ≤
w∑
i=0

2iti ≤
(t≥1)

tw2w+1 .

Letting F = {S : |S| ≤ w, |f̂(S)| ≥ ε/2
tw2w+1 } we get by Parseval’s identity that∑

S∈F
f̂(S)2 = 1−

∑
|S|>w

f̂(S)2 −
∑

|S|≤w,S/∈F

f̂(S)2 ,

where we already noted that
∑
|S|>w f̂(S)2 ≤ ε/2. To bound the last term∑

|S|≤w,S/∈F

f̂(S)2 ≤ max{|f̂(S)| : |S| ≤ w, S /∈ F} ·
∑
|S|≤w

|f̂(S)| ≤ ε/2 .

Hence,
∑
S∈F f̂(S)2 ≥ 1− ε. It remain to figure out the size of F . Since every coefficient in

F contributes at least ε/2
tw2w+1 to the sum

∑w
i=0 L1,i[k], and this sum is at most tw2w+1 we get

that the size of F is at most 2(tw2w+1)2/ε = O(t)2t ln(1/ε), which completes the proof. J

5.3 Theorem 2
Immediate from Theorem 18, Lemmata 29, 32, 34, and 36 we get the following corollary.

I Theorem 37 (Thm. 2, restated). Let f be a Boolean circuit of depth d and size m > 1.
Then,
1. For all k, p, Prρ∼Rp

[deg(f |ρ) = k] ≤ 2 · (4p · c′d logd−1(m))k.
2. For all k, Infk[f ] ≤ 2 · (c′d logd−1(m))k.
3. For all k, L1,k[f ] =

∑
S:|S|=k |f̂(S)| ≤ 2 · (2c′d logd−1(m))k.

4. f is ε-concentrated on at most O(logd−1m)O(logd−1(m) log(1/ε)) = 2O(log log(m) logd−1(m) log(1/ε))

Fourier coefficients.
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6 Short Proofs for Known Results

In this section, we give simple proofs for two known results based on Theorem 37.

6.1 Bounded-Depth Circuits Cannot Approximate Majority
The next result states that nearly balanced symmetric functions, and in particular the
Majority function, cannot be well approximated by a small and shallow circuit.

I Theorem 38. Let g : {−1, 1}n → {−1, 1} be a symmetric function on n variables. Let
f : {−1, 1}n → {−1, 1} be depth d size m circuit, and assume that

c′d logd−1(m) ≤ (n/100 ln(n))1/3
.

Then,

Cor(f, g) ,
∣∣∣E
x

[f(x)g(x)]
∣∣∣ ≤ |ĝ(∅)|+

√
2 + 8c′d logd−1(m)√

n

Proof. Since g is a symmetric Boolean function, for all S ⊆ [n], ĝ(S)2 ·
(
n
|S|
)

=∑
T :|T |=|S| ĝ(T )2 ≤ 1. Hence, |ĝ(S)| ≤ 1√

( n
|S|)

. Let ` be some parameter we shall set

later. Then,∣∣∣E
x

[f(x)g(x)]
∣∣∣ ≤∑

S

|f̂(S)ĝ(S)| = |f̂(∅)ĝ(∅)|+
∑̀
k=1

∑
S:|S|=k

|f̂(S)ĝ(S)|+
∑

S:|S|>`

|f̂(S)ĝ(S)|.

(7)

We bound each of the three terms in the RHS of Equation (7). The first term is at most
|ĝ(∅)|. For the third term we use Cauchy-Schwartz, Theorem 18, and Parseval’s identity
(
∑
S:|S|>` ĝ(S)2 ≤ 1), to get

∑
S:|S|>`

|f̂(S)ĝ(S)| ≤
√ ∑
S:|S|>`

f̂(S)2
∑

S:|S|>`

ĝ(S)2 ≤
√

2 · e−`/(c′d logd−1(m)) .

Picking ` := ln(n) · c′d logd−1(m) this is smaller than
√

2/n. For the second term in the RHS
of Equation (7), we use the estimates on L1,k(f) and |ĝ(S)|, to get

∑
S:|S|=k

|ĝ(S)f̂(S)| ≤ 1√(
n
k

) · ∑
S:|S|=k

|f̂(S)| ≤ 2 · (2c′d logd−1(m))k√(
n
k

) ≤ 2 ·
(

2c′d logd−1(m)√
n/k

)k
.

We denote by Dk := 2 ·
(

2c′d logd−1(m)√
n/k

)k
. The ratio between two consecutive terms Dk+1/Dk

for k + 1 ≤ ` is at most

2c′d logd−1(m)√
n

√
(k + 1)k+1

kk
≤ 2c′d logd−1(m)√

n

√
e · (k + 1) ≤ 2c′d logd−1(m)√

n

√
e · ` ≤ 1

2 ,

where we used the choice of ` and the assumption c′d logd−1(m) ≤
(

n
100 lnn

)1/3 for the last
inequality to hold. We get that the sum

∑
1≤|S|≤` |f̂(S)ĝ(S)| is at most D1 +D2 + . . .+D` ≤

2D1. Overall, we get

E
x

[f(x)g(x)] ≤ |ĝ(∅)|+
√

2 + 8c′d logd−1(m)√
n

. J
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We remark that although our proof is Fourier analytical, it differs from the standard
argument that is used to bound the correlation of bounded depth circuits with parity for
example. The standard argument shows that two functions are o(1) correlated by proving
that one is 1− o(1) concentrated on the low levels of the Fourier spectrum while the other
is 1− o(1) concentrated on the high levels. Here, however, if we take g to be the Majority
function, and f to be an AC0 circuit, then both f and g are 0.99-concentrated on the first
O(poly log(n)) levels of their Fourier spectrum. We deduce the small correlation by showing
that f must be very imbalanced on those levels, which is captured by having small L1,k norm.
In contrast, the Majority function is symmetric – its Fourier mass on level k is equally spread
on the different coefficients. Combining these two properties guarantees small correlation.

6.2 The Coin-Problem
I Theorem 39. Let f : {−1, 1}n → {−1, 1} be a depth d size m circuit, and let p ∈ [0, 1].
Then, f distinguishes between unbiased coins and coins with bias p with advantage at most
6c′dp logd−1(m).

Proof. We can assume pc′d logd−1(m) ≤ 1/6, since otherwise the result is trivial. For
−1 ≤ p ≤ 1, a p-biased coin is a random variable which gets 1 with probability (1 + p)/2
and −1 with probability (1− p)/2, i.e., this is a biased coin whose expectation is p. Let Un
be the distribution of n independent 0-biased coins, and B(n, p) be the distribution of n
independent p-biased coins. We have

Distinguishability(f) ,
∣∣∣∣ E
x∼Un

[f(x)]− E
x∼B(p,n)

[f(x)]
∣∣∣∣ =

∣∣∣∣∣∣f̂(∅)−
∑
S⊆[n]

f̂(S)p|S|
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑
S 6=∅

f̂(S)p|S|
∣∣∣∣∣∣ ≤

n∑
k=1

pk · 2 ·
(

2c′d logd−1(m)
)k

≤ 2p ·
(

2c′d logd−1(m)
)
·
∞∑
k=1

(1/3)k−1 = 3p ·
(

2c′d logd−1(m)
)
. J

7 A New Proof for Håstad’s Switch-Many Lemma

In this section, we give a new proof for Håstad’s [16] Switch-Many Lemma, i.e., Lemma 15.
The new proof follows Razborov’s [29] approach, and its recent simplification by Thapen [34]
for Håstad’s original switching lemma [14].

Notation. We denote by R the set of all restrictions on n variables. For a sequence of indices
S ∈ [n]k with no repetitions, and a string σ ∈ {0, 1}k we denote by (S → σ) the restriction
which fixes Si to σi for i ∈ [k] and leaves all other variables free. For two restrictions ρ, σ
we denote by ρσ their composition. For a sequence S ∈ Σk over some alphabet Σ, and two
indices i and j such that 1 ≤ i ≤ j ≤ k, we denote by S[i : j] the subsequence (Si, . . . , Sj),
and by S[i] the element Si.

7.1 The Canonical Decision Tree
Let F be an r-DNF, i.e., an OR of ANDs where each AND has at most r input literals from
x1, . . . , xn,¬x1, . . . ,¬xn. Let ρ be a restriction. The canonical tree T (F, ρ) is defined by the
following decision procedure: Look through F for the first term C1, such that C1|ρ 6≡ 0. If no
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such term exists, then halt and output 0. Otherwise, let A be the set of free variables in C1
under ρ. Query the variables in A and let π1, . . . , π|A| be their assignment. If the term C1 is
satisfied under the assignment (in particular if A = ∅), then halt and output 1 . Otherwise,
repeat the process with ρ(A→ (π1, π2, . . . , π|A|)) instead of ρ. We keep iterating until one of
the aforementioned halting conditions hold.

7.2 Restriction Tree for Multiple DNFs
Let F1, . . . , Fm be r-DNFs. We define the d-restriction-tree complexity of F1, . . . , Fm to be
the minimal depth of a restriction tree such that under the restriction defined by each leaf,
each DNF Fi is of canonical decision-tree-complexity at most d. We denote this complexity
by RTd({F1, . . . , Fm}).

I Theorem 40.

Pr
ρ∼Rp

[RTd({F1|ρ, . . . , Fm|ρ}) ≥ k] ≤ mdk/(d+1)e ·
(

24pr
1− p

)k
.

The following is a corollary of Theorem 40.

I Corollary 41. Let F1, . . . , Fm be r-DNFs. Let k, d be positive integers, 0 ≤ p ≤ 1, and
assume 2d+1 ≥ m. Then,

Pr
ρ∼Rp

[RTd({F1|ρ, . . . , Fm|ρ}) ≥ k] ≤ m · (49pr)k . (8)

Proof. We can assume without loss of generality that p < 1/49 since otherwise the RHS of
Eq. (8) is at least 1 and the LHS is always at most 1. We get

Pr
ρ∼Rp

[RTd({F1|ρ, . . . , Fm|ρ}) ≥ k] ≤ mdk/(d+1)e · (24pr/(1− p))k (Theorem 40)

≤ m1+k/(d+1) · (24pr/(1− p))k

= m ·
(
m1/(d+1) · 24pr

1− p

)k
≤ m ·

(
2 · 24pr
1− p

)k
(m ≤ 2d+1)

≤ m · (49pr)k . (1− p > 48/49)

J

We will prove Theorem 40 based on the approach of Thapen [34] which simplified Razborov’s
[29] and Beame’s [5] proofs for the (original) switching lemma. The idea of the proof is that
in order to show that some event A happens with low probability, it is sufficient to show that
there exists some other event B (not necessarily disjoint of A) that happens with probability
much larger than A. For example, if Pr[B] ≥M ·Pr[A] (think of M as some large factor)
then since Pr[B] ≤ 1 it means that Pr[A] ≤ 1/M .

The following is the main lemma in this section, from which we deduce Theorem 40 quite
easily.

I Lemma 42. Let S be the set of restrictions under which RTd({F1|ρ, . . . , Fm|ρ}) ≥ k. Then,
there is a 1:1 mapping

θ : S → R× [3r]k × {0, 1}k × {0, 1}k × [m]dk/d+1e

given by θ : ρ 7→ (ρσ, β, π, τ, I) where σ fixes exactly k additional variables that weren’t fixed
by ρ.
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Proof of Theorem 40, assuming Lemma 42. For a (fixed) restriction ρ ∈ R we denote by
Pr[ρ] the probability to sample ρ when sampling a restriction from the distribution Rp. For
a (fixed) set of restrictions A ⊆ R we denote by Pr[A] the probability to sample a restriction
in A when sampling a restriction from the distribution Rp. Recall that by the definition of
Rp, we have Pr[ρ] = pa ·

( 1−p
2
)b+c where a, b and c are the number of ∗’s, 0’s and 1’s in ρ

respectively.
For a fixed value of β, π, τ , and I, consider the set S′ = Sβ,π,τ,I := {ρ ∈ S | ∃ρ′ :

θ(ρ) = (ρ′, β, π, τ, I)}. Since θ is 1:1 (Lemma 42), the first component θ1 : ρ 7→ ρσ is also
1:1 on the set S′.6 This implies that Pr[θ1(S′)] =

∑
ρ∈S′ Pr[θ1(ρ)]. By the definition of

Rp, for any ρ ∈ R and any σ that fixes k additional variables that were free in ρ, we have

Pr[ρσ] =
(

1−p
2p

)k
·Pr[ρ]. We get

1 ≥ Pr[θ1(S′)] =
∑
ρ∈S′

Pr[θ1(ρ)] =
∑
ρ∈S′

Pr[ρ] ·
(

1− p
2p

)k
= Pr[S′] ·

(
1− p

2p

)k
,

hence, Pr[S′] ≤
(

2p
1−p

)k
. Taking a union bound over all possible β, π, τ, I we get, as desired,

Pr[S] ≤
∑

β,π,τ,I

Pr[Sβ,π,τI ] ≤ (3r)k · 2k · 2k ·mdk/(d+1)e ·
(

2p
1− p

)k
. J

Proof of Lemma 42. Let ρ ∈ S be a restriction such that RTd({F1|ρ, . . . , Fm|ρ}) ≥ k. We
describe in detail how to map ρ into (ρσ, β, π, τ, I), where σ ∈ R, β ∈ [3r]k, π ∈ {0, 1}k, τ ∈
{0, 1}k, and I ∈ [m]dk/(d+1)e. Then, we shall describe how to decode from (ρσ, β, π, τ, I) the
restriction ρ, showing that the mapping is 1:1.

Encoding. We are going to choose a sequence of k variables that weren’t fixed by ρ, and
assign them values according to three adversarial strategies:

Global Strategy. This strategy ensures that RTd({F1|ρ, . . . , Fm|ρ}) ≥ k. We will denote its
answers by π1, . . . , πk ∈ {0, 1}.

Local Strategy. This will be the local adversary strategy based on one DNF we are focusing
on. We will denote its answers by τ1, . . . , τk ∈ {0, 1}.

Bread-Crumbs Strategy. The objective of this strategy is to leave the necessary traces, so
that the mapping will be invertible. We will denote its answers by σ1, . . . , σk ∈ {0, 1}.

We consider the following iterative encoding process, which is divided into phases. Each
phase, except for maybe the last phase, contains at least d+ 1 steps. In each phase, t, we
will focus on one specific DNF out of F1, . . . , Fm, and identify a sequence of variables Tt
of length dt ≥ d + 1 to be queried. The strings πt, τ t, σt ∈ {0, 1}dt will be the answers
to the sequence of queries Tt according to the Global, Local or Bread-Crumbs strategies,
respectively.

At phase t = 1, 2, . . ., we consider the restriction ρt = ρ(T1 → π1) . . . (Tt−1 → πt−1).
We identify some DNF, Fit , whose canonical decision tree depth under ρt is dt ≥ d+ 1 (if
no such DNF exists, then we stop). We add it to I. Next, we run the canonical decision
tree on Fit and ρt, answering according to the local adversarial strategy which keeps Fit
undetermined after less than dt queries.

6 Since a collision in θ1 on S′ implies a collision in θ.
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15:20 Tight Bounds on the Fourier Spectrum of AC0

We initialize Tt := ∅ and τ t, σt to be empty-strings. In each step, we find the first term
T in Fit which is not equivalent to 0 under ρt(Tt → τ t). By the assumption that Fit has
canonical decision tree depth dt, we get that T is not equivalent to 1 either. Let A be the
non-empty set of variables whose literals appear in T and are unassigned by ρt. We order
the set A in some canonical order. For each xj ∈ A, let jind ∈ [r] be the index of the literal
containing xj in term T . We let jtype = 1 if xj is the last variable to be queried in the DNF
Fit , otherwise jtype = 2 if xj is the last variable in A, and otherwise jtype = 3. For each
xj ∈ A, according to the A’s order, we add (jind, jtype) to β. In addition, we query the local
adversary according to the variables in A under the restriction ρt · (Tt → τ t) and update τ t
to contain its new answers. We concatenate to σt the values to the variables in A that satisfy
T (these are the “bread-crumbs”). We update Tt := Tt ∪A, and continue with ρt · (Tt → τ t)
until querying dt variables.

After ending the phase, we ask the global adversary the sequence of queries in Tt (by the
order they were asked) and consider its sequence of answers as πt. We continue to the next
phase with ρt+1 = ρ(T1 → π1) . . . (Tt → πt) (i.e., we “discard” the answers to Tt according
to the local adversary and add the answers according to the global adversary). We stop the
encoding process after querying k variables overall, even if we are in the middle of a phase.

We show by induction that RTd({F1|ρt
, . . . , Fm|ρt

}) ≥ k −
∑t−1
i=1 di. This is trivially true

for t = 1 since this is equivalent to the assumption that ρ ∈ S. Assuming it is true for t, we
show that it is true for t + 1. Since RTd({F1|ρt , . . . , Fm|ρt}) ≥ k −

∑t−1
i=1 di it means that

there exists a set of answers for Tt, namely πt, under which RTd({F1|ρt+1 , . . . , Fm|ρt+1}) ≥
k −

∑t−1
i=1 di − |Tt| = k −

∑t
i=1 di, which completes the induction.

Let p be the number of phases in the encoding process. By the above process, we get
that π = π1 . . . πp ∈ {0, 1}k, τ = τ1 . . . τp ∈ {0, 1}k, β ∈ [3r]k, σ := (T1 → σ1) . . . (Tp → σp)
fixes k additional variables to those fixed by ρ, and I is a sequence of p indices from [m].
In addition, p ≤ dk/(d+ 1)e since in each phase, except for maybe the last phase, we query
at least d + 1 variables and overall we query at most k variables. If less than dk/(d+ 1)e
phases exists, we may pad I with 1’s.

Decoding. We wish to show that θ is 1:1. Let (ρσ, β, π, τ, I) be an image of θ; we will show
how to decode ρ from this image. It is enough to show by induction on t = 1, . . . , p, that
we can recover T1, . . . , Tt, since this allows to reconstruct ρ by simply setting the values of⋃p
i=1 Ti to ∗ in ρσ.
Assuming we already recovered T1, . . . , Tt−1 correctly, we show how to decode Tt as well.

Knowing T1, . . . , Tt−1 allows the decoder to define ρ′t := ρ(T1 → π1) . . . (Tt−1 → πt−1)(Tt →
σt) . . . (Tp → σp) by replacing the assignment of T1, . . . , Tt−1 in ρσ according to π1, . . . , πt.
Using the set of indices I, we know it, i.e. the index of the DNF out of F1, . . . , Fm that
was considered by the encoding process at phase t. We show that the first term in Fit
under ρ′t which is not equivalent to 0 is the same as the first such term under ρt (recall that
ρt := ρ(T1 → π1) . . . (Tt−1 → πt−1)). Let i′ be the index of the first nonzero term in Fit
under ρt. Then, all terms prior to i′ were fixed to 0 under ρt and this remains true when we
refine ρt to ρ′t. In addition, since σt satisfies all the literals in term i′ which are unassigned
by ρt (except if we finished the entire encoding process while in the middle of processing
this term, in this case σt fixes some of the free variables to satisfy the literals and the rest
remain free), we get that the term with index i′ in Fit is not equivalent to 0 under ρ′t. Thus,
we identified the term i′ correctly. We collect indices from β until reaching type 1 or 2,
which yields the set of variables the encoder sets when processing term i′. We replace the
assignment for these variables to be according to τ instead of according to σ.
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We continue this way by identifying the next term the encoder examined, and decode the
set of variables fixed in the encoding process, according to the information stored in β. This
allows us to continue decoding the set Tt which completes the proof. J

I Remark. We remark that the information we are avoiding to store7 is the index of the term
on which a certain DNF is not fixed under a restriction ρ. We are using the Bread-Crumbs
partial assignment σ to satisfy all the literals that are unassigned in this term, in order to
allow the identification of the term in the decoding process. Once the term is known, we can
encode/decode a variable using a number in [r] rather than a number in [n], which is much
more “efficient” to encode. Storing the index to the DNF we are considering at each phase
may seem “expensive”. However, we are recording such an index at most once every d+ 1
consecutive steps, making this reasonable.
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A Equivalent Expressions for the T -th Discrete Derivatives

I Claim (Claim 25, restated).

DT f(x) = 1
2|T |

∑
z∈{−1,1}T

f(x(T 7→z)) ·
∏
i∈T

zi =
∑
S⊇T

f̂(S) ·
∏

i∈S\T

xi

where x(T 7→z) is the vector in {−1, 1}n whose i-th coordinate equals zi whenever i ∈ T , and
xi otherwise.
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Proof. We prove by induction on the size of T . For T = ∅ the claim trivially holds. For
T = {j1, . . . , jk}, let T ′ = {j2, . . . , jk} and g = DT ′f , then DT f = Dj1DT ′f = Dj1g. By the
definition of the j1-th derivative, we have

DT f(x) = g(x(j1 7→1))− g(x(j1 7→−1))
2 .

By the induction hypothesis, this equals

DT f(x) = 1
2 ·
(
DT ′f(x(j1 7→1))−DT ′f(x(j1 7→−1))

)

= 1
2

1
2k−1 ·


∑

z′∈{−1,1}T ′

f

((
x(j1 7→1)

)(T ′ 7→z′)
) ∏
i∈T ′

z′i

−
∑

z′∈{−1,1}T ′

f

((
x(j1 7→−1)

)(T ′ 7→z′)
) ∏
i∈T ′

z′i


= 1

2k
∑

z∈{−1,1}T

f(x(T 7→z))
∏
i∈T

zi .

As for the second item, by induction, g(x) =
∑
S⊇T ′ f̂(S) ·

∏
i∈S\T ′ xi. Thus,

DT f(x) = g(x(j1 7→1))− g(x(j1 7→−1))
2 = 1

2
∑
S⊇T ′

f̂(S) ·
∏

i∈S\T

xi ·

{
1− (−1), j1 ∈ T ′

1− 1, otherwise

=
∑
S⊇T

f̂(S) ·
∏

i∈S\T

xi . J

B Rephrasing Braverman’s Result

I Lemma 43 ([7, Lemma 8]). Let ν be any probability distribution on {0, 1}n. For a circuit
of depth d and size m computing a function F , for any s, there is a degree r = (s · log(m))d
polynomial f and a Boolean function Eν computable by a circuit of depth ≤ d+ 3 and size
O(m2r) such that
1. Prν [Eν(x) = 1] < 0.82s ·m, and
2. whenever Eν = 0, f(x) = F (x).

I Proposition 44 ([7, Prop. 9]). In Lemma 43, for s ≥ log(m), ‖f‖∞ < (2m)deg(f)−2 =
(2m)(s log(m))d−2

I Lemma 45 ([7, Rephrasing of Lemma 10]). Let F be computed by a circuit of depth d and
size m. Let s1, s2 be two parameters with s1 ≥ log(m). Let µ be any probability distribution
on {0, 1}n, and U{0,1}n be the uniform distribution on {0, 1}n. Set

ν := 1
2
(
µ+ U{0,1}n

)
.

Let Eν be the function from Lemma 8 with s = s1. Set F ′ = F ∨ Eν . Then, there is a
polynomial f ′ of degree rf = (s1 · logm)d + s2, such that
1. Prµ[F 6= F ′] < 2 · 0.82s1 ·m
2. PrU [F 6= F ′] < 2 · 0.82s1 ·m
3. ‖F ′ − f ′‖22 ≤ 0.82s1 · (4m) + 24(s1·logm)d logm · tail(m3, d+ 3, s2), and
4. f ′(x) = 0 whenever F ′(x) = 0.
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Proof. The first two properties follow from Lemma 43 directly, since

Pr
µ

[Eν = 1],Pr
Un

[Eν = 1] ≤ 2 ·Pr
ν

[Eν = 1] ≤ 2 · 0.82s1m .

Let f be the degree (s1 · logm))d approximation of F from Lemma 43. By Proposition 44,

‖f‖∞ < (2m)(s1·logm)d−2 < 22(s1 logm)d log(m)−2 .

Let Ẽν be the truncated Fourier expansion of Eν of degree s2. We have

‖Eν − Ẽν‖22 ≤ tail(m3, d+ 3, s2) .

Let

f ′ := f · (1− Ẽν)

Then f ′ = 0 whenever F ′ = 0 (since (F ′ = 0) =⇒ (Eν = 0, F = 0) =⇒ (f = 0) =⇒ (f ′ =
0)). It remains to estimate ‖F ′ − f ′‖22:

‖F ′ − f ′‖22 ≤ 2 · ‖F ′ − f · (1− Eν)‖22 + 2 · ‖f · (1− Eν)− f ′‖22
= 2 · ‖Eν‖22 + 2 · ‖f · (Eν − Ẽν)‖22
≤ 2 ·Pr[Eν = 1] + 2 · ‖f‖2∞ · ‖Eν − Ẽν‖22
≤ 0.82s1 · (4m) + 24(s1·logm)d logm · tail(m3, d+ 3, s2),

which completes the proof. J

I Theorem 46 ([7, Rephrasing of Main Theorem]). Let s1, s2 ≥ logm be any parameters.
Let F be a Boolean function computed by a circuit of depth d and size m. Let µ be an
r-independent distribution where

r = r(s1, s2, d) = 2((s1 · logm)d + s2)

then

|E
µ

[F ]− E[F ]| ≤ ε(s1, s2, d),

where ε(s1, s2, d) = 0.82s1 · (6m) + 24(s1·logm)d logm · tail(m3, d+ 3, s2)

Proof of Theorem 46. Denote by ε1 := 0.82s1 · (2m) and

ε2 := 0.82s1 · (4m) + 24(s1·logm)d logm · tail(m3, d+ 3, s2) .

Applying Lemma 45 with parameters s1 and s2 gives

‖F ′ − f ′‖22 ≤ ε2 .

Now take f ′` := 1− (1− f ′)2. Then f ′` ≤ 1 and f ′` = 0 whenever F ′ = 0, hence f ′` ≤ F ′.
To estimate E[F ′(x)− f ′`(x)] we note that F ′(x)− f ′`(x) equals 0 whenever F ′ = 0, and is
equal to

F ′(x)− f ′`(x) = (1− f ′(x))2 = (F ′(x)− f ′(x))2
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whenever F ′ = 1. We get

E[F ′(x)− f ′`(x)] ≤ ‖F ′ − f ′‖22 ≤ ε2 .

In addition, deg(f ′`(x)) ≤ 2(s2 + (s1 · logm)d).
To finish the proof, if µ is a

(
2 · (s2 + (s1 · logm)d)

)
-wise independent distribution then

E
µ

[F (x)] ≥ E
µ

[F ′(x)]− ε1 ≥ E
µ

[f ′`(x)]− ε1 =∗ E[f ′`(x)]− ε1

= E[F ′(x)]−E[F ′(x)− f ′`(x)]− ε1 ≥ E[F ′(x)]− ε2 − ε1 ≥ E[F (x)]− ε2 − ε1

where we used in * the fact that deg(f ′`) ≤ 2(s2 + (s1 · logm)d) and µ is deg(f ′`)-wise
independent. In a similar way, one can show Eµ[F (x)] ≤ E[F (x)] + ε1 + ε2. Combining both
cases we get

|E
µ

[F ]− E[F ]| ≤ ε1 + ε2 = ε(s1, s2, d) . J

C Improving the Analysis of De, Etesami, Trevisan and Tulsiani

De et al. [9] proved that any ε-biased distribution δ-fools depth-2 circuits (DNFs or CNFs)
of size m, for some ε = ε(δ,m). In fact, their work shows that generators of ε-biased
distributions are the best known pseudorandom generators fooling depth-2 circuits. We are
able to improve their analysis slightly, getting an optimal dependence between ε and δ.

Some notation is needed first. Throughout this section (and the next), we shall think
of Boolean functions as functions f : {0, 1}n → R (as opposed to f : {−1, 1}n → R).
We can identify each function f : {0, 1}n → R with a function f̃ : {−1, 1}n → R by
f̃(y1, . . . , yn) = f( 1−y1

2 , . . . , 1−yn

2 ) or equivalently f(x1, . . . , xn) = f̃((−1)x1 , . . . , (−1)xn).
When talking about the Fourier expansion of f , we mean the Fourier expansion of f̃ as
defined in Section 2. In this notation, f(x) =

∑
S⊆[n] f̂(S) · (−1)

∑
i∈S

xi .
Next, we discuss DNFs and CNFs. Disjunctive normal forms (DNFs) are expressions

of the form F (x) =
∨m
i=1 ti(x) where each term ti(x) is an AND of some literals from

x1, . . . , xn,¬x1, . . . ,¬xn. If any term in F is an AND of at most w literals, then we say that
F is of width w, and we call F a w-DNF. Similarly conjunctive normal forms (CNFs) are
expressions of the form F (x) =

∧m
i=1 ci(x) where each clause ci is an OR of some literals. We

define w-CNFs similarly to w-DNFs. The size of a DNF (CNF, resp.) is the number of
terms (clauses, resp.) in it, i.e., m in the examples above.

Recall the definition of the spectral norm of a Boolean function L1(f) =
∑
S |f̂(S)| and

denote by L∗1(f) =
∑
S 6=∅ |f̂(S)|. We denote by Un the uniform distribution over {0, 1}n.

We cite a proposition and two lemmata from the work of De et al. [9].

I Proposition 47 ([9, Prop. 2.6]). Suppose f, f`, fu : {0, 1}n → R are three functions
such that for every x ∈ {0, 1}n we have f`(x) ≤ f(x) ≤ fu(x). Furthermore, assume
Ex∼Un

[f(x)− f`(x)] ≤ δ and Ex∼Un
[fu(x)− f(x)] ≤ δ. Let l = max(L∗1(f`), L∗1(fu)). Then,

any ε-biased probability distribution (δ + εl)-fools f .

I Lemma 48 ([9, Lemma 4.3]). Let f : {0, 1}n → {0, 1} be a DNF with m terms and
g : {0, 1}n → R be such that: L1(g) ≤ l1, ‖f − g‖22 ≤ ε1 and g(x) = 0 whenever f(x) = 0.
Then, we can get f`, fu : {0, 1}n → R such that
∀x, f`(x) ≤ f(x) ≤ fu(x)
Ex∼Un

[fu(x)− f(x)] ≤ m · ε1 and Ex∼Un
[f(x)− f`(x)] ≤ m · ε1.

L1(f`), L1(fu) ≤ (m+ 1)(l1 + 1)2 + 1.
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I Lemma 49 ([9, Lemma 4.4]). Let f : {0, 1}n → {0, 1} be a DNF with m terms and
width-w. Suppose for every DNF with at most m terms and width-w, f1, there is a function
g1 : {0, 1}n → R such that: L1(g1) ≤ l2 and ‖f1−g1‖22 ≤ ε2. Then, we can get g : {0, 1}n → R
such that L1(g) ≤ m · (l2 + 1), ‖f − g‖22 ≤ m2 · ε2 and g(x) = 0 whenever f(x) = 0.

De et al. [9] used Lemma 49 with a bound on the width of the approximated DNF. We will
use Lemma 49 without any assumption on the width.

The following is a corollary of Thm. 37.

I Corollary 50. Let f : {0, 1}n → {0, 1} be a DNF of size m and ε2 > 0. Then, there is a
function g1 : {0, 1}n → R such that E[(f − g1)2] ≤ ε2 and L1(g1) = 2O(logm·log logm·log(1/ε2)).

Proof. According to Thm. 37, there is a set F of coefficients such that |F| ≤
2O(logm·log logm·log(1/ε2)) and

∑
S/∈F f̂(S)2 ≤ ε2. Hence, g1(x) =

∑
S∈F f̂(S) · (−1)

∑
i∈S

xi is
an approximation of f with

E
x

[(f(x)− g1(x))2] =
∑
S/∈F

f̂(S)2 ≤ ε2 .

where we used Parseval’s identity. Since each Fourier coefficient is at most 1 in absolute
value L1(g1) =

∑
S∈F |f̂(S)| ≤ |F|, which completes the proof. J

The following theorem is our refinement of [9, Thm. 4.1].

I Theorem 51. Let f be a DNF formula with m terms. Then, f is δ-fooled by any ε-biased
distribution where ε = 2O(logm·log(m/δ)·log logm).

Proof. Set ε2 = δ/2m3 and ε1 = δ/2m. By applying Corollary 50 for every DNF formula
of size m, f1, there exists a function g1 : {0, 1}n → R such that

E[(f1 − g1)2] ≤ ε2
L1(g1) ≤ 2O(logm·log logm·log(1/ε2)) = 2O(logm·log logm·log(m/δ))

We apply Lemma 49 with width n (this is a trivial choice of width, since all DNFs
on n variables are of width at most n without loss of generality), ε2 = δ/2m3 and
l2 = 2O(logm·log logm·log(m/δ)). Then, we get the existence of a function g : {0, 1}n → R
such that g(x) = 0 whenever f(x) = 0 and E[(g − f)2] ≤ m2ε2 = δ/2m. and
L1(g) ≤ (l2 +1) ·m = 2O(logm·log logm·log(m/δ)). Then, we apply Lemma 48 with g, ε1 = δ/2m
and l1 = L1(g) = 2O(logm·log logm·log(m/δ)) to get a sandwiching approximation of f by f`
and fu such that
∀x : f`(x) ≤ f(x) ≤ fu(x)
Ex∼Un

[fu(x)− f(x)] ≤ m · ε1 = δ/2 and Ex∼Un
[f(x)− f`(x)] ≤ m · ε1 = δ/2.

L1(fu), L1(f`) ≤ (l1 + 1)2 · (m+ 1) + 1 = 2O(logm·log logm·log(m/δ)).
Denote by l = (l1 + 1) · (m + 1) + 1. Applying Prop. 47, we get that any ε = δ/(2l) =
2−O(logm·log logm·log(m/δ)) biased distribution γ-fools f , where γ = δ/2 + ε · l ≤ δ. J

It is well-known from the works of [26, 3] that ε-biased distributions on n bits may be sampled
using a O(logn+ log(1/ε))-seed length, which gives the following corollary.

I Theorem 52. There exists a polynomial time pseudorandom generator G of seed length
O(logn+ logm · log logm · log(m/δ)) that δ-fools all DNFs of size m on n variables.

Note that by de Morgan laws every DNF of size m is the negation of a CNF of size m, and
vice versa. Hence, any pseudorandom generator that fools DNFs also fools CNFs.



A. Tal 15:27

D Improving the Generator of Trevisan and Xue

In this section, we revisit the pseudorandom generator of Trevisan and Xue [35] that ε-fools
AC0 circuits of size M and depth d. We improve its seed-length from O(logd+3(M/ε) ·
log(n/ε)) to O(logd+1(M/ε) · logn) by two observations in addition to the improved analysis
of the generator of De et al. (see Thm. 52).

We start by explaining the sampling process of Trevisan and Xue’s generator at a high-
level. The generator applies O(logd−1(M/ε) · log(n/ε)) pseudorandom restrictions iteratively,
where each pseudorandom restriction fixes each variable (that wasn’t already fixed) with
probability Θ(1/ logd−1(M/ε)). The seed length required per step is Õ(log4(M/ε)). Each
pseudo-random restriction consists of a pseudorandom process that selects which variables
to fix, in addition to a pseudorandom process that selects the values for these variables. The
heart of Trevisan and Xue’s analysis is a proof that the selection of which variables to fix
can be done by sampling recursively d times (one per depth) from any distribution that fools
CNFs with appropriate parameters. This is done by proving that any distribution that fools
CNFs, also fools Håstad’s switching lemma [14] (see Lemma 53 below).

Our improvement from seed-length Õ(logd+3(M/ε) · log(n/ε)) to Õ(logd+1(M/ε) · logn)
is a combination of three improvements:

We get a factor of log(M/ε) improvement via a better analysis of the pseudorandom
generator of De et al. [9] (see Section C). We get a better dependency on the error
parameter ε0 in Thm. 52, compared to the corresponding theorem of [9]. Since Trevisan
and Xue use Thm. 52 with error parameter ε0 = 1/2Θ(log2(M/ε)) that is much smaller
than any polynomial in ε/M , this improvement is effective.
We get a factor of log(M/ε) improvement by applying the switching lemma for one less
step. We show that with high probability the circuit collapses to a depth-2 circuit instead
of collapsing to a bounded depth decision tree. Since we are able to fool depth-2 circuits
by Thm. 52, this is enough.8

We replace a factor of log(n/ε) by a factor of log(n) by noting that one can continue
restricting variables until less than O(log(1/ε)) variables are alive, and then fix the
remaining variables using a O(log(1/ε))-wise independent distribution. In the original
analysis, one waited until all variables were fixed.

In the rest of the section, we will use the following notation (as suggested by Trevisan
and Xue [35]). A restriction may be defined (not uniquely) by two binary strings of length n:
θ ∈ {∗,�}n and β ∈ {0, 1}n, where for i ∈ [n],

ρ(i) =
{
β(i), θ(i) = �
∗, θ(i) = ∗

.

We shall identify a string w ∈ {0, 1}n(q+1) with a restriction as follows. We partition w to
(l, r) where l consists of the first qn bits of w, and r consists of the last n bits of w. We
further partition l ∈ {0, 1}nq to n blocks of q consecutive bits each. For block i ∈ [n], we
take θ(i) = ∗ iff all the q bits in the block equal 1. We take β = r and yield the restriction
defined by (θ, β).

8 To get another Õ(log(M/ε)) improvement it is enough to construct PRGs for depth-3 circuits with
seed-length Õ(log3(M/ε)). Then, one can stop one step sooner (i.e. when reaching depth-3) and apply
the PRG for depth-3 on the remaining circuit.
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If D is a distribution over {0, 1}(q+1)n, then (θ, β) ∼ D means that we sample w ∼ D as
a string of length (q + 1)n and use the aforementioned identification to get θ ∈ {∗,�}n and
β ∈ {0, 1}n. Note that sampling w ∈ {0, 1}n·(q+1) uniformly at random yields a restriction
ρ = (θ, β) distributed according to Rp for p = 2−q.

I Lemma 53 ([35, Lemma 7]). Let F be a CNF of size M and width t over n variables,
p0 = 2−q0 where q0 ∈ N, and D be a distribution over {0, 1}(q0+1)n that ε0-fools all CNFs
of size at most M · 2t·(q0+1). Then,

Pr
(θ,β)∼D

[DT(F |θ,β) > s] ≤ 2s+t+1 · (5p0t)s + ε0 · 2(s+1)·(2t+logM),

where DT(f) denotes the depth of the smallest decision tree computing a function f .9

The following is a slight generalization of [35, Fact 9].

I Fact 54 ([35, Fact 9]). Let D1 be a distribution over {0, 1}n1 that ε1-fools CNFs of size
m on n1 variables. Let D2 be a distribution over {0, 1}n2 that ε2-fools CNFs of size m on
n2 variables. Let D1 ⊗ D2 be the distribution over {0, 1}n1+n2 sampled by concatenating
independent samples from D1 and D2. Then, D1 ⊗D2 is a distribution that (ε1 + ε2)-fools
CNFs of size m on n1 + n2 variables.

Proof. Let F (X,Y ) be a CNF of size m on n1 + n2 variables, where X consists of the first
n1 variables and Y consists of the last n2 variables. We have

E
x∼Un1 ,y∼Un2

[F (x, y)] = E
x∼Un1

[ E
y∼Un2

[Fx(y)]]

where Fx(·) is the CNF F when the variables X are fixed to x. Note that Fx(·) is in itself a
CNF of size at most m on n2 variables. By assumption, for all values of x,

E
y∼Un2

[Fx(y)] = E
y∼D2

[Fx(y)]± ε2 . (9)

Similarly for any fixed assignment Y = y, we have

E
x∼Un1

[F (x, y)] = E
x∼D1

[F (x, y)]± ε1 . (10)

Combining Eqs. (9) and (10) gives

E
x∼Un1 ,y∼Un2

[F (x, y)] = E
x∼Un1

[
E

y∼D2
[Fx(y)]± ε2

]
= E
y∼D2

[ E
x∼Un1

[F (x, y)]± ε2]

= E
y∼D2

[ E
x∼D1

[F (x, y)]± ε1 ± ε2]

= E
x∼D1,y∼D2

[F (x, y)]± (ε1 + ε2) . J

By induction, Fact 54 implies the following corollary.

9 Actually, Trevisan and Xue show the stronger result where DT(f) is replaced by the depth of the
canonical decision tree for f (see Section 7 for its definition). However, we do not benefit from this
strengthening.
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I Corollary 55. Let D be a distribution over {0, 1}n that ε-fools CNFs of size m. Let t ∈ N ,
and D⊗t be the distribution over {0, 1}n·t sampled by concatenating t independent samples
from D. Then, D⊗t is a distribution that (ε · t)-fools CNFs of size m on n · t variables.

In the following theorems we shall assume that the circuit size M is larger than the length
of the input n.

I Theorem 56 ([35, Thm. 11, “Derandomized Switching Lemma for AC0”, restated]). Let
C be circuit on n variables with size M , depth d and a top OR-gate. Let p = 2−q, where
q ∈ N, and s ∈ N be some positive parameter. Assume that there exists a pseudorandom
generator G with seed length r that ε0-fools CNFs of size M · 2s · 2s·(q+1) . Then, there exists
a pseudorandom selection generator G0 of seed length (d− 1) · r such that:

Prθ∼G0,β∼U [F |θ,β is not an s-DNF of size ≤M · 2s]
≤M ·

(
22s+1 ·max{(5ps)s, (5/64)s}+ ε0 · 2(s+1)·(3s+logM)).

For each set of variables T ⊆ [n], the probability that all variables in T are fixed is at
most (1− pd−2/64)|T | + ε0 · (d− 1).

Proof. We shall start by adding a dummy layer next to the inputs that transforms the circuit
C into a circuit C ′ of size at most M · n, depth d+ 1 and bottom fan-in 1. We construct
G0 by running (d− 1) iterative pseudorandom selections, using the generator of [9] in each
iteration. By Fact 54, the pair (θ, β) obtained by sampling θ ∼ G and β ∈ {0, 1}n uniformly
at random, ε0-fools CNFs of size M · 2s · 2s·(q+1). We denote by M1, . . . ,Md the number of
gates in the original circuit C at distance 1, . . . , d from the inputs, respectively.

The first iteration. For the first iteration of Lemma 53, we pick p0 = 1/64 and t = 1. The
probability that under the pseudorandom restriction, one of the gates at distance 2 from the
inputs cannot be computed by a decision tree of depth s is at most

M1 ·
(

2s+1+1 · (5/64)s + ε0 · 2(s+1)(2+logM)
)
.

In the complement event, we may express each gate at distance 2 from the inputs both as
an s-DNF and as an s-CNF, so we can collapse this layer with the layer above it. This
simplification yields a circuit of depth d, fan-in s and does not introduce new gates at distance
2 or more from the inputs. The number of gates at distance 1 from the inputs is at most
M · 2s, since each depth-s decision tree is an s-DNF of size at most 2s (and similarly an
s-CNF of size at most 2s ).

The other d − 2 iterations. At iteration i = 2, . . . , d− 1, we apply Lemma 53 with t = s

and p0 = p. We get that under the pseudorandom restriction, the probability that there
exists a gate at distance 2 from the inputs that cannot be computed by a decision tree of
depth s is at most

Mi ·
(

2s+s+1 · (5ps)s + ε0 · 2(s+1)(2s+log(M ·2s))
)
.

We are using the fact that each gate at distance 2 from the inputs computes a CNF/DNF
of size at most M · 2s and bottom fan-in s, an invariant that is preserved during the iterative
process. Again, if a gate is computed by a decision tree of depth s then it is also computed by
an s-CNF and by an s-DNF of size at most 2s, and we may collapse the layers at distances
2 and 3 from the inputs.
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Overall, after (d− 1)-iterations, with probability at least

1−M ·
(

2s+s+1 ·max{(5ps)s, (5/64)s}+ ε0 · 2(s+1)(3s+logM)
)
,

all “switchings” were successful and we got a circuit of depth-2, size at most M · 2s, bottom
fan-in s and a top OR gate, i.e. we got an s-DNF.

As for the second item of the theorem, observe that θ is selected by sampling d− 1 binary
strings from G: one string w1 of length n · log2(64) (consisting of n blocks of log2(64) bits
each) and (d− 2) strings, w2, . . . , wd−1, of length n · q (consisting of n blocks of q bits each).
We denote the concatenation of these d−1 strings by w. The i-th bit in θ is fixed (i.e. θi = �)
iff the i-th block in one of the d− 1 strings contains a zero. Thus, the event θ(i) = � may
be expressed as an OR of 6 + (d− 2)q literals over w. The event that a set of T variables
is fixed may be expressed as a CNF of size |T | ≤ n in the bits of w. By Corollary 55, the
distribution of w is ε0 · (d− 1)-pseudorandom for CNFs of size at most M · 2s · 2s(q+1) and
in particular to CNFs of size at most n. Thus,

Pr
w pseudo-random

[T is fixed under w] ≤ Pr
w random

[T is fixed under w] + ε0 · (d− 1)

= (1− pd−2/64)|T | + ε0 · (d− 1) . J

I Theorem 57 ([35, Theorem 12, restated slightly]). Let C be a size M , depth d circuit, and
ε > 0. Then, there exists a pseudorandom generator G1 of seed length Õ(log3(M/ε)) such
that:
|Prρ∼G1,x∼Un

[Cρ(x) = 1]−Pry∼Un
[C(y) = 1]| < ε.

Let p be the largest power of 1/2 less than 1/(64 log(8M/ε)). Then, each set of variables
T ⊆ [n] has probability at most (1− pd−2/64)|T | + ε0 · (d− 1) of being unassigned by ρ.

Proof. We initiate the generator from Thm. 56 based on the generator from Thm. 52. We
choose parameters so that the bound we get from Thm. 56 is at most ε/2. Choosing s to be
a power of 2 between log(8M/ε) to 2 log(8M/ε), p = 1/64s and ε0 = 2−9s2 guarantees that

M · (22s+1 ·max{(5ps)s, (5/64)s}+ ε0 · 2(s+1)·(3s+logM)) ≤ ε/2 .

The choice also guarantees that ε0 ≤ ε/2. In order to apply Thm. 56 with these
parameters, the generator G in Thm. 52 should ε0-fool circuits of size M ′ = M ·
2(q+2)s = 2O(log(M/ε) log log(M/ε)). Theorem 52 guarantees that seed-length r = Õ(log(M ′) ·
log(M ′/ε0)) = Õ(log3(M/ε)) is enough.

The generator in Thm. 56, G0, selects a set of coordinates J = {i ∈ [n] : θ(i) = ∗}.
Thm. 56 guarantees that with probability at least (1 − ε/2) over the choice of J and the
restriction of Jc by random bits, C reduces to an s-DNF of size at most M · 2s. We then
assign values to the variables indexed by J according to De et al. generator, G. Overall, we
need seed-length (d− 1) · r + r = dr, where the first term comes from sampling from G0 and
the second from sampling according to G.

For any fixed choice of θ we have:

Pr
y∼Un

[C(y) = 1] = Pr
x∼UJ ,z∼UJc

[C(x, z) = 1] = E
z

[Pr
x

[C(x, z) = 1]] .

Hence also for G0 which is a distribution over selections θ the following holds

Pr
y∼Un

[C(y) = 1] = E
θ

E
z

[Pr
x

[C(x, z) = 1]]



A. Tal 15:31

For choices (θ, z) such that Cz(x) := C(x, z) is an s-DNF of size at most M · 2s, we have
Prx∼UJ

[C(x, z) = 1] = Prx∼G [C(x, z) = 1]± ε0. In the case where Cz(x) is not an s-DNF
of size M · 2s we trivially have Prx∼UJ

[C(x, z) = 1] = Prx∼G [C(x, z) = 1]± 1. However, this
is a rare event that happens with probability at most ε/2. Overall, we have

Pr
y∼Un

[C(y) = 1] = E
θ

E
z

[ Pr
x∼UJ

[C(x, z) = 1]] = E
θ

E
z

[ Pr
x∼G

[C(x, z) = 1]]± (ε0 + ε/2) .

which completes the proof of the first item as ε0 ≤ ε/2.
Note that the generator G1 selects J and assigns values to the variables in J . It does not

assign any of the variables in Jc. In this way, Trevisan and Xue change roles between the
fixed and alive parts of the restriction: starting with pseudorandom restriction where Jc is
fixed randomly and J is kept alive, they end up with a pseudorandom restriction where J is
fixed pseudorandomly and Jc is kept alive.

The second item follows by observing that a set of variables is fixed in Thm. 56 iff it is
unassigned here. J

I Theorem 58 ([35, Theorem 13, improved]). For every M,d, n, ε there is a polynomial time
computable ε-pseudorandom generator for circuits of size M and depth d on n variables,
whose seed length is Õ(logd+1(M/ε) · logn).

Proof. If d ≤ 2 we apply Thm. 52. Otherwise, we may assume d ≥ 3. As in Thm. 57, let p
be the largest power of 1/2 which is smaller than 1/(64 log(8M/ε)). Let p′ = pd−2/64. The
theorem follows by applying R = 3 ln(n)/p′ independent random restrictions from G1, each
with parameter ε/2R. Let t = log(2/ε), and let T ⊆ [n] be a set of size t. The probability T
remains totally unfixed after R iterations is at most

((1− p′)t + ε0 · (d− 1))3 ln(n)/p′

where recall that ε0 = 2−Ω(log2(M/ε)). We have (1− p′)t > 1− p′t ≥ 1− log(2/ε)
64 log(8/ε) > 1/2, so

(1− p′)t + ε0 · (d− 1) ≤ (1− p′)t · (1 + 2ε0 · (d− 1)) ,

and we get

((1− p′)t + ε0 · (d− 1))3 ln(n)/p′ <
(
(1− p′)t · (1 + 2ε0 · (d− 1))

)3 ln(n)/p′

≤ e(−p′t)·3 ln(n)/p′ · e2ε0·(d−1)·3 ln(n)/p′ (1 + x ≤ ex)

= n−3t · eo(1) = O(n−3t) .

As there are only at most nt sets T of size t, applying union bound, with probability at
most O(n−2t) < ε/2 there exists a set of size t which is unassigned. In the complement
event, there are less than t variables alive, and we may sample from a t-wise independent
distribution to fool the remaining circuit. Overall the seed length is(

3 ln(n)
p′

· Õ(log3(M/ε)
)

+O (log(1/ε) · logn)) = Õ(logd+1(M/ε) · logn) . J
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Abstract
We consider the standard two-party communication model. The central problem studied in

this article is how much can one save in information complexity by allowing an error of ε.
For arbitrary functions, we obtain lower bounds and upper bounds indicating a gain that is
of order Ω(h(ε)) and O(h(

√
ε)). Here h denotes the binary entropy function.

We analyze the case of the two-bit AND function in detail to show that for this function the
gain is Θ(h(ε)). This answers a question of Braverman et al. [4].
We obtain sharp bounds for the set disjointness function of order n. For the case of the
distributional error, we introduce a new protocol that achieves a gain of Θ(

√
h(ε)) provided

that n is sufficiently large. We apply these results to answer another of question of Braverman
et al. regarding the randomized communication complexity of the set disjointness function.
Answering a question of Braverman [3], we apply our analysis of the set disjointness function
to establish a gap between the two different notions of the prior-free information cost. In light
of [3], this implies that amortized randomized communication complexity is not necessarily
equal to the amortized distributional communication complexity with respect to the hardest
distribution.

As a consequence, we show that the ε-error randomized communication complexity of the set
disjointness function of order n is n[CDISJ−Θ(h(ε))]+o(n), where CDISJ ≈ 0.4827 is the constant
found by Braverman et al. [4].
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1 Introduction

Communication complexity studies the amount of communication needed to compute a
function whose inputs are spread among several parties. It has many applications to different
areas of complexity theory and beyond, mostly as a technical tool used for proving lower
bounds. Traditionally, communication complexity has been studied through a combinatorial
lens. Recently, a new approach to communication complexity via information theory has
arisen, forming the area of information complexity [10, 1, 2]. While communication complexity
is concerned with minimizing the amount of communication required for two players to
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16:2 Trading Information Complexity for Error

evaluate a function, information complexity is concerned with the amount of information
that the communicated bits reveal about the players’ inputs.

The study of information complexity is motivated by fundamental questions regarding
compressing communication [2, 6, 3, 15] that extend the seminal work of Shannon [28]
to the setting where interaction is allowed. Moreover, it has important applications to
communication complexity, and in particular to the study of the direct-sum problem [1, 10, 17,
8, 7], a problem that has been studied extensively in the past [13, 10, 19, 16, 2, 21, 17, 18, 8, 7].
For example, the only known direct-sum result for general randomized communication
complexity is proven via information-theoretic techniques in [2].

One of the most spectacular applications of information complexity, due to Braverman
et al. [4], is determining the exact first order communication complexity of set disjointness.
Set disjointness is one of the most important functions in communication complexity, and
as a result it has been studied extensively in the past four decades (see the surveys [11, 29]
and the references therein). In this communication problem, which is denoted by DISJn,
Alice and Bob each receives a subset of {1, . . . , n} and their goal is to determine whether
their sets are disjoint or not. The goal is to determine the asymptotc rate of growth of
the randomized communication complexity Rε(DISJn) of set disjointness, defined as the
smallest number of bits exchanged by the two players in a protocol which computes the
function correctly with probability at least 1 − ε on every input. The correct asymptotic
Rε(DISJn) = Θ(n) was first proved by Kalyanasundaram and Schnitger [20]. Although later
Razborov [26] gave a shorter proof, still despite several decades of research in this area, all
known proofs for this fact are intricate and sophisticated. It was thus a great breakthrough
when Braverman et al. determined the exact constant in the asymptotics of Rε(DISJn) as
ε → 0 by employing several recent results from the area of information complexity. They
proved that as the error parameter ε tends to 0, the quantity limn→∞Rε(DISJn)/n tends to
a constant CDISJ ≈ 0.4827.

Our major result determines the asymptotic rate of growth of Rε(DISJn) for constant
ε ≤ 1/2:

lim
n→∞

Rε(DISJn)
n

= CDISJ −Θ(h(ε)). (1)

As in the work of Braverman et al., we obtain our result by analyzing the information
complexity of the 2-bit AND function (in which each player gets one bit). Roughly speaking,
the information complexity ICµ(f, ε) of a function f with respect to a distribution µ on the
inputs is the minimal amount of information that the players need to leak in any protocol
that computes f correctly with probability at least 1− ε on every input1. The asymptotic
estimate on Rε(DISJn) follows by analyzing IC0(AND, ε) := min ICµ(AND, ε), where the
minimum is taken over all distributions µ such that µ(1, 1) = 0. Specifically, we prove the
following bound:

IC0(AND, ε) = CDISJ −Θ(h(ε)), (2)

where the upper bound is attained by a protocol having one-sided error (only allowed to
make a mistake on the input (1, 1)). The upper bound follows from a black-box modification

1 There are two different ways to measure information leakage. The usual notion, internal information
complexity, measures how much each player learns about the other player’s input. External information
complexity, studied in this paper only in passing, measures how much an external observer learns about
the players’ input.
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of the optimal protocol for AND found by Braverman et al. The lower bound is significantly
harder, requiring several novel ideas which could have wider applicability. We sketch these
ideas later on in the introduction.

It is natural to ask whether a bound of the form (2) holds for arbitrary functions f .
Braverman et al. [4] considered this question in the context of distributional information
complexity2. The distributional information complexity ICµ(f, µ, ε) of a function f with
respect to a distribution µ on the inputs is the minimal amount of information that the players
need to leak in any protocol that computes f correctly with probability at least 1−ε when the
inputs are drawn according to µ. They showed that ICµ(f, µ, ε) ≥ ICµ(f, µ, 0)−O(h(ε1/8))
(here and below, the hidden constant depends on f and µ). We significantly improve this
lower bound, and obtain the first non-trivial upper and lower bounds for general functions:

ICµ(f, µ, 0)−O(h(
√
ε)) ≤ ICµ(f, µ, ε) ≤ ICµ(f, µ, 0)− Ω(h(ε)),

ICµ(f, 0)−O(h(
√
ε)) ≤ ICµ(f, ε) ≤ ICµ(f, 0)− Ω(h(ε)).

Our results hold in both the non-distributional and distributional settings, as well as in the
prior-free settings explained below. The upper bounds use the same black-box technique
used to prove the upper bound in (2). The lower bounds use protocol completion, a novel
technique which also figures in the proof of the lower bound in (2).

In classical communication complexity, the distributional setting arises from an application
of Yao’s minimax principle: Rε(f) is the maximum over µ of the communication complexity
of deterministic protocols which compute f correctly with probability at least 1− ε when the
inputs are drawn according to µ. This connection suggests searching for an analog of Rε(f)
in the setting of information complexity. Braverman [3] defined two such notions of prior-free
information complexity: IC(f, ε) = maxµ ICµ(f, ε), and ICD(f, ε) = maxµ ICµ(f, µ, ε). Using
the minimax theorem, he showed that the two notions coincide when ε = 0. He conjectured
that the two notions coincide for all ε, but he could only prove the following bound, for
0 < α < 1:

ICD(f, ε) ≤ IC(f, ε) ≤ ICD(f, αε)
1− α .

We separate the two notions of prior-free information complexity, thus showing that this
tradeoff is essentially optimal for set disjointness:

ICD(DISJn, ε)
n

. CDISJ −Θ(
√
h(ε)),

IC(DISJn, ε)
n

≥ CDISJ −Θ(h(ε)),

where . hides a on(1) term. The upper bound on ICD(DISJn, ε) follows from a novel protocol
for set disjointness which is asymptotically optimal in the distributional prior-free setting,
while the lower bound on IC(DISJn) follows from the proof of (1).

Since information complexity is amortized communication complexity, we can also state
our separation in terms of communication complexity. Let Rmε (fm) denote the randomized
communication complexity of computing m copies of f with an error of at most ε on each of
the m inputs. Similarly, let Dµ,m

ε (fm) denote the corresponding distributional notion, where

2 Information complexity and distributional information complexity are often confused in the literature.
One reason might be that they are the same in the zero-error prior-free setting, as shown by Braverman [3]
and explained further below.
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16:4 Trading Information Complexity for Error

the error is measured when the inputs are drawn according to µ. Braverman [3] showed
that IC(f, ε) = limm→∞Rmε (fm)/m and ICD(f, ε) = limm→∞maxµDµ,m

ε (fm)/m, and so
our separation of IC(DISJn, ε) and ICD(DISJn, ε) also separates maxµDµ,m

ε (DISJmn ) and
Rmε (DISJmn ).

Finally, given a function f we characterize all measures µ such that ICµ(f, 0) = 0. We
also prove a few results about external information complexity ICext (which we do not define
here). Given a function f we characterize all measures µ such that ICext

µ (f, 0) = 0. We also
show that the upper bound ICµ(f, ε) ≤ ICµ(f, 0) − Ω(h(ε)) fails for external information
complexity: ICext

µ (XOR, ε) ≥ ICext
µ (XOR, 0) − 3ε, where the distribution µ is given by

µ(0, 0) = µ(1, 1) = 1/2.

1.1 Techniques
1.1.1 Stability for the buzzer protocol
At the heart of the lower bound IC0(AND, ε) ≥ CDISJ − O(h(ε)) lies a stability result for
almost-optimal protocols for AND.

Braverman et al. [4] gave an optimal protocol for the AND function, which they call the
buzzer protocol. They also showed that this protocol is essentially the unique optimal protocol
for the AND function. We prove a stability version of this result: any ε-error protocol for
AND whose information cost is close to that of the buzzer protocol must be similar to the
buzzer protocol.

There are many possible notions of similarity, and ours (for reasons that will become
clear below) focuses on the leaf distribution of the protocol, which is the distribution of the
terminal point of the protocol. Our stability result roughly states that any ε-error protocol
for AND whose information cost is close to that of the buzzer protocol must have a leaf
distribution which is similar to the leaf distribution of the buzzer protocol.

We prove our stability result by strengthening the technique of local concavity constraints
introduced by Braverman et al. On the way, we also simplify the arguments of Braverman et
al. by replacing the discrete second derivatives used by Braverman et al. with their continuous
counterparts.

1.1.2 The buzzer protocol as a random walk
One of our main insights is an alternative description of the buzzer protocol as a random
walk.

As part of their analysis of the AND function, Braverman et al. introduced a new
perspective on communication protocols, viewing a communication protocol as a random
walk on the space of distributions. Given an initial distribution over the inputs, they associate
with each node in the protocol tree the a posteriori distribution of the inputs, which is the
distribution of the inputs given that the protocol arrives at the node. Instead of walking
down the protocol tree, we can think of the protocol as a random walk on these a posteriori
input distributions.

Braverman et al. describe the buzzer protocol as a continuous time protocol which ends
abruptly when one of the players buzzes. We give an alternative description of the buzzer
protocol, as a random walk on the space of distributions. Consider the case in which the
input distribution µ is a product distribution given by Pr[X = 1] = p and Pr[Y = 1] = q,
where X,Y are the input bits of Alice and Bob, respectively; we denote this distribution
succinctly by (p, q). The buzzer protocol is the limit ε→ 0 of a random walk which starts
at (p, q), and at each step moves either vertically or horizontally depending on the current
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distribution (a, b): if a ≥ b it moves to (a, b+ ε) or to (a, b− ε), with probability 1/2 each,
and if a < b it moves to (a+ ε, b) or to (a− ε, b), with probability 1/2 each. In both cases we
clip the protocol to [0, 1]2. The random walk terminates when a = 0 or b = 0, in which case
it outputs 0, and when a = b = 1, in which case it outputs 1.

Our description of the buzzer protocol has two main advantages over the original one.
First, the a posteriori distribution varies continuously in our protocol. In contrast, in the
original description the a posteriori distribution “collapses” when one of the players presses
the buzzer. Second, our protocol is the same for all distributions, whereas the original buzzer
protocol has an additional symmetrization step to handle asymmetric initial distributions.
Both of these properties simplify our analysis.

1.1.3 Product parametrization
Our most important technical innovation is a way of analyzing non-product distributions
as if they were product distributions. Since product distributions are often much easier to
analyze, we believe this idea could have many further applications, which we hope to explore
in future work.

So far we have described the buzzer protocol as a random walk only when the initial
distribution is a product distribution. In that case, the random walk is supported on
the manifold of product distributions. More generally, for any initial distribution µ, all
reachable a posteriori distributions can be obtained from µ by scaling the rows and columns.
Therefore the manifold of distributions reachable from µ, which we call the µ-manifold,
can be parametrized by product distributions. This key idea allows us to treat any initial
distribution µ as if it were a product distribution, as we now explain in detail.

The information cost of a protocol equals the difference between the amount of information
not known to the players before it begins, and the expected information not known after it
ends. The information cost can easily be calculated given the second term, which is known as
the concealed information. The concealed information can be viewed as the expected reward
(corresponding to unrevealed information) obtained at the leaves of the protocol. Finding a
protocol that minimizes the information cost is thus equivalent to finding a random walk
that maximizes the expected reward.

Using the product parametrization, we can convert a random walk on the µ-manifold
to a random walk on the manifold of product distributions. The concealed information is
replaced by the scaled concealed information, which also equals some expected reward over
the leaves of the protocol. The concealed information, hence the information cost, can easily
be extracted from this parameter. This allows us to analyze protocols on general input
distributions as if the input distribution were a product distribution, the only difference
being the scaling of concealed information at the leaves.

While we only use this technique for analyzing the AND function, it applies to general
functions on general input domains. We believe that this technique has wide applicability in
the area of information complexity, since product distributions are often easier to analyze
than general distributions.

1.1.4 Protocol completion
We prove the lower bounds on ICµ(f, ε) and on IC0(AND, ε) using the technique of protocol
completion. Given an ε-error protocol for f , we complete it to a zero-error protocol for f
in a natural way: when the protocol terminates at a posterior distribution ν (which is the
distribution of the inputs given the transcript of the protocol and the initial distribution µ),
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we run a zero-error protocol for f which is information-efficient for the distribution ν. Using
the buzzer protocol, we give a protocol for f whose information cost is O(h(

√
α)), where

1 − α is the probability of the most probable output given ν. Since E[α] = ε, this shows
that we can complete the given ε-error protocol to a zero-error protocol for f at a cost of
O(h(

√
ε)) in the information cost, implying the bound ICµ(f, ε) +O(h(

√
ε)) ≥ ICµ(f, 0).

For the case f = AND, we are able to improve on this result, tightening the gap
from O(h(

√
ε)) to O(h(ε)), using the stability result for the buzzer protocol. The product

parametrization allows us to consider the posterior distribution ν as a product distribution
(a, b). If max(a, b) = Ω(1) then the buzzer protocol has information cost O(h(α)) rather than
just O(h(

√
α)) (recall that 1 − α is the probability of the most probable output given ν).

Suppose now that we are given an ε-error protocol π for AND. Our goal is to prove that
ICµ(π) ≥ ICµ(AND, 0)− Cµh(ε) for some Cµ > 0 (here ICµ(π) is the information cost of π).
We can complete π to a zero-error protocol π0 at a cost of O(h(

√
ε)). We can assume that

ICµ(π0) ≤ ICµ(AND, 0)− Cµh(ε) +O(h(
√
ε)), and so π0 is an almost-optimal protocol for

AND. Our stability result shows that a random leaf (a, b) of π0 satisfies max(a, b) ≥ cµ with
high probability, for some cµ > 0. It follows that the same holds for π, and so the cost of
completion is only O(h(ε)).

1.1.5 Black-box modification

We prove the upper bounds on ICµ(f, ε) and (as a special case) on IC0(AND, ε) using a
simple black-box argument, which modifies an optimal zero-error protocol to a slightly more
information-efficient ε-error protocol. Given a zero-error protocol π for f , one way to create
an ε-error protocol for f is to run π with probability 1− ε, and output some constant value
with probability ε. However, this only saves O(ε) bits of information. Our modification is
different: we identify a player P and two inputs z0, z1, and run the following protocol π′:

With probability ε (sampled privately by P), if the input of P is z1 then P changes its
input to z0.
The players run π on their possibly modified inputs.

This is also an ε-error protocol, and for a suitable choice of the parameters, it turns out that
it saves Ω(h(ε)) bits of information compared to π.

When the input distribution µ has full support, it is easy to choose the parameters, by
finding two inputs (x0, y0), (x1, y1) which differ on a single coordinate such that f(x0, y0) 6=
f(x1, y1). Such a choice might not exist when µ doesn’t have full support, and instead we
rely on a rather delicate binary search argument on the set of transcripts.

We can apply this argument to the AND function, showing that ICµ(AND, ε) ≤ CDISJ −
Ω(h(ε)). However, when using this result to obtain a protocol for set disjointness, we
encounter a difficulty: in order to obtain an ε-error protocol for DISJn, it seems at first that
we need a protocol for AND having error ε/n. This would result in a saving of O(h(ε/n))
rather than O(h(ε)) per coordinate. A similar difficulty was encountered by Molinaro et
al. [25] in a similar context, and they overcame it using protocols that abort. In our case there
is a simpler solution: we consider ε-error protocols for AND which only make one-sided error,
outputing 0 when the correct answer is 1 (the black-box argument can be modified to produce
such protocols). If we apply such a protocol coordinatewise to compute the intersection of
X,Y , then we always compute the intersection correctly when X,Y are disjoint, and we
mistakenly compute the intersection to be empty when X,Y are not disjoint with probability
at most ε|X∩Y | ≤ ε. The resulting protocol thus computes set disjointness correctly with
probability at least 1− ε on every input.
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1.1.6 Computing set disjointness with error
The lower bound IC0(AND, ε) ≥ CDISJ − O(h(ε)) implies a similar lower bound on the
information complexity of set disjointness: IC(DISJn, ε)/n ≥ CDISJ −O(h(ε)). In contrast,
we can save more than h(ε) in the distributional prior-free setting: ICD(DISJn, ε)/n ≤
CDISJ − Θ(

√
h(ε)) + o(1). A minimax argument of Braverman [3] shows that this bound

is tight. We prove this upper bound using a novel protocol for set disjointness. Given a
distribution µ, we describe a protocol π which has error ε with respect to µ, whose information
cost satisfies

ICµ(π) ≤ n[CDISJ − Ω(
√
h(ε))] +O(logn).

Let p be the probability the input sets X,Y are not disjoint, when (X,Y ) ∼ µ. The protocol
proceeds as follows:

Using public randomness, Alice and Bob sample a permutation σ on 1, . . . , n.
For i = 1, . . . , n, Alice and Bob run a protocol for AND on Xσ(i), Yσ(i) which has one-sided
error ε/2p with respect to the conditional distribution of Xσ(i), Yσ(i), declaring X,Y to
be not disjoint (and halting the protocol) if the AND protocol answers Xσ(i) = Yσ(i) = 1.
Declare X,Y to be disjoint.

The protocol only makes an error when the inputs are not disjoint, and in that case it
makes an error with probability (ε/2p)|X∩Y | ≤ ε/2p. Since the inputs are non-disjoint with
probability p, the overall error probability is ε/2 < ε. A tricky but standard argument shows
that this protocol saves roughly Ω(n

√
h(ε)) bits of information.

2 Preliminaries

In this section we introduce some basic notation and facts, and review the necessary back-
ground for the paper.

2.1 Notation and basic estimates
We typically denote random variables by capital letters (e.g A,B,C,Π). For the sake of
brevity, we shall write A1 . . . An to denote the random variable (A1, . . . , An) and not the
product of the Ai’s. We use [n] to denote the set {1, . . . , n}, and suppµ to denote the support
of a measure µ.

For a finite set Ω, we denote by ∆(Ω), the set of all discrete probability distributions on
Ω. For µ, ν ∈ ∆(Ω), we denote their total variation distance with

|µ− ν| := 1
2
∑
x∈Ω
|µ(x)− ν(x)|.

For every ε ∈ [0, 1], h(ε) = −ε log ε− (1− ε) log(1− ε) denotes the binary entropy, where
here and throughout the paper log(·) is in base 2, and 0 log 0 = 0.

2.2 Communication complexity
The notion of two-party communication complexity was introduced by Yao [30] in 1979. In
this model there are two players (with unlimited computational power), often called Alice
and Bob, who wish to collaboratively perform a task such as computing a given function
f : X ×Y → Z. Alice receives an input x ∈ X and Bob receives y ∈ Y . Neither of them knows
the other player’s input, and they wish to communicate in accordance with an agreed-upon
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protocol π to compute f(x, y). The protocol π specifies as a function of (only) the transmitted
bits whether the communication is over, and if not, who sends the next bit. Furthermore
π specifies what the next bit must be as a function of the transmitted bits, and the input
of the player who sends the bit. We will assume that when the protocol terminates Alice
and Bob agree on a value as the output of the protocol. We denote this value by π(x, y).
The communication cost of π is the total number of bits transmitted on the worst case input.
The transcript of an execution of π is a string Π consisting of a list of all the transmitted
bits during the execution of the protocol. As protocols are defined using protocol trees,
transcripts are in one-to-one correspondence with the leaves of this tree.

In the randomized communication model, the players might have access to a shared random
string (public randomness), and their own private random strings (private randomness). These
random strings are independent, but they can have any desired distributions individually. In
the randomized model the transcript also includes the public random string in addition to
the transmitted bits. Similar to the case of deterministic protocols, the communication cost
is the total number of bits transmitted on the worst case input and random strings. The
average communication cost of the protocol is the expected number of bits transmitted on
the worst case input.

For a function f : X × Y → Z and a parameter ε > 0, we denote by Rε(f) the communi-
cation cost of the best randomized protocol that computes the value of f(x, y) correctly with
probability at least 1− ε for every (x, y).

2.3 Information complexity
The setting is the same as in communication complexity, where Alice and Bob (having infinite
computational power) wish to mutually compute a function f : X × Y → Z. To be able to
measure information, we also need to assume that there is a prior distribution µ on X × Y.

For the purpose of communication complexity, once we allow public randomness, it makes
no difference whether we permit the players to have private random strings or not. This is
because the private random strings can be simulated by parts of the public random string.
On the other hand, for information complexity, it is crucial to permit private randomness,
and once we allow private randomness, public randomness becomes inessential. Indeed, one
of the players can use her private randomness to generate the public random string, and then
transmit it to the other player. Although this might have very large communication cost, it
has no information cost, as it does not reveal any information about the players’ inputs.

Probably the most natural way to define the information cost of a protocol is to consider
the amount of information that is revealed about the inputs X and Y to an external observer
who sees the transmitted bits and the public randomness. This is called the external
information cost and is formally defined as the mutual information between XY and the
transcript of the protocol (recall that the transcript also contains the public random string).
While this notion is interesting and useful, it turns out there is a different way of defining the
information cost that enjoys certain desirable properties that the external information cost
lack. This is called the internal information cost or just the information cost for short, and
is equal to the amount of information that Alice and Bob learn about each other’s inputs
from the communication. Note that Bob knows Y , the public randomness R, and his own
private randomness RB , and thus what he learns about X from the communication can be
measured by the conditional mutual information I(X; Π|Y RRB). Similarly, what Alice learns
about Y from the communication can be measured by I(Y ; Π|XRRA) where RA is Alice’s
private random string. It is not difficult to see [2] that conditioning on the public and private
randomness does not affect these quantities. In other words I(X; Π|Y RRB) = I(X; Π|Y )
and I(Y ; Π|XRRA) = I(Y ; Π|X). We summarize these in the following definition.
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I Definition 1. The internal information cost and the external information cost of a protocol
π with respect to a distribution µ on inputs from X × Y are defined as

ICµ(π) = I(Π;X|Y ) + I(Π;Y |X),

and

ICext
µ (π) = I(Π;XY ),

respectively, where Π = ΠXY is the transcript of the protocol when it is executed on XY ∼ µ.

We will be interested in certain communication tasks. Let [f, ε] denote the task of
computing the value of f(x, y) correctly with probability at least 1− ε for every (x, y). Thus
a protocol π performs this task if

Pr[π(x, y) 6= f(x, y)] ≤ ε, ∀ (x, y) ∈ X × Y.

Given another distribution ν on X × Y, let [f, ν, ε] denote the task of computing the value
of f(x, y) correctly with probability at least 1 − ε if the input (x, y) is sampled from the
distribution ν. A protocol π performs this task if

Pr
(x,y)∼ν

[π(x, y) 6= f(x, y)] ≤ ε.

Note that a protocol π performs [f, 0] if it computes f correctly on every input while
performing [f, ν, 0] means computing f correctly on the inputs that belong to the support of
ν.

We will also need a one-sided version of the task [f, ε]. Let [f, ε, z1 → z0] denote the task
of computing the value of f(x, y) correctly with probability at least 1− ε for every (x, y),
allowing the protocol to err only if it outputs z0 instead of z1. Thus a protocol π performs
this task if it performs the task [f, ε], and additionally

π(x, y) 6= f(x, y) =⇒ f(x, y) = z1 and π(x, y) = z0.

The information complexity of a communication task T with respect to a measure µ is
defined as

ICµ(T ) = inf
π: π performs T

ICµ(π).

It is essential here that we use infimum rather than minimum as there are tasks for which there
is no protocol that achieves ICµ(T ) while there is a sequence of protocols whose information
cost converges to ICµ(T ). The external information complexity of a communication task T is
defined similarly. We will abbreviate ICµ(f, ε) = ICµ([f, ε]), ICµ(f, ν, ε) = ICµ([f, ν, ε]), etc.
It is important to note that when µ does not have full support, ICµ(f, µ, 0) can be strictly
smaller than ICµ(f, 0).

I Remark (A warning regarding notation). In the literature of information complexity it is
common to use “ICµ(f, ε)” to denote the distributional error case, i.e. what we denote by
ICµ(f, µ, ε). Unfortunately this has become the source of some confusions in the past, as
sometimes “ICµ(f, ε)” is used to denote both of the distributional error and the point-wise
error cases. To avoid ambiguity we distinguish the two cases by using the different notations
ICµ(f, µ, ε) and ICµ(f, ε).
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Similar to the fact that the maximal distributional communication complexity over all
measures equals the public coin randomized communication complexity (see e.g., [22, Section
3.4]), below we prove a lemma that establishes a similar relation between ICµ(f, ν, ε) and
ICµ(f, ε).

I Lemma 2. ICµ(f, ε) = maxν ICµ(f, ν, ε) holds for all ε ≥ 0.

Note that the maximum exists due to continuity of ICµ(f, ν, ε) with respect to ν, a fact
that is discussed later in Section 2.4 (For ε = 0 one can take any full-support ν).

Proof. We only need to show ICµ(f, ε) ≤ maxν ICµ(f, ν, ε) as the other direction is obvious.
The proof is an application of von Neumann’s minimax theorem.

Pick a small δ > 0, let Cδ = {π : ICµ(π) ≤ ICµ(f, ε) − δ}. Although Cδ is an infinite
set, we can approximate it by a finite set by considering only the protocols with bounded
communication cost that use only a bounded number of unbiased random bits. This process
does not affect the validity of the proof, and hence the minimax theorem is still applicable.

Consider a two-player zero-sum game in which Alice chooses a protocol π ∈ Cδ and Bob
chooses an input (x, y) ∈ X × Y, and define the utility for Alice to be Pr[π(x, y) = f(x, y)].
Note that a mixed strategy for Alice is still just a protocol, and a mixed strategy for Bob
corresponds to a probability measure on X × Y. By our definition of Cδ and the minimax
theorem, we have

min
ν

max
π

E
(x,y)∼ν

Pr[π(x, y) = f(x, y)] = max
π

min
ν

E
(x,y)∼ν

Pr[π(x, y) = f(x, y)] = 1−ε−t(δ) < 1−ε,

where t(δ) > 0 is a positive quantity. This means that there exists a measure ν∗δ such that
for all π ∈ Cδ, E(x,y)∼ν∗

δ
Pr[π(x, y) 6= f(x, y)] > ε. Letting δ → 0 gives maxν ICµ(f, ν, ε) ≥

ICµ(f, ε) as desired. J

Finally let us recall the two definitions of the prior-free notions of information complexity
introduced in [3]. The max-distributional information complexity of a function f : X ×Y → Z
is defined as

ICD(f, ε) = max
µ

ICµ(f, µ, ε).

The information complexity of f with error ε is defined as

IC(f, ε) = inf
π

max
µ

ICµ(π),

where the infimum is over all protocols π that perform the task [f, ε]. It is possible [3] to use
a minimax argument and the concavity of ICµ(π) with respect to µ to show that

IC(f, ε) = inf
π

max
µ

ICµ(π) = max
µ

inf
π

ICµ(π) = max
µ

ICµ(f, ε) = max
µ,ν

ICµ(f, ν, ε),

where the last equality follows from Lemma 2.

2.4 The continuity of information complexity
It is shown in [5, Lemma 4.4] that for every communication task T , ICµ(T ) is uniformly
continuous with respect to µ. More precisely, for every two measures µ1 and µ2 with
|µ1 − µ2| ≤ δ (the distance is in total variation distance), we have

| ICµ1(T )− ICµ2(T )| ≤ 2 log(|X × Y|)δ + 2h(2δ). (3)
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The information complexity functions ICµ(f, ε) and ICµ(f, ν, ε) are both continuous with
respect to ε. The following simple lemma from [3] proves continuity for ε ∈ (0, 1]. The
continuity at 0 is more complicated and is proven in [4] (See also Theorem 7 and Theorem 8
below).

I Lemma 3. [3] For every f : X × Y → Z, ε2 > ε1 > 0 and measures µ, ν on X × Y, we
have

ICµ(f, ν, ε1)− ICµ(f, ν, ε2) ≤ (1− ε1/ε2) log |X × Y|, (4)

and

ICµ(f, ε1)− ICµ(f, ε2) ≤ (1− ε1/ε2) log |X × Y|. (5)

Proof. Consider a protocol π with information cost I, and error ε2 > 0. Here we can consider
the distributional error as in (4) or the point-wise error as in (5). Set δ = 1 − ε1/ε2, and
let τ be the protocol that with probability 1− δ runs π, and with probability δ Alice and
Bob exchange their inputs and compute f(x, y) correctly. The theorem follows as the new
protocol has error at most (1− δ)ε2 = ε1, and information cost at most I + δ log |X ×Y|. J

Note that ICµ(f, µ, 0) is not always continuous with respect to µ. For example, let the
matrices

µε =
( 1−ε

3
1−ε

3
1−ε

3 ε

)
, µ = lim

ε→0
µε =

( 1
3

1
3

1
3 0

)
. (6)

represent distributions on {0, 1}2. Here the entry at the i-th row and j-th column corresponds
to the measure of the point (i− 1, j − 1) ∈ {0, 1}2. Now for the 2-bit AND function, we have
ICµ(AND, µ, 0) = 0, while ICµε(AND, µε, 0) = ICµε(AND, 0) as µε has full support. Thus

lim
ε→0

ICµε(AND, µε, 0) = lim
ε→0

ICµε(AND, 0) = ICµ(AND, 0),

which is known to be bounded away from 0.
Finally, note that Lemma 3 also implies the continuity of ICµ(f, ν, ε) with respect to ν

when ε > 0. Indeed if |ν1 − ν2| ≤ δ ≤ ε, then a protocol that has distributional error ε with
respect to ν2, will have error at most ε+ δ and at least ε− δ with respect to ν1. Thus

ICµ(f, ν1, ε+ δ) ≤ ICµ(f, ν2, ε) ≤ ICµ(f, ν1, ε− δ). (7)

which establishes the desired continuity. A similar example to (6) shows that ICµ(f, ν, 0) is
not necessarily continuous with respect to ν.

2.5 Communication protocols as random walks on ∆(X × Y)
Recall that ∆(X × Y) denotes the set of probability distributions on X × Y. Consider a
protocol π and a prior distribution µ on the set of inputs X × Y. Suppose that in the first
round Alice sends a random signal B to Bob. We can interpret this as a random update of the
prior distribution µ to a new distribution µ0 = µ|B=0 or µ1 = µ|B=1 depending on the value
of B. It is not difficult to see that µb(x, y) = pb(x)µ(x, y) for b = 0, 1, where pb(x) = Pr[B=b|x]

Pr[B=b] .
In other words, µb is obtained by multiplying the rows of µ by non-negative numbers. From
the law of total expectation,

µ = E
B

[µ|B] = Pr[B = 0]µ0 + Pr[B = 1]µ1. (8)
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Similarly if Bob is sending a message, then µb is obtained by multiplying the columns of
µ by the numbers pb(y) = Pr[B=b|y]

Pr[B=b] . That is µb(x, y) = µ(x, y)pb(y).
The opposite direction is also true: given a distribution µ, distributions µ0, µ1, and

0 ≤ p0, p1 ≤ 1 such that
p0 + p1 = 1,
µ0 and µ1 are obtained from µ by scaling its rows,
µ = p0µ0 + p1µ1,

one can define a random bit B that can be sent by Alice such that µb is µ conditioned on
B = b for b ∈ {0, 1}, and pb = Pr[B = b]. A similar statement holds for the case where µ0
and µ1 are obtained from µ by scaling its columns and B is a signal that will be sent by Bob.

Therefore, we can think of a protocol as a random walk on ∆(X × Y) that starts at µ,
and every time that a player sends a message, it moves to a new distribution. Equation (8)
implies that this random walk is without drift.

Let Π denote the transcript of the protocol. Note that when the protocol terminates, the
random walk stops at µΠ := µ|Π. Since Π itself is a random variable, µΠ is a random variable
that takes values in ∆(X × Y). Interestingly, both the internal and external information
costs of the protocol depend only on the distribution of µΠ (this is a distribution on the set
∆(X × Y), which itself is a set of distributions) [9]. It does not matter how different the
steps of two protocols are, and as long as they both yield the same distribution on ∆(X ×Y),
they have the same internal and external information cost. Consequently, one can directly
work with this random walk, instead of working with the actual protocols.

In order to study the relation between the information complexity and the distribution
of µΠ, define the concealed information and external concealed information of a protocol π
with respect to µ, respectively, as

CIµ(π) = H(X|ΠY ) +H(Y |ΠX) = H(X|Y ) +H(Y |X)− ICµ(π), (9)

and

CIext
µ (π) = H(XY |Π) = H(XY )− ICext

µ (π).

With this definition it is easy to see that the information cost of a protocol π with
transcript Π only depends on the distribution of µΠ. Indeed

CIµ(π) = HXY∼µ(X|ΠY ) +HXY∼µ(Y |ΠX) = E
Π
HXY∼µΠ(X|Y ) + E

Π
HXY∼µΠ(Y |X).

Another nice property of concealed information is that if π0 and π1 are the two branches of
the protocol π corresponding respectively to B = 0 and B = 1 where B is the first bit sent,
then

CIµ(π) = Pr[B = 0] CIµ|B=0(π0) + Pr[B = 1] CIµ|B=1(π1).

Thus, the expected value of CI is preserved throughout the execution of the protocol. Similar
results hold for CIext

µ (π).

3 Main Results

In this section, we state and discuss our main results in full detail. Simpler proofs are
presented in this section, but the proofs of the more involved results are postponed to later
sections.
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We will use the following simple estimate:

x ∈ [0, 1/2] =⇒ x log 1
x
≤ h(x) ≤ 2x log 1

x
, (10)

which holds since in that range −x log x ≥ −(1− x) log(1− x).
Denote

h(x) = h(min(x, 1/2)). (11)

It satisfies h(x) ≥ h(x) and x ≤ h(x). It is easy to see that h is concave. Therefore, h is
also concave as it is piecewise differentiable with non increasing derivative. Additionally,
h(0) = h(0) = 0. We will next show how to utilize these two properties of h and h: for any
concave function g : R+ → R for which g(0) = 0, and for any x > 0 and 0 < q < 1, it holds
that

g(qx) ≥ qg(x) + (1− q)g(0) = qg(x). (12)

This implies the subadditivity of g: for all a1, a2 > 0, g(a1 + a2) ≤ g(a1) + g(a2), as
g(ai) ≥ ai

a1+a2
g(a1 + a2), for all i = 1, 2.

3.1 Information complexity with point-wise error
Consider a communication problem f : X × Y → Z, and a distribution µ. How close can
ICµ(f, ε) be to ICµ(f, 0)? A simple argument shows that ICµ(f, ε) ≤ ICµ(f, 0)− Ω(ε).

I Proposition 4. Let f : X×Y → Z, and let µ be a measure on X×Y. Denoting c = ICµ(f, 0),
we have

ICµ(f, ε) ≤ (1− ε) ICµ(f, 0) = ICµ(f, 0)− cε.

Proof. Let π be a zero-error protocol for f . Consider a protocol π′ in which Alice and Bob
use their public randomness to run with probability 1− ε the protocol π, or to terminate
with an arbitrary output with probability ε. Let Π and Π′ be respectively the transcripts of
π and π′ on the random input (X,Y ). We have

I(X; Π′|Y ) = H(X|Y )−H(X|Π′Y ) = H(X|Y )−εH(X|Y )−(1−ε)H(X|ΠY ) = (1−ε)I(X; Π|Y ).

The same holds for I(Y ; Π′|X), and the statement follows. J

Our first major theorem shows that this trivial bound can be improved to ICµ(f, ε) ≤
ICµ(f, 0)− Ω(h(ε)).

I Theorem 5. Consider a function f : X × Y → Z and a probability measure µ on X × Y
such that ICµ(f, 0) > 0. There exist positive constants τ, ε0, depending on f and µ (and thus
on |X |, |Y|, |Z|), such that for every ε ≤ ε0,

ICµ(f, ε) ≤ ICµ(f, 0)− τh(ε).

Moreover:
Non-constant case: Suppose that f(a) 6= f(b) for two points a, b in the support of µ, and

on the same row or column. Then one can take τ = µ(a)2µ(b)/32, and ε0 depends only
on min(µ(a), µ(b)) and |X × Y|.
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AND case: Let x0, x1 ∈ X and y0, y1 ∈ Y. Suppose that f(x0y0) = f(x0y1) = f(x1y0) = z0
and f(x1y1) = z1 6= z0, and that x0y0, x0y1, x1y0 ∈ suppµ. Then one can take τ =
µ(x0y0)2

64 min(µ(x0y1), µ(x1y0)), and ε0 depends only on |X × Y| and the minimum of
µ(x0y0), µ(x0y1), µ(x1y0).

Proof. See Section 4.1.1. J

I Remark. We prove Theorem 5 by taking a zero-error protocol for f , and turning it into an
ε-error protocol that has an Ω(h(ε)) gain in the information cost over the original protocol.
The high-level idea is that one of the players checks her/his input and if it is equal to a
certain value x1, then with probability ε changes to a different value x0. This obviously
creates an error of at most ε. In the Non-constant case of Theorem 5, the points a and b are
used to determine x0 and x1, and in the AND case, the same x0 and x1 as they are described
in the statement of the theorem can be used. Note that this modification can only create
errors that erroneously output f(x0, y) instead of f(x1, y) for some values of y. This allows
us to obtain a one-sided error for many functions. We shall use this later in Corollary 11
to obtain an upper bound on the information complexity of the AND function when only
one-sided error is allowed.

Despite the simplicity of the idea described in Remark 3.1, the proof is rather involved,
and uses some of our other results such as characterization of internal-trivial measures. The
heart of the proof is of course showing the existence of appropriate values of x0 and x1 that
can lead to the desired gain of Ω(h(ε)).

Let XOR denote the 2-bit XOR function. The next result shows that the analogue of
Theorem 5 does not hold for the external information complexity.

I Proposition 6. Let µ be the distribution defined as

µ = 1/2 0
0 1/2 .

Then ICext
µ (XOR, ε) ≥ ICext

µ (XOR, 0)− 3ε.

Proof. See Section 4.1.3. J

For the lower bound we prove the following theorem.

I Theorem 7. For all f, µ, ε, we have

ICµ(f, ε) ≥ ICµ(f, 0)− 4|X ||Y|h(
√
ε).

Proof. See Section 4.1.2. J

Theorem 7 is obtained by taking an ε-error protocol and completing it to a zero-error
protocol. Here Alice and Bob first run the protocol that performs [f, ε], but when this
protocol terminates, instead of returning the output, they continue their interaction to
verify that the value that they have obtained is correct. We will be able to show that these
additional interactions can be performed at a small information cost, and thus the total
information complexity of the new protocol is not going to be much larger than that of the
original protocol. This method, that we call protocol completion, is used in the proofs of
other results such as Theorem 9 as well.

Finally let us remark that we do not know whether the bound in Theorem 7 is tight.
In fact we are not aware of any examples of f and µ that refutes the possibility that
ICµ(f, ε) = ICµ(f, 0)−Θ(h(ε)) for every f and µ satisfying ICµ(f, 0) > 0.
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3.2 Information complexity with distributional error

In Section 3.1 we considered the amount of gain one can obtain by allowing point-wise error.
Next we turn to distributional error. How much can one gain in information cost by allowing
a distributional error of ε? Small modifications in the proofs of Theorem 5 and Theorem 7
imply the following bounds.

I Theorem 8. Let µ be a probability measure on X × Y, and let f : X × Y → Z satisfy
ICµ(f, µ, 0) > 0. We have

ICµ(f, µ, 0)− 4|X ||Y|h(
√
ε/α) ≤ ICµ(f, µ, ε) ≤ ICµ(f, µ, 0)− α

2

4 h (εα/4) + 3ε log |X ×Y|,

where α = minxy∈suppµ µ(x, y).

Proof. See Section 4.2. J

It is also possible to prove the upper bound of Theorem 8 using a different approach by
“truncating” a zero-error protocol. Unfortunately this approach requires some assumptions
on the support of µ. Nevertheless we sketch this proof, as the idea seems to be new, and it
might have other applications.

Let ∆0 ⊆ ∆(X × Y) be the set of all measures ν such that ICν(f, ν, ε) = 0. Consider a
protocol π that performs [f, µ, 0]. First we simulate π with another protocol π′ such that no
signal of π′ jumps from outside of ∆0 to the interior of ∆0. In other words if some partial
transcript t satisfies µt 6∈ ∆0, then when the next signal B is sent, µtB is either still outside of
∆0 or it is on the boundary ∂∆0. The simulation can be done in a perfect manner so that if
Π and Π′ denote, respectively, the transcripts of π and π′, then µΠ′ has the same distribution
as µΠ. The new protocol π′ might not necessarily have bounded communication, but it will
terminate with probability 1. We refer the reader to [14, Signal Simulation Lemma] and [4,
Claim 7.14] for more details on such simulations.

We will truncate π′ in the following manner to obtain a new protocol π0 that performs
[f, µ, ε]. Whenever the corresponding random walk of π′ reaches a distribution ν that is on
the boundary ∂∆0, the two players stop the random walk, and use ICν(f, ν, ε) = 0 to output
a value that creates a distributional error of at most ε with respect to ν at no information
cost. Obviously the distributional error of the protocol π0 is at most ε. To analyze its
information cost, denote the transcript of π0 by P , and note that P is a partial transcript
for π′. Let π′P be the continuation of π′ when one starts at this partial transcript. It is not
difficult to see that

ICµ(π) = ICµ(π′) = ICµ(π0) + E
P

[ICµP (π′P )].

Since π′ performs [f, µ, 0], the tail protocol πP must perform [f, µP , 0]. Hence in order to finish
the proof, it suffices to show that ICν(f, ν, 0) = Ω(h(ε)) for every ν ∈ ∂∆0, as this would imply
the desired ICµ(π) ≥ ICµ(π0) +Ω(h(ε)). This can be proven with some work when µ is of full
support, however it is not true for general measures. For example, consider the AND function,
and let µ be the distribution on {0, 1}2 defined as µ(0, 0) = 1− 2ε and µ(1, 0) = µ(1, 1) = ε.
Note that although µ is on the boundary of ∆0, we have ICµ(AND, µ, 0) ≤ 2ε. Indeed, since
µ(0, 1) = 0, Bob with probability 1 knows the correct output by looking at his own input Y ,
and so if he sends his bit to Alice, they will both know the correct output. This will have
information cost at most H(Y |X) = Pr[X = 1]H(Y |X = 1) = 2ε.
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3.3 Information complexity of the AND function with error
Building upon the previous works of Ma and Ishwar [23, 24], Braverman et al. [4] developed a
method for proving the optimality of information complexity and applied it to determine the
internal and external information complexity of the two-bit AND function. They introduced
a “continuous-time” protocol for this task, and proved that it has optimal internal and
external information cost for any underlying distribution. Although this protocol is not
a conventional communication protocol as it has access to a continuous clock, it can be
approximated by conventional communication protocols through dividing the time into
finitely many discrete units. Then in [4, Problem 1.1] they considered the case where error is
allowed, and conjectured a gain of IC(AND) − IC(AND, ε) = Θ(h(ε)). In this section, we
conduct a thorough analysis of the information complexity of the AND function when error
is permitted, and among other results, prove the aforementioned conjecture.

Applying our general bounds from in Section 3.1 and Section 3.2 (i.e. Theorems 5, 7, and 8)
we already obtain that for small enough ε ≥ 0,
(i) For every distribution µ satisfying ICµ(AND, 0) > 0, we have

ICµ(AND, 0)−Oµ(h(
√
ε)) ≤ ICµ(AND, ε) ≤ ICµ(AND, 0)− Ωµ(h(ε));

(ii) For every distribution µ satisfying ICµ(AND, µ, 0) > 0, we have

ICµ(AND, µ, 0)−Oµ(h(
√
ε)) ≤ ICµ(AND, µ, ε) ≤ ICµ(AND, µ, 0)− Ωµ(h(ε)).

We show that under some conditions on the support of µ, the above lower bounds can be
improved to match the upper bounds.

I Theorem 9. For small enough ε ≥ 0, the following hold,
(i) For every distribution µ which is full support, except perhaps for µ(1, 1), we have

ICµ(AND, ε) = ICµ(AND, 0)−Θ(h(ε)),

where the hidden constants can be fixed if µ(0, 0), µ(0, 1), µ(1, 0) are bounded away from 0.
(ii) In particular for every distribution µ of full support, we have

ICµ(AND, µ, ε) = ICµ(AND, µ, 0)−Θ(h(ε)).

Note that for every distribution µ of full support, we have ICµ(AND, µ, 0) = ICµ(AND, 0) >
0, and ICµ(AND, ε/α) ≤ ICµ(AND, µ, ε) ≤ ICµ(AND, ε) where α = minxy µ(xy). Thus
Theorem 9(ii) follows from (i).

From a technical point of view, Theorem 9 is perhaps our most involved result in this
article, and its proof occupies the bulk of Section 6. The first idea that facilitates the proof
substantially is developed by the first two authors in [12]. They showed that it is possible
to parametrize the space of the distributions ∆(X × Y) so that the changes that occur in
the prior distribution by the players’ interactions can be captured by product measures.
This idea, that is discussed in details in Section 5, allows us to first prove the lower bound
of Theorem 9 for the product measures, and then add minor adjustments to adopt it for
non-product distributions. The second component of the proof is a stability result. Recall
from Section 2.5 that the information cost of every protocol π depends only on its “leaf
distribution”, i.e. the distribution of µΠ, where Π is the transcript of π or equivalently µ`

where ` is a random leaf of the protocol tree. Our stability result, Theorem 30, shows that the
leaf distribution of every almost optimal protocol π for [AND, 0] shares certain similarities
with that of the buzzer protocol. Note that since π does not make any errors, by the end of
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the protocol, either both players know that the input is (1, 1), or one of them has revealed
that her input is 0. Theorem 30 formalizes the intuition that in this latter case, the other
player must not have revealed that his input is very likely to be 0. This is achieved through
defining a potential function that depends only on the distribution of µΠ and proving that it
is bounded by the so called information wastage ICµ(π)− ICµ(AND, 0). With these results
in hand, in order to complete the lower bound of Theorem 9, we start with a protocol π
performing [AND, ε] with almost optimal information complexity. First we show that π can
be completed to a protocol that performs [AND, 0] at a small additional information cost,
though possibly larger than the desired O(h(ε)). Then we apply the stability result to deduce
certain properties for the leaf distribution of π. This will imply that one indeed needs only
an additional cost of O(h(ε)) to extend π to a protocol that solves [AND, 0].

Braverman et al. [4] showed that IC(AND, 0) = maxµ ICµ(AND, 0) is attained on a
distribution having full support. This enables us to derive the following corollary on prior-
free information complexity.

I Corollary 10. When ε ≥ 0 is sufficiently small, we have
(i) IC(AND, ε) = IC(AND, 0)−Θ(h(ε));
(ii) ICD(AND, ε) = IC(AND, 0)−Θ(h(ε));

Proof. The measure µ that maximizes ICµ(AND, 0) has full support [4], and thus IC(AND, 0) =
ICµ(AND, 0) = ICµ(AND, µ, 0). By Theorem 9(ii),

IC(AND, ε) ≥ ICD(AND, ε) ≥ ICµ(AND, µ, ε) ≥ ICµ(AND, µ, 0)−O(h(ε))
= IC(AND, 0)−O(h(ε)).

Moreover by a general upper bound that we prove later in Theorem 17, we have

ICD(AND, ε) ≤ IC(AND, ε) ≤ IC(AND, 0)− Ω(h(ε)).

Both items in the corollary follow. J

Since the difficult distributions for the set disjointness function are the ones in which the
inputs typically have small or no intersections at all, the distributions for the AND function
that assign a very small or 0 mass to the point (1, 1) are of particular importance. Let

ICδ(AND, ε, 1→ 0) = sup
µ : µ(1,1)≤δ

ICµ(AND, ε, 1→ 0).

The following corollary is used in Section 3.4 to analyze the information complexity of the
set disjointness problem.

I Corollary 11. When ε ≥ 0 is sufficiently small, we have
(i) IC0(AND, ε) = IC0(AND, 0)−Θ(h(ε));
(ii) IC0(AND, ε, 1→ 0) = IC0(AND, 0)−Θ(h(ε)).
(iii) There exist universal constants C1 and C2 such that for every ε, δ > 0,

ICδ(AND, ε, 1→ 0) ≤ IC0(AND, 0)− C1h(ε) + C2h(δ).

Proof. Let µ be the distribution maximizing ICµ(AND, 0) under the constraint µ(1, 1) = 0;
This measure, which is described in [4], has full support except for µ(1, 1) = 0. Thus by
Theorem 9(i),

IC0(AND, ε) ≥ ICµ(AND, ε) ≥ ICµ(AND, 0)−O(h(ε)) = IC0(AND, 0)−O(h(ε)).
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Consequently, since IC0(AND, ε) ≤ IC0(AND, ε, 1 → 0), both (i) and (ii) will follow if
we prove IC0(AND, ε, 1 → 0) ≤ IC0(AND, 0) − Ω(h(ε)). To prove this, we would like
to apply the AND case of Theorem 5, however to be able to obtain a uniform upper
bound on IC0(AND, ε, 1→ 0), we need to have a uniform lower bound on the probabilities
µ(0, 0), µ(0, 1), µ(1, 0). Let α > 0 to be determined later, and consider any distribution
µ with µ(1, 1) = 0 and µ(a) < α for some input a 6= (1, 1). Pick b ∈ {0, 1}2 \ {a, (1, 1)},
and obtain the distribution µ′ from µ by transferring all the probability mass on a to b.
That is µ′(b) = µ(a) + µ(b) and µ′(a) = 0, and otherwise µ and µ′ are identical. Obviously
|µ− µ′| = α. Now (3) and (12) imply

ICµ(AND, ε, 1→ 0) ≤ ICµ(AND, 0) ≤ ICµ′(AND, 0)+4α+2h(2α) = 4α+2h(2α) ≤ 4h(2α),
(13)

where we used the fact that ICµ′(AND, 0) = 0 as suppµ′ contains only two points. Setting
α = 0.001 for example yields ICµ(AND, 0) ≤ 4h(2α) < 0.1 < IC0(AND, 0) ≈ 0.4827. It
remains to prove the statement for the distributions µ with µ(0, 0), µ(0, 1), µ(1, 0) ≥ α. In
this case Theorem 5 (See Remark 3.1 regarding the one-sidedness) implies that exists a
constant C > 0 such that ICµ(AND, ε, 1 → 0) ≤ IC0(AND, 0) − Ch(ε). This finishes the
proof (i) and (ii).

To prove (iii), consider an arbitrary distribution µ with µ(1, 1) ≤ δ, and let µ′ be the
distribution that is obtained from µ by moving the probability mass on (1, 1) to a different
point so that µ′(1, 1) = 0 and |µ− µ′| = δ. Similar to (13), we obtain

ICµ(AND, ε, 1→ 0) ≤ ICµ′(AND, ε, 1→ 0) + 4h(2δ) ≤ IC0(AND, ε, 1→ 0) + 4h(2δ),

and thus (iii) follows from (ii). J

3.4 Set disjointness function with error
In this section we focus on the set disjointness function. Firstly it is not hard to obtain the
following result.

I Corollary 12. For ε ≥ 0 small enough,

IC(DISJn, ε) ≥ n[IC0(AND, 0)−Θ(h(ε))],

where the hidden constant is independent of n.

Proof. By the argument that proves the additivity of information complexity (see e.g. [6]), one
can prove that IC(DISJn, ε) ≥ n IC0(AND, ε). Then apply Corollary 10. The essential idea is
the following. Consider a distribution µ on {0, 1}2 with µ(1, 1) = 0, and let (a, b) ∈ {0, 1}2 be
an input for the AND function. Let XY ∈ {0, 1}n × {0, 1}n be such that for some randomly
selected J ∈ {1, . . . , n} we have (Xj , Yj) = (a, b), and for i ∈ {1, . . . , n} \ {J}, the pairs
(Xi, Yi) are i.i.d. random variables, each with distribution µ. Since µ(1, 1) = 0, we have
DISJn(X,Y ) = 1−AND(a, b) with probability 1. Thus one can take a protocol π for DISJn
and use it to solve AND(a, b) correctly for every (a, b). By sampling XY in a clever way,
using both public and private randomness, one can guarantee that the information cost of
the new protocol that solves AND(a, b) will be the information cost of π divided by n. J

As a result one also obtains that Rε(DISJn) ≥ n[IC0(AND, 0)−Θ(h(ε))]. It turns out
that by using techniques from [4] and [3], one can prove the following theorem.
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I Theorem 13. For the set disjointness function DISJn on inputs of length n, we have

Rε(DISJn) = n[IC0(AND, 0)−Θ(h(ε))].

Proof. See Section 7.1. J

We conjecture that in fact the exact constant is given by IC0(AND, ε, 1→ 0). In other
words:

I Conjecture 14. For the set disjointness function DISJn on inputs of length n, we have

Rε(DISJn) = n IC0(AND, ε, 1→ 0) + o(n).

Braverman [3] proved that for all 0 < α < 1 and for all functions f ,

ICD(f, ε) ≥ (1− α) IC(f, ε
α

).

When f = DISJn, Corollary 12 gives

ICD(DISJn, ε)
n

≥ (1− α)(IC0(AND, 0)−Θ(h(ε/α))) ≥ IC0(AND, 0)−Θ(α+ h(ε/α)).

Substituting α =
√
ε log(1/ε) yields

ICD(DISJn, ε)
n

≥ IC0(AND, 0)−Θ(
√
h(ε)). (14)

In Theorem 15 below, which is one of our main contributions, we show that this bound
is sharp. The proof relies on introducing a new protocol for set disjointness problem, and
analyzing its information cost.

I Theorem 15. For the set disjointness function DISJn on inputs of length n, we have

ICD(DISJn, ε) = n[IC0(AND, 0)−Θ(
√
h(ε))] +O(logn).

Proof. See Section 7.2. J

3.5 Prior-free Information Cost
Theorem 15 shows that for α =

√
ε log(1/ε) = Θ(

√
h(ε)), and sufficiently large n, we have

ICD(DISJn, ε)
1−Θ(α) = IC(DISJn, ε/α) < IC(DISJn, ε),

and thus proves a separation between distributional and non-distributional prior-free informa-
tion complexity. As we discussed in the introduction this has the important implication that
amortized randomized communication complexity is not necessarily equal to the amortized
distributional communication complexity with respect to the hardest distribution. More
precisely, there are examples for which maxµDµ,n

ε (fn) 6= Rnε (fn).
Next we turn to proving general lower bounds and upper bounds for the prior-free

information complexity. Theorem 7 immediately implies a lower bound for non-distributional
prior-free information complexity.

I Corollary 16 (corollary of Theorem 7). For every function f and 0 ≤ ε ≤ 1, we have

IC(f, ε) ≥ IC(f, 0)− 4|X × Y|h(
√
ε).
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Since unless µ satisfies certain conditions, Theorem 5 does not provide an upper bound
on ICµ(f, ε) that is uniform on µ, we cannot apply it directly to bound IC(f, ε). However,
we will get around this problem by proving that the “difficult distributions” satisfy these
conditions and hence we obtain the desired upper bound.

I Theorem 17. If f : X × Y → Z is non-constant, then

IC(f, ε) ≤ IC(f, 0)− Ω(h(ε)),

where the hidden constant depends on f .

Proof. See Section 4.3. J

The same upper bound and lower bound hold for ICD(f, ε).

I Theorem 18. If f : X × Y → Z is non-constant, then

ICD(f, 0)−O(h(
√
ε)) ≤ ICD(f, ε) ≤ ICD(f, 0)− Ω(h(ε)),

where the hidden constants depend on f .

Proof. It is shown in [3] that ICD(f, 0) = IC(f, 0), and thus the upper bound follows from
Theorem 17 as ICD(f, ε) ≤ IC(f, ε).

To prove the lower bound, choose a measure µ that maximizes ICµ(f, µ, 0), and let
α = minxy∈suppµ µ(x, y). Applying Theorem 8, we get

ICD(f, ε) ≥ ICµ(f, µ, ε) ≥ ICµ(f, µ, 0)− 4|X ||Y|h(
√
ε/α) = ICD(f, 0)−O(h(

√
ε)). J

3.6 A characterization of trivial measures
We start with a few of definitions. Let f : X × Y → Z be an arbitrary function, and µ a
distribution on X × Y. We say that µ is external-trivial if ICext

µ (f, 0) = 0. We say that µ
is strongly external-trivial if there exists a protocol π computing f correctly on all inputs
satisfying ICext

µ (π) = 0. We say that µ is structurally external-trivial if f is constant on
SA×SB , where SA is the support of the marginal of µ on Alice’s input and SB is the support
of the marginal of µ on Bob’s input.

Similarly we say that µ is internal-trivial if ICµ(f, 0) = 0. We say that µ is strongly
internal-trivial if there exists a protocol π computing f correctly on all inputs satisfying
ICµ(π) = 0. We say that µ is structurally internal-trivial if the marginals of µ can be
partitioned as SA =

⋃
i Xi and SB =

⋃
i Yi so that the support of µ is contained in

⋃
i Xi×Yi,

and f is constant on each Xi × Yi.
Theorem 19 below shows that all our definitions of internal triviality are equivalent. In

particular, if ICµ(f, 0) = 0, then the infimum in the definition of ICµ is achieved by a finite
protocol.

I Theorem 19. Let f : X ×Y → Z be an arbitrary function, and µ a distribution on X ×Y.
The distribution µ is internal-trivial iff it is strongly internal-trivial iff it is structurally

internal-trivial.

Proof. See Section 4.4. J

In order to prove Theorem 19, we first obtain a characterization of measures that are not
structurally internal-trivial, by defining a graph Gµ on the support of every distribution µ
on X × Y.
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I Definition 20. Let G be the graph whose vertex set is X × Y, and two vertices are
connected if they agree on one of their coordinates. That is, (x, y), (x, y′) are connected for
every x ∈ X and y 6= y′ ∈ Y , and (x, y), (x′, y) are connected for every x 6= x′ ∈ X and y ∈ Y .
In short, G is the Cartesian product of the complete graphs KX and KY . Let Gµ be the
subgraph of G induced by the support of µ. For every connected component C of Gµ, define

CA = {x ∈ X : xy ∈ C for some y ∈ Y},
CB = {y ∈ Y : xy ∈ C for some x ∈ X}.

The following lemma shows that if µ is not structurally internal-trivial, then there exists
a connected component C of Gµ such that f is not constant on CA × CB . We will use this
fact later in Section 4.1.1 in the proof of Theorem 5.

I Lemma 21. Let f : X × Y → Z be an arbitrary function, and µ a distribution on X × Y.
Then the distribution µ is structurally internal-trivial iff for every connected component C of
Gµ, the function f is constant on CA × CB.

Proof. Suppose first that µ is structurally internal-trivial. Thus there exist partitions
SA =

⋃
i Xi and SB =

⋃
i Yi such that the support of µ is contained in

⋃
i Xi × Yi and f

is constant on Xi × Yi on each i. Any connected component C of Gµ must lie in some
Xi × Yi. Indeed, if (for example) xjyj , xjyk ∈ C where xj ∈ Xj , yj ∈ Yj , yk ∈ Yk, then
xjyk /∈

⋃
i Xi × Yi. As C ⊆ Xi × Yi, we must have CA × CB ⊆ Xi × Yi, hence f is constant

on CA × CB for every connected component C.
Conversely, suppose that for every connected component C of Gµ, the function f is

constant on CA × CB. If C,C ′ are two different connected components then CA, C
′
A are

disjoint: otherwise, if (say) (x, y) ∈ C and (x, y′) ∈ C ′ then (x, y) is connected to (x, y′)
and so C = C ′. Thus {CA : C a connected component of Gµ} partitions a subset X ′ of
X . Similarly, {CB : C a connected component of Gµ} partitions a subset Y ′ of Y. We can
obtain partitions of X and Y by adding the parts X \ X ′ and Y \ Y ′. These partitions serve
as a witness that µ is structurally internal-trivial. J

Finally we note that the analogue of Theorem 19 holds for the external case as well.

I Theorem 22. Let f : X ×Y → Z be an arbitrary function, and µ a distribution on X ×Y.
The distribution µ is external-trivial iff it is strongly external-trivial iff it is structurally

external-trivial.

Proof. See Section 4.4. J

4 Proofs for general functions

In this section we present the proofs of the main results on general functions presented in
Section 3.

4.1 Information complexity with point-wise error

4.1.1 Proof of Theorem 5
We discuss some notation before the proof. Consider a protocol π. For an input xy, let Πxy

denote the random variable corresponding to the transcript of π when it is executed on the
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On input XY :
Alice privately samples a Bernoulli random variable B with parameter ε.
If X = x1 and B = 1, Alice sets X ′ = x0, otherwise she sets X ′ = X.
The players run π on X ′Y .

Figure 1 The protocol π′ is obtained from a protocol π using x0, x1 ∈ X .

input xy. Let Π denote the random variable for transcripts of π, whose distribution is given
as

Pr[Π = t] = E
xy

Pr[Πxy = t] =
∑
xy

Pr[xy] Pr[Πxy = t],

where Pr[Πxy = t] = Pr[Π = t|XY = xy]. As usual we abbreviate Pr[xy] = Pr[XY = xy],
and Pr[x|y] = Pr[X = x|Y = y], and so on.

The next lemma shows that under some conditions, if we modify a protocol π to a new
protocol π′ according to Figure 1, then the information cost will have a significant drop.

I Lemma 23. Let µ be a distribution on X × Y, and π be a protocol with input set X × Y.
Suppose there is a set L of transcripts of π that satisfies, for some C1 ∈ [0, 1],
(1) Pr[Π ∈ L] ≥ C1;
and there are x0y, x1y, both in the support of µ, and C2 ∈ (0, 1], δ ∈ [0, 1] with C2 > 2δ, such
that for every t ∈ L,
(2) Pr[XY = x0y|Π = t] ≥ C2;
(3) Pr[XY = x1y|Π = t] ≤ δ.
Let K = log |X × Y|. Then for sufficiently small ε > 0 (depending on µ,C2, δ), the protocol
π′ defined in Figure 1 satisfies

ICµ(π′) ≤ ICµ(π)− C1C2h

(
ε

2 min
{

1, C2
Pr[x1y]
Pr[x0y]

})
+ 3εK + h(δ/C2).

Explicitly, the upper bound holds as long as Pr[x1y]
Pr[x0y]ε+ (1− ε)δ/C2 ≤ 1/2.

Intuitively, this condition says that π has a set of transcripts L that happen with significant
probability, and every transcript in L probabilistically differentiates between x0y and x1y.
In other words, if we we see a transcript in L, then we know that the input was much more
likely to be x0y than to be x1y. One point to note here is that we require the two points
x0y and x1y to be in the same column. By symmetry, if there are two points in the same
row satisfying the same properties, then the claim of Lemma 23 also holds.

Proof. Consider the protocols π and π′ as described in Figure 1. Note that ΠX′Y is the
transcript of π′. We shorthand Π′ = ΠX′Y . The information cost of π′ is given by

ICµ(π′) = I(X; Π′|Y ) + I(Y ; Π′|X) = H(X|Y ) +H(Y |X)−H(X|Π′Y )−H(Y |Π′X),

while

ICµ(π) = I(X; Π|Y ) + I(Y ; Π|X) = H(X|Y ) +H(Y |X)−H(X|ΠY )−H(Y |ΠX).

Hence

ICµ(π)− ICµ(π′) = H(X|Π′Y )−H(X|ΠY ) +H(Y |Π′X)−H(Y |ΠX).
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Note that

H(Y |Π′X) ≥ H(Y |Π′XB) ≥ (1− ε)H(Y |Π′X, (B = 0)) = (1− ε)H(Y |ΠX)
≥ H(Y |ΠX)− εK. (15)

Similarly, for every y ∈ Y and every possible transcript t, we have

H(X|Π′Y = ty) ≥ H(X|ΠY = ty)− εK. (16)

We will show that for Y = y and every transcript t ∈ L,

H(X|Π′Y = ty) ≥ H(X|ΠY = ty) + h

(
ε

2 min
{

1, C2
Pr[x1y]
Pr[x0y]

})
− h(δ/C2)− εK. (17)

Note that Condition (2) implies that for t ∈ L,

Pr[ΠY = ty] ≥ Pr[ΠXY = tx0y] = Pr[XY = x0y|Π = t] Pr[Π = t] ≥ C2 Pr[Π = t].

Hence

Pr[Π ∈ L, Y = y] ≥ C2 Pr[Π ∈ L] ≥ C1C2.

This together with (16) and (17) would show that

H(X|Π′Y ) =
∑
t

∑
y∈Y

Pr[Π′Y = ty]H(X|Π′Y = ty)

≥
∑
t

∑
y∈Y

(1− ε) Pr[ΠY = ty]H(X|Π′Y = ty)

≥
∑
t

∑
y∈Y

Pr[ΠY = ty]H(X|ΠY = ty)

+ Pr[Π ∈ L, Y = y]
(
h

(
ε

2 min
{

1, C2
Pr[x1y]
Pr[x0y]

})
− h(δ/C2)

)
− 2εK

≥ H(X|ΠY ) + C1C2h

(
ε

2 min
{

1, C2
Pr[x1y]
Pr[x0y]

})
− 2εK − h(δ/C2).

Applying (15) would immediately give the claimed bound.
Our aim, then, is to show (17). From now on we consider exclusively t ∈ L.
The idea is to consider the indicator variable C := 1[X 6=x1]. Since C is a deterministic

function of X, we have

H(X|Π′Y = ty) = H(XC|Π′Y = ty) = H(X|C, (Π′Y = ty)) +H(C|Π′Y = ty). (18)

Since Pr[XY = x0y|Π = t] = Pr[Y = y|Π = t] Pr[X = x0|ΠY = ty], by Condition (2) we
obtain

Pr[X = x0|ΠY = ty] ≥ Pr[XY = x0y|Π = t] ≥ C2, (19)

and Pr[Y = y|Π = t] ≥ C2. Similarly, as Pr[XY = x1y|Π = t] = Pr[Y = y|Π = t] Pr[X =
x1|ΠY = ty], we obtain by Condition (3) that

Pr[X = x1|ΠY = ty] = Pr[XY = x1y|Π = t]
Pr[Y = y|Π = t] ≤ δ

C2
. (20)
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Hence using (20), the first term in (18) can be bounded as

H(X|C, (Π′Y = ty)) ≥ (1− ε)H(X|C, (BΠ′Y = 0ty))
≥ H(X|C, (ΠY = ty))− εK
= H(XC|ΠY = ty)−H(C|ΠY = ty)− εK
≥ H(X|ΠY = ty)− h(δ/C2)− εK. (21)

To bound the second term H(C|Π′Y = ty) in (18), we must study Pr[X = x1|Π′Y = ty].
We will use

Pr[C = 0|Π′Y = ty] = Pr[X = x1|Π′Y = ty] = Pr[Π′XY = tx1y]
Pr[Π′Y = ty] . (22)

Consider the numerator first. By the definition of π′,

Pr[Π′XY = tx1y] = Pr[Π′ = t|XY = x1y] Pr[x1y]
= (εPr[Π = t|XY = x0y] + (1− ε) Pr[Π = t|XY = x1y]) Pr[x1y]

= εPr[ΠXY = tx0y]Pr[x1y]
Pr[x0y] + (1− ε) Pr[ΠXY = tx1y]. (23)

For the denominator of (22), we have

Pr[Π′Y = ty] ≥ Pr[Π′XY = tx0y] = Pr[ΠXY = tx0y]. (24)

By Conditions (2) and (3),
Pr[ΠXY = tx1y]
Pr[ΠXY = tx0y] = Pr[XY = x1y|Π = t]

Pr[XY = x0y|Π = t] ≤ δ/C2. (25)

Combining (22), (23), (24) and (25), we obtain the following upper bound on (22):

Pr[X = x1|Π′Y = ty] ≤ Pr[x1y]
Pr[x0y]ε+ (1− ε)δ/C2. (26)

To obtain a lower bound for (22) note

Pr[Π′Y = ty] =
∑
x

Pr[Π′XY = txy] =
∑
x6=x1

Pr[Π′XY = txy] + Pr[Π′XY = tx1y]

=
∑
x 6=x1

Pr[ΠXY = txy] (27)

+ εPr[ΠXY = tx0y]Pr[x1y]
Pr[x0y] + (1− ε) Pr[ΠXY = tx1y]

≤
∑
x

Pr[ΠXY = txy] + εPr[ΠXY = tx0y]Pr[x1y]
Pr[x0y]

= Pr[ΠY = ty] + εPr[ΠXY = tx0y]Pr[x1y]
Pr[x0y]

≤ 2 max
{

Pr[ΠY = ty],Pr[ΠXY = tx0y]Pr[x1y]
Pr[x0y]

}
. (28)

Hence by (22), (23) and (28),

Pr[X = x1|Π′Y = ty] ≥
εPr[ΠXY = tx0y]Pr[x1y]

Pr[x0y]

2 max{Pr[ΠY = ty],Pr[ΠXY = tx0y]Pr[x1y]
Pr[x0y]}

≥ ε

2 min
{

1, C2
Pr[x1y]
Pr[x0y]

}
. (29)
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where we used Pr[ΠXY = tx0y]/Pr[ΠY = ty] = Pr[X = x0|ΠY = ty] ≥ C2 by (19). Thus
we have shown that

ε

2 min
{

1, C2
Pr[x1y]
Pr[x0y]

}
≤ Pr[X = x1|Π′Y = ty] ≤ Pr[x1y]

Pr[x0y]ε+ (1− ε)δ
C2

. (30)

This together with (18) and (21) gives (17) as desired, as long as ε > 0 is small enough such
that the upper bound in (30) is at most 1/2. J

Theorem 5 (restated). Consider a function f : X × Y → Z and a probability measure µ on
X × Y such that ICµ(f, 0) > 0. There exist positive constants τ, ε0, depending on f and µ,
such that for every ε ≤ ε0,

ICµ(f, ε) ≤ ICµ(f, 0)− τh(ε).

Moreover:
Non-constant case: Suppose that f(a) 6= f(b) for two points a, b in the support of µ, and

on the same row or column. Then one can take τ ≥ µ(a)2µ(b)/32, and ε0 depends only
on min(µ(a), µ(b)) and |X × Y|.

AND case: Let x0, x1 ∈ X and y0, y1 ∈ Y . Suppose that f(x0y0) = f(x0y1) = f(x1y0) = z0
and f(x1y1) = z1 6= z0, and that x0y0, x0y1, x1y0 ∈ suppµ. Then one can take τ ≥
µ(x0y0)2

64 min(µ(x0y1), µ(x1y0)), and ε0 depends only on |X × Y| and the minimum of
µ(x0y0), µ(x0y1), µ(x1y0).

Proof. In order to apply the assumption ICµ(f, 0) > 0, we will need to use our character-
ization of internal-trivial measures. Consider the graph Gµ defined on X × Y as given in
Definition 20. By Theorem 19 and Lemma 21, the assumption ICµ(f, 0) > 0 implies the
existence of a connected component C of Gµ such that f is not constant on CA × CB . Note
that C ⊆ suppµ, and CA × CB is the corresponding rectangle given by C.

Case I: f is not constant on C

As C is connected, there must be two adjacent points a, b ∈ C such that f(a) 6= f(b). By
our definition of adjacency in Definition 20, without loss of generality we can assume that
a, b are in the same column. Now consider any protocol π that solves [f, 0]. Let L0 be the
set of the transcripts that can occur when π runs with input a; formally,

L0 = {t : Pr[Πa = t] > 0}.

Clearly Pr[Π ∈ L0] ≥ µ(a). As f(a) 6= f(b) and π has no error, for every t ∈ L0,

Pr[XY = b|Π = t] = 0. (31)

Let

L = {t ∈ L0 : Pr[XY = a|Π = t] ≥ µ(a)/2}. (32)

We claim

Pr[Π ∈ L] ≥ µ(a)/2. (33)

Indeed, note∑
t∈L0

Pr[Π = t] Pr[XY = a|Π = t] =
∑
t

Pr[Π = t] Pr[XY = a|Π = t] = µ(a),
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use the trivial bound Pr[XY = a|Π = t] ≤ 1, we have

µ(a) =
∑
t∈L

Pr[Π = t] Pr[XY = a|Π = t] +
∑

t∈L0\L

Pr[Π = t] Pr[XY = a|Π = t]

≤
∑
t∈L

Pr[Π = t] + µ(a)
2

∑
t∈L0\L

Pr[Π = t] = Pr[Π ∈ L] + µ(a)
2 (1− Pr[Π ∈ L]),

which gives Pr[Π ∈ L] ≥ µ(a)/(2− µ(a)) ≥ µ(a)/2, as claimed. For small enough ε, the set
L and the points a, b satisfy the three conditions in Lemma 23 with C1 = C2 = µ(a)/2 and
δ = 0, respectively from (33), (32) and (31). We conclude that

ICµ(f, ε) ≤ ICµ(f, 0)− µ(a)2

4 h

(
µ(b)

4 ε

)
+ 3εK whenever µ(b)

µ(a)ε ≤ 1/2,

where K = log |X × Y|. Hence when ε ≤ 1/2, by (12) we have

ICµ(f, ε) ≤ ICµ(f, 0)− µ(a)2µ(b)
16 h(ε) + 3εK.

We can thus find ε0 > 0, depending only on µ(a), µ(b),K, such that for ε ≤ ε0,

ICµ(f, ε) ≤ ICµ(f, 0)− µ(a)2µ(b)
32 h(ε).

Case II: f is constant on C but not on CA × CB

We first make a simple observation:

Property A: For any protocol π that performs [f, 0], and for every transcript t of π, there
exists at least one point b ∈ C (which can depend on t) such that Pr[XY = b|Π = t] = 0.

Indeed, otherwise f would be constant on CA × CB by the rectangle property of protocols
(i.e. Pr[Π = t|x1y1] Pr[Π = t|x2y2] = Pr[Π = t|x1y2] Pr[Π = t|x2y1] for all x1, x2, y1, y2).

Given a protocol π that performs [f, 0] and a point a ∈ C, let the set L(π, a) of transcripts
be defined as

L(π, a) = {t : Pr[XY = a|Π = t] ≥ µ(a)/2}.

The same argument as in Case I shows that Pr[Π ∈ L(π, a)] ≥ µ(a)/2. For any other point
b ∈ C, define

L(π, a, b) = {t ∈ L(π, a) : Pr[XY = b|Π = t] = 0}.

Let k := |C|; necessarily k ≥ 3. By Property A, we have

L(π, a) =
⋃
b∈C

L(π, a, b).

This implies the existence of a point b ∈ C with Pr[Π ∈ L(π, a, b)] ≥ Pr[Π ∈ L(π, a)]/k ≥
µ(a)/2k. To sum up, we have shown that there exist two different points a, b ∈ C ⊆ suppµ
such that the set of transcripts L(π, a, b) satisfies the following properties:
(1’) Pr[Π ∈ L(π, a, b)] ≥ µ(a)/2k;
(2’) Pr[XY = a|Π = t] ≥ µ(a)/2 for every t ∈ L(π, a, b);
(3’) Pr[XY = b|Π = t] = 0 for every t ∈ L(π, a, b).
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Now consider a sequence of protocols πn that all perform [f, 0] and limn→∞ ICµ(πn) =
ICµ(f, 0). Fix (arbitrarily) a point a ∈ C. For every protocol πn we construct L(πn, a, bπn)
as above. Since there are only k − 1 different values of b, by picking a subsequence of πn if
necessary, without loss of generality, we may assume that for some point b ∈ C, bπn = b for
all πn. Hence for every πn we have a set of transcripts L(πn, a, b) such that properties (1’),
(2’) and (3’) are all satisfied.

If we compare these three conditions with the conditions in Lemma 23, we find that the
only issue is that we do not know whether a and b are in the same row or column (in terms
of the graph Gµ, whether a and b are adjacent).

Case IIa: a, b are adjacent in Gµ. As we expand on below, we can guarantee that this case
happens in the AND case (see theorem statement) by choosing a = x0y0.

For small enough ε, the set L(π, a, b) and the points a, b satisfy the three conditions in
Lemma 23 with C1 = µ(a)/2k, C2 = µ(a)/2 and δ = 0, respectively from (1’), (2’) and (3’).
We conclude that

ICµ(f, ε) ≤ ICµ(f, 0)− µ(a)2

4k h

(
µ(b)

4 ε

)
+ 3εK whenever µ(b)

µ(a)ε ≤ 1/2,

where K = log |X × Y|. Repeating the calculations of Case I, we can find ε0 > 0, depending
only on µ(a), µ(b),K, such that for ε ≤ ε0,

ICµ(f, ε) ≤ ICµ(f, 0)− µ(a)2µ(b)
32k h(ε).

Suppose now that we are in the AND case. Choosing a = x0y0, we see that Property A
must hold for some b ∈ {x0y1, x1y0}, since a transcript having positive probability on
both x0y1 and x1y0 also has positive probability on x1y1, whereas f(x0y1) 6= f(x1y1) by
assumption. Property (1’) thus holds with k = 2, and we conclude that for ε ≤ ε0,

ICµ(f, ε) ≤ ICµ(f, 0)− µ(a)2µ(b)
64 h(ε).

Case IIb: a, b are not adjacent in Gµ. To handle this case, we run a binary search along a
shortest path connecting a and b in C.

Pick an arbitrary point c ∈ C in some shortest path connecting a and b. For every πn,
sort the transcripts in L(πn, a, b) according to pn,t,c := Pr[XY = c|Πn = t] in increasing
order, where Πn is the random variable representing the transcript of πn. Let mn be the
median of the sequence pn,t,c according to the conditional probability measure νn(t) :=
Pr[Πn = t|t ∈ L(πn, a, b)], i.e.,

νn({t ∈ L(πn, a, b) : pn,t,c ≤ mn}), νn({t ∈ L(πn, a, b) : pn,t,c ≥ mn}) ≥ 1/2. (34)

Such a median always exists: if mn is the smallest value such that νn({t ∈ L(πn, a, b) :
pn,t,c ≤ mn}) ≥ 1/2 then νn({t ∈ L(πn, a, b) : pn,t,c ≥ mn}) = 1 − νn({t ∈ L(πn, a, b) :
pn,t,c < mn}) ≥ 1/2.

As trivially mn ∈ [0, 1], the sequence mn must have a convergent subsequence. Again by
picking a subsequence from mn if necessary, we may assume that the sequence mn itself is
convergent, say limn→∞mn = m; moreover, if m > 0, by picking another subsequence we
can assume that mn ≥ m/2 for all n. The binary search algorithm is then given as:
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If m = 0, update the set of transcripts to

L(πn, a, c) := {t ∈ L(πn, a, b) : pn,t,c ≤ mn}, (35)

and continue the algorithm with b replaced by c;
If m > 0, update the set of transcripts to

L(πn, c, b) := {t ∈ L(πn, a, b) : pn,t,c ≥ mn}, (36)

and continue the algorithm with a replaced by c.
We argue that the three properties are roughly preserved. In the case m = 0, Property (2’)
is kept, while Properties (1’) and (3’) change to

Pr[Πn ∈ L(πn, a, c)] ≥ µ(a)/4k and Pr[XY = c|Πn = t] ≤ mn, ∀ t ∈ L(πn, a, c),

respectively. In the case m > 0, Property (3’) is preserved while Properties (1’) and (2’)
change to

Pr[Πn ∈ L(πn, c, b)] ≥ µ(a)/4k and Pr[XY = c|Πn = t] > m/2, ∀ t ∈ L(πn, c, b).

In either case, we have seen that the new set of transcripts L(πn, a, b) together with the new
two points a and b satisfy Condition (1), (2) and (3) in Lemma 23 with proper constants (e.g.,
δn in Condition (3) is at most mn for protocol πn, and mn → 0). After finitely many steps,
the binary search algorithm has to stop and return two adjacent points a and b. Suppose
that it stops after s steps; note that s ≤ dlog ke. Lemma 23 then gives the upper bound

ICµ(f, ε) ≤ ICµ(πn)− µ(a)
2s+1k

C2h
( ε

2 min{1, C2R}
)

+ 3εK + h(δn/C2). (37)

for some C2, R,K > 0 (where C2, R depend on µ) and a sequence δn tending to zero, assuming
that

Rε+ (1− ε)δn/C2 ≤ 1/2 and δn/C2 ≤ 1/2.

By picking a subsequence, we can assume that δn ≤ C2/4 for all n. Lemma 23 then applies
for all ε ≤ 1/(4R). Taking the limit of the right-hand side of (37) as n→∞, we obtain

ICµ(f, ε) ≤ ICµ(f, 0)− µ(a)
2s+1k

C2h
( ε

2 min{1, C2R}
)

+ 3εK = ICµ(f, 0)− Ω(h(ε)). J

4.1.2 Proof of Theorem 7

Theorem 7 (restated). For all f, µ, ε, we have

ICµ(f, ε) ≥ ICµ(f, 0)− 4|X ||Y|h(
√
ε).

Proof of Theorem 7. Without loss of generality assume that µ is a full-support distribution
as otherwise we can approximate it by a sequence of full-support distributions and appeal to
the continuity of ICν(f, ε) with respect to ν. Consider a protocol π that performs [f, ε]. For
every leaf ` of π, let z` and µ` respectively denote the output of the leaf, and the distribution
of the inputs conditioned on the leaf `. We will complete it into a protocol π′ that performs
[f, 0], as follows.
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On input (X,Y ):
Alice and Bob run the protocol π and reach a leaf `;
For every (x, y) ∈ Ω` := {(x, y) : f(x, y) 6= z`}, Alice and Bob verify whether
XY = xy, as follows:

If µ`(x) ≤ µ`(y), Alice reveals whether X = x to Bob, and if yes, Bob reveals
whether Y = y to Alice. If XY = xy, they terminate.
If µ`(x) > µ`(y), Bob initiates the verification process.

Clearly, in the end, either both Alice and Bob already revealed their inputs to each other,
or otherwise they know XY /∈ Ω`, and hence z` is the correct output. Therefore π′ performs
the task [f, 0].

Next we analyze ICµ(π′). Let π`,xy denote the sub-protocol that starts with the distri-
bution µ` and verifies whether XY = xy. In the case when Alice initiates the verification
procedure, we have

ICµ`(π`,xy) = h(µ`(x)) + µ`(x)h
(
µ`(x, y)
µ`(x)

)
≤ h(µ`(x)) + µ`(x) ≤ 2h(µ`(x)),

where by an abuse of notation we are denoting by µ`(x) the marginal of µ` on x. We can
obtain a similar bound for the case where Bob initiates the process, and hence

ICµ`(π`,xy) ≤ 2 min{h(µ`(x)), h(µ`(y))}

= 2h
(
µ`(x, y) + min{Pr

µ`
[X 6= x, Y = y],Pr

µ`
[X = x, Y 6= y]}

)
≤ 2h(µ`(x, y)) + 2h

(
min{Pr

µ`
[X 6= x, Y = y],Pr

µ`
[X = x, Y 6= y]}

)
by the subadditivity of h. Using the monotonicity of h together with min{a, b} ≤

√
ab, we

obtain that

ICµ`(π`,xy) ≤ 2h(µ`(x, y)) + 2h
(√

Pr
µ`

[X = x, Y 6= y] Pr
µ`

[X 6= x, Y = y]
)

(38)

holds for every leaf ` and (x, y) ∈ Ω`. Let Π`,xy denote the transcript of π`,xy. Since π`,xy is
a deterministic protocol, we have Hµ`(Π`,xy|XY ) = 0, and thus

ICµ`(π`,xy) = I(Π`,xy;Y |X) + I(Π`,xy;X|Y ) = Hµ`(Π`,xy|X) +Hµ`(Π`,xy|Y ).

Thus the sub-additivity of entropy implies that the information cost of running all the
protocols π`,xy (for all x, y ∈ Ω`) is bounded by the sum of their individual information cost.
Let ` be a leaf of π sampled by running π on a random input. By (38),

ICµ(π′)− ICµ(π) ≤ È
∑
xy∈Ω`

ICµ`(π`,xy) =
∑

(x,y)∈X×Y

È 1z` 6=f(x,y) ICµ`(π`,xy)

≤
∑

(x,y)∈X×Y

2 È 1z` 6=f(x,y)h(µ`(x, y)) +

∑
(x,y)∈X×Y

2 È 1z` 6=f(x,y)h
(√

Pr
µ`

[X = x, Y 6= y] Pr
µ`

[X 6= x, Y = y]
)

≤
∑

(x,y)∈X×Y

2h
(
È 1z` 6=f(x,y)µ`(x, y)

)
+

∑
(x,y)∈X×Y

2h
(
È
√

1z` 6=f(x,y) Pr
µ`

[X = x, Y 6= y] Pr
µ`

[X 6= x, Y = y]
)
(39)

where we used the concavity of h in the last step.
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For the first summand, we have that for every (x, y),

È 1z` 6=f(x,y)µ`(x, y) =
∑
`

Pr[XY = xy, π reaches `]1z` 6=f(x,y)

=
∑
`

Pr[π reaches ` | XY = xy]µ(xy)1z` 6=f(x,y)

= µ(xy)
∑
`

Pr[πx,y reaches `]1z` 6=f(x,y) = µ(xy) Pr[π(x, y) 6= f(x, y)]

≤ µ(xy)ε ≤ ε, (40)

where we used that by definition µ`(xy) = Pr[XY = xy | π reaches `], and the fact that the
protocol π performs the task [f, ε].

For the second summand in (39), since µ` is obtained by scaling rows and columns of µ,
we have

Prµ[X = x, Y = y] Prµ[X 6= x, Y 6= y]
Prµ[X = x, Y 6= y] Prµ[X 6= x, Y = y] = Prµ` [X = x, Y = y] Prµ` [X 6= x, Y 6= y]

Prµ` [X = x, Y 6= y] Prµ` [X 6= x, Y = y]

Define (recall that we assumed µ is of full support)

a` = 1z` 6=f(x,y)
Prµ` [X = x, Y = y]
Prµ[X = x, Y = y] , b` = Prµ` [X 6= x, Y 6= y]

Prµ[X 6= x, Y 6= y] ,

and note that

1z` 6=f(x,y) Pr
µ`

[X = x, Y 6= y] Pr
µ`

[Y = y,X 6= x]

= a`b` Pr
µ

[X = x, Y 6= y] Pr
µ

[X 6= x, Y = y] ≤ a`b`. (41)

Since

È a` = 1
µ(xy) È 1z` 6=f(x,y)µ`(x, y) = Pr[π(x, y) 6= f(x, y)] ≤ ε

by (40), and E` b` = 1, we can bound the second summand in (39) using the Cauchy-Schwarz
inequality by

È
√
a`b` ≤

√
È a` È b` ≤

√
ε. (42)

Using (39), (40), (42), and the monotonicity of h, we have

ICµ(f, 0)− ICµ(π) ≤ ICµ(π′)− ICµ(π) ≤ 2|X × Y|h(ε) + 2|X × Y|h(
√
ε)

≤ 4|X × Y|h(
√
ε). J

4.1.3 Proof of Proposition 6

Proposition 6 (restated). Let µ be the distribution defined as

µ = 1/2 0
0 1/2 .

Then ICext
µ (XOR, ε) ≥ ICext

µ (XOR, 0)− 3ε.
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Proof of Proposition 6. The distribution µ is supported on the inputs (0, 0), (1, 1), on
which the output is 0. It is easy to check (and follows from the analysis below) that
ICext

µ (XOR, 0) = 1, since at the end of any protocol that performs [XOR, 0], we know
whether the input is (0, 0) or (1, 1).

Consider a protocol π having at most ε error on every input, where ε ≤ 1/3. Let Lz be
the set of transcripts on which the output is z; Every transcript is either in L0 or L1.

For each transcript t achievable from the initial distribution, the distribution of XY |t is

of the form p 0
0 1− p for some p = p(t). Bayes’ law shows that

Pr[t|00] = Pr[00|t] Pr[t]
Pr[00] = 2p(t) Pr[t], Pr[t|11] = Pr[11|t] Pr[t]

Pr[11] = 2(1− p(t)) Pr[t].

For each transcript t, the rectangle property says Pr[t|00] Pr[t|11] = Pr[t|10] Pr[t|01]. Hence

Pr[t|01] + Pr[t|10]
2 ≥

√
Pr[t|01] Pr[t|10] =

√
Pr[t|00] Pr[t|11] = 2

√
p(t)(1− p(t)) Pr[t].

The protocol π has distributional error at most ε, and so

Pr[L1] =
∑
t∈L1

Pr[t] ≤ ε, and Pr[L0] =
∑
t∈L0

Pr[t] ≥ 1− ε.

On the other hand, since π has point-wise error at most ε, we have∑
t∈L0

√
p(t)(1− p(t)) Pr[t] ≤ 1

2
∑
t∈L0

Pr[t|01] + Pr[t|10]
2 ≤ ε

2 . (43)

Finally,

I(XY ; Π) = H(XY )−H(XY |Π) = 1−
∑
t

Pr[t]h(p(t)).

Let T be a random transcript conditioned on belonging to L0, and consider the random
variable P := p(T ). On the one hand,

1− I(XY ; Π) =
∑
t

Pr[t]h(p(t)) ≤ Pr[L0]E[h(P )] + Pr[L1] ≤ E[h(P )] + ε.

On the other hand, by (43)

E[
√
P (1− P )] ≤ ε

2 Pr[L0] ≤
ε

2(1− ε) ≤ ε,

as we assumed ε ≤ 1/3. Thus it suffices to verify that E[h(P )] ≤ 2ε for any random variable
P that takes values in [0, 1] and satisfies E[

√
P (1− P )] ≤ ε. Indeed this would imply

1− I(XY ; Π) ≤ E[h(P )] + ε ≤ 3ε,

alternatively, ICext
µ (XOR, ε) ≥ 1−3ε for all ε ≤ 1/3, which in turn shows that ICext

µ (XOR, 0) =
1.

Apply the change of variable Q =
√
P (1− P ), so that the assumption simplifies to

E[Q] ≤ ε; note that 0 ≤ Q ≤ 1/2, and P = (1±
√

1− 4Q2)/2. Since h(P ) = h(1− P ), we
conclude that

E[h(P )] = E[φ(Q)], where φ(Q) = h

(
1 +

√
1− 4Q2

2

)
.
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It is routine to check that the function φ is monotonically increasing and strictly convex.
Since φ is continuous and the domain of Q is restricted to [0, 1/2], the maximum of E[φ(Q)]
under the constraint E[Q] ≤ ε is achieved3. Since φ is increasing, the maximum value of
E[φ(Q)] is achieved when E[Q] = ε. Since φ is strictly convex, the maximum value of E[φ(Q)]
is achieved on a measure supported on the endpoints 0, 1/2. Thus this measure must be
Pr[Q = 1/2] = 2ε and Pr[Q = 0] = 1− 2ε. So

E[h(P )] = E[φ(Q)] ≤ (1− 2ε)φ(0) + 2εφ(1/2) = 2ε. J

4.2 Information complexity with distributional error

Theorem 8 (restated). Let µ be a probability measure on X × Y, and let f : X × Y → Z
satisfy ICµ(f, µ, 0) > 0. We have

ICµ(f, µ, 0)− 4|X ||Y|h(
√
ε/α) ≤ ICµ(f, µ, ε) ≤ ICµ(f, µ, 0)− α

2

4 h (εα/4) + 3ε log |X ×Y|,

where α = minxy∈suppµ µ(x, y).

Proof of Theorem 8.
Lower bound: The proof is almost identical to the proof of Theorem 7, however now we
start from a distribution µ that possibly does not have full support. Consider a protocol
π that performs [f, µ, ε], and define z` and µ` as in the proof of Theorem 7. Now the new
protocol π′ that performs [f, µ, 0], is defined similar to the one in the proof of Theorem 7
with the only difference that the verification is only performed on the set

Ω′` := {(x, y) : f(x, y) 6= z`} ∩ suppµ.

Obviously π′ solves [f, µ, 0]. Note that π has point-wise error at most ε/α on every point in
suppµ. Thus the same analysis of Theorem 7 shows

ICµ(f, µ, 0)− ICµ(π) ≤ ICµ(π′)− ICµ(π) ≤ 4|X × Y|h(
√
ε/α).

Upper bound: For every z ∈ Z, let Xz denote the set of all x ∈ X such that for some
xy ∈ suppµ, we have f(x, y) = z. Similarly let Yz denote the set of all y ∈ Y such that
for some xy ∈ suppµ, we have f(x, y) = z. The assumption ICµ(f, µ, 0) > 0 implies the
existence of distinct z1, z2 ∈ Z such that either Xz1 ∩ Xz2 6= ∅ or Yz1 ∩ Yz2 6= ∅, otherwise,
Alice and Bob can exchange the unique values of z determined by their inputs, and since
with probability 1, these two values coincide, they can perform [f, µ, 0] with zero information
cost. Hence without loss of generality assume there exists x0y, x1y ∈ suppµ such that
f(x0, y) 6= f(x1, y) and µ(x0y) ≥ µ(x1y). We will apply Lemma 23. Consider a protocol π
with transcript Π that performs [f, µ, 0], and define the set of transcripts

L := {t | Pr[x0y|t] ≥ Pr[x0y]/2},

and note that

Pr[x0y] =
∑
t

Pr[x0y|t] Pr[Π = t] ≤ Pr[Π ∈ L] + Pr[Π 6∈ L]Pr[x0y]
2 ,

3 This follows from Prokhorov’s theorem, which implies that the set of probability measures over a
[0, 1/2] is compact with respect to the weak-* topology. The same result also follows from the Riesz
representation theorem [27].
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which implies Pr[Π ∈ L] ≥ Pr[x0y]
2 ≥ α

2 . Note that the protocol π′ defined in Figure 1
performs [f, µ, ε]. Furthermore we can set C1 = C2 = α/2 and δ = 0, to obtain

ICµ(π′) ≤ ICµ(π)− α2

4 h
(εα

4

)
+ 3ε log |X × Y |,

for ε ≤ 1/2. As −α
2

4 h (εα/4) + 3ε log |X × Y| ≥ 0 for ε ≥ 1/2, this finishes the proof for all
0 ≤ ε ≤ 1. J

4.3 Non-distributional prior-free information cost
In this section we prove Theorem 17, that is

IC(f, ε) ≤ IC(f, 0)− Ω(h(ε)).

First we present some lemmas, and the proof of Theorem 17 will appear at the end of this
section.

While Theorem 5 does not give a uniform bound on the parameters C, ε0 for every
distribution µ, it does for distributions in which there exist two elements with different
outputs, that are in the same row or column and whose probabilities are Ω(1). We will show
that for any non-constant function, the worst distribution is of this form; this might be of
independent interest.

We start with the following simple lemma.

I Lemma 24. Let f : X × Y → Z. Suppose that suppµ ⊆
⋃
i Xi × Yi, where the Xi and the

Yi are disjoint. Then

ICµ(f, 0) =
∑
i

µ(Xi × Yi) ICµ|Xi×Yi (f |Xi×Yi).

Proof. The upper bound is easy to see: the players exchange which block they are in, and
assuming that they are in the same block, they run an almost optimal protocol for that
block. If they are not in the same block, then they exchange inputs, but this happens with
probability zero.

In the other direction, let J be the block in which Alice’s input lies. Since the value of J
is determined by the value of X, for a protocol π with transcript Π, we have

I(Y ; Π|X) = I(Y ; Π|XJ) =
∑
j

Pr[J = j]I(Y ; Π|X, J = j) =
∑
j

µ(Xj×Yj)I(Y ; Π|X, J = j).

With probability 1, J is also the block in which Bob’s input lies, and so

ICµ(π) =
∑
j

µ(Xj × Yj)[I(X; Π|Y, J = j) + I(Y ; Π|X, J = j)]

≥
∑
j

µ(Xj × Yj) ICµ|Xj×Yj (f |Xj×Yj ). J

We can therefore restrict our attention (for now) to distributions based on a single block.
The crucial observation is the following.

I Lemma 25. Let f : X × Y → Z, and let µ be a distribution such that f is constant
on its support, each atom in the support has probability at least α, and the marginals
of the support are X ,Y. If f is not constant then there is a distribution ν such that
ICν(f, 0) ≥ ICµ(f, 0) + C(α), where C(α) > 0 depends only on α, |X |, |Y|.
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Proof. Let (x0, y0) be any point not in the support of µ such that f(x0y0) is different from
the constant value of f on suppµ. Since the marginals of the support are X ,Y and every
atom in the support has probability at least α, we see that Pr[X = x0],Pr[Y = y0] ≥ α.

Let ν = εδx0y0 +(1−ε)µ, where ε is a parameter to be determined later, and δx0y0 denotes
the Dirac measure concentrated on the point (x0, y0). Note that X ′Y ′ ∼ ν can be sampled in
the following manner. First we pick XY ∼ µ and an independent Bernoulli random variable
B with Pr[B = 1] = ε. Then

X ′Y ′ =
{
XY if B = 0,
x0y0 if B = 1.

Let π be a protocol that performs the task [f, 0], and let Πxy denote the transcript of this
protocol when it is run on the input xy. Note that with probability 1, the value of B is
determined by the value of X ′Y ′, and thus

I(X ′; ΠX′Y ′ |Y ′) = I(X ′B; ΠX′Y ′ |Y ′) = I(B; ΠX′Y ′ |Y ′) + I(X ′; ΠX′Y ′ |Y ′B)
= I(B; ΠX′Y ′ |Y ′) + (1− ε)I(X; ΠXY |Y ).

Moreover, since f(x0, y0) is different from the constant value of f on the support of µ, the
value of B is determined by ΠX′Y ′ . Thus I(B; ΠX′Y ′ |Y ′) = H(B|Y ′), and

I(X ′; ΠX′Y ′ |Y ′) = H(B|Y ′) + (1− ε)I(X; ΠXY |Y ).

To lower-bound H(B|Y ′), note that

Pr[B = 1|Y ′ = y0] = Pr[B = 1, Y ′ = y0]
Pr[Y ′ = y0] = ε

(1− ε) Pr[Y = y0] + ε
≥ ε,

and on the other hand,

Pr[B = 1|Y ′ = y0] ≤ ε

(1− ε)α+ ε
,

which for ε ≤
√
α/2 will be at most 1− ε. Since Pr[Y ′ = y0] = (1− ε) Pr[Y = y0] + ε ≥ α,

we conclude that H(B|Y ′) ≥ αh(ε). We deduce that

I(X ′; ΠX′Y ′ |Y ′) ≥ αh(ε) + (1− ε)I(X; ΠXY |Y ) ≥ I(X; ΠXY |Y ) + αh(ε)− ε log |X × Y|.

The gain is

I(X ′; ΠX′Y ′ |Y ′)− I(X; ΠXY |Y ) ≥ αε log 1
ε
− ε log |X × Y| =

(
α log 1

ε
− log |X × Y|

)
ε,

and so when ε ≤ ε0 := |X×Y|−2/α, the gain is at least ε log |X×Y|. Taking ε = min(ε0,
√
α/2),

we obtain a constant C(α) > 0, depending on |X × Y|, such that

I(X ′; ΠX′Y ′ |Y ′) ≥ I(X; ΠXY |Y ) + C(α),

and similarly I(Y ′; ΠX′Y ′ |X ′) ≥ I(X; ΠXY |Y ) + C(α). This shows that

ICν(f, 0) ≥ ICµ(f, 0) + 2C(α). J

We obtain the following important consequence.
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I Lemma 26. Let f : X ×Y → Z be a non-constant function. There exist constants c, δ > 0,
depending only on the function f and |X |, |Y|, such that if ICµ(f, 0) ≥ IC(f, 0)− δ then there
exist points P,Q, on the same row or column, such that µ(P ), µ(Q) ≥ c and f(P ) 6= f(Q).

Proof. Call a distribution ν on X × Y optimal if IC(f, 0) = ICν(f, 0). Braverman et al. [5]
showed that ICν(f, 0) is continuous in ν, and this implies that optimal distributions exist,
and moreover the set of optimal distributions is closed. It is also convex, due to the concavity
of ICν(f, 0) (see [4]).

For a distribution ν, let β(ν) be the maximal value β such that there exist two points
P,Q, on the same row or column, such that ν(P ), ν(Q) ≥ β and f(P ) 6= f(Q). Note that
β(ν) is continuous in ν.

Suppose that β(ν) = 0. For z ∈ Z, let Xz be the set of rows on which some point
P ∈ supp ν satisfies f(P ) = z, and define Yz analogously. We claim that the sets Xz for
z ∈ Z are disjoint, similarly Yz are disjoint. Indeed, if x ∈ Xz1 ∩Xz2 , then the row x contains
two points P,Q in the support such that f(P ) 6= f(Q), and so β(ν) > 0. Next we show that
supp ν ⊆

⋃
z Xz × Yz. Indeed if P ∈ Xz1 × Yz2 is in the support of ν, and f(P ) 6= z1, then

there exists some point Q on the same row as P is in the support and satisfies f(Q) = z1,
showing that β(ν) > 0; a similar conclusion is reached if f(P ) 6= z2.

Consider now one of the blocks Xz × Yz. Lemma 25 shows that we can modify the
component of ν on that block so as to increase the information complexity, and Lemma 24
shows that this increases the information complexity over the entire domain. We conclude
that ν is not optimal.

For ρ ≥ 0, let Oρ = {ν : ICν(f, 0) ≥ IC(f, 0)− ρ}. Continuity of ICν(f, 0) shows that Oρ
is closed. We define b(ρ) = inf{β(ν) : ν ∈ Oρ}; since β is continuous and Oρ is closed, the
infimum is achieved. In view of the preceding paragraph, b(0) > 0. Continuity of β(ν) and
ICν(f, 0) shows that b(ρ) is continuous as well, and so b(δ) > 0 for some δ > 0. The proof is
complete by taking c = b(δ). J

We can now apply Theorem 5 to deduce that IC(f, ε) ≤ IC(f, 0)− Ω(h(ε)).

Theorem 17 (restated). If f : X × Y → Z is non-constant then

IC(f, ε) ≤ IC(f, 0)− Ω(h(ε)),

where the hidden constant depends on f .

Proof. Let c, δ be the parameters from Lemma 26. For a distribution µ, either ICµ(f, 0) ≤
IC(f, 0) − δ or Theorem 5 shows that ICµ(f, ε) ≤ ICµ(f, 0) − (c3/32)h(ε) ≤ IC(f, 0) −
(c3/32)h(ε) for all ε ≤ ε0 where ε0 depends only on c and |X × Y|. Choose ε sufficiently
enough such that (c3/32)h(ε) ≤ δ and ε ≤ ε0, we conclude in both cases that ICµ(f, ε) ≤
IC(f, 0)− Ω(h(ε)). J

4.4 A characterization of trivial measures
First we present the proof of the external case, i.e. Theorem 22, as it is simpler.

Theorem 22 (restated). Let f : X × Y → Z be an arbitrary function, and µ a distribution
on X × Y. The distribution µ is external-trivial iff it is strongly external-trivial iff it is
structurally external-trivial.
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Proof of Theorem 22.
If µ is external-trivial then µ is structurally external-trivial. Suppose that µ is external-
trivial but not structurally external-trivial. We will reach a contradiction.

We start by showing that if µ is external-trivial then f has to be constant on the support
of µ. Indeed, suppose that the protocol π computes f correctly, and denote by Π the
transcript of π. The data processing inequality shows that

I(Π;XY ) ≥ I(Π; f(XY )) = H(f(XY ))−H(f(XY )|Π) = H(f(XY )).

This shows that µ can only be external-trivial if H(f(XY )) = 0, that is, if f is constant on
the support of µ. From now, we assume that this is indeed the case.

Let ab be an arbitrary point in the support of µ, and let c = f(ab). Since µ is not
structurally external-trivial, there must be some input x0y0 ∈ SA×SB for which f(x0y0) 6= c.
Note that x0y0 is not in the support of µ. Since x0 ∈ SA, x0y1 is in the support of µ for
some y1 ∈ SB . Similarly, x1y0 is in the support of µ for some x1 ∈ SA.

Since µ is external-trivial, there is a sequence πn of protocols computing f correctly on
every input such that I(XY ; Πn)→ 0, where XY ∼ µ. We think of πn also as a distribution
over transcripts t. Since f(XY ) = c with probability 1, if πn(t) > 0 then the transcript t
indicates that the output is c. Let pn be the joint distribution of X,Y, t. Recall that
D(pn(x, y, t)‖µ(x, y)πn(t)) = I(XY ; Πn), hence D(pn(x, y, t)‖µ(x, y)πn(t))→ 0.

For two distributions µ and ν on a finite space, Pinsker’s inequality states that D(µ||ν) ≥
1
2‖µ− ν‖

2
1. This implies that ‖pn(x, y, t)− µ(x, y)πn(t)‖1 → 0. On the other hand, for every

transcript t appearing with positive probability, either pn(x0, y1, t) = 0 or pn(x1, y0, t) = 0:
otherwise pn(x0, y0, t) > 0 (due to the rectangular property of protocols), contradicting the
correctness of πn (since f(x0y0) 6= c). Therefore

|µ(x0, y1)πn(t)−pn(x0, y1, t)|+|µ(x1, y0)πn(t)−pn(x1, y0, t)| ≥ πn(t) min(µ(x0, y1), µ(x1, y0)).

Summing over all transcripts having positive probability, we deduce that

‖pn(x, y, t)−µ(x, y)πn(t)‖1 ≥
∑
t

πn(t) min(µ(x0, y1), µ(x1, y0)) = min(µ(x0, y1), µ(x1, y0)),

contradicting our assumption that ‖pn(x, y, t)− µ(x, y)πn(t)‖1 → 0.

If µ is structurally external-trivial then µ is strongly external-trivial. Consider the fol-
lowing protocol. Alice tells Bob whether her input is in SA. Bob tells Alice whether his
input is in SB . If the input is in SA × SB , then the output is known. Otherwise, the players
reveal their inputs (but this happens with probability zero). It’s not difficult to check that
this protocol has zero external information cost.

If µ is strongly external-trivial then µ is external-trivial. This is obvious. J

We comment that our proof gives an explicit lower bound on ICext
µ (f, 0) whenever µ is

not external-trivial.
Next we present the proof of Theorem 19, showing that all our definitions of internal

triviality are equivalent. As before, we can get an explicit lower bound on ICµ(f, 0) whenever
µ is not internal-trivial.

Theorem 19 (restated). Let f : X × Y → Z be an arbitrary function, and µ a distribution
on X × Y. The distribution µ is internal-trivial iff it is strongly internal-trivial iff it is
structurally internal-trivial.
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Proof of Theorem 19.
If µ is internal-trivial then µ is structurally internal-trivial. Suppose that µ is internal-
trivial but not structurally internal-trivial. We will reach a contradiction.

Since µ is internal-trivial, there is a sequence of protocols πn such that I(X; Πn|Y ) +
I(Y ; Πn|X) → 0. In particular, I(X; Πn|Y ), I(Y ; Πn|X) → 0. Moreover, for every x ∈ SA
and for every y ∈ SB , I(X; Πn|Y = y), I(Y ; Πn|X = x)→ 0.

Let pn(x, y, t) be the joint probability of the input and of the transcript of πn being t.
We also think of πn as a distribution over transcripts. As in the proof of Theorem 22, using
Pinsker’s inequality we deduce that for all y ∈ SB , ‖pn(x, t|y)− µ(x|y)πn(t|y)‖1 → 0, and so
for all y ∈ SB ,

By :=
∑
x,t

|pn(x, y, t)− µ(x, y)πn(t|y)| → 0.

Similarly, for all x ∈ SA we have

Ax :=
∑
y,t

|pn(x, y, t)− µ(x, y)πn(t|x)| → 0.

According to Lemma 21, there exists a connected component C of Gµ such that f is not
constant on CA × CB . Suppose first that there is an edge (P,Q) on which f is not constant.
Without loss of generality, assume P = (a, y0) and Q = (a, y1). Thus∑

t

|pn(a, y0, t)− µ(a, y0)πn(t|a)|+ |pn(a, y1, t)− µ(a, y1)πn(t|a)| → 0.

On the other hand, for each transcript t either pn(a, y0, t) = 0 or pn(a, y1, t) = 0, since
f(ay0) 6= f(ay1). Thus∑

t

|pn(a, y0, t)− µ(a, y0)πn(t|a)|+ |pn(a, y1, t)− µ(a, y1)πn(t|a)| ≥∑
t

πn(t|a) min(µ(a, y0), µ(a, y1)) = min(µ(a, y0), µ(a, y1)),

contradicting the assumption that the left-hand side tends to zero.
Suppose next that f is constant across all edges (and so on the entire connected compo-

nent), say f(x, y) = c for all (x, y) ∈ C. Since f is not monochromatic on CA × CB, there
must exist a point P ∈ CA ×CB such that f(P ) 6= c. There must be points PA, PB ∈ suppµ
with the same row and column (respectively) as P . Since PA, PB are in the same connected
component, there is some path PA = Q0, Q1, . . . , Qm = PB connecting them: for every
i < m, Qi, Qi+1 are either in the same row or in the same column. We can assume that
m ≤M := |X |+ |Y|. No transcript can have positive probability for both Q0 and Qm, since
otherwise it would have positive probability for P as well, and this cannot happen since
f(Q0) = f(Qm) = c while f(P ) 6= c.

Let t be any transcript satisfying pn(Q0, t) > 0. Since pn(Qm, t) = 0, there must be an
index i such that pn(t|Qi)− pn(t|Qi+1) ≥ pn(t|Q0)/m ≥ pn(t|Q0)/M . Assume without loss
of generality that Qi = (a, y0) and Qi+1 = (a, y1). The contribution of t to Aa is

|µ(a, y0)πn(t|a)− pn(a, y0, t)|+ |µ(a, y1)πn(t|a)− pn(a, y1, t)| =
µ(a, y0)|πn(t|a)− pn(t|a, y0)|+ µ(a, y1)|πn(t|a)− pn(t|a, y1)| ≥

min(µ(a, y0), µ(a, y1))
M

pn(t|Q0) ≥ min(µ(a, y0), µ(a, y1))
M

pn(Q0, t),

using the triangle inequality in the form |α− γ|+ |γ − β| ≥ |α− β|.
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Denoting by δ the minimum of µ(x, y) over the support of µ, we conclude that
∑
xAx+

∑
y By

is at least∑
t

δ

M
pn(Q0, t) = δ

M
µ(Q0) ≥ δ2

M
,

contradicting our assumption that
∑
xAx +

∑
y By → 0.

If µ is structurally internal-trivial then µ is strongly internal-trivial. Consider the follow-
ing protocol. Alice tells Bob which block Xi her input belongs to. Bob tells Alice which block
Yi his input belongs to. If the input is in Xi × Yi, then the output is known. Otherwise, the
players reveal their inputs (but this happens with probability zero). It’s not difficult to check
that this protocol has zero internal information cost.

If µ is strongly internal-trivial then µ is internal-trivial. This is obvious. J

5 Parametrization of all distributions as product distributions

In Section 2.5 we discussed how a communication protocol can be interpreted as a random
walk on the set of distributions on X ×Y . Every time a player sends a signal, we update the
underlying distribution based on the information provided by the sent signal. These updates
are by scaling either the X marginal or the Y marginal of the distribution. This restricted
way in which the underling distribution can be updated will allow us to parametrize the set
of all reachable distributions from a specific distribution µ in such a way that the changes
are captured by product measures. First note that each reachable distribution µ′ can be
identified by the constants that multiplied µ to obtain µ′.

To formalize this intuition, we have the following definition.

I Definition 27. For two distributions µ, ν ∈ ∆(X ,Y), define

µ� ν := µ · ν
〈µ, ν〉

, (44)

where µ · ν is the usual point-wise product of the two measures.

Clearly, µ � ν ∈ ∆(X ,Y) unless 〈µ, ν〉 = 0, in which case the product is undefined. For
our purposes, we will consider decompositions of the form µ = ν � µ, where µ is a product
measure. The statement “µ is a distribution obtained from ν by scaling its rows and columns”
is equivalent to “there exists a product measure µ such that µ = ν � µ”. Note that if µ is the
uniform distribution, then ν = µ� ν for all distributions ν.

Let µ be the prior distribution on X × Y in a communication protocol. We fix a
decomposition µ = ν � µ, where µ is a product distribution. For every distribution µ′

reachable from µ there is a product distribution µ′ such that µ′ = ν � µ′, for the same
distribution ν. This follows from the fact that µ′ is obtained from µ by scaling its rows and
columns; therefore if we scale the rows and columns of µ by the same constants and then
normalize it, we obtain the desired µ′. In such a decomposition µ = ν � µ, µ is called the
real distribution, ν the reference distribution and µ the pretend distribution.

We would like to work with product distributions since they are simpler, and easier
to analyze, as we will demonstrate in Section 6. Therefore, we define a pretend random
walk, which is a random walk on pretend distributions, as opposed to the normal random
walk presented in Section 2.5, which we call the real random walk to distinguish it from
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the pretend one. It starts from a product measure µ = (µX , µY), where µX and µY are
the X and Y marginals of µ. At each step we either move by scaling the ∆(X ) marginal
or the ∆(Y) marginal. The transition in ∆(X ) is performed by moving with probability
λ0 to (µ0, µ

Y) and with probability λ1 to (µ1, µ
Y), where 0 < λ0, λ1 < 1, λ0 + λ1 = 1 and∑

b=0,1 λiµi = µX . A step in the ∆(Y) direction is performed similarly.
Every pretend random walk corresponds to a real random walk performed by some

protocol. Given such a pretend random walk, and a reference distribution ν, if we replace
every distribution µ encountered in the random walk by ν � µ, and scale the transition
probabilities, we obtain a real random walk performed by some protocol. Here ν can be any
distribution such that ν � µ is defined for every µ encountered in the protocol (e.g. if supp ν
includes the support of the initial distribution). The inverse transformation is also possible.

To formalize this idea, consider a pretend random walk step, from µ to µ0 and µ1 with
transition probabilities λ0 and λ1, respectively. Fix a reference distribution ν. Then

ν � µ = ν · µ
〈ν, µ〉

=
∑
b=0,1

λb
ν · µb
〈ν, µ〉

=
∑
b=0,1

〈ν, µb〉
〈ν, µ〉

λb(ν � µb) =
∑
b=0,1

λb(ν � µb)

for the values

λb = 〈ν, µb〉
〈ν, µ〉

λb. (45)

A calculation shows∑
b=0,1

λb =
∑
b=0,1

〈ν, µb〉
〈ν, µ〉

λb =
〈ν,
∑
b=0,1 λbµb〉
〈ν, µ〉

= 〈ν, µ〉
〈ν, µ〉

= 1.

Furthermore, if the pretend random walk step is performed in the ∆(X ) direction, then
ν � µb is obtained by scaling the rows of µ, and if in the ∆(Y) direction, then by scaling
the columns. Therefore, there exists a real random walk step where we move from ν � µ to
ν � µ0 and ν � µ1 with probabilities λ0 and λ1 respectively. The conversion in the opposite
direction, from the real world to the pretend world, is possible due to essentially the same
calculations.

Let π0 and π1 be the two branches of the protocol π corresponding to the value of the
first bit that was sent. Let µ be an input distribution that moves either to µ0 or to µ1
with probabilities λ0 and λ1, respectively. The following equation regarding the concealed
information,

CIµ(π) =
∑
b=0,1

λb CIµb(πb)

translates to

CIν�µ(π) =
∑
b=0,1

〈ν, µb〉
〈ν, µ〉

λb CIν�µb(πb).

Multiplying by 〈ν, µ〉 we get

CIν�µ(π)〈ν, µ〉 =
∑
b=0,1

λb〈ν, µb〉CIν�µb(πb),

This motivates the following definition.

CCC 2017



16:40 Trading Information Complexity for Error

I Definition 28. Let ν be a fixed reference distribution. Define the scaled information of a
protocol π with respect to a product distribution µ as

SIMµ(π) := 〈ν, µ〉CIν�µ(π). (46)

Equation (46) allows us to write

SIMµ(π) = λ0 SIMµ0(π0) + λ1 SIMµ1(π1). (47)

Recall that CI is the expected amount of entropy that the players have concealed from
each other by the end of the protocol. To formally state this, let µ be a distribution over
the inputs, π some protocol and Π the random variable representing the transcript of the
protocol. Let µΠ be the random variable that represents the distribution over the inputs
given the transcript Π, as defined in Section 2.5. Then

CIµ(π) = E
Π

[
HµΠ(X|Y ) +HµΠ(Y |X)

]
. (48)

We will translate (48) to a formula involving the pretend random walk. Let µ = ν�µ, and
denote by µΠ the pretend distribution where the pretend random walk ends if its associated
protocol has the transcript Π. Or, in a more formal way, µΠ is the distribution such that
ν � µΠ = µΠ. Equation (46) implies

SIMµ(π) = E
Π
〈ν, µΠ〉

[
H(ν�µ)Π(X|Y ) +H(ν�µ)Π(Y |X)

]
, (49)

where the probability for each transcript Π is according to the pretend random walk rather
than the real one.

One should ask: What is the probability of a transcript t in the pretend random walk,
given its probability λ in the real world? The answer turns out to be very simple. Let
µ0, . . . , µk be the real distributions encountered in the real random walk, where µ0 is the
input distribution and µk = µt is the last distribution encountered. For all 1 ≤ i ≤ k, let λi
be the transition probability from µi−1 to µi in the real random walk, so that λ = λ1 · · ·λk.
Let µi be the pretend distribution associated with µi such that µi = ν � µi for all i . Then,
the transition probability from µi−1 to µi in the pretend world equals

λi = 〈ν, µ
i−1〉

〈ν, µi〉
λi,

using the conversion in (45). Multiplying all together, we get that the probability of t in the
pretend world is

λ =
k∏
i=1

λi =
k∏
i=1

〈ν, µi−1〉
〈ν, µi〉

λi = 〈ν, µ
0〉

〈ν, µk〉
λ.

This equation also shows how one can derive (49) from (48) by multiplying the equation by
〈ν, µ0〉.

6 The analysis of the AND function

This section is mainly devoted to proving the only remaining case of Theorem 9, i.e. the lower
bound on ICµ(AND, ε). This is presented below separately as Theorem 33. Our general
strategy for this proof was sketched in Section 3.3 following Theorem 9.
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Table 1 The leaf distribution of the buzzer protocol starting from (p, q), where p ≥ q.

Distribution µΠ (p, 0) (`, 0), (0, `)
(p < ` < 1) (1, 1)

The probability to reach that distribution 1− q/p pq/`3 d` pq

Preliminaries and notations. The section relies strongly on the parametrization of distribu-
tions as product distributions, as presented in Section 5. A real distribution is usually denoted
as µ, and it is usually decomposed as µ = ν�µ, where ν is a symmetric reference distribution
and µ a pretend distribution. Pretend distributions are always product ones. We will use
the shorthand notation µ = (p, q) for the product distribution in which p = µ(1, 0) + µ(1, 1)
and q = µ(0, 1) + µ(1, 1). The distribution µ will usually be assumed to be of full support,
which in turn forces ν and µ to be so too.

We are usually going to be working in a pretend world, dealing with the pretend distri-
butions, and keeping the reference distributions in the background. Furthermore, reference
distributions are usually kept fixed. We regard protocols as pretend random walks, as
presented in Section 5.

Suppose that we run a protocol π starting at a distribution µ = ν � µ. As we explained
in Section 5, for each transcript t of the protocol, there is a product distribution µt such
that ν � µt is the distribution of the players’ inputs conditioned on the protocol terminating
at the leaf t. Let Π be the random transcript of the pretend random walk associated with
an execution of π on input distribution µ. Therefore, for any transcript t, Pr[Π = t] is the
probability for the transcript t in the pretend random walk, which might be different than the
corresponding probability in the real random walk. Throughout this section our view of the
protocol is only by the pretend random walk, therefore all random variable that correspond
to Π are assumed to be distributed according to the pretend random walk. Since µΠ, the
pretend distribution on the random transcript Π, is a product distribution, it can be written
as µΠ = (p,q), where p,q are random variables. We call (p,q) the leaf distribution of π.
We define a crucial random variable, ` = max(p,q).

If π is a zero-error protocol, then the leaf distribution is supported on product distributions
of the form (p, 0), (0, q) or (1, 1), since in order to know the AND of the two players’ inputs
we need to know that one of the players has input 0, or that both inputs are 1.

Since we are concerned with almost-optimal protocol, we would like to quantify optimality.
Given a protocol π, define its wastage with respect to a distribution µ by

IWµ(π) = ICµ(π)− ICµ(AND, 0) = CIµ(AND, 0)− CIµ(π).

6.1 Stability results
Braverman et al. [4], studying the complexity of the AND function, suggested a continuous
protocol whose information complexity equals ICµ(AND, 0), called the buzzer protocol. This
protocol is defined differently for any input distribution µ. Here we denote this protocol by
π∗. The buzzer protocol is not a conventional communication protocol as it has access to a
continuous clock, however, it can be viewed as a limit of a sequence of genuine protocols.
The information complexity of the protocols in that sequence converges to that of the buzzer
protocol, and their leaf distribution converges in distribution.

We start by presenting the leaf distribution of the buzzer protocol. We assume that the
input reference distribution is symmetric; its importance will become apparent later on.

As it can be seen in Table 1, this is a mix of discrete probabilities and a continuous
density. To verify that the above formulas are correct, we can convert the leaf distribution of
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the buzzer protocol as it is calculated in [4] for the real random walk to its corresponding
leaf distribution in the pretend random walk. The formulas that are discussed in Section 5
can be used to calculate the appropriate scaling of the probabilities as we convert the real
random walk to the pretend one.

There is also a second and more intuitive way to obtain these formulas. This is done
by considering a sequence of protocols that converges to the buzzer protocol. We describe
the protocols in that sequence by their pretend random walk. The initial distribution in
the pretend world of a protocol in that sequence is (p, q), where p, q ∈ {0, 1

n ,
2
n , . . . , 1}. In

each step, the pretend random walk moves to one of two adjacent grid points, each with
probability half. If we are currently in a distribution ( an ,

b
n ) where a ≥ b, then the step

moves to one of ( an ,
b+1
n ) and ( an ,

b−1
n ). Otherwise, the protocol moves to one of (a+1

n , bn ) and
(a−1
n , bn ).
Therefore, starting at the point ( an ,

b
n ) where a ≥ b, the random walk moves in the y axis,

until it ends up either at ( an , 0) or at ( an ,
a+1
n ). Since this walk is balanced, the probabilities

to get to these points are 1− b
a+1 and b

a+1 , respectively. Then, from that point the random
walk moves in the x axis, until it either gets to the point (0, a+1

n ) or to (a+1
n , a+1

n ), with
probabilities 1

a+1 and a
a+1 respectively. Then again, it ends up either at (a+1

n , 0) or at
(a+1
n , a+2

n ), then at (0, a+2
n ) or (a+2

n , a+2
n ) and continues this way, until it either gets to the

point (1, 1), or to a point of the form (0, in ) or ( in , 0). Calculating the leaf distribution of
each pretend random walk in that sequence, and taking the limit as n→∞, results in a leaf
distribution, which equals that of the buzzer protocol, as will be explained below.

The buzzer protocol can also be defined similarly as a sequence of converging protocols,
where for each protocol in the sequence, the real-world analogue of moving in the y direction
is performed whenever Pr[X = 1] ≥ Pr[Y = 1], while the analogue of moving in the x
direction is performed otherwise. In order for our limit protocol to behave identical to the
buzzer protocol, we would like the region Pr[X = 1] ≥ Pr[Y = 1] to correspond to the region
p ≥ q. This is done by using a symmetric reference distribution.

Next, we would like to show a stability result, proving that every protocol performing the
task [AND, 0] with nearly optimal information complexity is similar to the buzzer protocol.
We measure similarity in terms of the leaf distribution (p,q), and define the following
potential function:

I Definition 29. Given a protocol π for [AND, 0], a constant 0 < c < 1, and a pretend
distribution µ, let

Φc,µ(π) = E
[
((c− `)+)2] ,

where (·)+ = max{·, 0}, and ` = max(p,q). Denote Φc,µ = Φc,µ(π∗), where π∗ is the buzzer
protocol.

The following theorem shows that the value of the potential function is small for nearly
optimal protocols.

I Theorem 30. Let µ be a full support distribution, and µ = ν�µ be its decomposition, where
ν is a symmetric reference distribution and µ = (p, q) is the product pretend distribution.
Assume that c ≤ max{p, q}. Let π be a protocol performing [AND, 0]. Then

Φc,µ(π) = O(ICµ(π)− ICµ(AND, 0)) = O(IWµ(π)).

The constant in the O(·) is uniform whenever ν(0, 0), ν(0, 1), ν(1, 0), p, q are bounded away
from 0 and 1.
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In order to prove this theorem, we measure how each performed step contributes both
to the wastage and to the potential function. To measure the wastage, we work with SIM
instead of IC, as it is a more natural measure for this task.

I Lemma 31. Let µ be a full support distribution, and µ = ν�µ be its decomposition, where
ν is a symmetric reference distribution and µ is the pretend distribution. Let 0 < c < 1, and
let π be the protocol which behaves as follows:
1. One step of a pretend random walk is performed, which corresponds to one bit that is sent

in the protocol.
2. The pretend random walk that corresponds to the buzzer protocol is simulated from that

point: assuming that after the first bit was sent the pretend distribution is (p, q), let π∗(p,q)
be the buzzer protocol for the input distribution ν � (p, q). Then, the pretend random walk
that corresponds to π∗(p,q) is simulated (the value of (p, q) is different for the case that the
first bit equals 1, and when it equals 0).

Then

Φc,µ(π)− Φc,µ = Oν(SIMµ(AND, 0)− SIMµ(π)).

The constant in the O(·) is uniform whenever ν(0, 0), ν(0, 1), ν(1, 0), c are bounded away from
0 and 1.

The potential function of Definition 29 is defined in that manner so that Lemma 31 holds.
Let us elaborate on this: assume that a protocol π is defined as in this lemma, with a pretend
input distribution of (p, q). Assume that the first step moves from (p, q) either to (p+ δ) or
to (p− δ) with equal probability. Then

SIM(p,q)(π)− SIM(p,q)(AND, 0) = 1
2 SIM(p+δ,q)(AND, 0)

+ 1
2 SIM(p+δ,q)(AND, 0)− SIM(p,q)(AND, 0)

≈ δ2

2
∂2

∂p2 SIM(p,q)(AND, 0).

Thus, this difference has the same order of magnitude as δ2. We would like the change in
the potential function to have the same order. Looking at the function x2, it holds that

1
2(x+ δ)2 + 1

2(x− δ)2 − x2 = δ2

2 .

If a protocol π moves according to the direction of the buzzer protocol, then π is the same
as π∗ and both differences are zero. Therefore, assume that p > q, and π moves in the
x direction, whereas the buzzer protocol would have moved in the y direction. Roughly
speaking, the leaf distribution of π is obtained from the leaf distribution of π∗ by splitting
some of the mass around ` ≈ p between ` ≈ p − δ and ` ≈ p + δ. Thus, Φc,µ(π) − Φc,µ

approximately has the order of magnitude of

1
2(c− p− δ)2 + 1

2(c− p+ δ)2 − (c− p)2 = δ2

2 .

We chose (c− p)2
+ instead of (c− p)2 since Lemma 36 requires the buzzer protocol to have a

value of zero. Indeed, by choosing c carefully we can achieve this.
We will prove Lemma 31 using the following criterion.
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I Lemma 32. Let ν be a symmetric reference distribution, and C > 0 a constant. Define
F (p, q) = C SIM(p,q)(AND, 0) + Φc,(p,q). If for every q, F (p, q) is concave as a function of p,
and for every p, F (p, q) is concave as a function of q, then Lemma 31 holds, and the constant
in the O(·) can be taken to be equal to C.

Proof. Let π be the protocol defined in Lemma 31, and let µ be its pretend input distribution.
Assume that the pretend random walk of π first moves from µ either to µ0 or to µ1, with
probabilities λ0 and λ1. We assume this step is on the x-direction, thus, the first step is from
(p, q) to (p0, q) or (p1, q). The analysis for the case that this step it in the y-direction is similar.
Let 0 < c < 1. Then SIM(p,q)(π) =

∑
b λb SIM(pb,q)(AND, 0), and Φc,(p,q) =

∑
b λbΦc,(pb,q).

From concavity,

C SIM(p,q)(AND, 0) + Φc,(p,q) = F (p, q) ≥
∑
b

λbF (pb, q)

=
∑
b

λb(C SIM(pb,q)(AND, 0) + Φc,(pb,q))

= C SIM(p,q)(π) + Φc,(p,q)(π). J

Thus, our focus would be proving that these concavity conditions hold for some value
C. We proceed by calculating Φc,(p,q), assuming without loss of generality that p ≥ q. One
can see that whenever p ≥ c, with probability 1 the leaf distribution of the buzzer protocol
satisfies ` ≥ p ≥ c, and thus the potential function evaluates to 0. Consider the case p < c.
Using the leaf distribution, we obtain the formula

Φc,(p,q) = (1− q/p)(c− p)2 + 2
∫ c

`=p

pq

`3
(c− `)2d`.

Thus, the general definition is as follows:

Φc,(p,q) =


0 if max{p, q} ≥ c,
(1− q/p)(c− p)2 + 2

∫ c
`=p

pq
`3 (c− `)2d` if q ≤ p ≤ c,

(1− p/q)(c− q)2 + 2
∫ c
`=q

pq
`3 (c− `)2d` if p ≤ q ≤ c.

In order to apply Lemma 32, we start by showing that the function Φc,(p,q) is differentiable
for all p (in the direction of p) given a fixed value of q, and for all q given a fixed value
of p. This is done by calculating the two one-sided derivatives in the points suspected of
non-differentiability: p = q and max{p, q} = c. To state it into more detail, for any fixed q,
we calculate both

∂Φc,(p,q)
∂p +

= lim
h→0+

Φc,(p+h,q) − Φc,(p,q)
h

,

and
∂Φc,(p,q)
∂p −

= lim
h→0−

Φc,(p+h,q) − Φc,(p,q)
h

,

and verify that both values are equal in all suspected points. We do the same switching the
roles of p and q. (though it is not required as this potential function is symmetric, since
we assume the reference distribution to be symmetric) Additionally, we calculate its second
derivatives whenever they are defined. If max{p, q} > c, then they are trivially zero. For
q < p < c, we get:

∂2Φc,(p,q)
∂p2 = 2(1− q/p)
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and

∂2Φc,(p,q)
∂q2 = 0.

Actually, there is a reason why this second derivative with respect to q is zero. For any
0 < δ ≤ min{p − q, q}, consider a protocol π that first moves to (p, q − δ) or to (p, q + δ),
each with probability 1/2, and then simulates the buzzer protocol. It has the same leaf
distribution as the buzzer protocol (in the pretend world). Both the buzzer protocol and
π either get to the point (p, 0) or to the point (p, p), with probabilities 1 − q/p and q/p,
respectively. From that point on, both continue the same way, resulting in the same leaf
distribution. This validates the equality

Φc,(p,q) = 1
2Φc,(p,q+δ) + 1

2Φc,(p,q−δ)

for all q and δ sufficiently small, which implies linearity in the region q ∈ [0, p] (given a fixed
p).

Similar calculations will now be performed with regard to SIMp,q(AND, 0). Denote
x = ν(0, 0), y = ν(1, 0) = ν(0, 1), z = ν(1, 1). It is possible to extract the value of this
function from the equations in [4], using the conversion from SIM to CI (46) and from CI to
IC (9). Nevertheless, we calculate it using the formula (49), which is an expectation over a
value obtained in the leafs of the protocol. Let p ≥ q, and let Π correspond to the buzzer
protocol, which starts at distribution (p, q). Then,

SIMp,q(AND, 0) = E
Π

[〈ν, µΠ〉(HµΠ(X|Y ) +HµΠ(Y |X))]

=
(

1− q

p

)
((1− p)x+ py)h

(
py

(1− p)x+ py

)
+∫ 1

p

2pq
`3

((1− `)x+ `y)h
(

y`

x(1− `) + y`

)
d`

= −
[
q(1− p)y + (1− p)(1− q)x log (1− p)x

(1− p)x+ py
+(

pqy2

x
+ (p+ q − 2pq)y

)
log py

(1− p)x+ py

]
.

Calculating the second derivative, we get for p > q,

∂2 SIM(p,q)(AND, 0)
∂p2 = −2(1− q/p) xy

2(1− p)p2((1− p)x+ py) ,

and

∂2 SIM(p,q)(AND, 0)
∂q2 = 0.

The reason that the second derivative is zero is the same as explained for the potential
function. For proving differentiability (on each direction separately), the only suspected
point is p = q. Comparing the two one-sided derivatives implies the result.

Now we are almost ready to apply Lemma 32. Define

C = max
0≤p≤1

2(1− p)p2((1− p)x+ py)
xy

,
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and F (p, q) = C SIMµ(π∗) + Φc,µ. For any fixed q, ∂F (p,q)
∂p is continuous, piecewise differen-

tiable, and its derivative, ∂
∂p

∂F (p,q)
∂p is non-positive wherever it is defined. Thus, ∂F (p,q)

∂p is
non-increasing, and F (p, q) is concave as a function of p. The same holds when switching the
roles of p and q, thus the conditions in Lemma 32 are satisfied, which concludes the proof of
Lemma 31. Finally, we are able to prove Theorem 30.

Proof of Theorem 30. Let T be the protocol tree of π. This is a directed binary tree with
two children for each internal node. Each node corresponds to a state of the protocol when
some communication has taken place, and its children are the two consecutive states, chosen
according to the bit sent by the player owning the node.

We can construct T using a sequence of trees, T1, T2, . . . , Tk = T . The tree T1 contains
only the root of T , and for all i, Ti is obtained from Ti−1 by adding the children of a leaf of
Ti−1 which is not a leaf of T .

Given a tree Ti, construct a protocol πi, that whenever it reaches a state represented
by node v which is not a leaf of Ti, the protocol behaves as π for the next bit sent, and
if the state is represented by a leaf of Ti, then the buzzer protocol is simulated from that
point on. Let D be the constant in the O(·) guaranteed from Lemma 31. The lemma implies
that for all i, Φc,µ(πi)− Φc,µ(πi−1) ≤ D(SIMµ(πi−1)− SIMµ(πi)). Summing over i, we get
a telescopic summation that results in

Φc,µ(π) = Φc,µ(πk)−Φc,µ(π1) ≤ D(SIMµ(π1)−SIMµ(πk)) = D(SIMµ(AND, 0)−SIMµ(π)).

We used the fact that Φc,µ(π1) = Φc,µ = 0, which hold since we assumed that c ≤ max{p, q},
and the leaf distribution of the buzzer protocol has zero mass on ` < max{p, q}, therefore its
potential cost is zero. This finishes the proof as

SIMµ(AND, 0)− SIMµ(π) = 〈ν, µ〉(CIµ(AND, 0)− CIµ(π)) = 〈ν, µ〉 IWµ(π) ≤ IWµ(π). J

6.2 Lower bound on the information complexity of ICµ(AND, ε)
In this section, we prove Theorem 9 by showing that every distribution µ which is of full
support, except perhaps for µ(1, 1), satisfies ICµ(AND, ε) ≥ ICµ(AND, 0)−O(h(ε)). Recall
that Theorem 9(ii) follows from Part (i) and we have already established the upper bound of
Theorem 9(i) in Theorem 5. Hence it remains to prove the following theorem.

I Theorem 33 (The remaining case of Theorem 9). Let µ be a full-support distribution, except
perhaps for µ(1, 1). For all ε ≥ 0,

ICµ(AND, ε) ≥ ICµ(AND, 0)−Oµ(h(ε)).

The hidden constant can be fixed if µ(0, 0), µ(0, 1), µ(1, 0) are bounded away from 0.

The proof uses the idea of protocol completion: given a protocol π performing [AND, ε],
we can create a protocol π0, which we call the zero-error completion of π. Such a protocol π0
takes the following steps:

First Alice and Bob simulate π until it terminates.
Afterwards they run a protocol that solves the AND function with zero error.

The cost of completion is the amount of information revealed in the second step, and it
is equal to ICµ(π0) − ICµ(π). We have shown in the proof of Theorem 7 that for general
functions, this cost is bounded by O(h(

√
ε)), but here we would like to prove a stronger

bound of O(h(ε)) for protocols that are almost optimal for the AND function. This obviously
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would yield the desired lower bound, and prove Theorem 33. This completion cost can be
arbitrarily close to EΠ[ICµΠ(AND, 0)]. In order to bound this quantity, we first bound the
information complexity of the AND function.

I Lemma 34. Consider a reference distribution ν with ν(0, 0) = x, ν(1, 0) = ν(0, 1) =
y, ν(1, 1) = z, such that x, y, z > 0. Let µ = (p, q) be a pretend distribution. Let µ = ν � µ,
and µ(1, 1) = δ. Let 0 < C < 1 be an arbitrary constant.

Firstly ICµ(AND, 0) ≤ 2h(1− δ). Secondly

ICµ(AND, 0) ≤
{
O(h(δ/z)) if max(p, q) ≥ C,
O(h(

√
δ/z)) if p, q < C.

The hidden constants can be fixed if x, y, C are bounded away from both 0 and 1.

Proof. First we prove that ICµ(AND, 0) ≤ 2h(1 − δ). Assume that δ ≥ 1/2, as otherwise
the inequality trivially follows. The information complexity is achieved by a protocol where
both Alice and Bob send their inputs. The cost of that protocol is at most H(XY ) ≤
H(X) +H(Y ) ≤ 2h(δ).

For proving the other bounds, assume that δ < 1/2, since otherwise the lemma trivially
follows. If p, q > 1/2, then δ = ν(1,1)pq

〈ν,µ〉 ≥ ν(1, 1) = z, as

〈ν, µ〉 = (1− p)(1− q)x+ [p(1− q) + (1− p)q]y + pqz ≤ (x+ 2y + z)pq = pq.

In this case, the lemma follows.
Assume that either p ≤ 1/2 or q ≤ 1/2. Without loss of generality, p ≤ q. We will analyze

the protocol in which Alice first sends her input to Bob, and if X = 1 then Bob sends his
input to Alice. This protocol has a cost of

H(X|Y ) + Pr[X = 1]H(Y |X = 1) ≤ H(X) + Pr[X = 1] ≤ h(Pr[X = 1]) + Pr[X = 1].

The obtained bound is monotonic in Pr[X = 1], a fact that we will use.
Now

Pr[X = 1] = p(1− q)y + pqz

〈ν, µ〉
≤ p(y + z)
〈ν, µ〉

= δ(y + z)
zq

.

Thus, if q ≥ C, then the cost of completion is at most

h

(
δ(y + z)
zC

)
+ δ(y + z)

zC
≤ (y + z)δ

Cz
+
{
h(δ/z) if y+z

C < 1,
y+z
C 2h(δ/z) otherwise,

(50)

using the bound h(cx) ≤ 2ch(x) for all c > 1, from (12).
If q ≤ C, Pr[X = 1] is maximized at q = p. Assume indeed that p = q. We will bound its

value from below. The equation q2z
〈ν,µ〉 = q2z

〈ν,µ〉 = δ implies

q =
√
δ〈ν, µ〉
z

.

Now since

〈ν, µ〉 ≥ ν(0, 0)µ(0, 0) = (1− p)(1− q)x ≥ (1− C)2x,

we have

Pr[X = 1] ≤ δ(y + z)
zq

≤
√
δ

z

y + z

(1− C)
√
x
.

The proof concludes applying similar calculations as in (50). J
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Next, we use this bound to show that if the probability that max{p,q} does not exceed
some constant is very small, then one can get an improvement over h(

√
ε) for the completion

cost.

I Lemma 35. Let ν be a symmetric reference distribution with ν(0, 0) = x, ν(0, 1) = ν(1, 0) =
y and ν(1, 1) = z > 0. Let µ = (p, q) be a pretend distribution, and let µ = ν � µ = ν.

Let π be a protocol performing [AND, ε]. Let 0 < C < 1 be an arbitrary constant,
κ = Pr[max{p,q} ≤ C].

The protocol π can be completed to a zero-error protocol using an additional information
cost of

O
(
κh(
√
ε/κ) + (1− κ)h( ε

1−κ )
)
,

where the cost is according to the distribution µ, and the hidden constant in O(·) can be fixed
if x, y, p, q, C are all bounded away from both 0 and 1.

Proof. First, note that

µ(1, 1) = zpq

〈ν, µ〉
≤ zpq

x(1− p)(1− q) = O(z).

Let ψ be the random variable denoting the completion cost as a function of Π. Let 1o=b be
the indicator of whether π outputs b given the transcript Π, for b = 0, 1. The total completion
cost is

E[ψ] =
∑
b=0,1

E[ψ1o=b].

We start by bounding E[ψ1o=1]. Let δ be the random variable which equals µΠ(1, 1).

E[(1− δ)1o=1] = Pr[(X,Y ) 6= (1, 1), π outputs 1] ≤ ε.

From Lemma 34, the completion cost ψ is at most 2h(1− δ). From the concavity of h,

E[ψ1o=1] = EO(h(1− δ))1o=1 = EO(h((1− δ)1o=1)) ≤ O(h(E[(1− δ)1o=1])) ≤ O(h(ε)).

This can be bounded as desired since in both cases of κ > 1/2 and κ ≤ 1/2, we have

h(ε) = O
(
κh(
√
ε/κ) + (1− κ)h( ε

1−κ )
)
.

Next we bound E[ψ1o=0].

E[δ1o=0] = Pr[(X,Y ) = (1, 1), π outputs 0] ≤ εµ(1, 1) ≤ εO(z).

Let S be the event that max{p,q} ≤ C. Then,

E[δ1o=0|S] ≤ εO(z)/Pr[S] = εO(z)/κ.

E[δ1o=0|S] ≤ εO(z)/(1− κ).
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From Lemma 34, the completion cost is of order of h
(√

δ/z
)
when S happens, and

h(δ/z) otherwise.

E[ψ1o=0] = Pr[S]E[ψ1o=0|S] + Pr[S]E[ψ1o=0|S]

= O
(
κE
[
h
(√

δ1o=0/z
)
|S
]

+ (1− κ)E[h(δ1o=0/z)|S]
)

≤ O
(
κh
(√

E[δ1o=0|S]/z
)

+ (1− κ)h(E[δ1o=0|S]/z)
)

(51)

≤ O
(
κh
(√

O(ε)/κ
)

+ (1− κ)h(O(ε)/(1− κ))
)

≤ O
(
κh
(√

ε/κ
)

+ (1− κ)h
(

ε

1− κ

))
, (52)

where (51) follows from the concavity of h(·/z) and h(
√
·/z), and (52) follows from (12). J

Consider an almost optimal protocol π0 so that ICµ(π0) − ICµ(AND, 0) is small. Our
stability result, Theorem 30, translates this to a bound on the potential function introduced
in Definition 29. The next lemma uses this to show that for such a protocol π0, one can
obtain a strong bound on the value of κ in Lemma 35.

I Lemma 36. Let µ be full-support distribution and let µ = ν � µ be its decomposition,
where ν is a symmetric reference distribution, and µ is the pretend distribution. Let c =
max {Prµ[X = 1],Prµ[Y = 1]}. Let π be an arbitrary protocol, and π0 be the completion of
π to a protocol performing [AND, 0]. Then

Pr[max{p,q} ≤ c

4 ] = Oc,µ,ν(ICµ(π0)− ICµ(AND, 0)),

The hidden constant can be fixed if p, q, µ(0, 0), µ(0, 1), µ(1, 0) are all bounded away from both
0 and 1, where µ = (p, q).

Proof. Let `p,q be the distribution of ` that corresponds to the buzzer protocol when it is
invoked from a pretend distribution parametrized by (p, q).

We start by showing that for any 0 < p, q < 1,

Pr[`p,q ≤ 2 max{p, q}] ≥ 3
4 .

Assume without loss of generality that p ≥ q. Using the leaf distribution from Section 6.1,

Pr[p ≤ ` ≤ 2p] = 2
∫ 2p

p

pq

`3
d`+

(
1− q

p

)
>

3
4 .

This implies

Pr[`π0 ≤
c

2 ] = Pr
[
`π0 ≤ 2 c4

]
≥ Pr

[
max{p,q} ≤ c

4

]
Pr [`p,q ≤ 2 max{p,q}]

≥ 3
4 Pr

[
max{p,q} ≤ c

4

]
.

Markov’s inequality and Theorem 30 imply

Pr[`π0 ≤
c

2 ] = Pr[(c− `π0)2
+ ≥

c2

4 ] ≤
E[(c− `π0)2

+]
c2/4 = Φc,µ(π0)

c2/4
= O(ICµ(π0)− IC(AND, 0)). J
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Now we are ready to prove Theorem 33, and thus complete the proof of Theorem 9.

Proof of Theorem 33. We first prove the theorem for the full-support distributions. Con-
sider such a distribution µ. Let π be a protocol performing [AND, ε]. We can assume that
ICµ(π) ≤ ICµ(AND, 0), and let C = max{Prµ[X = 1],Prµ[Y = 1]}/4, κ = Pr[max{p,q} ≤
C]. Lemma 35 constructs a zero-error protocol π0 whose wastage w is at most

w = O

(
κh

(√
ε

κ

)
+ (1− κ)h

(
ε

1− κ

))
.

Lemma 36 states that κ = O(w), and so

κ = O

(
κh

(√
ε

κ

)
+ (1− κ)h

(
ε

1− κ

))
.

If ε
1−κ ≤ 1/2, then (12) shows that

κ = O

(
κh

(√
ε

κ

)
+ h(ε)

)
. (53)

Otherwise, κ ≥ 1− 2ε ≥ 1/2 (assuming ε ≤ 1/4), and so

κ = O(h(
√
ε) + (1− κ)) = O(h(

√
ε) + ε),

which contradicts κ ≥ 1/2 for small enough ε.
Denoting the hidden constant in (53) by M , we get(

1−Mh

(√
ε

κ

))
κ ≤Mh(ε).

We will show that for small ε, this forces κ ≤ 2Mh(ε). Indeed, suppose that κ > 2Mh(ε),
which implies that κ > 2Mε log(1/ε). Then

ε

κ
<

1
2M log(1/ε) ,

and so for small enough ε, Mh(
√
ε/κ) < 1/2. This shows that(

1−Mh

(√
ε

κ

))
κ >

κ

2 > Mh(ε),

contradicting the inequality above. We conclude that for small ε we have κ = O(h(ε)).
Applying Lemma 35 again, we see that

ICµ(π0)− ICµ(π) ≤ κO
(
h

(√
ε

κ

))
+O(h(ε)) ≤ O(κ) +O(h(ε)) = O(h(ε)).

Since ICµ(π0) ≥ ICµ(AND, 0), we conclude that ICµ(π) ≥ ICµ−O(h(ε)).
Next consider a distribution µ with µ(1, 1) = 0, that assigns a strictly positive probability

for every other input. There is a series of full support distributions, µ1, µ2, . . . that converge
to µ, and assume without loss of generality that for every input a ∈ {0, 1}2 and for every
n ∈ N, µn(a) ≥ µ(a)/2. From the continuity of information complexity with respect to the
tasks [AND, 0] and [AND, ε],

lim
n→∞

ICµn(AND, 0) = ICµ(AND, 0),
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and

lim
n→∞

ICµn(AND, 0) = ICµ(AND, 0).

Assume that µ(0, 0), µ(0, 1), µ(1, 0) are bounded from below. It is possible to decompose µ
into ν � (p, q), where ν is symmetric and p, q, ν(0, 0), ν(0, 1) and ν(1, 0) are bounded. This is
done by considering a decomposition where p = 1/2 and q is chosen such that ν is symmetric.
Therefore, there is a constant C > 0 such that

ICµn(AND, ε) ≥ ICµn(AND, ε)− Ch(ε).

Thus,

ICµ(AND, ε) ≥ ICµ(AND, ε)− Ch(ε). J

7 The set disjointness function with error

In this section we present the proofs of the results concerning the set disjointness function.
It will be convenient to switch the roles of 0 and 1 in the range of the function, and redefine
DISJn as DISJn(X,Y ) = ∨ni=1(Xi ∧ Yi), i.e. DISJn(X,Y ) = 0 if the inputs are disjoint and
it is equal to 1 otherwise. Obviously, this will not affect the correctness of our results.

7.1 Proof of Theorem 13

Theorem 13 (restated). For the set disjointness function DISJn on inputs of length n, we
have

Rε(DISJn) = n[IC0(AND, 0)−Θ(h(ε))].

As discussed in Section 3.4, we only need to prove the upper bound. In fact, we will
prove the following lemma, from which Theorem 13 follows using Corollary 10.

I Lemma 37. For every ε > 0 and sufficiently large n,

Rε(DISJn)
n

≤ IC0(AND, ε, 1→ 0) + on→∞(1).

Intuitively, an upper bound like Lemma 37 is essentially a compression result. Besides,
as DISJn has a self-reducible structure (see [5]), one can make use of this fact together with
the Braverman–Rao [6] compression. A difficulty is that what we want to solve is [DISJn, ε],
that is, the error allowed is non-distributional, while the error unavoidably introduced in
the compression phase is distributional. Fortunately, this can be salvaged by a minimax
argument introduced in Section 6.2 of [3].

In order to use self-reducibility and compression, one first needs to have a control on the
information cost of solving [DISJn, ε].

I Lemma 38. For every ε > 0 and sufficiently large n,

IC(DISJn, ε, 1→ 0) ≤ n IC0(AND, ε, 1→ 0) + o(n),

where IC(DISJn, ε, 1→ 0) := maxµ ICµ(DISJn, ε, 1→ 0).
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The proof is a direct adaptation of the proof for Lemma 8.5 in [4].

Proof. Let Ω0 denote the set of all measures µ on {0, 1}2 with µ(1, 1) = 0. Let π be a protocol
that computes [AND, ε, 1→ 0] and satisfies maxµ∈Ω0 ICµ(π) ≤ IC0(AND, ε, 1→ 0) + δ for
some small δ > 0. Consider the following protocol τ that computes DISJn with error.

Alice and Bob exchange (with replacement using public randomness) n2/3 random
coordinates. Denote this set of random coordinates by J . If for some j ∈ J , xj = 1
and yj = 1, then they output 1 and terminate.
For each coordinate outside J , Alice and Bob run the protocol π and output 1 if π
outputs 1 on some coordinate. Otherwise they output 0.

As π has one-sided 1→ 0 error, obviously τ has only one-sided 1→ 0 error too, and this
error happens with probability at most εd ≤ ε, where d is the number of coordinates outside
J which satisfy xj = yj = 1 (if xj = yj = 1 for some coordinate in J , there is no error). In
particular, τ computes [DISJn, ε, 1→ 0].

A direct inspection shows that the remaining proof of Lemma 8.5 in [4] depends only on
the protocol but not on the specific problem, hence the proof works for our problem too, and
the lemma can be proved similarly. J

Next we prove an amortized upper bound for DISJn.

I Lemma 39. For every ε, δ > 0, there exists a constant C > 0 that depends on n, ε, δ, such
that as long as N ≥ C(n, ε, δ), we have

Rε(DISJn×N )
N

≤ (1 + δ) IC(DISJn, ε, 1→ 0).

Proof. We sketch the proof below. More details can be found in Section 6.2 of [3].

Step 1. Choose a good protocol for [DISJn, ε− ξ, 1→ 0] for an appropriate ξ > 0.
Denote I := IC(DISJn, ε, 1 → 0). By continuity of information complexity (Lemma 3,
which holds for one-sided error with the same proof), there exists ξ > 0 such that

IC(DISJn, ε− ξ, 1→ 0) ≤
(

1 + δ

6

)
I.

A minimax argument along the lines of Theorem 3.5 and Theorem 3.6 of [3] (but simpler)
shows that there exists a protocol π that computes [DISJn, ε− ξ, 1→ 0], and for every
distribution µ, its information cost satisfies

ICµ(π) ≤
(

1 + δ

3

)
I.

Denote by r the number of rounds in π.
Step 2. Parallel computing.
Let M = 3

√
N . For an arbitrary distribution µ on {0, 1}n×M × {0, 1}n×M , let µ1, . . . , µM

be the marginals of µ restricted to each block of size n. Consider πM , that is, the
execution of M copies of π in parallel. The protocol πM has information cost

ICµ(πM ) ≤
M∑
i=1

ICµi(π) ≤
(

1 + δ

3

)
M · I.
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Clearly, πM is still an r-round protocol (this is required in order to apply Braverman–Rao
compression).
Step 3. Compression (with the aid of a minimax argument), and truncation.
By Braverman–Rao compression [6] one can find another protocol with communication
cost roughly equal to M · I, and with an extra small error. However, this extra error is
distributional according to the distribution µ. What we want is to solve [DISJn×M , ε],
that is, the protocol is only allowed to err with probability at most ε on every input.
Fortunately, one can fix this by applying a minimax argument, presented as Claim 6.10
in [3], followed by an extra parallel computation step, presented as Claim 6.11 in [3].
The analog of Claim 6.10 comes up with a protocol τ with the following properties:

For every input in {0, 1}n×M × {0, 1}n×M , the statistical distance between the output
of τ and the output of πM is O(1/M3).
The expected communication cost of τ is at most

(
1 + δ

2
)
M · I.

The worst-case communication cost of τ is at most O(Mn/δ1).
(The statement of Claim 6.10 has 1/M2 instead of 1/M3, but the proof of Claim 6.10
works for any constant exponent; this can be traced to the fact that the dependence on
the error in Braverman–Rao compression is logarithmic.)
The idea now is to run M2 copies of τ in parallel, truncating the result, as in Claim 6.11
of [3]. For large enough M (depending on n, ε, δ), the resulting protocol τ ′ satisfies the
following properties:

For every input in {0, 1}n×M×M2 × {0, 1}n×M×M2 , the statistical distance between
the output of τ ′ and the output of τM2 is at most η, where η tends to zero as M →∞.
The worst-case communication complexity of τ ′ is at most (1 + δ)M3 · I.

In particular, the statistical distance between τ ′ and πM3 = πN is at most η +O(1/M)
on every input, which tends to zero as M →∞. Choose M large enough to guarantee
that the statistical distance between the output of τ ′ and the output of πN is at most ξ.
The protocol τ ′ can be used to compute [DISJn×N , ε], as in the proof of Lemma 38. This
completes the proof. J

Now we prove the upper bound.

Proof of Lemma 37. Fix ε > 0. By Lemma 38, there exists T (ε) depending on ε such that

IC(DISJn, ε, 1→ 0) ≤ n IC0(AND, ε, 1→ 0) + o(n)

whenever n ≥ T (ε). For every such sufficiently large n, choose δ = 1
n . Lemma 39 states that

Rε(DISJn×N )
N

≤
(

1 + 1
n

)
IC(DISJn, ε, 1→ 0)

whenever N ≥ C(n, ε) for some constant C(n, ε). Since IC(DISJn, ε, 1→ 0) ≤ n,

Rε(DISJn×N )
n×N

≤ IC0(AND, ε, 1→ 0) + 1
n

+ o(1)

for N ≥ C(n, ε). It follows that

Rε(DISJM )
M

≤ IC0(AND, ε, 1→ 0) + o(1)

where o(1)→ 0 as M →∞, completing the proof. J
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On input (X,Y ):
Alice and Bob, using public randomness, jointly sample a permutation σ on the set
{1, 2, . . . , n} uniformly at random; and they run the following sub-protocol πσ:
For i = 1, 2, . . . , n repeat:

Alice and Bob run a protocol πσi that is (almost) optimal for ICνi(AND, ε/2p, 1→
0) on input (Xσ(i), Yσ(i)), where νi is the distribution of (Xσ(i), Yσ(i)) conditioned
on the event that the protocol has not yet terminated;
if the protocol πσi outputs 1, then terminate and output 1;

If the “for-loop” ends without outputting 1, output 0 and terminate.

Figure 2 The protocol π that solves [DISJn, µ, ε, 1→ 0].

7.2 A protocol for Set-Disjointness

Theorem 15 (restated). For the set-disjointness function DISJn on inputs of length n, we
have

ICD(DISJn, ε) = n[IC0(AND, 0)−Θ(
√
h(ε))] +O(logn).

Proof. We already established the lower bound in (14), it remains to prove the upper bound.
Let µ be an input distribution for DISJn, and let p = Prµ[DISJn(X,Y ) = 1]. We can

assume that p ≥ ε as otherwise ICµ(DISJn, µ, ε) = 0, and the upper bound trivially holds.
Below we introduce a protocol π in Figure 2 that solves [DISJn, µ, ε] and has the desired
information cost. In fact, our protocol is stronger in the sense that it has only one-sided
error: the protocol π always outputs 0 correctly if the correct output is 0, and on the other
hand, if there are t ≥ 1 coordinates satisfying Xi = Yi = 1, then π will erroneously output
0 with probability at most (ε/2p)t ≤ ε/2p. Thus the distributional error of π is at most
p · ε2p < ε, and π indeed solves [DISJn, µ, ε, 1→ 0].

We now analyze the information cost. We start by analyzing the information cost of the
sub-protocol πσ. Let Πσ be the transcript of πσ, and write Πσ = Πσ

1 . . .Πσ
n where Πσ

i denotes
the transcript of the protocol πσi for i = 1, . . . , n. As usual let Πσ

<i = Πσ
1 . . .Πσ

i−1 be the partial
transcript. Let µi denote the distribution of Xσ(i)Yσ(i), and νi denote the distribution of
Xσ(i)Yσ(i) conditioned on Πσ

<i. Corollary 11(iii) gives a bound on the information exchanged
in each round: there exist constants C1, C2 > 0 such that for any distribution ν,

ICν(AND, ε/2p, 1→ 0) ≤ IC0(AND, 0) + C1h(ν(1, 1))− C2h(ε/p).

Note that (Πσ
i |XYΠσ

<i) has the same distribution as (Πσ
i |Xσ(i)Yσ(i)Πσ

<i), and thus

I(Y ; Πσ|X) =
n∑
i=1

I(Y ; Πσ
i |X,Πσ

<i) =
n∑
i=1

[H(Πσ
i |X,Πσ

<i)−H(Πσ
i |XY,Πσ

<i)]

≤
n∑
i=1

[H(Πσ
i |Xσ(i),Πσ

<i)−H(Πσ
i |Xσ(i)Yσ(i),Πσ

<i)]

=
n∑
i=1

I(Yσ(i); Πσ
i |Xσ(i),Πσ

<i).
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Thus, denoting by Tσ the number of AND protocols executed before the termination of πσ,
the above inequality implies (note that νi is a random variable, and πσi depends on νi)

ICµ(πσ) ≤
n∑
i=1

E ICνi(πσi ) ≤
n∑
i=1

Pr[Tσ ≥ i]E [ICνi(πσi ) | Tσ ≥ i]

≤
n∑
i=1

Pr[Tσ ≥ i]E
[
IC0(AND, 0) + C1h(νi(1, 1))− C2h(ε/p) | Tσ ≥ i

]
≤
(
IC0(AND, 0)− C2h(ε/p)

)
E[Tσ] + C1

n∑
i=1

Pr[Tσ ≥ i]E
[
h(νi(1, 1))|Tσ ≥ i

]
.

We want to bound the second term. Note since p ≥ ε,

Pr[Tσ = i|Tσ ≥ i,Xσ(i) = Yσ(i) = 1] = Pr[πσi (Xσ(i)Yσ(i)) = 1|Tσ ≥ i,Xσ(i) = Yσ(i) = 1]

≥ 1− ε

2p
≥ 1/2.

Hence, applying (12) twice and using the concavity of h, we get

Pr[Tσ ≥ i]E
[
h(νi(1, 1))|Tσ ≥ i

]
≤ Pr[Tσ ≥ i]h (E [νi(1, 1)|Tσ ≥ i])
= Pr[Tσ ≥ i]h(Pr[Xσ(i) = Yσ(i) = 1|Tσ ≥ i])
≤ h(Pr[Xσ(i) = Yσ(i) = 1|Tσ ≥ i] Pr[Tσ ≥ i])
= h(Pr[Tσ ≥ i,Xσ(i) = Yσ(i) = 1])
≤ 2 Pr[Tσ = i|Tσ ≥ i,Xσ(i) = Yσ(i) = 1]h(Pr[Tσ ≥ i,Xσ(i) = Yσ(i) = 1])
≤ 2h(Pr[Tσ = i,Xσ(i) = Yσ(i) = 1])
≤ 2h(Pr[Tσ = i, π(X,Y ) = 1]).

Using concavity of h again,

1
n

n∑
i=1

h(Pr[Tσ = i, π(X,Y ) = 1]) ≤ h(Pr[π(X,Y ) = 1]/n) = h(p/n).

Therefore
n∑
i=1

Pr[Tσ ≥ i]E
[
h(νi(1, 1))|Tσ ≥ i

]
≤ 2nh(p/n).

That is, we have shown

ICµ(πσ) ≤
(
IC0(AND, 0)− C2h(ε/p)

)
E[Tσ] + 2C1nh(p/n). (54)

Taking the expectation with respect to σ, we obtain

ICµ(π) = E
σ

ICµ(πσ) =
(
IC0(AND, 0)− C2h(ε/p)

)
E

σ,XY
[Tσ] + 2C1nh(p/n). (55)

Hence it remains to bound E[Tσ] where the expectation is over σ and the input XY .
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Let x, y be such that DISJ(x, y) = 1, and let j be an index such that AND(xj , yj) = 1.
Then

E
σ,XY

[Tσ|XY = xy]

=
n∑
i=1

Pr[σ(i) = j]E[Tσ|XY = xy, σ(i) = j]

= 1
n

n∑
i=1

E[Tσ|XY = xy, σ(i) = j]

= 1
n

n∑
i=1

∑
b=0,1

E[Tσ|XY = xy, σ(i) = j, πσi (X,Y ) = b] Pr[πσi (X,Y ) = b|XY = xy, σ(i) = j]

≤ 1
n

n∑
i=1

(
iPr[πσi (X,Y ) = 1|XY = xy, σ(i) = j] + nPr[πσi (X,Y ) = 0|XY = xy, σ(i) = j]

)
≤ 1
n

n∑
i=1

(
i(1− ε

2p ) + n
ε

2p

)
= (1− ε

2p )n+ 1
2 + ε

2pn ≤
n+ 1

2 + ε

4pn.

This allows us the next bound:

E
σ,XY

[Tσ] = Pr[DISJ(X,Y ) = 1]E[T |DISJ(X,Y ) = 1]

+ Pr[DISJ(X,Y ) = 0]E[T |DISJ(X,Y ) = 0]

≤ p
(
n+ 1

2 + ε

4pn
)

+ (1− p)n ≤ 2p
3 n+ ε

4n+ (1− p)n

= (1− p/3 + ε/4)n. (56)

Combine (55) and (56) we get

ICµ(π) ≤ n(1− p/3 + ε/4)
(
IC0(AND, 0)− C2h(ε/p)

)
+ C12nh(p/n)

= n(IC0(AND, 0)− Ω(h(ε/p) + p)) +O(nh(p/n)).

It remains to optimize over p. We start by minimizing p + h(ε/p). Up to a constant
multiple, the minimum is attained at the point satisfying p = h(ε/p). A simple calculation
shows that p ≈

√
h(ε), and so p+ h(ε/p) = Ω(

√
h(ε)). Thus

ICµ(π) ≤ n[IC0(AND, 0)− Ω(
√
h(ε))] +O(nh(p/n)).

The value of the error term O(nh(p/n)) is at most O(nh(1/n)) = O(n logn
n ) = O(logn), and

the theorem follows. J

8 Open problems and concluding remarks

In Conjecture 14 we speculated that the exact asymptotics of Rε(DISJn) is given by the
information complexity of the AND function when only one-sided error is allowed:

Rε(DISJn) = n IC0(AND, ε, 1→ 0)± o(n).

The set disjointness function has a “self-reducible” structure in the sense that it is possible
to solve an instance of the corresponding communication problem by dividing the input
into blocks and solving the same problem on each block separately. This structure
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allows us to relate the communication complexity of the problem to its amortized
communication complexity, and thus to its information complexity via the fundamental
result of Braverman and Rao [6]. Applying such ideas we showed (the lower bound is
obvious)

IC(DISJn, ε) ≤ Rε(DISJn) ≤ m IC(DISJ n
m
, ε, 1→ 0) + o(n),

for an appropriate choice of m = m(n) that tends to infinity as n→∞. In Theorem 13
we combined this with our analysis of the information complexity of the set disjointness
to prove Rε(DISJn) = n[IC0(AND, 0)−Θ(h(ε))]. More precisely we showed

n IC0(AND, ε) ≤ IC(DISJn, ε) ≤ IC(DISJn, ε, 1→ 0) ≤ n IC0(AND, ε, 1→ 0) + o(n),

and combined it with our results regarding the information complexity of the AND
function. We believe that the upper bound is the truth; that is

IC(DISJn, ε) ≥ n IC0(AND, ε, 1→ 0)− o(n),

which would imply Conjecture 14.
The example of the AND function shows that the Ω(h(ε)) gain in the information cost,
appearing in our upper bounds in Theorems 5, 8, 17 and 18 is tight. However we do not
know whether the O(h(

√
ε)) gain appearing in the lower bounds in Theorems 7 and 8,

Corollary 16 and Theorem 18 is sharp. In fact we are not aware of any example that
exhibits a gain that is not Θ(h(ε)). Is it true that for every function f : X × Y → Z, and
measure µ on X × Y with ICµ(f, 0) > 0, we have ICµ(f, ε) = ICµ(f, 0)−Θ(h(ε))? One
can ask a similar question for ICµ(f, µ, ε), IC(f, ε), and ICD(f, ε).
Recall that the inner product function IPn : {0, 1}n × {0, 1}n → {0, 1} is defined as

IPn : (x, y) 7→
n∑
i=1

xiyi mod 2.

Let ν denote the uniform probability measure on {0, 1}n × {0, 1}n. It is easy to see
that ICν(IPn, ν, ε) ≤ (1 − 2ε)n. In [5, Theorem 1.3], Braverman et al. exploited the
self-reducibility properties of the inner product function to showed that for every δ > 0,
there exists an ε > 0 and n0 > 0 such that for every n > n0, IC(IPn, ε) > (1− δ)n.
In [5, Problem 1.4] they ask whether the dependency of δ on ε is linear. In other words, is
there a constant α > 0 such that for every sufficiently small ε > 0 and sufficiently large n,
ICν(IPn, ν, ε) ≥ (1−αε)n? If yes, then can we take α ≈ 2, or more precisely, is it true that
ICν(IPn, ν, ε) = (1−2ε−o(ε))n? Note that the bound ICν(f, ν, ε) < ICν(f, ν, 0)−Ω(h(ε))
of Theorem 8 does not refute these possibilities as in these questions ε is fixed, and
asymptotics are as n→∞.
The focus of this paper has been on the internal information complexity, and except for
few results such as Proposition 6, we have not studied the external information complexity
analogues. However considering that external information complexity is typically simpler
than internal information complexity, we believe that the analogues of many of our results,
specially those about the AND function, can be proven for this case as well. We defer
this to future research.
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Abstract
A fundamental notion in Algorithmic Statistics is that of a stochastic object, i.e., an object having
a simple plausible explanation. Informally, a probability distribution is a plausible explanation
for x if it looks likely that x was drawn at random with respect to that distribution. In this
paper, we suggest three definitions of a plausible statistical hypothesis for Algorithmic Statistics
with polynomial time bounds, which are called acceptability, plausibility and optimality. Roughly
speaking, a probability distribution µ is called an acceptable explanation for x, if x possesses
all properties decidable by short programs in a short time and shared by almost all objects
(with respect to µ). Plausibility is a similar notion, however this time we require x to possess
all properties T decidable even by long programs in a short time and shared by almost all
objects. To compensate the increase in program length, we strengthen the notion of ‘almost all’
– the longer the program recognizing the property is, the more objects must share the property.
Finally, a probability distribution µ is called an optimal explanation for x if µ(x) is large (close
to 2−Cpoly(x)).

Almost all our results hold under some plausible complexity theoretic assumptions. Our
main result states that for acceptability and plausibility there are infinitely many non-stochastic
objects, i.e. objects that do not have simple plausible (acceptable) explanations. Using the same
techniques, we show that the distinguishing complexity of a string x can be super-logarithmically
less than the conditional complexity of x with condition r for almost all r (for polynomial time
bounded programs). Finally, we study relationships between the introduced notions.
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1 Introduction

Acceptable statistical hypotheses

I Example 1. Assume we are given an n-bit natural number x which is a square and has
no other features. Which statistical hypotheses we would accept for x? An acceptable
hypothesis is the following: the number x was obtained by random sampling in the set of
all n-bit squares, where all numbers have equal chances to be drawn (the hypothesis µ1).
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And the following hypothesis µ2 is clearly not acceptable: the number x was obtained by
random sampling in the set of all n-bit numbers. On what grounds we refute hypothesis µ2?
Because we can exhibit an easily checked property (to be a square) possessed by x and not
possessed by a vast majority of all n-bit strings.

The reader can object to this line of reasoning by noting that on these grounds we can
reject the hypothesis µ1 as well. Indeed, we exhibit the property “to be equal to x”, which
is also shared by a negligible fraction of numbers with respect to µ1. However, in contrast
to the property “to be a square”, this property is not simple, as it has no short program
recognizing the property in a short time. And for the property “to be a square”, there is
such a program.

Generalizing this example, we will define the notion of an acceptable statistical hypothesis
x. A probability distribution µ over the set of binary strings will be called an acceptable
hypothesis for a binary string x if there is no simple set T 3 x with negligible µ(T ). We will
call a set T simple if there is a short program to decide membership in T in a short time, as
in Example 1.

A string will be called stochastic, if it has a simple acceptable hypothesis. How will we
measure simplicity of a probability distribution µ? In the same way as we measure the
simplicity of a refutation set T : a probability distribution will be called simple, if it can be
sampled by a short probabilistic machine with no input in a short time. We say that such
a machine samples a distribution µ, if for all x the probability of the event “M outputs x”
equals µ(x). The running time of M is defined as the maximum of M ’s running time over
all outcomes of its coin tossing.

Of course in a rigorous definition of an acceptable hypothesis µ, we have to specify three
parameters: the upper bound α for the length of a program that recognizes T , the upper
bound t for the running time of that program, and the upper bound ε for µ(T ) (how small
should be µ(T ) to be qualified as “negligible”). The larger these parameters are, the stronger
the notion of an acceptable hypothesis is. And in a rigorous definition of a simple distribution
µ, we have to specify two parameters: the upper bound α′ for the length of a program
sampling µ and the upper bound t′ for the running time of that program. The smaller these
parameters are, the stronger the notion of a simple distribution is. Thus in the notion of
stochasticity we have 5 parameters, α′, t′ and α, t, ε. It seems natural to choose α > α′ and
t > t′, that is, to give more resources to those who want to refute a hypothesis µ than the
amount of resources needed to sample µ (as it was in Example 1).

Also in the definition of an acceptable hypothesis the parameter ε should be much smaller
than 2−α. In this case the notion of an acceptable distribution satisfies The Majority Principle:
for every probability distribution µ for almost all (w.r.t. µ) strings x the distribution µ is an
acceptable hypothesis for x (Proposition 7 below). We believe that any notion of a plausible
statistical hypothesis should satisfy this principle.

The main question we are interested in is the following: for which values of parameters
there are strings that have no simple acceptable explanations? Such strings will be called
non-stochastic. Our main result states that under assumption NE 6= RE there are infinitely
many non-stochastic strings x for t, t′, 1/ε = poly(n) and α, α′ = O(logn)1, where n = |x|
(Theorem 8).

In Section 6 we explain why we need complexity theoretic assumptions to prove the main
result: we prove that existence of non-stochastic strings for such parameters implies that

1 All of the logarithms are base 2.
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P 6=PSPACE. To prove Theorem 8, we introduce the notion of an elusive set. Using that
notion, we establish that there is a super-logarithmic gap between Kolmogorov complexity and
Distinguishing complexity with polynomial time bounds (similar questions were addressed
in [3]). We also study the following two notions of a good statistical hypothesis.

Plausible statistical hypotheses

I Example 2. Let G : {0, 1}n → {0, 1}2n be a Pseudo Random Number Generator (the
precise definition is given in Assumption 4 below). Consider a string x = G(s) of length 2n.
Would we accept the uniform distribution over all strings of length 2n as a good statistical
hypothesis for x? We do not like this hypothesis, as the fraction of x′ of length 2n for which
x′ = G(s′) for some s′ is negligible. However it is impossible to check this property by a short
program in short time – for almost all s the uniform distribution over all strings of length 2n
is an acceptable hypothesis for Gn(s) (Theorem 17). However for every fixed s the property
Gn(s) = x can be decided by a long program (of length n), into which s is hard-wired.

Let us give up the requirement that the program recognizing T in a short time is short.
In a compensation, let us decrease the threshold for µ(T ): we will now think that µ(T ) is
negligible if logµ(T ) is much less than the negative length of the program recognizing T .
Notice that in Example 2 we have logµ(T ) = −2n, which is by n less than the negative
length of the program recognizing T . Probability distributions satisfying this requirement
are called plausible hypotheses for x. The definitions imply that every plausible hypothesis is
acceptable (Proposition 6). The converse is false (Theorem 17). And again the notion of
plausibility satisfies the Majority Principle (Proposition 7).

As plausibility implies acceptability, our main result implies that there are infinitely
many strings that have no simple plausible explanations. The existence of such strings can
be proved also under other assumptions. Indeed, under Assumption 2 (below) only strings
whose distinguishing complexity is close to Kolmogorov complexity can have simple plausible
explanations (Proposition 16). And strings with a large gap between these complexities exist
under assumption FewP ∩ SPARSE * P [3].

Optimal statistical hypotheses

In practice, it is hard to decide whether a given probability distribution µ is plausible or
acceptable for a given string x, as there are many possible “refutation sets” T and for a given
T it is very hard to check whether it indeed refutes µ or not. Ideally, we would like to have a
sound notion of a good hypothesis such that for a given simple distribution µ and a given
string x, we could decide whether µ is good for x in a short time. Or, at least to refute µ in
a short time, if µ is not good for x.

There is a natural parameter measuring how good is µ as an explanation for x, namely
µ(x). Let us try to use this parameter instead of “refutation sets”. According to the
new definition, a simple probability distribution µ is a good explanation for x if µ(x) is
large. How large? We will compare µ(x) with 2−Ct(x), where Ct(x) denotes Kolmogorov
complexity with time bounded by t, where t is large enough compared to the running time
of the short probabilistic program sampling µ. We will call µ an optimal hypothesis for x if
µ(x) ≈ 2−Ct(x).

There are three arguments to justify this definition. Firstly, whatever t we choose, the
Majority Principle holds true (Proposition 13). Second, under some complexity theoretic
assumption, if t is large enough compared to the running time of probabilistic machine
sampling µ then µ(x) cannot significantly exceed 2−Ct(x), therefore, if µ(x) is close to this

CCC 2017
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value, then µ is optimal indeed. This fact was established in [1]. And third, given µ, x we
can prove in a short time that µ is not an optimal hypothesis for x, if this is the case – it
suffices to produce a program p for x such that µ(x)� 2−|p| (we assume here that µ(x) can
be computed in a short time).

Relations between the introduced notions

It follows from the definitions that plausibility implies acceptability and optimality. (To
prove the second implication, we let T = {x} in the definition of plausibility.) All other
statements in the remainder of this section hold true under some assumptions (that are
specified later).

For strings x with CDpoly(n)(x)� Cpoly(n)(x) there are no plausible explanations at all
(Proposition 16). For such strings we are not aware about any relations between acceptability
and optimality.

On the other hand, for strings x with CDpoly(n)(x) ≈ Cpoly(n)(x), the picture is clear:
Plausibility = Optimality ⇒ Acceptability, and the converse implication does not hold
(Example 2, Theorem 17 and Remark 3.3). The equivalence of plausibility and optimality
(Theorem 18) for such strings is good news, as it provides a justification to the Maximal
Likelihood Estimator. Indeed, imagine that x was drawn at random w.r.t. a simple but
unknown probability distribution µ. Then with high µ-probability all C(x),Ct(x),CDt(x)
are close to each other and are close to − logµ(x) 2 and µ is an acceptable and plausible
hypothesis for x (Propositions 7, 13, 12). Given x, we want to find µ or any other plausible or
at least acceptable statistical hypothesis for x. Using the Maximal Likelihood Estimator, we
choose among all simple hypotheses µ the one that maximizes µ(x). Theorem 18 guarantees
the success to this strategy – the chosen hypothesis µ is both acceptable and plausible.

In the next section we define the notions of a program and of Kolmogorov complexities
used in the paper.

2 Preliminaries

Fix a deterministic one-tape Turing machine U that inputs three binary strings p, x, y and
outputs one binary string and satisfies the following condition:

For any other deterministic one-tape Turing machine V there is a constant c and a
polynomial f such that for all p there is q with |q| < |p| + c for which U(q, y, r) =
V (p, y, r) (for all y, r) and the running time of U(q, y, r) is bounded by

f(|y|+ |r|+ the running time of V (p, y, r))

and the similar inequality for the space holds as well.

This machine will be called universal. Using the universal machine we can define the
Kolmogorov complexity (with or without time or space bounds) and the notions of programs
and their running times for deterministic and randomized machines.

Kolmogorov complexity: Ct(x|y) is the minimal length of p such that U(p, y,Λ) = x in
time t. Similarly, CSm(x|y) is the minimal length of p such that U(p, y,Λ) = x on space s.
If U(p, y,Λ) = x in time t, we say that p is a program for x conditional to y (or simply a
program for x, if y = Λ), and we call t the running time of p on input y.

2 Provided that t is larger than certain polynomial of the time needed to sample µ.
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The distinguishing complexity: CDt(x|y) is the minimal length of p such that
U(p, x, y) = 1;
U(p, x′, y) halts in t steps for all x′ of the same length as x;
U(p, x′, y) = 0 for all x′ 6= x.

Programs of deterministic machines: We say that a program p outputs y on input x in
time t if U(p, y,Λ) in time t.

Programs of randomized machines: Considering the uniform probability distribution over
r’s, we obtain a universal randomized machine. More specifically, a program of a randomized
machine is a pair (p,m). A machine with program (p,m) on an input string y tosses a fair
coin m times and then outputs U(p, y, r), where r denotes the outcome of the tossing. We
can fix y = Λ thus obtaining the notion of a program of a randomized machine without input.
The length of the program (p,m) is defined as |p|+ logm, and the running time (space) as
the maximum over all r ∈ {0, 1}m of the running time (space) of U(p, y, r).

In the next section provide the rigorous definitions and formulations to all informal
definitions and statements mentioned in the Introduction.

3 Our results and their comparison to the previous ones

3.1 Existence of non-stochastic strings
By a technical reason we consider only probability distributions µ over {0, 1}n for some n
and assume that µ(x) is a rational number for all x.

I Definition 3. Let t, α be natural numbers and ε a real number between 0 and 1. A (t, α, ε)-
acceptable statistical hypothesis (or explanation) for a string x of length n is a probability
distribution µ such that µ(T ) > ε for all T 3 x recognized by a deterministic program of
length less than α in at most t steps for all inputs of length n.

The larger t, α, ε are, the stronger the notion of a (t, α, ε)-acceptable hypothesis becomes.
For every x the distribution concentrated on x is a (∗, ∗, 1)-acceptable hypothesis for x (the
asterisk for the time parameter means that the time can be arbitrary large as long as the
program always halts). However, we are interested in simple explanations.

I Definition 4. A probability distribution µ is called (t, α)-simple if it can be sampled by a
probabilistic program (with no input) of length less than α in time at most t.3 (Recall that
a machine M samples µ in time t if for all x the probability of event “M outputs x” equals
µ(x) and the running time of M is at most t for all outcomes of coin tossing.)

Strings that have (t′, α′)-simple (t, α, ε)-acceptable explanations for small t′, α′ and large
t, α, ε are informally called stochastic and otherwise non-stochastic. The smaller t′, α′ and
the larger t, α, ε are, the stronger the notion of stochasticity is and the weaker the notion of
non-stochasticity is.

I Definition 5. A probability distribution µ is called a (t, ε)-plausible hypothesis for a sting
x of length n, if for any set T 3 x recognized by a program of length l whose running time
on all inputs of length n is at most t we have µ(T ) > 2−lε.

3 In Theorem 18 we will need simplicity in another sense: we will need that the function x 7→ µ(x) can be
computed by a program of length α in time t.
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The following proposition is a straightforward corollary from the definitions:

I Proposition 6. Every (t, ε)-plausible hypothesis for x is (t, α, ε2−α)-acceptable for x for
any α.

I Remark. Notice that if µ is (t, α)-plausible for x then µ(x) > 0. In contrast, (t, α, ε)-
acceptability of µ for x does not imply that in general. However, if the set T = {x | µ(x) = 0}
can be recognized by a program of length α in time t, then (t, α, ε)-acceptability for x implies
µ(x) > 0. Another reason for not stipulating µ(x) > 0 in the definition of acceptability is
that we can achieve this almost ‘for free’. Indeed, for every (t, α)-simple distribution µ the
distribution µ′ that is the arithmetic mean of µ and the uniform distribution over the set of
all strings of length n is (t′, α′)-simple for t′, α′ close to t, α. For all x of length n we have
µ′(x) > 0. If µ is (t, α, ε)-acceptable for x, then µ′ is (t, α, ε/2)-acceptable for x.

The next statement shows that the Majority Principle is valid for (t, α, ε)-acceptability
provided ε� 2−α and for (t, ε)-plausibility provided ε� 1/n.

I Proposition 7 (Majority Principle). For every probability distribution µ over binary strings
of length n and all α, ε we have

µ{x | µ is not (∗, α, ε)-acceptable for x} < ε2α,
µ{x | µ is not (∗, ε)-plausible for x} < ε(n+O(1)).

This proposition as well as all other statements in this section will be proved in Section 5.
Our main result shows that there are infinitely many non-stochastic strings x for polyno-

mial values of t, t′, 1/ε and logarithmic values of α, α′. This result holds under the following

I Assumption 1. For some language L in NP over the unary alphabet there is no probabilistic
polynomial time machine that for each string x in L finds a certificate for membership
of x in L with probability at least 1/2. Equivalently, for some language L in NE (the
class of languages accepted in time 2O(n) by non-deterministic Turing machines) there is
no probabilistic machine that for each string x in L in time 2O(|x|) finds a certificate for
membership of x in L with probability at least 1/2.

This assumption follows from the assumption NE 6= RE, where RE denotes the class of
languages recognized in time 2O(n) by probabilistic Turing machines that err with probability
at most 1/2 for all strings in the language and do not err for strings outside the language. It
is unknown whether these two assumptions are equivalent or not (see [5]).

I Theorem 8. Under Assumption 1 for some constant d for all c for infinitely many n there
is a string of length n that has no (nc, c logn)-simple (nd, d, n−c)-acceptable hypotheses.

In other words, for the strings x from this theorem, for every (nc, c logn)-simple µ there
is T 3 x recognized by a program of length d in time nd with µ(T ) < n−c. The values of
parameters in this theorem are chosen so that the Majority Principle holds: for any candidate
µ the fraction of strings for which µ is not acceptable is less than 2dn−c which is negligible
for large c and n. And the resources nd, d needed to refute a candidate µ can be even smaller
than resources nc, c logn allowed to sample the candidate µ, as c can be much larger than d.

Later we will compare this result to known results on non-existence of stochastic strings.
The latter exist only for t = t′ = ∗.
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3.2 Super-logarithmic gap between distinguishing complexity and
Kolmogorov complexity

In the proof of Theorem 8 we use the notion of an elusive set, which is interesting in its own
right.

I Definition 9. A language T is called elusive if it is decidable in polynomial time and for all
c for infinitely many n the following holds. T contains at least one word of length n, however
there is no probabilistic machine M with program of length at most c logn and running time
at most nc that with probability at least n−c produces a string of length n from T .

We show that under PI Assumption 1 there exists an elusive set (Theorem 22). Then we
prove that any elusive set has infinitely many non-stochastic strings. There is another
interesting corollary from the existence of elusive sets: there are infinitely many pairs x, r
with CDpoly(n)(x|r)� Cpoly(n)(x|r) (the definition of conditional distinguishing complexity
and conditional Kolmogorov complexity is given in Section 2). More specifically, the following
holds.

I Theorem 10. Under Assumption 1 for some constant d for all c there are infinitely many
strings x with

CDnd

(x|r) 6 Cn
c

(x|r)− c logn

for 98% of r’s of length nd. Here n stands for the length of x. Moreover, under Assumption 2
(see below), in the left hand side of the last inequality, we can replace the conditional
complexity by the unconditional one:

CDnd

(x) < Cn
c

(x|r)− c logn.

I Assumption 2. There is a set that is decidable by deterministic Turing machines in time
2O(n) but is not decidable by Boolean circuits of size 2o(n) for almost all n.

The existence of pairs x, r satisfying the first part of Theorem 10 is known to be
equivalent to the impossibility to separate in polynomial time non-satisfiable Boolean formulas
from those having the unique satisfying assignment [3]. The latter statement (denoted
by (1SAT, SAT ) /∈ P) follows from the assumption NP 6= RP, which is weaker than
Assumption 1, using Valiant and Vazirani Lemma [11].4 For unconditional complexity,
previously it was known that there are strings with CDnd

(x) < Cn
c

(x)− c logn under the
assumption FewP∩ SPARSE * P [3]. Thus the first part of Theorem 10 is not new, however
its second part is.

3.3 A comparison of the notions of acceptability, plausibility and
optimality

I Definition 11. A probability distribution µ is called (t, ε)-optimal for x, if

µ(x) > ε2−Ct(x).

The larger t, ε are, the stronger the notion of (t, ε)-optimality is. Assume that the
distribution µ is (t′, α)-simple for a small α. We will explain that the definition of optimality

4 Thus if (1SAT, SAT ) ∈ P then there are no elusive sets. Is the inverse true?
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makes sense for values of t which are larger than some polynomial of |x|+ t′ and does not
make any sense if, conversely, t′ is larger than some polynomial of |x|+ t.

Consider the following

I Assumption 3. There is a set which is decidable by deterministic Turing machines in time
2O(n) but is not decidable by deterministic Turing machines in space 2o(n) for almost all n.

I Proposition 12. Under Assumption 3 the following holds. There is a constant d such that
for all (t, α)-simple probability distributions µ for all strings x of length n,

logµ(x) 6 −C(n+t)d

(x) + α+ d log(n+ t).

Assume that µ is a (t, ε)-optimal (t′, α)-simple hypothesis for x and t > (n+ t′)d where d
is the constant from Proposition 12. Then logµ(x) differs from the maximal possible value
of logµ′(x) for (t′, α)-simple hypotheses µ′ by at most α + log(1/ε) + d log(n + t′). This
fact provides some justification for the notion of optimality. Another justification for the
definition is the validity of the Majority Principle:

I Proposition 13. For some constant c for all n and all strings x of length n for all
probability distributions µ we have

µ{x | µ is not (∗, ε)-optimal for x} < ε(n+ c).

Conversely, if t′ is larger than some polynomial of |x|+ t then for all strings there is a
simple optimal hypothesis (and thus the notion of optimality becomes trivial).

I Proposition 14. There is a constant c such that for all t every string x of length n has a
((n+ t)c, c log(n+ t))-simple (t, 1)-optimal hypothesis.

Letting T = {x} in the definition of plausibility we can see that plausibility implies
optimality:

I Proposition 15. For all strings x and for all (t, ε)-plausible hypotheses µ for x we have
logµ(x) > −CDt(x) + log ε > −Ct(x) + log ε−O(1).

By Proposition 12 the first inequality in this proposition implies the following

I Proposition 16. Under Assumption 3 there is a constant d such that for every string x of
length n that has a (t1, α)-simple (t2, ε)-plausible hypothesis we have

C(n+t1)d

(x) 6 CDt2(x) + α+ log(1/ε) + d log(n+ t1).

Therefore strings with a large gap between distinguishing complexity and Kolmogorov
complexity do not have simple plausible explanations. From the result of [3] cited above it
follows that (under some complexity theoretic assumptions) for some d for every c there are
infinitely many strings x without (nc, c logn)-simple (nd, n−c)-plausible hypotheses (where n
denotes the length of x).

Thus plausibility implies acceptability and optimality. Is there any implication in the
reverse direction? Assuming the existence of a Pseudo Random Number Generator G :
{0, 1}n → {0, 1}2n we can show that acceptability does not imply neither plausibility, nor
optimality.
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I Assumption 4 (Existence of PRNG). There is a polynomial time computable function
G : {0, 1}∗ → {0, 1}∗, such that |G(s)| = 2|s| and for every sequence of Boolean circuits
{Cn} with 2n inputs and 1 output such that the size of Cn is bounded by a polynomial of n,
the difference of probabilities of events Cn(G(s)) = 1 and Cn(r) = 1 tends to 0 faster than
every inverse polynomial of n (that is, for any polynomial p for all sufficiently large n the
difference of probabilities is less than 1/p(n)). We assume here the uniform distributions
over strings s and r of length n and 2n, respectively.

I Theorem 17. Assume that there is PRNG G : {0, 1}n → {0, 1}2n, as in Assumption 4.
Then for all c for all sufficiently large n for 99% of strings s of length n the uniform
distribution over strings of length 2n is a (nc, c logn, n−c/200)-acceptable hypothesis for
Gn(s).

I Remark. Note that the uniform distribution is neither optimal (Cpoly(n)(x) 6 n+O(1), and
logµ(x) = −2n), nor plausible (recall Example 2) hypothesis for x. By counting arguments
for almost all s for x = Gn(s) it holds CDpoly(n)(x) ≈ Cpoly(n)(x) ≈ C(x) ≈ n. Therefore,
there are strings satisfying Theorem 17 and having the latter property.

Finally, for simple hypotheses µ and for strings with CDpoly(x) ≈ Cpoly(x) optimality
implies plausibility and hence acceptability. However this time we need that µ can be
computed rather than sampled in a short time by a short program.

I Theorem 18. Under Assumption 2 there is a constant c such that the following holds true.
Let µ be a probability distribution µ such that the function x 7→ µ(x) can be computed by a
program of length α in time t. Assume further that µ(x) > ε2−CD(n+t+t1)c

(x), where n is the
length of x and t1 an arbitrary number. Then µ is a (t1, ε2−α−c logn)-plausible hypothesis
for x.

Notice that in this theorem instead of ((n + t + t1)c, ε)-optimality we use a stronger
condition µ(x) > ε2−CD(n+t+t1)c

(x) (with distinguishing complexity in place of Kolmogorov
complexity). However for strings x and t2 with Ct2(x) 6 CD(n+t+t1)c

(x) + β we can replace
that condition by the condition of (t2, ε2β)-optimality of µ for x. Informally speaking, if
Cpoly(x) ≈ CDpoly(x) then optimality for x implies plausibility for x.

3.4 Non-stochastic strings in classical Algorithmic Statistics
In Algorithmic Statistics without resource bounds [4, 6, 7, 8, 12, 13] plausibility of a statistical
hypothesis µ for x is measured by one parameter − logµ(x) − C(x|µ), called randomness
deficiency of x w.r.t. µ. Probability distributions can be represented by the lists of pairs
(a string, its probability) ordered in a standard way. Thus we can talk on conditional
Kolmogorov complexity C(x|µ) and of Kolmogorov complexity C(µ) of µ itself. Up to
an additive constant C(µ) coincides with the length of the shortest program sampling µ
(assuming that the program always halts).

Neglibibility of randomness deficiency is similar to all three our definitions of a good
hypothesis. More specifically the inequality − logµ(x) − C(x|µ) < β is similar to saying
that µ is (∗, α, 2−β)-acceptable, (∗, 2−β)-plausible and (∗, α, 2−β)-optimal for x. However
there is an important difference. The inequality − logµ(x) − C(x|µ) < γ implies that µ
is (∗, γ + O(1))-optimal for x, but not the other way around. If − logµ(x) − C(x|µ) < γ

then for every set T 3 x accepted by a non-deterministic program p we have µ(T ) > 2−|p|−γ .
Conversely, if − logµ(x) − C(x|µ) > γ, then there is a set T 3 x accepted by a short
non-deterministic program (of length about C(µ)) with µ(T ) 6 2−γ .
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In contrast, both the notion of (∗, γ)-plausibility and the notion of (∗, α, ε)-acceptability
are defined by means of deterministic recognizing machines. Thus − logµ(x)− C(x|µ) < γ

implies (∗, γ)-plausibility but not the other way around (with logarithmic accuracy: the
inequality − logµ(x)− C(x|µ) < γ implies only (∗, γ +O(logn))-plausibility.)

A string x is called Kolmogorov (α, β)-stochastic if there is a probability distribution
µ with C(µ) 6 α and − logµ(x) − C(x|µ) 6 β. As we have just explained, Kolmogorov
(α, β)-stochasticity implies the existence of a (∗, α)-simple (∗, 2−β)-plausible (and hence
(∗, α2, 2−β−α2)-acceptable for all α2) hypothesis. (Again we ignore logarithmic terms.)

Shen proved the existence of Kolmogorov (α, β)-non-stochastic string for α, β that are
linear in n:

I Theorem 19 ([10]). For some constant c for all n and all α, β, with 2α+ β < n− c logn,
there is a Kolmogorov (α, β)-non-stochastic string of length n.

As we have mentioned, this statement does not imply the existence of non-stochastic strings
in our sense (even for very large values of time parameters). However the techniques of [10]
can be used to prove the following:

I Theorem 20. For all n and all α, β with α+ β < n there is a string of length n that has
no (∗, α)-simple (∗, α+O(logn), 2−β)-acceptable hypotheses.

It is not hard to see that Theorem 20 implies Theorem 19. Later the term 2α in
Theorem 19 was replaced with α:

I Theorem 21 ([13]). For some constant c for all n and all α, β, with α+ β < n− c logn,
there is a Kolmogorov (α, β)-non-stochastic string of length n.

This result is optimal up to logarithmic terms. Indeed, for all x of length n and all α 6 n

the uniform distribution µ over strings of length n that have the same α first bits as x, has
complexity about α and randomness deficiency at most n− α:

− logµ(x)− C(x|µ) = n− α− C(x|µ) 6 n− α.

So using the known methods we can show the existence of strings of length n that have no
(∗, α1)-simple (∗, α2, ε)-acceptable hypotheses for α1, log(1/ε) = Ω(n) and for α2 which are
only logarithmically larger than α1. It is essential for those methods that the running time
can be arbitrary large and hence they cannot be used in the case when the running time is
bounded by a polynomial of the length.

The notion of an optimal hypothesis is also borrowed from the classical Algorithmic
Statistics. A distribution µ with small Kolmogorov complexity is called optimal if logµ(x)
is close to −C(x), which is equivalent to saying that the randomness deficiency is small.
However, optimality was studied also for distribution µ with large Kolmogorov complexity,
in which case optimality was defined as logµ(x) ≈ C(µ) − C(x). Using the Symmetry of
Information, we can show that the randomness deficiency never exceeds the ‘optimality
deficiency’ C(µ)−C(x)−logµ(x), but not the other way around [13]. However in the definition
of Kolmogorov stochasticity, we can use the optimality deficiency instead of randomness
deficiency: for a string of length n there is an ∗, α-simple hypothesis with optimality deficiency
less than β if and only if the string is Kolmogorov α, β-stochastic. More accurately, both
directions ‘if’ and ‘only if’ hold up to adding some terms of order O(logn) to parameters
α, β [13].
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4 Open questions

I Question 1. Under which other assumptions (different from Assumption 1) there are non-
stochastic strings and elusive sets? Under which other assumptions (different (1SAT, SAT ) ∈
P and P =PSPACE) there are no elusive sets and all strings are stochastic?

I Question 2. Let us replace in the definitions of a plausible and acceptable hypothesis
deterministic machines by non-deterministic ones. Do the notions of a plausible and acceptable
hypothesis and of stochastic string become stronger?

I Question 3. Are there strings that do not possess simple optimal hypotheses?

I Question 4. How acceptability is related to optimality for strings x with CDpoly(x) �
Cpoly(x)?

I Question 5. Are there non-stochastic strings with polynomial bounds for time and linear
bounds for program length: is it true that for some c and ε < 1 for all d and all δ < 1 for all
but finitely many n every string x of length n has an (nc, εn)-simple (nd, δn, n−c)-acceptable
hypothesis?

5 The proofs

5.1 Proof of Proposition 7
The first inequality: the number of sets recognized by a program of length less than α is less
than 2α and each such set contains a fraction at most ε of all n-bit strings w.r.t. µ.

The second inequality: w.l.o.g. we may consider only sets T recognized by programs of
length less than n + c (for some constant c). Indeed, assume that a set T 3 x witnesses
implausibility of µ for x and is recognized by a program of length l > n + c. Then
µ(x) 6 µ(T ) 6 ε2−n−c. Thus the set {x}, whose complexity is less than n + c, witnesses
implausibility of µ for x (if c is large enough). Then we can repeat the arguments from the
previous paragraph: for every fixed l any set T recognized by a program of length l refutes a
fraction at most ε2−l of all strings and the number of programs of length l is 2l, thus all
together they refute a fraction at most ε of strings of length n.

5.2 Proof of Theorem 8
I Theorem 22. Under Assumption 1 there exists an elusive set.

Proof. Fix a language L over the unary alphabet {1} satisfying Assumption 1. Since L ∈ NP,
it can be represented in the form

L = {1k | ∃x ∈ {0, 1}k
c

R(1k, x)},

where c > 0 is a natural number and R a relation decidable in time poly(k).
Consider the set

T = {x ∈ {0, 1}k
c

| R(1k, x)}.

Obviously T can be recognized in polynomial time. Let us show that T is elusive.
Let d be any constant. For the sake of contradiction assume that for some m for all

k > m with 1k ∈ L there is a program Mk of length d log kc that, with probability at least
k−cd, in time kcd prints a string from T of length kc. To obtain a contradiction we construct
the following probabilistic algorithm that finds in polynomial time with failure probability at
most 1/2 a certificate for membership of an input string 1k in L:
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The algorithm. On input 1k we run all randomized programs of length d log kc in kcd steps.
Each program is run kcd times. For each string x output by any of those programs we check
the equality R(1k, x) = 1. If the equality holds true for at least one of those x’s, we output
any such x. (The end of the Algorithm.)

This algorithm runs in polynomial time. Let us bound the probability of failure on any
input 1k ∈ L. We assume that for all 1k ∈ L with k > m there is a randomized program of
length d log kc that produces a string from T with probability at least k−cd. The probability
that kcd times its output falls outside T is less than (1− k−cd)kcd

6 1/e. Therefore for all
k > m the algorithm fails with probability at most 1/e, which is a contradiction. J

Proof of Theorem 8. By Theorem 22 there is an elusive set T . For some d there is a machine
with program of length at most d recognizing T in time nd.

Let T=n denote the set of all strings of length n from T . For every n such that T=n 6= ∅
pick any string xn from T=n. We claim that for any constant c for infinitely many n the
string xn does not have (nc, c logn)-simple (nd, d, n−c)-acceptable hypotheses.

For the sake of contradiction assume that for somem for all n > m there is such hypothesis
µn. As xn ∈ T and T is recognized by a program of length at most d in time nd we have
µ(T ) > n−c. Thus for each such n the probabilistic program of length less than c logn
sampling the distribution µn in time nc produces a string from T with probability at least
n−c, which contradicts the assumption that T is elusive. J

5.3 Proof of Theorem 10
I Proposition 23. Assume that L is an elusive set. Then for all constants c there is a
constant d such that there are infinitely many x ∈ L with

CDnd

(x|r) 6 Cn
c

(x|r)− c logn

for 99% of strings r of length nd. Here n denotes the length of x.

This proposition follows from Sipser’s lemma.

I Lemma 24 ([9]). For every language L recognizable in polynomial time there is a constant
d such that for all n for 99% of strings r of length nd and all x ∈ L=n we have

CDnd

(x|r) 6 log |L=n|+ d logn.

Proof Proposition 23. Let d be the constant from Sipser’s Lemma applied to the given
elusive language L. Let c be an arbitrary constant. By Sipser’s lemma it suffices to show
that log |L=n|+ d logn is less than the right hand side of the inequality we have to prove.
More precisely, we have to show that

log |L=n|+ d logn 6 Cn
c

(x|r)− c logn

for infinitely many x ∈ L and for 99% of r of length nd.
For the sake of contradiction assume that for some m for all n > m for all x ∈ L=n we

have

Cn
c

(x|r) < log |L=n|+ (c+ d) logn

for at least 1% of r’s. For any such n consider the program Mn of probabilistic machine that
samples a random string w of length less that log |L=n|+ (c+ d) logn (all such strings are
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equiprobable) and a string r of length nd. Then Mn considers w as a program of a string
conditional to r, runs that program in nc steps and outputs its result (if any). Thus Mn

outputs every x ∈ L=n with probability at least 1/(100|L=n|nc+d). And hence for all n > m

with non-empty L=n the output Mn falls in L=n with probability at least

|L=n|/(100|L=n|nc+d) = 1/100nc+d.

This contradicts the assumption that L is an elusive set, as Mn runs in time poly(n) and its
program length is O(logn). J

The first part Theorem 10 follows immediately from Theorem 22 and Proposition 23. Let
us prove the second part of Theorem 10. In [14], it was shown that under Assumption 2 we
can replace in Sipser’s lemma conditional complexity by the unconditional one.

I Theorem 25 (Theorem 3.2 in [14]). Under Assumption 2 for all L ∈ PSPACE/poly there
is a constant d such that for all x ∈ L=n we have

CDnd,L=n

(x) 6 log |L=n|+ d logn.

Moreover the constant d depends only on the length of the advice string for L and on the
space bound for L.

In the notation CDnd,L=n

(x) the superscript L=n means that the distinguishing program is
granted the access to an oracle for L=n. If L is decidable on polynomial space we can drop
this superscript.

Combining this theorem with the proof of Proposition 23 and Theorem 22 we obtain the
proof of the second part of Theorem 10.

I Remark. In [3], a weaker result is derived from an assumption that is not comparable with
our one:

I Theorem 26 ([3]). Assume that FewP ∩ SPARSE * P. Then for some constant d for all
c for infinitely many x we have

CDnd

(x) < Cn
c

(x)− c logn.

Here n denotes the length of x.

I Remark. In [3], the following relation between (1 SAT, SAT) and distinguishing complexity
was discovered:

I Theorem 27 ([3]). The following are equivalent:
(1) (1SAT, SAT ) /∈ P.
(2) For some d for all c there are x and y with

CD(|x|+|y|)d

(x|y) 6 C(|x|+|y|)c

(x|y)− c log(|x|+ |y|).

From Theorem 27 and Theorem 10 we obtain the following implication NE 6⊆ RE ⇒
(1SAT, SAT ) 6∈ P, which is not surprising since (1SAT, SAT ) ∈ P implies NP = RP using
the Valiant–Vazirani Lemma.
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5.4 Proof of Proposition 12
I Definition 28. A probability distribution σ over {0, 1}∗ is called P-samplable, if there
is a program of randomized machine that samples this distribution in time bounded by a
polynomial of the length of the output.

I Theorem 29 (Lemma 3.2 in [1]). Under Assumption 3 for every P-samplable probability
distribution σ there is a d such that for all x of length n,

Cn
d

(x) 6 − log σ(x) + d logn.

Proof of Proposition 12. Assume that µ is sampled by a program q of length less than α
in time t. Assume that α < n as otherwise the statement is obvious (the complexity of x
with a polynomial time bound does not exceed its length).

Consider the following P-samplable probability distribution σ: we choose a random t

with probability proportional to 1/t2, then we choose a random program q′ of a randomized
machine with probability proportional to 2−|q′|/|q′|2, run that program in t steps and output
the triple (1t, q′, x), where x is the result of q′ (if any, and the empty string otherwise). The
triple (1t, q′, x) is encoded in such a way that the code length be polynomial in t+ |q′|+ |x|.
By Theorem 29

C|y|
d

(y) 6 − log σ(y) + d log |y|

for some constant d and all y. Letting y = (1t, q, x), we obtain

C|(1t,q,x)|d(1t, q, x) 6 − log σ(1t, q, x) + c log |(1t, q, x)|
6 2 log t+ α+ 2 logα− logµ(x) +O(log(t+ |x|)).

Since the complexity of any entry of a tuple does not exceed the complexity of the tuple
itself, we get the sought inequality. J

5.5 Proof of Proposition 13
Indeed, if µ is not ∗, β-optimal for x, then µ(x) < 2−β−C(x). The sum of probabilities of all
such words is less than ε times the sum of 2−C(x) over all x of length n. The latter sum is
less than n+O(1), since C(x) 6 n+O(1) for all x of length n and for all fixed k the sum of
2−C(x) over all x with C(x) = k is at most 1 (there are at most 2k such x’s).

5.6 Proof of Proposition 14
Consider the machine that chooses a random program of length Ct(x) (with uniform dis-
tribution), runs it in t steps and outputs its result (if any). The program of this machine
has length O(log(n+ t)) and its running time is bounded by a polynomial in t+ n. With
probability at least 2−Ct(x) that machine prints x hence it samples a probability distribution
µ that is poly(n+ t), 1-optimal for x.

5.7 Proof of Theorem 17
Fix an arbitrary constant c. For any set Tn of strings of length 2n recognizable by a program
of length less than c logn in time nc we can construct a Boolean circuit Cn recognizing
that set whose size is bounded by a polynomial of n (that polynomial depends only on c).
Therefore there is a function ε(n) that tends to 0 faster than any inverse polynomial of n
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and such that the probabilities of events Gn(s) ∈ Tn and r ∈ Tn differ at most by ε(n) for
any such set Tn.

For the sake of a contradiction assume that for infinitely many n for 1% of strings s of
length n there is a set Ts recognizable by a program of length less than c logn in time nc
with Pr[r ∈ Ts] < n−c/200. Consider the union Tn of all such sets. Since Gn(s) ∈ Tn for
all such s, the probability of event Gn(s) ∈ Tn is at least 1/100. On the other hand, the
probability of event r ∈ Tn is less than 2c logn (the number of sets Ts) times n−c/200, which
equals 1/200. Thus the difference of probabilities of events r ∈ Tn and Gn(s) ∈ Tn is greater
than 1/200.

Recall now that for each n probabilities of events Gn(s) ∈ Ts and r ∈ Ts differ by at
most ε(n), which tends to 0 faster than any inverse polynomial of n. The number of Ts is
less than 2c logn. Thus we obtain the inequality 2c lognε(n) > 1/200 for infinitely many n,
which is a contradiction.

5.8 Proof of Theorem 18
First we derive a corollary from Theorem 25.

I Corollary 30. Under Assumption 2 for some constant d for all n for every program q of
length at most 3n that recognizes a set T ⊂ {0, 1}n in time t, for all x ∈ T we have

CD(n+t)d

(x) 6 log |T |+ |q|+ d log(n+ t).

Proof. Fix any sequence of strings qn with qn 6 3n. Let

L =
⋃
n,t

Tn,t, where Tn,t = {0[n,t]−n1x | |x| = n, qn(x) = 1 in time t}.

Here [n, t] – denotes a polynomial computing a 1-1-mapping from pairs of natural numbers
to natural numbers such that [n, t] > n, t. Given the length of any word from Tn,t we can
compute n and t in polynomial time. Therefore L ∈ P/3n and L=([n,t]+1) = Tn,t. Hence we
can apply Theorem 25 to L and conclude that

CD([n,t]+1)d,qn(0[n,t]−n1x) 6 log |Tn,t|+ d log(n+ t)

for all t, for all x of length n and all sequences {qn} as above. The constant d does not
depend on {qn}, therefore this inequality holds for all n, t, for all x of length n and all q 6 3n.
Plug into this inequality t, q, n, x from the conditions of theorem. We obtain

CD([n,t]+1)d,q(0[n,t]−n1x) 6 log |T |+ d log(n+ t).

It remains to append to the program of this length distinguishing 0[n,t]−n1x from other
strings the information about n, t and q. In this way we get a distinguishing program for
x of length log |T |+ |q|+O(log(n+ t)) with running time poly(n, t) that does not need an
oracle for T . J

Proof of Theorem 18. Assume the contrary: there is T 3 x recognizable by a program of
length l in time t1 with µ(T ) < ε2−l−α−c logn (where the constant c will be chosen later).
Then consider the set T ′ = {x′ ∈ T | µ(x′) > 2−i} where −i stands for the integer part of
the binary logarithm of µ(x). This set has at most µ(T )2i 6 2µ(T )/µ(x) strings (of length
n) and can be recognized in time t+ t1 by a program of length α+ l +O(log log(1/µ(x))).

CCC 2017



17:16 Stochasticity in Algorithmic Statistics for Polynomial Time

W.l.o.g. we may assume that µ(x) > 2−n and that α, l 6 n. Thus the length of that program
is less than 3n. Corollary 30 implies that for some constant d

CD(n+t+t1)d

(x) 6 logµ(T )− logµ(x) + α+ l + d logn,

that is,

logµ(x) 6 −CD(n+t+t1)d

(x) + α+ l + logµ(T ) + d logn

6 −CD(n+t+t1)d

(x) + α+ l + log ε− l − α− c logn+ d logn

= gCD(n+t+t1)d

(x) + log ε− c logn+ d logn.

Let c = d+ 1. Then the last inequality implies that

logµ(x) < −CD(n+t+t1)d

(x) + log ε 6 −CD(n+t+t1)c

(x) + log ε,

which contradicts the condition of the theorem. J

Proof of Theorems 20 and 19
Proof of Theorem 20. For every µ sampled by a program of length < α consider the set
of all x′ satisfying the inequality µ(x′) > 2−β . For any fixed µ there at most 2β such x′

(otherwise the sum of their probabilities would exceed 1). Therefore the total number of
strings in all such sets is less than

2α2β < 2n.

Here the first factor is an upper bound for the number of µ and the second factor the number
of x′ for a fixed µ.

Let x by the lex first string of length n outside all such sets. Its Kolmogorov complexity
is at most α + O(logn), as we can find it from the number N of distributions µ sampled
by a program of length < α and from parameters α, β (from α and N we can find all
such distributions by running in parallel all programs of length less than α until we find
N distributions; then for every of the distributions µ we can find the set of strings x′ with
µ(x′) > 2−β).

Let us show that x does not possess (∗, α)-simple (∗, α + O(logn), 2−β)-acceptable
hypotheses. Assume that µ is sampled by a program of length < α. Consider the set T = {x}.
Its complexity is at most α+O(logn) and µ-probability is less than 2−β by construction.
Hence the set T witnesses that µ is not acceptable for x. J

Proof of Theorem 19. Assume that α′, β′ satisfy the inequality 2α′+β′+ c logn < n where
c is the constant hidden in the O-notation in Theorem 20 (actually a little larger). Let in
Theorem 20 α = α′ and β = β′ + α′ + c logn. If the word x existing by Theorem 20 were
Kolmogorov (α′, β′)-stochastic, then it would have (∗, α′)-simple (∗, α2, 2−β

′−α2)-acceptable
hypothesis for all α2. Letting α2 = α+ c logn, we would derive that x has an (∗, α)-simple
(∗, α+c logn, 2−β)-acceptable hypothesis, which contradicts the statement of Theorem 20. J

6 Non-stochastic strings and P=PSPACE

In this section we show why we need some complexity-theoretic assumption in Theorem 8 –
its statement implies P 6=PSPACE (Theorem 31). In other words, P=PSPACE implies that
the conclusion in Theorem 8 is false. However, this is due to the fact that, in Theorem 8, the
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length of a program (and its running time) recognizing the refutation set T does not depend
on program length and time to sample the distribution. If we allow the former depend
on the latter then, on the contrary, P=PSPACE implies that non-stochastic strings exist
(Theorem 32).

I Theorem 31. Assume that P=PSPACE. Then for every c there is d for which every
string of length n has an (nd, 2 logn)-simple (nc, c logn, n−d)-acceptable hypothesis.

Proof. Fix a constant c. Define sets A0, A1, . . . recursively: A0 = {0, 1, }n and for i > 0 let

Ai = {x ∈ Ai−1 | ∃ (nc, c logn, n−c)-simple T 3 x |T ∩Ai−1| 6 2nn−i−c}.

The definition of Ai implies that it has at most 2nn−i words. Indeed, there are less than nc
(nc, c logn)-simple sets and each of them contributes at most 2nn−i−c strings to Ai.

Thus An is empty. On the other hand, A0 = {0, 1}n, therefore for every string x of length
n there is i 6 n with x ∈ Ai \Ai+1. For a given x fix such i and consider the distribution µi
sampled as follows. Sample a random j 6 2nn−i and output jth in the lexicographical order
word from Ai (if there is no such word, then the last one, say).

Assume that there is an (nc, c logn)-simple T 3 x with µi(T ) < n−d. The probability of
each string from Ai is at least 2−nni hence we have

|Ai ∩ T | < n−d2nn−i 6 2nn−(i+1)−c

(the last inequality holds provided d > c + 1). Hence x ∈ Ai+1, which contradicts to the
choice of i.

It remains to show that µi is (nd, 2 logn)-simple provided d is large enough. The
distribution µi can be identified by numbers n, i, hence there is a program of length 2 logn
sampling µi. Given the index of a string x in Ai we can find x on the space polynomial in n
and nc. Under assumption P=PSPACE, we can do it in time polynomial in n and nc and
hence µi is (nd, 2 logn)-simple for some d. J

In this theorem the time nd to sample an (nc, c logn, n−d)-acceptable hypothesis µ for x
can be much larger than the time nc allowed to refute µ. Does a similar statement hold for
d that does not depend on c? The next theorem answers this question in the negative.

I Theorem 32. Assume that P=PSPACE. Then for some constant e for every n, α, t there is
a string of length n that has no (t, α)-simple ((α+t+n)e, α+2 log t+2 logn, 2−n+α)-acceptable
statistical hypotheses.

Plugging t = nd and α = d logn we get, for each n, a string of length n with no
(nd, d logn)-simple (ned, (2d + 2) logn, 2−n+d logn)-acceptable hypotheses. Thus for any d
for some c = O(d) there are infinitely many strings which have no (nd, 2 logn)-simple
(nc, c logn, n−d)-acceptable hypotheses.

Proof. Let µtp denote the probability distribution sampled by a program p in time t. Consider
the arithmetic mean of all (t, α)-simple distributions: µ(x) = 2−α

∑
|p|<α µ

t
p(x). Let x stand

for the lex first string of length n such that µ(x) 6 2−n. This string can be found on space
poly(n + t + α). Using the assumption P=PSPACE we conclude that x can be found in
time p(n+ t+ α) from t, α, n, where p is a polynomial.

We claim that x has has no (t, α)-simple (p(α+t+n), α+2 log t+2 logn, 2−n+α)-acceptable
statistical hypotheses. For the sake of contradiction assume that µtp is such a hypothesis
for x. By construction we have µtp(x) 6 2−n+α and hence the singleton set T = {x} has
small probability. It can be recognized in time p(α+ t+ n) by a program of length less than
α+ 2 log t+ 2 logn, consisting of t and n in the self-delimiting encoding followed by p. J
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I Remark. Assume that, in the definitions of a simple and acceptable hypothesis, we
would restrict space instead of time. Then in Theorems 31 and 32 we would not need any
assumptions.
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1 Introduction

Which classes of functions can be efficiently learned? Answering this question has been a
major research direction in computational learning theory since the seminal work of Valiant
[68] formalizing efficient learnability.

For concreteness, consider the model of learning with membership queries under the
uniform distribution. In this model, the learner is given oracle access to a target Boolean
function and aims to produce, with high probability, a hypothesis that approximates the
target function well on the uniform distribution. Say that a circuit class C is learnable in
time T if there is a learner running in time T such that for each function f ∈ C, when given
oracle access to f the learner outputs the description of a Boolean function h approximating
f well under the uniform distribution. The hypothesis h is not required to be from the same
class C of functions. (This and other learning models that appear in our work are defined in
Section 2.)

Various positive and conditional negative results are known for natural circuit classes
in this model, and here we highlight only a few. Polynomial-time algorithms are known
for polynomial-size DNF formulas [34]. Quasi-polynomial time algorithms are known for
polynomial-size constant-depth circuits with AND, OR and NOT gates [46] (i.e., AC0

circuits), and in a recent breakthrough [19], for polynomial-size constant-depth circuits
which in addition contain MOD[p] gates, where p is a fixed prime (AC0[p] circuits). In
terms of hardness, it is known that under certain cryptographic assumptions, the class of
polynomial-size constant-depth circuits with threshold gates (TC0 circuits) is not learnable
in sub-exponential time [50]. (We refer to Section 2 for a review of the inclusions between
standard circuit classes.)

However, even under strong hardness assumptions, it is still unclear how powerful a circuit
class needs to be before learning becomes utterly infeasible. For instance, whether non-trivial
learning algorithms exist for classes beyond AC0[p] remains a major open problem.

Inspired by [19], we show that a general and surprising speedup phenomenon holds
unconditionally for learnability of strong enough circuit classes around the border of currently
known learning algorithms. Say that a class is non-trivially learnable if it is learnable in time
≤ 2n/nw(1), where n is the number of inputs to a circuit in the class, and furthermore the
learner is only required to output a hypothesis that is an approximation for the unknown
function with inverse polynomial advantage. We show that for “typical” circuit classes such as
constant-depth circuits with Mod[m] gates wherem is an arbitrary but fixed composite (ACC0

circuits), constant-depth threshold circuits, formulas and general Boolean circuits, non-trivial
learnability in fact implies high-accuracy learnability in time 2no(1) , i.e., in sub-exponential
time.

I Lemma 1 (Speedup Lemma, Informal Version). Let C be a typical circuit class. Polynomial-
size circuits from C are non-trivially learnable if and only if polynomial-size circuits from
C are (strongly) learnable in sub-exponential time. Subexponential-size circuits from C are
non-trivially learnable if and only if polynomial-size circuits from C are (strongly) learnable
in quasi-polynomial time.

Note that the class of all Boolean functions is learnable in time ≤ 2n/nΩ(1) with ≥ 1/n
advantage simply by querying the function oracle on 2n/nO(1) inputs, and outputting the
best constant in {0, 1} for the remaining (unqueried) positions of the truth-table. Our notion
of non-trivial learning corresponds to merely beating this trivial brute-force algorithm – this
is sufficient to obtain much more dramatic speedups for learnability of typical circuit classes.
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Figure 1 A speedup phenomenon in computational learning theory for typical circuit classes
for learning under the uniform distribution with membership queries. The speedup procedure
simultaneously boosts accuracy and running time.

In order to provide more intuition for this result, we compare the learning scenario to
another widely investigated algorithmic framework. Consider the problem of checking if
a circuit from a fixed circuit class is satisfiable, a natural generalization of the CNF-SAT
problem. Recall that ACC0 circuits are circuits of constant depth with AND, OR, NOT, and
modulo gates. There are non-trivial satisfiability algorithms for ACC0 circuits of size up to
2nε , where ε > 0 depends on the depth and modulo gates [73]. On the other hand, if such
circuits admitted a non-trivial learning algorithm, it follows from the Speedup Lemma that
polynomial size ACC0 circuits can be learned in quasi-polynomial time (see Figure 1).

The Speedup Lemma suggests new approaches both to designing learning algorithms and
to proving hardness of learning results. To design a quasi-polynomial time learning algorithm
for polynomial-size circuits from a typical circuit class, it suffices to obtain a minimal
improvement over the trivial brute-force algorithm for sub-exponential size circuits from the
same class. Conversely, to conclude that the brute-force learning algorithm is essentially
optimal for a typical class of polynomial-size circuits, it suffices to use an assumption under
which subexponential-time learning is impossible.

We use the Speedup Lemma to show various structural results about learning. These
include equivalences between several previously defined learning models, a dichotomy between
sub-exponential time learnability and the existence of pseudo-random function generators in
the non-uniform setting, and implications from non-trivial learning to circuit lower bounds.

The techniques we explore have other consequences for complexity theory, such as Karp-
Lipton style results for bounded-error exponential time, and results showing hardness of the
Minimum Circuit Size Problem for a standard complexity class. In general, our results both
exploit and strengthen the rich web of connections between learning, pseudo-randomness
and circuit lower bounds, which promises to have further implications for our understanding
of these fundamental notions. We now describe these contributions in more detail.
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1.1 Summary of Results
We state below informal versions of our main results. We put these results in perspective
and compare them to previous work in Section 1.2.

Equivalences for Learning Models. The Speedup Lemma shows that learnability of poly-
nomial size circuits for typical circuit classes is not sensitive to the distinction between
randomized sub-exponential time algorithms and randomized non-trivial algorithms. We use
the Speedup Lemma to further show that for such classes, learnability for a range of previ-
ously defined learning models is equivalent. These include the worst-case and average-case
versions of function compression as defined by Chen et al. [20] (see also [64]), and randomized
learning with membership and equivalence queries [10].1 The equivalence between function
compression and learning in particular implies that accessing the entire truth table of a
function represented by the circuit from the class confers no advantage in principle over
having limited access to the truth table.

I Theorem 2 (Equivalences for Learning Models, Informal Version). The following are equivalent
for polynomial-size circuits from a typical circuit class C:

(1) Sub-exponential time learning with membership queries.
(2) Sub-exponential time learning with membership and equivalence queries.
(3) Probabilistic function compression.
(4) Average-case probabilistic function compression.
(5) Exponential time distinguishability from random functions.

In particular, in the randomized sub-exponential time regime and when restricted to
learning under the uniform distribution, Valiant’s model [68] and Angluin’s model [10] are
equivalent in power with respect to the learnability of typical classes of polynomial size
circuits.

A Dichotomy between Learning and Pseudorandomness. It is well-known that if the
class of polynomial-size circuits from a class C is learnable, then there are no pseudo-random
function generators computable in C, as the learner can be used to distinguish random
functions from pseudo-random ones [42]. A natural question is whether the converse is true:
can we in general build pseudo-random functions in the class from non-learnability of the
class? We are able to use the Speedup Lemma in combination with other techniques to show
such a result in the non-uniform setting, where the pseudo-random function generator as
well as the learning algorithm are non-uniform. As a consequence, for each typical circuit
class C, there is a dichotomy between pseudorandomness and learnability – either there are
pseudo-random function generators computable in the class, or the class is learnable, but not
both.

I Theorem 3 (Dichotomy between Learning and Pseudorandomness, Informal Version). Let C
be a typical circuit class. There are no pseudo-random function generators computable by
polynomial-size circuits from C that are secure against sub-exponential size Boolean circuits
if and only if polynomial-size circuits from C are learnable non-uniformly in sub-exponential
time.

1 Our notion of randomized learning with membership and equivalence queries allows the learner’s
hypothesis to be incorrect on a polynomially small fraction of the inputs.
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Nontrivial Learning implies Circuit Lower Bounds. In the algorithmic approach of Williams
[70], non-uniform circuit lower bounds against a class C of circuits are shown by designing
algorithms for satisfiability of C-circuits that beat the trivial brute-force search algorithm.
Williams’ approach has already yielded the result that NEXP 6⊆ ACC0 [73].

It is natural to wonder if an analogue of the algorithmic approach holds for learning, and
if so, what kinds of lower bounds would follow using such an analogue. We establish such a
result – non-trivial learning algorithms yield lower bounds for bounded-error probabilistic
exponential time, just as non-trivial satisfiability algorithms yield lower bounds for non-
deterministic exponential time. Our connection between learning and lower bounds has
a couple of nice features. Our notion of “non-trivial algorithm” can be made even more
fine-grained than that of Williams – it is not hard to adapt our techniques to show that it is
enough to beat the brute-force algorithm by a super-constant factor for learning algorithms
with constant accuracy, as opposed to a polynomial factor in the case of Satisfiability.
Moreover, non-trivial learning for bounded-depth circuits yields lower bounds against circuits
with the same depth, as opposed to the connection for Satisfiability where there is an additive
loss in depth [54, 35].

I Theorem 4 (Circuit Lower Bounds from Learning and from Natural Proofs, Informal Version).
Let C be any circuit class closed under projections.

(i) If polynomial-size circuits from C are non-trivially learnable, then (two-sided) bounded-
error probabilistic exponential time does not have polynomial-size circuits from C.

(ii) If sub-exponential size circuits from C = ACC0 are non-trivially learnable, then one-sided
error probabilistic exponential time does not have polynomial-size circuits from ACC0.

(iii) If there are natural proofs useful against sub-exponential size circuits from C, then
zero-error probabilistic exponential time does not have polynomial-size circuits from C.

Observe that the existence of natural proofs against sub-exponential size circuits yields
stronger lower bounds than learning and satisfiability algorithms. (We refer to Section 2 for
a review of the inclusions between exponential time classes.)

Karp-Lipton Theorems for Probabilistic Exponential Time. Our main results are about
learning, but the techniques have consequences for complexity theory. Specifically, our use
of pseudo-random generators has implications for the question of Karp-Lipton theorems
for probabilistic exponential time. A Karp-Lipton theorem for a complexity class gives a
connection between uniformity and non-uniformity, by showing that a non-uniform inclusion
of the complexity class also yields a uniform inclusion. Such theorems were known for a
range of classes such as NP, PSPACE, EXP, and NEXP [39, 12, 30], but not for bounded-error
probabilistic exponential time. We show the first such theorem for bounded-error probabilistic
exponential time. A technical caveat is that the inclusion in our consequent is not completely
uniform, but requires a logarithmic amount of advice.

I Theorem 5 (Karp-Lipton Theorem for Probabilistic Exponential Time, Informal Version). If
bounded-error probabilistic exponential time has polynomial-size circuits infinitely often, then
bounded-error probabilistic exponential time is infinitely often in deterministic exponential
time with logarithmic advice.

Hardness of the Minimum Circuit Size Problem. Our techniques also have consequences
for the complexity of the Minimum Circuit Size Problem (MCSP). In MCSP, the input is
the truth table of a Boolean function together with a parameter s in unary, and the question
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is whether the function has Boolean circuits of size at most s. MCSP is a rare example
of a problem in NP which is neither known to be in P or NP-complete. In fact, we don’t
know much unconditionally about the complexity of this problem. We know that certain
natural kinds of reductions cannot establish NP-completeness [49], but until our work, it
was unknown whether MCSP is hard for any standard complexity class beyond AC0 [3]. We
show the first result of this kind.

I Theorem 6 (Hardness of the Minimum Circuit Size Problem, Informal Version). The Min-
imum Circuit Size Problem is hard for polynomial-size formulas under truth-table reductions
computable by polynomial-size constant-depth threshold circuits.

I Remark. This work contains several related technical contributions to the research topics
mentioned above. We refer to the appropriate sections for more details. Finally, in Section 8
we highlight some open problems and directions that we find particularly attractive.

1.2 Related Work
Speedups in Complexity Theory. We are not aware of any unconditional speedup result of
this form involving the time complexity of a natural class of computational problems, under
a general computational model. In any case, it is instructive to compare Lemma 1 to a few
other speedup theorems in computational complexity.

A classic example is Blum’s Speedup Theorem [15]. It implies that there is a recursive
function f : N→ N such that if an algorithm computes this function in time T (n), then there
is an algorithm computing f in time O(log T (n)). Lemma 1 differs in an important way.
It refers to a natural computational task, while the function provided by Blum’s Theorem
relies on an artificial construction. Another well-known speedup result is the Linear Speedup
Theorem (cf. [55, Section 2.4]). Roughly, it states that if a Turing Machine computes in time
T (n), then there is an equivalent Turing Machine that computes in time T (n)/c. The proof
of this theorem is based on the simple trick of increasing the alphabet size of the machine. It
is therefore dependent on the computational model, while Lemma 1 is not.

Perhaps closer to our result are certain conditional derandomization theorems in com-
plexity theory. We mention for concreteness two of them. In [30], it is proved that if
MA 6= NEXP, then MA ⊆ i.o.NTIME[2nε ]/nε, while in [33], it is shown that if BPP 6= EXP,
then BPP ⊆ i.o.pseudo-DTIME[2nε ]. It is possible to interpret these results as computational
speedups, but observe that the faster algorithms have either weaker correctness guarantees,
or require advice. Lemma 1 on the other hand transforms a non-trivial learning algorithm
into a sub-exponential time learning algorithm of the same type.

Further results have been discovered in more restricted computational models. For
instance, in the OPP model, [56] proved that if Circuit-SAT has algorithms running in time
2(1−δ)n, then it also has OPP algorithms running in time 2εn. In bounded-depth circuit
complexity, [8] established among other results that if the Formula Evaluation Problem has
uniform TC0-circuits of size O(nk), then it also has uniform TC0-circuits of size O(n1+ε).

If one considers other notions of complexity, we can add to this list several results that
provide different, and often rather unexpected, forms of speedup. We mention, for instance,
depth reduction in arithmetic circuit complexity (see e.g. [1]), reducing the number of rounds
in interactive proofs [13], decreasing the randomness complexity of bounded-space algorithms
[52], cryptography in constant locality [11], among many others.

Connections between Pseudorandomness, Learning and Cryptography. There are well-
known connections between learning theory, theoretical cryptography and pseudorandomness
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(see e.g. [23]). Indeed, pseudorandom distributions lie at the heart of the definition of semantic
security [25, 26], which permeates modern cryptography, and to every secure encryption
scheme there is a naturally associated hard-to-learn (decryption) problem.

The other direction, i.e., that from a generic hard learning problem it is always possible
to construct secure cryptographic schemes and other basic primitives, is much less clear.2
Following a research line initiated in [31], results more directly related to our work were
established in [14]. They proved in particular that private-key encryption and pseudorandom
generators exist under a stronger average-case hardness-of-learning assumption, where one
also considers the existence of a hard distribution over the functions in the circuit class C.

However, these results and subsequent work leave open the question of whether hardness
of learning in the usual case, i.e., the mere assumption that any efficient learner fails on some
f ∈ C, implies the existence of pseudorandom functions computable by C-circuits. While
there is an extensive literature basing standard cryptographic primitives on a variety of
conjecturally hard learning tasks (see e.g., [60] and references therein for such a line of work),
to our knowledge Theorem 3 is the first result to establish a general equivalence between the
existence of pseudorandom functions and the hardness of learning, which holds for any typical
circuit class. A caveat is that our construction requires non-uniformity, and is established
only in the exponential security regime.

Lower Bounds from Learning Algorithms. While several techniques from circuit complexity
have found applications in learning theory in the past (see e.g., [46]), Fortnow and Klivans
[21] were the first to systematically investigate the connection between learning algorithms
and lower bounds in a generic setting.3

For deterministic learning algorithms using membership and equivalence queries, initial
results from [21] and [27] were strengthened and simplified in [44], where it was shown that
non-trivial deterministic learning algorithms for C imply that EXP * C.

The situation for randomized algorithms using membership queries is quite different, and
only the following comparably weaker results were known. First, [21] proved that randomized
polynomial time algorithms imply BPEXP lower bounds. This result was refined in [44],
where a certain connection involving sub-exponential time randomized learning algorithms
and PSPACE was observed. More recently, [69] combined ideas from [44] and [61] to prove
that efficient randomized learning algorithms imply lower bounds for BPP/1, i.e., probabilistic
polynomial time with advice. However, in contrast to the deterministic case, obtaining lower
bounds from weaker running time assumptions had been elusive.

Indeed, we are not aware of any connection between two-sided non-trivial randomized
algorithms and circuit lower bounds, even when considering different algorithmic frameworks
in addition to learning. In particular, Theorem 4 (i) seems to be the first result in this
direction. It can be seen as an analogue of the connection between satisfiability algorithms
and lower bounds established by Williams [70, 73]. But apart from this analogy, the proof of
Theorem 4 employs significantly different techniques.

2 Recall that secure private-key encryption is equivalent to the existence of one-way functions, pseu-
dorandom generators and pseudorandom functions, with respect to polynomial time computations
(cf. [40]). Nevertheless, not all these equivalences are known to hold when more refined complexity
measures are considered, such as circuit depth. In particular, generic constructions of pseudorandom
functions from the other primitives are not known in small-depth classes. This can be done under
certain specific hardness assumptions [50], but here we restrict our focus to generic relations between
basic cryptographic primitives.

3 For a broader survey on connections between algorithms and circuit lower bounds, we refer to [71].
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Useful Properties, Natural Properties, and Circuit Lower Bounds. The concept of natural
proofs, introduced by Razborov and Rudich [59], has had a significant impact on research
on unconditional lower bounds. Recall that a property P of Boolean functions is a natural
property against a circuit class C if it is: (1) efficiently computable (constructivity); (2)
rejects all C-functions, and accepts at least one “hard” function (usefulness), and (3) is
satisfied by most Boolean functions (denseness). In case P satisfies only conditions (1) and
(2), is it said to be useful against C.

There are natural properties against AC0[p] circuits, when p is prime [59]. But under
standard cryptographic assumptions, there is no natural property against TC0 [50]. Con-
sequently, the situation for classes contained in AC0[p] and for those that contain TC0 is
reasonably well-understood. More recently, [74] (see also [30]) proved that if NEXP * C then
there are useful properties against C. This theorem combined with the lower bound from
[73] show that ACC0 admits useful properties.

Given these results, the existence of natural properties against ACC0 has become one of
the most intriguing problems in connection with the theory of natural proofs. Theorem 4
(iii) shows that if there are P-natural properties against sub-exponential size ACC0 circuits,
then ZPEXP * ACC0. This would lead to an improvement of Williams’ celebrated lower
bound which does not seem to be accessible using his techniques alone.4

Karp-Lipton Theorems in Complexity Theory. Karp-Lipton theorems are well-known
results in complexity theory relating non-uniform circuit complexity and uniform collapses. A
theorem of this form was first established in [39], where they proved that if NP ⊆ Circuit[poly],
then the polynomial time hierarchy collapses. This result shows that non-uniform circuit
lower bounds cannot be avoided if our goal is a complete understanding of uniform complexity
theory.

Since their fundamental work, many results of this form have been discovered for com-
plexity classes beyond NP. In some cases, the proof required substantially new ideas, and
the new Karp-Lipton collapse led to other important advances in complexity theory. Below
we discuss the situation for two exponential complexity classes around BPEXP, which is
connected to Theorem 5.

A stronger Karp-Lipton theorem for EXP was established in [12], using techniques from
interactive proofs and arithmetization. An important application of this result appears
in [17] in the proof that MAEXP * Circuit[poly]. This is still one of the strongest known
non-uniform lower bounds. For NEXP, a Karp-Lipton collapse was proved in [30]. This time
the proof employed the easy witness method and techniques from pseudorandomness, and
the result plays a fundamental role in Williams’ framework [70], which culminated in the
proof that NEXP * ACC0 [73]. (We mention that a Karp-Lipton theorem for EXPNP has
also been established in [18].) Karp-Lipton collapse theorems are known for a few other
complexity classes contained in EXP, and they have found applications in a variety of contexts
in algorithms and complexity theory (see e.g., [75, 22]).

Despite this progress on proving Karp-Lipton collapses for exponential time classes, there
is no published work on such for probabilistic classes. Theorem 5 is the first such result for
the class BPEXP.

4 The result that P-natural properties against sub-exponential size circuits yield ZPEXP lower bounds
was also obtained in independent work by Russell Impagliazzo, Valentine Kabanets and Ilya Volkovich
(private communication).
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The Minimum Circuit Size Problem. The Minimum Circuit Size Problem (MCSP) and its
variants has received a lot of attention in both applied and theoretical research. Its relevance
in practice is clear. From a theoretical point of view, it is one of the few natural problems
in NP that has not been shown to be in P or NP-complete. The hardness of MCSP is also
connected to certain fundamental problems in proof complexity (cf. [45, 58]).

Interestingly, a well-understood variant of MCSP is the Minimum DNF Size Problem,
for which both NP-hardness [48] and near-optimal hardness of approximation have been
established [6, 43]. However, despite the extensive literature on the complexity of the
MCSP problem [38, 3, 4, 29, 7, 49, 29, 5, 28], and the intuition that it must also be
computationally hard, there are few results providing evidence of its difficulty. Among these,
we highlight the unconditional proof that MCSP /∈ AC0 [3], and the reductions showing that
Factoring ∈ ZPPMCSP [3] and SZK ⊆ BPPMCSP [4]. The lack of further progress has led to the
formulation and investigation of a few related problems, for which some additional results
have been obtained (cf. [3, 7, 5, 28]).

More recently, [49] provided some additional explanation for the difficulty of proving
hardness of MCSP. They unconditionally established that a class of local reductions that
have been used for many other NP-completeness proofs cannot work, and that the existence
of a few other types of reductions would have significant consequences in complexity theory.
Further results along this line appear in [29].

Theorem 6 contributes to our understanding of the difficulty of MCSP by providing the
first hardness results for a standard complexity class beyond AC0. We hope this result will
lead to further progress on the quest to determine the complexity of this elusive problem.5

1.3 Main Techniques

1.3.1 Overview
Our results are obtaining via a mixture of techniques from learning theory, computational
complexity, pseudo-randomness and circuit complexity. We refer to Figure 2 for a web of
connections involving the theorems stated in Section 1.1 and the methods employed in the
proofs. We start with an informal description of most of the techniques depicted in Figure 2,
with pointers to some relevant references.6

Nisan-Wigderson Generator [51]. The NW-Generator allows us to convert a function
f : {0, 1}n → {0, 1} into a family of functions NW(f). Crucially, if an algorithm A is able to
distinguish NW(f) from a random function, there is a reduction that only needs oracle access
to f and A, and that can be used to weakly approximate f . The use of the NW-Generator
in the context of learning, for a function f that is not necessarily hard, appeared recently in
[19].7

5 We have learned from Eric Allender (private communication) that in independent work with Shuichi
Hirahara, they have shown some hardness results for the closely related problem of whether a string has
high KT complexity. These results do not yet seem to transfer to MCSP and its variants. In addition,
we have learned from Valentine Kabanets (private communication) that in recent independent work
with Russell Impagliazzo and Ilya Volkovich, they have also obtained some results on the computational
hardness of MCSP.

6 This is not a comprehensive survey of the original use or appearance of each method. It is included
here only as a quick guide to help the reader to assimilate the main ideas employed in the proofs.

7 Interestingly, another unexpected and somewhat related use of the NW-generator appears in proof
complexity (see e.g., [57] and references therein).
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(Uniform) Hardness

Random-self-reducibility

Amplification
NW-Generator

Easy Witness Method

Approx. Min-Max Theorem

Worst- to Average-
Case Reduction

Advice Elimination

Almost Everywhere

Counting / Chernoff Bound

Hierarchy Theorem

IW-Generator

Lemma 1
[Speedup]

Theorem 1
[Equivalences]

Theorem 3
[Lower Bounds]

Theorem 4
[Karp-Lipton]

Theorem 5
[Hardness of MCSP]

Theorem 2
[PRF-Dichotomy]

Downward-self-reducibility
Williams' ACC Lower Bound

Figure 2 An overview of the main techniques employed in the proof of each result discussed in
Section 1.1. An arrow from P to Q indicates that the proof of Q relies on P .

(Uniform) Hardness Amplification. This is a well-known technique in circuit complexity
(cf. [24]), allowing one to produce a not much more complex function g̃ : {0, 1}m(n) → {0, 1},
given oracle access to some function g : {0, 1}n → {0, 1}, that is much harder to approximate
than g. The uniform formulation of this result shows that a weak approximator for g̃ can
be converted into a strong approximator for g. The connection to learning was explicitly
observed in [16].

Counting and Concentration Bounds. This is a standard argument which allows one to
prove that most Boolean functions on n-bit inputs cannot be approximated by Boolean circuits
of size ≤ 2n/nω(1) (Lemma 21). In particular, learning algorithm running in non-trivial time
can only successfully learn a negligible fraction of all Boolean functions.

Small-Support Min-Max Theorem [9, 47]. This is an approximate version of the well-
known min-max theorem from game theory. It provides a bound on the support size of
the mixed strategies. To prove Theorem 3, we consider a game between a function family
generator and a candidate distinguisher, and this result allows us to move from a family
of distinguishers against different classes of functions to a single universal distinguisher of
bounded complexity.
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Worst-Case to Average-Case Reduction. The NW-Generator and hardness amplification
can be used to boost a very weak approximation into a strong one. In some circuit classes
such as NC1, a further reduction allows one to obtain a circuit that is correct on every input
with high probability (see e.g. [2]). This is particularly useful when proving hardness results
for MCSP.

Easy Witness Method [37] and Impagliazzo-Wigderson Generator [32]. The easy witness
method is usually employed as a win-win argument: either a verifier accepts a string encoded
by a small circuit, or every accepted string has high worst-case circuit complexity. No matter
the case, it can be used to our advantage, thanks to the generator from [32] that transforms a
worst-case hard string (viewed as a truth table) into a pseudorandom distribution of strings.

(Almost Everywhere) Hierarchy Theorems. A difficulty when proving Theorems 4 and 5
is that there are no known tight hierarchy theorems for randomized time. Our approach is
therefore indirect, relying on the folklore result that bounded-space algorithms can diagonalize
on every input length against all bounded-size circuits (Lemma 38 and Corollary 39).

Random-self-reducibility and Downward-self-reducibility. These are important notions of
self-reducibility shared by certain functions. Together, they can be used via a recursive
procedure to obtain from a learning algorithm for such a function, which requires oracle access
to the function, a standard randomized algorithm computing the same function [33, 65].

Advice Elimination. This idea is important in the contrapositive argument establishing
Theorem 5. Assuming that a certain deterministic simulation of a function in BPEXP is not
successful, it is not clear how to determine on each input length a “bad” string of that length
for which the simulation fails. Such bad strings are passed as advice in our reduction, and in
order to eliminate the dependency on them, we use an advice-elimination strategy from [65].

1.3.2 Sketch of Proofs
We describe next in a bit more detail how the techniques described above are employed in
the proof of our main results. We stress that the feasibility of all these arguments crucially
depend on the parameters associated to each result and technique. However, for simplicity
our focus here will be on the qualitative connections.

Lemma 1 (Speedup Lemma). Given query access to a function f ∈ C that we would like
to learn to high accuracy, the first idea is to notice that if there is a distinguisher against
NW(f), then we can non-trivially approximate f using membership queries. But since this is
not the final goal of a strong learning algorithm, we consider NW(f̃), the generator applied to
the amplified version of f . Using properties of the NW-generator and hardness amplification,
it follows that if there is a distinguisher against NW(f̃), it is possible to approximate f̃ ,
which in turn provides a strong approximator for f . (A similar strategy is employed in [19],
where a natural property is used instead of a distinguisher.)

Next we use the assumption that C has non-trivial learning algorithms to obtain a
distinguisher against C. (For this approach to work, it is fundamental that the functions
in NW(f̃) ⊆ C. In other words, the reductions discussed above should not blow-up the
complexity of the involved functions by too much. For this reason, C must be a sufficiently
strong circuit class.) By a counting argument and a concentration bound, while a non-trivial
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learning algorithm will weakly learn every function in C, it must fail to learn a random
Boolean function with high probability. We apply this idea to prove that a non-trivial learner
can be used as a distinguisher against NW(f̃).8

These techniques can therefore be combined in order to boost a non-trivial learner for
C into a high-accuracy learner for C. This takes care of the accuracy amplification. The
running time speedup comes from the efficiency of the reductions involved, and from the
crucial fact that each function in NW(f̃) is a function over m� n input bits. In particular,
the non-trivial but still exponential time learning algorithm for C only needs to be invoked
on Boolean functions over m input bits. (This argument only sketches one direction in
Lemma 1.)

Theorem 2 (Learning Equivalences). At the core of the equivalence between all learning
and compression models in Theorem 2 is the idea that in each case we can obtain a certain
distinguisher from the corresponding algorithm. Again, this makes fundamental use of
counting and concentration bounds to show that non-trivial algorithms can be used as
distinguishers. On the other hand, the Speedup Lemma shows that a distinguisher can be
turned into a sub-exponential time randomized learning algorithm that requires membership
queries only.

In some models considered in the equivalence, additional work is necessary. For instance,
in the learning model where equivalence queries are allowed, they must be simulated by the
distinguisher. For exact compression, a hypothesis output by the sub-exponential time learner
might still contain errors, and these need to be corrected by the compression algorithm. A
careful investigation of the parameters involved in the proof make sure the equivalences
indeed hold.

Theorem 3 (Dichotomy between Learning and PRFs). It is well-known that the existence
of learning algorithms for a class C implies that C-circuits cannot compute pseudorandom
functions. Using the Speedup Lemma, it follows that the existence of non-trivial learning
algorithms for C implies that C cannot compute exponentially secure pseudorandom functions.

For the other direction, assume that every samplable family F of functions from C

can be distinguished from a random function by some procedure DF of sub-exponential
complexity. By introducing a certain two-player game (Section 4.1), we are able to employ
the small-support min-max theorem to conclude that there is a single circuit of bounded
size that distinguishes every family of functions in C from a random function. In turn, the
techniques behind the Speedup Lemma imply that every function in C can be learned in
sub-exponential time.

We remark that the non-uniformity in the statement of Theorem 3 comes from the
application of a non-constructive min-max theorem.

Theorem 4 (Lower Bounds from Non-trivial Learning and Natural Proofs). Here we
combine the Speedup Lemma with the self-reducibility approach from [33, 65, 21, 44] and
other standard arguments. Assuming a non-trivial learning algorithm for C, we first boost
it to a high-accuracy sub-exponential time learner. Now if PSPACE * C we are done, since

8 A natural question is whether a non-trivial learning directly implies the existence of a BPP-natural
property, which would mean the speedup follows from the main result of [19] in a black-box way. However,
this does not appear to be the case – the learner might learn successfully with probability strictly
between 1/3 and 2/3 for some truth tables, which would violate the BPP-promise on constructivity of
the putative natural property corresponding to the distinguisher.



I. C. Oliveira and R. Santhanam 18:13

PSPACE ⊆ BPEXP. Otherwise, using a special self-reducible complete function f ∈ PSPACE
[65], we are able obtain from a sub-exponential time learning algorithm for f a sub-exponential
time decision algorithm computing f . Using the completeness of f and a strong hierarchy
theorem for bounded-space algorithms, standard techniques allow us to translate the hardness
of PSPACE against bounded-size circuits and the non-trivial upper bound on the randomized
complexity of f into a non-uniform circuit lower bound for randomized exponential time. A
win-win argument is used crucially to establish that no depth blow-up is necessary when
moving from a non-trivial algorithm for (depth-d)-C to a (depth-d)-C circuit lower bound.
For C = ACC0, we combine certain complexity collapses inside the argument with Williams’
lower bound [73].

In order to obtain even stronger lower bounds from natural properties against sub-
exponential size circuits, we further combine this approach with an application of the easy
witness method. This and other standard techniques lead to the collapse BPEXP = ZPEXP,
which strengthens the final circuit lower bound.

Theorem 5 (Karp-Lipton Collapse for Probabilistic Time). This result does not rely on
the Speedup Lemma, but its argument is somewhat more technically involved than the proof
of Theorem 4. The result is established in the contrapositive. Assuming that an attempted
derandomization of BPEXP fails, we show that polynomial space can be simulated in sub-
exponential randomized time. Arguing similarly to the proof of Theorem 4, we conclude that
there are functions in randomized exponential time that are not infinitely often computed by
small circuits.

The first difficulty is that the candidate derandomization procedure on n-bit inputs
requires the use of the NW-generator applied to a function on nc-bit inputs, due to our
setting of parameters. However, in order to invoke the self-reducibility machinery, we need
to make sure the generator can be broken on every input length, and not on infinitely
many input lengths. To address this, we introduce logarithmic advice during the simulation,
indicating which input length in [nc, (n+ 1)c] should be used in the generator. This amount
of advice is reflected in the statement of the theorem.

A second difficulty is that if the derandomization fails on some input string of length n,
it is important in the reduction to know a “bad” string with this property. For each input
length, a bad string is passed as advice to the learning-to-decision reduction (this is the
second use of advice in the proof). This time we are able to remove the advice using an
advice-elimination technique, which makes use of self-correctability as in [65]. Crucially, the
advice elimination implies that randomized exponential time without advice is not infinitely
often contained in C, which completes the proof of the contrapositive of Theorem 5.

Theorem 6 (Hardness of MCSP). Recall that this result states that MCSP is hard for
NC1 with respect to non-uniform TC0 reductions. The proof of Theorem 6 explores the
fine-grained complexity of the Nisan-Wigderson reconstruction procedure and of the hardness
amplification reconstruction algorithm. In order words, the argument depends on the
combined circuit complexity of the algorithm that turns a distinguisher for NW(f̃) into
a high-accuracy approximating circuit for f , under the notation of the proof sketch for
Lemma 1. This time we obtain a distinguisher using an oracle to MCSP. It is possible to
show that this reduction can be implemented in non-uniform TC0.

Observe that the argument just sketched only provides a randomized reduction that
approximates the initial Boolean function f under the uniform distribution. But Theorem 6
requires a worst-case reduction from NC1 to MCSP. In other words, we must be able to
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compute any NC1 function correctly on every input. This can be achieved using that there
are functions in NC1 that are NC1-hard under TC0-reductions, and that in addition admit
randomized worst-case to average-case reductions computable in TC0. Using non-uniformity,
randomness can be eliminated by a standard argument. Altogether, this completes the proof
that NC1 reduces to MCSP via a non-uniform TC0 computation.

These proofs provide a few additional examples of the use of pseudorandomness in
contexts where this notion is not intrinsic to the result under consideration. For instance,
the connection between non-trivial learning algorithms and lower bounds (Theorem 4), the
Karp-Lipton collapse for probabilistic exponential time (Theorem 5), and the hardness of
the Minimum Circuit Size Problem (Theorem 6) are statements that do not explicitly refer
to pseudorandomness. Nevertheless, the arguments discussed above rely on this concept in
fundamental ways. This motivates a further investigation of the role of pseudorandomness in
complexity theory, both in terms of finding more applications of the “pseudorandom method”,
as well as in discovering alternative proofs relying on different techniques.

2 Preliminaries and Notation

2.1 Boolean Function Complexity
We use Fm to denote the set of all Boolean functions f : {0, 1}m → {0, 1}. If W is a
probability distribution, we use w ∼ W to denote an element sampled according to W .
Similarly, for a finite set A, we use a ∼ A to denote that a is selected uniformly at random
from A. Under this notation, f ∈ Fm represents a fixed function, while f ∼ Fm is a
uniformly random function. For convenience, we let Un

def= {0, 1}n. Following standard
notation, X ≡ Y denotes that random variables X and Y have the same distribution. We
use standard asymptotic notation such as o(·) and O(·), and it always refer to a parameter
n→∞, unless stated otherwise.

We say that f, g ∈ Fn are ε-close if Prx∼Un [f(x) = g(x)] ≥ 1− ε. We say that h ∈ Fn
computes f with advantage δ if Prx∼Un [f(x) = h(x)] ≥ 1/2 + δ. It will sometimes be
convenient to view a Boolean function f ∈ Fm as a subset of {0, 1}m in the natural way.

We often represent Boolean functions as strings via the truth table mapping. Given a
Boolean function f ∈ Fn, tt(f) is the 2n-bit string which represents the truth table of f in
the standard way, and conversely, given a string y ∈ {0, 1}2n , fn(y) is the Boolean function
in Fn whose truth table is represented by y.

Let C = {Cn}n∈N be a class of Boolean functions, where each Cn ⊆ Fn. Given a language
L ⊆ {0, 1}∗, we write L ∈ C if for every large enough n we have that Ln

def= {0, 1}n ∩ L is in
Cn. Often we will abuse notation and view C as a class of Boolean circuits. For convenience,
we use number of wires to measure circuit size. We denote by C[s(n)] the set of n-variable
C-circuits of size at most s(n). As usual, we say that a uniform complexity class Γ is contained
in C[poly(n)] if for every L ∈ Γ there exists k ≥ 1 such that L ∈ C[nk].

We say that C is typical if C ∈ {AC0,AC0[p],ACC0,TC0,NC1,Formula,Circuit}. Recall
that

CNF,DNF ( AC0 ( AC0[p] ( ACC0 ⊆ TC0 ⊆ NC1 = Formula[poly] ⊆ Circuit[poly].

We assume for convenience that TC0 is defined using (unweighted) majority gates instead of
weighted threshold gates. Also, while NC1 typically refers to circuits of polynomial size and
logarithmic depth, we consider the generalized version where NC1[s] is the class of languages
computed by circuits of size ≤ s and depth ≤ log s.
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While we restrict our statements to typical classes, it is easy to see that they generalize
to most circuit classes of interest. When appropriate we use Cd to restrict attention to
C-circuits of depth at most d. In this work, we often find it convenient to suppress the
dependence on d, which is implicit for instance in the definition of a circuit family from a
typical bounded-depth circuit class, such as the first four typical classes in the list above. It
will be clear from the context whether the quantification over d is existential or universal.

Given a sequence of Boolean functions {fn}n∈N with fn : {0, 1}n → {0, 1}, we let Cf

denote the extension of C that allows Cn-circuits to have oracle gates computing fn.
For a complexity class Γ and a language L ⊆ {0, 1}∗, we say that L ∈ i.o.Γ if there

is a language L′ ∈ Γ such that Ln = L′n for infinitely many values of n. Consequently, if
Γ1 * i.o.Γ2 then there is a language in Γ1 that disagrees with each language in Γ2 on every
large enough input length.

Recall the following diagram of class inclusions involving standard complexity classes:9

ZPP ⊆

NP
⊆ ⊆

RP MA⊆ ⊆
BPP

⊆ PSPACE ⊆ EXP ⊆ ZPEXP ⊆

NEXP
⊆ ⊆

REXP MAEXP⊆ ⊆
BPEXP

⊆ EXPSPACE.

In order to avoid confusion, we fix the following notation for exponential complexity classes.
E refers to languages computed in time 2O(n). EXP refers to languages computed with bounds
of the form 2nc for some c ∈ N. SUBEXP denotes complexity 2nε for a fixed but arbitrarily
small ε > 0. Finally, ESUBEXP refers to a bound of the form 22n

ε

, again for a fixed but
arbitrarily small ε > 0. These conventions are also used for the DSPACE(·) and BPTIME(·)
variants, such as BPE, BPSUBEXP and EXPSPACE. For instance, a language L ⊆ {0, 1}∗
is in BPSUBEXP if for every ε > 0 there is a bounded-error randomized algorithm that
correctly computes L in time ≤ 2nε on every input of length n, provided that n is sufficiently
large. For quasi-polynomial time classes such as RQP and BPQP, the convention is that for
each language in the class there is a constant c ≥ 1 such that the corresponding algorithm
runs in time at most O(n(logn)c).

We will use a few other standard notions, and we refer to standard textbooks in compu-
tational complexity and circuit complexity for more details.

2.2 Learning and Compression Algorithms

The main learning model with which we concern ourselves is PAC learning under the uniform
distribution with membership queries.

I Definition 7 (Learning Algorithms). Let C be a circuit class. Given a size function s : N→ N
and a time function T : N → N, we say that C[s] has (ε(n), δ(n))-learners running in time
T (n) if there is a randomized oracle algorithm Af (the learner) such that for every large
enough n ∈ N:

For every function f ∈ C[s(n)], given oracle access to f , with probability at least
1 − δ(n) over its internal randomness, Af (1n) outputs a Boolean circuit h such that
Prx∼Un [f(x) 6= h(x)] ≤ ε(n).
For every function f , Af (1n) runs in time at most T (n).

9 Non-uniform lower bounds against unrestricted polynomial size circuits are currently known only for
MAEXP, the exponential time analogue of MA [17].
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It is well-known that the confidence of a learning algorithm can be amplified without
significantly affecting the running time (cf. [41]), and unless stated otherwise we assume that
δ(n) = 1/n.

A weak learner for C[s(n)] is a (1/2 − 1/nc, 1/n)-learner, for some fixed c > 0 and
sufficiently large n. We say C[s] has strong learners running in time T if for each k ≥ 1
there is a (1/nk, 1/n)-learner for C[s] running in time T . Different values for the accuracy
parameter k can lead to different running times, but we will often need only a fixed large
enough k when invoking the learning algorithm. On the other hand, when proving that a class
has a strong learner, we show that the claimed asymptotic running time holds for all fixed
k ∈ N. For simplicity, we may therefore omit the dependence of T on k. We say that C[s]
has non-trivial learners if it has (1/2− 1/nk, 1/n)-learners running in time T (n) = 2n/nω(1),
for some fixed k ∈ N.

We also discuss randomized learning under the uniform distribution with membership
queries and equivalence queries [10]. In this stronger model, the learning algorithm is also
allowed to make queries of the following form: Is the unknown function f computed by the
Boolean circuit C? Here C is an efficient representation of a Boolean circuit produced be
the learner. The oracle answers “yes” if the Boolean function computed by C is f ; otherwise
it returns an input x such that C(x) 6= f(x).

I Definition 8 (Compression Algorithms). Given a circuit class C and a size function s : N→ N,
a compression algorithm for C[s] is an algorithm A for which the following hold:

Given an input y ∈ {0, 1}2n , A outputs a circuit D (not necessarily in C) of size o(2n/n)
such that if fn(y) ∈ C[s(n)] then D computes fn(y).
A runs in time polynomial in |y| = 2n.

We say C[s] admits compression if there is a (polynomial time) compression algorithm for
C[s].

We will also consider the following variations of compression. If the algorithm is prob-
abilistic, producing a correct circuit with probability ≥ 2/3, we say C[s] has probabilistic
compression. If the algorithm produces a circuit D which errs on at most ε(n) fraction
of inputs for fn(y) in C[s], we say that A is an average-case compression algorithm with
error ε(n). We define correspondingly what it means for a circuit class to have average-case
compression or probabilistic average-case compression.

2.3 Natural Proofs and the Minimum Circuit Size Problem
We say that R = {Rn}n∈N is a combinatorial property (of Boolean functions) if Rn ⊆ Fn
for all n. We use LR to denote the language of truth-tables of functions in R. Formally,
LR = {y | y = tt(f) for some f ∈ Rn and n ∈ N}.

I Definition 9 (Natural Properties [59]). Let R = {Rn} be a combinatorial property, C
a circuit class, and D a (uniform or non-uniform) complexity class. We say that R is a
D-natural property useful against C[s(n)] if there is n0 ∈ N such that the following holds:
(i) Constructivity. LR ∈ D.
(ii) Density. For every n ≥ n0, Prf∼Fn [f ∈ Rn] ≥ 1/2.
(iii) Usefulness. For every n ≥ n0, we have Rn ∩ Cn[s(n)] = ∅.

I Definition 10 (Minimum Circuit Size Problem). Let C be a circuit class. The Minimum
Circuit Size Problem for C, abbreviated as MCSP-C, is defined as follows:

Input. A pair (y, s), where y ∈ {0, 1}2n for some n ∈ N, and 1 ≤ s ≤ 2n is an integer
(inputs not of this form are rejected).
Question. Does fn(y) have C-circuits of size at most s?
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We also define a variant of this problem, where the circuit size is not part of the input.

I Definition 11 (Unparameterized Minimum Circuit Size Problem). Let C be a circuit class,
and s : N→ N be a function. The Minimimum Circuit Size Problem for C with parameter s,
abbreviated as MCSP-C[s], is defined as follows:

Input. A string y ∈ {0, 1}2n , where n ∈ N (inputs not of this form are rejected).
Question. Does fn(y) have C-circuits of size at most s(n)?

Note that a dense property useful against C[s(n)] is a dense subset of the complement of
MCSP-C[s].

2.4 Randomness and Pseudorandomness
I Definition 12 (Pseudorandom Generators). Let ` : N→ N, h : N→ N and ε : N→ [0, 1] be
functions, and let C be a circuit class. A sequence {Gn} of functions Gn : {0, 1}`(n) → {0, 1}n
is an (`, ε) pseudorandom generator (PRG) against C[h(n)] if for any sequence of circuits
{Dn} with Dn ∈ C[h(n)] and for all large enough n,∣∣∣∣ Pr

w∼Un
[Dn(w) = 1]− Pr

x∼U`(n)
[Dn(Gn(x)) = 1]

∣∣∣∣ ≤ ε(n).

The pseudorandom generator is called quick if its range is computable in time 2O(`(n)).

I Theorem 13 (PRGs from computational hardness [51, 32]). Let s : N → N be a time-
constructible function such that n ≤ s(n) ≤ 2n for every n ∈ N. There is a constant c > 0
and an algorithm which, given as input n in unary and the truth table of a Boolean function
on s−1(n) bits which does not have circuits of size nc, computes the range of a (`(n), 1/n)
pseudorandom generator against Circuit[n] in time 2O(`(n)), where `(n) = O((s−1(n))2/ logn).

I Definition 14 (Distinguishers and Distinguishing Circuits). Given a probability distribution
Wn with Support(Wn) ⊆ {0, 1}n and a Boolean function hn : {0, 1}n → {0, 1}, we say that
hn is a distinguisher for Wn if∣∣∣∣ Pr

w∼Wn

[hn(w) = 1]− Pr
x∼Un

[hn(x) = 1]
∣∣∣∣ ≥ 1/4.

We say that a circuit Dn is a circuit distinguisher for Wn if Dn computes a function hn that
is a distinguisher for Wn. A function f : {0, 1}∗ → {0, 1} is a distinguisher for a sequence of
distributions {Wn} if for each large enough n, fn is a distinguisher for Wn, where fn is the
restriction of f to n-bit inputs.

The following is a slight variant of a definition in [19].

I Definition 15 (Black-Box Generator). Let ` : N → N, γ(n) ∈ [0, 1], and C be a circuit
class. A black-box (γ, `)-function generator within C is a mapping that associates to any
f : {0, 1}n → {0, 1} a family GEN(f) = {gz}z∈{0,1}m of functions gz : {0, 1}` → {0, 1}, for
which the following conditions hold:
(i) Family size. The parameter m ≤ poly(n, 1/γ).
(ii) Complexity. For every z ∈ {0, 1}m, we have gz ∈ Cf [poly(m)].
(iii) Reconstruction. Let L = 2` and WL be the distribution supported over {0, 1}L that is

generated by tt(gz), where z ∼ Um. There is a randomized algorithm Af , taking as
input a circuit D and having oracle access to f , which when D is a distinguishing circuit
for WL, with probability at least 1− 1/n outputs a circuit of size poly(n, 1/γ, size(D))
that is γ-close to f . Furthermore, Af runs in time at most poly(n, 1/γ, L(n)).
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This definition is realized by the following result.

I Theorem 16 (Black-Box Generators for Restricted Classes [19]). Let p be a fixed prime, and
C be a typical circuit class containing AC0[p]. For every γ : N→ [0, 1] and ` : N→ N there
exists a black-box (γ, `)-function generator within C.

I Definition 17 (Complexity Distinguisher). Let C be a circuit class and consider functions
s, T : N→ N. We say that a probabilistic oracle algorithm Ag is a complexity distinguisher
for C[s(n)] running in time T if Ag(1n) always halts in time T (n) with an ouput in {0, 1},
and the following hold:

For every g ∈ C[s(n)], PrA[Ag(1n) = 1] ≤ 1/3.
Eg∼Fn,A[Ag(1n)] ≥ 2/3.

IDefinition 18 (Zero-Error Complexity Distinguisher). Let C be a circuit class and s, T : N→ N
be functions. We say that a probabilistic oracle algorithm Ag is a zero-error complexity
distinguisher for C[s(n)] running in time T if Ag(1n) always halts in time T (n) with an
output in {0, 1, ?}, and the following hold:

If g ∈ C[s(n)], Ag(1n) always outputs 0 or ?, and PrA[Ag(1n) = ?] ≤ 1/3.
For every n ≥ 1 there exists a family of functions Sn ⊆ Fn with |Sn|/|Fn| ≥ 1 − o(1)
such that for every f ∈ Sn, Af (1n) always outputs 1 or ?, and PrA[Af (1n) = ?] ≤ 1/3.

We will make use of the following standard concentration of measure result.

I Lemma 19 (Chernoff Bound, cf. [36, Theorem 2.1]). Let X ∼ Bin(m, p) and λ = mp. For
any t ≥ 0,

Pr[|X − E[X]| ≥ t] ≤ exp
(
− t2

2(λ+ t/3)

)
.

3 Learning Speedups and Equivalences

3.1 The Speedup Lemma
We start with the observation that the usual upper bound on the number of small Boolean
circuits also holds for unbounded fan-in circuit classes with additional types of gates.

I Lemma 20 (Bound on the number of functions computed by small circuits). Let C be a
typical circuit class. For any s : N→ N satisfying s(n) ≥ n there are at most 250s(n) log s(n)

functions in Fn computed by C-circuits of size at most s(n).

Proof. A circuit over n input variables and of size at most s(n) can be represented by its
underlying directed graph together with information about the type of each gate. A node
of the graph together with its gate type can be described using O(log s(n)) bits, since for a
typical circuit class there are finitely many types of gates. In addition, each input variable can
be described as a node of the graph using O(logn) = O(log s(n)) bits, since by assumption
s(n) ≥ n. Finally, using this indexing scheme, each wire of the circuit corresponding to a
directed edge in the circuit graph can be represented with O(log s(n)) bits. Consequently,
as we measure circuit size by number of wires, any circuit of size at most s(n) can be
represented using at most O(s(n) log s(n)) bits. The lemma follows from the trivial fact that
a Boolean circuit computes at most one function in Fn and via a conservative estimate for
the asymptotic notation. J

Lemmas 19 and 20 easily imply the following (folklore) result.
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I Lemma 21 (Random functions are hard to approximate). Let C be a typical circuit class,
s ≥ n, and δ ∈ [0, 1/2]. Then,

Pr
f∼Fn

[∃C-circuit of size ≤ s(n) computing f with advantage δ(n)] ≤ exp
(
−δ22n−1 + 50s log s

)
.

Proof. Let g ∈ Fn be a fixed function. It follows from Lemma 19 with p = 1/2, m = 2n,
t = δ2n, and using δ ≤ 1/2 that

Pr
f∼Fn

[g computes f with advantage δ(n)] ≤ exp
(
−δ

22n

2

)
.

The claim follows immediately from this estimate, Lemma 20, and a union bound. J

I Lemma 22 (Non-trivial learners imply distinguishers). Let C be a typical circuit class,
s : N → N be a size bound, and T : N → N be a time bound such that T (n) = 2n/nω(1). If
C[s] has weak learners running in time T , then C[s(n)] has complexity distinguishers running
in time T (n) · poly(n).

Proof. By the assumption that C is weakly learnable, there is a probabilistic oracle algorithm
Aflearn, running in time T (n) on input 1n, which when given oracle access to f ∈ C[s], outputs
with probability at least 1 − 1/n a Boolean circuit h which agrees with f on at least a
1/2 + 1/nk fraction of inputs of length n, for some universal constant k. We show how to
construct from Aflearn an oracle algorithm Afdist which is a complexity distinguisher for C[s].

Afdist operates as follows on input 1n. It runs Aflearn on input 1n. If Aflearn does not output a
hypothesis, Afdist outputs ‘1’. Otherwise Afdist estimates the agreement between the hypothesis
h output by the learning algorithm and the function f by querying f on n5k inputs of length
n chosen uniformly at random, and checking for each such input whether f agrees with h.
The estimated agreement is computed to be the fraction of inputs on which f agrees with h.
If it is greater than 1/2 + 1/n2k, Afdist outputs ‘0’, otherwise it outputs ‘1’.

By the assumption on efficiency of the learner Aflearn, it follows that A
f
dist runs in time

T (n) · poly(n). Thus we just need to argue that Afdist is indeed a complexity distinguisher.
For a uniformly random f , the probability that Aflearn outputs a hypothesis h that has

agreement greater than 1/2 + 1/n4k with f is exponentially small. This is because Aflearn
runs in time T (n) = 2n/nω(1), and hence if it outputs a hypothesis, it must be of size at
most 2n/nω(1). By Lemma 21, only an exponentially small fraction of functions can be
approximated by circuits of such size. Also, given that a circuit h has agreement at most
1/2 + 1/n4k with f , the probability that the estimated agreement according to the procedure
above is greater than 1/2 + 1/n2k is exponentially small by Lemma 19. Thus, for a uniformly
random f , the oracle algorithm Afdist outputs ‘0’ with exponentially small probability, and
hence for large enough n, it outputs ‘1’ with probability at least 2/3.

For f ∈ C[s(n)], by the correctness and efficiency of the learning algorithm, Aflearn outputs
a hypothesis h with agreement at least 1/2 + 1/nk with f , with probability at least 1− 1/n.
For such a hypothesis h, using Lemma 19 again, the probability that the estimated agreement
is smaller than 1/2 + 1/n2k is exponentially small. Thus, for n large enough, with probability
at least 2/3, Afdist outputs ‘0’. J

I Lemma 23 (Faster learners from distinguishers). Let C be a typical circuit class. If C[poly(n)]
has complexity distinguishers running in time 2O(n), then for every ε > 0, C[poly(n)] has
strong learners running in time O(2nε). If for some ε > 0, C[2nε ] has complexity distinguishers
running in time 2O(n), then C[poly(n)] has strong learners running in time 2log(n)O(1) .
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Proof. We prove the first part of the Lemma, and the second part follows analogously using
a different parameter setting.

Let C be a typical circuit class. If C = AC0, the lemma holds unconditionally since
this class can be learned in quasi-polynomial time [46]. Assume otherwise that C contains
AC0[p], for some fixed prime p. By assumption, C[poly(n)] has a complexity distinguisher
Ag0 running in time 2O(n). We show that for every ε > 0 and every k > 0, C[poly(n)] has
(1/nk, 1/n)-learners running in time O(2nε). Let ε′ > 0 be any constant such that ε′ < ε. By
Theorem 16 there exists a black-box (γ, `)-function generator GEN within C, where γ = 1/nk
and ` = nε

′ . For this setting of γ and ` we have that the parameter m for GEN(f) in
Definition 15 is poly(n), and that for each z ∈ {0, 1}m, we have gz ∈ Cf [poly(n)]. Let Af1 be
the randomized reconstruction algorithm for GEN(f).

We define a (1/nk, 0.99)-learner Af for C[poly(n)] running in time O(2nε); the confidence
can then be amplified to satisfy the definition of a strong learner while not increasing the
running time of the learner by more than a polynomial factor. The learning algorithm
operates as follows. It interprets the oracle algorithm Ag0 on input 1` as a probabilistic
polynomial-time algorithm D(·, ~r) which is explicitly given the truth table of g, of size L = 2`,
as input, with ~r the randomness for this algorithm. It guesses ~r at random and then computes
a circuit DL of size 2O(`) which is equivalent to D(·, ~r) on inputs of size 2`, using the standard
transformation of polynomial-time algorithms into circuits. It then runs Af1 on input DL,
and halts with the same output as Af1 . Observe that the queries made by the reconstruction
algorithm can be answered by the learner, since it also has query access to f .

Using the bounds on running time of A0 and A1, it is easy to see that Af can be
implemented to run in time 2O(`), which is at most 2nε for large enough n. We need to
argue that Af is a correct strong learner for C[poly(n)]. The critical point is that when
f ∈ C[poly(n)], with noticeable probability, DL is a distinguishing circuit for WL (using
the terminology of Definition 15), and we can then take advantage of the properties of the
reconstruction algorithm. We now spell this out in more detail.

When f ∈ C[poly(n)], using the fact that C is typical and thus closed under composition
with itself, and that it contains AC0[p], we have that for each z ∈ {0, 1}m, gz ∈ C[poly(n)].
Note that the input size for gz is ` = nε

′ , and hence also gz ∈ C[poly(`)]. Using now that A0 is
a complexity distinguisher, we have that for any z ∈ {0, 1}m, PrA[Agz (1`) = 1] ≤ 1/3, while
Eg∼F`,A[Ag(1`)] ≥ 2/3. By a standard averaging argument and the fact that probabilities
are bounded by 1, this implies that with probability at least 0.05 over the choice of ~r, DL is
a distinguishing circuit for WL. Under the properties of the reconstruction algorithm Af1 ,
when given as input such a circuit DL, with probability at least 1− 1/n, the output of Af1 is
1/nk-close to f . Hence with probability at least 0.05 · (1−1/n) > 0.01 over the randomness of
A, the output of Af is 1/nk-close to f , as desired. As observed before, the success probability
of the learning algorithm can be amplified by standard techniques (cf. [41]).

The second part of the lemma follows by the same argument with a different choice of
parameters, using a black-box (γ, `)-function generator with γ = 1/nk and ` = (logn)c,
where c is chosen large enough as a function of ε. Again, the crucial point is that the relative
circuit size of each gz compared to its number of input bits is within the size bound of the
distinguisher. J

I Remark. While Lemma 23 is sufficient for our purposes, we observe that the same argument
shows in fact that the conclusion holds under the weaker assumption that the complexity
distinguisher runs in time 2nc , for a fixed c ∈ N. In other words, it is possible to obtain
faster learners from complexity distinguishers running in time that is quasi-polynomial in
the length of the truth-table of its oracle function.
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I Lemma 24 (Speedup Lemma). Let C be a typical circuit class. The following hold:
(Low-End Speedup) C[poly(n)] has non-trivial learners if and only if for each ε > 0,
C[poly(n)] has strong learners running in time O(2nε).
(High-End Speedup) There exists ε > 0 such that C[2nε ] has non-trivial learners if and
only if C[poly(n)] has strong learners running in time 2log(n)O(1) .

Proof. First we show the Low-End Speedup result. The “if” direction is trivial, so we only
need to consider the “only if” case. This follows from Lemma 23 and Lemma 22. Indeed, by
Lemma 22, if C[poly(n)] has non-trivial learners, it has complexity distinguishers running in
time 2n/nω(1). By Lemma 23, the existence of such complexity distinguishers implies that
for each ε > 0, C[poly(n)] has strong learners running in time O(2nε), and we are done.

Next we show the High-End Speedup result. The proof for the “only if” direction is
completely analogous to the corresponding proof for the Low-End Speedup result. The
“if” direction, however, is not entirely trivial. We employ a standard padding argument to
establish this case, thus completing the proof of Lemma 24.

Suppose that C[poly(n)] has a strong learner running in time 2log(n)c , for some constant
c > 0. Let Alow be a learning algorithm witnessing this fact. We show how to use Alow to
construct a learning algorithm Ahigh which is a (1/n, 1/poly(n))-learner for C[2n1/3c ], and
runs in time ≤ 2

√
n. As usual, confidence can be boosted without a significant increase of

running time, and it follows that C[2n1/3c ] has non-trivial learners according to our definition.
On input 1n and with oracle access to some function f : {0, 1}n → {0, 1}, Afhigh(1n)

simulates Af
′

low(1n′), where n′ def= n + 2dn1/3ce, and f ′ : {0, 1}n′ → {0, 1} is the (unique)
Boolean function satisfying the following properties. For any input x′ = xy ∈ {0, 1}n′ , where
|y| = 2dn1/3ce and |x| = n, f ′(x′) is defined to be f(x). Note that if f ∈ C[2n1/3c ] then
f ′ ∈ C[O(n′)]: the linear-size C-circuit for f ′ on an input x′ of length n′ just simulates the
smallest C-circuit for f on its n-bit prefix. During the simulation, whenever Alow makes
an oracle call x′ to f ′, Ahigh answers it using an oracle call x to f , where x is the prefix
of x′ of length n. By definition of f ′, this simulation step is always correct. When Af

′

low
completes its computation and outputs a hypothesis h′ on n′ input bits, Ahigh outputs a
modified hypothesis h as follows: it chooses a random string r of length 2dn1/3ce, and outputs
the circuit hr defined by hr(x) def= h′(xr). Note that by the assumed efficiency of Alow, Ahigh
halts in time ≤ 2

√
n on large enough n.

By the discussion above, it is enough to argue that the hypothesis h output by Ahigh is a
good hypothesis with probability at least 1/poly(n). Since Alow is a strong learner and since
the f ′ used as oracle to Alow in the simulation has linear size, for all large enough n, with
probability at least 1− 1/n′, h′ disagrees with f ′ on at most a 1/(n′)k fraction of inputs of
length n′, where k is a large enough constant fixed in the construction above. Consider a
randomly chosen r of length n′ − n. By a standard Markov-type argument, when h′ is good,
for at least a 1/poly(n) fraction of the strings r, hr(x) disagrees with f(x) on at most a 1/n
fraction of inputs. This completes the argument. J

3.2 Equivalences for Learning, Compression, and Distinguishers
I Theorem 25 (Algorithmic Equivalences). Let C be a typical circuit class. The following
statements are equivalent:
1. C[poly(n)] has non-trivial learners.
2. For each ε > 0 and k ∈ N, C[poly(n)] can be learned to error ≤ n−k in time O(2nε).
3. C[poly(n)] has probabilistic (exact) compression.
4. C[poly(n)] has probabilistic average-case compression with error o(1).
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5. C[poly(n)] has complexity distinguishers running in time 2O(n).
6. For each ε > 0, C[poly(n)] has complexity distinguishers running in time O(2nε).
7. C[poly(n)] can be learned using membership and equivalence queries to sub-constant error

in non-trivial time.

Proof. We establish these equivalences via the following complete set of implications:
(5)⇒ (2): This follows from Lemma 23.
(2)⇒ (1) and (6)⇒ (5): These are trivial implications.
(2)⇒ (4): Probabilistic compression for C[poly(n)] follows from simulating a (1/n3, 1/n)-

learner for the class running in time O(2
√
n), and answering any oracle queries by looking

up the corresponding bit in the truth table of the function, which is given as input to the
compression algorithm. The compression algorithm returns as output the hypothesis of the
strong learner, and by assumption this agrees on a (1− 1/n3) fraction of inputs of length n
with the input function, with probability at least 1 − 1/n. Moreover, since the simulated
learner runs in time O(2

√
n), the circuit that is output has size at most O(2

√
n). It is clear

that the simulation of the learner can be done in time 2O(n), as required for a compression
algorithm.

(2) ⇒ (3): This follows exactly as above, except that there is an additional step after
the simulation of the learner. Once the learner has output a hypothesis h, the compression
algorithm compares this hypothesis with its input truth table entry by entry, simulating h
whenever needed. If h differs from the input truth table on more than a 1/n3 fraction of
inputs, the compression algorithm rejects – this happens with probability at most 1/n by
assumption on the learner. If h and the input truth table differ on at most 1/n3 fraction
of inputs of length n, the compression algorithm computes by brute force a circuit of size
at most 2n/n2 which computes the function h′ that is the XOR of h and the input truth
table. The upper bound on size follows from the fact that h′ has at most 2n/n3 1’s. Finally,
the compression algorithm outputs h ⊕ h′. For any typical circuit class, the size of the
corresponding circuit is O(2n/n2). Note that h⊕ h′ computes the input truth table exactly.

(2)⇒ (6): This follows from Lemma 22.
(1) ⇒ (5), (3) ⇒ (5), and (4) ⇒ (5): The distinguisher runs the circuit output by

the learner or compression algorithm on every input of length n, and computes the exact
agreement with its input f on length n by making 2n oracle queries to f . If the circuit
agrees with f on at least a 2/3 fraction of inputs, the distinguisher outputs 0, otherwise
it outputs 1. By the assumption on the learner/compression algorithm, for f ∈ C[poly(n)],
the distinguisher outputs 0 with probability at least 2/3. Using Lemma 21, for a random
function, the probability that the distinguisher outputs 1 is at least 2/3.

(7) ⇒ (5): The complexity distingisher has access to the entire truth-table, and can
answer the membership and equivalence queries of the learner in randomized time 2O(n).
Randomness is needed only to simulate the random choices of the learning algorithm, while
the answer to each query can be computed in deterministic time. Since the learner runs in
time 2n/nω(1), whenever it succeeds it outputs a hypothesis circuit of at most this size. The
complexity distinguisher can compare this hypothesis to its input truth-table, and similarly
to the arguments employed before, is able to distinguish random functions from functions in
C[poly(n)].

(2)⇒ (7): This is immediate since the algorithm from (2) is faster, has better accuracy,
and makes no equivalence queries. J

I Theorem 26 (Equivalences for zero-error algorithms). Let C[poly(n)] be a typical circuit
class. The following statements are equivalent:
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1. There are P-natural proofs useful against C[poly(n)].
2. There are ZPP-natural proofs useful against C[poly(n)].
3. For each ε > 0, there are DTIME(O(2(logN)ε))-natural proofs useful against C[poly(n)],

where N = 2n is the truth-table size.
4. For each ε > 0, there are zero-error complexity distinguishers for C[poly(n)] running in

time O(2nε).

Proof. We establish these equivalences via the following complete set of implications:
(1)⇒ (2): This is a trivial implication.
(3)⇒ (4): This is almost a direct consequence of the definitions, except that the density

of the natural property has to be amplified to 1− o(1) before converting the algorithm into a
zero-error complexity distinguisher. This is a standard argument, and can be achieved by
defining a new property from the initial one. More details can be found, for instance, in the
proof of [19, Lemma 2.7].

(2)⇒ (1):10 Let A be an algorithm running in zero-error probabilistic time mk on inputs
of length m and with error probability ≤ 1/4, for m large enough and k an integer, and
deciding a combinatorial property R useful against C[poly(n)]. We show how to define a
combinatorial property R′ useful against C[poly(n)] such that R′ ∈ P, and such that at least
a 1/8 fraction of the truth tables of any large enough input length belong to LR′ . This
fraction can be amplified by defining a new natural property R′′ such that any string yz
with |y| = |z| belongs to LR′′ if and only if either y ∈ LR′ or z ∈ LR′ (see e.g. [19]).

We define R′ via a deterministic polynomial-time algorithm A′ deciding LR′ . Given an
input truth table y of size 2n′ , A′ acts as follows: it determines the largest integer n such that
n(k + 1) < n′. It decomposes the input truth table as y = xzw, where |x| = 2n, |z| = 2kn,
and the remaining part w is irrelevant. It runs A on x, using z as the randomness for the
simulation of A. If A accepts, it accepts; if A rejects or outputs ‘?’, it rejects.

It should be clear that A′ runs in polynomial time. The fact that A′ accepts at least a
1/8 fraction of truth tables of any large enough input length follows since for any x ∈ LR, A
outputs ‘?’ with probability at most 1/3, and at least a 1/2 fraction of strings of length 2n
are in LR. It only remains to argue that the property R′ is useful against C[poly(n)]. But
any string y of length 2n′ accepted by A′ has as a substring the truth table of a function
on n = Ω(n′) bits which is accepted by A and hence is in LR. Since R is useful against
C[poly(n)], this implies that R′ is useful against C[poly(n)].

(4)⇒ (3): The proof is analogous to (2)⇒ (1).
(3)⇒ (1): This is a trivial direction since N = 2n.
(1) ⇒ (3): This implication uses an idea of Razborov and Rudich [59]. Suppose there

are P-natural proofs useful against C[poly(n)]. This means in particular that for every c ≥ 1,
there is a polynomial-time algorithm Ac, which on inputs of length 2n, where n ∈ N, accepts
at least a 1/2 fraction of inputs, and rejects all inputs y such that fn(y) ∈ C[nc]. Consider
an input y to Ac of length 2n, and let ε > 0 be fixed. Let y′ be the substring of y such that
fn(y′) is the subfunction of fn(y) obtained by fixing the first n − nε bits of the input to
fn(y) to 0. It is easy to see that if fn(y) ∈ C[nc], then fn(y′) ∈ C[(n′)c/ε], where n′ denotes
the number of input bits of fn(y′).

Let d ≥ 1 be any constant, and ε > 0 be fixed. We show how to define an algorithm
Bd which runs in time O(2log(N)ε) on an input of length N = 2n, deciding a combinatorial
property which is useful against C-circuits of size nd. (Using the same approach, it is possible

10This argument is folklore. It has also appeared in more recent works, such as [74].
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to design a single algorithm that works for any fixed d whenever n is large enough, provided
that we start with a natural property that is useful in this stronger sense.) On input y of
length N , Bd computes y′ of length 2log(N)ε , as defined in the previous paragraph. For the
standard encoding of truth tables, y′ is a prefix of y, and can be computed in time O(|y′|).
Bd then simulates Add/εe on y′, accepting if and only if the simulated algorithm accepts.
The simulation halts in time poly(|y′|), as Add/εe is a poly-time algorithm. For a random
input y, Bd accepts with probability at least 1/2, using that y′ is uniformly distributed, and
the assumption that Add/εe witnesses natural proofs against a circuit class. For an input y
such that fn(y) ∈ C[nd], Bd always rejects, as in this case, fn(y′) ∈ C[(n′)d/ε], and so Add/εe
rejects y′, using the assumption that Add/εe decides a combinatorial property useful against
n-bit Boolean functions in C[ndd/εe]. J

4 Learning versus Pseudorandom Functions

4.1 The PRF-Distinguisher Game
In this section we consider (non-uniform) randomized oracle circuits BO from CircuitO[t],
where t is an upper bound on the number of wires in the circuit. Recall that a circuit from
this class has a special gate type that computes according to the oracle O, which will be set
to some fixed Boolean function f : {0, 1}m → {0, 1} whenever we discuss the computation of
the circuit.

We will view such circuits either as distinguishers or learning algorithms, where the oracle
is the primary input to the circuit. For this reason and because our results are stated in the
non-uniform setting, we assume from now on that such circuits have no additional input
except for variables y1, . . . , y` representing the random bits, where ` ≤ t. If w ∈ {0, 1}` is a
fixed sequence of bits, we use BOw to denote the deterministic oracle circuit obtaining from the
circuit BO by setting its randomness to w. Observe that (non-uniform) learning algorithms
can be naturally described by randomized oracle circuits from CircuitO with multiple output
bits. The output bits describe the output hypothesis, under some reasonable encoding for
Boolean circuits.11

We will consider pairs (Gn,Dn) whereGn ⊆ Fn andDn is a distribution with Support(Dn) ⊆
Gn. This notation is convenient when defining samplable function families and pseudorandom
function families.

I Definition 27 (Pseudorandom Function Families). We say that a pair (Gn,Dn) is a
(t(n), ε(n))-pseudorandom function family (PRF) in C[s(n)] if Gn ⊆ C[s(n)] and for every
randomized oracle circuit BO ∈ CircuitO[t(n)],∣∣∣∣ Pr

g∼Dn, w
[Bg(w) = 1]− Pr

f∼Fn, w
[Bf (w) = 1]

∣∣∣∣ ≤ ε.

This definition places no constraint on the complexity of generating the pair (Gn,Dn).
In order to capture this, we restrict attention to Gn ⊆ Cn for some typical circuit class
C = {Cn}, and assume a fixed encoding of circuits from C by strings of length polynomial in
the size of the circuit. We say that a circuit A ∈ Circuit[S] is a Cn-sampler if A outputs valid
descriptions of circuits from Cn.

11 In this non-uniform framework it is possible to derandomize a learning circuit with some blow-up in
circuit size, but we will not be concerned with this matter here.
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I Definition 28 (Samplable Function Families). We say that a pair (Gn,Dn) with Gn ⊆ Cn
is S-samplable if there exists a Cn-sampler A ∈ Circuit[S] on ` ≤ S input variables such
that A(U`) ≡ Dn, where we associate each output string of A to its corresponding Boolean
function.

It is well-known that the existence of learning algorithms for a circuit class Cn[s(n)]
implies that there are no secure pseudorandom function families in Cn[s(n)]. Moreover, this
remains true even for function families that are not efficiently samplable. Following the
notation from Definition 7, we can state a particular form of this observation as follows.

I Proposition 29 (Learning C implies no PRFs in C). Assume there is a randomized oracle
circuit in CircuitO[t(n)] that (1/3, 1/n)-learns every function in Cn[s(n)], where n ≤ t(n) ≤
2n/n2. Then for large enough n there are no (poly(t(n)), 1/10)-pseudorandom function
families in Cn[s(n)].

Our goal for the rest of this section is to establish a certain converse of Proposition 29
(Theorem 34 and Corollary 35). An important technical tool will be a “small-support” version
of the min-max theorem, described next.

Small-Support Approximate Min-Max Theorem for Bounded Games [9, 47]. We follow
the notation from [47]. Let M be an r× c real-valued matrix, p be a probability distribution
over its rows, and q be a probability distribution over its columns. The classic min-max
theorem [66] states that

min
p

max
j∈[c]

Ei∼p[M(i, j)] = max
q

min
i∈[r]

Ej∼q[M(i, j)]. (1)

The distributions p and q are called mixed strategies, while individual indexes i and j are
called pure strategies. We use v(M) to denote the value in Equation 1. (Recall that this
can be interpreted as a game between a row player, or Minimizer, and a column player, or
Maximizer. The min-max theorem states that the order in which the players reveal their
strategies does not change the value of the game. It is easy to see that the second player can
be restricted to pure strategies.)

We will consider a game played on a matrix of exponential size, and will be interested
in near-optimal mixed strategies with succinct descriptions. This motivates the following
definitions. A mixed strategy is k-uniform if it is selected uniformly from a multiset of at
most k pure strategies. We use Pk and Qk to denote the set of k-uniform strategies for
the row player and the column player, respectively. For convenience, given a mixed row
strategy p, we let v(p) = vM (p) = maxj∈[c] Ei∼p[M(i, j)]. Similarly, we use v(q) = vM (q) =
mini∈[r] Ej∼q[M(i, j)] for a column mixed strategy q. We say that a mixed strategy u is
δ-optimal if |v(u)− v(M)| ≤ δ.

We will need the following “efficient” version of the min-max theorem.

I Theorem 30 (Small-Support Min-Max Theorem [9, 47]). Let M be a r×c real-valued matrix
with entries in the interval [−1, 1]. For every δ > 0, if kr ≥ 10 ln(c)/δ2 and kc ≥ 10 ln(r)/δ2

then

min
p∈Pkr

v(p) ≤ v(M) + δ, and max
q∈Qkc

v(q) ≥ v(M)− δ.

In other words, there are δ-optimal strategies for the row and column players with relatively
small support size.
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The PRF-Distinguisher Game. Let Cn[s] be a circuit class and CircuitO[t] be an oracle
circuit class, with size parameters s(n) and t(n), respectively. We consider a [−1, 1]-valued
matrix M = MCn[s],CircuitO[t], defined as follows. The rows of M are indexed by Boolean
functions in Cn[s], and the columns of M are indexed by (single-output) deterministic oracle
circuits from CircuitO[t]. In other words, such circuit have access to constants 0 and 1,
compute according to the values of the oracle gates, and produce an output value in {0, 1}. In
order not to introduce further notation, we make the simplifying assumption that the negation
of every circuit from CircuitO[t] is also in CircuitO[t]. For h ∈ Cn[s] and CO ∈ CircuitO[t], we
let

M(h,CO) def= Ch − Pr
f∼Fn

[Cf = 1],

where Cg ∈ {0, 1} denotes the output of CO when computing with oracle O = g, for a fixed
g : {0, 1}n → {0, 1}. We say that the matrix M is the PRF-Distinguisher game for Cn[s] and
CircuitO[t]. Observe that this is a finite matrix, for every choice of n.

Following our notation, we use v(M) to denote the value of the game corresponding to
M , which can be interpreted as follows. Let p be a mixed strategy for the row player. In
other words, p is simply a distribution over functions from Cn[s]. Consequently, to each
row strategy p we can associate a pair (Gp,Dp), where p = Dp and Gp = Support(Dp),
as in Definition 27. On the other hand, a mixed strategy q over the columns is simply a
distribution over deterministic oracle circuits from CircuitsO[t], which can be interpreted as a
(non-constructive) randomized circuit BO. Under this interpretation, the value of the game
when played with strategies p and q is given by

Eh∼p, CO∼q[M(h,CO)] = Eh,CO [Ch − Pr
f∼Fn

[Cf = 1]]

= Eh,CO [Ch]− Pr
f,CO∼q

[Cf = 1]

= Pr
g∼Dp, BO

[Bg = 1]− Pr
f∼Fn, BO

[Bf = 1],

which corresponds to the distinguishing probability in Definition 27 without taking absolute
values. But since we assumed that the circuits indexing the columns of M are closed under
complementation, it follows that the (global) value v(M) of this game captures the security
of PRFs from Cn[s] against CircuitO[t]-distinguishers. (Notice though that this value does not
take into account the samplability of the function families involved, nor the constructivity of
the ensemble of distinguishers corresponding to a “randomized” oracle distinguisher in the
argument above.)

4.2 A (Non-Uniform) Converse to “Learning Implies no PRFs”
We proceed with our original goal of establishing a converse of Proposition 29. Roughly
speaking, we want to show that if every samplable function family from Cn can be distinguished
from a random function (possibly by different distinguishers), then there is a single algorithm
that learns every function in Cn. Formally, what we get is a sequence of subexponential size
(non-uniform) circuits learning C.

The proofs of Lemmas 31 and 32 below rely on Theorem 30.

I Lemma 31 (�∃ samplable PRF → �∃ PRF against ensembles of circuits). There exists a
universal constant c ∈ N for which the following holds. Let t(n) ≥ n, s(n) ≥ n, δ(n) > 0,
and ε(n) > 0 be arbitrary functions. If there is no O(t · s · 1/δ)c-samplable pair (G̃n, D̃n) that
is a (t(n), ε(n) + δ(n))-PRF in Cn[s(n)], then there is no pair (Gn,Dn) with Gn ⊆ Cn[s(n)]
that ε(n)-fools every ensemble of deterministic CircuitO[t(n)]-circuits.
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Proof. We use Theorem 30 to establish the contrapositive. Assume there exists a pair
(Gn,Dn) where Dn is distributed over Gn ⊆ Cn[s(n)] such that for every distribution q over
CircuitO[t(n)] we have∣∣∣∣ Pr

g∼Dn,CO∼q
[Cg = 1]− Pr

f∼Fn,CO∼q
[Cf = 1]

∣∣∣∣ ≤ ε(n).

Let p = Dn, and observe that in the corresponding PRF-Distinguisher game we get vM (p) ≤
ε(n). Consequently, v(M) ≤ minp vM (p) ≤ ε(n). It follows from Theorem 30 and a bound on
the number of columns of M (similar to Lemma 20) that there exists a k-uniform distribution
p̃ over functions in Cn[s(n)] with k ≤ O(ln 2O(t log t)/δ(n)2) = O((t log t)/δ(n)2) such that
vM (p̃) ≤ ε(n) + δ(n).

In other words, each f ∈ Support(p̃) is in Cn[s(n)], the support of this distribution contains
at most O((t log t)/δ(n)2) different functions, and each such function can be encoded by
a string of length poly(s(n)) that describes the corresponding circuit. Using that p̃ is a
k-uniform distribution, it is not hard to see that there exists a circuit A ∈ Circuit[S] with
A(U`) ≡ p̃ for some ` ≤ S, where S ≤ poly(t, s, 1/δ). Since every randomized circuit BO
can be seen as a distribution over deterministic oracle circuits, it follows that there is an
S-samplable pair (G̃n, D̃n) that is a (t(n), ε(n) + δ(n))-PRF in Cn[s(n)]. This completes the
proof. J

I Lemma 32 (�∃ PRF against ensembles of circuits → ∃ universal distinguisher). There exists
a universal constant c ∈ N for which the following holds. Let s(n) ≥ n, t(n) ≥ n, ε(n) > 0,
and γ(n) > 0 be arbitrary functions. If there is no pair (Gn,Dn) with Gn ⊆ Cn[s(n)] that
ε(n)-fools every ensemble of deterministic CircuitO[t(n)]-circuits, then there is a randomized
oracle circuit BO ∈ CircuitO[O(t · s · 1/γ)c] that distinguishes every such pair from a random
function with advantage at least ε(n)− γ(n).

Proof. We rely on the classical min-max theorem and on Theorem 30. It follows from
the assumption of the lemma that the corresponding PRF-Distinguisher game has value
v(M) ≥ ε(n). By the min-max theorem, there is an ensemble of CircuitO[t(n)]-circuits that
distinguishes every pair (Gn,Dn) satisfying Gn ⊆ Cn[s(n)] with advantage at least ε(n).
Applying Theorem 30, we obtain a k-uniform distribution q over deterministic CircuitO[t(n)]-
circuits with distinguishing probability at least ε(n)− γ(n) and support size at most k =
O(ln 2O(s log s)/γ(n)2) = O((s log s)/γ(n)2). Similarly to the proof of Lemma 31, this ensemble
of circuits implies the existence of a single randomized oracle circuit BO ∈ CircuitO[O(s · t ·
1/γ)c] that distinguishes every pair (Gn,Dn) with Gn ⊆ Cn[s(n)] from a random function
with advantage at least ε(n)− γ(n). This completes the proof. J

Lemmas 31 and 32 hold for each value of n. The next lemma is a reduction involving
different values of this parameter.

I Lemma 33 (∃ universal distinguishers → ∃ learning circuits). Assume that for every k ≥ 1
and large enough n there exists a randomized oracle circuit BOn in CircuitO[2O(n)] that
distinguishes every pair (Gn,Dn) with Gn ⊆ Cn[nk] from a random function with advantage
≥ 1/40. Then for every ` ≥ 1 and ε > 0 there is a non-uniform sequence of randomized
oracle circuits in CircuitO[2nε ] that learn every function f ∈ Cn[n`] to error at most n−`.

Proof. This lemma is simply a (weaker) non-uniform version of the proof of Lemma 23 from
Section 3. It is enough to use the sequence of randomized oracle circuits BOn as distinguishing
circuits, and to observe that the statement of Theorem 16 holds with an arbitrarily small
constant in the distinguishing probability. J
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Recall that C = {Cn} is an arbitrary typical circuit class. The main technical result of
this section follows from Lemmas 31, 32, and 33 together with an appropriate choice of
parameters.

I Theorem 34 (No samplable PRFs in C implies Learning C). If t(n) ≤ 2O(n) and c′ ≥ 1 is a
large enough constant, the following holds. Suppose that for every k ≥ 1 each O((t(n) ·nk)c′)-
samplable pair (Gn,Dn) with Gn ⊆ Cn[nk] can be distinguished from a random function by
some randomized oracle circuit from CircuitO[t(n)] with advantage at least 1/10. Then, for
every k ≥ 1, ε > 0, and large enough n, there is a randomized oracle circuit from CircuitO[2nε ]
that learns every function in Cn[nk] to error at most n−k.

Proof. The existence of the learning circuit will follow if we can prove that the hypothesis of
Lemma 33 is satisfied. Thus it is enough to argue that, for every k ≥ 1 and large enough n,
there is a (single) randomized oracle circuit BO from CircuitO[2O(n)] that distinguishes with
advantage ≥ 1/40 every pair (Gn,Dn) with Gn ⊆ Cn[nk]. In turn, this follows from Lemma 32
for s(n) = nk, ε(n) = 1/20, and γ(n) = 1/40 if there is no pair (Gn,Dn) with Gn ⊆ Cn[nk]
that 1/20-fools every ensemble of deterministic oracle circuits from CircuitO[2O(n)], for a
slightly smaller constant in the latter exponent. But this is implied by the hypothesis of
Theorem 34 together with Lemma 31, instantiated with our value t(n) ≤ 2O(n), s(n) = nk,
ε(n) = 1/20, and δ(n) = 1/20, provided that we take c′ sufficiently large. This completes the
proof. J

Dropping the samplability condition, we get the following weaker statement, which
provides a converse of Proposition 29 in the regime where t(n) is exponential and s(n) is
polynomial.

I Corollary 35 (No PRFs in C implies Learning C). Let t(n) ≤ 2O(n). If for every k ≥ 1
and large enough n there are no (poly(t(n)), 1/10)-pseudorandom function families in Cn[nk],
then for every ε > 0, k ≥ 1, and large enough n, there is a randomized oracle circuit in
CircuitO[2nε ] that (n−k, 1/n)-learns every function in Cn[nk].

We observe that smaller time bounds t(n) do not necessarily lead to smaller learning
circuits, due to the running time of the black-box generator in Definition 15 and Theorem 16.
However, a smaller t(n) implies a weaker samplability condition in the statement of The-
orem 34, which makes it stronger. A natural question is whether a more efficient distinguisher
implies that larger circuits can be distinguished by subexponential size oracle circuits, in
analogy to Lemma 24. We mention that no simple reduction via padding seems to work,
since a random function on n bits mapped into a larger domain via projections is no longer a
uniformly random function. Finally, the distinguishing advantage 1/10 is arbitrary. Indeed,
it can be assumed to be much lower, by following the estimates in the proof of Theorem 16.

I Remark. In order to prove Theorem 34, we have made essential use of the “efficient” min-
max theorem from [9, 47], which guarantees the existence of near-optimal mixed strategies
with simple descriptions. Unfortunately, this result does not provide an efficient algorithm
to produce such strategies, which would lead to an equivalence between learning algorithms
and the nonexistence of pseudorandom functions with respect to uniform computations.
While there are more recent works that explore uniform versions of the min-max theorem
(cf. [67]), they assume the existence of certain auxiliary algorithms in order to construct
the near-optimal strategies, and it is unclear to us if they can be applied in the context of
Theorem 34.
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5 Lower Bounds from Nontrivial Algorithms

I Theorem 36 (Circuit lower bounds from nontrivial learning algorithms). Let C be any typical
circuit class. If for each k, C[nk] has non-trivial learning algorithms, then for each k,
BPTIME(2O(n)) 6⊆ C[nk].

Our proof of Theorem 36 relies on previous results relating randomized learning algorithms
and lower bounds. The following connection was established in [44], using ideas from [33, 21])
and most crucially the construction of a downward self-reducible and random self-reducible
PSPACE-complete language in [65].

I Theorem 37 (Connection between learning and lower bounds [44, 21, 33]). There is a
PSPACE-complete language L? ∈ DSPACE(n) and a constant b ∈ N for which the following
holds. Let C be any typical circuit class, and s : N → N be any function with s(n) ≥ n. If
C[s(n)] is learnable to error ≤ n−b in time T (n) ≥ n, then at least one of the following
conditions hold:
(i) L? /∈ C[s(n)].
(ii) L? ∈ BPTIME(poly(T (n))).

A self-contained proof of a generalization of Theorem 37 is presented in Section 6. We
will also need a consequence of the following diagonalization lemma.

I Lemma 38 (A nonuniform almost everywhere hierarchy for space complexity). Let S, S′ : N→
N be space-constructible functions such that S(n) = o(S′(n)), S(n) = Ω(logn) and S′(n) =
o(2n). There is a language L ∈ DSPACE(S′) such that L 6∈ i.o.DSPACE(S)/S.

Proof. This is a folklore argument. We define a space-bounded Turing machine M operating
in space S′ such that L(M) 6∈ i.o.DSPACE(S)/S. On inputs of length n, M uses the space-
constructibility of S′ to compute S′(n) in unary using space O(S′(n)). It marks out S′(n)
cells on each of its tapes, and if at any point in its computation, it reads an unmarked cell, it
halts and rejects. Thus, on any input of length n, M uses space O(S′(n)). M also computes
and stores S(n) on one of its tapes.

The high-level intuition is that M diagonalizes against machine Mi with advice z, for
each 1 ≤ i ≤ logn and advice z ∈ {0, 1}S(n). In particular, for any fixed i and large enough
n, M diagonalizes against Mi with any advice z ∈ {0, 1}S(n), and hence L(M) satisfies the
conclusion of the Lemma.

By a counting argument, there are at most logn · 2S(n) truth tables of Boolean functions
f on n bits such that f is computed by a machine Mi with 1 ≤ i ≤ logn operating in space
S(n) and using S(n) bits of advice. Thus, since S(n) = o(2n), for large enough n, by the
pigeon-hole principle there exists a Boolean function f ′ : {0, 1}n → {0, 1} which is 0 on all
but the first logn+ S(n) inputs of length n, such that f ′ is not computed by machine Mi

with advice z for any i with 1 ≤ i ≤ logn and z ∈ {0, 1}S(n).
M computes such a function iteratively as follows. It processes the inputs of length n in

lexicographic order. At stage i+ 1, where i ≥ 0, M has stored a binary string yi of length i
representing the values of f ′ on the first i inputs of length n, and M is trying to determine
f ′ on the (i+ 1)-th input of length n. For each machine Mi, 1 ≤ i ≤ logn, and each advice
string z for Mi of length S(n), by simulating those Mi’s with advice z which do not use space
more than S(n) on any of the first i inputs, M determines if the truth table ofMi with advice
z is consistent with yi on the first i inputs. Call such a pair (i, z) a consistent machine-advice
pair at stage i + 1. M sets f ′ to 0 for the (i + 1)-th string if a minority of consistent
machine-advice pairs halt with 0 on the (i+ 1)-th string, and to 1 otherwise. Determining
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whether a minority of consistent machine-advice pairs halt with 0 on the (i+ 1)-th string can
be done by merely keeping a count of how many consistent machine-advice pairs halt with 0,
and how many halt with 1, which only requires space O(S(n)). Note that using the minority
value cuts down the number of consistent machine-advice pairs for the next stage by at least a
factor of half. This implies that at stage logn+S(n), there are no consistent machine-advice
pairs left, and hence M has successfully diagonalized. It is not hard to see that the overall
simulation can be carried out in space O(S(n)), using the fact that S(n) = Ω(logn). J

I Corollary 39 (Diagonalizing in uniform space against non-uniform circuits). Let S1, S2 : N→ N
be space-constructible functions such that S2(n)2 = o(S1(n)), S2(n) = Ω(logn) and S1(n) =
o(2n). There is a language L ∈ DSPACE(S1) such that L 6∈ i.o.Circuit[S2]. In particular, for
each k, there is a language Lk ∈ PSPACE such that Lk 6∈ Circuit[nk].

Proof. Corollary 39 follows from Lemma 38 using the fact that Circuit[S] ⊆
DSPACE(S2)/S2. J

In fact, a tighter simulation holds, and therefore a tighter separation in Corollary 39, but
we will not need this for our purposes. We are now ready to prove Theorem 36.

Proof of Theorem 36. Let C be a typical circuit class. By assumption, C[nk] has a non-
trivial learner for each k > 0. Since C is typical, we can use Lemma 24 to conclude that for
each ε > 0 and for each k > 0, C[nk] is strongly learnable in time 2nε .

Let L? be the PSPACE-complete language in the statement of Theorem 37. Using
Theorem 37 and the conclusion of the previous paragraph, we have that at least one of the
following is true: (1) For all k, L? 6∈ C[nk], or (2) For all ε > 0, L? ∈ BPTIME(2nε).

In case (1), since L? ∈ DSPACE(n) ⊆ DTIME(2O(n)), we have that for each k > 0,
DTIME(2O(n)) 6⊆ C[nk], and hence also BPTIME(2O(n)) 6⊆ C[nk].

In case (2), we have that L? ∈ BPTIME(2nε) for every ε > 0. Since L? is PSPACE-
complete, this implies that the language Lk in the statement of Corollary 39 is also in
BPTIME(2nε), for every fixed ε > 0 and k ∈ N. (Here the polynomial blowup of instance
size in the reduction from Lk to L? is taken care of by the universal quantification over ε.)
In particular, we have Lk ∈ BPTIME(2n), for every k. Since for any typical circuit class we
have C[nk] ⊆ Circuit[nc] for a large enough c = c(k), there is a language Lc ∈ BPTIME[2n]
such that Lc /∈ C[nk]. This establishes the desired result. J

We mention for completeness that the same approach yields a trade-off involving the
running time of the learning algorithm and its accuracy in the hypothesis of Theorem 36.

I Theorem 40 (Trade-off between error and running time). Let C be a typical circuit class, and
γ : N→ (0, 1/2] ∩ Q be a polynomial time computable function. If for each k, C[nk] can be
learned with advantage at least γ(n) in time γ(n)2·2n/nω(1), then for each k, BPTIME[2O(n)] *
C[nk].

Proof (Sketch). The proof is entirely analogous to the argument in Theorem 36. It is enough
to observe that such learning algorithms yield the complexity distinguishers required in
Lemma 24 via a natural generalization of the proof of Lemma 22. The quantitative trade-off
between accuracy and running time is a consequence of Lemma 21. J

I Remark. Observe that as the advantage γ(n) approaches 2−n/2 from above, the running
time required in Theorem 40 becomes meaningless. This quantitative connection between
γ(n) and the running time is not entirely unexpected. On the one hand, it is a consequence
of the concentration bound, which is essentially optimal. But also note that every function
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g : {0, 1}n → {0, 1} can be approximated with advantage ≥ 2−n/2 by a parity function (or
its negation), and that heavy fourier coefficients corresponding to such parity functions can
be found using membership queries by the Goldreich-Levin Algorithm (see e.g. [53]).

We can expand the scope of application of Theorem 36, using a win-win argument. The
more general result below applies to subclasses of Boolean circuits satisfying the very weak
requirement that they are closed under projections, rather than just to the more specialized
“typical” classes.

I Theorem 41 (Lower bounds from non-trivial learning algorithms for subclasses of circuits).
Let C be any subclass of Boolean circuits closed under projections. If for each k, C[nk] has
non-trivial learning algorithms, then for each k, BPTIME(2O(n)) 6⊆ C[nk].

Proof. Consider the Circuit Value Problem (CVP), which is complete for Circuit[poly] under
polynomial size projections. Either CVP is in C[nc] for some fixed c, or it is not. If it is not,
then we have the desired lower bound for CVP and hence also for the class BPTIME(2O(n)),
which contains this problem. If CVP is in C[nc], then since CVP is closed under poly-size
projections, we have by completeness and the assumption of the theorem that for each k,
Circuit[nk] has non-trivial learning algorithms. Now applying Theorem 36, we have that for
each k, BPTIME(2O(n)) 6⊆ Circuit[nk], which implies that BPTIME(2O(n)) 6⊆ C[nk], since C is
a subclass of Boolean circuits. J

I Remark. Observe that it is possible to instantiate Theorem 41 for very particular classes
such as AND ◦OR ◦THR circuits, and that the lower bound holds for exactly the same circuit
class. In particular, there is no circuit depth blow-up.

We get an improved lower bound consequence for the circuit class ACC0, but under the
assumption that subexponential-size circuits are non-trivially learnable. (Recall that there
are satisfiability algorithms for such circuits with non-trivial running time [73].)

I Theorem 42 (Improved lower bounds from non-trivial learning algorithms for ACC0). If for
every depth d ∈ N and modulo m ∈ N there is ε > 0 such that ACC0

d,m[2nε ] has non-trivial
learning algorithms, then REXP 6⊆ ACC0[poly].

Proof. Under the assumption on learnability, using Lemma 24, we have that for each k > 0,
ACC0[nk] has strong learners running in time 2polylog(n). Now applying Theorem 37, we
have that at least one of the following is true for the PSPACE-complete language L? in the
statement of the theorem: (1) L? 6∈ ACC0[nk] for any k, or (2) L? ∈ BPQP, where BPQP is
bounded error probabilistic quasi-polynomial time.

In case (1), we have that L? 6∈ ACC0[poly], and are done as in the proof of Theorem 36.
In case (2), by PSPACE-completeness of L?, we have that PSPACE ⊆ BPQP. This implies

that NP ⊆ BPQP, and hence that NP ⊆ RQP, where RQP is probabilistic quasi-polynomial
time with one-sided error. The second implication follows using downward self-reducibility
to find a witness for SAT given the assumption that SAT is in BPQP, thus eliminating
error on negative instances. Now NP ⊆ RQP implies NEXP = REXP, using a standard
translation argument. Williams showed that NEXP 6⊆ ACC0[poly], and so it follows that
REXP 6⊆ ACC0[poly], as desired. J

More generally, the same argument combined with the connection between non-trivial
satisfiability algorithms and circuit lower bounds [73] imply the following result.

I Corollary 43 (Lower bounds from learning and satisfiability). Let C be any typical circuit
class. Assume that for each k, C[nk] admits a non-trivial satisfiability algorithm, and that
for some ε > 0, C[2nε ] admits a non-trivial learning algorithm. Then REXP * C[poly].
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Recall that randomized learning algorithms and BPP-natural properties are strongly
related by results of [19]. We can give still stronger lower bound conclusions from assumptions
about P-natural proofs. The idea is to combine the arguments above with an application of
the easy witness method of Kabanets [37].

I Theorem 44 (Improved lower bounds from natural proofs). Let C be any subclass of Boolean
circuits closed under projections. If there are P-natural proofs useful against C[2nε ] for some
ε > 0, then ZPEXP 6⊆ C[poly].

The following immediate consequence is of particular interest.

I Corollary 45 (ACC0 lower bounds from natural proofs). If for some δ > 0 there are P-natural
proofs against ACC0[2nδ ] then ZPEXP * ACC0[poly].

In order to prove Theorem 44, we will need the following lemma.

I Lemma 46 (Simulating bounded error with zero error given natural proofs). Suppose there is
a constant δ > 0 such that there are P-natural proofs against Circuit[2nδ ]. Then BPEXP =
ZPEXP.

Proof. Note that zero-error probabilistic time is trivially contained in bounded-error prob-
abilistic time, so we only need to show that BPEXP ⊆ ZPEXP under the assumption. We
will in fact show that BPP ⊆ ZPQP, where ZPQP is zero-error bounded probabilistic quasi-
polynomial time. The desired conclusion follows from this using a standard translation
argument.

By assumption, there is a natural property R useful against Circuit[2nδ ] for some constant
δ > 0, such that LR ∈ P. LetM be any machine operating in bounded-error probabilistic time
nd for some d > 0. We define a zero-error machine M ′ deciding L(M) in quasi-polynomial
time as follows. On input x of length n, M ′ guesses a random string r of size 2log(n)d

′

, where
d′ is a large enough constant to be defined later. It then checks if r ∈ LR or not, using the
polynomial-time decision procedure for the natural property R. If not, it outputs ‘?’ and
halts. If it does, it runs the procedure of Theorem 13 on input n2d in unary and r, to obtain
the range of a (polylog(n), 1/n2d) PRG against Circuit[n2d]. Since r ∈ LR, Theorem 13
applies, and the output of the procedure is guaranteed to be the range of such a PRG.
M ′ then runs M on x independently with each element of the range of the PRG used as
randomness, and takes the majority vote. This is guaranteed to be correct when r ∈ LR,
which happens with probability at least 1/2 by the density property of R. Thus M ′ is a
zero-error machine, and it is clear that M ′ can be implemented in quasi-polynomial time. J

Proof of Theorem 44. We proceed as in the proof of Theorem 41. Either CVP is in C[poly],
or it is not. If not, we have the desired lower bound for CVP, and hence for ZPEXP, which
contains this problem.

On the other hand, if CVP is in C[poly], we have that CVP is in C[nk] for some k > 0. By
the completeness of CVP for poly-size circuits under poly-size projections, and the closure of
C under projections, we have that Circuit[n] ⊆ C[nk] for some k > 0, and hence by a standard
translation argument, we have that Circuit[2nδ ] ⊆ C[2nε ] for any δ < ε. By assumption, we
have P-natural properties useful against C[2nε ] and hence we also have P-natural properties
useful against Circuit[2nδ ] for any δ < ε. Now, applying Lemma 46, we get BPEXP = ZPEXP.

We argue next that under the existence of P-natural properties useful against Circuit[2nδ ]
for a fixed δ > 0, we also have EXPSPACE = BPEXP. The mentioned hypothesis implies
that there exist complexity distinguishers against Circuit[2nδ ] running in deterministic time
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2O(n) (the acceptance probability can be amplified using truth-table concatenation). As
a consequence, Lemma 23 provides strong learning algorithms for Circuit[poly] running in
quasi-polynomial time. By Theorem 37, either PSPACE * Circuit[poly], and we are done, or
PSPACE ⊆ BPQP. Now a standard upward translation gives EXPSPACE ⊆ BPEXP, which
shows that EXPSPACE = BPEXP.

Altogether, we have EXPSPACE = ZPEXP. Now this collapse and Corollary 39 with
S1(n) = 2

√
n and S2(n) = nlogn yield a language L ∈ ZPEXP such that L /∈ Circuit[poly],

which completes the proof of Theorem 44. J

Recall that the existence of useful properties against a circuit class C is essentially
equivalent to the existence of non-deterministic exponential time lower bounds against C

[74, 54]. We do not expect a similar equivalence in the case of natural properties and lower
bounds for probabilistic exponential time. The results described in this section show that
natural properties imply such lower bounds. However, if the other direction were true, then
any lower for C with respect to probabilistic exponential time classes would also provide a
non-trivial learning algorithm for C. In particular, since we believe in separations such as
EXP * Circuit[poly], this would imply via the Speedup Lemma that polynomial size circuits
can be learned in sub-exponential time, which seems unlikely.

6 Karp-Lipton Collapses for Probabilistic Classes

6.1 A Lemma About Learning with Advice
In this section we will need some notions of computability with advice. While this is a
standard notion, we provide some definitions, as bounded-error randomized algorithms taking
advice can be defined in different ways.

Recall that an advice-taking Turing machine is a Turing machine equipped with an extra
tape, the advice tape. At the start of any computation of an advice-taking Turing machine,
the input is present on the input tape of the machine and a string called the “advice” on the
advice tape of the machine, to both of which the machine has access.

I Definition 47 (Probabilistic time with advice). Let T : N→ N and a : N→ N be functions.
BPTIME(T )/a is the class of languages L ⊆ {0, 1}∗ for which there is an advice-taking
probabilistic Turing machine M which always halts in time T (n) and a sequence {zn}n∈N of
strings such that:
1. For each n, |zn| ≤ a(n).
2. For any input x ∈ L such that |x| = n, M accepts x with probability at least 2/3 when

using advice string zn.
3. For any input x 6∈ L such that |x| = n, M rejects x with probability at least 2/3 when

using advice string zn.

Note that in the above definition, there are no guarantees on the behaviour of the machine
for advice strings other than the “correct” advice string zn. In particular, for an arbitrary
advice string, the machine does not have to satisfy the bounded-error condition on an input,
though it does have to halt within time T .

The notion of resource-bounded computation with advice is fairly general and extends
to other models of computation, such as deterministic computation and computation of
non-Boolean functions. These extensions are natural, and we will not define them formally.

A slightly less standard notion of computation with advice is learnability with advice.
We extend Definition 7 to capture learning with advice by giving the learning algorithm an
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advice string, and only requiring the learning algorithm to work correctly for a “correct”
advice string of the requisite length.

We will also need the standard notions of downward self-reducibility and random self-
reducibility.

I Definition 48 (Downward self-reducibility). A function f : {0, 1}∗ → {0, 1} is said to be
downward self-reducible if there is a polynomial-time oracle procedure Af (x) such that:
1. On any input x of length n, Af (x) only makes queries of length < n.
2. For every input x, Af (x) = f(x).

I Definition 49 (Random self-reducibility). A function f : {0, 1}∗ → {0, 1} is said to be
random self-reducible if there are constants k, ` ≥ 1 and polynomial-time computable
functions g : {0, 1}∗ → {0, 1}∗ and h : {0, 1}∗ → {0, 1} satisfying the following conditions:
1. For large enough n, for every x ∈ {0, 1}n and for each i ∈ N such that 1 ≤ i ≤ nk,

g(i, x, r) ∼ Un when r ∼ Un` .
2. For large enough n and for every function f̃n : {0, 1}n → {0, 1} that is (1/nk)-close to f

on n-bit strings, for every x ∈ {0, 1}n:

f(x) = h(x, r, f̃n(g(1, x, r)), f̃n(g(2, x, r)), . . . , f̃n(g(nk, x, r)))

with probability ≥ 1− 2−2n when r ∼ Un` .

I Theorem 50 (A special PSPACE-complete function [65]). There is a PSPACE-complete
function fTV : {0, 1}∗ → {0, 1} such that fTV is downward self-reducible and random self-
reducible.

Below we consider the learnability of the class of Boolean functions {fTV} that contains
only the function fTV.

I Lemma 51 (Learnability with advice for PSPACE implies randomized algorithms). For any
polynomial-time computable non-decreasing function a : N→ N with a(n) ≤ n, and for any
non-decreasing function T : N→ N such that n ≤ T (n) ≤ 2n, if {fTV} is strongly learnable
in time T with a bits of advice, then fTV is computable in bounded-error probabilistic time
T (n)2 · 2a(n) · nO(1), and hence PSPACE ⊆ BPTIME(T (poly(n))2 · 2a(poly(n)) · poly(n)).

Proof. The argument is based on and extends ideas from [44, 21, 65, 33]. Recall that fTV is
the same Boolean function as in the statement of Theorem 50. As stated there, this function
is downward self-reducible and random self-reducible. Now suppose {fTV} is learnable in
time T with a bits of advice. We design a probabilistic machine M solving fTV on inputs
of length n with bounded error in time T (n)2 · 2a(n) · nO(1). The addition inclusion in the
statement of Lemma 51 follows from the completeness of fTV.

Let x ∈ {0, 1}n be the input to M . Let Alearn be a (1/n4k, 1/22n)-learner for {fTV} that
takes a(n) bits of advice and runs in time T (n).12 Here k is the exponent in the number of
queries in the random self-reduction for fTV given by Theorem 50.

12 In this argument, we do not care about poly(n) multiplicative factors applied to the final running time,
so we can assume the failure probability of the learner to be exponentially small by amplification. This
is a standard argument, and we refer to [41] for more details.
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Overview. The plan of the proof is that M will use the advice-taking learner to inductively
produce, with high probability, circuits computing fTV correctly on inputs of length 1 . . . n.
The crucial aspect is not to allow the size of these circuits to grow too large. There will be
n phases in the operation of M – during Phase i, M will produce with high probability a
randomized circuit computing fTV on inputs of length i.

Each phase consists of 2 parts. In Part 1 of Phase i, M computes, for each possible
advice string z of length a(i) that can be fed to the advice-taking learner on input 1i, a
candidate deterministic circuit Czi on i-bit inputs of size at most T (i). In order for M to do
this, it uses the properties of the learner, as well as the circuits for smaller lengths that have
already been computed. The only guarantee on the candidate circuits is that at least one of
them is a approximately correct circuit for fTV at length i, in the sense that it is correct on
most inputs of this length. In Part 2 of Phase i, M uses the random self-reducibility and
downward self-reducibility of fTV to select the “best-performing” candidate among these
circuits and compute a “correction” Ci of the best-performing circuit. The circuit Ci will have
size T (i) · poly(n), and with high probability, it will be a randomized circuit that computes
fTV correctly on all i-bit inputs, in the sense that on each such string it is correct with
overwhelming probability over its internal randomness. At the end of Phase n, M evaluates
the circuit Cn on x and outputs the answer.

We now give the details of how Part 1 and Part 2 work for each phase. We will then
need to argue that M is correct, and that it is as efficient as claimed. Phase 1, which is the
base case for M ’s inductive operation, is trivial. The circuit C1 computing fTV correctly on
inputs of length 1 is simply hard-coded into M .

Now let i > 1 be an integer. We describe how Part 1 and Part 2 of Phase i work, assuming
inductively thatM already has stored in memory a sequence of circuit {Cj}, for 1 ≤ j ≤ i−1,
such that for each such j, Cj has size at most T (j) · poly(n), and with all but exponentially
small probability, computes fTV correctly on each input of length j.

Part 1. M first uses the polynomial-time computability of a to compute a(i). It then cycles
over strings z ∈ {0, 1}a(i), and for each string z it does the following. It simulates Alearn(1i)
with advice z. Each time Alearn makes a membership query of length i, M answers the
membership query using the downward self-reducibility of fTV as follows. If the downward
self-reduction makes a query of length j < i, M answers it by running the stored circuit Cj
on the corresponding query.

If Alearn(1i) with advice z does not halt with an output that is a circuit on i bits, M sets
Czi to be a trivial circuit on i bits, say the circuit that always outputs 0. Otherwise M sets
Czi to be the circuit output by the learning algorithm. Since Alearn is guaranteed to halt in
time T (i) for every advice string, the circuit Czi has size at most T (i).

Part 2. M samples strings y1, . . . , yt, where t = n10k, uniformly and independently at
random amongst i-bit strings. It computes “guesses” b1, . . . , bt ∈ {0, 1} for the values of fTV
on these inputs by running the downward self-reducibility procedure for fTV, and answering
any queries of length j < i using the stored circuits Cj . Then, for each advice string z, it
simulates Czi on each input y`, where 1 ≤ ` ≤ t, and computes the fraction ρz of inputs y` for
which Czi (y`) = b`. Let zmax be the advice string z for which ρzmax is maximum among all such
advice strings. Let Di be the (deterministic) circuit Czmax

i . M produces a randomized circuit
Ci from Di as follows. Ci applies the random self-reduction procedure for fTV O(n) times
independently, using the circuit Di to answer the random queries to fTV, and outputs the
majority answer of these runs. Note that Ci can easily be implemented in size T (i) · poly(n),
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using the fact that the random self-reduction procedure runs in polynomial time. (We stress
that Ci is a randomized circuit even though Di is deterministic.)

It is sufficient to argue that M halts in time T (n) · poly(n) · 2a(n), and that the final
circuit Cn computed by M is a correct randomized circuit for fTV on inputs of length n with
high probability over the random choices of M .

Complexity of M . We will show that M uses time at most T (i)2 · poly(n) · 2a(i) in Phase
i, and computes a circuit Ci of size at most T (i) · poly(n). Since a and T are non-decreasing,
this implies that M uses time at most T (n)2 · poly(n) · 2a(n) in total. We will analyze Part 1
and Part 2 separately.

The first step in Part 1, which is computing a(i), can be done in time poly(n). For
each z, simulating the learner and computing the circuit Czi can be done in time at most
T (i) · T (i− 1) · poly(n), since the learner runs in time T (i) and makes at most that many
oracle queries, each of which can be answered by simulating a circuit Cj of size at most
T (j) · poly(n), where j ≤ i− 1. There are 2a(i) advice strings z which M cycles over, hence
the total time taken by M in Part 1 of Phase i is at most T (i)2 · 2a(i) · poly(n) by the
non-decreasing property of T .

In Part 2 of Phase i, computing the bits b1, . . . , bt takes time at most T (i) · poly(n),
since the downward self-reducibility procedure runs in time poly(n), and every query can be
answered by simulation of a circuit Cj with j < i in time at most T (i) · poly(n). For each Czi ,
computing the fraction ρz takes time at most T (i) · poly(n), since it involves simulating Czi
on poly(n) inputs, and Czi is of size at most T (i). Doing this for each z takes time at most
T (i) · 2a(i) · poly(n) time, as there are 2a(i) possible advice strings of length a(i). Computing
zmax takes time poly(n), and then computing the “corrected” circuit Ci takes time at most
T (i) · poly(n), since the random self-reducibility procedure runs in polynomial time and can
therefore be simulated using polynomial-size circuits.

Correctness of M . Clearly Phase 1 concludes with a correct circuit C1 for fTV on 1-bit
inputs. We will argue inductively that, given that the randomized circuit Ci−1 computed at
the end of Phase i− 1 is a correct circuit for fTV on inputs of length i− 1 such that its error
probability is at most 2−2n on any input, with all but exponentially small probability over
the random choices of M in Phase i, the randomized circuit Ci computed at the end of Phase
i is a correct circuit for fTV on inputs of length i, with error probability at most 2−2n on any
input. By a union bound over the phases, it follows from this that with all but exponentially
small probability, the final circuit Cn is a correct randomized circuit for fTV on inputs of
length n (with error probability at most 2−2n), and hence that carrying out all the phases
and then simulating Cn on x yields the correct value fTV(x) with overwhelming probability.

Therefore our task reduces to arguing the correctness of Phase i given the correctness of
Phase i− 1, for an arbitrary i such that 1 < i ≤ n. We discuss the correctness of Part 1 and
Part 2 separately.

In Part 1, we argue that with all but exponentially small probability, at least one of the
circuits Czi computes fTV correctly on all but a 1/i3k fraction inputs of length i. Consider
the string zi of length a(i) that is the “correct” advice string for Alearn on input 1i. We
only analyze Part 1 for the advice string zi – the other advice strings are irrelevant to our
analysis of correctness for this part. Alearn with advice zi is a correct learner for {fTV};
hence with probability at least 1− 2−2i, it outputs a circuit that computes fTV on at least a
1 − 1/i4k fraction of inputs of length i, when it is given access to a correct oracle for fTV.
By running the learner poly(n) times independently and doing standard amplification, the
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success probability can be boosted to 1−2−2n, while keeping the agreement of the hypothesis
with fTV at least 1− 1/i3k, and not affecting the efficiency of M by more than a polynomial
factor. M might not be able to answer queries to fTV with perfect accuracy, however by the
inductive hypothesis that Cj has error at most 2−2n on any specific input for j < i, it follows
by a union bound that with probability at least 1− T (i)2−2n ≥ 1− 2−n over the internal
randomness of M , the simulation of the learner is correct. Hence with probability at least
1− 2−n, M outputs a circuit Czii during Phase i, Part 1, such that Czii agrees with fTV on
at least a 1− 1/i3k fraction of inputs of length i.

Next we analyze Part 2 of Phase i. By a union bound, with probability at least 1 −
poly(n)/22n, the “guesses” b1, . . . , bt ∈ {0, 1} are all the correct values for fTV on inputs
y1, . . . , yt ∈ {0, 1}i, where by construction t = n10k. By using a standard concentration
bound such as Lemma 19, we have that the estimate ρzi is at least 1− 1/i2k with probability
at least 1− 2−4n, and that with probability at least 1− 2−4n any z such that the agreement
ρz is at least 1 − 1/i2k must be such that Czi agrees with fTV on at least a 1 − 1/i3k/2
fraction of inputs of length i. Thus with probability at least 1− poly(n)/22n, we have that
Czmax
i has agreement at least 1− 1/i3k/2 with fTV on inputs of length i. By again using a

union bound and a standard concentration bound such as Lemma 19, we have that with all
but exponentially small probability, the corrected circuit Ci is a randomized circuit which
computes fTV correctly on all inputs of length i, making error < 2−2n on any single input.
This completes the inductive argument for correctness. J

6.2 Karp-Lipton Results for Bounded-Error Exponential Time
I Lemma 52 (Learnability with advice from distinguishability). Let f ∈ EXP be a Boolean
function and a : N→ N be a advice function.
1. (High-End Generator) There is a constant c ≥ 1 such that for any ε ∈ (0, 1], there is a

sequence of functions {GHE
n }n∈N with GHE

n : {0, 1}nc → {0, 1}2n
ε

computable in determin-
istic time 2O(nc) such that if there is a probabilistic procedure A(1n) taking a(n) bits of
advice and running in time 2O(nε), and outputting a circuit distinguisher for GHE

n (Unc)
with constant probability for all large enough n, then {f} is strongly learnable in time
2O(nε) with a(n) bits of advice.

2. (Low-End Generator) There is a constant c ≥ 1 such that for any d ≥ 1, there is a sequence
of functions {GLE

n }n∈N with GLE
n : {0, 1}nc → {0, 1}2(logn)d computable in deterministic

time 2O(nc) such that if there is a probabilistic quasipolynomial-time procedure A(1n)
taking a(n) bits of advice and outputting a circuit distinguisher for GLE

n (Unc) with constant
probability for all large enough n, then {f} is strongly learnable in quasi-polynomial time
with a(n) bits of advice.

Proof (Nutshell). This follows from the reconstruction procedure for the Nisan-Wigderson
generator together with hardness amplification. We refer to [51] for more details. J

I Theorem 53 (Low-end Karp-Lipton Theorem for bounded-error exponential time). If there is
a k ≥ 1 such that BPE ⊆ i.o.Circuit[nk], then BPEXP ⊆ i.o.EXP/O(logn).

Proof. We will prove the contrapositive. For each bounded-error probabilistic exponential
time machine M , we will define for each rational ε > 0 a deterministic exponential-time
machine Mε taking logarithmic advice which attempts to simulate it. If all of the attempted
simulations Mε fail almost everywhere, we will show that PSPACE ⊆ BPSUBEXP, and we
will then use a translation argument and Corollary 39 to conclude that BPE 6⊆ i.o.Circuit[nk],
thus establishing the contrapositive.
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Let M be any bounded-error probabilistic machine running in time 2mj , where m is the
input length, and j is a constant. We assume without loss of generality that j ≥ 1, and that
M has error < 1/4 on any input. Let ε > 0 be any rational. We define the deterministic
exponential-time machine Mε taking O(logm) bits of advice on inputs of length m below.
It uses the generators {GHE

n } given by Lemma 52 corresponding to the PSPACE-complete
language fTV in the statement of Theorem 50, which is clearly in exponential time.

On input x of length m, Mε first uses the advice on its tape to determine an integer n
such that 22mj ≤ 2nε < 22(m+1)j . Note that any n ∈ N satisfying these conditions is such
that n = Θ(mj/ε). Hence there are poly(m) possibilities for n, and any of these possibilities
can be encoded using O(logm) bits on the advice tape. Given a number i on the advice tape,
Mε can decode the relevant n by determining the i-th number in increasing order satisfying
both inequalities. This can be done in poly(m) time since we can assume ε is hard-coded into
Mε, and any single inequality verification can be done in poly(m) time. Mε then computes
R(y) = GHE

n (y) for every string y ∈ {0, 1}nc . It simulates M on x using each string R(y) in
turn as the randomness for M , and outputs the majority result of these simulations. It is
easy to see that Mε can be implemented to run in 2O(nc) = 2O(mcj/ε) time, i.e, in time that
is exponential on its input length m.

If any of the simulations Mε succeeds on infinitely many input lengths m, we have that
L(M) ∈ i.o.EXP/O(logm). Suppose, contrariwise, that all of the simulations Mε fail almost
everywhere. We will argue that fTV ∈ BPSUBEXP and hence, by completeness of fTV,
PSPACE ⊆ BPSUBEXP.

For any x ∈ {0, 1}m, let Cx be the circuit of size at most 22mj defined as follows: the
input of Cx is the sequence of random bits r used by M in its computation on x. Cx(r)
accepts iff M accepts on x using the sequence r of random bits. By the standard translation
of deterministic computations into circuits, Cx can be implemented in size at most 22mj ,
using the fact that M halts in time 2mj .

Fix any ε > 0. Let n be an arbitrary positive integer, and let m(n) be the unique m such
that 22mj ≤ 2nε < 22(m+1)j (observe that h(a) def= 22aj is an increasing function, so this m is
indeed unique if n is not too small). We claim that for every large enough n, there is an
input x of length m(n) such that Cx is a distinguisher for GHE

n (Unc). Indeed, if not, there
are infinitely many n such that for all inputs x of length m(n), Cx is not a distinguisher, but
this implies that the simulation Mε on inputs of length m(n) would succeed infinitely often
with advice encoding the input length n. Since for each m, there are only finitely many n
such that m = m(n), it follows that the simulation Mε succeeds on infinitely many input
lengths with logarithmic advice. But this contradicts our assumption that the simulation
Mε fails almost everywhere.

Now that our claim is established, we define a deterministic procedure A(1n) taking
O(nε) bits of advice and running in time 2O(nε), which for each large enough n produces a
circuit distinguisher for GHE

n . The procedure A computes m(n) in polynomial time. Note
that m(n) = O(nε/j) = O(nε), by our assumption that j ≥ 1. A then interprets its advice
as an string x of length m(n). It computes Cx, which it can do given x in time polynomial
in the size of Cx, and outputs Cx. The time taken by A is dominated by the time required
to compute Cx, which is 2O(nε), and the advice used by A is of size O(nε).

By applying Lemma 52, we get that {fTV} is strongly learnable in time 2O(nε) with
O(nε) bits of advice. By applying Lemma 51, we get that fTV is computable in bounded-
error probabilistic time 2O(nε). Note that this is the case for every ε > 0, since our choice
of ε was arbitrary. Thus we have fTV ∈ BPSUBEXP, and hence by completeness that
PSPACE ⊆ BPSUBEXP. Using a standard upward translation argument and applying
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Corollary 39, we get that for every k > 0, BPE 6⊆ i.o.Circuit[nk], which is the desired
conclusion. J

I Theorem 54 (High-end Karp-Lipton Theorem for bounded-error exponential time). If
BPEXP ⊆ i.o.Circuit[2n/3], then for each ε > 0, BPEXP ⊆ i.o.DTIME(22n

ε

)/nε.

Proof (Sketch). The proof is entirely analogous to the proof of Theorem 53, except that we
use generators GLE

n rather than the generators GHE
n , adjusting other parameters accordingly.

We get that either PSPACE ⊆ BPQP, or that for every ε > 0, BPEXP ⊆ i.o.DTIME(2n
ε

)/nε.
In the first case, by upward translation, we get that EXPSPACE = BPEXP, and then by
using Corollary 39, we conclude that BPEXP 6⊆ i.o.Circuit[2n/3]. J

I Theorem 55 (Low-end fully uniform Karp-Lipton style theorem for probabilistic time). If
there is a k ≥ 1 such that BPE ⊆ i.o.Circuit[nk], then REXP ⊆ i.o.EXP.

Proof (Sketch). We use the crucial fact that the union of hitting sets is also a hitting set
to eliminate the advice in the simulation. The argument is the same as in the proof of
Theorem 53, except that the simulating machine Mε runs M on x using as randomness R
every element in turn that is in the range of GHE

n for every n such that 22mj ≤ 2nε < 22(m+1)j ,
accepting if and only if any of these runs accepts. Note that Mε does not take advice. We
do not need to give the “correct” n as advice to the machine because, if any n in the interval
produces an accepting path (corresponding to a string in the range of the generator), then⋃
nG

HE
n (Unc) for n as above contains an accepting path for M on x. Finally, we observe that

computing the range of the generator for every such n does not blow-up the complexity of
the simulation by more than a polynomial factor. J

I Theorem 56 (High-end fully uniform Karp-Lipton style theorem for probabilistic time). If
BPEXP ⊆ i.o.Circuit[2n/3], then REXP ⊆ i.o.ESUBEXP.

Proof (Sketch). The proof is entirely analogous to the proof of Theorem 55, except that we
use generators GLE

n rather than the generators GHE
n , adjusting other parameters accordingly.

J

These results can be combined with a Karp-Lipton collapse for deterministic exponential
time. For instance, the following holds.

I Corollary 57. If there is k ∈ N such that BPE ⊆ Circuit[nk], then REXP ⊆ i.o.MA.

Proof. It follows from the hypothesis that E ⊆ Circuit[nk], and hence EXP ⊆ Circuit[poly]
by translation. This in turn implies that EXP = MA [12]. Moreover, the hypothesis gives
REXP ⊆ i.o.EXP using Theorem 55. Consequently, we get REXP ⊆ i.o.MA, which completes
the proof. J

6.3 Karp-Lipton Results for Zero-Error Exponential Time
I Lemma 58 (Fully uniform simulations using easy witness and truth-table concatenation).
Either BPP ⊆ ZPQP, or ZPEXP ⊆ i.o.ESUBEXP.

Proof. We use the “easy witness” method of Kabanets [37]. Let M be any probabilistic
Turing machine with zero error running in time 2mj for some j ≥ 1, such that on each
random computation path of M on any input x, the output is either the correct answer for
M on x or ‘?’, and moreover the probability of outputting ‘?’ is less than 2−2m for any input
x ∈ {0, 1}m. For each ε > 0, we define the following attempted deterministic simulation Mε
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for M . On input x of length m, Mε cycles over all circuits C of size 2mε/2 on mj inputs. For
each such circuit, it explicitly computes the truth table tt(C) of the circuit C, and runs M
on x with tt(C) as randomness. If the run accepts, it accepts; if the run rejects, it rejects.
If the run outputs ‘?’, it moves on to the next circuit C in lexicographic order of circuit
encodings. If all runs output ‘?’, the machine rejects. It should be clear that the simulation
Mε runs in deterministic time ≤ 22m

ε

on inputs of length m for any sufficiently large m, and
only accepts inputs x ∈ L(M).

If for each ε > 0, we have that the simulation Mε solves L(M) correctly on all inputs of
length m for infinitely many input lengths m, we have that L(M) ⊆ i.o.ESUBEXP.

Suppose, on the contrary, that there is some ε > 0 such that the simulation Mε fails on
at least one input x of each large enough input length m. We show how to use this to decide
every language in BPP in ZPQP.

Let N be any bounded-error probabilistic machine running in time at most nk for some
constant k and large enough n. Assume without loss of generality that N has error ≤ 1/10
on any input of length n. We use M to give a zero-error simulation N ′ of N on all inputs
of large enough length. Given an input y of length n, N ′ simulates M on each input x
of length m(n) def= (dlogne)d in turn, for some constant d ≥ 1 to be specified later. If M
outputs ‘?’, N ′ outputs ‘?’, otherwise it moves on to the next input in lexicographic order.
If running M gives ‘?’ outputs for every input x of length m(n), N ′ outputs ‘?’. Otherwise,
N ′ concatenates the random strings used on the computation paths of M for each input of
length m(n) into a single string Rn of length O(2polylog(n)). It then uses Rn as the truth-table
of the hard function for the generator in Theorem 13, setting parameters so that at least n2k

pseudorandom bits are produced by the generator. It cycles over all possible seeds of the
generator and runs N using each output in turn as the sequence of random choices, accepting
if and only if a majority of runs accepts.

Setting d to be a large enough constant depending on j, k, ε and the constant c in the
statement of Theorem 13, it can be shown that this simulation can be done in quasi-polynomial
time, and that it is correct for each input y of large enough length whenever N ′ does not
output ‘?’. The key here is that by the failure of Mε for at least one input of any large
enough length, the string Rn is guaranteed to be hard enough that the generator is correct.
This is because Rn contains a subfunction of sufficiently large worst-case circuit complexity.
Hence cycling over all seeds of the generator and taking the majority value gives the correct
answer for N on input y. Finally, under our initial assumption that M has exponentially
small failure probability, by a union bound the probability that N ′ outputs ‘?’ on any large
enough input is small. This concludes the proof that BPP ⊆ ZPQP. J

I Theorem 59 (High-end fully uniform Karp-Lipton theorem for zero-error exponential time).
If ZPEXP ⊆ i.o.Circuit[2n/3], then ZPEXP ⊆ i.o.ESUBEXP.

Proof. Observe that the proof of Theorem 56 establishes that if REXP 6⊆ i.o.ESUBEXP,
then PSPACE ⊆ BPQP. By Lemma 58, if ZPEXP 6⊆ i.o.ESUBEXP, then BPP ⊆ ZPQP,
and hence by upward translation, BPQP = ZPQP. Putting these together, we have that if
ZPEXP 6⊆ i.o.ESUBEXP, then PSPACE ⊆ ZPQP. Now by upward translation, we have that
EXPSPACE = ZPEXP, and hence by Corollary 39, we get ZPEXP 6⊆ i.o.Circuit[2n/3]. J

We have learned from Valentine Kabanets (private communication) that he has independ-
ently established Theorem 59 in an unpublished manuscript.

In fact, we can get a non-trivial consequence from the weakest possible non-trivial
assumption about the circuit size of Boolean functions computable in zero-error exponential
time. This extension of Theorem 59 relies on the following simple lemma.



I. C. Oliveira and R. Santhanam 18:41

I Lemma 60 (Maximally hard functions in exponential space). Let smax : N→ N be such that
for each n ∈ N, smax(n) is the maximum circuit complexity among Boolean functions on n
bits. Then EXPSPACE 6⊆ i.o.Circuit[smax − 1].

Proof (Sketch). The proof is by simple diagonalization. In exponential space, we can
systematically list the truth tables of Boolean functions on n bits, and maintain the one with
the highest circuit complexity. To compute the circuit complexity of a listed truth table can
be done by cycling over all circuits, starting from the smallest one, and checking for each
circuit whether it computes the given truth table. Once the truth table of a function with
maximum circuit complexity has been computed, we simply look up the corresponding entry
in the truth table for any particular input. J

Now by using the same proof as for Theorem 59 but applying Lemma 60 instead of Corol-
lary 39, we have the following stronger version of Theorem 59. (We note that Theorems 54
and 56 admit similar extensions.)

I Theorem 61 (Strong Karp-Lipton Theorem for zero-error probabilistic exponential time). Let
smax : N→ N be such that for each n ∈ N, smax(n) is the maximum circuit complexity among
Boolean functions on n bits. If ZPEXP ⊆ i.o.Circuit[smax − 1], then ZPEXP ⊆ i.o.ESUBEXP.

7 Hardness of the Minimum Circuit Size Problem

We will be dealing with various notions of non-uniform reduction to versions of the Minimum
Circuit Size Problem (MCSP). Reductions computable in a non-uniform class C are formalized
using oracle C-circuits, which are C-circuits with oracle gates. We only use oracle circuits
where oracle gates appear all at the same level. In this setting, we can define size and depth
of oracle circuits to be the size and depth respectively of the oracle circuits with oracle gates
replaced by AND/OR gates.

I Definition 62 (Non-uniform Reductions). Let C be a typical class of circuits, and L and L′
be languages.

(m-reduction) We say L C-reduces to L′ via m-reductions if there is a sequence of poly-size
oracle C-circuits computing the slices Ln of L when the circuits are given oracle L′, and
such that each oracle circuit has a single oracle gate, which is also the top gate of the
circuit.
(tt-reduction) We say L C-reduces to L′ via tt-reductions if there is a sequence of poly-size
oracle C-circuits computing the slices Ln of L when the circuits are given oracle L′, and
such that no oracle circuit has a directed path from one oracle gate to another.
(ε-approximate reductions) We extend these notions to hold between approximations
of a language. Given a function ε : N → [0, 1] and languages L and L′, we say that L
reduces to ε-approximating L′ under a certain notion of reduction if for each L̃′ which
agrees with L′ on at least a 1− ε(n) fraction of inputs of length n for large enough n, L
reduces to L̃′ under that notion of reduction. We say that ε-approximating L reduces to
L′ if there is a language L̃ which agrees with L on at least a 1− ε(n) fraction of inputs
of length n for large enough n, such that L̃ reduces to L′. More generally, we say that
ε-approximating L reduces to ε′-approximating L′ under a certain notion of reduction if
for any language L̃′ that ε′(n)-approximates L′ on inputs of length n for large enough n,
there is a language L̃ that ε(n)-approximates L on inputs of length n for large enough n,
and a corresponding reduction from L̃ to L̃′.
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(Parameterized reduction) If a reduction is not computed by polynomial size circuits,
we extend these definitions in the natural way, and say that L C[s]-reduces to L′, where
s : N→ N is the appropriate circuit size bound.

The following proposition is immediate from the definitions and the fact that typical
circuit classes are closed under composition.

I Proposition 63 (Transitivity of reductions). Let C be a typical circuit class, L, L′, L′′ be
languages, and ε, ε′, ε′′ : N→ [0, 1] be functions.
(i) If L C-reduces to L′ via m-reductions (resp. tt-reductions) and L′ C-reduces to L′′

via m-reductions (resp. tt-reductions), then L C-reduces to L′′ via m-reductions (resp.
tt-reductions).

(ii) If ε(poly(n))-approximating L C-reduces to ε′(poly(n))-approximating L′ via m-reductions
(tt-reductions) and ε′(poly(n))-approximating L′ C-reduces to ε′′(poly(n))-approximating
L′′ via m-reductions (tt-reductions), it follows that ε(poly(n))-approximating L C-reduces
to ε′′(poly(n))-approximating L′′ via m-reductions (tt-reductions).

Using the notation introduced above, the following fact is trivial to establish.

I Proposition 64 (Relation between parameterized and unparameterized versions of MCSP).
For any typical circuit class C, MCSP-C[2n/2] AC0-reduces to MCSP-C via m-reductions.

I Theorem 65 (Hardness of MCSP for weakly approximating functions in typical circuit classes).
Let C be a typical circuit class that contains AC0[p], for some fixed prime p. For every Boolean
function f ∈ C[nk] there exists c = c(k, δ) ∈ N such that (1/2− Ω(1/nc))-approximating f
AC0-reduces to MCSP-C[2n/2] via tt-reductions, as well as to any property with density at
least 1/4 that is useful against C[2δn] for some fixed δ ∈ (0, 1).

Proof (Sketch). Let f = {fn}n∈N be a function in C[nk], where fn : {0, 1}n → {0, 1} and
AC0[p] ⊆ C[poly]. Further, let 0 < δ < 1 be a constant. We let

NWc(fn) def= {gz : {0, 1}c logn → {0, 1} | z ∈ {0, 1}Θ(n2)}

be the family (multiset) of functions obtained by instantiating the Nisan-Wigderson [51]
construction with the AC0[p]-computable designs from [19] and fn. A bit more precisely, each
gz is a function specified by a seed z of length Θ(n2), the family of sets Sn = {Sw ⊆ [Θ(n2)] |
w ∈ {0, 1}c logn}, and fn, and we have gz(w) def= fn(zSw). Here each Sw ⊆ [Θ(n2)] contains
exactly n elements (Sw is the w-th set in the design), and zSw ∈ {0, 1}n is the projection of
z to coordinates Sw. By taking c = c(δ, k) sufficiently large and using that δ > 0, fn ∈ C[nk],
and that the design can be implemented in C[poly], it follows from [51, 19] that for large
enough n:

(A) Each gz is a function on m def= c logn input bits of C-circuit complexity ≤ 2δm.

On the other hand, if hm ∼ Fm is a uniformly random Boolean function on m input bits,
using that δ < 1 it easily follows from a counting argument (e.g. Lemma 20) that for large
enough n (recall that m = c logn):

(B) hm has C-circuit complexity > 2δm with probability 1− o(1).

Consequently, from (A) and (B) we get that an oracle to MCSP-C[2n/2] (corresponding
to δ = 1/2) can be used to distinguish the multiset NWc(fn) (sampled according to z ∼
{0, 1}Θ(n2)) from a random function on m input bits.



I. C. Oliveira and R. Santhanam 18:43

We argue next that it follows from the description of the Nisan-Wigderson reconstruction
procedure [51] that there is a tt-reduction from (1/2− Ω(1/nc))-approximating fn to MCSP-
C[2n/2] that is computable by AC0-circuits. That some non-uniform approximate reduction
with oracle access to fn exists immediately follows from the proof of their main result.
That it can be computed in AC0[poly(n)] with oracle access to the distinguisher MCSP-
C[2n/2] (and without oracle access to fn) follows by our choice of parameters (in particular,
|Sw1 ∩Sw2 | = O(logn) for every pair w1 6= w2), non-uniformity of the reduction, and the fact
that the output of fn on any particular n-bit input can be hardwired into the (non-uniform)
AC0 circuit computing the reduction. Finally, we remark that the Ω(1/nc) advantage in the
approximation comes from the truth-table size of each gz and the hybrid argument in [51],
and that we get a tt-reduction because the reconstruction procedure is non-adaptive.

In fact, the same argument shows that (1/2−Ω(1/nc))-approximating f AC0-reduces via
tt-reductions to any property useful against C[2δn] for some δ ∈ (0, 1) and with density at
least 1/4, since this suffices to implement the Nisan-Wigderson reconstruction routine. This
completes the proof of Theorem 65. J

I Corollary 66 (Hardness of the standard circuit version of MCSP). For any Boolean function
f ∈ Circuit[poly(n)], there exists c ≥ 1 such that (1/2− 1/nc)-approximating f AC0-reduces
via tt-reductions to MCSP-Circuit and to any property with density at least 1/4 that is useful
against Circuit[2n/2].

Proof. The second item follows immediately from Theorem 65, since Circuit is typical. The
first item follows from Theorem 65, Proposition 64 and Proposition 63. J

I Proposition 67 (Hardness amplification for Formula). There exists a Boolean function
f ∈ Formula that is Formula-hard under AC0-reductions such that for every integer d ≥ 1, f
TC0-reduces via tt-reductions to (1/2− 1/nd)-approximating f .

Proof (Sketch). This is achieved using a standard hardness amplification argument using
the existence of a random self-reducible complete problem in NC1, as well as the XOR lemma.
It is known that the circuits used in the hardness amplification reconstruction procedure and
for random-self-reducibility can be implemented in non-uniform TC0. For more details, we
refer to [63, 2, 24]. J

I Corollary 68 (Hardness of MCSP for NC1). For every Boolean function f ∈ Formula, f
TC0-reduces to the following problems via tt-reductions:
1. MCSP-Formula[2n/2].
2. Any property useful against Formula[2δn] for δ ∈ (0, 1) and with density at least 1/4.
3. MCSP-Formula.
4. MCSP-C for any typical circuit class C ⊇ Formula.

Proof. Items 1 and 2 follow from Theorem 65 applied to the typical class Formula, together
with Propositions 63 and 67. Item 3 follows from Item 1 and Propositions 63 and 64. Finally,
in order to prove Item 4, note that MCSP-C[2n/2] is useful against Formula[2n/2], using the
assumption that formulas are subclasses of C circuits. Moreover, MCSP-C[2n/2] as a property
has density 1− o(1), since a random function has circuit complexity higher than 2n/2 with
probability exponentially close to 1 by the usual counting argument. Thus, it follows using
the same argument as for Item 2 that MCSP-C[2n/2] is TC0-hard under tt-reductions for
Formula. Item 4 now follows from this via Propositions 63 and 64. J
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Hardness results as in Corollary 68 also follow for other classes such as non-uniform
logarithmic space and the class of problems reducible to the determinant using non-uniform
TC0 reductions, since these classes also have random self-reducible complete problems and
admit worst-case to average-case reducibility in low complexity classes. We will not further
elaborate on this here.

A closely related problem is whether a string has high KT complexity (cf. [3]). KT
complexity is a version of Kolmogorov complexity, where a string has low complexity if it
has a short description from which its bits are efficiently computable. We will not explore
consequences for this notion in this work, but we expect that some of our results can be
transferred to the problem of whether a string has high KT-complexity using standard
observations about the relationship between this problem and MCSP.

8 Open Problems and Further Research Directions

We describe here a few directions and problems that we find particularly interesting, and
that deserve further investigation.

Speedups in Computational Learning Theory. One of our main conceptual contributions is
the discovery of a surprising speedup phenomenon in learning under the uniform distribution
using membership queries (Lemma 24). Naturally, it would be relevant to understand which
learning models admit similar speedups. In particular, is there an analogous result for
learning under the uniform distribution using random examples? An orthogonal question is
to weaken the assumptions on concept classes for which learning speedups hold.

Applications in Machine Learning. Is it possible to use part of the machinery behind the
proof of the Speedup Lemma (Lemma 24) to obtain faster algorithms in practice? Notice
that speedups are available for classes containing a constant number of layers of threshold
gates, as TC0 is a typical circuit class according to our definition. Since these circuits can be
seen as discrete analogues of neural networks, which have proven quite successful in several
contexts of practical relevance, we believe that it is worth exploring these implications.

Non-Uniform Circuit Lower Bounds from Learning Algorithms. As discussed in [72],
strong lower bounds are open even for seemingly weak classes such as MOD2 ◦ AND ◦ THR
and AND◦OR◦MAJ circuits. We would like to know if the learning approach to non-uniform
lower bounds (Theorem 41) can lead to new lower bounds against such heavily constrained
circuits. More ambitiously, it would be extremely interesting to understand the learnability
of ACC0, given that the existence of a nontrivial algorithm for large enough circuits implies
REXP * ACC0 (Theorem 42).

The Frontier of Natural Proofs. Is there a natural property against ACC0? Williams [73]
designed a non-trivial satisfiability algorithm for sub-exponential size ACC0 circuits, which
implies in particular that NEXP * ACC0. On the other hand, Corollary 45 shows that
the existence of a natural property against such circuits implies the stronger lower bound
ZPEXP * ACC0.

Connections between Learning, Proofs, Satisfiability, and Derandomization. Together
with previous work (e.g. [70, 73, 62, 35]), it follows that non-trivial learning, non-trivial
proofs of tautologies (in particular, nontrivial satisfiability algorithms), and non-trivial
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derandomization algorithms all imply (randomized or nondeterministic) exponential time
circuit lower bounds. These are distinct algorithmic frameworks, and the argument in each
case is based on a different set of techniques. Is there a more general theory that is able to
explain and to strengthen these connections? We view Corollary 43 as a very preliminary
result indicating that a more general theory along these lines might be possible.

Unconditional Nontrivial Zero-Error Simulation of REXP. Establish unconditionally that
REXP ⊆ i.o.ZPESUBEXP. We view this result as an important step towards the ambitious
goal of unconditionally derandomizing probabilistic computations, and suspect that it might
be within the reach of current techniques. In particular, this would follow if one can
improve Lemma 58, which unconditionally establishes that either BPP ⊆ ZPQP or ZPEXP ⊆
i.o.ESUBEXP, to a result of the same form but with REXP in place of ZPEXP.

Learning Algorithms vs. Pseudorandom Functions. The results from Section 4 establish
an equivalence between learning algorithms and the lack of pseudorandom functions in a
typical circuit class, in the non-uniform exponential time regime. It would be interesting to
further investigate this dichotomy, and to understand whether a more uniform equivalence
can be established.

Hardness of the Minimum Circuit Size Problem. Show that MCSP /∈ AC0[p]. We have
established that if MCSP ∈ TC0 then NC1 ⊆ TC0. Prove that if MCSP ∈ TC0 then
Circuit[poly] ⊆ TC0.
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Abstract
An algebraic branching program (ABP) is a directed acyclic graph, with a start vertex s, and
end vertex t and each edge having a weight which is an affine form in variables x1, x2, . . . , xn
over an underlying field. An ABP computes a polynomial in a natural way, as the sum of weights
of all paths from s to t, where the weight of a path is the product of the weights of the edges
in the path. An ABP is said to be homogeneous if the polynomial computed at every vertex is
homogeneous. In this paper, we show that any homogeneous algebraic branching program which
computes the polynomial xn1 + xn2 + . . .+ xnn has at least Ω(n2) vertices (and edges).

To the best of our knowledge, this seems to be the first non-trivial super-linear lower bound
on the number of vertices for a general homogeneous ABP and slightly improves the known lower
bound of Ω(n logn) on the number of edges in a general (possibly non-homogeneous) ABP, which
follows from the classical results of Strassen (1973) and Baur & Strassen (1983).

On the way, we also get an alternate and unified proof of an Ω(n logn) lower bound on the
size of a homogeneous arithmetic circuit (follows from [Strassen, 1973] and [Baur & Strassen,
1983]), and an n/2 lower bound (n over reals) on the determinantal complexity of an explicit
polynomial [Mignon & Ressayre, 2004], [Cai, Chen & Li, 2010], [Yabe, 2015]. These are currently
the best lower bounds known for these problems for any explicit polynomial, and were originally
proved nearly two decades apart using seemingly different proof techniques.
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1 Introduction

The question of proving superpolynomial lower bounds on the size of arithmetic circuits for
an explicit polynomial family is a fundamental problem in the area of algebraic complexity
theory. Unfortunately, the state of art for this problem is quite unsatisfying and the best lower
bound known for general arithmetic circuits is an Ω(n log d) lower bound for the polynomial
P(n,d) =

∑n
i=1 x

d
i , proved by Strassen [16] and Baur & Strassen [2] more than three decades

ago. The absence of substantial progress on the general question has led to focus on the
question of proving better lower bounds for interesting restricted classes of arithmetic circuits.
Arithmetic formula, non-commutative circuits, bounded depth circuits, multilinear formulas
and monotone arithmetic circuits are some restricted classes of arithmetic circuits which
have been studied from this point of view, and for many of these classes substantial progress
has been made on the question of proving lower bounds. We refer the reader to the surveys
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of Shpilka-Yehudayoff [13] and Saptharishi [11] and the references therein for an overview of
these results. One such restricted model of computation, which will be the primary focus of
this paper is the model of algebraic branching programs (ABP), which we define now.

I Definition 1 (Algebraic Branching Programs (ABP)). An algebraic branching program in
variables {x1, x2, . . . , xn} over a field F is a directed acyclic graph with a designated starting
vertex s with in degree zero, a designated end vertex t with out degree zero, and the edge
between any two vertices is labeled by an affine form from F[x1, x2, . . . , xn].

We say that the ABP is homogeneous, if the polynomial computed at every vertex is a
homogeneous polynomial.

The weight of any (directed) path in an ABP is the product of labels of the edges in the
path. The polynomial computed at a particular vertex v is the sum of weights of all paths
from the starting vertex s to v. The polynomial computed by the ABP is the polynomial
computed at the end vertex t.

In terms of their power of computation, ABPs lie somewhere between arithmetic formula
and general arithmetic circuits, in the following precise sense. An arithmetic formula can
be converted into an ABP such that the number of vertices in the ABP is at most the
number of vertices in the formula. On the other hand, an ABP can be transformed into an
arithmetic circuit such that the number of vertices in the circuit is at most the sum of the
number of edges and the number of vertices in the ABP1. Since arithmetic formula and ABP
seem to be weaker models of computation than general arithmetic circuits, it is conceivable
that proving lower bounds for them could be a more tractable challenge than proving lower
bounds for general arithmetic circuits. In a way, this reflects in the current state of art
where we know almost quadratic lower bounds for arithmetic formula [7, 13], whereas the
best lower bounds known for arithmetic circuits or even ABPs continue to be the weakly
super-linear [16, 2]. Moreover, to the best of our knowledge, even for homogeneous ABPs,
prior to the results in this paper, no non-trivial super-linear lower bounds seem to be known
on the number of vertices, whereas for the number of edges, the results in [16, 2] give an
Ω(n logn) lower bound2. We remark that in the setting of boolean circuit complexity it
is possible to extend the formula lower bound of Nechiporuk [9] to show an Ω(n1+ε) lower
bounds for both deterministic and non-deterministic branching programs. However, such an
extension is not known in the algebraic setting. The key difference stems from the fact that
the edge labels for a boolean branching program are just individual literals or constants, as
opposed to arbitrary affine forms as in the case of an algebraic branching program. And,
indeed if we restrict Definition 1 so that every edge label is a field constant or an affine
form in a single variable (and not a general affine form), then the formula lower bounds of
Kalorkoti [7] do extend to such special cases and give a super-linear lower bound on the
number of edges in an ABP. However, transforming a general ABP given by Definition 1 to
this form seems to incur a blowup of factor n in the number of edges, and it is unclear if
something non-trivial can be recovered via this approach.

We would like to remark that even though not much seems to be known for lower bounds
for general algebraic branching programs, much progress has been made on the understanding

1 These transformations also preserve homogeneity.
2 Note that if an ABP computes a degree d polynomial, it must have at least d + 1 vertices, since every

edge contributes degree at most 1, and there must be a path with at least d edges to push the degree
up to d. So, we think of this lower bound of Ω(d) on an ABP as trivial. Because of this, whenever we
mention a (homogeneous) ABP lower bound for an n variate polynomial of degree d, we think of d ≤ n,
so that the trivial lower bound of d is at most linear in n.



M. Kumar 19:3

of many restricted and more structured variants of algebraic branching programs; both from
the point of view of lower bounds and deterministic polynomial identity testing. For instance,
strongly superpolynomial lower bounds are known for non-commutative ABPs [10] and read
k-oblivious ABPs [1]. For an overview of known polynomial identity testing results for read
once oblivious algebraic branching programs, we refer the reader to the PhD thesis of Michael
Forbes [6].

In this paper, we study the question of proving an improved lower bound for general
algebraic branching programs. Our main result is a quadratic lower bound on the number of
vertices for a general homogeneous ABP. To the best of our knowledge, this is the first such
non-trivial superlinear lower bound. Also, this immediately implies a quadratic lower bound
on the number of edges, improving the earlier bound of Ω(n logn) [16, 2]. We now precisely
state the theorem.

I Theorem 2. Let F be a field of characteristic zero or relatively prime to d. Let B be a
homogeneous algebraic branching program over the field F which computes the polynomial
P(n,d)(x). Then, the number of vertices in B is at least Ω(nd).

I Remark. Theorem 2 holds for a slightly more general class of branching programs than
homogeneous branching programs. Our proof continues to hold if the number of non-trivial
affine linear forms on any path from the start vertex s to the end vertex t is at most the
degree of the polynomial computed. For our proofs, we consider this slightly more general
model. In some sense, this generalization is a more natural model to study since the model
is closed under affine transformations.

Picking d = Θ(n) would give us the desired quadratic lower bound. Based on the known
results, there are two natural approaches to try for ABP lower bounds. The first would
be to try and extend the proof of formula lower bounds in [7] to a general ABP. It is not
clear if this approach can be made to work3. One major obstacle seems to be that the edge
labels in the ABP are general affine forms, which seems to make it tricky to analyse the
complexity measure used in [7] for an ABP. Another approach would be try and use the
special structure of an ABP, and aim to get an improved analysis of the circuit lower bound
obtained in [16, 2]. It is unclear to us if the original proofs in [16, 2] can be used to this end.
One of the challenges with adapting the proofs in [16, 2] to obtain better ABP lower bounds
seems to be that in the obvious conversion of an ABP to a circuit, the number of vertices in
the circuit obtained is the sum of the number of vertices and the number of edges in the
ABP. It seems tricky to extract any non-trivial bound on the number of vertices of the ABP
from this transformation since the degree of every vertex in an ABP is unbounded in general.
Even in the setting of number of edges, it is not apriori clear if a better lower bound can be
proved using the proof in [16, 2].

For our proof in this paper, we essentially follow this high level strategy. On the way, we
give an alternate proof of an Ω(n logn) lower bound for homogeneous arithmetic circuits.
The ideas in this proof turn out to be a bit more malleable and sensitive to the underlying
model of computation than the original one, and indeed for a homogeneous ABP we obtain
a better lower bound by a direct analysis which crucially relies on the structure of the ABP.
Formally, we give an alternate proof of the following result.

3 However, we do not know how to formally show that there is a nearly linear size ABP which has high
complexity in terms of the measure used in [7].
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I Theorem 3 ([16, 2]). Let F be a field of characteristic zero or relatively prime to d.
Then, any homogeneous arithmetic circuit which computes the polynomial P(n,d) has at least
Ω (n log d) gates.

The statement above is a special case of a classical result [16, 2], where they show a
similar lower bound for all (not necessarily homogeneous) arithmetic circuits. For the original
proof, Baur & Strassen [2] showed that if an n variate polynomial can be computed by an
arithmetic circuit of size s, then all its partial derivatives can be computed by a multi-output
circuit of size O(s). They combined this structural result with an Ω(n log d) lower bound
on the size of multi-output arithmetic circuits, proved by Strassen [16]. Strassen’s proof, in
turn relies on a beautiful application of Bezout’s theorem. Our proof does not rely on the
Bezout’s theorem directly but uses some other elementary properties of algebraic varieties.
We enumerate the properties used in Section 2. It is not clear to us if our proof is any more
elementary than the proof in [16, 2] or vice versa, although as we alluded to, it does seem to
be more flexible to the underlying model than the original proof.

In a short and beautiful paper, Smolensky [15] gave a completely elementary proof of the
Ω(n logn) lower bound for general circuits. Smolensky’s proof uses just elementary linear
algebra, and therefore is definitely simpler than our proof of Theorem 3. However, it is not
clear if this proof can be strengthened to show Theorem 2.

Determinantal Complexity

Another well known model of computation in algebraic complexity theory, which is relevant
to the results in this paper is the notion of determinantal complexity, defined as follows.

I Definition 4 (Determinantal complexity). Let P ∈ F[x1, x2, . . . , xn] be a polynomial of
degree d. The determinantal complexity of P is the smallest k such that there is a k × k
matrix M with entries being affine forms in F[x1, x2, . . . , xn] such that Determinant(M) = P .

Perhaps not surprisingly, the state of known lower bounds on determinantal complexity is
also fairly modest, with the best lower bound known being an n

2 lower bound for an n variate
polynomial family [8, 4]. Over the field of real numbers, this bound was recently improved
to n by Yabe [17].

We now state our last result where we give a simple proof of the lower bound for
determinantal complexity of P(n,d).

I Theorem 5 ([8, 4]). Let F be a field of characteristic zero or characteristic p 6= 2 such
that 2 ≤ d < p. Then, the determinantal complexity of P(n,d) over the field F is at least n/2.

The original proofs of Theorem 5 of an n/2 lower bound on the determinantal complexity
of the permanent of an

√
n ×
√
n matrix due to Mignon and Ressayre [8] over fields of

characteristic zero, and due to Cai, Chen and Li [4] over all fields of characteristic not equal
to 2, both rely on analysing the rank of the Hessian matrix associated to the permanent.
On the other hand, for our proof, we will formulate a criterion for proving determinantal
complexity lower bound upto n− o(n) for an n variate polynomial using elementary linear
algebra. This part of the proof is completely elementary. We then show that the polynomial
P(n,d) satisfies this criterion for some weaker choice of parameters. Also, our argument
essentially remains the same over all fields. Interestingly, over the field of real numbers, we
get a lower bound of n for P(n,d) as long as d is even. This matches an improvement of factor
2 shown recently by Yabe [17] for the determinantal complexity of the permanent over the
field of real numbers. For the reals, our proof of an n lower bound turns out to be extremely
simple.
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Proof outline

The proofs of all the three theorems crucially rely on a structural property of the polynomial
P(n,d), which we summarize in Lemma 6. A special case of this lemma, (see Corollary 14) is
already quite interesting and sufficient for the homogeneous ABP and circuit lower bound
proofs and appears to be known [12]4. Our proof is along similar lines, but needs some more
ideas.

I Lemma 6. Let F be an algebraically closed field of characteristic zero or relatively prime
to d. Let {Q1, Q2, . . . , Qk, R1, R2, . . . , Rk} be a set of polynomials in F[x] such that the set
of their common zeros V = V(Q1, Q2, . . . , Qk, R1, R2 . . . , Rk) is non-empty. Let P be any
polynomial in F[x] of degree at most d− 1, such that

P(n,d) = P +
k∑
i=1

Qi ·Ri .

Then, k ≥ n/2.

For the proofs of the main theorems, we use the linear algebraic and combinatorial
structure of the models at hand (namely homogeneous ABP, homogeneous circuits and
determinantal complexity) to reduce to an application of Lemma 6. Proofs of Theorem 2,
Theorem 3 rely on multiple applications of Lemma 6, while the proof of Theorem 5 relies on
a single application of a very special case of Lemma 6, which in itself has a very simple proof.
The proof of Lemma 6 requires some properties of the dimension of varieties defined by
polynomials of a special form, and we give a simple (though not completely self contained5)
proof in Section 3.1.

Theorem 3 and Theorem 5 are two fundamental lower bounds in algebraic complexity
theory and have been at the frontier of our understanding of lower bounds for these models
for the past many years. Improving these bounds is perhaps one of the most important
open problems in this line of research. Therefore, it seems desirable to have newer and
alternative proofs of these results. Moreover, the original proofs of Theorem 5 and Theorem 3
were quite different from each other and the results themselves were proved almost two
decades apart. On the other hand, it is interesting to note that the proofs in this paper give
essentially unified arguments for both these statements, as well as for homogeneous ABP
lower bounds (even though we can show a super-linear lower bound only for homogeneous
arithmetic circuits). We would also like to remark that since the proof of Lemma 6 relies
on the dimension of varieties, a quantity always upper bounded by the number of variables,
it appears likely that we would need new ideas to push the lower bound on k to anything
larger than n.

Organization of the paper

We set up some notations and preliminaries in Section 2 and prove some technical claims
needed for the proofs in Section 3.1. We prove Theorem 2 and Theorem 3 in Section 3.2 and
Theorem 5 in Section 3.3.

4 Saptharishi attributes the proof to Kayal.
5 The proof uses some known standard properties of algebraic varieties, which we do not prove here.
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2 Preliminaries

We now list some notations that we follow.

F denotes a general field, and C denotes the field of complex numbers.
Without loss of generality, for the results in this paper, we think of the field F to be
algebraically closed. This is because an arithmetic circuit, a branching program or a
matrix over a field F can be viewed to be over the algebraic closure of F.
The degree of a monomial xe1

i x
e2
2 · · ·xen

n is defined to be equal to
∑n
i=1 ei.

The degree of a polynomial P is the degree of the highest degree monomial in P with a
non-zero coefficient.
We denote the set {x1, x2, . . . , xn} by the set x.
We denote the set {1, 2, 3, . . . , t} by [t].
An affine form in F[x] is a polynomial of the form α0+

∑n
i=1 αixi, where α0, α1, α2, . . . , αn ∈

F.
We say that a polynomial P has no constant term if the homogeneous component of
degree 0 of P is 0. In particular, for any polynomial P ∈ F[x] with no constant term,
P (0, 0, . . . , 0) = 0.
For a square matrix M , we denote the determinant of M by det(M).
For every gate (or vertex) g in an arithmetic circuit or an algebraic branching program,
we denote by [g], the polynomial computed at g. For the starting vertex s of an ABP, we
define the polynomial computed at s, denoted by [s] to be 1.
For any set {Q1, Q2, . . . , Qt} of polynomials in F[x], we denote by V(Q1, Q2, . . . , Qt) the
affine variety (or simply variety) of Q1, Q2, . . . , Qt in Fn, which is defined as follows:

V(Q1, Q2, . . . , Qt) = {a ∈ Fn : ∀i ∈ [t], Qi(a) = 0} .

For any set {Q1, Q2, . . . , Qt} of polynomials in F[x], we define the ideal generated by
Q1, Q2, . . . , Qt defined as follows:

I(Q1, Q2, . . . , Qt) =
{

t∑
i=1

Ri ·Qi : ∀i ∈ [t], Ri ∈ F[x]
}
.

For any variety V ⊆ Fn , we define the ideal associated to this variety, denoted by I(V )
as follows:

I(V ) = {R : R ∈ F[x], and ∀a ∈ V,R(a) = 0} .

Algebraic branching programs, arithmetic circuits and determinantal complexity

We have already defined an algebraic branching program and determinantal complexity in
Section 1.

We now recall the definition of an arithmetic circuit.

I Definition 7 (Arithmetic circuits). An arithmetic circuit on variables x over a field F is
a directed acyclic graph, where the vertices (also called gates) with in-degree zero (called
input gates or leaves) are labeled either by constants over F or with variables in x. The
internal vertices all have in-degree (or fan-in) 2 and are labeled by + or ×, which indicate
summation and multiplication operations over the field F. The edges feeding into a + gate
can be labeled by field constants.
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An arithmetic circuit formally computes a polynomial in the natural way. A circuit is said to
be homogeneous if the polynomial computed at every vertex in the circuit is a homogeneous
polynomial. The number of vertices in a circuit is the size of the circuit. Since we restrict
ourselves to fan-in two circuits in this paper, the number of edges and the number of vertices
are within a constant factor of each other. We refer the reader to the excellent survey by
Shpilka and Yehudayoff [13] for an introduction to arithmetic circuits, and an over view of
prior work in this area.

For an algebraic branching program, we note that the number of vertices and the number
of edges need not be within a constant fraction of each other, since the in-degree and out-
degree of internal vertices is both unrestricted. In this sense, a super-linear lower bound on
the number of edges in an ABP need not necessarily imply a super-linear lower bound on
the number of vertices. We also remark that that without loss of generality, we can assume
that the underlying graph of an ABP is simple, i.e there is at most one edge between any
pair of vertices. This follows from the fact that multiple edges can be combined into a single
edge whose weight is the sum of weight of the original edges. Since edge weights are allowed
to be arbitrary affine forms, this is a valid transformation for an ABP.

Ideals and varieties

A useful notion for our proofs will be that of an affine variety (or simply variety). For
a field F, a variety V ⊆ Fn is simply the set of common zeros of a set of polynomials in
F[x1, x2, . . . , xn]. Another relevant notion is the notion of an ideal. For a variety V , the ideal
associated to V , denoted by I(V ) is the set of all polynomials in F[x] which vanish on V .

A fundamental property associated to an affine variety is its dimension, which takes a
value between 0 and n. We do not formally define this, but this can be thought of as an
appropriate generalization of the notion of dimension for linear spaces.

We refer the reader to the book by Cox, Little and O’Shea [5] for more on algebraic
varieties and ideals and connections between them. For the proofs in this paper, we will rely
on the following properties of dimension of a variety.

I Lemma 8 (Section 2.8 in [14]). Let S be a set of polynomials in n variables over an
algebraically closed field F such that |S| ≤ n. Let V = V(S) be the set of common zeros of
polynomials in S.

V = {a ∈ Fn : ∀f ∈ S, f(a) = 0} .

If V is non-empty, then, the dimension of V (S) is at least n− |S|.

The following two facts are basic properties of the dimension of a variety and can be
found in Section 4 of Chapter 9 in [5].

I Lemma 9. Let F be an algebraically closed field, and let V1 ⊆ Fn and V2 ⊆ Fn be two
affine varieties such that V1 ⊆ V2. Then, the dimension of V1 is at most the dimension of V2.

I Lemma 10. Let F be an algebraically closed field and let V ⊆ Fn be an affine variety.
Then, the dimension of V is zero if and only if V is finite.

3 Proofs of main theorems

We now proceed to prove the results. We start with a technical lemma, which proves to be
critical for all our main results. A special case of the lemma where each of the polynomials
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Qi and Ri is homogeneous and the polynomial P is identically zero seems to be known [12].
The statement in Lemma 6 is a generalization of this special case. The proof is along very
similar lines, but needs a few more ideas.

3.1 Technical claims
For this section, we work over the field C of complex numbers, but the results continue to
hold over any algebraically closed field of characteristic p such that p does not divide the
parameter d. This ensures that certain partial derivatives which come up in the proofs do
not vanish. We start with the following lemma.

I Lemma 11 (Restatement of Lemma 6). Let {Q1, Q2, . . . , Qk, R1, R2, . . . , Rk} be a set of poly-
nomials in C[x] such that the set of their common zeros V = V(Q1, Q2, . . . , Qk, R1, R2 . . . , Rk)
is non-empty. Let P be any polynomial in C[x] of degree at most d− 1, such that

P(n,d) = P +
k∑
i=1

Qi ·Ri .

Then, k ≥ n/2.

Proof. We prove the lemma via contradiction. If possible, let k < n/2. This implies that
n − 2k > 0. From the hypothesis of the lemma, V(Q1, Q2, . . . , Qk, R1, R2, . . . , Rk) is non-
empty. Therefore, by Lemma 8, the dimension of V(Q1, Q2, . . . , Qk, R1, R2, . . . , Rk) is at
least n− 2k > 0.

For any variable xj ∈ x, observe that

∂P(n,d)

∂xj
= ∂P

∂xj
+

k∑
i=1

∂Qi
∂xj
·Ri +

k∑
i=1

Qi ·
∂Ri
∂xj

.

This implies that

dxd−1
j − ∂P

∂xj
=

k∑
i=1

∂Qi
∂xj
·Ri +

k∑
i=1

Qi ·
∂Ri
∂xj

.

It is easy to see that for every xj ∈ x, the right hand side in the equality above vanishes on
every point in V(Q1, Q2, . . . , Qk, R1, R2, . . . , Rk) . Therefore,

V(Q1, Q2, . . . , Qk, R1, R2, . . . , Rk) ⊆ V
({

dxd−1
j − ∂P

∂xj
: xj ∈ x

})
.

In particular, Lemma 9 implies that the dimension of V
({
dxd−1

j − ∂P
∂xj

: xj ∈ x
})

is at least
n− 2k. Since P is a polynomial of degree at most d− 1, each first order partial derivative of
P is of degree at most d− 2. Now, it follows from Lemma 12, (which we prove below) that
the dimension of V

({
dxd−1

j − ∂P
∂xj

: xj ∈ x
})

is zero. Therefore, n− 2k ≤ 0, but this is a
contradiction for k < n/2. J

I Lemma 12. Let d be a positive natural number. For every choice of polynomials g1, g2, . . . , gn ∈
C[x] of degree at most d− 1, the dimension of the variety V(xd1 − g1, x

d
2 − g2, . . . , x

d
n − gn) is

zero.
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Proof. Let V = V(xd1−g1, x
d
2−g2, . . . , x

d
n−gn). To prove the lemma, we use Lemma 10. We

show that the cardinality of V is at most T =
(
n+n(d−1)

n

)
. We prove this via contradiction.

If the cardinality of V is larger than T , then we focus our attention on an arbitrary subset
S ⊆ V of size equal to T + 1. Now, consider the linear space of polynomial functions from S

to C. Clearly, the dimension of this linear space must be at least T + 1, since the indicator
function of every point in S can be expressed as a sufficiently high degree polynomial and
these polynomials are linearly independent. We now argue that the dimension of the linear
space of all polynomial functions from V to C (and therefore from S to C) is upper bounded
by T . This completes the proof by contradiction. To this end, we prove the following claim.
Let I = I(V ) be the ideal corresponding to V . Clearly, for every i ∈ [n], xdi − gi ∈ I.

I Claim 13. Let P be any polynomial in C[x] of degree ∆ strictly larger than n(d−1). Then,
there exists a polynomial P ′′ of degree at most n(d− 1) and polynomials h1, h2, . . . , hn such
that

P = P ′′ +
n∑
i=1

(xdi − gi) · hi

Proof. Note that for every xi ∈ x, the polynomial P ′ obtained from P by replacing every
occurrence of xdi by gi is equivalent to P mod the ideal I, since P −P ′ is divisible by xdi − gi,
which is in the ideal. So, we can keep performing this replacement while still maintaining
equivalence modulo the ideal I. Note that the process terminates eventually, since xdi is
being replaced by a polynomial of strictly smaller degree. Let P ′′ be the polynomial obtained
when the process terminates. It follows that the individual degree of every variable xi in P ′′
is upper bounded by d− 1, and hence the degree of P ′′ is at most n(d− 1). This proves the
claim. J

Therefore, the space of all polynomial functions from V to C is spanned by a subset of
polynomials in C[x] of degree at most n(d− 1). Hence, the dimension of this linear space is
at most the number of monomials of degree at most n(d− 1) in n variables, which is equal
to T . J

The following corollary of Lemma 6 is already interesting and seems to be well known [12].

I Corollary 14. For every set {Q1, Q2, . . . , Qk, R1, R2, . . . , Rk} of homogeneous polynomials
of degree at least 1, if

P(n,d) =
k∑
i=1

Qi ·Ri .

Then, k ≥ n/2.

3.2 Lower bound for homogeneous algebraic branching programs
In this section, we prove Theorem 2. We will in fact show that the theorem is true for a
class of algebraic branching programs which are slightly more general than homogeneous
ABPs. We say that an ABP has formal degree at most d, if the number of non-constant
edge weights on any path from s to t is at most d. In general, we define the formal degree
of any vertex v in an ABP to be the maximum number of non-constant edge weights along
any path from s to v. We first argue that we can convert a homogeneous ABP computing a
polynomial of degree d to an ABP of formal degree d.
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I Lemma 15. Let B be a homogeneous ABP with r vertices which computes a homogeneous
polynomial P of degree d. Then, there is an ABP B′ computing P such that B′ has at most
r vertices and has formal degree at most d.

We defer the proof of this lemma to the end of this section, and use it to complete the proof
of Theorem 2. We now prove the following structural lemma for ABPs of formal degree d.

I Lemma 16. Let B be an algebraic branching program of formal degree at most d with b
vertices, which computes an n-variate polynomial P of degree d. For any i ∈ {1, 2, 3, . . . , d−1},
let Si = {u1, u2, . . . , um} be the set of all vertices in B which compute a polynomial of degree
equal to i. Then, there exist polynomials h1, h2, . . . , hm and R of degree at most d− 1 such
that

P =
m∑
j=1

[uj ] · hj +R

Proof. Let us consider all paths from the starting vertex s of B to the end vertex t of B
which passes through some uj ∈ Si. The polynomial computed by the sum of weights of
only these paths can be written as [uj ] · hj where hj is the polynomial given by the sum of
weights of all paths from uj to t. Now, we claim that the degree of hj is at most d − duj

.
This follows from the fact that if the degree of hj was larger than d− duj , then the formal
degree of t will be larger than d which would contradict the hypothesis that B is of formal
degree at most d.

We now use this observation to complete the proof of the lemma. Without loss of
generality, let us assume that the vertices u1, u2, . . . , um are ordered in such a way that there
is no directed path from uj to uj′ for any j′ > j. We prove the following claim by a simple
induction.

I Claim 17. Fix any j ∈ {1, 2, 3, . . . ,m}. Then, there exists polynomials h1, h2, . . . , hj of
degree at most d − 1 and a polynomial Rj computed by the ABP B′j obtained from B by
deleting all the vertices in {u1, u2, . . . , uj} such that

P =
j∑

k=1
[uk] · hk +Rj .

Proof. For k = 1 the proof follows from the observation above. For the induction step,
observe that in the ABP obtained by deleting the vertices u1, u2, . . . , uk, the polynomial
computed by the vertex uk+1 is the same as the polynomial computed by the vertex uk+1 in
the original ABP B. This is true since by our ordering of vertices u1, u2, . . . , um there are
no directed paths from u` to u`′ for any `′ > ` in B. J

We now argue that the degree of Rm in Claim 17 is at most d− 1. This would complete the
proof of the lemma. Let B′ be the ABP obtained from B by deleting all vertices in the set
Si in B. We know that Rt is the polynomial computed by B′. Let us consider any path
s, v1, v2, . . . , vk, t from s to t in B′. Note that all these vertices appear in the original ABP
B. Let us consider the minimum j such that vj has degree at least i + 1 in B. Observe
that the degree of vj−1 in B must be at most i− 1, since we have deleted the vertices in Si.
Therefore, the degree of the monomials in the weight of the path s, v1, v2, . . . , vk, t is at most
i − 1 + ` + 1 where ` is the maximum number of non-constant edge weights on any path
from vj to t in B. Now, observe that ` is at most d− i− 1. This is true since if ` ≥ d− i,
then there would be a path in B from s to t through vj such that there are at least d+ 1
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non-constant edge weights on this path, thereby contradicting the hypothesis that the formal
degree of B is at most d. J

We are now ready to complete the proof of Theorem 2.

I Theorem 18 (Restatement of Theorem 2). Let B be an algebraic branching program of
formal degree at most d over C which computes the polynomial P(n,d)(x). Then, the number
of vertices in B is at least Ω(nd).

Proof. We partition the set of vertices in the ABP B, into Ω(d) many sets based on their
degree. Then, we argue that each of these sets must have at least n/2 vertices. For
i ∈ {1, . . . , d − 1}, let the set Si = {u1, u2, . . . , uti} be the set of all vertices in B which
compute a polynomial of degree equal to i. From Lemma 16, we know that there are
polynomials hi,1, hi,2, . . . , hi,ti and Ri of degree at most d− 1 such that

P(n,d) =
ti∑
j=1

[uj ] · hi,j +Ri .

Let [uj ] and hi,j be written as [uj ] = [uj ]′ + α and hi,j = h′i,j + β where α, β are constants
and [uj ]′, h′i,j have no constant terms. Then,

[uj ] · hj = [uj ]′ · h′i,j +Qj

where Qj has degree at most d− 1. Therefore, without loss of generality, we get that there
polynomials h′i,1, h′i,2, . . . , h′i,ti and R′i such that

P(n,d) = R′i +
ti∑
j=1

[uj ]′ · h′i,j

where
Degree of R′i is most d− 1.
For every j, the constant term of each of the polynomials [uj ]′ and h′i,j is equal to zero
and they have degree at least 1.

Note that since [uj ]′s and h′i,js have degree at least one and have no constant term, it
follows that they vanish at the all zero point. In particular, V = V([u1]′, [u2]′, . . . , [uti ]′,
h′i,1, h

′
i,2, . . . , h

′
i,ti

) is non empty. So, by Lemma 6, it follows that ti is at least n/2. Since
this holds for all the Ω(d) values of i, and these sets Si are all disjoint, this gives the desired
lower bound on the number of vertices of B. J

We now prove Lemma 15.

Proof of Lemma 15. We will start with the ABP B and obtain an ABP B′ by modifying or
deleting some of the edge weights in B such that the polynomial computed by B′ is the same
as the polynomial computed by B. Moreover, B′ will have the additional property that the
degree of the homogeneous polynomial computed at every vertex v equals the formal degree
of v. The proof will be via an induction, where we process vertices in the topological order,
i.e we process a vertex v only after processing every vertex u such that (u, v) is an edge in B.

The base case of this induction is trivial as there is nothing to do for the starting vertex s.
For the induction step, we process a vertex v. Let u1, u2, . . . , um be all the vertices such

that (uj , v) is an edge in B. Let the weight of (uj , v) be `j + αj , where `j is a homogeneous
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linear form (which could be identically zero) and αj is a constant. Also, let duj be the degree
of [uj ]. So, we have the following identity:

[v] =
m∑
j=1

[uj ] · (`j + αj) .

We separate out the ujs based on their degree.

[v] =
∑

j:dv<duj

[uj ] · (`j + αj) +
∑

j:dv=duj

[uj ] · (`j + αj) +
∑

j:dv>duj

[uj ] · (`j + αj) .

We now observe that since the polynomial computed at v and every uj is homogeneous, and
[v] has degree dv, the following identity is also true.

[v] =
∑

j:dv<duj

[uj ] · 0 +
∑

j:dv=duj

[uj ] · (αj) +
∑

j:dv>duj

[uj ] · (`j + αj) .

So, in B′, we replace the edge weights as follows:
For every vertex uj such that duj

> dv, we delete the edge (uj , v), and
for every vertex uj such that duj = dv with the edge (uj , v) having weight `j + αj , we
relabel it with αj . J

3.2.1 Lower bound for homogeneous arithmetic circuits
The proof of Theorem 3 is along the lines of the proof of Theorem 2 that we described above.
The main difference is that we partition the set of vertices in the circuit into Ω(log d) sets
based on their degrees defined as follows. For i ∈ {1, 2, . . . , log(d) − 1}, we define the set
Si to be the set of all vertices v in a homogeneous circuit C such that the degree dv of the
polynomial computed at v satisfies 2i ≤ dv < 2i+1 − 1. For this definition of the set Si, a
structural lemma analogous to Lemma 16 is true, and is easy to prove. Combining this with
Lemma 6, would imply that the size of Si is at least Ω(n). Since there are log d such sets, we
get a bound of Ω(n log d). We skip the rest of the details.

3.3 Lower bound on determinantal complexity
In this section, we complete the proof of Theorem 5. We start by proving the following
lemma.

I Lemma 19. Let Q ∈ F[x] be a homogeneous polynomial of degree d. Let M be a t × t
matrix, whose entries are affine forms in the variables x, such that

det[M ] = Q .

Then, there exists a linear subspace S of dimension at least n− t, such that Q(a) = 0,∀a ∈ S.

Proof. Since the entries of M are affine functions in the variables in x, we can write M as

M(x) = M0 +
n∑
i=1

Mixi .

Here, M0,M1, . . . ,Mn are t× t matrices over F. Since Q is homogeneous, it follows that

Q(0, 0, . . . , 0) = 0,
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it follows that det[M0] = 0. Therefore, M0 is not full rank. Hence, there is a non-zero vector
v ∈ Ft, which is in the kernel of v, i.e M0v = 0. Let us consider the set S ⊆ Fn, defined as

S =
{

(a1, a2, . . . , an) ∈ Fn :
(

n∑
i=1

Miai

)
· v = 0

}
.

In other words, S is the set of all vectors a in Fn such that the vector v is in the kernel of∑n
i=1 Miai. Observe that this implies that v is in the kernel of M(a), since it is already in

the kernel of M0, by choice. Thus, M(a) is rank deficient for a ∈ S. Hence, det(M(a)) = 0
for every a ∈ S. Moreover, since S is a linear space of dimension at least n− t, it follows
that Q is zero on every point on a subspace of dimension at least n− t. J

Observe that from the degree requirements, it follows that the determinantal complexity
of a degree d polynomial is at least d. Hence, if we can construct an explicit polynomial of
degree d = o(n) such that it does not vanish on any linear subspace of dimension larger than
k(n, d), then from Lemma 19, we will obtain a lower bound of n − k. It is known that at
least over small fields a random homogeneous polynomial of degree d in n variables does
not vanish on any affine subspace of dimension much larger than nO(1/d) [3]. Therefore, in
principle, d can be taken as small as O(logn) and k = O(1) over such fields. The challenge is
to construct such polynomial families explictly. Over small fields constructions of this nature
are known, although the parameters seem to be far from what would be true for a random
polynomial, see for example [3]. Even beyond the application to minor improvements in
known determinantal complexity lower bounds, explicit construction of such subspace evasive
polynomials is an extremely interesting open question.

We now observe that the polynomial P(n,d) already lets us recover the n/2 lower bound
on determinantal complexity over the field of complex numbers and any field of characteristic
p not equal to 2. For fields of characteristic equal to p, our proof would work, for instance if
we pick d such that 2 ≤ d < p. In fact, over reals, we get a lower bound of n for P(n,d) for
every even d. As alluded to in the introduction, such a lower bound of n was proved over
reals by Yabe [17] for the permanent of an

√
n×
√
n matrix via a very different proof.

A useful notion for the rest of proof will be the notion of a formal restriction of a
polynomial to a linear space, which is defined using the following observation.

I Observation 20. Let S ⊆ Fn be any linear space of co-dimension equal to t and let P be
any polynomial in F[x]. Then, there exists a subset V of variables x of size equal to n− t
and a polynomial Qt depending only on the variables in V such that

The degree of Qt is at most the degree of P .
For every a ∈ S, P (a) = Qt(a).

Proof. Since S is a linear space of co-dimension t, it follows that there are coordin-
ates {i1, i2, . . . , it} and linear forms L1, L2, . . . , Lt depending only on variables outside
{i1, i2, . . . , it}, such that

S =
{

a ∈ Fn : ∀j ∈ [t], aij − Lj(a) = 0
}
.

We define V = x \ {xi1 , xi2 , . . . , xit}. Without loss of generality, we assume that ij = j. Let
Qi be obtained from P by replacing the variables x1, x2, . . . , xi in P by L1, L2, . . . , Li. By
induction on i, it can be observed that

P −Qi =
i∑

j=1
(xj − Lj) ·Rj
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where Rj is a polynomial of degree at most d− 1. Moreover, by construction, Qi does not
depend on the variables x1, x2, . . . , xi. Now, from the definitions, we get that for any a ∈ S,

P (a) = Q(a) .

Since each Qi is obtained from P by a linear transformation of the set of variables, the degree
does not increase in the process. J

We call the polynomial Qt obtained in the proof to be a formal restriction of P on S.
We also get the following useful corollary.

I Corollary 21. Let F be any field with at least d + 1 elements, and let P ∈ F[x] be any
homogeneous polynomial of degree d. If S is a subspace of Fn of co-dimension t such that
P evaluates to zero on S, then, there exist homogeneous linear forms `1, `2, . . . , `t and
homogeneous polynomials R1, R2, . . . , Rt of degree d− 1 such that

P =
t∑
i=1

`i ·Ri .

Proof. The polynomial Qt obtained in Observation 20 satisfies

P −Qt =
t∑
i=1

(xi − Li) ·Ri

where each Li is a homogeneous linear form, and each Ri is a homogeneous polynomial of
degree d− 1. Moreover, Qt depends only on the un-restricted variables xt+1, xt+2, . . . , xn,
and is of degree at most d, and for every j ∈ {1, 2, . . . , t} and a ∈ S, aj = Lj(a). Since P
evaluates to zero everywhere on S, it follows that Qt ∈ F[xt+1, xt+2, . . . , xn] evaluates to
zero everywhere on the grid F× F× . . .× F. Since F has at least d+ 1 elements and Qt is of
degree at most d, by the Schwartz-Zippel lemma, Qt must be identically zero. So,

P =
t∑
i=1

(xi − Li) ·Ri . J

We now complete the proof of Theorem 5. We present the proof over the field of complex
numbers, but it will be clear from the proof that the statement is true for any finite field of
characteristic p 6= 2 such that the degree d of P(n,d) satisfies 2 ≤ d < p.

Proof of Theorem 5. Let M be a t× t matrix of affine forms over C[x] such that

P(n,d) = det[M ]

From Lemma 19, it follows that there is a linear subspace S ∈ Cn of dimension at least
n− t such that

P(n,d)(a) = 0,∀a ∈ S

From Corollary 21, it follows that there exist t homogeneous linear forms `1, `2, . . . , `t and
homogeneous polynomials R1, R2, . . . , Rt of degree equal to d− 1, such that

P(n,d) =
t∑
i=1

`i ·Ri

From Lemma 6, we get that t ≥ n/2. J

I Remark. Over reals, this argument gives a simple proof of the currently best lower bound
of n for the polynomial x2

1 + x2
2 + . . .+ x2

n since this polynomial has exactly one zero in Rn
and in particular, is not zero on any linear subspace of non-trivial dimension.
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4 Open problems

We end with some open problems.
The most interesting question here would be to extend the results here and prove
a quadratic lower bound for general (possibly non-homogeneous) algebraic branching
programs. Lemma 16 is not true for a general ABP and hence the proofs in this paper do
not extend to the non-homogeneous setting.
Another question of interest is to construct explicit polynomials of low degree which do
not vanish on very large linear subspaces over all fields. Beyond the application to minor
improvements in the determinantal complexity lower bounds, this seems to be a natural
algebraic question.
Of course, improving the lower bounds here is an extremely interesting problem. In fact,
it is known that proving a super-quadratic lower bound for general algebraic branching
programs implies a super-linear lower bound for determinantal complexity (see for example
[17]). Perhaps the first step towards this goal could be to prove super-quadratic lower
bound for homogeneous formulas. Currently, no such bounds are known.
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Abstract
In 1979 Valiant showed that the complexity class VPe of families with polynomially bounded for-
mula size is contained in the class VPs of families that have algebraic branching programs (ABPs)
of polynomially bounded size. Motivated by the problem of separating these classes we study
the topological closure VPe, i.e. the class of polynomials that can be approximated arbitrarily
closely by polynomials in VPe. We describe VPe with a strikingly simple complete polynomial
(in characteristic different from 2) whose recursive definition is similar to the Fibonacci num-
bers. Further understanding this polynomial seems to be a promising route to new formula lower
bounds.

Our methods are rooted in the study of ABPs of small constant width. In 1992 Ben-Or and
Cleve showed that formula size is polynomially equivalent to width-3 ABP size. We extend their
result (in characteristic different from 2) by showing that approximate formula size is polynomially
equivalent to approximate width-2 ABP size. This is surprising because in 2011 Allender and
Wang gave explicit polynomials that cannot be computed by width-2 ABPs at all! The details
of our construction lead to the aforementioned characterization of VPe.

As a natural continuation of this work we prove that the class VNP can be described as the
class of families that admit a hypercube summation of polynomially bounded dimension over a
product of polynomially many affine linear forms. This gives the first separations of algebraic
complexity classes from their nondeterministic analogs.
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1 Introduction

Let VPe denote the class of families of polynomials with polynomially bounded formula size
and let VPs denote the class of families of polynomials that can be written as determinants
of matrices of polynomially bounded size whose entries are affine linear forms. In 1979
Valiant [53] proved his famous result VPe ⊆ VPs. The question whether this inclusion is
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strict is a long-standing open question in algebraic complexity theory: Can the determinant
polynomial detn :=

∑
σ∈Sn

sgn(σ)
∏n
i=1 xi,σ(i) be computed by formulas of polynomially

bounded size? Motivated by this question we study the class VPe of families of polynomials
that can be approximated arbitrarily closely by families in VPe (see Section 2 for a formal
definition). We present a simple description of the closure VPe and of a VPe-complete poly-
nomial whose recursive definition is similar to the Fibonacci numbers, given the characteristic
is not 2, see Theorem 3.11.

In algebraic complexity theory, the way of showing a complexity lower bound for a
problem f ∈ V for some F-vector space V most often goes by (implicitly or explicitly) finding
a function F : V → F that is zero on all problems of low complexity while at the same time
F(f) 6= 0. Grochow [20] gives a long list (e.g., [41, 44, 34, 23, 32, 13]) of settings where
complexity lower bounds are obtained in this way. Moreover, he points out that over the
complex numbers these functions F can be assumed to be continuous (and even to be so-called
highest-weight vector polynomials). If C and D are algebraic complexity classes with C ⊆ D
(for example, C = VPe and D = VPs), then any separation of algebraic complexity classes
C 6= D in this continuous manner would automatically imply the stronger statement D 6⊆ C.
It is therefore natural to try to prove the separation VPs 6⊆ VPe instead of the slightly
weaker VPe 6= VPs, which provides further motivation for studying VPe. This is exactly
analogous to Mulmuley and Sohoni’s geometric complexity approach (see e.g. [38, 39] and
the exposition [15, Sec. 9]) where one tries to prove the separation VNP 6⊆ VPs to attack
Valiant’s famous VPs 6= VNP conjecture [53]. Here VNP is the class of p-definable families,
see Section 2 for a precise definition.

The generalized Fibonacci polynomial

We prove that the generalized Fibonacci polynomial Fn is VPe-complete under p-degenerations,
where Fn is defined via F0 := 1, F1 := x1, Fn := xnFn−1 + Fn−2, see Section 3. This
means that every family (fn) in VPe can be obtained as the limit of a sequence fn =
limj→∞ Ft(n)(`1(j), . . . , `t(n)(j)), where each `i(j) is a variable or constant and t(n) is a
polynomially bounded function. This is arguably the simplest VPe-complete polynomial
known today. Prior to our work the simplest VPe-complete (and VPe-complete) polynomial
was the iterated 3× 3 matrix multiplication polynomial [6]. This immediately motivates the
definition of border Fibonacci complexity LFib(f) of a polynomial f , which is the smallest
number m such that f can be obtained as limj→∞(Fm(`1(j), . . . , `m(j)))j . To make the
situation more geometric we allow the `i(j) to be arbitrary affine linear forms. Our results
show that border Fibonacci complexity is polynomially equivalent to border formula size.
This insight is quite striking because a result of Allender and Wang [2] implies that the
Fibonacci complexity without allowing approximations can be infinite!

A promising path towards proving formula lower bounds, for example for the determinant
or the permanent, is to apply to our setting the following standard geometric ideas. If we
take our field to be the complex numbers and fix the number of variables n and the degree d,
then the set of homogeneous degree d polynomials C[x1, . . . , xn]d contains the set

Xm := {f ∈ C[x1, . . . , xn]d | LFib(f) ≤ m}

as an affine subvariety (Xm is the closure of the set of affine projections of Fm intersected
with C[x1, . . . , xn]d). Moreover, since we allowed the `i(j) to be affine linear forms, the
group GL(Cn) acts canonically on Xm, making Xm an affine GL(Cn)-variety. If we find a
polynomial F that vanishes identically on Xm, then a nonzero evaluation F(f) 6= 0 implies
that LFib(f) > m. This approach looks feasible given the very simple structure of the
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generalized Fibonacci polynomial. This is emphasized by the fact that the action of GL(Cn)
puts a lot of structure on the coordinate ring of Xm, see for example [12, 5, 34, 13, 26, 22, 42]
where the action of the general linear group on the coordinate ring of a variety is used to
classify some of its defining equations.

1.1 Main Results
Algebraic Branching Programs (ABPs) of width 2

Our main objects of study are the following classes of families of polynomials: the class of
families of polynomials with polynomially bounded formula size VPe (fan-in 2 arithmetic
formulas that use additions and multiplications as their operations), its closure VPe, and
the nondeterministic variant VNP. We do so by studying algebraic branching programs
of small width. These are defined as follows. An algebraic branching program (ABP) is a
directed acyclic graph with a source vertex s and a sink vertex t that has affine linear forms
over the base field F as edge labels. Moreover, we require that each vertex is labeled with an
integer (its layer) and that edges in the ABP only point from vertices in layer i to vertices
in layer i + 1. The width of an ABP is the cardinality of its largest layer. The size of an
ABP is the number of its vertices. The value of an ABP is the sum of the values of all
s-t-paths, where the value of an s-t-path is the product of its edge labels. We say that an
ABP computes its value. The class VPs coincides with the class of families of polynomials
that can be computed by ABPs of polynomially bounded size, see e.g. [47].

For this paper we introduce the class VPk, k ∈ N, which is defined as the class of families
of polynomials computable by width-k ABPs of polynomially bounded size. It is well-known
that VPk ⊆ VPe for every k ≥ 1 (see Proposition 7.1). In 1992, Ben-Or and Cleve [6]
showed that VPk = VPe for all k ≥ 3 (we review the proof, see Theorem 6.1). In 2011
Allender and Wang [2] showed that width-2 ABPs cannot compute every polynomial, so in
particular we have a strict inclusion VP2 ( VP3. Let the characteristic of the base field F
be different from 2. Our first main result (Theorem 3.1 and Corollary 3.8) is that the closure
of VP2 and the closure of VPe are equal,

VP2 = VPe. (1)

Interestingly, as a direct corollary of (1) and the result of Allender and Wang, the inclusion
VP2 ( VP2 is strict. It is easy to see that VP1 equals VP1 (Proposition 5.10), so VP1
and VP2 are examples of quite similar algebraic complexity classes that behave differently
under closure. Most importantly, from the proof of (1) we obtain our results about the
generalized Fibonacci polynomial that we mentioned before.

VNP via affine linear forms

We define the classes VNPe and VNP in the natural way. In 1980, Valiant [54] showed that
VNPe = VNP and in this paper we will always view VNP as the nondeterministic analog of
VPe. To VP1 and VP2 we similarly associate nondeterministic analogs VNP1 and VNP2
(see Section 2). Using interpolation techniques it is possible to deduce VNP2 = VNP
from (1), provided the field is infinite. Using more sophisticated techniques we strengthen
this result to get our second main result (Theorem 4.2):

VNP1 = VNP. (2)

That is, a family (fn) is contained in VNP iff fn can be written as a hypercube summation
of polynomially bounded dimension over a product of polynomially many affine linear

CCC 2017
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forms. Using (2) it is then easy to verify that VP1 ( VNP1 and using [2] yields VP2 (
VNP2, which separates complexity classes from their nondeterministic analogs. Interestingly
VNP1 ( VNP over the field with 2 elements, see Section 9.

Restricted ABP edge labels

Several more results on small-width ABPs, approximation closures, and hypercube sum-
mations are proved throughout this paper. For example, in Section 5 we investigate the
subtleties of what happens if we restrict the ABP edge labels to simple affine linear forms, or
to variables and constants. The precise relations between complexity classes that we obtain
are listed in Figure A in Appendix A. As another example, we strengthen (2) as follows
(Theorem 6.2): A family (fn) is contained in VNP iff fn can be written as a hypercube
summation of polynomially bounded dimension over a product of polynomially many affine
linear forms that use at most two variables each.

1.2 Related work
In the boolean setting as well as in the algebraic setting finding lower bounds for the formula
size of explicit problems is considered a major open problem. For the boolean setting we refer
the reader to the line of papers [49, 4, 28, 43, 25, 50], which results in an explicit function
with formula size Ω(n3/(log2 n log logn)).

In the algebraic setting the smallest formula for the determinant has size O(nlogn), which
can be deduced from e.g. [27]. The best known lower bound on the formula size of detn is
Ω(n3) by [29]. That paper also gives a quadratic lower bound for an explicit polynomial
(note that the lower bound for the determinant is not quadratic in the number of variables).

Toda [52] proved that several definitions for the class VPs are equivalent, see also [36]. In
particular VPs is the class of polynomials that can be written as determinants of matrices of
polynomially bounded size whose entries are affine linear forms. Due to its pure mathematical
formulation, lower bounds for this determinantal complexity attracted the attention of
geometers [37, 32, 3]. Moreover, Mulmuley and Sohoni’s geometric complexity approach
[38, 39] is also mainly focused on lower bounds for the determinantal complexity and the
symmetries of the determinant polynomial play a key role in their work. Recently [14] showed
that it is not possible to prove superpolynomial lower bounds on the determinantal complexity
using only information about the occurrences/non-occurrences of irreducible representations
in the coordinate rings of the orbit closures of the determinant and the (padded) permanent.
This disproves a major conjecture in geometric complexity theory. The proof in [14] is fairly
general and also holds for lower bounds on the formula size. Only very recently the formula
size analog to determinantal complexity, the iterated matrix multiplication complexity was
studied from a geometric perspective [19].

There is a large number of publications on lower bounds for constant depth circuits
and formulas (with superconstant fan-in), see e.g. [1, 30, 24, 51], which recently led to
the celebrated result [23] that the permanent does not admit size 2o(

√
m) homogeneous

ΣΠΣΠ circuits in which the bottom fan-in is bounded by
√
m. In the light of the previous

depth-reduction results this seemed very close to separating VP from VNP. Several very
recent results [16, 18] indicate that new ideas are needed to separate VP from VNP.

Ben-Or and Cleve [6] proved that a family of polynomials has polynomially bounded
formula size if and only if it is computable by width-3 ABPs of polynomial size. An excellent
exposition on the history of small-width computation can be found in [2], along with an
explicit polynomial that cannot be computed by width-2 ABPs: x1x2 + x3x4 + · · ·+ x15x16.
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Saha, Saptharishi and Saxena [46, Cor. 14] showed that x1x2 + x3x4 + x5x6 cannot be
computed by width-2 ABPs that correspond to the iterated matrix multiplication of upper
triangular matrices.

Bürgisser [10] studied approximations in the model of general algebraic circuits, finding
general upper bounds on the error degree. For most specific algebraic complexity classes C
the relation between C and C has not been an active object of study. As pointed out
recently by Forbes [17], Nisan’s result [40] implies that C = C for C being the class of size-k
algebraic branching programs on noncommuting variables. Recently, a structured study of
VP and VPs has been started, see [21]. By far the most work in lower bounds for topological
approximation algorithms has been done in the area of bilinear complexity, dating back to
[7, 48, 35] and more recently [31, 34, 26, 55, 33], to list a few.

1.3 Paper outline
In Section 2 we introduce in more detail the approximation closure and the nondeterminism
closure of a complexity class. In Section 3 we prove the first main result: border formula
size is polynomially equivalent to border width-2 ABP size and the generalized Fibonacci
polynomial is VPe-complete under p-degenerations. In Section 4 we prove the second main
result: a new description of VNP as the nondeterminism closure of families that have
polynomial-size width-1 ABPs. The later sections contain details on how to strengthen the
result from Section 4 and results on the power of ABPs with restricted edge labels.

2 Nondeterminism and approximation closure

In this section we introduce the approximation closure and the nondeterminism analog of a
class. A family is a sequence of polynomials (fn)n∈N. A class is a set of families and will
be written in boldface, C. For an introduction to the algebraic complexity classes VPe,
VP, and VNP we refer the reader to [11]. We denote by poly(n) the set of polynomially
bounded functions N→ N. We define the norm of a complex multivariate polynomial as the
sum of the absolute values of its coefficients. This defines a topology on the polynomial ring
C[x1, . . . , xm]. Given a complexity measure L, say ABP size or formula size, there is a natural
notion of approximate complexity that is called border complexity. Namely, a polynomial
f ∈ C[x] has border complexity Ltop at most c if there is a sequence of polynomials g1, g2, . . .

in C[x] converging to f such that each gi satisfies L(gi) ≤ c. It turns out that for reasonable
classes over the field of complex numbers C, this topological notion of approximation is
equivalent to what we call algebraic approximation (see e.g. [10]). Namely, a polynomial
f ∈ C[x] satisfies L(f)alg ≤ c iff there are polynomials f1, . . . , fe ∈ C[x] such that the
polynomial

h := f + εf1 + ε2f2 + · · ·+ εefe ∈ C[ε,x]

has complexity LC(ε)(h) ≤ c, where ε is a formal variable and LC(ε)(h) denotes the complexity
of h over the field extension C(ε). This algebraic notion of approximation makes sense over
any base field and we will use it in the statements and proofs of this paper.

I Definition 2.1. Let C(F) be a class over the field F. We define the approximation
closure C(F) as follows: a family (fn) over F is in C(F) if there are polynomials fn;i(x) ∈ F[x]
and a function e : N→ N such that the family (gn) defined by

gn(x) := fn(x) + εfn;1(x) + ε2fn;2(x) + · · ·+ εe(n)fn;e(n)(x)

is in C(F(ε)). We define the poly-approximation closure Cpoly(F) similarly, but with the
additional requirement that e(n) ∈ poly(n). We call e(n) the error degree.

CCC 2017
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Interestingly, for subtle reasons, taking the approximation closure C 7→ C is not idempotent
in general and hence not a closure operator, but for reasonable classes (like VPk, VPe,
and VP) it is.

One can think of VNP as a “nondeterminism closure” of VP. We want to use the
nondeterminism closure for general classes.

I Definition 2.2. Let C be a class. The class N(C) consists of families (fn) with the
following property: there is a family (gn) ∈ C and p(n), q(n) ∈ poly(n) such that

fn(x) =
∑

b∈{0,1}p(n)

gq(n)(b,x),

where x and b denote sequences of variables x1, x2, . . . and b1, b2, . . . , bp(n). We will some-
times say that f(x) is a hypercube sum over g and that b1, b2, . . . , bp(n) are the hypercube
variables. For any s, t, we will use the standard notation VNPt

s to denote N(VPt
s), where

the superscript t will become relevant in Section 5. We remark that the map C 7→ N(C)
trivially satisfies all properties of being a closure operator.

3 Approximate width-2 ABPs and formula size

As mentioned in the introduction, Allender and Wang [2] showed that there exist polynomials
that cannot be computed by any width-2 ABP, for example the polynomial x1x2 + x3x4 +
· · ·+ x15x16. Therefore, we have a separation VP2 ( VP3 = VPe. We show that allowing
approximation changes the situation completely: every polynomial can be approximated by
a width-2 ABP. In fact, every polynomial can be approximated by a width-2 ABP of size
polynomial in the formula size, and with error degree polynomial in the formula size. This is
the main result of this section.

I Theorem 3.1. VPe ⊆ VP2
poly when char(F) 6= 2.

We leave as an open question what happens in characteristic 2.
In order to understand the following proofs and the corresponding figures it is advisable

to recall that an ABP corresponds naturally to an iterated product of matrices if we number
the vertices in each layer consecutively, starting with 1. Namely, consider two consecutive
layers i and i+ 1 and let Mi be the matrix whose entry at position (v, w) is the label of the
edge from vertex v in layer i to vertex w in layer i+ 1 (or 0 if there is no edge between these
vertices). Then the ABP’s value equals the product Mk · · ·M2M1.

For a polynomial f over F(ε) define the matrix Q(f) :=
(
f 1
1 0
)
. A parametrized affine linear

form is an affine linear form over the field F(ε). A primitive Q-matrix is any matrix Q(`),
where ` is a parametrized linear form. For a 2 × 2 matrix M with entries in F(ε)[x], we
use the shorthand notation M + O(εk) for M +

(
O(εk) O(εk)
O(εk) O(εk)

)
, where O(εk) denotes the

set εk F[ε,x]. As a product of matrices, the ABP construction in our proof of Theorem 3.1
will be of the form ( 1 0 )M` · · ·M2M1

(
1
0
)
where the Mi are primitive Q-matrices Q(f) for

which f is either a constant from F(ε) or a variable. We are thus proving a slightly stronger
statement than the statement of Theorem 3.1.

I Lemma 3.2 (Addition). Let k ≥ 1. Let f, g ∈ F[x] be polynomials such that some
F ∈ Q(f) + O(εk) and some G ∈ Q(g) + O(εk) can be written as a product of n and m
primitive Q-matrices, respectively. Then some matrix H ∈ Q(f + g) +O(εk) can be written
as the product of n+m+ 1 primitive Q-matrices. Moreover, if the error degrees in F,G are
ef , eg, respectively, then the error degree of H is at most ef + eg.
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u1 u2

v1 v2

f + g +O(εk) ∼

u1 u2

v1 v2

+O(εk)g

+O(εk)f

Figure 1 Addition construction for Lemma 3.2.

Proof. Note that (Q(f) +O(εk)) ·Q(0) · (Q(g) +O(εk)) = Q(f + g) +O(εk), so we have
H := F ·Q(0) ·G ∈ Q(f + g) +O(εk). Moreover, the largest power of ε occurring in H is
εef +eg . See Fig. 1. J

I Lemma 3.3 (Squaring). Let f ∈ F[x] be a polynomial such that some F ∈ Q(f) +O(ε3)
can be written as the product of n primitive Q-matrices. Then some matrix H ∈ Q(f2)+O(ε)
and some matrix H ′ ∈ Q(−f2) + O(ε) can be written as the product of 2n + 11 primitive
Q-matrices. Moreover, if the error degree in F is ef then the error degree of H and H ′ is at
most 2 · ef + 4.

Proof. We set

A :=
(
−ε−1 0

0 ε

)
= Q(−ε−1) ·Q(ε) ·Q(−ε−1),

B :=
(
ε2 1
−1 0

)
= Q(1) ·Q(−1) ·Q(1) ·Q(ε2),

C :=
(
ε−1 0
0 ε

)
= Q(−ε−1) ·Q(ε− 1) ·Q(1) ·Q(ε−1 − 1).

Then one can check that

H := A · F ·B · F ·C ∈ A · (Q(f) +O(ε3)) ·B · (Q(f) +O(ε3)) ·C ∈ Q(−f2) +O(ε).

To obtain H ′ ∈ Q(f2) +O(ε), we replace B by

B′ :=
(
−ε2 1
−1 0

)
= Q(1) ·Q(−1) ·Q(1) ·Q(−ε2).

One checks that the highest power of ε appearing in H and H ′ is at most 2 · ef + 4. See
Fig. 2 and Fig. 3 for a pictorial description. J

I Lemma 3.4 (Multiplication). Let f, g ∈ F[x] be polynomials such that some F ∈ Q(f/2) +
O(ε3) and some G ∈ Q(g) + O(ε3) can be written as the product of n and m primitive
Q-matrices respectively. Then some H ∈ Q(f · g) + O(ε) can be written as the product
of 4n + 4m + 37 primitive Q-matrices. Moreover, if the error degrees in F , G are ef , eg,
respectively, then the error degree of H is at most 4 · ef + 4 · eg + 12.
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u1 u2

v1 v2

∓f2 +O(ε) ∼

u1 u2

v1 v2

ε−1 ε

+O(ε3)f

−1±ε2

+O(ε3)f

−ε−1 ε

Figure 2 Squaring construction for Lemma 3.3.

u1 u2

v1 v2

u1 u2

v1 v2

ε−1 ε

∼

ε−1 − 1

1

ε− 1

−ε−1

u1 u2

v1 v2

u1 u2

v1 v2

±ε2
−1

∼

±ε2

1

−1

1

u1 u2

v1 v2

u1 u2

v1 v2

−ε−1 ε

∼

−ε−1

ε

−ε−1

Figure 3 Squaring construction subroutines for C, B, and A for Lemma 3.3.

Proof. We make use of the identity (−(f/2)2) + (−g2) + (f/2 + g)2 = f · g. By the
addition lemma (Lemma 3.2), (f/2 + g) +O(ε3) can be written as the product of n+m+ 1
primitive Q-matrices with error degree at most ef + eg. By the squaring lemma (Lemma 3.3),
Q(−(f/2)2)+O(ε), Q(−g2)+O(ε), and Q((f/2+g)2)+O(ε) can be written as the product of
2n+11, 2m+11, and 2(n+m+1)+11 primitive Q-matrices, respectively. The corresponding
error degrees are at most 2 ·ef +4, 2 ·eg+4, and 2(ef +eg)+4. Finally, by the addition lemma
again, Q(f ·g)+O(ε) = Q(−(f/2)2 +(−g2)+(f/2+g)2)+O(ε) can be written as the product
of (2n+11)+1+(2m+11)+1+(2(n+m+1)+11) = 4n+4m+37 primitive Q-matrices. The
corresponding error degree is at most (2·ef+4)+(2·eg+4)+(2(ef+eg)+4) = 4·ef+4·eg+12.
See Fig. 4 for a pictorial description. J
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u1 u2

v1 v2

f · g +O(ε) ∼

u1 u2

v1 v2

+O(ε)−(f/2)2

+O(ε)−g2

+O(ε)(f/2 + g)2

Figure 4 Multiplication construction for Lemma 3.4.

I Proposition 3.5. Let f be a polynomial computed by a formula of depth d. For every
constant α ∈ F, some matrix in F ∈ Q(αf) +O(ε) can be written as a product of at most
45 · 9d primitive Q-matrices. Moreover, F has error degree at most 12 · 25d.

Proof. The proof is by induction on d. For d = 0, that is, f is a constant β ∈ F or a
variable x, note that Q(f) can be written directly as a primitive Q-matrix (with error
degree 0). Since also Q(α/2) can be written directly (also with error degree 0), we can use
the multiplication lemma (Lemma 3.4), to write Q(αf)+O(ε) as a product of 4+4+37 = 45
primitive Q-matrices (with error degree at most 12).

For d ≥ 1, fix a constant α. We know that either f = g+h or f = g ·h with formulas g, h
of depth < d. By the induction hypothesis, for any constant β, γ, we can write Q(βg) +O(ε)
and Q(γh) +O(ε) as a product of ng, nh ≤ 45 · 9d−1 primitive Q-matrices, with error degrees
eg, eh ≤ 12 · 25d−1.

Case f = g + h. We set β = γ = α and use the addition lemma (Lemma 3.2) to obtain
Q(αf) +O(ε) = Q(αg + αh) +O(ε) as a product of ng + nh + 1 ≤ 2 · 45 · 9d−1 + 1 ≤ 45 · 9d
primitive Q-matrices, with error degree at most eg + eh ≤ 2 · 12 · 25d−1 ≤ 12 · 25d.

Case f = g · h. By replacing ε by ε3 in all primitive Q-matrices, we obtain matrices in
Q(βg) + O(ε3) and Q(γh) + O(ε3) as a product of ng and nh primitive Q-matrices with
error degree at most 3 · eg and 3 · eh respectively. Now we set β = α/2 and γ = 1 and use
the multiplication lemma (Lemma 3.4) to obtain Q(αf) +O(ε) = Q((α · g) · h) +O(ε) as a
product of 4ng + 4nh + 37 ≤ 8 · 45 · 9d−1 + 37 ≤ 45 · 9d primitive Q-matrices. The error degree
is at most 4(3 · eg) + 4(3 · eh) + 12 = 12(eg + eh + 1) ≤ 24 · 12 · 25d−1 + 12 ≤ 12 · 25d. J

I Proposition 3.6. If (fn) ∈ VPe, then for each n a matrix in F ∈ Q(fn) + O(ε) can be
written as a product of poly(n) many primitive Q-matrices. Moreover, F has error degree at
most poly(n).

Proof. The construction uses the classical depth-reduction theorem for formulas by Brent [8],
for which a modern proof can be found in the survey of Saptharishi [47, Lemma 5.5]: If a
family (fn) has polynomially bounded formula size, then there are formulas computing fn that
have size poly(n) and depth O(logn). Applying Proposition 3.5 now yields the result. J
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Proof of Theorem 3.1. This follows directly from Proposition 3.6. Namely, let (fn) ∈ VPe.
By Proposition 3.6 there is an F ∈ Q(fn) +O(ε) which is a product of polynomially many
primitive Q-matrices such that F has polynomially bounded error degree. The width-2 ABP
computing fn +O(ε) is given by ( 1 0 )F

(
1
0
)
. J

I Example 3.7. Following the construction in Theorem 3.1 we get the following ABP for
approximating the polynomial x1x2 + x3x4 + · · ·+ x15x16, which cannot be computed by
any width-2 ABP. Let

F (x1, x2) =
(

1
ε −

εx1
2 −x1

2ε
ε3 ε

)(
1
2 (x1 − 2x2)ε2 + 1 1

2 (x1 − 2x2)
ε2 1

)

·

(
x1ε

2

2 + 1 −x1
2

−ε2 1

)(
x1+2x2

2ε ε

ε−1 0

)
.

Then

F (x1, x2) =
(
x1x2 1

1 0

)
+O(ε).

Using the addition lemma Lemma 3.2 we get

( 1 0 )F (x1, x2)
(

0 1
1 0
)
F (x3, x4) · · ·

(
0 1
1 0
)
F (x15, x16)

(
1
0
)

= x1x2 +x3x4 + · · ·+x15x16 +O(ε).

I Corollary 3.8. VP2 = VPe and VP2
poly = VPe

poly when char(F) 6= 2.

Proof. The inclusion VP2 ⊆ VPe is standard (see Proposition 7.1). Taking closures on both
sides, we obtain VP2 ⊆ VPe and VP2

poly⊆ VPe
poly.

On the other hand, when char(F) 6= 2, we have the inclusion VPe ⊆ VP2
poly (The-

orem 3.1). By taking closures this implies VPe ⊆ VP2 and VPe
poly⊆ VP2

poly. J

I Corollary 3.9. VP2
poly = VPe when char(F) 6= 2 and F is infinite.

Proof. By Corollary 3.8 we have VP2
poly = VPe

poly. It remains to show the equality
VPe

poly = VPe. We give a proof of this via a standard interpolation argument in Section 8.
J

As a consequence of Proposition 3.5, we obtain a new description of VPe as follows.
We define the generalized Fibonacci polynomial Fn(x1, . . . , xn) by F0 := 1, F1 := x1, and
Fn := xnFn−1 + Fn−2 for all n ≥ 2. The name comes from the fact that Fn(1, 1, . . . , 1) is
the nth Fibonacci number and Fn(x, x, . . . , x) is the nth Fibonacci polynomial. Another
description of the polynomial Fn is that it is the upper left entry of a product of Q-
matrices Q(xi), that is, Fn(x1, . . . , xn) = (Q(xn)Q(xn−1) · · ·Q(x1))1,1.

I Definition 3.10. A polynomial f is a projection of Fm if there exist affine linear forms
`1, . . . , `m such that f = Fm(`1, . . . , `m). The smallest m such that f is a projection of Fm
we call the Fibonacci complexity of f . A polynomial is a degeneration of Fm if there exist
parametrized affine linear forms `1(ε), . . . , `m(ε) such that f = Fm(`1(ε), . . . , `m(ε)). The
smallest m such that f +O(ε) is a degeneration of Fm we call the border Fibonacci complexity
of f , and is denoted by LFib(f). A family (hn) of polynomials is called VPe-complete under
p-degenerations if (hn) ∈ VPe and for every (fn) ∈ VPe there exists a polynomially bounded
function t such that some polynomial in fn +O(ε) is a degeneration of Ft(n).
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The Fibonacci complexity is not always finite ([2]), but Proposition 3.6 shows that the
border Fibonacci complexity LFib(f) is always finite and that VPe can be characterized as
the class of families with polynomially bounded border Fibonacci complexity:

I Theorem 3.11. VPe = {(fn) | LFib(fn) ∈ poly(n)}.

Proof. Clearly the right-hand side is contained in the left-hand side. VPe is contained in
the right-hand side by Proposition 3.6. A moment’s thought reveals that the right-hand side
is closed under the approximation closure in the sense of Definition 2.1. Thus taking the
closure on both sides yields the result. J

Theorem 3.11 says that (Fn) is VPe-complete under p-degenerations. From the proof of
Proposition 3.5 it follows that also (F2n+1) is VPe-complete under p-degenerations, that is,
we only need the Fm with odd index m (this follows from det(Q(f)) = −1).
I Remark (Symmetry). Define the polynomial Cn(x1, . . . , xn) as

Cn(x1, . . . , xn) := trace(Q(xn) ·Q(xn−1) · · ·Q(x1)).

Since the trace of a matrix product is invariant under cyclic shifts of the matrices, the
polynomial Cn(x1, . . . , xn) is invariant under cyclic shifts of the variables x1, . . . , xn. Thus Cn
can be viewed as a cyclically symmetric version of Fn. (Note that Cn and Fn are also both
invariant under reversing the order of the variables x1, . . . , xn, that is, mapping (x1, . . . , xn)
to (xn, . . . , x1).)

Define the border cyclic Fibonacci complexity analogously to the border Fibonacci com-
plexity by replacing Fn by Cn in Definition 3.10. Analogously to Theorem 3.11 we now see
that the families (Cn) and (C2n+1) are both VPe-complete under p-degenerations.
I Remark (A closed form for Fn and Cn). We describe another way to write Fn and Cn. An
adjacent pair is a set of two numbers {i, i + 1} with 1 ≤ i < n. A supporting set is the
set {1, 2, . . . , n} after removing a disjoint (possibly empty) union of adjacent pairs. For a
supporting set S define xS :=

∏
i∈S xi. Then Fn(x1, . . . , xn) =

∑
S xS , where the sum is

over all supporting sets.
We define a cyclicly adjacent pair as a set that is either an adjacent pair or the set {1, n},

if 1 6= n. We define a cyclic supporting set as the set {1, 2, . . . , n} after removing a disjoint
(possibly empty) union of cyclicly adjacent pairs. Then Cn(x1, . . . , xn) =

∑
S xS , where the

sum is over all cyclic supporting sets.
I Remark (Planarity). We remark that the product of two Q-matrices Q(x)Q(y) can be re-
written as Q(x)Q(y) =

(
Q(x)

(
0 1
1 0
))((

0 1
1 0
)
Q(y)

)
. We also have Q(x)( ab ) =

(
Q(x)

(
0 1
1 0
))(

b
a

)
.

Consider a width-2 ABP that is a product of primitive Q-matrices,

( a b )Q(`1)Q(`2) · · ·Q(`k)( cd ).

By pairing up the ith Q-matrix with the (i+ 1)th Q-matrix for each odd i, and using the
above equations, we can rewrite this ABP into a width-2 ABP whose underlying graph
has no crossing edges, that is, a planar with-2 ABP. See Fig. 5 for an example with three
Q-matrices.

4 VNP via products of affine linear forms

Valiant proved the following characterization of VNP [54] (see also [11, Thm. 21.26],
[9, Thm. 2.13] and [36, Thm. 2]).
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a b

`1

`2

`3

dc

∼

a b

`1

`2

`3

cd

Figure 5 Making an ABP consisting of three primitive Q-matrices planar.

I Theorem 4.1 (Valiant [54]). VNPe = VNP.

We strengthen Valiant’s characterization of VNP from VNPe to VNP1.

I Theorem 4.2. VNP1 = VNP when char(F) 6= 2.

We give two proofs. The idea of the first proof is to show that the VNP-complete
permanent family pern :=

∑
σ∈Sn

∏
i∈[n] xi,σ(i) is in VNP1. The idea of the second proof

is to simulate in VNP1 the primitives that are used in the proof of VPe = VP3 by [6].
We present the second proof in Section 6. The advantage of the second proof is that we
can restrict the ABP edge labels to affine linear forms that have at most 2 variables, see
Theorem 6.2. Both proofs use the following lemma to write expressions of the form 1 + xy as
a hypercube sum of a product of affine linear forms.

I Lemma 4.3. 1
2
∑
b∈{0,1}(x+ 1− 2b)(y + 1− 2b) = 1 + xy when char(F) 6= 2.

Proof. Expanding the left side gives the right side. J

Proof of Theorem 4.2. The permanent family (pern) is well-known to be VNP-complete
under p-projections, see for example [9, Thm. 2.10]. Therefore, to show that VNP ⊆ VNP1,
it suffices to show that (pern) ∈ VNP1. We begin by writing pern as an inclusion-exclusion-
type expression due to Ryser [45, Thm. 4.1],

pern = (−1)n
∑
S⊆[n]

(−1)|S|
∏
j∈[n]

∑
i∈S

xi,j .

Encoding every subset S ⊆ [n] by a bit string b = (b[1], . . . , b[n]) ∈ {0, 1}n, we can rewrite
the above as

pern = (−1)n
∑

b∈{0,1}n

( ∏
k∈[n]

(1− 2b[k])
) ∏
j∈[n]

∑
i∈[n]

b[i]xi,j

= (−1)n
∑

b∈{0,1}n

( ∏
k∈[n]

(1− 2b[k])
) ∑
i1,...,in∈[n]

∏
j∈[n]

b[ij ]xij ,j

For notational convenience we use square brackets not only to refer to sets ([n] := {1, . . . , n}),
but also to entries in a list (b[k] := bk). We now introduce new Boolean variables a[i, j],
1 ≤ i ≤ n− 1, 1 ≤ j ≤ n, and fix the values a[0, j] = 1, a[n, j] = 0. (This gives an (n+ 1)×n
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matrix of variables and constants in which the first row consists of all 1s and the last row
contains only 0s.) We claim that the above expression equals

pern = (−1)n
∑

b∈{0,1}n

( ∏
k∈[n]

(1− 2b[k]) ·
∑
a

∏
i,j∈[n]

(
1 + (xi,j − 1)(a[i−1, j]− a[i, j])

)
(3)

·
(
1 + (b[i]− 1)(a[i−1, j]− a[i, j])

)
·
(
1 + (a[i−1, j]− 1)a[i, j]

))
,

where the second sum is over all Boolean assignments of a[i, j]. The idea is to encode the
indices i1, . . . , in in the boolean variables a[i, j] in unary. For example, for n = 4, if i1 = 4,
i2 = 3, i3 = 1, i4 = 4, then the corresponding matrix a is


1 1 1 1
1 1 0 1
1 1 0 1
1 0 0 1
0 0 0 0

 .

We prove the claim (3) in three steps. Fix j.

If a[i− 1, j] = 0 and a[i, j] = 1, then 1 + (a[i− 1, j]− 1)a[i, j] = 0. Thus if in the sequence
a[0, j], . . . , a[n, j] a 0 is followed by a 1, then

∏
i∈[n](1+(a[i−1, j]−1)a[i, j] = 0. Conversely,

if (a[0, j], . . . , a[n, j]) = (1, . . . , 1, 0, . . . , 0), then
∏
i∈[n](1+(a[i−1, j]−1)a[i, j]) = 1. The

nontrivial assignments of (a[0, j], . . . , a[n, j]) are thus exactly of the form (1, . . . , 1, 0, . . . , 0)
where the first 0 occurs at some index 1 ≤ z ≤ n (since we have set a[0, j] = 1 and
a[n, j] = 0). Fix such an assignment with first 0 occurring at index z.

If i = z, then 1 + (xi,j − 1)(a[i− 1, j]− a[i, j]) equals xi,j . If i 6= z, it equals 1.

If i = z, then 1 + (b[i]− 1)(a[i− 1, j]− a[i, j]) equals b[i]. If i 6= z, it equals 1.
This proves (3).

Next we apply Lemma 4.3, introducing fresh hypercube variables c1[i, j], c2[i, j], and
c3[i, j], for 1 ≤ i, j ≤ n, to obtain

pern = (−1)n( 1
2 )3n2 ∑

b

( ∏
k∈[n]

(1− 2 b[k])
)
·
∑
a

( ∏
i,j∈[n]∑

c1[i,j]

[
(xi,j − 2 c1[i, j]) · (a[i−1, j]− a[i, j] + 1− 2 c1[i, j])

]
·
∑
c2[i,j]

[
(b[i]− 2 c2[i, j]) · (a[i−1, j]− a[i, j] + 1− 2 c2[i, j])

]
·
∑
c3[i,j]

[
(a[i−1, j]− 2 c3[i, j]) · (a[i, j] + 1− 2 c3[i, j])

])
,

where the sum goes over all Boolean assignments of b[i], a[i, j], c1[i, j], c2[i, j], c3[i, j], for all
indices 1 ≤ i, j ≤ n, except for a[n, j] := 0, and a[0, j] := 1. After a rearrangement we obtain
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the expression

pern =
∑
a,b

c1,c2,c3

(
(−1)n( 1

2 )3n2
( ∏
k∈[n]

(1− 2 b[k])
)
·
∏

i,j∈[n]

(xi,j − 2 c1[i, j]) · (a[i−1, j]− a[i, j] + 1− 2 c1[i, j])

· (b[i]− 2 c2[i, j]) · (a[i−1, j]− a[i, j] + 1− 2 c2[i, j])

· (a[i−1, j]− 2 c3[i, j]) · (a[i, j] + 1− 2 c3[i, j])
)
,

where the sum goes over all Boolean assignments of a[i, j], b[i], c1[i, j], c2[i, j], c3[i, j] for
all indices 1 ≤ i, j ≤ n, again except for a[n, j] := 0, and a[0, j] := 1. This shows that
(pern) ∈ VNP1. J

In Section 9 we will prove that the statement of Theorem 4.2 does not hold over F2, that
is, VNP1 ( VNP when F = F2. We leave the situation over other fields of characteristic 2
as an open problem.

5 ABPs with restricted edge labels

So far the edge labels of our ABPs were allowed to be arbitrary affine linear forms. This
section is about ABPs in which the edge labels are restricted to be simple affine linear forms
(“weak ABPs”), or variables and constants (“weakest ABPs”). These edge label types were
also studied in [2].

I Definition 5.1. A wst-ABP (weakest ABP) is an ABP with edges labeled by variables
or constants. A w-ABP (weak ABP) is an ABP with edges labeled by simple affine linear
forms αxi + β, α, β ∈ F. A g-ABP (general ABP) is an ABP with edges labeled by general
affine linear forms

∑
i αixi + β, αi, β ∈ F. For ∗ equal to wst, w or g, the class VP∗k

consists of all families of polynomials over polynomially many variables that are computed
by polynomial-size width-k ∗-ABPs. In the rest of this paper the star will act as a variable
from {wst,w, g}. We write VPk if we mean VPg

k.

From the above definition it follows that VPwst
k ⊆ VPw

k ⊆ VPg
k.

I Remark. One checks that the construction in the proof of Theorem 3.1 actually proves the
inclusion VPe ⊆ VPwst

2
poly

when char(F) 6= 2. The inclusion VPe ⊆ VPwst
2

poly
implies the

equalities VPwst
2 = VPe and VPwst

2
poly

= VPe
poly.

In the following sections we will prove all inclusions and separations that are listed in
Figure A.

5.1 Comparing different types of edge labels in width-2 ABPs
The aim of this subsection is to prove the following separation.

I Theorem 5.2. VPw
2 ( VPg

2.

In fact, we will show the following stronger statement.

I Theorem 5.3. The polynomial

p(x) = (x11 + x12 + · · ·+ x17)(x21 + x22 + · · ·+ x27)
+ (x31 + x32 + · · ·+ x37)(x41 + x42 + · · ·+ x47)

is computable by a width-2 g-ABP, but not computable by any width-2 w-ABP.
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We leave it as an open problem whether the inclusion VPwst
2 ⊆ VPw

2 is strict.
To prove Theorem 5.3 we will review and reuse the arguments used by Allender and

Wang [2] to show that the polynomial x1x2 + · · ·+x15x16 cannot be computed by any width-2
g-ABP.

For the proof of Theorem 5.3 we may without loss of generality assume that the base
field F is algebraically closed, because for any field F, if p is not computable over the algebraic
closure of F, then it is not computable over F itself. Let H be the affine linear forms that are
single variables xi or constants F. Let S be the set of simple affine linear forms. Let L be the
set of general affine linear forms. Let H2×2, S2×2, L2×2 be the sets of 2× 2 matrices with
entries in H, S, L respectively. In this subsection, all ABPs have width 2, and by a wst-, w-
or g-ABP Γ we will mean a sequence Γk, . . . ,Γ1 with Γk ∈ F1×2, Γk−1, . . . ,Γ2 ∈ X2×2, and
Γ1 ∈ F2×1 with X equal to H, S or L respectively. We call Γk−1, . . . ,Γ2 the inner matrices
of Γ.

I Definition 5.4. A matrix A ∈ L2×2 is called inherently nondegenerate (indg) when
det(A) ∈ F \ {0}.

Allender and Wang prove the following necessary condition for a polynomial to be
computable by a wst-, w- or g-ABP whose inner matrices are indg. Let H(p) denote the
highest-degree homogeneous part of a polynomial p.

I Theorem 5.5 ([2, Thm. 3.9 and Lem. 4.7]). Let p be a polynomial and Γ a wst-, w- or
g-ABP computing p, whose inner matrices are indg. Then H(p) is a product of affine linear
forms.

Our next goal is to give a necessary condition for a polynomial p to be computable by a
w-ABP. We begin with a simple lemma, which can essentially be found in [2].

I Lemma 5.6 ([2]). Let p be a polynomial. If p is computed by a w-ABP that has an inner
matrix containing 4 variables, then there is an assignment π of 4 variables with π(p) = 0.

Proof. Let M be such a matrix. Since the ABP is of type w, M is of the form

M =
(
α11x11 + β11 α12x12 + β12
α21x21 + β21 α22x22 + β22

)

for some constants αij ∈ F \ {0}, βij ∈ F. Applying the four assignments xij 7→ −βij/αij
makes M zero and thus p zero. J

We need two more ideas before we will state and prove the necessary condition we are
after. (1) Let A ∈ L2×2 be nonzero and not-indg (that is, det(A) is either 0 or a nonconstant
polynomial). Then there is an assignment π of the variables such that π(A) has only
constant entries and has rank 1. (2) Let p be a polynomial computed by an ABP Γ, that
is, p = Γk · · ·Γ1. Suppose that Γ contains a matrix Γi with only constant entries and with
rank 1. Then there is a 2 × 1 matrix Γi,2 and a 1 × 2 matrix Γi,1 such that Γi = Γi,2Γi,1.
Then p is a product

p = p2p1

of polynomials p1, p2, each computable by an ABP, namely

p2 = Γk · · ·Γi+1Γi,2
p1 = Γi,1Γi−1 · · ·Γ1.
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We say that Γi factors p into p2p1. Recall that H(p) denotes the highest-degree homogeneous
part of a polynomial p. The following is implicit in [2].

I Theorem 5.7 ([2]). Let p be a polynomial computed by a w-ABP Γ. Then there is an
assignment π of at most 6 variables such that one of the following is true:
1. π(p) is affine linear (including constant), or
2. H(π(p)) is a product of two polynomial of positive degree.

Proof. Let (Γk, . . . ,Γ1) be the matrices of Γ, so that p = Γk · · ·Γ1. If there is a Γi containing
4 variables, then there is an assignment π of these 4 variables with π(p) = 0 (Lemma 5.6), so
we are in case 1. Otherwise, all Γi have at most 3 variables. If the inner Γi are all indg, then
H(p) is a product of linear forms (Theorem 5.5), so we are in case 1 or 2. Otherwise, there is
at least one not-indg inner matrix. Consider the nonempty subsequenceM = (M`, . . . ,M1)
of not-indg inner matrices. For each Mi there is an assignment π of at most 3 variables such
that π(Mi) has only constant entries and rank 1. We consider four possible situations.

1. There is an M ∈M and an assignment π of at most 3 variables such that π(M) factors
π(p) into a product of two constants or a product of two polynomials with positive degree.
Then we are in case 1 or 2.

2. There is an assignment π of at most 3 variables such that π(M1) factors π(p) into p2p1
with p2 a constant and p1 not constant. Then p1 is computed by an ABP consisting of
indg inner matrices (since M1 is the right-most not-indg inner matrix) and hence H(p1)
is a product of linear forms (Theorem 5.5), so we are in case 1 or 2.

3. There is an assignment π of at most 3 variables such that π(M`) factors π(p) into p2p1
with p2 not a constant and p1 a constant. Then p2 is computed by an ABP consisting of
indg inner matrices (since M2 is the left-most not-indg inner matrix) and one proceeds
as in the previous situation.

4. Remaining situation. In the remaining situation we do the following. Let Mi be the
left-most matrix inM such that there is an assignment π of at most 3 variables such
that π(Mi) factors π(p) into p2p1 with p2 not a constant and p1 constant. Then there
is an assignment σ of at most 3 variables such that σ(π(Mi+1)) factors p2 = p3p4 with
p3 constant and p4 not constant. Then p4 is computed by an ABP consisting of indg
matrices, and so H(p4) is a product of homogeneous linear forms. Therefore we are in
case 1 or 2. J

I Theorem 5.3 (repeated). The polynomial

p(x) = (x11 + x12 + · · ·+ x17)(x21 + x22 + · · ·+ x27)
+ (x31 + x32 + · · ·+ x37)(x41 + x42 + · · ·+ x47)

is computable by a width-2 g-ABP, but not computable by any width-2 w-ABP.

Proof. Clearly p(x) is computable by a width-2 g-ABP. Suppose p(x) is computable by a
width-2 w-ABP. Then by Theorem 5.7 there is an assignment π of at most 6 variables such
that either π(p) is affine linear or H(π(p)) is a product of two polynomials of positive degree.
The first option is impossible, because distinct variables do not cancel. So H(π(p)) is a
product of two polynomials of positive degree. With another assignment σ we can achieve
that H(σ(π(p)) is of the form xixj + xkx` for some distinct variables xi, xj , xk, x`. This is
not a product of two polynomials of positive degree, so H(π(p)) is not either. J
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α1 α0

α2/α1

α3/α2

x1

x2

x3

αm/αm−1

xm

Figure 6 Width-2 wst-ABP computing `(x) = α0 + α1x1 + α2x2 + · · · + αmxm.

5.2 Comparing different types of edge labels in width-1 ABPs
Clearly, VPwst

1 ⊆ VPw
1 ⊆ VPg

1 and VP∗1 ⊆ VP∗2, but this does not give a complete
description of all inclusions among these classes. The following two propositions realize a
complete description among VP∗1 and VPwst

2 .

I Proposition 5.8. VPg
1 ⊆ VPwst

2 .

Proof. Let (pn) ∈ VPg
1. Then each pn is a product of poly(n) affine linear forms in poly(n)

variables. Let `(x) = α0 + α1x1 + α2x2 + · · · + αmxm be such an affine linear form with
α0 ∈ F and α1, . . . , αm ∈ F \ {0}. We can compute `(x) with the width-2 wst-ABP in
Fig. 6. A product of affine linear forms can be computed by the width-2 wst-ABP that is
the concatenation of the width-2 wst-ABPs computing the affine linear forms. For pn the
resulting ABP has poly(n) size. Thus, (pn) ∈ VPwst

2 . J

I Proposition 5.9. VPwst
1 ( VPw

1 ( VPg
1 ( VPwst

2 .

Proof. If (pn) ∈ VPwst
1 , then pn is a monomial. However, (α0 +α1x1) ∈ VPw

1 and α0 +α1x1
is not a monomial, so VPwst

1 ( VPw
1 . If (pn) ∈ VPw

1 and pn is homogeneous, then pn is a
monomial. However,

(
(x1 + x2)2) ∈ VPg

1 and (x1 + x2)2 is not a monomial, so VPw
1 ( VPg

1.
The last inclusion is Proposition 5.8. To see the strictness, if (pn) ∈ VPg

1, then the highest-
degree homogeneous part H(pn) of pn is a product of homogeneous linear forms. However,
(x1x2 + x3x4) ∈ VPwst

2 and x1x2 + x3x4 is not a product of homogeneous linear forms, so
VPg

1 ( VPwst
2 . J

5.3 Approximation in width-1 ABPs
The following proposition says that each of VPwst

1 , VPw
1 and VPg

1 is closed under approx-
imation.

I Proposition 5.10. VP∗1 = VP∗1.
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Proof. Trivially, VP∗1 ⊆ VP∗1. To prove the opposite inclusion, let (fn) ∈ VP∗1. There are
polynomials gn(ε,x) ∈ F[ε,x] such that fn + εgn(ε,x) can be written as a product of poly(n)
affine linear forms in F(ε)[x] in poly(n) variables (these affine linear forms have either wst-,
w- or g-type). That is, (forgetting the subscript n for the moment) f(x) + εg(ε,x) can be
written as

f(x) + εg(ε,x) =
m∏
i=1

`i(ε,x)

with

`i(ε,x) =
ei∑
j=di

εjki,j(x)

for some affine linear forms ki,j ∈ F[x], such that ki,di
(x) 6= 0, and di ≤ ei ∈ Z. By shifting

ε-factors from `1, . . . , `m−1 to `m we can assume that di = 0 for i < m. We claim that dm ≥ 0.
If dm < 0, then expanding

∏
i `i(x) as a Laurent series in ε gives a term with a negative

power of ε. This contradicts f(x) + εg(x) having only nonnegative powers of ε. Therefore,
the `i(x) do not contain any negative powers of ε and we can safely substitute ε 7→ 0 in each
linear form `i to obtain f as a product of affine linear forms in F[x] (either of wst-, w- or
g-type). Remembering our subscript n again, we have thus proven (fn) ∈ VP∗1. J

5.4 Nondeterminism in width-1 ABPs
In the following proposition we compare VP∗1 to VNP∗1 for all three versions ∗ ∈ {wst,w, g}.

I Proposition 5.11.
VP∗1 = VNP∗1 for ∗ equal to wst or w.
VPg

1 ( VNPg
1 when char(F) 6= 2.

Proof. Trivially, VP∗1 ⊆ VNP∗1. Let (pn) ∈ VNPwst
1 . Then pn can be written as a

hypercube-sum over a monomial,

p(x) =
∑

b∈{0,1}poly(n)

m(b,x)

with m a monomial (subscripts n are implied). For any b-variable that does not occur in m,
we remove that b-variable form the summation and at the same time multiply the expression
by 2, to again have an expression for p(x). Assuming all b-variables occur in m, only for
b = (1, 1, . . . , 1) can m(b,x) be nonzero. So p(x) = m((1, . . . , 1),x). Remembering the
subscript n, we proved (pn) ∈ VPwst

1 .
Let (pn) ∈ VNPw

1 . Then, (forgetting the subscript n)

p(x) =
∑

b∈{0,1}poly(n)

∏
i

`i(b)
∏
j

kj(x)

for some simple affine linear forms `i in the variables b and some simple affine linear forms kj
in the variables x. The product

∏
j kj(x) is independent of b, while

∑
b
∏
i `i(b) is a

constant. We can thus write p(x) as a constant times
∏
j kj(x). Therefore (remembering n),

pn(x) ∈ VPw
1 . This proves the first line of the proposition.

To prove the second line, recall that if (pn) ∈ VPg
1, then pn is a product of affine linear

forms. However, let pn(x1, x2) =
∑
b∈{0,1}(x1 + b)(x2 + b) = 2x1x2 + x1 + x2 + 1. Then
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(pn) ∈ VNPg
1, but pn(x1, x2) is a not a product of affine linear forms, as we will now verify.

Suppose 2x1x2 + x1 + x2 + 1 = (α0 + α1x1 + α2x2)(β0 + β1x1 + β2x3). Then α1β1 = 0 and
α2β2 = 0. Since α1β1 = 0, we may assume without loss of generality that α1 = 0. Since not
both α1 and α2 can be 0 (otherwise (α0 + α1x1 + α2x2)(β0 + β1x1 + β2x2) has degree 1)
and since α2β2 = 0, we have β2 = 0. Hence, 2x1x2 + x1 + x2 + 1 = (α0 + α2x2)(β0 + β1x1).
Then α0β0 = 1, α0β1 = 1, α2β0 = 1, and α2β1 = 2. The first two of these equations imply
β0 = β1, which contradicts the last two of these equations. So VPg

1 ( VNPg
1. J

I Remark 5.12. It follows directly from Proposition 5.11 and Proposition 5.9 that we have
strict inclusions VNPwst

1 ( VNPw
1 ( VNPg

1, when char(F) 6= 2.

6 Alternative proof of VNP1 = VNP via VP3

Recall that in Section 4 we proved that

VNPg
1 = VNP (4)

using the completeness of the permanent (Theorem 4.2). We will present an alternative proof
of (4) inspired by the proof of the following theorem by Ben-Or and Cleve. The alternative
proof of (4) has the benefit that it can be extended to show a slightly stronger result, see
Theorem 6.2.

I Theorem 6.1 (Ben-Or and Cleve, [6]). For k ≥ 3, VP∗k = VPe.

Proof. Proposition 7.1 says that VP∗k ⊆ VPe. We will prove that VPe ⊆ VPwst
3 , from

which it follows that VPe ⊆ VP∗k and thus VP∗k = VPe. For a polynomial h, define the
matrix

M(h) :=

1 0 0
h 1 0
0 0 1


which, as part of an ABP, looks like

h

We call the following matrices primitive:
M(h) with h any variable or any constant in F
every 3× 3 permutation matrix Mπ with π ∈ S3 any permutation
every diagonal matrix Ma,b,c := diag(a, b, c) with a, b, c any constants in F

The entries of the primitives are variables or constants in F, making them suitable to use in
the construction of a width-3 wst-ABP (Definition 5.1).

Let (fn) ∈ VPe. Then fn can be computed by a formula of size s(n) ∈ poly(n). By
Brent’s depth-reduction theorem for formulas ([8]) fn can then also be computed by a formula
of size poly(n) and depth d(n) ∈ O(logn).

We will construct a sequence of primitives A1, . . . , Am(n) such that

A1 · · ·Am(n) =

 1 0 0
fn 1 0
0 0 1
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with m(n) ∈ O(4d(n)) = poly(n). Then

fn(x) = ( 1 1 1 )M−1,1,0A1 · · ·Am
(

1
1
1

)
,

so fn(x) can be computed by a width-3 wst-ABP of size poly(n), proving the theorem.

To explain the construction, let h be a polynomial and consider a formula computing h of
depth d. The goal is to construct (recursively on the formula structure) primitives A1, . . . , Am
such that

A1 · · ·Am =

1 0 0
h 1 0
0 0 1

 with m ∈ O(4d). (5)

Suppose h is a variable or a constant. Then M(h) is itself a primitive matrix.

Suppose h = f + g is a sum of two polynomials f, g and suppose M(f) and M(g) can be
written as a product of primitives. Then M(f + g) equals a product of primitives, because
M(f + g) = M(f)M(g). This can easily be verified directly, or by noting that in the
corresponding partial ABPs the top-bottom paths (ui-vj paths) have the same value:

u1 u2 u3

v1 v2 v3

f

g

∼

u1 u2 u3

v1 v2 v3

f+g

Suppose h = fg is a product of two polynomials f, g and suppose M(f) and M(g) can
be written as a product of primitives. Then M(fg) equals a product of primitives, because

M(f · g) = M(23)
(
M1,−1,1M(123)M(g)M(132)M(f)

)2
M(23)

(here (23) ∈ S3 denotes the transposition 1 7→ 1, 2 7→ 3, 3 7→ 2 and (123) ∈ S3 denotes the
cyclic shift 1 7→ 2, 2 7→ 3, 3 7→ 1) as can be verified either directly or by checking that in the



K. Bringmann, C. Ikenmeyer, and J. Zuiddam 20:21

corresponding partial ABPs the top-bottom paths (ui-vj paths) have the same value:

u1 u2 u3

v1 v2 v3

f

−1

g

f

g

−1

∼

u1 u2 u3

v1 v2 v3

f ·g

This completes the construction.
The length m of the construction is m(h) = 1 for h a variable or constant and recursively

m(f + g) = m(f) +m(g), m(f · g) = 2(m(f) +m(g)) +O(1), so m ∈ O(4d) where d is the
formula depth of h. The construction thus satisfies (5), proving the theorem. J

We will now give an alternative proof of Theorem 4.2.

I Theorem 4.2 (repeated). VNP1 = VNP when char(F) 6= 2.

Proof. Clearly, VNPg
1 ⊆ VNP by Proposition 7.1 and taking the nondeterminism closure N.

We will prove that VNP ⊆ VNPg
1.

Recall that in the proof of VPe ⊆ VPwst
3 (Theorem 6.1), we defined for any polynomial h

the matrix

M(h) :=

1 0 0
h 1 0
0 0 1


and we called the following matrices primitive:

M(h) with h any variable or any constant in F
every 3× 3 permutation matrix Mπ with π ∈ S3 any permutation
every diagonal matrix Ma,b,c := diag(a, b, c) with a, b, c any constants.

In the proof of VPe ⊆ VPwst
3 we constructed, for any family (fn) ∈ VPe a sequence of

primitives An,1, . . . , An,t(n) with t(n) ∈ poly(n) such that

fn(x) = ( 1 1 1 )M−1,1,0A1 · · ·Am
(

1
1
1

)
.
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s

0

1

2

k−1

k

t

A1

A2

Ak

s

1 0 0

0 1 0

0 1 0

0 0 1

0 1 0

t

Figure 7 Illustration of layer labelling and path labelling in the proof of Theorem 4.2.

We will construct a hypercube sum over a width-1 g-ABP that evaluates the right-hand side,
to show that VPe ⊆ VNPg

1. This implies VNPe ⊆ VNPg
1. Then by Valiant’s Theorem 4.1,

VNP ⊆ VNPg
1.

Let f(x) be a polynomial and let A1, . . . , Ak be primitives such that f(x) is computed as

f(x) = ( 1 1 1 )Ak · · ·A1

(
1
1
1

)
.

View this expression as a width-3 ABP G, with vertex layers labeled as shown in the left
diagram of Fig. 7.

Assume for simplicity that all edges between layers are present, possibly with label 0.
The sum of the values of every s-t path in G equals f(x),

f(x) =
∑
j∈[3]k

Ak[jk, jk−1] · · ·A1[j2, j1]. (6)
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We now introduce some hypercube variables. To every vertex, except s and t, we associate
a bit; the bits in the ith layer we call b1[i], b2[i], b3[i]. To an s-t path in G we associate an
assignment of the bj [i] by setting the bits of vertices visited by the path to 1 and the others
to 0. For example, in the right diagram in Fig. 7 we show an s-t path with the corresponding
assignment of the bits b1[i], b2[i], and b3[i]. The assignments of bj [i] corresponding to s-t
paths are the ones such that for every i ∈ [k] exactly one of b1[i], b2[i], b3[i] equals 1. Let

V (b1, b2, b3) :=
∏
i∈[k]

(b1[i] + b2[i] + b3[i])
∏

s,t∈[3]:
s6=t

(
1− bs[i]bt[i]

)
. (7)

The assignments of bj [i] corresponding to s-t paths are thus the ones such that V (b1, b2, b3) = 1.
Otherwise, V (b1, b2, b3) = 0.

We will now write f(x) as a hypercube sum by replacing each Ai[ji, ji−1] in (6) by a
product of affine linear forms Si(Ai) with variables b and x as follows∑

b

V (b1, b2, b3)Sk(Ak) · · ·S1(A1).

Define Eq(α, β) : {0, 1}2 → {0, 1} by (1 − α − β)(1 − α − β). This function is 1 if α = β

and 0 otherwise.

For any variable or constant x define

Si(M(x)) :=
(
1 + (x− 1)(b1[i]− b1[i−1])

)
·
(
1− (1− b2[i])b2[i−1]

)
· Eq

(
b3[i−1], b3[i]

)
.

For any permutation π ∈ S3 define

Si(Mπ) := Eq
(
b1[i−1], bπ(1)[i]

)
· Eq

(
b2[i−1], bπ(2)[i]

)
· Eq

(
b3[i−1], bπ(3)[i]

)
.

For any constants a, b, c ∈ F define

Si(Ma,b,c) :=
(
a · b1[i−1] + b · b2[i−1] + c · b3[i− 1]

)
· Eq

(
b1[i−1], b1[i]

)
· Eq

(
b2[i−1], b2[i]

)
· Eq

(
b3[i−1], b3[i]

)
.

One verifies that with these definitions indeed

f(x) =
∑

b

V (b1, b2, b3)Sk(Ak) · · ·S1(A1).

Some of the factors in the Si(Ai) are not affine linear. As a final step we apply the equation
1 + xy = 1

2
∑
c∈{0,1}(x+ 1− 2c)(y + 1− 2c) (Lemma 4.3) to write these factors as products

of affine linear forms, introducing new hypercube variables. J

Combining Theorem 4.2 and Remark 5.12 gives the separation VNPw
1 ( VNPg

1 = VNP.
We can prove a slightly stronger separation by adjusting the construction in the above proof
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of Theorem 4.2. Namely, let S+ := {αxi + βxj + γ | α, β, γ ∈ F} be the set of affine linear
forms in at most two variables and let VPw+

1 be the class of families that can be computed
by width-1 ABPs over S+ of polynomial size. Define VNPw+

1 accordingly (Definition 2.2).
Then we can adjust the construction in the above proof of Theorem 4.2 to show the following.

I Theorem 6.2. VNPw
1 ( VNPw+

1 = VNP when char(F) 6= 2.

Proof. We only need to show VNPw+
1 = VNP, as VNPw

1 ( VNP was shown in Re-
mark 5.12. The adjustments we have to make to the construction in the proof of Theorem 4.2
are as follows. Most of the resulting polynomial of the construction is already of the cor-
rect form where each linear forms contains at most two variables, since the expression
Eq(x, y) = (1− x− y)2 and the expression 1 + xy = 1

2
∑
c∈{0,1}(x+ 1− 2c)(y + 1− 2c) are

of this form. Three expressions occur that are not of the correct form:
1. b1[i] + b2[i] + b3[i] in V (b1, b2, b3),
2. a · b1[i−1] + b · b2[i−1] + c · b3[i− 1] in S(Ma,b,c), and
3. 1 + (x− 1)(b1[i]− b1[i−1]) in S(M(x))
Expression 1 and expression 2 we can write in the correct form using the identity

1
2

∑
b∈{0,1}

(x+ 1− 2b)(y + 1− 2b)(z + 1− 2b) = x+ y + z + xyz. (8)

Indeed, expression 1 can be replaced by

1
2

∑
c∈{0,1}

(b1[i] + 1− 2c)(b2[i] + 1− 2c)(b3[i] + 1− 2c)

= b1[i] + b2[i] + b3[i] + b1[i]b2[i]b3[i],

since the unwanted term b1[i]b2[i]b3[i] will always vanish in our construction (because in (7)
we multiply with 1− bs[i]bt[i] for every s 6= t). Similarly for expression 2.

For expression 3, we first replace the expression 1+(x−1)(b1[i]−b1[i−1]) by the expression
1
2
∑
c∈{0,1}(x− 1 + 1− 2c)(b1[i]− b1[i−1] + 1− 2c). The second factor has too many variables.

We replace it, using identity (8), by

1
2

∑
c′∈{0,1}

(
b1[i] + 1− 2c′

)(
−b1[i−1] + 1 + 1− 2c′

)(
−2c+ 1− 2c′

)
= b1[i]− b1[i−1] + 1− 2c+ b1[i]

(
1− b1[i−1]

)(
−2c

)
.

The first four summands in the right-hand side are as we want. The last summand is
only nonzero if b1[i] = 1 and b1[i−1] = 0. However, since Si(M(x)) contains a factor
1− (1− b2[i])b2[i−1] and a factor Eq(b3[i−1], b3[i]), it can be checked that this last summand
will always vanish.

In the new construction thus obtained each linear form is in S+. This completes the
necessary adjustments to the construction. J

7 Constant-width ABPs have small formulas

The following well-known proposition says that the iterated product of constant-size matrices
can be efficiently computed by a formula.

I Proposition 7.1. Let k ≥ 1. Then VPk ⊆ VPe.
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Proof. Let (fn) ∈ VPk, so fn has v(n) ∈ poly(n) variables. There is a function m(n) ∈
poly(n) and there are k × k matrices Mn,1, . . . ,Mn,m(n) with affine linear forms as entries,
such that tr(Mn,1 · · ·Mn,m(n)) = fn. We may assume that each affine linear form occurring
in Mn,i has v(n) variables, since fn has v(n) variables. We will recursively construct a
multi-output formula computing the product Mn,1 · · ·Mn,m(n). From this one can efficiently
compute the trace. Let size(m,n) denote the size of the formula that we construct. Let
w(n) := 2v(n). A single matrixMn,i we can compute by a multi-output formula of size k2w(n)
(the w(n) is needed to compute each affine linear form). So size(1, n) = k2w(n). Suppose
that matrices A and B can be computed by a multi-output formulas F and G respectively,
each of size s. Then the product AB can be computed by a multi-output formula of size
2ks+ c(k) with c(k) ∈ O(k3), as follows: take k copies of the formula F for A and take k
copies of the formula G for B and appropriately add c(k) ×- and +-gates in order to
perform the matrix multiplication. (The reason that we take k copies of the formulas F
and G is that in the matrix multiplication, each input entry is used k times, and in
formulas we cannot use intermediate results more than once.) Therefore, the recurrence
relation size(m,n) = 2k size(m/2, n) + c(k) holds. Working out the recurrence relation
gives size(m,n) = (2k)log2(m)k2w(n) +

[
(2k)log2(m) + (2k)log2(m)−1 + · · · + 1

]
c(k). Since

v(n),m(n) ∈ poly(n) and since k is constant in n, we have size(m(n), n) ∈ poly(n). We can
thus also compute the trace of Mn,1 · · ·Mn,m(n) with a poly(n)-size formula. This shows
that (fn) ∈ VPe. We thus have VPk ⊆ VPe. J

8 Poly-approximation in width-2 ABPs

We give the interpolation argument that completes the proof of Corollary 3.9, which says
that the poly-approximation closure of VP2 equals VPe when char(F) 6= 2 and F is infinite.

I Proposition 8.1. VPe
poly = VPe when char(F) 6= 2 and F is infinite.

Proof. The inclusion VPe ⊆ VPe
poly is clear. For the other direction, let (fn) ∈ VPe

poly.
Then there are polynomials fn;i(x) ∈ F[x], e(n) ∈ poly(n) such that

fn(x) + εfn;1(x) + ε2fn;2(x) + · · ·+ εe(n)fn;e(n)(x)

is computed by a poly-size formula Γ over F(ε). Let α0, α1, . . . , αe(n) be distinct elements in F
such that replacing ε by αj in Γ is a valid substitution (these αj exist since by assumption
our field is infinite). View

gn(ε) := fn(x) + εfn;1(x) + ε2fn;2(x) + · · ·+ εe(n)fn;e(n)(x)

as a polynomial in ε. The polynomial gn(ε) has degree at most e(n) so we can write gn(ε) as
follows (Lagrange interpolation on e(n) + 1 points)

gn(ε) =
e(n)∑
j=0

gn(αj)
∏

0≤m≤e(n):
m6=j

ε− αm
αj − αm

. (9)

Clearly, fn(x) = gn(0). From (9) we see directly how to write gn(0) as a linear combination
of the values gn(αj), namely

gn(0) =
e(n)∑
j=0

gn(αj)
∏

0≤m≤e(n):
m 6=j

−αm
αj − αm

,
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that is,

gn(0) =
e(n)∑
j=0

βj gn(αj) with βj :=
∏

0≤m≤e(n):
m6=j

αm
αm − αj

.

The value gn(αj) is computed by the formula Γ with ε replaced by αj , which we denote
by Γ|ε=αj

. Thus fn(x) is computed by the poly-size formula
∑e(n)
j=0 βj Γ|ε=αj

. Therefore we
have (fn) ∈ VPe. J

I Remark 8.2. Proposition 8.1 also holds with VPe replaced by VPs or VP by a similar
proof.

9 VNP1 ( VNP when F = F2

In our proofs of VNP1 = VNP (Section 4 and Section 6) the assumption char(F) 6= 2 played
a crucial role. We can prove that over the finite field F2 the inclusion VNP1 ⊆ VNP is
indeed strict.

I Proposition 9.1. VNP1 ( VNP when F = F2.

Proof. Let F = F2. Clearly (1 + xy) ∈ VNP. However, we will prove that 1 + xy cannot be
written as a hypercube sum of affine linear forms. In fact, we will prove something stronger,
namely that the function (x, y) 7→ 1 + xy cannot be written as a hypercube sum of a product
of affine linear forms.

Assume the contrary: the function (x, y) 7→ 1 + xy can be written as a hypercube sum of
a product of affine linear forms. We can thus write

1 + xy =
∑

b Lb with Lb :=
∏α
i=1(x+Ai)

∏β
j=1(y +Bj)

∏γ
k=1(x+ y + Ck) (10)

for some affine linear forms Ai(b), Bj(b), Ck(b) in the hypercube variables b. On F2
the functions x, x2, x3, . . . coincide; the functions y, y2, y3, . . . coincide; and the functions
x+ y, (x+ y)2, (x+ y)3, . . . coincide, so

∏
i(x+Ai) =

∏
iAi + x

(∏
i(1 +Ai) +

∏
iAi

)
,∏

j(y +Bj) =
∏
j Bj + y

(∏
j(1 +Bj) +

∏
j Bj

)
,∏

k(x+ y + Ck) =
∏
k Ck + (x+ y)

(∏
k(1 + Ck) +

∏
k Ck

)
.

Multiplying the three expressions and simplifying powers of x and y gives

Lb =
∏
i,j,k AiBjCk + x

(∏
i,j,k(1 +Ai)Bj(1 + Ck) +

∏
i,j,k AiBjCk

)
+ y
(∏

i,j,k Ai(1 +Bj)(1 + Ck) +
∏
i,j,k AiBjCk

)
+ xy

(∏
i,j,k Ai(1 +Bj)(1 + Ck) +

∏
i,j,k(1 +Ai)Bj(1 + Ck)

+
∏
i,j,k(1 +Ai)(1 +Bj)Ck +

∏
i,j,k AiBjCk

)
.
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Plugging in the four possible assignments (x, y) ∈ F2 × F2 into 1 + xy =
∑

b Lb, we get the
following system of equations∑

b
∏
i,j,k AiBjCk = 1, (11)∑

b
∏
i,j,k(1 +Ai)Bj(1 + Ck) = 1, (12)∑

b
∏
i,j,k Ai(1 +Bj)(1 + Ck) = 1, (13)∑

b
∏
i,j,k(1 +Ai)(1 +Bj)Ck = 0. (14)

We will show that the above system of equations is inconsistent. Note that (11) asserts
that an odd number of vectors b satisfy the system of equations

Ai = 1 ∀i
Bj = 1 ∀j
Ck = 1 ∀k.

Recall that we defined α, β, γ as the number of factors x+Ai, y +Bj , x+ y + Ck in (10),
respectively. Letm := α+β+γ. Recall that we defined n as the number of hypercube variables
b`. As we work over F2, any affine linear form in b can be written as α0 +

∑n
`=1 α`b` with αi ∈

{0, 1}. Write the ith linear form in (A1, . . . , Aα, B1, . . . , Bβ , C1, . . . , Cγ) as v0,i +
∑n
`=1 b`v`,i,

and let v` = (v`,1, . . . , v`,m) for 0 ≤ ` ≤ n. We define the linear map M : Fn2 → Fm2 by
M(b) =

∑n
`=1 b`v`. We call a bit vector b ∈ Fn2 a solution of (11) if M(b) = v0 + 1α1β1γ ,

where 1α1β1γ is the all-ones vector. Observe that (11) says that there is an odd number of
solutions of (11). Since the set of solutions of (11) forms an affine linear subspace of (F2)n,
its cardinality is a power of two. The only odd power of two is 1, so there is exactly one
solution of (11). Let b(1) be this unique solution: M(b(1)) = v0 +1α1β1γ . We do the same for
(12) and (13) and find unique solutions M(b(2)) = v0 + 0α1β0γ and M(b(3)) = v0 + 1α0β0γ .
Equation (14) asserts that the number of solutions of (14) is even. One solution of (14) is
given by M(b(1) + b(2) + b(3)) = 3v0 + 1α1β1γ + 0α1β0γ + 1α0β0γ = v0 + 0α0β1γ . Let b(4′)

and b(4′′) be two distinct solutions of (14) with M(b(4′)) = M(b(4′′)) = v0 + 0α0β1γ . Then
M(b(2) + b(3) + b(4′)) = v0 +1α1β1γ = M(b(2) + b(3) + b(4′′)), which contradicts the uniqueness
of b(1). J

I Remark. Our proof of Proposition 9.1 does not generalize to all fields F of characteristic 2,
because the polynomial 1+xy is in fact computable by a hypercube sum of a product of affine
linear forms when F = F4 (and thus when F = F22k , k ∈ N). Indeed, F4 ∼= F2[Z]/(Z2 +Z+1),
so the element Z ∈ F4 is a third root of unity (Z3 = 1) and satisfies Z2 + Z + 1 = 0. It can
be checked that therefore

∑1
b=0(x+ Z2y + Zb) · (x+ Zy + Z2b) · (x+ y + b) equals 1 + xy.
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A Overview figure

The diagram in Fig. A gives an overview of inclusions and separations of complexity classes.
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Figure A Overview of inclusions and separations among VP∗k, VPe, VPs, VPe and their
closures when char(F) 6= 2.
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Abstract

An algebraic branching program (ABP) A can be modelled as a product expression X1 ·X2 . . . Xd,
where X1 and Xd are 1×w and w×1 matrices respectively, and every other Xk is a w×w matrix;
the entries of these matrices are linear forms in m variables over a field F (which we assume to
be either Q or a field of characteristic poly(m)). The polynomial computed by A is the entry
of the 1 × 1 matrix obtained from the product

∏d
k=1 Xk. We say A is a full rank ABP if the

w2(d− 2) + 2w linear forms occurring in the matrices X1, X2, . . . , Xd are F-linearly independent.
Our main result is a randomized reconstruction algorithm for full rank ABPs: Given blackbox
access to an m-variate polynomial f of degree at most m, the algorithm outputs a full rank ABP
computing f if such an ABP exists, or outputs ‘no full rank ABP exists’ (with high probability).
The running time of the algorithm is polynomial in m and β, where β is the bit length of the
coefficients of f . The algorithm works even if Xk is a wk−1 × wk matrix (with w0 = wd = 1),
and w = (w1, . . . , wd−1) is unknown.

The result is obtained by designing a randomized polynomial time equivalence test for the
family of iterated matrix multiplication polynomial IMMw,d, the (1, 1)-th entry of a product of
d rectangular symbolic matrices whose dimensions are according to w ∈ Nd−1. At its core, the
algorithm exploits a connection between the irreducible invariant subspaces of the Lie algebra of
the group of symmetries of a polynomial f that is equivalent to IMMw,d and the ‘layer spaces’ of
a full rank ABP computing f . This connection also helps determine the group of symmetries of
IMMw,d and show that IMMw,d is characterized by its group of symmetries.
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21:2 Reconstruction of Full Rank Algebraic Branching Programs

1 Introduction

1.1 Circuit reconstruction

Reconstruction of arithmetic circuits is the algebraic analogue of exact learning [5] of Boolean
circuits using membership and equivalence queries. A reconstruction algorithm takes input
an oracle access to an m-variate degree d polynomial f computed by a size s arithmetic
circuit from some circuit class C, and outputs an arithmetic circuit (preferably from the same
class) of not too large size1 computing f . The algorithm is allowed to make two kinds of
adaptive queries to the oracle: It may ask for evaluation of f at a point a ∈ Fm chosen by
the algorithm (membership query). It may also form a circuit C (a hypothesis) and ask if the
polynomial g, computed by C, equals f ; if not, the oracle returns a point b ∈ Fm such that
f(b) 6= g(b) (equivalence query)2. The desired running time of the algorithm is polynomial
in m, d, s and the bit length of the coefficients of f .

Circuit reconstruction is a natural learning problem in algebraic complexity theory and
is closely related to two other fundamental problems, lower bound and polynomial identity
testing. Building on the ideas in [21, 2] and [28], Volkovich [42] showed that a polynomial
time reconstruction algorithm for a circuit class C can be used to compute an m-variate
multilinear polynomial h in 2O(m) time such that any circuit from C computing h has size
2Ω(m)3. Also, an efficient reconstruction algorithm (that uses only membership queries) for
a class of circuits automatically gives an efficient blackbox4 identity testing algorithm for
the same class. In this sense, reconstruction is a ‘harder’ problem than lower bound and
identity testing5. However, if we allow reconstruction algorithms to be randomized (thereby
giving them the power of identity testing) then we can hope to have efficient reconstructions
even for some classes of circuits for which efficient blackbox identity testing algorithms
are not known yet. Indeed, a randomized polynomial time reconstruction algorithm for
read-once oblivious algebraic branching programs (ROABP) was given in [29] much before
the quasi-polynomial time hitting-set generators for the same model were designed [14, 3].
The case of read-once formulas is similar (see [39]). A randomized reconstruction algorithm
need not use equivalence queries as a random point b is a witness for f(b) 6= g(b), if f 6= g6.
In this article, we will assume that reconstruction algorithms use only membership queries,
unless we mention equivalence queries explicitly.

Another way to moderate the reconstruction setup is given by average-case reconstruction.
Here the input polynomial f is picked according to some ‘natural’ distribution on circuits
from a class C. This relaxation led to the development of randomized polynomial time
reconstruction algorithm for some powerful circuit classes [17, 19] (albeit on average),
including arithmetic formulas for which we do not know of any super-polynomial lower
bound. The notion of average-case reconstruction is related to pseudo-random polynomial

1 We allow the algorithm to output sub-optimal size circuit as it is NP-hard to compute an optimal circuit
for f even for restricted classes like set-multilinear depth three circuits [20].

2 Throughout this article we will assume that the base field F is sufficiently large, so if f(b) = g(b) for
every b ∈ Fm then f = g.

3 Such an implication is not known for an h belonging to a VNP family.
4 The algorithm has blackbox access to f , i.e. it can make only membership queries to an oracle holding f .
5 Not much is known about the reverse direction: Do strong lower bounds or efficient blackbox identity

testing for a circuit class imply efficient reconstruction for the same class? For certain interesting circuit
classes, the techniques used for identity testing and lower bounds do help in efficient reconstruction (see
[39, 17]).

6 The algorithm in [29] is deterministic if we allow equivalence queries.
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families7 and the prospects/limitations of lower bound proofs: An efficient reconstruction
algorithm for polynomials generated according to a distribution D on circuits from class C
implies that D does not generate a pseudo-random polynomial family. Such an algorithm
gives evidence (contingent on the extent of naturalness of D) that most circuits in C have
sufficient “structural/mathematical” properties in them that the reconstruction algorithm
is able to exploit efficiently to distinguish polynomials computed by them from random
polynomials. This may hint at an intriguing possibility that C is adequately ‘weak’ and
amenable to explicit lower bound proofs against it. On the contrary, if D does generate a
pseudo-random polynomial family then certain widely used strategies to prove lower bounds
will not work for C, much like natural proofs for Boolean circuits [36] (see the discussion in
[1]).

Previous work on reconstruction
We will assume that a circuit from class C computing the input polynomial f has a sum gate
at the output. Otherwise, we can apply the factorization algorithm in [22] to gain blackbox
access to all the irreducible factors of f , thereby reducing the problem to a potentially
simpler class of circuits at the cost of making the reconstruction algorithm randomized. Thus,
depth two, depth three and depth four circuits would mean ΣΠ, ΣΠΣ and ΣΠΣΠ circuits
respectively.

Low depth circuits: A polynomial time reconstruction algorithm for depth two circuits
follows from the sparse polynomial interpolation algorithm in [30]. By analysing the rank of
the partial derivatives matrix, Klivans and Shpilka [29] gave a randomized reconstruction
algorithm8 for depth three circuits with fan-in of every product gate bounded by d in time
polynomial in the size of the circuit and 2d. Prior to this, a polynomial time randomized
reconstruction algorithm for set-multilinear depth three circuits followed from [7]. In both
[29] and [7] the output hypothesis is an ROABP. For depth three circuits with two product
gates, Shpilka [37] gave a randomized reconstruction algorithm over a finite field F that
has running time quasi-polynomial9 in m, d and |F|. This algorithm was derandomized and
extended to depth three circuits with constant number of product gates in [23]. The output
hypothesis in [37] is a depth three circuit with two product gates (unless the circuit has a low
simple rank10), but it works only over finite fields. Recently, Sinha [40] gave a polynomial
time randomized reconstruction algorithm for depth three circuits with two product gates
over rationals11; the output of Sinha’s algorithm is also a depth three circuit with two product
gates (unless the simple rank of the circuit is less than a fixed constant). For multilinear
depth four circuits with two top level product gates, [18] gave a randomized polynomial time
reconstruction algorithm that works over both finite fields and rationals.

Restricted formulas and ABP: Recently, Minahan and Volkovich [33] gave a polynomial
time reconstruction algorithm for read-once formulas by strengthening the analysis in [38], the

7 Intuitively, a distribution D on m-variate degree-d polynomials using a random seed of length s =
(md)O(1) generates a pseudo-random polynomial family if any algorithm that distinguishes polynomials
coming from D from uniformly-random m-variate degree-d polynomials with a non-negligible bias, takes
time exponential in s.

8 The algorithm is deterministic if equivalence queries are used.
9 The running time is polynomial in m, |F| if the depth three circuit is additionally multilinear.
10The dimension of the span of the linear forms in the two gates after removing their gcd.
11The result holds over characteristic zero fields. We state it for rationals as bit complexity concerns us.
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latter has a quasi-polynomial time reconstruction algorithm for the same model. Forbes and
Shpilka [14] gave quasi-polynomial time reconstruction algorithms for ROABP, set-multilinear
ABP and non-commutative ABP by derandomizing12 the algorithm in [29]. Prior to this,
the case of non-commutative ABP reconstruction was solved in [6] assuming blackbox access
to the internal gates of the input ABP.

Average-case reconstruction: Few reconstruction algorithms are known under distribu-
tional assumptions on the inputs. Gupta, Kayal and Lokam [17] gave a randomized polynomial
time reconstruction algorithm for random multilinear formulas picked from a natural distribu-
tion: every sum gate computes a random linear combinations of its two children (subformulas),
and at every product gate the set of variables is partitioned randomly into two equal size sets
between its two children (subformulas); the subformulas are then constructed recursively. In
[19], a randomized polynomial time reconstruction algorithm was given for random formulas
picked from the distribution of size s complete binary trees with alternating layers of sum
and product gates, and the linear forms at the leaves are chosen independently and uniformly
at random.

1.2 Motivation and model

Motivation: Given the results in [17, 19], it is natural to study the complexity of average-case
reconstruction for models more powerful than formulas, like ABPs. Another motivation is the
following: Aaronson [1] gave a candidate for pseudo-random family of low degree polynomials
over a finite field F. There it is conjectured that the family {Detd(A ·x) : A ∈ Fd2×m}, where
Detd is the determinant of a d× d symbolic matrix and |x| = m, is pseudo-random if A is
chosen uniformly at random from Fd2×m and m � d. If this is shown to be true (under
plausible hardness assumptions) then that would demonstrate a natural-proofs-like barrier in
the algebraic world. Although the conjecture is made for finite fields, it remains interesting to
study even if the entries of A are chosen from a large enough subset of Q (or char(F) > dc for
a sufficiently large constant c). Moreover, since determinant is complete (under p-projections)
for algebraic branching programs [32] and so is IMMw,d – the (1, 1)-th entry of a product
of d w × w symbolic matrices – it is natural to ask if {IMMw,d(A · x) : A ∈ Fn×m} is also a
pseudo-random polynomial family when A is random and m� w2d; here n = w2(d−2) + 2w
is the number of variables in IMMw,d. If yes then we cannot hope to design an efficient
reconstruction algorithm for algebraic branching programs in the average-case. On the other
hand, if such an average-case reconstruction is possible then the above family generated by
linear projections of IMMw,d is not pseudo-random. This motivates us to pose Problem 3
below (rather optimistically), and study a couple of special cases when it can be solved – one
is in this article and the other in an upcoming work [27]13.

Algebraic branching program: Algebraic branching program (ABP), an arithmetic analogue
of Boolean branching program, is a well-studied model in algebraic complexity theory specially
because it captures the complexity of polynomials like the iterated matrix multiplication and
the symbolic determinant. Separating the computational powers of formulas and ABPs, and
that of ABPs and circuits are outstanding open problems in arithmetic circuit complexity.

12Replacing the equivalence queries by quasi-polynomial size hitting-sets for ROABP.
13 See Section 1.4 for some details on this work.
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An ABP is defined below. For the rest of this article, the base field F would be the field of
rationals Q14.

I Definition 1 (Algebraic branching program). An algebraic branching program (ABP) of
width w and length d is a product expression X1 · X2 . . . Xd, where X1, Xd are row and
column vectors of length w respectively, and for k ∈ [2, d− 1], Xk is a w × w matrix. The
entries in X1 to Xd are affine forms in the variables x = {x1, x2, . . . , xm}. The polynomial
computed by the ABP is the entry of the 1× 1 matrix obtained from the product

∏d
k=1 Xk.

An ABP of width w, length d, and in m variables, and with the coefficients of the affine
forms from S ⊆ F, will be called a (w, d,m, S)-ABP.

An alternate definition: Alternatively, an ABP is defined as a layered directed acyclic
graph with a source s and a sink t. A width w and length d ABP has d+ 1 layers, where
the first and the last layers contain one vertex each, labelled s and t respectively, and every
other layer has w vertices. There is an edge from every vertex in layer k to every vertex in
layer k + 1, for all k ∈ [d], and these edges between adjacent layers are labelled by affine
forms in x variables. The weight of a path from s to t is the product of the edge labels in
the path, and the polynomial computed by the ABP is the sum of the weights of all paths
from s to t. It is easy to verify that the two definitions of ABP are equivalent. We use either
of these definitions in our arguments later based on suitability.

Average-case ABP reconstruction: In order to study average-case complexity of the re-
construction problem for ABPs, we need to define a distribution on polynomials computed
by ABPs. A seemingly natural distribution is as follows: Consider the universe of all polyno-
mials computed by (w, d,m, S)-ABPs for some finite set S ⊆ F of large enough size. Pick a
polynomial f uniformly at random from this universe, and give blackbox access to f as input
to a reconstruction algorithm. However, a distribution is ‘realistic’ only if there is an efficient
sampling algorithm that outputs (some suitable circuit representation of) f according to the
distribution. For the above distribution, it is not clear if such an efficient sampling algorithm
exists. A reason being, multiple different ABPs may be computing the same polynomial, so
picking a random ABP is not sufficient to sample from this distribution. However, picking a
random ABP (as described below) gives another natural distribution for which there is a
trivial efficient sampling algorithm. Let Sγ be the set of all positive and negative rational
numbers with γ bits before and after the decimal.

I Definition 2 (Random algebraic branching program). Given the parameters w, d,m and
γ, a random (w, d,m, Sγ)-ABP is a (w, d,m, Sγ)-ABP with coefficients of the affine forms
chosen independently and uniformly at random from Sγ

15.

Indeed there is a randomized sampling algorithm which when given the parameters w, d,m
and γ outputs a random (w, d,m, Sγ)-ABP in time (w, d,m, γ)O(1). An average-case ABP
reconstruction problem can then be posed as follows.

I Problem 3 (Average-case ABP reconstruction). Design an algorithm which when given
blackbox access to a polynomial f computed by a random (w, d,m, Sγ)-ABP, outputs an

14Our results also hold over finite fields of sufficiently large (meaning, polynomial in the relevant parameters)
characteristic.

15More generally, Sγ can be any arbitrarily fixed set containing rational numbers of the form p
q , where p

and q are γ bit integers. For concreteness of the discussion we have fixed Sγ in a specific way.
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ABP computing f with high probability16 . The desired running time of the algorithm is
(w, d,m, γ)O(1).

Note that we allow the reconstruction algorithm to output any ABP computing f which
may not be a (w, d,m, Sγ)-ABP. The main requirement is that the running time should be
polynomial in w, d,m and γ.

1.3 Our result
We give a solution to the above problem, if the number of variables m and the size of the set
Sγ are greater than w2d and (mwd)2 respectively. Observe that if the random affine forms
in the matrices X1 to Xd (as in Definition 2) have more than w2d variables then these affine
forms are F-linearly independent with high probability as Sγ is also sufficiently large. This
motivates us to define a full rank ABP. In the following discussion, by homogeneous degree 1
part of an affine form a0 +

∑m
i=1 aixi we mean

∑m
i=1 aixi where ai ∈ F.

I Definition 4 (Full rank algebraic branching program). A full rank ABP A of width bounded
by w and length d is a product expression X1 ·X2 . . . Xd, where X1, X2 are row and column
vectors of lengths w1 and wd−1 respectively, and for k ∈ [2, d− 1] Xk is a wk−1 × wk matrix
such that wk ≤ w for all k ∈ [d−1]; the entries in X1 to Xd are affine forms in x variables and
moreover, the homogeneous degree 1 parts of these affine forms are F-linearly independent.
We say ABP A has width w = (w1, w2, . . . , wd−1) ∈ Nd−1.

The following is an example of a full rank ABP,

[
1 + x1 + x2 2 + x2 + x3 x3 + x4

] 1 + x4 + x5 x5 + x6
x6 + x7 x7 + x8
x8 + x9 4 + x9 + x10

[3 + x10 + x11
2 + x11

]
.

A canonical example: Another example of a polynomial computed by a full rank ABP is
the iterated matrix multiplication polynomial IMMw,d, which is the entry of the 1× 1 matrix
obtained from a product of d symbolic matrices X1 to Xd with dimensions as in Definition 4.
The number of variables in IMMw,d is n = w1 +

∑d−1
k=2 wk−1wk + wd−1. See Definition 2.3

for a slightly detailed definition of IMMw,d. Generally in the literature, the matrices X1 to
Xd have a uniform dimension w (i.e. wk = w for every k ∈ [d − 1]) and the polynomial is
denoted by IMMw,d. We consider varying dimensions primarily because the algorithm in
Theorem 5 below is able to handle this general setting, even if w is unknown.

Our main result is an efficient randomized algorithm to reconstruct full rank ABP.

I Theorem 5 (Full rank ABP reconstruction). There is a randomized algorithm that takes as
input a blackbox for an m variate polynomial f over F of degree d ∈ [5,m], and with high
probability it does the following: if f is computed by a full rank ABP then the algorithm
outputs a full rank ABP computing f , else it outputs ‘f does not admit a full rank ABP’.
The running time is poly(m,β)17, where β is the bit length of the coefficients of f .

16The probability is taken over the random choice of f (the polynomial computed by a random (w, d,m, Sγ)-
ABP) as well as over the random bits used by the reconstruction algorithm, if it is randomized.

17Throughout this article poly(m) denotes a sufficiently large polynomial function in m; poly(m,β) is
defined similarly.
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Remarks: Theorem 5 implies an efficient average-case reconstruction algorithm for ABPs
(Problem 3) when m ≥ w2d and |Sγ | ≥ (mwd)2, as a random (w, d,m, Sγ)-ABP is full rank
with high probability if m and |Sγ | are sufficiently large. The algorithm of Theorem 5 is
given in Section 1.5. Following are a couple of remarks on this algorithm:
1. Uniqueness of full rank ABP: Suppose f is computed by a full rank ABP of width

w = (w1, w2, . . . , wd−1), and assume18 that wk > 1 for every k ∈ [d−1]. Then the output
of the algorithm is a full rank ABP of width w or (wd−1, wd−2, . . . , w1), with probability
at least 1− 1

poly(w,d) , where w = maxk∈[d−1]{wk}. In fact, any full rank ABP computing
f is ‘unique’ up to the symmetries19 of iterated matrix multiplication which we study in
Section 6.

2. No knowledge of w: The algorithm does not need a priori knowledge of the width vector
w, it only knows the number of variables m and the degree d of f . The algorithm is able
to derive w from blackbox access to f (Section 1.5 gives a sketch of how this is done).

Observe that if f is computed by a full rank ABP of width w then f is an affine projection
of the polynomial IMMw,d via a full rank transformation (see Definition 17). So the above
theorem is identical to the theorem below.

I Theorem 6. Given blackbox access to an m variate polynomial f ∈ F[x] of degree d ∈ [5,m],
the problem of checking if there exist a w ∈ Nd−1, a B ∈ Fn×m of rank n equal to the number
of variables in IMMw,d, and a b ∈ Fn such that f = IMMw,d(Bx + b)20, can be solved in
randomized poly(m,β) time where β is the bit length of the coefficients of f . Further, with
probability at least 1− 1

poly(n) , the following is true: the algorithm returns a w, a B ∈ Fn×m
of rank n, and a b ∈ Fn such that f = IMMw,d(Bx + b) if such w, B and b exist, else it
outputs ‘f does not admit a full rank ABP’.

A full rank ABP for f can be derived readily, once we compute w, B and b as above. Using
known results on variable reduction and translation equivalence test (see Section 2.2) proving
Theorem 6 reduces in polynomial time to giving an equivalence test (see Definition 18) for
the IMMw,d polynomial – this reduction is described in Section 1.5.

I Theorem 7 (Equivalence test for IMM). Given blackbox access to a homogeneous n variate
polynomial f ∈ F[x] of degree d ∈ [5, n], where |x| = n, the problem of checking if there
exist a w ∈ Nd−1 and an invertible A ∈ Fn×n such that f = IMMw,d(Ax), can be solved
in randomized poly(n, β) time where β is the bit length of the coefficients of f . Further,
with probability at least 1− 1

poly(n) the following holds: the algorithm returns a w, and an
invertible A ∈ Fn×n such that f = IMMw,d(Ax) if such w and A exist, else it outputs ‘no
such w and A exist’.

Remarks: Suppose f = IMMw,d(Ax) for an invertibleA ∈ Fn×n and w = (w1, w2, . . . , wd−1).
1. Irreducibility of IMMw,d: We can assume without loss of generality that wk > 1 for every

k ∈ [d− 1], implying IMMw,d is an irreducible polynomial. If wk = 1 for some k ∈ [d− 1]
then IMMw,d is reducible, in which case we use the factorization algorithm in [22] to get
blackbox access to the irreducible factors of f and then apply Theorem 7 to each of these
irreducible factors (Section 1.5 has more details on this).

18The first remark after Theorem 7 justifies this assumption.
19The stabilizer under the action of the general linear group.
20A variable set x = {x1, . . . , xm} is treated as a column vector (x1 . . . xm)T in the expression Bx + b.
The affine form entries of the column Bx + b are then plugged in place of the variables of IMMw,d
(following a variable ordering, like the one mentioned in Section 2.3).
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2. Uniqueness of w and A: Assuming wk > 1 for every k ∈ [d − 1], it would follow from
the proof of the theorem that w is unique in the following sense: if f = IMMw′,d(A′x),
where A′ ∈ Fn×n is invertible, then either w′ = w or w′ = (wd−1, wd−2, . . . , w1). Since
f = X1 · X2 . . . Xd = XT

d · XT
d−1 . . . X

T
1 , w′ can indeed be (wd−1, wd−2, . . . , w1). The

invertible transformation A is also unique up to the group of symmetries (see Defintion 19)
of IMMw,d: if IMMw,d(Ax) = IMMw,d(A′x) then AA′−1 is in the group of symmetries of
IMMw,d. In Section 6, we determine this group and show that IMMw,d is characterized
by it.

3. A related result in [16]: Another useful definition of the iterated matrix multiplication
polynomial is the trace of a product of d w × w symbolic matrices – let us denote this
polynomial by IMM′w,d. Both the variants, IMM′w,d and IMMw,d, are well-studied in the
literature and their circuit complexities are polynomially related. However, an equivalence
test for one does not immediately give an equivalence test for the other. This is partly
because the group of symmetries of IMM′w,d and IMMw,d are not exactly the same in
nature (see Section 6 for a comparison).
Let x1, . . . ,xd be the sets of variables in the d matrices of IMM′w,d respectively. A
polynomial f(x1, . . . ,xd) is said to be multilinearly equivalent to IMM′w,d if there are
invertible w × w matrices A1, . . . , Ad such that f = IMM′w,d(A1x1, . . . , Adxd). Grochow
[16] showed the following result: Given the knowledge of the variable sets x1, . . . ,xd, an
oracle to find roots of univariate polynomials over C and blackbox access to a polynomial
f , there is a randomized algorithm to check whether f is multilinearly equivalent to
IMM′w,d using poly(w, d) operations over C. Due to the issue of representing complex
numbers, the model of computation for this result may be assumed to be the Blum-Shub-
Smale model [10]. Theorem 7 is different from the result in [16] in a few ways: First, the
equivalence test is for IMMw,d instead of IMM′w,d. The algorithm in Theorem 7 operates
without the knowledge of the variable sets x1, . . . ,xd (in fact, without the knowledge of
w). It only “sees” n variables x1, . . . , xn that are input to the blackbox for f . Second,
there is no requirement of a oracle for finding roots of univariates. The base field is Q or
a field with sufficiently large characteristic and the model of computation is the Turing
machine model. Third, Theorem 7 gives a general equivalence test whereas the algorithm
in [16] checks only multilinear equivalence.

1.4 Discussion
To summarize, our main contribution is a polynomial time randomized equivalence test for
IMMw,d, even if w is unknown. Although, equivalence testing is an important problem in
its own right, Theorem 5 does not address the average-case ABP reconstruction problem
quite satisfactorily because of the restriction m ≥ w2d21. Keeping the conjecture [1] on
pseudo-random polynomial family in mind, the more interesting and challenging scenario
is when m� w2d in Problem 3, and this case remains an open problem. We address this
problem partially in an upcoming work (and equivalence tests feature in there too).

A forthcoming work [27]: If the width w of the ABP is a constant, we still need m = Ω(d),
for a random ABP to have full rank and Theorem 5 to be effective. The case of constant
width ABP is interesting in its own right as they capture the complexity of arithmetic

21Besides, the model full rank ABP, although natural and powerful, is nevertheless incomplete – not every
polynomial f can be computed by a full rank ABP even if f is multilinear (see Observation 60).
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formulas. In particular, if a polynomial g is computed by a formula of size s then g can be
computed as the (1, 1)-th entry of a product of sO(1) many 3× 3 matrices with affine form
entries [8], and every polynomial computed by a size s width 3 ABP can be computed by a
formula of size sO(1). With constant width ABP in mind, we study a version of Problem 3
(Problem 8 below) in [27], and make progress in certain cases (particularly for w = 3) under
the restriction m ≥ w2; that is for constant width, m only needs to be larger than a constant.
Problem 8 is also a natural matrix factorization problem.

I Problem 8 (Average-case matrix factorization). Design an algorithm which when given a
d ∈ N and blackbox access to w2 entries of a matrix F = X1 ·X2 . . . Xd, where X1, X2, . . . , Xd

are w × w matrices having entries affine forms in m variables with coefficients chosen
independently and uniformly at random from Sγ , computes d w × w matrices Y1, Y2, . . . , Yd
with affine form entries such that F = Y1 ·Y2 . . . Yd. The desired running time of the algorithm
is poly(m,w, d, γ).

As before, we allow the coefficients of the affine forms in Y1, Y2, . . . , Yd to not belong to Sγ .
In a certain sense, Problem 8 is a relaxed version of Problem 3: We have blackbox access

to all the w2 polynomials occurring as entries of the matrix product in Problem 8, whereas
in Problem 3 we have blackbox access to just a single polynomial which can be thought
of as one entry of a matrix product. Nevertheless, if the coefficients of the affine forms in
X1, X2, . . . , Xd are adversarially chosen in Problem 8 (instead of independently and uniformly
at random from Sγ) then the problem becomes as hard as worst-case formula reconstruction
(by [8]), and this makes the above average-case variant interesting to study.

1.5 Algorithm and proof strategy

An algorithm for reconstructing full rank ABP is given in Algorithm 1. At first, we trace the
steps of this algorithm to show that proving Theorem 6 reduces to proving Theorem 7 using
known methods. Then, we give an equivalence test for IMMw,d in Algorithm 2, which is the
contribution of this work. Some relevant definitions, notations and concepts can be found in
Section 2.

1.5.1 Reduction to equivalence test for IMM

We are given blackbox access to an m variate polynomial f(x̃) in Algorithm 1 where
x̃ = {x1, . . . , xm}. Suppose f = IMMw′,d(B′x̃ + b′) for some unknown w′ ∈ Nd−1, b′ ∈ Fn
and B′ ∈ Fn×m of rank n, where n is the number of variables in IMMw′,d.

Variable reduction (Step 2): The number of essential/redundant variables of a polynomial
remains unchanged under affine projection via full rank transformation. Since IMMw′,d has
no redundant variables22, the number of essential variables of f equals n. The algorithm
eliminates the m − n redundant variables in f by applying Algorithm 8 and constructs a
C ∈ GL(m) such that g = f(Cx̃) has only the essential variables x = {x1, . . . , xn}. It follows
that g = IMMw′,d(A′x + b′), where A′ ∈ GL(n) is the matrix B′ · C restricted to the first n
columns.

22Which follows easily from Claim 26.
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21:10 Reconstruction of Full Rank Algebraic Branching Programs

Equivalence test (Steps 5–9): Since g = IMMw′,d(A′x + b′), its d-th homogeneous com-
ponent g[d] = IMMw′,d(A′x). In other words, g[d] is equivalent to IMMw′,d for an unknown
w′ ∈ Nd−1. At this point, the algorithm calls Algorithm 2 to find a w and an A ∈ GL(n)
such that g[d] = IMMw,d(Ax), and this is achieved with high probability.

Finding a translation (Steps 12–17): As g = IMMw′,d(A′ ·(x+A′−1b′)) = g[d](x+A′−1b′),
g is translation equivalent to g[d]. With high probability, Algorithm 9 finds an a ∈ Fn such
that g = g[d](x + a), implying g = IMMw,d(Ax + Aa). Thus b = Aa is a valid translation
vector.

Final reconstruction (Steps 20–26): From the previous steps, we have g = IMMw,d(Ax+b).
Although the variables {xn+1, . . . , xm} are absent in g, if we pretend that g is a polynomial
in all the x̃ variables then g = IMMw,d(A0x̃ + b), where A0 is an n×m matrix such that the
n×n submatrix formed by restricting to the first n columns of A0 equals A and the remaining
m − n columns of A0 have all zero entries. Hence f = g(C−1x̃) = IMMw,d(A0C

−1x̃ + b)
which explains the setting B = A0C

−1 in step 20. The identity testing in steps 21-23 takes
care of the situation when, to begin with, there are no w′ ∈ Nd−1, b′ ∈ Fn and B′ ∈ Fn×m
of rank n such that f = IMMw′,d(B′x̃ + b′).

1.5.2 Equivalence test for IMM
Algorithm 1 calls Algorithm 2 on a blackbox holding a homogeneous n variate polynomial
f(x) of degree d ≤ n, and expects a w ∈ Nd−1 and an A ∈ GL(n) in return such that
f = IMMw,d(Ax), if such w and A exist. First, we argue that f can be assumed to be an
irreducible polynomial.

Assuming irreducibility of input f in Algorithm 2: The idea is to construct blackbox access
to the irreducible factors of f using the efficient randomized polynomial factorization algorithm
in [22], and compute full rank ABP for each of these irreducible factors. The ABPs are then
connected ‘in series’ to form a full rank ABP for f . This process succeeds with high probability.
The details are as follows: If f is not square-free (which can be easily checked using [22])
then f cannot be equivalent to IMMw,d for any w, as IMMw,d is always square-free. Suppose
f = f1 · · · fk, where f1, . . . , fk are distinct irreducible factors of f . If there are w′ ∈ Nd−1 and
A′ ∈ GL(n) such that f = IMMw′,d(A′x), then the number of essential variables in f is n (as
IMMw′,d has no redundant variables). Also, f1 · · · fk = h1(A′x) · · ·hk(A′x) where h1, . . . , hk
are the irreducible factors of IMMw′,d. The irreducible factors of IMMw′,d are ‘smaller IMMs’
in disjoint sets of variables23. Hence, by uniqueness of factorization, f` is computable by a
full rank ABP for every ` ∈ [k]. Let the degree of f` be d` and n` the number of essential
variables in f`. Then n1 + . . . + nk = n. Now observe that if we invoke Algorithm 1 on
input f`, it calls Algorithm 2 from within on an irreducible polynomial, as f` is homogeneous
and irreducible. Algorithm 1 returns a w` ∈ Nd`−1 and B` ∈ Fn`×n of rank n` such that
f` = IMMw`,d`(B`x) (ignoring the translation vector as f` is homogeneous). Let w ∈ Nd−1

be the vector (w1 1 w2 1 . . . 1 wk)24, and A ∈ Fn×n such that the first n1 rows of A is B1,
next n2 rows is B2, and so on till last nk rows is Bk. Then, f = IMMw,d(Ax). Clearly, A

23Recall, IMMw,d is irreducible if wk > 1 for every k ∈ [d− 1] where w = (w1, . . . , wd−1).
24The notation means the entries of w1 are followed by 1, followed by the entries of w2, then a 1 again,

and so on.
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Algorithm 1 Reconstructing a full rank ABP
INPUT: Blackbox access to an m variate polynomial f(x̃) of degree d ≤ m.
OUTPUT: A full rank ABP computing f if such an ABP exists.

1. /* Variable reduction */
2. Use Algorithm 8 to compute n and C ∈ GL(m) such that g = f(Cx̃) has only the

essential variables x = {x1, . . . , xn} of f . If d > n, output ‘f does not admit a full rank
ABP’ and stop.

3.
4. /* Equivalence test: Finding w and A */
5. Construct a blackbox for g[d], the d-th homogeneous component of g (see Section 2.2).
6. Use Algorithm 2 to find a w ∈ Nd−1 and an A ∈ GL(n) such that g[d] = IMMw,d(Ax).
7. if Algorithm 2 outputs ‘no such w and A exist’ then
8. Output ‘f does not admit a full rank ABP’ and stop.
9. end if
10.
11. /* Finding a translation b */
12. Use Algorithm 9 to find an a ∈ Fn such that g = g[d](x + a).
13. if Algorithm 9 outputs ‘g is not translation equivalent to g[d]’ then
14. Output ‘f does not admit a full rank ABP’ and stop.
15. else
16. Set b = Aa.
17. end if
18.
19. /* Identity testing and final reconstruction */
20. Let A0 be the n×m matrix obtained by attaching m− n ‘all-zero’ columns to the right

of A. Set B = A0C
−1.

21. Choose a point a ∈ Sm at random, where S ⊆ F and |S| ≥ poly(n).
22. if f(a) 6= IMMw,d(Ba + b) then
23. Output ‘f does not admit a full rank ABP’ and stop.
24. else
25. Construct a full rank ABP A of width w from B and b. Output A.
26. end if

must be in GL(n) as the number of essential variables of f is n. Thus, it is sufficient to
describe Algorithm 2 on an input f that is irreducible.

A comparison with [25] and our proof strategy: Kayal [25] gave equivalence tests for the
permanent and determinant polynomials by making use of their Lie algebra (see Definition 20).
Algorithm 2 also involves Lie algebra of IMM, but there are some crucial differences in the
way Lie algebra is used in [25] and in here. The Lie algebra of permanent consists of diagonal
matrices and hence commutative. By diagonalizing a basis of gf over C, for an f equivalent
to permanent, we can reduce the problem to the much simpler permutation and scaling (PS)
equivalence problem. The Lie algebra of n×n determinant, which is isomorphic to sln⊕sln, is
not commutative. However, a Cartan subalgebra of sln consists of traceless diagonal matrices.
This then helps reduce the problem to PS-equivalence by diagonalizing (over C) a basis of
the centralizer of a random element in gf , for an f equivalent to determinant. Both the
equivalence tests involve simultaneous diagonalization of matrices over C. It is a bit unclear
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how to carry through this step if the base field is Q and we insist on low bit complexity. The
Lie algebra of IMM is not commutative. Also, we do not know if going to Cartan subalgebra
helps, as we would like to avoid the simultaneous diagonalization step. Instead of Cartan
subalgebras, we study invariant subspaces (Definition 12) of the Lie algebra gIMM . A detailed
analysis of the Lie algebra (in Section 3) reveals the structure of the irreducible invariant
subspaces of gIMM . It is observed that these invariant subspaces are intimately connected to
the layer spaces (see Definition 15) of any full rank ABP computing f . At a conceptual
level, this connection helps us reconstruct a full rank ABP. Once we have access to the layer
spaces, we can retrieve the unknown width vector w whence the problem reduces to the
easier problem of reconstructing an almost set-multilinear ABP (Definition 29).

We now give some more details on Algorithm 2. Suppose there is a w ∈ Nd−1 such that
f is equivalent to IMMw,d. The algorithm has four main steps:
1. Computing irreducible invariant subspaces (Steps 2–6): The algorithm starts by computing

a basis of the Lie algebra gf . It then invokes Algorithm 3 to compute bases of the d
irreducible invariant subspaces of gf . Algorithm 3 works by picking a random element R′
in gf and factoring its characteristic polynomial h = g1 · · · gs. By computing the closure
of vectors (Definition 14) picked from null spaces of g1(R′), . . . , gs(R′), the algorithm is
able to find bases of the required invariant spaces.

2. Computing layer spaces (Step 9): The direct relation between the irreducible invariant
spaces of gIMM and the layers spaces of any full rank ABP computing f (as shown in
Lemma 49) is exploited by Algorithm 5 to compute bases of these layer spaces. This also
helps establish that all the layer spaces, except two of them, are ’unique’ (see Lemma 48).
The second and second-to-last layer spaces of a full rank ABP are not unique; however
the bigger space spanned by the first two layer spaces (similarly the last two layer spaces)
is unique. Algorithm 5 finds bases for these two bigger spaces along with the d − 2
remaining layer spaces.

3. Reduction to almost set-multilinear ABP (Steps 12–15): The layer spaces are then correctly
reordered in Algorithm 6 using a randomized procedure to compute the appropriate
evaluation dimensions (Definition 16). The reordering also yields a valid width vector
w. At this point, the problem easily reduces to reconstructing a full rank almost set-
multilinear ABP by mapping the bases of the layer spaces to distinct variables. This
mapping gives an Â ∈ GL(n) such that f(Âx) is computable by a full rank almost
set-multilinear ABP of width w. It is ‘almost set-multilinear’ (and not ’set-multilinear’)
as the second and the second-to-last layer spaces are unavailable; instead, two bigger
spaces are available as mentioned above.

4. Reconstructing a full rank almost set-mutlilinear ABP (Steps 18–22): Finally, we recon-
struct a full rank almost set-mutlilinear ABP computing f(Âx) using Algorithm 7. This
algorithm is inspired by a similar algorithm for reconstructing set-multilinear ABP in [29],
but it is a little different from the latter as we are dealing with an ’almost’ set-multilinear
ABP. The reconstructed ABP readily gives an A ∈ GL(n) such that f = IMMw,d(Ax).

A final identity testing (Steps 25–30) takes care of the situation when, to begin with, there is
no w ∈ Nd−1 that makes f equivalent to IMMw,d.

2 Preliminaries

2.1 Notations and definitions
The group of invertible n× n matrices over F is represented by GL(n,F). Since F is fixed
to be the field of rationals, we omit F and write GL(n). Natural numbers are denoted by
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Algorithm 2 Equivalence test for IMM
INPUT: Blackbox access to a homogeneous n variate degree d polynomial f (which can be
assumed to be irreducible without any loss of generality).
OUTPUT: A w ∈ Nd−1 and an A ∈ GL(n) such that f = IMMw,d(Ax), if such w and A
exist.

1. /* Finding irreducible invariant subspaces */
2. Compute a basis of the Lie algebra gf . (See Section 2.2.)
3. Use Algorithm 3 to compute the bases of the irreducible invariant subspaces of gf .
4. if Algorithm 3 outputs ‘Fail’ then
5. Output ‘no such w and A exist’ and stop.
6. end if
7.
8. /* Finding layer spaces from irreducible invariant subspaces */
9. Use Algorithm 5 to compute bases of the layer spaces of a full rank ABP computing f , if

such an ABP exists.
10.
11. /* Reduction to almost set-multilinear ABP: Finding w */
12. Use Algorithm 6 to compute a w ∈ Nd−1 and an Â ∈ GL(n) such that h = f(Âx) is

computable by a full rank almost set-multilinear ABP of width w.
13. if Algorithm 6 outputs ‘Fail’ then
14. Output ‘no such w and A exist’ and stop.
15. end if
16.
17. /* Reconstructing an almost set-multilinear ABP: Finding A */
18. Use Algorithm 7 to reconstruct a full rank almost set-multilinear ABP A’ computing h.
19. if Algorithm 7 outputs ‘Fail’ then
20. Output ‘no such w and A exist’ and stop.
21. end if
22. Replace the x variables in A’ by Â−1x to obtain a full rank ABP A. Compute A ∈ GL(n)

from A.
23.
24. /* Final identity testing */
25. Choose a point a ∈ Sn, where S ⊆ F and |S| ≥ poly(n).
26. if f(a) 6= IMMw,d(Aa) then
27. Output ‘no such w and A exist’ and stop.
28. else
29. Output w and A.
30. end if

N = {1, 2, . . . }. As a convention, we use x,y and z to denote sets of variables, capital letters
A,B,C and so on to denote matrices, calligraphic letters like U ,V,W to denote vector spaces
over F, and bold small letters like u,v,w to denote vectors in these spaces. All vectors
considered in this article are column vectors, unless mentioned otherwise. An affine form
in x = {x1, x2, . . . , xn} variables is a0 +

∑n
i=1 aixi where for i ∈ [0, d] ai ∈ F, and if a0 = 0

then we call it a linear form. The first order partial derivative of the polynomial f(x) with
respect to xi is denoted as ∂xi(f(x)). Below we set up some notations and terminologies.
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2.1.1 Linear Algebra
I Definition 9 (Direct sum). Let U ,W be subspaces of a vector space V. Then V is said to
be the direct sum of U and W denoted V = U ⊕W, if V = U +W and U ∩W = {0}.

For U ,W subspaces of a vector space V , V = U ⊕W if and only if for every v ∈ V there exist
unique u ∈ U and w ∈ W such that v = u + w. Hence, dim(V) = dim(U) + dim(W).

I Definition 10 (Null space). Null space N of a matrix M ∈ Fn×n is the space of all vectors
v ∈ Fn, such that Mv = 0.

I Definition 11 (Coordinate subspace). Let ei = (0, . . . , 1, . . . , 0) be the unit vector in Fn
with 1 at the i-th position and all other coordinates zero. A coordinate subspace of Fn is a
space spanned by a subset of the n unit vectors {e1, e2, . . . , en}.

I Definition 12 (Invariant subspace). Let M1,M2, . . . ,Mk ∈ Fn×n. A subspace U ⊆ Fn is
called an invariant subspace of {M1,M2, . . . ,Mk} if Mi U ⊆ U for every i ∈ [k]. A nonzero
invariant subspace U is irreducible if there are no invariant subspaces U1 and U2 such that
U = U1 ⊕ U2, where U1 and U2 are properly contained in U .

The following observation is immediate.

I Observation 13. If U is an invariant subspace of {M1,M2, . . . ,Mk} then for every M ∈
L def= spanF{M1, M2, . . . ,Mk}, M U ⊆ U . Hence we say U is an invariant subspace of L, a
space generated by matrices.

I Definition 14 (Closure of a vector). The closure of a vector v ∈ Fn under the action
of a space L spanned by a set of n × n matrices is the smallest invariant subspace of L
containing v.

Here, ‘smallest’ is with regard to dimension of invariant subspaces. Since intersection of
two invariant subspaces is also an invariant subspace of L, the smallest invariant subspace
of L containing v is unique and is contained in every invariant subspace of L containing v.
Algorithm 4 in Section 4.2 computes the closure of a given vector v under the action of L
whose basis is given.

By identifying a linear form
∑n
i=1 aixi with the vector (a1, . . . , an) ∈ Fn (and vice versa),

we can associate the following vector spaces with an ABP.

I Definition 15 (Layer spaces of an ABP). Let X1 ·X2 . . . Xd be a full rank ABP A of length
d and width w = (w1, w2, . . . , wd−1), where X1 to Xd are as in Definition 4. Let Xi be the
vector space in Fn spanned by the homogeneous degree 1 parts of the affine forms25 in Xi

for i ∈ [d]; the spaces X1,X2, . . . ,Xd are called the layer spaces of A.

2.1.2 Evaluation dimension
The rank of the partial derivative matrix of a polynomial f was introduced in [34] and
used subsequently in several works on lower bound, polynomial identity testing and circuit
reconstruction (see [39]). The following definition (which makes the notion well defined for
fields of finite characteristic) appears in [14]26.

25 Identify linear forms with vectors in Fn as mentioned above.
26They attributed the definition to Ramprasad Saptharishi.
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I Definition 16 (Evaluation dimension). The evaluation dimension of a polynomial g ∈ F[x]
with respect to a set x′ ⊆ x, denoted as Evaldimx′(g), is defined as

dim(spanF{g(x)|∀xj∈x′ xj=αj : αj ∈ F for every xj ∈ x′}).

2.1.3 Affine projection and equivalence testing
Studying polynomials by applying linear transformations (from suitable matrix groups) on
the variables is at the heart of invariant theory.

I Definition 17 (Affine projection). An m variate polynomial f is an affine projection of
a n variate polynomial g, if there exists a matrix A ∈ Fn×m and a b ∈ Fn such that
f(x) = g(Ax + b).

In [25], it was shown that given an m variate polynomial f and an n variate polynomial
g, checking whether f is an affine projection of g is NP-hard, even if f and g are given
in the dense representation (that is as list of coefficients of the monomials). In the above
definition, we say f is an affine projection of g via a full rank transformation, if m ≥ n and
A has rank n. In the affine projection via full rank transformation problem, we are given
an m variate polynomial f and an n variate polynomial g in some suitable representation,
and we need to determine if f is an affine projection of g via a full rank transformation.
[24, 25] studied the affine projection via full rank transformation problem for g coming from
fixed families and gave polynomial time randomized algorithms to check whether a degree d
polynomial f given as blackbox is an affine projection of g via a full rank transformation,
where g is the elementary symmetric polynomial/permanent/determinant/power symmetric
polynomial or sum-of-products polynomial. As observed in [25], variable reduction and
translation equivalence test (described in Section 2.2) help reduce the affine projection via
full rank transformation problem to equivalence testing (see also Section 1.5).

I Definition 18 (Equivalent polynomials). An n variate polynomial f is equivalent to an n
variate polynomial g, if there exists a matrix A ∈ GL(n) such that f(x) = g(Ax).

The equivalence testing problem asks us to check if two n variate polynomials f and g (given
in some suitable representation) are equivalent. This problem is at least as hard as the
graph isomorphism problem even when f and g are cubic forms given in dense representation
[4]. There is a cryptographic application [35] that assumes the problem is hard also in the
average-case for bounded degree f and g given in dense representation. If we restrict to
checking if f and g are equivalent via a permutation matrix A, then the problem is shown to
be in NP ∩ coAM [41].

2.1.4 Group of symmetries and Lie algebra
I Definition 19 (Group of symmetries). The group of symmetries of a polynomial g ∈ F[x]
in n variables, denoted as Gg, is the set of all A ∈ GL(n) such that g(Ax) = g(x).

The proof of Theorem 7 involves an analysis of the Lie algebra of the group of symmetries
of IMMw,d. We will abuse terminology slightly and say the Lie algebra of a polynomial to
mean the Lie algebra of the group of symmetries of the polynomial. We will work with the
following definition of Lie algebra of a polynomial (see [25]).

I Definition 20 (Lie algebra of a polynomial). The Lie algebra of a polynomial f ∈
F[x1, x2, . . . , xn] denoted as gf is the set of all n × n matrices E = (eij)i,j∈[n] in Fn×n
such that

∑
i,j∈[n] eijxj ·

∂f
∂xi

= 0.
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Remark: Observe that gf is a subspace of Fn×n. It can also be shown that the space gf

satisfies the Lie bracket property: For any E1, E2 ∈ gf , [E1, E2] def= E1E2 − E2E1 is also in
gf . We would not be needing this property, but would just use the vector space feature of gf .
The proof of the following well known fact is given in [25], see also Section 7.1 for a proof.

I Claim 21. If f(x) = g(Ax), where f and g are both n variate polynomials and A ∈ GL(n),
then the Lie algebra of f is a conjugate of the Lie algebra of g via A, i.e. gf = {A−1EA : E ∈
gg} =: A−1ggA.

The following observation relates the invariant subspaces of the Lie algebras of two equivalent
polynomials.

I Observation 22. Suppose f(x) = g(Ax), where x = {x1, x2, . . . , xn} and A ∈ GL(n).
Then U ∈ Fn is an invariant subspace of gg if and only if A−1U is an invariant subspace of
gf .

Proof. U is an invariant subspace of gg implies, for all E ∈ gg, E U ⊆ U . Consider E′ ∈ gf ,
using Claim 21 we know there exists E ∈ gg such that AE′A−1 = E. Since U is an invariant
subspace of AE′A−1, A−1U is an invariant subspace of E′. The proof of the other direction
is similar. J

2.2 Algorithmic preliminaries
We record some of the basic algorithmic tasks on polynomials that can be performed efficiently
and which we require at different places in our algorithms and proofs.

2.2.1 Computing homogeneous components of f
The i-th homogeneous component (or the homogeneous degree i part) of a degree d polynomial
f , denoted as f [i] is the sum of the degree i monomials with coefficients as in f . Clearly,
f = f [d] + f [d−1] + · · ·+ f [0]. Given an n variate degree d polynomial f as a blackbox, there
is an efficient algorithm to compute blackboxes for the d homogeneous components of f .
The idea is to multiply each variable by a new formal variable t, and then interpolate the
coefficients of t0, t1, . . . , td; the coefficient of ti is f [i].

2.2.2 Computing derivatives of f
Given a polynomial f(x1, x2, . . . , xn) of degree d as a blackbox, we can efficiently construct
blackboxes for the derivatives ∂xif , for all i ∈ [n]. The following observation suggests that it
is sufficient to construct blackboxes for certain homogeneous components.

I Observation 23. If g(x1, x2, . . . , xn) is a homogeneous polynomial of degree d then for all
i ∈ [n] ∂xig =

∑d
j=1 j · x

j−1
i [g(x1, x2, . . . , xi−1, 1, xi+1, . . . , xn)][d−j].

For every i ∈ [n], constructing a blackbox for ∂xif is immediate from the above observation
as ∂xif = ∂xif

[d] + ∂xif
[d−1] + · · ·+ ∂xif

[1].

2.2.3 Space of linear dependencies of polynomials
Let f1, f2, . . . , fm be n variate polynomials in F[x] with degree bounded by d. The set
U = {(a1 a2 . . . am)T ∈ Fm |

∑
j∈[m] ajfj = 0}, called the space of F-linear dependencies

of f1, f2, . . . , fm is a subspace of Fm. We would like to find a basis of the space U given
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blackbox access to f1, f2, . . . , fm. Suppose the dimension of the F-linear space spanned by
the polynomials f1, f2, . . . , fm is m− r then dim(U) = r. An algorithm to find a basis of U
can be derived from the following claim.

I Claim 24. With probability at least 1− 1
poly(n) , the rank of the matrix M = (fj(bi))i,j∈[m]

is m − r where b1,b2, . . . ,bm are chosen independently and uniformly at random from
Sn ⊂ Fn with |S| = dm · poly(n).

The proof of the claim which involves an application of the Schwartz-Zippel lemma is given
in Section 7.1. The space U equals the null space of M with high probability.

2.2.4 Eliminating redundant variables
I Definition 25 (Essential and redundant variables). We say an n variate polynomial f has s
essential variables if there exists an A ∈ GL(n) such that f(Ax) is an s variate polynomial
and there exists no A′ ∈ GL(n) such that f(A′x) is a t variate polynomial where t < s. An n
variate polynomial has r redundant variables if it has s = n− r essential variables.

If the number of essential variables in a polynomial f(x1, x2, . . . , xn) is s then without loss of
generality we can assume that the first s variables x1, x2, . . . , xs are essential variables and the
remaining variables are redundant. An algorithm to eliminate the redundant variables of a
polynomial was considered in [12], and it was shown that if the coefficients of a polynomial are
given as input then we can eliminate the redundant variables in polynomial time. Further, [24]
gave an efficient randomized algorithm to eliminate the redundant variables in a polynomial
given as blackbox. For completeness, we give the algorithm in [24] as part of the following
claim.

I Claim 26. Let r be the number of redundant variables in an n variate polynomial f of
degree d. Then the dimension of the space U of F-linear dependencies of {∂xif | i ∈ [n]}
is r. Moreover, we can construct an A ∈ GL(n) in randomized poly(n, d, β) time such that
f(Ax) is free of the set of variables {xn−r+1, xn−r+2, . . . , xn}, where β is the bit length of
the coefficients of f .

The proof is given in Section 7.1.

2.2.5 Efficient translation equivalence test
Two n variate degree d polynomials f, g ∈ F[x] are translation equivalent (also called shift
equivalent in [13]) if there exists a point a ∈ Fn such that f(x + a) = g(x). Translation
equivalence test takes input blackbox access to two n variate polynomials f and g, and
outputs an a ∈ Fn such that f(x + a) = g(x) if f and g are translation equivalent else
outputs ‘f and g are not translation equivalent’. As before, let β be the bit lengths of the
coefficients of f and g. A randomized poly(n, d, β) time algorithm is presented in [13] to test
translation equivalence and find an a ∈ Fn such that f(x + a) = g(x), if such an a exists.
Another randomized test was mentioned in [25], which we present as proof of the following
lemma in Section 7.1.

I Lemma 27. There is a randomized algorithm that takes input blackbox access to two
n variate, degree d polynomials f and g, and with probability at least 1 − 1

poly(n) does the
following: if f is translation equivalent to g, outputs an a ∈ Fn such that f(x + a) = g(x),
else outputs ‘f and g are not translation equivalent’. The running time of the algorithm is
poly(n, d, β), where β is the bit length of the coefficients of f and g.
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Figure 1 Naming of variables in IMMw,d.

2.2.6 Computing basis of Lie algebra
The proof of the following lemma is given in [25], for completeness we include a proof in
Section 7.1.

I Lemma 28. There is a randomized algorithm which when given blackbox access to an n
variate degree d polynomial f , computes a basis of gf with probability at least 1− 1

poly(n) in
time poly(n, d, β) where β is the bit length of the coefficients in f .

2.3 Iterated matrix multiplication polynomial
Let w = (w1, w2, . . . , wd−1) ⊆ Nd−1. Suppose Q1 = (x(1)

1 x
(1)
2 . . . x

(1)
w1 ), QTd = (x(d)

1 x
(d)
2 . . .

x
(d)
wd−1) be row vectors, and for k ∈ [2, d − 1], Qk = (x(k)

ij )i∈[wk−1],j∈[wk] be a wk−1 × wk
matrix, where for i ∈ [w1] x(1)

i , for i ∈ [wd−1] x(d)
i and for i ∈ [wk−1], j ∈ [wk] x(k)

ij are
distinct variables. The iterated matrix multiplication polynomial IMMw,d is the entry of the
1× 1 matrix obtained from the product

∏d
i=1 Qi. When d and w are clear from the context,

we drop the subscripts and simply represent it by IMM. For all k ∈ [d], we denote the set
of variables in Qk as xk; Figure 1 depicts an ABP computing IMMw,d when the width is
uniform, that is w1 = w2 = · · · = wd−1.

Ordering of variables in IMMw,d: From here on we will assume that the variables x1]x2]
· · ·]xd are ordered as follows: For i < j, the xi variables have precedence over the xj variables.
Among the xl variables, we follow column-major ordering, i.e x(l)

11 � · · · � x
(l)
wl−11 � · · · �

x
(l)
1wl � · · · � x

(l)
wl−1wl . We would also refer to the variables of IMM as x = {x1, x2, . . . , xn}

where xi is the i-th variable according to this ordering27, and n = w1 +
∑d−1
k=2 wk−1wk +wd−1

is the total number of variables in IMM. For A ∈ Fn×n we can naturally index the rows and
columns of A by the x variables such that the i-th row or column is indexed by the i-th
variable.

2.4 Almost set-multilinear ABP and a canonical representation
In the proof of Theorem 7, we eventually reduce the equivalence test problem to checking
whether there exists an A ∈ GL(n), such that an input polynomial h(x) (given as blackbox)

27The justification for identifying the variables x of f with the variables of IMMw,d in this order is as
follows: If f is equivalent to IMMw,d then f is also equivalent to IMMw,d(x) whose variables {x1, . . . , xn}
are ordered as above. That w is a priori unknown to Algorithm 2 does not matter here.
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equals IMMw,d(Ax), where w is known, x is the variables of IMMw,d, and A satisfies the
following properties:
1. For all k ∈ [d]\{2, d−1}, the rows indexed by xk variables contain zero entries in columns

indexed by variables other than xi.
2. The rows indexed by x2 and xd−1 variables contain zero entries in columns indexed by

variables other than x1 ] x2 and xd−1 ] xd respectively.
If there exists such a block-diagonal matrix A then we say h is computed by a full rank
almost set-multilinear ABP as defined below.

I Definition 29 (Full rank almost set-multilinear ABP). A full rank almost set-multilinear
ABP of width w = (w1, w2, . . . , wd−1) and length d is a product of d matrices, X1 ·X2 . . . Xd,
where Xk’s are as in Definition 4 but with linear forms as entries. The linear forms in Xk

are in xk variables, for all k ∈ [d] \ {2, d− 1}, and for X2 and Xd−1 the linear forms are in
x1 ] x2 and xd−1 ] xd variables respectively, where x1 ] x2 · · · ] xd is the set of variables in
IMMw,d.

Conventionally, in the definition of set-multilinear ABP, the entries of Xi are linear forms
in just xi variables – the ABP in the above definition is almost set-multilinear as matrices
X2 and Xd−1 violate this condition. An efficient randomized reconstruction algorithm for
set-multilinear ABP follows from [29]. In order to apply a similar reconstruction algorithm
to full rank almost set-multilinear ABPs, we fix a canonical representation for the first two
and the last two matrices as explained below.

Canonical form or representation: We say a full rank almost set-multilinear ABP of width
w is in canonical form if the following hold:
(1a) X1 = (x(1)

1 x
(1)
2 . . . x

(1)
w1 ),

(1b) the linear forms in X2 are such that for l, i ∈ [w1] and l < i, the variable x(1)
l has a

zero coefficient in the (i, j)-th entry (linear form) of X2, where j ∈ [w2].
(2a) Xd = (x(d)

1 x
(d)
2 . . . x

(d)
wd−1)T ,

(2b) the linear forms in Xd−1 are such that for l, j ∈ [wd−1] and l < j, the variable x(d)
l has

a zero coefficient in the (i, j)-th entry (linear form) of Xd−1, where i ∈ [wd−2].
The following claim states that for every full rank almost set-multilinear ABP there is another
ABP in canonical form computing the same polynomial, and the latter can be computed
efficiently.

I Claim 30. Let h be an n variate, degree d polynomial computable by a full rank almost
set-multilinear ABP of width w = (w1, w2, . . . , wd−1) and length d. There is a randomized
algorithm that takes input blackbox access to h and the width vector w, and outputs a full
rank almost set-multilinear ABP of width w in canonical form computing h, with probability
at least 1− 1

poly(n) . The running time of the algorithm is poly(n, β), where β is the bit length
of the coefficients of h.

We prove the claim in Section 5.3. The algorithm is similar to reconstruction of set-multilinear
ABP in [29], except that the latter needs to be adapted suitably as we are dealing with
almost set-multilinear ABP.

3 Lie algebra of IMM

Dropping the subscripts w and d, we refer to IMMw,d as IMM. We show that the Lie algebra,
gIMM consists of well-structured subspaces and by analysing these subspaces we are able to
identify all the irreducible invariant subspaces of gIMM .
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3.1 Structure of the Lie algebra gIMM

Recall that x = x1 ] x2 ] · · · ] xd are the variables of IMM which are also referred to as
{x1, x2, . . . , xn}28 for notational convenience.

I Lemma 31. Let W1,W2,W3 be the following sets (spaces) of matrices:
1. W1 consists of all matrices D = (dij)i,j∈[n] such that D is diagonal and

n∑
i=1

diixi ·
∂IMM
∂xi

= 0.

2. W2 consists of all matrices B = (bij)i,j∈[n] such that

∑
i,j∈[n]

bijxj ·
∂IMM
∂xi

= 0,

where in every summand bij 6= 0 only if xi 6= xj and xi, xj ∈ xl for some l ∈ [d].
3. W3 consists of all matrices C = (cij)i,j∈[n] such that

∑
i,j∈[n]

cijxj ·
∂IMM
∂xi

= 0,

where in every summand cij 6= 0 only if either xi ∈ x2, xj ∈ x1 or xi ∈ xd−1, xj ∈ xd.
Then gIMM =W1 ⊕W2 ⊕W3.

The proof of Lemma 31 is given in Section 7.2.

Elaboration on Lemma 31: An element E = (eij)i,j∈[n] of gIMM is an n×n matrix with rows
and columns indexed by variables of IMM following the ordering mentioned in Section 2.3.
Since

∑
i,j∈[n] eijxj ·

∂IMM
∂xi

= 0, E appears as shown in Figure 2, where the row indices
correspond to derivatives and column indices correspond to shifts29.

The proof will show that E is a sum of three matrices D ∈ W1, B ∈ W2 and C ∈ W3
such that
1. D contributes to the diagonal entries.
2. B contributes to the block-diagonal entries of E corresponding to the locations:

(x(1)
i , x

(1)
j ) where i, j ∈ [w1] and i 6= j

(x(d)
i , x

(d)
j ) where i, j ∈ [wd−1] and i 6= j

(x(l)
ij , x

(l)
pq ) where i, p ∈ [wl−1] and j, q ∈ [wl] for l ∈ [2, d− 1], and (i, j) 6= (p, q).

3. C contributes to the two corner rectangular blocks corresponding to:
rows labelled by x2 variables and columns labelled by x1 variables
rows labelled by xd−1 variables and columns labelled by xd variables.

In order to get a finer understanding of gIMM and its dimension we look at the spaces W1,W2
and W3 closely, and henceforth call them the diagonal space, the block-diagonal space and
the corner space respectively.

28Following the ordering mentioned in Section 2.3.
29Borrowing terminology from the shifted partial derivatives measure [26].
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1 x(1)

w1 x
(2)
11 x

(2)
21 x(2)

w1w2

xdxd−1

x
(1)
1

x(1)
w1

x
(2)
11

x
(2)
21

x(2)
w1w2

xd

xd−1

derivatives

shifts

: contributed by a matrix in W1

: contributed by a matrix in W2

: contributed by a matrix in W3

Figure 2 A matrix E in gIMM .

Corner space W3

I Lemma 32 (Corner space). The spaceW3 =W(a)
3 ⊕W

(b)
3 whereW(a)

3 = A1⊕A2⊕· · ·⊕Aw2

and W(b)
3 = A′1 ⊕ A′2 ⊕ · · · ⊕ A′wd−2 such that for every i ∈ [w2] Ai is isomorphic to

the space of w1 × w1 anti-symmetric matrices over F, and for every j ∈ [wd−2] A′j is
isomorphic to the space of wd−1 × wd−1 anti-symmetric matrices over F. Hence dim(W3) =
1
2 [w1w2(w1 − 1) + wd−1wd−2(wd−1 − 1)].

The proof is in Section 7.2. We briefly elaborate on the statement here.

Elaboration on Lemma 31: Every element C ∈ W3 can be expressed as a sum of two n×n
matrices C(a) ∈ W(a)

3 and C(b) ∈ W(b)
3 . C(a) looks as shown in Figure 3, where for every

i ∈ [w2] C(a)
i is an anti-symmetric matrix. The structure of C(b) is similar30 to that of C(a)

30Once we rearrange the rows in C(b) indexed by variables in xd−1 according to row major ordering
(instead of column major ordering) of variables in xd−1.
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x1

x
(2)
11

x
(2)
w11

x
(2)
1w2

x(2)
w1w2

x1

C
(a)
1

C(a)
w2

all entries outside
the bordered region

are zero

Figure 3 A matrix C(a) in W(a)
3 .

with non zero entries restricted to the rows indexed by xd−1 variables and columns indexed
by xd variables.

Block-diagonal space W2

In the following lemma, Zwk denotes the space of wk × wk matrices with diagonal entries
zero for k ∈ [d− 1]. Also, for notational convenience we assume that w0 = wd = 1. We will
also use the tensor product of matrices: if A = (ai,j) ∈ Fr×s and B ∈ Ft×u, then A⊗B is
the (rt)× (su) matrix given by

A⊗B =

a1,1B · · · a1,sB
...

...
...

ar,1B · · · ar,sB

 .
I Lemma 33 (Block-diagonal space). The space W2 = B1 ⊕ B2 ⊕ · · · ⊕ Bd−1 such that for
every k ∈ [d− 1], Bk is isomorphic to the F-linear space spanned by tk × tk matrices of the
form[

−ZT ⊗ Iwk−1 0
0 Iwk+1 ⊗ Z

]
tk×tk

where Z ∈ Zwk and tk = wk(wk−1 + wk+1). (1)

Hence, dim(W2) =
∑d−1
k=1(w2

k − wk).

The proof is in Section 7.2.

Elaboration on Lemma 33: An element B ∈ W2 is a sum of d−1, n×n matrices B1, B2, . . . ,

Bd−1 such that for every k ∈ [d− 1], Bk ∈ Bk and the non zero entries of Bk are restricted to
the rows and columns indexed by xk ] xk+1 variables. The submatrix in Bk corresponding
to these rows and columns looks as shown in Equation (1).

Diagonal space W1

In the next lemma, Ywk denotes the space of wk × wk diagonal matrices for k ∈ [d− 1]. As
before we assume w0 = wd = 1.
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I Lemma 34 (Diagonal Space). The space W1 contains the space D1⊕D2⊕ · · · ⊕Dd−1 such
that for every k ∈ [d− 1], Dk is isomorphic to the F-linear space spanned by tk × tk matrices
of the form[

−Y ⊗ Iwk−1 0
0 Iwk+1 ⊗ Y

]
tk×tk

where Y ∈ Ywk and tk = wk(wk−1 + wk+1). (2)

Hence, dim(W1) ≥
∑d−1
k=1 wk.

The proof (still given in Section 7.2) is similar to that of Lemma 33.

Elaboration on Lemma 34: An element D ∈ D1⊕D2⊕ · · · ⊕Dd−1 is a sum of d− 1, n×n
matrices D1, D2, . . . , Dd−1 such that for every k ∈ [d− 1], Dk ∈ Dk and the non zero entries
of Dk are restricted to the rows and columns indexed by xk ] xk+1 variables. The submatrix
in Dk corresponding to these rows and columns looks as shown in Equation (2).

3.2 Random elements of gIMM

The algorithm in Theorem 7 involves picking a random matrix R′ in gf and computing its
characteristic polynomial h(x). To ensure the correctness of the algorithm, h(x) will have to
be square free over F. In Lemma 36 we show that the characteristic polynomial of a random
matrix R in gIMM is square free with high probability. From Claim 21 this implies that if f
is equivalent to IMM then the characteristic polynomial of R′ is also square free with high
probability.

I Claim 35. There is a diagonal matrix D ∈ gIMM with all entries distinct.

Proof. From Lemma 34, we know that for k ∈ [d− 1] the submatrix of Dk ∈ Dk defined by
the rows and columns indexed by the variables in xk ] xk+1 is[

−Yk ⊗ Iwk−1 0
0 Iwk+1 ⊗ Yk

]
,

where Yk ∈ Yk. Let the (i, i)-th entry of Yk be y(k)
i and pretend that these entries are

distinct formal variables, say y variables. Consider the matrix D =
∑d−1
i=1 Di and observe

the following:
(a) For k ∈ [2, d − 1], the (x(k)

ij , x
(k)
ij )-th entry of D is y(k−1)

i − y(k)
j where i ∈ [wk−1] and

j ∈ [wk].
(b) The (x(1)

i , x
(1)
i )-th and (x(d)

j , x
(d)
j )-th entry of D are −y(1)

i and y(d−1)
j respectively, where

i ∈ [w1] and j ∈ [wd−1].
In particular, all the diagonal entries of D are distinct linear forms in the y variables. Hence,
if we assign values to the y variables uniformly at random from a set S ⊆ F such that
|S| ≥ n2 then with non zero probability D has all diagonal entries distinct after the random
assignment. J

I Lemma 36. If {L1, L2, . . . , Lm} is a basis of the Lie algebra gIMM then the characteristic
polynomial of an element L =

∑m
i=1 riLi, where ri ∈R F is picked independently and uniformly

at random from [2n3], is square free with probability at least 1− 1
poly(n) .

Proof. Pretend that the ri’s are formal variables. The characteristic polynomial hr(x)
of L is a polynomial in x with coefficients that are polynomial of degree at most n in
r = {r1, r2, . . . , rm} variables.
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I Observation 37. The discriminant of hr(x), disc(hr(x)) := resx(hr,
∂hr
∂x ), is a non zero

polynomial in r variables of degree at most n2, where resx(hr,
∂hr
∂x ) is the resultant of hr and

∂hr
∂x when treated as univariates in x.

Proof. hr = Det(xIn − r1L1 − . . . − rωLω) is a degree n homogeneous polynomial in the
variables x, r1, . . . , rω. Let S ∈ F[r](2n−1)2 be the Sylvester matrix of hr and ∂hr

∂x with respect
to x, i.e.

Si,j =
{

[xn+i−j ]hr if 1 ≤ i ≤ n− 1
[xi−j ]∂hr

∂x otherwise

where [xδ]g is the coefficient of the monomial xδ in the polynomial g. Moreover, by homo-
geneity of hr, [xδ]hr (resp. [xδ]∂hr

∂x ) is a homogeneous polynomial of degree (n − δ) (resp.
(n − 1 − δ)) with respect to the variables r. Then, if σ is a permutation of [2n − 1] then∏2n−1

i=1 Si,σ(i) is a homogeneous polynomial in r of degree

n−1∑
i=1
−i+ σ(i) +

2n−1∑
i=n

n− 1− i+ σ(i) = n(n− 1)−
(2n−1∑

i=1
i

)
+
(2n−1∑

i=1
σ(i)

)
= n(n− 1).

Consequently, disc(hr(x)) is homogeneous and of degree n(n−1). If resx(hr,
∂hr
∂x ) is identically

zero as a polynomial in r then for every setting of r to field elements gcd(hr,
∂hr
∂x ) 6= 1

implying hr is not square free. This would contradict Claim 35 as we can set the r variables
appropriately such that L is a diagonal matrix with distinct diagonal entries, and hr for such
a setting of the r variables is square free. J

Since disc(hr(x)) is not an identically zero polynomial in the r variables and has degree less
than 2n2, if we set every r variable uniformly and independently at random to a value in [2n3]
then using Schwartz-Zippel lemma with probability at least 1− 1

poly(n) , gcd(hr,
∂hr
∂x ) = 1.

This implies with probability at least 1− 1
poly(n) , hr(x) is square free. J

3.3 Invariant subspaces of gIMM

The ordering of the variables in IMM allows us to identify them naturally with the unit
vectors e1, e2, . . . , en in Fn – the vector ei corresponds to the i-th variable in the ordering.
We will write ex to refer to the unit vector corresponding to the variable x. Let U1,2 represent
the coordinate subspace spanned by the unit vectors corresponding to the variables in x1]x2.
Similarly Uk represents the coordinate subspace spanned by the unit vectors corresponding to
the variables in xk for k ∈ [2, d− 1], and Ud−1,d represents the coordinate subspace spanned
by the unit vectors corresponding to the variables in xd−1 ] xd. In Lemma 39, we establish
that U1,2,U2, . . . ,Ud−1,Ud−1,d are the only irreducible invariant subspaces of gIMM .

I Claim 38. Let U be a nonzero invariant subspace of gIMM . If u = (u1, u2, . . . , un)T ∈ U
and uj 6= 0 then ej ∈ U , implying U is a coordinate subspace.

Proof. Claim 35 states that there is a diagonal matrix D ∈ gIMM with distinct diagonal entries
λ1, λ2, . . . , λn. Since U is invariant for D, if u = (u1, u2, . . . , un)T ∈ U then (λi1u1, λ

i
2u2, . . . ,

λinun) ∈ U for every i ∈ N. Let Su := {j ∈ [n] | uj 6= 0} be the support of u 6= 0. As
λ1, λ2, . . . , λn are distinct, the vectors (λi1u1, λ

i
2u2, . . . , λ

i
nun) are F-linearly independent for

0 ≤ i < |Su|. Hence, the unit vector ej ∈ U for every j ∈ Su. It follows that U is the
coordinate subspace spanned by those ej for which j ∈ Su for some u ∈ U . J
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I Lemma 39. The only irreducible invariant subspaces of gIMM are U1,2, U2, . . . , Ud−1,
Ud−1,d.

Proof. It follows from Lemma 31 and Figure 2 that U1,2, U2, . . . , Ud−1, Ud−1,d are invariant
subspaces. We show in the next two claims that the spaces U1,2, U2, . . . , Ud−1, Ud−1,d are
irreducible. The proofs are given in Section 7.2.

I Claim 40. No invariant subspace of gIMM is properly contained in Uk for k ∈ [2, d− 1].

I Claim 41. The invariant subspaces U1,2 and Ud−1,d are irreducible, and the only invariant
subspace properly contained in U1,2 (respectively Ud−1,d) is U2 (respectively Ud−1).

We in fact show in the proof of Claim 40 that the closure of ex under the action of gIMM is Uk
for any x ∈ xk, where k ∈ [2, d− 1]. Similarly, in the proof of Claim 41 we show that the
closure of ex under the action of gIMM is U1,2 (respectively Ud−1,d) for any x ∈ x1 (respectively
x ∈ xd). This observation helps infer that the spaces U1,2, U2, . . . , Ud−1, Ud−1,d are the
only irreducible invariant subspaces of gIMM : Suppose V is an irreducible invariant subspace.
If ex ∈ V for some x ∈ xk where k ∈ [2, d − 1], then Uk ⊆ V as Uk is the closure of ex. If
ex ∈ V for some x ∈ x1 (respectively x ∈ xd) then U1,2 ⊆ V (respectively Ud−1,d ⊆ V) as
U1,2 (respectively Ud−1,d) is the closure of ex. Therefore V is a direct sum of some of the
irreducible invariant subspaces U1,2, U2, . . . , Ud−1, Ud−1,d. Since V is irreducible, it is equal
to one of these irreducible invariant subspaces. J

I Corollary 42 (Uniqueness of decomposition). The decomposition,

Fn = U1,2 ⊕ U3 ⊕ · · · ⊕ Ud−2 ⊕ Ud−1,d

is unique in the following sense; if Fn = V1⊕V2⊕· · ·⊕Vs, where V ′is are irreducible invariant
subspaces of gIMM , then s = d− 2 and for every i ∈ [s], Vi is equal to U1,2 or Ud−1,d, or some
Uk for k ∈ [3, d− 2].

Proof. Since Vi’s are irreducible invariant subspaces, from Lemma 39 it follows that for
every i ∈ [s] Vi equals one among U1,2, U2, . . . , Ud−1, Ud−1,d. Since V1,V2, . . . ,Vs span the
entire Fn, the only possible decomposition is Fn = U1,2 ⊕ U3 ⊕ · · · ⊕ Ud−2 ⊕ Ud−1,d. J

4 Lie algebra of f equivalent to IMM

Let f be an n variate polynomial such that f = IMMw,d(Ax), where w = (w1, w2, . . . , wd−1)
∈ Nd−1 and A ∈ GL(n). It follows, n = w1 +

∑d−1
i=2 wi−1wi + wd−1. From Observation 22

and Lemma 39 we know A−1U1,2, A−1U2, . . . , A−1Ud−1, A−1Ud−1,d are the only irreducible
invariant subspaces of gf , and A−1U2 (respectively A−1Ud−1) is the only invariant subspace
properly contained in A−1U1,2 (respectively A−1Ud−1,d). Also from Corollary 42 it follows
that Fn = A−1U1,2 ⊕ A−1U3 ⊕ · · · ⊕ A−1Ud−2 ⊕ A−1Ud−1,d. In this section, we give an
efficient randomized algorithm to compute a basis of each of the spaces A−1U1,2, A−1U2, . . . ,
A−1Ud−1, A−1Ud−1,d given only blackbox access to f (but no knowledge of w or A).

4.1 Computing invariant subspaces of the Lie algebra gf

First, we efficiently compute a basis {L′1, L
′

2, . . . , L
′

m} of gf using the algorithm stated in
Lemma 28. By Claim 21, L1 = AL

′

1A
−1, L2 = AL

′

2A
−1, . . . , Lm = AL

′

mA
−1 form a basis

of gIMM . Suppose R′ =
∑m
i=1 riL

′

i is a random element of gf , chosen by picking the ri’s
independently and uniformly at random from [2n3]. Then R = AR

′
A−1 =

∑m
i=1 riLi is a
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all entries outside
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Figure 4 Random element R in gIMM .

random element of gIMM and it follows from Lemma 36 that the characteristic polynomial
of R is square free with probability at least 1 − 1

poly(n) . So assume henceforth that the
characteristic polynomial of R (and hence also of R′) is square free.

Moreover, from Figure 2 it follows that R has the structure as shown in Figure 4.
Let h(x) =

∏d
i=1 hi(x) be the characteristic polynomial of R and R′ , where hi(x) is the

characteristic polynomial of Ri, and g1(x), g2(x), . . . , gs(x) be the distinct irreducible factors
of h(x) over F. Suppose N ′i is the null space of gi(R

′). Thus Ni, the null space of gi(R)
(equal to A · gi(R

′) · A−1), is AN ′i for i ∈ [s]. We study the null spaces N1,N2, . . . ,Ns in
the next two claims and show how to extract out the irreducible invariant subspaces of gf
from N ′1,N

′

2, . . . ,N
′

s (as specified in Algorithm 3). The proofs of these claims (using simple
linear algebra) can be found in Section 7.3.

I Claim 43. For all i ∈ [s], let Ni and N
′

i be the null spaces of gi(R) and gi(R
′). Then:

1. Fn = N1 ⊕N2 ⊕ · · · ⊕ Ns = N ′1 ⊕N
′

2 ⊕ · · · ⊕ N
′

s.
2. For all i ∈ [s], dim(Ni) = dim(N ′i ) = degx(gi).

I Claim 44. Suppose gi(x) is an irreducible factor of the characteristic polynomial hk(x) of
Rk (depicted in Figure 4) for some k ∈ [d]. Then the following holds:
1. If k ∈ [2, d− 1] then Ni ⊆ Uk (equivalently N ′i ⊆ A−1Uk).
2. If k = 1 then Ni ⊆ U1,2 (equivalently N ′i ⊆ A−1U1,2), and if k = d then Ni ⊆ Ud−1,d

(equivalently N ′i ⊆ A−1Ud−1,d).

I Claim 45.
1. If gl1(x), gl2(x), . . . , glr(x) are all the irreducible factors of hk(x) for k ∈ [2, d− 1] then

A−1Uk = N ′l1 ⊕N
′

l2
⊕ · · · ⊕ N ′lr .

2. If gl1(x), gl2(x), . . . , glr (x) are all the irreducible factors of h1(x)h2(x) (respectively hd−1(x)
hd(x)) then A−1U1,2 = N ′l1⊕N

′

l2
⊕· · ·⊕N ′lr (respectively A

−1Ud−1,d = N ′l1⊕N
′

l2
⊕· · ·⊕N ′lr).

Proof. If k ∈ [2, d− 1] then N ′l1 +N ′l2 + · · ·+N ′lr is a direct sum and

dim(A−1Uk) = degx(hk) =
r∑
j=1

degx(glj ) =
r∑
j=1

dim(N
′

lj ), which follow from Claim 43.

Hence from Claim 44, A−1Uk = N ′l1 ⊕ N
′

l2
⊕ · · · ⊕ N ′lr . The proof for the second part is

similar. J
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Algorithm 3 Computing irreducible invariant subspaces of gf
INPUT: A basis {L′1, L′2, . . . , L′m} of gf .
OUTPUT: Bases of the irreducible invariant subspaces of gf .

1. Pick a random element R′ =
∑m
j=1 rjL

′
j in gf , where rj ∈R [2n3].

2. Compute the characteristic polynomial h(x) of R′.
3. if h(x) is not square free then
4. Output ‘Fail’ and stop.
5. end if
6. Factor h(x) = g1(x) · g2(x) . . . gs(x) into irreducible factors over F.
7. Find bases of the null spaces N ′1,N ′2, . . . ,N ′s of g1(R′), g2(R′), . . . , gs(R′) respectively.
8. For every N ′i , pick a vector v in the basis of N ′i and compute the closure of v with

respect to gf using Algorithm 4 given in Section 4.2.
9. Let {V1,V2, . . . ,Vs} be the list of the closure spaces; check for all i 6= j and i, j ∈ [s],

whether Vi = Vj to remove repetitions from the above list and get the pruned list
{V1,V2, . . . ,Vd}31.

10. Output the set {V1,V2, . . . ,Vd}.

I Lemma 46. Given as input bases of the null spaces N ′1, N
′

2, . . . , N
′

s we can compute bases
of the spaces A−1U1,2, A

−1U2, . . . , A
−1Ud−1, A

−1Ud−1,d in deterministic polynomial time.

Proof. Recall N ′i is the null space of gi(R
′), where gi(x) is an irreducible factor of hk(x) for

some k ∈ [d].

Case A: k ∈ [2, d− 1]: From Claim 44 it follows that N ′i ⊆ A−1Uk. Pick a basis vector
v in N ′i and compute the closure of v under the action of gf using Algorithm 4 given in
Section 4.2. Since the closure of v is the smallest invariant subspace of gf containing v, by
Claim 40 the closure of v equals A−1Uk.

Case B: k = 1 or k = d: The arguments for k = 1 and k = d are similar. We prove it for
k = 1. From Claim 44 we have N ′i ⊆ A−1U1,2. Pick a basis vector v of N ′i and compute its
closure under the action of gf using Algorithm 4. Similar to case A, this gives us an invariant
subspace of gf contained in A−1U1,2 and by Claim 41 this invariant subspace is either A−1U2
or A−1U1,2. However, N ′i ∩ A−1U2 (by Corollary 45) is empty, as gi(x) is an irreducible
factor of h1(x) (not h2(x)). Hence v /∈ A−1U2 and the closure of v must be A−1U1,2. J

To summarize, first we pick a random element R′ in gf , find its characteristic polynomial h(x)
and factorize h(x) to get the irreducible factors g1(x), g2(x), . . . , gs(x). Then we compute the
null spaces N ′1,N ′2, . . . ,N ′s of g1(R′), g2(R′), . . . , gs(R′) respectively. By applying Claim 46,
we find the invariant subspaces of gf , A−1U1,2, A−1U2, . . . , A−1Ud−1, A−1Ud−1,d from these
null spaces. We present this formally in Algorithm 3.

Comments on Algorithm 3

(a) Observe that in step 6 of the algorithm we need F to be Q (as assumed) or a finite field
because univariate factorization can be done effectively over such fields [31, 9, 11].

31Reusing symbols.
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Algorithm 4 Computing the closure of v under the action of L
INPUT: v ∈ Fn and a basis {M1,M2, . . . ,Mm} of L.
OUTPUT: Basis of the closure of v under the action of L.

1. Let V(0) = {v} and V(1) = spanF{v,M1v, . . . ,Mmv}.
2. Set i = 1.
3. Compute a basis of V(1) and let T1 = {v1,v2, . . . ,vq1} be this basis.
4. while V(i−1) 6= V(i) do
5. Set i = i+ 1.
6. Compute a basis for V(i) = spanF{Ti−1 ∪ L · Ti−1} and let Ti = {v1,v2, . . . ,vqi} be

this basis.
7. end while
8. Output Ti.

(b) When Algorithm 3 is invoked in Algorithm 2 for an n variate degree d polynomial f ,
there may not exists a w ∈ Nd−1 and an A ∈ GL(n) such that f = IMMw,d(Ax). We
point out a few additional checks that need to be added to the above algorithm to
handle this case. In step 9, if the pruned list (after removing repetitions) has size other
than d then output ‘Fail’. Also from Claim 41, exactly two subspaces in the pruned list
{V1,V2, . . . ,Vd}, say V2 and Vd−1, should be subspaces of other vector spaces, say V1
and Vd respectively. We can find these two spaces by doing a pairwise check among the
d vector spaces. If such subspaces do not exist among V1,V2, . . . ,Vd then output ‘Fail’.
Further, if Fn 6= V1 ⊕ V3 ⊕ · · · ⊕ Vd−2 ⊕ Vd (assuming V2 ⊆ V1 and Vd−1 ⊆ Vd) then
output ‘Fail’.

(c) It follows from the above discussion , if f = IMMw,d(Ax) then we can assume V3,V4, . . . ,

Vd−2 are the spaces A−1U3, A
−1U4, . . . , A

−1Ud−2 in some unknown order. The spaces
V1,V2 and Vd,Vd−1 are either the spaces A−1U1,2, A

−1U2 and A−1Ud−1,d, A
−1Ud−1

respectively, or the spaces A−1Ud−1,d, A
−1Ud−1 and A−1U1,2, A

−1U2 respectively.

4.2 Closure of a vector under the action of gf
Algorithm 4 computes the closure of v ∈ Fn under the action of a space L spanned by n× n
matrices. Let {M1,M2, . . . ,Mm} be a basis of L where Mi ∈ Fn×n. For a set of vectors
T = {v1,v2, . . . ,vq} ⊆ Fn, let L · T denote the set {Mavb | a ∈ [m] and b ∈ [q]}.

I Claim 47. Algorithm 4 computes the closure of v ∈ Fn under the action of L in time
polynomial in n and the bit length of the entries of v and M1,M2, . . . ,Mm.

Proof. The closure of v under the action of L is the F-linear span of all vectors of the form µ.v,
where µ is a non-commutative monomial in M1,M2, . . . ,Mm (including unity). Algorithm 4
computes exactly this set and hence the closure of v. Moreover, dim(V(i)) ≤ n and in every
iteration of the while loop dim(V(i)) > dim(V(i−1)), until V(i) = V(i−1). Hence, Algorithm 4
runs in time polynomial in n and the bit length of the entries of v and M1,M2, . . . ,Mm. J

5 Reconstruction of full rank ABP for f

Let f be a polynomial equivalent to IMMw,d for some (unknown) w ∈ Nd−1. In this section,
we show that the invariant subspaces of gf let us compute a w ∈ Nd−1 and an A ∈ GL(n)
such that f = IMMw,d(Ax). Since f is equivalent to IMMw,d, it is computable by a full
rank ABP X1 · X2 . . . Xd−1 · Xd of width w and length d with linear form entries in the
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matrices. We call this full rank ABP A which, as explained below, is not the only full rank
ABP computing f .

Many full rank ABPs for f : The full rank ABP X ′1 ·X ′2 · · ·X ′d resulting from each of the
following three transformations on A still computes f ,
1. Transposition: Set X ′k = XT

d+1−k for k ∈ [d].
2. Left-right multiplications: Let A1, . . . , Ad−1 be matrices such that Ak ∈ GL(wk) for every

k ∈ [d− 1]. Set X ′1 = X1 ·A1, X
′

d = A−1
d−1 ·Xd, and X

′

k = A−1
k−1 ·Xk ·Ak for k ∈ [2, d− 1].

3. Corner translations: Suppose {C11, C12, . . . , C1w2} and {Cd1, Cd2, . . . , Cdwd−2} are two
sets containing anti-symmetric matrices in Fw1×w1 and Fwd−1×wd−1 respectively. Let
Y2 ∈ F[x]w1×w2 (respectively Yd−1 ∈ F[x]wd−2×wd−1) be a matrix with its i-th column
(respectively i-th row) equal to C1i · XT

1 (respectively XT
d · Cdi). Set X ′2 = X2 + Y2,

X
′

d−1 = Xd−1 + Yd−1, and X
′

k = Xk for k ∈ [d] \ {2, d− 1}.
In each of the above three cases f = X ′1 ·X ′2 · · ·X ′d; this is easy to verify for cases 1 and 2,
in case 3 observe that X1 · C1i ·XT

1 = XT
d · Cdi ·Xd = 0.

It turns out that the full rank ABPs obtained by (repeatedly) applying the above three
transformations on A are the only full rank ABPs computing f . This would follow from the
discussion in Section 6. Although there are multiple full rank ABPs for f , the layer spaces of
these ABPs are unique (Lemma 48). This uniqueness of the layer spaces essentially facilitates
the recovery of a full rank ABP for f . Let us denote the span of the linear forms32 in X1
and X2 (respectively Xd−1 and Xd) by X1,2 (respectively Xd−1,d).

I Lemma 48 (Uniqueness of the layer spaces of full rank ABP for f). Suppose X1 ·X2 · · ·Xd

and X ′1 · X ′2 · · ·X ′d are two full rank ABPs of widths w = (w1, w2, . . . , wd−1) and w′ =
(w′1, w′2, . . . , w′d−1) respectively, computing the same polynomial f . Then one of the following
two cases is true:
(a) w′k = wk for k ∈ [d − 1], and the spaces X ′1,X ′1,2,X ′3, . . . , X ′d−1,d,X ′d are the spaces
X1,X1,2,X3, . . . ,Xd−1,d,Xd respectively.

(b) w′k = wd−k for k ∈ [d − 1], and the spaces X ′1,X ′1,2,X ′3, . . . , X ′d−1,d,X ′d are the spaces
Xd,Xd−1,d,Xd−2, . . . ,X1,2,X1 respectively.

The lemma would help characterize the group of symmetries of IMM in Section 6; the proof
would follow readily from Claim 50 in Section 5.2. With an eye on Section 6 and for better
clarity in the reduction to almost set-multilinear ABP in Section 5.2, we take a slight detour
and show next how to compute these ‘unique’ layer spaces of A.

5.1 Computing layer spaces from invariant subspaces of gf
Algorithm 3 outputs bases of the irreducible invariant subspaces {Vi | i ∈ [d]} of gf .
Recall, we assumed without loss of generality that V2 and Vd−1 are subspaces of V1 and
Vd respectively. The spaces V1,V2 and Vd,Vd−1 are either the spaces A−1U1,2, A

−1U2 and
A−1Ud−1,d, A

−1Ud−1 respectively, or the spaces A−1Ud−1,d, A
−1Ud−1 and A−1U1,2, A

−1U2
respectively. Every other Vk is equal to A−1Uσ(k) for some permutation σ on [3, d− 2] (σ is
not known at the end of Algorithm 3). Hence,

Fn = V1 ⊕ V3 ⊕ · · · ⊕ Vd−2 ⊕ Vd. (3)

32 Identify linear forms with vectors in Fn as mentioned in Definition 15.

CCC 2017



21:30 Reconstruction of Full Rank Algebraic Branching Programs

Algorithm 5 Computing the layer spaces of A

INPUT: Bases of the irreducible invariant subspaces of gf .
OUTPUT: Bases of the layer spaces of A.

1. Form an n×n matrix V by concatenating the columns of the matrices V1, V3, . . . , Vd−2, Vd
in order, that is V = [V1 | V3 | . . . | Vd−2 | Vd].

2. Compute V −1. Number the rows of V −1 by 1 to n.
3. Let Y1 be the space spanned by the first u1 − u2 rows of V −1, and Y1,2 be the space

spanned by the first u1 rows of V −1. Let Yd−1,d be the space spanned by the last ud
rows of V −1 and Yd be the space spanned by the last ud−ud−1 rows of V −1. Finally, for
every k ∈ [3, d−2], let Yk be the space spanned by the rows of V −1 that are numbered by
tk−1 + 1 to tk−1 + uk. Output the bases of the spaces Y1,Y1,2,Y3, . . . ,Yd−2,Yd−1,d,Yd
in order.

Since V2 ⊆ V1, we can start with a basis of V2 and fill in more elements from the basis of V1
to get a new basis of V1. Thus we can assume the basis of V2 is contained in the basis of V1.
Likewise, the basis of Vd−1 is contained in the basis of Vd.

Order the basis vectors of V1 such that the basis vectors of V2 are at the end and order the
basis vectors of Vd such that the basis vectors of Vd−1 are at the beginning. For k ∈ [3, d− 2],
the basis vectors of Vk are ordered in an arbitrary way. Let uk denote the dimension of Vk
for k ∈ [d]. We identify the space Vk with an n× uk matrix Vk, where the i-th column in Vk
is the i-th basis vector of Vk in the above specified order. Algorithm 5 computes the layer
spaces of A using V1 to Vd. Let t2 = u1 and tk = uk + tk−1 for k ∈ [3, d− 2].

Comments on Algorithm 5: Algorithm 2 invokes Algorithm 5 only after Algorithm 3,
which returns ‘Fail’ if Fn 6= V1 ⊕ V3 ⊕ · · · ⊕ Vd−2 ⊕ Vd (see comments after Algorithm 3).
This ensures Equation (3) is satisfied and so V −1 exists in step 2 of the above algorithm,
even if there are no w ∈ Nd−1 and A ∈ GL(n) such that f = IMMw,d(Ax).

I Lemma 49. If f = X1 ·X2 · · ·Xd and Y1,Y1,2,Y3, . . . ,Yd−2,Yd−1,d,Yd is the output of
Algorithm 5 then there is a permutation σ on [3, d− 2] such that the following hold:
1. For every k ∈ [3, d− 2], Yk = Xσ(k).
2. Either Y1,Y1,2 and Yd,Yd−1,d are X1,X1,2 and Xd,Xd−1,d respectively, or Y1,Y1,2 and
Yd, Yd−1,d are Xd,Xd−1,d and X1,X1,2 respectively.

The proof is given in Section 7.4.

5.2 Reduction to almost set-multilinear ABP
The outline: Once the invariant spaces of gf are computed, the reduction proceeds like this:
As observed in the proof of Lemma 49, the matrix V in Algorithm 5 equals A−1E where
E looks as shown in Figure 14. If f = IMMw,d(Ax) then f(V x) = IMMw,d(Ex). Owing to
the structure of E, f(V x) is computed by a full rank almost set-multilinear ABP, except
that the ordering of the groups of variables occurring in the different layers of the ABP is
unknown as σ is unknown. The ‘correct’ ordering along with a width vector can be retrieved
by applying evaluation dimension, thereby completing the reduction. For a slightly neater
presentation of the details (and with the intent of proving Lemma 48), we deviate from this
strategy a little bit and make use of the layer spaces that have already been computed by
Algorithm 5.
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Algorithm 6 Reduction to full rank almost set-multilinear ABP
INPUT: Bases of the layer spaces Y1,Y1,2,Y3, . . . ,Yd−2,Yd−1,d,Yd from Algorithm 5.
OUTPUT: A w ∈ Nd−1 and an Â ∈ GL(n) such that f(Âx) is computable by a full rank
almost set-multilinear ABP of width w.

1. Reorder the layer spaces to X1,X1,2,X3, . . . ,Xd−2,Xd−1,d,Xd and obtain w (using
Claim 50). /* This step succeeds with high probability if f is equivalent to IMMw,d for
some w. */

2. Find Â ∈ GL(n) from the reordered spaces and w (using Claim51).

The details: Algorithm 5 computes the spaces Y1,Y1,2,Y3, . . . ,Yd−2,Yd−1,d,Yd which (ac-
cording to Lemma 49) are either the spaces X1,X1,2,Xσ(3), . . . ,Xσ(d−2),Xd−1,d,Xd respect-
ively, or the spaces Xd,Xd−1,d,Xσ(3), . . . , Xσ(d−2),X1,2,X1 respectively, for some unknown
permutation σ on [3, d− 2]. The claim below (proved in Section 7.4) shows how to correctly
reorder these layer spaces.

I Claim 50. There is a randomized polynomial time algorithm that takes input the bases
of the layer spaces Y1,Y1,2,Y3, . . . ,Yd−2,Yd−1,d,Yd and with probability at least 1− 1

poly(n)
reorders these layer spaces and outputs a width vector w′ such that the reordered sequence of
spaces and w′ are:
1. either X1,X1,2,X3, . . . ,Xd−2,Xd−1,d,Xd and (w1, w2, . . . , wd−1) respectively,
2. or Xd,Xd−1,d,Xd−2, . . . , X3,X1,2,X1 and (wd, wd−1, . . . , w1) respectively.

Note: Until the algorithm in the claim is applied to reorder the spaces, Algorithm 2 is
totally oblivious of the width vector w (it has been used only in the analysis thus far). So,
due to the legitimacy of the transposition transformation mentioned at the beginning of this
section, we may as well assume that the w′ in the above claim is in fact our w, and the
output ordered sequence of spaces is X1,X1,2,X3, . . . ,Xd−2,Xd−1,d,Xd.

I Claim 51. Given bases of the spaces X1,X1,2,X3, . . . ,Xd−2,Xd−1,d,Xd and w, we can
find an Â ∈ GL(n) in polynomial time such that f(Âx) is computable by a full rank almost
set-multilinear ABP of width w.

Proof. Identify the variables x1, . . . , xn with the variables x1 ] . . . ] xd of IMMw,d following
the ordering prescribed in Section 2.3. The map x 7→ Âx should satisfy the following
conditions:
(a) For every k ∈ [3, d− 2], the linear forms corresponding33 to the basis vectors of Xk map

to distinct variables in xk.
(b) The linear forms corresponding to the basis vectors in X1 (similarly, Xd) map to distinct

variables in x1 (similarly, xd).
(c) The linear forms corresponding to the basis vectors in X1,2 (similarly, Xd−1,d) map to

distinct variables in x1 ] x2 (similarly, xd−1 ] xd).
Conditions (b) and (c) can be simultaneously satisfied as the basis of X1 (similarly, Xd) is
contained in the basis of X1,2 (similarly, Xd−1,d) by construction. Such an Â can be easily
obtained. J

We summarize the discussion in Algorithm 6.

33Recall, linear forms in x variables and vectors in Fn are naturally identified with each other.
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Comments on Algorithm 6: The proof of Claim 50 includes Observation 67 which helps
Algorithm 6 in step 1 to reorder the layer spaces. If f is not equivalent to IMMw,d for some
w then Algorithm 6 may fail in step 1, as at some stage it may not be able to find a variable
set zk such that Evaldimyj]zk(h) < |zk| (see proof of Observation 67). When Algorithm 2
invokes Algorithm 6, if step 1 fails then the latter outputs ‘Fail’ and stops.

5.3 Reconstructing almost set-multilinear ABP
We prove Claim 30 in this section. Let h = f(Âx); identify x with the variables x1]. . .]xd of
IMMw,d as before. From Claim 51, h is computable by a full rank almost set-multilinear ABP
of width w. Algorithm 2 uses Algorithm 7 to reconstruct a full rank almost set-multilinear
ABP for h and then it replaces x by Â−1x to output a full rank ABP for f . The correctness
of Algorithm 7 is presented as part of the proof of Claim 30. We begin with the following
two observations the proofs of which appear in Section 7.4.

I Observation 52. If h is computable by a full rank almost set-multilinear ABP of width w
then there is a full rank almost set-multilinear ABP of width w in canonical form computing
h.

I Observation 53. Let X1 ·X2 · · ·Xd be a full rank almost set-multilinear ABP, and Ck =
Xk · · ·Xd for k ∈ [2, d]. Let the l-th entry of Ck be hkl for l ∈ [wk−1] . Then the polynomials
{hk1, hk2, · · · , hkwk−1} are F-linearly independent.

Notations for Algorithm 7: For k ∈ [d − 1], let tk = |x1 ] x2 ] · · · ] xk| and mk =
|xk+1 ] xk+2 ] · · · ] xd|. The (i, j)-th entry of a matrix X is denoted by X(i, j), and ewk,i
denotes a vector in Fwk with the i-th entry 1 and other entries 0. Let yi denote the following
partial assignment to the x1 variables: x(1)

i , . . . , x
(1)
w1 are kept intact, while the remaining

variables are set to zero. Similarly, zj denotes the following partial assignment to the xd
variables: x(d)

j , . . . , x
(d)
wd−1 are kept intact, while the remaining variables are set to zero. The

notation h(ai,xk,bj) means the variables x1] . . .]xk−1 are given the assignment ai ∈ Ftk−1

and the variables xk+1 ] . . . ] xd are given the assignment bj ∈ Fmk . The connotations
for h(yi,x2,bj) and h(ai,xd−1, zj) are similar. The function poly(n) is a suitably large
polynomial function in n, say n7.

Proof of Claim 30. By Observation 52, there is a full rank ABP X ′1 ·X ′2 · · ·X ′d in canonical
form computing h. HenceX1 = X ′1 = (x(1)

1 x
(1)
2 . . . x

(1)
w1 ) andXd = X ′d = (x(d)

1 x
(d)
2 . . . x

(d)
wd−1).

We show next that with probability at least 1− 1
poly(n) , Algorithm 7 constructs X2, X3, . . . ,

Xd−1 such that X2 = X ′2 · T2, Xd−1 = T−1
d−2 · X ′d−1 and Xk = T−1

k−1 · X ′k · Tk for every
k ∈ [3, d− 2], where Ti ∈ GL(wi) for i ∈ [2, d− 2].

Steps 3–13: The matrix X2 is formed in these steps. By Observation 53, the polynomials
h31, . . . , h3w2 are F-linearly independent. Since b1,b2, . . . ,bw2 are randomly chosen in step
3, the matrix T2 with (r, c)-th entry h3r(bc) is in GL(w2) with high probability. Let X ′2T2(i, j)
be the (i, j)-th entry of X ′2T2. Observe that

h(yi,x2,bj) = X ′2T2(i, j) · x(1)
i + . . .+X ′2T2(w1, j) · x(1)

w1
.

As h(yi,x2,bj) is a quadratic polynomial, we can compute it from blackbox access using
the sparse polynomial interpolation algorithm in [30]. By induction on the rows, X2(p, j) =
X ′2T2(p, j) for every p ∈ [i+ 1, w1] and j ∈ [w2]. So in step 8, gj = X ′2T2(i, j) · x(1)

i leading
to X2(i, j) = X ′2T2(i, j) in step 9.
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Algorithm 7 Reconstruction of full rank almost set-multlinear ABP
INPUT: Blackbox access to an n variate polynomial h and the width vector w.
OUTPUT: A full rank almost set-multilinear ABP of width w in canonical form computing
h.

1. Set X1 = (x(1)
1 x

(1)
2 . . . x

(1)
w1 ) and Xd = (x(d)

1 x
(d)
2 . . . x

(d)
wd−1)T .

2.
3. Choose w2 random points {b1,b2, . . . ,bw2} from Sm2 such that S ⊂ F and |S| = poly(n).

4. Set i = w1.
5. while i ≥ 1 do
6. for every j ∈ [w2] do
7. Interpolate the quadratic h(yi,x2,bj).
8. Set gj = h(yi,x2,bj)−

∑w1
p=i+1 X2(p, j) · x(1)

p .
9. If gj is not divisible by x(1)

i , output ‘Fail’. Else, set X2(i, j) = gj/x
(1)
i .

10. end for
11. Set i = i− 1.
12. end while
13. If the linear forms in X2 are not F-linearly independent, output ‘Fail’.
14.
15. Set k = 3.
16. while k ≤ d− 2 do
17. Find wk−1 evaluations, {a1,a2, . . . ,awk−1} ⊂ Ftk−1 , of x1 ] x2 ] · · · ] xk−1 variables

such that X1 ·X2 · · ·Xk−1 evaluated at ai equals ewk−1,i.
18. Choose wk random points {b1,b2, . . . ,bwk} from Smk such that S ⊂ F and |S| =

poly(n).
19. Interpolate the linear forms h(ai,xk,bj) for i ∈ [wk−1], j ∈ [wk].
20. Set Xk(i, j) = h(ai,xk,bj) for i ∈ [wk−1], j ∈ [wk].
21. If the linear forms in Xk are not F-linearly independent, output ‘Fail’.
22. Set k = k + 1.
23. end while
24.
25. Find wd−2 evaluations, {a1,a2, . . . ,awd−2} ⊂ Ftd−2 , of x1 ]x2 ] · · · ]xd−2 variables such

that X1 ·X2 · · ·Xd−2 evaluated at ai equals ewd−2,i .
26. Set j = wd−1.
27. while j ≥ 1 do
28. for every i ∈ [wd−2] do
29. Interpolate the quadratic h(ai,xd−1, zj).
30. Set gi = h(ai,xd−1, zj)−

∑wd−1
q=j+1 Xd−1(i, q) · x(d)

q .
31. If gi is not divisible by x(d)

j , output ‘Fail’. Else, set Xd−1(i, j) = gi/x
(d)
j .

32. end for
33. Set j = j − 1.
34. end while
35. If the linear forms in Xd−1 are not F-linearly independent, output ‘Fail’.
36.
37. Output X1 ·X2 · · ·Xd−1 ·Xd as the full rank almost set-multilinear ABP for h.
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Steps 15–23: The matrices X3, . . . , Xd−2 are formed in these steps. By the time the
algorithm reaches step 17, it has already computed X2, . . . , Xk−1 such that X2 = X ′2T2 and
Xq = T−1

q−1X
′
qTq for q ∈ [3, k − 1], where Tq ∈ GL(wq). So, X ′1 . . . X ′k−1 = X1 . . . Xk−1T

−1
k−1.

As the linear forms inX1, . . . , Xk−1 are F-linearly independent (otherwise the algorithm would
have terminated in step 13 or 21), we can easily compute points {a1,a2, . . . ,awk−1} satisfying
the required condition in step 17. By Observation 53, the polynomials h(k+1)1, . . . , h(k+1)wk
are F-linearly independent. Since b1,b2, . . . ,bwk are randomly chosen in step 18, the matrix
Tk with (r, c)-th entry h(k+1)r(bc) is in GL(wk) with high probability. Now observe that
h(ai,xk,bj) is the (i, j)-th entry of T−1

k−1X
′
kTk, which implies Xk = T−1

k−1X
′
kTk from step 20.

Steps 25–35: In these steps, matrix Xd−1 is formed. The argument showing Xd−1 =
T−1
d−2X

′
d−1 is similar to the argument used for steps 3–13, except that now we induct on

columns instead of rows.
The output ABP X1 . . . Xd is in canonical form as X ′1 . . . X ′d is also in canonical form.

It is clear that the total running time of the algorithm is poly(n, β), where β is the bit
length of the coefficients of h which influences the bit length of the values returned by the
blackbox. J

6 Symmetries of IMM

Recall from Section 2.3, IMMw,d (for brevity IMM) is the n variate polynomial computed by
the full rank ABP Q1 ·Q2 · · ·Qd where the set of variables in Qk is xk for every k ∈ [d]. In
this section, we determine the group of symmetries of IMM (denoted by GIMM) and show that
IMM is characterized by its symmetries. We make a note of a few notations and terminologies
below.

Notations

Calligraphic letters H, C,M and T denote subgroups of GIMM . Let C and H be subgroups
of GIMM such that C ∩ H = In and for every H ∈ H and C ∈ C, H · C ·H−1 ∈ C. Then
C oH denotes the semidirect product of C and H34.
For every A ∈ GIMM the full rank ABP obtained by replacing x by Ax in Q1 ·Q2 · · ·Qd is
termed as the full rank ABP determined by A. This full rank ABP also computes IMM.
Let X be a matrix with entries as linear forms in y ] z variables. We break X into
two parts X(y) and X(z) such that X = X(y) + X(z). The (i, j)-th linear form in
X(y) (respectively X(z)) is the part of the (i, j)-th linear form of X in y (respectively z)
variables.

6.1 The group GIMM

Three subgroups of GIMM : As before, let w = (w1, w2, . . . , wd−1) and wk > 1 for every
k ∈ [d− 1]. In Theorem 54 below, we show that GIMM is generated by three special subgroups.
1. Transposition subgroup T : If wk 6= wd−k for any k ∈ [d− 1] then T is the trivial group

containing only In. Otherwise, if wk = wd−k for every k ∈ [d− 1] then T is the group
consisting of two elements In and T . The matrix T is such that the full rank ABP
determined by T is QTd ·QTd−1 · · ·QT1 . Clearly, T is a permutation matrix and T 2 = In.

34 C oH is the set CH which can be easily shown to be a subgroup of GIMM , and it also follows that C is a
normal subgroup of C oH.
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2. Left-right multiplications subgroup M: An M ∈ GL(n) is in M if and only if the full
rank ABP X1 · X2 · · ·Xd determined by M has the following structure: There are
matrices A1, . . . , Ad−1 with Ak ∈ GL(wk) for every k ∈ [d− 1], such that X1 = Q1 ·A1,
Xd = A−1

d−1 ·Qd, and Xk = A−1
k−1 ·Qk ·Ak for k ∈ [2, d− 1]. It is easy to verify thatM is

a subgroup of GIMM and is isomorphic to the direct product GL(w1)× . . .× GL(wd−1).
3. Corner translations subgroup C: A C ∈ GL(n) is in C if and only if the full rank

ABP X1 · X2 · · ·Xd determined by C has the following structure: There are two sets
{C11, C12, . . . , C1w2} and {Cd1, Cd2, . . . , Cdwd−2} containing anti-symmetric matrices in
Fw1×w1 and Fwd−1×wd−1 respectively such that X2 = Q2 + Y2 and Xd−1 = Qd−1 + Yd−1,
where Y2 ∈ F[x1]w1×w2 (respectively Yd−1 ∈ F[xd]wd−2×wd−1) is a matrix with its i-th
column (respectively i-th row) equal to C1i ·QT1 (respectively QTd · Cdi). For every other
k ∈ [d] \ {2, d− 1}, Xk = Qk. Observe that Q1 ·C1i ·QT1 = QTd ·Cdi ·Qd = 0. It can also
be verified that C is an abelian subgroup of GIMM and is isomorphic to the direct product
Aw2
w1
× Awd−2

wd−1 , where Aw is the group of w × w anti-symmetric matrices under matrix
addition and Akw is the k times direct product of this group.

I Theorem 54 (Symmetries of IMM). GIMM = C oH, where H =Mo T .

We prove Theorem 54 below. Following are a couple of remarks on it.

Remarks

(a) Characterization: Let f be an n variate degree d polynomial satisfying the following: For
any n variate degree d polynomial g, Gf = Gg if and only if f = α · g for some nonzero
α ∈ F. Then f is said to be characterized by Gf . We prove IMM is characterized by GIMM

in Lemma 59. The groupsM and C generate the ‘continuous symmetries’ of IMM.
(b) Comparison with a related work: In [15] a different choice of the IMM polynomial is

considered, namely the trace of a product of d square symbolic matrices – let us call
this polynomial IMM′35. The group of symmetries of IMM′ is determined in [15] and it
is shown that IMM′ is characterized by GIMM′ . The group of symmetries of IMM′, like
IMM, is generated by the transposition subgroup, the left-right multiplication subgroup,
and (instead of the corner translations subgroup) the circular transformations subgroup
– an element in this subgroup cyclically rotates the order of the matrices and hence does
not change the trace of the product.

Proof of Theorem 54
We begin with the following observation which is immediate from Lemma 48.

I Observation 55. If X1 · X2 · · ·Xd is a width w′ = (w′1, w′2, . . . , w′d−1) full rank ABP
computing IMMw,d then either
1. w′k = wk for k ∈ [d − 1], and the spaces X1,X1,2,X3, . . . , Xd−1,d,Xd are the spaces
Q1,Q1,2, Q3, . . . ,Qd−1,d,Qd respectively, or

2. w′k = wd−k for k ∈ [d − 1], and the spaces X1,X1,2,X3, . . . , Xd−1,d,Xd are the spaces
Qd,Qd−1,d,Qd−2, . . . ,Q1,2,Q1 respectively.

35The complexities of IMM and IMM′ are polynomially related to each other, in particular both are
complete for algebraic branching programs under p-projections. But their groups of symmetries are
slightly different.
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x1

x2

x3

xd

xd−1

x1 x2 x3 xdxd−1

all entries outside
the shaded region

are zero

Figure 5 Matrix A in GIMM .

From the definitions of T , M and C it follows that C ∩M = C ∩ T = M∩ T = In. The
claim below shows GIMM is generated by C,M and T .

I Claim 56. For every A ∈ GIMM , there exist C ∈ C, M ∈ M and T̃ ∈ T such that
A = C ·M · T̃ .

Proof. Let X1 ·X2 · · ·Xd be the full rank ABP A of width w determined by A. If wk = wd−k
for k ∈ [d− 1] then the spaces X1,X1,2,X3, . . . , Xd−1,d,Xd are either equal to Q1,Q1,2,Q3,

. . . ,Qd−1,d,Qd respectively or Qd,Qd−1,d,Qd−2, . . . ,Q1,2,Q1 respectively (from Observa-
tion 55). Otherwise if wk 6= wd−k for any k ∈ [d − 1] then the spaces X1,X1,2,X3, . . . ,

Xd−1,d,Xd have only one choice and are equal to Q1,Q1,2,Q3, . . . ,Qd−1,d,Qd respectively.
We deal with these two choices of layer spaces separately.

Case A: Suppose X1,X1,2,X3, . . . , Xd−1,d,Xd are equal to Q1,Q1,2,Q3, . . . ,Qd−1,d,Qd
respectively. Hence A looks as shown in Figure 5.

The linear forms in X2, Xd−1 are in variables x1 ] x2,xd−1 ] xd respectively. Further,

d∏
k=1

Xk = X1 · (X2(x1) +X2(x2)) ·
(
d−2∏
k=3

Xk

)
· (Xd−1(xd−1) +Xd−1(xd)) ·Xd = IMM.36

Since A is a full rank ABP and each monomial in IMM contains one variable from each set
xk,

X1 ·X2(x2) ·
(
d−2∏
k=3

Xk

)
·Xd−1(xd−1) ·Xd = IMM, and also

X1 ·X2(x1) ·
∏d−2
k=3 Xk ·Xd−1(xd−1) ·Xd = 0 and X1 ·X2(x2) ·

∏d−2
k=3 Xk ·Xd−1(xd) ·Xd = 0

implying

X1 ·X2(x1) = 0Tw2
and Xd−1(xd) ·Xd = 0wd−2 , (4)

where 0w is a zero (column) vector in Fw. Observation 57, the proof of which is in Section 7.5,
proves the existence of a matrix M ∈M such that the full rank ABP determined by M is
X1 ·X2(x2) ·X3 · · ·Xd−2 ·Xd−1(xd−1) ·Xd.
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I Observation 57. There are matrices A1, . . . , Ad−1 with Ak ∈ GL(wk) for every k ∈ [d− 1],
such that X1 = Q1 · A1, X2(x2) = A−1

1 · Q2 · A2, Xd−1(xd−1) = A−1
d−2 · Qd−1 · Ad−1,

Xd = A−1
d−1 ·Qd, and Xk = A−1

k−1 ·Qk ·Ak for k ∈ [3, d− 2].

We now show the existence of a C ∈ C such that the full rank ABP determined by C ·M
is X1 ·X2 · · ·Xd, from which the claim follows by letting T̃ = In. Since the linear forms in
X1 are F-linearly independent, there are w1 × w1 matrices {C11, C12, . . . , C1w2} such that
the i-th column of X2(x1) is C1iX

T
1 . So from Equation (4), X1 · C1i ·XT

1 = 0 (equivalently
Q1 · C1i · QT1 = 0) implying C1i is an anti-symmetric matrix for every i ∈ [w2]. Similarly,
there are wd−1 × wd−1 anti-symmetric matrices {Cd1, Cd2, . . . , Cdwd−2} such that the i-th
row of Xd−1(xd) is XT

d Cdi. Let C ∈ GL(n) be such that the ABP determined by it is
Q1Q

′
2Q3 · · ·Qd−2Q

′
d−1Qd where Q′2 = Q2 + Y2 and Q′d−1 = Qd−1 + Yd−1, the i-th column

(respectively i-th row) of Y2 (respectively Yd−1) is C1iQ
T
1 (respectively QTd−1Cdi). By

construction, C ∈ C and the ABP determined by C ·M is X1 ·X2 · · ·Xd.

Case B: Suppose X1,X1,2,X3, . . . , Xd−1,d,Xd are the spaces Qd,Qd−1,d,Qd−2, . . . ,Q1,2,Q1
respectively. This implies wk = wd−k for k ∈ [d− 1] and hence the full rank ABP determined
by T is QTd ·QTd−1 · · ·QT1 . From here the existence of M ∈M and C ∈ C such that the full
rank ABP determined by M ·C ·T is X1 ·X2 · · ·Xd follows just as in Case A. This completes
the proof of the claim. J

Observe that if T ∈ T then for every M ∈M, T ·M · T−1 ∈M. Let H =Mo T . Clearly,
C ∩H = In. The following claim along with Claim 56 then conclude the proof of Theorem 54.

I Claim 58. For every C ∈ C and H ∈ H, H · C ·H−1 ∈ C.

Proof. Let H = M · T where M ∈ M and T ∈ T , and A = MT · C · T−1M−1. Suppose
X1 ·X2 · · ·Xd−1 ·Xd is the ABP determined by A. The matrices T and T−1 in A together
ensure that the spaces X1,X1,2,X3, . . . , Xd−1,d,Xd are equal to Q1,Q1,2,Q3, . . . ,Qd−1,d,Qd
respectively. Also the matricesM andM−1 together ensure thatXi = Qi for i ∈ [d]\{2, d−1},
X2(x2) = Q2 and Xd−1(xd−1) = Qd−1. Arguing as in Claim 56, we can infer that A ∈ C. J

6.2 Characterization of IMM by GIMM0
For every f = α · IMM, where α ∈ F and α 6= 0, it is easily observed that Gf = GIMM . We
prove the converse in the following lemma for any homogeneous degree d polynomial in the
x variables.

I Lemma 59. Let f be a homogeneous degree d polynomial in n variables x = x1 ] . . . ] xd.
If |F| > d+ 1 and the left-right multiplications subgroupM of GIMM is contained in Gf then
f = α · IMM for some nonzero α ∈ F.

Proof. First, we show that such an f is set-multilinear in the sets x1, . . . ,xd: Every monomial
in f has exactly one variable from each of the sets x1, . . . ,xd. As |F| > d + 1, there is a
nonzero ρ ∈ F that is not an e-th root of unity for any e ≤ d. Every element inM is defined
by d−1 matrices A1, . . . , Ad−1 such that Ak ∈ GL(wk) for every k ∈ [d−1]. For a k ∈ [d−1],
consider the element M ∈ M that is defined by Ak = ρ · Iwk and Al = Iwl for l ∈ [d − 1]
and l 6= k. Then, f(M · x) = f(x1, . . . , ρxk, ρ−1xk+1, . . . ,xd), which by assumption is f .
Comparing the coefficients of the monomials of f(M · x) and f , we observe that in every
monomial of f the number of variables from xk and xk+1 must be the same as ρ is not an
e-th root of unity for any e ≤ d. Since k is chosen arbitrarily and f is homogeneous of degree
d, f must be set-multilinear in the sets x1, . . . ,xd.
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The proof is by induction on the degree of f . For i ∈ [w1], let x2i be the set of variables
in the i-th row of Q2, and Q2i be the 1 × w2 matrix containing the i-th row of Q2. Let
IMMi be the degree d− 1 iterated matrix multiplication polynomial computed by the ABP
Q2i ·Q3 · · ·Qd. As f is set-multilinear, it can be expressed as

f = g1 · x(1)
1 + . . .+ gw1 · x(1)

w1
, (5)

where g1, . . . , gw1 are set-multilinear polynomials in the sets x2, . . . ,xd. Moreover, we can
argue that gi is set-multilinear in x2i,x3, . . . ,xd as follows: Consider an N ∈ M that is
defined by a diagonal matrix A1 ∈ GL(w1) whose (i, i)-th entry is ρ and all other diagonal
entries are 1; every other Al = Iwl for l ∈ [2, d− 1]. The transformation N scales the variable
x

(1)
i by ρ and the variables in x2i by ρ−1. By comparing the coefficients of the monomials of
f(N ·x) and f , we can conclude that gi is set-multilinear in x2i,x3, . . . ,xd for every i ∈ [w1].

Let M′ be the subgroup of M containing those M ∈ M for which A1 = Iw1 . From
Equation (5), we can infer that gi(M · x) = gi for M ∈ M′, and hence the left-right
multiplications subgroup of GIMMi

is contained in the group of symmetries of gi. As degree of
gi is d− 1, by induction37 gi = αi · IMMi for some nonzero αi ∈ F and

f = α1 · IMM1 · x(1)
1 + . . .+ αw1 · IMMw1 · x(1)

w1
. (6)

Next we show that α1 = . . . = αw1 thereby completing the proof.
For an i ∈ [2, w1], let A1 ∈ GL(w1) be the upper triangular matrix whose diagonal entries

are 1, the (1, i)-th entry is 1 and remaining entries are zero. Let U be the matrix in M
defined by A1 and Al = Iwl for l ∈ [2, d− 1]. The transformation U has the following effect
on the variables:

x
(1)
i 7→ x

(1)
1 + x

(1)
i and

x
(2)
1j 7→ x

(2)
1j − x

(2)
ij for every j ∈ [w2],

every other x variable maps to itself. Applying U to f in Equation (6) we get

f = f(U · x) = α1 · (IMM1 − IMMi) · x(1)
1 + . . .+ αi · IMMi · (x(1)

1 + x
(1)
i ) + . . .+

αw1 · IMMw1 · x(1)
w1

= f + (αi − α1) · IMMi · x(1)
1 ,

⇒ αi − α1 = 0.

Since this is true for any i ∈ [2, w1], we have α1 = . . . = αw1 . J

7 Proof of claims and lemmas from previous sections

In this section we give proofs of claims and lemmas from the above sections. We begin by
proving the incompleteness of the full rank ABP.

I Observation 60. For every sufficiently large m ∈ N there is an m variate multilinear
polynomial that is not computable by full rank ABP.

Proof. A full rank ABP computing an m variate polynomial f has both its width and length
bounded by m, so f can also be computed by an ABP (not full rank) of width and length
exactly m. Hence, it is sufficient to show that there is an m variate multilinear polynomial

37The base case d = 1 is trivial to show.
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that is not computable by the latter kind of ABP. The number of edges in an ABP of
width m and length m is n = m2(m − 2) + 2m. Let these n edges be e1, e2, . . . , en and
suppose the edge ei is labelled by the affine form li =

∑m
j=1 cijxj + ci0. Treat cij ’s as formal

variables. Then each of the
(2n
n

)
coefficients of the polynomial f computed by such an ABP

is a polynomial in these n(m + 1) formal variables. Since n(m + 1) < 2m for sufficiently
large m, the coefficients of f restricted to just the multilinear monomials m1,m2, . . . ,m2m

are algebraically dependent. Let h 6= 0 be an annihilating polynomial of these coefficients.
Since h is nonzero, there is a point a = (a1, . . . , a2m) ∈ F2m such that h(a) 6= 0. It follows
that the multilinear polynomial g def=

∑2m
i=1 aimi is not computable by an ABP of width m

and length m, which means g is not computable by a full rank ABP. J

7.1 Proof of lemmas and claims in Section 2
I Claim 21 (restated). If f(x) = g(Ax), where f and g are both n variate polynomials
and A ∈ GL(n), then the Lie algebra of f is a conjugate of the Lie algebra of g via A,
i.e. gf = {A−1EA : E ∈ gg} =: A−1ggA.

Proof. Let Q = (qi,j)i,j∈[n] ∈ gf . Hence,

∑
i,j∈[n]

qijxj ·
∂f

∂xi
= 0 ⇒

∑
i,j∈[n]

qijxj ·
∂g(Ax)
∂xi

= 0 . (7)

Let A = (aki)k,i∈[n]. Using chain rule of derivatives,

∂g(Ax)
∂xi

=
∑
k∈[n]

∂g

∂xk
(Ax) · aki .

Let A−1 = (bjl)j,l∈[n] and (Ax)l be the l-th entry of Ax. Then xj =
∑
l∈[n] bjl(Ax)l. From

Equation (7),

∑
i,j∈[n]

qij ·

∑
l∈[n]

bjl(Ax)l

 ·
∑
k∈[n]

∂g

∂xk
(Ax) · aki

 = 0 ,

⇒
∑
k,l∈[n]

(Ax)l ·
∂g

∂xk
(Ax) ·

 ∑
i,j∈[n]

akiqijbjl

 = 0 ,

⇒
∑
k,l∈[n]

xl ·
∂g

∂xk
·

 ∑
i,j∈[n]

akiqijbjl

 = 0 (Substituting x by A−1x).

Observe that
∑
i,j∈[n] akiqijbjl is the (k, l)-th entry of AQA−1. Hence, AQA−1 ∈ gg implying

gf ⊆ A−1ggA. Similarly, gg ⊆ AgfA−1 as g = f(A−1x), implying gf = A−1ggA. J

I Claim 24 (restated). With probability at least 1− 1
poly(n) , the rank of the matrixM = (fj(bi))

where i, j ∈ [m], is m− r where b1,b2, . . . ,bm are chosen independently and uniformly at
random from Sn ⊂ Fn with |S| = dm · poly(n).

Proof. Recall, we assumed that the dimension of the F-linear space spanned by the n variate
polynomials f1, f2, . . . , fm is m−r. Without loss of generality assume f1, f2, . . . , fm−r form a
basis of this linear space. Clearly, the rank ofM = (fj(bi))i,j∈[m] is less than or equal tom−r.
LetMm−r = (fj(bi))i,j∈[m−r]. That Det(Mm−r) 6= 0 with probability at least 1− 1

poly(n) over
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the random choices of b1,b2, . . . ,bm can be argued as follows: Let yi = {y(i)
1 , y

(i)
2 , . . . , y

(i)
n }

for i ∈ [m − r] be disjoint sets of variables. Rename the x = {x1, x2, . . . , xn} variables
in fj(x) to yi and call these new polynomials fj(yi) for i, j ∈ [m − r]. Let Y be an
(m − r) × (m − r) matrix whose (i, j)-th entry is (fj(yi))i∈[m−r]. Since f1, f2, . . . , fm−r
are F-linearly independent, Det(Y ) 6= 0 – this can be argued easily using induction. As
deg(Det(Y )) = d(m− r) ≤ dm, by Schwartz-Zippel lemma, Det(Mm−r) 6= 0 with probability
at least 1− 1

poly(n) . J

I Claim 26 (restated). Let r be the number of redundant variables in an n variate polynomial
f of degree d. Then the dimension of the space U of F-linear dependencies of {∂xif | i ∈ [n]}
is r. Moreover, we can construct an A ∈ GL(n) in randomized poly(n, d, β) time such that
f(Ax) is free of the set of variables {xn−r+1, xn−r+2, . . . , xn} with high probability, where β
is the bit length of the coefficients of f .

Proof. Let B = (bij)i,j∈[n] ∈ GL(n) such that f(Bx) is a polynomial in x1, x2, . . . , xs, where
s = n− r. For n− r + 1 ≤ j ≤ n

∂f(Bx)
∂xj

= 0

⇒
n∑
i=1

bij ·
∂f

∂xi
(Bx) = 0 (by chain rule)

⇒
n∑
i=1

bij ·
∂f

∂xi
= 0 (substituting x by B−1x).

Since B ∈ GL(n), we conclude dim(U) ≥ r. Let {(a1j a2j . . . anj)T : (n−dim(U)+1) ≤ j ≤ n}
be a basis of U . Then,

n∑
i=1

aij ·
∂f

∂xi
= 0.

Let A ∈ GL(n) such that for (n− dim(U) + 1) ≤ j ≤ n, the j-th column of A is (a1j a2j . . .

anj)T and the remaining columns of A are arbitrary vectors that make A a full rank matrix.
Then,

n∑
i=1

aij ·
∂f

∂xi
= 0 ⇒

n∑
i=1

aij ·
∂f

∂xi
(Ax) = 0 ⇒ ∂f(Ax)

∂xj
= 0.

This implies f(Ax) is a polynomial free of xj variable for (n− dim(U) + 1) ≤ j ≤ n. Hence,
dim(U) ≤ r.

Blackbox for polynomials ∂x1f, ∂x2f, . . . , ∂xnf can be constructed in poly(n, d, β) time
from blackbox access to f and a basis for the space U of F-linear dependencies of polynomials
∂x1f, ∂x2f, . . . , ∂xnf can also be constructed in randomized poly(n, d, β) time (see Section 2.2).
Thus, we can construct an A ∈ GL(n) (similar to the construction shown above) from a
blackbox access to f in randomized poly(n, d, β) time such that f(Ax) is free of the set of
variables {xn−r+1, xn−r+2, . . . , xn}. We summarize this in Algorithm 8. J

I Lemma 27 (restated). There is a randomized algorithm that takes input blackbox access to
two n variate, degree d polynomials f and g, and with probability at least 1− 1

poly(n) does the
following: if f is translation equivalent to g, outputs an a ∈ Fn such that f(x + a) = g(x),
else outputs ‘f and g are not translation equivalent’. The running time of the algorithm is
poly(n, d, β), where β is the bit length of the coefficients of f and g.
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Algorithm 8 Eliminating redundant variables
INPUT: Blackbox access to an n variate polynomial f(x).
OUTPUT: An r and an A ∈ GL(n) such that r is the number of redundant variables in f
and f(Ax) is free of the variables xn−r+1, xn−r+2, . . . , xn.

1. Compute blackbox access to ∂x1f, ∂x2f, . . . , ∂xnf (see Section 2.2).
2. Compute a basis {v1,v2, . . . ,vr} of the space of F-linear dependencies of ∂x1f, ∂x2f, . . . ,

∂xnf (using the random substitution idea in Claim 24). /* This step succeeds in
computing the required basis with high probability. */

3. Construct an A ∈ GL(n) such that the last r columns of A are v1,v2, . . . ,vr and the
remaining columns of A are chosen arbitrarily to make A a full rank matrix.

4. Return r and A.

Proof. We present the algorithm formally in Algorithm 9. If it succeeds in computing a
point a ∈ Fn in the end (in step 20), it performs a randomized blackbox polynomial identity
test (PIT) to check whether f(x + a) = g(x) (in step 22). If f and g are not translation
equivalent, this final PIT finds it with probability at least 1− 1

poly(n) . So, for the analysis of
the algorithm we can assume there is an a = (a1 a2 . . . an)T ∈ Fn such that f(x +a) = g(x).
The strategy outlined below helps to argue the correctness of Algorithm 9.

Strategy: Suppose f(x+a) = g(x). By equating the degree d and degree d−1 homogeneous
components of f and g we get the following equations,

f [d] = g[d] and

f [d−1] +
n∑
i=1

ai ·
∂f [d]

∂xi
= g[d−1] ⇒

n∑
i=1

ai ·
∂f [d]

∂xi
= g[d−1] − f [d−1]. (8)

Let fi = ∂f [d]

∂xi
for i ∈ [n]. Blackbox access to the homogeneous components of f : f [0], f [1], . . . ,

f [d], the homogeneous components of g: g[0], g[1], . . . , g[d] and f1, f2, . . . fn can be constructed
from blackbox access to f and g in poly(n, d, β) time (see Section 2.2). If f1, f2, . . . , fn are
F-linearly independent then with high probability over the random choices of b1,b2, . . . ,bn
∈ Fn the matrix (fj(bi))i,j∈[n] has full rank (from Claim 24). Hence, we can solve for
a1, a2, . . . , an uniquely from Equation (8). In the general case (when f1, f2, . . . , fn may
be F-linearly dependent), the algorithm repeatedly applies variable reduction and degree
reduction (as described below) to compute a.

Variable reduction. We construct a transformation A ∈ GL(n) such that f [d](Ax) has only
the essential variables x1, . . . , xm (see Claim 26). Let f̃ = f(Ax), g̃ = g(Ax). It is sufficient
to compute a point b = (b1 b2 . . . bn)T ∈ Fn such that f̃(x + b) = g̃(x) as

f̃(x + b) = g̃(x) ⇒ f(Ax +Ab) = g(Ax) ⇒ f(x +Ab) = g(x).

So we can choose a = Ab. As in Equation (8),

f̃ [d] = g̃[d] and
m∑
i=1

bi ·
∂f̃ [d]

∂xi
= g̃[d−1] − f̃ [d−1]. (9)

The derivatives ∂xi f̃ [d] for i > m are zero as f̃ [d] = f [d](Ax) has only the essential variables
x1, x2, . . . , xm. Also the polynomials {∂xi f̃ [d] : i ∈ [m]} are F-linearly independent (by
Claim 26). Hence, we can solve for unique b1, b2, . . . , bm satisfying Equation (9) as before.
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Degree reduction. To compute bm+1, bm+2, . . . , bn we reduce the problem to finding a
point that asserts translation equivalence of two degree d − 1 polynomials. Let b′ =
(b1 b2 . . . bm 0 . . . 0)T , f̂ = f̃(x + b′). Further, let e ∈ Fn such that f̂(x + e) = g̃(x). Then
the first m coordinates of e must be zero38 and we can choose b = b′ + e. We have the
following equations,

f̂ [d](x + e) + (f̂ − f̂ [d])(x + e) = g̃[d](x) + (g̃ − g̃[d])(x)

⇔ f̃ [d](x + e) + (f̂ − f̂ [d])(x + e) = g̃[d](x) + (g̃ − g̃[d])(x) (as f̂ [d] = f̃ [d]).

Since f̃ [d] has only x1, x2, . . . , xm variables and the first m coordinates of e are zero, the
above statement is equivalent to

f̃ [d](x) + (f̂ − f̂ [d])(x + e) = g̃[d](x) + (g̃ − g̃[d])(x)

⇔ (f̂ − f̂ [d])(x + e) = (g̃ − g̃[d])(x) (from Equation (9)).

The polynomials f̂ − f̂ [d] and g̃− g̃[d] have degree at most d−1 and blackboxes for these poly-
nomials can be constructed in poly(n, d, β) time. Therefore the problem reduces to computing
a point e ∈ Fn that asserts translation equivalence of two degree (d− 1) polynomials.

Correctness of Algorithm 9: In steps 4–11, the algorithm carries out variable reduction and
computes a part of the translation b that we call b′ in the above argument. The remaining
part of b (which is the vector e above) is computed by carrying out degree reduction in step
12 and then inducting on lower degree polynomials. These parts are then added appropriately
in step 17, and finally an a is recovered in step 20. J

I Lemma 28 (restated). There is a randomized algorithm which when given blackbox access to
an n variate degree d polynomial f , computes a basis of gf with probability at least 1− 1

poly(n)
in time poly(n, d, β) where β is the bit length of the coefficients in f .

Proof. Recall, the Lie algebra of f is the set of all matrices E = (eij)i,j∈[n] such that∑
i,j∈[n] eijxj ·

∂f
∂xi

= 0. Hence, gf is the space of linear dependencies of the polynomials
xj · ∂f∂xi for i, j ∈ [n]. Using Claim 23, we can derive blackboxes for these n2 polynomials
and then compute a basis of the space of linear dependencies with high probability using
Claim 24. J

7.2 Proof of lemmas and claims in Section 3
I Lemma 31 (restated). Let W1,W2,W3 be the following sets (spaces) of matrices:
1. W1 consists of all matrices D = (dij)i,j∈[n] such that D is diagonal and

n∑
i=1

diixi ·
∂IMM
∂xi

= 0.

2. W2 consists of all matrices B = (bij)i,j∈[n] such that∑
i,j∈[n]

bijxj ·
∂IMM
∂xi

= 0,

where in every summand bij 6= 0 only if xi 6= xj and xi, xj ∈ xl for some l ∈ [d].

38As b1, b2, . . . , bm can be solved uniquely.
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Algorithm 9 Translation equivalence test
INPUT: Blackbox access to two n variate, degree d polynomials f and g.
OUTPUT: A point a ∈ Fn such that f(x + a) = g(x), if such an a exists.

1. Set ` = d, p = f and q = g.
2.
3. while ` > 0 do
4. Using Algorithm 8 find an m and an A` ∈ GL(n) such that the variables

xm+1, xm+2, . . . , xn do not appear in p[`](A`x). /* With high probability m is the
number of essential variables in p[`]. */

5. Let p̃ = p(A`x) and q̃ = q(A`x). Construct blackbox access to p̃[`], p̃[`−1], q̃[`], q̃[`−1]

and ∂xi p̃[`] for i ∈ [m].
6. Check if p̃[`] = q̃[`]. If not, output ‘f and g are not translation equivalent’ and stop. /*

The check succeeds with high probability. */
7. Solve for unique b1, b2, . . . , bm satisfying

m∑
i=1

bi ·
∂p̃[`]

∂xi
= q̃[`−1] − p̃[`−1] (using the random substitution idea in Claim 24).

If the solving fails, output ‘f and g are not translation equivalent’. /* This step
succeeds with high probability if m is the number of essential variables in p[`] in step
4. */

8. if m = n then
9. Set b` = (b1 b2 . . . bn) and exit while loop.
10. else
11. Set b` = (b1 b2 . . . bm 0 . . . 0) ∈ Fn.
12. Construct blackbox access to (p̃− p̃[`])(x+b`) and (q̃− q̃[`])(x). Set p = (p̃− p̃[`])(x+

b`), q = (q̃ − q̃[`])(x) and ` = `− 1.
13. end if
14. end while
15.
16. while ` < d do
17. Set b`+1 = b`+1 +A`b`.
18. Set ` = `+ 1.
19. end while
20. Set a = Adbd.
21.
22. Pick a point c uniformly at random from Sn ⊂ Fn with |S| = d.poly(n) and check

whether f(c + a) = g(c). /* With high probability f(c + a) 6= g(c) if f and g are not
translation equivalent.*/

23. if f(c + a) = g(c) then
24. Output the point a.
25. else
26. Output ‘f and g are not translation equivalent’.
27. end if
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3. W3 consists of all matrices C = (cij)i,j∈[n] such that∑
i,j∈[n]

cijxj ·
∂IMM
∂xi

= 0,

where in every summand cij 6= 0 only if either xi ∈ x2, xj ∈ x1 or xi ∈ xd−1, xj ∈ xd.
Then gIMM =W1 ⊕W2 ⊕W3.

Proof. Since W1 ∩W2 = (W1 +W2) ∩W3 = {0n}, where 0n is the n × n all zero matrix,
it is sufficient to show gIMM = W1 +W2 +W3. By definition, W1 +W2 +W3 ⊆ gIMM . We
now show that gIMM ⊆ W1 +W2 +W3. Let E = (eij)i,j∈[n] be a matrix in gIMM . Then∑
i,j∈[n] eijxj ·

∂IMM
∂xi

= 0. We focus on a term xj · ∂IMM
∂xi

and observe the following:
(a) If xi = xj then the monomials of xi · ∂IMM

∂xi
are also monomials of IMM. Such monomials

do not appear in any term xj · ∂IMM
∂xi

, where xi 6= xj .
(b) If xi 6= xj and xi, xj belong to the same xl then every monomial in xj · ∂IMM

∂xi
has exactly

one variable from every xk for k ∈ [d]. Such monomials do not appear in a term xj · ∂IMM
∂xi

,
where xi ∈ xl and xj ∈ xk and l 6= k.

Due to this monomial disjointness, an equation
∑
i,j∈[n] eijxj ·

∂IMM
∂xi

= 0 corresponding to E
can be split into three equations:
1.
∑n
i=1 diixi ·

∂IMM
∂xi

= 0.
2.
∑
i,j∈[n] bijxj ·

∂IMM
∂xi

= 0, where bij 6= 0 in a term only if xi 6= xj and xi, xj ∈ xl for
some l ∈ [d].

3.
∑
i,j∈[n] cijxj ·

∂IMM
∂xi

= 0, where cij 6= 0 in a term only if xi ∈ xl and xj ∈ xk for l 6= k.

Hence every E = (eij)i,j∈[n] in gIMM equals D +B + C where
D ∈ W1 is a diagonal matrix,
B ∈ W2 is a block-diagonal39 matrix with diagonal entries zero,
C is a matrix with nonzero entries appearing outside the above block-diagonal.

To complete the proof of the lemma we show the following.

I Claim 61. Except those entries of C whose rows and columns are indexed by x2 and x1
variables respectively, or xd−1 and xd variables respectively, all the other entries are zero.

Proof. In a term x
(l)
pq · ∂IMM

∂x
(k)
ij

where l 6= k, every monomial has two variables from xl and no
variable from xk. Hence from the equation corresponding to C we get separate equations for
every pair (l, k) due to monomial disjointness:∑

p∈[wl−1],q∈[wl]

∑
i∈[wk−1],j∈[wk]

cpq,ijx
(l)
pq ·

∂IMM
∂x

(k)
ij

= 0, where l 6= k.

Collecting coefficients corresponding to ∂IMM
∂x

(k)
ij

in the above equation we get

∑
i∈[wk−1],j∈[wk]

`
(k)
ij ·

∂IMM
∂x

(k)
ij

= 0, where `(k)
ij is a linear form in the variables from xl. (10)

Figure 6 depicts a term `
(k)
ij · ∂IMM

∂x
(k)
ij

using an ABP that computes it. So the LHS of the above
equation can be computed by an ABP B that has edge labels identical to that of the ABP
for IMM, except for the edges in layer k. The (i, j)-th edge of layer k in B is labelled by `(k)

ij .

39An entry is in the block-diagonal if and only if the variables labelling the row and column of the entry
are in the same xl for some l ∈ [d].
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`
(k)
ij

s t

Figure 6 An ABP computing the term `
(k)
ij ·

∂IMM
∂x

(k)
ij

.

Suppose `(k)
ij 6= 0 and the coefficient of the variable x(l)

pq in `(k)
ij is nonzero, i.e. cpq,ij 6= 0.

If (l, k) is neither (1, 2) nor (d, d− 1) then the assumption cpq,ij 6= 0 leads to a contradiction
as follows.

Consider an s to t path P in B that goes through the (i, j)-th edge of layer k (which is
labelled by `(k)

ij ) but excludes the (p, q)-th edge of layer l (which is labelled by x(l)
pq ), the

(p, i)-th edge of layer k − 1 if l = k − 1 and the (j, q)-th edge of layer k + 1 if l = k + 1 (we
can notice this is always possible since (l, k) is neither (1, 2) nor (d, d − 1)). Then, if we
retain the variables labelling the edges of P ouside the layer k and the variable x(l)

pq , and set
every other variable to zero then P becomes the unique s to t path in B with nonzero weight
(since cpq,ij 6= 0). But this contradicts the fact that ABP B is computing an identically zero
polynomial (by Equation (10)). J

Therefore, gIMM ⊆ W1 +W2 +W3 implying gIMM =W1 ⊕W2 ⊕W3. J

I Lemma 32 (restated). The space W3 =W(a)
3 ⊕W(b)

3 where W(a)
3 = A1 ⊕A2 ⊕ · · · ⊕ Aw2

and W(b)
3 = A′1 ⊕ A′2 ⊕ · · · ⊕ A′wd−2 such that for every i ∈ [w2] Ai is isomorphic to

the space of w1 × w1 anti-symmetric matrices over F, and for every j ∈ [wd−2] A′j is
isomorphic to the space of wd−1 × wd−1 anti-symmetric matrices over F. Hence dim(W3) =
1
2 [w1w2(w1 − 1) + wd−1wd−2(wd−1 − 1)].

Proof. Recall, W3 is the space of all matrices C = (cij)i,j∈[n] such that

∑
i,j∈[n]

cijxj ·
∂IMM
∂xi

= 0, (11)

where in every nonzero summand either xi ∈ x2, xj ∈ x1 or xi ∈ xd−1, xj ∈ xd. In
Equation (11) every monomial in a term x

(1)
p · ∂IMM

∂x
(2)
qr

has two variables from x1. Similarly,

every monomial in a term x
(d)
p · ∂IMM

∂x
(d−1)
qr

has two variables from xd respectively. Owing to
monomial disjointness, Equation (11) gives two equations∑

r∈[w2]

∑
p,q∈[w1]

c(1)
pqrx

(1)
p ·

∂IMM
∂x

(2)
qr

= 0, and (12)

∑
q∈[wd−2]

∑
p,r∈[wd−1]

c(d)
pqrx

(d)
p ·

∂IMM
∂x

(d−1)
qr

= 0. (13)

Thus W3 =W(a)
3 ⊕W(b)

3 where W(a)
3 consists of matrices satisfying Equation (12) and W(b)

3
consists of matrices satisfying Equation (13). We argue the following about W(a)

3 .
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q
x(1)
q

x(1)
p r

s t

Figure 7 An ABP computing the term x
(1)
p · ∂IMM

∂x
(2)
qr

.

x(1)
p

x(1)
q

p

r

s t

Figure 8 An ABP computing the term x
(1)
q · ∂IMM

∂x
(2)
pr

.

I Claim 62. W(a)
3 = A1 ⊕ A2 ⊕ · · · ⊕ Aw2 where every Ai is isomorphic to the space of

w1 × w1 anti-symmetric matrices over F.

Proof. Figure 7 depicts an ABP computing the term x
(1)
p · ∂IMM

∂x
(2)
qr

. Every monomial in

c
(1)
pqrx

(1)
p · ∂IMM

∂x
(2)
qr

is divisible by x(1)
p x

(1)
q .

The only other term in Equation (12) that contains monomials divisible by x(1)
p x

(1)
q is

c
(1)
qprx

(1)
q · ∂IMM

∂x
(2)
pr

. Figure 8 depicts an ABP computing x(1)
q · ∂IMM

∂x
(2)
pr

.
Since the terms in Figures 7 and 8 have no monomials in common with any other term

in Equation (12) it must be that c(1)
pqr = −c(1)

qpr. Moreover, if p = q then c
(1)
pqr = 0. Thus

Equation (12) gives an equation for every r ∈ [w2]

∑
p,q∈[w1],p6=q

c(1)
pqrx

(1)
p ·

∂IMM
∂x

(2)
qr

= 0, (14)

such that the matrix Cr = (c(1)
pqr)p,q∈[w1] ∈ Fw1×w1 is anti-symmetric. Further any anti-

symmetric matrix can be used to get an equation like Equation (14). Thus, as shown in
Figure 9, every matrix C(a) ∈ W(a)

3 is such that for every r ∈ [w2], the w1 × w1 submatrix
(say C(a)

r ) defined by the rows labelled by the x(2)
qr variables and the columns labelled by the

x
(1)
p variables for p, q ∈ [w1] is anti-symmetric.
Also, any matrix satisfying the above properties belongs to W(a)

3 . Naturally, if we define
Ar to be the space of n× n matrices such that the w1 × w1 submatrix defined by the rows
labelled by the x(2)

qr variables and the columns labelled by the x(1)
p variables for p, q ∈ [w1] is

anti-symmetric and all other entries are zero then W(a)
3 = A1 ⊕A2 ⊕ · · · ⊕ Aw2 . J

Similarly, it can be shown thatW(b)
3 = A′1⊕A′2⊕· · ·⊕A′wd−2 where everyA′i is isomorphic to

the space of wd−1×wd−1 anti-symmetric matrices. This completes the proof of Lemma 32. J
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x1

x
(2)
11

x
(2)
w11

x
(2)
1w2

x(2)
w1w2

x1

C
(a)
1

C(a)
w2

all entries outside
the bordered region

are zero

Figure 9 A matrix C(a) in W(a)
3 .

I Lemma 33 (restated). The space W2 = B1⊕B2⊕· · ·⊕Bd−1 such that for every k ∈ [d−1],
Bk is isomorphic to the F-linear space spanned by tk × tk matrices of the form[

−ZT ⊗ Iwk−1 0
0 Iwk+1 ⊗ Z

]
tk×tk

where Z ∈ Zwk and tk = wk(wk−1 + wk+1).

Hence, dim(W2) =
∑d−1
k=1(w2

k − wk).

Proof. Recall w0 = wd = 1 and Zwk denotes the space of wk × wk matrix with diagonal
entries 0, and W2 is the space of all matrices B = (bij)i,j∈[n] such that∑

i,j∈[n]

bijxj ·
∂IMM
∂xi

= 0, (15)

where in every term bij 6= 0 only if xi 6= xj and xi, xj ∈ xl for some l ∈ [d]. The following
observation is easy to verify.

I Observation 63. Suppose l ∈ [2, d − 1]. A term x
(l)
i1j1
· ∂IMM
∂x

(l)
i2j2

where i1 6= i2 and j1 6= j2

does not share a monomial with any other term in Equation (15).

Hence for l ∈ [2, d− 1], terms of the kind x(l)
i1j1
· ∂IMM
∂x

(l)
i2j2

where i1 6= i2 and j1 6= j2 are absent

in Equation (15). A monomial appearing in a nonzero term of Equation (15) is of the form
x

(1)
i1
· x(2)

i1i2
· · ·x(k)

ik−1ik
· x(k+1)

i
′
k
ik+1
· · · x(d−1)

id−1id
· x(d)

id
where ik 6= i

′

k, for some k ∈ [d − 1]. We say
such a monomial is broken at the k-th interface. Observe the following.

I Observation 64. The terms x(k)
pr · ∂IMM

∂x
(k)
pq

where p ∈ [wk−1], q, r ∈ [wk], q 6= r, and

x
(k+1)
mj · ∂IMM

∂x
(k+1)
ij

where i,m ∈ [wk], j ∈ [wk+1], i 6= m are the only two whose monomials are
broken at the k-th interface.

Thus from Equation (15) we get (d − 1) equations one for each interface by considering
cancellations of monomials broken at that interface. For k ∈ [2, d− 2], let Bk be the space of
all n× n matrices Bk such that
1. the entry corresponding to the row labelled by x(k)

pq and the column labelled by x(k)
pr is

b
(k)
pq,pr ∈ F for p ∈ [wk−1], q, r ∈ [wk] and q 6= r,

2. the entry corresponding to the row labelled by x(k+1)
ij and the column labelled by x(k+1)

mj

is b(k+1)
ij,mj ∈ F for i,m ∈ [wk], j ∈ [wk+1] and i 6= m,
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3. all other entries of Bk are zero, and
4. ∑
p∈[wk−1], q,r∈[wk], q 6=r

b(k)
pq,prx

(k)
pr ·

∂IMM
∂x

(k)
pq

+
∑

i,m∈[wk], j∈[wk+1], i 6=m

b
(k+1)
ij,mj x

(k+1)
mj · ∂IMM

∂x
(k+1)
ij

= 0.

(16)

We can define spaces B1 and Bd−1 similarly considering monomials broken at the first and
the last interface respectively. As Equation (15) can be split into (d− 1) equations, one for
every interface, W2 = B1 + B2 + · · ·+ Bd−1. Since the spaces B1, . . . ,Bd−1 control different
entries of n× n matrices, W2 = B1 ⊕ B2 ⊕ · · · ⊕ Bd−1.

I Claim 65. For k ∈ [2, d − 2], Bk is isomorphic to the F-linear space spanned by tk × tk
matrices of the form[

−ZT ⊗ Iwk−1 0
0 Iwk+1 ⊗ Z

]
tk×tk

where Z ∈ Zwk and tk = wk(wk−1 + wk+1).

Proof. Collecting same derivative terms in Equation (16) we get∑
p∈[wk−1],q∈[wk]

`(k)
pq ·

∂IMM
∂x

(k)
pq

+
∑

i∈[wk],j∈[wk+1]

`
(k+1)
ij · ∂IMM

∂x
(k+1)
ij

= 0, (17)

where `(k)
pq is a linear form containing variables x(k)

pr such that r 6= q, and `(k+1)
ij is a linear form

containing variables x(k+1)
mj such that m 6= i. Here is a succinct way to write Equation (17):

Q1 ·Q2 · · ·Q
′

k ·Qk+1 ·Qk+2 · · ·Qd−1 ·Qd + Q1 ·Q2 · · ·Qk ·Q
′

k+1 ·Qk+2 · · ·Qd−1 ·Qd = 0, (18)

where Q1, . . . , Qd are matrices as in Section 2.3, Q′k = (`(k)
pq )p∈[wk−1],q∈[wk] and Q

′

k+1 =
(`(k+1)
ij )i∈[wk],j∈[wk+1]. This implies

Q
′

k ·Qk+1 + Qk ·Q
′

k+1 = 0,

as Q1, . . . , Qd have distinct sets of variables, and the variables appearing in Q′k and Q′k+1
are the same as in Qk and Qk+1 respectively. The variable disjointness of Qk and Qk+1
can be exploited to infer Q′k+1 = Z ·Qk+1 and Q′k = −Qk · Z where Z is in Fwk×wk (even
if Qk, Qk+1 may not be square matrices). As the linear form `

(k)
pq is devoid of the variable

x
(k)
pq , it must be that Z ∈ Zwk . Moreover, any Z ∈ Zwk can be used along with the relations
Q
′

k+1 = Z ·Qk+1 and Q′k = −Qk · Z to satisfy Equation (18) and hence also Equations (16)
and (17).

Let Z = (zim)i,m∈[wk]. Since Q
′

k+1 = Z ·Qk+1, the coefficient of x(k+1)
mj in `(k+1)

ij is zim
for every j ∈ [wk+1]. Hence in Equation (16), b(k+1)

ij,mj = zim for every j ∈ [wk+1]. Similarly,
since Q′k = −Qk · Z the coefficient of x(k)

pr in `
(k)
pq is −zrq for every p ∈ [wk−1]. Hence in

Equation (16) b(k)
pq,pr = −zrq for every p ∈ [wk−1]. Thus the submatrix of Bk defined by the

rows and columns labelled by the variables in xk and xk+1 looks like[
−ZT ⊗ Iwk−1 0

0 Iwk+1 ⊗ Z

]
tk×tk

where tk = wk(wk−1 +wk+1) and all other entries in Bk are zero. Hence Bk is isomorphic to
the space generated by tk × tk matrices of the above kind. This proves the claim. J
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We can similarly show that B1 is isomorphic to the space generated by square matrices of
the form[

−ZT 0
0 Iw2 ⊗ Z

]
t1×t1

where Z ∈ Zw1 and t1 = w1 + w1w2,

and Bd−1 is isomorphic to the space generated by square matrices of the form[
−ZT ⊗ Iwd−2 0

0 Z

]
td−1×td−1

where Z ∈ Zwd−1 and td−1 = wd−1wd−2 + wd−1.

This completes the proof of Lemma 33. J

I Lemma 34 (restated). The space W1 contains the space D1 ⊕D2 ⊕ · · · ⊕ Dd−1 such that
for every k ∈ [d− 1], Dk is isomorphic to the F-linear space spanned by tk × tk matrices of
the form[

−Y ⊗ Iwk−1 0
0 Iwk+1 ⊗ Y

]
tk×tk

where Y ∈ Ywk and tk = wk(wk−1 + wk+1).

Hence, dim(W1) ≥
∑d−1
k=1 wk.

Proof. The proof is similar to the proof of Lemma 33. Recall w0 = wd = 1 and Ywk denotes
the space of wk ×wk diagonal matrices. Every D ∈ W1 satisfies an equation of the following
form∑

i∈[w1]

d
(1)
i x

(1)
i ·

∂IMM
∂x

(1)
i

+
d−1∑
k=2

∑
i∈[wk−1],j∈[wk]

d
(k)
ij x

(k)
ij ·

∂IMM
∂x

(k)
ij

+
∑

i∈[wd−1]

d
(d)
i x

(d)
i ·

∂IMM
∂x

(d)
i

= 0.

A succinct way to write the above equation is
d∑
k=1

Q1Q2 · · ·Qk−1Q
′

kQk+1 · · ·Qd = 0, (19)

where Q′1 = (d(1)
i x

(1)
i )i∈[w1] is a row vector, Q′d = (d(d)

i x
(d)
i )Ti∈[wd−1] is a column vector,

Q
′

k = (d(k)
ij x

(k)
ij )i∈[wk−1],j∈[wk], and Q1, . . . , Qd are matrices as in Section 2.3. For every

k ∈ [d−1], let us focus on those Dk ∈ W1 for which the matrices Q′1, . . . , Q′k−1, Q
′
k+2, . . . , Q

′
d

are zero in Equation (19). Such a Dk satisfies the following equation,

Q1 ·Q2 · · · ·Q
′

k ·Qk+1 · · ·Qd +Q1 ·Q2 · · ·Qk ·Q
′

k+1 · · ·Qd = 0. (20)

Using a similar argument as in the proof of Lemma 33 we get Q′k+1 = Y · Qk+1 and
Q
′

k = −Qk · Y where Y ∈ Ywk . Further, any Y ∈ Ywk can be used along with the relations
Q
′

k+1 = Y ·Qk+1 and Q′k = −Qk · Y to satisfy Equation (20). The set of Dk ∈ W1 satisfying
Equation (20) forms an F-linear space; call it Dk. Every Dk ∈ Dk is such that the submatrix
defined by the rows and the columns labelled by the variables in xk and xk+1 looks like[

−Y ⊗ Iwk−1 0
0 Iwk+1 ⊗ Y

]
tk×tk

where Y ∈ Ywk and tk = wk(wk−1 + wk+1),

and all other entries in Dk are zero. Moreover, any n× n matrix with this structure is in Dk.
Thus Dk is isomorphic to the space of all tk × tk matrices of the form shown above. It can
also be easily verified that every matrix in D1 + . . .+Dd−1 can be expressed uniquely as a
sum of matrices in these spaces. Hence W1 ⊇ D1 ⊕D2 ⊕ · · · ⊕ Dd−1 completing the proof of
Lemma 34. J
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x
(k)
11 x

(k)
w1 x

(k)
1j x

(k)
wj

x
(k)
ij

x(k)
wwk

x
(k)
1wk

x
(k)
11

x
(k)
w1

x
(k)
1j

x
(k)
wj

x
(k)
ij

x
(k)
1wk

x(k)
wwk

1w Iw Iw Iw

Iw 1w Iw Iw

Iw Iw 1w Iw

Iw Iw Iw 1w

Figure 10 Submatrix of L restricted to rows/columns indexed by xk.

I Claim 40 (restated). No invariant subspace of gIMM is properly contained in Uk for k ∈
[2, d− 1].

Proof. Let U ⊆ Uk be an invariant subspace of gIMM . From Claim 38 it follows that U is
a coordinate subspace. For t ∈ N, let 1̃t

def= 1t − It, where 1t is the t × t all one matrix.
From Lemma 33, there are matrices Bk−1 and Bk in gIMM such that the submatrix of Bk−1
restricted to the rows and the columns labelled by the variables in xk−1 ] xk looks like[

−1̃wk−1 ⊗ Iwk−2 0
0 Iwk ⊗ 1̃wk−1

]
, and

the submatrix in Bk restricted to the rows and the columns labelled by the variables in
xk ] xk+1 looks like[

1̃wk ⊗ Iwk−1 0
0 Iwk+1 ⊗−1̃wk

]
.

From Lemma 34, there is a diagonal matrix Dk−1 in gIMM such that the submatrix restricted
to the rows and the columns labelled by the variables in xk−1 ] xk looks like[

−Iwk−1 ⊗ Iwk−2 0
0 Iwk ⊗ Iwk−1

]
.

Let L = Bk−1 + Bk + Dk−1. The submatrix of L restricted to the rows and the columns
labelled by the variables in xk looks as shown in Figure 10.

For notational simplicity we write wk−1 as w in Figure 10. If ex is a unit vector in U ,
where x = x

(k)
ij is a variable in xk then the matrix L maps ex to Lex which is the column of L

labelled by the variable x. This column vector has all entries zero except for the rows labelled
by the variables in xk. Restricting to these rows and looking at Figure 10, we infer that the
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x
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1 x
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11 x
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12 x

(2)
13 x
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1w2
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ww2

x
(1)
1

x
(2)
11

x
(2)
12

x
(2)
13

x
(2)
1w2

x(2)
ww2

−1w

1w

1w

1w

Iw

Iw Iw

Iw

Iw Iw

C

C

C

0’s

Figure 11 Submatrix of M matrix restricted to rows/columns indexed by x1 ] x2.

rows of Lex labelled by the variables x(k)
1j , x

(k)
2j , . . . , x

(k)
wk−1j

are 1 (in particular, these entries
are nonzero). We use this knowledge and that Lex ∈ U to make the following observation,
the proof of which is immediate from Claim 38.

IObservation 66. If ex ∈ U , where x = x
(k)
ij then ex′ ∈ U for every x′ ∈ {x(k)

1j , x
(k)
2j , . . . , x

(k)
wk−1j

}.

Moreover, it follows from the presence of Iw matrices in Figure 10 that for every j′ ∈ [wk]
there is the variable y = x

(k)
ij′ such that the row labelled by y in Lex is 1, implying40 ey ∈ U .

Hence from Observation 66, ey′ ∈ U for every y′ ∈ {x(k)
1j′ , . . . , x

(k)
wk−1j′

}. Since this is true for
every j′ ∈ [wk], ey ∈ U for every variable y ∈ xk implying U = Uk. J

I Claim 41 (restated). The invariant subspaces U1,2 and Ud−1,d are irreducible, and the only
invariant subspace properly contained in U1,2 (respectively Ud−1,d) is U2 (respectively Ud−1).

Proof. We prove the claim for U1,2, the proof for Ud−1,d is similar. Suppose U1,2 = V ⊕W
where V ,W are invariant subspaces of gIMM (and so also coordinate subspaces). A unit vector
ex, where x ∈ x1 is either in V or W . Suppose ex ∈ V ; we will show that V = U1,2. Without
loss of generality, let x = x

(1)
1 . Arguing as in the proof of the previous claim, we infer that

there is a matrix M ∈ gIMM such that the submatrix of M restricted to the rows and the
columns labelled by the variables in x1 and x2 looks as shown in Figure 11, in which w = w1
and C is a w1 × w1 anti-symmetric matrix with all non-diagonal entries nonzero. All the
other entries of M are zero.

The vector Mex is the first column of M and it is zero everywhere except for the rows
labelled by the variables in x1 ] x2. Among these rows, unless y ∈ {x(2)

11 , x
(2)
12 , . . . , x

(2)
1w2
}

the row of Mex labelled by y is nonzero. Thus (from Claim 38), ey ∈ V for y ∈ x1 and
y = x

(2)
ij where i ∈ [2, w1] and j ∈ [w2]. Let y = x

(2)
ij for some i ∈ [2, w1] and j ∈ [w2].

From Figure 11, the row of Mey labelled by x(2)
1j is nonzero and so, for y′ = x

(2)
1j , ey′ is also

in V. Hence, V = U1,2 and U1,2 is irreducible. To argue that the only invariant subspace
properly contained in U1,2 is U2, let V ⊂ U1,2 be an invariant subspace of gIMM . From the
above argument it follows that ex /∈ V for every x ∈ x1 (otherwise V = U1,2). This implies
V ⊆ U2 and from Claim 40 we have V = U2. J

40Follows again from Claim 38.
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7.3 Proof of claims in Section 4
I Claim 43 (restated). For all i ∈ [s], let Ni and N

′

i be the null spaces of gi(R) and gi(R
′).

Then
1. Fn = N1 ⊕N2 ⊕ · · · ⊕ Ns = N ′1 ⊕N

′

2 ⊕ · · · ⊕ N
′

s.
2. For all i ∈ [s], dim(Ni) = dim(N ′i ) = degx(gi).

Proof. Since N ′i = A−1Ni and A−1 ∈ GL(n), it is sufficient to show Fn = N1⊕N2⊕· · ·⊕Ns
and dim(Ni) = degx(gi). Further, observe that each subspace Ni is non-trivial – if N1 = {0}
then for all v ∈ Fn, h(R) · v = g1(R)g2(R) · · · gs(R) · v = 0 implying g2(R) · · · gs(R) · v = 0.
As the characteristic polynomial and the minimal polynomial have the same irreducible
factors this gives a contradiction.

To show the sum of Ni’s is a direct sum it is sufficient to show the following: if
∑s
l=1 ul = 0

where ul ∈ Nl then ul = 0 for l ∈ [s]. Define for i ∈ [s]

ĝi :=
s∏

j=1,j 6=i
gj(x) = h(x)

gi(x) . (21)

Since ĝi(R) · uj = 0 for j 6= i,

ĝi(R) ·
(

s∑
l=1

ul

)
= ĝi(R) · ui = 0. (22)

As gi(x) and ĝi(x) are coprime polynomials, there are pi(x), qi(x) ∈ F[x] such that

pi(x)gi(x) + qi(x)ĝi(x) = 1 ⇒ pi(R)gi(R) + qi(R)ĝi(R) = In

⇒ (pi(R)gi(R)) · ui + (qi(R)ĝi(R)) · ui = ui.

Both (pi(R)gi(R)) · ui = 0 (as ui ∈ Ni) and (qi(R)ĝi(R)) · ui = 0 (by Equation (22)). Hence
ui = 0 for all i ∈ [s].

Let R̃ be the linear the linear map R restricted to the subspace Ni (this is well defined
as Ni is an invariant subspace of R). Then, gi(R̃) = 0. Since gi is irreducible, from Cayley-
Hamilton theorem it follows that gi divides the characteristic polynomial of R̃ implying
degx(gi) ≤ dim(Ni). As a consequence, we have

n =
s∑
i=1

degxgi ≤
s∑
i=1

dimNi ≤ dimFn = n. (23)

Each inequality is an equality, which proves the claim. J

I Claim 44 (restated). Suppose gi(x) is an irreducible factor of the characteristic polynomial
hk(x) of Rk (depicted in Figure 4) for some k ∈ [d]. Then the following holds:
1. If k ∈ [2, d− 1] then Ni ⊆ Uk (equivalently N ′i ⊆ A−1Uk).
2. If k = 1 then Ni ⊆ U1,2 (equivalently N ′i ⊆ A−1U1,2), and if k = d then Ni ⊆ Ud−1,d

(equivalently N ′i ⊆ A−1Ud−1,d).

Proof. Figure 12 depicts the matrix hk(R) and as shown in it, call the submatrix restricted
to the rows labelled by variables in x2 and columns labelled by variables in x1 ] x2, Mk,2;
define Mk,d−1 similarly.

Let v ∈ Ni. For every j ∈ [d], let vj be the subvector of v restricted to the rows labelled
by variables in xj , and v1,2 (respectively vd−1,d) be the subvector of v restricted to the rows
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hk(R1)

hk(R2)

hk(Rd)

hk(Rd−1)

x1

x2

xd

xd−1

x1 x2 xdxd−1

Mk,2

Mk,2

Mk,d−1

Mk,d−1

Figure 12 Matrix hk(R).

labelled by variables in x1 ]x2 (respectively xd−1 ]xd). Since v ∈ Ni, gi(R) ·v = 0 implying
hk(R) · v = 0. Thus we have the following set of equations:

hk(R1) · v1 = 0
Mk,2 · v1,2 = 0
hk(Rj) · vj = 0 for j ∈ [3, d− 2]

Mk,d−1 · vd−1,d = 0
hk(Rd) · vd = 0.

(24)

Case A: k ∈ [2, d − 1]: Since hj(x) is the characteristic polynomial of Rj , hj(Rj) = 0
implying hj(Rj) · vj = 0 for every j ∈ [d]. As k 6= 1, hk(x) and h1(x) are coprime and from
Equation (24) hk(R1) ·v1 = 0. Hence, v1 = 0 and for a similar reason vd = 0 as k 6= d. Thus
in Equation (24) we have

Mk,2 · v1,2 = hk(R2) · v2 = 0
Mk,d−1 · vd−1,d = hk(Rd−1) · vd−1 = 0.

Therefore for every j ∈ [d], hk(Rj) · vj = 0. If j 6= k then hj(x) and hk(x) are coprime, thus
from hj(Rj) · vj = 0 we infer vj = 0 and hence v ∈ Uk.

Case B: k = 1 or k = d: Let k = 1, the proof for k = d is similar. Since hk(Rd) · vd = 0,
hd(Rd) · vd = 0, and hk(x), hd(x) are coprime, we get vd = 0. Hence from Equation (24),

Mk,d−1 · vd−1,d = hk(Rd−1) · vd−1 = 0.

Again for j ∈ [3, d], hk(Rj) · vj = 0 and hj(x), hk(x) are coprime for every j 6= k. Hence
vj = 0 for j ∈ [3, d] implying v ∈ U1,2. J

7.4 Proof of lemma and claim in Section 5
I Lemma 49 (restated). If f = X1 ·X2 · · ·Xd and Y1,Y1,2,Y3, . . . ,Yd−2,Yd−1,d,Yd is the
output of Algorithm 5 then there is a permutation σ on [3, d − 2] such that the following
hold:

CCC 2017



21:54 Reconstruction of Full Rank Algebraic Branching Programs

E1 Ed Ek

x1

x2
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xd

x1 x2

xd

xd−1

xd−2
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xd−1 xd xσ(k)

xσ(k)

B1,2

Bd−1,d

Bσ(k)

Figure 13 Matrices E1, Ed and Ek.

1. For every k ∈ [3, d− 2], Yk = Xσ(k).
2. Either Y1,Y1,2 and Yd,Yd−1,d are X1,X1,2 and Xd,Xd−1,d respectively, or Y1,Y1,2 and
Yd, Yd−1,d are Xd,Xd−1,d and X1,X1,2 respectively.

Proof. Assume V1 and Vd are the spaces A−1U1,2 and A−1Ud−1,d respectively. In this
case we will show Y1,Y1,2 and Yd,Yd−1,d are X1,X1,2 and Xd,Xd−1,d respectively41. Hence,
u1 = w1 +w1w2, u2 = w1w2, ud−1 = wd−2wd−1 and ud = wd−1 +wd−2wd−1. From the order
of the columns in V1 and Vd we have V1 = A−1E1 and Vd = A−1Ed, where E1 and Ed are
n× u1 and n× ud matrices respectively and they look as shown in Figure 13.

The rows of E1 and Ed are labelled by n variables in x1 to xd, whereas the columns of
E1 are labelled by variables in x1 and x2 and the columns of Ed are labelled by variables in
xd−1 and xd. Moreover, the nonzero entries in these matrices are restricted to the shaded
region in Figure 13.

For k ∈ [3, d − 2], Vk = A−1Uσ(k) where σ is a permutation on [3, d − 2]. Hence,
uk = wσ(k)−1wσ(k) and Vk = A−1Ek where Ek is a n × uk matrix and looks as shown in
Figure 13. Again the rows of Ek are labelled by the variables x1 to xd, whereas the columns
of Ek are labelled by variables in xσ(k). The nonzero entries in Ek are restricted to the
shaded region in Figure 13 whose rows are labelled by variables in xσ(k). Let E be the
concatenation of these matrices, E = [E1 | E3 | E4 | . . . | Ed−2 | Ed]. The rows of E
are labelled by x1,x2, . . . ,xd as usual , but now the columns are labelled by x1,x2,xσ(3),

. . . ,xσ(d−2),xd−1,xd in order as shown in Figure 14. Then V = A−1E implying V −1 = E−1A.
Owing to the structure of E, E−1 looks as shown in Figure 14.

The rows of E−1 are labelled by x1,x2,xσ(3), . . . ,xσ(d−2),xd−1,xd in order, whereas the
columns are labelled by the usual ordering x1,x2, . . . ,xd. The submatrix of E−1 restricted
to the rows and columns labelled by the variables in x1 and x2 is B−1

1,2 and that labelled by
the variables in xd−1 and xd is B−1

d−1,d. For k ∈ [3, d − 2] the submatrix restricted to the
rows and columns labelled by xσ(k) is B−1

σ(k). We infer the following facts:
(I) The space spanned by the first u1 − u2 (that is w1) rows of V −1 is equal to the space

spanned by the first w1 rows of A, the latter space is X1.

41 If V1 and Vd are the spaces A−1Ud−1,d and A−1U1,2 respectively, then Y1,Y1,2 and Yd,Yd−1,d are
Xd,Xd−1,d and X1,X1,2 respectively – the proof of this case is similar.
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Figure 14 Matrices E and E−1.

(II) The space spanned by the first u1 (that is w1 +w1w2) rows of V −1 is equal to the space
spanned by the first w1 + w1w2 rows of A, the latter space is X1,2.

(III) The space spanned by the last ud (that is wd−1 + wd−2wd−1) rows of V −1 is equal to
the space spanned by the last wd−1 + wd−2wd−1 rows of A, the latter space is Xd−1,d.

(IV) The space spanned by the last ud − ud−1 (that is wd−1) rows of V −1 is equal to the
space spanned by the last wd−1 rows of A, the latter space is Xd.

(V) For k ∈ [3, d− 2] the space spanned by the rows of V −1 that are numbered by tk−1 + 1
to tk−1 + uk is equal to the space spanned by the rows of A labelled by xσ(k), the latter
space is Xσ(k). J

I Claim 50 (restated). There is a randomized polynomial time algorithm that takes input
the bases of the layer spaces Y1,Y1,2,Y3, . . . ,Yd−2,Yd−1,d,Yd and with probability at least
1− 1

poly(n) reorders these layer spaces and outputs a width vector w′ such that the reordered
sequence of spaces and w′ are:
1. either X1,X1,2,X3, . . . ,Xd−2,Xd−1,d,Xd and (w1, w2, . . . , wd−1) respectively,
2. or Xd,Xd−1,d,Xd−2, . . . , X3,X1,2,X1 and (wd, wd−1, . . . , w1) respectively.

Proof. The algorithm employs evaluation dimension to uncover the permutation σ. Assume
that Y1,Y1,2,Y3, . . . ,Yd−2,Yd−1,d,Yd are the spaces X1,X1,2,Xσ(3), . . . ,Xσ(d−2),Xd−1,d,Xd
respectively42. In this case, the algorithm reorders the spaces to a sequence X1,X1,2,X3, . . . ,

Xd−2,Xd−1,d,Xd and outputs w′ = w. For every k ∈ [3, d − 2], let zk be a set of dim(Yk)
many variables. Let z1 (similarly, zd) be a set of dim(Y1) (similarly, dim(Yd)) variables, and
let z2 (similarly, zd−1) be a set of dim(Y1,2)− dim(Y1) (similarly, dim(Yd−1,d)− dim(Yd))
variables. Finally, let z = z1 ] . . . ] zd be the set of these n fresh variables.

Compute a linear map µ that maps x variables to linear forms in z variables such that
the following conditions are satisfied:
(a) For every k ∈ [3, d− 2], the linear forms corresponding43 to the basis vectors of Yk map

to distinct variables in zk.
(b) The linear forms corresponding to the basis vectors in Y1 (similarly, Yd) map to distinct

variables in z1 (similarly, zd).

42The proof of the other case is similar.
43Recall, linear forms in x variables and vectors in Fn are naturally identified with each other.
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(c) The linear forms corresponding to the basis vectors in Y1,2 (similarly, Yd−1,d) map to
distinct variables in z1 ] z2 (similarly, zd−1 ] zd).

Conditions (b) and (c) can be simultaneously satisfied as the basis of Y1 (similarly, Yd) is
contained in the basis of Y1,2 (similarly, Yd−1,d) by their very constructions in Algorithm 5.
As f = IMMw,d(Ax), the map µ takes f to a polynomial h(z) that is computed by a full
rank ABP A′ of width w and length d such that the sets of variables appearing in the d layers
of A′ from left to right are z1, z1 ] z2, zσ−1(3), . . . , zσ−1(d−2), zd−1 ] zd, zd in order.

The following observation, the proof of which is given later, helps find σ−1 incrementally
from blackbox access to h(z). Let y2 = z1 ] z2 and yj = z1 ] z2 ] zσ−1(3) ] · · · ] zσ−1(j), for
j ∈ [3, d− 2].

I Observation 67. For every j ∈ [2, d− 3] and k ∈ [3, d− 2] such that zk 6⊂ yj,
1. Evaldimyj]zk(h) < |zk|, if k = σ−1(j + 1), and
2. Evaldimyj]zk(h) > |zk|, if k 6= σ−1(j + 1).

The proof of the observation also includes an efficient randomized procedure to compute
Evaldimyj]zk(h).

Finally, the algorithm outputs the reordered layer spaces Y1,Y1,2,Yσ−1(3), . . . ,Yσ−1(d−2),

Yd−1,d,Yd which is the ordered sequence of spaces X1,X1,2,X3, . . . ,Xd−2,Xd−1,d,Xd. The
width vector w′ can be readily calculated now by inspecting the dimensions:

w′1 = dim(X1) = w1,

w′2 = dim(X1,2)− w1

w1
= w2,

w′k = dim(Xk)
wk−1

= wk, for k ∈ [3, d− 2],

w′d = dim(Xd) = wd, and

w′d−1 = dim(Xd−1,d)− wd
wd

= wd−1.

This gives w′ = w. J

Proof of Observation 67. Let Z1 · Z2 · · ·Zd be equal to A′, the full rank ABP of width
w = (w1, w2, . . . , wd−1) computing h, where the linear forms in Zi are in zσ−1(i) variables
for i ∈ [3, d− 2], the linear forms in Z1, Zd are in variables z1, zd respectively, and the linear
forms in Z2, Zd−1 are in z1 ] z2, zd−1 ] zd variables respectively.

Case 1: Suppose k = σ−1(j + 1), implying |zk| = wjwj+1. Let G = Zj+2 ·Zj+3 · · ·Zd
and the t-th entry of G be gt for t ∈ [wj+1]. As the linear forms in Z1, Z2, . . . , Zj+1 are
F-linearly independent, for every t ∈ [wj+1] there is a partial evaluation of h at yj ] zk
variables that makes h equal to gt . Also, every partial evaluation of h at yj ] zk variables
can be expressed as an F-linear combination of g1, g2, . . . , gwj+1 . Hence, from Observation 53
it follows, Evaldimyj]zk(h) = wj+1 < |zk|.

Case 2: Suppose k 6= σ−1(j + 1). The variables zk appear in the matrix Zσ(k), so
|zk| = wσ(k)−1wσ(k). Let G = Zσ(k)+1 · Zσ(k)+2 · · ·Zd and the t-th entry of G be gt for
t ∈ [wσ(k)]. Further, let P = (plm)l∈[wj ],m∈[wσ(k)−1] be equal to Zj+1 · Zj+2 · · ·Zσ(k)−1. As
the linear forms in Z1, Z2, . . . , Zj and Zσ(k) are F-linearly independent, there is a partial
evaluation of h at the yj ]zk variables that makes h equal to plmgt for l ∈ [wj ],m ∈ [wσ(k)−1]
and t ∈ [wσ(k)]. By Observation 53, {gt | t ∈ [wσ(k)]} are F-linearly independent; using
a proof similar to that of Observation 53 we can show that the polynomials {plm | l ∈
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[wj ],m ∈ [wσ(k)−1]} are also F-linearly independent. This implies the set of polynomials
{plmgt | l ∈ [wj ],m ∈ [wσ(k)−1] and t ∈ [wσ(k)]} are F-linearly independent, as plm and gt
are on disjoint sets of variables. Since every partial evaluation of h at yj ] zk variables can
be expressed as an F-linear combination of the set of polynomials {plmgt | l ∈ [wj ],m ∈
[wσ(k)−1] and t ∈ [wσ(k)]}, Evaldimyj]zk(h) = wjwσ(k)−1wσ(k) = wj · |zk| > |zk|.

A randomized procedure to compute Evaldimyj]zk(h): Choose evaluation points a1, . . . ,

an2 for the variables yj ] zk independently and uniformly at random from a set S|yj]zk| ⊂
F|yj]zk| with |S| = poly(n). Output the dimension of the F-linear space spanned by the
polynomials h(a1), . . . , h(an2) using Claim 24.

We argue that the above procedure outputs Evaldimyj]zk(h) with probability at least
1− 1

poly(n) . Let Evaldimyj]zk(h) = e. Observe that in both Case 1 and 2, e ≤ n2. Also, in
both the cases h can be expressed as

h =
∑
i∈[e]

fi(yj ] zk) · qi, (25)

where fi and qi are variable disjoint. The polynomials q1, . . . , qe are the polynomials
g1, . . . , gwj+1 in Case 1; they are the polynomials {plmgt | l ∈ [wj ],m ∈ [wσ(k)−1] and t ∈
[wσ(k)]} in Case 2. Just as we argue that q1, . . . , qe are F-linearly independent, we can show
that f1, . . . , fe are also F-linearly independent. So, by Claim 24 the rank of the matrix
M = (fc(ar))r,c∈[e] is e with high probability. This implies the polynomials h(a1), . . . , h(ae)
are F-linearly independent also with high probability. The correctness of the procedure follows
from the observation that the dimension of the F-linear space spanned by h(a1), . . . , h(an2)
is upper bounded by e (from Equation (25)). J

I Observation 52 (restated). If h is computable by a full rank almost set-multilinear ABP
of width w then there is a full rank almost set-multilinear ABP of width w in canonical form
computing h.

Proof. Suppose X1 · X2 · · ·Xd is a full rank almost set-multilinear ABP of width w =
(w1, w2, . . . , wd−1) computing h. Let X ′1 = (x(1)

1 x
(1)
2 . . . x

(1)
w1 ) and X ′d = (x(d)

1 x
(d)
2 . . . x

(d)
wd−1).

We show there are matrices X ′2 and X ′d−1 satisfying conditions (1b) and (2b) respectively
of canonical form (defined in Section 2.4) such that h = X ′1 ·X ′2 ·X3 · · ·Xd−2 ·X ′d−1 ·X ′d.
We prove the existence of X ′2 = (l′ij)i∈[w1],j∈[w2]; the proof for X ′d−1 is similar. It is sufficient
to show that there is such an X ′2 satisfying X1 · X2 = X ′1 · X ′2. Denote the j-th entry of
the 1× w2 matrix X1 ·X2 as X1 ·X2(j). Similarly X ′1 ·X ′2(j) represents the j-th entry of
X ′1 ·X ′2. Let gi be the sum of all monomials in X1 ·X2(j) of the following types: x(1)

i x
(1)
k for

k ∈ [i, w1], and x(1)
i x

(2)
pq for p ∈ [w1], q ∈ [w2]. Clearly,

X1 ·X2(j) = g1 + g2 + · · ·+ gw1 .

If l′ij
def= gi/x

(1)
i then

X1 ·X2(j) = x
(1)
1 l′1j + x

(1)
2 l′2j + · · ·+ x(1)

w1
l′w1j .

Since l′ij is the (i, j)-th entry of X ′2, we infer X1 ·X2(j) = X ′1 ·X ′2(j). By definition, x(1)
k

does not appear in l′ij for k < i, and thus condition (1b) is satisfied by X ′2. J

I Observation 53 (restated). Let X1 ·X2 · · ·Xd be a full rank almost set-multilinear ABP,
and Ck = Xk · · ·Xd for k ∈ [2, d]. Let the l-th entry of Ck be hkl for l ∈ [wk−1] . Then the
polynomials {hk1, hk2, · · · , hkwk−1} are F-linearly independent.
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Proof. Suppose
∑wk−1
p=1 αp · hkp = 0 such that αp ∈ F for p ∈ [wk−1], and not all αp = 0.

Assume without loss of generality α1 6= 0. Since the linear forms in Xk, . . . , Xd are F-linearly
independent, there is an evaluation of the variables in xk]· · ·]xd to field constants such that
hk1 = 1 and every other hkp = 0 under this evaluation. This implies α1 = 0, contradicting
our assumption. J

7.5 Proof of observation in Section 6
I Observation 57 (restated). There are matrices A1, . . . , Ad−1 with Ak ∈ GL(wk) for every
k ∈ [d−1], such that X1 = Q1 ·A1, X2(x2) = A−1

1 ·Q2 ·A2, Xd−1(xd−1) = A−1
d−2 ·Qd−1 ·Ad−1,

Xd = A−1
d−1 ·Qd, and Xk = A−1

k−1 ·Qk ·Ak for k ∈ [3, d− 2].

Proof. To simplify notations, we write X2(x2), Xd−1(xd−1) as X2, Xd−1 respectively. We
have

X1 ·X2 · · ·Xd−1 ·Xd = Q1 ·Q2 · · ·Qd−1 ·Qd = IMM,

where the dimensions of the matrices Xk and Qk are the same, and the set of variables
appearing in both Xk and Qk is xk, for every k ∈ [d]. Since the linear forms in X1 are
F-linearly independent, there is an A1 ∈ GL(w1) such that X1 = Q1 ·A1, implying

Q1 · [A1 ·X2 · · ·Xd−1 ·Xd − Q2 · · ·Qd−1 ·Qd] = 0
⇒ X2 · · ·Xd−1 ·Xd = A−1

1 ·Q2 · · ·Qd−1 ·Qd,

as the formal variable entries of Q1 do not appear in the matrices Xk, Qk for k ∈ [2, d]. The
rest of the proof proceeds inductively: Suppose for some k ∈ [2, d− 1],

Xk · · ·Xd−1 ·Xd = A−1
k−1 ·Qk · · ·Qd−1 ·Qd, where Ak−1 ∈ GL(wk−1).

Let pk =
∑d
i=k+1 |xi|. Since the linear forms in Xk+1, . . . , Xd−1, Xd are F-linearly independ-

ent, for every l ∈ [wk] there is a point al ∈ Fpk such that the wk×1 matrix Xk+1 · · ·Xd−1 ·Xd

evaluated at al has 1 at the l-th position and all its other entries are zero. Let Ak be the
wk × wk matrix such that the l-th column of Ak is equal to Qk+1 · · ·Qd−1 ·Qd evaluated at
al. Then, Xk = A−1

k−1 ·Qk ·Ak. As the linear forms in Xk and Qk are F-linearly independent,
it must be that Ak ∈ GL(wk). Putting this expression for Xk in the equation above and
arguing as before, we get a similar equation with k replaced by k+ 1. The proof then follows
by induction. J
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Abstract
In the near future, there will likely be special-purpose quantum computers with 40–50 high-
quality qubits. This paper lays general theoretical foundations for how to use such devices to
demonstrate “quantum supremacy”: that is, a clear quantum speedup for some task, motivated
by the goal of overturning the Extended Church-Turing Thesis as confidently as possible.

First, we study the hardness of sampling the output distribution of a random quantum circuit,
along the lines of a recent proposal by the Quantum AI group at Google. We show that there’s
a natural average-case hardness assumption, which has nothing to do with sampling, yet implies
that no polynomial-time classical algorithm can pass a statistical test that the quantum sampling
procedure’s outputs do pass. Compared to previous work – for example, on BosonSampling and
IQP – the central advantage is that we can now talk directly about the observed outputs, rather
than about the distribution being sampled.

Second, in an attempt to refute our hardness assumption, we give a new algorithm, inspired
by Savitch’s Theorem, for simulating a general quantum circuit with n qubits and depth d in
polynomial space and dO(n) time. We then discuss why this and other known algorithms fail to
refute our assumption.

Third, resolving an open problem of Aaronson and Arkhipov, we show that any strong
quantum supremacy theorem – of the form “if approximate quantum sampling is classically
easy, then the polynomial hierarchy collapses”– must be non-relativizing. This sharply contrasts
with the situation for exact sampling.
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query complexities.
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study quantum supremacy relative to oracles in P/poly. Previous work implies that, if one-way
functions exist, then quantum supremacy is possible relative to such oracles. We show, conversely,
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quantum supremacy is impossible relative to oracles with small circuits.
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22:2 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

1 Introduction

The Extended Church-Turing Thesis, or ECT, asserts that every physical process can be
simulated by a deterministic or probabilistic Turing machine with at most polynomial
overhead. Since the 1980s – and certainly since the discovery of Shor’s algorithm [55] in the
1990s – computer scientists have understood that quantum mechanics might refute the ECT
in principle. Today, there are actual experiments being planned (e.g., [19]) with the goal
of severely challenging the ECT in practice. These experiments don’t yet aim to build full,
fault-tolerant, universal quantum computers, but “merely” to demonstrate some quantum
speedup over the best known or conjectured classical algorithms, for some possibly-contrived
task, as confidently as possible. In other words, the goal is to answer the skeptics [41, 38]
who claim that genuine quantum speedups are either impossible in theory, or at any rate,
are hopelessly out of reach technologically. Recently, the term “quantum supremacy” has
come into vogue for such experiments, footnoteAs far as we know, the first person to use the
term in print was John Preskill [47]. although the basic goal goes back several decades, to
the beginning of quantum computing itself.

Before going further, we should address some common misunderstandings about quantum
supremacy.

The ECT is an asymptotic claim, which of course means that no finite experiment could
render a decisive verdict on it, even in principle. But this hardly makes experiments irrelevant.
If
1. a quantum device performed some task (say) 1015 times faster than a highly optimized

simulation written by “adversaries” and running on a classical computing cluster, with
the quantum/classical gap appearing to increase exponentially with the instance size
across the whole range tested, and

2. this observed performance closely matched theoretical results that predicted such an
exponential quantum speedup for the task in question, and

3. all other consistency checks passed (for example: removing quantum behavior from the
experimental device destroyed the observed speedup),

this would obviously “raise the stakes” for anyone who still believed the ECT! Indeed, when
some quantum computing researchers have criticized previous claims to have experimentally
achieved quantum speedups (see, e.g., [2]), it has typically been on the ground that, in those
researchers’ view, the experiments failed to meet one or more of the conditions above.

It’s sometimes claimed that any molecule in Nature or the laboratory, for which chemists
find it computationally prohibitive to solve the Schrödinger equation and calculate its ground
state, already provides an example of “quantum supremacy.”The idea, in other words, is that
such a molecule constitutes a “useful quantum computer, for the task of simulating itself.”

For us, the central problem with this idea is that in theoretical computer science, we
care less about individual instances than about solving problems (i.e., infinite collections of
instances) in a more-or-less uniform way. For any one molecule, the difficulty in simulating it
classically might reflect genuine asymptotic hardness, but it might also reflect other issues
(e.g., a failure to exploit special structure in the molecule, or the same issues of modeling
error, constant-factor overheads, and so forth that arise even in simulations of classical
physics).

Thus, while it’s possible that complex molecules could form the basis for a convincing
quantum supremacy demonstration, we believe more work would need to be done. In
particular, one would want a device that could synthesize any molecule in some theoretically
infinite class – and one would then want complexity-theoretic evidence that the general
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problem, of simulating a given molecule from that class, is asymptotically hard for a classical
computer. And in such a case, it would seem more natural to call the synthesis machine the
“quantum computer, textquotedblright rather than the molecules themselves!

In summary, we regard quantum supremacy as a central milestone for quantum computing
that hasn’t been reached yet, but that might be reached in the near future. This milestone
is essentially negative in character: it has no obvious signature of the sort familiar to
experimental physics, since it simply amounts to the nonexistence of an efficient classical
algorithm to simulate a given quantum process. For that reason, the tools of theoretical
computer science will be essential to understand when quantum supremacy has or hasn’t
been achieved. So in our view, even if it were uninteresting as TCS, there would still be
an urgent need for TCS to contribute to the discussion about which quantum supremacy
experiments to do, how to verify their results, and what should count as convincing evidence
that classical simulation is hard. Happily, it turns out that there is a great deal here of
intrinsic TCS interest as well.

1.1 Supremacy from Sampling
In recent years, a realization has crystallized that, if our goal is to demonstrate quantum
supremacy (rather than doing anything directly useful), then there are good reasons to shift
our attention from decision and function problems to sampling problems: that is, problems
where the goal is to sample an n-bit string, either exactly or approximately, from a desired
probability distribution.

A first reason for this is that demonstrating quantum supremacy via a sampling problem
doesn’t appear to require the full strength of a universal quantum computer. Indeed, there
are now at least a half-dozen proposals [57, 23, 3, 44, 37, 29, 11] for special-purpose devices
that could efficiently solve sampling problems believed to be classically intractable, without
being able to solve every problem in the class BQP, or for that matter even every problem in
P. Besides their intrinsic physical and mathematical interest, these intermediate models
might be easier to realize than a universal quantum computer. In particular, because of their
simplicity, they might let us avoid the need for the full machinery of quantum fault-tolerance
[12]: something that adds a theoretically polylogarithmic but enormous-in-practice overhead
to quantum computation. Thus, many researchers now expect that the first convincing
demonstration of quantum supremacy will come via this route.

A second reason to focus on sampling problems is more theoretical: in the present state
of complexity theory, we can arguably be more confident that certain quantum sampling
problems really are classically hard, than we are that factoring (for example) is classically
hard, or even that BPP 6= BQP. Already in 2002, Terhal and DiVincenzo [57] noticed
that, while constant-depth quantum circuits can’t solve any classically intractable decision
problems, footnoteThis is because any qubit output by such a circuit depends on at most
a constant number of input qubits. they nevertheless have a curious power: namely, they
can sample probability distributions that can’t be sampled in classical polynomial time,
unless BQP ⊆ AM, which would be a surprising inclusion of complexity classes. Then, in
2004, Aaronson showed that PostBQP = PP, where PostBQP means BQP with the ability
to postselect on exponentially-unlikely measurement outcomes. This had the immediate
corollary that, if there’s an efficient classical algorithm to sample the output distribution of
an arbitrary quantum circuit – or for that matter, any distribution whose probabilities are
multiplicatively close to the correct ones – then

PP = PostBQP = PostBPP ⊆ BPPNP.
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By Toda’s Theorem [58], this implies that the polynomial hierarchy collapses to the third
level.

Related to that, in 2009, Aaronson [1] showed that, while it was (and remains) a notorious
open problem to construct an oracle relative to which BQP 6⊂ PH, one can construct oracular
sampling and relation problems that are solvable in quantum polynomial time, but that are
provably not solvable in randomized polynomial time augmented with a PH oracle.

Then, partly inspired by that oracle separation, Aaronson and Arkhipov [7, 3] proposed
BosonSampling: a model that uses identical photons traveling through a network of beamsplit-
ters and phaseshifters to solve classically hard sampling problems. Aaronson and Arkhipov
proved that a polynomial-time exact classical simulation of BosonSampling would collapse
PH. They also gave a plausible conjecture implying that even an approximate simulation
would have the same consequence. Around the same time, Bremner, Jozsa, and Shepherd
[23] independently proposed the Commuting Hamiltonians or IQP (“Instantaneous Quantum
Polynomial-Time”) model, and showed that it had the same property, that exact classical
simulation would collapse PH. Later, Bremner, Montanaro, and Shepherd [24, 25] showed
that, just like for BosonSampling, there are plausible conjectures under which even a fast
classical approximate simulation of the IQP model would collapse PH.

Since then, other models have been proposed with similar behavior. To take a few examples:
Farhi and Harrow [29] showed that the so-called Quantum Approximate Optimization
Algorithm, or QAOA, can sample distributions that are classically intractable unless PH
collapses. Morimae, Fujii, and Fitzsimons [44] showed the same for the so-called One Clean
Qubit or DQC1 model, while Jozsa and Van den Nest [37] showed it for stabilizer circuits
with magic initial states and nonadaptive measurements, and Aaronson et al. [11] showed it
for a model based on integrable particle scattering in 1 + 1 dimensions. In retrospect, the
constant-depth quantum circuits considered by Terhal and DiVincenzo [57] also have the
property that fast exact classical simulation would collapse PH.

Within the last four years, quantum supremacy via sampling has made the leap from
complexity theory to a serious experimental prospect. For example, there have by now been
many small-scale demonstrations of BosonSampling in linear-optical systems, with the current
record being a 6-photon experiment by Carolan et al. [27]. To scale up to (say) 30 or 40
photons – as would be needed to make a classical simulation of the experiment suitably
difficult – seems to require more reliable single-photon sources than exist today. But some
experts (e.g., [50, 46]) are optimistic that optical multiplexing, superconducting resonators,
or other technologies currently under development will lead to such photon sources. In the
meantime, as we mentioned earlier, Boixo et al. [19] have publicly detailed a plan, currently
underway at Google, to perform a quantum supremacy experiment involving random circuits
applied to a 2D array of 40-50 coupled superconducting qubits. So far, the group at Google
has demonstrated the preparation and measurement of entangled states on a linear array of
9 superconducting qubits [39].

1.2 Theoretical Challenges

Despite the exciting recent progress in both theory and experiment, some huge conceptual
problems have remained about sampling-based quantum supremacy. These problems are not
specific to any one quantum supremacy proposal (such as BosonSampling, IQP, or random
quantum circuits), but apply with minor variations to all of them.
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Verification of Quantum Supremacy Experiments. From the beginning, there was the
problem of how to verify the results of a sampling-based quantum supremacy experiment.
In contrast to (say) factoring and discrete log, for sampling tasks such as BosonSampling, it
seems unlikely that there’s any NP witness certifying the quantum experiment’s output, let
alone an NP witness that’s also the experimental output itself. Rather, for the sampling
tasks, not only simulation but even verification might need classical exponential time. Yet,
while no one has yet discovered a general way around this, footnoteIn principle, one could use
so-called authenticated quantum computing [13, 26], but the known schemes for that might
be much harder to realize technologically than a basic quantum supremacy experiment, and
in any case, they all presuppose the validity of quantum mechanics. it’s far from the fatal
problem that some have imagined. The reason is simply that experiments can and will target
a “sweet spot, textquotedblright of (say) 40–50 qubits, for which classical simulation and
verification of the results is difficult but not impossible.

Still, the existing verification methods have a second drawback. Namely, once we’ve
fixed a specific verification test for sampling from a probability distribution D, we ought to
consider, not merely all classical algorithms that sample exactly or approximately from D,
but all classical algorithms that output anything that passes the verification test. To put it
differently, we ought to talk not about the sampling problem itself, but about an associated
relation problem: that is, a problem where the goal is to produce any output that satisfies a
given condition.

As it happens, in 2011, Aaronson [8] proved an extremely general connection between
sampling problems and relation problems. Namely, given any approximate sampling problem
S, he showed how to define a relation problem RS such that, for every “reasonable” model
of computation (classical, quantum, etc.), RS is efficiently solvable in that model if and only
if S is. This had the corollary that

SampBPP = SampBQP ⇐⇒ FBPP = FBQP,

where SampBPP and SampBQP are the classes of approximate sampling problems solvable
in polynomial time by randomized and quantum algorithms respectively, and FBPP and
FBQP are the corresponding classes of relation problems. Unfortunately, Aaronson’s con-
struction of RS involved Kolmogorov complexity: basically, one asks for an m-tuple of strings,
〈x1, . . . , xm〉, such that

K(x1, . . . , xm) ≥ log2
1

p1 · · · pm
−O(1),

where pi is the desired probability of outputting xi in the sampling problem. And of course,
verifying such a condition is extraordinarily difficult, even more so than calculating the
probabilities p1, . . . , pm.1 For this reason, it’s strongly preferable to have a condition that
talks only about the largeness of the pi’s, and not about the algorithmic randomness of the
xi’s. But then hardness for the sampling problem no longer necessarily implies hardness for
the relation problem, so a new argument is needed.

Supremacy Theorems for Approximate Sampling. A second difficulty is that any quantum
sampling device is subject to noise and decoherence. Ultimately, of course, we’d like hardness

1 Furthermore, this is true even if we substitute a resource-bounded Kolmogorov complexity, as Aaronson’s
result allows.
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results for quantum sampling that apply even in the presence of experimentally realistic
errors. Very recently, Bremner, Montanaro, and Shepherd [25] and Fujii [31] have taken
some promising initial steps in that direction. But even if we care only about the smallest
“experimentally reasonable” error – namely, an error that corrupts the output distribution
D to some other distribution D′ that’s ε-close to D in variation distance – Aaronson and
Arkhipov [3] found that we already engage substantial new open problems in complexity
theory, if we want evidence for classical hardness. So for example, their hardness argument
for approximate BosonSampling depended on the conjecture that there’s no BPPNP algorithm
to estimate the permanent of an i.i.d. Gaussian matrix A ∼ N(0, 1)n×nC , with high probability
over the choice of A.

Of course, one could try to close that loophole by proving that this Gaussian permanent
estimation problem is #P-hard, which is indeed a major challenge that Aaronson and Arkhipov
left open. But this situation also raises more general questions. For example, is there an
implication of the form “if SampBPP = SampBQP, then PH collapses, textquotedblright
where again SampBPP and SampBQP are the approximate sampling versions of BPP and
BQP respectively? Are there oracles relative to which such an implication does not hold?

Quantum Supremacy Relative to Oracles. A third problem goes to perhaps the core issue
of complexity theory (both quantum and classical): namely, we don’t at present have a
proof of P 6= PSPACE, much less of BPP 6= BQP or SampBPP 6= SampBQP, less still of the
hardness of specific problems like factoring or estimating Gaussian permanents. So what
reason do we have to believe that any of these problems are hard? Part of the evidence has
always come from oracle results, which we often can prove unconditionally. Particularly in
quantum complexity theory, oracle separations can already be highly nontrivial, and give us
a deep intuition for why all the “standard”algorithmic approaches fail for some problem.

On the other hand, we also know, from results like IP = PSPACE [54], that oracle
separations can badly mislead us about what happens in the unrelativized world. Generally
speaking, we might say, relying on an oracle separation is more dangerous, the less the oracle
function resembles what would actually be available in an explicit problem.2

In the case of sampling-based quantum supremacy, we’ve known strong oracle separations
since early in the subject. Indeed, in 2009, Aaronson [1] showed that Fourier Sampling – a
quantumly easy sampling problem that involves only a random oracle – requires classical
exponential time, and for that matter, sits outside the entire polynomial hierarchy. But
of course, in real life random oracles are unavailable. So a question arises: can we say
anything about the classical hardness of Fourier Sampling with a pseudorandom oracle? More
broadly, what hardness results can we prove for quantum sampling, relative to oracles that are
efficiently computable? Here, we imagine that an algorithm doesn’t have access to a succinct
representation of the oracle function f , but it does know that a succinct representation exists
(i.e., that f ∈ P/poly). Under that assumption, is there any hope of proving an unconditional
separation between quantum and classical sampling? If not, then can we at least prove
quantum supremacy under weaker (or more “generic”) assumptions than would be needed in
the purely computational setting?

2 Indeed, the algebrization barrier of Aaronson and Wigderson [6] was based on precisely this insight:
namely, if we force oracles to be “more realistic, textquotedblright by demanding (in that case) that
they come equipped with algebraic extensions of whichever Boolean functions they represent, then many
previously non-relativizing results become relativizing.
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1.3 Our Contributions
In this paper, we address all three of the above challenges. Our results might look wide-
ranging, but they’re held together by a single thread: namely, the quest to understand
the classical hardness of quantum approximate sampling problems, and especially the meta-
question of under which computational assumptions such hardness can be proven. We’ll
be interested in both “positive” results, of the form “quantum sampling problem X is
classically hard under assumption Y , textquotedblright and “negative” results, of the form
“proving the classical hardness of X requires assumption Y .”Also, we’ll be less concerned with
specific proposals such as BosonSampling, than simply with the general task of approximately
sampling the output distribution of a given quantum circuit C. Fortuitously, though, our
focus on quantum circuit sampling will make some of our results an excellent fit to currently
planned experiments – most notably, those at Google [19], which will involve random quantum
circuits on a 2D square lattice of 40 to 50 superconducting qubits. Even though we won’t
address the details of those or other experiments, our results (together with other recent work
[19, 25]) can help to inform the experiments – for example, by showing how the circuit depth,
the verification test applied to the outputs, and other design choices affect the strength of
the computational assumptions that are necessary and sufficient to conclude that quantum
supremacy has been achieved.

We have five main results.

The Hardness of Quantum Circuit Sampling. Our first result, in Section 3, is about the
hardness of sampling the output distribution of a random quantum circuit, along the general
lines of the planned Google experiment. Specifically, we propose a simple verification test to
apply to the outputs of a random quantum circuit. We then analyze the classical hardness of
generating any outputs that pass that test.

More concretely, we study the following basic problem:

I Problem 1 (HOG, or Heavy Output Generation). Given as input a random quantum circuit
C (drawn from some suitable ensemble), generate output strings x1, . . . , xk, at least a 2/3
fraction of which have greater than the median probability in C’s output distribution.

HOG is a relation problem, for which we can verify a claimed solution in classical
exponential time, by calculating the ideal probabilities px1 , . . . , pxk for each xi to be generated
by C, and then checking whether enough of the pxi ’s are greater than the median value
(which we can estimate analytically to extremely high confidence). Furthermore, HOG is
easy to solve on a quantum computer, with overwhelming success probability, by the obvious
strategy of just running C over and over and collecting k of its outputs.3

It certainly seems plausible that HOG is exponentially hard for a classical computer. But
we ask: under what assumption could that hardness be proven? To address that question,
we propose a new hardness assumption:

I Assumption 1 (QUATH, or the QUAntum THreshold assumption). There is no polynomial-
time classical algorithm that takes as input a description of a random quantum circuit C,
and that guesses whether |〈0n|C|0n〉|2 is greater or less than the median of all 2n of the

|〈0n|C|x〉|2 values, with success probability at least 1
2 + Ω

(
1
2n

)
over the choice of C.

3 Heuristically, one expects the pxi ’s to be exponentially distributed random variables, which one can
calculate implies that a roughly 1 + ln 2

2 ≈ 0.847 fraction of the outputs will have probabilities exceeding
the median value.
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Our first result says that if QUATH is true, then HOG is hard. While this might
seem nearly tautological, the important point here is that QUATH makes no reference to
sampling or relation problems. Thus, we can now shift our focus from sampling algorithms
to algorithms that simply estimate amplitudes, with a minuscule advantage over random
guessing.

New Algorithms to Simulate Quantum Circuits. But given what a tiny advantage Ω
(
2−n

)
is, why would anyone even conjecture that QUATH might be true? This brings us to our
second result, in Section 4, which is motivated by the attempt to refute QUATH. We ask:
what are the best classical algorithms to simulate an arbitrary quantum circuit? For special
quantum circuits (e.g., those with mostly Clifford gates and a few T gates [22]), there’s
been exciting recent progress on improved exponential-time simulation algorithms, but for
arbitrary quantum circuits, one might think there isn’t much to say. Nevertheless, we do
find something basic to say that, to our knowledge, had been overlooked earlier.

For a quantum circuit with n qubits and m gates, there are two obvious simulation
algorithms. The first, which we could call the “Schrödinger” algorithm, stores the entire
state vector in memory, using ∼ m2n time and ∼ 2n space. The second, which we could call
the “Feynman” algorithm, calculates an amplitude as a sum of terms, using ∼ 4m time and
∼ m+ n space, as in the proof of BQP ⊆ P#P [18].

Now typically m� n, and the difference between m and n could matter enormously in
practice. For example, in the planned Google setup, n will be roughly 40 or 50, while m
will ideally be in the thousands. Thus, 2n time is reasonable whereas 4m time is not. So a
question arises:

When m � n, is there a classical algorithm to simulate an n-qubit, m-gate quantum
circuit using both poly(m,n) space and much less than exp(m) time – ideally, more like
exp(n)?

We show an affirmative answer. In particular, inspired by the proof of Savitch’s Theorem
[52], we give a recursive, sum-of-products algorithm that uses poly(m,n) space and mO(n)

time – or better yet, dO(n) time, where d is the circuit depth. We also show how to improve
the running time further for quantum circuits subject to nearest-neighbor constraints, such
as the superconducting systems currently under development. Finally, we show the existence
of a “smooth tradeoff” between our algorithm and the 2n-memory Schrödinger algorithm.
Namely, starting with the Schrödinger algorithm, for every desired halving of the memory
usage, one can multiply the running time by an additional factor of ∼ d.

We hope our algorithm finds some applications in quantum simulation. In the meantime,
though, the key point for this paper is that neither the Feynman algorithm, nor the Schrödinger
algorithm, nor our new recursive algorithm come close to refuting QUATH. The Feynman
algorithm fails to refute QUATH because it yields only a 1/ exp(m) advantage over random
guessing, rather than a 1/2n advantage.4 The Schrödinger and recursive algorithms have
much closer to the “correct” 2n running time, but they also fail to refute QUATH because
they don’t calculate amplitudes as straightforward sums, so don’t lead to polynomial-time
guessing algorithms at all. Thus, in asking whether we can falsify QUATH, in some sense
we’re asking how far we can go in combining the advantages of all these algorithms. This
might, in turn, connect to longstanding open problems about the optimality of Savitch’s
Theorem itself (e.g., L versus NL).

4 Note that the Feynman algorithm can also be interpreted as a PP algorithm.
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Interestingly, our analysis of quantum circuit simulation algorithms explains why this
paper’s hardness argument for quantum circuit sampling, based on QUATH, would not have
worked for quantum supremacy proposals such as BosonSampling or IQP. It works only for
the more general problem of quantum circuit sampling. The reason is that for the latter,
unlike for BosonSampling or IQP, there exists a parameter m� n (namely, the number of
gates) that controls the advantage that a polynomial-time classical algorithm can achieve
over random guessing, even while n controls the number of possible outputs. Our analysis
also underscores the importance of taking m� n in experiments meant to show quantum
supremacy, and it provides some guidance to experimenters about the crucial question of
what circuit depth they need for a convincing quantum supremacy demonstration.

Note that, the greater the required depth, the more protected against decoherence the
qubits need to be. But the tradeoff is that the depth must be high enough that simulation
algorithms that exploit limited entanglement, such as those based on tensor networks, are
ruled out. Beyond that requirement, our dO(n) simulation algorithm gives some information
about how much additional hardness one can purchase for a given increase in depth.

Strong Quantum Supremacy Theorems Must Be Non-Relativizing. Next, in Section 5,
we switch our attention to a meta-question. Namely, what sorts of complexity-theoretic
evidence we could possibly hope to offer for SampBPP 6= SampBQP: in other words, for
quantum computers being able to solve approximate sampling problems that are hard
classically? By Aaronson’s sampling/searching equivalence theorem [8], any such evidence
would also be evidence for FBPP 6= FBQP (where FBPP and FBQP are the corresponding
classes of relation problems), and vice versa.

Of course, an unconditional proof of these separations is out of the question right now,
since it would imply P 6= PSPACE. Perhaps the next best thing would be to show that,
if SampBPP = SampBQP, then the polynomial hierarchy collapses. This latter is not out
of the question: as we said earlier, we already know, by a simple relativizing argument,
that an equivalence between quantum and classical exact sampling implies the collapse
P#P = PH = BPPNP. Furthermore, in their work on BosonSampling, Aaronson and Arkhipov
[3] formulated a #P-hardness conjecture – namely, their so-called Permanent of Gaussians
Conjecture, or PGC – that if true, would imply a generalization of that collapse to the
physically relevant case of approximate sampling. More explicitly, Aaronson and Arkhipov
showed that if the PGC holds, then

SampBPP = SampBQP =⇒ P#P = BPPNP. (1)

They went on to propose a program for proving the PGC, by exploiting the random self-
reducibility of the permanent. On the other hand, Aaronson and Arkhipov also explained in
detail why new ideas would be needed to complete that program, and the challenge remains
open.

Subsequently, Bremner, Montanaro, and Shepherd [24, 25] gave analogous #P-hardness
conjectures that, if true, would also imply the implication (1), by going through the IQP
model rather than through BosonSampling.

Meanwhile, nearly two decades ago, Fortnow and Rogers [30] exhibited an oracle relative
to which P = BQP and yet the polynomial hierarchy is infinite. In other words, they showed
that any proof of the implication

P = BQP =⇒ PH collapses

would have to be non-relativizing. Unfortunately, their construction was extremely specific
to languages (i.e., total Boolean functions), and didn’t even rule out the possibility that the
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implication

PromiseBPP = PromiseBQP =⇒ PHcollapses

could be proven in a relativizing way. Thus, Aaronson and Arkhipov [3, see Section 10]
raised the question of which quantum supremacy theorems hold relative to all oracles.

In Section 5, we fill in the final piece needed to resolve their question, by constructing
an oracle A relative to which SampBPP = SampBQP and yet PH is infinite. In other words,
we show that any strong supremacy theorem for quantum sampling, along the lines of what
Aaronson and Arkhipov [3] and Bremner, Montanaro, and Shepherd [24, 25] were seeking,
must use non-relativizing techniques. In that respect, the situation with approximate sampling
is extremely different from that with exact sampling.

Perhaps it’s no surprise that one would need non-relativizing techniques to prove a strong
quantum supremacy theorem. In fact, Aaronson and Arkhipov [3] were originally led to
study BosonSampling precisely because of the connection between bosons and the permanent
function, and the hope that one could therefore exploit the famous non-relativizing properties
of the permanent to prove hardness. All the same, this is the first time we have explicit
confirmation that non-relativizing techniques will be needed.

Maximal Quantum Supremacy for Black-Box Sampling and Relation Problems. In Sec-
tion 6, we turn our attention to the black-box model, and specifically to the question: what
are the largest possible separations between randomized and quantum query complexities for
any approximate sampling or relation problem? Here we settle another open question. In
2015, Aaronson and Ambainis [9] studied Fourier Sampling, in which we’re given access to a
Boolean function f : {0, 1}n → {0, 1}, and the goal is to sample a string z with probability
f̂(z)2, where f̂ is the Boolean Fourier transform of f , normalized so that

∑
z

f̂(z)2 = 1. This

problem is trivially solvable by a quantum algorithm with only 1 query to f . By contrast,
Aaronson and Ambainis showed that there exists a constant ε > 0 such that any classical
algorithm that solves Fourier Sampling, to accuracy ε in variation distance, requires Ω(2n/n)
queries to f . They conjectured that this lower bound was tight.

Here we refute that conjecture, by proving a Ω(2n) lower bound on the randomized
query complexity of Fourier Sampling, as long as ε is sufficiently small (say, 1

40000 ). This
implies that, for approximate sampling problems, the gap between quantum and randomized
query complexities can be as large as imaginable: namely, 1 versus linear (!).5 This sharply
contrasts with the case of partial Boolean functions, for which Aaronson and Ambainis
[9] showed that any N -bit problem solvable with k quantum queries is also solvable with
O
(
N1−1/2k

)
randomized queries, and hence a constant versus linear separation is impossible.

Thus, our result helps once again to underscore the advantage of sampling problems over
decision problems for quantum supremacy experiments. Given the extremely close connection
between Fourier Sampling and the IQP model [23], our result also provides some evidence that
classically simulating an n-qubit IQP circuit, to within constant error in variation distance,
is about as hard as can be: it might literally require Ω(2n) time.

Aaronson and Ambainis [9] didn’t directly address the natural relational version of
Fourier Sampling, which Aaronson [1] had called Fourier Fishing in 2009. In Fourier Fishing,

5 We have learned (personal communication) that recently, and independently of us, Ashley Montanaro
has obtained a communication complexity result that implies this result as a corollary.
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the goal is to output any string z such that f̂(z)2 ≥ 1, with nontrivial success probability.
Unfortunately, the best lower bound on the randomized query complexity of Fourier Fishing
that follows from [1] has the form 2n

Ω(1)
. As a further contribution, in Section 6 we give a

lower bound of Ω(2n/n) on the randomized query complexity of Fourier Fishing, which both
simplifies and subsumes the Ω(2n/n) lower bound for Fourier Sampling by Aaronson and
Ambainis [9] (which, of course, we also improve to Ω(2n) in this paper).

Quantum Supremacy Relative to Efficiently-Computable Oracles. In Section 7, we ask
a new question: when proving quantum supremacy theorems, can we “interpolate” between
the black-box setting of Sections 5 and 6, and the non-black-box setting of Sections 3 and 4?
In particular, what happens if we consider quantum sampling algorithms that can access
an oracle, but we impose a constraint that the oracle has to be “physically realistic”? One
natural requirement here is that the oracle function f be computable in the class P/poly:6
in other words, that there are polynomial-size circuits for f , which we imagine that our
sampling algorithms (both quantum and classical) can call as subroutines. If the sampling
algorithms also had access to explicit descriptions of the circuits, then we’d be back in the
computational setting, where we already know that there’s no hope at present of proving
quantum supremacy unconditionally. But what if our sampling algorithms know only that
small circuits for f exist, without knowing what they are? Could quantum supremacy be
proven unconditionally then?

We give a satisfying answer to this question. First, by adapting constructions due
to Zhandry [61] and (independently) Servedio and Gortler [53], we show that if one-way
functions exist, then there are oracles A ∈ P/poly such that BPPA 6= BQPA, and indeed
even BQPA 6⊂ SZKA. (Here and later, the one-way functions only need to be hard to invert
classically, not quantumly.)

Note that, in the unrelativized world, there seems to be no hope at present of proving
BPP 6= BQP under any hypothesis nearly as weak as the existence of one-way functions.
Instead one has to assume the one-wayness of extremely specific functions, for example those
based on factoring or discrete log.

Second, and more relevant to near-term experiments, we show that if there exist one-way
functions that take at least subexponential time to invert, then there are Boolean functions
f ∈ P/poly such that approximate Fourier Sampling on those f ’s requires classical exponential
time. In other words: within our “physically realistic oracle” model, there are feasible-looking
quantum supremacy experiments, along the lines of the IQP proposal [23], such that a
very standard and minimal cryptographic assumption is enough to prove the hardness of
simulating those experiments classically.

Third, we show that the above two results are essentially optimal, by proving a converse
result: that even in our P/poly oracle model, some computational assumption is still needed
to prove quantum supremacy. The precise statement is this: if SampBPP = SampBQP
and NP ⊆ BPP, then SampBPPA = SampBQPA for all A ∈ P/poly. Or equivalently: if
we want to separate quantum from classical approximate sampling relative to efficiently
computable oracles, then we need to assume something about the unrelativized world: either
SampBPP 6= SampBQP (in which case we wouldn’t even need an oracle), or else NP 6⊂ BPP
(which is closely related to the assumption we do make, namely that one-way functions exist).

So to summarize, we’ve uncovered a “smooth tradeoff” between the model of computation
and the hypothesis needed for quantum supremacy. Relative to some oracle (and even a

6 More broadly, we could let f be computable in BQP/poly, but this doesn’t change the story too much.
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random oracle), we can prove SampBPP 6= SampBQP unconditionally. Relative to some
efficiently computable oracle, we can prove SampBPP 6= SampBQP, but only under a weak
computational assumption, like the existence of one-way functions. Finally, with no oracle, we
can currently prove SampBPP 6= SampBQP only under special assumptions, such as factoring
being hard, or the permanents of Gaussian matrices being hard to approximate in BPPNP, or
our QUATH assumption. Perhaps eventually, we’ll be able to prove SampBPP 6= SampBQP
under the sole assumption that PH is infinite, which would be a huge step forward – but at
any rate we’ll need some separation of classical complexity classes.7

One last remark: the idea of comparing complexity classes relative to P/poly oracles seems
quite natural even apart from its applications to quantum supremacy. So in Appendix A, we
take an initial stab at exploring the implications of that idea for other central questions in
complexity theory. In particular, we prove the surprising result there that PA = BPPA for
all oracles A ∈ P/poly, if and only if the derandomization hypothesis of Impagliazzo and
Wigderson [36] holds (i.e., there exists a function in E with 2Ω(n) circuit complexity). In our
view, this helps to clarify Impagliazzo and Wigderson’s theorem itself, by showing precisely
in what way their circuit lower bound hypothesis is stronger than the desired conclusion
P = BPP. We also show that, if there are quantumly-secure one-way functions, then there
exists an oracle A ∈ P/poly such that SZKA 6⊂ BQPA.

1.4 Techniques
In our view, the central contributions of this work lie in the creation of new questions, models,
and hardness assumptions (such as QUATH and quantum supremacy relative to P/poly
oracles), as well as in basic observations that somehow weren’t made before (such as the
sum-products algorithm for simulating quantum circuits) – all of it motivated by the goal
of using complexity theory to inform ongoing efforts in experimental physics to test the
Extended Church-Turing Thesis. While some of our proofs are quite involved, by and large
the proof techniques are ones that will be familiar to complexity theorists. Even so, it seems
appropriate to say a few words about techniques here.

To prove, in Section 3, that “if QUATH is true, then HOG is hard, textquotedblright we
give a fairly straightforward reduction: namely, we assume the existence of a polynomial-time
classical algorithm to find high-probability outputs of a given quantum circuit C. We then
use that algorithm (together with a random self-reduction trick) to guess the magnitude of
a particular transition amplitude, such as 〈0n|C|0n〉, with probability slightly better than
chance, which is enough to refute QUATH.

One technical step is to show that, with Ω(1) probability, the distribution over n-bit
strings sampled by a random quantum circuit C is far from the uniform distribution. But
not only can this be done, we show that it can be done by examining only the very last gate
of C, and ignoring all other gates! A challenge that we leave open is to improve this, to show
that the distribution sampled by C is far from uniform, not merely with Ω(1) probability,
but with 1− 1/ exp(n) probability. In Appendix E, we present numerical evidence for this
conjecture, and indeed for a stronger conjecture, that the probabilities appearing in the output
distribution of a random quantum circuit behave like independent, exponentially-distributed
random variables. (We note that Brandao, Harrow and Horodecki [21] recently proved a
closely-related result, which unfortunately is not quite strong enough for our purposes.)

In Section 4, to give our polynomial-space, dO(n)-time classical algorithm for simulating
an n-qubit, depth-d quantum circuit C, we use a simple recursive strategy, reminiscent of

7 Unless, of course, someone were to separate P from PSPACE unconditionally!
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Savitch’s Theorem. Namely, we slice the circuit into two layers, C1 and C2, of depth d/2
each, and then express a transition amplitude 〈x|C|z〉 of interest to us as

〈x|C|z〉 =
∑

y∈{0,1}n
〈x|C1|y〉〈y|C2|z〉.

We then compute each 〈x|C1|y〉 and 〈y|C2|z〉 by recursively slicing C1 and C2 into layers of
depth d/4 each, and so on. What takes more work is to obtain a further improvement if C
has only nearest-neighbor interactions on a grid graph – for that, we use a more sophisticated
divide-and-conquer approach – and also to interpolate our recursive algorithm with the
2n-space Schrödinger simulation, in order to make the best possible use of whatever memory
is available.

Our construction, in Section 5, of an oracle relative to which SampBPP = SampBQP
and yet PH is infinite involves significant technical difficulty. As a first step, we can use
a PSPACE oracle to collapse SampBPP with SampBQP, and then use one of many known
oracles (or, by the recent breakthrough of Rossman, Servedio, and Tan [49], even a random
oracle) to make PH infinite. The problem is that, if we do this in any naïve way, then the
oracle that makes PH infinite will also re-separate SampBPP and SampBQP, for example
because of the approximate Fourier Sampling problem. Thus, we need to hide the oracle
that makes PH infinite, in such a way that a PH algorithm can still find the oracle (and
hence, PH is still infinite), but a SampBQP algorithm can’t find it with any non-negligible
probability – crucially, not even if the SampBQP algorithm’s input x provides a clue about
the oracle’s location. Once one realizes that these are the challenges, one then has about
seven pages of work to ensure that SampBPP and SampBQP remain equal, relative to the
oracle that one has constructed. Incidentally, we know that this equivalence can’t possibly
hold for exact sampling, so something must force small errors to arise when the SampBPP
algorithm simulates the SampBQP one. That something is basically the tiny probability
that the quantum algorithm will succeed at finding the hidden oracle, which however can be
upper-bounded using quantum-mechanical linearity.

In Section 6, to prove a Ω(2n) lower bound on the classical query complexity of approximate
Fourier
Sampling, we use the same basic strategy that Aaronson and Ambainis [9] used to prove
a Ω(2n/n) lower bound, but with a much more careful analysis. Specifically, we observe
that any Fourier Sampling algorithm would also yield an algorithm whose probability of
accepting, while always small, is extremely sensitive to some specific Fourier coefficient,
say f̂(0 · · · 0). We then lower-bound the randomized query complexity of accepting with
the required sensitivity to f̂(0 · · · 0), taking advantage of the fact that f̂(0 · · · 0) is simply
proportional to

∑
x

f(x), so that all x’s can be treated symmetrically. Interestingly, we

also give a different, much simpler argument that yields a Ω(2n/n) lower bound on the
randomized query complexity of Fourier Fishing, which then immediately implies a Ω(2n/n)
lower bound for Fourier Sampling as well. However, if we want to improve the bound to
Ω(2n), then the original argument that Aaronson and Ambainis [9] used to prove Ω(2n/n)
seems to be needed.

In Section 7, to prove that one-way functions imply the existence of an oracle A ∈ P/poly
such that PA 6= BQPA, we adapt a construction that was independently proposed by Zhandry
[61] and by Servedio and Gortler [53]. In this construction, we first use known reductions
[34, 32] to convert a one-way function into a classically-secure pseudorandom permutation,
say σ. We then define a new function by gr(x) := σ(xmod r), where x is interpreted as an
integer written in binary, and r is a hidden period. Finally, we argue that either Shor’s
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algorithm [55] leads to a quantum advantage over classical algorithms in finding the period of
gr, or else gr was not pseudorandom, contrary to assumption. To show that subexponentially-
secure one-way functions imply the existence of an oracle A ∈ P/poly relative to which
Fourier Sampling is classically hard, we use similar reasoning. The main difference is that
now, to construct a distinguisher against a pseudorandom function f , we need classical
exponential time just to verify the outputs of a claimed polynomial-time classical algorithm
for Fourier Sampling f – and that’s why we need to assume 2n

Ω(1)
security.

Finally, to prove that SampBPP = SampBQP and NP ⊆ BPP imply SampBPPA =
SampBQPA for all A ∈ P/poly, we design a step-by-step classical simulation of a quantum
algorithm, call it Q, that queries an oracle A ∈ P/poly. We use the assumption SampBPP =
SampBQP to sample from the probability distribution over queries to A that Q makes at
any given time step. Then we use the assumption NP ⊆ BPP to guess a function f ∈ P/poly
that’s consistent with nO(1) sampled classical queries to A. Because of the limited number
of functions in P/poly, standard sample complexity bounds for PAC-learning imply that
any such f that we guess will probably agree with the “true” oracle A on most inputs.
Quantum-mechanical linearity then implies that the rare disagreements between f and A
will have at most a small effect on the future behavior of Q.

2 Preliminaries

For a positive integer n, we use [n] to denote the integers from 1 to n. Logarithms are base 2.

2.1 Quantum Circuits

We now introduce some notations for quantum circuits, which will be used throughout this
paper.

In a quantum circuit, without loss of generality, we assume all gates are unitary and
acting on exactly two qubits each8.

Given a quantum circuit C, slightly abusing notation, we also use C to denote the unitary
operator induced by C. Suppose there are n qubits and m gates in C; then we index the
qubits from 1 to n. We also index gates from 1 to m in chronological order for convenience.

For each subset S ⊆ [n] of the qubits, let HS be the Hilbert space corresponding to the
qubits in S, and IS be the identity operator on HS . Then the unitary operator Ui for the i-th
gate can be written as Ui := Oi ⊗ I[n]\{ai,bi}, in which Oi is a unitary operator on H{ai,bi}
(the Hilbert space spanned by the qubits ai and bi), and I[n]\{ai,bi} is the identity operator
on the other qubits.

We say that a quantum circuit has depth d, if its gates can be partitioned into d layers (in
chronological order), such that the gates in each layer act on disjoint pairs of qubits. Suppose
the i-th layer consists of the gates in [Li, Ri]. We define C[r←l] = URr ·URr−1 . . . ULl+1 ·ULl ,
that is, the sub-circuit between the l-th layer and the r-th layer.

Base Graphs and Grids

In Sections 3 and 4, we will sometimes assume locality of a given quantum circuit. To
formalize this notion, we define the base graph of a quantum circuit.

8 Except for oracle gates, which may act on any number of qubits.
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I Definition 1. Given a quantum circuit C on n qubits, its base graph GC = (V,E) is an
undirected graph defined by V = [n], and

E = {(a, b) | there is a quantum gate that acts on qubits a and b.}.

We will consider a specific kind of base graph, the grids.

I Definition 2. The grid G of size H ×W is a graph with vertices V = {(x, y) | x ∈ [H], y ∈
[W ]} and edges E = {(a, b) | |a− b|1 = 1, a ∈ V, b ∈ V }, and we say that grid G has H rows
and W columns.

2.2 Complexity Classes for Sampling Problems

Definitions for SampBPP and SampBQP

We adopt the following definition for sampling problems from [8].

I Definition 3 (Sampling Problems, SampBPP, and SampBQP). A sampling problem S is
a collection of probability distributions (Dx)x∈{0,1}∗ , one for each input string x ∈ {0, 1}n,
where Dx is a distribution over {0, 1}p(n), for some fixed polynomial p. Then SampBPP
is the class of sampling problems S = (Dx)x∈{0,1}∗ for which there exists a probabilistic
polynomial-time algorithm B that, given

〈
x, 01/ε

〉
as input, samples from a probability

distribution Cx such that ‖Cx −Dx‖ ≤ ε. SampBQP is defined the same way, except that B
is a quantum algorithm rather than a classical one.

Oracle versions of these classes can also be defined in the natural way.

A Canonical Form of SampBQP Oracle Algorithms

To ease our discussion about SampBQPO, we describe a canonical form of SampBQP oracle
algorithms. Any other reasonable definitions of SampBQP oracle algorithms (like with
quantum oracle Turing machines) can be transformed into this form easily.

Without loss of generality, we can assume a SampBQP oracle algorithm M with oracle
access to O1, oracle2, dotsc, oraclek (k is a universal constant) acts in three stages, as follows.
1. Given an input 〈x, 01/ε〉, M first uses a classical routine (which does not use the oracles)

to output a quantum circuit C with p(n, 1/ε) qubits and p(n, 1/ε) gates in polynomial
time, where p is a fixed polynomial. Note that C can use the O1, oracle2, dotsc, oraclek
gates in addition to a universal set of quantum gates.

2. Then M runs the outputted quantum circuit with the initial state |0〉⊗p(n,1/ε), and
measures all the qubits to get an outcome z in {0, 1}p(n,1/ε).

3. Finally, M uses another classical routine Aoutput (which does not use the oracles) on the
input z, to output its final sample Aoutput(z) ∈ {0, 1}∗.

Clearly, M solves different sampling problems (or does not solve any sampling problem at
all) given different oraclesO1, oracle2, dotsc, oraclek. Therefore, we useMO1,oracle2,dotsc,oraclek

to indicate the particular algorithm when the oracles are O1, oracle2, dotsc, oraclek.

2.3 Distinguishing Two Pure Quantum States

We also need a standard result for distinguishing two pure quantum states.
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I Theorem 4 (Helstrom’s decoder for two pure states). The maximum success probability for
distinguishing two pure quantum states |ϕ0〉 and |ϕ1〉 given with prior probabilities π0 and
π1, is given by

psucc = 1 +
√

1− 4π0π1F

2 ,

where F := |〈ϕ0|ϕ1〉|2 is the fidelity between the two states.

We’ll also need that for two similar quantum states, the distributions induced by measuring
them are close.

I Corollary 5. Let |ϕ0〉 and |ϕ1〉 be two pure quantum state such that ||ϕ0〉 − |ϕ1〉| ≤ ε.
For a quantum state ϕ, define D(ϕ) be the distribution on {0, 1}∗ induced by some quantum
sampling procedure, we have

‖D(ϕ0)−D(ϕ1)‖ ≤
√

2ε.

Proof. Fix prior probabilities π0 = π1 = 1
2 .

Note that we have a distinguisher of |ϕ0〉 and |ϕ1〉 with success probability

1 + ‖D(ϕ0)−D(ϕ1)‖
2

by invoking that quantum sampling procedure.
By the assumption, |〈ϕ0||ϕ1〉| = |〈ϕ0|·(|ϕ0〉+(|ϕ1〉−|ϕ0〉)| ≥ 1−ε, hence F = |〈ϕ0|ϕ1〉|2 ≥

(1− ε)2. So we have

1 + ‖D(ϕ0)−D(ϕ1)‖
2 ≤

1 +
√

1− (1− ε)2

2 .

This implies ‖D(ϕ0)−D(ϕ1)‖1 ≤
√

1− (1− ε)2 =
√

2ε− ε2 ≤
√

2ε. J

2.4 A Multiplicative Chernoff Bound
I Lemma 6. Suppose X1, X2, dotsc,Xn are independent random variables taking values in
[0, 1]. Let X denote their sum and let µ = E[X]. Then for any δ > 1, we have

Pr[X ≥ (1 + δ)µ] ≤ e−
δµ
3 .

I Corollary 7. For any 0 < τ , suppose X1, X2, dotsc,Xn are independent random variables
taking values in [0, tau]. Let X denote their sum and let µ = E[X]. Then for any δ > 1, we
have

Pr[X ≥ (1 + δ)µ] ≤ e−
δµ
3τ .

Proof. Replace each Xi by Xi/τ and apply the previous lemma. J

3 The Hardness of Quantum Circuit Sampling

We now discuss our random quantum circuit proposal for demonstrating quantum supremacy.
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3.1 Preliminaries
We first introduce some notations. We use U(N) to denote the group of N × N unitary
matrices, µNHaar for the Haar measure on U(N), and µNrand for the Haar measure on N -
dimensional pure states.

For a pure state |u〉 on n qubits, we define probList(|u〉) to be the list consisting of 2n
numbers, |〈u|x〉|2 for each x ∈ {0, 1}n.

Given N real numbers a1, a2, dotsc, aN , we use uphalf(a1, a2, dotsc, aN ) to denote the
sum of the largest N/2 numbers among them, and we let

adv(|u〉) = uphalf(probList(|u〉)).

Finally, we say that an output z ∈ {0, 1}n is heavy for a quantum circuit C, if it is greater
than the median of probList(C|0n〉).

3.2 Random quantum circuit on grids
Recall that we assume a quantum circuit consists of only 2-qubit gates. Our random quantum
circuit on grids of n qubits and m gates (assuming m ≥ n) is generated as follows (though
the basic structure of our hardness argument will not be very sensitive to details, and would
also work for many other circuit ensembles):

All the qubits are arranged as a
√
n×
√
n grid (see Definition 2), and a gate can only act

on two adjacent qubits.
For each t ∈ [m] with t ≤ n, we pick the t-th qubit and a random neighbor of it.9
For each t ∈ [m] with t > n, we pick a uniform random pair of adjacent qubits in the
grid

√
n×
√
n.

Then, in either case, we set the t-th gate to be a unitary drawn from µ4
Haar acting on

these two qubits.

Slightly abusing notation, we use µn,mgrid to denote both the above distribution on quantum
circuits and the distribution on U(2n) induced by it.

Conditional distribution νgrid

For convenience, for a quantum circuit C, we abbreviate adv(C|0n〉) as adv(C). Consider
a simple quantum algorithm which measures C|0n〉 in the computational basis to get an
output z. Then by definition, adv(C) is simply the probability that z is heavy for C.

We want that, when a quantum circuit C is drawn, adv(C) is large (that is, bounded
above 1/2), and therefore the simple quantum algorithm has a substantial advantage on
generating a heavy output, compared with the trivial algorithm of guessing a random string.

For convenience, we also consider the following conditional distribution νn,mgrid : it keeps
drawing a circuit C ← µn,mgrid until the sample circuit C satisfies adv(C) ≥ 0.7.

Lower bound on adv(C)

We need to show that a circuit C drawn from νn,mgrid has a large probability of having
adv(C) ≥ 0.7. In order to show that, we give a cute and simple lemma, which states that
the expectation of adv(C) is large. Surprisingly, its proof only makes use of the randomness
introduced by the very last gate!

9 The purpose here is to make sure that there is a gate on every qubit.
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I Lemma 8. For n ≥ 2 and m ≥ n

E
C←µn,mgrid

[adv(C)] ≥ 5
8 .

In fact, we conjecture that adv(C) is large with an overwhelming probability.

I Conjecture 1. For n ≥ 2 and m ≥ n2, and for all constants ε > 0,

Pr
C←µn,mgrid

[
adv(C) < 1 + ln 2

2 − ε
]
< exp{−Ω(n)}.

We give some numerical simulation evidence for Conjecture 1 in Appendix E.

I Remark 9. Assuming Conjecture 1, in practice, one can sample from νgrid by simply
sampling from µgrid, the uniform distribution over circuits—doing so only introduces an error
probability of exp{−Ω(n)}.

3.3 The HOG Problem
Now we formally define the task in our quantum algorithm proposal.

I Problem 2 (HOG, or Heavy Output Generation). Given a random quantum circuit C from
νn,mgrid for m ≥ n2, generate k binary strings z1, z2, dotsc, zk in {0, 1}n such that at least a
2/3 fraction of zi’s are heavy for C.

The following proposition states that there is a simple quantum algorithm which solves
the above problem with overwhelming probability.

I Proposition 10. There is a quantum algorithm that succeeds at HOG with probability
1− exp{−Ω(k)}.

Proof. The algorithm just simulates the circuit C with initial state |0n〉, then measures in
the computational basis k times independently to output k binary strings.

From the definition of νgrid, we have adv(C) ≥ 0.7 > 2/3. So by a Chernoff bound, with
probability 1− exp{Ω(k)}, at least a 2/3 fraction of zi’s are heavy for C, in which case the
algorithm solves HOG. J

3.4 Classical Hardness Assuming QUATH
We now state our classical hardness assumption.

I Assumption 2 (QUATH, or the Quantum Threshold assumption). There is no polynomial-
time classical algorithm that takes as input a random quantum circuit C ← νn,mgrid for m ≥ n2

and decides whether 0n is heavy for C with success probability 1/2 + Ω(2−n).

I Remark 11. Note that 1/2 is the success probability obtained by always outputting either
0 or 1. Therefore, the above assumption means that no efficient algorithm can beat the
trivial algorithm even by Ω(2−n).

Next, we show that QUATH implies that no efficient classical algorithm can solve HOG.

I Theorem 12. Assuming QUATH, no polynomial-time classical algorithm can solve HOG
with probability at least 0.99.
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Proof. Suppose by contradiction that there is such a classical polynomial-time algorithm A.
Using A, we will construct an algorithm to violate QUATH.

The algorithm is quite simple. Given a quantum circuit C ← νn,mgrid , we first draw a
uniform random string z ∈ {0, 1}n. Then for each i such that zi = 1, we apply a NOT gate
on the i-th qubit. Note that this gate can be “absorbed” into the last gate acting on the i-th
qubit in C. Hence, we still get a circuit C ′ with m gates. Moreover, it is easy to see that
C ′ is distributed exactly the same as C even if conditioning on a particular z, and we have
〈0n|C|0n〉 = 〈0n|C ′|z〉, which means that 0n is heavy for C if and only if z is heavy for C ′.

Next our algorithm runs A on circuit C ′ to get k outputs z1, dotsc, zk, and picks an
output zi? among these k outputs uniformly at random. If zi? = z, then the algorithm
outputs 1; otherwise it outputs a uniform random bit.

Since A solves HOG with probability 0.99, we have that each zk is heavy for C ′ with
probability at least 0.99 · 2/3.

Now, since z is a uniform random string, the probability that our algorithm decides
correctly whether z is heavy for C ′ is

Pr[z = zi? ] · 0.99 · 2
3 + Pr[z 6= zi? ] · 1/2 = 2−n · 0.99 · 2

3 + (1− 2−n) · 1/2

= 1
2 + Ω(2−n).

But this contradicts QUATH, so we are done. J

3.5 Proof for Lemma 8
We first need a simple lemma which helps us to lower bound adv(|u〉).

For a pure quantum state |u〉, define

dev(|u〉) =
∑

w∈{0,1}n

∣∣∣|〈u|w〉|2 − 2−n
∣∣∣.

In other words, dev(|u〉) measures the non-uniformity of the distribution obtained by meas-
uring |u〉 in the computational basis.

The next lemma shows that, when dev(|u〉) is large, so is adv(|u〉). Therefore, in order to
establish Lemma 8, it suffices to lower-bound dev(|u〉).

I Lemma 13. For a pure quantum state |u〉, we have

adv(|u〉) ≥ 1
2 + dev(u)

4 .

We will also need the following technical lemma.

I Lemma 14. Let |u〉 ← µ2
rand. Then

E
|u〉←µ2

rand

[∣∣∣|〈u|0〉|2 − |〈u|1〉|2∣∣∣] = 0.5.

The proofs of Lemma 13 and Lemma 14 are based on simple but tedious calculations, so
we defer them to Appendix B.

Now we are ready to prove Lemma 8.

Proof of Lemma 8. Surprisingly, our proof only uses the randomness introduced by the
very last gate. That is, the claim holds even if there is an adversary who fixes all the gates
except for the last one.

CCC 2017



22:20 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

We use In to denote the n-qubit identity operator.
Let C ← µn,mgrid . From Lemma 13, it suffices to show that

E
C←µn,mgrid

[dev(C|0n〉)] ≥ 1
2 .

Suppose the last gate U ← µ4
Haar acts on qubits a and b. Let the unitary corresponding to the

circuit before applying the last gate be V , and |v〉 = V |0n〉. Now, suppose we apply another
unitary Ua drawn from µ2

Haar on the qubit a. It is not hard to see that U and (Ua ⊗ I1) · U
are identically distributed. So it suffices to show that

E
U←µ4

Haar,Ua←µ
2
Haar

[
adv
(

(Ua ⊗ In−1)(U ⊗ In−2)|v〉
)]
≥ 0.6.

We are going to show that the above holds even for a fixed U . That is, fix a U ∈ U(4) and
let |u〉 = U ⊗ In−2)|v〉. Then we will prove that

E
Ua←µ2

Haar

[
dev
(

(Ua ⊗ In−1)|v〉
)]
≥ 1

2 .

Without loss of generality, we can assume that a is the last qubit. Then we write

|u〉 =
∑

w∈{0,1}n
aw|w〉,

and

|z〉 = (Ua ⊗ In−1)|u〉.

Now we partition the 2n basis states into 2n−1 buckets, one for each string in {0, 1}n−1.
That is, for each p ∈ {0, 1}n−1, there is a bucket that consists of basis states {|p0〉, spzp1}.
Note that since Ua acts on the last qubit, only amplitudes of basis states in the same bucket
can affect each other.

For a given p ∈ {0, 1}n−1, if both ap0 and ap1 are zero, we simply ignore this bucket.
Otherwise, we can define a quantum state

|tp〉 = ap0|0〉+ ap1|1〉√
|ap0|2 + |ap1|2

,

and

|zp〉 = Ua|tp〉.

Clearly, we have 〈z|p0〉 =
√
|ap0|2 + |ap1|2 · 〈zp|0〉 and 〈z|p1〉 =

√
|ap0|2 + |ap1|2 · 〈zp|1〉.

Plugging in, we have

E
Ua←µ2

Haar

[∣∣∣|〈z|p0〉|2 − 2−n
∣∣∣+
∣∣∣|〈z|p1〉|2 − 2−n

∣∣∣]
≥ E
Ua←µ2

Haar

[∣∣∣|〈z|p0〉|2 − |〈z|p1〉|2∣∣∣] (triangle inequality)

=
(
|ap0|2 + |ap1|2

)
· E
Ua←µ2

Haar

[∣∣∣|〈zp|0〉|2 − |〈zp|1〉|2∣∣∣].
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Now, since |tp〉 is a pure state, and Ua is drawn from µ2
Haar, we see that |zp〉 is distributed as

a Haar-random pure state. So from Lemma 14, we have

E
Ua←µ2

Haar

[∣∣∣|〈zp|0〉|2 − |〈zp|1〉|2∣∣∣] = 0.5.

Therefore,

E
Ua←µ2

Haar

[∣∣∣|〈z|p0〉|2 − 2−n
∣∣∣+
∣∣∣|〈z|p1〉|2 − 2−n

∣∣∣] ≥ 1
2 ·
(
|ap0|2 + |ap1|2

)
.

Summing up for each p ∈ {0, 1}n−1, we have

E
Ua←µ2

Haar

[dev(|z〉)] ≥ 1
2 ,

which completes the proof. J

4 New Algorithms to Simulate Quantum Circuits

In this section, we present two algorithms for simulating a quantum circuit with n qubits
and m gates: one algorithm for arbitrary circuits, and another for circuits that act locally on
grids. What’s new about these algorithms is that they use both polynomial space and close
to exp(n) time (but despite that, they don’t violate the QUATH assumption from Section 3,
for the reason pointed out in Section 1.3). Previously, it was known how to simulate a
quantum circuit in polynomial space and exp(m) time (as in the proof of BQP ⊆ P#P), or in
exponential space and exp(n) time.

In addition, we provide a time-space trade-off scheme, which enables even faster simulation
at the cost of more space usage. See Section 2.1 for the quantum circuit notations that are
used throughout this section.

4.1 Polynomial-Space Simulation Algorithms for General Quantum
Circuits

We first present a simple recursive algorithm for general circuits.

I Theorem 15. Given a quantum circuit C on n qubits with depth d, and two computational
basis states |x〉, spzy, we can compute 〈y|C|x〉 in O(n · (2d)n+1) time and O(n log d) space.

Proof. In the base case d = 1, the answer can be trivially computed in O(n) time.
When d > 1, we have

〈y|C|x〉 = 〈y|C[d←d/2+1] · C[d/2←1]|x〉

= 〈y|C[d←d/2+1]

 ∑
z∈{0,1}n

|z〉〈z|

C[d/2←1]|x〉

=
∑

z∈{0,1}n
〈y|C[d←d/2+1]|z〉 · 〈z|C[d/2←1]|x〉. (2)

Then, for each z, we calculate 〈y|C[d←d/2+1]|z〉 · 〈z|C[d/2←1]|x〉 by recursively calling the
algorithm on the two sub-circuits C[d←d/2+1] and C[d/2←1] respectively; and sum them up to
calculate (2).
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It is easy to see the above algorithm is correct, and its running time can be analyzed as
follows: let F (d) be its running time on a circuit of d layers; then we have F (1) = O(n), and
by the above discussion

F (d) ≤ 2n+1 · F (dd/2e) = O(n · 2(n+1)dlog de) = O(n · (2dlog de)n+1) ≤ O(n · (2d)n+1),

which proves our running time bound.
Finally, we can see in each recursion level, we need O(n) space to save the indices of |x〉

and |y〉, and O(1) space to store an intermediate answer. Since there are at most O(log d)
recursion levels, the total space is bounded by O(n log d). J

4.2 Faster Polynomial Space Simulation Algorithms for Grid Quantum
Circuits

When a quantum circuit is spatially local, i.e., its base graph can be embedded on a grid, we
can further speed up the simulation with a more sophisticated algorithm.

We first introduce a simple lemma which shows that we can find a small balanced cut in
a two-dimensional grid.

I Lemma 16. Given a grid G = (V,E) of size H ×W such that |V | ≥ 2, we can find a
subset S ⊂ E such that
|S| ≤ O(

√
|V |), and

after S is removed, G becomes a union of two disconnected grids with size smaller than
2
3 |V |.

Proof. We can assume H ≥W without loss of generality and simply set S to be the set of
all the edges between the bH/2c-th row and the bH/2c+ 1-th row; then both claims are easy
to verify. J

We now present a faster algorithm for simulating quantum circuits on grids.

I Theorem 17. Given a quantum circuit C on n qubits with depth d, and two computational
basis states |x〉, spzy, assuming that GC can be embedded into a two-dimensional grid with
size n (with the embedding explicitly specified), we can compute 〈y|C|x〉 in 2O(d

√
n) time and

O(d · n logn) space.

Proof. For ease of presentation, we slightly generalize the definition of quantum circuits:
now each gate can be of the form Oi⊗ I[n]\{ai,bi} (a 2-qubit gate) or Oi⊗ I[n]\{ai} (a 1-qubit
gate) or simply I[n] (a 0-qubit gate, which is introduced just for convenience).

The algorithm works by trying to break the current large instance into many small
instances which we then solve recursively. But unlike the algorithm in Theorem 15, which
reduces an instance to many sub-instances with fewer gates, our algorithm here reduces an
instance to many sub-instances with fewer qubits.

The base case, n = 1 qubit. In this case, all the gates are either 1-qubit or 0-qubit; hence
the answer can be calculated straightforwardly in O(m) time and constant space.

Cutting the grid by a small set. When n ≥ 2, by Lemma 16, we can find a subset S of
edges with |S| ≤ O(

√
n). After S is removed, the grid becomes a union of two disconnected

grids A and B (we use A,B to denote both the grids and the sets of the vertices in the grid
for simplicity) with size smaller than 2

3n.
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Let

{R = i | Ui is of the form Oi ⊗ I[n]\{ai,bi} and (ai, bi) ∈ S},

that is, the set of the indices of the gates crossing the cut S. Without loss of generality, we
can assume that for each i ∈ R, we have ai ∈ A and bi ∈ B.

Since in a single layer, there is at most one gate acting on a particular adjacent pair of
qubits, we have

|R| ≤ O(d
√
n).

Breaking the gates in R. Now, for each i ∈ R, we decompose Oi (which can be viewed as
a matrix in C4×4) into a sum of 16 single-entry matrices Oi,1, Oi,2, dotsc,Oi,16.

Write Oi as

Oi =
∑

x,y∈{0,1}2
〈y|Oi|x〉 · |y〉〈x|.

Then we set Oi,j = 〈yj |Oi|xj〉 · |yj〉〈xj | for each j ∈ [16], where (xj , yj) is the j-th ordered
pair in {0, 1}2 × {0, 1}2.

Decomposing the instance. Now, we are going to expand each Ui = Oi ⊗ I[n]\{ai,bi} as a
sum

Ui =
16∑
j=1

Oi,j ⊗ I[n]\{ai,bi}

for each i ∈ R, and therefore decompose the answer 〈y|C|x〉 = 〈y|UmUm−1 · · ·U1|x〉 into a
sum of 16|R| terms. More concretely, for a mapping τ from R to [16] and an index i ∈ [m],
we define

Ui,tau =
{
Oi,tau(i) × I[n]\{ai,bi} i ∈ R.
Ui i 6∈ R.

Let T be the set of all mappings from R to [16]. Then we have

〈y|C|x〉 = 〈y|UmUm−1 · · ·U1|x〉 =
∑
τ∈T
〈y|Um,tauUm−1,tau · · ·U1,tau|x〉.

Dealing with the sub-instance. For each τ ∈ T and an index i ∈ [m], we are going to show
that Ui,tau can be decomposed as UAi,tau ⊗ UBi,tau, where UAi,tau and UBi,tau are operators on
HA and HB respectively.

When i ∈ R, by definition, there exist x, y ∈ {0, 1}2 and α ∈ C such that

Ui,tau = α · |y〉〈x| ⊗ I[n]\{ai,bi} = α ·
(
|y0〉〈x0| ⊗ IA\{ai}

)
⊗
(
|y1〉〈x1| ⊗ IB\{bi}

)
.

Otherwise i /∈ R. In this case, if Oi is of the form Oi ⊗ I[n]\{ai,bi}, then ai, bi must be
both in A or in B and the claim trivially holds; and the claim is also obvious when Oi is of
the form Oi ⊗ I[n]\{ai} or I[n].

Moreover, one can easily verify that each UAi,tau is of the form OAi ⊗ IA\{ai,bi} or O
A
i ⊗

IA\{ai} or simply IA, in which OAi is (respectively) a 2-qubit operator on H{ai,bi} or a 1-qubit
operator on H{ai}), and the same holds for each UBi,tau.
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Hence, we have

〈y|UmUm−1 · · ·U1|x〉

=
∑
τ∈T
〈y|Um,tauUm−1,tau · · ·U1,tau|x〉.notag (3)

=
∑
τ∈T
〈y|(UAm,tau ⊗ UBm,tau)(UAm−1,tau ⊗ UBm−1,tau) · · · (UA1,tau ⊗ UB1,tau)|x〉.notag (4)

=
∑
τ∈T
〈yA|UAm,tauUAm−1,tau · · ·UA1,tau|xA〉 · 〈yB |UBm,tauUBm−1,tau · · ·UB1,tau|xB〉, (5)

where xA, xB (yA, yB) is the projection of x (y) on HA and HB .
So from the above discussion, we can then calculate 〈yA|UAm,tauUAm−1,tau · · ·UA1,tau|xA〉

with a recursive call with computational basis states |xA〉 and |yA〉, grid A, and m gates
UA1,tau, U

A
2,tau, dotsc, U

A
m,tau.

The matrix element 〈yB |UBm,tauUBm−1,tau · · ·UB1,tau|xB〉 can be computed similarly. After
that we sum up all the terms in (5) to get the answer.

Complexity analysis. Now we are going to bound the running time. Let F (n) be an upper
bound on the running time when the size of the remaining grid is n. Then we have

F (n) =
{
O(m) when n = 1.
2O(d

√
n) ·maxk∈[n/3,2n/3] F (k) otherwise.

The second case is due to the fact that the sizes of sub-instances (i.e., the sizes of A and
B) lie in [n/3, 2n/3], and T = 16|R| = 2O(d

√
n). It is not hard to see that F (n) is an

increasing function, so we have F (n) = 2O(d
√
n)F (2n/3) for n > 1, which further simplifies

to F (n) = 2O(d
√
n).

Finally, we can see that at each recursion level, we need O(d ·n) space to store the circuit,
and O(1) space to store the intermediate answer. Since there are at most logn recursion
levels, the space complexity is O(d · n logn). J

Interestingly, by using tensor network methods, Markov and Shi [43] gave an algorithm
for simulating quantum circuits on grids with similar running time to ours. However, the
difference is that Markov and Shi’s algorithm requires 2O(d

√
n) time and 2O(d

√
n) space,

whereas ours requires 2O(d
√
n) time and only polynomial space.

The algorithm of Theorem 17 achieves a speedup over Theorem 15 only for small d, but
we can combine it with the algorithm in Theorem 15 to get a faster algorithm for the whole
range of d.

I Theorem 18. There is a constant c such that, given a quantum circuit C on n qubits with
depth d, and two computational basis states |x〉, spzy, assuming that GC can be embedded into
a two dimensional grid with size n (with the embedding explicitly specified), we can compute
〈y|C|x〉 in

O(2n ·
[
1 +

(
d

c
√
n

)
n+1
]
)

time and O(d · n logn) space.

Proof. By Theorem 17, there is a constant c such that we have an O(2n) time and polynomial
space algorithm for calculating 〈y|C|x〉 when the depth is at most c

√
n for circuit on grids.
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So we can use the same algorithm as in Theorem 15, except that we revert to the algorithm
in Theorem 17 when the depth is no more than c

√
n.

We still let F (d) be the running time on a circuit of d layers. We then have F (d) = O(2n)
when d ≤ c

√
n. From the above discussion, we can see that for d > c

√
n,

F (d) ≤ 2n+1 · F (dd2e) = O(2n · 2(n+1)dlog(d/c
√
n)e) = O(2n ·

(
d

c
√
n

)
n+1),

which proves the running time bound. And it is not hard to see that the algorithm’s space
usage is dominated by O(d · n logn). J

4.3 Space-Time Trade-off Schemes
We now show how to optimize the running time for whatever space is available.

I Theorem 19. Given a quantum circuit C on n qubits with depth d, two computational
basis states |x〉, spzy and an integer k, we can compute 〈y|C|x〉 in

O(n2n−k · 2(k+1)dlog de) ≤ O(n2n−k · (2d)k+1)

time and O(2n−k log d) space.

Proof.
Decomposing the whole Hilbert space H[n]. We first decompose H[n] into a direct sum
of many subspaces. Let wi be the i-th string in {0, 1}k in lexicographic order. For each
i ∈ [2k], let Hi = Span(|wi0n−k〉, ...|wi1n−k〉). Then we have

H[n] =
2k⊕
i=1
Hi.

Also, let Pi be the projection from H[n] to Hi; then

I[n] =
2k∑
i=1
Pi.

Now we generalize the original problem as follows: given two indices s, t ∈ [2k] and a pure
state |u〉 in Hs, we want to compute PtC|u〉. By choosing s and t such that Hs contains |x〉
and Ht contains |y〉, we can easily solve the original problem.

The base case d = 1. When there is only one layer, PtC|u〉 can be calculated straightfor-
wardly in O(n · 2n−k) time and O(2n−k) space.

Recursion. When d > 1, we have

PtC|u〉 = PtC[d←d/2+1] · C[d/2←1]|u〉

= PtC[d←d/2+1]

 ∑
z∈[2k]

Pz

C[d/2←1]|u〉

=
∑
z∈[2k]

PtC[d←d/2+1]PzC[d/2←1]|u〉.

We can then calculate PtC[d←d/2+1]PzC[d/2←1]|u〉 for each z as follows: we first use a recursive
call to get |b〉 = PzC[d/2←1]|u〉 and a second recursive call to compute PtC[d←d/2+1]|b〉 (note
that |b〉 ∈ Hz).
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Complexity analysis. It is easy to see that the total space usage is O(2n−k log d), since for
each i, storing a vector in Hi takes O(2n−k) space, and we only need to record O(1) such
vectors at each recursion level. In addition, when d = 1, we need only O(2n−k) space.

For the running time bound, let F (d) denote the running time on a circuit of d layers;
then F (1) = O(n2n−k). From the above discussion, it follows that

F (d) ≤ 2k+1 · F (dd/2e) = O(n2n−k · 2(k+1)dlog(d)e) = O(n2n−k · (2d)k+1). J

The above trade-off scheme can be further improved for quantum circuits on grids.
I Theorem 20. There is a constant c such that, given a quantum circuit C on n qubits with
depth d, two computational basis states |x〉, spzy and an integer k, assuming that GC can be
embedded into a two dimensional grid with size n, we can compute 〈y|C|x〉 in

2O(n) ·
[
1 + (2d/c

√
n)k+1]

time and

O
(
2n−k max(1, log(d/

√
n))
)

space.
Proof. By Theorem 17, there is a constant c such that we have an O(2n) time algorithm for
calculating 〈y|C|x〉 for circuits on grids with depth at most c

√
n.

Then we use the same algorithm as in Theorem 19, with the only modification that when
d ≤ c

√
n, we calculate Pt · C|u〉 by 22(n−k) calls of the algorithm in Theorem 17.

With the same analysis as in Theorem 19, when d > c
√
n, we can see that the total space

usage is O(2n−k log(d/c
√
n)) , and the running time is

O(2n+2(n−k)+(k+1)dlog(d/c
√
n)e) = O(2O(n) · (2d/c

√
n))k+1).

Combining with the algorithm for d ≤ c
√
n proves our running time and space bound. J

5 Strong Quantum Supremacy Theorems Must Be Non-Relativizing

In this section we show that there is an oracle relative to which SampBPP = SampBQP, yet
PHO is infinite.

Recall that an oracle O is a function O : {0, 1}∗ → {0, 1}, and the combination of two
oracles O0, oracle1, denoted as O0 ⊕ O1, simply maps z ∈ {0, 1}∗ to Oz1(z2, z3, dotsc, z|z|)
(cf. citefenner2003oracle). We use On to denote the restriction of O on {0, 1}n.

5.1 Intuition
We have two simultaneous objectives: (1) we need SampBPP and SampBQP to be equal; and
(2) we also need PH to be infinite. So it will be helpful to review some previous results on
(1) and (2) separately.

An oracle O such that SampBPPO = SampBQPO: in order to make two classes equal,
we can use the standard method: adding a much more powerful oracle [16]. That is,
we set O to be a PSPACE-complete language, like TQBF. Then it is easy to see both
SampBPPTQBF and SampBQPTQBF become SampPSPACE (i.e., the class of approximate
sampling problems solvable in polynomial space).
An oracle O such that PHO is infinite: a line of works by Yao [60], Håstad [35], and
others constructed relativized worlds where PH is infinite, and a very recent breakthrough
by Rossman, Servedio, and Tan [49] even shows that PH is infinite relative to a random
oracle with probability 1.
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A Failed Attempt: Direct Combination

The first natural idea is to combine the previous two results straightforwardly by setting the
oracle to be TQBF⊕O, where O is a random oracle.

Alas, it is not hard to see that this does not work: while PH is still infinite, a SampBQP
algorithm can perform Fourier Sampling (cf. Definition 27) on the random oracle bits, and it
is known that no SampBPP algorithm can do that [9] (see also Theorem 33). Hence, in this
case SampBQP 6= SampBPP.

Another Failed Attempt: Hiding a “Secret Random String” in a Secret Location

The failure of the naive approach suggests that we must somehow “hide” the random oracle
bits, since if the SampBQP algorithm has access to them, then SampBPP and SampBQP will
not be equal. More specifically, we want to hide a “secret random string” among the oracle
bits so that:
1. a PH algorithm can find it, so that PH is still infinite, but
2. a SampBQP algorithm cannot find it, so that we can still make SampBPP = SampBQP

by attaching a TQBF oracle.

Inspired by the so-called cheat-sheet construction [10], it is natural to consider a direct
hiding scheme. Imagine that the oracle bits are partitioned into two parts: one part is logN
copies of the OR function on N bits, and another part is N binary strings y1, dotsc, yN , each
with length N . Let t = a1, a2, dotsc, alogN ∈ {0, 1}logN be the answer to the copies of OR;
we can also interpret t as an integer in [N ]. Finally, set yt to be a random input, while other
yi’s are set to zero.

Intuitively, a PH algorithm can easily evaluate the logN copies of OR and then get access
to the random string; while it is known that OR is hard for a quantum algorithm, so no
quantum algorithm should be able to find the location of the random string efficiently.

Unfortunately, there is a fatal issue with the above approach: a SampBQP algorithm is
also given an input x ∈ {0, 1}n and it may guess that the input x denotes the location of the
random string. That is, on some particular input, the SampBQP algorithm is “lucky” and
gets access to the random string, which still makes SampBPP and SampBQP unequal.

Hiding the “Secret Random String” in a Bunch of OR’s

Therefore, our final construction goes further. Instead of hiding the random string in a secret
location amid the oracle bits, we hide it using a bunch of ORs. That is, suppose we want to
provide N uniform random bits. Then we provide them each as an OR of N bits. In this
way, a PH algorithm is still able to access the random bits, while a quantum algorithm, even
if it’s “lucky” with its additional input, still can’t get access to these hidden random bits.

5.2 Implementation
The Distribution DO on Oracles

We first describe formally how to hide a random string inside a bunch of OR’s by defining a
distribution DO on oracles.

For notational convenience, our constructed oracles always map all odd-length binary
strings to 0. So we can alternatively describe such an oracle O by a collection of functions
{fn}+∞n=0, where each fn is a function from {0, 1}2n → {0, 1}. That is, O2n is set to be fn for
each n, while the O2n+1’s are all constant zero functions.
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For each string p ∈ {0, 1}n, we use Bn,p to denote the set of strings in {0, 1}2n with
p as a prefix. Now we first define a distribution Dn on functions {0, 1}2n → {0, 1}, from
which a sample function fn is generated as follows: initially, we set fn(x) = 0 for all
x ∈ {0, 1}2n; then for each p ∈ {0, 1}n, with probability 0.5, we pick an element e in Bn,p at
uniformly random and set fn(e) = 1. Observe that by taking the OR of each Bn,p, we get a
function g(p) := ∨x∈Bn,pfn(x), which is a uniform random function from {0, 1}n to {0, 1} by
construction.

Finally, the Dn’s induce a distribution DO on oracles, which generates an oracle O by
drawing fn ∼ Dn independently for each integer n. That is, we set O2n to be fn, and O2n+1
to be 0, for each n.

Having defined the distribution DO, we are ready to state our result formally.

I Theorem 21. For an oracle O drawn from the distribution DO, the following two statements
hold with probability 1:

SampBPPTQBF,oracle = SampBQPTQBF,oracle.
PHTQBF,oracle is infinite.

From which our desired result follows immediately.

I Corollary 22. There exists an oracle O′ = TQBF⊕O such that SampBPPO
′

= SampBQPO
′

and PHO
′
is infinite.

The rest of this section is devoted to the proof of Theorem 21.

5.3 SampBPPTQBF,oracle = SampBQPTQBF,oracle with Probability 1
We first describe an algorithm for simulating SampBQPTQBF,oracle in SampBPPTQBF,oracle,
thereby proving the first part of Theorem 21. In the following, we assume that all oracle
algorithms are given access to two oracles, TQBF and O.

Given a SampBQP oracle algorithm M , our central task is to give a SampBPP oracle
algorithm that simulates M closely. Formally:

I Lemma 23. For any SampBQP oracle algorithm M , there is a SampBPP oracle algorithm
A such that:

Let O be an oracle drawn from DO, and let DMx,varepsilon and DAx,varepsilon be the distri-
butions output by MTQBF,oracle and ATQBF,oracle respectively on input 〈x, 01/ε〉. Then with
probability at least 1− exp{−(2 · |x|+ 1/ε)}, we have

‖DMx,varepsilon −DAx,varepsilon‖ ≤ ε.

Before proving Lemma 23, we show it implies the first part of Theorem 21.

Proof of the first part of Theorem 21. Fix a SampBQP oracle algorithm M , and let O be
an oracle drawn from DO. We first show that with probability 1, there is a classical algorithm
AM such that

‖DMx,varepsilon −D
AM
x,varepsilon‖ ≤ ε for all x ∈ {0, 1}∗ and ε = 2−k for some integer k. (6)

Let A be the SampBPP algorithm guaranteed by Lemma 23. For an input x ∈ {0, 1}∗
and an integer k, we call (x, k) a bad pair if ‖DMx,2−k −D

A
x,2−k‖ > 2−k. By Lemma 23, the

expected number of bad pairs is upper-bounded by
+∞∑
n=1

2n ·
+∞∑
k=1

exp(−(2n+ 2k)) ≤
+∞∑
n=1

+∞∑
k=1

exp(−(n+ k)) ≤ O(1).
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This means that with probability 1, there are only finitely many bad pairs, so we can handle
them by hardwiring their results into the algorithm A to get the algorithm AM we want.

Since there are only countably many SampBQP oracle algorithms M , we see with prob-
ability 1, for every SampBQP oracle algorithm M , there is a classical algorithm AM such
that (6) holds. We claim that in that case, SampBQPTQBF,oracle = SampBPPTQBF,oracle.

Let S be a sampling problem in SampBQPTQBF,oracle. This means that there is a SampBQP
oracle algorithm M , such that for all x ∈ {0, 1}∗ and ε, we have ‖DMx,varepsilon − Sx‖ ≤ ε.
Let AM be the corresponding SampBPP algorithm. Now consider the following algorithm
A′: given input 〈x, 01/ε〉, let k be the smallest integer such that 2−k ≤ ε/2; then run AM on
input 〈x, 02k〉 to get a sample from DAM

x,2−k .
Since

‖DA
′

x,varepsilon − Sx‖ = ‖DAM
x,2−k − Sx‖

≤ ‖DMx,2−k −D
AM
x,2−k‖+ ‖DMx,2−k − Sx‖ ≤ 2 · 2−k ≤ ε,

this means that A′ solves S and S ∈ SampBPPTQBF,oracle. So SampBQPTQBF,oracle ⊆
SampBPPTQBF,oracle with probability 1, which completes the proof. J

We now prove Lemma 23, which is the most technical part of the whole section.

Proof of Lemma 23. Recall that from the canonical description in Section 2.2, there exists a
fixed polynomial p, such that given input 〈x, 01/ε〉, the machineM first constructs a quantum
circuit C with N = p(|x|, 1/ε) qubits and N gates classically (C can contain TQBF and O
gates). We first set up some notation.

Notation. Recall that O can be specified by a collection of functions {fn}+∞n=0, where each
fn maps {0, 1}2n to {0, 1}. Without loss of generality, we can assume that all the O gates
act on an even number of qubits, and for each n, all the fn gates act on the first 2n qubits.

For a function f : {0, 1}k → {0, 1}, we use Uf to denote the unitary operator mapping
|i〉 to (−1)f(i)|i〉 for i ∈ {0, 1}k.

Suppose there are T O-gates in total, and suppose the i-th O-gate is an fni gate. Then
the unitary operator U applied by the circuit C can be decomposed as

U = UT+1(UfnT ⊗ IN−2nT ) · · · (Ufn2
⊗ IN−2n2)U2(Ufn1

⊗ IN−2n1)U1,

where the Ui’s are the unitary operators corresponding to the sub-circuits which don’t contain
an O gate.

Our algorithm proceeds by replacing each O-gate by a much simpler gate, one by one,
without affecting the final quantum state too much. It then simulates the final circuit with
the help of the TQBF oracle.

Replacing the t-th O-gate. Suppose we have already replaced the first t−1 O-gates. That
is, for each i ∈ [t− 1], we replaced the fni gate (the i-th O-gate) with a gi gate, and now we
are going to replace the t-th O-gate.

Let

|v〉 = Ut(Ugt−1 ⊗ IN−2nt−1) · · · (Ug2 ⊗ IN−2n2)U2(Ug1 ⊗ IN−2n1)U1|0〉⊗N ,

which is the quantum state right before the t-th O gate in the circuit after the replacement.
For brevity, we use f to denote the function fnt , and we drop the subscript t of nt when

it is clear from context.
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Analysis of incurred error. The t-th O-gate is an f gate. If we replace it by a g gate, the
change to the quantum state is

‖Uf ⊗ IN−2n|v〉 − Ug ⊗ IN−2n|v〉‖ = ‖(Uf − Ug)⊗ IN−2n|v〉‖.

We can analyze the above deviation by bounding its square. Let H be the Hilbert space
spanned by the last N − 2n qubits, and let ρ = TrH [|v〉〈v|]. Then we have

‖((Uf − Ug)⊗ IN−2n)|v〉‖2

= Tr
[
(Uf − Ug)†(Uf − Ug)⊗ IN−2n|v〉〈v|

]
= Tr

[
(Uf − Ug)†(Uf − Ug)ρ

]
.

Note that

(Uf − Ug)†(Uf − Ug) = 4
∑

f(i)6=g(i)

|i〉〈i|

from the definition. So we can further simplify the above trace as

Tr
[
(Uf − Ug)†(Uf − Ug)ρ

]
= 4

∑
f(i)6=g(i)

Tr[|i〉〈i|ρ] = 4
∑

f(i) 6=g(i)

〈i|ρ|i〉. (7)

Now, ρ is a (mixed) quantum state on the first 2n bits, and 〈i|ρ|i〉 is the probability
of seeing i when measuring ρ in the computational basis. So we can define a probability
distribution Q on {0, 1}2n by Q(i) := 〈i|ρ|i〉.

Using the distribution Q, the error term (7) can finally be simplified as:

4
∑

i∈{0,1}2n
Q(i) · [f(i) 6= g(i)] = 4 · Pr

i∼Q
[f(i) 6= g(i)], (8)

where [f(i) 6= g(i)] is the indicator function that takes value 1 when f(i) 6= g(i) and 0
otherwise.

A posterior distribution Dpost
n on functions from {0, 1}2n → {0, 1}. Now, recall that

f = fn is a function drawn from the distribution Dn. Our goal is to replace f by another
simple function g, such that with high probability, the introduced deviation (8) is small.

Note that when replacing the t-th O gate, we may already have previously queried some
contents of f (i.e., it is not the first fn gate in the circuit). So we need to consider the
posterior distribution Dpost

n on functions from {0, 1}2n → {0, 1}. That is, we want a function
g, such that with high probability over f ∼ Dpost

n , the error term (8) is small.
We use a function fknown : {0, 1}2n → {0, 1, ∗} to encode our knowledge: if f(i) is not

queried, then we set fknown(i) := ∗; otherwise we set fknown(i) := f(i). Then Dpost
n is simply

the distribution obtained from Dn by conditioning on the event that f is consistent with
fknown.

We can now work out the posterior distribution Dpost
n from the definition of Dn and Bayes’

rule.
For f ∼ Dpost

n , we can see that all the sets Bn,p (recall that Bn,p is the set of all strings
in {0, 1}2n with p as a prefix) are still independent. So we can consider each set separately.

For each p ∈ {0, 1}n, if there is an x ∈ Bn,p such that fknown(x) = 1, then by the
construction of Dn, all other elements y ∈ Bn,p must satisfy f(y) = 0.



S. Aaronson and L. Chen 22:31

Otherwise, if there is no x ∈ Bn,p such that fknown(x) = 1, then we set Zp = |{fknown(x) =
0 | x ∈ Bn,p}| and note that |Bn,p| = 2n. By Bayes’ rule, we see that with probability

1
2− Zp · 2−n

, all y ∈ Bn,p satisfy f(y) = 0; and for each y ∈ Bn,p such that fknown(y) = ∗,

with probability 2−n

2− Zp · 2−n
, we have that y is the only element of Bn,p that satisfies

f(y) = 1.

Construction and Analysis of g. Our construction of g goes as follows: we first set g(x) =
fknown(x) for all x such that fknown(x) 6= ∗. Then for a parameter τ which will be specified
later, we query all x ∈ {0, 1}2n with Q(x) ≥ τ , and set g(x) = f(x) for them. For all other
positions of g, we simply set them to zero. Hence, there are at most O(1/τ) +W ones in g,
where W denotes the number of ones in fknown.

The following three properties of g are immediate from the construction.

f(x) 6= g(x) implies Q(x) ≤ τ. (9)
g(x) = 1 implies f(x) = g(x). (10)
For each p ∈ {0, 1}n, there is at most one x ∈ Bn,p with f(x) 6= g(x). (11)

Upper bounding the deviation (8). Now we are going to show that Pr
x∼Q

[f(x) 6= g(x)] is

very small, with overwhelming probability over the posterior distribution Dpost
n .

We first define 2n random variables {Xp}p∈{0,1}n , where Xp =
∑

x∈Bn,p

Q(x) · [f(x) 6= g(x)]

for each p ∈ {0, 1}n. By the construction of Dpost
n , we can see that all Xp’s are independent.

Moreover, by properties (9) and (11), there is at most one x ∈ Bn,p such that f(x) 6= g(x),
and that x must satisfy Q(x) ≤ τ . Therefore Xp ∈ [0, tau] for every p.

Let X =
∑

p∈{0,1}n
Xp, and µ = E[X]. Alternatively, we can write X as

X =
∑

x∈{0,1}2n
Q(x) · [f(x) 6= g(x)],

so

µ =
∑

x∈{0,1}2n
Q(x) · E[f(x) 6= g(x)].

We claim that E[f(x) 6= g(x)] ≤ 2−n for all x ∈ {0, 1}2n, and consequently µ ≤ 2−n.
Fix an x ∈ {0, 1}2n, and suppose x ∈ Bn,p. When g(x) = 1, we must have f(x) = g(x) by
property (10). When g(x) = 0, by the definition of Dpost

n , we have f(x) = 1 with probability at

most 2−n

2− Zp · 2−n
≤ 2−n. So E[f(i) 6= g(i)] ≤ 2−n in both cases and the claim is established.

Applying the Chernoff Bound. Set δ = µ−1ε4

32T 2 . If δ ≤ 1, then we have

32T 2ε−4 ≥ µ−1 ≥ 2n.

This means that we can simply query all the positions in fn using 22n = O(T 4 · ε−8) queries,
as this bound is polynomial in |x| and 1/ε (recall that T ≤ N = p(|x|, 1/ε)).
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Hence, we can assume that δ > 1. So by Corollary 7, we have

Pr[X ≥ 2δµ] ≤ Pr[X ≥ (1 + δ)µ] ≤ exp
{
−δµ3τ

}
.

Finally, we set τ = ε4

96T 2 · (2n+ ε−1 + lnT ) .

Therefore, with probability

1− exp
{
−δµ3τ

}
= 1− exp(−(2n+ ε−1 + lnT )) = 1− exp(−(2n+ ε−1)

T
,

we have

‖(Uf − Ug)⊗ IN−2n|v〉‖2 = 4 ·X ≤ 8δµ = ε4

4T 2 ,

which in turn implies

‖(Uf − Ug)⊗ IN−2n|v〉‖ ≤
ε2

2T .

Moreover, we can verify that g only has O(1/τ) +W = poly(n, 1/ε) ones.

Analysis of the final circuit Cfinal. Suppose that at the end, for each t ∈ [T ], our algorithm
has replaced the t-th O-gate with a gt gate, where gt is a function from {0, 1}2nt to {0, 1}.
Let Cfinal be the circuit after the replacement.

Let

V = UT+1(UgT ⊗ IN−2nT ) · · · (Ug2 ⊗ IN−2n2)U2(Ug1 ⊗ IN−2n1)U1

be the unitary operator corresponding to Cfinal. Also, recall that U is the unitary operator
corresponding to the original circuit C. We are going to show that U |0〉⊗N and V |0〉⊗N , the
final quantum states produced by U and V respectively, are very close.

We first define a sequence of intermediate quantum states. Let |u1〉 = U1|0〉⊗N . Then for
each t > 1, we define

|ut〉 = Ut(Ufnt−1
⊗ IN−2nt−1)|ut−1〉.

That is, |ut〉 is the quantum state immediately before applying the t-th O-gate in the original
circuit. Similarly, we let |v1〉 = U1|0〉⊗N , and

|vt〉 = Ut(Ugt−1 ⊗ IN−2nt−1)|ut−1〉

for each t > 1.
From the analysis of our algorithm, over O ∼ DO, for each t ∈ [T ], with probability

1− exp(−(2n+ ε−1))/T , we have

‖Ufnt ⊗ IN−2nt |vt〉 − Ugt ⊗ IN−2nt |vt〉‖ ≤
ε2

2T . (12)

So by a simple union bound, with probability at least 1− exp(−(2n+ ε−1)), the above
bound holds for all t ∈ [T ]. We claim that in this case, for each t ∈ [T + 1], we have

‖|vt〉 − |ut〉‖ ≤ (t− 1) · ε
2

2T . (13)
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We prove this by induction. Clearly it is true for t = 1. When t > 1, suppose (13) holds
for t− 1; then

‖|vt〉 − |ut〉‖ =‖Ut(Ogt−1 ⊗ IN−2nt−1)|vt−1〉 − Ut(fnt−1 ⊗ IN−2nt−1)|ut−1〉‖
=‖Ugt−1 ⊗ IN−2nt−1 |vt−1〉 − Ufnt−1

⊗ IN−2nt−1 |ut−1〉‖

≤‖Ugt−1 ⊗ IN−2nt−1 |vt−1〉 − Ufnt−1
⊗ IN−2nt−1 |vt−1〉‖

+ ‖Ufnt−1
⊗ IN−2nt−1 |vt−1〉 − Ufnt−1

⊗ IN−2nt−1 |ut−1〉‖

≤ ε
2

2T + ‖|ut−1〉 − |vt−1〉‖ ≤ (t− 1) · ε
2

2T ,

where the second line holds by the fact that Ut is unitary, the third line holds by the triangle
inequality, and the last line holds by (12) and the induction hypothesis.

Upper-bounding the error. Therefore, with probability at least 1− exp(−(2n+ ε−1)), we
have

‖|vT+1〉 − |uT+1〉‖ = ‖U |0〉⊗N − V |0〉⊗N‖ ≤ ε2

2 .

Now, our classical algorithm A then simulates stage 2 and 3 of the SampBQP algorithmM

straightforwardly. That is, it first takes a sample z by measuring |vT+1〉 in the computational
basis, and then outputs Aoutput(z) as its sample, where Aoutput is the classical algorithm used
by M in stage 3.

From our previous analysis, A queries the oracle only poly(n, 1/ε) times. In addition, it
is not hard to see that all the computations can be done in PSPACE, and therefore can be
implemented in poly(n, 1/ε) time with the help of the TQBF oracle. So A is a SampBPP
algorithm.

By Corollary 5, with probability at least 1−exp(−(2n+ε−1)), the distribution DAx,varepsilon
outputted by A satisfies

‖DAx,varepsilon −DMx,varepsilon‖ ≤
√

2 · ε
2

2 = ε,

and this completes the proof of Lemma 23. J

5.4 PHTQBF,oracle is Infinite with Probability 1
For the second part of Theorem 21, we resort to the well-known connection between PH and
constant-depth circuit lower bounds.

The Average Case Constant-depth Circuit Lower Bound

For convenience, we will use the recent breakthrough result by Rossman, Servedio, and
Tan [49], which shows that PH is infinite relative to a random oracle with probability 1.
(Earlier constructions of oracles making PH infinite would also have worked for us, but a
random oracle is a particularly nice choice.)

I Theorem 24. Let 2 ≤ d ≤ c
√

logn
log logn , where c > 0 is an absolute constant. Let Sipserd

be the explicit n-variable read-once monotone depth-d formula described in [49]. Then any

circuit C ′ of depth at most d − 1 and size at most S = 2n
1

6(d−1) over {0, 1}n agrees with
Sipserd on at most (1

2 + n−Ω(1/d)) · 2n inputs.
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Dn as a Distribution on {0, 1}22n

In order to use the above result to prove the second part of Theorem 21, we need to interpret
Dn (originally a distribution over functions mapping {0, 1}2n to {0, 1}) as a distribution on
{0, 1}2

2n
in the following way.

Let τ be the bijection between [22n] and {0, 1}2n that maps an integer i ∈ [22n] to the
i-th binary string in {0, 1}2n in lexicographic order. Then a function f : {0, 1}2n → {0, 1}
is equivalent to a binary string xf ∈ {0, 1}2

2n
, where the i-th bit of xf , denoted xfi , equals

f(τ(i)). Clearly this is a bijection between functions from {0, 1}2n to {0, 1} and binary
strings in {0, 1}2

2n
.

For notational simplicity, when we say a binary string x ∈ {0, 1}2
2n

is drawn from Dn, it
means x is generated by first drawing a sample function f ∼ Dn and then setting x = xf .

Note that for p ∈ {0, 1}n, if p is the i-th binary string in {0, 1}n, then the set Bn,p
corresponds to the bits x(i−1)2n+1, dotsc, xi2n .

Distributional Constant-Depth Circuit Lower Bound over Dn

Now we are ready to state our distributional circuit lower bound over Dn formally.

I Lemma 25. For an integer n, let N = 2n and Sipserd be the N-variable Sipser function
as in Theorem 24.

Consider the Boolean function (Sipserd ◦ OR) on {0, 1}N
2
defined as follows:

Given inputs x1, x2, dotsc, xN2 , for each 1 ≤ i ≤ N , set

zi := ∨iNj=(i−1)N+1xj ,

and

(Sipserd ◦ OR)(x) := Sipserd(z).

Then any circuit C ′ of depth at most d − 1 and size at most S = 2N
1

6(d−1) over {0, 1}N
2

agrees with (Sipserd ◦OR) with probability at most 1
2 +N−Ω(1/d) when inputs are drawn from

the distribution Dn.

Before proving Lemma 25, we show that it implies the second part of Theorem 21 easily.

Proof of the second part of Theorem 21. Consider the function (Sipserd ◦ OR) defined as
in Lemma 25. It is easy to see that it has a polynomial-size circuit (in fact, a formula) of
depth d + 1; and by Lemma 25, every polynomial size circuit of depth d − 1 has at most
1
2 +o(1) correlation with it when the inputs are drawn from the distribution Dn. So it follows
from the standard connection between PH and AC0 that PHO is infinite with probability 1
when O ∼ DO. J

Finally, we prove Lemma 25.

Proof of Lemma 25. By Theorem 24, there is a universal constant c, such that any circuit
C of depth at most d − 1 and size at most S over {0, 1}N agrees with Sipserd on at most(

1
2 +N−c/d

)
· 2N inputs.
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We are going to show this lemma holds for the same c. Suppose not; then we have a

circuit C of depth at most d− 1 and size at most S = 2N
1

6(d−1) over {0, 1}N
2
, such that

Pr
x∼Dn

[C(x) = (Sipserd ◦ OR)(x)] > 1
2 +N−c/d.

Now, for each y1, y2, dotsc, yN ∈ [N ]N , we define a distribution Dy1,y2,dotsc,yN
n on {0, 1}N

2

as follows. To generate a sample x ∼ Dy1,y2,dotsc,yN
n , we first set x = 0N

2
. Then for each

i ∈ [N ], we set x(i−1)N+yi to 1 with probability 1/2.
By construction, we can see for all x in the support of Dy1,y2,dotsc,yN

n ,

(Sipserd ◦ OR)(x) = Sipserd(xy1 , xN+y2 , x2N+y3 , dotsc, x(N−1)N+yN ).

Moreover, by definition, Dn is just the average of these distributions:

Dn = N−N ·
∑

y1,y2,dotsc,yN

Dy1,y2,dotsc,yN
n .

By an averaging argument, there exist y1, y2, dotsc, yN ∈ [N ]N such that

Pr
x∼Dy1,y2,dotsc,yNn

[C(x) = (Sipserd ◦ OR)(x)] > 1
2 +N−c/d.

Setting x(i−1)N+yi = zi for each i, and all other inputs to 0 in the circuit C, we then have a
circuit D of size at most S and depth at most d− 1 over {0, 1}N . And by the construction
of Dy1,y2,dotsc,yN

n and the definition of the function (Sipserd ◦OR), we see that D agrees with
Sipserd on at least a 1

2 +N−c/d fraction of inputs. But this is a contradiction. J

6 Maximal Quantum Supremacy for Black-Box Sampling and
Relation Problems

In this section we present our results about Fourier Fishing and Fourier Sampling.
We will establish an Ω(N/ logN) lower bound on the classical query complexity of

Fourier Fishing, as well as an optimal Ω(N) lower bound on the classical query complexity of
Fourier Sampling.

6.1 Preliminaries
We begin by introducing some useful notations. Throughout this section, given a function
f : {0, 1}n → {−1, 1}, we define the Fourier coefficient

f̂(z) = 2−n/2
∑

x∈{0,1}n
f(x) · (−1)x·z

for each z ∈ {0, 1}n.
We also define

adv(f) := 2−n ·
∑

z∈{0,1}n,|f̂(z)|≥1

f̂(z)2,

and set N = 2n.
The following two constants will be used frequently in this section.

SuccQ = 2√
2π

∫ +∞

1
x2e−x

2/2dx ≈ 0.801 and SuccR = 2√
2π

∫ +∞

1
e−x

2/2dx ≈ 0.317.

Finally, we use Un to denote the uniform distribution on functions f : {0, 1}n → {−1, 1}.
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An Approximate Formula for the Binomial Coefficients

We also need the following lemma to approximate the binomial coefficients to ease some
calculations in our proofs.

I Lemma 26 ((5.41) in [56]). For value n and |k − n/2| = o(n2/3), we have(
n

k

)
≈
(
n

n/2

)
· e−

(k−n/2)2
n/2

and

ln
(
n

k

)
= ln

(
n

n/2

)
− (k − n/2)2

n/2 + o(1).

6.2 Fourier Fishing and Fourier Sampling
We now formally define the Fourier Fishing and the Fourier Sampling problems.

I Definition 27. We are given oracle access to a function f : {0, 1}n → {−1, 1}.
In Fourier Sampling (or Fsampling in short), our task is to sample from a distribution D

over {0, 1}n such that ‖D − Df‖ ≤ ε, where Df is the distribution defined by

Pr
Df

[y] = 2−nf̂(y)2 =

 1
2n

∑
x∈{0,1}n

f(x)(−1)x·y
2.

In Fourier Fishing (or Ffishing in short), we want to find a z such that |f̂(z)| ≥ 1. We also
define a promise version of Fourier Fishing (promise-Ffishing for short), where the function f
is promised to satisfy adv(f) ≥ SuccQ −

1
n
.

A Simple 1-Query Quantum Algorithm

Next we describe a simple 1-query quantum algorithm for both problems. It consists of a
round of Hadamard gates, then a query to f , then another round of Hadamard gates, then a
measurement in the computational basis.

The following lemma follows directly from the definitions of Fsampling and Ffishing.

I Lemma 28. Given oracle access to a function f : {0, 1}n → {−1, 1}, the above algorithm
solves Fsampling exactly (i.e. with ε = 0), and Ffishing with probability adv(f).

We can now explain the meanings of the constants SuccQ and SuccR. When the function f
is drawn from Un, by a simple calculation, we can see that SuccQ is the success probability for
the above simple quantum algorithm on Fourier Fishing, and SuccR is the success probability
for an algorithm outputting a uniform random string in {0, 1}n.

6.3 The Ω(N/ logN) Lower Bound for Fourier Fishing
We begin with the Ω(N/ logN) randomized lower bound for Fourier Fishing. Formally:

I Theorem 29. There is no o(N/ logN)-query randomized algorithm that solves promise-Ffishing
with SuccR + Ω(1) success probability.
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To prove Theorem 29, we first show that when the function f is drawn from Un, no classical
algorithm with o(N/ logN) queries can solve Ffishing with probability SuccR + Ω(1); we
then show with high probability, a function f ← Un satisfies the promise of promise-Ffishing.
Formally, we have the following two lemmas.

I Lemma 30. For large enough n,

Pr
f←Un

[
adv(f) < SuccQ −

1
n

]
<

1
n
.

I Lemma 31. Over f ← Un, no randomized algorithm with o(N/ logN) queries can solve
Ffishing with probability

SuccR + Ω(1).

Before proving these two technical lemmas, we show that they together imply Theorem 29
easily.

Proof of Theorem 29. Suppose by contradiction that there is an o(N/ logN) query ran-
domized algorithm A which has a SuccR + Ω(1) success probability for promise-Ffishing.
From Lemma 30, a 1 − o(1) fraction of all functions from {0, 1}n → {−1, 1} satisfy the
promise of promise-Ffishing. Therefore, when the sample function f is drawn from Uf , with
probability 1 − o(1) it satisfies the promise of promise-Ffishing, and consequently A has a
SuccR + Ω(1) success probability of solving Ffishing with that f . This means that A has a
success probability of

(1− o(1)) · (SuccR + Ω(1)) = SuccR + Ω(1)

when f ← Un, contradicting Lemma 31. J

The proof of Lemma 30 is based on a tedious calculation so we defer it to Appendix C.
Now we prove Lemma 31.

Proof of Lemma 31. By Yao’s principle, it suffices to consider only deterministic algorithms,
and we can assume the algorithm A makes exactly t = o(N/ logN) queries without loss of
generality.

Notations. Suppose that at the end of the algorithm, A has queried the entries in a subset
S ⊆ {0, 1}n such that |S| = t.

For each z ∈ {0, 1}n, we define

f̂seen(z) = 1√
t

∑
x∈S

f(x) · (−1)x·z

and similarly

f̂unseenf(z) = 1√
N − t

∑
x∈{0,1}n\S

f(x) · (−1)x·z.

From the definitions of f̂(z), f̂seen(z) and f̂unseen(z), and note that N/t = ω(logN) =
ω(lnN), we have

f̂(z) =
(√

t · f̂seen(z) +
√
N − t · f̂unseen(z)

)/√
N

= f̂seen(z)/ω(
√

lnN) + f̂unseen(z) · (1− o(1)). (14)
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W.h.p. f̂seen(z) is small for all z ∈ {0, 1}n. We first show that, with probability at least
1− o(1) over f ← Un, we have |f̂seen(z)| ≤ 2

√
lnN for all z ∈ {0, 1}n.

Fix a z ∈ {0, 1}n, and note that for the algorithm A, even though which position to
query next might depend on the history, the value in that position is a uniform random bit
in {−1, 1}. So f̂seen(z) is a sum of t uniform i.i.d. random variables in {−1, 1}.

Therefore, the probability that |f̂seen(z)| > 2
√

lnN for this fixed z is

2√
2π

∫ +∞

2
√

lnN
e−x

2/2dx = o

(
1
N

)
.

Then by a simple union bound, with probability 1− o(1), there is no z ∈ {0, 1}n such
that |f̂seen(z)| > 2

√
lnN at the end of t queries. We denote the nonexistence of such a z as

the event Ebad.

The lower bound. In the following we condition on Ebad. We show in this case, A cannot
solve Ffishing with a success probability better than SuccR, thereby proving the lower bound.

From (14), for each z ∈ {0, 1}n, we have

f̂(z) = o(1) + f̂unseen(z) · (1− o(1)).

Therefore, the probability of |f̂(z)| ≥ 1 is bounded by the probability that |f̂unseen(z)| ≥
1− o(1). Since f̂unseen(z) is independent of all the seen values in S, we have

Pr
[
f̂unseen(z) ≥ 1− o(1)

]
= 2√

2π

∫ +∞

1−o(1)
e−x

2/2dx

= 2√
2π

∫ +∞

1
e−x

2/2dx+ o(1)

= SuccR + o(1).

Hence, no matter which z is outputted by A, we have |f̂(z)| ≥ 1 with probability at most
SuccR + o(1). That means that if we condition on Ebad, then A cannot solve Ffishing with
probability SuccR + Ω(1). As Ebad happens with probability 1 − o(1), this finishes the
proof. J

6.4 The Optimal Ω(N) Lower Bound for Fourier Sampling
We first show that in fact, Lemma 31 already implies an Ω(N/ logN) lower bound for
Fourier Sampling, which holds for a quite large ε.

I Theorem 32. For any ε < SuccQ − SuccR ≈ 0.483, the randomized query complexity for
Fsampling is Ω(N/ logN).

Proof. Note when f ← Un, an exact algorithm for Fsampling can be used to solve Ffishing
with probability SuccQ. Hence, a sampling algorithm for Fsampling with total variance ≤ ε
can solve Ffishing with probability at least SuccQ − ε, when f ← Un.

Then the lower bound follows directly from Lemma 31. J

Next we prove the optimal Ω(N) lower bound for Fourier Sampling.

I Theorem 33. There is a constant ε > 0, such that any randomized algorithm solving
Fsampling with error at most ε needs Ω(N) queries.
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Proof.
Reduction to a simpler problem. Sampling problems are hard to approach, so we first
reduce to a much simpler problem with Boolean output (“accept” or “reject”).

Let A be a randomized algorithm for Fsampling with total variance ≤ ε. For a function
f : {0, 1}n → {−1, 1} and y ∈ {0, 1}n, we set pf,y to be the probability that A outputs y
with oracle access to f .

By the definition of Fsampling, for all f , we have

1
2

∑
y∈{0,1}n

∣∣∣pf,y − 2−nf̂(y)2
∣∣∣ ≤ ε.

By an averaging argument, this implies that there exists a y∗ ∈ {0, 1}n such that

E
f←Un

[∣∣∣pf,y∗ − 2−nf̂(y∗)2
∣∣∣] ≤ 2ε

N
.

Then by Markov’s inequality, we have∣∣∣pf,y∗ − 2−nf̂(y∗)2
∣∣∣ ≤ 400ε

N
,

for at least a 199/200 fraction of f ’s. Now we set ε = 1
400 ·

1
100 .

Without loss of generality, we can assume that y∗ = 0n. Let zi := 1 + f(xi)
2 (where

x1, x2, dotsc, xN is a lexicographic ordering of inputs), Z := (z1, dotsc, zN ) and |Z| :=
N∑
i=1

zi.

Then we have

2−nf̂(0n)2 =
(

2|Z|
N
− 1
)

2.

Now we can simplify the question to one of how many zi’s the algorithm A needs to query,
in order to output 0n (we call it “accept" for convenience) with a probability pZ = pf,0n that
satisfies∣∣∣∣pZ − (2|Z|

N
− 1
)

2
∣∣∣∣ ≤ 400ε

N
≤ 0.01

N
(15)

with probability at least 199/200 over Z ∈ {0, 1}N .

Analysis of the acceptance probability of A. Without loss of generality, we can assume
that A non-adaptively queries t randomly-chosen inputs zi1 , zi2 , dotsc, zit , and then accepts
with a probability qk that depends solely on k := zi1 + · · ·+ zit . The reason is that we can
change any other algorithm into this restricted form by averaging over all N ! permutations
of Z without affecting its correctness.

Let pw be the probability that A accepts when |Z| = w. Then

pw =
t∑

k=0
qk · rk,w,

where rk,w :=
(
t

k

)(
N − t
w − k

)/(N
w

)
, is the probability that zi1 + · · ·+ zit = k conditioned

on |Z| = w.
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Construction and Analysis of the sets U, V,W . Now, consider the following three sets:

U :=
{
Z :

∣∣∣∣|Z| − N

2

∣∣∣∣ ≤
√
N

20

}
,

V :=
{
Z :

(
1− 1

20

)√
N

2 ≤ |Z| − N

2 ≤
√
N

2

}
,

W :=
{
Z :

(
1− 1

20

)√
N ≤ |Z| − N

2 ≤
√
N

}
.

We calculate the probability that a uniform random Z belongs to these three sets. For a
sufficiently large N , we have

Pr
Z

[Z ∈ U ] ≥erf
(√

2
20

)
− o(1) > 0.075,

Pr
Z

[Z ∈ V ] ≥1
2 ·
(

erf
(√

2
2

)
− erf

(√
2

2 ·
19
20

))
− o(1) > 0.01,

Pr
Z

[Z ∈W ] ≥1
2 ·
(

erf(
√

2)− erf
(√

2 · 19
20

))
− o(1) > 0.005.

Construction and Analysis of w0, w1, w2. Since all Pr
Z

[Z ∈ U ],Pr
Z

[Z ∈ V ],Pr
Z

[Z ∈ W ]
> 0.005, and recall that for at least a 1− 0.005 fraction of Z, we have∣∣∣∣pZ − (2|Z|

N
− 1
)

2
∣∣∣∣ ≤ 400ε

N
≤ 0.01

N
.

So there must exist w0 ∈ U,w1 ∈ V,w2 ∈W such that∣∣∣∣pwi − 4 ·
(
wi −N/2

N

)
2
∣∣∣∣ ≤ 0.01

N
(16)

for each i ∈ {0, 1, 2}.

To ease our calculation, let ui = wi −N/2√
N

, then we have wi = N/2 + ui
√
N . By the

definition of the ui’s, we also have |u0| ≤
1
20 , u1 ∈ [0.475, 0.5], u2 ∈ [0.95, 1].

Plugging in ui’s, for each i ∈ {0, 1, 2}, equation (16) simplifies to∣∣∣∣pwi − 4u2
i

N

∣∣∣∣ ≤ 0.01
N

. (17)

We can calculate the ranges of the pwi ’s by plugging the ranges of the ui’s,

pw0 ≤
0.02
N

,

pw1 ∈
[

0.952 − 0.01
N

, frac1 + 0.01N
]
⊆
[

0.89
N

, frac1.01N
]
,

pw2 ∈
[

4 · 0.952 − 0.01
N

, frac4 + 0.01N
]
⊆
[

3.6
N
, frac4.01N

]
.

We are going to show that the above is impossible when t = o(N). That is, one cannot
set the qk’s in such a way that all pwi ’s satisfy the above constraints when t = o(N).
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It is safe to set qk to zero when |k− t/2| is large. To simplify the matters, we first show
that we can set nearly all the qk’s to zero. By the Chernoff bound without replacement, for
each wi and large enough c we have∑

k:|k−t/2|>c
√
t

rk,wi

= Pr
[∣∣zi1 + · · ·+ zit − t

2
∣∣ ≥ c√t : |Z| = wi = N

2 + ui
√
N
]

≤ Pr
[∣∣∣zi1 + · · ·+ zit −

(
t
2 + uit√

N

)∣∣∣ ≥ c√t− ∣∣∣( t2 + uit√
N

)
− t

2

∣∣∣ : |Z| = wi = N
2 + ui

√
N
]

≤ Pr
[∣∣∣zi1 + · · ·+ zit −

(
t
2 + uit√

N

)∣∣∣ ≥ c√t− |ui|√t : |Z| = N
2 + ui

√
N
]

( t√
N
≤
√
t)

≤ exp
{
−2 (c

√
t−|ui|

√
t)2

t

}
= exp

{
−2(c− |ui|)2}

≤ exp
{

Ω(c2)
}
.

Then we can set c = c1
√

lnN for a sufficiently large constant c1, so that for all wi’s,∑
k:|k−t/2|>c

√
t

rk,wi ≤
1
N2 .

This means that we can simply set all qk’s with |k − t/2| > c
√
t = c1

√
t lnN to zero, and

only consider k such that |k− t/2| ≤ c1
√
t lnN , as this only changes each pwi by a negligible

value. From now on, we call an integer k valid, if |k − t/2| ≤ c1
√
t lnN .

Either
rk,w0

rk,w1

≥ 0.05 or
rk,w2

rk,w1

≥ 10. Now, we are going to show the most technical part

of this proof: for all valid k, we have either
rk,w0

rk,w1

≥ 0.05 or rk,w2

rk,w1

≥ 10. (18)

Suppose for contradiction that there is a valid k that satisfies
rk,w0

rk,w1

< 0.05 and rk,w2

rk,w1

< 10. (19)

Estimation of rk,wi ’s. We first use Lemma 26 to derive an accurate estimate of ln rk,wi
for each wi.

We set Nt = N − t for simplicity. Recall that

rk,w =
(
t

k

)(
Nt

w − k

)/(N
w

)
.

For each wi, since |k − t/2| ≤ c1
√
t lnN and t = o(N), we have∣∣∣∣wi − k − Nt

2

∣∣∣∣ ≤ ∣∣∣∣wi − N

2

∣∣∣∣+
∣∣∣∣k − t

2

∣∣∣∣ ≤ ui√N + c1
√
t lnN = o(N2/3

t ),

and note that |wi −N/2| = |ui
√
N | = o(N2/3). So we can apply Lemma 26 to derive

ln rk,wi = ln
(
t

k

)
+ ln

(
Nt

wi − k

)
− ln

(
N

wi

)
= − (wi − k −Nt/2)2

Nt/2
+ (wi −N/2)2

N/2 + C + ln
(
t

k

)
+ o(1),

in which C is a constant that does not depend on k or wi.
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Let d = (k − t/2)/
√
t (so k = t/2 + d

√
t), and recall that wi = N/2 + ui

√
N for each wi.

We can further simplify the expression as

ln rk,wi = − (N/2+ui
√
N−t/2−d

√
t−Nt/2)2

Nt/2 + (N/2+ui
√
N−N/2)2

N/2 + C + ln
(
t

k

)
+ o(1)

= − (ui
√
N−d

√
t)2

Nt/2 + 2u2
i + C + ln

(
t

k

)
+ o(1).

Estimation of
rk,wj

rk,wi

. Note that Nt = N − t = (1 − o(1))N . So we can approximate the

ratio between two rk,wi and rk,wj by

ln
rk,wj
rk,wi

= ln rk,wj − ln rk,wi

= − (uj
√
N − d

√
t)2

Nt/2
+ 2u2

j + (ui
√
N − d

√
t)2

Nt/2
− 2u2

i + o(1)

= 2u2
j − 2u2

i + ((ui + uj)
√
N − 2d

√
t)(ui − uj)

√
N

Nt/2
+ o(1)

= 2u2
j − 2u2

i + 2(u2
i − u2

j )− 4d
√
tN

Nt
(ui − uj) + o(1)

= −4d
√
tN

Nt
(ui − uj) + o(1).

Verifying (18). Finally, to simplify matters further, we set x = −4d
√
tN

Nt
, and substitute

it in (19) for k. We have

ln rk,w0

rk,w1

= x(u1 − u0) + o(1) < − ln 20,

which simplifies to

x <
− ln 20
u1 − u0

+ o(1) ≤ − ln 20
0.505 + o(1) ≤ −5.93 + o(1).

Similarly, we have

ln rk,w2

rk,w1

= x(u1 − u2) + o(1) < ln 10

and

x > − ln 10
u2 − u1

− o(1) ≥ − ln 10
0.45 − o(1) ≥ −5.12− o(1).

contradiction.

The lower bound. So (18) holds for all valid k, which means for all k such that |k− t/2| ≤
c1
√
t lnN , either rk,w0

rk,w1

≥ 0.05 or rk,w2

rk,w1

≥ 10.

Let H be the set of all valid integers k. We set

S =
{
k ∈ H : rk,w0

rk,w1

≥ 0.05
}

and T = H \ S.
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By (18), for any k ∈ T , we have rk,w2

rk,w1

≥ 10.

Since pw1 =
∑
k∈S

qk · rk,w1 +
∑
k∈T

qk · rk,w1 ≥
0.89
N

(recall we have set all qk’s to zero for

k /∈ H), we must have either
∑
k∈S

qk · rk,w1 ≥
0.445
N

or
∑
k∈T

qk · rk,w1 ≥
0.445
N

.

If
∑
k∈S

qk · rk,w1 ≥
0.445
N

, we have

pw0 ≥
∑
k∈S

qk · rk,w1 ·
rk,w0

rk,w1

≥ 0.445
N
· 0.05 ≥ 0.022

N
,

which contradicts the constraint that pw0 ≤
0.02
N

. Otherwise,
∑
k∈T

qk · rk,w1 ≥
0.445
N

; then

pw2 ≥
∑
k∈T

qk · rk,w1 ·
rk,w2

rk,w1

≥ 0.445
N
· 10 ≥ 4.45

N
,

which violates the requirement that pw2 ≤
4.01
N

.
Since both cases lead to a contradiction, A needs to make Ω(N) queries and this completes

the proof. J

7 Quantum Supremacy Relative to Efficiently-Computable Oracles

We now discuss our results about quantum supremacy relative to oracles in P/poly.
Building on work by Zhandry [61] and Servedio and Gortler [53], we first show that, if

(classical) one-way functions exist, then there exists an oracle O ∈ P/poly such that BPPO 6=
BQPO. Then we make a connection to the previous section by showing that, assuming
the existence of (classical) subexponentially strong one-way functions, Fourier Fishing and
Fourier Sampling are hard even when it is promised that the oracle is in P/poly.

We also study several other complexity questions relative to P/poly oracles: for example,
P vs NP, P vs BPP, and BQP vs SZK. Since these questions are not connected directly with
quantum supremacy, we will discuss them in Appendix A.

7.1 Preliminaries
Recall that an oracle O : {0, 1}∗ → {0, 1} is itself a language, so we say that an oracle O is
in P/poly when the corresponding language belongs to P/poly, and we use On to denote its
restriction to {0, 1}n.

Given two sets X and Y, we define YX as the set of functions f : X → Y. For a set X ,
we will sometimes abuse notation and write X to denote the uniform distribution on X .

(Quantum) Pseudorandom Functions and Permutations

We are going to use pseudorandom functions and permutations throughout this section, so
we first review their definitions.

I Definition 34 (PRF and PRP). A pesudorandom function is a function PRF : K×X → Y ,
where K is the key-space, and X and Y are the domain and the range. K, domain, image
are implicitly functions of the security parameter n.10 We write y = PRFk(x).

10We denote them by Kn, domainn, imagen when we need to be clear about the security parameter n.
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Similarly, a pesudorandom permutation is a function PRP : K ×X → X , where K is the
key-space, and X is the domain of the permutation. K and X are implicitly functions of the
security parameter n. We write y = PRPk(x). It is guaranteed that PRPk is a permutation
on X for each k ∈ K.

For simplicity, we use PRFK to denote the distribution on functions f : X → Y by drawing
k ← K and set f := PRFk.

We now introduce the definitions of classical and quantum security.

I Definition 35 (Classical-Security). A pseudorandom function PRF : K × X → Y is (clas-
sically) secure if no classical adversary A can distinguish between a truly random function
and the function PRFk for a random k in polynomial time. That is, for every such A, there
exists a negligible function ε = ε(n) such that∣∣∣∣ Pr

k←K
[APRFk() = 1]− Pr

f←YX
[Af () = 1]

∣∣∣∣ < ε.

Also, we say that a pseudorandom function PRF is exponentially-secure, if the above holds
even for classical adversaries that take 2O(n) time.

Similarly, a pseudorandom permutation PRP is (classically) secure if no classical adversary
A can distinguish between a truly random permutation and the function PRPk for a random
k in polynomial time.

Sometimes, especially in the context of one-way functions, we will talk about subexponential
security. By this we simply mean that there is no adversary running in 2n

o(1)
time.

I Definition 36 (Quantum-Security). A pseudorandom function PRF is quantum-secure if
no quantum adversary A making quantum queries can distinguish between a truly random
function and the function PRFk for a random k in polynomial time.

Also, a pseudorandom permutation PRP is quantum-secure if no quantum adversary
A making quantum queries can distinguish between a truly random permutation and the
function PRPk for a random k in polynomial time.

On the Existence of PRFs

It is well-known that the existence of one-way functions implies the existence of PRFs and
PRPs.

I Lemma 37 ([34, 32, 33, 42]). If one-way functions exist, then there exist secure PRFs
and PRPs. Similarly, if subexponentially-secure one-way functions exist, then there exist
exponentially-secure PRFs.

We remark here that these are all purely classical assumptions, which make no reference
to quantum algorithms. Also, the latter assumption is the same one as in the famous natural
proofs barrier [48].

7.2 A Construction from Zhandry [61]

To prove our separations, we will use a construction from Zhandry [61] with some modifications.
We first construct a PRP and a PRF, and summarize some of their useful properties.
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Definitions of PRPraw and PRFmod

Assuming one-way functions exist, by Lemma 37, let PRPraw be a secure pesudorandom
permutation with key-space Kraw and domain X raw. We interpret X raw as [N ], where
N = N(n) = |X raw|.

Then we define another pseudorandom function PRFmod
(k,a)(x) = PRPraw

k ((x− 1) mod a+ 1)
where:

The key space of PRFmod isKmod = Kraw×A whereA is the set of primes in [
√
N/4, sqrtN/2].

The domain and image are both X raw, that is, Xmod = X raw and Ymod = X raw.

Note that we denote the latter one by PRFmod (not PRPmod) because it is no longer a
PRP.

Properties of PRPraw and PRFmod

We now summarize several properties of PRPraw and PRFmod, which can be proved along the
same lines as [61].

I Lemma 38 (Implicit in Claim 1 and Claim 2 of [61]). The following statements hold when
PRPraw is classical secure.
1. Both PRPraw and PRFmod are classical secure PRFs. Consequently, no classical algorithm

A can distinguish them with a non-negligible advantage.
2. Given oracle access to PRFmod

(k,a) where (k, a)← Kmod, there is a quantum algorithm that
can recover a with probability at least 1− ε.

3. There is a quantum algorithm that can distinguish PRPraw from PRFmod with advantage
1− ε.

Here ε = ε(n) is a negligible function.

For completeness, we prove Lemma 38 in Appendix D, by adapting the proofs of Claims
1 and 2 in [61].

7.3 BPP vs. BQP
Next we discuss whether there is an oracle O ∈ P/poly that separates BPP from BQP. We
show that the answer is yes provided that one-way functions exist.

I Theorem 39. Assuming one-way functions exist, there exists an oracle O ∈ P/poly such
that BPPO 6= BQPO.

Proof. We are going to use PRPraw and PRFmod from Section 7.2.
The oracle O will encode the truth tables of functions f1, f2, dotsc, where each fn is a

function from X raw
n to X raw

n . For each n, with probability 0.5 we draw fn from PRPraw
Kraw , that

is, draw k ← Kraw and set fn := PRPraw
k , and with probability 0.5 we draw fn from PRFmod

Kmod

similarly. We set L to be the unary language consisting of all 0n for which fn is drawn from
PRPraw

Kraw .
By Lemma 38, there exists a BQP machine MO that decides L correctly on all but finite

many values of n with probability 1. Since we can simply hardwire the values of n on which
MO is incorrect, it follows that L ∈ BQPO with probability 1.

On the other hand, again by Lemma 38, no BPP machine can distinguish PRPraw
Kraw and

PRFmod
Kmod with a non-negligible advantage. So let M be a BPP machine, and let En(M) be

the event that M decides whether 0n ∈ L correctly. We have

Pr
O

[En(M)] = 1
2 + o(1),
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even conditioning on events E1(M), dotsc, En−1(M). Therefore, we have Pr
O

[∧+∞
i=1En(M)] = 0,

which means that a BPP machine M decides L with probability 0. Since there are countably
many BPP machines, it follows that L /∈ BPPO with probability 1. Hence BPPO 6= BQPO

with probability 1.
Finally, note that each fn has a polynomial-size circuit, and consequently O ∈ P/poly. J

7.4 Fourier Fishing and Fourier Sampling
Finally, we discuss Fourier Fishing and Fourier Sampling. We are going to show that, assuming
the existence of subexponentially-secure one-way functions, Fourier Fishing and Fourier
Sampling are hard even when it is promised that the oracle belongs to P/poly.

I Theorem 40. Assuming the existence of subexponentially strong one-way functions, there
is no polynomial-time classical algorithm that can solve promise-Ffishing with probability

SuccR + Ω(1),

even when it is promised that the oracle function belongs to P/poly.

Proof. By Lemma 37, we can use our one-way function to construct an exponentially-secure
pseudorandom function, PRF : K × X → Y. Without loss of generality, we assume that
|Y| = 2 and |X | = 2n. Then we interpret X as the set {0, 1}n, and Y as the set {−1, 1}.

A Concentration Inequality. Now, consider the distribution PRFK on functions {0, 1}n →
{−1, 1}. We claim that

Pr
f←PRFK

[adv(f) > SuccQ − 1/n] > 1− 1
n
− o(1). (20)

To see this: from Lemma 30, we have

Pr
f←YX

[adv(f) > SuccQ − 1/n] > 1− 1
n
.

Therefore, if (20) does not hold, then we can construct a distinguisher between PRFK and
truly random functions XY by calculating adv(f) in 2O(n) time. But this contradicts the
assumption that PRF is exponentially-secure.

A distributional lower bound. Next, we show that for every polynomial-time algorithm A,
we have

Pr
f←PRFK

[Af solves Ffishing correctly] ≤ SuccR + o(1). (21)

This is because when f is a truly random function, from Lemma 31, we have

Pr
f←YX

[Af solve Ffishing correctly] ≤ SuccR + o(1).

So if (21) does not hold, then we can construct a distinguisher between PRFK and truly
random functions XY by simulating Af to get its output z, and then checking whether z is
a correct solution to Ffishing in 2O(n) time. This again contradicts our assumption that PRF
is exponentially-secure.
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The lower bound. Finally, we prove the theorem. Suppose for contradiction that there is
such a polynomial-time algorithm A. Then when f ← PRFK, from (20), with probability
1 − 1/n − o(1), we have that f satisfies the promise of promise-Ffishing. Thus, A solves
Ffishing when f ← PRFK with probability at least

(1− o(1)) · (SuccR + Ω(1)) = SuccR + Ω(1),

which contradicts (21). J

By a similar reduction, we can show that Fourier Sampling is also hard.

I Corollary 41. Assuming the existence of subexponentially-secure one-way functions, no
polynomial-time classical algorithm can solve Fsampling with error

ε < SuccQ − SuccR ≈ 0.483,

even if it is promised that the oracle function belongs to P/poly.

Proof. For a function f , an exact algorithm for Fsampling can be used to solve Ffishing with
probability adv(f). Hence, a polynomial-time sampling algorithm A for Fsampling with error
at most ε can solve Ffishing with probability at least adv(f)− ε.

Note that by (20), when f ← PRFK, the algorithm A can solve Ffishing with probability
at least

(SuccQ −
1
n
− ε) · (1− o(1)) = SuccQ − o(1)− ε.

Therefore, by (21), we must have ε ≥ SuccQ − SuccR, which completes the proof. J

8 Complexity Assumptions Are Needed for Quantum Supremacy
Relative to Efficiently-Computable Oracles

In Section 7.4, we showed that the existence of subexponentially-secure one-way functions
implies that Fourier Sampling and Fourier Fishing are classically hard, even when it is promised
that the oracle function belongs to P/poly. We also showed that if one-way functions exist,
then there exists an oracle O ∈ P/poly which separates BPP from BQP.

It is therefore natural to ask whether we can prove the same statements unconditionally.
In this section, we show that at least some complexity assumptions are needed.

I Theorem 42. Suppose SampBPP = SampBQP and NP ⊆ BPP. Then for every oracle
O ∈ P/poly, we have SampBPPO = SampBQPO (and consequently BPPO = BQPO).

Much like in the proof of Theorem 21, we need to show that under the stated assumptions,
every SampBQP algorithm M can be simulated by a SampBPP algorithm A.

I Lemma 43. Suppose SampBPP = SampBQP and NP ⊆ BPP. Then for any polynomial
q(n) and any SampBQP oracle algorithm M , there is a SampBPP oracle algorithm A such
that:

For every O ∈ SIZE(q(n)), 11 let DMx,varepsilon and DAx,varepsilon be the distributions output
by MO and AO respectively on input 〈x, 01/ε〉. Then

‖DMx,varepsilon −DAx,varepsilon‖ ≤ ε.

11A language is in SIZE(q(n)) if it can be computed by circuits of size q(n).
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Before proving Lemma 43, we show that it implies Theorem 42.

Proof of Theorem 42. Let O ∈ P/poly be an oracle. Then there exists a polynomial q(n)
such that O ∈ SIZE(q(n)).

Let S be a sampling problem in SampBQPO. This means that there is a SampBQP oracle
algorithm M , such that for all x ∈ {0, 1}∗ and ε, we have ‖DMx,varepsilon − Sx‖ ≤ ε. Let AM
be the corresponding SampBPP algorithm whose existence we’ve assumed, and consider the
following algorithm A′: given input 〈x, 01/ε〉, run AM on input 〈x, 02/ε〉 to get a sample from
DAMx,varepsilon/2.

Then we have

‖DA
′

x,varepsilon − Sx‖ = ‖DAMx,varepsilon/2 − Sx‖

≤ ‖DMx,varepsilon/2 −D
AM
x,varepsilon/2‖+ ‖DMx,varepsilon/2 − Sx‖

≤ 2 · ε2 ≤ ε.

This means that A′ solves S and S ∈ SampBPPO. Hence SampBQPO ⊆ SampBPPO. J

Now we prove Lemma 43. The simulation procedure is similar to that in Lemma 23:
that is, we replace each oracle gate, one by one, by a known function while minimizing the
introduced error. The difference is that, instead of the brute-force method as in Lemma 23,
here we use a more sophisticated PAC learning subroutine to find an “approximator” to
replace the oracle gates.

Proof of Lemma 43. Let O ∈ SIZE(q(n)); we let fn = On for simplicity.
Recall that there exists a fixed polynomial p, such that given input 〈x, 01/ε〉, the machine

M first constructs a quantum circuit C with N = p(|x|, 1/ε) qubits and N gates classically
(C can contain O gates). Without loss of generality, we can assume for each n, all fn gates
act only on the first n qubits.

For a function f : {0, 1}k → {0, 1}, recall that Uf denotes the unitary operator mapping
|i〉 to (−1)f(i)|i〉 for i ∈ {0, 1}k.

Suppose there are T O-gates in total, and the i-th O-gate is an fni gate. Then the
unitary operator U applied by the circuit C can be decomposed as

U = UT+1(UfnT ⊗ IN−nT ) · · · (Ufn2
⊗ IN−n2)U2(Ufn1

⊗ IN−n1)U1,

where the Ui’s are the unitary operators corresponding to the sub-circuits which don’t contain
an O-gate.

Again, the algorithm proceeds by replacing each O-gate by a much simpler gate one by
one, without affecting the resulting quantum state too much, and then simulating the final
circuit to get a sample to output.

Replacing the t-th O-gate. Suppose we have already replaced the first t− 1 O-gates: that
is, for each i ∈ [t− 1], we replaced the fni gate (the i-th O-gate) with a gi gate. Now we are
going to replace the t-th O-gate.

Let

|v〉 = Ut(Ugt−1 ⊗ IN−nt−1) · · · (Ug2 ⊗ IN−n2)U2(Ug1 ⊗ IN−n1)U1|0〉⊗N ,

which is the quantum state right before the t-th O gate in the circuit after the replacement.
For brevity, we use f to denote the function fnt , and we drop the subscript t of nt when

it is clear from context.
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Analysis of incurred error. The t-th O-gate is an f gate. If we replace it by a g gate, then
the deviation caused to the quantum states is

‖Uf ⊗ IN−n|v〉 − Ug ⊗ IN−n|v〉‖ = ‖(Uf − Ug)⊗ IN−n|v〉‖.

Let H be the Hilbert space corresponding to the last N−n qubits, and let ρ = TrH [|v〉〈v|].
Then proceeding exactly as in Lemma 23, we have

‖((Uf − Ug)⊗ IN−n)|v〉‖2 = 4 · Pr
i∼Q

[f(i) 6= g(i)], (22)

where Q is the probability on {0, 1}n defined by Q(i) = 〈i|ρ|i〉, and [f(i) 6= g(i)] is the
indicator function that takes value 1 when f(i) 6= g(i) and 0 otherwise.

Upper bounding the deviation (22) vis PAC learning. Now, we want to replace f by
another function g, so that the deviation term (22) is minimized.

By a standard result of PAC learning (cf. the book of Vapnik [59]), for parameters ε1 and
δ1, we can take a poly(n, varepsilon−1

1 , lnδ−1
1 ) number of i.i.d. samples from Q, and then

find a function g in SIZE(q(n)) which agrees with f on those samples. Then with probability
at least 1− δ1, we will have

Pr
i∼Q

[f(i) 6= g(i)] ≤ ε1.

The choice of ε1 and δ1 will be made later. In any case, with probability at least 1− δ1, we
have

‖(Uf − Ug)⊗ IN−n|v〉‖2 ≤ 4ε1,

which in turn implies

‖(Uf − Ug)⊗ IN−n|v〉‖ ≤ 2 ·
√
ε1.

Analysis of the final circuit Cfinal. Suppose that at the end, for each t ∈ [T ], our algorithm
has replaced the t-th O-gate with a gt gate, where gt is a function from {0, 1}nt to {0, 1}.
Let Cfinal be the circuit after the replacement. Also, let

V = UT+1(UgT ⊗ IN−nT ) · · · (Ug2 ⊗ IN−n2)U2(Ug1 ⊗ IN−n1)U1

be the unitary operator corresponding to Cfinal.

Now we set δ1 = ε

2T , and ε1 = ε4

256T 2 . Then by a union bound over all rounds, and
following exactly the same analysis as in Lemma 23, with probability at least 1−T ·δ1 = 1−ε/2,
we have

‖U |0〉⊗N − V |0〉⊗N‖ ≤ 2T ·
√
ε1 = ε2

8 .

Our classical algorithm A then simulates stages 2 and 3 of the SampBQP algorithm M

straightforwardly. It first takes a sample z by measuring V |0〉⊗N in the computational basis,
and then outputs Aoutput(z) as its sample, where Aoutput is the classical algorithm used by M
in stage 3.

By Corollary 5, with probability at least 1 − ε/2, the final distribution D on which A
takes samples satisfies

‖D − DMx,varepsilon‖ ≤
√

2 · ε
2

8 = ε

2 .

Hence, the outputted distribution DAx,varepsilon satisfies

‖DAx,varepsilon −DMx,varepsilon‖ ≤ ε.
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Showing that A is a SampBPP algorithm. We still have to show that A is a SampBPP
oracle algorithm. From the previous discussion, A needs to do the following non-trivial
computations.

Taking a polynomial number of samples from Q. This task is in SampBQP (no oracle
involved) by definition. By our assumption SampBQP = SampBPP, it can be done in
SampBPP.
Finding a g ∈ SIZE(q(n)) such that g agrees with f on all the samples. This can be done
in NP, so by our assumption NP ⊆ BPP, it can be done in BPP.
Taking a sample by measuring V |0〉⊗N . Again, this task is in SampBQP, and hence can
be done in SampBPP by our assumption.

Therefore, A is a SampBPP oracle algorithm. J

9 Open Problems

There are many exciting open problems left by this paper; here we mention just a few.

1. Is QUATH (our assumption about the hardness of guessing whether |〈0|C|0〉|2 is greater
or less than the median) true or false?

2. Is Conjecture 1 true? That is, does a random quantum circuit on n qubits sample an
unbalanced distribution over n-bit strings with 1− 1/ exp(n) probability?

3. We showed that there exists an oracle relative to which SampBPP = SampBQP but PH
is infinite. Can we nevertheless show that SampBPP = SampBQP would collapse PH in
the unrelativized world? (An affirmative answer would, of course, follow from Aaronson
and Arkhipov’s Permanent-of-Gaussians Conjecture [3], as mentioned in Section 1.2.)

4. Is our classical algorithm to simulate a quantum circuit with n qubits and m gates
optimal? Or could we reduce the complexity, say from mO(n) to 2O(n) ·mO(1), while
keeping the space usage polynomial? Does it matter if we only want to sample from the
output distribution, rather than actually calculating the probabilities? What about if we
only want to guess an amplitude with small bias, as would be needed to refute QUATH?

5. For random quantum circuit sampling, we proved a conditional hardness result that
talks directly about the observed outputs of a sampling process, rather than about the
unknown distribution that’s sampled from. Can we get analogous hardness results for the
BosonSampling or IQP models, under some plausible hardness conjecture? Note that the
argument from Section 3 doesn’t work directly for BosonSampling or IQP, for the simple
reason that in those models, the advantage over chance in guessing a given amplitude
is at least 1/ exp(n), rather than 1/ exp(m) for some m� n as is the case for random
circuits.

6. We proved a lower bound of Ω(N) on the classical query complexity of Fourier Sampling,
for a rather small error ε = 1

40000 . The error constant does matter for sampling problems,
since there is no efficient way to reduce the error in general. So can we discover the exact
threshold ε for an Ω(N) lower bound? That is, find the constant ε such that there is an
o(N) query classical algorithm solving Fourier Sampling with error ε, but any classical
algorithm with error < ε needs Ω(N) queries?

7. In Section 7, we showed that there is an oracle O in P/poly separating BPP from BQP,
assuming that one-way functions exist. Is it possible to weaken the assumption to, say,
NP 6⊂ BPP?
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A Other Results on Oracle Separations in P/poly

In this section we discuss the rest of our results on complexity theory relative to oracles in
P/poly (see Figure 1 for an overview). For the definitions of the involved complexity classes,
see for example [4].

We first discuss P and NP. We observe that there exists an oracle O ∈ P/poly such that
PO 6= NPO unconditionally, and no oracle O ∈ P/poly can make P = NP unless NP ⊂ P/poly.

Then we discuss P and BPP. We first prove that the standard derandomization assumption
(there exists a function f ∈ E = DTIME(2O(n)) that requires a 2Ω(n)-size circuit) also implies
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P

BPP

BQP

SZKNP

SampBPP SampBQP

Figure 1 C1 → C2 indicates C1 is contained in C2 respect to every oracle in P/poly, and C1 99K C2

denotes that there is an oracle O ∈ P/poly such that CO1 6⊂ CO2 . Red indicates this statement is
based on the existence of classical one-way functions, Blue indicates the statement is based on the
existence of quantum one-way functions, and Black indicates the statement holds unconditionally.

that PO = BPPO for all O ∈ P/poly. Then, surprisingly, we show that the converse also
holds! I.e., if no such f exists, then there exists an oracle O ∈ P/poly such that PO 6= BPPO.

Finally, we discuss BQP and SZK. We show that assuming the existence of one-way
functions, there exist oracles in P/poly that separate BQP from SZK, and also SZK from
BQP.

We will need to use quantum-secure pseudorandom permutations. By a very recent result
of Zhandry [62], their existence follows from the existence of quantum one-way functions.

I Lemma 44 ([62]). Assuming quantum one way functions exist, there exist quantum-secure
PRPs.

A.1 P, BPP, BQP vs. NP
We begin with the relationships of P, BPP, and BQP to NP relative to oracles in P/poly.

The first observation is that using the function OR and standard diagonalization techniques,
together with the fact that OR is hard for quantum algorithms [17], we immediately have:

I Observation 45. There is an oracle O ∈ P/poly such that NPO 6⊂ BQPO.

On the other side, we also show that unless NP ⊂ P/poly (BQP/poly), there is no oracle
O ∈ P/poly such that NPO ⊆ BPPO (BQPO).

I Theorem 46. Unless NP ⊂ P/poly, there is no oracle O ∈ P/poly such that NPO ⊆ BPPO.
Likewise, there is no oracle O ∈ P/poly such that NPO ⊆ BQPO unless NP ⊆ BQP/poly.

Proof. Suppose there is an oracle O ∈ P/poly such that NPO ⊆ BPPO. Since BPP ⊂ P/poly,
and PO/poly ⊆ P/poly (since the relevant parts of the oracle O can be directly supplied to
the P/poly algorithm), we have NP ⊆ NPO ⊂ P/poly. The second claim can be proved in
the same way. J

The following corollary is immediate.

I Corollary 47. There is an oracle O ∈ P/poly such that PO 6= NPO, and there is no oracle
O ∈ P/poly such that PO = NPO unless NP ⊂ P/poly.
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A.2 P vs. BPP
Next we consider the relationship between P and BPP. It is not hard to observe that
the standard derandomization assumption for P = BPP is in fact strong enough to make
PO = BPPO for every oracle O in P/poly.

Given a function f : {0, 1}n → {0, 1}, let Hwrs(f) be the minimum size of circuits
computing f exactly.

I Observation 48 (Implicit in [45, 36], see also Theorem 20.7 in [15]). If there exists a function
f ∈ E = DTIME(2O(n)) and ε > 0 such that Hwrs(f) ≥ 2εn for sufficiently large n, then
BPPO = PO for every O ∈ P/poly.

Proof Sketch. From [45] and [36], the assumption leads to a strong PRG which is able to
fool circuits of a fixed polynomial size with a logarithmic seed length.

An algorithm with an oracle O ∈ P/poly with a certain input can still be represented by
a polynomial size circuit, so we can still enumerate all possible seeds to get a deterministic
algorithm. J

Surprisingly, we show that condition is not only sufficient, but also necessary.

I Theorem 49. If for every f ∈ E = DTIME(2O(n)) and ε > 0, there are infinitely many n’s
with Hwrs(f) < 2εn, then there exists an oracle O ∈ P/poly such that BPPO 6= PO.

Proof. For simplicity, in the following we will specify an oracle O by a sequence of functions
{fi}, where each fi is a function from {0, 1}ni → {0, 1} and the sequence {ni} is strictly
increasing. That is, Oni is set to fi, and O maps all strings with length not in {ni} to 0.

As there are only countably many P oracle TM machines, we let {Ai}+∞i=1 be an ordering
of them.

The GapMaj function. Recall that the gapped-majority function, GapMaj : {0, 1}N →
{0, 1}, which outputs 1 if the input has Hamming weight ≥ 2N/3, or 0 if the input has
Hamming weight ≤ N/3, and is undefined otherwise, is the function which separates P and
BPP in the query complexity world. We are going to encode inputs to GapMaj in the oracle
bits to achieve our separation.

We call an oracle valid, if for each n, either |O−1
n (0)| ≥ 2

3 · 2
n or |O−1

n (1)| ≥ 2
3 · 2

n. That
is, if we interpret On as a binary string with length 2n, then GapMaj(On) is defined.

The language LO. For a valid oracle O, we define the following language:

LO = {0n : GapMaj(On) = 1}.

Clearly, this language lies in BPPO. To prove the theorem, we will construct a valid oracle
O such that LO 6∈ PO.

Construction of O. To construct such an oracle, we resort to the standard diagonalization
method: for each integer i, we find an integer ni and set the function Oni so that the machine
Ai can’t decide 0ni correctly. In order to do this, we will make sure that each Ai can only
see 0 when querying the function Oni . Since Ai can only see a polynomial number of bits,
we can set the remaining bits in Oni adversarially.

Let Oipart be the oracle specified by {Onj}ij=1, and let Ti be the maximum integer such
that a bit in OTi is queried by Ai when running on input 0ni . Observe that by setting
ni+1 > Ti, we can make sure that AOi (0ni) = A

Oipart
i (0ni) for each i.
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Diagonalization against Ai. Suppose we have already constructed On1 , dotsc, oracleni−1 ,
and we are going to deal with Ai. Since Ai is a P machine, there exists a constant c such
that Ai runs in at most nc steps for inputs with length n. Thus, Ai can query at most nc
values in On on input 0n.

Construction and Analysis of f . Now consider the following function f , which analyzes
the behavior of AO

i−1
part

i :
given an input x ∈ {0, 1}∗, let m = |x|;
the first m1 = bm/5cc bits of x encode an integer n ∈ [2m1 ];
the next m2 = m−m1 bits of x encode a string p ∈ {0, 1}m2 ;
f(x) = 1 iff AO

i−1
part

i (0n) has queried On(z) for an z ∈ {0, 1}n with p as a prefix.12

It is not hard to see that f ∈ E: the straightforward algorithm which directly simulates
A
Oi−1

part
i (0n) runs in O(nc) = 2O(m/5c·c) = 2O(m) time (note that the input length is m = |x|).

Therefore, by our assumption, there exists an integer m such that 2bm/5cc > max(Ti−1, ni−1)
and Hwrs(fm) < 2m/c. Then we set ni = 2bm/5cc.

Construction and Analysis of Oni . Now, if AO
i−1
part

i (0ni) = 1 , we set Oni to be the constant
function 0, so that LO(0ni) = 0.

Otherwise, AO
i−1
part

i (0ni) = 0. We define a function g : {0, 1}ni → {0, 1} as follows: g(z) = 1
iff AO

i−1
part

i (0ni) has queried Oni(z′) for an z′ ∈ {0, 1}ni such that z and z′ share a prefix of
length m− bm/5cc. Note that g(z) can be implemented by hardwiring ni and z1...m−bm/5cc
(that is, the first m− bm/5cc bits of z) into the circuit for fm, which means that there is a
circuit of size 2m/c = n

O(1)
i for g. We set Oni := ¬g.

From the definition of g and the fact that AO
i−1
part

i (0ni) makes at most nci queries, there is
at most a

nci
2m−bm/5cc

<
nci

24cbm/5cc = n−3c
i

fraction of inputs that are 0 in ¬g. Hence, GapMaj(¬g) = 1 and LO(0ni) = 1.
We claim that in both cases, we have AO

i−1
part

i (0ni) = A
Oipart
i (0ni). This holds trivially in

the first case since we set Oni := 0. For the second case, note from the definition of g that
all queries by AO

i
part

i (0ni) to Oni return 0, and hence Ai will behave exactly the same.
Finally, since we set ni > Ti−1 for each i, we have AOi (0ni) = A

Oipart
i (0ni) 6= LO(0ni),

which means that no Ai can decide LO. J

A.3 BQP vs. SZK
Next we investigate the relationship between BQP and SZK relative to oracles in P/poly.
We first show that, by using quantumly-secure pseudorandom permutations, as well as the
quantum lower bound for distinguishing permutations from 2-to-1 functions [5], we can
construct an oracle in P/poly which separates SZK from BQP.

I Theorem 50. Assuming quantum-secure one way functions exist, there exists an oracle
O ∈ P/poly such that SZKO 6⊂ BQPO.

12For simplicity, we still use On to denote the restriction of Oi−1
part on {0, 1}n.
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Proof. Let PRP be a quantum-secure pseudorandom permutation from K × X → X , whose
existence is guaranteed by Lemma 44.

We first build a pseudorandom 2-to-1 function from PRP. We interpret X as [N ] where
N = |X |, and assume that N is even. We construct PRF2→1 : (K ×K)×X → X as follows:

The key space K2→1 is K ×K. That is, a key k ∈ K2→1 is a pair of keys (k1, k2).
PRF2→1

(k1,k2)(x) := PRPk2((PRPk1(x) mod N/2) + 1).

Note that PRF2→1 would be a uniformly random 2-to-1 function from [N ] → [N ], if
PRPk1 and PRPk2 were replaced by two uniformly random permutations on [N ]. Hence, by a
standard reduction argument, PRF2→1 is a quantumly-secure pseudorandom 2-to-1 function.
That is, for any polynomial-time quantum algorithm A, we have∣∣∣∣∣ Pr

k←K2→1
[APRF2→1

k () = 1]− Pr
f←F2→1

X

[Af () = 1]

∣∣∣∣∣ < ε,

where ε is a negligible function and F2→1
X is the set of 2-to-1 functions from X → X .

Also, from the definition of PRP, we have∣∣∣∣ Pr
k←KPRP

[APRPk() = 1]− Pr
f←PermX

[Af () = 1]
∣∣∣∣ < ε,

where PermX is the set of permutations on X .
From the results of Aaronson and Shi [5], Ambainis [14] and Kutin [40], no o(N1/3)-query

quantum algorithm can distinguish a random permutation from a random 2-to-1 function.
Therefore, we have∣∣∣∣∣ Pr

f←F2→1
X

[Af () = 1]− Pr
f←PermX

[Af () = 1]

∣∣∣∣∣ < o(1).

Putting the above three inequalities together, we have∣∣∣∣ Pr
k←K2→1

[APRF2→1
k () = 1]− Pr

k←KPRP
[APRPk() = 1]

∣∣∣∣ < o(1),

which means A cannot distinguish PRF2→1
K2→1 and PRPKPRP .

On the other side, an SZK algorithm can easily distinguish a permutation from a two-to-
one function. Therefore, we can proceed exactly as in Theorem 39 to construct an oracle
O ∈ P/poly such that SZKO 6⊂ BQPO. J

Very recently, Chen [28] showed that, based on a construction similar to the “cheat-sheet"
function by Aaronson, Ben-David and Kothari [10], we can take any function which is hard for
BPP algorithms, and turn it into a function which is hard for SZK algorithms in a black-box
fashion. We are going to adapt this construction, together with a PRF, to build an oracle in
P/poly which separates BQP from SZK.

I Theorem 51. Assuming one-way functions exist, there exists an oracle O ∈ P/poly such
that BQPO 6⊂ SZKO.

Proof. We will use the PRFmod : Kmod × Xmod → Xmod defined in Section 7.2 here. For
simplicity, we will use X to denote Xmod in this proof. Recall that X is interpreted as [N ]
for N = N(n) = |X |.
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Construction of distributions Di
n. For each n, we define distributions D0

n and D1
n on

(Xn → Xn)× {0, 1}
√
N/2 as follows. We draw a function fn : X → X from PRFmod

Kmod , that is,
we draw (k, a)← Kmod = Kraw ×A, and set fn := PRFmod

(k,a); then we let z = 0
√
N/2 first, and

set za = i in Din; finally we output the pair (f, z) as a sample.

Distinguishing D0
n and D1

n is hard for SZK. Recall that SZK is a semantic class. That
is, a given protocol Π might be invalid with different oracles or different inputs (i.e., the
protocol might not satisfy the zero-knowledge constraint, or the verifier might accept with a
probability that is neither ≥ 2/3 nor ≤ 1/3). We write Π(f,z)() = ⊥ when Π is invalid given
oracle access to (f, z).

We claim that for any protocol Π, one of the following two claims must hold for sufficiently
large n:
(A) Pr

(f,z)←D0
n

[
Π(f,z)() = ⊥

]
> 0.1 or Pr

(f,z)←D1
n

[
Π(f,z)() = ⊥

]
> 0.1.

(B)
∣∣∣∣ Pr
(f,z)←D0

n

[
Π(f,z)() = 1

]
− Pr

(f,z)←D1
n

[
Π(f,z)() = 1

]∣∣∣∣ < 0.2.

That is, either Π is invalid on a large fraction of oracles, or else Π cannot distinguish D0
n

from D1
n with a very good probability.

Building a BPP algorithm to break PRFmod. Suppose for a contradiction that there are
infinitely many n such that none of (A) and (B) hold. Without loss of generality, we can
assume that

Pr
(f,z)←D1

n

[
Π(f,z)() = 1

]
− Pr

(f,z)←D0
n

[
Π(f,z)() = 1

]
≥ 0.2.

We are going to build a BPP algorithm which is able to break PRFmod on those n, thereby
contradicting Lemma 38.

From (A), we have

Pr
(f,z)←D1

n

[
Π(f,z)() = 1

]
−
(

1− Pr
(f,z)←D0

n

[
Π(f,z)() = 0

])
≥ 0.1,

which simplifies to

Pr
(f,z)←D1

n

[
Π(f,z)() = 1

]
+ Pr

(f,z)←D0
n

[
Π(f,z)() = 0

]
≥ 1.1.

From the definition of D0
n and D1

n, the above implies that

Pr
(k,a)←Kmod

[
Π(f,z1)() = 1 and Π(f,z0)() = 0, f = PRFmod

(k,a), z0 = 0
√
N/2, z1 = ea

]
≥ 0.1,

where ea denotes the string of length
√
N/2 that is all zero except for the a-th bit.

Analysis of distributions A(f,z)
i . By a result of Sahai and Vadhan [51], there are two

polynomial-time samplable distributions A(f,z)
0 and A(f,z)

1 such that ‖A(f,z)
0 −A(f,z)

1 ‖ ≥ 1−2−n

when Π(f,z)() = 1; and ‖A(f,z)
0 −A(f,z)

1 ‖ ≤ 2−n when Π(f,z)() = 0.
Hence, with probability 0.1 over (k, a)← Kmod, we have

‖A(f,z1)
0 −A(f,z1)

1 ‖ ≥ 1− 2−n and ‖A(f,z0)
0 −A(f,z0)

1 ‖ ≤ 2−n.

This means that either ‖A(f,z0)
0 −A(f,z1)

0 ‖ ≥ 1/3 or ‖A(f,z0)
1 −A(f,z1)

1 ‖ ≥ 1/3.
Now we show that the above implies an algorithm that breaks PRFmod, and therefore

contradicts Lemma 38.
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The algorithm and its analysis. Given oracle access to a function f ← PRFmod
Kmod , our

algorithm first picks a random index i ∈ {0, 1}. It then simulates Ai with oracle access to
(f, z) to take a sample fromA

(f,z)
i , where z = z0 = 0

√
N/2; it records all the indices in z that are

queried by Ai. Now, with probability at least 0.1/2 = 0.05, we have ‖A(f,z0)
i −A(f,z1)

i ‖ ≥ 1/3.
Since (f, z0) and (f, z1) only differ at the a-th index of z, we can see that A(f,z0)

i must have
queried the a-th index of z with probability at least 1/3.

Hence, with probability at least 0.05/3 = Ω(1), one of the values recorded by our algorithm
is a, and in that case our algorithm can find a collision in f easily. However, when f is a
truly random function, no algorithm can find a collision with a non-negligible probability.
Therefore, this algorithm is a distinguisher between PRFmod and a truly random function,
contradicting the fact that PRFmod is secure by Lemma 38.

Construction of the oracle O. Finally, we are ready to construct our oracle O. We
will let O encode pairs (f1, z1), (f2, z2), dotsc, where fn is a function from Xn to Xn and
zn ∈ {0, 1}

√
N/2.

For each n, we draw a random index i← {0, 1}, and then draw (fn, zn)← Din. We set L
to be the unary language consisting of all 0n for which (fn, zn) is drawn from D1

n.
From Lemma 38, a quantum algorithm can distinguish D0

n from D1
n, except with negligible

probability, by recovering a. Therefore, by a similar argument as in the proof of Theorem 39,
we have L ∈ BQPO with probability 1.

On the other hand, for a protocol Π and a sufficiently large n, either (A) happens, which
means that Π(fn,zn) is invalid with probability 0.05 on input 0n, or (B) happens, which
means that Π cannot distinguish D0

n and D1
n with a constant probability.

In both cases Π cannot decide whether 0n belongs to L correctly with bounded error.
Hence, again by a similar argument as in the proof of Theorem 39, the probability that Π
decides L is 0. And since there are only countably many protocols, we have L /∈ SZKO with
probability 1, which means that BQPO 6⊂ SZKO with probability 1.

Finally, it is easy to see that O ∈ P/poly, which completes the proof. J

B Missing Proofs in Section 3

We first prove Lemma 13.

Proof of Lemma 13. Let N = 2n for simplicity and L be a list consisting of N reals:
|〈u|w〉|2 − 2−n for each w ∈ {0, 1}n. We sort all reals in L in increasing order, and denote
them by a1, a2, dotsc, aN . We also let ∆ = dev(|u〉) for brevity.

Then from the definitions of adv(|u〉) and dev(|u〉), we have

N∑
i=1

ai =0,

N∑
i=1
|ai| =∆, and

adv(|u〉) =1
2 +

N∑
i=N/2+1

ai.
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Now, let t be the first index such that at ≥ 0. Then we have

N∑
i=t

ai =
N∑
i=t
|ai| =

∆
2 and

t−1∑
i=1

ai = −
t−1∑
i=1
|ai| = −

∆
2 .

We are going to consider the following two cases.
(i) t ≥ N/2 + 1. Note that ai’s are increasing and for all i < t, ai < 0, we have

N/2∑
i=1
|ai| ≥

t−1∑
i=N/2+1

|ai|,

which means

t−1∑
i=N/2+1

|ai| ≤
1
2 ·

t−1∑
i=1
|ai| ≤

∆
4 .

Therefore,

N∑
i=N/2+1

ai ≥
N∑
i=t

ai +
t−1∑

i=N/2+1

ai ≥
1
2 + ∆

2 −
∆
4 ≥

1
2 + ∆

4 .

(ii) t ≤ N/2. In this case, note that we have

N∑
i=N/2+1

ai ≥
N/2∑
i=t

ai.

Therefore,

N∑
i=N/2+1

ai ≥
1
2 ·

N∑
i=t

ai ≥
∆
4 .

Since in both cases we have
N∑

i=N/2+1

ai ≥
∆
4 , it follows that

adv(|u〉) = 1
2 +

N∑
i=N/2+1

ai ≥
1
2 + ∆

4 ,

which completes the proof. J

Now we prove Lemma 14.

Proof of Lemma 14. The random pure state |u〉 can be generated as follows: draw four i.i.d.
reals x1, x2, x3, x4 ∼ N (0, 1), and set

|u〉 = (x1 + x2i)|0〉+ (x3 + x4i)|1〉√
x2

1 + x2
2 + x2

3 + x2
4

.



S. Aaronson and L. Chen 22:61

Hence, we have

E
[∣∣∣|〈u|0〉|2 − |〈u|1〉|2∣∣∣]

=
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

1
(2π)2

|x2
1 + x2

2 − x2
3 − x2

4|
x2

1 + x2
2 + x2

3 + x2
4
· e−(x2

1+x2
2+x2

3+x2
4)/2dx1dx2dx3dx4

=
∫ 2π

0

∫ 2π

0

∫ +∞

0

∫ +∞

0

1
(2π)2 ·

|ρ2
1 − ρ2

2|
ρ2

1 + ρ2
2
· ρ1ρ2 · e−(ρ2

1+ρ2
2)/2dρ1dρ2dθ1dθ2

(x1 = ρ1 sin θ1, y1 = ρ1 cos θ1, x2 = ρ2 sin θ2, y2 = ρ2 cos θ2)

=
∫ +∞

0

∫ +∞

0

|ρ2
1 − ρ2

2|
ρ2

1 + ρ2
2
· ρ1ρ2 · e−(ρ2

1+ρ2
2)/2dρ1dρ2

=1
2 J

C Missing Proofs in Section 6

We prove Lemma 30 here.

Proof of Lemma 30. We prove the concentration inequality by bounding the variance,

Var[adv(f)] = E[adv(f)2]− E[adv(f)]2.

Note that

E[adv(f)]2 =
(

2√
2π

∫ +∞

1
x2e−x

2/2dx

)
2 = Succ2

Q.

We now calculate E[adv(f)2]. We have

E
f

[adv(f)2] = E
f

[(
E

z∈{0,1}n
[f̂2(z) · 1|f̂(z)|≥1]

)
2
]

= E
f

[
E

z1,z2∈{0,1}n

[
f̂2(z1)f̂2(z2) · 1|f̂(z1)|≥1∧|f̂(z2)|≥1

]]
.

= E
z1,z2∈{0,1}n

[
E
f

[
f̂2(z1)f̂2(z2) · 1|f̂(z1)|≥1∧|f̂(z2)|≥1

]]
.

Now there are two cases: z1 = z2 and z1 6= z2. When z1 = z2, let z = z1 = z2; then we have

Exf

[
f̂2(z1)f̂2(z2) · 1|f̂(z1)|≥1∧|f̂(z2)|≥1

]
=E
f

[
f̂4(z) · 1|f̂(z)|≥1

]
= 2√

2π

∫ +∞

1
x4e−x

2/2dx

=O(1).

Next, if z1 6= z2, then without loss of generality, we can assume z1 = 0N . Now we define two
sets A and B,

A = {x ∈ {0, 1}n : (z2 · x) = 0} and B = {x ∈ {0, 1}n : (z2 · x) = 1}.

We also define

f̂A := 1√
N/2

·
∑
z∈A

f(z) and f̂B := 1√
N/2

·
∑
z∈B

f(z).

CCC 2017



22:62 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

Then from the definitions of f̂(z1) and f̂(z2), we have

f̂(z1) = 1√
2
· (f̂A + f̂B) and f̂(z1) = 1√

2
· (f̂A − f̂B).

Therefore,

E
f

[
f̂2(z1)f̂2(z2) · 1|f̂(z1)|≥1∧|f̂(z2)|≥1

]
=
(

1√
2π

)
2 ·
∫
|a+b|≥

√
2

|a−b|≥
√

2

1
4 · (a + b)2 · (a− b)2 · e−(a2+b2)/2 · dadb.

Let x = a+ b and y = a− b. Then

a = x+ y

2 , b = x− y
2 , da = dx+ dy

2 , and db = dx− dy
2 .

Also note that x2 + y2 = 2(a2 + b2). Plugging in x and y, the above can be simplified to

1
2π

∫
|x|≥

√
2

|y|≥
√

2

1
4x

2y2e−(x2+y2)/4 · 1
2dxdy = 1

2π

(∫
|x|≥
√

2

1
2
√

2
· x2e−x

2/4dx

)
2

= 1
2π

(∫ +∞

√
2

1√
2
· x2e−x

2/4dx

)
2

= 1
2π

(∫ +∞

1
2t2e−t

2/2dt

)
2 (t = x/

√
2)

=
(

2√
2π

∫ +∞

1
t2e−t

2/2dt

)
2 = Succ2

Q.

Putting two cases together, we have

E
f

[adv(f)2] = 1
N
·O(1) + N − 1

N
· Succ2

Q,

which in turn implies

Var[adv(f)] = O(1/N). J

D Missing Proofs in Section 7

For completeness, we prove Lemma 38 here.

Proof of Lemma 38. In the following, we will always use ε = ε(n) to denote a negligible
function. And we will denote X raw as X for brevity. Recall that we interpret X as [N ] for
N = N(n) = X .

Both PRPrawand PRFmod are classically-secure PRFs. It is well-known that a secure PRP
is also a secure PRF; therefore PRPraw is a classically-secure PRF. So we only need to prove
this for PRFmod.

Recall that PRFmod
(k,a)(x) = PRPraw

k ((x− 1) mod a+ 1). We first show that if the PRPraw

in the definition of PRFmod were replaced by a truly random function, then no classical
polynomial-time algorithm A could distinguish it from a truly random function. That is,∣∣∣∣ Pr

f←XX ,a←A
[Af mod a() = 1]− Pr

f←XX
[Af () = 1]

∣∣∣∣ < ε, (23)

where f mod a(x) := f((x− 1) mod a+ 1).
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Clearly, as long as A never queries its oracle on two points x and x′ such that x ≡ x′

(mod a), the oracle will look random. Suppose A makes q queries in total. There are
(
q

2

)
possible differences between query points, and each difference is at most N . So for large
enough N , each difference can be divisible by at most two different moduli from A (recall
that each number in A lies in [

√
N/4, sqrtN/2]). And since |A| ≥ Ω(

√
N/ logN), the total

probability of querying two x and x′ such that x ≡ x′ (mod a) is at most

O

(
q2 logN√

N

)
,

which is negligible as N is exponential in n. This implies (23).
Now, since PRPraw is a classically-secure PRF, for any polynomial-time algorithm A, we

have∣∣∣∣ Pr
f←XX ,a←A

[Af mod a() = 1]− Pr
f←PRPraw

Kraw ,a←A
[Af mod a() = 1]

∣∣∣∣ < ε, (24)

since otherwise we can directly construct a distinguisher between PRPraw
Kraw and XX .

Note that

Pr
f←PRPraw

Kraw ,a←A
[Af mod a() = 1] = Pr

f←PRFmod
Kmod

[Af () = 1]

by their definitions. Hence, (23) and (24) together imply that∣∣∣∣∣ Pr
f←PRFmod

Kmod

[Af () = 1]− Pr
f←XX

[Af () = 1]

∣∣∣∣∣ < ε

for any polynomial-time algorithm A. This completes the proof for the first statement.

Quantum algorithm for recovering a given oracle access to PRFmod
Kmod . Let (k, a)← Kmod,

f = PRFmod
(k,a) and g = PRPraw

k . From the definitions, we have f = g mod a.
Since g is a permutation, there is no collision (x, x′) such that g(x) = g(x′). Moreover, in

this case, f = g mod a has a unique period a. Therefore, we can apply Boneh and Lipton’s
quantum period-finding algorithm [20] to recover a. Using a polynomial number of repetitions,
we can make the failure probability negligible, which completes the proof for the second
statement.

Quantum algorithm for distinguishing PRPraw and PRFmod. Finally, we show the above
algorithm implies a good quantum distinguisher between PRPraw and PRFmod. Given oracle
access to a function f , our distinguisher A tries to recover a period a using the previously
discussed algorithm, and accepts only if f(1) = f(1 + a).

When f ← PRPraw
Kraw , note that f is a permutation, which means A accepts with probability

0 in this case.
On the other side, when f ← PRFmod

Kmod , from the second statement, A can recover the
period a with probability at least 1− ε. Therefore A accepts with probability at least 1− ε.

Combining, we find that A is a distinguisher with advantage 1− ε, and this completes
the proof for the last statement. J
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E Numerical Simulation For Conjecture 1

Recall Conjecture 1, which said that a random quantum circuit C on n qubits satisfies
adv(C) ≥ Cthr − ε with probability 1− 1/ exp(n), where

Cthr := 1 + ln 2
2 .

We first explain where the magic number Cthr comes from. Suppose C is drawn from
µ2n

Haar instead of µgrid. Then C|0n〉 is a random quantum state, and therefore the values
2n · |〈x|C|0〉|’s, for each x ∈ {0, 1}n are distributed very closely to 2n i.i.d. exponential
distributions with λ = 1.

So, assuming that, we can see that the median of probList(C|0〉) concentrates around ln 2,
as ∫ ln 2

0
e−xdx = 1

2 ,

which also implies that adv(C) concentrates around∫ +∞

ln 2
xe−xdx = Cthr = 1 + ln 2

2 ≈ 0.846574.

In the following, we first provide some numerical evidence that the values in probList(C|0〉)
also behave like exponentially distributed random variables, which explains why the constant
should indeed be Cthr. Then we provide a direct numerical simulation for the distribution of
adv(C) to argue that adv(C) approximately follows a nice normal distribution. Finally we
examine the decreasing rate of the standard variance of adv(C) to support our conjecture.

E.1 Numerical Simulation Setting

In the following we usually set n = 9 or n = 16 (so that
√
n is an integer); and we always set

m = n2 as in Conjecture 1.

E.2 Distribution of probList(C|0〉): Approximate Exponential
Distribution

In Figure 2 we plot the histogram of the distribution of the normalized probabilities in
probList(C|0〉) where C ← µ16,256

grid , that is,

{2n · p : p ∈ probList(C|0〉)}.

And we compare it with the exponential distribution with λ = 1. From Figure 2, it is easy
to observe that these two distributions are quite similar.

E.3 Distribution of adv(C): Approximate Normal Distribution

Next we perform direct numerical simulation to see how adv(C) is distributed when C ← µn,mgrid .
Our results suggest that adv(C) approximately follows a normal distribution with mean close
to Cthr.
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Figure 2 A histogram of (normalized) probList(C|0〉), where C ← µ16,256
grid . The x-axis represents

the probability, and the y-axis represents the estimated density, and the red line indicates the PDF
of the exponential distribution with λ = 1.

Figure 3 A histogram of the adv(C)’s of the 105 i.i.d. samples from µ9,81
grid . The x-axis represents

the value of adv(C), and the y-axis represents the estimated density, and the red line indicates the
PDF of the normal distribution N (0.846884, 0.008139112).
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Figure 4 A histogram of the adv(C)’s of the 105 i.i.d. samples from µ16,256
grid . The x-axis represents

the value of adv(C), the y-axis represents the estimated density, and the red line indicates the PDF
of the normal distribution N (0.846579, 0.0007125712).

Figure 5 The empirical decay of the variance of adv(C). Here a point (x, y) means that the
standard variance of the corresponding adv(C)’s for the 1000 i.i.d. samples from µx,x2

general is y. Also,
the red line represents the function y = 0.1/x.
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E.3.1 µ9,81
grid , 105 samples

We first draw 105 i.i.d. samples from µ9,81
grid and plot the distribution of the corresponding

adv(C)’s in Figure 3. From Figure 3, we can see that the distribution of adv(C) follows a
nice normal distribution, with mean very close to Cthr.

E.3.2 µ16,256
grid , 105 samples

Next, we draw 105 i.i.d. samples from µ16,256
grid and plot the distribution of the corresponding

adv(C)’s in Figure 4. From Figure 4, we can observe that the distribution of adv(C) in
this case also mimics a nice normal distribution, with mean even closer to Cthr than in the
previous case.

E.4 The Empirical Decay of Variance
The previous subsection suggests that adv(C) follows a normal distribution with mean
approaching Cthr. If that’s indeed the case, then informally, Conjecture 1 becomes equivalent
to the conjecture that the variance σ of Cthr becomes O(1/n) as n→ +∞. So we wish to
verify the latter conjecture for µn,n

2

grid with some numerical simulation.

The circuit distribution µn,mgeneral

Unfortunately, the definition of µn,mgrid requires n to be a perfect square, and there are only
five perfect squares for which we can perform quick simulations (n ∈ {1, 4, 9, 16, 25}). So
we consider the following distribution µn,mgeneral on n qubits and m circuits instead: each of m
gates is a Haar random two-qubit gate acting on two qubits chosen uniformly at random. In
this case, since we don’t need to arrange the qubits in a square grid, n can be any positive
integer.

Numerical simulation shows that adv(C) is distributed nearly the same when C is drawn
from µn,n

2

general or µ
n,n2

grid for n = 3 or n = 4, so it is reasonable to consider µgeneral instead of
µgrid.

For each n = 2, 3, dotsc, 16, we draw 1000 i.i.d. samples from µn,n
2

general, and calculate the
variance of the corresponding adv(C)’s. The results are summarized in Figure 5.

From Figure 5, we can observe that the variance decreases faster than the inverse function
1/x; hence it supports Conjecture 1.
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Abstract
We show how two recently developed quantum information theoretic tools can be applied to ob-
tain lower bounds on quantum information complexity. We also develop new tools with potential
for broader applicability, and use them to establish a lower bound on the quantum information
complexity for the Augmented Index function on an easy distribution. This approach allows us
to handle superpositions rather than distributions over inputs, the main technical challenge faced
previously. By providing a quantum generalization of the argument of Jain and Nayak [IEEE
TIT’14], we leverage this to obtain a lower bound on the space complexity of multi-pass, uni-
directional quantum streaming algorithms for the Dyck(2) language.
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1 Introduction

The first bona fide quantum computers that are built are likely to involve a few hundred qubits,
and be limited to short computations. This prompted much research into the capabilities of
space bounded quantum computation, especially of quantum finite automata, during the
early development of the theory of quantum computation (see, e.g., Refs. [21, 16, 1, 2]). More
recently, this has led to the investigation of quantum streaming algorithms [18, 11, 5, 20].

1.1 Streaming Algorithms and Augmented Index
Streaming algorithms were originally proposed as a means to process massive real-world data
that cannot be stored in their entirety in computer memory [22]. Instead of random access
to the input data, these algorithms receive the input in the form of a stream, i.e., one input
symbol at a time. The algorithms attempt to solve some information processing task using
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as little space and time as possible, on occasion using more than one sequential pass over the
input stream.

Streaming algorithms provide a natural framework for studying simple, small-space
quantum computation beyond the scope of quantum finite automata. Some of the works
mentioned above (e.g., LeGall [18]) show how quantum streaming algorithms can accomplish
certain specially crafted tasks with exponentially smaller space, as compared with classical
algorithms. This led Jain and Nayak [12] to ask how much more efficient such quantum
algorithms could be for other, more natural problems. They focused on Dyck(2), a well-
studied and important problem from formal language theory [8]. Dyck(2) consists of all
well-formed expressions with two types of parenthesis, denoted below by a, a and b, b, with
the bar indicating a closing parenthesis. More formally, Dyck(2) is the language over the
alphabet Σ =

{
a, a, b, b

}
defined recursively as

Dyck(2) = ε+
(
a ·Dyck(2) · a+ b ·Dyck(2) · b

)
·Dyck(2) ,

where ε is the empty string, ‘·’ indicates concatenation of strings (or subsets thereof) and ‘+’
denotes set union.

The related problem of recognizing whether a given expression with parentheses is
well-formed was originally studied by Magniez, Mathieu, and Nayak [19] in the context of
classical streaming algorithms. They discovered a remarkable phenomenon, that providing
bi-directional access to the input stream leads to an exponentially more space-efficient
algorithm. They presented a randomized streaming algorithm that makes one pass over the
input, uses O(

√
n logn ) bits, and makes polynomially small probability of error to determine

membership of expressions of length O(n) in Dyck(2). Moreover, they proved that this space
bound is optimal for error at most 1/(n logn), and conjectured that a similar polynomial
space bound holds for multi-pass algorithms as well. Magniez et al. complemented this
with a second randomized algorithm that makes two passes in opposite directions over the
input, uses only O(log2 n) space, and has polynomially small probability of error. Later,
two sets of authors [6, 12] independently and concurrently proved the conjectured hardness
of Dyck(2) for classical multi-pass streaming algorithms that read the input only in one
direction. They showed that any unidirectional randomized T -pass streaming algorithm
that recognizes length n instances of Dyck(2) with a constant probability of error uses
space Ω(

√
n/T ).

The space lower bounds for Dyck(2) established in Refs. [19, 6, 12] all rely on a connection
with a two-party communication problem, Augmented Index, a variant of Index, a basic
problem in two-party communication complexity. In the Index function problem, one party,
Alice, is given a string x ∈ {0, 1}n, and the other party, Bob, is given an index k ∈ [n], for
some positive integer n. Their goal is to communicate with each other and compute xk,
the kth bit of the string x. In the Augmented Index function problem, Bob is given the
prefix x[1, k− 1] (the first k− 1 bits of x) and a bit b in addition to the index k. The goal of
the two parties is to determine if xk = b or not. The three works cited above (see also [7])
all prove information cost trade-offs for Augmented Index. As a result, in any bounded-error
protocol for the function, either Alice reveals Ω(n) information about her input x, or Bob
reveals Ω(1) information about the index k (even under an easy distribution, the uniform
distribution over zeros of the function).

Motivated by the abovementioned works, Jain and Nayak [12] studied quantum protocols
for Augmented Index. They defined a notion of quantum information cost for distributions
with a limited form of dependence, and then arrived at a similar tradeoff as in the classical
case. This result, however, does not imply a lower bound on the space required by quantum
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streaming algorithms for Dyck(2). The issue is that the reduction from low information
cost protocols for Augmented Index to small space streaming algorithms breaks down in the
quantum case (for the notion of quantum information cost they proposed). This left open
the possibility of more efficient unidirectional quantum streaming algorithms.

1.2 Overview of Results
We establish the following lower bound on the space complexity of T -pass, unidirectional
quantum streaming algorithms for Dyck(2), thus solving the question posed by Jain and
Nayak [12].

I Theorem 1. For any T ≥ 1, any unidirectional T -pass quantum streaming algorithm that
recognizes Dyck(2) with a constant probability of error uses space Ω(

√
n/T 3) on length n

instances of the problem.

The space bound above holds for a general model for quantum streaming algorithms, one
in which the computation is characterized by arbitrary quantum operations. In particular,
the computation may be non-unitary, and may use “on-demand” ancillary qubits in addition
to the allowed work space. Some earlier work showing strong limitations of bounded space,
such as that on quantum finite automata [2], assumed unitary evolution.

Theorem 1 shows that, possibly up to logarithmic factors and the dependence on the
number of passes, quantum streaming algorithms are no more efficient than classical ones
for this problem. In particular, this provides the first natural example for which classical
bi-directional streaming algorithms perform exponentially better than unidirectional quantum
streaming algorithms.

Theorem 1 is a consequence of a lower bound that we establish on a measure of quantum
information cost introduced by Touchette [25]. (Henceforth, we use the term “quantum
information cost” without any qualification to refer to this notion.) We consider this cost
for any quantum protocol Π computing the Augmented Index function, with respect to
an “easy” distribution µ0: the uniform distribution over the zeros of the function. Due to
the asymmetry of the Augmented Index function, we distinguish between the amount of
information Alice transmits to Bob, denoted QICA→B(Π, µ0) and the amount of information
Bob transmits to Alice, denoted QICB→A(Π, µ0); see Section 2.3 for formal definitions for
these notions. Our main technical contributions are in proving the following trade-off.

I Theorem 2. In any t-round quantum protocol Π computing the Augmented Index function
fn with constant error ε ∈ [0, 1/4) on any input, either QICA→B(Π, µ0) ∈ Ω(n/t2) or
QICB→A(Π, µ0) ∈ Ω(1/t2).

A more precise statement is presented as Theorem 17. As in previous works, establishing
a lower bound on the quantum information cost for such an easy distribution is necessary;
the direct sum argument that links quantum streaming algorithms to quantum protocols for
Augmented Index crucially hinges on this. (This phenomenon is common in such direct sum
arguments.)

The high level intuition underlying the proof of Theorem 2 and its structure is the same
as that in Ref. [12]. There are two principal challenges in their approach, and the choice of
an appropriate measure of information cost is fundamental to overcoming both challenges.
The first challenge is a direct sum argument that relates streaming algorithms for Dyck(2)
and communication protocols for Augmented Index. The second challenge is establishing
an information cost trade-off for Augmented Index. Jain and Nayak considered several
notions of information cost, each one of which was effective in addressing one challenge but
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not the other . This was further complicated by the intrinsic correlation of the inputs for
Augmented Index held by the two parties. Indeed, an important motivation behind the notion
of quantum information cost used in Ref. [12] is the desire to avoid leaking information about
the inputs by virtue of their preparation in superposition, instead of exchanging information
through interaction alone. The notion they analyzed in detail admits an information cost
trade-off, but not a connection between streaming algorithms and low information protocols.
In particular, the notion does not seem to be bounded by communication complexity.

Quantum information cost, as proposed by Touchette [25], turns out to be a suitable
choice for quantifying the information content of messages in our context. It is defined in
terms of conditional mutual information, conditioned on the recipient’s quantum state. Thus,
this notion naturally avoids the difficulties arising from the intrinsic correlation between
the two parties’ inputs. It is also relatively simple to derive low quantum information cost
protocols for Augmented Index from small-space streaming algorithms for Dyck(2), through
a direct sum argument. Remarkably, the properties of quantum information cost allow us to
execute the reduction even for algorithms whose computation involves arbitrary quantum
operations, including non-unitary evolution. However, a quantum information cost trade-off
for Augmented Index still presents significant obstacles. In order to overcome these, we
develop new tools for quantum communication complexity that we believe have broader
applicability.

One tool is a generalization of the well-known Average Encoding Theorem of (classical
and) quantum complexity theory [15], which formalizes the intuition that weakly correlated
systems are nearly independent. We call this generalized version the Superposition-Average
Encoding Theorem, as it allows us to handle arbitrary superpositions over inputs to quantum
communication protocols (as opposed to classical distributions over inputs). The proof of
this theorem builds on the breakthrough result by Fawzi and Renner [9], linking conditional
quantum mutual information to the optimal recovery map acting on the conditioning system.
Note that there is an obvious generalization of the Average Encoding Theorem to an analogous
result for conditional quantum mutual information implied by the Fawzi-Renner inequality
together with the Uhlmann theorem. This cannot directly be used in a proof à la Ref. [12].
For one, such a generalization would give us a unitary operation that acts on one part of
a (pure) “reconstructed” state, and maps it to a state close to a target state. The hybrid
argument in Ref. [12] relies on the commutativity of such unitary operations corresponding
to successive messages in a protocol, whereas the operations do not commute.

Another key ingredient in the proof of Theorem 2 is a Quantum Cut-and-Paste Lemma,
a variant of a technique used in Refs. [13, 12], that allows us to deal with easy distributions
over inputs. The cut-and-paste lemma for randomized communication protocols connects
the distance between transcripts obtained by running protocols on inputs chosen from a
two-by-two rectangle {x, x′} × {y, y′}. The cut-and-paste lemma is very powerful, and a
direct quantum analogue does not hold. We can nevertheless obtain the following weaker
variant, linking any four possible pairs of inputs in a two-by-two rectangle: if the states
for a fixed input y to Bob are close up to a local unitary operator on Alice’s side and the
states for a fixed input x to Alice are close up to a local unitary operator on Bob’s side, then,
up to local unitary operators on Alice’s and Bob’s sides, the states for all pairs (x′′, y′′) of
inputs in the rectangle {x, x′} × {y, y′} are close to each other. This lemma allows us to
link output states of protocols on inputs from an easy distribution, all mapping to the same
output value, to an output state corresponding to a different output value. This helps derive
a contradiction to the assumption of low quantum information cost, as states corresponding
to different outputs are distinguishable with constant probability.
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We go a step further with the quantum information cost trade-off. We provide an
alternative way to achieve a similar result, by using a notion of information cost tailored
to the Augmented Index problem. An important stepping stone in this approach is the
recently developed Information Flow Lemma due to Laurière and Touchette [17]. The lemma
allows us to track the transfer of information due to interaction in quantum protocols, and
provides insight into how information might be leaked due to a superposition over inputs. By
conditioning on a suitable classical register, we avoid such leakage of information. Pushing
these ideas further, we are able to bring the Average Encoding Theorem to bear in this
context as well. This helps us obtain a slightly better round-dependence in the information
cost trade-off.

Organization

Background and definitions related to quantum communication, information theory, and
streaming algorithms are presented in Section 2. We then adapt, in Section 3, the known
two-step reduction from Augmented Index to Dyck(2) to the new notion for information
cost due to Touchette [25] and to the general model for streaming algorithms that we define.
The main technical tools that we develop and use are presented in Section 4. The main
lower bound on the quantum information cost of the Augmented Index function is derived
in Section 5. A lower bound with a slightly better dependence on the number of rounds is
presented in Section 6.

2 Preliminaries

The full version of this work [23] contains a more detailed preliminaries section, in particular
with additional details about the communication model and the properties of the distance
and information measures that are relevant for our purposes.

2.1 Quantum Communication Complexity
We refer the reader to text books such as [26, 27] for standard concepts and the associated
notation from quantum information.

The notation we use for interactive communication between two parties, called Alice and
Bob by convention, is summarized in Figure 1. The operations U1, . . . , UM+1 in protocol Π
are isometries.

We restrict our attention to protocols with classical inputs XY , with AinBin initialized
to XY , and to so-called “safe protocols”. Safe protocols only use AinBin as control registers.
As explained in Section 2.3, this does not affect the results presented in this article.

We imagine that the joint classical input XY is purified by a register R. We often partition
the purifying register as R = RXRY , indicating that the classical input XY , distributed
as ν, and represented by the quantum state ρν :

ρXYν =
∑
x,y

ν(x, y) |x〉〈x|X ⊗ |y〉〈y|Y (1)

is purified as

|ρν〉 =
∑
x,y

√
ν(x, y) |xxyy〉XRXY RY . (2)

We also use other partitions more appropriate for our purposes, corresponding to particular
preparations of the inputs X and Y .
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Reference

Alice

Bob

|ρν〉

R

Ain

Bin

TA

TB

U1

|ψ〉

A1

C1

U2

A2

C2

B2

U3

A3

C3

B3

· · ·

AM−1

CM−1

BM−1
UM

AM

CM

Bout

B′

UM+1

A′

Aout

Π(ρν)

Figure 1 Depiction of an interactive quantum protocol, adapted from Ref. [24, Figure 1], the full
version of Ref. [25].

We define the quantum communication cost of Π from Alice to Bob as

QCCA→B(Π) :=
∑

0≤i≤(M−1)/2

log |C2i+1| , (3)

and the quantum communication cost of Π from Bob to Alice as

QCCB→A(Π) :=
∑

1≤i≤M/2

log |C2i| , (4)

where for a register D, the notation |D| stands for the dimension of the state space associated
with the register. The total communication cost of the protocol is then the sum of these two
quantities.

2.2 Information Theory
In order to distinguish between quantum states, we use two related distance measures: trace
distance and Bures distance.

The trace distance between two states ρA and σA on the same register is denoted as
‖ρA − σA‖1 , where

‖OA‖1 := Tr
(

(O†O)
1
2

)
(5)

is the trace norm for operators on system A. We sometimes omit the superscript if the
system is clear from context. In operational terms, the trace distance between the two states
ρA and σA is four times the best possible bias with which we can distinguish between the
two states, given a single unknown copy of one of the two.

Bures distance h is a fidelity based distance measure, defined for ρ, σ ∈ D(A) as

h(ρ, σ) :=
√

1− F(ρ, σ) , (6)
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where fidelity F is defined as F(ρ, σ) := ‖√ρ
√
σ‖1. It is the quantum analogue of Hellinger

distance, which plays an important role in classical communication and information theory
(see, e.g., the cut-and-paste lemma in Ref. [3]).

The following lemma, a direct consequence of the Uhlmann theorem, is called the local
transition lemma [15], especially when expressed in terms of other metrics.

I Lemma 3. Let ρ1, ρ2 ∈ D(A) have purifications ρAR1
1 , ρAR2

2 , with |R1| ≤ |R2|. Then,
there exists an isometry V R1→R2 such that

h
(
ρA1 , ρ

A
2
)

= h
(
V
(
ρAR1

1
)
, ρAR2

2

)
. (7)

Bures distance is related to trace distance through a generalization of the Fuchs-van de
Graaf inequalities [10]: for any ρ1, ρ2 ∈ D(A) , it holds that

h2(ρ1, ρ2) ≤ 1
2 ‖ρ1 − ρ2‖1 ≤

√
2 h(ρ1, ρ2) . (8)

In order to quantify the information content of a quantum state, we use a basic measure,
von Neumann entropy, defined as

H(A)ρ := −Tr (ρ log ρ)

for any state ρ ∈ D(A). Here, we follow the convention that 0 log 0 = 0, which is justified by
a continuity argument. The logarithm is in base 2.

For a state ρABC ∈ D(ABC), the mutual information between registers A,B is defined as

I(A :B)ρ := H(A) + H(B)−H(AB) ,

and the conditional mutual information between them, given C, as

I(A :B |C)ρ := I(A :BC)− I(A :C) .

The following lemma, known as the Average Encoding Theorem [15, 13], formalizes the
intuition that if a classical and a quantum register are weakly correlated, then they are nearly
independent.

I Lemma 4. For any ρXA =
∑
x pX(x) · |x〉〈x|X ⊗ ρAx with a classical system X and states

ρx ∈ D(A),∑
x

pX(x) · h2(ρAx , ρA) ≤ I(X :A)ρ . (9)

2.3 Quantum Information Complexity
We rely on the notion of quantum information cost of a two-party communication protocol
introduced by Touchette [25]. We follow the notation associated with a two-party quantum
communication protocol introduced in Section 2.1, and restrict ourselves to protocols with
classical inputs XY distributed as ν.

Quantum information cost is defined in terms of the purifying register R, but is inde-
pendent of the choice of purification. Given the asymmetric nature of the Augmented Index
function, we consider the quantum information cost of messages from Alice to Bob and the
ones from Bob to Alice separately. Such an asymmetric notion of quantum information cost
was previously considered in Refs. [14, 17].
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I Definition 5. Given a quantum protocol Π with classical inputs distributed as ν, the
quantum information cost (of the messages) from Alice to Bob is defined as

QICA→B(Π, ν) =
∑
i odd

I(R :Ci |Bi) , (10)

and the quantum information cost (of the messages) from Bob to Alice is defined as

QICB→A(Π, ν) =
∑
i even

I(R :Ci |Ai) . (11)

It is immediate that quantum information cost is bounded above by quantum communic-
ation.
I Remark. For any quantum protocol Π with classical inputs distributed as ν, the following
holds:

QICA→B(Π, ν) ≤ 2 QCCA→B(Π) , (12)
QICB→A(Π, ν) ≤ 2 QCCB→A(Π) . (13)

As a result, we may bound quantum communication complexity of a protocol from below by
analysing its information cost.

We further restrict ourselves to “safe protocols”, in which the registers Ain, Bin are only
used as control registers in the local isometries. This restriction does not affect the results in
this article, for the following reason. Let Π be any protocol with classical inputs distributed
as ν, in which the two parties may apply arbitrary isometries to their quantum registers. In
particular, these registers include Ain, Bin which are initialized to the input. Let Π′ be the
protocol with the same registers as Π and two additional quantum registers A′in, B′in of the
same sizes as Ain, Bin, respectively. In the protocol Π′, the two parties each make a coherent
local copy of their inputs into A′in, B′in, respectively, at the outset. The registers A′in, B′in
are never touched hereafter, and the two parties simulate the original protocol Π on the
remaining registers. Laurière and Touchette [17] show that the quantum information cost
of Π is at least as much as that of the protocol Π′:

QICA→B(Π′, ν) ≤ QICA→B(Π, ν) , and
QICB→A(Π′, ν) ≤ QICB→A(Π, ν) .

Thus, the quantum information cost trade-off we show for safe protocols holds for arbitrary
protocols as well.

2.4 Quantum Streaming Algorithms
We refer the reader to the text [22] for an introduction to classical streaming algorithms.
Quantum streaming algorithms are similarly defined, with restricted access to the input, and
with limited workspace.

In more detail, an input x ∈ Σn, where Σ is some alphabet, arrives as a data stream, i.e.,
letter by letter in the order x1, x2, . . . , xn. An algorithm is said to make a pass on the input,
when it reads the data stream once in this order, processing it as described next. For an
integer T ≥ 1, a T -pass (unidirectional) quantum streaming algorithm A with space s(n) and
time t(n) is a collection of quantum channels {Aiσ : i ∈ [T ], σ ∈ Σ}. Each operator Aiσ is a
channel defined on a register of s(n)-qubits, and can be implemented by a uniform family of
circuits of size at most t(n). On input stream x ∈ Σn,
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1. The algorithm starts with a register W of s(n) qubits, all initialized to a fixed state,
say |0〉.

2. A performs T sequential passes, i = 1, . . . , T , on x in the order x1, x2, . . . , xn.
3. In the ith pass, when symbol σ is read, channel Aiσ is applied to W .
4. The output of the algorithm is the state in a designated sub-register Wout of W , at the

end of the T passes.
We may allow for some pre-processing before the input is read, and some post-processing at
the end of the T passes, each with time complexity different from t(n). As our work applies
to streaming algorithms with any time complexity, we do not consider this refinement.

The probability of correctness of a streaming algorithm is defined in the standard way. If
we wish to compute a family of Boolean functions gn : Σn → {0, 1}, the output register Wout
consists of a single qubit. On input x, let A(x) denote the random variable corresponding
to the outcome when the output register is measured in the standard basis. We say A
computes gn with (worst-case) error ε ∈ [0, 1/2] if for all x, Pr[A(x) = gn(x)] ≥ 1− ε.

In general, the implementation of a quantum channel used by a streaming algorithm with
unitary operations involves one-time use of ancillary qubits (initialized to a fixed, known
quantum state, say |0〉). These ancillary qubits are in addition to the s(n)-qubit register
that is maintained by the algorithm. Fresh qubits may be an expensive resource in practice,
for example, in NMR implementations, and one may argue that they be included in the
space complexity of the algorithm. The lack of ancillary qubits severely restricts the kind of
computations space-bounded algorithms can perform; see, for example, Ref. [2]. We choose
the definition above so as to present the results we derive in the strongest possible model.
Thus, the results also apply to implementations in which the “flying qubits” needed for
implementing non-unitary quantum channels are relatively easy to prepare.

In the same vein, we may provide a quantum streaming algorithm arbitrary read-only
access to a sequence of random bits. In other words, we may also provide the algorithm with
a register S of size at most t(n) initialized to random bits from some distribution. Each
quantum channel Aiσ now operates on registers SW , while using S only as a control register.
The bounds we prove hold in this model as well.

3 Reduction from Augmented Index to DYCK(2)

The connection between low-information protocols for Augmented Index and streaming
algorithms for Dyck(2) contains two steps. The first is a reduction from an intermediate
multi-party communication problem Ascension, and the second is the relationship of the
latter with Augmented Index.

3.1 Reduction from Ascension to DYCK(2)
In this section, we describe the connection between multi-party quantum communication
protocols for the problem Ascension(m,n), and quantum streaming algorithms for Dyck(2).
The reduction is an immediate generalization of the one in the classical case discovered by
Magniez, Mathieu, and Nayak [19], which also works with appropriate modifications for
multi-pass classical streaming algorithms [6, 12]. For the sake of completeness, we describe
the reduction below.

Multi-party quantum communication protocols involving point-to-point communication
may be defined as in the two-party case. As it is straightforward, and detracts from the
thrust of this section, we omit a formal definition.
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Let m,n be positive integers. The (2m)-party communication problem Ascension(m,n)
consists of computing the logical OR of m independent instances of fn, the Augmented
Index function. Suppose we denote the 2m parties by A1,A2, . . . ,Am and B1,B2, . . . ,Bm.
Player Ai is given xi ∈ {0, 1}n, player Bi is given ki ∈ [n], a bit zi, and the prefix xi[1, ki− 1]
of xi. Let x = (x1, x2, . . . , xm), k = (k1, k2, . . . , km), and z = (z1, z2, . . . , zm). The goal of
the communication protocol is to compute

Fm,n(x,k, z) =
m∨
i=1

fn(xi, ki, zi) =
m∨
i=1

(xi[ki]⊕ zi) ,

which is 0 if xi[ki] = zi for all i, and 1 otherwise.
The communication between the 2m parties is required to be T sequential iterations of

communication in the following order, for some T ≥ 1:

A1 → B1 → A2 → B2 → · · ·Am → Bm
→ Am → Am−1 → · · · → A2 → A1 . (14)

In other words, for t = 1, 2, . . . , T ,
for i from 1 to m− 1, player Ai sends register CAi,t to Bi, then Bi sends register CBi,t to
Ai+1,
Am sends register CAm,t to Bm, then Bm sends register CBm,t to Am,
for i from m down to 2, Ai sends register C ′Ai,t

to Ai−1.
At the end of the T iterations, A1 computes the output.

There is a bijection between instances of Ascension(m,n) and a subset of instances
of Dyck(2) that we describe next. For any string z = z1 · · · zn ∈ {a, b}n, let z denote the
matching string zn zn−1 · · · z1 corresponding to z. Let z[i, j] denote the substring zizi+1 · · · zj
if 1 ≤ i ≤ j ≤ n, and the empty string ε otherwise. We abbreviate z[i, i] as z[i] if 1 ≤ i ≤ n.
Consider strings of the form

w = (x1 y1 z1 z1 y1) (x2 y2 z2 z2 y2) · · · (xm ym zm zm ym)xm · · · x2 x1 , (15)

where for every i, xi ∈ {a, b}n, and yi is a suffix of xi, i.e., yi = xi[n− ki + 2, n] for some
ki ∈ {1, 2, . . . , n}, and zi ∈ {a, b}. The string w is in Dyck(2) if and only if, for every i,
zi = xi[n− ki + 1]. Note that these instances have length in the interval [2m(n+ 1), 4mn].

The bijection between instances of Ascension(m,n) and Dyck(2) arises from a partition
of the string w amongst the 2m players: player Ai is given xi (and therefore xi), and player Bi
is given yi, zi (and therefore yi, zi). See Figure 2 for a pictorial representation of the partition.

For ease of notation, the strings xi in Ascension(m,n) are taken to be the ones in
Dyck(2) with the bits in reverse order . This converts the suffixes yi into prefixes of the
same length.

As a consequence of the bijection above, any quantum streaming algorithm for Dyck(2)
results in a quantum protocol for Ascension(m,n), as stated in the following lemma.

I Lemma 6. For any ε ∈ [0, 1/2], n,m ∈ N, and for any ε-error (unidirectional) T -
pass quantum streaming algorithm A for Dyck(2) that on instances of size N ∈ Θ(mn)
uses s(N) qubits of memory, there exists an ε-error, T -round sequential (2m)-party quantum
communication protocol for Ascension(m,n) in which each message is of length s(N). The
protocol may use public randomness, but does not use pre-shared entanglement between any
of the parties. Moreover, the local operations of any party are memory-less, i.e., do not
require access to the qubits used in generating the previous messages sent by that party.
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Figure 2 An instance of the form described in (15), as depicted in [19, 12]. A line segment
with positive slope denotes a string over {a, b}, and a segment with negative slope denotes a
string over

{
a, b
}

. A solid dot depicts a pair of the form zz for some z ∈ {a, b}. The entire
string is distributed amongst 2m players A1,B1,A2,B2, . . . ,Am,Bm in a communication protocol
for Ascension(m,n) as shown.

Proof. Any random sequence of bits used by the streaming algorithm is provided as shared
randomness to all the 2m parties in the communication protocol for Ascension(m,n). Each
input for the communication problem corresponds to an instance of Dyck(2), as described
above. In each of the T iterations, a player simulates the quantum streaming algorithm on
appropriate part of the input for Dyck(2), and sends the length s(N) workspace to the next
player in the sequence. (If needed, non-unitary quantum operations may be replaced with an
isometry, as follows from the Stinespring Representation theorem [26].) The output of the
protocol is the output of the algorithm, and is contained in the register held by the final
party A1. J

3.2 Reduction from Augmented Index to Ascension

Recall that Ascension(m,n) is composed of m instances of Augmented Index on n bits.
Magniez, Mathieu, and Nayak [19] showed how we may derive a low-information classical
protocol for Augmented Index fn from one for Ascension(m,n) through a direct sum
argument (see Refs. [6, 12] for the details of its working in the multi-pass case). This is
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not as straightforward to execute as it might first appear; it entails deriving a sequence of
protocols for Augmented Index in which the communication from Alice to Bob corresponds
to messages from different parties in the original multi-party protocol. We show that the
same kind of construction, suitably adapted to the notion of quantum information cost we
use, also works in the quantum case.

Let µ0 be the uniform distribution on the 0-inputs of the Augmented Index function fn.
If X is a uniformly random n-bit string, K is a uniformly random index from [n] independent
of X, and the random variable B is set as B = XK , the joint distribution of X,K,X[1,K −
1], B is µ0. We denote the random variables K,X[1,K − 1], B given as input to Bob by Y .
Since XK = B under this distribution, we abbreviate Bob’s input as K,X[1,K]. Let µ be
the uniform distribution over all inputs. Under this distribution, the bit B is uniformly
random, independent of XK, while XK are as above.

I Lemma 7. Suppose ε ∈ [0, 1/2], n,m ∈ N and that there is an ε-error, T -round sequential
quantum protocol ΠAsc for Ascension(m,n), that is memory-less, does not have pre-shared
entanglement between any of the parties (but might use public randomness), and only has
messages of length at most s (cf. Lemma 6). Then, there exists an ε-error, 2T -message,
two-party quantum protocol ΠAI for the Augmented Index function fn that satisfies

QICA→B(ΠAI, µ0) ≤ 2sT , (16)
QICB→A(ΠAI, µ0) ≤ 2sT/m . (17)

Proof. Starting from the (2m)-party protocol ΠAsc for Ascension(m,n), we construct a
protocol Πj for fn, for each j ∈ [m].

Fix one such j. Suppose Alice and Bob get inputs x and y, respectively, where y :=
(k, x[1, k − 1], b). They embed these into an instance of Ascension(m,n): they set xj = x,
and yj = y. They sample the inputs for the remaining m − 1 coordinates independently,
according to µ0. Let XiYi, with Yi = (Ki, Xi[1,Ki]), be registers corresponding to inputs
drawn from µ0 in coordinate i. Let Ri be a purification register for these, which we may
decompose as RXi RYi , denoting the standard purification of the XiYi registers. Let SASB be
registers initialized to

∑
s

√
νs |ss〉, so as to simulate the public random string S ∼ ν used in

the protocol ΠAsc.
For each i 6= j, we give Xi to Alice, and (Ki, Xi[1,Ki]) to Bob. For i > j, we give Ri to

Bob, and for i < j, we give Ri to Alice. Then Alice and Bob simulate the roles of the 2m
parties (Ai,Bi)i∈[m] in the following way for each of the T rounds in ΠAsc. For t = 1, 2, . . . , T :
1. Alice simulates A1 → B1 → A2 → · · · → Aj , accessing the inputs for Bi, for i < j, in

the register Ri. We denote the ancillary register she uses to simulate A1’s local isometry
by Dt1, and for all other i < j, the ancillary registers she uses for Bi and Ai+1 together
by Dti.

2. Alice transmits the message from Aj to Bj to Bob.
3. Bob simulates Bj → Aj+1 → · · · → Bm, accessing the input for Ai, for i > j, in the

register Ri. For all i such that j ≤ i < m we denote the ancillary registers Bob uses for
simulating Bi and Ai+1’s local isometry together by Dti, and the ancillary register he
uses for Bm by Dtm.

4. Bob transmits the message from Bm to Am to Alice.
5. Alice simulates Am → Am−1 → · · · → A1. We denote the ancillary registers Alice uses for

simulating the local isometries of Am,Am−1, . . . ,A1 by Et.
We let E0 denote a dummy register initialized to a fixed state, say |0〉.

Since the inputs for Augmented Index for i 6= j are distributed according to µ0, the
protocol Πj computes Augmented Index for the instance (x, y) with error at most ε.
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The quantum information cost from Alice to Bob QICA→B(Πj , λ) is bounded by 2sT , for
any distribution λ over the inputs, as each of her T messages has at most s qubits.

The bound on quantum information cost from Bob to Alice arises from the following
direct sum result. Suppose that the inputs for the protocol Πj for Augmented Index are
drawn from the distribution µ0. Denote these inputs by XjYj , with Yj = (Kj , Xj [1,Kj ]), and
the corresponding purification register by Rj . We are interested in the quantum information
cost QICB→A(Πj , µ0).

For t ∈ [T ], let Ct denote the tth message from Bob to Alice in the protocol Πj . At
the time Alice receives message Ct, her other registers are X1 · · ·Xm, SA, R1 · · ·Rj−1,
(Er−1Dr1Dr2 · · ·Drj)r∈[t]. Note that the corresponding state ρt at that point on registers

X1 · · ·Xm SA (Er−1Dr1Dr2 · · ·Drm)r∈[t] R1 · · ·Rm Ct

is the same for all derived protocols Πj , as all of them simulate ΠAsc on the same input
distribution µ⊗m0 , using the above registers.

We have

QICB→A(Πj , µ0)

=
∑
t∈[T ]

I(Rj :Ct | X1 · · ·XmSA(Er−1Dr1Dr2 · · ·Drj)r∈[t]R1 · · ·Rj−1)ρt

≤
∑
t∈[T ]

I(Rj(Drj)r∈[t] : Ct | X1 · · ·XmSA(Er−1Dr1 · · ·Dr(j−1))r∈[t]R1 · · ·Rj−1)ρt
.

Using the chain rule, we get∑
j∈[m]

QICB→A(Πj , µ0)

≤
∑
t∈[T ]

I(R1 · · ·Rm(Dr1Dr2 · · ·Drm)r∈[t] : Ct | X1 · · ·XmSA(Er−1)r∈[t])ρt
.

Since each summand in the expression above is bounded by 2 log |Ct| ≤ 2s, we have that the
sum is bounded by 2sT . It follows that there exists an index j∗ such that

QICB→A(Πj∗ , µ0) ≤ 2sT/m , (18)

as desired. As noted before, QICA→B(Πj∗ , µ0) ≤ 2sT . This completes the reduction. J

4 Key Technical Tools

In this section, we present the tools needed to analyze the quantum information cost of
protocols. The proofs for the statements made here appear in the full version of this work [23].

In analyzing safe quantum protocols with classical inputs in the rest of the paper, we
deviate slightly from the notation for the registers used in the definition of two-party protocols
in Section 2.1. We refer to the input registers Ain, Bin by X,Y , respectively. Since we focus
on safe protocols, the registers XY are only used as control registers. We express Alice’s
local registers after the ith message is generated as XAi, and the local registers of Bob
by Y Bi. As before, the message register is not included in any of the local registers, and is
denoted by Ci.

We first generalize the Average Encoding Theorem [15], to relate the quality of approx-
imation of any intermediate state in a two-party quantum communication protocol to its
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information cost. This also allows us to analyze states arising from arbitrary superpositions
over inputs in such protocols. The main technical ingredient used to derive the generalization
is the Fawzi-Renner inequality [9].

I Theorem 8 (Fawzi-Renner inequality). For any tripartite quantum state ρACR, there exists
a recovery map RA→AC from register A to registers AC satisfying

I(C :R |A) ≥ −2 · log2 F(ρACR,R(ρAR)) . (19)

In particular, it follows that

I(C :R |A) ≥ h2(ρACR,R(ρAR)
)
. (20)

Informally, the Superposition-Average Encoding Theorem states that if the incremental
information contained in the messages received by a party thus far is “small”, then she can
approximate her part of the joint state “well”, without any assistance from the other party.

I Theorem 9 (Superposition-Average Encoding Theorem). Given any safe quantum protocol
Π with input registers XY initialized according to distribution ν, let

|ρi〉 =
∑
x,y

√
ν(x, y) |xxyy〉XRXY RY |ρxyi 〉

AiBiCi

be the state on registers XY RAiBiCi in round i with the register R initially purifying the
registers XY , with a decomposition RXRY into coherent copies of X and Y , respectively.
Let εi := I(R :Ci |Y Bi) for odd i, and εi := I(R :Ci |XAi) for even i. There exist registers
Ei, isometries Vi and states

|θi〉 =
∑
x,y

√
ν(x, y) |xxyy〉XRXY RY |θyi 〉

BiCiEi

for odd i satisfying

h
(
ρRY BiCi
i , θRY BiCi

i

)
≤

∑
p≤i, p odd

√
εp , and

Vi |y〉Y = |y〉Y ⊗ |θyi 〉
BiCiEi ,

and states

|σi〉 =
∑
x,y

√
ν(x, y) |xxyy〉XRXY RY |σxi 〉

AiCiEi

for even i satisfying

h
(
ρRXAiCi
i , σRXAiCi

i

)
≤

∑
p≤i, p even

√
εp , and

Vi |x〉X = |x〉X ⊗ |σxi 〉
AiCiEi .

The recently developed Information Flow Lemma due to Laurière and Touchette [17]
allows us to analyze information transfer using an alternative notion of information cost
(defined in Section 6 for Augmented Index). The lemma states that the total gain in
(conditional) information by a party over all the messages is precisely the net (conditional)
information gain at the end of the protocol.
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I Lemma 10 (Information Flow Lemma). Given a protocol Π, an input state ρ with purifying
register R with arbitrary decompositions R = RA

aR
A
b R

A
c = RB

aR
B
b R

B
c , the following hold:∑

i≥0
I(RB

a :C2i+1 |RB
b B2i+1)−

∑
i≥1

I(RB
a :C2i |RB

b B2i)

= I(RB
a :BoutB

′ |RB
b )− I(RB

a :Bin |RB
b ) , and

∑
i≥0

I(RA
a :C2i+2 |RA

b A2i+2)−
∑
i≥0

I(RA
a :C2i+1 |RA

b A2i+1)

= I(RA
a :AoutA

′ |RA
b )− I(RA

a :Ain |RA
b ) .

The direct quantum analogue to the Cut-and-Paste Lemma [3] from classical communica-
tion complexity does not hold. We can nevertheless obtain the following weaker property,
linking the states in a two-party protocol corresponding to any four possible pairs of inputs
in a two-by-two rectangle. The result says that if the states corresponding to two inputs x, x′
to Alice and a fixed input y to Bob are close up to a local unitary operation on Alice’s side,
and the states for two inputs y, y′ to Bob and a fixed input x to Alice are close up to a local
unitary operation on Bob’s side, then, up to local unitary operations on Alice’s and Bob’s
sides, the states for all pairs (x′′, y′′) of inputs in the rectangle {x, x′} × {y, y′} are close.
The lemma is a variant of the hybrid argument developed in Refs. [13, 12], and is proven
along the same lines. A similar, albeit slightly weaker statement may be derived from the
corresponding lemmas in these articles. For example, Lemma IV.10 from Ref. [12], when
adapted to the setting described above and combined with a triangle inequality, implies
bounds similar to those in Eqs. (22) and (24) below. However, in the notation of the lemma
below, the bounds so derived are both larger by the additive term 2hi−1.

I Lemma 11 (Quantum Cut-and-Paste). Given any safe quantum protocol Π with classical
inputs, consider distinct inputs x, x′ for Alice, and y, y′ for Bob. Let |ρ0〉A0B0 be the shared
initial state of Alice and Bob for any pair (x′′, y′′) ∈ {x, x′}× {y, y′} of inputs. (The state ρ0
may depend on the set {x, x′}× {y, y′}.) Let |ρi,x′′y′′〉AiBiCi be the state on registers AiBiCi
after the ith message is sent, when the input is (x′′, y′′). For odd i, let

hi := h
(
ρBiCi
i,xy , ρ

BiCi

i,x′y

)
and V Ai

i,x→x′ denote the unitary operation acting on Ai given by the local transition lemma
(Lemma 3) such that

hi = h
(
V Ai

i,x→x′ |ρi,xy〉 , |ρi,x′y〉
)
.

For even i, let

hi := h
(
ρAiCi
i,xy , ρ

AiCi

i,xy′

)
and V Bi

i,y→y′ denote the unitary operation acting on Bi given by the local transition lemma
such that

hi = h
(
V Bi

i,y→y′ |ρi,xy〉, |ρi,xy′〉
)
.

CCC 2017



23:16 Augmented index and quantum streaming algorithms for DYCK(2)

Define V B0
0,y→y′ := IB0 and h0 := 1. Recall that Bi = Bi−1 for odd i and Ai = Ai−1 for even i.

It holds that for odd i,

h
(
V Bi

i−1,y→y′ |ρi,xy〉, |ρi,xy′〉
)

= hi−1 , (21)

h
(
V Ai

i,x→x′V
Bi

i−1,y→y′ |ρi,xy〉, |ρi,x′y′〉
)
≤ hi + hi−1 + 2

i−2∑
j=1

hj , (22)

and for even i,

h
(
V Ai

i−1,x→x′ |ρi,xy〉, |ρi,x′y〉
)

= hi−1 , (23)

h
(
V Bi

i,y→y′V
Ai

i−1,x→x′ |ρi,xy〉, |ρi,x′y′〉
)
≤ hi + hi−1 + 2

i−2∑
j=1

hj . (24)

5 QIC Lower Bound for Augmented Index

In this section, we establish a lower bound for the quantum information cost of protocols for
Augmented Index. The proofs for the statements made here appear in the full version of this
work [23].

5.1 Relating Alice’s states to QICB→A

We study the quantum information cost of protocols for Augmented Index on input distri-
bution µ0 (the uniform distribution over f−1

n (0)), and relate it to the distance between the
states on two different inputs. We first focus on the quantum information cost from Bob to
Alice, arising from the messages with even i’s. We show that if this cost is low, then Alice’s
reduced states on different inputs for Bob are close to each other. (This high level intuition
is the same as that described in Ref. [12].)

We state and prove our results for inputs with even length n; a similar result can be
shown for odd n by suitably adapting the proof.

We consider the following purification of the input registers, corresponding to a particular
preparation method for the K register, and to a preparation of the X register also depending
on the preparation of register K. Recall that the content k of register K is uniformly
distributed in [n]. The following registers are each initialized to uniform superpositions over
the domain indicated: R1

S over {0, 1} (with a coherent copy in R2
S), register R1

J over indices
j ∈ [n/2] (with a coherent copy in R2

J), register R1
L over ` ∈ [n/2 + 1, n] (with a coherent

copy in R2
L). Register RK holds a coherent copy of register K, whose content k is set to the

value j in R1
J when R1

S is 0, and to ` when R1
S is 1. Depending on the value ` of R1

L, the
following registers are initialized to uniform superpositions to prepare the X register, itself
uniform over {0, 1}n: register R1

Z over z ∈ {0, 1}`, and register R1
W over w ∈ {0, 1}n−`. The

register X is set to x = zw, so together R1
ZR

1
W hold a coherent copy of X, and a second

coherent copy is held in R2
ZR

2
W . If ` is clear from the context, we sometimes use the notation

Z and W to refer to the parts of the X register holding z and w, respectively. Depending on
the value j of R1

J , we also refer to a further decomposition z = z′z′′ with z′ ∈ {0, 1}j and
z′′ ∈ {0, 1}`−j . We denote by X1K the register held by Bob and containing the first k − 1
bits of x and the verification bit b, always equal to xk under µ0 (X1K thus contains the first
k bits of x in this case); it is set to z′ when R1

S is 0, to z when R1
S is 1, and register RX1K

holds a coherent copy of it.
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In summary, the resulting input state ρXKX1K
µ0

distributed according to µ0 is purified by
register R, which decomposes as

R := R1
JR

2
JR

1
LR

2
LR

1
ZR

2
ZR

1
WR

2
WR

1
SR

2
SRKRX1K

.

Using the normalization factor c := 1/
√

(n/2) · (n/2) · 2` · 2n−` · 2, the purified state is:

|ρ0〉RXKX1K (25)

= c
∑
j,`,z,w

|jj``zzww〉
(
|00〉 |jz′〉 |zw〉X |jz′〉KX1K + |11〉 |`z〉 |zw〉X |`z〉KX1K

)
.

Starting with the above purification and using pre-shared entanglement |ψ〉TATB in the
initial state, the state ρi after round i in the protocol is

|ρi〉RXKX1KAiBiCi (26)

:= c
∑
j,`,z,w

|jj``zzww〉
(
|00〉 |jz′〉 |zw〉 |jz′〉

∣∣∣ρzw,(j,z′)i

〉
+ |11〉 |`z〉 |zw〉 |`z〉

∣∣∣ρzw,(`,z)
i

〉)
,

where
∣∣∣ρx,(k,x[1,k])
i

〉
denotes the pure state in registers AiBiCi conditional on joint in-

put (x, (k, x[1, k])).
Define RA := R1

JR
1
LR

1
SRKR

1
WR

2
W . All of RA’s sub-registers except R1

WR
2
W are classical

in ρRAXAiCi
i , since one of their coherent copies is traced out from the global purification

register R. The Z part of the X register is also classical. We can write the reduced state
of ρi on registers RAXAiCi as

ρRAXAiCi
i

= c′
∑
j,`,z

|j`〉〈j`| ⊗
(
|0j〉〈0j| ⊗ |z〉〈z|Z ⊗ ρi,`zjz′ + |1`〉〈1`| ⊗ |z〉〈z|Z ⊗ ρi,`z`z

)
,

in which we used normalization c′ := 1/((n/2) · (n/2) · 2` · 2) and the shorthands

ρi,`zkx[1,k] := TrBi

(∣∣∣ρ`zkx[1,k]
i

〉〈
ρ
`zkx[1,k]
i

∣∣∣) , where (27)∣∣∣ρ`zkx[1,k]
i

〉
:= 1/

√
2n−`

∑
w

|www〉R
1
WR2

WW
∣∣∣ρzw,(k,x[1,k])
i

〉AiBiCi

. (28)

The indices `zkx[1, k] have the following meaning: ` and z indicate that Alice’s input
register X is in superposition after the length ` prefix z = x[1, `], and k and x[1, k] tell us
the index k in Bob’s input, the prefix x[1, k − 1] of x given as input to Bob, and Bob’s
verification bit b (which is equal to xk under µ0), respectively. Using this notation along
with the superposition-average encoding theorem, we show the following result.

I Lemma 12. Given any even n ≥ 2, let J and L be random variables uniformly distributed
in [n/2] and [n] \ [n/2], respectively. Conditional on some value ` for L, let Z be a random
variable chosen uniformly at random in {0, 1}`. The following then holds for any M -message
safe quantum protocol Π for Augmented Index fn, for any even i ≤M :

QICB→A(Π, µ0) ≥ 1
2M Ej`z∼JLZ

[
h2
(
ρ
R1

WR2
WWAiCi

i,`zjz′ , ρ
R1

WR2
WWAiCi

i,`z`z

)]
.
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5.2 Relating Bob’s states to QICA→B

We continue with the notation from the previous section, and now focus on the quantum
information cost from Alice to Bob, arising from messages with odd i’s. We go via an
alternative notion of information cost used by Jain and Nayak [12], and studied further by
Laurière and Touchette [17]. This notion is similar to the internal information cost of classical
protocols (see, e.g., Refs. [3, 4]), and is called the Holevo information cost in Ref. [17].

I Definition 13. Given a safe quantum protocol Π with classical inputs, and distribution ν
over inputs, the Holevo information cost (of the messages) from Alice to Bob in round i is
defined as

Q̃IC
i

A→B(Π, ν) = I(X :BiCi |Y ) ,

and the cumulative Holevo information cost (of the messages) from Alice to Bob is defined as

Q̃ICA→B(Π, ν) =
∑
i odd

Q̃IC
i

A→B(Π, ν) . (29)

Given a bit string z of length at least ` ≥ 1, let z(`) denote the string in which z` has
been flipped. The following result can be inferred from the proof of Lemma 4.9 in Ref. [12].

I Lemma 14. Given any even n ≥ 2, let J and L be random variables uniformly distributed
in [n/2] and [n] \ [n/2], respectively. Conditional on some value ` for L, let Z be a random
variable chosen uniformly at random in {0, 1}`. The following holds for any M -message safe
quantum protocol Π for the Augmented Index function fn, for any odd i ≤M :

1
n

Q̃IC
i

A→B(Π, µ0) ≥ 1
16 Ej`z∼JLZ

[
h2
(
ρBiCi

i,`zjz′ , ρ
BiCi

i,`z(`)jz′

)]
,

with ρi,`zjz′ defined by Eqs. (27) and (28).

For completeness, we provide in the full version of this work [23] a proof of this lemma using
our notation.

Laurière and Touchette [17] prove that Holevo information cost is a lower bound on
quantum information cost QIC.

I Lemma 15. Given any M -message quantum protocol Π and any input distribution ν, the
following holds for any odd i ≤M :

Q̃IC
i

A→B(Π, ν) ≤ QICA→B(Π, ν) .

This may be derived from the Information Flow Lemma (Lemma 10) by initializing the
purification register R so that RB

a is be a coherent copy of X and RB
b is a coherent copy of

Y , and RB
c is a coherent copy of both X,Y .

5.3 Lower bound on QIC
By appropriately combining the above lemmas with the quantum cut-and-paste lemma, we
prove a slightly weaker variant of our main lower bound on the quantum information cost of
Augmented Index, i.e., Theorem 17.

I Theorem 16. Given any even n, the following holds for any M-message safe quantum
protocol Π computing the Augmented Index function fn with error at most ε on any input:

1
4(1− 2ε) ≤

(
2(M + 1)2

n
·QICA→B(Π, µ0)

)1/2

+
(
M3

4 ·QICB→A(Π, µ0)
)1/2

.

(30)

The stronger version stated in Section 6 is proven similarly using a strengthening of Lemma 12.
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6 A Stronger QIC Trade-off for Augmented Index

We consider a different notion of quantum information cost, more specialized to the Augmented
Index function, for which we obtain better dependence onM for the information lower bound,
from M3 to M . We also show that this notion is at least 1/M times QICB→A, and thus we
get an overall improvement by a factor of M for the M -pass streaming lower bound. The
following is a precise statement of Theorem 2. Proofs for this section can be found in the full
version of this work [23].

I Theorem 17. Given any even n, the following holds for any M -message quantum protocol
Π computing the Augmented Index function fn with error ε on any input:

1
4(1− 2ε) ≤

(
2(M + 1)2

n
·QICA→B(Π, µ0)

)1/2

+
(
M2

2 ·QICB→A(Π, µ0)
)1/2

.

(31)

Our lower bound on quantum streaming algorithms for Dyck(2), Theorem 1, follows by
combining this with Lemmas 6 and 7, and taking m = n so that N ∈ Θ(n2).

We consider the same purification of the input registers as in Section 5.1, and the following
alternative notion of quantum information cost.

I Definition 18. Given a safe quantum protocol Π for Augmented Index, the superposed-
Holevo information cost (of the messages) from Bob to Alice in round i is defined as

Q̃IC
i

B→A(Π, µ0) := I(RKR1
JR

1
S :R1

WR
2
WWAiCi |R1

LZ)ρi
,

with ρi as defined in Eq. (26), and the cumulative superposed-Holevo information cost (of
the messages) from Bob to Alice is defined as

Q̃ICB→A(Π, µ0) :=
∑
i even

Q̃IC
i

B→A(Π, µ0) . (32)

Using the average encoding theorem, we show the following.

I Lemma 19. Given any even n ≥ 2, let J and L be random variables uniformly distributed
in [n/2] and [n] \ [n/2], respectively. Conditional on some value ` for L, let Z be a random
variable chosen uniformly at random from {0, 1}`. The following then holds for any M-
message safe quantum protocol Π for the Augmented Index function fn, for even i ≤M :

Q̃IC
i

B→A(Π, µ0) ≥ 1
4 Ej`z∼JLZ

[
h2
(
ρ
R1

WR2
WWAiCi

i,`zjz′ , ρ
R1

WR2
WWAiCi

i,`z`z

)]
,

with ρi,`zkx[1,k] defined by Eqs. (27) and (28).

Using the information flow lemma, we show that this notion of information cost is a lower
bound on QICB→A(Π, µ0):

I Lemma 20. Given any M-message safe quantum protocol Π for Augmented Index and
any even i ≤M , the following holds:

Q̃IC
i

B→A(Π, µ0) ≤ QICB→A(Π, µ0) .

The improved lower bound on QIC follows along the same lines as in Section 5.3, but we
use Lemma 19 instead of Lemma 12.
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1 Introduction

Communication complexity studies how much two parties Alice and Bob need to communicate
in order to compute a function when each party only has partial knowledge of the input. The
model of quantum communication complexity allows the players to send quantum messages
back and forth, and measures the total number of qubits that need to be exchanged in
order to compute the function. Communication complexity has become a fundamental area
in theoretical computer science with applications to circuit complexity, data structures,
streaming algorithms, property testing, and linear and semi-definite programs. Many of
these applications require showing communication complexity lower bounds, which raises the
importance of studying lower bound techniques in communication complexity.

In this paper we study lower bounds on quantum communication complexity. For a
two-party function F : X × Y → {0, 1}, we denote by Q(F ) the minimum number of qubits
needed by a quantum protocol to compute F with error probability at most 1/3.

One of the strongest lower bounds on Q(F ) comes by viewing F as a Boolean |X | × |Y|
matrix, known as the communication matrix, which we will also denote by F . The approximate
rank of F , denoted rk1/3(F ), is the minimum rank of a matrix F̃ that is entrywise close
to F , that is, satisfying `∞(F̃ − F ) ≤ 1/3. Building on the work of Kremer [26] and Yao
[47], Buhrman and de Wolf [13] showed that Q(F ) = Ω(log rk1/3(F )). Later, it was shown
that approximate rank can also be used to lower bound quantum communication complexity
with shared entanglement, denoted Q∗(F ). More precisely, Q∗(F ) = Ω(log rk1/3(F )) −
O(log log(|X | · |Y|)) [31]. As this paper studies quantum communication complexity lower
bounds, we will focus on the measure Q∗(F ), which makes our results stronger.

The logarithm of the approximate rank dominates nearly all other lower bounds on
quantum communication complexity, including the discrepancy method [26], the approximate
trace norm [36, 33], the generalized discrepancy method [24, 36, 38], and the approximate
γ2 norm bound [33].1 In fact, to the best of our knowledge, all known lower bounds for
general two-way quantum communication can be obtained using approximate rank. Besides
being a powerful lower bound method, approximate rank is a robust measure posessing
several desirable properties such as error reduction, direct sum and strong direct product
theorems [39], and an optimal lifting theorem [38, 40].

Given our current state of knowledge, it is consistent that Q∗(F ) = O(log rk1/3(F )) for
every function F , that is, the logarithm of the approximate rank characterizes quantum
communication complexity. As it is widely believed that this is not the case, this state
of affairs points to the limitations of our current lower bound techniques for quantum
communication complexity.

In this paper, we show the first superlinear separation between quantum communication
complexity and the logarithm of the approximate rank.

I Theorem 1. There is a family of total functions F : X × Y → {0, 1} with Q∗(F ) =
Ω̃
(

log2 rk1/3(F )
)
.

As far as we are aware, Theorem 1 is the first superlinear separation between quantum
communication complexity and the logarithm of the approximate rank even for partial
functions, which are functions defined only on a subset of the domain X × Y.2

1 In fact, the generalized discrepancy method, logarithm of approximate γ2 norm, and logarithm of
approximate rank are all equivalent, up to constant mutliplicative factors and an additive logarithmic
term.

2 For partial functions, we require the approximate low-rank decomposition of the communication matrix
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One alternative to approximate rank for showing lower bounds on quantum communication
complexity is the recently introduced quantum information complexity [43]. This bound has
been shown to dominate the logarithm of the approximate rank [10], and has nice properties
like characterizing amortized quantum communication complexity. The quantum information
complexity, however, is difficult to bound for an explicit function and has not yet been used to
show a new lower bound in the general unbounded-round model of quantum communication
complexity.

By analogy with the log rank conjecture, which postulates that D(F ) = O(polylog(rk(F ))),
where D(F ) is the deterministic communication complexity of F , it is natural to state an
approximate log rank conjecture. The quantum version of the approximate log rank conjecture
states Q∗(F ) = O(polylog(rk1/3(F ))). Our results show that the exponent of the logarithm
in such a statement must be at least 2. The largest gap we currently know between D(F )
and log rk(F ) is also quadratic [20]. One could also consider a randomized version of the log
rank conjecture, stating R(F ) = O(polylog(rk1/3(F ))), where R(F ) is the 1/3-bounded-error
randomized communication complexity. This conjecture is actually known to imply the usual
deterministic log rank conjecture [25]. The largest known gap between R(F ) and log rk1/3(F )
is 4th power [19].

Our separation is established using quantum information theoretic arguments to lower
bound quantum communication complexity of a particular family of functions known as
lookup functions, introduced in [5]. We use Boolean circuit size to upper bound the logarithm
of approximate rank of lookup functions. We now provide an overview of lookup functions
and our proof techniques.

1.1 Techniques
Many questions in communication complexity have analogs in the (usually simpler) model of
query complexity. The query complexity quantity that is analogous to approximate rank is
the approximate polynomial degree. Using the quantum adversary lower bound, Ambainis
[2] gave a function f with an n versus n1.32 separation between its approximate polynomial
degree and quantum query complexity. This result is the main reason for the belief that
there should also be a separation between the logarithm of approximate rank and quantum
communication complexity. One way to do this would be to “lift” the quantum query lower
bound for f into a quantum communication lower bound for a related communication problem
by composing f with an appropriate communication gadget. While such a lifting theorem is
known for the approximate polynomial degree [38, 40], it remains an open question to show
a lifting theorem for quantum query complexity or the quantum adversary method. The
lack of an analog of the adversary lower bound in the setting of quantum communication
complexity is part of the difficulty of separating the logarithm of approximate rank and
quantum communication complexity.

There has recently been a great deal of progress in showing new separations between
complexity measures in query complexity [20, 3, 1]. The work in query complexity most
closely related to ours is the cheat sheet method of Aaronson et al. [1]. The cheat sheet
method is a way to transform a function f into its “cheat sheet” version fCS so that, for some
complexity measures, fCS retains the hardness of f , while other complexity measures are
drastically reduced by this transformation. Among other things, Aaronson et al. [1] use this

to take values between 0 and 1 even on inputs on which the function is undefined. Without this
constraint it is easy to construct large partial function separations.
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method to improve Ambainis’ separation and give a 4th power separation between quantum
query complexity and approximate polynomial degree.

[5] generalize the cheat sheet method to communication complexity. They are able
to lift several query results of [1] to communication complexity, such as an example of
a total function with a super-quadratic separation between its randomized and quantum
communication complexities. They do this by introducing the idea of a lookup function. To
motivate a lookup function, consider first a communication version of the familiar address
function. Alice receives inputs x ∈ {0, 1}c and u0, . . . , u2c−1 ∈ {0, 1} and Bob receives
y ∈ {0, 1}c and v0, . . . , v2c−1 ∈ {0, 1}. The desired output is found by interpreting x⊕ y as
the binary representation of a number ` ∈ {0, . . . , 2c − 1} and outputting u` ⊕ v`.

The (F,G) lookup function FG is defined by a function F : X × Y → {0, 1} and a
function family G = {G0, . . . , G2c−1}, with Gi : (X c × {0, 1}m) × (Yc × {0, 1}m) → {0, 1}.
Alice receives input x = (x1, . . . , xc) ∈ X c and u0, . . . , u2c−1 ∈ {0, 1}m and Bob receives
inputs y = (y1, . . . , yc) ∈ Yc and v0, . . . , v2c−1 ∈ {0, 1}m. Now the address is determined
by interpreting (F (x1, y1), . . . , F (xc, yc)) ∈ {0, 1}c as an integer ` ∈ {0, . . . , 2c − 1} and the
goal of the players is to output G`((x, u`), (y, v`)). Note that, in contrast to the case with
the address function, in a lookup function, G` can depend on x and y. This is the source
of difficulty in showing lower bounds for lookup functions, and also key to their interesting
properties.

Lower bound. The main result of [5] showed that, given some mild restrictions on the family
of functions G, the randomized communication complexity of FG is at least that of F . Our
main result shows that, given mild restrictions on the function family G, if there is a quantum
protocol with q qubits of communication for FG , then there is a q qubit protocol for F
with non-negligible bias. Because of the round-by-round nature of our quantum information
theoretic argument, the success probability of the quantum protocol for F decays with
the number of rounds of the quantum protocol for FG . Thus to apply this theorem, we
need to start with a function F that has high quantum communication complexity even for
protocols with small bias. As the discrepancy method lower bounds quantum communication
complexity even with small bias, we can informally state our main theorem as follows.

I Theorem 2 (Informal restatement of Corollary 29). For any (F,G) lookup function FG,
provided G satisfies certain mild technical conditions, Q∗(FG) = Ω(log(1/disc(F ))).

Let us call such theorems, where we lower bound the complexity of a lookup function
FG (or a cheat sheet function fCS) in terms of a measure of the original function F (or
f), “cheat sheet theorems.” Essentially optimal cheat sheet theorems have been shown in
a number of computational models such as deterministic, randomized, and quantum query
complexity [1] and randomized communication complexity [5]. Cheat sheet theorems are in
spirit similar to joint computation results such as direct sum and direct product theorems
[7, 9, 11, 16, 30, 39, 43].3 Direct sum and direct product theorems are widely applicable
tools and are often an important goal by themselves. Cheat sheet theorems have become
useful tools recently and for example, the cheat sheet theorems proven in [1] were later used
in [4]. We hope that our quantum cheat sheet theorem will find further applications.

3 One point of difference is that in direct sum and direct product theorems, the lower bounds on the
amount of resources (query, communication, etc.) usually scale with c, the number of copies of the
function F . In the cheat sheet theorem we prove (and also in prior works), the lower bounds do not
scale with c. This is due to the fact that the value of c is usually small in our applications.
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We now provide a high-level overview of the proof of our quantum cheat sheet theorem.
We would like to rule out the existence of a quantum protocol Π that solves the lookup
function FG and whose communication cost is much smaller than the quantum communication
complexity of F (with inverse polynomial bias, for technical reasons explained below). Since
Π has small communication cost, during the course of the protocol Alice and Bob do not
know the value of the index ` = (F (x1, y1), . . . , F (xc, yc)). Also since there are too many cells
in the array, which has length 2c � Q∗(F ), and Π has small communication cost, Alice and
Bob cannot talk about too many cells of the array. We first show that these two conditions
imply that Alice and Bob have little information about the contents of the correct cell of the
other player’s array, i.e., Alice has little information about v` and Bob has little information
about u`.

In the hypothesis of the theorem, we assume that G` satisfies a nontriviality condition:
this states that G`(x,y, u`, v`) takes both values 0 and 1 as (u`, v`) range over all possible
values. Thus the fact that Alice has little information about v` and Bob has little information
about u` sounds like we have reached a contradiction already. The issue is that we do
not have any control over the bias of G`. This situation is reminiscent of the quantum
information theoretic arguments in the proof of quantum communication complexity lower
bounds for the disjointness function [23]. In that case, one has to argue that a quantum
protocol that solves the AND function on 2 bits exchanges non-trivial amount of information
even on distributions which are extremely biased towards the AND being 0. We use similar
arguments (namely the quantum cut-and-paste argument) to obtain a contradiction for our
lookup function. Quantum cut-and-paste arguments usually have a round dependence (which
is provably needed for the disjointness lower bound) but which may not be needed for our
lookup function. Improving our quantum cheat sheet theorem or proving that it is tight
remains an excellent open question.

At a high level our proof follows the same strategy as the proof for randomized commu-
nication complexity in [5], but the implementation of the steps of the argument is different
due to the quantum nature of the protocol. A quantum communication protocol presents
several challenges, such as the fact that there is no notion of a communication transcript,
since it is not possible to store all the quantum messages exchanged during the protocol.
Hence arguments that applied to the overall communication transcript do not work in the
quantum setting. Several technical lemmas, such as the Markov chain property of classical
communication protocols used in [5], fail to hold in the quantum setting.

Upper bound. We devise a general technique for proving upper bounds on the logarithm
of approximate rank of lookup functions for carefully constructed function families G. Given
a circuit C for F , a cell in the array tries to certify the computation of F by the circuit C.
More formally, G`(x,y, u`, v`) = 1 iff (F (x1, y1), . . . , F (xc, yc)) = ` and u` ⊕ v` provides the
values of the inputs and outputs to all the gates in C for each of the c different evaluations of
C on inputs (x1, y1), . . . , (xc, yc). We show that a small circuit for F implies a good upper
bound on the approximate rank of the lookup function FG .

I Theorem 3 (Informal restatement of Theorem 28). For any Boolean function F , there exists
a family of functions G satisfying certain nontrivality conditions such that the lookup function
FG satisfies log rk1/3(FG) = Õ(

√
size(F )).

Here size(F ) denotes the size of the smallest circuit (i.e., the one with the least number of
gates) for F over some constant-sized gate set, such as the set of all 2-bit gates. The high level
idea for the upper bound is the following. Suppose an all-knowing prover Merlin provided
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Alice and Bob the value ` = (F (x1, y1), . . . , F (xc, yc)). Then they can “unambiguously"
verify Merlin’s answer with a small amount of quantum communication. Essentially they
look at the `th cell of the array and try to find an inconsistency in the circuit values. This
can then be done with quadratically less communication by a quantum protocol by using
a distributed version of Grover’s algorithm [21, 12]. We then show that this sort of upper
bound on “unambiguously certifiable quantum communication" provides an upper bound on
the log of approximate rank of the lookup function FG . A similar upper bound was also used
in the query complexity separations of [1].

Putting these upper and lower bounds together, if we choose F to be the inner product
function, which has exponentially small discrepancy and linear circuit size, Theorem 2
and Theorem 3 give us the desired quadratic separation between quantum communication
complexty and the log of approximate rank for a lookup function FG .

One intriguing aspect of Theorem 3 is that if one can prove lower bounds on log rk1/3(FG)
greater than

√
n for every nontrivial function family G, then one proves nontrivial circuit

lower bounds for F ! This theorem is similar in flavor to the theorem [28, 37] that the square
of the quantum query complexity of a function f is a lower bound on the formula size of f .
It might seem hopeless to prove a lower bound on log rk1/3(FG) for every nontrivial function
family G, but this is exactly what our quantum cheat sheet theorem achieves for quantum
communication complexity, and what the results of [5] achieve for randomized communication
complexity.

2 Preliminaries and notation

We will use X,Y, Z to denote random variables as well as their distributions. x← X will
stand for x being sampled from the distribution of X. For joint random variables XY , Y x
will denote the distribution of Y |X = x.

We now state some classical complexity measures that will be used in this paper. We
define quantum measures in more detail in Section 2.1 and Section 2.2. We first formally
define approximate rank.

I Definition 4 (Approximate rank). Let ε ∈ [0, 1/2) and F be an |X | × |Y| matrix. The
ε-approximate rank of F is defined as

rkε(F ) = min
F̃
{rk(F̃ ) : ∀x ∈ X , y ∈ Y, |F̃ (x, y)− F (x, y)| ≤ ε} .

As discussed in the introduction, approximate rank lower bounds bounded-error quantum
communication complexity with shared entanglement. It also lower bounds ε-error quantum
communication [31]:

I Fact 5. For any two-party function F : X × Y → {0, 1} and ε ∈ [0, 1/3], we have
Q∗ε(F ) = Ω(log rkε(F ))−O(log log(|X | · |Y|)).

Another classical lower bound measure that we use is the discrepancy of a function [27].

I Definition 6 (Discrepancy). Let F be an |X | × |Y| Boolean-valued matrix and P a
probability distribution over X × Y . The discrepancy of F with respect to P is

discP (F ) = max
R

∣∣∣∣∣∣
∑

(x,y)∈R

P (x, y)(−1)F (x,y)

∣∣∣∣∣∣ ,
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where the maximum is taken with respect to all combinatorial rectangles R. The discrepancy
of F , denoted disc(F ), is defined as disc(F ) = minP discP (F ), where the minimum is taken
over all probability distributions P .

The discrepancy bound lower bounds not only bounded-error quantum communication
complexity, but also quantum communication complexity with error exponentially close (in
the discrepancy) to 1/2. More precisely, we have the following [26, 33].

I Theorem 7. Let F : X × Y → {0, 1} be a two-party function and ε ∈ [0, 1/2). Then

Q∗ε(F ) = Ω
(

log 1− 2ε
disc(F )

)
.

Finally we define the Boolean circuit size of a function. To do this, we first fix a gate
set, say the set of all gates with 2 input bits (although we could have chosen any constant
instead of 2).

I Definition 8 (Circuit size). For a function F : {0, 1}n×{0, 1}m → {0, 1}, we define size(F )
to be the size (i.e., number of gates) of the smallest circuit over the gates set of all 2-input
Boolean gates that computes F .

Note that here the encoding of Alice’s and Bob’s input is important, since different input
representations may yield different sized circuits, unlike in communication complexity. When
we use this size measure, we only deal with functions defined on bits where the input encoding
is clearly specified.

2.1 Quantum Information
We now introduce some quantum information theoretic notation. We assume the reader is
familiar with standard notation in quantum computing [35, 45].

Let H be a finite-dimensional complex Euclidean space, i.e., Cn for some positive integer
n with the usual complex inner product 〈·, ·〉, which is defined as 〈u, v〉 =

∑n
i=1 u

∗
i vi. We

will also refer to H as a Hilbert space. We will usually denote vectors in H using braket
notation, e.g., |ψ〉 ∈ H.

The `1 norm (also called the trace norm) of an operator X on H is ‖X‖1 := Tr(
√
X†X),

which is also equal to (vector) `1 norm of the vector of singular values of X.
A quantum state (or a density matrix or simply a state) ρ is a positive semidefinite matrix

on H with Tr(ρ) = 1. The state ρ is said to be a pure state if its rank is 1, or equivalently
if Tr(ρ2) = 1, and otherwise it is called a mixed state. Let |ψ〉 be a unit vector on H, that
is 〈ψ|ψ〉 = 1. With some abuse of notation, we use ψ to represent the vector |ψ〉 and also
the density matrix |ψ〉〈ψ|, associated with |ψ〉. Given a quantum state ρ on H, the support
of ρ, denoted supp(ρ) is the subspace of H spanned by all eigenvectors of ρ with nonzero
eigenvalues.

A quantum register A is associated with some Hilbert spaceHA. Define |A| := log dim(HA).
Let L(A) represent the set of all linear operators on HA. We denote by D(A) the set of
density matrices on the Hilbert space HA. We use subscripts (or superscripts according to
whichever is convenient) to denote the space to which a state belongs, e.g, ρ with subscript A
indicates ρA ∈ HA. If two registers A and B are associated with the same Hilbert space, we
represent this relation by A ≡ B. For two registers A and B, we denote the combined register
as AB, which is associated with Hilbert space HA ⊗HB . For two quantum states ρ ∈ D(A)
and σ ∈ D(B), ρ⊗ σ ∈ D(AB) represents the tensor product (or Kronecker product) of ρ
and σ. The identity operator on HA is denoted 1A.

CCC 2017



24:8 Separating Quantum Communication and Approximate Rank

Let ρAB ∈ D(AB). We define the partial trace with respect to A of ρAB as

ρB := TrA(ρAB) :=
∑
i

(〈i| ⊗ 1B)ρAB(|i〉 ⊗ 1B),

where {|i〉}i is an orthonormal basis for the Hilbert space HA. The state ρB ∈ D(B) is
referred to as a reduced density matrix or a marginal state. Unless otherwise stated, a missing
register from subscript in a state will represent partial trace over that register. Given a
ρA ∈ D(A), a purification of ρA is a pure state ρAB ∈ D(AB) such that TrB(ρAB) = ρA.
Any quantum state has a purification using a register B with |B| ≤ |A|. The purification of
a state, even for a fixed B, is not unique as any unitary applied on register B alone does not
change ρA.

An important class of states that we will consider is the classical quantum states. They are
of the form ρAB =

∑
a µ(a) |a〉〈a|A ⊗ ρaB , where µ is a probability distribution. In this case,

ρA can be viewed as a probability distribution and we shall continue to use the notations that
we have introduced for probability distribution, for example, Ea←A to denote the average∑

a µ(a).
A quantum super-operator (or a quantum channel or a quantum operation) E : A→ B is

a completely positive and trace preserving (CPTP) linear map (mapping states from D(A)
to states in D(B)). The identity operator in Hilbert space HA (and associated register A) is
denoted 1A. A unitary operator UA : HA → HA is such that U†AUA = UAU†A = 1A. The set
of all unitary operations on register A is denoted by U(A).

A 2-outcome quantum measurement is defined by a collection {M,1 − M}, where
0 � M � 1 is a positive semidefinite operator, where A � B means B − A is positive
semidefinite. Given a quantum state ρ, the probability of getting outcome corresponding to
M is Tr(ρM) and getting outcome corresponding to 1−M is 1− Tr(ρM).

2.1.1 Distance measures for quantum states
We now define the distance measures we use and some properties of these measures. Before
defining the distance measures, we introduce the concept of fidelity between two states, which
is not a distance measure but a similarity measure.

I Definition 9 (Fidelity). Let ρA, σA ∈ D(A) be quantum states. The fidelity between ρ and
σ is defined as

F(ρA, σA) := ‖√ρA
√
σA‖1 .

For two pure states |ψ〉 and |φ〉, we have F(|ψ〉〈ψ|, |φ〉〈φ|) = |〈ψ|φ〉|. We now introduce
the two distance measures we use.

I Definition 10 (Distance measures). Let ρA, σA ∈ D(A) be quantum states. We define the
following distance measures between these states.

Trace distance: ∆(ρA, σA) := 1
2‖ρA − σA‖1

Bures metric: B(ρA, σA) :=
√

1− F(ρA, σA).

Note that for any two quantum states ρA and σA, these distance measures lie in [0, 1].
The distance measures are 0 if and only if the states are equal, and the distance measures
are 1 if and only if the states have orthogonal support, i.e., if ρAρB = 0.

Conveniently, these measures are closely related.
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I Fact 11. For all quantum states ρA, σA ∈ D(A), we have

1− F(ρA, σA) ≤ ∆(ρA, σA) ≤
√

2 · B(ρA, σA).

Proof. The Fuchs-van de Graaf inequalities [18, 45] state that

1− F(ρA, σA) ≤ ∆(ρA, σA) ≤
√

1− F2(ρA, σA).

Our fact follows from this and the relation 1− F2(ρA, σA) ≤ 2− 2F(ρA, σA). J

A fundamental fact about quantum states is Uhlmann’s theorem [44].

I Fact 12 (Uhlmann’s theorem). Let ρA, σA ∈ D(A). Let ρAB ∈ D(AB) be a purification of
ρA and σAB ∈ D(AB) be a purification of σA with. There exists a unitary U : HB → HB
such that

F(|θ〉〈θ|AB , |ρ〉〈ρ|AB) = F(ρA, σA) ,

where |θ〉AB = (1A ⊗ U) |σ〉AB. Trivially, the same holds for the Bures metric B as well.

We now review some properties of the Bures metric that we use in our proofs.

I Fact 13 (Facts about B). For all quantum states ρA, ρ′A, σA, σ′A ∈ D(A), we have the
following.

I Fact 13.A (Triangle inequality [14]). The following triangle inequality and a weak triangle
inequality hold for the Bures metric and the square of the Bures metric.
1. B(ρA, σA) ≤ B(ρA, τA) + B(τA, σA).
2. B2(ρ1

A, ρ
t+1
A ) ≤ t ·

∑t
i=1 B2(ρiA, ρ

i+1
A ).

I Fact 13.B (Product states). B(ρA ⊗ σA, ρ′A ⊗ σ′A) ≤ B(ρA, ρ′A) + B(σA, σ′A). Additionally,
if σA = σ′A then B(ρA ⊗ σA, ρ′A ⊗ σ′A) = B(ρA, ρ′A).

I Fact 13.C (Partial measurement). For classical-quantum states θXB , θ′XB with same prob-
ability distribution on the classical part, we have

B2(θXB , θ′XB) = Ex←X [B2(θxB , θ′xB )].

Proof. These facts are proved as follows.
A. Proof of part 2 follows from triangle inequality and the fact that for positive reals

a1, a2, . . . at,(∑
i

ai

)2
=
∑
i

a2
i + 2

∑
i<j

ai · aj ≤
∑
i

a2
i +

∑
i<j

(
a2
i + a2

j

)
≤ t
(∑

i

a2
i

)
.

B. Follows easily from the triangle inequality.
C. Let θXB =

∑
x p(x) |x〉〈x| ⊗ θxB and θ′XB =

∑
x p(x) |x〉〈x| ⊗ θ′xB . Then

F(θXB , θ′XB) = Tr

√∑
x

p2(x) |x〉〈x| ⊗
√
θxBθ

′x
B

√
θxB


= Tr

(∑
x

p(x) |x〉〈x| ⊗
√√

θxBθ
′x
B

√
θxB

)
=
∑
x

p(x)F(θxB , θ′xB )

= Ex←X [F(θxB , θ′xB )],

which proves the fact. J
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Finally, an important property of both these distance measures is monotonicity under
quantum operations [32, 8].

I Fact 14 (Monotonicity under quantum operations). For quantum states ρA, σA ∈ D(A),
and a quantum operation E(·) : L(A)→ L(B), it holds that

∆(E(ρ), E(σ)) ≤ ∆(ρA, σA) and B(E(ρA), E(σA)) ≤ B(ρA, σA),

with equality if E is unitary. In particular, for bipartite states ρAB , σAB ∈ D(AB), it holds
that

∆(ρAB , σAB) ≥ ∆(ρA, σA) and B(ρAB , σAB) ≥ B(ρA, σA).

2.1.2 Mutual information and relative entropy
We start with the following fundamental information theoretic quantities. We refer the reader
to the excellent sources for quantum information theory [46, 45] for further study.

I Definition 15. Let ρA ∈ D(A) be a quantum state and σA ∈ D(A) be another quantum
state on the same space with supp(ρA) ⊂ supp(σA). We then define the following.

von Neumann entropy: S(ρA) := −Tr(ρA log ρA).
Relative entropy: S(ρA‖σA) := Tr(ρA log ρA)− Tr(ρA log σA).

We now define mutual information and conditional mutual information.

I Definition 16 (Mutual information). Let ρABC ∈ D(ABC) be a quantum state. We define
the following measures.

Mutual information: I(A : B)ρ := S(ρA) + S(ρB)− S(ρAB) = S(ρAB‖ρA ⊗ ρB) .
Cond. mutual information: I(A : B | C)ρ := I(A : BC)ρ − I(A : C)ρ.

We will need the following basic properties.

I Fact 17 (Properties of S and I). Let ρABC ∈ D(ABC) be a quantum state. We have the
following.

I Fact 17.A (Nonnegativity).

S(A‖B)ρ ≥ 0 and |A| ≥ S(A)ρ ≥ 0

I(A : B)ρ ≥ 0 and I(A : B | C)ρ ≥ 0.

I Fact 17.B (Partial measurement). For classical-quantum states, θXB , θ′XB with same
classical distribution on register X:

S(θXB‖θ′XB) = Ex←X [S(θxB‖θ′xB )].

I Fact 17.C (Chain rule). I(A : BC)ρ = I(A : C)ρ+I(A : B | C)ρ = I(A : B)ρ+I(A : C | B)ρ.

I Fact 17.D (Monotonicity). For a quantum operation E(·) : L(A)→ L(B), I(A : E(B)) ≤
I(A : B) with equality when E is unitary. In particular I(A : BC)ρ ≥ I(A : B)ρ.

I Fact 17.E (Bar hopping). I(A : BC)ρ ≥ I(A : B | C)ρ, where equality holds if I(A : C)ρ = 0.

I Fact 17.F (Independence). If I(B : C)ρ = 0, then I(A : BC)ρ ≥ I(A : B)ρ + I(A : C)ρ.
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I Fact 17.G (Araki-Lieb inequality). |S(ρAB)− S(ρB) | ≤ S(ρA) .

I Fact 17.H (Information bound).

I(A : BC)ρ ≤ I(A : C)ρ + 2S(ρB) .

I Fact 17.I (Stronger version of Pinsker’s inequality). For quantum states ρ and σ:

S(ρ‖σ) ≥ 1− F(ρ, σ) = B2(ρ, σ).

I Fact 17.J. For classical-quantum state (register X is classical) ρXAB:

I(A;B|X)ρ = Ex←XS(ρxAB‖ρxA ⊗ ρxB) ≥ Ex←XB2 (ρxAB , ρxA ⊗ ρxB) .
I(X;A) = S(ρXA‖ρX ⊗ ρA) = Ex←XS(ρxA‖ρA) .
I(X;A) = I(f(X)X;A), where f is any function.

Proof. These facts are proved as follows.
A. For nonnegativity of relative entropy, see [35, Theorem 11.7]. For nonnegativity of

mutual information and conditional mutual information, see [46, Theorem 11.6.1] and
[46, Theorem 11.7.1].

B. Let θXB =
∑
x p(x) |x〉〈x| ⊗ θxB and θ′XB =

∑
x p(x) |x〉〈x| ⊗ θ′xB . Then

S(θXB‖θ′XB) =
∑
x

Tr(p(x) |x〉〈x| ⊗ θxB(log θXB − log θ′XB))

=
∑
x

p(x)Tr(θxB(log(p(x)θxB)− log(p(x)θ′xB )))

=
∑
x

p(x)Tr(θxB(log θxB − log θ′xB ))

= Ex←XS(θxB‖θ′xB ) ,

which proves the fact.
C. Follows from direct calculation.
D. See [35] [Theorem 11.15].
E. Follows from Chain rule (Fact 17.C) and Non-negativity (Fact 17.A).
F. Consider the following relations that use chain rule:

I(A : BC)ρ = I(A : B)ρ + I(A : C | B)ρ
= I(A : B)ρ + I(AB : C)ρ − I(B : C)ρ
≥ I(A : B)ρ + I(A : C)ρ.

The last line uses I(B : C)ρ = 0 and monotonicity (Fact 17.D).
G. See [35] [Section 11.3.4].
H. Consider,

I(A : BC)ρ = I(A : C)ρ + I(CA : B)ρ − I(B : C)
≤ I(A : C)ρ + I(CA : B)ρ
≤ I(A : C)ρ + S(B) + S(CA)− S(CAB)
≤ I(A : C)ρ + 2S(B) . (Fact 17.G)
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I. Using Corollary 4.2 and Proposition 4.5 in [42], we find that

S(ρ‖σ) ≥ −2 log F(ρ, σ).

The fact now follows since for any positive x < 1, 2x > 2 · x2.
J. For the first relation, we proceed as follows, and then use Pinsker’s inequality.

I(A : B | X)ρ = I(A : BX)ρ − I(A : X)ρ
= S(ρABX‖ρA ⊗ ρBX)− S(ρAX‖ρA ⊗ ρX)
= Ex←X [S(ρxAB‖ρA ⊗ ρxB)− S(ρxA‖ρA)]
= Ex←X [−S(ρxAB)− Tr(ρxA log ρA) + S(ρxB) + S(ρxA) + Tr(ρxA log ρA)]
= Ex←X [−S(ρxAB) + S(ρxB) + S(ρxA)] = Ex←X [S(ρxAB‖ρxA ⊗ ρxB)],

where in third line, we have used Fact 17.B. The second relation follows by direct
calculation and Fact 13.C. The third relation follows by monotonicity under the maps
|x〉〈x| → |x〉〈x| ⊗ |f(x)〉〈f(x)| and partial trace. J

We will need the following relation between I and ∆ for binary classical-quantum states
(see also [22]).

I Claim 18. Let ρAB ∈ D(AB) be a classical quantum state of the form ρAB = p |0〉〈0|A ⊗
ρ0
B + (1− p) |1〉〈1| ⊗ ρ1

B . Then

I(A : B)ρ ≤ 2 log(2) ·∆(pρ0
B , (1− p)ρ1

B).

Proof. We drop the register index from ρ0
B , ρ

1
B . Let ρav = pρ0 + (1− p)ρ1. Consider

I(A : B)ρ = pS
(
ρ0∥∥ρav)+ (1− p)S

(
ρ1∥∥ρav) (Fact 17.J)

= S
(
pρ0
∥∥∥∥1

2ρav
)

+ S
(

(1− p)ρ1
∥∥∥∥1

2ρav
)
− plog(2)− (1− p)log(2) + S(p)

≤ S
(
pρ0
∥∥∥∥1

2ρav
)

+ S
(

(1− p)ρ1
∥∥∥∥1

2ρav
)
.

The last inequality follows from S(p) ≤ log(2). Now, using [6, Theorem 9], which states that

S
(
pρ0
∥∥∥∥1

2ρav
)
≤ log(2)∆(pρ0, (1−p)ρ1) and S

(
(1− p)ρ1

∥∥∥∥1
2ρav

)
≤ log(2)∆(pρ0, (1−p)ρ1),

the claim follows. J

Our next claim gives us a way to use high mutual information between two registers in a
classical quantum state to make a prediction about the classical part using measurement on
the quantum part.

I Claim 19 (Information ⇒ prediction). Let ρAB ∈ D(AB) be a classical quantum state of
the form ρAB = p |0〉〈0|A ⊗ ρ0

B + (1 − p) |1〉〈1| ⊗ ρ1
B . The probability of predicting A by a

measurement on B is at least

1
2 + I(A : B)

2 log 2 .
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Proof. We drop the register label B. Let M be a projector on the support of positive
eigenvectors of the state pρ0 − (1 − p)ρ1. Let the measurement be {M,1 −M} and first
outcome imply 0 in register A and second outcome imply 1. Then probability of success is

pTr(ρ0M) + (1− p)Tr(ρ1(1−M))
= (1− p) + Tr((pρ0 − (1− p)ρ1)M)

= (1− p) + 1
2(‖pρ0 − (1− p)ρ1‖1 + Tr(pρ0 − (1− p)ρ1))

= (1− p) + 1
2(‖pρ0 − (1− p)ρ1‖1 + 2p− 1)

= 1
2 + 1

2‖pρ
0 − (1− p)ρ1‖1

= 1
2 + ∆(pρ0, (1− p)ρ1).

From Claim 18, we know that ∆(pρ0, (1− p)ρ1) ≥ I(A : B)/(2 log 2). J

2.2 Quantum Communication complexity
In quantum communication complexity, two players wish to compute a classical function
F : X × Y → {0, 1} for some finite sets X and Y. The inputs x ∈ X and y ∈ Y are given to
two players Alice and Bob, and the goal is to minimize the quantum communication between
them required to compute the function.

While the players have classical inputs, the players are allowed to exchange quantum mes-
sages. Depending on whether or not we allow the players arbitrary shared entanglement, we
get Q(F ), bounded-error quantum communication complexity without shared enganglement
and Q∗(F ), for the same measure with shared entanglement. Obviously Q∗(F ) ≤ Q(F ). In
this paper we will only work with Q∗(F ), which makes our results stronger since we prove
lower bounds in this work.

Let F : X × Y → {0, 1, ∗} be a partial function, with dom(F ) := {(x, y) ∈ X × Y :
F (x, y) 6= ∗}, and let ε ∈ (0, 1/2).

An entanglement assisted quantum communication protocol Π for this function is as
follows. Alice and Bob start with a preshared entanglement. Upon receiving inputs (x, y),
where Alice gets x and Bob gets y, they exchange quantum states and then Alice applies a
measurement on her qubits to output 1 or 0. Let O(x, y) be the random variable output by
Alice in Π, given input (x, y). Let µ be a distribution over dom(F ).

Let inputs to Alice and Bob be given in registers X and Y in the state∑
x,y

µ(x, y) |x〉〈x|X ⊗ |y〉〈y|Y .

Let these registers be purified by RX and RY respectively, which are not accessible to either
players. Let Alice and Bob initially hold register A0, B0 with shared entanglement Θ0,A0B0 .
Then the initial state is

|Ψ0〉XYRXRY A0B0
:=
∑
x,y

√
µ(x, y) |xxyy〉XRXY RY

|Θ0〉A0B0
.

Alice applies a unitary U1 : XA0 → XA1C1 such that the unitary acts on A0 conditioned
on X. She sends C1 to Bob. Let B1 ≡ B0 be a relabelling of Bob’s register B0. He applies
U2 : Y C1B1 → Y C2B2 such that the unitary acts on C1B0 conditioned on Y . He sends C2
to Alice. Players proceed in this fashion till end of the protocol. At any round r, let the
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registers be ArCrBr, where Cr is the message register, Ar is Alice’s register and Br is Bob’s
register. If r is odd, then Br ≡ Br−1 and if r is even, then Ar ≡ Ar−1. Let the joint state in
registers ArCrBr be Θr,ArCrBr

. Then the global state at round r is

|Ψr〉XYRXRY ArCrBr
:=
∑
x,y

√
µ(x, y) |xxyy〉XRXY RY

|Θr〉ArCrBr
.

We define the following quantities.

Worst-case error: err(Π) := max
(x,y)∈dom(F )

{Pr[O(x, y) 6= F (x, y)]}.

Distributional error: errµ(Π) := E(x,y)←µPr[O(x, y) 6= F (x, y)].

Quantum CC of a protocol: QCC(Π) :=
∑
i

|Ci|.

Quantum CC of F : Q∗ε(F ) := min
Π:err(Π)≤ε

QCC(Π).

Our first fact justifies using ε = 1/3 by default since the exact constant does not matter
since the success probability of a protocol can be boosted for QCC.

I Fact 20 (Error reduction). Let 0 < δ < ε < 1/2. Let Π be a protocol for F with err(Π) ≤ ε.
There exists protocol Π′ for F such that err(Π′) ≤ δ and

QCC(Π′) ≤ O
(

log(1/δ)( 1
2 − ε

)2 ·QCC(Π)
)
.

This fact is proved by simply repeating the protocol sufficiently many times and taking
the majority vote of the outputs. If the error ε is close to 1/2, we can first reduce the
error to a constant by using O( 1

(1/2−ε)2 ) repetitions. Then O (log(1/δ)) repetitions suffice to
reduce the error down to δ. Hence the quantum communication only increases by a factor of
O
(

log(1/δ)
(1/2−ε)2

)
.

We have the following relation between worst-case and average-case error quantum
communication complexities. It follows for example from standard application of Sion’s
minimax theorem [41].

I Fact 21 (Minimax principle). Let F : X × Y → {0, 1, ∗} be a partial function. Fix an error
parameter ε ∈ (0, 1/2) and a quantum communication bound q ≥ 0. Suppose F is a family
of protocols such that for every distribution µ on dom(F ) there exists a protocol Π ∈ F such
that

errµ(Π) ≤ ε and QCC(Π) ≤ q.

Then there exists a protocol Π′ such that

err(Π′) ≤ ε and QCC(Π′) ≤ q.

Our next claim shows that having some information about the output of a Boolean
function F allows us to predict the output of F with some probability greater than 1/2.

I Claim 22. Let F : X × Y → {0, 1, ∗} be a partial function and µ be a distribution over
dom(F ). Let XY be registers with the state

∑
x,y µ(x, y) |x〉〈x| ⊗ |y〉〈y| and define a register

F that contains the value of F (x, y). Let Π be a quantum communication protocol with
registers X,Y input to Alice and Bob respectively and number of rounds r (which is even).
There either
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There exists a quantum communication protocol Π′ for F with r rounds, with input (X,Y )
to Alice and Bob respectively, such that

QCC(Π′) = QCC(Π) + 1, and errµ(Π′) < 1
2 −

I(F : ArCr | X)Ψr

2 log(2) .

Or, there exists a quantum communication protocol Π′ for F with r rounds, with input
(X,Y ) to Alice and Bob respectively, such that

QCC(Π′) ≤ QCC(Π), and errµ(Π′) < 1
2 −

I(F : BrCr | Y )Ψr

2 log(2) .

Proof. We first prove the first case. In Π′, Alice and Bob run the protocol Π, after which
Alice proceeds as follows. Consider the state Ψr,XFArCr

in registers XFArCr (note that we
have added a new register F to the state Ψr, which can be done naturally). Let

Ψr,XFArCr =
∑
x

µ(x) |x〉〈x|X ⊗Ψx
r,FArCr

be the decomposition of Ψr,XFArCr
, which is possible since X is classical. Note that Ψx

r,FArCr

is a classical quantum state between the registers F and ArCr. Alice, essentially applying
Claim 19 makes a prediction about the content of register F . Then she outputs the prediction.
Clearly,

QCC(Π′) = QCC(Π) + 1 .

For every input x for Alice, her prediction is successful with probability at least 1/2 +
I(F : ArCr)Ψx

r
/2 log(2) by Claim 19. Hence the overall success probability of Π′ is at least

Ex←X
[

1
2 +

I(F : ArCr)Ψx
r

2 log(2)

]
= 1

2 + I(F : ArCr|X)Ψr

2 log(2) .

Second case follows with same argument, but applied on Bob’ side before he sends Cr to
Alice. Bob then sends the outcome to Alice instead of Cr. J

The following claim is used in our proof to handle the easy case of a biased input
distribution.

I Claim 23. Let F : X × Y → {0, 1, ∗} be a partial function and let µ be a distribution
over dom(F ). Let ε ∈ (0, 1/2) and c ≥ 1 be a positive integer. For i ∈ [c], let Xi, Yi be
registers with the state

∑
x,y µ(x, y) |x〉〈x|Xi

⊗ |y〉〈y|Yi
and define register Li that holds the

value F (xi, yi). Define X := X1 . . . Xc, Y := Y1 . . . Yc, and L := L1 . . . Lc. Let ΨXY L be the
joint state in registers X,Y, L. Then either
(a) There exists a protocol Π for F such that QCC(Π) = 1, and errµ(Π) ≤ 1

2 − ε, or
(b) ∆(ΨXL,ΨX ⊗WL1 ⊗ . . .WLc

) ≤ cε, where WLi
is the maximally mixed state in register

Li.

Proof. Define, qx1 := Pr[F = 0 | X1 = x1]. Assume Ex1←X1

[∣∣ 1
2 − q

x1
∣∣] ≥ ε. Let Π be a

protocol where Alice, on input x1, outputs 0 if qx1 ≥ 1/2 and 1 otherwise. Then,

errµ(Π) = 1
2 − Ex1←X1

∣∣∣∣12 − qx1

∣∣∣∣ ≤ 1
2 − ε.

Assume otherwise Ex1←X1

∣∣ 1
2 − q

x1
∣∣ < ε. This implies

∆(ΨXL,ΨX ⊗WL1 ⊗ . . .WLc
) ≤ c ·∆(ΨX1L1 ,ΨX1 ⊗WL1) = c · Ex1←X1

∣∣∣∣12 − qx1

∣∣∣∣ < cε,

where the first inequality follows from Fact 13.B. J
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In below, let A′r, B′r represent Alice and Bob’s registers at round r. That is, at even round
r, A′r = ArCr, B

′
r = Br and at odd r, A′r = Ar, B

′
r = BrCr. We will need the following

version of quantum-cut-and-paste lemma from [34] (also see [23] for a similar argument,
where it is used to lower bound quantum communication complexity of disjointness). This is
a special case of [34, Lemma 7] and we have rephrased it using our notation.

I Lemma 24 (Quantum cut-and-paste). Let Π be a quantum protocol with classical inputs
and consider distinct inputs u, u′ for Alice and v, v′ for Bob. Let |Ψ0,A0B0〉 be the initial
shared state between Alice and Bob. Also let

∣∣∣Ψu′′,v′′

k,A′
k
B′

k

〉
be the shared state after round k of

the protocol when the inputs to Alice and Bob are (u′′, v′′) respectively. For k odd, let

hk = B
(

Ψu,v
k,B′

k
,Ψu′,v

k,B′
k

)
and for even k, let

hk = B
(

Ψu,v
k,A′

k
,Ψu,v′

k,A′
k

)
.

Then

B
(

Ψu′,v
r,A′r

,Ψu′,v′

r,A′r

)
≤ hr + hr−1 + 2

r−2∑
k=1

hk.

The following lemma (see also [15]) formalizes the following intuition: In a quantum
protocol with communication q, the amount of information that Bob has about Alice’s input
at any time point is at most 2q (note that the factor of 2 is necessary because of super-dense
coding.).

I Lemma 25. Let Π be a quantum protocol with the inputs of Alice and Bob (X,Y ) being
jointly distributed. Alice has an additional input U which is independent of both (X,Y ). Let
µ denote the distribution of inputs so that µ(x, u, y) = µ(x, y)µ(u). Let the total pure state
after the kth round of the protocol be

|Ψk〉XX̃Y Ỹ A′
k
B′

k

=
∑
x,y

√
µ(x, y)µ(u) |xxuu〉

XX̃UŨ
|yy〉

Y Ỹ
|Θx,u,y
k 〉

A′
k
B′

k
.

Then

I(B′kY Ỹ : U |X)Ψk
≤ 2qk.

Here qk is communication cost up to round k. A similar statement holds by reversing the
roles of Alice and Bob.

Proof. We prove the first inequality by induction on k. The inequality holds trivially for
k = 0. First suppose k is even, so that Bob sent the last message. Then,

I(B′kY Ỹ : U |X)Ψk
≤ I(B′k−1Y Ỹ : U |X)Ψk−1 (Fact 17.D)
≤ 2qk−1 ≤ 2qk,

where the first inequality follows by induction step.
Now suppose k is odd, so that Alice sent the last message. By our notation, B′k ≡ CkBk

where Ck is Alice’s message. Then,

I(B′kY Ỹ : U |X)Ψk
= I(CkBkY Ỹ : U |X)Ψk

≤ I(BkY Ỹ : U |X)Ψk
+ 2S(Ck|X) (Fact 17.H)

= I(B′k−1Y Ỹ : U |X)Ψk−1 + 2S(Ck|X)
≤ 2qk−1 + 2|Ck| = 2qk,

where last inequality follows from induction step. J
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3 Separation

In this section we establish the main result, a nearly quadratic separation between quantum
communication complexity and the logarithm of approximate rank, which we restate below.

I Theorem 1. There is a family of total functions F : X × Y → {0, 1} with Q∗(F ) =
Ω̃
(

log2 rk1/3(F )
)
.

Our proof is organized as follows. In Section 3.1 we define lookup functions, which we will
use to construct the function achieving the separation in Theorem 1. Then in Section 3.2 we
prove Theorem 1 using results from later sections. More precisely, we prove the upper bound
on our function’s approximate rank using Theorem 28, proved in Section 4. We prove the
lower bound using Corollary 29, which follows from Theorem 33 in Section 5. Theorem 28
and Corollary 29 provide a black-box way of using the results of Section 4 and Section 5
without delving into their proofs.

3.1 Lookup functions
We define a simpler version of lookup functions than the ones used in [5], since we only deal
with total functions in this paper. This is only for simplicity, and the lower bound shown in
this paper also applies to the more general lookup functions for partial functions defined in
[5].

First, for any function F : X ×Y → {0, 1} and integer c > 0, we can define a new function
F c : X c × Yc → {0, 1}c as F c((x1, . . . , xc), (y1, . . . , yc)) = (F (x1, y1), . . . , F (xc, yc)), which
takes c inputs to F and outputs the answers to all c inputs. F c is simply the problem of
computing F on c independent inputs and outputting all c answers.

An (F,G)-lookup function, denoted FG , is defined by a function F : X ×Y → {0, 1} and a
family G = {G0, . . . , G2c−1} of functions, where each Gi : (X c ×{0, 1}m)× (Yc ×{0, 1}m)→
{0, 1}. It can be viewed as a generalization of the address function. Alice receives input
x = (x1, . . . , xc) ∈ X c and u = (u0, . . . , u2c−1) ∈ {0, 1}m2c and likewise Bob receives input
y = (y1, . . . , yc) ∈ Yc and v = (v0, . . . , v2c−1) ∈ {0, 1}m2c . We refer to the inputs (x,y) as
the “address part” of the input and the inputs (u,v) as the “array part” of the input. We
will refer to ui and vi as a “cell” of the array. The address, `, is determined by the evaluation
of F on (x1, y1), . . . , (xc, yc), that is ` = F c(x,y) ∈ {0, 1}c. This address (interpreted as
an integer in {0, . . . , 2c − 1}) then determines which function, out of the 2c functions Gi,
the players should evaluate and which pair of cells, out of the 2c possible pairs (ui, vi), of
the array are relevant to the output of the function. The goal of the players is to output
G`(x, u`,y, v`). The formal definition is the following.

I Definition 26 ((F,G)-lookup function for total F ). Let F : X ×Y → {0, 1} be a function and
G = {G0, . . . , G2c−1} a family of functions, where each Gi : (X c×{0, 1}m)×(Yc×{0, 1}m)→
{0, 1}. An (F,G)-lookup function, denoted FG , is a function

FG : (X c × {0, 1}m2c

)× (Yc × {0, 1}m2c

)→ {0, 1}

defined as follows. Let x = (x1, . . . , xc) ∈ X c, y = (y1, . . . , yc) ∈ Yc, u = (u0, . . . , u2c−1) ∈
{0, 1}m2c , and v = (v0, . . . , v2c−1) ∈ {0, 1}m2c . Then

FG(x,u,y,v) = G`(x, u`,y, v`),

where ` = F c(x,y).
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IP lookup function transformation−−−−−−−−−−−−−−−−−−−−−−−→ IPG

log
(

1
disc(IP)

)
= Ω(n) Corollary 29===========⇒ Q∗(IPG) = Ω(n)

size(IP) = O(n) Theorem 28===========⇒ log rk1/3(IPG) = Õ(
√
n)

Figure 1 High-level overview of our separation. Here IP : {0, 1}n × {0, 1}n → {0, 1} is the inner
product function, disc is the discrepancy, and size is the circuit size.

Since we only deal with total functions F , we will not need to impose a consistency
condition for instances where some input to F is outside its domain. (In [5], this condition
was called “consistency outside F .”)

In order to show lower bounds on the communication complexity of FG (Theorem 33) we
add two constraints on the family G as in [5].

I Definition 27 (Nontrivial XOR family). Let G = {G0, . . . , G2c−1} a family of communication
functions, where each Gi : (X c × {0, 1}m) × (Yc × {0, 1}m) → {0, 1}. We say that G is a
nontrivial XOR family if the following conditions hold.
1. (Nontriviality) For all x = (x1, . . . , xc) ∈ X c and y = (y1, . . . , yc) ∈ Yc, if we have

` = F c(x,y) ∈ {0, 1}c then there exist u, v, u′, v′ ∈ {0, 1}m such that G`(x, u,y, v) 6=
G`(x, u′,y, v′).

2. (XOR function) For all i ∈ {0, . . . , 2c − 1}, u, u′, v, v′ ∈ {0, 1}m and x = (x1, . . . , xc) ∈
X c,y = (y1, . . . , yc) ∈ Yc if u⊕ v = u′ ⊕ v′ then Gi(x, u,y, v) = Gi(x, u′,y, v′).

The first condition simply enforces that the content of the correct part of the array, i.e.,
(u`, v`), is relevant to the output of the function in the sense that there is some setting of
these bits that makes the function true and another setting that makes it false.

The second condition enforces that the output of the function only depends on u` ⊕ v`,
and not u` and v` individually. This is just one way of combining the arrays of Alice and Bob
to form one virtual array that contains 2c cells. Other combining functions are also possible.

3.2 Separation

We can now prove the separation using results from Section 4 and Section 5. Our proof
strategy is depicted in Figure 1.

The separating function is going to be a lookup function FG defined by a function
F : X × Y → {0, 1} and a function family G = {G0, . . . , G2c−1}. We will choose F to be the
well-known inner product function IP : {0, 1}n × {0, 1}n → {0, 1} defined as

IP(x, y) =
n⊕
i=1

(xi ∧ yi).

The communication complexity of the inner product function is well understood and is
Θ(n) in all the models discussed in this paper. In fact, even log sign-rank(F ) = Θ(n) [17],
where sign-rank(F ) is defined as the minimum rank of a matrix G such that `∞(F −G) < 1/2.

To define our function family G, we use the following theorem proved in Section 4.
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I Theorem 28. Let F be a total function with circuit size size(F ). Then for all c > 0, there
exists a nontrivial family of XOR functions G = {G0, G1, . . . , G2c−1}, such that

log rk1/3(FG) = Õ(c3/2
√

size(F )).

This theorem gives us a function family G and proves that for this family we have

log rk1/3(IPG) = Õ(c3/2
√

size(IP)) = Õ(c3/2
√
n), (1)

where we use the fact that size(IP) = O(n). This follows because IP is a parity of size n
composed with an And function on two bits, and has a circuit of size O(n) consisting of a
logn-depth tree of fanin-2 Xor gates with fanin-2 And gates at the bottom.

To show the lower bound, we use the following corollary of Theorem 33.

I Corollary 29. Let FG be an (F,G)-lookup function for a function F and a nontrivial family
of XOR functions G = {G0, G1, . . . , G2c−1} with c = Θ(log(Q∗(F ))). Then

Q∗(FG) = Ω(log(1/disc(F ))).

Here disc(F ) is the discrepancy of F (Definition 6). Since log(1/disc(IP)) = Ω(n) [27,
Example 3.19], using Theorem 33 we have

Q∗(IPG) = Ω(log(1/disc(IP))) = Ω(n). (2)

We can now choose c = Θ(logn) to satisfy the conditions of Corollary 29. Thus (1) yields

log rk1/3(IPG) = Õ(
√
n),

which together with (2) gives us Q∗(IPG) = Ω̃(log2(rk1/3(IPG))), proving Theorem 1.

4 Upper bound on approximate rank of lookup functions

The aim of this section is to prove Theorem 28. Proving this will require some work and we
will need to carefully choose our function family G = {G0, . . . , G2c−1}. To do this, we first
introduce the concept of an unambiguous lookup function.

I Definition 30. Let FG be an (F,G)-lookup function for a function F : X ×Y → {0, 1} and a
function family G = {G0, G1, . . . , G2c−1}. We say that FG is an unambiguous lookup function
if G` evaluating to 1 certifies that F c(x,y) = `. That is, for all x, u,y, v, G`(x, u,y, v) =
1⇒ F c(x,y) = `.

Note that not all lookup functions are unambiguous even if we enforce the nontrivial
XOR family condition (Definition 27), since the condition for when Gi evaluates to 1 need
not even depend on x and y. For example, Gi(x, u,y, v) could simply be some nonconstant
function of the string u⊕ v. However, the condition of unambiguity is quite natural, and the
lookup functions used in prior work are unambiguous lookup functions (or can be slightly
modified to be unambiguous).

The advantage of unambiguous lookup functions is that we can upper bound their
approximate rank as follows.

I Lemma 31. Let FG be an unambiguous (F,G)-lookup function. Then we have

log rk1/3(FG) = O(c ·max
i

Q∗(Gi)).
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Proof. We start by observing that the unambiguity condition implies that for any input
(x,u,y,v), at most one of the functions Gi(x, ui,y, vi) equals 1. Indeed, only G`(x, u`,y, v`)
can potentially evaluate to 1, where ` = F c(x,y).

In other words, when FG(x,u,y,v) = 1 we must have G`(x, u`,y, v`) = 1 for ` = F c(x, y)
and Gi(x, ui,y, vi) = 0 for all i 6= `. On the other hand, when FG(x,u,y,v) = 0 we must
have Gi(x, ui,y, vi) = 0 for all i ∈ {0, . . . , 2c − 1}.

This means the communication matrix of FG equals the sum of the communication
matrices of Gi over all i. More precisely, we extend the definition of Gi to have it take all of
(x,u,y,v) as input in the natural way (i.e., it ignores all the other cells of the array except
ui and vi). This observation directly yields

rk(FG) ≤
2c−1∑
i=0

rk(Gi).

The same inequality does not immediately hold for approximate rank, because the errors in
the approximation can add up. So even though A =

∑
iBi, if B̃i satisfies `∞(B̃i−Bi) ≤ 1/3,

it is not necessarily the case that `∞(A−
∑
i B̃i) ≤ 1/3. However, if each B̃i is an excellent

approximation to Bi, then their sum will still be a good approximation to A. More precisely,
it is still the case that

rk1/3(FG) ≤
2c−1∑
i=0

rkε(Gi),

where ε ≤ 2−c/3, since the definition of approximate rank allows error at most 1/3. This
yields

rk(FG) ≤ 2c max
i

rkε(Gi) =⇒ log rk1/3(FG) ≤ c+ max
i

log rkε(Gi).

Since log of approximate rank lower bounds quantum communication complexity, we have
that log rkε(Gi) ≤ Q∗ε(Gi). By using standard error reduction, we have that Q∗ε(Gi) for
ε = 2−c/3 is at most O(cQ∗(Gi)). Hence log rk1/3(FG) = O(c ·maxi Q∗(Gi)). J

To prove Theorem 28, we need a tool for taking a function F and finding a collection G
such that FG is an unambiguous lookup function, and Q∗(Gi) is small for all Gi ∈ G. The
following lemma provides such a tool.

I Lemma 32. Let F : {0, 1}n × {0, 1}n → {0, 1} be a total function with circuit size size(F )
(i.e., F can be computed by a Boolean circuit with size(F ) gates of constant fanin).

Then for all c > 0, there exists a nontrivial family G = {G0, G1, . . . , G2c−1} of XOR
functions, such that FG is an unambiguous lookup function and for all i ∈ {0, . . . , 2c − 1},

Q∗(Gi) = Õ(
√
c size(F )).

Proof. We need to construct functions Gi(x, u,y, v) that lead to an unambiguous lookup
function (Definition 30), that are a nontrivial XOR family (Definition 27) and have Q∗(Gi) =
Õ(
√
c size(F )).

Each Gi will check that ui ⊕ vi has a very special type of certificate that proves that
F c(x, y) = i. If it contains such a certificate, Gi will output 1 and otherwise it will output 0.
This takes care of the unambiguity condition. Since Gi only depends on ui ⊕ vi, it will be an
XOR family and since it only evaluates to 1 on a certificate, it will be nontrivial.
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We now construct the certificate. Let size(F ) = m, which means that there is a circuit
that takes in (x, y) as input and outputs F (x, y) using at most m constant fanin gates. The
cell ui ⊕ vi will contain c certificates, each certifying that the corresponding input to F
evaluates to correct bit of i. For one instance of F , the certificate is constructed as follows.
The certificate has to provide a full evaluation of the circuit of size m on (x, y) by providing
the correct values for the inputs and outputs of all m gates. The final gate should, of course,
evaluate the claimed output value for F . The inputs to the first level, which are inputs
belonging to either Alice or Bob, should be consistent with the true inputs that Alice and
Bob hold. For a circuit of size m, a certificate of this sort has size Õ(m) (with a log factor
to account for describing the labels of gates), and hence the entire certificate has size Õ(cm).

If the inputs are consistent with Alice’s and Bob’s input, and all the gates are evaluated
correctly, then the output of the circuit will be F (x, y) and the output string for all c circuits
will indeed be F c(x,y) = `. If this output string is consistent with i, then Gi accepts and
otherwise rejects.

It is easy to see that G satisfies the first two properties we wanted. It remains to upper
bound Q∗(Gi). As a warmup, note that the deterministic communication complexity of Gi
is at most Õ(cm). This is because Alice and Bob can simply send all of ui and vi to each
other, which costs Õ(cm) communication. They can then check that their inputs are correct,
the circuit evaluation is correct, and the circuits evaluate to i.

A similar algorithm, using Grover’s algorithm to search for a discrepancy, yields the
quantum algorithm. Alice and Bob first check that the O(cm) inputs in the circuits (there
are O(m) inputs per F , and there are c copies of F ) are consistent with their part of the input
using Õ(

√
cm) communication using Grover’s algorithm. They can then Grover search over

all cm gates to check if their inputs and outputs are consistent, which again takes Õ(
√
cm)

communication. The final step is to check that the output bits equal i. This takes Õ(
√
c)

communication using Grover search. Hence the total quantum communication complexity of
Gi is Õ(

√
cm) = Õ(

√
c size(F )). J

Lemma 31 and Lemma 32 straightforwardly imply Theorem 28.

5 Lower bound on quantum communication complexity of lookup
functions

In this section, we prove our main theorem, which is the following:

I Theorem 33. Let F : X × Y → {0, 1, ∗} be a (partial) function, c ≥ 5 log(Q∗1/3(F )) and
r ≥ 1 be an integer. Let G = {G0, . . . , G2c−1} be a nontrivial family of XOR functions where
each Gi : (X c × {0, 1}m)× (Yc × {0, 1}m)→ {0, 1}, and let FG be the (F,G)-lookup function.
Let δ = 1

109cr2 . For any 1/3-error r-round protocol Π for FG, there exists a 1
2 −

δ
3 -error

protocol Π′ for F such that

QCC(Π′) = O(QCC(Π)).

Before proving this, we show how it implies the corollary used in Section 3, which we
restate.

I Corollary 29. Let FG be an (F,G)-lookup function for a function F and a nontrivial family
of XOR functions G = {G0, G1, . . . , G2c−1} with c = Θ(log(Q∗(F ))). Then

Q∗(FG) = Ω(log(1/disc(F ))).
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∀µ

∃ Π′ for F with err(Π′) ≤ 1
2 −

δ
3 , QCC(Π′) = O(QCC(Π))

Fact 21 (Minimax principle)

(A1)
QCC(Π) ≤ δ2c ?

(A2)
∆(XL,X ⊗W ) ≤ cδ

3 ?

(A3) ∀i ∀k
I(AkUŨX−iY−i;Li|Xi)ψk ≤ δ,
I(BkV Ṽ X−iY−i;Li|Yi)ψk ≤ δ ?

Claim 35

∃ Πµ errµ(Πµ) ≤ 1
2 −

δ
3 , QCC(Πµ) ≤ QCC(Π) + 1

Claim 37

Claim 38

contradiction

Claim 23 Claim 22

Yes

Yes
No No

Yes

No

(4)

(6)

Figure 2 The structure of the proof of Theorem 33. Note that Claim 35 and Claim 37 only follow
if both of their incoming arcs hold.

Proof. Let Π be a protocol for FG with QCC(Π) = Q∗(F ). Then from Theorem 33, we
have Q∗ε(F ) = O(Q∗(FG)), where ε = 1

2 −
δ
3 , δ = 1

109cr2 , and r ≤ QCC(Π) = Q∗(FG)) is
the number of rounds in Π. Now from Theorem 7, we know that Q∗ε(F ) = Ω

(
log 1−2ε

disc(F )
)
.

Combining these with the fact that cr2 = O(Q∗(FG)) we get

Q∗(FG) = Ω
(

log 1− 2ε
disc(F )

)
= Ω

(
log
(

1
disc(F )

)
− log(cr2)

)

= Ω
(

log
(

1
disc(F )

)
− log Q∗(FG)

)
,

which implies the statement to be proved, as Q∗(FG) = ω(log Q∗(FG)). J

Proof of Theorem 33. We explain here the overall structure of the argument which is also
displayed visually in Figure 2.

Rule out trivial protocols. We first rule out the easy case where the protocol we are given,
Π, has high quantum communication cost. More precisely, we check if the following condition
holds.

QCC(Π) < δ2c. (A1)

If this does not hold then QCC(Π) ≥ δ2c = Ω(Q∗(F )). By choosing the protocol whose
communication complexity is Q∗(F ), we obtain a protocol Π′ for F with QCC(Π′) = Q∗(F ) =
O(QCC(Π)) and we are done. Hence for the rest of the proof we may assume (A1).
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Protocols correct on a distribution. Instead of directly constructing a protocol Π′ for F
that is correct on all inputs with bounded error, we instead construct for every distribution
µ on dom(F ), a protocol Πµ that does well on µ and then use Fact 21 to construct our final
protocol. More precisely, for every µ over dom(F ) we construct a protocol Πµ for F that has
the following properties:

QCC(Πµ) = QCC(Π) + 1 and errµ(Πµ) < 1/2− δ/3. (3)

Hence for the remainder of the proof let µ be any distribution over dom(F ) and our aim
is to construct a protocol satisfying (3).

Construct a distribution for FG. Using the distribution µ on dom(F ), we now construct a
distribution over the inputs to FG . Let the random variable T be defined as follows:

T := (X1, . . . , Xc, U0, . . . , U2c−1, Y1, . . . , Yc, V0, . . . , V2c−1),

where for all i ∈ [c], XiYi is distributed according to µ and independent of all other
random variables and for j ∈ {0, . . . , 2c − 1}, UjVj are uniformly distributed in {0, 1}2m
and independent of all other variables. For i ∈ [c], we define Li := F (Xi, Yi). We also
define X := (X1, . . . , Xc), Y := (Y1, . . . , Yc), L := (L1, . . . , Lc), U := (U0, . . . , U2c−1) and
V := (V1, . . . , V2c−1). Lastly, for i ∈ [c], we define X−i := X1, . . . , Xi−1, Xi+1, . . . , Xc and
X<i := X1, . . . , Xi−1. Similar definitions hold for L and Y . Let Ak, Bk be the registers of
Alice and Bob after round k of protocol Π. The total pure state after round k can be written
as follows:

|ψk〉XX̃UŨY Ỹ V Ṽ AkBk
=
∑
x,u,y,v

√
µT (x, u, y, v) |xx〉

XX̃
|uu〉

UŨ
|yy〉

Y Ỹ
|vv〉

V Ṽ
|ψx,u,y,vk 〉

AkBk

Here µT is the distribution of the random variable T . X̃, Ũ , Ỹ , Ṽ are registers that purify
the classical inputs X,U, Y, V respectively.

Rule out easy distributions µ. We now show that if µ is such that the output of F (X,Y )
is predictable simply by looking at Alice’s input X, then this distribution is easy and we can
construct a protocol Πµ that does well on this distribution since Alice can simply guess the
value of F (X,Y ) after seeing X. More precisely, we check if the following condition holds.

∆(XL,X ⊗W ) ≤ cδ/3, (A2)

where W is the uniform distribution on {0, 1}c.
If the condition does not hold, we invoke Claim 23 with ε = δ/3. Then we must be in

case (a) of this claim and hence we get the desired protocol Πµ. Therefore we can assume
(A2) holds.

Construct new protocols Πi. We now define a collection of protocols Πi for each i ∈ [c].
Πi is a protocol in which Alice and Bob receive inputs from dom(F ). We construct Πi as
follows: Given the input pair (Xi, Yi) distributed according to µ, Alice and Bob use shared
entanglement X−iX̃−iY−iỸ−i (Alice holds X−iX̃−i and Bob holds Y−iỸ−i), where X−iY−i
are distributed according to µ⊗c−1 and X̃−iỸ−i purify X−iY−i in a canonical way. They also
use shared entanglement UŨV Ṽ (Alice holds UŨ and Bob holds V Ṽ ), where U and V are
uniformly distributed and Ũ Ṽ purify UV in a canonical way. Note that Alice and Bob now
have inputs XU and Y V distributed according to T . They then run protocol Π. It is clear
that for all i ∈ [c], QCC(Πi) = QCC(Π).
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Rule out informative protocols Πi. If any of the protocols Πi that we constructed has a
lot of information about Li, then we can use Claim 22 to design a protocol for F . Hence, we
can assume that for each 1 ≤ k ≤ r,

I(AkUŨX−iY−i;Li|Xi)ψk
, I(BkV Ṽ X−iY−i;Li|Yi)ψk

≤ δ. (A3)

Obtain a contradiction. We have already established that (A1), (A2), and (A3) must hold,
otherwise we have obtained our protocol Πµ. We will now show that if (A1), (A2), and (A3)
simultaneously hold, then we obtain a contradiction. To show this, we use some claims that
are proved after this theorem.

First we apply Claim 34 to get the following from (A1) and (A2).

∀k ∈ {1, . . . , r} : Ex,l←XLB2
(
ψx
k,BkY Ỹ V Ṽ Ul

, ψx
k,BkY Ỹ V Ṽ

⊗ ψUl

)
≤ q

2c + cδ

3 . (4)

Here q = QCC(Π)/2. Intuitively this claim asserts that for a typical x and `, Bob (conditioned
on X = x) has very little information about the cell U` at the end of round k, which is
quantified by saying their joint state is close to being a product state. This would be false
without assuming (A1) because if there was no upper bound on the communication in Π, then
Alice could simply communicate all of U , in which case Bob would have a lot of information
about any Uj . We need (A2) as well, since otherwise it is possible that the correct answer `
is easily predicted by Alice by looking at her input alone, in which case she can send over
the contents of cell U` to Bob. A symmetric statement also follows with Alice and Bob
interchanged.

We then apply Claim 35 to get the following from (A3).

∀k ∈ {1, . . . , r} : Ex,l←XLB2
(
ψx,l
k,BkY Ỹ V Ṽ Ul

, ψx,l
k,BkY Ỹ V Ṽ

⊗ ψUl

)
≤ 3 ·

(
q

2c + cδ

3 + 2cδ
)
.

(5)

Intuitively, this claim asserts that for a typical x and `, Bob (conditioned on X = x and
L = `) has very little information about the cell U` at the end of round k, which is quantified
by saying their joint state is close to being a product state. A symmetric statement also
follows for Alice. Equation 5 implies the following relation, which is proved in Claim 36:
Prx,y,l,ul,vl←X,Y,L,UL,VL

[Gl(x, y, ul, vl) = α(x, y)] ≤ 1/100, where α(x, y) is either 0 or 1. We
then proceed to apply Claim 37.

We then apply Claim 38, which uses (4) and (5) and Claim 37, to obtain the following.
There exists, x, y, l, ũl, ṽl, ˜̃ul, ˜̃vl such that,

∆
(

(ψx,y,l,ũl ,̃vl

r,ArU−lŨ−l

, ψx,y,l,ũl ,̃̃vl

r,ArU−lŨ−l

)
≤ 1000r ·

√(
q

2c + cδ

3 + 2cδ
)
< 0.1,

Gl(x, y, ũl, ṽl) = 1 and Gl(x, y, ũl, ˜̃vl) = 0. (6)

We assume (w.l.o.g) that Alice gives the answer in round r. From above

|Pr(Alice outputs 1 on (x, y, ũl, ṽl))− Pr(Alice outputs 1 on (x, y, ũl, ˜̃vl))| < 0.1.

This is a contradiction since Gl(x, y, ũl, ṽl) = 1 and Gl(x, y, ũl, ˜̃vl) = 0 and the error of Π on
any input is at most 1/3.
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Minimax argument. Note that in all branches where we did not reach a contradiction,
we constructed a protocol satisfying (3). Hence we constructed, for any µ over dom(F ), a
protocol Πµ that satisfies (3). We now use Fact 21 to complete the proof. J

This completes the proof of the theorem, except for the claims Claim 34, Claim 35,
Claim 36, Claim 37, and Claim 38 that we did not prove. We now prove these claims.

5.1 Proof of claims
I Claim 34. Suppose QCC(Π) = 2q and ∆(XL,X ⊗W ) ≤ δ1. Then

Ex,l←XLB2
(
ψx
k,BkY Ỹ V Ṽ Ul

, ψx
k,BkY Ỹ V Ṽ

⊗ ψUl

)
≤ q

2c + δ1.

for all 1 ≤ k ≤ r. Here ψUl
is the maximally mixed state on the register Ul (in other words

a random variable which is uniformly distributed.)

Proof. We have

q ≥ I(BkY Ỹ V Ṽ ;U0, . . . , U2c−1|X)ψk
(Lemma 25)

≥
2c−1∑
l=0

I(BkY Ỹ V Ṽ ;Ul|X)ψk
(Fact 17.F)

= 2c · Ex,l←X⊗W I(BkY Ỹ V Ṽ ;Ul|X = x)ψk

≥ 2c · Ex,l←X⊗WB2
(
ψx
k,BkY Ỹ V Ṽ Ul

, ψx
k,BkY Ỹ V Ṽ

⊗ ψUl

)
(Fact 17.J).

This implies that

Ex,l←X⊗WB2
(
ψx
k,BkY Ỹ V Ṽ Ul

, ψx
k,BkY Ỹ V Ṽ

⊗ ψUl

)
≤ q

2c .

Since ∆(XL,X ⊗W ) ≤ δ1 and B2(ρ, σ) ≤ 1 always, this proves the claim as well. J

The next claim intuitively says that, if the communication cost of Π is small, then at any
point during the protocol, Bob’s register has small information about the correct cheat sheet
cell.

I Claim 35. Assume in addition to the assumptions of Claim 34, the following condition
holds: for all i ∈ [c], let

I(AkUŨX−iY−i;Li|Xi)ψk
≤ δ.

Then

Ex,l←XLB2
(
ψx,l
k,BkY Ỹ V Ṽ Ul

, ψx,l
k,BkY Ỹ V Ṽ

⊗ ψUl

)
≤ 3 ·

( q
2c + δ1 + 2cδ

)
for all 1 ≤ k ≤ r.

Proof. We first prove that the register Ak carries low information about L i.e.

I(AkUŨ ;L|X)ψk ≤ cδ.

This follows from the following chain of inequalities:

δ ≥ I(AkUŨX−iY−i;Li|Xi)ψk

≥ I(AkUŨX−iL<i;Li|Xi)ψk
(Fact 17.D and Fact 17.J)

≥ I(AkUŨ ;Li|L<i, X)ψk
(Fact 17.E).
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By summing the inequality over i, we get

cδ ≥
c∑
i=1

I(AkUŨ ;Li|L<i, X)ψk

= I(AkUŨ ;L|X)ψk
(Fact 17.C).

This implies using Fact 17.J:

Ex,l←XLB2
(
ψx,l
k,AkUŨ

, ψx
k,AkUŨ

)
≤ cδ. (7)

Now consider the following two pure states (one conditioned on x, l and the other conditioned
on x):∣∣ψx,l〉

k,Y Ỹ V Ṽ UŨAkBk
=
∑
y,v,u

√
µT (y, v, u|X = x, L = l) |uu〉

UŨ
|yy〉

Y Ỹ
|vv〉

V Ṽ
|ψxuyv〉k,AkBk

and

|ψx〉
k,Y Ỹ V Ṽ UŨAkBk

=
∑
y,v,u

√
µT (y, v, u|X = x) |uu〉

UŨ
|yy〉

Y Ỹ
|vv〉

V Ṽ
|ψx,u,y,v〉k,AkBk

.

The marginals of these states on the systems AkUŨ are close as shown above. Now by
Uhlmann’s theorem (Fact 12), there exists a unitary acting on the systems BkY Ỹ V Ṽ (and
the unitary depends on x, l) Ux,l

BkY Ỹ V Ṽ
s.t.

B2
(
1
AkUŨ

⊗ Ux,l
BkY Ỹ V Ṽ

∣∣ψx,l〉
k,AkUŨBkY Ỹ V Ṽ

, |ψx〉
k,AkUŨBkY Ỹ V Ṽ

)
= B2

(
ψx,l
k,AkUŨ

, ψx
k,AkUŨ

)
. (8)

The unitary Ux,l
BkY Ỹ V Ṽ

should be intuitively thought of as implementing the operation of
“forgetting L". Hence Equation (7) gives us that:

Ex,l←XLB2
(
1
AkUŨ

⊗ Ux,l
BkY Ỹ V Ṽ

∣∣ψx,l〉
k,AkUŨBkY Ỹ V Ṽ

, |ψx〉
k,AkUŨBkY Ỹ V Ṽ

)
≤ cδ. (9)

For all (x, `), define,

φx,` = 1
AkUŨ

⊗ Ux,l
BkY Ỹ V Ṽ

∣∣ψx,l〉
k,AkUŨBkY Ỹ V Ṽ

.

Combining Equation (9) with the monotonicity of Bures metric (Fact 14), we obtain the
following:

Ex,l←XLB2
(
φx,l
k,BkY Ỹ V Ṽ Ul

, ψx
k,BkY Ỹ V Ṽ Ul

)
≤ cδ (10)

and

Ex,l←XLB2
(
φx,l
k,BkY Ỹ V Ṽ

, ψx
k,BkY Ỹ V Ṽ

)
≤ cδ. (11)

Furthermore, combining Equation (11) with Fact 13.B, we obtain:

Ex,l←XLB2
(
φx,l
k,BkY Ỹ V Ṽ

⊗ ψUl
, ψx

k,BkY Ỹ V Ṽ
⊗ ψUl

)
≤ cδ. (12)
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Claim 34 gives us that:

Ex,l←XLB2
(
ψx
k,BkY Ỹ V Ṽ Ul

, ψx
k,BkY Ỹ V Ṽ

⊗ ψUl

)
≤ q

2c + δ1. (13)

Now combining Equations (10), (12) and (13) along with weak triangle inequality for square
of Bures metric (Fact 13.A) and Fact 14, we obtain:

Ex,l←XLB2
(
ψx,l
k,BkY Ỹ V Ṽ Ul

, ψx,l
k,BkY Ỹ V Ṽ

⊗ ψUl

)
= Ex,l←XLB2

(
φx,l
k,BkY Ỹ V Ṽ Ul

, φx,l
k,BkY Ỹ V Ṽ

⊗ ψUl

)
≤ 3 ·

( q
2c + δ1 + 2cδ

)
. J

I Claim 36. Assuming the conclusion from Claim 35, it holds that

Prx,y,l,ul,vl←X,Y,L,UL,VL
[Gl(x, y, ul, vl) = α(x, y)] ≤ 1/100,

where α(x, y) is either 0 or 1 for every x, y.

Proof. Using monotonicity and partial measurement (Fact 17.D and Fact 17.B), we have
that:

Ex,y,l,ul,vl←XY LULVL
B2
(
ψx,y,l,ul,vl

r,Br
, ψx,y,l,vl

r,Br

)
≤ 3 ·

(
q

2c + cδ

3 + 2cδ
)

Let the output register be called O. Then, from our choice of parameters and monotonicity
(Fact 17.D), above inequality implies

Ex,y,l,ul,vl←XY LULVL
B2
(
ψx,y,l,ul,vl

r,O , ψx,y,l,vl

r,O

)
≤ 1/400 (14)

Since protocol makes an error of at most 1/400 (which can be assumed due to Fact 20),
we have that

Ex,y,l,ul,vl←XY LULVL
B2(ψx,y,l,ul,vl

r,O , |Gl(x, y, ul, vl)〉〈Gl(x, y, ul, vl)|) ≤ 1/400. (15)

On the other hand, since the look-up function is an XOR family, we find that for a fixed
x, y (and hence a fixed l),

Eul←UL
|Gl(x, y, ul, vl)〉〈Gl(x, y, ul, vl)| =Prul,vl←Ul,Vl|x,y,l[Gl(x, y, ul, vl) = 0] |0〉〈0|

+Prul,vl←Ul,Vl|x,y,l[Gl(x, y, ul, vl) = 1] |1〉〈1| .

Define

p0
x,y,l = Prul,vl←Ul,Vl|x,y,l[Gl(x, y, ul, vl) = 0],

p1
x,y,l = Prul,vl←Ul,Vl|x,y,l[Gl(x, y, ul, vl) = 1].

Then above equation, along with Equation (15) implies that

Ex,y,l,ul,vl←XY LUlVl
B2(ψx,y,l,vl

r,O , p0
x,y,l |0〉〈0|+ p1

x,y,l |1〉〈1|) ≤ 1/400

which in conjunction with Equation 14 and triangle inequality gives us

Ex,y,l,ul,vl←XY LUlVl
B2(|Gl(x, y, ul, vl)〉〈Gl(x, y, ul, vl)| , p0

x,y,l |0〉〈0|+p1
x,y,l |1〉〈1|) ≤ 1/100.

(16)
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This directly implies that we cannot have both p0
x,y,l, p

1
x,y,l large. More formally, for every

x, y, let α(x, y) be such that pα(x,y)
x,y,l < p

1−α(x,y)
x,y,l . Then it is clear that

B2(|Gl(x, y, ul, vl)〉〈Gl(x, y, ul, vl)| , p0
x,y,l |0〉〈0|+ p1

x,y,l |1〉〈1|) > p
α(x,y)
x,y,l ,

which in turn implies (when used in Equation 16),

Ex,y,l←XY Lpα(x,y)
x,y,l = Ex,y,l,ul,vl←XY LUlVl

p
α(x,y)
x,y,l ≤ 1/100.

Recalling the definition of pα(x,y)
x,y,l , this immediately gives us

Ex,y,l←XY LPrul,vl←Ul,Vl|x,y,l[Gl(x, y, ul, vl) = α(x, y)] ≤ 1/100.

This completes the proof. J

I Claim 37. Assume that the assumptions of Claim 34 and Claim 35 hold. In addition,

I(BkV Ṽ X−iY−i;Li|Yi)ψk
≤ δ

and

Prx,y,l,ul,vl←X,Y,L,UL,VL
[Gl(x, y, ul, vl) = α(x, y)] ≤ 1/100

also hold for α(x, y) ∈ {0, 1} for every x, y. Then there exist x, y, l = l(x, y), ũl, ṽl, ˜̃ul, ˜̃vl s.t.
the following conditions hold:
1. Gl(x, y, ũl, ṽl) = α(x, y).
2. Gl(x, y, ũl, ˜̃vl) = Gl(x, y, ˜̃ul, ˜̃vl) = Gl(x, y, ˜̃ul, ṽl) = 1− α(x, y).

3.
∑r
k=1 B

(
ψx,y,u,v
k,BkV−lṼ−l

, ψx,y,v
k,BkV−lṼ−l

)
≤ 80r ·

√(
q
2c + δ1 + 2cδ

)
,

for any choice of (u, v) = (ũl, ˜̃vl), (˜̃ul, ˜̃vl), (˜̃ul, ṽl).
4.
∑r
k=1 B

(
ψx,y,u,v
k,AkU−lŨ−l

, ψx,y,u
k,AkU−lŨ−l

)
≤ 80r ·

√(
q
2c + δ1 + 2cδ

)
,

for any choice of (u, v) = (ũl, ˜̃vl), (˜̃ul, ˜̃vl), (˜̃ul, ṽl).
Proof. By Claim 35, we have that for all 1 ≤ k ≤ r,

Ex,l←XLB2
(
ψx,l
k,BkY Ỹ V Ṽ Ul

, ψx,l
k,BkY Ỹ V Ṽ

⊗ ψUl

)
≤ 3 ·

( q
2c + δ1 + 2cδ

)
.

By monotonicity of Bures metric (Fact 14), we get that

Ex,l←XLB2
(
ψx,l
k,BkY V−lṼ−lUlVl

, ψx,l
k,BkY V−lṼ−lVl

⊗ ψUl

)
≤ 3 ·

( q
2c + δ1 + 2cδ

)
.

Note that in both the states above, the marginal state on registers UlVl is maximally mixed.
Then by the partial measurement property of the square of Bures metric, Fact 13.C, we get
that

Ex,y,l,ul,vl←XY LULVL
B2
(
ψx,y,l,ul,vl

k,BkV−lṼ−l

, ψx,y,l,vl

k,BkV−lṼ−l

)
≤ 3 ·

( q
2c + δ1 + 2cδ

)
.

Convexity of square gives us that

Ex,y,l,ul,vl←XY LULVL
B
(
ψx,y,l,ul,vl

k,BkV−lṼ−l

, ψx,y,l,vl

k,BkV−lṼ−l

)
≤
√

3 ·
√( q

2c + δ1 + 2cδ
)
. (17)
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Similarly we get that for all 1 ≤ k ≤ r,

Ex,y,l,ul,vl←XY LULVL
B
(
ψx,y,l,ul,vl

k,AkU−lŨ−l

, ψx,y,l,ul

k,AkU−lŨ−l

)
≤
√

3 ·
√( q

2c + δ1 + 2cδ
)
. (18)

Summing Equations (17) and (18) over k, we get the following:

Ex,y,l,ul,vl←XY LULVL

r∑
k=1

B
(
ψx,y,l,ul,vl

k,BkV−lṼ−l

, ψx,y,l,vl

k,BkV−lṼ−l

)
≤ 2r ·

√( q
2c + δ1 + 2cδ

)
.

and

Ex,y,l,ul,vl←XY LULVL

r∑
k=1

B
(
ψx,y,l,ul,vl

k,AkU−lŨ−l

, ψx,y,l,ul

k,AkU−lŨ−l

)
≤ 2r ·

√( q
2c + δ1 + 2cδ

)
.

Now by Markov’s inequality, we can find x, y, l = l(x, y) s.t. the following hold:

Prul,vl←Ul,Vl
[Gl(x, y, ul, vl) = α(x, y)] ≤ 1/25, (19)

Eul,vl←UlVl

r∑
k=1

B
(
ψx,y,l,ul,vl

k,BkV−lṼ−l

, ψx,y,l,vl

k,BkV−lṼ−l

)
≤ 8r ·

√( q
2c + δ1 + 2cδ

)
, (20)

Eul,vl←UlVl

r∑
k=1

B
(
ψx,y,l,ul,vl

k,AkU−lŨ−l

, ψx,y,l,ul

k,AkU−lŨ−l

)
≤ 8r ·

√( q
2c + δ1 + 2cδ

)
. (21)

Without loss of generality, assume that α(x, y) = 1. Let us have the following two notations:

κA(ul, vl) :=
r∑

k=1
B
(
ψx,y,l,ul,vl

k,AkU−lŨ−l

, ψx,y,l,ul

k,AkU−lŨ−l

)
,

κB(ul, vl) :=
r∑

k=1
B
(
ψx,y,l,ul,vl

k,BkV−lṼ−l

, ψx,y,l,vl

k,BkV−lṼ−l

)
.

Recall that for l = l(x, y), Gl(x, y, ul, vl) is a non-trivial XOR function of the inputs ul, vl.
So there exists a t ∈ {0, 1}m s.t. Gl(x, y, u, u ⊕ t) = 1 for all u ∈ {0, 1}m. Now we will
choose ũl, ˜̃ul, ˜̃vl uniformly and independently from {0, 1}m and set ṽl = ũl ⊕ t. Note that
marginally, the distribution of (u, v) is uniform over {0, 1}m × {0, 1}m, for any choice of
(u, v) = (ũl, ˜̃vl), (˜̃ul, ˜̃vl), (˜̃ul, ṽl). Hence for any choice of (u, v) = (ũl, ˜̃vl), (˜̃ul, ˜̃vl), (˜̃ul, ṽl), from
Equations (19), (20) and (21), we get the following:

Pr
ũl ,̃ũl ,̃̃vl

[Gl(x, y, u, v) = 1] ≤ 1/25,

E
ũl ,̃ũl ,̃̃vl

κA(u, v) ≤ 8r ·
√( q

2c + δ1 + 2cδ
)
,

E
ũl ,̃ũl ,̃̃vl

κB(u, v) ≤ 8r ·
√( q

2c + δ1 + 2cδ
)
.

Now by a simple application of Markov’s inequality, there exists a setting of (ũl, ˜̃ul, ˜̃vl) so
that for any choice of (u, v) = (ũl, ˜̃vl), (˜̃ul, ˜̃vl), (˜̃ul, ṽl),

Gl(x, y, u, v) = 0,

κA(u, v) ≤ 80r ·
√( q

2c + δ1 + 2cδ
)
,

κB(u, v) ≤ 80r ·
√( q

2c + δ1 + 2cδ
)
.

This completes the proof. Note that we chose ṽl so that Gl(x, y, ũl, ṽl) = 1. J
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The next claim will follow from the quantum-cut-and-paste lemma applied to Claim 35.

I Claim 38. Assume that the assumptions of Claim 34, Claim 35 and Claim 37 hold. Then
for the x, y, l, ũl, ṽl, ˜̃ul, ˜̃vl in Claim 37, it holds that

∆
(

(ψx,y,l,ũl ,̃vl

r,ArU−lŨ−l

, ψx,y,l,ũl ,̃̃vl

r,ArU−lŨ−l

)
≤ 1000r ·

√( q
2c + δ1 + 2cδ

)
.

Proof. Let us define the following registers: Ãk := AkU−lŨ−l and B̃k := BkV−lṼ−l. Also
we will define the following:

δk,A := B
(
ψx,y,̃ũl ,̃vl

k,Ãk

, ψx,y,̃ũl ,̃̃vl

k,Ãk

)
,

δk,B := B
(
ψx,y,ũl ,̃̃vl

k,B̃k

, ψx,y,̃ũl ,̃̃vl

k,B̃k

)
.

By the triangle inequality for Bures metric Fact 13.A,

δk,A ≤ B
(
ψx,y,̃ũl ,̃vl

k,Ãk

, ψx,y,̃ũl

k,Ãk

)
+ B

(
ψx,y,̃ũl ,̃̃vl

k,Ãk

, ψx,y,̃ũl

k,Ãk

)
, (22)

δk,B ≤ B
(
ψx,y,ũl ,̃̃vl

k,B̃k

, ψx,y,̃̃vl

k,B̃k

)
+ B

(
ψx,y,̃ũl ,̃̃vl

k,Ãk

, ψx,y,̃̃vl

k,Ãk

)
. (23)

Combining Equations (22), (23) and Claim 37, we get the following:
r∑

k=1
δk,A ≤ 160r ·

√( q
2c + δ1 + 2cδ

)
,

r∑
k=1

δk,B ≤ 160r ·
√( q

2c + δ1 + 2cδ
)
.

Note that the state ψx,y,u,v
k,Ãk,B̃k

is a pure state for every k, x, y, u, v. Also for a fixed x, y, these
states can be formed by a quantum protocol Π′ where Alice gets the input u and Bob gets
the input v (since they are originally formed by running the protocol Π and U−lŨ−l and
V−lṼ−l are registers that can be owned by Alice and Bob respectively at the start of Π′).
Hence we can apply Lemma 24 (by setting u = ˜̃ul, u′ = ũl, v = ˜̃vl, v′ = ṽl) to conclude that

B
(
ψx,y,l,ũl ,̃vl

r,Ãr

, ψx,y,l,ũl ,̃̃vl

r,Ãr

)
≤ 2

r∑
k=1

(δk,A + δk,B)

≤ 640r ·
√( q

2c + δ1 + 2cδ
)
.

Now the proof is finished by Fact 11 and monotonicity of trace distance (Fact 14). J

6 Conclusion and open problems

We prove a nearly quadratic separation between the log of approximate rank and quantum
communication complexity for a family of total functions, which is also the first superlinear
separation between these two measures. Our separation is based on a lookup function
constructed from the inner product function. To prove the lower bound on the quantum
communication complexity of this lookup function, we prove a general purpose cheat sheet
theorem for quantum communication complexity. We also prove a general theorem about
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an upper bound on log of approximate rank of lookup functions based on the circuit size of
the base function. This proves the upper bound for an appropriate lookup function on inner
product because the inner product function has a linear size circuit.

Several interesting open problems arise out of our work. We state some of them here:
1. Can we eliminate the round dependence in Theorem 33? Can we prove a similar result for

quantum information complexity instead of quantum communication complexity, thereby
separating quantum information complexity from log of approximate rank?

2. Can we separate the quantum partition bound [29] from quantum communication com-
plexity? Is the quantum partition bound a stronger lower bound measure than log of
approximate rank?

3. Can we prove some sort of cheat sheet theorem for log of approximate rank? A simpler
question might be to prove that for the inner product function on n bits, any lookup
function contructed using a nontrivial XOR family of functions has log of approximate
rank at least Ω(

√
n).

Acknowledgments. We thank Aleksandrs Belovs, Mika Göös, and Miklos Santha for inter-
esting discussions during the writing of [5].

References
1 Scott Aaronson, Shalev Ben-David, and Robin Kothari. Separations in query complexity

using cheat sheets. In Proceedings of the 48th ACM Symposium on Theory of Computing
(STOC 2016), pages 863–876, 2016. doi:10.1145/2897518.2897644.

2 Andris Ambainis. Polynomial degree vs. quantum query complexity. In Proceedings of the
44th IEEE Symposium on Foundations of Computer Science (FOCS 2003), pages 230–239,
2003. doi:10.1109/SFCS.2003.1238197.

3 Andris Ambainis, Kaspars Balodis, Aleksandrs Belovs, Troy Lee, Miklos Santha, and Juris
Smotrovs. Separations in query complexity based on pointer functions. In Proceedings of
the 48th ACM Symposium on Theory of Computing (STOC 2016), 2016. doi:10.1145/
2897518.2897524.

4 Andris Ambainis, Martins Kokainis, and Robin Kothari. Nearly Optimal Separations
Between Communication (or Query) Complexity and Partitions. In 31st Conference on
Computational Complexity (CCC 2016), volume 50 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 4:1–4:14, Dagstuhl, Germany, 2016. Schloss Dagstuhl – Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.CCC.2016.4.

5 Anurag Anshu, Aleksandrs Belovs, Shalev Ben-David, Mika Göös, Rahul Jain, Robin
Kothari, Troy Lee, and Miklos Santha. Separations in communication complexity using
cheat sheets and information complexity. Proceedings of the 57h IEEE Symposium on
Foundations of Computer Science (FOCS 2016), 2016. arXiv preprint arXiv:1605.01142.

6 Koenraad M.R. Audenaert. Quantum skew divergence. Journal of Mathematical Physics,
55(11), 2014. doi:10.1063/1.4901039.

7 Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive
communication. SIAM Journal on Computing, 42(3):1327–1363, 2013. doi:10.1137/
100811969.

8 Howard Barnum, Carlton M. Caves, Christopher A. Fuchs, Richard Jozsa, and Ben-
jamin Schmacher. Noncommuting mixed states cannot be broadcast. Phys. Rev. Lett.,
76(15):2818–2821, 1996. doi:10.1103/PhysRevLett.76.2818.

9 M. Braverman, A. Rao, O. Weinstein, and A. Yehudayoff. Direct products in communica-
tion complexity. In 54th Annual Symposium on Foundations of Computer Science (FOCS
2013), pages 746–755, Oct 2013. doi:10.1109/FOCS.2013.85.

10 Mark Braverman, Ankit Garg, Young Kun Ko, Jieming Mao, and Dave Touchette. Near-
optimal bounds on bounded-round quantum communication complexity of disjointness. In

CCC 2017

http://dx.doi.org/10.1145/2897518.2897644
http://dx.doi.org/10.1109/SFCS.2003.1238197
http://dx.doi.org/10.1145/2897518.2897524
http://dx.doi.org/10.1145/2897518.2897524
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.4
http://arxiv.org/abs/arXiv:1605.01142
http://dx.doi.org/10.1063/1.4901039
http://dx.doi.org/10.1137/100811969
http://dx.doi.org/10.1137/100811969
http://dx.doi.org/10.1103/PhysRevLett.76.2818
http://dx.doi.org/10.1109/FOCS.2013.85


24:32 Separating Quantum Communication and Approximate Rank

Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages
773–791, Oct 2015. doi:10.1109/FOCS.2015.53.

11 Mark Braverman and Omri Weinstein. An interactive information odometer and applic-
ations. In Proceedings of the 47th Annual ACM on Symposium on Theory of Computing,
STOC’15, pages 341–350, 2015. doi:10.1145/2746539.2746548.

12 Harry Buhrman, Richard Cleve, and Avi Wigderson. Quantum vs. classical communica-
tion and computation. In Proceedings of the 30th Annual ACM Symposium on Theory of
Computing, STOC’98, pages 63–68, 1998. doi:10.1145/276698.276713.

13 Harry Buhrman and Ronald de Wolf. Communication complexity lower bounds by poly-
nomials. In Proceedings of the 16th IEEE Conference on Computational Complexity, pages
120–130. IEEE, 2001. doi:10.1109/CCC.2001.933879.

14 Donald Bures. An extension of Kakutani’s theorem on infinite product measures to the
tensor product of semifinite ω∗-algebras. Transactions of the American Mathematical So-
ciety, 135:199–212, 1969. doi:10.2307/1995012.

15 Richard Cleve, Wim van Dam, Michael Nielsen, and Alain Tapp. Quantum entanglement
and the communication complexity of the inner product function. Theoretical Computer
Science, 486:11–19, 2013. doi:10.1016/j.tcs.2012.12.012.

16 Andrew Drucker. The Complexity of Joint Computation. PhD thesis, Massachusetts Insti-
tute of Technology, 2012.

17 Jürgen Forster. A linear lower bound on the unbounded error probabilistic communication
complexity. Journal of Computer and System Sciences, 65(4):612–625, 2002. Special Issue
on Complexity 2001. doi:10.1016/S0022-0000(02)00019-3.

18 Christopher A. Fuchs and Jeroen van de Graaf. Cryptographic distinguishability measures
for quantum-mechanical states. IEEE Transactions on Information Theory, 45(4):1216–
1227, May 1999. doi:10.1109/18.761271.

19 Mika Göös, T. S. Jayram, Toniann Pitassi, and Thomas Watson. Randomized communic-
ation vs. partition number. Electronic Colloquium on Computational Complexity (ECCC)
TR15-169, 2015.

20 Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. par-
tition number. In Proceedings of the 56th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 1077–1088, 2015. doi:10.1109/FOCS.2015.70.

21 Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the 28th ACM Symposium on Theory of Computing (STOC), pages 212–219, 1996. doi:
10.1145/237814.237866.

22 Rahul Jain and Ashwin Nayak. Accessible versus Holevo information for a binary random
variable. Preprint, 2006. arXiv:quant-ph/0603278.

23 Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. A lower bound for the bounded
round quantum communication complexity of set disjointness. In Proceedings of the 44th
IEEE Symposium on Foundations of Computer Science (FOCS 2003), pages 220–229, Oct
2003. doi:10.1109/SFCS.2003.1238196.

24 Hartmut Klauck. Lower bounds for quantum communication complexity. SIAM Journal
on Computing, 37(1):20–46, 2007. doi:10.1137/S0097539702405620.

25 Gillat Kol, Shay Moran, Amir Shpilka, and Amir Yehudayoff. Approximate nonnegative
rank is equivalent to the smooth rectangle bound. In Automata, Languages, and Pro-
gramming: 41st International Colloquium (ICALP 2014), pages 701–712. Springer Berlin
Heidelberg, 2014. doi:10.1007/978-3-662-43948-7_58.

26 Ilan Kremer. Quantum communication. Master’s thesis, The Hebrew University of Jerus-
alem, 1995. URL: http://www.cs.huji.ac.il/~noam/kremer-thesis.ps.

27 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University
Press, 2006.

http://dx.doi.org/10.1109/FOCS.2015.53
http://dx.doi.org/10.1145/2746539.2746548
http://dx.doi.org/10.1145/276698.276713
http://dx.doi.org/10.1109/CCC.2001.933879
http://dx.doi.org/10.2307/1995012
http://dx.doi.org/10.1016/j.tcs.2012.12.012
http://dx.doi.org/10.1016/S0022-0000(02)00019-3
http://dx.doi.org/10.1109/18.761271
http://eccc.hpi-web.de/report/2015/169/
http://dx.doi.org/10.1109/FOCS.2015.70
http://dx.doi.org/10.1145/237814.237866
http://dx.doi.org/10.1145/237814.237866
http://arxiv.org/abs/quant-ph/0603278
http://dx.doi.org/10.1109/SFCS.2003.1238196
http://dx.doi.org/10.1137/S0097539702405620
http://dx.doi.org/10.1007/978-3-662-43948-7_58
http://www.cs.huji.ac.il/~noam/kremer-thesis.ps


A. Anshu, S. Ben-David, A. Garg, R. Jain, R. Kothari, and T. Lee 24:33

28 Sophie Laplante, Troy Lee, and Mario Szegedy. The quantum adversary method and
classical formula size lower bounds. Computational Complexity, 15:163–196, 2006. doi:
10.1007/s00037-006-0212-7.

29 Sophie Laplante, Virginie Lerays, and Jérémie Roland. Classical and quantum partition
bound and detector inefficiency. In Proceedings of the 39th International Colloquium Con-
ference on Automata, Languages, and Programming – Volume Part I, ICALP’12, pages 617–
628, Berlin, Heidelberg, 2012. Springer-Verlag. doi:10.1007/978-3-642-31594-7_52.

30 Troy Lee and Jérémie Roland. A strong direct product theorem for quantum query complex-
ity. Computational Complexity, 22(2):429–462, 2013. doi:10.1007/s00037-013-0066-8.

31 Troy Lee and Adi Shraibman. An approximation algorithm for approximation rank. In
Proceedings of the 24th IEEE Conference on Computational Complexity, pages 351–357,
2008. doi:10.1109/CCC.2009.25.

32 Göran Lindblad. Completely positive maps and entropy inequalities. Communications in
Mathematical Physics, 40(2):147–151, 1975. doi:10.1007/BF01609396.

33 Nati Linial and Adi Shraibman. Lower bounds in communication complexity based on
factorization norms. Random Structures & Algorithms, 34(3):368–394, 2009. doi:10.1002/
rsa.20232.

34 Ashwin Nayak and Dave Touchette. Augmented index and quantum streaming algorithms
for DYCK(2). arXiv preprint arXiv:1610.04937, 2016.

35 Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.
Cambridge Series on Information and the Natural Sciences. CUP, 2000.

36 Alexander Razborov. Quantum communication complexity of symmetric predicates.
Izvestiya: Mathematics, 67(1):145, 2003. doi:10.1070/IM2003v067n01ABEH000422.

37 Ben W. Reichardt. Reflections for quantum query algorithms. In Proceedings of the 22nd
ACM-SIAM Symposium on Discrete Algorithms (SODA 2011), SODA’11, pages 560–569,
2011. URL: http://dl.acm.org/citation.cfm?id=2133036.2133080.

38 Alexander A. Sherstov. The pattern matrix method. SIAM Journal on Computing,
40(6):1969–2000, 2011. doi:10.1137/080733644.

39 Alexander A. Sherstov. Strong direct product theorems for quantum communication and
query complexity. SIAM Journal on Computing, 41(5):1122–1165, 2012. doi:10.1137/
110842661.

40 Yaoyun Shi and Yufan Zhu. Quantum communication complexity of block-composed func-
tions. Quantum information and computation, 9(5,6):444–460, 2009. arXiv:0710.0095.

41 Maurice Sion. On general minimax theorems. Pacific J. of Mathematics, 1:171–176, 1958.
42 Marco Tomamichel. Quantum Information Processing with Finite Resources: Mathemat-

ical Foundations. SpringerBriefs in Mathematical Physics. Springer, 2016. doi:10.1007/
978-3-319-21891-5.

43 Dave Touchette. Quantum information complexity. In Proceedings of the 47th Annual
ACM on Symposium on Theory of Computing, STOC’15, pages 317–326. ACM, 2015. doi:
10.1145/2746539.2746613.

44 A. Uhlmann. The “transition probability” in the state space of a *-algebra. Reports on
Mathematical Physics, 9:273–279, 1976. doi:10.1016/0034-4877(76)90060-4.

45 John Watrous. Theory of Quantum Information. Unpublished, January 2016. Available at
https://cs.uwaterloo.ca/~watrous/TQI/.

46 Mark M. Wilde. Quantum Information Theory. Cambridge University Press, Cambridge,
12 2012. doi:10.1017/CBO9781139525343.

47 Andrew Yao. Quantum circuit complexity. In Proceedings of the 34th IEEE Symposium on
Foundations of Computer Science (FOCS 1993), pages 352–360, 1993. doi:10.1109/SFCS.
1993.366852.

CCC 2017

http://dx.doi.org/10.1007/s00037-006-0212-7
http://dx.doi.org/10.1007/s00037-006-0212-7
http://dx.doi.org/10.1007/978-3-642-31594-7_52
http://dx.doi.org/10.1007/s00037-013-0066-8
http://dx.doi.org/10.1109/CCC.2009.25
http://dx.doi.org/10.1007/BF01609396
http://dx.doi.org/10.1002/rsa.20232
http://dx.doi.org/10.1002/rsa.20232
http://arxiv.org/abs/arXiv:1610.04937
http://dx.doi.org/10.1070/IM2003v067n01ABEH000422
http://dl.acm.org/citation.cfm?id=2133036.2133080
http://dx.doi.org/10.1137/080733644
http://dx.doi.org/10.1137/110842661
http://dx.doi.org/10.1137/110842661
http://arxiv.org/abs/0710.0095
http://dx.doi.org/10.1007/978-3-319-21891-5
http://dx.doi.org/10.1007/978-3-319-21891-5
http://dx.doi.org/10.1145/2746539.2746613
http://dx.doi.org/10.1145/2746539.2746613
http://dx.doi.org/10.1016/0034-4877(76)90060-4
https://cs.uwaterloo.ca/~watrous/TQI/
http://dx.doi.org/10.1017/CBO9781139525343
http://dx.doi.org/10.1109/SFCS.1993.366852
http://dx.doi.org/10.1109/SFCS.1993.366852




Optimal Quantum Sample Complexity of Learning
Algorithms∗

Srinivasan Arunachalam1 and Ronald de Wolf2

1 QuSoft – Research Center for Quantum Software, Amsterdam, The
Netherlands; and
CWI – Centrum Wiskunde & Informatica, Amsterdam, The Netherlands; and
University of Amsterdam, Amsterdam, The Netherlands
arunacha@cwi.nl

2 QuSoft – Research Center for Quantum Software, Amsterdam, The
Netherlands; and
CWI – Centrum Wiskunde & Informatica, Amsterdam, The Netherlands; and
University of Amsterdam, Amsterdam, The Netherlands
rdewolf@cwi.nl

Abstract
In learning theory, the VC dimension of a concept class C is the most common way to measure
its “richness.” A fundamental result says that the number of examples needed to learn an un-
known target concept c ∈ C under an unknown distribution D, is tightly determined by the VC
dimension d of the concept class C. Specifically, in the PAC model

Θ
(d
ε

+ log(1/δ)
ε

)
examples are necessary and sufficient for a learner to output, with probability 1−δ, a hypothesis h
that is ε-close to the target concept c (measured under D). In the related agnostic model, where
the samples need not come from a c ∈ C, we know that

Θ
( d
ε2 + log(1/δ)

ε2

)
examples are necessary and sufficient to output an hypothesis h ∈ C whose error is at most ε
worse than the error of the best concept in C.

Here we analyze quantum sample complexity, where each example is a coherent quantum state.
This model was introduced by Bshouty and Jackson [18], who showed that quantum examples
are more powerful than classical examples in some fixed-distribution settings. However, Atıcı
and Servedio [10], improved by Zhang [55], showed that in the PAC setting (where the learner
has to succeed for every distribution), quantum examples cannot be much more powerful: the
required number of quantum examples is

Ω
(d1−η

ε
+ d+ log(1/δ)

ε

)
for arbitrarily small constant η > 0.

Our main result is that quantum and classical sample complexity are in fact equal up to constant
factors in both the PAC and agnostic models. We give two proof approaches. The first is a fairly
simple information-theoretic argument that yields the above two classical bounds and yields the
same bounds for quantum sample complexity up to a log(d/ε) factor. We then give a second
approach that avoids the log-factor loss, based on analyzing the behavior of the “Pretty Good
Measurement” on the quantum state identification problems that correspond to learning. This
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shows classical and quantum sample complexity are equal up to constant factors for every concept
class C.
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1 Introduction

1.1 Sample complexity and VC dimension
Machine learning is one of the most successful parts of AI, with impressive practical ap-
plications in areas ranging from image processing, speech recognition, to even beating Go
champions. Its theoretical aspects have been deeply studied, revealing beautiful structure
and mathematical characterizations of when (efficient) learning is or is not possible in
various settings.

1.1.1 The PAC setting
Leslie Valiant’s Probably Approximately Correct (PAC) model [49] gives a precise complexity-
theoretic definition of what it means for a concept class to be (efficiently) learnable. For
simplicity we will (without loss of generality) focus on concepts that are Boolean functions,
c : {0, 1}n → {0, 1}. Equivalently, a concept c is a subset of {0, 1}n, namely {x : c(x) = 1}.
Let C ⊆ {f : {0, 1}n → {0, 1}} be a concept class. This could for example be the class of
functions computed by disjunctive normal form (DNF) formulas of a certain size, or Boolean
circuits or decision trees of a certain depth.

The goal of a learning algorithm (the learner) is to probably approximate some unknown
target concept c ∈ C from random labeled examples. Each labeled example is of the form
(x, c(x)) where x is distributed according to some unknown distribution D over {0, 1}n. After
processing a number of such examples (hopefully not too many), the learner outputs some
hypothesis h. We say that h is ε-approximately correct (w.r.t. the target concept c) if its
error probability under D is at most ε: Prx∼D[h(x) 6= c(x)] ≤ ε. Note that the learning
phase and the evaluation phase (i.e., whether a hypothesis is approximately correct) are
according to the same distribution D – as if the learner is taught and then tested by the
same teacher. An (ε, δ)-learner for the concept class C is one whose hypothesis is probably
approximately correct:

For all target concepts c ∈ C and distributions D:
Pr[the learner’s output h is ε-approximately correct] ≥ 1− δ,

where the probability is over the sequence of examples and the learner’s internal randomness.
Note that we leave the learner the freedom to output an h which is not in C. If always h ∈ C,
then the learner is called a proper PAC-learner.

Of course, we want the learner to be as efficient as possible. Its sample complexity is the
worst-case number of examples it uses, and its time complexity is the worst-case running
time of the learner. In this paper we focus on sample complexity. This allows us to ignore
technical issues of how the runtime of an algorithm is measured, and in what form the
hypothesis h is given as output by the learner.

http://dx.doi.org/10.4230/LIPIcs.CCC.2017.25
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The sample complexity of a concept class C is the sample complexity of the most efficient
learner for C. It is a function of ε, δ, and of course of C itself. One of the most fundamental
results in learning theory is that the sample complexity of C is tightly determined by a
combinatorial parameter called the VC dimension of C, due to and named after Vapnik and
Chervonenkis [50]. The VC dimension of C is the size of the biggest S ⊆ {0, 1}n that can be
labeled in all 2|S| possible ways by concepts from C: for each sequence of |S| binary labels for
the elements of S, there is a c ∈ C that has that labeling (such an S is said to be shattered by
C). Knowing this VC dimension (and ε, δ) already tells us the sample complexity of C up to
constant factors. Blumer et al. [17] proved that the sample complexity of C is lower bounded
by Ω(d/ε+ log(1/δ)/ε), and they proved an upper bound that was worse by a log(1/ε)-factor.
In very recent work, Hanneke [27] (improving on Simon [47]) got rid of this log(1/ε)-factor
for PAC learning,1 showing that the lower bound of Blumer et al. is in fact optimal: the
sample complexity of C in the PAC setting is

Θ
(d
ε

+ log(1/δ)
ε

)
. (1)

1.1.2 The agnostic setting
The PAC model assumes that the labeled examples are generated according to a target
concept c ∈ C. However, in many learning situations that is not a realistic assumption, for
example when the examples are noisy in some way or when we have no reason to believe
there is an underlying target concept at all. The agnostic model of learning, introduced by
Haussler [31] and Kearns et al. [36], takes this into account. Here, the examples are generated
according to a distribution D on {0, 1}n+1. The error of a specific concept c : {0, 1}n → {0, 1}
is defined to be errD(c) = Pr(x,b)∼D[c(x) 6= b]. When we are restricted to hypotheses in C,
we would like to find the hypothesis that minimizes errD(c) over all c ∈ C. However, it may
require very many examples to do that exactly. In the spirit of the PAC model, the goal of
the learner is now to output an h ∈ C whose error is at most an additive ε worse than that
of the best (= lowest-error) concepts in C.

Like in the PAC model, the optimal sample complexity of such agnostic learners is tightly
determined by the VC dimension of C: it is

Θ
( d
ε2 + log(1/δ)

ε2

)
, (2)

where the lower bound was proven by Vapnik and Chervonenkis [51] (see also Simon [46]),
and the upper bound was proven by Talagrand [48]. Shalev-Shwartz and Ben-David [45,
Section 6.4] call Eq. (1) and Eq. (2) the “Fundamental Theorem of PAC learning.”

1.2 Our results
In this paper we are interested in quantum sample complexity. Here a quantum example
for some concept c : {0, 1}n → {0, 1}, according to some distribution D, corresponds to an
(n+ 1)-qubit state∑

x∈{0,1}n

√
D(x)|x, c(x)〉.

1 Hanneke’s learner is not proper, meaning that its hypothesis h is not always in C. It is still an open
question whether the log(1/ε)-factor can be removed for proper PAC learning. Our lower bounds in
this paper hold for all learners, quantum as well as classical, and proper as well as improper.
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In other words, instead of a random labeled example, an example is now given by a coherent
quantum superposition where the square-roots of the probabilities become the amplitudes.2
This model was introduced by Bshouty and Jackson [18], who showed that DNF formulas
are learnable in polynomial time from quantum examples when D is uniform. For learning
DNF under the uniform distribution from classical examples, the best upper bound is
quasipolynomial time [52]. With the added power of “membership queries,” where the learner
can actively ask for the label of any x of his choice, DNF formulas are known to be learnable
in polynomial time under uniform D [33], but without membership queries polynomial-time
learnability is a longstanding open problem (see [20] for a recent hardness result).

How reasonable are examples that are given as a coherent superposition rather than as
a random sample? They may seem unreasonable a priori because quantum superpositions
seem very fragile and are easily collapsed by measurement, but if we accept the “church
of the larger Hilbert space” view on quantum mechanics, where the universe just evolves
unitarily without any collapses, then they may become more palatable. It is also possible
that the quantum examples are generated by some coherent quantum process that acts like
the teacher.

How many quantum examples are needed to learn a concept class C of VC dimension d?
Since a learner can just measure a quantum example in order to obtain a classical example,
the upper bounds on classical sample complexity trivially imply the same upper bounds
on quantum sample complexity. But what about the lower bounds? Are there situations
where quantum examples are more powerful than classical? Indeed there are. We already
mentioned the results of Bshouty and Jackson [18] for learning DNF under the uniform
distribution without membership queries. Another good example is the learnability of the
concept class of linear functions over F2, C = {c(x) = a · x : a ∈ {0, 1}n}, again under the
uniform distribution D. It is easy to see that a classical learner needs about n examples to
learn an unknown c ∈ C under this D. However, if we are given one quantum example∑

x∈{0,1}n

√
D(x)|x, c(x)〉 = 1√

2n
∑

x∈{0,1}n

|x, a · x〉,

then a small modification of the Bernstein-Vazirani algorithm [16] can recover a (and hence
c) with probability 1/2. Hence O(1) quantum examples suffice to learn c exactly, with
high probability, under the uniform distribution. Atıcı and Servedio [11] used similar ideas
to learning k-juntas (concepts depending on only k of their n variables) from quantum
examples under the uniform distribution. However, PAC learning requires a learner to learn
c under all possible distributions D, not just the uniform one. The success probability of the
Bernstein-Vazirani algorithm deteriorates sharply when D is far from uniform, but that does
not rule out the existence of other quantum learners that use o(n) quantum examples and
succeed for all D.

Our main result in this paper is that quantum examples are not actually more powerful
than classical labeled examples in the PAC model and in the agnostic model: we prove that
the lower bounds on classical sample complexity of Eq. (1) and Eq. (2) hold for quantum
examples as well. Accordingly, despite several distribution-specific speedups, quantum
examples do not significantly reduce sample complexity if we require our learner to work for

2 We could allow more general quantum examples
∑

x∈{0,1}n αx|x, c(x)〉, where we only require |αx|2 =
D(x). However, that will not affect our results since our lower bounds apply to quantum examples
where we know the amplitudes are square-rooted probabilities. Adding more degrees of freedom to
quantum examples does not make learning easier.
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all distributions D. This should be contrasted with the situation when considering the time
complexity of learning. Servedio and Gortler [44] considered a concept class (already known
in the literature [37, Chapter 6]) that can be PAC-learned in polynomial time by a quantum
computer, even with only classical examples, but that cannot be PAC-learned in polynomial
time by a classical learner unless Blum integers can be factored in polynomial time (which is
widely believed to be false).

Earlier work on quantum sample complexity had already gotten close to extending the
lower bound of Eq. (1) to PAC learning from quantum examples. Atıcı and Servedio [10]
first proved a lower bound of Ω(

√
d/ε+ d+ log(1/δ)/ε) using the so-called “hybrid method.”

Their proof technique was subsequently pushed further by Zhang [55] to

Ω
(d1−η

ε
+ d+ log(1/δ)

ε

)
for arbitrarily small constant η > 0. (3)

Here we optimize these bounds, removing the η and achieving the optimal lower bound for
quantum sample complexity in the PAC model (Eq. (1)).

We also show that the lower bound (Eq. (2)) for the agnostic model extends to quantum
examples. As far as we know, in contrast to the PAC model, no earlier results were known
for quantum sample complexity in the agnostic model.

We have two different proof approaches, which we sketch below.

1.2.1 An information-theoretic argument
In Section 3 we give a fairly intuitive information-theoretic argument that gives optimal
lower bounds for classical sample complexity, and that gives nearly-optimal lower bounds for
quantum sample complexity. Let us first see how we can prove the classical PAC lower bound
of Eq. (1). Suppose S = {s0, s1, . . . , sd} is shattered by C (we now assume VC dimension d+1
for ease of notation). Then we can consider a distribution D that puts probability 1− 4ε on
s0 and probability 4ε/d on each of s1, . . . , sd.3 For every possible labeling (`1 . . . `d) ∈ {0, 1}d
of s1, . . . , sd there will be a concept c ∈ C that labels s0 with 0, and labels si with `i for all
i ∈ {1, . . . , d}. Under D, most examples will be (s0, 0) and hence give us no information when
we are learning one of those 2d concepts. Suppose we have a learner that ε-approximates c
with high probability under this D using T examples. Informally, our information-theoretic
argument has the following three steps:
1. In order to ε-approximate c, the learner has to learn the c-labels of at least 3/4 of the

s1, . . . , sd (since together these have 4ε of the D-weight, and we want an ε-approximation).
As all 2d labelings are possible, the T examples together contain Ω(d) bits of information
about c.

2. T examples give at most T times as much information about c as one example.
3. One example gives only O(ε) bits of information about c, because it will tell us one of

the labels of s1, . . . , sd only with probability 4ε (and otherwise it just gives c(s0) = 0).
Putting these steps together implies T = Ω(d/ε).4 This argument for the PAC setting
is similar to an algorithmic-information argument of Apolloni and Gentile [8] and an
information-theoretic argument for variants of the PAC model with noisy examples of
Gentile and Helmbold [25].

3 We remark that the distributions used here for proving lower bounds on quantum sample complexity
have been used by Ehrenfeucht et al. [21] for analyzing classical PAC sample complexity.

4 The other part of the lower bound of Eq. (1) does not depend on d and is fairly easy to prove.
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As far as we know, this type of reasoning has not yet been applied to the sample complexity
of agnostic learning. To get good lower bounds there, we consider a set of distributions Da,
indexed by d-bit string a. These distributions still have the property that if a learner gets
ε-close to the minimal error, then it will have to learn Ω(d) bits of information about the
distribution (i.e., about a). Hence the first step of the argument remains the same. The
second step of our argument also remains the same, and the third step shows an upper
bound of O(ε2) on the amount of information that the learner can get from one example.
This then implies T = Ω(d/ε2). We can also reformulate this for the case where we want
the expected additional error of the hypothesis over the best classifier in C to be at most ε,
which is how lower bounds are often stated in learning theory. We emphasize that our
information-theoretic proof is simpler than the proofs in [7, 13, 45, 39].

This information-theoretic approach recovers the optimal classical bounds on sample
complexity, but also generalizes readily to the quantum case where the learner gets T
quantum examples. To obtain lower bounds on quantum sample complexity we use the same
distributions D (now corresponding to a coherent quantum state) and basically just need to
re-analyze the third step of the argument. In the PAC setting we show that one quantum
example gives at most O(ε log(d/ε)) bits of information about c, and in the agnostic setting
it gives O(ε2 log(d/ε)) bits. This implies lower bounds on sample complexity that are only
a logarithmic factor worse than the optimal classical bounds for the PAC setting (Eq. (1))
and the agnostic setting (Eq. (2)). This is not quite optimal yet, but already better than
the previous best known lower bound (Eq. (3)). The logarithmic loss in step 3 is actually
inherent in this information-theoretic argument: in some cases a quantum example can give
roughly ε log d bits of information about c, for example when c comes from the concept class
of linear functions.

1.2.2 A state-identification argument
In order to get rid of the logarithmic factor we then try another proof approach, which views
learning from quantum examples as a quantum state identification problem: we are given T
copies of the quantum example for some concept c and need to ε-approximate c from this.
In order to render ε-approximation of c equivalent to exact identification of c, we use good
linear error-correcting codes, restricting to concepts whose d-bit labeling of the elements of
the shattered set s1, . . . , sd corresponds to a codeword. We then have 2Ω(d) possible concepts,
one for each codeword, and need to identify the target concept from a quantum state that is
the tensor product of T identical quantum examples.

State-identification problems have been well studied, and many tools are available for
analyzing them. In particular, we will use the so-called “Pretty Good Measurement” (PGM,
also known as “square root measurement” [29]) introduced by Hausladen and Wootters [30].
The PGM is a specific measurement that one can always use for state identification, and
whose success probability is no more than quadratically worse than that of the very best
measurement.5 In Section 4 we use Fourier analysis to give an exact analysis of the average
success probability of the PGM on the state-identification problems that come from both the
PAC and the agnostic model. This analysis could be useful in other settings as well. Here it
implies that the number of quantum examples, T , is lower bounded by Eq. (1) in the PAC
setting, and by Eq. (2) in the agnostic setting.

5 Even better, in our application the PGM is the optimal measurement, though this is not essential for
our proof.



S. Arunachalam and R. de Wolf 25:7

Using the Pretty Good Measurement, we are also able to prove lower bounds for PAC
learning under random classification noise, which models the real-world situation that the
learning data can have some errors. Classically in the random classification noise model
(introduced by Angluin and Laird [6]), instead of obtaining labeled examples (x, c(x)) for some
unknown c ∈ C, the learner obtains noisy examples (x, bx), where bx = c(x) with probability
1− η and bx = 1− c(x) with probability η, for some noise rate η ∈ [0, 1/2). Similarly, in the
quantum learning model we could naturally define a noisy quantum example as an (n+ 1)-
qubit state∑

x∈{0,1}n

√
(1− η)D(x)|x, c(x)〉+

√
ηD(x)|x, 1− c(x)〉.

Using the PGM, we are able to show that the quantum sample complexity of PAC learning
a concept class C under random classification noise is:

Ω
( d

(1− 2η)2ε
+ log(1/δ)

(1− 2η)2ε

)
. (4)

We remark here that the best known classical sample complexity lower bound (see [46]) under
the random classification noise is equal to the quantum sample complexity lower bound
proven in Eq. (4).

1.3 Related work
Let us briefly discuss some related work in quantum learning theory, referring to our recent
survey [9] for more. In this paper we focus on sample complexity, which is a fundamental
information-theoretic quantity. Sample complexity concerns a form of “passive” learning: the
learner gets a number of examples at the start of the process, and then has to extract enough
information about the target concept from these. We may also consider more active learning
settings, in particular ones where the learner can make membership queries (i.e., learn the
label c(x) for any x of his choice). Servedio and Gortler [44] showed that in this setting,
classical and quantum complexity are polynomially related. They also exhibit an example of a
factor-n speed-up from quantum membership queries using the Bernstein-Vazirani algorithm.
Jackson et al. [34] showed how quantum membership queries can improve Jackson’s classical
algorithm for learning DNF with membership queries under the uniform distribution [33].

For quantum exact learning (also referred to as the oracle identification problem in the
quantum literature), Kothari [40] resolved a conjecture of Hunziker et al. [32], that states
that for any concept class C, the number of quantum membership queries required to exactly
identify a concept c ∈ C is O( log |C|√

γ̂C
), where γ̂C is a combinatorial parameter of the concept

class C which we shall not define here (see [10] for a precise definition). Montanaro [42]
showed how low-degree polynomials over a finite field can be identified more efficiently using
quantum algorithms.

In many ways the time complexity of learning is at least as important as the sample
complexity. We already mentioned that Servedio and Gortler [44] exhibited a concept class
based on factoring Blum integers that can be learned in quantum polynomial time but not in
classical polynomial time, unless Blum integers can be factored efficiently. Under the weaker
(but still widely believed) assumption that one-way functions exist, they exhibited a concept
class that can be learned exactly in polynomial time using quantum membership queries, but
that takes superpolynomial time to learn from classical membership queries. Gavinsky [24]
introduced a model of learning called “Predictive Quantum” (PQ), a variation of quantum
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PAC learning, and exhibited a relational concept class that is polynomial-time learnable
in PQ, while any “reasonable” classical model requires an exponential number of classical
examples to learn the concept class.

Aïmeur et al. [3, 4] consider a number of quantum algorithms in learning contexts such as
clustering via minimum spanning tree, divisive clustering, and k-medians, using variants of
Grover’s algorithm [26] to improve the time complexity of the analogous classical algorithms.
Recently, there have been some quantum machine learning algorithms based on the HHL
algorithm [28] for solving (in a weak sense) very well-behaved linear systems. However, these
algorithms often come with some fine print that limits their applicability, and their advantage
over classical is not always clear. We refer to Aaronson [2] for references and caveats. There
has also been some work on quantum training of neural networks [53, 54].

In addition to learning classical objects such as Boolean functions, one may also study the
learnability of quantum objects. In particular, Aaronson [1] studied how well n-qubit quantum
states can be learned from measurement results. In general, an n-qubit state ρ is specified
by exp(n) many parameters, and exp(n) measurement results on equally many copies of ρ
are needed to learn a good approximation of ρ (say, in trace distance). However, Aaronson
showed an interesting and surprisingly efficient PAC-like result: from O(n) measurement
results, with measurements chosen i.i.d. according to an unknown distribution D on the set
of all possible two-outcome measurements, we can learn an n-qubit quantum state ρ̃ that
has roughly the same expectation value as ρ for “most” possible two-outcome measurements.
In the latter, “most” is again measured under D, just like in the usual PAC learning the
error of the learner’s hypothesis is evaluated under the same distribution D that generated
the learner’s examples. Accordingly, O(n) rather than exp(n) measurement results suffice to
approximately learn an n-qubit state for most practical purposes.

The use of Fourier analysis in analyzing the success probability of the Pretty Good
Measurement in quantum state identification appears in a number of earlier works. By
considering the dihedral hidden subgroup problem (DHSP) as a state identification problem,
Bacon et al. [14] show that the PGM is the optimal measurement for DHSP and prove a
lower bound on the sample complexity of Ω(log |G|) for a dihedral group G using Fourier
analysis. Ambainis and Montanaro [5] view the “search with wildcard” problem as a state
identification problem. Using ideas similar to ours, they show that the (x, y)-th entry of the
Gram matrix for the ensemble depends on the Hamming distance between x and y, allowing
them to use Fourier analysis to obtain an upper bound on the success probability of the
state identification problem using the PGM.

1.4 Organization
In Section 2 we formally define the classical and quantum learning models and introduce the
Pretty Good Measurement. In Section 3 we prove our information-theoretic lower bounds
both for classical and quantum learning. In Section 4 we prove an optimal quantum lower
bound for PAC and agnostic learning by viewing the learning process as a state identification
problem. We conclude in Section 5 with some open questions for further work.

2 Preliminaries

2.1 Notation
Let [n] = {1, . . . , n}. For x, y ∈ {0, 1}d, the bit-wise sum x + y is over F2, the Hamming
distance d(x, y) is the number of indices on which x and y differ, |x+y| is the Hamming weight
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of the string x+ y (which equals dH(x, y)), and x · y =
∑
i xiyi (where the sum is over F2).

For an n-dimensional vector space, the standard basis is denoted by {ei ∈ {0, 1}n : i ∈ [n]},
where ei is the vector with a 1 in the i-th coordinate and 0’s elsewhere. We write log for
logarithm to base 2, and ln for base e. We will often use the bijection between the sets
{0, 1}k and [2k] throughout this paper. Let 1[A] be the indicator for an event A, and let
δx,y = 1[x=y]. We denote random variables in bold, such as A, B.

For a Boolean function f : {0, 1}m → {0, 1} and M ∈ Fm×k2 we define f ◦M : {0, 1}k →
{0, 1} as (f ◦M)(x) := f(Mx) (where the matrix-vector product is over F2) for all x ∈ {0, 1}k.
For a distribution D : {0, 1}n → [0, 1], let supp(D) = {x ∈ {0, 1}n : D(x) 6= 0}. By x ∼ D,
we mean x is sampled according to the distribution D, i.e., Pr[X = x] = D(x).

If M is a positive semidefinite (psd) matrix, we define
√
M as the unique psd matrix

that satisfies
√
M ·
√
M = M , and

√
M(i, j) as the (i, j)-th entry of

√
M . For a matrix

A ∈ Rm×n, we denote the singular values of A by σ1(A) ≥ σ2(A) ≥ · · · ≥ σmin{m,n}(A) ≥ 0.
The spectral norm of A is ‖A‖ = maxx∈Rn,‖x‖=1 ‖Ax‖ = σ1. Given a set of d-dimensional
vectors U = {u1, . . . , un} ∈ Rd, the Gram matrix V corresponding to the set U is the n× n
psd matrix defined as V (i, j) = utiuj for i, j ∈ [n], where uti is the row vector that is the
transpose of the column vector ui.

A technical tool used in our analysis of state identification problems is Fourier analysis
on the Boolean cube. We will just introduce the basics of Fourier analysis here, referring
to [43] for more. Define the inner product between functions f, g : {0, 1}n → R as

〈f, g〉 = E
x

[f(x) · g(x)]

where the expectation is uniform over x ∈ {0, 1}n. For S ⊆ [n] (equivalently S ∈ {0, 1}n),
let χS(x) := (−1)S·x denote the parity of the variables (of x) indexed by the set S. It is
easy to see that the set of functions {χS}S⊆[n] forms an orthonormal basis for the space of
real-valued functions over the Boolean cube. Hence every f can be decomposed as

f(x) =
∑
S⊆[n]

f̂(S)(−1)S·x for all x ∈ {0, 1}n,

where f̂(S) = 〈f, χS〉 = Ex[f(x) · χS(x)] is called a Fourier coefficient of f .

2.2 Learning in general
In machine learning, a concept class C over {0, 1}n is a set of concepts c : {0, 1}n → {0, 1}. We
refer to a concept class C as being trivial if either C contains only one concept, or C contains
two concepts c0, c1 with c0(x) = 1 − c1(x) for every x ∈ {0, 1}n. For c : {0, 1}n → {0, 1},
we will often refer to the tuple (x, c(x)) ∈ {0, 1}n+1 as a labeled example, where c(x) is
the label of x.

A central combinatorial concept in learning is the Vapnik-Chervonenkis (VC) dimension
[50]. Fix a concept class C over {0, 1}n. A set S = {s1, . . . , st} ⊆ {0, 1}n is said to be
shattered by a concept class C if {(c(s1), . . . , c(st)) : c ∈ C} = {0, 1}t. In other words, for
every labeling ` ∈ {0, 1}t, there exists a c ∈ C such that (c(s1), . . . , c(st)) = `. The VC
dimension of a concept class C is the size of the largest S ⊆ {0, 1}n that is shattered by C.

2.3 Classical learning models
In this paper we will be concerned mainly with the PAC (Probably Approximately Correct)
model of learning introduced by Valiant [49], and the agnostic model of learning introduced
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by Haussler [31] and Kearns et al. [36]. For further reading, see standard textbooks in
computational learning theory such as [38, 7, 45].

In the classical PAC model, a learner A is given access to a random example oracle
PEX(c,D) which generates labeled examples of the form (x, c(x)) where x is drawn from an
unknown distribution D : {0, 1}n → [0, 1] and c ∈ C is the target concept that A is trying
to learn. For a concept c ∈ C and hypothesis h : {0, 1}n → {0, 1}, we define the error of h
compared to the target concept c, under D, as errD(h, c) = Prx∼D[h(x) 6= c(x)]. A learning
algorithm A is an (ε, δ)-PAC learner for C, if the following holds:

For every c ∈ C and distribution D, given access to the PEX(c,D) oracle:
A outputs an h such that errD(h, c) ≤ ε with probability at least 1− δ.

The sample complexity of A is the maximum number of invocations of the PEX(c,D) oracle
which the learner makes, over all concepts c ∈ C, distributions D, and the internal randomness
of the learner. The (ε, δ)-PAC sample complexity of a concept class C is the minimum sample
complexity over all (ε, δ)-PAC learners for C.

Agnostic learning is the following model: for a distribution D : {0, 1}n+1 → [0, 1], a
learner A is given access to an AEX(D) oracle that generates examples of the form (x, b)
drawn from the distribution D. We define the error of h : {0, 1}n → {0, 1} under D as
errD(h) = Pr(x,b)∼D[h(x) 6= b]. When h is restricted to come from a concept class C, the
minimal error achievable is optD(C) = minc∈C{errD(c)}. In agnostic learning, a learner A
needs to output a hypothesis h whose error is not much bigger than optD(C). A learning
algorithm A is an (ε, δ)-agnostic learner for C if:

For every distribution D on {0, 1}n+1, given access to the AEX(D) oracle:
A outputs an h ∈ C such that errD(h) ≤ optD(C) + ε with probability at least 1− δ.

Note that if there is a c ∈ C which perfectly classifies every x with label y for (x, y) ∈ supp(D),
then optD(C) = 0 and we are in the setting of proper PAC learning. The sample complexity
of A is the maximum number of invocations of the AEX(c,D) oracle which the learner makes,
over all distributions D and over the learner’s internal randomness. The (ε, δ)-agnostic sample
complexity of a concept class C is the minimum sample complexity over all (ε, δ)-agnostic
learners for C.

2.4 Quantum information theory
Throughout this paper we will assume the reader is familiar with the following quantum
terminology. An n-dimensional pure state is |ψ〉 =

∑n
i=1 αi|i〉, where |i〉 is the n-dimensional

unit vector that has a 1 only at position i, the αi’s are complex numbers called the amplitudes,
and

∑
i∈[n] |αi|2 = 1. An n-dimensional mixed state (or density matrix) ρ =

∑n
i=1 pi|ψi〉〈ψi|

is a mixture of pure states |ψ1〉, . . . , |ψn〉 prepared with probabilities p1, . . . , pn, respectively.
The eigenvalues λ1, . . . , λn of ρ are non-negative reals and satisfy

∑
i∈[n] λi = 1. If ρ is pure

(i.e., ρ = |ψ〉〈ψ| for some |ψ〉), then one of the eigenvalues is 1 and the others are 0.
To obtain classical information from ρ, one could apply a POVM (positive-operator-valued

measure) to the state ρ. An m-outcome POVM is specified by a set of positive semidefinite
matrices {Mi}i∈[m] with the property

∑
iMi = Id. When this POVM is applied to the mixed

state ρ, the probability of the j-th outcome is given by Tr(Mjρ).
For a probability vector (p1, . . . , pk) (where

∑
i∈[k] pi = 1), the entropy function is

defined as H(p1, . . . , pk) = −
∑
i∈[k] pi log pi. When k = 2, with p1 = p and p2 = 1 − p,

we denote the binary entropy function as H(p). For a state ρAB on the Hilbert space
HA ⊗ HB, we let ρA be the reduced state after taking the partial trace over HB. The
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entropy of a quantum state ρA is defined as S(A) = −Tr(ρA log ρA). The mutual information
is defined as I(A : B) = S(A) + S(B) − S(AB), and conditional entropy is defined as
S(A|B) = S(AB)−S(B). Classical information-theoretic quantities correspond to the special
case where ρ is a diagonal matrix whose diagonal corresponds to the probability distribution of
the random variable. Writing ρA in its eigenbasis, it follows that S(A) = H(λ1, . . . , λdim(ρA)),
where λ1, . . . , λdim(ρA) are the eigenvalues of ρ. If ρA is a pure state, S(A) = 0.

2.5 Quantum learning models
The quantum PAC learning model was introduced by Bshouty and Jackson in [18]. The
quantum PAC model is a generalization of the classical PAC model, instead of having
access to random examples (x, c(x)) from the PEX(c,D) oracle, the learner now has access to
superpositions over all (x, c(x)). For an unknown distribution D : {0, 1}n → [0, 1] and concept
c ∈ C, a quantum example oracle QPEX(c,D) acts on |0n, 0〉 and produces a quantum example∑
x∈{0,1}n

√
D(x)|x, c(x)〉 (we leave QPEX undefined on other basis states). A quantum

learner is given access to some copies of the state generated by QPEX(c,D) and performs a
POVM where each outcome is associated with a hypothesis. A learning algorithm A is an
(ε, δ)-PAC quantum learner for C if:

For every c ∈ C and distribution D, given access to the QPEX(c,D) oracle:
A outputs an h such that errD(h, c) ≤ ε, with probability at least 1− δ.

The sample complexity of A is the maximum number invocations of the QPEX(c,D) oracle,
maximized over all c ∈ C, distributions D, and the learner’s internal randomness. The (ε, δ)-
PAC quantum sample complexity of a concept class C is the minimum sample complexity
over all (ε, δ)-PAC quantum learners for C.

We define quantum agnostic learning now. For a joint distribution D : {0, 1}n+1 → [0, 1]
over the set of examples, the learner has access to an QAEX(D) oracle which acts on |0n, 0〉
and produces a quantum example

∑
(x,b)∈{0,1}n+1

√
D(x, b)|x, b〉. A learning algorithm A is

an (ε, δ)-agnostic quantum learner for C if:

For every distribution D, given access to the QAEX(D) oracle:
A outputs an h ∈ C such that errD(h) ≤ optD(C) + ε with probability at least 1− δ.

The sample complexity of A is the maximum number invocations of the QAEX(D) oracle
over all distributions D and over the learner’s internal randomness. The (ε, δ)-agnostic
quantum sample complexity of a concept class C is the minimum sample complexity over all
(ε, δ)-agnostic quantum learners for C.

2.6 Pretty Good Measurement
Consider an ensemble of d-dimensional states, E = {(pi, |ψi〉)}i∈[m], where

∑
i∈[m] pi = 1.

Suppose we are given an unknown state |ψi〉 sampled according to the probabilities and we
are interested in maximizing the average probability of success to identify the state that
we are given. For a POVM specified by positive semidefinite matricesM = {Mi}i∈[m], the
probability of obtaining outcome j equals 〈ψi|Mj |ψi〉. The average success probability is
defined as

PM(E) =
m∑
i=1

pi〈ψi|Mi|ψi〉.
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Let P opt(E) = maxM PM(E) denote the optimal average success probability of E , where the
maximization is over the set of valid m-outcome POVMs.

For every ensemble E , the so-called Pretty Good Measurement (PGM) is a specific POVM
(depending on the ensemble E), which we shall define shortly, that does reasonably well
against E . Suppose PPGM (E) is defined as the average success probability of identifying the
states in E using the PGM, then we have that

P opt(E)2 ≤ PPGM (E) ≤ P opt(E),

where the second inequality follows because P opt(E) is a maximization over all valid POVMs
and the first inequality was shown by Barnum and Knill [15].

For completeness we give a simple proof of P opt(E)2 ≤ PPGM (E) below (similar to [41]).
Let |ψ′i〉 = √pi|ψi〉, and E ′ = {|ψ′i〉 : i ∈ [m]} be the set of states in E , renormalized to
reflect their probabilities. Define ρ =

∑
i∈[m] |ψ′i〉〈ψ′i|. The PGM is defined as the set of

measurement operators {|νi〉〈νi|}i∈[m] where |νi〉 = ρ−1/2|ψ′i〉 (the inverse square root of ρ is
taken over its non-zero eigenvalues). We first verify this is a valid POVM:

m∑
i=1
|νi〉〈νi| = ρ−1/2

( m∑
i=1
|ψ′i〉〈ψ′i|

)
ρ−1/2 = Id .

Let G be the Gram matrix for the set E ′, i.e., G(i, j) = 〈ψ′i|ψ′j〉 for i, j ∈ [m]. It can be
verified that

√
G(i, j) = 〈ψ′i|ρ−1/2|ψ′j〉. Hence

PPGM (E) =
∑
i∈[m]

pi|〈νi|ψi〉|2 =
∑
i∈[m]

|〈νi|ψ′i〉|2 =
∑
i∈[m]

〈ψ′i|ρ−1/2|ψ′i〉2 =
∑
i∈[m]

√
G(i, i)2.

We now prove P opt(E)2 ≤ PPGM (E). Suppose M is the optimal measurement. Since E
consists of pure states, by a result of Eldar et al. [23], we can assume without loss of generality
that the measurement operators inM are rank-1, so Mi = |µi〉〈µi| for some |µi〉. Note that

1 = Tr(ρ) = Tr
( ∑
i∈[m]

|µi〉〈µi|ρ1/2
∑
j∈[m]

|µj〉〈µj |ρ1/2
)

=
∑

i,j∈[m]

|〈µi|ρ1/2|µj〉|2 ≥
∑
i∈[m]

〈µi|ρ1/2|µi〉2.
(5)

Then, using the Cauchy-Schwarz inequality, we have

P opt(E) =
∑
i∈[m]

|〈µi|ψ′i〉|2 =
∑
i∈[m]

|〈µi|ρ1/4ρ−1/4|ψ′i〉|2

≤
∑
i∈[m]

〈µi|ρ1/2|µi〉〈ψ′i|ρ−1/2|ψ′i〉

≤
√∑
i∈[m]

〈µi|ρ1/2|µi〉2
√∑
i∈[m]

〈ψ′i|ρ−1/2|ψ′i〉2

Eq. (5)
≤

√∑
i∈[m]

〈ψ′i|ρ−1/2|ψ′i〉2 =
√
PPGM (E).

The above shows that for all ensembles E , the PGM for that ensemble is not much
worse than the optimal measurement. In some cases the PGM is the optimal measurement.
In particular, an ensemble E is called geometrically uniform if E = {Ui|ϕ〉 : i ∈ [m]} for
some Abelian group of matrices {Ui}i∈[m] and state |ϕ〉. Eldar and Forney [22] showed
P opt(E) = PPGM (E) for such E .
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2.7 Known results and required claims
The following theorems characterize the sample complexity of classical PAC and agnostic learn-
ing.

I Theorem 1 ([17, 27]). Let C be a concept class with VC-dim(C) = d+1. In the PAC model,
Θ
(
d
ε + log(1/δ)

ε

)
examples are necessary and sufficient for a classical (ε, δ)-PAC learner for C.

I Theorem 2 ([51, 46, 48]). Let C be a concept class with VC-dim(C) = d. In the agnostic
model, Θ

(
d
ε2 + log(1/δ)

ε2

)
examples are necessary and sufficient for a classical (ε, δ)-agnostic

learner for C.

We will use the following well-known theorem from the theory of error-correcting codes:

I Theorem 3. For every sufficiently large integer n, there exists an integer k ∈ [n/4, n] and a
matrix M ∈ Fn×k2 of rank k, such that the associated [n, k, d]2 linear code {Mx : x ∈ {0, 1}k}
has minimal distance d ≥ n/8.

We will need the following claims later

I Claim 4. Let f : {0, 1}m → R and let M ∈ Fm×k2 . Then the Fourier coefficients of f ◦M
are f̂ ◦M(Q) =

∑
S∈{0,1}m:MtS=Q f̂(S) for all Q ⊆ [k] (where M t is the transpose of the

matrix M).

Proof. Writing out the Fourier coefficients of f ◦M

f̂ ◦M(Q) = E
z∈{0,1}k

[(f ◦M)(z)(−1)Q·z]

= E
z∈{0,1}k

[ ∑
S∈{0,1}m

f̂(S)(−1)S·(Mz)+Q·z
]

(Fourier expansion of f)

=
∑

S∈{0,1}m

f̂(S) E
z∈{0,1}k

[(−1)(MtS+Q)·z] (using 〈S,Mz〉 = 〈M tS, z〉)

=
∑

S:MtS=Q

f̂(S). (using Ez∈{0,1}k (−1)(z1+z2)·z = δz1,z2)

J

I Claim 5. max{(c/
√
t)t : t ∈ [1, c2]} = ec

2/(2e).

Proof. The value of t at which the function
(
c/
√
t
)t

is the largest, is obtained by differenti-
ating the function with respect to t,

d

dt

(
c/
√
t
)t

= (c/
√
t)t
(

ln(c/
√
t)− 1/2

)
.

Equating the derivative to zero we obtain the maxima (the second derivative can be checked
to be negative) at t = c2/e. J

I Fact 6. For all ε ∈ [0, 1/2] we have H(ε) ≤ O(ε log(1/ε)), and (from the Taylor series)

1−H(1/2 + ε) ≤ 2ε2/ ln 2 +O(ε4).

I Fact 7. For every positive integer n, we have that
(
n
k

)
≤ 2nH(k/n) for all k ≤ n and∑m

i=0
(
n
i

)
≤ 2nH(m/n) for all m ≤ n/2.
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The following facts are well-known in quantum information theory.

I Fact 8. Let binary random variable b ∈ {0, 1} be uniformly distributed. Suppose an
algorithm is given |ψb〉 (for unknown b) and is required to guess whether b = 0 or b = 1. It
will guess correctly with probability at most 1

2 + 1
2
√

1− |〈ψ0|ψ1〉|2.

Note that if we can distinguish |ψ0〉 and |ψ1〉 with probability ≥ 1− δ, then |〈ψ0|ψ1〉| ≤
2
√
δ(1− δ).

I Fact 9. (Subadditivity of quantum entropy): For an arbitrary bipartite state ρAB on the
Hilbert space HA ⊗HB, it holds that S(ρAB) ≤ S(ρA) + S(ρB).

3 Information-theoretic lower bounds

Upper bounds on sample complexity carry over from classical to quantum PAC learning,
because a quantum example becomes a classical example if we just measure it. Our main
goal is to show that the lower bounds also carry over. All our lower bounds will involve
two terms, one that is independent of C and one that is dependent on the VC dimension of
C. In Section 3.1 we prove the VC-independent part of the lower bounds for the quantum
setting (which also is a lower bound for the classical setting), in Section 3.2 we present an
information-theoretic lower bound on sample complexity for PAC learning and agnostic
learning which yields optimal VC-dependent bounds in the classical case. Using similar ideas,
in Section 3.3 we obtain near-optimal bounds in the quantum case.

3.1 VC-independent part of lower bounds

I Lemma 10 ([10]). Let C be a non-trivial concept class. For every δ ∈ (0, 1/2), ε ∈ (0, 1/4),
a (ε, δ)-PAC quantum learner for C has sample complexity Ω( 1

ε log 1
δ ).

Proof. Since C is non-trivial, we may assume there are two concepts c1, c2 ∈ C defined on
two inputs {x1, x2} as follows c1(x1) = c2(x1) = 0 and c1(x2) = 0, c2(x2) = 1. Consider
the distribution D(x1) = 1 − ε and D(x2) = ε. For i ∈ {1, 2}, the state of the algorithm
after T queries to QPEX(ci, D) is |ψi〉 = (

√
1− ε|x1, 0〉+

√
ε|x2, ci(x2)〉)⊗T . It follows that

〈ψ1|ψ2〉 = (1− ε)T . Since the success probability of an (ε, δ)-PAC quantum learner is ≥ 1− δ,
Fact 8 implies 〈ψ1|ψ2〉 ≤ 2

√
δ(1− δ). Hence T = Ω( 1

ε log 1
δ ). J

I Lemma 11. Let C be a non-trivial concept class. For every δ ∈ (0, 1/2), ε ∈ (0, 1/4), a
(ε, δ)-agnostic quantum learner for C has sample complexity Ω( 1

ε2 log 1
δ ).

Proof. Since C is non-trivial, we may assume there are two concepts c1, c2 ∈ C and there
exists an input x ∈ {0, 1}n such that c1(x) 6= c2(x). Consider the two distributions
D− and D+ defined as follows: D±(x, c1(x)) = (1 ± ε)/2 and D±(x, c2(x)) = (1 ∓ ε)/2.
Let |ψ±〉 be the state after T queries to QAEX(D±), i.e., |ψ±〉 = (

√
(1± ε)/2|x, c1(x)〉 +√

(1∓ ε)/2|x, c2(x)〉)⊗T . It follows that 〈ψ+|ψ−〉 = (1− ε2)T/2. Since the success probabil-
ity of an (ε, δ)-agnostic quantum learner is ≥ 1− δ, Fact 8 implies 〈ψ+|ψ−〉 ≤ 2

√
δ(1− δ).

Hence T = Ω( 1
ε2 log 1

δ ) J
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3.2 Information-theoretic lower bounds on sample complexity: classical
case

3.2.1 Optimal lower bound for classical PAC learning
I Theorem 12. Let C be a concept class with VC-dim(C) = d+1. Then for every δ ∈ (0, 1/2)
and ε ∈ (0, 1/4), every (ε, δ)-PAC learner for C has sample complexity Ω

(
d
ε + log(1/δ)

ε

)
.

Proof. Consider an (ε, δ)-PAC learner for C that uses T examples. The d-independent part
of the lower bound, T = Ω(log(1/δ)/ε), even holds for quantum examples and was proven
in Lemma 10. Hence it remains to prove T = Ω(d/ε). It suffices to show this for a specific
distribution D, defined as follows. Let S = {s0, s1, . . . , sd} ⊆ {0, 1}n be some (d+ 1)-element
set shattered by C. Define D(s0) = 1− 4ε and D(si) = 4ε/d for all i ∈ [d].

Because S is shattered by C, for each string a ∈ {0, 1}d, there exists a concept ca ∈ C such
that ca(s0) = 0 and ca(si) = ai for all i ∈ [d]. We define two correlated random variables A
and B corresponding to the concept and to the examples, respectively. Let A be a random
variable that is uniformly distributed over {0, 1}d; if A = a, let B = B1 . . .BT be T i.i.d.
examples from ca according to D. We give the following three-step analysis of these random
variables:
1. I(A : B) ≥ (1− δ)(1−H(1/4))d−H(δ) = Ω(d).

Proof. Let random variable h(B) ∈ {0, 1}d be the hypothesis that the learner produces
(given the examples in B) restricted to the elements s1, . . . , sd. Note that the error of the
hypothesis errD(h(B), cA) equals dH(A, h(B)) · 4ε/d, because each si where A and h(B)
differ contributes D(si) = 4ε/d to the error. Let Z be the indicator random variable for
the event that the error is ≤ ε. If Z = 1, then dH(A, h(B)) ≤ d/4. Since we are analyzing
an (ε, δ)-PAC learner, we have Pr[Z = 1] ≥ 1− δ, and H(Z) ≤ H(δ). Given a string h(B)
that is d/4-close to A, A ranges over a set of only

∑d/4
i=0
(
d
i

)
≤ 2H(1/4)d possible d-bit

strings (using Fact 7), hence H(A | B,Z = 1) ≤ H(A | h(B),Z = 1) ≤ H(1/4)d. We
now lower bound I(A : B) as follows:

I(A : B) = H(A)−H(A | B)
≥ H(A)−H(A | B,Z)−H(Z)
= H(A)− Pr[Z = 1] ·H(A | B,Z = 1)

− Pr[Z = 0] ·H(A | B,Z = 0)−H(Z)
≥ d− (1− δ)H(1/4)d− δd−H(δ)
= (1− δ)(1−H(1/4))d−H(δ).

2. I(A : B) ≤ T · I(A : B1).
Proof. This inequality is essentially due to Jain and Zhang [35, Lemma 5], we include the
proof for completeness.

I(A : B) = H(B)−H(B | A) = H(B)−
T∑
i=1

H(Bi | A)

≤
T∑
i=1

H(Bi)−
T∑
i=1

H(Bi | A) =
T∑
i=1

I(A : Bi),

where the second equality used independence of the Bi’s conditioned on A, and the
inequality uses Fact 9. Since I(A : Bi) = I(A : B1) for all i, we get the inequality.
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3. I(A : B1) = 4ε.
Proof. View B1 = (I,L) as consisting of an index I ∈ {0, 1, . . . , d} and a corresponding
label L ∈ {0, 1}. With probability 1 − 4ε, (I,L) = (0, 0). For each i ∈ [d], with
probability 4ε/d, (I,L) = (i,Ai). Note that I(A : I) = 0 because I is independent of A;
I(A : L | I = 0) = 0; and I(A : L | I = i) = I(Ai : L | I = i) = H(Ai | I = i)−H(Ai |
L, I = i) = 1− 0 = 1 for all i ∈ [d]. We have

I(A : B1) = I(A : I) + I(A : L | I) =
d∑
i=1

Pr[I = i] · I(A : L | I = i) = 4ε.

Combining these three steps implies T = Ω(d/ε). J

3.2.2 Optimal lower bound for classical agnostic learning
I Theorem 13. Let C be a concept class with VC-dim(C) = d. Then for every δ ∈ (0, 1/2)
and ε ∈ (0, 1/4), every (ε, δ)-agnostic learner for C has sample complexity Ω

(
d
ε2 + log(1/δ)

ε2

)
.

Proof. The d-independent part of the lower bound, T = Ω(log(1/δ)/ε2), even holds for
quantum examples and was proven in Lemma 11. For the other part, the proof is similar to
Theorem 12, as follows. Assume an (ε, δ)-agnostic learner for C that uses T examples. We
need to prove T = Ω(d/ε2). For shattered set S = {s1, . . . , sd} ⊆ {0, 1}n and a ∈ {0, 1}d,
define distribution Da on [d]× {0, 1} by Da(i, `) = (1 + (−1)ai+`4ε)/2d.

Again let random variable A ∈ {0, 1}d be uniformly random, corresponding to the values
of concept ca on S, and B = B1 . . .BT be T i.i.d. samples from Da. Note that ca is the
minimal-error concept from C w.r.t. Da, and concept cã has additional error dH(a, ã) · 4ε/d.
Accordingly, an (ε, δ)-agnostic learner has to produce (from B) an h(B) ∈ {0, 1}d, which,
with probability at least 1− δ, is d/4-close to A. Our three-step analysis is very similar to
Theorem 12; only the third step changes:
1. I(A : B) ≥ (1− δ)(1−H(1/4))d−H(δ) = Ω(d).
2. I(A : B) ≤ T · I(A : B1).
3. I(A : B1) = 1−H(1/2 + 2ε) = O(ε2).

Proof. View the Da-distributed random variable B1 = (I,L) as index I ∈ [d] and label
L ∈ {0, 1}. The marginal distribution of I is uniform; conditioned on I = i, the bit L
equals Ai with probability 1/2 + 2ε. Hence

I(A : L | I = i) = I(Ai : L | I = i) = H(Ai | I = i)−H(Ai | L, I = i) = 1−H(1/2+2ε).

Using Fact 6, we have

I(A : B1) = I(A : I) + I(A : L | I) =
d∑
i=1

Pr[I = i] · I(A : L | I = i)

= 1−H(1/2 + 2ε) = O(ε2).

Combining these three steps implies T = Ω(d/ε2). J

In the theorem below, we optimize the constant in the lower bound of the sample
complexity in Theorem 13. In learning theory such lower bounds are often stated slightly
differently. In order to compare the lower bounds, we introduce the following. We first
define an ε-average agnostic learner for a concept class C as a learner that, given access to
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T samples from an AEX(D) oracle (for some unknown distribution D), needs to output a
hypothesis hXY (where (X,Y) ∼ DT ) that satisfies

E
(X,Y)∼DT

[errD(hXY)]− optD(C) ≤ ε.

Lower bounds on the quantity (E(X,Y)∼DT [errD(hXY)]− optD(C)) are generally referred to
as minimax lower bounds in learning theory. For concept class C, Audibert [12, 13] showed
that there exists a distribution D, such that if the agnostic learner uses T samples from
AEX(D), then

E
(X,Y)∼DT

[errD(hXY)]− optD(C) ≥ 1
6

√
d

T
.

Equivalently, this is a lower bound of T ≥ d
36ε2 on the sample complexity of an ε-average

agnostic learner. We obtain a slightly weaker lower bound that is essentially T ≥ d
62ε2 :

I Theorem 14. Let C be a concept class with VC-dim(C) = d. Then for every ε ∈ (0, 1/10],
there exists a distribution for which every ε-average agnostic learner has sample complexity
at least d

ε2 ·
(

1
62 −

log(2d+2)
4d

)
.

Proof. The proof is similar to Theorem 13. Assume an ε-average agnostic learner for C

that uses T samples. For shattered set S = {s1, . . . , sd} ⊆ {0, 1}n and a ∈ {0, 1}d, define
distribution Da on [d]× {0, 1} by Da(i, `) = (1 + (−1)ai+`βε)/2d, for some constant β ≥ 2
which we shall pick later.

Again let random variable A ∈ {0, 1}d be uniformly random, corresponding to the values
of concept ca on S, and B = B1 . . .BT be T i.i.d. samples from Da. Note that ca is the
minimal-error concept from C w.r.t. Da, and concept cã has additional error dH(a, ã) · βε/d.
Accordingly, an ε-average agnostic learner has to produce (from B) an h(B) ∈ {0, 1}d, which
satisfies EA,B[dH(A, h(B))] ≤ d/β.

Our three-step analysis is very similar to Theorem 13; only the first step changes:
1. I(A : B) ≥ d(1−H(1/β))− log(d+ 1).

Proof. Define random variable Z = dH(A, h(B)), then E[Z] ≤ d/β. Note that given a
string h(B) that is `-close to A, A ranges over a set of only

(
d
`

)
≤ 2H(`/d)d possible d-bit

strings (using Fact 7), hence H(A | B,Z = `) ≤ H(A | h(B),Z = `) ≤ H(`/d)d. We now
lower bound I(A : B)

I(A : B) = H(A)−H(A | B)
≥ H(A)−H(A | B,Z)−H(Z)

= d−
d+1∑
`=0

Pr[Z = `] ·H(A | B,Z = `)−H(Z)

≥ d− E
`∈{0,...,d}

[H(`/d)d]− log(d+ 1) (since Z ∈ {0, . . . , d})

≥ d− dH
(E`[`]

d

)
− log(d+ 1) (using Jensen’s inequality)

≥ d− dH(1/β)− log(d+ 1), (using E[Z] ≤ d/β)

where for the third inequality we used the concavity of the binary entropy function to
conclude E`[H(`/d)] ≤ H(E`[`]/d), and for the fourth inequality we used that β ≥ 2.

2. I(A : B) ≤ T · I(A : B1).

3. I(A : B1) = 1−H(1/2 + βε/2)
Fact 6
≤ β2ε2/ ln 4 +O(ε4).
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Combining these three steps implies

T ≥ d ln 4
ε2 ·

(1−H(1/β)
β2 +O(ε2) −

log(d+ 1)
β2d+O(dε2)

)
.

Using ε ≤ 1/10, β = 4 to optimize this lower bound, we obtain T ≥ d
ε2 ·
(

1
62 −

log(2d+2)
4d

)
. J

3.3 Information-theoretic lower bounds on sample complexity:
quantum case

Here we will “quantize” the above two classical information-theoretic proofs, yielding lower
bounds for quantum sample complexity (in both the PAC and the agnostic setting) that are
tight up to a logarithmic factor.

3.3.1 Near-optimal lower bound for quantum PAC learning
I Theorem 15. Let C be a concept class with VC-dim(C) = d+1. Then, for every δ ∈ (0, 1/2)
and ε ∈ (0, 1/4), every (ε, δ)-PAC quantum learner for C has sample complexity Ω

(
d

ε log(d/ε) +
log(1/δ)

ε

)
.

Proof. The proof is analogous to Theorem 12. We use the same distribution D, with the Bi

now being quantum samples: |ψa〉 =
∑
i∈{0,1,...,d}

√
D(si)|i, ca(si)〉. The AB-system is now

in the following classical-quantum state:

1
2d

∑
a∈{0,1}d

|a〉〈a| ⊗ |ψa〉〈ψa|⊗T .

The first two steps of our argument are identical to Theorem 12. We only need to re-analyze
step 3:
1. I(A : B) ≥ (1− δ)(1−H(1/4))d−H(δ) = Ω(d).
2. I(A : B) ≤ T · I(A : B1).
3. I(A : B1) ≤ H(4ε) + 4ε log(2d) = O(ε log(d/ε)).

Proof. Since AB is a classical-quantum state, we have

I(A : B1) = S(A) + S(B1)− S(AB1) = S(B1),

where the first equality follows from definition and the second equality uses S(A) = d

since A is uniformly distributed in {0, 1}d, and S(AB1) = d since the matrix σ =
1
2d

∑
a∈{0,1}d |a〉〈a| ⊗ |ψa〉〈ψa| is block diagonal with 2d rank-1 blocks on the diagonal.

It thus suffices to bound the entropy of the singular values of the reduced state of B1,
which is

ρ = 1
2d

∑
a∈{0,1}d

|ψa〉〈ψa|.

Let σ0 ≥ σ1 ≥ · · · ≥ σ2d ≥ 0 be its singular values. Since ρ is a density matrix, these
form a probability distribution. Note that the upper-left entry of the matrix |ψa〉〈ψa| is
D(s0) = 1− 4ε, hence so is the upper-left entry of ρ. This implies σ0 ≥ 1− 4ε. Consider
sampling a number N ∈ {0, 1, . . . , 2d} according to the σ-distribution. Let Z be the
indicator random variable for the event N 6= 0, which has probability 1− σ0 ≤ 4ε. Note
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that H(N | Z = 0) = 0, because Z = 0 implies N = 0. Also, H(N | Z = 1) ≤ log(2d),
because if Z = 1 then N ranges over 2d elements. We now have

S(ρ) = H(N) = H(N,Z) = H(Z) +H(N | Z)
= H(Z) + Pr[Z = 0] ·H(N | Z = 0) + Pr[Z = 1] ·H(N | Z = 1)
≤ H(4ε) + 4ε log(2d)
= O(ε log(d/ε)). (using Fact 6)

Combining these three steps implies T = Ω
(

d
ε log(d/ε)

)
. J

3.3.2 Near-optimal lower bound for quantum agnostic learning
I Theorem 16. Let C be a concept class with VC-dim(C) = d. Then for every δ ∈ (0, 1/2) and
ε ∈ (0, 1/4), every (ε, δ)-agnostic quantum learner for C has sample complexity Ω

(
d

ε2 log(d/ε) +
log(1/δ)
ε2

)
.

Proof. The proof is analogous to Theorem 13, with the Bi now being quantum samples
for Da, |ψa〉 =

∑
i∈[d],`∈{0,1}

√
Da(i, `)|i, `〉. Again we only need to re-analyze step 3:

1. I(A : B) ≥ (1− δ)(1−H(1/4))d−H(δ) = Ω(d).
2. I(A : B) ≤ T · I(A : B1).
3. I(A : B1) = O(ε2 log(d/ε)).

Proof (of step 3). As in step 3 of the proof of Theorem 15, it suffices to upper bound the
entropy of

ρ = 1
2d

∑
a∈{0,1}d

|ψa〉〈ψa|.

We now lower bound the largest singular value of ρ. Consider |ψ〉 = 1√
2d

∑
i∈[d],`∈{0,1} |i, `〉.

〈ψ|ψa〉 = 1
d

∑
i∈[d]

1
2

(√
1 + 4ε+

√
1− 4ε

)
= 1

2

(√
1 + 4ε+

√
1− 4ε

)
≥ 1− 2ε2 −O(ε4),

where the last inequality used the Taylor series expansion of
√

1 + x. This implies that
the largest singular value of ρ is at least

〈ψ|ρ|ψ〉 = 1
2d

∑
a∈{0,1}d

|〈ψ|ψa〉|2 ≥ 1− 4ε2 −O(ε4).

We can now finish as in step 3 of the proof of Theorem 15:

I(A : B1) ≤ S(ρ) ≤ H(4ε2) + 4ε2 log(2d) Fact 6= O(ε2 log(d/ε)).

Combining these three steps implies T = Ω
(

d
ε2 log(d/ε)

)
. J

4 A lower bound by analysis of state identification

In this section we present a tight lower bound on quantum sample complexity for both
the PAC and the agnostic learning settings, using ideas from Fourier analysis to analyze
the performance of the Pretty Good Measurement. The core of both lower bounds is the
following theorem.

CCC 2017



25:20 Optimal Quantum Sample Complexity of Learning Algorithms

I Theorem 17. For m ≥ 10, let f : {0, 1}m → R be defined as f(z) = (1− β |z|m )T for some
β ∈ (0, 1] and T ∈ [1,m/(e3β)]. For k ≤ m, let M ∈ Fm×k2 be a matrix with rank k. Suppose
A ∈ R2k×2k is defined as A(x, y) = (f ◦M)(x+ y) for x, y ∈ {0, 1}k, then

√
A(x, x) ≤ 2

√
e

2k/2
(

1− β

2

)T/2
e11T 2β2/m+

√
Tmβ for all x ∈ {0, 1}k.

Proof. The structure of the proof is to first diagonalize A, relating its eigenvalues to the
Fourier coefficients of f . This allows to calculate the diagonal entries of

√
A exactly in

terms of those Fourier coefficients. We then upper bound those Fourier coefficients using a
combinatorial argument.

We first observe the well-known relation between the eigenvalues of a matrix P defined
as P (x, y) = g(x+ y) for x, y ∈ {0, 1}k, and the Fourier coefficients of g.

I Claim 18. Suppose g : {0, 1}k → R and P ∈ R2k×2k is defined as P (x, y) = g(x+ y), then
the eigenvalues of P are {2kĝ(Q) : Q ∈ {0, 1}k}.

Proof. Let H ∈ R2k×2k be the matrix defined as H(x, y) = (−1)x·y for x, y ∈ {0, 1}k. It is
easy to see that H−1(x, y) = (−1)x·y/2k. We now show that H diagonalizes P :

(HPH−1)(x, y) = 1
2k

∑
z1,z2∈{0,1}k

(−1)z1·x+z2·yg(z1 + z2)

= 1
2k

∑
z1,z2,Q∈{0,1}k

(−1)z1·x+z2·y ĝ(Q)(−1)Q·(z1+z2)

(Fourier expansion of g)

= 1
2k

∑
Q∈{0,1}k

ĝ(Q)
∑

z1∈{0,1}k

(−1)(x+Q)·z1
∑

z2∈{0,1}k

(−1)(y+Q)·z2

= 2kĝ(x)δx,y (using
∑
z∈{0,1}k [(−1)(a+b)·z] = 2kδa,b)

The eigenvalues of P are the diagonal entries, {2kĝ(Q) : Q ∈ {0, 1}k}. J

We now relate the diagonal entries of
√
A to the Fourier coefficients of f :

I Claim 19. For all x ∈ {0, 1}k, we have

√
A(x, x) = 1

2k/2
∑

Q∈{0,1}k

√ ∑
S∈{0,1}m:MtS=Q

f̂(S) .

Proof. Since A(x, y) = (f ◦M)(x + y), by Claim 18 it follows that H (as defined in the
proof of Claim 18) diagonalizes A and the eigenvalues of A are {2kf̂ ◦M(Q) : Q ∈ {0, 1}k}.
Hence, we have

√
A = H−1 · diag

({√
2kf̂ ◦M(Q) : Q ∈ {0, 1}k

})
·H,

and the diagonal entries of
√
A are

√
A(x, x) = 1

2k/2
∑

Q∈{0,1}k

√
f̂ ◦M(Q) Claim 4= 1

2k/2
∑

Q∈{0,1}k

√ ∑
S∈{0,1}m:MtS=Q

f̂(S). J

In the following lemma, we give an upper bound on the Fourier coefficients of f , which in
turn (from the claim above) gives an upper bound on the diagonal entries of

√
A.
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I Lemma 20. For β ∈ (0, 1], the Fourier coefficients of f : {0, 1}m → R defined as
f(z) = (1− β |z|m )T , satisfy

0 ≤ f̂(S) ≤ 4e
(

1− β

2

)T(Tβ
m

)q
e22T 2β2/m, for all S such that |S| = q.

Proof. In order to see why the Fourier coefficients of f are non-negative, we first define
the set U = {u⊗Tx }x∈{0,1}m where ux =

√
1− β|0, 0〉 +

√
β/m

∑
i∈[m] |i, xi〉. Let V be the

2m × 2m Gram matrix for the set U . For x, y ∈ {0, 1}m, we have

V (x, y) = (u∗xuy)T =
(

1− β + β

m

m∑
i=1
〈xi|yi〉

)T
=
(

1− β + β

m
(m− |x+ y|)

)T
=
(

1− β |x+ y|
m

)T
= f(x+ y).

By Claim 18, the eigenvalues of the Gram matrix V are {2mf̂(S) : S ∈ {0, 1}m}. Since the
Gram matrix is psd, its eigenvalues are non-negative, which implies that f̂(S) ≥ 0 for all
S ∈ {0, 1}m.

We now prove the upper bound in the lemma. By definition,

f̂(S) = E
z∈{0,1}m

[(
1− β |z|

m

)T
(−1)S·z

]
= E
z∈{0,1}m

[(
1− β

2 + β

2m

m∑
i=1

(−1)zi

)T
(−1)S·z

]
(since |z| =

∑
i∈[m]

1−(−1)zi

2 )

=
T∑
`=0

(
T

`

)(
1− β

2

)T−`( β

2m

)`
E

z∈{0,1}m

[ m∑
i1,...,i`=1

(−1)z·(ei1 +···+ei`
+S)
]

=
T∑
`=0

(
T

`

)(
1− β

2

)T−`( β

2m

)` m∑
i1,...,i`=1

1[ei1 +···+ei`
=S]

(using Ez∈{0,1}m [(−1)(z1+z2)·z] = δz1,z2)

We will use the following claim to upper bound the combinatorial sum in the quantity above.

I Claim 21. Fix S ∈ {0, 1}m with Hamming weight |S| = q. For every ` ∈ {q, . . . , T}, we
have

m∑
i1,...,i`=1

1[ei1 +···+ei`
=S] ≤

`! ·m(`−q)/2
/(

2(`−q)/2((`− q)/2)!
)

if (`− q) is even

0 otherwise

Proof. Since |S| = q, we can write S = er1 + · · ·+ erq
for distinct r1, . . . , rq ∈ [m]. There

are
(
`
q

)
ways to pick q indices in (i1, . . . , i`) (w.l.o.g. let them be i1, . . . , iq) and there are q!

factorial ways to assign (r1, . . . , rq) to (i1, . . . , iq). It remains to count the number of ways
that we can assign values to the remaining indices iq+1, . . . , i` such that eiq+1 + · · ·+ ei` = 0.
If `− q is odd then this number is 0, so from now on assume `− q is even. We upper bound
the number of such assignments by partitioning the `− q indices into pairs and assigning the
same value to both indices in each pair.

We first count the number of ways to partition a set of `− q indices into subsets of size 2.
This number is exactly (`− q)!

(
2(`−q)/2((`− q)/2)!

)−1
. Furthermore, there are m possible

values that can be assigned to the pair of indices in each of the (`− q)/2 subsets such that
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ei + ej = 0 within each subset. Note that assigning m possible values to each pair of indices
in the (`− q)/2 subsets overcounts, but this rough upper bound is sufficient for our purposes.

Combining the three arguments, we conclude
d∑

i1,...,i`=1
1[ei1 +···+ei`

=S] ≤
(
`

q

)
q! · (`− q)! ·m(`−q)/2

/(
2(`−q)/2((`− q)/2)!

)
.

which yields the claim. J

Continuing with the evaluation of the Fourier coefficient and using the claim above,
we have

f̂(S) =
T∑
`=0

(
T

`

)(
1− β

2

)T−`( β

2m

)` m∑
i1,...,i`=1

1[ei1 +···+ei`
=S]

≤
T∑
`=q

(
T

`

)(
1− β

2

)T−`( β

2m

)`
`! ·m(`−q)/2

/(
2(`−q)/2

(`− q
2

)
!
)

(by Claim 21)

=
(

1− β

2

)T( 2
m

)q/2 T∑
`=q

(
T

`

)
`!
( β

m(2− β)

)`(m
2

)`/2/(`− q
2

)
!

≤
(

1− β

2

)T( 2
m

)q/2 T∑
`=q

(
T · β

m
·
√
m

2

)`/(`− q
2

)
! (since β < 1 and

(
T
`

)
`! ≤ T `)

=
(

1− β

2

)T(Tβ
m

)q T−q∑
r=0

( Tβ√
2m

)r 1
(r/2)! (substituting r ← (`− q))

≤
(

1− β

2

)T(Tβ
m

)q T−q∑
r=0

( Tβ√
2m

)r er/2

(r/2)r/2
(using n! ≥ (n/e)n)

=
(

1− β

2

)T(Tβ
m

)q T−q∑
r=0

(√eTβ√
mr

)r
≤
(

1− β

2

)T(Tβ
m

)q T∑
r=0

(√eTβ√
mr

)r
(since the summands are ≥ 0)

=
(

1− β

2

)T(Tβ
m

)q( de3T 2β2/me∑
r=0

(√eTβ√
mr

)r
+

T∑
r=de3T 2β2/me+1

(√eTβ√
mr

)r)
.

Note that by the assumptions of the theorem, T 2e3β2/m ≤ Tβ ≤ T , which allowed us to
split the sum into two pieces in the last equality. At this point, we upper bound both pieces
in the last equation separately. For the first piece, using Claim 5 it follows that

(√
eTβ√
mr

)r
is

maximized at r = dT 2β2/me. Hence we get

de3T 2β2/me∑
r=0

(√eTβ√
mr

)r
≤
(

2 + e3T 2β2

m

)
edT

2β2/me/2 ≤ 2e22T 2β2/m+1, (6)

where the first inequality uses Claim 5 and the second inequality uses 2 + x ≤ 2ex for x ≥ 0
and e3 + 1/2 ≤ 22. For the second piece, we use

T∑
r=de3T 2β2/me+1

(√eTβ√
mr

)r
≤

T∑
r=de3T 2β2/me+1

(1
e

)r
≤

T∑
r=1

(1
e

)r
= 1− e−T

e− 1 ≤ 2/3. (7)
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So we finally get

f̂(S) ≤
(

1− β

2

)T(Tβ
m

)q(
2e22T 2β2/m+1 + 2/3

)
(using Eq. (6), (7))

≤ 4e
(

1− β

2

)T(Tβ
m

)q
e22T 2β2/m (since 22T 2β2/m > 0)

J

The theorem follows by putting together Claim 19 and Lemma 20:
√
A(x, x) = 1

2k/2
∑

Q∈{0,1}k

√ ∑
S∈{0,1}m:MtS=Q

f̂(S) (using Claim 19)

≤ 1
2k/2

∑
Q∈{0,1}k

∑
S∈{0,1}m:MtS=Q

√
f̂(S) (using lower bound from Lemma 20)

= 1
2k/2

∑
S∈{0,1}m

√
f̂(S) (∪Q{S : M tS = Q} = {0, 1}m since rank(M)=k)

= 1
2k/2

m∑
q=0

∑
S∈{0,1}m:|S|=q

√
f̂(S)

≤ 2
√
e

2k/2
(

1− β

2

)T/2
e11T 2β2/m

m∑
q=0

(
m

q

)(Tβ
m

)q/2
(using Lemma 20)

= 2
√
e

2k/2
(

1− β

2

)T/2
e11T 2β2/m

(
1 +

√
Tβ

m

)m
(using binomial theorem)

≤ 2
√
e

2k/2
(

1− β

2

)T/2
e11T 2β2/m+

√
Tmβ . (using (1 + x)t ≤ ext for x, t ≥ 0)

J

4.1 Optimal lower bound for quantum PAC learning
We can now prove our tight lower bound on quantum sample complexity in the PAC model:

I Theorem 22. Let C be a concept class with VC-dim(C) = d+ 1, for sufficiently large d.
Then for every δ ∈ (0, 1/2) and ε ∈ (0, 1/20), every (ε, δ)-PAC quantum learner for C has
sample complexity Ω

(
d
ε + 1

ε log 1
δ

)
.

Proof. The d-independent part of the lower bound is Lemma 10. To prove the d-dependent
part, define a distribution D on a set S = {s0, . . . , sd} ⊆ {0, 1}n that is shattered by C as
follows: D(s0) = 1− 20ε and D(si) = 20ε/d for all i ∈ [d].

Now consider a [d, k, r]2 linear code (for k ≥ d/4, distance r ≥ d/8) as shown to exist in
Theorem 3 with the generator matrix M ∈ Fd×k2 of rank k. Let {Mx : x ∈ {0, 1}k} ⊆ {0, 1}d
be the set of codewords in this linear code; these satisfy dH(Mx,My) ≥ d/8 whenever
x 6= y. For each x ∈ {0, 1}k, let cx be a concept defined on the shattered set as: cx(s0) = 0
and cx(si) = (Mx)i for all i ∈ [d]. The existence of such concepts in C follows from
the fact that S is shattered by C. From the distance property of the code, we have
Prs∼D[cx(s) 6= cy(s)] ≥ 20ε

d
d
8 = 5ε/2. This in particular implies that an (ε, δ)-PAC quantum

learner that tries to ε-approximate a concept from {cx : x ∈ {0, 1}k} should successfully
identify that concept with probability at least 1− δ.

We now consider the following state identification problem: for x ∈ {0, 1}k, denote
|ψx〉 =

∑
i∈{0,...,d}

√
D(si)|si, cx(si)〉. Let the (ε, δ)-PAC quantum sample complexity be T .
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Assume T ≤ d/(20e3ε), since otherwise T ≥ Ω(d/ε) and the theorem follows. Suppose
the learner has knowledge of the ensemble E = {(2−k, |ψx〉⊗T ) : x ∈ {0, 1}k}, and is given
|ψx〉⊗T ∈ E for a uniformly random x. The learner would like to maximize the average
probability of success to identify the given state. For this problem, we prove a lower bound
on T using the PGM defined in Section 2.6. In particular, we show that using the PGM, if a
learner successfully identifies the states in E , then T = Ω(d/ε). Since the PGM is the optimal
measurement6 that the learner could have performed, the result follows. The following lemma
makes this lower bound rigorous and will conclude the proof of the theorem.

I Lemma 23. For every x ∈ {0, 1}k, let |ψx〉 =
∑
i∈{0,...,d}

√
D(si)|si, cx(si)〉, and E =

{(2−k, |ψx〉⊗T ) : x ∈ {0, 1}k}. Then7

PPGM (E) ≤ 4e
2d/4+Tε e

8800T 2ε2/d+4
√

5Tdε.

Before we prove the lemma, we first show why it implies the theorem. Since we observed
above that P opt(E) = PPGM (E), a good learner satisfies PPGM (E) = Ω(1) (say for δ = 1/4),
which in turn implies

Ω(max{d, Tε}) ≤ O(min{T 2ε2/d,
√
Tdε}).

Note that if Tε maximizes the left-hand side, then d ≤ Tε and hence T ≥ Ω(d/ε). The
remaining cases are Ω(d) ≤ T 2ε2/d and Ω(d) ≤

√
Tdε. Both these statements give us

T ≥ Ω(d/ε). Hence the theorem follows, and it remains to prove Lemma 23:

Proof. Let E ′ = {2−k/2|ψx〉⊗T : x ∈ {0, 1}k} and G be the 2k × 2k Gram matrix for E ′. As
we saw in Section 2.6, the success probability of identifying the states in the ensemble E
using the PGM is

PPGM (E) =
∑

x∈{0,1}k

√
G(x, x)2.

For all x, y ∈ {0, 1}k, the entries of the Gram matrix G can be written as:

G(x, y) = 1
2k 〈ψx|ψy〉

T = 1
2k
(

(1− 20ε) + 20ε
d

d∑
i=1
〈cx(si)|cy(si)〉

)T
= 1

2k
(

(1− 20ε) + 20ε
d

(d− dH(Mx,My))
)T

= 1
2k
(

1− 20ε
d
dH(Mx,My)

)T
,

whereMx,My ∈ {0, 1}d are codewords in the linear code defined earlier. Define f : {0, 1}d →
R as f(z) = (1 − 20ε

d |z|)
T , and let A(x, y) = (f ◦M)(x + y) for x, y ∈ {0, 1}k. Note that

G = A/2k. Since we assumed T ≤ d/(20e3ε), we can use Theorem 17 (by choosing m = d

6 For x ∈ {0, 1}k, define unitary Ucx : |si, b〉 → |si, b + cx(si)〉 for all i ∈ {0, . . . , d}. The ensemble
E is generated by applying {Ucx}x∈{0,1}k to |ϕ〉 =

∑
i∈{0,...,d}

√
D(si)|si, 0〉. View cx = (0,Mx) ∈

{0, 1}d+1 as a concatenated string where Mx is a codeword of the [d, k, r]2 code. Since the 2k codewords
of the [d, k, r]2 code form a linear subspace, {Ucx}x∈{0,1}k is an Abelian group. From the discussion in
Section 2.6, we conclude that the PGM is the optimal measurement for this state identification problem.

7 We made no attempt to optimize the constants here.
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and β = 20ε) to upper bound the success probability of successfully identifying the states in
the ensemble E using the PGM.

PPGM (E) =
∑

x∈{0,1}k

√
G(x, x)2

= 1
2k

∑
x∈{0,1}k

√
A(x, x)2 (since G = A/2k)

≤ 4e
2k
(

1− β

2

)T
e22T 2β2/d+2

√
Tdβ (using Theorem 17)

= 4e
2k
(

1− 10ε
)T
e8800T 2ε2/d+4

√
5Tdε (substituting β = 20ε)

≤ 4e
2k+Tε e

8800T 2ε2/d+4
√

5Tdε (using (1− 10ε)T ≤ e−10εT ≤ 2−εT )

The lemma follows by observing that k ≥ d/4. J
J

4.2 Optimal lower bound for quantum agnostic learning
We now use the same approach to obtain a tight lower bound on quantum sample complexity
in the agnostic setting.

I Theorem 24. Let C be a concept class with VC-dim(C) = d, for sufficiently large d. Then
for every δ ∈ (0, 1/2) and ε ∈ (0, 1/10), every (ε, δ)-agnostic quantum learner for C has
sample complexity Ω

(
d
ε2 + 1

ε2 log 1
δ

)
.

Proof. The d-independent part of the lower bound is Lemma 11. For the d-dependent term
in the lower bound, consider a [d, k, r]2 linear code (for k ≥ d/4, distance r ≥ d/8) as shown
to exist in Theorem 3, with generator matrix M ∈ Fd×k2 of rank k. Let {Mx : x ∈ {0, 1}k} ⊆
{0, 1}d be the set of 2k codewords in this linear code; these satisfy dH(Mx,My) ≥ d/8
whenever x 6= y. To each codeword x ∈ {0, 1}k we associate a distribution Dx as follows:

Dx(si, b) = 1
d

(1
2 + 1

2(−1)(Mx)i+bα
)
, for (i, b) ∈ [d]× {0, 1},

where S = {s1, . . . , sd} is a set that is shattered by C, and α is a parameter which we
shall pick later. Let cx ∈ C be a concept that labels S according to Mx ∈ {0, 1}d. The
existence of such cx ∈ C follows from the fact that S is shattered by C. Note that cx is
the minimal-error concept in C w.r.t. Dx. A learner that labels S according to some string
` ∈ {0, 1}d has additional error dH(Mx, `) · α/d compared to cx. This in particular implies
that an (ε, δ)-agnostic quantum learner has to find (with probability at least 1 − δ) an `
such that dH(Mx, `) ≤ dε/α. We pick α = 20ε and we get dH(Mx, `) ≤ d/20. However,
since Mx was a codeword of a [d, k, r]2 code with distance r ≥ d/8, finding an ` satisfying
dH(Mx, `) ≤ d/20 is equivalent to identifying Mx, and hence x.

Now consider the following state identification problem: for x ∈ {0, 1}k, let |ψx〉 =∑
(i,b)∈[d]×{0,1}

√
Dx(si, b)|si, b〉. Let the (ε, δ)-agnostic quantum sample complexity be T .

Assume T ≤ d/(100e3ε2), since otherwise T ≥ Ω(d/ε2) and the theorem follows. Suppose
the learner has knowledge of the ensemble E = {(2−k, |ψx〉⊗T ) : x ∈ {0, 1}k}, and is given
|ψx〉⊗T ∈ E for uniformly random x. The learner would like to maximize the average
probability of success to identify the given state. For this problem, we prove a lower bound
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on T using the PGM defined in Section 2.6. In particular, we show that using the PGM,
if a learner successfully identifies the states in E , then T = Ω(d/ε2). Since the PGM is
the optimal measurement8 that the learner could have performed, the result follows. The
following lemma makes this lower bound rigorous and will conclude the proof of the theorem.

I Lemma 25. For x ∈ {0, 1}k, let |ψx〉 =
∑

(i,b)∈[d]×{0,1}
√
Dx(si, b)|si, b〉, and E =

{(2−k, |ψx〉⊗T ) : x ∈ {0, 1}k}. Then

PPGM (E) ≤ 4e
e(d ln 2)/4+25Tε2 e

220000T 2ε4/d+20
√
Tdε2

.

Before we prove the lemma, we first show why it implies the theorem. Since we observed
above that P opt(E) = PPGM (E), a good learner satisfies PPGM (E) = Ω(1) (say for δ = 1/4),
which in turn implies

Ω(max{d, Tε2}) ≤ O(min{T 2ε4/d,
√
Tdε2}).

Like in the proof of Theorem 22, this implies a lower bound of T = Ω(d/ε2) and proves the
theorem. It remains to prove Lemma 25:

Proof. Let E ′ = {2−k/2|ψx〉⊗T : x ∈ {0, 1}k} and G be the 2k × 2k Gram matrix for the set
E ′. As we saw in Section 2.6, the success probability of identifying the states in the ensemble
E using the PGM is

PPGM (E) =
∑

x∈{0,1}k

√
G(x, x)2.

For all x, y ∈ {0, 1}k, the entries of G can be written as:

2k ·G(x, y) = 〈ψx|ψy〉T

=
( ∑

(i,b)∈[d]×{0,1}

√
Dx(i, b)Dy(i, b)

)T
=
( 1

2d
∑

(i,b)∈[d]×{0,1}

√
(1 + 10ε(−1)(Mx)i+b)(1 + 10ε(−1)(My)i+b)

)T
=
( 1

2d
∑
(i,b):

(Mx)i=(My)i

(1 + 10ε(−1)(Mx)i+b) + 1
2d

∑
(i,b):

(Mx)i 6=(My)i

√
1− 100ε2

)T

=
(d− dH(Mx,My)

d
+
√

1− 100ε2

d
dH(Mx,My)

)T
=
(

1− 1−
√

1− 100ε2

d
dH(Mx,My)

)T
.

where we used α = 20ε in the third equality.
Let β = 1 −

√
1− 100ε2, which is at most 1 for ε ≤ 1/10. Define f : {0, 1}d → R as

f(z) = (1 − β
d |z|)

T , and let A(x, y) = (f ◦M)(x + y) for x, y ∈ {0, 1}k. Then G = A/2k.

8 For x ∈ {0, 1}k, define unitary Ucx =
∑

i∈[d] |si〉〈si| ⊗ X(Mx)i , where X is the NOT-gate, so
X(Mx)i |b〉 = |b + (Mx)i〉 for b ∈ {0, 1}. The ensemble E is generated by applying {Ucx}x∈{0,1}k

to |ϕ〉 = 1√
d

∑
(i,b)∈[d]×{0,1}

√
1
2 + 1

2 (−1)bα|si, b〉. Since the 2k codewords of the [d, k, r]2 code form a
linear subspace, {Ucx}x∈{0,1}k is an Abelian group. From the discussion in Section 2.6, we conclude
that the PGM is the optimal measurement for this state identification problem.
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Note that T ≤ d/(100e3ε2) ≤ d/(e3β) (the first inequality is by assumption and the second
inequality follows for ε ≤ 1/10 and β ≤ 1). Since we assumed T ≤ d/(100e3ε2), we can
use Theorem 17 (by choosing m = d and β = 1−

√
1− 100ε2) to upper bound the success

probability of identifying the states in the ensemble E :

PPGM (E) =
∑

x∈{0,1}k

√
G(x, x)2

= 1
2k

∑
x∈{0,1}k

√
A(x, x)2 (since G = A/2k)

≤ 4e
2k
(

1− β

2

)T
e22T 2β2/d+2

√
Tdβ (using Theorem 17)

≤ 4e
2k
(

1− β

2

)T
e220000T 2ε4/d+20

√
Tdε2 (using β = 1−

√
1− 100ε2 ≤ 100ε2)

≤ 4e
2k
(

1− 25ε2
)T
e220000T 2ε4/d+20

√
Tdε2 (using

√
1− 100ε2 ≤ 1− 50ε2)

≤ 4e
ek ln 2+25Tε2 e

220000T 2ε4/d+20
√
Tdε2

. (using (1− x)t ≤ e−xt for x, t ≥ 0)

The lemma follows by observing that k ≥ d/4. J
J

4.3 Additional results
In this section we mention two additional results that can also be obtained using Theorem 17.

4.3.1 Quantum PAC sample complexity under random classification
noise

In the theorem below, we show a lower bound on the quantum PAC sample complexity under
the random classification noise model with noise rate η. Recall that in this model, for every
c ∈ C and distribution D, ε, δ > 0, given access to copies of the η-noisy state,∑

x∈{0,1}n

√
(1− η)D(x)|x, c(x)〉+

√
ηD(x)|x, 1− c(x)〉,

a (ε, δ)-PAC quantum learner is required to output an hypothesis h such that errD(c, h) ≤ ε
with probability at least 1− δ.

I Theorem 26. Let C be a concept class with VC-dim(C) = d+ 1, for sufficiently large d.
Then for every δ ∈ (0, 1/2), ε ∈ (0, 1/20) and η ∈ (0, 1/2), every (ε, δ)-PAC quantum learner
for C in the PAC setting with random classification noise rate η, has sample complexity
Ω
(

d
(1−2η)2ε + log(1/δ)

(1−2η)2ε

)
.

One can use exactly the same proof technique as in Lemma 10 and Theorem 22 to prove
this, with only the additional inequality 1− 2

√
η(1− η) ≤ (1− 2η)2, which holds for η ≤ 1/2.

We omit the details of the calculation.

4.3.2 Distinguishing codeword states
Ashley Montanaro (personal communication) alerted us to the following interesting special
case of our PGM-based result.
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Consider an [n, k, d]2 linear code {Mx : x ∈ {0, 1}k}, where M ∈ Fn×k2 is the rank-k
generator matrix of the code, k = Ω(n), and distinct codewords have Hamming distance at
least d.9 For every x ∈ {0, 1}k, define a codeword state |ψx〉 = 1√

n

∑
i∈[n] |i, (Mx)i〉. These

states form an example of a quantum fingerprinting scheme [19]: 2k states whose pairwise
inner products are bounded away from 1. How many copies do we need to identify one
such fingerprint?

Let E = {(2−k, |ψx〉) : x ∈ {0, 1}k} be an ensemble of codeword states. Consider the
following task: given T copies of an unknown state drawn uniformly from E , we are required
to identify the state with probability ≥ 4/5. From Holevo’s theorem one can easily obtain a
lower bound of T = Ω(k/ logn) copies, since the learner should obtain Ω(k) bits of information
(i.e., identify k-bit string x with probability ≥ 4/5), while each copy of the codeword state
gives at most logn bits of information. In the theorem below, we improve that Ω(k/ logn)
to the optimal Ω(k) for constant-rate codes.

I Theorem 27. Let E = {|ψx〉 = 1√
n

∑
i∈[n] |i, (Mx)i〉 : x ∈ {0, 1}k}, where M ∈ Fn×k2 is

the generator matrix of an [n, k, d]2 linear code with k = Ω(n). Then Ω(k) copies of an
unknown state from E (drawn uniformly at random) are necessary to be able to identify that
state with probability at least 4/5.

One can use exactly the proof technique of Theorem 22 to prove the theorem. Suppose
we are given T copies of the unknown codeword state. Assume T ≤ n, since otherwise
T ≥ n ≥

√
kn and the theorem follows. Observe that the Gram matrix G for E ′ =

{2−k/2|ψx〉⊗T : x ∈ {0, 1}k} can be written as G(x, y) = 1
2k

(
1− |M(x+y)|

n

)T
for x, y ∈ {0, 1}k.

Using Theorem 17 (choosing β = 1 and m = n) to upper bound the success probability of
successfully identifying the states in the ensemble E using the PGM, we obtain

PPGM (E) ≤ 4e
2k+T e

22T 2/n+2
√
Tn.

As in the proof of Theorem 22, this implies the lower bound of Theorem 27. We omit the
details of the calculation.

5 Conclusion

The main result of this paper is that quantum examples give no significant improvement over
the usual random examples in passive, distribution-independent settings. Of course, these
negative results do not mean that quantum machine learning is useless. In our introduction
we already mentioned improvements from quantum examples for learning under the uniform
distribution; improvements from using quantum membership queries; and improvements in
time complexity based on quantum algorithms like Grover’s and HHL. Quantum machine
learning is still in its infancy, and we hope for many more positive results.

We end by identifying a number of open questions for future work:
We gave lower bounds on sample complexity for the rather benign random classification
noise. What about other noise models, such a malicious noise?
What is the quantum sample complexity for learning concepts whose range is [k] rather
than {0, 1}, for some k > 2? Even the classical sample complexity is not fully determined
yet [45, Section 29.2].

9 Note that throughout this paper C was a concept class in {0, 1}n and d was the VC dimension of C.
The use of n, d in this section has been changed to conform to the convention in coding theory.
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Classically, it is still an open question whether the log(1/ε)-factor in the upper bound
of [17] for (ε, δ)-proper PAC learning is necessary. A weaker result (possibly easier to
prove) would be to give a (ε, δ)-quantum proper PAC learner without this log(1/ε)-factor.
In the introduction we mentioned a few examples of learning under the uniform distribution
where quantum examples are significantly more powerful than classical examples. Can
we find more such examples of quantum improvements in sample complexity in fixed-
distribution settings?
Can we find more examples of quantum speed-up in time complexity of learning, for
example for learning depth-3 or even constant-depth circuits?
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Abstract
We prove that any non-adaptive algorithm that tests whether an unknown Boolean function
f : {0, 1}n → {0, 1} is a k-junta or ε-far from every k-junta must make Ω̃(k3/2/ε) many queries
for a wide range of parameters k and ε. Our result dramatically improves previous lower bounds
from [12, 38], and is essentially optimal given Blais’s non-adaptive junta tester from [7], which
makes Õ(k3/2)/ε queries. Combined with the adaptive tester of [8] which makes O(k log k+ k/ε)
queries, our result shows that adaptivity enables polynomial savings in query complexity for
junta testing.
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1 Introduction

This paper is concerned with the power of adaptivity in property testing, specifically property
testing of Boolean functions. At a high level, a property tester for Boolean functions is a
randomized algorithm which, given black-box query access to an unknown and arbitrary
Boolean function f : {0, 1}n → {0, 1}, aims to distinguish between the case that f has some
particular property of interest versus the case that f is far in Hamming distance from every
Boolean function satisfying the property. The main goals in the study of property testing
algorithms are to develop testers that make as few queries as possible, and to establish lower
bounds matching these query-efficient algorithms. Property testing has by now been studied
for many different types of Boolean functions, including linear functions and low-degree
polynomials over GF (2) [11, 2, 6], literals, conjunctions, s-term monotone and non-monotone
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DNFs [32, 18], monotone and unate functions [23, 20, 13, 16, 15, 27, 4, 28, 14, 3], various types
of linear threshold functions [30, 31, 9], size-s decision trees and s-sparse GF (2) polynomials
and parities [18, 9, 10], functions with sparse or low-degree Fourier spectrum [24], and much
more. See e.g. [33, 34, 22] for some fairly recent broad overviews of property testing research.

In this work we consider the property of being a k-junta, which is one of the earliest and
most intensively studied properties in the Boolean function property testing literature. Recall
that f is a k-junta if it has at most k relevant variables, i.e., there exist k distinct indices
i1, . . . , ik and a k-variable function g : {0, 1}k → {0, 1} such that f(x) = g(xi1 , . . . , xik) for
all x ∈ {0, 1}n. Given k = k(n) : N → N and ε = ε(n) : N → R>0, we say an algorithm
which has black-box access to an unknown and arbitrary f : {0, 1}n → {0, 1} is an ε-tester
or ε-testing algorithm for k-juntas if it accepts with probability at least 5/6 when f is a
k(n)-junta and rejects with probability at least 5/6 when f is ε(n)-far from all k(n)-juntas
(meaning that f disagrees with any k(n)-junta g on at least ε(n) · 2n many inputs).

Property testers come in two flavors, adaptive and non-adaptive. An adaptive tester
receives the value of f on its i-th query string before deciding on its (i+ 1)-st query string,
while a non-adaptive tester selects all of its query strings before receiving the value of f on
any of them. Note that non-adaptive testers can evaluate all of their queries in one parallel
stage of execution, while this is in general not possible for adaptive testers. This means that
if evaluating a query is very time-consuming, non-adaptive algorithms may sometimes be
preferable to adaptive algorithms even if they require more queries. For this and other reasons,
it is of interest to understand when, and to what extent, adaptive algorithms can use fewer
queries than non-adaptive algorithms (see [36, 35] for examples of property testing problems
where indeed adaptive algorithms are provably more query-efficient than non-adaptive ones).

The query complexity of adaptive junta testing algorithms is at this point well understood.
In [17] Chockler and Gutfreund showed that even adaptive testers require Ω(k) queries to
distinguish k-juntas from random functions on k + 1 variables, which are easily seen to be
constant-far from k-juntas. Blais [8] gave an adaptive junta testing algorithm that uses only
O(k log k + k/ε) queries, which is optimal (for constant ε) up to a multiplicative factor of
O(log k).

Prior to the current work, the picture was significantly less clear for non-adaptive junta
testing. In the first work on junta testing, Fischer et al. [19] gave a non-adaptive tester that
makes O(k2(log k)2/ε) queries. This was improved by Blais [7] with a non-adaptive tester
that uses only O(k3/2(log k)3/ε) queries. On the lower bounds side, [7] also showed that for
all ε ≥ k/2k, any non-adaptive algorithm for ε-testing k-juntas must make Ω (k/(ε log(k/ε)))
queries. Buhrman et al. [12] gave an Ω(k log k) lower bound (for constant ε) for non-adaptively
testing whether a function f is a size-k parity; their argument also yields an Ω(k log k) lower
bound (for constant ε) for non-adaptively ε-testing k-juntas. More recently, [38] obtained a
new lower bound for non-adaptive junta testing that is incomparable to both the [7] and
the [12] lower bounds. They showed that for all ε : k−ok(1) ≤ ε ≤ ok(1), any non-adaptive
ε-tester for k-juntas must make

Ω
(

k log k
εc log(log(k)/εc)

)
many queries, where c is any absolute constant less than 1. For certain restricted values of ε
such as ε = 1/ log k, this lower bound is larger than the O(k/ε+k log k) upper bound for [8]’s
adaptive algorithm, so the [38] lower bound shows that in some restricted settings, adaptive
junta testers can outperform non-adaptive ones. However, the difference in performance is
quite small, at most a o(log k) factor. We further note that all of the lower bounds [7, 12, 38]
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are of the form Ω̃(k) for constant ε, and hence rather far from the Õ(k3/2)/ε upper bound
of [7].

1.1 Our results
The main result of the paper is the following theorem:

I Theorem 1. Let α ∈ (0.5, 1) be an absolute constant. Let k = k(n) : N → N and
ε = ε(n) : N → R>0 be two functions that satisfy k(n) ≤ αn and 2−n ≤ ε(n) ≤ 1/6 for all
sufficiently large n. Then any non-adaptive ε-tester for k-juntas must make Ω̃(k3/2/ε) many
queries.

Together with the Õ(k3/2)/ε non-adaptive upper bound from [7], Theorem 1 settles the
query complexity of non-adaptive junta testing up to poly-logarithmic factors.

1.2 High-level overview of our approach
Our lower bound approach differs significantly from previous work. Buhrman et al. [12]
leveraged the connection between communication complexity lower bounds and property
testing lower bounds that was established in the work of [9] and applied an Ω(k log k) lower
bound on the one-way communication complexity of k-disjointness to establish their lower
bound. Both [7] and [38] are based on edge-isoperimetry results for the Boolean hypercube
(the edge-isoperimetric inequality of Harper [25], Bernstein [5], Lindsey [29], and Hart [26]
in the case of [7], and a slight extension of a result of Frankl [21] in [38]). In contrast, our
lower bound argument takes a very different approach; it consists of a sequence of careful
reductions, and employs an upper bound on the total variation distance between two Binomial
distributions (see Claim 15).

Below we provide a high level overview of the proof of the lower bound given by Theorem 1.
First, it is not difficult to show that Theorem 1 is a consequence of the following more specific
lower bound for the case where k = αn:

I Theorem 2. Let α ∈ (0.5, 1) be an absolute constant. Let k = k(n) : N → N and
ε = ε(n) : N → R>0 be two functions that satisfy k(n) = αn and 2−(2α−1)n/2 ≤ ε(n) ≤ 1/6
for sufficiently large n. Then any non-adaptive ε-tester for k-juntas must make Ω̃(n3/2/ε)
many queries.

See Appendix A for the proof that Theorem 2 implies Theorem 1.
We now provide a sketch of how Theorem 2 is proved. It may be convenient for the

reader, on the first reading, to consider α = 3/4 and to think of ε as being a small constant
such as 0.01.

Fix a sufficiently large n. Let k = αn and ε = ε(n) with ε satisfying the condition
in Theorem 2. We proceed by Yao’s principle and prove lower bounds for deterministic
non-adaptive algorithms which receive inputs drawn from one of two probability distributions,
Dyes and Dno, over n-variable Boolean functions. The distributions Dyes and Dno are designed
so that a Boolean function f ← Dyes is a k-junta with probability 1 − o(1) and f ← Dno
is ε-far from every k-junta with probability 1− o(1). In Section 2 we define Dyes and Dno,
and establish the above properties. By Yao’s principle, it then suffices to show that any
q-query non-adaptive deterministic algorithm (i.e., any set of q queries) that succeeds in
distinguishing them must have q = Ω̃(n3/2/ε).

This lower bound proof consists of two components:
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1. A reduction from a simple algorithmic task called Set-Size-Set-Queries (SSSQ for short),
which we discuss informally later in this subsection and we define formally in Section 3.
This reduction implies that the non-adaptive deterministic query complexity of
distinguishing Dyes and Dno is at least as large as that of SSSQ.

2. A lower bound of Ω̃(n3/2/ε) for the query complexity of SSSQ.

Having outlined the formal structure of our proof, let us give some intuition which may
hopefully be helpful in motivating our construction and reduction. Our yes-functions and
no-functions have very similar structure to each other, but are constructed with slightly
different parameter settings. The first step in drawing a random function from Dyes is
choosing a uniform random subset M of Θ(n) “addressing” variables from x1, . . . , xn. A
random subset A of the complementary variables M is also selected, and for each assignment
to the variables in M (let us denote such an assignment by i), there is an independent random
function hi over a randomly selected subset Si of the variables in A. A random function
from Dno is constructed in the same way, except that now the random subset A is chosen to
be slightly larger than in the yes-case. This disparity in the size of A between the two cases
causes random functions from Dyes to almost always be k-juntas and random functions from
Dno to almost always be far from k-juntas.

An intuitive explanation of why this construction is amenable to a lower bound for
non-adaptive algorithms is as follows. Intuitively, for an algorithm to determine that it is
interacting with (say) a random no-function rather than a random yes-function, it must
determine that the subset A is larger than it should be in the yes-case. Since the set M
of Θ(n) many “addressing” variables is selected randomly, if a non-adaptive algorithm uses
two query strings x, x′ that differ in more than a few coordinates, it is very likely that they
will correspond to two different random functions hi,hi′ . Hence every pair of query strings
x, x′ that correspond to the same hi can differ only in a few coordinates in M, with high
probability, which significantly limits the power of a non-adaptive algorithm in distinguishing
Dyes and Dno no matter which set of query strings it picks. This makes it possible for us to
reduce from the SSSQ problem to the problem of distinguishing Dyes and Dno at the price of
only a small quantitative cost in query complexity, see Section 4.

At a high level, the SSSQ task involves distinguishing whether or not a hidden set
(corresponding to A) is “large.” An algorithm for this task can only access certain random
bits, whose biases are determined by the hidden set and whose exact distribution is inspired
by the exact definition of the random functions hi over the random subsets Si. Although
SSSQ is an artificial problem, it is much easier to work with compared to the original problem
of distinguishing Dyes and Dno. In particular, we give a reduction from an even simpler
algorithmic task called Set-Size-Element-Queries (SSEQ for short) to SSSQ (see Section 5.1)
and the query complexity lower bound for SSSQ follows directly from the lower bound for
SSEQ presented in Section 5.2.

Let us give a high-level description of the SSEQ task to provide some intuition for how we
prove a query lower bound on it. Roughly speaking, in this task an oracle holds an unknown
and random subset A of [m] (here m = Θ(n)) which is either “small” (size roughly m/2) or
“large” (size roughly m/2 + Θ(

√
n · logn)), and the task is to determine whether A is small

or large. The algorithm may repeatedly query the oracle by providing it, at the j-th query,
with an element ij ∈ [m]; if ij /∈ A then the oracle responds “0” with probability 1, and if
ij ∈ A then the oracle responds “1” with probability ε/

√
n and “0” otherwise. Intuitively,

the only way for an algorithm to determine that the unknown set A is (say) large, is to
determine that the fraction of elements of [m] that belong to A is 1/2 + Θ(logn/

√
n) rather

than 1/2; this in turn intuitively requires sampling Ω(n/ log2 n) many random elements of
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[m] and for each one ascertaining with high confidence whether or not it belongs to A. But
the nature of the oracle access described above for SSEQ is such that for any given i ∈ [m],
at least Ω(

√
n/ε) many repeated queries to the oracle on input i are required in order to

reach even a modest level of confidence as to whether or not i ∈ A. As alluded to earlier, the
formal argument establishing our lower bound on the query complexity of SSEQ relies on an
upper bound on the total variation distance between two Binomial distributions.

1.3 Organization and Notation
We start with the definitions of Dyes and Dno as well as proofs of their properties in Section 2.
We then introduce SSSQ in Section 3, and give a reduction from SSSQ to the problem of
distinguishing Dyes and Dno in Section 4. More formally, we show that any non-adaptive
deterministic algorithm that distinguishes Dyes and Dno can be used to solve SSSQ with only
an O(logn) factor loss in the query complexity. Finally, we prove in Section 5 a lower bound
for the query complexity of SSSQ. Theorem 2 then follows by combining this lower bound
with the reduction in Section 4.

We use boldfaced letters such as f ,A,S to denote random variables. Given a string
x ∈ {0, 1}n and ` ∈ [n], we write x(`) to denote the string obtained from x by flipping the `-th
coordinate. An edge along the `th direction in {0, 1}n is a pair (x, y) of strings with y = x(`).
We say an edge (x, y) is bichromatic with respect to a function f (or simply f -bichromatic) if
f(x) 6= f(y). Given x ∈ {0, 1}n and S ⊆ [n], we use x|S ∈ {0, 1}S to denote the projection of
x on S.

2 The Dyes and Dno distributions

Let α ∈ (0.5, 1) be an absolute constant. Let n be a sufficiently large integer, with k = αn,
and let ε be the distance parameter that satisfies

2−(2α−1)n/2 ≤ ε ≤ 1/6. (1)

In this section we describe a pair of probability distributions Dyes and Dno supported
over Boolean functions f : {0, 1}n → {0, 1}. We then show that f ← Dyes is a k-junta with
probability 1− o(1), and that f ← Dno is ε-far from being a k-junta with probability 1− o(1).

We start with some parameters settings.
Define

δ
def= 1− α ∈ (0, 0.5), p

def= 1
2 , q

def= 1
2 + logn√

n
,

m
def= 2δn+ δ

√
n logn, t

def= n−m = (2α− 1)n− δ
√
n logn, N

def= 2t.

A function f ← Dyes is drawn according to the following randomized procedure:
1. Sample a random subset M ⊂ [n] of size t. Let Γ = ΓM : {0, 1}n → [N ] be the function

that maps x ∈ {0, 1}n to the integer encoded by x|M in binary plus one. Note that
|M| = n− t = m.

2. Sample an A ⊆M by including each element of M in A independently with probability p.
3. Sample independently a sequence of N random subsets S = (Si : i ∈ [N ]) of A as follows:

for each i ∈ [N ], each element of A is included in Si independently with probability
ε/
√
n. Next we sample a sequence of N functions H = (hi : i ∈ [N ]), by letting

hi : {0, 1}n → {0, 1} be a random function over the coordinates in Si, i.e., we sample an
unbiased bit zi(b) for each string b ∈ {0, 1}Si independently and set hi(x) = zi(x|Si).
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Figure 1 An example of how an input x ∈ {0, 1}n is evaluated by f ∼ Dyes (or Dno). The
relevant variables of x are shaded gray. All variables in M index x into h2, which is a random
function over the variables S2, which are sampled from A by including each with probability ε/

√
n.

4. Finally, f = fM,A,H : {0, 1}n → {0, 1} is defined using M,A and H as follows:

f(x) = hΓM(x)(x), for each x ∈ {0, 1}n.

In words, an input x is assigned the value f(x) as follows: according to the coordinates
of x in the set M (which intuitively should be thought of as unknown), one of the N
functions hi (each of which is, intuitively, a random function over an unknown subset
Si of coordinates) is selected and evaluated on x’s coordinates in Si. For intuition, we
note that both M and M will always be of size Θ(n), the size of A will almost always be
Θ(n), and for a given i ∈ [N ] the expected size of Si will typically be Θ(ε

√
n) (though

the size of Si may not be as highly concentrated as the other sets when ε is tiny).

A function f ← Dno is generated using the same procedure except that A is a random subset
of M drawn by including each element of M in A independently with probability q (instead
of p). See Figure 1 for an example of how an input x ∈ {0, 1}n is evaluated by f ∼ Dyes or
Dno.

2.1 Most functions drawn from Dyes are k-juntas
We first prove that f ← Dyes is a k-junta with probability 1− o(1).

I Lemma 3. A function f ← Dyes is a k-junta with probability 1− o(1).

Proof. By the definition of Dyes, all the relevant variables of f ∼ Dyes belong to M ∪A.
Note that |M| = t. On the other hand, the expected size of A is δn + δ

√
n logn/2. By a

Chernoff bound,

|A| ≤ δn+ δ
√
n logn
2 + δ

√
n logn
4 < δn+ δ

√
n logn

with probability 1− o(1). When this happens we have |M ∪A| < αn = k. J

2.2 Most functions drawn from Dno are ε-far from k-juntas
Next we prove that f ← Dno is ε-far from any k-junta with probability 1− o(1). The details
of the argument are somewhat technical so we start by giving some high-level intuition,
which is relatively simple. Since q = p + log(n)/

√
n, a typical outcome of A drawn from

Dno is slightly larger than a typical outcome drawn from Dyes, and this difference causes
almost every outcome of |M ∪A| in Dno (with M ∪A being the set of relevant variables
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for f ← Dno) to be larger than k by at least 9
√
n. As a result, the relevant variables of any

k-junta must miss either (a) at least one variable from M, or (b) at least 9
√
n variables from

A. Missing even a single variable from M causes the k-junta to be far from f (this is made
precise in Claim 6 below). On the other hand, missing 9

√
n variables from A means that

with probability at least Ω(ε), at least one variable is missing from a typical Si (recall that
these are random (ε/

√
n)-dense subsets of A). Because hi is a random function over the

variables in Si, missing even a single variable would lead to a constant fraction of error when
hi is the function determining the output of f .

I Lemma 4. A function f ← Dno is ε-far from being a k-junta with probability 1− o(1).

Proof. Fix any subset M ⊂ [n] of size t, and we consider f = fM,A,H where A and H are
sampled according to the procedure for Dno. With probability 1− o(1) over the choice of A,
we have

|A| ≥ qm− δ
√
n logn
2 ≥ δn+ 2δ

√
n logn and |M ∪A| ≥ k + δ

√
n logn. (2)

We assume this is the case for the rest of the proof and fix any such set A ⊂M . It suffices to
show that f = fM,A,H is ε-far from k-juntas with probability 1− o(1), where H is sampled
according to the rest (steps 3 and 4) of the procedure for Dno (by sampling Si from A and
then hi over Si).

The plan for the rest of the proof is the following. For each V ⊂M ∪A of size 9
√
n, we

use EV to denote the size of the maximum set of vertex-disjoint, f -bichromatic edges along
directions in V only. We will prove the following claim:

I Claim 5. For each V ⊂ M ∪ A of size 9
√
n, we have EV ≥ ε2n with probability 1 −

exp(−2Ω(n)).

Note that when EV ≥ ε2n, we have dist(f , g) ≥ ε for every function g that does
not depend on any variable in V . This is because, for every f -bichromatic edge (x, x(`))
along a coordinate ` ∈ V , we must have f(x) 6= f(x(`)) since the edge is bichromatic but
g(x) = g(x(`)) as g does not depend on the `th variable. As a result, f must disagree with g
on at least ε2n many points.

Assuming Claim 5 for now, we can apply a union bound over all(
|M ∪A|

9
√
n

)
≤
(

n

9
√
n

)
≤ 2O(

√
n logn)

possible choices of V ⊂ M ∪ A to conclude that with probability 1 − o(1), f = fM,A,H is
ε-far from all functions that do not depend on at least 9

√
n variables in M ∪ A. By (2),

this set includes all k-juntas. This concludes the proof of the Lemma 4 modulo the proof of
Claim 5. J

In the rest of the section, we prove Claim 5 for a fixed subset V ⊂M ∪ A of size 9
√
n.

We start with the simpler case when V ∩M is nonempty.

I Claim 6. If V ∩M 6= ∅, then we have EV ≥ 2n/5 with probability 1− exp(−2Ω(n)).

Proof. Fix an ` ∈ V ∩M ; we will argue that with probability 1− exp(−2Ω(n)) there are at
least 2n/5 f -bichromatic edges along direction `. This suffices since such edges are clearly
vertex-disjoint.

Observe that since ` ∈ M , every x ∈ {0, 1}n has Γ(x) 6= Γ(x(`)). For each b ∈ {0, 1}M ,
let Xb be the set of x ∈ {0, 1}n with x|S = b. We partition {0, 1}n into 2t−1 pairs Xb and
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Xb(`) , where b ranges over the 2t−1 strings in {0, 1}M with b` = 0. For each such pair, we use
Db to denote the number of f -bichromatic edges between Xb and Xb(`) . We are interested
in lower bounding

∑
b Db.

We will apply Hoeffding’s inequality. For this purpose we note that the Db’s are inde-
pendent (since they depend on distinct hi’s), always lie between 0 and 2m, and each one has
expectation 2m−1. The latter is because each edge (x, x(`)) has f(x) and f(x(`)) drawn as
two independent random bits, which is the case since Γ(x) 6= Γ(x(`)). Thus, the expectation
of
∑
b Db is 2n−2. By Hoeffding’s inequality, we have

Pr
[∣∣∣∑Db − 2n−2

∣∣∣ ≥ 2n

20

]
≤ 2 · exp

(
−2(2n/20)2

2t−1 · 22m

)
= exp

(
−2Ω(n)

)
since t = Ω(n). This finishes the proof of the claim. J

Now we may assume that V ⊂ A (and |V | = 9
√
n). We use I to denote the set of

i ∈ [N ] such that Si ∩ V 6= ∅. The following claim shows that I is large with extremely high
probability:

I Claim 7. We have |I| ≥ 4.4εN with probability at least 1− exp(−2Ω(n)) over the choice
of S.

Proof. For each i ∈ [N ] we have (using 1 − x ≤ e−x for all x and 1 − x/2 ≥ e−x for
x ∈ [0, 1.5]):

Pr
[
i ∈ I

]
= 1−

(
1− ε√

n

)9
√
n

≥ 1− e−9ε ≥ 4.5ε,

since ε/
√
n is the probability of each element of A being included in Si and ε ≤ 1/6 so

9ε ≤ 1.5.
Using ε ≥ 2−(2α−1)n/2 from (1), we have E[|I|] ≥ 4.5εN = 2Ω(n). Since the Si’s

are independent, a Chernoff bound implies that |I| ≥ 4.4εN with probability 1−exp(−2Ω(n)).
J

By Claim 7, we fix S1, . . . , SN to be any sequence of subsets of A that satisfy |I| ≥ 4.4εN
in the rest of the proof, and it suffices to show that over the random choices of h1, . . . ,hN
(where each hi is chosen to be a random function over Si), EV ≥ ε2n with probability at
least 1− exp(−2Ω(n)).

To this end we use ρ(i) for each i ∈ I to denote the first coordinate of Si in V , and
Zi to denote the set of x ∈ {0, 1}n with Γ(x) = i. Note that the Zi’s are disjoint. We
further partition each Zi into disjoint Zi,b, b ∈ {0, 1}Si , with x ∈ Zi,b iff x ∈ Zi and x|Si = b.
For each i ∈ I and b ∈ {0, 1}Si with bρ(i) = 0, we use Di,b to denote the number of f -
bichromatic edges between Zi,b and Zi,b(ρ(i)) along the ρ(i)th direction. It is clear that such
edges, over all i and b, are vertex-disjoint and thus,

EV ≥
∑
i∈I

∑
b∈{0,1}Si
bρ(i)=0

Di,b. (3)

We will apply Hoeffding’s inequality. Note that Di,b is 2m−|Si| with probability 1/2, and
0 with probability 1/2. Thus, the expectation of the RHS of (3) is∑

i∈I
2|Si|−1 · 2m−|Si|−1 = |I| · 2m−2 ≥ 1.1ε2n,



X. Chen, R. A. Servedio, L.-Y. Tan, E. Waingarten, and J. Xie 26:9

using |I| ≥ 4.4εN . Since all the Di,b’s are independent, by Hoeffding’s inequality we have

Pr
[ ∣∣RHS of (3)− |I| · 2m−2∣∣ ≥ 0.01|I| · 2m−2

]
≤ 2 · exp

(
− 2(0.01|I| · 2m−2)2∑

i∈I 2|Si|−1 · 22(m−|Si|)

)
≤ exp

(
−2Ω(n)

)
,

since |I| ≥ Ω(εN) = 2Ω(n). When this does not happen, we have EV ≥ 0.99 · |I| · 2m−2 > ε2n.

3 The Set-Size-Set-Queries (SSSQ) Problem

We first introduce the Set-Size-Set-Queries (SSSQ for short) problem, which is an artificial
problem that we use as a bridge to prove Theorem 2. We use the same parameters p, q
and m from the definition of Dyes and Dno, with n being sufficiently large (so m = Ω(n) is
sufficiently large as well).

We start by defining Ayes and Ano, two distributions over subsets of [m]: A ∼ Ayes is
drawn by independently including each element of [m] with probability p and A ∼ Ano is
drawn by independently including each element with probability q. In SSSQ, the algorithm
needs to determine whether an unknown A ⊆ [m] is drawn from Ayes or Ano. (For intuition,
to see that this task is reasonable, we observe here that a straightforward Chernoff bound
shows that almost every outcome of A ∼ Ayes is larger than almost every outcome of
A ∼ Ano by Ω(

√
n logn).)

Let A be a subset of [m] which is hidden in an oracle. An algorithm accesses A (in order
to tell whether it is drawn from Ayes or Ano) by interacting with the oracle in the following
way: each time it calls the oracle, it does so by sending a subset of [m] to the oracle. The
oracle responds as follows: for each j in the subset, it returns a bit that is 0 if j /∈ A, and
is 1 with probability ε/

√
n and 0 with probability 1− ε/

√
n if j ∈ A. The cost of such an

oracle call is the size of the subset provided to the oracle.
More formally, a deterministic and non-adaptive algorithm Alg = (g, T ) for SSSQ accesses

the set A hidden in the oracle by submitting a list of queries T = (T1, . . . , Td), for some
d ≥ 1, where each Ti ⊆ [m] is a set. (Thus, we call each Ti a set query, as part of the name
SSSQ.)

Given T , the oracle returns a list of random vectors v = (v1, . . . ,vd), where vi ∈ {0, 1}Ti
and each bit vi,j is independently distributed as follows: if j /∈ A then vi,j = 0, and if
j ∈ A then

vi,j =
{

1 with probability ε/
√
n

0 with probability 1− (ε/
√
n).

(4)

Note that the random vectors in v depend on both T and A.
Given v = (v1, . . . ,vd), Alg returns (deterministically) the value of
g(v) ∈ {“yes”, “no”}.

The performance of Alg = (g, T ) is measured by its query complexity and its advantage.

The query complexity of Alg is defined as
∑d
i=1 |Ti|, the total size of all the set queries.

On the other hand, the advantage of Alg is defined as

Pr
A∼Ayes

[
Alg(A) = “yes”

]
− Pr

A∼Ano

[
Alg(A) = “yes”

]
.
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I Remark 8. In the definition above, g is a deterministic map from all possible sequences of
vectors returned by the oracle to “yes” or “no.” Considering only deterministic as opposed
to randomized g is without loss of generality since given any query sequence T , the highest
possible advantage can always be achieved by a deterministic map g.

We prove the following lower bound for any deterministic, non-adaptive Alg in Section 5.

I Lemma 9. Any deterministic, non-adaptive Alg for SSSQ with advantage at least 2/3
satisfies

d∑
i=1
|Ti| ≥

n3/2

ε · log3 n · log2(n/ε)
.

4 Reducing from SSSQ to distinguishing Dyes and Dno

In this section we reduce from SSSQ to the problem of distinguishing the pair of distri-
butions Dyes and Dno. More precisely, let Alg∗ = (h,X) denote a deterministic and
nonadaptive algorithm that makes q ≤ (n/ε)2 string queries1 X = (x1, . . . , xq) to a hidden
function f drawn from either Dyes or Dno, applies the (deterministic) map h to return
h(f(x1), . . . , f(xq)) ∈ {“yes”, “no”}, and satisfies

Pr
f∼Dyes

[
Alg∗(f) = “yes”

]
− Pr

f∼Dno

[
Alg∗(f) = “yes”

]
≥ 3/4. (5)

We show how to define from Alg∗ = (h,X) an algorithm Alg = (g, T ) for the problem
SSSQ with query complexity at most τ · q and advantage 2/3, where τ = cα · 5 log(n/ε) and

cα = − 1
log(1.5− α) > 0 with (1.5− α)cα = 1/2

is a constant that depends on α. Given this reduction it follows from Lemma 9 that
q ≥ Ω̃(n3/2/ε). This finishes the proof of Theorem 2.

We start with some notation. Recall that in both Dyes and Dno, M is a subset of [n]
of size t drawn uniformly at random. For a fixed M of size t, we use Eyes(M) to denote
the distribution of A and H sampled in the randomized procedure for Dyes, conditioning
on M = M . We define Eno(M) similarly. Then conditioning on M = M , f ∼ Dyes is
distributed as fM,A,H with (A,H) ∼ Eyes(M) and f ∼ Dno is distributed as fM,A,H with
(A,H) ∼ Eno(M). This allows us to rewrite (5) as

1(
n
t

) · ∑
M :|M |=t

(
Pr

(A,H)∼Eyes(M)

[
Alg∗(fM,A,H) = “yes”

]
−

Pr
(A,H)∼Eno(M)

[
Alg∗(fM,A,H) = “yes”

])
≥ 3

4 .

We say M ⊂ [n] is good if any two queries xi and xj in X with Hamming distance
‖xi − xj‖1 ≥ τ have different projections on M , i.e., (xi)|M 6= (xj)|M . We prove below that
most M ’s are good.

I Claim 10. PrM
[
M is not good

]
= o(1).

1 Any algorithm that makes more than this many queries already fits the Ω̃(n3/2/ε) lower bound we aim
for.
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Proof. For each pair of strings xi and xj in X with Hamming distance at least τ , the
probability of them having the same projection on M (drawn uniformly from all size-t
subsets) is at most(

n−τ
t

)(
n
t

) = (n− τ − t+ 1) · · · (n− t)
(n− τ + 1) · · ·n ≤

(
1− t

n

)τ
≤
(
2(1− α) + o(1)

)τ
< (1.5− α)τ

≤ O
( ε
n

)5
,

by our choices of cα and τ . The claim follows by a union bound over at most q2 ≤ (n/ε)4

pairs. J

We can split the sum (5) into two sums: the sum over good M and the sum over bad M .
By Claim 10 the contribution from the bad M is at most o(1), and thus we have that

1(
n
t

) · ∑
good M

(
Pr

(A,H)∼Eyes(M)

[
Alg∗(fM,A,H) = “yes”

]
−

Pr
(A,H)∼Eno(M)

[
Alg∗(fM,A,H) = “yes”

])
is at least 3/4− o(1). Thus, there must exist a good set M ⊂ [n] of size t with

Pr
(A,H)∼Eyes(M)

[
Alg∗(fM,A,H) = “yes”

]
− Pr

(A,H)∼Eno(M)

[
Alg∗(fM,A,H) = “yes”

]
≥ 2/3.

(6)

Fix such a good M . We use Alg∗ = (h,X) and M to define an algorithm Alg = (g, T ) for
SSSQ as follows (note that the algorithm Alg below actually works over the universe M
(of size m) instead of [m] as in the original definition of SSSQ but this can be handled by
picking any bijection between M and [m]; accordingly A ∼ Ayes is drawn by including each
element of M with probability p and A ∼ Ano is drawn by including each element of M with
probability q). We start with T :
1. First we use M to define an equivalence relation ∼ over the query set X, where xi ∼ xj

if (xi)|M = (xj)|M . Let X1, . . . , Xd, d ≥ 1, denote the equivalence classes of X, and let
us write ρ(`) for each ` ∈ [d] to denote the value Γ(x) ∈ [N ] that is shared by all strings
x ∈ X`.

2. Next we define a sequence of subsets of M , T = (T1, . . . , Td), as the set queries of Alg,
where

T` =
{
i ∈M : ∃x, y ∈ X` such that xi 6= yi

}
. (7)

To upper bound |T`|, fixing an arbitrary string x ∈ X` and recalling that M is good, we have
that

|T`| ≤
∑
y∈X`

‖x− y‖1 ≤
∑
y∈X`

τ = τ · |X`|.

As a result, the query complexity of Alg (using T as its set queries) is at most
d∑
`=1
|T`| ≤ τ ·

d∑
`=1
|X`| ≤ τ · q.

It remains to define h and then prove that the advantage of Alg = (g, T ) for SSSQ is
at least 2/3. Indeed the g that we define is a randomized map and we describe it as a
randomized procedure below (by Remark 8 one can extract from g a deterministic map that
achieves the same advantage):

CCC 2017



26:12 Settling the Query Complexity of Non-Adaptive Junta Testing

1. Given v1, . . . , vd, v` ∈ {0, 1}T` , as the strings returned by the oracle upon being given T ,
let

R` =
{
j ∈ T` : v`,j = 1

}
. (8)

For each ` ∈ [d], the procedure draws a random function f ` : {0, 1}R` → {0, 1}, by
flipping 2|R`| many independent and unbiased random bits.

2. Next for each query x ∈ X`, ` ∈ [d], we feed f `(x|R`) to h as the bit that the oracle
returns upon the query x. Finally the procedure returns the result (“yes” or “no”) that h
returns.

In the rest of the proof we show that the advantage of Alg = (g, T ) is exactly the same as
the LHS of (6) and thus, is at least 2/3.

For convenience, we use Vyes to denote the distribution of responses v = (v1, . . . ,vd) to
T when A ∼ Ayes, and Vno to denote the distribution when A ∼ Ano. Then the advantage
of Alg is

Pr
v∼Vyes

[
g(v) = “yes”

]
− Pr

v∼Vno

[
g(v) = “yes”

]
.

It suffices to show that

Pr
v∼Vyes

[
g(v) = “yes”

]
= Pr

(A,H)∼Eyes(M)

[
Alg∗(fM,A,H) = “yes”

]
and (9)

Pr
v∼Vno

[
g(v) = “yes”

]
= Pr

(A,H)∼Eno(M)

[
Alg∗(fM,A,H) = “yes”

]
. (10)

We show (9); the proof of (10) is similar. From the definition of Vyes and Eyes(M) the
distribution of (R` : ` ∈ [d]) derived from v ∼ Vyes using (8) is the same as the distribution
of (Sρ(`) ∩ T` : ` ∈ [d]): both are sampled by first drawing a random subset A of M and then
drawing a random subset of A ∩ T` independently by including each element of A ∩ T` with
the same probability ε/

√
n (recall in particular equation (4) and step 3 of the randomized

procedure specifying Dyes in Section 2). Since fM,A,H(x) for x ∈ X` is determined by a
random Boolean function hρ(`) from {0, 1}Sρ(`) to {0, 1}, and since all the queries in X` only
differ by coordinates in T`, the distribution of the q bits that g feeds to h when v ∼ Vyes is
the same as the distribution of (f(x) : x ∈ X) when f ∼ Eyes(M). This finishes the proof of
(9), and concludes our reduction argument.

5 A lower bound on the non-adaptive query complexity of SSSQ

We will prove Lemma 9 by first giving a reduction from an even simpler algorithmic task,
which we describe next in Section 5.1. We will then prove a lower bound for the simpler task
in Section 5.2.

5.1 Set-Size-Element-Queries (SSEQ)
Recall the parameters m, p, q and ε and the two distributions Ayes and Ano used in the
definition of problem SSSQ. We now introduce a simpler algorithmic task called the Set-Size-
Element-Queries (SSEQ) problem using the same parameters and distributions.

Let A be a subset of [m] hidden in an oracle. An algorithm accesses the oracle to tell
whether it is drawn from Ayes or Ano. The difference between SSSQ and SSEQ is the way an
algorithm accesses A. In SSEQ, an algorithm Alg′ = (h, `) submits a vector ` = (`1, . . . , `m)
of nonnegative integers.
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On receiving `, the oracle returns a random response vector b ∈ {0, 1}m, where each
entry bi is distributed independently as follows: if i /∈ A then bi = 0, and if i ∈ A then

bi =
{

1 with probability λ(`i)
0 with probability 1− λ(`i)

, where λ(`i) = 1−
(

1− ε√
n

)`i
.

Equivalently, for each i ∈ A, the oracle independently flips `i coins, each of which is 1
with probability ε/

√
n, and at the end returns bi = 1 to the algorithm if and only if at

least one of the coins is 1. Thus, we refer to each `i as `i element-queries for the ith
element.
After receiving the vector b from the oracle, Alg′ returns the value h(b) ∈ {“yes”, “no”}.
Here h is a deterministic map from {0, 1}m to {“yes”, “no”}.

Similar to before, the performance of Alg′ is measured by its query complexity and its
advantage:

The query complexity of Alg′ = (h, `) is defined as ‖`‖1 =
∑m
i=1 `i. For its advantage,

we let Byes denote the distribution of response vectors b to query ` when A ∼ Ayes, and
Bno denote the distribution when A ∼ Dno. The advantage of Alg′ = (h, `) is then
defined as

Pr
b∼Byes

[
h(b) = “yes”

]
− Pr

b∼Bno

[
h(b) = “yes”

]
.

I Remark 11. It is worth pointing out (we will use it later) that the highest possible advantage
over all deterministic maps h is a monotonically non-decreasing function of the coordinates
of `. To see this, let A be the underlying set and let ` and `′ be two vectors with `i ≤ `′i
for every i ∈ [m]. Let b and b′ be the random vectors returned by the oracle upon ` and `′.
Then we can define b∗ using b′ as follows: b∗i = 0 if b′i = 0; otherwise when b′i = 1, we set

b∗i =

1 with probability λ(`i)/λ(`′i)

0 with probability 1− λ(`i)/λ(`′i)
.

One can verify that the distribution of b is exactly the same as the distribution of b∗. Hence
there is a randomized map h′ such that the advantage of (h′, `′) is at least as large as
the highest possible advantage achievable using `. The remark now follows by our earlier
observation in Remark 8 that the highest possible advantage using `′ is always achieved by a
deterministic h′.

The following lemma reduces the proof of Lemma 9 to proving a lower bound for SSEQ.

I Lemma 12. Given any deterministic and non-adaptive algorithm Alg = (g, T ) for SSSQ,
there is a deterministic and non-adaptive algorithm Alg′ = (h, `) for SSEQ with the same
query complexity as Alg and advantage at least as large as that of Alg.

Proof. We show how to construct Alg′ = (h, `) from Alg = (g, T ), where h is a randomized
map, such that Alg′ has exactly the same query complexity and advantage as those of Alg.
The lemma then follows from the observation we made earlier in Remark 8.

We define ` first. Given T = (T1, . . . , Td) for some d ≥ 1, ` = (`1, . . . , `m) is defined as

`j =
∣∣{i ∈ [d] : j ∈ Ti}

∣∣.
So ‖`‖1 =

∑d
i=1 |Ti|. To define h we describe a randomized procedure P that, given any

b ∈ {0, 1}m, outputs a sequence of random vectors v = (v1, . . . ,vd) such that the following
claim holds.
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I Claim 13. If b ∼ Byes (or Bno), then P (b) is distributed the same as Vyes (or Vno,
respectively).

Assuming Claim 13, we can set h = g ◦ P and the advantage of Alg′ would be the same
as that of Alg. In the rest of the proof, we describe the randomized procedure P and prove
Claim 13.

Given b ∈ {0, 1}m, P outputs a sequence of random vectors v = (v1, . . . ,vd) as follows:
If bj = 0, then for each i ∈ [d] with j ∈ Ti, P sets vi,j = 0.
If bj = 1 (this implies that `j > 0 and j ∈ Ti for some i ∈ [d]), P sets (vi,j : i ∈ [d], j ∈ Ti)
to be a length-r, where r = |{i ∈ [d] : j ∈ Ti}|, binary string in which each bit is
independently 1 with probability ε/

√
n and 0 with probability 1− ε/

√
n, conditioned on

its not being 0r.

Proof of Claim 13. It suffices to prove that, fixing any A ⊆ [m] as the underlying set hidden
in the oracle, the distribution of v is the same as the distribution of P (b). The claim then
follows since in the definitions of both Byes and Vyes (or Bno and Vno), A is drawn from Ayes
(or Ano, respectively).

Consider a sequence v of d vectors v1, . . . , vd with vi ∈ {0, 1}Ti for each i ∈ [d], and let

nj,1 = |{i ∈ [d] : j ∈ Ti and vi,j = 1}| and nj,0 = |{i ∈ [d] : j ∈ Ti and vi,j = 0}|,

for each j ∈ [m]. Then the v returned by the oracle (in SSSQ) is equal to v with probability:

1
{
∀j /∈ A, nj,1 = 0

}
·
∏
j∈A

(
ε√
n

)nj,1 (
1− ε√

n

)nj,0
, (11)

since all coordinates vi,j are independent. On the other hand, the probability of P (b) = v is

1
{
∀j /∈ A, nj,1 = 0

}
·∏

j∈A

(
1
{
nj,0 = `j

}
·
(

1− ε√
n

)`j
+ 1

{
nj,1 ≥ 1

}
·
(

ε√
n

)nj,1 (
1− ε√

n

)nj,0)
,

which is exactly the same as the probability of v = v in (11). J

This finishes the proof of Lemma 12. J

5.2 A lower bound for SSEQ
We prove the following lower bound for SSEQ, from which Lemma 9 follows:

I Lemma 14. Any deterministic, non-adaptive Alg′ for SSEQ with advantage at least 2/3
satisfies

‖`‖1 > s
def= n3/2

ε · log3 n · log2(n/ε)
.

Proof. Assume for contradiction that there is an algorithm Alg′ = (h, `) with ‖`‖1 ≤ s and
advantage at least 2/3. Let `∗ be the vector obtained from ` by rounding each positive `i to
the smallest power of 2 that is at least as large as `i (and taking `∗i = 0 if `i = 0). From
Remark 11, there must be a map h∗ such that (h∗, `∗) also has advantage at least 2/3 but
now we have 1) ‖`∗‖1 ≤ 2s and 2) every positive entry of `∗ is a power of 2. Below we abuse
notation and still use Alg′ = (h, `) to denote (h∗, `∗): Alg′ = (h, `) satisfies ‖`‖1 ≤ 2s, every
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positive entry of ` is a power of 2, and has advantage at least 2/3. We obtain a contradiction
below by showing that any such ` can only have an advantage of o(1).

Let L = dlog(2s)e = O(log(n/ε)). Given that ‖`‖1 ≤ 2s we can partition {i ∈ [m] : `i > 0}
into L + 1 sets C0, . . . , CL, where bin Cj contains those coordinates i ∈ [m] with `i = 2j .
We may make two further assumptions on Alg′ = (h, `) that will simplify the lower bound
proof:

We may reorder the entries in decreasing order and assume without loss of generality
that

` =

2L, . . . , 2L︸ ︷︷ ︸
cL

, 2L−1, . . . , 2L−1︸ ︷︷ ︸
cL−1

, . . . , 1, . . . , 1︸ ︷︷ ︸
c0

, 0, . . . , 0

 , (12)

where cj = |Cj | satisfies
∑
j cj · 2j ≤ 2s. This is without loss of generality since Ayes and

Ano are symmetric in the coordinates (and so are Byes and Bno).
For the same reason we may assume that the map h(b) depends only on the number of
1’s of b in each set Cj , which we refer to as the summary S(b) of b:

S(b) def=
(
‖b|CL‖1, ‖b|CL−1‖1, . . . , ‖b|C0‖1

)
∈ ZL+1

≥0 .

To see that this is without loss of generality, consider a randomized procedure P that,
given b ∈ {0, 1}m, applies an independent random permutation over the entries of Cj for
each bin j ∈ [0 : L]. One can verify that the random map h′ = h ◦ P only depends on the
summary S(b) of b but achieves the same advantage as h.

Given a query ` as in (12), we define Syes to be the distribution of S(b) for b ∼ Byes
(recall that Byes is the distribution of the vector b returned by the oracle upon the query `
when A ∼ Ayes). Similarly we define Sno as the distribution of S(b) for b ∼ Bno. As h only
depends on the summary the advantage is at most dTV(Syes,Sno), which we upper bound
below by o(1).

From the definition of Byes (or Bno, respectively) and the fact that Ayes (or Ano, respect-
ively) is symmetric over the m coordinates, we have that the L+ 1 entries of Syes (of Sno, re-
spectively) are mutually independent, and that their entries for each Cj , j ∈ [0 : L], are distrib-
uted as Bin(cj , pλj) (as Bin(cj , qλj), respectively), where we have λj = 1− (1− (ε/

√
n))2j .

In order to prove that dTV(Syes,Sno) = o(1) and achieve the desired contradiction, we
will give upper bounds on the total variation distance between their Cj-entries for each
j ∈ {0, . . . , L}.

I Claim 15. Let X ∼ Bin(cj , pλj) and Y ∼ Bin(cj , qλj). Then dTV(X,Y) ≤ o (1/L) .

We delay the proof of Claim 15, but assuming it we may simply apply the following
well-known proposition to conclude that dTV(Syes,Sno) = o(1).

I Proposition 16 (Subadditivity of total variation distance). Let X = (X1, . . . ,Xk) and
Y = (Y1, . . . ,Yk) be two tuples of independent random variables. Then dTV(X,Y) ≤∑k

i=1 dTV(Xi,Yi).

This gives us a contradiction and finishes the proof of Lemma 14. J

Below we prove Claim 15.
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Proof of Claim 15. The claim is trivial when cj = 0 so we assume below that cj > 0.
Let r = pλj and x = logn · λj/

√
n. Then X ∼ Bin(cj , r) and Y ∼ Bin(cj , r + x). As

indicated in Equation (2.15) of [1], Equation (15) of [37] gives

dTV(X,Y) ≤ O
(

τ(x)
(1− τ(x))2

)
, where τ(x) def= x

√
cj + 2

2r(1− r) , (13)

whenever τ(x) < 1. Substituting for x and r, we have (using cj ≥ 1, r ≤ 1/2 and p = 1/2)

τ(x) = O

(
logn · λj√

n
·
√
cj
r

)
= O

(
logn ·

√
λj · cj
n

)
= O

 1
L
·

√
n1/2 · λj

2j · ε · logn

 ,

where the last inequality follows from

cj · 2j ≤ 2s ≤ O
(

n3/2

ε · log3 n · L2

)
.

Finally, note that (using 1− x > e−2x for small positive x and 1− x ≤ e−x for all x):

1− λj =
(

1− ε√
n

)2j

≥
(
e−2ε/

√
n
)2j

= e−2j+1ε/
√
n ≥ 1−O(2jε/

√
n)

and
√
n · λj

2j · ε = O(1). This implies τ(x) = o(1/L) = o(1). The claim then follows from
(13). J
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A Proof of Theorem 1 assuming Theorem 2

We prove the following claim in Appendix A.1.

I Claim 17. Let ε(n) be a function that satisfies 2−n ≤ ε(n) ≤ 1/5 for sufficiently large n.
Then any non-adaptive algorithm that accepts the all-0 function with probability at least 5/6
and rejects every function that is ε-far from (n− 1)-juntas with probability at least 5/6 must
make Ω(1/ε) queries.

Next let k(n) and ε(n) be the pair of functions from the statement of Theorem 1. We consider
a sufficiently large n (letting k = k(n) and ε = ε(n) below) and separate the proof into two
cases:

2−(2α−1)k/(2α) ≤ ε ≤ 1/6 and 2−n ≤ ε < 2−(2α−1)k/(2α).

For the first case, if k = O(1) then the bound we aim for is simply Ω̃(1/ε), which follows
trivially from Claim 17 (since k ≤ αn < n− 1 and the all-0 function is a k-junta). Otherwise
we combine the following reduction with Theorem 2: any ε-tester for k-juntas over n-variable
functions can be used to obtain an ε-tester for k-juntas over (k/α)-variable functions. This
can be done by adding n− k/α dummy variables to any (k/α)-variable function to make the
number of variables n (as k ≤ αn). The lower bound then follows from Theorem 2 since α is
a constant. For the second case, the lower bound claimed in Theorem 1 is Ω̃(1/ε), which
follows again from Claim 17. This concludes the proof of Theorem 1 given Theorem 2 and
Claim 17. J

A.1 Proof of Claim 17
Let C be a sufficiently large constant. We prove Claim 17 by considering two cases:

ε ≥ C logn
2n and ε <

C logn
2n .

For the first case of 2nε ≥ C logn, we use D1 to denote the following distribution over
n-variable Boolean functions: to draw g ∼ D1, independently for each x ∈ {0, 1}n the value
of g(x) is set to 0 with probability 1− 3ε (recall that ε ≤ 1/5) and 1 with probability 3ε.

We prove the following lemma for the distribution D1:

I Lemma 18. With probability at least 1− o(1), g ∼ D1 is ε-far from every (n− 1)-junta.
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Proof. Note that every (n − 1)-junta is such that for some i ∈ [n], the function does not
depend on the i-th variable; we refer to such a function as a type-i junta. An easy lower
bound for the distance from a function g to all type-i juntas is the number of g-bichromatic
edges (x, x(i)) divided by 2n. When g ∼ D1 each edge (x, x(i)) is independently g-bichromatic
with probability 6ε(1 − 3ε) ≥ 12ε/5 (as ε ≤ 1/5). Thus when 2nε ≥ C logn, the expected
number of such edges is at least

2n−1 · (12ε/5) ≥ (6/5) · 2nε ≥ (6/5) · C logn.

Using a Chernoff bound, the probability of having fewer than 2nε bichromatic edges along
direction i is at most 1/n2 when C is sufficiently large. The lemma follows from a union
bound over i. J

As a result, when 2nε ≥ C logn, if A is a non-adaptive algorithm with the property
described in Claim 17, then A must satisfy

Pr
[
A accepts the all-0 function

]
− Pr

g∼D1

[
A accepts g

]
≥ 2/3− o(1).

But any such non-adaptive algorithm must make Ω(1/ε) queries as otherwise with high
probability all of its queries to g ∼ D1 would be answered 0, and hence its behavior would
be the same as if it were running on the all-0 function.

Finally we work on the case when 1 ≤ 2nε = O(logn). The proof is the same except
that we let g be drawn from D2, which we define to be the distribution where all entries of
g ∼ D2 are 0 except for exactly 2nε of them picked uniformly at random. The claim follows
from the following lemma:

I Lemma 19. With probability at least 1− o(1), g ∼ D2 is ε-far from every (n− 1)-junta.

Proof. This follows from the observation that, with probability 1−o(1), no two points picked
form an edge. When this happens, we have 2nε bichromatic edges along the ith direction for
all i. J
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Abstract
Adaptivity is known to play a crucial role in property testing. In particular, there exist properties
for which there is an exponential gap between the power of adaptive testing algorithms, wherein
each query may be determined by the answers received to prior queries, and their non-adaptive
counterparts, in which all queries are independent of answers obtained from previous queries.

In this work, we investigate the role of adaptivity in property testing at a finer level. We first
quantify the degree of adaptivity of a testing algorithm by considering the number of “rounds
of adaptivity” it uses. More accurately, we say that a tester is k-(round) adaptive if it makes
queries in k+ 1 rounds, where the queries in the i’th round may depend on the answers obtained
in the previous i− 1 rounds. Then, we ask the following question:

Does the power of testing algorithms smoothly grow with the number of rounds of adaptiv-
ity?

We provide a positive answer to the foregoing question by proving an adaptivity hierarchy theorem
for property testing. Specifically, our main result shows that for every n ∈ N and 0 ≤ k ≤ n0.99

there exists a property Pn,k of functions for which (1) there exists a k-adaptive tester for Pn,k
with query complexity Õ(k), yet (2) any (k−1)-adaptive tester for Pn,k must make Ω(n) queries.
In addition, we show that such a qualitative adaptivity hierarchy can be witnessed for testing
natural properties of graphs.
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1 Introduction

The study of property testing, initiated by Rubinfeld and Sudan [36] and Goldreich, Gold-
wasser and Ron [21], has attracted significant attention in the last two decades (see, e.g.,
recent books [18, 20, 5] and surveys [32, 33, 15]). Loosely speaking, property testers are highly
efficient randomized algorithms (typically running in sublinear time) that solve approximate
decision problems, while only inspecting a tiny fraction of their inputs. More accurately, an
ε-tester T for property P is a randomized algorithm that, given query access to an input
x, decides whether x ∈ P or x is ε-far (say, in Hamming distance) from P. The query
complexity of T is then the number of queries it makes to x.

In general, a testing algorithm may select its queries adaptively such that the i’th query
is determined by the answers to the previous i− 1 queries, in which case it is said to be an
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adaptive tester. However, in many natural cases, testers may actually determine their queries
solely based on their randomness (and input length), without any dependency on answers
to previous queries; a tester that satisfies this condition is called a non-adaptive tester. A
natural question, which commonly arises in query-based models, is whether the ability to
make adaptive queries can significantly affect the query complexity.

Adaptive queries can be easily emulated at the cost of a large blowup in query complexity
(exponential in the number of queries). More accurately, any q-query adaptive tester for a
property of objects represented by functions f : D → R can be emulated by an |R|q-query
non-adaptive tester (see e.g., [20, Section 1.5]). While for certain types of properties and
models – e.g., linear properties [4] and properties in the dense graph model [25] – one has
better emulations which come with little or no overhead, such efficient emulations cannot
exist for all properties. As was shown by Raskhodnikova and Smith [31], in the bounded-
degree graph model [23] there is a large chasm between the adaptive and non-adaptive
query complexities of testing many natural graph properties. In particular, any property
over bounded-degree graphs with n vertices, which is not determined by the vertex degree
distribution,1 requires Ω(

√
n) queries to test non-adaptively, whereas many such properties

(e.g., triangle-freeness and connectivity) have ε-testers with query complexity poly(1/ε).
In this work, we investigate the role of adaptivity in property testing at a finer level.

Rather than considering the extreme cases of fully adaptive testers versus completely non-
adaptive testers, we consider testers with various levels of restricted adaptivity and ask the
following question:

Can the power of testers gradually grow with the “amount” of adaptivity they are
allowed to use?

Besides the sheer theoretical interest of understanding the role of adaptivity in property
testing, a motivation for this question comes from the constraints that come with adaptive
algorithms, which may counterbalance the apparent gain in efficiency. Indeed, non-adaptive
algorithms (or at least those which only use a small number of adaptive “stages”) may
be preferred in practice to their adaptive counterparts, in spite of the larger number of
queries they make. The reason for this preference is the significant gains obtained by being
able to make many queries in parallel: when each query is an experiment which, while
relatively cheap by itself, may take several hours, assessing the trade-off between rounds of
adaptivity and total number of queries becomes crucial. An archetypal example where such
considerations prevail is the (different) setting of group testing (see e.g. [17, Section 1.2]).

To answer the foregoing question, we shall first need to give a precise definition for
the “amount” of adaptivity that a tester uses. To this end, it is natural to consider the
number of “rounds of adaptivity” used by a tester.2 More precisely, we say that a tester
is k-round-adaptive if it generates and makes queries in k + 1 rounds, where in the i’th
round the tester queries a set of locations Qi that may depend on the answers to queries
in Q0, . . . , Qi−1, obtained in previous rounds. We will quantify the “amount” of adaptivity
that a tester uses by the number of rounds of adaptivity that it uses. Equipped with the
notion of round adaptivity, we can proceed to present our results.

1 Loosely speaking, a property P of bounded-degree graphs is not determined by the vertex degree
distribution if there exist two graphs, G1 ∈ P and G2 that is “far” from P, such that the vertices of G1
and G2 have the same degrees.

2 We also consider an alternative notion of tail adaptivity, which roughly speaking refers to testers that
first make a large number of non-adaptive queries and subsequently make a bounded number of adaptive
queries. See Section 3 for details regarding how these two notions relate.
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1.1 Our Results
Our main result provides a positive answer to the foregoing question by showing an adaptivity
hierarchy theorem for property testing; that is, we show a family of properties {Pk}k such that
for every k, the property Pk is “easy” for k-adaptive testers and “hard” for (k − 1)-adaptive
testers.

I Theorem 1 (Informally stated (see Theorem 5)). For every n ∈ N and 0 ≤ k ≤ n0.33 there
is a property Pn,k of strings over Fn (of length that is nearly linear in n) such that:
1. there exists a k-round-adaptive tester for Pn,k with query complexity Õ(k), yet
2. any (k − 1)-round-adaptive tester for Pn,k must make Ω̃(n/k2) queries.

The above theorem relies on an arguably contrived family of properties, which was
specifically tailored towards maximizing the separations; hence, one may wonder whether
such strong separations also hold for more natural properties. As we show below, this is
indeed the case: namely, we establish another adaptivity hierarchy theorem that, albeit
weaker than Theorem 1, applies to the well-studied natural problem of testing k-cycle freeness
in the bounded-degree graph model (see Section 5.1 for definitions).

I Theorem 2. Let k ∈ N be a constant. Then,
1. there exists a k-round-adaptive tester with query complexity O(1/ε) for (2k + 1)-cycle

freeness in the bounded-degree graph model; yet
2. any (k − 1)-round-adaptive tester for (2k + 1)-cycle freeness in the bounded-degree graph

model must make Ω(
√
n) queries, where n is the number of vertices in the graph.

Lifting Query Complexity Bounds to Property Testing. Notably, the proof of Theorem 1
relies on a technique that allows us to “lift” query complexity bounds to property testing,
via the use of error-correcting codes that admit a strong form of local testability as well
as a relaxed form of local decodability. We believe that this framework, which we detail
in Section 4.4, is of interest in its own right, and will find further applications in property
testing.

We conclude this section by posing two open problems that naturally arise from our work.

I Open Problem 1 (One property to rule them all). Does there exist an adaptivity hierarchy
with respect to a single property? That is, for any m and all sufficiently large n, is there
a property P of elements of size n, and q1 > . . . > qm (m “levels” of hierarchy) such that
for every k ∈ [m] there exists a k-adaptive tester for P with query complexity qk, yet every
(k − 1)-adaptive tester must make ω(qk) queries to test P?

I Open Problem 2 (Au naturel is just as good). Does there exist a family of natural properties
which exhibits an adaptivity hierarchy with separations as strong as in Theorem 1?

1.2 Previous Work
As previously mentioned, the role of adaptivity in property testing has been the focus of
several works before. It is well known that for any property of Boolean functions, there
exists at most an exponential gap between adaptive and non-adaptive testers: any (adaptive)
q-query testing algorithm for a property P of n-variate Boolean functions can be simulated
by a non-adaptive tester with query complexity 2q − 1. Further, such gaps are known to
exist for some natural properties, such as read-once width-2 OBDDs [35, 12] and signed
majorities [28, 34] (importantly, there also exist cases where adaptivity is known not to
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help [11, 4]). Another prominent example of a class of Boolean functions where adaptivity is
known to help is that of k-juntas [8, 7, 38, 16], which can be tested adaptively with Õ(k)
queries, yet for which the non-adaptive query complexity is Θ̃

(
k3/2).

Of course, the Boolean function setting is not the only one: in the dense graph model, it
is known that while adaptivity can help [24], it will be at most by a quadratic factor [2, 25]:
that is, every graph property testable (adaptively) with q queries has an O

(
q2)-query non-

adaptive tester. This is no longer the case in the bounded-degree model, however; where
Raskhodnikova and Smith showed that there exist many properties which can be tested
adaptively with a constant number of queries, but for which any non-adaptive tester must
have query complexity Ω(

√
n) [31].3

However, all these results, even when they establish cases where adaptivity does help,
leave open the question of how much adaptivity is needed for this to happen. In particular, for
the case of properties of Boolean functions, many known adaptive testers which outperforms
their non-adaptive counterpart do so, at some level, by conducting a binary search of some
sort (see, e.g., [8, 35, 34]) and thus comes inherently with a logarithmic numbers of “adaptive
rounds.”

Our proof of Theorem 1 relies on a connection between the property testing and linear
decision tree models. Although many of the ingredients we use are new, the connection itself
is not and was first observed in [39] (see also [6] for a slightly different connection between
property testing and parity decision trees).

Adaptivity in other settings. We remark that the notion of round complexity in commu-
nication complexity and interactive proof systems is somewhat analogous to that of round
adaptivity, since in those models each round of communication or interaction allows the
parties to adapt their strategies. Moreover, a round complexity hierarchy is known for
communication complexity [29] and interactive proofs of proximity [26]. Finally, we also
mention that the role of the number of adaptive measurements used by sparse recovery
algorithms was shown to be very significant [27].

Organization

In Section 2 we provide the preliminaries required for the technical sections. In Section 3 we
provide a precise definition for testers with bounded adaptivity. In Section 4 we prove our
main result, which is a strong adaptivity hierarchy theorem for a property of functions. In
Section 5 we prove an adaptivity hierarchy theorem with respect to a natural property of
graphs. Finally, in Section 6 we discuss adaptivity round reductions, as well as a connection
to communication complexity, and the relation between round and tail adaptivity.

2 Preliminaries

We begin with standard notations:
We denote the relative Hamming distance, over alphabet Σ, between two vectors x ∈ Σn

and y ∈ Σn by dist(x, y) def= |{xi 6= yi : i ∈ [n]}| /n. If dist(x, y) ≤ ε, we say that x
is ε-close to y, and otherwise we say that x is ε-far from y. Similarly, we denote the

3 We remark that in the bounded-degree model, algorithms typically rely on random walks or breadth-first
searches. In this case the depth of the walks or searches, which may be smaller than the query complexity,
tends to determine the adaptivity.
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relative distance of x from a non-empty set S ⊆ Σn by dist(x, S) def= miny∈S dist(x, y). If
dist(x, S) ≤ ε, we say that x is ε-close to S, and otherwise we say that x is ε-far from S.
We denote by Ax(y) the output of algorithm A given direct access to input y and oracle
access to string x. Given two interactive machines A and B, we denote by (Ax, B(y))(z)
the output of A when interacting with B, where A (respectively, B) is given oracle access
to x (respectively, direct access to y) and both parties have direct access to z. Throughout
this work, probabilistic expressions that involve a randomized algorithm A are taken over
the inner randomness of A (e.g., when we write Pr[Ax(y) = z], the probability is taken
over the coin tosses of A).
We use the notations Õ(f), Ω̃(f) to hide polylogarithmic dependencies on the argument,
i.e. for expressions of the form O(f logc f) and Ω(f logc f) (for some absolute constant c).
Finally, all our logarithms are in base 2.

Integrality. For simplicity of notation, we hereafter use the convention that all (relevant)
integer parameters that are stated as real numbers are implicitly rounded to the closest
integer.

Uniformity. To facilitate notation, throughout this work we define all algorithms non-
uniformly; that is, we fix an integer n ∈ N and restrict the algorithms to inputs of length n.
Despite fixing n, we view it as a generic parameter and allow ourselves to write asymptotic
expressions such as O(n). We remark that while our results are proved in terms of non-uniform
algorithms, they can be extended to the uniform setting in a straightforward manner.

3 The Definition of Testers with Bounded Adaptivity

In this section, we provide a formal abstraction that captures the notion of bounded adaptivity
within the framework of property testing. We define two notions of bounded adaptivity:
(1) round-adaptivity, which refers to algorithms that are allowed to make a bounded number
of “batches” of queries, where the queries in each batch may depend on the answers to
previous batches; (2) tail-adaptivity, which refers to algorithms that first make a large number
of non-adaptive queries and subsequently make a bounded number of adaptive queries.

We remark that while tail-adaptivity can be easily emulated via round-adaptivity, the
converse does not hold. Indeed, in Section 6.3 we show that round-adaptive testers can be
much more powerful than tail-adaptive testers. Nonetheless, our lower bounds hold for the
stronger round-adaptivity notion, whereas out upper bounds hold for the more restrictive
tail-adaptivity.

I Definition 3 (Round-Adaptive Testing Algorithms). Let [n] be a domain of cardinality n,
and let k, q ≤ n. A randomized algorithm is said to be a (k, q)-round-adaptive tester for
a property P ⊆ 2[n], if, on proximity parameter ε ∈ (0, 1] and granted query access to a
function f : [n]→ {0, 1}, the following holds.
1. Query Generation: The algorithm proceeds in k + 1 rounds, such that at round ` ≥ 0, it

produces a set of queries Q`
def= {x(`),1, . . . , x(`),|Q`|} ⊆ [n] (possibly empty), based on its

own internal randomness and the answers to the previous sets of queries Q0, . . . , Q`−1,
and receives f(Q`) = {f(x(`),1), . . . , f(x(`),|Q`|)};

2. Completeness: If f ∈ P, then the algorithm outputs accept with probability at least 2/3;
3. Soundness: If dist(f,P) > ε, then the algorithm outputs reject with probability at least

2/3.
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The query complexity q of the tester is the total number of queries made to f , i.e., q =∑k
`=0 |Q`|. If the algorithm returns accept with probability one whenever f ∈ P , it is said to

have one-sided error (otherwise, it has two-sided error). We will sometimes refer to a tester
with respect to proximity parameter ε as an ε-tester.

I Remark (On amplification). We note that, as usual in property testing, the probability of
success can be amplified by repetition to any 1− δ, at the price of an O(log(1/δ)) factor in
the query complexity. Crucially, this can be done with no increase in the number of adaptive
rounds: while repetition would naïvely multiply both q and k by this factor, one can avoid
the latter by running the O(log(1/δ)) independent copies of the algorithm in parallel, instead
of sequentially.

I Definition 4 (Tail-Adaptive Testing Algorithms). Let [n] be a domain of cardinality n, and
let k, q ≤ n. A randomized algorithm is said to be a (k, q)-tail-adaptive tester for a property
P ⊆ 2[n], if, on proximity parameter ε ∈ (0, 1], error parameter δ ∈ (0, 1], and granted query
access to a function f : [n]→ {0, 1}, the following holds.
1. Query Generation: The algorithm proceeds in k+ 1 rounds, such that in the first round, it

produces a set of queries Q def= {x(0),1, . . . , x(0),|Q|} ⊆ [n] (possibly empty), based on its
own internal randomness; and receives f(Q) = {f(x(0),1), . . . , f(x(0),|Q|)}; then it makes,
over the next k rounds, k adaptive queries to f , denoted x(1), . . . , x(k);

2. Completeness: If f ∈ P , then the algorithm outputs accept with probability at least 1− δ;
3. Soundness: If dist(f,P) > ε, then the algorithm outputs reject with probability at least

1− δ.
The query complexity q of the tester is the total number of queries made to f , i.e., q = |Q|+k.
If the algorithm returns accept with probability one whenever f ∈ P , it is said to be one-sided
(otherwise, it is two-sided).

I Remark (On (lack of) amplification). Unlike the round-adaptive algorithms, tail-adaptive
testing algorithms do not enjoy a simple success amplification procedure which would leave
unchanged the adaptivity parameter, only affecting the query complexity. This is the reason
why the success probability δ is explicitly mentioned in Definition 4.

4 A Strong Adaptivity Hierarchy

In this section we prove the adaptivity hierarchy theorem, which shows that, loosely speaking,
up to a nearly linear threshold, each additional round of adaptivity can significantly augment
the power of testing algorithms.

I Theorem 5 (Adaptivity Hierarchy Theorem). Fix any α ∈ (0, 1). There exists a constant
β ∈ (0, 1) such that, for every n ∈ N, the following holds. For every integer 0 ≤ k ≤ nβ,
there exists a property Pk ⊆ Fn1+α

n such that, for any constant ε ∈ (0, 1],
1. there exists a (k, Õ(k))-round-adaptive (one-sided) tester for Pk; yet
2. any (k − 1, q)-round-adaptive (two-sided) tester for Pk must satisfy q = Ω̃

(
n/k2).

We remark that, in fact, the algorithm shown in the first item of Theorem 5 also gives
an upper bound for the more restricted model of tail adaptivity. Specifically, for every k
there also exists an (O(k), Õ(k))-tail-adaptive (one-sided) tester for Pk. Since a (k − 1, q)-
round-adaptive lower bound implies a (k − 1, q)-tail-adaptive lower bound (see discussion in
Section 3), this implies an adaptivity hierarchy (albeit slightly weaker than in Theorem 5)
with respect to tail-adaptive testers.
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To prove Theorem 5, we use a technique that allows us to “lift” bounds on decision tree
complexity to the setting of property testing, relying on error-correcting codes with local
properties. In more detail, we shall begin by proving an analogous version of Theorem 5
for the (linear) decision tree model, which is an elementary computation model that is
significantly easier to analyze than property testing (in particular, it deals with exact decision
problems, rather than approximate decision problems). Then, we shall consider an encoded
version of the decision tree problem, where the encoding is via a code that admits strong local
testability and a relaxed form of local decodability. Capitalizing on the foregoing properties
of the code, we show transference lemmas that allow us to “lift” our bounds on the decision
tree problem to bounds on the complexity of the encoded problem in the property testing
model. (We believe that this “lifting” technique may find further uses in property testing, by
allowing one to show results in the simpler decision tree problem before carrying them over
to property testing.)

We begin by describing the decision tree problem with respect to which we prove the
hierarchy theorem. Hereafter we assume, without loss of generality,4 that n is a prime
number, and consider Fn, the field of order n. We will consider the following sequence
of “k-iterated address” functions (fk)k≥0 from Fnn to {0, 1}, which will in turn lead to the
definition of the properties (Pk)k≥0 that we use to show the hierarchy theorem. Loosely
speaking, fk receives a vector x of n pointers (indices in [n]) and indicates whether when
jumping from pointer to pointer k times, starting from an arbitrarily predetermined pointer,
we reach a location in which x takes an even value.

To formally define the foregoing functions, first consider g : Fnn × Fn → Fn given by
g(x, a) = xa+1; that is, g returns the coordinate of x ∈ Fnn “pointed to” by a ∈ {0, . . . , n− 1}.
Based on this, we define the iterated versions of g, g0, . . . , gn, . . . : Fnn → Fn, as

g0(x) = g(x, 0) ,
gk(x) = g(x, gk−1(x)) . (k ≥ 1)

Finally, we define the k-iterated address function fk : Fnn → {0, 1} by

fk(x) = 1{gk(x) even} =
{

1 if gk(x) is even,
0 otherwise.

(For instance, f0(x) = 1 if and only if x1 is even; and f1(x) = 1 if and only if the coordinate
of x pointed to by x1, that is xx1+1, is even.) We proceed to describe the outline of the proof
of Theorem 5.

4.1 High-Level Overview
Broadly speaking, our roadmap for proving Theorem 5 consists of two main steps:

1. We first consider the adaptivity hierarchy question in the setting of randomized decision
tree (DT) complexity (see Section 4.2). We can view a randomized DT for computing a
function f as a probabilistic algorithm that is given query access to an input x and is
required to output f(x) with high probability. Adapting the definition of round adaptivity
(Definition 3) in the natural way to decision trees, we will prove the randomized DT
analogue of our adaptivity hierarchy theorem, using the foregoing family of address

4 If n is not prime, we choose a prime p such that n ≤ p ≤ 2p, and use standard padding techniques.
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functions (fk)k≥0. Namely, we prove that for any k ≥ 0 with k = o(n), it holds that
(i) fk can be computed by an algorithm making k + 1 queries, in k adaptive rounds; but
(ii) any algorithm using only k − 1 rounds of adaptivity must make Ω̃

(
n/k2) queries.

2. We then show a bidirectional connection between adaptivity-bounded randomized DT
and property testers, which extends the connection observed by Tell [39]. This allows
us to “lift” the DT adaptivity hierarchy theorem to property testing. Specifically, we
provide two blackbox reductions between the DT problem of computing function f and
property testing for a related property Pf , which preserve both the number of adaptive
rounds and (roughly) the number of queries. We remark these reductions strongly rely on
high-rate codes that exhibit both strong local testability and relaxed local decodability.

The caveat with the above is that to “lift” DT lower bounds to testing algorithms via
our methodology, we actually need to show lower bounds on a stronger model of DT (this
stems from the reductions of the second item, in which we will encode the input via linear
codes, requiring the DT algorithm to compute coordinates of this encoding).

Hence, we will actually work in the linear decision tree (LDT) model, wherein the
algorithm is allowed to query any linear combination (over Fn) of the coordinates, instead of
only querying individual coordinates. (We note that in the case of F2, this corresponds to
the parity decision tree model.) That is, we will proceed as follows:
1. (L)DT hierarchy: show that for any k ≥ 0, the function fk (i) can be computed by an

efficient (k,O(k))-round-adaptive (deterministic) DT algorithm, but (ii) does not admit
any (k − 1, o(n))-round-adaptive (randomized, two-sided) LDT algorithm;

2. Transference lemmas: Show that for any function f : Fnn → Fn, there exists a property
Cf ⊆ Fm(n)

n such that, for any k ≥ 0,
a. a (k, q)-round-adaptive testing algorithm for Cf implies a (k, q)-round-adaptive LDT

algorithm for f (Lemma 14).
b. a (k, q)-round-adaptive DT algorithm for f implies a (k, Õ(q))-round-adaptive testing

algorithm for Cf (Lemma 15).
Combining the items above will directly imply our hierarchy theorem for property testing
(Theorem 5):

Proof. Proof of Theorem 5 The upper bound 1 follows immediately from Claim 7 and
Lemma 15, while combining Lemma 8 and Lemma 14 establishes the lower bound 2. J

Organization for the rest of the section. In Section 4.2, we define the decision tree
models and complexities that we shall need. Then, in Section 4.3, we prove the adaptivity
hierarchy theorem for randomized (linear) decision trees. Finally, in Section 4.4 we prove the
transference lemmas that allow us to lift the foregoing hierarchy theorem to the property
testing framework.

4.2 Decision Tree Zoo
We shall need to extend the definitions of several different types of decision tree algorithms
(see [13] for an extensive survey of decision tree complexity) to the setting of bounded
adaptivity.

Recall that a deterministic decision tree is a model of computation for computing a function
f : [n]n → [n]. The decision tree is a rooted ordered |[n]|-ary tree. Each internal vertex of
the tree is labeled with a value i ∈ {1, . . . , n} and the leaves of the tree are labeled with
the elements in [n]. Given an input x ∈ [n]n, the decision tree is recursively evaluated by
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choosing to recurse on the i’th subtree in the j’th level if and only if xj = i. Once a leaf is
reached, we output the label of that leaf and halt.

Equivalently, we can view deterministic decision trees as algorithms that get oracle access
to an input x ∈ [n]n, then adaptively make queries to x, to the end of computing f(x). (Note
that the j’th query corresponds to the j’th layer of the corresponding decision tree, and
that the different vertices in the j’th layer represent the choices of the next queries, with
respect to the answers obtained for previous queries). We define the deterministic decision
tree complexity of a function f to be the minimal number of queries a deterministic decision
tree algorithm needs to make to compute f in the worst case.5

Taking the algorithmic perspective, we define k-round-adaptive deterministic decision
tree algorithms as algorithms that generate their queries in k rounds, where queries in each
round may depend on queries from previous rounds. The extension of the foregoing definition
to randomized decision tree algorithms is done in the natural way, by allowing the algorithm
to toss random coins and succeed with high probability (say, 2/3) in computing f(x). Finally,
we shall also extend the definition to linear decision trees, which are decision trees algorithms
wherein each query is a linear combination of the elements of the domain. We remark that
linear decision trees can be thought of as generalizing both parity decision trees and algebraic
query complexity algorithms [1].

More accurately, the aforementioned notions are defined below. We provide the definition
of the most general model and derive the more restricted models as special cases.

I Definition 6 (Round-Adaptive Decision Tree Algorithms). Let F be a finite field of cardinality
n, and let k, q ≤ n. A (randomized) algorithm D is said to be a (k, q)-round-adaptive (linear)
decision tree algorithm for computing a function f : Fn → F if, granted query access to a
string x ∈ Fn, the following holds.

1. Query Generation: The algorithm proceeds in k + 1 rounds, such that at round ` ≥ 0, it
produces a set of (linear) queries Q`

def= {L`,1, . . . , L`,|Q`|}, where L`,j ∈ Fn specifies a
linear combination, based on its internal randomness and the answers to the previous
sets of queries Q0, . . . , Q`−1, and receives the answers 〈L`,1, x〉, . . . , 〈L`,|Q`|, x〉.

2. Computation: The algorithm computes f(x) with high probability using the answers it
received in all k rounds; that is, Pr[Dx = f(x)] ≥ 2/3.

The query complexity q of the tester is the total number of (linear) queries made to f , i.e.,
q =

∑k
`=0 |Q`|. The randomized (k, q)-round-adaptive linear decision tree complexity of a

function f , denoted R⊕k (f), is the minimal query complexity for a (k, q)-round-adaptive
randomized linear decision tree algorithm that computes f .

If for all ` ∈ [k + 1] and j ∈ [|Q`|] the linear combination L`,j only includes a single
element (i.e., L`,j only has a single non-zero entry), we say that D is a randomized (k, q)-
round-adaptive decision tree algorithm complexity, and denote its corresponding complexity
by Rk(f). If, in addition, the algorithm does not toss any random coins and succeeds with
probability 1, we say that D is a deterministic (k, q)-round-adaptive decision tree algorithm
complexity, and denote its corresponding complexity by Dk(f).

5 We remark that this definition corresponds to the depth the of decision tree, and not to the number of
vertices or edges in the tree.
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4.3 Decision Tree Hierarchy: Some Things Only Adaptivity Can
Address

We first establish the upper bound part of our adaptivity hierarchy theorem for DT, which
follows immediately from the construction.

I Claim 7. For every k ≥ 0, there exists a (k, k + 1)-round-adaptive (deterministic) DT
algorithm which computes fk; that is, Dk(fk) ≤ k + 1.

Proof. The algorithm is straightforward: on input x ∈ Fnn, it sequentially queries x1 = g0(x),
xg0(x)+1 = g1(x), . . . , xgk−1(x)+1 = gk(x); and returns 1 if gk(x) is even, and 0 otherwise. By
definition of fk, this always correctly computes the function, is deterministic, and clearly
satisfies the definition of a (k, k + 1)-round-adaptive DT algorithm. J

We proceed to show the lower bound part of our adaptivity hierarchy theorem for DT,
which is proven via a reduction from communication complexity.

I Lemma 8. There exists an absolute constant c > 0 such that the following holds. For
every 0 ≤ k ≤ c

(
n

logn

)1/3
, there is no (k, o(n/(k2 logn)))-round-adaptive (randomized) LDT

algorithm which computes fk+1; that is, R⊕k (fk+1) = Ω
(
n/(k2 logn)

)
.

Proof. We will reduce to the computation of fk+1 (in k rounds of adaptivity) a related
k-round two-party randomized communication complexity problem, the “pointer-following”
problem introduced by Papadimitriou and Sipser [30], and conclude by invoking the lower
bound of Nisan and Wigderson [29] on this problem.

This communication complexity problem between two computationally unbounded players,
Alice and Bob, is defined as follows. Let VA and VB be two disjoint sets of cardinality n/2, and
let v0 ∈ VA be a fixed element known to both players. The input is a pair of functions (χA, χB),
where χA : VA → VB and χB : VB → VA. Alice and Bob are given χA and χB respectively,
as well as a common random string, and their goal is to compute πk(χA, χB) def= χ(k)(v0)
with high probability, where χ(`) is the `-iterate of the function χ:

χ : VA ∪ VB → VA ∪ VB

v 7→

{
χA(v) v ∈ VA
χB(v) v ∈ VB .

(In other terms, one can see the communication problem as Alice and Bob sharing the edges
of a bipartite directed graph where each node has out-degree exactly one, and the goal is to
find at which vertex the path of length k starting at a prespecified vertex v0, on Alice’s side,
ends.)

We will rely on the following lower bound on the k-round, randomized (public-coin)
version of this problem.

I Theorem 9 ([29], rephrased). Any k-round randomized communication protocol for the
“pointer-following” problem, in which Bob sends the first message, must have total commu-
nication complexity Ω

(
n
k2 − k logn

)
, even to only compute a single bit of πk(χA, χB) with

probability at least 2/3.

Note that as long as k �
(

n
logn

)1/3
, this lower bound is Ω

(
n
k2

)
. We remark that the fact

that the lower bound still holds even when only a single bit of the answer is to be computed
will be crucial for us, as our goal is to reduce the communication complexity problem of
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“pointer-following” to computing the Boolean function fk+1 in the randomized decision tree
model.

LetA be any (k, q)-round-adaptive (randomized) LDT algorithm computing fk+1. Writing
VA = {v0, . . . , vn2−1} and VB = {u0, . . . , un2−1}, fix a bijection between V def= VA ∪ VB (of
size n) and Fn mapping v0 to 1, so that we identify V with Fn. On input (χA, χB),
Alice and Bob implicitly define the element x ∈ Fnn by x1 = χA(v0), x2 = χA(v1), . . . ,
xn

2
= χA(vn

2−1) and xn
2 +1 = χB(u0), xn

2 +2 = χA(u1), . . . , xn = χA(un
2−1). From this, we

get that πk+2(χA, χB) = gk+1(x), recalling that gk(x) = g(x, gk−1(x)) is recursively defined
for k ≥ 1, and g0(x) = x1. Hence deciding whether πk+2(χA, χB) is even is exactly equivalent
to computing fk+1(x).

Alice and Bob can then simulate the execution of A as follows. Without loss of generality,
assume it is Alice’s turn to speak. To answer a query of the form φa(x) =

∑n
i=1 aixi, she

computes
∑
i∈VA aixi and sends it to Bob; on his side, Bob computes

∑
i∈VB aixi, and

receiving Alice’s message can then recover the value φa(x) and feed it to the algorithm. (In
the next round, when sending his side of the (new) queries to Alice, Bob will also send this
value φa(x), to make sure that both sides know the answers to all queries so far.) Since all
queries of a given adaptive round of A can be prepared and sent in parallel (costing O(logn)
bits of communication per query), this simulation can be performed in k + 1 rounds (as
many as A takes) with communication complexity O(q log). At the end, whichever of Alice
and Bob received the latest message holds the answer (to “is πk+1(χA, χB) an even node?”),
which by assumption on A is correct with probability at least 2/3. Alice and Bob then use
an extra round of communication to broadcast the answer to the other party, bringing the
total number of rounds to k + 2.

But by Theorem 9, computing this bit of πk+2(χA, χB) with only k + 2 rounds of
communication (Bob speaking first) requires Ω

(
n
k2

)
bits of communication, and so we must

have q = Ω
(

n
k2 logn

)
. J

4.4 Adaptivity Bounded Testers and Decision Trees: There and Back
Again

In this section we show how to reduce problems in the adaptivity bounded property testing
model to problems in the adaptivity bounded (linear) decision tree model, and vice versa.
We begin in Section 4.4.1, by presenting the required preliminaries regarding error-correction
codes. Then, in Section 4.4.2, we prove the “transference lemmas” between these models.

4.4.1 Preliminaries: Locally Testable and Decodable Codes
Let k, n ∈ N. A code over alphabet Σ with distance d is a function C : Σk → Σn that maps
messages to codewords such that the distance between any two codewords is at least d = d(n).
If d = Ω(n), C is said to have linear distance. If Σ = {0, 1}, we say that C is a binary code.
If C is a linear map, we say that it is a linear code. The relative distance of C, denoted by
δ(C), is d/n, and its rate is k/n. When it is clear from the context, we shall sometime abuse
notation and refer to the code C as the set of all codewords {C(x)}x∈Σk . Following the
discussion in the introduction, we define locally testable codes and locally decodable codes
as follows.

I Definition 10 (Locally Testable Codes). A code C : Σk → Σn is a locally testable code (LTC)
if there exists a probabilistic algorithm (tester) T that makes O(1) queries to a purported
codeword w ∈ Σn and satisfies:
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1. Completeness: For any codeword w of C it holds that PrT [Tw = 1] ≥ 2/3.
2. Strong Soundness: For all w ∈ Σn,

Pr
T

[Tw = 0] ≥ poly
(

dist(w,C)
)
.

I Definition 11 (Locally Decodable Codes). A code C : Σk → Σn is a locally decodable code
(LDC) if there exists a constant δradius ∈ (0, δ(C)/2) and a probabilistic algorithm (decoder)
D that, given oracle access to w ∈ Σn and direct access to index i ∈ [k], satisfies the following
condition: For any i ∈ [k] and w ∈ Σn that is δradius-close to a codeword C(x) it holds that
Pr[Dw(i) = xi] ≥ 2/3. The query complexity of a LDC is the number of queries made by its
decoder.

We shall also need the notion of relaxed-LDCs (introduced in [3]). Similarly to LDCs,
these codes have decoders that make few queries to an input in attempt to decode a given
location in the message. However, unlike LDCs, the relaxed decoders are allowed to output a
special symbol that indicates that the decoder detected a corruption in the codeword and
is unable to decode this location. Note that the decoder must still avoid errors (with high
probability).6

I Definition 12 (Relaxed-LDC). A code C : Σk → Σn is a relaxed-LDC if there exists a
constant δradius ∈ (0, δ(C)/2) such that the following holds.
1. (Perfect) Completeness: For any i ∈ [k] and x ∈ Σk it holds that DC(x)(i) = xi.
2. Relaxed Soundness: For any i ∈ [k] and any w ∈ Σn that is δradius-close to a (unique)

codeword C(x), it holds that

Pr[Dw(i) ∈ {xi,⊥}] ≥ 2/3.

There are a couple of efficient constructions of codes that are both relaxed-LDCs and LTCs
(see [3, 22]). We shall need the construction in [22], which has the best parameters for our
setting.7

I Theorem 13 (e.g., [22, Theorem 1.1]). For every k ∈ N, α > 0, and finite field F there
exists an F-linear code C : Fk → Fk1+α with linear distance, which is both a relaxed-LDC
and a (one-sided error) LTC with query complexity poly(1/ε); furthermore, both testing and
(relaxed) decoding procedures are non-adaptive.

4.4.2 Transference Lemmas
Fix any α > 0. Let C : Fnn → Fmn be a code with constant relative distance δ(C) > 0, with
the following properties:

linearity: for all i ∈ [m], there exists an element a(i) ∈ Fnn such that C(x)i = 〈a(i), x〉 for
all x ∈ Fnn;

6 The full definition of relaxed-LDCs, as defined in [3] includes an additional condition on the success
rate of the decoder. Namely, for every w ∈ {0, 1}n that is δradius-close to a codeword C(x), and for at
least a ρ fraction of the indices i ∈ [k], with probability at least 2/3 the decoder D outputs the i’th
bit of x. That is, there exists a set Iw ⊆ [k] of size at least ρk such that for every i ∈ Iw it holds that
Pr [Dw(i) = xi] ≥ 2/3. We omit this condition since it is irrelevant to our application, and remark
that every relaxed-LDC that satisfies the first two conditions can also be modified to satisfy the third
conditions (see [3, Lemmas 4.9 and 4.10]).

7 Specifically, the codes in [22] are meaningful for every value of the proximity parameter, whereas the
codes in [3] require ε > 1/polylog(k).
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rate: m ≤ n1+α;
testability: C is a strong-LTC with one-sided error and non-adaptive tester;
decodability: C is a relaxed-LDC.

We will rely on Theorem 13 for the existence of such codes. Before delving into the details,
we briefly explain the reason for each of the points above. The linearity will be crucial to
reduce to and from the LDT model: indeed, any coordinate of a codeword corresponds to a
fixed linear combination of the coordinates of the message, which corresponds to a single
LDT query on that particular linear combination. The rate bound is required since our
lower bounds are in terms of the dimension n and upper bounds in terms of the block-lengh
m. Ideally, we would like m = O(n), to have a direct correspondence between the LDT
and the property testing query complexities; however, this nearly-linear rate is the best
known achievable for constant-query LTCs and relaxed-LDCs [22]. The LTC property will
be useful to us in the reduction from property testing to DT query complexity (where we
will need to first check that our input is close to a codeword, in view of decoding the closest
message during the reduction), where the strong testability (i.e., rejection with probability
proportional to the distance from a valid codeword) will allow us do deal with arbitrarily
small values of the proximity parameter. Similarly, we will rely on the (relaxed) LDC property
in that same reduction, in order to obtain individual coordinates of the message, given query
access to an input close to a codeword.

We proceed to show the framework for reducing property testing to decision tree
complexity and vice-versa. For a fixed function f : Fnn → {0, 1}, consider the subset
f−1(1) ⊆ Fnn; and define the sets of codewords C def= C(Fnn) ⊆ Fmn , Cf

def= C(f−1(1)) =
{ C(x) : x ∈ Fnn, f(x) = 1 } ⊆ C.

Consider now testing the property Cf : we will reduce the LDT computation of f to the
testing of Cf . Specifically, we prove the following.

I Lemma 14 (LDT  PT Reduction Lemma). Fix any f : Fnn → {0, 1}. If there exists an
(k, q)-round-adaptive tester for Cf , then there is an (k, q)-round-adaptive LDT algorithm
for f .

Proof. Suppose there exists a (k, q)-round-adaptive tester T for Cf . On input x ∈ Fnn, we
emulate the invocation of T , with respect to proximity parameter ε = δ(C), on the encoded
input y def= C(x) ∈ Fmn and output 1 if and only if T returns accept. To see why this is
correct, observe that by definition, if f(x) = 1 then y ∈ Cf . However, if f(x) = 0, then for
any y′ ∈ Cf such that y′ = C(x) we must have dist(y, y′) > ε, by the distance of our code.

It remains to show that this simulation can be achieved efficiently, as claimed. To do so,
we will rely on the fact that C is a linear code: whenever T queries yi, we can compute the
element a(i) ∈ Fnn (which only depends on C, and not on x), and perform the LDT query
〈a(i), x〉. The simulation clearly preserves the number of adaptive rounds as well, concluding
the proof. J

In our next lemma, we give a partial converse relating property testing and decision tree
complexity, with some logarithmic overhead in the resulting query complexity.

I Lemma 15 (PT DT Reduction Lemma). Fix any f : Fnn → {0, 1}. If there exists an (k, q)-
round-adaptive (randomized) DT algorithm for f , then there is a (k,O(q log q) + poly(1/ε))-
round-adaptive tester for Cf . (Moreover, if the DT algorithm is always correct, then this
tester is one-sided.)
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Proof. Fix k ≥ 0, and suppose there exists such a (k, q)-round-adaptive DT algorithm A
for f . On input y ∈ Fmn and proximity parameter ε ∈ (0, 1], we would like to decode y to a
message x ∈ Fnn and invoke the algorithm on x to determine if f(x) = 1; more precisely, we
wish to invoke the DT algorithm while simulating each query to x by locally decoding y using
O(1) queries. The issue, however, is that the success of the local decodable is only guaranteed
for inputs that are sufficiently close to a valid codeword, and we have no such guarantee on
y a priori. However, recalling that C is a strong-LTC, we can handle this as follows. Letting
δradius > 0 be the decodability radius of the relaxed-LDC C, we set δ∗ def= min(δradius, ε).

1. Run independently O(poly(1/δ∗)) times the local tester for the strong-LTC C on y,
and output reject if any of these rejected. Since every invocation of the local tester
makes O(1) queries to y, this has query complexity O(poly(1/δ∗)) = O(poly(1/ε)); and
if dist(y, C) > δ∗ then this step outputs reject with probability at least 9/10.

2. Invoke A on the message x def= argmin { dist(C(x), y) : x ∈ Fnn }, answering each query
xi by calling the local decoder for the relaxed-LDC C. This is done so that the decoder
is correct with probability at least 1/(10q), by standard repetition (taking the plurality
value); with the subtlety that we output reject immediately whenever the decoder returns
⊥. Since each query can be simulated by O(log(q)) queries (repeating the O(1) queries of
the decoder O(log q) times), this step has query complexity O(q log q); and at the end,
we output accept if, and only if, A returns the value 1 for f(x).

Importantly, Step 1 can be run in parallel to Step 2, and in particular can be executed during
the first “batch” of queries A makes. This guarantees that the whole simulation above uses
the same number of adaptive rounds as A, as claimed. It remains to argue correctness.

Completeness. Assume y ∈ Cf . In particular, y is a codeword of C, and the (one-sided)
local tester returns accept with probability one in 1. Then, since by definition there is a
unique x ∈ Fnn such that C(x) = y, the local decoder of Step 2 will correctly output the
correct answer for each query with probability 1, and therefore A will correctly output f(x)
with probability 2/3 – so that the tester returns accept with probability at least 2/3 overall.
(Moreover, if the DT algorithm A always correctly compute f , then the tester returns accept
with probability one.)

Soundness. Assume dist(y, Cf ) > ε. If dist(y, C) > δ∗, then the local tester returns
reject with probability at least 9/10 in Step 1. Therefore, we can continue assuming that
dist(y, C) ≤ δ∗, which satisfies the precondition of the relaxed-LDC decoder in Step 2. By a
union bound over all q queries, with probability at least 9/10 we have that the decodings
performed in Step 2 are all correct; in which case we answer the queries of the algorithm
according to x def= argmin { dist(C(x), y) : x ∈ Fnn } (or possibly answered by ⊥, in which
case the tester immediately outputs reject and we are done). Since dist(y, C(x)) ≤ δ∗ ≤ ε,
we must have C(x) 6∈ Cf , which implies that A correctly returns f(x) = 0 with probability
at least 2/3, in which case the tester outputs reject. Overall, this happens with probability
at least 9/10 · 9/10 · 2/3 = 27/50.

Thus, in both cases the tester is correct with probability at least 27/50; repeating a
constant number of times (as explained in the remark of page 27:6) and taking the majority
vote allows us to amplify the probability of success to 2/3. J
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5 An Adaptivity Hierarchy with respect to a Natural Property

In this section we show a natural property of graphs for which, broadly speaking, more
adaptivity implies more power. More specifically, we prove the following adaptivity hierarchy
theorem with respect to the property of k-cycle freeness in the bounded-degree graph model
(see definitions in Section 5.1).

I Theorem 16. Let k ∈ N be a constant. Then,
1. there exists a (k,O(1/ε))-round-adaptive (one-sided) tester for (2k + 1)-cycle freeness in

the bounded-degree graph model; yet
2. any (k− 1, q)-round-adaptive (two-sided) tester for (2k+ 1)-cycle freeness in the bounded-

degree graph model must satisfy q = Ω(
√
n).

We stress that although Theorem 5 establishes an adaptivity hierarchy with stronger
separations, the merit of Theorem 16 is in showing that an adaptivity hierarchy also holds for
a natural well-studied property. We further observe that the choice of the bounded-degree
graph model is not insignificant: one cannot hope to establish such a striking gap in other
settings such as the dense graph model or in the Boolean function testing setting. Indeed, as
discussed in Section 1.2 it is well-known that in these two models, any adaptive tester can
be made (fully) non-adaptive at the price of only a quadratic and exponential blowup in the
query complexity, respectively(see [2, 25] for the former; the latter is folklore). We remark
that in Section 6.1 we discuss emulating testers with k rounds of adaptivity by testers with
k′ < k rounds.

5.1 Cycle Freeness in the Bounded Degree Graph Model
In the subsection we provide the necessary definitions and establish a basic upper bound on
the complexity of k-adaptive testing of cycle freeness in the bounded degree graph model.
We begin with a definition of the model.

Let G = (V,E) be a graph with constant degree bound d < |V |, represented by its
adjacency list; that is, represented by a function g : V × d→ V such that g(v, i) = u ∈ V
if u is the ith neighbor of v and g(v, i) = 0 if v has fewer than i neighbors. A bounded
degree graph property P is a subset of graphs (represented by their adjacency list) that is
closed under isomorphism; that is, for every permutation π it holds that G ∈ P if and only if
G ∈ π(G). The distance of graph G from property P is the minimal fraction of entries in g
one has to change to reach an element of P.

We extend the definition of functional round-adaptive testing algorithms to the bounded
degree graph model in the natural way.

I Definition 17 (Round-Adaptive Testing in the Bounded Degree Graph Model). Let G = (V,E)
be a graph with constant degree bound d < |V |, represented by its adjacency list g : V ×d→ V ,
and let k, q ≤ n. A randomized algorithm is said to be a (k, q)-round-adaptive tester for a
(bounded degree) graph property P, if, on proximity parameter ε ∈ (0, 1] and granted query
access to g, the following holds.
1. Query Generation: The algorithm proceeds in k + 1 rounds, such that at round ` ≥ 0, it

produces a set of queries Q`
def= {x(`),1, . . . , x(`),|Q`|} ⊆ [n] (possibly empty), based on its

own internal randomness and the answers to the previous sets of queries Q0, . . . , Q`−1,
and receives f(Q`) = {g(x(`),1), . . . , g(x(`),|Q`|)};

2. Completeness: If G ∈ P, then the algorithm outputs accept with probability at least 2/3;
3. Soundness: If dist(G,P) > ε, then the algorithm outputs reject with probability at least

2/3.
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The query complexity q of the tester is the total number of queries made to f , i.e., q =∑k
`=0 |Q`|. If the algorithm returns accept with probability one whenever f ∈ P , it is said to

have one-sided error (otherwise, it has two-sided error). As before, we will sometimes refer
to a tester with respect to proximity parameter ε as an ε-tester.

Next, we define the (bounded degree) graph property of k-cycle freeness.

I Definition 18 (Cycle Freeness). Let k ∈ N. A graph G = (V,E) is said to be k-cycle free
if it does not contain any cycle of length less or equal to k; that is, if for every t ≤ k and
v1, . . . , vt ∈ V either (vt, v1) 6∈ E or there exists i ∈ [t− 1] such that (vi, vi+1) 6∈ E.

Finally, we make the following observation, which roughly speaking implies that when
surpassing a certain threshold of round adaptivity, testing cycle freeness in the bounded
degree graph model becomes “easy.”8

I Observation 19. For every k ∈ N there exists a (k, q)-round-adaptive testing algorithm
for (2k+ 1)-cycle freeness and (2k+ 2)-cycle freeness in the bounded-degree graph model with
query complexity q = O(dk+1/ε).

Proof. The algorithm explores the graph in the most natural way: starting from O(1/ε)
“source vertices” selected uniformly at random, it adaptively explore their neighborhoods
by querying at each round the neighbors of the previously reached vertices, in a breadth-
first-search fashion. If any (2k + 1)-cycle (resp. (2k + 2)-cycle) is detected, the algorithm
rejects, and accepts otherwise. (Clearly, this tester is one-sided.) It is easy to see that if any
of the source vertices belongs to a (2k + 1)- or (2k + 2)-cycle, then this bounded-depth BFS
will detect it; thus, we only need to argue that if the graph is ε-far from cycle freeness, with
constant probability, one of the source vertices will participate in such a cycle. But this is
the case, as any such graph must have at least εn vertices participating in a cycle (indeed,
otherwise one could “correct” the graph by removing fewer than εdn vertices, contradicting
the distance).

Finally, for each source vertex, after k rounds of adaptivity the number of nodes visited
is at most O(dk+1), hence the claimed query complexity. J

5.2 Lower Bounds for Round-Adaptive Testers
In this subsection, we prove the following lemma, which roughly speaking shows that testing
(2k + 3)-cycle freeness is hard for k-round-adaptive testing algorithms.

I Lemma 20. Let k ∈ N be constant. Then, any (k, q)-round-adaptive testing algorithm for
(2k + 3)-cycle freeness in the bounded-degree graph model must satisfy q = Ω(

√
n).

In stark contrast, recall that Observation 19 shows that testing (2k + 2)-cycle freeness is
easy for k-round-adaptive testing algorithms. Indeed, the proof of Theorem 16 follows by
combining Observation 19 and Lemma 20 together.

Proof. Proof of Lemma 20 We will show a distribution of (2k+ 3)-cycle free graphs, denoted
Y , and a distribution of graphs that are “far” from being (2k+ 3)-cycle free, denoted N , and
prove that no (k, q)-round-adaptive testing algorithm can distinguish, with high probability,
between Y and N . Loosely speaking, Y consists of all graphs whose vertices are covered via

8 This is a specific case of a more general algorithm for testing subgraph freeness; see e.g. [20, Section
9.2.1].
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disjoint (2k + 4)-cycles, and N consists of all graphs whose vertices are covered via disjoint
(2k + 3)-cycles.

More accurately, denote by Pt,n,d the subset of n-node graphs with maximum degree
at most d that are t-cycle-free. Let Σt,s be the 2-regular graph on st vertices made of s
disjoint t-cycles, namely (v1, . . . , vt), (vt+1, . . . , v2t), (v(s−1)t+1, . . . , vst). Denote also by Isr
the independent set on r vertices. For two graphs G,G′ on respectively m and m′ vertices
and with e and e′ edges, we write G tG′ for the graph on m+m′ vertices and with e+ e′

edges obtained by concatenating disjoint copies of G,G′.
For k = O(1), we let ` def=

⌊
n

(2k+4)

⌋
, `′ def=

⌊
n

(2k+3)

⌋
, and define the two distributions over

n-node graphs Y and N as follows.
Y is the uniform distribution over all isomorphic copies of Gyes

k

def= Σ(2k+4),` t Isn−(2k+4)`;
N is the uniform distribution over all isomorphic copies of Gno

k
def= Σ(2k+3),`′ tIsn−(2k+3)`′ .

The next claim establishes that indeed Y consists of yes-instances, whereas N consists of
no-instances.

I Claim 21. Y is supported on P(2k+3),n,d, while every graph in the support of N is Ω(1)-far
from P(2k+3),n,d.

Proof. The first part is obvious, as the only cycles in Gyes
k are (2k + 4)-cycles. As for

the second, it immediately follows from observing that Gno
k contains `′ disjoint (2k + 3)-

cycles, and thus at least `′ edges have to be removed to make it (2k + 3)-cycle free. Thus,
dist

(
Gno
k ,P(2k+3),n,d

)
≥ `′

dn/2 = Ω
( 1
dk

)
= Ωd(1). J

Let T be a deterministic testing algorithm with k rounds of adaptivity and query
complexity q′ = o(

√
n). The following lemma concludes the proof of Lemma 20 by showing

that T cannot distinguish, with high probability, between graphs in Y and graphs in N .
Denote T ’s (disjoint) query sets, per round, by Q0, . . . , Qk ⊆ V , where a query is a vertex
v. Denote the corresponding sets of answers by A0, . . . , Ak, where the answer to a query v
consists of the labels of all neighbors of v (i.e., either two or zero vertices). Since k = O(1),
without loss of generality, we can assume (by padding) that all query sets have the same
size q def= |Qi| = q′

k+1 = Θ(q′) for every i ∈ {0, . . . , k}. Moreover, we can also assume that no
vertex is queried twice, i.e. that all Qi’s are disjoint.

I Lemma 22.
∣∣PrG∼Y

[
T G accepts

]
− PrG∼N

[
T G accepts

]∣∣ ≤ 1
10 .

Proof. For j ∈ {0, . . . , k}, define by Yj and Nj the distribution of (A0, . . . , Aj) when G ∼ Y
and when G ∼ N , respectively. We shall prove that dTV(Yk, Nk) ≤ 1

10 , which by the data
processing inequality will imply the claim of Lemma 22.

The high-level idea is that in each round, the tester can either query “fresh” vertices,
of which it has no prior information, or query the boundaries (i.e., the direct neighbors) of
previously queried vertices. Then, loosely speaking we can argue that, on the one hand, if
the total number of queries is o(

√
n), then both for graphs in Y and N all queries of “fresh”

vertices (obtained during all rounds) with high probability would only fall into previously
unattained disjoint cycles, in which case the answer would be a uniform sequence of “fresh”
labels. On the other hand, the local view obtained by querying the boundary, using at most
k rounds of adaptive queries, of each vertex previously obtained via a “fresh” query (which
by the above lies in a cycle wherein the tester has no information of the labels of the other
vertices participating in this cycle) is isomorphic to the tail graph over fresh labels, both for
instances taken from Y and N (that is, we do not have enough adaptive queries to observe a
full cycle). The foregoing intuition is formalized below.
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For i ∈ {0, . . . , k}, define

Sf
i

def= Qi \ ∪i−1
j=0Aj

Sb
i

def= Qi ∩ ∪i−1
j=0Aj

to be, respectively, the set of “entirely fresh” nodes queried at round i (that is, nodes that
are not neighbors of any previously queried node), and the set of “boundary nodes” (which
are the not-yet-queried nodes neighbors of a previously queried node).

First, we bound the probability that any of the q′ queries made “hits” the set of discon-
nected nodes:

I Claim 23. Let E1(G) denote the event that T queries an isolated vertex of G, that is
E1(G) def= {∃i, v s.t. v ∈ Qi, deg(v) = 0}. Then PrG∼Y [E1(G) ] ,PrG∼N [E1(G) ] = o(1).

Proof. This follows by induction: at step i, conditioned on no isolated node having been
queried yet, the algorithm has degree information about

∣∣∪i−1
j=0Qj

⋃
∪i−1
j=0Aj

∣∣ ≤∑i−1
j=0 |Qj |+∑i−1

j=0 |Aj | ≤ 3q · i nodes, so there remain at least n − 3kq nodes on which the algorithm
has no degree information at all. Among these, there are n − (2k + 4)` ≤ (2k + 4) (or
n − (2k + 3)`′ ≤ (2k + 3), in the no-case) isolated nodes. By symmetry, this means that
in the new batch of q queries, the algorithm will query one of these isolated nodes with
probability at most 1−

(
1− (2k+4)

n−3kq−(2k+4)

)q
= 1−

(
1− O(1)

n

)q
= O

(
q
n

)
= o(1). Therefore,

overall there will be an isolated node queried with probability at most k · o(1) = o(1). J

Next, we argue that at each step, with overwhelming probability all the “fresh nodes”
queried fall in distinct cycles, which have not been attained yet.

I Claim 24. Let E2(G) denote the event that at some round i, one of the queries in Sf
i belongs

to the same cycle (either a (2k+4)- or a (2k+3)-cycle, depending on whether the graph is drawn
from Y or N ) as one of the previous queries

⋃i−1
j=0Qj . Then PrG∼Y [E2(G) ] ,PrG∼N [E2(G) ] =

o(1).

Proof. We will show that PrG∼Y [E2(G) ] = o(1); the no-case is similar. For i ∈ {1, . . . , k},
let E(i)

2 (G) denote the event that at some round i, one of the queries in Sf
i belongs to the

same cycle as a previous query, so that E2(G) =
⋃k
i=1E

(i)
2 (G).

Note that since |
⋃i−1
j=0Qj | = iq, we have |

⋃i−1
j=0Aj | ≤ 2iq (and the number of distinct

cycles reached is at most |
⋃i−1
j=0Qj |). Therefore, at round i each of the at most q distinct

queries in Sf
i falls independently in a previously visited cycle with probability upper bounded

by

iq · (2k + 4)
n− 3iq ≤ kq · (2k + 4)

n− 3kq ≤ 2k2q

n

recalling that q = o(n) and k = O(1). A union bound over all at most q queries of Sf
i , and then

over the k rounds then shows that PrG∼Y [E2(G) ] ≤ 2k3q2

n = o(1) (since q = o(
√
n)). J

To conclude the proof, note that by the above, with probability 1− o(1) neither E1 nor
E2 occurs; that is, none of the isolated vertices was queried, and all the “fresh” queries
(during all rounds ) fell in previously unattained distinct cycles. In this case, at each round
of adaptivity the algorithm can at most discover two new nodes out of every cycle it reached
before (by including the one or two end nodes of the current “discovered portion” into Sb

i ).
Therefore, on any cycle ever reached, the (k, q)-round-adaptive testing algorithm can observe
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at most 2k + 2 nodes (which then form a consecutive path). We show that this implies
that the algorithm cannot distinguish between a no-instance and a yes-instance, as loosely
speaking, in both cases its local view is of a tail graph over uniformly distributed fresh labels,
and so it is unable to determine whether it belongs to a cycle of length 2k + 3 or 2k + 4.

To make the argument more precise, we will actually show a stronger statement; namely,
we show that, conditioning on neither E1 nor E2 occuring, a simulator with no access to the
graph can answer the queries of the testing algorithm in a way that is indistinguishable from
the tuple of answers obtained from querying a graph distributed according to either Y or N .
This simulator operates as follows: at round i,
1. Order (arbitrarily) all the nodes of Qi: v1, . . . , vq, and initialize the set of available-to-

sample nodes U ← V \
(
Qi ∪

⋃i−1
j=0Qj ∪

⋃i−1
j=0Aj

)
.

2. Do sequentially the following, for s = 1 . . . q:
if vs ∈ Sf

i (fresh node: no previous neighbors known), pick uniformly at random two
distinct nodes u, u′ in Us and return them as answers (i.e., declare them as neighbors
of vs);
otherwise, vs ∈ Sb

i (boundary node: exactly one already known neighbor, call it u):
pick uniformly at random one other node u′ in Us, and return (u, u′) as answers;
update U by removing u, u′: U ← U \ {u, u′}

It is straightforward to verify that, since we conditioned on E1 and E2, this simulates exactly
the same distribution over nodes (over the choice of G); since this is the same both for Y and
N , we get that dTV

(
(Yk | E1 ∪ E2)), (Nk | E1 ∪ E2))

)
= 0, which combined with Claim 23

and Claim 24 finishes the proof. J

This concludes the proof of Lemma 20. J

6 Some Miscellaneous Remarks

In this section we discuss adaptivity round reductions, as well as a connection to commu-
nication complexity, and the relation between round and tail adaptivity. Specifically, in
Section 6.1 we show how to simulate k rounds of adaptivity via k − 1 rounds (at the cost of
an increase in query complexity). In Section 6.2 we extend the communication complexity
methodology for proving property testing lower bounds [9] to k-round adaptive testers, then
sketch an alternative proof of item (2) of Theorem 5 using it; and show how it can also
be leveraged to prove a hierarchy of lower bounds on the power of k-adaptive testers for a
fundamental class of Boolean functions. Finally, in Section 6.3 we show a separation between
the power of round-adaptive and tail-adaptive testers.

6.1 On Simulating k Rounds With Fewer
As mentioned in the beginning of Section 5, in the Boolean setting any adaptive property
testing algorithm can be simulated non-adaptively with only an exponential blowup in the
query complexity. Phrased differently, this implies that any property of Boolean functions
which admits a (k, q)-round-adaptive tester also has a (0, 2q − 1)-round-adaptive tester.

This begs the following more general question: let P =
⋃
n Pn be a property of Boolean

functions, such that there exists a (k, q)-round-adaptive tester for P. For ` < k, what upper
bound can we obtain on the query complexity q′ of the best (`, q′)-round-adaptive tester for
P?

Denoting by q` this query complexity, the above discussion immediately implies:
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I Fact 25. For any 0 ≤ ` ≤ k, one has qk ≤ q` ≤ 2qk − 1.

In what follows, we provide a example of a more fine-grained version of this fact, in the
case when ` = k − 1 (that is, one wishes to reduce the number of rounds of adaptivity by
one).

I Proposition 26. For any 0 < k, one has qk ≤ qk−1 ≤ qk(1 + 2
qk
k ).

Proof. Let Tk be a (k, q)-round-adaptive tester for P , which can be viewed as a distribution
over deterministic algorithms. Thus, it is sufficient to explain how to simulate any determin-
istic algorithm with k rounds of adaptivity by one with ` rounds. Fix such a (k, q)-round
deterministic algorithm: this can be seen equivalently as a depth-(k + 1) binary tree, where
each internal node v is labeled by the set of queries Qv made at that stage, and the leaves are
either accept or reject. By assumption, we have that on each path (v0, v1, . . . , vk, v

∗) from
the root to a leaf,

∑k
j=0

∣∣Qvj ∣∣ ≤ q; moreover, one can assume without loss of generality that
this is an equality.

The idea is then to contract, on any path, two consecutive nodes as follows: instead of
querying Qvj , receiving the answers, and then querying the (adaptively chosen) set Qvj+1 ,
one can idea query simultaneously Qvj and the union of all possible sets Qvj+1 : since the
latter depends only on the previous queries, and the only unknown answers are those to the
queries in Qvj , there are at most 2|Qvj | possibilities for Qvj+1 . As clearly no matter what
Qvj+1 would be, its size is at most q, the set Q′i = Qvj ∪

⋃
Q : possible Qvj+1

Q queried has size

at most
∣∣Qvj ∣∣+ q2|Qvj |. Thus, by contradicting the two rounds i and i+ 1, one incurs an

additional number of queries upper bounded by q2|Qvj | −
∣∣Qvj+1

∣∣ ≤ q2|Qvj |
By an averaging argument, since on every such path we have

∑k
j=0

∣∣Qvj ∣∣ = q, there
must exist an index j∗ such that

∣∣Qvj∗ ∣∣ ≤ q
k+1 . Since we would like to “contract” rounds

j∗ and j∗ + 1 into a single round, we additionally want to ensure j∗ < k. But similarly, as∑k−1
j=0

∣∣Qvj ∣∣ ≤ q there exists i∗ such that |Qvi∗ | ≤
q
k . We then get an index i∗ < k (which

depends on the path taken down the tree) to which we can apply the above transformation.
That is, whenever the deterministic algorithm is executed it will reach an index i∗ < k where
it should make |Qvi∗ | ≤

q
k queries. At that point, it makes instead these queries, along with

all queries this should have triggered at the next round, and thus is able to skip round i∗ + 1
at the price of an additional (at most) q2

q
k queries. J

I Remark. Note that in the above proof, while one can assume without loss of generality
that the algorithm always makes exactly q queries, one cannot however assume that for any
two such paths (v0, v1, . . . , vk, v

∗) and (u0, u1, . . . , uk, u
∗),
∣∣Qvj ∣∣ =

∣∣Quj ∣∣ for all 0 ≤ j ≤ k.
That is, the number of queries made in round j may not be the same depending on the path
followed down by the algorithm, but instead depend adaptively on the previous queries made.

The above remark shows the difficulty in extending the proof of Proposition 26 further
than a single round. If one is willing to assume that the number of queries at each round is
non-adaptive, it becomes possible to obtain a more general statement for 0 ≤ ` < k; however,
it is unclear how to proceed without this extra assumption, leading to the following question:

I Open Problem 3. Can one obtain a general round-reduction upper bound for 0 ≤ ` < k

of the form q` ≤ φ(qk, `, k), improving on Fact 25 for ` > 0?

6.2 On the Connection with Communication Complexity
As exemplified in the proof of Lemma 8, there exists a striking parallel between the notion
of k-round-adaptive testing algorithms, and that of k-round protocols in communication
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complexity. In this section, we make this parallel rigorous, and give a blackbox reduction
between the two that one can leverage to establish lower bounds on k-round-adaptive testing.

In more detail, we build on the communication complexity methodology for proving
property testing lower bounds due to [9] (more precisely, to the general formulation of this
methodology as laid out in [19]). Although the results stated there hold for non-adaptive
lower bounds (in the case of one-way communication or simultaneous message passing) or
fully adaptive lower bounds in property testing (in the case of two-way communication), it is
easy to obtain their counterpart for k-round-adaptive, given in Theorem 27 below. But first,
we need to recall some notations.

In what follows, for a property P, integer k, and parameters ε, δ ∈ [0, 1], we write
Q

(k)
δ (ε,P) for the minimum query complexity of any k-round-adaptive tester for P with

error probability δ and distance parameter ε. Given a communication complexity predicate
F , we let CC(k)

δ (F ), −→CCδ(F ), and ←−CCδ(F ) denote respectively the minimum communication
complexity of a public-coin protocol for F with error δ in (i) k-rounds, (ii) one-way from
Alice to Bob, and (iii) one-way from Bob to Alice, respectively (note that the case δ = 0
then corresponds to protocols with perfect completeness).

I Theorem 27. Let Ψ = (P, S) be a promise problem such that P, S ⊆ {0, 1}2n, P ⊆ {0, 1}`
be a property, and ε, δ > 0. Suppose the mapping F : {0, 1}2n → {0, 1}` satisfies the following
two conditions:
1. for every (x, y) ∈ P ∩ S, it holds that F (x, y) ∈ P;
2. for every (x, y) ∈ P \ S, it holds that F (x, y) is ε-far from P.
Then Q

(k)
δ (ε,P) ≥ 1

B+1 CC(k+2)
2δ (Ψ), where B def= maxi∈[`] max(−→CC δ

n
(Fi),

←−CC δ
n

(Fi)) (and

Fi(x, y) is the i’th bit of F (x, y)). Moreover, if B′ def= maxi∈[`] max(−→CC0(Fi),
←−CC0(Fi)), then

Q
(k)
δ (ε,P) ≥ 1

B′+1 CC(k+2)
δ (Ψ).

Proof. The proof will be identical to that of [19, Theorem 3.1], where we only need to check
that Alice and Bob can each simulate the execution of the property testing algorithm (using
their public random coins), answering the queries made to F (x, y) while preserving the
number of rounds. Running the testing algorithm, Alice first sends the bits allowing Bob to
compute the answers to the first q0 queries, using her input x and the one-way protocols
for the relevant Fi’s. Bob then answers with the q0 bits corresponding to the answers he
computed, as well as the bits allowing Alice to compute the answers to the next q1 queries
made by the tester, using now his input y and the one-way protocols for the relevant Fi’s.
They do so for k + 1 rounds of communication in total, until the last player to receive a
message gets from the other player both the answers to the queries in Qk−1 as well as the
bits needed to compute (given their own input) the answers to the last qk queries. At that
point, it only remains to use a last round of communication (the (k + 2)’nd) to communicate
to the other player the answers to these last qk queries, so that both Alice and Bob can finish
running their copy of the testing algorithm and know the answer.

Note that the number of bits communicated at round 1 ≤ i ≤ k + 2 is by definition of B
(resp. B′) at most B · qi−1 + qi−2 (resp. B′ · qi−1 + qi−2), so that at most (B + 1)q (resp.
(B′ + 1)q) bits are communicated in total. This concludes the proof. J

To illustrate the above methodology, we show how it can be leveraged to prove a hierarchy
of lower bounds on the power of k-adaptive testers for testing a very fundamental class of
Boolean functions, that of m-linear functions.9

9 We observe that establishing the upper bound counterpart to this result would provide an answer to
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I Proposition 28. Let PARns ⊆ 22n denote the class of parities of size s (over n variables),
and fix m def=

√
n

2 . Then, for any 0 ≤ k ≤ log∗m − 2, any (k, q)-round-adaptive tester for
PARn2m must satisfy q = Ω

(
m log(k+2)m

)
.

Proof. We will rely on a result of Sağlam and Tardos [37], which implies the following (tight)
lower bound on the communication complexity of sparse set-disjointness (DISJnm, where both
inputs x, y ∈ {0, 1}n are promised to have Hamming weight m):

I Theorem (Corollary of [37, Theorem 4]). For any 1 ≤ k ≤ log∗m, any k-round probab-
ilistic protocol for DISJ4m2

m with error probability at most 1/3 must have communication
Ω
(
m log(k)m

)
.

It then suffices to provide a reduction from DISJ4m2

m to testing PAR4m2

2m . We follow the known
reduction, as can be found in [9, 14]. Namely, on input x ∈ {0, 1}n (resp. y ∈ {0, 1}n), Alice
(resp. Bob) forms the parity function χx (resp. χy). As |x⊕ y| = |x| + |y| − 2 |x ∩ y| =
2m− 2 |x ∩ y|, the function χx⊕y is a 2(m− |x ∩ y|)-parity. Moreover, as for any z ∈ {0, 1}n
we have χx⊕y(z) = χx(z)⊕ χy(z), each query can be answered (with zero error) by one bit
of communication in either direction.

Put in the language of our reduction theorem, Ψ = (P, S) with P = {u ∈ {0, 1}n :
|u| = m}2 and S = { (x, y) ∈ P : |x ∩ y| 6= 0 }; while ` = 2n, P = PARn2m ⊆ 2`; and
F : {0, 1}2n → {0, 1}` maps (x, y) to the truth table of χx⊕y. Since any two distinct parities
are at distance 1

2 , we can take any ε ≤ 1
2 . We then have B′ = 1, and by the theorem above we

know that CC(k+2)
1/3 (Ψ) = Ω

(
m log(k+2)m

)
for any 0 ≤ k ≤ log∗m− 2. Invoking Theorem 27

concludes the proof. J

We also outline below how Theorem 27 enables us to establish directly the lower bound
part of Theorem 5, without relying on the transference theorem for LDTs.

Alternate proof of item (2) of Theorem 5. We start from the same communication com-
plexity problem, “pointer-following,” as in Section 4.3. Recall that an input to this problem
is a pair of mappings (χA, χB) with χA : VA → VB, χB : VB → VA (where VA, VB are two
disjoint sets {v0, . . . , vn/2−1} and {vn/2, . . . , vn−1} of nodes of cardinality n/2). The function
to compute is the indicator of the event where the vertex vi = χ(k+2)(v0), reached by following
the path of length k + 2 starting at v0, has an even index i.

We define Ψ = (P, S) by setting P def= { (χA, χB) : χA : VA → VB , χB : VB → VA } and
S

def=
{

(χA, χB) ∈ P : χ(k+2)(v0) is an even-index node
}
. The property is, as in The-

orem 5, the subset of codewords Cfk+1 corresponding to the function fk+1 : Fnn → {0, 1} of
Section 4 (for a good code C : Fnn → Fmn as in Section 4.4.2).

Identifying V def= VA ∪ VB = {v0, . . . , vn−1} with Fn in the natural way, we define the
mapping F : P → Fnn by

F (χA, χB) = (χA(v0), χA(v1) . . . , χA(n/2− 1), χB(n/2), . . . , χB(n− 1)).

From there, it is easy to check that by construction, (i) (χA, χB) ∈ P ∩S implies F (χA, χB) ∈
Cfk+1 , while (ii) (χA, χB) ∈ P \ S implies that F (χA, χB) is ε0-far from Cfk+1 , for some con-
stant ε0 > 0 depending on the code C. Observing thatB′ def= maxi∈[`] max(−→CC0(Fi),

←−CC0(Fi)) =

Open Problem 1, although one rather weak quantitatively. It also, as a special case, would separate
adaptive and non-adaptive testing of m-linearity for m = o(n), a longstanding open question [10, 6].
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O(logn) (as each Fi is specified by O(logn) bits), we can invoke Theorem 27 along with
the communication complexity lower bound of Theorem 9 to obtain that Q(k)

1/3(ε0, Cfk+1) ≥
1

B′+1 CC(k+2)
1/3 (Ψ) = Ω

(
n

k2 logn

)
. J

6.3 On the Relative Power of Round-Adaptive and Tail-Adaptive
Testers

In this section, we show that the two notions of round- and tail-adaptive testers we introduced
are not equivalent. As mentioned in Section 3, while round-adaptive testers are at least as
powerful as tail-adaptive ones, there exist properties for which the separation is strict:

I Theorem 29. Fix any α ∈ (0, 1). There exists a constant β ∈ (0, 1) such that, for every
n ∈ N, the following holds. For every integer 0 ≤ k ≤ nβ, there exists a property Pk ⊆ Fn1+α

n

such that, for any constant ε ∈ (0, 1],
1. there exists a (k, Õ(k))-round-adaptive (one-sided) tester for Pk; yet
2. any (k, q)-tail-adaptive (two-sided) tester for Pk must satisfy q = Ω(n).

Proof Sketch. The argument is very similar to that of Theorem 5, and follows the same
overall structure. Namely, we slightly modify the k-iterated function fk of Section 4 (which
was computable by a (k, k + 1)-tail-adaptive algorithm) to rule out tail-adaptive algorithms
but not round-adaptive ones: that is, we define the function f ′k : Fnn → Fn by

f ′k(x) =
{

1 if xx,gk−1(x) = xx,gk−1(x)+1 mod n

0 otherwise.

(Perhaps more clearly, f ′k is computed by iterating the pointer function k times, and then
checking if the value xi at the final coordinate i ∈ [n] reached, and the value xi+1 at the
adjacent coordinate i+ 1, are equal.) It is not hard to see that the counterparts of Claim 7
and Lemma 8 still hold for f ′k: first, the function is still easy to compute by (k, k + 2)-round-
adaptive algorithms. However, because the very last round requires 2 queries and not one
(to query xi and xi+1, once the value of i = gk−1(x) has been obtained), tail-round-adaptive
algorithms are no longer able to leverage this, and analogously to Lemma 8 we can conclude
that there is no (k, o(n/(k2 logn)))-round-adaptive (randomized) LDT algorithm which
computes f ′k. It then only remains to lift this DT separation to property testing: we can do
this as before (noting, in the case of lifting the lower bound, that the reduction of Lemma 14
preserves the number of queries per round, and thus the “tailness” of the algorithm). J
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Abstract
We present a new methodology for proving distribution testing lower bounds, establishing a
connection between distribution testing and the simultaneous message passing (SMP) commu-
nication model. Extending the framework of Blais, Brody, and Matulef [15], we show a simple
way to reduce (private-coin) SMP problems to distribution testing problems. This method allows
us to prove new distribution testing lower bounds, as well as to provide simple proofs of known
lower bounds.

Our main result is concerned with testing identity to a specific distribution p, given as a
parameter. In a recent and influential work, Valiant and Valiant [53] showed that the sample
complexity of the aforementioned problem is closely related to the `2/3-quasinorm of p. We obtain
alternative bounds on the complexity of this problem in terms of an arguably more intuitive
measure and using simpler proofs. More specifically, we prove that the sample complexity is
essentially determined by a fundamental operator in the theory of interpolation of Banach spaces,
known as Peetre’s K-functional. We show that this quantity is closely related to the size of the
effective support of p (loosely speaking, the number of supported elements that constitute the
vast majority of the mass of p). This result, in turn, stems from an unexpected connection to
functional analysis and refined concentration of measure inequalities, which arise naturally in our
reduction.
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1 Introduction

Distribution testing, as first explicitly introduced in [9], is a branch of property testing [48, 31]
concerned with the study of sublinear algorithms for making approximate decisions regarding
probability distributions over massive domains. These algorithms are granted access to
independent samples from an unknown distribution and are required to test whether this
distribution has a certain global property. That is, a tester for property Π of distributions
over domain Ω receives a proximity parameter ε > 0 and is asked to determine whether a
distribution p over Ω (denoted p ∈ ∆(Ω)) has the property Π or is ε-far (say, in `1-distance)
from any distribution that has Π, using a small number of independent samples from p. The
sample complexity of Π is then the minimal number of samples needed to test it. Throughout

© Eric Blais, Clément L. Canonne, and Tom Gur;
licensed under Creative Commons License CC-BY

32nd Computational Complexity Conference (CCC 2017).
Editor: Ryan O’Donnell; Article No. 28; pp. 28:1–28:40

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CCC.2017.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


28:2 Distribution Testing Lower Bounds via Reductions from Communication Complexity

the introduction, we fix ε to be small constant and refer to a tester with respect to proximity
parameter ε as an ε-tester.

In recent years, distribution testing has been studied extensively. In a significant body of
work spanning more than a decade [8, 41, 7, 42, 2, 14, 37, 53, 23, 56, 36, 13, 25], a myriad of
properties has been investigated under this lens. Starting with [32, 10, 8], this includes the
testing of symmetric properties [45, 54, 51, 52], of structured families [11, 35, 3, 17, 4, 20, 19],
as well as testing under some assumption on the unknown instance [47, 24, 27, 26]. Tight
upper and lower bounds on the sample complexity have been obtained for properties such as
uniformity, identity to a specified distribution, monotonicity, and many more (see references
above, or [46, 18] for surveys). However, while by now numerous techniques and approaches
are available to design distribution testers, our arsenal of tools for proving lower bounds on
the sample complexity of distribution testing is significantly more limited. There are only
a handful of standard techniques to prove lower bounds; and indeed the vast majority of
the lower bounds in the literature are shown via Le Cam’s two-point method (also known as
the “easy direction” of Yao’s minimax principle) [57, 44]. In this method, one first defines
two distributions Y and N over distributions that are respectively yes-instances (having
the property) and no-instances (far from having the property). Then it remains to show
that with high probability over the choice of the instance, every tester that can distinguish
between pyes ∼ Y and pno ∼ N must use at least a certain number of samples. In view of this
scarcity, there has been in recent years a trend towards trying to obtain more, or simpler to
use, techniques [54, 25]; however, this state of affairs largely remains the same.

In this work, we reveal a connection between distribution testing and the simultaneous
message passing (SMP) communication model, which in turn leads to a new methodology for
proving distribution testing lower bounds. Recall that in a private-coin SMP protocol, Alice
and Bob are given strings x, y ∈ {0, 1}k (respectively), and each of the players is allowed to
send a message to a referee (which depends on the player’s input and private randomness)
who is then required to decide whether f(x, y) = 1 by only looking at the players’ messages
and flipping coins.

Extending the framework of Blais, Brody, and Matulef [15], we show a simple way of
reducing (private-coin) SMP problems to distribution testing problems. This foregoing
methodology allows us to prove new distribution testing lower bounds, as well as to provide
simpler proofs of known lower bounds for problems such as testing uniformity, monotonicity,
and k-modality (see Section 8).

Our main result is a characterization of the sample complexity of the distribution identity
testing problem in terms of a key operator in the study of interpolation spaces, which arises
naturally from our reduction and for which we are able to provide an intuitive interpretation.
Recall that in this problem, the goal is to determine whether a distribution q over domain
Ω (denoted q ∈ ∆(Ω)) is identical to a fixed distribution p; that is, given a full description
of p ∈ ∆(Ω), we ask how many independent samples from q are needed to decide whether
q = p, or whether q is ε-far in `1-distance from p.1

In a recent and influential work, Valiant and Valiant [53] showed that the sample
complexity of the foregoing question is closely related to the `2/3-quasinorm of p, defined
as ‖p‖2/3 =

(∑
ω∈Ω |p(ω)|2/3

)3/2. That is, viewing a distribution p ∈ ∆(Ω) as an |Ω|-
dimensional vector of probabilities, let p−max

−ε be the vector obtained from p by zeroing

1 Note that this is in fact a family of massively parameterized properties {Πp}p∈∆(Ω), where Πp is the
property of being identical to p. See [39] for an excellent survey concerning massively parameterized
properties.
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Table 1 Summary of results. All the bounds are stated for constant proximity parameter ε.

Property Our results Previous bounds

Uniformity Ω̃(
√
n) Θ(

√
n) [32, 42]

Identity to p Ω
(
κ−1
p (1− ε)

)
, O
(
κ−1
p (1− c · ε)

)
Ω
(
‖p−max
ε ‖2/3

)
, O
(
‖p−max
c′·ε ‖2/3

)
[53]

Monotonicity Ω̃(
√
n) Θ(

√
n) [11, 4, 20]

k-modal Ω̃(
√
n) Ω̃(max(

√
n, k)) [19]

Log-concavity, Monotone
Hazard Rate Ω̃(

√
n) Θ(

√
n) [4, 20]

Binomial, Poisson Binomial Ω̃
(
n1/4) Θ

(
n1/4) ([3, 20]

Symmetric sparse support Ω̃(
√
n)

Junta distributions
(PAIRCOND model) Ω(k)

out the largest entry as well as the set of smallest entries summing to ε (note that p−max
−ε

is no longer a probability distribution). Valiant and Valiant gave an ε-tester for testing
identity to p with sample complexity O

(
‖p−max
−cε ‖2/3

)
, where c > 0 is a universal constant,

and complemented this result with a lower bound of Ω
(
‖p−max
−ε ‖2/3

)
.2

In this work, using our new methodology, we show alternative and similarly tight bounds
on the complexity of identity testing, in terms of a more intuitive measure (as we discuss below)
and using simpler arguments. Specifically, we prove that the sample complexity is essentially
determined by a fundamental quantity in the theory of interpolation of Banach spaces, known
as Peetre’s K-functional. Formally, for a distribution p ∈ ∆(Ω), the K-functional between `1
and `2 spaces is the operator defined for t > 0 by

κp(t) = inf
p′+p′′=p

‖p′‖1 + t‖p′′‖2.

This operator can be thought of as an interpolation norm between the `1 and `2 norms
of the distribution p (controlled by the parameter t), naturally inducing a partition of p into
two sub-distributions: p′, which consists of “heavy hitters” in `1-norm, and p′′, which has a
bounded `2-norm. Indeed, the approach of isolating elements with large mass and testing in
`2-norm seems inherent to the problem of identity testing, and is the core component of both
early works [32, 8] and more recent ones [27, 25, 30]. As a further connection to the identity
testing question, we provide an easily interpretable proxy for this measure κp, showing that
the K-functional between the `1 and `2 norms of the distribution p is closely related to the
size of the effective support of p, which is the number of supported elements that constitute
the vast majority of the mass of p; that is, we say that p has ε-effective support of size T if
1−O(ε) of the mass of p is concentrated on T elements (see Section 2.4 for details).

Having defined the K-functional, we can proceed to state the lower bound we derive for
the problem.3

2 We remark that for certain p’s, the asymptotic behavior of O
(
‖p−max
−cε ‖2/3

)
strongly depends on the

constant c, and so it cannot be omitted from the expression. We further remark that this result was
referred to by Valiant and Valiant as “instance-optimal identity testing” as the resulting bounds are
phrased as a function of the distribution p itself – instead of the standard parameter which is the domain
size n.

3 As stated, this result is a slight strengthening of our communication complexity reduction, which yields
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I Theorem 1 (Informally stated). Any ε-tester of identity to p ∈ ∆(Ω) must have sample
complexity Ω

(
κ−1
p (1− 2ε)

)
.

In particular, straightforward calculations show that for the uniform distribution we obtain
a tight lower bound of Ω(

√
n), and for the Binomial distribution we obtain a tight lower

bound of Ω
(
n1/4).

To show that tightness of the lower bound above, we complement it with a nearly matching
upper bound, also expressed in terms of the K-functional.

I Theorem 2 (Informally stated). There exist an absolute constant c > 0 and an ε-tester of
identity to p ∈ ∆(Ω) that uses O

(
κ−1
p (1− cε)

)
mples.4

In the following section, we provide an overview of our new methodology as well as the
proofs for the above theorems. We also further discuss the interpretability of the K-functional
and show its close connection to the effective support size. We conclude this section by
outlining a couple of extensions of our methodology.

Dealing with sub-constant values of the proximity parameter. Similarly to the commu-
nication complexity methodology for proving property testing lower bounds [15], our method
inherently excels in the regime of constant values of the proximity parameter ε. Therefore,
in this work we indeed focus on the constant proximity regime. However, in Section 5.1 we
demonstrate how to obtain lower bounds that asymptotically increase as ε tends to zero, via
an extension of our general reduction.

Extending the methodology to testing with conditional samples. Testers with sample
access are by far the most commonly studied algorithms for distribution testing. However,
many scenarios that arise both in theory and practice are not fully captured by this model.
In a recent line of works [22, 21, 1, 28, 29], testers with access to conditional samples were
considered, addressing situations in which one can control the samples that are obtained
by requesting samples conditioned on membership on subsets of the domain. In Section 9,
we give an example showing that it is possible to extend our methodology to obtain lower
bounds in the conditional sampling model.

1.1 Organization
We first give a technical overview in Section 2, demonstrating the new methodology and
presenting our bounds on identity testing. Section 3 then provides the required preliminaries
for the main technical sections. In Section 4 we formally state and analyze the SMP reduction
methodology for proving distribution testing lower bounds. In Section 5, we instantiate the
basic reduction, obtaining a lower bound on uniformity testing, and in Section 5.1 show how
to extend the methodology to deal with sub-constant values of the proximity parameter. (We
stress that Section 5.1 is not a prerequisite for the rest of the sections, and can be skipped at
the reader’s convenience.) In Section 6 we provide an exposition to the K-functional and
generalize inequalities that we shall need for the following sections. Section 7 then contains
the proofs of both lower and upper bounds on the problem of identity testing, in terms of

a lower bound of Ω
(
κ−1
p (1− 2ε)/ logn

)
. This strengthening is described in Section 7.3.

4 Similarly to the [53] bound, for certain p’s, the asymptotic behavior of O
(
κ−1
p (1− 2ε)

)
depends on the

constant c, and so it cannot be omitted from the expressi
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the K-functional. In Section 8, we demonstrate how to easily obtain lower bounds for other
distribution testing problems. Finally, in Section 9 we discuss extensions to our methodology;
specifically, we explain how to obtain lower bounds in various metrics, and show a reduction
from communication complexity to distribution testing in the conditional sampling model.

2 Technical Overview

In this section we provide an overview of the proof of our main result, which consists of new
lower and upper bounds on the sample complexity of testing identity to a given distribution,
expressed in terms of an intuitive, easily interpretable measure. To do so, we first introduce
the key component of this proof, the methodology for proving lower bounds on distribution
testing problems via reductions from SMP communication complexity. We then explain how
the relation to the theory of interpolation spaces and the so-called K-functional naturally
arises when applying this methodology to the identity testing problem.

For the sake of simplicity, throughout the overview we fix the domain Ω = [n] and fix the
proximity parameter ε to be a small constant. We begin in Section 2.1 by describing a simple
“vanilla” reduction for showing an Ω̃(

√
n) lower bound on the complexity of testing that a

distribution is uniform. Then, in Section 2.2 we extend the foregoing approach to obtain a
new lower bound on the problem of testing identity to a fixed distribution. This lower bound
depends on the best rate obtainable by a special type of error-correcting codes, which we
call p-weighted codes. In Section 2.3, we show how to relate the construction of such codes to
concentration of measure inequalities for weighted sums of Rademacher random variables;
furthermore, we discuss how the use of the K-functional, an interpolation norm between `1
and `2 spaces, leads to stronger concentration inequalities than the ones derived by Chernoff
bounds or the central limit theorem. Finally, in Section 2.4 we establish nearly matching
upper bounds for testing distribution identity in terms of this K-functional, using a proxy
known as the Q-norm. We then infer that the sample complexity of testing identity to a
distribution p is roughly determined by the size of the effective support of p (which is, loosely
speaking, the number of supported elements which together account for the vast majority of
the mass of p).

2.1 Warmup: Uniformity Testing
Consider the problem of testing whether a distribution q ∈ ∆([n]) is the uniform distribution;
that is, how many (independent) samples from q are needed to decide whether q is the
uniform distribution over [n], or whether q is ε-far in `1-distance from it. We reduce the
SMP communication complexity problem of equality to the distribution testing problem of
uniformity testing.

Recall that in a private-coin SMP protocol for equality, Alice and Bob are given strings
x, y ∈ {0, 1}k (respectively), and each of the players is allowed to send a message to a referee
(which depends on the player’s input and private randomness) who is then required to decide
whether x = y by only looking at the players’ messages and flipping coins.

The reduction is as follows. Assume there exists a uniformity tester with sample complexity
s. Each of the players encodes its input string via a balanced asymptotically good code
C (that is, C : {0, 1}k → {0, 1}n is an error-correcting code with constant rate and relative
distance δ = Ω(1), which satisfies the property that each codeword of C contains the same
number of 0’s and 1’s). Denote by A ⊂ [n] the locations in which C(x) takes the value 1
(i.e., A = { i ∈ [n] : C(x)i = 1 }), and denote by B ⊂ [n] the locations in which C(y) takes
the value 0 (i.e., B = { i ∈ [n] : C(y)i = 0 }). Alice and Bob each send O(s) uniformly
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28:6 Distribution Testing Lower Bounds via Reductions from Communication Complexity

Figure 1 The reduction from equality in the SMP model to uniformity testing of distributions.
In (A) we see that the uniform distribution is obtained when x = y, whereas in (B) we see that
when x 6= y, we obtain a distribution that is “far” from uniform.

distributed samples from A and B, respectively. Finally, the referee invokes the uniformity
tester with respect to the distribution q = (UA + UB) /2, emulating each draw from q by
tossing a random coin and deciding accordingly whether to use a sample by Alice or Bob.
See Figure 1.

The idea is that if x = y, then C(x) = C(y), and so A and B are a partition of the set
[n]. Furthermore, since |C(x)| = |C(y)| = n/2, this is a equipartition. Now, since Alice and
Bob send uniform samples from an equipartition of [n], the distribution q that the referee
emulates is in fact the uniform distribution over [n], and so the uniformity tester will accept.
On the other hand, if x 6= y, then C(x) and C(y) disagree on a constant fraction of the
domain. Thus, A and B intersect on δ/2 elements, as well as do not cover δ/2. Therefore q is
uniform on a (1− δ)-fraction of the domain, unsupported on a (δ/2)-fraction of the domain,
and has “double” weight 2/n on the remaining (δ/2)-fraction. In particular, since δ = Ω(1),
the emulated distribution q is Ω(1)-far (in `1-distance) from uniform, and it will be rejected
by the uniformity tester.

As each sample sent by either Alice or Bob was encoded with O(logn) bits, the above
constitutes an SMP protocol for equality with communication complexity O(s log(n)). Yet it
is well known [40] that the players must communicate Ω(

√
k) bits to solve this problem (see

Section 4), and so we deduce that s = Ω(
√
k/ log(n)) = Ω̃(

√
n).
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2.2 Revisiting Distribution Identity Testing: A New Lower Bound

Next, consider the problem of testing whether a distribution q ∈ ∆([n]) is identical to a
fixed distribution p, provided as a (massive) parameter; that is, given a full description of
p ∈ ∆([n]), we ask how many independent samples from q are needed to decide whether q = p,
or whether q is ε-far in `1-distance from p. As mentioned earlier, Valiant and Valiant [53]
established both upper and lower bounds on this problem, involving the `2/3-quasinorm
of p. We revisit this question, and show different – and more interpretable – upper and
lower bounds. First, by applying our new communication complexity methodology to the
distribution identity problem, we obtain a simple lower bound expressed in terms of a new
parameter, which is closely related to the effective support size of p.

Consider any fixed p ∈ ∆([n]). As a first idea, it is tempting to reduce equality in the SMP
model to testing identity to p by following the uniformity reduction described in Section 2.1,
only instead of having Alice and Bob send uniform samples from A and B, respectively,
we have them send samples from p conditioned on membership in A and B respectively.
That is, as before Alice and Bob encode their inputs x and y via a balanced, asymptotically
good code C to obtain the sets A = { i ∈ [n] : C(x)i = 1 } and B = { i ∈ [n] : C(y)i = 0 },
which partition [n] if x = y, and intersect on Ω(n) elements (as well as fail to cover Ω(n)
elements of [n]) if x 6= y. Only now, Alice sends samples independently drawn from p|A, i.e.,
p conditioned on the samples belonging to A, and Bob sends samples independently drawn
from p|B, i.e., p conditioned on the samples belonging to B; and the referee emulates the
distribution q = (p|A + p|B)/2.

However, two problems arise in the foregoing approach. The first is that while indeed
when x = y the reduction induces an equipartition A,B of the domain, the resulting weights
p(A) and p(B) in the mixture may still be dramatically different, in which case the referee
will need much more samples from one of the parties to emulate p. The second is a bit more
subtle, and has to do with the fact that the properties of this partitioning are with respect to
the size of the symmetric difference A∆B, while really we are concerned about its mass under
the emulated distribution q (and although both are proportional to each other in the case of
the uniform distribution, for general p we have no such guarantee). Namely, when x 6= y the
domain elements which are responsible for the distance from p (that is, the elements which
are covered by both parties (A ∩B) and by neither of the parties ([n] \ (A ∪B)) may only
have a small mass according to p, and thus the emulated distribution q will not be sufficiently
far from p. A natural attempt to address these two problems would be to preprocess p by
discarding its light elements, focusing only on the part of the domain where p puts enough
mass pointwise; yet this approach can also be shown to fail, as in this case the reduction
may still not generate enough distance.5

Instead, we take a different route. The key idea is to consider a new type of codes, which
we call p-weighted codes, which will allow us to circumvent the second obstacle. These are
code whose distance guarantee is weighted according to the distribution p; that is, instead of
requiring that every two codewords c, c′ in a code C satisfy dist(x, y) def=

∑n
i=1 |xi − yi| ≥ δ,

5 In more detail, this approach would consider the distribution p′ obtained by iteratively removing
the lightest elements of p until a total of ε probability mass was removed. This way, every element
i in the support of p′ is guaranteed to have mass p′i ≥ ε/n: this implies that the weights p′(A)
and p′(B) are proportional, and that each element that is either covered by both parties or not
covered at all will contribute ε/n to the distance from p′. However, the total distance of q from p

would only be Ω
(
| supp

(
p′
)
| · ε/n

)
; and this only suffices if p and p′ have comparable support size,

i.e. | supp(p) | = O
(
| supp

(
p′
)
|
)
.
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28:8 Distribution Testing Lower Bounds via Reductions from Communication Complexity

we consider a code Cp : {0, 1}k → {0, 1}n such that every c, c′ ∈ Cp satisfy

distp(x, y) def=
n∑
i=1

p(i) · |xi − yi| ≥ δ.

Furthermore, to handle the first issue, we adapt the “balance” property accordingly, requiring
that each codeword be balanced according to p, that is, every c ∈ Cp satisfies

∑n
i=1 p(i) · ci =

1/2.
It is straightforward to see that if we invoke the above reduction while letting the parties

encode their inputs via a balance p-weighted code Cp, then both of the aforementioned
problems are resolved; that is, by the p-balance property the weights p(A) and p(B) are equal,
and by the p-distance of Cp we obtain that for x 6= y the distribution q = (pA + pB)/2 is
Ω(1)-far from p. Hence we obtain a lower bound of Ω

(√
k/ log(n)

)
on the query complexity

of testing identity to p. To complete the argument, it remains to construct such codes, and
determine what the best rate k/n that can be obtained by p-weighted codes is.

2.3 Detour: p-weighted Codes, Peetre’s K-functional, and beating the
CLT

The discussion of previous section left us with the task of constructing high-rate p-weighted
codes. Note that unlike standard (uniformly weighted) codes, for which we can easily obtain
constant rate, there exist some p’s for which high rate is impossible (for example, if p ∈ ∆([n])
is only supported on one element, we can only obtain rate 1/n). In particular, by the sphere
packing bound, every p-weighted code C : {0, 1}k → {0, 1}n with distance δ must satisfy

2k︸︷︷︸
#codewords

≤ 2n

VolFn2 ,distp(δ/2) ,

where VolFn2 ,distp(r) is the volume of the p-ball of radius r in the n-dimensional hypercube,
given by

VolFn2 ,distp(r) def=

∣∣∣∣∣
{
w ∈ Fn2 :

n∑
i=1

pi · wi ≤ r

}∣∣∣∣∣ .
Hence, we must have k ≤ n− log VolFn2 ,distp(δ/2).

In Section 7.1 we show that there exist (roughly) balanced p-weighted codes with nearly-
optimal rate,6 and so it remains to determine the volume of the p-ball of radius ε in the
n-dimensional hypercube, where recall that ε is the proximity parameter of the test. To this
end, it will be convenient to represent this quantity as a concentration inequality of sums of
weighted Rademacher random variables, as follows

VolFn2 ,distp(ε) = 2n Pr
Y∼{0,1}n

[
n∑
i=1

piYi ≤ ε

]
= 2n Pr

X∼{−1,1}n

[
n∑
i=1

piXi ≥ 1− 2ε
]
. (1)

Applying standard tail bounds derived from the central limit theorem (CLT), we have that

Pr
X∼{−1,1}n

[
n∑
i=1

piXi ≥ 1− 2ε
]
≤ e

−(1−2ε)2

2‖p‖2
2 , (2)

6 We remark that since these codes are not perfectly p-balanced, a minor modification to the reduction
needs to be done. See Section 7.1 for details.
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and so we can obtain a p-weighted code Cp : {0, 1}k → {0, 1}n with dimension k =
O(1/‖p‖22), which in turn, by the reduction described in Section 2.2, implies a lower bound
of Ω(1/(‖p‖2 · log(n))) on the complexity of testing identity to p.

Unfortunately, the above lower bound is not as strong as hoped, and in particular, far
weaker than the ‖p−max

−ε ‖2/3 bound of [53].7 Indeed, it turns out that the CLT-based bound
in Equation 2 is only tight for distributions satisfying ‖p‖∞ = O(‖p‖22), and is in general too
crude for our purposes. Instead, we look for stronger concentration of measure inequalities
that “beat” the CLT. To this end, we shall use powerful tools from the theory of interpolation
spaces. Specifically, we consider Peetre’s K-functional between `1 and `2 spaces. Loosely
speaking, this is the operator defined for t > 0 by

κp(t) = inf
p′+p′′=p

‖p′‖1 + t‖p′′‖2.8

This K-functional can be thought of as an interpolation norm between the `1 and `2 norms
of the distribution p (and accordingly, for any fixed t it defines a norm on the space `1 + `2).
In particular, note that for large values of t the function κp(t) is close to ‖p‖1, whereas for
small values of t it will behave like t‖p‖2.

The foregoing connection is due to Montgomery-Smith [38], who established the following
concentration of measure inequality for weighted sums of Rademacher random variables,

Pr
[

n∑
i=1

piXi ≥ κp(t)
]
≤ e− t

2
2 . (3)

Furthermore, he proved that this concentration bound is essentially tight (see Section 6 for
a precise statement). Plugging (3) into (1), we obtain a lower bound of Ω(κ−1

p (1−2ε)/ log(n))
on the complexity of testing identity to p.

To understand and complement this result, we describe in the next subsection a nearly
tight upper bound for this problem, also expressed in terms of this K-functional; implying
that this unexpected connection is in fact not a coincidence, but instead capturing an intrinsic
aspect of the identity testing question. We also give a natural interpretation of this bound,
showing that the size of the effective support of p (roughly, the number of supported elements
that constitute the vast majority of the mass of p) is a good proxy for this parameter
κ−1
p (1− 2ε) – and thus for the complexity of testing identity to p.

2.4 Using the Q-norm Proxy to Obtain an Upper Bound

To the end of obtaining an upper bound on the sample complexity of testing identity to p, in
terms of the K-functional, it will actually be convenient to look at a related quantity, known
as the Q-norm [38]. At a high-level, the Q-norm of a distribution p, for a given parameter
T ∈ N, is the maximum one can reach by partitioning the domain of p into T sets and taking

7 For example, fix α ∈ (0, 1), and consider the distribution p ∈ ∆([n]) in which n/2 elements are of mass
1/n, and nα/2 elements are of mass 1/nα. It is straightforward to verify that ‖p‖−1

2 = Θ
(
(
√
n)α
)
,

whereas ‖p‖2/3 = Θ
(√

n
)
. (Intuitively, this is because the `2-norm is mostly determined by the few

heavy elements, whereas the `2/3-quasinorm is mostly determined by the numerous light elements.)
8 Interestingly, Holmstedt [34] showed that the infimum is approximately obtained by partitioning
p = (p′, p′′) such that p′ consists of heaviest t2 coordinates of p and p′′ consists of the rest (for more
detail, see Theorem 15).
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the sum of the `2 norms of these T subvectors. That is

‖p‖Q(T )
def= sup


T∑
j=1

∑
i∈Aj

p2
i

1/2

: (Aj)1≤j≤T partition of N

 .

Astashkin [6], following up Montgomery-Smith [38], showed that the Q-norm constitutes
a good approximation of K-functional, by proving that

‖p‖Q(t2) ≤ κp(t) ≤
√

2‖p‖Q(t2).

In Section 6 we further generalize this claim and show it is possible to get a tradeoff in the
upper bound; specifically, we prove that κp(t) ≤ ‖p‖Q(2t2). Thus, it suffices to prove an
upper bound on distribution identity testing in terms of the Q-norm.

From an algorithmic point of view, it is not immediately clear that switching to this
Q-norm is of any help. However, we will argue that this value captures – in a very quantitative
sense – the notion of the sparsity of p. As a first step, observe that if ‖p‖Q(T ) = 1, then the
distribution p is supported on at most T elements. To see this, denote by pAj the restriction
of the sequence p to the indices in Aj , and note that if ‖p‖Q(T )

def=
∑T
j=1 ‖pAj‖2 = 1, then

by the monotonicity of `p norms and since
∑T
j=1 ‖pAj‖1 = ‖p‖1 = 1 we have that

T∑
j=1

(‖pAj‖1 − ‖pAj‖2︸ ︷︷ ︸
≥0

) = 0,

which implies that ‖pAj‖1 = ‖pAj‖2 for all j ∈ [T ].
Now, it turns out that it is possible to obtain a robust version of the foregoing observation,

yielding a sparsity lemma that, roughly speaking, shows thats if ‖p‖Q(T ) ≥ 1 − ε, then
1 − O(ε) of the mass of p is concentrated on T elements: in this case we say that p has
O(ε)-effective support of size T . (See Lemma 31 for precise statement of the sparsity lemma.)

This property of the Q-norm suggests the following natural test for identity to a distribu-
tion p: Simply fix T such that ‖p‖Q(T ) = 1− ε, and apply one of the standard procedures
for testing identity to a distribution with support size T , which require O(

√
T ) samples. But

by the previous discussion, we have ‖p‖Q(2t2) ≥ κp(t), so that setting T = 2t2 for the “right”
choice of t = κ−1

p (1 − 2ε) will translate to an O(t) upper bound – which is what we were
aiming for.

3 Preliminaries

Notation. We write [n] for the (ordered) set of integers {1, . . . , n}, and ln, log for respectively
the natural and binary logarithms. We use the notation Ω̃(f) to hide polylogarithmic
dependencies on the argument, i.e. for expressions of the form Ω(f logc f) (for some absolute
constant c). All throughout the paper, we denote by ∆(Ω) the set of discrete probability
distributions over domain Ω. When the domain is a subset of the natural numbers N, we
shall identify a distribution p ∈ ∆(Ω) with the sequence (pi)i∈N ∈ `1 corresponding to its
probability mass function (pmf). For a subset S ⊆ Ω, we denote by p|S the normalized
projection of p to S (so p|S is a probability distribution).

For an alphabet Σ, we denote the projection of x ∈ Σn to a subset of coordinates I ⊆ [n]
by x|I . For i ∈ [n], we write xi = x|{i} to denote the projection to a singleton. We denote
the relative Hamming distance, over alphabet Σ, between two strings x ∈ Σn and y ∈ Σn
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by dist(x, y) def= |{ xi 6= yi : i ∈ [n] }| /n. If dist(x, y) ≤ ε, we say that x is ε-close to y, and
otherwise we say that x is ε-far from y. Similarly, we denote the relative Hamming distance
of x from a non-empty set S ⊆ Σn by dist(x, S) def= miny∈S dist(x, y)). If dist(x, S) ≤ ε, we
say that x is ε-close to S, and otherwise we say that x is ε-far from S.

Distribution Testing. A property of distributions over Ω is a subset P ⊆ ∆(Ω), consisting
of all distributions that have the property. Given two distributions p, q ∈ ∆(Ω), the
`1 distance between p and q is defined as the `1 distance between their pmf’s, namely
‖p− q‖1 =

∑
i∈Ω |pi − qi|.9 Given a property P ⊆ ∆(Ω) and a distribution p ∈ ∆(Ω), we

then define the distance of p to P as `1(p,P) = infq∈P ‖p− q‖1.
A testing algorithm for a fixed property P is then a randomized algorithm T which

takes as input n, ε ∈ (0, 1], and is granted access to independent samples from an unknown
distribution p; and satisfies the following.
1. if p ∈ P, the algorithm outputs accept with probability at least 2/3;
2. if `1(p,P) ≥ ε, it outputs reject with probability at least 2/3.
In other words, T must accept with high probability if the unknown distribution has the
property, and reject if it is ε-far from having it. The sample complexity of the algorithm is
the number of samples it draws from the distribution in the worst case.

Inequalities. We now state a standard probabilistic result that some of our proofs will rely
on, the Paley–Zygmund anticoncentration inequality:

I Theorem 3 (Paley–Zygmund inequality). Let X be a non-negative random variable with
finite variance. Then, for any θ ∈ [0, 1],

Pr[X > θE[X] ] ≥ (1− θ)2E[X]2

E[X2] .

We will also require the following version of the rearrangement inequality, due to Hardy
and Littlewood (cf. for instance [12, Theorem 2.2]):

I Theorem 4 (Hardy–Littlewood Inequality). Fix any f, g : R→ [0,∞) such that lim±∞ f =
lim±∞ g = 0. Then,∫

R
fg ≤

∫
R
f∗g∗

where f∗, g∗ denote the symmetric decreasing rearrangements of f, g respectively.

Error-Correcting Codes. Let k, n ∈ N, and let Σ be a finite alphabet. A code is a one-to-one
function C : Σk → Σn that maps messages to codewords, where k and n are called the code’s
dimension and block length, respectively. The rate of the code, measuring the redundancy of
the encoding, is defined to be ρ def= k/n. We will sometime identify the code C with its image
C(Σk). In particular, we shall write c ∈ C to indicate that there exists x ∈ {0, 1}k such that
c = C(x), and say that c is a codeword of C. The relative distance of a code is the minimal
relative distance between two codewords of C, and is denoted by δ def= minc6=c′∈C{dist(c, c′)}.

We say that C is an asymptotically good code if it has constant rate and constant relative
distance. We shall make an extensive use of asymptotically good codes that are balanced,
that is, codes in which each codeword consists of the same number of 0’s and 1’s

9 Note that this is equal, up to a factor 2, to the total variation distance between p and q.
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I Proposition 5 (Good Balanced Codes). For any constant δ ∈ [0, 1), there exists a good
balanced code C : {0, 1}k → {0, 1}n with relative distance δ and constant rate. Namely, there
exists a constant ρ > 0 such that the following holds.
1. Balance: |C(x)| = n

2 for all x ∈ {0, 1}k;
2. Relative distance: dist(C(x), C(y)) > δ for all distinct x, y ∈ {0, 1}k;
3. Constant rate: k

n ≥ ρ.

Proof. Fix any code C ′ with linear distance δ and constant rate (denoted ρ′). We transform
C ′ : {0, 1}k → {0, 1}n′ to a balanced code C : {0, 1}k → {0, 1}2n′ by representing 0 and 1 as
the balanced strings 01 and 10 (respectively). More accurately, we let C(x) def= C ′(x)�C ′(x) ∈
{0, 1}n for all x ∈ {0, 1}k, where � denotes the concatenation and z̄ is the bitwise negation
of z. It is immediate to check that this transformation preserves the distance, and that C is
a balanced code with rate ρ def= 2ρ′. J

On uniformity. For the sake of notation and clarity, throughout this work we define all
algorithms and objects non-uniformly. Namely, we fix the relevant parameter (typically
n ∈ N), and restrict ourselves to inputs or domains of size n (for instance, probability
distributions over domain [n]). However, we still view it as a generic parameter and allow
ourselves to write asymptotic expressions such as O(n). Moreover, although our results are
stated in terms of non-uniform algorithms, they can be extended to the uniform setting in a
straightforward manner.

4 The Methodology: From Communication Complexity to
Distribution Testing

In this section we adapt the methodology for proving property testing lower bounds via
reductions from communication complexity, due to Blais, Brody, and Matulef [15], to the
setting of distribution testing. As observed in [15, 16], to prove lower bounds on the
query complexity of non-adaptive testers it suffices to reduce from one-sided communication
complexity. We show that for distribution testers (which are inherently non-adaptive), it
suffices to reduce from the more restricted communication complexity model of private-coin
simultaneous message passing (SMP).

Recall that a private-coin SMP protocol for a communication complexity predicate
f : {0, 1}k × {0, 1}k → {0, 1} consists of three computationally unbounded parties: Two
players (commonly referred to as Alice and Bob), and a Referee. Alice and Bob receive inputs
x, y ∈ {0, 1}k. Each of the players simultaneously (and independently) sends a message
to the referee, based on its input and (private) randomness. The referee is then required
to successfully compute f(x, y) with probability at least 2/3, using its private randomness
and the messages received from Alice and Bob. The communication complexity of an SMP
protocol is the total number of bits sent by Alice and Bob. The private-coin SMP complexity
of f , denoted SMP(f), is the minimum communication complexity of all SMP protocols that
solve f with probability at least 2/3.

Generally, to reduce an SMP problem f to ε-testing a distribution property Π, Alice and
Bob can send messages mA(x, rA, ε) and mB(y, rB , ε) (respectively) to the Referee, where
rA and rB are the private random strings of Alice and Bob. Subsequently, the Referee uses
the messages mA(x, rA, ε) and mA(y, rB , ε), as well as its own private randomness, to feed
the property tester samples from a distribution p that satisfies the following conditions: (1)
completeness: if f(x, y) = 1, then p ∈ Π; and (2) soundness: if f(x, y) = 0, then p is ε-far
from Π in `1-distance.
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We shall focus on a special type of the foregoing reductions, which is particularly convenient
to work with and suffices for all of the our lower bounds. Loosely speaking, in these reductions
Alice and Bob both send the prover samples from sub-distributions that can be combined
by the Referee to obtain samples from a distribution that satisfies the completeness and
soundness conditions. The following lemma gives a framework for proving lower bounds
based on such reductions.

I Lemma 6. Let ε > 0, and let Ω be a finite domain of cardinality n. Fix a property Π ⊆ ∆(Ω)
and a communication complexity predicate f : {0, 1}k × {0, 1}k → {0, 1}. Suppose that there
exists a mapping p : {0, 1}k × {0, 1}k → ∆(Ω) that satisfies the following conditions.
1. Decomposability: For every x, y ∈ {0, 1}k, there exist constants α = α(x), β = β(y) ∈

[0, 1] and distributions pA(x), pB(y) such that

p(x, y) = α

α+ β
· pA(x) + β

α+ β
· pB(y)

and α, β can each be encoded with O(logn) bits.
2. Completeness: For every (x, y) = f−1(1), it holds that p(x, y) ∈ Π.
3. Soundness: For every (x, y) = f−1(0), it holds that p(x, y) is ε-far from Π in `1 distance.
Then, every ε-tester for Π needs Ω

(
SMP(f)
log(n)

)
samples.

Proof. Supose there exists an ε-tester for Π with sample complexity s′; assume without loss
of generality that the soundness of the foregoing tester is 5/6, at the cost of increasing the
query complexity to s = O(s′). Let x, y ∈ {0, 1}k be the inputs of Alice and Bob (respectively)
for the SMP problem. Alice computes the distribution pA(x) and the “decomposability
parameter" α = α(x) and sends 6s independent samples from pA(x), as well as the parameter
α. Analogously, Bob computes pB(y) and its parameter β = β(y), and sends 6s independent
samples from pB(y) as well as the parameter β. Subsequently, the referee generates a
sequence of q independent samples from p(x, y), where each sample is drawn as follows: with
probability α

α+β use a (fresh) sample from Alice’s samples, and with probability 1− α
α+β use

a (fresh) sample from Bob’s samples. Finally the referee feeds the generated samples to the
ε-tester for Π.

By Markov’s inequality, the above procedure indeed allows the referee to retrieve, with
probability at least 1 − αs

6s ≥
5
6 , at least s independent samples from the distribution

α
α+β · pA(x) + β

α+β · pB(y), which equals to p(x, y), by the decomposability condition. If
(x, y) = f−1(1), then by the completeness condition p(x, y) ∈ Π, and so the ε-tester for Π is
successful with probability at least 5

6 ·
5
6 . Similarly, if (x, y) = f−1(0), then by the soundness

condition p(x, y) is ε-far from Π, and so the ε-tester for Π is successful with probability at
least 5

6 ·
5
6 . Finally, note that since each one of the samples provided by Alice and Bob requires

sending logn bits, the total communication complexity of the protocol is 12s logn+O(logn)
(the last term from the cost of sending α, β), hence s′ = Ω

(
SMP(f)
log(n)

)
. J

We conclude this section by stating a well-known SMP lower bound on the equality
problem. Let Eqk : {0, 1}k × {0, 1}k → {0, 1} be the equality predicate, i.e., Eqk(x, y) = 1 if
and only if x = y. In this work, we shall frequently use the following (tight) lower bound on
the Eqk predicate:

I Theorem 7 (Newman and Szegedy [40]). For every k ∈ N it holds that SMP(Eqk) =
Ω
(√

k
)
.

CCC 2017



28:14 Distribution Testing Lower Bounds via Reductions from Communication Complexity

5 The Basic Reduction: The Case of Uniformity

I Theorem 8. For any ε ∈ (0, 1/2) and finite domain Ω, testing that p ∈ ∆(Ω) is uniform,
with respect to proximity parameter ε, requires Ω̃(

√
n) samples, where n = |Ω|.

Proof. Assume there exists a q-query ε-tester for the uniform distribution, with error
probability 1/6. For a sufficiently large k ∈ N, let C : {0, 1}k → {0, 1}n be a balanced code
as promised by Proposition 5 with distance ε. Namely, there exists an absolute constant
ρ > 0 such that
1. |C(x)| = n

2 for all x ∈ {0, 1}k;
2. dist(C(x), C(y)) > ε for all distinct x, y ∈ {0, 1}k;
3. k

n ≥ ρ.
Given their respective inputs x, y ∈ {0, 1}k from Eqk, Alice and Bob separately create inputs
(C(x), C(y)) ∈ {0, 1}n × {0, 1}n, and the corresponding sets A def= { i ∈ [n] : C(x)i = 1 },
B

def= { i ∈ [n] : C(y)i = 0 }. We then invoke the general reduction of Lemma 6 as follows:
we set α = β = 1

2 , and pA(x) ∈ ∆([n]) (respectively pB(y) ∈ ∆([n])) to be the uniform
distribution on the set A (respectively B). It is clear that the decomposability condition of
the lemma is satisfied for p(x, y) = α

α+β · pA(x) + β
α+β · pB(y) = 1

2 (pA(x) + pB(y)); we thus
turn to the second and third conditions.

Completeness. If (x, y) ∈ Eq−1
k (1), then C(x) = C(y) and A = [n] \ B. This implies that

p(x, y) is indeed the uniform distribution on [n], as desired.
Soundness. If (x, y) ∈ Eq−1

k (0), then dist(C(x), C(y)) > ε, and therefore |A4B̄| > εn by
construction. Since p(x, y) assigns mass 2/n to each element in A∩B = A \ B̄, and mass
0 to any element in Ā ∩ B̄ = B̄ \ A, we have ‖p(x, y)− u‖1 = 1

n · |A4B̄| > ε; that is,
p(x, y) is ε-far from uniform.

The desired Ω
( √

n
logn

)
lower bound then immediately follows from Lemma 6 and Theorem 7.

J

5.1 Obtaining ε-Dependency
In this section, we explain how to generalize the reduction from the previous section to
obtain some dependence (albeit non optimal) on the distance parameter ε in the lower bound.
This generalization will rely on an extension of the methodology of Lemma 6: instead of
having the referee define the distribution p(x, y) as a mixture of pA(x) and pB(y) (namely,
p(x, y) = α(x)

α(x)+β(y)pA(x) + β(y)
α(x)+β(y)pB(y)), he will instead use a (random) combination

function Fε, function of ε and its private coins only. Given this function, which maps a larger
domain of size m = Θ

(
n/ε2) to [n], p(x, y) will be defined as the mixture

p(x, y) = α(x)
α(x) + β(y)pA(x) ◦ F−1

ε + β(y)
α(x) + β(y)pB(y) ◦ F−1

ε .

More simply, this allows Alice and Bob to send to the referee samples from their respective
distributions on a much larger domain m� n; the referee, who has on its side chosen how
to randomly partition this large domain into only n different “buckets,” converts these draws
from Alice and Bob into samples from the induced distributions on the n buckets, and
takes a mixture of these two distributions instead. By choosing each bucket to chave size
roughly 1/ε2, we expect this random “coarsening” of Alice and Bob’s distributions to yield
a distribution at distance only Ω(ε) from uniformity (instead of constant distance) in the
no-case; but now letting us get a lower bound on the original support size m, i.e. Ω̃

(√
n/ε2

)
,

instead of Ω̃(
√
n) as before.
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I Theorem 9. For any ε ∈ (0, 1/2) and finite domain Ω, testing that p ∈ ∆(Ω) is uniform,
with respect to proximity parameter ε, requires Ω̃(

√
n/ε) samples, where n = |Ω|.

Proof of Theorem 9. We will reduce from Eqk, where k ∈ N is again assumed big enough
(in particular, with regard to 1/ε2). Alice and Bob act as in Section 5, separately creating
(a, b) = (C(x), C(y)) ∈ {0, 1}m× ∈ {0, 1}m from their respective inputs x, y ∈ {0, 1}k (where
C : {0, 1}k → {0, 1}m is a balanced code with linear rate and distance δ def= 1/3). As
before, they consider the sets A def= { i ∈ [m] : C(x)i = 1 }, B def= { i ∈ [m] : C(y)i = 0 },
set α = β = 1

2 , and consider the distributions pA(x), pB(y) ∈ ∆([m]) which are uniform
respectively on A and B.

This is where we deviate from the proof of Theorem 8: indeed, setting n def= cε2m (where
c > 0 is an absolute constant determined later), the referee will combine the samples from
pA(x) and pB(y) in a different way to emulate a distribution p(x, y) ∈ ∆([n]) – that is, with
a much smaller support than that of pA(x), pB(y) (instead of setting p(x, y) to be, as before,
a mixture of the two).

To do so, the referee randomly partitions [m] into n sets B1, . . . , Bn of equal size r def=
|Bj | = m

n = 1
cε2 , j ∈ [n], by choosing a uniformly random equipartition of [m]. He then

defines the distribution p = p(x, y) ∈ ∆([n]) by p(j) = Pr[ i ∈ Bj ] (where i ∈ [m] is received
from either Alice or Bob). Viewed differently, the random equipartition chosen by the
referee induces a mapping Fε : [m]→ [n] such that

∣∣F−1(j)
∣∣ = r for all j ∈ [n]; and, setting

p′(x, y) = 1
2 (pA(x) + pB(y)) ∈ ∆([m]), we obtain p(x, y) as the coarsening of p′(x, y) defined

as

p(x, y)(j) =
∑

i∈F−1
ε (j)

p′(x, y)(i) = p′(x, y)(F−1
ε (j))

= 1
2
(
pA(x)(F−1

ε (j)) + pB(y)(F−1
ε (j))

)
, j ∈ [n].

Note furthermore that each sample sent by Alice and Bob (who have no knowledge of the
randomly chosen Fε) can be encoded with O(logm) = O(log n

ε ) bits.
We then turn to establish the analogue in this generalized reduction of the last two

conditions of Lemma 6, i.e. the completeness and soundness. The former, formally stated
below, will be an easy consequence of the previous section.

I Claim 10. If x = y, then p(x, y) is uniform on [n].

Proof. As in the proof of Theorem 8, in this case the distribution p′(x, y) = 1
2 (pA(x) +

pB(y)) ∈ ∆([m]) is uniform; since each “bucket” Bj = F−1
ε (j) has the same size, this implies

that p(x, y)(j) = p′(x, y)(Bj) = 1
n for all j ∈ [n]. J

Establishing the soundness, however, is not as straightforward:

I Claim 11. If x 6= y, then with probability at least 1/100 (over the choice of the equipartition
(B1, . . . , Bn)), p(x, y) is ε-far from uniform.

Proof. Before delving into the proof, we provide a high-level idea of why this holds. Since
the partition was chosen uniformly at random, on expectation each element j ∈ [n] will
have probability E[p(x, y)(j)] = E[p′(x, y)(Bj)] = 1

n . However, since a constant fraction of
elements i ∈ [m] (before the random partition) has probability mass either 0 or 2/m (as in
the proof of Theorem 8), and each bucket Bj contains r = 1/(cε2) many elements chosen
uniformly at random, we expect the fluctuations of p′(x, y)(Bj) around its expectation to be
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of the order of Ω(
√
r/m) = Ω(ε/n) with constant probability, and summing over all j’s this

will give us the distance Ω(ε) we want.
To make this argument precise, we assume x 6= y, so that A4B̄ > δm; and define

H
def= A ∩B,L def= Ā ∩ B̄ (so that |H| = |L| > δ

2m). For any j ∈ [n], we then let the random
variables H(j), L(j) be the number of “high” and ”low” elements of [m] in the bucket Bj ,
respectively:

H(j) def= |Bj ∩H| , L(j) def= |Bj ∩ L| .

From the definition, we get that p = p(x, y) satisfies p(j) = 1
m

(
2H(j) + (r −H(j) − L(j)) =

r
m + H(j)−L(j)

m for j ∈ [n]. Furthermore, it is easy to see that E[p(j)] = r
m = 1

n for all j ∈ [n],
where the expectation is over the choice of the equipartition by the referee.

As previously discussed, we will analyze the deviation from this expectation; more precisely,
we want to show that with good probability, a constant fraction of the j’s will be such that
p(j) deviates from 1/n by at least an additive Ω(

√
r/m) = ε/n. This anticoncentration

guarantee will be a consequence of the Paley–Zygmund inequality (Theorem 3) to Z(j) def=
(H(j) − L(j))2 ≥ 0; in view of applying it, we need to analyze the first two moments of this
random variable.

I Lemma 12. For any j ∈ [n], we have the following. (i) E
[
(H(j) − L(j))2] = δrm−rm−1 , and

(ii) E
[
(H(j) − L(j))4] = 3(1 + o(1))δ2r2.

Proof. Fix any j ∈ [n]. We write for convenience X and Y for respectively H(j) and L(j).
The distribution of (X,Y, r− (X −Y )) is then a multivariate hypergeometric distribution [55]
with 3 classes:

(X,Y, r − (X + Y )) ∼ MultivHypergeom3(( 1
2δm,

1
2δm, (1− δ)m)︸ ︷︷ ︸

(K1,K2,K3)

,m, r).

Conditioning on U def= X + Y , we have that E[X | U ] follows a hypergeometric distribution,
specifically E[X | U ] ∼ Hypergeom(U, 1

2δm, δm). Moreover, U itself is hypergeometrically
distributed, with U ∼ Hypergeom(r, δm,m). We can thus write

E
[
(X − Y )2] = E

[
E
[
(X − Y )2 | U

]]
= E

[
E
[
(2X − U)2 | U

]]
and

E
[
(X − Y )4] = E

[
E
[
(X − Y )4 | U

]]
= E

[
E
[
(2X − U)4 | U

]]
.

By straightforward, yet tedious, calculations involving the computation of E
[
(2X − U)2 | U

]
and E

[
(2X − U)4 | U

]
(after expanding and using the known moments of the hypergeometric

10One can also use a formal computation system, e.g. Mathematica:

Expectation[ Expectation[(2 X - U)^2, {X \[Distributed] HypergeometricDistribution[U, a*m, 2 a*m]}],
{U \[Distributed] HypergeometricDistribution[r, 2*a*m, m]}]

Expectation[ Expectation[(2 X - U)^4, {X \[Distributed] HypergeometricDistribution[U, a*m, 2 a*m]}],
{U \[Distributed] HypergeometricDistribution[r, 2*a*m, m]}]
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distribution),10 we obtain

E
[
(X − Y )2] = δr

m− r
m− 1 =

m→∞
(1 + o(1))δr

E
[
(X − Y )4] =

(δr(r −m)((−1 + 3δ(m− 1)−m)m+ 6r2( 1
2δm− 1)− 6rm( 1

2δm− 1)))
(m− 3)(m− 2)(m− 1)

−−−−→
m→∞

3δ2r2 + (1− 3δ)δr = 3δ2r2

the last equality as δ = 1/3. J

We can now apply the Paley–Zygmund inequality to Z(j). Doing so, we obtain that for
r ≤ m

4 (with some slack), and any θ ∈ [0, 1],

Pr
[ ∣∣∣H(j) − L(j)

∣∣∣ ≥ θ√1
2δr

]
≥Pr

[ ∣∣∣H(j) − L(j)
∣∣∣ ≥ θ√δrm− r

m− 1

]

≥(1− θ2)2E
[
(H(j) − L(j))2]2

E
[
(H(j) − L(j))4

] .
By the lemma above, the RHS converges to (1−θ2)2

3 when m→∞, and therefore is at least
(1−θ2)2

4 for m big enough. We set θ def= 1/
√

2 to obtain the following: there exists M ≥ 0
such that

Pr
[ ∣∣∣H(j) − L(j)

∣∣∣ ≥√δr

4

]
≥ 1

16 (4)

for every m ≥M .
Eq. (4) implies that the number K of good indices j ∈ [n] satisfying

∣∣H(j) − L(j)
∣∣ ≥√ δr

4
is on expectation at least n

16 , and by an averaging argument11 we get that K ≥ n
20 with

probability at least 1
76 >

1
100 .

Whenever this happens, the distance from p to uniform is at least

∑
j good

∣∣∣∣p(j)− 1
n

∣∣∣∣ =
∑
j good

∣∣H(j) − L(j)
∣∣

m
≥ n

20 ·

√
δr
4

m
=
√
δr

40
n

m
=
√
c

40
√

3
ε

and choosing c ≥ 4800 so that
√
c

40
√

3 ≥ 1 yields the claim. J

From this lemma, we can complete the reduction: given a tester T for uniformity with
query complexity q, we first convert it by standard amplification into a tester T ′ with failure
probability δ def= 1/1000 and sample complexity O(q). The referee can provide samples from
the distribution p(x, t), and on input ε:

If x = y, then T ′ will return reject with probability at most 1/200;
If x 6= y, then T ′ will return reject with probability at least 199/200 · 1/100 > 1/200;

so repeating independently the protocol a constant (fixed in advance) number of times and
taking a majority vote enables the referee to solve Eqk with probability at least 2/3. Since
Ω
(√

k
)

= Ω
(√

n/ε2
)
bits of communication are required for this, and each sample sent by

11Applying Markov’s inequality: Pr
[
K < n

20

]
= Pr

[
n−K > 19n

20

]
≤ n−E[K]

19n/20 ≤
15/16
19/20 = 75

76 .
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Alice or Bob to the referee only requires Θ
(
log n

ε

)
bits, we get a lower bound of

Ω
( √

n

ε log n
ε

)
= Ω̃

(√
n

ε

)
on the sample complexity of T ′, and therefore of T . J

6 The K-Functional: An Unexpected Journey

A quantity that will play a major role in our results is the K-functional between `1 and `2,
a specific case of the key operator in interpolation theory introduced by Peetre [43]. We
start by recalling below the definition and some of its properties, before establishing (for our
particular setting) results that will be crucial to us. (For more on the K-functional and its
use in functional analysis, the reader is referred to [12] and [6].)

I Definition 13 (K-functional). Fix any two Banach spaces (X0, ‖·‖0), (X1, ‖·‖1). The K-
functional between X0 and X1 is the function KX0,X1 : (X0 +X1)× (0,∞)→ [0,∞) defined
by

KX0,X1(x, t) def= inf
(x0,x1)∈X0×X1

x0+x1=x

‖x0‖0 + t‖x1‖1.

For a ∈ `1 + `2, we denote by κa the function t 7→ K`1,`2(a, t).

In other terms, as t varies the quantity κa(t) interpolates between the `1 and `2 norms of
the sequence a (and accordingly, for any fixed t it defines a norm on `1 + `2). In particular,
note that for large values of t the function κa(t) is close to ‖x‖1, whereas for small values of
t the function κa(t) is close to t‖x‖2 (see Corollary 17). We henceforth focus on the case
of K`1,`2 , although some of the results mentioned hold for the general setting of arbitrary
Banach X0, X1.

I Proposition 14 ([12, Proposition 1.2]). For any a ∈ `1 + `2, κa is continuous, increasing,
and concave. Moreover, the function t ∈ (0, 1) 7→ κa

t is decreasing.

Although no closed-form expression is known for κa, it will be necessary for us to
understand its behavior, and therefore seek good upper and lower bounds on its value. We
start with the following inequality, due to Holmstedt [34], which, loosely speaking, shows
that the infimum in the definition of κa(t) is roughly obtained by partitioning a = (a1, a2)
such that a1 consists of heaviest t2 coordinates of a, and a2 consists of the rest.

I Proposition 15 ([6, Proposition 2.2], after [34, Theorem 4.2]). For any a ∈ `2 and t > 0,

1
4

bt
2c∑

i=1
a∗i + t

 ∞∑
i=bt2c+1

a∗i
2

 1
2
 ≤ κa(t) ≤

bt2c∑
i=1

a∗i + t

 ∞∑
i=bt2c+1

a∗i
2

 1
2

(5)

where a∗ is a non-increasing permutation of the sequence (|ai|)i∈N.

(We remark that for our purposes, this constant factor gap between left-hand and right-hand
side is not innocuous, as we will later need to study te behavior of the inverse of the function
κa.)

Incomparable bounds on κa were obtained [38], relating it to a different quantity, the
“Q-norm,” which we discuss and generalize next.
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6.1 Approximating the K-Functional by the Q-norm
Loosely speaking, the Q-norm of a vector a (for a given parameter T ) is a mixed `1/`2 norm:
it is the maximum one can reach by partitioning the components of a into T sets, and taking
the sum of the `2 norms of these T subvectors. Although not straightforward to interpret,
this intuitively captures the notion of sparsity of a: indeed, if a is supported on k elements
then its Q-norm becomes equal to the `1 norm for parameter T ≥ k.

I Proposition 16 ([6, Lemma 2.2], after [38, Lemma 2]). For arbitrary a ∈ `2 and t ∈ N,
define the norm

‖a‖Q(t)
def= sup


t∑

j=1

∑
i∈Aj

a2
i

1/2

: (Aj)1≤j≤t partition of N

 .

Then, for any a ∈ `2, and t > 0 such that t2 ∈ N, we have

‖a‖Q(t2) ≤ κa(t) ≤
√

2‖a‖Q(t2). (6)

As we shall see shortly, one can generalize this result further, obtaining a tradeoff in the
upper bound. Before turning to this extension in Lemma 18 and Lemma 21, we first state
several other properties of the K-functional implied by the above:

I Corollary 17. For any a ∈ `2,
1. κa(t) = t‖a‖2 for all t ∈ (0, 1)
2. limt→0+ κa(t) = 0
3. 1

4‖a‖1 ≤ limt→∞ κa(t) ≤ ‖a‖1.
Moreover, for a supported on finitely many elements, it is the case that limt→∞ κa(t) = ‖a‖1.

Proof. The first two points follow by definition; turning to Corollary 3, we first note the
upper bound is a direct consequence of the definition of κa as an infimum (as, for all t > 0,
κa(t) ≤ ‖a‖1). (This itself ensures the limit as t→∞ exists by monotone convergence, as κa
is a non-decreasing bounded function.) The lower bound follows from that of Theorem 15,
which guarantees that for all t > 0 κa(t) ≥ 1

4
∑bt2c
i=1 a

∗
i −−−→t→∞

1
4‖a‖1. Finally, the last point

can be obtained immediately from, e.g., the lower bound side of Proposition 16 and the
upper bound given on Corollary 3 above. J

I Lemma 18. For any a ∈ `2 and t such that t2 ∈ N, we have

‖a‖Q(t2) ≤ κa(t) ≤ ‖a‖Q(2t2). (7)

Proof of Lemma 18. We follow and adapt the proof of [6, Lemma 2.2] (itself similar to that
of [38, Lemma 2]). The first inequality is immediate: indeed, for any sequence c ∈ `2, by the
definition of ‖a‖Q(t2) and the monotonicity of the p-norms, we have ‖c‖Q(t2) ≤ ‖c‖1; and by
Cauchy–Schwarz, for any partition (Aj)1≤j≤t2 of N,

t2∑
j=1

∑
i∈Aj

c2i

1/2

≤ t

 t2∑
j=1

∑
i∈Aj

c2i

1/2

= t‖c‖2

and thus ‖c‖Q(t2) ≤ t‖c‖2. This yields the lower bound, as

κa(t) = inf
a′+a′′=a

a′∈`1,a
′′∈`2

‖a′‖1 + t‖a′′‖2 ≥ inf
a′+a′′=a

a′∈`1,a
′′∈`2

‖a′‖Q(t2) + ‖a′′‖Q(t2) ≥ ‖a‖Q(t2)

by the triangle inequality.
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We turn to the upper bound. As `2(R) is a symmetric space and κa = κ|a|, without
loss of generality, we can assume that (ak)k∈N is non-negative and monotone non-increasing,
i.e. a1 ≥ a2 ≥ · · · ≥ ak ≥ . . . . We will rely on the characterization of κa as

κa(t) = sup
{ ∞∑

k=1
akbk : b ∈ `2,max(‖b‖∞, t

−1‖b‖2) ≤ 1
}
, t > 0

(see e.g. [6, Lemma 2.2] for a proof). The first step is to establish the existence of a “nice”
sequence b ∈ `2 arbitrarily close to this supremum:

I Claim 19. For any δ > 0, there exists a non-increasing, non-negative sequence b∗ ∈ `2
with max(‖b∗‖∞, t−1‖b∗‖2) ≤ 1 such that

(1− δ)κa ≤
∞∑
k=1

akb
∗
k.

Proof. By the above characterization, there exists a sequence b ∈ `2 with max(‖b‖∞, t−1‖b‖2)
≤ 1 such that (1− δ)κa ≤

∑∞
k=1 akbk. We now claim that we can further take b to be non-

negative and monotone non-increasing as well. The first part is immediate, as replacing
negative terms by their absolute values can only increase the sum (since a is itself non-
negative). For the second part, we will invoke the Hardy–Littlewood rearrangement inequality
(Theorem 4), which states that for any two non-negative functions f, g vanishing at infinity,
the integral

∫
R fg is maximized when f and g are non-increasing. We now apply this

inequality to a, b, letting a∗, b∗ be the non-increasing rearrangements of a, b (in particular,
we have a = a∗) and introducing the functions fa, fb:

fa =
∞∑
j=1

aj1(j−1,j], fb =
∞∑
j=1

bj1(j−1,j]

which satisfy the hypotheses of Theorem 4. Thus, we get
∫
R fafb ≤

∫
R f
∗
af
∗
b ; as it is easily

seen that f∗a = fa∗ and f∗b = fb∗ , this yields

∞∑
k=1

akbk =
∫
R
fafb ≤

∫
R
f∗af

∗
b =

∞∑
k=1

a∗kb
∗
k =

∞∑
k=1

akb
∗
k.

Moreover, it is immediate to check that max(‖b∗‖∞, t−1‖b∗‖2) ≤ 1. J

The next step is to relate the inner product
∑∞
k=1 akb

∗
k to the Q-norm of a:

I Claim 20. Fix t > 0 such that t2 ∈ N, and let b∗ ∈ `2 be any non-increasing, non-negative
sequence with max(‖b∗‖∞, t−1‖b∗‖2) ≤ 1. Then

∞∑
k=1

akb
∗
k ≤ ‖a‖Q(2t2).

Proof. We proceed constructively, by exhibiting a partition of N into 2t2 sets A1, . . . , A2t2

satisfying
∑∞
k=1 akb

∗
k ≤

∑2t2
j=1

(∑
i∈Aj b

∗
i

2
)1/2

. This will prove the claim, by definition of
‖a‖Q(2t2) as the supremum over all such partitions.

Specifically, we inductively choose n0, n1, . . . , nT ∈ {0, . . . ,∞} as follows, where T
def= t2

c

for some c > 0 to be chosen later (satisfying T ∈ N). If 0 = n0 < n1 < · · · < nm are already
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set, then

nm+1
def= 1 + sup

{
` ≥ nm :

∑̀
i=nm+1

b∗i
2 ≤ c

}
.

From ‖b∗‖2 ≤ t, it follows that nT =∞. Let m∗ be the first index such that nm∗+1 > nm∗+1.
Note that this implies (by monotonicity of b∗) that b∗i

2 > c for all i ≤ nm∗ , and b∗i
2 ≤ c for

all i ≥ nm∗ + 1. We can write

∞∑
i=1

aib
∗
i =

T∑
m=1

nm∑
i=nm−1+1

aib
∗
i =

nm∗∑
i=1

aib
∗
i +

T∑
m=m∗+1

nm∑
i=nm−1+1

aib
∗
i

Since ‖b∗‖∞ ≤ 1 and nm−1 + 1 = nm for all m ≤ m∗, the first term can be bounded as

nm∗∑
i=1

aib
∗
i ≤

nm∗∑
i=1

√
a2
i =

m∗∑
m=1

 nm∑
i=nm−1+1

a2
i

1/2

.

Turning to the second term, we recall that b∗i
2 ≤ c for all i ≥ nm∗ + 1, so that∑nm

i=nm−1+1 b
∗
i

2 ≤ 2c for all m ≥ m∗ + 1. This allows us to bound the second term as

T∑
m=m∗+1

nm∑
i=nm−1+1

aib
∗
i ≤

T∑
m=m∗+1

 nm∑
i=nm−1+1

b∗i
2

1/2 nm∑
i=nm−1+1

a2
i

1/2

≤
√

2c
T∑

m=m∗+1

 nm∑
i=nm−1+1

a2
i

1/2

Therefore, by combining the two we get that

(1− δ)κa(t) ≤
m∗∑
m=1

 nm∑
i=nm−1+1

a2
i

1/2

+
√

2c
T∑

m=m∗+1

 nm∑
i=nm−1+1

a2
i

1/2

≤ max(1,
√

2c)
T∑

m=1

 nm∑
i=nm−1+1

a2
i

1/2

≤ max(1,
√

2c)‖a‖Q(T ) = ‖a‖Q(2t2)

the last equality by choosing c def= 1
2 . J

We now fix an arbitrary δ > 0, and let b∗ be as promised by Claim 19. As this sequence
satisfies the assumptions of Claim 20, putting the two results together leads to

(1− δ)κa(t) ≤
∞∑
k=1

akb
∗
k ≤ ‖a‖Q(2t2).

Since this holds for all δ > 0, taking the limit as δ ↘ 0 gives the (upper bound of the)
lemma. J

We observe that, with similar techniques, one can also establish the following generalization
of Proposition 16:
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I Lemma 21 (Generalization of Proposition 16). For any a ∈ `2, t, and α ∈ [1,∞) such that
t2, αt2 ∈ N, we have

‖a‖Q(t2) ≤ κa(t) ≤
√

1 + α−1‖a‖Q(αt2). (8)

Proof of Lemma 21 (Sketch). We again follow the proof of [6, Lemma 2.2], up to the
inductive definition of n1, . . . , nj , which we change as

nm+1 = 1 + sup
{
` ≥ nm :

∑̀
i=nm+1

b2i ≤
1
α

}
.

Since ‖b‖∞ ≤ 1, we have
∑nm+1
i=nm+1 b

2
i ≤ 1 + 1

α . From ‖b‖2 ≤ t, it follows that nαt2 = ∞.
Therefore, for any δ > 0,

(1− δ)κa(t) ≤
∞∑
i=1

aibi ≤
T∑

m=1

 nm∑
i=nm−1+1

b2i

1/2 nm∑
i=nm−1+1

a2
i

1/2

≤
√

1 + 1
α
‖a‖Q(αt2).

Since this holds for all δ > 0, taking the limit gives the (upper bound of the) lemma. J

We note that further inequalities relating κa to other functionals of a were obtained
in [33].

6.2 Concentration Inequalities for Weighted Rademacher Sums
The connection between the K-functional and tail bounds on weighted sums of Rademacher
random variables was first made by Montgomery-Smith [38], to which the following result is
due (we here state a version with slightly improved constants):

I Theorem 22. Let (Xi)i∈N be a sequence of independent Rademacher random variables,
i.e. uniform on {−1, 1}. Then, for any a ∈ `2 and t > 0,

Pr
[ ∞∑
i=1

aiXi ≥ κa(t)
]
≤ e− t

2
2 . (9)

and, for any fixed c > 0 and all t ≥ 1,

Pr
[ ∞∑
i=1

aiXi ≥
1

1 + c
κa(t)

]
≥ e−

(
2
c ln

√
6(1+c)
c

)
(t2+c)

. (10)

In particular,

Pr
[ ∞∑
i=1

aiXi ≥
1
2κa(t)

]
≥ e−(ln 24)(t2+1) ≥ e−(2 ln 24)t2 .

One can intepret the above theorem as stating that the (inverse of the) K-functional κa is
the “right” parameter to consider in these tail bounds; while standard Chernoff or Hoeffding
bounds will depend instead on the quantity ‖a‖2. Before giving the proof of this theorem,
we remark that similar statements or improvements can be found in [33] and [6]; below, we
closely follow the argument of the latter.

Proof of Theorem 22. The upper bound can be found in e.g. [38], or [6, Theorem 2.2]. For
the lower bound, we mimic the proof due to Astashkin, improving the parameters of some of
the lemmas it relies on.
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I Lemma 23 (Small improvement of (2.14) in [6, Lemma 2.3]). If a = (ak)k≥1 ∈ `2, then, for
any λ ∈ (0, 1),

Pr

 ∣∣∣∣∣
∞∑
k=1

akXk

∣∣∣∣∣
2

≥ λ
∞∑
k=1

a2
k

 ≥ 1
3(1− λ)2. (11)

Proof of Lemma 23. The proof is exactly the same, but when invoking (1.10) for p = 4 we
use the actual tight version proven there for p = 2m (instead of the more general version
that also applies to odd values of p): since m = 2, we get (2m)!

2mm! = 3, and E[f ]2 ≥ 1
3E
[
f2] in

the proof (instead of (p2 + 1)−
p
2 = 1

9 ). J

Using the lemma above along with Lemma 18 in the proof of [6, Theorem 2.2], we can
strenghten it as follows: letting T def= t2

c , for arbitrary δ > 0 we fix a partition A1, . . . , AT of

N such that ‖a‖Q(T ) ≤ (1 + δ)
∑T
j=1

(∑
k∈Aj a

2
k

)1/2
,

Pr
[ ∞∑
k=1

akXk >
1

1 + c
κa(t)

]
≥ Pr

[ ∞∑
k=1

akXk >
1√

1 + c
‖a‖Q(T )

]
(by (7))

≥ Pr

 T∑
j=1

∑
k∈Aj

akXk >
1 + δ√
1 + c

T∑
j=1

∑
k∈Aj

a2
k

1/2


≥
T∏
j=1

Pr

 ∑
k∈Aj

akXk >
1 + δ√
1 + c

∑
k∈Aj

a2
k

1/2


=
T∏
j=1

1
2 Pr


∣∣∣∣∣∣
∑
k∈Aj

akXk

∣∣∣∣∣∣
2

>

(
1 + δ√
1 + c

)2
∑
k∈Aj

a2
k




(symmetry)

≥
T∏
j=1

1
6

(
1− (1 + δ)2

1 + c

)2

. (Lemma 23)

By taking the limit as δ → 0+, we then obtain

Pr
[ ∞∑
k=1

akXk >
1

1 + c
κa(t)

]
≥

(
1
6

(
1− 1

1 + c

)2
)T

=
(

c√
6(1 + c)

) 2t2
c

= e
−
(

2
c ln

√
6(1+c)
c

)
t2
. (12)

This takes care of the case where t2

c is an integer. If this is not the case, we consider
s

def=
√
c
(⌊
t2

c

⌋
+ 1
)
, so that t2 ≤ s2 ≤ t2 + c. The monotonicity of κa then ensures that

Pr
[ ∞∑
k=1

akXk >
1

1 + c
κa(t)

]
≥ Pr

[ ∞∑
k=1

akXk >
1

1 + c
κa(s)

]

≥
(12)

e
−
(

2
c ln

√
6(1+c)
c

)
s2
≥ e
−
(

2
c ln

√
6(1+c)
c

)
(t2+c)

which concludes the proof. J
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6.3 Some Examples
To gain intuition about the behavior of κa, we now compute tight asymptotic expressions for it
in several instructive cases, specifically for some natural examples of probability distributions
in ∆([n]).

From the lower bound of Proposition 16 and the fact that κp ≤ ‖p‖1 for any p ∈ `1, it is
clear that as soon as t ≥

√
n, κp(t) = 1 for any p ∈ ∆([n]). It suffices then to consider the

case 0 ≤ t ≤
√
n.

The uniform distribution. We let p be the uniform distribution on [n]: pk = 1
n for all i ∈ [n].

By considering a partition of [n] into t2 sets of size n
t2 , the lower bound of Proposition 16 yields

κp(t) ≥ ‖p‖Q(t2) ≥
t√
n
. On the other hand, by definition κp(t) = infp′+p′′=p ‖p′‖1 + t‖p′′‖2 ≤

t‖p‖2 = t√
n
, and thus

κp(t) =
{

t√
n

if t ≤
√
n

1 if t ≥
√
n.

We remark that in this case, the upper bound of Holmstedt from Proposition 15 only
results in

κp(t) ≤
t2

n
+ t

√
n− t2
n2 = f

(
t√
n

)
where f : x ∈ [0, 1] 7→ x2 + x

√
1− x2. It is instructive to note this shows that this could not

possibly have been the right upper bound (and therefore that Theorem 15 cannot be tight in
general), as f is neither concave nor non-decreasing, and not even bounded by 1:

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

x

f(x), κp(x
√
n)

Figure 2 Holmstedt’s upper bound (in blue) vs. true behavior of κp (in red).

From the above, we can now compare the behavior of κ−1
p (1 − 2ε) to the “2/3-norm

functional” introduced by Valiant and Valiant [53]: for ε ∈ (0, 1/2),

κ−1
p (1− 2ε) = (1− 2ε)

√
n, ‖p−max

−ε ‖2/3 = (1− ε)3/2√n+ o(1). (13)
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The Harmonic distribution. We now consider the case of the (truncated) Harmonic distri-
bution, letting p ∈ ∆([n]) be defined as pk = 1

kHn
for all i ∈ [n] (Hn being the n-th Harmonic

number). By considering a partition of [n] into t2 − 1 sets of size 1 and one of size n− t2,
the lower bound of Proposition 16 yields

Hnκp(t) ≥ ‖p‖Q(t2) ≥
t2−1∑
k=1

1
k

+

√√√√ n∑
k=t2

1
k2

while Holmstedt’s upper bound gives

Hnκp(t) ≤
t2−1∑
k=1

1
k

+ t

√√√√ n∑
k=t2

1
k2 .

For t = O(1), this implies that κp(t) = o(1); however, for t = ω(1) (but still less than
√
n),

an asymptotic development of both upper and lower bounds shows that

κp(t) = 2 ln t+O(1)
lnn .

Using this expression, we can again compare the behavior of κ−1
p (1− 2ε) to the 2/3-norm

functional of [53]: for ε ∈ (0, 1/2),

κ−1
p (1− 2ε) = Θ

(
n

1
2−ε
)
, ‖p−max

−ε ‖2/3 = Θ
(
n

1−ε
2

logn

)
= Θ

(
n

1−ε
2 −o(1)

)
. (14)

7 Identity Testing, revisited

For any x ∈ (0, 1/2) and sequence a ∈ `1, we let tx
def= κ−1

a (1 − 2x), where κa is the K-
functional of a as previously defined. Armed with the results and characterizations from the
previous section, we will first in Section 7.1 describe an elegant reduction from communication
complexity leading to a lower bound on instance-optimal identity testing parameterized by
the quantity tε. Guided by this lower bound, we then will in Section 7.2 consider this result
from the upper bound viewpoint, and in Theorem 30 establish that indeed this parameter
captures the sample complexity of this problem. Finally, Section 7.3 is concerned with
tightening our lower bound by using different arguments: specifically, showing that the bound
that appeared naturally as a consequence of our communication complexity approach can,
in hindsight, be established and slightly strenghtened with standard distribution testing
arguments.

7.1 The Communication Complexity Lower Bound
In this subsection we prove the following lower bound on identity testing, via reduction from
SMP communication complexity.

I Theorem 24. Let Ω be a finite domain, and let p = (p1, . . . , pn) ∈ ∆(Ω) be a distribution,
given as a parameter. Let ε ∈ (0, 1/5), and set tε

def= κ−1
p (1 − 2ε). Then, given sample

access to a distribution q = (q1, . . . , qn) ∈ ∆(Ω), testing p = q versus ‖p− q‖1 > ε requires
Ω(tε/ log(n)) samples from q.
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We will follow the argument outlined in Section 2.2: namely, applying the same overall
idea as in the reduction for uniformity testing, but with an error-correcting code specifically
designed for the distribution p instead of a standard Hamming one. To prove Theorem 24 we
thus first need to define and obtain codes with properties that are tailored for our reduction;
which we do next.

7.1.1 Balanced p-weighted codes
Recall that in our reductions so far, the first step is for Alice and Bob to apply a code to
their inputs; typically, we chose that code to be a balanced code with constant rate, and
linear distance with respect to the uniform distribution (i.e., with good Hamming distance).
In order to obtain better bounds on a case-by-case basis, it will be useful to consider a
generalization of these codes, under a different distribution:

I Definition 25 (p-distance). For any n ∈ N, given a probability distribution p ∈ ∆([n]) we
define the p-distance on {0, 1}n, denoted distp, as the weighted Hamming distance

distp(x, y) def=
n∑
i=1

p(i) · |xi − yi|

for x, y ∈ {0, 1}n. (In particular, this is a pseudometric on {0, 1}n.) The p-weight of
x ∈ {0, 1}n is given by weightp(x) def= distp(x, 0n).

A p-weighted code is a code whose distance guarantee is with respect to the p-distance.

I Definition 26 (p-weighted codes). Fix a probability distribution p ∈ ∆([n]). We say that
C : {0, 1}k → {0, 1}n is a (binary) p-weighted code with relative distance γ = γ(n) and rate
ρ = k/n if

distp(C(x), C(y)) > γ

for all distinct x, y ∈ {0, 1}k.

Recall that the “vanilla” reduction in Section 5 relies on balanced codes. We generalize
the balance property to the p-distance and allow the following relaxation.

I Definition 27 (p-weighted τ -balance). A p-weighted code C : {0, 1}k → {0, 1}n is τ -balanced
if there exists τ ∈ (0, 1) such that weightp(C(x)) ∈

( 1
2 − τ,

1
2 + τ

)
for all x ∈ {0, 1}k.

Now, for a distribution p, the volume of the p-ball in {0, 1}n is given by

VolFn2 ,distp(ε) def=
∣∣{ w ∈ Fn2 : weightp(w) ≤ ε

}∣∣ .
Next, we show that there exist nearly balanced p-weighted codes with constant relative
distance nearly optimal rate.

I Proposition 28 (Existence of nearly balanced p-weighted codes). Fix a probability dis-
tribution p ∈ ∆([n]), constants γ, τ ∈ (0, 1

3 ), and ε = max{γ, 1
2 − τ}. There exists a

p-weighted τ -balanced code C : {0, 1}k → {0, 1}n with relative distance γ such that k =
Ω(n− log VolFn2 ,distp(ε)).

In contrast, by the sphere packing bound, every p-weighted code C : {0, 1}k → {0, 1}n
with distance γ satisfies

2k︸︷︷︸
#codewords

≤ 2n

VolFn2 ,distp(γ/2) .

Hence, we have k ≤ n− log VolFn2 ,distp(γ/2).
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Proof of Theorem 28. Note that

VolFn2 ,distp(ε) =
∣∣{ w ∈ Fn2 : weightp(w) ≤ ε

}∣∣ = 2n · Pr
w∼{0,1}n

[
n∑
i=1

piwi ≤ ε

]
.

The probability that a randomly chosen code C : {0, 1}k → {0, 1}n does not have distance γ
is

Pr
C

[
∃x, y ∈ {0, 1}k such that distp(C(x), C(y)) ≤ γ

]
≤ 22k · Pr

w,w′∼{0,1}n
[ distp(w,w′) ≤ γ ]

≤ 22k · Pr
w∼{0,1}n

[
n∑
i=1

piwi ≤ ε

]

=
VolFn2 ,distp(ε)

2n−2k .

Hence, for sufficiently small k = Ω(n − log VolFn2 ,distp(ε)), the probability that a random
code is a p-weighted code with relative distance γ is at least 2/3; fix such k. Similarly, the
probability that a random code C : {0, 1}k → {0, 1}n is not τ -balanced (under the p-distance)
is

Pr
C

[
∃x ∈ {0, 1}k such that weightp(C(x)) /∈

(
1
2 − τ,

1
2 + τ

)]
≤ 2k · Pr

w∈{0,1}n

[ ∣∣∣∣weightp(w)− 1
2

∣∣∣∣ > τ

]
≤ 2k+1 · Pr

w∈{0,1}n

[
n∑
i=1

piwi < ε

]

≤
VolFn2 ,distp(ε)

2n−k−1 .

Thus, the probability that a random code is τ -balanced (under the p-distance) is at least 2/3,
and so, with probability at least 1

3 , a random code satisfies the proposition’s hypothesis. J

We now establish a connection between the rate of p-weighted codes and the K-functional
of p, as introduced in Section 6:

I Claim 29. Let p ∈ ∆([n]) be a probability distribution. Then, for any γ ∈ (0, 1
2 ) we have

n− log VolFn2 ,distp(γ) ≥ 1
2 ln 2κ

−1
p (1− 2γ)2

where κ−1
p (u) = inf { t ∈ (0,∞) : κa(t) ≥ u } for u ∈ [0,∞).

Proof. From the definition,

VolFn2 ,distp(γ) =
∣∣{ w ∈ Fn2 : weightp(w) ≤ γ

}∣∣ =

∣∣∣∣∣
{
w ∈ Fn2 :

n∑
i=1

piwi ≤ γ

}∣∣∣∣∣
= 2n Pr

Y∼{0,1}n

[
n∑
i=1

piYi ≤ γ

]
= 2n Pr

X∼{−1,1}n

[
n∑
i=1

piXi ≥ 1− 2γ
]

= 2n Pr
X∼{−1,1}n

[
n∑
i=1

piXi ≥ κp(uγ)
]

CCC 2017



28:28 Distribution Testing Lower Bounds via Reductions from Communication Complexity

where we set uγ
def= κ−1

p (1− 2γ). From Theorem 22, we then get VolFn2 ,distp(γ) ≤ 2ne−
u2
γ

2 ,

from which

n− log VolFn2 ,distp(γ) ≥ − log e−
u2
γ

2 = 1
2 ln 2u

2
γ

as claimed. J

7.1.2 The Reduction
Equipped with the nearly balanced p-weighted codes in Theorem 28, we are ready to prove
Theorem 24. Assume there exists an s-sample ε-tester for identity to p, with error probability
1/6, and assume, without loss of generality, that ε is a constant (independent of n).

Fix γ = ε and τ = (1− 2ε)/2. For a sufficiently large k ∈ N, let C : {0, 1}k → {0, 1}n be
a τ -balanced p-weighted code with relative distance γ, as guaranteed by Theorem 28; namely,
the code C satisfies the following conditions.
1. Balance: weightp(C(x)) ∈

( 1
2 − τ,

1
2 + τ

)
for all x ∈ {0, 1}k;

2. Distance: distp(C(x), C(y)) > γ for all distinct x, y ∈ {0, 1}k;
3. Rate: k = Ω(n− log VolFn2 ,distp(ε)).

We reduce from the problem of equality in the (private coin) SMP model. Given their
respective inputs x, y ∈ {0, 1}k× ∈ {0, 1}k from Eqk, Alice and Bob separately create inputs
(a, b) = (C(x), C(y)) ∈ {0, 1}n× ∈ {0, 1}n. Let A ⊆ [n] denote the set indicated by a, and
let B ⊆ [n] denote the set indicated by b̄. Alice and Bob then each send to the referee the
p-weight of their encoded input, weightp(a) = p(A) and weightp

(
b̄
)

= p(B) respectively,12 as
well as a sequence of 6cs samples independently drawn from the distribution p restricted to
the subsets A and B respectively, where c is the constant such that 1

cp(B)· ≤ p(A) ≤ c · p(B),
guaranteed by the balance property of C. Finally, the referee checks that p(A) + p(B) = 1
(and otherwise rejects) and generates a sequence of q samples by choosing independently, for
each of them, Alice’s element with probability p(A) and Bob’s with probability p(B), and
feeds these samples to the ε-tester for identity to p.

By Markov’s inequality, the above procedure indeed allows the referee to retrieve, with
probability at least 1− cs

6cs = 5
6 , at least s independent samples from the distribution

q
def= p(A) · p|A + p(B) · p|B ,

at the cost of O(s logn) bits of communication in total.
For correctness, note that if x = y, then A = B̄, which implies q = p. On the other

hand, if x 6= y, by the (p-weighted) distance of C we have distp(C(x), C(y)) > γ, and so
p(A ∩B) + p(A ∪B) > γ. Note that every i ∈ A ∩B satisfies qi = 2pi and every i ∈ A ∪B
is not supported in q. Therefore, we have ‖p− q‖1 > ε. The referee can therefore invoke the
identity testing algorithm to distinguish between p and q with probability 1−( 1

6 + 1
6 ) = 2

3 . This
implies that the number of samples q used by any such tester must satisfy s logn = Ω

(√
k
)
.

Finally, by Claim 29 we have

k = Ω
(
n− log VolFn2 ,distp(ε)

)
= Ω

(
κ−1
p (1− 2ε)2),

and therefore we obtain a lower bound of s = Ω(tε/ log(n)).

12A standard argument shows it suffices to specify p(A) and p(B) with precision roughly 1/n2, and so
sending the weights only costs O(logn) bits.
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7.2 The Upper Bound
Inspired by the results of the previous section, it is natural to wonder whether the dependence
on tε of the lower bound is the “right” one. Our next theorem shows that this is the case:
the parameter tε does, in fact, capture the sample complexity of the problem.

I Theorem 30. There exists an absolute constant c > 0 such that the following holds. Given
any fixed distribution p ∈ ∆([n]) and parameter ε ∈ (0, 1], and granted sample access to an
unknown distribution q ∈ ∆([n]), one can test p = q vs. ‖p− q‖1 > ε with O

(
max

(
tcε
ε2 ,

1
ε

))
samples from q. (Moreover, one can take c = 1

18).

7.2.1 High-level idea
As discussed in Section 2.4, the starting point of the proof is the connection between the
K-functional and the “Q-norm” obtained in Lemma 18: indeed, this result ensures that for
T = 2t2O(ε), there exists a partition of the domain into sets A1, . . . , AT such that

1−O(ε) ≤ ‖p‖Q(T ) =
T∑
j=1

√∑
i∈Aj

p2
i =

T∑
j=1
‖pAj‖2

where pAj is the restriction of the sequence p to the indices in Aj . But by the monotonicity
of `p norms, we know that

∑T
j=1 ‖pAj‖2 ≤

∑T
j=1 ‖pAj‖1 =

∑T
j=1

∑
i∈Aj pi = ‖p‖1 = 1.

Therefore, what we obtain is in fact that

0 ≤
T∑
j=1

(‖pAj‖1 − ‖pAj‖2︸ ︷︷ ︸
≥0

) ≤ O(ε).

Now, if the right-hand side were exactly 0, then this would imply ‖pAj‖1 = ‖pAj‖2 for all j,
and thus that p has (at most) one non-zero element in each Aj . Therefore, testing identity
to p would boil down to testing identity on a distribution with support size T , which can be
done with O(

√
T/ε2) samples.

This is not actually the case, of course: the right-hand-side is only small and not exactly
zero. Yet, one can show that a robust version of the above holds, making this intuition precise:
in Lemma 31, we show that on average, most of the probability mass of p is concentrated on
a single point from each Aj . This sparsity implies that testing identity to p on this set of T
points is indeed enough – leading to the theorem.

7.2.2 Proof of Theorem 30
Let p ∈ ∆([n]) be a fixed, known distribution, assumed monotone non-increasing without
loss of generality: p1 ≥ p2 ≥ · · · ≥ pn. Given ε ∈ (0, 1/2), we let tε be as above, namely such
that

κp(tε) ≥ 1− 2ε.

From this, it follows by Lemma 18 that

‖p‖Q(T ) ≥ 1− 2ε, (15)

where we set T def= 2t2ε. Choose A1, . . . , AT to be a partition of [n] achieving the maximum
(since we are in the finite, discrete case) defining ‖p‖Q(T ); and let p̃ be the subdistribution
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on T elements defined as follows. For each j ∈ [T ], choose ij
def= arg maxi∈Aj pi, and set

p̃(j) def= p(ij).

I Lemma 31 (Sparsity Lemma). There exists an absolute constant κ > 0 such that p̃([T ]) =∑T
j=1 p(ij) ≥ 1− κε. (Moreover, one can take κ def= 2

3−
√

7 ' 5.65.)

Proof. Fix any j ∈ [T ], and for convenience let A def= Aj . Write a∗ for the maximum
element for p in A, so that p(ij) = maxa∈A p(a) = p(a∗). We have by monotonicity
p(A) ≥

√∑
a∈A p(a)2, and moreover, letting α def= p(A)− p(a∗) = p(A \ {a∗}),

p(A)−
√∑
a∈A

p(a)2 = p(a∗) + α−
√
p(a∗)2 +

∑
a 6=a∗

p(a)2 ≥ p(a∗) + α−
√
p(a∗)2 + α2.

We let s > 1 be a (non-integer) parameter to be chosen later. Suppose first that α ≤ s
s+1p(A),

or equivalenty α ≤ sp(a∗). In that case, we have

p(A)−
√∑
a∈A

p(a)2 ≥ p(a∗) + α− p(a∗)

√
1 +

(
α

p(a∗)

)2

≥ p(a∗) + α− p(a∗)
(

1 +
√
s2 + 1− 1

s

α

p(a∗)

)

=
(

1−
√
s2 + 1− 1

s

)
α

def= L1(s)α

where we relied on the inequality
√

1 + x2 ≤ 1 +
√
s2+1−1
s x for x ∈ [0, s]. However, if

α > sp(a∗), then we have

p(A)−
√∑
a∈A

p(a)2 = p(a∗) + α−
√
p(a∗)2 +

∑
a 6=a∗

p(a)2 ≥ α−
√∑
a6=a∗

p(a)2

≥ α−

√
bsc
(α
s

)2
+ 1 ·

(
α− bsc

s
α

)2

=

1−

√
bsc
s2 +

(
1− bsc

s

)2
α

def= L2(s)α.

using the fact that p(a∗) is the maximum probability value of any element, so that the total
α has to be spread among at least bsc+ 1 elements (recall that s will be chosen not to be
an integer). Optimizing these two bounds leads to the choice of s def= 4+

√
7

3 /∈ N, for which
L1(s) = L2(s) = 3−

√
7 ' 0.35.

Putting it together, we obtain, summing over all j ∈ [T ], that

1− ‖p‖Q(T ) =
T∑
j=1

p(Aj)−
T∑
j=1

√∑
i∈Aj

p(i)2 =
T∑
j=1

p(Aj)−√∑
i∈Aj

p(i)2


≥ (3−

√
7)

T∑
j=1

(p(Aj)− p(ij))

= (3−
√

7) (1− p̃([T ]))

which implies p̃([T ]) ≥ 1
3−
√

7‖p‖Q(T ) −
1

3−
√

7 + 1 ≥ 1− 2
3−
√

7ε by Eq. (15). J
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I Lemma 32. Fix p, ε as above, let S def= {i1, . . . , iT } be the corresponding set of T elements,
and take κ as in Lemma 31. For any q ∈ ∆([n]), if (i)

∑T
j=1 q(ij) ≥ 1 − (κ + 1

3 )ε and (ii)∑T
j=1

∣∣∣ p̃(j)p(S) −
q̃(j)
q(S)

∣∣∣ ≤ 1
3ε, then ‖p− q‖1 ≤ (3κ+ 1)ε.

Proof. Unrolling the definition, and as p(S̄) ≤ κε by Lemma 31,

‖p− q‖1 =
n∑
i=1
|p(i)− q(i)| =

T∑
j=1
|p(ij)− q(ij)|+

∑
i/∈S

|p(i)− q(i)|

≤
T∑
j=1
|p(ij)− q(ij)|+ p(S̄) + q(S̄)

≤
T∑
j=1
|p(ij)− q(ij)|+ κε+ (κ+ 1

3 )ε =
T∑
j=1

∣∣∣∣p(S) p̃(j)
p(S) − q(S) q̃(j)

q(S)

∣∣∣∣+ (2κ+ 1
3 )ε

≤ p(S)
T∑
j=1

∣∣∣∣ p̃(j)p(S) −
q̃(j)
q(S)

∣∣∣∣+
T∑
j=1

q̃(j)
q(S) |p(S)− q(S)|+ (2κ+ 1

3 )ε

= p(S) ·
T∑
j=1

∣∣∣∣ p̃(j)p(S) −
q̃(j)
q(S)

∣∣∣∣+ |p(S)− q(S)|+ (2κ+ 1
3 )ε

≤ 1
3ε+ (κ+ 1

3 )ε+ (2κ+ 1
3 )ε = (3κ+ 1)ε

concluding the proof of the lemma. J

Let κ > 0 be the constant from Lemma 31. We let ε′ def= ε
3κ+1 , and T

def= 2t2ε′ ,
{i1, . . . , iT } ⊆ [n] the corresponding value and elements (i.e., T and the ij ’s are as in
the foregoing discussion (chosen with regard to ε′ and the known distribution p)). For
convenience, denote by q̃ the (unknown) subdistribution on [T ] defined by q̃(j) def= q(ij) for
j ∈ [T ].

We first verify that q̃([T ]) ≥ 1− κε′, with O(1/ε′) samples (specifically, we distinguish,
with probability at least 9/10, between q̃([T ]) ≥ 1−κε′ and q̃([T ]) ≤ 1− (κ+ 1

3 )ε′; and reject
in the latter case). Once this is done, we apply one of the known identity testing algorithms
to p̄, q̄ ∈ ∆([T ]), renormalized versions of p̃, q̃:

p̄ = p̃

p̃([T ]) , q̄ = q̃

q̃([T ])

using rejection sampling (note that we have the explicit description of p̄; and, since q̃([T ]) ≥
1 − (κ + 1

3 )ε′ (conditioning on the first test meeting its guarantee), we can obtain m

independent samples from q̄ with an expected O(m) number of samples from q). This is done
with parameter ε′ and failure probability 1/10; and costs O

(√
T

ε′2

)
= O

(
tε′
ε′2

)
samples from q.

Turning to the correctness: we condition on both tests meeting their guarantees, which
by a union bound holds with probability at least 4/5.

If p = q, then q(S) = p(S) ≥ 1 − κε′, and q̄ = p̄: neither the first nor the second test
reject, and the overall algorithm accepts.
If the algorithm accepts, then q(S) ≥ 1−(κ+ 1

3 )ε′ (by the first test) and
∑T
j=1

∣∣∣ p̃(j)p(S) −
q̃(j)
p(S)

∣∣∣ ≤
ε′ (by the second): Lemma 32 then guarantees that ‖p− q‖1 ≤ 3κ+ 1ε′ = ε.

Observing that for κ = 2
3−
√

7 (as suggested by Lemma 31) we have 3κ+ 1 ≤ 18 establishes
the last part of the theorem.
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7.3 Tightening the Lower Bound
As a last step, one may want to strenghten the lower bound obtained by the communication
complexity reduction of Theorem 24. We here describe how this can be achieved using more
standard arguments from distribution testing. However, we stress that these arguments in
some sense are applicable “‘after the fact,” that is after Section 7.1 revealed the connection
to the K-functional, and the bound we should aim for. Specifically, we prove the following:

I Theorem 33. For any p ∈ ∆([n]), and any ε ∈ (0, 1/2) any algorithm testing identity to p
must have sample complexity Ω

(
tε
ε

)
.

Proof. Fix p ∈ ∆([n]) and ε ∈ (0, 1/2) as above, and consider the corresponding value tε;
we assume that tε ≥ 2, as otherwise there is nothing to prove.13 Without loss of generality
– as we could always consider a sufficiently small approximation, and take the limit in the
end, we further assume the infimum defining κp is attained: let h, ` ∈ [0, 1]n be such that
p = h+ ` and κp(tε) = ‖h‖1 + tε‖`‖2 = 1− 2ε.

Since ‖`‖1 = 1−‖h‖1, from the definition of h, `, we have that 1− 2ε = 1−‖`‖1 + tε‖`‖2,
from which

0 < ‖`‖2 =
‖`‖1 − 2ε

tε
≤ 1
tε

(16)

(note that the right inequality is strict because ε > 0: since if ‖`‖2 = 0, then ‖`‖1 = 0 and
h = p; but then κtε = ‖p‖1 = 1.) In particular, this implies ‖`‖1 − 2ε > 0.

With this in hand, we will apply the following theorem, due to Valiant and Valiant:

I Theorem 34 ([53, Theorem 4]). Given a distribution p ∈ ∆([n]), and associated values
(εi)i∈[n] such that εi ∈ [0, pi] for each i, define the distribution over distributions Q by the
process: independently for each domain element i, set uniformly at random qi = pi ± εi,
and then normalize q to be a distribution. Then there exists a constant c > 0 such that is
takes at least c

(∑n
i=1 ε

4
i /p

2
i

)−1/2 samples to distinguish p from Q with success probability
2/3. Further, with probability at least 1/2 the `1 distance between p and a uniformly random
distribution from Q is at least min

(∑n
i=1 εi −maxi εi, 1

2
∑n
i=1 εi

)
.

We want to invoke the above theorem with ` being, roughly speaking, the “random
perturbation” to p. Indeed, since ` has small `2 norm of order O(1/tε) by (16) (which gives
a good lower bound) and has `1 sum Ω(ε) (which gives distance), this seems to be a natural
choice.

In view of this, set α def= 2ε
‖`‖1
∈ (0, 1) and, for i ∈ [n], εi

def= α`i ≤ `i ∈ [0, pi]. Theorem 33
will then be a direct consequence of the next two claims:

I Claim 35 (Distance). We have min
(∑n

i=1 εi −maxi εi, 1
2
∑n
i=1 εi

)
≥ ε.

Proof. Since by our choice of α it is immediate that
∑n
i=1 εi = 2ε

‖`‖1

∑n
i=1 `i = 2ε, it suffices

to show that maxi εi ≤ ε, or equivalently that maxi `i ≤ 1
2‖`‖1. But this follows from the

fact that ‖`‖∞ ≤ ‖`‖2 ≤
‖`‖1
tε

, and our assumption that tε ≥ 2. J

It then remains to analyze the lower bound obtained through the application of The-
orem 34:

I Claim 36 (Lower bound). With the εi’s defined as before,
(∑n

i=1 ε
4
i /p

2
i

)−1/2 ≥ 2tε
ε .

13 Indeed, an immediate lower bound of Ω(1/ε) on this problem holds.
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Proof. Unrolling the definition of the εi’s,

n∑
i=1

ε4
i

p2
i

= α4
n∑
i=1

`4i
p2
i

= α4
n∑
i=1

`2i
p2
i

`2i ≤ α4
n∑
i=1

`2i = 24ε4

‖`‖41
‖`‖22 =

(
4ε2

‖`‖21

‖`‖1 − 2ε
tε

)2

where the last equality is (16). This yields

(
n∑
i=1

ε4
i

p2
i

)−1/2

≥ tε
4ε2 ·

‖`‖21
‖`‖1 − 2ε = tε

2ε ·

(
‖`‖1
2ε

)2

‖`‖1
2ε − 1

≥ 2tε
ε

where the last inequality comes from f : x > 1 7→ x2

x−1 achieving its minimum, 4, at x = 2. J

Combining the two claims with Theorem 34 implies, by a standard argument, the lower
bound of Theorem 33. J

I Remark. A straightforward modification of the proof of Theorem 33 allows one to prove a
somewhat more general statement, namely a lower bound of Ω

(
γtγ/ε

2) for any γ ∈ [ε, 1/2]
such that tγ ≥ 2. In particular, this implies an incomparable bound of Ω

(
t1/4/ε

2) as long as
p does not put almost all its probability weight on O(1) elements.

On the optimality of our bound. We conclude this section by briefly discussing the
optimality of our bound, and specifically whether one could hope to strenghten Theorem 33
to obtain an Ω

(
tε/ε

2) lower bound. Unfortunately, it is easy to come up with simple (albeit
contrived) counterexamples: e.g., fix ε ∈ (0, 1/3), and let p ∈ ∆([n]) be the distribution that
puts mass 1− 3ε on the first element and uniformly spreads the rest among the remaining
n− 1 elements. A straightforward calculation shows that, for this distribution p = p(ε), one
has κ−1

p (1− 2ε) = Θ(
√
n); and it is not hard to check that one can indeed test identity to p

with O(
√
n/ε) samples only,14 and so the Ω(tε/ε) lower bound is tight in this case.

Although this specific instance is somewhat unnatural, as it fails to be a counterexample
for any distance parameter ε′ � ε, it does rule out an improvement of Theorem 33 for the
full range of parameters. On the other hand, it is also immediate to see that the upper
bound O

(
tε/ε

2) cannot be improved in general, as demonstrated by choosing p to be the
uniform distribution (yet, in this case, the extension provided by the above remark does
provide the optimal bound).

8 Lower Bounds on Other Properties

In this section we demonstrate how our methodology can be used to easily obtain lower bounds
on the sample complexity of various properties of distributions. To this end, we provide
sketches of proofs of lower bounds for monotonicity testing, k-modality, and the “symmetric
sparse support” property (that we define below). We remark that using minor variations
on the reductions presented in Section 5 and Section 7, it is also straightforward to obtain
lower bounds for properties of distributions such as being binomially distributed, Poisson
binomially distributed, and having a log-concave probability mass function. Throughout this
section, we fix ε to be a small constant and refer to testing with respect to proximity Θ(ε).

14 Indeed, any distribution q such that ‖q − p‖1 > ε must either be such that |p(1)− q(1)| = Ω(ε) or∣∣p|[n]\{1} − q|[n]\{1}
∣∣ = Ω(1). The first case only takes O(1/ε) samples, while the second can be achieved

by rejection sampling with O(1/ε) ·O(
√
n) samples.
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Monotonicity on the integer line and the Boolean hypercube. We start with the problem
of testing monotonicity on the integer line, that is, testing whether a distribution p ∈ ∆([n])
has a monotone probability mass function. Consider the “vanilla” reduction, presented in
Section 5. Note that for yes-instances, we obtain the uniform distribution, which is monotone.
For no-instances, however, we obtain a distribution p that has mass 1/n on a (1− ε)-fraction
of the domain, is unsupported on a (ε/2)-fraction of the domain, and has mass 2/n on
the remaining (ε/2)-fraction. Typically, p is Ω(1)-far from being monotone; however, it
could be the case that the first (respectively, last) εn/2 elements are of 0 mass, and the last
(respectively, first) εn/2 elements are of mass 2/n, in which case p is perfectly monotone.
To remedy this, all we have to do is let the referee emulate a distribution p′ ∈ ∆([3n]) such

that p′i =
{

1
3pi−n i ∈ {n+ 1, . . . , 2n}
1

3n otherwise
. It is immediate to see that the probability mass

functions of p′ is (ε/3)-far from monotone.
The idea above can be extended to monotonicity over the hypercube as follows. We start

with the uniformity reduction, this time over the domain {0, 1}n. As before, yes-instances
will be mapped to the uniform distribution over the hypercube, which is monotone, and
no-instances will be mapped to a distribution that has mass 1/2n on a (1− ε)-fraction of
the domain, is unsupported on a (ε/2)-fraction of the domain, and has mass 1/2n−1 on
the remaining (ε/2)-fraction – but could potentially be monotonously strictly increasing (or
decreasing). This time, however, the “boundary“ is larger than the “edges” of the integer line,
and we cannot afford to pad it with elements of weight 1/2n. Instead, the referee, who receives
for the players samples drawn from a distribution p ∈ ∆({0, 1}n), emulates a distribution
p′′ ∈ ∆

(
{0, 1}n+1) over a larger hypercube whose additional coordinate determines between

a negated or regular copy of p; that is, p′(z) =
{
p(z) z1 = 0

1
2n−1 − p(z) z1 = 1

(where the referee

chooses z1 ∈ {0, 1} independently and uniformly at random for each new sample). Hence,
even if p is monotonously increasing (or decreasing), the emulated distribution p′′ is Ω(ε)-far
from monotone. By the above, we obtain Ω̃(

√
n) and Ω̃(2n/2) lower bounds on the sample

complexity of testing monotonicity on the line and on the hypercube, respectively.

k-modality. Recall that a distribution p ∈ ∆([n]) is said to be k-modal if its probability mass
function has at most k “peaks” and “valleys.” Such distributions are natural generalizations
of monotone (for k = 0) and unimodal (for k = 1) distributions. Fix a sublinear k, and
consider the uniformity reduction presented in Section 5, with the additional step of letting
the prover apply a random permutation to the domain [n] (similarly to the reduction shown
in Section 5.1). Note that yes-instances are still mapped to the uniform distribution (which
is clearly k-modal), and no-instances are mapped to distributions with mass 1/n, 2/n, and 0
on a (1− ε), (ε/2), and (ε/2) (respectively) fractions of the domain. Intuitively, applying a
random permutation of the domain to such a distribution “spreads” the elements with masses
0 and 2/n nearly uniformly, causing many level changes (i.e., high modality); indeed, it is
straightforward to verify that with high probability over the choice of a random permutation
of the domain, such a distribution will indeed be Ω(ε)-far from k-modal. This yields an
Ω̃(
√
n) lower bound on the sample complexity of testing k-modality, nearly matching the

best known lower bound of Ω(max(
√
n, k/ log k)) following from [19], for k/ log(k) = O(

√
n).

Symmetric sparse support. Consider the property of distributions p ∈ ∆([n]) such that
when projected to its support, p is mirrored around the middle of the domain. That is, p is
said to have a symmetric sparse support if there exists S = {i0 < i2 < · · · < i2`} ⊆ [n] with
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i` = n
2 such that: (1) p(i) = 0 for all i ∈ [n] \ S, and (2) p(i`+1−j) = p(i`+j) for all 0 ≤ j ≤ `.

We sketch a proof of an Ω̃(
√
n) lower bound on the sample complexity of testing this property.

Once again, we shall begin with the uniformity reduction presented in Section 5, obtaining
samples from a distribution p ∈ ∆([n/2]). Then the referee emulates samples from the
distribution p′ ∈ ∆([n]) that is distributed as p on its left half, and uniformly distributed on

its right half; that is, p′i =
{
pi/2 i ∈ [n]
1/n otherwise

. Note that yes-instances are mapped to the

uniform distribution, which has symmetric sparse support, and no-instances are mapped to
distributions in which the right half is uniformly distributed and the left half contains εn/2
elements of mass 2/n, and hence it is Ω(ε)-far from having symmetric sparse support.

Other properties. As aforementioned, similar techniques as in the reductions above (as well
as in the identity testing reduction of Section 7, invoked on a specific p, e.g., the Bin(n, 1/2)
distribution) can be applied to obtain nearly-tight lower bounds of Ω̃(

√
n) (respectively

Ω̃
(
n1/4)) for the properties of being log-concave and monotone hazard rate (respectively

Binomially and Poisson Binomially distributed). See e.g., [20] for the formal definitions of
these properties.

9 Testing with Conditional Samples

In this section we show that reductions from communication complexity protocols can be used
to obtain lower bounds on the sample complexity of distribution testers that are augmented
with conditional samples. These testing algorithms, first introduced in [22, 21], aim to
address scenarios that arise both in theory and practice yet are not fully captured by the
standard distribution testing model.

In more detail, algorithms for testing with conditional samples are distribution testers
that, in addition to sample access to a distribution p ∈ ∆(Ω), can ask for samples from
p conditioned on the sample belonging to a subset S ⊆ Ω. It turns out that testers with
conditional samples are much stronger than standard distribution testers, leading in many
cases to exponential savings (or even more) in the sample complexity. In fact, these testing
algorithms can often maintain their power even if they only have the ability to query subsets
of a particular structure.

One of the most commonly studied restricted conditional samples models is the PAIRCOND
model [21]. In this model, the testers can either obtain standard samples from p, or specify
two distinct indices i, j ∈ Ω and get a sample from p conditioned on membership in S = {i, j}.
As shown in [21, 18], even under this restriction one can obtain constant- or poly log(n)-query
testers for many properties, such as uniformity, identity, closeness, and monotonicity (all of
which require Ω(

√
n) or more samples in the standard sampling setting). This, along with

the inherent difficulty of proving hardness results against adaptive algorithms, makes proving
lower bounds in this setting a challenging task; and indeed the PAIRCOND lower bounds
established in the aforementioned works are quite complex and intricate.

We will prove, via a reduction from communication complexity, a strong lower bound on
the sample complexity of any PAIRCOND algorithm for testing junta distributions, a class of
distributions introduced in [5] (see definition below).

Since PAIRCOND algorithms are stronger than standard distribution testers (in particular,
they can make adaptive queries), we shall reduce from the general randomized communication
complexity model (rather than from the SMP model, as we did for standard distribution
testers). In this model, Alice and Bob are given inputs x and y as well as a common random
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string, and the parties aim to compute a function f(x, y) using the minimum amount of
communication.

We say that a distribution p ∈ ∆({0, 1}n) is a k-junta distribution (with respect to the
uniform distribution) if its probability mass function is only influenced by k of its variables.
We outline below a proof of the following lower bound.

I Theorem 37. Every PAIRCOND algorithm for testing k-junta distributions must make
Ω(k) queries.

Sketch of Proof. We closely follow the k-linearity lower bound in [15] and reduce from
the unique (k/2)-disjointness problem. In this promise problem, Alice and Bob get inputs
x ∈ {0, 1}n and y ∈ {0, 1}n (respectively) of Hamming weight k/2 each, and the parties are
required to decide whether

∑n
i=1 xiyi = 1 or

∑n
i=1 xiyi = 0. It is well-known that in every

randomized protocol for this problem the parties must communicate Ω(k) bits.
Assume there exists a PAIRCOND algorithm for testing k-junta distributions, with query

complexity q. The reduction is as follows. Alice sets A = { i ∈ [n] : xi = 1 } and considers
the character function χA(z) = ⊕i∈Azi, and similarly Bob sets B = { i ∈ [n] : yi = 1 }
and considers the character function χB(z) = ⊕i∈Bzi. Both players then invoke the tester
for k-junta distributions, feeding it samples emulated from the distribution p ∈ ∆({0, 1}n)
given by p(z) = χA4B(z)/2n−1 (where χA4B(z) = ⊕i∈A4Bzi); note that since the non-zero
character functions are balanced, p is indeed a probability distribution. Recall that each
query of a PAIRCOND algorithm is performed by either setting S = {0, 1}n, or choosing
z, z′ ∈ {0, 1}n and setting S = {z, z′}, then sampling from p|S . The players emulate each
PAIRCOND query by the following rejection sampling procedure:

Sampling query (S = {0, 1}n): Alice and Bob proceed as follows.
1. Choose z ∈ S uniformly at random, using shared randomness;
2. Exchange χA(z) and χB(z) between the players, and compute χA4B(z) = χA(z)·χB(z);
3. If χA4B(z) = 1, feed the tester with the sample z. Otherwise repeat the process.
Note that since χA4B(z) is a balanced function, then on expectation each PAIRCOND
query to p can be emulated by exchanging O(1) bits.

Pairwise query (S = {z, z′} for some z, z′ ∈ {0, 1}n): exchange χA(z), χA(z′) and
χB(z), χB(z′) between the players, compute χA4B(z) and χA4B(z′), and use shared
randomness to sample from S with the corresponding (now fully known) conditional
probabilities.

The above gives a protocol with expected communication complexity O(q), correct with prob-
ability 5/6. To convert it to a honest-to-goodness protocol with communication complexity
O(q) and success probability 2/3, it suffices for Alice and Bob to run the above protocol and
stop (and output reject) as soon as they go over Ck bits of communication, for some absolute
constant C > 0. An application of Markov’s inequality guarantees that this happens with
probability at most 1/6, yielding the claimed bound on the error probability of the protocol.

Finally, note that on the one hand, if (x, y) is such that
∑n
i=1 xiyi = 0, then χA4B(z)

is a degree-k character, and in particular, a k-junta. Hence, by definition p is a k-junta
distribution. On the other hand, if (x, y) is such that

∑n
i=1 xiyi = 1, then χA4B(z) is a

degree-(k − 2) character, which in particular disagrees with every k-junta on Ω(1)-fraction
of the inputs. Therefore, since p is uniform over its support, we can deduce that that p is
Ω(1)-far in `1-distance from any k-junta distribution. J
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Abstract
Given a function f : [N ]k → [M ]k, the Z-test is a three query test for checking if a function f is
a direct product, namely if there are functions g1, . . . gk : [N ] → [M ] such that f(x1, . . . , xk) =
(g1(x1), . . . gk(xk)) for every input x ∈ [N ]k.

This test was introduced by Impagliazzo et. al. (SICOMP 2012), who showed that if the test
passes with probability ε > exp(−

√
k) then f is Ω(ε) close to a direct product function in some

precise sense. It remained an open question whether the soundness of this test can be pushed
all the way down to exp(−k) (which would be optimal). This is our main result: we show that
whenever f passes the Z test with probability ε > exp(−k), there must be a global reason for
this: namely, f must be close to a product function on some Ω(ε) fraction of its domain.

Towards proving our result we analyze the related (two-query) V-test, and prove a “restricted
global structure” theorem for it. Such theorems were also proven in previous works on direct
product testing in the small soundness regime. The most recent work, by Dinur and Steurer
(CCC 2014), analyzed the V test in the exponentially small soundness regime. We strengthen
their conclusion of that theorem by moving from an “in expectation” statement to a stronger
“concentration of measure” type of statement, which we prove using hyper-contractivity. This
stronger statement allows us to proceed to analyze the Z test.

We analyze two variants of direct product tests. One for functions on ordered tuples, as
above, and another for functions on sets, f :

([N ]
k

)
→ [M ]k. The work of Impagliazzo et. al was

actually focused only on functions of the latter type, i.e. on sets. We prove exponentially small
soundness for the Z-test for both variants. Although the two appear very similar, the analysis
for tuples is more tricky and requires some additional ideas.
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1 Introduction

A function f : [N ]k → [M ]k for N,M, k ∈ N, is a direct product function if f = (g1, . . . gk),
for gi : [N ] → [M ], i.e. the output of f on each coordinate depends on the input to this
coordinate alone. Direct products appear in a variety of contexts in complexity, usually
for hardness amplification. In PCPs it underlies the parallel repetition theorem [12] and
implicitly appears in other forms of gap amplification, e.g. [4]. The specific task of testing
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direct products as an abstraction of a certain element of PCP constructions was introduced
by [8].

The combinatorial question that underlies these works is the direct product testing
question: given a function f : [N ]k → [M ]k, is it a direct product function? The setting of
interest here is where we query f in the smallest number of inputs possible, and decide if is it
a direct product function or not.

The direct product testing question is a type of property testing question, yet it is not
in the standard property testing parameter regime. In property testing we are generally
interested in showing that functions that pass the test with high probability, for example
99%, are close to having the property.

In our case, we are interested in understanding the structure of functions that pass the test
with small – but non-trivial – probability, e.g. 1%. The 1% regime is often more challenging
than the 99% regime. It plays an important role in PCPs where one needs to prove a large
gap. In such arguments one needs to be able to deduce non trivial structure even from a
proof that passes a verification test with small probability, e.g. 1%.

There are very few families of tests for which 1% theorems are known. These include
algebraic low degree tests and direct product tests. For low degree tests there has been a
considerable amount of work in various regimes and in particular towards understanding the
extent of the 1% theorems, see e.g. [13, 1, 3] and [2]. It is intriguing to understand more
broadly for which tests such theorems can hold. Indeed, as far as we know, there are no
other tests that exhibit such strong “structure vs. randomness” behavior, and direct product
tests are natural candidates in which to study this question.

We remark that finding new settings where 1% theorems hold (including in particular
derandomized direct products) can be potentially useful for constructing locally testable
codes and stronger PCPs, see e.g. the recent works of [10, 6]. Towards this goal gaining a
more comprehensive understanding of direct product tests, as well as developing tools for
proving them, is a natural goal.

1.1 Our Main Result
The main question we study is: if f : [N ]k → [M ]k passes a certain natural test (Test 1
below) with non-negligible probability, how can f look like? We prove

I Theorem 1 (Main Theorem – Global Structure). For every N,M > 1, there exist small
constants c1, c2 > 0 such that for every constant λ > 0 and large enough k, if f : [N ]k → [M ]k
is a function that passes Test 1 with probability αZ( k10 )(f) = ε ≥ e−c1λ

2k, then there exist
functions (g1, . . . gk), gi : [N ]→ [M ] such that

Pr
x∈[N ]k

[
f(x) λk≈ (g1(x1) . . . gk(xk))

]
≥ c2 · ε.

Where λk
≈ means that the strings are equal on all but at most λk coordinates.

The theorem is qualitatively tight with respect to several parameters: (i) Soundness,
(i.e. the parameter ε), (ii) Approximate equality vs. exact equality (i.e. the parameter λ),
(iii) Number of queries in the test. We discuss these next.

(i) Soundness

The soundness of the theorem is the smallest success probability in which the theorem is
valid, in our case it is 2−ck for some constant c > 0. This is tight up to the constant c, as
can be seen by the example bellow.
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1. Choose A,B,C to be a random partition of [k],
such that |A| = |B| = t.

2. Choose uniformly at random x, y, z ∈ [N ]k such
that xA = yA and yB = zB .

3. Reject if f(x)A 6= f(y)A or f(z)B 6= f(y)B, else
accept.

A C B

x

y

z

Denote by αZ(t)(f) the success probability of f on this test.

Test 1 “Z”-test with parameter t (3-query test).

I Example 2 (Random function). Let f : [N ]k → {0, 1}k be a random function; i.e. for each
x ∈ [N ]k choose f(x) ∈ {0, 1}k uniformly and independently. Two random strings in {0, 1}t
are equal with probability 2−t, therefore αZ(t)(f) = 2−2t, since the test performs two such
checks. On the other hand, since f is random, it is not close to any direct product function.

We remark that every function f : [N ]k → {0, 1}k is at least 2−k close to a direct product
function 1, so this amount of correlation is meaningless. We conclude that in order to have
direct product theorem that is not trivial, the minimal soundness has to be 2−c′k for some
constant c′ < 1.

(ii) Approximate equality vs. exact equality

In the theorem, we prove that for Ω(ε) of the inputs x: f(x) λk≈ (g1(x), . . . , gk(x)). A priori,
one could hope for a stronger conclusion in which f(x) = (g1(x), . . . , gk(x)) for Ω(ε) of the
x’s. However, Example 3 shows that for t = k

10 , approximate equality is necessary.

I Example 3 (Noisy direct product function). This example is from [5]. Let f be a direct
product function, except that on each input x we “corrupt” f(x) on λk random coordinates
by changing f(x) on these coordinates into random values. For λ < 1

10 , the probability that
Test 1 on f missed all the corrupted coordinates is 2−Ω(λk), in which case the test succeeds.
Since we have changed f(x) on λk coordinates into random values, no direct product function
can approximate f on more than (1− λ) of the coordinates.

From this example we conclude that for f that passes Test 1 for t = k
10 with probability

e−δλk, it is not possible to approximate f on more than (1− λ) of the coordinates. Further
discussion and examples for different intersection sizes (i.e. t) are in Section 6.

(iii) Number of queries in the test

The absolute minimal number of queries for any direct product test is two. Indeed, there is
a very natural 2-query test, Test 2.

Dinur and Goldenberg showed that it is not possible to have a direct product theorem
with soundness lower than 1

poly(k) using the 2-query test [5].

I Example 4 (Localized direct product functions). In this example we assume N � k. For
every b ∈ [N ] we choose a random function gb : [N ]→ [M ] independently. For every input
x ∈ [N ]k, we choose a random ix ∈ k, set b = xi and set f(x) = (gb(x1), . . . , gb(xk)).

1 Consider the direct product function constructed incrementally by taking the most common value out
of {0, 1} on each step.
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1. Choose A ⊂ [k] of size t, uniformly at random.
2. Choose uniformly at random x, y ∈ [N ]k such that

xA = yA.
3. Accept if f(x)A = f(y)A.

A

x

y

Denote by αV (t)(f) the success probability of f on this test.

Test 2 “V” test with parameter t (2-query test).

1. Choose random V,W,X, Y ⊂ [N ], such that |W | =
|V | = t, |X| = |Y | = k − t and X ∩W = Y ∩W =
Y ∩ V = ∅.

2. Reject if f(X ∪W )W 6= f(Y ∪W )W or
f(Y ∪W )Y 6= f(Y ∪ V )Y , else accept.

X W

Y V

Denote by αZset(t)(f) the success probability of f on this test.

Test 3 “Z” test for functions over sets, with parameter t (3-queries).

The function f satisfies αV (t)(f) ≥ 1
k ·

t
k ; indeed, for x, y and A chosen in the test, if

ix = iy and ix ∈ A, then the test will pass. The probability that ix = iy is 1
k , and the

probability that ix ∈ A is t
k .

For N � k, the function f is very far from direct product, since it is made up from
N different direct product functions. Each piece consisting of roughly 1/N fraction of the
domain [N ]k.

For every t, the function described in the example satisfies αV (t)(f) ≥ 1
k2 , yet there is

no direct product function that approximates f when N � k. In [5] the conclusion from
Example 4 was that 1/poly(k) is the limit for small soundness for direct product tests.
However, [9] showed that by adding just one more query, this limitation goes away. They
introduced a 3-query test, similar to Test 1, and proved a direct product theorem for all
ε > 2−kβ for some constant β ≤ 1/2.

Direct product test for functions over sets

Some of the previous direct product works, such as [9] were proven in a slightly different
setting, where the function tested is f :

([N ]
k

)
→ [M ]k, i.e. the input to the function f is an

unordered set S ⊂ [N ] of k elements. In this work, we also prove a direct product testing
theorem for this setting, Test 3 is the analog of Test 1 for functions over sets. In Test 3 (see
figure), we pick disjoint sets W,X, Y, Z such that X ∩W = Y ∩W = Y ∩ V = ∅ so that
|X ∪W | = |Y ∪W | = |Y ∪ V | = k and they can be inputs to the function f .

I Theorem 5 (Global Structure for Sets). There exist a small constant c > 0, such that for
every constant λ > 0, large enough k ∈ N and N > k2e10cλk, if the function f :

([N ]
k

)
→ [M ]k

passes Test 3 with probability αZset( k10 )(f) = ε > e−cλk, then there exist a function g : [N ]→
[M ] such that

Pr
S

[
f(S) λk≈ g(S)

]
≥ ε− 4ε2 .

Notice that the probability bound of ε−4ε2 is better than Ω(ε), and it is tight as demonstrated
by the function f which is a hybrid of 1

ε different direct product functions on equals parts of
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the inputs. f passes Test 3 with probability ε, and every direct product function is close to
f only on ε fraction of the inputs.

We remark that the two theorems are not the same. In Theorem 1, there are k different
functions g1, . . . , gk : [N ]→ [M ] whereas in Theorem 5 there is a single one. Furthermore,
Theorem 1 holds for any N,M ∈ N and large enough k, and Theorem 5 (and other such
direct product theorems) only holds for N � k. The proofs of the theorems are also different,
which is discussed later in the introduction.

1.2 Restricted Global Structure
Our proof has two main parts, similar to the structure of the proof of [5, 9]. In the first part,
we analyze only Test 2 (which is on tuples) and prove a restricted global structure theorem
for it, Theorem 6 below (this was called local structure in [9, 7]). The term “restricted global
structure” refers to when we restrict the domain to small (but not trivial) pieces, and show
that f is close to a product function on each piece separately. This is the structure of the
function in Example 4.

More explicitly, for every A ∈ [k] of size k
10 , r ∈ [N ]A and γ ∈ [M ]A, a restriction is a

triple τ = (A, r, γ). The choice of t = k
10 in Theorem 1 is somewhat arbitrary, the theorem

can be proven with t = ck for c < 1
2 . The restriction corresponds to the set of inputs

Vτ = {w ∈ [N ][k]\A|f(r, w)A = γ}.

Our next theorem shows that for many restrictions τ there exist a direct product function
that is close to f on Vτ .

I Theorem 6 (Restricted Global Structure – informal). Let f : [N ]k → [M ]k be a function
that passes Test 2 with probability αV ( k10 )(f) = ε > e−δλk, then there exist a natural distri-
bution over restrictions τ = (A, r, γ) such that with probability Ω(ε), there exist functions
(gτ1 , . . . gτ9k

10
), gτi : [N ]→ [M ] such that,

Pr
w∈[N ][k]\A

[
f(r, w)[k]\A

λk
≈ (gτ1 (w1), . . . gτ9k

10
(w 9k

10
))
∣∣∣∣ w ∈ Vτ] ≥ 1− ε2. (1)

Where the distribution over τ is the test distribution, namely choose A ⊂ [k], x ∈ [N ]k
uniformly, and set τ = (A, xA, f(x)A).

A similar theorem was proven in [9] but only for soundness (i.e. ε) at least exp(−kβ) for
a constant β ≤ 1/2. This was strengthened to soundness exp(−Ω(k)) in [7]. Our Theorem 6
improves on the conclusion of [7] . In [7] the probability in (1) was shown to be at least
1−O(λ) (recall that λ is a constant), whereas we show it is exponentially close to 1 (when
ε is that small). This difference may seem minor but in fact it is what prevented [7] from
deriving global structure via a three query test (i.e. moving from the V test to the Z test).
When we try to move from restricted global structure to global structure, the consistency
inside each restriction needs to be very high for the probabilistic arguments to work, as we
try to explain below.

The restricted global structure gives us a direct product function that approximates
f only on a restricted subset of the inputs. In the proof of the global structure, we use
the third query to show that there exists a global function. A key step in the proof of the
global structure is to show that for many restrictions τ , the function gτ is close to f on a
much larger subsets of inputs. This is done, intuitively, by claiming that if f(x)A = f(y)A,
then with high probability f(y) ≈ gτ (y) for τ = (A, xA, f(x)A). Since B is a random set
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and f(z)B = f(y)B, then f(z), gτ (z) are also close. This claim only holds if the success
probability on (1) is more than 1− ε, else it is possible that all the success probability of the
test comes from f such that f(x)A = f(y)A, but f(y), gτ (y) are far.

1.3 Technical Contribution
In terms of technical contribution our proof consists of two new components.

Domain extension

Our first contribution a new domain extension step that facilitates the proof of the restricted
global structure. The restricted global structure shows that with probability Ω(ε), the
function f is close to a direct product on the restricted domain Vτ . A natural way to show
that a function is close to a direct product function is to define a direct product function by
majority value. However, this method fails when the agreement guaranteed for f is small, as
in our case.

This is usually resolved by moving to a restricted domain in which the agreement is
much higher, and to define majority there. The first part of our proof is to show that with
probability Ω(ε), over restrictions τ = (A, r, γ) ∼ D, the set Vτ satisfies the following two
properties:
1. Its density is at least ε

2 .
2. f has very high agreement in Vτ , informally it means that taking a random pair w, v ∈ Vτ

such that wJ = vJ , results in agreeing answers, i.e. f(r, w)J ≈ f(r, v))J , with probability
greater than 1− ε120.

We call such restrictions excellent, following [9].
We show that for every excellent restriction Vτ , the restriction hτ of f to Vτ , defined

by hτ (w) = f(r, w)[k]\A, is close to a direct product function. The function hτ has high
agreement, which is good for defining majority, but unfortunately the low density of Vτ ,
which can be as low as ε

2 , which is exponentially small, is where the techniques used in [9]
break down. In order to prove that hτ is close to a direct product function, we use a local
averaging operator to extend the domain from Vτ to [N ][k]\A.

The local averaging operator P 3
4
is the majority of a 3

4 -correlated neighborhood,

∀w ∈ [N ][k]\A, i /∈ A P 3
4
hτ (w)i = Plurality

v∈N 3
4

(w),v∈Vτ ,vi=wi
{hτ (v)i},

where v ∈ N 3
4

(w) means that v is 3
4 -correlated with w, i.e. we change each coordinate of

w with probability 1
4 independently. The new function, P 3

4
hτ is defined over all [N ][k]\A,

unlike hτ which is defined only on Vτ .
In order to use P 3

4
hτ for showing that hτ is close to a direct product function, we show

two things:
1. P 3

4
hτ and hτ are similar on Vτ .

2. P 3
4
hτ has high agreement, taking a random pair w, v ∈ [N ][k]\A such that wJ = vJ ,

results in agreeing answers, P 3
4
hτ (w)J ≈ P 3

4
hτ (v)J with probability 1− ε6.

To prove that P 3
4
hτ has high agreement we use reverse hypercontractivity to show that only

a few w ∈ [N ][k]\A have sparse neighborhood (with density less than ε50), and use the very
high agreement of hτ .

Lastly, we define a direct product function gτ by taking the plurality over P 3
4
hτ , and

show that it is close to hτ .
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Direct product testing in a dense regime

A second new element comes when stitching the many localized functions into one global
direct product function, by using the third query.

We prove two global structure theorems, Theorem 1 for functions on tuples f : [N ]k →
[M ]k and Theorem 5 for functions on sets f :

([N ]
k

)
→ [M ]k.

When we work with f that is defined over sets, we can directly follow the approach
of [9] to complete the proof. However, when working with f defined on tuples we reach
a combinatorial question that itself resembles a direct product testing question, but in a
different (dense) regime. Luckily, the fact that this question is in a dense regime makes it
easier to solve, and this leads to our global structure theorem for tuples. An outline of the
global structure proofs appears in Section 5.1.

1.4 Agreement Tests and Direct Product Tests
The question of direct product testing fits into a more general family of tests called agreement
tests. We next describe this setting formally and explain how direct product tests fit into
this framework.

Agreement tests

In all efficient PCPs we break a proof into small overlapping pieces, use a relatively inefficient
PCPs (i.e. PCPs that incur a large blowup) to encode each small piece, and then through an
agreement test put the pieces back together. The agreement test is needed because given
the collection of pieces, there is no guarantee that the different pieces come from the same
underlying global proof, i.e. that the proofs of each piece can be “put back together again”.
The PCP system needs to ensure this through agreement testing: we take two pieces that
have some overlap, and check that they agree.

This situation can be formulated as an agreement testing question as follows. Let V be a
ground set, |V | = N , and let H be a collection of subsets of V , namely, a set of hyperedges.
Let [M ] be a finite set of colors, where it is sufficient to think of M = 2.

A local assignment is a collection a = {as} of local colorings as : s→ [M ], one per subset
s ∈ H. A local assignment is called global if there is a global coloring g : V → [M ] such that

∀s ∈ H, as ≡ g|s.

An agreement check for a pair of subsets s1, s2 checks whether their local functions agree,
denoted as1 ∼ as2 . Formally,

as1 ∼ as2 ⇔ ∀x ∈ s1 ∩ s2, as1(x) = as2(x).

A local assignment that is global passes all agreement checks. The converse is also true: a
local assignment that passes all agreement checks must be global.

An agreement test is specified by giving a distribution D over pairs (or triples) of subsets
s1, s2. We define the agreement of a local assignment to be the probability of agreement,

agreeD(a) = Pr
s1,s2∼D

[as1 ∼ as2 ] .

An agreement theorem shows that if a is a local assignment with agreeD(a) > ε then a

is somewhat close to a global assignment. Agreement theorems can be studied for any
hypergraph and in this work we prove such theorems for two specific hypergraphs: the
k-uniform complete hypergraph, and the k-uniform k-partite complete hypergraph.
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h ∈ H

V1 V2 Vk

N

vertices

Figure 1 Complete k-uniform k-partite graph.

Relation to direct product testing

Theorem 1 is equivalent to an agreement theorem on the complete k-uniform k-partite
hypergraph (see Figure 1). Let G = (V = V1, . . . Vk, H) be the complete k-partite hypergraph
with |Vi| = N for i ∈ [k], and

H = {(v1, . . . vk) | ∀i ∈ [k], vi ∈ Vi} .

There is a bijection between H and [N ]k. We shall interpret f(x1, . . . , xk) as a local coloring
of the vertices x1, . . . , xk. In this way, we have the following equivalence

f : [N ]k → [M ]k ⇐⇒ a = {ax}x∈H .

Moreover, local assignments which are global, i.e. a such that ax = g|x for some global
coloring g : V1 ∪ · · · ∪ Vk → [M ], correspond exactly to functions f which are direct products,
f = (g1, . . . , gk) where gi = g|Vi ,

f = (g1, . . . , gk) ⇐⇒ a is global.

Finally, Test 2 can be described as taking 2 hyperedges that intersect on t vertices, and
check if their local functions agree on the intersection. Similarly, Test 1 can be described as
picking three hyperedges, h1, h2, h3 ∈ H such that h1, h2 intersect on t vertices, and h2, h3
intersect on a disjoint set of t vertices, and checking agreement.

Our main theorem, Theorem 1, is equivalent to an agreement theorem showing that if a
local assignment a passes a certain 3-query agreement test with non-negligible probability,
then there exists a global assignment g : V → [M ] with which it agrees non-negligibly.

The k-uniform complete hypergraph (it is non-partite, in contrast to the above), is
related to Theorem 5. In this hypergraph the vertex set is [N ] and there is a hyperedge for
every possible k-element subset of [N ]. Now we have a similar equivalence between local
assignments and functions over sets, i.e. functions where the input is a set S ⊂ [N ] of size k,

f :
(

[N ]
k

)
→ [M ]k ⇐⇒ a = {as}s∈([N]

k ).

An agreement theorem for this hypergraph is equivalent to Theorem 5, in which f is defined
not on “tuples” [N ]k but on “sets”

([N ]
k

)
. A global assignment a or this graph is equivalent

to a direct product function over sets, i.e. f = g : [N ]→ [M ].
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1.5 Organization of the Paper
Section 2 contains preliminary notations and definitions. In Section 3 we prove the restricted
global structure, Theorem 6. Section 4 is dedicated to the global structure for functions on
sets. We show how to deduce a variant of Theorem 6 for sets rather than tuples and then
prove the global structure theorem for sets, Theorem 5. In Section 5 we prove the global
structure theorem for tuples, Theorem 1. Lastly, in Section 6 we discuss lower bounds for
various 3-query direct product tests that were not presented in the introduction.

2 Preliminaries

I Definition 7. For each two strings x, y ∈ [N ]k we say that:
1. x

t
≈ y if x, y differ in at most t coordinates.

2. x
t

6≈ y if x, y differ in more than t coordinates.

I Definition 8 (Plurality). The plurality of a function f on a distribution D is its most
frequent value

Plurality
x∼D

(f(x)) = arg max
β

{
Pr
x∈D

[f(x) = β]
}

For a set A ⊂ [k] we denote by Ā the set [k] \A.

I Fact 9 (Chernoff bound). Let X1, . . . Xk be independent random variables in {0, 1}, let
X =

∑k
i=1, and denote µ = E[X], then for every δ ∈ (0, 1),

Pr
X1,...Xk

[X ≤ (1− δ)ν] ≤ e−
δ2µ2

2 ,

and for every δ ∈ (0, 1]

Pr
X1,...Xk

[X ≥ (1 + δ)ν] ≤ e−
δ2µ2

3 .

I Corollary 10. Let k be a large integer, and let A ⊆ [k] be the set generated by inserting
each i ∈ [k] into A with probability ρ. For every constant c ∈ (0, 1)

Pr
A

[|A| ≤ cρk] ≤ e−
(1−c)2

2 ρk,

and for every c′ ∈ [1, 2],

Pr
A

[|A| ≥ c′ρk] ≤ e−
(c′−1)2

3 ρk.

I Claim 11 (Chernoff bound for fixed size subsets). Let k ∈ N be a large integer, D ⊂ [k] be a
fixed subset of size at most k

3 . Let A be a random subset of size exactly k
10 , then

Pr
A

[
|A ∩D| ≥ 1

5 |D|
]
≤ e− 1

320 |D| (2)

If |D| ≤ 1
30k then

Pr
A

[
|A ∩D| ≤ 1

20 |D|
]
≤ e− 1

60 |D| (3)
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1. Choose A ⊂ [k] of size t, uniformly at random.
2. Choose uniformly at random x, y ∈ [N ]k such that

xA = yA.
3. Accept if f(x)A = f(y)A.

A

x

y

Denote by αV (t)(f) the success probability of f on this test.

Test 2 “V” test with parameter t (2-query test).

The proof appears in Appendix A.
In our proof we also need Chernoff bound for non-binary random variables.

I Fact 12 (Non-binary Chernoff bound). Let X1, . . . Xk be independent random variables in
[0, 1], let X =

∑k
i=1Xi, and denote µ = E[X] then,

Pr
X1,...Xk

[|X − µ| > t] ≤ 2e−t
2k,

2.1 Reverse Hypercontractivity
I Definition 13 (ρ-correlated distribution). For each string y ∈ [N ]k and constant ρ ∈ (0, 1),
the ρ correlated distribution from y will be denoted by (x, J) ∈ Nρ (y). For each i ∈ [k]
independently, i ∈ J with probability ρ, and x is chosen such that xJ = yJ , and the rest is
uniform.

We quote Proposition 9.2 from [11]:

I Claim 14. Let A,B ⊆ [N ]k of sizes Prw∈[N ]k [w ∈ A] = e−
a2
2 and Prw∈[N ]k [w ∈ B] = e−

b2
2 ,

then

Pr
x∈[N ]k,y∈Nρ(x)

[x ∈ A, y ∈ B] ≥ e−
(2−ρ)(a2+b2)

4(1−ρ) − ρab
2(1−ρ) .

By changing notations and simplifying, we get the following corollary.

I Corollary 15. For |A| ≥ |B|,

Pr
x∈[N ]k,y∈Nρ(x)

[x ∈ A, y ∈ B] ≥ Pr
x∈[N ]k

[x ∈ A]1+ ρ
2(1−ρ) Pr

x∈[N ]k
[x ∈ B]1+ 3ρ

2(1−ρ) .

I Claim 16. Let G ⊂ [N ]k be a set of measure ν, then for any η ∈ (0, 1) the set L ={
w ∈ [N ]k

∣∣∣ Pr(v,J)∈N 3
4

(w) [v ∈ G] ≤ η
}

has a measure less than ν− 11
9 η

2
9 .

Both proofs appears in Appendix A.

3 Restricted Global Structure

Let f : [N ]k → [M ]k be such that αV ( k10 )(f) = ε ≥ e−cλk, i.e. the success probability of f on
Test 2 equals ε. To make the reading easy, we write again Test 2 from the introduction.

We show in this section that αV ( k10 )(f) = ε already implies that f is somewhat structured,
namely there are restrictions of the domain Vτ ⊂ [N ]k such that on these restrictions f is
roughly a product function.

Recalling the definition from the introduction, we define a restriction to be a triple
τ = (A, r, γ), for A ⊂ [k], r ∈ [N ]A and γ ∈ [M ]A. In this section denote by k′ = 9k

10 , and
recall that Ā = [k] \A.
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I Definition 17 (Consistent strings). For each restriction τ = (A, r, γ), a string w ∈ [N ]Ā is
consistent with τ if f(r, w)A = γ. For every τ , let Vτ be the set of consistent strings,

Vτ =
{
w ∈ [N ]Ā

∣∣∣ f(r, w)A = γ
}
.

I Definition 18 (Distribution of Restrictions). Let D be the following distribution over
restrictions τ . Pick a uniform set A ⊂ [k] of size k

10 , pick a uniform x ∈ [N ]k and set r = xA
and γ = f(x)A.

Note that the distribution D depends on the function f .
We define good restriction in an analogous way to the definitions of [9].

I Definition 19 (Good restriction). A restriction τ = (A, r, γ) is good, if Prw∈[N ]Ā [w ∈ Vτ ] ≥
ε
2 .

I Definition 20 (DP restriction). A restriction τ = (A, r, γ) is a DP restriction if it is good,
and if there exist functions (gτ1 , . . . gτk′), gτi : [N ]→ [M ] such that

Pr
w∈[N ]Ā

[
f(r, w)Ā

λk

6≈ (gτ1 (w1), . . . gτk′(wk′))
∣∣∣∣ w ∈ Vτ] ≤ ε2.

The main theorem of this section shows that (a) a non-negligible fraction of restrictions
are good, and that (b) almost all good restrictions are DP restrictions.

I Theorem 21 (Restricted Global Structure, restated). There exist a small constant δ > 0,
such that for every constant λ > 0 and large enough k ∈ N the following holds. For every
function f : [N ]k → [M ]k, if αV ( k10 )(f) = ε > e−δλk, then with probability at least ε

2 , τ ∼ D
is good, and with probability at least 1− ε2 over the good restrictions, τ is a DP restriction.
Namely, τ is such that there exist functions (gτ1 , . . . gτk′), gτi : [N ]→ [M ] such that

Pr
w∈[N ]Ā

[
f(r, w)Ā

λk

6≈ (gτ1 (w1), . . . gτk′(wk′))
∣∣∣∣ w ∈ Vτ] ≤ ε2.

A similar theorem was proven in [7] under the name “local structure”. Under the same
assumptions [7] showed that f must be close to a product function for many restrictions Vτ
of the domain. However the closeness was considerably weaker: unlike in our definition of a
DP restriction, in [7] even in the restricted part of the domain, Vτ ⊂ [N ]k, there could be a
(small) constant fraction of the inputs on which f differs from the global product function
gτ . In contrast, we only allow an ε2 fraction of disagreeing inputs. As explained in the
introduction, in order to extend the restricted global structure into a global one, the set of
disagreeing inputs in Vτ has to be smaller than ε.

3.1 Proof of Theorem 21
In this section we prove Theorem 21, we start by writing a few definitions and lemmas that
are used in the proof, and give an intuition for the proof of each lemma. We defer the proofs
of these lemmas to the next sections.

The distribution D over τ is related to the distribution of Test 2. The test can also be
written as choose τ = (A, r, γ) ∼ D, w ∈ [N ]Ā and accept iff f(r, w)A = γ. Therefore, if the
function f passes Test 2 with probability ε, by a simple averaging argument

Pr
τ∼D

[τ is good] ≥ ε

2 . (4)

For each τ we define the function hτ , which is a restriction of f to Vτ .
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I Definition 22. For each restriction τ = (A, r, γ), let hτ : Vτ → [M ] 9k
10 be the function,

hτ (w) = f(r, w)Ā.

We define excellent restriction, in an analogous way to [9],

I Definition 23 (Excellent restriction). Fix a constant α = 1
1600λ, a restriction τ = (A, r, γ)

is excellent, if:
1. τ is good.
2. For every ρ ∈

{
a
b

∣∣ a, b ∈ N, a < b ≤ k
}
, if we pick w ∈ [N ]Ā and (v, J) ∈ Nρ (w) then,

Pr
w,(v,J)

[
w, v ∈ Vτ , hτ (w)J

αk

6≈ hτ (v)J
]
≤
(

9
10

) 1
2αk

. (5)

Note that (5) holds trivially when ρ < α, because with high probability |J | ≈ ρk < αk,
in which it is not possible that h(w)J , h(v)J differs in more than αk coordinates. For an
excellent τ , the set Vτ is of measure at least ε

2 , and the function f is consistent on Vτ .
We assume that the constant δ is small enough to satisfy

( 9
10
) 1

2αk < ε120 = e−120δλk, and
ε120 > e−

αk
43000 .

I Lemma 26. For every ρ ∈ (0, 1), let τ = (A, r, γ) ∼ D, let w ∈ [N ]Ā be uniform, and let
(v, J) ∈ Nρ (w), then

Pr
τ,w,(v,J)

[
w, v ∈ Vτ , hτ (w)J

αk

6≈ hτ (v)J
]
≤
(

9
10

)αk
.

The proof appears on Section 3.2, the main idea in the proof is that the probability of

w, v ∈ Vτ , h(w)J
αk

6≈ h(v)J is low when averaging over τ as well. From the definition of hτ ,

this is equivalent to f(r, w)A = f(r, v)A = γ and f(r, w)J
αk

6≈ f(r, v)J . When r, w, v, A, J are
all random, the probability for a uniform A, J to be such that f(r, w), f(r, v) are equal on A
but far on J is very small.

I Corollary 24. A good τ ∼ D is excellent with probability larger than 1− ε2.

Proof. Let µ =
( 9

10
) 1

2αk, and denote by E(τ, w, v, J) the event of w, v ∈ Vτ , hτ (w)J
αk

6≈
hτ (v)J . Lemma 26 in these notations is: for every ρ ∈ (0, 1), Prτ∼D,w,(v,J)∈Nρ(w) [E] ≤ µ2.

For every τ that is good but not excellent, exist ρ ∈
{
a
b

∣∣ a, b ∈ N, a < b ≤ k
}
such that,

Pr
w,(v,J)∈Nρ(w)

[E] > µ.

In this case we say that τ is bad for ρ.
Assume towards contradiction that Prτ∼D [τ is good but not excellent] > ε4. The set{

a
b

∣∣ a, b ∈ N, a < b ≤ k
}
contains less than k2 elements, so there exists ρ in this set such

that

Pr
τ∼D

[τ is bad for ρ] ≥ ε4

k2 .

For this ρ,

Pr
τ∼D,w,(v,J)∈Nρ(w)

[E] ≥ Pr
τ∼D

[τ is bad for ρ] Pr
w,(v,J)∈Nρ(w)

[E | τ is bad for ρ] ≥ ε3

k2µ.
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This contradicts Lemma 26, because ε4

k2µ� µ2 (we assume that µ < ε120). Therefore, we
conclude that Prτ∼D [τ is good but not excellent] ≤ ε4

Since τ ∼ D is good with probability at least ε
2 , by averaging a good τ ∼ D is excellent

with probability at least 1− ε2. J

In order to prove Theorem 21, it is enough to show that every excellent restriction is a
DP restriction. A natural idea is to define a direct product function by taking the plurality
of hτ on Vτ , because the agreement of hτ inside Vτ is almost 1. However, it is difficult to
prove that this function is close to hτ because the set Vτ is very sparse. We define a local
averaging operator, which allows us to go from hτ that is defined on Vτ , to a function that is
defined on [N ]Ā.

I Definition 25 (Local averaging operator). For every ρ ∈ [0, 1], let Pρ be the following
function operator. For every subset Vτ ⊂ [N ]Ā, and every function h : Vτ → [M ]t, the
function Pρh : [N ]t → [M ]t satisfies ∀i ∈ [k], w ∈ [N ]t,

Pρh(w)i = Plurality
(v,J)∈Nρ(w),vi=wi

(h(v)i).

If there is no v such that vi = wi in Vτ , we define Pρh(w)i to an arbitrary value.

The local averaging operator of h takes for every w and i the most frequent value h(v)i over
a ρ-correlated neighborhood of w. We note that the function operator is not linear.

In order to prove that hτ is close to a direct product function, we first show that that
P 3

4
hτ is close to hτ , and then that P 3

4
hτ is close to a direct product function. Clearly 3

4 is
an arbitrary constant, our proof works for any constant ρ > 1

2 , and we fix ρ = 3
4 .

I Lemma 27. For every excellent τ ,

Pr
w∈[N ]

9k
10

[
hτ (w)

12αk
6≈ P 3

4
hτ (w)

∣∣∣∣ w ∈ Vτ] ≤ ε3.
The proof is in Section 3.3, and uses the very high consistency of hτ inside Vτ to show
that the plurality vote is almost always consistent with hτ (w). In the proof we use reverse
hypercontractivity [11] to show that the set Vτ is not too sparse, such that for almost all
w ∈ Vτ , the neighborhood N 3

4
(w) is not empty.

In a similar way to the proof of Lemma 27, we show that for an excellent τ the function
P 3

4
hτ has high agreement.

I Lemma 28. For every excellent τ ,

Pr
w,(v,J)

[
P 3

4
h(w)J

20αk
≈ P 3

4
h(v)J

]
≥ 1− ε10,

where w ∈ [N ] 9k
10 and (v, J) ∈ N 1

2
(w).

The proof of this lemma also appears in Section 3.3, the main idea is that if P 3
4
h(w1),P 3

4
h(w2)

disagree on a lot of coordinates, then a large fraction of their 3
4 -correlated neighborhood

also disagree on a lot of coordinates. This can only happen for very few inputs w, else we
contradict the fact that τ is excellent.

After showing that P 3
4
hτ has high agreement, we define gτ to be the plurality vote of

P 3
4
hτ , and then use the high agreement, Lemma 28, to show that they gτ is close to P 3

4
hτ .
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I Lemma 29. For every excellent restriction τ there exist a direct product function gτ =
gτ1 . . . g

τ
9k
10

: [N ] 9k
10 → [M ] 9k

10 such that

Pr
w∈[N ]

9k
10

[
P 3

4
hτ (w)

1500αk
6≈ gτ (w)

]
≤ 3ε4.

The proof is in Section 3.4.
Using the above lemmas we can prove the local structure.

Proof of Theorem 21. Let f : [N ]k → [M ]k be a function that passes Test 2 with probabil-
ity ε.

From averaging, Prτ∼D [τ is good] ≥ ε
2 , Lemma 26 implies that with probability (1− ε2),

a good τ is also excellent.
Fix an excellent τ , by definition the function hτ has high consistency inside Vτ , and by

Lemma 27, P 3
4
h is close to h on Vτ . Let E1(w) be the event that hτ (w)

12αk
6≈ P 3

4
hτ (w), in

this notation Lemma 27 implies that

Pr
w

[E1 | w ∈ Vτ ] ≤ ε3. (6)

From Lemma 29, there exists a product function gτ that is similar to P 3
4
hτ . Denote by

E2(w) the event that P 3
4
hτ (w)

1500αk
6≈ gτ (w). In this notation,

Pr
w

[E2] ≤ 3ε4. (7)

We want to use (6) and (7) to prove that hτ is similar to gτ on Vτ . In order to do that,
we need to bound the probability of E2 conditioned on w ∈ Vτ .

3ε4 ≥Pr
w

[E2]

≥Pr
w

[w ∈ Vτ ] Pr
w

[E2 | w ∈ Vτ ] (τ is excellent)

≥ ε2 Pr
w

[E2 | w ∈ Vτ ] .

Therefore Prw [E2 | w ∈ Vτ ] ≤ 6ε3.
If w is such that none of E1, E2 happened, then hτ (w),P 3

4
hτ (w) are equal in all but

12αk of the coordinates, and P 3
4
hτ (w), gτ (w) are equal in all but 1500αk of the coordinates,

which means that hτ (w) 1512αk
≈ gτ (w).

Pr
w

[
hτ (w)

1512αk
6≈ gτ (w)

∣∣∣∣ w ∈ Vτ] ≤Pr
w

[E1 ∨ E2 | w ∈ Vτ ]

≤Pr
w

[E1 | w ∈ Vτ ] + Pr
w

[E2 | w ∈ Vτ ]

≤ε3 + 6ε3 < ε2.

By definition, hτ (w) = f(xA, w)Ā,

Pr
w

[
f(xA, w)Ā

1512αk
6≈ gτ (w)

∣∣∣∣ w ∈ Vτ] = Pr
w

[
hτ (w)

1512αk
6≈ gτ (w)

∣∣∣∣ w ∈ Vτ] < ε2.

Since λ = 1600α we are done. J
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3.2 Good Restrictions are Excellent with High Probability
For convenience, we restate the lemma.

I Lemma 26. For every ρ ∈ (0, 1), let τ ∼ D, w ∈ [N ] 9k
10 and (v, J) ∈ Nρ (w), then

Pr
τ,w,(v,J)

[
w, v ∈ Vτ , hτ (w)J

αk

6≈ hτ (v)J
]
≤
(

9
10

)αk
.

Proof. Fix ρ ∈ (0, 1), let E1(τ, w, v, J) be the event in equation (5) of the definition of

excellence, Definition 23. More explicitly, E1 = 1 if w, v ∈ Vτ and hτ (w)J
αk

6≈ hτ (v)J .
Recall the definition of hτ for τ = (A, r, γ), for w ∈ Vτ , hτ (w) = f(r, w)Ā. Therefore, the

event E1 can also be written as f(r, w)A = f(r, v)A = γ and f(r, w)Ā
αk

6≈ f(r, v)Ā.

Let E2 be the event that f(r, w)A = f(r, v)A and f(r, w)Ā
αk

6≈ f(r, v)Ā. We can easily see
that E1 ⊆ E2, therefore over every distribution Pr[E1] ≤ Pr[E2].

We start by bounding the probability of event E2, over the distribution τ ∼ D, w ∈ [N ] 9k
10

uniformly and (v, J) ∈ Nρ (w). Writing the distribution explicitly:
1. Pick A ⊂ [k] of size k

10 .
2. Pick x ∈ [N ]k, set r = xA and γ = f(x)A.
3. Pick J ⊂

[ 9k
10
]
of size B( 9k

10 , ρ) (binomial random variable).
4. Pick uniform w, v ∈ [N ] 9k

10 such that wJ = vJ .
Notice that E2 is independent of γ, so it does not matter how γ is chosen. We can define an
equivalent process for producing the same distribution (without γ):
1. Pick a set A′ ⊂ [k] of size k

10 +B( 9k
10 , ρ).

2. Pick y, z ∈ [N ]k such that yA′ = zA′ .
3. Pick A ⊆ A′ of size k

10 .
4. Set r = yA, w = yĀ and v = zĀ.

In order of E2 to happen, y, z, A′ must be such that f(y)A′
αk

6≈ f(z)A′ . Furthermore, the
set A must be chosen such that f(y)A = f(z)A. As the second random process allows us to
see, A is a random subset of A′, and each of the αk coordinates i on which f(y)i 6= f(z)i has
probability of at least 1

10 to be chosen to A (as |A| = k
10 and |A′| ≤ k). The probability that

none of the αk coordinates are in A is at most
( 9

10
)αk, so

Pr
τ,w,(v,J)

[E1] ≤ Pr
τ,w,(v,J)

[E2] ≤
(

9
10

)αk
. (8)

J

3.3 Local Averaging Operator
In this section we prove the two lemmas concerning local averaging operator. We repeat the
two lemmas and prove them.

I Lemma 27. For every excellent τ ,

Pr
w∈[N ]

9k
10

[
hτ (w)

12αk
6≈ P 3

4
hτ (w)

∣∣∣∣ w ∈ Vτ] ≤ ε3.
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Proof. Fix an excellent restriction τ , denote by V = Vτ , h = hτ , P 3
4
h = P 3

4
hτ and k′ = 9k

10 .

In order to simplify the notations, denote by µ =
( 9

10
) 1

2αk the constant from the definition
of excellence (Definition 23).

From the fact that τ is excellent, we know that Prw∈[N ]k′ [w ∈ V] ≥ ε
2 and

Pr
w,(v,J)∈N 3

4
(w)

[
w, v ∈ V, hJ(w)

αk

6≈ hJ(v)
]
≤ µ.

Our goal is to prove that for almost all w ∈ V, P 3
4
h(w) ≈ h(w). First, we characterize

the “bad” inputs w ∈ V for which we can’t prove this claim . Then, we prove it on the rest.
Fix η = ε20, the first set of “bad” inputs is the set of inconsistent ones,

B =
{
w ∈ V

∣∣∣∣∣ Pr
(v,J)∈N 3

4
(w)

[
v ∈ V, h(v)J

αk

6≈ h(w)J
]
≥ η

100

}
.

By averaging, Prw[w ∈ B] ≤ 100µ
η .

The second set is the set of “lonely” inputs, inputs that have very sparse neighborhood,

L =
{
w ∈ V

∣∣∣∣∣ Pr
(v,J)∈N 3

4
(w)

[v ∈ V] ≤ η
}
.

By hypercontractivity, Claim 16 (uses [11]), Prw[w ∈ L] ≤ η 2
9
(
ε
2
)− 11

9 .
Fix an input w ∈ V \{B ∪L}, we will show that h(w) 12αk

≈ P 3
4
h(w), i.e. h(w) and P 3

4
h(w)

are equal on all but 12αk of the coordinates. Since Prw [w /∈ B ∩ L] ≤ 100µ
η η

2
9
(
ε
2
)− 11

9 ≤ ε3,
this finishes the proof (ε is such that ε120 > µ).

Denote by D the following set

D =
{
i ∈ [k′]

∣∣∣ h(w)i 6= P 3
4
h(w)i

}
.

D is the set of coordinates in which the local averaging of h doesn’t equal h. Since w /∈ B∪L,
the neighborhood of w is very consistent, and we show that the set D is small.

Assume towards a contradiction that |D| > 12αk. For v ∈ [N ]k′ , J ⊂ [K] and i ∈ [k], let
E(v, J, i) be the event

E(v, J, i) = (i ∈ J ∧ h(w)i 6= h(v)i) .

We will reach a contradiction by upper bounding and lower bounding the probability of the
event E, under the distribution i ∈ D and (v, J) ∈ N 3

4
(w), given that v ∈ V

Lower bound

We look on E = E1 ∧E2, where E1 = i ∈ J and E2 = h(w)i 6= h(v)i. By definition, for every
i ∈ D, the value h(w)i is not the most probable h(v)i when (v, J) ∈ N 3

4
(w). Therefore,

∀i ∈ D, Pr
(v,J)∈N 3

4
(w)

[E2 | E1, v ∈ V] = Pr
(v,J)∈N 3

4
(w)

[h(w)i 6= h(v)i | i ∈ J, v ∈ V] ≥ 1
2 . (9)

We want to remove the conditioning over E1, in order to get a bound E. If we choose a
uniform (v, J) ∈ N 3

4
(w), the probability of i ∈ J is exactly 3

4 . If we condition on v ∈ V , this
probability can be different. We start by bounding the probability of D ∩ J to be small.
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Every i ∈ D has probability of 3
4 be be in J independently, by Chernoff bound (Corol-

lary 10), Pr(v,J)∈N 3
4

(w)
[
|D ∩ J | ≤ 3

5 |D|
]
≤ e−αk10 . If we condition on v ∈ V, this probability

can increase by a factor of at most 1
η , where η ≤ Pr(v,J)∈N 3

4
(w) [v ∈ V].

Pr
(v,J)∈N 3

4
(w)

[
|D ∩ J | ≤ 3

5 |D|
∣∣∣∣ v ∈ V] ≤ 1

η
e−

αk
10 . (10)

Equation (10) implies that for a typical i ∈ D, the probability E1 is not very far from 3
4 . If

(v, J) are such that |D ∩ J | ≥ 3
5 |D|, a random i ∈ D has probability at least 3

5 to be in J .

Pr
(v,J)∈N 3

4
(w),i∈D

[E1 | v ∈ V] = Pr
(v,J)∈N 3

4
(w),i∈D

[i ∈ J | v ∈ V]

≥ Pr
(v,J)∈N 3

4
(w),i∈D

[
i ∈ J ∧ |D ∩ J | ≥ 3

5 |D|
∣∣∣∣ v ∈ V]

(by (10))

≥3
5

(
1− 1

η
e−

αk
10

)
. (11)

Now we can lower bound the probability of E:

Pr
(v,J)∈N 3

4
(w),i∈D

[E | v ∈ V] = Pr
(v,J)∈N 3

4
(w),i∈D

[E1 ∧ E2 | v ∈ V]

= Pr
(v,J)∈N 3

4
(w),i∈D

[E1 | v ∈ V] Pr
(v,J)∈N 3

4
(w)

[E2 | E1, v ∈ V]

(by (9))

≥ Pr
(v,J)∈N 3

4
(w),i∈D

[E1 | v ∈ V] 1
2 (by (11))

≥3
5

(
1− 1

η
e−

αk
10

)
1
2 ≥

1
5 . (12)

Where the last inequality holds since η = ε20 and ε satisfies ε120 > e−
αk
10 .

Upper Bound

We want to upper bound the same probability, and reach a contradiction. Since w /∈ L,
Pr(v,J)∈N 3

4
(w) [v ∈ V] ≥ η, and from the fact that w /∈ B we know that its neighborhood is

consistent, i.e. Pr(v,J)∈N 3
4

(w)

[
v ∈ V, h(v)J

αk

6≈ h(w)J
]
≤ η

100 . Combining both together,

Pr
(v,J)∈N 3

4
(w)

[
h(v)J

αk

6≈ h(w)J
∣∣∣∣ v ∈ V] ≤ 1

100 . (13)

This implies that with probability at most 1
100 the chosen (v, J) can be such that h(v)J

αk

6≈
h(w)J .

Else, h(v)J
αk
≈ h(w)J , so there are at most αk coordinates i ∈ J in which h(v)i 6= h(w)i.

Since |D| ≥ 12αk, with probability at most 1
12 a uniform i ∈ D is in these αk coordinates.

Pr
(v,J)∈N 3

4
(w),i∈D

[E | v ∈ V] ≤ 1
100 + 1

12 <
1
5 . (14)

And we reached a contradiction with (12). J
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In order to show that the function P 3
4
hτ is close to a product function, we need to show

that it is consistent in a similar way to hτ (as in the definition of excellence, Definition 23).
Lemma 27 only gives us that P 3

4
hτ is consistent among the inputs in Vτ , and not in all

[N ] 9k
10 .

I Lemma 28. For every excellent τ ,

Pr
w,(v,J)

[
P 3

4
h(w)J

20αk
≈ P 3

4
h(v)J

]
≥ 1− ε10,

where w ∈ [N ] 9k
10 and (v, J) ∈ N 1

2
(w).

Proof. This proof is similar to the proof of Lemma 27. We fix excellent τ and denote V = Vτ ,
h = hτ and P 3

4
h = P 3

4
hτ , k′ = 9k

10 and µ =
( 9

10
) 1

2αk.

We characterize the inputs w, (v, J) on which we can’t prove that P 3
4
h(w)J

20αk
≈ P 3

4
h(v)J .

Instead of the set B in the proof of Lemma 27, we define a set of two correlated inputs
(w, (v, J)) that are inconsistent. Fixing η = ε51, let

C =
{
w, (v, J)

∣∣∣∣ Pr
(w′,J′),(v′,J′′)

[
w′, v′ ∈ V, h(w′)J̃

αk

6≈ h(v′)J̃
]
≥ η2

4000

}
.

Where (w′, J ′) ∈ N 3
4

(w) , (v′, J ′′) ∈ N 3
4

(v) and J̃ = J ∩ J ′ ∩ J ′′.
If w is chosen uniformly in [N ]k′ and (v, J) ∈ N 1

2
(w), then the marginal distribution on

w′ is uniform, and (v′, J̃) ∈ N( 3
4 )2 1

2
(w′), since for each i independently, the probability of i

to be in J̃ = J ∩ J ′ ∩ J ′′ is
( 3

4
)2 1

2 .

Since τ is excellent, Prw′,(v′,J̃)

[
w′, v′ ∈ V, h(w′)J̃

αk

6≈ h(v′)J̃
]
≤ µ. By averaging, it means

that Prw,(v,J) [w, (v, J) ∈ C] ≤ 4000µ
η2 .

We define the set of inputs with sparse neighborhood,

L =
{
w ∈ [N ]k

′

∣∣∣∣∣ Pr
(w′,J′)∈N 3

4
(w)

[w′ ∈ V] ≤ η
}
.

From hypercontractivity argument, see Claim 16, Prw[w ∈ L] ≤ η 2
9
(
ε
2
)− 11

9 .

For every w and (v, J) such that w, v /∈ L and (w, (v, J)) /∈ C, we show that P 3
4
h(w)J

20αk
6≈

P 3
4
h(v)J . This finishes the proof since for w ∈ [N ]k′ and (v, J) ∈ N 1

2
(w),

Pr
w,(v,J)

[(w, (v, J)) ∈ C ∨ w ∈ L ∨ v ∈ L] ≤ 4000µ
η2 + 2 · η 2

9

( ε
2

)− 11
9 ≤ ε10.

Fix w, (v, J) such that w, v /∈ L and (w, (v, J)) /∈ C, and let D ⊆ J be the set

D =
{
i ∈ J

∣∣∣ P 3
4
h(w)i 6= P 3

4
h(v)i

}
.

Similarly to the previous proof, we assume towards a contradiction that |D| ≥ 20αk.
For every J ′, J ′′ ⊂ [k′], w′, v′ ∈ V and i ∈ [k′], we denote by E(J ′, J ′′, w′, v′, i) the

following event:

E(J ′, J ′′, w′, v′, i) = (h(w′)i 6= h(v′)i ∧ i ∈ J ′ ∩ J ′′) .

We upper bound and lower bound the probability of this event, under the distribution i ∈ D
and (w′, J ′) ∈ N 3

4
(w) , (v′, J ′′) ∈ N 3

4
(v) given that w′, v′ ∈ V.
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Lower Bound

We look on E = E1 ∧ E2, where E1 = i ∈ J ′ ∩ J ′′ and E2 = h(w′)i 6= h(v′)i.
For every i ∈ D, P 3

4
h(w)i 6= P 3

4
h(v)i, so the most frequent value h(w′)i for (w′, J ′) ∈

N 3
4

(w) doesn’t equal the most frequent value h(v′)i for (v′, J ′′) ∈ N 3
4

(v). For every i ∈ D,
taking (w′, J ′) ∈ N 3

4
(w) , (v′, J ′′) ∈ N 3

4
(v):

Pr
(w′,J′)
(v′,J′′)

[E2 | E1, w
′, v′ ∈ V] = Pr

(w′,J′)
(v′,J′′)

[h(w′)i 6= h(v′)i | i ∈ J ′ ∩ J ′′, w′, v′ ∈ V] ≥ 1
2 . (15)

In order to prove the lower bound, we need to remove the condition over E1. To do
that, we need to lower bound the size of D ∩ J ′ ∩ J ′′. Both J ′ and J ′′ are taken by picking
each coordinated independently with probability 3

4 . If we do not condition on w′, v′ ∈ V
expected value of |D ∩ J ′ ∩ J ′′| is

( 3
4
)2 |D|. Each i ∈ D is in J ′ ∩ J ′′ with probability

( 3
4
)2

independently, so using Chernoff bound (Corollary 10),

Pr
(w′,J′)∈N 3

4
(w)

(v′,J′′)∈N 3
4

(v)

[|D ∩ J ′ ∩ J ′′| ≤ 0.56|D|] ≤ e− αk
9000 .

If we condition on w′ ∈ V, v′ ∈ V, the probability can increase by a factor of at most 1
η2 ,

where Pr(w′,J′)∈N 3
4

(w) [w′ ∈ V] ≥ η and Pr(v′,J′′)∈N 3
4

(v) [v′ ∈ V] ≥ η,

Pr
(w′,J′)∈N 3

4
(w)

(v′,J′′)∈N 3
4

(v)

[|D ∩ J ′ ∩ J ′′| ≤ 0.56|D| | w′, v′ ∈ V] ≤ 1
η2 e
− αk

9000 . (16)

If |D ∩ J ′ ∩ J ′′| ≥ 0.56|D|, then a uniform i ∈ D has probability of at least 0.56 to be in
J ′ ∩ J ′′,

Pr
i∈D,(w′,J′)∈N 3

4
(w)

(v′,J′′)∈N 3
4

(v)

[E1 | w′, v′ ∈ V] ≥
(

1− 1
η2 e
− αk

9000

)
0.56 ≥ 0.55. (17)

The last inequality is correct because we assume ε is large enough to satisfy ε120 > 1
η2 e
− αk

9000 .
Combining (15) and (17), we can lower bound the probability of E, when i ∈ D, (w′, J ′) ∈

N 3
4

(w) and (v′, J ′′) ∈ N 3
4

(v),

Pr
i,(w′,J′),(v′,J′′)

[E | w′, v′ ∈ V] = Pr
i,(w′,J′),(v′,J′′)

[E1 ∧ E2, | w′, v′ ∈ V]

= Pr
i,(w′,J′),(v′,J′′)

[E1 | w′, v′ ∈ V] (18)

· Pr
i,(w′,J′),(v′,J′′)

[E2 | w′, v′ ∈ V, E1]

≥1
2 · 0.55 > 1

4 . (19)

Upper Bound

Since (w, (v, J)) /∈ C, we know that

Pr
(w′,J′)∈N 3

4
(w)

(v′,J′′)∈N 3
4

(v)

[
w′, v′ ∈ V, h(w′)J̃

αk

6≈ h(v′)J̃
]
≤ η2

4000 ,
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where J̃ = J ∩ J ′ ∩ J ′′. From the fact that w /∈ L, Pr(w′,J′)∈N 3
4

(w) [w′ ∈ V] ≥ η and since
v /∈ L, Pr(v′,J′′)∈N 3

4
(v) [v′ ∈ V] ≥ η. This implies that

Pr
(w′,J′)∈N 3

4
(w)

(v′,J′′)∈N 3
4

(v)

[
h(w′)J̃

αk

6≈ h(v′)J̃

∣∣∣∣ w′, v′ ∈ V] ≤ 1
4000 .

If h(w′)J̃
αk
≈ h(v′)J̃ , then even if all these αk coordinates are in D, a uniform i ∈ D has

probability of at most αk
|D| ≤

αk
20αk ≤

1
20 to be one of these coordinates. Therefore,

Pr
i∈D,(w′,J′)∈N 3

4
(w)

(v′,J′′)∈N 3
4

(v)

[E] ≤ 1
4000 + 1

20 <
1
10 ,

which contradicts (19). J

3.4 Direct Product Function
Fixing an excellent τ , we first show that the local average function P 3

4
hτ is close to a product

function gτ . Then, by Lemma 27, we will conclude that hτ is close to gτ . This implies that
τ is a DP restriction as needed.

In this section we prove Lemma 29,

I Lemma 29. For every excellent restriction τ there exist a product function gτ : [N ] 9k
10 →

[M ] 9k
10 such that

Pr
w∈[N ]

9k
10

[
P 3

4
hτ (w)

1500αk
6≈ gτ (w)

]
≤ 3ε4.

We first define gτ , the candidate direct product function

I Definition 30. For each excellent τ = (A, r, γ), let gτ : [N ] 9k
10 → [M ] 9k

10 be the following
function, for each i /∈ A and b ∈ [N ],

gτ,i(b) = Plurality
w∈[N ]

9k
10 s.t. wi=b

{P 3
4
h(w)i},

ties are broken arbitrarily.

We prove Lemma 29 using the following few claims.

I Claim 31.

Pr
i∈[ 9k

10 ],w,v∈[N ]
9k
10

[
P 3

4
h(w)i = P 3

4
h(v)i

∣∣∣ wi = vi

]
≥ 1− 200α.

In order to prove Claim 31, we need to define an “almost ρ-correlated”’ distribution.

I Definition 32. (x, J) are almost ρ-correlated to y ∈ [N ]k, denoted by (x, J) ∈ Aρ (y), if
they are chosen by the following process:
1. Choose i ∈ [k] uniformly at random, set J = {i}.
2. For each j 6= i, add j to J with probability ρ independently.
3. Set xJ = yJ and the rest of x is uniform.
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I Claim 33. For any ρ ∈ (0, 1) and any event E(y, x, J) over x, y ∈ [N ]k and J ⊆ [k],

Pr
y∈[N ]k,(x,J)∈Aρ(y)

[E(y, x, J)] ≤ 2 Pr
y∈[N ]k,(x,J)∈Nρ(y)

[E(y, x, J)] + 5e−
ρk
4 .

The proof appears at the end of the section.

Proof of Claim 31. Let k′ = 9k
10 . We start by showing that for a uniform w ∈ [N ]k′ ,

(u, J ′) ∈ A 1
2

(w) and i ∈ J ′, Pri,w,(v,J′)
[
P 3

4
h(w)i = P 3

4
h(v)i

]
≥ 1− 100α.

Let E1 be the event that P 3
4
h(w)i 6= P 3

4
h(v)i, we further define the following two events,

let E2 to be the event P 3
4
h(w)J′

20αk
6≈ P 3

4
h(u)J′ , and let E3 be the event that |J ′| < k

4 .
If both E2, E3 don’t happen, then |J ′| ≥ k

4 , and there are at most 20αk coordinates i
in which P 3

4
h(w)i 6= P 3

4
h(v)i. Therefore, a uniform i ∈ J ′ has probability at most 20αk

k
4

to
satisfy P 3

4
h(w)i 6= P 3

4
h(v)i,

Pr
w,(v,J′),i

[E1 | ¬E2,¬E3] ≤20αk
k
4

= 80α. (20)

In order to remove the condition over ¬E2,¬E3, we bound their probability. For a
uniform w ∈ [N ]k′ and (u, J ′) ∈ A 1

2
(ρ),

Pr
w,(u,J′)∈A 1

2
(w)

[E2] ≤2 Pr
w,(u,J′)∈N 1

2
(w)

[E2] + 5e−
ρk
4 (by Claim 33)

≤2ε10 + 5e−
ρk
4 ≤ 3ε10. (by Lemma 28)

Similarly, for w ∈ [N ]k′ and (u, J ′) ∈ A 1
2

(w),

Pr
w,(u,J′)∈A 1

2
(w)

[E3] ≤2 Pr
w,(u,J′)∈N 1

2
(w)

[E3] + 5e−
ρk
4 (by Claim 33)

≤2e− k
100 + 5e−

ρk
4 ≤ ε10. (Chernoff Bound)

For (u, J ′) ∈ N 1
2

(w), each coordinate i is in J ′ with probability 1
2 independently, so we can

use Chernoff bound. If we add a condition on ¬E2, it can increase the probability by a factor
of 1

Pr[¬E2] < 2, therefore Prw,(u,J ′)∈A 1
2

(w) [E3 | ¬E2] ≤ 2ε10.

Combining everything together, for a uniform w ∈ [N ]k′ , (u, J ′) ∈ A 1
2

(w) and i ∈ J ′,

Pr
w,(u,J′),i

[E1] ≤ Pr
w,(u,J′),i

[E2] + Pr
w,(u,J′),i

[E3 | ¬E2] + Pr
w,(u,J′),i

[E1 | ¬E2,¬E3]

≤3ε10 + 2ε10 + 80α ≤ 100α (21)

Let D′ : [k′] × [N ]k′ × [N ]k′ × [N ]k′ → {0, 1} be the following distribution, generating
i, w, v, u:
1. Pick a uniform i ∈ [k′].
2. Pick w, v ∈ [N ]k′ such that wi = vi.
3. For every j 6= i, insert j into J with probability 1

2 independently.

4. For every j ∈ [k′], uj =
{
wj j ∈ J
vj else

.
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The distribution D′ is built such that the marginal distribution over w, v, i is that i ∈ [k′]
uniformly, and w, v are uniform in [N ]k′ such that wi = vi. Furthermore, the marginal
distribution over w, (u, J ∪{i}), i is such that w ∈ [N ]k′ uniformly, (u, J ∩{i}) ∈ A 1

2
(w) and

the coordinate i is uniform in {i} ∪ J . Similarly, the marginal distribution over v, (u, J̄) is
v ∈ [N ]k′ , (u, J̄) ∈ A 1

2
(v) and i ∈ J̄ .

Therefore, we can use equation (21) on the pairs w, (u, J ∪ {i}) and v, (u, J̄), and by
union bound,

Pr
i∈[k′]

w,v∈[N ]k
′

[
P 3

4
h(w)i = P 3

4
h(v)i

∣∣∣ wi = vi

]
≥ Pr
i,w,v,u∼D′

[
P 3

4
h(w)i = P 3

4
h(v)i = P 3

4
h(u)i

]
≥1− 100α− 100α.

J

I Corollary 34.

Pr
w∈[N ]

9k
10 ,i∈[ 9k

10 ]

[
P 3

4
h(w)i = g(w)i

]
≥ 1− 400α.

Proof. For each w ∈ [N ] 9k
10 and i ∈ [ 9k

10 ] such that P 3
4
h(w)i 6= g(w)i, the value P 3

4
h(w)i is

not the most frequent, Pr
v∈[N ]

9k
10

[P 3
4
h(w)i = P 3

4
h(v)i|wi = vi] ≤ 1

2 . Therefore,

Pr
w,v∈[N ]

9k
10 ,i∈[ 9k

10 ]

[
P 3

4
h(w)i 6= P 3

4
h(v)i

∣∣∣ wi = vi

]
≥ 1

2 Pr
w∈[N ]

9k
10 ,i∈[ 9k

10 ]

[
P 3

4
h(w)i 6= g(w)i

]
.

Using Claim 31 we reach the corollary. J

Proof of Lemma 29. Fix an excellent τ , denote k′ = 9k
10 .

For each w ∈ [N ]k′ , let Dw ⊂ [k′] be the set of coordinates in which gτ (w),P 3
4
hτ (w)

differs

Dw =
{
i ∈ [k′]

∣∣∣ gτ (w)i 6= P 3
4
hτ (w)i

}
.

Let C ⊂ [N ]k′ be the set of inputs such that gτ ,P 3
4
hτ are similar on them,

C =
{
w ∈ [N ]k

′
∣∣∣ |Dw| ≤ 500αk

}
.

By Corollary 34 and averaging, Prw[w ∈ C] ≥ 1
5 .

Let B ⊂ [N ]k′ be the set of inputs on which gτ ,P 3
4
hτ are far,

B =
{
w ∈ [N ]k

′
∣∣∣ |Dw| ≥ 1500αk

}
.

B is the set of inputs in which P 3
4
hτ (w)

1500αk
6≈ gτ (w), so our goal is to prove that B is small.

Let E1(w, v, J) be the event that |J ∩Dw| > 600αk, and let E2(w, v, J) be the event that

P 3
4
h(w)J

20α
6≈ P 3

4
h(v)J . By Lemma 28, Prw∈[N ]k′ ,(v,J)∈N 1

2
(w) [E2] ≤ ε10.

For every v, w, J such that vJ = wJ , the function g satisfies gτ (w)J = gτ (v)J (since g
is a product function), and therefore E1 ∧ (v ∈ C) =⇒ E2. This is because if E2 doesn’t
hold, then P 3

4
h(w)J

20α
≈ P 3

4
h(v)J , if E1 does hold then |J ∩Dw| > 600αk, which means that

|Dv ∩ J | ≥ 580αk, and v /∈ C.
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We show if B isn’t small, then E1∧(v ∈ C) happens often, when we pick w ∈ [N ]k, (v, J) ∈
N 1

2
(w).
For w ∈ B, the set Dw is large, |Dw| ≥ 1500αk, if we take (v, J) ∈ N 1

2
(w), each

coordinate i ∈ Dw is in J with probability 1
2 independently, so for w ∈ B, by Chernoff bound

Pr
(v,J)∈N 1

2
(w)

[E1(w)] = Pr
(v,J)∈N 1

2
(w)

[|J ∩Dw| > 600αk] ≥ 1− e−
ρk
100 .

From reverse hypercontractivity [11], Corollary 15

Pr
w,(v,J)∈N 1

2
(w)

[w ∈ B, v ∈ C] ≥ Pr
w

[w ∈ C] 3
2 Pr
w

[w ∈ B] 5
2 .

Therefore,

Pr
w,(v,J)∈N 1

2
(w)

[w ∈ B, v ∈ C ∧ E1] ≥Pr
w

[w ∈ C] 3
2 Pr
w

[w ∈ B] 5
2 − e−

ρk
100

≥
(

1
5

) 3
2

Pr
w

[w ∈ B] 5
2 − e−

ρk
100 . (22)

Where (22) is since Prw[w ∈ C] ≥ 1
5 .

Since E1 ∧ (v ∈ C) =⇒ E2 and by Lemma 28, Prw∈[N ]k′ ,(v,J)∈N 1
2

(w) [E2] ≤ ε10, it means

that (22) should be smaller than ε10, which implies Prw[w ∈ B] ≤ 3ε4 and finishes the
proof. J

We are left with proving the simple distribution claim – that almost ρ correlated is similar
to ρ correlated.

Proof of Claim 33. The proof is based on the fact that the distributions Nρ (y) , Aρ (y) are
very close, and the probability of an event depending on y, x, J is not much different in both
distributions.

By Chernoff bound, ρ-correlated sets are almost always of size about ρk, this holds for
almost ρ correlated as well,

Pr
(x,J)∈Nρ(y)

[|J | > 2ρk] ≤ e−
ρk
3 ,

Pr
(x,J)∈Aρ(y)

[|J | > 2ρk] ≤ e−
ρk
4 .

For each y ∈ [N ]k, let By be the (x, J) that satisfy E(y, x, J)

By = {(x, J) | E(y, x, J) = 1} .

Using this notation

Pr
y∈[N ]k,(x,J)∈Nρ(y)

[E(y, x, J)] = Pr
y∈[N ]k,(x,J)∈Nρ(y)

[(x, J) ∈ By] .

Fix y ∈ [N ]k, for each (x, J) ∈ By, by the definition of ρ-correlation,

Pr
(z,J′)∈Nρ(y)

[(z, J ′) = (x, J)] = ρ|J|(1− ρ)k−|J|
(

1
N

)k−|J|
.
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By the definition of almost ρ correlation,

Pr
(z,J′)∈Aρ(y)

[(z, J ′) = (x, J)] = |J |
k
ρ|J|−1(1− ρ)k−|J|

(
1
N

)k−|J|
.

Note that for each such (x, J) ∈ By such that |J | ≤ 2ρk,

Pr
(z,J′)∈Aρ(y)

[(z, J ′) = (x, J)] ≤ 2 Pr
(z,J ′)∈Nρ(y)

[(z, J ′) = (x, J)] .

Therefore

Pr
(x,J)∈Aρ(y)

[(x, J) ∈ By] ≤ Pr
(x,J)∈Aρ(y)

[|J | ≥ 2ρk] + Pr
(x,J)∈Aρ(y)

[(x, J) ∈ By | |J | ≤ 2ρk]

≤e−
ρk
4 + 2 Pr

(x,J)∈Nρ(y)
[(x, J) ∈ By | |J | ≤ 2ρk]

≤e−
ρk
4 + 2 Pr

(x,J)∈Nρ(y)
[(x, J) ∈ By] + 4e−

ρk
3 .

When we used conditional probability in the last inequality. This is true for all y ∈ [N ]k′ ,
therefore,

Pr
y∈[N ]k,(x,J)∈Aρ(y)

[E(y, x, J)] = Pr
y∈[N ]k,(x,J)∈Aρ(y)

[(x, J) ∈ By]

≤ 2 Pr
y∈[N ]k,(x,J)∈Nρ(y)

[(x, J) ∈ By] + 5e−
ρk′
4 . J

4 Global Structure for Sets

Up until now we have considered functions f : [N ]k → [M ]k whose inputs are ordered tuples
(x1 . . . , xk) ∈ [N ]k. We now move to consider functions f :

([N ]
k

)
→ [M ]k whose inputs are

unordered {x1, . . . , xk} ∈
([N ]
k

)
, and we assume that N � k (for tuples no such assumption

was made).
To each subset S = {s1, . . . , sk} the function f assigns f(S) ∈ [M ]k. f(S) should be

viewed as a “local function” on S, assigning a value from [M ] to every a ∈ S. We denote by
f(S)a the output of f that corresponds to a. For a subset W ⊂ S, let f(S)W be the outputs
of f corresponding to the elements in W .

There are straightforward analogs to Theorem 1 and Theorem 21 which we present
and prove in this section. Interestingly, in the case of sets deducing global structure from
restricted global structure is quite easier than it is for tuples.

First, let us present the Z test for sets, from [9] when t = k
10 . Let αZset( k10 )(f) be the

success probability of this test. This is the same test as Test 3 from the introduction written
differently, it is written this way because it is easier to refer to the test items during the
proof.

I Theorem 5. There exist a small constant c > 0, such that for every constant λ > 0,
large enough k ∈ N and N > k2e10cλk, if the function f :

([N ]
k

)
→ [M ]k passes Test 3 with

probability αZset( k10 )(f) = ε > e−cλk, then there exist a function g : [N ]→ [M ] such that

Pr
S

[
f(S) λk≈ g(S)

]
≥ ε− 4ε2.

In order to analyze this test, we first need to “translate” the restricted global structure
result into this setting, and then prove the global structure in this setting.
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1. Choose a random set W ⊂ [N ] of size k
10 .

2. Choose X,Y ⊂ [N ] \W of size 9k
10 .

3. If f(X ∪W )W 6= f(Y ∪W )W reject.
4. Choose V ⊂ [N ] \ Y of size k

10 .
5. If f(Y ∪W )Y 6= f(Y ∪ V )Y reject, else accept.

X W

Y V

Denote by αZset( k10 )(f) the success probability of f on this test.

Test 4 “Z” test for functions over sets, with t = k
10 (3-query test).

4.1 Restricted Global Structure for Sets
In this section, we see that for N � k, the restricted global structure for tuples, Theorem 21,
implies restricted global structure for sets. First we define analog definitions for sets, for good
restrictions and DP restrictions. To make the reduction proof simpler, we use a constant
η ∈

[
1− k2

N , 1
]
(i.e. almost 1) and define good pair using η.

I Definition 35 (Good pair). A pair X,W ⊂ [N ], |X| = 9k
10 , |W | =

k
10 is good if

Pr
Y

[f(X ∪W )W = f(Y ∪W )W | Y ∩W = ∅] > ε

2η.

This definition is analog to Definition 19 of good restriction, the main difference between the
definitions is that here we don’t have a set of coordinates A ⊂ [k], because f is defined on
sets and not coordinates.

I Definition 36 (DP pair). A pair X,W ⊂ [N ], |X| = 9k
10 , |W | =

k
10 is a DP pair if it is good,

and if there exist a function gX,W : [N ]→ [M ] such that

Pr
Y

[
f(Y ∪W )Y

3αk
6≈ gX,W (Y )

∣∣∣∣ Y ∩W = ∅, f(X ∪W )W = f(Y ∪W )W
]
≤ 2ε2.

This definition is analog to Definition 20 of DP restriction, only here there is a single function
gX,W , instead of 9k

10 different functions in the case of coordinates.

I Lemma 37 (Restricted global structure for sets). There exist a small constants δ > 0, such
that for every constant λ > 0 and large enough k ∈ N such that N > k2e10δλk, the following
holds,

For every function f :
([N ]
k

)
→ [M ]k, if αZset( k10 )(f) = ε > e−δλk, then at least (1−ε2− k2

N )
of the good pairs W ∈

([N ]
k
10

)
, X ∈

([N ]
9k
10

)
are DP pairs, i.e. there exist gX,W : [N ]→ [M ] such

that

Pr
Y

[
f(Y ∪W )Y

3αk
6≈ gX,W (Y )

∣∣∣∣ Y ∩W = ∅, f(X ∪W )W = f(Y ∪W )W
]
≤ 2ε2.

This lemma for sets is analog to Theorem 21, and we prove it by a reduction from it. For
every f :

([N ]
k

)
→ [M ]k we define a function f ′ : [N ]k → [M ]k ∪ ⊥ that equals ⊥ if the input

has two identical coordinates, and identifies with f everywhere else. For N � k, almost all
inputs don’t have two identical coordinates, and f ′, f are equal almost always.

Using Theorem 21, we derive a restricted global structure on f ′ which gives a direct
product function gτ = gτ1 , . . . g

τ
9k
10 k

for every excellent τ . Since f equals f ′ almost always,
we find an equivalence between excellent τ and excellent X,W . Then, we build a restricted
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global function gX,W by taking the most frequent value among the product gτ1 , . . . gτ9k
10
. Note

that even though f ′ is permutation invariant, the functions gτ1 , . . . gτ9k
10

may not be the same.
Since the proof is technical, and its main points are described in the paragraph above, we

defer it to Appendix B.

4.2 Global Structure for Sets
Now we are ready to prove Theorem 5. The proof is very similar to lemma 3.16 in [9].

Proof. Fix a function f :
([N ]
k

)
→ [M ]k that passes Test 4 with probability ε > e−cλk, denote

by δ = c
5 and α = 5λ.

Let W ∈
([N ]
k
10

)
, X ∈

([N ]
9k
10

)
be the subsets chosen on the first two items of the test, if

PrY [f(X ∪W )W = f(Y ∪W )W | Y ∩W = ∅] < ε
2η, the test rejects in Item 3 with probab-

ility at least 1− ε
2η.

Therefore, in order for f to pass the test with probability ε, the test must pass with
probability at least ε onW,X such that PrY [f(X ∪W )W = f(Y ∪W )W | Y ∩W = ∅] > ε

2η,
we call these W,X good.

Using Lemma 37, for at least (1 − 2ε2 − k2

N ) of the good W,X there exist a function
gW,X : [N ]→ [M ] such that

Pr
Y

[
f(Y ∪W )Y

3αk
6≈ gX,W (Y )

∣∣∣∣ Y ∩W = ∅, f(X ∪W )W = f(Y ∪W )W
]
≤ 2ε2.

Fix such W,X, let G =
{
Y ∈

([N ]
9k
10

) ∣∣∣ Y ∩W = ∅, f(X ∪W )W = f(Y ∪W )W
}
, and let g =

gX,W : [N ] → [M ]. We want to use the last query to show that this g is in fact a global
product function, i.e f(S) ≈ g(S) for about an ε fraction of S ∈

([N ]
k

)
.

For every set S, we say that S is bad if f(S)
5αk
6≈ g(S). Let p be the probability of a

uniform S to be bad, i.e. p = Pr
S∈([N]

k )

[
f(S)

5αk
6≈ g(S)

]
.

Suppose that instead of running Test 4 as is, we choose Y, V by the following process:
1. Choose a uniform S ∈

([N ]
k

)
.

2. Choose Y to be a uniform 9k
10 subset of S.

3. Set V = S \ Y and return (Y, V ).
We suppose that if the process outputs Y such that Y ∩ W 6= ∅, the test rejects. The
probability of this event is less than k2

N , and if it doesn’t happen the process generates
the test distribution. Therefore, the test on f using this distribution should success with
probability at least ε− k2

N .
In order for Test 4 to pass, two checks must hold:

1. f(X ∪W )W = f(Y ∪W )W , equivalent to Y ∈ G.
2. f(Y ∪ V )Y = f(Y ∪W )Y .

Suppose that S is bad, and we let Y ∪ V = S to be the sets used in the test. If Y /∈ G,
the test will fail. If y ∈ G, from the local structure, Lemma 37,

Pr
Y

[
f(Y ∪W )Y

3αk
6≈ g(Y )

∣∣∣∣ Y ∈ G] ≤ 2ε2.

If we condition on S to be bad, we restrict Y and therefore the probability of this event
can increase by a factor of 1

p .

Pr
Y

[
f(Y ∪W )Y

3αk
6≈ g(Y )

∣∣∣∣ Y ∈ G,S is bad
]
≤ 1
p

2ε2. (23)
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Since S is bad and Y is a uniform 9k
10 sized set inside S, the probability that less than

3αk out of the 5αk elements in which f(S), g(S) differ is in Y is exponentially small.

Pr
Y⊂S

[
f(S)Y

3αk
≈ g(Y )

∣∣∣∣ S is bad
]
≤ e− 1

320αk. (24)

The inequality is due to Chernoff bound, using Claim 11 (if D is the set of elements in which
f(S), g(S) differ, f(S)Y

3αk
≈ g(Y ) =⇒ |Y ∩D| ≤ 3

5 |D|, in the claim we use A = S \ Y ).
From equation (23), we know that with probability 1− 2ε2

p , f(Y ∪W )Y
3αk
≈ g(Y ). From

(24), with probability 1−e− 1
320αk, f(S)Y

3αk
6≈ g(Y ). If both holds, then f(S)Y = f(Y ∪V )Y 6=

f(Y ∪W )Y , and the test will fail. Therefore,

Pr
S

[Test passes | S is bad] ≤ e− 1
320αk + 2ε2

p
≤ 3ε2

p
. (25)

The test must pass with probability ε− k2

N ,

ε− k2

N
= Pr[Test passes] = Pr[S is bad] Pr [Test passes | S is bad]

+ Pr[S isn’t bad] Pr [Test passes | S isn’t bad]

≤p3ε2

p
+ (1− p)

Therefore p = Pr[S is bad] ≤ 1− ε+ k2

N + 3ε2, which implies that at least ε− k2

N − 3ε2 of the
test S are not bad, and for such sets f(S) 5αk

≈ g(S). We choose c = δ
5 so α = 1

5λ, and notice
that ε− 4ε2 ≤ ε− k2

N − 3ε2 which finishes the proof. J

In the introduction, we stressed that in order to extend the restricted global structure
into a global structure, the restricted global structure theorem has to be “strong”, i.e. the

probability of f(Y ∪W )Y
3αk
6≈ gX,W (Y ) should be strictly smaller than ε, it is 2ε2 in our case.

If the local structure was not strong, the bound in (25) would have been larger than ε. This
means that all the success probability of the test could come from bad sets S. From (25), we
see that almost all of the success probability of the test comes from sets that are not bad,
this we couldn’t have deduced from the restricted structure theorem of [7].

5 Global Structure for Tuples

In this section we prove our main theorem – global structure for tuples. The proof uses the
restricted global structure, Theorem 21. For convenience we copy the test and theorem from
the introduction.

I Theorem 1 (Main theorem – Global Structure for tuples). For every N,M > 1, there
exist small constants c1, c2 > 0 such that for every constant λ > 0 and large enough k, if
f : [N ]k → [M ]k is a function that passes Test 1 with probability αZ( k10 )(f) = ε ≥ e−c1λ

2k,
then there exist functions (g1, . . . gk), gi : [N ]→ [M ] such that

Pr
x∈[N ]k

[
f(x) λk≈ (g1(x1) . . . gk(xk))

]
≥ c2 · ε.

Where λk
≈ means that the strings are equal on all but at most λk coordinates.
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1. Choose A,B,C to be a random partition of [k],
such that |A| = |B| = t.

2. Choose uniformly at random x, y, z ∈ [N ]k such
that xA = yA and yB = zB .

3. Reject if f(x)A 6= f(y)A or f(z)B 6= f(y)B, else
accept.

A C B

x

y

z

Denote by αZ(t)(f) the success probability of f on this test.

Test 1 “Z”-test with parameter t (3-query test).

5.1 Proof Outline
Our proof of Theorem 1 relies on Theorem 21, which gives us, for many restrictions τ , a
product function gτ that is defined on a set A of 9k

10 coordinates and approximately equals f
on Vτ . In this section we show how to stitch the restricted functions gτ together into one
global function g. The proof has three parts.
1. In Section 5.2, we show that there exist an x ∈ [N ]k such that,

a. On at least Ω(ε) of the sets A, the tuple τ = (A, xA, f(x)A) is excellent, and Test 1
passes with probability at least ε

3 .
b. Taking two such sets A1, A2, their functions gτ1 , gτ2 are similar with probability Ω(ε2).
We start from picking x such that the test succeeds on it with probability Ω(ε), and that
for Ω(ε) of the sets A, τ = (A, xA, f(x)A) satisfies the first item above. We use the third
query of the test to show that each gτ approximates f on [k] \A in Ω(ε) of the inputs in
[N ]k. This implies that for many different pairs τ1, τ2, both gτ1 and gτ2 are close to f on
[k] \ {A1 ∪A2} in Ω(ε2) of the inputs, which means that gτ1 , gτ2 are similar to each other.

2. In Section 5.3 we view this situation abstractly as yet another agreement question, with
a different setting of parameters: given a set of direct product functions, each defined on
9
10k coordinates, such that each two are consistent with probability Ω(ε2), find a global
direct product function g = (g1, . . . gk) that is consistent with Ω(ε2) of these functions.
We show that such a g can be found, essentially proving an agreement testing theorem
for this setting. This may seem circular but in fact the current setting is easier than
our original problem because of the density: Since the sets are so large, every two sets
intersect.
In order to solve this agreement question, we build a graph with the functions as nodes,
and connect by an edge each two consistent functions. We connect by a “weak edge” each
two functions that are somewhat consistent, where we allow a larger difference between
the two functions. The weak and strong edges have an “almost transitive” property,
if (v1, v2) and (v2, v3) are connected by a strong edge, then almost surely (v1, v3) are
connected by a weak edge. We use this property to show that there exist a set of vertices
C of size Ω(ε2) that is almost a clique, i.e. almost every two functions in C are consistent.
We build the global function by taking the plurality over C, and show that it is close to
most functions in C.

3. Lastly, in Section 5.4, we connect the two previous items. The functions gτ for τ =
(A, x, f(x)A) from the first item are each defined on 9k

10 coordinates, and each two are
similar with probability Ω(ε2). This means that they satisfies the conditions of the second
item, and there exists a global function g defined on all [k] that is close to Ω(ε2) of them.
We recall that on Section 5.2 we showed that each gτ is close to f on Ω(ε) fraction of the
inputs, and conclude that the global function g is also close to f on Ω(ε) fraction of the
input, which finishes the proof.
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5.2 Consistency Between Restricted Global Functions
From Theorem 21, we know with probability 1− ε2 a good τ ∼ D is excellent, and for each
excellent τ there exist a local direct product function gτ = (gτ1 , . . . , gτ9k

10
) that equals f on Vτ .

I Definition 38. For every x ∈ [N ]k, let Ax be the set of subsets A ⊂ [k] of size k
10 such

that:
1. Fixing A, x, Pry,B,z [Test 1 passed] ≥ ε

3 .
2. τ = (A, xA, f(x)A) is excellent.

I Definition 39. Let τ1 = (A1, r1, γ1), τ2 = (A2, r2, γ2) be two excellent tuples, we say that
gτ1 , gτ1 are consistent if for a uniform i /∈ A1 ∪A2 and u ∈ [N ],

Pr
i,u

[gτ1i (u) 6= gτ2i (u)] ≤ 60λ.

The main claim we prove in this section is the following,

I Claim 40. There exist x ∈ [N ]k, such that:
1. PrA [A ∈ Ax] ≥ ε

4 .
2. PrA1,A2∈Ax [gτ1 , gτ1 are consistent] ≥ ε2

32 , where the tuples are τ1 = (A1, xA1 , f(x)A1) and
τ2 = (A2, xA2 , f(x)A2).

We start from looking for a candidate x ∈ [N ]k.

I Claim 41. Let

X1 =
{
x ∈ [N ]k

∣∣∣ Pr [Test 1 passed with x] ≥ ε

4

}
,

X2 =
{
x ∈ [N ]k

∣∣∣ Pr
A

[A ∈ Ax] ≥ ε

8

}
.

Then

X1 ∩ X2 6= ∅.

Proof. Let G be the full weighted bipartite graph, with vertex sets L =
([k]

9k
10

)
and R = [N ]k.

The weight of an edge A, x equals the success probability of Test 1 given that A, x are chosen.
The expected weight of an edge is equal to the test success probability of Test 1, ε. For

each edges with weight less than ε
2 , we change its weight to 0. We removed at most half of

the total weight, so the expected weight of a uniform edge now is at least ε
2 .

All the edges that remain with positive weight are of (A, x) such that τ = (A, x, f(x)A) is
good (there may also be good tuples with weight 0, if Test 2 passed with probability larger
than ε

2 but Test 1 didn’t). We further change to 0 the weight of all the edges A, x such that
τ = (A, xA, f(x)A) is not excellent.

From Theorem 21, a random good τ ∼ D is excellent with probability 1 − ε2, and the
distribution τ ∼ D corresponds to a uniform choice of A ∈ L, x ∈ R. Therefore, changing to
0 the wight over these edges means changing to 0 the weight of at most ε2 of the edges in G.
The maximal weight of an edge is 1, we have reduced the expected weight by at most ε2.
The expected weight now is more than ε

2 − ε
2 ≥ ε

3 .
Let x be the vertex with the maximal sum of weights of neighbor edges, then

Pr [Test 1 passed given x] ≥ E
A

[ω(A, x)] ≥ ε

3 .

The inequality is because we have changed to zero the weight some edges.
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All edges (A, x) that still have positive weight satisfy A ∈ Ax,

Pr
A

[A ∈ Ax] = Pr
A

[ω(A, x) > 0] ≥ ε

3 ,

since the maximal weight an edge can have is 1.
Therefore, x ∈ X1 ∩ X2. J

In the rest of this section we fix x ∈ X1 ∩X2, denote A = Ax and gA = gτ = (gτ1 , . . . , gτ9k
10

)
for τ = (A, x, f(x)A), and prove that it fulfills the conditions of Claim 40.

I Definition 42. An input z ∈ [N ]k is consistent with a set A ∈ A if f(z)Ā
20λk
≈ gA(zĀ). Let

ZA be the set of inputs that are consistent with A.

ZA =
{
z ∈ [N ]k

∣∣∣∣ f(z)Ā
20λk
≈ gA(zĀ)

}
.

I Claim 43. For every A ∈ A, Prz [z ∈ ZA] ≥ ε
4 .

Proof. Assume towards contradiction that the claim does not hold, and fix a set A ∈ A such
that Prz [z ∈ ZA] < ε

4 .
We reach a contradiction by showing that conditioning on A, x chosen by the test,

Pry,B,z [Test 1 passes] < ε
3 contradicting the fact that A ∈ A.

We define the following events, under the assumption that yA = xA and yB = zB as in
the test.
1. E1: f(x)A = f(y)A.
2. E2: f(z)B = f(y)B .
3. E3: f(y)B

λk
≈ gA(yB).

4. E4: f(z)B
λk
≈ gA(zB).

5. E5: z /∈ ZA.
Note that since gA is a product function and yB = zB, E4 can also be written as f(z)B

λk
≈

gA(yB). We also notice that E2 ∧ E3 =⇒ E4, since we can switch f(y)B by f(z)B in E3.
By definition, Test 1 succeeds if E1, E2 both happened.

Pr
y,B

[E1 ∧ E2] ≤ Pr
y,B,z

[E1 ∧ E2 ∧ E3 ∧ E5] + Pr
y,B,z

[E1 ∧ E2 ∧ ¬E3] + Pr
y,B,z

[E1 ∧ E2 ∧ ¬E5]

≤ Pr
y,B,z

[E1 ∧ E4 ∧ E5] + Pr
y,B,z

[E1 ∧ E2 ∧ ¬E3] + Pr
y,B,z

[E1 ∧ E2 ∧ ¬E5]

≤ Pr
y,B,z

[E4 | E5] + Pr
y,B,z

[¬E3 | E1] + Pr
y,B,z

[¬E5] . (26)

We bound each of the three probabilities.

1. If E5 happened, z /∈ ZA so f(z)Ā
20λk
6≈ gA(zĀ), let D be the set of coordinates in which

f(z)Ā and gA(zĀ) differ

D =
{
i ∈ Ā

∣∣ f(z)i 6= gA,i(zi)
}
.

In order to satisfy E4, the set B should be such that |B ∩D| ≤ λk, since B is a random
set of size k

10 , using Claim 11

Pr
B,y,z

[E4 | E5] ≤ Pr
B

[|B ∩D| ≤ λk] ≤ e−λk60 < ε2.
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2. Since A ∈ Ax the tuple (A, xA, f(x)A) is excellent, and from Theorem 21

Pr
y,B,z

[¬E3 | E1] = Pr
y,B

[
f(y)B

λk

6≈ gA(yB)
∣∣∣∣ f(x)A = f(y)A

]
≤ ε2,

where we use the fact that B ⊆ Ā, therefore f(y)B
λk

6≈ gA(yB) implies f(y)Ā
λk

6≈ gA(yĀ).
3. From our assumption,

Pr
y,B,z

[E5] = Pr
z

[z ∈ ZA] ≤ ε

4 .

Therefore, from (26) we get

Pr
y,B,z

[Test 1 passes | x,A] = Pr
y,B,z

[E1 ∧ E2] ≤ ε2 + ε2 + ε

4 <
ε

3 ,

contradicting A ∈ A. J

In the introduction, we explained the difference between our restricted global structure, and
the result of [7]. In our result, Theorem 21, f(y)Ā ≈ gτ (y) for 1− ε2 of y ∈ Vτ , and it their
result it was much less.

I Claim 44.

Pr
A1,A2∈A

[
|ZA1 ∩ ZA2 | ≥

ε2

32N
k

]
≥ ε2

32 .

Proof. For a uniform pair A1, A2 ∈ A:

E
A1,A2

[|ZA1 ∩ ZA2 |] =
∑
z

E
A1,A2

[I(z ∈ ZA1 ∩ ZA2)] ≥
∑
z

Pr
A1

[z ∈ ZA1 ]2 (27)

where I is an indicator. The last inequality holds since A1, A2 are independent uniform sets
in A, and the square function is convex.

From Claim 43, Prz [z ∈ ZA] ≥ ε
4 for every A ∈ A. Therefore, from (27) we get

E
A1,A2

[|ZA1 ∩ ZA2 |] ≥
∑
z

Pr
A1

[z ∈ ZA1 ]2

≥

(∑
z

N−
k
2 Pr
A1

[z ∈ ZA1 ]
)2

(Cauchy Swartz)

≥
( ε

4

)2
Nk. (Claim 43)

The maximal value of |ZA1 ∩ ZA2 | is Nk, therefore by averaging

Pr
A1,A2

[
|ZA1 ∩ ZA2 | ≥

ε2

32N
k

]
≥ ε2

32 . J

I Claim 45. If A1, A2 ∈ A are such that |ZA1 ∩ ZA2 | ≥ ε2

32N
k, then gA1 , gA2 are consistent,

i.e. for a uniform i ∈ [k] \ {A1 ∪A2} and u ∈ [N ],

Pr
i,u

[gA1,i(u) 6= gA2,i(u)] ≤ 60λ.
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Proof. Let A1, A2 ∈ A be two sets such that |ZA1 ∩ ZA2 | ≥ ε2

32N
k, and let Z12 = ZA1 ∩ ZA2 .

In order to simplify the notation, denote S1 = [k] \A1, S2 = [k] \A2 and S12 = S1 ∩ S2 =
[k] \ {A1 ∪A2}. S12 is the set of coordinates that both gA1 , gA2 are defined on, |S12| ≥ 0.8k.

For each i ∈ S12, let

pi = Pr
u∈[N ]

[gA1,i(u) 6= gA2,i(u)] .

Let w ∈ [N ]S12 uniformly at random, and let Ii be indicator random variable for
gA1,i(wi) 6= gA2,i(wi). Each Ii equals 1 with probability pi independently. In this notation

E
w

[dist(gA1(w), gA2(w))] = E

[∑
i∈S12

Ii

]
.

Assume towards contradiction that Pri,b [gA1,i(u) 6= gA2,i(u)] > 60λ, this will imply that
Ew [dist(gA1(w), gA2(w))] > 60λ · 0.8k.

Using Chernoff bound:

Pr
w

[dist(gA1(w), gA2(w)) ≤ 40λk] = Pr
[∑
i∈S12

Ii ≤
5
6 E

[∑
i∈S12

Ii

]]
≤ e− 1

2λk .

If instead of taking a completely uniform w ∈ [N ]S12 , we pick a random z ∈ Z12, and
restrict it to S12, getting w = zS12 . The probability of any event on w can increase by a
factor of at most Nk

|Z12| ≤
32
ε2 ,

Pr
z∈Z12

[dist(gA1(zS12), gA2(zS12)) ≤ 40λk] ≤ 32
ε2
e−

1
2λk <

1
2 . (28)

By the definition of ZA1 ,ZA2 , each input z ∈ Z12 satisfies both f(z)S1

20λk
≈ gA1(zS1)

and f(z)S2

20λk
≈ gA2(zS2) which implies gA1(zS12) 40λk

≈ gA2(zS12) with probability 1, which
contradicts (28). J

Combining the last two claims, we prove Claim 40.

5.3 Agreement Theorem in the Dense Case
In this section, we present and prove an abstract problem that will later be used to create
the global product function. Given a collection of local functions F = {fS}S∈( [k]

9k
10

), such that

for each S ∈
([k]

9k
10

)
, fS : S → Σ, can we deduce from the agreement of fS the existence of a

single global function g : [k]→ Σ that is close to many fS?
We need to define what exactly agreement means in the case of F , as it is not the setting

on which we previously defined agreement on. In order to do so, we assume that we have a
bounded distance measure on Σ, i.e. for every σ1, σ2 ∈ Σ, dist(σ1, σ2) ∈ [0, 1].

I Definition 46. The difference between fS1 , fS2 ∈ F , denoted by ∆(fS1 , fS2) is defined by

∆(fS1 , fS2) = E
i∈S1∩S2

[dist(fS1(i), fS1(i))].

The difference between fS ∈ F to a function g : [k]→ Σ is defined by,

∆(fS , g) = E
i∈S

[dist(fS(i), g(i))].
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Note that the difference defined above is not a distance, it may be that ∆(fS1 , fS2) = 0 for
S1 6= S2.

Now we are ready to define the agreement, notice that since we are talking on an agreement
inside a function set F , the definition is different. The general idea is the same – we check
for the agreement of two random elements in F according to some distribution.

I Definition 47. The agreement of the collection of local functions F regarding the uniform
distribution with parameter α, denoted by agreeα(F) is defined by,

agreeα(F) = Pr
fS1 ,fS2∈F

[∆(fS1 , fS2) < α].

I Theorem 48. For every small constant α ∈ (0, 1) and ν > e−
1
3α

2k, if a collection of local
functions F has agreeα(F) > ν, then there exists a global function g : [k]→ Σ such that

Pr
S∈( [k]

9k
10

)
[∆(fS , g) ≤ 300α] ≥ 1

4ν.

In order to prove the theorem, it is helpful to look at the elements S ∈
([k]

9k
10

)
as vertices in

a graph. Let G = (V, ES ∪EW ) to be the graph with the vertex set V =
([k]

9k
10

)
, and two edge

sets, weak edges and strong edges.

I Definition 49. For every two sets S1, S2 ∈ V:
1. S1, S2 are connected by a strong edge, denoted by S1 − S2, if ∆(fS1 , fS2) < α.
2. S1, S2 are connected by a weak edge, denoted by S1 ∼ S2, if ∆(fS1 , fS2) < 60α.

We want to find a subset of vertices that is close to a clique in G, such subset will allow
us to define a global function g. We start by showing that there exist many vertices of high
degree in G.

I Claim 50. Exists a set S ⊂ V of measure at least ν
2 , such that for every S ∈ S

Pr
S′∈V

[S − S′] ≥ 1
2ν.

Proof. Let

S =
{
S ⊆ V

∣∣∣∣ Pr
S′

[S − S′] ≥ 1
2ν
}
.

By averaging

ν ≤ Pr
S1,S2

[S1 − S2]

≤Pr
S1

[S1 ∈ S] Pr
S1,S2

[S1 − S2 | S1 ∈ S] + Pr
S1

[S1 /∈ S] Pr
S1,S2

[S1 − S2 | S1 /∈ S]

≤Pr
S1

[S1 ∈ S] + 1
2ν
(

1− Pr
S1

[S1 ∈ S]
)
.

Then PrS1 [S1 ∈ S] ≥ 1
2ν. J

Strong connectivity is not transitive, but we can have an “almost transitive” property by
considering both strong and weak edges.
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I Claim 51. For S, S1, S2 ∈ V uniformly and independently,

Pr
S,S1,S2

[S − S1, S − S2, S1 6∼ S2] ≤ 2e−α
2k .

Proof. Fix S1, S2 ∈ V to be two vertices such that S1 6∼ S2 (if there are no such vertices,
the probability is 0 and we are done).

For every S ∈ V, we define by di, d1
i , d

2
i the following distances:

1. For each i ∈ S1 ∩ S2, di = dist(fS1(i), fS2(i)).
2. For each i ∈ S ∩ S1, d1

i = dist(fS(i), fS1(i)).
3. For each i ∈ S ∩ S2, d2

i = dist(fS(i), fS2(i)).
By the triangle inequality, for every i ∈ S ∩ S1 ∩ S2, di ≤ d1

i + d2
i , therefore for every such i,

max{d1
i , d

2
i } ≥ di

2 .
Since S1 6∼ S2, we know that Ei∈S1∩S2 [di] ≥ 60α, if we look on the sum

∑
i∈S1∩S2

di ≥
8k
10 60α (because |S1∩S2| ≥ 8

10k). If S−S1, S−S2, then max{Ei∈S∩S1 [d1
i ],Ei∈S∩S2 [d2

i ]} ≤ α,
which means that max{

∑
i∈S∩S1

d1
i ,
∑
i∈S∩S2

d2
i } ≤ 9

10αk (we switched expectation in a sum,
|S ∩ S1| ≤ 9k

10 ).

max
{ ∑
i∈S∩S1

d1
i ,
∑

i∈S∩S2

d2
i

}
≥ 1

2
∑

i∈S∩S1∩S2

max
{
d1
i , d

2
i

}
≥ 1

4
∑

i∈S∩S1∩S2

di (29)

The first inequality is since taking the maximum over every i can increase the total sum
in a factor of 2 at most from taking maximum of the sum. The second inequality is since
max{d1

i , d
2
i } ≥ di

2 .
Notice that the last expression is independent of the function fS , and depends only on the

set S. Let XS be the random variable XS = 1
4
∑
i∈S∩S1∩S2

di for a uniform S ∈ V . Since the
set S is a uniform 9k

10 sized subset of [k], ES [XS ] = 9
10
∑
i∈S1∩S2

di ≥ 9
10

8
1060αk. For S ∈ V

such that XS > αk, by (29) it means that S is not strongly connected to one of S1, S2.
To finish the proof, we need to show that XS ≤ αk for very few S ∈ V. Let D contain

the k
3 indices i ∈ S1 ∩ S2 with the largest di. Obviously

∑
i∈D di ≥

1
3
∑
i∈S1∩S2

di ≥ 16αk.
In order of XS ≤ αk, the sum over i ∈ D∩S should satisfy,

∑
i∈D∩S di ≤ 4αk. By Claim 52,

this happens with probability less than 2e−α2k.
Therefore, for every S1 6∼ S2, the probability of a uniform S ∈ V to be strongly connected

to both is at most 2e−α2k. This is true for every S1 6∼ S2, it is also true for a random
pair. J

I Claim 52 (Fixed sized Chernoff bound). For every constant α ∈ (0, 1), let k ∈ N be a large
enough integer, D ⊂ [k] a subset of size at most k

3 , and for every i ∈ D let di ∈ [0, 1] be
constants such that

∑
i∈D di > 4αk.

Let S ⊂ [k] be a random subset of size exactly 9k
10 , then

Pr
S

[ ∑
i∈S∩D

di ≤ αk

]
≤ 2e−α

2k . (30)

Proof. For a set S that is chosen by putting each i ∈ [k] in S with probability 9
10 independ-

ently, Chernoff bound gives us the required bound easily. Because S has a fixed size, we need
to work a little harder.

For each i ∈ D, let S be a uniform set in
([k]

9k
10

)
, and let Ii be,

Ii =
{
di i ∈ S
0 i /∈ S

.
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In this notation,
∑
i∈S∩D di =

∑
i∈D Ii. The random variables Ii are not independent, we

define the independent random variables Ji,

Ji =
{
di w.p 1

2

0 w.p 1
2
.

Since |D| = k
3 , and S is a uniform 9

10k sized subset of [k], even conditioning on all other
j ∈ D \ {i} to be in S, the probability of i to be in S is at least 1

2 .

Pr [Ii = di | ∀j ∈ D \ {i}, Ij > 0] ≥ Pr [Ji = di] . (31)

So a lower bound for Ji implies a lower bound for Ii.
The random variables Ji satisfies E

[∑
i∈D Ji

]
= 1

2
∑
i∈D di ≥ 2αk.

Pr
S

[ ∑
i∈S∩D

di ≤ αk

]
= Pr

Ii

[∑
i∈D

Ii ≤ αk

]

≤Pr
Ji

[∑
i∈D

Ji ≤ αk

]

≤Pr
Ji

[∣∣∣∣∣∑
i∈D

Ji − E

[∑
i∈D

Ji

]∣∣∣∣∣ ≥ αk
]

(Chernoff bound)

≤2e−α
2k. J

From the last two claims, Claim 50 and Claim 51, conclude that there is a high degree
vertex in V that its neighbors almost form a clique.

I Claim 53. There exists a set S ∈ S such that

Pr
S1,S2∈V

[S1 ∼ S2 | S1 − S, S2 − S] ≥ 1− α .

Proof. From Claim 50, we know that if we choose S, S1, S2 ∈ V independently,

Pr
S,S1,S2

[S ∈ S, S − S1, S − S2] ≥ Pr
S

[S ∈ S] Pr
S,S1

[S − S1 | S ∈ S]2 ≥
(ν

2

)3
.

From Claim 51, on the same distribution

Pr
S,S1,S2

[S − S1, S − S2, S1 6∼ S2] ≤ 2e−α
2k .

Therefore

Pr
S,S1,S2

[S1 6∼ S2 | S ∈ S, S − S1, S − S2] ≤
(

2
ν

)3
2e−α

2k < α .

The last inequality is since log
( 1
ν

)
≤ 1

3α
2k.

From averaging, there must be S ∈ S that achieves this bound. J

Proof of Theorem 48. Let S̃ ∈ S be the vertex promised from Claim 53, and denote by C
its strong neighbors,

C =
{
S ∈

(
[k]
9k
10

) ∣∣∣∣ S − S̃} ,

CCC 2017
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since S̃ ∈ S, the measure of C is at least ν2 . From the claim we also know that PrS1,S2∈C [S1 6∼
S2] ≤ α, so almost every two sets in C have small difference.

The global function g(i) is defined to be β ∈ Σ that is closest to fS(i) over all S ∈ C that
contains i,

∀i ∈ [k], g(i) = argmin
β∈Σ

{
E

S∈C s.t. i∈S
[dist(fS(i), β)]

}
.

If there is no S ∈ C such that i ∈ S, we define g(i) to an arbitrary value.
We notice that for every i, by definition

Pr
S∈C s.t. i∈S

[dist(fS(i), g(i))] ≤ Pr
S1,S2∈C s.t. i∈S1,S2

[dist(fS1(i), fS2(i))]. (32)

We know that S1, S2 ∈ C are weakly connected with probability at least 1− α, which means
that the difference between their functions is small.

E
S1,S2∈C

[∆(fS1 , fS2)] ≤1 · Pr
S1,S2∈C

[S1 6∼ S2] + E
S1,S2∈C

[∆(fS1 , fS2) | S1 ∼ S2]

≤α+ 60α ≤ 61α.

By the definition of difference, we get that,

61α ≥ E
S1,S2∈C

[∆(fS1 , fS2)]

≥ E
S1,S2∈C,i∈S1∩S2

[dist(fS1(i), fS2(i))] . (33)

Notice that the distribution over i in this expression is not uniform, we define formally the
distributions over i that we use.
1. Let D1 : [k]→ [0, 1] be the distribution that picks S ∈ C uniformly, then i ∈ S.
2. Let D2 : [k]→ [0, 1] be the distribution that picks S1, S2 ∈ C uniformly, then i ∈ S1 ∩ S2

(as |Si| = 9k
10 there is always such i).

Using this definition, (33) can also be written as

E
i∼D2,S1,S2∈C

[dist(fS1(i), fS2(i)) | i ∈ S1 ∩ S2] ≤ 61α. (34)

To prove the theorem, we need to prove (34) when i ∼ D1. First, we show that the
distributions D1,D2 are close to each other. In order to do so, we define the following set, D,

D =
{
i ∈ [k]

∣∣∣∣ Pr
S∈C

[i ∈ S] < 1
2

}
.

By Claim 54, the set D is small |D| ≤ 4αk. For each i /∈ D, PrS∈C [i ∈ S] ∈
[ 1

2 , 1
]
which

means that for every i /∈ D,

Pr
j∼D1

[j = i | j /∈ D] ≤ 2 Pr
j∼D2

[j = i | j /∈ D] . (35)

Using (35), (34) and (32), we show that the expected difference between g and fS for a
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random S ∈ C is small,

E
S∈C

[∆(fS , g)] = E
S∈C,i∈S

[dist(f(i), g(i))] (by definition of D1)

= E
i∼D1,S∈C

[dist(fS1(i), g(i)) | i ∈ S] (by (32))

≤ E
i∼D1,S1,S2∈C

[dist(fS1(i), fS2(i)) | i ∈ S1 ∩ S2]

≤ Pr
i∼D1

[i ∈ D] + E
i∼D1,S1,S2∈C

[dist(fS1(i), fS2(i)) | i ∈ S1 ∩ S2 \D]

(by (35))
≤4α+ 2 E

i∼D2,S1,S2∈C
[dist(fS1(i), fS2(i)) | i ∈ S1 ∩ S2 \D] (by (34))

≤4α+ 2 · 61α
1− 4α ≤ 150α. (36)

Equation (32) holds for every i ∈ [k], therefore it holds for expectation over i under any
distribution. The last inequality holds because of (34), and because if we condition on i /∈ D
we can increase the probability by a factor of at most Pri∼D2 [i /∈ D], which is small.

The only thing left now is a Markov argument, if ES∈C [∆(fS , g)] ≤ 150α, then at least
half of the sets S ∈ C satisfies ∆(fS , g) ≤ 300α, since the measure of C is ν

2 , the measure of
half of C is ν

4 and we are done. J

I Claim 54. Let C ⊂
([k]

9k
10

)
a subset of fraction size ν

2 , then the number of indices i ∈ k such
that PrS∈C [i ∈ S] ≤ 1

2 is at most 4αk.

Proof. Let D ⊂ [k] be this set of indices

D =
{
i ∈ [k]

∣∣∣∣ Pr
S∈C

[i ∈ S] ≤ 1
2

}
.

If we pick a completely uniform S′ ∈
( [k]

9
10k

)
,

E
S′

[|S′ ∩D|] = 9
10 |D| .

From Chernoff, using Claim 11 with A = [k] \ S′, (if |D| ≥ k
3 , the probability is even smaller)

Pr
S′

[
|S′ ∩D| ≤ 2

3 |D|
]
≤ e−

|D|
45 .

If we pick a uniform subset in S ∈ C, instead of a completely uniform set:

Pr
S∈C

[
|S ∩D| ≤ 2

3 |D|
]
≤ 2
ν
e−
|D|
45 .

From the definition of D, for each i ∈ D, PrS∈C [i ∈ S] ≤ 1
2 , so of course

E
S∈C

[|S ∩D|] ≤ 1
2 |D| .

From averaging

Pr
S∈C

[
|S ∩D| ≤ 2

3 |D|
]
≥ 1

4 .

This implies that 2
ν e
− |D|45 ≥ 1

4 , which means that |D| ≤ 4αk (recall that ν > e−
1

150αk) . J
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5.4 Direct Product Function Inputs
In Section 5.2 we proved Claim 40, let A = Ax for this input x. From the claim, we know
that for each A ∈ A there exists a direct product function gA such that,

Pr
A1,A2∈A

[gA1 , gA1 are consistent] ≥ ε2

32 .

We want to use Theorem 48 in order to build a global direct product function. For every
A ∈ A, the direct product function gA = (gA,1, . . . gA, 9k10

), gA,i : [N ] → [M ] can also be
written as fS : S → Σ, where S = [k] \A, and Σ = [M ]N . For every i ∈ S, fS(i) is the truth
table of gA,i. The distance measure in Σ is the normalized hamming distance between two
strings in [M ]N , i.e.

dist(σ1, σ2) = Pr
u∈[N ]

[σ1(u) 6= σ2(u)].

From the definition of consistent, for every consistent A1, A2, the functions fS1 , fS2 satisfy
∆(fS1 , fS2) < 60λ.

For every A /∈ A, we define a “fake” function fS for S = [k] \ A, and assume that
its outputs are at distance 1 from any other outputs, i.e. for every S′ ∈

([N ]
k

)
, i ∈ S ∩ S′,

dist(fS(i), fS′(i)) = 1.
Let F be the collection of local functions {fS}S∈([N]

k ) that we have just defined, let

α = 60λ and ν =
(
ε
4
)2 ε2

32 = ε4

512 .

agreeα(F) = Pr
A1,A2

[A1, A2 ∈ A, A1, A2 are consistent] ≥
( ε

4

)2 ε2

32 = ν.

In order of the theorem to hold, we need ν = ε4

32 = 1
32e
−4c1λ2k to satisfy ν > e−

1
3α

2k =
e−

1
3 (60λ)2k, this holds for a small enough c1.
By Theorem 48, there exists a product function g′ : [k]→ Σ which is close to ν

4 of the
functions fS . Translating it back to our setting, we can write g′ as g = (g1, . . . gk), gi : [N ]→
[M ], and a set A∗ of size ν

4 = 1
2048ε

4, such that for each A ∈ A∗,

Pr
i∈Ā,u∈[N ]

[gi(ui) 6= gA,i(ui)] ≤ 300α = 18000λ.

For simplicity of notations, let δ = 300α. Notice that by our definition, for each A /∈ A
the function gA never agrees with any other function, therefore A∗ ⊂ A.

I Definition 55. An input z is consistent with a set A ∈ A∗ with respect to the product
function g, denoted by z ∈ Z

g
A, if z ∈ ZA, and gA(zĀ) 2δk

≈ g(z)Ā.

I Claim 56. For each A ∈ A∗,

Pr
z∈[N ]k

[z ∈ Z
g
A] ≥ ε

8 .

Proof. Fix A ∈ A∗, for each i ∈ Ā, denote by pi the probability of g, gA to differ on the ith
coordinate, pi = Pru∈[N ] [gA,i(u) 6= gi(u)], from Theorem 48 Ei∈Ā [pi] ≤ δ.

Let Ii be the indicator random variable that equals 1 with probability pi independently
for each i. For a uniform z ∈ [N ]k,

E
z∈[N ]k

[dist(gA(z), g(z)Ā)] =
∑
i∈Ā

Ii .
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Using Chernoff

Pr
z

[
gA(zĀ)

2δk
6≈ g(z)Ā

]
≤ Pr

 ∑
i∈[k]\A

Ii ≥ 2E

 ∑
i∈[k]\A

Ii

 ≤ e− 1
9 δk ≤ ε

8 .

We know that A ∈ A, therefore Prz [z ∈ ZA] ≥ ε
4 , therefore

Pr
z

[z ∈ Z
g
A] ≥ Pr

z

[
z ∈ ZA, gA(zĀ) 2δk

≈ g(z)Ā
]
≥ ε

4 −
ε

8 ≥
ε

8 .

J

I Claim 57. If z ∈ [N ]k is satisfies z ∈ Z
g
A for more than ε

16 fraction of the sets A ∈ A∗,
then f(z) 3δk

≈ g(z).

Proof. Fix z ∈ [N ]k such that z ∈ Z
g
A for more than ε

16 fraction of the sets A ∈ A∗.

Assume towards contradiction that f(z)
3δk
6≈ g(z), and denote by D ⊂ [k] the set of

coordinates in which they differ

D = {i ∈ [k] | f(z)i 6= g(z)i} .

For each A such that z ∈ Z
g
A, by definition g(z)Ā

2δk
≈ gA(zĀ). Since z ∈ ZA, we also know

that gA(zĀ) 20λk
≈ f(z)Ā. Using both,

g(z)Ā
2δk+20λk
≈ f(z)Ā.

By the definition of D, this implies that |Ā ∩D| ≤ 2δk + 20λk ≤ 2.1δk, the rest of D must
be in A, |A ∩D| ≥ |D| − 2.1δk. According to our assumption, |D| ≥ 3δk, which implies that
|A ∩D| ≥ 1

4 |D|.
From the previous paragraph, all sets A such that z ∈ Z

g
A satisfies |A ∩D| ≥ 1

4 |D|, and
there are ε

16 |A
∗| such sets.

From Claim 11, we know that for a random set A ⊂ [k] of size 1
10k,

Pr
A

[
|D ∩A| ≥ 1

4 |D|
]
≤ e−150λk.

The set A∗ has measure ε4

2048 ,in order to satisfy the requirements ε
16

ε4

2048 < e−150λk, and
we reach a contradiction. J

The previous claims practically finishes the proof

Proof of Theorem 1. From Claim 56, each A ∈ A∗ satisfies |ZgA| ≥ ε
8N

k, therefore

E
z

[|{A ∈ A∗ | z ∈ Z
g
A}|] =

∑
A∈A∗

E
z

[I(z ∈ Z
g
A)] = 1

8ε|A
∗| .

From averaging, a uniform z ∈ [N ]k satisfies |{A ∈ A∗ | z ∈ Z
g
A}| ≥

1
16ε|A

∗| with prob-
ability at least 1

16ε. Using Claim 57, each such input z satisfies f(z) 3δk
≈ g(z). We chose

δ = 300α = 18000λ, in order to get that f(z) λ
′k
≈ g(z) we just need to choose small enough

c1, and substitute λ′ = 1
18000λ in the proof. J
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6 Lower Bounds for Approximate Equality

Our direct product theorem states that if a function f : [N ]k → [M ]k passes Test 1 with
t = k

10 with probability ε > e−c1λ
2k, i.e. αZ( k10 )(f) > e−c1λ

2k, then there exists a direct
product function g = (g1, . . . gk) such that

Pr
x∈[N ]k

[
f(x) λk≈ g(x)

]
≥ Ω(ε).

Ideally, we want the stronger conclusion that

Pr
x∈[N ]k

[f(x) = g(x)] ≥ Ω(ε).

i.e., replacing approximate equality with equality.
In the introduction there is an example explaining why approximate equality is necessary

for f such that αZ( k10 )(f) ≥ e−δk. In this section, we show two extensions.
1. We generalize Test 1 with intersection size t to Test 5 with two intersection parameters

t1, t2 ∈ N, t1 + t2 ≤ k, and show a lower bound for Test 5 with every such t1, t2 (Test 5
with t1 = t2 is equivalent to Test 1).

2. We analyze the triangle test, Test 6, and give a lower bound for this test.

I Definition 58. We say that functions f1, f2 : [N ]k → [M ]k are (ε, δ) close, if

Pr
x∈[N ]k

[
f1(x) δk≈ f2(x)

]
≥ ε.

A function f : [N ]k → [M ]k is (ε, δ) far from direct product, if there is no direct product
function g = (g1, . . . , gk) : [N ]k → [M ]k that is (ε, δ) close to f .

Recall w t
≈ w′ if w,w′ are equal in all but t of the coordinates.

In this notation, Theorem 1 states that if αZ( k10 )(f) = ε > e−c1λ
2k, then f is (Ω(ε), λ)

close to a direct product function. We are interested to know if it is possible to have a direct
product theorem such that f is (Ω(ε), 0) close to a direct product function.

Let h be the function from Example 3 in the introduction, it satisfies αZ( k10 )(h) = ε >

e−c1λ
2k, but is (c · ε, λ)-far from a direct product function for any constant c. Therefore, it is

not true that αZ( k10 )(h) > e−c1λ
2k implies (Ω(ε), 0) close to a direct product function.

h is a direct product function with noise, on each input x ∈ [N ]k, h(x) is corrupted on λk
coordinates. The direct product test with t = k

10 does not check all the coordinates of each
input, so with probability e−λδk, non of the corrupted coordinates are checked. However, if
we change the parameters of the test from t = k

10 to t = k
2 , in which all coordinates of the

input y are checked, the function h no longer passes the test.
Is it possible to prove (Ω(ε), 0) close for Test 1 with t = 1

2? the answer is no. For
m = {0, 1} we don’t know the answer, and it remains an open question.

I Claim 59. For every constant δ > 0 and t1, t2 ∈ N, t1 + t2 ≤ k, there exist a constant
β > 0 and a function f : [N ]k → [M ]k for N,M � k, such that αZ(t1,t2)(f) = ε ≥ e−δk, but
f is (ε2, β

log k ) far from any direct product function.

Proof. Test 5 is symmetric with respect to t1, t2, so we can assume wlog that t1 ≥ t2. We
choose N,M ≥ ek2 such that M ≤

√
N . We divide the proof into two cases, depending on

t1. For each of the two cases we construct a function with ` corrupted coordinates, such
that αZ(t1,t2)(f) = ε ≥ e−δk, and show that both these functions are (ε2, `2k ) far from direct
product function.
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1. Choose A,B,C to be a random partition of [k],
such that |A| = t1, |B| = t2.

2. Choose uniformly at random x, y, z ∈ [N ]k such
that xA = yA and yB = zB .

3. Reject if f(x)A 6= f(y)A or f(z)B 6= f(y)B, else
accept.

A C B

x

y

z

Denote by αZ(t1,t2)(f) the success probability of f on this test.

Test 5 “Z”-test with parameters t1, t2 (3-query test).

If t1 ≤ 0.4k

This case is similar to Example 3, and we provide here a detailed analysis. Let f : [N ]k → [M ]k
be the constant function 1, i.e. f(x) = 1, . . . 1 for every x ∈ [N ]k, but for every x ∈ [N ]k we
corrupt f(x) on ` ≤ 1

10k random coordinates i(1)
x , . . . i

(`)
x to random values in [M ] \ {1}. The

number of corrupted coordinates ` is decided later.
Let A,B,C, x, y, z the sets and inputs chosen in Test 5, since t2 ≤ t1 ≤ 0.4k, |C| ≥ 0.2k.

If all the corrupted coordinates of x, y, z are not in A and all the corrupted coordinates of
y, z not in B, the output of f on all of the corrupted coordinates is not checked and the test
passes.

Pr [Test passes] ≥ Pr
[
i(1)
x , . . . i(`)x /∈ A, i(1)

y , . . . i(`)y /∈ A ∪B, i(1)
z , . . . i(`)z /∈ B

]
≥ 0.13`.

The last inequality is because the corrupted coordinates on x, y, z are independent. For input
x and i(1)

x , . . . i
(`)
x , even conditioning on i(1)

x , . . . i
(`−1)
x ∈ C, the probability of i(`)x to be in C

is at least 0.1 (since ` ≤ 0.1k), same for y, z.
We choose ` = βk for a constant β, such that 0.13` ≥ e−δk, this means that f satisfies

αZ(t1,t2)(f) = ε ≥ e−δk.
We now show that f is (ε2, `2k )-far from every direct product function. We do it by

describing a property of f , showing that our function satisfies it with high probability and
that this property implies (ε2, `2k )-far from direct product function.

For every i ∈ [k], b ∈ [N ] let Gi,b be

Gi,b =
{
x ∈ [N ]k

∣∣ xi = b
}
.

The function f is called balanced if for every i ∈ [k], b ∈ [N ], a ∈ [M ] \ {1},

Pr
x∈Gi,b

[f(x)i = a] ≤ 2k
M
.

We show that our random function f is balanced with probability almost 1. Fix i ∈
[k], b ∈ [N ], a ∈ [M ] \ {1}. By the definition of f , Prx,∈Gi,b [f(x)i = a] ≤ 1

M , and this is
independent for each x ∈ Gi,b, therefore using Chernoff bound

Pr

 ∑
x∈Gi,b

I(f(x)i = a) ≥ 2
M
Nk−1

 ≤ e− 1
3MNk−1

.

Preforming union bound over all i ∈ [k], b ∈ [N ], a ∈ [M ], the probability that f is balanced
is at least 1− kNMe−

1
3MNk−1 ≥ 1− e−N .
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Given that f is balanced and has exactly ` corrupted coordinates per input, we show
it is (ε2, `2k )-far from direct product function. Let f be such function, and assume to-
wards contradiction that there exist g = (g1, . . . , gk) that is (ε2, `2k ) close to f . Let

F =
{
x ∈ [N ]k

∣∣∣∣ f(x) `−1
≈ g(x)

}
, by our assumption |F | ≥ ε2Nk.

Let Fi,b ⊆ Gi,b be the set

Fi,b = {x ∈ F | xi = b, gi(xi) = f(x)i 6= 1} .

Every x ∈ F has ` coordinates i ∈ [k] in which f(x)i 6= 1. For every x ∈ F , f(x) `−1
≈ g(x), so

there must be i ∈ [k] such that f(x)i = gi(xi) 6= 1. Therefore, every x ∈ F must be in at
least one Fi,b, and the sets {Fi,b}i∈[k],b∈[N ] must cover F , i.e. F ⊆

⋃
i∈[k],b∈[N ] Fi,b.

By definition, all x ∈ Fi,b satisfies f(x)i = gi(b) ∈ [M ] \ {1}, since f is balanced,
|Fi,b| ≤ 2k

M |Gi,b| ≤
2k
MNk−1.

|F | ≤
∑

i∈[k],b∈[N ]

|Fi,b| ≤ Nk ·
2k
M
Nk−1 ≤ 2k2

M
Nk � ε2Nk

and we reached a contradiction to the assumption |F | ≥ ε2Nk.

If t1 > 0.4k

In this case, we can’t simply corrupt coordinates to random values, because it is possible
that t1 + t2 = t, and all coordinates of f(y) are checked. Instead, we corrupt coordinates in
a more subtle way. We start by constructing a function f : [N ]k → [M ]k that has a single
corrupted coordinate per input, and αZ(t1,t2)(f) = Ω( 1

k2 ).
Let f : [N ]k → [M ]k be the constant 1 function (i.e. f(x) = 1, . . . 1 for all x), and for

every b ∈ [N ], let pb : [N ]→ [M ] \ {1} be a random function. For every input x ∈ [N ]k, we
choose two random coordinates ix 6= jx ∈ [k], ix is the corrupted coordinate, and jx is the
master coordinate. We corrupt f(x) by setting b = xjx and

f(x)ix = pb(xix).

Let A,B, x, y, z be the sets and inputs chosen in the test, if ix = iy, jx = jy and ix, jx ∈ A,
then f(x)A = f(y)A (because the corrupted coordinates are corrupted to the same value).
If in addition iz /∈ B, then also f(z)B = f(y)B (because y, z don’t have any corrupted
coordinates on B).

The probability of ix = iy and jx = jy is 1
k2 , as they are both random indices in [k]. The

probability of ix, jx ∈ A, iz /∈ B is at least 0.33, therefore αZ(t1,t2)(f) = Ω( 1
k2 ).

Instead of corrupting a single coordinate per input, we can corrupt ` ≤ 0.1k different
coordinates, by choosing different i(1)

x , . . . , i
(`)
x and j

(1)
x , . . . , j

(`)
x for every x ∈ [N ]k, and

continue as before. A similar probabilistic argument shows that that this function f

has αZ(t1,t2)(f) = Ω( 1
k2` ) (conditioning on all other i(1)

x , . . . i
(`)
x , j

(1)
x , . . . , j

(`−1)
x ∈ A, the

probability of j(`)
x ∈ A is at least 0.2).

Fix a constant δ > 0, in order of the function f to pass the test with probability e−δk,
the number of corrupted coordinates ` should satisfy c

k2` > e−δk, which means that we can
choose ` = β k

log k for some constant β > 0.
The constant function 1 is (1, `k ) close to f , we show that any direct product function

g = (g1, . . . , gk) is (ε2, `2k )-far from f . Intuitively, it is true because the corrupted coordinates
are corrupted to N different random functions, receiving values in M , for k � N,M . More
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1. Choose disjoint W,X, Y ⊂ [N ] of size k
2 .

2. Reject if f(X∪W )W 6= f(Y ∪W )W , f(X∪Y )Y 6=
f(Y ∪ W )Y or f(X ∪ W )X 6= f(X ∪ Y )X , else
accept. X

W Y

Denote by αTset(f) the success probability of f on this test.

Test 6 Triangle test (3-query test, for even k).

formally, we show that with high probability the function f is also balanced, and use the
proof of the previous case.

In the previous case, we showed that f is balanced with high probability by Chernoff
bound over the inputs in Gi,b. This is not possible to do in our case, because for x, y ∈ Gi,b,
there is a dependence between the values of the corrupted coordinates of x and y. Instead,
we look at the random set of functions {pb}b∈[N ].

The function set {pb}b∈[N ] is called balanced, if for every b′ ∈ [N ], a ∈ [M ] \ {1},
Prb∈[N ][pb(b′) = a] ≤ 2 1

M .
Fix b′ ∈ [N ], a ∈ [M ] \ {1}, a random function set {pb}b∈[N ] satisfies for every b ∈ [N ],

Prpb [pb(b′) = a] = 1
M−1 , independently for each function pb. Therefore using Chernoff bound,

Pr
{pb}

∑
b∈[N ]

I(pb(b′) = a) > 2N
M

 ≤ e− N
4M ≤ e−

√
N
4 .

Preforming union bound over all b′ ∈ [N ], a ∈ [M ] \ {1}, a random function set {pb}b∈[N ] is
balanced with probability at least 1−NMe−

√
N
4 .

We now show that a balanced function set {pb}b∈[N ] implies a balanced function f . Fix
i ∈ [k], b′ ∈ [N ], a ∈ [M ] , and let A = {b ∈ [N ] | pb(b′) = a}, if {pb}b∈[N ] is balanced, then
|A| ≤ 2

MN . The set Gi,b′ is a subcube of dimension k − 1, so its coordinates are uniform in
[N ], and by union bound

Pr
x∈Gb′,i

[∃j ∈ [k] \ {i} s.t xj ∈ A] ≤ 2k
M
.

If there is no j such that xj ∈ A, it is impossible that f(x)i = a, because f(x)i is either 1, or
pxj (b′) for some j ∈ [k] \ {i}. Therefore, at most 2k

M of x ∈ Gi,b′ can satisfy f(x)i = a, and
such f is balanced with probability 1.

The function f is balanced with ` corrupted coordinates per input, so by the previous
case, f is (ε2, `2k )-far from direct product. J

Notice that in the proof, the range of t1 ≤ 0.4k has a lower bound of ` = βk, whereas in
the second case, the lower bound is only ` = βk

log k .
The example in the proof can easily be transformed into a function on sets f :

([N ]
k

)
→ [M ]k,

which gives a bound on Test 4. This is done by choosing for each set S ∈
([N ]
k

)
` elements in

S to corrupt and ` master elements (instead of coordinates) .
In Test 5 with t1 + t2 = k, we compare f(y) on all coordinates, but only part of the

coordinates of f(x), f(z). What if we compare all coordinates of all three inputs? This brings
us to the triangle test, ,Test 6, for functions over sets. In this test, every two out of the three
inputs share a joint subset of size k

2 , for this test we must assume that k is even.

CCC 2017
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X

W Y

a1 b1

a2

b2

Figure 2 The set S2 = X ∪ Y is marked in yellow.

I Claim 60. For every constant δ > 0, there exist a constant β > 0 and a function
f :

([N ]
k

)
→ [M ]k with N,M � k, such that αTset(f) = ε > e−δk , and f is (ε2, β

log k ) far
from direct product function.

Proof. The function f that we describe in this proof is similar to the function from the
previous proof, we only need to modify it slightly such that there is the same number of
corrupted elements in each half of the inputs. We start by describing a function with two
corrupted elements per input.

Let f :
([N ]
k

)
→ [M ]k be the constant function 1, i.e. f(S) = 1, . . . 1 for every set S, and

for every b ∈ [N ] we choose a random function pb : [N ]→ [M ] \ {1}. For every S ∈
([N ]
k

)
, we

choose two elements to corrupt a1, a2 ∈ S and two master elements b1, b2 ∈ S. Then, we set
f(S)a1 = pb1(a1) and f(S)a2 = pb2(a2).

Suppose W,X, Y are the sets chosen in Test 6, fix a1, b1 ∈ X, a2, b2 ∈ Y and a3, b3 ∈W .
If the following three events hold, the test passes, see Figure 2.

1. In the set S2 = X ∪ Y the elements chosen to corrupt are a1, a2 with the master elements
b1, b2 respectively.

2. In the set S1 = X ∪W the elements chosen to corrupt are a1, a3 with the master elements
b1 b3 respectively.

3. In the set S3 = Y ∪W the elements chosen to corrupt are a2, a3 with the master elements
b2, b3 respectively.

If the three events hold, then on every check of the test, both the corrupted element and its
master element are the same in both inputs, so they are corrupted to the same value and the
check passes.

The probability of each event is at least 1
k4 , and the event are independent, since the

choice of which elements to corrupt is done independently for each S ∈
([N ]
k

)
. Therefore the

function f passes Test 6 with probability at least 1
k12 . It is possible to do a more careful

analysis and get a higher success probability bound, but it is not important in our case.
If we corrupt 2` elements per set S ∈

([N ]
k

)
, similar analysis shows that f satisfies

αTset(f) = Ω( 1
k12` ). Setting ` = βk

log k for some constant β, we get f such that αTset(f) ≥ e−δk.
We show that f with 2` corrupted coordinates is (ε2, `2k )-far from direct product function

in a very similar way to the previous proof. As we have seen in the proof of Claim 59, the
random function set {pb}b∈[N ] is balanced with probability at least 1−MNe−

1
4
√
N .

For every b ∈ [N ], let Gb = {S ⊂ [N ] | |S| = k, b ∈ S}, we say that the function f :([N ]
k

)
→ [M ]k is balanced if for every b′ ∈ [N ], a ∈ [M ] \ {1},

Pr
S∈Gb′

[f(S)b′ = a] ≤ 2k
M
.
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We show that every f with a balanced function set {pb}b∈[N ] is balanced. Fix b′ ∈
[N ], a ∈ [M ], and let A = {b ∈ [N ] | pb(b′) = a}, for a balanced function set, |A| ≤ 2M

N . Like
previously, the set Gb′ is actually equivalent to all subset of size k−1 of elements in [N ]\{b′},
therefore a uniform S ∈ Gb′ contains b ∈ A with probability at most 2k

M , and f is balanced.
Assume towards contradiction that f is (ε2, `2k ) close to a direct product function g :

[N ]→ [M ], and let F be set set of inputs in which f(S) `−1
≈ g(S). Similar to the previous

proof, for every b ∈ [N ] let Fb = {S ∈ F | b ∈ S, f(S)b = g(b) 6= 1}.
Since g approximated F up to `−1 elements, and f has ` corrupted elements, every S ∈ F

is in some Fb′ , and F ⊆ ∪b′∈[N ]Fb′ . Since f is balanced, for every b′ ∈ [N ], |Fb′ | ≤ 2k
M |Gb′ |,

|F | ≤
∑
b′∈[N ]

|Fb′ | ≤ N
2k
M
|Gb′ | ≤

2k2

M

∣∣∣∣([N ]
k

)∣∣∣∣ .
The last inequality, is because each S ∈

([N ]
k

)
is in at most k sets Gb′ . This is a contradiction

of |F | ≥ ε2
∣∣∣([N ]

k

)∣∣∣. J
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A Chernoff and Hypercontractivity Proofs

Proof of Claim 11. For each element i ∈ D, we define the indicator random variable Ii to
indicate that i ∈ A. In this notation

|A ∩D| =
∑
i∈D

Ii.

We want to use Chernoff bound on Ii, but since A is of fixed size, the indicator variables
are not independent. Instead, we define for each i the new random variables Ji that are
independent.

For (2), let

Ji =
{

1 w.p 3
20

0 w.p 1− 3
20
.

For every i ∈ D and every fixed value b ∈ {0, 1}|D| of the indicators {Il, l 6= i} ,
Pr [Ii = 1 | ∀l 6= i, Il = bl] ≤ Pr [Ji = 1]. In the worse case, they are all set to 0 (none is in
A), and Pr[Ii = 1] = 3

20 . Therefore, we can use Chernoff bound on the random variables Ji
and get a result for Ii:

Pr
A

[∑
i∈D

Ii ≥
1
5 |D|

]
≤ Pr

J

[∑
i∈D

Ji ≥
1
5 |D|

]
≤ e− 1

320 |D|

For (3), we define

Ji =
{

1 w.p 1
15

0 w.p 1− 1
15
.

In this case, for every i ∈ D and fixed value b ∈ {0, 1}|D|, Pr [Ii = 1 | ∀l 6= i, Il = bl] ≥
Pr [Ji = 1], and

Pr
A

[∑
i∈D

Ii ≤
1
20 |D|

]
≤ Pr

J

[∑
i∈D

Ji ≤
1
20 |D|

]
≤ e− 1

60 |D| . J

Proof of Corollary 15. |A| ≥ |B| implies a ≤ b, we know that

e−
ρab

2(1−ρ) ≥ e−
ρb2

2(1−ρ) = Pr
x∈[N ]k

[x ∈ B]
ρ

1−ρ .

Similarly

e−
(2−ρ)(a2+b2)

4(1−ρ) = e
2−ρ

2(1−ρ) ·
(
− a2

2 −
b2
2

)
= e

(
1+ ρ

2(1−ρ)

)
·
(
− a2

2 −
b2
2

)
=

Pr
x∈[N ]k

[x ∈ B]1+ ρ
2(1−ρ) Pr

x∈[N ]k
[x ∈ A]1+ ρ

2(1−ρ)

Together we get

Pr
x,y

[x ∈ A, y ∈ B] ≥ Pr
x∈[N ]k

[x ∈ A]1+ ρ
2(1−ρ) Pr

x∈[N ]k
[x ∈ B]1+ 3ρ

2(1−ρ) . J
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Proof of Claim 16. We notice that regardless which of the sets G,L is the largest, by
Corollary 15,

Pr
w∈[N ]k,(v,J)∈N 3

4
(w)

[w ∈ L, v ∈ G] ≥
(

Pr
w

[w ∈ L]
) 11

2
ν

11
2 .

By the definition of L,

Pr
w∈[N ]k,(v,J)∈Nρ(w)

[w ∈ L, v ∈ G] ≤ Pr
w

[w ∈ L]η.

Therefore

Pr
w

[w ∈ L] 9
2 ≤ ν− 11

2 η. J

B Tuples to Sets Local Structure Proof

In this section we prove Lemma 37, restricted global structure for sets, we restate it bellow.

I Lemma 37. There exist a small constants δ > 0, such that for every constant λ > 0 and
large enough k ∈ N such that N > k2e10δλk, the following holds,

For every function f :
([N ]
k

)
→ [M ]k, if αZset( k10 )(f) = ε > e−δλk, then at least (1−ε2− k2

N )
of the good pairs W ∈

([N ]
k
10

)
, X ∈

([N ]
9k
10

)
are DP pairs, i.e. there exist gX,W : [N ]→ [M ] such

that

Pr
Y

[
f(Y ∪W )Y

3αk
6≈ gX,W (Y )

∣∣∣∣ Y ∩W = ∅, f(X ∪W )W = f(Y ∪W )W
]
≤ 2ε2.

In order to prove the lemma, for every function f :
([N ]
k

)
→ [M ]k we define a function

f ′ : [N ]k → [M ]k ∪ ⊥. For every S ⊂ [N ], we assume that the output of f(S) is ordered in
an ascending order over the elements or S.

In order to simplify the notation, for every string x ∈ [N ]k, we define U(x) = 1 if x has
unique coordinates, i.e there is no i 6= j such that xi = xj , else U(x) = 0.

I Definition 61. Given a function f :
([N ]
k

)
→ [M ]k, let f ′ : [N ]k → [M ]k ∪ ⊥ be defined as

follows. For every x ∈ [N ]k let X be the set of elements in x,

f ′(x) =
{
π(f(X)) U(x) = 1

⊥ U(x) = 0
.

Where π ∈ Sk is the permutation from the ascending order over the elements of X to x.

For a set S ⊂ [N ] of size k and a permutation π ∈ Sk, we denote by π(S) ∈ [N ]k the string
generated by applying π on the elements of S ordered in an ascending order. Therefore, for
every X ∈

([N ]
k

)
, f ′(π(X)) = π(f(X)).

I Definition 62. Let D :
([N ]
k
10

)
×
([N ]

9k
10

)
×
([N ]

9k
10

)
→ [0, 1] be the following distribution:

1. Choose W ⊂ [N ] of size k
10 .

2. Choose X ⊂ [N ] of size 9k
10 such that X ∩W = ∅.

3. Choose Y ⊂ [N ] of size 9k
10 such that Y ∩W = ∅.

Let D′ :
([k]
k
10

)
× [N ]k × [N ]k → [0, 1] be the following distribution:

1. Choose a set A ⊂ [k] of size k
10 .
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2. Choose x ∈ [N ]k such that U(x) = 1.
3. Choose y ∈ [N ]k such that xA = yA and U(y) = 1.
Fixing a set A ⊂ [k] and x ∈ [N ]k such that U(x) = 1, we denote by D′|A, x the distribution
over y, conditioning on A, x being already chosen. Similarly for W,X ⊂ [N ], we define
D|W,X the distribution over Y .

We can easily see that if we pick (W,X, Y ) ∼ D, then choose a random set A and random
permutations π1 ∈ S k

10
, π2, π3 ∈ S k

10
, and set x = (π1(W )A, π2(X)Ā),y = (π1(W )A, π3(Y )Ā),

we get (A, x, y) ∼ D′.
For each two sets W,X, let x = (π1(W )A, π2(X)Ā) for an arbitrary A ⊂ [k] and π1, π2,

then the distribution y ∼ D′|A, x is the same distribution as (π1(W )A, π3(Y )Ā) for Y ∼
D|W,X and uniform π3 ∈ S 9k

10
.

We further notice that the distribution (W,X, Y ) ∼ D is the distribution used in Test 4.
The distribution (A, x, y) ∼ D′ is the distribution of Test 2 with t = k

10 conditioning on
U(x) = U(y) = 1.

Let p1 = Prx∈[N ]k [U(x) = 0]. For every x ∈ [N ]k such that U(x) = 1 and a set A ⊂ [k],
let p2 = Pry [U(y) = 0 | yA = xA] (p2 is the same for every A, x such that U(x) = 1). We
bound the probabilities p1, p2.

Choosing a uniform x ∈ [N ]k can be done coordinate by coordinate. For each coordinate
i, the probability that xi = xj for j < i is less than i−1

N , therefore

p1 = Pr
x∈[N ]k

[U(x) = 0] ≤
k∑
i=1

i− 1
N
≤ k2

2N .

Similarly, we can think of picking y given A, x as starting with the fixed yA (which doesn’t
contain two identical coordinates as U(x) = 1) and choosing coordinates one by one.

p2 = Pr
y

[U(y) = 0 | yA = xA] ≤
k∑

i= k
10

i− 1
N
≤ k2

2N .

I Claim 63. For every function f :
([N ]
k

)
→ [M ]k , the function f ′ : [N ]k → [M ]k from

Definition 61 satisfies

αV ( k10 )(f ′) = (1− p1)(1− p2) Pr[f passes Item3 of Test 4] .

Proof. Fix a function f :
([N ]
k

)
→ [M ]k, and let f ′ : [N ]k → [M ]k be the function from

Definition 61.
If either U(x) = 0 or U(y) = 0, by definition f ′ outputs ⊥ and the test fails. If we

condition on U(x) = U(y) = 1, the test distribution equals D′. Let W be the set of elements
of xA, X of xĀ and Y of yĀ, then (W,X, Y ) ∼ D.

For every A, x, y such that U(x) = U(y) = 1 and xA = yA, the permutation π1 ∈ S k
10

from the ascending order in W to the order of xA satisfies f ′(x)A = π1(f(X,W )W ), and
f ′(y)A = π1(f(Y,W )W ). Therefore, f ′(x)A = f ′(y)A ⇐⇒ f(X,W )W = f(Y,W )W .

This implies that

Pr[f ′ passes Test 2] = Pr
A,x,y

[f ′(x)A = f ′(y)A | xA = yA]

= Pr
A,x,y

[U(x) = U(y) = 1 | xA = yA] Pr
(A,x,y)∼D′

[f ′(x)A = f ′(y)A]

=(1− p1)(1− p2) Pr
(W,X,Y )∼D

[f(X,W )W = f(Y,W )W ]

=(1− p1)(1− p2) Pr[f passes Item3 of Test 4].
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Where PrA,x,y [U(x) = U(y) = 1 | xA = yA] = (1− p1)(1− p2) by the definition of p1, p2. J

I Claim 64. For every function on sets f :
([N ]
k

)
→ [M ]k, the function f ′ : [N ]k → [M ]k from

Definition 61 satisfies the following. For every disjoint W ∈
([N ]
k
10

)
, X ∈

([N ]
9k
10

)
, every set A ⊂

[k], |A| = k
10 and every permutations π1 ∈ S k

10
, π2 ∈ S 9k

10
, the pair (A, x = (π1(W )A, π2(X)Ā))

satisfies

Pr
y

[f ′(x)A = f ′(y)A | yA = xA] = (1− p2) Pr
Y∼D|W,X

[f(X ∪W )W = f(Y ∪W )W ] .

Proof. Fix a function f :
([N ]
k

)
→ [M ]k, and let f ′ : [N ]k → [M ]k be the function from

Definition 61. Fix two disjoint subsets W ∈
([N ]
k
10

)
, X ∈

([N ]
9k
10

)
, a subset A ⊂ [k], |A| = k

10 ,
and permutations π1 ∈ S k

10
, π2 ∈ S 9k

10
. Set x = (π1(W )A, π2(X)Ā), since X,W are disjoint,

U(x) = 1. By the definition of f ′, f ′(x)A = π1(f(X,W )W ).
Let y ∈ [N ]k be a random string such that xA = yA, if U(y) = 0, then f ′(y) = ⊥ and

f ′(x)A 6= f ′(y)A. By definition, p2 = Pry[U(y) = 0|xA = yA]. If we condition on U(y) = 1,
the distribution over y is D′|A, x. If we take Y to be the elements of yĀ, then the distribution
over Y is D|W,X.

For y such that U(y) = 1, by the definition of f ′, f ′(y)A = π1(f(Y,W )W ), and therefore
f ′(x)A = f ′(y)A ⇐⇒ f(X,W )W = f(Y,W )W .

Pr
y

[f ′(x)A = f ′(y)A | yA = xA] = Pr
y

[U(y) = 0 | xA = yA] Pr
y∼D′|A,x

[f ′(x)A = f ′(y)A]

=(1− p2) Pr
Y∼D|W,X

[f(X ∪W )W = f(Y ∪W )W ] . J

Proof of Lemma 37. Let f :
([N ]
k

)
→ [M ]k be the function such that αZset( k10 )(f) = ε >

e−δλk, and let f ′ : [N ]k → [M ]k be the function from Definition 61. By Claim 63, f ′ passes
Test 2 with probability ε′ = (1− p1)(1− p2)ε, therefore, Theorem 21 holds for the function
f ′.

By Claim 64, for every disjoint W ∈
([N ]
k
10

)
, X ∈

([N ]
9k
10

)
,

Pr
y

[f ′(x)A = f ′(y)A | yA = xA] = (1− p2) Pr
Y∼DW,X

[f(X ∪W )W = f(Y ∪W )W ] .

Setting η = 1− p1, this means that if X,W satisfies PrY [f(X ∪W )W = f(Y ∪W )W ] ≥
η ε2 , then for every set A ⊂ [k] and permutations π1, π2, the pair (A, x = (π1(W )A, π2(X)Ā))
satisfies Pry [f ′(x)A = f ′(y)A | yA = xA] ≥ ε′

2 .
Theorem 21 implies that with probability 1 − ε′2 a good τ ∼ D (equivalent to A, x

that satisfies Pry [f ′(x)A = f ′(y)A | yA = xA] ≥ ε′

2 ) is a DP-restriction. Since every W,X
corresponds for the same number of (A, x), for at least (1− ε′2) ≥ (1− ε2 − k2

N ) of the sets
W,X, there exist at least one set A and permutations π1, π2 such that τ = (A, x, f ′(x)A) is
a DP restriction, for x = (π1(W )A, π2(X)Ā).

Let W,X be such sets, i.e. there exist A ⊂ [k] and permutations π1, π2 such that
τ = (A, x, f ′(x)A) is a DP-restriction, for x = (π1(W )A, π2(X)Ā). We show that (W,X) are
a DP-pair. Let gτ = gτ1 , . . . g

τ
9k
10
, gτi : [N ] → [M ] be the direct product function of τ . We

define gW,X : [N ]→ [M ] to be the following function, for every a ∈ [N ], gW,X(a) is the most
frequent value gτi (a), among all i ∈ 9k

10 .
We recall that Vτ =

{
w ∈ [N ]Ā

∣∣∣ f ′(xA, w)A = f ′(x)A
}

and denote by VW,X the analog
in sets,

VW,X =
{
Y ∈

(
[N ]
9k
10

) ∣∣∣∣ Y ∩W = ∅, f(Y,W )W = f(X,W )W
}
.
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We notice that for every w ∈ Vτ , f ′(xA, w) 6= ⊥, so it has unique coordinates, U(xA, w) = 1.

In these notations, Theorem 21 implies Prw∈Vτ
[
f ′(xA, w)Ā

αk

6≈ gτ (w)
]
≤ ε′2, and we need

to prove the analog statement for Y ∈ VW,X .
We describe the following random process: for every Y ∈ VW,X , we choose a random

permutation π3 and set w = π3(Y ). We notice that for every Y ∈ VW,X , f(Y,W )W =
f(X,W )W , and by the definition of f ′ this implies that f ′(xA, w)A = f ′(x)A, so w ∈ Vτ .
Moreover, for every w ∈ Vτ exists exactly one Y ∈ VW,X and permutation π3 such that
w = π3(Y ).

Suppose Y ∈ VW,X such that gW,X(Y )
3αk
6≈ f(Y ∪W )Y , and let B ⊂ Y be the set of

elements that gW,X(Y ), f(Y ∪W )Y differ on, i.e. for every b ∈ B, gW,X(b) 6= f(Y ∪W )b.
Since gW,X is the most frequent value among gτi (b), for at least half of the locations i,
gτi (b) 6= f(Y ∪W )b.

For a random permutation π3, each b ∈ B has probability of at least 1
2 to fall into a

“bad location”, i.e i such that gτi (b) 6= f(Y ∪W )b. Since α is a very small constant, even
conditioning on αk of b ∈ B to be in a bad location, the probability of b′ ∈ B to fall into a
bad location is at least 2

5 . By Chernoff bound, with probability larger than 1− e− 1
100αk, π3

is such that at least 1
3 of b ∈ B are in a “bad location”. By the definition of f ′, this implies

that f ′(xA, w)Ā
αk

6≈ gτ (w).
Therefore, we get that

Pr
Y ∈VW,X

[
gW,X(Y )

3αk
6≈ f(Y ∪W )Y

](
1− e− 1

100αk
)
≤ Pr
w∈Vτ

[
f ′(xA, w)Ā

αk

6≈ gτ (w)
]
≤ ε′2.

Which implies that

Pr
Y ∈VW,X

[
gW,X(Y )

3αk
6≈ f(Y ∪W )Y

]
≤ ε′2 + e−

1
100αk ≤ 2ε2. J
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1 Introduction

1.1 The class PPA
The complexity class TFNP [21] consists of NP-search problems corresponding to total
relations. In the last 25 years various subclasses of TFNP have been thoroughly investigated.
The polynomial parity argument classes PPA and PPAD were defined in the seminal work
of Papadimitriou [22]. PPA consists of the search problems which are reducible to the parity
principle stating that in an undirected graph the number of odd vertices is even. The more
restricted class PPAD is based on the analogous principle for directed graphs.

The class PPAD contains a relatively large number of complete problems from various
areas of mathematics. In his paper Papadimitrou [22] has already shown that among others
the 3-dimensional Sperner and Brouwer problems, as well as the Exchange Equilibrium
problem from mathematical economics were PPAD-complete. A few years later Chen and
Deng [9] proved that 2-dimensional Sperner was also PPAD-complete, and after a sequence
of beautiful papers Chen and Deng [10] has established the PPAD-completeness of computing
2-player Nash equilibrium, see also [11]. Kintali [18] has compiled a list of 25 PPAD-complete
problems; the list is far from complete.

In comparison with PPAD, relatively few complete problems are known in the class PPA,
all of which are discretizations or combinatorial analogues of topological fixed point theorems.
While the original paper of Papadimitriou [22] exhibited a large collection of problems in
PPA, none of them was proven to be PPA-complete. Historically the first PPA-completeness
result was given by Grigni [14] who, realizing that analogues of PPAD-complete problems in
non-orientable spaces could become PPA-complete, has shown the PPA-completeness of the
Sperner problem for a non-orientable 3-dimensional space. This result was strengthened by
Friedl et al. [17] to a non-orientable and locally 2-dimensional space. Up to our knowledge,
until 2015 just these two problems were known to be PPA-complete. Last year Deng et
al. [13] established the PPA-completeness of several 2-dimensional problems on the Möbius
band, including Sperner and Tucker, and they have obtained similar results for the Klein
bottle and the projective plane. Recently Aisenberg, Bonet and Buss [1] have shown that
2-dimensional Tucker in the Euclidean space was PPA-complete.

Compared to the fundamental similarity of these complete problems in PPA, the list of
problems in the class for which no completeness result is known is very rich. Already in
Papadimitriou’s paper [22] we find problems from graph theory, such as Smith and Hamilto-
nian decomposition, from combinatorics, such as Necklace splitting and Discrete
Ham sandwich (the proof in [23] that these problems are in PPAD was incorrect [1]), and
from algebra, a variant of Chevalley’s theorem over the 2 elements field F2, which we call
Explicit Chevalley. Cameron and Edmonds [8] gave new proofs based on the parity
principle for a long series of theorems from graph theory [25, 29, 6, 5, 7], the corresponding
search problems are therefore in PPA. Recently Jeřábek [15] has put several number theoretic
problems, such as square root computation and finding quadratic nonresidues modulo n into
PPA, and he has also shown that Factoring is in PPA under randomized reduction.

1.2 Our contribution
The main result of this paper is that two appropriately defined problems related to Chevalley-
Warning Theorem [12, 28] and to Alon’s Combinatorial Nullstellensatz [2] over F2 are
complete in PPA. These are the first PPA-completeness results involving problems which are
not inspired by topological fixed point theorems.
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The Chevalley-Warning Theorem is a classical result about zeros of polynomials. It says
that if P1, . . . , Pk are n-variate polynomials over a field of characteristic p such that the
sum of their degrees is less than n, then the number of common zeros is divisible by p. The
Combinatorial Nullstellensatz (CNSS) of Alon states that if P is an n-variate polynomial
over F whose degree is d1 + · · ·+ dn, and this is certified by the monomial cxd1

1 · · ·xdn
n , for

some c 6= 0, then in S1 × · · · × Sn ⊆ Fn there exists a point where P is not zero, whenever
|Si| > di, for i = 1, . . . , n. The CNSS has found a wide range of applications among others
in graph theory, combinatorics and additive number theory [2, 3].

Over the field F2 the two theorems greatly simplify via the notion of multilinear degree.
For any polynomial P over F2, there exists a unique multilinear polynomial M such that P
and M compute the same function on Fn

2 . We call the degree of M the multilinear degree
of P , denoted as mdeg(P ). We use deg(P ) to denote the usual degree of P . Then the
Chevalley-Warning Theorem and the CNSS over F2 are equivalent to the following statement:
An n-variate F2-polynomial has an odd number of zeros if and only if its multilinear degree
is n. The natural search problem corresponding to the CNSS therefore is: given an n-variate
polynomial P whose multilinear degree is n, find a point a where P (a) = 1. Similarly, the
search problem corresponding to the Chevalley-Warning Theorem is: given an n-variate
polynomial P whose multilinear degree is less than n and a zero of P , find another zero.

Obviously, these problems are not yet well defined algorithmically, since it is not specified,
how the polynomial P is given. The starting point of our investigations is the result of
Papadimitriou about some instantiation of the Chevalley-Warning Theorem. Specifically,
in [22] Papadimitriou considered the following problem. Let the polynomials P1, . . . , Pk be
given explicitly as sums of monomials, and define P (x) = 1 +

∏k
i=1(Pi(x) + 1). We have then

deg(P ) =
∑k

i=1 deg(Pi), and clearly P (x) = 0 if and only if Pi(x) = 0, for i ∈ [n]. Suppose
that deg(P ) < n, and that we are given a ∈ Fn

2 such that P (a) = 0. Then the task is to find
a′ 6= a such that P (a′) = 0. We call this problem Explicit Chevalley, and Papadimitriou
has shown [22] that it is in PPA.

Could it be that Explicit Chevalley is PPA-complete? We find this highly unlikely.
There are two restrictions on the input of Explicit Chevalley. Firstly, the polynomial P
is given by an arithmetic circuit (in fact by an arithmetic formula) of specific form. Secondly,
and more importantly, the number of variables not only upper bounds the multilinear degree
of P , but also the degree of P . The first restriction can be easily relaxed. We can define
and compute recursively very easily the circuit degree (also known as the formal degree; see
Section 2.3) of the arithmetic circuit which is an upper bound on the degree of the polynomial
computed by the circuit. Could it be that the problem, specified by an arithmetic circuit
whose circuit degree is less than n, becomes PPA-complete? While this problem might be
indeed harder than Explicit Chevalley, we still don’t think that it is PPA-complete.

We believe that the more important restriction in Papadimitriou’s problem is the one on
the degree of the polynomial P computed by the input circuit. As we have seen, to have an
even number of zeros, mathematically it is only required that the multilinear degree of P
is less than n, so putting the restriction on the degree of P is too stringent. Let’s try then
to consider instances specified by arithmetic circuits computing polynomials of multilinear
degree less than n. However, here we face a serious difficulty. We can’t just promise that the
polynomial has multilinear degree less than n since PPA is a syntactic class. We must be
able to verify syntactically that it is indeed the case.

The multilinear degree of the polynomial is decided by the parity of the monomials
computed by the circuit which contain every variable. Let us call such monomials maximal.
Indeed, the multilinear degree of P is less than n if and only if an even number of maximal
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monomials are computed by the circuit. A very general way to prove efficiently that a set is of
even cardinality is to give a polynomial Turing machine which computes a perfect matching
on the elements of the set. However, the parsing of monomials in arbitrary arithmetic circuits
is a rather complex task [19]. For a start, the number of maximal monomials computed by a
polynomial size arithmetic circuit can be doubly exponential, making even the description of
such a monomial impossible in polynomial time. Fortunately, the situation over the field
F2 simplifies a lot, thanks to cancellations due to certain symmetries. In fact, we are able
to show that over F2 it is sufficient to consider only those monomials which are computed
by consistent left/right labellings of the sum gates participating in the computation of the
monomial, because the rest of the monomials cancel out. We call such labellings parse
subcircuits, and we call those parse subcircuits which compute maximal monomials maximal.
The introduction of parse subcircuits was inspired by the concept of parse trees in [16, 20].
Technically, this results shows that that computing the multilinear degree is in ⊕P, the
complexity class Parity P.

Is there a chance that for a general circuit computing the multilinear degree is in P?
As it turns out not, unless ⊕P = P, because we can show that computing the multilinear
degree is also ⊕P-hard. Therefore we have to identify a restricted class of circuits computing
polynomials of even multilinear degree which satisfy two properties: the class is on the one
hand restricted enough that we are able to construct a polynomial time perfect matching for
the maximal parse subcircuits, but it is also large enough that finding another zero for the
circuit is PPA-hard. The main contribution of this paper is that we identify such a class of
arithmetic circuit which we call PPA-circuits.

The definition of these circuits is inspired by a rather straightforward translation of
Papadimitriou’s basic PPA-problem into a problem for arithmetic circuits. In a nutshell,
the basic PPA-problem is the following. Given a degree-one vertex of a graph, in which
every vertex has degree at most two, find another degree-one vertex. Here, the graph, whose
vertices are the 0-1 strings of given length, is given via a polynomial time Turing machine M
determining the neighbourhood of any specified node. We construct an arithmetic circuit
over F2 which, given a vertex v in this graph, computes the opposite parity of the number
of v’s neighbours. Therefore, finding another degree-one vertex is then just the same as
finding another zero of the polynomial computed by the circuit. Most importantly, the
circuit is constructed to be in a special form, which allows for a polynomial-time-computable
perfect matching over its maximal parse subcircuits. Roughly speaking, from the Turing
machine M that describes the neighbours of vertices, we extract two arithmetic circuits
D and F that also describe the neighbours in a certain way. We then define the so-called
PPA-composition of these two circuits, which produces a circuit C that accesses D and F in
a black box fashion. Symmetries of the PPA-composition, reflecting the special structure of
degree computation, enable us to construct a polynomial-time-computable perfect matching
over its maximal parse subcircuits (cf. Lemma 8). Finally we define a PPA-circuit as the
sum of a PPA-composition and another circuit whose circuit degree is less than n. This is
just a minor extension of the family of PPA-compositions since circuits with degree less than
n don’t have maximal parse subcircuits. The reason for considering this extended family is
that this way our result immediately generalizes Papdimitrou’s result [22] about Explicit
Chevalley, and it makes also easier to express the equivalence between the algorithmic
versions of the Chevalley-Warning theorem and the CNSS.

The definition of our problems, PPA-Circuit-CNSS and PPA-Circuit-Chevalley,
is therefore the following. In both cases we are given an n-variable, PPA-circuit C over F2
and an element a ∈ Fn

2 . In the case of PPA-Circuit Chevalley, a is a zero of C, and for
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PPA-Circuit CNSS, we consider the sum of the circuits C and La, where La is a simple
Lagrange-circuit having a as its only zero and having a single maximal parse subcircuit. The
computational task is to compute another zero of C in case of PPA-Circuit Chevalley,
and a satisfying assignment for C + La in case of PPA-Circuit CNSS. Our result is then
stated in the following theorem.

I Theorem 1. The problems PPA-Circuit CNSS and PPA-Circuit Chevalley are
PPA-complete.

Since the two problems are easily interreducible, for the proof of Theorem 1 we will
show that PPA-Circuit CNSS is PPA-easy and PPA-Circuit Chevalley is PPA-hard.
For the easiness part we define a graph, inspired by Papadimitriou’s construction, whose
vertices are the assignments for the variables and the parse subcircuits. There is an edge
between a parse subcircuit and an assignment if the monomial defined by the subcircuit
takes the value 1 on the assignment. In addition, we also put an edge between two maximal
parse subcircuits of the PPA-composition part of the circuit if they are paired by the perfect
matching. As it turns out, the odd degree vertices in this graph are exactly the assignments
where the polynomial defined by the circuit is 1, and the unique maximal parse subcircuit of
the Lagrange-circuit. Technically, the main part of the proof is to give, for every assignment,
a polynomial time computable pairing between its exponentially many neighboring parse
subcircuits. For the hardness part (which is much simpler to prove) we express the basic
PPA-complete problem as a PPA-composition, as we explained above.

1.3 Previous work

Papadimitriou has proven that Explicit Chevalley is in PPA. Varga [27] has shown
the same for the special case of CNSS where the input polynomial P is specified as the
sum of a polynomial number of polynomials Pi, where each Pi is the product of explicitly
given polynomials whose sum of degrees is at most n. In addition, the input also contains
a polynomial time computable matching for all but one of the monomials x1 · · ·xn of P .
However, the paper doesn’t address the question why this doesn’t make the problem a
promise problem. Concerning the hardness of CNSS, Alon proved in [3] the following result.
Let P be specified by an arithmetic circuit in a way that it can be checked efficiently that its
multilinear degree is n. If a polynomial time algorithm can find a point a where P (a) = 1,
then there are no one-way permutations.

1.4 Structure of the paper

In Section 2 we recall the definition of the class PPA, the Combinatorial Nullstellensatz and
the Chevalley-Warning Theorem, and arithmetic circuits. In Section 3 we define the parse
subcircuits of an arithmetic circuit over F2, and in Proposition 6 we prove that the polynomial
computed by the circuit is the sum of the monomials computed by the parse subcircuits. In
Section 4 we define PPA-circuits, and in Lemma 8 we prove that in such circuits a perfect
matching for the maximal parse subcircuits can be computed in polynomial time. In Section 5
we state the problems PPA-Circuit CNSS and PPA-Circuit Chevalley over F2 and
observe that they are polynomially interreducible. In Section 6 in Theorem 11 we prove that
PPA-Circuit CNSS is in PPA, and in Section 7 in Theorem 13 we prove that PPA-Circuit
Chevalley is PPA-hard.
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2 Preliminaries

2.1 Total functional NP and the class PPA

We denote the set {1, . . . , n} by [n]. A polynomially computable binary relation R ⊆
{0, 1}∗ × {0, 1}∗ is called balanced if for some polynomial p(n), for every x and y such that
R(x, y) holds, we have |y| ≤ p(|x|). Such a relation defines an NP-search problem ΠR whose
input is x, and the task is to find for inputs x, where R(x, y) holds for some y, such a solution
y, and report “failure” otherwise. The class FNP of functional NP consists of NP-search
problems. For two problems ΠR and ΠS in FNP, we say that ΠR is reducible to ΠS if there
exist two functions f and g computable in polynomial time such that for every positive x,
S(f(x), y) implies R(x, g(x, y)).

An NP-search problem is total if for every x, there exists a solution y. The class of these
problems is called TFNP (for Total Functional NP) by Megiddo and Papadimitriou [21].
Problems in TFNP exhibit very interesting complexity properties. An FNP-complete search
problem can not be total unless NP = coNP. It is also unlikely that every problem in TFNP
could be solved in polynomial time since this would imply P = NP ∩ coNP. TFNP is a
semantic complexity class, in the sense that it involves a promise about the totality of the
relation R. It is widely believed that such a promise can not be enforced syntactically on a
Turing machine, in fact there is no known recursive enumeration of Turing machines that
compute total search problems. As usual with semantic complexity classes, TFNP doesn’t
seem to have complete problems. On the other hand, several syntactically defined subclasses
of TFNP with a rich structure of complete problems have been identified along the lines of
the mathematical proofs establishing the totality of the defining relation.

The parity argument subclasses of TFNP were defined by Papadimitriou [22, 23]. They
can be specified via concrete problems, by closure under reduction. The Leaf problem is
defined as follows. The input is a triple (z,M, ω) where z is a binary string and M is the
description of a polynomial time Turing machine1 that defines a graph Gz = (Vz, Ez) as
follows. The set of vertices is Vz = {0, 1}p(|z|) for some polynomial p. For any vertex v ∈ Vz,
the machine M outputs on (z, v) a set of at most two vertices. Then, we define Gz as a graph
without self-loops, where {v, v′} ∈ Ez for v 6= v′, if v′ ∈M(z, v) and v ∈M(z, v′). Obviously
Gz is an undirected graph where the degree of each vertex is at most 2, and therefore the
number of leaves, that is of degree one vertices, is even. Finally ω ∈ Vz is a degree one vertex
that we call the standard leaf. The output of the problem Leaf is a leaf of Gz different from
the standard leaf. The Polynomial Parity Argument class PPA is the set of total search
problems reducible to Leaf. The directed class PPAD is defined by D-Leaf, the directed
analog of Leaf. In the problem D-Leaf the Turing machine defines a directed graph, where
the indegree and outdegree of every vertex is at most one. The standard leaf ω is a source,
and the output is a sink or source different from the ω.

As shown in [23], the definition of PPA can capture also those problems for which the
underlying graph has unbounded degrees and we are seeking for another odd-degree vertex.
Specifically, suppose there exists a polynomial time edge recognition algorithm ε(v, v′), which
decides whether {v, v′} ∈ Ez. Assume also, that in addition we have a polynomial time
pairing function φ(v, w), where by definition, for every vertex v, the function φ(v, ·) satisfies
the following properties. For every even degree vertex v, it is a pairing between the vertices
adjacent to v, that is for every such vertex w, we have φ(v, w) = w′, where w′ 6= w, w′ is also

1 The requirement for M to run in polynomial can be imposed by adding a clock.
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adjacent to v, and φ(v, w′) = w. For odd degree vertices v, we have exactly one adjacent
vertex w such that w is mapped to itself, and on the remaining adjacent vertices it is pairing
as in the case of an even degree vertex v. The input also contains an odd degree vertex v
with a proof for that, in the form of an adjacent vertex w, such that φ(v, w) = w. In [23,
Corollary to Theorem 1], Papadimitriou showed that any problem defined in terms of an
edge recognition algorithm and a pairing function is in PPA.

2.2 Combinatorial Nullstellensatz and Chevalley-Warning Theorem
Let F be a field. An polynomial over F (or shortly a polynomial) in n variables is a formal
expression P (x) = P (x1, . . . , xn) of the form

P (x1, . . . , xn) =
∑

d1,...,dn≥0
cd1,...,dn

xd1
1 · · ·xdn

n ,

where the coefficients cd1,...,dn
are from F, and only a finite number of them are different from

zero. The degree deg(P ) of P is the largest value of d1 + · · ·+ dn for which the coefficient
cd1,...,dn

is non-zero, where by convention the degree of the zero polynomial is −∞. The ring
of polynomials over F in n variables is denoted by F[x1, . . . , xn].

Every polynomial P ∈ F[x1, . . . , xn] defines naturally a function from Fn to F. While over
infinite fields this application is one-to-one, this is not true over finite fields where different
polynomials might define the same function. For example, over the field Fq of size q, the
polynomial xq − x is not the zero polynomial (it has degree q), but it computes the zero
function.

Numerous results are known about the properties of zero sets of polynomials. The
Combinatorial Nullstellensatz of Alon [2] is a higher dimensional extension of the well known
fact that a non-zero polynomial of degree d has at most d zeros. It was widely used to prove a
variety of results, among others, in combinatorics, graph theory and additive number theory.

I Theorem 2 (Combinatorial Nullstellensatz). Let F be a field, let d1, . . . , dn be non-negative
integers, and let P ∈ F[x1, . . . , xn] be a polynomial. Suppose that deg(P ) =

∑n
i=1 di, and that

the coefficient of xd1
1 · · ·xdn

n is non-zero. Then for all subsets S1, . . . , Sn of F with |Si| > di,
for i = 1, . . . , n, there exists (s1, . . . sn) ∈ S1 × · · · × Sn such that P (s1, . . . , sn) 6= 0.

The classical result of Chevalley [12] and Warning [28] asserts that if the sum of degrees
of some polynomials is less than the number of variables, than the number of their common
zeros is divisible by the characteristic of the field.

I Theorem 3 (Chevalley-Warning Theorem). Let F be a field of characteristic p, and let
P1, . . . , Pk ∈ F[x1, . . . , xn] be non-zero polynomials. If

∑k
i=1 deg(Pi) < n, then the number

of common zeros of P1, . . . , Pk is divisible by p. In particular, if the polynomials have a
common zero, they also have another one.

Both of these results clearly suggest a computational problem in TFNP: Given a (set of)
polynomial(s) satisfying the respective condition of these theorems, find an element in Fn

satisfying the respective conclusion. We study here these problems over the two-element field
F2 where both theorems have a particularly simple form, in fact they become almost the
same statement. To see that, let us recall that a multilinear polynomial is a polynomial of the
form M(x1, . . . , xn) =

∑
T⊆{1,...,n} cTxT , where xT stands for the monomial

∏
i∈T xi, and

the coefficients cT are elements of F2. We say that a monomial xT is in M if cT = 1. The
degree of a multilinear polynomial M is the cardinality of the largest set T such that xT is
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30:8 On the Polynomial Parity Argument Complexity of the Combinatorial Nullstellensatz

in M . It is well known that for every polynomial P over F2, there exists a unique multilinear
polynomial MP (x1, . . . , xn) such that P and MP compute the same function. We define the
multilinear degree of a polynomial P over F2 by mdeg(P ) = deg(MP ). We call a monomial
maximal if its multilinear degree is n. Clearly mdeg(P ) ≤ deg(P ), and mdeg(P ) = n if and
only if the number of maximal monomials of P is odd. Using the notion of multilinear degree,
we can now state the rather simple equivalent formulations of the above theorems over F2.

I Theorem 4 (Combinatorial Nullstellensatz over F2). Let P ∈ F2[x1, . . . , xn] be a polynomial
such that mdeg(P ) = n. Then there exists a ∈ Fn

2 such that P (a) = 1.

I Theorem 5 (Chevalley-Warning Theorem over F2). Let P ∈ F2[x1, . . . , xn] be a polynomial
such that mdeg(P ) < n, and let a ∈ Fn

2 such that P (a) = 0. Then there exists b 6= a such
that P (b) = 0.

2.3 Arithmetic circuits
An n-variable, m-output arithmetic circuit C over a field F is a vertex-labeled, acyclic
directed graph whose vertices are called gates. It has n variable gates of in-degree 0, labeled
by the variables x1, . . . , xn. There is at most one constant gate of in-degree 0, labeled by
the constant, for each non-zero field element. The variable and constant gates are called
input gates. The other gates are of in-degree 2, and are called computational gates. They
are labeled by + or ×, the former are the sum gates, and the latter the product gates. The
number of computational gates of out-degree 0 is m, and they are called the output gates.

×

+ +

+x1

x2 x3

x4

Figure 1 A 4-variable, single-output arithmetic circuit.

For a computational gate g, we distinguish its two children, by specifying the left and the
right child. The left child is denoted by g` and the right child by gr. We denote the set of
sum gates by G+, and the set of product gates by G×. The size of C is the number of its
gates, and the depth of C is the length of the longest path from an input gate to an output
gate.

The definition of an arithmetic circuit can be extended naturally to include computational
gates of in-degree different from 2. Unary computational gates by definition act as the
identity operator. The children of computational gates of in-degree k > 2 are distinguished
by some some distinct labeling over some set of size k. It is easy to see that such an extended
circuit can be simulated by a circuit with binary computational gates, which computes the
same polynomial, and has only a polynomial blow-up in size. Our default circuits will be
with binary computational gates, and we will mention explicitly when this is not the case.

A subcircuit of a circuit C is a subgraph of C which is also a circuit. The subcircuit rooted
at gate g is the subgraph induced by all vertices contained on some path from the input gates
to g, it will be denoted by Cg. The left subcircuit of C, denoted by C`, is the subcircuit
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rooted at the left child of the root of C, and the right subcircuit Cr is defined similarly.
The composition of arithmetic circuits is defined in a natural way. If C1 is an n-variable,
m-output circuit and C2 is a k-variable, n-output circuit then C1 ◦ C2 is the k-variable,
m-output circuit composed of C1 and C2 where the output gates of C1 are identified with the
variable gates of C2, and the identical constant gates of the two circuits are also identified.
Let C1 and C2 be n-variable, single-output arithmetic circuit. The disjoint sum C1 ⊕ C2 of
C1 and C2 is the n-variable, single-output arithmetic circuit whose output gate is a sum
gate, its left and right subcircuits are disjoint copies of C1 and C2 except for the input gates
that C1 and C2 share. The disjoint sum naturally generalizes to more than two circuits.

Every gate g in an arithmetic circuit computes an n-variable polynomial Pg(x) in the
natural way, which can be defined by recursion on the depth of the gate. An input gate
g labeled by α ∈ {x1, . . . , xn} ∪ F computes Pg = α. If g ∈ G+ then Pg = Pg`

+ Pgr , if
g ∈ G× then Pg = Pg`

Pgr
. The polynomial computed by a single-output arithmetic circuit

C is the polynomial computed by its output gate, which we will denote by C(x). We define
similarly by recursion the circuit degree cdeg(C) of C. If an input gate g is labeled by
α ∈ F then cdeg(Cg) = 0, and if it is labeled by α ∈ {x1, . . . , xn} then cdeg(Cg) = 1. For
computational gates, if g ∈ G+ then cdeg(Cg) = max{cdeg(Cg`

), cdeg(Cgr )}, and if g ∈ G×
then cdeg(Cg) = cdeg(Cg`

) + cdeg(Cgr
). The circuit degree can be computed in polynomial

time, and we clearly have deg(C(x)) ≤ cdeg(C).
Over the base field F2, we call an element a ∈ Fn

2 , such that C(a) = 1, a satisfying
assignment for C, and an element a, such that C(a) = 0, a zero of C. For every a ∈ Fn

2 , we
define the Lagrange-circuit La as C1 × · · · × Cn, where Ci = xi if ai = 1, and Ci = xi + 1 if
ai = 0. Clearly mdeg(La(x)) = n, and the only satisfying assignment for La is a.

×

+ +x1

x2 1 x3

Figure 2 Lagrange-circuit L100.

3 Parse subcircuits

We would like to understand how monomials are computed by a single-output arithmetic
circuit C. If g is a sum gate, then the set of monomials computed by Cg is a subset of the
union of the set of monomials computed by Cg`

and by Cgr
. If g is a multiplication gate,

then every monomial computed by Cg is the product of a monomial computed by Cg`
and

a monomial computed by Cgr
. A marking of the gates in G+ from the set {`, r} therefore

computes naturally a monomial of C(x). At first sight it seems that by considering markings
restricted to the sum gates effectively participating in the computing of the monomial, we
could compute all of them. This is in fact the case when the fanout of every sum gate is one,
but this is not true in general circuits since the sum gates can be used several times in the
computation of a monomial with possibly inconsistent markings. However, as we show it
below, this is essentially true over fields of characteristic 2, where it is sufficient to consider
only consistent markings. By doing that, we have to be careful about two things: when
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computing a monomial by some marking, we shouldn’t mark those sum gates which don’t
participate in its computation. Indeed, by considering the two possible markings also for
irrelevant gates, we would assure that the monomial is necessarily computed an even number
of times, making the whole process false. On the other hand, we should mark all the sum
gates necessary for the computation of the monomial. We make all this precise by the notion
of closed marking and parse subcircuit.

Let C be a single-output arithmetic circuit. A marking of C is a partial function
S : G+ → {`, r}, from the sum gates of C to the marks {`, r}. We can equivalently specify
a marking by a total function S∗ : G+ → {`, r, ∗} where S∗(g) = ∗ if and only if S(g) is
undefined. We denote by Dom(S) the domain of S. For the output gate of C, let S` be the
restriction of S to the sum gates in C` and let Sr be the restriction of S to the sum gates in
Cr. We define GS = (VS , ES), the accessibility graph of S by induction on the depth of C.
If C is a single vertex then VS consists of this vertex, and ES = ∅. Otherwise, if the output
gate is a product gate, then VS consists of the output gate of C added to VS`

∪ VSr
, and

ES consists of the two edges from the two children of the output gate to the output gate,
added to ES`

∪ ESr
. If the output gate of C is a sum gate with mark ` then VS consist of

the output gate of C added to VS`
, and ES consists of the edge from the left child of the

output gate to the output gate, added to ES`
. The definition in the case when the mark

of the output gate is r is analogous. If the output gate of C doesn’t have a mark then the
accessibility graph is just this single node.

×

+
r

+
`

+
r

x1

x2 x3

x4

(a) parse subcircuit computing x2
3

×

+
`

+
r

+
∗

x1

x2 x3

x4

(b) parse subcircuit computing x1x4

Figure 3 Two parse subcircuits for Figure 1, note that the second one doesn’t access all sum
gates.

We say that a marking S is closed if Dom(S) = VS ∩G+, that is if the accessible sum
gates of C are exactly those where S is defined. If S is closed then the accessibility graph
GS , with the vertex labels inherited from C, is in fact a subcircuit of C. The inclusion
Dom(S) ⊆ VS ∩ G+ ensures that the only node of out-degree 0 in GS is the output gate
of C, and the inclusion VS ∩G+ ⊆ Dom(S) ensures that the leaves of GS are leaves in C.
We call this subcircuit the parse subcircuit induced by S, and denote it by CS . The set of
parse subcircuits of C will be denoted by S(C). Observe that a parse subcircuit has binary
product gates but unary sum gates which act as the identity operator. The polynomial CS(x)
computed by the parse subcircuit CS is therefore a monomial, which we denote by mS(x).
We say that a parse subcircuit CS is maximal if the multilinear degree of mS(x) is n, that is
mS(x) = x1 · · ·xn. We say that two parse subcircuits CS and CS′ are consistent if for every
g ∈ Dom(S) ∩Dom(S′), we have S(g) = S′(g).

Clearly, the mapping from closed markings to induced parse subcircuits is a bijection.
Therefore, to ease notation, we will often call the closed marking S itself the parse subcircuit,
and we will speak about the gates, subcircuits and other circuit related notions of S, instead
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of CS . The notation used for the monomial computed by a parse subcircuit is already
consistent with this convention.

I Proposition 6. Let C be a single-output arithmetic circuit over a field F of characteristic
2. Then

C(x) =
∑

S∈S(C)

mS(x).

Proof. We prove by induction on the depth of the circuit. If C consists of a single gate, the
statement is obvious.

Otherwise, the parse subcircuits of S(C`) (respectively S(Cr)) are exactly the parse
subcircuits of S(C) restricted to the sum gates of C` (respectively Cr). When the output gate
of C is a sum gate then conversely, S(C) can be obtained from S(C`) ∪ S(Cr) by extending
the markings in the latter set with the appropriate mark for the root of C. Therefore, using
the definitions of C(x) and mS(x), we get

C(x) = C`(x) + Cr(x)

=
∑

S∈S(C`)

mS(x) +
∑

S∈S(Cr)

mS(x)

=
∑

S∈S(C), S(root)=`

mS`
(x) +

∑
S∈S(C), S(root)=r

mSr (x)

=
∑

S∈S(C)

mS(x),

where the second equality comes from the inductive hypothesis.

×

+U + W

+

g

x1

x2 x3

x4

(a) inconsistent U,W

×

+U ′ + W ′

+

g

x1

x2 x3

x4

(b) inconsistent U ′,W ′

Figure 4 The involutive pair (U,W ) ↔ (U ′,W ′) in the proof of Proposition 6 with mUmW =
x2x3 = mU′mW ′ contributes zero to C(x).

When the output gate of C is a product gate, the situation is more complicated. The parse
subcircuits S` and Sr are always consistent for S ∈ S(C), but an arbitrary parse subcircuit
U ∈ S(C`) is not necessarily consistent with an arbitrary parse subcircuit W ∈ S(Cr).
Therefore the crux of the induction step is to show that the contribution of mU (x)mW (x) to
C(x) is zero when we sum over all inconsistent U and W . Indeed, we claim that∑

(U,W )∈S(C`)×S(Cr), U,W inconsistent

mU (x)mW (x) = 0.

To prove this, we define an involution (U,W ) ↔ (U ′,W ′) over inconsistent pairs in
S(C`) × S(Cr) such that mU (x)mW (x) + mU ′(x)mW ′(x) = 0. For this let us fix some
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topological ordering of the gates in C with respect to the edges of the circuit, and let g be
the first sum gate in this ordering where U and W have different marks, say U(g) = ` and
W (g) = r. Let the restriction of U to the sum gates of Cg be T0 and let the restriction ofW to
the sum gates of Cg be T1. Both T0 and T1 are parse subcircuits in Cg, which are inconsistent
only at g. Also, for some monomials m0(x) and m1(x), we have mU (x) = m0(x)mT0(x) and
mW (x) = m1(x)mT1(x). The parse subcircuit U ′ is obtained from U by exchanging inside
Cg the parse subcircuit T0 for the parse subcircuit T1, that is U ′ = (U \ T0) ∪ T1. The parse
subcircuit W ′ is similarly defined from W with the roles of T0 and T1 reversed. It follows
from the choice of g that U ′ and W ′ are parse subcircuits respectively in S(C`) and S(Cr)
such that the first inconsistency between them in the topological order is at g. Therefore
starting the same process with (U ′,W ′) we obtain (U,W ), and thus the mapping is indeed
an involution. Since mU ′(x) = m0(x)mT1(x) and mW ′(x) = m1(x)mT0(x), we can conclude
that mU (x)mW (x) +mU ′(x)mW ′(x) = 0.

We can now complete the induction step for product gates by observing the equalities

C(x) = C`(x)× Cr(x)

=

 ∑
U∈S(C`)

mU (x)

×
 ∑

W∈S(Cr)

mW (x)


=

∑
(U,W )∈S(C`)×S(Cr), U,W consistent

mU (x)mW (x)

=
∑

S∈S(C)

mS`
(x)mSr

(x)

=
∑

S∈S(C)

mS(x). J

Though it is not directly related to the main result of the paper, we prove here, essentially
as a corollary of the previous proposition, that deciding if the polynomial computed by a
circuit over the two elements field has maximal multilinear degree is ⊕P-complete. Note that
by the Chevalley-Warning theorem, the multilinear degree of a circuit is maximal if and only
if it has odd number of satisfying assignments, and via this correspondence Proposition 7
can also be proved by using the number of 1’s to build a balanced relation. The point of our
proof of Proposition 7 is to show this without referring to the Chevalley-Warning theorem,
and therefore illustrate the use of maximal parse subcircuits.

I Proposition 7. Let C be an n-variable, single-output arithmetic circuit over the field F2.
The problem of deciding if mdeg(C(x)) = n is ⊕P-complete.

Proof. For the easiness part, we can define a balanced relation R(C, S) where S ∈ S(C),
which equals 1 if and only if S is a maximal parse subcircuit. By Proposition 6, we know
that the polynomial computed by the circuit C is the sum of all the monomials computed by
the parse subcircuits. Among all the parse subcircuits, only the monomials computed by
maximal parse subcircuits have degree n. Thus mdeg(C(x)) = n if and only if there is an
odd number of maximal parse subcircuits.
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×

+
α1

+
α2

+
α3

×
x1

×
x1

×
x2

×
x2

×
x3

×
x3

F1 F2 F3

Figure 5 Image of (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x1) by the reduction.

For the hardness part, we will reduce the well known ⊕P-complete problem ⊕3-SAT [26]
to the maximality of mdeg(C(x)). Let φ = {F1, F2, . . . , Fm} be an instance of 3-SAT, where
the clause Fi is the conjunction of three literals belonging to {x1, x1, . . . , xn, xn}. The
reduction maps φ to an m-variable, single-output and depth-3 arithmetic circuit C defined
as follows. The output gate at level 0 is a product gate. It has n children α1, . . . , αn, all plus
gates, which compose the first level of the circuit. At level 2, for all 1 ≤ j ≤ n, the gate αj

has two children xj and xj , which are product gates. The gate xj is the left child of αj , and
xj is its right child. Finally at level 3 are the m variable gates F1, . . . , Fm, such that Fi is a
child of y ∈ {x1, x1, . . . , xn, xn} if y ∈ Fi in φ. The following is an illustration of the circuit
which is the image of the formula (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x1) by the reduction.

We give a one-to-one mapping S from the assignments of φ to the parse subcircuits of
S(C). Since all plus gates of C are reachable from the output gate, a parse subcircuit of C
is an {`, r}-marking of the gates α1, . . . , αn. The parse subcircuits are therefore naturally
identified with the elements of {`, r}n. For an assignment x ∈ {0, 1}n, the map S is defined
as

S(x)i =
{
` if xi = 1
r if xi = 0.

To finish the proof we show that x is a satisfying assignment if and only if S(x) is a
maximal parse subcircuit. To see that, observe that x is a satisfying assignment if and only if
each Fi in φ contains a true literal. By the definition of S, the clause Fi contains a true literal
exactly when the variable Fi of C is in the parse subcircuit CS(x). Since CS(x) is maximal if
and only if Fi is in the parse subcircuit CS(x) for all i, this concludes the proof. J

4 PPA-circuits

Given an arbitrary circuit C and a satisfying assignment, asking for another satisfying
assignment would be an NP-hard problem. We want to restrict the form of the circuit C in
a way which takes into consideration the structure of problems in PPA.
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×

+ · · · +

x1 · · · xn y1 · · · yn 1

(a) The arithmetic circuit I.

C

x1 · · · xn

1

+ · · · +

×

· · ·

· · ·

(b) The compound arithmetic circuit I � C.

Figure 6 The arithmetic circuits I and I � C.

For this, we use repeatedly a 2n-variable, single-output arithmetic circuit I. The circuit
I is of depth 2, its output gate is a product gate with n children, all sum gates. Every sum
gate has 3 children, the left child of the ith gate is the variable gate xi, its center child is the
variable gate yi, and its right child is the constant gate 1. For an n-variable, n-output circuit
C, we define I � C, the diamond composition of I with C, as the n-variable, single-output
circuit composed from a circuit I at the top and C below. More precisely, the variable
gates of I � C labeled by x1, . . . , xn are also the first n variables of I, and the variable gates
y1, . . . , yn of I are identified with the output gates of C. If C has also a constant gate 1, it
is identified with the constant gate 1 of I.

The polynomial computed by the circuit I is I(x1, . . . , xn, y1, . . . , yn) =
∏n

i=1(xi +yi + 1).
It is easy to check that I(x, y) is 1 if and only if the two n-bit strings x1, . . . , xn and y1, . . . , yn

are equal. Therefore I � C(x) = 1 if and only if C(x) = x.

Given two n-variable, n-output arithmetic circuits D and F , we consider the set of six
n-variable, single-output circuits

CD,F = {I1 �D1 ◦ F1, I2 � F2 ◦D2, I3 �D3 ◦D4, I4 �D5, I5 � F3 ◦ F4, I6 � F5},

where I1, . . . , I6 are copies of I; D1, . . . , D5 are copies of D; F1, . . . , F5 are copies of F ,
and the six circuits share the same input gates. The PPA-composition of D and F is the
n-variable, single-output circuit CD,F is the disjoint sum of the six circuits in CD,F . We call
the circuits in CD,F the components of CD,F . The polynomial computed by CD,F is

CD,F (x) = I(x,D(F (x))) + I(x, F (D(x))) + I(x,D(D(x)))
+ I(x,D(x))) + I(x, F (F (x))) + I(x, F (x))).
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+

x1 · · · xn

I1 �D1 ◦ F1
· · ·

I2 � F2 ◦D2
· · ·

I3 �D3 ◦D4
· · ·

I4 �D5
· · ·

I5 � F3 ◦ F4
· · ·

I6 � F5
· · ·

Figure 7 The circuit CD,F , the PPA-composition of the circuits D and F .

The main structural property of a PPA-composition C is that it computes a polynomial
whose multilinear degree is less than n. Moreover, a witness for that can be computed in
polynomial time. By Proposition 6, the multilinear degree of C(x) is determined by the
parity of its maximal parse subcircuits, mdeg(C(x)) = n if and only if the parity of the
maximal parse subcircuits is odd. Thus, the multilinear degree of C(x) can be certified by a
special type of syntactically defined matching over its maximal parse subcircuits. Formally, a
matching for maximal parse subcircuits in C is a polynomial time Turing machine µ which
defines a matching over the maximal parse subcircuits of C as follows: S and S′ are matched
if µ(C, S) = S′ and µ(C, S′) = S. If µ defines a perfect matching between the maximal parse
subcircuits, then mdeg(C(x)) < n. If µ defines a perfect matching outside some maximal
parse subcircuit T , meaning that T is the only maximal parse subcircuit without a matching
pair in µ, then mdeg(C(x)) = n.

All the above statements hold also for circuits which are the direct sum of a PPA-
composition and another circuit which certifiably has no maximal parse subcircuit. This is
obviously the case of circuits which compute polynomials of degree less than n. Our final set
of authorized circuits are of this form. We say that a circuit C is a PPA-circuit if for some
D and F , we have C = CD,F ⊕ C ′, where mdeg(C ′) < n.

I Lemma 8. If C is a PPA-circuit then mdeg(C(x)) < n, and a perfect matching µ between
the maximal parse subcircuits of C can be computed in polynomial time.

Proof. Let C = CD,F ⊕ C ′ where mdeg(C ′) < n. We can suppose without less of generality
that C ′ is the empty circuit, that is C = CD,F . Since the six components of C are pairwise
disjoint (except for the input gates), every maximal parse subcircuit in C consists of the
mark of the root of C from the set {1, . . . , 6}, and a maximal parse subcircuit in the
corresponding component. For the definition of µ we decompose C into the disjoint sum of
three circuits C1, C2 and C3 where each of them is the disjoint sum of two PPA-components,
and will define the matching inside each of these circuits. The three circuits are as follows:
C1 = I1 �D1 ◦F1⊕ I2 �F2 ◦D2, C2 = I3 �D3 ◦D4⊕ I4 �D5, and C3 = I5 �F3 ◦F4⊕ I6 �F5.
Clearly C2 and C3 are similar, therefore it is sufficient to define µ for C1 and C2.
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+

+C1 +C2 +C3

x1 · · · xn

I1 �D1 ◦ F1
· · ·

I2 � F2 ◦D2
· · ·

I3 �D3 ◦D4
· · ·

I4 �D5
· · ·

I5 � F3 ◦ F4
· · ·

I5 � F5
· · ·

Figure 8 The decomposition C = C1 ⊕ C2 ⊕ C3.

To ease the notation, we rename the subcircuits of C1 as I �D ◦ F and I ′ � F ′ ◦D′, and
we suppose that I �D ◦ F is the left subcircuit of C1 and I ′ � F ′ ◦D′ is its right subcircuit.
Let us denote the output (sum) gate of C1 by h, the sum gates of I by h1, . . . , hn, the output
gates of D by d1, . . . dn, and the output gates of F by f1, . . . , fn. For every gate g in I,D
and F , we denote the corresponding gate in I ′, D′ and F ′ by g′, and we also set h′ = h. Let
us recall the hi has three children, the left child is the input gate xi, the center child is di,
the ith output gate of D, and its right child is the constant gate 1. A parse subcircuit can
map hi into one of the three marks `, c and r, corresponding respectively to its left, center,
and right child.

We define µ(S) for the maximal parse subcircuits of I �D ◦ F , that is when S(h) = `.
The definition for the case S(h) = r is symmetric. Let us first define three sets of indices
Sout, Smiddle, Sin ⊆ [n]. Let Sout = {i ∈ [n] : S(hi) = c}, that is Sout contains those indices i
for which the edge from the di to hi belongs to S. By definition i ∈ Smiddle if there exists an
edge in S from fi to a gate in D. Finally, i ∈ Sin if there exists an edge in S from xi to a
gate in F . We claim that Sout ⊆ Sin. This is indeed true, since if there exists i ∈ Sout \ Sin
then the monomial mS(x) wouldn’t contain the variable xi, contradicting its maximality.
We are now ready to define S′ = µ(S) by distinguishing two cases, depending on if Sout is a
proper subset of Sin or not.

x1 x2 x3

1

+h1 +h2 +h3

×

D

F
f1 f2 f3

d1 d2 d3

Sin = {1, 2, 3}

Smiddle = {1, 3}

Sout = {1, 2}

Figure 9 The left subcircuit I �D ◦ F of C1 and the index sets Sin, Smiddle and Sout.
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Case 1: Sout ⊂ Sin. Let i be the smallest index in Sin \ Sout. By definition, we let S′ be
the same as S, except on hi, where S′ takes the mark r when S(hi) = `, and it takes the
mark ` when S(hi) = r. This means that the only difference between S and S′ is that at the
ith sum gate of I, one subcircuit contains the edge from xi to hi, whereas the other contains
the edge from 1 to hi. S′ is therefore a parse subcircuit. To show that S′ is also maximal,
the interesting case is when S(hi) = ` and S′(hi) = r, that is mS′(x) doesn’t directly pick up
xi at hi. But since i ∈ Sin, the variable xi is still in S′, which is therefore maximal. Finally
clearly µ(S′) = S.

×

+`

xi di 1

(a) maximal parse subcircuit S

×

+r

xi di 1

(b) maximal parse subcircuit S′

Figure 10 Case 1 of the matching µ for C1 where i is the smallest index in Sin \ Sout.

+

D

F

x3

x1 x2

(a) maximal parse subcircuit S

+

F ′

D′

x2 x3

x1

(b) maximal parse subcircuit S′

Figure 11 Case 2 of the matching µ for C1: Sout = Sin.

Case 2: Sout = Sin. In that case first observe that for every index i 6∈ Sout, we have
S(hi) = `, that is S contains the edge (xi, hi), since otherwise mS(x) wouldn’t contain xi.
By definition, let Dom(S′) = {g′ ∈ G+ : g ∈ Dom(S)}. For the output gate h′ = h of C1
we set S′(h′) = r, that is S′ will be a parse subcircuit of I ′ �D′ ◦ F ′. For the sum gates
h′1, . . . , h

′
n of I, we set S′(h′i) = c if i ∈ Smiddle, and we set S′(h′i) = ` otherwise. Finally, for

every sum gate g ∈ Dom(S) in D or in F , we set S′(g′) = S(g).
Let us recall that VS is the set of vertices of the accessibility graph GS of S. The proof

that S′ is a maximal parse subcircuit immediately follows from the following proposition.

I Proposition 9. For every computational gate g in I �D ◦ F , we have

g ∈ VS if and only if g′ ∈ VS′ .

Proof. We show the implication from left to right. This is certainly true for the computational
gates of I since they are all accessible in GS , as well as the computational gates of I ′ in GS′ .

If g ∈ VS is a computational gate of D then there is a path p in GS from g to h which
can be decomposed into p = p1p2, where p1 goes from g to di for some i ∈ Sout, and p2 is the
path from di to h. In GS′ we have therefore a path p′1 from g′ to d′i. Since Sout = Sin, in GS
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we have a path p3 from xi to fj for some j ∈ Smiddle. Therefore in GS′ there exists a path
p′2 from d′i to f ′j . Finally, in GS′ there is also a path p′3 from f ′j to h′ because j ∈ Smiddle.
Then p′ = p′1p

′
2p
′
3 is a path from g′ to h′.

If g ∈ VS is a computational gate of F then there is a path p in GS from g to h which
can be decomposed into p = p1p2p3, where p1 goes from g to di for some i ∈ Smiddle, p2 goes
from di to fj for some j ∈ Sout, and p3 is the path from fj to h. Then in GS′ there exists a
path p′1 from g′ to d′i, and a path p′2 which goes from d′i to h′ since i ∈ Smiddle. Then the
path p′ = p′1p

′
2 goes from g′ to h′.

The implication from right to left follows from the symmetry between S and S′. For this,
it is useful to observe that S′out = S′in = Smiddle, and S′middle = Sout = Sin. J

We have Dom(S) = VS∩G+ since S is a parse subcircuit. Proposition 9 and the definition
Dom(S′) = {g′ ∈ G+ : g ∈ Dom(S)} imply that Dom(S′) = VS′ ∩ G+, and therefore S′ is
a parse subcircuit. To prove the maximality of S′ let us show that every input gate is in
VS′ . If i ∈ Smiddle then the path p defined above for the computational gates in D yields a
path p′ from xi to h′. If i 6∈ Smiddle then the direct path p′ from xi to h′ via h′i exists in GS′ .
Finally µ is clearly involutive in that case too.

We now turn to the description of µ for C2, where we rename its two subcircuits as
I �D ◦D′ and I∗ �D∗. The matching for C2 has strong analogies with the matching for C1,
to better see this we also use the names I ′, F and F ′ respectively for the circuits I,D′ and D.
This means that I �D ◦ F and I ′ � F ′ ◦D′ are just different names for the circuit I �D ◦D′.
We suppose that I �D ◦D′ is the left subcircuit of C2 and I∗ �D∗ is its right subcircuit.
Similarly to the circuit C1, we denote the output gate of C2 by h, the sum gates of I by
h1, . . . , hn, the ouput gates of D by d1, . . . dn, and the output gates of D′ by d′1, . . . , d′n. For
every gate g in I,D and D′, we denote the corresponding gate respectively in I ′, D′ and D
by g′. For every gate g in I and D, we denote the corresponding gate in I∗ and D∗ by g∗.
We also set h∗ = h′ = h. Again, hi has three children, the left child is the input gate xi, the
center child is di, the right child is the constant gate 1, and the respective marks are `, c and
r.

We first describe S′ = µ(S) when S is a maximal parse subcircuit of I �D ◦D′. We define
Sout, Smiddle, Sin the same way as for the circuit I �D ◦ F , keeping in mind that F = D′. As
before, we have Sout ⊆ Sin. For the definition of µ we now distinguish three cases.

Case 1: Sout ⊂ Sin. The definition of S′ is identical to the first case of the definition of
the matching for C1.

Case 2: Sout = Sin and there exists a sum gate g inD such that S(g) 6= S(g′). The
definition of S′ is identical to the second case of the definition of the matching for C1, with
one exception. The difference is that S′ remains in the left subcircuit of C2, that is for the
output gate h′ = h we set S′(h′) = `.
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+

D

D′

x3

x1 x2

(a) maximal parse subcircuit S

+

D

D′

x3

x1 x2

(b) maximal parse circuit S′

Figure 12 Case 2 of the matching µ for C2: Sout = Sin and ∃g, S(g) 6= S(g′).

Case 3: Sout = Sin and for all sum gate g in D, we have S(g) = S(g′). By definition
we set Dom(S′) = {g∗ ∈ G+ : g ∈ Dom(S)}. For the output gate h∗ = h of C2 we set
S′(h∗) = r, that is S′ will be a parse subcircuit of I∗ � D∗. For every other sum gate
g ∈ Dom(S), we set S′(g∗) = S(g).

The description S′ = µ(S) when S is a maximal parse subcircuit of I∗ �D∗ is as follows.
By definition we set Dom(S′) = {g, g′ ∈ G+ : g∗ ∈ Dom(S)}. We set S′(h) = `, that is S′ is
a parse subcircuit of I �D ◦D′. For the sum gates of I, we set S′(hi) = S(h∗i ). For every
sum gate g∗ ∈ Dom(S) which is in D∗, we set S′(g) = S′(g′) = S(g∗).

+

D

D′

x3

x1 x2

(a) maximal parse subcircuit S

+

D∗x3

x1 x2

(b) maximal parse subcircuit S′

Figure 13 Case 3 of the matching µ for C2: Sout = Sin and ∀g, S(g) = S(g′).

The proof that S′ is a maximal parse subcircuit is basically the same as for the case
of circuit C1. It follows immediately from the definition that µ is an involution. The only
additional point to see is that in the second case S′ 6= S because S(g) 6= S(g′), for some gate
g in D. J

5 The computational problems

We are now ready to define PPA-Circuit CNSS and PPA-Circuit Chevalley, the
two computational problems corresponding to the CNSS and to the Chevalley-Warning
theorem over F2. The input will be in both cases an n-variable, single-output PPA-circuit C,
and an element a ∈ Fn

2 . In the case of PPA-Circuit Chevalley, it is a zero of C, and
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Lemma 8 ensures that C satisfies the hypotheses of the Chevalley-Warning Theorem. For
PPA-Circuit CNSS, we consider the circuit C ⊕ La, and Lemma 8 again ensures that this
circuit satisfies the hypothesis of the CNSS. The computational task is to compute b ∈ Fn

2
whose existence is stipulated by these theorems.

The definition of the two problems is the following.

PPA-Circuit Chevalley
Input: (C, a), where C is an n-variable PPA-circuit over F2, and a is a zero of C.
Output: Another zero b 6= a of C.

PPA-Circuit CNSS
Input: (C ′, a), where C ′ is an n-variable PPA-circuit over F2, and a ∈ Fn

2 .
Output: An element b ∈ Fn

2 satisfying C = C ′ ⊕ La.

Let us restate here our main theorem.

I Theorem 1 (restated). The problems PPA-Circuit CNSS and PPA-Circuit Chevalley
are PPA-complete.

Proof. In Proposition 10 below we show that PPA-Circuit CNSS and PPA-Circuit
Chevalley are polynomially interreducible. In Theorem 11 in Section 6 we prove that
PPA-Circuit CNSS is in PPA, and in Theorem 13 in Section 7 we prove that PPA-Circuit
Chevalley is PPA-hard. J

We now turn to the proof of the various parts of Theorem 1.

I Proposition 10. PPA-Circuit CNSS and PPA-Circuit Chevalley are polynomially
equivalent.

Proof. First we reduce PPA-Circuit CNSS to PPA-Circuit Chevalley. Let (C ′, a)
be an instance of PPA-Circuit CNSS, and set C = C ′ ⊕ La. We can suppose that
C ′(a) = 1, since otherwise we are done. We define the circuit C ′′ = C ⊕ 1. Then clearly C ′′
is a PPA-circuit, and C ′′(a) = 0. The result of the reduction is then the input (C ′′, a) to
PPA-Circuit Chevalley. If the solution to that input is another zero b 6= a of C ′′(x),
then clearly C(b) = 1.

The reduction from PPA-Circuit Chevalley to PPA-Circuit CNSS is very similar.
Let (C, a) be an instance of PPA-Circuit Chevalley. We set C ′ = C⊕1, and C ′′ = C ′⊕La.
Clearly C ′ is a PPA-circuit. The result of the reduction is (C ′, a). If the solution to that
input is a satisfying assignment C ′′(b) = 1 then b is a zero of C. Also, b 6= a since C ′′(a) = 0,
therefore b is another zero of C. J

6 PPA-easiness

I Theorem 11. PPA-Circuit CNSS is in PPA.

Proof. We will give a reduction from PPA-Circuit CNSS to Leaf. Given an input N =
(C ′, a) to PPA-Circuit CNSS, we set C = C ′ ⊕ La. We construct a graph GN = (VN , EN )
by a polynomial time edge recognition algorithm and a polynomial time pairing function φ
as explained in Section 2.1. The vertices of GN are VN = Fn

2 ∪ S(C).
There are two types of edges in EN , the first type is between an assignment and a parse

subcircuit, and the second type is between two maximal parse subcircuits. By definition, the
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edge {a, S} exists between a ∈ Fn
2 and S ∈ S(C) if mS(a) = 1. Such an edge can be easily

recognized since the monomial mS(x) can be evaluated in linear time in the size of C.
Since C is the disjoint sum of C ′ and La, the maximal parse subcircuits of C are the

maximal parse subcircuits of C ′ extended with the appropriate mark at the output gate, and
the unique maximal parse subcircuit of La, again extended with the appropriate mark at the
output gate. Let us denote the latter parse subcircuit by T . Let µ be a polynomial time
computable perfect matching between the maximal parse subcircuits of C ′, which exists by
Lemma 8. By definition, the edge {S, S′} exists between S, S′ ∈ S(C ′) if both are extensions
of maximal parse subcircuits of C ′, and their restrictions to C ′ are matched by µ.

Observe that by Proposition 6, a vertex a ∈ Fn
2 has odd degree if and only if C(a) = 1. If

S is a maximal parse subcircuit then among the vertices in Fn
2 it is only connected to 1n. If

S 6= T , then it has one more neighbor, its matching pair given by µ, and therefore its degree
is two. On the other hand, the degree of T is one and therefore it is odd. We can therefore
take T as the standard leaf.

We first give the pairing for the vertices in S(C). We fix S ∈ S(C), and let a ∈ Fn
2 such

that mS(a) = 1. If S is not a maximal parse subcircuit then let i ∈ [n] be the smallest
integer such that xi is not in mS(x), and let a′ be obtained from a by flipping the ith bit.
Then by definition φ(S, ·) pairs a with a′. If S 6= T is a maximal parse subcircuit then it has
two neighbors: its matching pair S′ by µ and 1n, and φ(S, ·) pairs these two neighbors. For
every S, the mapping φ(S, ·) is clearly involutive.

We now turn to the more complicated pairing for the vertices in Fn
2 . Observe that this

depends only on the edges of the first type, that is edges between an assignment a ∈ Fn
2 and

a parse subcircuit S ∈ S(C). These edges can be defined actually for an arbitrary circuit C.
Let us denote by G(C) the graph with vertex set Fn

2 ∪ S(C) and with edges of the first type
from GN . First we prove the following lemma about G(C) on induction of the size of C.

I Lemma 12. For every n-variable, single-output circuit C, and for every vertex a ∈ Fn
2 in

G(C),
(a) if deg(a) is even then for all S ∈ S(C) such that mS(a) = 1, there exists g ∈ Dom(S)

with Pg(a) = 0,
(b) if deg(a) is odd then there exists a unique S ∈ S(C) such that mS(a) = 1, and Pg(a) = 1

for all g ∈ Dom(S).

Proof. If C consists of a single node, the statement is obviously true. Otherwise we first
handle a). When deg(a) is even then C(a) = 0. If the root is a sum gate then we are done
since it is in the domain of every parse subcircuit. If the root is a product gate then at
least one of its children (say the left without loss of generality) also evaluates to 0, that is
C`(a) = 0. Let S ∈ S(C) be such that mS(a) = 1, then we also have mS`

(a) = 1. By the
inductive hypothesis there exists g ∈ Dom(S`) with Pg(a) = 0, and since g is also in the
domain of S, we are again done.

We now deal with the induction step of b). When deg(a) is odd then C(a) = 1. If the root
is a sum gate then one of its children evaluates to 0, and the other one to 1, say C`(a) = 0
and Cr(a) = 1. By the inductive hypothesis there exists a unique S′ ∈ S(Cr) such that
mS′(a) = 1, and Pg(a) = 1 for all g ∈ Dom(S′). On the other hand, if S ∈ S(C) such that
mS(a) = 1 and the mark of S at the root is `, then S` ∈ S(C`) and mS`

(a) = 1, and by a)
there exists g ∈ Dom(S) with Pg(a) = 0. Therefore the unique S satisfying the hypothesis of
the statement is S′ extended with the mark r at the root.

To finish the induction step for b), let us suppose now that the root of C is a product gate.
Then by the inductive hypothesis there exists a unique S′ ∈ S(C`) such that mS′(a) = 1,
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and Pg(a) = 1 for all g ∈ Dom(S′), and similarly there exists a unique S′′ ∈ S(Cr) such that
mS′′(a) = 1, and Pg(a) = 1 for all g ∈ Dom(S′′). We claim that S′ and S′′ are compatible,
and therefore their union S = S′ ∪ S′′ is the unique parse subcircuit of C satisfying the
claim. Suppose that it is not the case, that is there exists g ∈ Dom(S′) ∩ Dom(S′′) such
that S′(g) 6= S′′(g). Since Pg(a) = 1, for one of its children, say for g`, we have Pg`

(a) = 0,
contradicting the inductive hypothesis about the parse subcircuit in {S′, S′′} which takes
the value ` in g. J

We give now the pairing φ(a, ·) for a ∈ Fn
2 . If deg(a) is even then let S ∈ S(C) be

such that mS(a) = 1. By Lemma 12 there exists a sum gate in the domain of S where P
evaluates to 0. Let g be in some topological ordering of the gates of C the first sum gate
such that Pg(a) = 0, and suppose without loss of generality that S(g) = `. Let Z ∈ S(Cg)
be the restriction of S to Cg, and we obviously have mZ(a) = mZ`

(a) = 1. We claim that
Pg`

(a) = Pgr (a) = 1. Indeed, if Pg`
(a) = Pgr (a) = 0, then by Lemma 12, applied to Cg`

,
there exists g′ ∈ Dom(Z`) with Pg′(a) = 0, which contradicts the choice of g. Therefore
again by Lemma 12 there exists a unique Z ′′ ∈ S(Cgr ) such that mZ′′(a) = 1, and Ph(a) = 1
for all h ∈ Dom(Z ′′). We let Z ′ ∈ S(Cg) be the extension of Z ′′ with Z ′(g) = r. Finally we
define φ(a, S) as the parse subcircuit S′ obtained from S by exchanging Z with Z ′, that is
S′ = (S \ Z) ∪ Z ′. It is clear that mS′(a) = 1, and φ(a, S′) = S.

If deg(a) is odd then by Lemma 12 there exists a unique parse subcircuit S such that
mS(a) = 1, and Pg(a) = 1, for all g ∈ Dom(S). We set φ(a, S) = S. For all parse subcircuits
S such that Pg(a) = 0, for some g ∈ Dom(S), the construction of S′ = φ(a, S) is identical to
the previous case.

The finish the proof, observe that the vertices of odd degree in VN other than the standard
leaf T are the elements a ∈ Fn

2 such that C(a) = 1. Therefore the output of the reduction is
a satisfying assignment a for C. J

7 PPA-hardness

I Theorem 13. PPA-Circuit Chevalley is PPA-hard.

Proof. We will reduce Leaf to PPA-Circuit Chevalley. Let (z,M, ω) be an instance
of Leaf, where M defines the graph Gz = (Vz, Ez) with Vz = {0, 1}n, for some polynomial
function n of |z|, and ω is the standard leaf in Gz. We know that for every vertex u, M(z, u)
is a set of at most two vertices. Composing the standard simulation of polynomial time
Turing machines by polynomial size boolean circuits [24] with the obvious simulation of
boolean circuits by arithmetic circuits, there exist two n-variables, n-output polynomial size
arithmetic circuits D and F with the following properties:

if M(z, u) = ∅ or M(z, u) = {u} then D(u) = F (u) = u,
if M(z, u) = {v} or M(z, u) = {v, u} with v 6= u then D(u) = v and F (u) = u,
if M(z, u) = {v, w} with v 6= u 6= w then D(u) = v and F (u) = w (or vice versa).

Consider the PPA-composition CD,F of D and F . We claim that for every vertex u,
the degree of u in Gz is odd if and only if u is a satisfying assignment for CD,F . This is
equivalent to saying that the parity of the degree of u is the same as the parity of the satisfied
components of CD,F . The proof of this claim is straightforward, but somewhat tedious. We
distinguish three cases in the proof, depending on the cardinality of M(z, u) \ {u}.

Case 1: M(z, u) \ {u} = ∅. Then u is an isolated vertex, and all six components are
satisfied.
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Case 2: M(z, u) \ {u} = {v}.
a) If u ∈M(z, v) then the degree of u is one, and I5 � F3 ◦ F4, I6 � F5 and exactly one of
the two components I2 � F2 ◦D2, I3 �D3 ◦D4 are satisfied.
b) If u 6∈M(z, v) then u is an isolated vertex, and I5 � F3 ◦ F4 and I6 � F5 are satisfied.
Case 3: M(z, u) \ {u} = {v, w}.
a) If u ∈ M(z, v) ∩M(z, w) then the degree of u is two, and exactly one of the two
components I2 � F2 ◦D2, I3 �D3 ◦D4 and exactly one of the two components I1 �D1 ◦
F1, I5 � F3 ◦ F4 are satisfied.
b) If u ∈ M(z, v) but u 6∈ M(z, w) and say D(u) = v, then exactly one of the two
components I2 � F2 ◦D2, I3 �D3 ◦D4 is satisfied.
c) Finally, if u 6∈ M(z, v) ∪ M(z, w) then u is an isolated vertex, and none of the
components is satisfied.

u

(a) Case 1

u v
· · ·

(b) Case 2-a

u v
· · ·

(c) Case 2-b
uv w

· · · · · ·

(d) Case 3-a

uv w
· · · · · ·

(e) Case 3-b

uv w
· · · · · ·

(f) Case 3-c

Figure 14 The six cases of Theorem 13.

This finishes the proof of the claim. It follows that the number of satisfying assignments
for CD,F is equal to the number of leaves in Gz, which is even. The standard leaf ω is a
satisfying assignment for CD,F , and therefore the output of PPA-Circuit Chevalley is
another satisfying assignment, which is another leaf in Gz. J
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Abstract
In this paper, we show exponential lower bounds for the class of homogeneous depth-5 circuits over
all small finite fields. More formally, we show that there is an explicit family {Pd} of polynomials
in VNP, where Pd is of degree d in n = dO(1) variables, such that over all finite fields GF (q), any
homogeneous depth-5 circuit which computes Pd must have size at least exp(Ωq(

√
d)).

To the best of our knowledge, this is the first super-polynomial lower bound for this class for
any non-binary field.

Our proof builds up on the ideas developed on the way to proving lower bounds for ho-
mogeneous depth-4 circuits [Gupta et al., Fournier et al., Kayal et al., Kumar-Saraf] and for
non-homogeneous depth-3 circuits over finite fields [Grigoriev-Karpinski, Grigoriev-Razborov].
Our key insight is to look at the space of shifted partial derivatives of a polynomial as a space of
functions from GF (q)n to GF (q) as opposed to looking at them as a space of formal polynomials
and builds over a tighter analysis of the lower bound of Kumar and Saraf [Kumar-Saraf].
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1 Introduction

Arithmetic circuits are the most natural model to study computations of multivariate
polynomials. These are directed acyclic graphs, with a unique sink node called the root or
output gate, internal nodes are labeled by addition and multiplication gates1, and leaves are
labeled by variables or constants from the underlying field. The field of arithmetic circuit
complexity aims at understanding the hardness of multivariate polynomials in terms of the
size of the smallest arithmetic circuit computing it. One of the most important questions in
this field of study is to show that there are families of explicit low-degree2 polynomials that
require arithmetic circuits of super-polynomial size (in terms of n, the number of variables).
It is widely believed that the symbolic n× n permanent, often denoted by Permn, requires
circuits of size exp(Ω(n)) but, as of now, we do not even have a Ω(n2) lower bound for any
explicit polynomial.

∗ The first author’s research supported in part by a Simons Graduate Fellowship. The second author’s
research leading to these results has received funding from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement number 257575.

1 Throughout this paper, we consider circuits as having gates of unbounded fan-in.
2 Where the degree is bounded by a polynomial function in the number of variables.
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Depth Reductions

In the absence of much progress on the question of lower bounds for general arithmetic
circuits, a natural question to ask is if we can prove good lower bounds for nontrivial restricted
classes of circuits. One particular class of circuits which have been widely studied with this
aim are the class of bounded depth3 arithmetic circuits. It turns out that this is not just an
attempt to study a simpler model, but there is a formal connection between lower bounds
for bounded depth circuits and lower bounds for general circuits. A sequence of structural
results, often referred to as depth reduction results, show that strong enough lower bounds
for bounded depth circuits implies lower bounds for general arithmetic circuits.

The first depth reduction for arithmetic circuits was by Hyafil [10] who showed that any
polynomial computed by a polynomial sized arithmetic circuit can be equivalently computed
by a circuit of depth O(log d) and quasi-polynomial size. This was improved by Valiant,
Skyum, Berkowitz and Rackoff [26], who showed that any n-variate degree d polynomial that
can be computed by a circuit of size (nd)O(1) can be equivalently computed by a circuit of
depth O(log d) and size (nd)O(1). Thus, proving super-polynomial lower bounds for O(log d)
depth circuits is sufficient to prove super-polynomial lower bounds for general arithmetic
circuits. Agrawal and Vinay [2] further strengthened this to obtain a depth reduction to
depth-4 circuits by showing that any n-variate degree d polynomial that can be computed
by a 2o(n) sized circuit can be equivalently computed by homogeneous4 depth-4 circuit of
size 2o(n). Their result was strengthened by Koiran [16] and Tavenas [25] to show that any
circuit of size s that computes an n-variate degree d polynomial can be computed by a
homogeneous depth-4 circuit of size sO(

√
d), and in fact the resulting depth-4 circuits have

all multiplication fan-ins bounded by O(
√
d). These results hold over all fields.

Over any field of characteristic zero, Gupta, Kamath, Kayal and Saptharishi [8] showed
that any n-variate degree d polynomial computed by a size s circuit can be equivalently
computed by a non-homogeneous depth-3 circuit of size sO(

√
d). Thus, these results formally

show that proving good enough lower bounds on circuits of bounded depth is sufficient for
proving lower bounds for general circuits.

Lower bounds for depth-3 and depth-4 circuits

Nisan and Wigderson [20] proved an exp(Ω(n)) lower bound for any homogeneous depth-3
circuits computing the symbolic n × n determinant Detn by studying dimension of the
partial derivatives of Detn as polynomials. Grigoriev and Karpinski [6] and Grigoriev and
Razborov [7] extended this to prove an exp(Ω(n)) lower bound for non-homogeneous depth-
3 circuit computing Detn over any fixed finite field Fq. Chillara and Mukhopadhyay [4]
extended this to give an exp(Ωq(d logn)) lower bound for non-homogeneous depth-3 circuits
computing an n-variate degree d polynomial in VP. It is worth noting that there is no
generic method known to convert a boolean lower bound for AC0[modq] to lower bounds for
arithmetic circuits over Fq (discussed in more detail in Section 3.1).

The proofs of [6, 4] also studied the dimension of partial derivatives of polynomial, but
unlike the proof in [20], they looked at partial derivatives as functions from Fnq → Fq. The
proofs in [6], [7] and [4] strongly rely on the fact that we are working over small finite

3 A depth k arithmetic circuit consists of k layers of alternating sum and multiplication gates with the
output being computed by a sum gate.

4 Which means that all intermediate computations are homogeneous polynomials. Hence the degree of
any intermediate computation is bounded by the degree of the output polynomial.
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fields, and completely break down over larger fields or fields of large characteristic. Over
fields of characteristic zero and over algebraic closure of finite fields, the question of proving
super-polynomial lower bounds for non-homogeneous depth three circuits continues to remain
wide open.

Even though we had exponential lower bounds for homogeneous depth-3 circuits, the
question of proving super-polynomial lower bounds for homogeneous depth-4 circuits remained
open for more than a decade. In 2012, Kayal [12] introduced the notion of shifted partial
derivatives, which is a generalization of the well-known notion of partial derivatives. Shifted
partial derivatives have been very influential in a plethora of lower bounds for depth-4 circuits
in the past few years. Gupta et. al. [9] used this measure to prove an exp(Ω(

√
n)) lower

bound for the size of homogeneous depth-4 circuits with multiplication fan-ins bounded by
O(
√
n). Subsequently, lower bounds of exp(Ω(

√
d logn)) were proved for other n-variate

degree d polynomials computed by almost the same circuit class [15, 5, 18]. (It is worth noting
that getting a lower bound of exp(ω(

√
d logn)) would have implied a super-polynomial lower

bound for general circuits!) Using a more delicate variant called projected shifted partials,
Kayal et. al. [13] and Kumar and Saraf [19] proved lower bounds of exp(Ω(

√
d logn)) for

homogeneous depth-4 circuits (without any fan-in restrictions) via two very different analyses.
The former was an analytic approach and works only over characteristic zero fields, whereas
the latter was purely combinatorial and works over any field. These techniques have also
been applied to yield lower bounds for non-homogeneous depth-3 circuits with bounded
bottom fan-in [14] and homogeneous depth-5 circuits with bounded bottom fan-in [3]. A
continuous updated survey [23] contains expositions of many of the lower bounds and depth
reduction results listed above.

The results in [19] in fact show that the reduction from general arithmetic circuits to
depth-4 circuits with support O(

√
d) cannot be improved, as they give an example of a

polynomial in VP for which any depth-4 circuits of support O(
√
d) must be of size nΩ(

√
d).

Further, with the current upper-bounds for the projected shifted partials on such depth-4
circuits, the best we can hope to prove using this measure is an nΩ(

√
d) lower bound. Hence,

it might be insufficient for general arithmetic circuits lower bounds but it could well be the
case that we might be able to prove stronger lower bounds for constant depth arithmetic
circuits, or arithmetic formulas by variants of this family of measures.

Hence, as a start, the problem of proving lower bounds for homogeneous depth five
circuits, seems like the next natural question to explore. This already seems to introduce
new challenges as the proofs of lower bounds for homogeneous depth-4 circuits seem to break
down for homogeneous depth-5 circuits. In this paper, we pursue this line of enquiry, and
prove exponential lower bounds for homogeneous depth-5 circuits over small finite fields.
Before stating our results, we first discuss prior results on this question, and the challenges
involved in extending the proofs of lower bounds for homogeneous depth four circuits, in the
next section.

Lower bounds for depth-5 circuits

Prior to this work, the only known lower bounds for depth-5 circuits that we are aware of
are the results of Raz [21], which show super-linear lower bounds for bounded depth circuits
over large enough fields, the results of Kalorkoti [11] which show quadratic lower bounds for
arithmetic formulas and the results of Kayal and Saha [14] and of Bera and Chakrabarti [3]
which show exponential lower bounds for homogeneous depth-5 circuits if the bottom fan-in
is bounded.

Given that we have lower bounds for homogeneous depth-4 circuits, it seems natural
to try and apply these techniques to prove lower bounds for homogeneous depth-5 circuits.

CCC 2017
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Unfortunately, the obvious attempts to generalize the proofs in [13, 19] seem to fail for
homogeneous depth-5 circuits. We now elaborate on this.

On extending the depth-4 lower bound proofs to depth-5 circuits: To understand these
issues, we first need a birds-eye view of the major steps in the proofs of lower bounds for
depth-4 circuits [13, 19]. These proofs have two major components.

Reduction to depth-4 circuits with bounded bottom support: In the first step, the
circuit C and the polynomial are hit with a random restriction, in which each variable
is kept alive independently with some small probability p. The observation is that a
bottom level product gate in C of support (the number of distinct variable inputs) at
least s survives with probability at most ps. Therefore, the probability that some bottom
product of support at least s in C survives is at most Size(C) · ps. Now, if the size of C
is small (say ε · 1/ps), then this probability is quite small, so with a high probability C
reduces to a homogeneous depth-4 circuit with bounded bottom support.
Lower bounds for depth-4 circuits with bounded bottom support: The goal in the
second step is to show that the polynomial obtained after random restrictions still
remains hard for homogeneous depth-4 circuits with bottom support at most s.

The key point in step 1 is that if Size(C) is not too large, then we can assume that with
a high probability over the random restrictions, all the high support product gates are set
to 0. This is where things are not quite the same for depth-5 circuits. When we express a
homogeneous depth-5 circuit as a homogeneous depth-4 circuit by expanding the product of
linear forms at level four, we might increase the number of monomials a lot (potentially to all
possible monomials). Now, the random restriction step no longer works and we do not have
a reduction to homogeneous depth-4 circuits with bounded bottom support. If the bottom
fan-in of C is bounded, then this strategy does indeed generalize. Kayal and Saha [14] and
Bera and Chakrabarti [3] show exponential lower bounds for such cases.

It is not clear to us how fundamental this obstruction is, but our key insight is a strategy
for proving lower bounds for homogeneous depth-4 circuits that avoids the random restriction
step. Morally speaking, we do proceed by a ‘reduction’ from a depth-5 circuit to a depth-4
circuit, but the meaning of a ‘reduction’ here is more subtle and largely remains implicit.

Our Contribution

We give an exponential lower bound for homogeneous depth-5 circuits over any fixed finite
field Fq. To the best of our understanding, this is the first such lower bound for depth-5
circuits over any field apart from F2

5. Stated precisely, we prove the following theorem.

I Theorem 1. There is an explicit family of polynomials {Pd : d ∈ N}, with Deg(Pd) = d,
in the class VNP such that for any finite field Fq, any homogeneous depth-5 circuit computing
Pd must have size exp(Ωq(

√
d)).

The polynomial Pd is from the Nisan-Wigderson family of polynomials (introduced by
[15], Definition 3) with carefully chosen parameters.

Our proof also extends to non-homogeneous depth-5 circuits where the layer of multiplic-
ation gates closer to the output have fan-in bounded by O(

√
d) (with no restriction on the

fan-in of the other multiplication layer).

5 For F2, exponential lower bounds easily follow from the lower bounds of Razborov [22].
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I Theorem 2. There is an explicit family of polynomials {Pd : d ∈ N}, with Deg(Pd) = d,
in the class VNP such that for any finite field Fq, any ΣΠ[O(

√
d)]ΣΠΣ circuit computing Pd

must have size exp(Ωq(
√
d)).

It is worth mentioning that for characteristic zero fields, it suffices to prove a lower bound
of exp(ω(d1/3 log d)) for an explicit polynomial computed by such ΣΠ[O(

√
d)]ΣΠΣ circuits

to separate VP from VNP (by combining the depth reductions of [2, 16, 25] and [8]). We
elaborate on this in Section 3.5. Such a phenomenon also happens for non-homogeneous
depth three circuits, where over finite fields, we know quite strong lower bounds while much
weaker ones would imply VNP 6= VP over fields of characteristic zero.

The key technical ingredient of our proof is to look at the space of shifted partial
derivatives and the projected shifted partial derivatives of a polynomial. We study them
as a space of functions from Fnq → Fq as opposed to as a space of formal polynomials, as
has been the case for the results obtained so far. This perspective allows us the freedom to
confine our attention to the evaluations of the shifted partial derivatives of a polynomial on
certain well chosen subsets of Fnq , and this turns out to be critical to our cause. This leads
to a new family of complexity measures which could have applications to other lower bound
questions as well. Our proof also involves a tighter analysis of the lower bound of Kumar
and Saraf [19] (for homogeneous depth-4 circuits) which may be interesting in its own right.

We now give an overview of our proof.

2 An overview of the proof

The proof would consist of the following main steps:

1. Define a function Γ : Fq[x] → N. Intuitively, we think of Γ(P ) to be a measure of the
complexity of P .

2. For all homogeneous depth-5 circuits C of size at most exp(δ
√
d), prove an upper bound

on Γ(C).

3. For the target hard polynomial P , show that Γ(P ) is much larger than the upper bound
proved in step 2.

The complexity measure: At a high level, the proofs of lower bounds in [20, 9, 15, 5, 18, 13,
19] associate a linear space polynomials to every polynomial in Fq[x] and use the dimension
of this space over Fq as a measure of complexity of the polynomial. The mapping from
polynomials to linear space of polynomials undergoes subtle changes as we go from the proof
of lower bounds for homogeneous depth-3 circuits [20] to lower bounds for homogeneous
depth-4 circuits [13, 19].

In this paper, we follow this outline and associate to every polynomial, the space of its
shifted partial derivatives as defined in [9]. However, instead of working with this space of
polynomials as it is, we study their evaluation vectors over a subset of Fnq (similar to [6, 7],
where they worked with partial derivatives of a polynomial). The key gain that we have from
this change in outlook is that as evaluation vectors, we can choose to confine our attention
to evaluations on certain properly chosen subsets of Fnq . For formal polynomials, it is not
clear what should be the correct analog of this approximation. The necessity and the utility
of this will be more clear as we go along.

CCC 2017
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High rank products of linear forms: Consider a polynomial Q which is a product of τ
linearly independent (non-constant) linear forms L1, L2, . . . , Lτ .

Q =
τ∏
i=1

Li .

It is not hard to see that

Pr
a∈Fnq

[Q(a) 6= 0] ≤
(

1− 1
q

)τ
.

In other words, products of linear forms of rank τ vanish on all but a o(1) fraction of the
entire space if τ = ω(1). If the size of a depth-5 circuit is not too large as a function of τ
(say, at most exp(δτ) for a small enough δ > 0), then by a union bound, all the products of
rank at least τ at the fourth level vanish everywhere apart from a o(1) fraction of the points
in Fnq .

In summary, we just argued that a depth-5 circuit C over Fq of size at most exp(δτ) can
be approximated by a sub-circuit C ′ of C which is obtained from C by dropping all products
of linear forms of rank at least τ from the bottom level.

Low rank products of linear forms: A second simple observation (Lemma 8) shows that
for every product of linear forms of rank at most τ , there is a polynomial of degree at most
(q − 1)τ , such that they agree at all points in Fnq . Thus, the circuit C ′ is equal, as a function
from Fnq → Fq to a depth-4 circuit C ′′ of bottom fan-in at most (q − 1)τ . Moreover, the
formal degree and the top fan-in of C ′′ are upper bounded by the formal degree and top
fan-in of C, respectively.

Putting things together This implies that for every homogeneous depth-5 circuit C com-
puting a polynomial of degree d of size at most exp(δτ) for some τ , there exists a depth-4
circuit C ′′ of formal degree at most d and top fan-in at most exp(δτ) such that

Pr
a∈Fnq

[C(a) 6= C ′′(a)] ≤ o(1).

Therefore, a polynomial P which can be computed by C can be approximated by C ′′ in
the point-wise sense. Since we know lower bounds on the top fan-in of homogeneous (and
low formal degree) depth-4 circuits with bounded bottom fan-in [9, 15], it seems that we
only have a small way to go. Unfortunately, we do not quite know how to make this idea
work. The key technical obstacle here is that it seems to be hard to say much about the
partial derivatives of C by looking at partial derivatives of C ′′. As a pathological case, the
polynomial

∏
i∈[n] xi has a partial derivative span of size 2n but is well approximated by the

0 polynomial over F2.
If we had started with a depth-3 circuit instead of a depth-5 circuit, then such a strategy

is indeed known to work [7]. Observe that in this case it is enough to show that that there is
an explicit polynomial which cannot be approximated well by a low degree polynomial over
Fq. In [7], the authors show this by an adaptation of a similar result of Smolenksy [24] over
F2.

A strengthening of the strategy: The key additional observation that helps us make things
work is the fact that not only do high rank product gates at level four of C vanish almost
everywhere on Fnq , but they vanish with a high multiplicity. As we show in Corollary 11, if
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the size of C is not too large, all the product gates of rank at least τ vanish with a multiplicity
Ω(τ) at 1− o(1) fraction of points on Fnq 6.

Therefore, not only can C agree with C ′ almost everywhere, all the partial derivatives of C
of order at most k = Ω(τ) agree with all the partial derivatives of C ′ almost everywhere. This
already hints at the fact that if we are to take advantage of this then we should be looking
at the evaluation of these derivatives, since our only guarantee is about their evaluations.

In [6], exponential lower bounds were proved for non-homogeneous depth-3 circuits using
a very similar strategy. However, adapting the method for shifted partials and projected
shifted partials seems to be a challenge.

In Section 5, we show that the dimension of the span of evaluation vectors of shifted
partial derivatives of C, when restricted to a properly chosen subset S of Fnq , is small if the
size of the circuit C we started with was small.

As a final step of the proof, we show that with respect to this complexity measure, our
target hard polynomial (from the so-called Nisan-Wigderson family, defined below) has a
large complexity.

I Definition 3 (Nisan-Wigderson polynomial families). Let d,m, e be arbitrary parameters
with m being a power of a prime, and d, e ≤ m. Since m is a power of a prime, let us identify
the set [m] with the field Fm of m elements. Note that since d ≤ m, we have that [d] ⊆ Fm.
The Nisan-Wigderson polynomial with parameters d,m, e, denoted by NWd,m,e is defined as

NWd,m,e(x) =
∑

p(t)∈Fm[t]
Deg(p)<e

x1,p(1) . . . xd,p(d)

That is, for every univariate polynomial p(t) ∈ Fm[t] of degree less than e, we add one
monomial that encodes the ‘graph’ of p on the points [d]. This is a homogeneous, multilinear
polynomial of degree d over dm variables with exactly me monomials.

This step of the proof builds on a tighter analysis of the lower bound on the dimension of
the span of projected shifted partial derivatives of the Nisan-Wigderson polynomials in [19].
We show that if the set S is carefully chosen, then we do not incur much loss in the dimension
by going from looking at shifted partial derivatives as formal polynomials to looking at them
as functions over a small subset of the finite field. We provide the details in Section 6.

One important technicality is the dependency between various parameters involved. For
our proof, the choice of k would be Oq(τ) and would depend on q. The lower bound of [19]
would then choose specific parameters for the NWd,m,e. This would mean that for every q,
we get a different polynomial for which we show a lower bound. We remedy the order of
quantifiers and start by fixing specific parameters for NWd,m,e. Then, depending on q, we
choose a restriction of NWd,m,e that would be identical to NWd′,m,e by setting some variables
to 0/1. We then apply the [19] argument for this restriction to obtain our lower bound for
NWd′,m,e which also yields a lower bound for NWd,m,e. The details are in Section 7.1.

3 Some discussion and open problems

3.1 Connections between arithmetic circuits over Fq and AC0[modq]
Although constant depth arithmetic circuits over Fq appear to be similar to the class
AC0[modq], they are surprisingly very different with respect to functions computed by them.

6 In the rest of this discussion, we will think of τ as Θ(
√
d).

CCC 2017
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A striking example, due to Agrawal, Allender and Datta [1], is that arithmetic circuits over
F3 can “compute” both the Mod3 function, as well as the Mod2 function via

Mod2(x1, . . . , xn) =
(

2 +
n∏
i=1

(1 + xi)
)2

.

However, it is true that functions computed by arithmetic circuits over Fpk have strong
connections with AC0[modp(pk − 1)] but unless we are working over F2 it seems difficult to
lift a lower bound for AC0[modp] to arithmetic circuits over Fp. For more on this, see [1].

The only exception we know of is the result of Grigoriev and Razborov [7] where they
lift Smolensky’s [24] lower bound for AC0[modp] to depth-3 arithmetic circuits over Fp, and
this crucially uses the fact that depth-3 arithmetic circuits can be point-wise approximated
by a “sparse polynomial”. But in general, constant depth arithmetic circuits over Fp and
Boolean circuits in AC0[modp] seem to be two very different classes.

3.2 Lower bounds for iterated matrix multiplication

Given the results in this paper, one might wonder if the lower bounds in this paper work for
a polynomial in VP. One natural candidate polynomial for which one might hope to show
such a lower bound would be the iterated matrix multiplication polynomial (IMM). It was
shown in [19] that IMM has a large complexity with respect to the measure of projected
shifted partial derivatives. Unfortunately, the bounds in [19] only show that the dimension of
the space of projected shifted partial derivatives of the IMM (degree d in dO(1) variables) are
a factor exp (δ

√
d log d) close to the maximum possible value for some constant δ. This slack

seems to be insufficient for our proofs in this paper to work as in the proof of Lemma 24, we
would have to rely on the fact that for the polynomial NW, the projected shifted partials
complexity was at most a quasi-polynomial factor away from the largest possible.

3.3 Finer separations for bounded depth circuits?

In [18], it was shown that homogeneous depth-4 circuits are exponentially more powerful
than homogeneous depth-4 circuits with bounded bottom fan-in. A natural question to
ask is whether such separations can be shown between homogeneous depth-4 circuit and
homogeneous depth-5 circuits. One of the first strategies to attempt for this question would
be to try and show that there is a homogeneous depth-5 circuit such that its projected shifted
partial derivative complexity is quite large. The results in this paper show that the measure
can not to be too close to the largest possible value, in particular it needs to be at least a
factor exp(Ω(

√
d)) away from the largest possible value. If this is bound is tight, then such a

separation between homogeneous depth-5 circuits and homogeneous depth-4 circuits can still
be shown using projected shifted partial derivatives. However, it is not clear if this is the
case. As mentioned before, even the known lower bounds on the dimension of the projected
shifted partials for the IMM seem a factor exp (Ω(

√
d log d)) away from the largest possible

value.
In a recent result [17], using a different measure (called dimension of shifted projected

partials, first used by [13]) such a separation between homogeneous depth-4 and homogeneous
depth-5 circuits was shown in the regime when d = O(log2 n). Extending this for other
regimes of d continues to remain open.
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3.4 The tightness of the results and relevance to VP vs. VNP
For homogeneous depth-4 circuits, we know exp (Ω(

√
d log d)) lower bounds [13, 19] and

any asymptotic improvement in the exponent would imply general arithmetic circuit lower
bounds. In this sense, the lower bounds for homogeneous depth-4 circuits are tight, over
all fields. It is natural to ask, if the bounds in this paper are tight in this sense? The
answer to this question is far from obvious to us. In particular, it is not clear if we can use
computational advantage of having linear forms at the bottom level of the circuit to get a
better depth reduction from VP to homogeneous depth-5 circuits, when compared to depth
reduction to homogeneous depth-4 circuits.

3.5 Lower bounds over fields of characteristic zero?
One might wonder if the techniques in this paper could be potentially adapted to work for
depth-5 circuits over fields of characteristic zero. As in the work of Grigoriev and Karpinski
[6], our proof (Lemma 13 in particular) strongly relies on the fact that we are working over
a fixed finite field, so it clearly seems hard to generalize over large fields (even when the
characteristic is small). In addition to this obvious technical obstruction to generalizing
the proof in this paper, there seems to be another reason why the proof strategy in this
paper could be hard to replicate over fields of characteristic zero, namely, an analog of
Theorem 2 over fields of characteristic zero would imply that VP 6= VNP. The reason is that
over characteristic zero fields, one can obtain better depth reductions to non-homogeneous
depth-5 circuits by combining [2, 16, 25] with [8]. Although this is reasonably well known,
we give a formal proof here for completeness.

The following lemma is a simple generalization of the proof of depth reduction to depth-4
circuits by Tavenas [25].

I Lemma 4 (Depth reduction to homogeneous depth six circuits). Let P be a polynomial
of degree d in poly(d) variables which can be computed by an arithmetic circuit C of size
poly(d). Then, there is a homogeneous depth-6 circuit C ′ which computes P and satisfies

Size(C) ≤ exp (O(d1/3 log d)), and
The fan-in of all the product gates in C ′ is bounded by O(d1/3).

Now, we start with the circuit C ′ as guaranteed by the lemma above, and for each of the
product gates at the second level, look at its inputs. Each such input is a ΣΠO(d1/3)ΣΠO(d1/3)

circuit (depth-4 circuit with all product fan-ins being at most O(d1/3)) of size at most
exp (O(d1/3 log d)). We now apply the depth reduction to depth-3 by Gupta et al. [8] to
each one of these depth-4 circuits. As a result, each of these depth-4 circuits get reduced
to a depth-3 circuit, with at most a factor of exp (O(d1/3)) blow up in size. Plugging these
depth-3 circuits back into C ′, we obtain a depth-5 circuit C ′′ such that

Size(C) ≤ exp (O(d1/3 log d)), and
The fan-in of all the product gates at level two of C ′′ is bounded by O(d1/3).

Recall that the depth reduction in [8] only works over fields of characteristic zero. This yields
the following depth reduction to non-homogeneous depth-5 circuits.

I Lemma 5 (Depth reduction to non-homogeneous depth-5 circuits). Let F be a field of
characteristic zero. Let P be a polynomial of degree d in poly(d) variables over F which can
be computed by an arithmetic circuit C of size poly(d). Then, there is a depth-5 circuit C ′′
which computes P and satisfies

Size(C) ≤ exp (O(d1/3 log d)), and
The fan-in of all the product gates at level two of C ′ is bounded by O(d1/3).
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Now, observe that an analogue of Theorem 2 over fields of characteristic zero, would
imply an exp (Ω(d1/2)) lower bound for the depth-5 circuits obtained in Lemma 5, and hence
imply VP 6= VNP.

4 Notation

Throughout the paper, we shall use bold-face letters such as x to denote a set {x1, . . . , xn}.
Most of the times, the size of this set would be clear from context. We shall also abuse
this notation to use xe to refer to the monomial xe1

1 · · ·xenn .
For an integer m > 0, we shall use [m] to denote the set {1, . . . ,m}.
We shall use the short-hand ∂xe(P ) to denote

∂e1

∂xe1
1

(
∂e2

∂xe2
2

(· · · (P ) · · ·)
)
.

For a set of polynomials P shall use ∂=kP to denote the set of all k-th order partial
derivatives of polynomials in P, and ∂≤kP similarly.
Also, x=`P shall refer to the set of polynomials of the form xe · P where Deg(xe) = `

and P ∈ P. Similarly x≤`P.
For a polynomial P ∈ Fq[x] and for a set S ⊆ Fnq , we shall denote by EvalS(P ) the
vector of the evaluation of P on points in S (in some natural predefined order like
say the lexicographic order). For a set of polynomials P, EvalS(P) denotes the set
{EvalS(P ) : P ∈ P}. For a set of vectors V , their span over Fq will be denoted by
Span(V ) and their dimension by Dim(V ).
We shall use H to denote the set {0, 1}n ⊂ Fnq .
A polynomial of the form P = α0 +

∑n
i=1 αixi, where each αj ∈ F is referred to as an

affine form. If α0 = 0, then P is referred to as a linear form or a linear polynomial over F.

The complexity measure

We now define the complexity measure that we shall be using to prove the lower bound. The
measure will depend on a carefully chosen set S ⊂ Fnq .

I Definition 6 (The complexity measure). Let k, ` be some parameters and let S ⊂ Fnq . For
any polynomial P , define Γk,`,S(P ) as

Γk,`,S(P ) := Dim
{

EvalS
(
x=`∂=k(P )

)}
.

5 Complexity measure on a depth-5 circuit

A depth-5 circuit computes a polynomial of the form

C =
∑
a

∏
b

∑
c

∏
d

Labcd (5.1)

where each Labcd are linear polynomials.

I Definition 7 (Terms of a circuit, and rank). For a depth-5 circuit such as (5.1), we shall
denote by Terms(C) the set

Terms(C) :=
{∏

d

Labcd

}
a,b,c

which are all products of linear polynomials computed by the bottommost product gates.
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For any term T =
∏
d Ld, define Rank(T ) to be Dim {Ld}d, which is the maximum number

of independent linear polynomials among the factors of T . For a depth-5 circuit C, we shall
use Rank(C) to denote maxT∈Terms(C) Rank(T ).

For a parameter τ , we shall use Terms>τ (C) to refer to terms T ∈ Terms(C) with
Rank(T ) > τ .

Low rank gates are low-degree polynomials

The following Lemma, present implicitly in [6, 7], is a very useful transformation of gates of
low-rank (and possibly large degree) when working over a finite field.

I Lemma 8 ([6, 7]). Let Q be a product of linear polynomials of rank at most τ . Then, there
is a polynomial Q̃ of degree at most (q − 1) · τ such that Q̃(a) = Q(a) for all a ∈ Fnq .

Proof. Without loss of generality, we shall assume that the rank is equal to τ , as the degree
upper bound will only be better for a smaller rank and let L1, . . . , Lτ be linearly independent.
Let

Q =
∏
i=[τ ]

Li ·
∏
j /∈[τ ]

Lj .

Here, each linear form in the second product term is in the linear span of the linear forms
{Li : i ∈ [τ ]}, and so can be expressed as their linear combination. Therefore, Q can be
expressed as a polynomial in {Li : i ∈ [τ ]}. Let Q = f(L1, L2, . . . , Lτ ). Since we are working
over Fq, it follows that for every choice of Li and for every a ∈ Fnq , we have Lqi (a) = Li(a).
So, for every a ∈ Fnq ,

f(L1, L2, . . . , Lτ )(a) = [f(L1, L2, . . . , Lτ ) mod 〈({Lqi − Li : i = 1, . . . , τ}〉)](a).

The lemma immediately follows by setting

Q̃ := f(L1, L2, . . . , Lτ ) mod 〈({Lqi − Li : i = 1, . . . , τ}〉). J

High rank gates are almost always zero

Let us assume that size(C) ≤ 2
√
d/100. We shall fix a threshold τ and call all terms T with

Rank(T ) > τ as “high rank terms” and the rest as “low rank terms”. Under a random
evaluation in Fnq , every non-zero linear polynomial takes value zero with probability 1/q.
Thus, if we have a term that is a product of many independent linear polynomials, then with
very high probability many of them will be set to zero, i.e. the term will vanish with high
multiplicity at most points. This is formalized by the following definition and the lemma
after it.

I Definition 9 (Multiplicity at a point). For any polynomial P and a point a ∈ Fnq , we shall
say that a vanishes with multiplicity t on P if Q(a) = 0 for all Q ∈ ∂≤t−1(P ). In other words,
a is a root of P and all its derivatives up to order t− 1.

We shall denote by Mult(P,a) the maximum t such that a vanishes on ∂≤t−1(P ).

It is easy to see that if P is a product of linear polynomials, then a vanishes with
multiplicity t on P if a vanishes on at least t factors of P .

I Observation 10. Let T =
∏d
i=1 Li be a term of rank at least r. Then, for every δ > 0,

Pr
a∈Fnq

[
Mult(T,a) ≤ (1− δ)r

q

]
≤ exp

(
−δ

2r

2q

)
.
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Proof. Without loss of generality, let L1, . . . , Lr be linearly independent. Then, the evalu-
ations of L1, . . . , Lr at a point a ∈ Fnq are also linearly independent and Pra[Li(a) = 0] = (1/q)
for i = 1, . . . , r.

For i = 1, . . . , r, let Yi be the indicator random variable that is one if Li(a) = 0 and zero
otherwise. Let Y =

∑
i∈[r] Yi. Clearly, by linearity of expectations

E[Y ] =
∑
i∈[r]

E[Yi] = r

q
.

Since the events Yi are linearly independent, by the Chernoff Bound, we know that for every
δ > 0

Pr
[
Y ≤ (1− δ)r

q

]
≤ exp

(
−δ

2r

2q

)
. J

The following corollary is a simple union bound on all high-rank gates in a small circuit.

I Corollary 11. Let C be a depth-5 circuit over Fq such that size(C) ≤ 2
√
d/100. Let τ = q

√
d

6
so that

exp
(

τ

8 · q

)
> 2

√
d/50.

Then,

Pr
a∈Fnq

[
∃T ∈ Terms>τ (C) : Mult(T,a) ≤ τ

2q

]
≤ 2−(

√
d/100)

We shall set our parameter τ as in the above corollary and our parameter k = τ/2q3.

5.1 Upper bound on complexity measure
For a circuit C of size at most 2

√
d/100, let E refer to the “bad set” of points a such that

there is some T ∈ Terms>τ (C) for which Mult(T,a) ≤ k = τ/2q3. By the above corollary,
we know that

|E| = δ · qn for some δ = exp(−O(
√
d)).

Let S be any subset of Fnq \ E that is contained in a “translate of a hypercube”, that is there
exists some c ∈ Fnq such that

S ⊂ (c +H) \ E .

The following lemma allows us to “multilinearize” any polynomial as long as we are only
interested in evaluations on a translate of a hypercube.

I Lemma 12 (Multilinearization). Fix a translate of a hypercube c + H. Then for every
polynomial Q ∈ Fq[x], there is a unique multilinear polynomial Q′ such that Deg(Q′) ≤ Deg(Q)
and Q′(a) = Q(a) for every a ∈ c +H.

Proof. If a ∈ c +H, then for each i ∈ [n] we have ai to be either ci or ci+ 1. Thus, it suffices
to replace each x2

i by a linear polynomial in xi that maps ci to c2i and ci + 1 to (ci + 1)2.
This is achieved by x2

i 7→ c2i + (xi − ci)(2ci + 1). By repeated applications of this reduction,
we obtain a multilinear polynomial Q′ of degree at most Deg(Q) that agrees on all points on
c +H.
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Another way to state this is by looking at Q mod Ic where Ic is the ideal defined by

Ic :=
〈
(
{
x2
i − (c2i + (xi − ci)(2ci + 1)) : i = 1, . . . , n

}〉
).

It is easy to check that Ic vanishes on c +H, and any Q can be reduced to a multilinear
polynomial modulo Ic.

The uniqueness of Q′ follows from the fact that no non-zero multilinear polynomial can
vanish on all of c +H. J

We remark that multilinearization as defined above is similar to the notion of taking
multilinear projections in [13]. However, the notion defined above is more amenable to work
with when we are looking at evaluations of polynomials. It is not clear to us if the same can
be done with the original notion of taking multilinear projections, as in [13].

The main lemma of this section would be the following bound on the complexity measure
on a depth-5 circuit.

I Lemma 13 (Upper bound on circuit). Let C be a depth-5 circuit, of formal degree at most
2d and size(C) ≤ 2

√
d/100, that computes an n-variate degree d polynomial. Let τ and k be

chosen as above, and ` be a parameter satisfying `+ kτq < n/2. If S is any subset of Fnq \ E
that is contained in a translate of a hypercube, then

Γk,`,S(C) ≤ 2
√
d/100 ·

( 4d
τ + 1
k

)
·
(

n

`+ kτq

)
· poly(n).

Proof. Suppose C = R1 + · · ·+Rs, where s ≤ 2
√
d/100 and each Ri is a product of depth-

3 circuits with Deg(Ri) ≤ 2d. Since Γk,`,S is clearly sub-additive (i.e. Γk,`,S(f + g) ≤
Γk,`,S(f) + Γk,`,S(g) for any f, g), it suffices to show that for each Ri we have

Γk,`,S(Ri) ≤
( 4d
τ + 1
k

)
·
(

n

`+ kτq

)
· poly(n).

For each such Ri, define the R≤τi as the polynomial obtained by “deleting” all terms
T ∈ Terms>τ (Ri). That is,

if Ri =
∏
a

∑
b

Tab then R≤τi =
∏
a

∑
b:Rank(Tab)≤τ

Tab.

The lemma follows from the following two claims which we now prove.

I Claim 14. For every i ∈ [r]

Γk,`,S(Ri) = Γk,`,S(R≤τi ).

I Claim 15. For every i ∈ [r]

Γk,`,S(R≤τi ) ≤
( 4d
τ + 1
k

)
·
(

n

`+ kτq

)
· poly(n). J

Proof of Claim 14. For brevity, we shall drop some indices and work with R = Q1 · · ·Qm.
Let T ∈ Terms>τ (C). We shall show if R′ = (Q1 − T )Q2 · · ·Qm, then for any k-th order
partial derivative ∂xα ,

EvalS(∂xα(R)) = EvalS(∂xα(R′)).
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Indeed, consider the difference R − R′ = T · Q2 · · ·Qm. By the chain rule, every term in
∂xα(R − R′) is divisible by some k′-th order partial derivative of T with k′ ≤ k. By the
choice of S, we know that every a ∈ S satisfies Mult(T,a) > k, and hence a vanishes on
∂≤k(T ) for any T ∈ Terms>τ (C). Thus, it follows that EvalS(∂xα(R−R′)) is just the zero
vector.

Repeating this argument, we can prune away all terms in Terms>τ (C) to get that
EvalS(∂α(R)) = EvalS(∂xα(R≤τ )) where Deg(xα) = k. Thus, Γk,`,S(R) = Γk,`,S(R≤τ ). J

Proof of Claim 15. Let R≤τ = Q1 · · ·Qd, with each Qi being a ΣΠΣ circuit. Some of these
Qis could have degree more than τ although their rank is bounded by τ . Without loss
of generality, let Q1, · · · , Qm be all the Qis with Deg(Qi) > τ , and Qm+1, . . . , Qd have
Deg(Qi) ≤ τ .

We shall modify the “low-degree” Qis by multiplying together any two of them of degree
less than τ/2. This ensures that at most one of the Qis may have degree less than τ/2 and
for i > m, all the Qis have degree at most τ . The sizes of some of the low-degree Qis do
increase in the process but this would not be critical as the degree of any such term is still
bounded by τ . The main point is that now we have an expression of the form

R≤τ = Q1 · · ·Qm ·Q′1 · · ·Q′r

where each Qi is a ΣΠΣ circuit of rank at most τ − 1 and Deg(Qi) ≥ τ , and all but one of
the Q′i satisfies τ ≥ Deg(Q′i) ≥ τ/2. As Deg(R≤τ ) ≤ 2d, it follows that m+ r ≤ 4d

τ + 1.
As a notational convenience, for any set H we let QH :=

∏
i∈H Qi and we use R≤τ and

R interchangeably in the calculations that follow. Let us look at any partial derivative
∂xα of order k applied on R. By the chain-rule, any such partial derivative can be written
as a natural linear combination of terms. For any two monomials xα =

∏n
i=1 x

α1
i and

xβ =
∏n
i=1 x

βi
i , we say that xα � xβ , if there exists a monomial xγ =

∏n
i=1 x

γi
i such that

xα = xβ · xγ .

∂xα(R) ∈ Span
{
∂xβ (QA) · ∂xγ (Q′B) ·QA ·Q

′
B

: xα = xβ · xγ , A ⊆ [m] ,
B ⊆ [r] , |A|+ |B| = k

}
∈ Span

{
∂xβ (QA) · x≤kτ ·Q

A
·Q′

B
: xα � xβ , A ⊆ [m] ,

B ⊆ [r] , |A|+ |B| = k

}
.

x=`∂xα(R) ⊆ Span
{
∂xβ (QA) · x≤`+kτ ·Q

A
·Q′

B
: xα � xβ , A ⊆ [m] ,

B ⊆ [r] , |A|+ |B| = k

}
.

EvalS(x=`∂xα(R)) ⊆ Span
{

EvalS
(
∂xβ (QA) · x≤`+kτ ·Q

A
·Q′

B

)
: xα � xβ , A ⊆ [m] ,

B ⊆ [r] , |A|+ |B| = k

}
.

If we focus on the term ∂xβ (QA), since QA is a product of ΣΠΣ circuits of rank at most τ ,
we have that ∂xβ (QA) is a linear combination of terms T1 · · ·T|A| where each Ti is a product
of linear polynomials and has rank at most τ . Using Lemma 8 on each of these Tis,

EvalS(∂xβ (QA)) ∈ Span
{

EvalS(x≤(q−1)τ |A|)
}
.

Therefore,

EvalS(x=`∂xα(R)) ⊆ Span
{

EvalS
(
∂xβ (QA) · x≤`+kτ ·Q

A
·Q′

B

)
: xα � xβ , A ⊆ [m] ,

B ⊆ [r] , |A|+ |B| = k

}
⊆ Span

{
EvalS

(
x≤`+kτ+(q−1)kτ ·QA ·Q

′
B

)
: A ⊆ [m] ,

B ⊆ [r] , |A|+ |B| = k

}
.

Finally, Lemma 12 shows for every polynomial f , there is a multilinear polynomial of degree
at most Deg(f) that agrees with f on all evaluations on a translate of a hypercube. Therefore,
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in the above span, we may assume that we are only shifting by multilinear monomials of
degree `+ qkτ as this doesn’t change the evaluations S ⊆ c + {0, 1}n. Hence,

EvalS(x=`∂xα(R)) ⊆ Span
{

EvalS
(

x≤`+qkτmult ·QA ·Q
′
B

)
: A ⊆ [m] ,

B ⊆ [r] , |A|+ |B| = k

}
.

Therefore, using the fact that m+ r ≤ (4d/τ) + 1, we get the bound

Γk,`,S(R) := Dim
{

EvalS(x=`∂=k(R))
}
≤

( 4d
τ + 1
k

)
·
(

n

`+ qkτ

)
· n,

where the first term corresponds to the number of choices for the subsets A and B, and the
last two terms correspond to the number of multilinear monomials of degree at most `+ qkτ .
Recall that by the hypothesis of the lemma, `+ qkτ < n/2, hence the number of multilinear
monomials of degree at most `+ qkτ is at most n ·

(
n

`+qkτ
)
. J

I Remark 16. Observe that, even if the circuit C is of the form

C =
∑
a

∏
b∈[m]

∑
c

∏
d

Labcd

such that Size(C) ≤ 2
√
d/100 and m = O( dτ ), then the upper bound in Lemma 13 continues to

hold.7 In particular, the formal degree of C could be much larger than d but if the product
fan-in at level two of C is small, then

Γk,`,S(C) ≤ 2
√
d/100 ·

(
O( dτ )
k

)
·
(

n

`+ kτq

)
· poly(n).

We later use this observation to complete the proof of Theorem 2 in Section 7.

6 Lower bound for the complexity measure for an explicit polynomial

Let E be an arbitrary subset of Fnq of size at most δ · qn. We will be choosing a specific set S
that shall be a subset of a translate of the hypercube and disjoint from E . We will fix the
precise definition of S shortly once we motivate the requirements.

The polynomial for which was shall prove our lower bound would be from the Nisan-
Wigderson family. We would have to set our parameters carefully but for now we shall just
be intentionally vague and refer to the polynomial as just NW and fix parameters at a later
point.

Associated with our measure Γk,`,S(NW) is a natural matrix that we shall call Λ(NW):

The rows of Λ(NW) are indexed by a derivative ∂xα ∈ ∂=k of order k, and a monomial
xβ of degree equal to `. The columns are indexed by all points a ∈ S. The entry in
(xβ · ∂xα ,a) is the evaluation of xβ · ∂xα(NW) at the point a.

In other words, the matrix is just the vectors EvalS(xβ · ∂xα(NW)) listed as different rows
for each choice of xα and xβ . Therefore,

Rank (Λ(NW)) = Γk,`,S(NW). (6.1)

7 Essentially, in the proof of Claim 15, we already have an expression of the form R≤τ = Q1 · · ·Qm with
m = O

(
d
τ

)
and the rest of the proof proceeds as expected.
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Recall from Lemma 12 (multilinearization), as long as we only care about evaluations on a
translate of a hypercube, we can assume each row is the evaluations of the multilinearization
of xα · ∂xβ (NW). This does not change the evaluation on any point a ∈ S ⊆ c +H.

Now any such matrix of evaluations can be naturally factorized as a coefficient matrix
and an evaluation matrix.
Ck,`(NW): Each row is indexed by a derivative ∂xα of order k, and a monomial xβ of degree

`, and each column is indexed by a multilinear monomial m of degree at most `+ d− k
over n variables, and the (xβ · ∂xα ,m) entry is the coefficient of monomial m in the
multilinearization of xβ · ∂xα(NW) with respect to c +H (Lemma 12).

Vt(S): Rows are indexed by multilinear monomials of degree at most t = `+ d− k over n
variables, columns are indexed by a ∈ S and (m,a) entry is the evaluation monomial m
at a.

Clearly, Λ(NW) = Ck,`(NW) · Vt(S). Thus if we can get a good lower bound on the ranks of
the matrices Ck,`(NW) and Vt(S) for a suitable set S, we would then be able to lower bound
the rank of Λ(NW). This is formalized by the following simple linear algebraic fact often
referred to as the Sylvester’s rank inequality.

I Lemma 17 (Rank of products of matrices [27]). If A,B and C are matrices such that
A = B · C, then Rank(A) ≥ Rank(B) + Rank(C)− (# rows of C).

6.1 Rank of Ck,`(NW)
Let us focus on the matrix Ck,`(NW) and restrict ourselves a sub-matrix C ′k,`(NW) to only
those columns whose degree is exactly t = `+ d− k, and rows indexed by (xβ · ∂xα) with xβ
being a multilinear monomial of degree exactly `.

Since our polynomial NW is multilinear, if we were to read off any row of C ′k,`(NW),
this is just the list of coefficients of all multilinear monomials of (xβ · ∂xα(NW)). This is
because the multilinearization operation in Lemma 12 maps any non-multilinear monomial
to a multilinear polynomial of strictly smaller degree and hence these monomials are not
included in the columns of C ′k,`.

The key point here is that the matrix C ′k,`(NW) is just the matrix of projected shifted
partial derivatives of NW. The results of Kayal et. al [13] and Kumar and Saraf [19] give a
lower bound on the rank of this matrix for a suitable choice of the polynomial, but the lower
bound of Kumar and Saraf [19] is more relevant as it is true over any field (unlike [13] that
works only over characteristic zero fields).

Using a tight analysis of the argument in [19], that we present in Section A we obtain the
following lemma for the Nisan-Wigderson polynomial for very carefully chosen parameters.

I Lemma 18 (Tight analysis of [19]). For every d and k = O(
√
d) there exists parameters

m, e, ε such that m = Θ(d2), n = md and ε = Θ
(

log d√
d

)
with

mk ≥ (1 + ε)2(d−k)

me−k =
(

2
1 + ε

)d−k
· poly(m).

For any {d,m, e, k, ε} satisfying the above constraints and for ` = n
2 (1− ε), over any field F,

we have

Rank(Ck,`(NWd,m,e)) ≥ Rank(C ′k,`(NWd,m,e)) ≥
(

n

`+ d− k

)
· exp(−O(log2 d)).
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6.2 Rank of Vt(S)

Let H≤t refer to elements of {0, 1}n of Hamming weight at most t. Our first step would be
to choose our set S carefully so that we can maximize the rank of Vt(S).

I Observation 19. Let E be a subset of Fnq of size at most δ · qn. Then for any 0 ≤ t ≤ n,
there is a vector c ∈ Fnq such that

|(c +H≤t) ∩ E| ≤ δ · |H≤t| .

Proof. Let 1E(a) be the indicator function that is 1 if a ∈ E , and 0 otherwise. Then,

δ ≥ Ea∈Fnq [1E(a)] = Ec∈Fnq
[
Ey∈H≤t [1E(c + y)]

]
.

Thus, there exists some c ∈ Fnq that still maintains the inequality. J

Our set would be S = (c+H≤t)\E , which has the property that |S ∩ (c +H≤t)| ≥ (1−δ)·|H≤t|
by the above observation, and S ∩ E = ∅.

Let Vt(S − c) be the matrix whose rows are indexed by the polynomials m(x− c), where
m is a multilinear monomials in variables x of degree at most t. The columns of Vt(S − c)
are indexed by S and the entries correspond to the evaluation of the polynomial indexing
the row at the point in S given by the column. We have the following observation.

I Observation 20. Rank(Vt(S)) = Rank(Vt(S − c)).

Proof. For any multilinear monomial m of degree at most t, the polynomial m(x − c) is
multilinear and has degree at most t. Thus clearly, the row-space of Vt(S − c) is contained in
the row-space of Vt(S). The converse also holds trivially as the translation is invertible. J

We now prove our next lemma which shows a lower bound on the rank of Vt(S − c).

I Lemma 21. For any set S ⊆ {0, 1}n ⊂ Fnq and any 0 ≤ t ≤ n,

Rank(Vt(S − c)) = |S| .

Proof. Since S ⊆ c + H≤t, the set S′ := S − c ⊂ H≤t. Thus the matrix Vt(S − c) is
simply the matrix Vt(S′). For any a ∈ {0, 1}n, let ma refer to the ‘characteristic’ monomial∏
i:ai=1 xi, and let m0 = 1.
Consider the sub-matrix of Vt(S′) by restricting to rows indexed by {ma : a ∈ S′}. By

rearranging the rows and columns in the increasing order of the weight of a, it is evident
that the sub-matrix is upper-triangular with ones on the diagonal. It therefore follows that
the rank of Vt(S′) (which is just Vt(S − c)) is at least |S′| = |S|. J

Combining Observation 20 and Lemma 21, we have our required bound on the rank of Vt(S).

I Lemma 22. Let E be an arbitrary subset of Fnq of size at most δ · qn. Then, there exists a
set S ⊂ Fnq \ E such that S ⊆ c +H for some c ∈ Fnq for which

Rank(Vt(S)) ≥ (1− δ) · |H≤t| = (1− δ) · (# rows of Vt(S)).
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Putting them together

I Lemma 23 (Rank bound for Λ(NWd,m,e)). Let E be an arbitrary subset of Fnq of size at
most δ ·qn, with δ = exp(−ω(log2 d)). Then, there exists a set S ⊂ Fnq \E such that S ⊆ c+H
for some c ∈ Fnq for which

Rank(Λ(NWd,m,e)) ≥
(

n

`+ d− k

)
· exp(−O(log2 d)),

where the parameters d,m, e, k, ` are chosen as in Lemma 18.

Proof. Consider the set S chosen in Lemma 22 (for t = `+ d− k). By Lemma 22,

Rank(Vt(S))− (# rows of Vt(S)) ≥ (−δ) |H≤t| ≥ (−δ) · n ·
(

n

`+ d− k

)
.

Lemma 18 shows that rank of Ck,`(NWd,m,e) can be lower bounded by

Rank(Ck,`(NWd,m,e)) ≥
(

n

`+ d− k

)
· exp(−O(log2 d)).

Thus, since Λ(NWd,m,e) = Ck,`(NWd,m,e) · Vt(S) with t = `+ d− k, Lemma 17 implies that

Rank(Λ(NWd,m,e)) ≥ Rank(Ck,`(NWd,m,e)) + Rank(Vt(S))− (# rows of Vt(S))

≥
(

n

`+ d− k

)
· exp(−O(log2 d))− δ · n ·

(
n

`+ d− k

)
≥

(
n

`+ d− k

)
· exp(−O(log2 d)) as δ = exp(−ω(log2 d)). J

Combining this with Equation 6.1, we get the following lemma.

I Lemma 24 (Measure of NWd,m,e). Let E be an arbitrary subset of Fnq of size at most δ · qn,
with δ = exp(−ω(log2 d)). Then, there exists a set S ⊂ Fnq \ E such that S ⊆ c +H for some
c ∈ Fnq for which

Γk,`,S(NWd,m,e) ≥
(

n

`+ d− k

)
· exp(−O(log2 d)).

7 Wrapping up the proof

I Theorem 25. Let Fq be the finite field of cardinality q. Let C be a depth-5 circuit of formal
degree at most 2d which computes the polynomial NWd,m,e with parameters as in Lemma 18.
Then

Size(C) > 2
√
d/100.

Further, the same lower bound holds even if C was a circuit of the form

C =
∑
i

∏
j∈[m]

∑
k

∏
`

Lijk`,

with m = O(
√
d).
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Proof. We shall prove the above theorem for homogeneous depth-5 circuits. The lower
bound for such non-homogeneous circuits would also follow directly since such circuits also
have the same upper-bound on the complexity measure (Remark 16).

Assume on the contrary that there is a circuit C computing NWd,m,e with Size(C) ≤
2
√
d/100. Let τ be as defined in Corollary 11 and let k = τ/2q3. Let E = E(C) be the set as

defined in Section 5.1. We know that

|E| ≤ δ · qn,

for some δ = exp(−O(
√
d)). Let ` = n

2 (1− ε) where ε = log d
c
√
d
is chosen as in Lemma 18.

Since n = d3, clearly we satisfy ` + kτq < n/2. Let S ⊂ Fnq \ E be the set guaranteed by
Lemma 24. From Lemma 24, we know that

Γk,`,S(NW) ≥
(

n

`+ d− k

)
· exp(−O(log2 d)).

This may be simplified using Lemma 32 to

Γk,`,S(NW) ≥
(
n

`

)
· (1 + ε)2d−2k · exp(−O(dε2)) · exp(−O(log2 d)).

Also, from Lemma 13, we know that

Γk,`,S(C) ≤ 2
√
d/100 ·

( 4d
τ + 1
k

)
·
(

n

`+ qkτ

)
· poly(n).

Notice that from our choice of k and τ , qkτ = O(d) = O(
√
n). Again, using Lemma 32, we

get

Γk,`,S(C) ≤ 2
√
d/100 ·

( 4d
τ + 1
k

)
·
(
n

`

)
· (1 + ε)2qkτ · exp(O(−qkτ · ε2)) · poly(n).

Since C computes NWd,m,e, so it must be the case that

2
√
d/100 · poly(n) ≥ (1 + ε)(d−k)+(d−k−2qkτ) · exp(−Oq(log2 d)).

Since k = τ/2q3, so 2qkτ = τ2/q2. From our choice of τ in Corollary 11, τ = q
√
d

6 . So

2qkτ = τ2/q2 = d/36.

Therefore,

2
√
d/100 · poly(n) ≥ (1 + ε)(d−k) · exp(−Oq(log2 d)).

But this is a contradiction since (1 + ε)(d−k) = exp(Ω(
√
d log d)) by our choice of parameters.

Therefore, the size of C is at least 2
√
d/100. J

In fact, the above proof gives more. It shows that if we have a depth-5 circuit computing
NWd,m,e over Fq, then either the number of high-rank terms is at least 2

√
d/50 or the top

fan-in is exp(Ω(
√
d log d)).
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7.1 Getting the right order of quantifiers
In our proof so far, we first fix the field Fq that we are working over and the parameters of
our polynomial are then chosen based on q. Thus, as q varies, the polynomial for which we
show the lower bound also seems to vary. The ideal scenario would be to construct a fixed
polynomial family so that for every q we get a lower bound of exp(Ωq(

√
d)). We do that now,

and this would complete the proof of Theorem 1.
We shall be dealing with a lot of parameters and constraints. The following is essentially

the “zone” in which we can prove strong lower bounds (Lemma 18).

I Definition 26 (Goldilocks Zone). We shall say that parameters m, d, e, k, ε with k = Θ(
√
d)

and ε = Θ
(

log d√
d

)
lie in the Goldilocks Zone if they satisfy

mk ≥ (1 + ε)2(d−k)

me−k =
(

2
1 + ε

)d−k
· poly(m).

Recall that for Lemma 18, and consequently Theorem 25, the parameters m, d, e, k must
lie in the Goldilocks zone. The crucial point is that this is a field dependent condition since
k (and hence everything else) explicitly depends on q. In the next lemma, we show that we
can start with a fixed polynomial such that for every finite field Fq of fixed size, there exists
a 0, 1 projection which lies in the Goldilocks zone.

I Lemma 27. Consider the NWd,m,e polynomial with m = Θ(d2) and e =
⌈

d
logm

⌉
so that

me = 2d · poly(m).

Suppose k = Θ(
√
d) and ε = Θ

(
log d√
d

)
satisfy the constraint mk > (1 + ε)2(d−k). Then, there

exists a d′ ∈ [d−O(
√
d log d), d] such that NWd′,m,e is a 0/1 projection of NWd,m,e and the

parameters {d′,m, e, k, ε} fall in the Goldilocks Zone.

Proof. Since me = 2d · poly(m), mk > (1 + ε)2(d−k) and (1 + ε)d = exp(Θ(
√
d log d)), we

have

me−k =
(

2
1 + ε

)d−k
· exp(−Θ(

√
d log d)).

The goal now is to find a d′ < d such that

me−k =
(

2
1 + ε

)d′−k
·O(1).

Indeed, since the LHS and RHS differ by just a factor of exp(Θ(
√
d log d)), and decreasing d

by 1 reduces the RHS by a constant factor, there exists some d′ ∈ [d−O(
√
d log d), d] such

that

me−k =
(

2
1 + ε

)d′−k
·O(1).

Further, since mk > (1 + ε)2(d−k), it follows that mk > (1 + ε)2(d′−k) as d′ < d. Hence the
parameters {d′,m, e, k, ε} indeed fall in the Goldilocks Zone ( Definition 26).

It suffices to show that NWd′,m,e is a projection of NWd,m,e. This is readily seen as
setting the variables xij = 1 for all i ∈ [d− d′] and j ∈ [m] yields NWd′,m,e up to relabeling
variables. J
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With this, we can finally prove our main theorems.

I Theorem 1 (restated). Consider the polynomial NWd,m,e with parameters chosen such
that m = Θ(d2) and me = 2d · poly(m). Then, for any fixed finite field Fq, any homogeneous
depth-5 circuit over Fq computing NWd,m,e must have size at least 2

√
d/200.

Proof. Fix a field Fq and let k =
√
d/12q2.

Suppose on the contrary that there is indeed a homogeneous depth-5 circuit C computing
NWd,m,e. Then, by Lemma 27, this also implies there is a projection C ′ that computes the
NWd′,m,e such that there is an d − O(

√
d log d) ≤ d′ ≤ d and there is an ε = Θ

(
log d√
d

)
for

which {d′,m, e, k, ε} fall in the Goldilocks Zone (Definition 26). Now C ′ is a circuit of formal
degree d ≤ d′ +O(

√
d log d) ≤ 2d′ that computes the polynomial NWd′,m,e. By Theorem 25,

this implies that

size(C) ≥ size(C ′) > 2
√
d′/100 > 2

√
d/200. J

The proof of this theorem also follows along the same lines.

I Theorem 2 (restated). Consider the polynomial NWd,m,e with parameters chosen such that
m = Θ(d2) and me = 2d · poly(m). Then, for any fixed finite field Fq, any depth-5 circuit
over Fq of the form

C =
∑
i

∏
j∈[m]

∑
k

∏
`

Lijk`

where each Lijk` is a linear polynomial and m = O(
√
d) that computes NWd,m,e must have

size at least 2
√
d/200.
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A Tight analysis of the [19] lower bound

We recall the measure of projected shifted partial derivatives that was used in [13] and [19].

ΓPSD
k,` (P ) = Dim

{
mult

(
x=`∂=k(P )

)}
where mult(f) is just the polynomial f restricted to just its multilinear monomials. As
mentioned before, this ΓPSD

k,` (P ) is precisely Rank(C ′k,`(P )) as defined in Section 6.1.
The goal of this section would be to prove Lemma 18 that we restate below.

I Lemma 18 (restated). For every d and k = O(
√
d) there exists parameters m, e, ε such

that m = Θ(d2), n = md and ε = Θ
(

log d√
d

)
with

mk ≥ (1 + ε)2(d−k)

me−k =
(

2
1 + ε

)d−k
· poly(m).
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For any {d,m, e, k, ε} satisfying the above constraints, the polynomial NWd,m,e, if ` = n
2 (1−ε),

then over any field F, we have

ΓPSD
k,` (NWd,m,e) ≥

(
n

`+ d− k

)
· exp(−O(log2 d)).

The rest of this section would just be a proof of this lemma.

Before we proceed to the lower bound on ΓPSD
k,` (NWd,m,e), let us first show that we can

indeed find parameters that satisfy the above constraints. Fix m to be the smallest power of
2 greater than d2 to get m = Θ(d2). Next, we shall fix the constant c in ε = log d

c
√
d
so that

mk ≥ (1 + ε)2(d−k).

This is always possible by choosing c to be large enough as (1 + ε)d−k = exp(O(
√
d log d))

and that is also the order of mk.
Once we have done that, we shall fix e so as to ensure that

me−k =
(

2
1 + ε

)d−k
· poly(m),

which can be done by setting

e =
⌈(

d− k
logm

)
· log

(
2

1 + ε

)
+ k

⌉
.

Since changing e by 1 changes the LHS by a factor of m, the above choice would ensure the
LHS and RHS are within a multiplicative factor of m. Note that this definition of e also
ensures that e ≤ d− k.

All lower bounds on the dimension of shifted partial derivatives of a polynomial P was
obtained by finding a large set of distinct leading monomials. In [19], they take this approach
but require a very careful analysis. The key difference in this setting is the following:

If β is the leading monomial of a polynomial P , then for any monomial µ, we also
have that γ = β · µ is the leading monomial of µP .
However, the leading monomial of mult(µP ) could be β′ ·µ for some β′ 6= β (as higher
monomials could be made non-multilinear during the shift by µ).

The multilinear projection makes the task of counting leading monomials much harder
and [19] come up with an indirect way to count them. Throughout this discussion, let LM(f)
refer to the leading monomial of f in some natural ordering, say the lexicographic order.

Leading monomials after multilinear projections

Let P the polynomial of degree d for which we are trying to lower bound ΓPSD
k,` (P ). For every

monomial multilinear monomial α of degree k, and a monomial β ∈ ∂α(P ), define the set
A(α, β) as

A(α, β) =
{
γ : Deg(γ) = `+ d− k and there is a mu of degree `

such that γ = LM(mult(µ · ∂α(P ))) = µ · β

}
.

In other words, these are the set of leading monomials obtained from a specific monomial β
in ∂α(P ). We then have

ΓPSD
k,` (P ) ≥

∣∣∣∣∣∣
⋃
α,β

A(α, β)

∣∣∣∣∣∣ .
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Choice of derivatives: Instead of looking at all derivatives in ∂=k, we shall restrict ourselves
to just a subset of derivatives. Restricting the above union to a subset ∆ ⊂ x=k still continues
to remain a lower bound for ΓPSD

k,` (P ). Keeping in mind that we are dealing with P = NWd,m,e

and that mk > (1 + ε)2(d−k). We shall choose ∆ to be a set of size exactly (1 + ε)2(d−k) which
consists of monomials of the form x1a1 · · ·xkak with each ai ≤ m. This shall become relevant
later.

ΓPSD
k,` (P ) ≥

∣∣∣∣∣∣∣∣
⋃
α∈∆

β∈∂α(P )

A(α, β)

∣∣∣∣∣∣∣∣ . (A.1)

We are abusing notation here to use β ∈ ∂α(P ) to mean that β is a non-zero monomial in
∂α(P ).

We shall need the following lemma from [19] that is a strengthening of the standard
Inclusion-Exclusion principle.

I Lemma 28 (Stronger Inclusion-Exclusion [19]). Let A1, . . . , Ar be sets and suppose

λ :=
∑
i 6=j |Ai ∩Aj |∑

i |Ai|
≥ 1.

Then,∣∣∣∣∣⋃
i

Ai

∣∣∣∣∣ ≥
(

1
4λ

)
·

(∑
i

|Ai|

)
.

I Corollary 29. Considers sets A1, . . . , Ar and let S1 =
∑
i |Ai| and S2 =

∑
i 6=j |Ai ∩Aj |.

Then,∣∣∣⋃Ai

∣∣∣ ≥ S1
4 ·min

(
1, S1
S2

)
.

Estimating |
⋃
A(α, β)| via Inclusion-Exclusion∣∣∣∣∣∣

⋃
α,β

A(α, β)

∣∣∣∣∣∣ ≥
∑
α,β

|A(α, β)| −
∑

(α,β) 6=(α′,β′)

|A(α, β) ∩A(α′, β′)| .

Let us first address the term
∑
|A(α, β)|. As mentioned earlier, it is not an easy task

to get a good handle on the set A(α, β) for polynomial such as NW, for any reasonable
monomial ordering. However, [19] circumvent this difficult by using an indirect approach to
estimate this term.

For any derivative α and β ∈ ∂α(P ), define the set S(α, β) as the following set of
multilinear monomials of degree ` that is disjoint from β.

S(α, β) =
{
µ : µ is multilinear, has

degree ` and gcd(β, µ) = 1

}
.

This on the other hand is independent of any monomial ordering, and is also easy to calculate:

For every α, β |S(α, β)| =
(
n− d+ k

`

)
.
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I Lemma 30 ([19]). For any α,

∑
β

|A(α, β)| ≥

∣∣∣∣∣∣
⋃
β

S(α, β)

∣∣∣∣∣∣ .
Proof. Consider any µ ∈

⋃
β S(α, β). By definition, there is at least one multilinear monomial

in µ · ∂α(P ). Thus, in particular LM(mult(µ · ∂α(P )) is non-zero and equal to some µ · β
for some monomial β ∈ ∂α(P ). This also implies that γ = µ · β ∈ A(α, β). This yields an
injective map φ

φ :
⋃
β

S(α, β) � {(β, γ) : β ∈ ∂α(P ) , γ ∈ A(α, β)} .

Since the size of the RHS is precisely
∑
β |A(α, β)|, the lemma follows. J

Thus, by another use of Inclusion-Exclusion on the S(α, β)’s, we get∣∣∣∣∣∣
⋃
α,β

A(α, β)

∣∣∣∣∣∣ ≥
∑
α,β

|A(α, β)| −
∑

(α,β) 6=(α′,β′)

|A(α, β) ∩A(α′, β′)|

≥
∑
α

∑
β

|S(α, β)|

 −
∑
α

∑
β 6=β′

|S(α, β) ∩ S(α, β′)|


−

∑
(α,β)6=(α′,β′)

|A(α, β) ∩A(α′, β′)| .

Let us call the three terms in the RHS of the last equation as T1, T2 and T3 respectively.
Since we know the size of each S(α, β) exactly, the value of T1 is easily obtained.

I Lemma 31 ([19]).

T1(α) :=
∑
β

|S(α, β)| = (# mons in a deriv) ·
(
n− d+ k

`

)
.

We shall be simplifying such binomial coefficients very often.

I Lemma 32. Let n and ` be parameters such that ` = n
2 (1− ε) for some ε = o(1). For any

a, b such that |a| , |b| = O(
√
n),(

n− a
`− b

)
=

(
n

`

)
· 2−a · (1 + ε)a−2b · exp(−O(b · ε2)).

Proof. The proof of the above lemma would repeatedly use the fact that n! = (n− a)! · na ·
poly(n) whenever a = O(

√
n) (see [9, Lemma 3.4]).(

n−a
`−b
)(

n
`

) = (n− a)!
n! · `!

(`− b)! ·
(n− `)!

(n− `− a+ b)!
poly
≈ 1

na
· `b · (n− `)a

(n− `)b

=
(
n
2
)a (1 + ε)a

na
· (1− ε)b

(1 + ε)b

= 2−a · (1 + ε)a−2b · exp(−O(b · ε2)).

J
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Since our of parameters would be ε = Θ
(

log d√
d

)
, the bound on T1 can be simplified as

T1(α) = (# mons in a deriv) ·
(
n

`

)
·
(

1 + ε

2

)d−k
·O(1)

= me−k ·
(
n

`

)
·
(

1 + ε

2

)d−k
·O(1)

=
(
n

`

)
·O(1).

where we used the fact that every non-zero k-th order derivative of NWd,m,e has exactly
me−k monomials and our setting of parameters.

I Remark. In this particular instance, the approximation factor was just O(1) but we would
often have to deal with situations where this factor is exp(O(log2 d)). To avoid writing this
factor of exp(O(log2 d)), we shall use ≈ of & or . to indicate that a factor exp(O(log2 d)) is
omitted.

We now move on to the calculation of T2. This is the first place where the choice of the
polynomial and parameters becomes crucial.

I Lemma 33 ([19]). For the polynomial P = NWd,m,e, if n = md and ` = n
2 (1 − ε) for

ε = Θ
(

log d√
d

)
, for any α ∈ ∆

T2(α) :=
∑
β 6=β′

|S(α, β) ∩ S(α, β′)| . m2(e−k) ·
(
n

`

)
·
(

1 + ε

2

)2d−2k
.

Proof. Recall that S(α, β) ∩ S(α, β′) is just set of all multilinear monomials µ of degree
` that are disjoint from both β and β′. Hence, for any pair of multilinear degree (d − k)
monomials β 6= β′ ∈ ∂α(P ) such that Deg(gcd(β, β′)) = t,

|S(α, β) ∩ S(α, β′)| =
(
n− 2d+ 2k + t

`

)
.

Thus, if we can count the number of pairs (β, β′) that agree on exactly t places, we can
obtain T2(α). Note that for NWd,m,e, any two β, β′ ∈ ∂α(NWd,m,e) can agree on at most
e− k places. Further, the number of pairs that agree in exactly 0 ≤ t ≤ e− k places is at
most

me−k ·
(
d− k
t

)
· (m− 1)e−k−t

as there are me−k choices for β, and
(
d−k
t

)
choices for places where they may agree, and
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(m− 1)e−k−t choices for β′ that agree with β on those t places. Thus,

T2(α) ≤
e−k∑
t=0

me−k ·
(
d− k
t

)
· (m− 1)e−k−t ·

(
n− 2d+ 2k + t

`

)

≈
e−k∑
t=0

me−k ·
(
d− k
t

)
· (m− 1)e−k−t ·

(
n

`

)
1

22d−2k−t · (1 + ε)2d−2k−t

≤ m2(e−k)
(
n

`

)(
1 + ε

2

)2d−2k
·
e−k∑
t=0

(
d− k
t

)(
2

(1 + ε)m

)t
≤ m2(e−k)

(
n

`

)(
1 + ε

2

)2d−2k
·
(

1 + 2
(1 + ε)m

)d−k
= m2(e−k) ·

(
n

`

)
·
(

1 + ε

2

)2d−2k
·O(1) as m = Ω(d).

J

Combining this with Lemma 31 and using Inclusion-Exclusion (Corollary 29), we get that
for every α ∈ ∆,∣∣∣∣∣∣

⋃
β

S(α, β)

∣∣∣∣∣∣ & T1(α) ·min
(

1, T1(α)
T2(α)

)

≈ T1(α) ·min

1,

(
2

1+ε

)d−k
me−k


≈ T1(α).

by our choice of parameters. Note that e needs to tailored very precisely to force the above
condition! If e is chosen too large or small, we get nothing from this whole exercise!

Thus by Lemma 30 and Lemma 31, we get

∑
α∈∆

β∈∂α(P )

|A(α, β)| ≥ |∆| ·

∣∣∣∣∣∣
⋃
β

S(α, β)

∣∣∣∣∣∣ ≥ |∆| · T1(α) ≈ |∆| ·
(
n

`

)
. (A.2)

Upper bounding
∑

|A(α, β) ∩A(α′, β′)|

We are still left with the task of upper bounding

T3 =
∑

(α,β)6=(α′,β′)

|A(α, β) ∩A(α′, β′)| .

As mentioned earlier, we really do not have a good handle on the set A(α, β), and certainly
not on the intersection of two such sets. Once again, we shall use a proxy that is easier to
estimate to upper bound T3.

The set A(α, β) ∩A(α′, β′) consists of multilinear monomials γ of degree `+ d− k such
that there exists multilinear monomials µ, µ′ of degree ` satisfying

γ = µβ = µ′β′,

µβ = LM(mult(µ∂α(P )))
and µ′β′ = LM(mult(µ′∂α′(P ))).
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This in particular implies that γ must be divisible by both β and β′.

I Observation 34. If Deg(gcd(β, β′)) = t, then

|A(α, β) ∩A(α′, β′)| ≤
(
n− 2d+ 2k + t

`− d+ k + t

)
.

Proof. Every monomial γ ∈ A(α, β) ∩ A(α′, β′) must be divisible by β and β′. Since
|β ∪ β′| = 2d− 2k − t, the number of choices of γ is precisely(

n− (2d− 2k − t)
(`+ d− k)− (2d− 2k − t)

)
=

(
n− 2d+ 2k + t

`− d+ k + t

)
. J

One needs a similar argument as in the case of T2 to figure out how many pairs (α, β) 6=
(α′, β′) are there with Deg(gcd(β, β′)) = t and sum them up accordingly.

I Lemma 35 ([19]). For the polynomial NWd,m,e, and n = md and ` = n
2 (1 − ε) for

ε = Θ
(

log d√
d

)
,

∑
(α,β) 6=(α′,β′)

|A(α, β) ∩A(α′, β′)| . |∆|2 ·
(
me−k

2d−k

)2

·
(
n

`

)
·

Proof. Fix a pair of derivatives α, α′. Let

T3(α, α′) :=
∑

β∈∂α(P )
β′∈∂α′ (P )

(α,β) 6=(α′,β′)

|A(α, β) ∩A(α′, β′)| .

As before, we shall first count the number of pairs of monomials β ∈ ∂αP and β′ ∈ ∂α′P
such that gcd(β, β′) = t. Note that since α may differ from α′, we could potentially have
gcd(β1, β2) = e. Once again, this is easily seen to be at most

me−k ·
(
d− k
t

)
· (m− 1)e−k−t.

Therefore, using Observation 34,

T3(α, α′) ≤
e∑
t=0

me−k · (m− 1)e−k−t
(
d− k
t

)(
n− 2d+ 2k + t

`− d+ k + t

)

≈
e∑
t=0

me−k · (m− 1)e−k−t
(
d− k
t

)
·
(
n

`

)(
1
2

)2d−2k−t
(1 + ε)t

≤ m2(e−k)

22(d−k) ·
(
n

`

)
·
(

1 + 2(1 + ε)
m

)d−k
≈

(
me−k

2d−k

)2

·
(
n

`

)
.

=⇒ T3 . |∆|2 ·
(
me−k

2d−k

)2

·
(
n

`

)
.

J
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Recalling that we have chosen our parameters so that

me−k

2d−k ≈
(

1
1 + ε

)d−k
and |∆| = (1 + ε)2(d−k),

the above equation reduces to

T3 =
∑

(α,β)6=(α′,β′)

|A(α, β) ∩A(α′, β′)| . |∆| ·
(
n

`

)
.

Combining with (A.2), we obtain the required bound for |
⋃
A(α, β)| via Inclusion-Exclusion

(Corollary 29).

ΓPSD
k,` (NWd,m,e) ≥

∣∣∣∣∣∣
⋃
α,β

A(α, β)

∣∣∣∣∣∣ &

(
n

`

)
· (1 + ε)2d−2k.

The only thing left to observe is that by Lemma 32,(
n

`+ d− k

)
≈

(
n

`

)
· (1 + ε)2d−2k,

and that completes the proof of Lemma 18. J
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Abstract
In this paper we study the identity testing problem of arithmetic read-once formulas (ROF) and
some related models. A read-once formula is formula (a circuit whose underlying graph is a
tree) in which the operations are {+,×} and such that every input variable labels at most one
leaf. We obtain the first polynomial-time deterministic identity testing algorithm that operates
in the black-box setting for read-once formulas, as well as some other related models. As an
application, we obtain the first polynomial-time deterministic reconstruction algorithm for such
formulas. Our results are obtained by improving and extending the analysis of the algorithm of
[52].

1998 ACM Subject Classification F.2.0 Analysis of Algorithms and Problem Complexity

Keywords and phrases Derandomization, Read-Once Formulas, Identity Testing, Arithmetic
Circuits, Reconstruction

Digital Object Identifier 10.4230/LIPIcs.CCC.2017.32

1 Introduction

In this paper we study the problem of Polynomial Identity Testing (PIT): given an arithmetic
circuit C over a field F, with input variables x1, x2, . . . , xn, determine whether C computes
the identically zero polynomial. Given its connections to a wide range of problems, PIT is
considered a central problem in algebraic complexity theory and algorithms design. Particular
instances include: perfect matchings in graphs [40, 43, 20], primality testing [2], IP = PSPACE
[41, 48] the PCP theorem [10, 9] and many more. PIT is one of a few natural problems
which have a simple efficient randomized algorithm [18, 47, 55] but lack a deterministic one.
Indeed, it has been a long standing open question to come up with an efficient deterministic
algorithm for this problem.

In this paper we consider the PIT problem in the black-box setting. In this setting, one is
not given the full description of the circuit C but only allowed black-box (oracle) access to
C. The problem of derandomizing identity testing in this setting reduces to that of finding
for every s an explicit set of points H ⊆ Fn of size poly(s) such that any non-zero circuit of
size s does not vanish on H. We refer to such sets as hitting sets. Indeed, the randomized
algorithm of [18, 47, 55] provides an exponential-size hitting set. Furthermore, applying
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standard probabilistic arguments one can show existence of “small” hitting sets. Yet, coming
up with an explicit hitting set is believed to be very difficult task as it would immediately
imply explicit exponential lowers bounds [30, 1].

Yet, for several restricted classes of arithmetic circuits, efficient deterministic black-box
PIT algorithms were found. For example, efficient black-box PIT algorithms were shown for
depth-2 arithmetic circuits [13, 36, 39] and depth-3 arithmetic circuits with bounded top fan-
in (also known as ΣΠΣ(k) circuits) [19, 35, 34, 11, 45, 33, 46, 3]. There has also been a lot of
progress on PIT for restricted classes of depth-4 circuits [44, 11, 12, 3, 32, 26, 7, 42, 52, 37, 38].
Another body of research has been focused on PIT algorithms for bounded-read models.
That is, classes of circuits where each variable appears some bounded number of times
[22, 4, 24, 23, 21, 7, 52, 28, 6, 27, 20], with the simplest case being the read-once formulas.

A read-once formula (ROF for short) is an arithmetic formula (i.e. a tree) in which the
operations are {+,×} and such that every input variable labels at most one leaf. These
formulas can be thought of as the smallest formulas that depend on all their variables and the
simplest non-trivial subclass of multilinear formulas. Although ROFs form a very restricted
model of computation they have received a lot of attention in both the Boolean [31, 8, 17]
and the algebraic [29, 16, 14, 15, 51, 52, 54] worlds.

While ROFs have a trivial polynomial (and, in fact, linear-time) white-box PIT algorithm,
the first sub-exponential time nO(

√
n) black-box PIT algorithm for ROFs was given in [49].

Later on, in [52]1 the result was improved to nO(logn) via another algorithm. A different
analysis for the latter algorithm, resulting in roughly the same run time, was given in [7]. Yet,
despite the rich body of work devoted to the problem, prior to our work no polynomial-time
black-box PIT algorithm was known even for ROFs. In this paper we give the first black-box
PIT algorithm for ROFs, and some related classes of formulas, thus achieving a complete
derandomization of the PIT problem for these classes. For more information on PIT we refer
the reader to the survey [53].

It is important to point out that while PIT asks whether the resulting polynomial is
identically zero as a formal sum of monomials, some non-identically zero polynomials might
evaluate to the zero function. For example, x5 − x will always evaluate to zero over the field
of five elements. For this reason we will allow our algorithm to evaluate the polynomial on
elements from a polynomially large extension field of F. In [52] it was shown one cannot
achieve polynomial-time black-box PIT algorithms if |F| = o(n/ logn).

1.1 Our Results
In this section we describe and discuss our results.. In fact, our results hold for the slightly
richer class of preprocessed read-once formulas. A preprocessed ROF (PROF for short) is
a ROF in which we are allowed to replace each variable xi with a univariate polynomial
Ti(xi). A polynomial P (x̄) is a Preprocessed Read-Once Polynomial (PROP for short) if
it can be computed by a preprocessed read-once formula. This PROPs also generalize the
“sum-of-univariates” model. (see Section 3.2 for a formal definition). We begin with our main
result: polynomial-time black-box PIT algorithm for PROFs.

I Theorem 1. Let n, d ∈ N. There exist a deterministic algorithm that given black-box
(oracle) access to a preprocessed read-once formula Φ on n variables and individual degrees
(of the preprocessing) at most d, checks whether Φ ≡ 0. The running time of the algorithm is
polynomial in n and d.

1 Conference version first appeared in [50].
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In [52] it was shown how to extend a PIT algorithm for a single PROF into a PIT
algorithm for a sum of PROFs. By plugging in our main result we obtain a black-box PIT
algorithm for sums of PROFs.

I Theorem 2. Let k, n, d ∈ N. There exist a deterministic algorithm that given black-box
(oracle) access to Φ = Φ1 + . . .+ Φk, where the Φi-s are preprocessed read-once formulas in
n variables, with individual degrees at most d, checks whether Φ ≡ 0. The running time of
the algorithm is (nd)O(k).

Observe that for a fixed k ∈ N the algorithm runs in polynomial time with respect to
n and d. Furthermore, observe that if H is hitting set for a sum of two PROPs then H
is an interpolating set for a single PROP. That is, the values of a single PROP P on H
contain enough information to uniquely identify P . Indeed, a consequence of Theorem 2 is
an interpolating set of polynomial size for PROPs. However in general, H does not provide
us with an efficient algorithm to reconstruct a corresponding PROF.

In [16], a randomized polynomial-time reconstruction algorithm for ROFs was given.
In [51], the algorithm was extended to PROFs. Moreover, it was shown how to convert
a black-box PIT algorithm into a reconstruction algorithm paying a polynomial overhead.
Indeed, by plugging in the result of [52], the first deterministic sub-exponential (and, in
fact, quasi-polynomial) time reconstruction algorithm for PROFs was given. By plugging in
our main result, we achieve a complete derandomization of the reconstruction algorithm by
obtaining a deterministic polynomial-time reconstruction algorithm for PROFs.

I Theorem 3. There exist a deterministic algorithm that given black-box (oracle) access to a
preprocessed read-one formula Φ, on n variables and individual degrees at most d, reconstructs
Φ. Namely, the algorithm outputs a PROF Φ̂ that computes the same polynomial. The
running time of the algorithm is polynomial in n and d.

1.2 Organization
The paper is organized as follows. In Section 2 we give the basic definitions and notations.
In Section 3 we formally introduce ROFs and its generalizations along with some structural
properties, and in Section 3.3 we discuss the PIT algorithm of [52]. In Section 3.4 we prove
some additional properties of the algorithm, which is the main technical contribution of the
paper. Next, in Section 4 we give our main result, thus proving Theorem 1. We discuss the
applications of our main result in Section 5 proving Theorems 2 and 3. We conclude the
paper with some open questions in Section 6.

2 Preliminaries

For a positive integer n, let [n] denote the set {1, . . . , n}. We now give some definitions that
apply to polynomials P,Q ∈ F[x1, . . . , xn]. For a polynomial P , a variable xi, and α ∈ F, let
P |xi=α denote the polynomial that results upon setting xi = α. We say that P depends on
xi if there exist ā, b̄ ∈ Fn that differ in only the i-coordinate such that P (ā) 6= P (b̄). We
denote var(P ) ∆= {i : P depends on xi}. Intuitively, P depends on xi if xi appears when P
is written as a sum of monomials.

We say that P is a homogeneous polynomial if all monomials in P has the same total
degree. For i ∈ N we define Hi[P ] as the homogeneous part of degree i of P . That is, all the
monomials of total degree i that appear in P . If P does not have monomials of degree i then
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Hi[P ] ≡ 0. We say that P and Q are similar and denote P ∼ Q if there exist α ∈ F \ {0}
such that α · P = Q.

In order to actually calculate the complexity of our algorithm we need to define a formal
model of computation for polynomials.

I Definition 4 (Arithmetic formula). An arithmetic formula is a binary tree where each leaf
is labeled with a variable xi ∈ {x1, . . . , xn} and each internal node, called a gate, is labeled
with an operation + or ×. Additionally, each leaf and node are labeled with some (α, β) ∈ F2.
The tree is evaluated by recursively calculating the values of the left subtree P1 and the right
subtree P2 and then combining them by α(P1 op P2) + β where op is the operation at the
top gate.

The efficiency of a formula over a set of formulas C is measured by the number of gates
in C. Thus when we say polynomial time, we mean polynomial in the number of gates.
Often times, we will implicitly associate a class of formulas C with the class of polynomials
computed by these formulas.

We consider formulas in the black-box (or oracle) setting. That is, the algorithm cannot
directly look at the formula and is only allowed to query the polynomial computed by the
formula on Fn. Hereafter, we assume that an evaluation query can be carried out in O(1)
time. In case F is small, we allow to query the formula on a polynomially-large extension
field of F.

2.1 Generators and Hitting Sets
Our black-box PIT algorithms use the notion of generators. In this section, we formally define
this notion, describe a few of its useful properties and give the connection to hitting sets.
Intuitively, a generator G for a polynomial class C, is a function that stretches t independent
variables into n � t dependent variables that can be plugged into any polynomial P ∈ C
without causing it to vanish. Recall that a hitting set H ⊆ Fn for a class of polynomials C is
a set such that for any nonzero polynomial P ∈ C, there exists ā ∈ H, such that P (ā) 6= 0.

I Definition 5 (Hitting Set). Let C be a class of polynomials in F[x1, . . . , xn]. A set H is
called a hitting set for C provided that ∀P ∈ C with P 6≡ 0 we have that P |H 6≡ 0.

This leads us to a basic algorithm for PIT.

I Lemma 6. Let C be a class of polynomials in F[x1, . . . , xn] and let H be a hitting set for
C. Then there exists a deterministic PIT algorithm for C that runs in time O(|H|).

The following generalization of the fundamental theorem of algebra provides hitting sets
of exponential size for every polynomial. A proof can be found in [5].

I Lemma 7. Let P 6≡ 0 ∈ F[x1, . . . , xn] and suppose the individual degree of any variable in
P is bounded by some d ∈ N. Pick S ⊆ F with |S| > d. Then P |Sn 6≡ 0.

I Remark. The precondition of the lemma implies that |F| > d. In case that F is small, this
assumption is met by choosing elements from an appropriately large extension field of F.

A related notion is the notion of generators. Many hitting sets are constructed by means
of generators.

I Definition 8 (Generator). Let C be a class of polynomials over F. A polynomial map
G : Ft → Fn is a generator for C provided that ∀P 6≡ 0 ∈ C we have P (G) 6≡ 0.
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Intuitively, a generator G for C is a polynomial mapping that has a hitting set for C in
its image. More specifically, Lemma 7 allows us to convert a generator into a hitting set by
observing that a polynomial composed with a polynomial map results in another polynomial.
Such composition typically reduces the number of variables that the polynomial depends
on, but it may increase the total degree. Thus, since the size of the hitting set produced by
Lemma 7 depends on both parameters, we want to find a generator that reduces the number
of variables without drastically increasing its degree.

3 Read-Once Formulas

In this section we discuss our computational model. We first consider the basic model of
read-once formulas and cover some of its main properties. Then, we introduce the model of
preprocessed-read-once formulas and give its corresponding properties.

3.1 Read-Once Formulas and Read-Once Polynomials

Most of the definitions that we give in this section are from [29] and [52] or some small
variants. We start by formally defining the notions of a read-once formula and a read-once
polynomial.

I Definition 9 (Read-Once Formula). A read-once formula (ROF) is an arithmetic formula
where each variable appears at most once. A polynomial P (x̄) is a read-once polynomial
(ROP for short) if it can be computed by a read-once formula.

Clearly, ROPs form a subclass of multilinear polynomials. In addition, note that the
number of gates in a ROF is at most twice the number of variables. This means that our
complexity scales with n, so we need only be concerned about how the runtime of our
algorithm scales with respect to the number of variables. Thus, our ideal efficiency for an
algorithm is nO(1). The next lemma also follows easily from the definition.

I Lemma 10 (ROP Structural Lemma). Every ROP P (x̄) that depends on at least two
variables can be presented in exactly one of the following forms:
1. P (x̄) = P1(x̄) + P2(x̄),
2. P (x̄) = P1(x̄) · P2(x̄) + c. ,
where P1 and P2 are non-constant, variable-disjoint ROPs and c ∈ F is a constant.

3.2 Preprocessed Read-Once Polynomials

In this section we extend the model of ROFs by allowing a preprocessing step of the input
variables. While the basic model is read-once in its variables, the extended model can be
considered as read-once in univariate polynomials. In addition, this model generalizes the
“sum-of-univariates” model, which, in particular, contains the “sum-of-squares” model.

I Definition 11. A preprocessing is a transformation T (x̄) : Fn → Fn of the form T (x̄) ∆=
(T1(x1), T2(x2), . . . , Tn(xn)) such that each Ti is a non-constant univariate polynomial.

Notice that preprocessings do not affect the PIT problem in the white-box setting as for
every n-variate polynomial P (ȳ) it holds that P (ȳ) ≡ 0 if and only if P (T (x̄)) ≡ 0. We now
give a formal definition and list some immediate properties.
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I Definition 12. A preprocessed arithmetic read-once formula (PROF for short) over a field
F in the variables x̄ = (x1, . . . , xn) is a binary tree whose leafs are labelled with non-constant
univariate polynomials T1(x1), T2(x2), . . . , Tn(xn) (all together forming a preprocessing) and
whose internal nodes are labelled with the arithmetic operations {+,×} and with a pair of
field elements (α, β) ∈ F2. Each Ti can label at most one leaf. The computation is performed
in the following way. A leaf labelled with the polynomial Ti(xi) and with (α, β) computes
the polynomial α · Ti(xi) + β. If a node v is labelled with the operation op and with (α, β),
and its children compute the polynomials Φv1 and Φv2 then the polynomial computed at v is
Φv = α · (Φv1 op Φv2) + β.

A polynomial P (x̄) is a Preprocessed Read-Once Polynomial (PROP for short) if it can
be computed by a preprocessed read-once formula. A Decomposition of a polynomial P is a
pair Q(z̄), T (x̄) such that P (x̄) = Q(T (x̄)) when Q is a ROP and T is a preprocessing. An
immediate consequence from the definition is that each PROP admits a decomposition. The
following lemma is the PROPs analog of Lemma 10.

I Lemma 13 (PROP Structural Lemma). Every PROP P (x̄) with |var(P )| ≥ 2 can be
presented in one of the following forms:
1. P (x̄) = P1(x̄) + P2(x̄),
2. P (x̄) = P1(x̄) · P2(x̄) + c,
where P1 and P2 are non-constant, variable-disjoint PROPs and c ∈ F is a constant.

3.3 The Algorithm of [52]
In this paper we improve the complexity analysis of the PIT algorithm of [52]. We begin by
describing their algorithm. The heart of the algorithm is a construction of polynomial map
Gn,t which is shown to be a generator for PROPs for a certain range of parameters.

As in [52], we fix a set A = {α1, α2, . . . , αn} ⊆ F of n distinct elements. It is also
assumed that in case that F is small, we have access to some extension field of F with more
than n elements. As was shown in [52], this assumption is necessary in order to achieve a
polynomial-time algorithm.

I Definition 14 (The generator of [52]). Let t ∈ N. For each i ∈ [n] let Li(y) denote

the i-th Lagrange Interpolation polynomial. Formally: Li(y) ∆=
∏

j 6=i
(y−αj)∏

j 6=i
(αi−αj)

. That is,

Li(y) is a degree n − 1 polynomial satisfying: Li(αj) = 1 when j = i and Li(αj) = 0
when j 6= i. For each i ∈ [n], let Git(y1, . . . , yt, z1, . . . , zt)

∆=
∑t
k=1 Li(yk) · zk. Finally, let

Gn,t(y1, . . . , yt, z1, . . . , zt)
∆=
(
G1
t (y1, . . . , zt), . . . , Gnt (y1, . . . , zt)

)
.

Gn,t can be seen as a sum of t variable-disjoint copies of Gn,1. This can be seen as the
algebraic analogue of t-wise independent bits. The main part of the analysis of the algorithm
is to establish that for every n ∈ N the map Gn,logn is a generator for PROPs on n variables.

I Lemma 15 ([52]). Let P ∈ F[x1, . . . , xn] be a non-constant PROP. Then P (Gn,logn) is
non-constant.

The intuition behind the proof is that a PROP can be written as either a sum or a
product of two variable-disjoint polynomials (Lemma 13). Hence, (at least) one of these
polynomials contains at most half of the variables. The map Gn,t allows to “move” to a
smaller polynomial by “shaving” a copy of Gn,1. Finally, applying Lemma 7 one could show
that if Gn,t is a generator for a class of polynomials, then it can be converted into a relatively
small hitting set for that same class.
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I Lemma 16. Let P ∈ F[x1, . . . , xn] be a polynomial of degree d such that P (Gn,t) 6≡ 0 for
some t, d ∈ N. Then P has a hitting set of size (nd)O(t).

Consequently, the result of Lemma 15 translates into a hitting set of size (nd)O(logn) for
PROPs. We note that the generator of [52] has been used as an ingredient in some subsequent
PIT algorithms (e.g. [21, 7, 6, 25]).

3.4 Our Technical Contribution
In this section we explore additional properties of the generator of [52]. The main observation
is a structural property of the generator when applied to a polynomial that depends only on
a “small” subset of variables. This is the main technical contribution of the paper.

Let A = {α1, α2, . . . , αn} be the set of elements that is used to define the generator.

I Definition 17. For I ⊆ [n], define ΦI(y) ∆=
∏
i∈I

(y − αi). For notational convenience,

Φ∅(y) ∆= 1.

In order to provide some intuition for the definition, we observe that for any i ∈ [n] we
have that Li ∼ Φ[n]\{i} .

I Lemma 18. Let P ∈ F[x1, . . . , xn] be a homogeneous polynomial of a total degree d and
let δ be an upper bound on the individual degrees of all variables xi in P . Then there exists a
polynomial P ′(y) of degree at most δ · |var(P )| − d such that

P (Gn,1(y, z)) = zd · Φd−δ[n] (y) · P ′(y) · Φδ[n]\var(P )(y).

In particular, there exist a polynomial P ′(y) of degree at most d · (|var(P )| − 1) such that

P (Gn,1(y, z)) = zd · P ′(y) · Φd[n]\var(P )(y).

Proof. Let V ⊆ [n] and let m(x̄) = α
∏
i∈V

xei
i be a monomial s.t.

∑
i∈V

ei = d and ∀i ∈ V : 0 ≤

ei ≤ δ.

m (Gn,1(y, z)) = αzd ·
∏
i∈V

Lei
i (y) = βzd ·

∏
i∈V

Φei

[n]\{i}(y) = βzd · Φd[n](y)/
∏
i∈V

(y − αi)ei =

βzd · Φd−δ[n] (y) · ΦδV (y)/
∏
i∈V

(y − αi)ei · Φδ[n]\V (y) =

zd · Φd−δ[n] (y) · β
∏
i∈V

(y − αi)δ−ei · Φδ[n]\V (y).

Take m′(y) = β
∏
i∈V (y−αi)δ−ei and observe that degree of m′(y) is δ · |V |−d. By definition,

the polynomial P consists of a sum of such monomial where V = var(P ). Therefore, the first
claim follows by a linearity argument. The second claim follows by observing that d is an
upper bound on the individual degrees of all variables xi in P , so we can set δ = d. J

4 Main Result

In this section we prove our main result Theorem 1. We begin by showing that P (Gn,1) hits
sums of univariate polynomials. This proof is available in [52] but we reproduce it here for
completeness.
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I Lemma 19. Let P ∈ F[x1, . . . , xn] be a non-constant polynomial of the form P =
n∑
i=1

Ti(xi).

Then P (Gn,1(y, z)) is non-constant.

Proof. Pick xi such that Ti(xi) is non-constant. Observe that: P (Gn,1)|y=αi = Ti(z) +∑
j 6=i

Tj(0). This is a non-constant polynomial and so P (Gn,1) is non-constant as well. J

We now move to the proof our main result. We want to show that Gn,1 is a generator
for the set of PROPs. The idea is to proceed by induction using Lemma 13. Recall that
for any P ∈ F[x1, . . . , xn] and i ∈ N, Hi[P ] denotes the homogeneous part of degree i of P .
Consequently, we can write P =

∑d
i=0Hi[P ].

I Theorem 20. Let P ∈ F[x1, . . . , xn] be a non-constant PROP. Then P (Gn,1) is non-
constant.

Proof. Let d denote the total degree of P . We induct on m = |var(P )|. The base case where
m = 1 follows from Lemma 19. Now, suppose that m ≥ 2. By the PROP Structural Lemma
(Lemma 13) we have two cases.

1. P = P1 · P2 + c. Note that |var(P1)|, |var(P2)| ≤ m− 1, so by the inductive hypothesis
P1(Gn,1) and P2(Gn,1) are non-constant polynomials and hence their product is non-
constant as well. Adding a constant does not affect this.

2. P = P1 +P2. For j = 1, 2: we can write Pj =
d∑
i=0

Pi,j where Pi,j = Hi[Pj ]. By Lemma 18,

for each 0 ≤ i ≤ d and j = 1, 2 there exists a polynomial P ′i,j(y) of degree at most
i · (|var(Pi,j)| − 1) such that

Pj(Gn,1(y, z)) =
d∑
i=0

Pi,j(Gn,1(y, z)) =
d∑
i=0

zi · P ′i,j(y) · Φi[n]\var(Pi,j)(y)

and hence

P (Gn,1(y, z)) =
d∑
i=0

zi ·
(
P ′i,1(y) · Φi[n]\var(Pi,1)(y) + P ′i,2(y) · Φi[n]\var(Pi,2)(y)

)
. (1)

As before, by the inductive hypothesis P1(Gn,1) and P2(Gn,1) are non-constant polyno-
mials. Therefore, there exist 1 ≤ k ≤ d such that

zk · P ′k,1(y) · Φk[n]\var(Pk,1)(y) 6≡ 0

and in particular P ′k,1(y) 6≡ 0. Let us denote Vj = var(Pk,j) and W = [n] \ (V1 ∪ V2).
Consider the expression that corresponds to the zk term in Equation 1:

P ′k,1(y) · Φk[n]\var(Pk,1)(y) + P ′k,2(y) · Φk[n]\var(Pk,2)(y) (2)

As Pk,1 and Pk,2 are variable-disjoint, Equation 2 can be rewritten as:

P ′k,1(y) · ΦkV2∪W (y) + P ′k,2(y) · ΦkV1∪W (y) =
ΦkW (y) ·

(
P ′k,1(y) · ΦkV2

(y) + P ′k,2(y) · ΦkV1
(y)
)

The last equality follows from the properties of Φ (see Definition 17).
We claim that the obtained expression is non-constant. To this end, it sufficient to
show that P ′k,1(y) · ΦkV2

(y) + P ′k,2(y) · ΦkV1
(y) 6≡ 0. Assume the contrary. We obtain that
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P ′k,1(y) · Φk
V2

(y) = −P ′k,2(y) · Φk
V1

(y). As V1 and V2 are disjoint sets, ΦV1(y) and ΦV2(y)
have no common roots. Therefore, it must be the case that ΦkV1

divides P ′k,1. As P ′k,1 6≡ 0,
we get that

deg
(
P ′k,1

)
≥ deg

(
ΦkV1

)
= k |V1|

while by Lemma 18, P ′k,1(y) is a polynomial of degree at most k · (|V1| − 1). Consequently,
the coefficient of zk in P (Gn,1(y, z)) is non-constant and the claim follows. J

Theorem 1 follows by combining Theorem 20 with Lemma 16.

5 Applications

In this section we show two application for our main result, proving Theorems 2 and 3. The
first application is testing whether several PROPs sum up to the zero polynomial. To this
end, we require the following result which shows that a generator for the class of PROPs can
be extended to yield a generator for the class of sums of PROPs.

I Lemma 21 ([52]). Let Gn be a generator for PROPs on n variables. Then for any k ∈ N,
Gn +Gn,3k is a generator for sums of k PROPs on n variables.

I Remark. As both Gn and Gn,3k represent polynomial maps with the same output length,
the sum G+Gn,3k should be interpreted as component-wise sum, where we implicitly assume
the variables of Gn and Gn,3k have been relabelled so as to be disjoint.

The next corollary follows by combining Lemma 21 with Theorem 20 and the properties
of Gn,t (see Definition 14).

I Corollary 22. For any k, n ∈ N, the map Gn,3k+1 is a generator for sums of k PROPs on
n variables.

Theorem 2 follows by applying Lemma 16. Observe that if H is hitting set for a sum of
two PROPs then H is an interpolating set for a single PROP. That is, the values of a single
PROP P on H contain enough information to uniquely identify P . Indeed, a consequence
of Theorem 2 is an interpolating set of polynomial size for PROPs. However in general, H
does not provide us with an efficient algorithm to reconstruct a corresponding PROF. In [51]
it was shown how to use an interpolating set to devise a reconstruction algorithm with a
polynomial overhead.

I Lemma 23 ([51]). Let n, d ∈ N. There exists a deterministic algorithm that given a hitting
set Hn,d for PROPs on n variable and degree at most d, and black-box (oracle) access to
a PROP P as above, outputs a PROF Φ that computes P , in time polynomial in n, d and
|Hn,d|.

Combining the Lemma with Theorem 1 results in Theorem 3.

6 Conclusions & Open Questions

In this paper we present the first polynomial-time black-box identity testing and reconstruction
algorithms for read-once formulas, which form a subclass of multilinear formulas. In [7],
quasi-polynomial-time and polynomial-time PIT algorithms were given for multilinear read-k
formulas in the black-box and the white-box settings, respectively for constant values of k.
At a high-level, both algorithms go by alternating the following two steps:
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Step 1: Reduce PIT of a read-(k + 1) formula to PIT of sum of two read-k formulas.
Step 2: Reduce PIT of sum of two read-k formulas to PIT of a (single) read-k formula.

While Step 2 introduces an overhead of (roughly) nkO(k) in both settings, the gap in the
final complexity results from the overhead introduced by Step 1. Indeed, in the whitebox
setting, the overhead is poly(n, k) while in black-box setting the overhead is nO(logn).
Moreover, for k = 0 the the analysis of Step 2 can be seen as a different analysis of the
black-box PIT algorithm for ROFs of [52], resulting in roughly the same run time. We hope
that the ideas presented in this paper could be extended further to improve the analysis of
the black-box PIT algorithms of [7], and, perhaps lead to new PIT algorithms.

Some open questions: can one obtain a polynomial-time black-box PIT algorithm for
multilinear read-k formula with a constant k? What about k = 2? I.e. multilinear read-
twice formulas. Even more specifically, can one show a black-box reduction from a PIT
instance of a multilinear read-twice formula to polynomially-many PIT instances of sums of
constantly-many read-once formulas, introducing only a polynomial overhead?

Acknowledgments. The authors would like to thank the anonymous referees for useful
comments.
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Abstract
We consider the problem of commutative rank computation of a given matrix space, B ⊆ Fn×n.
The problem is fundamental, as it generalizes several computational problems from algebra and
combinatorics. For instance, checking if the commutative rank of the space is n, subsumes
problems such as testing perfect matching in graphs and identity testing of algebraic branch-
ing programs. An efficient deterministic computation of the commutative rank is a major open
problem, although there is a simple and efficient randomized algorithm for it. Recently, there
has been a series of results on computing the non-commutative rank of matrix spaces in de-
terministic polynomial time. Since the non-commutative rank of any matrix space is at most
twice the commutative rank, one immediately gets a deterministic 1

2 -approximation algorithm
for the computation of the commutative rank. This leads to a natural question of whether this
approximation ratio can be improved. In this paper, we answer this question affirmatively.

We present a deterministic Polynomial-time approximation scheme (PTAS) for computing
the commutative rank of a given matrix space. More specifically, given a matrix space B ⊆ Fn×n

and a rational number ε > 0, we give an algorithm, that runs in time O(n4+ 3
ε ) and computes a

matrix A ∈ B such that the rank of A is at least (1− ε) times the commutative rank of B. The
algorithm is the natural greedy algorithm. It always takes the first set of k matrices that will
increase the rank of the matrix constructed so far until it does not find any improvement, where
the size of the set k depends on ε.
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1 Introduction

In this paper, we consider the problem of computing the maximum rank of any matrix
which lies in the linear span of m given input n × n matrices B1, B2, . . . , Bm over some
underlying field F. This maximum rank is also called the commutative rank of the matrix
space B = 〈B1, B2, . . . , Bm〉. This problem was introduced by Edmonds in [3]. Any matrix
spanned by B1, B2, . . . , Bm can be written as the homomorphic image of B =

∑m
i=1 xiBi

under the substitution homomorphism, where we think of the xi as indeterminates. It is not
hard to see that the commutative rank of the B is same as the rank of B over the field of
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33:2 Deterministic PTAS for Commutative Rank

rational functions F(x1, x2, . . . , xm), provided that F is large enough. For this reason, this
problem is also called the symbolic matrix rank sometimes. Since the rank of B is the size of
the largest nonzero minor in B and any minor of B is a polynomial of degree at most n in
the variables x1, x2, . . . , xm, by using the Schwartz-Zippel lemma [22, 18], one immediately
gets a randomized algorithm for computing the commutative rank of B if the size of the field
F is large enough. The maximum matching problem in bipartite and general graphs is a
special case of the commutative rank problem, as shown in [13]. Even the linear matroid
parity problem is special case of the commutative rank problem [17].

Valiant [20] showed that a formula of size s can be written as a projection of the
determinant of an (s+ 2)× (s+ 2) matrix having linear polynomials as entries. This shows
that checking if a given matrix space is full rank is as hard as polynomial identity testing of
formulas. In fact, it is even known that algebraic branching programs are computationally
equivalent to the polynomials computed by determinants of a polynomial sized matrix, see
[21, 19, 16]. So the problem of deciding whether a given matrix space is full rank is as hard
as the polynomial identity testing of arithmetic branching programs. Algebraic branching
programs are conjectured to be a stronger model for computing polynomials than formulas.

We remark that if the underlying field F is not large enough, then this problem is hard.
Buss et al. proved that the problem is NP-complete in [1], when the field F is of constant size.

1.1 Previous work
Since the general case of computing the commutative rank is as hard as identity testing for
polynomials given as algebraic branching programs, several special cases of matrix spaces
have been considered. There has been a lot of study in the case when all the matrices Bi
are of rank 1 [14, 9, 10]. Deterministic polynomial time algorithms were shown for this case
in [9, 10]. The case when the matrices Bi are skew-symmetric of rank 2 is also of special
interest as it was shown in [13] that the linear matroid parity problem is a special case of
computing the commutative rank when Bi are skew-symmetric of rank 2. Many deterministic
polynomial time algorithms have been demonstrated for this case, see [12, 6, 15].

Analogous to the notion of commutative rank of a matrix space, there is also a notion
of non-commutative rank (see the next section for a precise definition). The matrix spaces
for which commutative rank and non-commutative rank are equal are called compression
spaces [4]. A deterministic polynomial time algorithm for checking if a compression space
is of full rank (over the field Q) was discovered by Gurvits in [8]. The algorithm of [8] was
analysed more carefully in [7] to demonstrate that the algorithm described in [8] actually
is a deterministic polynomial time algorithm to check if a given matrix space has full non-
commutative rank. This algorithm works over Q only. Ivanyos et al. [11] extended this
results to arbitrary fields, using a totally different algorithm. It was shown in [5] that non-
commutative of any matrix space is at most twice the commutative rank. So the algorithms
in [7, 11] are deterministic polynomial time algorithms which compute a 1

2 -approximation to
the commutative rank. Approximating the commutative rank of a matrix space can be seen
as a relaxation of the polynomial identity testing problem. Improving on the 1

2 -approximation
was formulated as an open problem in [7].

1.2 Our results
We here improve on this approximation performance. We give a deterministic polynomial
time approximation scheme (PTAS) for approximating the commutative rank. That is,
given a basis B1, . . . , Bm of our matrix space B of n× n-matrices and some rational number
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ε > 0, our algorithm outputs a matrix A ∈ B whose rank is at least (1 − ε) · r, where
r = max{rank(B) | B ∈ B} provided that the size of the underlying field is larger than n.
Our algorithm performs O(n4+ 3

ε ) many arithmetic operations, the size of each operand is
linear in the sizes of the entries of the matrices B1, . . . , Bm. So for fixed ε, the running time
is polynomial in the input size.

Our algorithm is the natural greedy algorithm: Assume we have constructed a matrix A
so far. Then the algorithm tries all subsets of B1, . . . , Bm of size k, where k depends on ε,
and tests whether we can increase the rank of A by adding an appropriate linear combination
of Bi1 , . . . , Bik . The main difficulty is to prove that when this algorithm stops, A is an
(1− ε)-approximation. The analysis uses so-called Wong sequences.

For polynomial identity testing, one has to test whether a matrix has full rank or rank
≤ n− 1. Therefore, our PTAS does not seem to help getting a polynomial time algorithm
for polynomial identity testing.

1.3 Organization of the paper
Section 2 describes the basic setup of the problem and relevant definitions and techniques.
It describes the basic notations, definitions and related lemmas and theorems known. In
Section 3, we first present a greedy algorithm which computes a 1

2 -approximation of the
commutative rank in deterministic polynomial time. It describes the basic ideas of our
algorithm but is much easier to analyse. This motivates our final algorithm which can
compute arbitrary approximations to the commutative rank in deterministic polynomial
time. To extend this 1

2 -approximation to arbitrary approximation, we introduce the notion
of Wong sequences and Wong index in Section 4. Section 5 studies the relation between
commutative rank and Wong index. In this section, we prove that the higher the Wong
index is of a given matrix, the closer its rank is to the commutative rank of the given matrix
space. This allows us to extend Algorithm 1 to arbitrary approximation by considering larger
subsets. The algorithm for arbitrary approximation of the commutative rank and its proof
of correctness and desired running time are given in Section 6. We conclude by giving some
tight examples in Section 7.

2 Preliminaries

Here, we introduce the basic definitions and notations which are needed to fully describe our
algorithm.
1. If V and W are vector spaces, then we use notation V ≤ W to denote that V is a

subspace of W .
2. We use Fn×n to denote the set of all n× n matrices over a field F.
3. Im(A) is used to denote the image of a matrix A ∈ Fn×n.
4. Ker(A) is used to denote the kernel of a linear map A ∈ Fn×n.
5. dim(V ) is used to denote the dimension of a vector space V .
6. For any subset S of a vector space U , 〈S〉 denotes the linear span of S.
7. For A ∈ Fn×n and a vector space U ≤ Fn, the image of U under A is A(U) = AU =
{A(u) | u ∈ U}.

8. The preimage of W ≤ Fn under A is defined as A−1(W ) = {v ∈ V | A(v) ∈W}.
9. The set {0, 1, 2, . . . , n} of non-negative integers between 0 and n is denoted by [n].
10. We use the notation Ir to denote the r × r identity matrix.
11. Throughout the paper, we would assume that the size of the underlying field is more

than n, the size of the input matrices, i.e., |F| > n.

CCC 2017
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Below are some of the basic definitions which we shall need.

I Definition 1 (Matrix space). A vector space B ≤ Fn×n is called a matrix space.

We would usually deal with matrix spaces whose generating set is given as the input.
More precisely, we would be given a matrix space B = 〈B1, B2, . . . , Bm〉 ≤ Fn×n, where we
get the matrices B1, B2, . . . , Bm as the input. Note that without loss of generality, one can
assume that m ≤ n2.

I Definition 2 (Commutative rank). The maximum rank of any matrix in a matrix space B
is called the commutative rank of B. We use notation rank(B) to denote this quantity.

We shall use the same notation rank(A) for denoting the usual rank of any matrix. Note
that the rank of a matrix A is same as the commutative rank of the matrix space generated
by A, that is, rank(A) = rank(〈A〉).

I Definition 3 (Product of a matrix space and a vector space). The image of a vector space
U under a matrix space A is the span of the images of U under every A ∈ A, that is
A(U) := AU := 〈

⋃
A∈AA(U)〉. We also call this image AU to be the product of the matrix

space A and the vector space U .

I Definition 4 (c-shrunk subspace). A vector space V ≤ Fn is a c-shrunk subspace of a
matrix space B, if rank(BV ) ≤ dim(V )− c.

I Definition 5 (Non-commutative rank). Given a matrix space B ≤ Fn×n, let r be the
maximum non-negative integer such that there exists a r-shrunk subspace of the matrix space
B. Then n− r is called the non-commutative rank of B. We use the notation nc-rank(B) to
denote this quantity.

From the definition above, it is not clear why we call this quantity non-commutative
rank. It can be shown that the quantity above equals the rank of the corresponding symbolic
matrix when the variables x1, . . . , xm do not commute. For more natural and equivalent
definitions as well as more background on non-commutative rank, we refer the reader to
[7, 5].

I Lemma 6. For all matrix spaces B ≤ Fn×n, rank(B) ≤ nc-rank(B).

Above lemma states that the non-commutative rank is at least as large as the commutative
rank. But how large it can be compared to the commutative rank? Following theorem states
that it is always less than twice the commutative rank.

I Theorem 7 ([5], [2]). For all matrix spaces B ≤ Fn×n, we have nc-rank(B)
rank(B) < 2.

Derksen and Makam also gave a family of examples where the ratio of non-commutative
rank and commutative rank reaches arbitrarily closed to 2, hence showing that the bound
above is sharp (see [2], Theorem 1.15).

3 1
2-approximation algorithm for the commutative rank

Here we present a simple greedy algorithm which also achieves an 1
2 -approximation for the

commutative rank. This algorithm looks for the first matrix that increases the rank of the
current matrix and stops if it does not find such a matrix.
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Input : A matrix space B = 〈B1, B2, , . . . , Bm〉 ≤ Fn×n, input is a list of matrices
B1, B2, . . . , Bm.

Output : A matrix A ∈ B such that rank(A) ≥ 1
2 · rank(B)

Initialize A = 0 ∈ Fn×n to the zero matrix.
while Rank is increasing do

for each 1 ≤ i ≤ m do
Check if there exists a λ ∈ F such that rank(A+λBi) > rank(A). if rank(A+λBi) >
rank(A) then

Update A = A+ λBi.

return A.

Algorithm 1 Greedy algorithm for 1
2 -approximating commutative rank.

We shall proof the following lemma in appendix.

I Lemma 8. Algorithm 1 runs in polynomial time and returns a matrix A ∈ B such that
rank(A) ≥ 1

2 · rank(B).

4 Wong sequences and Wong index

In this section, we introduce the notion of Wong sequences which is crucially used in our
proofs. For a more comprehensive exposition, we refer reader to [9].

I Definition 9 (Second Wong Sequence). Let B ≤ Fn×n be a matrix space and A ∈ B. The
sequence of sub-spaces (Wi)i∈[n] of W is called the second Wong sequence of (A,B), where
W0 = {0}, and Wi+1 = BA−1(Wi).

In [9], first Wong sequences are also introduced. But for our purpose, just the notion of
second Wong sequence is enough. It is easy to see that W0 ≤W1 ≤W2 ≤ . . . ≤Wn, see [9].

Next, we introduce the notion of pseudo-inverses. They are helpful in computing the
Wong sequences. We remark that we would need the notion of Wong sequence only for the
analysis, our algorithm is completely oblivious to Wong sequences.

I Definition 10 (Pseudo-Inverse). A non-singular matrix A′ ∈ Fn×n is called a pseudo-inverse
of a linear map A ∈ Fn×n if the restriction of A′ to Im(A) is the inverse of the restriction of
A to a direct complement of Ker(A).

Unlike the usual inverse of a non-singular matrix, a pseudo-inverse of a matrix is not
necessarily unique. But it always exists and if A is non-singular, then it is unique and
coincides with the usual inverse.

The following lemma demonstrates the role of pseudo-inverses in computing Wong
sequences. This lemma and its proof are implicit in the proof of Lemma 10 in [9]. We prove
it in the appendix for completeness. The lemma essentially states that we can replace the
preimage computation in the Wong sequence by multiplication with a pseudo-inverse.

I Lemma 11. Let B ≤ Fn×n be a matrix space, A ∈ B, A′ be a pseudo-inverse of A
and (Wi)i∈[n] be the second Wong sequence of (A,B). Then for all 1 ≤ i ≤ n, we have
Wi = (BA′)i(Ker(AA′)) as long as Wi−1 ⊆ ImA.

Given a matrix space B and a matrix A ∈ B, how can one check that A is of maximum
rank in B, i.e, rank(A) = rank(B)? The following lemma in [9] gives a sufficient condition
for A to be of maximum rank in B.

CCC 2017
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I Lemma 12 (Lemma 10 in [9]). Assume that |F| > n. Let A ∈ B ≤ Fn×n, and let A′ be a
pseudo-inverse of A. If we have that for all i ∈ [n],

Wi = (BA′)i(Ker(AA′)) ⊆ Im(A), (4.1)

then A is of maximum rank in B.

Thus, the above lemma shows that if A is not of maximum rank in B, then we have
Wi * Im(A) for some i ∈ [n]. For our purposes, we need to quantify when exactly this
happens. Therefore we define:

I Definition 13 (Wong Index). Let B ≤ Fn×n be a matrix space, A ∈ B and (Wi)i∈[n] be the
second Wong sequence of (A,B). Let k ∈ [n] be the maximum integer such that Wk ⊆ Im(A).
Then k is called the Wong index of (A,B). We shall denote it by w(A,B).

Using the above definition, another way to state Lemma 12 is that if the Wong index
w(A,B) of (A,B) is n, then A is of maximum rank in B. But can one say more in this case?
In next section, we explore this connection. We shall prove that the closer w(A, 〈A,B〉) is to
n, the closer the rank of A is to the commutative rank of 〈A,B〉.

The converse of Lemma 12 is not true in general. But the converse is true in the special
case when B is spanned by just two matrices. Fortunately, for our algorithm we only require
the converse to be true in this special case. The following fact from [9] formally states this
idea.

I Fact 14 (Restatement of Fact 11 in [9]). Assume that |F| > n and let A,B ∈ Fn×n. If A
is of maximum rank in 〈A,B〉 then the Wong index w(A, 〈A,B〉) of (A, 〈A,B〉) is n.

We shall also need the following easy fact from linear algebra.

I Fact 15. Let M be a matrix of the following form.

L B
A 0

( )
r rows

n− r rows

r columns

n− r columns

M =

(4.2)

Also, let rank(A) = a and rank(B) = b. Then rank(M) ≤ r + min{a, b}.

In order to extend the simple greedy algorithm for rank increment described in Section 3
for arbitrary approximation of the commutative rank, we use the Wong index defined above.
To achieve that, we need the relation between the commutative rank and Wong index, which
we establish in the next section.

5 Relation between rank and Wong index

We prove that the natural greedy strategy works, essentially by showing that either of the
following happens:
1. The Wong index of the matrix obtained by the greedy algorithm at a given step is high

enough, in which case, we show that the matrix already has the desired rank. Lemma 19
formalizes this.

2. We can increase the rank by a greedy step. Lemma 20 formalizes this.

In the above spirit, we quantify the connection between the commutative rank and Wong
index in this section, using a series of lemmas. First we need a lemma which demonstrates
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that the second Wong sequence remains “almost” the same under invertible linear maps,
which we prove in the appendix.

I Lemma 16. Let A ∈ B ≤ Fn×n and (Wi)i∈[n] be the second Wong sequence of (A,B).
If P ∈ Fn×n and Q ∈ Fn×n are invertible matrices, then the second Wong sequence of
(PAQ,PBQ) is (PWi)i∈[n]. In particular, w(A,B) = w(PAQ,PBQ).

The following technical lemma relates Wong index with a sequence of vanishing matrix
products.

I Lemma 17. Let A,B ∈ Fn×n. Assume A =
[
Ir 0
0 0

]
and express the matrix B as

B11 B12
B21 B22

( )
r rows

n− r rows

r columns

n− r columns

B =

(5.1)

Let ` ≤ n be the maximum integer such that first ` elements of the sequence of matrices

B22, B21B12, B21B11B12, . . . , B21B
i
11B12. . . . (5.2)

are equal to the zero matrix. Then ` = w(A, 〈A,B〉).

Proof. Notice that In is a pseudo-inverse of A. Consider the second Wong sequence of
(A, 〈A,B〉). By Lemma 11, it equals (〈A,B〉A′)i(Ker(AA′)). Since A′ = In, this sequence is
(〈A,B〉)i(Ker(A)). Ker(A) ≤ Fn contains exactly the vectors which have first r entries to be
zero and Im(A) contains exactly the vectors which have last n− r entries to be zero. Let
k = w(A, 〈A,B〉), we want to show that k = `.

First we show that ` ≥ k. For this, we need to show that B22 = B21B12 = B21B11B12 =
. . . = B21B

k−2
11 B12 = 0. If k = 0 then we do not need to show anything. Otherwise k > 0.

Consider the first entry W1 of second Wong sequence of (A, 〈A,B〉). By Lemma 11, we know
that W1 = 〈A,B〉Ker(A). As Ker(A) ≤ Fn contains exactly the vectors which have first r
entries to be zero, if B22 was not zero then BKer(A) would contain a vector with a non-zero
entry in last n−r coordinates. This would violate the assumptionW1 ⊆ Im(A). Thus B22 = 0.
Now we use induction on length of the sequence B22, B21B12, B21B11B12, . . . , B21B

i
11B12.

Our induction hypothesis assumes that for i ≥ 1

Bi11 +
∑i−2
j=0 B

j
11B12B21B

i−2−j
11 Bi−1

11 B12

B21B
i−1
11 0

 r rows

n− r rows

r columns

n− r columns

Bi =

(5.3)

and B22 = B21B12 = B21B11B12 = . . . = B21B
i−2
11 B12 = 0. We just proved the base case of

i = 1. Consider the following evaluation of Bi+1 = B ·Bi

Bi+1
11 +

∑i−2
j=0 B

j+1
11 B12B21B

i−2−j
11 +B12B21B

i−1
11 Bi11B12

B21B
i
11 +

∑i−2
j=0 B21B

j
11B12B21B

i−2−j
11 B21B

i−1
11 B12

 r rows

n− r rows

r columns

n− r columns

Bi+1 =
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(5.4)

Since i + 1 ≤ k, we must have B21B
i−1
11 B12 = 0, otherwise we would have Wi+1 6⊆ Im(A).

Also we know by the induction hypothesis that B22 = B21B12 = B21B11B12 = . . . =
B21B

i−2
11 B12 = 0, this implies that

Bi+1
11 +

∑i−1
j=0 B

j
11B12B21B

i−1−j
11 Bi11B12

B21B
i
11 0

 r rows

n− r rows

r columns

n− r columns

Bi+1 = B ·Bi =

(5.5)

Now we show that k ≥ `. Since k = w(A, 〈A,B〉), for all 1 ≤ i ≤ k, Bi can be written as

Bi11 +
∑i−2
j=0 B

j
11B12B21B

i−2−j
11 Bi−1

11 B12

B21B
i−1
11 0

 r rows

n− r rows

r columns

n− r columns

Bi =

(5.6)

Note that 〈A,B〉i is spanned by all matrices of the formM1M2 · · ·Mi withMj = A orMj = B,
1 ≤ j ≤ i. Since we have that Wk ⊆ Im(A), we know that M1M2 · · ·Mk Ker(A) ⊆ Im(A)
for any product M1M2 · · ·Mk as above. Now let us see what condition one needs such that
Wk+1 6⊆ Im(A) is true. Since A is the identity on Im(A), only Bk+1 can take Ker(A) out
of Im(A) for Wk+1 6⊆ Im(A) to be true. By a similar argument as above, this happens only
when B21B

k−1
11 B12 6= 0, thus ` ≤ k. J

Now, having established the connection between Wong index and the sequence of vanishing
matrix products, we prove another technical lemma establishing the relation between the
length of this sequence and the commutative rank.

I Lemma 18. Let B ∈ Fn×n and

B11 B12
B21 B22

( )
r rows

n− r rows

r columns

n− r columns

B =

(5.7)

Consider the sequence of matrices B22, B21B12, B21B11B12, . . . , B21B
j
11B12. . . .. If the first

k ≥ 1 elements in this sequence are equal to the zero matrix and B11 is non-singular, then
rank(B) ≤ r

(
1 + 1

k

)
.

Proof. If rank(B12) ≤ r
k , then we are done by using the Fact 15. So we can assume without

loss of generality that rank(B12) > r
k . Now suppose that

dim〈Im(B12) ∪ Im(B11B12) ∪ . . . ∪ Im(Bk−2
11 B12)〉 ≥ (k − 1) rank(B12).

We note that Im(B12), Im(B11B12), . . . , Im(Bk−2
11 B12), are sub-spaces of Ker(B21). Further

using the rank nullity theorem, we get rank(B21) < r − r·(k−1)
k = r

k . By using Fact 15, we
again get that rank(B) ≤ r

(
1 + 1

k

)
.

In the above discussion, we assumed that

dim〈Im(B12) ∪ Im(B11B12) ∪ . . . ∪ Im(Bk−2
11 B12)〉 ≥ (k − 1) rank(B12).
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What if this is not the case? We still want to use the same idea as above but we want to
ensure this assumption. For this purpose, we use a series of elementary column operations on
B to transform it to a new matrix B∗, which would satisfy above assumption. Since the rank
of a matrix is invariant under elementary column operations, we would obtain the desired
rank bound. Now we show how to obtain this matrix B∗ using a series of elementary column
operations on B. Whenever we apply these elementary column operations on B, we shall
also maintain the invariant that B22 = B21B12 = B21B11B12 = . . . = B21B

k−2
11 B12 = 0.

Suppose

dim〈Im(B12) ∪ Im(B11B12) ∪ . . . ∪ Im(Bk−2
11 B12)〉 < (k − 1) rank(B12). (5.8)

Let ρ := rank(B12). First, we can assume that B12 has exactly ρ non-zero columns. This
can be achieved by performing elementary column operations on the last n − r columns.
This does not change the matrix B22 = 0. Furthermore, these column operations correspond
to replacing B12 by B12 · S for some invertible (n − r) × (n − r)-matrix S. Since B22 =
B21B12 = B21B11B12 = . . . = B21B

k−2
11 B12 = 0 implies B21B12S = B21B11B12S = . . . =

B21B
k−2
11 B12S = 0, we keep our invariant. We will call the new matrix again B12.

Note that the image of a matrix is its column span. Since every matrix Bi11B12 has
at most ρ non-zero columns (since B12 has ρ non-zero columns and B11 is non-singular),
assumption 5.8 means that there is a linear dependence between these columns. That means
there vectors y0, y1, . . . , yk−2 ∈ Fn−r, not all equal to zero, such that

∑k−2
i=0 B

i
11B12 · yi = 0.

Moreover, these vectors only have non-zero entries in the places that corresponds to nonzero
columns of B12. First we show that we can assume y0 6= 0. Suppose 0 ≤ j ≤ k− 2 is the least
integer such that yj 6= 0. So we left multiply the equation

∑k−2
i=0 B

i
11B12 · yi = 0 by (Bj11)−1,

giving us (Bj11)−1∑k−2
i=0 B

i
11B12 · yi =

∑k−2
i=j B

i−j
11 B12 · yi = 0. By renumbering the indices,

this can be re-written as
∑k−2−j
i=0 Bi11B12 · yi = 0. Thus we can assume that y0 6= 0. (The

new sum runs only up to k − 2− j, for the missing summands, we choose the corresponding
yi to be zero.)

By writing
∑k−2
i=0 B

i
11B12 ·yi = 0 as B12 ·y0 +B11 ·

∑k−2
i=1 B

i−1
11 B12yi = 0, we see that there

is a linear dependence between the columns of B12 and B11. Let k ∈ [n− r] be such that
kth entry of y0 is non-zero. Therefore, we can make the kth column of B12 zero by adding a
multiple of

∑k−2
i=1 B

i
11B12 · yi and maybe adding some multiple of some other columns of B12

to it. This will decrease the rank of B12 by 1.
We claim that our invariant is still fulfilled. First, we add B11 ·

∑k−2
i=1 B

i−1
11 B12 · yi to

the kth column of B12 and this will also add B21 ·
∑k−2
i=1 B

i−1
11 B12 · yi to the kth column

of B22. Since the invariant was fulfilled before the operation, B22 will stay zero. As seen
before, column operations within the last n− r columns do not change B22. Thus, one of
the n − r columns on the right-hand side (side composed of B12 and B22) of B became
zero. We can remove this column from our consideration. Let B′ and B′12 the matrices
obtained from B and B12 by removing this zero column. Since the columns of B′12 are a
subset of the columns of B12, B21B12 = B21B11B12 = . . . = B21B

k−2
11 B12 = 0 implies that

B21B
′
12 = B21B11B

′
12 = . . . = B21B

k−2
11 B′12 = 0. Therefore, our invariant is still valid.

We repeat this process until (5.8) is not true anymore. Note that this happens for sure
when rank(B12) = 0. At the end of this process we get a matrix B∗ such that

dim〈Im(B∗12) ∪ Im(B11B
∗
12) ∪ . . . ∪ Im(Bk−2

11 B∗12)〉 ≥ (k − 1) rank(B∗12).

Now the rank bound follows from the argument given above. J

Finally, combining the above three lemmas, the following lemma gives the desired
quantitative relation between the commutative rank and Wong index, essential to the
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analysis of our algorithm. It shows that higher the Wong index of the given matrix, the
better it approximates the rank of the space.

I Lemma 19. If A ∈ B = 〈B1, B2, , . . . , Bm〉 ≤ Fn×n and B =
∑m
i=1 xiBi, then

rank(B) = rank(〈A,B〉) ≤ rank(A)
(

1 + 1
w(A, 〈A,B〉)

)
. (5.9)

Proof. Let rank(A) = r. We use C to denote the matrix space 〈A,B〉, note that this space
is being considered over the rational function field F(x1, x2, . . . , xm).

We know that there exist matrices P,Q ∈ Fn×n such that

PAQ =
[
Ir 0
0 0

]
. (5.10)

Notice that Im(PAQ) = P Im(A). Thus by Lemma 16, w(A, C) = w(PAQ,PCQ). Also, it
is easy to see that rank(A) = rank(PAQ) and rank(C) = rank(PCQ). Hence it is enough to
show that

rank(PCQ) ≤ rank(PAQ)
(

1 + 1
w(PAQ,PCQ)

)
. (5.11)

For sake of simplicity, we just write PCQ as C and PAQ as A. Thus we have

A =
[
Ir 0
0 0

]
. (5.12)

We write B as

B11 B12
B21 B22

( )
r rows

n− r rows

r columns

n− r columns

B =

(5.13)

We get that B11 is non-singular over the field F(x1, x2, . . . , xm) since A ∈ B. Also,
we get by Lemma 17 that first w(A, C) entries of the sequence of matrices B22, B21B12,
B21B11B12, . . . , B21B

i
11B12. . . . are zero matrices. Now we apply lemma 18 to obtain that

rank(B) = rank(B) = rank(C) ≤ rank(A)
(

1 + 1
w(A, C)

)
. (5.14)

J

I Lemma 20. If A ∈ B = 〈B1, B2, . . . , Bm〉 ≤ Fn×n, B =
∑m
i=1 xiBi and w(A, 〈A,B〉) < k

for some k ∈ [n], then there exist 1 ≤ i1, i2, . . . ik ≤ m and λ1, λ2, . . . , λk ∈ F such that
w(A, 〈A,C〉) < k, where C = λ1Bi1 + λ2Bi2 + . . .+ λkBik .

Proof. Let rank(A) = r. We know that there exist matrices P,Q ∈ Fn×n such that

PAQ =
[
Ir 0
0 0

]
. (5.15)

Let A′ = PAQ , B′ = PBQ and B′ =
∑m
i=1 xiPBiQ. We write B′ as

B′11 B′12

B′21 B′22

( )
r rows

n− r rows

r columns

n− r columns

B′ =

(5.16)
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By using Lemma 16, we know that w(A, 〈A,B〉) = w(A′, 〈A′, B′〉) < k. By using Lemma 17,
we get that there exists t ≤ k such that B′21(B′11)t−2B′12 6= 0 and

B′′11 B′′12

B′′21 B′21(B′11)t−2B′12

( )
r rows

n− r rows

r columns

n− r columns

(B′)t =

(5.17)

for some matrices B′′11, B
′′
12, B

′′
21. Since the entries of the matrix B′21(B′11)t−2B′12 are poly-

nomials in the variables x1, x2, . . . , xm of degree at most k, there exists an assignment to
these variables by field constants, assigning at most k variables non-zero values such that
B′21(B′11)t−2B′12 evaluates to a non-zero matrix. By using Lemma 17 again, this assign-
ment gives us a matrix C ′ ∈ B′ such that w(A′, 〈A′, C ′〉) < k. By using Lemma 16, same
assignment of the variables gives us a matrix C ∈ B such that w(A, 〈A,C〉) < k. J

6 Final Algorithm

Suppose we have a matrix space B = 〈B1, B2, , . . . , Bm〉 ≤ Fn×n, B =
∑m
i=1 xiBi and a

matrix A ∈ B. Our goal is find a matrix D in B such that its rank is “close” to the
commutative rank of B. If the Wong index w(A, 〈A,B〉) of A in 〈A,B〉 is “large”, then we
know by Lemma 19 that rank of of A is “close” to the commutative rank of B, which is
equal to the commutative rank of 〈A,B〉. What if this Wong index w(A, 〈A,B〉) is “small”?
Then we know that by Lemma 20 that by trying out small number (that means, mw(A,B)+1)
of possibilities of combinations of Bi, we can find a matrix C ∈ B such that Wong index
w(A, 〈A,B〉) of A in 〈A,C〉 is also “small”. Using Fact 14, we obtain that rank of A is not
maximum in 〈A,C〉. Thus there exists λ ∈ F such that rank(A+ λC) > rank(A). And we
can find this λ quite efficiently. Also, A+ λC ∈ B. Thus we can efficiently find a matrix of
bigger rank if we are given a matrix of “small” Wong index. This idea is formalized in the
following Algorithm.

Input : A matrix space B = 〈B1, B2, . . . , Bm〉 ≤ Fn×n, given as a list of basis matrices
B1, B2, . . . , Bm. An approximation parameter 0 < ε < 1.

Output : A matrix A ∈ B such that rank(A) ≥ (1− ε) · rank(B)
Initialize A = 0 ∈ Fn×n to the zero matrix.
Assign ` = d 1

ε − 1e.
while Rank is increasing do

for each {i1, i2, . . . , i`} ∈
([m]\{0}

`

)
do

/* This means we try all combinations of matrices Bi1 , Bi2 , . . . , Bi` */
Check if there exist λ1, λ2, . . . , λ` ∈ F such that rank(A+λ1Bi1 +λ2Bi2 +. . .+λkBi`) >
rank(A). if rank(A+ λ1Bi1 + λ2Bi2 + . . .+ λkBi`) > rank(A) then

Update A = A+ λ1Bi1 + λ2Bi2 + . . .+ λkBi` .

return A.

Algorithm 2 Greedy algorithm for (1 − ε)-approximating commutative rank.

The following theorem proves the correctness of Algorithm 2. Let s be an upper bound on
the bit size of the entries of B1, . . . , Bm.
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I Theorem 21. Assume that |F| > n. Algorithm 2 runs in time O((mn) 1
ε ·M(n, s+logn) ·n)

and returns a matrix A ∈ B such that rank(A) ≥ (1− ε) · rank(B), where M(n, t) is the time
required to compute the rank of an n× n matrix with entries of bit size at most t.

Proof. Suppose B =
∑m
i=1 xiBi and A be the rank r matrix returned by Algorithm 2. Let

k be the Wong index w(A, 〈A,B〉) of (A, 〈A,B〉). By Lemma 19, we know that rank(B) ≤
r
(
1 + 1

k

)
. Thus r ≥ (1 − 1

k+1 ) rank(B). If ε ≥ 1
k+1 , then we are done. Otherwise we have

that ε < 1
k+1 , i.e, k <

1
ε − 1. Since ` = d 1

ε − 1e, we also have w(A, 〈A,B〉) < `. By using
Lemma 20, we get that there exist 1 ≤ i1, i2, . . . i` ≤ m and λ1, λ2, . . . , λ` ∈ F such that that
w(A, 〈A,C〉) < `, where C = λ1Bi1 + λ2Bi2 + . . .+ λ`Bi` . By using Fact 14, we get that A
is not of maximum rank in 〈A,C〉. Thus there exists λ ∈ F such that rank(A + λC) > A,
and we shall detect this in Algorithm 2 since we try all possible choices of i1, i2, . . . , i`.

The desired running time can be proved easily. The outer while loop runs at most n
times, thus the total running time is at most n times the running time of one iteration. One
iteration of the outer loop has

([m]\{0}
`

)
= O(m 1

ε ) iterations of the inner for loop. By using
the Schwartz–Zippel Lemma [22, 18], one iteration of inner for loop needs to try at most
(n+ 1)` = O(n 1

ε ) possible values of λ1, λ2, . . . , λ` ∈ F. And then we perform two instances
of rank computation. The stated running time follows. J

I Remark. Algorithm 2 runs in time O((mn) 1
ε ·n ·M(n)) in the algebraic RAM model. Here

M(n) is the time required to compute the rank of an n× n matrix in the algebraic RAM
model. It is known that M(n) = O(nω) with ω being the exponent of matrix multiplication.
Since one can assume that m ≤ n2, Algorithm 2 runs in time O(n 3

ε+ω+1) in algebraic ram
model.

The statement of the above remark and the trivial fact that ω ≤ 3, gives us the running
time stated in the abstract.
I Remark. With a more refined analysis, it can be seen that Algorithm 2 uses O((mn) 1

ε · n ·
M(n, s+ logn)) bit operations if the entries of the input matrices B1, B2, . . . , Bm have bit
size at most s. Here M(n, t) is the bit complexity of computing the rank of a matrix whose
entries have bit size at most t. The additional logn in the bit size comes from the fact that
the entries of the final matrix A are by a polynomial factor (in n) larger than the entries of
the Bi due to the update steps.

7 Tight examples

We conclude by giving some tight examples, which show that the analysis of the approximation
performance of the greedy approximation scheme cannot be improved. Consider the following
matrix space of n× n-matrices:

∗ 0 . . . 0 ∗ 0 . . . 0
0 ∗ . . . 0 0 ∗ . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . ∗ 0 0 . . . ∗
0 0 . . . 0 ∗ 0 . . . 0
0 0 . . . 0 0 ∗ . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . ∗


(7.1)

Each block has size n
2 ×

n
2 . This space consists of all matrices where we can substitute

arbitrary values for the ∗ and the basis consists of all matrices where exactly one ∗ is replaced
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by 1 and all others are set to 0. Assume that ε = 1
2 , that means, that the greedy algorithm

only looks at sets of size ` = 1. Furthermore, assume that the matrix A constructed so far is

A =
(

0 In
2

0 0

)
. (7.2)

Any single basis matrix cannot improve the rank of A, since either its nonzero column is
contained in the column span of A or its nonzero row is contained in the row span of A.
On the other hand, the matrix space contains a matrix of full rank n, namely, the identity
matrix.

The next space for the case ` = 2 looks like this:

∗ 0 . . . 0 ∗ 0 . . . 0 0 0 . . . 0
0 ∗ . . . 0 0 ∗ . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
0 0 . . . ∗ 0 0 . . . ∗ 0 0 . . . 0
0 0 . . . 0 ∗ 0 . . . 0 ∗ 0 . . . 0
0 0 . . . 0 0 ∗ . . . 0 0 ∗ . . . 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . ∗ 0 0 . . . ∗
0 0 . . . 0 0 0 . . . 0 ∗ 0 . . . 0
0 0 . . . 0 0 0 . . . 0 0 ∗ . . . 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 0 0 0 . . . ∗



(7.3)

and the corresponding matrix A is

A =
(

0 I 2n
3

0 0

)
. (7.4)

By an argument similar to above, it is easy to see that we need at least three matrices to
improve the rank of A, so the algorithm gets stuck with a 2

3 -approximation.
The above scheme generalizes to arbitrary values of ` in the obvious way.
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A Appendix

Here we present some proofs which were omitted in the main manuscript.

I Lemma 22. For all matrix spaces B ≤ Fn×n, rank(B) ≤ nc-rank(B).

Proof. Let r = nc-rank(B). This means that there exists V ≤ Fn such that rank(BV ) =
dim(V )− (n− r). Therefore, for all B ∈ B, rank(BV ) ≤ dim(V )− (n− r). Thus rank(B) ≤
n− (n− r) = r = nc-rank(B). J

I Lemma 23. Algorithm 1 runs in polynomial time and returns a matrix A ∈ B such that
rank(A) ≥ 1

2 · rank(B).

Proof. Let A be the matrix returned by Algorithm 1. Assume that A has rank r. We know
that there exist non-singular matrices P and Q such that

PAQ =


Ir 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 , (A.1)

where Ir is the r × r identity matrix. Now consider the matrix space
PBQ := 〈PB1Q,PB2Q, . . . , PBmQ〉. This does not change anything with respect to the
rank. So for the analysis, we can replace B by PBQ. Consider any general matrix A+x1B1 +
x2B2 + . . .+ xmBm in B. We decompose it as

A+ x1B1 + x2B2 + . . .+ xmBm =
(
M1 M2

M3 M4

)
. (A.2)

Here M1 is an r× r matrix, M2 is an r× (n− r) matrix, M3 is a (n− r)× r matrix and M4
is a (n− r)× (n− r) matrix. M1, M2, M3, and M4 have (affine) linear forms in variables
x = (x1, x2, . . . , xm) as their entries.

Now we claim that the bottom right part M4 is the zero matrix. Assume otherwise.
Assume that the (s, t)-entry of the above matrix is nonzero with s, t > r. Consider the
(r + 1)× (r + 1) minor of A+ x1B1 + x2B2 + . . .+ xmBm, obtained by adding the sth row
(from M3) and the tth column (from M2) to M1. We shall denote this minor by C. The
minor C looks like

C =


1 + `11(x) `12(x) . . . `1r(x) a1(x)
`21(x) 1 + `22(x) . . . `2r(x) a2(x)

...
...

. . .
...

...
`r1(x) `r2(x) . . . 1 + `rr(x) ar(x)
b1(x) b2(x) . . . br(x) c(x)

 . (A.3)

The `i,j , ai, bj , and c are homogeneous linear forms in x. By our choice, c(x) 6= 0. It is not
hard to see that

det(C) = c(x) + terms of degree at least 2. (A.4)

Thus there are λ ∈ F and i ∈ [m] such that det(C(α)) 6= 0, where α is the assignment
to the variables x = (x1, x2, . . . , xm) obtained by setting xk = 0 when k 6= i and xi = λ.
These choices of i ∈ [m] and λ ∈ F would allow Algorithm 1 to find a matrix A of larger
rank. Thus Algorithm 1 would keep finding a matrix A of larger rank when the matrix
M4 is non-zero. Hence it can only stop when M4 is the zero matrix. If M4 is the zero
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matrix then rank(B) ≤ 2r. Thus when Algorithm 1 stops, it outputs a matrix A such that
rank(A) ≥ 1

2 · rank(B).
The running time is obviously polynomial since the while loop is executed at most n

times and we have to check at most n+ 1 values for λ. The size of the numbers that occur
in the rank check is polynomial in the size of the entries of B1, . . . , Bm. J

I Lemma 24. Let B ≤ Fn×n be a matrix space, A ∈ B, A′ be a pseudo-inverse of A
and (Wi)i∈[n] be the second Wong sequence of (A,B). Then for all 1 ≤ i ≤ n, we have
Wi = (BA′)i(Ker(AA′)) as long as Wi−1 ⊆ ImA.

Proof. We prove the statement by induction on i. Since Ker(AA′) = A′−1(Ker(A)), we get
that (BA′)(Ker(AA′)) = BA′A′−1(Ker(A)) = BKer(A) = W1. This proves the base case of
i = 1. To prove that Wi = (BA′)i(Ker(AA′)), we shall prove that (BA′)i(Ker(AA′)) ⊆ Wi

and Wi ⊆ (BA′)i(Ker(AA′)). By the induction hypothesis, we just need to prove that
(BA′)(Wi−1) ⊆Wi and Wi ⊆ (BA′)(Wi−1).

First we prove the easy direction, that is (BA′)(Wi−1) ⊆ Wi. Since Wi−1 ⊆ Im(A), we
have that A′(Wi−1) ⊆ A−1(Wi−1). Thus (BA′)(Wi−1) ⊆ (BA−1)(Wi−1) = Wi.

Now we prove that Wi ⊆ (BA′)(Wi−1). Since Wi−1 ⊆ Im(A), we get that A−1(Wi−1) =
A′Wi−1 + Ker(A). Thus Wi = BA−1(Wi−1) ⊆ BA′Wi−1 + BKer(A). We have BKer(A) =
W1 ⊆ Wi−1, this implies that Wi ⊆ BA′Wi−1 +Wi−1. Since A ∈ B and Wi−1 = AA′Wi−1,
we get that Wi−1 ⊆ BA′Wi−1. This in turn implies that Wi ⊆ BA′Wi−1 + BA′Wi−1 =
(BA′)(Wi−1). J

I Lemma 25. Let A ∈ B ≤ Fn×n and (Wi)i∈[n] be the second Wong sequence of (A,B).
If P ∈ Fn×n and Q ∈ Fn×n are invertible matrices, then the second Wong sequence of
(PAQ,PBQ) is (PWi)i∈[n]. In particular, w(A,B) = w(PAQ,PBQ).

Proof. Consider the ith entry W ′i in the second Wong sequence of (PAQ,PBQ). We
prove that W ′i = PWi for all i ∈ [n]. We use induction on i. The statement is trivially
true for i = 0. By the induction hypothesis, we have, W ′i = PBQ(PAQ)−1PWi−1 =
PBQQ−1A−1P−1PWi−1 = PBA−1(Wi−1) = PWi. J
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