
30th International Conference on
Foundations of Software
Technology and Theoretical
Computer Science

FSTTCS 2010, December 15–18, 2010, Chennai, India

Edited by

Kamal Lodaya
Meena Mahajan

LIPIcs – Vo l . 8 – FSTTCS 2010 www.dagstuh l .de/ l ip i c s

Editors
Kamal Lodaya and Meena Mahajan
The Institute of Mathematical Sciences
CIT Campus, Taramani
Chennai 600113 India
{kamal,meena}@imsc.res.in

ACM Classification 1998
D.2.4 Software/Program Verification, F.1.1 Models of Computation, F.1.2 Modes of Computation, F.1.3
Complexity Measures and Classes, F.2.2 Nonnumerical Algorithms and Problems, F.3.1 Specifying and
Verifying and Reasoning about Program

ISBN 978-3-939897-23-1

Published online and open access by
Schloss Dagstuhl – Leibniz-Center for Informatics GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany.

Publication date
December, 2010.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works license:
http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.
Noncommercial: The work may not be used for commercial purposes.
No derivation: It is not allowed to alter or transform this work.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.FSTTCS.2010.i

ISBN 978-3-939897-23-1 ISSN 1868-8969 http://www.dagstuhl.de/lipics

iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Susanne Albers (Humboldt University Berlin)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Wolfgang Thomas (RWTH Aachen)
Vinay V. (Chennai Mathematical Institute)
Pascal Weil (Chair, University Bordeaux)
Reinhard Wilhelm (Saarland University, Schloss Dagstuhl)

ISSN 1868-8969

www.dagstuhl.de/lipics

FSTTCS 2010

Preface

This proceedings volume has the papers presented at the 30th annual conference on Founda-
tions of Software Technology and Theoretical Computer Science (FSTTCS 2010), held at
the Institute of Mathematical Sciences (IMSc), Chennai, during 15–18 December 2010. We
thank IMSc, in particular the administration, for their unstinted support in hosting this
conference. Our colleagues and students pitched in to make the organization really smooth.

The Indian Association for Research in Computing Science (IARCS) grew out of the com-
munity built by this conference since its first edition in 1981 (the webpages www.iarcs.org.in
and www.fsttcs.org have more details). FSTTCS is now the annual flagship IARCS event.

Over the years, the conference has been able to attract top-quality invited talks from
renowned speakers all over the world, and this year is no exception. We thank Rajeev Alur,
Bruno Courcelle, Pavel Pudlák, Santosh Vempala and Wiesław Zielonka for readily agreeing
to come to FSTTCS, and for their contributions to this proceedings.

The conference attracted 128 submissions from 35 countries in 6 continents, most of them
of very high quality. We thank the authors who submitted for making this such a competitive
conference.

The difficult job of selecting from these submissions fell upon the Programme Committee
(PC), where we had the pleasure of working with 22 eminent colleagues from 9 countries.
We thank them all for increasing the stature of the conference with their presence, for the
work they put in, and in some cases, for assisting us in resolution of tricky issues apart from
determining just the technical merits of the paper. The PC succeeded in obtaining the help
of 216 external reviewers, in all producing 400 referee reports which were of immeasurable
help in deciding the 38 contributed papers which have made it to this publication. We thank
the referees for their time, effort and detail.

The conference submission and proceedings preparation were handled on the popular
Easychair software. We thank Andrei Voronkov of Easychair and our system administrators
(especially Raveendra Reddy and Mangala Pandi) at IMSc for dealing with mysterious
incompatibilities which surfaced occasionally.

The programme this year also features a special session on undergraduate and graduate
curricula. We thank our colleague R. Ramanujam for stepping in with this idea to explore
a new direction for the 30th conference, and following it through. The 5th international
symposium on Parameterized and Exact Computation (IPEC) is co-located with our con-
ference at Chennai, and is preceded by the IMPECS school on Parameterized and Exact
Computation, and we are happy for the plurality this has added to the FSTTCS experience.

Since 2008, FSTTCS has been published in the LIPIcs series, which makes the contribu-
tions available free of cost on the web, and allows authors to retain their rights. We thank
the LIPIcs board of editors and share the pride of being part of a high-quality series. Thanks
also to Marc Herbstritt and his team who worked hard on the production side, coming up
with the style file and patiently answering our never-ending questions!

Kamal Lodaya and Meena Mahajan
Chennai, December 2010

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: K. Lodaya, M. Mahajan

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Contents

Invited Talks

Expressiveness of streaming string transducers
Rajeev Alur and Pavol Černý . 1

Special tree-width and the verification of monadic second-order graph properties
Bruno Courcelle . 13

On extracting computations from propositional proofs (a survey)
Pavel Pudlák . 30

Recent Progress and Open Problems in Algorithmic Convex Geometry
Santosh S. Vempala . 42

Playing in stochastic environment: from multi-armed bandits to two-player games
Wiesław Zielonka . 65

Contributed Papers
Session 1A

Better Algorithms for Satisfiability Problems for Formulas of Bounded Rank-width
Robert Ganian, Petr Hliněný , and Jan Obdržálek . 73

Satisfiability of Acyclic and Almost Acyclic CNF Formulas
Sebastian Ordyniak, Daniel Paulusma, and Stefan Szeider . 84

The effect of girth on the kernelization complexity of Connected Dominating Set
Neeldhara Misra, Geevarghese Philip, Venkatesh Raman, Saket Saurabh 96

Session 1B

One-Counter Stochastic Games
Tomáš Brázdil, Václav Brožek, and Kousha Etessami . 108

ATL with Strategy Contexts: Expressiveness and Model Checking
Arnaud Da Costa, François Laroussinie, and Nicolas Markey . 120

Reasoning About Strategies
Fabio Mogavero, Aniello Murano, and Moshe Y. Vardi . 133

Session 2A

New Results on Quantum Property Testing
Sourav Chakraborty, Eldar Fischer, Arie Matsliah, and Ronald de Wolf 145

Lower bounds for Quantum Oblivious Transfer
André Chailloux, Iordanis Kerenidis, and Jamie Sikora . 157

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: K. Lodaya, M. Mahajan

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

viii Contents

Minimizing Busy Time in Multiple Machine Real-time Scheduling
Rohit Khandekar, Baruch Schieber, Hadas Shachnai, and Tami Tamir 169

A Near-linear Time Constant Factor Algorithm for Unsplittable Flow Problem
on Line with Bag Constraints

Venkatesan T. Chakaravarthy, Anamitra R. Choudhury, and Yogish Sabharwal . . . 181

Session 2B

Place-Boundedness for Vector Addition Systems with one zero-test
Rémi Bonnet, Alain Finkel, Jérôme Leroux , and Marc Zeitoun 192

Model checking time-constrained scenario-based specifications
S. Akshay, Paul Gastin, Madhavan Mukund, and K. Narayan Kumar 204

Global Model Checking of Ordered Multi-Pushdown Systems
Mohamed Faouzi Atig . 216

The Complexity of Model Checking (Collapsible) Higher-Order Pushdown Systems
Matthew Hague and Anthony Widjaja To . 228

Session 3A

A graph polynomial for independent sets of bipartite graphs
Qi Ge and Daniel Štefankovič . 240

Finding Independent Sets in Unions of Perfect Graphs
Venkatesan Chakaravarthy, Vinayaka Pandit, Sambuddha Roy,
and Yogish Sabharwal . 251

Session 3B

Fast equivalence-checking for normed context-free processes
Wojciech Czerwiński and Sławomir Lasota . 260

Generalizing the powerset construction, coalgebraically
Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, and Jan J. M. M. Rutten 272

Uniqueness of Normal Forms is Decidable for Shallow Term Rewrite Systems
Nicholas Radcliffe and Rakesh M. Verma . 284

Session 4A

Deterministic Black-Box Identity Testing π-Ordered Algebraic Branching Programs
Maurice Jansen, Youming Qiao, and Jayalal Sarma M.N. 296

Computing Rational Radical Sums in Uniform TC0

Paul Hunter, Patricia Bouyer, Nicolas Markey, Joël Ouaknine, and James Worrell 308

Graph Isomorphism is not AC0 reducible to Group Isomorphism
Arkadev Chattopadhyay, Jacobo Torán, and Fabian Wagner . 317

Colored Hypergraph Isomorphism is Fixed Parameter Tractable
V. Arvind, Bireswar Das, Johannes Köbler, and Seinosuke Toda 327

Contents ix

Session 4B

Global Escape in Multiparty Sessions
Sara Capecchi, Elena Giachino, and Nobuko Yoshida . 338

Computationally Sound Abstraction and Verification of Secure Multi-Party
Computations

Michael Backes, Matteo Maffei, and Esfandiar Mohammadi . 352

Model Checking Concurrent Programs with Nondeterminism and Randomization
Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan . 364

Two Size Measures for Timed Languages
Eugene Asarin and Aldric Degorre . 376

Session 5

Average Analysis of Glushkov Automata under a BST-Like Model
Cyril Nicaud, Carine Pivoteau, and Benoît Razet . 388

Beyond Hyper-Minimisation—Minimising DBAs and DPAs is NP-Complete
Sven Schewe . 400

Parityizing Rabin and Streett
Udi Boker, Orna Kupferman, and Avital Steinitz . 412

Session 6A

Finding Sparser Directed Spanners
Piotr Berman, Sofya Raskhodnikova, and Ge Ruan . 424

Combinatorial Problems with Discounted Price Functions in Multi-agent Systems
Gagan Goel, Pushkar Tripathi, and Lei Wang . 436

Quasi-Random PCP and Hardness of 2-Catalog Segmentation
Rishi Saket . 447

Determining the Winner of a Dodgson Election is Hard
Michael Fellows, Bart M. P. Jansen, Daniel Lokshtanov, Frances A. Rosamond,
and Saket Saurabh . 459

Session 6B

Verifying Recursive Active Documents with Positive Data Tree Rewriting
Blaise Genest, Anca Muscholl, and Zhilin Wu . 469

Temporal Logics on Words with Multiple Data Values
Ahmet Kara, Thomas Schwentick, and Thomas Zeume . 481

First-Order Logic with Reachability Predicates on Infinite Systems
Stefan Schulz . 493

Generalized Mean-payoff and Energy Games
Krishnendu Chatterjee, Laurent Doyen, Thomas Henzinger, Jean-François Raskin 505

FSTTCS 2010

Conference Organization

Programme Chairs

Kamal Lodaya
Meena Mahajan

Programme Committee

Sanjeev Arora (Princeton U)
Eike Best (U Oldenburg)
Ahmed Bouajjani (LIAFA Paris)
Amit Chakrabarti (Dartmouth)
Véronique Cortier (LORIA-CNRS)
Luca de Alfaro (Google/UCSC)
Xiaotie Deng (CU Hong Kong)
Khaled Elbassioni (MPII Saarbrücken)
Zoltán Ésik (U Szeged)
Fedor Fomin (U Bergen)
Martin Fürer (Penn State U)

Naveen Garg (IIT Delhi)
Joachim von zur Gathen (U Bonn)
Valentine Kabanets (SFU Vancouver)
T Kavitha (TIFR Mumbai)
P Madhusudan (UIUC)
Damian Niwiński (U Warsaw)
Prakash Panangaden (McGill Montréal)
Paritosh Pandya (TIFR Mumbai)
Günter Rote (FU Berlin)
Anil Seth (IIT Kanpur)
Wolfgang Thomas (RWTH Aachen)

Local Organization

K. Narayan Kumar (CMI)
Meena Mahajan (IMSc) chair
R. Ramanujam (IMSc)
Saket Saurabh (IMSc)
Vikram Sharma (IMSc)

External Reviewers

Parosh Abdulla
Klaus Aehlig
S. Arun-Kumar
Michael Backes
Andrew Badr
Christel Baier
Nikhil Bansal
Vince Barany
Pablo Barceló
Frederique Bassino
Shoham Ben-David
Nadja Betzler
Johannes Blömer
Vincenzo Bonifaci
Laurent Braud
Mark Braverman

Franck van Breugel
Tian-Ming Bu
Arnaud Carayol
Sourav Chakraborty
Krishnendu Chatterjee
Konstantinos Chatzikokolakis
Swarat Chaudhuri
Prasad Chebolu
Marsha Chechik
Jing Chen
Janka Chlebikova
Horatiu Cirstea
Thomas Colcombet
Graham Cormode
Bruno Courcelle
Ugo Dal Lago

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: K. Lodaya, M. Mahajan

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

xii Conference Organization

Zhe Dang
Samir Datta
Aldric Degorre
Stephanie Delaune
Holger Dell
Stephane Demri
Amit Deshpande
Alin Deutsch
Laurent Doyen
Deepak D’Souza
Kunal Dutta
Laila El Aimani
Amr Elmasry
Leah Epstein
Uli Fahrenberg
Qizhi Fang
Mohamed Faouzi Atig
Arash Farzan
Henning Fernau
Carla Ferreira
Eldar Fischer
Hans Fleischhack
Vojtech Forejt
Martin Fränzle
Sibylle Froeschle
Ricard Gavalda
Cyril Gavoille
Blaise Genest
Sonja Georgievska
Panos Giannopoulos
Hugo Gimbert
Xavier Goaoc
Guillem Godoy
Petr Golovach
Valentin Goranko
Georg Gottlob
Natalya Gribovskaya
Colas Le Guernic
H. Peter Gumm
Peter Habermehl
Magnus M. Halldorsson
Avinatan Hassidim
Elad Hazan
Danny Hermelin
Yoram Hirshfeld
Jochen Hoenicke
Peter Höfner
Markus Holzer

Florian Horn
Pavel Hrubes
Chien-Chung Huang
Lucian Ilie
Szabolcs Ivan
Joanna Jedrzejowicz
Lukasz Kaiser
Bruce Kapron
Hrishikesh Karmarkar
Andreas Karrenbauer
Anna Kasprzik
Subhash Khot
Astrid Kiehn
Pekka Kilpeläinen
Hartmut Klauck
Johannes Koebler
Robert Koenig
Eryk Kopczynski
Martin Kot
Stefan Kratsch
Raghav Kulkarni
Michal Kunc
Orna Kupferman
Martin Kutrib
Marcel Kyas
Ranko Lazic
Sergueï Lenglet
Jerome Leroux
Xueliang Li
Nutan Limaye
Zhiming Liu
Christof Löding
Daniel Loebenberger
Pinyan Lu
Andreas Maletti
Dániel Marx
David Matei
Richard Mayr
Andrew McGregor
Pierre McKenzie
Dieter van Melkebeek
Jakub Michaliszyn
Zoltan Miklos
Vahab Mirrokni
Neeldhara Misra
Joseph Mitchell
Ankur Moitra
Madhavan Mukund

Conference Organization xiii

Wolfgang Mulzer
Filip Murlak
Simin Nadjm-Tehrani
Satyadev Nandkumar
K Narayan Kumar
Meghana Nasre
Michael Nüsken
Jan Obdrzalek
Alexander Okhotin
Lorenzo Orecchia
Elena Oshevskaya
Sang-il Oum
Gennaro Parlato
Pawel Parys
Soumya Paul
Seth Pettie
Ramchandra Phawade
Cédric Piette
Sophie Pinchinat
CK Poon
Sanjiva Prasad
M. Praveen
S P Suresh
Venkatesh R
Yona Raekow
Rajiv Raman
R. Ramanujam
Saurabh Ray
Benoit Razet
Igor Razgon
Uday Reddy
Eike Ritter
Adam Rogalewicz
Sasanka Roy
Wojciech Rytter
Prakash Saivasan
Neyire Deniz Sarier
Saket Saurabh
Christian Schaffner
Sven Schewe
Pranab Sen
Rocco Servedio

C. Seshadhri
Krishna Shankara Narayanan
JianFeng Si
Somnath Sikdar
David Steurer
Colin Stirling
Mani Swaminathan
Jean-Marc Talbot
Tony Tan
Igor Tarasyuk
Tino Teige
Mark Timmer
Ashish Tiwari
Szymon Torunczyk
Michael Ummels
Tarmo Uustalu
Sándor Vágvölgyi
Gregory Valiant
György Vaszil
Enrico Vicario
Björn Victor
Yngve Villanger
V Vinay
Irina Virbitskaite
Mahesh Viswanathan
Magnus Wahlström
Yajun Wang
Daniel Werner
Uwe Wolter
James Worrell
David Xiao
Shaofa Yang
Huiwen Yu
Sheng Yu
Gianluigi Zavattaro
Huaming Zhang
Jinshan Zhang
Shengyu Zhang
Konstantin Ziegler
Martin Zimmermann

and six anonymous reviewers

FSTTCS 2010

Author Index

S. Akshay 204
Rajeev Alur 1
V. Arvind 327
Eugene Asarin 376
Mohamed Faouzi Atig 216
Michael Backes 352
Piotr Berman 424
Udi Boker 412
Filippo Bonchi 272
Rémi Bonnet 192
Marcello Bonsangue 272
Patricia Bouyer 308
Tomáš Brázdil 108
Václav Brožek 108
Sara Capecchi 338
Pavol Černý 1
Rohit Chadha 364
André Chailloux 157
Venkatesan Chakaravarthy 181, 251
Sourav Chakraborty 145
Krishnendu Chatterjee 505
Arkadev Chattopadhyay 317
Anamitra Choudhury 181
Bruno Courcelle 13
Wojciech Czerwiński 260
Arnaud Da Costa 120
Bireswar Das 327
Aldric Degorre 376
Laurent Doyen 505
Kousha Etessami 108
Michael Fellows 459
Alain Finkel 192
Eldar Fischer 145
Robert Ganian 73
Paul Gastin 204
Qi Ge 240
Blaise Genest 469
Elena Giachino 338
Gagan Goel 436
Matthew Hague 228
Thomas Henzinger 505
Petr Hliněný 73
Paul Hunter 308
Bart M. P. Jansen 459
Maurice Jansen 296

Ahmet Kara 481
Iordanis Kerenidis 157
Rohit Khandekar 169
Johannes Köbler 327
Orna Kupferman 412
François Laroussinie 120
Sławomir Lasota 260
Jérôme Leroux 192
Daniel Lokshtanov 459
Matteo Maffei 352
Nicolas Markey 120, 308
Arie Matsliah 145
Neeldhara Misra 96
Fabio Mogavero 133
Esfandiar Mohammadi 352
Madhavan Mukund 204
Aniello Murano 133
Anca Muscholl 469
K. Narayan Kumar 204
Cyril Nicaud 388
Jan Obdržálek 73
Sebastian Ordyniak 84
Joël Ouaknine 308
Vinayaka Pandit 251
Daniel Paulusma 84
Geevarghese Philip 96
Carine Pivoteau 388
Pavel Pudlák 30
Youming Qiao 296
Nicholas Radcliffe 284
Venkatesh Raman 96
Sofya Raskhodnikova 424
Jean-François Raskin 505
Benoît Razet 388
Frances A. Rosamond 459
Sambuddha Roy 25 Ge Ruan 424
Jan J. M. M. Rutten 272
Yogish Sabharwal 181,251
Rishi Saket 447
Jayalal Sarma M.N. 296
Saket Saurabh 96, 459
Sven Schewe 400
Baruch Schieber 169
Stefan Schulz 493
Thomas Schwentick 481

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: K. Lodaya, M. Mahajan

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Hadas Shachnai 169
Jamie Sikora 157
Alexandra Silva 272
A. Prasad Sistla 364
Daniel Štefankovič 240
Avital Steinitz 412
Stefan Szeider 84
Tami Tamir 169
Anthony Widjaja To 228
Seinosuke Toda 327
Jacobo Torán 317
Pushkar Tripathi 436
Moshe Y. Vardi 133
Santosh Vempala 42
Rakesh Verma 284
Mahesh Viswanathan 364
Fabian Wagner 317
Lei Wang 436
Ronald de Wolf 145
James Worrell 308
Zhilin Wu 469
Nobuko Yoshida 338
Marc Zeitoun 192
Thomas Zeume 481
Wiesław Zielonka 65

Expressiveness of streaming string transducers

Rajeev Alur1 and Pavol Černý2

1 University of Pennsylvania
2 IST Austria

Abstract
Streaming string transducers [1] define (partial) functions from input strings to output strings.
A streaming string transducer makes a single pass through the input string and uses a finite
set of variables that range over strings from the output alphabet. At every step, the transducer
processes an input symbol, and updates all the variables in parallel using assignments whose
right-hand-sides are concatenations of output symbols and variables with the restriction that
a variable can be used at most once in a right-hand-side expression. It has been shown that
streaming string transducers operating on strings over infinite data domains are of interest in
algorithmic verification of list-processing programs, as they lead to Pspace decision procedures
for checking pre/post conditions and for checking semantic equivalence, for a well-defined class of
heap-manipulating programs. In order to understand the theoretical expressiveness of streaming
transducers, we focus on streaming transducers processing strings over finite alphabets, given the
existence of a robust and well-studied class of “regular” transductions for this case. Such regular
transductions can be defined either by two-way deterministic finite-state transducers, or using
a logical MSO-based characterization. Our main result is that the expressiveness of streaming
string transducers coincides exactly with this class of regular transductions.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.1

1 Introduction

Deterministic finite-state automata are a canonical model for finite-state acceptors of strings,
since many variations turn out to be equally expressive and the resulting class of regular
languages enjoys a number of desirable theoretical properties. In this paper, we focus on
transducer models that define (partial) functions from input strings to output strings. The
most natural model for a finite-state transducer is a finite-state machine that, at each
step, reads an input symbol and produces zero or more output symbols. If we restrict
such a machine to read the input string only once from left to right, then the model is
too restrictive: while “delete all a symbols” can be implemented, “delete all a symbols,
if the input string contains a b symbol” cannot be implemented. However, the two-way
deterministic finite-state transducers have appealing theoretical properties: the equivalence
problem is decidable, they are expressively equivalent to MSO (monadic second-order logic)
definable transductions, and this class of “regular” transductions is closed under operations
such as sequential composition [2, 4, 3].

Recently, we proposed the model of streaming string transducers for algorithmic verification
of single-pass list processing programs [1]. A streaming string transducer makes a single pass
through the input string to produce an output string. It uses a finite set of variables that
range over strings from the output alphabet. At every step, the transducer processes an input
symbol, and updates all the variables in parallel using assignments whose right-hand-sides
are concatenations of output symbols and variables with the restriction that a variable can
be used at most once in a right-hand-side expression. For example, with two variables x
and y, the update (x, y) = (x.y, a) sets x to the concatenation of x and y, and sets y to the
constant a. While such an update is permitted, the update (x, y) = (x.y, y) is not, since

© Rajeev Alur and Pavol Černý;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 1–12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Expressiveness of streaming string transducers

y appears twice in the right-hand-sides, and would amount to “copying”. The output in a
given state is specified as a concatenation of output symbols and variables with a similar
no-copy restriction. Unlike classical tape-based models, the streaming string transducer is
not constrained to add output symbols only at the end, and can compute the output in
multiple chunks that can be extended and concatenated as needed.

Streaming string transducers have been shown to be useful for algorithmic verification of
list processing programs [1]. The problems of checking functional equivalence of two streaming
transducers, and of checking whether a streaming transducer satisfies pre/post verification
conditions specified by streaming acceptors over input/output strings, are decidable with
Pspace complexity. There is an expressively equivalent class of imperative programs that
manipulate heap-allocated single-linked list data structure, as well as a corresponding class of
list-processing functional programs with syntactic restrictions on recursive calls. These results
lead to algorithms for checking functional equivalence of two programs, written possibly in
different programming styles, for commonly used routines such as insert, delete, and reverse.

A goal of this paper is to study the expressiveness of streaming string transducers in
order to gain better theoretical insights into their computing power. The transducers in
[1] process strings over a potentially infinite data domain that supports the operations of
equality and ordering. Given that the notion of regular transductions is well-understood in
the context of strings over finite alphabets, we restrict our attention to streaming transducers
that process strings over finite alphabets. The main result of the paper is that streaming
string transducers exactly capture regular transductions, and thus, are equivalent to two-way
transducers as well as MSO-definable string transductions.

In order to develop our results, we consider another single-pass transducer model called
heap-based string transducer that reads the input string from left to right in a single pass,
and computes the output using a heap of cells each of which can store an output symbol
and has a next pointer. The next-pointers induce an (unranked) forest structure over cells.
The transducer accesses the heap using a finite number of pointer variables, and can change
next-pointers of cells referenced by these variables. It can also add new cells to the heap.
The sequence of symbols labeling the cells accessible from a state-dependent output-pointer
is the output of the transducer. For example, to output the reverse of the input string, the
heap-based transducer, at each step, reads the next input symbol, and adds a cell containing
this input symbol to the front of the output list being computed, exactly the same way
as a C program would reverse a linked-list in a single pass. While proving assertions of
programs manipulating heaps is typically undecidable [6], the key restriction for our model of
a heap-based transducer is that it can update, but not traverse, the next-pointers of the cells
referenced by its pointer variables (that is, an assignment of the form next(x) = y is allowed,
but x = next(y) is not). Heap-based transducers can be viewed as syntactically restricted
and abstract version of imperative single-pass programs studied in [1].

We first show that given a two-way transducer, one can construct an equivalent one-way
heap-based transducer. The proof builds on the classical simulation of a two-way acceptor by
a one-way acceptor [7], but needs new insights in order to maintain the potentially needed
output segments in a shared heap that can be modified using a bounded number of updates at
each step. The fact that a streaming string transducer can simulate a heap-based transducer
is a corollary of a result of [1] that shows that single-pass list processing programs can be
simulated by streaming transducers. Finally, we establish that a streaming string transducer
can be captured by an MSO-definable string transformation, thereby establishing equivalence
of all the transducer models.

We also show that streaming string transducers are closed under sequential composition.

Rajeev Alur and Pavol Černý 3

This result follows from the MSO characterization, but we give a direct proof using summaries
of a computation of a streaming string transducer. Finally, we show that extending heap-based
transducers by allowing the traversal instruction that updates a pointer to the next-pointer
of a referenced cell, leads to a strictly more expressive model than the class of regular
transductions.

2 Regular String Transductions

A deterministic transduction from an input alphabet Σ to an output alphabet Γ is a partial
function from Σ∗ to Γ∗. We briefly review two equivalent ways of defining deterministic
transductions using two-way finite-state transducers and using monadic second-order logic
(MSO), and some known results (the details can be found in [3]). We will use the following
three transductions throughout the paper. Let Σ = Γ = {a, b}. The transduction f1
rewrites an input string to the string followed by its reverse: f1(w) = w.rev(w). For the
transduction f2, if the input string ends with the letter b, then f2 deletes all occurrences
of a, otherwise it leaves the input unchanged: if w ∈ Σ∗b then f2(w) = bk where k is the
number of b’s in w, else f2(w) = w. The transduction f3 replaces each symbol b by as
many b’s as there are a’s between this occurrence of b and the previous occurrence of b:
f3(ai1bai2b · · · aikbaik+1) = ai1bi1ai2bi2 · · · aikbikaik+1 .

A two-way deterministic (finite-state) transducer M from input alphabet Σ to output
alphabet Γ consists of a finite set of states Q, an initial state q0 ∈ Q, a final state qf ∈ Q,
and a transition function δ from Q × (Σ ∪ {`,a}) to Q × {−1, 0,+1} × Γ∗. The symbols
` and a are used to mark the two ends of the input. Given an input string w ∈ Σ∗, the
transducer M starts in state q0 with the input tape containing the string ` w a, scanning the
left-most symbol. At every step, based on the current state q and the current input symbol
a, the machine updates the state (as specified by the first component of δ(q, a)), moves the
read-head (as specified by the second component of δ(q, a), where −1 means move left, 0
means stay put, and +1 means move right), and outputs a sequence of symbols in Γ (as
specified by the third component of δ(q, a)). If the current state is the final state qf , the
machine stops, and in this case, the output [[M]](w) corresponding to the input string w is
the concatenation of outputs emitted along the run. If the machine never enters the final
state, or tries to move left while reading `, or tries to move right while reading a, then this
is an error, and [[M]](w) is undefined. This partial function [[M]] defines the semantics of the
machine M , and is a deterministic transduction from Σ to Γ.

To illustrate the definition of a two-way transducer, let us consider how to implement
the example transductions by two-way transducers. To implement the transduction f1, the
two-way transducer reads the string in one left-to-right pass followed by one right-to-left
pass, emitting the symbol read from the input at every step. The two-way transducer for f2,
first moves all the way to the right. If the last symbol is b, then while moving right to left it
outputs b for every b symbol it reads, while ignoring a symbols. If the last symbol is not b, it
moves all the way to the left, and using a final left-to-right pass, it outputs every symbol
it reads. The transducer for f3 starts moving to the right emitting an a symbol for each a
symbol read. If it encounters the right end-marker, it halts, If it encounters a b symbol, it
emits the empty string and starts moving left. For every a symbol it reads, it emits b, and
keeps moving left. When it encounters a b symbol or the left end-marker, it starts moving
right again skipping over the a’s until it encounters a b, emitting the empty string at each
step. Then the whole cycle repeats.

For defining transductions using monadic second-order logic, a string w = w1w2 . . . wk

FSTTCS 2010

4 Expressiveness of streaming string transducers

is viewed as a (string) graph Gw with k + 1 vertices v0v1 . . . vk, with an edge from each
vi to vi+1 labeled with the symbol wi. Then, an MSO formula over an alphabet Σ, to be
interpreted over such a graph Gw, consists of Boolean connectives, quantifiers, first-order
variables that range over vertices of Gw, monadic second-order variables that range over
sets of vertices of Gw, and atomic formulas of the form a(x, y), for a ∈ Σ, meaning that the
vertex x has an a-labeled edge to the vertex y. A deterministic MSO transducer T from
input alphabet Σ to output alphabet Γ consists of a finite copy set C, vertex formulas ϕc(x),
for each c ∈ C, each of which is an MSO formula over Σ with one free first-order variable x,
and edge formulas ϕc,da (x, y), for each a ∈ Γ and c, d ∈ C, each of which is an MSO formula
over Σ with two free first-order variables x and y. Given an input string w, consider the
following output graph: for each vertex x in Gw and c ∈ C, there is a vertex xc in the output
if the formula ϕc(x) holds over Gw, and for all such vertices xc and yd, there is an a-labeled
edge from xc to yd if the formula ϕc,da (x, y) holds over Gw. If this graph is the string graph
corresponding to the string u over Γ then [[T]](w) = u, and if this graph is not a string graph,
then [[T]](w) is undefined.

Let us revisit our example transductions. To define the transduction f1, we choose the
copy set C = {1, 2}. The output graph retains both copies of each vertex in input graph,
except the last one. When a(x, y) holds in the input graph a(x1, y1) and a(y1, x1) holds in
the output graph (the last vertex needs to be handled specially to connect the two copies).
For the transduction f2, we need only one copy of each vertex. The formula ϕ1 is defined so
that ϕ1(x) holds precisely when either the position x corresponds to a b-symbol in the input
graph, or if the last symbol in the input is b (such “regular” look-ahead is easily definable
using MSO formulas). The output graph has an edge from x to y if ϕ1(x) holds, y is the least
position following x for which ϕ1(y) holds, and the label is the same as the input symbol
corresponding to position x. The transduction f3 can be defined by a deterministic MSO
transducer with the copy set C = {1, 2}, where both output copies of a vertex are retained,
or omitted, depending on whether the corresponding symbol in the input string is a, or b,
respectively. The edge formulas are slightly complicated, but can be defined in MSO [3].

The two frameworks are equally expressive [3], and this class of transductions is called
regular string transductions. The class of regular transductions is closed under sequential
composition [2], and it is decidable to check whether two such transductions, presented by,
say, two two-way deterministic transducers, are equivalent [4]. Observe that for any regular
transduction, the ratio of the length of the output string to the length of the input string is
bounded by a constant, namely, the size of the copy set C of the corresponding deterministic
MSO transducer.

3 Streaming Transducer Model

A (deterministic) streaming string transducer W from input alphabet Σ to output alphabet
Γ consists of a finite set of states Q, an initial state q0 ∈ Q, a finite set of variables X, a
partial output function F from Q to (Γ ∪X)∗ such that for each q ∈ Q and x ∈ X, there is
at most one occurrence of x in F (q), a state-transition function δ1 from Q× Σ to Q, and a
variable-update function δ2 from Q×Σ×X to (Γ∪X)∗ such that for each q ∈ Q and a ∈ Σ
and x ∈ X, there is at most one occurrence of x in the set of strings {δ2(q, a, y) | y ∈ X}.

To define the semantics of such a transducer, consider configurations of the form (q, s),
where s is a valuation from X to Γ∗. A valuation from X to Γ∗ is extended to a valuation from
(X ∪ Γ)∗ to Γ∗ in the natural way. The initial configuration is (q0, s0) where s0 maps each
variable to the empty string. The transition function is defined by δ((q, s), a) = (δ1(q, a), s′)

Rajeev Alur and Pavol Černý 5

where for each variable x, s′(x) = s(δ2(q, a, x)). For an input string w ∈ Σ∗, if δ∗((q0, s0), w) =
(q, s), then if F (q) is undefined then so is [[W]](w), otherwise [[W]](w) = s(F (q)).

The transduction f1 can be implemented by a streaming string transducer Wrev with
a single state and two variables x and y. Each symbol a is processed by the update
(x, y) = (xa, ay), and the output function is xy.

The transduction f2 can be implemented by a streaming string transducer with two states
q0 and q1, and two variables x and y. Initially the state is q0, and the transducer is in state
q1 precisely when the most recent input symbol is b (it goes to state q1 on reading b and to
state q0 on reading a). At every step, x contains the input string read so far, and y contains
only b’s encountered so far (the variable-update function on reading a is (x, y) = (xa, y), and
on reading b is (x, y) = (xb, yb)). In state q1 the output function returns y, in state q0 the
output function returns x.

The transduction f3 can be implemented by a streaming string transducer Wcp with a
single state and two variables x and y. The symbol a is processed by the update (x, y) =
(xa, yb), the symbol b is processed by (x, y) = (xy, ε), and the output function is x.

The following proposition states that streaming string transducers are closed under
sequential composition. Note that streaming data string transducers [1] are not closed under
sequential composition.
I Proposition 1. Given a streaming string transducer W1 from input alphabet Σ1 to output
alphabet Σ2 and a streaming string transducerW2 from input alphabet Σ2 to output alphabet
Σ3, one can effectively construct a streaming string transducer W from input alphabet Σ1 to
output alphabet Σ3, such that for all strings w in Σ∗1, we have that [[W]](w) = [[W2]]([[W1]](w))
if [[W1]](w) and [[W2]]([[W1]](w)) are both defined, and [[W]](w) is undefined otherwise.

Proof. We first define a notion of a summary of a computation for a streaming string
transducer on an input string w. We then show how the transducer W can compute the
sequential composition by simulatingW1 and keeping track of summaries ofW2 corresponding
to string variables of W1.

Given a string w, a summary of a finite state automaton is just a pair of states (q, q′),
indicating that if the automaton starts reading w in a state q, it finishes in state q′. For a
deterministic streaming string transducer U from Σ to Γ, a summary for a given start state
q and a string w includes not only an end state q′, but also a string variable summary, that
is, a description of how the contents of the string variables get updated while processing w.
Let X be the set of string variables of U . A string variable summary is a function κ from X

to strings in (Γ ∪X)∗, with the same restrictions of copyless assignments as in the definition
of streaming string transducers. For every valuation s from X to Γ∗, if the configuration of
U is (q, s), then after processing the input string w, the configuration of U is (q′, s′) where
s′(x) = s(κ(x)). Note that the computation of U , and hence the summary, is not influenced
by the valuation s of string variables at the start of the computation on w.

A key observation is that a string variable summary can be represented by a set X ′ of
2× k string variables, where k is the number of string variables in X, in addition to finite
bookkeeping information which is also independent in size from w. For instance, if X consists
of two variables, the function κ can be κ(x) = αxβyγ, κ(y) = ι, or κ(x) = αyβ, κ(y) = δxι,
or a similar combination, where α, β, γ, ι are strings over Γ. The summary can be represented
by X ′ containing in this case four string variables (that will store α, β, γ, ι), and a bounded
amount of bookkeeping information to store how κ is constructed from X and X ′.

We now describe the construction of the streaming string transducerW that computes the
sequential composition of W1 and W2. The transducer W simulates W1 processing the input
string, and for every string variable x of W1, it maintains a summary of W2. It is easy to see

FSTTCS 2010

6 Expressiveness of streaming string transducers

how summaries for string variables of W1 are maintained: for example, consider the case
when W1 executes an assignment z = az1z2. First, we construct a string variable summary
for computation of W2 on processing the letter a. Then we compose this summary with
summaries for strings stored in string variables z1 and z2. We explain how string variable
summaries are composed on the following example. Let κ1 be a string variable summary of
a computation of W2 on z1 defined by κ1(x) = xαy, κ1(y) = β. Let κ2 be a string variable
summary of a computation of W2 on z2 defined by κ2(x) = ε, κ2(y) = xγyι. Note that each
of the strings α, β, γ, ι can be stored in a string variable. Then the string variable summary
κ after processing z1z2 is defined by κ2(x) = ε, κ2(y) = xαyγβι (where the string γβι can be
stored in one string variable). This finishes the construction. The number of string variables
of W is m1 × n2 × (2 ×m2), where m1 is the number of string variables of W1, n2 is the
number of states of W2 and m2 is the number of string variables of n2. J

As the following proposition shows, streaming string transducers are closed under con-
ditional composition, where the condition is given as a regular language over the input
alphabet. The proof is based on product construction and is similar to the proof of closure
under conditional composition for streaming data string transducers [1].
I Proposition 2. Given two streaming string transducers W1 and W2 from input alphabet
Σ to output alphabet Γ and a regular language L over Σ, there exists a streaming stream
transducer W such that for all strings w ∈ Σ∗, (i) if w ∈ L, then [[W]](w) = [[W1]](w) if
[[W1]](w) is defined and is undefined otherwise, and (ii) if w 6∈ L, then [[W]](w) = [[W2]](w) if
[[W2]](w) is defined, and is undefined otherwise.

4 Heap-based Transducer Model

A heap-based (finite-state) deterministic string transducer H from input alphabet Σ to output
alphabet Γ consists of a finite set of states Q, an initial state q0 ∈ Q, a finite set of pointers
X, an output function F from states Q to variables X, and a transition function δ from
Q× Σ to Q×A∗X , where the set AX of atomic actions consists of x := ν(a) and η(x) := y,
for x, y ∈ X and a ∈ Γ.

Given an input string over Σ, the transducer computes the output by maintaining a heap.
A heap h consists of a finite set C of cells, a mapping ` from C to Γ (`(c) denotes the output
symbol stored in the cell c), a mapping η from C to C⊥, where C⊥ denotes the set C ∪ {⊥}
(η(c) denotes the cell that the next-pointer of the cell c points to, with ⊥ denoting the null
value), and a mapping µ from X to C⊥ (µ(x) is the cell that the pointer x points to). A
configuration of the transducer H consists of a state q ∈ Q and a heap h. Initially, the state
is q0 and in the initial heap h0, C is empty and µ(x) = ⊥ for each x. The action x := ν(a)
creates a new cell labeled by a symbol a ∈ Γ and makes x point to the new cell. The action
η(x) := y modifies the next pointer of the cell pointed to by x to make it point to the cell
pointed to by y, if x is not nil; if x is nil, the action has no effect. More formally, each action
in AX updates the heap as follows: (C, `, η, µ) x:=ν(a)−→ (C ′, `′, η′, µ) holds where C ′ = C ∪ {c},
with c 6∈ C 1, `′(c) = a, η′(c) = ⊥ and `′ and µ′ agree with ` and µ, respectively, on cells in
C; (C, `, η, µ) η(x):=y−→ (C, `, η′, µ) holds where if µ(x) = c then η′(c) = µ(y) and η′ agrees with
η for cells other than c (if µ(x) = ⊥, the action has no effect). This transition relation can be
lifted to configurations: for an input symbol a ∈ Σ, (q, h) a−→ (q′, h′) if δ(q, a) = (q′, α) and

1 The behavior of the transducer is deterministic as long as the choice of this new cell c is according to
some deterministic naming policy.

Rajeev Alur and Pavol Černý 7

h
α−→ h′. For an input string w, if (q0, h0) w−→ (q, h) then h is the output heap corresponding

to w. In the output heap h = (C, `, η, µ), if µ(F (q)) = ⊥ then [[H]](w) is the empty string. If
the sequence of next-pointers starting from the cell µ(F (q)) contains a cycle, then [[H]](w) is
undefined. Otherwise, let c0c1 . . . cn be the unique sequence of cells such that c0 = µ(F (q)),
η(ci) = ci+1 for i < n, and η(cn) = ⊥. Then [[H]](w) is defined to be `(c0)`(c1) · · · `(cn).

Such a transducer can implement the transduction f1 as follows. After processing an
input string w, suppose the current heap is a linear sequence of cells storing w.rev(w) such
that the pointer x0 points to the first cell, the pointer x1 points to the last cell corresponding
to w and x2 points to the first cell holding rev(w), with an additional auxiliary pointer x3.
When the transducer reads the next input symbol, say a, it adds two new a-labeled cells in
the middle of the current output, by executing the sequence x3 := ν(a); η(x1) := x3;x1 :=
ν(a); η(x3) := x1; η(x1) := x2. In the updated heap, x3 and x1 point to the two middle cells,
and x2 can be used as an auxiliary pointer. The result is given by the output pointer x0.

To implement f2, the heap-based transducer maintains two lists with pointers to the
two ends of both the lists. An input symbol a is added to the end of only the first list by
creating one new a-labeled cell, while an input symbol b is added to the end of both the
lists by creating two new b-labeled cells. The transducer needs two states, and the state
remembers whether the last symbol is b or not, and the state is used to return the pointer
that points to the head of the appropriately chosen list.

To implement f3, the heap-based transducer again maintains two lists with pointers to
the two ends of both the lists. The output pointer points to the head of the first list. To
process the input symbol a, it adds a a-labeled cell at the end of the first list, and a b-labeled
cell at the end of the second list. To process the input symbol b, the first list is updated to
the concatenation of the two (which can be implemented by changing the next-pointer of the
last cell of the first list point to the first cell of the second list) and the second list is set to
empty.

The two types of pointer manipulating instructions (node creation and next-pointer
modification) are expressively adequate for our purpose. The class of programs in [1] allows
a more general set of instructions for manipulating pointer variables (such as testing whether
two pointers point to the same cell, testing whether a pointer is null, checking and updating
the symbol stored at a cell pointed to by a pointer, assigning one pointer to another). From
the results of this paper and the compilation of such programs into streaming transducers
described in [1], it follows that such extensions do not add to expressiveness. The key missing
instruction is the traversal assignment x := ν(y). Consider the transduction merge: given
an input u1u2 . . . um#v1v2 . . . vm, output u1v1u2v2 . . . umvm. Adding traversal assignments
would allow the heap-based transducer to define the merge transduction by using two traversal
pointers, one traversing the u part of the input and the other traversing the v part of the input.
The next proposition establishes that this transduction cannot be captured by a streaming
string transducer. As we show later in this paper that heap-based string transducers and
streaming string transducers exactly define regular transductions, the proposition implies
that adding the traversal assignment strictly increases the expressiveness of heap-based string
transducers.
I Proposition 3. The transduction merge is not definable by a streaming stream transducers.

Proof. Let us consider a streaming string transducer W with n states and k string variables
and let us assume that W defines merge. We derive a contradiction as follows. Consider the
set of inputs Im where m is the length of the sequence u = u1u2 . . . um (resp. v = v1v2 . . . vm),
and where ui is in {a, b} for all i such that 1 ≤ i ≤ m, and vj is in {c, d}, for all j such that
1 ≤ j ≤ m.

FSTTCS 2010

8 Expressiveness of streaming string transducers

Intuitively, the proof is simple: if x1,..., xk are values of string variables after reading
the first part of the input, u#, then these will appear (each at most once) as substrings
in the final output. Assuming that x1, . . . , xk contain only a’s and b’s after processing u#,
and that while processing the second part of the input, v, W adds only c’s and d’s to the
string variables, it is clear that the final output can contain at most a bounded number of
alternations of letters in {a, b} with letters in {c, d}. The transducer W therefore does not
implement merge. We now formalize this argument.

Let us consider the set of inputs Im as above, with m such that 2m > n ∗ k ∗ 2r, where r
is such that 2r > k. A string w is called short if |w| ≤ r. Let us call a short-configuration of
W the pair (q, ρ) where q is a state of W and ρ is a valuation of string variables, where each
variable is assigned either a short string or a ∗. A short-configuration is an abstraction of a
configuration of W , where a variable x keeps its original value if its value is a short string,
otherwise it is abstracted by ∗. If we prove the following claim, we have that W does not
define merge, and we obtain the desired contradiction.

Claim: There exist two different strings w1 or w2 from Im such that (i) either the output
on both w1 and w2 is the same, (ii) or the output on one of the strings w1 and w2 is incorrect.

To prove the claim, consider two different strings u1 and u2 in {a, b}m such that that W
is in the same short configuration after processing u1 and u2. Such strings exist, as 2m is
more than the number of short configurations (n × k × 2r). We now construct a string v
in {c, d}m such that the claim holds for u1#v and u2#v. Let us look at non-short strings
that W stores after processing u1 or u2. If these are to be used in the output, they have to
have c or d on every other position. These strings thus contain guesses for the v part of the
whole input string. As the length of these strings is greater than r, W cannot have stored all
the possible guesses for v (as it has k string variables, and 2r > k). We consider v that does
not contain any sequence contained in a non-short string stored by W . Thus for u1#v and
u2#v we have that if W uses in the output a string variable with a non-short string stored
after processing u1 (or u2), then the output is incorrect. If it does not use any such string
variable, the output will be the same in both cases (as W is deterministic). J

5 Expressiveness

5.1 From Two-way Transducers to Heap-based Transducers
I Theorem 1. For every two-way deterministic transducer M with n states, there exists a
deterministic heap-based transducer H with O(nn) states and O(n) pointer variables such
that [[M]] = [[H]].
Proof: The proof is an extension of Shepherdson’s proof [7] for standard two-way finite
automata to the case of transducers. We start by describing the main ideas of the proof.
The heap-based transducer has only a single (left-to-right) pass on the input string. It thus
needs to precompute information on possible back-and-forth traversals. More precisely, at
each position p of w and for each state u of M , the information needed by H is captured by
a pair (qu, wu) such that

if M reads the symbol at position p in state u, the first time M reaches the position p+ 1,
it will be at state qu, having produced output wu along this stretch. We show how such
pair can be updated, even in the presence of left moves. Let us suppose that the symbol at
position p is the symbol a and that in state u, M moves left to state v and outputs string α.
Furthermore, let us assume that for state v, a pair (qv, wv) was stored in the previous step;
and that in state qv the machine M moves right on a to qu, outputting β. Then for state u,
we need to store the pair (qu, αwvβ). The situation is depicted in Figure 1.

Rajeev Alur and Pavol Černý 9

We need to add a few important details to this intuitive explanation. First, H can store
strings wu (possible partial outputs of M) only on the heap. In order to store a string wu, it
will store two pointers, xbu and xeu. The two pointers will point to the first and last position
of the string. Second, H cannot copy arbitrarily long strings, but it can instead use the fact
that suffixes of strings represented on the heap can be shared. Third, in order to model the
first forward traversal of M , we add a state m to the set of states of M . For each position p
the pair (qm, wm) represents the situation that the first time M reaches p+ 1, it will be in
state qm and the output will be wm. Fourth, it is possible that M never reaches the position
p+ 1, either because it reached a final state and stopped, or because an error occurred, for
example if M tried to move left on `. If, for example, after a left move from a state u at
position p, M reaches the final state qf (and outputs w) before arriving at p+1, H represents
this by the pair (qf , w). On the other hand, if an error occurred, then H represents this
by a pair (qerr , ε), where qerr is a special state. Fifth, note that H (as opposed to M) does
not see the symbols `,a. This can be remedied by H having two copies of possible outputs
of M as described above, with the additional copy assuming that the next character is a
and simulating M on this symbol. The final output is the string starting at x, with x being
the pointer variable representing the first forward traversal of M in the second copy of the
possible outputs of M .

We now present the construction in more details. The heap-
a

pp−1 p+1

uv
α

βwv

qv qu

Figure 1 Representing
the computation of M

based transducer H that we construct uses pointer-assignment
instructions of the form x = y, where x and y are pointer variables.
Such a heap-based transducer can be easily converted to a heap-
based transducer H ′ which does not use such instructions. The
state of H ′ records, in addition to the state of H, for every pair
of pointers whether they are equal, and for every class such equal
pointers, which pointer accesses the heap content. Then, to
simulate the pointer assignment instruction x = y in H, H ′ does
not update x, but simply records that x and y are equal, and

the pointer y points to the desired content. The construction does not change the number of
pointers, but blows up the number of states by a factor of the number of possible partitions
of the pointers. Since H has pointer assignment instructions, it suffices for H to have a single
pointer variable xo to be the output pointer in every state. The output function of H ′ maps
a state to the pointer that is equal to xo and accesses the actual content.

Let M be defined by the tuple (Σ,Γ, QM , qM0 , δM). The heap-based transducer H is
defined by the tuple (Σ,Γ, QH , qH0 , X, xb2m , δH). Let QH be the set of functions from QM∪{m}
to QM ∪ {m, qerr}. Initial state is one which represents the identity function. The set of
pointers contains four pointers xbu, xeu, xb2u , xe2

u for each state u in QM ∪ {m}. (The pointers
xb2u , xe2

u point to the beginning and end of the second copy of wu.)
We explain the definition of the transition function δH using an example. Let us consider

a state g of H such that g(v) = qv and a transition δM (u, a) = (v,−1, α) in δM . Let us
suppose that δM (qv, a) = (qu,+1, β). Then δH(g, a) = (f,A∗), for some state f such that
f(u) = qu. Recall that H stores the string wv that M produced while moving from v to
qv on the heap, between pointers xbv and xev. We have that while moving from u to qu, M
produces αwvβ. The sequence of actions A∗ puts α on the heap, make xbu point to the first
node of α, and connects the last node of α to the node pointed to by xbv. Similarly, β is
appended at xev. So far, we have assumed that M moves right from qv on the symbol a. If it
moves left, we can again use the the information that H stores in the finite-state control and
on the heap to find the state in which it will return to the current position and the string it

FSTTCS 2010

10 Expressiveness of streaming string transducers

will output in the process. Note that the process may repeat several times, and potentially
even cycle. However, H has all the necessary information stored locally. If it discovers a
cycle (this happens for example if qv = u), then the value of f(u) will be qerr .

We describe how copying arbitrarily long strings on the heap is avoided by exploiting
the fact that M is deterministic and the fact that suffixes of strings on the heap can be
shared. Let us suppose that there are two states u and t of M such that M moves left on a
symbol a to v from both u and t. Let us also suppose that at the previous step, H stored
the information that from v, the first time H will move to the right it will be in state qv and
produce wv in between. Using the idea described above, we obtain that we need to store the
pair (qu, αuwvβu) for the state u, and the pair (qt, αtwvβt) for the state t. As the string wv
cannot be copied, it must be shared. As the heap is singly-linked, this would not be possible
if βu was different from βt. However, since M is deterministic, we have that the execution
from v will be identical in both cases — we have that βu = βt (and qu = qt).

5.2 From Heap-based Transducers to Streaming Transducers
I Theorem 2. For every deterministic heap-based string transducer H with n states and m
pointer variables, there exists a deterministic streaming transducer W with O(n2m) states
and O(n) string variables such that [[H]] = [[W]].

Proof: The heap-based transducer and the streaming transducer both traverse the string
only once. The difference between the two models is that one uses the heap, which allows
sharing of suffixes of represented strings, whereas the other uses string variables, and thus
sharing is not possible. The proof is the same as the compilation from imperative single-pass
list-processing programs into streaming transducers described in [1], we describe it here for
the sake of completeness.

The heart of the proof is therefore to show that the streaming

zy

x

t

v0 v1 v2 v3

v4 v5 v6

Figure 2 Singly-linked
heap

transducer can represent the heap of the heap-based transducer
using a bounded number of string variables. In order to achieve
this, we adapt the approach (and terminology) of [5] for repre-
senting a singly-linked heap. A node v is called an interruption
if it is either pointed to by a program variable or there are at
least two distinct nodes with edges to v. An uninterrupted list
segment is a finite sequence of nodes where: (i) the first node

is an interruption, (ii) the next pointer of each node (except the last) points to the next
node in the sequence, (iii) the last node is either an interruption or the value of its next
pointer is nil, and (iv) no other node is an interruption. Consider the heap in Figure 2. The
nodes v0, v1, v4, v5, v6 are interruptions. The sequence of nodes v1v2v3 is an uninterrupted
list segment. It can be easily seen that for a heap-based transducer with k pointer variables,
there can be at most 2k − 1 interruptions and 2k − 1 uninterrupted list segments. The heap
can be compressed by replacing uninterrupted list segments by strings (to be stored in string
variables of W).

The number of compressed heaps is exponential in the number of interruptions, and thus
exponential in the number of pointer variables of H. The heap can therefore be stored by
the streaming automaton W as follows: each uninterrupted list segment will be represented
by a string variable. The shape of the heap (a forest) and the information on where the
pointer variables of H point will be represented in the finite-state control of W . The number
of states of W will be therefore linear in the number of states of H and exponential in the
number of pointer variables of H.

Rajeev Alur and Pavol Černý 11

It remains to show that the semantics of each instruction of the heap-based transducer
can be modeled effectively on the representation described above. Let us consider the heap
in Figure 2 and the action η(y) := x. The shape of the heap changes in two ways: first, the
node pointed to by y points to the node pointed to by x (this information is kept in the
finite-state control of W); second, there will be an uninterrupted list segment starting at
the node pointed to by x containing the list segment v0v1v2v3. The (labels of nodes in) this
list segment will be stored in a string variable. The string variable that in the previous step
represented the list segment v1v2v3 can be freed (and reused).

5.3 From Streaming Transducers to MSO
I Theorem 3. For every deterministic streaming string transducer W there exists a deter-
ministic MSO transducer T such that [[W]] = [[T]].

Proof. The proof is based on the idea that the computation of the streaming string transducer
W can be represented in the copy set (from the definition of the MSO transducer). The
unique sequence of states of W over a given input string w can be captured in MSO using
second order existential quantification. Given a state of W and a letter in Σ, the function δ2
is a function from the string variables to sequences in (Γ ∪X)∗. This function is what is
represented using the copy set. The last step then consists of “reading out” the final output
string from this representation.

We explain the encoding on an example. Let us consider the

b ba

ba b

a b b

⊳

Figure 3 Representing
the computation of W

transduction f1 and the streaming transducer Wrev defined in
Section 3. The top of Figure 3 contains the input string abb.
Recall that Wrev has only one state. The columns below each
letter of the input string represent the assignments to the string
variables: the top three nodes in a column represent the right-
hand side (RHS) of the assignment x := xa (resp. x := xb), the
bottom three nodes represent the RHS of the assignment y := ay

(resp. y := by). The representation of an RHS with two symbols
has three nodes. A symbol in Γ is represented by a marked edge,
a variable z is represented by two nodes. The first of these nodes
links to the previous column to where the representation of z
begins. The second of these two nodes will be linked to from
the last node representing z from the previous column. Such
“linking” edges are represented by dashed (ε) lines in Figure 3.
In the first column, we connect the two nodes representing a variable in a right-hand side by
a dashed (ε) line, as the string variables are initially empty. The last column is not used
(and not pictured in Figure 3). In the column before last (the column that correspond to
the last character of the input string), we also represent the effect of the output function
F (q0) = xy. We mark the first edge of x by a special symbol / to indicate where the output
starts, and we connect the last symbol of x to the first symbol of y.

Note that the graph representing the computation of Wrev is not a string graph (there are
disconnected nodes in the last column, not pictured), and it contains ε edges. We thus need
to use an MSO transducer that deletes unused nodes (nodes unreachable from the marked
node) and removes ε edges. Such a transducer is easily defined. We can then use the result
that MSO transducers are closed under sequential composition [2] to conclude.

Details of the concrete MSO formulas are straightforward. We only note that the copy set
of T needs to represent the right-hand side of any possible assignment to a string variable of

FSTTCS 2010

12 Expressiveness of streaming string transducers

W , therefore (the upper bound on) the size of the copy set is n ∗ d, where n is the number of
pointer variables of W and d is the maximal length of the string δ(q, a, x), over all q (states
of W), a ∈ Σ and x (string variables of W).

6 Conclusions

The model of streaming string transducers is of potential interest for algorithmic verification
of list-processing programs due to decidability of equivalence problem and correspondence
to restricted classes of imperative heap-manipulating programs [1]. In this paper, we have
established that its expressiveness coincides with the classical model of two-way transducers.
This suggests robustness of their computing power. It also justifies the choice of primitive
instructions in the corresponding class of heap-based transducers, which model single-pass
programs that transform the input list using updates to a “traversal-free” heap consisting of
singly-linked cells. A number of theoretical directions are worth pursuing. These include
minimization of streaming string transducers, learning such transducers from input-output
examples, synthesis of streaming transducers, extension to nondeterministic transducers, and
extension to streaming transducers for tree-structured data.

References

1 R. Alur and P. Černý. Streaming transducers for algorithmic verification of single-pass list
processing programs. In Proceedings of the 38th Annual ACM Symposium on Principles of
Programming Languages, 2011.

2 M. Chytil and V. Jákl. Serial composition of 2-way finite-state transducers and simple
programs on strings. In Automata, Languages and Programming: Proceedings of Fourth
International Colloquium, ICALP’77, LNCS 52, pages 135–147. Springer, 1977.

3 J. Engelfriet and H. Hoogeboom. MSO definable string transductions and two-way finite-
state transducers. ACM Trans. Comput. Log., 2(2):216–254, 2001.

4 E. Gurari. The equivalence problem for deterministic two-way sequential transducers is
decidable. SIAM J. Comput., 11(3):448–452, 1982.

5 R. Manevich, E. Yahav, G. Ramalingam, and S. Sagiv. Predicate abstraction and canonical
abstraction for singly-linked lists. In Verification, Model Checking, and Abstract Interpre-
tation, 6th International Conference, LNCS 3385, pages 181–198. Springer, 2005.

6 G. Ramalingam. The undecidability of aliasing. ACM Trans. Program. Lang. Syst.,
16(5):1467–1471, 1994.

7 J. Shepherdson. The reduction of two-way automata to one-way automata. IBM Journal
of Research and Development, 3:198–200, 1959.

Special tree-width and the verification of monadic
second-order graph properties
Bruno Courcelle1

1 Institut Universitaire de France
Bordeaux University and LaBRI (CNRS)
F-33405, Talence, France
courcell@labri.fr

Abstract
The model-checking problem formonadic second-order logic on graphs is fixed-parameter tractable
with respect to tree-width and clique-width. The proof constructs finite deterministic automata
from monadic second-order sentences, but this produces automata of hyper-exponential sizes, and
this computation is not avoidable. To overcome this difficulty, we propose to consider particular
monadic second-order graph properties that are nevertheless interesting for Graph Theory and
to interpret automata instead of trying to compile them (joint work with I. Durand).

For checking monadic second-order sentences written with edge set quantifications, the ap-
propriate parameter is tree-width. We introduce special tree-width, a graph complexity measure
between path-width and tree-width. The corresponding automata are easier to construct than
those for tree-width.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.13

1 Introduction

It is well-known from [9,12,14] that the model-checking problem for monadic second-order (MS)
logic on graphs is fixed-parameter tractable (FPT) with respect to tree-width and clique-width.
The proof uses two main notions. First tree-decompositions (for tree-width as parameter) and
k-expressions (for clique-width as parameter), and second, constructions of finite deterministic
automata from the MS sentences that express the properties to check. These constructions use
inductions on the structure of sentences. "Small" deterministic automata are built for atomic
formulas. Conjunction and disjunction are reflected by products of automata. Existential
quantification is easy but it introduces nondeterminism. Universal quantifications are replaced
by negations and existential quantifications. Negation is reflected by complementation hence is
easy on deterministic automata, but since existential quantifications produce nondeterminism,
determinization must be performed before each application a complementation and this is
the source of the hyper-exponential sizes of the constructed automata.

Two difficulties arise. Although the fact that a graph has tree-width at most k can
be checked in linear time, the corresponding algorithm (by Bodlaender, see [12]) is not
practically usable. The situation is even more difficult for clique-width (see [20] or Chapter
6 of [6]). One can argue that graphs are frequently given with decompositions witnessing
that their tree-width or clique-width is at most some fixed k, but another difficulty arises
: the automata to be constructed are extremely large and their computations run out of
memory space. This is actually unavoidable if one wants algorithms taking as input any
MS sentence (see, e.g., [15, 21, 22]). One possibility is to forget the idea of implementing
the general theorem, and to work only on particular problems, as in [16-19] but we do not
follow this direction: we present some techniques that can improve the situation in many
significant cases.

© Bruno Courcelle;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 13–29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.13
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14 Special tree-width

First, we limit our constructions to a fragment of MS logic whose sentences have limited
alternations of quantifiers but that has nevertheless an interesting expressive power. Using
Boolean set terms also helps to limit quantifier alternation and does not cost much in
terms of sizes of automata. Second, we define deterministic automata for some basic graph
properties and not only for the atomic formulas as is done usually in the proof of the general
construction. Third, we do not compile automata, but instead we recompute their transitions
whenever they are needed. Determinization is done "on the fly". These three ideas arise from
joint work with I.Durand ([8]). Together with the necessary background notions, they will
be presented in Sections 2 and 3 for graphs of bounded clique-width.

In Sections 4 to 6, we will explain how these constructions can be adapted, for graphs
of bounded tree-width, to the verification of MS properties expressed with edge set quan-
tifications. It appears that the corresponding automata, even for the basic property of
adjacency, have exponential size in the bound on tree-width. This exponential blow-up does
not occur if one uses path-decompositions instead of tree-decompositions. This observation
motivates the introduction of special tree-width, a graph complexity measure intermediate
between path-width and tree-width, and for which the basic automata are no more difficult
to construct (or to specify) than for graphs of bounded clique-width. We will present some
results that enlighten the differences between tree-width and special tree-width.

In this communication, we present the ideas and the main results. Technical details and
proofs can be found in Chapter 6 of [6] and in [7].

2 Clique-width

Graphs are finite and simple. Just to shorten the definitions, we consider loop-free graphs.
An undirected edge is handled as a pair of opposite directed edges. Each vertex has a label
in a set C that we first take equal to [k] := {1, ..., k} for some positive integer k. We denote
by π(G) the set of labels of the vertices of a graph G and by πG(x) the label of a vertex x.
The operations on graphs are ⊕, the union of disjoint graphs, the unary relabelling relabh
that changes every label a into h(a) (where h is a mapping from C to C) and the unary
edge-addition

−−→
adda,b that adds directed edges from every vertex labelled a to every vertex

labelled b where a 6= b. Since we wish to define simple graphs, parallel edges are fused (hence
−−→
adda,b(

−−→
adda,b(G)) =

−−→
adda,b(G)). A different interpretation of

−−→
adda,b can be given (cf. Section

5) so as to define graphs with multiple edges. For constructing undirected graphs, we use
−−→
adda,b ◦

−−→
addb,a that we abbreviate into adda,b. We will denote relabh by relaba→b if h(a) = b

and h(c) = c if c 6= a. The constant symbol a denotes one vertex (with no edge) labelled by
a ∈ C. We let Fk be the set of these operations and constant symbols. Every term t in T (Fk)
is called a k-expression and defines a graph G(t) with vertex set equal to the set occurences
of the constant symbols in t. A graph has clique-width at most k if it is isomorphic to G(t)
for some t in T (Fk).

Terms representing graphs and properties of their vertices

Let P (X1, ..., Xn) be a property of sets of vertices X1, ..., Xn of a graph G(t), denoted
by a term t in T (Fk). Here are some examples of properties: Link(X,Y) : there is an edge
from some x in X to some y in Y ; Dom(X,Y) : for every x in X, there is an edge from
some y in Y to x; Path(X,Y) : X has two vertices linked by a path in und(G[Y]) (G[Y] is

B. Courcelle 15

the subgraph of G induced on Y and und(G[Y]) is the corresponding undirected graph)
and Conn(X) : G[X] is connected.

We let F (n)
k be obtained from Fk by replacing each constant a by the constants (a, w)

where w ∈ {0, 1}n and we let pr : F (n)
k → Fk be the mapping that erases the sequences

w. It extends into pr : T (F (n)
k)→ T (Fk). A term t in T (F (n)

k) defines the graph G(pr(t))
and the n-tuple of sets of vertices (A1, ..., An) such that Ai is the set of vertices which
are occurrences of constant symbols (a, w) such that the i-th component of w is 1. Then,
if P (X1, ..., Xn) is a property as above, we define LP (X1,...,Xn),k as the set of terms t in
T (F (n)

k) such that P (A1, ..., An) is true in G(pr(t)), where (A1, ..., An) is the n-tuple of sets
of vertices encoded by t.

3 Monadic second-order logic

Graph properties can be expressed by monadic second-order formulas (more generally by
formulas of any logical language) via two (main) representations of graphs by relational
structures. The first representation associates with every graph G the logical structure
bGc := 〈VG, edgG〉 where edgG is the binary relation on vertices such that (x, y) ∈ edgG if
and only if there is an edge from x to y; the relation edgG is symmetric if G is undirected.
The second representation will be discussed below in Section 4.

Monadic second-order formulas will be written with the set variables X1, ..., Xn, ... (with-
out first-order variables), with the atomic formulas Xi ⊆ Xj , Xi = ∅, Sgl(Xi) (to mean
that Xi denotes a singleton set) and edg(Xi, Xj) (to mean that Xi and Xj denote singleton
sets {x} and {y} such that (x, y) ∈ edgG), and without universal quantifications. These
synctactical constraints are not a loss of generality. A graph property P (X1, ..., Xn), where
X1, ..., Xn denote sets of vertices, is an MS graph property if there exists an MS formula
ϕ(X1, ..., Xn) such that, for every graph G and for all sets of vertices X1, ..., Xn of this graph,
we have:

bGc |= ϕ(X1, ..., Xn) if and only if P (X1, ..., Xn) is true in G.

For each MS property P (X1, ..., Xn), the set of terms LP (X1,...,Xn),k is regular, hence is
the set accepted by a finite automaton over the functional signature F (n)

k . However, the
corresponding automata are frequently much too large to be constructed. This is due partly
to the level of nesting of negations in the formulas but also to the number k: for example, the
number of states of the minimal automaton recognizing LConn(X1),k is a two-level exponential
in k. Instead of trying to construct automata for the most general sentences, we will restrict
our attention to particular but expressive ones (and we will address later the difficulty
concerning k).

Definition 1: ∃MS(P) sentences

We let P be a set of MS graph properties consisting of the properties defined by the
atomic formulas and of basic properties such as Link(X1, X2), Path(X1, X2), Conn(X1).
We let {X1, ..., Xn} be a set of set variables. A Boolean set term is a term written with
these variables, the operations ∩, ∪ and complementation. For example, S = X1 ∪X3. A
P-atomic formula is a formula of the form P (S1, ..., Sm) where S1, ..., Sm are Boolean set
terms and P belongs to P. An ∃MS(P) sentence is a sentence of the form ∃X1, ..., Xn.ϕ

where ϕ is a positive Boolean combination of P-atomic formulas. Note that this definition
depends on a set P that we leave "extensible", according to the needs.

FSTTCS 2010

16 Special tree-width

Examples 2: We now give some examples of properties of simple undirected graphs
expressible by ∃MS(P) sentences.

(1) The property of p-vertex colorability is expressed by the sentence :

∃X1, ..., Xp .(Part(X1, ..., Xp) ∧ St(X1) ∧ ... ∧ St(Xp))

where Part(X1, ..., Xp) expresses that X1, ..., Xp define a partition of the vertex set and
St(Xi) expresses that Xi is stable, i.e., that the induced graph G[Xi] has no edge. A p-vertex
coloring defined by X1, ..., Xp is acyclic if furthermore, each induced graph G[Xi ∪Xj] is
acyclic (i.e., is a forest). The existence of an acyclic p-coloring for G (we will say that G is
p-AC-colorable) is expressed by:

∃X1, ..., Xp .(Part(X1, ..., Xp) ∧ St(X1)∧
... ∧ St(Xp) ∧ ... ∧NoCycle(Xi ∪Xj) ∧ ...)

with one formula NoCycle(Xi ∪Xj) for all i, j with 1 ≤ i < j ≤ p.

(2) Minor inclusion. Let H be a simple, loop-free and undirected graph with vertex set
{v1, ..., vp}. A graph G contains H as a minor if and only if it satisfies the sentence :

∃X1, ..., Xp .(Disjoint(X1, ..., Xp) ∧ Conn(X1) ∧ ...
∧Conn(Xp) ∧ ... ∧ Link(Xi, Xj) ∧ ...)

where Disjoint(X1, ..., Xp) expresses that X1, ..., Xp are pairwise disjoint; there is one
formula Link(Xi, Xj) for every edge of H that links vi and vj .

(3) Perfect graphs. A (simple, loop-free and undirected) graph G is perfect if the chromatic
number of each induced subgraph H is equal to the maximum size of a clique in H. This
definition is not monadic second-order expressible (because the fact that two sets have equal
cardinalities is not) but the characterization established by Chudnovsky et al. [3] in terms of
excluded holes and antiholes is. A hole is an induced cycle of odd length at least 5 and an
antihole is the edge-complement of a hole. A graph has a hole if and only if it satisfies the
following sentence:

∃X,Y, Z, U, V.(Disjoint(X,Y, Z, U, V) ∧ edg(Z,U) ∧ edg(U, V)∧
¬edg(Z, V) ∧ deg2(X,Z ∪ Y) ∧ deg0(X,U ∪ V)∧

deg2(Y,X ∪ V) ∧ deg0(Y, U ∪ Z) ∧ deg2(V,U ∪ Y) ∧ deg2(Z,U ∪X))

where deg0(X,Y) means that X ∩ Y = ∅, X is stable and not empty and there is no
edge between X and Y ; the property deg2(X,Y) means that X ∩ Y = ∅, X is stable and
not empty and every vertex in X has exactly 2 neighbours in Y . For every term t ∈ T (Fk),
one can construct (easily) a term t ∈ T (F2k) that defines the edge complement of the graph
G(t) ([10]). We obtain that G(t) is perfect if and only if the F2k-automaton for holes rejects
both t and t. The algorithm of [2] can test if a graph is perfect in time O(n9) (n is the
number of vertices). From the above logical expression of holes, we get a fixed-parameter
cubic algorithm for testing perfectness (with clique-width or even tree-width as parameter).

(4) Constrained domination and other problems. Let P (X1) ∈ P. The sentence
∃X.(P (X) ∧Dom(X,X)) expresses that there exists a set X satisfying property P that

B. Courcelle 17

dominates all other vertices. Many vertex partitionning problems considered in [23] can be
expressed by ∃MS(P) sentences in similar ways.

From ∃MS(P) sentences to automata

We review the main steps of the inductive construction of an automaton associated with
a sentence of ∃MS(P). (See [4] for automata on terms). We first consider the P-atomic
formulas. We assume that for each property P (X1, ..., Xm) of P and each k, we have
constructed a finite automaton AP (X1,...,Xm),k that accepts the set of terms LP (X1,...,Xm),k.

Actually, these automata depend on k in a uniform way (see the end of this section for the
use of this observation).

Claim 3 : For set terms S1, ..., Sm over {X1, ..., Xn}, the set of terms LP (S1,...,Sm),(X1,...,

Xn),k is h−1(LP (X1,...,Xm),k) where h is an alphabetic homomorphism: T (F (n)
k)→ T (F (m)

k)
that replaces each constant symbol (a, w) for w ∈ {0, 1}n by (a, w′) for some w′ ∈ {0, 1}m
and does not modify the nonnullary function symbols.

We only give an example: consider a property P (X1), n = 3 and S = X1 ∪X3. Then
LP (S),(X1,X2,X3),k = h−1(LP (X1),k) where, for every x = 0, 1:

h(1x0) = h(1x1) = h(0x0) = 1 and h(0x1) = 0,

i.e., h(x1, x2, x3) = x1 ∨ ¬x3, hence h encodes the set term S in a natural way. The
subscript (X1, X2, X3) in LP (S),(X1,X2,X3),k indicates that, although P (S) depends only on
X1 and X3, the set of terms is defined as if P (S) depended on X1, X2 and X3.

From an automaton AP (X1,...,Xm),k that accepts LP (X1,...,Xm),k one gets an automaton
AP (S1,...,Sm),(X1,...,Xn),k with same number of states (but more transitions in many cases)
that accepts LP (S1,...,Sm),(X1,...,Xn),k. If AP (X1,...,Xm),k is deterministic, then the automaton
AP (S1,...,Sm),(X1,...,Xn),k is also deterministic. This claim can also be used if the terms
S1, ..., Sm are just variables, say Xi1 ,..., Xim , hence for handling a substitution of variables.

Claim 4 : If ϕ is a positive Boolean combination of P-atomic formulas α1, ..., αd for which
we have constructed complete non-deterministic (resp. deterministic) automata A1, ...,Ad
with respectively N1, ..., Nd states, one can construct a complete product non-deterministic
(resp. deterministic) automaton for ϕ with N1 × ...×Nd states (or less after deletion of
useless states).

Claim 5 : If θ is the sentence ∃X1, ..., Xn.ϕ, and we have constructed an automaton
A recognizing Lϕ(X1,...,Xn),k, we can obtain one recognizing Lθ,k, with the same number of
states by applying the mapping pr that deletes the sequences of Booleans from the constant
symbols of F (n)

k . The automaton for θ is not deterministic in general, even if A is. If A is
deterministic, this construction defines an automaton with 2n transitions associated with
each constant symbol a. Hence, the values of n should not be too large.

By these claims, one can construct for every k and every sentence ϕ in ∃MS(P) a
nondeterministic automaton Aϕ,k that accepts the regular set of terms LP,k = Lϕ,k where
P is the property expressed by ϕ, provided the automata for the atomic formulas and the
properties of P are known.

FSTTCS 2010

18 Special tree-width

Automata for the atomic and basic formulas.

We cannot detail all constructions, but we consider as an example the automaton
A := Aedg(X1,X2),k. Its set of states is S consisting of Ok,Error, 0, a(1), a(2), ab for all
a, b ∈ [k], a 6= b. It has k2 + k + 3 states. Their meanings are described in Table 1. This
table shows for each state s the property Ps that it encodes: s is the state reached by
the automaton after reading a term t in T (F (2)

k) if and only if Ps holds for this term. In its
description, (V1, V2) is the pair of sets of vertices of the graph G(pr(t)) (that we denote more
simply by G(t)) encoded by the Boolean components of the constants occurring in t. Table 2
specifies the transitions. All transitions not listed go to Error. Ok is the accepting state.

State s Property Ps

0 V1 = V2 = ∅
a(1) V1 = {v}, V2 = ∅, πG(t)(v) = a

a(2) V1 = ∅, V2 = {v}, πG(t)(v) = a

Ok V1 = {v1}, V2 = {v2}, (v1, v2) ∈ edgG(t)

ab V1 = {v1}, V2 = {v2}, v1 6= v2, πG(t)(v1) = a,

πG(t)(v2) = b and (v1, v2) /∈ edgG(t)

Error All other cases
Table 1 Meanings of the states of A.

Transition rules Conditions
(a, 00)→ 0
(a, 10)→ a(1)
(a, 01)→ a(2)
(a, 11)→ Error

relabh[s]→ s s ∈ {0, Ok}
relabh[a(i)]→ h(a)(i) i ∈ {1, 2}
relabh[ab]→ cd c = h(a), d = h(b), c 6= d
−−→adda,b[s]→ s s 6= ab
−−→adda,b[ab]→ Ok
⊕[a(1), b(2)]→ ab a 6= b

⊕[b(2), a(1)]→ ab

⊕[a(2), b(1)]→ ba

⊕[b(1), a(2)]→ ba

⊕[s, 0]→ s s ∈ S
⊕[0, s]→ s

Table 2 The transition rules of A.

We have one automaton for each k, but all these automata have a same concise description.
(If we let C be the set of positive integers, we can consider that Table 2 specifies a unique
automaton with infinitely many states. We will use this observation when discussing below
fly-automata.)

Theorem 6 : Let P be a set of basic graph properties. For each P (Y1, ..., Ym) ∈ P
and for each k, let a deterministic automaton AP (Y1,...,Ym),k with N(P, k) states be already

B. Courcelle 19

specified. For every sentence θ of the form ∃X1, ..., Xn.ϕ where ϕ is a Boolean combination
of P-atomic formulas α1, ..., αd, a nondeterministic automaton Aθ,k (over the signature Fk
because θ has no free variables) having at most N := N1× ...×Nd states can be constructed
where Ni := N(Pi, k) and Pi is the property used to define αi. �

A complete and deterministic automaton over Fk (where we use only the elementary
relabellings relaba→b) with N states, has k + 2k(k − 1).N +N2 transitions. The automaton
Aθ,k has thus k.2n + 2k(k− 1).N +N2 transitions. Its nondeterministic transitions are only
associated with the constant symbols. In the following theorem, we let m be an upper-bound
to the time necessary to determine the output state of a deterministic transition or the i-th
output state of a nondeterministic one. With these hypotheses and notation:

Theorem 7 : For every term t in T (Fk), one can decide in time m.(2n +N2). | t | if the
graph G(t) satisfies θ.

Proof : We use a bottom-up computation on t to determine at each node u of its
syntactic tree the set of states that can occur at u. For the q occurrences of constant symbols,
this takes total time at most m.2n.q. For the occurrences of unary and binary symbols, this
takes total time at most m.N2.(| t | −q).�

Note that we do not determinize the automaton Aθ,k. We only compute the transitions
of det(Aθ,k), the determinized automaton of Aθ,k, that are needed for checking a given term.

Some basic graph properties and their automata.

We classify the atomic formulas and some "basic" graph properties (to be included in P)
in terms of the numbers of states N(k) of deterministic Fk-automata that check them.

Polynomial-sized automata: The automata for X1 ⊆ X2, X1 = ∅, Part(X1, ..., Xp) and
Disjoint(X1, ..., Xp) have 2 states, the one for Sgl(X1) has 3 states. For edg(X1, X2),
we have defined above an Fk-automaton with k2 + k + 3 states. The Fk-automaton for the
property that X1 has at most p elements has p+ 2 states.

Single-exponential sized automata: The Fk-automaton for St(X1) has 2k + 1 states.
Those for Link(X1, X2) and Dom(X1, X2) have 22k + 1 states.

For Path(X1, X2), we can constructed a (non-minimal) Fk-automaton with less than
2k2+2 states. For the property maximum degree at most p, we can construct an Fk-automaton
with 2k2p log(p) states.

Double-exponential sized automata: For connectedness, we can build an Fk-automata
with about 22k states and the unique minimal Fk-automaton has more than 22k/2 states.
However, if we have a upperbound p to the degree of the graphs to be checked, then an
Fk-automaton with 2p.k2 states suffices. For the property of being a forest, we can construct
an Fk-automaton with 22O(k) states but we have no lower bound showing that a double
exponential is necessary.

Fly-automata

A fly-automaton is an automaton (possibly not deterministic) whose transition rules are
not listed in a table but are defined by finitely many clauses that we can call transition
meta-rules. Table 2 shows such rules. It shows actually the meta-rules of a fly-automaton

FSTTCS 2010

20 Special tree-width

with infinitely many states (where we replace [k] by the set of positive integers). Each time
a transition is needed it is computed from the specifications of Table 2. On input t in T (Fk),
this infinite automaton only uses the rules concerning the states of the set S defined above
(see Table 1).

The finite Fk-automata described by Table 2 have O(k4) transitions, which makes difficult
to compile their rules in a table unless k is small. This is even impossible for automata like
the ones for connectedness that have 22Θ(k) states. Their tables cannot be constructed, even
for small values of k. Hence, using fly-automata is necessary in such cases.

The automata currently used in compilation are "small" (typically, they have to recognize
the key words of a programming language) whereas the input words (programs) are much
larger. In the present case, the situation is the opposite: the automata are huge and the input
terms are "small" (typically, terms of size 200 to define graphs with 50 vertices). But since
these automata have concise descriptions, instead of trying to compile them, we propose to
interpret them, that is to compute only their transitions that are needed for particular input
terms.

It is clear that the constructions of Claims 3 and 4 can be used for fly-automata. For
example, the meta-rules for two automata A and B can be combined to form those of their
product. The algorithm of Theorem 7 that checks if a term is accepted by a nondeterministic
automaton without determinizing it is applicable to a nondeterministic fly-automaton such
that finitely many transitions are possible at each node.

Experiments have been conducted by I. Durand with her software Autowrite that im-
plements automata on terms [13]. Here are some results concerning colorability and acyclic
colorability. Grünbaum has given an example of a 3-colorable planar graph with 6 vertices
(the clique K6 minus the 3 edges of a perfect matching) that is not 4-AC-colorable but is
5-AC-colorable. These facts have been verified in a few seconds by using a term in T (F3)
of size 15 that defines this graph and in 94 minutes by using a term in T (F5) of size 21.
The Petersen graph (10 vertices, 15 edges) is 3-colorable, not 3-AC-colorable, but it is
4-AC-colorable. This last fact has been verified in 17 minutes on a term in T (F7) that defines
this graph. The corresponding automata are too large to be constructible.

4 Edge set quantifications

We will now consider graphs that can have multiple edges. Because of the chosen representa-
tion of graphs, the MS properties cannot take into account the multiplicity of edges: that a
pair of vertices (x, y) belongs to edgG does not tell us the exact number of edges from x to
y. We define another representation to remedy this drawback. The incidence graph of an
undirected graph G is the simple directed bipartite graph Inc(G) := 〈VG ∪EG, inG〉 where
inG is the set of pairs (e, x) such that e belongs to the set of edges EG and x is an end
vertex of e. We no longer use the convention that an undirected edge is a pair of opposite
directed edges, and we use the simpler notation inG instead of edgInc(G). If G is directed,
we define Inc(G) := 〈VG ∪ EG, in1G, in2G〉 where in1G (resp. in2G) is the set of pairs (e, x)
such that e ∈ EG and x is the tail vertex of e (resp. its head vertex). Hence, Inc(G) is
directed and bipartite with two types of edges. We will denote by dGe the graph Inc(G)
considered as a relational structure, either over {in} or over {in1, in2}.

A graph property P (X1, ..., Xn, Y1, ..., Ym), where X1, ..., Xn denote sets of vertices and
Y1, ..., Ym denote sets of edges, is an MS2 graph property if there exists an MS formula

B. Courcelle 21

ϕ(X1, ..., Xn, Y1, ..., Ym), such that, for every graph G, for all sets of vertices X1, ..., Xn and
for all sets of edges Y1, ..., Ym, we have:

dGe |= ϕ(X1, ..., Xn, Y1, ..., Ym)
if and only if P (X1, ..., Xn, Y1, ..., Ym) is true in G.

The property that a simple undirected graph has at least 3 vertices and a Hamiltonian
cycle is an MS2-property that is not MS (see [6], Chapter 5). Hence, using dGe instead of
bGc improves, also for simple graphs, the expressive power of monadic second-order logic.
The appropriate parameter in the FPT algorithms that check MS2 graph properties is not
clique-width but tree-width.

For each k, there is a finite set Hk of graph operations such that a graph has tree-width
at most k if and only if it is defined by a term over Hk. Linear time algorithms can convert
tree-decompositions (the well-known definition is recalled in the next section) into terms
and vice-versa. For every MS2 graph property expressed by an MS sentence ϕ and every
integer k, one can construct a finite automaton that recognizes the set of terms in T (Hk)
that define graphs G such that dGe |= ϕ, i.e., that satisfy that property. However, since
Hk uses the operation of parallel-composition (denoted by //) that combines graphs by
fusing vertices instead of the disjoint union ⊕, the corresponding automata are much more
complicated than those constructed above. This observation motivates the introduction of a
special type of tree-decomposition, hence of a variant of tree-width, that lacking of a better
term, we call special tree-width. The algebraic representation of the corresponding special
tree-decompositions need not use parallel-composition.

5 Special tree-width

In order to simplify the presentation, we will only consider undirected graphs. However,
the definitions and results extend easily to directed graphs. Our definition is based on the
operations that define clique-width. We will use the operations adda,b instead of the operations
−−→adda,b. In order to define graphs with multiple edges, we will change the interpretation of the
operation adda,b in the following way: if in a graph G there is already an edge between a
vertex x labelled by a and a vertex y labelled by b, then the operation adda,b applied to G
adds another edge between x and y. The corresponding notion of clique-width for graphs
with multiple edges is studied in [7]. However, we will use here this feature in a restricted
situation.

Definition 8: Special terms
We will use the graph operations that define clique-width (cf. Section 2). The labels of

vertices will be taken from the sets [k]⊥ := [k] ∪ {⊥} instead of [k] and the corresponding
sets of operations will be denoted by Fk,⊥. (The label ⊥ will be used as a default label.)
We (still) denote by π(G) the set of labels of the vertices of a graph G and by π1(G) the
subset of those that label a single vertex of G. If t ∈ T (Fk,⊥), then π(t) denotes π(G(t)) and
π1(t) denotes π1(G(t)).

A term t in T (Fk,⊥) is a special term if it satisfies the following conditions:

1) π(t′)−π1(t′) ⊆ {⊥} for every subterm t′ of t (we consider t as one of its subterms),
2) if t1 ⊕ t2 is a subterm of t, then π(t1) ∩ π(t2) ⊆ {⊥},
3) for every relabelling relabh occurring in t, we have h(⊥) = ⊥,
4) for every operation adda,b that occurs in t, we have a 6= ⊥ and b 6= ⊥,
5) the constant symbol ⊥ has no occurrence in t.

FSTTCS 2010

22 Special tree-width

We denote by SpT (Fk,⊥) the sets of special terms in T (Fk,⊥). The special tree-width of a
graph G, denoted by sptwd(G), is the least integer k such that G = G(t) for some term t in
SpT (Fk+1,⊥). The comparison with tree-width will justify the "+1" in the definition. The
special tree-width of a graph consisting of isolated vertices is 0. Since the sets π(t) and π1(t)
are computable inductively on the structure of a term t, the sets SpT (Fk+1,⊥) are regular.

A graph defined by a special term in SpT (Fk,⊥) has at most one vertex labelled by each
a in [k] and possibly several vertices labelled by ⊥. No new edge can be added between
vertices such that one of them is labelled by ⊥. These vertices are somehow "terminated".
Furthermore, each occurrence of an operation adda,b adds at most one edge (by Conditions
1) and 4)). It may add no edge if the argument graph has no vertex labelled by a or no vertex
labelled by b. We will say that such an occurrence is useful if it adds an edge. (Occurrences
that are not useful can be deleted, which gives a smaller reduced term defining the same
graph.) The graph G(t) defined by a special term t can be constructed with vertex set
Occ0(t), the set of occurrences of constant symbols in t, and edge set Occ1(t), the set of
useful occurrences of edge addition operations. This remark will be used in Section 6.

Example: Trees have special tree-width 1. An undirected tree with one distinguished
node called its root, is labelled as follows: the root is labelled by 1, all other nodes by ⊥. Let
T1, T2 be two such trees, defined by terms t1, t2 ∈ SpT (F2,⊥). Then, we let T := T1 n T2 be
defined by the term

t := relab2−→⊥ (add1,2(t1 ⊕ relab1−→2(t2))) ∈ SpT (F2,⊥).

This tree is built as the disjoint union of the trees T1 and T2 augmented with an undirected
edge between their roots, and the root of T is defined as that of T1. Every rooted and
undirected tree is generated by n from the trees reduced to isolated roots, that are defined
(up to isomorphism) by the constant symbol 1. Hence, every rooted and undirected tree
is defined by a term in SpT (F2,⊥). One can forget the root by applying the operation
relab1−→⊥.�

We now consider tree-decompositions. A rooted and directed tree T is directed from the
root towards the leaves.

Definition 9: A special tree-decomposition of a graph G is a pair (T, f) such that T is a
rooted and directed tree with set of nodes NT and f : NT −→ P(VG) is a mapping such that:

1) Every vertex of G belongs to f(u) for some u in NT .
2) Every edge has its ends in f(u) for some u in NT .
3) For each vertex x, the set f−1(x) := {u ∈ NT | x ∈ f(u)} is a directed path in T .

Condition 3) characterizes special tree-decompositions. The width of a decomposition
(T, f) is the the maximal cardinality minus 1 of a box, i.e. of a set f(u). A path-decomposition
is defined as a tree-decomposition such that T is a directed path (hence it is special). The
tree-width twd(G) (the path-width pwd(G)) of a graph G is the minimal width of a tree-
decomposition (a path-decomposition) of this graph. It is known from [5,10] that a set of
simple graphs, directed or not, that has bounded tree-width has bounded clique-width: if
G undirected has tree-width k, then it has clique-width at most 3.2k−1 and in some cases,
more that 2k/2. However, its clique-width is at most pwd(G) + 2.

B. Courcelle 23

Proposition 10: The special tree-width of a graph is the minimal width of a special
tree-decomposition of this graph. There are linear-time algorithms for converting a term t in
SpT (Fk+1,⊥) into a special tree-decomposition of width k of the graph G(t) and vice-versa.

Proposition 11: For every graph G we have:
(1) twd(G) ≤ sptwd(G) ≤ pwd(G),
(2) cwd(G) ≤ sptwd(G) + 2.

These facts are clear from Proposition 10 and the definitions. Note that clique-width
behaves with respect to special tree-width exactly as with respect to path-width, and without
the exponential increase. We will denote by STWD(≤ k) the class of undirected graphs of
special tree-width at most k.

Proposition 12: For each k, the class STWD(≤ k) is closed under the following
transformations:

1) Removal of vertices and edges,
2) addition of edges parallel to existing edges,
3) smoothing vertices of degree 2. �

Smoothing a vertex of degree 2 means contracting any one of its two incident edges.
For the case of directed graphs (see [7]), reversals of edge directions also preserve special
tree-width, whereas they do not preserve clique-width. It follows from items 1) and 3) of
Proposition 12 that the class STWD(≤ k) is closed under taking topological minors ([11]).
It is not closed under taking minors as we will see in Proposition 16. In the following
proposition, pwd(L) denotes the least upper bound of the path-widths of the graphs in a set
L and similarly for the other notions of width.

Proposition 13: The class of graphs of tree-width 2 has unbounded special tree-width.
For every set of graphs L:

pwd(L) <∞ =⇒ sptwd(L) <∞ =⇒ twd(L) <∞ and

sptwd(L) <∞ =⇒ cwd(L) <∞,

whereas the converse implications do not hold.�

Proof: We will use the following claim (where G⊗ ∗ is G augmented with a new vertex
∗ and edges between it and all vertices of G):

For every graph G, the special tree-width of G⊗ ∗ is equal to its path-width.

For proving the first assertion, we assume that every graph of tree-width 2 has special
tree-width at most k. If T is any tree, then T ⊗ ∗ has tree-width at most 2, hence special
tree-width at most k, and path-width at most k by the claim. It follows that T , since it is a
subgraph of T ⊗ ∗, has path-width at most k, but trees have unbounded path-width ([11]),
which gives a contradiction.

The implications follow from Proposition 11. Trees have special tree-width at most 1 and
unbounded path-width. Graphs of tree-width 2 have unbounded special tree-width, hence
the opposite implications are false. The converse of sptwd(L) <∞ =⇒ cwd(L) <∞ is false
if L the set of cliques because it is of maximal clique-width 2 and of unbounded tree-width
and special tree-width. �

FSTTCS 2010

24 Special tree-width

Definition 14: A tree-partition of a graph G is a pair (T, f) such that T is a rooted
tree with set of nodes NT and f : NT −→ P(VG) is a mapping such that:

1) Every vertex of G belongs to f(u) for a unique node u of T ,
2) Every edge has its two ends in some box or in two boxes f(u) and f(v) such that
v is the father of u.

The width of (T, f) is defined as the maximal cardinality of a box, (no −1 here !), and
the tree-partition-width (also called strong tree-width) of a graph G is the minimal width of
its tree-partitions. We denote it by tpwd(G). The wheels, i.e., the graphs Cn ⊗ ∗ where Cn
is the undirected cycle with n vertices (n ≥ 3) have path-width (and special tree-width) 3
but unbounded tree-partition width (see [1, 24]). MaxDeg(G) denotes the maximum degree
of a graph G. The proof of the following proposition uses results from [24].

Proposition 15: For every graph G :

1) sptwd(G) ≤ 2.tpwd(G)− 1,
2) sptwd(G) ≤ 20.(twd(G) + 1).MaxDeg(G).

A set of graphs of bounded degree has bounded special-tree-width if and only if it has
bounded tree-width.�

This result suggests a question:

Which conditions on a set of graphs, other than bounded degree, imply that it has
bounded tree-width if and only if it has bounded special tree-width?

Planarity does not since the graphs of tree-width at most 2 are planar but of unbounded
special tree-width. From this case, we can see that conditions like excluding a fixed graph as
minor or being uniformly k-sparse for some k do not either. All these conditions however,
imply that, for simple graphs, bounded tree-width is equivalent to bounded clique-width (see
[6], Chapter 2).

Proposition 16: Every graph of tree-width k is obtained by edge contractions from a
graph of special tree-width at most 2k + 1. The class of graphs of special tree-width at most
k is not closed under taking minors for any k ≥ 5.

Proposition 17: The special tree-width of a graph is the maximal special tree-width
of its connected components. It is at most one plus the maximal special tree-width of its
biconnected components. This upper bound is tight.

Open question 18: The parsing problem: Does there exist fixed functions f and g and
an approximation algorithm able to do the following in time O(ng(k)), where n is the number
of vertices of the given graph:

Given a simple graph G and an integer k, either it answers (correctly) that G has
special tree-width more than k, or it outputs a special term witnessing that its special
tree-width is at most f(k)?

B. Courcelle 25

Stronger requirements would be that f(k) = k, giving an exact algorithm and/or the
computation time O(g(k).nc) for some fixed c instead of O(ng(k)). Since by a result by
Bodlaender (presented in detail in [12]) such an algorithm exists for tree-width, with f(k) = k

and c = 1, one can think that this algorithm can be adapted in order to find special tree-
decompositions.

6 Automata for monadic second-order formulas with edge set
quantifications

Our objective is to adapt the constructions of Section 3 to the model-checking of MS2
graph properties for graphs defined by special terms. We will obtain fixed-parameter lin-
ear algorithms for graphs of bounded special tree-width given by the relevant terms or
decompositions.

MS2 formulas and the encoding of assignments

In order to use MS2-formulas, i.e., monadic second-order formulas with edge set quantifi-
cations, we will represent a graph G by the relational structure dGe := Inc(G) defined in
Section 4. As in Section 3, we will use formulas written without first-order variables and
universal quantifications. We will use the "standard" set variables X1, ..., Xn, ... for denoting
sets of vertices and similarly the variables Y1, ..., Ym, ... for denoting sets of edges. The atomic
formulas are of the forms edg(Xi, Xj), in(Yi, Xj) (graphs are undirected), and of course,
Xi ⊆ Xj , Yi ⊆ Yj , Z = ∅, Sgl(Z), where Z is Xi or Yj . The meaning of in(Yi, Xj) is that
Yi and Xj are singletons, respectively {y} and {x} such that (y, x) ∈ inG.

We now discuss the encoding of assignments in terms. Let t be a special term and G(t)
be the (concrete) graph it defines. Its vertex set is Occ0(t), the set of occurrences of constant
symbols and it edge set is Occ1(t), the set of useful occurrences of edge addition operations
(cf. Definition 8.) In order to encode {X1, ..., Xn, Y1, ..., Ym}-assignments, we will use, the
signatures F (n,m)

k,⊥ obtained from F
(n)
k,⊥ by replacing every edge addition operation f by the

unary operations (f, w), for all w in {0, 1}m.
We will use the projections pr as in Claim 5 and the projections pr′, that delete the

Booleans in the unary operations (f, w). It is clear that a term t ∈ T (F (n,m)
k,⊥) such that

pr(pr′(t)) is a special term and the occurrences of edge addition operations in pr(pr′(t))
are all useful, defines a graph G(pr(pr′(t)) and an {X1, ..., Xn, Y1, ..., Ym}-assignment γ such
that γ(Xi) is a set of vertices (for i ∈ [n]) and γ(Yj) is a set of edges (for j ∈ [m]).

We will denote by RT (F (n,m)
k,⊥) ⊆ SpT (F (n,m)

k,⊥) the set of reduced terms, defined as
the set of special terms in which every occurrence of an edge addition operation is useful.
Whether a term t in T (F (n,m)

k,⊥) is in RT (F (n,m)
k,⊥) or not does not depend on the Boolean

components of its constant symbols and of its edge addition operations. In other words,
RT (F (n,m)

k,⊥) = pr′−1(pr−1(RT (Fk,⊥))).

Claim 19 : For each triple n,m, k of integers, the set RT (F (n,m)
k,⊥) is regular and is

recognized by a deterministic automaton with 2k states.

For everyMS2 formula ϕ with free variables in {X1, ..., Xn, Y1, ..., Ym} and every k, we de-
fine Lϕ,(X1,...,Xn,Y1,...,Ym),k as the set of terms t inRT (F (n,m)

k,⊥) such that (dG(pr(pr′(t)))e, γ(t))
|= ϕ where γ(t) denotes the {X1, ..., Xn, Y1, ..., Ym}-assignment encoded by t. The language

FSTTCS 2010

26 Special tree-width

LP (X1,...,Xn,Y1,...,Ym),k can be defined similarly for a graph property P (X1, ..., Xn, Y1, ..., Ym)
independently of its logical expression. Note that we define here sets of reduced terms.

Theorem 20: For every MS2 graph property P (X1, ..., Xn, Y1, ..., Ym) and every k, the
language LP (X1,...,Xn,Y1,...,Ym),k is regular and an automaton recognizing it can be constructed
from an MS2 formula that expresses P .

Proof: The construction is as for Theorem 6. At each step we restrict the defined sets so
that they only contain reduced terms. For example, if ϕ is ¬θ, we construct an automaton
that recognizes Lϕ,(X1,...,Xn,Y1,...,Ym),k = RT (F (n,m)

k,⊥) − Lθ,(X1,...,Xn,Y1,...,Ym),k. We do not
simply take the complement.

Let us say a few words on the automata for the atomic formulas. Most of the constructions
are straightforward from the definitions, as in Theorem 6. We only consider the atomic
formulas edg(X1, X2) and in(Y1, X1).

An F (2)
k,⊥-automaton A′ for edg(X1, X2), that is essentially the same as the automaton A

of Theorem 6, can be constructed so as to work correctly on reduced terms. The automaton
Aedg(X1,X2),k intended to define the set Ledg(X1,X2),k is then obtained by a product with
the one of Claim 19 that recognizes the set of reduced terms. Its number of states is thus
2k.O(k2) instead of O(k2). In the following remark, we discuss this difficulty.

We now construct an automaton B for in(Y1, X1), intended to work on reduced terms. Its
set of states is S := {0, Error,Ok} ∪ [k]. Their meanings are described in Table 3, where W1
denotes the value of the set variable Y1. Its transitions not yielding Error are in Table 4. As
examples of transitions to Error we have ⊕[Ok, a]→ Error and (adda,b, 1)[Ok]→ Error.

The unique accepting state is Ok.

State s Property Ps

0 V1 = W1 = ∅
a V1 = {v},W1 = ∅, πG(t)(v) = a

Ok V1 = {v}, W1 = {e}, (e, v) ∈ inG(t)

Error All other cases
Table 3 Meanings of the states of B.

Transition rules Conditions
(a, 0)→ 0
(a, 1)→ a

relabh[0]→ 0
relabh[Ok]→ Ok

relabh[a]→ b b = h(a) 6= ⊥
(adda,b, 0)[s]→ s all s
(adda,b, 1)[c]→ Ok c ∈ {a, b}
⊕[s, 0]→ s all s
⊕[0, s]→ s

Table 4 The transition rules of B.

Remark 21: The above construction associates with each subformula θ(X1, ..., Xn, Y1, ...,

Ym) of the considered formula ϕ an automaton Aθ,(X1,...,Xn,Y1,...,Ym),k that recognizes only

B. Courcelle 27

reduced terms. This means that each of these automata repeats the verification that the
input term is reduced. One can actually postpone this verification to the very end.

Assume that for each atomic formula α(X1, ..., Xn, Y1, ..., Ym), we have an automaton
Bα,(X1,...,Xn,Y1,...,Ym),k such that

Lα,(X1,...,Xn,Y1,...,Ym),k = L(Bα,(X1,...,Xn,Y1,...,Ym),k) ∩RT (F (n,m)
k,⊥).

This means that Bα(X1,...,Xn,Y1,...,Ym),k is constructed so as to work correctly on reduced
terms, and this is what we did above for A′ and B.

Let us build Bϕ(X1,...,Xn,Y1,...,Ym),k for all formulas ϕ by applying the general inductive
construction described for Theorem 6 with, for the negation:

L(B¬θ,(X1,...,Xn,Y1,...,Ym),k) = T (F (n,m)
k,⊥)− L(Bθ,(X1,...,Xn,Y1,...,Ym),k).

At the end, for the input formula ϕ(X1, ..., Xn, Y1, ..., Ym), we make the restriction to
reduced terms by defining Aϕ,(X1,...,Xn,Y1,...,Ym),k in such a way that:

L(Aϕ,(X1,...,Xn,Y1,...,Ym),k) = L(Bϕ,(X1,...,Xn,Y1,...,Ym),k) ∩RT (F (n,m)
k,⊥).

Hence, we use only at the end the restriction to reduced terms. We claim that L(Aϕ,(X1,...,

Xn,Y1,...,Ym),k) = Lϕ,(X1,...,Xn,Y1,...,Ym),k. This is true by the hypotheses on the automata Bα
associated with the atomic formulas and by the following observations:

if L,M,R, T ,L′, R′ and T ′ are sets such that L,M,R ⊆ T and L′, R′ ⊆ T ′, and
pr is a mapping from T ′ to T such that T ′ = pr−1(T) and R′ = pr−1(R) then,
(L∩R)∩(M∩R) = (L∩M)∩R, (L∩R)∪(M∩R) = (L∪M)∩R, R−(L∩R) = (T−L)∩R
and pr(L′ ∩R′) ∩R = pr(L′) ∩R.

�

∃MS2(P) sentences can be defined and fly-automata can be used to check them on graphs
of bounded special tree-width.

Tree-width versus special tree-width

We now explain why the constructions of automata are easier for bounded special
tree-width than for bounded tree-width.

Definition 22: Special tree-width-terms.
We let Hk,⊥ be the signature obtained from Fk,⊥ by replacing the operation ⊕ by //.

This operation symbol will be interpreted as follows: for graphs G and H such that, as in
Definition 8, π(G)−π1(G) ⊆ {⊥} and π(H)−π1(H) ⊆ {⊥}, we define G//H from G⊕H by
fusing any two vertices having the same label a 6= ⊥. A special tree-width-term is a term t in
T (Hk,⊥) that satisfies conditions 1), 3), 4) and 5) of Definition 8. We denote by TWT (Hk,⊥)
the set of these terms. Every graph is the value G(t) of a term t in TWT (Hk,⊥) for some
large enough k.

Proposition 23 ([6], Chapter 2): The tree-width of a graph is the least integer k such
that this graph is the value of a term in TWT (Hk+1,⊥). There are linear-time algorithms for
converting a term t in TWT (Hk+1,⊥) into a tree-decomposition of width k of the graph G(t)
and vice-versa.

FSTTCS 2010

28 Special tree-width

In view of the verification of MS2 properties, let us consider the encoding of assignments
in terms. Let t ∈ TWT (Hk,⊥) and G = G(t). Its edges are in bijection with the set Occ1(t)
defined as for special terms. However, its vertex set is isomorphic to a quotient of Occ0(t) by
the equivalence relation ≈ expressing that x and y in Occ0(t) have a least common ancestor
u that is an occurrence of // and that the associated vertices have the same label (different
from ⊥) in G(t/u), the graph defined by the subterm of t issued from u. This means that x
and y, because of a fusion occurring at u, yield the same vertex of G. Hence, we lose the nice
bijection between vertices of G(t) and particular occurrences of symbols in t. It follows that
a set X ⊆ Occ0(t) represents correctly a set of vertices of G(t) if and only it is saturated
for ≈ (is a union of classes of this equivalence relation). The Hk,⊥-automaton analogous to
Bϕ,(X1,...,Xn,Y1,...,Ym),k must check this saturation property, which increases substantially its
number of states.

There is actually another possibility for representing vertices by occurrences of symbols
in terms. Let us assume that all vertices of G(t) are labelled by ⊥ and that each vertex
corresponds to a unique occurrence of an operation relaba−→⊥. Such occurrences, let us
denote their set by Occvert1 (t), can be chosen to represent the vertices. In this case, an
edge will be represented by a node of t that is below the nodes representing its ends. This
is not a difficulty for constructing an Hk,⊥-automaton for the atomic formula in(Y1, X1)
(like B in the proof of Theorem 20) having k + 3 states. However, the construction of an
Hk,⊥-automata for edg(X1, X2) is more complicated. It can be done directly or by the general
construction: since edg(X1, X2) is equivalent to X1 6= X2 ∧ ∃Y1(in1(Y1, X1) ∧ in2(Y1, X2)),
the general construction produces an Hk,⊥-automaton with 2O(k2) states. (The factor
k2 is due to the use of a product of two automata with k + 3 states for the subformula
in1(Y1, X1)∧ in2(Y1, X2), and the exponentiation is due to the determinization that is needed
because of ∃Y1). Furthermore, every deterministic Hk,⊥-automaton for edg(X1, X2) must
have at least 2k(k−1) states ([6], Chapter 6). Hence, with this encoding of assignments, an
atomic formula like edg(X1, X2) needs already fairly "large" automata. This difficulty is
avoided in special terms because they use ⊕ instead of //.

7 Conclusion

We have presented some tools intended to yield practically usable methods for the verification
of certain monadic second-order graph properties for graphs of bounded tree-width or clique
width. We have proposed to restrict the constructions of automata to the formulas of an
appropriate fragment of monadic second-order logic and to use fly automata (a notion first
presented in [8]). Although some experimental results are encouraging, these ideas have to
be tested on more cases.

Special tree-width seems interesting on its own, but the construction of "small" automata
has motivated its introduction. The corresponding parsing problem is open.

What about automata for graphs of bounded tree-width? We are presently working on a
redundant representation of these graphs that equips terms in TWT (Hk,⊥) with additional
labels. "Small" automata for edg(X1, X2) whose transitions use these additional labels (as
opposed to the operations of Hk,⊥) can then be constructed.

8 References

[1] H. Bodlaender, J. Engelfriet, Domino tree-width, J. Algorithms 24 (1997) 94-123.
[2] M. Chudnovsky et al., Recognizing Berge graphs, Combinatorica 25 (2005) 143-186.

B. Courcelle 29

[3] M. Chudnovsky et al., The strong perfect graph theorem, Ann. Math. 164 (2006) 51-229.
[4] H. Comon et al., Tree Automata Techniques and Applications, On line for free at:

http://tata.gforge.inria.fr/
[5] D. Corneil, U. Rotics, On the relationship between clique-width and tree-width. SIAM J.

Comput. 34 (2005) 825-847.
[6] B. Courcelle, Graph structure and monadic second-order logic, book to be published by

Cambridge University Press. Readable on:
http://www.labri.fr/perso/courcell/Book/CourGGBook.pdf

[7] B. Courcelle, On the model-checking of monadic second-order formulas with edge set
quantifications, May 2010, to appear in Discrete Applied Mathematics. Available from :
http://hal.archives-ouvertes.fr/hal-00481735/fr/

[8] B. Courcelle, I. Durand, Verifying monadic second-order graph properties with tree
automata, 3rd European Lisp Symposium, May 2010, Lisbon, Informal proceedings edited
by C. Rhodes, pp. 7-21. See:
http://www.labri.fr/perso/courcell/ArticlesEnCours/BCDurandLISP.pdf

[9] B. Courcelle, J. Makowsky, U. Rotics, Linear time solvable optimization problems on
graphs of bounded clique-width. Theory of Computing Systems 33 (2000) 125-150.

[10] B. Courcelle, S. Olariu, Upper bounds to the clique-width of graphs, Discrete Applied
Mathematics 101 (2000) 77-114.

[11] R. Diestel, Graph Theory, 3rd edition, Springer, 2005.
[12] R. Downey, M. Fellows, Parameterized complexity, Springer-Verlag, 1999.
[13] I. Durand, Autowrite: A tool for term rewrite systems and tree automata, Electronic

Notes in Theoret. Comput. Sci. 124 (2005) 29-49.
[14] J. Flum, M. Grohe, Parametrized complexity theory, Springer, 2006.
[15] M. Frick, M. Grohe: The complexity of first-order and monadic second-order logic

revisited. Ann. Pure Appl. Logic 130 (2004) 3-31
[16] R. Ganian, P. Hlineny, On parse trees and Myhill-Nerode-type tools for handling graphs

of bounded rank-width. Discrete Applied Mathematics 158 (2010) 851-867
[17] R. Ganian, P. Hlineny, J.Obdrzalek, Better algorithms for satisfiability problems for

formulas of bounded rank-width, 2010, arXiv:1006.5621v1[cs. DM]
[18] G. Gottlob, R. Pichler, F. Wei: Abduction with bounded tree-width: from theoretical

tractability to practically efficient computation. Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence, Chicago, AAAI Press, 2008, pp. 1541-1546

[19] G. Gottlob, R. Pichler, F. Wei: Monadic Datalog over finite structures with bounded
tree-width, CoRR abs/0809.3140 (2008)

[20] P. Hlineny, S. Oum: Finding branch-decompositions and rank-decompo-sitions. SIAM J.
Comput. 38 (2008) 1012-1032.

[21] L. Stockmeyer, A. Meyer, Cosmological lower bound on the circuit complexity of a small
problem in logic. J. ACM 49 (2002) 753-784.

[22] M. Weyer, Decidability of S1S and S2S. in Automata, Logics, and Infinite Games: A
Guide to Current Research. Lect. Notes Comp. Sci. 2500, Springer, 2002, pp. 207-230.

[23] M. Rao, MSOL partitioning problems on graphs of bounded tree-width and clique-width.
Theor. Comput. Sci. 377 (2007) 260-267.

[24] D. Wood, On tree-partition-width, European J. Combin. 30 (2009) 1245-1253.

FSTTCS 2010

On extracting computations from propositional
proofs (a survey)
Pavel Pudlák

Institute of Mathematics, Academy of Sciences∗

Prague, Czech Republic
pudlak@math.cas.cz

Abstract
This paper describes a project that aims at showing that propositional proofs of certain tau-
tologies in weak proof system give upper bounds on the computational complexity of functions
associated with the tautologies. Such bounds can potentially be used to prove (conditional or
unconditional) lower bounds on the lengths of proofs of these tautologies and show separations
of some weak proof systems. The prototype are the results showing the feasible interpolation
property for resolution. In order to prove similar results for systems stronger than resolution
one needs to define suitable generalizations of boolean circuits. We will survey the known results
concerning this project and sketch in which direction we want to generalize them.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.30

1 Introduction

Proof complexity studies problems about formal systems that are related to similar problems
in computational complexity. In particular, some complexity classes can be associated in
a natural way with formal systems and one can translate problems about these classes to
problems about the formal systems. The formal systems that we have in mind are weak
arithmetical theories formalized in predicate logic and proof systems for propositional calculus.
Our original reason for studying weak arithmetical theories was to show the unprovability of
some open problems in computational complexity theory. Since the attempts to show that,
say, P 6= NP is unprovable in Peano Arithmetic completely failed, researchers focused on the
study of much weaker theories. Unfortunately we are still unable to show such independence
results even for the weakest theory in which polynomial time computations are formalizable.
Nevertheless, a number of interesting results have been proven and new proof methods have
been introduced.

In computational complexity the most important problems can be reduced to proving
lower bounds on the circuit size of boolean functions. Similarly, in proof complexity one can
reduce problems about unprovability in weak theories of arithmetic to proving lower bounds
on the lengths of proofs of tautologies in certain proof systems. In the 1980s the pioneering
work in the area of lower bounds on propositional proofs was done by Armin Haken, who
proved exponential lower bounds on proofs in Resolution [6], and Miklos Ajtai, who proved
superpolynomial lower bounds (later extended to exponential) on proofs in bounded depth
Frege systems [1]. In the early 1990s Jan Krajíček introduced a new method for proving lower
bounds on propositional proofs, which we now call feasible interpolation [8]. This enables
one to reduce the task of proving lower bounds on the lengths of propositional proofs to the
task of proving lower bounds on the circuit size of boolean functions defined from tautologies.

∗ also supported by the Insititue for Theoretical Computer Science (project 1M0545) and grant
IAA100190902.

© Pavel Pudlák;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 30–41

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.30
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Pavel Pudlák 31

Although the problem of proving nontrivial lower bounds on the size of boolean circuits is a
notoriously open problem, this reduction is very useful for the following two reasons. First,
one can often show that the reduction gives monotone boolean circuits and then one can use
the well-known exponential lower bounds on the size of such circuits. Secondly, even when
the reduction to monotone boolean circuits is not possible and we only get general circuits,
the reduction gives us important information that, for example, can be used to show lower
bounds based on some conjectures from computational complexity theory.

The method of feasible interpolation has been successfully applied to obtain exponential
lower bounds on the lengths of proofs in Resolution [9] and several other proof systems for
propositional logic. However, this method fails for systems that are only a little stronger
than resolution, unless some commonly accepted conjectures in computational complexity are
false [13, 4, 3]. Therefore we started a project whose aim is to find structures that are more
general than boolean circuits and prove for them generalized forms of feasible interpolation.
Our motivation is not only to find new ways of proving lower bounds on the lengths of proofs,
but also to study a question important per se: can one extract computational information
from any propositional proof?

There are other approaches to the fundamental question of proving lower bounds on
the lengths of propositional proofs, most notably the approach based on proof complexity
generators, [10, 12]. Proof complexity generators are inspired by the concept of pseudorandom
generators and the conjecture is that some pseudorandom generators can actually be used to
construct tautologies with no polynomial proofs. However, if this is true than one must find
connections between propositional proofs and computational complexity for strong proof
systems. It is likely that before such connections are found for strong proof systems, they
will be discovered for moderately strong systems. Therefore we focus on such propositional
proof systems.

Another approach, also studied by Krajíček, is based on using a different form of
tautologies that are used in the feasible interpolation theorems [11]. For such tautologies, it
is conceivable that the associated computational problem is solvable in polynomial time even
for stronger systems. In [11] such a connection is proved for a very special form of tautologies
and proofs in bounded depth Frege systems.

Although our project has already yielded some preliminary results, it would be premature
to try to describe them in this paper. We will rather focus on describing the results that
we want to generalize, hoping that our presentation will be more understandable than the
original ones in [17, 9].

2 Preliminaries

2.1 Propositional proof systems
The Resolution propositional proof system is a proof system for proving tautologies that are
in DNF form. Given a tautology φ in DNF form, we take its negation, which is in CNF form,
and treat it as a set of disjunctions, which are called clauses. A proof of φ in Resolution is a
proof of contradiction from the clauses. In Resolution we treat clauses as sets of literals; a
literal is a propositional variable or negated propositional variable. The single rule used in
Resolution is:

Γ, p ∆,¬p
Γ,∆ .

The contradiction, which is the last clause in the proof, is represented by the empty set.

FSTTCS 2010

32 On extracting computations from propositional proofs (a survey)

A Frege system is any sound and complete propositional proof system that is based on a
finite number of rules. No nontrivial lower bounds are known for Frege systems. A depth d
Frege system is a Frege system in which only formulas of depth d are allowed. We want to
present bounded depth Frege systems as generalizations of Resolution. Thus we will define a
depth d Frege system as a refutation proof system based on sequents that use formulas of
depth at most d. We will only use formulas with negations at variables; so ¬φ denotes the
formula obtained from φ by switching conjunctions and disjunctions and switching literals.
Defining the depth of a literal to be 1, we get that Resolution is the depth 1 Frege system.

For d > 1, the cut rule of Resolution is generalized to arbitrary formulas φ of depth at
most d:

Γ, φ ∆,¬φ
Γ,∆ .

Further, we also have rules for introducing conjunctions and disjunctions:

Γ, φ ∆,
∧
A

Γ,∆, φ ∧
∧
A

Γ, φ,
∨
A

Γ, φ ∨
∨
A
,

and the weakening rule:

Γ
Γ, φ .

We treat sequents as sets, and conjunctions and disjunctions as set operations in order not
to have to introduce structural rules.

2.2 Polynomial search problems

Polynomial search problems, also called Total Function Nondeterministic Polynomial search
problems and abbreviated by TFNP, are given by a binary relation R such that
1. R(x, y) is decidable in deterministic polynomial time;
2. there exists a polynomial p such that for all x and y, if R(x, y), then |y| ≤ p(|x|);
3. for every x there exists y such that R(x, y).
Given such a relation and x, the task is to find y such that R(x, y). There is a natural
concept of polynomial reduction of one polynomial search problem to another one. Also
many natural classes of polynomial search problems have been defined and they play an
important role in proof complexity.

We will only mention one of these classes, Polynomial Local Search, or PLS. An instance
of a Polynomial Local Search problem for a given input x is determined by a search space
S, a feasibility predicate F ⊆ S, a neighborhood function N : S → S, and a cost function
c : S → N. The search space is S = {0, 1}m, where m is polynomial in |x|. The functions N ,
c and the predicate F are computable in polynomial time. Formally, this means that the
predicate F is parametrized by the input x and F (s, x) is a binary relation in P, etc. for the
other notions. The functions and the predicate should satisfy:
1. F (0̄);
2. if F (s), then F (N(s));
3. if F (s) and N(s) 6= s, then c(s) < c(N(s)).
The task is to find a “local maximum”, which is an s ∈ S such that s = N(s).

Pavel Pudlák 33

2.3 The Karchmer-Wigderson game
Karchmer and Wigderson found a characterization of the circuit depth of boolean functions
using communication complexity.

I Theorem 1. [7] The minimal depth of a circuit computing a boolean function f(x1, . . . , xn)
is equal to the minimal number of bits that two players need to communicate in the worst
case in the following game. Player I gets an input u such that f(u) = 0 and Player II gets
an input v such that f(v) = 1. By sending messages, they should determine an index i such
that ui 6= vi.

This theorem also holds for partial boolean functions.

3 Razborov’s characterization of circuit complexity

Note that the task in the Karchmer-Wigderson game can be viewed as a communication
complexity analogue of search problems. Given u and v such that f(u) = 0 and f(v) = 1,
there always exists an index i such that ui 6= vi and the task is to find such an i. In
communication complexity theory one speaks about computing relations, but the analogy
with search problems is more appropriate.

When analogues of the usual complexity concepts are defined in communication com-
plexity, O(logn) communication bits correspond to polynomial time. Thus in the Karchmer-
Wigderson Theorem the boolean functions of NC1/poly are characterized by the commu-
nication complexity class corresponding to search problems solvable in polynomial time.
Razborov came up with the idea to characterize P/poly, a probably larger class of functions,
by a communication complexity analogue of a probably larger class of polynomial search
problems. He showed that such a class of search problems is PLS.

To state his theorem we have to translate the definition of PLS into a communication
complexity problem. Let a partial boolean function f(x1, . . . , xn) be given. Again, Player I
gets an input u such that f(u) = 0 and Player II gets an input v such that f(v) = 1. So
the predicate F and the functions N and c will now depend on u and v. But we are not
interested in the computational complexity of these functions, only in their communication
complexity. Roughly speaking, we want, for every s ∈ S, the communication complexity of
computing F (s, u, v), N(s, u, v) and c(s, u, v) to be small.

The goal of the players is again to determine an index i such that ui 6= vi, but now they
want to do it by first computing a local maximum. Therefore, we need another function
p : S → {1, 2, . . . , n} that tells the players the index, given a local maximum s. The function
only depends on s ∈ S, thus it does not play any role in defining the complexity of the
problem. What however does play an important role is the size of the set of feasible solutions,
{s ∈ S; F (s, u, v)}.

We say that the (f, F,N, c, p) is a PLS communication protocol if for every u, v such that
f(u) = 0 and f(v) = 1 and every local maximum s (with respect to the parameters u, v), the
number p(s) is an index such that up(s) 6= vp(s).

The complexity of a protocol (f, F,N, c, p) is defined to be the number

C =

∣∣∣∣∣∣
⋃

f(u)=0,f(v)=1

{s ∈ S; F (s, u, v)}

∣∣∣∣∣∣ · 22CC(F,c)+CC(N),

where 2CC(F, c) is the maximal communication complexity of computing simultaneously
F (s, u, v) and c(s, u, v) and CC(N) is the maximal communication complexity of computing
N(s, u, v).

FSTTCS 2010

34 On extracting computations from propositional proofs (a survey)

This is a rather technical definition that enables Razborov to state his theorem in a
strong form. However, if we were only interested in the communication complexity analogue
of PLS, we would only require that |S| be of polynomial size, which would correspond to
the exponential size of the search space in the usual PLS, and that CC(F), CC(c), CC(N)
be O(logn), which would correspond to F, c,N being computable in polynomial time. Then,
clearly, the number C would be bounded by a polynomial in n.

I Theorem 2. [17] For a given partial boolean function f , the smallest complexity C of
PLS communication protocols (f, F,N, c, p) is, up to a constant factor, equal to the circuit
complexity of f .

We will consider a special case of the theorem that has a more transparent proof. We
restrict the above protocols (f, F,N, c, p) as follows.
1. To compute F (s, u, v), the players only need to send one bit to each other independently

on each other.
2. For every s ∈ S, either N(s, u, v) = s independently of u, v, or there are two elements

s0, s1 ∈ S and one assigned player such that, given u, v, N(s) ∈ {s0, s1}, and the assigned
player knows N(s); thus the player only needs to send one bit to the other player.

3. c only depends on s, not on u, v.
We will call such protocols restricted PLS communication protocols. Essentially, these are
protocols in which the players need to send the minimal possible number of bits. Note that
condition 1. can be stated more explicitly as follows.
1. There are two predicates FI(s, u) and FII(s, v) such that F (s, u, v) ≡ FI(s, u)∧FII(s, v).

I Lemma 3. The smallest |S| in restricted protocols for f is equal to the circuit complexity
of f .

We will sketch the proof of this lemma.

1. First, assume a circuit D computing f is given. Define S to be the nodes of the
circuit, except that we have to rename the output node of the circuit to 0̄. Given u, v such
that f(u) = 0, f(v) = 1, the predicate F (s, u, v) is defined to be true if, for the function fs
computed at the gate s, fs(u) 6= fs(v). The cost function c is an arbitrary antimonotone
function from the DAG of the circuit to natural numbers. Given a node s, if it is an input,
then N(s) = s, otherwise s0 and s1 are its input nodes. The assigned player is Player I if
the gate at s is ∧ and Player II if the gate is ∨. For an input node s labeled by xi or ¬xi,
p(s) = i; otherwise it is defined arbitrarily.

We leave the verification of the properties to the reader.

2. Consider a protocol (f, F,N, c, p). Let U = {u; f(u) = 0} and V = {v; f(v) = 1}.
Let s ∈ S be feasible for some u ∈ U and v ∈ V , which means that it satisfies F (s, u, v). The
condition 1. concerning F says that the set {(u, v) ∈ U × V ; F (s, u, v)} is a combinatorial
rectangle Us × Vs, where Us = {u ∈ U ; FI(s, u)} and Vs = {v ∈ V ; FII(s, v)}. We will
construct a circuit whose nodes will be the elements of S such that, for every s ∈ S, the
function fs computed at the node s will satisfy

fs(u) = 0 and fs(v) = 1, for all u ∈ Us and v ∈ Vs. (1)

If s is such that N(s) = s and p(s) = i, then we label s by xi or ¬xi. If s is feasible for
some u, v, then exactly one of the two labels is correct; otherwise we do not care. To see
that only one label is correct, suppose that s is feasible for u and v, and ui = 0 and vi = 1.
Then the label should be xi. It is not possible that s is feasible for some u′ and v′ such

Pavel Pudlák 35

that u′
i = 1 and v′

i = 0. If it were, we would also have F (s, u′, v), because it is equivalent to
FI(s, u′) ∧ FII(s, v). But this is impossible, because u′

i = vi.
Now suppose that s is such that N(s, u, v) ∈ {s0, s1} is associated with Player I. It may

still happen that, for some i = 0, 1, N(s, u, v) = si for all (u, v) ∈ Us × Vs. In such a case
we just join s by a wire to si and fs = fsi

. Otherwise we label s by ∧ and connect it to s0
and s1. The verification that condition (1) is preserved reduces to proving the following two
implications:

F (s, u, v)→ FI(s0, u) ∨ FI(s1, u),
F (s, u, v)→ FII(s0, v) ∧ FII(s1, v).

The first implication follows trivially from F (s, u, v) → F (N(s), u, v) → F (s0, u, v) ∨
F (s1, u, v). To prove the second one, suppose w.l.o.g. that N(s, u, v) = s0. Since N(s, u, v)
only depends on u and since the value s1 is also possible, there must be some u′ ∈ Us such that
N(s, u′, v) = s1. Thus we have F (s0, u, v) ∧ F (s1, u

′, v), whence FII(s0, v) ∧ FII(s1, v). J

Theorem 2 can be now proved from Lemma 3 by showing that general communication
protocols can be reduced to the restricted protocols of Lemma 3. For example, if the players
need k > 1 bits to compute N , we introduce, for every s, 2k − 1 new vertices and replace the
arrows s→ s0, s→ s1 by a tree. Instead of going directly from s to s0 or s1, the players will
go to these vertices in k steps. Similarly, we have to replace each vertex by 2` vertices if the
feasibility predicate F needs ` > 1 communication bits to be decided, etc.

4 Feasible interpolation

Suppose φ(x̄, ȳ)∨ψ(x̄, z̄) is a tautology where x̄ is the string of propositional variables that φ
and ψ share and ȳ and z̄ are disjoint strings. Suppose we substitute a string of truth values
ā for x̄. Then the terms in the tautology φ(ā, ȳ) ∨ ψ(ā, z̄) have disjoint sets of propositional
variables, hence either φ(ā, ȳ) is a tautology, or ψ(ā, z̄) is a tautology, or both. Thus such
tautologies give us a computational problem: given ā, determine which of the two formulas
φ(ā, ȳ) or ψ(ā, z̄) is a tautology. In general, this problem is not in P, unless P = NP∩coNP.
But what if we not only know that φ(x̄, ȳ) ∨ ψ(x̄, z̄) is a tautology, but also have a proof of
it? Krajíček’s important discovery is that in some cases we can solve this task if we have a
proof. Exactly when this is possible depends on the proof system.

I Definition 4. We say that a propositional proof system P has the feasible interpolation
property, if there exists a polynomial time algorithm A such that given a P -proof d of
φ(x̄, ȳ) ∨ ψ(x̄, z̄) and an assignment ā for the common variables x̄,
1. if A(d, ā) = 0, then φ(ā, ȳ) is a tautology,
2. if A(d, ā) = 1, then ψ(ā, z̄) is a tautology.

I Theorem 5. [9] The Resolution proof system has the feasible interpolation property.

We will reproduce Krajíček’s proof and show how it can be done only using Lemma 3.
The basic idea is to use the given refutation d to define a communication search problems in
the sense of Razborov and from it to construct a circuit C that satisfies 1. and 2. of the
theorem. Since C is constructed in polynomial time from d, the construction gives us the
polynomial algorithm A.

Let d be a Resolution derivation of the empty clause from two sets of clauses Φ(x̄, ȳ) and
Ψ(x̄, z̄), where x̄ are the common variables of the two sets.

FSTTCS 2010

36 On extracting computations from propositional proofs (a survey)

Let f be the partial function defined by:

f(ū) = 0 if ∃ȳ
∧

Φ(ū, ȳ),
f(v̄) = 1 if ∃z̄

∧
Ψ(v̄, z̄),

and otherwise undefined. For every ū such that f(ū) = 0 we choose a w̄u such that
∧

Φ(ū, ȳ)
is true, and similarly we define t̄v for every v̄ such that f(v̄) = 1.

The search space S is the set of clauses of the proof d. The initial element 0̄ ∈ S is the
empty clause. The cost function c is the distance from the empty clause.

Given a clause Σ, the feasibility predicate F (Σ, ū, v̄) is satisfied, if both assignments
ū, w̄ut̄v and v̄, w̄u, t̄v falsify Σ.

If Σ is an initial clause, we put N(Σ) = Σ; the definition of p(Σ) is irrelevant, because
such a Σ is never feasible. Suppose, now, that Σ = Γ,∆ and it was derived from clauses
Σ0 = Γ, p and Σ1 = ∆,¬p. We distinguish several cases according to to which set of variables
p belongs.
1. If p = yj , then we assign Σ to Player I and N(Σ, ū, v̄) = Σ(wu)j

.
2. If p = zl, then we assign Σ to Player II and N(Σ, ū, v̄) = Σ(tv)l

.
3. If p = xi, then the players tell each other the values ui and vi. Then

a. if ui = vi, then N(Σ, ū, v̄) = Σui
;

b. otherwise N(Σ, ū, v̄) = Σ and p(Σ) = i.

This is a protocol in the sense of Razborov, so one can apply his Theorem 2. However,
one can also easily reduce it to the simpler Lemma 3. Note that the above protocol almost
satisfies the restrictions needed in Lemma 3. Only in 3. the players have to send two bits
instead of one. This can be rectified as follows.

Add to the search space S also all xi and ¬xi, if they are not already present. Put
N(xi) = xi, N(¬xi) = ¬xi and p(xi) = p(¬xi) = i. Define F (xi, ū, v̄) to be true if ui = 0
and vi = 1 and dually for ¬xi.

For Σ,Σ0,Σ1 as above such that the resolved variable is p = xi, add two new vertices Σ′
0

and Σ′
1 to S. Associate Σ with Player I and both Σ′

0 and Σ′
1 with Player II. Then define:

N(Σ, ū, v̄) = Σ′
uj
;

if ui = vi, put N(Σ′
ν , ū, v̄) = Σν , for ν = 0, 1;

if ui 6= vi, put N(Σ′
0, ū, v̄) = ¬xi and N(Σ′

1, ū, v̄) = xi;
FI(xi, ū) ≡ ui = 0 and FII(xi, v̄) ≡ vi = 1;
FI(¬xi, ū) ≡ ui = 1 and FII(¬xi, v̄) ≡ vi = 0;
FI(Σ′

i, ū) ≡ FI(Σ, ū) ∧N(Σ, ū, v̄) = i for i = 0, 1;
FII(Σ′

i, v) ≡ FII(Σ, v) for i = 0, 1.

We leave the verification of the properties to the reader. J

We have shown that there exists a circuit C with the properties required by the theorem
whose size is at most 2n+ 3|d|, where |d| denotes the number of clauses in the Resolution
proof d. In [15] we gave a different, more direct proof of Theorem 5. In our construction the
number of vertices in the circuit C is at most 2n+ |d|; however, the circuit uses on top of
the usual gates ∧ and ∨ (together with literals xi and ¬xi) also the ternary gate selector. If
the selector gates are replaced by circuits in the basis ∧,∨, we get the same bound as above
2n+ 3|d|. But not only that: the circuits are identical.

Pavel Pudlák 37

5 From communication protocols to proofs

We are studying three things: circuits, PLS communication protocols and Resolution proofs.
We have shown how to construct a protocol from a circuit, a circuit from a protocol and
a protocol from a proof. Further, this gives us a construction of a circuit from proof, by
transitivity, but a direct construction was shown in [15]. To complete the picture, it remains
to construct proofs from protocols and circuits. We will only show the construction of a proof
from a protocol. The other remaining construction follows by transitivity, but, certainly,
a direct construction is also possible. To simplify the presentation, we will only consider
protocols for the Karchmer-Wigderson games and restricted PLS protocols.

I Proposition 6. Let P be a protocol in the form of a Karchmer-Wigderson game for
computing a partial boolean function f(x̄) that uses k communication bits. Then one can
construct a tautology of the form φ(x̄, ȳ) ∨ ψ(x̄, z̄), with φ(x̄, ȳ) and ψ(x̄, z̄) in DNF, and a
Resolution proof d of it such that
1. the size of the proof is |d| = O(|2k|) and
2. the formulas φ(x̄, ȳ) and ψ(x̄, z̄) define a partial boolean function that is at least as much

defined as f , which means
a. if f(ū) = 0, then there exists w̄ such that φ(ū, w̄) is false, and
b. if f(v̄) = 1, then there exists t̄ such that ψ(v̄, t̄) is false.

Furthermore, the proof has the form of a tree.

To prove the proposition, consider all possible situations that may appear when playing
according to the protocol P . We will inductively assign a clause to each of them. For the
initial situation when they start, we take the empty clause. Suppose we are in a situation
s with a clause Σ and Player I is to speak. Then we choose a new variable yi and assign
Σ ∨ yi to the situation after Player I sent the bit 0, respectively, Σ ∨ ¬yi to the situation
after Player I sent the bit 1. If it is Player II to speak we do the same with a variable zj
instead of yi. Suppose that the game ends in a situation where the players learn that the ith
bit of Player I is 0 while the ith bit of Player II is 1. Let Σ be the clause assigned to this
situation, let ΣI , respectively ΣII , be the subclause of Σ consisting of yis, respectively zjs.
Then we introduce two clauses

ΣI ∨ ¬xi and ΣII ∨ xi.

If it is 1 and 0, we take xi in the first clause and ¬xi in the second.
One can see immediately that the clauses form a Resolution refutation. Let us check

condition 2.(a). Let ū such that f(u) = 0 be given. We want to find an assignment that
makes all initial clauses made of xis and yjs false. Given u, the protocol P determines how
Player I plays in each situation, so we can set the values w according to what the protocol
says. Since the protocol is correct, the clause ΣI ∨¬xi (respectively ΣI ∨xi) must be satisfied.

Again, we leave the details to the reader. J

I Proposition 7. Let P be a restricted PLS communication protocol for computing a
partial boolean function f(x̄) with a search space S. Then one can construct a tautology of
the form φ(x̄, ȳ) ∨ ψ(x̄, z̄), with φ(x̄, ȳ) and ψ(x̄, z̄) in DNF, and its Resolution proof d such
that
1. the size of the proof is |d| = O(|S|) and
2. the formulas φ(x̄, ȳ) and ψ(x̄, z̄) define a partial boolean function that is at least as much

defined as f (in the sense of the previous proposition).

FSTTCS 2010

38 On extracting computations from propositional proofs (a survey)

The idea of the proof is essentially the same: we introduce a variable for every possible
bit sent by the players and describe the dependences between them by clauses. Here are
more details.

For every node s in the search space S, we introduce variables yF,s and zF,s. The meaning
is that s is feasible iff yF,s ∧ zF,s is true. If s is assigned to Player I (respectively Player II),
we also introduce yN,s (respectively zN,s) for the neighborhood function N .

Let s be such that N(s) = s and suppose that the function p determines that ui = 0 and
vi = 1 (where ū is the input of Player I and v̄ is the input of Player II).1 Then we introduce
the clauses

yF,s → ¬xi and zF,s → xi. (2)

Again, if it is 1 and 0, then we switch the negation at xi.
Let s be such that N(s) 6= s, N(s) ∈ {s0, s1} and s is assigned to Player I. Then we

introduce the following clauses:

(yF,s ∧ yN,s)→ yF,s0 ,

(yF,s ∧ ¬yN,s)→ yF,s1 ,

zF,s → zF,s0 ,

zF,s → zF,s1 .

If s is assigned to Player II we take the same clauses with ys and zs switched.
Finally we take two clauses for the initial node 0̄:

yF,0̄ and zF,0̄.

In order to derive the empty clause from these clauses, first derive ¬yF,s ∨ ¬zF,s from
every pair of clauses (2). Then continue deriving such clauses for all s ∈ S (going in the
direction of decreasing cost). Once we have ¬yF,0̄∨¬zF,0̄, we resolve with the last two clauses
to obtain the empty clause.

The verification of the condition 2. of the proposition is the same as in the previous
proof. J

Combining the proof of Theorem 2 and Proposition 7 we get a construction of a tautology
and its Resolution proof from a function and its circuit. Unfortunately, this is not the
converse to feasible interpolation. In particular, it does not give us a reduction of proving
lower bounds on circuit complexity to proving lower bounds on the length of proofs. Such a
reduction would require a construction that, for a given partial boolean function f and a
suitable representation of f by a tautology τ , would transform any boolean circuit for f into
a proof of τ . It seems rather unlikely that such a reduction is possible. We only have the
following trivial observation.

I Corollary 8. Let fn(x1, . . . , xn) n = 1, 2, . . . , be a sequence of booelan functions. Suppose
that there is no sequence of DNF tautologies φn(x̄, ȳ) ∨ ψn(x̄, z̄) such that they represent the
boolean functions fn in the sense of Proposition 6 and have polynomial size Resolution proofs.
Then fn do not have polynomial size circuits.

1 According to the definition p only tells the index, but we have already noticed that the actual values
are also determined.

Pavel Pudlák 39

6 Generalizations

A natural question connected with Razborov’s characterization of circuit complexity is: What
happens when we replace PLS by a different class of polynomial search problems? One
can consider subclasses of PLS and get characterizations of classes of circuits with certain
restrictions. This line of research may be interesting, but we are interested in the opposite
direction: replacing PLS by larger classes of polynomial search problems.

Our motivation is to generalize the feasible interpolation property and show that it
holds true for stronger proof systems. There are results [13, 4, 3] showing that if certain
bit commitment schemas are secure, then sufficiently strong proof systems do not have
the feasible interpolation property. Therefore we need a concept of computation that is
stronger than boolean circuits, but not too strong, otherwise it would not provide us with
any new information about the complexity of the interpolation problem. Generalizations of
Razborov’s theorem seems to be the right place to look for such concepts.

The classes of search problems that we want to use instead of PLS are those that
characterize provably total polynomial search problems in fragments of Bounded Arithmetic.
The fragments form a hierarchy, denoted by T 0

2 , T
1
2 , T

2
2 , . . . , where, roughly speaking, Tn2

is a theory that is based on the induction axioms for sets of complexity Σp
n from the

Polynomial Time Hierarchy. These theories have a tight connection to bounded depth
Frege propositional proof systems. The provably total polynomial search problems of T 0

2
are solvable in polynomial time; for T 1

2 they belong to PLS. Characterizations for higher
fragments were found relatively recently, see e.g. [14, 2, 16] (but there are more papers about
it).

Very recently, working with Neil Thapen, we obtained a kind of generalization of boolean
circuits that can be used for a generalized feasible interpolation theorem for depth 2 Frege
systems. This result is too fresh to be included in this paper. We will present it on the
conference.

The negative results about feasible interpolation apply to bounded depth Frege of a
sufficiently large depth, but it is not clear where the border is. In particular, we do not have
an argument implying that depth 2 Frege systems do not have the feasible interpolation
property. This is one more reason for studying generalizations.

How do the search problems come into play?

Suppose that∧
Φ(x̄, ȳ) ∧

∧
Ψ(x̄, z̄) (3)

is not satisfiable. This is equivalent to saying that, for every ū, w̄, v̄, t̄, if ū, w̄ satisfies
∧

Φ(x̄, ȳ)
and v̄, t̄ satisfies

∧
Ψ(x̄, z̄), then ū 6= v̄. The last condition is equivalent to the statement

that ui 6= vi for some i. So the following is a search problem associated with a formula of
the form (3):

Given a proof d in a proof system P of unsatisfiability of (3) and assignments ū, w̄, v̄, t̄
such that

∧
Φ(ū, w̄) ∧

∧
Ψ(v̄, t̄) is true, find i such that ui 6= vi.

For this problem to be nontrivial, we have to scale it up to an exponentially large structure.
Think of the formula, the proof and the assignments as being exponentially large. For example,
we can represent the assignments ū and v̄ as boolean functions ū, v̄ : {0, 1}n → {0, 1}. In
Bounded Arithmetic this is formalized by second order theories, [5].

FSTTCS 2010

40 On extracting computations from propositional proofs (a survey)

In order to prove that the search problem above always has a solution we need to prove
that the proof system is sound. The strength of the theory needed to prove it depends on
the strength of the proof system P ; the stronger the proof system is the stronger the theory
must be.

For proving soundness of Resolution, T 1
2 suffices. All provably total polynomial search

problems in T 1
2 are reducible to PLS. Hence the problem above is reducible to a PLS problem.

The functions and the predicate in such a PLS problem can be viewed as polynomial time
algorithms that use ū, v̄ as oracles. What is only important for us that they only ask a
polynomial number of queries. If we now scale it down from the exponential domain to the
polynomial one, we see that to compute these functions and this predicate we only need a
logarithmic number of communication bits. This gives us the PLS communication protocol.

In a similar fashion we can associate classes of search problems with depth d Frege systems
for d > 1.

Acknowledgment I would like to thank to Jan Krajíček and Neil Thapen for their comments
on the draft of this paper.

References
1 M. Ajtai. The complexity of the Pigeonhole Principle, Combinatorica Volume 14, Number

4, (1994), 417-433.
2 A. Beckmann and S. Buss. Characterizing Definable Search Problems in Bounded Arith-

metic via Proof Notations. Preliminary manuscript, 2009
3 M. L. Bonet, C. Domingo, R. Gavaldá, A. Maciel, and T. Pitassi. Non-Automatizability of

Bounded-Depth Frege Proofs, Computational Complexity 13:1-2 (2004), 47-68.
4 M. L. Bonet, T. Pitassi, R. Raz. On Interpolation and Automatization for Frege Systems,

SIAM Journal of Computing 29(6) (2000), pp. 1939-1967
5 S. Cook and P. Nguyen. Logical Foundations of Proof Complexity, ASL and Cambridge

University Press, 2010.
6 A. Haken. The intractability of resolution. Theoretical Computer Science, 39:297–308, 1985.
7 M. Karchmer, A. Wigderson. Monotone Circuits for Connectivity require Super-

Logarithmic Depth, SIAM Journal on Discrete Mathematics, vol. 3, no. 2, pp. 255-65,
1990.

8 Lower Bounds to the Size of Constant-Depth Propositional Proofs, J. of Symbolic Logic,
59(1), (1994), pp.73-86.

9 J. Krajíček. Interpolation theorems, lower bounds for proof systems, and independence
results for bounded arithmetic, Journal of Symbolic Logic, 62(2), (1997), pp.457-486.

10 J. Krajíček. Tautologies from pseudo-random generators, Bulletin of Symbolic Logic, 7(2),
(2001), pp.197-212.

11 J. Krajíček. A form of feasible interpolation for constant depth Frege systems , Journal of
Symbolic Logic, 75(2), (2010), pp. 774-784.

12 J. Krajíček. Forcing with random variables and proof complexity, London Mathematical
Society Lecture Note Series, No.382, Cambridge University Press, to appear in 2010, 280pp.

13 J. Krajíček and P. Pudlák. Some Consequences of Cryptographical Conjectures for S1
2 and

EF , Information and Computation, Volume 140, Number 1, January 1998 , pp. 82-94(13)
14 J. Krajíček, A. Skelley and N. Thapen. NP search problems in low fragments of bounded

arithmetic, in Journal of Symbolic Logic, Vol 72:2, 2007
15 P. Pudlák: Lower bounds for resolution and cutting planes proofs and monotone computa-

tions, Journal of Symb. Logic 62(3), 1997, pp.981-998.

Pavel Pudlák 41

16 P. Pudlák and N. Thapen. Alternating minima and maxima, Nash equilibria and Bounded
Arithmetic, preprint, 2009.

17 A. A. Razborov. Unprovability of Lower Bounds on the Circuit Size in Certain Fragments
of Bounded Arithmetic, in Izvestiya of the Russian Academy of Science, mathematics, Vol.
59, No 1, 1995, pages 201-224.

FSTTCS 2010

Recent Progress and Open Problems in
Algorithmic Convex Geometry∗

Santosh S. Vempala

School of Computer Science
Algorithms and Randomness Center
Georgia Tech, Atlanta, USA 30332
vempala@gatech.edu

Abstract
This article is a survey of developments in algorithmic convex geometry over the past decade.
These include algorithms for sampling, optimization, integration, rounding and learning, as well
as mathematical tools such as isoperimetric and concentration inequalities. Several open problems
and conjectures are discussed on the way.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.42

Contents

1 Introduction 43
1.1 Basic definitions . 43

2 Problems 45
2.1 Optimization . 45
2.2 Integration/Counting . 45
2.3 Learning . 46
2.4 Sampling . 46
2.5 Rounding. 46

3 Geometric inequalities and conjectures 47
3.1 Rounding . 48
3.2 Measure and concentration . 49
3.3 Isoperimetry . 50
3.4 Localization . 53

4 Algorithms 54
4.1 Geometric random walks . 55
4.2 Annealing . 58
4.3 PCA . 61

∗ This work was supported by NSF awards AF-0915903 and AF-0910584.

© Santosh S. Vempala;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 42–64

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.42
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Santosh S. Vempala 43

1 Introduction

Algorithmic convex geometry is the study of the algorithmic aspects of convexity. While
convex geometry, closely related to finite-dimensional functional analysis, is a rich, classical
field of mathematics, it has enjoyed a resurgence since the late 20th century, coinciding
with the development of theoretical computer science. These two fields started coming
together in the 1970’s with the development of geometric algorithms for convex optimization,
notably the Ellipsoid method. The ellipsoid algorithm uses basic notions in convex geometry
with profound consequences for computational complexity, including the polynomial-time
solution of linear programs. This development heralded the use of more geometric ideas,
including Karmarkar’s algorithm and interior point methods. It brought to the forefront
fundamental geometric questions such as rounding, i.e., applying affine transformations to
sets in Euclidean space to make them easier to handle. The ellipsoid algorithm also resulted
in the striking application of continuous geometric methods for the solution of discrete
optimization problems such as submodular function minimization.

A further startling development occurred in 1989 with the discovery of a polynomial
method for estimating the volume of a convex body. This was especially surprising in the
light of an exponential lower bound for any deterministic algorithm for volume estimation.
The crucial ingredient in the volume algorithm was an efficient procedure to sample nearly
uniform random points from a convex body. Over the past two decades the algorithmic
techniques and analysis tools for sampling and volume estimation have been greatly extended
and refined. One noteworthy aspect here is the development of isoperimetric inequalities
that are of independent interest as purely geometric properties and lead to new directions in
the study of convexity. Efficient sampling has also lead to alternative polynomial algorithms
for convex optimization.

Besides optimization, integration and sampling, our focus problems in this survey are
rounding and learning. Efficient algorithms for the first three problems rely crucially on
rounding. Approximate rounding can be done using the ellipsoid method and with a tighter
guarantee using random sampling. Learning is a problem that generalizes integration. For
example, while we know how to efficiently compute the volume of a polytope, learning one
efficiently from random samples is an open problem. For general convex bodies, volume
computation is efficient, while learning requires a superpolynomial number of samples (volume
computation uses a membership oracle while learning gets only random samples).

This survey is not intended to be comprehensive. There are numerous interesting
developments in convex geometry, related algorithms and their growing list of applications
and connections to other areas (e.g., data privacy, quantum computing, statistical estimators
etc.) that we do not cover here, being guided instead by our five focus problems.

1.1 Basic definitions
Recall that a subset S of Rn is convex if for any two points x, y ∈ S, the interval [x, y] ⊆ S.
A function f : Rn → R+ is said to be logconcave if for any two points x, y ∈ Rn and any
λ ∈ [0, 1],

f(λx+ (1− λ)y) ≥ f(x)λf(y)1−λ.

The indicator function of a convex set and the density function of a Gaussian distribution
are two canonical examples of logconcave functions.

A density function f : Rn → R+ is said to be isotropic, if its centroid is the origin, and
its covariance matrix is the identity matrix. In terms of the associated random variable X,

FSTTCS 2010

44 Algorithmic Convex Geometry

this means that

E(X) = 0 and E(XXT) = I.

This condition is equivalent to saying that for every unit vector v ∈ Rn,∫
Rn

(vTx)2f(x) dx = 1.

We say that f is C-isotropic, if

1
C
≤
∫
Rn

(vTx)2f(x) dx ≤ C

for every unit vector v. A convex body is said to be isotropic if the uniform density over it is
isotropic. For any full-dimensional distribution D with bounded second moments, there is
an affine transformation of space that puts it in isotropic position, namely, if

z = ED(X) and A = E((X − z)(X − z)T)

then y = A−
1
2 (X − z) has an isotropic density.

For a density function f : Rn → R+, we let πf be the measure associated with it. The
following notions of distance between two distributions P and Q will be used: The Total
variation distance of P and Q is

dtv(P,Q) = sup
A∈A
|P (A)−Q(A)|.

The χ-squared distance of P with respect to Q is

χ2(P,Q) =
∫ n

R

(
dP (u)− dQu

dQ(u)

)2
dQ(u) =

∫ n

R

dP (u)
dQ(u) dP (u)− 1

The first term in the last expression is also called the L2 distance of P w.r.t. Q. Finally, P
is said to be M -warm w.r.t. Q if

M = sup
A∈A

P (A)
Q(A) .

A discrete-time Markov chain is defined using a triple (K,A, {Pu : u ∈ K}) along with a
starting distribution Q0, where K is the state space, A is a set of measurable subsets of K
and Pu is a measure over K, as a sequence of elements of K, w0, w1, . . ., where w0 is chosen
from Q0 and each subsequent wi is chosen from Pwi−1 . Thus, the choice of wi+1 depends
only on wi and is independent of w0, . . . , wi−1. It is easy to verify that a distribution Q is
stationary iff for every A ∈ A,∫

A

Pu(K \A) dQ(u) =
∫
K\A

Pu(A) dQ(u).

The conductance of a subset A is defined as

φ(A) =
∫
A
Pu(K \A) dQ(u)

min{Q(A), Q(K \A)}

and the conductance of the Markov chain is

φ = min
A

φ(A) = min
0<Q(A)≤ 1

2

∫
A
Pu(K \A) dQ(u)

Q(A) .

Santosh S. Vempala 45

The following weaker notion of conductance will also be useful. For any 0 ≤ s < 1
2 , the

s-conductance of a Markov chain is defined as

φs = min
A:s<Q(A)≤ 1

2

∫
A
Pu(K \A) dQ(u)
Q(A)− s .

We let Varf (g) denote the variance of a real-valued function g w.r.t. a density function f .
The unit ball in Rn by Bn. We use O∗(.) to suppress error parameters and terms that are
polylogarithmic in the leading terms.

2 Problems

We now state our focus problems more precisely and mention the current bounds on their
complexity. Algorithms achieving these bounds are discussed in a Section 4. As input to
these problems, we typically assume a general function oracle, i.e., access to a real-valued
function as a blackbox. The complexity will be measured by both the number of oracle calls
and the number of arithmetic operations.

2.1 Optimization
Input: an oracle for a function f : Rn → R+; a point x0 with f(x0) > 0; an error parameter
ε.
Output: a point x such that

f(x) ≥ max f − ε.

Linear optimization over a convex set is the special case when f = e−c
T xχK(x) where cTx is

a linear function to be minimized and K is the convex set. This is equivalent to a membership
oracle for K in this case. Given only access to the function f , for any logconcave f , the
complexity of optimization is poly(n, log(1/ε)) by either an extension of the Ellipsoid method
to handle membership oracles [21], or Vaidya’s algorithm [60] or a reduction to sampling
[6, 25, 45]. This line of work began with the breakthrough result of Khachiyan [34] showing
that the Ellipsoid method proposed by Yudin and Nemirovskii [65] is polynomial for explicit
linear programs. The current best time complexity is O∗(n4.5) achieved by a reduction to
logconcave sampling [45]. For optimization of an explicit function over a convex set, the
oracle is simply membership in the convex set. A stronger oracle is typically available, namely
a separation oracle that gives a hyperplane that separates the query point from the convex
set, in the case when the point lies outside. Using a separation oracle, the ellipsoid algorithm
has complexity O∗(n2) while Vaidya’s algorithm and that of Bertsimas and Vempala have
complexity O∗(n).

The current frontier for polynomial-time algorithms is when f is a logconcave function
in Rn. Slight generalizations, e.g., linear optimization over a star-shaped body is NP-hard,
even to solve approximately [49, 9].

2.2 Integration/Counting
Input: an oracle for a function f : Rn → R+; a point x0 with f(x0) > 0; an error parameter
ε.
Output: a real number A such that

(1− ε)
∫
f ≤ A ≤ (1 + ε)

∫
f.

FSTTCS 2010

46 Algorithmic Convex Geometry

Dyer, Frieze and Kannan [15, 16] gave a polynomial-time randomized algorithm for
estimating the volume of a convex body (the special case above when f is the indicator
function of a convex body) with complexity poly(n, 1/ε, log(1/δ)), where δ is the probability
that the algorithm’s output is incorrect. This was extended to integration of logconcave
functions by Applegate and Kannan [3] with an additional dependence of the complexity
on the Lipschitz parameter of f . Following a long line of improvements, the current best
complexity is O∗(n4) using a variant of simulated annealing, quite similar to the algorithm
for optimization [45].

In the discrete setting, the natural general problem is when f is a distribution over the
integer points in a convex set, e.g., f is 1 only for integer points in a convex body K. While
there are many special cases that are well-studied, e.g., perfect matchings of a graph [23],
not much is known in general except a roundness condition [30].

2.3 Learning

Input: random points drawn from an unknown distribution in Rn and their labels given by
an unknown function f : Rn → {0, 1}; an error parameter ε.
Output: A function g : Rn → {0, 1} such that P(g(x) 6= f(x)) ≤ ε over the unknown
distribution.

The special case when f is an unknown linear function can be solved by using any linear
classifier that correctly labels a sample of size

C

ε

(
n log 1

ε
+ log 1

δ

)
,

where C is a constant. Such a classifier can be learned by using any efficient algorithm for
linear programming. The case when f is a polynomial threshold function of bounded degree
can also be learned efficiently essentially by reducing to the case of linear thresholds via a
linearization of the polynomial.

2.4 Sampling

Input: an oracle for a function f : Rn → R+; a point x0 with f(x0) > 0; an error parameter
ε.
Output: a random point x whose distribution D is within ε total variation distance of the
distribution with density proportional to f .

As the key ingredient of their volume algorithm [16], Dyer, Frieze and Kannan gave a
polynomial-time algorithm for the case when f is the indicator function over a convex body.
The complexity of the sampler itself was poly(n, 1/ε). Later, Applegate and Kannan [3]
generalized this to smooth logconcave functions with complexity polynomial in n, 1/ε and
the Lipschitz parameter of the logconcave function. In [45] the complexity was improved to
O∗(n4) and the dependence on the Lipschitz parameter was removed.

2.5 Rounding.

We first state this problem for a special case.
Input: a membership oracle for a convex body K; a point x0 ∈ K; an error parameter ε.
Output: a linear transformation A and a point z such that K ′ = A(K − z) satisfies one of
the following:

Santosh S. Vempala 47

Exact sandwiching:

Bn ⊆ K ′ ⊆ RBn. (1)

Second moment sandwiching: For every unit vector u,

1− ε ≤ EK′((u · x)2) ≤ 1 + ε.

Approximate sandwiching:

vol(Bn ∩K ′) ≥
1
2vol(Bn) and vol(K ′ ∩RBn) ≥ 1

2vol(K
′). (2)

When the input is a general density function, the second moment condition extends readily
without any change to the statement.

The classical Löwner-John theorem says that for any convex body K, the ellipsoid E
of maximal volume contained in K has the property that K ⊆ nE (and K ⊆

√
nE if K is

centrally symmetric). Thus by using the transformation that makes this ellipsoid a ball, one
achieves R = n in the first condition above (exact sandwiching). Moreover, this is the best
possible as shown by the simplex. However, computing the ellipsoid of maximal volume is
hard. Lovász [41] showed how to compute an ellipsoid that satisfies the containment with
R = n3/2 using the Ellipsoid algorithm. This remains the best-known deterministic algorithm.
A randomized algorithm can achieve R = n(1 + ε) for any ε > 0 using a simple reduction to
random sampling [27]. In fact, all that one needs is n · C(ε) random samples [8, 57, 54, 1],
and then the transformation to be computed is the one that puts the sample in isotropic
position.

3 Geometric inequalities and conjectures

We begin with some fundamental inequalities. For two subsets A,B of Rn, their Minkowski
sum is

A+B = {x+ y : x ∈ A, y ∈ B}.

The Brunn-Minkowski inequality says that if A,B and A + B are measurable, compact
subsets of Rn, then

vol(A+B) 1
n ≥ vol(A) 1

n + vol(B) 1
n . (3)

The following extension is the Prékopa-Leindler inequality: for any three functions
f, g, h : Rn → R+, satisfying

h(λx+ (1− λ)y) ≥ f(x)λg(x)1−λ

for every λ ∈ [0, 1],∫
Rn

h(x) dx ≥
(∫

Rn

f(x) dx
)λ(∫

Rn

g(x) dx
)1−λ

. (4)

The product and the minimum of two logconcave functions are also logconcave. We also
have the following fundamental properties [12, 39, 55, 56].

I Theorem 1. All marginals and the distribution function of a logconcave function are
logconcave. The convolution of two logconcave functions is logconcave.

FSTTCS 2010

48 Algorithmic Convex Geometry

In the rest of this section, we describe inequalities about rounding, concentration of mass
and isoperimetry. These inequalities play an important role in the analysis of algorithms
for our focus problems. Many of the inequalities apply to logconcave functions. The latter
represent the limit to which methods that work for convex bodies can be extended. This is
true for all the algorithms we will see with a few exceptions, e.g., an extension of isoperimetry
and sampling to star-shaped bodies. We note here that Milman [50] has shown a general
approximate equivalence between concentration and isoperimetry over convex domains.

3.1 Rounding
We next describe a set of properties related to affine transformations. The first one below is
from [27].

I Theorem 2. [27] Let K be a convex body in Rn in isotropic position. Then,√
n+ 1
n

Bn ⊆ K ⊆
√
n(n+ 1)Bn.

Thus, in terms of the exact sandwiching condition (1), isotropic position achieves a factor
of n, and this ratio of the radii of the outer and inner ball, n, is the best possible as shown
by the n-dimensional simplex. A bound of O(n) was earlier established by Milman and Pajor
[51].

Sandwiching was extended to logconcave functions in [48] as follows.

I Theorem 3. [48] Let f be a logconcave density in isotropic position. Then for any t > 0,
the level set L(t) = {x : f(x) ≥ t} contains a ball of radius πf (L(t))/e. Also, the point
z = arg max f satisfies ‖z‖ ≤ n+ 1.

For general densities, it is convenient to define a rounding parameter as follows. For a
density function f , let R2 = Ef (‖X −EX‖2) and r be the radius of the largest ball contained
in the level set of f of measure 1/8. Then R/r is the rounding parameter and we say a
function is well-rounded if R/r = O(

√
n). By the above theorem, any logconcave density in

isotropic position is well-rounded.
An isotropic transformation can be estimated for any logconcave function using random

samples drawn from the density proportional to f . In fact, following the work of Bourgain
[8] and Rudelson [57], Adamczak et al [1] showed that O(n) random points suffice to achieve,
say, 2-isotropic position with high probability.

I Theorem 4. [1] Let x1, . . . xm be random points drawn from an isotropic logconcave density
f . Then for any ε ∈ (0, 1), t ≥ 1, there exists C(ε, t) such that if m ≥ C(ε, t)n,∥∥∥∥∥ 1

m

m∑
i=1

xix
T
i − I

∥∥∥∥∥
2

≤ ε

with probability at least 1− e−ct
√
n. Moreover,

C(ε, t) = C
t4

ε2 log2 2t2

ε2

for absolute constants c, C suffices.

The following conjecture was alluded to in [44].
I Conjecture 5. There exists a constant C such that for any convex body K in Rn, there
exists an ellipsoid E that satisfies approximate sandwiching:

vol(E ∩K) ≥ 1
2vol(E); vol(K ∩ C lognE) ≥ 1

2vol(K).

Santosh S. Vempala 49

3.2 Measure and concentration
The next inequality was proved by Grünbaum [22] (for the special case of the uniform density
over a convex body).

I Lemma 6. [22] Let f : Rn → R+ be a logconcave density function, and let H be any
halfspace containing its centroid. Then∫

H

f(x) dx ≥ 1
e
.

This was extended to hyperplanes that come close to the centroid in [6, 48].

I Lemma 7. [6, 48] Let f : Rn → R+ be an isotropic logconcave density function, and let
H be any halfspace within distance t from its centroid. Then∫

H

f(x) dx ≥ 1
e
− t.

The above lemma easily implies a useful concentration result.

I Theorem 8. Let f be a logconcave density in Rn and z be the average of m random points
from πf . If H is a halfspace containing z,

E (πf (H)) ≥
(

1
e
−
√
n

m

)
.

A strong radial concentration result was shown by Paouris [54].

I Lemma 9. [54] Let K be an isotropic convex body. Then, for any t ≥ 1,

P(‖X‖ ≥ ct
√
n) ≤ e−t

√
n

where c is an absolute constant.

This implies that all but an exponentially small fraction of the mass of an isotropic convex
body lies in a ball of radius O(

√
n).

The next inequality is a special case of a more general inequality due to Brascamp and
Lieb. It also falls in a family called Poincaré-type inequalities. Recall that Varµ(f) denote
the variance of a real-valued function f w.r.t. a density function µ.

I Theorem 10. Let γ be the standard Gaussian density in Rn. Let f : Rn → R be a smooth
function. Then

Varγ(f) ≤
∫
Rn

‖∇f‖2 dγ.

A smooth function here is one that is locally Lipschitz.
An extension of this inequality to logconcave restrictions was developed in [63], eliminating

the need for smoothness and deriving a quantitative bound. In particular, the lemma shows
how variances go down when the standard Gaussian is restricted to a convex set.

I Theorem 11. [63] Let g be the standard Gaussian density function in Rn and f : Rn → R+
be any logconcave function. Define the function h to be the density proportional to their
product, i.e.,

h(x) = f(x)g(x)∫
Rn f(x)g(x) dx

.

FSTTCS 2010

50 Algorithmic Convex Geometry

Then, for any unit vector u ∈ Rn,

Varh(u · x) ≤ 1− e−b
2

2π

where the support of f along u is [a0, a1] and b = min{|a0|, |a1|}.

The next conjecture is called the variance hypothesis or thin shell conjecture.
I Conjecture 12 (Thin shell). For X drawn from a logconcave isotropic density f in Rn,

Varf (‖X‖2) ≤ Cn

We note here that for an isotropic logconcave density,

σ2
n = Ef ((‖X‖ −

√
n)2) ≤ 1

n
Varf (‖X‖2) ≤ Cσ2

n,

i.e., the deviation of ‖X‖ from
√
n and the deviation of ‖X‖2 from E(‖X‖2) = n are closely

related. Thus, the conjecture implies that most of the mass of a logconcave distribution lies
in shell of constant thickness.

A bound of σn ≤
√
n is easy to establish for any isotropic logconcave density. Klartag

showed that σn = o(
√
n) [36, 37], a result that can be interpreted as a central limit theorem

(since the standard deviation is now a smaller order term than the expectation). The current
best bound on σn is due to Fleury [19] who showed that σn ≤ n3/8. We state his result
below.

I Lemma 13. [19] For any isotropic logconcave measure µ,

P
(
|‖x‖ −

√
n| ≥ tn 3

8

)
≤ Ce−ct.

where c, C are constants.

3.3 Isoperimetry
The following theorem is from [14], improving on a theorem in [43] by a factor of 2. For two
subsets S1, S2 of Rn, we let d(S1, S2) denote the minimum Euclidean distance between them.

I Theorem 14. [14] Let S1, S2, S3 be a partition into measurable sets of a convex body K of
diameter D. Then,

vol(S3) ≥ 2d(S1, S2)
D

min{vol(S1), vol(S2)}.

A limiting (and equivalent) version of this inequality is the following: Let ∂S ∩K denote
the interior boundary of S w.r.t. K. For any subset S of a convex body of diameter D,

voln−1(∂S ∩K) ≥ 2
D

min{vol(S), vol(K \ S)},

i.e., the surface area of S inside K is large compared to the volumes of S and K \ S. This
is in direct analogy with the classical isoperimetric inequality, which says that the surface
area to volume ratio of any measurable set is at least the ratio for a ball. Henceforth, for a
density function f , we use Φf (S) to denote the isoperimetric ratio of a subset S, i.e.,

Φf (S) = πf (∂S)
min{πf (S), 1− πf (S)}

Santosh S. Vempala 51

and

Φf = inf
S⊆Rn

φ(S).

Theorem 14 can be generalized to arbitrary logconcave measures.

I Theorem 15. Let f : Rn → R+ be a logconcave function whose support has diameter
D and let πf be the induced measure. Then for any partition of Rn into measurable sets
S1, S2, S3,

πf (S3) ≥ 2d(S1, S2)
D

min{πf (S1), πf (S2)}.

The conclusion can be equivalently stated as Φf ≥ 2/D. For Euclidean distance this latter
statement, applied to the subset S1 essentially recovers the above lower bound on πf (S3).

Next we ask if logconcave functions are the limit of such isoperimetry. Theorem 15 can
be extended to s-concave functions in Rn for s ≥ −1/(n− 1) with only a loss of a factor of 2
[10]. A nonnegative function f is s-concave if f(x)s is a concave function of s. Logconcave
functions correspond to s→ 0. The only change in the conclusion is by a factor of 2 on the
RHS.

I Theorem 16. [10] Let f : Rn → R+ be an s-concave function with s ≥ −1/(n − 1) and
with support of diameter D and let πf be the induced measure. Then for any partition of Rn
into measurable sets S1, S2, S3,

πf (S3) ≥ d(S1, S2)
D

min{πf (S1), πf (S2)}.

This theorem is tight, in that there exist s-concave functions for s ≤ −1/(n− 1− ε) for any
ε > 0 whose isoperimetric ratio is exponentially small in εn.

Logconcave and s-concave functions are natural extensions of convex bodies. It is natural
to ask what classes of nonconvex sets/functions might have good isoperimetry. In recent
work [9], the isoperimetry of star-shaped bodies was studied. A star-shaped set S is one that
contains at least one point x such that for any y ∈ S, the segment [x, y] is also in S. The set
of all such points x for which lines through x have convex intersections with S is called its
kernel KS . The kernel is always a convex set.

I Theorem 17. [9] Let S1, S2, S3 be a partition into measurable sets of a star-shaped body S
of diameter D. Let η = vol(KS)/vol(S). Then,

vol(S3) ≥ d(S1, S2)
4ηD min{vol(S1), vol(S2)}.

In terms of diameter, Theorem 14 is the best possible, as shown by a cylinder. A more
refined inequality is obtained in [27, 48] using the average distance of a point to the center of
gravity (in place of diameter). It is possible for a convex body to have much larger diameter
than average distance to its centroid (e.g., a cone). In such cases, the next theorem provides
a better bound.

I Theorem 18. [27] Let f be a logconcave density in Rn and πf be the corresponding measure.
Let zf be the centroid of f and define M(f) = Ef (|x− zf |). Then, for any partition of Rn
into measurable sets S1, S2, S3,

πf (S3) ≥ ln 2
M(f)d(S1, S2)πf (S1)πf (S2).

FSTTCS 2010

52 Algorithmic Convex Geometry

For an isotropic density, M(f)2 ≤ Ef (|x − zf |2) = n and so M(f) ≤
√
n. The diameter

could be unbounded (e.g., an isotropic Gaussian). Thus, if Af is the covariance matrix of
the logconcave density f , the inequality can be re-stated as:

πf (S3) ≥ c√
Tr(Af)

d(S1, S2)πf (S1)πf (S2).

A further refinement is called the KLS hyperplane conjecture [27]. Let λ1(A) be the
largest eigenvalue of a symmetric matrix A.

I Conjecture 19 (KLS). Let f be a logconcave density in Rn. There is an absolute constant
c such that

Φf ≥
c√

λ1(Af)
.

The KLS conjecture implies the thin shell conjecture (Conj. 12). Even the thin shell
conjecture would improve the known isoperimetry of isotropic logconcave densities due to
the following result of Bobkov [7].

I Theorem 20. [7] For any logconcave density function f in Rn,

Φf ≥
c

Var(‖X‖2)1/4 .

Combining this with Fleury’s bound 13, we get that for an isotropic logconcave function in
Rn,

Φf ≥ cn−7/16. (5)

This is slightly better than the bound of cn−1/2 implied by Theorem 18 since E(‖X‖2) = n

for an isotropic density.
The next conjecture is perhaps the most well-known in convex geometry, and is called

the slicing problem, the isotropic constant or simply the hyperplane conjecture.

I Conjecture 21 (Slicing). There exists a constant C, such that for an isotropic logconcave
density f in Rn,

f(0) ≤ Cn.

In fact, a result of Ball [4] shows that it suffices to prove such a bound for the case of f
being the uniform density over an isotropic convex body. In this case, the conjecture says
the volume of an isotropic convex body in Rn is at least cn for some constant c. The current
best bound on Ln = supf f(0)1/n is O(n1/4) [8, 35].

Recently, Eldan and Klartag [18] have shown that the slicing conjecture is implied by the
thin shell conjecture (and therefore by the KLS conjecture as well, a result that was earlier
shown by Ball).

I Theorem 22. [18] There exists a constant C such that

Ln = sup
f
f(0)1/n ≤ Cσn = C sup

f

√
Ef ((‖X‖ −

√
n)2)

where the suprema range over isotropic logconcave density functions.

Santosh S. Vempala 53

We conclude this section with a discussion of another direction in which classical isoperime-
try has been extended. The cross-ratio distance (also called Hilbert metric) between two
points u, v in a convex body K is computed as follows: Let p, q be the endpoints of the chord
in K through u and v such that the points occur in the order p, u, v, q. Then

dK(u, v) = |u− v||p− q|
|p− u||v − q|

= (p : v : u : q).

where (p : v : u : q) denotes the classical cross-ratio. We can now define the cross-ratio
distance between two sets S1, S2 as

dK(S1, S2) = min{dK(u, v) : u ∈ S1, v ∈ S2}.

The next theorem was proved in [42] for convex bodies and extended to logconcave densities
in [47].

I Theorem 23. [42] Let f be a logconcave density in Rn whose support is a convex body
K and let πf be the induced measure. Then for any partition of Rn into measurable sets
S1, S2, S3,

πf (S3) ≥ dK(S1, S2)πf (S1)πf (S2).

All the inequalities so far are based on defining the distance between S1 and S2 by the
minimum over pairs of some notion of pairwise distance. It is reasonable to think that
perhaps a much sharper inequality can be obtained by using some average distance between
S1 and S2. Such an inequality was proved in [46], leading to a substantial improvement in
the analysis of hit-and-run.

I Theorem 24. [46] Let K be a convex body in Rn. Let f : K → R+ be a logconcave density
with corresponding measure πf and h : K → R+, an arbitrary function. Let S1, S2, S3 be
any partition of K into measurable sets. Suppose that for any pair of points u ∈ S1 and
v ∈ S2 and any point x on the chord of K through u and v,

h(x) ≤ 1
3 min(1, dK(u, v)).

Then

πf (S3) ≥ Ef (h(x)) min{πf (S1), πf (S2)}.

The coefficient on the RHS has changed from a “minimum” to an “average”. The weight
h(x) at a point x is restricted only by the minimum cross-ratio distance between pairs u, v
from S1, S2 respectively, such that x lies on the line between them (previously it was the
overall minimum). In general, it can be much higher than the minimum cross-ratio distance
between S1 and S2.

3.4 Localization
Most of the known isoperimetry theorems can be proved using the localization lemma of
Lovász and Simonovits [44, 27]. It reduces inequalities in high dimension to 1-dimensional
inequalities by a sequence of bisections and a limit argument. To prove that an inequality is
true, one assumes it is false and derives a contradiction in the 1-dimensional case.

FSTTCS 2010

54 Algorithmic Convex Geometry

I Lemma 25. [44] Let g, h : Rn → R be lower semi-continuous integrable functions such
that∫

Rn

g(x) dx > 0 and
∫
Rn

h(x) dx > 0.

Then there exist two points a, b ∈ Rn and a linear function ` : [0, 1]→ R+ such that∫ 1

0
`(t)n−1g((1− t)a+ tb) dt > 0 and

∫ 1

0
`(t)n−1h((1− t)a+ tb) dt > 0.

The points a, b represent an interval A and one may think of l(t)n−1dA as the cross-
sectional area of an infinitesimal cone with base area dA. The lemma says that over this cone
truncated at a and b, the integrals of g and h are positive. Also, without loss of generality,
we can assume that a, b are in the union of the supports of g and h.

A variant of localization was used in [9], where instead of proving an inequality for every
needle, one instead averages over the set of needles produced by the localization procedure.
Indeed, each step of localization is a bisection with a hyperplane and for an inequality to
hold for the original set, it often suffices for it hold “on average" over the partition produced
rather than for both parts separately. This approach can be used to prove isoperimetry for
star-shaped sets (Theorem 17) or to recover Bobkov’s isoperimetric inequality (Lemma 20).

We state here a strong version of a conjecture related to localization, which if true implies
the KLS hyperplane conjecture.
I Conjecture 26. Let f be a logconcave density function and P be any partition of Rn such
that each part is convex. Then there exists a constant C such that∑

P
σf (P)2πf (P) ≤ Cσ2

f

where σ2
f is the largest variance of f along any direction and σf (P)2 is the largest variance

of f restricted to the set P .
We have already seen that the conjecture holds when f is a Gaussian with C = 1 (Theorem
11).

4 Algorithms

In this section, we describe the current best algorithms for the five focus problems and several
open questions. These algorithms are related to each other, e.g., the current best algorithms
for integration and optimization (in the membership oracle model) are based on sampling,
the current best algorithms for sampling and rounding proceed in tandem etc.

In fact, all five problems have an intimate relationship with random sampling. Integration
(volume estimation), optimization and rounding are solved by reductions to random sampling;
in the case of integration, this is the only known efficient approach. For rounding, the
sampling approach gives a better bound than the current best alternatives. As for the
learning problem, its input is a random sample.

The Ellipsoid method has played a central role in the development of algorithmic convex
geometry. Following Khachiyan’s polynomial bound for linear programs [34], the general-
ization to convex optimization [21, 53, 32] has been a powerful theoretical tool. Besides
optimization, the method also gave an efficient rounding algorithm [41] achieving a sand-
wiching ratio of n1.5, and a polynomial-time algorithm for PAC-learning linear threshold
functions. It is a major open problem to PAC-learn an intersection of two halfspaces.

Santosh S. Vempala 55

Several polynomial-time algorithms have been proposed for linear programming and
convex optimization, including: Karmarkar’s algorithm [31] for linear programming, interior-
point methods for convex optimization over sets with self-concordant barriers [52], polynomial
implementation of the perceptron algorithm for linear [13] and conic program [5], simplex-
with-rescaling for linear programs [33] and the random walk method [6] that requires only
membership oracle access to the convex set. The field of convex optimization continues to
be very active, both because of its many applications but also due to the search for more
practical algorithms that work on larger inputs.

One common aspect of all the known polynomial-time algorithms is that they use use
some type of repeated rescaling of space to effectively make the convex set “more round",
leading to a complexity that depends on the accuracy to which the output is computed. In
principle, such a dependence can be avoided for linear programming and it is a major open
problem to find a strongly polynomial algorithm for solving linear programs.

We note here that although there have been many developments in continuous optimiza-
tion algorithms in the decades since the ellipsoid method, and in applications to combinatorial
problems, there has been little progress in the past two decades on general integer program-
ming, with the current best complexity being nO(n) from Kannan’s improvement [26] of
Lenstra’s algorithm [40].

4.1 Geometric random walks
Sampling is achieved by rapidly mixing geometric random walks. For an in-depth survey
of this topic, up-to-date till 2005, the reader is referred to [62]. Here we outline the main
results, including developments since then.

To sample from a density proportional to a function f : Rn → R+, we set up a Markov
chain whose state space is Rn and stationary distribution has density proportional to f .
At a point x, one step of the chain picks a neighbor y of x from some distribution Px that
depends only on x, where Px is defined in some efficiently sampleable manner, and then we
move to y with some probability or stay at x. For example, for uniformly sampling a convex
body K, the ball walk defines the neighbors of x as all points within a fixed distance δ from
x, and a random neighbor y is accepted as long as y is also in K. For sampling a general
density, one could use the same neighbor set, and modify the probability of transition to
min{1, f(y)/f(x)}. This rejection mechanism is called the Metropolis filter and the Markov
chain itself is the ball walk with a Metropolis filter.

Another Markov chain that has been successfully analyzed is called hit-and-run. At
a point x, we pick a uniform random line l passing x, then a random point on the line l
according to the density induced by the target distribution along l. In the case of uniformly
sampling a convex body, this latter distribution is simply the uniform distribution on a
chord; for a logconcave function it is the one-dimensional density proportional to the target
density f along the chosen line l. This process has the advantage of not needing a step-size
parameter δ.

For ease of analysis, we typically assume that the Markov chain is lazy, i.e., it stays
put with probability 1/2 and attempts a move with probability 1/2. Then, it follows
that the distribution of the current point converges to a unique stationary distribution
assuming the conductance of the Markov chain is nonzero. The rate of convergence is
approximately determined by the conductance as given by the following theorem due to
Lovász and Simonovits [44], extending earlier work by Diaconis and Stroock [11], Alon [2]
and Jerrum and Sinclair [58].

FSTTCS 2010

56 Algorithmic Convex Geometry

I Theorem 27. [44] Let Q be the stationary distribution of a lazy Markov chain with Q0
being its starting distribution and Qt the distribution of the current point after t steps.
a. Let M = supAQ0(A)/Q(A). Then,

dtv(Qt, Q) ≤
√
M

(
1− φ2

2

)t
.

b. Let 0 < s ≤ 1
2 and Hs = sup{|Q0(A)−Q(A)| : Q(A) ≤ s}. Then,

dtv(Qt, Q) ≤ Hs + Hs

s

(
1− φ2

s

2

)t
.

c. For any ε > 0,

dtv(Qt, Q) ≤ ε+
√
χ2(Q0, Q) + 1

ε

(
1− φ2

2

)t
.

Thus the main quantity to analyze in order to bound the mixing time is the conductance.

Ball walk. The following bound holds on the conductance of the ball walk [28].

I Theorem 28. For any 0 ≤ s ≤ 1, we can choose the step-size δ for the ball walk in a
convex body K of diameter D so that

φs ≥
s

200nD.

The proof of this inequality is the heart of understanding the convergence. Examining the
definitions of the conductance φ and the isoperimetric ratio ΦQ of the stationary distribution,
one sees that they are quite similar. In fact, the main difference is the following: in defining
conductance, the weight between two points x and y depends on the probability density
of stepping from x to y in one step; for the isoperimetric ratio, the distance is a geometric
notion such as Euclidean distance. Connecting these two notions — geometric distance and
probabilistic distance — along with isoperimetry bounds leads to the conductance bound
above. This is the generic line of proof with each of these components chosen based on the
Markov chain being analyzed. For a detailed description, we refer to [62].

Using Theorem 27(b), we conclude that from an M -warm start, the variation distance of
Qt and Q is smaller than ε after

t ≥ CM
2

ε2 n2D2 ln
(

2M
ε

)
(6)

steps, for some absolute constant C.
The bound of O(n2D2) on the mixing rate is the best possible in terms of the diameter,

as shown by a cylinder. Here D2 can be replaced by E(‖X − EX‖2) using the isoperimetric
inequality given by Theorem 18. For an isotropic convex body this gives a mixing rate of
O(n3). The current best isoperimetry for convex bodies (5) gives a bound of O(n2.875). The
KLS conjecture (19) implies a mixing rate of O(n2), which matches the best possible for the
ball walk, as shown for example by an isotropic cube.

Santosh S. Vempala 57

Hit-and-run. For hit-and-run, one obtains a qualitatively better bound in the following
sense. In the case of the ball walk, the starting distribution heaving affects the mixing rate.
It is possible to start at points close to the boundary with very small local conductance,
necessitating many attempts to make a single step. Hit-and-run does not have this problem
and manages to exponentially accelerate out of any corner. This is captured in the next
theorem, using the isoperimetric inequality given by Theorem 24.

I Theorem 29. [46] The conductance of hit-and-run in a convex body of diameter D is
Ω(1/nD).

I Theorem 30. [46] Let K be a convex body that contains a unit ball and has centroid zK .
Suppose that EK(|x− zK |2) ≤ R2 and χ2(Q0, Q) ≤M . Then after

t ≥ Cn2R2 ln3 M

ε
,

steps, where C is an absolute constant, we have d(Qt, Q)tv ≤ ε.

The theorem improves on the bound for the ball walk (6) by reducing the dependence
on M and ε from polynomial (which is unavoidable for the ball walk) to logarithmic, while
maintaining the (optimal) dependence on R and n. For a body in near-isotropic position,
R = O(

√
n) and so the mixing time is O∗(n3). One also gets a polynomial bound starting

from any single interior point. If x is at distance d from the boundary, then the distribution
obtained after one step from x has χ2(Q1, Q) ≤ (n/d)n and so applying the above theorem,
the mixing time is O(n4 ln3(n/dε)).

Theorems 29 and 30 have been extended in [45] to arbitrary logconcave functions.

I Theorem 31. [45] Let f be a logconcave density function with support of diameter D and
assume that the level set of measure 1/8 contains a unit ball. Then,

φs ≥
c

nD ln(nD/s)

where c is a constant.

This implies a mixing rate that nearly matches the bound for convex bodies.

Affine-invariant walks. In both cases above, the reader will notice the dependence on
rounding parameters and the improvement achieved by assuming isotropic position. As we
will see in the next section, efficient rounding can be achieved by interlacing with sampling.
Here we mention two random walks which achieve the rounding “implicitly" by being affine
invariant. The first is a multi-point variant of hit-and-run that can be applied to sampling
any density function. It maintains m points x1, . . . , xm. For each xj , it picks a random
combination of the current points,

y =
m∑
i=1

αi(xi − x)

where the αi are drawn from N(0, 1); the chosen point xj is replaced by a random point
along this line through xj in the direction of y. This process in affine invariant and hence one
can effectively assume that the underlying distribution is isotropic. The walk was analyzed
in [6] assuming a warm start. It is open to analyze the rate of convergence from a general
starting distribution.

FSTTCS 2010

58 Algorithmic Convex Geometry

For polytopes whose facets are given explicitly, Kannan and Narayanan [29] analyzed
an affine-invariant process called the Dikin walk. At each step, the Dikin walk computes an
ellipsoid based on the current point (and the full polytope) and moves to a random point in
this ellipsoid. The Dikin ellipsoid at a point x in a polytope Ax ≤ 1 with m inequalities is
defined as:

Dx = {z ∈ Rn : (x− z)T
m∑
i=1

aia
T
i

(1− aTi x)2 (x− z) ≤ 1}.

At x, a new point y is sampled from a Dikin ellipsoid and the walk moves to y with prob

min
{

1, vol(Dy)
vol(Dx)

}
.

For polytopes with few facets, this process uses fewer arithmetic operations than the current
best bounds for the ball walk or hit-and-run.

Open problems. One open problem for both hit-and-run and the ball walk is to find a
single starting point that is as good a start as a warm start. E.g., does one of these walks
started at the centroid converge at the same rate as starting from a random point?

The random walks we have considered so far for general convex bodies and density
functions rely only on membership oracles or function oracles. Can one do better using a
separation oracle? When presented with a point x such an oracle either declares the point
is in the convex set K or gives a hyperplane that separates x from K. At least for convex
bodies, such an oracle is typically realizable in the same complexity as a membership oracle.

One attractive process based on a separation oracle is the following reflection walk with
parameter δ: At a point x, we pick a random point y in the ball of radius δ. We move along
the straight line from x to y either reaching y or encountering a hyperplane H that separates
y from K; in the latter case, we reflect y about H and continue moving towards y.

It is possible that for this process, the number of oracle calls (not the number of Markov
chain steps) is only O∗(nD) rather than O∗(n2D2), and even O∗(n) for isotropic bodies. It
is a very interesting open problem to analyze the reflection walk.

Our next open problem is to understand classes of distributions that can be efficiently
sampled by random walks. A recent extension of the convex setting is to sampling star-shaped
bodies [9], and this strongly suggests that the full picture is far from clear. One necessary
property is good isoperimetry. Can one provide a sufficient condition that depends on
isoperimetry and some local property of the density to be sampled? More concretely, for
what manifolds with nonnegative curvature (for which isoperimetry is known) can an efficient
sampling process be defined?

Our final question in this section is about sampling a discrete subset of a convex body,
namely the set of lattice points that lie in the body. In [30], it is shown that this problem
can be solved if the body contains a sufficiently large ball, by a reduction to the continuous
sampling problem. The idea is that, under this condition, the volume of the body is roughly
the same as the number of lattice points and thus sampling the body and rounding to a
nearby lattice point is effective. Can this condition be improved substantially? E.g., can
one sample lattice points of a near-isotropic convex body? Or lattice points of a body that
contains at least half of a ball of radius O(

√
n)?

4.2 Annealing
Rounding, optimization and integration can all be achieved by variants of the same algorithmic
technique that one might call annealing. The method starts at an “easy" distribution F0 and

Santosh S. Vempala 59

goes through a sequence of distributions F1, . . . , Fm where the Fi are chosen so that moving
from Fi−1 to Fi is efficient and Fm is a target distribution. This approach can be traced
back to [43]. It was analyzed for linear optimization over convex sets in [25], for volume
computation and rounding convex sets in [47] and extended to integration, rounding and
maximization of logconcave functions in [45].

For example, in the case of convex optimization, the distribution Fm is chosen so that
most of its mass on points whose objective value is at least (1 − ε) times the maximum.
Sampling directly from this distribution could be difficult since one begins at an arbitrary
point.

For integration of logconcave functions, we define a series of functions, with the final
function being the one we wish to integrate and the initial one being a function that is easy
to integrate. The distribution in each phase has density proportional to the corresponding
function. We use samples from the current distribution to estimate the ratios of integrals of
consecutive functions. Multiplying all these ratios and the integral of the initial function
gives the estimate for the integral of the target function.

For rounding a logconcave density, as shown by Theorem 4, we need O(n) random samples.
Generating these directly from the target density could be expensive since sampling (using a
random walk) takes time that depends heavily on how well-rounded the density function is.
Instead, we consider again a sequence of distributions, where the first distribution in the
sequence is chosen to be easy to sample and consecutive distributions have the property
that if Fi is isotropic, then Fi+1 is near-isotropic. We then sample Fi+1 efficiently, apply an
isotropic transformation and proceed to the next phase.

For both optimization and integration, this rounding procedure is incorporated into the
main algorithm to keep the sampling efficient. All three cases are captured in the generic
description below.

Annealing

1. For i = 0, . . . ,m, define

ai = b

(
1 + 1√

n

)i
and fi(x) = f(x)ai .

2. Let X1
0 , . . . , X

k
0 be independent random points with density

proportional to f0.
3. For i = 0, . . . ,m − 1: starting with X1

i , . . . , X
k
i , generate random

points Xi+1 = {X1
i+1, . . . , X

k
i+1}; update a running estimate g based

on these samples; update the isotropy transformation using the
samples.

4. Output the final estimate of g.

For optimization, the function fm is set to be a sufficiently high power of f , the function
to be maximized while g is simply the maximum objective value so far. For integration
and rounding fm = f , the target function to be integrated or rounded. For integration, the
function g starts out as the integral of f0 and is multiplied by the ratio of

∫
fi+1/

∫
fi in

each step. For rounding, g is simply the estimate of the isotropic transformation for the
current function.

We now state the known guarantees for this algorithm [45]. The complexity improves on
the original O∗(n10) algorithm of Applegate and Kannan [3].

FSTTCS 2010

60 Algorithmic Convex Geometry

I Theorem 32. [45] Let f be a well-rounded logconcave function. Given ε, δ > 0, we can
compute a number A such that with probability at least 1− δ,

(1− ε)
∫
Rn

f(x) dx ≤ A ≤ (1 + ε)
∫
Rn

f(x) dx

and the number of function calls is

O
(
n4 logc n

εδ

)
= O∗(n4)

where c is an absolute constant.

Any logconcave function can be put in near-isotropic position in time O∗(n4) steps, given
a point that maximizes f . Near-isotropic position guarantees that f is well-rounded as
remarked earlier. When the maximum of f is not known in advance or computable quickly,
the complexity is a bit higher and is the same as that of maximization.

I Theorem 33. [45] For any well-rounded logconcave function f , given ε, δ > 0 and a point
x0 with f(x0) ≥ βmax f , the annealing algorithm finds a point x in O∗(n4.5) oracle calls
such that with probability at least 1− δ, f(x) ≥ (1− ε) max f and the dependence on ε, δ and
β is bounded by a polynomial in ln(1/εδβ).

This improves significantly on the complexity of the Ellipsoid method in the memebership
oracle model (the latter being Ω(n10)). We observe here that in this general oracle model, the
upper bound on the complexity of optimization is higher than that of integration. The gap
gets considerably higher when we move to star-shaped sets. Integration remains O∗(n4/η2)
where η is the relative measure of the kernel of the star-shaped set, while linear optimization,
even approximately is NP-hard. The hardness holds for star-shaped sets with η being any
constant [9], i.e., the convex kernel takes up any constant fraction of the set. At one level,
this is not so surprising since finding a maximum could require zooming in to a small hidden
portion of the set while integration is a more global property. On the other hand, historically,
efficient integration algorithms came later than optimization algorithms even for convex
bodies and were considerably more challenging to analyze.

The known analysis of sampling-based methods for optimization rely on the current point
being nearly random from a suitable distribution, with the distribution modified appropriately
at each step. It is conceivable that a random walk type method can be substantially faster if
its goal is optimization and its analysis directly measures progress on some distance function,
rather than relying on the intermediate step of producing a random sample.

The modern era of volume algorithms began when Lovász asked the question of whether
the volume of convex body can be estimated from a random sample (unlike annealing in
which the sampling distribution is modified several times). Eldan [17] has shown that this
could require a superpolynomial number of points for general convex bodies. On the other
hand, it remains open to efficiently compute the volume from a random sample for polytopes
with a bounded number of facets.

Annealing has been used to speed up the reduction from counting to sampling for discrete
sets as well [59]. Here the traditional reduction with overhead linear in the underlying
dimension [24] is improved to one that is roughly the square root of the dimension for
estimating a wide class of partition functions. The annealing algorithm as described above
has to be extended to be nonadaptive, i.e., the exponents used change in an adaptive manner
rather than according to a schedule fixed in advance.

Santosh S. Vempala 61

4.3 PCA
The method we discuss in this section is classical, namely Principal Component Analysis
(PCA). For a given set of points or a distribution in Rn, PCA identifies a sequence of
orthonormal vectors such that for any k ≤ n, the span of the first k vectors in this sequence
is the subspace that minimizes the expected squared distance to the given point set or
distribution (among all k-dimensional subsets). The vectors can be found using the Singular
Value Decomposition (SVD), which can be viewed as a greedy algorithm that finds one vector
at a time. More precisely, given a distribution D in Rn, with ED(X) = 0, the top principal
component or singular vector is a unit vector that maximizes E((vTx)2). For 2 ≤ i ≤ n,
the i’th principal component is a unit vector that maximizes the same function among
all unit vectors that are orthogonal to the first i− 1 principal components. For a general
Gaussian, the principal components are exactly the directions along which the component
1-dimensional Gaussians are generated. Besides the regression property for subspaces, PCA
is attractive because it can be computed efficiently by simple, iterative algorithms. Replacing
the expected squared distance by a different power leads to an intractable problem. We have
already seen one application of PCA, namely to rounding via the isotropic position. Here
we take the principal components of the covariance matrix and apply a transformation to
make their corresponding singular values all equal to one (and therefore the variance in any
direction is the same). The principal components are the unit vectors along the axes of the
inertial ellipsoid corresponding to the covariance matrix of a distribution.

We next discuss the application of PCA to the problem of learning an intersection of k
halfpsaces in Rn. As remarked earlier, this is an open problem even for k = 2. We make
two assumptions. First, k is small compared to n and so algorithms that are exponential
in k but not n might be tolerable. Second, instead of learning such an intersection from
an arbitrary distribution on examples, we assume the distribution is an unknown Gaussian.
This setting was considered by Vempala [61, 64] and by Klivans et al [38]. The first
algorithm learns an intersection of k halfspaces from any logconcave input distribution using
an intersection of O(k) halfspaces and has complexity (n/ε)O(k). The second learns an
intersection of k halfspaces from any Gaussian distribution using a polynomial threshold
function of degree O(log k/ε4) and therefore has complexity nO(log k/ε4). Neither of these
algorithms is polynomial when k grows with n.

In recent work [63], PCA is used to give an algorithm whose complexity is poly(n, k, 1/ε)+
C(k, 1/ε) where C(.) is the complexity of learning an intersection of k halfspaces in Rk. Thus
one can bound this using prior results as at most

min
{
kO(log k/ε4), (k/ε)O(k)

}
.

For fixed ε, the algorithm is polynomial for k up to 2O(
√

logn). The algorithm is straight-
forward: first put the full distribution in isotropic position (using a sample), effectively
making the input distribution a standard Gaussian; then compute the smallest k principal
components of the examples that lie in the intersection of the unknown halfspaces. The main
claim in the analysis is that this latter subspace must be close to the span of the normals
to the unknown halfspaces. This is essentially due to Lemma 11, which guarantees that
the smallest k principal components are in the subspace spanned by the normals, while
orthogonal to this subspace, all variances are equal to that of the standard Gaussian. The
algorithm and its analysis can be extended to arbitrary convex sets whose normals lie in an
unknown k-dimensional subspace. The complexity remains a fixed polynomial in n times an
exponential in k.

FSTTCS 2010

62 Algorithmic Convex Geometry

For general convex bodies, given positive and negative examples from an unknown
Gaussian distribution, it is shown in [38] that the complexity is 2Õ(

√
n) (ignoring the

dependence on ε, along with a nearly matching lower bound. A similar lower bound of
2Ω(
√
n) holds for learning a convex body given only random points from the body [20]. These

constructions are similar to Eldan’s [17] and use polytopes with an exponential number
of facets. Thus an interesting open problem is to learn a polytope in Rn with m facets
given either uniform random points from it or from a Gaussian. It is conceivable that the
complexity is poly(m,n, 1/ε). The general theory of VC-dimension already tells us that
O(mn) samples suffice. Such an algorithm would of course also give us an algorithm for
estimating the volume of a polytope from a set of random points and not require samples
from a sequence of distributions.

Acknowledgements. The author is grateful to Daniel Dadush, Elena Grigorescu, Ravi
Kannan, Jinwoo Shin and Ying Xiao for helpful comments.

References
1 R. Adamczak, A. Litvak, A. Pajor, and N. Tomczak-Jaegermann. Quantitative estimates

of the convergence of the empirical covariance matrix in log-concave ensembles. J. Amer.
Math. Soc., 23:535–561, 2010.

2 N. Alon. Eigenvalues and expanders. Combinatorica, 6:83–96, 1986.
3 D. Applegate and R. Kannan. Sampling and integration of near log-concave functions. In

STOC ’91: Proceedings of the twenty-third annual ACM symposium on Theory of comput-
ing, pages 156–163, New York, NY, USA, 1991. ACM.

4 K. M. Ball. Logarithmically concave functions and sections of convex sets in rn. Studia
Mathematica, 88:69–84, 1988.

5 A. Belloni, R. M. Freund, and S. Vempala. An efficient rescaled perceptron algorithm for
conic systems. Math. Oper. Res., 34(3):621–641, 2009.

6 D. Bertsimas and S. Vempala. Solving convex programs by random walks. J. ACM,
51(4):540–556, 2004.

7 S. Bobkov. On isoperimetric constants for log-concave probability distributions. Geometric
aspects of functional analysis, Lect. notes in Math., 1910:81–88, 2007.

8 J. Bourgain. Random points in isotropic convex sets. Convex geometric analysis, 34:53–58,
1996.

9 K. Chandrasekaran, D. Dadush, and S. Vempala. Thin partitions: Isoperimetric inequalities
and a sampling algorithm for star shaped bodies. In SODA, pages 1630–1645, 2010.

10 K. Chandrasekaran, A. Deshpande, and S. Vempala. Sampling s-concave functions: The
limit of convexity based isoperimetry. In APPROX-RANDOM, pages 420–433, 2009.

11 P. Diaconis and D. Stroock. Geometric bounds for eigenvalues of markov chains. Ann.
Appl. Probab., 1(1):36–61, 1991.

12 A. Dinghas. Uber eine klasse superadditiver mengenfunktionale vonbrunn-minkowski-
lusternik-schem typus. Math. Zeitschr., 68:111–125, 1957.

13 J. Dunagan and S. Vempala. A simple polynomial-time rescaling algorithm for solving
linear programs. Math. Prog., 114(1):101–114, 2008.

14 M. E. Dyer and A. M. Frieze. Computing the volume of a convex body: a case where
randomness provably helps. In Proc. of AMS Symposium on Probabilistic Combinatorics
and Its Applications, pages 123–170, 1991.

15 M. E. Dyer, A. M. Frieze, and R. Kannan. A random polynomial time algorithm for
approximating the volume of convex bodies. In STOC, pages 375–381, 1989.

Santosh S. Vempala 63

16 M. E. Dyer, A. M. Frieze, and R. Kannan. A random polynomial-time algorithm for
approximating the volume of convex bodies. J. ACM, 38(1):1–17, 1991.

17 R. Eldan. A polynomial number of random points does not determine the volume of a
convex body. http://arxiv.org/abs/0903.2634, 2009.

18 R. Eldan and B. Klartag. Approximately gaussian marginals and the hyperplane conjecture.
http://arxiv.org/abs/1001.0875, 2010.

19 B. Fleury. Concentration in a thin euclidean shell for log-concave measures. J. Funct. Anal.,
259(4):832–841, 2010.

20 N. Goyal and L. Rademacher. Learning convex bodies is hard. In COLT, 2009.
21 M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Opti-

mization. Springer, 1988.
22 B. Grunbaum. Partitions of mass-distributions and convex bodies by hyperplanes. Pacific

J. Math., 10:1257–1261, 1960.
23 M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm for

the permanent of a matrix with nonnegative entries. J. ACM, 51(4):671–697, 2004.
24 M. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of combinatorial struc-

tures from a uniform distribution. Theor. Comput. Sci., 43:169–188, 1986.
25 A. T. Kalai and S. Vempala. Simulated annealing for convex optimization. Math. Oper.

Res., 31(2):253–266, 2006.
26 R. Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper.

Res., 12(3):415–440, 1987.
27 R. Kannan, L. Lovász, and M. Simonovits. Isoperimetric problems for convex bodies and

a localization lemama. Discrete & Computational Geometry, 13:541–559, 1995.
28 R. Kannan, L. Lovász, and M. Simonovits. Random walks and an O∗(n5) volume algorithm

for convex bodies. Random Structures and Algorithms, 11:1–50, 1997.
29 R. Kannan and H. Narayanan. Random walks on polytopes and an affine interior point

method for linear programming. In STOC, pages 561–570, 2009.
30 R. Kannan and S. Vempala. Sampling lattice points. In STOC, pages 696–700, 1997.
31 N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,

4(4):373–396, 1984.
32 R. M. Karp and C. H. Papadimitriou. On linear characterization of combinatorial opti-

mization problems. SIAM J. Comp., 11:620–632, 1982.
33 J. A. Kelner and D. A. Spielman. A randomized polynomial-time simplex algorithm for

linear programming. In STOC, pages 51–60, 2006.
34 L. G. Khachiyan. Polynomial algorithms in linear programming. USSR Computational

Mathematics and Mathematical Physics, 20:53–72, 1980.
35 B. Klartag. On convex perturbations with a bounded isotropic constant. Geom. and Funct.

Anal., 16(6):1274–1290, 2006.
36 B. Klartag. A central limit theorem for convex sets. Invent. Math., 168:91–131, 2007.
37 B. Klartag. Power-law estimates for the central limit theorem for convex sets. J. Funct.

Anal., 245:284–310, 2007.
38 A. R. Klivans, Ryan O’Donnell, and R. A. Servedio. Learning geometric concepts via

gaussian surface area. In FOCS, pages 541–550, 2008.
39 L. Leindler. On a certain converse of Hölder’s inequality ii. Acta Sci. Math. Szeged, 33:217–

223, 1972.
40 H. W. Lenstra. Integer programming with a fixed number of variables. Math. of Oper. Res.,

8(4):538–548, 1983.
41 L. Lovász. An Algorithmic Theory of Numbers, Graphs and Convexity, volume 50 of CBMS-

NSF Conference Series. SIAM, 1986.
42 L. Lovász. Hit-and-run mixes fast. Math. Prog., 86:443–461, 1998.

FSTTCS 2010

64 Algorithmic Convex Geometry

43 L. Lovász and M. Simonovits. On the randomized complexity of volume and diameter. In
Proc. 33rd IEEE Annual Symp. on Found. of Comp. Sci., pages 482–491, 1992.

44 L. Lovász and M. Simonovits. Random walks in a convex body and an improved volume
algorithm. In Random Structures and Alg., volume 4, pages 359–412, 1993.

45 L. Lovász and S. Vempala. Fast algorithms for logconcave functions: Sampling, rounding,
integration and optimization. In FOCS, pages 57–68, 2006.

46 L. Lovász and S. Vempala. Hit-and-run from a corner. SIAM J. Computing, 35:985–1005,
2006.

47 L. Lovász and S. Vempala. Simulated annealing in convex bodies and an O∗(n4) volume
algorithm. J. Comput. Syst. Sci., 72(2):392–417, 2006.

48 L. Lovász and S. Vempala. The geometry of logconcave functions and sampling algorithms.
Random Structures and Algorithms, 30(3):307–358, 2007.

49 J. Luedtke, S. Ahmed, and G. L. Nemhauser. An integer programming approach for linear
programs with probabilistic constraints. Math. Program., 122(2):247–272, 2010.

50 E. Milman. On the role of convexity in isoperimetry, spectral gap and concentration. Invent.
Math., 177(1):1–43, 2009.

51 V. Milman and A. Pajor. Isotropic position and inertia ellipsoids and zonoids of the unit
ball of a normed n-dimensional space. Geometric aspects of Functional Analysis, Lect. notes
in Math., pages 64–104, 1989.

52 Yu. Nesterov and A. Nemirovski. Interior-Point Polynomial Algorithms in Convex Pro-
gramming. Studies in Applied Mathematics. SIAM, 1994.

53 M. W. Padberg and M. R. Rao. The russian method for linear programming iii: Bounded
integer programming. NYU Research Report, 1981.

54 G. Paouris. Concentration of mass on convex bodies. Geometric and Functional Analysis,
16:1021–1049, 2006.

55 A. Prekopa. Logarithmic concave measures and functions. Acta Sci. Math. Szeged, 34:335–
343, 1973.

56 A. Prekopa. On logarithmic concave measures with applications to stochastic programming.
Acta Sci. Math. Szeged, 32:301–316, 1973.

57 M. Rudelson. Random vectors in the isotropic position. Journal of Functional Analysis,
164:60–72, 1999.

58 A. Sinclair and M. Jerrum. Approximate counting, uniform generation and rapidly mixing
markov chains. Information and Computation, 82:93–133, 1989.

59 D. Stefankovic, S. Vempala, and E. Vigoda. Adaptive simulated annealing: A near-optimal
connection between sampling and counting. In FOCS, pages 183–193, Washington, DC,
USA, 2007. IEEE Computer Society.

60 P. M. Vaidya. A new algorithm for minimizing convex functions over convex sets. Math.
Prog., 73:291–341, 1996.

61 S. Vempala. A random sampling based algorithm for learning the intersection of half-spaces.
In FOCS, pages 508–513, 1997.

62 S. Vempala. Geometric random walks: A survey. MSRI Combinatorial and Computational
Geometry, 52:573–612, 2005.

63 S. Vempala. Learning convex concepts from gaussian distributions with PCA. In FOCS,
2010.

64 S. Vempala. A random sampling based algorithm for learning the intersection of half-spaces.
JACM, to appear, 2010.

65 D. B. Yudin and A. S. Nemirovski. Evaluation of the information complexity of mathemati-
cal programming problems (in russian). Ekonomika i Matematicheskie Metody, 13(2):3–45,
1976.

Playing in stochastic environment: from
multi-armed bandits to two-player games
Wiesław Zielonka1

1 LIAFA, Université Paris 7 Denis Diderot, Paris, France
zielonka@liafa.jussieu.fr

Abstract
Given a zero-sum infinite game we examine the question if players have optimal memoryless
deterministic strategies. It turns out that under some general conditions the problem for two-
player games can be reduced to the same problem for one-player games which in turn can be
reduced to a simpler related problem for multi-armed bandits.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.65

1 Introduction

Activities of a computer system interacting with the environment are often modeled as
two-player games with one player representing the system and the other player impersonating
the environment. In the worst case analysis we assume that the environment is hostile and
then we deal with two-player zero-sum games. Traditionally in verification and in automata
theory we use some variants of parity games [7] while the traditional game theory focuses on
mean-payoff games, discounted games and total payoff games [1].

Parity games capture qualitative system properties, but sometimes this is not enough
and we are interested in finer quantitative analysis. Mean-payoff and total payoff games
capture quantitative properties but do not seem really pertinent in the context of computer
systems. For these reasons there were recently several attempts to define new quantitative
measures or payoffs better suited to the analysis of computer systems. This is an ongoing
activity, each such attempt gives rise to a new game (a new payoff mapping).

And the recurrent basic question arising when new games (payoffs) are introduced is if
players have optimal strategies. However for a computer scientist the existence of optimal or
nearly optimal strategies is not sufficient, we want to be able to implement effectively such
strategies and strategies requiring an unbounded memory are unfeasible from the practical
point of view. A finite memory can often be incorporated directly into the game and then it
is sufficient to answer the simpler question if the players have optimal memoryless strategies.
Instead of examining various games one by one with some ad hoc methods it is much more
interesting to look for general sufficient conditions guaranteeing the existence of optimal
memoryless strategies. Such conditions are useful only if they are robust and can be applied
to a sufficiently large class of games.

Our aim is to present such general conditions, we do it first for one-player games (Markov
decision processes), next for two-player games.

2 Perfect information stochastic games – basic definitions

2.1 Notation.
For each finite set X, D (X) is the set of probability measures over X, i.e. it is the set of
mappings p : X → [0, 1] such that

∑
x∈X p(x) = 1. The support of p ∈ D (X) is the set

© Wiesław Zielonka;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 65–72

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.65
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

66 Playing in stochastic environment

{x ∈ X | p(x) > 0}.
Xi will denote the set of all finite sequences (words) of length i composed of elements of

X, X∗ = ∪∞i=0X
i is the set of all finite words over X, Xω will stand for the set of all infinite

words over X. We endow Xω with the structure of a topological space with open sets of
the form

⋃
u∈L uX

ω for L ⊆ X∗. By B(Xω) we denote the smallest σ-algebra containing all
open sets (the Borel σ-algebra). Thus (Xω,B(Xω)) is a measurable space.

By πi : Xω → X, i ∈ N, we denote the mapping defined as πi(x1x2x3 . . .) = xi, i.e. the
mapping giving the ith element of an infinite word.

If we equipX with the σ-algebra P(X) of all subsets ofX then πi are measurable mappings
from (Xω,B(Xω)) to (X,P(X)) and, given any probability measure P on (Xω,B(Xω)),
{πi; i ∈ N} becomes a discrete process with values in X. Note that B(Xω) is in fact the
smallest σ-algebra such that all πi are measurable.

2.2 Games and Arenas
Two players, Min and Max, play an infinite game on an arena

A = (S,A, source, δ,player) (1)

where
S is a finite set of states,
A is a finite set of actions,
source : A→ S provides for each action a ∈ A a state source(a) ∈ S called the source of
a. Action a can be executed only if the current state is s = source(a) and then we say
that a is available at s. We write A(s) for the set of actions available at s and we assume
that A(s) 6= ∅ for each state s.
The dynamic aspect of A is described by δ, for each action a ∈ A and each state s ∈ S
δ(a, s) is the probability of going to a state s if a is executed. It is tacitly assumed that a
can be executed only if A is at the state source(a). For each action a ∈ A, δ(a, ·) is a
probability distribution over S, i.e. δ(a, ·) ∈ D (S).
Finally, player : S→ {Min,Max} is a mapping assigning to each state s ∈ S the player
player(s) controlling s.

The game is played by stages. If at stage i ∈ N the game is at state si ∈ S then player
player(si) chooses an available action ai ∈ A(si) and the game enters a new state si+1 with
probability δ(ai, si+1).

Let SMax = {s ∈ S | player(s) = Max} be the set of states controlled by player Max. A
strategy σ for player Max is a mapping

σ : A∗ × SMax → D (A)

such that σ(h, s) ∈ D (A(s)) for h ∈ A∗ and s ∈ SMax. Intuitively, if the game is at state
s ∈ SMax, h is the sequence of executed actions and player Max plays using strategy σ then
Max will play action a ∈ A(s) with probability σ(h, s)(a).

The strategy σ is memoryless (or stationary) if the past history is not taken into account,
i.e. if σ(h, s) = σ(1, s) for each finite history h ∈ A∗, where 1 is the empty history.

The strategy σ is deterministic (or pure) if for each finite history h and each state
s ∈ SMax the support of σ(h, s) consists of one action.

Thus a memoryless deterministic strategy σ for player Max is just a mapping σ : SMax →
A such that, for each state s ∈ SMax, σ(s) ∈ A(s). Intuitively, σ(s) is the action that player
Max plays each time s is visited.

W. Zielonka 67

Strategies of player Min (general, memoryless, deterministic) are defined mutatis mutandis.
Our basic probability space associated with a given arena is the space (Aω,B(Aω)) of

infinite histories (infinite action sequences) equipped with the Borel σ-algebra. The basic
stochastic process associated with each game is the process {Ai; i ∈ N} with values in A,
where Ai is the action taken at stage i. Another process of interest is the auxiliary stochastic
process {Si; i ∈ N} with values in S defined as Si = source ◦Ai, i.e. Si gives the source of
the ith action (or equivalently the state at stage i).

Fixing strategies σ and τ of players Max and Min and an initial probability distribution
over states µ ∈ D (S) there exists a unique probability measure Pσ,τµ on (Aω,B(Aω)) satisfying
the following conditions:

Pσ,τµ {S1 = s} = µ(s), (2)

i.e. the initial state probability is given by µ,

Pσ,τµ {An+1 = an+1|A1 = a1, . . . , An = an, Sn+1 = sn+1} ={
σ(a1 . . . an, sn+1)(an+1) if player(sn+1) = Max,
τ(a1 . . . an, sn+1)(an+1) if player(sn+1) = Min,

(3)

i.e. if a1 . . . an is the current history and sn+1 the current state then the probability
distribution over actions taken on stage n + 1 is dictated by the strategy of the player
controlling sn+1,

Pσ,τµ {Sn+1 = sn+1|A1 = a1, . . . , An = an} = δ(an, sn+1), (4)

i.e. the state on stage n+ 1 depends only on the action executed at stage n.

2.3 Payoff mappings
After an infinite play player Max receives a payoff from player Min. The players have opposite
goals, Max wishes to maximize the payoff while player Min wants to minimize the payoff.

A payoff function is a Borel measurable mapping

u : Aω → (−∞,∞]

from infinite histories to real numbers extended with plus infinity. To avoid integrability
problems we assume that u is bounded from below, i.e. there exists K ∈ R such that
u(h) ≥ K for all h ∈ Aω, and we note byMb the class of such payoff functions.

A game is a couple Γ = (A, u) made of an arena and a payoff function u ∈Mb.
Let us recall that the tail σ-algebra relative to the sequence {Ai; i ∈ N} of r.v. is the

σ-algebra
⋂∞
n=1 σ(Ai; i ≥ n), where σ(Ai; i ≥ n) is the σ-algebra generated by random

variables {Ai; i ≥ n}. Thus a payoff function u is measurable relative to the tail σ-algebra if
and only if u is measurable relative to (Aω,B(Aω)) and u does not depend on initial finite
histories, i.e. u(a1a2 . . .) = u(a2 . . .) for each history h = a1a2 . . . ∈ Aω. We note by Tb the
class of all tail measurable mappings belonging toMb.

2.3.1 Mean-payoff games
A reward function is a function r : A → R. Given a reward function r the payoff of a
mean-payoff game is calculated as follows:

u(a1a2a3 . . .) = lim sup 1
n

n∑
i=1

r(ai).

FSTTCS 2010

68 Playing in stochastic environment

Since for a given arena the set A of actions is finite the payoff of mean-payoff games belongs
to Tb.

2.3.2 Parity games
In parity games we assume that there is a priority mapping α : A → N and the payoff is
calculated as

u(a1a2a3 . . .) = (lim inf α(ai)) mod 2.

Again this payoff mapping belongs to Tb.

2.4 Priority mean-payoff games
In priority mean-payoff games we combine priorities and rewards. There are several forms of
such games [5, 4, 3] but the most general one is defined as follows. We have three mappings
α : A → N, w : A → R+ and r : A → R assigning to each state a non-negative integer
priority, a positive real weight and a real reward respectively.

The payoff is calculated in the following way. For each infinite sequence x = a1a2a3 . . .

of actions we extract the subsequence ai1ai2ai3 . . . composed of all actions with priority c
where c is the minimal priority such that the set {i | α(ai) = c} is infinite. Then the payoff
for x is calculated as

u(x) = lim sup
∑n
k=1 w(aik)r(aik)∑n

k=1 w(aik)

i.e. this is a weighted mean-payoff but calculated only over actions with the minimal priority
visited infinitely often.

The games with such payoff contain as special cases parity games as well as mean-payoff
games.

2.5 Optimal strategies
Given an initial state distribution µ and strategies σ and τ of Max and Min the expected
value of the payoff u under Pσ,τµ is denoted Eσ,τµ [u].

If µ is such that µ(s) = 1 for some state s then to simplify the notation the corresponding
probability and expectation are noted Pσ,τs and Eσ,τs .

Given a game (A, u) strategies σ] and τ] of players Max and Min are said to be optimal
if for each state s there exists a value val(s) ∈ R (the value of s) such that

Eσ
],τ
s [u] ≥ val(s) ≥ Eσ,τ

]

s [u]

for all strategies σ and τ of players Max and Min.
Martin’s theorem [9] guarantees that every state has a value. However it does not

guarantee the existence of optimal strategies.

3 Playing without players – 0-player games

Let A be an arena such that each state has only one available action. Then each player has
only one possible trivial strategy consisting in choosing at each state the unique available
action. Since the players have no decision to take we can as well forget them, once the game
starts the actions can be executed automatically.

W. Zielonka 69

The resulting process {Si; i ∈ N} is a (homogeneous) Markov process with states S
and with one step transition probabilities p : S × S → [0, 1] such that, for all states
x, x′ ∈ S, p(x, x′) = δ(ax, x′), where ax is the unique action available at x. Then we have
P(Sn = xn|S1 = x1, . . . , Sn−1 = xn−1) = p(xn−1, xn) for all n.

Since we have a natural one to one correspondence between actions and states not only
the process {Ai; i ∈ N} determines {Si; i ∈ N} but also, conversely, {Si; i ∈ N} determines
{Ai; i ∈ N}.

Let us recall some basic notions from the theory of Markov chains [8].
A state s of a Markov chain is said to be transient if the probability to return to s (for

the chain starting at s) is strictly smaller than 1.
A set C of states of a Markov chain is closed if, for each s ∈ C and each t 6∈ C, p(s, t) = 0.
A set C of states of a Markov chain is irreducible if for any states s, t ∈ C there is a

positive probability to enter t for a chain starting at s and vice versa.
The set of states of each Markov chain can be decomposed as T ∪C1 ∪ . . . ∪Ck, where T

are transient states and Ci are closed irreducible sets.
A Markov chain containing no transient states and one closed irreducible set is called

irreducible.
Each finite state Markov chain enters almost surely, after a finite number steps, some

closed irreducible component. Thus if the payoff is tail measurable then it is determined by
its value in each such component.

As a rather straightforward consequence of the Kolmogorov 0− 1 law we obtain

I Theorem 1. Let u ∈ Tb be a tail measurable payoff.
Then for each irreducible Markov process with a finite state set S and action set A there

exists a constant c such that, Pµ{w ∈ Aω | u(w) = c} = Pµ{u = c} = 1, where Pµ is the
measure on (Aω,B(Aω)) induced by the Markov process with the initial state distribution µ.

Clearly Theorem 1 implies that a tail measurable payoff is almost surely constant in each
closed irreducible component of a finite Markov chain.

4 Multi-armed bandits

A multi-armed bandit is just a finite sequence of Markov chains (or equivalently 0-player
games) B = (B1, . . . ,Bn). Each Bi is an arm of B. We assume that each arm Bi is in some
state si, thus the state of B is the vector (s1, . . . , sn), where si is the state of the ith arm.

Player Max plays an infinite game on B. Let (s1, . . . , sn) be the state of B. Player Max
chooses one of the arms i, the nature executes the unique action available at si, Bi enters a
new state s′i, and (s1, . . . , s

′
i, . . . , sn) becomes the new global state of B.

A payoff mapping is defined on the set of infinite sequence of actions of B and, as usually,
player Max wants to maximize the expected payoff. A multi-armed bandit game is a pair
(B, u) consisting of a multi-armed bandit and a payoff mapping. Thus a multi-armed bandit
game is just a special type of a one-player stochastic game.

We say the multi-armed bandit is irreducible if each Bi is an irreducible Markov chain.

I Definition 2. A strategy of player Max in an irreducible multi-armed bandit is said to be
trivial if at each step Max chooses the same arm i.

Note that each trivial strategy is deterministic and memoryless but the triviality condition
is stronger, if B is composed of more than one Markov chain then there are many deterministic
memoryless strategies that are not trivial in the sense of Definition 2.

FSTTCS 2010

70 Playing in stochastic environment

It is easy to see that a multi-armed irreducible bandit with the mean payoff or with the
parity payoff has optimal trivial strategies. The same holds for priority mean-payoff.

In general the question if there exists a trivial optimal strategy for a multi-armed bandit
game is easier to handle than the question if there exists an optimal memoryless deterministic
strategy for the corresponding one-player stochastic game thus it is interesting to note that
the last problem can be reduced to the former one.

5 Optimal strategies for one-player games

In this section we consider general one-player games with a tail measurable payoff. We assume
that all states of A = (S,A, source, δ,player) are controlled by the same player, without a
loss of generality we assume that this is player Max.

We call such an arena a one-player arena. A one-player game (or a Markov decision
process) is a game on a one-player arena.

We examine the question when player Max has an optimal deterministic memoryless
strategy for a given one-player game (A, u) with u ∈ Tb.

It turns out that this question can be reduced to the problem of the existence of trivial
optimal strategies for some related irreducible multi-armed bandit games.

An arena A] = (S],A], source], δ],player]) is a subarena of A = (S,A, source, δ,player)
if A] is an arena obtained from A by removing some states and actions. Note that the
requirement that A] be an arena means that each state of A] retains at least one available
action.

We say that a multi-armed bandit B = (B1, . . . ,Bn) is embeddable into an arena A if
each Bi is a subarena of A. Note that we allow the same chain to be used several times in B,
i.e. the chains Bi and Bj can be equal even if i 6= j. This implies that each finite arena A
has an infinite number of embeddable multi-armed bandits.

The following theorem reduces the question about the existence of optimal memoryless
deterministic strategies in one-player games to a question about optimal trivial strategies in
related multi-armed bandit games:

I Theorem 3. Let (A, u) be a one-player game with u ∈ Tb.
If for each irreducible multi-armed bandit B embeddable in A there exists an optimal

trivial strategy in the game (B, u) then player Max has an optimal memoryless deterministic
strategy in (A, u).

In particular we can immediately deduce that one-player parity games, mean-payoff games
and priority mean-payoff games have optimal memoryless deterministic strategies.

However the real value of Theorem 3 is not in recovering old results, I hope that it
will prove to be useful for establishing the existence of optimal memoryless deterministic
strategies for new games.

6 From one-player games to two-player games

Let A = (S,A, source, δ,player) and A] = (S],A], source], δ],player]) be two arenas. A
morphism from A] to A is a pair (f, g) of mappings f : S] → S and g : A] → A such that

for each s] ∈ S], player](s]) = player(f(s])), i.e. f preserves the controlling player,
for each a] ∈ A], f(source](a])) = source(g(a])), i.e. the source of each action is
preserved,
for each s] ∈ S], for a], b] ∈ S](s]), if a] 6= b] then g(a]) 6= g(b]), i.e. g is locally surjective
(but actions with different sources can be mapped to the same action),

W. Zielonka 71

(f, g) preserves (positive) transition probabilities, for all s] ∈ S] and a] ∈ A], if δ](a], s]) >
0 then δ(g(a]), f(s])) = δ](a], s]).

The degree of the morphism (f, g) is defined as maxs∈S |f−1(s)|.
Let (A, u) be a game and (f, g) a morphism from an arena A] to A. The lifting of

u is the payoff mapping u] : (A])ω → (−∞,∞] such that, for w = a1a2a3 . . . ∈ (A])ω,
u](w) = u(g(w)), where g(w) = g(a1)g(a2)g(a3) The game (A], u]) will be called the
lifting of (A, u) through the morphism (f, g).

In this section we adopt a slightly extended notion of a one-player arena. We say that A
is a one-player arena controlled by player Max if for each state s controlled by player Min
the set A(s) of available actions contains only one element.

Since for states s with one available action it does not matter who controls s this modified
notion of a one-player arena is essentially equivalent to the one used in the previous section.

The following is an enhanced version of the main result of [6]:

I Theorem 4. Let Γ = (A, u) be a two-player game. Suppose that for each morphism (f, g)
of degree at most 2 from a one-player arena A] to A the player controlling A] has an optimal
deterministic memoryless strategy in the corresponding lifted one-player game Γ] = (A], u]).
Then both players have optimal deterministic memoryless strategies in Γ.

Note that for each arena A there is only a finite number of morphisms of degree at most
2 into A. Thus Theorem 4 states that to establish the existence of optimal memoryless
deterministic strategies in a two-player game it suffices to examine a finite number of
one-player games.

Note also that a lifting of a mean-payoff game is again a mean-payoff game, similarly
a lifting of a parity game is a parity game, and a lifting of a priority mean-payoff game is
a priority mean-payoff game thus Theorem 4 allows to deduce that two-player versions of
these games have optimal deterministic memoryless strategies for both players. Again these
results are not new and the true value of Theorem 4 resides rather in potential applications
to new games.

7 Final remarks

There is a large body of literature devoted to multi-armed bandits but it concerns mainly
bandits with discounted payoff. The result announced in Theorem 3 relating Markov decision
processes to multi-armed bandits seems to be new. Another sufficient condition for the
existence of optimal memoryless deterministic strategies in one-player games with a tail
measurable payoff is due to H. Gimbert [2]:

I Theorem 5 (H. Gimbert). Let u be a tail-measurable payoff. Suppose that for all infinite
words (histories) w,w1, w2 ∈ Aω such that w is a shuffle of w1 and w2, u satisfies the
following inequality

u(w) ≤ max{u(w1), u(w2)}.

Then finite state Markov decision processes (one-player games controlled by Max) with payoff
u have optimal deterministic memoryless strategies.

In practice it is easier to verify the condition of Theorem 5 than the one stated in
Theorem 3. However the condition of Theorem 3 seems to be more robust since there exist
one-player games where we can prove the existence of optimal memoryless deterministic
strategies by means of Theorem 3 but not by Theorem 5 (at least not directly).

FSTTCS 2010

72 Playing in stochastic environment

It is an open problem how to extend Theorem 3 to payoffs which are measurable but not
tail measurable.

References
1 J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1997.
2 H. Gimbert. Pure stationary optimal strategies in Markov decision processes. In STACS

2007, 24th Annual Symposium on Theoretical Aspects of Computer Science, volume 4393
of LNCS, pages 200–211. Springer, 2007.

3 H. Gimbert and W. Zielonka. Limits of multi-discounted Markov decision processes. In
22th Annual IEEE Symposium on Logics in Computer Science, LICS 2007, pages 89–98.
IEEE Computer Society, 2007.

4 H. Gimbert and W. Zielonka. Perfect information stochastic priority games. In ICALP
2007, volume 4596 of LNCS, pages 850–861. Springer, 2007.

5 H. Gimbert andW. Zielonka. Blackwell-optimal strategies in priority mean-payoff games. In
GandALF 2010, First International Symposium on Games, Automata, Logics and Formal
Verification, volume 25 of Electronic Proceedings in Theoretical Computer Science, pages
7–21, 2010.

6 H. Gimbert and W. Zielonka. Pure nad stationary optimal strategies in perfect-information
stochastic games. Technical report, HAL 00438359, 2010. Available as http://hal.
archives-ouvertes.fr/hal-00438359/en.

7 E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games,
volume 2500 of LNCS. Springer, 2002.

8 G. Grimmett and D. Stirzaker. Probability and Random Processes. Oxford University Press,
2001.

9 D.A. Martin. The determinacy of Blackwell games. Journal of Symbolic Logic, 63(4):1565–
1581, 1998.

http://hal.archives-ouvertes.fr/hal-00438359/en
http://hal.archives-ouvertes.fr/hal-00438359/en

Better Algorithms for Satisfiability Problems for
Formulas of Bounded Rank-width∗

Robert Ganian, Petr Hliněný, and Jan Obdržálek

Faculty of Informatics, Masaryk University
Botanická 68a, Brno, Czech Republic
{xganian1,hlineny,obdrzalek}@fi.muni.cz

Abstract
We provide a parameterized polynomial algorithm for the propositional model counting problem
#SAT, the runtime of which is single-exponential in the rank-width of a formula. Previously,
analogous algorithms have been known – e.g. [Fischer, Makowsky, and Ravve] – with a single-
exponential dependency on the clique-width of a formula. Our algorithm thus presents an expo-
nential runtime improvement (since clique-width reaches up to exponentially higher values than
rank-width), and can be of practical interest for small values of rank-width. We also provide an
algorithm for the Max-SAT problem along the same lines.

Keywords and phrases propositional model counting; satisfiability; rank-width; clique-width;
parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.73

1 Introduction

The satisfiability problem for Boolean formulas in conjunctive normal form (known as SAT)
has been of great practical and theoretical interest for decades. It is known to be NP-complete,
even though many instances are practically solvable using the various SAT-solvers. We focus
on two well-known generalizations of this problem, namely #SAT and Max-SAT. In #SAT–
otherwise known as the propositional model counting problem – the goal is to compute the
number of satisfying truth assignments for an input formula φ, whereas in Max-SAT we
ask for the maximum number of simultaneously satisfiable clauses of φ. It is known that
computing #SAT is #P-hard [21] and that Max-SAT is already NP-hard to approximate
within some constant [1].

In light of these hardness results, we may ask what happens if we restrict ourselves to
some subclass of inputs. The parameterized algorithmics approach is suitable in such a case.
Let k be some parameter associated with the input instance. Such a decision problem is
said to be fixed-parameter tractable (FPT) if it is solvable in time O(np · f(k)) for some
constant p and a computable function f . So the running time is polynomial in n, the size
of the input, but can be e.g. exponential in the parameter k. Obviously the specific form
of f plays an important role in practical applicability of any such algorithm – while FPT
algorithms with single-exponential f can be feasible for non-trivial values of the parameter,
a double-exponential f would make the algorithm impractical for almost all values of k.

But what are suitable parameters for satisfiability problems? In the particular case
of Max-SAT, one can consider the desired number of satisfied or unsatisfied clauses as a

∗ This research has been supported by the Czech bilateral research grant GA 201/09/J021 and by the
Institute for Theoretical Computer Science ITI, project 1M0545.

© Robert Ganian, Petr Hliněný and Jan Obdržálek;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 73–83

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.73
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

74 Algorithms for SAT Problems for Formulas of Bounded Rank-width

parameter of the input, such as in [4, 19], respectively. However such approach is not at all
suitable for #SAT which is our prime interest in this paper.

Another approach used for instance by Fischer, Makowsky and Ravve [7] represents the
formula φ as a formula graph Fφ (nodes of which are the clauses and variables of φ, see
Definition 6), and exploits the fact that for graphs there are many known (and intensively
studied) so-called width parameters. In [7] the authors presented FPT algorithms for the
#SAT problem in the case of two well known width parameters – tree-width and clique-width.
A similar idea was used by Georgiou and Papakonstantinou [10] also for the Max-SAT
problem and by Samer and Szeider [20] for #SAT.

The latter algorithms work by dynamic programming on tree-like decompositions related
to the width parameters (tree-decompositions and clique-decompositions – often called k-
expressions – in the cases above). However, there is the separate issue of the complexity of
computing the width of the formula graph and its decomposition. In the case of tree-width
this can be done in FPT [2]. For the much more general clique-width (every graph of bounded
tree-width also has bounded clique-width, while the converse does not hold) there exist no
such algorithms and we rely on approximations or an oracle. In [20] the authors made the
following statement on this issue:

A single-exponential algorithm (for #SAT) is due to Fisher, Makowsky, and Ravve [7].
However, both algorithms rely on clique-width approximation algorithms. The known
polynomial-time algorithms for that purpose admit an exponential approximation
error [13] and are of limited practical value.

The exponential approximation error mentioned in this statement results by bounding the
clique-width by a another, fairly new, width parameter called rank-width (Definition 2). Rank-
width is bounded if and only if clique-width is bounded, but its value can be exponentially
lower than that of clique-width (Theorem 3 a,b). And since clique-width generalizes tree-
width, so does rank-width (Theorem 3 c). Moreover, for rank-width we can efficiently compute
the related decomposition (Theorem 4), which is in stark contrast to the case for clique-width.
Therefore an algorithm which is linear in the formula size and single-exponential in its
rank-width challenges the claim quoted above, and can be of real practical value. In this
paper we present such algorithms for the problems #SAT and Max-SAT (Theorems 9
and 17). Precisely we prove the following two results:

I Theorem 1. Both the #SAT and Max-SAT problems have FPT algorithms running in
time

O(t3 · 23t(t+1)/2 · |φ|),

provided a rank-decomposition of the input instance (CNF formula) φ of width t is given on
the input. If, on the other hand, no rank-decomposition is given along with the input φ, then
the runtime estimate is

O(2Θ(t2) · |φ|3)

where t is the rank-width of the input instance (CNF formula) φ.

We refer to further Theorems 11 and 9, 17 for details and the proofs.
Note that our results present an actual exponential runtime improvement in the parameter

over any algorithm utilizing the clique-width measure, including aforementioned [7]. This is
since any parameterized algorithm A for a SAT problem has to depend at least exponentially
on the clique-width of a formula (unless the Exponential Time Hypothesis fails). Then,
considering typical instances φ as from Proposition 8 b, such an algorithm A runs in time

R. Ganian, P. Hliněný, and J. Obdržálek 75

which is double-exponential in the rank-width of φ even if A is given an optimal clique-width
expression on the input.

As for potential practical usefulness of Theorem 1, note that there are no “huge hidden
constants” in the O-notation. One may also ask whether there are any interesting classes
of graphs of low rank-width. The answer is a resounding YES, since already for t = 1 we
obtain the very rich class of distance-hereditary graphs. Rank-width indeed is a very general
graph width measure.

The approach we use to prove both parts of Theorem 1 quite naturally extends the
elaborated new algebraic methods of designing parameterized algorithms for graphs of
bounded rank-width, e.g. [6, 3, 8], to the area of SAT problems. Yet, this is not a trivial
extension—we remark that a straightforward translation of the algorithm of [7] from clique-
width expressions to rank-decompositions (which is easily possible) would result just in a
double-exponential runtime dependency on the rank-width.

The rest of the paper is organized as follows: In Section 2 we present the rank-width
measure and some related technical considerations. This is applied to signed graphs of SAT
formulas. Section 3 then presents our FPT algorithm for the #SAT problem (Theorem 9
and Algorithm 16), and Section 4 the similar algorithm for Max-SAT (Theorem 17). We
conclude with some related observations.

2 Definitions

2.1 Rank-width
The usual way of defining rank-width [18] is via the branch-width of the cut-rank function
(Definition 2). A set function f : 2M → Z is symmetric if f(X) = f(M \X) for all X ⊆M .
A tree is subcubic if all its nodes have degree at most 3. For a symmetric function f : 2M → Z
on a finite ground set M , the branch-width of f is defined as follows:

A branch-decomposition of f is a pair (T, µ) of a subcubic tree T and a bijective function
µ : M → {t : t is a leaf of T}. For an edge e of T , the connected components of T \e induce a
bipartition (X,Y) of the set of leaves of T . The width of an edge e of a branch-decomposition
(T, µ) is f(µ−1(X)). The width of (T, µ) is the maximum width over all edges of T . The
branch-width of f is the minimum of the width of all branch-decompositions of f .

I Definition 2. (Rank-width [18]) For a simple undirected graph G and U,W ⊆ V (G),
let AG[U,W] be the matrix defined over the two-element field GF(2) as follows: the entry
au,w, u ∈ U and w ∈ W , of AG[U,W] is 1 if and only if uw is an edge of G. The cut-rank
function ρG(U) = ρG(W) then equals the rank of AG[U,W] over GF(2) whereW = V (G)\U .
A rank-decomposition (see Figure 1) and rank-width of a graph G is the branch-decomposition
and branch-width of the cut-rank function ρG of G on M = V (G), respectively.

As already mentioned in the introduction, rank-width is closely related to clique-width
and more general than better known tree-width. Indeed:

I Theorem 3. Let G be a simple graph, and tw(G), bw(G), cwd(G) and rwd(G) denote in
this order the tree-width, branch-width, clique-width, and rank-width of G. Then

a) [18] rwd(G) ≤ cwd(G) ≤ 2rwd(G)+1 − 1,
b) [5] the clique-width cwd(G) can reach up to 2rwd(G)/2−1,
c) [17] rwd(G) ≤ bw(G) ≤ tw(G) + 1,
d) [folklore] tw(G) cannot be bounded from above by a function of rwd(G), e.g. the complete

graphs have rank-width 1 while their tree-width is unbounded,

FSTTCS 2010

76 Algorithms for SAT Problems for Formulas of Bounded Rank-width

a b

c

d

e

e

d

b

c

a

(1 0 0 1)

(0 0 1 1)
(

0 0 1
1 0 0

)(1 0
0 1
0 0

)
(1 1 0 0)

(0 1 1 0)

(1 0 0 1)

Figure 1 A rank-decomposition of the graph cycle C5, showing the matrices involved in evaluation
of its cut-rank function on the edges of the decomposition.

e) [15] rwd(G) = 1 if and only if G is a distance-hereditary graph.

Although rank-width and clique-width are “tied together” by Theorem 3 a, one of the
crucial advantages of rank-width is its parameterized tractability (note that it is not known
how to efficiently test cwd(G) ≤ k for k > 3):

I Theorem 4. [13] There is an FPT algorithm that, for a fixed parameter t and a given
graph G, either finds a rank-decomposition of G of width at most t or confirms that the
rank-width of G is more than t in time O(|V (G)|3).

With regard to our interest in precise runtime dependency on the parameter rank-width
one should ask how the FPT algorithm of Theorem 4 depends on t. This issue is not at all
addressed in [13], but a second look at the algorithm reveals a worst-case triple-exponential
dependency on t (this is the currently best upper bounded on the number of forbidden minors
for the matroids of branch-width t). One can do better while sacrificing the exact value of
rank-width, such as using [18] or an improvement of the second algorithm of [16]:

I Theorem 5. [16] There is an algorithm that, for a fixed parameter t and a given graph
G, either finds a rank-decomposition of G of width at most 3t or confirms that the rank-width
of G is more than t in time O(2Θ(t2) · |V (G)|3).

2.2 Signed graphs of CNF formulas
There are several methods for converting formulas to graphs, the two most common and
perhaps most natural approaches utilizing directed graphs (as seen e.g. in [20]) or so-called
signed graphs (e.g. [7, 20, 12]). We employ the latter approach for technical reasons, although
all the results also transfer straightforwardly to the former one. A signed graph is a graph
G with two edge sets E+(G) and E−(G). We refer to its respective positive and negative
subgraphs as to G+ and G−. Notice that G+ and G− are edge-disjoint and G = G+ ∪G−.

I Definition 6. The signed graph Fφ of a CNF formula φ is defined as follows:
V (Fφ) = W ∪ C where W is the set of variables of φ and C is the set of clauses of φ.
For w ∈W and c ∈ C, it is wc ∈ E+(Fφ) iff the literal ‘w’ occurs in c.
For w ∈W and c ∈ C, it is wc ∈ E−(Fφ) iff the literal ‘¬w’ occurs in c.

Since signed graphs have two distinct edge sets, the definition of rank-width needs to
be modified to reflect this. It should be noted that simply using two separate, independent
decompositions would not work – the bottom-up dynamic programming algorithm we are
going to use will need information from both edge sets at every node to work properly.
Instead, one may define, analogically to Definition 2, the signed rank-width of a signed graph
G as the branch-width of the signed cut-rank function ρ±

G(U) = ρG+(U) + ρG−(U).

R. Ganian, P. Hliněný, and J. Obdržálek 77

I Definition 7. (Rank-width of formulas) The (signed) rank-width rwd(φ) of a CNF
formula φ is the signed rank-width of the signed formula graph Fφ.

We remark that, although our signed rank-width is essentially equivalent to an existing
concept of bi-rank-width of directed graphs as introduced by Kanté [14] (in the bipartite
case, at least), the latter concept is not widely known and its introduction in the context of
CNF formulas would bring only additional technical complications.

In our paper we propose signed rank-width as a way of measuring complexity of formulas
that fares significantly better than previously considered signed clique-width of Fφ (e.g. [7]).
Signed clique-width is the natural extension of clique-width having two separate operators
for creating the ‘plus’ and the ‘minus’ edges. The main advantage of using rank-width as a
parameter instead of clique-width comes from the following claim:

I Proposition 8. Let φ be an arbitrary CNF formula and let cwd(φ) denote the signed
clique-width of Fφ. Then the following are true

a) rwd(φ) ≤ 2 cwd(φ),
b) there exist instances φ such that cwd(φ) ≥ 2rwd(φ)/4−1.

Proof. a) Assume a signed k-expression tree S for Fφ where k = cwd(φ). Clearly, S gives
ordinary k-expression trees for each of F+

φ , F−
φ . Now, analogically to Theorem 3 a [18], the

rank-decompositions of F+
φ and F−

φ with the same underlying tree as S have widths ≤ k

each, and hence rwd(φ) ≤ k + k = 2 cwd(φ).
b) We define φ such that F+

φ = G where, cf. Theorem 3 b, cwd(G) ≥ 2rwd(G)/2−1, and F−
φ

is arbitrary such that its rank-decomposition inherited from that of G has width ≤ rwd(G).
Then rwd(φ) ≤ 2 rwd(G) and the claim follows since cwd(φ) ≥ cwd(G). J

3 Algorithm for Propositional Model Counting #SAT

This section proves our main result – the #SAT part of Theorem 1:

I Theorem 9. Given a CNF formula φ and a (t+, t−)-labeling parse tree of the signed
formula graph Fφ, there is an algorithm that counts the number of satisfying assignments of
φ in time

O(t3 · 23t(t+1)/2 · |φ|) where t = max(t+, t−).

Note that the statement speaks about so called labeling parse trees (in place of rank-
decompositions) which is a technical algebraic concept [6] suited for easier handling of
rank-decompositions – this concept is briefly introduced in Section 3.1 to follow.

Our algorithm (see Algorithm 16) proving Theorem 9 applies the dynamic programming
paradigm on the parse tree of the formula graph Fφ (constructed by Theorem 11). This is,
on one hand, a standard approach utilized also by Fischer, Makowsky and Ravve [7]. On
the other hand, however, in comparison to [7] we achieve an exponential runtime speedup in
terms of rank-width, exploiting the nice linear-algebraic properties of rank-decompositions
and their parse trees – see Section 3.2.

3.1 Parse trees for rank-decompositions
First of all we remark that, unlike for tree-width or clique-width, a bare rank-decomposition
is not suitable for immediate design of algorithms. The remedy is provided by the notion
of labeling parse trees [6, 8] which, informally saying, “enrich” a rank-decomposition with
additional information captured in labelings of the vertices.

FSTTCS 2010

78 Algorithms for SAT Problems for Formulas of Bounded Rank-width

A t-labeling of a graph is a mapping lab : V (G)→ 2[t] where [t] = {1, 2, . . . , t} is the set of
labels. Having a graph G with an associated t-labeling lab, we refer to the pair Ḡ = (G, lab) as
to a t-labeled graph. A canonical operation associated with t-labeled graphs Ḡ1 = (G1, lab

1)
and Ḡ2 = (G2, lab

2) is the labeling join Ḡ1⊗ Ḡ2, defined on the disjoint union of G1 and G2
by adding all edges (u, v) such that |lab1(u) ∩ lab2(v)| is odd, where u ∈ V (G1), v ∈ V (G2)
(the resulting graph is unlabeled).

The labeling concept is similar to the definition of clique-width where every graph vertex
carries one label (while here we allow a set of labels). It is actually more powerful to view a
t-labeling of G equivalently as a mapping V (G) → GF(2)t into the binary vector space of
dimension t, where GF(2) is the two-element finite field. (Then an edge {u, v} is added in
Ḡ1⊗ Ḡ2 if and only if lab1(u) · lab2(v) = 1 as a scalar product of vectors.)

As shown first by Courcelle and Kanté in [6], a rank-decomposition of width t can be
equivalently characterized by a t-labeling parse tree (thereafter called an algebraic expression
for rank-width). A t-labeling parse tree T for the t-labeled graph Ḡ is a finite rooted ordered
subcubic tree such that

the leaves of T form the vertex set of Ḡ, and
for each internal node z of T , the subtree Tz ⊆ T rooted at z builds up a t-labeled graph
Ḡz which (up to relabeling) equals the subgraph of Ḡ induced on the leaves of Tz.

To keep this paper simple and accessible, we skip a (rather long) formal definition of the
algebraic operations taking place in the internal nodes of a t-labeling parse tree. Instead, we
summarize their properties which will be used in our algorithm:

I Property 10. [8] Let a t-labeled graph Ḡ have a t-labeling parse tree T . For every internal
node z of T with a son (left or right) x, the following holds.

a) The labels of the vertices of V (Gx) in Ḡz are obtained from the corresponding labels in
Ḡx by a linear transformation (relabeling) over the binary vector space GF(2)t.

b) For each vertex v ∈ V (Gz), the Ḡ-neighbours of v in the set V (G)\V (Gz) depend only on
the label of v in Ḡz. More precisely, there exists a t-labeled graph H̄ such that unlabeled
H is equal to the subgraph of G induced on V (G) \ V (Gz), and G = Ḡz ⊗ H̄.

In the context of signed graphs we, moreover, introduce the following two straightforward
extensions:

A signed graph G with associated pair of labelings lab+ : V (G)→ 2[t+] and lab− : V (G)→
2[t−] is called a (t+, t−)-labeled graph G̃ = (G, lab+, lab−). We use G̃+ as a shorthand for
the t+-labeled graph (G+, lab+), and G̃− is defined analogically. The scope of the join
operation ⊗ is then extended in a natural way: G̃1⊗ G̃2 =

(
G̃+

1 ⊗ G̃
+
2
)
∪
(
G̃−

1 ⊗ G̃
−
2
)
.

A (t+, t−)-labeling parse tree T = (T+, T−) of a signed graph G is a pair (T+, T−) of
labeling parse trees T+ and T− such that T+ (T−) is a t+-labeling (t−-labeling) parse
tree generating G+ (G−), and the underlying rooted trees of T+ and T− are identical.

The underlying idea is to separately handle the labelings for the positive and negative
subgraphs of signed G, while keeping the same parse tree structure for both.

Finally, we shall use the following extension of Theorem 5 which makes restricted use of
“partitioned” rank-width of vertex-partitioned graphs.

I Theorem 11. There is an algorithm that, for a fixed parameter t and a given CNF formula
φ, in time O(2Θ(t2) · |φ|3) either finds a (t+, t−)-labeling parse tree for the formula graph Fφ
where t+≤ 3t and t−≤ 3t, or confirms that the signed rank-width of φ is more than t.

R. Ganian, P. Hliněný, and J. Obdržálek 79

3.2 Recording partial assignments of a formula
The core of every dynamic programming algorithm is the specification of information which
is then (exhaustively) processed on the input parse tree. Here we heavily apply the basic
calculus of linear algebra (which is indeed natural in view of the definition of rank-width).

We say that labeling ` is orthogonal to a set of labelings X if ` has an even intersection
with every element of X (i.e. the scalar product of the labeling vectors is 0 over GF(2)).
Remember that for t-labeled graphs, in order for two vertices to become adjacent by the join
operation ⊗, their labelings need to have an odd intersection, i.e. to be non-orthogonal. The
power of orthogonality comes from the following rather trivial claim appearing already in
[3, 8]:

I Lemma 12. [3, 8] Assume t-labeled graphs Ḡ and H̄, and arbitrary X ⊆ V (Ḡ) and
y ∈ V (H̄). In the join graph Ḡ⊗ H̄, the vertex y is adjacent to some vertex in X if and only
if the vector subspace spanned by the Ḡ-labelings of the vertices of X is not orthogonal to the
H̄-labeling vector of y in GF(2)t.

In view of Lemma 12, the following result will be useful in deriving the complexity of our
algorithm.

I Lemma 13. [11] (cf. [8, Proposition 6.1]) The number S(t) of subspaces of the binary
vector space GF(2)t satisfies S(t) ≤ 2t(t+1)/4 for all t ≥ 12.

In the course of computation of our algorithm we need to remember some local information
about all satisfying assignments for φ. The information to be remembered for each such
assignment will be formally described in Definition 14. Before that, we would like to informally
introduce its key idea of recording an “expectation” (when processing the parse tree of the
input) – in addition to the information recorded about a partial solution processed so far,
we also keep what is expected from a complementary partial solution coming from the
unprocessed part of the input (cf. Definition 14. II).

The idea behind the algorithm is that the amount of information one has to remember
about a partial solution shrinks a lot if one “knows” what the complete solution will look like.
Such saving sometimes largely exceeds the cost of keeping an exhaustive list of all possible
future shapes of complete solutions. This is also our case: we may exhaustively preprocess
the values of some variables in advance.

The idea of using an “expectation” to speed up a dynamic programming algorithm on
a rank-decomposition has first appeared in Bui-Xuan, Telle and Vatshelle [3] in relation
to solving the dominating set on graphs of bounded rank-width. This concept has been
subsequently formalized and generalized by the authors in [8] (in the so called PCE scheme
formalism). Furthermore, it has also been shown [8, Proposition 5.1] that use of the
“expectation” concept is unavoidable to achieve speed up for the dominating set problem
which shares, in a sense, a similar background with our situation.

By Definition 6 the signed graph Fφ of a formula φ has a vertex set V (Fφ) = W ∪ C
where W is the set of variables and C is the set of clauses of φ. An assignment is then a
mapping ν : W → {0, 1}. We speak about a partial assignment if ν is a partial mapping
from a specific subset of W (a situation that is typical in dynamic processing). For every
partial assignment we then define:

I Definition 14. Consider an arbitrary (t+, t−)-labeling F̃1 = (F1, lab
+, lab−) of a signed

subgraph F1 ⊆ Fφ, and any partial assignment ν1 : V (F1) ∩W → {0, 1}. We say that ν1 is
an assignment of shape (Σ+,Σ−,Π+,Π−) in F̃1 if

FSTTCS 2010

80 Algorithms for SAT Problems for Formulas of Bounded Rank-width

I. Σ+ is the subspace of GF(2)t generated by the set of labeling vectors lab+(ν−1
1 (1)) and

Σ− is the subspace of GF(2)t generated by lab−(ν−1
1 (0)), and

II. Π+,Π− (the expectation part of the shape) are subspaces of GF(2)t such that, for every
clause c ∈ V (F1) ∩ C, at least one of the following is true
c is adjacent to some vertex from ν−1

1 (1) in F+
1 or to one from ν−1

1 (0) in F−
1 , or

the label vector lab+(c) is not orthogonal to Π+ or lab−(c) is not orthogonal to Π−

(cf. Lemma 12).

Very informally saying, I. states which true literals in F1 (w.r.t. ν1) are available to satisfy
clauses of Fφ, and II. stipulates that every clause in F1 is already satisfied by a literal in F1
or is expected to be satisfied by some literal in Fφ \ V (F1). Note that one partial assignment
ν1 could be of several distinct shapes, which differ just in the expectation part, i.e. in Π+,Π−.
This is true even for complete assignments. Moreover, there is no requirement on Π+ and
Π− to have an empty intersection with Σ+, Σ− and each other.

From the definition, considering Property 10 b and Lemma 12, one easily gets:

I Proposition 15. We consider a CNF formula φ with the variable setW , and any assignment
ν : W → {0, 1}. Assume F̃1, F̃2 are (t+, t−)-labeled graphs such that Fφ = F̃1⊗ F̃2, and let
ν1, ν2 denote the restrictions of ν to F̃1, F̃2.

a) The assignment ν is satisfying for φ if, and only if, there exist subspaces Σ+,Σ−,
Π+,Π− of GF(2)t such that ν1 is of shape (Σ+,Σ−,Π+,Π−) in F̃1 and ν2 is of shape
(Π+,Π−,Σ+,Σ−) in F̃2.

b) If, in F̃1, ν1 is of shape (Σ+
0 ,Σ

−
0 ,Π

+
0 ,Π

−
0) and, at the same time, ν1 is of shape

(Σ+
1 ,Σ

−
1 ,Π

+
1 ,Π

−
1), then Σ+

0 = Σ+
1 and Σ−

0 = Σ−
1 .

c) The assignment ν1 is satisfying for φ1 – the subformula of φ represented by F1 if, and
only if, ν1 is of shape (Σ+,Σ−, ∅, ∅) for some subspaces Σ+,Σ−.

J

3.3 The dynamic processing algorithm
We now return to the proof of our Theorem 9.

I Algorithm 16. (Theorem 9) Given is a CNF formula φ and a signed (t+, t−)-labeling
parse tree Tφ of the formula graph Fφ. Our task is to compute the total number of satisfying
assignments of φ:

At every node z such that the subtree of Tφ rooted at z parses a (t+, t−)-labeled graph F̃z,
we create an integer-valued array Tablez indexed by all the quadruples of subspaces of GF(2)t,
where t = max(t+, t−). The value of the entry Tablez[Σ+,Σ−,Π+,Π−] shall be equal to the
total number of variable assignments in the subformula of φ corresponding to Fz ⊆ Fφ that
are of the shape (Σ+,Σ−,Π+,Π−) in F̃z (cf. Definition 14).

The computation is (briefly, details in [9]) as follows.

1. We initialize all entries of Tablez for z ∈ V (Tφ) to 0.
2. We process all nodes of Tφ in the leaves-to-root order as follows.

a) At a clause leaf c of Tφ, we set Tablec[∅, ∅,Π+,Π−] = 1 (there is just one, empty,
possible partial assignment in F̃c) for all pairs of expectation subspaces Π+,Π− that
would satisfy this clause c.

b) At a variable leaf ` of Tφ, we record one partial variable assignment with ` = 1 and
one with ` = 0, both for all possible expectation pairs Π+,Π− (this is since there is no
clause in F̃`, and so any expectation would work).

R. Ganian, P. Hliněný, and J. Obdržálek 81

c) Consider an internal node z of Tφ, with the left son x and the right son y such that
Tablex and Tabley have already been computed. We loop exhaustively over all
“compatible” triples of indices to Tablex,Tabley, and Tablez as follows.

We say that the indices in Tablex[Σ+
x ,Σ−

x ,Π+
x ,Π−

x], Tabley[Σ+
y ,Σ−

y ,Π+
y ,Π−

y], and
Tablez[Σ+

z ,Σ−
z ,Π+

z ,Π−
z] are compatible if, e.g., the space Σ+

z spans the union of
relabeled (cf. Property 10 a) spaces Σ+

x ,Σ+
y , and the expectation space Π+

x is spanned
by the (again relabeled accordingly) expectation space Π+

z and the space Σ+
y (which

records the true literals of the corresponding Tabley entry). Analogical conditions
ought to be true for Σ−

z , and Π−
x ,Π+

y ,Π−
y .

Whenever such a compatible triple of table indices is found, we add up
the product Tablex[Σ+

x ,Σ−
x ,Π+

x ,Π−
x] · Tabley[Σ+

y ,Σ−
y , Π+

y ,Π−
y] to the entry

Tablez[Σ+
z ,Σ−

z ,Π+
z ,Π−

z].

3. For the root r of Tφ, we sum up all the entries Tabler[Σ+,Σ−, ∅, ∅] where Σ+,Σ− are
arbitrary subspaces of GF(2)t. This is the resulting number of satisfying assignments of φ
according to Proposition 15 c.

Correctness of Algorithm 16 routinely follows from Definition 14 of assignment shapes,
Properties 10 of labeling parse trees, and Proposition 15. Our key novel contribution, on
the other hand, is the runtime analysis of this algorithm in which we employ subspace
orthogonality and the notion of expectation outlined in Section 3.2.

Runtime of Algorithm 16 is dominated by the calls to step (2c). Although we say that
we exhaustively loop over all 12-tuples of subspaces of GF(2)t there, actually half of the
subspaces are determined by the others using linear algebra. Hence one call to this step takes
time O

(
t3 · S(t)6) where S(t) bounds the number of subspaces as in Lemma 13. Altogether

our Algorithm 16 takes time

O
(
|V (Tφ)| · t3 · S(t)6) = O

(
|V (Tφ)| · t3 · 26t(t+1)/4) = O

(
|φ| · t3 · 23t(t+1)/2).

4 Algorithm for the Max-SAT Problem

The same ideas as presented in Section 3 lead also to a parameterized algorithm for the
Max-SAT optimization problem which asks for the maximum number of satisfied clauses
in a CNF formula. We briefly describe this extension, though we have to admit that the
importance of the Max-SAT algorithm on graphs of bounded rank-width is not as high as
that of #SAT. The reason for lower applicability is that for “sparse” formula graphs (i.e.
those not containing large bipartite cliques) their rank-width is bounded iff their tree-width
is bounded, while for dense formula graphs the satisfiability problem is easier in general.

I Theorem 17. There is an algorithm that, given a CNF formula φ and a (t+, t−)-labeling
parse tree of the formula graph Fφ, solves the Max-SAT optimization problem of φ in time
O(t3 · 23t(t+1)/2 · |φ|) where t = max(t+, t−).

In order to formulate this algorithm, we extend Definition 14 as follows. Recall V (Fφ) =
W ∪ C where W are the variables and C are the clauses of φ.

I Definition 18. Consider a (t+, t−)-labeling F̃1 = (F1, lab
+, lab−) of a signed subgraph

F1 ⊆ Fφ, and a partial assignment ν1 : V (F1)∩W → {0, 1}. We say that ν1 is an assignment
of defective shape (Σ+,Σ−,Π+,Π−) in F̃1 if there exists a set C0 ⊆ C ∩ V (F1) such that ν1
is of shape (Σ+,Σ−,Π+,Π−) in F̃1 − C0. The value (the defect) of ν1 with respect to this
defective shape is the minimum cardinality of such C0.

FSTTCS 2010

82 Algorithms for SAT Problems for Formulas of Bounded Rank-width

Informally, the defect equals the number of clauses in F1 which are unsatisfied there and not
expected to be satisfied in a complete assignment in Fφ.

I Algorithm 19. (Theorem 17) Given is a CNF formula φ and a signed (t+, t−)-labeling
parse tree Tφ of the formula graph Fφ. Our task is to compute the maximum number of
satisfied clauses over all variable assignments of φ. A brief sketch follows, while the details
can be found in [9]:

We process the parse tree Tφ of Fφ similarly to Algorithm 16, but this time the value
of the entry Tablez[Σ+,Σ−,Π+,Π−] shall be equal to the minimum defect over all partial
assignments in F̃z that are of defective shape (Σ+,Σ−,Π+,Π−). Within the framework of
Algorithm 16 we, in an internal node z of Tφ with the sons x, y, determine the defect of
any partial assignment in F̃z (with respect to a particular shape, cf. Definition 18) as the
sum of the defects of the corresponding (inherited) partial assignments in F̃x and F̃y. The
implementation is similar to the former.

At the end of processing, in the root r of Tφ, we find the minimum m over all the entries
Tabler[Σ+,Σ−, ∅, ∅] where Σ+,Σ− are arbitrary subspaces of GF(2)t. An optimal solution
to Max-SAT of φ then has |C| −m satisfied clauses.

5 Conclusions

We have presented new FPT algorithms for the #SAT and Max-SAT problems on formulas
of bounded rank-width. Our algorithms are single-exponential in rank-width and linear
in the size of the formula (cubic if a rank-decomposition has to be computed first), and
they do not involve any “large hidden constants”. This is a significant improvement over
previous results, for several reasons. In the case of tree-width this follows from the fact that
rank-width is much less restrictive than tree-width. If a graph has bounded tree-width it also
has bounded rank-width, but there are classes of graphs with arbitrarily high tree-width and
small rank-width (e.g. cliques, complete bipartite graphs, or distance hereditary graphs).

As for clique-width (which is bounded iff rank-width is bounded), we have obtained two
significant improvements over the existing algorithms such as [7]. Firstly, rank-width can be
exponentially smaller than clique-width, and therefore we obtain an exponential speed-up
over the existing algorithms in the worst case. Secondly, there is an FPT algorithm for
computing the rank-width of a graph (and the associated rank-decomposition) exactly, or a
faster one providing a factor-3 approximation, whereas in the case of clique-width we have to
rely on an approximation by an exponential function of rank-width.

Finally, our paper shows that many of the recent ideas and tricks of parameterized
algorithm design on graphs of bounded rank-width smoothly translate to certain SAT-related
problem instances, a fact which may also provide new inspiration for related research.

References
1 S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP. J.

ACM, 45:70–122, 1998.
2 H. Bodlaender. Treewidth: Algorithmic techniques and results. In MFCS’97, volume 1295

of LNCS, pages 19–36. Springer, 1997.
3 B.-M. Bui-Xuan, J. A. Telle, and M. Vatshelle. H-join decomposable graphs and algorithms

with runtime single exponential in rankwidth. Discrete Appl. Math., 158(7):809–819, 2010.
4 J. Chen and I. A. Kanj. Improved exact algorithms for Max-Sat. Discrete Appl. Math.,

142(1-3):17–27, 2004.

R. Ganian, P. Hliněný, and J. Obdržálek 83

5 D. Corneil and U. Rotics. On the relationship between cliquewidth and treewidth. SIAM
J. Comput., 34(4):825–847, 2005.

6 B. Courcelle and M. Kanté. Graph operations characterizing rank-width. Discrete Appl.
Math., 157(4):627–640, 2009.

7 E. Fischer, J.A. Makowsky, and E. Ravve. Counting truth assignments of formulas of
bounded tree-width or clique-width. Discrete Appl. Math., 156:511–529, 2008.

8 R. Ganian and P. Hliněný. On parse trees and Myhill–Nerode–type tools for handling
graphs of bounded rank-width. Discrete Appl. Math., 158:851–867, 2010.

9 R. Ganian, P. Hliněný, and J. Obdržálek. Better algorithms for satisfiability problems for
formulas of bounded rank-width. arXiv:1006.5621v1 [cs.DM], June 2010.

10 K. Georgiou and P.A. Papakonstantinou. Complexity and algorithms for well-structured
k-SAT instances. In SAT’08, pages 105–118, 2008.

11 J. Goldman and G.-C. Rota. The number of subspaces of a vector space. In W.T. Tutte,
editor, Recent Progress in Combinatorics, pages 75–83. Academic Press, 1969.

12 G. Gutin, E. J. Kim, S. Szeider, and A. Yeo. Solving MAX-2-SAT above a tight lower
bound. arXiv:0907.4573, July 2009.

13 P. Hliněný and S. Oum. Finding branch-decomposition and rank-decomposition. SIAM J.
Comput., 38:1012–1032, 2008.

14 M. Kanté. The rank-width of directed graphs. arXiv:0709.1433v3, March 2008.
15 S. Oum. Rank-width and vertex-minors. J. Comb. Theory Ser. B, 95(1):79–100, 2005.
16 S. Oum. Approximating rank-width and clique-width quickly. ACM Trans. Algorithms,

5(1):1–20, 2008.
17 S. Oum. Rank-width is less than or equal to branch-width. J. Graph Theory, 57(3):239–244,

2008.
18 S. Oum and P. D. Seymour. Approximating clique-width and branch-width. J. Combin.

Theory Ser. B, 96(4):514–528, 2006.
19 I. Razgon and B. O’Sullivan. Almost 2-SAT is fixed-parameter tractable. J. Comput.

System Sci., 75(8):435–450, 2009.
20 M. Samer and S. Szeider. Algorithms for propositional model counting. J. Discrete Alg.,

8:50–64, 2010.
21 L. G. Valiant. The complexity of computing the permanent. Theoret. Comput. Sci.,

8(2):189–201, 1979.

FSTTCS 2010

Satisfiability of Acyclic and Almost Acyclic CNF
Formulas∗

Sebastian Ordyniak1, Daniel Paulusma2, and Stefan Szeider1

1 Institute of Information Systems
Vienna University of Technology, A-1040 Vienna, Austria
sebastian.ordyniak@tuwien.ac.at, stefan@szeider.net

2 School of Engineering and Computing Sciences
Durham University, Durham, DH1 3LE England
daniel.paulusma@durham.ac.uk

Abstract
We study the propositional satisfiability problem (SAT) on classes of CNF formulas (formulas in
Conjunctive Normal Form) that obey certain structural restrictions in terms of their hypergraph
structure, by associating to a CNF formula the hypergraph obtained by ignoring negations and
considering clauses as hyperedges on variables. We show that satisfiability of CNF formulas with
so-called “β-acyclic hypergraphs” can be decided in polynomial time.

We also study the parameterized complexity of SAT for “almost” β-acyclic instances, using
as parameter the formula’s distance from being β-acyclic. As distance we use the size of smallest
strong backdoor sets and the β-hypertree width. As a by-product we obtain the W[1]-hardness
of SAT parameterized by the (undirected) clique-width of the incidence graph, which disproves
a conjecture by Fischer, Makowsky, and Ravve (Discr. Appl. Math. 156, 2008).

Keywords and phrases Satisfiability, chordal bipartite graphs, β-acyclic hypergraphs, backdoor
sets, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.84

1 Introduction

We study the propositional satisfiability problem (SAT) on classes of CNF formulas (formulas
in Conjunctive Normal Form) that obey certain structural restrictions in terms of their
hypergraph structure, associating to a CNF formula the hypergraph obtained from the
formula by ignoring negations and considering clauses as hyperedges on variables.

Many otherwise hard problems become easy if restricted to acyclic instances. Hence it
is natural to ask if SAT becomes polynomial-time tractable for CNF formulas with acyclic
hypergraphs. However, in contrast to graphs, there are several notions of acyclicity for
hypergraphs: α-acyclicity, β-acyclicity, γ-acyclicity, and Berge acyclicity, as described and
discussed by Fagin [5]. We will provide definitions for the notions of acyclicity that are
relevant to this paper in Section 2. It is known that the various notions of acyclicity are
strictly ordered with respect to their generality, i.e., we have

α-Acyc) β-Acyc) γ-Acyc) Berge-Acyc (1)

where X-Acyc denotes the class of X-acyclic hypergraphs. Let X-Acyc-Sat denote the
propositional satisfiability problem restricted to X-acyclic CNF formulas (i.e., CNF formulas

∗ Ordyniak and Szeider’s research was funded by the ERC (COMPLEX REASON, 239962). Paulusma’s
research was funded by the EPSRC (EP/G043434/1).

© Sebastian Ordynia, Daniel Paulusma, and Stefan Szeider;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 84–95

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.84
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Sebastian Ordyniak, Daniel Paulusma, and Stefan Szeider 85

whose associated hypergraph is X-acyclic). It is not difficult to see that α-Acyc-Sat is
NP-complete (see [19]), and that Berge-Acyc-Sat is solvable in polynomial time. For
the latter, observe that if a CNF formula F is Berge-acyclic, then its incidence graph has
treewidth 1, thus whether F is satisfiable can be decided in linear time [6, 19].

It is natural to ask where in the chain (1) the exact boundary between NP-completeness
and polynomial-time tractability lies. In Section 3 we will answer this question and show
that β-Acyc-Sat (and thus also γ-Acyc-Sat) can be solved in polynomial time. We
establish this result by combining techniques from structural graph theory (a connection
between β-acyclic hypergraphs and chordal bipartite graphs) with a fundamental technique
for satisfiability solving (Davis-Putnam resolution).

In Sections 4 and 5 we will explore possibilities to gradually generalize the class of β-acyclic
CNF formulas. We will study the parameterized complexity of deciding the satisfiability of
formulas parameterized by their “distance” from the class of β-acyclic CNF formulas, with
respect to two distance measures.

The first distance measure is based on the notion of strong backdoor sets: For a CNF
formula F we define its “distance to β-acyclicity” as the size k of a smallest set B of variables
such that for each partial truth assignment to B, the reduct of F under the assignment is
β-acyclic (such a set B is a strong backdoor set). If we know B, then clearly deciding the
satisfiability of F reduces to deciding the satisfiability of at most 2k β-acyclic CNF formulas,
and is thus fixed-parameter tractable with respect to k. We show, however, that finding
such a set B of size k (if it exists) is W[2]-hard, thus unlikely fixed-parameter tractable for
parameter k which limits the algorithmic usefulness of this distance measure.

The second distance measure we consider is the β-hypertree width, a hypergraph invariant
introduced by Gottlob and Pichler [11]. The classes of hypergraphs of β-hypertree width
k = 1, 2, 3, . . . form an infinite chain of proper inclusions. Hypergraphs of β-hypertree
width 1 are exactly the β-acyclic hypergraphs. Thus β-hypertree width is also a way to
define a “distance to β-acyclicity.” The complexity of determining the β-hypertree width of a
hypergraph is open [11]. However, we show that even if we are given the CNF formula together
with a hypertree decomposition of width k, deciding the satisfiability of F parameterized by
k is W[1]-hard. As a side effect, we obtain from this result that SAT is also W[1]-hard when
parameterized by the clique-width (of the undirected incidence graph) of the CNF formula.
This disproves a conjecture by Fischer, Makowsky, and Ravve [6].

2 Preliminaries

We assume an infinite supply of propositional variables. A literal is a variable x or a
negated variable x; if y = x is a literal, then we write y = x. For a set S of literals we put
S = {x | x ∈ S }; S is tautological if S ∩ S 6= ∅. A clause is a finite non-tautological set of
literals. A finite set of clauses is a CNF formula (or formula, for short). A variable x occurs
in a clause C if x ∈ C∪C; var(C) denotes the set of variables which occur in C. For a formula
F we put var(F) =

⋃
C∈F var(C). Let F be a formula and X ⊆ var(F). We denote by FX the

set of clauses of F in which some variable of X occurs; i.e., FX := {C ∈ F | var(C)∩X 6= ∅ }.
A truth assignment is a mapping τ : X → { 0, 1 } defined on some set X of variables; we

write var(τ) = X. For x ∈ var(τ) we define τ(x) = 1− τ(x). For a truth assignment τ and a
formula F , we define F [τ] = {C \ τ−1(0) | C ∈ F, C ∩ τ−1(1) = ∅ }, i.e., F [τ] denotes the
result of instantiating variables according to τ and applying the usual simplifications. A
truth assignment τ satisfies a clause if the clause contains some literal x with τ(x) = 1; τ
satisfies a formula F if it satisfies all clauses of F (i.e., if F [τ] = ∅). A formula is satisfiable if

FSTTCS 2010

86 Satisfiability of Acyclic and Almost Acyclic CNF Formulas

it is satisfied by some truth assignment; otherwise it is unsatisfiable. Two formulas F and F ′
are equisatisfiable if either both are satisfiable or both are unsatisfiable. The Satisfiability
(SAT) problem is to test whether a given CNF formula is satisfiable.

A hypergraph H is a pair (V,E) where V is the set of vertices and E is the set of hyperedges,
which are subsets of V . If |e| = 2 for all e ∈ E then H is also called a graph. We say that
a hypergraph H ′ = (V ′, E′) is a partial hypergraph of H = (V,E) if V ′ ⊆ V and E′ ⊆ E.
The incidence graph I(H) of hypergraph H = (V,E) is the bipartite graph where the sets
V and E form the two partitions, and where e ∈ E is incident with v ∈ V if and only if
v ∈ e. A hypergraph is α-acyclic if it can be reduced to the empty hypergraph by repeated
application of the following rules:

1. Remove hyperedges that are empty or contained in other hyperedges.
2. Remove vertices that appear in at most one hyperedge.

A hypergraph H is β-acyclic if every partial hypergraph of H is α-acyclic. The hypergraph
H(F) of a formula F has vertex set var(F) and hyperedge set { var(C) | C ∈ F }. We say that
F is α-acyclic or β-acyclic if H(F) is α-acyclic or β-acyclic, respectively. The incidence graph
of F is the graph I(F) with vertex set var(F)∪F and edge set {Cx | C ∈ F and x ∈ var(C) }.
The directed incidence graph of F is the directed graph with vertex set var(F) ∪ F and arc
set { (C, x) | C ∈ F and x ∈ C } ∪ { (x,C) | C ∈ F and x ∈ C }. We can also represent
the orientation of edges by labeling them with the signs +,−, such that an edge between a
variable x and a clause C is labeled + if x ∈ C and labeled − if x ∈ C. This gives rise to the
signed incidence graph which carries exactly the same information as the directed incidence
graph.

Note that one can make a hypergraph α-acyclic by adding a universal hyperedge that
contains all vertices (the first step of the above reduction removes all other hyperedges, the
second step all vertices). Using this fact, it is easy to see that SAT is NP-complete for the
class of α-acyclic CNF formulas [19]. In contrast, it is well known that the satisfiability
of α-acyclic instances of the Constraint Satisfaction Problem (CSP) can be decided
in polynomial time [9]. Thus SAT and CSP behave differently with respect to acyclicity
(representing a clause with k literals as a relational constraint requires exponential space of
order k2k).

2.1 Parameterized Complexity
We define the basic notions of Parameterized Complexity and refer to other sources [4, 7]
for an in-depth treatment. A parameterized problem can be considered as a set of pairs
(I, k), the instances, where I is the main part and k is the parameter. The parameter is
usually a non-negative integer. A parameterized decision problem is fixed-parameter tractable
if there exists a computable function f such that instances (I, k) of size n can be decided in
time f(k)nO(1). The class FPT denotes the class of all fixed-parameter tractable decision
problems.

Parameterized complexity offers a completeness theory, similar to the theory of NP-
completeness, that allows the accumulation of strong theoretical evidence that some param-
eterized problems are not fixed-parameter tractable. This theory is based on a hierarchy
of complexity classes W[1],W[2], . . . ,XP. Each class contains all parameterized decision
problems that can be reduced to a certain fixed parameterized decision problem under
parameterized reductions. These are many-to-one reductions where the parameter for one
problem maps into the parameter for the other. More specifically, problem L reduces to
problem L′ if there is a mapping R from instances of L to instances of L′ such that (i) (I, k)

Sebastian Ordyniak, Daniel Paulusma, and Stefan Szeider 87

is a yes-instance of L if and only if (I ′, k′) = R(I, k) is a yes-instance of L′, (ii) k′ = g(k)
for a computable function g, and (iii) R can be computed in time f(k)nO(1) where f is a
computable function and n denotes the size of (I, k). The class W[1] is considered as the
parameterized analog to NP.

3 Polynomial-time SAT Decision for β-acyclic CNF Formulas

I Theorem 1. Satisfiability of β-acyclic CNF formulas can be decided in polynomial time.

The remainder of this section is devoted to a proof of this result. We need two known results
on chordal bipartite graphs, which are bipartite graphs with no induced cycle on 6 vertices or
more. The first one is Proposition 2. The equivalence between statement (i) and (ii) in this
proposition is a result of Tarjan and Yannakakis [20]. The equivalence between statement (ii)
and (iii) in Proposition 2 follows from the facts that I(H(F)) is obtained from I(F) after
removing all but one clause vertices in I(F) with the same neighbors (i.e., clauses with the
same set of variables in F) and that a chordal bipartite graph remains chordal bipartite
under vertex deletion.

I Proposition 2. Let F be a CNF formula. Then the following three statements are
equivalent:

(i) H(F) is β-acyclic;
(ii) I(H(F)) is chordal bipartite;
(iii) I(F) is chordal bipartite.

A vertex v in a graph G is weakly simplicial if (i) the neighborhood of v in G forms an
independent set, and (ii) the neighborhoods of the neighbors of v form a chain under set
inclusion. Uehara [21] showed the following (which also follows from results of Hammer,
Maffray, and Preismann [12], see [17]). We call a bipartite graph nontrivial if it contains at
least one edge.

I Proposition 3 (Uehara [21], Hammer, Maffray, and Preismann [12]). A graph is chordal
bipartite if and only if every induced subgraph has a weakly simplicial vertex. Furthermore, a
nontrivial chordal bipartite graph has a weakly simplicial vertex in each partite set.

We also call a vertex of a hypergraph or a variable of a CNF formula weakly simplicial if the
corresponding vertex in the associated incidence graph is weakly simplicial. The above result
immediately gives a polynomial-time procedure for the recognition of β-acyclic hypergraphs:
delete weakly simplicial vertices from the hypergraph as long as possible (clearly one can
recognize a weakly simplicial vertex in polynomial time). The hypergraph is β-acyclic if and
only if we can eliminate in this way all its vertices.

The notion of Davis-Putnam Resolution allows us to use this elimination procedure to
decide the satisfiability of β-acyclic CNF formulas.

Let C1, C2 be clauses such that C1 ∩ C2 = {x} for some literal x. The clause C =
(C1 ∪ C2) \ {x, x} is called the resolvent of C1 and C2 with respect to x. Note that by
definition any two clauses have at most one resolvent.

Consider a formula F and a variable x of F . We obtain a formula F ′ from F by adding
all possible resolvents with respect to x, and by removing all clauses in which x occurs. We
say that F ′ is obtained from F by Davis-Putnam Resolution with respect to x and we write
DPx(F) = F ′. It is well known (and easy to show) that F and DPx(F) are equisatisfiable.

FSTTCS 2010

88 Satisfiability of Acyclic and Almost Acyclic CNF Formulas

The so-called Davis-Putnam Procedure [3] successively eliminates variables in this manner
until either the empty formula or a formula which contains the empty clause is obtained.
However, DPx(F) contains in general more clauses than F . Hence, repeated application of
Davis-Putnam Resolution to F may cause an exponential growth in the number of clauses.
As a result, the Davis-Putnam Procedure has an exponential worst-case running time. The
key observation for our algorithm is that if x is a weakly simplicial variable of F , then the
size of DPx(F) is not greater than the size of F .

I Lemma 4. If x is a weakly simplicial variable of a CNF formula F , then |DPx(F)| ≤ |F |.

Proof. Let x be a weakly simplicial variable of a CNF formula F . Let F − x := {C \
{x, x} | C ∈ F }. We show that DPx(F) ⊆ F − x.

Assume C1, C2 ∈ F have a resolvent C with respect to x. Consequently we have C1∩C2 ⊆
{x, x}. Because x is weakly simplicial, var(C1) ⊆ var(C2) or var(C2) ⊆ var(C1). Without
loss of generality, assume the former is the case. If x ∈ C1, then we have C1 ∩ C2 = {x},
and so C = C2 \ {x} ∈ F − x. Similarly, if x ∈ C1, then we have C1 ∩ C2 = {x}, and so
C = C2 \ {x} ∈ F − x. Thus indeed DPx(F) ⊆ F − x. From |DPx(F)| ≤ |F − x| ≤ |F | the
result now follows. J

Now it is easy to establish Theorem 1. We extend the above elimination procedure.
Assume we are given a β-acyclic CNF formula F . Then I(F) is chordal bipartite due to
Proposition 2. As long as possible, we select a weakly simplicial variable x and compute
DPx(F). Because I(DPx(F)) is an induced subgraph of I(F), it follows that DPx(F) is again
β-acyclic. Moreover, DPx(F) and F are equisatisfiable, and by Lemma 4, |DPx(F)| ≤ |F |.
Hence we can repeat this elimination procedure, and by induction, we will finally be left with
a CNF formula F0 that has no variables. If F0 = ∅ then F is satisfiable, and if F0 = {∅}
then F is unsatisfiable. Because each reduction step can be carried out in polynomial time,
Theorem 1 follows.

4 Backdoor Sets

Let C be a class of CNF formulas. Consider a CNF formula F together with a set of variables
B ⊆ var(F). We say that B is a strong backdoor set of F with respect to base class C if for
all truth assignments τ : B → {0, 1} we have F [τ] ∈ C. In that case we also say that B is a
strong C-backdoor set. For every CNF formula F and every set B ⊆ var(F) it holds that F is
satisfiable if and only if F [τ] is satisfiable for at least one truth assignment τ : B → {0, 1}.
Thus, if B is a strong C-backdoor set of F , then determining whether F is satisfiable reduces
to the satisfiability problem of at most 2|B| reduced CNF formulas F [τ] ∈ C.

Now consider a base class C of CNF formulas for which SAT can be solved in polynomial
time. Then, if we have found a strong C-backdoor set of F of size k, deciding the satisfiability
of F is fixed-parameter tractable for parameter k. Hence, the key question is whether we can
find a strong backdoor set of size at most k if it exists. To study this question, we consider
the following parameterized problem that is defined for every fixed base class C.

Strong C-Backdoor
Instance: A formula F and an integer k > 0.
Parameter: The integer k.
Question: Does F have a strong C-backdoor set of size at most k?

Sebastian Ordyniak, Daniel Paulusma, and Stefan Szeider 89

It is known that Strong C-Backdoor is fixed-parameter tractable for the class C of Horn
formulas and for the class C of 2CNF formulas [14]. Let BAC be the class of all β-acyclic
CNF formulas. Contrary to the above results, we show that Strong BAC-Backdoor is
W [2]-hard.

I Theorem 5. The problem Strong BAC-Backdoor is W[2]-hard.

Proof. Let S be a family of finite sets S1, . . . , Sm. Then a subset R ⊆
⋃m
i=1 Si is called a

hitting set of S if R ∩ Si 6= ∅ for i = 1, . . . ,m. The Hitting Set problem is defined as
follows.

Hitting Set
Instance: A family S of finite sets S1, . . . , Sm and an integer k > 0.
Parameter: The integer k.
Question: Does S have a hitting set of size at most k?

It is well known that Hitting Set is W[2]-complete [4]. We reduce from this problem to
prove the theorem.

Let S = {S1, . . . , Sm } and k be an instance of Hitting Set. We write V (S) =
⋃m
i=1 Si

and construct a formula F as follows. For each s ∈ V (S) we introduce a variable xs, and we
write X = {xs | s ∈ V (S) }. For each Si we introduce two variables h1

i and h2
i . Then, for

every 1 ≤ i ≤ m, the formula F contains three clauses Ci, C1
i , and C2

i such that:
Ci = {h1

i , h
2
i };

C1
i = {h1

i } ∪ {xs | s ∈ Si } ∪ {xs | s ∈ V (S) \ Si) };
C2
i = {h2

i } ∪ {xs | s ∈ V (S) }.

We need the following claims. The first claim characterizes the induced cycles in I(F)
with length at least 6. We need it to prove the second claim.

Claim 1. Let D be an induced cycle in I(F). Then |V (D)| ≥ 6 if and only if V (D) =
{h1

i , h
2
i , xs, Ci, C

1
i , C

2
i } for some 1 ≤ i ≤ m and s ∈ V (S).

We prove Claim 1 as follows. Suppose D is an induced cycle in I(F) with |V (D)| ≥ 6.
By construction, D contains at least one vertex from X. Because any two vertices in X

have exactly the same neighbors in I(F), D contains at most one vertex from X. Hence,
D contains exactly one vertex from X, let xs be this vertex. Let Cji and Cj

′

i′ be the two
neighbors of xs on D. Because xs is the only of D that belongs to X, we find that hji and
hj
′

i′ belong to D. By our construction, Ci and Ci′ then belong to D as well. If Ci 6= Ci′ , then
D contains at least two vertices from X, which is not possible. Hence Ci = Ci′ , as desired.
The reverse implication is trivial, and Claim 1 is proven.

Claim 2. Let B be a strong BAC-backdoor set that contains variable hji . Then, for any
s∗ ∈ Si, the set (B\{hji}) ∪ {xs∗} is a strong BAC-backdoor set.

We prove Claim 2 as follows. Let s∗ ∈ Si and define B′ = (B\{hji}) ∪ {xs∗}. Suppose B′
is not a strong BAC-backdoor set. Then there is a truth assignment τ : B′ → {0, 1} with
F [τ] /∈ BAC. This means that I(F [τ]) contains an induced cycle D with |V (D)| ≥ 6. Because
B is a strong BAC-backdoor set, hji must belong to V (D). We apply Claim 1 and obtain
V (D) = {h1

i , h
2
i , xs, Ci, C

1
i , C

2
i } for some xs ∈ X. Suppose τ(xs∗) = 1. Then C1

i /∈ F [τ].
Hence τ(xs∗) = 0, but then C2

i /∈ F [τ]. This contradiction proves Claim 2.

FSTTCS 2010

90 Satisfiability of Acyclic and Almost Acyclic CNF Formulas

We are ready to prove the claim that S has a hitting set of size at most k if and only if
F has a strong BAC-backdoor set of size at most k.

Suppose S has a hitting set R of size at most k. We claim that B = {xs | s ∈ R } is
a strong BAC-backdoor set of F . Suppose not. Then there is a truth assignment τ with
F [τ] /∈ BAC. This means that I(F [τ]) contains an induced cycle D with |V (D)| ≥ 6. By
Claim 1, we obtain V (D) = {h1

i , h
2
i , xs, Ci, C

1
i , C

2
i } for some 1 ≤ i ≤ m and s ∈ S. Because

C1
i , C

2
i are in I(F [τ]), we find that R∩Si = ∅. This is not possible, because R is a hitting set

of S. Conversely, suppose F has a strong BAC-backdoor set B of size at most k. By Claim 2,
we may without loss of generality assume that B ⊆ X. We claim that R = { s | xs ∈ B }
is a hitting set of S. Suppose not. Then R ∩ Si = ∅ for some 1 ≤ i ≤ m. This means that
B contains no vertex from {xs | s ∈ Si }. Let τ : B → {0, 1} be the truth assignment with
τ(xs) = 1 for all xs ∈ B. Then C1

i and C2
i are in F [τ]. Let s ∈ Si. Then the cycle D with

V (D) = {h1
i , h

2
i , xs, Ci, C

1
i , C

2
i } is an induced 6-vertex cycle in I(F [τ]). This means that

F [τ] /∈ BAC, which is not possible. Hence, we have proven Theorem 5. J

4.1 Deletion Backdoor Sets
Let F be a formula and let B ⊆ var(F) be a set of variables. Then F −B denotes the formula
obtained from F after removing all literals x and x with x ∈ B from the clauses in F . We
call B a deletion backdoor set with respect to a base class C if F −B ∈ C.

Deletion C-backdoor sets can be seen as a relaxation of strong C-backdoor sets if the base
class C is clause-induced, i.e., if for every F ∈ C and F ′ ⊆ F , we have F ′ ∈ C. In that case
every deletion C-backdoor set B is also a strong C-backdoor set. This is well known [15]
and can easily be seen as follows. Let τ : B → {0, 1} be a truth assignment. Then by
definition F [τ] ⊆ F −B. Because B is a deletion C-backdoor set, F −B ∈ C. Because C is
clause-induced and F [τ] ⊆ F −B, this means that F [τ] ∈ C, as required.

Now let C be a clause-induced base class. Let B be a smallest deletion C-backdoor set
and let B′ be a smallest strong C-backdoor set. Then, from the above, we deduce |B′| ≤ |B|.
The following example shows that |B| − |B′| can be arbitrarily large.

We consider the base class BAC, which is obviously clause-induced. Let F be the
formula with var(F) = {x1, . . . , xp, y1, . . . , yp, z1, . . . , zp} for some p ≥ 1 and clauses C1 =
{x1, . . . , xp, y1, . . . , yp}, C2 = {y1, . . . , yp, z1, . . . , zp} and C3 = {x1, . . . , xp, z1, . . . , zp} for
some p ≥ 1. Then B = {y1} is a smallest strong BAC-backdoor set. However, a smallest
deletion BAC-backdoor set must contain at least p variables.

Analogously to the Strong C-Backdoor problem we define the problem Deletion
C-Backdoor problem, where C is a fixed clause-induced base class.

Deletion C-Backdoor
Instance: A formula F and an integer k > 0.
Parameter: The integer k.
Question: Does F have a deletion C-backdoor set of size at most k?

Determining the parameterized complexity of Deletion BAC-Backdoor is interesting,
especially in the light of our W[2]-hardness result for Strong BAC-Backdoor. In other
words, is the problem of deciding whether a graph can be modified into a chordal bipartite
graph by deleting at most k vertices fixed-parameter tractable in k? Marx [13] showed that
the version of this problem in which the modified graph is required to be chordal instead of
chordal bipartite is fixed-parameter tractable.

Sebastian Ordyniak, Daniel Paulusma, and Stefan Szeider 91

5 β-Hypertree Width and Clique-Width

Hypertree width is a hypergraph invariant introduced by Gottlob, Leone, and Scarcello [10].
It is defined via the notion of a hypertree decomposition of a hypergraph H, which is a triple
T = (T, κ, λ) where T is a rooted tree and χ and λ are labelling functions with χ(t) ⊆ V (H)
and λ(t) ⊆ E(H), respectively, for every t ∈ V (T), such that the following conditions hold:

1. For every e ∈ E(H) there is a t ∈ V (T) such that e ⊆ χ(t).
2. For every v ∈ V (H), the set { t ∈ V (T) | v ∈ χ(t) } induces a connected subtree of T .
3. For every t ∈ V (T), it holds that χ(t) ⊆

⋃
e∈λ(t) e.

4. For every t ∈ V (T), if a vertex v occurs in some hyperedge e ∈ λ(t) and if v ∈ χ(t′) for
some node t′ in the subtree below t, then v ∈ χ(t).

The width of a hypertree decomposition (T, χ, λ) is max{ |λ(t)| | t ∈ V (T) }. The hypertree
width, denoted hw(H), of a hypergraph H is the minimum width over all its hypertree
decompositions. Many NP-hard problems such as CSP or Boolean database queries can be
solved in polynomial time for instances with associated hypergraphs of bounded hypertree
width [9].

Gottlob and Pichler [11] defined β-hypertree width as a “hereditary variant” of hypertree
width. The β-hypertree width, denoted β-hw(H), of a hypergraph H is defined as the
maximum hypertree width over all partial hypergraphs H ′ of H. Using the fact that α-
acyclic hypergraphs are exactly the hypergraphs of hypertree width 1 [10], one deduces that
the hypergraphs of β-hypertree width 1 are exactly the β-acyclic hypergraphs. Unfortunately,
the complexity of determining the β-hypertree width of a hypergraph is not known [11].
However, we show the following. Here, a β-hypertree decomposition of width k of a hypergraph
H is an oracle that produces for every partial hypergraph H ′ of H a hypertree decomposition
of width at most k.

I Theorem 6. SAT, parameterized by an upper bound k on the β-hypertree width of a CNF
formula F , is W[1]-hard even if a β-hypertree decomposition of width k for H(F) is given.

Proof. A clique in a graph is a subset of vertices that are mutually adjacent. A k-partite
graph is balanced if its k partition classes are of the same size. A partitioned clique of a
balanced k-partite graph G = (V1, . . . , Vk, E) is a clique K with |K ∩ Vi| = 1 for i = 1 . . . , k.
We devise a parameterized reduction from the following problem, which is W[1]-complete [18].

Partitioned Clique
Instance: A balanced k-partite graph G = (V1, . . . , Vk, E).
Parameter: The integer k.
Question: Does G have a partitioned clique?

Before we describe the reduction we introduce some auxiliary concepts. For any three variables
z, x1, x2 let F (z, x1, x2) denote the formula consisting of the clauses {z, x1, x2}, {z, x1, x2},
{z, x1, x2}, {z, x1, x2}, and {z, x1, x2}. This formula has exactly three satisfying assignments,
corresponding to the vectors 000, 101, and 110. Hence each satisfying assignment sets at most
one out of x1 and x2 to true, and if one of them is set to true, then z is set to true as well
(“z = x1 + x2”). Taking several instances of this formula we can build a “selection gadget.”
Let x1, . . . , xm and z1, . . . , zm−1 be variables. We define F=1(x1, . . . , xm; z1, . . . , zm−1) as the
union of F (z1, x1, x2),

⋃m−1
i=2 F (zi, zi−1, xi+1), and {{zm−1}}. Now each satisfying assignment

of this formula sets exactly one variable out of {x1, . . . , xm} to true, and, conversely, for

FSTTCS 2010

92 Satisfiability of Acyclic and Almost Acyclic CNF Formulas

each 1 ≤ i ≤ m there exists a satisfying assignment that sets exactly xi to true and all other
variables from {x1, . . . , xm} to false.

Now we describe the reduction. Let G = (V1, . . . , Vk) be a balanced k-partite graph for
k ≥ 2. We write Vi = {vi1, . . . , vin}. We construct a CNF formula F . As the variables of F
we take the vertices of G plus new variables zij for 1 ≤ i ≤ k and 1 ≤ j ≤ n − 1. We put
F =

⋃k
i=0 Fi where the formulas Fi are defined as follows: F0 contains for any u ∈ Vi and

v ∈ Vj (i 6= j) with uv /∈ E the clause Cu,v = {u, v } ∪ {w | w ∈ (Vi ∪ Vj) \ {u, v } }; for
i > 0 we define Fi = F=1(vi1, . . . , vin; zi1, . . . , zin−1).

We will have proven Theorem 6 after showing the following two claims.

Claim 1. β-hw(H(F)) ≤ k.

We prove Claim 1 as follows.
First we show that that β-hw(H(F0)) ≤ k. Let H ′0 be a partial hypergraph of H(F0).

Let I be the set of indices 1 ≤ i ≤ k such that some hyperedge of H ′0 contains Vi. For each
i ∈ I we choose a hyperedge ei of H ′0 that contains Vi. The partial hypergraph H ′0 admits
a trivial hypertree decomposition (T0, χ0, λ0) of width at most k with a single tree node
t0 where χ0(t0) contains all vertices of H ′0 and λ0(t0) = { ei | i ∈ I }. Second we observe
that β-hw(H(Fi)) = 1 for 1 ≤ i ≤ k: H(Fi) is β-acyclic, and β-acyclic hypergraphs have
β-hypertree width 1.

Now let H ′ be an arbitrarily chosen partial hypergraph of H(F). For i = 0, . . . , k, we
let H ′i denote the (maximal) partial hypergraph of H ′ that is contained in H(Fi). We let
T0 = (T0, χ0, λ0) be a hypertree decomposition of width at most k of H ′0 as defined above.
For i = 1, . . . , k we let Ti = (Ti, χi, λi) be a hypertree decomposition of width 1 of H ′i. We
combine these k+ 1 hypertree decompositions to a hypertree decomposition of width at most
k for H ′. We will do this by adding the decompositions T1, . . . , Tk to T0 one by one and
without increasing the width of T0.

Let T ∗i = (T ∗i , χ∗i , λ∗i) denote the hypertree decomposition of width at most k obtained
from T0 by adding the first i hypertree decompositions. For i = 0 we let T ∗0 = T0. For i > 0
we proceed as follows.

First we consider the case where there is a hyperedge e ∈ H ′0 with Vi+1 ⊆ e. Observe
that there exists a node t ∈ V (T ∗i) with e ⊆ χ(t). We define T ∗i+1 = (T ∗i+1, χ

∗
i+1, λ

∗
i+1)

as follows. We obtain T ∗i+1 from the disjoint union of T ∗i and Ti+1 by adding an edge
between t and the root of Ti+1. As the root of T ∗i+1 we choose the root of T ∗i . We set
χ∗i+1(t) = χ∗i (t) for every t ∈ V (T ∗i), and χ∗i+1(t) = χi+1(t) ∪ Vi+1 for every t ∈ V (Ti+1); we
set λ∗i+1(t) = λ∗i (t) for every t ∈ V (T ∗i), and λ∗i+1(t) = λi+1(t) ∪ {e} for every t ∈ V (Ti+1)
(hence |λ∗i+1(t)| ≤ max(2, k) = k). Consequently T ∗i+1 has width at most k.

It remains to consider the case where there is no hyperedge e ∈ H ′0 with Vi+1 ⊆ e. We
define T ∗i+1 as follows. We obtain T ∗i+1 from the disjoint union of T ∗i and Ti+1 by adding
an edge between an arbitrary node t ∈ V (T ∗i) and the root of Ti+1. As the root of T ∗i+1 we
choose the root of T ∗i . We set χ∗i+1 = χ∗i ∪ χi+1 and λ∗i+1 = λ∗i ∪ λi+1. Clearly T ∗i+1 has
width at most k.

Claim 2. G has a partitioned clique if and only if F is satisfiable.

To prove Claim 2 we first suppose that G has a partitioned clique K. We define a partial
truth assignment τ : V → {0, 1} by setting τ(v) = 1 for v ∈ K, and τ(v) = 0 for v /∈ K. This
partial assignment satisfies F0, and it is easy to extend τ to a satisfying truth assignment of F .
Conversely, suppose that F has a satisfying truth assignment τ . Because of the formulas Fi,

Sebastian Ordyniak, Daniel Paulusma, and Stefan Szeider 93

1 ≤ i ≤ k, τ sets exactly one variable viji
∈ Vi to true. Let K = {v1

j1
, . . . , vkjk

}. The clauses
in F0 ensure that viji

and vi′ji′
are adjacent in G for each pair 1 ≤ i < i′ ≤ k, hence K is a

partitioned clique of G. This proves Claim 2. J

Clique-width is a graph parameter that measures in a certain sense the structural complex-
ity of a directed or undirected graph [2]. The parameter is defined via a graph construction
process where only a limited number of vertex labels are available; vertices that share the
same label at a certain point of the construction process must be treated uniformly in
subsequent steps. In particular, one can use the following four operations: the creation of
a new vertex with label i, the vertex-disjoint union of already constructed labeled graphs,
the relabeling of all vertices of label i with label j, and the insertion of all possible edges
between vertices of label i and label j (either undirected or directed from label i to j). The
clique-width cw(G) of a graph G is the smallest number k of labels that suffice to construct
G by means of these four operations. Such a construction of a graph can be represented by
an algebraic term called a k-expression.

The (directed) clique-width of a CNF formula is the clique-width of its (directed) incidence
graph. The directed clique-width of a CNF formula can also be defined in terms of the signed
incidence graph and is therefore sometimes called the signed clique-width. Observe that the
clique-width of a CNF formula is always bounded by its directed clique-width. However, in
general the directed clique-width can be much higher than the undirected one. It is well
known that satisfiability decision is fixed-parameter tractable for the parameter directed
clique-width [1, 6]. Fischer, Makowsky, and Ravve [6] developed a dynamic programming
algorithm that counts the number of satisfying truth assignments in linear time for CNF
formulas of bounded directed clique-width. They also conjectured that their method can be
extended to work for formulas of bounded (undirected) clique-width. However, the reduction
in the proof of Theorem 6 shows that this is not possible unless FPT = W[1].

I Corollary 7. SAT, parameterized by an upper bound k on the clique-width of the incidence
graph of F , is W[1]-hard even if a k-expression for I(F) is given.

Proof. It is easy to see that the clique-width of the incidence graph of the formula F in the
proof of Theorem 6 is at most k′ = O(k), and a k′-expression can be found in polynomial
time. Hence the result follows from the same reduction. J

Rank-width is a further graph parameter that has been considered for CNF formulas.
This parameter was introduced by Oum and Seymour [16] for approximating the clique-width
of graphs. A certain structure that certifies that a graph has rank-width at most k is called a
rank-width decomposition of width k. Similar to clique-width, one can define the rank-width
of a directed graph that takes the orientation of edges into account. The directed (or signed)
rank-width of a CNF formula is the rank-width of its directed incidence graph. Ganian,
Hliněný, and Obdržálek [8] developed an efficient dynamic programming algorithm that
counts in linear time the number of satisfying assignments of a CNF formula of bounded
directed rank-width. Because bounded undirected rank-width implies bounded undirected
clique-width [16], the following is a direct consequence of Corollary 7.

I Corollary 8. SAT, parameterized by an upper bound k on the rank-width of the incidence
graph of F , is W[1]-hard even if a rank-decomposition of width k for I(F) is given.

FSTTCS 2010

94 Satisfiability of Acyclic and Almost Acyclic CNF Formulas

6 Conclusion

We have identified a new class of CNF formulas, the class BAC of β-acyclic formulas, for
which recognition and satisfiability decision are solvable in polynomial time. Furthermore,
we have established hardness results for two natural strategies for gradually extending this
class: extensions via strong backdoor sets and extensions via β-hypertree decompositions.
The first extension is fixed-parameter intractable because the backdoor sets are hard to find;
the second extension is fixed-parameter intractable because satisfiability decision remains
hard even if the β-hypertree decomposition is provided. It would be interesting to know
whether the satisfiability of CNF formulas of β-hypertree width bounded by an arbitrary
constant k can be decided in polynomial time (of order depending on k) if a β-hypertree
decomposition is provided.

References
1 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. On the fixed parameter complexity

of graph enumeration problems definable in monadic second-order logic. Discr. Appl. Math.,
108(1-2):23–52, 2001.

2 Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. Context-free handle-rewriting
hypergraph grammars. In Hartmut Ehrig, Hans-Jörg Kreowski, and Grzegorz Rozenberg,
editors, Graph-Grammars and their Application to Computer Science, 4th International
Workshop, Bremen, Germany, March 5–9, 1990, Proceedings, volume 532 of Lecture Notes
in Computer Science, pages 253–268, 1991.

3 Martin Davis and Hillary Putnam. A computing procedure for quantification theory. J.
ACM, 7(3):201–215, 1960.

4 Rod G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in Com-
puter Science. Springer Verlag, New York, 1999.

5 Ronald Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. J.
ACM, 30(3):514–550, 1983.

6 Eldar Fischer, Johann A. Makowsky, and Elena V. Ravve. Counting truth assignments of
formulas of bounded tree-width or clique-width. Discr. Appl. Math., 156(4):511–529, 2008.

7 Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts in
Theoretical Computer Science. An EATCS Series. Springer Verlag, Berlin, 2006.

8 Robert Ganian, Petr Hliněný, and Jan Obdržálek. Better algorithms for satisfiability prob-
lems for formulas of bounded rank-width. Technical Report arXiv:1006.5621v1, CoRR,
2010.

9 Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions: a survey.
In Mathematical foundations of computer science, 2001 (Mariánské Láznĕ), volume 2136
of Lecture Notes in Computer Science, pages 37–57. Springer, 2001.

10 Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions and
tractable queries. J. of Computer and System Sciences, 64(3):579–627, 2002.

11 Georg Gottlob and Reinhard Pichler. Hypergraphs in model checking: acyclicity and
hypertree-width versus clique-width. SIAM J. Comput., 33(2):351–378, 2004.

12 Peter L. Hammer, Frederic Maffray, and Myriam Preismann. A characterization of chordal
bipartite graphs. Technical report, Rutgers University, New Brunswick, NJ, 1989.

13 Dániel Marx. Chordal deletion is fixed-parameter tractable. Algorithmica, 57(4):747–768,
2010.

14 Naomi Nishimura, Prabhakar Ragde, and Stefan Szeider. Detecting backdoor sets with
respect to Horn and binary clauses. In Proceedings of SAT 2004 (Seventh International

Sebastian Ordyniak, Daniel Paulusma, and Stefan Szeider 95

Conference on Theory and Applications of Satisfiability Testing, 10–13 May, 2004, Vancou-
ver, BC, Canada), pages 96–103, 2004.

15 Naomi Nishimura, Prabhakar Ragde, and Stefan Szeider. Solving #SAT using vertex
covers. Acta Informatica, 44(7-8):509–523, 2007.

16 Sang-il Oum and Paul Seymour. Approximating clique-width and branch-width. J. Combin.
Theory Ser. B, 96(4):514–528, 2006.

17 Michael J. Pelsmajer, Jacent Tokazy, and Douglas B. West. New proofs for strongly chordal
graphs and chordal bipartite graphs. Unpublished Manuscript, 2004.

18 Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet shortest com-
mon supersequence and longest common subsequence problems. J. of Computer and System
Sciences, 67(4):757–771, 2003.

19 Marko Samer and Stefan Szeider. Algorithms for propositional model counting. J. Discrete
Algorithms, 8(1):50–64, 2010.

20 Robert E. Tarjan and Mihalis Yannakakis. Simple linear-time algorithms to test chordality
of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM
J. Comput., 13(3):566–579, 1984.

21 Ryuhei Uehara. Linear time algorithms on chordal bipartite and strongly chordal graphs. In
Automata, languages and programming, volume 2380 of Lecture Notes in Computer Science,
pages 993–1004. Springer, 2002.

FSTTCS 2010

The effect of girth on the kernelization complexity
of Connected Dominating Set
Neeldhara Misra, Geevarghese Philip, Venkatesh Raman, Saket
Saurabh

The Institute of Mathematical Sciences, Chennai, India.
{neeldhara,gphilip,vraman,saket}@imsc.res.in

Abstract
In the Connected Dominating Set problem we are given as input a graph G and a positive
integer k, and are asked if there is a set S of at most k vertices of G such that S is a dominating
set of G and the subgraph induced by S is connected. This is a basic connectivity problem
that is known to be NP-complete, and it has been extensively studied using several algorithmic
approaches. In this paper we study the effect of excluding short cycles, as a subgraph, on the
kernelization complexity of Connected Dominating Set.

Kernelization algorithms are polynomial-time algorithms that take an input and a positive
integer k (the parameter) and output an equivalent instance where the size of the new instance
and the new parameter are both bounded by some function g(k). The new instance is called a
g(k) kernel for the problem. If g(k) is a polynomial in k then we say that the problem admits
polynomial kernels. The girth of a graph G is the length of a shortest cycle in G. It turns out that
Connected Dominating Set is “hard” on graphs with small cycles, and becomes progressively
easier as the girth increases. More specifically, we obtain the following interesting trichotomy:
Connected Dominating Set

does not have a kernel of any size on graphs of girth 3 or 4 (since the problem is W[2]-hard);
admits a g(k) kernel, where g(k) is kO(k), on graphs of girth 5 or 6 but has no polynomial
kernel (unless the Polynomial Hierarchy (PH) collapses to the third level) on these graphs;
has a cubic (O(k3)) kernel on graphs of girth at least 7.

While there is a large and growing collection of parameterized complexity results available for
problems on graph classes characterized by excluded minors, our results add to the very few
known in the field for graph classes characterized by excluded subgraphs.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.96

1 Introduction

In the Dominating Set (DS) problem, we are given a graph G and a non-negative integer
k, and the question is whether G contains a set of k vertices whose closed neighborhood
contains all the vertices of G. In the connected variant Connected Dominating Set
(CDS), we also demand that the subgraph induced by the dominating set be connected. DS
and CDS, together with their numerous variants, are two of the most well-studied problems
in algorithms and combinatorics [22]. A significant part of the algorithmic study of these
NP-complete problems has focused on the design of parameterized algorithms. Informally, a
parameterization of a problem assigns an integer k to each input instance and a parameterized
problem is fixed-parameter tractable (FPT) if there is an algorithm that solves the problem
in time f(k) · |I|O(1), where |I| is the size of the input and f is an arbitrary computable
function that depends only on the parameter k. CDS is W[2]-complete on general graphs and
therefore it cannot be solved by a parameterized algorithm, unless an unlikely collapse occurs
in the W hierarchy (see [15, 16, 27]). However, there are interesting graph classes where
FPT algorithms do exist for the Dominating Set problem. The project of widening the

© Neeldhara Misra, Geevarghese Philip, Venkatesh Raman, Saket Saurabh;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 96–107

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.96
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Misra, Philip, Raman, Saurabh 97

horizon where such algorithms exist spawned a multitude of ideas that made DS and CDS the
testbed for some of the most cutting-edge techniques of parameterized algorithm design. For
example, the initial study of parameterized subexponential algorithms for DS on planar graphs
[1, 10, 18] resulted in the creation of bidimensionality theory which characterizes a broad
range of graph problems that admit efficient approximation schemes and/or fixed-parameter
algorithms on a broad range of graphs [11, 12, 14].

Kernelization is a rapidly growing sub-area of parameterized complexity. A parameterized
problem is said to admit a polynomial kernel if there is a polynomial time algorithm, called
a kernelization algorithm, that reduces the input instance down to an instance with size
bounded by a polynomial p(k) in the parameter k, while preserving the answer. This reduced
instance is called a p(k) kernel for the problem. If p(k) = O(k), then we call it a linear
kernel. One of the first results on linear kernels is the celebrated work of Alber, Fellows, and
Niedermeier on DS, on planar graphs [2]. This work spurred the interest to prove polynomial
(preferably linear) kernels for other parameterized problems. The result from [2] (see also [8])
has been extended to much more general graph classes. More recently, Bodlaender et al. [5]
and Fomin et al. [17] obtained algorithmic meta-kernelization results which show that a
multitude of problems expressible in a certain logic (or are bidimensional) admit linear
kernels on (apex) H-minor free graphs.

Most of the kernelization results mentioned above are on graph classes excluding a
fixed graph as a minor. While there have been a lot of results obtained in the realm of
parameterized algorithms on graph classes excluding some graph as a minor, there have only
been a handful of such results on graph classes that are defined by excluding a fixed graph
as a subgraph. The first result of this kind was obtained by Raman and Saurabh [29] who
showed that DS and several of its variants are FPT on any class of graphs that forbids “short”
cycles — cycles of length 4. This can equivalently be thought of as excluding a K2,2, the
complete bipartite graph where each part has size exactly 2. Philip et al. [28] generalized
this result and showed that DS remains FPT on Ki,j-free graphs for any fixed i and j, and in
fact has a polynomial kernel of size kh where h is a constant that depends on i and j. It is a
corollary of this result that the DS problem has polynomial kernels on graphs of bounded
degeneracy – a class which includes graphs defined by excluding a fixed graph H as a minor.
Alon and Gutner had shown previously that DS has a kernel of size O(kh) on H-minor free
graphs, where the constant h depends on the excluded graph H [3, 21]. Ki,j-free graphs
remain the largest class of graphs for which DS is currently known to have a polynomial sized
kernel and is fixed-parameter tractable.

In this paper, we study the effect of girth on the kernelization complexity of CDS. Typically
the parameterized (or other) complexity of connected variants of a problem tend to be much
more than that of the problem itself. For example, Vertex Cover has a 2k-sized vertex
kernel and an efficient fixed-parameter tractable algorithm [27], and its connected variant
is known not to have a polynomial sized kernel unless the Polynomial Hierarchy collapses
to the third level(which is widely believed to be unlikely) [13]. Similarly, while Feedback
Vertex Set has an O∗(3.83k) FPT algorithm [7], the best known FPT algorithm for its
connected variant has an O∗(ck) running time [25] where c is more than 23.

The parameterized complexity of CDS has been extensively investigated, and many results
are known. Thus, it is known that CDS is W[2]-hard on general graphs [15], has a linear kernel
on planar, or more generally, on apex-minor-free graphs [17, 20, 24], and is FPT on graphs of
bounded degeneracy [19]. CDS is also unlikely to have polynomial sized kernels on graphs
of bounded degeneracy [9]. We obtain the complete kernelization complexity landscape for
the CDS problem based on the girth of the problem instance. More precisely, we show that

FSTTCS 2010

98 Connected Dominating Set : Girth and Kernelization Complexity

Connected Dominating Set
1. is W[2]-hard on graphs of girth 3 or 4, and hence does not have a kernel of any size on

these graphs unless FPT = W [2];
2. has an FPT algorithm that runs in time kO(k)nO(1) on graphs of girth 5 or 6, and hence

has a kernel of size kO(k) on these graphs;
3. has no polynomial kernel (unless PH collapses to the third level) on graphs of girth 5 or

6, and,
4. has a cubic (O(k3)) kernel on graphs of girth at least 7.
The first result follows directly from a construction in [29], and the second and fourth
results are obtained using nontrivial extensions of techniques from [29]. The main technical
contribution of this paper is the third result, to obtain which we introduce an intermediate,
seemingly unrelated problem (FCC), show that FCC has no polynomial kernels (unless PH
collapses to the third level) using the recent kernel lower bound machinery developed by
Bodlaender et al. [4], and then provide a parameter-preserving reduction [6] from FCC to CDS.

2 Preliminaries

We use V (G) and to E(G) denote, respectively, the vertex and edge sets of graph G. A graph
H is a subgraph ofG if V (H) ⊆ V (G) and E(H) ⊆ E(G). The subgraphH is called an induced
subgraph (induced by the vertex set V (H)) of G if E(H) = {{u, v} ∈ E(G) | u, v ∈ V (H)}.
For a subset S ⊆ V (G) the subgraph of G induced by S is denoted by G[S], and we use
G \ S to denote the subgraph induced by V (G) \ S. The open-neighborhood of a vertex v in
G, denoted N(v), is the set of all vertices that are adjacent to v in G. The elements of N(v)
are said to be the neighbors of v, and N [v] = N(v) ∪ {v} is called the closed neighborhood
of v. For a set of vertices X ⊆ V (G), the open and closed neighborhoods of X are defined,
respectively, as N(X) =

⋃
u∈X N(u) \ X and N [X] = N(X) ∪ X. A vertex v ∈ V (G) is

said to be a pendant vertex of G if |N(v)| = 1. The girth of a graph is the size (number of
vertices) of the smallest cycle in the graph. We use Gr to denote the class of all graphs with
girth at least r ∈ N.

A dominating set of graph G is a vertex-subset S ⊆ V (G) such that for each u ∈ V (G)\S
there exists v ∈ S such that {u, v} ∈ E(G). Given a graph G and A,B ⊆ V (G), we say that
A dominates B if every vertex in B \A is adjacent in G to some vertex in A. A connected
dominating set of a graph G = (V,E) is a set S ⊆ V of vertices of G such that G[S] is
connected and S is a dominating set of G. To describe the running times of algorithms
we sometimes use the O∗ notation. The O∗ notation suppresses polynomial factors in the
expression.

A parameterized problem Π is a subset of Γ∗×N, where Γ is a finite alphabet. An instance
of a parameterized problem is a tuple (x, k), where k is called the parameter. A central
notion in parameterized complexity is fixed-parameter tractability (FPT) which means, for a
given instance (x, k), decidability in time O(f(k) · p(|x|)), where f is an arbitrary function
of k and p is a polynomial. The notion of kernelization is formally defined as follows.

I Definition 1. [Kernelization, Kernel] [16, 27] A kernelization algorithm for a parame-
terized problem Π ⊆ Σ∗ × N is an algorithm that, given (x, k) ∈ Σ∗ × N, outputs, in time
polynomial in |x|+k, a pair (x′, k′) ∈ Σ∗×N such that (1) (x, k) ∈ Π if and only if (x′, k′) ∈ Π
and (2) |x′|, k′ ≤ g(k), where g is some computable function. The output instance x′ is called
the kernel, and the function g is called the size of the kernel. If g(k) = kO(1) then we say
that Π admits a polynomial kernel.

Misra, Philip, Raman, Saurabh 99

3 On Graphs of Girth 3 and 4 : W[2]-Hardness

In [29, Theorem 1], it is shown that the closely related DS problem is W[2]-hard on graphs
of girth 4. Their construction, reproduced below for completeness, suffices to show that CDS
is W[2]-hard on graphs of girth 4:

I Theorem 2. CDS is W[2]-hard on graphs of girth 3 and on graphs of girth 4.

Proof. Given an instance (G, k) of DS, we construct a bipartite graph H. We take two copies
of V (G) call it V1 = {u1 | u ∈ V (G)} and V2 = {u2 | u ∈ V (G)}. If there is an edge {u, v}
in E, then we add the edges {u1, v2} and {v1, u2} to H. We also include edges of the form
{u1, u2} for each u ∈ V (G). We create two new vertices z1 ∈ V1 and z2 ∈ V2, and add an
edge from every vertex in V1 to z2. This completes the construction of H.

The girth of the reduced instance H is at least 4 because H is bipartite, and H has girth
exactly 4 because the reduction takes an edge in the original instance G to a cycle of length 4 in
H. IfG has a dominating set S of size at most k, then S1 = {s1 ∈ V1 | s ∈ S} and the vertex z2
together form a connected dominating set of H of size at most k+1. For the reverse direction,
observe that z2 is present in any minimal connected dominating set of H. If D′ is a connected
dominating set of H of size at most k + 1, then let D = {u | u ∈ V (G), u1 or u2 ∈ D′}. It
can easily be shown that D forms a dominating set of G of size at most k. It follows that
the CDS problem restricted to graphs of girth 4 is W[2]-hard.

To see that CDS is W[2]-hard on graphs of girth 3 as well, add a new vertex z3 and the two
edges {z2, z3}, {z1, z3} to H to form a triangle so that H has girth 3. The reduced instance
is (H, k+ 1). Essentially the same argument as above shows that this reduction is sound. J

4 On Graphs of girth 5 or More: kO(k) kernel or FPT

We now show that the CDS problem restricted to G5 is FPT with an algorithm that runs
in time kO(k)nO(1). A folklore theorem of parameterized complexity [27] states that for
any computable function f , if a parameterized problem has an FPT algorithm that runs
in time f(k)nO(1) on inputs of size n and parameter k, then the problem has a kernel of
size f(k). It follows that CDS restricted to G5 has a kernel of size kO(k). We show first that
a slightly more general problem is FPT on G5. Following [29], we define the Connected
RWB-Dominating Set (ColCDS) problem as:

Connected RWB-Dominating Set(ColCDS)
Input: A graph G = (V,E), and a positive integer k. The vertex set of G is parti-

tioned into three sets R,W,B of red, white, and blue vertices, respectively.
In addition, G has the following properties: (a) G has girth at least 5; (b)
every white vertex is the neighbor of some red vertex; (c) blue vertices have
no red neighbors; and (d) |R| ≤ k.

Parameter: k

Question: Does G have a connected dominating set of size at most k that contains all
the red vertices?

The semantics of the colors are similar to those in [29]: A red vertex is one which is
definitely present in the connected dominating set D that our algorithm is trying to construct.
A white vertex is one that is not yet in D but is known to be dominated by some vertex in
D. All the remaining vertices are those yet to be dominated and are colored blue.

FSTTCS 2010

100 Connected Dominating Set : Girth and Kernelization Complexity

We note that it is claimed in [29, Corollary 3] that CDS restricted to G5 has a kernel on
O(k3) vertices, and hence is fixed-parameter tractable. But the argument that they present
is incorrect; in fact, as we show later (Theorem 13), CDS restricted to G5 cannot have any
polynomial-sized kernel unless the Polynomial Hierarchy collapses to the third level. The
error in their argument is that they assume that the reduction rules they used for DS also
work for CDS — but rules like deleting a white vertex and edges between white vertices do not
apply to CDS. This is because such vertices and edges may be needed to provide connectivity
to a dominating set. However, the fixed-parameter tractability result still holds, as we prove
by a different argument in the following lemma.

I Lemma 3. ColCDS is FPT.

Observe that once we have Lemma 3, we can solve the CDS problem on G5 by simply coloring
all vertices blue and then solving the ColCDS problem using Lemma 3. Hence we have

I Theorem 4. CDS is FPT on graphs of girth at least 5.

Let (G, k) be an instance of ColCDS. If a vertex v in G has more than k neighbors, and
v is not in a dominating set S of G of size at most k, then there is a vertex u ∈ S that
dominates at least two vertices x, y ∈ N(v). Then u, v, x, y form a cycle of length at most 4,
a contradiction. So we have:

I Lemma 5. Let (G, k) be an instance of ColCDS. If a vertex v in G has more than k

neighbors, then v is present in every dominating set of G of size at most k.

Proof of Lemma 3. Let (G, k) be an instance of ColCDS and S be the set of white and blue
vertices in G that have at least k + 1 neighbors. By Lemma 5 we know that every vertex of
S is part of every dominating set of G size at most k whether connected or otherwise. Thus
if |R ∪ S| > k then G does not have any connected dominating set of size at most k that
contains all the vertices of R and hence we return NO. So we assume that |R ∪ S| ≤ k.

We first obtain an equivalent instance of ColCDS by coloring all the vertices of S red
and all its blue neighbors white. Now we bound the size of the set B. Observe that in the
equivalent instance every blue or white vertex has at most k neighbors and no red vertex
has any blue neighbor. Thus the remaining k′ = k − |R| white and blue vertices can only
dominate at most k′(k + 1) blue vertices and hence |B| ≤ k2 + k if (G, k) is a YES instance
of the problem. So if |B| > k2 + k, then we return NO.

Let W ′ be the set of white vertices that are neighbors to blue vertices. From Lemma 5,
|W ′| ≤ |B|k ≤ k3 + k2. Observe that every connected dominating set D of G of size at most
k containing all the red vertices contains a minimal dominating set D′ of size at most k such
that D′ ⊆ B∪W ′∪R. This is because all the neighbors of B are in W ′. We use this property
to check whether G has a connected dominating set D of size at most k that contains all
the red vertices. We enumerate all the minimal dominating sets D′ of G of size at most k
such that R ⊆ D′ ⊆ B ∪W ′ ∪ R. Given such a set D′, we only need to check whether we
can make it connected by adding at most k − |D′| vertices. To do so we use an algorithm for
the Steiner Tree problem. In the Steiner Tree problem we are given a graph G and a
subset T of the vertex set called the terminal set, and the objective is to find a smallest set of
vertices N ⊆ V (G) \ T such that G[T ∪N] is connected. Nederlof [26] gave an algorithm for
Steiner Tree that runs in time 2tnO(1) where t = |T |. Given D′ we use this algorithm and
check whether we can make D′ connected by adding at most k − |D′| vertices. If there is at
least one D′ such that we can connect it by adding at most k − |D′| vertices, then we return
YES, else we return NO. Note that ` = |B ∪W ′ ∪ R| ≤ (k2 + k) + (k3 + k2) + k = O(k3).

Misra, Philip, Raman, Saurabh 101

Thus the running time of our algorithm is bounded by O∗(
∑k

i=|R|
(

`
i

)
· 2i) = O∗(2kk3k). This

concludes the proof of theorem. J

5 On Graphs of girth 5 and 6: No Polynomial Kernels

In the last section we saw that CDS is FPT on graphs with girth at least 5, with an algorithm
of running time kO(k)nO(1). This immediately implies that the problem has a kernel of size
kO(k)[27]. A natural question to ask is whether CDS has polynomial kernels on these graph
classes. We now show that the Connected Dominating Set problem restricted to graphs
of girth 5 or 6 does not have a polynomial kernel unless the Polynomial Hierarchy collapses
to the third level.

5.1 Known Lower Bound Machinery
To prove our lower bound, we need a few notions and results from the recently developed
theory of kernel lower bounds [4, 6, 13]. We use a notion of reductions, similar in spirit to
those used in classical complexity to show NP-hardness results, to show this kernelization
lower bound. We recall the required definitions and theorems:

I Definition 6. [Derived Classical Problem] [6] Let Π ⊆ Σ∗ × N be a parameterized
problem, and let 1 /∈ Σ be a new symbol. We define the derived classical problem associated
with Π to be

{
x1k| (x, k) ∈ Π

}
.

I Definition 7. [Composition Algorithm, Compositional Problem] [4] A composition
algorithm for a parameterized problem Π ⊆ Σ∗ × N is an algorithm that takes as input a
sequence 〈(x1, k), (x2, k), . . . , (xt, k)〉 where each (xi, k) ∈ Σ∗×N, runs in time polynomial in∑t

i=1 |xi|+ k, and outputs an instance (y, k′) ∈ Σ∗ × N where (y, k′) ∈ L ⇐⇒ (xi, k) ∈ L
for some 1 ≤ i ≤ t, and k′ is polynomial in k. We say that a parameterized problem is
compositional if it has a composition algorithm.

I Theorem 8. [4, Lemmas 1 and 2] Let L be a compositional parameterized problem whose
derived classical problem is NP-complete. If L has a polynomial kernel, then the Polynomial
Hierarchy collapses to the third level.

I Definition 9. [6] Let P and Q be parameterized problems. We say that P is polynomial
parameter reducible to Q, written P ≤ppt Q, if there exists a polynomial time computable
function f : Σ∗ ×N→ Σ∗ ×N, and a polynomial p : N→ N, and for all x ∈ Σ∗ and k ∈ N, if
f ((x, k)) = (x′, k′), then (x, k) ∈ P if and only if (x′, k′) ∈ Q, and k′ ≤ p (k). We call f a
polynomial parameter transformation (or a PPT) from P to Q.

I Theorem 10. [6, Theorem 3] Let P and Q be parameterized problems whose derived
classical problems are P c, Qc, respectively. Let P c be NP-complete, and Qc ∈ NP. Suppose
there exists a PPT from P to Q. Then, if Q has a polynomial kernel, then P also has a
polynomial kernel.

5.2 Kernel lower bounds
We begin our reductions by defining the Fair Connected Colors problem, which is a
variant of the Connected Colors problem recently introduced by Cygan et al. [9]:

FSTTCS 2010

102 Connected Dominating Set : Girth and Kernelization Complexity

Figure 1 Reduction from CNF SAT to Fair Connected Colors. The color of each vertex is
indicated within angled brackets.

Fair Connected Colors
Input: A graph G, where the vertices V (G) are properly colored with k colors in

such a way that all neighbors of each vertex have distinct colors.
Parameter: k

Question: Does G contain a tree T on k vertices as a subgraph, where each vertex of
T has a distinct color?

This problem differs from Connected Colors in that for Connected Colors, the
given graph is arbitrarily colored with k colors. For Fair Connected Colors we restrict
the coloring to be proper and fair (all neighbors of a vertex get different colors) as we need
this restriction for the reduction we give in Theorem 13.

I Lemma 11. The Fair Connected Colors problem is NP-complete.

Proof. A tree on k vertices with all its vertices colored with distinct colors is a polynomial-
time verifiable witness to a YES-instance of the problem, and so Fair Connected Colors
is in NP. To show hardness, we reduce from the NP-complete CNF SAT problem [23]. Let
φ be a Boolean formula in CNF on the variables x1, . . . , xn and clauses C1, . . . , Cm. We
assume without loss of generality that there is no clause that contains both a variable and its
negation. We construct a graph G on m+ 2n+ 3 vertices colored using m+ n+ 3 colors as
follows: We define the vertex set to be V (G) := {r, a, b, x1, . . . , xn, x1, . . . , xn, C1, . . . , Cm}.
We add the edges {r, a}, {r, b} and {a, x1}, {a, x2}, . . . , {a, xn}, {b, x1}, {b, x2}, . . . , {b, xn};
and for each vertex Ci, we add an edge from Ci to vertex y ∈ {x1, . . . , xn, x1, . . . , xn} if and
only if the literal y appears in clause Ci in the formula φ. This completes the construction
of the graph G. We assign the colors 0,+,− to vertices r, a, b, respectively. For 1 ≤ i ≤ n,
we assign color i to vertices xi and xi, and for 1 ≤ j ≤ m, we assign color n+ j to vertex Cj .
This completes the construction; see Figure 1.

Note that the vertices of G are properly colored with n + m + 3 colors in such a way
that no vertex v is adjacent to two other vertices u,w where u and w are of the same color.
The instance of Fair Connected Colors is (G,n+m+ 3). It remains to show that φ is
satisfiable if and only if G contains an m+ n+ 3-vertex tree as a subgraph whose vertices
are all colored distinctly.

Suppose φ is satisfiable, and let S be the set of literals (negative as well as positive) that
are set to true by a satisfying assignment A of φ. Notice that A sets at least one literal in
each clause of φ to true. Also, for each variable xi, A sets exactly one of xi, xi to true. Thus
each vertex Ci; 1 ≤ i ≤ m is adjacent to at least one of vertex in S, and S contains exactly
one vertex with each of the colors {1, 2, . . . , n}. It follows that the subgraph H of G induced
on the vertex set {r, a, b, C1, C2, . . . , Cm} ∪ S is connected and has one vertex from each of

Misra, Philip, Raman, Saurabh 103

the n+m+ 3 colors {0,+,−, 1, 2, . . . , n+m}. Therefore G contains an m+ n+ 3-vertex
tree as a subgraph whose vertices are all colored distinctly: indeed, any spanning tree of H
serves as a witness.

Now suppose G contains an m+ n+ 3-vertex tree T as a subgraph whose vertices are all
colored distinctly. Then the vertex set V (T) of T must consist of {r, a, b, C1, . . . , Cm}, and
exactly n vertices from the set X = ∪n

i=1{xi, xi} where exactly one vertex is chosen from
{xi, xi}; 1 ≤ i ≤ n. The unique path from any vertex Ci; 1 ≤ i ≤ n to r in T must use a
vertex in S = X ∩ V (T). Consider the assignment A of the formula φ which sets to true
exactly those literals that appear in S. Since |S ∩ {xi, xi}| = 1 for 1 ≤ i ≤ n, A is a valid
assignment. Since each vertex Ci is adjacent to at least one vertex in S, the assignment
satisfies every clause in φ, and so φ is satisfiable. J

The Fair Connected Colors problem is easily seen to be compositional: taking the
disjoint union of input graphs suffices for the composition. That is, given k colored graph
G1, . . . , Gt, return ∪t

i=1Gi and k. Hence from the Lemma 11 and Theorem 8 we have:

I Lemma 12. The Fair Connected Colors problem does not have a polynomial kernel
unless the Polynomial Hierarchy collapses to the third level.

We now prove our main result by giving a polynomial parameter transformation (PPT)
from Fair Connected Colors to CDS on graphs with graph 5 or 6.

I Theorem 13. The CDS problem restricted to graphs of girth 5 or 6 does not admit a
polynomial kernel unless the Polynomial Hierarchy collapses to the third level.

Proof. Note that by Theorem 10 and Lemma 12 it is sufficient to show that there is a
polynomial parameter transformation (PPT) from Fair Connected Colors to each of
these problems. We first describe a PPT from Fair Connected Colors to CDS in graphs of
girth six. Given an instance (G, k) of Fair Connected Colors, we construct an instance
(H, k′) of CDS where H has girth six and k′ is bounded by a polynomial in k.

We start with a copy of G. For each color class (set of vertices of the same color) Ci of
G, we add a new vertex vi adjacent to all vertices of Ci, and a new vertex gi adjacent to vi.
The vertex gi is essentially a guard vertex that will force vi to be selected in our solution.
We add a new vertex uv for each edge {u, v} of G, and replace the edge {u, v} by two new
edges {u, uv}, {uv, v}. That is, we split each edge of G once. For every two color classes
Ci, Cj ; i < j of G,

1. We add two new vertices vij and gij and the edge {vij , gij}.
2. For each edge {u, v} in G where u ∈ Ci, v ∈ Cj , we add the edge {uv, vij} where uv is the

new vertex that splits {u, v}.
3. For each vertex u ∈ Ci that has no neighbor in Cj , we add a new vertex uij and the edges
{u, uij}, {uij , vij} where vij is the vertex added in step 1.

4. Symmetrically, for each vertex u ∈ Cj that has no neighbor in Ci, we add a new vertex
uji and the edges {u, uji}, {uji, vij}.

This completes the construction of H; see Figure 2. For later reference, let S be the set
of vertices of the form uv introduced in H to split the edges of G, C = C1 ∪ · · · ∪ Ck,
X = {gi; 1 ≤ i ≤ k}, Y = {vij ∈ V (H)}, Z = {v1, v2, . . . , vk}, W = {gij ; 1 ≤ i < j ≤k}, and
let U be the set of all new vertices added in steps (3) and (4) above.

Observe that H is bipartite, with one part being A = C ∪X ∪ Y . Hence every cycle in
H is of even length, and the smallest cycle has length at least 4. Also, H contains a 4-cycle
if and only if there are two vertices in A which have two common neighbors in V (H) \ A.

FSTTCS 2010

104 Connected Dominating Set : Girth and Kernelization Complexity

Figure 2 Reduction from Fair Connected Colors to Connected Dominating Set.

But no two vertices in A can have two common neighbors: the vertices in X are all of degree
exactly one, and so they are not part of any cycle, and in each of the remaining ways of
forming a pair a, b of vertices from A, it is easy to verify that a and b have at most one
common neighbor. It follows that H does not contain a 4-cycle, and so the smallest cycle in
H has length at least 6. To see that the girth of H is indeed 6, note that we can assume
without loss of generality that C1 contains at least two vertices, say a, b. Observe that there
is a path of length two from a to v12, and a path of length two from v12 to b. These paths
meet only at v12, and together with the two edges {b, v1}, {v1, a} they form a cycle of length
6. Thus let (H, k2 + k) be the reduced instance. Now we argue that the reduction is indeed
sound.

Forward direction. Suppose G contains a tree T on k vertices, where each vertex of
T has a distinct color. Let V (T) = {t1, t2, . . . , tk}, where ti ∈ Ci for all i. Let T ′ be the
“corresponding” tree in H: the vertex set of T ′ consists of V (T) and all the new vertices in H
that split the edges of T , and the edge set consists of all the new edges formed by splitting
the edges of T . Thus T ′ is a tree on 2k − 1 vertices. We now add more vertices and edges to
T ′ to obtain a tree on k2 + k vertices that dominates all of H.

For 1 ≤ i ≤ k, we add the vertex vi and the edge {vi, ti} to T ′. This adds k vertices.
For 1 ≤ i < j ≤ k, if the vertex titj is present in T ′, then we add the vertex vij and the
edge {titj , vij} to T ′. This adds k − 1 vertices to T ′. Otherwise, let a = ti. We add the
vertices aij , vij and the edges {a, aij}, {aij , vij} to T ′. This adds two vertices for each
“non-edge” in T , for a total of 2(

(
k
2
)
− (k − 1)) new vertices added to T ′.

This completes the construction of T ′. Note that T ′ is a tree on 4k−2+2(
(

k
2
)
− (k−1)) =

k2 + k vertices. In H, (1) the set {vi | 1 ≤ i ≤ k} ⊆ V (T ′) dominates all the vertices copied
over from G, and the new vertices {g1, . . . , gk}, and (2) the set {vij | 1 ≤ i < j ≤ k} ⊆ V (T ′)
dominates all the other newly added vertices. Thus T ′ is a connected dominating set of H
on k2 + k vertices.

Reverse direction. Let D be a minimal connected dominating set of H with 1 <

|D| ≤ k2 + k. Observe first that vertices in X ∪W are all pendant vertices, and all of their
neighbors have degree at least 2. So N(X ∪W) = (Y ∪ Z) ⊆ D, and since D is minimal,
D ∩ (X ∪W) = ∅. Now since G[D] is connected and |D| ≥ 2, at least one neighbor of each
vertex in D must also be in D. Observe that for any two vertices u, v ∈ Y ∪Z, N [u]∩N [v] = ∅,
and so each vertex in D can be the neighbor of at most one vertex in Y ∪ Z ⊆ D. Thus for
each vertex v ∈ Y ∪ Z, D contains at least one distinct vertex u ∈ (N(v) \ (Y ∪ Z)), and so
|D| ≥ 2|Y ∪Z| = 2(

(
k
2
)

+ k) = k2 + k. But |D| ≤ k2 + k by assumption, and so |D| = k2 + k.
Thus exactly one neighbor of each vertex in Y ∪ Z is in D. In particular, D contains exactly
one vertex from each set Ci; 1 ≤ i ≤ k. Further, D = (Y ∪ Z) ∪N(Y ∪ Z).

Misra, Philip, Raman, Saurabh 105

Let T1 be a spanning tree of H[D]. From the above arguments we see that all vertices in
Y ∪ Z are leaves in T1, and so T2 = T1 \ (Y ∪ Z) is also a tree. Observe that all the vertices
in V (T2) ∩ U are leaves in T2, and so T3 = T2 \ U is also a tree. Observe that T3 consists
of (1) exactly one vertex from each set Ci; 1 ≤ i ≤ k, and (2) some vertices from the set
S. Let T4 be the tree obtained from T3 by removing all those vertices in S that are leaves
in T3. Note that each vertex in R = S ∩ V (T4) has degree exactly two in T4, and no two
vertices in R are adjacent in T4. So the graph T obtained from T4 by replacing each vertex
u ∈ R with an edge between the two neighbors of u is also a tree. From the construction, T
is (isomorphic to) a subgraph of G. But T is a tree on k vertices where each vertex has a
distinct color, and so (G, k) is a YES instance of Fair Connected Colors.

A small modification to the above reduction suffices to show that the Connected
Dominating Set problem has no polynomial kernel in graphs of girth 5 as well, unless PH
collapses: Add three new vertices a, b, c and the four new edges required to complete the
5-cycle v1, a, b, c, g1 so that H has girth 5. The reduced instance is (H, k2 + k + 2). In the
argument to show that this reduction is sound, both the directions go through exactly as
before once we observe that exactly one of the sets {v1, a, g1}, {v1, a, b}, {v1, g1, c} is contained
in any minimal connected dominating set of H. J

6 On Graphs of girth 7 or More: A Cubic Kernel

We now show that CDS has a cubic kernel on graphs of girth at least 7. As before, our
reduction rules color the vertices of G red, white, and blue. Red vertices are those that must
necessarily be in any connected dominating set of G of size at most k. White vertices are
those non-red vertices that are dominated by the red vertices, and blue vertices are the rest.
Initially we color every vertex blue. We have the following four reduction rules.
(R1) Let S be the set of blue vertices in G that have at least k+ 1 blue neighbors. Color all

the vertices of S red and all the blue neighbors in N(S) white.
(R2) If |R| > k or |B| > k2 + k, then say NO and stop.
(R3) If G contains an isolated blue vertex, then say NO and stop.
(R4) If G contains a pendant blue or white vertex u adjacent to a vertex v, then remove u

from G. If v is not red, then color v red and color all the remaining blue neighbors of v
white.

Note that the class G7 is a subclass of G5. Hence the correctness of reduction rule (R1)
is justified by Lemma 5. The bound obtained on |B| in the proof of Lemma 3 justifies
reduction rule (R2). Rule (R3) is justified as we need to include the isolated blue vertex
in the dominating set (to dominate that vertex), but as it is isolated the dominating set
will not induce a connected graph. Rule (R4) is justified as without loss of generality the
vertex v can be in the minimal dominating set we are constructing (as u or v must be in any
minimal dominating set to dominate u, and u is a pendant vertex).

From Rule (R2) we have that |R| ≤ k and |B| ≤ k2 + k. Now using the two additional
rules and the fact that G has no cycles of length 5 or 6, we bound |W |.

I Lemma 14. Let G be reduced with respect to the reduction rules (R1) to (R4) and let (G, k)
be a YES instance of the Connected Dominating Set problem. Then |W | ≤ k3 + 5

2k
2− 3

2k.

Proof. We divide W into three parts, W = WB ∪WR ∪WW , where

WB is the set of all white vertices that have at least one blue neighbor,
WR is the set of all white vertices in W \WB that have only red neighbors, and
WW is the set of all white vertices W \WB that have at least one white neighbor.

FSTTCS 2010

106 Connected Dominating Set : Girth and Kernelization Complexity

We now bound each of these sets.
By rule (R1) we know that any blue vertex v has degree at most k and hence can have at

most k white neighbors. Thus |WB | ≤ k|B| ≤ k(k2 + k).
Since G is reduced with respect to rule (R4) each vertex in WR has at least two red

neighbors. From this and the fact that no two vertices have more than one common neighbor,
it follows that |WR| ≤

(|R|
2
)
≤
(

k
2
)
. Note that we cannot just remove the vertices in WR

from G, since they could be useful in providing connectivity in some smallest connected
dominating set.

Let EW be the set of all edges e ∈ E where both end vertices of e are white. Each
white vertex is adjacent to some red vertex. For any pair of red vertices x, y, there is at
most one edge (u, v) ∈ EW such that u is adjacent to x and v is adjacent to y. For, if there
is another edge (u′, v′) ∈ EW where u′ is adjacent to x and v′ is adjacent to y, then the
vertices x, y, u, v, u′, v′ form a cycle of length at most 6, a contradiction. It follows that
|EW | ≤

(|R|
2
)
≤
(

k
2
)
, and so |WW | ≤ 2|EW | ≤ k2 − k.

Putting all the bounds together, if G has a connected dominating set of size at most k,
then the number of white vertices in G is at most k3 + 5

2k
2 − 3

2k. J

To obtain an (uncolored) instance of CDS, we now attach a new pendant vertex to each
red vertex, and remove all colors to obtain an instance (G′, k). This last step essentially
“forces” all red vertices to be picked in any dominating set of G′ of size at most k; it is easy
to verify that this step is sound. From Lemma 14 and the bounds |B| ≤ k2 + k and |R| ≤ k,
we get

I Theorem 15. The Connected Dominating Set problem has a kernel on at most
k3 + 7

2k
2 + 3k

2 = O(k3) vertices on the class of graphs of girth at least 7.

7 Conclusion

In this paper we studied the effect of excluding short cycles on CDS from the kernelization
perspective. We obtained a very diverse kernelization landscape. The problem became
progressively easier as the size of the girth increased with no kernels to polynomial kernels.
It would be interesting to study other problems and excluding some other subgraphs. An
interesting problem in this direction is whether CDS is FPT on claw-free graphs.

References
1 J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. Fixed parame-

ter algorithms for dominating set and related problems on planar graphs. Algorithmica,
33(4):461–493, 2002.

2 J. Alber, M. R. Fellows, and R. Niedermeier. Polynomial-time data reduction for Dominat-
ing Set. Journal of the ACM, 51(3):363–384, 2004.

3 N. Alon and S. Gutner. Kernels for the Dominating Set Problem on Graphs with an
Excluded Minor. Technical Report TR08-066, ECCC, 2008.

4 H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems without
polynomial kernels. Journal of Computer and System Sciences, 75(8):423–434, 2009.

5 H. L. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, and D. M.
Thilikos. (Meta) Kernelization. In Proceedings of FOCS 2009, pages 629–638. IEEE, 2009.

6 H. L. Bodlaender, S. Thomassé, and A. Yeo. Kernel Bounds for Disjoint Cycles and Disjoint
Paths. In Proceedings of ESA 2009, volume 5757 of LNCS, pages 635–646, 2009.

Misra, Philip, Raman, Saurabh 107

7 Y. Cao, J. Chen, and Y. Liu. On Feedback Vertex Set: New Measure and New Structures.
In Proceedings of SWAT 2010, volume 6139 of LNCS, pages 93–104, 2010.

8 J. Chen, H. Fernau, I. A. Kanj, and G. Xia. Parametric Duality and Kernelization: Lower
Bounds and Upper Bounds on Kernel Size. SIAM Journal on Computing, 37(4):1077–1106,
2007.

9 M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. Wojtaszczyk. Kernelization hardness of
connectivity problems in d-degenerate graphs. Accepted at WG 2010.

10 E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos. Fixed-parameter algo-
rithms for (k, r)-center in planar graphs and map graphs. ACM Transactions on Algorithms,
1(1):33–47, 2005.

11 E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos. Subexponential parame-
terized algorithms on bounded-genus graphs and H-minor-free graphs. Journal of the ACM,
52(6):866–893, 2005.

12 E. D. Demaine and M. Hajiaghayi. The Bidimensionality Theory and Its Algorithmic
Applications. The Computer Journal, 51(3):332–337, 2007.

13 M. Dom, D. Lokshtanov, and S. Saurabh. Incompressibility through Colors and IDs. In
Proceedings of ICALP 2009, volume 5555 of LNCS, pages 378–389. Springer, 2009.

14 F. Dorn, F. V. Fomin, D. Lokshtanov, V. Raman, and S. Saurabh. Beyond Bidimensionality:
Parameterized Subexponential Algorithms on Directed Graphs. In Proceedings of STACS
2010, volume 5 of LIPIcs, pages 251–262, 2010.

15 R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
16 J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag, 2006.
17 F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Bidimensionality and Kernels.

In Proceedings of SODA 2010, pages 503–510, 2010.
18 F. V. Fomin and D. M. Thilikos. Dominating Sets in Planar Graphs: Branch-Width and

Exponential Speed-Up. SIAM Journal on Computing, 36(2):281–309, 2006.
19 P. A. Golovach and Y. Villanger. Parameterized Complexity for Domination Problems on

Degenerate Graphs. In Proceedings of WG 2008, volume 5344 of LNCS, 2008.
20 Q. Gu and N. Imani. Connectivity Is Not a Limit for Kernelization: Planar Connected

Dominating Set. In Proceedings of LATIN 2010, volume 6034 of LNCS, pages 26–37, 2010.
21 S. Gutner. Polynomial Kernels and Faster Algorithms for the Dominating Set Problem on

Graphs with an Excluded Minor. In Proceedings of IWPEC 2009, pages 246–257, 2009.
22 T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Fundamentals of Domination in Graphs.

CRC Press, 1998.
23 R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer

Communications, pages 85–103, 1972.
24 D. Lokshtanov, M. Mnich, and S. Saurabh. Linear Kernel for Planar Connected Dominating

Set. In Proceedings of TAMC 2009, volume 5532 of LNCS, pages 281–290, 2009.
25 N. Misra, G. Philip, V. Raman, S. Saurabh, and S. Sikdar. FPT Algorithms for Connected

Feedback Vertex Set. In Proceedings of WALCOM 2010, volume 5942 of LNCS, pages
269–280, 2010.

26 J. Nederlof. Fast Polynomial-Space Algorithms Using Möbius Inversion: Improving on
Steiner Tree and Related Problems. In Proceedings of ICALP 2009, 2009.

27 R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.
28 G. Philip, V. Raman, and S. Sikdar. Solving Dominating Set in Larger Classes of Graphs:

FPT Algorithms and Polynomial Kernels. In Proceedings of ESA 2009, volume 5757 of
LNCS, pages 694–705, 2009.

29 V. Raman and S. Saurabh. Short Cycles Make W-hard Problems Hard: FPT Algorithms
for W-hard Problems in Graphs with no Short Cycles. Algorithmica, 52(2):203–225, 2008.

FSTTCS 2010

One-Counter Stochastic Games
Tomáš Brázdil1, Václav Brožek2, and Kousha Etessami2

1 Faculty of Informatics, Masaryk University
Botanická 68a, 602 00, Brno, Czech Republic
xbrazdil@fi.muni.cz

2 School of Informatics, University of Edinburgh
10 Crichton Street, EH8 9AB, Edinburgh, United Kingdom
{kousha,vbrozek}@inf.ed.ac.uk

Abstract
We study the computational complexity of basic decision problems for one-counter simple stochas-
tic games (OC-SSGs), under various objectives. OC-SSGs are 2-player turn-based stochastic
games played on the transition graph of classic one-counter automata. We study primarily the
termination objective, where the goal of one player is to maximize the probability of reaching
counter value 0, while the other player wishes to avoid this. Partly motivated by the goal of
understanding termination objectives, we also study certain “limit” and “long run average” re-
ward objectives that are closely related to some well-studied objectives for stochastic games with
rewards. Examples of problems we address include: does player 1 have a strategy to ensure that
the counter eventually hits 0, i.e., terminates, almost surely, regardless of what player 2 does? Or
that the lim inf (or lim sup) counter value equals ∞ with a desired probability? Or that the long
run average reward is > 0 with desired probability? We show that the qualitative termination
problem for OC-SSGs is in NP ∩ coNP, and is in P-time for 1-player OC-SSGs, or equivalently
for one-counter Markov Decision Processes (OC-MDPs). Moreover, we show that quantitative
limit problems for OC-SSGs are in NP∩coNP, and are in P-time for 1-player OC-MDPs. Both
qualitative limit problems and qualitative termination problems for OC-SSGs are already at least
as hard as Condon’s quantitative decision problem for finite-state SSGs.

1998 ACM Subject Classification G.3; F.1.1; F.3.1

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.108

1 Introduction

There is a rich literature on the computational complexity of analyzing finite-state Markov
decision processes and stochastic games. In recent years, there has also been some research
done on the complexity of basic analysis problems for classes of finitely-presented but infinite-
state stochastic models and games whose transition graphs arise from decidable infinite-state
automata-theoretic models, including: context-free processes, one-counter processes, and
pushdown processes (see, e.g., [9]). It turns out that such stochastic automata-theoretic
models are intimately related to classic stochastic processes studied extensively in applied
probability theory, such as (multi-type-)branching processes and (quasi-)birth-death processes
(QBDs) (see [9, 8, 3]).

In this paper we continue this line of work by studying one-counter simple stochastic
games (OC-SSGs), which are turn-based 2-player zero-sum stochastic games on transition
graphs of classic one-counter automata. In more detail, an OC-SSG has a finite set of control
states, which are partitioned into three types: a set of random states, from where the next
transition is chosen according to a given probability distribution, and states belonging to one
of two players: Max or Min, from where the respective player chooses the next transition.

© Tomáš Brázdil and Václav Brožek and Kousha Etessami;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 108–119

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.108
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Brázdil, Brožek, Etessami 109

Transitions can change the state and can also change the value of the (unbounded) counter
by at most 1. If there are no control states belonging to Max (Min, respectively), then we call
the resulting 1-player OC-SSG a minimizing (maximizing, respectively) one-counter Markov
decision process (OC-MDP).

Fixing strategies for the two players yields a countable state Markov chain and thus a
probability space of infinite runs (trajectories). We focus in this paper on objectives that
can be described by a (measurable) set of runs, such that player Max wants to maximize,
and player Min wants to minimize, the probability of the objective. The central objective
studied in this paper is termination: starting at a given control state and a given counter
value j > 0, player Max (Min) wishes to maximize (minimize) the probability of eventually
hitting the counter value 0 (in any control state).

Different objectives give rise to different computational problems for OC-SSGs, aimed
at computing the value of the game, or optimal strategies, with respect to that objective.
From general known facts about stochastic games (e.g., Martin’s Blackwell determinacy
theorem [14]), it follows that the games we study are determined, meaning they have a value:
we can associate with each such game a value, ν, such that for every ε > 0, player Max has a
strategy that ensures the objective is satisfied with probability at least ν − ε regardless of
what player Min does, and likewise player Min has a strategy to ensure that the objective
is satisfied with probability at most ν + ε. In the case of termination objectives, the value
may be irrational even when the input data contains only rational probabilities, and this is
so even in the purely stochastic setting without any players, i.e., with only random control
states (see [8]).

We can classify analysis problems for OC-SSGs into two kinds: quantitative analyses:
“can the objective be achieved with probability at least/at most p” for a given p ∈ [0, 1]; or
qualitative analyses, which ask the same question but restricted to p ∈ {0, 1}. We are often
also interested in what kinds of strategies (e.g., memoryless, etc.) achieve these.

In a recent paper, [3], we studied one-player OC-SSGs, i.e., OC-MDPs, and obtained some
complexity results for them under qualitative termination objectives and some quantitative
limit objectives. The problems we studied included the qualitative termination problem
(is the maximum probability of termination = 1?) for maximizing OC-MDPs. We showed
that this problem is decidable in P-time. However, we left open the complexity of the same
problem for minimizing OC-MDPs (is the minimum probability of termination < 1?). One of
the main results of this paper is the following, which in particular resolves this open question:

I Theorem 1. (Qualitative termination) Given a OC-SSG, G, with the objective of
termination, and given an initial control state s and initial counter value j > 0, deciding
whether the value of the game is equal to 1 is in NP∩coNP. Furthermore, the same problem
is in P-time for 1-player OC-SSGs, i.e., for both maximizing and minimizing OC-MDPs.

Improving on this NP ∩ coNP upper bound for the qualitative termination problem for
OC-SSGs would require a breakthrough: we show that deciding whether the value of an OC-
SSG termination game is equal to 1 is already at least as hard as Condon’s [6] quantitative
reachability problem for finite-state simple stochastic games (Corollary 16). We do not
know a reduction in the other direction. We furthermore show that if the value is 1 for a
OC-SSG termination game, then Max has a simple kind of optimal strategy (memoryless,
counter-oblivious, and pure) that ensures termination with probability 1, regardless of Min’s
strategy. Similarly, if the value is less than 1, we show Min has a simple strategy (using
finite memory, linearly bounded in the number of control states) that ensures the probability
of termination is < 1− δ for some positive δ > 0, regardless of what Max does. We show
that such strategies for both players are computable in non-deterministic polynomial time

FSTTCS 2010

110 One-Counter Stochastic Games

for OC-SSGs, and in deterministic P-time for (both maximizing and minimizing) 1-player
OC-MDPs. We also observe that the analogous problem of deciding whether the value of a
OC-SSG termination game is 0 is in P, which follows easily by reduction to non-probabilistic
games.

OC-SSGs can be viewed as stochastic game extensions of Quasi-Birth-Death Processes
(QBDs) (see [8, 3]). QBDs are a heavily studied model in queuing theory and performance
evaluation (the counter keeps track of the number of jobs in a queue). It is very natural
to consider controlled and game extensions of such queuing theoretic models, thus allowing
for adversarial modeling of queues with unknown (non-deterministic) environments or with
other unknown aspects modeled non-deterministically. OC-SSGs with termination objectives
also subsume “solvency games”, a recently studied class of MDPs motivated by modeling of
a risk-averse investment scenario [1].

Due to the presence of an unbounded counter, an OC-SSG, G, formally describes a
stochastic game with a countably-infinite state space: a “configuration” or “state” of the
underlying stochastic game consists of a pair (s, j), where s is a control state of G and j
is the current counter value. However, it is easy to see that we can equivalently view G as
a finite-state simple stochastic game (SSG), H, with rewards as follows: H is played
on the finite-state transition graph obtained from that of G by simply ignoring the counter
values. Instead, every transition t of H is assigned a reward, r(t) ∈ {−1, 0, 1}, corresponding
to the effect that the transition t would have on the counter in G. Furthermore, when
emulating an OC-SSG using rewards, we can easily place rewards on states rather than
on transitions, by adding suitable auxiliary control states. Thus, w.l.o.g., we can assume
that OC-SSGs are presented as equivalent finite-state SSGs with a reward, r(s) ∈ {−1, 0, 1}
labeling each state s. A run of H, w, is an infinite sequence of states that is permitted by the
transition structure, and we denote the i-th state along the run w by w(i). The termination
objective for G, when the initial counter value is j > 0, can now be rephrased as the following
equivalent objective for H:

Term(j) := {w | w is a run of H such that there is m > 0 such that
∑m
i=0 r(w(i)) = −j} .

An important step toward our proof of Theorem 1 and related results, is to establish links
between this termination objective and the following limit objectives, which are of independent
interest. For z ∈ {−∞,∞}, and a comparison operator ∆ ∈ {>,<,=}, consider the following
objective:

LimInf (∆z) := {w | w is a run of H such that lim inf
n→∞

∑n
i=0 r(w(i)) ∆ z } .

We will show that if j is large enough (larger than the number of control states), then the game
value with respect to objective Term(j) and the game value with respect to LimInf (=−∞)
are either both equal to 1, or are both less than 1 (Lemma 14). We could also consider
the “sup” variant of these objectives, such as LimSup(=−∞), but these are redundant. For
example, by negating the sign of rewards, LimSup(=−∞) is “equivalent” to LimInf (=+∞).
Indeed, the only limit objectives we need to consider for SSGs are LimInf (=−∞) and
LimInf (=+∞), because the others are either the same objectives considered from the other
player’s points of view, or are vacuous, such as LimInf (>+∞). For both limit objectives,
LimInf (=−∞) and LimInf (=+∞), we shall see that the value of the respective SSGs is
always rational (Proposition 9). We shall also show that the objective LimInf (=+∞) is
essentially equivalent to the following “mean payoff” objective (Lemma 10):

Mean(>0) := {w | w is a run of H such that lim inf
n→∞

∑n−1
i=0 r(w(i))/n > 0 } .

Brázdil, Brožek, Etessami 111

This “intuitively obvious equivalence” is not so easy to prove. (Note also that LimInf (=−∞)
is certainly not equivalent to Mean(≤0).) We establish the equivalence by a combination
of new methods and by using recent results by Gimbert, Horn and Zielonka [12, 13]. Mean
payoff objectives are of course very heavily studied for stochastic games and for MDPs
(see [16]). However, there is a subtle but important difference here: mean payoff objectives
are typically formulated via expected payoffs: the Max player wishes to maximize the expected
mean payoff, while the Min player wishes to minimize this. Instead, in the above Mean(>0)
objective we wish to maximize (minimize) the probability that the mean payoff is > 0. These
require new algorithms. Our main result about such limit objectives is the following:

I Theorem 2. For both limit objectives, O ∈ {LimInf (=−∞),LimInf (=+∞)}, given a
finite-state SSG, G, with rewards, and given a rational probability threshold, p, 0 ≤ p ≤ 1,
deciding whether the value of G with objective O is >p (or ≥p) is in NP ∩ coNP. If G is a
1-player SSG (i.e., a maximizing or minimizing MDP), then the game value can be computed
in P-time.

Although our upper bounds for both these objectives look the same, their proofs are quite
different. We show that both players have pure and memoryless optimal strategies in these
games (Proposition 7), which can be computed in P-time for 1-player (Max or Min) MDPs.
Furthermore, we show that even deciding whether the value of these games is either 1 or 0,
given input for which one of these two is promised to be the case, is already at least as hard
as Condon’s [6] quantitative reachability problem for finite-state simple stochastic games
(Proposition 13). Thus, even any non-trivial approximation of the value of SSGs with such
limit objectives is not easier than Condon’s problem.

We already considered in [3] the problem of maximizing the probability of LimInf (=−∞)
in a OC-MDP. There we showed that the maximum probability can be computed in P-time.
However, again, we did not resolve the complementary problem of minimizing the probability
of LimInf (=−∞) in a OC-MDP. Thus we could not address two-player OC-SSGs with
either of these objectives, and we left these as key open problems, which we resolve here.
An important distinction between maximizing and minimizing the probability of objective
LimInf (=−∞) is that maximizing this objective satisfies a submixing property defined by
Gimbert [11], which he showed implies the existence of optimal memoryless strategies, whereas
minimizing the objective is not submixing, and thus we require new methods to tackle it,
which we develop in this paper.

Finally, we mention that one can also consider OC-SSGs with the objective of terminating
in a selected subset of states, F . Such objectives were considered for OC-MDPs in [3]. Using
our termination results in this paper, we can also show that given an OC-SSG it is decidable
(in double exponential time) whether Max can achieve a termination probability 1 in a
selected subset of states, F . The computational complexity of selective termination is higher
than for non-selective termination: PSPACE-hardness holds already for OC-MDPs without
Min ([3]). Due to space limitations, we omit results about selective termination from this
conference paper, and will include them in the journal version of this paper.

Related work.

As mentioned earlier, we initiated the study of some classes of 1-player OC-SSGs (i.e.,
OC-MDPs) in a recent paper [3]. The reader will find extensive references to earlier related
literature in [3]. No earlier work considered OC-SSGs explicitly, but as we have highlighted
already there are close connections between OC-SSGs and finite-state stochastic games with
certain interesting limiting average reward objectives. One-counter automata with a non-
negative counter are equivalent to pushdown automata restricted to a 1-letter stack alphabet

FSTTCS 2010

112 One-Counter Stochastic Games

(see [8]), and thus OC-SSGs with the termination objective form a subclass of pushdown
stochastic games, or equivalently, Recursive simple stochastic games (RSSGs). These more
general stochastic games were introduced and studied in [9], where it is shown that many
interesting computational problems for the general RSSG and RMDP models are undecidable,
including generalizations of qualitative termination problems for RMDPs. It was also
established in [9] that for stochastic context-free games (1-exit RSSGs), which correspond to
pushdown stochastic games with only one state, both qualitative and quantitative termination
problems are decidable, and in fact qualitative termination problems are decidable in
NP∩ coNP ([10]). Solving termination objectives is a key ingredient for many more general
analyses and model checking problems for stochastic games. OC-SSGs form another natural
subclass of RSSGs, which is incompatible with stochastic context-free games. Specifically,
for OC-SSGs with the termination objective, the number of stack symbols, rather than the
number of control states, of a pushdown stochastic game is being restricted to 1. As we show
in this paper, this restriction again yields decidability of the qualitative termination problem.
However, the decidability of the quantitative termination problem for OC-SSGs remains an
open problem (see below).

Open problems.

Our results complete part of the picture for decidability and complexity of several problems
for OC-SSGs. However, our results also leave many open questions. The most important open
question for OC-SSGs is whether the quantitative termination problem, even for OC-MDPs, is
decidable. Specifically, we do not know whether the following is decidable: given a OC-MDP,
and a rational probability p ∈ (0, 1), decide whether the maximum probability of termination
is >p (or ≥p). Substantial new obstacles arise for deciding this. In particular, we know that
an optimal strategy may in general need to use different actions at the same control state for
arbitrarily large counter values (so strategies cannot ignore the value of the counter, even for
arbitrarily large values), and this holds already for the extremely simple case of solvency
games [1, Theorem 3.7].

Outline of paper.

We fix notation and key definitions in Section 2. In Section 3, we prove Theorem 2. Building
on Section 3, we prove Theorem 1 in Section 4. Due to space constraints, many proofs are
only sketched here. Please refer to the full version [2] for missing details.

2 Preliminaries

I Definition 3. A simple stochastic game (SSG) is given by a finite, or countably
infinite directed graph, (V, ↪→), where V is the set of vertices (also called states), and ↪→
is the edge (also called transition) relation, together with a partition (V>, V⊥, VP) of V , as
well as a probability assignment, Prob, which to each v ∈ VP assigns a rational probability
distribution on its set of outgoing edges. States in VP are called random, states in V> belong
to player Max, and states in V⊥ belong to Min. We assume that for all v ∈ V there is
some u ∈ V such that v ↪→u. Writing v x

↪→u denotes Prob(v ↪→u) = x. If V⊥ = ∅ we call
G a maximizing Markov decision process (MDP). If V> = ∅ we call it a minimizing
MDP. If V⊥ = V> = ∅ then we call G a Markov chain. A SSG (a MDP, a Markov chain)
can be equipped with a reward function, r, which assigns to each state, v ∈ V , a number
r(v) ∈ {−1, 0, 1}. Similarly, rewards can be assigned to transitions.

Brázdil, Brožek, Etessami 113

For a path, w = w(0)w(1) · · ·w(n− 1), of states in a graph, we use len(w) = n to denote
the length of w. A run in a SSG, G, is an infinite path in the underlying directed graph. The
set of all runs in G is denoted by RunG , and the set of all runs starting with a finite path w
is RunG(w). These sets generate the standard Borel algebra on RunG .

A strategy for player Max is a function, σ, which to each history w ∈ V + ending in
some v ∈ V>, assigns a probability distribution on the set of outgoing transitions of v. We
say that a strategy σ is memoryless if σ(w) depends only on the last state, v, and pure if
σ(w) assigns probability 1 to some transition, for each history w. When σ is pure, we write
σ(w) = v′ instead of σ(w)(v, v′) = 1. Strategies for player Min are defined similarly, just by
substituting V> with V⊥.

For every starting state s, and a pair of strategies: σ for player Max, and π for Min
in a SSG, G, there is a unique probabilistic measure, Pσ,πs , on the Borel space of runs
RunG , satisfying for all finite paths w starting in s: Pσ,πs (RunG(w)) =

∏len(w)−1
i=1 xi where

xi, 1 ≤ i < len(w) are defined by requiring that (a) if w(i−1) ∈ VP then w(i−1) xi↪→w(i);
and (b) if w(i−1) ∈ V> then σ(w(0) · · ·w(i−1)) assigns xi to the transition w(i−1) ↪→w(i);
and (c) if w(i−1) ∈ V⊥ then π(w(0) · · ·w(i−1)) assigns xi to the transition w(i−1) ↪→w(i).
Note that Pσ,πs (RunG(s)) = 1. If G is a maximizing MDP, a minimizing MDP, or a Markov
chain, we denote this probability measure by Pσs , Pπs , or Ps, respectively. See, e.g., [16, p. 30],
for the existence and uniqueness of the measure Pσs in the case of MDPs. Consider pairs of
strategies to be one strategy to establish existence and uniqueness of Pσ,πs for SSGs.

In this paper, an objective for a stochastic game is given by a measurable set of runs.
An objective, O, is called a tail objective if for all runs w and all suffixes w′ of w, we have
w′ ∈ O ⇐⇒ w ∈ O. Assume we have fixed a SSG, an objective, O, and a starting state,
s. We define the value of G in s as ValO(s) := supσ infπ Pσ,πs (O). It follows from Martin’s
Blackwell determinacy theorem [14] that these games are determined, meaning ValO(s) =
infπ supσ Pσ,πs (O). A strategy σ for Max is optimal in s if Pσ,πs (O) ≥ ValO(s) for every π.
Similarly a strategy π for Min is optimal in s if Pσ,πs (O) ≤ ValO(s) for every σ. A strategy
is called optimal if it is optimal in every state. An important objective for us is reachability.
Given a set T ⊆ V , we define the objective Reach(T) := {w ∈ RunG | ∃i ≥ 0 : w(i) ∈ T}.
The following fact is well known:

I Fact 4. (See, e.g., [16, 6, 7].) For both maximizing and minimizing finite-state MDPs
with reachability objectives, pure memoryless optimal strategies exist and can be computed,
together with the optimal value, in polynomial time.

3 Limit objectives

All MDPs and SSGs in this section have finitely many states. Rewards are assigned to states,
not to transitions. The main goal of this section is to prove Theorem 2. We start by proving
that both players have optimal pure and memoryless strategies for objectives LimInf (=−∞),
LimInf (=+∞), and Mean(>0). The following is a corollary of a result by Gimbert and
Zielonka, which allows us to concentrate on MDPs instead of SSGs:

I Fact 5. (See [13, Theorem 2].) Fix any objective, O, and suppose that in every maximizing
and minimizing MDP with objective O, the unique player has a pure memoryless optimal
strategy. Then in all SSGs with objective O, both players have optimal pure and memoryless
strategies.

Note that the probability of LimInf (=−∞) is minimized iff the probability of LimInf (>−∞)
is maximized, similarly with LimInf (=+∞) vs. LimInf (<+∞), and Mean(>0) vs. Mean(≤0).

FSTTCS 2010

114 One-Counter Stochastic Games

I Fact 6. (See [12, Theorem 4.5].) Let O be a tail objective. Assume that for every
maximizing MDP and for every state, s, with ValO(s) = 1, there is an optimal pure
memoryless strategy starting in s. Then for all s there is an optimal pure memoryless strategy
starting in s, without restricting ValO(s).

I Proposition 7. For every SSG, with any of the objectives LimInf (=−∞), LimInf (=+∞),
or Mean(>0), both players Max and Min have optimal pure memoryless strategies.

Proof. (Sketch.) Using Fact 5 we consider only maximizing MDPs, and prove the proposition
for the objectives listed and their complements. Note that since all these objectives are tail,
a play under an optimal strategy, starting from a state with value 1, cannot visit a state
with value < 1. By Fact 6 we may thus safely assume that the value is 1 in all states. We
discuss different groups of objectives:
LimInf (=−∞), LimInf (<+∞), Mean(≤0), Mean(>0): The first three (with LimInf (=−∞)
also handled explicitly in [3]) are tail objectives and are also submixing (see [11]). Therefore,
Theorem 1 of [11] immediately yields the desired result. Mean(>0) can be equivalently
rephrased via a submixing lim sup variant. See [2] for details.
LimInf (=+∞): is a tail objective, so there is always a pure optimal strategy, τ , by [12,
Theorem 3.1]. Note that LimInf (=+∞) is not submixing, so Theorem 1 of [11] does not apply.
In the following we proceed in two steps: we start with τ and convert it to a finite-memory
strategy1, σ. Finally, we reduce the use of memory to get a memoryless strategy.

First, we obtain a finite-memory optimal strategy, starting in some state, s. For a run
w ∈ RunG(s) and i ≥ 0, we denote by r[i](w) the accumulated reward

∑i
j=0 r(w(j)) up to

step i. Observe that because τ is optimal there is some m > 0 and a (measurable) set of
runs A ⊆ RunG(s), such that Pτs(A) ≥ 1

2 , and for all w ∈ A we have that the accumulated
reward along w never reaches −m (i.e. infi≥0 r[i](w) > −m). Since for almost all runs of A
we have limi→∞ r[i](w) =∞, there is some n > 0 and a set B ⊆ A such that Pτs(B | A) ≥ 1

2
(and hence, Pτs(B) ≥ 1

4), and for all w ∈ B we have that the accumulated reward along
w reaches 4m before the n-th step. Thus with probability at least 1

4 , a run w ∈ RunG(s)
satisfies infi≥0 r[i](w) > −m and max0≤i≤n r[i](w) ≥ 4m.

We denote by Ts(w) the stopping time over RunG(s) which for every w ∈ RunG(s) returns
the least number i ≥ 0 such that either r[i](w) 6∈ (−m, 4m), or i = n. Observe that the
expected accumulated reward at the stopping time Ts is at least 1

4 · 4m+ 3
4 (−m) = m

4 > 0.
Let us define a new strategy σ as follows. Starting in a state s ∈ V , the strategy σ chooses
the same transitions as τ started in s, up to the stopping time Ts. Once the stopping time
is reached, say in a state v, the strategy σ erases its memory and behaves like τ started
anew in v. Subsequently, σ follows the behavior of τ up to the stopping time Tv. Once the
stopping time Tv is reached, say in a state u, σ erases its memory and starts to behave as τ
started anew in u, and so on. Observe that the strategy σ uses only finite memory because
each stopping time Ts is bounded for every state s. Because τ is pure, so is σ.

Now we argue that σ is optimal. Intuitively, this is because, on average, the accumulated
reward strictly increases between resets of the memory of σ. To formally argue that this
implies that the accumulated reward increases indefinitely, we employ the theory of random
walks on Z and sums of i.i.d. random variables (see, e.g., Chapter 8 of [5]). Essentially, we
define a set of random walks, one for each state s, capturing the sequence of changes to the
accumulated reward between each reset in s and the next reset (in any state). We can then

1 A finite-memory strategy is specified by a finite state automaton, A, over the alphabet V . Given
w ∈ V +, the value σ(w) is determined by the state of A after reading w.

Brázdil, Brožek, Etessami 115

apply random walk results, e.g., from [5, Chapter 8], to conclude that these walks diverge to
∞ almost surely. Details are given in [2].

Taking the product of the finite-memory strategy σ and G yields a finite-state Markov
chain. By analyzing its bottom strongly connected components we can eliminate the use of
memory, and obtain a pure and memoryless optimal strategy. See [2] for details.
LimInf (>−∞): Like LimInf (=+∞), the objective LimInf (>−∞) is tail, but not submixing.
Thus there is always a pure optimal strategy, τ , for LimInf (>−∞), by [12, Theorem 3.1],
but Theorem 1 of [11] does not apply. We will prove Proposition 7 for LimInf (>−∞)
using the results for LimInf (=+∞), and also a new objective, All(≥ 0) := {w ∈ RunG |
∀n ≥ 0 :

∑n
j=0 r(w(j)) ≥ 0}. Let W∞ and W+ denote the sets of states s such that

ValLimInf (=+∞)(s) = 1, and ValAll(≥0)(s) = 1, respectively. The following is true for every
state, s, with ValLimInf (>−∞)(s) = 1 (see [2] for details):

∃σ : Pσs (Reach(W∞ ∪W+)) = 1 (1)

Moreover, we prove that whenever ValAll(≥0)(s) = 1 then Max has a pure and memoryless
strategy σ+ which is optimal in s for All(≥ 0). Indeed, observe that player Max achieves
All(≥ 0) with probability 1 iff all runs satisfy it. So we may consider the MDP G as a 2-player
non-stochastic game, where random nodes are now treated as player Min’s. In this case,
Theorem 12 of [4] guarantees the existence of the promised strategy σ+. The proof is now
finished by observing that, by Fact 4, there is a pure and memoryless strategy σ maximizing
the probability of reaching W∞ ∪W+. The resulting pure and memoryless strategy, optimal
for LimInf (>−∞), can be obtained by “stitching” σ together with the respective optimal
strategies for LimInf (=+∞) and All(≥ 0). J

I Lemma 8 (see [2]). LetM be a finite, strongly connected (irreducible) Markov chain, and
O be a tail objective. Then there is x ∈ {0, 1} such that Ps(O) = x for all states s.

A corollary of the previous proposition and lemma is the following:

I Proposition 9. Let O ∈ {LimInf (=−∞),LimInf (=+∞),Mean(>0)}. Then in every SSG,
and for all states, s, ValO(s) is rational, with a polynomial length binary encoding.

Proof. By Proposition 7, there are memoryless optimal strategies: σ for Max, and π for
Min. Fixing them induces a Markov chain on the states of G. By Lemma 8, in every fixed
bottom strongly connected component (BSCC), C, of this Markov chain, all states v ∈ C
have the same value, xC , which is either 0 or 1. Denote by W the union of all BSCCs, C,
with xC = 1. By optimality of σ and π, ValO(s) = Pσ,πs (Reach(W)) for every s ∈ V . By,
e.g., [7, Section 3], this probability is rational, with polynomial length bit encoding, since
reaching W is a regular event, and every Markov chain is a special case of a MDP. J

Proof of Theorem 2.

I Lemma 10. Let G be a MDP with rewards, and s a state of G. Then for every memoryless
strategy σ: Pσs (Mean(>0)) = Pσs (LimInf (=+∞)). In particular, both objectives are equivalent
with respect to both the value and optimal strategies.

Proof. (Sketch.) The inequality ≤ is true for all strategies, since Mean(>0) ⊆ LimInf (=+∞).
In the other direction, the property that σ is memoryless is needed, so that fixing σ

yields a Markov chain on the states of G. In this Markov chain, by Lemma 8, for every
BSCC, C, there are xC ≤ yC ∈ {0, 1}, such that Pσs (Mean(>0) | Reach(C)) = xC , and
Pσs (LimInf (=+∞) | Reach(C)) = yC . By random walk arguments, considering the rewards

FSTTCS 2010

116 One-Counter Stochastic Games

accumulated between subsequent visits to a fixed state in C, we can prove that yC = 1 =⇒
xC = 1, see [2] for details. Proposition 7 finishes the proof. J

I Lemma 11. For an objective O = LimInf (=−∞), LimInf (>−∞), LimInf (=+∞), or
LimInf (<+∞), and a maximizing MDP, G, denote by W the set of all s ∈ V satisfying
ValO(s) = 1. Then ValO(s) = ValReach(W)(s) for every state s.

Proof. Proposition 7 gives us a memoryless optimal strategy, σ. Fix it and obtain a Markov
chain on states of G. Denote by W ′ the union of all BSCCs in which at least one state has a
positive value. By Lemma 8, all states from W ′ have, in fact, value 1. Since W ′ ⊆W , and
σ is optimal, we get ValO(s) = Pσs (O) = Pσs (Reach(W ′)) ≤ Pσs (Reach(W)) ≤ ValReach(W)(s)
for every state s. As O is a tail objective, we easily obtain ValO(s) ≥ ValReach(W)(s). J

To prove Theorem 2, we start with the MDP case. By Proposition 7, pure memoryless
strategies are sufficient for optimizing the probability of all the objectives considered in this
theorem, so we can restrict ourselves to such strategies for this proof. Given an objective O,
we will write WO to denote the set of states s with ValO(s) = 1. As G is a MDP, optimal
strategies for reaching any state in WO can be computed in polynomial time, by Fact 4. If
O is any of the objectives mentioned in the statement of Lemma 11, then by that Lemma, in
order to compute optimal strategies and values for objective O, it suffices to compute the
set WO and optimal strategies for the objective O in states in WO. The resulting optimal
strategy “stitches” these and the optimal strategy for reaching WO.

I Proposition 12. For every MDP, G, and an objective O = LimInf (=−∞), LimInf (=+∞),
or Mean(>0), the problem whether s ∈WO is decidable in P-time. If s ∈WO, then a strategy
optimal in s is computable in P-time.

Proof. (Sketch.) From Lemma 10 we know that LimInf (=+∞) is equivalent to Mean(>0),
and thus we only have to consider O = LimInf (=−∞) and O = Mean(>0). For a uniform
presentation, we assume that G is a maximizing MDP, and consider two cases: O = Mean(>0),
and LimInf (>−∞). The remaining cases were solved in [3] – Theorem 3.1 there solves the
case O = LimInf (=−∞), and Section 3.3 solves O = Mean(≤0).
O = Mean(>0): We design an algorithm to decide whether maxσ Pσs (Mean(>0)) = 1, using
the existing polynomial time algorithm, based on linear programming, for maximizing the
expected mean payoff and computing optimal strategies for it (see, e.g., [16]). Note that it
does not matter whether lim inf or lim sup is used in the definition of Mean(>0) (see [2]
for details). Under a memoryless strategy σ, almost all runs in G reach one of the bottom
strongly connected components (BSCCs). Almost all runs initiated in some BSCC, C, visit
all states of C infinitely often, and it follows from standard Markov chain theory (e.g., [15])
that almost all runs in C have the same mean payoff, which equals the expected mean payoff
for the Markov chain induced by C.

The algorithm is given here as Procedure MP(s). Both step 2, as well as verifying the
condition from step 4, can be done in P-time, because, as observed above, this is equivalent
to verifying that the expected mean payoff in C is positive, which can be done in P-time (see
[16, Theorem 9.3.8]). Step 5 can be done in P-time by Fact 4. To obtain a formally correct
MDP, we introduce a new state z with a self-loop, and after the removal of any state v in
step 7 of the for loop, we redirect all stochastic transitions leading to v to this new state z,
and eliminate all other transitions into v. The reward of the new state z is set to 0. This
will not affect the sign of subsequent optimal expected mean payoffs starting from s, unless s
has been already removed. Thus, the algorithm can be implemented so that each iteration
of the repeat-loop takes P-time, and so the algorithm terminates in P-time, since in each

Brázdil, Brožek, Etessami 117

Procedure MP(s)
Data: A state s.
Result: Decide ValMean(>0)(s) ?= 1. If yes, return a strategy σ with

Pσs (Mean(>0)) = 1.
repeat1

Compute a strategy σmp maximizing the expected mean payoff.2

if Eσmp
s (mean payoff) ≤ 0 then return No3

Fix σmp to get a Markov chain on G. Find a BSCC, C, with mean payoff almost4

surely positive.
Compute a strategy σC maximizing the probability of Reach(C).5

foreach v with PσC
v (Reach(C)) = 1 do6

Remove state v.7

if v ∈ C then σ(v)← σmp(v) else σ(v)← σC(v)8

until s is cut off9

return (Yes, σ)10

iteration at least one state must be removed. If the algorithm outputs (Yes, σ) then clearly
Pσs (Mean(>0)) = 1. On the other hand, by an easy induction on the number of iterations of
the repeat-loop one can prove that if ValMean(>0)(s) = 1 then the following is an invariant
of line 9: either s has been removed, or the maximal expected mean payoff starting in s is
positive. In particular, the algorithm cannot output No. Thus we have completed the case
when O = Mean(>0).
O = LimInf (>−∞): Recall first the auxiliary objective All(≥ 0) := {w ∈ RunG | ∀n ≥
0 :

∑n
j=0 r(w(j)) ≥ 0} from the proof of Proposition 7, and also the sets W∞ = {v |

ValLimInf (=+∞)(v) = 1}, and W+ = {v | ValAll(≥0)(v) = 1}. Note that W∞ = WMean(>0),
by Lemma 10. Finally, recall from the equation (1) in the proof of Proposition 7, that the
probability of LimInf (>−∞) is maximized by almost surely reaching W∞ ∪W+ and then
satisfying All(≥ 0) or LimInf (=+∞). We note that the strategy σ+, optimal for All(≥ 0),
from the proof of Proposition 7, can be computed in polynomial time by [4, Theorem 12].
The results on Mean(>0) and Fact 4 conclude the proof. J

Now we finish the proof of Theorem 2. Proposition 12 and Fact 4 together establish
the MDP case. Establishing the NP ∩ coNP upper bound for SSGs proceeds in a standard
way: guess a strategy for one player, fix it to get a MDP, and verify in polynomial time
(Proposition 12) that the other player cannot do better than the given value p. To decide
whether, e.g., ValO(s) ≥ p, guess a strategy σ for Max, fix it to get an MDP, and verify that
Min has no strategy π so that Pσ,πs (O) < p. Other cases are similar.

Finally, we show that the upper bound from Theorem 2 is hard to improve upon:

I Proposition 13. Assume that a SSG, G, a state s, and a reward function r are given,
and let O = LimInf (=−∞), LimInf (=+∞), or Mean(>0). Moreover, assume the property
(promise) that either ValO(s) = 1 or ValO(s) = 0. Then deciding which is the case is at least
as hard as Condon’s [6] quantitative reachability problem w.r.t. polynomial time reductions.

Proof. The problem studied by Condon [6] is: given a SSG, H, an initial state s, and a target
state t, decide whether ValReach(t)(s) ≥ 1/2. Deciding whether ValReach(()t)(s) > 1/2 is
P-time equivalent. Moreover, we may safely assume there is a state t′ 6= t, such that whatever
strategies are employed, we reach t or t′, with probability 1. Consider the following reduction:

FSTTCS 2010

118 One-Counter Stochastic Games

given a SSG, H, with distinguished states s, t, and t′ as above, produce a new SSG, G, with
rewards as follows: remove all outgoing transitions from t and t′, add transitions t ↪→ s and
t′ ↪→ s, and make both t and t′ belong to Max. Let r be the reward function over states of G,
defined as follows: r(t) := −1, r(t′) := +1 and r(z) := 0 for all other z 6∈ {t, t′}. It follows
from basic random walk theory that in G, ValLimInf (=−∞)(s) = 1 if ValReach(t)(s) ≥ 1/2, and
ValLimInf (=−∞)(s) = 0 otherwise. Likewise, ValLimInf (=+∞)(s) = 1 if ValReach(t′)(s) > 1/2,
and ValLimInf (=+∞)(s) = 0 otherwise, and identically for the objective Mean(>0) which we
already showed to be equivalent to LimInf (=+∞). J

4 Termination

Here we prove Theorem 1. We continue viewing OC-SSGs as finite-state SSGs with rewards,
as discussed in the introduction. However, for notational convenience this time we consider
rewards on transitions rather than on states. It is easy to observe that Theorem 2 remains
valid even if we sum rewards on transitions instead of rewards on states in the definition of
LimInf (=−∞). We fix a SSG, G, with state set V , and a reward function r.

I Lemma 14. For all states s and j ≥ |V |: ValTerm(j)(s) = 1 iff ValLimInf (=−∞)(s) = 1.

Proof. If G is a maximizing MDP, the proposition is true by results of [3, Section 4].
Consider now the general case, when G is a SSG. If ValLimInf (=−∞)(s) = 1 then clearly
ValTerm(j)(s) = 1. Now assume that ValTerm(j)(s) = 1 and consider the memoryless strategy
of player Min, optimal for LimInf (=−∞), which exists by Proposition 7. Fixing it, we get a
maximizing MDP, in which the value of Term(j) in s is, of course, still 1. We already know
from the above discussion that the value of LimInf (=−∞) in s is thus also 1 in this MDP.
Since the fixed strategy for Min was optimal, we get that ValLimInf (=−∞)(s) = 1 in G. Thus,
if ValTerm(j)(s) = 1 then ValLimInf (=−∞)(s) = 1. J

Proof of Theorem 1.

For cases where j ≥ |V |, the theorem follows directly from Lemma 14 and Theorem 2. If
j < |V | then we have to perform a simple reachability analysis, similar to the one presented
in [3]. The following SSG, G′, keeps track of the accumulated rewards as long as they are
between −j and |V | − j: its set of states is V ′ := {(u, i) | u ∈ V,−j ≤ i ≤ |V | − j}.

States (u, i) with i ∈ {−j, |V | − j} are absorbing, and for i /∈ {−j, |V | − j} we have
(u, i)→ (t, k) iff u→ t and k = i+ r(u→ t). Every (u, i) belongs to the player who owned u.
The probability of every transition (u, i)→ (t, k), u ∈ VP , is the same as that of u→ t. There
is no reward function for G′, we consider a reachability objective instead, given by the target
set R := {(u,−j) | u ∈ V } ∪ {(u, i) | −j ≤ i ≤ |V | − j,ValLimInf (=−∞)(u) = 1}. Finally, let
us observe that, by Lemma 14, ValReach(R)((s, 0)) = 1 iff ValTerm(j)(s) = 1. Since the size of
G′ is polynomial in the size of G, Theorem 1 is proved.

I Proposition 15. For all j > 0, s ∈ V , there are pure strategies, σ for Max, and π for Min,
such that
1. If ValTerm(j)(s) = 1 then σ is optimal in s for Term(j).
2. If ValTerm(j)(s) < 1 then supτ Pτ,πs (Term(j)) < 1.
Moreover, σ is memoryless, and π only uses memory of size |V |. Such strategies can be
computed in P-time for MDPs.

The proof goes along the lines of the proof of Theorem 1. It can be found in [2], together
with an example that shows the memory use in π is necessary.

Brázdil, Brožek, Etessami 119

Similarly, both ValTerm(j)(s) = 0 and ValTerm(j)(s) > 0 are witnessed by pure and
memoryless strategies for the respective players. Deciding which is the case is in P-time, by
assigning the random states to player Max, obtaining a non-stochastic 2-player one-counter
game, and using, e.g., [4, Theorem 12]. Finally, we note that from Proposition 13 and
Lemma 14, it follows that:

I Corollary 16. Given an SSG, G, and reward function r, deciding whether the value of
the termination objective Term(j) equals 1 is at least as hard as Condon’s [6] quantitative
reachability problem, w.r.t. P-time many-one reductions.

Acknowledgements

The work of Tomáš Brázdil has been supported by the Czech Science Foundation, grant
No. P202/10/1469. The work of Václav Brožek has been supported by Newton International
Fellowship from the Royal Society.

References
1 N. Berger, N. Kapur, L. J. Schulman, and V. Vazirani. Solvency Games. In Proc. of

FSTTCS’08, 2008.
2 T. Brázdil, V. Brožek, and K. Etessami. One-Counter Stochastic Games. Technical Report

abs/1009.5636, CoRR, http://arxiv.org/abs/1009.5636, 2010.
3 T. Brázdil, V. Brožek, K. Etessami, A. Kučera, and D. Wojtczak. One-Counter Markov

Decision Processes. In ACM-SIAM SODA, pages 863–874, 2010. Full tech report: CoRR,
abs/0904.2511, 2009. http://arxiv.org/abs/0904.2511.

4 T. Brázdil, P. Jančar, and A. Kučera. Reachability Games on Extended Vector Addition
Systems with States. In Proc. 37th Int. Coll. on Automata, Languages, and Programming
(ICALP), Part II, pages 478–489, 2010. Full tech report: FIMU-RS-2010-02, Faculty of
Informatics, Masaryk University.

5 K. L. Chung. A Course in Probability Theory. Academic Press, 3rd edition, 2001.
6 A. Condon. The Complexity of Stochastic Games. Inform. and Comput., 96:203–224, 1992.
7 C. Courcoubetis and M. Yannakakis. Markov decision processes and regular events. IEEE

Trans. Automat. Control, 43(10):1399–1418, 1998.
8 K. Etessami, D. Wojtczak, and M. Yannakakis. Quasi-birth-death processes, tree-like

QBDs, probabilistic 1-counter automata, and pushdown systems. In Proc. 5th Int. Symp.
on Quantitative Evaluation of Systems (QEST), pages 243–253, 2008.

9 K. Etessami and M. Yannakakis. Recursive Markov decision processes and recursive stochas-
tic games. In Proc. 32nd ICALP, pages 891–903, 2005.

10 K. Etessami and M. Yannakakis. Efficient qualitative analysis of classes of recursive Markov
decision processes and simple stochastic games. In Proc. of 23rd STACS’06. Springer, 2006.

11 H. Gimbert. Pure stationary optimal strategies in markov decision processes. In STACS,
pages 200–211, 2007.

12 H. Gimbert and F. Horn. Solving Simple Stochastic Tail Games. In ACM-SIAM Symposium
on Discrete Algorithms (SODA10), pages 847–862, 2010.

13 H. Gimbert and W. Zielonka. Pure and Stationary Optimal Strategies in Perfect-
Information Stochastic Games. Technical Report hal-00438359, HAL, http://hal.archives-
ouvertes.fr/hal-00438359/, 2009.

14 D. A. Martin. The Determinacy of Blackwell Games. The Journal of Symbolic Logic,
63(4):1565–1581, December 1998.

15 J. R. Norris. Markov chains. Cambridge University Press, 1998.
16 M. L. Puterman. Markov Decision Processes. J. Wiley and Sons, 1994.

FSTTCS 2010

ATL with Strategy Contexts:
Expressiveness and Model Checking
Arnaud Da Costa1, François Laroussinie2, and Nicolas Markey1

1 Lab. Spécification & Vérification, ENS Cachan & CNRS, France
2 LIAFA, Univ. Paris Diderot - Paris 7 & CNRS, France

Abstract
We study the alternating-time temporal logics ATL and ATL? extended with strategy contexts:
these make agents commit to their strategies during the evaluation of formulas, contrary to plain
ATL and ATL? where strategy quantifiers reset previously selected strategies.

We illustrate the important expressive power of strategy contexts by proving that they make
the extended logics, namely ATLsc and ATL?sc, equally expressive: any formula in ATL?sc can
be translated into an equivalent, linear-size ATLsc formula. Despite the high expressiveness of
these logics, we prove that their model-checking problems remain decidable by designing a tree-
automata-based algorithm for model-checking ATL?sc on the full class of n-player concurrent game
structures.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.120

1 Introduction

Temporal logics and model checking. Thirty years ago, temporal logics (LTL, CTL) have
been proposed for specifying properties of reactive systems, with the aim of automatically
checking that those properties hold for these systems [18, 10, 19]. This model-checking
approach to formal verification has been widely studied, with powerful algorithms and
implementations, and successfully applied in many situations.

Alternating-time temporal logic (ATL). In the last ten years, temporal logics have been
extended with the ability of specifying controllability properties of multi-agent systems:
the evolution of a multi-agent system depends on the concurrent actions of several agents,
and ATL extends CTL with strategy quantifiers [4]: it can express properties such as agent A
has a strategy to keep the system in a set of safe states, whatever the other agents do.

qB

Figure 1 Example of a two-player turn-
based game

Nesting strategy quantifiers. Assume that, in the
formula above, “safe states” are those from which
agent B has a strategy to reach her goal state qB
infinitely often, and consider the system depicted
on Fig. 1, where the circled states are controlled
by player A (meaning that Player A selects the
transition to be fired from those state) and the square
state is controlled by player B. It is easily seen that
this game contains no “safe state”: after each visit to qB, Player A can decide to take the
system to the rightmost state, from which qB is not reachable. It follows that Player A has
no strategy to keep the system in safe states.

Now, assume that Player A commits to always select the transition to the left, when
the system is in the initial (double-circled) state. Then under this strategy, it suffices for

© Arnaud Da Costa, François Laroussinie, Nicolas Markey;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 120–132

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.120
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Arnaud Da Costa, François Laroussinie, Nicolas Markey 121

Player B to always go to qB when the system is in the square state in order to achieve
her goal of visiting qB infinitely often. The difference with the previous case is that here,
Player B takes advantage of Player A’s strategy in order to achieve her goal.

Both interpretations of our original property can make sense, depending on the context.
However, the original semantics of ATL cannot capture the second interpretation: strategy
quantifications in ATL “reset” previous strategies. While this is very convenient algorithmi-
cally (and makes ATL model-checking polynomial-time for some game models), it prevents
ATL from expressing many interesting properties of games (especially non-zero-sum games).

In [7], we introduced an alternative semantics for ATL, where strategy quantifiers store
strategies in a context. Those strategies then apply for evaluating the whole subformula, until
they are explicitly removed from the context or replaced with a new strategy. We demonstrated
the high expressiveness of this new semantics by showing that it can express important
requirements, e.g. existence of equilibria or dominating strategies.

Our contribution. This work is a continuation of [7]. Our contribution in this paper is
twofold: on the one hand, we prove that ATL?sc is not more expressive than ATLsc: this is a
theoretical argument witnessing the expressive power of strategy contexts; it complements
the more practical arguments presented in [7]. On the other hand, we develop an algorithm
for ATL?sc model-checking, based on alternating tree automata. Our algorithm uses a novel
encoding of strategies into the execution tree of the underlying concurrent game structures.
This way, it is valid for the whole class of concurrent game structures and without restrictions
on strategies, contrary to previously existing algorithms on related extensions of ATL.

Related work. In the last three years, several approaches have been proposed to increase
the expressiveness of ATL and ATL?.

Strategy logic [8, 9] extends LTL with first-order quantification over strategies. This allows
for very expressive constructs: for instance, the property above would be written as
∃σA. [G (∃σB . (GF qB) (σA, σB))] (σA).
This logic was only studied on two-player turn-based games in [8, 9], where a non-
elementary algorithm is given. The algorithm we propose in this paper could be adapted
to handle strategy logic in multi-player concurrent games.

QDµ [17] is a second-order extension of the propositional µ-calculus augmented with
decision modalities. In terms of expressiveness, fixpoints allow for richer constructs than
CTL- or LTL-based approaches. Again, model-checking has been proved to be decidable,
but only over the class of alternating transition systems (as defined in [3]).

Stochastic game logic [6] is an extension of ATL similar to ours, but in the stochastic case.
It is proved undecidable in the general case, and decidable when strategy quantification
is restricted to memoryless (randomized or deterministic) strategies.

several other semantics of ATL, related to ours, are discussed in [1, 2]. A ∆P
2 -algorithm

is proposed there for a subclass of our logic (where strategies stored in the context are
irrevocable and cannot be overwritten), but no proof of correctness is given. In [20], an
NP algorithm is proposed for the same subclass, but where strategy quantification is
restricted to memoryless strategies.

By lack of space, some proofs are omitted in this paper, but they are detailed in [11].

FSTTCS 2010

122 ATL with Strategy Contexts: Expressiveness and Model Checking

2 ATL with strategy contexts

2.1 Concurrent game structures.
Concurrent game structures [4] are a multi-player extension of classical Kripke structures.
Their definition is as follows:

I Definition 1. A Concurrent Game Structure (CGS for short) C is an 7-tuple 〈Loc, Lab, δ,
Agt,M,Mov,Edg〉 where:
〈Loc, Lab, δ〉 is a finite Kripke structure, where Loc is the set of locations, Lab : Loc→ 2AP

is a labelling function, and δ ⊆ Loc× Loc is the set of transitions;
Agt = {A1, ..., Ap} is a finite set of agents (or players);
M is a finite, non-empty set of moves;
Mov : Loc× Agt→ P(M) r {∅} defines the (finite) set of possible moves of each agent
in each location.
Edg : Loc×MAgt → δ is a transition table; with each location ` and each set of moves of
the agents, it associates the resulting transition, which is required to depart from `.

The size |C| of a CGS C is |Loc|+ |Edg|, where |Edg| is the size of the transition table1.

The intended behaviour of a CGS is as follows [4]: in a location `, each player Ai in Agt
chooses one among her possible moves mi in Mov(`, Ai); the next transition to be fired is
given by Edg(`, (m1, ...,mp)). We write Next(`) for the set of all transitions corresponding
to possible moves from `, and Next(`, Aj ,mj), with mj ∈ Mov(`, Aj), for the restriction of
Next(`) to possible transitions from ` when player Aj plays the move mj . We extend Mov
and Next to coalitions (i.e., sets of agents) in the natural way:

given A ⊆ Agt and ` ∈ Loc, Mov(`, A) denotes the set of possible moves for coalition A
from `. Those moves m are composed of one single move per agent of the coalition, i.e.,
m = (ma)a∈A.
Given m = (ma)a∈A ∈ Mov(`, A), we let Next(`, A,m) denote the restriction of Next(`)
to locations reachable from ` when every player Aj ∈ A makes the move mAj .

A (finite or infinite) path of C is a sequence ρ = `0`1 . . . of locations such that for any i,
`i+1 ∈ Next(`i). Finite paths are also called history. The length of a history ρ = `0`1 . . . `n
is n. We write ρi→j for the part of ρ between `i and `j (inclusive). In particular, ρi→j is
empty iff j < i. We simply write ρi for ρi→i, denoting the i+ 1-st location `i of ρ. We also
define first(ρ) = ρ0, and, if ρ has finite length n, last(ρ) = ρn. Given a history π of length n
and a path ρ s.t. last(π) = first(ρ), the concatenation of π and ρ is the path τ = π · ρ s.t.
τ0→n = π and τn→∞ = ρ (notice that the last location of π and the first location of ρ are
“merged”).

A strategy for a player Ai ∈ Agt is a function fi that maps any history to a possible
move for Ai, i.e., satisfying fi(`0 . . . `m) ∈ Mov(`m, Ai). A strategy for a coalition A of
agents is a mapping assigning a strategy to each agent in the coalition. The set of strategies
for A is denoted Strat(A). The domain of FA ∈ Strat(A) (denoted dom(FA)) is A. Given
a coalition B, the strategy (FA)|B (resp. (FA)rB) denotes the restriction of FA to the
coalition A ∩B (resp. ArB).

Let ρ be a history of length n. A strategy FA = (fj)Aj∈A for some coalition A induces a
set of paths from ρ, called the outcomes of FA after (or from) ρ, and denoted Out(ρ, FA):

1 Our results would still hold (with the same complexity) if we consider symbolic CGSs [13], where the
transition table is encoded succinctly as boolean formulas.

Arnaud Da Costa, François Laroussinie, Nicolas Markey 123

a path π = ρ · `1`2 . . . is in Out(ρ, FA) iff, writing `0 = last(ρ), for all i ≥ 0 there exists a
set of moves (mi

k)Ak∈Agt such that mi
k ∈ Mov(`i, Ak) for all Ak ∈ Agt, mi

k = fAk(π0→n+i)
if Ak ∈ A, and `i+1 ∈ Next(`i,Agt, (mi

k)Ak∈Agt). We write Out∞(ρ, FA) for the set of infinite
outcomes of FA after ρ. Note that Out(ρ, FA) ⊆ Out(ρ, (FA)|B) for any two coalitions A
and B, and that Out(ρ, F∅) represents the set of all paths starting with ρ.

It is also possible to combine two strategies F ∈ Strat(A) and F ′ ∈ Strat(B), resulting in
a strategy F ◦F ′ ∈ Strat(A ∪B) defined as follows: (F ◦F ′)|Aj (ρ) is F|Aj (ρ) (resp. F ′|Aj (ρ))
if Aj ∈ A (resp. Aj ∈ B rA).

Finally, given a strategy F and a history ρ, we define the strategy F ρ corresponding to
the behaviour of F after prefix ρ: it is defined, for any history π with last(ρ) = first(π), as
F ρ(π) = F (ρ · π).

2.2 Alternating-time temporal logics.
The logics ATL and ATL? have been defined in [4] as extensions of CTL and CTL? with
strategy quantification. Following [7], we further extend them with strategy contexts:

I Definition 2. The syntax of ATL?sc is defined by the following grammar:

ATL?sc 3 ϕs, ψs ::= p | ¬ϕs | ϕs ∨ ψs | 〈·A·〉ϕp | ·〉A〈·ϕs
ϕp, ψp ::= ϕs | ¬ϕp | ϕp ∨ ψp | Xϕp | ϕpUψp

with p ∈ AP and A ⊆ Agt. Formulas defined as ϕs are called state-formulas, while ϕp
defines path-formulas. The logic ATLsc is obtained by restricting the grammar of ATL?sc
path-formulas as follows:

ϕp, ψp ::= ¬ϕp | Xϕs | ϕsUψs.

That a formula ϕ in ATL?sc (or ATLsc) holds (initially) along a computation ρ of a CGS C
under a strategy context F (i.e., a preselected strategy for some of the players, hence
belonging to some Strat(A) for a coalition A), denoted C, ρ |=F ϕ, is defined as follows:

C, ρ |=F p iff p ∈ Lab(first(ρ))
C, ρ |=F ¬ϕ iff C, ρ 6|=F ϕ

C, ρ |=F ϕ ∨ ψ iff C, ρ |=F ϕ or C, ρ |=F ψ

C, ρ |=F 〈·A·〉ϕp iff ∃FA ∈ Strat(A). ∀ρ′ ∈ Out∞(first(ρ), FA ◦F). C, ρ′ |=FA ◦F ϕp

C, ρ |=F ·〉A〈·ϕs iff C, ρ |=FrA ϕs

C, ρ |=F Xϕp iff C, ρ1→∞ |=Fρ0→1 ϕp

C, ρ |=F ϕpUψp iff ∃i ≥ 0. C, ρi→∞ |=Fρ0→i ψp and ∀0 ≤ j < i. C, ρj→∞ |=Fρ
0→j ϕp

We define the following shorthands, which will be useful in the sequel: > def= p∨¬p, ⊥ def=
¬>, Fϕ def= >Uϕ, Gϕ

def= ¬F¬ϕ, 〈·A·〉ϕs
def= 〈·A·〉 (⊥Uϕs) and 〈〈A〉〉ϕ def= ·〉Agt〈· 〈·A·〉ϕ.

I Example 3 (see [7] for more examples). We illustrate the usefulness of strategy contexts
with some examples. First, the last shorthand 〈〈A〉〉 is the classical ATL? strategy quantifier
(where each quantification resets the context), so that ATLsc and ATL?sc encompass ATL and
ATL?, respectively.

ATLsc can also express qualitative equilibria properties, for instance Nash equilibria.
Given the (non-zero-sum) objectives Φ1 and Φ2 of players 1 and 2, Nash equilibria are
strategy profiles where none of the player can unilaterally improve her payoff. In other

FSTTCS 2010

124 ATL with Strategy Contexts: Expressiveness and Model Checking

terms, if the Player-1 strategy in the context is not winning against the Player-2 strategy,
then there is no Player-1 winning strategy against this particular strategy of Player 2 (and
symmetrically). Thus, the existence of a Nash equilibrium can be expressed as

〈·A1, A2·〉
[(
〈·A1·〉Φ1→Φ1

)
∧
(
〈·A2·〉Φ2→Φ2

)]
As another example, we mention the interaction between a server S and different

clients (Ci)i, where we may want to express that the server can be programmed in such a
way that each client Ci has a strategy to have its request granted. This could be written as

〈·S·〉G
[∧
i

(
reqi→ 〈·Ai·〉F granti

)]
As stated in Lemma 4, the truth value of a state formula ϕs depends only on the strategy

context F and the first state of the computation ρ where it is interpreted (thus we may
simply write C, first(ρ) |=F ϕs when it raises no ambiguity).

I Lemma 4. Let C be a CGS, and F ∈ Strat(A) be a strategy context. For any state
formula ϕs, and for any two infinite paths ρ and ρ′ with first(ρ) = first(ρ′), it holds

C, ρ |=F ϕs ⇔ C, ρ′ |=F ϕs.

Proof. The proof is by induction on the structure of ϕs: the result obviously holds for
atomic propositions, and it is clearly preserved by boolean combinations and by the ·〉A〈·
operator. Finally, if ϕs = 〈·A·〉ψs, the result is immediate as the semantics only involves the
first location of the path along which the formula is being evaluated. J

I Remark. Note that contrary to ATL, it is not possible to restrict to memoryless strategies
(i.e., that only depend on the current state) for ATLsc formulas. For example, the formula
〈·A·〉G (〈·∅·〉FP ∧ 〈·∅·〉FP ′) is equivalent in a standard Kripke struture (seen as a CGS
with one single player A) to the CTL? formula E(

∞
FP ∧

∞
FP ′) that may require strategies

with memory. The next section provides more results on the extra expressiveness brought in
by strategy contexts.

3 The expressive power of strategy contexts

As shown in [7], adding strategy contexts in formulas increases the expressive power of logics:
ATLsc (resp. ATL?sc) is strictly more expressive than ATL (resp. ATL?). Game Logic (see [4])
can also be translated into ATL?sc (while the converse is not true). In this section, we present
some new results on the expressiveness of ATLsc.

3.1 Alternating bisimulation.

Contrary to ATL, ATL?, GL or AMC, our logics are not alternating-bisimulation invariant
(see [5]), indeed we have:

I Lemma 5. There exists two CGSs C and C′, with an alternating-bisimulation linking two
states `0 of C and `′0 in C′, and an ATLsc formula ϕ such that C, `0 |= ϕ and C′, `′0 6|= ϕ.

Arnaud Da Costa, François Laroussinie, Nicolas Markey 125

3.2 Relative expressiveness of ATLsc and ATL?
sc.

Surprisingly, strategy contexts bring ATLsc to the same expressiveness as ATL?sc. This was
already exemplified above, with the CTL? formula E(

∞
FP ∧

∞
FP ′). We can extend this

approach to any ATL?sc formula: the idea is to
1. first use full strategy contexts (by adding universally quantified strategies) in order to be

able to insert the 〈·∅·〉 modality before every temporal modality, and
2. ensure that for every nested strategy quantifier 〈·A·〉 , Coalition A cannot take advantage

of the added strategies.

Given an ATL?sc formula Φ and a coalition B, we define Φ̂[B] inductively as follows:

P̂ [B] def= P ¬̂ϕ[B] def= ¬ϕ̂[B] ϕ̂ ∧ ψ
[B] def= ϕ̂[B] ∧ ψ̂[B]

X̂ϕ
[B] def= 〈·∅·〉X ϕ̂[B] ϕ̂Uψ

[B] def= 〈·∅·〉 (ϕ̂
[B]

U ψ̂[B])

〈̂·A·〉ϕ
[B] def= 〈·A·〉 ¬ 〈·Agt\(A ∪B)·〉 ¬ϕ̂[A∪B] ·̂〉A〈·ϕ

[B] def= ϕ̂[BrA]

Clearly, Φ̂[B] is an ATLsc formula. The idea behind this translation is that a state-formula ϕ̂A
interpreted in a strategy context F only depends on F|A. We then have:

I Lemma 6. Let C be a CGS, ` be one of its locations, and F be a strategy context. Then for
any ATL?sc formula ϕ, for any strategy context G s.t. dom(G) = Agtr dom(F), and for any
outcome π ∈ Out∞(`,G ◦F), it holds: C, π |=F ϕ ⇔ C, π |=G ◦F ϕ̂

[dom(F)]. Moreover, if ϕ is
a state-formula, this result extends to any strategy context G s.t. dom(G) ∩ dom(F) = ∅.

Since our transformation does not depend on the underlying CGS, we get:

I Theorem 7. Given a set of agents Agt, any ATL?sc formula ϕ can be translated into an
equivalent (under the empty context) ATLsc formula ϕ̂ for any CGS based on Agt.

Another consequence of the previous result is that any ATL? state-formula ϕ can be
translated into the equivalent ATLsc formula ϕ̂∅ in polynomial time. Thus we have:

I Corollary 8. Model-checking ATLsc is 2EXPTIME-hard.

4 From ATLsc to alternating tree automata

The main result of this section is the following:

I Theorem 9. Model-checking ATLsc formulas with at most k nested strategy quantifiers
can be achieved in (k + 1)EXPTIME. The program complexity (i.e., the complexity of
model-checking a fixed ATLsc formula) is in EXPTIME.

The proof mainly consists in building an alternating tree automaton from a formula and
a CGS. Similar approaches have already been proposed for strategy logic [9] or qDµ [17], but
they were only valid for subclasses of CGSs: strategy logic was only studied on turn-based
games, while the algorithm for qDµ was restricted to ATSs [3]. In both cases, the important
point is that strategies are directly encoded as trees, with as many successors of a node as
the number of possible moves from the corresponding node. With this representation, it is
required that two different successors of a node correspond to two different states (which is
the case for ATSs, hence for turn-based games): if this is not the case, the tree automaton
may accept strategies that do not only depend on the sequence of states visited in the history,

FSTTCS 2010

126 ATL with Strategy Contexts: Expressiveness and Model Checking

but also on the sequence of moves proposed by the players. Our encoding is different: we
work on the execution tree of the CGS under study, and label each node with possible moves
of the players. We then have to focus on branches that correspond to outcomes of selected
strategies, and check that they satisfy the requirement specified by the formula. Before
presenting the detailed proof, we first introduce alternating tree automata and fix notations.

4.1 Trees and alternating tree automata
Let Σ and S be two finite sets. A Σ-labelled S-tree is a pair T = 〈T, l〉, where

T ⊆ S∗ is a non-empty set of finite words on S satisfying the following constraints: for any
non-empty word n = m · s in T with m ∈ T and s ∈ S, the word m is also in T ;
l : T → Σ is a labeling function.

Given such a tree T = 〈T, l〉 and a node n ∈ T , the set of directions from n in T is the set
dirT (n) = {s ∈ S | n·s ∈ T}. The set of successors of n in T is succT (n) = {n·s | s ∈ dirT (n)}.
We use Tn to denote the subtree rooted in n. An S-tree is complete if T = S∗, i.e., if
dirT (n) = S for all n ∈ T . We may omit the subscript T when it is clear from the context.

The set of infinite paths of T is the set PathT = {s0 ·s1 · · · ∈ Sω | ∀i ∈ N. s0 ·s1 · · · si ∈ T}.
Given such an infinite path π = (si)i∈N, we write l(π) for the infinite sequence (l(si))i∈N ∈ Σω,
and Inf(l(π)) for the set of letters in Σ that appear infintely often along l(π).

Assume that Σ = Σ1×Σ2, and pick a Σ-labelled S-tree T = 〈T, l〉. For all n ∈ T , we write
l(n) = (l1(n), l2(n)) with li(n) ∈ Σi for i ∈ {1, 2}. Then for i ∈ {1, 2}, the projection of T
on Σi, denoted by projΣi(T), is the Σi-labelled S-tree 〈T, li〉. Two Σ-labelled S-trees are
Σi-equivalent if their projections on Σi are equal. These notions naturally extend to more
complex alphabets, of the form

∏
i∈I Σi.

We now define alternating tree automata, which will be used in the proof. This requires
the following definition: the set of positive boolean formulas over a finite set P of propositional
variables is the set of formulas generated by: PBF(P) 3 ζ ::= p | ζ ∧ ζ | ζ ∨ ζ | > | ⊥ where p
ranges over P . That a valuation v : P → {>,⊥} satisfies a formula in PBF(P) is defined in
the natural way. We abusively say that a subset P ′ of P satisfies a formula ϕ ∈ PBF(P)
iff the valuation 1P ′ (mapping the elements of P ′ to > and te elements of P r P ′ to ⊥)
satisfies ϕ. Since negation is not allowed, if P ′ |= ϕ and P ′ ⊆ P ′′, then also P ′′ |= ϕ.

I Definition 10. Let S and Σ be two finite sets. An alternating S-tree automaton on Σ, or
〈S,Σ〉-ATA, is a 4-tuple A = 〈Q, q0, τ,Acc〉 where Q is a finite set of states, q0 ∈ Q is the
initial state, Σ is a finite alphabet, τ : Q× Σ→ PBF(S ×Q) is the transition function, and
Acc : Qω → {>,⊥} is the acceptance function.

A non-deterministic S-tree automaton on Σ, or 〈S,Σ〉-NTA, is a 〈S,Σ〉-ATA in which
conjunctions are not allowed for defining the transition function. The size of A, denoted
by |A|, is the number of states in Q.

Let A = 〈Q, q0, τ,Acc〉 be an 〈S,Σ〉-ATA, and T = 〈T, l〉 be a Σ-labelled S-tree. An execu-
tion tree of A on T is a T ×Q-labelled S×Q-tree E = 〈E, p〉 such that p(ε) = (ε, q0), and for
each node e ∈ E with p(e) = (t, q), the set dirE(e) = {(s0, q0), (s1, q1), ..., (sn, qn)} ⊆ S ×Q
satisfies τ(q, l(t)), and for all 0 ≤ i ≤ n, the node e ·(si, qi) is labelled with (t ·si, qi). We write
pS(e · (si, qi)) = t · si and pQ(e · (si, qi)) = qi for the two components of the labelling function.

An execution tree is accepting if Acc(pQ(π)) = > for any infinite path π ∈ (S × Q)ω
in PathE . A tree T is accepted by A iff there exists an accepting execution tree of A on T .
In the sequel, we use parity acceptance condition, given as a function Ω: Q→ {0, ..., k − 1},
from which Acc is defined as follows: Acc(pQ(π)) = > iff min{Ω(q) | q ∈ Inf(pQ(π))} is

Arnaud Da Costa, François Laroussinie, Nicolas Markey 127

even. 〈S,Σ〉-ATAs with such accepting conditions are called 〈S,Σ〉-APTs, and given an
〈S,Σ〉-APT A, the size of the image of Ω is called the index of A, and is denoted by idx(A).
Analogously, 〈S,Σ〉-NPTs are 〈S,Σ〉-NTAs with parity acceptance conditions.

4.2 Unwinding of a CGS
Let C = 〈Loc, Lab, δ,Agt,M,Mov,Edg〉 be an n-player CGS, where we assume w.l.o.g. that
δ = Loc× Loc, and Mov(`, Ai) =M for any state ` and any player Ai. Let `0 be a state of C.

For each location ` ∈ Loc, we define Σ(`) = {`} × {Lab(`)} × {Edg(`)}, and Σ+(`) =
Σ(`)× (M∪ {⊥})Agt × 2{po,pl,pr}, where ⊥ is a special symbol not inM and po, pl and pr
are three fresh propositions not in AP. We let2 ΣC =

⋃
`∈Loc Σ(`), and Σ+

C =
⋃
`∈Loc Σ+(`).

The unwinding of C from `0 is the ΣC-labelled complete Loc-tree U = 〈U, v〉 where U =
Loc∗ and v(u) ∈ Σ(last(`0 · u)) for all u ∈ U . An extended unwinding of C from `0 is a
Σ+
C -labelled complete Loc-tree U ′ such that projΣC

(U ′) = U . For each letter σ of Σ+
C , we write

σLoc, σAP, σEdg, σstr and σp for the five components, and extend this subscripting notation
for the labelling functions of trees (written lLoc, lAP, lEdg, lstr and lp).

In the sequel, we identify a node u of U (which is a finite word over Loc) with the finite
path `0 · u of C. Notice that this sequence of states of C may correspond to no real path of C,
in case it involves a transition that is not in the image of Edg.

With C and `0, we associate a 〈Loc,Σ+
C 〉-APT AC,`0 = 〈Loc, `0, τ,Ω〉 s.t. Loc = {` |

` ∈ Loc}, `0 is the initial state, Ω constantly equals 0 (hence any valid execution tree is
accepting), and given a state ` ∈ Loc and a letter σ ∈ Σ+

C , the transition function is defined
as follows: if σ ∈ Σ+(`), we let τ(`, σ) =

∧
`′∈Loc(`′, `′), and otherwise, we let τ(`, σ) = ⊥.

I Lemma 11. Let C be a CGS and `0 be a state of C. Let T = 〈T, l〉 be a Σ+
C -labelled

Loc-tree. Then AC,`0 accepts T iff projΣC
(T) is the unwinding of C from `0.

In the sequel, we also use automaton AC , which accepts the union of all L(AC,`0) when `0
ranges over Loc. It is easy to come up with such an automaton, e.g. with Lemma 14 below.

4.3 Strategy quantification
Let T = 〈T, l〉 be a Σ+

C -labelled complete Loc-tree accepted by AC,`0 . Such a tree defines
partial strategies for each player: for A ∈ Agt, and for each node n ∈ T , we define stratTA(`0 ·
n) = lstr(n)(A) ∈M∪ {⊥}. For D ⊆ Agt, we write stratTD for (stratTA)A∈D.

As a first step, for each D ⊆ Agt, we build a 〈Loc,Σ+
C 〉-APT Astrat(D) which will ensure

that for all A ∈ D, stratTA is really a strategy for player A, i.e., never returns ⊥. This
automaton has only one state q0, with τ(q0, σ) =

∧
`∈Loc(`, q0) provided that σstr(A) 6= ⊥ for

all A ∈ D. Otherwise, τ(q0, σ) = ⊥. Finally, Astrat accepts all trees having a valid execution
tree (i.e., Ω constantly equals 0). The following result is straightforward:

I Lemma 12. Let C be a CGS, `0 be a location of C, and D ⊆ Agt. Let T = 〈T, l〉 be a
Σ+
C -labelled complete Loc-tree accepted by AC,`0 . Then T is accepted by Astrat(D) iff for each

player A ∈ D, stratTA never equals ⊥.

We now build an automaton for checking that proposition po labels outcomes of T .
More precisely, let D ⊆ Agt be a set of players. The automaton Aout(D) will accept T iff

2 Notice that |ΣC | = |Loc| and |Σ+
C | is linear in the size of the input, as we assume an explicit representation

of the Edg function [13].

FSTTCS 2010

128 ATL with Strategy Contexts: Expressiveness and Model Checking

po labels exactly the outcomes of strategies stratTA for players A ∈ D. This is achieved by
the following two-state automaton Aout(D) = 〈Q, q∈, τ,Ω〉: Q = {q∈, q/∈}, q∈ is the initial
state, Ω constantly equals 0, and the transition function is defined as follows: if po /∈ σ, then
τ(q∈, σ) = ⊥ and τ(q/∈, σ) =

∧
`∈Loc(`, q/∈); otheriwse, τ(q/∈, σ) = ⊥ and

τ(q∈, σ) =
∧

`∈Next(σ,D)

(`, q∈) ∧
∧

`/∈Next(σ,D)

(`, q/∈)

where Next(σ,D) is

{` ∈ Loc | ∃(mi)i ∈MAgt s.t. (σLoc, `) = σEdg(σLoc, (mi)i) and ∀Ai ∈ D. σstr(Ai) = mi}.

In other terms, Next(σ,D) returns the set of successor states of state σLoc if players in D
follow the strategies given by σstr, and according to the transition table σEdg. Notice that
Next(σ,D) is non-empty iff σstr(Ai) 6= ⊥ for all Ai ∈ D. We then have:

I Lemma 13. Let C be a CGS, and `0 be one of its locations, and D ⊆ Agt. Let T = 〈T, l〉
be a Σ+

C -labelled complete Loc-tree accepted by AC,`0 and Astrat(D). Then T is accepted by
Aout(D) iff for all n ∈ T , po ∈ lp(n) iff the finite run `0 · n is an outcome of stratTD from `0.

4.4 Boolean operations, projection, non-determinization, ...
In this section, we review some classical results about alternating tree automata, which we
will use in our construction.

I Lemma 14. [15, 16] Let A and B be two 〈S,Σ〉-APTs that respectively accept the languages
A and B. We can build two 〈S,Σ〉-APTs C and D that respectively accept the languages
A∩B and A (the complement of A in the set of Σ-labelled S-trees). The size and index of C
are at most (|A|+ |B|) and max(idx(A), idx(B)) + 1, while those of D are |A| and idx(A).

I Lemma 15. [16] Let A be a 〈S,Σ〉-APT. We can build a 〈S,Σ〉-NPT N accepting the same
language as A, and such that |N | ∈ 2O(|A|idx(A)·log(|A|idx(A))) and idx(N) ∈ O(|A|idx(A)).

I Lemma 16. [14] Let A be a 〈S,Σ〉-NPT, with Σ = Σ1×Σ2. For all i ∈ {1, 2}, we can build
a 〈S,Σ〉-NPT Bi such that, for any tree T , it holds: T ∈ L(Bi) iff ∃T ′ ∈ L(A). projΣi(T) =
projΣi(T

′). The size and index of Bi are those of A.

I Lemma 17. Let A be a 〈S,Σ × 2{p}〉-APT s.t. for any two Σ × 2{p}-labelled S-trees T
and T ′ with projΣ(T) = projΣ(T ′), we have T ∈ L(A) iff T ′ ∈ L(A). Then we can build a
〈S,Σ× 2{p}〉-APT B s.t. for all Σ× 2{p}-labelled S-tree T = 〈T, l〉, it holds: T ∈ L(B) iff
∀n ∈ T. (p ∈ l(n) iff Tn ∈ L(A)). Then B has size O(|A|) and index idx(A) + 1.

4.5 Transforming an ATLsc formula into an alternating tree automaton
I Lemma 18. Let C be a CGS with finite state space Loc. Let ψ be an ATLsc-formula,
and D ⊆ Agt be a coalition. We can build a 〈Loc,Σ+

C 〉-APT Aψ,D s.t.
for any Σ+

C -labelled complete Loc-tree T accepted by AC and by Astrat(D), it holds

T ∈ L(Aψ,D) ⇔ C, lLoc(ε) |=stratT
D
ψ;

for any two Σ+
C -labelled complete Loc-tree T and T ′ s.t. projΣ′

C
(T) = projΣ′

C
(T ′), with

Σ′C = ΣC × (M∪ {⊥})Agt, we have

T ∈ L(Aψ,D) ⇔ T ′ ∈ L(Aψ,D).

Arnaud Da Costa, François Laroussinie, Nicolas Markey 129

The size of Aψ,D is at most d-exponential, where d is the number of (nested) strategy
quantifiers in ψ. Its index is d− 1-exponential.

Sketch of proof. The proof proceeds by induction on the structure of formula ψ. The case
of atomic propositions is straightforward. Applying Lemma 14, we immediately get the result
for the case when ϕ is a boolean combination of subformulas.

We now sketch the proof for the case when ψ = 〈·A·〉Xϕ. The case formulas 〈·A·〉ϕ1 Uϕ2
and3 〈·A·〉ϕ1 Rϕ2 could be handled similarly. The idea of the construction is as follows:
we use automaton Aout(D ∪A) to label outcomes with po, Aϕ,D∪A to label nodes where ϕ
holds, and build an intermediate automaton Af to check that all the outcomes satisfy Xϕ.
We then project out the strategy of coalition A, which yields the automaton for 〈·A·〉Xϕ.

Assume that we have already built the automaton Aϕ,D∪A (inductively). Applying
Lemma 17 to Aϕ,D∪A with the extra proposition pr, we get an automaton Bpr,ϕ,D∪A such
that, given a tree T = 〈T, l〉 accepted by AC and Astrat(D ∪A), it holds

T ∈ L(Bpr,ϕ,D∪A) ⇔ ∀n ∈ T. (pr ∈ l(n)⇔ C, lLoc(n) |=stratTn
D∪A

ϕ). (1)

In order to check that all the outcome satisfy Xϕ, we simply have to build an au-
tomaton Af for checking the CTL? property A(G po→X pr). We refer to [12] for this
classical construction. This automaton Af has the following property: for any Σ+

C -labelled
Loc-tree T = 〈T, l〉, we have

T ∈ L(Af) ⇔ T , ε |= A(G po→X pr). (2)

Now, let H be the product of Astrat(A), Aout(D ∪A), Af and Bpr,ϕ,D∪A, and let T be a
tree accepted by AC and Astrat(D). If T is accepted by H, then D ∪A ⊆ dom(T) and all the
outcomes of the strategy stratTD∪A from lLoc(ε) satisfy Xϕ.

The converse does not hold in general, but we prove a weaker form: from T = 〈T, l〉,
accepted by AC and Astrat(D), and such that D∪A ⊆ dom(T) and the outcomes of stratTD∪A
from lLoc(ε) satisfy Xϕ, we build T ′ = 〈T, l′〉 such that projΣ′

C
(T) = projΣ′

C
(T ′), and T ′

is accepted by H. To do this, it suffices to modify the labelling of T with po and pr,
in such a way that T ′ is accepted by Aout(D ∪ A) and Bpr,ϕ,D∪A. This ensures that
C, lLoc(ε) |=stratT ′

D∪A
〈·∅·〉Xϕ, and that T ′ is also accepted by Af . In the end, we have that

for any tree T = 〈T, l〉 accepted by AC and Astrat(D),

D ∪A ⊆ dom(T) and C, lLoc(ε) |=stratT
D∪A

〈·∅·〉Xϕ ⇔

∃T ′ s.t. projΣ′
C
(T ′) = projΣ′

C
(T) and T ′ ∈ L(H). (3)

Applying Lemma 15, we get a 〈Σ+
C , Loc〉-NPT N such that L(N) = L(H). We can then

apply Lemma 16 for Σ+
C = (ΣC× (M∪{⊥})AgtrA)× ((M∪{⊥})A×2po,pl,pr) on the NPT N ;

the resulting 〈Σ+
C , Loc〉-NPT P accepts all trees T whose labelling on (M∪{⊥})A× 2po,pl,pr

can be modified in order to have the tree accepted by N . Then P satisfies both properties of
the Lemma: the second property directly follows from the use Lemma 16. For the first one,
pick T = 〈T, l〉 accepted by AC and by Astrat(D). If T is accepted by P , then from Lemma 16,
there exists a tree T ′ = 〈T, l′〉, with the same labelling as T on ΣC × (M∪ {⊥})AgtrA),
and accepted by N . Since L(N) = L(H), and from (3), we get that D ∪A ⊆ dom(T ′) and

3 The “release” modality R is the dual of U , defined by ϕ1 R ϕ2 ≡ ¬[(¬ϕ1) U (¬ϕ2)]. Notice that X is
self-dual as we only evaluate formulas along infinite outcomes.

FSTTCS 2010

130 ATL with Strategy Contexts: Expressiveness and Model Checking

C, lLoc(ε) |=stratT ′
D∪A

〈·∅·〉Xϕ. Thus stratT ′

A is a strategy for coalition A, and it witnesses
the fact that C, lLoc(ε) |=stratT ′

D
〈·A·〉Xϕ, and we get the desired result since stratTD =

stratT ′

D . Conversely, if C, lLoc(ε) |=stratT
D
〈·A·〉Xϕ, then we can modify the labelling of T

with a witnessing strategy for A, obtaining a tree T ′ such that C, lLoc(ε) |=stratT ′
D∪A

〈·∅·〉Xϕ.
From (3), T ′ can in turn be modified into a tree T ′′, with projΣ′

C
(T ′′) = projΣ′

C
(T ′), in

such a way that T ′′ ∈ L(H). Finally, since the projections of T ′′ and T coincide on
(ΣC × (M∪ {⊥})AgtrA), it holds that T is accepted by P. This concludes the proof for
〈·A·〉Xϕ.

The proofs for the “until” and “release” modalities follow the same lines, using pl and pr
as extra atmomic propositions for the left- and right-hand subformulas, and modifying
automaton Af so that it accepts trees satisfying A(G po→ plU pr) and A(G po→ plR pr),
respectively. Finally, when ψ = ·〉A〈·ϕ, we let A ·〉A〈·ϕ,D = Aϕ,DrA, which is easily proved to
satisfy both requirements.

Unless A = ∅, the construction of the automaton for 〈·A·〉Xϕ (or 〈·A·〉ϕ1 Uϕ2 or
〈·A·〉ϕ1 Rϕ2) involves an exponential blowup in the size and index of the automata for the
subformulas, and the index is bilinear in the size and index of these automata. In the end,
for a formula involving d nested non-empty strategy quantifiers, the automaton has size
d-exponential and index d− 1-exponential. J

I Corollary 19. Given an ATLsc formula ϕ, a CGS C and a state `0 of C, we can built
an alternating parity tree automaton A s.t. L(A) 6= ∅ iff C, `0 |=∅ ϕ. Moreover, A has
size d-exponential and index d− 1-exponential, where d is the number of nested non-empty
strategy quantifiers.

Proof. It suffices to take the product of the automaton Aϕ,∅ (from Lemma 18) with AC,`0 .
In case this 〈Loc,Σ+

C 〉-APT accepts a tree T , Lemma 18 entails that C, `0 |=∅ ϕ. Conversely,
if C, `0 |= ϕ, then the extended unwinding tree T = 〈T, l〉 of C from `0 in which lstr(n) = ⊥
for all n ∈ T is accepted by AC,`0 (and, trivially, by Astrat(∅)), and from Lemma 18, it is
also accepted by Aϕ,∅. J

Proof of Theorem 9. The first statement directly follows from the previous corollary, since
emptiness of alternating parity tree automata A can be checked in time exp(O(|A|× idx(A))).

For the second statement, notice that the size and index ofAϕ,∅ in the proof of Corollary 19
do not depend on the CGS C. Hence the automaton A of Corollary 19 has size linear in |C|,
and can be computed in time exponential in |C| (because Aout(D) requires the computation
of Next(σ,D)). Non-emptiness is then checked in time exponential in |C|. J

I Remark. Our algorithm can easily be modified in order to handle ATL?sc. One solution is
to rely on Theorem 7, but our translation from ATL?sc to ATLsc may double the number of
nested non-empty strategy quantifiers. The algorithm would then be in (2k + 1)-EXPTIME,
where k is the number of nested strategy quantifications. Another solution is to adapt our
construction, by replacing each state-subformula with a fresh atomic proposition, and build
the automaton Af for a more complex CTL? formula. This results in a (k + 1)-EXPTIME
algorithm. In both cases, the program complexity is unchanged, in EXPTIME.

Similarly, our algorithm could be modified to handle strategy logic [9]. One important
difference is that strategy logic may require to store several strategies per player in the tree,
while ATLsc only stores one strategy per player. This would then be reflected in a modified
version of the Next function we use when building Aout(D), where we should also indicate
which strategies we use for which player.

Arnaud Da Costa, François Laroussinie, Nicolas Markey 131

5 Conclusions

Strategy contexts provide a very expressive extension of the semantics of ATL, as we witnessed
by the fact that ATLsc and ATL?sc are equally expressive. We also designed a tree-automata-
based algorithm for model-checking both logics on the whole class of CGSs, based on a novel
encoding of strategies as a tree.

Our algorithms involve a non-elementary blowup in the size of the formula, which we
currently don’t know if it can be avoided. Trying to establish lower-bounds on the complexity
of the problems is part of our future works. Regarding expressiveness, ATLsc can distinguish
between alternating-bisimilar CGSs, and we are also looking for a behavioural equivalence
that could characterize the distinguishing power of ATLsc.

References

1 T. Ågotnes, V. Goranko, and W. Jamroga. Alternating-time temporal logics with irrevo-
cable strategies. In TARK’07, p. 15–24, 2007.

2 T. Ågotnes, V. Goranko, and W. Jamroga. Strategic commitment and release in logics for
multi-agent systems. Tech. Rep. 08-01, Clausthal U. of Technology, Germany, 2008.

3 R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In COM-
POS’97, LNCS 1536, p. 23–60. Springer, 1998.

4 R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J. ACM,
49(5):672–713, 2002.

5 R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating refinement relations.
In CONCUR’98, LNCS 1466, p. 163–178. Springer, 1998.

6 Ch. Baier, T. Brázdil, M. Größer, and A. Kučera. Stochastic game logic. In QEST’07,
p. 227–236. IEEE Comp. Soc., 2007.

7 Th. Brihaye, A. Da Costa, F. Laroussinie, and N. Markey. ATL with strategy contexts and
bounded memory. In LFCS’09, LNCS 5407, p. 92–106. Springer, 2009.

8 K. Chatterjee, T. A. Henzinger, and N. Piterman. Strategy logic. In CONCUR’07, LNCS
4703, p. 59–73. Springer, 2007.

9 K. Chatterjee, T. A. Henzinger, and N. Piterman. Strategy logic. Inf. & Comp., 208(6):677–
693, 2010.

10 E. M. Clarke and E. A. Emerson. Design and synthesis of synchrization skeletons using
branching-time temporal logic. In LOP’81, LNCS 131, p. 52–71. Springer, 1982.

11 A. Da Costa, F. Laroussinie, and N. Markey. Expressiveness and decidability of ATL with
strategy contexts. Tech. Rep. LSV-10-14, Lab Spécification & Vérification, France, 2010.

12 O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-
time model-checking. J. ACM, 47(2):312–360, 2000.

13 F. Laroussinie, N. Markey, and G. Oreiby. On the expressiveness and complexity of ATL.
LMCS, 4(2), 2008.

14 D. E. Muller and P. E. Schupp. Alternating automata on infinite objects, determinacy and
Rabin’s theorem. In EPIT’84, LNCS 192, p. 99–107. Springer, 1985.

15 D. E. Muller and P. E. Schupp. Alternating automata on infinite trees. TCS, 54(2-3):267–
276, 1987.

16 D. E. Muller and P. E. Schupp. Simulating alternating tree automata by nondeterministic
automata: New results and new proofs of the theorems of Rabin, McNaughton and Safra.
TCS, 141(1-2):69–107, 1995.

17 S. Pinchinat. A generic constructive solution for concurrent games with expressive con-
straints on strategies. In ATVA’07, LNCS 4762, p. 253–267. Springer, 2007.

18 A. Pnueli. The temporal logic of programs. In FOCS’77, p. 46–57. IEEE Comp. Soc., 1977.

FSTTCS 2010

132 ATL with Strategy Contexts: Expressiveness and Model Checking

19 J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems in CESAR.
In SOP’82, LNCS 137, p. 337–351. Springer, 1982.

20 D. Walther, W. van der Hoek, and M. Wooldridge. Alternating-time temporal logic with
explicit strategies. In TARK’07, p. 269–278, 2007.

Reasoning About Strategies§

Fabio Mogavero∗† 1, Aniello Murano∗ 1, and Moshe Y. Vardi‡ 2

1 Universitá degli Studi di Napoli "Federico II", I-80126 Napoli, Italy.
{mogavero, murano}@na.infn.it

2 Rice University, Department of Computer Science, Houston, TX 77251-1892, U.S.A.
vardi@cs.rice.edu

Abstract

In open systems verification, to formally check for reliability, one needs an appropriate formalism
to model the interaction between open entities and express that the system is correct no matter how the
environment behaves. An important contribution in this context is given by modal logics for strategic
ability, in the setting of multi-agent games, such as ATL, ATL*, and the like. Recently, Chatterjee, Hen-
zinger, and Piterman introduced Strategy Logic, which we denote here by SLCHP, with the aim of getting a
powerful framework for reasoning explicitly about strategies. SLCHP is obtained by using first-order quan-
tifications over strategies and it has been investigated in the specific setting of two-agents turned-based
game structures where a non-elementary model-checking algorithm has been provided. While SLCHP is a
very expressive logic, we claim that it does not fully capture the strategic aspects of multi-agent systems.

In this paper, we introduce and study a more general strategy logic, denoted SL, for reasoning about
strategies in multi-agent concurrent systems. We prove that SL strictly includes SLCHP, while maintaining
a decidable model-checking problem. Indeed, we show that it is 2EXPTIME-COMPLETE, thus not harder
than that for ATL* and a remarkable improvement of the same problem for SLCHP. We also consider the
satisfiability problem and show that it is undecidable already for the sub-logic SLCHP under the concurrent
game semantics.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.133

1 Introduction

In system design, model checking is a well-established formal method that allows to automatically
check for global system correctness [4, 19, 5]. In such a framework, in order to check whether a
system satisfies a required property, we express the system in a formal model (such as a Kripke
structure), specify the property with a temporal-logic formula (such as LTL [18], CTL [4], or
CTL* [7]), and check formally that the model satisfies the formula. In the last decade, interest has
arisen in analyzing the behavior of individual components and sets of components in systems with
several components. This interest has started in reactive systems, which are systems that interact
continually with their environments. In module checking [14] the system is modeled as a module that
interacts with its environment and correctness means that a desired property holds with respect to all
such interactions.

Starting from the study of module checking, researchers have looked for logics focusing on
strategic behavior of agents in multi-agent systems [1, 16, 10]. One of the most important development
in this field is Alternating-Time Temporal Logic (ATL*, for short), introduced by Alur, Henzinger,

§ Part of this research was done while the authors were visiting the Hebrew University.
∗ Work partially supported by MIUR PRIN Project n.2007-9E5KM8, ESF GAMES Project, and Vigevani Research

Project Prize 2010.
† Part of this research was done while visiting the Rice University.
‡ Work supported in part by NSF grants CCF-0613889, CCF-0728882, and CNS 1049862, by BSF grant 9800096, and

by gift from Intel.

© Fabio Mogavero, Aniello Murano, and Moshe Y. Vardi;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 133–144

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

134 Reasoning About Strategies

and Kupferman [1]. ATL* allows reasoning about strategies for agents with temporal goals. Formally,
it is obtained as a generalization of CTL* in which the path quantifiers, “E” (there exists) and “A”
(for all) are replaced with “strategic modalities” of the form 〈〈A〉〉 and [[A]], where A is a set of agents
(a.k.a. players). Strategic modalities over agent sets are used to express cooperation and competition
among agents in order to achieve certain goals. In particular, these modalities express selective
quantifications over those paths that are the results of infinite games between the coalition and its
complement. ATL* formulas are interpreted over game structures, which model interacting processes.
Given a game structure S and a set A of agents, the ATL* formula 〈〈A〉〉ψ is satisfied at a state s
of S if there is a strategy for the agents in A such that, no matter the strategy that is executed by
agents not in A, the resulting outcome of the interaction satisfies ψ at s. Thus, ATL* can express
properties related to the interaction among agents, while CTL* can only express property of the global
system. As an example, consider the property “processes α and β cooperate to ensure that a system
(having more than two processes) never enters a fail state”. This property can be be expressed by
the ATL* formula 〈〈{α,β}〉〉G¬fail, where G is the classical temporal modality “globally”. CTL*,
in contrast, cannot express this property [1]. Indeed, CTL* can only say whether the set of all
agents can or cannot prevent the system from entering a fail state. The price that one pays for the
expressiveness of ATL* is increased complexity; both model checking and satisfiability checking are
2EXPTIME-COMPLETE [1, 20].

Despite its powerful expressiveness, ATL* suffers of the strong limitation that strategies are
treated only implicitly, through modalities that refer to games between competing coalitions. To
overcome this problem, Chatterjee, Henzinger, and Piterman introduced Strategy Logic (SLCHP, for
short) [3], a logic that treats strategies in two-player games as explicit first-order objects. In SLCHP,
the ATL* formula 〈〈α〉〉ψ becomes ∃x.∀y.ψ(x,y), i.e., “there exists a player-α strategy x such that for
all player-β strategies y, the unique infinite path resulting from the two players following the strategies
x and y satisfies the property ψ”. The explicit treatment of strategies in SLCHP allows to state many
properties not expressible in ATL*. In particular, it is shown in [3] that ATL* corresponds to the
proper one-alternation fragment of SLCHP. Chatterjee et al. have shown that the model-checking
problem for SLCHP is decidable, although only a non-elementary algorithm for it, both in the size of
the system and the size formula, has been provided, leaving as open the question whether an algorithm
with a better complexity exists or not. The question about the decidability of satisfiability checking
for SLCHP was also left open in [3].

While the basic idea exploited in [3] to quantify over strategies, and thus to commit agent
explicitly to certain strategies, turns out to be very powerful, as discussed above, the logic SLCHP

introduced there has been defined and investigated only under the weak framework of two-players and
turn-based games. Also, the specific syntax considered for SLCHP allows only a weak kind of strategy
commitment. For example, SLCHP does not allow different players to share, in different contexts, the
same strategy. These considerations, as well as all questions left open about SLCHP, have led us to
introduce and investigate a new Strategy Logic, denoted SL, as a more general framework than SLCHP,
for explicit reasoning about strategies in multi-player concurrent game structures. Syntactically, SL
extends LTL by means of two strategy quantifiers, the existential 〈〈x〉〉 and the universal [[x]], and
an agent binding (α,x), where α is an agent and x is variable. Intuitively, these elements can be
respectively read as “there exists a strategy x”, “for all strategies x”, and “bind agent α to the
strategy associated with x”. For example, in a system with three agents α, β, γ, the previous ATL*
formula 〈〈{α,β}〉〉G¬fail can be expressed by the SL formula 〈〈x〉〉〈〈y〉〉[[z]](α,x)(β,y)(γ,z)(G¬fail).
The variables x and y are used to select two strategies for the agents α and β, respectively, and z is
used to select all strategies for agent γ such that the composition of all these strategies results in a
play where fail is never meet. Note that we can also require (by means of agent binding) that agents
α and β share the same strategy, using the formula 〈〈x〉〉[[z]](α,x)(β,x)(γ,z)(G¬fail). We can also

F. Mogavero, A. Murano, and M.Y. Vardi 135

vary the structure of the game by changing the way the quantifiers alternate, for example, in the
formula 〈〈x〉〉[[z]]〈〈y〉〉(α,x)(β,y)(γ,z)(G¬fail). In this case, x remains uniform w.r.t. z, but y becomes
dependent on z. The last two examples show that SL is a proper extension of both ATL* and SLCHP.
It is worth noting that the pattern of modal quantifications over strategies and binding to agents can
be extended to other logics than LTL, such as the linear µ-CALCULUS. In fact, the use of LTL here is
only a matter of simplicity in presenting our framework, and changing the embedded temporal logic
involves only few side-changes in the decision procedures.

As a main result in this paper, we show that the model-checking problem for SL is decidable and
precisely PTIME in the size of the model and 2EXPTIME-COMPLETE in the size of the specification,
thus not harder than that for ATL*. Remarkably, this result improves significantly the complexity
of the model-checking problem for SLCHP, for which only a non-elementary upper-bound was
known [3]. The lower bound for the addressed problem immediately follows from ATL*, which
SL includes. For the upper bound, we follow an automata-theoretic approach [13], by reducing the
decision problem for the logic to the emptiness problem of automata. To this aim, we use alternating
Parity tree automata, which are alternating tree automata (see [8], for a survey) along with a Parity
acceptance condition [15]. Due to the exponential size of the required automaton and the EXPTIME

complexity required for checking its emptiness, we get the desired 2EXPTIME upper bound.
As another important issue in this paper, we address the satisfiability problem for SL. By using

a reduction from the recurrent domino problem, we show that this problem is highly undecidable,
and in fact Σ1

1-HARD, (i.e., it is not computably enumerable). Interestingly, the reduction we propose
also holds for SLCHP, under the concurrent game semantics. Thus, we show that in this setting also
SLCHP is highly undecidable, while it remains an open question whether it is decidable or not in the
turned-based framework. A key point to prove the undecidability of SL has been to show that this
logic lacks of the bounded-tree model property, which does hold for ATL* [20].

Since the rise of temporal and modal program logics in the mid-to-late 1970s, we have learned
to expect such logics to have a decidable satisfiability problem. In the context of temporal logic,
decidability results were extended from LTL, to CTL* and to ATL*. SL deviates from this pattern.
It has a decidable model-checking problem, but an undecidable satisfiability problem. In this, it is
similar to first-order logic. The decidability of model checking for first-order logic is the foundation
for query evaluation in relational databases, and undecidability of satisfiability is a challenge we need
to contend with. At the same time, it is clear that SL has nontrivial fragments, for example, ATL*,
which do have a decidable satisfiability problem. Identifying larger fragments of SL with a decidable
satisfiability problem is an important research problem.

Related Work Several works have focused on extensions of ATL* to incorporate more powerful
strategic constructs. Among them, we recall the logics Alternating-Time µ-calculus [1], Game
Logic [1], QDµ [17], and some extensions of ATL* considered in [2]. AMC and QDµ are intrinsically
different from SL (as well as SLCHP and ATL*) as they are obtained by extending the propositional
µ-calculus [11] with strategic modalities. GL is strictly included in SLCHP, but does not use any
explicit treatment of strategies. Also the extensions of ATL* considered in [2] do not use any explicit
treatment of strategies. Rather, they consider restrictions on the memory for strategy quantifiers.
Thus, all the above logics are different from SL, which aims it at being a minimal but powerful logic
to reason about strategic behavior in multi-agent systems.

Due to the lack of space, all proofs are omitted and reported in the full version.

2 Preliminaries

A concurrent game structure (CGS, for short) is a tuple G , 〈AP,Ag,Ac,St,λ,τ,s0〉, where AP and
Ag are finite non-empty sets of atomic propositions and agents, Ac and St are enumerable non-empty

FSTTCS 2010

136 Reasoning About Strategies

sets of actions and states, s0 ∈ St is a designated initial state, and λ : St→ 2AP is a labeling function
that maps each state to the set of atomic propositions true in that state. Let Dc , AcAg be the set of
decisions, commonly known as action profiles, that are functions from Ag to Ac representing the
choices of an action for each agent. Then, τ : St×Dc→ St is a transition function mapping a state
and a decision to a state. Intuitively, CGSs provide a generalization of labeled transition systems,
modeling multi-agent systems, viewed as multi-player games in which players perform concurrent
actions, chosen strategically as a function of the history of the game. Note that elements in St are
not global states of the system, but states of the environment in which the agents operate. Thus,
they can be viewed as states of the game, which do not include the local states of the agents. By
|G |, |St| · |Dc| we denote the size of G , which also corresponds to the size |dom(τ)| of the transition
function τ. If the set of actions is finite, i.e., b = |Ac|< ∞, we say that G is b-bounded, or simply
bounded. If both the sets of actions and states are finite, we say that G is finite. It is immediate to
note that G is finite iff it has a finite size.

A track (resp., path) is a finite (resp., an infinite) sequence of states ρ ∈ St∗ (resp., π ∈ Stω)
such that, for all 0 ≤ i < |ρ|− 1 (resp., i ∈ N), there exists d ∈ Dc such that ρi+1 = τ(ρi,d) (resp.,
πi+1 = τ(πi,d)). Intuitively, tracks and paths of a CGS G are legal sequences of reachable states in G
that can be seen as a description of the possible outcomes of the game modeled by G . A track ρ is
said non-trivial iff |ρ|> 0. We use Trk⊆ St+ (resp., Pth⊆ Stω) to indicate the sets of all non-trivial
tracks (resp., paths). By fst(ρ) , ρ0 (resp., lst(ρ) , ρ|ρ|−1), we denote the first (resp., last) state of
the track ρ and, by ρ≤i, we denote the prefix up to the state of index i < |ρ| of the track ρ, i.e., the
track built by the first i+1 states ρ0, . . . ,ρi of ρ. The notations of first and prefix apply also to paths.

A strategy is a partial function f : Trk ⇀ Ac, non associated to any particular agent, mapping each
non-trivial track in its domain to an action. Intuitively, a strategy is a plan for an agent that contains
all choices of moves as a function of the history of the current outcome. We use Str to indicate the sets
of all strategies. For a state s, we say that f is s-total iff it is defined on all non-trivial tracks starting
in s, i.e., dom(f) = {ρ ∈ Trk | fst(ρ) = s}. For a track ρ ∈ dom(f), by fρ we denote the translation of
f along ρ, i.e., the lst(ρ)-total strategy such that fρ(lst(ρ) ·ρ′) = f(ρ ·ρ′), for all lst(ρ) ·ρ′ ∈ dom(fρ).

Let Var be a fixed set of variables. An assignment is a partial function χ : Ag∪Var ⇀ Str mapping
every agent and variable to a strategy. An assignment χ is complete iff Ag⊆ dom(χ). We use Asg
to indicate the sets of all assignments. For a state s, we say that χ is s-total iff all strategies χ(l)
are s-total too, for l ∈ dom(χ). Let ρ be a track and χ be an fst(ρ)-total assignment. By χρ we
denote the translation of χ along ρ, i.e., the lst(ρ)-total assignment with dom(χρ) = dom(χ), such
that χρ(l) = χ(l)ρ, for all l ∈ dom(χ). Intuitively, the translation χρ is the update of all strategies
contained into the assignment χ, after the history of the game becomes ρ. Let χ be an assignment, a be
an agent, x be a variable, and f be a strategy. Then, by χ[a 7→ f] and χ[x 7→ f] we denote, respectively,
the new assignments defined on dom(χ)∪{a} and dom(χ)∪{x} that return f on a and x and are
equal to χ on the remaining part of its domain. Note that, if χ and f are s-total, χ[a 7→ f] and χ[a 7→ f]
are s-total, too.

Finally, a path π starting in a state s is a play w.r.t. a complete s-total assignment χ ((χ,s)-play,
for short) iff, for all i ∈ N, it holds that πi+1 = τ(πi,d), where d(a) = χ(a)(π≤i), for all a ∈ Ag. Note
that there is a unique (χ,s)-play. Intuitively, a play is the outcome of the game determined by all the
agent strategies participating to the game.

In the sequel of the paper, we use the Greek letters “α,β,γ ” with indexes to indicate specific
agents of a CGS, while we use the Latin letter “a” as a meta-variable on the agents themselves.

3 Strategy Logic

In this section, we formally introduce SL and discuss its main properties. In particular, we show that
it does not have the bounded-tree model property.

F. Mogavero, A. Murano, and M.Y. Vardi 137

Syntax. SL syntactically extends LTL by means of two strategy quantifiers, the existential 〈〈x〉〉
and the universal [[x]], and an agent binding (a,x), where a is an agent and x is a variable. Intuitively,
these new elements can be read, respectively, as “there exists a strategy x”, “for all strategies x”, and

“bind agent a to the strategy associated with variable x”. The formal syntax of SL follows.

I Definition 3.1 (Syntax). SL formulas are built from the sets of atomic propositions AP, variables
Var, and agents Ag, in the following way, where p ∈ AP, x ∈ Var, and a ∈ Ag:

ϕ ::= p | ¬ϕ | ϕ∧ϕ | ϕ∨ϕ | Xϕ | ϕUϕ | ϕRϕ | 〈〈x〉〉ϕ | [[x]]ϕ | (a,x)ϕ.

We now introduce some auxiliary syntactical notation for the definition of the semantics. By
free(ϕ) we denote the set of free agents/variables of ϕ defined as the subset of Ag∪Var containing
(i) all the agents for which there is no variable application after the occurrence of a temporal operator
and (ii) all the variables for which there is an application but no quantifications. For example, let
ϕ = 〈〈x〉〉(α,x)(β,y)(F p) be the formula on agents Ag = {α,β,γ}. Then, we have free(ϕ) = {γ,y},
since γ is an agent without any application after F p and y has no quantification at all. A formula ϕ

without free agents (resp., variables), i.e., with free(ϕ)∩Ag = /0 (resp., free(ϕ)∩Var = /0), is named
agent-closed (resp., variable-closed). If ϕ is both agent- and variable-closed, it is named sentence.

Semantics. As for ATL*, we define the semantics of SL w.r.t. concurrent game structures. For a
CGS G , a state s, and an s-total assignment χ with free(ϕ)⊆ dom(χ), we write G ,χ,s |= ϕ to indicate
that the formula ϕ holds at s under the assignment χ. Similarly, if χ is a complete assignment, for the
(χ,s)-play π and a natural number k, we write G ,χ,π,k |= ϕ to indicate that ϕ holds at the position k
of π. The semantics of the SL formulas involving p, ¬, ∧, and ∨, as well as that for the temporal
operators X , U , and R , is defined as usual in LTL and we omit it here (see [13], for a survey). The
semantics of the remaining part, which involves quantifications and bindings, follows.

I Definition 3.2 (Semantics). Given a CGS G = 〈AP,Ag,Ac,St,λ,τ,s0〉, an SL formula ϕ, a variable
x ∈ Var, a state s ∈ St, and an s-total assignment χ with free(ϕ)⊆ dom(χ)∪{x}, it holds that:
1. G ,χ,s |= 〈〈x〉〉ϕ iff there is an s-total strategy f such that G ,χ[x 7→ f],s |= ϕ;
2. G ,χ,s |= [[x]]ϕ iff for all s-total strategies f it holds that G ,χ[x 7→ f],s |= ϕ.
Moreover, if free(ϕ)∪{x} ⊆ dom(χ)∪{a} for an agent a ∈ Ag, it holds that:
3. G ,χ,s |= (a,x)ϕ iff G ,χ[a 7→ χ(x)],s |= ϕ.
Finally, if χ is also complete, where π is the (χ,s)-play and k ∈ N, it holds that:
4. G ,χ,s |= ϕ iff G ,χ,π,0 |= ϕ;
5. G ,χ,π,k |= ϕ iff G ,χπ≤k ,πk |= ϕ.
Intuitively, at Items 1 and 2, respectively, we evaluate existential and universal quantifiers over
strategies. At Item 3, by means of an agent binding (a,x), we commit the agent a to a strategy
contained in the variable x. Finally, Items 4 and 5 can be easily understood by looking at their
analogous path and state formulas in ATL*. In fact, Item 4 can be viewed as the rule that allows to
move the verification process from states to paths and, vice versa, Item 5 from paths to states.

A CGS G is a model of an SL sentence ϕ, denoted by G |= ϕ, iff G ,∅,s0 |= ϕ, where ∅ is the
empty assignment. Moreover, ϕ is satisfiable iff there is a model for it. For two SL formulas ϕ1 and
ϕ2 we say that ϕ1 is equivalent to ϕ2, formally ϕ1 ≡ ϕ2, iff, for all CGSs G , states s, and s-defined
assignments χ with free(ϕ1)∪ free(ϕ2)⊆ dom(χ), it holds that G ,χ,s |= ϕ1 iff G ,χ,s |= ϕ2.

As an example, let ϕ = 〈〈x〉〉[[y]]〈〈z〉〉(α,x)(β,y)(X p)∧ (α,y)(β,z)(X q). First, note that α and β

both use the strategy associated with y to achieve the goals Xq and X p, respectively. A model for ϕ

is G = 〈{p,q},{α,β},{0,1},{s0,s1,s2,s3},λ,τ,s0〉, where λ(s0) = /0, λ(s1) = {p}, λ(s2) = {p,q},
λ(s3) = {q}, τ(s0,(0,0)) = s1, τ(s0,(0,1)) = s2, τ(s0,(1,0)) = s3, and all the remaining transitions
(with any action) go to s0. Clearly, G ,s0 |= ϕ by letting, on s0, x to chose action 0 (the goal X p is

FSTTCS 2010

138 Reasoning About Strategies

satisfied for any choice of y, since we can move from s0 to s1 or s2, both labeled with p) and z to
choose action 1 when y has action 0 and, vice versa, z to 0 when y has 1 (in both the cases, the goal
Xq is satisfied, since one can move from s0 to s2 or s3, both labeled with q).

An important property that is possible to express in SL, but neither in ATL* nor in SLCHP, is the
existence of deterministic multi-player Nash equilibria. For example, consider n agents α1, . . . ,αn

each of them having the LTL goals ψ1, . . . ,ψn. Then, we can express the existence of a strategy
profile (x1, . . . ,xn) that is a Nash equilibrium for α1, . . . ,αn w.r.t. ψ1, . . . ,ψn by using the sentence
〈〈x1〉〉 · · · 〈〈xn〉〉(α1,x1) · · ·(αn,xn)(

Vn
i=1(〈〈y〉〉(αi,y)ψi)→ ψi). Informally, this sentence asserts that

every agent has the “best” strategy once all the strategies of the remaining agents have been fixed.
Note that here we have only considered equilibria under deterministic strategies.

Basic properties. We now investigate some basic properties of SL that turn out to be important for
their own and useful to prove the decidability of the model checking problem and the undecidability
of the satisfiability one. In particular, for the introduced logic we investigate the tree and finite model
properties. To this aim, we define a generalization to CGS of the classical concept of unwinding of
labeled transition systems, which allows us to show that SL has the (general) tree model property, but
neither the bounded-tree model property nor the finite model property. As preliminary, we need to
formally state the concepts of concurrent game tree and unwinding of a game structure.

A concurrent game tree (CGT, for short) is a CGS U = 〈AP,Ag,Ac,St,λ,τ,ε〉, where St⊆ ∆∗ is
a tree for a given set of directions ∆ and s · t ∈ St iff there is a decision d ∈ Dc such that τ(s,d) = s · t,
for all s ∈ St and t ∈ ∆. For a CGS G = 〈AP,Ag,Ac,St,λ,τ,s0〉, the unwinding of G is the CGT

GU , 〈AP,Ag,Ac,St′,λ′,τ′,ε〉, where St is the set of directions of the tree, the states in St′ = {ρ∈ St∗

| s0 ·ρ ∈ Trk} are the suffixes of the tracks starting in s0, and, for all s ∈ St′, d ∈ Dc, and t ∈ St,
it holds that τ′(s,d) = s · τ(lst(s),d) and there is a surjective function unw : St′ → St such that (i)
unw(ε) = s0, (ii) unw(s · t) = t, and (iii) λ′(s) = λ(unw(s)).

We say that SL has the tree model property if every satisfiable formula is satisfiable by a CGT.
Actually, next theorem reports that SL is invariant under unwinding, so, it has the tree model property.
This can be shown by using a proof by induction on the structure of the formula, making use of the
unwinding technique defined above.

I Theorem 3.3. G |= ϕ iff GU |= ϕ.

We now move to the negative results about SL, namely, that it neither has the finite model
property nor the bounded-tree model property. We recall that a modal logic has the bounded-tree
model property (resp., finite model property) if whenever a formula is satisfiable, it is so on a model
having a tree shape (resp., a finite number of states) in which every state has at most n successors,
for a natural number n. Clearly, if a modal logic with the tree model property has the finite model
property, it has the bounded-tree model property as well. The other direction may not hold, instead.
To prove both results, we introduce in Definition 3.4 the formula ϕord to be used as a counterexample.

I Definition 3.4. Let x1 < x2 , 〈〈y〉〉ϕin(x1,x2,y), where ϕin(x1,x2,y) , (β,y)((α,x1)(X p)∧ (α,x2)
(X¬p)) is an agent-closed SL formula, named partial order, on the sets AP = {p} and Ag = {α,β}.
Then, the SL order sentence ϕord , ϕunb∧ϕtrn is the conjunction of the following two sentences,
called strategy unboundedness and strategy transitivity requirements:
1. ϕunb , [[x1]]〈〈x2〉〉 x1 < x2;
2. ϕtrn , [[x1]][[x2]][[x3]] (x1 < x2∧ x2 < x3)→ x1 < x3.

Intuitively, ϕunb asserts that, for each strategy x1, there is a different strategy x2 in relation of <

w.r.t. the first one, i.e., < has no upper bound, while ϕtrn expresses the fact that the relation < is
transitive. Note also that, by definition, < is not reflexive. Obviously, the formula ϕord needs to be
satisfiable, as reported in the following lemma.

F. Mogavero, A. Murano, and M.Y. Vardi 139

I Lemma 3.5. The SL sentence ϕord is satisfiable.

Next two lemmas report two important properties of the formula ϕord , for the negative statements
we want to show. Namely, they state that, in order to be satisfied, ϕord must require the existence of
strict partial order relations on strategies and actions that do not admit any maximal element. From
this, as stated in Theorem 3.8, we directly derive that ϕord needs an infinite chain of actions to be
satisfied (i.e., it cannot have a bounded model).

I Lemma 3.6. Let G be a model of ϕord and r< ⊆ Str×Str be a relation between strategies such
that r<(f1, f2) holds iff G ,χ,s0 |= x1 < x2, where χ(x1) = f1 and χ(x2) = f2, for all χ ∈ Asg, with s0

as the initial state of G . Then r< is a strict partial order without maximal element.

I Lemma 3.7. Let G be a model of ϕord and s< ⊆ Ac×Ac be a relation between actions such that
s<(c1,c2) holds iff r<(f1, f2) holds, where c1 = f1(s0) and c2 = f2(s0), for all f1, f2 ∈ Str, with s0 as
the initial state of G . Then s< is a strict partial order without maximal element.

Observe that the relation s< cannot be defined on a finite set [6]. Now, we have all tools to prove
that SL lacks of the finite and bounded-tree model properties, which hold in several commonly used
multi-agent logics, such as ATL*.

I Theorem 3.8. For SL it holds that: (i) it does not have the bounded-tree model property, and (ii)
it does not have the finite model property.

4 Model Checking

In this section, we study the model-checking problem for SL and show that it is decidable and
2EXPTIME-COMPLETE, as for ATL*. The lower bound immediately follows from ATL*, which SL
properly includes. For the upper bound, we follow an automata-theoretic approach [13], reducing the
decision problem for the logic of interest to the emptiness problem of automata. To this aim, we use
alternating parity tree automata (APT, for short), which are alternating tree automata along with a
parity acceptance condition (see [8], for a survey). APTs are a generalization of nondeterministic
parity tree automata (NPT, for short). Intuitively, while an NPT that visits a node of the input tree
sends exactly one copy of itself to each of the successors of the node, an APT can send several copies
of itself to the same successor. We recall that an approach to tree automata is only possible once
the logic satisfies the tree model property. In fact, this property holds for SL as we have proved in
Theorem 3.3. By the size of the automaton and the complexity required for checking its emptiness,
we get the desired 2EXPTIME upper bound. The definition of APTs follows.

I Definition 4.1. An APT is a tuple A = 〈Σ,∆,Q,δ,q0,F〉, where Σ, ∆, and Q are non-empty finite
sets of input symbols, directions, and states, q0 ∈ Q is an initial state, F = (F1, . . . ,Fk) ∈ (2Q)∗ with
F1 ⊆ . . . ⊆ Fk = Q is a parity acceptance condition, and δ : Q×Σ→ B+(∆×Q) is an alternating
transition function that maps each pair of states and symbols into a Boolean positive formula on the
set of propositions of the form (d,q), where d is a direction and q a state.

A run of an APT A on a Σ-labeled ∆-tree T = 〈T,v〉 is a (Q×T)-labeled N-tree R = 〈Tr, r〉 such
that (i) r(ε) = (q0,ε) and (ii) for all y ∈ Tr with r(y) = (q,x), there exists a set S ⊆ D×Q with
S |= δ(q,v(x)) such that, for all atoms (d,q′) ∈ S, there is an index i ∈ N for which it holds that
r(y · i) = (q′,x ·d). The run R is said to be accepting iff, for every path π, the least index 1≤ i≤ k
such that at least one state of Fi occurs infinitely often in π is even. The number k of sets in F is called
the index of the automaton. A tree T is accepted by A if there is an accepting run of A on it. By
L(A) we denote the language accepted by the automaton A , i.e., the set of all trees that A accepts. A
is said empty if L(A) = /0. The emptiness problem for A is to decide whether L(A) = /0.

FSTTCS 2010

140 Reasoning About Strategies

We now proceed with the model-checking algorithm for SL. As for ATL*, we use a bottom-up
model-checking algorithm, in which we start with the innermost sub-sentences and terminate with
the sentence under checking. At each step, we label each state of the model with all the sub-sentences
that are satisfied on it. The procedure we propose here extends that used for ATL* in [1] by means of
a richer structure of the automata involved in.

First, we introduce some extra notation. A principal sentence ϕ is a sentence of the form
Qn1x1 · · ·Qnkxk ψϕ, where Qnixi ∈ {〈〈xi〉〉, [[xi]]} and the matrix ψϕ is an agent-closed formula, with
free(ψϕ) = {x1, . . . ,xk}, such that it does not contain any quantification. For the sake of space and
clarity of exposition, we only discuss the model checking of principal formulas. By a slight variation
of both the notion of principal formulas and our procedure, we can also address the full SL. We also
need the notion of atom. An atom ψ is an agent-closed formula of the form (α1,y1) · · ·(αn,yn)ψ′,
where Ag = {α1, . . . ,αn}, y1, . . . ,yn are possible equal variables and either (i) ψ′ does not contain any
quantification and binding, i.e., it is an LTL formula, or (ii) the derived formula ψ̂′ does not contain
any quantification and binding at all, where ψ̂′ is obtained by ψ′ substituting its sub-atoms with fresh
atomic propositions. W.l.o.g., we assume that each principal sentence has a matrix that is a Boolean
combination of atoms. Atm(ϕ) denotes the set of all sub-formulas of ϕ that are atoms.

The core idea behind our model-checking procedure is the following. Let G = 〈AP,Ag,Ac,St,
λ,τ,s0〉 be a CGS and ϕ be an SL principal sentence over the set Ag = {α1, . . . ,αn} of n different
agents, for which we want to check if G |= ϕ holds or not. We first build an NPT DG recognizing the
unwinding GU of G . Then, we build an APT A ′G ,ϕ accepting all prunings of GU that are coherent
with the strategy quantification of ϕ. Such prunings are done by properly labeling its paths with
elements from the set Z , Atm(ϕ)×{start, pass} of atoms associated with a flag in {start, pass}, in
a way similar as it has been done for ATL* satisfiability in [20]. The start and pass flags are used to
indicate whether a path guessed to satisfy at a specific state an atom ψ ∈ Atm(ϕ), starts or passes
through that state, respectively. Namely, the unlabeled paths are the pruned ones that are not needed
in order to satisfy the formula. Hence, A ′G ,ϕ accepts GU with this additional labeling. The automata
DG and A ′G ,ϕ have index 2 and a number of states polynomial in the size of G and ϕ, respectively.
With more details, they are both safety automata1. Finally, we build an APT A ′′ϕ that checks that
all paths of a pruned model accepted by A ′G ,ϕ, i.e., all labeled paths, satisfy the atoms of ϕ. The
automaton A ′′ϕ has index 2 and a number of states exponential in ϕ.

Now, recall that APTs are linearly closed under intersection. More precisely, two APTs having n1

and n2 states and k1 and k2 as indexes, respectively, can be intersected in an APT with n1 +n2 states
and index max{k1,k2} [15]. So, we can build an APT AG ,ϕ such that L(AG ,ϕ) = L(A ′G ,ϕ)∩L(A ′′ϕ),
having in particular index 2. Also, by [15], we can translate an APT with n states and index k in an
equivalent NPT having nO(n) states and index O(n). Hence, we can transform AG ,ϕ in an NPT NG ,ϕ

with a number of states double exponential in ϕ and an index exponential in ϕ. It is well known that
an NPT having n states and index k and a safety automaton with m states can be intersected in an
NPT with n ·m states and index k. Hence, by intersecting DG with NG ,ϕ, we get an NPT N ′

G ,ϕ such
that L(N ′

G ,ϕ) = L(DG)∩L(NG ,ϕ). At this point, it is possible to prove that G |= ϕ iff L(N ′
G ,ϕ) 6= /0.

Observe that N ′
G ,ϕ has a number of states double exponential in ϕ and polynomial in G , while it has

an index exponential in ϕ, but independent from G . Moreover, the automata run over the alphabet
Σ = {σ ⊆ AP∪St∪Z | |σ∩St| = 1}, where |Z| = O(|G | × 2|ϕ|). Since the emptiness of an NPT
with n states, index k, and alphabet size h can be checked in time O(h ·nk) [12], we get that to check
whether G |= ϕ can be done in time double exponential in ϕ and polynomial in G . More precisely,
the algorithm runs in |G |2O(|ϕ|) . The details of the automata construction follow.

1 A safety condition is the special parity condition (/0,Q) of index 2.

F. Mogavero, A. Murano, and M.Y. Vardi 141

The NPT DG = 〈Σ,St,St,δ,s0,(/0,St)〉 has the set of directions and states formed by the states of
G that are used to build its unwinding. Moreover, the transition function is defined as follows. At the
state s ∈ St, the automaton first checks that the labeling of the node of the input tree corresponds to
the union of {s} and its labeling λ(s) in G . Then, it sends all successors of s in the relative directions.
Formally, δ(s,σ) is set to f (false) if λ(s)∪{s} 6= σ∩(AP∪St) and to

V
s′∈{τ(s,d)|d∈Dc} (s′,s′) otherwise.

Note that |DG |= O(|G |).
The APT A ′G ,ϕ = 〈Σ,St,{q0}∪Atm(ϕ),δ,q0,(/0,{q0}∪Atm(ϕ))〉 has the set of states formed by

a distinguished state q0, which is also initial, and from the atoms in Atm(ϕ) that are used to verify the
correctness of the additional labeling Z. Moreover, the transition function is defined as follows. δ(ψ,σ)
is equal to t (true) if (ψ, pass) ∈ σ∩Z and to f (false) otherwise. The automaton at state q0 sends the
same state in all the directions individuated by the quantification, together with the control state ψ.
It is important to note that the quantification here is reproduced by conjunctions and disjunctions
on all possible actions of G . Formally, δ(q0,σ) is set to Op1 c1∈Ac· · ·Opk ck∈Ac

V
(ψ,?)∈σ∩Z (τ(s,d),

q0)∧ (τ(s,d),ψ), where Opi ci∈Ac is a disjunction if Qnixi = 〈〈xi〉〉 and a conjunction if Qnixi = [[xi]],
{s}= σ∩St, and d(αi) = c j iff in the atom ψ the binding (αi,x j) appears. Note that |A ′G ,ϕ|= O(|ϕ|).

Finally, we build the APT A ′′ϕ . Let ψ̂ be the LTL formula obtained by replacing in ψ ∈ Atm(ϕ)
all the occurrences of each other atom ψ′ ∈ Atm(ψ) with the fresh atomic proposition (ψ′,start). By
using a slight variation of the procedure developed in [21], we can translate ψ̂ into a universal co-
Büchi word automaton2 Uψ = 〈Σ,Qψ,δψ,Q0ψ,Fψ〉, with a number of states at most exponential in |ψ|,
accepting the infinite words on Σ that are models of ψ̂. At this point, we can construct the automaton
A ′′ϕ that recognizes the trees whose paths, labeled with the flags (ψ,?), for ? ∈ {start, pass}, and
starting with the label (ψ,start), satisfy the LTL formula ψ̂, for all ψ ∈ Atm(ϕ).

Formally, A ′′ϕ = 〈Σ,St,{q0,qc}∪Q,δ,q0,(F,{q0,qc}∪Q)〉 is built as follows. Q =
S

ψ∈Atm(ϕ){ψ}
×Qψ and F =

S
ψ∈Atm(ϕ){ψ}×Fψ are, respectively, the disjoint union of the set of states and final

states of the word automata Uψ, for every atom ψ ∈ Atm(ϕ). q0 is the initial state used to verify that
the formula ψϕ (the matrix of ϕ) holds at the root of the tree in input, by checking whether the labeling
of the root contains all the propositions required by ψϕ to hold. If the checking succeeds, q0 behaves
as the state qc. Formally, let ψϕ be considered as a boolean formula on the set of atoms Atm(ϕ) in
which we assume ψ = (ψ,start), for all ψ ∈ Atm(ϕ). Then, δ(q0,σ) is set to δ(qc,σ), if σ∩Z |= ψϕ

and to f (false), otherwise. qc is the checking state used to start the verification of the atoms ψ in every
node of the input tree that contains the flag (ψ,start), which indicates the existence of a path starting
in that node that satisfies ψ. To do this, qc sends in all the directions (i) a copy of the state itself, to
continue the control on the remaining part of the tree, and (ii) the states derived by all initial states of
the automata Uψ, for all the atoms ψ for which a flag (ψ,start) appears in the labeling σ. Formally,
δ(qc,σ) is

V
s∈St(s,qc)∧

V
(ψ,start)∈σ∩Z

V
q∈Q0ψ

V
q′∈δψ(q,σ∩AP)(s,(ψ,q′)). The states of the form (ψ,q)

are used to run Uψ on all paths labeled by the related flags (ψ, pass). Formally, δ((ψ,q),σ) is set to t

(true) if (ψ, pass) 6∈ σ∩Z and to
V

s∈St
V

q′∈δψ(q,σ∩AP)(s,(ψ,q′)) otherwise. Note that |A ′′ϕ |= O(2|ϕ|).
By a simple calculation, it follows that the overall procedure results in an algorithm that is in

PTIME w.r.t the size of G and in 2EXPTIME w.r.t. the size of ϕ. Hence, by getting lower bounds from
ATL*, the following result holds.

I Theorem 4.2. The model-checking problem for SL is PTIME w.r.t. the size of the model and
2EXPTIME-COMPLETE w.r.t the size of the specification.

We conclude this section by pointing out that the model checking procedure described above
for SL is completely different from that one used in [3] for SLCHP. Indeed in [3], the authors use

2 Word automata can be seen as tree automata in which the tree has just one path. A universal word automaton is a
particular case of alternating automata in which there is no nondeterminism. A co-Büchi acceptance condition F⊆Q
is the special parity condition (F,Q) of index 2.

FSTTCS 2010

142 Reasoning About Strategies

a top-down approach and, most important, for every quantification in the formula, they make a
projection of the automaton they build at each stage (one for each quantification). Since at each
projection they have an exponential blow-up, at the end their procedure results in a non-elementary
one, both in the size of the system and the formula. Our iterative approach, instead, does not make
use of any projection, since we reduce strategy quantifications to action quantifications, which, as we
have stated, can be handled locally on each state of the model.

5 Satisfiability

In this section, we show the undecidability of the satisfiability problem for SL through a reduction of
the recurrent domino problem. In particular, as we discuss later, the reduction also holds for SLCHP

under the concurrent game semantics.
The domino problem, proposed for the first time by Wang [22], consists of placing a given number

of tile types on an infinite grid, satisfying a predetermined set of constraints on adjacent tiles. Its
standard version asks for a compatible tiling of the whole plane N×N. The recurrent domino
problem further requires the existence of a distinguished tile type that occurs infinitely often in the
first row of the grid. This problem was proved to be highly undecidable by Harel, and in particular,
Σ1

1-COMPLETE [9]. The formal definition follows.

I Definition 5.1 (Recurrent Domino System). An N×N recurrent domino system D = 〈D,H,V,

t∗〉 consists of a finite non-empty set D of domino types, two horizontal and vertical matching
relations H,V⊆D×D, and a distinguished tile type t∗∈D. The recurrent domino problem asks for
an admissible tiling of N×N, which is a solution mapping ∂ : N×N→D such that, for all x,y ∈ N, it
holds that (i) (∂(x,y),∂(x+1,y))∈H, (ii) (∂(x,y),∂(x,y+1))∈V , and (iii) |{x | ∂(x,0) = t∗}|=∞.

By showing a reduction from the recurrent domino problem, we prove that the satisfiability
problem for SL is Σ1

1-HARD, which implies that it is even not computably enumerable. We achieve
this reduction by showing that a given recurrent tiling system D = 〈D,H,V, t∗〉 can be “embedded”
into a model of a particular sentence ϕdom , ϕgrd ∧ϕtil ∧ϕrec over AP = {p}∪D and Ag = {α,β},
where p 6∈ D, in such a way that ϕdom is satisfiable iff D allows an admissible tiling. For the sake of
clarity, we split the reduction into three tasks where we explicit the sentences ϕgrd , ϕtil , and ϕrec.

Grid specification. Consider the sentence ϕgrd ,
V

a∈Ag ϕord
a , where ϕord

a = ϕunb
a ∧ϕtrn

a are order
sentences and ϕexs

a and ϕtrn
a are the strategy unboundedness and strategy transitivity requirements for

agents α and β defined, similarly in Definition 3.4, as follows:
1. ϕunb

a , [[z1]]〈〈z2〉〉 z1 <a z2,
2. ϕtrn

a , [[z1]][[z2]][[z3]] (z1 <a z2∧ z2 <a z3)→ z1 <a z3,
where x1 <α x2 , 〈〈y〉〉 (β,y)((α,x1)(X p)∧ (α,x2)(X¬p)) and y1 <β y2 , 〈〈x〉〉 (α,x)((β,y1)(X¬p)∧
(β,y2)(X p)) are the two partial order formulas on strategies of α and β, respectively. Intuitively, <α

and <β correspond to the horizontal and vertical ordering of the positions in the grid, respectively.
It easy to see that ϕgrd is satisfiable, as it follows from the same argument used in Lemma 3.5.

I Lemma 5.2. The SL sentence ϕgrd is satisfiable on a CGS with a countable number of actions.

Consider now a model G = 〈AP,Ag,Ac,St,λ,τ,s0〉 of ϕgrd and the relations r<
a ⊆ Str× Str

between strategies, for all agents a ∈ Ag, defined as follows: r<
a (f1, f2) holds iff G ,χ,s0 |= z1 <a z2,

where χ(z1) = f1 and χ(z2) = f2. By Lemma 3.6, the relations r<
a are strict partial orders without

maximal element on Str. To apply the desired reduction, we need to transform r<
a into total orders over

strategies. Let r≡a ⊆ Str×Str, with a ∈Ag, be the two relations between strategies such that r≡a (f1, f2)
holds iff neither r<

a (f1, f2) nor r<
a (f2, f1) holds. It is possible to show that r≡a are equivalence relations.

Now, let Str≡a = Str/r≡a be the quotient sets of Str w.r.t. r≡a , i.e., the sets of the related equivalence

F. Mogavero, A. Murano, and M.Y. Vardi 143

classes over strategies. Also, let s<
a ⊆ Str≡a ×Str≡a , with a ∈ Ag, be the two relations between classes

of strategies such that s<
a (F1,F2) holds iff, for all f1 ∈ F1 and f2 ∈ F2, it holds that r<

a (f1, f2). Then,
it is easy to prove that s<

a are strict total orders with minimal element but no maximal element. By
a classical result on first order logic model theory [6], s<

a cannot be defined on a finite set. Hence,
|Str≡a |= ∞, for all a ∈ Ag. Now, let s≺a be the successor relations on Str≡a compatible with the strict
total orders s<

a , i.e., such that s≺a (F1,F2) holds iff (i) s<
a (F1,F2) holds and (ii) there is no F3 ∈ Str≡a for

which both s<
a (F1,F3) and s<

a (F3,F2) hold, for all F1,F2 ∈ Str≡a . Then, we can write the two sets of
classes Str≡α and Str≡

β
as the infinite ordered lists {Fα

0 ,Fα
1 , . . .} and {Fβ

0 ,Fβ

1 , . . .}, respectively, such
that s≺a (Fa

i ,Fa
i+1), for all a ∈Ag and i ∈N. Note that Fa

0 are the classes of minimal strategies w.r.t the
relations s<

a .
Now, we have all the machinery to build an embedding of the plane N×N into the model G

of ϕgrd . In particular, we are able to construct a bijective map ℵ : N×N→ Str≡α ×Str≡
β

such that

ℵ(i, j) = (Fα
i ,Fβ

j), for all i, j ∈ N.

Compatible tiling. Given the grid structure built on the model G of ϕgrd through the bijective
map ℵ, we can express that a tiling of the grid is admissible by making use of the formulas z1 ≺a

z2 , z1 <a z2∧¬〈〈z3〉〉 z1 <a z3∧ z3 <a z2 corresponding to the successor relations s≺a , for all a ∈ Ag.
Indeed, it is not hard to see that G ,χ,ε |= z1 ≺a z2 holds iff χ(z1) ∈ Fa

i and χ(z2) ∈ Fa
i+1, for all i ∈N.

The idea here is to associate to each domino type t ∈D a corresponding atomic proposition t ∈AP and
to express the horizontal and vertical matching conditions via suitable object labeling. In particular,
we can express that the tiling is locally compatible, that the horizontal neighborhood of a tile satisfies
the H requirement, and that also its vertical neighborhood satisfies the V requirement, all through the
following three agent-closed formulas, respectively:

1. ϕt,loc(x,y) , (α,x)(β,y)(X (t ∧
Vt ′ 6=t

t ′∈D¬t ′));

2. ϕt,hor(x,y) ,
W

(t,t ′)∈H[[x′]] x≺α x′→ (α,x′)(β,y)(X t ′);

3. ϕt,ver(x,y) ,
W

(t,t ′)∈V [[y′]] y≺β y′→ (α,x)(β,y′)(X t ′).
Informally, we have the following: ϕt,loc(x,y) asserts that t is the only domino type labeling the
successors of the root of the model G that can be reached using the strategies related to the variables
x and y; ϕt,hor(x,y) asserts that the tile t ′ labeling the successors of the root reachable through the
strategies x′ and y is compatible with t w.r.t. the horizontal requirement H, for all strategies x′ that
immediately follow that related to x w.r.t. the order r<

α ; ϕt,ver(x,y) asserts that the tile t ′ labeling the
successors of the root reachable through the strategies x and y′ is compatible with t w.r.t. the vertical
requirement V , for all strategies y′ that immediately follow that related to y w.r.t. the order r<

β
.

Finally, to express that the whole grid has an admissible tiling, we use the sentence ϕtil ,
[[x]][[y]]

W
t∈D ϕt,loc(x,y)∧ϕt,hor(x,y)∧ϕt,ver(x,y) that asserts, for every point individuated by the

strategies x and y, the existence of a domino type t satisfying the three conditions mentioned above.

Recurrent tile. As last task, we impose that the grid embedded into G has the distinguished domino
type t∗ occurring infinitely often in its first row. To do this, we first use two formulas that determine if
a row or a column is the first one or not w.r.t. the orders s<

α and s<
β

, respectively. Formally, we use

0a(z) , ¬〈〈z′〉〉 z′ <a z, for a ∈ Ag. One can prove that G ,χ,ε |= 0α(z) iff χ(z) ∈ Fa
0 .

Now, the infinite occurrence requirement on t∗ can be expressed with the following sentence:
ϕrec , [[x]][[y]] (0β(y)∧ (0α(x)∨ (α,x)(β,y)(X t∗)))→ 〈〈x′〉〉 x <α x′ ∧ (α,x′)(β,y)(X t∗). Informally,
ϕrec asserts that, when we are on the first row individuated by the variable y and at a column
individuated by x such that it is the first column or the node of the “intersection” between x and y is
labeled by t∗, we have that there exists a greater column individuated by x′ such that its “intersection”
with y is labeled by t∗ as well.

FSTTCS 2010

144 Reasoning About Strategies

Construction correctness. Now we have all the tools to formally prove the correctness of the
undecidability reduction, by showing the equivalence between finding the solution of the recurrent
tiling problem and the satisfiability of the sentence ϕdom. In particular, one can note that in the
reduction we propose, only the SLCHP fragment of SL is involved. Thus, we prove that SLCHP

under the concurrent semantics is highly undecidable, while it remains an open question whether this
problem is undecidable or not in the turned-based framework.

I Theorem 5.3. The satisfiability problem for SLCHP under the concurrent semantics is highly
undecidable. In particular, it is Σ1

1-HARD.

References

1 R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-Time Temporal Logic. JACM, 49(5):672–
713, 2002.

2 T. Brihaye, A.D.C. Lopes, F. Laroussinie, and N. Markey. ATL with Strategy Contexts and Bounded
Memory. In LFCS’09, LNCS 5407, pages 92–106. Springer, 2009.

3 K. Chatterjee, T.A. Henzinger, and N. Piterman. Strategy Logic. In CONCUR’07, LNCS 4703,
pages 59–73. Springer, 2007.

4 E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchronization Skeletons Using
Branching-Time Temporal Logic. In LP’81, LNCS 131, pages 52–71. Springer, 1981.

5 E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 2002.

6 H.D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1995.

7 E.A. Emerson and J.Y. Halpern. “Sometimes” and “Not Never” Revisited: On Branching Versus
Linear Time. JACM, 33(1):151–178, 1986.

8 E. Grädel, W. Thomas, and T. Wilke. Automata, Logics, and Infinite Games: A Guide to Current
Research. LNCS 2500. Springer, 2002.

9 D. Harel. A Simple Highly Undecidable Domino Problem. In LCC’84, 1984.

10 W. Jamroga and W. van der Hoek. Agents that Know How to Play. FI, 63(2-3):185–219, 2004.

11 D. Kozen. Results on the Propositional mu-Calculus. TCS, 27:333–354, 1983.

12 O. Kupferman and M.Y. Vardi. Weak Alternating Automata and Tree Automata Emptiness. In
STOC’98, pages 224–233, 1998.

13 O. Kupferman, M.Y. Vardi, and P. Wolper. An Automata Theoretic Approach to Branching-Time
Model Checking. JACM, 47(2):312–360, 2000.

14 O. Kupferman, M.Y. Vardi, and P. Wolper. Module Checking. IC, 164(2):322–344, 2001.

15 D.E. Muller and P.E. Schupp. Simulating Alternating Tree Automata by Nondeterministic Au-
tomata: New Results and New Proofs of Theorems of Rabin, McNaughton and Safra. TCS, 141:69–
107, 1995.

16 M. Pauly. A Modal Logic for Coalitional Power in Games. JLC, 12(1):149–166, 2002.

17 S. Pinchinat. A Generic Constructive Solution for Concurrent Games with Expressive Constraints
on Strategies. In ATVA’07, LNCS 4762, pages 253–267. Springer, 2007.

18 A. Pnueli. The Temporal Logic of Programs. In FOCS’77, pages 46–57, 1977.

19 J.P. Queille and J. Sifakis. Specification and Verification of Concurrent Programs in Cesar. In
SP’81, LNCS 137, pages 337–351. Springer, 1981.

20 S. Schewe. ATL* Satisfiability is 2ExpTime-Complete. In ICALP’08, LNCS 5126, pages 373–385.
Springer, 2008.

21 M.Y. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic Program Verification.
In LICS’86, pages 332–344. IEEE Computer Society, 1986.

22 H. Wang. Proving Theorems by Pattern Recognition II. BSTJ, 40:1–41, 1961.

New Results on Quantum Property Testing∗

Sourav Chakraborty1, Eldar Fischer2, Arie Matsliah3, and Ronald
de Wolf3

1 Chennai Mathematical Institute, Chennai, India.
sourav@cmi.ac.in

2 Computer Science Faculty, Israel Institute of Technology (Technion).
eldar@cs.technion.ac.il

3 Centrum Wiskunde & Informatica, Amsterdam.
{ariem,rdewolf}@cwi.nl

Abstract
We present several new examples of speed-ups obtainable by quantum algorithms in the context
of property testing.

First, motivated by sampling algorithms, we consider probability distributions given in the
form of an oracle f : [n] → [m]. Here the probability Pf (j) of an outcome j ∈ [m] is the
fraction of its domain that f maps to j. We give quantum algorithms for testing whether two
such distributions are identical or ε-far in L1-norm. Recently, Bravyi, Hassidim, and Harrow [11]
showed that if Pf and Pg are both unknown (i.e., given by oracles f and g), then this testing
can be done in roughly

√
m quantum queries to the functions. We consider the case where the

second distribution is known, and show that testing can be done with roughly m1/3 quantum
queries, which we prove to be essentially optimal. In contrast, it is known that classical testing
algorithms need about m2/3 queries in the unknown-unknown case and about

√
m queries in

the known-unknown case. Based on this result, we also reduce the query complexity of graph
isomorphism testers with quantum oracle access.

While those examples provide polynomial quantum speed-ups, our third example gives a much
larger improvement (constant quantum queries vs polynomial classical queries) for the problem
of testing periodicity, based on Shor’s algorithm and a modification of a classical lower bound
by Lachish and Newman [27]. This provides an alternative to a recent constant-vs-polynomial
speed-up due to Aaronson [1].

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.145

1 Introduction

Since the early 1990s, a number of quantum algorithms have been discovered that have much
better query complexity than their best classical counterparts [15, 31, 22, 4, 16, 5]. Around
the same time, the area of property testing gained prominence [9, 20, 18, 29]. Here the aim is
to design algorithms that can efficiently test whether a given very large piece of data satisfies
some specific property, or is “far” from having that property.

Buhrman et al. [12] combined these two strands, exhibiting various testing problems
where quantum testers are much more efficient than classical testers. There has been some
recent subsequent work on quantum property testing, such as the work of Friedl et al. [19] on
testing hidden group properties, Atici and Servedio [6] on testing juntas, Inui and Le Gall [25]

∗ This work was partially supported by an ERC-2007-StG grant number 202405-2 and by an ISF grant
number 1101/06 and was also partially supported by a Vidi grant from the Netherlands Organization
for Scientific Research (NWO), and by the European Commission under the Integrated Project Qubit
Applications (QAP) funded by the IST directorate as Contract Number 015848.

© Sourav Chakrborty, Eldar Fischer, Arie Matsliah and Ronald de Wolf;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 145–156

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.145
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

146 New Results on Quantum Property Testing

on testing group solvability, Childs and Liu [14] on testing bipartiteness and expansion,
Aaronson [1] on “Fourier checking”, and Bravyi, Hassidim, and Harrow [11] on testing
distributions.

In this paper we continue this line of research, coming up with a number of new examples
where quantum testers substantially improve upon their classical counterparts. It should be
noted that we do not invent new quantum algorithms here—rather, we use known quantum
algorithms as subroutines in otherwise classical testing algorithms.

1.1 Distribution Testing

How many samples are needed to determine whether two distributions are identical or have
L1-distance more than ε? This is a fundamental problem in statistical hypothesis testing
and also arises in other subjects like property testing and machine learning.

We use the notation [n] = {1, 2, 3, . . . , n}. For a function f : [n]→ [m], we denote by Pf
the distribution over [m] in which the weight Pf (j) of every j ∈ [m] is proportional to the
number of elements i ∈ [n] that are mapped to j. We use this form of representation for
distributions in order to allow queries. Namely, we assume that the function f : [n]→ [m]
is accessible by an oracle of the form |x〉|b〉 7→ |x〉|b⊕ f(x)〉, where x is a logn-bit string, b
and f(x) are logm-bit strings and ⊕ is bitwise addition modulo two. Note that a classical
random sample according to a distribution Pf can be simply obtained by picking i ∈ [n]
uniformly at random and evaluating f(i). In fact, a classical algorithm cannot make a better
use of the oracle, since the actual labels of the domain [n] are irrelevant.

We say that the distribution Pf is known (or explicit) if the function f is given explicitly,
and hence all probabilities Pf (j) can be computed. Pf is unknown (or black-box) if we only
have oracle access to the function f , and no additional information about f is given. Two
distributions Pf ,Pg defined by functions f, g : [n]→ [m] are ε-far if the L1-distance between
them is at least ε, i.e., ‖Pf − Pg‖1 =

∑m
j=1 |Pf (j) − Pg(j)| ≥ ε. Note that f = g implies

Pf = Pg but not vice versa (for instance, permuting f leaves Pf invariant). Two problems
of testing distributions can be formally stated as follows:

unknown-unknown case. Given n,m, ε and oracle access to f, g : [n] → [m], how
many queries to f and g are required in order to determine whether the distributions Pf
and Pg are identical or ε-far?
known-unknown case. Given n,m, ε, oracle access to f : [n] → [m] and a known
distribution Pg (defined by an explicitly given function g : [n]→ [m]), how many queries
to f are required to determine whether Pf and Pg are identical or ε-far?

If only classical queries are allowed (where querying the distribution means asking for a
random sample), the answers to these problems are well known. For the unknown-unknown
case Batu, Fortnow, Rubinfeld, Smith, and White [8] proved an upper bound of Õ(m2/3) on
the query complexity, and Valiant [32] proved a matching (up to polylogarithmic factors)
lower bound. For the known-unknown case, Goldreich and Ron [21] showed a lower bound
of Ω(

√
m) queries and Batu, Fischer, Fortnow, Rubinfeld, Smith, and White [7] proved a

nearly tight upper bound of Õ(
√
m) queries.1

1 These classical lower bounds are stated in terms of number of samples rather than number of queries,
but it is not hard to see that they hold in both models. In fact, the

√
m classical query lower bound for

the known-unknown case follows by the same argument as the quantum lower bound.

Chakraborty, Fischer, Matsliah, de Wolf 147

1.1.1 Testing with Quantum Queries

Allowing quantum queries for accessing distributions, Bravyi, Hassidim, and Harrow [11]
recently showed that the L1-distance between two unknown distributions can actually be
estimated up to small error with only O(

√
m) queries. Their result implies an O(

√
m) upper

bound on the quantum query complexity for the unknown-unknown testing problem defined
above. In this paper we consider the known-unknown case, and prove nearly tight bounds on
its quantum query complexity.

I Theorem 1. Given n,m, ε, oracle access to f : [n] → [m] and a known distribution Pg
(defined by an explicitly given function g : [n] → [m]), the quantum query complexity of
determining whether Pf and Pg are identical or ε-far is O(m

1/3 log2 m log logm
ε5) = m1/3 ·

poly(1
ε , logm).

We prove Theorem 1 in two parts. First, in Section 3.1, we prove that with O(m
1/3

ε2)
quantum queries it is possible to test whether a black-box distribution Pf (defined by some
f : [n]→ [m]) is ε-close to uniform. We actually prove that this can be even done tolerantly
in a sense, meaning that a distribution that is close to uniform in the L∞ norm is accepted
with high probability (see Theorem 10 for the formal statement). Then, in Section 3.2, we
use the bucketing technique (see Section 2.1) to reduce the task of testing closeness to a
known distribution to testing uniformity.

We stress that the main difference between the classical algorithm of [7] and ours is
that in [7] they check the “uniformity” of the unknown distribution in every bucket by
approximating the corresponding L2 norms of the conditional distributions. It is not clear
if one can gain anything (in the quantum case) using the same strategy, since we are not
aware of any quantum procedure that can approximate the L2 norm of a distribution with
less than

√
m queries. Hence, we reduce the main problem directly to the problem of testing

uniformity. For this reduction to work, the uniformity tester has to be tolerant in the sense
mentioned above (see Section 3.2 for details).

A different quantum uniformity tester was recently discovered (independently) in [11].
We note that our version has the advantages of being tolerant, which is crucial for the
application above, and it has only polynomial dependence on ε (instead of exponential),
which is essentially optimal.

1.1.2 Quantum Lower Bounds

Known quantum query lower bounds for the collision problem [2, 3, 26] imply that in both
known-unknown and unknown-unknown cases roughly m1/3 quantum queries are required.
In fact, the lower bound applies even for testing uniformity (proof omitted from this extended
abstract):

I Theorem 2. Given n,m, ε and oracle access to f : [n]→ [m], the quantum query complexity
of determining whether Pf is uniform or ε-far from uniform is Ω(m1/3).

The main remaining open problem is to tighten the bounds on the quantum query
complexity for the unknown-unknown case. It would be very interesting if this case could
also be tested using roughly m1/3 quantum queries. In fact the easiest way to do this (just
reconstructing both unknown distributions up to small error) will not work—it requires
Ω(m/ logm) quantum queries.

FSTTCS 2010

148 New Results on Quantum Property Testing

1.2 Graph Isomorphism Testing
Fischer and Matsliah [17] studied the problem of testing graph isomorphism in the dense-
graph model, where the graphs are represented by their adjacency matrices, and querying
the graph corresponds to reading a single entry from its adjacency matrix. The goal in
isomorphism testing is to determine, with high probability, whether two graphs G and H are
isomorphic or ε-far from being isomorphic, making as few queries as possible. (The graphs
are ε-far from being isomorphic if at least an ε-fraction of the entries in their adjacency
matrices need to be modified in order to make them isomorphic.)

In [17] two models were considered:
unknown-unknown case. Both G and H are unknown, and they can only be accessed
by querying their adjacency matrices.
known-unknown case. The graph H is known (given in advance to the tester), and
the graph G is unknown (can only be accessed by querying its adjacency matrix).

As usual, in both models the query complexity is the worst-case number of queries needed
to test whether the graphs are isomorphic. [17] give nearly tight bounds of Θ̃(

√
|V |) on

the (classical) query complexity in the known-unknown model. For the unknown-unknown
model they prove an upper bound of Õ(|V |5/4) and a lower bound of Ω(|V |) on the query
complexity.

Allowing quantum queries2, we can use our aforementioned results to prove the following
query-complexity bounds for testing graph isomorphism (proof omitted from this extended
abstract):

I Theorem 3. The quantum query complexity of testing graph isomorphism in the known-
unknown case is Θ̃(|V |1/3), and in the unknown-unknown case it is between Ω(|V |1/3) and
Θ̃(|V |7/6).

1.3 Periodicity Testing
The quantum testers mentioned above obtain polynomial speed-ups over their classical
counterparts, and that is the best one can hope to obtain for these problems. The paper
by Buhrman et al. [12], which first studied quantum property testing, actually provides two
super-polynomial separations between quantum and classical testers: a constant-vs-logn
separation based on the Bernstein-Vazirani algorithm, and a (roughly) logn-vs-

√
n separation

based on Simon’s algorithm. They posed as an open problem whether there exists a constant-
vs-n separation. Recently, in an attempt to construct oracles to separate BQP from the
Polynomial Hierarchy, Aaronson [1] analyzed the problem of “Fourier checking”: roughly,
the input consists of two m-bit Boolean functions f and g, such that g is either strongly or
weakly correlated with the Fourier transform of f (i.e., g(x) = sign(f̂(x)) either for most x
or for roughly half of the x). He proved that quantum algorithms can decide this with O(1)
queries while classical algorithms need Ω(2m/4) queries. Viewed as a testing problem on an
input of length n = 2 · 2m bits, this is the first constant-vs-polynomial separation between
quantum and classical testers.

In Section 4 we obtain another separation that is (roughly) constant-vs-n1/4. Our testing
problem is reverse-engineered from the periodicity problem solved by Shor’s famous factoring
algorithm [30]. Suppose we are given a function f : [n]→ [m], which we can query in the

2 A quantum query to the adjacency matrix of a graph G can be of the form |i, j〉|b〉 7→ |i, j〉|b⊕G(i, j)〉,
where G(i, j) is the (i, j)-th entry of the adjacency matrix of G and ⊕ is addition modulo two.

Chakraborty, Fischer, Matsliah, de Wolf 149

usual way. We call f 1-1-p-periodic if the function is injective on [p] and repeats afterwards.
Equivalently:

f(i) = f(j) iff i = j mod p.

Note that we need m ≥ p to make this possible. In fact, for simplicity we will assume m ≥ n.
Let Pp be the set of functions f : [n]→ [m] that are 1-1-p-periodic, and Pq,r = ∪rp=qPp. The
1-1-periodicity testing problem, with parameters q ≤ r and small fixed constant ε, is as
follows:

given an f which is either in Pq,r or ε-far from Pq,r, find out which is the case.

Note that for a given p it is easy to test whether f is p-periodic or ε-far from it: choose an
i ∈ [p] uniformly at random, and test whether f(i) = f(i+ kp) for a random positive integer
k. If f is p-periodic then these values will be the same, but if f is ε-far from p-periodic then
we will detect this with constant probability. However, r − q + 1 different values of p are
possible in Pq,r, and we will see below that we cannot efficiently test all of them—at least
not in the classical case. In the quantum case, however, we can.

I Theorem 4. There is a quantum tester for P√n/4,
√
n/2 using O(1) queries (and polylog(n)

time), while for every even integer r ∈ [2, n/2), every classical tester for Pr/2,r makes
Ω(
√
r/ log r logn) queries. In particular, testing P√n/4,

√
n/2 requires Ω(n1/4/ logn) classical

queries.

The quantum upper bound is obtained by a small modification of Shor’s algorithm: use
Shor to find the period (if there is one) and then test this purported period with another
O(1) queries.3 The classical lower is based on ideas from Lachish and Newman [27], who
proved classical testing lower bounds for more general periodicity-testing problems. However,
while we follow their general outline, we need to modify their proof since it specifically
applies to functions with range {0, 1}, which is different from our 1-1 case. The requirement
of being 1-1 within each period is crucial for the upper bound—quantum algorithms need
about

√
n queries to find the period of functions with range {0, 1}. While our separation is

slightly weaker than Aaronson’s separation for Fourier checking (our classical lower bound is
n1/4/ logn instead n1/4), the problem of periodicity testing is arguably more natural, and it
may have more applications than Fourier checking.

2 Preliminaries

For any distribution P on [m] we denote by P(j) the probability mass of j ∈ [m] and for any
M ⊆ [m] we denote by P(M) the sum

∑
j∈M P(j). For a function f : [n]→ [m], we denote

by Pf the distribution over [m] in which the weight Pf (j) of every j ∈ [m] is proportional
to the number of elements i ∈ [n] that are mapped to j. Formally, for all j ∈ [m] we define
Pf (j) , Pri∼U [f(i) = j] = |f−1(j)|

n , where U is the uniform distribution on [n], that is
U(i) = 1/n for all i ∈ [n]. Whenever the domain is clear from context (and may be something
other than [n]), we also use U to denote the uniform distribution on that domain.

3 After a first version of this paper was written, Pranab Sen pointed out to us that the ingredients for
our quantum upper bound are already present in work of Hales and Hallgren [24], and in Hales’s PhD
thesis [23]. However, as also pointed out in the introduction of [19], their results are not stated in the
context of property testing. Moreover, no classical lower bounds are proved there; to the best of our
knowledge, our lower bound is new.

FSTTCS 2010

150 New Results on Quantum Property Testing

Let ‖·‖1 and ‖·‖∞ stand for L1-norm and L∞-norm respectively. Two distributions Pf ,Pg
defined by functions f, g : [n]→ [m] are ε-far if the L1-distance between them is at least ε.
Namely, Pf is ε-far from Pg if ‖Pf − Pg‖1 =

∑m
j=1 |Pf (j)− Pg(j)| ≥ ε.

2.1 Bucketing
Bucketing is a general tool, introduced in [8, 7], that decomposes any explicitly given
distribution into a collection of distributions that are almost uniform. In this section we
recall the bucketing technique and the lemmas (from [8, 7]) that we will need for our proofs.

I Definition 5. Given a distribution P over [m], and M ⊆ [m] such that P(M) > 0, the
restriction P|M is a distribution over M with P|M (i) = P(i)/P(M).

Given a partition M = {M0,M1, . . . ,Mk} of [m], we denote by P〈M〉 the distribution
over {0} ∪ [k] in which P〈M〉(i) = P(Mi).

Given an explicit distribution P over [m], Bucket(P, [m], ε) is a procedure that generates
a partition {M0,M1, . . . ,Mk} of the domain [m], where k = 2 logm

log(1+ε) . This partition satisfies
the following conditions:

M0 = {j ∈ [m] | P(j) < 1
m logm};

for all i ∈ [k], Mi =
{
j ∈ [m] | (1+ε)i−1

m logm ≤ P(j) < (1+ε)i

m logm

}
.

I Lemma 6 ([7]). Let P be a distribution over [m] and let {M0,M1, . . . ,Mk} ← Bucket(P, [m], ε).
Then (i) P(M0) ≤ 1/ logm; (ii) for all i ∈ [k], ‖P|Mi

− U|Mi
‖1 ≤ ε.

I Lemma 7 ([7]). Let P,P ′ be two distributions over [m] and letM = {M0,M1, . . . ,Mk} be a
partition of [m]. If ‖P|Mi

− P ′|Mi
‖1 ≤ ε1 for every i ∈ [k] and if in addition ‖P〈M〉 − P ′〈M〉‖1 ≤

ε2, then ‖P − P ′‖1 ≤ ε1 + ε2.

I Corollary 8. Let P,P ′ be two distributions over [m] and letM = {M0,M1, . . . ,Mk} be a
partition of [m]. If ‖P|Mi

− P ′|Mi
‖1 ≤ ε1 for every i ∈ [k] such that P(Mi) ≥ ε3/k, and if in

addition ‖P〈M〉 − P ′〈M〉‖1 ≤ ε2, then ‖P − P ′‖1 ≤ 2(ε1 + ε2 + ε3).

2.2 Quantum Queries and Approximate Counting
Since we only use specific quantum procedures as a black-box in otherwise classical algorithms,
we will not explain the model of quantum query algorithms in much detail (see [28, 13] for
that). Suffice it to say that the function f is assumed to be accessible by the oracle unitary
transformation Of , which acts on a (logn+ logm)-qubit space by sending the basis vector
|x〉|b〉 to |x〉|b⊕ f(x)〉 where ⊕ is bitwise addition modulo two.

The following lemma allows us to estimate the size of the pre-image of a set S ⊆ [m] under
f . It follows easily from the work of Brassard, Høyer, Mosca, and Tapp [10, Theorem 13].

I Lemma 9. For every δ ∈ [0, 1], for every oracle Of for the function f : [n]→ [m], and for
every set S ⊆ [m], there is a quantum algorithm QEstimate(f, S, δ) that makes O(m1/3/δ)
queries to f and, with probability at least 5/6, outputs an estimate p′ to p = Pf (S) =
|f−1(S)|/n such that |p′ − p| ≤ δ

√
p

m1/3 + δ2

m2/3 .

3 Proof of Theorem 1

3.1 Testing Uniformity Tolerantly
Given ε > 0 and oracle access to a function f : [n]→ [m], our task is to distinguish the case
‖Pf − U‖1 ≥ ε from the case ‖Pf − U‖∞ ≤ ε/4m. Note that this is a stronger condition

Chakraborty, Fischer, Matsliah, de Wolf 151

than the one required for the usual testing task, where the goal is to distinguish the case
‖Pf − U‖1 ≥ ε from ‖Pf − U‖∞ = ‖Pf − U‖1 = 0.

I Theorem 10. There is a quantum testing algorithm (Algorithm 1, below) that given
ε > 0 and oracle access to a function f : [n] → [m] makes O(m

1/3

ε2) quantum queries
and with probability at least 2/3 outputs REJECT if ‖Pf − U‖1 ≥ ε, and ACCEPT if
‖Pf − U‖∞ ≤ ε/4m.

Algorithm 1 (Tests closeness to the uniform distribution.)

pick a set T ⊆ [n] of t = m1/3 indices uniformly at random
query f on all indices in T ; set S ← {f(i) | i ∈ T}
if f(i) = f(j) for some i, j ∈ T , i 6= j (or equivalently, |S| < t) then
REJECT

end if
p′ ← QEstimate(f, S, δ), with δ , ε2

320
if |p′ − t

m | ≤ 32δ tm then
ACCEPT

else
REJECT

end if

We need the following corollary for the actual application of Theorem 10:

I Corollary 11. There is an “amplified” version of Algorithm 1 that given ε > 0 and oracle
access to a function f : [n]→ [m] makes O(m

1/3 log logm
ε2) quantum queries and with probability

at least 1− 1
log2 m

outputs REJECT if ‖Pf − U‖1 ≥ ε, and ACCEPT if ‖Pf − U‖∞ ≤ ε/4m.

of Theorem 10. Notice that Algorithm 1 makes only O(m
1/3

ε2) queries: t = m1/3 classical
queries are made initially, and the call to QEstimate requires additional O(m1/3/δ) = O(m

1/3

ε2)
queries.

Now we show that Algorithm 1 satisfies the correctness conditions in Theorem 10. Let
V ⊆ [m] denote the multi-set of values {f(x) | x ∈ T} (unlike S, the multi-set V may contain
some element of [m] more than once). If ‖Pf − U‖∞ ≤ ε/4m then Pf (V) ≤ (1 + ε

4)t/m, and
hence

p(t;m) , Pr[the elements in V are distinct] ≥
(

1−
(1 + ε

4)t
m

)t
≥ 1−

(1 + ε
4)t2

m
> 1− o(1).

Thus if ‖Pf − U‖∞ ≤ ε/4m then with probability at least 1 − o(1), the tester does not
discover any collision. If, on the other hand, ‖Pf − U‖1 ≥ ε and a collision is discovered, then
the tester outputs REJECT, as expected. Hence the following lemma suffices for completing
the proof of Theorem 10.

I Lemma 12. Conditioned on the event that all elements in V are distinct, we have
if ‖Pf − U‖∞ ≤ ε/4m then Pr

[
|Pf (V)− t/m| ≤ 3ε2t

32m

]
≥ 1− o(1);

if ‖Pf − U‖1 ≥ ε then Pr
[
|Pf (V)− t/m| > 3ε2t

16m

]
≥ 1− o(1).

We omit the proof of Lemma 12 from this extended abstract. Assuming Lemma 12, we first
prove Theorem 10. Set p , Pf (V), and recall that t/m = 1/m2/3.

FSTTCS 2010

152 New Results on Quantum Property Testing

If ‖Pf − U‖∞ ≤ ε/4m then with probability at least 1−o(1) the elements in V are distinct
and also |p− 1/m2/3| ≤ 30δ

m2/3 . In this case, by Lemma 9, with probability at least 5/6 the

estimate p′ computed by QEstimate satisfies |p−p′| ≤ δ
√
p

m1/3 + δ2

m2/3 ≤
δ
√

(1+30δ)/m2/3

m1/3 + δ2

m2/3 ≤
2δ
m2/3 , and by the triangle inequality |p′ − t

m | ≤ 32δ tm . Hence the overall probability that
Algorithm 1 outputs ACCEPT is at least 5/6− o(1) > 2/3.

If ‖Pf − U‖1 ≥ ε, then either Algorithm 1 discovers a collision and outputs REJECT, or
otherwise, |p− 1/m2/3| > 60δ

m2/3 with probability 1− o(1). In the latter case, we make the
following case distinction.

Case p ≤ 10/m2/3: By Lemma 9, with probability at least 5/6 the estimate p′ of
QEstimate satisfies |p − p′| ≤ δ

√
p

m1/3 + δ2

m2/3 < 10δ
m2/3 . Then by the triangle inequality,

|p′ − t
m | >

60δ
m2/3 − 10δ

m2/3 > 32δ tm .
Case p > 10/m2/3: In this case it is sufficient to prove that with probability at least 5/6,
p′ ≥ p/2 (which clearly implies |p′ − t

m | > 32δ tm). This follows again by Lemma 9, since
p > 10/m2/3 implies δ

√
p

m1/3 + δ2

m2/3 ≤ p/2.
So the overall probability that Algorithm 1 outputs REJECT is at least 5/6−o(1) > 2/3. J

3.2 Testing Closeness to a Known Distribution

In this section we prove Theorem 1 based on Theorem 10. Let Pf be an unknown distribution
and let Pg be a known distribution, defined by f, g : [n] → [m] respectively. We show
that for any ε > 0, Algorithm 2 makes O(m

1/3 log2 m log logm
ε5) queries and distinguishes the

case ‖Pf − Pg‖1 = 0 from the case ‖Pf − Pg‖1 > 5ε with probability ≥ 2/3, satisfying the
requirements of Theorem 1.

Algorithm 2 (Tests closeness to a known distribution.)

1: letM , {M0, . . . ,Mk} ← Bucket(Pg, [m], ε4) for k = 2 logm
log(1+ε/4)

2: for i = 1 to k do
3: if Pg(Mi) ≥ ε/k then
4: if ‖(Pf)|Mi

− U|Mi
‖1 ≥ ε (check using the amplified version of Algorithm 1 from

Corollary 11) then
5: REJECT
6: end if
7: end if
8: end for
9: if ‖(Pf)〈M〉 − (Pg)〈M〉‖1 > ε/4 (check classically with O(

√
k) = O(logm) queries [7])

then
10: REJECT
11: end if
12: ACCEPT

Observe that no queries are made by Algorithm 2 itself, and the total number of
queries made by calls to Algorithm 1 is bounded by k · O(kε ·

m1/3 log logm
ε2) + O(

√
k) =

O(m
1/3 log2 m log logm

ε5).4 In addition, the failure probability of Algorithm 1 is at most

4 The additional factor of kε is for executing Algorithm 1 on the conditional distributions (Pf)|Mi
, with

Pf (Mi) ≥ ε
k .

Chakraborty, Fischer, Matsliah, de Wolf 153

1/ log2 m � 1/k, so we can assume that with high probability none of its executions
failed.

For any i ∈ [k] and any x ∈ Mi, by the definition of the buckets (1+ε/4)i−1

m logm ≤ Pg(x) ≤
(1+ε/4)i

m logm . Thus, for any i ∈ [k] and x ∈ Mi, (1 − ε
4)/|Mi| < 1/(1 + ε

4)|Mi| < (Pg)|Mi
(x) <

(1 + ε
4)/|Mi|, or equivalently for any i ∈ [k] we have ‖(Pg)|Mi

− U|Mi
‖∞ ≤ ε

4|Mi| . This means
that if ‖Pf − Pg‖1 = 0 then
1. for any i ∈ [k], ‖(Pf)|Mi

− U|Mi
‖∞ ≤ ε

4|Mi| and thus the tester never outputs REJECT
in Line 5 (since we assumed that Algorithm 1 did not err in any of its executions).

2. ‖(Pf)〈M〉 − (Pg)〈M〉‖1 = 0, and hence the tester does not output REJECT in Line 10
either.

On the other hand, if ‖Pf − Pg‖1 > 5ε then by Corollary 8 either |(Pf)〈M〉− (Pg)〈M〉| >
ε/4 or there is at least one i ∈ [k] for which Pf (Mi) ≥ ε/k and ‖(Pf)|Mi

− (Pg)|Mi
‖1 > 5ε/4

(otherwise ‖Pf − Pg‖1 must be smaller than 2(5ε/4 + ε/4 + ε) = 5ε). In the first case
the tester will reject in Line 10. In the second case the tester will reject in Line 5 as
‖(Pf)|Mi

− (Pg)|Mi
‖1 > 5ε/4 implies (by the triangle inequality) ‖(Pf)|Mi

− U|Mi
‖1 > ε,

since ‖(Pg)|Mi
− U|Mi

‖1 < ε/4 by Lemma 6.

4 Proof of Theorem 4

4.1 Quantum Upper Bound
The quantum tester is very simple, and completely based on existing ideas. First, run a
variant of Shor’s algorithm to find the period of f (if there is one), using O(1) queries.
Second, test whether the purported period is indeed the period, using another O(1) queries
as described above. Accept iff the latter test accepts.

For the sake of completeness we sketch here how Shor’s algorithm can be used to find the
unknown period p of an f that is promised to be 1-1-p-periodic for some value of p ≤

√
n/2.

Here is the algorithm:

1. First prepare the 2-register quantum state 1√
n

∑
i∈[n]

|i〉|0〉

2. Query f once (in superposition), giving 1√
n

∑
i∈[n]

|i〉|f(i)〉

3. Measure the second register, which gives some f(s) for s ∈ [p] and collapses the first
register to the i having the same f -value: 1√

bn/pc

∑
i∈[n],i=s mod p

|i〉|f(i)〉

4. Do a quantum Fourier transform on the first register and measure.
Some analysis shows that with high probability the measurement gives an i such that∣∣∣∣ in − c

p

∣∣∣∣ < 1
2n , where c is a random (essentially uniform) integer in [p]. Using continued

fraction expansion, we can then calculate the unknown fraction c/p from the known
fraction i/n.5

5 Two distinct fractions each with denominator ≤
√

n/2 are ≥ 4/n apart. Hence there is only one fraction
with denominator at most

√
n/2 within distance 2/n from the known fraction i/n. This unique fraction

can only be c/p, and CFE efficiently finds it for us. Note that we do not obtain c and p separately, but
just their ratio given as a numerator and a denominator in lowest terms. If c and p were coprime that
would be enough, but that need not happen with high probability.

FSTTCS 2010

154 New Results on Quantum Property Testing

5. Doing the above 4 steps k times gives fractions c1/p, . . . , ck/p, each given as a numerator
and a denominator (in lowest terms). Each of the k denominators divides p, and if k is a
sufficiently large constant then with high probability (over the ci’s), their least common
multiple is p.

4.2 Classical Lower Bound
We saw above that quantum computers can efficiently test 1-1-periodicity P√n/4,

√
n/2.

Here we will show that this is not the case for classical testers: those need roughly
√
r queries

for 1-1-periodicity testing Pr/2,r, in particular roughly n1/4 queries for r =
√
n/2. Our proof

follows along the lines of Lachish and Newman [27]. However, since their proof applies to
functions with range 0/1 that need not satisfy the 1-1 property, some modifications are
needed.

Fix a sufficiently large even integer r < n/2. We will use Yao’s principle, proving a lower
bound for deterministic query testers with error probability ≤ 1/3 in distinguishing two
distributions, one on negative instances and one on positive instances. First, the “negative”
distribution DN is uniform on all f : [n] → [m] that are ε-far from Pr/2,r. Second, the
“positive” distribution DP chooses a prime period p ∈ [r/2, r] uniformly, then chooses a 1-1
function [p]→ [m] uniformly (equivalently, chooses a sequence of p distinct elements from
[m]), and then completes f by repeating this period until the domain [n] is “full”. Note that
the last period will not be completed if p 6 |n.

Suppose q = o(
√
r/ log r logn) is the number of queries of our deterministic tester.

Fix a set Q = {i1, . . . , iq} ⊆ [n] of q queries. Let f(Q) ∈ [m]q denote the concatenated
answers f(i1), . . . , f(iq). We prove two lemmas, one for the negative and one for the positive
distribution, showing f(Q) to be close to uniformly distributed in both cases. Both the
proofs are omitted from this extended abstract.

I Lemma 13. For all η ∈ [m]q, we have PrDN
[f(Q) = η] = (1± o(1))m−q.

I Lemma 14. There exists an event B such that PrDP
[B] = o(1), and for all η ∈ [m]q with

distinct coordinates, we have PrDP
[f(Q) = η | B] = (1± o(1))m−q.

Since (1− o(1))mq of all η ∈ [m]q have distinct coordinates, their weight under DP sums
to 1− o(1), and the other possible η comprise only a o(1)-fraction of the overall weight. The
query-answers f(Q) are the only access the algorithm has to the input. Hence the previous
two lemmas imply that an algorithm with o(

√
r/ log r logn) queries cannot distinguish DP

and DN with probability better than 1/2 + o(1). This establishes the claimed classical lower
bound.

5 Summary and Open Problems

In this paper we studied and compared the quantum and classical query complexities
of a number of testing problems. The first problem is deciding whether two probability
distributions on a set [m] are equal or ε-far. Our main result is a quantum tester for the case
where one of the two distributions is known (i.e., given explicitly) while the other is unknown
and represented by a function that can be queried. Our tester uses roughly m1/3 queries
to the function, which is essentially optimal. It would be very interesting to extend this
quantum upper bound to the case where both distributions are unknown. Such a quantum
tester would show that the known-unknown and unknown-unknown cases have the same
complexity in the quantum world. In contrast, they are known to have different complexities

Chakraborty, Fischer, Matsliah, de Wolf 155

in the classical world: about m1/2 queries for the known-unknown case and about m2/3

queries for the unknown-unknown case. The classical counterparts of these tasks play an
important role in many problems related to property testing. We already mentioned one
example, the graph isomorphism problem, where distribution testers are used as a black-box.
We hope that the quantum analogues developed here and in [11] will find similar use.

The second testing problem is deciding whether a given function f : [n]→ [m] is periodic
or far from periodic. For the specific version of the problem that we considered (where
in the first case the period is at most about

√
n, and the function is injective within each

period), we proved that quantum testers need only a constant number of queries (using
Shor’s algorithm), while classical algorithms need about n1/4 queries. Both this result and
Aaronson’s recent result on “Fourier checking” [1] contrast with the constant-vs-logn and
logn-vs-

√
n separations obtained by Buhrman et al. [12] for other testing problems, but still

leave open their question: is there a testing problem where the separation is “maximal”, in
the sense that quantum testers need only O(1) queries while classical testers need Ω(n)?

Acknowledgements We thank Avinatan Hassidim, Harry Buhrman and Prahladh Harsha
for useful discussions, Frederic Magniez for a reference to [19], Pranab Sen for a reference
to [24, 23], and Scott Aaronson for pointing out that his Fourier checking result in [1] was
the first constant-vs-polynomial quantum speed-up in property testing.

References
1 S. Aaronson. BQP and the Polynomial Hierarchy. In Proceedings of 42nd ACM STOC,

2010. arXiv:0910.4698.
2 S. Aaronson and Y. Shi. Quantum lower bounds for the collision and the element distinct-

ness problems. Journal of the ACM, 51(4):595–605, 2004.
3 A. Ambainis. Polynomial degree and lower bounds in quantum complexity: Collision and

element distinctness with small range. Theory of Computing, 1(1):37–46, 2005. quant-
ph/0305179.

4 A. Ambainis. Quantum walk algorithm for element distinctness. SIAM Journal on Com-
puting, 37(1):210–239, 2007. Earlier version in FOCS’04. quant-ph/0311001.

5 A. Ambainis, A. Childs, B. Reichardt, R. Špalek, and S. Zhang. Any AND-OR formula of
size n can be evaluated in time N1/2+o(1) on a quantum computer. In Proceedings of 48th
IEEE FOCS, 2007.

6 A. Atici and R. Servedio. Quantum algorithms for learning and testing juntas. Quantum
Information Processing, 6(5):323–348, 2009.

7 T. Batu, L. Fortnow, E. Fischer, R. Kumar, R. Rubinfeld, and P. White. Testing random
variables for independence and identity. In Proceedings of 42nd IEEE FOCS, pages 442–451,
2001.

8 T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White. Testing that distributions
are close. In Proceedings of 41st IEEE FOCS, pages 259–269, 2000.

9 M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical
problems. Journal of Computer and System Sciences, 47(3):549–595, 1993. Earlier version
in STOC’90.

10 G. Brassard, P. Høyer, M. Mosca, and A. Tapp. Quantum amplitude amplification and esti-
mation. In Quantum Computation and Quantum Information: A Millennium Volume, vol-
ume 305 of AMS Contemporary Mathematics Series, pages 53–74. 2002. quant-ph/0005055.

11 S. Bravyi, A. Hassidim, and A. Harrow. Quantum algorithms for testing properties of
distributions. In Proceedings of 27th Annual Symposium on Theoretical Aspects of Computer
Science (STACS’2010), 2010. abs/0907.3920.

FSTTCS 2010

156 New Results on Quantum Property Testing

12 H. Buhrman, L. Fortnow, I. Newman, and H. Röhrig. Quantum property testing. In
Proceedings of 14th ACM-SIAM SODA, pages 480–488, 2003. quant-ph/0201117.

13 H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: A survey.
Theoretical Computer Science, 288(1):21–43, 2002.

14 A. Childs and Y-K. Liu. Quantum algorithms for testing bipartiteness and expansion of
bounded-degree graphs. Manuscript, Oct 22, 2009.

15 D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation. In Pro-
ceedings of the Royal Society of London, volume A439, pages 553–558, 1992.

16 E. Farhi, J. Goldstone, and S. Gutmann. A quantum algorithm for the Hamiltonian NAND
tree. Theory of Computing, 4(1):169–190, 2008. quant-ph/0702144.

17 E. Fischer and A. Matsliah. Testing graph isomorphism. SIAM Journal on Computing,
38(1):207–225, 2008.

18 Eldar Fischer. The art of uninformed decisions. Bulletin of the EATCS, 75:97, 2001.
19 K. Friedl, F. Magniez, M. Santha, and P. Sen. Quantum testers for hidden group properties.

Fundamenta Informaticae, 91(2):325–340, 2009. Earlier version in MFCS’03.
20 O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning

and approximation. Journal of the ACM, 45(4):653–750, 1998.
21 O. Goldreich and D. Ron. On testing expansion in bounded-degree graphs. Electronic

Colloquium on Computational Complexity (ECCC), 7(20), 2000.
22 L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of

28th ACM STOC, pages 212–219, 1996. quant-ph/9605043.
23 L. Hales. The Quantum Fourier Transform and Extensions of the Abelian Hidden Subgroup

Problem. PhD thesis, University of California, Berkeley, 2002. quant-ph/0212002.
24 L. Hales and S. Hallgren. An improved quantum Fourier transform algorithm and applica-

tions. In Proceedings of 41st IEEE FOCS, pages 515–525, 2000.
25 Y. Inui and F. Le Gall. Quantum property testing of group solvability. In Proceedings of

8th LATIN, pages 772–783, 2008.
26 S. Kutin. Quantum lower bound for the collision problem with small range. Theory of

Computing, 1(1):29–36, 2005. quant-ph/0304162.
27 O. Lachish and I. Newman. Testing periodicity. Algorithmica, 2009. Earlier version ap-

peared in RANDOM’05.
28 M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cam-

bridge University Press, 2000.
29 D. Ron. Property testing: A learning theory perspective. Foundations and Trends in

Machine Learning, 1(3):307–402, 2008.
30 P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on

a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997. Earlier version
in FOCS’94. quant-ph/9508027.

31 D. Simon. On the power of quantum computation. SIAM Journal on Computing,
26(5):1474–1483, 1997. Earlier version in FOCS’94.

32 P. Valiant. Testing symmetric properties of distributions. In Proceedings of 40th ACM
STOC, pages 383–392, 2008.

Lower bounds for Quantum Oblivious Transfer∗

André Chailloux1, Iordanis Kerenidis1, and Jamie Sikora2

1 LRI, Univ Paris-Sud
CNRS
{chaillou,jkeren}@lri.fr

2 IQC
University of Waterloo
jwjsikor@uwaterloo.ca

Abstract
Oblivious transfer is a fundamental primitive in cryptography. While perfect information

theoretic security is impossible, quantum oblivious transfer protocols can limit the dishonest
players’ cheating. Finding the optimal security parameters in such protocols is an important
open question. In this paper we show that every 1-out-of-2 oblivious transfer protocol allows
a dishonest party to cheat with probability bounded below by a constant strictly larger than
1/2. Alice’s cheating is defined as her probability of guessing Bob’s index, and Bob’s cheating
is defined as his probability of guessing both input bits of Alice. In our proof, we relate these
cheating probabilities to the cheating probabilities of a coin flipping protocol and conclude by
using Kitaev’s coin flipping lower bound. Then, we present an oblivious transfer protocol with
two messages and cheating probabilities at most 3/4. Last, we extend Kitaev’s semidefinite
programming formulation to more general primitives, where the security is against a dishonest
player trying to force the outcome of the other player, and prove optimal lower and upper bounds
for them.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.157

1 Introduction

Quantum information enables us to do cryptography with information theoretic security.
The first breakthrough result in quantum cryptography is the unconditionally secure key
distribution protocol of Bennett and Brassard [BB84]. Since then, a long series of work has
studied which other cryptographic primitives are possible in the quantum world. However,
the subsequent results were negative. Mayers and Lo, Chau proved the impossibility of
secure ideal quantum bit commitment and oblivious transfer and consequently of any type
of two-party secure computation [May97, LC97, DKSW07]. On the other hand, several
imperfect variants of these primitives have been shown to be possible. Finding the optimal
parameters for such fundamental primitives has been since an important open question. The
reason for looking at these abstract primitives is that they are the basis for all cryptographic
protocols one may wish to construct, including identification schemes, digital signatures,
electronic voting, etc. Let us emphasize that in this paper we only look at information
theoretic security and we do not discuss computational security or security in restricted
models like the bounded-storage or noisy-storage model.

We start with coin flipping, which was first proposed by Blum [Blu81] and has since found
numerous applications in two-party secure computation. Even though the results of Mayers

∗ This work was partially supported by the projects ANR-09-JCJC-0067-01, ANR-08-EMER-012, CSQIP
EU-Canada Collaboration, NSERC, MITACS, and ERA (Ontario)

© André Chailloux, Iordanis Kerenidis and Jamie Sikora;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 157–168

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.157
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

158 Lower bounds for Quantum Oblivious Transfer

and of Lo and Chau exclude the possibility of perfect quantum coin flipping, i.e., where
the resulting coin is perfectly unbiased, it still remained open whether one can construct
a quantum protocol where no player could bias the coin with probability 1. Aharonov et
al. [ATVY00] provided such a protocol where no dishonest player could bias the coin with
probability higher than 0.9143. Then, Ambainis [Amb01] described an improved protocol
whose cheating probability was at most 3/4. Subsequently, a number of different protocols
had been proposed [SR01, NS03, KN04] that achieved the same bound of 3/4.

On the other hand, Kitaev [Kit03], using a formulation of quantum coin flipping as
semidefinite programs proved a lower bound of 1/2 on the product of the cheating probabilities
for Alice and Bob (see [ABDR04]). In other words, no quantum coin flipping protocol can
achieve a cheating probability less than 1/

√
2 for both Alice and Bob.

The question of whether 3/4 or 1/
√

2 was the right answer has recently been resolved
by Chailloux and Kerenidis [CK09] who described a protocol with cheating probability
arbitrarily close to 1/

√
2. In their protocol they use as a subroutine a weaker variant of coin

flipping which is referred to as weak coin flipping.

In this paper, we focus on oblivious transfer, which is a universal primitive for any two-
party secure computation [Rab81, EGL82, Cré87]. We define a 1-out-of-2 random oblivious
transfer protocol with bias ε, denoted here as random-OT .

The first impossibility result for quantum OT with information theoretic security was
shown by Lo [Lo97]. However, not much was known about the best possible bias that one
can get for OT . Note that Kitaev’s lower bound does not a priori hold for OT , since we do
not know how to easily convert an OT protocol to a coin flipping protocol without any loss.

In related work, Salvail, Schaffner and Sotakova [SSS09] have quantitatively studied a
different notion of security for OT protocols (and generally any two-party protocols) that
they call information leakage. They prove, among other results, that any 1-out-of-2 OT
protocol has a constant leakage. Their model is somewhat different, for example they do not
allow the players to abort during the protocol, and their security notion is described in terms
of mutual information and entropy and does not immediately translate to our security notion
of guessing probabilities. However, their results provide more evidence that almost-perfect
OT protocols are impossible for different variants of security.

In another work, Jain, Radhakrishnan and Sen [JRS02] showed that in a 1-out-of-n OT
protocol, if Alice gets t bits of information about Bob’s index b, then Bob gets at least
Ω(n/2O(t)) bits of information about Alice’s string x.

Our work

In this paper, we quantitatively study the bias of quantum oblivious transfer protocols. More
precisely, we construct a coin flipping protocol that uses OT as a subroutine and show a
relation between the cheating probabilities of the OT protocol and the ones of the coin
flipping protocol. Then, using Kitaev’s lower bound for coin flipping we derive a non-trivial
lower bound (albeit weaker) on the cheating probabilities for OT . More precisely we prove
the following theorem.

I Theorem 1. In any quantum oblivious transfer protocol, we have

AOT · f(BOT) ≥ 1/2

André Chailloux, Iordanis Kerenidis, and Jamie Sikora 159

where f is a function that we define later1. This implies for the bias ε of the protocol that

ε ≥ 1
2

(√
1
2 + 2

√
2−

√
1
2

)
− 1

2 ≈ 0.0586.

Moreover, in Section 4 we describe a simple 1-out-of-2 random-OT protocol and analyze
the cheating probabilities of Alice and Bob.

I Theorem 2. There exists a quantum oblivious transfer protocol such that AOT = BOT = 3
4 .

One may wonder if it would be possible to extend Kitaev’s semidefinite programming
formulation to include the OT primitive and get a stronger lower bound this way. In Section 5
we describe a generalization of Kitaev’s semidefinite program that captures a variant of the
general k-out-of-n OT primitive. Coin flipping, is then the special case of 1-out-of-1 OT .
However, there is a big difference. What the semidefinite program formulation captures is
the probability that one player can force the outcome of the other one. More precisely, we
define a k-out-of-n forcing oblivious transfer protocol, denoted here as

(
n
k

)
-fOT.

We show the following theorem.

I Theorem 3. In any
(
n
k

)
-fOT protocol and consistent b, x, xb we have

Bx ·Ab,xb
≥ Pr[Alice honestly outputs x and Bob honestly outputs (b, xb)] = 1(

n
k

)
2n
.

In particular, the forcing bias satisfies ε ≥
√

2k.

Note that for the special case of coin flipping, or else
(1

1
)
-fOT, our bounds are tight (a

multiplicative bias of
√

2 is equivalent to a cheating probability of 1√
2).

Similar to coin flipping, one can get optimal protocols as well for
(
n
k

)
-fOT.

I Theorem 4. Let γ > 0. There exists a protocol for
(
n
k

)
-fOT with cheating probabilities:

Ab,xb
≤
√

2k(1 + γ)(
n
k

)
· 2k

and Bx ≤
√

2k(1 + γ)
2n .

2 Preliminaries

In the literature, many different variants of oblivious transfer have been considered. In this
paper, we mainly consider random oblivious transfer. In the full version, we show how this
definition is equivalent to other definitions of oblivious transfer with respect to the bias ε.

I Definition 5 (Random Oblivious Transfer). A 1-out-of-2 quantum random oblivious transfer
protocol with bias ε, denoted here as random-OT , is a protocol between Alice and Bob such
that:

Alice outputs two bits (x0, x1) or Abort and Bob outputs two bits (b, y) or Abort
If Alice and Bob are honest, they never Abort, y = xb, Alice has no information about b
and Bob has no information about xb. Also, x0, x1, b are uniformly random bits
AOT := sup{Pr[Alice guesses b and Bob does not Abort]} = 1

2 + εA
BOT := sup{Pr[Bob guesses (x0, x1) and Alice does not Abort]} = 1

2 + εB

1 f is the inverse of the function g(x) = x(2x− 1)2 on some domain

FSTTCS 2010

160 Lower bounds for Quantum Oblivious Transfer

The bias of the protocol is defined as ε := max{εA, εB}
where the suprema are taken over all cheating strategies for Alice and Bob.

Note that this definition is slightly different from usual definitions because we want the
exact value of the cheating probabilities and not only an upper bound. This is because we
consider both lower bounds and upper bounds for OT protocols but we could have equivalent
results using the standard definitions.

An important issue is that we quantify the security against a cheating Bob as the
probability that he can guess (x0, x1). One can imagine a security definition where Bob’s
guessing probability is not for (x0, x1), but for example for x0 ⊕ x1 or any other function
f(x0, x1). Since we are mostly interested in lower bounds, we believe our definition is the most
appropriate one, since a lower bound on the probability of guessing (x0, x1) automatically
yields a lower bound on the probability of guessing any f(x0, x1).

Note also that we do not have composability requirements for such protocols. Our main
goal here is to get a constant lower bound for the simplest definition of OT, hence making
the result as strong as possible. This is why we use the stand-alone definition. This is also
the definition that one can relate most easily to the coin flipping protocols, which are also
defined in a stand-alone way, e.g., in Kitaev’s bound.

We also define quantum (strong) coin flipping.

I Definition 6. A quantum coin flipping protocol with bias ε, denoted here as CF , is a
protocol between Alice and Bob who agree on an output a ∈ {0, 1,Abort} such that:

If Alice and Bob are honest then Pr[a = 0] = Pr[a = 1] = 1
2

ACF := sup{max{Pr[a = 0],Pr[a = 1]}} = 1
2 + εA

BCF := sup{max{Pr[a = 0],Pr[a = 1]}} = 1
2 + εB

The bias of the protocol is defined as ε := max{εA, εB}
where the suprema are taken over all strategies for Alice and Bob.

3 A Lower Bound on Any Oblivious Transfer Protocol

In this section we prove that the bias of any random-OT protocol, and hence any OT

protocol, is bounded below by a constant. We start from a random-OT protocol and first
show how to construct a coin flipping protocol. Then, we prove a relation between the
cheating probabilities of the coin flipping protocol and those in the random-OT protocol.
Last, we use Kitaev’s lower bound for coin flipping to derive a lower bound for any OT
protocol.

3.1 From Oblivious Transfer to Coin Flipping

Coin Flipping Protocol via random-OT

1. Alice and Bob perform the OT protocol to create (x0, x1) and (b, xb) respectively.
If the OT protocol is aborted then so is the coin flipping protocol.

2. Alice sends c ∈R {0, 1} to Bob.
3. Bob sends b and xb to Alice.
4. If xb from Bob is consistent with Alice’s bits then the output of the protocol is c⊕ b.
Otherwise Alice aborts.

André Chailloux, Iordanis Kerenidis, and Jamie Sikora 161

By definition, AOT and BOT denote the optimal cheating probabilities for Alice and Bob
in the random-OT protocol and ACF and BCF denote the optimal cheating probabilities for
Alice and Bob in the coin flipping protocol. Kitaev’s lower bound on coin flipping implies
that ACFBCF ≥ 1/2. We use this inequality to derive an inequality involving AOT and BOT .

I Theorem 1. In any quantum oblivious transfer protocol, we have

AOT · f(BOT) ≥ 1/2

for the function f defined as2

f(z) = 1
6(3
√

3
√

27z2 − 2z + 27z − 1)1/3 + 1
6(3
√

3
√

27z2 − 2z + 27z − 1)−1/3 + 1/3.

This implies that the bias ε of the protocol satisfies

ε ≥ 1
2

(√
1
2 + 2

√
2−

√
1
2

)
− 1

2 ≈ 0.0586.

In what follows we prove the above theorem.
Let ¬⊥CFA (resp. ¬⊥CFB) denote the event “Alice (resp. Bob) does not abort during the

entire coin flipping protocol”. Let ¬⊥OTA (resp. ¬⊥OTB) denote the event “Alice (resp. Bob)
does not abort during the random-OT subroutine”.
Cheating Alice

By definition, AOT is the optimal probability of Alice guessing b in the random-OT protocol
without Bob aborting. Suppose Alice desires to force 0 in the coin flipping protocol (a similar
argument can be made if she wants 1). Bob must not abort and Alice must send c = b in her
last message. Notice also that in our coin flipping protocol, honest Bob only aborts in the
OT subroutine and hence ¬⊥OTB ≡ ¬⊥CFB . Thus,

ACF = sup{Pr[(Alice sends c = b)∧¬⊥CFB]} = sup{Pr[(Alice guesses b)∧¬⊥OTB]} = AOT .

where the suprema are taken over all possible strategies for Alice.
Cheating Bob

By definition, BOT is the optimal probability of Bob learning both bits in the random-OT
protocol without Alice aborting. Thus,

BOT = sup{Pr[(Bob guesses (x0, x1)) ∧ ¬⊥OTA]}
= sup{Pr[¬⊥OTA] · Pr[(Bob guesses (x0, x1))|¬⊥OTA]}.

where the suprema are taken over all strategies for Bob.
If Bob wants to force 0 in the coin flipping protocol (a similar argument works if he wants

to force 1), then first, Alice must not abort in the random-OT protocol and second, Bob
must send b = c as well as the correct xc such that Alice does not abort in the last round of
the coin flipping protocol. This is equivalent to saying that Bob succeeds if he guesses xc
and Alice does not abort in the random-OT protocol. Since c is chosen by Alice uniformly
at random, we can write the probability of Bob cheating as

2 f is the inverse function of g(x) = x(2x− 1)2 on some domain, see the proof for more details.

FSTTCS 2010

162 Lower bounds for Quantum Oblivious Transfer

BCF = max
{

1
2 Pr[(Bob guesses x0) ∧ ¬⊥OTA] + 1

2 Pr[(Bob guesses x1) ∧ ¬⊥OTA]
}

= max
{

Pr[¬⊥OTA] ·
(

1
2 Pr[(Bob guesses x0)|¬⊥OTA] + 1

2 Pr[(Bob guesses x1)|¬⊥OTA]
)}

.

Notice that we use “max” instead of “sup” above. This is because an optimal strategy
exists for every coin flipping protocol. This is a consequence of strong duality in the
semidefinite programming formalism of [Kit03], see [ABDR04] for details.

Let us now fix Bob’s optimal cheating strategy in the CF protocol. For this strategy, let
p = Pr[(Bob guesses x0)|¬⊥OTA], q = Pr[(Bob guesses x1)|¬⊥OTA] and a = p+q

2 . Note that
wlog, we can assume that Bob’s measurements are projective measurements. This can be
done by increasing the dimension of Bob’s space. Also, Alice has a projective measurement
on her space to determine the bits (x0, x1).

We use the following lemma to relate BCF and BOT .

I Lemma 1 (Learning-In-Sequence Lemma). Let p, q ∈ [1/2, 1]. Let Alice and Bob share a
joint pure state. Suppose Alice performs a projective measurement M = {Mx0,x1}x0,x1∈{0,1}
on her space to determine the values of (x0, x1). Suppose there is a projective measurement
P = {P0, P1} on Bob’s space that allows him to guess bit x0 with probability p and a projective
measurement Q = {Q0, Q1} on his space that allows him to guess bit x1 with probability
q. Then, there exists a measurement on Bob’s space that allows him to guess (x0, x1) with
probability at least a(2a− 1)2 where a = p+q

2 .

We postpone the proof of this lemma to Subsection 3.2.
We now construct a cheating strategy for Bob for the OT protocol: run the optimal

cheating CF strategy and look at Bob’s state after step 1 conditioned on ¬⊥OTA . Note
that this event happens with nonzero probability in the optimal coin flipping strategy
since otherwise the success probability is 0. The optimal CF strategy gives measurements
that allow Bob to guess x0 with probability p and x1 with probability q. Bob uses these
measurements and the procedure of Lemma 1 to guess (x0, x1). Let b be the probability he
guesses (x0, x1). From Lemma 1, we have that b ≥ a(2a − 1)2. By definition of BOT and
BCF , we have:

b = Pr[(Bob guesses (x0, x1))|¬⊥OTA] ≤ BOT
Pr[¬⊥OTA]

and a = BCF
Pr[¬⊥OTA]

.

This gives us

BOT
Pr[¬⊥OTA]

≥ BCF
Pr[¬⊥OTA]

(
2 BCF

Pr[¬⊥OTA]
− 1
)2

=⇒ BOT ≥ BCF (2BCF − 1)2
,

where the implication holds since BCF ≥ 1/2.
We now calculate an upper bound on BCF as a function of BOT . Let g(x) = x(2x− 1)2.

It can be easily checked that g is bijective on the interval [0.5, 1] and increasing. Let f be the
inverse function of g from [0, 1] to [0, 0.5]. Since g is increasing, f is also increasing. Hence,
since BOT ≥ g(BCF) and BCF ∈ [0.5, 1], we conclude that

BCF ≤ f(BOT).

André Chailloux, Iordanis Kerenidis, and Jamie Sikora 163

We can write f analytically using computer software to get the following function

f(z) = 1
6(3
√

3
√

27z2 − 2z + 27z − 1)1/3 + 1
6(3
√

3
√

27z2 − 2z + 27z − 1)−1/3 + 1/3.

Kitaev’s lower bound states that ACFBCF ≥ 1/2. From this, we have

AOT f(BOT) ≥ ACFBCF ≥ 1/2.

We now proceed to give the lower bound for the bias. Since f is increasing, we have

(ε+ 1/2) · f(ε+ 1/2) ≥ AOT f(BOT) ≥ ACFBCF ≥ 1/2.

Solving the inequality we show that ε must satisfy

ε ≥ 1
2

(√
1
2 + 2

√
2−

√
1
2

)
− 1

2 ≈ 0.0586.

3.2 Proof of the Learning-In-Sequence Lemma
The Learning-in-Sequence Lemma follows from the following simple geometric result.
I Proposition 2. Let |ψ〉 be a pure state and let {C, I−C} and {D, I−D} be two projective
measurements such that

cos2(θ) := ‖C|ψ〉‖2
2 ≥

1
2 and cos2(θ′) := ‖D|ψ〉‖2

2 ≥
1
2 .

Then we have

‖DC|ψ〉‖2
2 ≥ cos2(θ) cos2(θ + θ′).

Proof. Define the following states

|X〉 := C|ψ〉
‖C|ψ〉‖2

, |X ′〉 := (I − C)|ψ〉
‖(I − C)|ψ〉‖2

, |Y 〉 := D|ψ〉
‖D|ψ〉‖2

, |Y ′〉 := (I −D)|ψ〉
‖(I −D)|ψ〉‖2

.

Then we can write |ψ〉 = cos(θ)|X〉+ eiα sin(θ)|X ′〉 and |ψ〉 = cos(θ′)|Y 〉+ eiβ sin(θ′)|Y ′〉
with α, β ∈ R. Then we have

‖DC|ψ〉‖2
2 = cos2(θ) ‖D|X〉‖2

2 ≥ cos2(θ)|〈Y |X〉|2 ≥ cos2(θ) cos2(θ + θ′).

J

We now prove Lemma 1.

Proof. Let |Ω〉AB be the joint pure state shared by Alice and Bob, where A is the space
controlled by Alice and B the space controlled by Bob.

Let M = {Mx0,x1}x0,x1∈{0,1} be Alice’s projective measurement on A to determine her
outputs x0, x1. Let P = {P0, P1} be Bob’s projective measurement that allows him to guess
x0 with probability p = cos2(θ) and Q = {Q0, Q1} be Bob’s projective measurement that
allows him to guess x1 with probability q = cos2(θ′). These measurements are on B only.
Recall that a = p+q

2 = cos2(θ)+cos2(θ′)
2 . We consider the following projections on AB:

C =
∑
x0,x1

Mx0,x1 ⊗ Px0 and D =
∑
x0,x1

Mx0,x1 ⊗Qx1 .

FSTTCS 2010

164 Lower bounds for Quantum Oblivious Transfer

C (resp. D) is the projection on the subspace where Bob guesses correctly the first bit
(resp. the second bit) after applying P (resp. Q).

A strategy for Bob to learn both bits is simple: apply the two measurements P and Q
one after the other, where the first one is chosen uniformly at random.

The projection on the subspace where Bob guesses (x0, x1) when applying P then Q is

E =
∑
x0,x1

Mx0,x1 ⊗Qx1Px0 = DC.

Similarly, the projection on the subspace where Bob guesses (x0, x1) when applying Q then
P is

F =
∑
x0,x1

Mx0,x1 ⊗ Px0Qx1 = CD.

With this strategy Bob can guess both bits with probability
1
2
(
||E|Ω〉||22 + ||F |Ω〉||22

)
= 1

2
(
||DC|Ω〉||22 + ||CD|Ω〉||22

)
≥ 1

2
(
cos2(θ) + cos2(θ′)

)
cos2(θ + θ′)

≥ 1
2
(
cos2(θ) + cos2(θ′)

) (
cos2(θ) + cos2(θ′)− 1

)2

= a(2a− 1)2.

Note that we can use Proposition 2 since Bob’s optimal measurement to guess x0 and x1
succeeds for each bit with probability at least 1/2. J

4 A Two-Message Protocol With Bias 1/4

We present in this section a random-OT protocol with bias 1/4. This implies, as we have
mentioned, an OT protocol with inputs with the same bias.

Random Oblivious Transfer Protocol

1. Bob chooses b ∈R {0, 1} and creates the state |φb〉 := 1√
2 |bb〉+ 1√

2 |22〉.
2. Alice chooses x0, x1 ∈R {0, 1} and applies the unitary |a〉 → (−1)xa |a〉,

where x2 := 0, to half of Bob’s state.
3. Alice returns the qutrit to Bob who now has the state |ψb〉 := (−1)xb√

2 |bb〉+ 1√
2 |22〉.

4. Bob performs on the state |ψb〉 the measurement {Π0 = |φb〉〈φb|,Π1 := |φ′b〉〈φ′b|,
I −Π0 −Π1}, where |φ′b〉 := 1√

2 |bb〉 −
1√
2 |22〉.

If the outcome is Π0 then xb = 0, if it is Π1 then xb = 1, otherwise he aborts.

It is clear that Bob can learn x0 or x1 perfectly. Moreover, note that if he sends half of
the state 1√

2 |00〉+ 1√
2 |11〉 then he can also learn x0 ⊕ x1 perfectly (although in this case he

does not learn either of x0 or x1). We now show that it is impossible for him to perfectly
learn both x0 and x1 and also that his bit is not completely revealed to a cheating Alice.

I Theorem 2. In the protocol described above, we have AOT = BOT = 3
4 .

André Chailloux, Iordanis Kerenidis, and Jamie Sikora 165

In the full version, we prove this theorem. In the previous section we have shown that no
protocol has bias lower than 0.0586 by showing that AOT f(BOT) ≥ 1/2. In this section we
presented a protocol with bias 0.25 and it can be calculated that for this protocol we have
AOT f(BOT) = 3

4 f
(3

4
)
≈ 0.709. It remains an open problem to determine the bias of an

optimal protocol.

5 Oblivious Transfer as a Forcing Primitive

Here we discuss a variant of oblivious transfer, as a generalization of coin flipping, that can
be analyzed using an extension of Kitaev’s semidefinite programming formalism.

I Definition 3 (Forcing Oblivious Transfer). A k-out-of-n forcing oblivious transfer protocol,
denoted here as

(
n
k

)
-fOT, with forcing bias ε is a protocol satisfying:

Alice outputs n random bits x := (x1, . . . , xn)
Bob outputs a random index set b of k indices and bit string xb consisting of xi for i ∈ b
Ab,xb

:= sup{Pr[Alice can force Bob to output (b, xb)]} = εA(
n
k

)
· 2k

Bx := sup{Pr[Bob can force Alice to output x]} = εB
2n

The forcing bias of the protocol is defined as ε = max{εA, εB}
where the suprema are taken over all strategies of Alice and Bob.

The main difference in this new primitive is the definition of security. We design protocols to
protect against a dishonest party being able to force a desired value as the output of the
other party. In the previous section (and in the literature) oblivious transfer protocols are
designed to protect against the dishonest party learning the other party’s output. Notice, for
example, that in coin flipping we can design protocols to protect against a dishonest party
forcing a desired outcome, but both players learn the coin outcome perfectly.

The primitive we have defined is indeed a generalization of coin flipping since we can cast
the problem of coin flipping as a 1-out-of-1 forcing oblivious transfer protocol. Of course, in(1

1
)
-fOT Alice always knows Bob’s index set so the forcing bias is the only interesting notion

of security in this case.
We define the bias ε as a multiplicative factor instead of additive since the honest

probabilities can be different and in this case our definition makes more sense. To relate this
bias to the one previously studied in coin flipping we have that coin flipping protocols with
bias ε ≤

√
2 + δ exist for any δ > 0, see [CK09], and weak coin flipping protocols with bias

ε ≤ 1 + δ exist for any δ > 0, see [Moc07].

5.1 Extending Kitaev’s Lower Bound to Forcing Oblivious Transfer
We now extend Kitaev’s formalism from the setting of coin flipping to the more general
setting of

(
n
k

)
-fOT.

Suppose Alice and Bob have private spaces A and B, respectively, and both have access
to a message spaceM each initialized in state |0〉. Then, we can define an m-round

(
n
k

)
-fOT

protocol using the following parameters:
Alice’s unitary operators UA,1, . . . , UA,m which act on A⊗M
Bob’s unitary operators UB,1, . . . , UB,m which act onM⊗B
Alice’s POVM {ΠA,abort} ∪ {ΠA,x : x ∈ Zn2} acting on A, one for each outcome
Bob’s POVM {ΠB,abort} ∪

{
ΠB,(b,xb) : b a k-element subset of n indices, xb ∈ Zk2

}
acting

on B, one for each outcome.

FSTTCS 2010

166 Lower bounds for Quantum Oblivious Transfer

We now show the criteria for which the parameters above yield a proper
(
n
k

)
-fOT protocol.

In a proper protocol we require that Alice and Bob’s measurements are consistent and that
the outcomes are uniformly random when the protocol is followed honestly. Define

|ψ〉 := (IA ⊗ UB,m)(UA,m ⊗ IB) · · · (IA ⊗ UB,1)(UA,1 ⊗ IB)|0〉A⊗M⊗B

to be the state at the end of an honest run of the protocol. Then, we require the unitary
and measurement operators to satisfy the following condition:∥∥(ΠA,x ⊗ IM ⊗ΠB,(b,xb))|ψ〉

∥∥2
2 = 1(

n
k

)
2n

for (x, b, xb) consistent.

Similar to coin flipping, we can capture cheating strategies as semidefinite programs. Bob
can force Alice to output a specific x ∈ Zn2 with maximum probability equal to the optimal
value of the following semidefinite program

Bx = max 〈ΠA,x ⊗ IM, ρA,N 〉
subject to TrM(ρA,0) = |0〉〈0|A

TrM(ρA,j) = TrM(UA,jρA,j−1U
∗
A,j), for j ∈ {1, . . . , N}

ρA,0, . . . , ρA,N ∈ Pos(A⊗M), for j ∈ {0, . . . , N}

where Pos(H) is the set of positive semidefinite matrices over the Hilbert space H. The
states ρi represent the part of the state under Alice’s control after Bob sends his i’th message.
The constraints above are necessary since Bob cannot apply a unitary on A. They are also
sufficient since Bob can maintain a purification during the protocol consistent with the states
above to achieve a cheating probability given by the corresponding objective value.

To capture Alice’s cheating strategies we can do the same as for cheating Bob and examine
the states under Bob’s control during the course of the protocol. That is, Alice can force
Bob to output a specific k-element subset b and xb ∈ Zk2 with maximum probability equal to
the optimal value of the following semidefinite program

Ab,xb
= max 〈IM ⊗ΠB,(b,xb), ρB,N 〉

subject to TrM(ρB,0) = |0〉〈0|B
TrM(ρB,j) = TrM(UB,jρB,j−1U

∗
B,j), for j ∈ {1, . . . , N}

ρB,0, . . . , ρB,N ∈ Pos(M⊗B), for j ∈ {0, . . . , N}

The proofs that these capture the optimal cheating probabilities are the same as those
for coin flipping in [Kit03] and [ABDR04]. Using these semidefinite programs we can prove
the following theorem.

I Theorem 3. In any
(
n
k

)
-fOT protocol and consistent b, x, xb we have

Bx ·Ab,xb
≥ Pr[Alice honestly outputs x and Bob honestly outputs (b, xb)] = 1(

n
k

)
2n
.

In particular, the forcing bias satisfies ε ≥
√

2k.

Once we extended the semidefinite programming formulation, the proof of the theorem
follows almost directly from the proof in [Kit03] and [ABDR04] for coin flipping except that
the honest outcome probabilities are different in our case. Namely, for |ψ〉 defined above, we
have∥∥(ΠA,x ⊗ IM ⊗ΠB,(b,xb))|ψ〉

∥∥2
2 = 1(

n
k

)
2n

when x, b, and xb are consistent and 0 otherwise.

André Chailloux, Iordanis Kerenidis, and Jamie Sikora 167

5.2 A Protocol with Optimal Forcing Bias
In this section we prove Theorem 4. First, consider the following protocol which achieves
the bound in Theorem 3 but is asymmetric. Alice sends n random bits to Bob. Bob then
outputs b, a random k-index subset of n indices, and xb. In this protocol Bob can force a
desired outcome with probability 1

2n and Alice can force a desired outcome with probability
1

(n
k) . Thus the product of the cheating probabilities is optimal, that is it achieves the lower

bound in Theorem 3. However the protocol is asymmetric. This can be easily remedied using
coin flipping. We present an optimal protocol with this security definition.

An Optimal
(

n
k

)
-fOT Protocol with Forcing Bias

√
2k

1. Bob outputs a random index set b of k indices and sends the result to Alice.
2. Alice and Bob play a coin flipping game with bias

√
2 + δ

(for a δ > 0 sufficiently small) to determine each bit in xb.
3. Alice randomly chooses her bits not in b.

I Theorem 4. For any γ > 0 we can choose a δ > 0 such that the
(
n
k

)
-fOT protocol above

satisfies

Ab,xb
≤
√

2k(1 + γ)(
n
k

)
· 2k

and Bx ≤
√

2k(1 + γ)
2n .

We prove this theorem in the final version. Note that we have coin flipping protocols with
poly(m) rounds that achieve δ = 1

poly(m) . Hence, our protocol also achieves γ = 1
poly(m) with

poly(m) rounds.

References
ABDR04 Andris Ambainis, Harry Buhrman, Yevgeniy Dodis, and Hein Rohrig. Multiparty

quantum coin flipping. In CCC ’04: Proceedings of the 19th IEEE Annual Conference on
Computational Complexity, pages 250–259, Washington, DC, USA, 2004. IEEE Computer
Society.

Amb01 Andris Ambainis. A new protocol and lower bounds for quantum coin flipping. In
STOC ’01: Proceedings of the thirtieth annual ACM symposium on Theory of computing,
Washington, DC, USA, 2001. IEEE Computer Society.

Amb02 Andris Ambainis. Lower bound for a class of weak quantum coin flipping protocols,
2002. quant-ph/0204063.

ATVY00 Dorit Aharonov, Amnon Ta-Shma, Umesh V. Vazirani, and Andrew C. Yao. Quan-
tum bit escrow. In STOC ’00: Proceedings of the thirty-second annual ACM symposium
on Theory of computing, pages 705–714, New York, NY, USA, 2000. ACM.

BB84 Bennett and Brassard. Quantum cryptography: Public key distribution and coin tossing.
in Proc. Of IEEE Inter. Conf. on Computer Systems and Signal Processing, Bangalore,
Kartarna, (Institute of Electrical and Electronics Engineers, New York, 1984.

BF10 Niek Bouman and Serge Fehr. Sampling in a quantum population, and applications. In
CRYPTO 2010, 2010.

Blu81 Manuel Blum. Coin flipping by telephone. In CRYPTO, pages 11–15, 1981.

FSTTCS 2010

168 Lower bounds for Quantum Oblivious Transfer

CK09 André Chailloux and Iordanis Kerenidis. Optimal quantum strong coin flipping. Foun-
dations of Computer Science, Annual IEEE Symposium on, 0:527–533, 2009.

Cré87 Claude Crépeau. Equivalence between two flavours of oblivious transfer. In Advances
in Cryptology: CRYPTO ’87, 1987.

DKSW07 Giacomo Mauro D’Ariano, Dennis Kretschmann, Dirk Schlingemann, and Reinhard
F. Werner. Reexamination of quantum bit commitment: the possible and the impossible.
Physical Review A, 76:032328, 2007.

DW09 Andrew Drucker and Ronald de Wolf. Quantum proofs for classical theorems, 2009.
quant-ph/0910.3376.

EGL82 Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. In Advances in Cryptology: Proceedings of CRYPTO 82, 1982.

FS09 Serge Fehr and Christian Schaffner. Composing quantum protocols in a classical environ-
ment. In Theory of Cryptography—TCC ’09, volume 5444 of Lecture Notes in Computer
Science, pages 350–367. Springer-Verlag, 2009.

JRS02 Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. A theorem about relative
entropy of quantum states with an application to privacy in quantum communication. In
Proceedings of 43rd IEEE Symposium on Foundations of Computer Science (FOCS), 2002.

Kil88 Joe Kilian. Founding cryptography on oblivious transfer. In STOC ’88: Proceedings of
the twentieth annual ACM symposium on Theory of computing, pages 20 – 31, New York,
NY, USA, 1988. ACM Press.

Kit03 A Kitaev. Quantum coin-flipping. Presentation at the 6th workshop on quantum infor-
mation processing (qip 2003), 2003.

KN04 I. Kerenidis and A. Nayak. Weak coin flipping with small bias. Inf. Process. Lett.,
89(3):131–135, 2004.

LC97 Hoi-Kwong Lo and H. F. Chau. Is quantum bit commitment really possible? Phys. Rev.
Lett., 78(17):3410–3413, Apr 1997.

Lo97 Hoi-Kwong Lo. Insecurity of quantum secure computations. Phys. Rev. A, 56(2):1154–
1162, 1997.

May97 Dominic Mayers. Unconditionally secure quantum bit commitment is impossible. Phys.
Rev. Lett., 78(17):3414–3417, Apr 1997.

Moc05 C. Mochon. Large family of quantum weak coin-flipping protocols. Phys. Rev. A,
72(2):022341–+, August 2005.

Moc07 Carlos Mochon. Quantum weak coin flipping with arbitrarily small bias. WCF, 2007.
quant-ph:0711.4114.

Nay99 Ashwin Nayak. Optimal lower bounds for quantum automata and random access codes.
Foundations of Computer Science, Annual IEEE Symposium on, 0:369, 1999.

NC00 Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum informa-
tion. Cambridge University Press, New York, NY, USA, 2000.

NS03 Ashwin Nayak and Peter Shor. Bit-commitment-based quantum coin flipping. Phys.
Rev. A, 67(1):012304, Jan 2003.

Rab81 Michael Rabin. How to exchange secrets by oblivious transfer. In Technical Report
TR-81, Aiken Computation Laboratory, Harvard University, 1981.

SR01 R. W. Spekkens and T. Rudolph. Degrees of concealment and bindingness in quantum
bit commitment protocols. Physical Review A, 65:012310, 2001.

SR02 Robert Spekkens and Terry Rudolph. Quantum protocol for cheat-sensitive weak coin
flipping. Phys. Rev. Lett., 89(22):1–4, Nov 2002.

SSS09 Louis Salvail, Christian Schaffner, and Miroslava Sotakova. On the power of two-party
quantum cryptography. In ASIACRYPT 2009, 2009.

Yao95 Andrew Yao. Security of quantum protocols against coherent measurements. In Pro-
ceedings of 26th Annual ACM Symposium on the Theory of Computing, pages 67–75, 1995.

Minimizing Busy Time in Multiple Machine
Real-time Scheduling
Rohit Khandekar1, Baruch Schieber1, Hadas Shachnai2, and Tami
Tamir3

1 IBM T.J. Watson Research Center
{rohitk,sbar}@us.ibm.com

2 Computer Science Department, Technion
hadas@cs.technion.ac.il

3 School of Computer Science, The Interdisciplinary Center
tami@idc.ac.il

Abstract
We consider the following fundamental scheduling problem. The input consists of n jobs to

be scheduled on a set of machines of bounded capacities. Each job is associated with a release
time, a due date, a processing time and demand for machine capacity. The goal is to schedule all
of the jobs non-preemptively in their release-time-deadline windows, subject to machine capacity
constraints, such that the total busy time of the machines is minimized. Our problem has
important applications in power-aware scheduling, optical network design and unit commitment
in power systems. Scheduling to minimize busy times is APX-hard already in the special case
where all jobs have the same (unit) processing times and can be scheduled in a fixed time interval.

Our main result is a 5-approximation algorithm for general instances. We extend this result
to obtain an algorithm with the same approximation ratio for the problem of scheduling moldable
jobs, that requires also to determine, for each job, one of several processing-time vs. demand
configurations. Better bounds and exact algorithms are derived for several special cases, including
proper interval graphs, intervals forming a clique and laminar families of intervals.

Keywords and phrases real-time scheduling, busy time, preemption, approximation algorithm

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.169

1 Introduction

Traditional research interest in cluster systems has been high performance, such as high
throughput, low response time, or load balancing. In this paper we focus on minimizing
machine busy times, a fundamental problem in cluster computing, which aims at reducing
power consumption (see, e.g., [22] and the references therein).

Given is a set of n jobs J = {J1, . . . , Jn} that need to be scheduled on a set of identical
machines, each of which having capacity g, for some g ≥ 1. Each job J has a release time
r(J), a due date d(J), a processing time (or, length) p(J) > 0 (such that d(J) ≥ r(J) + p(J))
and a demand 1 ≤ R(J) ≤ g for machine capacity; this is the amount of capacity required
for processing J on any machine.

A feasible solution schedules each job J on a machine M non-preemptively during a
time interval [t(J), t(J) + p(J)), such that t(J) ≥ r(J) and t(J) + p(J) ≤ d(J), and the
total demand of jobs running at any given time on each machine is at most g. We say
that a machine M is busy at time t if there is at least one job J scheduled on M such that
t ∈ [t(J), t(J) + p(J)); otherwise, M is idle at time t. We call the time period in which a
machine M is busy its busy period and denote its length by busy(M). The goal is to find a

© Rohit Khandekar, Baruch Schieber, Hadas Shachnai and Tami Tamir;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 169–180

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.169
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

170 Minimizing Busy Time in Real-time Scheduling

feasible schedule of all jobs on a set of machines such that the total busy time of the machines,
given by

∑
M busy(M), is minimized. We consider the offline version of this problem where

the entire input is given in advance.
Note that the number of machines to be used is part of the output (and can take any

integral value m ≥ 1). Indeed, a solution which minimizes the total busy time may not be
optimal in the number of machines used. Also, it is NP-hard to approximate our problem
within ratio better than 3

2 , already in the special case where all jobs have the same (unit)
processing times and can be scheduled in a fixed time interval, by a simple reduction from
the subset sum problem.1

1.1 Applications
Power-aware scheduling. The objective of power-aware scheduling is to minimize the
power consumption for running a cluster of machines, while supporting Service Level Agree-
ments (SLAs). SLAs, which define the negotiated agreements between service providers and
consumers, include quality of service parameters such as demand for a computing resource
and a deadline. The power consumption of a machine is assumed to be proportional to the
time the machine is in on state. While on, a machine can process several tasks simultaneously.
The number of these tasks hardly affects the power consumption, but must be below the
given machine’s capacity. Thus, we get an instance of our problem of minimizing the total
busy time of the schedule.

Optical network design. Communication in an optical network is achieved by lightpaths,
which are simple paths in the network. Hardware cost for operating such a network is
proportional to the number of switching units such as Optical Add-Drop Multiplexers (or
OADMs) installed at the nodes in the network. A lightpath j with transmission rate R(j)
uses that capacity in an OADM at each internal node on the path. Assuming that the
OADMs have transmission capacity g, one would like to “groom” multiple lightpaths together
so that their aggregate transmission rate is at most g. It is easy to see that this grooming
problem [11, 10, 9] for minimizing switching costs in optical networks with path-topologies
can be reduced to our real-time scheduling problem.

Unit commitment given future demand. The Unit commitment in power systems
involves determining the start-up and shut-down schedule of generation units to meet the
required demand. This is one of the major problems in power generation (see, e.g., [24, 2]
and the references therein). Under-commitment of units would result in extra cost due to the
need to purchase the missing power in the spot market, while overcommitment would result
in extra operating cost. In a simplified version of the problem, assume that all generation
units have the same capacity and that the blocks of future demands are given in advance.
This yields an instance of our real-time scheduling problem, where each generation unit
corresponds to a machine, and each block of demand corresponds to a job.

1.2 Related Work
Job scheduling on parallel machines has been widely studied (see, e.g., the surveys in [7, 4]).
In particular, much attention was given to interval scheduling [14], where jobs are given

1 Given the integers a1, . . . , an ∈ {1, . . . , g} summing to 2g, the subset sum problem (SSP) is to determine
if there is a subset of numbers adding to exactly g. In the reduction, we create for each i, a job Ji with
demand ai, release time 0, processing time 1 and deadline 1. The yes instance of SSP results in the
busy time of 2 while the no instance results in the busy time of 3.

Khandekar et al. 171

as intervals on the real line, each representing the time interval in which a job should be
processed. Each job has to be processed on some machine, and it is commonly assumed
that a machine can process a single job at any time. Some of the earlier work on interval
scheduling considers the problem of scheduling a feasible subset of jobs whose total weight is
maximized, i.e., a maximum weight independent set (see, e.g., [1] and the survey in [13]).

There is wide literature also on real-time scheduling, where each job has to be processed on
some machine during a time interval between its release time and due date. There are studies
of real-time scheduling with demands, where each machine has some capacity; however, to
the best of our knowledge, all of this prior art refers to objectives other than minimizing the
total busy time of the schedule (see, e.g., [1, 18, 5, 6]). There has been earlier work also on
the problem of scheduling the jobs on a set of machines so as to minimize the total cost (see,
e.g., [3]), but in these works the cost of scheduling each job is fixed. In our problem, the cost
of scheduling each of the jobs depends on the other jobs scheduled on the same machine in
the corresponding time interval; thus, it may change over time and among different machines.
Scheduling moldable jobs, where each job can have varying processing times, depending on
the amount of resources allotted to this job, has been studied using classic measures, such
as minimum makespan, or minimum (weighted) sum of completion times (see, e.g., [21, 16]
and a comprehensive survey in [20]). Scheduling moldable jobs differs from malleable jobs in
which the amount of resources allotted to jobs may change over their execution [15].

Our study relates also to batch scheduling of conflicting jobs, where the conflicts are given
as an interval graph. In the p-batch scheduling model (see e.g. Chapter 8 in [4]), a set of jobs
can be processed jointly. All the jobs in the batch start simultaneously, and the completion
time of a batch is the last completion time of any job in the batch. (For known results on
batch scheduling, see e.g., [4, 19].) Our scheduling problem differs from batch scheduling in
several aspects. While each machine can process (at most) g jobs simultaneously, for some
g ≥ 1, the jobs need not be partitioned to batches, i.e., each job can start at different time.
Also, while in known batch scheduling problems the set of machines is given, we assume
that any number of machines can be used for the solution. Finally, while common measures
in batch scheduling refer to the maximum completion time of a batch, or a function of the
completion times of the jobs, we consider the total busy times of the machines. Other work on
energy minimization consider utilization of machines with variable capacities, corresponding
to their voltage consumption [17], and scheduling of jobs with precedence constraints [12, 25].

The complexity of our scheduling problem was studied in [23]. This paper shows that the
problem is NP-hard already for g = 2, where the jobs are intervals on the line. Flammini et
al. [9] consider our scheduling problem where jobs are given as intervals on the line with unit
demand. For this version, they give a 4-approximation algorithm for general inputs and better
bounds for some subclasses of inputs. In particular, the paper presents a 2-approximation
algorithm for instances where no interval is properly contained in another (i.e., the input
forms a proper interval graph), and a (2 + ε)-approximation for bounded lengths instances,
i.e., the length (or, processing time) of any job is bounded by some fixed integer d.2 A
2-approximation algorithm was given in [9] for instances where any two intervals intersect,
i.e., the input forms a clique (see also in [10]). In this paper we improve and extend the
results of [9].

2 A slight modification of the algorithm yields an improved bound of 1 + ε, where ε > 0 is an input
parameter.

FSTTCS 2010

172 Minimizing Busy Time in Real-time Scheduling

1.3 Our Results
Our main result is a 5-approximation algorithm for real-time scheduling of moldable jobs.
Before summarizing our results, we introduce some notation. Denote by I(J) the interval
[r(J), d(J)) in which J can be processed.

I Definition 1. An instance J is said to have interval jobs if d(J) = r(J) + p(J) holds for
all jobs J ∈ J . An instance J with interval jobs is called

proper if for any two jobs J, J ′ ∈ J , neither I(J) ⊆ I(J ′) nor I(J ′) ⊆ I(J) holds.
laminar if the intervals I(J) for all jobs J form a laminar family, i.e., for any two jobs
J, J ′ ∈ J , we have I(J) ∩ I(J ′) = ∅ or I(J) ⊆ I(J ′), or I(J ′) ⊆ I(J).
a clique if intervals I(J) for all jobs J form a clique, i.e., for any two jobs J, J ′ ∈ J , we
have I(J) ∩ I(J ′) 6= ∅.

We first prove the following result for instances with interval jobs.

I Theorem 2. There exists a 5-approximation algorithm for real-time scheduling instances
with interval jobs. Furthermore, if the instance is proper, there exists a 2-approximation
algorithm.

We use the above algorithm, as a subroutine, to design our algorithm for the general real-time
scheduling problem.

I Theorem 3. There exists a 5-approximation algorithm for the real-time scheduling problem.

Next, we consider an extension to real-time scheduling of moldable jobs. In this generalization,
a job does not have a fixed processing time and demand; rather, it can be scheduled in
one of several possible configurations. More precisely, for each job J ∈ J , we have q ≥ 1
configurations, where configuration i is given by a pair (pi(J), Ri(J)). The problem involves
deciding which configuration iJ is to be used in the schedule for each job J . Once a
configuration iJ is finalized for a job J , its processing time and demand are given by piJ (J)
and RiJ (J), respectively. We assume that q is polynomially bounded in the input size.

I Theorem 4. There exists a 5-approximation algorithm for real-time scheduling of moldable
jobs.

Finally, we present improved bounds for some cases of instances with interval jobs.

I Theorem 5. Consider an instance J consisting of interval jobs with unit demands. There
exist (i) a polynomial time exact algorithm if J is laminar, and (ii) a PTAS if J is a clique.

1.4 Preliminaries
I Definition 6. Given a time interval I = [s, t), the length of I is len(I) = t − s. This
extends to a set I of intervals; namely, the length of I is len(I) =

∑
I∈I len(I). We define

the span of I as span(I) = len(∪I).

Note that span(I) ≤ len(I) and equality holds if and only if I is a set of pairwise disjoint
intervals.

Given an instance J and machine capacity g ≥ 1, we denote by opt(J) the cost of an
optimal solution, that is, a feasible schedule in which the total busy time of the machines is
minimized. Also, we denote by opt∞(J) the cost of the optimum solution for the instance
J , assuming that the capacity is g =∞. For any job J , let w(J) = R(J) · p(J) denote the
total work required by job J , then for a set of jobs J , w(J) =

∑
J∈J w(J) is the total work

required by the jobs in J . The next observation gives two immediate lower bounds for the
cost of any solution.

Khandekar et al. 173

I Observation 7. For any instance J and machine capacity g ≥ 1, the following bounds
hold.

The work bound: opt(J) ≥ w(J)
g .

The span bound: opt(J) ≥ opt∞(J).
The work bound holds since g is the maximum capacity that can be allocated by a single
machine at any time. The span bound holds since the busy-time does not increase by relaxing
the capacity constraint.

While analyzing any schedule S that is clear from the context, we number the machines
as M1,M2, . . ., and denote by Ji the set of jobs assigned to machine Mi under the schedule
S. W.l.o.g., the busy period of a machine Mi is contiguous; otherwise, we can divide the
busy period to contiguous intervals and assign the jobs of each contiguous interval to a
different machine. Obviously, this will not change the total busy time. Therefore, we say
that a machine Mi has a busy interval which starts at the minimum start time of any job
scheduled on Mi and ends at the maximum completion time of any of these jobs. It follows
that the cost of Mi is the length of its busy interval, i.e., busy(Mi) = span(Ji) for all i ≥ 1.3

2 Interval Scheduling: Theorem 2

2.1 General Instances with Interval Jobs
In this section we present an algorithm for instances with interval jobs, where each job
J ∈ J may have an arbitrary processing time and any demand 1 ≤ R(J) ≤ g. Algorithm
First_Fit_with_Demands (FFD), shown in the frame below, divides the jobs into two
groups, narrow and wide, as given below. It schedules narrow and wide jobs on distinct
sets of machines. The wide jobs are scheduled arbitrarily, while narrow jobs are scheduled
greedily by considering them one after the other, from longest to shortest. Each job is
scheduled on the first machine it can fit. Let α ∈ [0, 1] be a parameter to be fixed later.

I Definition 8. For a subset J ′ ⊆ J of jobs, let narrow(J ′) = {J ∈ J ′ | R(J) ≤ α · g}
and wide(J ′) = {J ∈ J ′ | R(J) > α · g}.

Algorithm (FFD):
1. Schedule jobs in wide(J) arbitrarily on some machines. Do not use these machines

for scheduling any other jobs.
2. Sort the jobs in narrow(J) by non-increasing lengths, i.e., p(J1) ≥ . . . ≥ p(Jn′).
3. For j = 1, . . . , n′ do:

a. Let m denote the number of machines used for jobs {J1, . . . , Jj−1}.
b. Assign Jj to the first machine that can process it, i.e., find the minimum value of
i : 1 ≤ i ≤ m such that, at any time t ∈ I(Jj), the total capacity allocated on Mi

is at most g −R(Jj).
c. If no such machine exists open (m+ 1)th machine and schedule Jj on it.

Let FFD(J) denote the total busy time of the schedule computed by FFD on job J .

I Theorem 9. If α = 1/4, for any instance J with interval jobs, we have

FFD(J) ≤ opt∞(J) + 4 · w(J)
g
≤ 5 · opt(J).

3 By span(Ji) we refer to the span of the set of intervals representing the jobs, as scheduled on Mi.

FSTTCS 2010

174 Minimizing Busy Time in Real-time Scheduling

To prove the theorem we bound the costs of the wide and narrow jobs separately. It is
easy to bound the contribution of wide jobs to the overall cost. The following lemma follows
directly from the definition of wide jobs.

I Lemma 10. The cost incurred by jobs in wide(J) is at most
∑
J∈wide(J) p(J) ≤ w(wide(J))

α·g .

The rest of the section is devoted to bounding the cost of the narrow jobs. The next
observation follows from the fact that the first-fit algorithm FFD assigns a job J to machine
Mi with i ≥ 2 only when it could not have been assigned to machines Mk with k < i, due to
capacity constraints.

I Observation 11. Let J be a job assigned to machine Mi by FFD, for some i ≥ 2. For
any machine Mk, (k < i), there is at least one time ti,k(J) ∈ I(J) and a set si,k(J) of jobs
assigned to Mk such that, for every J ′ ∈ si,k(J), (a) ti,k(J) ∈ I(J ′), and (b) p(J ′) ≥ p(J).
In addition, R(J) +

∑
J′∈si,k(J) R(J ′) > g.

In the subsequent analysis, we assume that each job J ∈ Ji, for i ≥ 2, fixes a unique time
ti,i−1(J) and a unique set of jobs si,i−1(J) ⊆ Ji−1. We say that J blames jobs in si,i−1(J).

I Lemma 12. For any 1 ≤ i ≤ m− 1, we have g · span(Ji+1) ≤ 3·w(Ji)
1−α .

Proof. Following Observation 11, for a job J ∈ Ji, denote by b(J) the set of jobs in Ji+1
which blame J , i.e., b(J) = {J ′ ∈ Ji+1 | J ∈ si+1,i(J ′)}. Let JL (resp. JR) be the job with
earliest start time (resp. latest completion time) in b(J). Since each job in b(J) intersects J ,
we have span(b(J)) ≤ p(J) + p(JL) + p(JR) ≤ 3 · p(J) = 3 · w(J)

R(J) . Thus,∑
J∈Ji

R(J)span(b(J)) ≤ 3 · w(Ji). (1)

Now, we observe that∑
J∈Ji

R(J)span(b(J)) =
∫
t∈span(Ji+1)

∑
J∈Ji:t∈span(b(J))

R(J)dt.

We bound the right-hand-side as follows. For any t ∈ span(Ji+1), there exists a job
J ′ ∈ Ji+1 with t ∈ [r(J ′), d(J ′)). For all jobs J ∈ si+1,i(J ′), since J ′ ∈ b(J), we have
t ∈ span(b(J)). Hence,

∑
J∈Ji:t∈span(b(J)) R(J) ≥

∑
J∈si+1,i(J′) R(J). By Observation 11∑

J∈si+1,i(J′) R(J) > g −R(J ′) ≥ (1− α) · g. We thus conclude∑
J∈Ji

R(J)span(b(J)) > span(Ji+1) · (1− α) · g. (2)

From (1) and (2) we get the lemma. J

Proof of Theorem 9: The overall cost of the schedule computed by FFD is the contribution
of wide jobs and narrow jobs. Note that the busy time of Mi, for 1 ≤ i ≤ m is exactly
busy(Mi) = span(Ji). Now from Lemmas 10 and 12, we have that the total cost of FFD is
at most

w(wide(J))
α · g

+
m∑
i=1

span(Ji) ≤ w(wide(J))
α · g

+ span(J1) +
m−1∑
i=1

3 · w(Ji)
(1− α) · g

≤ w(wide(J))
α · g

+ opt∞(J) + 3 · w(narrow(J))
(1− α) · g

≤ opt∞(J) + max
{

1
α
,

3
1− α

}
· w(J)

g

≤ opt∞(J) + 4 · w(J)
g

.

Khandekar et al. 175

The second inequality follows since span(J1) ≤ opt∞(J). The last inequality holds since
α = 1/4. The proof now follows from Observation 7.

2.2 Proper Instances with Interval Jobs
We now consider instances in which no job interval is contained in another. The intersection
graphs for such instances are known as proper interval graphs. The simple greedy algorithm
consists of two steps. In the first step, the jobs are sorted by their starting times (note that,
in a proper interval graph, this is also the order of the jobs by completion times). In the
second step the jobs are assigned to machines greedily in a NextFit manner; that is, each job
is added to the currently filled machine, unless its addition is invalid, in which case a new
machine is opened.

Greedy Algorithm for Proper Interval Graphs:
1. Sort the jobs in non-decreasing order of release times, i.e., r(J1) ≤ . . . ≤ r(Jn).
2. For j = 1, . . . , n do: Assign Jj to the currently filled machine if this satisfies the

capacity constraint g; otherwise, assign Jj to a new machine and mark it as being
current filled.

I Theorem 13. Greedy is a 2-approximation algorithm for proper interval graphs.

Proof. Let Dt be the total demand of jobs active at time t. Also, let MO
t denote the number

of machines active at time t in an optimal schedule, and let MA
t be the number of machines

active at time t in the schedule output by the algorithm. The proofs of the following lemmas
are omitted due to lack of space.

I Lemma 14. For any t, we have Dt > g
⌊
MA

t −1
2

⌋
.

I Lemma 15. For any t, we have MO
t ≥MA

t /2.

Therefore, the cost of the output solution is
∫
t∈span(J) M

A
t dt ≤

∫
t∈span(J) 2 ·MO

t dt =
2 · opt(J), as claimed. J

3 Real-time Scheduling: Theorem 3

In this section we show how the results of §2 can extended to scheduling general instances J
where each job J can be processed in the time window [r(J), d(J)).

I Lemma 16. If there exists a β-approximation algorithm for the real-time scheduling
with g = ∞, there exists an algorithm that computes a feasible solution to the real-time
scheduling problem instance, J , with cost at most β · opt∞(J) + 4 · w(J)

g , thus yielding a
(β + 4)-approximation.

Proof. We first compute a schedule, called S∞, with busy-time at most β · opt∞(J), for
the given instance with g = ∞. Let [t∞(J), t∞(J) + p(J)) ⊆ [r(J), d(J)) be the interval
during which job J is scheduled in S∞. We next create a new instance J ′ obtained from
J by replacing r(J) and d(J) with t∞(J) and t∞(J) + p(J), respectively, for each job
J . Note that opt∞(J ′) ≤ β · opt∞(J) ≤ β · opt(J). We then run algorithm FFD
on instance J ′. Theorem 9 implies that the resulting solution has busy-time at most
opt∞(J ′) + 4 · w(J ′)

g ≤ β · opt∞(J) + 4 · w(J)
g ≤ (β + 4) · opt(J) as claimed. J

The following theorem with the above lemma implies a 5-approximation algorithm for
the real-time scheduling.

FSTTCS 2010

176 Minimizing Busy Time in Real-time Scheduling

I Theorem 17. If g =∞, the real-time scheduling problem is polynomially solvable.

The rest of this section is devoted to proving the above theorem. To describe our dynamic
programming based algorithm, we first identify some useful properties of the optimum
schedule. Recall that we can assume, w.l.o.g., that the busy period of each machine is a
contiguous interval.

I Lemma 18. W.l.o.g., we can assume that the busy period of any machine in the optimum
schedule starts at a time given by d(J) − p(J) for some job J and ends at a time given
by either r(J ′) + p(J ′), for some job J ′, or d(J) − p(J) + p(J ′) for some jobs J and J ′.
Furthermore, we can assume that the start time of any job J is either its release time r(J)
or the start time of the busy period of some machine.

Motivated by Lemma 18, we consider the following definition.

I Definition 19. A time t is called interesting if t = r(J) or d(J) − p(J) for some job J ,
or t = r(J) + p(J) or d(J)− p(J) + p(J ′) for some jobs J and J ′. Let T denote the set of
interesting times.

Thus, w.l.o.g., we may assume that the busy periods of all machines and placements of all
jobs start and end at interesting times. Let the intervals of all the jobs be contained in [0, T).
W.l.o.g., we may assume that both 0 and T are interesting times. Note that the number of
interesting times is polynomial.

Now we describe our dynamic program. Informally, the algorithm processes the jobs
J in the order of non-increasing processing times p(J). It first guesses the placement
[t, t+ p(J1)) ∈ [r(J1), d(J1)) of job J1 with largest processing time. Once this is done, the
remainder of the problem splits into two independent sub-problems: the “left” problem
[0, t) and the “right” problem [t + p(J1), T). This is so because any job J whose interval
[r(J), d(J)) has an intersection with [t, t+ p(J1)) of size at least p(J) can be scheduled inside
the interval [t, t+ p(J1)) without any extra cost. The “left” sub-problem then estimates the
minimum busy time in the interval [0, t) for scheduling jobs whose placement must intersect
[0, t); similarly the “right” sub-problem estimates the minimum busy time in the interval
[t+p(J1), T) for scheduling jobs whose placement must intersect [t+p(J1), T). More formally,

I Definition 20. Let t1, t2 ∈ T with t2 > t1 and ` = p(J) for some job J . Let jobs[t1, t2, `]
denote the set of jobs in J whose processing time is at most ` and whose placement must
intersect the interval [t1, t2), i.e.,

jobs[t1, t2, `] = {J ∈ J | p(J) ≤ `, t1 − r(J) < p(J), d(J)− t2 < p(J)}.

Let cost[t1, t2, `] be the minimum busy-time inside the interval [t1, t2) for scheduling jobs in
jobs[t1, t2, `] in a feasible manner.

Note that cost[t1, t2, `] counts the busy-time only inside the interval [t1, t2) assuming
that the busy-time outside this interval is already “paid for”. For convenience, we define
jobs[t1, t2, `] = ∅ and cost[t1, t2, `] = 0, whenever t2 ≤ t1.

I Lemma 21. If jobs[t1, t2, `] = ∅ then cost[t1, t2, `] = 0. Otherwise, let J ∈ jobs[t1, t2, `]
be a job with the longest processing time among the jobs in jobs[t1, t2, `]. Then,

cost[t1, t2, `] = mint∈[r(J),d(J)−p(J))∩T

(
min{p(J), t+ p(J)− t1, t2 − t}

+ cost[t1, t, p(J)] + cost[t+ p(J), t2, p(J)]
)
. (3)

Khandekar et al. 177

Note that the number of interesting times and the number of distinct processing lengths
are polynomial. Thus, the quantities cost[t1, t2, `] for t1, t2 ∈ T and ` = p(J) for some
J ∈ J and their corresponding schedules can be computed, using the relation in Lemma 21,
in polynomial time. We finally output the schedule corresponding to cost[0, T,maxJ∈J p(J)].
By definition, this gives the optimum solution.

4 Real-time Scheduling for Moldable Jobs: Theorem 4

A job J in an instance J of the real-time scheduling problem with moldable jobs is described
by a release time r(J), a due date d(J), and a set of configurations {(pi(J), Ri(J)}i=1,...,q.
We assume, w.l.o.g., that pi(J) ≤ d(J) − r(J) for all 1 ≤ i ≤ q. The goal is to pick a
configuration 1 ≤ iJ ≤ q for each job J and schedule these jobs on machines with a capacity
g such that the total busy-time is minimized while satisfying the capacity constraints. Given
configurations ~i = {iJ}J∈J , let J (~i) denote the instance of real-time scheduling problem
derived from J by fixing configuration iJ for each job J . Let opt(J) denote the cost of
the optimum solution, and let ~i∗ = {i∗J}J∈J denote the configurations used in the optimum
schedule. From Observation 7, we have

5 · opt(J) ≥ opt∞(J (~i∗)) + 4 · w(J (~i∗))
g

. (4)

In this section, we prove the following main lemma.

I Lemma 22. Given an instance J of the real-time scheduling with moldable jobs, we can
find in polynomial time configurations ~i = {iJ}J∈J , such that opt∞(J (~i)) + 4 · w(J (~i))

g is
minimized.

Proof. Motivated by Lemma 18 and Definition 19, we define the set of interesting times as
follows.

I Definition 23. A time t is called interesting if t = r(J) or d(J) − pi(J) for some job J
and configuration i, or t = r(J) + pi(J) or d(J)− pi(J) + pi′(J ′) for some jobs J and J ′ and
their respective configurations i and i′. Let T denote the set of interesting times.

Note that the size of T is polynomial and we can assume, w.l.o.g., that the busy periods of
all machines and placements of all jobs start and end at interesting times. Let the intervals of
all the jobs be contained in [0, T). W.l.o.g. we can assume that both 0 and T are interesting
times. For a job J ∈ J and a configuration 1 ≤ iJ ≤ q, let wiJ (J) = piJ (J) ·RiJ (J).

I Definition 24. Let t1, t2 ∈ T with t2 > t1 and ` = pi(J) for some job J . Let

jobs[t1, t2, `] = {J ∈ J | r(J) > t1 − `, d(J) < t2 + `}.

For a choice of configurations ~i = {iJ}J∈jobs[t1,t2,`], let cost[t1, t2, `,~i] denote the minimum
busy-time inside interval [t1, t2) for scheduling jobs in jobs[t1, t2, `](~i) in a feasible manner.
Let ub[t1, t2, `] be the minimum value of

cost[t1, t2, `,~i] + 4 · w(jobs[t1, t2, `](~i))
g

,

where the minimum is taken over all configurations ~i that satisfy piJ (J) ≤ `, for all jobs
J ∈ jobs[t1, t2, `].

FSTTCS 2010

178 Minimizing Busy Time in Real-time Scheduling

As before, cost[t1, t2, `,~i] counts the busy-time only inside the interval [t1, t2), assuming that
the busy-time outside this interval is already “paid for”.

I Lemma 25. If jobs[t1, t2, `] = ∅ we have ub[t1, t2, `] = 0. If t2 ≤ t1 then

ub[t1, t2, `] =
∑

J∈jobs[t1,t2,`]

min
iJ :piJ

(J)≤`
4 · wiJ (J)

g
.

Otherwise, we have

ub[t1, t2, `] = min
J∈jobs[t1,t2,`]

min
iJ :piJ

(J)≤`
min

t∈[r(J),d(J)−piJ
(J))∩T(

min
{
piJ (J),max{0, t+ piJ (J)− t1},max{0, t2 − t}

}
+

∑
J′∈jobs[t1,t2,`]\

(jobs[t1,min{t,t2},piJ
(J)]∪jobs[max{t+piJ

(J),t1},t2,piJ
(J)])

min
iJ′ :pi

J′ (J′)≤piJ
(J)

4 ·
wiJ′ (J ′)

g

+ ub[t1,min{t, t2}, piJ (J)] + ub[max{t+ piJ (J), t1}, t2, piJ (J)]
)
. (5)

Note that the number of interesting times and the number of distinct processing lengths
are polynomial. Thus, the quantities ub[t1, t2, `] for t1, t2 ∈ T and ` = pi(J), for some
J ∈ J , 1 ≤ i ≤ q and their corresponding job-configurations and schedules can be computed,
using the relation in Lemma 25, in polynomial time. The algorithm finally outputs the
job-configurations corresponding to ub[0, T,maxJ∈J ,1≤i≤q pi(J)]. By definition, this proves
Lemma 22. J

Now, recall that Lemma 16 and Theorem 17 together imply that given an instance J (~i)
of the real-time scheduling problem, we can compute in polynomial time a feasible schedule
with busy-time at most opt∞(J (~i)) + 4 · w(J (~i))

g . Thus, equation (4), Lemma 22, Lemma 16,
and Theorem 17 together imply that we can find a schedule with cost at most

opt∞(J (~i)) + 4 · w(J (~i))
g

≤ opt∞(J (~i∗)) + 4 · w(J (~i∗))
g

≤ 5 · opt(J),

thus yielding a 5-approximation.

5 Interval Scheduling with Unit Demands: Theorem 5

In this section, we consider instances with interval jobs, where all jobs have unit demands,
i.e., p(J) = d(J)− r(J) and R(J) = 1.

5.1 Laminar Instances
We show a polynomial time exact algorithm in case the job intervals I(J), for all jobs J ,
form a laminar family, i.e., for any two jobs J, J ′ ∈ J , it holds that I(J) ∩ I(J ′) = ∅ or
I(J) ⊂ I(J ′), or I(J ′) ⊂ I(J).

Since the job intervals are laminar, the jobs can be represented by a forest F of rooted
trees, where each vertex in a tree T ∈ F corresponds to a job, and a vertex v(J) is an
ancestor of a vertex v(J ′) if and only if I(J ′) ⊂ I(J). Let the level of a vertex be defined as
follows. Any root of a tree in the forest is at level 1. For all other vertices v, the level of v is

Khandekar et al. 179

1 plus the level of its parent. Consider an algorithm which assigns jobs in level ` to machine
Md`/ge.

I Theorem 26. The algorithm yields an optimal solution for laminar instances.

Proof. Clearly, the algorithm outputs a feasible solution, since at most g jobs are scheduled
on any machine at any time. Let Mt (resp., Nt) be the number of active machines (resp.,
jobs) at time t. Then Mt = dNt/ge. This proves the claim. J

5.2 A PTAS and more for Cliques
In the following we show that if all jobs have unit demands, and the corresponding graph is
a clique, then the problem can be approximated within factor 1 + ε, for any ε > 0. Recall
that for general instances of job intervals with unit demands the problem is NP-hard already
for g = 2 [23]. We show that for inputs that form cliques, the problem with g = 2 is solvable
in polynomial time.

Since the instance J forms a clique, there is a time t0 such that t0 ∈ I(J) for all J ∈ J .
The PTAS consists of two main phases. First, it extends the interval lengths, then it finds
(using dynamic programming) an optimal schedule of the resulting instance on m = dn/ge
machines. Note that the original intervals are sub-intervals of the stretched ones, therefore,
any feasible schedule of the stretched intervals induces a feasible schedule.

Approximation Scheme for a Clique:
1. Let c > 1 be a constant.
2. Let t0 be such that t0 ∈ J for all J ∈ J . Let left(J) = t0−r(J), right(J) = d(J)−t0.

Also, let sh(J) = min{left(J), right(J)} and lo(J) = max{left(J), right(J)} be
the length of the short (resp. long) segment of J w.r.t. t0. If sh(J)/lo(J) ∈
((k− 1)/c, k/c] for some 1 ≤ k ≤ c, stretch the short segment to round the ratio to k/c.

3. Partition the jobs into 2c− 1 classes. For ` ∈ {1, . . . , c}, the class ` consists of all jobs
for which sh(J)/lo(J) = `/c and left(J) ≥ right(J). For ` ∈ {c+ 1, . . . , 2c− 1}, the
class ` consists of all jobs for which sh(J)/lo(J) = (`− c)/c and left(J) < right(J).
Let n` be the number of jobs in class `, 1 ≤ ` ≤ 2c− 1.

4. For i ≥ 1, let Ci(n′1, . . . , n′2c−1) be the minimum cost of scheduling the longest n′` jobs
of class `, for all `, on i machines. Let m = dn/ge. Use dynamic programming to find
a schedule achieving Cm(n1, . . . , n2c−1).

We can show the next result – the proof is omitted due to lack of space.

I Theorem 27. For any ε ∈ (0, 1], the scheme with c = 1/ε is a PTAS for any clique.

The case g = 2: In this case we can solve the problem optimally, using a reduction to the
minimum-weight perfect matching in a complete graph. We first ensure that the number of
jobs is even by adding a dummy job with an empty interval. We next construct a complete
graph in which each job corresponds to a vertex, and for every pair i, j, the edge (Ji, Jj)
has weight span(Ji ∪ Jj). Use Edmond’s algorithm [8] to find a minimum-weight perfect
matching in the graph. It is easy to see that this matching gives the optimum solution to
our problem.

References
1 R. Bar-Yehuda A. Bar-Noy, A. Freund, J. Naor, and B. Schieber. A unified approach to

approximating resource allocation and scheduling. J. of the ACM, pages 1–23, 2000.

FSTTCS 2010

180 Minimizing Busy Time in Real-time Scheduling

2 L. Belede, A. Jain, and R. Reddy Gaddam. Unit commitment with nature and biologically
inspired computing. In World Congress on Nature and Biologically Inspired Computing
(NABIC), pages 824–829, 2009.

3 S. Bhatia, J. Chuzhoy, A. Freund, and J. Naor. Algorithmic aspects of bandwidth trading.
ACM Transactions on Algorithms, 3(1), 2007.

4 P. Brucker. Scheduling Algorithms, 5th ed. Springer, 2007.
5 G. Calinescu, A. Chakrabarti, H. Karloff, and Y. Rabani. Improved approximation algo-

rithms for resource allocation. In 9th Conference on Integer Programming and Combinato-
rial Optimization (IPCO), 2002.

6 B. Chen, R. Hassin, and M. Tzur. Allocation of bandwidth and storage. IIE Transactions,
34:501–507, 2002.

7 J. Y-T. Leung (ed.). Handbook of Scheduling: Algorithms, Models, and Performance Anal-
ysis. CRS Press, 2004.

8 J. Edmonds. Paths, trees and flowers. Canadian Journal of Mathematics, 17:449–467, 1965.
9 M. Flammini, G. Monaco, L. Moscardelli, H. Shachnai, M. Shalom, T. Tamir, and S. Zaks.

Minimizing total busy time in parallel scheduling with application to optical networks. In
IEEE International Parallel & Distributed Processing Symposium (IPDPS), 2009.

10 M. Flammini, G. Monaco, L. Moscardelli, M. Shalom, and S. Zaks. Approximating the
traffic grooming problem with respect to adms and oadms. In 14th Euro-Par, 2008.

11 O. Gerstel, R. Ramaswami, and G. Sasaki. Cost effective traffic grooming in wdm rings.
In INFOCOM, 1998.

12 J. Kang and S. Ranka. Energy-efficient dynamic scheduling on parallel machines. In High
Performance Computing (HiPC), pages 208–219, 2008.

13 M. Y. Kovalyov, C. T. Ng, and T. C. E. Cheng. Fixed interval scheduling: Models, ap-
plications, computational complexity and algorithms. European Journal of Operational
Research, 178(2):331–342, 2007.

14 E. Lawler, J.K. Lenstra, A.H.G.R. Kan, and D. Shmoys. Sequencing and scheduling: Al-
gorithms and complexity. S. C. Graves, A. H. G. Rinnooy Kan, and P. Zipkin (eds.),
Handbooks in Operations Research and Management Science, 4, 1993.

15 J. Leung, L. Kelly, and J. H. Anderson. Handbook of Scheduling: Algorithms, Models, and
Performance Analysis. CRC Press, Inc., Boca Raton, FL, USA, 2004.

16 W. T. Ludwig. Algorithms for Scheduling Malleable and Nonmalleable Parallel Tasks. PhD
thesis, Dept. of Computer Science, Univ. of Wisconsin - Madison, 1995.

17 A. Manzak and C. Chakrabarti. Variable voltage task scheduling algorithms for minimizing
energy/power. IEEE Trans. VLSI Syst. 11(2), pages 501–507, 2003.

18 C.A. Phillips, R.N. Uma, and J. Wein. Off-line admission control for general scheduling
problems. J. of Scheduling, 3:365–381, 2000.

19 M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer, 2008.
20 U.M. Schwarz. Tightness results for malleable task scheduling algorithms. In Parallel

Processing and Applied Mathematics, 2009.
21 J. Turek, J.L. Wolf, and P. S. Yu. Approximate algorithms for scheduling parallelizable

tasks. In 4th ACM Symposium on Parallel Algorithms and Architectures (SPAA), 1992.
22 N. Vasić, M. Barisits, V. Salzgeber, and D. Kostić. Making cluster applications energy-

aware. In 1st workshop on Automated Control for Datacenters and Clouds (ACDC), 2009.
23 P. Winkler and L. Zhang. Wavelength assignment and generalized interval graph coloring.

In 14th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 830–831, 2003.
24 A.J. Wood and B. Wollenberg. Power Generation Operation and Control. Wiley, 2nd

edition, 1996.
25 Y. Zhang, X. Hu, and D.Z. Chen. Task scheduling and voltage selection for energy mini-

mization. In Design Automation Conference (DAC), pages 183–188, 2002.

A Near-linear Time Constant Factor Algorithm for
Unsplittable Flow Problem on Line with Bag
Constraints
Venkatesan T. Chakaravarthy, Anamitra R. Choudhury, and
Yogish Sabharwal

IBM Research - India, New Delhi
{vechakra, anamchou, ysabharwal}@in.ibm.com

Abstract
Consider a scenario where we need to schedule a set of jobs on a system offering some resource
(such as electrical power or communication bandwidth), which we shall refer to as bandwidth.
Each job consists of a set (or bag) of job instances. For each job instance, the input specifies the
start time, finish time, bandwidth requirement and profit. The bandwidth offered by the system
varies at different points of time and is specified as part of the input. A feasible solution is to
choose a subset of instances such that at any point of time, the sum of bandwidth requirements
of the chosen instances does not exceed the bandwidth available at that point of time, and fur-
thermore, at most one instance is picked from each job. The goal is to find a maximum profit
feasible solution. We study this problem under a natural assumption called the no-bottleneck
assumption (NBA), wherein the bandwidth requirement of any job instance is at most the mini-
mum bandwidth available. We present a simple, near-linear time constant factor approximation
algorithm for this problem, under NBA.

When each job consists of only one job instance, the above problem is the same as the well-
studied unsplittable flow problem (UFP) on lines. A constant factor approximation algorithm
is known for the UFP on line, under NBA. Our result leads to an alternative constant factor
approximation algorithm for this problem. Though the approximation ratio achieved by our
algorithm is inferior, it is much simpler, deterministic and faster in comparison to the existing
algorithms. Our algorithm runs in near-linear time (O(n log2 n)), whereas the running time of the
known algorithms is a high order polynomial. The core idea behind our algorithm is a reduction
from the varying bandwidth case to the easier uniform bandwidth case, using a technique that
we call slicing.

1998 ACM Subject Classification F.2.2 [Analysis of Algorithms]

Keywords and phrases Approximation Algorithms; Scheduling; Resource Allocation

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.181

1 Introduction

We consider a general resource allocation problem in which we need to schedule jobs on
a system offering a certain amount of some resource (such as electrical power, processing
nodes, communication bandwidth). Each job consists of a set (or bag) of job instances, out
of which at most one can be chosen. Each job instance requires a particular amount of
the resource for its execution. The total amount of the resource offered by the system is
different at different points of time. Our goal is to choose a subset of job instances such
that at any timeslot, the total amount of resource requirement does not exceed the total
amount of the resource available at that timeslot. We wish to maximize the profit of the

© Venkatesan T. Chakaravarthy, Anamitra R. Choudhury and Yogish Sabharwal;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 181–191

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.181
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

182 A Near-linear Time Constant Factor Algorithm for UFP on Line with Bags

chosen subset of jobs. The problem formulation is motivated by its applications in cloud
computing, bandwidth allocation in networks, smart energy management and allocating
processor nodes on a multi-processor system. We refer to [4, 11, 1, 12, 8] for a discussion on
some of these applications. Motivated by such scheduling and bandwidth allocation scenarios,
we study an abstract problem called the Varying bandwidth resource allocation problem with
bag constraints (BagVBRap), introduced in [8]. We use bandwidth as a generic term to refer
to the resource under contention. The BagVBRap problem generalizes several previously
studied scheduling and resource allocation problems. We next define the problem formally.

1.1 BagVBRap Problem Definition

The input consists of a set of jobs J . Each job J ∈ J consists of a set of job instances of
which at most one can be selected for execution. A instance u of a job J is specified by an
interval Iu = [a, b], where a and b are the start time and the finish time of the instance u; we
assume that a and b are integers. The job instance u is also associated with a bandwidth
requirement ρu and a profit pu. Let D be the maximum finish time over all instances so that
the interval associated with every job instance is contained in the span [1, D]. We refer to
each integer 1 ≤ t ≤ D as a timeslot. For each timeslot t, the input specifies a number Bt

which is the bandwidth available at timeslot t.
We use the term instance as a shorthand for job instance. Let U denote the set of all n

instances over all the jobs in J . For each instance u ∈ U , we view each interval Iu = [a, b] as
a set of timeslots in the range [a, b]. We view each job as a bag of its instances. We say that
the instance u is active at a timeslot t, if t ∈ Iu. For a timeslot t, let A(t) denote the set of
all instances active at timeslot t.

A feasible solution is a subset of instances S ⊆ U such that at every timeslot t, the sum
of the bandwidth requirements of the instances from S active at time t is at most Bt, i.e, for
every timeslot 1 ≤ t ≤ D,∑

u∈S∩A(t)

ρu ≤ Bt.

We call this the bandwidth constraint. Furthermore, it is required that at most one instance
is picked from each job; we call this the bag constraint; we view a job as a bag of instances
and hence the terminology. The problem is to find a feasible solution S such that the sum of
the profits of the jobs in S is maximized. This completes the problem description.

The concept of bag constraints is quite powerful. Apart from handling the notion of
release time and deadline, it can also work in a more general setting where a job can specify
a set of possible time intervals where it can be scheduled. Moreover, BagVBRap allows
for different instances of the same job to have different bandwidth requirements, processing
times and profits.

The maximum and minimum available bandwidths over all timeslots will be of use in
our discussion. We denote these by Bmax and Bmin, that is Bmax = maxt∈[1,D] Bt and
Bmin = mint∈[1,D] Bt. Similarly, the maximum and minimum bandwidth requirement over all
instances is also of interest. We denote these by ρmax and ρmin. That is, ρmax = maxu∈U ρu

and ρmin = minu∈U ρu.
Remark: We can assume that for each instance u, the start time and end time of u are in
the range [1, 2n], since this leaves the problem combinatorially unchanged. Thus, we can
assume that D ≤ 2n.

Chakaravarthy et al. 183

1.2 Prior Work
The BagVBRap problem is a generalized formulation that captures as special cases many
well-studied scheduling and resource allocation problems. Here we shall describe some
important special cases and then present a brief survey of some of the prior work dealing
with these problems.

Uniform bandwidth resource allocation problem (UBRap): This is the special case of
the BagVBRap problem, where the bandwidth available is uniform across all timeslots
and the bag constraints do not exist. Meaning, each job consists of only one instance and
for all 1 ≤ t ≤ D, Bt = B for some fixed B given as part of the input.
Uniform bandwidth resource allocation problem with bag constraints (BagUBRap): This
is the special case of the BagVBRap problem, where the bandwidth available is uniform
across all timeslots.
Varying bandwidth resource allocation problem (VBRap): This is the special case of the
BagVBRap problem, where each job has only one instance. The VBRap problem is the
same as the unsplittable flow problem (UFP) on line graphs, a well-studied problem.

Calinescu et al. [7] presented a 3-approximation for the UBRap problem, based on LP
rounding technique that they refer to as “listing algorithm". Independently, Bar-Noy et
al. [4] also presented a local-ratio based 3-approximation algorithm for the same problem.
They also show how to handle bag constraints and derive a 5-approximation algorithm for
the BagUBRap problem. A further special case of the BagUBRap problem is obtained
when the bandwidth requirements and the bandwidth available are all unit. This special
case has been studied under the name weighted job interval selection problem (WJISP), for
which Bar-Noy et al. [5] and, independently, Berman and Dasgupta [6] presented local-ratio
based 2-approximation algorithms.

For the VBRap problem (i.e., the UFP problem on line) Chakrabarti et al. [9] presented
an algorithm with an approximation ratio of O(log(ρmax/ρmin)). Bansal et al. [3] presented
an O(logn)-approximation algorithm for the same problem. No polynomial time constant
factor approximation algorithm is known for this problem. However, in a break-through
result, Bansal et al. [2] obtained a quasi-PTAS for UFP on line. For the BagVBRap problem,
an O(log(Bmax/Bmin))-approximation algorithm was obtained in [8]; this was achieved by
extending the LP based “listing” algorithm of Calinescu et al. [7],

Obtaining a polynomial time constant factor approximation algorithm for the VBRap
problem has remained a challenging open problem. However, this has been achieved under a
reasonable assumption known as the no-bottleneck assumption (NBA).

No Bottleneck Assumption (NBA): We say that an input to the BagVBRap
problem satisfies the no bottleneck assumption (NBA), if the maximum bandwidth requirement
of every job instance is less than the minimum bandwidth available. That is, ρmax ≤ Bmin.

Chakrabarti et al. [9] obtained the first constant factor approximation algorithm for the
VBRap problem, under NBA. For the same special case, Chekuri et al. [10] improved the
constant factor to (2 + ε). Both these algorithms are based on randomized rounding of LP
solutions.

1.3 Our Result and Discussion
Our main result is a constant factor approximation algorithm for the BagVBRap problem,
under NBA. The running time of the algorithm is O(n log2 n), where n is the number of job
instances. The approximation ratio is 120.

FSTTCS 2010

184 A Near-linear Time Constant Factor Algorithm for UFP on Line with Bags

An important feature of our approach is the simplicity of both the algorithm and
analysis. We show how to handle the non-uniformity or the varying nature of the bandwidths
available, via a reduction to the easier case of uniform bandwidths. Namely, we present a
simple reduction from the BagVBRap problem with NBA to the BagUBRap problem.
Given a BagVBRap input with n job instances, our algorithm produces a BagUBRap
instance having at most O(n logn) job instances. We then invoke the known constant factor
approximation algorithm for BagUBRap, due to Bar-Noy et al. [4], which is based on
the local ratio technique, and runs in time O(n logn), where n is the number of input job
instances. Thus, our algorithm for BagVBRap runs in time O(n log2 n).

Our result yields a constant factor approximation algorithm for the UFP problem on
line, with NBA. The approximation ratio is 120. As mentioned earlier, Chakrabarti et al. [9]
and Chekuri et al. [10] have presented constant factor approximation algorithms for this
problem. The algorithm of Chekuri et al. guarantees an approximation ratio of (2 + ε) (for
any ε > 0); this algorithm is based on randomized LP rounding. This algorithm offers a
tradeoff between approximation ratio and running time. The best running time achievable
within this framework is more than O(n10). As the approximatio ratio approaches 2, the
running time grows substantially. Though our algorithm is inferior in terms of approximation
ratio, it is simpler, deterministic and runs in near-linear time (O(n log2 n)). We believe that
our technique of reducing varying bandwidths to uniform bandwidths may find application
in other scenarios as well.

Organization. The rest of the paper is devoted towards presenting our constant factor
approximation algorithm for the BagVBRap problem with NBA. For a better exposition of
our main ideas, in Section 3, we first consider a special case where the available bandwidths
are all integral multiples of Bmin. For this case, we present a constant factor approximation
algorithm. In Section 4, we will take care of the technicalities in dealing with the general
case and derive a constant factor approximation algorithm for the general case, which runs
in time O(n log2 n). Both the algorithms use reductions to BagUBRap.

2 Preliminaries

Here, we develop some notations used throughout the paper. For a set of instances X ⊆ U
and a timeslot t ∈ [1, D], let ρX(t) denote the sum of bandwidth requirements of all instances
in X that are active at timeslot t, i.e., ρX(t) =

∑
u∈X∩A(t) ρu.

By a bandwidth profile P , we mean a function that specifies a bandwidth for each timeslot.
If P and Q are two bandwidth profiles, we define P − Q to be the profile R given by:
R(t) = max{0, P (t)−Q(t)}, for all timeslots t. For a bandwidth profile P and a constant
c, we define c ⊗ P to be the profile P ′ given by: P ′(t) = c · P (t), for all timeslots t. By a
uniform strip of bandwidth b, we mean a profile which uniformly takes the bandwidth to be
b, for all timeslots. We say that the profile P is an integral profile, if for all timeslots t, P (t)
is an integral multiple of Bmin (we allow P (t) = 0).

We say that a set of instances X fits into a profile P , if for all timeslots t, ρX(t) ≤ P (t).
The input specifies a profile Pin given by: Pin(t) = Bt, for all timeslots t. We shall refer to
Pin as the input profile. Note that a feasible solution is simply a set of instances S that fits
into the input profile Pin and satisfies the bag constraints.

Chakaravarthy et al. 185

Bmin

2.Bmin

3.Bmin

4.Bmin

5.Bmin

6.Bmin

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 11

Figure 1 Illustration of slicing

3 BagVBRap with NBA: The Case of Integral Profiles

In this section, for a simple exposition of our main ideas, we focus on the special case where
the input bandwidth profile Pin is integral. For this case, we present a constant factor
approximation algorithm having running time O(n2 logn). In the next section, we will take
care of the technicalities in dealing with the non-integral input profiles and derive a constant
factor approximation algorithm for the general case, which runs in time O(n log2 n).

Let K = Bmax/Bmin; since the profile is assumed to be integral, K is an integer. We
imagine the input bandwidth profile Pin to be a curve giving a value for each timeslot t. We
slice the area under the curve horizontally into K slices each of height Bmin, as illustrated
in Figure 1. For 1 ≤ j ≤ K, the bandwidth profile of the jth slice is defined as follows: for
1 ≤ t ≤ D,

Slicej(t) =
{

Bmin if Bt ≥ j · Bmin
0 otherwise

Consider a feasible solution S ⊆ U (which fits into the profile Pin and satisfies the bag
constraints). The solution S is said to be slice-respecting, if it is possible to assign the
instances of S to the K slices satisfying the following two properties: (i) each instance u ∈ S
is assigned to one of the K slices; (ii) for 1 ≤ j ≤ K, the subset of instances assigned to the
jth slice fits into the profile Slicej.

Let Sopt ⊆ U be the optimum solution. Our algorithm and analysis have two main
components:

First, we will show that the optimum solution Sopt can be partitioned into 16 subsets
such that each subset is a slice-respecting solution (see Section 3.1).
Second, we will present an algorithm that will output a slice-respecting solution S such
that the profit of S is a 5-approximation to the optimum slice-respecting solution (namely,
the maximum profit solution among all slice respecting solutions). This algorithm is
obtained via a reduction to the BagUBRap problem. (see Section 3.2).

It follows that S is a 80-approximation to Sopt. This yields the following theorem.

I Theorem 1. There exists a 80-approximation algorithm for the BagVBRap problem with
NBA when the input bandwidth profile Pin is integral. The running time of the algorithm is
O(n2 logn).

3.1 Partitioning Sopt into Slice-respecting Solutions
In this section, we will prove the following lemma.

FSTTCS 2010

186 A Near-linear Time Constant Factor Algorithm for UFP on Line with Bags

I Lemma 2. Any feasible solution S can be partitioned into 16 subsets such that each subset
is a slice-respecting solution.

The intuitive idea behind the above claim is as follows. We will delete the first slice from
the bottom of the profile and obtain a new profile. We shall identify a subset of instances Y
and delete them such that the remaining instances fits into the new profile. We will show
that the deleted subset of instances Y can be partitioned into a collection of 16 subsets
such that each subset in the collection fits into the deleted (first) slice. We shall then apply
the above procedure recursively K times obtaining K such collections. A slice-respecting
solution can be formed by picking one subset from each collection. This way, we can form 16
slice respecting solutions.

The rest of the section is devoted to proving Lemma 2 formally. The following two lemmas
are useful for this purpose.

I Lemma 3. Let P be any integral profile. Let X ⊆ U be any subset of instances that fits
into the profile P . Then, there exists a subset Y ⊆ X such that: (i) for all timeslots t,
ρY (t) ≥ min{ρX(t),Bmin}; (ii) Y fits into the uniform strip of bandwidth 4 · Bmin.

Proof. For a subset T ⊆ U , a job instance is said to be critical for T if removal of the job
instance from T causes the total bandwidth of the remaining jobs in T to fall below Bmin at
some timeslot. More formally, a job instance u is said to be critical for T , if ρT\{u}(t) < Bmin
for some t ∈ Iu.

We start with Y = X and then repeatedly remove jobs that are not critical for Y until no
more such jobs exist. We argue that the remaining jobs in Y satisfy the required properties.
The first property follows from the fact that we never remove a critical job. The second
property is proved by contradiction. Suppose that for some timeslot t̃, ρY (t̃) > 4 · Bmin. Let

tl = max
t
{t ≤ t̃ and ρY (t) < 2 · Bmin} and tr = min

t
{t ≥ t̃ and ρY (t) < 2 · Bmin}.

First, let us suppose that both tl and tr exist. Note that by definition of tl and tr, we
have that ρY (t) ≥ 2 · Bmin, for all t ∈ (tl, tr). We will now argue that there exists some job
instance u ∈ Y , such that Iu is contained in (tl, tr). If this were not so, then for any timeslot
t′ ∈ (tl, tr), any job instance u′ active at timeslot t′ would also be active at timeslot tl or at
timeslot tr. This implies that for any t′ ∈ (tl, tr), ρY (t′) ≤ ρY (tl) + ρY (tr) < 4 · Bmin. This
would contradict our hypothesis that ρY (t̃) > 4 · Bmin. Therefore, there exists a job instance
u such that Iu is contained in (tl, tr). This combined with the fact that ρY (t) ≥ 2 · Bmin,
for all t ∈ (tl, tr) and the NBA implies that u is not a critical job. This contradicts our
construction of Y .

Now, let us assume that tl does not exist. Then ρY (t) ≥ 2 · Bmin, for all t ∈ [1, t̃]. Let
u′ ∈ Y be the job with the earliest finish time and let its finish time be tu′ . Note that
ρY (t) ≥ 2 · Bmin for all t ∈ [1, tu′]. This fact along with the NBA assumption implies that u′
is not a critical job. This contradicts our construction of Y .

The case when tr does not exist is handled similar to the case of tl not existing as above.
This completes the proof of the lemma. �

I Lemma 4. Let X ⊆ U be any subset of instances that fits into the uniform strip of bandwidth
4 · Bmin. Then, X can be partitioned into a collection of 16 subsets {X1, X2, . . . , X16} such
that each subset Xi fits into the uniform strip of bandwidth Bmin.

Proof. We say that an instance u ∈ X is large, if ρu > Bmin/2; otherwise, u is said to be
small. Let X` ⊆ X be the set of large instances and let Xs be the set of small instances. Let

Chakaravarthy et al. 187

us first focus on the set X`. Create 8 uniform strips of bandwidth Bmin, named P1, P2, . . . , P8,
called buckets. Arrange the instances in X` in a list in increasing order of their start times.
Scan this list and for each instance u, add u to a bucket where it can fit without violating
the bandwidth constraint. The crucial claim is that each instance u will fit into some bucket.
To see this claim, consider the first instance u that does not fit into any bucket. Let the
starting timeslot of u be t0. Since we are dealing with large instances, each bucket contains
exactly one large instance active at the timeslot t0 . Let Y be the set of these instances.
Their combined bandwidth at t0 is ρY (t0) > 4 · Bmin. This is a contradiction since X is
assumed to fit into a uniform strip of bandwidth 4 · Bmin.

The argument for small tasks is similar. Consider 8 uniform strips of bandwidth Bmin,
Q1, Q2, . . ., Q8, which are referred to as buckets. Scan the small instances in the increasing
order of their start times. For each instance u, add u to a bucket where it would fit without
violating the bandwidth constraint. As before, we claim that every instance will fit into at
least one bucket. To see this, suppose u be the first instance that does not fit into any bucket.
Let the starting timeslot of u be t0. For each 1 ≤ i ≤ 8, let Yi be the set of instances in Qi

active at timeslot t0. Since u is small, ρYi
(t0) > Bmin/2. Let Y be the union of Y1, Y2, . . . , Y8.

Their combined bandwidth at t0 is ρY (t0) > 4 · Bmin. This is a contradiction since X is
assumed to fit into a uniform strip of bandwidth 4 · Bmin.

The set of instances added to the 16 buckets P1, P2, . . . , P8 and Q1, Q2, . . . , Q8 are taken
to be the required subsets X1, X2, . . . , X16. �

We now prove Lemma 2. Let P0 = Pin be the input profile and let X0 = S be the given
solution. We first invoke Lemma 3 with P0 and X0 as inputs and obtain a set of instances Y1.
We then apply Lemma 4 to partition Y1 into a collection of 16 subsets {Y 1

1 , Y
2

1 , . . . , Y
16

1 }.
Note that each of these subsets Y i

1 fits into the profile of the first slice. We delete the
first slice (bottom-most slice) from the profile P0 and obtain a profile P1 (formally, we set
P1 = P0 − Slice1). We also delete the set of instances Y1 from X0 and get a new set of
instances X1 = X0 − Y1. Observe that the set of instances X1 fits into the profile P1. This
allows us to apply the above process starting with P1 and X1 as inputs. Overall, we will
apply the above process iteratively K times.

Formally, for j = 1 to K, we do as follows:
Invoke Lemma 3 with Pj−1 and Xj−1 as inputs and obtain a set of instances Yj .
Invoke Lemma 4 to partition Yj into a collection of 16 subsets {Y 1

j , Y
2

j , . . . , Y
16

j }. Note
that each set Y i

j fits into the profile of the jth slice.
Define a new integral profile Pj = Pj−1 − Slicej.
Define Xj = Xj−1 − Yj . The set of instances Xj fits into the profile Pj .

We now form 16 solutions: for 1 ≤ i ≤ 16, let Zi = ∪K
j=1Y

i
j . Each set Zi is a slice-

respecting solution. This completes the proof of Lemma 2.

3.2 Approximating the Optimum Slice-respecting Solution
In this section, we shall present an algorithm for finding a 5-approximation to the optimum
slice-respecting solution. We achieve this goal via a reduction to the BagUBRap problem,
for which Bar-Noy et al. [4] designed a local-ratio based 5-approximation algorithm.

Let S∗ be the optimum slice-respecting solution. Our goal is to find a 5-approximation to
S∗, via a reduction to the BagUBRap problem. Let I be the input instance, which we will
transform into an input instance Ĩ of BagUBRap. Let the timespan of I be [1, D] so that all
the job instances finish before D. In the transformed instance Ĩ, the timespan will be [1,KD],
where K is the number of slices. The bandwidth profile of Ĩ is obtained by concatenating

FSTTCS 2010

188 A Near-linear Time Constant Factor Algorithm for UFP on Line with Bags

the bandwidth profiles of the K slices; namely, for 1 ≤ j ≤ K, the range [1 + (j − 1)D, jD]
corresponds to the jth slice. Formally, in the input instance Ĩ, the bandwidth available B̃t

is declared as follows: for 1 ≤ j ≤ K and for each timeslot t ∈ [1 + (j − 1)D, jD], we set
B̃t = Slicej(t− (j− 1)D). Note that in Ĩ, the bandwidths available at all timeslots are either
Bmin or 0.

For each job J ∈ J of the input I, we create a corresponding job J̃ in Ĩ. For each job
instance u ∈ U in the input instance I with associated interval Iu = [a, b], we create at most
K copies of u as follows. For each slice 1 ≤ j ≤ K, we create a copy of u, if the instance
u can be scheduled in the jth slice (meaning, for all t ∈ [a, b], Slicej(t) 6= 0); this copy of
u is declared to have the interval Ij

u = [(j − 1)D + a, (j − 1)D + b]. This way, at most K
copies are created for the instance u. Each of these copies will have the same bandwidth
requirement and profit as the instance u. If J ∈ J is the job to which the instance u belongs,
then all these copies of u are made instances of the corresponding job J̃ in the transformed
input Ĩ. For instance, if a job J ∈ J had d instances in I, its corresponding job in Ĩ would
have at most dK instances.

A minor issue in the above construction is that in Ĩ, the bandwidths available are
not uniform across all the timeslots. However, these are all either Bmin or 0. This is
easily addressed via compressing the profile by deleting all timeslots where the bandwidth
availability is 0. This way, we get a BagUBRap instance. This completes the reduction.

It is easy to see that a slice-respecting feasible solution S to I can be converted into a
feasible solution S̃ for Ĩ and vice versa. To see the forward direction, if u is an instance
picked in the solution S and assigned to slice j, we pick the instance Ij

u in S̃. For the reverse
direction, if the instance Ij

u is picked in the solution S̃, we include the instance Iu in S and
assign it to the slice j. Now invoking the 5-approximation algorithm for the BagUBRap
problem [4], we get the desired 5-approximation to the optimum slice-respecting solution.

The 5-approximation algorithm for the BagUBRap problem runs in time O(ñ log(ñ)),
where ñ is the number of job instances in Ĩ. In our reduction, for each job instance u ∈ I, at
most K instances are created in Ĩ and hence, ñ ≤ Kn. Recall that K = Bmax/Bmin. We can
assume that Bmax ≤ nρmax. Under NBA, we also have that Bmin ≥ ρmax. Hence, K = O(n).
Thus, our algorithm runs in time O(n2 logn).

4 A Constant Factor Approximation for the General Case

We now consider the general case involving non-integral input profiles and derive a constant
factor approximation algorithm having running time O(n log2 n). The core idea of slicing
is the same as that of the earlier section. The new result is obtained by dealing with some
technicalities. First, instead of slicing the input profile into slices of equal height, here we
shall slice the profile into slices of geometrically increasing heights. This enables us to bring
down the running time. Secondly, we shall “floor" the input profile by carefully decreasing
the bandwidth available at every timeslot so that it becomes “geometric" and it is therefore,
suitable for “geometric slicing". However, the “flooring" increases the approximation ratio by
a constant factor.

We say that a profile P is a geometric integral profile (GIP), if one of the following two
conditions is true:

For all timeslots t, either P (t) = 0 or P (t) = 2i · Bmin, for some integer i ≥ 0.
There exists an integer constant c ≥ 0 such that for all timeslots t, either P (t) = 0 or
P (t) = (2i − 2c)Bmin, for some integer i ≥ 0.

In the former case the profile is said to be a type-1 GIP and in the latter case, the profile

Chakaravarthy et al. 189

Bmin

2.Bmin

4.Bmin

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 11

Figure 2 Illustration of slicing

said to be a type-2 GIP. The idea of having two different types of GIPs is that we shall start
with a type-1 GIP and as we delete slices iteratively, we obtain type-2 GIPs.

We first convert the input profile Pin into a type-1 GIP by “flooring” the bandwidths, as
follows. Define a new profile P̃in given by P̃in(t) = 2i · Bmin, where i = blog(Pin(t)/Bmin)c.
Figure 2 presents the flooring of the profile shown in Figure 1. A feasible solution S ⊆ U
(which fits into the profile Pin) may not fit into the profile P̃in. Our algorithm will actually
output a solution that fits into the profile P̃in. In this process, we lose a constant factor in
the approximation.

Similar to the previous section, we now define the notion of slices and slice-respecting
solutions. Let K = 1 + blog(Bmax/Bmin)c. We slice the profile P̃in horizontally into K slices
in a geometric manner. The profile of the first slice Slice1 is the uniform strip of bandwidth
Bmin. For 2 ≤ j ≤ K, the bandwidth profile of the jth slice is given by the following profile:
for 1 ≤ t ≤ D,

Slicej(t) =
{

2j−2 · Bmin if P̃in(t) ≥ 2j−1 · Bmin
0 otherwise

See Figure 2 for an illustration of the slices.
Consider a feasible solution S ⊆ U (which fits into the profile Pin and satisfies the bag

constraints). The solution S is said to be slice-respecting, if it is possible to assign the
instances of S to the K slices satisfying the following two properties: (i) each instance u ∈ S
is assigned to one of the K slices; (ii) for 1 ≤ j ≤ K, the subset of instances assigned to the
jth slice fits into the profile Slicej.

Let Sopt ⊆ U be the optimum solution. Our algorithm and analysis have two main
components:

First, we will show that the solution Sopt can be partitioned into 24 subsets such that
each subset is a slice-respecting solution.
Second, we will present an algorithm that will output a slice-respecting solution S such
that the profit of S is a 5-approximation to the optimum slice-respecting solution.

It follows that S is a 120-approximation to Sopt. This yields the following theorem.

I Theorem 5. There exists a 120-approximation algorithm for the BagVBRap problem
with NBA. The running time of the algorithm is O(n log2 n).

We now focus on the first component and prove a lemma similar in spirit to Lemma 2.

I Lemma 6. Any feasible solution S ⊆ U can be partitioned into 24 subsets such that each
subset is a slice-respecting solution.

FSTTCS 2010

190 A Near-linear Time Constant Factor Algorithm for UFP on Line with Bags

We first state two variants of Lemma 3 that deal with the two types of GIPs. The proofs
are similar to that of Lemma 3.

I Lemma 7. Let P be any type-1 GIP. Let X ⊆ U be any subset of instances that fits into
the profile 2 ⊗ P . Then, there exists Y ⊆ X such that: (i) for all timeslots t, ρY (t) ≥
min{ρX(t), 2 · Bmin}; (ii) Y fits the uniform strip of bandwidth 6 · Bmin.

I Lemma 8. Let P be any type-2 GIP with parameter c ≥ 0. Let X ⊆ U be any subset of
instances that fits into the profile 2 ⊗ P . Then, there exists Y ⊆ X such that: (i) for all
timeslots t, ρY (t) ≥ min{ρX(t), 2 · 2c · Bmin}; (ii) Y fits into the uniform strip of bandwidth
6 · 2c · Bmin.

We next state a variant of Lemma 4. The proof is similar to that of Lemma 4.

I Lemma 9. Let X ⊆ U be any subset of instances that fits into the uniform strip of
bandwidth 6 · α · Bmin, for some integer α ≥ 1. Then, X can be partitioned into 24 subsets
X1, X2, . . . , X24 such that each subset Xi fits into the uniform strip of bandwidth α · Bmin.

We now prove Lemma 6. The proof is similar to that of Lemma 2 and is proved in an
iterative manner. In the first iteration, we apply Lemma 7 and Lemma 9 on profile P̃in,
which is a type-1 GIP. In the subsequent iterations, we will apply Lemma 8 and 9, as the
profiles considered in these iterations are type-2 GIPs.

Let P0 = P̃in be the input profile, which is a type-1 GIP. Let X0 = S be the given
solution that fits into the profile Pin. Observe that X0 fits into the profile 2⊗ P0. We first
invoke Lemma 7 with P0 and X0 as inputs and obtain a set of instances Y1. We then apply
Lemma 9 to partition Y1 into 24 subsets Y 1

1 , Y
2

1 , . . . , Y
24

1 (here α = 1). Note that each of
these subsets Y i

1 fits into the profile Slice1. We delete the first slice (bottom-most slice) from
the profile P0 and obtain a profile P1 (formally, we set P1 = P0 − Slice1). We also delete the
set of instances Y1 from X0 and get a new set of instances X1 = X0 − Y1.

The profile P1 is a type-2 GIP with parameter c = 0 and X1 fits into 2⊗ P1. We invoke
Lemma 8 with P1 and X1 as inputs and obtain a set of instances Y2. We then apply Lemma 9
to partition Y2 into 24 subsets Y 1

2 , Y
2

2 , . . . , Y
24

2 (here α = 20 = 1). Note that each of these
subsets Y i

2 fits into the profile Slice2. We now delete the second slice from the profile P1 and
obtain a profile P2 (formally, we set P2 = P1 − Slice2). We also delete the set of instances Y2
from X1 and get a new set of instances X2 = X1 − Y2. The profile P2 is a type-2 GIP with
parameter c = 1 and X2 fits into 2⊗ P2.

We can now iteratively apply the above process starting with P2 and X2 as inputs. We
continue like this for K iterations. Formally, for j = 2 to K, do as follows:

Invoke Lemma 8 with Pj−1 and Xj−1 as inputs and obtain a set of instances Yj .
Invoke Lemma 9 to partition Yj into 24 subsets Y 1

j , Y
2

j , . . . , Y
24

j . Each set Y i
j fits into

the profile Slicej.
Define a profile Pj given by Pj = Pj−1 − Slicej. The profile Pj is a type-2 GIP with
parameter c = j − 2.
Define Xj = Xj−1 − Yj . The set of instances Xj fits into the profile 2⊗ Pj .

We now form 24 solutions: for 1 ≤ i ≤ 24, let Zi = ∪K
j=1Y

i
j . Each set Zi is a slice-

respecting solution. This completes the proof of Lemma 6.
We now outline the second component required to prove Theorem 5. What we need is

an algorithm that approximates the optimum slice respecting solution within a factor of 5.
The construction is the same as that of Section 3.2. However, we do not get a BagUBRap
instance, since the bandwidths available are not uniform. Nevertheless, we can scale the

Chakaravarthy et al. 191

slices (and the associated job instances), so as to make all the slices of uniform bandwidth.
This way we can get a BagUBRap instance.

In the current scenario K = O(log(Bmax/Bmin)). Now an analysis similar to the one
performed in the previous section shows that the running time of our algorithm is O(n log2 n).

References
1 S. Albers. Resource Management in Large Networks. In J. Lerner, D. Wagner, and K. Zweig,

editors, Algorithmics for Large and Complex Networks: Design, Analysis, and Simulation,
pages 227–246. Springer Berlin/Heidelberg, 2009.

2 N. Bansal, A. Chakrabarti, A. Epstein, and B. Schieber. A quasi-PTAS for unsplittable
flow on line graphs. In ACM Symposium on Theory of Computing (STOC), pages 721–729,
2006.

3 N. Bansal, Z. Friggstad, R. Khandekar, and M. Salavatipour. A logarithmic approximation
for unsplittable flow on line graphs. In ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 702–709, 2009.

4 A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Noar, and B. Schieber. A unified approach to
approximating resource allocation and scheduling. Journal of the ACM, 48(5):1069–1090,
2001.

5 A. Bar-Noy, S. Guha, , J. Noar, and B. Schieber. Approximating the throughput of multiple
machines in real-time scheduling. Siam Journal of Computing, 31(2):331–352, 2001.

6 P. Berman and B. Dasgupta. Multi-phase algorithms for throughput maximization for
real-time scheduling. Journal of Combinatorial Optimization, 4:307–323, 2000.

7 G. Calinescu, A. Chakrabarti, H. Karloff, and Y. Rabani. Improved approximation al-
gorithms for resource allocation. In Prooceedings of the 9th International Conference on
Interger Programming and Combinatorial Optimization, 2002.

8 V. Chakaravarthy, V. Pandit, Y. Sabharwal, and D. Seetharam. Varying bandwidth re-
source allocation problem with bag constraints. In 24th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2010.

9 A. Chakrabarti, C. Chekuri, A. Gupta, and A. Kumar. Approximation algorithms for the
unsplittable flow problem. Algorithmica, 47(1):53–78, 2007.

10 C. Chekuri, M. Mydlarz, and F. Shepherd. Multicommodity demand flow in a tree and
packing integer programs. ACM Transactions on Algorithms, 3(3), 2007.

11 T. Erlebach and F. Spieksma. Interval selection: Applications, algorithms, and lower
bounds. Journal of Algorithms, 46(1):27–53, 2003.

12 M. Flammini, G. Monaco, G. Moscardelli, H. Shachnai, M. Shalom, T. Tamir, and S. Zaks.
Minimizing total busy time in parallel scheduling with application to optical networks. In
23rd IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2009.

FSTTCS 2010

Place-Boundedness for Vector Addition Systems
with one zero-test∗

Rémi Bonnet1, Alain Finkel1, Jérôme Leroux2, and Marc Zeitoun1,2

1 LSV, ENS Cachan, CNRS & INRIA, France.
firstname.lastname@lsv.ens-cachan.fr

2 LaBRI, Univ. Bordeaux & CNRS, France.
firstname.lastname@labri.fr

Abstract
Reachability and boundedness problems have been shown decidable for Vector Addition Systems
with one zero-test. Surprisingly, place-boundedness remained open. We provide here a variation
of the Karp-Miller algorithm to compute a basis of the downward closure of the reachability set
which allows to decide place-boundedness. This forward algorithm is able to pass the zero-tests
thanks to a finer cover, hybrid between the reachability and cover sets, reclaiming accuracy on
one component. We show that this filtered cover is still recursive, but that equality of two such
filtered covers, even for usual Vector Addition Systems (with no zero-test), is undecidable.

Keywords and phrases Vector addition systems; Inhibitor arcs; Karp-Miller algorithms; Reach-
ability sets; Cover sets; Well-quasi orders.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.192

1 Introduction

Context. Petri Nets, Vector Addition Systems (VAS), and Vector Addition Systems with
control states (VASS) are equivalent well-known classes of counter systems for which the
reachability problem is decidable [19, 17, 18], even if its complexity is still an open problem. On
the other hand, testing equality of the reachability sets of two such systems is undecidable [12].
For that reason, one cannot compute a canonical finite representation of the reachability set
that would make it possible to test for equality. However, there is such an effective finite
representation for the cover, a useful over-approximation of the reachability set which is
connected to various verification problems.

If we add to VAS the ability to test at least two counters to zero, one obtains a model
equivalent to Minsky machines, for which all nontrivial properties are undecidable. The study
of VAS with a single zero-test transition began recently, and very few results are known for
this model. Reinhardt [21] has shown that the reachability problem is decidable for VASS
with one zero-test transition (as well as for hierarchical zero-tests). Abdulla and Mayr have
shown that the coverability problem is decidable in [2], by using the backward procedure
of Well Structured Transition Systems [1]. See [10] for a survey. The boundedness problem
(whether the reachability set is finite), the termination and the reversal-boundedness problem
(whether the counters can alternate infinitely often between the increasing and the decreasing
modes) are all decidable by using a forward procedure, a finite but non-complete Karp
and Miller tree [9]. The place-boundedness problem, and more generally the possibility to

∗ Supported by the Agence Nationale de la Recherche, AVERISS (grant ANR-06-SETIN-001) and
AVERILES (grant ANR-05-RNTL-002).

© Rémi Bonnet, Alain Finkel, Jérôme Leroux, Marc Zeitoun;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 192–203

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.192
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Rémi Bonnet, Alain Finkel, Jérôme Leroux, and Marc Zeitoun 193

compute a finite representation of the cover were still open problems. Only in the particular
case of dimension 2 with control states, the reachability set is semilinear and its basis and
periods are computable [11] and then the place-boundedness is decidable; but this result
cannot be extended in dimension 3, even without zero-test [14].

Our contribution. We give an algorithm for computing a finite representation of the cover
for a VAS with one zero-test. This result makes it possible to decide the place-boundedness,
which is in general undecidable for VAS extensions (such as VAS with resets [5] or Lossy
Minsky machines, i.e. Lossy VAS with zero-test transitions [3, 20]). Our proof techniques
introduce a filtered cover, an hybrid between the reachability and cover sets, which unlike the
cover reclaims accuracy on one component. We show that this set is recursive, but that one
cannot decide the equality of such filtered covers of two VAS (even without zero-test). Thus,
our work is a contribution to understanding the limits of decidability, taking into account
two parameters: the models (VAS and VAS with zero-test) and the problems (reachability,
cover and filtered cover).

The difficulty. The central problem is to compute the cover of a VAS with one zero-test.
Let us explain the reasons why the usual Karp and Miller is not sufficient for that purpose.
A natural idea appearing in [9] is to adapt the classical Karp-Miller construction [15], first
building the Karp-Miller tree, but without firing the zero test. To continue the construction
after this first stage, we need to fire the zero test from the leaves of the Karp-Miller tree
carrying a 0 value on the component tested to 0. The problem is that accelerations performed
while building the Karp-Miller tree may have produced, on this component in the label of
such a leaf, an ω value which represents infinity, and abstracts actual values. For that reason,
one may not be able to determine if the zero test succeeds or not. We therefore want a more
accurate information for the labeling of the leaves, for the component tested to 0. This is
what the filtered cover actually captures.

The schema of our proof.

1. We start in Section 3 with usual VAS: we extend the decidability of the reachability
problem for VAS, in proving that the set Lim Reach of limits of increasing sequences
of reachable states is also recursive (Lim Reach contains the reachability set). The set
Lim Reach is a more sophisticated set than both the cover and the reachability set. It
allows us to know whether an element in (N∪{ω})d is a reachable state or is the limit of a
sequence of reachable states. This information is not given by the reachability set neither
by the cover. The proof carries on by using Higman’s Lemma, using a nontrivial ordering.

2. In Section 4, we refine the definition of the cover in which the first component has now
to be exactly known (and not only bounded by a maximum). We prove that, for VAS, a
finite basis of this filtered cover is still computable by using the recursivity of Lim Reach.

3. We finally compute in Section 5 the finite basis of the cover of a VAS with one zero-test
by using a variation of the Karp and Miller algorithm that uses the previously defined
filtered covers in order to convey enough information to go through the zero-test.

Due to lack of space, some proofs are omitted.

2 Vector Addition Systems

Orderings and vectors. An ordering 4 on a set X is a reflexive, transitive and antisym-
metric binary relation on X. Given x, y ∈ X, we write x ≺ y for x 4 y and x 6= y. For d > 1,

FSTTCS 2010

194 Place-Boundedness for Vector Addition Systems with one zero-test

we write any x ∈ Xd as x = (x(1), . . . ,x(d)), with x(i) ∈ X. The pointwise ordering on Xd,
still denoted 4, is defined by x 4 y if x(i) 4 y(i) for all i. For x1 ∈ Xd1 and x2 ∈ Xd2 ,
we let (x1,x2) ∈ Xd1+d2 be the vector obtained by gluing x1 and x2. For X = N, let 0 be
the vector whose components are all 0, and for i ∈ {1, . . . , d}, let ei be the vector such that
ei(i) = 1 and ei(k) = 0 if k 6= i. Finally, given Y ⊆ X, let ↓4Y = {x ∈ X | ∃y ∈ Y, x 4 y}
denote the downward closure of Y with respect to 4. The set Y is said downward closed
if Y = ↓4Y . When working in Nd or Nd

ω (see below) we shorten the downward closure
operator ↓6 as ↓.

Downward closed sets of Nd. Given an ordered set, one may under suitable hypotheses
construct a topological completion of this set to recover a finite description of downward
closed sets [7, 8]. The completion of Nd is Nd

ω, with Nω = N ∪ {ω}, where we extend 6 by
n 6 ω for all n ∈ Nω. The results of [7, 8] in this case yield that, if D ⊆ Nd is downward
closed, then D = Nd ∩ ↓B for some finite set B ⊆ Nd

ω, which we call a (finite) basis of D.
One can show that the maximal elements of any basis B of D still form a basis which does
not depend of B. It is minimal for inclusion among all basis, and is called the minimal basis.

An example. Let us consider in N2 the downward closed set{
(x, y) ∈ N2 | x 6 3 ∨ y 6 1

}
∪
{

(4, 2), (4, 3), (5, 2)
}
. A (non-

minimal) basis is ({0, 1, 2, 3} × {ω}) ∪ {(4, 3), (5, 2)} ∪ {ω} × {0, 1}.
It is shown with dots • in the figure, where elements involving ω
fall beyond the grid. The elements of the minimal basis are circled.

I Definition 1. (VAS0). A Vector Addition System of dimension d with one zero-test
(VAS0) is a tuple 〈A, aZ , δ,xin〉, where A is a finite alphabet of actions, aZ /∈ A is called the
zero-test, δ : A ∪ {aZ} → Zd is a mapping, and xin ∈ Nd is the initial state.

Intuitively, a VAS0 works on d counters, one for each component, whose initial values
are given by xin. Executing a ∈ A ∪ {aZ} translates the counters according to δ(a) ∈ Zd.
The mapping δ extends to a monoid morphism δ : (A ∪ {aZ})∗ → Zd, so that δ(ε) = 0 and
δ(uv) = δ(u) + δ(v) for u, v ∈ (A∪{aZ})∗. A word u ∈ (A∪{aZ})∗ is fireable from x ∈ Nd if

(a) for every prefix v of u, we have x + δ(v) > 0, and
(b) for every prefix waZ of u, we have [x + δ(w)](1) = 0.

The first condition means that all counters must remain nonnegative while firing actions.
The second one says that the zero-test aZ is possible only when the first counter is zero.
We write x

u−→ y if u is fireable from x and y = x + δ(u). This implies in particular that
x,y > 0.

I Definition 2. (VAS). A Vector Addition System (VAS) of dimension d is a tuple 〈A, δ,xin〉
where A is a finite alphabet, δ : A→ Zd is a mapping, and xin ∈ Nd is the initial state.

A VAS is a particular VAS0: choosing δ(aZ) = −e1 makes the zero-test aZ never fireable.
Given the VAS S = 〈A, δ,xin〉, we say that u ∈ A∗ is fireable if condition (a) above is
satisfied.
For a VAS0 or a VAS S, the reachability set Reach(S) and the cover Cover(S) of S are:

Reach(S) = {xin + δ(u) | u is fireable in S},
Cover(S) = ↓Reach(S).

We call elements of Reach(S) reachable states (also called reachable markings in related
work). The reachability (resp. coverability) problem consists in deciding membership in

Rémi Bonnet, Alain Finkel, Jérôme Leroux, and Marc Zeitoun 195

the set Reach(S) (resp. in Cover(S)). Reachability is decidable for VAS [19, 17, 18] and
VAS0 [21].

I Theorem 3. Given a VAS S, the reachability problem is decidable.

Testing membership in the cover set is easier. One even gets a more precise result [15, 10, 8].

I Theorem 4. Given a VAS S, one can effectively compute a finite basis of Cover(S).

Observe that from a finite basis B of a downward closed set D, one can effectively test
membership in D. Therefore, one can effectively test membership in Cover(S). Computing a
finite basis of the cover makes it possible to decide place-boundedness, that is, whether the
projection of Reach(S) on some given component is bounded. In the next sections, we will
show that one can also effectively compute a finite basis for the cover of a VAS0.

3 Limits of reachable states of a VAS

Limits in Nd
ω. A sequence (`n)n>0 (also written (`n)n) of elements of Nω has limit ` ∈ Nω,

noted limn `n = `, if either it is ultimately constant with value `, or its subsequence of integer
values is infinite, it tends to infinity, and ` = ω. A sequence (xn)n of vectors of Nd

ω has limit
x ∈ Nd

ω, noted limn xn = x, if limn xn(i) = x(i) for all i ∈ {1, . . . , d}.
For M ⊆ Nd

ω, we denote by LimM the set of limits of sequences of elements of M . Note
that M ⊆ LimM . Topologically speaking, LimM is the least closed set (for the topology
associated with the ordering) containing M and is usually called the (topological) closure
of M . Also note that for M ⊆ Nd, if LimM is recursive, then so is M = Nd ∩ LimM .
However, in general, M may be recursive while LimM is not.

We prove in this section the following statement.

I Theorem 5. Lim Reach(S) is recursive.

We do so by proving that Lim Reach(S) and its complement in Nd
ω are both recursively

enumerable. We start by proving that Lim Reach(S) is recursively enumerable, by introducing
productive sequences, a notion inspired by Hauschildt [13].

I Definition 6. Let S = 〈A, δ,xin〉 be a VAS. A sequence π = (ui)06i6k of words ui ∈ A∗ is
productive in S for a word v = a1 · · · ak (ai ∈ A) if

(1) the partial sums δ(u0) + · · ·+ δ(ui) are nonnegative for every i ∈ {0, . . . , k}, and
(2) the word u0a1u1 · · · akuk is fireable from xin.

The total sum
∑k

i=0 δ(ui) is called the production of π and is simply denoted δ(π).

The following lemma provides a characterization of the productive sequences.

I Lemma 7. A sequence π = (ui)06i6k is productive for v = a1 · · · ak if and only if the
words un

0a1u
n
1 · · · aku

n
k are fireable from xin for all n > 1. In particular, every marking

xin + δ(v) + nδ(π) where n > 1 is reachable from xin.

Proposition 9 below shows that limits of reachable states can be witnessed by productive
sequences. Its essential argument is Higman’s Lemma. Recall that an ordering 4 is well if
every infinite sequence (`n)n∈N admits an infinite increasing subsequence (`nk

)k∈N, i.e., such
that `n0 4 `n1 4 `n2 4 · · · . The pointwise ordering on Nd or on Nd

ω is well (Dickson’s Lemma).

FSTTCS 2010

196 Place-Boundedness for Vector Addition Systems with one zero-test

Higman’s Lemma. For a (possibly infinite) set Σ, we denote by Σ∗ the set of finite words
over Σ. Given an ordering 4 on Σ, let 4∗ be the ordering on Σ∗ defined as follows: for
u, v ∈ Σ∗, we have u 4∗ v if u = a1 · · · an with ai ∈ Σ, v = v0b1v1 · · · vn−1bnvn, with vi ∈ Σ∗,
bj ∈ Σ, and for all i = 1, . . . , n, we have ai 4 bi. In other words, u is obtained from v by
removing some letters, and then replacing some of the remaining letters by smaller ones.
Higman’s Lemma is the following result, see [4] for instance for a proof.

I Lemma 8. (Higman) If 4 is a well ordering on A, then 4∗ is a well ordering on A∗.

We extend the multiplication on Nω by ω · 0 = 0 = 0 · ω and ω · k = ω = k · ω if k 6= 0.
This multiplication then extends componentwise to the scalar multiplication of Nd

ω by Nω.

I Proposition 9. Let S = 〈A, δ,xin〉 be a VAS. Then

Lim Reach(S) =
{

xin + δ(v) + ωδ(π) | π is productive for v
}
.

Proof. For the inclusion from right to left, if π is a productive sequence for a word v, then
xin + δ(v) +ωδ(π) is the limit of the sequence (xn)n∈N with xn = xin + δ(v) +nδ(π), and xn

is a reachable state by Lemma 7. We prove the reverse inclusion thanks to Higman’s lemma.
We first introduce a well ordering v over Reach(S), using a temporary ordering 4.

Consider the infinite set Σ = A× Nd
ω. This set is well ordered by 4, defined by

(a,y) 4 (b, z) if and only if a = b and y 6 z.

Since 4 is a well ordering, Higman’s lemma shows that 4∗ is a well-ordering over Σ∗. Let
us now associate to every reachable state y ∈ Reach(S) a word αy in Σ∗ as follows: since
y is reachable, we can choose a word v = a1 · · · ak, with ai ∈ A, such that xin

v−→ y. We
introduce the sequence (yi)06i6k of states defined by yi = xin + δ(a1 · · · ai), and we let:

αy = (a1,y1) · · · (ak,yk).

The ordering v over Reach(S) is defined by y v z if αy 4∗ αz and y 6 z. Since the orderings
4∗ over Σ∗ and 6 over Nd are well, we deduce that v is a well ordering over Reach(S).

To show the inclusion from left to right, pick x ∈ Lim Reach(S): x is the limit of a
sequence (xk)k∈N of reachable states. By extracting a subsequence we can assume that
(xk(i))k∈N is strictly increasing if x(i) = ω, and xk(i) = x(i) if x(i) < ω. Denote by
αk the word αxk associated to the reachable state xk. Since v is a well ordering, there
exist m < n such that xm v xn. By construction of αm there exists a word v = a1 · · · ak

with aj ∈ A such that the sequence (yj)06j6k defined by yj = xin + δ(a1 · · · aj) for every
j ∈ {1, . . . , k} satisfies:

αm = (a1,y1) · · · (ak,yk).

Since xm 4∗ xn and by definition of 4∗, there exist a sequence (zj)16j6k of states with
yj 6 zj , and a sequence (βj)06j6k of words in Σ∗ such that the following equality holds:

αn = β0(a1, z1)β1 · · · (ak, zk)βk

We call label of a word (b1, t1) · · · (b`, t`) over Σ the word b1 · · · b` over A. Consider the
sequence π = (uj)06j6k where uj is the label of βj . By definition of αn, we have

xin
u0a1−−−→ z1 · · ·

uk−1ak−−−−−→ zk
uk−→ xn

Rémi Bonnet, Alain Finkel, Jérôme Leroux, and Marc Zeitoun 197

In particular, zj = yj + δ(u0) + · · ·+ δ(uj−1) for every j ∈ {1, . . . , k} and xn = zk + δ(uk) =
yk + δ(π) = xm + δ(π). As yj 6 zj for every j ∈ {1, . . . , k} and xm 6 xn, we deduce that
π is productive for v.

Finally, let us prove that x = y where y = xin + δ(v) +ωδ(π). We have xn = xm + δ(π).
Let us consider i ∈ {1, . . . , d}. If x(i) < ω then xm(i) = x(i) = xn(i). Thus δ(π)(i) = 0
and we deduce that x(i) = y(i). If x(i) = ω then xm(i) < xn(i) and we deduce that
δ(π)(i) > 0 and in particular x(i) = ω = y(i). Thus x = y. We have proved that there
exists a productive sequence π for a word v such that x = xin + δ(v) + ωδ(π). J

It is easier to prove that the complement of Lim Reach(S) recursively enumerable. We just
give the construction. Let S = 〈A, δ,xin〉 and y ∈ Nd

ω. We introduce d distinct additional
elements b1, . . . , bd 6∈ A. Let B = {b1, . . . , bd}. We introduce the VAS Sy = 〈A]B, δy,xin〉,
where δy extends δ by:

δy(bi) =
{

0 if y(i) < ω,
−ei if y(i) = ω.

Finally, we define from y a sequence (y`)` converging to y, by y`(i) =
{
` if y(i) = ω,
y(i) if y(i) < ω.

I Lemma 10. Let Sy and (y`)` constructed from y as above. Then,

y 6∈ Lim Reach(S)⇐⇒ ∃` ∈ N, y` /∈ Reach(Sy). (1)

In particular, the complement of Lim Reach(S) is recursively enumerable.

Theorem 5 now follows from Proposition 9 and Lemma 10.

4 Between the cover and the reachability set: the filtered covers

In this section, we introduce a set hybrid between the reachability and cover sets, which to
our knowledge has not yet been considered. Instead of the downward closure Cover(S) of
Reach(S) wrt. the pointwise ordering 6, we consider Cover6P

(S) = ↓6P
Reach(S), that is,

we replace 6 with an ordering 6P parametrized by a set of “positions” P ⊆ {1, . . . , d}:

x 6P y if
{

x(i) = y(i) for i ∈ P ,
x(i) 6 y(i) for i /∈ P .

The set P contains the components for which we insist on keeping equality. Thus, 6∅ is the
usual pointwise ordering 6, while 6{1,...,d} boils down to equality. Note that 6P is not a well
ordering, except if P = ∅ (e.g., N ordered by 6{1} consists only of incomparable elements).

The ordering 6{1} will be abbreviated as 61. It is a natural order to study for a VAS0
(recall that the zero-test occurs on the first component). Indeed, the transition relation of a
VAS0 is monotonic regarding this order: if x

u−→ x′ and x 61 y, then there exists y′ with
y

u−→ y′ and x′ 61 y′. More precisely, testing if Cover61(S) contains a vector whose first
component is 0 is what we need to design our algorithm computing the cover of a VAS with
one zero test. Unfortunately, this set has infinitely many maximal elements for 61, and thus
cannot be represented by a finite basis. The following theorem shows that we cannot find a
sensible way to compute a representation of this set, as any representation would not allow
to test for equality.

I Theorem 11. Given two VAS S1 and S2 of the same dimension d, the equality problem
Cover61(S1) = Cover61(S2) is undecidable.

FSTTCS 2010

198 Place-Boundedness for Vector Addition Systems with one zero-test

Proof. We reduce this problem to the equality problem Reach(S1) = Reach(S2). This
problem is known to be undecidable [12]. Let us first consider a VAS S = 〈A, δ,xin〉 of
dimension d. We introduce a VAS S ′ = 〈A, δ′,x′

in〉 of dimension d + 1 that counts in the
first component the sum of the other components. Formally, x′

in = (
∑d

i=1 xin(i),xin) and
δ′(a) = (

∑d
i=1 δ(a)(i), δ(a)) for every a ∈ A. Observe that the following equivalence holds:

(n,x) ∈ Reach(S ′) ⇐⇒ x ∈ Reach(S) and n =
d∑

i=1
x(i)

Finally let us consider two VAS S1 and S2 and just observe that Reach(S1) = Reach(S2) if
and only if Cover61(S ′1) = Cover61(S ′2). J

So, we cannot hope for a useful representation of the sets Cover6P
(S) themselves. However,

one can capture the needed information differently, by replacing the downward closure ↓6P

in Cover6P
(S) = ↓6P

Reach(S) with an operator ⇓f parametrized by a vector f of Nd
ω.

Informally, ⇓fM takes into account only elements of M that agree with f on its finite
components. Formally, for f ∈ Nd

ω and M ⊆ Nd, let

Filter(M,f) =
{

x ∈M |
d∧

i=1

[
f(i) < ω =⇒ x(i) = f(i)

]}
,

⇓fM =
yFilter(M,f).

Note that ⇓fM = ↓M for f = (ω, ω, . . . , ω). On the other hand, if f ∈ Nd, then ⇓fM = ↓f
if f ∈M , and ⇓fM = ∅ otherwise. Observe also that ⇓fM is downward closed and that the
maximal elements of any basis of ⇓fM agree with f on every component i where f(i) is
finite. The next lemma provides a relationship between the sets ⇓fM and ↓6P

M .

I Lemma 12. Let M ⊆ Nd. Then, the following conditions are equivalent:

(a) For all f ∈ Nd
ω, one can effectively compute the basis of ⇓fM .

(b) For all P ⊆ {1, . . . , d}, the set Lim ↓6P
M is recursive.

The main result of this section states that both conditions of Lemma 12 actually hold
when M is the reachability set of a VAS. This is obtained by first proving that Cover6P

(S) =
Reach(SP) where SP is a VAS constructed from S and P . From this equality, we deduce that
Lim Cover6P

(S) = Lim Reach(SP). Applying Theorem 5, it follows that this set is recursive,
which proves condition (b) for M = Reach(S). Then by Lemma 12, condition (a) also holds.

Let S = 〈A, δ,xin〉 be a VAS and P ⊆ {1, . . . , d}. Let us define a VAS SP such that
Reach(SP) = Cover6P

(S). We consider d distinct additional elements b1, . . . , bd 6∈ A. Let
B = {b1, . . . , bd}. We consider the VAS SP = 〈A]B, δP ,xin〉, where δP extends δ by:

δP (bi) =
{

0 if i ∈ P
−ei if i /∈ P .

I Lemma 13. Let SP constructed from S and P as above. Then Cover6P
(S) = Reach(SP).

Proof. Consider a state x ∈ Cover6P
(S). By definition, there exists y ∈ Reach(S) such that

x 6P y. Observe that xin
∗−→ y

u−→ x in SP with u =
∏d

i=1 b
y(i)−x(i)
i . Hence x ∈ Reach(SP).

Conversely let x ∈ Reach(SP) and let u ∈ (A ∪B)∗ such that xin
u−→ x in SP . Consider the

word v obtained from u by erasing all letters of B. Since δP (b) 6 0 for b ∈ B, the word v is
still fireable from xin. Thus y = xin + δ(v) ∈ Reach(S). Moreover, by definition of SP we
have x 6P y. Therefore x ∈ Cover6P

(S). J

Rémi Bonnet, Alain Finkel, Jérôme Leroux, and Marc Zeitoun 199

Combining Lemma 13, Theorem 5 and Lemma 12 as explained above yields:

I Theorem 14. Given f ∈ Nd
ω and a VAS S, one can effectively compute a basis of

⇓f Reach(S).

5 Computing the cover of a VAS with one zero-test

We provide an algorithm computing the basis of Cover(S) of any VAS0 S = 〈A, aZ , δ,xin〉.
Intuitively the algorithm, inspired by the Karp and Miller algorithm for VAS [15], builds a
tree with nodes labeled by vectors in {0} × Nd−1

ω such that the finite set R of node labels
satisfies the following equality when the algorithm terminates:

⇓f Reach(S) = (↓R) ∩ Nd, where f = (0, ω, . . . , ω).

In order to simplify the presentation, we assume without loss of generality that xin ∈ {0}×
Nd−1 and δ(aZ) ∈ {0} × Zd−1. In the sequel we denote by SVAS the VAS SVAS = (A, δ,xin)
obtained from S by removing the zero-test aZ . Moreover, given s ∈ {0}×Nd−1 we denote by
S(s) and SVAS(s) the VASs obtained respectively from S and SVAS by replacing the initial
state xin by s.

At any step of the execution, in the tree built in the algorithm, every ancestor node n of
a node n′ satisfies the invariant x

∗=⇒ x′ where x,x′ are the labels of n, n′ and where ∗=⇒ is
the binary relation defined over the vectors in {0} × Nd−1

ω by:

x
∗=⇒ x′ if (↓x′) ∩ Nd ⊆

⋃
s∈(↓x)∩Nd

⇓f Reach(S(s)).

By the next lemma, it is sufficient to maintain this invariant along each parent-child edge.

I Lemma 15. The binary relation ∗=⇒ is reflexive and transitive.

Proof. The reflexivity is immediate. For the transitivity, we first introduce the binary
relation ∗−→ over Nd defined by x

∗−→ x′ if there exists u ∈ (A∪ {aZ})∗ such that x
u−→ x′. We

observe that x
∗=⇒ x′ if and only if the following relation holds:

∀s′ ∈ (↓x′) ∩ Nd ∃s ∈ (↓x) ∩ Nd ∃z ∈ {0} × Nd−1
ω s

∗−→ s′ + z.

Assume that x
∗=⇒ x′ and x′

∗=⇒ x′′. Let s′′ ∈ (↓x′′) ∩ Nd. From x′
∗=⇒ x′′, we deduce that

there exist z′ ∈ {0} × Nd−1 and s′ ∈ (↓x′) ∩ Nd such that s′ ∗−→ s′′ + z′. From x
∗=⇒ x′,

we deduce that there exist z ∈ {0} × Nd−1 and s ∈ (↓x) ∩ Nd such that s
∗−→ s′ + z. In

particular we deduce that s
∗−→ s′′ + z + z′. We have proved that x

∗=⇒ x′′. J

Assume now that x ∈ {0} ×Nd−1
ω labels a leaf. We create a child of this leaf if the vector

y = x + δ(aZ) is nonnegative. Note that in this case y ∈ {0} × Nd−1
ω , since δ(aZ)(1) = 0.

We do not violate the invariant when creating the child labeled y since x
∗=⇒ y. We may

also add new children labeled by elements of the minimal basis B(x) of the following
downward-closed set: ⋃

s∈(↓x)∩Nd

⇓f Reach(SVAS(s))

We observe that x
∗=⇒ b for every b ∈ B(x), so that the invariant will still be fulfilled after

adding elements of B(x).

FSTTCS 2010

200 Place-Boundedness for Vector Addition Systems with one zero-test

I Lemma 16. The basis B(x) is effectively computable.

Proof. We introduce the set I of components i ∈ {2, . . . , d} such that x(i) = ω. We
consider the VAS S ′VAS = (A, δ′,x′) obtained from SVAS(x) by preventing any modification
of components in I. More formaly δ′ and x′ are defined by δ′(a)(i) = 0 and x′(i) = 0 if i ∈ I
and δ′(a)(i) = δ(a)(i) and x′(i) = x(i) if i 6∈ I. Theorem 14 shows that we can effectively
compute the basis B′ of ⇓f Reach(S ′VAS). Now B(x) = {y+ z | y ∈ B′}, where z is the vector
defined by z(i) = ω if i ∈ I and z(i) = 0 if i 6∈ I. J

The algorithm termination is obtained by introducing an acceleration operator ∇. We
define the vector x∇ y for every x,y ∈ {0} × Nd−1

ω such that x 6 y by

(x∇ y)(i) =
{
ω if x(i) < y(i)
x(i) if x(i) = y(i).

I Lemma 17. If x
∗=⇒ y with x 6 y then x

∗=⇒ x∇ y.

Let us now describe informally the algorithm. It inductively computes a tree with nodes
labeled by vectors in {0} × Nd−1

ω . The tree is rooted at a node labeled by xin (recall that
xin ∈ {0} × Nd−1). The tree is modified in such a way that for every node n and for every
child n′ of n, the labels x,x′ of n, n′ satisfy x

∗=⇒ x′. While there exists a leaf n′ labeled by
a vector x′ that admits an ancestor n labeled by a vector x such that x 6 x′ < x∇ x′, we
replace the label x′ of node n′ by x∇ x′. From Lemma 17, we deduce that the invariant
still holds. Since this loop just replaces some components by ω, it terminates. Then, the
algorithm checks if for every leaf n labeled by x, there exists a strict ancestor (i.e., different
from n) labeled by the same vector x. In this case, the algorithm terminates and it returns
the set of node labels. Otherwise the algorithm considers a leaf n not fulfilling this condition,
and it creates a new child of n labeled by b for each b ∈ B(x). It also creates a new child
labeled by x + δ(aZ) if this vector is nonnegative. The modification of the tree is then
restarted.

The termination of this algorithm follows from König’s lemma. If the algorithm does not
terminate, then it would generate an infinite tree. Because this tree has a finite branching
degree, by König’s lemma, there is an infinite branch. Since 6 is a well-ordering over
{0} × Nd−1

ω , this implies that we can extract from this infinite branch an infinite increasing
subsequence. However, since we add children to a leaf only if there does not exist a strict
ancestor labeled by the same vector, this sequence cannot contain the same vector twice, and
must therefore be strictly increasing. But, due to the use of the operator ∇, a component
with an integer is replaced by ω at every acceleration step. Because the number of ω’s in
the vectors labeling a branch cannot decrease, we obtain a contradiction. We deduce the
following proposition.

I Proposition 18. Algorithm 1 terminates and it returns a finite set R such that

⇓f Reach(S) = ↓R ∩ Nd.

We have proved that we can effectively compute a basis R of ⇓f Reach(S). Now, observe
that the following equality holds:

Cover(S) =
⋃

b∈R

⋃
s∈(↓b)∩Nd

Cover(SVAS(s)).

Rémi Bonnet, Alain Finkel, Jérôme Leroux, and Marc Zeitoun 201

Algorithm 1 An algorithm to compute a basis of ⇓f Reach(S)

Inputs: A VAS0 S such that xin ∈ {0} × Nd−1 and a δ(aZ) ∈ {0} × Zd−1.
Outputs: R, a finite subset of {0} × Nd−1

ω .
Internal Variables:
T , a tree labeled by elements of Nd

ω.
N , a set of nodes.

Algorithm:
1: Initialize T as a single root nin, labeled by xin
2: N ← {nin}
3: while N 6= ∅ do
4: Take a node n from N

5: x← label(n)
6: if the label of every strict ancestor of n is not equal to x then
7: for all strict ancestor n0 of n do
8: x0 ← label(n0)
9: if x0 6 x then

10: x← x0 ∇ x

11: end if
12: end for
13: Replace the label of n by x

14: if x + δ(aZ) > 0 then
15: Create a new node in T labeled by x + δ(aZ), as a child of n
16: Add this node to N
17: end if
18: for all b ∈ B(x) do
19: Create a new node in T labeled by b, as a child of n
20: Add this node to N
21: end for
22: end if
23: end while
24: R← {label(n) | n ∈ nodes(T)}
25: return R

FSTTCS 2010

202 Place-Boundedness for Vector Addition Systems with one zero-test

A reduction similar to the one provided in the proof of Lemma 16 shows that the basis
of
⋃

s∈(↓b)∩Nd Cover(SVAS(s)) can be obtained from a basis of Cover(S ′VAS), where S ′VAS is
a VAS obtained from SVAS and b by removing the components i ∈ {2, . . . , d} such that
b(i) = ω. We deduce the following theorem.

I Theorem 19. Given a VAS0 S, one can effectively compute the finite basis of Cover(S).

6 Conclusion and perspectives

Our main result is a forward algorithm, à la Karp&Miller, to compute the downward closure
of the reachability set of a nonmonotonic transition system: VAS0. This implies that place-
boundedness is decidable. For our purposes, we introduced new sets, sitting between the
cover and the reachability set. Unfortunately, we cannot say anything about the complexity
of the computation of the cover for VAS0, because our proof uses the decidability of the
reachability problem for VAS as an oracle, whose complexity is still open.

Since we have solved the place-boundedness problem, a natural question would be an
instance of a liveness problem, like the repeated control-state reachability problem (RCSRP).
One could think of a reduction from the RCSRP to the place-boundedness problem (or to
the computation of the cover), by adding a new counter cq getting increased each time the
control-state q is hit. This does actually not work, because cq might be unbounded even if
on each single run, it is bounded. It seems that these two problems are not close: for solving
the RCSRP, we need to decide whether there is an infinite run along which a given counter
is unbounded, while the cover gives boundedness information about the global reachability
set, but not on infinite runs. For VAS with one weak zero-test (for instance a lossy zero-test,
like a reset), the usual Karp and Miller algorithm can be easily extended, and the RCSRP is
decidable; for VAS with two weak zero-test (two resets), the techniques used in [6] allow one
to show that this problem is undecidable. Finally, the RCSRP remains open for VAS0.

We have proved new decidability results for VAS0. One could think that maybe, VAS0
can be simulated by VAS. The answer is negative: the language {anbn | n > 1}∗ can be easily
recognized by a VAS0, but not by a VAS [16]. More generally, one may prove that for every
VAS-language L, there is a VAS0 S such that L(S) = L∗. One can also separate VAS and
VAS0 wrt. the reachability set. Hence, even if their reachability problem is decidable [21]
and their cover is computable (this paper), VAS0 are strictly more powerful than VAS.

References
1 P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theorems for

infinite-state systems. In LICS’96, pages 313–321, 1996.
2 P. A. Abdulla and R. Mayr. Minimal cost reachability/coverability in priced timed Petri

nets. In L. de Alfaro, editor, FOSSACS, volume 5504 of LNCS, pages 348–363. Springer,
2009.

3 A. Bouajjani and R. Mayr. Model checking lossy vector addition systems. In Ch. Meinel
and S. Tison, editors, STACS’99, volume 1563, pages 323–333, 1999.

4 R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer, fourth
edition, 2010.

5 C. Dufourd. Réseaux de Petri avec Reset/Transfert : décidabilité et indécidabilité. Thèse
de doctorat, Laboratoire Spécification et Vérification, ENS Cachan, France, Oct. 1998.

6 C. Dufourd, P. Jančar, and Ph. Schnoebelen. Boundedness of reset P/T nets. In J. Wie-
dermann, P. van Emde Boas, and M. Nielsen, editors, ICALP’99, volume 1644 of LNCS,
pages 301–310. Springer, July 1999.

Rémi Bonnet, Alain Finkel, Jérôme Leroux, and Marc Zeitoun 203

7 A. Finkel and J. Goubault-Larrecq. Forward analysis for WSTS, part I: Completions. In
S. Albers and J.-Y. Marion, editors, STACS’09, pages 433–444, 2009.

8 A. Finkel and J. Goubault-Larrecq. Forward analysis for WSTS, Part II: Complete WSTS.
In S. Albers et al., editors, ICALP’09, volume 5556 of LNCS, pages 188–199. Springer,
2009.

9 A. Finkel and A. Sangnier. Mixing coverability and reachability to analyze VASS with one
zero-test. In D. Peleg and A. Muscholl, editors, SOFSEM’10, volume 5901 of LNCS, pages
394–406. Springer, 2010.

10 A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! Theor.
Comput. Sci., 256(1–2):63–92, 2001.

11 A. Finkel and G. Sutre. Decidability of reachability problems for classes of counters au-
tomata. In H. Reichel and S. Tison, editors, STACS’00, volume 1770 of LNCS, pages
346–357. Springer, 2000.

12 M. Hack. The equality problem for vector addition systems is undecidable. Theor. Comput.
Sci., 2(1):77–95, 1976.

13 D. Hauschildt. Semilinearity of the Reachability Set is Decidable for Petri Nets. PhD thesis,
University of Hamburg, 1990.

14 J. E. Hopcroft and J.-J. Pansiot. On the reachability problem for 5-dimensional vector
addition systems. Theor. Comput. Sci., 8:135–159, 1979.

15 R. M. Karp and R. E. Miller. Parallel program schemata. J. Comput. System Sci., 2:147–
195, 1969.

16 S. R. Kosaraju. Limitations of Dijkstra’s semaphore primitives and Petri nets. SIGOPS
Oper. Syst. Rev., 7(4):122–126, 1973.

17 S. R. Kosaraju. Decidability of reachability in vector addition systems (preliminary version).
In STOC’82, pages 267–281. ACM, 1982.

18 J. Leroux. The general vector addition system reachability problem by Presburger inductive
invariants. In LICS’09, pages 4–13, 2009.

19 E. W. Mayr. An algorithm for the general Petri net reachability problem. In STOC’81,
pages 238–246. ACM, 1981.

20 R. Mayr. Undecidable problems in unreliable computations. Theor. Comput. Sci., 297(1-
3):337–354, 2003.

21 K. Reinhardt. Reachability in Petri Nets with inhibitor arcs. Electr. Notes Theor. Comput.
Sci., 223:239–264, 2008.

FSTTCS 2010

Model checking time-constrained scenario-based
specifications∗

S. Akshay1,2, Paul Gastin1, Madhavan Mukund2, and K. Narayan
Kumar2

1 LSV, ENS Cachan, INRIA, CNRS, France
{akshay,Paul.Gastin}@lsv.ens-cachan.fr

2 Chennai Mathematical Institute, Chennai, India
{madhavan,kumar}@cmi.ac.in

Abstract
We consider the problem of model checking message-passing systems with real-time require-

ments. As behavioural specifications, we use message sequence charts (MSCs) annotated with
timing constraints. Our system model is a network of communicating finite state machines with
local clocks, whose global behaviour can be regarded as a timed automaton. Our goal is to verify
that all timed behaviours exhibited by the system conform to the timing constraints imposed by
the specification. In general, this corresponds to checking inclusion for timed languages, which is
an undecidable problem even for timed regular languages. However, we show that we can trans-
late regular collections of time-constrained MSCs into a special class of event-clock automata that
can be determinized and complemented, thus permitting an algorithmic solution to the model
checking problem.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.204

1 Introduction

In a distributed system, several agents interact to generate a global behaviour. This interaction
is usually specified in terms of scenarios, using message sequence charts (MSCs) [8]. Protocol
specifications typically include timing requirements for messages and descriptions of how to
recover from timeouts, so a natural and useful extension to MSCs is to add timing constraints
between pairs of events, yielding time-constrained MSCs (TCMSCs).

Infinite collections of MSCs are typically described using message sequence graphs (MSGs).
An MSG, a finite directed graph with nodes labelled by MSCs, is the most basic form of a
High-level Message Sequence Chart (HMSC) [9]. We generalise MSGs to time-constrained
MSGs (TCMSGs), where nodes are labelled by TCMSCs and edges may have additional
time constraints between nodes.

A natural system model in this setting is a timed message-passing automaton (timed
MPA), a set of communicating finite-state machines equipped with clocks that are used to
guard transitions, as in timed automata [4]. Just as the runs of timed automata are described
in terms of timed words, the interactions exhibited by timed MPAs can be described using
timed MSCs—MSCs in which each event is assigned an explicit timestamp. The global state
space of a timed MPA defines a timed automaton and in this paper we focus on this simplified
global view of timed message-passing systems, though our results go through smoothly for
the distributed system model as well.

∗ Supported by anr-06-seti-003 dots, arcus Île de France-Inde, cmi-tcs Academic Alliance.

© S. Akshay, Paul Gastin, Madhavan Mukund, K. Narayan Kumar;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 204–215

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.204
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Akshay, Gastin, Mukund, Narayan Kumar 205

Our aim is to check if all timed MSCs accepted by a timed MPA conform to the time
constraints given by a TCMSG specification. To make the problem tractable, we focus on
locally synchronized TCMSGs—those for which the underlying behaviour is guaranteed to
be regular [7]. In general, our model checking problem corresponds to checking inclusion
for timed languages, which is known to be undecidable even for timed regular languages [2].
Fortunately, it turns out that timing constraints in a TCMSG correspond to a very restricted
use of clocks. This allows us to associate with each TCMSG an (extended) event clock
automaton that accepts all timed MSCs that are consistent with the timing constraints of
the TCMSG. These event clock automata can be determinized and complemented, yielding
an algorithmic solution to our model checking problem.

The paper is organized as follows. We begin with some preliminaries where we introduce
(timed) MSCs and MSGs and state the model-checking problem. In Section 3 we introduce
MSC event clock automata and show that they can be determinized and complemented. The
next section has the main technical result: translating locally synchronized TCMSGs to finite
state MSC event clock automata, which yields a solution to the model-checking problem in
Section 5.

2 Preliminaries

2.1 Message sequence charts

A message sequence chart (MSC) describes the messages exchanged between a set Proc of
processes in a distributed system. The first diagram in Figure 1 is an MSC involving two
users and a server. Each process evolves vertically along a lifeline. Messages are shown by
arrows between the lifelines of the sender and receiver.

Each message consists of two events, send and receive, and is labelled using a finite set
of message labels. For instance, the events u1 and a1 are the send and receive events of a
message labelled req from process p (User1) to process q (Server). Each pair of processes p
and q is connected by a dedicated fifo channel (p, q)—for example, the messages sent at s1
and s2 are on channel (r, q) and the second message cannot be received before the first one.

Since processes are locally sequential, the set of events Ep along a process p is linearly
ordered by a relation denoted ≤pp. In addition, for each message sent along a channel (p, q),
the send and receive events of the message are related by an ordering relation ≤pq. Thus, for
example, a1 ≤qq a5 and a3 ≤qp u2. Together, the local linear orders ≤pp and the message
orders ≤pq generate a partial order ≤ over the set of events—for instance, u3 ≤ s3.

Finally, we label each event using a finite alphabet Act of communication actions. We
write p!q(m) to denote the action where p sends message m to q and p?q(m) to denote the
action where p receives message m from q. We abbreviate by p!q and p?q the set of all actions
of the form p!q(m) and p?q(m), respectively, over all possible choices of m.

Overall, an MSC can then be captured as a labelled partial order M = (E,≤, λ) where
λ : E → Act associates each event with its corresponding action. A cut is a subset of events
that is downward closed: c ⊆ E is a cut if ↓c = c, where ↓c = {e ∈ E | ∃e′ ∈ c. e ≤ e′}.

Like any partial order, an MSC can be reconstructed upto isomorphism from its linearisa-
tions, i.e., words over Act that extend ≤. In fact, the fifo condition on channels ensures that
a single linearisation suffices to reconstruct an MSC. In this way, an MSC M corresponds to
a set lin(M) of words over Act and a set L of MSCs defines the word language

⋃
M∈L lin(M).

We say that a set of MSCs L is regular if its associated word language is regular.

FSTTCS 2010

206 Model checking timed scenarios

User1 Server User2
p q r

u1

u2

u3

a1

a2

a3

a4

a5

a6

s1

s2

s3

req
req

grant

confirm

deny

req

User1 Server User2
p q r

u1

u2

u3

a1

a2

a3

a4

a5

a6

s1

s2

s3

req
req

grant

confirm

deny

req

[0,1] [0,3]

[3,6]

[0,20]

User1 Server User2
p q r

1, u1

3.5, u2

6, u3

a1, 1

2, a2

a3, 3.5

a4, 6

7, a5

8, a6

s1, 1

s2, 5

s3, 7

req
req

grant

confirm

deny

req

Figure 1 Different views of a system with two users with a server

2.2 Time-constrained message sequence charts

A time-constrained MSC (TCMSC) is an MSC annotated with time intervals between pairs
of events. We restrict timing constraints to pairs of distinct events on the same process and
to the matching send and receive events across messages. Intervals have rational endpoints
and may be open or closed at either end.

For example, in the second diagram in Figure 1, the constraint [0, 3] between a3 and a4
bounds the time that the Server waits for a User to confirm a grant. On the other hand, the
constraint [0, 1] between a3 and u2 bounds the time taken to deliver this particular message.

A TCMSC over Act is a pair M = (M, τ), where M = (E,≤, λ) is an MSC over Act and
τ is a partial map from E × E to the set of intervals such that (e, e′) ∈ dom(τ) implies that
e 6= e′ and either e ≤pp e′ or e ≤pq e′ for some processes p and q.

2.3 Timed message sequence charts

A timed MSC (TMSC) describes a concrete timed behaviour in the MSC setting. In a
TMSC, we assign events timestamps that are consistent with the underlying partial order.
Thus, a TMSC over Act is a pair T = (M, t) where M = (E,≤, λ) is an MSC over Act and
t : E → R≥0 is a function such that if e ≤ e′ then t(e) ≤ t(e′) for all e, e′ ∈ E.

For instance, consider the TMSC in the third diagram of Figure 1. The message sent at
a3 is received instantaneously while the message sent at s2 is received 3 time units later.

A timed word over Act is a sequence (a1, t1)(a2, t2) · · · (an, tn) where a1a2 · · · an is a word
over Act and t1 ≤ t2 ≤ · · · ≤ tn is a nondecreasing sequence over R≥0. The set of timed
words over Act is denoted TWAct . A timed linearisation of a TMSC is thus a timed word in
TWAct . We let t-lin(T) denote the set of timed linearisations of TMSC T . A single TMSC
may admit more than one timed linearisation if concurrent events on different processes have
the same timestamp. As for untimed MSCs, under the fifo assumption for channels, a timed
MSC can be reconstructed from any one of its timed linearisations.

With this definition, TCMSCs can be considered as abstractions of TMSCs and timed
words. For instance, we will say that the TMSC in Figure 1 realises the TCMSC in the
same figure since each interval constraint between events in the TCMSC is satisfied by the
time-stamps of the corresponding events in the TMSC. In this way, a TCMSC M defines a
family of TMSCS—the set of all TMSCs that realise M, which we denote Ltime(M). We
also consider the set Ltw(M) =

⋃
T∈Ltime(M) t-lin(T) of timed words that realise M.

Akshay, Gastin, Mukund, Narayan Kumar 207

q1

⇒

r s
m1

[0, 3]

q2

r sm2

m3

q3

r sm2

([0, 2],[1, 1]) ((2, 3],[1, 1])

M
r s

m1

[0, 3]
m2

m1

[0, 3]
m2

m3

(2, 3]

[0, 2]

[1, 1]

[1, 1]

T
r s

0.5

2.6

2.9

4.5

4.8

1.5

2.5

3.0

4.0

5.0

m1

m2

m1

m2

m3

Figure 2 A TCMSG, with a TCMSC and a TMSC that it generates

2.4 Message sequence graphs
A message sequence graph (MSG) is a directed graph in which nodes are labelled by MSCs.
We begin with a graph G = (V,→, vin, VF) with nodes V , initial node vin ∈ V , final
nodes VF ⊆ V and edge relation →. An MSG is a structure G = (G,LM ,Φ) where LM
is a set of basic MSCs and Φ : V → LM associates a basic MSC with each node. An
accepting path in G is a sequence of nodes v0v1 · · · vn that starts in vin and ends in some
node of VF where each adjacent pair of states is related by →. This path defines an MSC
Φ(v0v1 · · · vn) = Φ(v0) ◦ Φ(v1) ◦ · · · ◦ Φ(vn), where ◦ denotes MSC concatenation. When we
concatenate two MSCs M1 = (E1,≤1, λ1) and M2 = (E2,≤2, λ2) we attach the lifelines in
M2 below those of M1 to obtain an MSC M1 ◦M2 = (E1 ∪E2,≤, λ) where λ combines λ1
and λ2 and ≤ is generated by ≤1 ∪ ≤2 ∪ {(e1, e2) | ∃p. e1 ∈ E1

p , e2 ∈ E2
p}.

Since each accepting path in an MSG defines an MSC, we can associate with an MSG
G a language L(G) of MSCs. In general, it is undecidable to determine whether L(G) is
regular [7]. This is because processes move asynchronously along the MSC traced out by
accepting paths and there is no bound, in general on this asynchrony. However, there is a
sufficient structural condition to guarantee regularity [3, 10].

Given an MSC M , we construct its communication graph CG(M) as follows: the vertices
are the processes and we have a directed edge (p, q) if M contains a message from p to q. An
MSC M is said to be connected if the non-isolated vertices in CG(M) form a single strongly
connected component. An MSG G is said to be locally synchronized if for every loop π in
G, the MSC Φ(π) is connected. Intuitively, this means that every message sent in a loop is
implicitly acknowledged, because if p sends a message, there is a path in the communication
graph back to p. This ensures that all channels are universally bounded—there is a uniform
bound B such that across all linearisations, no channel ever has more than B pending
messages. Thus, if G is locally synchronized, L(G) is a regular set of MSCs.

2.5 Time-constrained message sequence graphs
We generalise MSGs to the timed setting in a natural way. In a time-constrained MSG
(TCMSG), states are labelled by TCMSCs rather than basic MSCs. In addition, we also
permit process-wise timing constraints along the edges of the graph. A constraint for process
p along an edge v −→ v′ specifies a constraint between the final p-event of Φ(v) and the
initial p-event of Φ(v′), provided p actively participates in both these nodes. If p does not
participate in either of these nodes, the constraint is ignored. Formally, a TCMSG is a
tuple G = (G,LTC ,Φ,EdgeC) where G = (V,→, vin, VF) is a graph as before, Φ : V → LTC

FSTTCS 2010

208 Model checking timed scenarios

labels each node with a TCMSC from a set LTC and EdgeC associates a tuple of constraints
with each edge—for convenience, we assume that any edge constraint not explicitly specified
corresponds to the trivial constraint (−∞,∞).

Each accepting path in a TCMSG defines a TCMSC. Given a path v0v1 · · · vn, we
concatenate the TCMSCs Φ(v0),Φ(v1), . . . ,Φ(vn) and insert the additional constraints
specified by EdgeC . We define LTC (G) to be the set of all TCMSCs over Act generated
by accepting paths in G. We also let Ltime(G) =

⋃
M∈LTC (G) Ltime(M) and Ltw(G) =⋃

M∈LTC (G) Ltw(M). Figure 2 shows a TCMSG, a TCMSC that it generates and a realizing
TMSC.

2.6 Timed automata
We can formulate many types of machine models for timed MSCs. One natural choice is
a message-passing automaton (MPA) equipped with (local) clocks. In a timed MPA, we
have one component for each process p, which is a finite state automaton over actions of the
form p!q(m) and p?q(m). Each component also has local clocks that can be used to guard
transitions. The global state space defines a timed automaton over Act.

A timed automaton over an alphabet Σ is a tuple A = (Q,∆, qin, F, Z) where Q is a finite
set of states, qin ∈ Q is the initial state, F ⊆ Q are the final states and Z is a set of clocks
that take values over R≥0. Each transition in ∆ is of the form q

ϕ,a,X−−−−→ q′ where q, q′ ∈ Q,
a ∈ Σ, X ⊆ Z and ϕ is a boolean combination of clock constraints of the form x op c where
x ∈ Z, c ∈ Q≥0 and op ∈ {≤, <,>,≥}. This transition is enabled if the current values of all
clocks satisfy the guard ϕ. On taking this transition, the clocks in X are reset to 0. As is
standard, time elapses between transitions, transitions occur instantaneously and such an
automaton accepts timed words from TWΣ. More details can be found in [2, 4].

For our purposes, we only need the following two results about timed automata.

Given timed automata A1 and A2, we can construct a timed automaton A12 such that
L(A12) = L(A1) ∩ L(A2).
Checking whether the language of a timed automaton is empty is decidable.

2.7 The model checking problem
We are interested in timed automata over Act whose languages can be interpreted as timed
MSCs. A timed word in TWAct corresponds to a linearisation of a timed MSC provided
the timed word is well-formed and complete. A word w over Act is well-formed if for each
channel (p, q), in every prefix v of w, the sequence of messages received by q from p in
v is a prefix of the messages sent from p to q in v. A well-formed word w is complete if
#p!q(w) = #q?p(w) for each matching pair of send-receive actions, where #X(u) counts the
number of occurrences in u of X ⊆ Act. Finally, a well-formed word w is B-bounded if,
in every prefix v of w, #p!q(v) −#q?p(v) ≤ B for each channel (p, q). Correspondingly, a
timed word is said to be well-formed (complete, B-bounded) if its projection onto Act is
well-formed (complete, B-bounded). Well-formedness captures the intuition that any receive
action has an earlier matching sending action. Completeness guarantees that all pending
messages have been received. B-boundedness promises that no channel ever has more than
B messages.

Given a timed automaton A over Act and a TCMSG specification G, the model checking
problem is to check that every timed word accepted by A realises some TCMSC in LTC (G).
Since A may accept timed words that are not well-formed or not complete, this implicitly
includes checking that A accepts only well-formed and complete timed words in TWAct .

Akshay, Gastin, Mukund, Narayan Kumar 209

From this, it is clear that the model checking problem corresponds to checking whether
L(A) ⊆ Ltw(G). To make the problem tractable, we restrict our attention to locally
synchronized TCMSGs, so that Ltw(G) is a timed regular language. Unfortunately, checking
inclusion is undecidable even for timed regular languages [2]. To get around this, we introduce
a more restricted machine model for timed MSCs called MSC event clock automata, which
are closed under complementation. It turns out that Ltw(G) can be recognized by MSC
event clock automata, yielding a solution to our model checking problem.

3 An extended event clock automaton – the MSC-ECA

We now define MSC event clock automata or MSC-ECA. These will be used to capture
exactly the guards that occur in the TCMSGs that we have defined. We denote an MSC-ECA
over Act by C = (Q,Act, δ, q0, F), with states Q, initial state q0 ∈ Q and final states F ⊆ Q.
A transition in δ is of the form (q, ϕ, a, q′) where q, q′ ∈ Q, a ∈ Act and ϕ is a conjunction
of event clock guards, which are of two types: either Yk

p ∈ I or Msg−1 ∈ I, where I is an
interval, as used in TCMSC timing constraints. We interpret these guards over timed words.
Let σ = (a1, t1) · · · (an, tn) ∈ TWAct . Then at a position 1 ≤ j ≤ n, we define

(D1) σ, j |= Yk
p ∈ I if the time elapsed between the kth-previous p-action ai in σ and this

action aj is in the interval I.
(D2) σ, j |= Msg−1 ∈ I if aj is a receive action and the time elapsed since the occurence of

its matching send action ai is in the interval I.

In both these definitions, note that action ai is uniquely defined, i.e., there is at most one
position i that matches a given position j with respect to a given event clock guard.

Now, we define runs of C over timed words. For a timed word σ = (a1, t1) · · · (an, tn), we
say there is a run of C from q to q′ on σ, denoted q σ−→ q′ in C, if there exists a sequence of
transitions q = q0

ϕ1,a1−−−→ · · · ϕn,an−−−−→ qn such that for all j, 1 ≤ j ≤ n, σ, j |= ϕj . The timed
word σ is said to be accepted if it has a run from the initial to some final state in F . We
denote by Ltw(C) the set of timed words accepted by the MSC-ECA C.

3.1 Determinization and complementation of MSC-ECA
We now prove that MSC-ECA can be determinized and complemented, which is crucial for
solving the model checking problem. We obtain this by constructing a deterministic and
complete version of any given MSC-ECA. Intuitively, this works as for classical ECA’s and
the main reason is that there are no explicit clocks. Since the reset of an event clock only
depends on the timed word being read and not on the path followed in the automaton, we
can use the subset construction.

More precisely, let C = (Q,Act, δ, q0, F) be a finite MSC-ECA. The set of states of
the universal automaton Cuniv is 2Q. For a set X ⊆ Q and an action a, we let T (X, a)
denote the set of transitions in δ having action a and a source state in X. Then, for some
T ′ ⊆ T (X, a) = T , we denote by target(T ′) the set of target states of transitions in T ′ and
we define

ϕ(T ′, T) =
∧

t=(q,ϕt,a,q′)∈T ′

ϕt ∧
∧

t=(q,ϕt,a,q′)∈T\T ′

¬ϕt .

Then, we denote the set of transitions of Cuniv by ∆, where we say that X ϕ,a−−→ X ′ ∈ ∆ if
there exists T ′ ⊆ T = T (X, a) such that ϕ = ϕ(T ′, T) and X ′ = target(T ′).

FSTTCS 2010

210 Model checking timed scenarios

Note that, once we have fixed X, a and the set T ′, the transition is uniquely defined.
Also for X = ∅, we have T (X, a) = ∅ and the only possible transition is ∅ true,a−−−−→ ∅. The
crucial property of Cuniv is that it is deterministic and complete (and finite, if C is).

I Lemma 1. Given any timed word σ = (a1, t1) · · · (an, tn) ∈ TWAct, there exists a unique
run X0

ϕ1,a1−−−→ X1
ϕ2,a2−−−→ · · ·Xn−1

ϕn,an−−−−→ Xn of Cuniv on σ starting from X0 = {q0}.
Moreover, Xn = {q ∈ Q | q0

σ−→ q in C}.

By suitably choosing the final states, Cuniv will accept either the same language as
C or its complement. Let F1 = {X ∈ 2Q | F ∩ X 6= ∅} and F2 = 2Q \ F1. Define
Cunivi = (2Q,Act,∆, {q0}, Fi) for i = {1, 2}. From Lemma 1 we obtain:

I Corollary 2. We have Ltw(Cuniv1) = Ltw(C) and Ltw(Cuniv2) = TWAct \ Ltw(C).

3.2 From MSC-ECA to TA
Not every MSC-ECA can be translated into an equivalent (classical) timed automaton. The
problem comes from the event guards Msg−1 ∈ I, which may require infinitely many clocks
if channels are unbounded. Fortunately, thanks to the locally synchronized assumption on
TCMSGs, we are only interested in bounded channels. Let B > 0. We show below how to
construct a timed automaton BBC from an MSC-ECA C = (Q,Act, δ, q0, F) such that BBC and
C are equivalent when restricted to B-bounded channels.

Let K = max{k | Yk
p ∈ I occurs in some guard in δ}. A state of BBC is either a dead state

denoted ⊥ or a tuple s = (s, b, n, α, β) where s ∈ Q, b = (bp)p∈Proc ∈ {0, 1}Proc (bp = 1 if
we have already seen at least K p-events), n = (np)p∈Proc ∈ {0, . . . ,K − 1}Proc (np is the
number of p-events already seen modulo K), α = (αp,q)p,q∈Proc ∈ {0, . . . , B}Proc2 (αp,q is
the number of q?p events modulo B + 1), β = (βp,q)p,q∈Proc ∈ {0, . . . B}Proc2 (βp,q is the
number of p!q events modulo B + 1). The set of all states is denoted Q′ and the initial state
is s0 = (s0, (0), (0), (0), (0)). The set of clocks is Y ∪Z where Y = {yip | p ∈ Proc, 0 ≤ i < K}
and Z = {zip,q | p, q ∈ Proc, 0 ≤ i ≤ B}. We will reset clock yip when executing the ith
p-event mod K. Also, zip,q will be reset when executing the ith p!q event mod B + 1.

We say that channel (p, q) is empty if αp,q = βp,q and full if βp,q = αp,q +B mod (B + 1).
The set of transitions δBB

C
is defined as follows: Assume s ϕ,a−−→ s′ in C with a ∈ Actp. Then,

we have three types of transitions in BBC . (Recall that p!q and p?q abbreviate all actions of
the form p!q(m) and p?q(m), respectively.)

(Tr1) (s, b, n, α, β) true,a,∅−−−−−→ ⊥ is in BBC if either a ∈ p!q and channel (p, q) is full (the bound
was exceeded), or a ∈ p?q and channel (p, q) is empty.

(Tr2) (s, b, n, α, β) ϕ′,a,R−−−−→ (s′, b′, n′, α′, β′) is in BBC if we are not in the above case and the
following conditions hold:

1. b′p = 1 if np = K − 1 and b′p = bp otherwise. Also, b′r = br for r 6= p.
2. n′p = (np + 1) mod K and n′r = nr for r 6= p.
3. if a ∈ p!q, then β′p,q = (βp,q + 1) mod (B + 1) and β′p′,q′ = βp′,q′ for (p′, q′) 6= (p, q).

Also α′ = α, R = {yn
′
p

p , z
β′

p,q
p,q } and ϕ′ is ϕ where Yk

p ∈ I is replaced with{
false if bp = 0 and k > np

y
(K+n′

p−k) mod K
p ∈ I otherwise

Akshay, Gastin, Mukund, Narayan Kumar 211

4. if a ∈ p?q, then α′q,p = αq,p + 1 mod (B + 1) and α′q′,p′ = αq′,p′ for (q′, p′) 6= (q, p).

Also β
′ = β, R = {yn

′
p

p } and ϕ′ is ϕ where Yk
p ∈ I is replaced as above and

Msg−1 ∈ I is replaced with zα
′
q,p

q,p ∈ I.

(Tr3) ⊥ true,a,∅−−−−−→ ⊥ is in BBC for all a ∈ Act.

In the following, we call a timed word w weakly well-formed (wwf) if for each channel
(p, q), in every prefix v of w, we have #q?p(w) ≤ #p!q(w). This weak form does not require
the send message sequence to be the same as the received one. Let TWB,wf

Act denote the set
of timed words σ ∈ TWAct which are both wwf and B-bounded. We can define different
notions of acceptance (i.e., final states) on BBC constructed from C to derive the results below.

I Proposition 3. Let C = (Q,Act, δ, q0, F) and BBC = (Q′,Act, (Y ∪ Z), δBB
C

) be as above.

1. With final states F ′ = {(s, b, n, α, β) | s ∈ F} the timed automaton BBC accepts the
language Ltw(C) ∩ TWB,wf

Act .
2. If C is complete (i.e., it has a run on every timed word over Act) then with final states

F ′′ = {⊥} the timed automaton BBC accepts the complement of TWB,wf
Act .

Proof. (Sketch) Let σ = (a1, t1) · · · (am, tm) be a wwf and B-bounded timed word. Consider
a path π = s0

ϕ1,a1−−−→ s1
ϕ2,a2−−−→ · · · ϕm,am−−−−→ sm of C. We can build inductively a path

π′ = s0
ϕ′

1,a1,R1−−−−−−→ s1
ϕ′

2,a2,R2−−−−−−→ · · · ϕ
′
m,am,Rm−−−−−−−→ sm of BBC starting from its initial state s0 and

using (Tr2) only. Then, we can prove that if σ has a run through π in C (i.e., σ, i |= ϕi for
all i ∈ {1, . . . ,m}) then σ has a run through π′ in BBC . Hence we obtain one inclusion of (1).

For the converse inclusion, we start with a path of BBC starting from its initial state

s0 and which does not reach ⊥: π′ = s0
ϕ′

1,a1,R1−−−−−−→ s1
ϕ′

2,a2,R2−−−−−−→ · · · ϕ′
m,am,Rm−−−−−−−→ sm. Since

we did not reach ⊥, the timed word σ = (a1, t1) · · · (am, tm) must be wwf and B-bounded.
Moreover, transitions in π′ comes from (Tr2) only and we can recover a corresponding path
π = s0

ϕ1,a1−−−→ s1
ϕ2,a2−−−→ · · · ϕm,am−−−−→ sm in C. Again, we can prove that if σ has a run through

π′ in BBC then σ has a run through π in C.
Statement (2) can be proved easily. J

4 From a locally synchronized TCMSG to a finite MSC-ECA

The main result is that locally synchronized TCMSGs define timed regular languages.

I Theorem 4. If G = (G,LTC ,Φ,EdgeC) is a locally synchronized TCMSG, then there
exists a finite MSC-ECA C, such that Ltw(C) = Ltw(G).

In the untimed case, the corresponding result has been stated and proved in different
ways [3, 5, 6, 10]. We describe a different proof that is more suitable for the timed version.

We want to simulate the global run of a TCMSG by keeping a finite amount of information
in the states of the MSC-ECA. Intuitively, we keep the sequence of nodes along the TCMSG
path that have been started but not completed (at least one executed event but not all).
Since the TCMSG is locally synchronized, the number of such nodes is always bounded.

We replace segments of nodes in the TCMSG path that have not been started yet by
a special gap symbol #. Nodes will be inserted at gaps whenever necessary, making sure
that the sequential run of the MSC-ECA is compatible with the TCMSG path. In fact, the
insertion must satisfy two conditions: (1) when we insert a node it must not conflict with
the events that have already occurred in later nodes and (2) finally, after all insertions, we

FSTTCS 2010

212 Model checking timed scenarios

do obtain a path in the MSG. The latter is done by checking that when we fill a gap the
corresponding bordering nodes have an edge in the graph.

We also replace segments of fully executed nodes of a TCMSG path by the set of processes
that have been active in these nodes, so that we ensure condition (1) above.

For a node u, let Eu be the set of events in the MSC labelling u. We define an extended
node to be a pair (u, c) where u ∈ V and c ⊆ Eu is a cut of Eu that contains the events
that have been executed in node u. For simplicity, we extend the set of vertices V with
two dummy vertices ., / and add edges from . to the initial vertex vin and from every final
vertex v ∈ VF to /. We also set E. = ∅ = E/ so that for u ∈ {., /}, the only extended node
is (u, ∅). The set of all extended nodes is denoted ExtNodes. An extended node (u, c) is said
to be completed if c = Eu. Note that (., ∅) and (/, ∅) are completed by default.

A state α of our new automaton C is a sequence of extended nodes, gaps and subsets of
processes: α ∈ Π∗ where Π = ExtNodes] {#}] 2Proc. The initial state is α0 = (., ∅)#(/, ∅).
Final states are of the form (., ∅)P (/, ∅) where P ⊆ Proc.

An extended event of α ∈ Π∗ is a pair (e, α1(u, c)) where e ∈ Eu and α1(u, c) � α—i.e.,
α1(u, c) is a prefix of α. We say that the extended event (e, α1(u, c)) is executed in α if e ∈ c
and enabled in α if the following hold:

(E1) It has not been executed, i.e., e 6∈ c.
(E2) All events within the node which are below it (in the partial order) have been executed,

i.e., for all e′ ∈ Eu with e′ <u e, we have e′ ∈ c.
(E3) If e belongs to process p, then all p-events on any node occurring before this node in

α have been executed, i.e., if e ∈ Eup then for all α′1(u′, c′) � α1, we have Eu′

p ⊆ c′.

We introduce notation to describe the set of processes that participate in nodes, paths
or states. For a node u ∈ V , OProc(u) = {p ∈ Proc | Eup 6= ∅} denotes the set of
processes that participate (occur) in u. This is extended to V ∗ as a morphism. Also, with
OProc((u, c)) = OProc(u), OProc(#) = ∅ and OProc(P) = P , it extends to Π∗. In addition,
for β ∈ Π∗, EProc(β) denoting the set of processes having executed events in β, is given
by the morphism defined by EProc((u, c)) = {p ∈ Proc | Eup ∩ c 6= ∅}, EProc(#) = ∅ and
EProc(P) = P .

Now, the transitions can be defined by saying that at any state α we can choose to
execute an enabled (extended) event or add a new (extended) node in a gap of the state, in
which case we must execute an enabled event on the new node.

We first define the node insertion operation as a macro α1#α2
u−→ α′1(u, ∅)α′2 which is

said to hold if

(I 1) for every process that participates in u, there is no executed event in the segment α2
on that process, i.e., OProc(u) ∩ EProc(α2) = ∅.

(I 2) α′1 ∈ {α1, α1#} and if α′1 = α1 then α1 = α′′1(v, c) and v → u in G.
(I 3) α′2 ∈ {α2,#α2} and if α′2 = α2 then α2 = (v, c)α′′2 and u→ v in G.

Next, we explain how completed nodes are deleted from a state α. To check (I 1) we
need to preserve the set of executed processes, hence a completed node u will be replaced
by OProc(u). We also preserve (do not throw away) the nodes around a gap in α so that
conditions (I 2)–(I 3) can still be checked. Finally, we preserve nodes that start an edge
constraint which needs to be verified later (this is useful for guards defined in the transition
relation below). Formally, we define the reduction as a rewrite operation α redn−−−→ α′. There
are two rewrite rules:

(R1) α1PP
′α2

redn−−−→ α1(P ∪ P ′)α2, i.e., two adjacent process sets can be merged.

Akshay, Gastin, Mukund, Narayan Kumar 213

(R2) α1(v,Ev)α2
redn−−−→ α1OProc(v)α2 (a completed node is replaced by the set of processes

participating in it) if the following hold:

(C2.1) v ∈ V , ε 6= α1 6∈ Π∗#, ε 6= α2 6∈ #Π∗ i.e., the node v is not next to a gap or at
the beginning or the end.

(C2.2) (i) either the first symbol of α2 is an extended node (v′, c′) and if both Evp
and Ev′

p are nonempty, then some event in Ev′

p has occured (hence the edge
constraint, if any, has already been checked),

(ii) or α2 ∈ 2ProcΠ∗ in which case there is no unchecked edge constraint.

I Lemma 5. The rewrite system defined by the operation redn−−−→ is confluent.

Using the above lemma we conclude that, from any state α, after any maximal sequence
of reductions, we reach the same state, which we denote by Red(α).

Now, we can define the transition relation: α ϕ,a−−→ α′ is a transition in C if there exists
β = β1(u, c)β2 and an extended event (e, β1(u, c)) enabled in β such that

(i) either β = α, i.e., the enabled event is already present in the current state,
(ii) or α = α1#α2

u−→ β1(u, ∅)β2 = β. Hence, c = ∅, β1 ∈ {α1, α1#} and β2 ∈ {α2,#α2}

and all the following conditions hold:

(T1) a = λu(e).
(T2) The guard ϕ checks all local and edge constraints—i.e.,

ϕ =
(∧
e′∈Eu,I∈I|τu(e′,e)=I

ϕ(u, e′, e, I)
)
∧ ϕedge where, (1)

ϕ(u, e′, e, I) =
{

Msg−1 ∈ I if ∃p, q, p 6= q s.t. e′ <uqp e
Yk
p ∈ I if e, e′ ∈ Eup and |{e′′ ∈ Eup | e′ ≤upp e′′ <upp e}| = k

(2)

and ϕedge =

Y1
p ∈ I if β1 = β′1(u′, c′′) and for some p ∈ Proc, we have

EdgeC ((u′, u), p) = I and e = min(Eup)
true otherwise

(3)

(T3) α′ = Red(β1(u, c′)β2) where c′ = c] {e}.

Observe that, once the state and the enabled event which is to be executed are fixed,
the transition that is taken and indeed the state reached after the transition are uniquely
determined. We can also observe that every reachable state α of C is valid. By this we mean
that it satisfies the following properties:

(V1) Every # symbol in α is surrounded by nodes from ExtNodes. Also α starts with (., ∅)
and ends with (/, ∅).

(V2) For any two consecutive extended nodes in α, there exists an edge between the nodes
in G, i.e., for all α1(u, c)(u′, c′) � α, we have u→ u′ in G.

(V3) Executed events in α are downward closed:

a. For all α1(u, c) � α, if e ∈ c and e′ ≤u e then e′ ∈ c.
b. For all α1(u, c)α2(u′, c′) � α, if e ∈ Eup and e′ ∈ c′ ∩ Eu′

p for some p, then e ∈ c.

FSTTCS 2010

214 Model checking timed scenarios

In order to get finiteness of the automaton C, we need to restrict to states that are
both reachable and completable. Formally, we call a state α completable if whenever
α = α1(u, c)#(v, c′)α2, there is β ∈ V + such that uβv is a path in G and OProc(β) ∩
EProc((v, c′)α2) = ∅. Note that, in order to be co-reachable in C, a state must be com-
pletable.

I Lemma 6. If G is locally synchronized, the set of states of C which are both valid and
completable is finite.

Proof. (Sketch) It is enough to show that the length of each valid, completable state of
α ∈ Π∗ is bounded. By definition, every extended node in α has at least one executed event.
Using the locally synchronized assumption, one can prove the following properties about a
loop in a state.
I Claim 7. Let α(u, c)β(u, c′)γ be a valid completable state of Cfin

G . If (u, c)β is not completely
executed or if # occurs in β, then EProc((u, c′)γ) (EProc((u, c)β(u, c′)γ).

Now, consider a loop α(u, c)β(u, c′)γ in a valid completable state. If β has no # and
(u, c)β is completely executed, then α = α′#. Indeed, otherwise the completed node (u, c)
would have been deleted. Along with the previous claim this implies that we can bound the
number of occurences of a node u in a path by 2|Proc|. From which we can conclude that we
have a bound of 2|Proc||V | on the number of extended nodes in a path. But we know that
each # or P ⊆ Proc must have an extended node next to it on the left. So we can conclude
that the length of the path is O(|Proc||V |). Thus C is finite. J

The main result is stated in the following proposition.

I Proposition 8. Ltw(C) = Ltw(G).

The proof which is long and technical is omitted for lack of space. It can be found in [1]
where it is split in three main steps. First we construct an MSC-ECA with infinitely many
states: we guess the full path of the TCMSG initially and we keep it in all states along the
run to avoid the complication of node insertions and node deletions. Next, we introduce the
automaton with gaps, dealing with node insertions but not yet with node deletions. This
automaton is still infinite. Finally we introduce node deletions to obtain the automaton C
constructed above. At each step we prove the equality of the timed languages, either directly,
or using bisimulation at the abstract level of paths.

5 Solving the model checking problem

Now, we are in a position to solve the model checking problem.

I Theorem 9. For a locally synchronized TCMSG G and a timed automaton A, the model
checking problem Ltw(A) ⊆ Ltw(G) is decidable, i.e., it is decidable to check if for all timed
words σ generated by A there exists some M specified by G such that σ is a linearisation of
a TMSC T which realises M.

Proof. We have to prove that Ltw(A)∩(TWAct\Ltw(G)) = ∅. By Theorem 4 we can construct
an MSC-ECA C such that Ltw(C) = Ltw(G). Using the complementation construction of
Section 3.1 we can build a deterministic and complete MSC-ECA C′ = Cuniv2 such that by
Corollary 2 we have Ltw(C′) = TWAct \ Ltw(C) = TWAct \ Ltw(G).

Since G is locally synchronized, there is a bound B > 0 such that each timed word
σ ∈ Ltw(G) is wwf and B-bounded: Ltw(G) ⊆ TWB,wf

Act . Consider the timed automaton BBC′

Akshay, Gastin, Mukund, Narayan Kumar 215

associated with C′ and the bound B by the construction of Section 3.2. For final states of
BBC′ we choose F ′ ∪ F ′′ as defined in Proposition 3. We get Ltw(BBC′) = (TWAct \TWB,wf

Act) ∪
(Ltw(C′) ∩ TWB,wf

Act) = (TWAct \ TWB,wf
Act) ∪ (TWB,wf

Act \ Ltw(G)). Using Ltw(G) ⊆ TWB,wf
Act

we deduce Ltw(BBC′) = TWAct \ Ltw(G).
Hence, the model checking problem is reduced to checking emptiness of the intersection

of two timed automata, A and BBC′ , which is indeed decidable. J

References
1 S. Akshay, P. Gastin, M. Mukund and K. Narayan Kumar: Model checking time-

constrained scenario-based specifications. Technical Report LSV-10-16, ENS Cachan, 2010.
Available at http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/rapports.

2 R. Alur and D. Dill: A Theory of Timed Automata. Theor. Comput. Sci., 126 (1994)
183–225.

3 R. Alur and M. Yannakakis: Model checking of message sequence charts. Proc. CON-
CUR’99, Springer LNCS 1664 (1999) 114–129

4 J. Bengtsson and Wang Yi: Timed Automata: Semantics, Algorithms and Tools, Lectures
on Concurrency and Petri Nets 2003, Springer LNCS 3098 (2003) 87–124.

5 J. Chakraborty, D. D’Souza, and K. Narayan Kumar. Analysing message sequence graph
specifications. Technical Report IISc-CSA-TR-2009-1, IISc Bangalore, 2009.

6 M. Clerbout and M. Latteux. Semi-commutations. Inf. Comp., 73(1) (1987) 59–74.
7 J.G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni and P.S. Thiagarajan: A

Theory of Regular MSC Languages. Inf. Comp., 202(1) (2005) 1–38.
8 ITU-T Recommendation Z.120: Message Sequence Chart (MSC). ITU, Geneva (1999).
9 S. Mauw and M.A. Reniers: High-level message sequence charts. Proc. SDL’97, Elsevier

(1997) 291–306.
10 A. Muscholl and D. Peled: Message sequence graphs and decision problems on Mazurkiewicz

traces. Proc. MFCS’99, Springer LNCS 1672 (1999) 81–91.

FSTTCS 2010

http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/rapports

Global Model Checking of Ordered
Multi-Pushdown Systems
Mohamed Faouzi Atig

Uppsala University, Sweden
mohamed_faouzi.atig@it.uu.se

Abstract
In this paper, we address the verification problem of ordered multi-pushdown systems: A multi-
stack extension of pushdown systems that comes with a constraint on stack operations such
that a pop can only be performed on the first non-empty stack. First, we show that for an
ordered multi-pushdown system the set of all predecessors of a regular set of configurations is
an effectively constructible regular set. Then, we exploit this result to solve the global model
checking which consists in computing the set of all configurations of an ordered multi-pushdown
system that satisfy a given w-regular property (expressible in linear-time temporal logics or the
linear-time µ-calculus). As an immediate consequence of this result, we obtain an 2ETIME
upper bound for the model checking problem of w-regular properties for ordered multi-pushdown
systems (matching its lower-bound).

Keywords and phrases Concurrent Programs, Pushdown Systems, Global Model-Checking.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.216

1 Introduction

Automated verification of multi-threaded programs is an important and a highly challenging
problem. In fact, even when such programs manipulate data ranging over finite domains,
their control structure can be complex due to the handling of (recursive) procedure calls in
the presence of concurrency and synchronization between threads.

In the last few years, a lot of effort has been devoted to the verification problem for models
of concurrent programs (see, e.g., [7, 24, 15, 2, 25, 3, 13, 16]) where each thread corresponds
to a sequential program with (recursive) procedure calls. In fact, it is well admitted that
pushdown systems are adequate models for such kind of threads [10, 21], and therefore, it is
natural to model recursive concurrent programs as multi-stack systems.

In general, multi-stack systems are Turing powerful and hence come along with unde-
cidability of basic decision problems [20]. A lot of efforts have been nevertheless devoted
recently to the development of precise analysis algorithms of specific formal models of some
classes of programs [17, 11, 8, 22, 14].

Context-bounding has been proposed in [19] as a suitable technique for the analysis of
multi-stack systems. The idea is to consider only runs of the system that can be divided into
a given number of contexts, where in each context pop and push operations are exclusive
to one stack. The state space which may be explored is still unbounded in presence of
recursive procedure calls, but the context-bounded reachability problem is NP-complete even
in this case. In fact, context-bounding provides a very useful tradeoff between computational
complexity and verification coverage.

In [24], La Torre et al. propose a more general definition of the notion of a context. For
that, they define the class of bounded-phase visibly multi-stack pushdown systems (BVMPS)
where only those runs are taken into consideration that can be split into a given number of
phases, where each phase admits pop operations of one particular stack only. In the above

© Mohamed Faouzi Atig;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 216–227

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.216
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Mohamed Faouzi Atig 217

case, the emptiness problem is decidable in double exponential time by reducing it to the
emptiness problem for tree automata.

Another way to regain decidability is to impose some order on stack operations. In [9],
Breveglieri et al. define ordered multi-pushdown systems (OMPS), which impose a linear
ordering on stacks. Stack operations are constrained in such a way that a pop operation is
reserved to the first non-empty stack. In [1], we show that the emptiness problem for OMPS
is in 2ETIME-complete. (Recall that 2ETIME is the class of all decision problems solvable
by a deterministic Turing machine in time 22dn for some constant d.) The proof of this result
lies in a complex encoding of OMPS into some class of grammars for which the emptiness
problem is decidable. Moreover, we prove that the class of ordered multi-pushdown systems
with 2k stacks are strictly more expressive than bounded-phase visibly multi-stack pushdown
systems with k phases.

In this paper, we consider the problem of verifying ordered multi-pushdown systems with
respect to a given w-regular property (expressible in the linear-time temporal logics [18] or
the linear-time µ-calculus [26]). In particular, we are interested in solving the global model
checking for ordered multi-pushdown systems which consists in computing the set of all
configurations that satisfy a given w-regular property. The basic ingredient for achieving
this goal is to define a procedure for computing the set of backward reachable configurations
from a given set of configurations. Therefore, our first task is to find a finite symbolic
representation of the possibly infinite state-space of an ordered multi-pushdown system. For
that, we consider the class of recognizable sets of configurations defined using finite state
automata [19, 2, 23].

Then, we show that for an ordered multi-pushdown systemM the set of all predecessors
Pre∗(C) of a recognizable set of configurations C is an effectively constructible recognizable
set. The proof of this result is done by induction on the number of stacks ofM. Technically,
we use a result given in [4] establishing that the set of configurations Cn, where the first
(n− 1) stacks are empty, from whichM can reach a configuration in C is recognizable and
effectively constructible. Then, to compute the intermediary configurations in Pre∗(C) when
the first (n − 1) stacks are not empty, we construct an ordered multi-pushdown system
M′ with (n − 1) stacks that: (1) performs the same operations on its stacks as the ones
performed byM on its first (n− 1) stacks, and (2) simulates a push operation ofM over
its n-th stack by a transition of the finite-state automaton accepting the recognizable set
of configurations Cn. Now, we can apply the induction hypothesis toM′ and construct a
finite-state automaton accepting the set of all predecessors Pre∗(C).

As an application of this result, we show that the set of configurations of an ordered
multi-pushdown system satisfying a given w-regular property is recognizable and effectively
constructible. Our approach also allows to obtain an 2ETIME upper bound for the model
checking problem of w-regular properties for ordered multi-pushdown systems (matching its
lower-bound [1]).

Related works: In [23], A. Seth shows that the set of predecessors of a recognizable set of
configurations of a bounded-phase visibly multi-stack pushdown system is recognizable and
effectively constructible. In fact, our results generalize the obtained result in [23] since any
bounded-phase visibly multi-stack pushdown system with k phases can be simulated by an
ordered multi-pushdown system with 2k stacks [1].

To the best of our knowledge, this is the first work that addresses the global model
checking for ordered multi-pushdown systems.

FSTTCS 2010

218 Global Model Checking of Ordered Multi-Pushdown Systems

2 Preliminaries

In this section, we introduce some basic definitions and notations that will be used in the
rest of the paper.

Integers: Let N be the set of natural numbers. For every i, j ∈ N such that i ≤ j, we use
[i, j] (resp. [i, j[) to denote the set {k ∈ N | i ≤ k ≤ j} (resp. {k ∈ N | i ≤ k < j}).

Words and languages: Let Σ be a finite alphabet. We denote by Σ∗ (resp. Σ+) the set
of all words (resp. non empty words) over Σ, and by ε the empty word. A language is a
(possibly infinite) set of words. We use Σε to denote the set Σ ∪ {ε}.

Let u be a word over Σ. The length of u is denoted by |u|. For every j ∈ [1, |u|], we use
u(j) to denote the jth letter of u. We denote by uR the mirror of u.

Transition systems: A transition system (TS for short) is a triplet T = (C,Σ,→) where:
(1) C is a (possibly infinite) set of configurations, (2) Σ is a finite set of labels (or actions)
such that C ∩ Σ = ∅, and (3) →⊆ C × Σε × C is a transition relation. We write c a−→T c′
whenever c and c′ are two configurations and a is an action such that (c, a, c′) ∈→.

Given two configurations c, c′ ∈ C, a finite run ρ of T from c to c′ is a finite sequence
c0a1c1 · · · ancn, for some n ≥ 1, such that: (1) c0 = c and cn = c′, and (2) ci

ai+1−−−→T ci+1 for
all i ∈ [0, n[. In this case, we say that ρ has length n and is labelled by the word a1a2 · · · an.

Let c, c′ ∈ C and u ∈ Σ∗. We write c u==⇒
n
T c
′ if one of the following two cases holds: (1)

n = 0, c = c′, and u = ε, and (2) there is a run ρ of length n from c to c′ labelled by u. We
also write c u==⇒∗T c′ (resp. c

u==⇒+
T c
′) to denote that c u==⇒

n
T c
′ for some n ≥ 0 (resp. n > 0).

For every C1, C2 ⊆ C, let TracesT (C1, C2) = {u ∈ Σ∗ | ∃(c1, c2) ∈ C1 × C2 , c1
u==⇒∗T c2}

be the set of sequences of actions generated by the runs of T from a configuration in C1 to a
configuration in C2.

For every C ′ ⊆ C, let PreT (C ′) = {c ∈ C | ∃(c′, a) ∈ C ′ × Σε , c
a−→T c′} be the set of

immediate predecessors of C ′. Let Pre∗T be the reflexive-transitive closure of PreT , and let
Pre+

T = PreT ◦ Pre∗T .

Finite state automata: A finite state automaton (FSA) is a tuple A = (Q,Σ,∆, I, F)
where: (1) Q is the finite non-empty set of states, (2) Σ is the finite input alphabet, (3)
∆ ⊆ (Q × Σε × Q) is the transition relation, (4) I ⊆ Q is the set of initial states, and
(5) F ⊆ Q is the set of final states. We represent a transition (q, a, q′) in ∆ by q a−→A q′.
Moreover, if I ′ and F ′ are two subsets of Q, then we use A(I ′, F ′) to denote the finite state
automaton defined by the tuple (Q,Σ,∆, I ′, F ′).

The size of A is defined by |A| = (|Q|+ |Σ|). We use T (A) = (Q,Σ,∆) to denote the
transition system associated with A. The language accepted (or recognized) by A is given
by L(A) = TracesT (A)(I, F).

3 Ordered Multi-Pushdown Systems

In this section, we first recall the definition of multi-pushdown systems. Then ordered
multi-pushdown systems [9, 1] appear as a special case of multi-pushdown systems.

Mohamed Faouzi Atig 219

3.1 Multi-pushdown systems
Multi-pushdown systems have one read-only left to right input tape and n ≥ 1 read-write
memory tapes (stacks) with a last-in-first-out rewriting policy. A transition is of the
form t = 〈q, γ1, . . . , γn〉−→〈q′, α1, . . . , αn〉. Being in a configuration (p, w1, . . . , wn), which is
composed of a state p and a stack content wi for each stack i, t can be applied if both q = p

and the i-th stack is of the form γiw
′
i for some w′i. Taking the transition, the system moves

to the successor configuration (q′, α1w
′
1, . . . , αnw

′
n).

I Definition 1. A multi-pushdown system (MPS) is a tupleM = (n,Q,Γ,∆) where n ≥ 1
is the number of stacks, Q is the finite set of states, Γ is the stack alphabet containing the
special stack symbol ⊥, and ∆ ⊆

(
Q× (Γε)n

)
×

(
Q× (Γ∗)n

)
is the transition relation such

that, for all ((q, γ1, . . . , γn), (q′, α1, . . . , αn)) ∈ ∆ and i ∈ [1, n], we have:

|αi| ≤ 2.
If γi 6= ⊥, then αi ∈ (Γ \ {⊥})∗.
If γi = ⊥, then αi = α′i⊥ for some α′i ∈ Γε.

In the rest of this paper, we use 〈q, γ1, . . . , γn〉−→M〈q′, α1, . . . , αn〉 to denote that the
transition ((q, γ1, . . . , γn), (q′, α1, . . . , αn)) is in ∆. The size ofM, denoted by |M|, is defined
by (n+ |Q|+ |Σ|+ |Γ|).

A stack content ofM is a sequence from Stack(M) = (Γ \ {⊥})∗{⊥}. A configuration
ofM is a (n+ 1)-tuple (q, w1, . . . , wn) with q ∈ Q and w1, . . . , wn ∈ Stack(M). The set of
all configurations ofM is denoted by Conf (M).

The behavior of the MPSM is described by its corresponding TS T (M) defined by the
tuple (Conf (M),Σ,→) where Σ = ∆ and → is the smallest transition relation such that if
t = 〈q, γ1, . . . , γn〉−→M〈q′, α1, . . . , αn〉 then (q, γ1w1, . . . , γnwn) t−→T (M)(q′, α1w1, . . . , αnwn)
for all w1, . . . , wn ∈ Γ∗ such that γ1w1, . . . , γnwn ∈ Stack(M). Observe that the symbol ⊥
marks the bottom of a stack. According to the transition relation, ⊥ can never be popped.

3.2 Symbolic representation of MPS configurations
We show in this section how we can symbolically represent infinite sets of MPS configurations
using special kind of finite automata which were introduced in [23]. LetM = (n,Q,Γ,∆)
be a MPS. AM-automaton for accepting configurations ofM is a finite state automaton
A = (QM,Γ,∆M, IM, FM) such that IM = Q. We say that a configuration (q, w1, . . . , wn)
of M is accepted (or recognized) by A if and only if the word w = w1w2 · · ·wn is in
L(A({q}, FM)). (Notice that for every word w ∈ L(A({q}, FM)) there are unique words
w1, . . . , wn ∈ Stack(M) such that w = w1 · · ·wn.) The set of all configurations recognized
by A is denoted by LM(A). A set of configurations ofM is said to be recognizable if and
only if it is accepted by someM-automaton.

Finally, it is easy to see that the class ofM-automaton is closed under boolean operations
and that the emptiness and membership problems are decidable in polynomial time.

3.3 Ordered multi-pushdown systems
An ordered multi-pushdown system is a multi-pushdown system in which one can pop only
from the first non-empty stack (i.e., all preceding stacks are equal to ⊥).

I Definition 2. An ordered multi-pushdown system (OMPS for short) is a multi-pushdown
system (n,Q,Γ,∆) such that ∆ contains only the following types of transitions:

FSTTCS 2010

220 Global Model Checking of Ordered Multi-Pushdown Systems

〈q, γ, ε, . . . , ε〉−→M〈q′, γ′′γ′, ε, . . . , ε〉 for some q, q′ ∈ Q and γ, γ′, γ′′ ∈ (Γ \ {⊥}).
〈q, γ, ε, . . . , ε〉−→M〈q′, ε, . . . , ε, γ′, ε, . . . , ε〉 for some q, q′ ∈ Q and γ, γ′ ∈ (Γ \ {⊥}) (γ′ is
pushed on one of stacks 2 to n).
〈q,⊥, . . . ,⊥, γ, ε, . . . , ε〉−→M〈q′, γ′⊥,⊥, . . . ,⊥, ε, . . . , ε〉 for some q, q′ ∈ Q and γ, γ′ ∈
(Γ \ {⊥}) (γ is popped from one of the stacks 2 to n).
〈q, γ, ε, . . . , ε〉−→M〈q′, ε, . . . , ε〉 for some q, q′ ∈ Q and γ ∈ (Γ \ {⊥}).

For n ≥ 1, we call a MPS (resp. OMPS) a n-MPS (resp. n-OMPS) if its number of stacks
is equal to n.

4 Computing the set of predecessors for an OMPS

In this section, we show that the set of predecessors of a recognizable set C of configurations
of an OMPS is recognizable and effectively constructible (see Corollary 8). To simplify
the presentation, we can assune without loss of generality that the set C contains only
one configuration of the form (qf ,⊥, . . . ,⊥) where all the stacks are empty. This result is
established by Lemma 3.

I Lemma 3. Let M = (n,Q,Γ,∆) be an OMPS and A be a M-automaton. Then, it
is possible to construct, in time and space polynomial in (|M| + |A|), an OMPS M′ =
(n,Q′ ∪ {qf},Γ,∆′) where Q ⊆ Q′, qf /∈ Q′, and |M′| = O(|M|+ |A|) such that for every
c ∈ Conf (M), c ∈ Pre∗T (M)(LM(A)) if and only if c ∈ Pre∗T (M′)({(qf ,⊥, . . . ,⊥)}).

Proof. The proof is similar to the case of standard pushdown systems. Technically, this can
be done by adding to the OMPSM pop rules that check, in nondeterministic way, if the
current configurations belongs to LM(A) by simulating the finite state automaton A. J

In the following, we recall a result given in [4] establishing that the set of configurations
C ′ with empty first (n − 1) stacks (i.e., C ′ ⊆ Q × ({⊥})n−1 × Stack(M)) from which the
OMPSM can reach a configuration of the form (q,⊥, . . . ,⊥) where all the stacks are empty
is recognizable and effectively constructible.

I Lemma 4. LetM = (n,Q,Γ,∆) be an OMPS and q ∈ Q be a state. Then, it is possible to
construct, in time O(|M|2dn) with d is a constant, aM-automaton A such that |A| = O(|M|)
and c ∈ LM(A) if and only if c ∈ Pre∗T (M)({(q,⊥, . . . ,⊥)}) and c = (q′,⊥, . . . ,⊥, w) for
some q′ ∈ Q and w ∈ Stack(M).

Proof. To prove Lemma 4 in [4], we have defined the class of effective generalized pushdown
systems (EGPS) where operations on stacks are (1) pop the top symbol of the stack, and (2)
push a word in some (effectively) given set of words L over the stack alphabet, assuming that
L is in some class of languages for which checking whether L intersects regular languages is
decidable. We have shown in [4] that the automata-based saturation procedure for computing
the set of predecessors in standard pushdown systems [5] can be extended to prove that for
EGPS too the set of all predecessors of a recognizable set of configurations is an effectively
constructible recognizable set.

Then, we have shown that, given an OMPSM with n stacks, it is possible to construct
an EGPS P, whose pushed languages are defined by OMPSs with (n− 1) stacks, such that
the following invariant is preserved: The state and the stack’s content of P are the same
as the state and the content of the n-th stack ofM when its first (n− 1) stacks are empty.
Thus, the saturation procedure for EGPS can be used to show that Lemma 4 holds. J

Mohamed Faouzi Atig 221

Next, we state our main theorem which is a generalization of the result obtained in [23].

I Theorem 5. Let M = (n,Q,Γ,∆) be an OMPS and q ∈ Q be a state. Then, it is
possible to construct, in time O(|M|2dn) where d is a constant, aM-automaton A such that
|A| = O(|M|2dn) and LM(A) = Pre∗T (M)({(q,⊥, . . . ,⊥)}).

Proof. We proceed by induction on the number of stacks of the OMPSM.

Basis. n = 1. Then, M is a pushdown system. From [5], we know that the emptiness
problem forM can be solved in time polynomial in |M|.

Step. n > 1. Then, we can use Lemma 4 to construct, in timeO(|M|2d′n) with d′ is a constant
(we assume w.l.o.g that d′ < d), aM-automaton A′ = (QA′ ,Γ,∆A′ , Q, FA′) such that |A′| =
O(|M|) and (q′′,⊥, . . . ,⊥, w) ∈ LM(A) if and only if (q′′,⊥, . . . ,⊥, w) τ ′==⇒

∗

T (M) (q,⊥, . . . ,⊥)
for some τ ′ ∈ ∆∗. Afterwards, we assume w.l.o.g that theM-automaton has no ε-transitions.

LetM[1,n[= (n,Q,Γ,∆[1,n[) be the OMPS built fromM by discarding the set of pop
operations of M over the nth stack. Formally, we have ∆[1,n[= ∆ ∩

(
(Q × (Γε)n−1 ×

{ε})× (Q× (Γ∗)n)
)
. Then, it is easy to see that for every configuration (q′, w1, . . . , wn) in

Pre∗T (M′)({(q,⊥, . . . ,⊥)}), there are q′′ ∈ Q, w ∈ Stack(M), τ ′ ∈ ∆∗, and τ ∈ ∆∗[1,n[such
that:

(q′, w1, . . . , wn) τ==⇒∗T (M[1,n[) (q′′,⊥, . . . ,⊥, w) τ ′==⇒∗T (M) (q,⊥, . . . ,⊥)

Since the OMPS M[1,n[can only have push operations over its n-th stack, we have
(q′, w1, . . . , wn) τ==⇒∗T (M[1,n[) (q′′,⊥, . . . ,⊥, w) if and only if there is v ∈ (Γ \ {⊥})∗ such that
w = vwn and (q′, w1, . . . , wn−1,⊥) τ==⇒∗T (M[1,n[) (q′′,⊥, . . . ,⊥, v).

On the other hand, letM′ = (n−1, Q×QA′ ,Γ,∆′) be an (n−1)-OMPS built up from the
OMPSM[1,n[and the FSA A′ such that 〈(q1, p1), γ1, . . . , γn−1〉−→M′〈(q2, p2), α1, . . . , αn−1〉
if and only if 〈q1, γ1, . . . , γn−1, ε〉−→M[1,n[〈q2, α1, . . . , αn−1, αn〉 and p2

αn==⇒∗T (A′) p1 for some
αn ∈

(
(Γ\{⊥})∪{ε}

)
. In fact, the OMPSM′ defines a kind of synchronous product between

the pushed word over the n-th stack of OMPSM[1,n[and the reverse of the input word of
the FSA A′. Observe that the size of the constructed (n− 1)- OMPSM′ is O(|M|2)).

Then, the relation between M′, M[1,n[, and A′ is given by Lemma 6 which follows
immediately from the definition ofM′.

I Lemma 6. ((q1, p1), w1, . . . , wn−1) ς==⇒∗T (M′) ((q2, p2),⊥, . . . ,⊥) if and only if there is a v ∈
(Γ \ {⊥})∗ such that (q1, w1, . . . , wn−1,⊥) τ==⇒∗T (M[1,n[) (q2,⊥, . . . ,⊥, v⊥) and p2

v==⇒∗T (A′) p1.

Now, we can apply the induction hypothesis to M′ to show that for every (q′′, p′′) ∈
Q×QA′ , it possible to construct , in time O(|M|2d(n−1)+2), aM′-automaton A(q′′,p′′) such
that |A(q′′,p′′)| = O(|M|2d(n−1)+2) and LM′(A(q′′,p′′)) = Pre∗T (M′)({((q′′, p′′),⊥, . . . ,⊥)}).

From the M′-automaton A(q′′,p′′) and the M-automaton A′, we can construct a M-
automaton A such that (q′, w1, . . . , wn) ∈ LM(A) if and only if there are q′′ ∈ Q and
p′, p′′ ∈ QA such that: (1) q′′ ⊥

n−1

====⇒∗T (A′)p
′′, (2) ((q′, p′), w1, . . . , wn−1) ∈ LM′(A(q′′,p′′)), and

(3) p′ wn==⇒∗T (A′)p for some p ∈ FA′ . Observe that such an automaton A of the size O(|M|2dn)
(by taking d as big as needed) is effectively constructible from A(q′′,p′′) and A′ using standard
automata operations. Moreover, we have:

I Lemma 7. LM(A) = Pre∗T (M)({(q,⊥, . . . ,⊥)}).

FSTTCS 2010

222 Global Model Checking of Ordered Multi-Pushdown Systems

Proof. (⊆) Let (q′, w1, . . . , wn) ∈ LM(A). Then, there are q′′ ∈ Q and p′, p′′ ∈ QA such
that: (1) q′′ ⊥

n−1

====⇒∗T (A′)p
′′, (2) ((q′, p′), w1, . . . , wn−1) ∈ LM′(A(q′′,p′′)), and (3) p′ wn==⇒∗T (A′)p

for some p ∈ FA′ .
So, we can apply Lemma 6 to the run ((q′, p′), w1, . . . , wn−1) ς==⇒∗T (M′) ((q′′, p′′),⊥, . . . ,⊥)

to show that there is v ∈ Γ∗ such that (q′, w1, . . . , wn−1,⊥) τ==⇒∗T (M[1,n[) (q′′,⊥, . . . ,⊥, v) and
p′′

v==⇒∗T (A′) p
′. Thus, we have (q′, w1, . . . , wn−1, wn) τ==⇒∗T (M) (q′′,⊥, . . . ,⊥, vwn).

Now, we can use the runs q′′ ⊥
n−1

====⇒∗T (A′)p
′′, p′′ v==⇒∗T (A′) p

′, and p′ wn==⇒∗T (A′)p to show that

(q′′,⊥, . . . ,⊥, vwn) ∈ LM(A′). This implies that (q′′,⊥, . . . ,⊥, vwn) τ ′==⇒∗T (M) (q,⊥, . . . ,⊥).
Hence, we have (q′, w1, . . . , wn) ∈ Pre∗T (M)({(q,⊥, . . . ,⊥)}) and therefore LM(A) ⊆

Pre∗T (M)({(q,⊥, . . . ,⊥)}).

(⊇) Let (q′, w1, . . . , wn) ∈ Pre∗T (M)({(q,⊥, . . . ,⊥)}). Then, there are q′′ ∈ Q, v ∈ Γ∗,
τ ′ ∈ ∆∗, and τ ∈ ∆∗[1,n[such that:

(q′, w1, . . . , wn) τ==⇒∗T (M[1,n[) (q′′,⊥, . . . ,⊥, vwn) τ ′==⇒∗T (M) (q,⊥, . . . ,⊥)

Since (q′′,⊥, . . . ,⊥, vwn) τ ′==⇒∗T (M)(q,⊥, . . . ,⊥), we have (q′′,⊥, . . . ,⊥, vwn) ∈ LM(A′).

This implies that there are p′, p′′ ∈ QA′ and p ∈ FA′ such that q′′ ⊥
n−1

====⇒∗T (A′)p
′′, p′′ v==⇒∗T (A′) p

′,
and p′ wn==⇒∗T (A′)p.

On the other hand, we can show (q′, w1, . . . , wn−1,⊥) τ==⇒∗T (M[1,n[) (q′′,⊥, . . . ,⊥, v) since
we have (q′, w1, . . . , wn) τ==⇒∗T (M[1,n[) (q′′,⊥, . . . ,⊥, vwn).

Then, we can apply Lemma 6 to (q′, w1, . . . , wn−1,⊥) τ==⇒∗T (M[1,n[) (q′′,⊥, . . . ,⊥, v) and
p′′

v==⇒∗T (A′) p
′ to show that ((q′, p′), w1, . . . , wn−1) ς==⇒∗T (M′) ((q′′, p′′),⊥, . . . ,⊥). This im-

plies that ((q′, p′), w1, . . . , wn−1) ∈ LM′(A(q′′,p′′)). Now, we can use the definition of the

M-automaton A to show that (q′, w1, . . . , wn) ∈ LM(A) since we have q′′ ⊥
n−1

====⇒∗T (A′)p
′′,

((q′, p′), w1, . . . , wn−1) ∈ LM′(A(q′′,p′′)), and p′
wn==⇒∗T (A′)p with p ∈ FA′ . Hence, we have

LM(A) ⊇ Pre∗T (M)({(q,⊥, . . . ,⊥)}).

This terminates the proof of Lemma 7. J

This terminates the proof of Theorem 5. J

As an immediate consequence of Theorem 5 and Lemma 3, we obtain:

I Theorem 8. LetM = (n,Q,Γ,∆) be an OMPS and A′ be aM-automaton. Then, it is
possible to construct, in time O((|M|+ |A′|)2dn) where d is a constant, aM-automaton A
such that |A| = O((|M|+ |A′|)2dn) and LM(A) = Pre∗T (M)(LM(A′)).

We can extend the previous result to show that the operator Pre+ preservers also
recognizability.

I Theorem 9. LetM = (n,Q,Γ,∆) be an OMPS and A′ be aM-automaton. Then, it is
possible to construct, in time O((|M|+ |A′|)2dn) where d is a constant, aM-automaton A
such that |A| = O((|M|+ |A′|)2dn) and LM(A) = Pre+

T (M)(LM(A′)).

Proof. For Pre+, it is sufficient to construct a M-automaton that recognizes the set
PreT (M)(LM(A)) which is an easy extension of the construction given in [6] for standard
pushdown systems. J

Mohamed Faouzi Atig 223

5 Applications to Linear-Time Global Model Checking

5.1 The repeated state global reachability problem
Let M = (n,Q,Γ,∆) be an ordered multi-pushdown system. In the this section, we are
interested in solving the repeated state global reachability problem which consists in computing,
for a given state qf ∈ Q, the set of all configurations c ofM such that there is an infinite
run of T (M) starting from c that visits infinitely often the state qf .

To this aim, let us introduce the following notation: For every i ∈ [1, n], we denote by
M[1,i] = (n,Q,Γ,∆[1,i]) the OMPS built fromM by discarding pop operations ofM over
the last (n− i) stacks. Formally, we have ∆[1,i] = ∆∩

((
Q× (Γε)i× ({ε})n−i

)
×

(
Q× (Γ∗)n

))
.

For every i ∈ [1, n], and every (q, γ) ∈ Q × (Γ \ {⊥}), let C(q,γ)
i denote the set of all

configurations (q, w1, . . . , wn) ∈ Conf (M) such that w1 = · · · = wi−1 = ⊥ and wi = γu for
some u ∈ Stack(M). Moreover, let c(q,γ)

i be the configuration (q, w1, . . . , wn) ofM such that
wi = γ⊥ and wj = ⊥ for all j 6= i. Then, the solution of the repeated state global reachability
problem is based on the following fact:

I Theorem 10. Let c be a configuration ofM and qf be a state ofM. There is an infinite
run starting from c that visits infinitely often the state qf if and only if there is i ∈ [1, n],
q ∈ Q, and γ ∈ Γ such that:

1. c ∈ Pre∗T (M)(C
(q,γ)
i), and

2. c
(q,γ)
i ∈ Pre+

T (M[1,i])
(
Pre∗T (M[1,i])(C

(q,γ)
i) ∩ ({qf} × (Stack(M))n)

)
.

Proof. (⇒) : Let ρ = c0t0c1t1c2t2 · · · be an infinite run of T (M) starting from c0 = c.
Recall that for every j ∈ N, cj is a configuration of M and tj is a transition of M
such that cj

tj−−→ T (M) cj+1. Let i ∈ [1, n] be the maximal index such that for every j ∈
N, there is kj ≥ j such that tkj

is a pop transition over the i-th stack of M. Hence,
from the definition of i, there is r ∈ N such that for every h ≥ r, there is dh ∈ [1, i]
such that the transition th is a pop transition over the dh-th stack of M. This implies
that for every h ≥ r, we have ch th−−→ T (M[1,i]) ch+1. Moreover, we must have ckj is in
Q× ({⊥})i−1 × ((Γ \ {⊥})∗ · Stack(M))× (Stack(M))n−i since tkj

is a pop operations over
the i-th stack ofM.

Construct a sequence π = cj0cj1cj2 · · · of configurations of M as follows: cj0 is the
first configuration of ρ such that j0 ≥ r and tj0 is a pop transition over the i-stack ofM,
for every ` > 0, cj`

is the first configuration of ρ such that j` > j`−1 and tj`
is a pop

transition over the i-stack ofM. Recall that, by definition, we have for every l ∈ N, cjl
is in

Q× ({⊥})i−1 × ((Γ \ {⊥})∗ · Stack(M))× (Stack(M))n−i.
Now, for every l ≥ 0, let π(l) be the suffix of π starting at cjl

, and let m(l) be the minimal
length of the configurations of π(l), where the length of a configuration is defined as the
length of its i-th stack.

Construct a subsequence π′ = cz0cz1cz2 · · · of π as follows: cz0 is the first configuration of
π of length m(0); for every l > 0, czl

is the first configuration of π(zl−1+1) of length m(zl−1+1).
Since the number of states and stack symbols is finite, there exists a subsequence

π′′ = cx0cx1cx2 · · · of π′ whose elements have all the same state q, and the same symbol γ
on the top of the i-th stack. Observe that cx0 , cx1 , cx2 , . . . are in C(q,γ)

i .
Since ρ is an accepting run, there is an index b ≥ 1 and a configuration cqf

with state qf
such that:

c0
τ==⇒∗T (M) cx0

τ ′==⇒+
T (M) cqf

τ ′′==⇒∗T (M) cxb

FSTTCS 2010

224 Global Model Checking of Ordered Multi-Pushdown Systems

Since c0 = c and cx0 ∈ C
(q,γ)
i , we have c ∈ Pre∗T (M)(C

(q,γ)
i), and so (1) holds.

Due to the definition of π (and so, π′ and π′′), we have

cx0
τ ′==⇒+
T (M[1.i])cqf

τ ′′==⇒∗T (M[1,i]) cxb

Since cx0 ∈ Q × ({⊥})i−1 × ((Γ \ {⊥})∗ · Stack(M)) × (Stack(M))n−i, then there are
wi, wi+1, . . . , wn ∈ Stack(M) such that cx0 = (q,⊥, . . . ,⊥, γwi, wi+1, . . . , wn). Due to the
definition of the subsequence π′ and π′′ all the configurations of ρ between cx0 and cxb

have
a content of the l-th stack (with i ≤ l ≤ k) of the form w′lwl. In particular, the configuration
cqf

is of the form (qf , u1, . . . , ui−1, uiwi, ui+1wi+1, . . . , unwn) and the configuration cxb
is of

the form (q,⊥, . . . ,⊥, γviwi, vi+1wi+1, . . . , vnwn). This implies:

c
(q,γ)
i = (q,⊥, . . . ,⊥, γ,⊥, . . . ,⊥) τ ′==⇒+

T (M[1,i])(qf , u1, . . . , ui−1, ui, ui+1, . . . , un)

and

(qf , u1, . . . , ui−1, ui, ui+1, . . . , un) τ ′′==⇒∗T (M[1,i]) (q,⊥, . . . ,⊥, γvi, vi+1, . . . , vn)

Consequently, (2) holds, which concludes the proof.

(⇐) : It is easy to see that we can use (1) and (2) to construct a run starting from c that
visits infinitely often the state qf .

J

Since the sets of configurations C(q,γ)
i and ({qf} × (Stack(M))n) are recognizable, we

can use Theorem 8 and Theorem 9 to constructM-automata recognizing Pre∗T (M)(C
(q,γ)
i)

and Pre+
T (M[1,i])

(
Pre∗T (M[1,i])(C

(q,γ)
i) ∩ ({q} × (Stack(M))n)

)
. Hence, we can construct a

M-automaton that recognizes the set of all configurations c of M such that there is an
infinite run of T (M) starting from c that visits infinitely often the state qf .

I Theorem 11. Let M = (n,Q,Γ,∆) be an OMPS and q ∈ Q be a state. Then, it is
possible to construct, in time O((|M|)2dn) where d is a constant, a M-automaton A such
that |A| = O((|M|)2dn) and for every configuration c ∈ Conf (M), c ∈ LM(A) if and only if
there is an infinite run of T (M) starting from c that visits infinitely often the state q.

5.2 w-regular properties
In this section, we assume that the reader is familiar with w-regular properties expressed in
the linear-time temporal logics [18] or the linear time µ-calculus [26]. For more details, the
reader is referred to [18, 28, 26, 27].

Let ϕ be an w-regular formula built from a set of atomic propositions Prop, and let
M = (n,Q,Γ,∆) be an OMPS with a labeling function Λ : Q→ 2Prop associating to each
state q ∈ Q the set of atomic propositions that are true in it. In the following, we are
interested in solving the global model checking problem which consists in computing the set of
all configurations c ofM such that every infinite run starting from c satisfies the formula ϕ.

To solve this problem, we adopt an approach similar to [6, 5] and we construct a Buchi
automaton B¬ϕ over the alphabet 2Prop accepting the negation of ϕ [28, 27]. Then, we
compute the product of the OMPSM and of the Büchi automaton B¬ϕ to obtain an n-OMPS
M¬ϕ with a set of repeating states G. Now, it is easy to see that the original problem
can be reduced to the repeated state global reachability problem which compute the set of
all configurations c such that there is an infinite run of T (M) starting from c that visits
infinitely often a state in G. Hence, as an immediate consequence of Theorem 11, we obtain:

Mohamed Faouzi Atig 225

I Theorem 12. Let M = (n,Q,Γ,∆) be an OMPS with a labeling function Λ, and let ϕ
be a linear time µ-calculus formula or linear time temporal formula. Then, it is possible to
construct, in time O((2|ϕ| · |M|)2dn) where d is a constant, a M-automaton A such that
|A| = O((2|ϕ| · |M|)2dn) and for every configuration c ∈ Conf (M), c ∈ LM(A) if and only if
there is an infinite run of T (M) starting from c that does not satisfy ϕ.

Proof. It is well known that it is possible to construct, in time exponential in |ϕ|, a Büchi
automaton B¬ϕ for the negation of ¬ϕ having exponential size in |ϕ| [28, 26]. Therefore, the
product ofM and B¬ϕ has polynomial size in |M| and exponential size in |ϕ|. Applying
Theorem 11 to the n-OMPS M¬ϕ (the product of M and B¬ϕ) of size O(2|ϕ| · |M|) we
obtain our complexity result. J

Observe that we can also construct aM-automaton A′ such that for every configuration
c ∈ Conf (M), c ∈ LM(A) if and only if every infinite run of T (M) starting from c that
satisfies ϕ since the class ofM-automata is closed under boolean operations.

We are now ready to establish our result about the model checking problem for w-regular
properties which consists in checking whether, for a given configuration c of the OMPS, every
infinite run starting from c satisfies the formula ϕ.

I Theorem 13. The model checking problem for the linear-time temporal logics or the
linear-time µ-calculus and OMPSs is 2ETIME-complete.

Proof. The 2ETIME upper bound is established by Theorem 12. To prove hardness, we
use the fact that the emptiness problem for ordered multi-pushdown automata is 2ETIME-
complete [1]. J

6 Conclusion

We have shown that the set of all predecessors of a recognizable set of configurations of an
ordered multi-pushdown system is an effectively constructible recognizable set. We have also
proved that the set of all configurations of an ordered multi-pushdown system that satisfy a
given w-regular property is effectively recognizable. From these results we have derived an
2ETIME upper bound for the model checking problem of w-regular properties.

It may be interesting to see if our approach can be extended to solve the global model-
checking problem for branching time properties expressed in CTL or CTL∗ by adapting the
constructions given in [5, 12] for standard pushdown systems.

Acknowledgements I want to thank Ahmed Bouajjani who greatly helped by reading this
paper at various stages.

References
1 M. F. Atig, B. Bollig, and P. Habermehl. Emptiness of multi-pushdown automata is

2ETIME-complete. In Proceedings of DLT’08, volume 5257 of LNCS, pages 121–133.
Springer, 2008.

2 M. F. Atig, A. Bouajjani, and T. Touili. On the reachability analysis of acyclic networks
of pushdown systems. In CONCUR, volume 5201 of LNCS, pages 356–371. Springer, 2008.

3 M. F. Atig and T. Touili. Verifying parallel programs with dynamic communication struc-
tures. In CIAA, volume 5642 of LNCS, pages 145–154. Springer, 2009.

4 Mohamed Faouzi Atig. From multi to single stack automata. In CONCUR, volume 6269
of Lecture Notes in Computer Science, pages 117–131. Springer, 2010.

FSTTCS 2010

226 Global Model Checking of Ordered Multi-Pushdown Systems

5 A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Ap-
plication to model-checking. In CONCUR, volume 1243 of LNCS, pages 135–150. Springer,
1997.

6 A. Bouajjani and O. Maler. Reachability analysis of pushdown automata. In Proc. Intern.
Workshop on Verification of Infinite-State Systems (Infinity’96), 1996.

7 A. Bouajjani, M. Müller-Olm, and T. Touili. Regular symbolic analysis of dynamic networks
of pushdown systems. In CONCUR’05, LNCS, 2005.

8 A. Bouajjani and T. Touili. Reachability Analysis of Process Rewrite Systems. In
FSTTCS’03. LNCS 2914, 2003.

9 L. Breveglieri, A. Cherubini, C. Citrini, and S. Crespi Reghizzi. Multi-push-down languages
and grammars. International Journal of Foundations of Computer Science, 7(3):253–292,
1996.

10 J. Esparza and J. Knoop. An automata-theoretic approach to interprocedural data-flow
analysis. In FoSSaCS, volume 1578 of LNCS, pages 14–30. Springer, 1999.

11 J. Esparza and A. Podelski. Efficient algorithms for pre* and post* on interprocedural
parallel flow graphs. In POPL’00. ACM, 2000.

12 Alain Finkel, Bernard Willems, and Pierre Wolper. A direct symbolic approach to model
checking pushdown systems (extended abstract). In Faron Moller, editor, Proceedings of
the 2nd International Workshop on Verification of Infinite State Systems (INFINITY’97),
volume 9 of Electronic Notes in Theoretical Computer Science, pages 27–39, Bologna, Italy,
July 1997. Elsevier Science Publishers.

13 Alexander Heußner, Jérôme Leroux, Anca Muscholl, and Grégoire Sutre. Reachability
analysis of communicating pushdown systems. In FOSSACS, volume 6014 of Lecture Notes
in Computer Science, pages 267–281. Springer, 2010.

14 Ranjit Jhala and Rupak Majumdar. Interprocedural analysis of asynchronous programs.
In POPL. IEEE, 2007.

15 V. Kahlon. Boundedness vs. unboundedness of lock chains: Characterizing decidability of
pairwise cfl-reachability for threads communicating via locks. In LICS, pages 27–36. IEEE
Computer Society, 2009.

16 A. Lal and T.W. Reps. Reducing concurrent analysis under a context bound to sequential
analysis. In CAV, volume 5123 of LNCS, pages 37–51. Springer, 2008.

17 D. Lugiez and Ph. Schnoebelen. The regular viewpoint on pa-processes. In CONCUR,
volume 1466 of LNCS, pages 50–66. Springer, 1998.

18 Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE, 1977.
19 S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In

TACAS, volume 3440 of LNCS, pages 93–107. Springer, 2005.
20 G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecidable. ACM

Trans. Program. Lang. Syst., 22(2):416–430, 2000.
21 T.W. Reps, S. Schwoon, and S. Jha. Weighted pushdown systems and their application to

interprocedural dataflow analysis. In SAS, volume 2694 of LNCS, pages 189–213. Springer,
2003.

22 K. Sen and M. Viswanathan. Model checking multithreaded programs with asynchronous
atomic methods. In CAV, pages 300–314. LNCS 4144, 2006.

23 Anil Seth. Global reachability in bounded phase multi-stack pushdown systems. In CAV,
volume 6174 of Lecture Notes in Computer Science, pages 615–628. Springer, 2010.

24 S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive languages.
In Proceedings of LICS, pages 161–170. IEEE, 2007.

25 S. La Torre, P. Madhusudan, and G. Parlato. Context-bounded analysis of concurrent
queue systems. In Proceedings of TACAS’08, LNCS, pages 299–314. Springer, 2008.

26 Moshe Y. Vardi. A temporal fixpoint calculus. In POPL, pages 250–259, 1988.

Mohamed Faouzi Atig 227

27 Moshe Y. Vardi. Alternating automata and program verification. In Computer Science
Today, volume 1000 of Lecture Notes in Computer Science, pages 471–485. Springer, 1995.

28 Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to automatic program
verification (preliminary report). In LICS, pages 332–344. IEEE Computer Society, 1986.

FSTTCS 2010

The Complexity of Model Checking (Collapsible)
Higher-Order Pushdown Systems
Matthew Hague1 and Anthony Widjaja To2

1,2 Oxford University Computing Laboratory
Wolfson Building, Parks Road
Oxford, OX1 3QD

Abstract
We study (collapsible) higher-order pushdown systems— theoretically robust and well-studied

models of higher-order programs — along with their natural subclass called (collapsible) higher-
order basic process algebras. We provide a comprehensive analysis of the model checking complex-
ity of a range of both branching-time and linear-time temporal logics. We obtain tight bounds on
data, expression, and combined-complexity for both (collapsible) higher-order pushdown systems
and (collapsible) higher-order basic process algebra. At order-k, results range from polynomial
to (k + 1)-exponential time. Finally, we study (collapsible) higher-order basic process algebras
as graph generators and show that they are almost as powerful as (collapsible) higher-order
pushdown systems up to MSO interpretations.

1998 ACM Subject Classification D.2.4

Keywords and phrases Higher-Order, Collapsible, Pushdown Systems, Temporal Logics, Com-
plexity, Model Checking

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.228

1 Introduction

Recently, there has been a burgeoning interest in collapsible higher-order pushdown systems
(CPDSs), both as generators of structures and as models of higher-order computation.
Whereas an order-1 pushdown system augments a finite-state automaton with an unbounded
stack memory, a higher-order pushdown system (HOPDS) provides a nested “stack-of-stacks”
structure. CPDSs allow a further backtracking operation called collapse.

Higher-order pushdown automata (HOPDA) were introduced by Maslov [24]. Higher-
order pushdown systems (HOPDS) are HOPDA viewed as generators of infinite trees or
graphs. Recently these models have been generalised to collapsible pushdown systems
(CPDS) [17, 19]. In terms of expressivity, order-k CPDSs generate the same class of ranked
trees as deterministic order-k recursion schemes [17]. The analogous result holds for safe
recursion schemes and HOPDSs [18]. These systems provide a natural model for higher-order
programs with (unbounded) recursive function calls and are therefore useful in software
verification. Further results show an intimate connection with the Caucal hierarchy [10, 11].
For verification, reachability properties — which ask whether a given set of control states
can be reached from the initial configuration — are complete for (k − 1)-ExpTime [5, see
appendix], whilst µ-calculus properties are k-ExpTime-complete [7, 26, 17]. Despite these high
complexities, Kobayashi has verified resource usage properties of higher-order programs [20]
using a novel approach based on intersection types [21, 23].

Hitherto, there has been little work addressing the precise complexity of model checking
higher-order programs with respect to the common temporal logics. In most cases, there

© Matthew Hague and Anthony Widjaja To;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 228–239

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.228
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Hague and A. W. To 229

(Collapsible) HOPDS (Collapsible) HOBPA
Data Expression Data Expression

& Combined & Combined
µLTL / LTL (k − 1)-ExpTime k-ExpTime P-time k-ExpTime
LTL(F, X) (k − 1)-ExpTime k-ExpTime P-time k-ExpTime
LTL(U) (k − 1)-ExpTime k-ExpTime P-time k-ExpTime
CTL k-ExpTime k-ExpTime P-time k-ExpTime
CTL+ k-ExpTime (k + 1)-ExpTime P-time (k + 1)-ExpTime
CTL* k-ExpTime (k + 1)-ExpTime P-time (k + 1)-ExpTime
EF (k − 1)-ExpSpace-hard (k − 1)-ExpSpace-hard P-time (k − 1)-ExpSpace-hard

Figure 1 The complexity of model checking order-k higher-order systems. Unless stated, all
results are complete.

is currently a single or double exponential gap in the best known upper and lower bounds
(derived usually from µ-calculus and reachability respectively). One main contribution of this
paper is a nearly complete picture of the model checking complexities against temporal logics.
In particular, we consider data complexity (formulas are fixed), expression complexity (systems
are fixed), and combined complexity (both formulas and systems are input parameters).
Table 1 (left column) summarises our results. In all cases, our lower bounds hold without
the collapse operation, whilst our upper bounds allow collapse.

Basic process algebras (BPAs) are a natural and well-studied subclass of order-1 PDSs
(cf. [6]), which are suitable abstractions for modelling the control-flow of sequential programs
(cf. [2, 14]). We propose higher-order extensions of BPAs, called (collapsible) higher-order
basic process algebras (HOBPAs), that form a natural subclass of (collapsible) HOPDSs.
This differs from the single-state HOPDSs introduced by Bouajjani and Meyer [3]. As graph
generators, (collapsible) HOBPAs are almost as powerful as (collapsible) HOPDSs in the
following sense: (1) like CPDS, there exists a collapsible order-2 BPA whose graph has an
undecidable monadic second-order logic (MSO) theory, and (2) the class of graphs generated
by order-k BPAs coincide with those generated by order-k PDSs up to MSO interpretations.
In this paper, we provide an almost complete picture for the model checking complexities of
standard temporal logics over (collapsible) HOBPAs. See Table 1 (right column). We show
that the restriction to HOBPA does not, in most cases, simplify the model checking problem;
a notable exception is for data complexity, where the problem becomes polynomial time.
Again, our lower bounds hold without collapse, whilst our upper bounds allow collapse.

Similar analyses appear across a number of papers for the special case of order-1 pushdown
systems [1, 6, 30, 31, 4]. In all cases we generalise the resulting picture in a natural manner.
That is, a 1-ExpTime-complete complexity becomes k-ExpTime-complete, and so on. Our
upper bound results concern the data complexity of Collapsible HOBPAs and the data
and combined complexities for LTL over CPDSs. Previous work studied reachability, LTL
and the alternation-free µ-calculus [16, 27, 13] over HOPDS without collapse. However, we
believe the LTL algorithm contains an error, and provide a new algorithm. Furthermore,
the alternation-free µ-calculus algorithm in [16] is not optimal. Our remaining results
concern lower bounds. We begin with two techniques from in the literature: (1) Engelfriet’s
characterization of complexity classes k-ExpTime by extensions of HOPDAs (e.g. with
space-bounded worktape) [13], and (2) Cachat and Walukiewicz’s more “direct” approach
via encodings of large numbers using HOPDSs [8]. We employ Technique (1) to prove the
lower bounds for LTL (and its fragments), CTL, CTL+, and CTL*. This does not mean
that the proofs of the results are immediate: it was left as an open problem in [8] whether
the two techniques can be used to derive these lower bounds. Since Technique (1) seems
only suited to deriving k-ExpTime lower bounds (for some k), we give two variations of

FSTTCS 2010

230 The Complexity of Model Checking (Collapsible) Higher-Order Pushdown Systems

Technique (2) to derive (k − 1)-ExpSpace lower bounds for EF model checking over HOPDSs
and HOBPAs (the latter proof is substantially more involved). The lower bound proofs in
this paper suggest that Technique (1) yields simpler proofs, while Technique (2) offers more
flexibility.

The preliminaries are given in §2. We begin in §3 with the results for fixed formulas over
collapsible HOBPA. In §4 we discuss branching-time logics, and linear-time in §5. Finally,
we conclude this paper with future work in §6. Due to the length and intricate nature of the
proofs, we relegate the full details into the full version.

2 Preliminaries

We define (collapsible) higher-order pushdown systems and basic process algebra and give a
result of Engelfriet used in some proofs. Note, after defining higher-order and collapsible
stores, we only define higher-order systems. For the collapsible version, simply replace the
higher-order store with a collapsible one, expanding the stack operations accordingly. Also,
the definitions generalise from non-deterministic to alternating in the standard way.

Higher-Order Collapsible Pushdown Stores
We begin by defining a higher-order pushdown store. Collapse links will be introduced
afterwards. Intuitively, a higher-order store is a stack of lower order stacks.

I Definition 1 (k-Stores). Let CΣ
0 be a finite alphabet Σ with [,] /∈ Σ. For k ≥ 1, the set of

k-stores CΣ
k contains all [γ1 . . . γm] with m ≥ 1 and γi ∈ CΣ

k−1 for all 1 ≤ i ≤ m.

There are two operations defined over 1-stores (for all w ∈ Σ∗)

pushw[a1 . . . am] = [wa2 . . . am] and top1[a1 . . . am] = a1 .

We define pop1 = pushε. Let O1 = { pushw | w ∈ Σ∗ }. When k > 1, a push operation
creates a copy of the topmost stack, while a pop removes it. We assume w.l.o.g. that
Σ ∩ N = ∅, where N is the set of natural numbers. Finally, let [γ1 . . . γm] ∈ CΣ

k for some k.

pushw[γ1 . . . γm] = [pushw(γ1)γ2 . . . γm]
pushl[γ1 . . . γm] = [pushl(γ1)γ2 . . . γm] if 2 ≤ l < k

pushk[γ1 . . . γm] = [γ1γ1γ2 . . . γm]
popl[γ1 . . . γm] = [popl(γ1)γ2 . . . γm] if 1 ≤ l < k

popk[γ1 . . . γm] = [γ2 . . . γm] if m > 1
topl[γ1 . . . γm] = topl(γ1) if 1 ≤ l < k

topk[γ1 . . . γm] = γ1

Note, when m = 1, popk is undefined. Let Ok = { pushw | w ∈ Σ∗ } ∪ { pushl, popl | 1 <
l ≤ k }. We designate ⊥ to be a bottom of stack symbol that is neither pushed nor popped.
Let [w]1 = [w] and [w]k = [[w]k−1].

For collapse, the order-1 push operation pushw is replaced with push
a

i1
1 ...aim

m b
for 1 ≤

iz ≤ k and az, b ∈ Σ where 1 ≤ z ≤ m. A push
a

i1
1 ...aim

m b
on some stack with top1 character

a is equivalent to pusha1...amb except each az is augmented with a pair (iz, 1). That is,
the top of stack character a(i,j) is replaced by a(i1,1)

1 . . . a
(im,1)
m b(i,j). The collapse operation

from a character a(i,j) is equivalent to j applications of popi. The second component j is
incremented at every pushi. Hence, (i, j) is a link to the order-(i − 1) stack beneath the
character when it was first pushed.

M. Hague and A. W. To 231

Consider [[[⊥] [⊥]]]. Applying pusha2⊥ gives
[[[
a(2,1) ⊥

]
[⊥]
]]
. The pair (2, 1) points to

[⊥]. A push2 leads to
[[[
a(2,2) ⊥

] [
a(2,1) ⊥

]
[⊥]
]]
. Note the second component is incremented

in the copy of a, and, thus, (2, 2) also points to [⊥]. A subtlety occurs after a push3. We
obtain the stack below on the left, where the copies of a now refer to the copies of [⊥] within
the order-2 stack they occupy. After a collapse, we obtain the stack on the right.[[[

a(2,2) ⊥
] [
a(2,1) ⊥

]
[⊥]
][[

a(2,2) ⊥
] [
a(2,1) ⊥

]
[⊥]
]] [

[[⊥]][[
a(2,2) ⊥

] [
a(2,1) ⊥

]
[⊥]
]]

Formally, we define order-k stores with links in terms of order-k stores over the infinite
alphabet Σ =

{
a(i,j) | i, j ∈ N

}
. The set of operations over an order-k store with links is

Ock =
{
push

a
i1
1 ...aim

m b
| ∀1 ≤ z ≤ m.1 ≤ iz ≤ k ∧ az ∈ Σ

}
∪{ pushl, popl, collapse | 1 < l ≤ k } .

Note that this set of operations is slightly different from the original definition [17]. We show,
in the full version, that the definitions are equivalent. The semantics of the operations are
given below, in terms of the standard order-k pushdown operators, and an order-k stack
γ = [γ1 . . . γm]. Let γ<k> be the stack γ where each superscript (i, j) with i ≥ k is replaced
with (i, j + 1).

push
a

i1
1 ...aim

m b
(γ) = push

a
(i1,1)
1 ...a

(im,1)
m b

(i′,j′)
m

(γ) where top1(γ) = b(i
′,j′)

collapse(γ) = popji (γ) where top1(γ) = b(i,j)

pushk[γ1 . . . γm] = [γ<k>1 γ1 . . . γm]
pushl[γ1 . . . γm] = [pushl(γ1)γ2 . . . γm] where l < k

Higher-Order Pushdown Systems
A HOPDS is a finite-state system with a higher-order store. The finite-state component is
the control state. At each step, the applicable transitions are determined by the control state
and the top1 character of the stack. Each transition updates the control state and the stack.

I Definition 2. An order-k PDS is a tuple (P,R,Σ, p0,⊥) where P is a finite set of control
states, R ⊆ P × Σ×Ok × P is a finite set of rules, Σ is a finite stack alphabet, p0 ∈ P is an
initial control state and ⊥∈ Σ is a bottom of stack symbol.

A configuration of a higher-order PDS is a pair 〈p, γ〉 where p ∈ P and γ is a k-store.
We have a transition 〈p, γ〉 ↪→ 〈p′, γ′〉 iff we have (p, a, o, p′) ∈ R, top1(γ) = a and γ′ = o(γ).
The initial configuration is 〈p0, [⊥]k〉.

Higher-Order Basic Process Algebra
An order-1 BPA is an order-1 PDS with a single control state. By applying the same restriction,
Bouajjani and Meyer have obtained one definition of higher-order BPA [3]. However, consider
〈p, [[a ⊥]]〉 and the rule (omitting the control) (a, push2). We obtain 〈p, [[a ⊥] [a ⊥]]〉 and
the same rule can be applied, ad infinitum. However, at order-1 we may use (a, pushbc) to
rewrite the top character before adding a new top character. Hence, at order-j, it is natural
to be able to rewrite the top order-(j − 1) stack, before adding a new one. Consequently, we
introduce (a, pushj , b) = pusha; pushj ; pushb for all 2 ≤ j ≤ k. E.g., such rules can simulate
push2; push3; pop2. Let O′k = { pushw | w ∈ Σ∗ } ∪ { (a, pushj , b), popj | 1 < j ≤ k }.

FSTTCS 2010

232 The Complexity of Model Checking (Collapsible) Higher-Order Pushdown Systems

I Definition 3. An order-k BPA is a tuple (R,Σ,⊥) where R ⊆ Σ ×O′k is a finite set of
rules, Σ is a finite stack alphabet, and ⊥∈ Σ is the bottom of stack symbol.

We mention two results on the expressive power of HOBPAs as graph generators. Familiarity
with monadic second-order logic (MSO) is assumed (cf. [28]). As graph generators, (collapsi-
ble) HOBPAs are as powerful as (collapsible) HOPDAs up to monadic second-order logic
(MSO) interpretation in the following sense. First, it is known that there exists an order-2
CPDA generating a graph with an undecidable MSO theory [17]. In contrast, over HOPDAs,
MSO is decidable. This CPDA is not a collapsible HOBPA. On the other hand, using the
ideas from [17], it is not difficult to come up with an order-2 collapsible HOBPA generating
a graph with an undecidable MSO theory.
I Proposition 1. There exists a fixed collapsible order-2 BPA which generates a graph with
an undecidable MSO theory.
We sketch the proof of this proposition in the full version. Secondly, we discuss the expressive
power of HOBPAs without collapse. Carayol and Wöhrle [9, 10] gave a fixed graph ∆k

2 , for
each integer k > 0, such that the class of graphs that are MSO-interpretable in the graphs
generated by order-k PDSs coincide with the class of graphs that are MSO-interpretable
in ∆k

2 . It is easy to check that ∆k
2 can be generated by a fixed order-k BPAs (e.g. see [9]),

which implies the following proposition.
I Proposition 2. The class of graphs that are MSO-interpretable in the graphs generated by
order-k BPAs coincide with the class of graphs MSO-interpretable in the graphs generated
by order-k PDSs.

Higher-Order Pushdown Automata with an Auxiliary Work Tape
For the lower bound proofs we use HOPDA with a space-bounded work tape. That is, in
addition to the control state and the stack, the machine has a bounded, two-way work tape.
This tape operates identically to the tape in a Turing machine.

I Definition 4. An order-k PDA with an s(n)-space work tape is a tuple (P,R,Σ,Γ ∪
{ε} ,∆, p0,⊥,2,F) where P is a finite set of control states, R ⊆ (P × Γ ∪ {ε} × Σ×∆)×
Ok × (∆× {l, r} × P) is a finite set of rules, Σ is a finite stack alphabet, Γ is a finite input
alphabet, ∆ is a finite tape alphabet, p0 ∈ P is an initial control state, ⊥∈ Σ is the bottom
of stack symbol, 2 ∈ ∆ denotes a blank tape cell and F ⊆ P is a set of accepting control
states.

Given an input word of length n, a configuration of a HOPDA with s(n) bounded work
tape is a tuple 〈p, γ, t, j〉 where p ∈ P , γ is a k-store, t (the tape contents) is a word in ∆s(n)

and 1 ≤ j ≤ s(n) indicates the position of the read/write head on the tape.
A rule (p, α, a, x, o, y, d, p′) ∈ R can be applied when the current control state is p, the

input character is α, the top-of-stack character is a, and the tape contents at position j are
x. The control state is then updated to p′, the command o is applied to the stack, and y is
written to the tape. The tape head moves accordingly for d = l (left) or d = r (right).

More formally, we have a transition 〈p, γ, t, j〉 α
↪−→ 〈p′, γ′, t′, j′〉 iff we have

(p, α, a, x, o, y, l, p′) ∈ R, j > 1, top1(γ) = a, t(j) = x, γ′ = o(γ), t′(j) = y, t′(h) = t(h) for
all h 6= j and j′ = j − 1 or we have (p, α, a, x, o, y, r, p′) ∈ R, j < s(n), top1(γ) = a, t(j) = x,
γ′ = o(γ), t′(j) = y, t′(h) = t(h) for all h 6= j and j′ = j − 1. For α 6= ε, we write c α

↪−→ε c
′

whenever there is a sequence of ε-transitions from c to some c1, an α-transition from c1 to c2
and a sequence of ε-transitions to c′. A word α1, . . . , αn is accepted by the automaton iff
cn = 〈p, γ〉 and p ∈ F and c0

α1
↪−→ε · · ·

αn
↪−→ε cn where c0 = 〈p0, [⊥]k,2s(n), 1〉.

M. Hague and A. W. To 233

Temporal Logics
We will assume familiarity with the temporal logics discussed, remarking only that µLTL is
LTL extended with fixed point operators. Full definitions can be found in the literature [12, 29].
We assume, for all logics, the valuations of atomic propositions depend only on the control
state and current top-of-stack character, referred to as a head. That is, Λ : P ×Σ→ 2Prop is
an assignment of satisfied atomic propositions from the set Prop to each head in P × Σ. We
say a system satisfies a formula if it holds at the initial state of the system.

Engelfriet’s Results
We use the following theorem of Engelfriet [13] in some proofs. Let NSPACE(s(n))-P k denote
the class of languages accepted by a non-deterministic order-k PDA with an s(n)-space-
bounded work tape, where n is the length of the input word. Similarly, ASPACE(s(n))-P k
denotes the class of languages accepted by an alternating order-k PDA with an s(n)-space-
bounded work tape. Finally

⋃
d>0 DTIME(expk(ds(n))) is the class of languages accepted

by a time-bounded Turing machine, where exp0(x) = x and expk(x) = 2expk−1(x).

I Theorem 5 ([13], Thm. 2.5). For any k ≥ 1 and s(n) ≥ log(n), we have NSPACE(s(n))-P k
= ASPACE(s(n))-P k−1 =

⋃
d>0 DTIME(expk(ds(n))).

That is, a non-deterministic order-k PDA with a polynomially-bounded work tape exists
for every k-ExpTime language, and an alternating order-k PDA with a polynomially-bounded
work tape exists for every (k + 1)-ExpTime language.

3 Model Checking Collapsible HOBPA Against Fixed Formulas

We begin with a P-time algorithm for model checking collapsible HOBPA against fixed
formulas. Hardness follows from the P-time-hardness of context-free language emptiness [15].

I Theorem 6. For any logic that can be translated into µ-calculus, model checking collapsible
HOBPA against a fixed formula is in P-time.

Proof. As argued in the full version, any collapsible HOBPA can be simulated by a CPDS
with a fixed number of control states. Therefrom, and since the formula is fixed, we construct
a CPDS parity game with a fixed number of control states. At order-k, the winner of these
games can be determined in k-ExpTime in the number of control states, and polynomial in
the alphabet [17]. Hence, the algorithm runs in P-time. J

4 Branching Time

We begin by observing, for CPDS, the upper bounds for CTL, CTL+ and CTL* can be
obtained by translating into µ-calculus, which has a k-ExpTime model checking problem.
For CTL, the translation is polynomial. For CTL+ and CTL* it is exponential, giving
(k + 1)-ExpTime, and k-ExpTime when the formula is fixed. For the lower bound results,
we discuss EF, CTL and then CTL+.

I Theorem 7. For a fixed formula, and a given order-k CPDS, model checking CTL,
CTL+ and CTL* is in k-ExpTime. For a non-fixed system and non-fixed formula, CTL is
k-ExpTime, and CTL+ and CTL* are in (k + 1)-ExpTime.

FSTTCS 2010

234 The Complexity of Model Checking (Collapsible) Higher-Order Pushdown Systems

4.1 Lower Bounds for EF
In most cases, we are able to derive optimal lower bounds using Theorem 5. However,
Theorem 5 is not immediately applicable for (e.g.) (k − 1)-ExpSpace problems. In the
case of EF-logic, the model checking problem over order-1 PDSs and BPAs is PSpace-
complete [25, 31]. We now give (k − 1)-ExpSpace lower bounds for data complexity of
order-k PDSs and the expression complexity of order-k BPAs (and thus of order-k PDSs)
using the technique of [8] of encoding large numbers. We conjecture that these lower bounds
are tight (currently, the best upper bound is k-ExpTime, which is inherited from µ-calculus).

I Theorem 8. Model checking EF over order-k PDS without collapse is (k − 1)-ExpSpace-
hard, even for a fixed formula.

Proof. (sketch) We reduce membership for a given (k − 1)-ExpSpace Turing machine M
using expk−1(p(n)) space on an input word of length n, for some polynomial function p. Fix
a number m ∈ Z>0, which we will later define as p(n) once n is set. The proof combines the
technique of [1] for proving that EF-logic over PDS is PSpace-hard and the technique of [8]
for encoding and checking large numbers (i.e. k-towers of exponentials) using operations in
Ok.

We shall start by briefly recalling the encoding techniques of large numbers from [8]. For
each i ∈ Z>0, we define Σi := {ai, bi} and Σ≤i :=

⋃i
j=1 Σi. We now define the notion of

i-counters by induction. A 1-counter (of length m) is a word σm−1 . . . σ0 ∈ (Σ1)m. Such a
word naturally represents the number

∑m−1
i=0 σi2i where a1 represents 0 and b1 represents

1. Assuming that the notion of i-counter has been defined, an (i + 1)-counter is simply
a word σrlr . . . σ0l0 over Σ≤i+1, where r = expi(m) − 1, σj ∈ Σi+1, and lj is an i-counter
representing the number j. This (i+ 1)-counter represents the number

∑r
j=0 σj2j , where (as

before) ai+1 and bi+1 are used to (respectively) represent 0 and 1.
Cachat and Walukiewicz [8] showed that a polynomial-size order-k pushdown game arena

P with a reachability objective could be defined (depending only on m) with the following
control states and properties: counterk — from configuration (counterk, γ) of P, Player
0 wins iff γ ends with a k-counter; firstk (resp. lastk) — from configuration (firstk, γ)
(resp. (lastk, γ), Player 0 wins iff γ ends with a k-counter representing 0 (resp. expk−1(m));
equalk — from (equalk, γ), Player 0 wins iff γ ends with two k-counters representing equal
values; succk — from (succk, γ), Player 0 wins iff γ ends with two k-counters representing
successive values. We observe that the game element of P can easily be translated into fixed
EF formulas (i.e. not depending on m) satisfying the same properties, the main reason being
that the game arena P has a fixed number of rounds.

The rest of the proof uses the idea of [1]. Using an EF operator, we will first guess
a word in Σ≤k+1 representing an accepting computation of M on the given input word
w = α1 . . . αn. We then need to check that the guess is valid. That is, it represents a
sequence of configurations, the initial configuration is the right form, the final configuration
is reached, and consecutive configurations respect the transition relation. All these can be
done by means of a fixed formula, thanks to the result above for encoding large numbers. J

I Theorem 9. For a fixed order-k HOBPA without collapse, model checking EF is (k − 1)-
ExpSpace-hard.

Proof. (sketch) The proof uses some general ideas from the previous proof, but, without
control states to encode tests for large numbers, we need an entirely different construction.
We briefly explain the order-2 case. Our HOBPA P will guess an accepting run of a fixed
exponential space Turing machine M accepting an ExpSpace-complete language, obtaining a

M. Hague and A. W. To 235

stack of the form [w]2. For the checking stage, our HOBPA P now tries to find some location
inside the stack that is invalid. In doing so, we need to ensure that all of the information
on top of this location is not destroyed. To this end, we will build a stair-like structure
from [w]2 by performing operations of the form [push1(a′); push2; push1(prime)] or of the
form [push1(a′′); push2; push1(dprime)] when seeing a topmost stack symbol a. Here, prime
and dprime are simply intermediate symbols to help signify the action that was previous
executed, i.e., we could simply only allow pop1 operation when prime or dprime is seen as
topmost symbol. The double prime marking is used to “remember” the starting point of
(sub)configuration that we suspect is invalid. That is, we will have to make sure that it is
put precisely once. At some point, P simply applies rules of the form push1(a′) when a is
seen without applying push2, which marks the end point of a (sub)configuration that we
suspect is invalid. We then only allow rules pop2 when primed or double primed symbols
are seen. To make sure that we see precisely one separator symbol (i.e. a3 ∈ Σ3), we can
use an EF formula saying facts about the location of the double primed symbol a′′3 . Such a
stair-like structure will allow us to define EF formulas that play the roles of counteri, firsti,
lasti, equali, and succi and their associated EF formulas in the previous proof. J

4.2 Lower Bounds for CTL
Data Complexity We know, for a fixed formula, model checking CTL, CTL+ and CTL*
against HOPDSs is in k-ExpTime. Here, we show the lower bound.

I Theorem 10. For a fixed formula, model checking CTL over a given order-k HOPDS
without collapse is k-ExpTime-hard.

Proof. (sketch) From Theorem 5 we take a language that is k-ExpTime-hard and fix an
equivalent order-(k − 1) alternating HOPDA with a polynomially space-bounded work tape
P. The reduction is inspired by Bozzelli [4].

We use an order-k stack to navigate a computation tree of the HOPDA. To simulate the
work tape, at each step, after an operation on the order-(k − 1) stack, a sequence of tape
symbols are pushed on to the top order-1 stack. Then, the system can do a check branch to
ensure the guessed tape is consistent with the previous, or continue simulating the execution.
To continue, an order-k push saves the current state (for backtracking), the work tape is
erased, the next rule is announced, and a pushk remembers the rule. This process repeats.
Consider the example order-3 stack below. [tw1]

[w2]
. . .

 [
[r . . .]
. . .

] [t′w′1]
[w′2]
. . .

 · · ·

This stack is at a configuration with the tape given by the word t and order-2 stack
[[w1] [w2] . . .], which can backtrack to a configuration with tape t′ and order-2 stack
[[w′1] [w′2] . . .]. The rule r connects the configurations. When an accepting configuration is
seen, or the children of the current node have been fully explored, we backtrack using popk,
and check untested universal branches. The automaton accepts when the (marked) initial
stack is reached. That is, all paths have been explored, and found to be accepting.

The check branches have further branches for each of the polynomially many positions
of the work tape. Each branch uses the control state to find the correct position, and then,
using the control state, compares it with the corresponding positions in the previous work
tape, which is recovered via popk operations.

FSTTCS 2010

236 The Complexity of Model Checking (Collapsible) Higher-Order Pushdown Systems

The CTL formula E ((op ∧AX(check → AFgood))Ufin) asserts a path encoding an
accepting tree exists, and checking branches all accept. The proposition op indicates the
current path is simulating a tree, and check indicates a checking branch. Finally, good
indicates that the check has been passed, and fin denotes the (successful) completion of the
run. J

Expression Complexity The following theorem takes care of all cases.

I Theorem 11. For a fixed order-k HOBPA without collapse, model checking CTL is
k-ExpTime-hard.

Proof. (sketch) The proof is in stages. First, we adapt Theorem 10, unfixing the formula to
fix the HOPDS. A HOBPA is obtained using a more complex formula. There are two main
assertions we move from the HOPDS to the formula. First, the check branch becomes a
straight-line sequence of pops and the formula uses sequences of EX to compare positions.
Secondly, the word position being read has to be guessed and added to the work tape
information, then checked by the formula. Hence, we have the result for a fixed HOPDS.

To obtain a HOBPA the main difficulty is that control states were used to separate the
check, backtrack and simulation phases of the model. Here we use the (a, pushj , b) rules
so that, when pushing, the automaton can read a character a, and mark it a in the next
applied rule. Hence the system knows when it is moving up or down the stack, and when
it has simulated a stack action. Also the automaton announces the intended phases. For
example, the check branch announces “check”, removes the work tape, announces “popk”,
pops, announces “check” again and removes the work tape. The formula can then use EXj

to look into the first tape, and E(tapeU(popk ∧ EX(check ∧ EXjϕ))) to look j steps into
the next tape, where tape indicates that a tape character is seen. J

4.3 Lower Bounds for CTL+

For data complexity, the CTL lower bound transfers to CTL+ and CTL*. For the expression
complexity, the following theorem suffices.

I Theorem 12. For a fixed order-k HOBPA without collapse, model checking CTL+ is
(k + 1)-ExpTime-hard.

Proof. (sketch) First we adapt the proof of Theorem 10 to show, CTL* is (k + 1)-ExpTime-
hard. We then replace the CTL* formula with a CTL+ formula. Then we show how to fix
the system, and restrict ourselves to HOBPA.

For a non-fixed formula and system, our CTL* proof adapts Bozzelli’s order-1 proof [4].
Fix a language that is hard for (k + 1)-ExpTime and an equivalent order-(k − 1) alternating
HOPDA with an exponentially space-bounded work tape. The system proceeds as before, but
guesses the length of the work tape and uses a word binn(0)c0binn(1)c1 · · · binn(2n− 1)c2n−1
to represent it, where binn(i) is the n-digit binary representation of i, and cj are cell contents.
The check phase has one branch to check the cell counters are sequential, and the others,
instead of just popping down the stack, mark a position in each tape. The formula asserts,
when markings are sensible, the tape contents are locally consistent. This can, in fact, be
encoded in CTL+ by taking advantage of straight-line parts of the execution and adding
extra markings. Obtaining a fixed HOBPA is similar to the CTL case, with some extra tricks.
E.g., to ensure each marker is placed once and in the correct order. J

M. Hague and A. W. To 237

5 Linear Time

We consider the linear time logics. We first deal with the upper bound for linear time
µ-calculus (µLTL) — and hence LTL — before considering the lower bounds in turn.

5.1 Upper Bounds for µLTL
Since the linear time µ-calculus (µLTL) does not translate polynomially into µ-calculus, we
show the k-ExpTime upper bound of model checking µLTL against CPDS separately. Note
that µLTL trivially subsumes all other linear time logics considered in this paper.

I Theorem 13. Model checking µLTL against order-k CPDSs is in k-ExpTime for a non-fixed
formula, and (k − 1)-ExpTime for a fixed formula.

Proof. (sketch) We can translate any µLTL formula ϕ into a Büchi automaton B at an
exponential cost [29]. From a given CPDS P we construct a product CPDS PB = P × B
which has a Büchi acceptance condition such that PB accepts iff P does not satisfy ϕ.

An order-k Büchi CPDS is a CPDS parity game with two colours and only one player.
Hence, non-emptiness can be reduced to determining the winner in a parity game, which
takes k-ExpTime in the size of the CPDS [17]. Since the Büchi CPDS is exponential in
the size of ϕ, this complexity is too high. The algorithm for an order-k parity game is by
a reduction to an order-(k − 1) game of exponential size. Because the Büchi CPDS has
one player, we can avoid the exponential blow up, constructing an order-(k − 1) game of
polynomial size. This can be solved in (k − 1)-ExpTime in the size of the Büchi CPDS,
giving an algorithm in k-ExpTime for a non-fixed formula, and (k − 1)-ExpTime for a fixed
formula. J

5.2 Lower Bounds for LTL
We first give a matching lower bound for data complexity (fixed formula) of LTL, which
already hold for its fragments LTL(F,X) and LTL(U). Since we have previously shown that
order-k HOBPA can be analysed in P-time for fixed formulas, it remains to consider HOPDS.

I Theorem 14. Model checking HOPDS without collapse against fixed LTL(F, X) and
LTL(U) formulas is (k − 1)-ExpTime-hard.

Proof. The non-emptiness problem for HOPDS is (k − 1)-ExpTime-complete [13]. This
problem easily reduces to checking the fixed formula G(¬f), where f holds at all accepting
states. Since this formula is both in LTL(F, X) and LTL(U), we are done. J

Next we study the expression complexity (fixed system). This is our main result of this
section: already for a fixed order-k HOBPA, both LTL(F, X) and LTL(U) are k-ExpTime-
hard.

I Theorem 15. Model checking LTL(F, X) and LTL(U) against a fixed HOBPA without
collapse is k-ExpTime-hard.

Proof. (sketch) We take a k-ExpTime-hard language L, and, by Theorem 5, its equivalent
HOPDS with s(n)-bounded space work tape P , for some polynomial s(n). We shall construct
a fixed HOBPA P ′ such that the language L is polynomial-time reducible to the LTL(F,X)
model checking problem over P ′. We can similarly derive the desired lower bound for LTL(U)
by “weakly” simulating the next operators with the until operator in the standard way.

FSTTCS 2010

238 The Complexity of Model Checking (Collapsible) Higher-Order Pushdown Systems

We shall now give an intuition of the construction of P ′. Our HOBPA P ′ is an “over-
approximation” of P in the sense that P ′ can do whatever actions P can do but also more.
We will then use LTL(F,X) formulas to enforce correct simulations. This is of course due
to the fact that P ′ lacks control states and work tape, and its definition should not depend
on the input word to P. We shall now elaborate more on how this can be implemented.
Given a word w = α1 . . . αn ∈ Γ∗, we would like to determine if there is an accepting run
of P on w, i.e., a sequence of configurations of the form 〈p, γ, t, j〉 starting with a starting
configuration and ending with a final configuration. Here, p is a control state of P, γ is a
k-store, t ∈ ∆s(n) is a tape content, and 1 ≤ j ≤ s(n) is the position of the tape head. We
will represent each such configuration as the topmost symbols of a contiguous sequence of
configurations of P ′. For example, suppose that the current configuration of P is 〈p, γ, t, j〉
where top1(γ) = a. The HOBPA P ′ will start by having (p, a) as its topmost stack symbol.
It will then keep modifing its topmost symbol to reflect the tape content t and the position j.
This is done by guessing each individual tape cell content from left to right. At some point,
P ′ will nondetermistically choose some rule of P to fire. We simulate this by first executing
the stack operation and then guess some new state, which we put on top of the stack (this
guess is needed because pop operations will destroy control state information). It will then
continue by guessing next tape content in the same manner. This process can be repeated
indefinitely, unless P ′ decides to go to a final (i.e. sink) state, in which P ′ will just loop
forever. Given an input word w = α1 . . . αn ∈ Γ∗, we may force a correct simulation of P on
w by P ′ using an LTL(F,X) formula. That is, we give a formula ϕw such that w ∈ L(P) iff
P ′, c0 6|= ϕw, where c0 is an appropriate initial configuration of P ′ reflecting the initial state
of P. This can be done by first ensuring that each configuration of P in the simulation as a
contiguous sequence of configurations of P ′ is valid. In particular, the guessed tape content
(reflected by the topmost symbols in this sequence of configurations of P ′) must be of length
s(n) and has precisely one tape head, which can be easily expressed in LTL(F,X) using
a single operator G and nestings of next operators of depth s(n) (approximately). Recall
that s(n) is a polynomial function. Using the same technique, we also express that two
representations of consecutive configurations of P in the simulation respect the transition
relation of P . Similarly, we enforce the initial configuration in the simulation and that some
final configuration of P is reached. J

6 Future Work

There are several avenues of future work. E.g., we have no matching upper bound for
the complexity of EF model checking. Walukiewicz has shown the problem to be PSpace-
complete at order-1 [31]. However, his techniques do not easily extend to HOPDS owing to
the subtleties of higher-order stacks. We may also study simpler logics such as LTL(F).

Acknowledgments. We thank Olivier Serre for interesting discussions and the anonymous
referees for their helpful remarks. This work was partly supported by EPSRC (EP/F036361
and EP/E005039), and was done while the second author was a student at the School of
Informatics, University of Edinburgh.

References
1 A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata:

Application to model-checking. In CONCUR, p. 135–150, 1997.
2 A. Bouajjani, P. Habermehl, and R. Mayr. Automatic verification of recursive procedures

with one integer parameter. Theor. Comput. Sci. 295:85–106 (2003)

M. Hague and A. W. To 239

3 A. Bouajjani and A. Meyer. Symbolic Reachability Analysis of Higher-Order Context-Free
Processes. In FSTTCS, p. 135–147, 2004.

4 L. Bozzelli. Complexity results on branching-time pushdown model checking. Theor. Comput.
Sci., 379(1-2):286–297, 2007.

5 C. Broadbent and L. Ong. On global model checking trees generated by higher-order recursion
schemes. In FOSSACS, p. 107–121, 2009.

6 O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on infinite structures. In
Handbook of Process Algebra, Elsevier, 1999.

7 T. Cachat. Higher order pushdown automata, the caucal hierarchy of graphs and parity games.
In ICALP, p. 556–569, 2003.

8 T. Cachat and I. Walukiewicz. The complexity of games on higher order pushdown automata.
CoRR, abs/0705.0262, 2007.

9 A. Carayol. Regular sets of higher-order pushdown stacks. In MFCS, p. 168–179, 2005.
10 A. Carayol and S. Wöhrle. The caucal hierarchy of infinite graphs in terms of logic and

higher-order pushdown automata. In FSTTCS, p. 112–123, 2003.
11 D. Caucal. On infinite terms having a decidable monadic theory. In Proc. MFCS, p. 165–176,

2002.
12 E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer Science, p.

995–1072, Elsevier, 1990.
13 J. Engelfriet. Iterated pushdown automata and complexity classes. In STOC, p. 365–373,

1983.
14 J. Esparza and J. Knoop. An automata-theoretic approach to interprocedural data-flow

analysis. In FoSSaCS, p. 14–30, 1999.
15 E. M. Gurari. An Introduction to the Theory of Computation. W. H. Freeman & Co., New

York, NY, USA, 1989.
16 M. Hague. Global Model Checking Higher Order Pushdown Systems. PhD thesis, Oxford

University, 2009.
17 M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible pushdown automata and

recursion schemes. In LICS, p. 452–461, 2008.
18 T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown trees are easy. In FoSSaCS,

p. 205–222, 2002.
19 T. Knapik, D. Niwinski, P. Urzyczyn, I. Walukiewicz. Unsafe Grammars and Panic Automata.

In ICALP, p. 1450-1461, 2005.
20 N. Kobayashi. Model-checking higher-order functions. In PPDP, p. 25–36, 2009.
21 N. Kobayashi. Types and higher-order recursion schemes for verification of higher-order

programs. In POPL, p. 416–428, 2009.
22 N. Kobayashi and C.-H. L. Ong. Complexity of model checking recursion schemes for fragments

of the modal mu-calculus. In ICALP, p. 223–234, 2009.
23 N. Kobayashi and C.-H. L. Ong. A type system equivalent to the modal mu-calculus model

checking of higher-order recursion schemes. In LICS, p. 179–188, 2009.
24 A. N. Maslov. Multilevel stack automata. Probl. Inf. Transm., 15:1170–1174, 1976.
25 R. Mayr. Strict lower bounds for model checking BPA. Electr. Notes Theor. Comput. Sci., 18,

1998.
26 C.-H. L. Ong. On model-checking trees generated by higher-order recursion schemes. In LICS,

p. 81–90, 2006.
27 A. Seth. An Alternative Construction in Symbolic Reachability Analysis of Second Order

Pushdown Systems. Int. J. Found. Comput. Sci. 19(4): 983-998, 2008.
28 W. Thomas. Constructing Infinite Graphs with a Decidable MSO-Theory. In MFCS, p.

113–124, 2003.
29 M. Vardi. A temporal fixpoint calculus. In POPL, p. 250-259, 1988.
30 I. Walukiewicz. Pushdown processes: Games and model checking. In CAV, p. 62–74, 1996.
31 I. Walukiewicz. Model checking CTL properties of pushdown systems. In FSTTCS, p. 127–138,

2000.

FSTTCS 2010

A graph polynomial for independent sets of
bipartite graphs∗

Qi Ge and Daniel Štefankovič

Department of Computer Science
University of Rochester
Rochester, NY 14627, USA
{qge,stefanko}@cs.rochester.edu

Abstract
We introduce a new graph polynomial that encodes interesting properties of graphs, for example,
the number of matchings, the number of perfect matchings, and, for bipartite graphs, the number
of independent sets (#BIS).

We analyze the complexity of exact evaluation of the polynomial at rational points and
show a dichotomy result—for most points exact evaluation is #P-hard (assuming the generalized
Riemann hypothesis) and for the rest of the points exact evaluation is trivial.

We propose a natural Markov chain to approximately evaluate the polynomial for a range of
parameters. We prove an upper bound on the mixing time of the Markov chain on trees. As a
by-product we show that the “single bond flip” Markov chain for the random cluster model is
rapidly mixing on constant tree-width graphs.

1998 ACM Subject Classification F.2.2, G.2.1, G.2.2, G.3

Keywords and phrases graph polynomials, #P-complete, independent sets, approximate count-
ing problems, Markov chain Monte Carlo

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.240

1 Introduction

Graph polynomials are a well-developed area useful for analyzing properties of graphs
(see, e. g., [7, 8] and [18]). Arguably the most intriguing graph polynomial is the Tutte
polynomial [24, 25]. The partition function of the random cluster model from statistical
mechanics provides a particularly simple definition: for a graph G = (V,E) let

Z(G; q, µ) =
∑
S⊆E

qκ(S)µ|S|, (1)

where κ(S) is the number of connected components of the graph (V, S). It is well-known
that the Tutte polynomial is obtained from Z by a simple transformation, see, e. g., [28].
The Tutte polynomial includes many graph polynomials as special cases, e. g., the chromatic
polynomial, the flow polynomial, and the Potts model (see, e. g., [28]).

Now we define our graph polynomial.

I Definition 1. The R2-polynomial of a graph G = (V,E) is

R2(G; q, µ) =
∑
S⊆E

qrk2(S)µ|S|, (2)

∗ Research supported, in part, by NSF grant CCF-0910584.

© Qi Ge and Daniel Štefankovič;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 240–250

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.240
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Qi Ge and Daniel Štefankovič 241

where rk2(S) is the rank of the adjacency matrix of (V, S) over F2 (the field with 2 elements).

The most interesting fact about the R2 polynomial is that for bipartite graphs it encodes
the number of independent sets (see Theorem 4 below). We are not aware of any other
graph polynomial that encodes the number of independent sets in a non-obvious manner.
(The independence polynomial of graph G is I(G;x) =

∑
k skx

k, where sk is the number of
independent sets of G of size k; here, obviously I(G, 1) counts the number of independent
sets of G.)

To illustrate a difference between the random cluster polynomial and the R2-polynomial
we provide a few small examples. Note that P4 and claw graph (one vertex attached to 3
other vertices) have the same random cluster polynomial whereas C3 and claw graph have
the same R2-polynomial.

Random cluster polynomial R2 polynomial
claw graph (µ+ q)3q (µ3 + 3µ2 + 3µ)q2 + 1
path P4 (µ+ q)3q (µ3 + µ2)q4 + (2µ2 + 3µ)q2 + 1
cycle C3 q3 + 3µq2 + (µ3 + 3µ2)q (µ3 + 3µ2 + 3µ)q2 + 1

2 Our results

Now we look at how R2(G; q, µ) encodes some properties of graphs.

I Lemma 2. Substituting q = µ−1/2 into equation (2) we define

P (G;µ) := R2(G;µ−1/2, µ) =
∑

S⊆E(G)

µ|S|−rk2(S)/2.

Then P (G; 0) is the number of matchings in G.

Proof. Note that rk2(S) ≤ 2|S| (since adding an edge to S changes two entries in the
adjacency matrix and hence can change rank by at most two), and rk2(S) < 2|S| if S is not
a matching (since rank of the adjacency matrix of a star is 2 < 2|S|, and adding further
edges preserves the strict inequality). J

I Lemma 3. Let

P (G; t, µ) := t|V |R2(G; 1/t, µ) and P2(G;µ) := µ−|V |/2P (G; 0, µ).

Then P2(G; 0) is the number of perfect matchings of G.

Proof. Note that only subsets with full rank adjacency matrix contribute to P (G; 0, µ), and
then only the minimal cardinality subsets with full rank adjacency matrix contribute to
P2(G; 0) (these subsets are exactly the perfect matchings). J

From now on we focus solely on bipartite graphs. For a bipartite graph G = (U ∪W,E)
we let

R′2(G;λ, µ) =
∑
S⊆E

λrk2(S)µ|S|, (3)

where rk2(S) is the rank of the bipartite adjacency matrix of (U ∪W,S). Note that

R2(G;λ, µ) = R′2(G;λ2, µ), (4)

FSTTCS 2010

242 A graph polynomial for independent sets of bipartite graphs

since the adjacency matrix contains “two copies” of the bipartite adjacency matrix (one of
them transposed). (The reason for definition (3) is that we prefer to operate with bipartite
adjacency matrix for bipartite graphs.)

In Section 3 we prove that R′2 counts the number of independent sets in bipartite graphs.

I Theorem 4. Let G = (U ∪W,E) be a bipartite graph. The number of independent sets of
G is given by 2|U |+|W |−|E|R′2(G; 1/2, 1).

Exact evaluation of the polynomial R′2(G;λ, µ) is #P-hard at a variety of rational points
(λ, µ) assuming the validity of the generalized Riemann hypothesis (GRH). The result is
summarized in the following theorem.

I Theorem 5. Exact evaluation of R′2 at rational point (λ, µ) is
polynomial-time computable when λ ∈ {0, 1} or µ = 0 or (λ, µ) = (1/2,−1);
#P-hard when λ 6∈ {0, 1, 1/2} and µ 6= 0, assuming GRH;
#P-hard when λ = 1/2 and µ 6∈ {0,−1}.

I Remark. For the non-bipartite case we have the following classification. Exact evaluation
of R2 at rational point (λ, µ) is polynomial-time computable when µ = 0 or λ ∈ {−1, 0, 1};
the λ = −1 case follows from the fact that a skew-symmetric matrix with zero diagonal has
even rank over any field (the zero diagonal condition is redundant for fields of characteristic
6= 2). For any other rational λ and µ we get #P-hardness of evaluating the R2 polynomial
from Theorem 5 and (4) (again assuming GRH). (Note that (λ, µ) 7→ (λ2, µ) never maps to
the easy case (1/2,−1), since λ is rational. It would be nice to have hardness classification
of evaluating R2 and R′2 for, say, algebraic λ and µ.)

Because of the hardness of exact evaluation of R′2, we turn to approximate evaluation of
R′2(G;λ, µ).

We now define the sampling problem associated with R′2.

Rank Weighed Subgraphs with λ, µ ≥ 0, (RWS(λ, µ))
Instance: a bipartite graph G = (U ∪W,E),
Output: S ⊆ E with probability of S ∝ λrk2(S)µ|S|.

The “single bond flip” chain is a natural approach to sampling from RWS(λ, µ).

I Definition 6. Single bond flip chain is defined as follows: pick an edge e ∈ E at random
and let S = Xt ⊕ {e}. Set Xt+1 = S with probability

(1/2) min{1, λrk2(S)−rk2(Xt)µ|S|−|Xt|}

and Xt+1 = Xt with the remaining probability.

In each step of the single bond flip chain, we have to compute the rank of a matrix over F2
(corresponding to S) which differs from the current matrix (corresponding to Xt) in a single
entry. One can use dynamic matrix rank problem algorithms to perform this computation in
O(n1.575) arithmetic operations per step [9].

Instead of flipping one edge in a step, we can have another Markov chain which flips a
random subset of edges adjacent to a single vertex. It seems likely that the new chain can
generate good random samples faster than the single bond flip chain—a step of the new
chain can be performed in O(n2) arithmetic operations (using “rank one update” for the
dynamic matrix rank problem [9]).

We consider the following question.

Qi Ge and Daniel Štefankovič 243

I Question 1. For which classes of bipartite graphs does the single bond flip chain mix?
In Section 5 we prove that for fixed λ, µ > 0 the single bond flip chain mixes, in time

polynomial in the number of vertices, for trees. The next theorem is motivated by Question 1,
(R′2 polynomial can be evaluated in polynomial time on trees).

I Theorem 7. For every fixed λ, µ > 0, the mixing time τ(ε) of the single bond flip chain
for a tree on n vertices is

τ(ε) = O
(
n3+| log2 λ|(| log λ|+ | logµ|+ log(1/ε))

)
.

I Remark. Goldberg and Jerrum [12] recently showed that there exist bipartite graphs for
which the single bond flip chain needs exponential time to mix for λ = 1/2 and µ = 1 (which
is the most interesting setting of λ and µ). Question 1 is still relevant—there may exist
interesting classes of graphs for which the chain mixes.

As a by-product of our techniques, we show that single bond flip Markov chain for the
random cluster model is rapidly mixing if q, µ > 0 and G has constant tree-width (the
condition q, µ > 0 is equivalent to x, y > 1 for the Tutte polynomial T (G;x, y)).

Due to page limitation, we omit most of the proofs. Refer to [10] for a full version.

3 Independent sets in bipartite graphs

The problem of counting independent sets (#IS) in a graph is of interest in both computer
science and statistical physics (independent sets are a special case of the so-called hard-core
model, see, e. g., [1]). Exact computation of #IS is #P-complete even for 3-regular planar
bipartite graphs [26, 29]. Fully polynomial randomized approximation scheme (FPRAS) is
known for graphs with maximum degree ∆ ≤ 5, [17, 6, 27]. Unless NP=RP, an FPRAS does
not exist for graphs with ∆ ≥ 6, [3, 21] .

Now we focus on the problem of counting independent sets in bipartite graphs (#BIS).
While for exact counting the complexity of #BIS and #IS is the same, the situation looks
very different for approximate counting, for example, no inapproximability result is known for
#BIS. Dyer et al. [4] show that #BIS is complete w.r.t. approximation-preserving reductions
(AP-reductions) in a sub-class of #P. Many problems were shown to be equivalent (w.r.t.
AP-reductions) to #BIS, for example, #Downsets, #1p1nSat [4], computing the partition
function of a ferromagnetic Ising model with local fields [11], and counting the number of
satisfying assignments of a class of Boolean CSP instances [5]. A pertinent negative result for
#BIS is that Glauber dynamics (or more generally, any chain whose states are independent
sets and that flips at most 0.35n vertices in one step) cannot be used to efficiently sample
random independent sets in a random 6-regular bipartite graphs on n+ n vertices [3].

The rest of this section is devoted to proving Theorem 4. It will be convenient to work with
matrices instead of graphs. For two zero-one matrices A,B we say B ≤ A if B corresponds
to a subgraph of A, formally

I Definition 8. Let A,B be zero-one n1 × n2 matrices. We say B ≤ A if Aij = 0 implies
Bij = 0, for all i ∈ [n1] and j ∈ [n2]. Let CA be the set of zero-one n1 × n2 matrices B such
that B ≤ A.

Let #1(A) denote the number of ones in A (that is, the number of edges in the corre-
sponding graph). The RWS problem rephrased for matrices is:

Rank Weighed Matrices with λ, µ ≥ 0 (RWM(λ, µ))

FSTTCS 2010

244 A graph polynomial for independent sets of bipartite graphs

Instance: an n1 × n2 matrix A.
Output: B ∈ CA with probability of B ∝ λrk2(B)µ#1(B).

The problem of sampling independent sets in bipartite graphs is:

Bipartite Independent Sets (BIS)
Instance: a bipartite graph G = (U ∪W,E).
Output: a uniformly random independent set of G.

Before we show a connection between BIS and RWM(1/2, 1) we remark that to sample
bipartite independent sets it is enough to sample a subset of one side, say U , from the
correct (marginal) distribution. We now describe this distribution in a setting which will be
advantageous for the proof of Theorem 4.

We will represent an independent set by a pair of (indicator) vectors u, v (where u ∈ Fn1
2

and v ∈ Fn2
2).

I Definition 9. We say that two vectors α, β ∈ Fn2 share a one if there exists i ∈ [n] such
that αi = βi = 1.

We will use the following simple fact.
I Observation 1. Let α, β ∈ Fn2 . Let d be the number of ones in β. If α, β share a one then
there are 2d−1 vectors β′ ≤ β such that αTβ′ ≡ 0 mod 2. If α, β do not share a one then
there are 2d vectors β′ ≤ β such that αTβ′ ≡ 0 mod 2.

Let u ∈ Fn1
2 be a vector. We would like to count the number of v ∈ Fn2

2 such that u, v is
an independent set. Note that u, v is an independent set iff vj = 0 for every j ∈ [n2] such
that u and j-th column of A share a one. Let k be the number of columns of A that do not
share a one with u. Then we have

u ∈ Fn1
2 occurs in 2k independent sets. (5)

Thus to sample independent sets in a bipartite graph G with n1 × n2 bipartite adjacency
matrix A it is enough to sample u ∈ Fn1

2 with the probability of u proportional to 2k, where
k is the number of columns of A that do not share a one with u. We will call this distribution
on u the marginal BIS distribution.

The following lemma shows a tight connection between BIS and RWM(1/2, 1)—given a
sample from one distribution it is trivial to obtain a sample from the other one.

I Lemma 10. Let G be a bipartite graph with bipartite adjacency matrix A.
Let u, v be a uniformly random independent set of G. Let B be a uniformly random matrix
from the following set {D ∈ CA |uTD ≡ 0 mod 2}. Then B is from the RWM(1/2, 1)-
distribution.
Let B ∈ CA be a random matrix from the RWM(1/2, 1)-distribution. Let u ∈ Fn1

2 be
a uniformly random vector from the left null space of B (that is, {β ∈ Fn1

2 |βTB ≡ 0
mod 2}). Then u is from the marginal BIS distribution.

Proof. Let Q be the set of u,B pairs such that uTB ≡ 0 mod 2 and B ≤ A. Let ψ be
the uniform distribution on Q. Note that ψ marginalized over u yields the RWM(1/2, 1)-
distribution on B ≤ A, here we are using the fact that a d-dimensional space (in this case
the left null space of B) over F2 has 2d elements. Formally,

P (B) =
∑

u:uTB≡0 mod 2

1
|Q|

= 2n1−rk2(B)

|Q|
= 2−rk2(B)

R′2(G; 1/2, 1) . (6)

Qi Ge and Daniel Štefankovič 245

Next we show that ψ marginalized over B yields the marginal BIS distribution. We compute
the number of B ≤ A such that uTB ≡ 0 mod 2. Let us use the same k as in (5), that is, k
is the number of columns of A that do not share a one with u.

Note that the columns of B can be chosen independently and only if the column and u
share a one is the number of choices (for that column) halved. Let #1(A) be the number of
ones in A. Thus

there are 2#1(A)−(n2−k) choices of B ≤ A such that uTB ≡ 0 mod 2. (7)

Note that for fixed u the counts in (5) and (7) differ by a factor of 2#1(A)−n2 (which is
independent of u). Thus ψ marginalized over B yields the marginal BIS distribution on u.
Formally

P (u) = 2#1(A)−(n2−k)

|Q|
= 2k

#BIS(G) . (8)

Note that this proves both claims of the lemma since in both cases the u,B pair is from
ψ (by first sampling from a marginal and then sampling the remaining variable) and the
conclusion in both claims is a statement about marginal (of the remaining variable). J

Theorem 4 now follows from the proof of Lemma 10.

Proof of Theorem 4. Let Q be the set from the proof of Lemma 10. From (6) we obtain

|Q| = R′2(G; 1/2, 1)2n1 . (9)

From (8) we have that the number of independent sets of G is given by

#BIS(G) = |Q|
2#1(A)−n2

. (10)

Combining (9) and (10) we obtain the theorem. J

We do not know a good combinatorial interpretation for the mod-2 rank of B for
general graphs. For forests (which are, of course, always bipartite) we have the following
characterization.

I Lemma 11. Let G = (V,E) = (U ∪W,E) be a forest with bipartite adjacency matrix A.
Then rk2(A) is the size of maximum matching in G.

Proof. Let a ∈ V be a leaf of G and let e = {a, b} ∈ E be the edge adjacent to a. Note
that b is matched in every maximum matching M (otherwise one could add e to M). Thus
removing b and all adjacent edges decreases the size of maximum matching by 1.

Now we argue that removing b (and all adjacent edges) also decreases rank (over F2) by
1. W.l.o.g. assume that b corresponds to the first row and a corresponds to the first column.
Removing b (and all adjacent edges) corresponds to removing the first row of A. Note that
this decreases rank by at most 1 and it does decrease it by 1, since the only non-zero entry
in the first column is in the first row. J

FSTTCS 2010

246 A graph polynomial for independent sets of bipartite graphs

4 The linear-width of a graph

For the proof of Theorem 7 we will use the linear-width of a graph, a concept which was
first defined by Thomas [23]. In this section we prove a bound on linear-width in terms of
tree-width.

The linear-width of a graph G = (V,E) is the smallest integer ` such that the edges of
G can be arranged in a linear order e1, . . . , em in such a way that, for every i ∈ [m], there
are at most ` vertices that have an adjacent edge in {e1, . . . , ei−1} and an adjacent edge in
{ei, . . . , em}. It is known that computing the linear-width of a graph is NP-complete [22].
For paths and cycles the linear-width is easy to compute.

I Example 12. The linear-width of a path is 1. The linear-width of a cycle is 2.

Let e1, . . . , em be a permutation of the edges of G = (V,E). We say that a vertex v ∈ V
is dangerous w.r.t. i ∈ [m], if there exist two edges ej , ek adjacent to v such that j < i ≤ k.
Let Di be the set of vertices which are dangerous w.r.t. i. Note that the linear-width of G is
the minimum value of maxi |Di| optimized over all permutations of the edges.

Now we give an upper bound on the linear-width for trees.

I Lemma 13. Let T = (V,E) be a tree on n vertices. The linear-width of T is at most
blog2 nc.

For general graphs we will show a generalization of Lemma 13: a bound on the linear-
width of G in terms of the tree-width of G. We now define tree-width (see, e. g., [16] for a
nice treatment).

Given a graph G = (V,E), a tree decomposition of G is a pair (T, {Uh}h∈VT
) where

T = (VT , ET) is a tree and Uh ⊆ V satisfy: (i) each edge of G is in at least one subgraph
induced by Uh; and (ii) for any three vertices t1, t2, t3 of T such that t2 is in the path between
t1 and t3 in T we have Ut1∩Ut3 ⊆ Ut2 . The width of a decomposition is maxh∈VT

|Uh|−1. The
tree-width of G (denoted tw(G)) is the minimum width optimized over all tree decompositions.

I Lemma 14. Let G = (V,E) be a graph. Then

linear-width(G) ≤ (tw(G) + 1)(blog2 nc+ 1).

5 Analysis of the single bond flip chain for trees

Given a tree G = (V,E), let Ω be the set of 2|E| subsets of E. By Lemma 11, for every
H ⊆ E, we know that rk2(H) is the size of maximum matching of the subgraph (V,H). Let
w(H) be the size of maximum matching in a graph (V,H). Let P be the transition matrix
of the single bond flip Markov chainM from definition 6. It’s easy to see thatM is ergodic
with unique stationary distribution π such that π(H) ∝ λw(H)µ|E|.

The goal of this section is to prove Theorem 7.

5.1 The canonical paths

We will bound the mixing time of our chainM using the canonical paths method, introduced
in [2, 20, 15]. Now we go over the basic definitions for Markov chains, see, e. g., [14] for a
comprehensive background.

Qi Ge and Daniel Štefankovič 247

I Definition 15. The total variation distance of two probability distribution ν and ν′ on Ω
is

‖ν − ν′‖TV = 1
2
∑
H∈Ω
|ν(H)− ν′(H)| = max

S⊆Ω
|ν(S)− ν′(S)|.

I Definition 16. The mixing time from initial state H, τH(ε), is defined as

τH(ε) = min{t : ‖P t(H, ·)− π‖TV ≤ ε},

and the mixing time τ(ε) of the chain is defined as τ(ε) = maxH∈Ω{τH(ε)}.

Let σ = e1, . . . , em be an ordering of the edges of G = (V,E) (we will usually use the
orderings supplied by Lemma 13 or Lemma 14). Given any pair I, F ∈ Ω, let I ⊕ F be the
symmetric difference of I and F (that is, the set of edges which are in either I or F but not
in both). We define a canonical path γI,F between I and F as follows. Let ei1 , . . . , eik be
the edges from I ⊕ F ordered according to σ (that is, i1 < i2 < · · · < ik). Let

γI,F = (H0, H1, . . . ,Hk), (11)

where H0 = I, Hk = F and Hj = Hj−1 ⊕ {eij}.

I Lemma 17. Let G = (V,E) be a graph. Let σ = e1, . . . , em be an ordering on E with
linear-width `. Let I, F be subsets of E and let H be on the canonical path (11) (that is,
H = Hj for some j ∈ {0, . . . , k}). Then

|w(I) + w(F)− w(H)− w(C)| ≤ `,

where C = I ⊕ F ⊕H, (and w(S) is the size of the maximum matching in (V, S)).

Proof. Let Q = {e1, . . . , eij}. Note that H = (F ∩Q)∪ (I∩Qc), where Qc is the complement
of Q (that is, E \Q). Similarly, C = (I ∩Q) ∪ (F ∩Qc).

Let D be the set of dangerous vertices w.r.t. eij+1. Let MI and MF be maximum
matchings of I and F , respectively. Let

MH = (MF ∩Q) ∪ (MI ∩Qc) and MC = (MI ∩Q) ∪ (MF ∩Qc).

Note that all vertices of MH with degree ≥ 2 are in D (a vertex which is not D has all
adjacent edges (in G) from Q or from Qc and hence the adjacent edges (in MH) agree with
MI or MF). The same is true for MC . Moreover if a vertex v ∈ D has degree 2 in MH then
it has degree 0 in MC . Thus by removing ≤ |D| edges from MH and MC we can turn both
of them into matchings. Thus

w(H) + w(C) ≥ w(I) + w(F)− |D| ≥ w(I) + w(F)− `. (12)

Note that a canonical path from I ′ := H to F ′ := C passes through H ′ := I (with
C ′ := I ′ ⊕ F ′ ⊕H ′ = F). Thus

w(I) + w(F) = w(H ′) + w(C ′) ≥ w(I ′) + w(F ′)− ` = w(H) + w(C)− `. (13)

Combining (12) and (13) we get the lemma. J

FSTTCS 2010

248 A graph polynomial for independent sets of bipartite graphs

5.2 The congestion of M
Now we analyze the congestion of the collection Γ = {γI,F | I, F ∈ Ω} where γI,F are
canonical paths defined in (11). For each transition (H,H ′) such that P (H,H ′) > 0, let
cp(H,H ′) be the set of pairs (I, F) such that (H,H ′) ∈ γI,F . The congestion of Γ on (H,H ′)
is (see, e. g., [14])

%(H,H′) = 1
P (H,H ′)

∑
I,F :(H,H′)∈γI,F

π(I)π(F)
π(H) |γI,F |, (14)

where |γI,F | is the length of γI,F . The congestion of Γ is defined as

% := max
(H,H′):

P (H,H′)>0

%(H,H′).

We will use the following connection between the congestion and the mixing time.

I Theorem 18 ([2, 20]). τH(ε) ≤ %(log(1/π(H)) + log(1/ε)) for each starting state H ∈ Ω.

At the end of this section we prove the following bound on the congestion of Γ.

I Lemma 19. Let G = (V,E) be a graph. Let σ = e1, . . . , em be an ordering on E with
linear-width `. For every (H,H ′) such that P (H,H ′) > 0, and for every λ, µ > 0 we have
%(H,H′) ≤ 2|E|2λ̄`, where λ̄ = max{λ, 1/λ}.

We can now prove Theorem 7.

Proof of Theorem 7. Since G = (V,E) is a tree, by Lemma 13, we have ` ≤ blog2 nc, by
Lemma 19, we have

% ≤ 2|E|2λ̄` ≤ 2|E|2n| log2 λ| ≤ 2n2+| log2 λ|.

Theorem 7 now follows from Theorem 18. J

Now we bound the congestion of our canonical paths.

Proof of Lemma 19. We will bound %(H,H′) for every (H,H ′) such that P (H,H ′) > 0. Let
Ĥ = H if π(H) ≤ π(H ′) and Ĥ = H ′ otherwise. Note that

π(Ĥ)
2|E| = π(H)P (H,H ′) = π(H ′)P (H ′, H), (15)

sinceM is reversible. We define a mapping f : cp(H,H ′)→ Ω such that f(I, F) = I⊕F ⊕ Ĥ
for every pair (I, F) ∈ cp(H,H ′).

First, note that f is an injection. Given J ∈ Ω we can determine the unique I, F such
that f(I, F) = J , by first computing J ⊕ Ĥ, and the using the ordering σ on the edges of G
to recover I and F .

Note that

|I|+ |F | = |Ĥ|+ |f(I, F)|, (16)

and

|w(I) + w(F)− w(Ĥ)− w(f(I, F))| ≤ `, (17)

Qi Ge and Daniel Štefankovič 249

where (17) follows from Lemma 17.
Let L =

∑
J λ

w(J)µ|J|. We have the following upper bound on %(H,H′). By (14) and (15),
we have

%(H,H′) = 2|E|
∑

(I,F)∈cp(H,H′)

π(I)π(F)
π(Ĥ)

|γI,F |

= 2|E|2
∑

(I,F)∈cp(H,H′)

λw(I)+w(F)−w(Ĥ)µ|I|+|F |−|Ĥ|

L

≤ 2|E|2λ̄`
∑

(I,F)∈cp(H,H′)

λw(f(I,F))µ|f(I,F)|

L
(18)

≤ 2|E|2λ̄`, (19)

where (18) follows from (16) and (17), and (19) follows from the fact that f is an injection
from cp(H,H ′) to Ω. J

6 Conclusions

We conclude with an observation that a generalization of RWM(λ, µ) does not have an
FPRAS (unless NP=RP) and a few questions.

Let A be an m× n matrix whose entries are zeros, ones, and indeterminates, where each
indeterminate occurs once. A completion of A is a substitution of 0, 1 to all the indeterminates
in A. We denote CA to be the set of all completions of A. Let rk2(B) be the rank of B
over F2. Can we sample B from CA with the probability of B proportional to λrk2(B)? Note
that this problem is a generalization of the RWM(λ, 1) problem. It turns out that finding
the minimum rank completion of a matrix is NP-hard (Proposition 2.1, [19]) and hence a
sampler is unlikely (unless NP=RP), since for λ = 2−n2 a random completion will be the
minimum rank completion (with constant probability). The sampling problem could be easy
for sufficiently large λ (the problem of finding maximum rank completion is in P, see, e. g.,
Section 4.1 of [13]).

I Question 2. What other interesting properties are encoded by the polynomial?

I Question 3. Can one sample maximum rank completions of a matrix?

I Question 4. Is the exact evaluation of the polynomial easy for bounded tree-width graphs?

References
1 Rodney J. Baxter. Exactly solved models in statistical mechanics. Academic Press Inc.

[Harcourt Brace Jovanovich Publishers], London, 1989. Reprint of the 1982 original.
2 Persi Diaconis and Daniel Stroock. Geometric bounds for eigenvalues of Markov chains.

Ann. Appl. Probab., 1(1):36–61, 1991.
3 Martin Dyer, Alan Frieze, and Mark Jerrum. On counting independent sets in sparse

graphs. SIAM J. Comput., 31(5):1527–1541 (electronic), 2002.
4 Martin Dyer, Leslie Ann Goldberg, Catherine Greenhill, and Mark Jerrum. The relative

complexity of approximate counting problems. Algorithmica, 38(3):471–500, 2004. Approx-
imation algorithms.

5 Martin Dyer, Leslie Ann Goldberg, and Mark Jerrum. An approximation trichotomy for
boolean #CSP. Journal of Computer and System Sciences, In Press, Corrected Proof,
2009.

FSTTCS 2010

250 A graph polynomial for independent sets of bipartite graphs

6 Martin Dyer and Catherine Greenhill. On Markov chains for independent sets. J. Algo-
rithms, 35(1):17–49, 2000.

7 Joanna Ellis-Monaghan and Criel Merino. Graph polynomials and their applications I: the
Tutte polynomial. arXiv, 0803.3079, Jun 2008.

8 Joanna Ellis-Monaghan and Criel Merino. Graph polynomials and their applications II:
interrelations and interpretations. arXiv, 0806.4699, Jun 2008.

9 Gudmund Skovbjerg Frandsen and Peter Frands Frandsen. Dynamic matrix rank. In
Automata, languages and programming. Part I, volume 4051 of Lecture Notes in Comput.
Sci., pages 395–406. Springer, Berlin, 2006.

10 Qi Ge and Daniel Štefankovič. A graph polynomial for independent sets of bipartite graphs.
arXiv, 0911.4732, Jan 2010.

11 Leslie Ann Goldberg and Mark Jerrum. The complexity of ferromagnetic Ising with local
fields. Combin. Probab. Comput., 16(1):43–61, 2007.

12 Leslie Ann Goldberg and Mark Jerrum. Personal communication, 2010.
13 Nicholas J. A. Harvey, David R. Karger, and Kazuo Murota. Deterministic network coding

by matrix completion. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 489–498 (electronic), New York, 2005. ACM.

14 Mark Jerrum. Counting, sampling and integrating: algorithms and complexity. Lectures in
Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2003.

15 Mark Jerrum and Alistair Sinclair. Approximating the permanent. SIAM J. Comput.,
18(6):1149–1178, 1989.

16 Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2005.

17 Michael Luby and Eric Vigoda. Fast convergence of the Glauber dynamics for sampling
independent sets. Random Structures Algorithms, 15(3-4):229–241, 1999. Statistical physics
methods in discrete probability, combinatorics, and theoretical computer science (Princeton,
NJ, 1997).

18 Johann A. Makowsky. From a zoo to a zoology: towards a general theory of graph polyno-
mials. Theory Comput. Syst., 43(3-4):542–562, 2008.

19 René Peeters. Orthogonal representations over finite fields and the chromatic number of
graphs. Combinatorica, 16(3):417–431, 1996.

20 Alistair Sinclair. Improved bounds for mixing rates of Markov chains and multicommodity
flow. Combin. Probab. Comput., 1(4):351–370, 1992.

21 Allan Sly. Computational transition at the uniqueness threshold. arXiv, 1005.5584, May
2010.

22 Dimitrios M. Thilikos. Algorithms and obstructions for linear-width and related search
parameters. Discrete Appl. Math., 105(1-3):239–271, 2000.

23 Robin Thomas. Tree-decompositions of graphs (lecture notes), 1996.
24 William T. Tutte. A ring in graph theory. Proc. Cambridge Philos. Soc., 43:26–40, 1947.
25 William T. Tutte. A contribution to the theory of chromatic polynomials. Canadian J.

Math., 6:80–91, 1954.
26 Salil P. Vadhan. The complexity of counting in sparse, regular, and planar graphs. SIAM

J. Comput., 31(2):398–427 (electronic), 2001.
27 Dror Weitz. Counting independent sets up to the tree threshold. In STOC’06: Proceedings

of the 38th Annual ACM Symposium on Theory of Computing, pages 140–149. ACM, New
York, 2006.

28 Dominic J. A. Welsh. Complexity: knots, colourings and counting, volume 186 of London
Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1993.

29 Mingji Xia, Peng Zhang, and Wenbo Zhao. Computational complexity of counting problems
on 3-regular planar graphs. Theoret. Comput. Sci., 384(1):111–125, 2007.

Finding Independent Sets in Unions of Perfect
Graphs
Venkatesan T. Chakaravarthy, Vinayaka Pandit, Sambuddha Roy,
and Yogish Sabharwal

IBM Research - India, New Delhi
{vechakra, pvinayak, sambuddha, ysabharwal}@in.ibm.com

Abstract
The maximum independent set problem (MaxIS) on general graphs is known to be NP-hard to
approximate within a factor of n1−ε, for any ε > 0. However, there are many “easy" classes of
graphs on which the problem can be solved in polynomial time. In this context, an interesting
question is that of computing the maximum independent set in a graph that can be expressed as
the union of a small number of graphs from an easy class. The (MaxIS) problem has been studied
on unions of interval graphs and chordal graphs. We study the (MaxIS) problem on unions of
perfect graphs (which generalize the above two classes). We present an O(

√
n)-approximation

algorithm when the input graph is the union of two perfect graphs. We also show that the
(MaxIS) problem on unions of two comparability graphs (a subclass of perfect graphs) cannot
be approximated within any constant factor.

1998 ACM Subject Classification F.2.2 [Analysis of Algorithms]

Keywords and phrases Approximation Algorithms; Comparability Graphs; Hardness of approx-
imation

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.251

1 Introduction

It is well known that the classical maximum independent set problem (MaxIS) on general
graphs is computationally hard, even to approximate. Zuckerman [13] showed that for any
ε > 0, it is NP-hard to approximate the MaxIS problem within a factor of n1−ε, where n is
the number of vertices in the input graph. However, there are easy families of graphs for
which the MaxIS problem can be solved optimally in polynomial time, for example interval
graphs. In this context, it is interesting to consider the MaxIS problem on graphs which are
unions of a small number graphs from an easy family. In this paper, we study this problem
on perfect graphs and its subclass comparability graphs.

Formally, the input consists of a sequence of graphs G1 = (V,E1), G2 = (V,E2), . . . , Gt =
(V,Et) defined over the same vertex set V . A subset of vertices X ⊆ V is called a common
independent set (CIS), if X is an independent set in each graph Gi. Alternatively, a CIS is
an independent set in the union graph given by Ĝ = (V, Ê), where Ê = ∪ti=1Ei. The goal
is to find the maximum cardinality CIS. We call this the maximum common independent
set problem (MaxCIS). For a fixed constant k, the k-MaxCIS is the special case where the
number of input graphs is t = k. We consider restricted versions of the MaxCIS problem
wherein all the input graphs belong to a particular class (or family) of graphs C. This paper
deals with the MaxCIS problem on easy classes C, such as interval, chordal, comparability
and perfect graphs. We shall also consider the weighted versions of MaxIS and MaxCIS
problem, wherein the input includes a function p : V → R that assigns a profit (or weight)

© Venkatesan T. Chakaravarthy, Vinayaka Pandit, Sambuddha Roy and Yogish Sabharwal;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 251–259

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.251
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

252 Finding Independent Sets in Unions of Perfect Graphs

p(u) to each vertex u and the goal is to find the maximum profit independent set and CIS,
respectively.

Motivated by applications in bioinformatics, scheduling and computational geometry,
the MaxCIS problem on interval graphs has been well-studied (see [1]). Bar-Yehuda et
al. [1] presented a 2t-approximation algorithm for the weighted MaxIS problem on the class
of t-interval graphs, which includes unions of t intervals graphs. Hermelin and Rawitz [9]
generalized their result by presenting a 2t-approximation algorithm for class of t-subtrees,
which includes both 2t-interval graphs and chordal graphs. Regarding unions of comparability
and perfect graphs, prior work deals with certain combinatorial aspects. It is well known that
any perfect graph G on n vertices has either an independent set of size

√
n or a clique of size√

n. Motivated by applications in computational geometry, Dumitrescu and Tóth [5] studied
the same issue on unions of comparability graphs and perfect graphs, from a combinatorial
perspective. They showed that if G is the union of two perfect graphs, then G has an
independent set of size n1/3 or a clique of size n1/3. They also provided counter-examples to
show that the above bound cannot be improved beyond n0.42 (see Theorem 5).

The above discussion shows that approximation algorithms are known for the weighted
MaxCIS problem on interval graphs and chordal graphs; both these classes are easy classes
for which the weighted MaxIS problem can be solved optimally in polynomial time [7, 6]. The
goal of this paper study the MaxCIS problem on comparability graphs and perfect graphs,
two other important easy classes for which the MaxIS problem can be solved optimally in
polynomial time [12, 8]. Perfect graphs generalize the other classes mentioned above and can
be thought of as the pinnacle among easy classes.

Our main result presents an O(
√
n)-approximation algorithm for the weighted 2-MaxCIS

problem on perfect graphs. The algorithm is obtained by considering a suitable LP formulation.
The LP is of exponential size. We solve it using a separation oracle and find the optimal LP
solution. We categorize the vertices into multiple groups based on the values assigned to
them by the above LP solution. Next, we find a suitably large independent set within each
group. The best among these independent sets is the output. We then argue that the output
independent set is a O(

√
n) approximation to the optimal solution.

Our next set of results provide some evidence that it may be difficult to significantly
improve the O(

√
n)-approximation ratio. This includes proving integrality gaps and hardness

results.
Let us first briefly discuss the integrality gap results. We show that the above LP has an

integrality gap of
√
n, even for the case where both the input graphs are comparability graphs

and all the weights are unit. We then consider a powerful strengthening of the LP, wherein
a variable x(u) is added for each vertex u, which indicates whether x(u) is selected in the
independent set or not. Then, for each clique C of Ĝ, we add the constraint

∑
u∈C x(u) ≤ 1.

Such an LP is also considered while designing the polynomial time algorithm for the MaxIS
problem on perfect graphs. In the case of MaxCIS, this LP is of exponential size and it
is not clear whether it can be solved in polynomial time; it seems difficult to construct
separation oracles (even approximate ones). Nevertheless, we show that even this strong LP
has an integrality gap of n0.16 (even for the unweighted case over comparability graphs). This
result is derived as a consequence of a combinatorial result regarding unions of comparability
graphs, due to Dumitrescu and Tóth [5] (discussed earlier).

On the hardness front, it is known that the 2-MaxCIS problem on linear forests is
APX-hard [1] (a linear forest is a graph in which each component is a path). Linear forests
are bipartite graphs, which are in turn comparability graphs. It follows that 2-MaxCIS
problem on comparability graphs cannot be approximated within a factor of (1 + ε), for some

Chakaravarthy et al. 253

ε > 0. We show that the hardness gap produced by the above APX-hardness can be amplified
(for the case of comparability graphs). We do this via the well-known approach of considering
powers of graphs. The same graph powering technique is used to amplify hardness gap
for the MaxIS (or the maximum clique problem). However, the standard graph product
typically used for this purpose (see [10]) does not serve in our scenario. The reason is that,
in our scenario, we need a graph product under which, if G is the union of two comparability
graphs, then Gr is also the union of two comparability graphs. The standard graph product
mentioned above may not satisfy this property. So, we consider a different graph product
and obtain the amplification. (Dumitrescu and Tóth [5] also use a similar graph product
for proving a combinatorial result on comparability graphs (see Theorem 5)). Using this
approach, we prove that if NP 6= P, then the 2-MaxCIS problem on comparability graphs
cannot be approximated within any constant factor. Via a simple extension of this result, we
also show that if NP 6⊆ DTIME[nO(logn)], then the above problem cannot be approximated
within a factor of 2

√
logn. Here, a challenging open problem is to show that it is NP-hard to

approximate within a factor of nε, for some ε > 0.

2 Preliminaries

In this section, we discuss some concepts and notations used in the paper. We also briefly
discuss some known algorithmic results about perfect graphs and their special cases.

Notation: For two graphs G1 = (V,E1) and G2 = (V,E2), let G1 ⊕ G2 denote their
union graph. Let G = (V,E) be a graph. For a subset of vertices X ⊆ V , let G[X] denote
the subgraph induced by X in G. Let p : V → R be a weight or profit function that assigns
a profit or weight p(u) to each vertex u ∈ V . For a subset of vertices X ⊆ V , we use p(X) to
denote the sum of profits over X (p(X) =

∑
u∈X p(u)).

Basic Graph Parameters: Let G = (V,E) be a graph. We shall use the following
notations to refer to some basic graph properties: (i) Independence number α(G): cardinality
of the maximum independent set in G; (ii) Clique number ω(G): cardinality of the maximum
clique in G; (iii) Chromatic number χ(G): minimum number of colors needed to color the
vertices of G so that no two adjacent vertices of G receive the same color.

Comparability Graphs: Comparability graphs capture the comparability relationships
among elements of a partial ordered set. In this paper, we shall use directed acyclic graphs
(DAG) to define them. Consider a DAG D = (V,E′). We say that a vertex u is an ancestor
of a vertex v, if there is a path from u to v. A pair of vertices u and v are said to be
comparable, if either u is an ancestor of v or v is an ancestor of u; otherwise, they are said
to be incomparable. Construct a graph G = (V,E); add an edge between every pair of
comparable vertices. The graph G is said to be the comparability graph of D. Alternatively,
G can be obtained by taking the transitive closure of D and ignoring the directionality of the
edges. A graph is said to be a comparability graph, if it is the comparability graph of some
DAG. McConnell and Spinrad [11] present a linear time algorithm for testing whether an
input graph is a comparability graph; moreover, if the graph is a comparability graph, then
their algorithm also outputs a DAG representation (or transitive orientation) in linear time.

Perfect Graphs: Notice that for any graph G, χ(G) ≥ ω(G). A graph G = (V,E) is
said to be perfect, if for every induced subgraph H, χ(H) = ω(H). Chudnovsky et al. [4, 3]
proved that whether an input graph is perfect can be tested in polynomial time.

FSTTCS 2010

254 Finding Independent Sets in Unions of Perfect Graphs

3 Weighted 2-MaxCIS Problem on Perfect Graphs

In this section, we present a O(
√
n) approximation algorithm for the 2-MaxCIS problem on

perfect graphs.
In our approximation algorithm, we will need a polynomial procedure for the tasks of

finding maximum weight independent sets and cliques in perfect graphs. Grötschel et al. [8]
present polynomial time algorithms for performing both the tasks.

I Theorem 1 ([8]). The weighted MaxIS and weighted MaxClique problems can be solved
in polynomial time for perfect graphs.

Let G1 = (V,E1) and G2 = (V,E2) be the two input perfect graphs over a vertex set
V of size n and let Ĝ = (V, Ê) = G1 ⊕G2 be their union. Let the input profit function be
p : V → R, where p(u) is the profit of a vertex u ∈ V .

Our approximation algorithm is based on a crucial lemma discussed next. Consider a
subset X ⊆ V . Let ω1(X) = ω(G1[X]) and ω2(X) = ω(G2[X]), be the size of the maximum
cliques in the graph induced by X in G1 and G2, respectively. The lemma below presents
a polynomial time algorithm for finding an independent set I contained in X and having
reasonably large profit. The idea behind the lemma is as follows. Suppose Ĥ is the union of
two perfect graphs H1 and H2 over a vertex set of size m. Then, H1 and H2 can be colored
in ω(H1) colors and ω(H2) colors, respectively. Therefore, their union Ĥ can be colored
using ω(H1)ω(H2) colors. Hence, Ĥ must have an independent set of size m/(ω(H1)ω(H2)).
The lemma generalizes this idea to the weighted case and applies it to subgraphs. More
importantly, it gives a polynomial time procedure for finding such a good independent
set. Dumitrescu and Tóth [5] use a similar argument in the context of proving a certain
combinatorial property about unions of perfect graphs.

I Lemma 2. Let X ⊆ V . There exists a subset I ⊆ X such that I is an independent set of
Ĝ and

p(I) ≥ p(X)
ω1(X)ω2(X) .

Moreover, such a set can be found in polynomial time.

Proof. Since G1 is perfect, G1[X] is also perfect (by definition). Thus, G1[X] can be colored
using ω1(X) colors. This means that X can be partitioned into ω1(X) many subsets (i.e.,
color classes), which are all independent in G1[X]. One of these independent sets must have
profit at least p(X)/ω1(X). Apply the algorithm given in Theorem 1 and find the maximum
profit independent set of G1[X]; let this be I ′. We have p(I ′) ≥ p(X)/ω1(X). We shall
now focus on G2[I ′]. The graph G2[X] can be colored with ω2(X) colors and so, G2[I ′] can
also be colored using ω2(X) colors. It follows that G2[I ′] has an independent set having
profit at least p(I ′)/ω2(X). Apply the algorithm given in Theorem 1 and find the maximum
profit independent set of G2[I ′]; let this be I. We have p(I) ≥ p(I ′)/ω2(X). It follows that
p(I) ≥ p(X)/(ω1(X)ω2(X)). Notice that I is an independent set in both G1 and G2, and
hence, it is an independent set in Ĝ. J

Our O(
√
n)-approximation uses the LP rounding approach. We start the description of

the algorithm by first discussing our LP formulation.
Linear Program: Let C1 and C2 be the set of all cliques of G1 and G2, respectively.

Notice that any independent set of Ĝ can pick at most one vertex from any clique C ∈ C1
(or any C ∈ C2). We shall express these constraints in the linear program. For each vertex

Chakaravarthy et al. 255

u ∈ V , add a variable x(u) that indicates whether u is included in the independent set or
not. The LP is shown next:

max
∑
u∈V

p(u)x(u) subject to∑
u∈C

x(u) ≤ 1 for all C ∈ C1∑
u∈C

x(u) ≤ 1 for all C ∈ C2

0 ≤ x(u) ≤ 1 for all u ∈ V

The above LP may have exponentially many constraints, since |C1| and |C2| could be
exponential in n. Nevertheless, we can solve it using a separation oracle. Recall that a
separation oracle is a procedure which takes as input a fractional assignment x : V → [0, 1]
and decides whether x is a feasible solution to the LP; moreover, if x is not a feasible solution,
the procedure should output a constraint violated by x. In our case, we can perform the
above task in polynomial time using the algorithm given in Theorem 1. Taking x to be the
weight or profit function, find the maximum profit clique in G1 and G2, using the above
algorithm. If both these cliques have profit at most 1, then we know that x is a feasible
solution. Otherwise, the constraint corresponding to the clique having profit greater than 1
is violated. Therefore, we can construct the required separation oracle. Given such an oracle,
the ellipsoid method can solve the LP and find the optimal fraction solution (see [8]).

Let x : V → [0, 1] be the optimal fractional solution to the LP. For a subset of vertices
X ⊆ V , let LP∗(X) =

∑
u∈X p(u)x(u). Let LP∗ = LP∗(V) denote the profit of the LP

solution. Let Pmax = maxu∈V p(u) be the maximum profit.
Rounding Algorithm: We now describe our rounding scheme. First, partition the

vertex set V in to SML and LRG, where SML = {u : 0 ≤ x(u) ≤ 1/
√
n} and LRG = {u :

1/
√
n ≤ x(u) ≤ 1}. Thus, LP∗ = LP∗(SML) + LP∗(LRG).
As we shall see, it is easy to handle the set SML. So, let us ignore SML for now, and

focus on LRG. We geometrically divide the interval [(1/
√
n), 1] into ` = (logn)/2 ranges

and classify the vertices u in LRG based on the range into which x(u) falls. Namely, for
0 ≤ i < `, define

Ui = {u : (1/
√
n)2i ≤ x(u) ≤ (1/

√
n)2i+1}.

Thus, U0, U1, . . . , U`−1 forms a partition of LRG.
The rounding algorithm is as follows. For 0 ≤ j < `, apply the algorithm given in

Lemma 2 on the set Uj (taking X = Uj) and find an independent set Ij of Ĝ such that

p(Ij) ≥
p(Uj)

ω1(Uj)ω2(Uj)
. (1)

Then, among these ` independent sets, choose the one having the maximum profit. Let I∗ be
the chosen set. Finally, consider the following two options: (i) the singleton set containing
the vertex having the maximum profit Pmax; (ii) the set I∗. Between these options, output
the one having the maximum profit. Let Ialg be the set output by the above rounding scheme.

Analysis: We shall now analyze the rounding scheme. The goal is to show that our
algorithm has an approximation ratio of O(

√
n). The following lemma presents the main

claim of the analysis.

I Lemma 3. LP∗(LRG) ≤ (4
√
n)p(I∗).

FSTTCS 2010

256 Finding Independent Sets in Unions of Perfect Graphs

We shall prove the lemma shortly. Let us complete the analysis assuming the lemma.
Recall that LP∗ = LP∗(SML)+LP∗(LRG). Observe that LP∗(SML) ≤

√
nPmax and p(Ialg) ≥

Pmax. Hence, LP∗(SML) ≤
√
n · p(Ialg). The lemma implies that LP∗(LRG) ≤ (4

√
n)p(Ialg).

It follows that LP∗ ≤ (5
√
n)p(Ialg). Thus, our algorithm has O(

√
n) approximation ratio.

We now proceed to prove the lemma. The claim given below is useful for this purpose.

I Lemma 4. For any 0 ≤ j < `, LP∗(Uj) ≤ 2(
√
n/2j)p(Ij).

Proof. Let β = (1/
√
n)2j . Write U = Uj and I = Ij . Our goal is to show that LP∗(U) ≤

2(1/β)p(I). Let ωmin = min{ω1(U), ω2(U)} and let ωmax = max{ω1(U), ω2(U)}.
Equation 1 shows that

p(I) ≥ p(U)
ωminωmax

. (2)

Let us now derive a bound on LP∗(U). By the definition of U , we have that β ≤ x(u) ≤ 2β.
Therefore, LP∗(U) ≤ (2β)p(U). There exists a subset C ⊆ U which is a clique in G1[X] or
G2[X] such that |C| = ωmax. The LP contains a constraint corresponding to this clique and
hence,

∑
u∈C x(u) ≤ 1. Since every u ∈ U satisfies x(u) ≥ β, we have that βωmax ≤ 1. Thus,

β ≤ (1/ωmax). Putting together, we get that

LP∗(U) ≤ 2p(U)
ωmax

. (3)

Equations 2 and 3 imply that LP∗(U) ≤ 2ωminp(I). Recall that βωmax ≤ 1. Thus,
ωmax ≤ (1/β) and hence, ωmin ≤ (1/β). We have proved the lemma. J
Proof of Lemma 3: We have LP∗ =

∑`−1
j=0 LP∗(Uj). Lemma 4 shows that for all Uj ,

LP∗(Uj) ≤ 2(
√
n/2j)p(I∗). Therefore,

LP∗ ≤ (2
√
n)p(I∗)

`−1∑
j=0

(1/2j) ≤ (4
√
n)p(I∗).

J
Our algorithm and analysis can easily be extended to the case of weighted k-MaxCIS

problem on perfect graphs, for a constant k. For this problem, we get an algorithm with an
approximation ratio of O(n(k−1)/k).

4 Integrality Gaps

Here, we show that the LP considered in the previous section has an integrality gap of√
n, even when the input graphs are unions of two comparability graphs and the input is

unweighted. Then, we consider a strengthening of the LP and show that it has an integrality
gap of n0.16.

Fix any square number n. We shall construct a graph G = (V,E) on n vertices such
that G is the union of two comparability graphs and the LP has an integrality gap of

√
n on

G. Let k =
√
n. Let A = {1, 2, . . . , k} and V = A × A. We will describe G by presenting

two DAGs D1 = (V,E1) and D2 = (V,E2). The DAG D1 is as follows. Consider a pair of
vertices u = 〈a1, a2〉 and v = 〈b1, b2〉 belonging to V , where a1, a2, b1, b2 ∈ A. Add an edge
from u to v, if b1 ≥ a1 + 1. The DAG D2 is constructed in a similar fashion. Add an edge
from a vertex u = 〈a1, a2〉 to a vertex v = 〈b1, b2〉, if b2 ≥ a2 + 1. The two DAGs can be
visualized by considering a k × k grid of vertices. In D1, an edge is drawn from a vertex u
to all the vertices appearing in rows below the row of u; in D2, an edge is drawn from a

Chakaravarthy et al. 257

vertex u to all the vertices appearing in columns to the right of column of u. It is easy to
see that D1 and D2 are acyclic. Let G1 and G2 be the comparability graphs of D1 and D2,
respectively. Take G to be the union of G1 and G2. Notice that G is the complete graph
on n vertices and so, α(G) = 1. On the other hand, ω(G1) = k and ω(G2) = k. So, we
get a feasible LP solution by setting x(u) = 1/k, for all u ∈ V . This LP solution has profit
n/k =

√
n. We conclude that the LP has an integrality gap of

√
n on G.

We now describe a strengthening of the previous LP and exhibit integrality gap. The
drawback with the previous LP is that it adds one constraint for each clique of G1 and
one constraint for each clique of G2. A natural idea is to add a constraint for each clique
of the union graph G. Namely, for each clique C of G, add a constraint

∑
u∈C x(u) ≤ 1.

Notice that this LP does not have any integrality gap on the graph instances of the previous
construction. Nevertheless, we show that even this strengthened LP has an integrality gap of
n0.16. For this, we use a combinatorial result proved by Dumitrescu and Tóth [5].

I Theorem 5 ([5]). There exists an infinite family of graphs {G} such that each graph G is
the union of two comparability graphs and ω(G) ≤ n0.42 and α(G) ≤ n0.42, where n is the
number of vertices in G.

The integrality gap for the strengthened LP follows immediately from the above theorem.
Consider any graph G = (V,E) given by this theorem. For all u ∈ V , set x(u) = 1/n0.42.
Notice that this is feasible solution to the strengthened LP. Its profit is n/n0.42 = n0.58. On
the other hand, the maximum independent set of G is of size at most n0.42. It follows that
the LP has an integrality gap of n0.16.

5 2-MaxCIS : Hardness Results

Bar-Yehuda et al. [1] show that the 2-MaxCIS problem is APX-hard on linear forests (a
linear forest is a graph in which each component is a path). They proved this result by
showing that any 3-regular graph can be expressed as the union of two linear forests. Linear
forests are bipartite graphs, which are in turn comparability graphs. It follows that the
2-MaxCIS problem on comparability graphs in APX-hard. This means that there exists an
ε > 0 such that it is NP-hard to approximate the problem within a factor of (1 + ε). The
above APX-hardness proof can be transformed into a hardness gap, as stated in the theorem
below. A similar claim for the MaxIS problem on 3-regular graphs is implicit in the work
of Chlebík and Chlebíková [2]. We can derive the theorem below by combining their result
with that that of Bar-Yehuda et al.

I Theorem 6. There exists a polynomial time algorithm and a constant ε > 0 with the
following property. The algorithm takes as input a boolean formula ϕ and outputs two
comparability graphs G1 and G2, and a number k such that

ϕ ∈ SAT =⇒ α(Ĝ) ≥ (1 + ε)k
ϕ 6∈ SAT =⇒ α(Ĝ) ≤ k,

where Ĝ = G1 ⊕G2.

We next amplify the gap produced by Theorem 6 and show that the MaxCIS problem on
comparability graphs cannot be approximated within any constant factor. We shall perform
the amplification by using the well-known approach of taking graph powers. Towards that
goal, we define a graph power satisfying two important properties: (i) if G is the union
of two comparability graphs, then Gr is also the union of two comparability graphs; (ii)

FSTTCS 2010

258 Finding Independent Sets in Unions of Perfect Graphs

α(Gr) = [α(G)]r. Dumitrescu and Tóth [5] also use a similar graph product for proving a
combinatorial result (Theorem 5) on comparability graphs.

The graph power is described next. Let G = (V,E) be any graph and let r be any integer.
Construct a graph G̃ = (Ṽ , Ẽ) as follows. The vertex set Ṽ is given by Ṽ = V × V × · · ·V ,
where the cartesian product is taken r times. The edges of G̃ are described next. We add an
edge between two vertices ũ = 〈u1, u2, . . . , ur〉 and ṽ = 〈v1, v2, . . . , vr〉, if (uj , vj) ∈ E, where
j is the smallest number such that uj 6= vj . We define the graph power Gr to be the graph
G̃ constructed above. The above graph powering has the following properties.

I Lemma 7. Consider any integer r.
For any graph G, α(Gr) = [α(G)]r.
If G is a comparability graph then Gr is also a comparability graph.
Let Ĝ = G1 ⊕G2 be the union of two graphs G1 and G2. Then, Ĝr = Gr1 ⊕Gr2.

Proof. Consider the first claim. Let α(G) = k and let I be an independent set of G of size
k. Let I ′ = I × I × · · · I, where the cartesian product is taken r times. I ′ is an independent
set in Gr and it is of size kr. Thus, α(Gr) ≥ kr. To see the reverse direction, consider an
independent set I ′ of Gr. For 1 ≤ j ≤ r, define

Uj = {〈u1, u2, . . . , uj〉 : there exists uj+1, uj+2 . . . , ur such that 〈u1, u2, . . . , ur〉 ∈ I ′}.

By induction on j, we shall show that for all 1 ≤ j ≤ r, |Uj | ≤ kj . For the base case of j = 0,
the set U1 is an independent set in G and hence, |U1| ≤ k. To prove the induction step,
consider the set Uj+1. Pick any 〈u1, u2, . . . , uj〉 ∈ Uj . The set {u : 〈u1, u2, . . . , uj , u〉 ∈ Uj+1}
is an independent set in G and so, its cardinality is at most k. By induction |Uj | ≤ kj and
hence, |Uj+1| ≤ kj+1. It follows that I ′ = Ur has cardinality at most kr.

Consider the second claim. Let G = (V,E) be the comparability graph of some DAG
D = (V,E′). Without loss of generality assume that D is transitively closed (i.e., if (a, b) ∈ E′
and (b, c) ∈ E′ then (a, c) ∈ E′). We shall define a directed graph version of our graph
power and show that G is the comparability graph of Dr. Construct a directed graph
D̃ = (Ṽ , Ẽ) as follows. Define Ṽ = V × V × · · ·V , where the cartesian product is taken
r times. Add an edge from a vertex ũ = 〈u1, u2, . . . , ur〉 to the vertex ṽ = 〈v1, v2, . . . , vr〉,
if (uj , vj) ∈ E′, where j is the smallest number such that uj 6= vj . Let Dr = D̃. We first
claim that the graph D̃ constructed above is transitively closed. To see this, consider three
vertices x̃ = 〈x1, x2, . . . , xr〉, ỹ = 〈y1, y2, . . . , yr〉 and z̃ = 〈z1, z2, . . . , zr〉 such that (x̃, ỹ) ∈ Ẽ
and (ỹ, z̃) ∈ Ẽ. Let j1 and j2 be the smallest integers such that xj1 6= yj1 and yj2 6= zj2 ,
respectively. Consider the three cases of j1 < j2, j2 < j1 and j1 = j2. In the first case, j1
is the smallest number such that xj1 6= zj1 . For this index j1, we have that (xj1 , yj1) ∈ E′
and yj1 = zj1 , and hence, (xj1 , zj1) ∈ E′. It follows that (x̃, z̃) ∈ Ẽ. The second case is
handled in a similar fashion. For the third case, let j = j1 = j2. Notice that (xj , yj) ∈ E′
and (yj , zj) ∈ E′ and hence, (xj , zj) ∈ E′ (since D′ is transitively closed). It follows that
(x̃, z̃) ∈ Ẽ. We have shown that D̃ is transitively closed. This also shows that D̃ is acyclic.
We can now easily argue that G is the comparability graph of D̃.

The third claim is easy to see. J
Using the graph power and Lemma 7, we next argue that it is NP-hard to approximate

the 2-MaxCIS problem on comparability graphs within any constant factor. Theorem 6
provides an algorithm that produces a gap of (1 + ε). We can amplify the gap by graph
powering, as described next. Fix any constant r. Let the algorithm given by Theorem 6 be
denoted as A. Consider an algorithm B that takes as input a formula ϕ and outputs graphs
Gr1 and Gr2, where G1 and G2 are the graphs output by A on input ϕ. Lemma 7 shows that

Chakaravarthy et al. 259

Gr1 and Gr2 are comparability graphs. The same lemma shows that α(G′) = [α(Ĝ)]r, where
G′ = Gr1 ⊕Gr2 and Ĝ = G1 ⊕G2. It follows that

ϕ ∈ SAT =⇒ α(G′) ≥ (1 + ε)rkr

ϕ 6∈ SAT =⇒ α(G′) ≤ kr.

The algorithm B runs in polynomial time and produces a gap of (1 + ε)r. Consider any
constant c and set r = (log c)/ log(1 + ε). Then, the above algorithm with parameter r
produces a gap of c. The above argument leads to the following theorem.

I Theorem 8. If NP 6= P then the MaxCIS problem on comparability graphs cannot be
approximated within any constant factor.

We can amplify the gap further. Instead of fixing r to be a constant, let us set r = d logn,
where n is the number of vertices in Ĝ and d is a suitably defined constant. The output
graph Ĝr will have N = nr vertices and the gap would become (1 + ε)d logn. Setting
d = (1/ log(1 + ε))2, we get a gap of 2

√
N . However, taking the rth power would take nO(logn)

time. The above construction leads to the following result.

I Theorem 9. If NP 6⊆ DTIME[nO(logn)], then MaxCIS problem on comparability graphs
cannot be approximated within a factor of 2

√
logn.

References
1 R. Bar-Yehuda, M. Halldórsson, J. Naor, H. Shachnai, and I. Shapira. Scheduling split

intervals. SIAM Journal of Computing, 36(1):1–15, 2006.
2 M. Chlebík and J. Chlebíková. Complexity of approximating bounded variants of optimiza-

tion problems. Theoretical Computer Science, 354(3):320–338, 2006.
3 M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, and K. Vuskovic. Recognizing Berge

graphs. Combinatorica, 25(2):143–186, 2005.
4 M. Chudnovsky, N. Robertson, P. Seymour, and R.Thomas. The strong perfect graph

theorem. Annals of Mathematics, 164(1):51–229, 2006.
5 A. Dumitrescu and G. Tóth. Ramsey-type results for unions of comparability graphs.

Graphs and Combinatorics, 18(2):245–251, 2002.
6 A. Frank. Some polynomial algorithms for certain graphs and hypergraphs. In 5th British

Combinatorial Conference, University of Aberdeen, Aberdeen, page 211–226, 1975.
7 F. Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by cliques,

and maximum independent set of a chordal graph. SIAM Journal of Compututing, 1(2):180–
187, 1972.

8 M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

9 D. Hermelin and D. Rawitz. Optimization problems in multiple subtree graphs. In 7th
WAOA, LNCS 5893, pages 194–204, 2009.

10 D. Hochbaum, editor. Approximation algorithms for NP-hard problems. PWS Publishing
Co., Boston, 1997.

11 R. McConnell and J. Spinrad. Linear-time transitive orientation. In Proceedings of the
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 19–25, New Orleans,
Louisiana, 1997.

12 R. Möhring. Algorithmic aspects of comparability graphs and interval graphs. In I. Rival,
editor, Graphs and orders, pages 41–101. D. Reidel, Boston, 1985.

13 D. Zuckerman. Linear degree extractors and the inapproximability of max-clique and
chromatic number. Theory of Computing, 3(1):103–128, 2007.

FSTTCS 2010

Fast equivalence-checking for normed context-free
processes ∗

Wojciech Czerwiński and Sławomir Lasota

Institute of Informatics, University of Warsaw
Banacha 2, Warsaw, Poland
wczerwin,sl@mimuw.edu.pl

Abstract
Bisimulation equivalence is decidable in polynomial time over normed graphs generated by a
context-free grammar. We present a new algorithm, working in time O(n5), thus improving the
previously known complexity O(n8polylog(n)). It also improves the previously known complexity
O(n6polylog(n)) of the equality problem for simple grammars.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.260

1 Introduction

Equivalence checking, that is determining whether two systems are equal under a given
notion of equivalence, is an important verification problem with a long history. In this paper
we consider systems described by context-free grammars. It is well known that language
equivalence is undecidable in this class [1]. A decidability result was obtained by Korenjak and
Hopcroft [12] for a restricted class of deterministic context-free grammars (simple grammars).
Remarkably, the language containment is undecidable even for simple grammars [7].

In the context of process algebras, a grammar may be considered as a description of
a transition graph rather than a language. The adequate concept of equivalence is then
bisimilarity (bisimulation equivalence), a notion strictly finer than language equivalence.
For graphs generated by context-free grammars, called context-free processes, bisimilarity is
known to be decidable due to the result of [5]. It has also been demonstrated that bisimilarity
is the only equivalence in van Glabbeek’s spectrum [8] which is decidable for context-free
processes. This places bisimilarity in a very favourable position.

Historically the first decision procedure for bisimilarity on infinite-state systems was given
by [3] for a class of normed context-free processes, those defined by grammars in which,
roughly, each nonterminal generates at least one word. Clearly, language equivalence is still
undecidable in this class, as normedness assumption does not facilitate testing language
equality. As language equivalence and bisimilarity coincide on deterministic graphs the result
of [3] was a strict extension of [12]. Later, decidability was extended to all context-free
processes [5].

In the normed case, a series of consecutive papers [4, 10, 11] lead finally to a remarkable
polynomial-time algorithm of [9] for bisimilarity. The working time O(n13) was however
not satisfactory and hence further results followed: an O(n7polylog n)-time algorithm was
proposed for equivalence of simple grammars [2] and an O(n8polylog n)-time algorithm
was given for bisimilarity [13]. The latter cut down to simple grammars works in time
O(n6polylog n). We report a further progress: we give an O(n5) time algorithm for bisimi-

∗ This paper is partially supported by Polish government grant no. N N206 356036 and by EU-FET-IP
Software Engineering for Service-Oriented Overlay Computers SENSORIA.

© Wojciech Czerwiński and Sławomir Lasota;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 260–271

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.260
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Wojciech Czerwiński and Sławomir Lasota 261

larity on normed context-free processes, thus improving the previously known bound by a
factor of O(n3). We improve the case of simple grammars just as well.

Our approach is substantially different from all recent algorithms which, roughly, compute
the base of the bisimulation equivalence by eliminating the incorrect decompositions from the
initial ’overapproximating’ base. Instead, we apply the refinement scheme used previously
for the commutative context-free processes. Our starting point is the algorithm, given in [6],
that works for both normed commutative and non-commutative processes. Intuitively, the
algorithm combines the algorithmic theory of compressed strings, useful for non-commutative
case, with the iterative approximation refinement scheme used in commutative case. In
this paper we demonstrate, roughly speaking, that the latter scheme may be implemented
efficiently for non-commutative processes in time O(n5).

We start by defining the problem in Section 1. The following section introduces a
necessary background material, namely pattern-matching in compressed strings and unique
decomposition in a finitely-generated monoid, and explains the refinement scheme exploited
in our algorithm. Then, in Sections 3 and 4 we present the algorithm itself. Section 3 provides
a general outline and intentionally omits a number of details; in Section 4 we provide all the
implementation details missing in Section 3.

Context-Free Processes and Bisimilarity.

Ingredients of a process definition ∆ are a finite alphabet Σ, a finite set V of variables, and a
finite set of rules

X
a−→ α, (1)

with a ∈ Σ and α ∈ V∗. Such process definitions are usually called in the literature Basic
Process Algebra, or Context-Free Processes. The explanation of the latter is that each rule
can be seen as a production X −→ aα of a context-free grammar in Greibach normal form.
Elements of V∗ are called here processes; a variable X can be seen as an elementary process.

∆ defines a transition system: its states are processes α ∈ V∗; and for each a ∈ Σ, there is
a transition relation containing triples (α, a, β), where a ∈ Σ and α, β ∈ V∗, written α a−→ β.
The transition relations are defined by a prefix rewriting: Xβ a−→ αβ whenever ∆ contains
a rule X a−→ α, and β ∈ V∗.

I Definition 1. Given a binary relation R over V∗, we say that a pair (α, β) of processes
satisfies expansion in R, written (α, β) ∈ exp(R), if

whenever α a−→ α′, there exists some β′ with β a−→ β′ and (α′, β′) ∈ R; and
whenever β a−→ β′, there exists some α′ with α a−→ α′ and (α′, β′) ∈ R.

A binary relation S satisfies expansion in R if each pair (α, β) ∈ S does, i.e., S ⊆ exp(R).
A relation R is a bisimulation if it satisfies expansion in itself. We say that α and β are
bisimilar, denoted by α ∼ β, if (α, β) belongs to some bisimulation.

From now on we assume that ∆ is normed, i.e., for each variable X ∈ V∗ there is a finite
sequence X a1−→ α1 . . .

ak−→ αk = ε leading from X to the empty process ε. By |X| denote
the smallest length of such sequence and call it the norm of X (intuitively, |X| is the length
of the shortest word generated from X).

We consider the following Normed-BPA-Bisim Problem:

Instance: A normed process definition ∆ and two variables X,Y ∈ V.
Question: Is X ∼ Y ?

FSTTCS 2010

262 Fast equivalence-checking for normed context-free processes

A more general problem of checking whether α ∼ β, for given α, β ∈ V∗, can be easily reduced
to the above one. The size of ∆, denoted by N , is the sum of lengths of all the rules in ∆.
Clearly n ≤ N . Our main result is the following:

I Theorem 2. Normed-BPA-Bisim Problem can be solved in time O(N5).

Thinking of ∆ as of a grammar, call ∆ a simple grammar if for each X and a, there is at
most one rule (1) in ∆. As a direct corollary of Theorem 2 we obtain:

I Corollary 3. Equivalence of simple grammars can be solved in time O(N5).

Our algorithm, similarly to previous ones [9, 13], builds a finite base of ∼ that, once
constructed, allows to answer the Normed-BPA-Bisim Problem in constant time.

2 Preliminaries

Acyclic morphisms.

Let A be a finite set of terminal symbols, ranged over by a, b, . . ., and let S be a finite set of
non-terminal symbols, ranged over by x, y, z, Assume a total ordering < of non-terminal
symbols. An acyclic morphism is a mapping h : S→ (S ∪ A)∗ such that all symbols appearing
in h(x) are strictly smaller than x wrt. <. We implicitely extend the domain of h to S ∪ A,
assuming h to be identity on A. Due to the acyclicity requirement, h induces a monoid
morphism h∗ : (S ∪ A)∗ → A∗, as the limit of compositions h, h2 = h ◦ h, Formally,
h∗(z) = hk(z), for the smallest k with hk(z) ∈ A∗. Then the extension of h∗ to all strings in
(S ∪ A)∗ is as usual. Therefore each symbol z ∈ S represents a nonempty string h∗(z) over A.
Its length ‖h∗(z)‖ may be exponentially larger than the size of h, written size(h), defined
as the sum of lengths of all strings h(z), z ∈ S.

A relevant parameter of a symbol z, wrt. an acyclic morphism h, is its depth, written
depthh(z), and defined as the longest path in the derivation tree of z. A depth of h, written
depth(h), is the greatest depth of a symbol.

An acyclic morphism h is binary if ‖h(zi)‖ = 2, for all zi ∈ S. Any acyclic morphism h

may be transformed to the equivalent binary one: replace each h(zi) of length greater than 2
with a balanced binary tree, using ‖h(zi)‖ − 2 auxiliary symbols. Note that in consequence
the depth of h may increase by a logarithmic factor, but the size of h may only increase by a
constant factor. In the sequel we only consider binary morphisms.

In a word of length n we distinguish n+ 1 positions 0 . . . n. If h(z) = xy, i.e., h∗(z) =
h∗(x)h∗(y), then by the cutting position in z we mean the position in h∗(z) equal to the
length of h∗(x). We say that a substring touches a given position if this position is either
inside this substring or on the border. The occurrence table of h stores, for each two symbols
x, y ∈ S, the set of starting positions of occurrences of h∗(x) in h∗(y) that touch the cutting
position in y. The whole table may be stored compactly in O(|S|2) memory due to the
following:

I Lemma 4. (Basic Lemma [15]) The set of starting positions of occurences of h∗(x) in
h∗(y) that touch the cutting position in y, if non-empty, is an arithmetic progression.

I Theorem 5. ([14]) Given a binary acyclic morphism h, one may compute in time
O(size(h)2 · depth(h)) the occurence table of h.

Wojciech Czerwiński and Sławomir Lasota 263

Generalized acyclic morphisms.

From now on assume that each terminal symbol a ∈ A has assigned its norm |a|, a positive
integer. Norm extends additively to all strings from A∗. For non-terminal symbols, we put
|z| := |h∗(z)|.

I Lemma 6. Given a binary acyclic morphism h, a symbol z ∈ S, and k < ‖h∗(z)‖, one
may compute in time O(depthh(z)) an acyclic morphism h′ extending h, such that one of
new symbols of h′ represents the suffix of h∗(z) of norm k (assumed that such exists), and
size(h′) ≤ size(h) +O(depthh(z)) and depth(h′) = depth(h).

For efficiency reasons it is favourable not to compute explicitely the representation of the
suffix of h∗(z) of norm k. Instead, we will represent this suffix symbolically, as follows.
By now, an acyclic morphism was defined by equations of the form h(z) = x y, meaning
h∗(z) = h∗(x)h∗(y). Now we will allow a more general form:

h(z) = x suffixk(y), (2)

where 0 < k ≤ |y|, to mean that h∗(z) is concatenation of h∗(x) and the suffix of h∗(y) of
norm k. Note that (2) is well defined only when the required suffix exists. As a particular
case, for k = |y|, one gets the standard definition h(z) = x y. As before we asume acyclicity
in (2), i.e., x, y < z.

Theorem 5 may be adapted to the generalized acyclic morphisms, with a slightly worst
time. Naively, one could get rid of all ’truncated’ variables y in (2) using Lemma 6, ending
with a quadratic blow-up of the size of the morphism, and then apply Theorem 5. We claim
that one can do better:

I Theorem 7. Given a generalized binary acyclic morphism h, one may compute in time
O(size(h)3 · depth(h)) the occurence table of h.

From now on generalized acyclic morphisms are briefly called acyclic morphisms.

Unique decomposition.

Assume from now on a fixed normed process definition ∆, i.e., a finite alphabet Σ, a finite set
V = {X1, . . . , Xn} of variables, and a finite set of rules of the form Xi

a−→ α, a ∈ Σ, α ∈ V∗.
The complexity considerations in this section and later on are wrt. the size N of ∆.

Assume also that variables V = {X1, . . . , Xn} of a process definition are ordered according
to non-decreasing norm: |Xi| ≤ |Xj | whenever i < j. We write Xi < Xj if i < j. Note that
|X1| is necessarily 1, and that norm of a variable is at most exponential wrt. the size of ∆,
understood as the sum of lengths of all rules.

A congruence is norm-preserving if whenever α and β are related then |α| = |β|. Let
≡ be an arbitrary norm-preserving congruence in V∗. Intuitively, an elementary process
Xi is decomposable if Xi ≡ αβ for some α, β 6= ε. Note that |α|, |β| < |Xi| then. For
technical convenience we prefer to apply a slightly different definition. We say that Xi is
decomposable wrt. ≡, if Xi ≡ α for some process α ∈ {X1, . . . , Xi−1}∗; otherwise, Xi is called
indecomposable, or prime wrt. ≡. In particular, X1 is always prime.

Denote by P the set of primes wrt. ≡. It is easy to show by induction on norm that for each
process α there is some γ ∈ P∗ with α ≡ γ; in such case γ is called a prime decomposition of
α. Note that a prime decomposition of Xi is either Xi itself, or it belongs to {X1, . . . , Xi−1}∗.
We say that ≡ has the unique decomposition property if each process has precisely one prime

FSTTCS 2010

264 Fast equivalence-checking for normed context-free processes

decomposition. While the set P of primes depends on the chosen ordering of variables (in
case Xi ≡ Xj , i 6= j), the unique decomposition property does not.

The following lemma is shown by considering the unique prime decompositions:

I Lemma 8 (Left cancellation). If ≡ has the unique decomposition property and γα ≡ γβ

then α ≡ β.

The refinement step.

A transition α a−→ β is called norm-reducing if |β| < |α|; we write α a−→n-r β in such case.
We will need a concept of norm-reducing bisimulation (n-r-bisimulation, in short), i.e., a
bisimulation over the transition system restricted to only norm-reducing transitions. The
appropriate norm-reducing expansion wrt. R (cf. Def. 1) will be written as n-r-exp(R). Every
bisimulation is a n-r-bisimulation (as a norm-reducing transition must be matched in a
bisimulation by a norm-reducing one) but the converse does not hold in general.

I Proposition 1. Each n-r-bisimulation, and hence each bisimulation, is norm-preserving.

For a norm-preserving equivalence ≡ over processes, let ∼≡n-r denote the union of all
n-r-bisimulations contained in ≡. It witnesses most of typical properties of bisimulation
equivalence. Being the union of n-r-bisimulations, ∼≡n-r is a n-r-bisimulation itself, in fact
the greatest n-r-bisimulation that is contained in ≡. It admits the following fix-point
characterization:

I Proposition 2. (α, β) ∈∼≡n-r iff α ≡ β and (α, β) ∈ n-r-exp(∼≡n-r).

Moreover ∼≡n-r is clearly an equivalence as ≡ is assumed to be so. The relation ∼≡n-r may be
thus seen as the bisimulation equivalence relativized to pairs of processes related by ≡ and
to norm-reducing moves only.

The relativized bisimulation equivalence will play a crucial role in the algorithm, that will
work by consecutive refinements of a current congruence until it finally stabilizes. Instead of
the classical refinement step ≡ 7→ ≡ ∩ exp(≡), we prefer to use the following one:

≡ 7→ ∼≡∩ exp(≡)
n-r .

This transformation will be refered to as the refinement step, and ∼≡∩ exp(≡)
n-r will be called

the refinement of ≡.
By the results of [6] specialized to normed BPA, it follows:

I Lemma 9. ([6]) If a norm-preserving congruence ≡ has the unique decomposition property
then the refinement of ≡ is a congruence with the unique decomposition property.

3 Outline of the algorithm

Overall idea.

We describe the algorithm in a top-down manner, introducing the implementation details
incrementally. The overall idea is as follows: we start with the initial congruence ≡, given
simply by the norm equality (cf. Prop. 1), and then perform the fixpoint computation by
refining ≡ until it finally stabilizes:

Wojciech Czerwiński and Sławomir Lasota 265

Initialize ≡ as the norm equality.
repeat

replace ≡ by its refinement
until ≡ coincides with its refinement.

Note that the approximating congruence ≡ always subsumes bisimulation equivalence
∼ in the course of the algorithm, ∼⊆≡. Moreover, if ≡ and its refinement coincide, then
≡⊆ exp(≡) and thus the opposite implication ≡⊆∼ follows. Thus the approximation scheme
is correct wrt. the bisimulation equivalence. At the end of this section we will argue that the
algorithm always terminates after at most n iterations.

Now we will outline a way of implementing the scheme above.

Representation by an acyclic morphism.

Clearly, instead of the whole (infinite!) congruence ≡, the algorithm should maintain a
finite representation of ≡. As a succint representation we choose an acyclic morphism
h : S → (S ∪ A)∗. The set A of terminal symbols will consist of all variables Xi that are
currently prime wrt. ≡, and the set of non-terminal symbols S will contain the variables
currently decomposable wrt. ≡, together with some other auxiliary symbols, to be defined
later on. We assume that the ordering < on S is consistent with the ordering X1 < . . . < Xn.
For any variable Xi, h∗(Xi) ∈ A∗ ⊆ V∗ will describe the prime decomposition of Xi. The
morphism h will represent ≡ in the following sense: α ≡ β ⇐⇒ h∗(α) = h∗(β). Below we
prefer to write =h instead of ≡ to emphesize the role of h.

Recall that due to Lemma 9 the congruence ≡ invariantly has the unique decomposition
property, hence always some h exists that represents ≡ (e.g., take as h(Xi) the prime
decomposition of Xi). Note however that the same congruence may be represented by many
different acyclic morphisms. A key ingredient of the algorithm will be an efficient construction
of a sufficiently succint one.

As the congruence ≡ is norm-preserving, norm of Xi is always equal to norm of h(Xi),
and hence to norm of h∗(Xi) as well.

Leftmost prime factors.

If Xi ≡ Xjγ, j < i and Xj is prime wrt. ≡ we say that Xj is the leftmost prime factor of Xi

wrt. ≡. Note that due to the unique decomposition property of ≡, Xi may have at most
one leftmost prime factor wrt. ≡. Moreover, Lemma 8 guarantees that if Xi ≡ Xjα and
Xi ≡ Xjβ are two decompositions of Xi, starting with the same variable Xj , then α ≡ β

and thus α ≡ β is determined uniquely up to ≡. In consequence, it is crucial just to know,
for each variable Xi, which variable Xj , j < i, if any, is the leftmost prime factor of Xi

wrt. the current congruence ≡. In the algorithm, this information will be maintained using
the indices lpf(i) ∈ {1 . . . n− 1}, for i ∈ {2 . . . n}, with the following meaning: if the variable
Xi is currently decomposable wrt. ≡, then Xlpf(i) is the leftmost prime factor of Xi. Clearly

lpf(i) < i. (3)

As ≡ is represented by an acyclic morphism h, Xlpf(i) always belongs to A and is the first
letter in h∗(Xi) (and the first letter in h(Xi) as well, which will become apparent shortly).

FSTTCS 2010

266 Fast equivalence-checking for normed context-free processes

Outline of the algorithm.

for i ∈ {2 . . . n} do let lpf(i) := 1;
A := {X1}; A′ := A;
initialize h;

repeat
for Xi ∈ {X2 . . . Xn} \ A do (∗)

if ¬ lpfactor(Xi, Xlpf(i)) then (∗∗)
for Xj ∈ {Xlpf(i)+1 . . . Xi−1} ∩ (A′ \ A) do (∗ ∗ ∗)

if lpfactor(Xi, Xj) then
let lpf(i) := j;
(h′(Xi) is defined as a side-effect of lpfactor(Xi, Xj))
break the inner for loop;

fi
if the inner for loop not broken then add Xi to A′ fi

fi
A := A′; h := h′;

until A does not change

In the for loops (∗) and (∗∗∗), the variables are assumed to be inspected in the increasing
order X1 ≤ . . . ≤ Xn.

Each iteration of the repeat loop, as outlined above, corresponds to a single refinement
step of ≡: given the current acyclic morphism h it computes a new acyclic morphism, say
h′, representing the refinement of =h (the latter has unique decomposition property by
Lemma 9). The subroutine lpfactor(Xi, Xj), invoked several times in the algorithm, is to
check whether Xj is the leftmost prime factor of Xi wrt. the refinement of =h. The acyclic
morphism h′ is computed as a side-effect of the invocations of lpfactor; thus lpfactor(Xi,
Xj) is invoked under assumption that the value of h′ is already known for the variables from
{X1 . . . Xi−1}. Description of this subroutine and other implementation details related to
the computation of h′ are deferred to the next section. Here, we merely focus on the scheme
of updating the indices lpf(i).

In the inner for loop (∗ ∗ ∗), the variable Xj ranges over {Xlpf(i)+1 . . . Xi−1} ∩ (A′ \ A).
The rationale behind restricting this range so is the following.

As the refinement of =h is clearly finer than =h (we may write =h′ ⊆=h), a decomposition
wrt. the refinement of =h is automatically a decomposition wrt. =h. Thus, if some Xi is
decomposable wrt. =h, then there are just two possibilities for a new value of lpf(i) (denote it
by lpf(i)′): either it remains unchanged, lpf(i)′ = lpf(i) (if the lpfactor (∗∗) succeeds), or it
changes. In the latter case, its new value lpf(i)′ may be only chosen from A′ \ A, as otherwise
Xi would have two different leftmost prime factors wrt. (the coarser) =h. Moreover, the new
value of lpf(i) must be necessarily bigger than the old one. This follows from the observation
that the ’fresh’ prime variable Xlpf(i)′ ∈ A′ \ A was not so in the previous iteration, and again
by the unique decomposition property its leftmost prime factor was necessarily the same as
the previous leftmost prime factor of Xi:

lpf(lpf(i)′) = lpf(i). (4)

Thus lpf(i) < lpf(i)′ by (3).

Wojciech Czerwiński and Sławomir Lasota 267

The size of the set A of terminal symbols (containing exactly the prime variables wrt. =h)
increases in each iteration of the repeat loop (except for the very last iteration). Thus the
total number of iterations is at most n.

Concerning the correctness: if A does not change in one iteration of the repeat loop, it
clearly follows that =h coincides with its refinement, which guarantees that =h reaches the
bisimulation equivalence, as discussed in the beginning of this section.

4 Implementation of the algorithm

Now we explain how the acyclic morphism h is initialized and refined during one iteration of
the repeat loop; and how the subroutine lpfactor is implemented. Total running time is
discussed at the end of this section.

Initialization of h.

For any right-hand side β of a production in ∆ we introduce a non-terminal symbol Yβ , and
define h(Yβ) = β. Then we transform h into binary form, if necesssary. This will possibly
introduce further auxiliary symbols; in the sequel these further symbols will not be mentioned
explicitly. The symbols Yβ (together with the other auxiliary symbols) will be continuously
contained in S during the algorithm and their definition will never change. The number of
the symbols is O(N).

Distinguish one fixed norm-reducing transition rule

Xi
ai−→n-r αi (5)

for every variable Xi, 2 ≤ i ≤ n; clearly |Xi| = |αi|+ 1. These distinguished rules will be
fixed in the algorithm. For i ≥ 2, we initilize h by

h(Xi) = X1 Yαi
, (6)

which gives a decomposition of Xi wrt. the norm equality, i.e., h∗(Xi) = X
|Xi|
1 .

Initially, A = {X1} and S = {Yβ}β ∪ {X2 . . . Xn}.

Invariant.

In the algorithm, the acyclic morphism h is determined by the leftmost prime factors and by
the distinguished norm-reducing rules (5). Recall that Xlpf(i) is the leftmost prime factor
of Xi wrt. =h. The following invariant will be respected by h after each iteration of the
repeat loop (note that (6) is a special case when lpf(i) = 1):

h(Xi) = Xlpf(i) suffix|Xi|−|Xlpf(i)|(Yαi) for every Xi /∈ A. (7)

Why is (7) correct? It follows from the claim below.

I Claim 1. Let h be an acyclic morphism such that the congruence =h is a norm-reducing
bisimulation. If Xi =h Xjδ then h∗(δ) is a suffix of h∗(αi).

Indeed: consider a norm-reducing transition Xi
ai−→ αi and a matching transition of Xjδ, say

Xjδ
ai−→ γδ; as Xj is an active variable, the process δ stays unchanged, and thus αi =h γδ

as required.

FSTTCS 2010

268 Fast equivalence-checking for normed context-free processes

From h to h′.

As the refinement of =h is included in =h, a decomposition wrt. the refinement of =h is
automatically a decomposition wrt. =h. Thus a variable prime wrt. =h is still prime wrt.=h′ :
A ⊆ A′. We do not introduce any new symbols for h′: A∪ S = A′ ∪ S′, and hence S ⊇ S′. Thus
S′ = {Yβ}β ∪ {X2 . . . Xn} \ A′.

We assume that the occurrence table for h is available prior to each succesive iteration
of the repeat loop (it was constructed in the previous iteration). As a side-effect of the
consecutive invocations of lpfactor during one iteration of the repeat loop, the algorithm
computes incrementally the occurrence table for h′. We assume that prior to each invocation of
lpfactor(Xi, Xj) the occurrence table for h′ is already computed for variables {X1 . . . Xi−1}.

Implementation of lpfactor(Xi, Xj).

The subroutine lpfactor is given, as its input, two variables Xi, Xj . Its task is to check
whether Xj is the leftmost prime factor of Xi wrt. ∼=h ∩ exp(=h)

n-r , the refinement of =h.

It is assumed that prior to the call of lpfactor(Xi, Xj), all variables X2, . . . , Xi−1 have
been processed by the outer for loop and either qualified to A′, or have already a definition
in h′. We thus assume that on {X1 . . . Xi−1} the congruence =h′ represented by h′ agrees
with ∼=h ∩ exp(=h)

n-r . In particular (h′)∗(αi) is already defined, as all variables appearing in
αi are in {X1 . . . Xi−1}. It is also assumed that Xi /∈ A′ and Xj ∈ A′. Recalling (7), the
aim of lpfactor(Xi, Xj) is to check whether substituting lpf(i) = j in (7) is correct for the
refinement of h. I.e., the aim is to check the ’candidate’:

h′(Xi) = Xj suffix|Xi|−|Xj |(Yαi
). (8)

The right-hand side of (8) is meaningful only when (h′)∗(Yαi) = (h′)∗(αi) has a suffix of
norm |Xi| − |Xj |, say ᾱ ∈ (A′)∗; this is verified in point 1 below. The ’candidate’ (8) is
acceptable if the following condition holds:

(Xi, Xj ᾱ) ∈ ∼=h ∩ exp(=h)
n-r , (9)

By referring directly to Prop. 2, one sees that (9) is equivalent to

Xi =h Xjᾱ and (Xi, Xj ᾱ) ∈ exp(=h) and (Xi, Xj ᾱ) ∈ n-r-exp(=h′).

(In the last condition we use the assumption that =h′ agrees with ∼=h ∩ exp(=h)
n-r on variables

from {X1 . . . Xi−1}.) These three conditions are verified in points 2, 3 and 4 below.

Wojciech Czerwiński and Sławomir Lasota 269

subroutine lpfactor(Xi, Xj):

1. Check if (h′)∗(Y ′αi
) has a suffix of norm l := |Xi| − |Xj |. If no, return false.

As A ⊆ A′ we conclude that h∗(Yαi) has a suffix of norm l too, the fact to be
needed in the following points.

2. Test if

Xi =h Xj suffixl(Yαi
) (in A∗). (10)

If this is not the case, return false.

3. For each a ∈ Σ, let Ca := {α : Xi
a−→ α} and Da := {β : Xj

a−→ β}; then for all
α ∈ Ca and β ∈ Da, test if

Yα =h Yβ suffixl(Yαi
) (in A∗). (11)

If the bisimulation expansion condition (for each α ∈ Ca, there exists β ∈ Da

such that (11) holds; and for each β ∈ Da, there exists α ∈ Ca such that (11)
holds) is not satisfied return false.

4. For each a ∈ Σ, let Ca := {α : Xi
a−→n-r α} and Da := {β : Xj

a−→n-r β}; then
for all α ∈ Ca and β ∈ Da, test if

Yα =h′ Yβ suffixl(Yαi) (in (A′)∗). (12)

If the bisimulation expansion condition, with (12) in place of (11), is not satisfied
return false.

5. Extend h′ by h′(Xi) = Xj suffix|Xi|−|Xj |(Yαi
) and return true.

In case when the ’candidate’ (9) is checked succesfully, as a side-effect of the invocation
of lpfactor the acyclic morphism h′ is extended in point 5.

It remains now to explain how the equality tests (10), (11) and (12) are implemented.
Basing on the the same insight as in Theorem 7 we prove:

I Lemma 10. Each of equality tests (10), (11) may be solved in time O(N). All equality
tests (12) during one iteration of the repeat loop require O(N4) time.

Total running time.

The time needed for a single iteration of the repeat loop is devoted to two tasks: (I)
construction of the occurrence table for h′, as a side-effect of solving tests (12), and (II)
solving the equality tests (10) and (11). Task (I) requires O(N4) total time, by Lemma 10
and Theorem 7, knowing that the depth of h is at most n (note that the depth is so even
after increasing by a logarithmic factor when transforming h to the binary form). Concerning
(II), there are O(N2) equality tests in a single iteration of the repeat loop and each of them
requires O(N) time by Lemma 10, hence the latter task is time-dominated by the former one.
As the number of iterations is at most n, we get total time O(N5), as stated in Theorem 2.

FSTTCS 2010

270 Fast equivalence-checking for normed context-free processes

Example.

As an example, we analyze a run of our algorithm for the following input process definition:

X
a−→ ε Y

a−→ ε Y
b−→ Y Y

b−→ X Z
a−→ X

Z
b−→ Z Z

b−→ Y Y T
a−→ Y Y W

a−→ ZZ W
b−→W

Variables are ordered as follows: X < Y < Z < T < W . The compression issue, i.e.,
representation of the approximating congruences by acyclic morphisms, are completely
omitted here for simplicity. We fix:

αX = ε 1αY = ε αZ = X αT = Y Y αW = ZZ.

The initial decomposition is: Y ≡ X, Z ≡ XX, T ≡ XXX, W ≡ XXXXX; variable X
is the only prime.

Let us analyze the first iteration of the repeat loop; the refinement of ≡ computed
in this iteration we denote by ≡′. We check that lpfactor(Y,X) yields false, because
(Y,X) 6∈ exp(≡): Y has a b-move, X has not. So Y becomes prime. Next we check
that lpfactor(Z,X) yields false because (Z,XX = XαZ) 6∈ exp(≡). We check that
lpfactor(Z, Y) yields true, so we put Z ≡′ Y X = Y αZ . Next we check that lpfactor(T,X)
yields true, hence T ≡′ XY Y = XαT . Now we proceed with processing of the last variable
W . We check that lpfactor(W,X) yields false, because (W,XY XYX ≡′ XαW) 6∈ exp(≡):
W has a b-move, X has not. Finally, we check that lpfactor(W,Y) yields true, so now
W ≡′ Y αW ≡′ Y ZZ ≡′ Y Y XY X.

After the first iteration, the decomposition is: Z ≡ Y X, T ≡ XY Y , W ≡ Y Y XY X; the
primes are A = {X,Y }.

Now we proceed with the analysis of the second iteration of the repeat loop. We check
that lpfactor(Z, Y) yields false, because (Z, Y X) 6∈ exp(≡): there is no good Duplicator’s
response to the move Z b−→ Y Y . In consequence, Z becomes prime. Next we check that
lpfactor(T,X) yields true. In consequence, T ≡′ XY Y . Finally, we process variableW . We
check that lpfactor(W,Y) yields false, as (W,Y ZZ) 6∈ exp(≡): there is no good response
to the move Y b−→ X. The next candidate for the left-most prime factor is Z, a ’fresh’
prime. We check that lpfactor(W,Z) yields false, but the reason is different than before:
αW = ZZ has no suffix of norm |W | − |Z| = 3.

After the second iteration, we have four primes A = {X,Y, Z,W} and the decomposition
is T ≡ XY Y .

The third iteration is the last one as A does not change any more.

Acknowledgements.

We are very grateful to Wojtek Rytter and Sibylle Fröschle for many helpful discussions.

References
1 Y. Bar-Hillel, M. Perles, and S. Shamir. On formal properties of simple phrase structure

grammars. Zeitschrift fuer Phonetik, Sprachwissenschaft, und Kommunikationsforschung,
14:143–177, 1961.

2 C. Bastien, J. Czyżowicz, W. Fraczak, and W. Rytter. Prime normal form and equivalence
of simple grammars. In Proc. CIAA’05, volume 3845 of LNCS, pages 79–90. Springer-Verlag,
2005.

Wojciech Czerwiński and Sławomir Lasota 271

3 J. Beaten, J. Bergstra, and J. Klop. Decidability of bisimulation equivalence for processes
generating context-free languages. In Proc. PARLE’87, volume 259 of LNCS, pages 94–113.
Springer-Verlag, 1987.

4 D. Caucal. Graphes canoniques des graphes algébraiques. Informatique Théoretique et
Applications (RAIRO), 24(4):339–352, 1990.

5 S. Christensen, Y. Hirshfeld, and C. Stirling. Bisimulation equivalence is decidable for all
context-free processes. Information and Computation, 12(2):143–148, 1995.

6 W. Czerwiński, S. Fröschle, and S. Lasota. Partially-commutative context-free processes.
In Proc. CONCUR’09, volume 5710 of LNCS, pages 259–273. Springer-Verlag, 2009.

7 E.P. Friedman. The inclusion problem for simple languages. Theoretical Computer Science,
1:297–316, 1976.

8 R. v. Glabbeek. The linear time - branching time spectrum. In Proc. CONCUR’90, pages
278–297, 1990.

9 Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for deciding bisimilarity
on normed context-free processes. Theoretical Computer Science, 15:143–159, 1996.

10 H. Huettel and C. Stirling. Actions speak louder than words: proving bisimilarity for
context-free processes. In Proc. LICS’91, pages 376–386. IEEE Computer Society Press,
1991.

11 D. Huynh and L. Tian. Deciding bisimilarity of normed context-free processes is in ΣP2 .
Theoretical Computer Science, 123:183–197, 1994.

12 A. Korenjak and J. Hopcroft. Simple deterministic languages. In Proc. 7th Annual IEEE
Symposium on Switching and Automata Theory, pages 36–46, 1966.

13 S. Lasota and W. Rytter. Faster algorithm for bisimulation equivalence of normed context-
free processes. In Proc. MFCS’06, volume 4162 of LNCS, pages 646–657. Springer-Verlag,
2006.

14 Y. Lifshits. Solving classical string problems an compressed texts. In Combinatorial and
Algorithmic Foundations of Pattern and Association Discovery, 2006.

15 A. Shinohara, M. Miyazaki, and M. Takeda. An improved pattern-matching algorithm for
strings in terms of straight-line programs. Journal of Discrete Algorithms, 1(1):187–204,
2000.

FSTTCS 2010

Generalizing the powerset construction,
coalgebraically ∗

Alexandra Silva1, Filippo Bonchi2, Marcello M. Bonsangue1,3, and
Jan J. M. M. Rutten1,4

1 Centrum Wiskunde & Informatica
2 CNRS - LIP, ENS Lyon
3 LIACS - Leiden University
4 Radboud University Nijmegen

Abstract
Coalgebra is an abstract framework for the uniform study of different kinds of dynamical systems.
An endofunctor F determines both the type of systems (F -coalgebras) and a notion of behavioral
equivalence (∼F) amongst them. Many types of transition systems and their equivalences can
be captured by a functor F . For example, for deterministic automata the derived equivalence
is language equivalence, while for non-deterministic automata it is ordinary bisimilarity. The
powerset construction is a standard method for converting a nondeterministic automaton into an
equivalent deterministic one as far as language is concerned. In this paper, we lift the powerset
construction on automata to the more general framework of coalgebras with structured state
spaces. Examples of applications include partial Mealy machines, (structured) Moore automata,
and Rabin probabilistic automata.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.272

1 Introduction

Coalgebra is by now a well established general framework for the study of the behaviour
of large classes of dynamical systems, including various kinds of automata (deterministic,
probabilistic etc.) and infinite data types (streams, trees and the like). For a functor
F : Set→ Set, an F -coalgebra is a pair (X, f), consisting of a set X of states and a function
f : X → F (X) defining the observations and transitions of the states. Coalgebras generally
come equipped with a standard notion of equivalence called F -behavioural equivalence that
is fully determined by their (functor) type F . Moreover, for most functors F there exists
a final coalgebra into which any F -coalgebra is mapped by a unique homomorphism that
identifies all F -equivalent states.

Much of the coalgebraic approach can be nicely illustrated with deterministic automata
(DA), which are coalgebras of the functor D(X) = 2×XA. In a DA, two states are D-
equivalent precisely when they accept the same language. The set 2A∗ of all formal languages
constitutes a final D-coalgebra, into which every DA is mapped by a homomorphism that
sends any state to the language it accepts.

It is well-known that non-deterministic automata (NDA) often provide more efficient
(smaller) representations of formal languages than DA’s. Language acceptance of NDA’s is
typically defined by turning them into DA’s via the powerset construction. Coalgebraically
this works as follows. NDA’s are coalgebras of the functor N(X) = 2 × Pω(X)A, where

∗ This work was carried out during the second author’s tenure of an ERCIM “Alain Bensoussan” Fellowship
Programme. The fourth author is partially supported by the Fundação para a Ciência e a Tecnologia,
Portugal, under grant number SFRH/BD/27482/2006

© Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue and Jan J. M. M. Rutten;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 272–283

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.272
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Silva, Bonchi, Bonsangue, Rutten 273

Pω is the finite powerset. An N -coalgebra (X, f : X → 2 × Pω(X)A) is determinized by
transforming it into a D-coalgebra (Pω(X), f] : Pω(X) → 2 × Pω(X)A) (for details see
Section 3). Then, the language accepted by a state s in the NDA (X, f) is defined as the
language accepted by the state {s} in the DA (Pω(X), f]).

For a second variation on DA’s, we look at partial automata (PA): coalgebras of the
functor P (X) = 2× (1 +X)A, where for certain input letters transitions may be undefined.
Again, one is often interested in the DA-behaviour (i.e., language acceptance) of PA’s. This
can be obtained by turning them into DA’s using totalization. Coalgebraically, this amounts
to the transformation of a P -coalgebra (X, f : X → 2 × (1 + X)A) into a D-coalgebra
(1 +X, f] : 1 +X → 2× (1 +X)A).

Although the two examples above may seem very different, they are both instances of one
and the same phenomenon, which it is the goal of the present paper to describe at a general
level. Both with NDA’s and PA’s, two things happen at the same time: (i) more (or, more
generally, different types of) transitions are allowed, as a consequence of changing the functor
type by replacing X by Pω(X) and (1 +X), respectively; and (ii) the behaviour of NDA’s
and PA’s is still given in terms of the behaviour of the original DA’s (language acceptance).

For a large family of F -coalgebras, both (i) and (ii) can be captured simultaneously
with the help of the categorical notion of monad, which generalizes the notion of algebraic
theory. The structuring of the state space X can be expressed as a change of functor type
from F (X) to F (T (X)). In our examples above, both the functors T1(X) = Pω(X) and
T2(X) = 1 +X are monads, and NDA’s and PA’s are obtained from DA’s by changing the
original functor type D(X) into N(X) = D(T1(X)) and P (X) = D(T2(X)). Regarding (ii),
one assigns F -semantics to an FT -coalgebra (X, f) by transforming it into an F -coalgebra
(T (X), f]), again using the monad T . In our examples above, the determinization of NDA’s
and the totalization of PA’s consists of the transformation of N - and P -coalgebras (X, f)
into D-coalgebras (T1(X), f]) and (T2(X), f]), respectively.

We shall investigate general conditions on the functor types under which the above
constructions can be applied: for one thing, one has to ensure that the FT -coalgebra map f
induces a suitable F -coalgebra map f]. Our results will lead to a uniform treatment of all
kinds of existing and new variations of automata, that is, FT -coalgebras, by an algebraic
structuring of their state space through a monad T . Furthermore, we shall prove a number
of general properties that hold in all situations similar to the ones above. For instance,
there is the notion of N -behavioural equivalence with which NDA’s, being N -coalgebras,
come equipped. It coincides with the well-known notion of Park-Milner bisimilarity from
process algebra. A general observation is that if two states in an NDA are N -equivalent
then they are also D- (that is, language-) equivalent. For PA’s, a similar statement holds.
One further contribution of this paper is a proof of these statements, once and for all for all
FT -coalgebras under consideration.

Coalgebras of type FT were studied in [15, 2, 11]. In [2, 11] the main concern was
definitions by coinduction, whereas in [15] a proof principle was also presented. All in all,
the present paper can be seen as the understanding of the aforementioned papers from a new
perspective, presenting a uniform view on various automata constructions and equivalences.

The structure of the paper is as follows. After preliminaries (Section 2) and the details of
the motivating examples above (Section 3), Section 4 presents the general construction as
well as many more examples. In Section 5, a large family of automata (technically: functors)
is characterized to which the constructions above can be applied. Section 6 discusses related
work and presents pointers to future work. A technical report [27] contains all the proofs as
well as further examples.

FSTTCS 2010

274 Generalizing the powerset construction, coalgebraically

2 Background

In this section we introduce the preliminaries on coalgebras and algebras. First, we fix
some notation on sets. We will denote sets by capital letters X,Y, . . . and functions by lower
case letters f, g, . . . Given sets X and Y , X × Y is the cartesian product of X and Y (with
the usual projection maps π1 and π2), X + Y is the disjoint union (with injection maps κ1
and κ2) and XY is the set of functions f :Y → X. The collection of finite subsets of X is
denoted by Pω(X), while the collection of full-probability distributions with finite support
is Dω(X) = {f : X → [0, 1] | f finite support and

∑
x∈X f(x) = 1}. For a set of letters

A, A∗ denotes the set of all words over A; ε the empty word; and w1 · w2 (and w1w2) the
concatenation of words w1, w2 ∈ A∗.

2.1 Coalgebras
A coalgebra is a pair (X, f : X → F (X)), where X is a set of states and F : Set→ Set is a
functor. The functor F , together with the function f , determines the transition structure (or
dynamics) of the F -coalgebra [22].

An F -homomorphism from an F -coalgebra (X, f) to an F -coalgebra (Y, g) is a function
h:X → Y preserving the transition structure, i.e., g ◦ h = F (h) ◦ f .

An F -coalgebra (Ω, ω) is said to be final if for any F -coalgebra (X, f) there exists a
unique F -homomorphism [[−]]X : X → Ω. All the functors considered in examples in this
paper have a final coalgebra.

Let (X, f) and (Y, g) be two F -coalgebras. We say that the states x ∈ X and y ∈ Y
are behaviourally equivalent, written x ∼F y, if and only if they are mapped into the same
element in the final coalgebra, that is [[x]]X = [[y]]Y .

2.2 Algebras
Monads can be thought of as a generalization of algebraic theories. A monad T = (T, µ, η)
is a triple consisting of an endofunctor T on Set and two natural transformations: a unit
η : Id ⇒ T mapping a set X to its free algebra T (X), and a multiplication µ : T 2 ⇒ T . They
satisfy the following commutative laws

µ ◦ ηT = idT = µ ◦ Tη and µ ◦ µT = µ ◦ Tµ.

Sometimes it is more convenient to represent a monad T, equivalently, as a Kleisli triple
(T, (_)], η) [17], where T assigns a set T (X) to each set X, the unit η assigns a function
ηX : X → T (X) to each set X, and the extension operation (_)] assigns to each f : X → T (Y)
a function f] : T (X)→ T (Y), such that,

f] ◦ ηX = f (ηX)] = idT (X) (g] ◦ f)] = g] ◦ f] ,

for g : Y → T (Z). Monads are frequently referred to as computational types [18]. We list
now a few examples. In what follows, f : X → T (Y) and c ∈ T (X).

Nondeterminism T (X) = Pω(X); ηX is the singleton map x 7→ {x}; f](c) =
⋃
x∈c f(x).

Partiality T (X) = 1 + X where 1 = {∗} represents a terminating (or diverging)
computation; ηX is the injection map κ2 : X → 1+X; f](κ1(∗)) = κ1(∗) and f](κ2(x)) =
f(x).

Further examples of monads include: exceptions (T (X) = E + X), side-effects (T (X) =
(S × X)S), interactive output (T (X) = µv.X + (O × v) ∼= O∗ × X) and full-probability

Silva, Bonchi, Bonsangue, Rutten 275

(T (X) = Dω(X)). We will use all these monads in our examples and we will define ηX and
f] for each later in Section 4.1.

A T-algebra of a monad T is a pair (X,h) consisting of a set X, called carrier, and a
function h : T (X)→ X such that h ◦ µX = h ◦ Th and h ◦ ηX = idX . A T -homomorphism
between two T-algebras (X,h) and (Y, k) is a function f : X → Y such that f ◦ h = k ◦ Tf .
T-algebras and their homomorphisms form the so-called Eilenberg-Moore category SetT.
There is a forgetful functor UT : SetT → Set defined by

UT((X,h)) = X and UT(f : (X,h)→ (Y, k)) = f : X → Y .

The forgetful functor UT has left adjoint X 7→ (T (X), µX : TT (X) → T (X)), map-
ping a set X to its free T-algebra. If f : X → Y with (Y, h) a T-algebra, the unique
T-homomorphism f] : (T (X), µX)→ (Y, h) with f] ◦ ηX = f is given by

f] : T (X)
Tf // T (Y) h // Y .

The function f] : (T (X), µX)→ (T (Y), µY) coincides with function extension for a Kleisli
triple. For the monad Pω the associated Eilenberg-Moore category is the category of join
semi-lattices, whereas for the monad 1 +− is the category of pointed sets.

3 Motivating examples

In this section, we introduce two motivating examples. We will present two constructions, the
determinization of a non-deterministic automaton and the totalization of a partial automaton,
which we will later show to be an instance of the same, more general, construction.

3.1 Non-deterministic automata
A deterministic automaton (DA) over the input alphabet A is a pair (X, 〈o, t〉), where X is
a set of states and 〈o, t〉 : X → 2 ×XA is a function with two components: o, the output
function, determines if a state x is final (o(x) = 1) or not (o(x) = 0); and t, the transition
function, returns for each input letter a the next state. DA’s are coalgebras for the functor
2×IdA. The final coalgebra of this functor is (2A∗

, 〈ε, (−)a〉) where 2A∗ is the set of languages
over A and 〈ε, (−)a〉, given a language L, determines whether or not the empty word is in the
language (ε(L) = 1 or ε(L) = 0, resp.) and, for each input letter a, returns the derivative of
L: La = {w ∈ A∗ | aw ∈ L}. From any DA, there is a unique map l into 2A∗ which assigns
to each state its behaviour (that is, the language that the state recognizes).

X
l //_________

〈o,t〉
��

2A∗

〈ε,(−)a〉��
2×XA

id×lA
//______ 2× (2A∗)A

A non-deterministic automaton (NDA) is similar to a DA but the transition function gives a
set of next-states for each input letter instead of a single state. Thus, an NDA over the input
alphabet A is a pair (X, 〈o, δ〉), where X is a set of states and 〈o, δ〉 : X → 2× (Pω(X))A is
a pair of functions with o as before and where δ determines for each input letter a a set of
possible next states. In order to compute the language recognized by a state x of an NDA A,
it is usual to first determinize it, constructing a DA det(A) where the state space is Pω(X),

FSTTCS 2010

276 Generalizing the powerset construction, coalgebraically

and then compute the language recognized by the state {x} of det(A). Next, we describe in
coalgebraic terms how to construct the automaton det(A).

Given an NDA A = (X, 〈o, δ〉), we construct det(A) = (Pω(X), 〈o, t〉), where, for all
Y ∈ Pω(X), a ∈ A, the functions o : Pω(X)→ 2 and t : Pω(X)→ Pω(X)A are

o(Y) =
{

1 ∃y∈Y o(y) = 1
0 otherwise

t(Y)(a) =
⋃
y∈Y

δ(y)(a).

The automaton det(A) is such that the language l({x}) recognized by {x} is the same as
the one recognized by x in the original NDA A (more generally, the language recognized by
state X of det(A) is the union of the languages recognized by each state x of A).

We summarize the situation above with the following commuting diagram:

X

〈o,δ〉
��

{·} // Pω(X)

〈o,t〉vvmmmmmmmm
l //____ 2A∗

〈ε,(−)a〉��
2× Pω(X)A

id×lA
//_________ 2× (2A∗)A

We note that the language semantics of NDA’s, presented in the above diagram, can also be
obtained as an instance of the abstract definition scheme of λ-coinduction [2, 11].

3.2 Partial automata
A partial automaton (PA) over the input alphabet A is a pair (X, 〈o, ∂〉) consisting of a
set of states X and a pair of functions 〈o, ∂〉 : X → 2 × (1 + X)A, with o : X → 2 as for
DA and ∂ : X → (1 + X)A a transition function, which for any input letter a is either
undefined (no a-labelled transition takes place) or specifies the next state that is reached.
PA’s are coalgebras for the functor 2× (1 + Id)A. Given a PA A, we can construct a total
(deterministic) automaton tot(A) by adding an extra sink state to the state space: every
undefined a-transition from a state x is then replaced by a a-labelled transition from x to the
sink state. More precisely, given a PA A = (X, 〈o, ∂〉), we construct tot(A) = (1 +X, 〈o, t〉),
where

o(κ1(∗)) = 0
o(κ2(x)) = o(x)

t(κ1(∗))(a) = κ1(∗)
t(κ2(x))(a) = ∂(x)(a)

The language l(x) recognized by a state x will be precisely the language recognized by x in
the original partial automaton. Moreover, the new sink state recognizes the empty language.
Again we summarize the situation above with the help of following commuting diagram,
which illustrates the similarities between both constructions:

X

〈o,∂〉
��

κ2 // 1 +X

〈o,t〉vvmmmmmmmm
l //____ 2A∗

〈ε,(−)a〉��
2× (1 +X)A

id×lA
//_________ 2× (2A∗)A

4 Algebraically structured coalgebras

In this section we present a general framework where both motivating examples can be
embedded and uniformly studied. We will consider coalgebras for which the functor type FT

Silva, Bonchi, Bonsangue, Rutten 277

can be decomposed into a transition type F specifying the relevant dynamics of a system
and a monad T providing the state space with an algebraic structure. For simplicity, we fix
our base category to be Set.

We will study coalgebras f : X → FT (X) for a functor F and a monad T such that
FT (X) is a T-algebra, that is FT (X) is the carrier of a T-algebra (FT (X), h). In the
motivating examples, F would be instantiated to 2× IdA (in both) and T to Pω, for NDAs,
and to 1 +− for PAs. The condition that FT (X) is a T-algebra would amount to require
that 2 × Pω(X)A is a join-semilattice, for NDAs, and that 2 × (1 + X)A is a pointed set,
for PAs. This is indeed the case, since the set 2 can be regarded both as a join-semilattice
(2 ∼= Pω(1)) or as a pointed set (2 ∼= 1+1) and, moreover, products and exponentials preserve
the algebra structure.

The inter-play between the transition type F and the computational type T (more
precisely, the fact that FT (X) is a T-algebra) will allow each coalgebra f : X → FT (X) to
be extended uniquely to a T -algebra morphism f] : (T (X), µX)→ (FT (X), h) which makes
the following diagram commute.

X

f
��

ηX // T (X)

f]wwppppppp

FT (X)

f] ◦ ηX = f

Intuitively, ηX : X → T (X) is the inclusion of the state space of the coalgebra f : X → FT (X)
into the structured state space T (X), and f] : T (X) → FT (X) is the extension of the
coalgebra f to T (X).

Next, we will study the behaviour of a given state or, more generally, we would like to say
when two states x1 and x2 are equivalent. The obvious choice for an equivalence would be
FT -behavioural equivalence. However, this equivalence is not exactly what we are looking
for. In the motivating example of non-deterministic automata we wanted two states to be
equivalent if they recognize the same language. If we would take the equivalence arising from
the functor 2×Pω(Id)A we would be distinguishing states that recognize the same language
but have difference branching types, as in the following example.

•
a��

•
a

""EE
EEa

||yyy
y

c
""EE

EEb
||yyy

y
b �� c��

• • • •

We now define a new equivalence, which will absorb the effect of the monad T .
We say that two elements x1 and x2 in X are F -equivalent with respect to a monad T,

written x1 ≈TF x2, if and only if ηX(x1) ∼F ηX(x2). The equivalence ∼F is just F -behavioural
equivalence for the F -coalgebra f] : T (X)→ FT (X).

If the functor F has a final coalgebra (Ω, ω) , we can capture the semantic equivalence
above in the following commuting diagram

X

f
��

ηX // T (X)

f]xxqqqqqqq

[[−]] //____ Ω
ω

��
FT (X)

F [[−]] //________ F (Ω)

(1)

Back to our first example, two states x1 and x2 of an NDA (in which T is instantiated to Pω
and F to 2× IdA) would satisfy x1 ≈TF x2 if and only if they recognize the same language
(recall that the final coalgebra of the functor 2× IdA is 2A∗).

FSTTCS 2010

278 Generalizing the powerset construction, coalgebraically

It is also interesting to remark the difference between the two equivalences in the case
of partial automata. The coalgebraic semantics of PAs [24] is given in terms of pairs of
prefix-closed languages 〈V,W 〉 where V contains the words that are accepted (that is, are the
label of a path leading to a final state) and W contains all words that label any path (that is
all that are in V plus the words labeling paths leading to non-final states). We exemplify
what V and W would be in the following examples for state s0 and q0.

W = c∗ + c∗b+ c∗ab∗

V = c∗ab∗
s0

b
!!CC

C
a //

c

�� ?>=<89:;76540123s1

b

SS
s2

q0
a //

c

�� ?>=<89:;76540123q1

b

TT
W = c∗ + c∗ab∗

V = c∗ab∗

Thus, state s0 and q0 would be distinguished by FT -equivalence (for F = 2 × IdA and
T = 1 +−) but they are equivalent with respect to the monad 1 +−, s0 ≈TF q0, since they
accept the same language.

We will show in Section 5 that the equivalence ∼FT is contained in ≈TF .

4.1 Examples
In this section we show more examples of applications of the framework above.

4.1.1 Partial Mealy machines
A partial Mealy machine is a set of states X together with a function t : X → (B× (1 +X))A,
where A is a set of inputs and B is a set of output values (with a distinguished value ⊥).
For each state s and for each input a the automaton produces an output value and either
terminates or continues to a next state. Applying the framework above we will be totalizing
the automaton, similarly to what happened in the example of partial automata, by adding an
extra state to the state space which will act as a sink state. The behaviour of the totalized
automaton is given by the set of causal functions from Aω (infinite sequences of A) to Bω,
which we denote by Γ(Aω, Bω) [23]. A function f : Aω → Bω is causal if, for σ ∈ Aω, the
n-th value of the output stream f(σ) depends only on the first n values of the input stream
σ.

X

t

��

// 1 +X

t]
xxrrrrrrrrrrrr

[[−]] //___________

[[κ1(∗)]](σ) = (⊥,⊥, . . .)
[[κ2(s)]](a:σ) = b:([[n]](σ))

where 〈b, n〉 = t(s)(a)

Γ(Aω, Bω)

��
(B × (1 +X))A //_______________ (B × Γ(Aω, Bω))A

4.1.2 Structured Moore automata
In the following examples we look at the functor F (X) = T (B)×XA, for B and A arbitrary
sets and T = (T, η, (−)]) an arbitrary monad. This represents Moore automata with outputs
in T (B) and inputs in A. For any set X, FT (X) has a T-algebra lifting and the final
coalgebra of F is T (B)A∗ . The final map [[−]] : T (X)→ T (B)A∗ is defined below.

X

〈o,t〉
��

ηX // T (X)
[[m]](ε) = o](m)
[[m]](aw) = [[t](m)(a)]](w)〈o,t〉]vvmmmmmmmmmm

[[−]] //____________ T (B)A∗

〈ε,(−)a〉
��

T (B)× (T (X))A //______________ T (B)× (T (T (B)A∗))A

Silva, Bonchi, Bonsangue, Rutten 279

4.1.2.1 Moore automata with exceptions

Consider T (X) = E + X, with E a set of exceptions, η(x) = κ2(x) and, for a function
f : X → T (Y), f] : T (X)→ T (Y) is defined as f] = [id, f].

An FT -coalgebra 〈o, t〉 : X → (E +B)× (E +X)A will associate with every state s an
output value (either in B or an exception in E) and, for each input a, a next state or an
exception. The behaviour of a state x, given by [[η(x)]], will be a formal power series over A
with output values in E +B (that is, a function from A∗ to E +B), defined as follows:

[[κ1(e)]](w) = κ1(e) [[κ2(s)]](ε) = o(s) [[κ2(s)]](aw) = [[t(s)(a)]](w).

4.1.2.2 Moore automata with side effects

Consider T (X) = (S ×X)S , with S a set of side-effects, η(x) = λs.〈s, x〉 and, for a function
f : X → T (Y), f] : T (X)→ T (Y) is defined as f](g)(s) = f(x)(s′) where 〈s′, x〉 = g(s).

Take now an FT -coalgebra 〈o, t〉 : X → (B × S)S × ((S ×X)S)A and let us explain the
intuition behind this automaton type. Let S be the set of side effects (for instance, one
could take S = V L, functions associating memory locations to values). The set S ×X can
be interpreted as the configurations of the automaton, where S contains information about
the state of the system and X about the control of the system. Then, we can think of
o : X → (S ×B)S as a function that for each configuration S ×X provides an output and
the new state of the system (note that X → (S ×B)S ∼= S ×X → S ×B). The transition
function t : X → ((S ×X)S)A gives a new configuration for each input letter and current
configuration (again we use the fact that X → ((S ×X)S)A ∼= S ×X → (S ×X)A).

The behaviour of a state x will be given by [[η(x)]], defined below, and it will be a function
that for each configuration and for each sequence of actions returns an output value and a
side effect.

[[g]](ε)(s) = o(x)(s′) where 〈s′, x〉 = g(s)
[[g]](aw1) = [[λs.t(s)(a)(s′)]](w1) where 〈s′, x〉 = g(s)

4.1.2.3 Moore automata with interactive output

Consider T (X) = µv.X + (O × v) ∼= O∗ ×X, with O a set of outputs, η(x) = 〈ε, x〉 and, for
f : X → T (Y), f] : T (X) → T (Y) is given by f](〈w, x〉) = 〈ww′, x′〉 where 〈w′, x′〉 = f(x).
Take an FT -coalgebra 〈o, t〉 : X → (O∗ × B) × (O∗ × X)A. For B = 1, this coincides
with a (total) subsequential transducer [8]: o : X → O∗ is the terminal output function;
t : X → (O∗ ×X)A is the pairing of the output function and the next state-function.

The behaviour of a state x will be given by [[η(x)]] = [[〈ε, x〉]], where, for every 〈w, x〉 ∈
O∗ ×X, [[〈w, x〉]] : A∗ → B∗, is given by

[[〈w, x〉]](ε) = w · o(x) [[〈w, x〉]](aw1) = w · ([[t(x)(a)]](w1))

4.1.2.4 Probabilistic Moore automata

Take T (X) = Dω(X), η the Dirac distribution (defined below) and, for f : X → T (Y),
f] : T (X)→ T (Y) is given by

f](c) = λy.
∑

d∈Dω(Y)

 ∑
x∈f−1(d)

c(x)

× d(y) η(x) = λx′.

{
1 x = x′

0 otherwise

FSTTCS 2010

280 Generalizing the powerset construction, coalgebraically

Take an FT -coalgebra 〈o, t〉 : X → Dω(B)×Dω(X)A. For B = 2 (note that Dω(2) ∼= [0, 1])
this gives rise to a (Rabin) probabilistic automaton [21]: each state x has an output value in
o(x) ∈ [0, 1] and, for each input a, t(x)(a) is a probability distribution of next states. The
behaviour of a state x is given by [[η(x)]] : A∗ → [0, 1], defined below. Intuitively, one can
think of [[η(x)]] as a probabilistic language: each word is associated with a value p ∈ [0, 1].

[[d]](ε) =
∑

b∈[0,1]
(

∑
o(x)=b

d(x))× b

[[d]](aw) = [[λx′.
∑

c∈Dω(X)
(
∑
b=t(x)(a) d(x))× c(x′)]](w)

It is worth to note that this exactly captures the semantics of [21], while the ordinary ∼FT
coincides with probabilistic bisimilarity of [14].

5 Coalgebras and T-Algebras

In the previous section we presented a framework, parameterized by a functor F and a
monad T, in which systems of type FT (that is, FT -coalgebras) can be studied using a novel
equivalence ≈TF instead of the classical ∼FT . The only requirement we imposed was that
FT (X) has to be a T-algebra.

In this section, we will present functors F for which the requirement of FT (X) being a
T-algebra is guaranteed because they can be lifted to a functor F ∗ on T-algebra. For these
functors, the equivalence ≈TF coincides with ∼F∗ . In other words, working on FT -coalgebras
in Set under the novel ≈TF equivalence is the same as working on F ∗-coalgebras on T-algebras
under the ordinary ∼F∗ equivalence. Next, we will prove that for this class of functors and
an arbitrary monad T the equivalence ∼FT is contained in ≈TF . Instantiating this result for
our first motivating example of non-deterministic automata will yield the well known fact
that bisimilarity implies trace equivalence.

Let T be a monad. An endofunctor F ∗ : SetT → SetT is said to be the T-algebra lifting
of a functor F : Set→ Set if the following square commutes1:

SetT

UT
��

F∗
// SetT

UT
��

Set F // Set

If the functor F has a T-algebra lifting F ∗ then FT (X) is the carrier of the algebra
F ∗(T (X), µ). Functors that have a T-algebra lifting are given, for example, by those
endofunctors on Set constructed inductively by the following grammar

F :: = Id | B | F × F | FA | TG

where A is an arbitrary set, B is the constant functor mapping every set X to the carrier of a
T-algebra (B, h), and G is an arbitrary functor. Since the forgetful functor UT : SetT → Set
creates and preserves limits, both F1 × F2 and FA have a T-algebra lifting if F , F1, and F2
have. Finally, TG has a T-algebra lifting for every endofunctor G given by the assignment
(X,h) 7→ (TGX,µGX). Note that we do not allow taking coproducts in the above grammar,
because coproducts of T-algebras are not preserved in general by the forgetful functor UT.
Instead, one could resort to extending the grammar with the carrier of the coproduct taken

1 This is equivalent to the existence of a distributive law λ : TF ⇒ FT [12].

Silva, Bonchi, Bonsangue, Rutten 281

directly in SetT. For instance, if T is the (finite) powerset monad, then we could extend the
above grammar with the functor F1 ⊕ F2 = F1 + F2 + {>,⊥}.

Now, let F be a functor with a T-algebra lifting and for which a final coalgebra Ω exists.
If Ω can be constructed as the limit of the final sequence (for example assuming the functor
accessible [1]), then, because the forgetful functor UT : SetT → Set preserves and creates
limits, Ω is the carrier of a T-algebra, and it is the final coalgebra of the lifted functor F ∗.
Further, for any FT -coalgebra f : X → FT (X), the unique F -coalgebra homomorphism
[[−]] as in diagram (1) is a T -algebra homomorphism between T (X) and Ω. Conversely, the
carrier of the final F ∗-coalgebra (in SetT) is the final F -coalgebra (in Set).

Intuitively, the above means that for an accessible functor F with a T-algebra lifting F ∗,
F ∗-equivalence in SetT coincides with F -equivalence with respect to T in Set. The latter
equivalence is coarser than the FT -equivalence in Set, as stated in the following theorem.

I Theorem 1. Let T be a monad. If F is an endofunctor on Set with a T-algebra lifting,
then ∼FT implies ≈TF .

The proof of this theorem (presented in [27]) relies on the fact that for every monad T and
functor F with a T-algebra lifting, if h : (X, f)→ (Y, g) is an FT -coalgebra homomorphism,
then (ηY ◦ h)] : (T (X), f])→ (T (Y), g]) is an F -coalgebra homomorphism.

The above theorem instantiates to the well-known facts: for NDA, where F (X) = 2×XA

and T = Pω, that bisimulation implies language equivalence; for partial automata, where
F (X) = 2 × XA and T = 1 + −, that equivalence of pairs of languages, consisting of
defined paths and accepted words, implies equivalence of accepted words; for probabilistic
automata, where F (X) = [0, 1] ×XA and T = Dω, that probabilistic bisimilarity implies
probabilistic/weighted language equivalence. Note that, in general, the above inclusion is
strict.

6 Discussion

In this paper, we lifted the powerset construction on automata to the more general framework
of FT -coalgebras. Our results lead to a uniform treatment of several kinds of existing and
new variations of automata (that is, FT -coalgebras) by an algebraic structuring of their state
space through a monad T . We showed as examples partial Mealy machines, structured Moore
automata, nondeterministic, partial and probabilistic automata. The technical report [27]
shows (as further examples) several behavioural equivalences that are extremely interesting
for the theory of concurrency. It is worth mentioning that the framework instantiates to many
other examples, among which weighted automata [26]. These are simply structured Moore
automata for B = 1 and T = S−ω (for a semiring S) [7]. It is easy to see that ∼FT coincides
with weighted bisimilarity [5], while ≈TF coincides with weighted language equivalence [26].

Some of the aforementioned examples can also be coalgebraically characterized in the
framework of [9]. There, instead of considering FT -coalgebras on Set and F ∗-coalgebras on
SetT (the Eilenberg-Moore category), TG-coalgebras on Set and G-coalgebras on SetT (the
Kleisli category) are studied. The main theorem of [9] states that under certain assumptions,
the initial G-algebra is the final G-coalgebra that characterizes (generalized) trace equivalence.
In [27], we present a first step in exploring the connection between both frameworks. However,
the exact relationship is not clear yet and further research is needed in order to make it
precise. It is worth to remark that many of our examples will not fit the framework in [9]:
for instance, the exception, the side effect, the full-probability and the interactive output
monads do not fulfill their requirements (the first three do not have a bottom element and

FSTTCS 2010

282 Generalizing the powerset construction, coalgebraically

the latter is not commutative). Moreover, we also note that the example of partial Mealy
machines is not purely trace-like, as all the examples in [9].

There are two other future research directions. On the one hand, we will try to exploit
F -bisimulations up to T [15, 16] as a sound and complete proof technique for ≈TF . On the
other hand, we would like to lift many of those coalgebraic tools that have been developed
for “branching equivalences” (such as coalgebraic modal logic [6, 25] and (axiomatization
for) regular expressions [3]) to work with the “linear equivalences” induced by ≈TF .

References
1 J. Adámek. Free algebras and automata realization in the language of categories. Comment.

Math. Univ. Carolinae, 15:589–602, 1974.
2 Falk Bartels. On generalized coinduction and probabilistic specification formats. PhD thesis,

Vrije Universiteit Amsterdam, 2004. PhD thesis.
3 M. M. Bonsangue, J. J. M. M. Rutten, and A. Silva. An algebra for Kripke polynomial

coalgebras. In LICS, pages 49–58. IEEE Computer Society, 2009.
4 S. D. Brookes, C. A. R. Hoare and A. W. Roscoe. A Theory of Communicating Sequential

Processes. J. ACM., 31(3):560–599, 1984.
5 P. Buchholz. Bisimulation relations for weighted automata. TCS, 393(1-3):109–123, 2008.
6 C. Cîrstea, A. Kurz, D. Pattinson, L. Schröder, and Y. Venema. Modal logics are coalge-

braic. In Erol Gelenbe, Samson Abramsky, and Vladimiro Sassone, editors, BCS Int. Acad.
Conf., pages 128–140. British Computer Society, 2008.

7 H. P. Gumm and T. Schröder. Monoid-labeled transition systems. ENTCS, 44(1), 2001.
8 H.H. Hansen. Coalgebraising subsequential transducers. ENTCS, 203(5):109–129, 2008.
9 I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace semantics via coinduction. Logical

Methods in Computer Science, 3(4), 2007.
10 C. A. R. Hoare. Communicating Sequential Processes. Commun. ACM., 21(8):666–677,

1978.
11 Bart Jacobs. Distributive laws for the coinductive solution of recursive equations. Inf.

Comput. 204(4): 561-587 (2006)
12 P.T. Johnstone. Adjoint lifting theorems for categories of algebras. Bulletin London Math-

ematical Society, 7:294–297, 1975.
13 C. Jou and S. A. Smolka. Equivalences, Congruences, and Complete Axiomatizations for

Probabilistic Processes. In Proc. of CONCUR, LNCS, 458:367–383. Springer, 1990.
14 K. G. Larsen and Arne Skou. Bisimulation through probabilistic testing. Inf. Comput.,

94(1):1–28, 1991.
15 M. Lenisa. From Set-theoretic Coinduction to Coalgebraic Coinduction: some results, some

problems. ENTCS, 19, 1999.
16 M. Lenisa, J. Power and H. Watanabe. Distributivity for endofunctors, pointed and co-

pointed endofunctors, monads and comonads. ENTCS, 33, 2000.
17 E.Manes. Algebraic theories. Graduate Texts in Mathematics, 26, 1976.
18 E. Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92, 1991.
19 L. Monteiro. A Coalgebraic Characterization of Behaviours in the Linear Time - Branching

Time Spectrum. In Proc. of WADT, LNCS, 5486:128–140. Springer, 2009.
20 E.-R. Olderog and C. A. R. Hoare. Specification-Oriented Semantics for Communicating

Processes. Acta Inf., 21(1):9–66, 1986.
21 M. O. Rabin. Probabilistic automata. Information and Control, 6(3):230–245, 1963.
22 J. J. M. M. Rutten. Universal coalgebra: a theory of systems. TCS, 249(1):3–80, 2000.
23 J. J. M. M. Rutten. Algebraic specification and coalgebraic synthesis of mealy automata.

ENTCS, 160:305–319, 2006.

Silva, Bonchi, Bonsangue, Rutten 283

24 J.J.M.M. Rutten. Coalgebra, concurrency, and control. In R. Boel and G. Stremersch,
editors, Proceedings of WODES 2000, pages 31–38, 2000.

25 L. Schröder. Expressivity of coalgebraic modal logic: The limits and beyond. TCS, 390(2-
3):230–247, 2008.

26 M. P. Schützenberger. On the definition of a family of automata. Information and Control,
4(2-3):245–270, 1961.

27 A. Silva, F. Bonchi, M. Bonsangue and J. Rutten. Generalizing the powerset construction,
coalgebraically. Technical Report. Nr. SEN-1008, September 2010, CWI.

FSTTCS 2010

Uniqueness of Normal Forms is Decidable for
Shallow Term Rewrite Systems∗

Nicholas Radcliffe1 and Rakesh M. Verma2

1 Computer Science Department
Virginia Tech
114 McBryde Hall, Blacksburg, VA 24061, USA
nradclif@vt.edu

2 Computer Science Department
University of Houston
501 Philip G. Hoffman Hall, Houston, TX 77204, USA
rmverma@cs.uh.edu

Abstract
Uniqueness of normal forms (UN=) is an important property of term rewrite systems. UN= is
decidable for ground (i.e., variable-free) systems and undecidable in general. Recently it was
shown to be decidable for linear, shallow systems. We generalize this previous result and show
that this property is decidable for shallow rewrite systems, in contrast to confluence, reachability
and other properties, which are all undecidable for flat systems. Our result is also optimal in
some sense, since we prove that the UN= property is undecidable for two superclasses of flat
systems: left-flat, left-linear systems in which right-hand sides are of depth at most two and
right-flat, right-linear systems in which left-hand sides are of depth at most two.

Keywords and phrases term rewrite systems, uniqueness of normal forms, decidability, shallow
rewrite systems, flat rewrite systems

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.284

1 Introduction

Term rewrite systems (TRSs), finite sets of rules, are useful in many computer science
fields including theorem proving, rule-based programming, and symbolic computation. An
important property of TRSs is confluence (also known as the Church-Rosser property), which
implies uniqueness of normal forms (UN=). Normal forms are expressions to which no rule is
applicable. A TRS has the UN= property if there are not distinct normal forms n, m such
that n ∗←→R m, where ∗←→R is the symmetric closure of the rewrite relation induced by the
TRS R.

Uniqueness of normal forms is an interesting property in itself and well-studied [9].
Confluence can be a requirement too strong for some applications such as lazy programming.
Additionally, in the proof-by-consistency approach for inductive theorem proving, consistency
is often ensured by requiring the UN= property.

We study the decidability of uniqueness of normal forms. Uniqueness of normal forms is
decidable for ground systems [12], but is undecidable in general [12]. Since the property is
undecidable in general, we would like to know for which classes of rewrite systems, beyond
ground systems, we can decide UN=. In [13, 14] a polynomial time algorithm for this property
was given for linear, shallow rewrite systems. A rewrite system is linear if variables occur at

∗ Research supported in part by NSF grants CCF-0306475, DUE-0755500, and DUE-0737404.

© Nicholas Radcliffe and Rakesh M. Verma;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 284–295

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.284
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Nicholas Radcliffe and Rakesh M. Verma 285

most once in each side of any rule. It is shallow if variables occur only at depth zero or depth
one in each side of any rule. It is flat if both the left- and right-hand sides of all the rules
have height zero or one. An example of a linear flat (in fact, ground) system that has UN=

but not confluence is {f(c)→ 1, c→ g(c)}. More sophisticated examples can be constructed
using a sequential ‘or’ function in which the second argument gives rise to a nonterminating
computation.

In this paper, we consider the class of shallow systems, i.e., we drop the linearity restriction
of [13], and a subset of this class, the flat systems. For flat systems many properties are
known to be undecidable including confluence, reachability, joinability, and existence of
normal forms [7, 11, 3]. On the other hand, the word problem is known to be decidable
for shallow systems [1]. This paper shows that the uniqueness of normal forms problem is
decidable for the class of shallow term rewrite systems, which is a significant generalization
of [13] and also somewhat surprising since so many properties are undecidable for this class
of systems. We also prove the undecidability of UN= for two subclasses of linear systems:
left-hand sides are linear, flat and right-hand sides are of depth at most two and conversely
right-flat, right-linear, and depth two left-hand sides, which shows that our result is optimal
as far as depth restrictions are involved and close to optimal as far as linearity and depth
restrictions are concerned (the problem is undecidable for the linear, depth-two class [11]).

The structure of our decidability proof is as follows: in [13, 14] it was shown that UN= for
shallow systems can be reduced to UN= for flat systems, (ii) checking UN= for flat systems
can be reduced to searching for equational proofs between terms drawn from a finite set of
terms, and (iii) existence of equational proofs between terms in part (ii) is done thanks to
the decidability of the word problem by Comon et al. [1].

Our strategy for part (ii) above, assuming a flat TRS, R, is to show that a sufficiently
small witness to non-UN= for R exists if, and only if, any witness at all exists. To see this,
say 〈M,N〉 is a minimal witness to non-UN= (in that the sum of the sizes of M and N is
minimal). We show that we can replace certain subterms of M and N that are not equivalent
to constants with variables, obtaining a witness 〈M ′, N ′〉. If the heights of M ′ and N ′ are
both strictly less than the maximum of {1, C}, where C is the number of constants in our
rewrite system, then 〈M ′, N ′〉 is sufficiently small. Otherwise, M ′ or N ′ must have a big
subterm (i.e. a subterm whose height is greater than, or equal to, the number of constants),
and this subterm is equivalent to a constant. However, in this case (when there is a constant
that is equivalent to a big subterm of a component of a minimal witness), we can show that
there is a small witness to non-UN=. So, in all cases, we end up with a small witness.

Comparison with related work. Viewed at a very high level, the proof of decidability
shows some similarity with other decidability proofs of properties of rewrite systems such as
[2]. The basic insight seems to be that, just as in algebra the terms that equal 0 are crucial
in a sense, so in rewriting are the terms that reduce to (or are equivalent to) constants.
Of course, this observation is about as helpful in proofs of decidability as a compass is to
someone lost in a maze. The details in both scenarios are vital and there are many twists
and turns. The proof of undecidability shows some similarity with proofs in [12, 4].

1.1 Definitions
Terms. A signature is a set F along with a function arity: F → N. Members of F are
called function symbols, and arity(f) is called the arity of the function symbol f . Function
symbols of arity zero are called constants. Let X be a countable set disjoint from F that
we shall call the set of variables. The set T (F , X) of F-terms over X is defined to be the
smallest set that contains X and has the property that f(t1, . . . , tn) ∈ T (F , X) whenever

FSTTCS 2010

286 UN= for Shallow Rewrite Systems

f ∈ F , n = arity(f), and t1, . . . , tn ∈ T (F , X). The set of function symbols with arity n is
denoted by Fn; in particular, the set of constants is denoted by F0. We use root(t) to refer
to the outermost function symbol of t.

The size, |t|, of a term t is the number of occurrences of constants, variables and
function symbols in t. So, |t| = 1 if t is a constant or a variable, and |t| = 1 + Σn

i=1|ti| if
t = f(t1, . . . , tn) for n > 0. The height of a term t is 0 if t is a constant or a variable, and
1 +max{height(t1), . . . , height(tn)} if t = f(t1, . . . , tn). If a term t has height zero or one,
then it is called flat. A position of a term t is a sequence of natural numbers that is used
to identify the locations of subterms of t. The subterm of t = f(t0, . . . , tn−1) at position p,
denoted t|p, is defined recursively: t|λ = t, t|k = tk, for 0 ≤ k ≤ n − 1, and t|k.p = (t|k)|p.
If t = f(t0, . . . , tn−1), then we call t0, . . . , tn−1 the depth-1 subterms of t. If all variables
appearing in t are either t itself or depth-1 subterms of t, then we say that t is shallow. The
notation g[a] focuses on (any) one occurrence of subterm a of term g, and s{u 7→ v} denotes
the term obtained from term s by replacing all occurrences of the subterm u in s by term v.

A substitution is a mapping σ : X → T (F , X) that is the identity on all but finitely
many elements of X. Substitutions are generally extended to a homomorphism on T (F , X)
in the following way: if t = f(t1, . . . , tk), then (abusing notation) σ(t) = f(σ(t1), . . . , σ(tk)).
Oftentimes, the application of a substitution to a term is written in postfix notation. A
unifier of two terms s and t is a substitution σ (if it exists) such that sσ = tσ. We assume
familiarity with the concept of most general unifier [9], which is unique up to variable
renaming and denoted by mgu.
Term Rewrite Systems. A rewrite rule is a pair of terms, (l, r), usually written l → r.
For the rule l → r, the left-hand side is l /∈ X, and the right-hand side is r. Notice that l
cannot be a variable. A rule, l→ r, can be applied to a term, t, if there exists a substitution,
σ, such that lσ = t′, where t′ is a subterm of t; in this case, t is rewritten by replacing the
subterm t′ = lσ with rσ. The process of replacing the subterm lσ with rσ is called a rewrite.
A root rewrite is a rewrite where t′ = t. A rule l→ r is flat (resp. shallow) if both l and r
are flat (resp. shallow). The rule l→ r is collapsing if r is a variable. A term rewrite system
(or TRS) is a pair, (T , R), where R is a finite set of rules and T is the set of terms over some
signature. A TRS, R, is flat (resp. shallow) if all of the rules in R are flat (resp. shallow). If
we think of → as a relation, then +

−→ and ∗−→ denote its transitive closure, and reflexive and
transitive closure, respectively. Also, ↔, +

←→, and ∗←→ denote the symmetric closure, symmetric
and transitive closure, and symmetric, transitive, and reflexive closure, respectively. We put
an ‘r’ over arrows to denote a root rewrite, i.e., r←→.

A derivation is a sequence of terms, t1, . . . , tn, such that ti → ti+1 for i = 1, . . . , n− 1;
this sequence is often denoted by t1 → t2 → . . .→ tn. A proof is a sequence, t1, . . . , tn, such
that ti ↔ ti+1 for i = 1, . . . , n− 1; this sequence is generally denoted by t1 ↔ t2 ↔ . . .↔ tn.
If R is a rewrite system, then a proof is over R if it can be constructed using rules in R.
If π is a proof, we say that π ∈ s ∗←→t if π is of the form s ↔ . . . ↔ t (it is possible for the
proof sequence to consist of a single term, in which case s = t and the proof is simply a
sequence with a single element, s). We say that π ∈ s+

←→t if π ∈ s ∗←→t and the proof sequence
contains at least two terms. We write s ∗←→t (resp. s+

←→t) to denote that there is a proof, π,
with π ∈ s ∗←→t (resp. π ∈ s+

←→t).
A normal form is a term, t ∈ T (F , X), such that no subterm of t can be rewritten. A

term that is not a normal form, i.e., one with a subterm that can be rewritten, is called
reducible. We denote the set of all normal forms for R by NFR, or simply NF . A rewrite
system R is UN= if it is not the case that R has two distinct normal forms, M and N ,
such that M ∗←→N . If such a pair exists, then we say that the pair, 〈M,N〉, is a witness to

Nicholas Radcliffe and Rakesh M. Verma 287

non-UN=. The size of a witness, denoted |〈M,N〉|, is |M |+ |N |. A minimal witness is a
witness with minimal size. Finally, we define SubMinWitR to be set of all terms M ′ such
that 〈M,N〉 is a minimal witness, and M ′ is a subterm of M .

2 Preliminary Results

We begin with a few simple results, whose proofs are omitted to save space, on when rules
apply. They are used throughout the paper to show that normal forms are preserved under
certain transformations. Before we begin, notice that it is relatively simpler to preserve
normal forms when the relevant TRS is linear. For instance, imagine any flat and linear TRS
such that f(g(a), h(b)) is a normal form. Since g(a) is evidently a normal form, f(g(a), g(a))
would also be a normal form, when the TRS is linear. If the TRS is not linear, then there
could be a rule of the form f(x, x)→ t, making f(g(a), g(a)) reducible. The results below
handle such complications presented by non-linear rules.

I Definition 1. Let R be a rewrite system, and let l→ r = ρ ∈ R be a rule. The pattern of
ρ, denoted Patt(ρ), is a set of equations {i = j | l|i = l|j , l|i, l|j ∈ X}.

I Definition 2. Let t ∈ T (F , X) be a term with root(l) = root(t). If A = {i1, i2, . . . , ik} is
the set of positions that appear in equations in Patt(ρ), then the pattern of t with respect to
ρ, denoted Pattρ(t), is the set {ia = ib | t|ia = t|ib , ia, ib ∈ A}.

Note that Pattρ(t) is undefined if root(l) 6= root(t).

I Lemma 3. Let R be a flat TRS. Let t ∈ T (F , X) be a term, and let l → r = ρ ∈ R be a
rule. Then ρ can be applied to t at λ if, and only if, (i) l|i = t|i whenever l|i is a constant,
and (ii) Pattρ(t) is defined and Patt(ρ) ⊆ Pattρ(t).

Consider the term f(a, x, x, g(b)). Let’s assume that it is a normal form. We want to
know if altering depth-1 subterms can make the term reducible. Clearly, replacing x with a
constant could potentially make the term reducible, depending on the rules in the rule set.
But what about replacing any of the depth-1 subterms with a normal form containing a fresh
variable? Notice that such a replacement could not make condition (i) of the above lemma
true if it had been false. But what if condition (i) is true and condition (ii) is false? Could
replacing a depth-1 subterm, or even several depth-1 subterms, with terms containing fresh
variables make condition (ii) true? This question is answered by the following proposition.

I Proposition 4. Let R be a flat TRS, and let M = f(s1, . . . , sm) be a normal form for R.
Let S = {ti1 , . . . , tin} be a set of normal forms, where n ≤ m and each term contains at least
one fresh variable (relative to M). Further, say that tij 6= tik whenever sij 6= sik for all
ij , ik ∈ {i1, . . . , in}. If M ′ is what one obtains from M by replacing each sij with tij , then
M ′ ∈ NFR.

I Lemma 5. If R is any TRS such that f(t1, . . . , tm) ∈ SubMinWitR, then ti
∗←→Rtj is

impossible for ti 6= tj. This is equivalent to saying that there is no term s that is equivalent
to both ti and tj via R.

2.1 Normal Forms Equivalent to Constants
Let E be a finite set of equations. Following the authors of [1], we extend E to Ê by closing
under the following inference rules:
1. g = d, l = r

dσ = rσ
if l, g /∈ X and σ = mgu(l, g)

FSTTCS 2010

288 UN= for Shallow Rewrite Systems

2. x = d, y = r

d = r{y 7→ x}
if y ∈ X and x ∈ F0 ∪X

3. g[a] = d, a = b

g[b] = d
if a, b ∈ F0

Notice that if E is flat, then Ê is flat, as well.
We can think of a rewrite system as a set of equations: if s→ t is a rule in R, then s↔ t

is its corresponding equation. We write ER for the set of equations obtained in this way from
a rewrite system R. Clearly, if s and t are terms in T (F , X), then they are R-equivalent if
and only if they are ER equivalent. Also, from [1] we know that terms are ER equivalent if,
and only if, they are ÊR-equivalent. In [1], the authors show that, if R is a shallow TRS and
s, t ∈ T (F , X), then there is a procedure that produces, for any proof, π ∈ s ∗←→R t, over R,
a new proof, which is denoted by π1rr ∈ s ∗←→ÊR

t, over ÊR, such that there is at most one
root rewrite step in π1rr.

Consider the following example: R = {f(x, x)→ c, f(x, x)→ g(a, x), g(a, x)→ g(a, x), a→
h(b), b→ h(c)}. It is easy to check that ÊR = ER ∪ {c↔ g(a, x)}. We use ÊR to search for
a minimal witness to non-UN= for R; in particular, we will use the fact that for every proof
s
∗←→Rt, there is a proof s ∗←→

ÊR
t with at most one root rewrite.

Clearly, c is an R-normal form, so if we are looking for a minimal witness to non-UN=

for R, 〈c, ?〉 might be a good first guess. We know that c↔
ÊR

f(x, x), so maybe 〈c, f(u, v)〉
is a minimal witness, for some normal forms u and v. This is not possible. First, notice that
f(x, x) appears on the LHS of a rule, so f(t, t) cannot be a normal form, for arbitrary term
t. Second, notice that if f(t, t) is equivalent to another normal form, then we can assume
it is of the form f(u, v), because we have already “used up” our only root rewrite by using
c↔

ÊR
f(x, x). So, maybe we can plug some term, t, into x, and then rewrite one instance

of it to a normal form u, and another instance of it to a normal form v, obtaining a minimal
witness of the form 〈c, f(u, v)〉? This cannot be the case, because if 〈c, f(u, v)〉 is a minimal
witness, then (by Lemma 5 and the fact that u ∗←→v) 〈u, v〉 would violate the minimality of
〈c, f(u, v)〉. So, we should consider c↔

ÊR
g(a, x) as the (one and only) rewrite step in our

proof. We know that a is not a normal form, and must, therefore, be rewritten to one -
h(h(c)). But what about x? Should we plug anything into it? Say we were to plug t into x,
and then rewrite t to some normal form, u. This would be unnecessary, because non-linearity
is not an issue here, and so we can leave x as it is. So, 〈c, g(h(h(c)), x)〉 is a minimal witness,
and the relevant proof looks like: c↔

ÊR
g(a, x)↔

ÊR
g(h(b), x)↔

ÊR
g(h(h(c)), x).

Now, here is the interesting part. Notice that we have four R-normal forms equivalent
to constants, but only three constants in R, i.e, c ∗←→

ÊR
c, h(c) ∗←→

ÊR
b, h(h(c)) ∗←→

ÊR
a, and

g(h(h(c)), x) ∗←→
ÊR
c. From the Pigeonhole Principle, we can conclude that there must be some

constant in R that is equivalent to two distinct normal forms (of course, we already knew
this, but in general this technique will be useful). We generalize the lessons learned from
this example in the following results.

I Lemma 6. Let R be a flat TRS. Let 〈M0,M1〉 be a minimal witness to non-UN= for R, and
say M = f(t1, . . . , tm) is a subterm of M0. Let c be a constant, and let c r←→

ÊR
f(s1, . . . , sm)

∗←→
ÊR

f(t1, . . . , tm) = M be a proof with a single root rewrite. If si is not a constant, then
height(ti) = 0.

Proof. Let Sconst be the set of positive integers, i, such that si ∈ F0. If none of the si’s is a
variable, then there is nothing to show; so, assume at least one of the si’s is a variable. Now,

Nicholas Radcliffe and Rakesh M. Verma 289

let

s′j =
{

sj if j ∈ Sconst
xsj

otherwise and t′j =
{

tj if j ∈ Sconst
xsj

otherwise

where xsj is a fresh variable not appearing in M0 or M1, and xsi = xsj if and only if
si = sj . We show that (i) f(s′1, . . . , s′m) ∗←→

ÊR
f(t′1, . . . , t′m), (ii) f(t′1, . . . , t′m) ∈ NFR, and (iii)

for i /∈ Sconst, height(ti) = 0.
Part (i). If j /∈ Sconst, then s′j = t′j = xsj . So, say j ∈ Sconst. In this case, s′j =

sj
∗←→
ÊR
tj = t′j . So, f(s′1, . . . , s′m) ∗←→

ÊR
f(t′1, . . . , t′m). Part (ii). Let j, j′ /∈ Sconst, and say

tj 6= tj′ . In order to apply Proposition 4, we need to show that t′j 6= t′j′ . From Lemma 5, we
know that sj 6= sj′ , and hence t′j = xsj 6= xsj′ = t′j′ . Therefore, we can apply Proposition 4
to obtain that f(t′1, . . . , t′m) ∈ NFR. Part (iii). Notice that, by (i) and f(s′1, . . . , s′m) ∗←→

ÊR
c,

we have f(t1, . . . , tm) ∗←→
ÊR
c
∗←→
ÊR
f(t′1, . . . , t′m) = N . Also, since N contains at least one

fresh variable not appearing in M0 or M1, we know that M 6= N and C[N] 6= M0 or M1,
where C[] is a context and M0 = C[M]. Hence 〈C[N],M1〉 is a witness to non-UN=, with
|C[N]| ≤ |M0|. But 〈M0,M1〉 is a minimal witness, so |C[N]| = |C[M]| and |N | = |M |.
Since |t′i| = 1 for all i /∈ Sconst, it must be the case that |ti| = 1. Thus, we have that
height(ti) = height(t′i) = 0 for all i /∈ Sconst. �

I Corollary 7. Under the same assumptions as Lemma 6 plus the assumption that at
least one of the si’s is a constant, there is a j such that sj ∈ F0 and height(tj) =
height(f(t1, . . . , tm))− 1 with 1 ≤ j ≤ m.

Proof. Since height(ti) = 0 whenever si /∈ F0, we know that height(ti) ≤ height(tj)
whenever si /∈ F0 and sj ∈ F0. So, amongst the direct subterms of f(t1, . . . , tm) with
maximal height, there must be one, tj , such that sj ∈ F0. �

I Proposition 8. Let R be a flat TRS, and let c ∈ F0. Let 〈M,N〉 be a minimal witness,
and let N ′ be a subterm of N such that height(N ′) = k. Further, let π ∈ c ∗←→N ′ be a proof
over R. Then we can find either (i) 1 + k distinct normal forms equivalent to constants, the
normal forms having heights 0, 1, . . . , k, or (ii) a witness, 〈N0, N1〉, to non-UN=, such that
N0 and N1 are flat.

Proof. We proceed by induction on height(N ′). For the base case we assume that height(N ′) =
0. If the proof is trivial, i.e., if c = N ′, then we have 1 = 1 + height(N ′) normal form (with
height zero) equivalent to a constant. So, assume that π has at least one step.

We know that there is a proof, π1rr ∈ c
+
←→
ÊR
N ′, such that there is only one root rewrite

step in π1rr. Since the first step in π1rr is necessarily a root rewrite, π1rr must have the
form c

r←→wσ = N ′, where the rule applied is c → w or w → c, and height(w) = 0 (notice
that if c r←→u ∗←→N ′ for some term u with height(u) > 0, then we would need a second root
rewrite to get back to N ′). If w ∈ X, then x ↔ c ↔ y, where x, y are distinct variables.
Therefore, 〈x, y〉 is a witness to non-UN= with x and y flat. If w ∈ F0, then we have found
1 = 1 + height(N ′) normal form (with height zero) equivalent to a constant.

For the inductive step, assume that height(N ′) > 0, and that the proposition holds for
any height strictly less than height(N ′). Now, π1rr has the form

c
r←→
ÊR
f(t1, . . . , tm) ∗←→

ÊR
f(u1, . . . , um) = N ′

and ti ∗←→ÊR
ui for 1 ≤ i ≤ m. We have two cases: (i) there is an i such that ti ∈ F0, and (ii)

there is no such i. For (i), by Corollary 7, there exists an i such that ti is a constant and

FSTTCS 2010

290 UN= for Shallow Rewrite Systems

height(ui) = k − 1. So, we can apply the inductive hypothesis to conclude that we have
either (i) 1 + (1 + (height(N ′)− 1)) = 1 + height(N ′) distinct normal forms, with heights
0, 1, . . . , height(N ′), equivalent to constants (the first height(N ′) − 1 normal forms come
from the inductive hypothesis, and the final normal form is N ′ itself, which is equivalent to
c), or (ii) a witness, 〈N0, N1〉, to non-UN=, such that N0 and N1 are flat.

In case (ii), if c ↔
ÊR

f(s1, . . . , sm) is the rule used for c ↔
ÊR

f(t1, . . . , tm), then si

is a variable for 1 ≤ i ≤ m. We need to show that f(s1, . . . , sm) ∈ NFR. From Lemma
5, we know that ti 6= tj whenever ui 6= uj for 1 ≤ i, j ≤ m. Since ti 6= tj implies that
si 6= sj , we see that si 6= sj whenever ui 6= uj . We can assume that the variables s1, . . . , sm
are fresh relative to f(u1, . . . , um), and so we can replace ui with si in f(u1, . . . , um),
obtaining f(s1, . . . , sm) ∈ NFR by Proposition 4. Since f(s1, . . . , sm) is a normal form,
we can replace the variables appearing in f(s1, . . . , sm) with fresh variables to produce a
new normal form, f(s′1, . . . , s′m), such that f(s1, . . . , sm) ↔

ÊR
c ↔

ÊR
f(s′1, . . . , s′m). So,

〈f(s1, . . . , sm), f(s′1, . . . , s′m)〉 is our witness with f(s1, . . . , sm) and f(s′1, . . . , s′m) flat. �

I Corollary 9. Let R be a flat TRS, and let c ∈ F0. Let 〈M,N〉 be a minimal witness, and
let N ′ be a subterm of N , with height(N ′) ≥ |F0|. Further, let π ∈ c ∗←→RN ′ be a proof over
R. Then we can find either (i) a witness, 〈M0,M1〉, to non-UN=, such that M0 and M1 are
flat, or (ii) a witness, 〈N0, N1〉, to non-UN=, such that height(N0), height(N1) ≤ |F0|.

Proof. By Proposition 8, we know that we can find either (a) a witness, 〈M0,M1〉, to
non-UN=, such that M0 and M1 are flat, or (b) 1 + height(N ′) distinct normal forms
equivalent to constants. If (a) is the case, then we are done. So assume that (b) is true.
Since there are 1 + height(N ′) > |F0| normal forms equivalent to, at most, |F0| constants,
we know, by the Pigeonhole Principle, that a single constant is equivalent to two distinct
normal forms. From the above observation, we know that the normal forms have heights 0,
1, 2, . . ., height(N ′). The smallest (height-wise) 1 + |F0| normal forms each have height no
more than |F0|. So, we know that we can find a witness, 〈N0, N1〉, to non-UN=, such that
height(N0), height(N1) ≤ |F0|. �

I Proposition 10. Let R be a flat TRS. Then, either (i) there does not exist a constant
c ∈ F0 and normal form N ∈ SubMinWitR such that c ∗←→

ÊR
N and height(N) ≥ |F0|, or

(ii) there exists a witness, 〈N0, N1〉 to non-UN= for R such that height(N0), height(N1) ≤
k = max{1, |F0|}. Further, there is an effective procedure to decide whether (i) or (ii) is the
case.

Proof. Consider all ground1 normal forms over the signature of the rewrite system, i.e.,
consisting of constants and function symbols appearing in the finitely many rules of R,
with height less than, or equal to, k; we use NF≤k to denote this set. Notice that if
there is a constant, c ∈ F0, and an element of SubMinWitR, N , with height(N) ≥ |F0|,
such that c ∗←→N , then by Corollary 9 there is a witness, 〈N0, N1〉, to non-UN= for R with
height(N0), height(N1) ≤ k. By a result in [1], the word problem is decidable for flat systems.
So, we can construct the set of all pairs, (s, t), such that s, t ∈ NF≤k and s

∗←→Rt. If we
do not find a witness to non-UN= in NF≤k, then we know that there is no c ∈ F0 and
N ∈ SubMinWitR such that height(N) ≥ |F0| and c ∗←→RN . Otherwise, we have found the
witness 〈N0, N1〉 with height(N0), height(N1) ≤ k. �

1 As in [13, 14], for nonlinear rewrite systems also we can expand the signature of the rewrite system
with 3α new constants, where α is the maximum arity of a function symbol in the rules, and focus on
ground normal forms.

Nicholas Radcliffe and Rakesh M. Verma 291

2.2 Shrinking Witnesses
Say 〈f(a, g(b, f(c, x))), h(y, y, h(a, b, c))〉 is a witness to non-UN= for some TRS. Can we
replace big subterms of a component of the witness, without changing the fact that it is a
witness, i.e., if we replace g(b, f(c, x)) with a variable, z, will 〈f(a, z), h(y, y, h(a, b, c))〉 still
be a witness? We show that we can replace depth-1 subterms that are not equivalent to a
constant with a variable. This shrinks the size of the witness; in particular, only depth-1
subterms of such a shrunk witness that are equivalent to a constant can have height greater
than, or equal to, the number of constants in the TRS. So, a shrunk minimal witness either
has small components, or there is a large subterm of a component of a minimal witness that
is equivalent to a constant. If the latter is the case, then we know, by Corollary 9, that there
is a small witness.

I Definition 11. Let R be a rewrite system. For each term (up to renaming of variables), t,
we can add a new variable xt to X without altering the relation ∗←→, where xs = xt if, and
only if, s ∗←→R t. Let t = f(t1, . . . , tn) be a term in T (F , X). Then we define

φ(t) =
{
xt if t is not equivalent to a constant
t otherwise

Let u = f(u1, . . . , um) for m > 0 and v ∈ X. We define the function α that maps terms
to terms as follows: α(u) = f(φ(u1), . . . , φ(um)) and α(v) = v.

Notice that α(c) = c for c ∈ F0, since α only affects depth-1 subterms.

I Lemma 12. Let R be a flat TRS, and let u↔R v be a proof over R, where u↔R v is not
a root rewrite. Then, there is a proof α(u) ∗←→R α(v).

Proof. Say u = f(u1, . . . , um) and v = f(v1, . . . , vm) (notice that if u ↔R v is not a root
rewrite, then neither u nor v can have height zero). Since the rewrite is not a root rewrite,
we know that there are ui and vi such that ui ↔R vi, and uj = vj for all j 6= i. If ui, vi are
equivalent to a constant, then φ(ui) = ui and φ(vi) = vi, and hence α(u)↔R α(v). If ui, vi
are not equivalent to a constant, then φ(ui) = xui

= xvi
= φ(vi), and hence α(u) = α(v). �

I Lemma 13. Let R be a flat TRS, and let u↔R v be a proof over R, where u↔R v is a
root rewrite. If the rewrite has the form u = wσ → xσ = v (i.e. it uses a collapsing rule
w → x), then α(u)↔R φ(v); otherwise α(u)↔R α(v).

Proof. In case of a collapsing rule, any instantiations of x appearing as depth-1 subterms
of u are equal to v, and so they are replaced by φ(v) in α(u). Since constants in w are
never replaced, α(u) ↔R φ(v). Otherwise, if s is a depth-1 subterm of u or v that is an
instantiation of a shared variable, then every depth-1 instance of s is replaced by φ(s) in
α(u) and α(v). So, α(u)↔R α(v). �

I Proposition 14. Let R be a flat TRS. Let s and t be terms not equivalent to a constant
and π ∈ s ∗←→t be a proof over R. Then, either there is a proof α(s) ∗←→

ÊR
y for some variable

y, or there is a proof α(s) ∗←→
ÊR

α(t).

Proof. We know that there is a proof, π1rr, over ÊR with at most one root rewrite. If π1rr
has zero steps, then α(s) = α(t), and so α(s) ∗←→

ÊR
α(t). Assume that π1rr has at least one

step, and say that it has the form s = s0 ↔ÊR
. . .↔

ÊR
sk = t for some k ≥ 1. We consider

three cases: (i) π1rr has no root rewrite; (ii) the only root rewrite in π1rr uses a collapsing
rule; and (iii) the only root rewrite in π1rr does not use a collapsing rule.

FSTTCS 2010

292 UN= for Shallow Rewrite Systems

In cases (i) and (iii), we know, by lemmas 12 and 13, that there is a proof α(si) ∗←→
ÊR

α(si+1) for 0 ≤ i ≤ k − 1. Therefore, there is a proof α(s) ∗←→
ÊR

α(t).
In case (ii), let wσ = sj ↔ÊR

sj+1 = xσ be the instance of the collapsing rule, w → x,
for some 0 ≤ j ≤ k − 1. For i < j, we know that there is a proof α(si) ∗←→ÊR

α(si+1). By
Lemma 13, we know that α(sj) ↔ÊR

φ(sj+1), and so there is a proof α(s) ∗←→
ÊR

φ(sj+1).
Since the terms in π1rr cannot be equivalent to a constant (since s, t are not equivalent to a
constant), we know that φ(sj+1) = xsj+1 , and so the proof is complete �

I Remark 15. As mentioned above, for any term v not equivalent to a constant, φ(v) can
be chosen so that it does not appear as a subterm of any finite number of terms. Therefore,
φ(sj+1) can be chosen so that it does not appear as a subterm of s0, s1, . . . , sk.

I Proposition 16. Let R be a flat TRS, and let 〈M,N〉 be a minimal witness to non-UN=

for R, with M,N not equivalent to a constant. Then either 〈α(M), y〉 or 〈α(M), α(N)〉 is a
witness for some variable, y.

Proof. We know from Proposition 14 that either there is a proof α(M) ∗←→
ÊR

y for some
variable y, or there is a proof α(M) ∗←→

ÊR
α(N). So, we need to show that (i) α(M), α(N),

and y are normal forms, and that (ii) α(M) 6= y (whenever α(M) ∗←→
ÊR

y) and α(M) 6= α(N).
For (i), we need to show that if s and t are depth-1 subterms of M (or N) that are not

equivalent to constants, then φ(s) 6= φ(t) whenever s 6= t. So, say that s 6= t. If s ∗←→
ÊR
t, then

〈s, t〉 would violate the minimality of 〈M,N〉, since |s|+ |t| < |M | ≤ |M |+ |N |. So, we know
that s and t are not equivalent, and hence φ(s) 6= φ(t). We know by Proposition 4 that α(M)
and α(N) are normal forms, because the variables replacing subterms of M and N can be
chosen so that they are fresh. Since variables are always normal forms, we know that α(M),
α(N), and y are normal forms.

For (ii), if M is not a variable, then α(M) is not a variable, and hence α(M) 6= y. If M
is a variable, then, by Remark 15, we can choose y so that it does not appear as a subterm
of M . So, α(M) = M 6= y.

To see that α(M) 6= α(N), we need to consider two cases. If root(M) 6= root(N),
then clearly α(M) 6= α(N), since α does not affect the outermost function symbol. If
root(M) = root(N), then it must be the case that M |i 6= N |i for some integer, i. In order for
α(M) = α(N) to be true, M |i and N |i must be replaced by the same variable. But this only
happens when M |i and N |i are equivalent, and if M |i and N |i were equivalent, then (setting
M ′ = M |i and N ′ = N |i) 〈M ′, N ′〉 would be a witness with |M ′| < |M | and |N ′| < |N |.
This would violate the minimality of 〈M,N〉, so M |i and N |i cannot be equivalent, and
hence M |i and N |i must be replaced by distinct variables. Therefore, α(M) 6= α(N). �

3 Decidability for Flat and Shallow Rewrite Systems

I Lemma 17. Let R be a flat TRS, and say that there is no constant c ∈ F0 and normal form
N ′ ∈ SubMinWitR such that c ∗←→

ÊR
N ′ and height(N ′) ≥ |F0|. Let 〈M,N〉 be a minimal

witness to non-UN= for R. Then height(α(M)), height(α(N)) ≤ k = max{1, |F0|}.

Proof. We know that (i) all depth-1 subterms of α(M) and α(N) that are not equivalent
to a constant are necessarily variables, and (ii) there is no constant c ∈ F0 and normal
form N ′ ∈ SubMinWitR such that c ∗←→

ÊR
N ′ and height(N ′) ≥ |F0|. Hence, the depth-1

subterms of α(M) and α(N) are either (i) variables or (ii) elements of SubMinWitR with

Nicholas Radcliffe and Rakesh M. Verma 293

height strictly less than |F0|. This means that the heights of α(M) and α(N) are at most
max{1, |F0|}. �

I Theorem 1. Let R be a flat TRS. If there is a witness to non-UN= for R, then there
exists a witness, 〈N0, N1〉, with height(N0), height(N1) ≤ k = max{1, |F0|}. Hence UN= is
decidable for R.

Proof. By Proposition 10, we know that there is either (i) no constant c ∈ F0 and normal
form N ′ ∈ SubMinWitR such that c ∗←→

ÊR
N ′ and height(N ′) ≥ |F0|, or (ii) a witness,

〈N0, N1〉 to non-UN= for R such that height(N0), height(N1) ≤ k. Further, there is an
effective procedure to decide if (i) or (ii) is the case.

If (ii) is the case, then we have our witness. So, assume that (i) is the case, and let 〈M,N〉
be a minimal witness to non-UN= for R. If M and N are equivalent to a constant, c, and
height(M), height(N) < |F0|, then we are done. So, we assume (without loss of generality)
thatM,N are not equivalent to a constant, and thus we can apply Proposition 14. Hence there
is either a proof α(M) ∗←→

ÊR
y for some variable y, or a proof α(M) ∗←→

ÊR
α(N). By Lemma 17,

we know that height(α(M)), height(α(N)) ≤ k. Hence, by Proposition 16, either 〈α(M), y〉
or 〈α(M), α(N)〉 is a witness to non-UN= with height(α(M)), height(α(N)), |y| ≤ k.

So, if there is a witness to non-UN= for R, then there is a witness, 〈N0, N1〉, with
height(N0), height(N1) ≤ k. The following algorithm, on input R, determines if R is UN=:
Enumerate all ground normal forms over the signature of the rewrite system, i.e., consisting
of constants and function symbols appearing in the finitely many rules of R, with height less
than, or equal to, k; say they are N0, . . . , Nn. In [1], the authors show that the word problem
is decidable for shallow TRS. So, for 0 ≤ i < j ≤ n, check if Ni ∗←→ÊR

Nj . If Ni ∗←→ÊR
Nj for

some 0 ≤ i < j ≤ n, then R is not UN=; otherwise, R is UN=. �
Now that we have shown that UN= is decidable for flat rewrite systems, we extend this

result to shallow rewrite systems. We do this by flattening a shallow rewrite system, i.e.,
transforming a shallow rewrite system into a flat one in a way that preserves UN=.

I Theorem 2. Let R be a shallow TRS. Then UN= is decidable for R.

4 Undecidability of UN= for some Rewrite Systems

We show that UN= is undecidable for certain rewrite systems by showing that a decision
procedure for UN= for these rewrite systems could be used to construct a decision procedure
for the Post Correspondence Problem (PCP) [8]. As PCP is undecidable, so must UN=

be for these rewrite systems. Note that, in this section, we sometimes use concatenation
to denote the application of a unary function, i.e., f(g(h(c))) could, for convenience, be
denoted by fgh(c). We consider rewrite systems with rules that have flat right-hand sides,
and left-hand sides with height at most two. For each PCP instance, P , with tiles τ1, . . . , τk
(each tile is basically a pair of strings) and tile alphabet Γ, we construct a TRS, RP , with
flat right-hand sides, and left-hand sides with height at most two. Let T be the set of tiles,
and say Γbot is the set of words appearing on the bottom of a tile, and Γtop is the set of
words appearing on the top of a tile in T . We construct the TRS as follows:
1. For each tile τi, f(i(x), u(y), v(z)) → f(x, y, z), where u ∈ Γtop is on the top of tile τi,

and v ∈ Γbot is on the bottom of τi.
2. For constants s and α, f(s, s, s)→ α.
3. For each a ∈ Γ and each tile τi, f(i(x), a(y), a(y))→ β, where β is a constant.
4. s→ s, f(x, y, z)→ f(x, y, z), a(x)→ a(x), and i(x)→ i(x) for every a ∈ Γ and tile τi.

FSTTCS 2010

294 UN= for Shallow Rewrite Systems

The rules from item (1) are used to construct the bulk of the proof. The rule from (3) allows
you to reach the normal form β once a PCP instance has been constructed. Notice that
α and β are the only two normal forms for RP . The rules from item (4) do not play a
non-trivial role in any proof—they exist simply to eliminate the possibility of there being
more than two normal forms. Notice that u, v ∈ Γ+ appear on the left-hand side of a rule.
This means that the left-hand side can have height strictly greater than two. However,
putting u, v on the left-hand side of a rule is just a convenience, as such a rule can be
simulated by rules with flat right-hand sides, and left-hand sides with height at most two.
For instance, let u = γm . . . γ1 and v = δn . . . δ1, for γi, δj ∈ Γ and n ≥ m. In this case, the
rule f(i(x), u(y), v(z))→ f(x, y, z) can be simulated by:

f(i(x), y, δn(z)) → f (n−1)(x, y, z)
...

f (m+1)(x, y, δm+1(z)) → f (m)(x, y, z)
f (m)(x, γm(y), δm(z)) → f (m−1)(x, y, z)

...
f (2)(x, γ2(y), δ2(z)) → f (1)(x, y, z)
f (1)(x, γ1(y), δ1(z)) → f(x, y, z)

We given an outline of the proof of correctness and omit details for lack of space.

I Lemma 18. A minimal proof over RP cannot contain a backward application of rule type
1 at the root position immediately followed by a forward application at the root position of
rule type 1.

I Lemma 19. Let α ∗←→β be a proof over RP with minimal length. Then the proof must have
the form α↔ f(s, s, s) +

←→f(i(t′), a(t), a(t))↔ β.

I Corollary 20. Let P be a PCP instance. If RP is not UN=, then there is a solution to the
PCP instance.

It is straight-forward to show that if there is a solution to P , then RP violates UN=. So, if
P is an instance of PCP, then there is a solution to P if and only if RP violates UN=. Since
PCP is undecidable, we have the following theorem.

I Theorem 3. UN= is undecidable for TRS with rules that have flat, linear right-hand sides
and left-hand sides with height at most two.

A slight modification of the rules can produce another result. Consider the following rule set:
1. For each tile τi, f(i(x), u(y), v(z)) ← f(x, y, z), where u ∈ Γtop is on the top of tile τi,

and v ∈ Γbot is on the bottom of τi.
2. For constants s and α, f(s, s, s)→ α.
3. For each a ∈ Γ and each tile τi, f(i(x), a(y), a(y))← β.
4. β → γ, where γ is a constant.
5. s→ s, f(x, y, z)→ f(x, y, z), a(x)→ a(x), and i(x)→ i(x) for every a ∈ Γ and tile τi.
Notice that now α and γ are the only two normal forms. Let α ∗←→γ be a proof over RP with
minimal length. Then the proof must have the form α ↔ f(s, s, s) +

←→ f(i(t′), a(t), a(t)) ↔ β

↔ γ. So, we have the following corollary.

I Corollary 21. UN= is undecidable for TRS with rules that have linear, flat left-hand sides,
and right-hand sides with height at most two.

Nicholas Radcliffe and Rakesh M. Verma 295

5 Conclusion

The UN= property of TRSs is shown to be decidable for the shallow class and undecidable
for the class of TRSs in which one side of the rule is allowed to be at most depth-two
and the other side is flat and linear. Among the fundamental properties of TRSs only the
word problem and the UN= property are now known to be decidable for the shallow class.
An important direction for future research is to give a complete classification of the basic
properties for all 15 classes obtained by combinations of linearity and depth restrictions on
variables in each side of TRSs (see also [11] in this regard).

Acknowledgements We thank Ross Greenwood for a careful reading and for his comments
and questions.

References
1 H. Comon, M. Haberstrau, and J. Jouannaud. Syntacticness, cycle-syntacticness, and

shallow theories. Inf. Comput., 111(1):154–191, 1994.

2 G. Godoy, A. Tiwari, and R. Verma. On the confluence of linear shallow rewrite systems.
Proceedings of the Symposium on Theoretical Aspects of Computer Science, Lecture Notes
in Computer Science, 2607:85–96, 2003.

3 Guillem Godoy and Hugo Hernández. Undecidable properties of flat term rewrite systems.
Appl. Algebra Eng. Commun. Comput., 20(2):187–205, 2009.

4 Guillem Godoy and Sophie Tison. On the normalization and unique normalization prop-
erties of term rewrite systems. In Proc. Conf. on Automated Deduction, pages 247–262,
2007.

5 J.W. Klop. Combinatory Reduction Systems. PhD thesis, Mathematisch Centrum, Ams-
terdam, 1980.

6 J.W. Klop. Rewrite systems. In Handbook of Logic in Computer Science. Oxford, 1992.

7 Ichiro Mitsuhashi, Michio Oyamaguchi, and Florent Jacquemard. The confluence problem
for flat TRSs. In 8th Artificial Intelligence and Symbolic Computation Conference, pages
68–81, 2006.

8 M. Sipser. Introduction to the Theory of Computation. PWS Publishing Co., 1997.

9 Terese. Term Rewriting Systems. Cambridge University Press, Cambridge, 2003.

10 Rakesh Verma. Complexity of normal form problem and reductions for term rewriting
problems. Fundamenta Informaticae, 92(1-2):145–168, 2009.

11 Rakesh M. Verma. New undecidability results for properties of term rewrite systems. In
Proc. (elec.) of 9th Workshop on Rule-based Programming (RULE), 2008.

12 R.M. Verma, M. Rusinowitch, and D. Lugiez. Algorithms and reductions for rewriting
problems. Fundamenta Informaticae, 46(3):257–276, 2001. Also in Proc. of Int’l Conf. on
Rewriting Techniques and Applications 1998.

13 J. Zinn and R. Verma. A polynomial-time algorithm for uniqueness of normal forms of
linear, shallow rewrite systems. In Proc. IEEE Conf. on Logic in Computer Science, 2006.
short presentation.

14 Julian Zinn. A polynomial algorithm for uniqueness of normal forms of linear, shallow term
rewrite systems. Master’s thesis, University of Houston, 2006.

FSTTCS 2010

Deterministic Black-Box Identity Testing
π-Ordered Algebraic Branching Programs∗

Maurice Jansen1, Youming Qiao2, and Jayalal Sarma M.N.3

1 School of Informatics, The University of Edinburgh,
maurice.julien.jansen@gmail.com

2 Institute for Theoretical Computer Science, Tsinghua University,
jimmyqiao86@gmail.com

3 Department of Computer Science and Engineering, Indian Institute of
Technology Madras, jayalal.sarma@gmail.com

Abstract
In this paper we study algebraic branching programs (ABPs) with restrictions on the order
and the number of reads of variables in the program. An ABP is given by a layered directed
acyclic graph with source s and sink t, whose edges are labeled by variables taken from the set
{x1, x2, . . . , xn} or field constants. It computes the sum of weights of all paths from s to t, where
the weight of a path is defined as the product of edge-labels on the path. Given a permutation π
of the n variables, for a π-ordered ABP (π-OABP), for any directed path p from s to t, a variable
can appear at most once on p, and the order in which variables appear on p must respect π.
One can think of OABPs as being the arithmetic analogue of ordered binary decision diagrams
(OBDDs). We say an ABP A is of read r, if any variable appears at most r times in A.

Our main result pertains to the polynomial identity testing problem, i.e. the problem of
deciding whether a given n-variate polynomial is identical to the zero polynomial or not. We prove
that over any field F, and in the black-box model, i.e. given only query access to the polynomial,
read r π-OABP computable polynomials can be tested in DTIME[2O(r log r·log2 n log logn)]. In case
F is a finite field, the above time bound holds provided the identity testing algorithm is allowed
to make queries to extension fields of F. To establish this result, we combine some basic tools
from algebraic geometry with ideas from derandomization in the Boolean domain.

Our next set of results investigates the computational limitations of OABPs. It is shown that
any OABP computing the determinant or permanent requires size Ω(2n/n) and read Ω(2n/n2).
We give a multilinear polynomial p in 2n + 1 variables over some specifically selected field G,
such that any OABP computing p must read some variable at least 2n times. We prove a strict
separation for the computational power of read (r − 1) and read r OABPs. Namely, we show
that the elementary symmetric polynomial of degree r in n variables can be computed by a size
O(rn) read r OABP, but not by a read (r − 1) OABP, for any 0 < 2r − 1 ≤ n. Finally, we give
an example of a polynomial p and two variables orders π 6= π′, such that p can be computed by
a read-once π-OABP, but where any π′-OABP computing p must read some variable at least 2n
times.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.296

1 Introduction

The polynomial identity testing problem (PIT) is the question of deciding, given an arithmetic
circuit C with input variables x1, x2 . . . xn over some field F, whether the polynomial computed

∗ This work was supported in part by the National Natural Science Foundation of China Grant
60553001, 61073174, 61033001 and the National Basic Research Program of China Grant 2007CB807900,
2007CB807901.

© Maurice Jansen, Youming Qiao and Jayalal Sarma M.N.;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 296–307

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.296
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Jansen, Qiao and Sarma 297

by C is identical to the zero polynomial in the ring F[x1, x2, . . . xn]. Efficient algorithms
for PIT are important both in theory and in practice. Randomized algorithms were given
independently by Schwartz [17] and Zippel [22].

Finding deterministic algorithms for PIT plays a crucial role in computational complexity
theory. Kabanets and Implagliazzo [11] showed that giving a deterministic subexponential
time algorithm for PIT implies that either NEXP 6⊆ P/poly, or that the permanent has
no poly-size arithmetic circuits. Agrawal [1] showed that giving a deterministic black-box
algorithm for PIT yields an explicit multilinear polynomial that has no subexponential size
arithmetic circuits. In [1] a program was outlined explaining how making progress towards
the latter kind of algorithm for PIT has the potential of resolving Valiant’s Hypothesis,
which states that the algebraic complexity classes VP and VNP are distinct. For optimists
certainly, the situation is tantalizing, as Agrawal and Vinay [2] showed that the black-box
derandomization of PIT for only depth-4 circuits would yield a nearly complete derandomiza-
tion for general arithmetic circuits. Recent progress on the PIT problem has been impressive.
See [16] for a recent survey.

In this paper, we contribute to the above mentioned lower bounds program by considering
black-box identity testing ordered algebraic branching programs (OABPs), which where
introduced in [8]. Algebraic branching programs have computational power somewhere in
between arithmetic formulas and circuits. Namely, they can efficiently simulate formulas
via a construction by Valiant [21]. Furthermore, their computational power is easily seen
to be equivalent to that of skew circuits. For skew circuits, which were introduced by Toda
[20], multiplication gates are restricted to have one of their inputs to be a variable or field
constant. OABPs can be thought of as being the arithmetic analogue of ordered binary
decision diagrams (OBDDs), which were introduced by Bryant [4].

Some polynomials can be succinctly represented in the OABP model. For example, we
show that the elementary symmetric polynomial of degree k in n variables can be elegantly
described by a grid shaped OABP of size O(kn). This can be done for any desired variable
order π, and shows small OABPs have some real computing power. We think the OABP model
has practical merit for polynomial representation, and being an analogue of the OBDD it
should be properly investigated. As our lower bounds show, a succinct OABP-representation
is not available for every polynomial. The situation is similar to what is well-known for
OBDDs. In practice this may be outweighed by the fact that PIT can be solved efficiently
for OABPs. Part of the popularity of OBDDs can be explained by the fact that identity
testing (and hence equivalence testing) can be done efficiently for the model, as e.g. Raz and
Shpilka [14] remarked.

In [14] a polynomial-time non-black-box algorithm was given for identity testing non-
commutative formulas, and more generally non-commutative ABPs. Identity testing OABPs
reduces to PIT for non-commutative ABPs, and hence can be done non-black-box in polynomial
time. Namely, if we take an OABP A computing some polynomial f over commuting variables,
and if we let f ′ be the evaluation of A, where we restrict the variables to be non-commuting,
then it can be observed that f ≡ 0 ⇔ f ′ ≡ 0. Giving a black-box algorithm for testing
non-commutative formulas and ABPs is currently a major open problem. Our main result
implies that for any variable order π, we have a DTIME[2O(polylog(n))] black-box algorithm
for testing OABPs with order π that have polylog(n) many reads.

Let us mention the connection of our work to the problem of identity testing multilinear
formulas raised by Raz [13]. Our results can be applied to black-box identity testing “ordered
multilinear formulas” with few reads (say polylog(n)). The latter can be defined for any
given variable order π, by requiring that for each multiplication gate g = g1 × g2 in the

FSTTCS 2010

298 Deterministic Black-Box Identity Testing π-Ordered Algebraic Branching Programs

formula, variables in the subformula rooted at g1 should either all be smaller or all be larger
w.r.t. π than variables in the subformula rooted at g2. By applying the construction of
[21], judiciously to keep the order, a formula of this kind can be simulated by a π-OABP.
This then gives another important special case of PIT for multilinear formulas for which a
black-box algorithm is known. The other case being sum-of-k read-once formulas, which we
elaborate on next.

Any arithmetic read-once formula (ROF) can be simulated by an OABP, since the
construction of [21] mentioned before preserves the RO-property. Black-box Identity testing
sum-of-k ROFs was studied in [19], and this was subsequently generalized to the sum-of-k
read-once ABPs in [10]. These results suggest the difficulty of making generalizations in this
area to models beyond read-once. For example, by [10] we have an nO(logn) black-box test
for sum-of-two read-once ABPs, but for testing a single read-twice ABP, currently nothing is
known beyond brute-force methods. Our result is significant, in that the techniques apply to
a model where the multiple reads take place within one monolithic ABP. This opens up a new
thread of progress in the direction of identity testing unrestricted ABPs. We refer to [9] for
a direct connection between this, and proving lower bounds for the determinantal complexity
of explicit polynomials. The latter is what the separation of VP and VNP requires.

Another point of significance pertains to the techniques we use (on which we will elaborate
more below). To obtain the main result, we combine basic tools from algebraic geometry
with ideas from derandomization in the Boolean world (specifically, the pseudorandom
construction of Impagliazzo, Nisan and Wigderson [7] for network algorithms). As far as we
now, this kind of use of basic algebraic geometry is new to the PIT area. We hope our work
stimulates more research in this direction.

1.1 Techniques
Towards the identity testing algorithm, first we show that, without increasing the number of
reads, any π-OABP can be made π-oblivious. For the latter, all variables in a layer must be
identical, and all occurences of a variable xi appear in the same layer. Hence there is some
variable order xi1 , xi2 , . . . , xin in which the layers appear (possibly interleaved by constant
layers), when going from the source to the sink. The next step is to construct a generator
G(z) for π-oblivious ABPs. This is a mapping F` → Fn such that for any f ∈ F[x1, . . . , xn]
computed by a π-oblivious ABP, f ≡ 0 ⇔ f(G) ≡ 0. From this, one obtains an efficient
black-box test, if the number of z-variables ` and the degree of G is “small”.

For illustrative purposes, let us consider an π-oblivous ABP A with variable order
x1, x2, . . . , x2n of small width w, rather than small number of reads, and suppose it computes
f 6≡ 0. In order to achieve ` = O(w logn), we cut A in the middle layer. This gives a
decomposition (say) f =

∑
i∈[w] gi(x1, . . . , xn)hi(xn+1, . . . , x2n). Then we want f(G) =∑

i∈[w] gi(G1, . . . ,Gn)hi(Gn+1, . . . ,G2n) 6≡ 0. We would like to use recursion on the gis and
his, but in order to get ` small, this means Gu := (G1, . . . ,Gn) and Gd := (Gn+1, . . . ,G2n)
will share most of the variables. Consequently, cancelations might occur and may result in
f(G) ≡ 0. However, we do know that {gi(Gu)}i∈[w] must “communicate” through a small
dimensional space Fw. This allows one to take Gd identical to Gu, except for an additional
component to the input that inflates the dimension of any non-empty finite union of affine
varieties1, given by the preimage of a single point in Fw. More or less, G(z, z′) will look

1 Keeping with the terminology in [6], an algebraic set is the set of common zeroes of a list of polynomials.
Affine varieties are algebraic sets, which are irreducible in the Zariski-topology.

Jansen, Qiao and Sarma 299

like Gu(z);Gd(z, z′), with Gd(z, z′) = Gu(z + T (z′)), where T is a mapping of O(w) many
variables that contains any w-dimensional coordinate subspace. Doing so, we only add O(w)
many variables per inductive step. This mirrors the pseudorandom generator construction of
[7] mentioned before. To make an analogy, z + T (z′) can be thought of as similar to taking a
vertex (we pick z) and adjacent edge (we move by T (z)) on an expander graph.

Necessarily, our final construction will be more complicated than the above sketch, since
we assume a bound on the number of reads instead of the width. This will be dealt with
by taking a partial derivatives w.r.t. a centrally local variable xk in the ABP. Taking the
derivative w.r.t. xk has the net effect of cutting down the width of the xk-layer of A.

2 Preliminaries

For a natural number n, we denote the set {1, 2, . . . , n} by [n]. For an n-tuple a =
(a1, a2, . . . , an) and m-tuple b = (b1, b2, . . . , bm), we denote (a1, a2, . . . , an, b1, b2, . . . , bm)
by a#b. Let X = {x1, x2, . . . , xn} be a set of variables and let F be a field. For a polynomial
f ∈ R := F[X], if it is identical to the zero polynomial of the ring R, we write f ≡ 0. If the
degree of any variable of f is bounded by one, f is said to be multilinear (even if f has a
constant term). We say f depends on xi, if the formal partial derivative ∂f/∂xi 6≡ 0. V ar(f)
denotes the sets of variables f depends on. For a set of polynomial f1, . . . , fm ∈ F[X], we say
that they are independent if for all a ∈ Fm with a 6= 0,

∑
i∈[m] aifi 6≡ 0. We use the notation

f|xi=α to denote substitution of xi with α ∈ F.
We import the following definition and subsequent notations from [10]. An algebraic

branching program (ABP) is a 4-tuple A = (G,w, s, t), where G = (V,E) is an edge-labeled
directed acyclic graph for which the vertex set V can be partitioned into levels L0, L1, . . . , Ld,
where L0 = s and Ld = t. Vertices s and t are called the source and sink of A, respectively.
Edges may only go between consecutive levels Li and Li+1. The subgraph induced by Li∪Li+1
is called a layer. The label function w : E → X ∪ F assigns variables or field constants to
the edges of G. For a path p in G, we extend the weight function by w(p) =

∏
e∈p w(e).

Let Pi,j denote the collection of all paths p from i to j in G. The program A computes the
polynomial

∑
p∈Ps,t

w(p). The size of A is taken to be |V |, and the read of A is the maximum
of |w−1(xi)|, over all xi’s. The depth of A equals d, and the width of A equal maxi |Li|.

Algebraic branching programs were first introduced by Nisan [12]. Our definition differs
in the respect that [12] requires edge labels to be linear forms. We remark that the read of an
ABP always refers to global read, i.e. it bounds the total number of times a variable xi can
be reads in the entire ABP. With some abuse, an ABP A is called a read r ABP, if its read
is bounded by r. We also denote this by saying that A is a Rr-ABP. A polynomial f ∈ F[X]
is called a Rr-ABP-polynomial if there exists a Rr-ABP computing f . We use the following
notation: for an arc e = (v, w) in ABP A, begin(e) = v and end(e) = w. We let source(A)
and sink(A) stand for the source and sink of A. For any nodes v, w in A, we denote the
subprogram with source v and sink w by Av,w. We use Â to denote the polynomial computed
by A, and in particular, Âv,w is the polynomial computed by the subprogram Av,w. A layer
of an ABP A is the subgraph induced by two consecutive levels Li and Li+1 in A.

I Definition 1. Let π be a permutation of [n]. An ABP A is π-ordered, if on every directed
path p in A, if a variable xi appears before xj on p, then π(i) < π(j). For an ABP A we say
it is ordered if it is π-ordered w.r.t. some permutation π.

For a π-ordered ABP (π-OABP) variables appear (with possibly omissions) on any path
from source to sink in the order xπ−1(1), xπ−1(2), . . . , xπ−1(n). We will speak of the latter

FSTTCS 2010

300 Deterministic Black-Box Identity Testing π-Ordered Algebraic Branching Programs

sequence as the variable order of A. To stress, for a π-OABP, for any path p, a variable
xi appears at most once on p. Hence, if a π-OABP is read r, each variable xi can appear
at most r times in the ABP, and each occurrence must be on a different path from the
source to the sink. Note that the output of a π-OABP must be a multilinear polynomial.
Ordered algebraic branching programs where first studied in [8], but with respect to the
homogeneous ABP definition of [12]. There the ordering condition states that on any path p,
for any edge e1 appearing before e2 on p, if e1 is labeled by

∑
i∈[n] aixi, and e2 is labeled by∑

i∈[n] bixi, then all variables in {xi : ai 6= 0} appear before all variables in {xi : bi 6= 0} in
the variable order. The usual “homogenization trick” of splitting nodes into parts computing
homogeneous components can be used to convert any OABP to the model of [8] (one also
needs to collapse circuitry going over constant wires). This outlines a proof of the second
part of the following lemma (the first part being obvious):

I Lemma 2. For any permutation π of [n] we have the following:
1. A homogeneous π-ordered ABP of size s with linear forms as edge labels can be converted

into an equivalent π-OABP with weight function w : E → X ∪ F of size O(ns).
2. For any π-OABP of size s computing a homogeneous polynomial of degree d, there exists

an equivalent homogeneous π-ordered ABP of size O(sd) with linear forms as edge labels.

An ABP is called oblivious, if for any layer all variables are the same. We call a layer
an x-layer, if x labels some of the edges in that layer, for x ∈ X. Layers with variables are
called variable layers. Layers without variables are called constant layers. We say an ABP is
π-oblivous, if it is oblivious, and for each variable xi there is at most one xi-layer, and the
layers appear in the order xπ−1(1), xπ−1(2), . . . , xπ−1(n) (with possible omissions) in the ABP.

To emphasize, for a read r π-oblivious ABP we have at most n layers where variables are
read. These layers appear in the variable order when going from the source to the sink, and
can be interleaved with constant labeled layers. Then for a variable layer w.r.t. a variable
x, we have at most r occurences of x on an edge in this layer. Any remaining edges in
the layer must be labeled by constants. The proof of the following lemma follows by some
straightforward circuit manipulations, and it will appear in the full version of the paper.
Note the lemma preserves read.

I Lemma 3. For any permutation π of [n], given a π-OABP A over n variables of size s
and read r, there is an equivalent π-oblivious ABP B of size O(sn), width ≤ 2s, read r.

Any subset X ⊆ Fn which is the set of simultaneous zeroes of a set of polynomials
f1, . . . , ft ∈ F[x1, . . . , xn] is called an algebraic set. For basic definitions we refer to [5, 6]. If
X and Y are algebraic sets in Fn, we denote by X+Y the subset {x+y ∈ Fn : x ∈ X, y ∈ Y }.
Note that X + Y may not be an algebraic set. We denote by X + Y the closure of X + Y in
the Zariski-topology. We need the following two lemmas:

I Lemma 4. Let X ⊂ Fn be an algebraic set of dimension 0 ≤ r < n. Then for some
(n− r)-dimensional coordinate subspace C ⊂ Fn, X + C = Fn.

Proof. For a coordinate subspace C denote the canonical projection to C by πC . Consider
K = {0}r × Fn−r and L = Fr, which we think of as the complement of K corresponding
to the first r coordinates. We have the following two properties: 1) The set X +K equals
πL(X)× Fn−r, and 2) πL(X)× Fn−r = πL(X)× Fn−r.

By this, dimX +K = n− r + dim πL(X). More generally, it can be seen (by applying
isomorphisms to Fn, where we permute the indices), that for any (n − r) -dimensional
coordinate subspace C with r-dimensional complement D, dimX + C = n− r + dim πD(X).

Jansen, Qiao and Sarma 301

Hence the lemma follows from the fact that for any r-dimensional affine variety there exists
a projection τ to some r-dimensional coordinate subspace E such that τ(X) is dense in E,
i.e. dim πD(X) = r. For a proof of the latter see [5], p480. J

I Lemma 5 (Lemma 2.1 in [3]). Let f ∈ F[X] be a nonzero polynomial such that the degree
of f in xi is bounded by ri, and let Si ⊆ F be of size at least ri + 1, for all i ∈ [n]. Then
there exists (s1, s2, . . . , sn) ∈ S1 × S2 × . . .× Sn with f(s1, s2, . . . , sn) 6= 0.

The following lemma gives us a decomposition satisfying some useful independence
properties.

I Lemma 6. Let k ≥ 1, and let A be an oblivious ABP of width w with source s and sink t
having variable order x1, x2, .., x2n. Suppose Â 6≡ 0. Then we can write for some w′ ≤ w,
f =

∑
i∈[w′] figi, where

1. {f1, f2, . . . , fw′} ⊆ F[x1, x2, . . . , xn] and {g1, g2, . . . , gw′} ⊆ F[xn+1, xn+2, . . . , x2n] are
both independent sets of polynomials.

2. ∀a ∈ Fw
′
,
∑
i∈[w′] aifi can be computed by an oblivious ABP of width w with variable

order x1, x2, .., xn.
3. ∀a ∈ Fw

′
,
∑
i∈[w′] aigi can be computed by an oblivious ABP of width w with variable

order xn+1, xn+2, . . . , x2n.

Proof. Let V be the set of variables used in A. Pick an arbitrary level L of nodes v1, v2, . . . , vw
such that V ∩{x1, x2, . . . , xn} appear on edges in layers before L, and V ∩{xn, xn+1, . . . , x2n}
appear on edges in layers after L. For i ∈ [w], let fi = Âs,vi and gi = Âvi,t. We proceed in
two phases. First we arrange for a decomposition where the fis are independent. Then we
will deal with the gis.

Wlog. assume that f1, . . . , fk is a maximum size independent set of polynomials. Since
f 6≡ 0, we know that not all fi ≡ 0. So k ≥ 1. For j > 0, any fk+j can be written as a
linear combination of f1, . . . , fk. Let A′ be an equivalent ABP obtained from A as follows.
First, A′ is just as A from the source up to the level L, except that we drop vk+1, . . . vw from
L. Let us use L′ to denote the modified level L. L′ is followed by a constant layer, where
f1, . . . , fw are computed (relative to s). After this we attach all the levels of A, just as they
followed L in A. We have that f =

∑
i∈[k] fig

′
i, where fi = Â′s,vi

and g′i = Â′vi,t. The fis
satisfy the first two conditions of the lemma. The g′is are in F[xn+1, xn+2, . . . , x2n]. This
completes the first phase.

For the next phase, wlog. assume that g′1, . . . , g′l is a maximum size independent set.
Say these correspond to nodes w1, . . . , wl, respectively. That is, Â′wi,t = g′i. Since f 6≡ 0,
we know that l ≥ 1. Symmetrically to the first phase, but now going in the direction from
sink to source, we modify A′ into an equivalent ABP A′′. A′′ is the same as A′ from the
sink back to the level L′, except that we drop nodes other than w1, . . . , wl from L′. Above
this is a constant level, where we compute g′1, . . . , g′k (relative to the sink). Above this we
attach all level from A′, just as they appear from s to L′ in A′. We now have arranged that
f =

∑
i∈[l] f

′′
i g
′
i, where f ′′i = Â′′s,wi

and g′i = A′′wi,t, for i ∈ [l]. Observe that for each i ∈ [l],
f ′′i = f ′i +Linear(fl+1, . . . , fk). Hence {f ′′1 , . . . , f ′′l } is an independent set of polynomials. All
required properties of the lemma are now clearly satisfied. J

I Corollary 7. Let k ≥ 1, n ≥ 3 and let 1 < i < n. Let A be a read r oblivious ABP, with
source s and sink t having variable order x1, x2, . . . , xi−1, xi, xi+1, . . . , xn. We use y as alias
for xi. Let f = ∂Â/∂y. Suppose Â depends on y, that is f 6≡ 0. Then we can write for some
r′ ≤ r, f =

∑
i∈[r′] piqi, where

FSTTCS 2010

302 Deterministic Black-Box Identity Testing π-Ordered Algebraic Branching Programs

1. {p1, p2, . . . , pr′} ⊆ F[x1, x2, . . . , xi−1] and {q1, q2, . . . , qr′} ⊆ F[xi+1, xi+2, . . . , xn] are both
independent sets of polynomials.

2. ∀a ∈ Fr
′
,
∑
i∈[r′] aipi can be computed by a read r oblivious ABP with variable order

x1, x2, .., xi−1.
3. ∀a ∈ Fr

′
,
∑
i∈[r′] aiqi can be computed by a read r oblivious ABP with variable order

xi+1, xi+2, . . . , xn.

Proof. Corollary 7 is now proved as follows. We make changes to A by modifying the edges
in the y-layer as follows: for a variable edge (labeled with y), label it with 1. For a constant
edge, remove it. The resulting ABP A′ computes f . Then in the proof of Lemma 6, take the
level L to be the starting level of the original y-layer. As |L| is bounded by the number of
y-variables in the y-layer of A, we are done. J

3 A Generator for π-Oblivious ABPs

We assume |F| is large enough. The explicit requirement on |F| will become clear after
the description of the generator. For now, let us fix S = {α1, . . . , , αN} ⊆ F, for some
N , and let Sm = {α1, . . . , αm}, for 1 ≤ m ≤ N . Let Z = {z1, z2, . . .}, Y = {y1, y2, . . .},
U = {u1, u2, . . .} and V = {v1, v2, . . .} be sets of variables. For k ≥ 1, we use Zk to denote
the k-tuple of variables (z1, z2, . . . , zk), similarly for Yk, Uk and Vk. Define the function ` on
natural numbers by `(k, r) = 2rk + 1. Abusing notation, we write (Z`(k,r), Uk, Vk) to denote
the tuple Z`(k,r)#Uk#Vk.

For every k ≥ 0, r ≥ 1 and a variable w, let Hk,r(w) =
(Hk,r

1 (w), Hk,r
2 (w), . . . Hk,r

`(k,r)+2k(w)), where for each i ∈ [`(k, r) + 2k], Hk,r
i is the

ith Lagrange interpolation polynomial on the set S`(k,r)+2k. Hk,r
i is a univariate polynomial

in w of degree `(k, r) + 2k − 1, satisfying that ∀αj ∈ S`(k,r)+2k, Hk,r
i (αj) = 1 if i = j and 0

otherwise. For k ≥ 1, and two variables u and v, let Ek(u, v) = (u · Lk1(v), . . . , u · Lk2k (v)), in
which Lki is the ith Lagrange interpolation polynomial on the set S2k .

For k ≥ 0 and r ≥ 1, we define the polynomial mapping F k,r(Z`(k,r), Uk, Vk) : F`(k,r)+2k →
F2k

inductively as follows:

1. F 0,r(z1) = z1, and
2. For clarity we use y1, y2, . . . , y2r as aliases for the variables

z`(k,r)+1, z`(k,r)+2, . . . , z`(k,r)+2r, respectively. We take F k+1,r(Z`(k,r), Y2r, Uk+1, Vk+1)
to be equal to the following 2k+1-tuple of polynomials:

Ek+1(uk+1, vk+1) +
[
F k,r(Z`(k,r), Uk, Vk)#F k,r

(
(Z`(k,r), Uk, Vk) + T k,r(Y2r)

)]
,

where T k,r : F2r → F`(k,r)+2k is defined by T k,r(Y2r) =
∑
i∈[r] yi ·Hk,r(yr+i).

From the construction we can see that in order to accommodate for S, |F| should be no less
than max(`(k, r)+2k, 2k). Note that the image of T k,r contains any r-dimensional coordinate
subspace of F`(k,r)+2k. Namely, for i ∈ [r], by choosing yr+i = αj , the corresponding vector
of yiHk,r(yr+i) becomes yiej , where ej is the jth standard basis vector of F`(k,r)+2k. Thus
by choosing different α’s for the yr+i’s, we can form any r-dimensional coordinate subspace
in the image. The term Ek+1 is there to deal with bounded read, e.g. it would not be needed
if we want to have a generator for small width π-oblivious ABPs. Ignoring this term, the
generator mimics the construction of [7]. Intuitively, the dimension expanding properties
of T k,r will yield that the two sides of the generator appear to be behaving “independently
enough”, yielding the desired non-cancelation property.

Jansen, Qiao and Sarma 303

3.1 Properties of the Generator
Let us compute F 1,r to get a sense and for later use. We obtain

F 1,r = E1(u1, v1) + F 0,r(z1)#F 0,r(z1 + (z1+1 + · · ·+ z1+r))
= (u1L

1
1(v1) + z1, u1L

1
2(v1) + z1 + · · ·+ z1+r).

Note that z2+r, . . . , z1+2r are not used in the Lagrange interpolation in the T 0,r part. By a
straightforward induction, one can prove the following bound for the individual degree of a
variable in F k,r.
I Proposition 1. ∀k ≥ 2 and r ≥ 1, the individual degree of any variable in any component
of F k,r is at most

∏
j∈[k−1](`(j, r) + 2j)(`(j, r) + 2j − 1)).

The following theorem shows that the generator F k,r works for the class C of polynomials
computed by read r π-oblivious ABPs, where there is one single fixed order π of the variables
for the entire class C. Wlog. the order is assumed to be x1, x2, A generator for any
other fixed order, is obtained by permuting the components of the output of the generator
in the appropriate way. To make the algebraic geometry go through in the proof, we will
assume that F is algebraically closed. We will remove this requirement subsequently with
Corollary 9.

I Theorem 8. Let F be an algebraically closed field. Let k ≥ 0, and let A be a π-oblivious
ABP of read r ≥ 1 with variable order x1, x2, . . . , x2k . Suppose A computes f , then f ≡
0 ⇐⇒ f(F k,r) ≡ 0.

Proof. The “⇒”-direction is trivial, so it suffices to show that if f 6≡ 0, then f(F k,r) 6≡ 0.
We prove this by induction on k. For k = 0 it is obvious. For k = 1, we know there exists
(a, b) such that f(a, b) 6= 0. Recall F 1,r = (u1L

1
1(v1) + z1, u1L

1
2(v1) + z1 + · · ·+ z1+r). Then

setting c to be the assignment of (Z2r+1, u1, v1) as z1 = a, z2 = b− a and other variables to
0, would give f(F 1,r) = f(a, b) 6= 0. So f(F 1,r) 6≡ 0.

Now let k ≥ 1. For the induction step from k to k+1, we need to prove that F k+1,r works
for an oblivious read r ABP polynomial f with variables x1, . . . , x2k+1 . We use X as an alias
for x2k , and Λ as an alias for α2k . Let g = ∂f/∂X, and note that f = g ·X + f |X=0, since
f is multilinear. Wlog. we can assume that f depends on X. Namely, since f is multilinear,
if f does not depend on any variable, i.e. ∀i, ∂f/∂xi ≡ 0, then f ∈ F (even if char(F) > 0).
Clearly the theorem holds in this case. Otherwise, the rest of the proof goes through mutatis
mutandis by selecting X to be the median variable (w.r.t. the variable order x1, x2, . . .) of
variables that f depends on. Thus g 6≡ 0. We claim that the following holds:
I Claim 1. h := g(F k+1,r) |vk+1=Λ 6≡ 0

Before proving Claim 1, let us show that this is sufficient to complete the proof of
Theorem 8. We will prove Claim 1 in the next subsection. Consider f(F k+1,r) |vk+1=Λ. It is
equal to the following:

h ·
(
F k+1,r

2k |vk+1=Λ

)
+
(
(f |X=0)(F k+1,r)

)
|vk+1=Λ =

h ·
(
(Ek+1

2k + P (Z`(k,r), Uk, Vk)) |vk+1=Λ
)

+
(
(f |X=0)(F k+1,r)

)
|vk+1=Λ =

h · (uk+1 + P (Z`(k,r), Uk, Vk)) +
(
(f |X=0)(F k+1,r)

)
|vk+1=Λ,

for some polynomial P in variables (Z`(k,r), Uk, Vk). Observe that
(
(f |X=0)(F k+1,r)

)
|vk+1=Λ

does not contain the variable uk+1. The same holds for P (Z`(k,r), Uk, Vk)). Hence h · uk+1
cannot be canceled, and therefore f(F k+1,r) |vk+1=Λ 6≡ 0. This implies f(F k+1,r) 6≡ 0. J

FSTTCS 2010

304 Deterministic Black-Box Identity Testing π-Ordered Algebraic Branching Programs

I Corollary 9. Let F be any field. Let k ≥ 0, and let A be a π-oblivious ABP over F of read r ≥
1 with variable order x1, x2, .., x2k . Suppose A computes the polynomial f ∈ F[x1, x2, .., x2k].
Then in the construction of F k,r selecting any set S of size max(`(k, r) + 2k, 2k) contained
in F (or an arbitrary field extension G of F, if F is not large enough) yields that f ≡ 0 ⇐⇒
f(F k,r) ≡ 0,

Proof. First consider the case when char(F) = 0. In this case we take S = {0, 1, 2, . . . }. Let
F be the algebraic closure of F. Interpreting A as an ABP over F̄, we can apply Theorem 8
to conclude f ≡ 0 ⇐⇒ f(F k,r) ≡ 0. All coefficients of F k,r are rational numbers and thus
lie inside F. Hence the property f ≡ 0 ⇐⇒ f(F k,r) ≡ 0 also holds when considering we
work over F.

In case char(F) > 0, if |F| is not large enough, by allowing ourselves to use elements from
the extension G, we can still get the required S. Then similarly as above, by considering
the algebraic closure of G and applying Theorem 8, the required generator property follows,
considering one works over G. J

3.2 Proof of Claim 1
Let F ′k+1,r = F k+1,r − Ek+1. Note that since f is multilinear, g does not depend on X.
Hence g(F k+1,r) |vk+1=Λ= g(F ′k+1,r). We will show that g(F ′k+1,r) 6≡ 0. We have that

F ′k+1,r = F k,r(Z`(k,r), Uk, Vk)#F k,r
(
(Z`(k,r), Uk, Vk) + T k,r(Y2r)

)
.

Again we will use y1, y2, . . . , y2r as alias for the variables z`(k,r)+1, z`(k,r)+2, . . . , z`(k,r)+2r,
respectively. Corollary 7 gives us that we can write g =

∑
i∈[r′] piqi, for some r′ ≤ r, where

1. {p1, p2, . . . , pr′} ⊆ F[x1, x2, . . . , x2k−1] and {q1, q2, . . . , qr′} ⊆ F[x2k+1, x2k+2, . . . , x2k+1]
are both independent sets of polynomials.

2. ∀a ∈ Fr
′
,
∑
i∈[r′] aipi can be computed by an oblivious ABP of read r with variable order

x1, x2, .., x2k−1.
3. ∀a ∈ Fr

′
,
∑
i∈[r′] aiqi can be computed by an oblivious ABP of read r with variable order

x2k+1, x2k+2, . . . , x2k+1 .
For any a ∈ Fr

′
with a 6= 0,

∑
i∈[r′] aipi 6≡ 0, and this sum can be computed by an

oblivious ABP of read r with variable order x1, x2, .., x2k−1. Hence by induction hypothesis∑
i∈[r′] aipi(F k,r) 6≡ 0. Let p̂i = pi(F k,r(z1, . . . , z`(k,r), Uk, Vk)). The above shows that P :=

{p̂1, p̂2, . . . , p̂r′} is an independent set of polynomials. Let q̂i = qi(F k,r(z1, . . . , z`(k,r), Uk, Vk)).
Similarly we have that Q := {q̂1, q̂2, . . . , q̂r′} is an independent set of polynomials.

Since p̂1 + p̂2 + . . .+ p̂r′ 6≡ 0, there exists input c ∈ F`(k,r)+2k so that if we let ai = p̂i(c),
then a = (a1, a2, . . . , ar′) 6= 0. Let V ⊆ F`(k,r)+2k be the algebraic set defined by the system
of equations

{p̂i(z1, . . . , z`(k,r), Uk, Vk) = ai : ∀i ∈ [r′]}

We know this system has a solution namely c. Since F is assumed to be algebraically closed,
by Exercise 1.9 p. 8 in [6], we know that each irreducible component of V has dimension at
least `(k, r) + 2k − r′. Since the system is solvable there must exist at least one irreducible
component, and since r ≥ 1, `(k, r) + 2k − r′ ≥ 3.

Let W ⊆ F`(k,r)+2k be the algebraic set defined by the equation∑
i∈[r′] aiq̂i(z1, . . . , z`(k,r), Uk, Vk) = 0. Since Q is an independent set of polynomials

the l.h.s. of the above equation is a nonzero polynomial. In case the l.h.s. is a non-zero
constant, then we are done. Namely, letting b ∈ F`(k+1,r)+2(k+1) be the assignment where we

Jansen, Qiao and Sarma 305

set (z1, . . . , z`(k,r), Uk, Vk) to c, y1, . . . , yr to 0, and the remaining variables arbitrarily, would
give g(F ′k+1,r)(b) =

∑
i∈[r′] aiq̂i(z1, . . . , z`(k,r), Uk, Vk)(b) 6= 0. Otherwise, we know by Propo-

sition 1.13 in [6], that W is a finite union of hypersurfaces each of dimension `(k, r) + 2k − 1
(these correspond to the irreducible factors of

∑
i∈[r′] aiq̂i(z1, . . . , z`(k,r), Uk, Vk)). We want

to argue that V + Im T cannot be contained in W . Namely, to see the consequence, suppose
we have c′ = c′′ + T (d), for c′′ ∈ V and d ∈ F2r, with c′ 6∈W . Then letting b ∈ F`(k+1,r)+2k

be the assignment where we set (z1, . . . , z`(k,r), Uk, Vk) to c′′ and Y2r := d gives that
g(F ′k+1,r)(b) =

∑
i∈[r′] pi(F k,r(c′′))qi(F k,r(c′′ + T (d))) =

∑
i∈[r′] p̂i(c′′)q̂i(c′′ + T (d)) =∑

i∈[r′] aiq̂i(c′) 6= 0.
We complete the proof by showing that the Zariski-closure of V + Im T has dimension

greater than dimW .
I Claim 2. dimV + Im T = `(k, r) + 2k.

Proof. As remarked upon before, for any r′′ ≤ r, Im T contains any r′′-dimensional co-
ordinate subspace of F`(k,r)+2k. Namely, by setting yr+i = αji

, for all i ∈ [r], where
αj1 , αj2 , . . . , αjr

are distinct elements of S`(k,r)+2k, we obtain
∑
i∈[r] yi · Hk,r(yr+i) =∑

i∈[r] yi ·Hk,r(αji) =
∑
i∈[r] yi · eji , where e1, e2, . . . , e`(k,r)+2k are standard basis vectors

of F`(k,r)+2k. Hence the claim follows from Lemma 4. J
The above claim implies that V + Im T 6⊂ W . By the above remarks, this gives that

g(F ′k+1,r)(b) 6= 0, for some b. This proves Claim 1. J

4 A Black-Box PIT Algorithm for π-OABPs

Algorithm 1 PIT Algorithm for read r π-OABPs.
Input: Black-box access to f ∈ F[x1, x2, . . . , xn] computed by a π-OABP with read r.
Output: returns true iff f ≡ 0.
1: let k be such that 2k−1 < n ≤ 2k.
2: let D =

∏
j∈[k−1](`(j, r) + 2j)(`(j, r) + 2j − 1).

3: let SD+1 be an arbitrary subset of F (or an extension field of F if |F| < D + 1) of size
D + 1.

4: let R = S
`(k,r)+2k
D+1 .

5: compute A = F k,r(R).
6: permute the vectors in A according to π.
7: For every a ∈ A, check whether f(a) = 0.
8: return true if in the previous stage no nonzero was found, false otherwise.

I Theorem 10. Let F be an arbitrary field. Using black-box Algorithm 1 we can check deter-
ministically in time 2O(r log r·log2 n log logn) whether a given polynomial f ∈ F[x1, x2, . . . , xn]
computed by a read r π-OABP is identically zero or not. If char(F) > 0, the algorithm is
granted black-box access to extension fields of F.

Proof. By Lemma 3, we can assume wlog. that f is computed by a read r π-oblivious
ABP. By Theorem 8, we see that f ≡ 0 ⇔ f(F k,r) ≡ 0. By Proposition 1, the individual
degree of variables of f(F k,r) can be bounded by D =

∏
j∈[k−1](`(j, r) + 2j)(`(j, r) + 2j − 1).

Correctness now follows from Lemma 5. Bounding D by (2rk + 2k)2k, and knowing that
the number of variables of f(Gk,r) is 2rk + 2k + 1, the theorem follows by straightforward
arithmetic.

FSTTCS 2010

306 Deterministic Black-Box Identity Testing π-Ordered Algebraic Branching Programs

We remark that the hitting set A, will be constructed over an extension field of F if
|F| < max(`(k, r) + 2k, 2k) or |F| < D+ 1. In the former case, it is because of having enough
interpolation points to define the generator. In the latter case it is in order to apply Lemma 5,
as was done in the above. To work over the extension field the algorithm by Shoup [18] can
be used to obtain an irreducible polynomial of degree d over F in time poly(d). For us, it
suffices for the degree of this polynomial to be bounded by O(logn log r + logn log logn).
Field operations in the extension field then take time poly(logn, log r), assuming a unit cost
model for operations in F. The cost of constructing A this way, can easily be seen to be
subsumed by the time bound given in the theorem. J

The above implies that read polylog(n) π-OABPs can be tested in DTIME[2O(polylog(n))].

5 Separation Results and Lower Bounds for OABPs

Omitted proofs in this section will appear in the full version of the paper.

I Theorem 11. Any OABP computing the permanent or determinant of an n× n matrix of
variables has size Ω(2n/n) and read Ω(2n/n2).

By extending the construction in [15], we can prove the following theorem:

I Theorem 12. Let X = {xi}i∈[2n+1] and W = {wi,j,k}i,j,k∈[2n+1] be sets of variables. We
can construct an explicit polynomial p ∈ F[X,W] such that any OABP A over variables
X ∪ W using constants from F computing p requires some variable to be read at least 2n
times.

We can also reinterpret the above result to be giving a stronger lower bound (seen as a
function of the number of variables), but for a polynomial which uses O(n3) transcendental
constants in its definition.

I Corollary 13. For any field F, and any extension field G of F of transcendence degree at
least (2n + 1)3, there exists an explicit polynomial p ∈ G[x1, x2, . . . , x2n+1], such that any
OABP over G computing p requires some variable to be read at least 2n times.

Consider the elementary symmetric polynomial Skn =
∑
S⊂[n],|S|=k

∏
i∈S xi.

I Theorem 14. Skn can not be computed by an Rk−1-OABP, for n ≥ 2k − 1, k ≥ 2.

I Theorem 15. Skn can be computed by an Rk-OABP of size O(kn), for n ≥ k ≥ 1.

The following theorem shows that under different permutations π and π′, the gap between
the number of reads for the models π-OABP and π′-OABP can be exponentially large.

I Theorem 16. Given X = {x0, x1, . . . , x2n−1, x2n}, n ≥ 1, there exists a polynomial p on
X, and two permutations π and π′ on X, such that 1) There exists a read-once π-OABP
computing p, and 2) Any π′-OABP computing p requires read 2n.

References
1 M. Agrawal. Proving lower bounds via pseudo-random generators. In Proc. 25th An-

nual Conference on Foundations of Software Technology and Theoretical Computer Science,
pages 92–105, 2005.

2 M. Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In Proc. 49th
FOCS, pages 67–75, 2008.

Jansen, Qiao and Sarma 307

3 N. Alon. Combinatorial nullstellensatz. Combinatorics, Probability and Computing, 8(1–
2):7–29, 1999.

4 R.E. Bryant. On the complexity of vlsi implementations and graph representations of
boolean functions with application to integer multiplication. IEEE Trans. Computers,
40(2):205–213, 1991.

5 D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms, Second Edition. Un-
dergraduate Texts in Mathematics. Springer Verlag, 1996.

6 R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics, Vol 52. Springer
Verlag, 1977.

7 R. Impagliazzo, N. Nisan, and A. Wigderson. Pseudorandomness for network algorithms.
In Proc. 26th STOC, pages 356–364, 1994.

8 M. Jansen. Lower bounds for syntactically multilinear algebraic branching programs. In
Proc. 33rd MFCS, volume 5162 of Lect. Notes in Comp. Sci., pages 407–418, 2008.

9 M. Jansen. Weakening assumptions for deterministic subexponential time non-singular
matrix completion. In 27th STACS, volume 5 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 465–476, 2010.

10 M. Jansen, Y. Qiao, and J. Sarma M.N. Deterministic identity testing of read-once algebraic
branching programs, 2009. http://arxiv.org/abs/0912.2565.

11 V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity testing means proving
circuit lower bounds. Computational Complexity, 13(1–2):1–44, 2004.

12 N. Nisan. Lower bounds for non-commutative computation: extended abstract. In Proc.
23rd Annual ACM STOC, pages 410–418, 1991.

13 R. Raz. Multilinear formulas for permanent and determinant are of super-polynomial size.
J. Assn. Comp. Mach., 56(2):1–17, 2009.

14 R. Raz and A. Shpilka. Deterministic polynomial identity testing in non commutative
models. Computational Complexity, 14(1):1–19, 2005.

15 R. Raz and A. Yehudayoff. Balancing syntactically multilinear arithmetical circuits. Com-
putational Complexity, 17(4):515–535, 2008.

16 N. Saxena. Progress of polynomial identity testing. Technical Report ECCC TR09-101,
Electronic Colloquium in Computational Complexity, 2009.

17 J.T. Schwartz. Fast probabilistic algorithms for polynomial identities. J. Assn. Comp.
Mach., 27:701–717, 1980.

18 V. Shoup. New algorithms for finding irreducible polynomials over finite fields. In Proc.
29th FOCS, pages 283–290, 1988.

19 A. Shpilka and I. Volkovich. Improved polynomial identity testing of read-once formu-
las. In Approximation, Randomization and Combinatorial Optimization. Algorithms and
Techniques, volume 5687 of LNCS, pages 700–713, 2009.

20 S. Toda. Classes of arithmetic circuits capturing the complexity of computing the determi-
nant. IEICE Trans. Inf. Syst., E75-D:116–124, 1992.

21 L. Valiant. Completeness classes in algebra. Technical Report CSR-40-79, Dept. of Com-
puter Science, University of Edinburgh, April 1979.

22 R. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the Interna-
tional Symposium on Symbolic and Algebraic Manipulation (EUROSAM ’79), volume 72
of Lect. Notes in Comp. Sci., pages 216–226. Springer Verlag, 1979.

FSTTCS 2010

Computing Rational Radical Sums in Uniform TC0

Paul Hunter1, Patricia Bouyer2, Nicolas Markey2, Joël Ouaknine1,
and James Worrell1

1 Oxford University Computing Laboratory, UK
{paul.hunter,joel.ouaknine,james.worrell}@comlab.ox.ac.uk

2 Lab. Spécification et Vérification, CNRS & ENS Cachan, France
{bouyer,markey}@lsv.ens-cachan.fr

Abstract
A fundamental problem in numerical computation and computational geometry is to determine
the sign of arithmetic expressions in radicals. Here we consider the simpler problem of deciding
whether

∑m
i=1 CiA

Xi

i is zero for given rational numbers Ai, Ci, Xi. It has been known for
almost twenty years that this can be decided in polynomial time [2]. In this paper we improve
this result by showing membership in uniform TC0. This requires several significant departures
from Blömer’s polynomial-time algorithm as the latter crucially relies on primitives, such as gcd
computation and binary search, that are not known to be in TC0.

Keywords and phrases Sum of square roots, Threshold circuits, Complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.308

1 Introduction

The SqrtSum problem is as follows: given integers a1, . . . , an, b1, . . . , bm, is it the case
that

∑n
i=1
√
ai −

∑m
i=1
√
bi > 0? This problem naturally arises in computational geometry

whenever one needs to compare the length of two paths, as in the Euclidean Travelling
Salesman Problem [8, 14] for example.

SqrtSum can be solved in polynomial time on a unit-cost RAM, i.e., counting only the
number of algebraic operations [18]: one simply uses numerical methods to compute each
root to a sufficient degree of accuracy. However the problem is not known to be in P when
one accounts for the bit complexity of arithmetic operations. Hence certain ostensibly simple
problems in computational geometry, such as computing minimal spanning trees, are not
known to be in P. Moreover since SqrtSum is not even known to be in NP it is also not
known whether the Euclidean Travelling Salesman problem is in NP.

The difficulty in solving SqrtSum hinges on the fact that the best root separation bounds
to hand require that one compute a super-polynomial number of bits of the expression∑n
i=1
√
ai −

∑m
i=1
√
bi to determine its sign. The question of determining optimal separation

bounds was posed at least as far back as [13]. More recent work on the problem includes [15,
16, 3, 5]; also [12] presents a conjecture that would imply P-membership of SqrtSum.

SqrtSum has found applications in numerical decision problems outside the area of
computational geometry. For instance, it has recently been used as a complexity lower bound
for several problems related to recursive probabilistic systems. Etessami and Yannakakis [7]
show that SqrtSum is reducible in polynomial time to the problem of determining whether
a stochastic context-free grammar produces a terminal string with probability greater than
a given threshold. This latter problem is in turn equivalent to the reachability problem
for a certain subclass of probabilistic pushdown automata [7]. In another paper Etessami
and Yannakakis [6] consider a range of algorithmic problems in game theory and economics,

© Patricia Bouyer, Paul Hunter, Nicolas Markey, Joël Ouaknine, James Worrell;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 308–316

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.308
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Hunter, Bouyer, Markey, Ouaknine, Worrell 309

several of which are shown to be as hard as SqrtSum. For example, SqrtSum can be
reduced to various decision problems concerning Nash Equilibria and the value of Shapley
stochastic games.

Since the decision problem for the existential fragment of the first-order theory of real-
closed fields is known to be in Pspace [4], it is straightforward that SqrtSum is also in
Pspace. A more general problem than SqrtSum is the problem PosSLP of determining
whether an arithmetic circuit over the basis {+,−, ∗} evaluates to a positive integer. PosSLP
was shown to lie in the 4th level of the counting hierarchy [1]. To the best of our knowledge
this result also yields the best upper bound for SqrtSum.

The subject of this paper involves upper bounds for the easier problem SqrtSumEQ:
given integers a1, . . . , an, b1, . . . bm, does

∑n
i=1
√
ai −

∑m
i=1
√
bi = 0? This problem is also of

key importance in numerical analysis and exact geometric computation, as discussed in [20].
SqrtSumEQ is apparently more tractable than SqrtSum; a polynomial-time decision
procedure has been given by Blömer [2]. In fact [2] gives a polynomial-time algorithm for a
more general problem in which one considers arbitrary integer roots rather than just square
roots, and with arbitrary rational coefficients in front of the radicals (i.e., not just 1 or −1 as
in SqrtSumEQ).

In this paper we consider a further generalisation of SqrtSumEQ, where we allow any
rational exponent (less than 1) rather than exponents of the form 1

N for N a positive integer.
In particular, we are interested in the following problem:

RadicalSumEQ
Instance: Rational numbers Ci, Ai, Xi for 1 ≤ i ≤ m with Ai > 0 and

0 ≤ Xi ≤ 1
Problem: Does

∑m

i=1 CiA
Xi
i = 0?

Our main result is that RadicalSumEQ has very low complexity within P, and can be
solved with fixed-depth circuits consisting of AND, OR, and threshold gates of unbounded
fan-in:

I Theorem 1. RadicalSumEQ ∈ uniform TC0.

The notion of uniformity referred to above is DLogtime-uniformity, which is the strongest
uniformity requirement that is generally applicable.

Our TC0 procedure adapts Blömer’s polynomial-time algorithm for comparing radical
expressions [2] and exploits the fact that division and iterated multiplication are in uniform
TC0; see [9, 10]. However we depart from [2] in several critical respects. Firstly [2] only
considers the case of exponents of the form 1

N . Whilst AM
N can be rewritten as (AM) 1

N ,
the rational AM cannot in general be explicitly computed in polynomial time and it is
not clear how to apply Blömer’s algorithm without doing so. Secondly at various points
Blömer’s algorithm requires the computation of the greatest common divisor of two numbers
(specifically, denominators in the exponents) and binary search (to find integer d-th roots), two
techniques not known to be in TC0: indeed it is an open problem whether gcd computation
is even in NC1 [11].

One of the consequences of our work is that, unless TC0 = P, SqrtSumEQ has strictly
lower complexity than EqSLP, the problem of determining whether an arithmetic circuit
over the basis {+,−, ∗} evaluates to zero or not. Indeed, the latter is easily seen to be P-hard,
by reduction from the circuit value problem. In contrast, it is still open whether SqrtSum
has the same complexity as PosSLP or not.

The paper is organised as follows. In Section 2 we recall the definitions and notation we
use throughout the paper. In Section 3 we present two procedures necessary for our main

FSTTCS 2010

310 Computing Rational Radical Sums in Uniform TC0

algorithm. The first of these procedures is a restatement of a known result but presented in
a form suitable for our needs. The second shows how to compute the ratio of two radicals
in uniform TC0, a result which we believe to be of independent interest. In Section 4 we
present our main algorithm for deciding RadicalSumEQ, and in Section 5 we discuss further
extensions of the problem.

2 Preliminaries

Throughout this paper we assume familiarity with standard notions of circuit complexity; an
excellent reference on the subject is [19].

Recall that a circuit family {Cn} is DLogtime-uniform if there is a deterministic Turing
machine that, given n and the name of a gate g, can determine g’s label and neighbours in
time O(logn).

In the sequel we always use n to represent the input size. In particular, we assume
integers provided as part of the input to have absolute value bounded above by 2n, and for
there to be at most n terms in the sum (that is, m ≤ n). This means the actual input size
is O(n2), however this does not affect the overall result as the class TC0 is closed under
polynomial changes in input size. As is customary in this area of circuit complexity, we call
nO(1)-bit numbers large and denote them with uppercase letters, and we say (logn)O(1)-bit
numbers are small and use lowercase letters to represent them.

We assume rational numbers are represented as ratios of two (not necessarily co-prime)
integers. Whilst we do not require the rational numbers to be in reduced form, we use the
fact that the size required to represent a rational number is bounded below by the size of its
reduced form. For A ∈ Q, we define ||A|| := |M ·N | where M

N = A and gcd(M,N) = 1. The
height of A is defined as ht(A) := 1 + log ||A||. It is clear that ||A|| = min |M ·N | where the
minimum is taken over all representations of A as M

N , thus the height of A provides a lower
bound on the number of bits required to represent A.

The following properties of ||·|| will prove useful:

I Lemma 2. For A,B ∈ Q and X,Y ∈ R:
1. If AX ∈ Q then

∣∣∣∣AX ∣∣∣∣ = ||A|||X|, in particular
∣∣∣∣ 1
A

∣∣∣∣ = ||A||.
2. If AX ·BY ∈ Q then

∣∣∣∣AX ·BY ∣∣∣∣ ≤ ||A|||X| · ||B|||Y |.
Proof. For the first result, consider first X ≥ 0. Let A = M

N where gcd(M,N) = 1. Clearly,∣∣∣∣AX ∣∣∣∣ = |MX ·NX | = |M ·N |X = ||A||X . To extend the result to X < 0 we observe from
the symmetry of the definition of ||·|| that ||A|| =

∣∣∣∣A−1
∣∣∣∣. Hence

∣∣∣∣AX ∣∣∣∣ =
∣∣∣∣(A−1)|X|

∣∣∣∣ =∣∣∣∣A−1
∣∣∣∣|X| = ||A|||X|.

For the second result, we observe that for A = 0 the result holds trivially and for A = 1
the result follows from the first part of the proof. So assume A 6= 0, 1 and let c = logB

logA . Since
Ac = B, it follows from the above result that ||A|||c| = ||Ac|| = ||B||. Therefore,∣∣∣∣AX ·BY ∣∣∣∣ =

∣∣∣∣AX+cY
∣∣∣∣

= ||A|||X+cY | (from the first result)
≤ ||A|||X|+|c|·|Y | (by the triangle inequality)
= ||A|||X| · ||B|||Y | as required.

J

We will make use of some standard parallel algorithms and techniques known to be
computable in uniform TC0, notably:

Hunter, Bouyer, Markey, Ouaknine, Worrell 311

Existential guessing between nO(1) choices (in particular, guessing small integers),
Universal (parallel) computation amongst nO(1) choices,
Addition (and subtraction) of n n-bit numbers, and
Iterated multiplication of n n-bit numbers and integer division of two n-bit numbers [9].

For ease of reference, in each term CiA
Xi
i , Ci is the coefficient, Ai is the base, Xi is the

exponent and AXi
i is the radical (even though it may be rational).

3 TC0 Tools

In this section we present two TC0-procedures necessary for our algorithm. The first of
these concerns determining whether an integer root of a given rational is itself rational,
and if so, computing the root. The result follows from observations in [10] and [17] that
functions given by a convergent power series, in particular A 1

k , can be approximated using
iterated multiplication. We present it here in a form appropriate for our needs: computing
the value if it is rational or failing if it is not rational. The algorithm uses the power series
approximation to compute an approximant to sufficiently high accuracy and then tests if this
estimation is the true value of the root by exponentiation. As we are dealing with rationals,
it initially appears that some care is needed in extracting the approximant. However, as
ht(A 1

k) ≤ ht(A), if A 1
k is rational, its binary expansion will repeat after O(ht(A)) bits. Thus

to find an approximant it suffices to compute polynomially many bits to find the period of
its binary expansion and then compute the rational using standard techniques. The situation
appears clearer in the case of the integers: after sufficiently many computed bits we truncate
our approximation and consider the integers around the value computed; but this is simply
the rational case shifted by a factor of 2O(n). Nevertheless, as the technique for extracting the
approximant in the integer case is simpler, we adopt this procedure (see Lemma 3) for root
computation and extend it to rationals (in Algorithm 2) by rationalising the denominator.

I Lemma 3. Let a be a (logn)-bit positive integer and B be an n-bit positive integer. There
exists a uniform TC0-algorithm which computes a

√
B if it is an integer or fails if it is not an

integer.

Proof. As mentioned above, the idea of the algorithm (presented in Algorithm 1) is to
compute an integer approximation (technically three approximations) to a

√
B and then check

if the a-th power of the approximant is equal to B. The steps which are not clearly in uniform
TC0 are the computation of the first n bits of a

√
B, and the evaluation of the antecedent in

the if statement. Membership of TC0 for the computation of R follows from the result of [10]
(Corollary 6.5) that polynomially many bits of X 1

k can be computed in uniform TC0. For
the antecedent, iterated multiplication can be used to compute R̂a, (R̂+ 1)a, and (R̂− 1)a
in uniform TC0. To show correctness, we observe that as a ≥ 1, ht(a

√
B) ≤ ht(B), and so

a
√
B requires at most n bits if it is an integer. Thus |R̂ − a

√
B| ≤ 1, and the only possible

integral values for a
√
B are R̂− 1, R̂, or R̂+ 1. J

Although our final algorithm does not require the computation of large roots, the extension
is trivial as a consequence of the following observation.

I Lemma 4. Let A ∈ Z, B ∈ Q, A,B > 0, B 6= 1. If A
√
B ∈ Q then A < ht(B).

Proof. Let B = M
N where gcd(M,N) = 1. As B 6= 1 there exists a prime p such that p|M

or p|N . Assume without loss of generality p|M . As A
√
B =

A√
M

A√
N

is rational we have pA|M .
As M < 2ht(B) and p ≥ 2, it follows that A < ht(B). J

FSTTCS 2010

312 Computing Rational Radical Sums in Uniform TC0

Algorithm 1 Computing integer roots
Input: n, a,B ∈ Z, 0 < a < n, 0 ≤ B < 2n
Returns: a

√
B or Fail if a

√
B /∈ Z.

Compute R, the first n bits of a
√
B

Let R̂ = bRc
if (R̂− 1)a = B or R̂a = B or (R̂+ 1)a = B then
return (R̂− 1), R̂, or (R̂+ 1) as appropriate

else
return Fail

end if

Our algorithm for computing roots of rationals is presented in Algorithm 2.

I Proposition 5. For A ∈ Z, B ∈ Q, A,B > 0 there exists a uniform TC0-algorithm which
computes A

√
B if it is rational or fails if it is irrational.

Algorithm 2 Computing rational roots
Input: A ∈ Z, B = M

N ∈ Q, A,B > 0
Returns: A

√
B or Fail if A

√
B /∈ Q.

if B = 1 then
return 1

else if A ≥ ht(B) then
return Fail

else
Compute C = A

√
M ·NA−1

if C /∈ Z then
return Fail

end if
return C

N

end if

The second algorithm of this section, presented in Algorithm 3, overcomes the difficulties
with Blömer’s procedure for computing the ratio of two radicals.

The core of the correctness of Algorithm 3 is presented in the following lemma; if the
ratio of two radicals is rational then one of two cases occurs, either the bases are powers of
some common base, or the exponents have low height relative to their value. It is this case
split that forms the basis of our algorithm: in the first case we can existentially guess the
powers of the common base, and in the second we can guess reduced forms for X and Y and
apply the algorithm of Blömer.

I Lemma 6. For A,B,X, Y ∈ Q>0 if A
X

BY ∈ Q then either:
There exists Q ∈ Q and α, β ∈ Z with αX − βY ∈ Z such that A = Qα and B = Qβ, or
||X|| < 4ht(A)ht(B)2(X·ht(A) + Y ·ht(B)) and
||Y || < 4ht(A)2ht(B)(X·ht(A) + Y ·ht(B)).

Proof. Suppose AX

BY = M ∈ Q. From Lemma 2 we observe that ||M || =
∣∣∣∣∣∣AX

BY

∣∣∣∣∣∣ ≤ ||A||X ||B||Y ,
so ht(M) < X·ht(A) + Y ·ht(B). Let A =

∏
pai
i , B =

∏
pbi
i and M =

∏
pmi
i where for all i,

pi is prime and ai, bi,mi ∈ Z. We observe that |ai| < ht(A), |bi| < ht(B) and |mi| < ht(M).

Hunter, Bouyer, Markey, Ouaknine, Worrell 313

Algorithm 3 Computing rational radical ratios
Input: A,B,X, Y ∈ Q, A,B > 0, X,Y ∈ [0, 1]
Returns: AX

BY or Fail if A
X

BY /∈ Q
Let n = max{ht(A),ht(B),ht(X),ht(Y)}
Existentially guess non-negative integers a, b < n

if aX − bY ∈ Z and Q = a
√
A = b

√
B ∈ Q† then

return QaX−bY

end if
Existentially guess non-negative integers x, x′, y, y′ < 8n4

if X = x
x′ and Y = y

y′ then
Let z = gcd(x′, y′), x′′ = x′

z , and y
′′ = y′

z

Let RA = x′′√
Ax and RB = y′′√

By

if RA ∈ Q and RB ∈ Q and R = z

√
RA

RB
∈ Q then

return R

end if
end if
return Fail

† We allow the equality to hold here if a = 0 and A = 1 or if b = 0 and B = 1, setting Q = 1 if a = b = 0
and A = B = 1.

Consider the (integral) vectors a = (ai), b = (bi), and m = (mi). By equating prime powers
we have

aX = m + bY · (∗)

We consider two cases.
Case 1: a and b are linearly dependent (over Q). In this case, there exist integers k and

l (not necessarily co-prime) and an integral vector q = (qi) such that ai = k · qi, bi = l · qi
and the qi have no common factor. From (∗), m = (kX − lY)q. As m is integral and the
qi have no common factor, it follows that (kX − lY) = c ∈ Z. Setting Q =

∏
pqi

i we have
A = Qk, B = Ql, M = Qc and kX = c+ lY .

Case 2: a and b are linearly independent (over Q). In this case, there exist i 6= j such
that the vectors (ai, aj) and (bi, bj) are linearly independent. It therefore follows that X and
Y satisfying (∗) are unique. Indeed X = bimj−bjmi

biaj−bjai
and Y = aimj−ajmi

biaj−bjai
. Thus

||X|| =
∣∣∣∣∣∣∣∣bimj − bjmi

biaj − bjai

∣∣∣∣∣∣∣∣
≤ ||bimj − bjmi|| · ||biaj − bjai||
= |bimj − bjmi| · |biaj − bjai|
≤ (|bimj |+ |bjmi|)(|biaj |+ |bjai|) (by the triangle inequality)
< (2ht(B)ht(M))(2ht(B)ht(A))
< 4ht(A)ht(B)2(X·ht(A) + Y ·ht(B)),

and likewise ||Y || < 4ht(A)2ht(B)(X·ht(A) + Y ·ht(B)). J

When Case 1 of Lemma 6 holds, it is clear Algorithm 3 correctly computes the ratio AX

BY ;
the bounds on X and Y ensure that QaX−bY can be evaluated with iterated multiplication.
To complete the correctness result we need to show the correctness of the algorithm when

FSTTCS 2010

314 Computing Rational Radical Sums in Uniform TC0

Case 2 of the above lemma occurs. This follows directly from the following result observed
by Blömer [2]:

I Lemma 7. For q1, q2 ∈ Q, d1, d2 ∈ N, the following are equivalent:
d1
√
q1

d2
√
q2
∈ Q

If d = gcd(d1, d2) then
ri = di

√
qdi ∈ Q for i = 1, 2, and

d

√
r1
r2
∈ Q.

It is straightforward to show that Algorithm 3 can be implemented with a uniform TC0

circuit. The non-obvious steps are in the computation of Q, RA, RB and R where we use
Algorithm 2, and the computation of z which can be calculated because x′ and y′ are small1.
Lemmas 6 and 7 establish the correctness of the algorithm, giving us the following:

I Theorem 8. Let A,B,X, Y ∈ Q, with A,B > 0, X,Y ∈ [0, 1]. There exists a uniform
TC0-algorithm which computes the ratio AX

BY if it is rational, or fails if it is irrational.

We note that in Theorem 8 we only need the upper bound on X and Y to compute the
ratio: in the first case of Lemma 6 the bound ensures that QaX−bY is computable using
iterated multiplication, and in the second case the bound ensures that ||X|| and ||Y || are small.
If instead we were provided with the ratio M and simply asked to check if AX = MBY , we
no longer require the bound on X and Y : in the first case aX − bY ≤ ht(M) and in the
second case we can use the bounds obtained in terms of ht(A), ht(B), and ht(M). This gives
us the following additional result:

I Theorem 9. For A,B,M,X, Y ∈ Q≥0, whether AX = MBY can be decided in uniform
TC0.

4 Deciding RadicalSumEQ in TC0

In this section we present our TC0-algorithm for deciding RadicalSumEQ. Critical to our
algorithm is the following result presented in Blömer:

I Lemma 10 (Theorem 4 of [2]). For ρi ∈ Q, di ∈ N, 1 ≤ i ≤ m, the radicals d1
√
ρ1, . . . , dm

√
ρm

are linearly independent over Q if they are pairwise linearly independent.

Clearly this result extends to arbitrary rational exponents, giving the following procedure
(also presented in [2]) for determining if S =

∑m
i=1 CiA

Xi
i = 0. Using Algorithm 3 partition

the terms of S into linearly dependent groups S1, . . . , Sm′ . For convenience let us assume
CiA

Xi
i ∈ Si for 1 ≤ i ≤ m′. Again using Algorithm 3, replace each term in each group by

the rational multiple of some common radical. For example, if CjA
Xj

j ∈ Si, replace it with

CjRijA
Xi
i where Rji = A

Xj
j

A
Xi
i

is computed with Algorithm 3. Then S can be written as

S =
m′∑
i=1

∑
j

CjRji

AXi
i

where j in the inner sum runs over all indices of terms in Si. From the above result, as
AX1

1 , . . . , A
Xm′
m′ are pairwise linearly independent, they form a linearly independent set. Thus

1 Existentially guess z and verify in parallel that it is the greatest of all common divisors of x′ and y′.

Hunter, Bouyer, Markey, Ouaknine, Worrell 315

S = 0 if and only if
∑
j Cj ·Rji = 0 for all i, 1 ≤ i ≤ m′, and this is easily checked. To simplify

the parallelisation of this algorithm, rather than gathering linearly dependent terms under a
common radical, we treat each radical as the common radical, repeating the coefficient check
several times. The full algorithm is specified in Algorithm 4.

Algorithm 4 Deciding RadicalSumEQ
Input: {Ai, Ci, Xi : 1 ≤ i ≤ m} ⊆ Q with Ai > 0 and Xi ∈ [0, 1]
Returns: True if and only if

∑m
i=1 CiA

Xi
i = 0

for all i, j ≤ m do
Let Rij = A

Xi
i

A
Xj
j

if Rij /∈ Q then
Let Rij = 0

end if
end for
for all j ≤ m do
if
∑m
i=1 CiRij 6= 0 then

return False
end if

end for
return True

The only step of Algorithm 4 which is not clearly in uniform TC0 is the computation of
Rij . Theorem 8 establishes its membership in TC0. The correctness of the algorithm follows
from Lemma 10 and the discussion above. Combining these together gives our main result.

I Theorem 1. RadicalSumEQ ∈ uniform TC0.

5 Further Work

It is clear from Lemma 6 that we can extend Algorithm 3 (and hence Algorithm 4) to
exponents bounded (in value) by some polynomial in n. This raises the question of whether
we can remove the upper bound on the exponents completely. Theorem 9 shows that we
can do so in the special case where m = 2. By rewriting AX as AbXc·A{X} where {X}
denotes the fractional part of X, we can absorb the “rational part” AbXc of the radical into
the coefficient, and run our algorithm up to the point where we check if

∑m
i=1 CiRij = 0.

Thus we have reduced the problem to deciding if a given rational-valued point is a root
of a sparse, multivariate polynomial (a natural sub-instance of the unbounded version of
RadicalSumEQ). Whether or not this problem is in TC0, or even in P, is part of ongoing
work.

References
1 Eric Allender, Peter Bürgisser, Johan Kjeldgaard-Pedersen, and Peter Bro Miltersen. On

the complexity of numerical analysis. SIAM J. Comput., 38(5):1987–2006, 2009.
2 Johannes Blömer. Computing sums of radicals in polynomial time. In Proceedings of the

32nd Annual Symposium on Foundations of Computer Science, pages 670–677. IEEE, 1991.
3 C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, and S. Schmitt. A separation bound for

real algebraic expressions. Algorithmica, 55(1):14–28, 2009.

FSTTCS 2010

316 Computing Rational Radical Sums in Uniform TC0

4 John F. Canny. Some algebraic and geometric computations in PSPACE. In Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing, pages 460–467. ACM,
1988.

5 Qi Cheng, Xianmeng Meng, Celi Sun, and Jiazhe Chen. Bounding the sum of square roots
via lattice reduction. Math. Comput. (to appear), 2010.

6 Kousha Etessami and Mihalis Yannakakis. On the complexity of Nash equilibria and other
fixed points (extended abstract). In Proceedings of the 48th Annual IEEE Symposium on
Foundations of Computer Science, pages 113–123. IEEE Computer Society, 2007.

7 Kousha Etessami and Mihalis Yannakakis. Recursive Markov chains, stochastic grammars,
and monotone systems of nonlinear equations. J. ACM, 56(1):1–66, 2009.

8 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

9 William Hesse. Division is in uniform TC0. In Proceedings of the 28th International
Colloquium on Automata, Languages and Programming, volume 2076 of Lecture Notes in
Computer Science, pages 104–114. Springer, 2001.

10 William Hesse, Eric Allender, and David A. Mix Barrington. Uniform constant-depth
threshold circuits for division and iterated multiplication. J. Comput. Syst. Sci., 65:695–
716, 2002.

11 Yu Lin-Kriz and Victor Y. Pan. On parallel complexity of integer linear programming, gcd
and the iterated mod function. In Proceedings of the Third Annual Symposium on Discrete
Algorithms, pages 124–137. ACM/SIAM, 1992.

12 Gregorio Malajovich. An effective version of Kronecker’s theorem on simultaneous Dio-
phantine approximation. Preprint, 2001.

13 Joseph O’Rourke. Advanced problem 6369. Amer. Math. Monthly, 88(10):769, 1981.
14 Christos H. Papadimitriou. The Euclidean traveling salesman problem is NP-complete.

Theor. Comput. Sci., 4(3):237–244, 1977.
15 Sylvain Pion and Chee Yap. Constructive root bound method for k-ary rational input

numbers. Theor. Comput. Sci., 369(1-3):361–376, 2006.
16 Jianbo Qian and Cao An Wang. How much precision is needed to compare two sums of

square roots of integers? Inf. Process. Lett., 100(5):194–198, 2006.
17 John H. Reif and Stephen R. Tait. On threshold circuits and polynomial computation.

SIAM J. of Comput., 21:896–908, 1992.
18 Prasoon Tiwari. A problem that is easier to solve on the unit-cost algebraic RAM. J.

Complexity, 8(4):393–397, 1992.
19 Heribert Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer,

1999.
20 Chee K. Yap. Robust geometric computation. In Jacob E. Goodman and Joseph O’Rourke,

editors, Handbook of Discrete and Computational Geometry, chapter 41, pages 927–952.
Chapman & Hall/CRC, 2nd edition, 2004.

Graph Isomorphism is not AC0 reducible to Group
Isomorphism

Arkadev Chattopadhyay1, Jacobo Torán2, and Fabian Wagner2

1 Department of Computer Science,

University of Toronto, ON M5S 3G4 Canada

arkadev@cs.toronto.edu

2 Institut für Theoretische Informatik, Universität Ulm, 89069 Ulm, Germany

{jacobo.toran, fabian.wagner}@uni-ulm.de

Abstract

We give a new upper bound for the Group and Quasigroup Isomorphism problems when the

input structures are given explicitly by multiplication tables. We show that these problems can

be computed by polynomial size nondeterministic circuits of unbounded fan-in with O(log logn)
depth and O(log2 n) nondeterministic bits, where n is the number of group elements. This

improves the existing upper bound from [Wol94] for the problems. In the previous upper

bound the circuits have bounded fan-in but depth O(log2 n) and also O(log2 n) nondeterministic

bits. We then prove that the kind of circuits from our upper bound cannot compute the

Parity function. Since Parity is AC0 reducible to Graph Isomorphism, this implies that Graph

Isomorphism is strictly harder than Group or Quasigroup Isomorphism under the ordering

defined by AC0 reductions.

Keywords and phrases Complexity, Algorithms, Group Isomorphism Problem, Circuit Com-

plexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.317

1 Introduction.

The input of the Group Isomorphism problem GroupIso consists of two groups G1 and G2 of

order n given by multiplication tables (n× n matrices of integers between 1 and n) and it is

asked whether the groups are isomorphic, that is, whether there is a bijection ϕ between

the elements of both groups satisfying for every pair of elements i, j, ϕ(ij) = ϕ(i)ϕ(j) (for

convenience, we represent in both groups the group operation by concatenation). A quasigroup

is an algebraic structure (Ω, ·) where the set Ω is closed under a binary operation · that

has the following property: for each pair of elements a, b, there exists unique elements cL
and cR such that cL · a = b and a · cR = b. In contrast to groups, a quasigroup is not

necessarily associative and does not need to have an identity. The Quasigroup Isomorphism

problem QGroupIso is defined as GroupIso but the input structures are multiplication tables

of quasigroups, also called Latin squares. GroupIso is trivially reducible to QGroupIso but a

reduction in the other direction is not known. The complexity of both problems has been

studied for more than three decades. Groups and quasigroups of order n have generator

sets of size bounded by logn. Because of this fact an isomorphism algorithm for GroupIso

or QGroupIso running in time nlogn+O(1) can be obtained by computing a generator set

of size logn in G1, mapping this set in every possible way to a set of elements in G2 and

1 supported by a NSERC postdoctoral fellowship and research grants of Prof. Toniann Pitassi.

© Arkadev Chattopadhyay and Jacobo Torán and Fabian Wagner;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 317–326

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.317
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

318 Graph Isomorphism is not AC0 reducible to Group Isomorphism

checking whether by extending the mapping to all the (quasi)group elements following the

multiplication tables of G1 and G2, an isomorphism is defined. This algorithm is attributed to

Tarjan in [Mil78]. A stronger result showing that GroupIso can be solved in space O(log2 n)
was given in [LSZ76]. The same result for the case of quasigroups was obtained later by Wolf

in [Wol94].

In spite of these facts, no deterministic polynomial time algorithm for these problems is

known although they seem far from being NP-complete1. The status of the problems is similar

to that of the better known Graph Isomorphism problem (GI). It is known that QGroupIso is

AC0 reducible to GI [Mil78], but the second one seems to be a harder problem. In this paper

we prove this intuition by showing without assumptions that an AC0 reduction in the other

direction is not possible. This is done in two steps: first we improve the existing upper bound

for QGroupIso to a class of polynomial size nondeterministic circuits of O(log logn) depth

(Section 3). Then in Section 4 we show that this circuit class cannot compute the Parity

function. It follows that GroupIso and QGroupIso cannot be hard under AC0 reductions for

any class that is powerful enough to compute Parity, like NC1 or L. This contrasts with the

hardness properties of GI [Tor04, Tor10]. It also implies that GI cannot be AC0 reducible to

GroupIso or to QGroupIso .

The upper bound is based on the bounded nondeterminism properties of the problems.

Observe that Tarjan’s algorithm can in fact be converted into a polynomial time nondeter-

ministic procedure for QGroupIso that uses only log2 n nondeterministic bits, by guessing

the mapping from the generator set in G1 to G2 instead of testing all possible 1-1 mappings,

and then extend this partial map to the whole quasigroup. This observation is mentioned

explicitly in [PY96, Wol94]. Papadimitriou and Yannakakis [PY96] show that the quasigroup

isomorphism problem is in β2P, a restricted version of NP, where on input of length n, a

polynomial time bounded Turing machine has access to O(log2 n) non-deterministic bits

(more detail is given in the preliminaries section). In [AT06] some evidence is given in-

dicating that QGroupIso is probably not complete for β2P. Wolf [Wol94] improved the

nondeterministic complexity of the problem by showing that QGroupIso ∈ β2NC2 the class

of problems computed by NC2 circuits having additionally O(log2 n) non-deterministic bits

on inputs of size n. As in the β2P upper bound, the circuit can guess the generators of both

quasigroups as well as a bijection between both generator sets. Wolf shows that checking

whether this partial bijection can be extended to an isomorphism, can be done by an NC2

circuit. We improve this upper bound to β2FOLL, the class of problems computable by

(uniform) families of polynomial size unbounded fan-in circuits with O(log logn) depth and

O(log2 n) nondeterministic bits, where n is the number of quasigroup elements. The proof

of this result is based on a special kind of generating sequences for the quasigroups called

cube generating sequences. The cube generating sequences provide a representation for the

structures that allow very quick isomorphism tests. Erdős and Rényi showed that groups

have many generating sequences of this kind. We extend in Section 3 their result to the more

general case of quasigroups.

The lower bound for β2FOLL circuits for the Parity function is proved in Section 4,

by first showing that computation by a few non-deterministic bits implies the existence

of a polynomial size deterministic circuit of depth O(log logn) that approximates Parity

non-trivially. The argument is completed by a routine application of the decision-tree version

of the Switching Lemma due to Razborov [Raz93] that rules out such approximations of

Parity.

1 In fact, we show in this paper, GroupIso and QGroupIso are not NP-complete under AC0 reductions.

A. Chattopadhyay and J. Torán and F. Wagner 319

2 Preliminaries

2.1 Quasigroups

Given a set of elements from a quasigroup, a parenthesization specifies the sequence in which

to multiply the elements. A parenthesization can be represented as a binary tree with the

quasigroup elements at the leaves. The depth of a parenthesization is the depth of the

binary tree representing it. For a quasigroup G and a set of elements g1, . . . , gl ∈ Gl and a

parenthesization P we denote by P (g1, . . . , gl) the result of the multiplication of the elements

according to P . For our results we need the following elementary fact.

I Fact 1. Let P be any correct parenthesization for the multiplication of l elements

in G. Then for every i ∈ {1, . . . , l} for every b ∈ G and every fixed choice of el-

ements g1, . . . , gi−1, gi+1, . . . , gl ∈ Gl−1 there is a unique element gi ∈ G such that

P (g1, . . . , gi−1, gi, gi+1, . . . , gl) = b.

Proof. By induction on l. For the base case l = 2 the quasigroup axioms imply the result.

For l > 2 we consider the binary tree representing the parenthesization. We search for a

value of gi such that the equation P (g1, . . . , gi−1, gi, gi+1, . . . , gl) = b holds. The value of one

of the successors of the root is determined by the values of g1, . . . , gi−1, gi+1, . . . , gl. W.l.o.g.

let this be the left successor and denote its multiplication value by c. The value of the other

successor must then be equal to d, the unique element in G with c · d = b. By induction

hypothesis there is a unique value for qi such that the multiplication of the right subtree

equals d. J

2.2 Complexity Classes

For the standard complexity classes used in this paper, like L or the circuit classes ACi or

NCi we refer the reader to the standard books in complexity theory.

The complexity class FOLL, or FO(log logn), was introduced in [BKLM00] in order

to characterize the complexity of the group membership problem. FOLL is the class of

problems solvable by uniform polynomial size circuit families of unbounded fan-in and depth

O(log logn). Since the Parity function is not in FOLL, no problem in FOLL can be complete

under AC0-reductions for any class containing Parity, such as NC1 or L. Currently AC1 is

the best upper bound for FOLL and the class is not known to be contained even in NL.

For a circuit class C, βkC is the class of languages recognized by a (uniform) family

of C circuits with n input bits and O(logk n) nondeterministic bits. We say that such a

nondeterministic circuit accepts a string x if for some choice of the nondeterministic bits

the circuit with input x outputs a one. Classes of bounded nondeterminism have appeared

in different forms in the literature [KF84, DT90, PY96, GLM96]. As we show in this paper,

the circuit setting is well suited to argue about these classes.

3 Nondeterministic Circuit Complexity of QGroupIso

We show in this section that QGroupIso can be solved by a uniform family of nondeterministic

FOLL circuits with O(log2 n) nondeterministic bits: QGroupIso ∈ β2FOLL. This result

improves a series of upper bounds of this kind for the problem: Papadimitriou and Yannakakis

showed in [PY96] that QGroupIso ∈ β2P this was improved to β2NC2 by Wolf [Wol94] and

more recently by Wagner to β2SAC1 [Wag10].

F S T T C S 2 0 1 0

320 Graph Isomorphism is not AC0 reducible to Group Isomorphism

In our proof the nondeterministic bits of the circuits are used in order to guess a special

kind of generator sequence for both quasigroups. We call these generators cube generating

sequences.

I Definition 2. A sequence of group elements g = (g0, g1, . . . , gk) together with a parenthe-

sization P for k elements is a cube generating sequence for quasigroup G if

G = {P (g0, g
ε1
1 , . . . , g

εk

k) | εi ∈ {0, 1}}
The set {P (g0, g

ε1
1 , . . . , g

εk

k) | εi ∈ {0, 1}} is the cube Cube(g, P) generated by the sequence g

and the parenthesization P .

In a cube generating sequence, the generators are given in a fixed order. Erdős and

Renyi [ER65] proved that every group with n elements has cube generating sequences of size

O(logn). As a matter of fact there are many such short sequences. In the case of groups we

do not need to talk about parenthesizations since the operation is associative.

I Theorem 3. [ER65] Let G be a finite group with n elements. For any δ > 0 the probability

that a sequence of group elements of size k ≥ logn+ 2 log 1
δ + log logn+ 5 selected uniformly

at random is a cube generating sequence for G, is > 1− δ.

This result can be adapted to work also for quasigroups. For our purposes a simpler

existential version of the result suffices. However we need to make sure that the multiplications

of the generators can be be performed very fast in parallel and therefore we need a short

cube generating sequence with shallow parenthesization.

I Theorem 4. For a finite quasigroup G with n elements, there exists a cube generating

sequence g for G, together with a parenthesization P such that g has O(logn) elements and P

has depth O(log logn).

Proof. Let G be a quasigroup with n elements and for k > 0 let P be any fixed parenthesiza-

tion of k+ 1 elements. Let g0, . . . , gk be k+ 1 elements chosen in G uniformly at random and

independently of each other. For b ∈ G let Vk(b) be the number of representations of b of the

form b = P (g0, g
ε1
1 , . . . , g

εk

k) with εi ∈ {0, 1}. For succinctness for ε = (ε1, . . . , εk) ∈ {0, 1}k
and g = (g0, . . . , gk) ∈ Gk+1 we represent P (g0, g

ε1
1 , . . . , g

εk

k) by P (gε) (or even gε when the

parenthesization is clear).

For each b ∈ G, Vk(b) is a random variable. We estimate its expectation and its variance.

For a random sequence g = (g0, . . . , gk) ∈ Gk+1 consider the indicator variable

Xε(b) =
{

1 if gε = b

0 otherwise.

For random g, Pr[Xε(b) = 1] = 1
n . This is because Xε(b) = 1 if and only if gε = b and

this is true exactly when g0 is equal to the unique element x ∈ G satisfying the equation

b = P (x, gε1
1 , . . . , g

εk

k) (Fact 1). Since g0 is chosen uniformly at random this probability is 1
n .

It follows:

E[Vk(b)] = E

 ∑
ε∈{0,1}k

Xε(b)

 =
∑

ε∈{0,1}k

E[Xε(b)] = 2k

n
.

For calculating the variance we observe that the random variables Xε(b) are pairwise

independent. For ε 6= ε′ ∈ {0, 1}k and for a random g ∈ Gk+1 and fixed b ∈ G we estimate

the probability Pr[gε = gε
′ = b]. We can suppose there is a position i with εi = 1 and

ε′i = 0. gε
′ = b if and only if g0 is equal to the unique element x ∈ G satisfying the equation

b = P (x, gε
′
1

1 , . . . , g
ε′k
k). If this holds then gε = b if and only if gi is equal to the unique

A. Chattopadhyay and J. Torán and F. Wagner 321

element y ∈ G satisfying b = P (x, gε1
1 , . . . , g

εi−1
i−1 , y, g

εi+1
i+1 , . . . , g

εk

k). Since g0 and gi are chosen

independently, the probability that these two facts hold is then 1
n2 . Now we can estimate

the variance of Vk(b). Since Vk(b) is the sum of pairwise independent random variables its

variance is the sum of the the variances of the summands. Therefore:

V ar[Vk(b)] = V ar

 ∑
ε∈{0,1,}k

Xε(b)

 =
∑

ε∈{0,1}k

V ar[Xε(b)] = 2k
(

1
n
− 1
n2

)
<

2k

n

Let Nk be the number of elements in G not having any representation in the cube

generated by a random sequence g of size k+1. We show next that E[Nk] ≤ n2

2k . For this we

need to estimate the probability that for an element b ∈ G, Vk(b) = 0.

Pr[Vk(b) = 0] ≤ Pr

[∣∣∣∣Vk(b)− 2k

n

∣∣∣∣ ≥ 2k

n

]
≤ Var[Vk(b)]n2

22k <
n

2k

The second step follows by Chebyshev’s inequality. We can now estimate the expectation

for Nk.

E[Nk] =
∑
b∈G

Pr[Vk(b) = 0] ≤ n2

2k .

Considering k = d2 logne + 1 we have E[Nk] < 1, which means that there must be a

sequence g of size k + 1 that represents all the elements in G. Since this works for any

parenthesization we can fix P to be a balanced binary tree with k + 1 leaves and therefore

depth O(log logn).
J

Observe that for a quasigroup G, a fixed k and a fixed parenthesization P , the family of

functions obtained by choosing a sequence g of k + 1 elements in G uniformly at random

and mapping ε ∈ {0, 1}k to gε ∈ G (with parenthesization P) is in fact a 2-universal family

of hash functions. As it can be seen in our previous proof, the argument does not need

fully independence while choosing the elements in G, but just pairwise independence. As

a consequence it is possible to obtain small cube generating sets for G deterministically.

However this would not bring any advantage to our nondeterministic algorithm, since

O(log2 n) nondeterministic bits are needed to guess the cube generating set of the second

input structure in a way that the isomorphism can be extended to all the elements in the

canonical way.

We can now prove our upper bound for QGroupIso .

I Theorem 5. The Quasigroup Isomorphism problem is in β2FOLL.

Proof. Let G,H be two quasigroups given as multiplication tables let g = (g1, . . . , gk)
and h = (h1, . . . , hk) be generating sequences of the same length, and P be a balanced

parenthesization with G = Cube(g, P) and H = Cube(h, P).
If we can prove that the function that maps gi to hi for i ∈ {1, . . . , k} can be extended

to an isomorphism between G and G′ then clearly both quasigroups are isomorphic. This is

true if and only if for every ε, ε′, ε′′ ∈ {0, 1}k gε = gε
′
gε
′′

if and only if hε = hε
′
hε
′′
. On the

other hand if the quasigroups are not isomorphic, the function mapping gi to hi would not

pass the mentioned isomorphism test.

F S T T C S 2 0 1 0

322 Graph Isomorphism is not AC0 reducible to Group Isomorphism

This is the basis for the upper bound. O(log2 n) nondeterministic bits in the circuit

are used for guessing the cube generating sequences for G and H in the right order. The

isomorphism tests can be done then in the depth of the multiplications which is the depth of

the parenthesization P , that is O(log logn).

input: Quasigroups G,H on elements in {1, . . . , n} given as multiplication tables,

cube generating sequences g = (g0, g1, . . . , gk) for G and h = (h0, h1, . . . , hk) for H with

balanced parenthesization P .

1: { test G = Cube(g, P) and H = Cube(h, P)}
2: for all a, b ∈ {1, . . . , n}
3: for all (ε1, . . . , εk) ∈ {0, 1}k
4: check whether a = g0g

ε1
1 . . . gεk

k and b = h0h
ε1
1 . . . hεk

k

5: if a or b was not generated by any ε then reject and halt.

6: { isomorphism test }
7: for all (ε1, . . . , εk) ∈ {0, 1}k
8: for all (η1, . . . , ηk) ∈ {0, 1}k
9: c← g0g

ε1
1 . . . gεk

k , d← g0g
η1
1 . . . gηk

k

10: c′ ← h0h
ε1
1 . . . hεk

k , d
′ ← h0h

η1
1 . . . hηk

k

11: for all (ν1, . . . , νk) ∈ {0, 1}k
12: if cd = g0g

ν1
1 . . . gνk

k ↔ c′d′ 6= h0h
ν1
1 . . . hνk

k then halt and reject.

13: halt and accept.

Since k ∈ O(logn), the number of performed ε-tests is bounded by a polynomial. Because

of the parenthesization P , every multiplication g = gε1
1 . . . gεk

k can be computed by a sub-circuit

of depth O(log logn) with unbounded fan-in. Each sub-circuit is organized as a pyramid. At

the bottom level it uses the multiplication tables to multiply pairs of elements gεi
i g

εi+1
i+1 . At

the next level it multiplies pairs of results of the previous level, and so on. The depth of the

sub-circuits is bounded by O(log logn) since k ∈ O(logn). J

The upper bound that we get for groups is the same one. For concrete group families it

is possible to get better bounds. We include as example the case of Abelian groups.

On the Complexity of Abelian Group Isomorphism

We consider here the easier case when the input structures are Abelian groups.

Clearly, testing the property whether G is Abelian can be done in AC0 by simply testing

whether a · b = b · a holds for all elements a, b in parallel. The isomorphism test is based on

the following well known fact.

I Fact 6. Two finite Abelian groups G and H with |G| = |H| = n are isomorphic iff the

number of elements of order m in G and H is the same, for all 1 ≤ m ≤ n.

A proof of this fact can be found for example in [Hal59]. The order of an element a is

the smallest integer i ≥ 0 such that ai = e. Hence, an isomorphism test simply computes the

orders for all elements using the power predicate. Barrington et.al. [BKLM00] considered

the complexity of the power predicate on Abelian groups.

I Lemma 7. ([BKLM00]) Let G be a finite group given by its multiplication table. For all

elements a and b in G and all i ≤ n, the predicate b = ai can be computed in FOLL ∩ L.

A. Chattopadhyay and J. Torán and F. Wagner 323

In the isomorphism test, an FOLL circuit computes the order of all group elements. This

is a set of numbers in arbitrary order.

Given two multisets of numbers, the problem of pairwise comparing them is not in AC0,

since the Majority function reduces to this problem. It is known that Sorting, i.e. arranging n

n-bit numbers in ascending order, is in TC0. This suffices for an isomorphism test. When

given two sorted multisets of numbers, say e1 ≤ · · · ≤ en and e′1 ≤ · · · ≤ e′n, it can be tested

in AC0 whether they coincide. We conclude:

I Theorem 8. The Abelian Cayley-group isomorphism problem is in TC0(FOLL), and in L.

4 Computing Parity by Shallow Circuits with Limited
Non-Determinism

We prove in this section that FOLL circuits (in fact polynomial size circuits of depth

O
(
(log logn)k

)
) cannot compute the Parity function even with the help of poly-logarithmic

many nondeterministic bits.

I Theorem 9. Let C be a circuit of polynomial size and depth O
(
(log logn)k

)
, with access

to O
(
(logn)`

)
-many non-deterministic bits, where k, ` are arbitrary constant numbers. Then

C cannot compute the Parity function.

Proof. Let C be computing Parity and have depth d. Then for every possible setting of

the nondeterministic bits C outputs zero for inputs of even parity. On the other hand, by

averaging, there exists at least one setting θ of the non-deterministic bits for which C outputs

1 on at least 2n−1

2(log n)` many inputs of odd parity. Thus, the deterministic circuit Cθ obtained

from C by fixing its non-deterministic bits to θ approximates Parity well, i.e.

Pr
x

[
Cθ
(
x
)

= Parity(x)
]
≥ 1

2 + 1
2 · 2O((logn)`) .

However, Cθ has the same size and depth as C. The proof gets completed by showing

below, via Theorem 12, that such approximations to Parity are impossible.

J

In order to prove the desired inapproximability results, we use a version of the Switching

Lemma. Switching Lemmas were developed in a series of works by [FSS81, Ajtai83, Yao85,

Cai86, Has87] for proving lower bounds on the size of constant-depth circuits computing

Parity. We recall the following decision-tree version, due to Razborov [Raz93]. Let Rmn be

the space of all restrictions on n variables that leaves precisely m of them free. For any

restriction ρ, we denote by fρ the boolean function induced from f on variables left free by ρ.

I Lemma 10 (Switching Lemma, Razborov). Let f be a CNF (or DNF) formula with clause

width t on n variables. Let ρ be a random restriction in Rmn . Then, there exists a constant

γ > 0 such that the probability of fρ not having a decision tree of height at most s is less

than
(
γmt
n

)s
.

An immediate consequence of this lemma is the following corollary:

I Corollary 11. Let f be a function computed by a circuit of size S and depth d. Let

m = n/
(
(2γ)d(n1/(2d))d−1). Then

Pr
ρ∈Rm

n

[
h
(
fρ
)
> n1/2d

]
≤ S · 1

2Ω
(
n1/2d

)
where h

(
fρ
)

denotes the height of the best decision tree for fρ.

F S T T C S 2 0 1 0

324 Graph Isomorphism is not AC0 reducible to Group Isomorphism

Proof. This can be shown by a simple inductive argument using the Switching Lemma.

Assume, as our inductive hypothesis, the following: let i ≥ 2 and ni = n/
(
(2γ)i(n1/(2d))i−1).

Let Gi be the set of gates in the ith layer of C and let Si be the number. Further, let

S≤i =
∑i
j=1 Sj . Our inductive hypothesis is the following:

Pr
ρ∈Rni

n

[
∃g ∈ Gi : h

(
fgρ
)
> n1/2d

]
≤ S≤i ·

1
2n1/2d

,

where fg is the function computed at gate g. Now, if the ith layer of the circuit has AND

(OR) gates then one can assume w.l.o.g that i+ 1th layer has OR (AND) gates. In this case,

assuming that each fgρ has a decision tree of height at most n1/2d, we represent fgρ as a DNF

of width at most n1/2d by using the small height decision tree. This collapses layers i and

i+ 1 and hence the output of every gate at layer i+ 1 is a DNF of width n1/2d under the

restriction ρ. We apply the Switching Lemma to each such DNF where n = ni, m = ni+1
and t = n1/2d. Clearly, the probability that any fixed such DNF under the next round of

restriction fails to have a decision tree of height at most n1/2d is at most 2−n1/2d

. Applying

the union bound to Si+1 such DNF’s (one for each gate at layer i+ 1) immediately completes

the induction.

J

Applying the above, we get the following inapproximability result (which is possibly

implicit in work of Cai[Cai86]):

I Theorem 12. Let C be any polynomial size circuit of depth d. Then,

Pr
x

[
C(x) = Parity(x)

]
≤ 1

2 + 1

2Ω
(
n1/2d

) .
Proof. Applying Corollary 11, we see that if we pick a random restriction that leaves m

variables free, where m = n/
(
(2γ)d(n1/(2d))d−1) with probability at least 1−Size(C) ·2−n1/2d

,

the circuit will have a decision tree of height at most n1/2d. Hence, with that much probability

the number of free variables m is more than the height of the decision tree. For each such

restriction, the restricted circuit computes the right answer (which is either Parity or its

complement, on the m free variables) with probability exactly a half. Hence, even assuming

that for all other restrictions we get perfect correlation,

Pr
x

[
C
(
x
)

= Parity(x)
]
≤ 1

2 + Pr
ρ∈Rm

n

[
h
(
Cρ
)
> n1/2d

]
≤ 1

2 + Size
(
C
)
· 1

2n1/2d
.

The proof is completed by observing that the size of the circuit, denoted by Size
(
C
)
, by

assumption is polynomial.

J

5 Discussion

Although no polynomial time algorithms for GroupIso or QGroupIso are known, we have

shown in this paper that the problems are not hard enough to encode the Parity function.

Therefore these problems cannot be hard under AC0 reductions for any complexity class

containing Parity, like L or NC1. This contrasts sharply with the hardness properties of other

isomorphism problems like Graph Isomorphism. In fact, our research started originally trying

to prove that QGroupIso is hard for NC1. At first sight it looks as if the difficulty in encoding

A. Chattopadhyay and J. Torán and F. Wagner 325

the Parity function comes from the very structured way in which the input information

is presented in the the multiplication tables. The way of proving the result, however was

to show that the computation of QGroupIso can be divided in two faces, a first bounded

nondeterministic part and a very efficient checking part. We then gave an upper bound for

the checking part in terms of circuits with very restricted depth and showed that these circuits

cannot compute Parity even with the help of poly-log many nondeterministic bits. We observe

that this proof technique does not have anything to do with isomorphism problems and can

be applied to other problems whose computation have similar bounded guessing and checking

parts. For example the classes LOGNP0 and LOGSNP0 from [PY96] would fall in β2AC0

in our setting. The results in this paper imply that the problems in these classes cannot

be AC0 hard for Parity. Observe that for example the problem LOGCLIQUE, deciding if a

given graph with n vertices has a clique of size at least logn falls into this category. We find

this surprising. It would be interesting to study, maybe with other techniques, the existence

of longer hierarchies of natural problems defining different AC0 degrees.

So far all the upper bounds known for GroupIso hold also for QGroupIso . The question

of whether the problems are equivalent under some reduction remains open.

Acknowledgments. We thank the anonymous referees for helpful comments on the

manuscript.

References

Ajtai83 Miklós Ajtai. Σ1
1-formulae on finite structures. In Annals of Pure and Applied Logic,

24:1–48, 1983.

AT06 V. Arvind and Jacobo Torán. The complexity of quasigroup isomorphism and the minimum

generating set problem. In Tetsuo Asano, editor, International Symposium on Algorithms and

Computation (ISAAC), volume 4288 of Lecture Notes in Computer Science, pages 233–242.

Springer, 2006.

BKLM00 David Mix Barrington, Peter Kadau, Klaus-Jörn Lange, and Pierre McKenzie. On the

complexity of some problems on groups input as multiplication tables. In Proceedings of the

15th Annual IEEE Conference on Computational Complexity (COCO), page 62, Washington,

DC, USA, 2000. IEEE Computer Society.

Cai86 Jin-yi Cai. With probability one, a random oracle separates PSPACE from the polynomial-

time hierarchy. In Proceedings of the Eighteenth Annual ACM Symposium on Theory of

Computing (STOC) 38(1), 21–29, 1986.

DT90 Josep Dı́az and Jacobo Torán. Classes of Bounded Nondeterminism. Mathematical Systems

Theory 23(1): 21–32, 1990.

FSS81 Merrick L. Furst, James B. Saxe and Michael Sipser. Parity, circuits and the polynomial-

time hierarchy. In 22nd Annual Symposium on Foundations of Computer Science (FOCS),

pages 260–270, 1981.

ER65 Paul Erdős and Alfred Rényi. Probabilistic methods in group theory. Journal d’Analyse

Mathématique, 14:127–138, 1965.

GLM96 Judy Goldsmith, Matthew A. Levy and Martin Mundhenk. Limited nondeterminism.

SIGACT News 27(2): 20–29, 1996.

Hal59 Marshall Hall. The theory of groups. Macmillan, New York, 1959.

Has87 John H̊astad Computational limitations of small-depth circuits. MIT Press, 1987.

KF84 Chandra Kintala and Patrick Fisher. Refining nondeterminism in relativized complexity

classes. SIAM Journal on Computing 13:329–337, 1984.

LSZ76 Richard J. Lipton, Lawrence Snyder, and Yechezkel Zalcstein. The complexity of word

and isomorphism problems for finite groups. Technical report, John Hopkins, 1976.

Mil78 Gary L. Miller. On the nlogn isomorphism technique. In ACM Symposium on Theory of

Computing (STOC), 1978.

F S T T C S 2 0 1 0

326 Graph Isomorphism is not AC0 reducible to Group Isomorphism

PY96 Christos H. Papadimitriou and Mihalis Yannakakis. On limited nondeterminism and the

complexity of the VC dimension. Journal of Computer and System Sciences, 53:161–170, 1996.

Raz93 Alexander A. Razborov. An equivalence between second order bounded domain bounded

arithmetic and first order bounded arithmetic. In P. Clote and J. Kraj́ıček, editors, Arithmetic,

Proof Theory and Computational Complexity, Oxford University Press (1993), 247–277.

Tor04 Jacobo Torán. On the hardness of Graph Isomorphism. SIAM Journal on Computing 33(5):

1093–1108, 2004.

Tor10 Jacobo Torán. Reductions to Graph Isomorphism. Theory of Computing Systems 47(1):

288–299, 2010.

Wag10 Fabian Wagner. On the complexity of isomorphism testing for restricted classes of graphs.

Ph.D. Thesis. Technical Report VTS-ID/7264, Institutional Repository of University of Ulm,

2010.

Wol94 Marty J. Wolf. Nondeterministic circuits, space complexity and quasigroups. Theoretical

Computer Science (TCS), 125:295–313, 1994.

Yao85 Andrew C.C. Yao. Separating the polynomial hierarchy by oracles: Part I. In 26th Annual

Symposium on Foundations of Computer Science (FOCS), pages 1–10, 1985.

Colored Hypergraph Isomorphism is Fixed
Parameter Tractable
V. Arvind1, Bireswar Das2, Johannes Köbler3, and Seinosuke Toda4

1 The Institute of Mathematical Sciences, Chennai 600 113, India
arvind@imsc.res.in

2 Indian Institute of Technology, Gandhinagar, India
bireswar@iitgn.ac.in

3 Institut für Informatik, Humboldt Universität zu Berlin, Germany
koebler@informatik.hu-berlin.de

4 Nihon University, Tokyo, Japan
toda@cssa.chs.nihon-u.ac.jp

Abstract
We describe a fixed parameter tractable (fpt) algorithm for Colored Hypergraph Isomor-
phism which has running time 2O(b)NO(1), where the parameter b is the maximum size of the
color classes of the given hypergraphs and N is the input size. We also describe fpt algorithms
for certain permutation group problems that are used as subroutines in our algorithm.

Keywords and phrases Fixed parameter tractability, fpt algorithms, graph isomorphism, com-
putational complexity.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.327

1 Introduction

A hypergraph is an ordered pair X = (V,E) where V is the vertex set and E ⊆ 2V is
the edge set. Two hypergraphs X = (V,E) and X ′ = (V ′, E′) are said to be isomorphic,
denoted X ∼= X ′, if there is a bijection ϕ : V → V ′ such that for all e = {u1, · · · , ul} ⊆ V ,
e ∈ E if and only if ϕ(e) = {ϕ(u1), · · · , ϕ(ul)} ∈ E′. Given two hypergraphs X and X ′,
the decision problem Hypergraph Isomorphism (HI) asks whether X ∼= X ′. Graph
Isomorphism (GI) is obviously polynomial-time reducible to HI. Conversely, HI is also
known to be polynomial-time reducible to GI: Given a pair of hypergraphs X = (V,E) and
X ′ = (V ′, E′) as instance for HI, the reduced instance of GI consists of two corresponding
bipartite graphs Y and Y ′ defined as follows. The graph Y has vertex set V]E and edge set
E(Y) = {{v, e} | v ∈ V, e ∈ E and v ∈ e}, and Y ′ is defined similarly. Here, C]D denotes
the disjoint union of the sets C and D. It is easy to verify that Y ∼= Y ′ if and only if X ∼= X ′

assuming that V can be mapped only to V ′ and E can be mapped only to E′. This latter
condition is easy to enforce.

However, since the above reduction blows up the size of the vertex set in the bipartite
encoding, the Zemlyachenko-Luks-Babai graph isomorphism algorithm [3, 5, 6, 25] that runs
in time c

√
n logn, where n is the size of the vertex set of the graph, does not yield a similar

algorithm for hypergraph isomorphism. We note here that the best known hypergraph
isomorphism test due to Luks [16] has running time cn. Recently, Babai and Codenotti [4]
have shown a 2Õ(k2√n) isomorphism testing algorithm for hypergraphs with hyperedges of
size bounded by k.

Motivated by this situation, we explore the same algorithmic problem for bounded color
class hypergraphs. The input to Colored Hypergraph Isomorphism (CHI) is a pair

© V. Arvind, Bireswar Das, Johannes Köbler and Seinosuke Toda;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 327–337

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.327
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

328 Colored Hypergraph Isomorphism is Fixed Parameter Tractable

of hypergraphs X = (V,E) and X ′ = (V ′, E′) together with partitions V = C1] · · ·] Ck
and V ′ = C ′1] · · ·] C ′k of their vertex sets into color classes Ci and C ′i, respectively. The
problem is to decide if there is an isomorphism ϕ that preserves the colors (meaning that
v ∈ Ci ⇔ ϕ(v) ∈ C ′i). Colored Graph Isomorphism (CGI) is the analogous problem
where instead of hypergraphs we have graphs as inputs.

CGI with color classes of size bounded by a constant is the first special case of GI shown
to be in polynomial time [2, 12] and which brought in the application of permutation group
theory to the problem. In fact, Babai [2] and Furst, Hopcroft and Luks [12] even gave an fpt
algorithm for CGI with running time O(b!)nO(1), where the parameter b is the maximum
size of the color classes and n is the number of vertices of the input graphs. By using the
halving technique as introduced in [5] (see also [16]), the running time can be improved to
2O(b)nO(1).

In [13] a complexity-theoretic study of some special cases of bounded color class Graph
Isomorphism has been done in connection to logarithmic space-bounded complexity classes.
This line of research is continued in [1], where special cases of bounded color class Graph
Isomorphism as well as Hypergraph Isomorphism are studied from a complexity theory
perspective.

In this paper our focus is on designing an efficient algorithm for CHI. Although HI is
polynomial time many-one reducible to GI, the reduction we described above does not impose
any bound on the size of the color classes of the bipartite graphs Y and Y ′. More specifically,
if the color classes of the hypergraphs X and X ′ have size at most b, then the vertices of
the graphs Y and Y ′ that correspond to the edges of X and X ′ do not get partitioned into
color classes of size bounded by any function of b. Thus, the fpt algorithm for CGI cannot
be combined with the above reduction to get an fpt algorithm for CHI. Moreover, even if b
is bounded by a constant (say 2), the color classes in the resulting bipartite graphs can have
size exponential in n where n is the number of vertices and hence, this approach would not
even give a polynomial time isomorphism algorithm for hypergraphs with color class bound
2.

However, an algorithm for CHI running in time NO(b) was shown in [19], where b bounds
the size of the color classes of the given hypergraphs and N is the input size. Hence, if
b is bounded by a constant, we have already a polynomial-time algorithm for CHI. This
algorithm basically applies Luks’s seminal result [15] showing that the set stabilizer problem
with respect to a class of permutation groups Γd can be solved in time nO(d).

Parametrized complexity and isomorphism testing
Parametrized complexity is a fundamental strategy for coping with intractability. Pioneered
by Downey and Fellows in [8], it is a flourishing area of research (see, e.g. the monographs
[9, 11]). Fixed parameter tractability provides a notion of feasible computation less restrictive
than polynomial time. It provides a theoretical basis for the design of new algorithms that
are efficient and practically useful for small parameter values.

Parametrized complexity theory deals with the study and design of algorithms that have
a running time of the form f(b)nO(1) where n is the input size, b is the parameter and f
is a computable function. If a problem is solvable by such an algorithm it is called fixed
parameter tractable (fpt).

Since no polynomial-time algorithm for GI is known, one approach is to design fpt
isomorphism testing algorithms with respect to natural graph parameters. For example, the
algorithm of Babai and Furst et al [2, 12] mentioned above is fpt with respect to the color
class size. For isomorphism testing of graphs with eigenvalue multiplicity bounded by k,

V. Arvind, Bireswar Das, Johannes Köbler, and Seinosuke Toda 329

Evdokimov and Ponomarenko have designed a highly nontrivial fpt algorithm with running
time kO(k)nO(1) [10].

Apart from this, fpt algorithms have also been designed with respect to the parameters
tree-distance width [24] and the size of the simplicial components of the input graphs [23].
Very recently, it is shown in [14] that Graph Isomorphism for graphs with feedback vertex
sets of size k is fixed parameter tractable, with k as the parameter.

On the other hand, if we use the maximum degree [15], or the treewidth [7], or the genus
[18] of the input graphs as parameter b, the best known isomorphism testing algorithms have
a worst-case running time bound nO(b). It is an interesting open question if GI has an fpt
algorithm with respect to any of these three parameters.

Our result
In this paper we present an fpt algorithm for Colored Hypergraph Isomorphism that
runs in time 2O(b)NO(1), where b is the maximum size of the color classes and N is the input
size (which we can define as N = mn, where n is the number of vertices and m is the number
of hyperedges).

Broadly speaking, our algorithm is a combination of divide and conquer with dynamic
programming. We adapt ideas from [5, 16] which applies the halving technique in combi-
nation with dynamic programming. Luks [16] gives a 2O(n) time algorithm for Hypergraph
Isomorphism. Our algorithm can be seen as a generalization of Luks’s result.

We use as subroutines fpt algorithms for certain permutation group problems (mainly, the
coset intersection problem) parametrized by the size of the largest color class of the group.
While the parametrized complexity of permutation group problems, for different parameters,
is certainly interesting in its own right, it could also be applicable to GI. For example, an
fpt algorithm for Set Transporter w.r.t. groups in Γd (with d as parameter) would result
in an fpt algorithm for testing isomorphism of graphs of degree ≤ d.

2 Preliminaries

In this section we recall some basic group theory. Let G be a finite group and let Ω be a
finite nonempty set. The action of the group G on Ω is defined by a map α : Ω×G→ Ω
such that for all x ∈ Ω, (i) α(x, id) = x, i.e., the identity id ∈ G fixes each x ∈ Ω, and (ii)
α(α(x, g), h) = α(x, gh) for all g, h ∈ G. We write xg instead of α(x, g) when the group
action is clear from the context.

For x ∈ Ω, its G-orbit is the set xG = {y|y ∈ X, y = xg for some g ∈ G}. When the
group is clear from the context, we call xG the orbit of x. Notice that the orbits form a
partition of Ω.

We write H ≤ G when H is a subgroup of G. The symmetric group on a finite set Ω
consisting of all permutations on Ω is denoted by Sym(Ω). If Ω = [n] = {1, · · · , n}, we write
Sn instead of Sym([n]). A finite permutation group G is a subgroup of Sym(Ω) for some
finite set Ω.

The permutation group generated by a subset S ⊆ Sym(Ω) is the smallest subgroup of
Sym(Ω) containing S and is denoted by 〈S〉. Each element of the group 〈S〉 is expressible as
a product of elements of S.

The subgroup G(i) of G ≤ Sn that fixes each of {1, . . . , i} is called a pointwise stabilizer
of G. These subgroups form a tower

G = G(0) ≥ G(1) ≥ G(2) ≥ · · · ≥ G(n−1) = {id}.

FSTTCS 2010

330 Colored Hypergraph Isomorphism is Fixed Parameter Tractable

We notice that by the orbit-stabilizer lemma, the index [G(i−1) : G(i)] is at most n. For
each i, let Ri be a set of complete and distinct coset representatives of G(i) in G(i−1). Then⋃n−1
i=1 Ri generates G and is called a strong generating set for G. Given a permutation π ∈ G

it is easy to check if π ∈ G(i). It is also easy to check if two permutations π, σ ∈ G(i) are in
the same coset of G(i+1) in G(i). We just have to test if π−1σ ∈ G(i+1). These observations
yield a polynomial-time algorithm [21, 22, 12] for computing a strong generating set of a
permutation group G. This algorithm can also be used to test in polynomial time if g ∈ Sn
is in the group 〈S〉 ≤ Sn.

In some applications there is an efficient algorithm for testing membership in a subgroup
H of G, where G ≤ Sn is given by a generating set but no generating set for H is given. By
[21, 22, 12] we can efficiently compute a generating set for H provided that its index in G is
polynomially bounded.

I Theorem 1 (Schreier Generators). Let G = 〈S〉 ≤ Sn and H ≤ G. Then for any set R of
coset representatives of H in G, the set B = {r′xr−1 | r, r′ ∈ R, x ∈ S} ∩H generates H.
The generators in B are called Schreier generators.

The proof of Theorem 1 also provides an algorithm for computing a suitable set R of coset
representatives by making m2|S| tests of membership in H, where m = [G : H]. Though the
set B of Schreier generators for H can be of size polynomial in m, it is possible to convert it
to a strong generating set for H of size O(n2) [21, 22, 12].

For a permutation π ∈ Sym(Ω) and a subset C ⊆ Ω we use Cπ to denote the set
{xπ | x ∈ C}. For a set S of permutations, C is called S-stable if Cπ = C for all
π ∈ S. For a permutation group G ≤ Sym(Ω), the stabilizer subgroup of G is defined
as GC = {π ∈ G | Cπ = C}.

3 Permutation group problems

In this section we describe fpt algorithms for some permutation group problems with respect
to the color class bound as parameter. These algorithms are useful subroutines for our main
algorithm which will be described in the next section.

A permutation group G ≤ Sym(Ω) has color class bound b if Ω is a colored set partitioned
into color classes Ω = C1] · · ·] Ck such that |Ci| ≤ b for each i and each Ci is G-stable.
Equivalently, the maximum orbit size of G is bounded by b. Since the orbits of G can be
computed in |Ω|O(1) time (for G given by a generating set S), we can determine in |Ω|O(1)

time if G has color class bound b. We first consider the following parametrized version of the
set transporter problem.

Set Transporter

Input: A generating set for a group G ≤ Sym(Ω), a permutation z ∈ Sym(Ω),
subsets Π1, . . . ,Πk,Π′1, . . . ,Π′k ⊆ Ω and a partition Ω = C1] · · ·] Ck such
that for each i, Ci is G-stable and Πi,Π′i ⊆ Ci.

Parameter: b = max{|C1|, · · · , |Ck|}.
Output: A description of (Gz)Π1,...,Πk→Π′1,...,Π′k = {x ∈ Gz | Πx

i = Π′i for i = 1, . . . , k}.

The simple fpt algorithm for Set Transporter works by solving the problem for the
first color class C1 by computing the subcoset G1z1 of Gz that maps Π1 to Π′1, then computing
the subcoset G2z2 of G1z1 that maps Π2 to Π′2 and so on until all the color classes are dealt
with. The following lemma shows how to compute Gizi from Gi−1zi−1.

V. Arvind, Bireswar Das, Johannes Köbler, and Seinosuke Toda 331

I Lemma 2. There is an fpt algorithm running in time 2O(b)nO(1) that computes the subcoset
H ′y′ of the coset Hy that maps Πi to Π′i, where Πi,Π′i ⊆ Ci.

Proof. Let HΠi = {x ∈ H | Πx
i = Πi} be the subgroup of H that stabilizes Πi. Let |Πi| = `.

Since Ci is H-stable the set Πx
i is also a size ` subset of Ci. It follows that

[H : HΠi
] ≤

(
b

`

)
≤ 2b.

Also note that given x ∈ H, it only takes O(n) time to check if x ∈ HΠi
. Applying the

algorithm given by Theorem 1 we can compute a set R = {ρ1, · · · , ρt} of coset representatives
of HΠi

in H in time 2O(b)nO(1) together with a strong generating set S for HΠi
of size at

most n2. Writing

Hy = HΠiρ1y] · · ·]HΠiρty,

the algorithm picks the uniquely determined coset HΠi
ρiy that sends Πi to Π′i and outputs

the pair (S, ρiz) as a description of the coset HΠiρiy. If none of the cosets HΠiρiz maps Πi

to Π′i, the algorithm outputs the empty set. J

I Theorem 3. There is an fpt algorithm for Set Transporter running in time 2O(b)nO(1),
where b = max{|C1|, · · · , |Ck|} and n = |Ω|.

Proof. Let G0 = G and z0 = z and for i = 1, · · · , k use the algorithm of Lemma 2 to
compute

Gizi = (Gi−1zi−1)Πi→Π′
i
.

Notice that for each x ∈ Gkzk we have Πx
i = Π′i for i = 1, . . . , k, implying that Gkzk =

(Gz)Π1,...,Πk→Π′1,...,Π′k .
Furthermore, each of the subgroups Gi stabilizes the sets Cj , j = 1, · · · , k. Thus, Lemma 2

implies that we can compute Gizi from Gi−1zi−1 in time 2O(b)nO(1), implying that the overall
running time is also 2O(b)nO(1). J

Next we consider the following parametrized version of the coset intersection problem.

Coset Intersection (Coset-Inter)

Input: Generating sets for groups G,H ≤ Sym(Ω), permutations x, y ∈ Sym(Ω) and
a partition Ω = C1]· · ·]Ck such that for each i, Ci is G∪H ∪{x, y}-stable.

Parameter: b = max{|C1|, · · · , |Ck|}.
Output: Gx ∩Hy.

Applying well-known techniques from [5] we will design an fpt algorithm for Coset-Inter.
We will use this as a subroutine in the next section to solve Colored Hypergraph
Isomorphism. Our fpt algorithm for Coset-Inter will require solving a subproblem which
is a restricted version of the set stabilizer problem.

Restricted Set Stabilizer (RSS)

Input: A generating set for a group L ≤ Sym(Ω1) × Sym(Ω2), a permutation
z ∈ Sym(Ω1 × Ω2) and subsets Π,Θ = Φ×Ψ ⊆ C ×D, where Ω1 = C] U ,
Ω2 = D] V and the two sets C ×D and Θ are L-stable.

Parameter: b = max{|C|, |D|}.
Output: (Lz)Π[Θ] = {x ∈ Lz | (Π ∩Θ)x = Π ∩Θx}.

FSTTCS 2010

332 Colored Hypergraph Isomorphism is Fixed Parameter Tractable

I Lemma 4. There is an fpt algorithm for RSS running in time 2O(b)nO(1), where b =
max{|C|, |D|} and n = |Ω1|+ |Ω2|.

Proof. We use ideas from [16, Proposition 3.1] where the author describes an algorithm for
a version of the set transporter problem that can be easily adapted to solve RSS. These
ideas were first applied in [5]. We only have to slightly modify Luks’s proof to suit the
parametrized setting.

We can assume that |Φ| and |Ψ| are powers of 2 since otherwise we can add some points
to Φ and Ψ (as well as to C and D) and let L act trivially on these points. This will increase
the size of b and of the input only by a factor of 4. Further, these extra points can be easily
removed from the algorithm’s output.

Observe that since LΘ = L, we have Θx = Θz for all x ∈ Lz. If (Lz)Π[Θ] is not empty
then for x, y ∈ (Lz)Π[Θ] we have (Π ∩Θ)x = Π ∩Θz = (Π ∩Θ)y and hence (Lz)Π[Θ] is a
coset of LΠ∩Θ.

Clearly, if |Π ∩Θ| 6= |Π ∩Θz| then (Lz)Π[Θ] is empty. Next we consider the case that
|Π ∩Θ| = |Π ∩Θz| = 1. Let Π ∩Θ = {u} and Π ∩Θz = {v}. Let Lu be the stabilizer of the
point u which can be computed using the Schreier-Sims method. Then we can express L as
the disjoint union of cosets

L = Lux1] · · ·] Luxt

and consequently Lz as Lux1z]· · ·]Luxtz. Hence, it suffices to pick the uniquely determined
coset Luxiz that maps u to v (if there is any).

It remains to consider the case that |Π ∩Θ| = |Π ∩Θz| > 1. If |Φ| > 1 we partition Φ
in two subsets Φ1 and Φ2 of equal size and let Θ1 = Φ1 ×Ψ. Otherwise, |Ψi| > 1 and we
partition Ψ in two subsets Ψ1 and Ψ2 of equal size and let Θ1 = Φ×Ψ1. In both cases we
let Θ2 = Θ \Θ1.

Let k = max{|Φ|, |Ψ|} and let M = LΘ1 . Notice that [L : M] ≤
(
k
k/2
)
≤ 2b, no matter

which of the two sets Φ or Ψ we divide into two parts. Now we write L as the disjoint union
of cosets

L = My1] · · ·]Mys

of M , yielding Lz = My1z] · · ·]Mysz. As mentioned in the preliminary section, this
decomposition of Lz can be computed in time 2O(b)nO(1). Since M stabilizes Θ1, we can use
the equality

(Myiz)Π[Θ] = ((Myiz)Π[Θ1])Π[Θ2]

to set up the recursive calls. Finally we paste the answers to the subproblems (Myiz)Π[Θ]
together to get

(Lz)Π[Θ] = ∪ti=1(Myiz)Π[Θ].

It is easy to verify that the overall run-time of the algorithm is bounded by 2O(b)poly(n). J

I Theorem 5. There is an fpt algorithm for Coset-Inter running in time 2O(b)nO(1),
where b = max{|C1|, · · · , |Ck|} and n = |Ω|.

Proof. Let L = G×H ≤ Sym(Ω)×Sym(Ω) and let z = (x, y) ∈ Sym(Ω)×Sym(Ω). Further,
let Πi = {(a, a) | a ∈ Ci} and notice that (Lz)Π1,...,Πk

= {x ∈ Lz | Πx
i = Πi for i = 1, . . . , k}

projected to the first (or second) coordinate is Gx ∩ Hy. Hence, it suffices to prove the
following claim.

V. Arvind, Bireswar Das, Johannes Köbler, and Seinosuke Toda 333

Claim 6. (Lz)Π1,...,Πk
is computable in time 2O(b)nO(1).

We will repeatedly use Lemma 4 to solve the problem in time 2O(b)nO(1) as in the
above claim. To start off we let L0z0 = Lz. Then we compute Lizi = (Li−1zi−1)Πi from
Li−1zi−1 for i = 1, · · · , k. We claim that for all i, Lizi = (Lz)Π1,...,Πi

. This follows from
the fact that ((Lz)Π1,...,Πi−1)Πi

= (Lz)Π1,...,Πi
. Thus at the end of the computation we

have Lkzk = (Lz)Π1,...,Πk
. Furthermore, by Lemma 4 it follows that the time needed for

computing Lizi from Li−1zi−1 is 2O(b)nO(1), implying that the overall running time is also
2O(b)nO(1). J

4 Fpt algorithms for Colored Hypergraph Isomorphism

In this section, we use a dynamic programming approach to design an fpt algorithm for
finding the automorphism group Aut(X) (i.e., a set of generators for Aut(X)) of a given
hypergraph X which has running time 2O(b)NO(1).

I Theorem 7. Let X = (V,E) be a colored hypergraph of size N with V = C1] · · ·] Ck
where |Ci| ≤ b for all i. Given X as input there is an algorithm that computes Aut(X) in
time 2O(b)NO(1).

Proof. The algorithm first partitions the hyperedges into different subsets that we call blocks.
More formally, we say that two hyperedges e1, e2 ∈ E are i-equivalent and write e1 ≡i e2, if

e1 ∩ Cj = e2 ∩ Cj for j = 0, . . . , i,

where we let C0 = ∅. We call the corresponding equivalence classes (i)-blocks.
Notice that for i ≥ j, i-equivalence is a refinement of j-equivalence. Thus, if e1 and e2

are in the same (i)-block then they are in the same (j)-block for all j = 0, 1, . . . , i− 1. The
algorithm proceeds in stages i = k, k − 1, . . . , 0, where in stage i the algorithm considers
(i)-blocks. More precisely, in stage i the algorithm computes for each pair of (i)-blocks A,A′
the coset ISO(Y, Y ′) of all isomorphisms between the hypergraphs Y and Y ′ induced by A
and A′, respectively, on Vi = Ci ∪ · · · ∪ Ck and stores this coset in a table T .

Stage k: Let A,A′ be two (k)-blocks and let Y, Y ′ be the corresponding hypergraphs on
the vertex set Ck as defined above. Since A and A′ are (k)-blocks, the sets E(Y) =
{e ∩Ck | e ∈ A} and E(Y ′) = {e ∩Ck | e ∈ A′} only contain a single hyperedge a and a′,
respectively.
Clearly, ISO(Y, Y ′) = ∅ if |a| 6= |a′|. Otherwise, ISO(Y, Y ′) ⊆ Sym(Ck) is the coset of
Aut(Y) = Sym(Ck)a that maps a to a′ which can be easily computed in time O(N) and
stored in the table entry T [A,A′].

Stage i < k: Let A,A′ be two (i)-blocks and let Y, Y ′ be the corresponding hypergraphs
on the vertex set Vi. We explain how to compute the entry T [A,A′] = ISO(Y, Y ′).
Let a and a′ be the unique subsets of Ci such that for all e ∈ A, e ∩ Ci = a and for all
e′ ∈ A′, e′∩Ci = a′. Clearly ISO(Y, Y ′) is empty if the sizes of a and a′ or the sizes of the
hyperedge sets E(Y) = {e ∩ Vi | e ∈ A} and E(Y ′) = {e ∩ Vi | e ∈ A′} differ. Otherwise,
let S1 = {ϕ ∈ Sym(Ci) | aϕ = a′} be the set containing all permutations in Sym(Ci)
that map a to a′ and let S2 be the set of all permutations on Vi+1 that map Y to Y ′
isomorphically when restricted to Vi+1. Crucially, since A and A′ are both (i)-blocks it
follows that ISO(Y, Y ′) = S1 × S2.
Clearly, S1 can be easily computed as explained above. The crux of the algorithm is in
computing the set S2. We first explain a naive method that takes time (b!)2O(b)NO(1)

(later we will explain the more complicated 2O(b)NO(1) algorithm for computing S2).

FSTTCS 2010

334 Colored Hypergraph Isomorphism is Fixed Parameter Tractable

To compute S2, we partition the (i)-blocks A and A′ into (i + 1)-blocks A1, · · · , A`
and A′1, · · · , A′`′ , respectively. Since S2 is empty if ` 6= `′ we assume ` = `′. For each
j = 1, . . . , `, let Zj and Z ′j be the hypergraphs induced by the (i+ 1)-blocks Aj and A′j ,
respectively, on the vertex set Vi+1. Now it is easy to see that

S2 =
⋃
π∈S`

⋂̀
j=1

ISO(Zj , Z ′π(j)),

where the sets ISO(Zj , Z ′π(j)) are already stored in the table T . Now, observe that instead
of cycling through all π ∈ S` it suffices to cycle through all ρ ∈ Sym(Ci+1) and check
whether {{e∩Ci+1 | e ∈ A}}ρ = {{e′∩Ci+1 | e′ ∈ A′}}. For each such ρ the corresponding
induced permutation π ∈ S` with {{e∩Ci+1 | e ∈ Aj}}ρ = {{e′ ∩Ci+1 | e′ ∈ A′π(j)}} can
be easily derived.
Now we can apply Theorem 5 to compute for each ρ ∈ Sym(Ci+1) which corresponds to
some π ∈ S` as explained above the coset intersection Hρσρ =

⋂`
j=1 ISO(Zj , Z ′π(j)) which

is either empty or a coset. As ` ≤ 2b, this takes time bounded by 2O(b)NO(1). Now the
algorithm can compute

S2 =
⋃

ρ∈Sym(Ci+1)

Hρσρ

which again is either empty or a coset and stores the set S1 × S2 in T [A,A′].
Since there is a single (0)-block E, we can find Aut(X) = T (E,E) in the table. It remains to
analyze the running time of the algorithm. The number of blocks at any stage is bounded by
the number of edges of X. Thus, the i-th stage takes time bounded by b!2O(b)NO(1), where
the b! factor is because we cycle through all the ρ ∈ Sym(Ci+1).

In order to obtain the improved 2O(b)NO(1) time bound, it suffices to give a 2O(b)NO(1)

time algorithm for computing the coset S2 of all permutations on Vi+1 that map Y to Y ′
isomorphically when restricted to Vi+1.

Claim 8. There is a 2O(b)NO(1) time algorithm for computing S2.

We will compute S2 with a dynamic programming strategy that will involve solving 2O(b)

many subproblems and 2O(b) many coset intersection instances for which we can invoke
Theorem 5. We use ideas from Luks’s dynamic programming algorithm in [16]. For each
subset ∆ ⊆ Ci+1 and Σ ⊆ Ci+1 \∆ we define hypergraphs

Y ∆,Σ = {e ∩ Vi+1 | e ∈ Y, e ∩ (Ci+1 \∆) = Σ}, and
Y ′∆

′,Σ′ = {e′ ∩ Vi+1 | e′ ∈ Y ′, e′ ∩ (Ci+1 \∆′) = Σ′}.

Notice that Y projected on Vi+1 is Y Ci+1,∅ and that Y ′ projected on Vi+1 is Y ′Ci+1,∅,
and we are interested in computing S2 = ISO(Y Ci+1,∅, Y ′Ci+1,∅). Furthermore, notice that
for different subsets Σ and Σ′ the hypergraphs Y ∅,Σ and Y ∅,Σ′ are the hypergraphs induced
by the different (i+ 1)-blocks. Observe that in the (i+ 1)st stage we have already computed
the cosets ISO(Y ∅,Σ, Y ′∅,Σ′) for different Σ and Σ′ (as these correspond to the different
(i+ 1)-blocks). Our goal is to compute all the cosets

ISO(∆,Σ,∆′,Σ′),

consisting of all isomorphisms π from the hypergraph Y ∆,Σ to the hypergraph Y ′∆′,Σ′ that
map ∆ to ∆′ and Σ to Σ′. To this end we actually compute for different subsets Γ ⊆ ∆ and
Γ′ ⊆ ∆′ the cosets

ISO(∆,Σ,Γ,∆′,Σ′,Γ′) = ISO(∆,Σ,∆′,Σ′) ∩ Coset(Γ,Γ′), (1)

V. Arvind, Bireswar Das, Johannes Köbler, and Seinosuke Toda 335

where Coset(Γ,Γ′) denotes the coset of all permutations on Vi+1 that map Γ to Γ′. Notice
that Coset(Γ,Γ′) can be easily computed in time O(N). To complete the description of the
dynamic programming algorithm, we consider different cases for |Γ| and |Γ′|. Clearly, if
|Γ| 6= |Γ′| then the corresponding coset intersection of Equation 1 is the empty set.

Suppose |Γ| = |Γ′| = ` > 1. In this case, we fix a subset Γ1 of Γ of size d`/2e and cycle
through all possible subsets Γ′1 of Γ′ of size d`/2e. Clearly, we can write

ISO(∆,Σ,Γ,∆′,Σ′Γ′) =⋃
Γ′1⊂Γ′(ISO(∆,Σ,Γ1,∆′,Σ′,Γ′1) ∩ ISO(∆,Σ,Γ \ Γ1,∆′,Σ′,Γ′ \ Γ′1)),

where the union runs over subsets of size d`/2e. Computing this union as a coset essentially
involves solving at most 2b many coset intersections, each of which takes 2O(b)NO(1) time,
assuming that the dynamic programming table entries for Γ1 and Γ′1 are already there. Finally,
we turn to the case when |Γ| = |Γ′| = 1. Let Γ = {γ} and Γ′ = {γ′}. Let ∆1 = ∆ \ {γ} and
∆′1 = ∆′ \ {γ′}. It is easy to see that

ISO(∆,Σ, {γ},∆′,Σ′, {γ′}) = Coset({γ}, {γ′})
∩ ISO(∆1,Σ ∪ {γ},∆1,∆′1,Σ′ ∪ {γ′},∆′1) ∩ ISO(∆1,Σ,∆1,∆′1,Σ′,∆′1),

which is again a coset intersection instance for table entries already computed since they
correspond to smaller size sets ∆1 and ∆′1.

To complete the proof (of both the claim and the theorem), notice that we compute
the table entries for increasing sizes of ∆. For each ∆ we compute the entries for different
Σ and increasing sizes of Γ. Finally, the base case for which the cosets in the table are
already computed is when ∆ is the empty set. For different subsets Σ these correspond to
the (i+ 1)-blocks. This proves the correctness and the running time bound follows from the
fact that the number of subproblems is 2O(b)NO(1), each of which involves 2O(b)NO(1) many
coset intersections which takes 2O(b)NO(1) time by Theorem 5. J

It is easy to modify the algorithm in the above theorem to compute all isomorphisms between
two colored hypergraphs X = (V,E) and X ′ = (V ′, E′) without changing the running time.
Clearly, we can assume that V = V ′ = C1] · · ·] Ck. The new algorithm computes for each
pair of (i)-blocks A,A′ the set ISO(Y, Y ′), where Y and Y ′ are the hypergraphs induced
by A and A′, respectively, with the only difference that now the block A comes from the
hypergraph X and A′ comes from X ′. Thus, in stage 0 the algorithm computes the set
ISO(X,X ′) of all isomorphisms from X to X ′.

I Corollary 9. Let X = (V,E) and X ′ = (V,E′) be two colored hypergraphs of size N with
V = C1] · · ·] Ck where |Ci| ≤ b for all i. Given X and X ′ as input there is an algorithm
that computes the set ISO(X,X ′) of isomorphisms from X to X ′ in time 2O(b)NO(1).

5 Discussion

We now briefly address the complexity of the canonization problem associated with CHI.
We first recall the definition of canonization. Let K denote the set of all instances of CHI. A
mapping f : K → K is a canonizing function for K if for all pairs of isomorphic instances X
and X ′ in K, f(X) = f(X ′) and f(X) ∼= X. We say that f assigns a canonical form to each
isomorphism class of K.

It is often the case that canonization and isomorphism testing for a class of structures
have the same complexity. However, for CHI we do not know a canonization procedure even
with running time (b!)2O(b)nO(1). Indeed, we do not know if the problem is fixed parameter

FSTTCS 2010

336 Colored Hypergraph Isomorphism is Fixed Parameter Tractable

tractable. The following result is the best we know which follows easily by applying known
techniques [6].

I Theorem 10. The canonization problem associated with CHI has an NO(b) time algorithm,
where N is the input size and b bounds the size of the color classes.

Proof Sketch. Let X = (V,E) be an input instance of CHI, where |E| = m and |V | = n.
Then, by definition, the size of X is N = mn. Let V =

⋃k
i=1 Ci be the partition of the

vertex set into color classes Ci, where |Ci| ≤ b for each i. Let Xi = (Vi, Ei) denote the multi-
hypergraph obtained from X by projecting the hyperedges e ∈ E to the set Vi = Ci∪ . . .∪Ck.
The canonization algorithm proceeds inductively. Suppose we have computed the canonical
labeling coset Gσ of the multi-hypergraph Xi+1. It suffices to give an mO(b) algorithm for
canonizing the multi-hypergraph Xi obtained by projecting E on Vi = Ci ∪ Vi+1, given
the canonical labeling coset Gσ for Xi+1. Clearly, it suffices to canonize Xi under the
action of the coset Sym(Ci) × Gσ, where Sym(Ci) is the group of the (at most b! many)
permutations acting on the color class Ci. Applying the standard orbit finding algorithm
for permutation groups [17, 20] we can compute the hypergraph X ′i with vertex set Vi
and multiset E′i consisting of all hyperedges E′i = {{eπ | e ∈ Ei and π ∈ Sym(Ci) ×Gσ}}.
Since Gσ canonizes Xi+1, it follows that |E′i| ≤ 2b · |Ei|. Thus, X ′i can be easily computed
in time poly(2b,m, n). Notice that every permutation π ∈ Sym(Ci) × Gσ maps Xi to a
subgraph Xπ

i of the hypergraph X ′i. Furthermore, notice that the automorphism group
Aut(X ′i) of X ′i is precisely Sym(Ci)× σ−1Gσ. Define Yi = X

(id,σ)
i , where id is the identity

permutation in Sym(Ci). Then, Yi is clearly a subgraph of X ′i, and canonizing Xi under
the action of the coset Sym(Ci) × Gσ is equivalent to canonizing Yi under the action of
Aut(X ′i) = Sym(Ci)× σ−1Gσ. Now, we write the multiset E′i as

E′i = {(e1, n1), (e2, n2), . . . , (er, nr)},

where the edges ej are the distinct edges (with corresponding multiplicity nj), lexicographi-
cally ordered. Since Sym(Ci)× σ−1Gσ is Aut(X ′i), each permutation in Sym(Ci)× σ−1Gσ

uniquely defines a permutation on the set {e1, e2, . . . , er}. Thus Sym(Ci) × σ−1Gσ gives
rise to a subgroup Hi contained in Sym({e1, . . . , er}). Let E(Yi) = {ei1 , ei2 , . . . , eik}. The
hypergraph Yi, as a subgraph of X ′i, can be represented by a colored binary string x ∈ {0, 1}r,
whose jth bit xj = 1 iff ej ∈ E(Yi), and xj is colored by its multiplicity nj .

The problem of canonizing Xi under Sym(Ci)× σ−1Gσ action reduces to canonize the
binary string x ∈ {0, 1}r under the action of the group Hi. Since Sym(Ci) × σ−1Gσ is a
group with composition width [6] bounded by b, it follows that Hi also has composition
width bounded by b. Hence, by invoking the Babai-Luks canonization procedure [6] we can
compute the canonical form for Xi and the canonical labeling coset in NO(b) time. This
completes the proof sketch.

References
1 V. Arvind and J. Köbler. On Hypergraph and Graph Isomorphism with Bounded Color

Classes. In Proc. 23rd Symposium on Theoretical Aspects of Computer Science, volume
3884 of Lecture Notes in Computer Science, pages 384–395. Springer-Verlag, 2006.

2 L. Babai. Monte Carlo algorithms for graph isomorphism testing. Technical Report 79-10,
Dép. Math. et Stat., Univ. de Montréal, 1979.

3 L. Babai. Moderately exponential bounds for graph isomorphism. In Proc. International
Symposium on Fundamentals of Computing Theory 81, volume 117 of Lecture Notes in
Computer Science, pages 34–50. Springer-Verlag, 1981.

V. Arvind, Bireswar Das, Johannes Köbler, and Seinosuke Toda 337

4 L. Babai and P. Codenotti. Isomorphism of Hypergraphs of Low Rank in Moderately
Exponential Time. In Proc. 39th Ann. IEEE Symposium on the Foundations of Computer
Science, pages 667–676, IEEE Computer Society Press, 2008.

5 L. Babai, W. Kantor, and E. M. Luks. Computational complexity and the classification
of finite simple groups. In Proc. 24th IEEE Symposium on the Foundations of Computer
Science, pages 162–171. IEEE Computer Society Press, 1983.

6 L. Babai and E. M. Luks. Canonical labeling of graphs. In Proc. 15th ACM Symposium
on Theory of Computing, pages 171–183, 1983.

7 H. Bodlaender. Polynomial algorithm for graph isomorphism and chromatic index on partial
k-trees. Journal of Algorithms, 11(4):631–643, 1990.

8 R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness I: Basic
results. SIAM Journal on Computing, 24(4):873–921, 1995.

9 R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag, 1999.
10 S. Evdokimov and I. Ponomarenko. Isomorphism of colored graphs with slowly increasing

multiplicity of Jordan blocks. Combinatorica, 19(3):321–333, 1999.
11 J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag, 2006.
12 M. Furst, J. Hopcroft, and E. M. Luks. Polynomial time algorithms for permutation

groups. In Proc. 21st IEEE Symposium on the Foundations of Computer Science, pages
36–41. IEEE Computer Society Press, 1980.

13 B. Jenner, J. Köbler, P. McKenzie, and J. Torán. Completeness results for graph isomor-
phism. Journal of Computer and System Sciences, 66:549–566, 2003.

14 S. Kratsch and P. Schweitzer. Isomorphism for graphs of bounded feedback vertex set
number is fixed-parameter tractable, 2009.

15 E. M. Luks. Isomorphism of bounded valence can be tested in polynomial time. Journal
of Computer and System Sciences, 25:42–65, 1982.

16 E. M. Luks. Hypergraph isomorphism and structural equivalence of boolean functions. In
Proc. 31st ACM Symposium on Theory of Computing, pages 652–658. ACM Press, 1999.

17 E. M. Luks. Permutation groups and polynomial time computations. In L. Finkelstein and
W. M. Kantor, editors, Groups and Computation, volume 11 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages 139–175. American Mathematical
Society, 1993.

18 G. L. Miller. Isomorphism testing for graphs of bounded genus. In Proc. 12th ACM
Symposium on Theory of Computing, pages 225–235. ACM Press, 1980.

19 G. L. Miller. Isomorphism of k-contractible graphs. A generalization of bounded valence
and bounded genus. Information and Computation, 56(1/2):1–20, 1983.

20 Á. Seress. Permutation Group Algorithms. Cambridge University Press, 2003.
21 C. C. Sims. Computational methods in the study of permutation groups. In J. Leech,

editor, Computational problems in abstract algebra, Proc. Conf. Oxford, 1967, pages 169–
183. Pergamon Press, 1970.

22 C. C. Sims. Some group theoretic algorithms. In A. Dold and B. Eckmann, editors, Topics
in Algebra, volume 697 of Lecture Notes in Mathematics, 108–124. Springer 1978.

23 S. Toda. Computing automorphism groups of chordal graphs whose simplicial components
are of small size. IEICE Transactions, 89-D(8):2388–2401, 2006.

24 K. Yamazaki, H. L. Bodlaender, B. de Fluiter, and D. M. Thilikos. Isomorphism for graphs
of bounded distance width. Algorithmica, 24(2):105–127, 1999.

25 V. N. Zemlyachenko, N. Konienko, and R. I. Tyshkevich. Graph isomorphism problem
(Russian). The Theory of Computation I, Notes Sci. Sem. LOMI 118, 1982.

FSTTCS 2010

Global Escape in Multiparty Sessions∗

Sara Capecchi1, Elena Giachino2, and Nobuko Yoshida3

1 Dipartimento di Informatica, Università di Torino
Corso Svizzera 185, Torino, Italy
capecchi@di.unito.it

2 Focus Reasearch Team, Università di Bologna/INRIA
Mura Anteo Zamboni 7, Bologna , Italy
giachino@cs.unibo.it

2 Imperial College London
South Kensington Campus, London SW7 2AZ, Great Britain
yoshida@doc.ic.ac.uk

Abstract
This paper proposes a global escape mechanism which can handle unexpected or unwanted conditions
changing the default execution of distributed communicational flows, preserving compatibility of the mul-
tiparty conversations. Our escape is realised by a collection of asynchronous local exceptions which can
be thrown at any stage of the communication and to any subsets of participants in a multiparty session.
This flexibility enables to model complex exceptions such as criss-crossing global interactions and fault
tolerance for distributed cooperating threads. Guided by multiparty session types, our semantics automat-
ically provides an efficient termination algorithm for global escapes with low complexity of exception
messages.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.338

1 Introduction

In multiparty distributed conversations, a frequent communication pattern is the one that provides that
some unexpected condition may arise forcing the conversation to abort or to take suitable measures
for handling the situation, usually by moving to another stage. Such a global escape may be not a
computational error but rather a controlled, structured interruption requested by some participant.
This paper proposes a structured global escape mechanism based on multiparty session types, which
can control multiple interruptions efficiently, and guarantee deadlock-freedom without additional
overheads. Our main focus is on interactional exceptions, which perform not only local management
of the interrupted flows but also explicitly coordinate a set of collaborating and communicating peers.
Interactional exceptions based on multiparty sessions provide the following contributions (in which
relies the novelty of our approach w.r.t. [4, 6]):

an extension of multiparty sessions [9] to flexible exception handling: we allow asynchronous
escape at any desired point of a conversation, including nested exceptions;
a flexible exceptions representation for modelling both “light” exceptions, representing a con-
trol flow mechanism rather than an error (such as time-outs), and “heavy” exceptions such as
component or system crashes;
a compositional model where nested exception contexts are not a refinement of the outer ones
but inner isolated contexts involving only a subset of participants who can handle an unexpected
situation without affecting the unrelated communications among other cooperating peers;

∗ This work has been partially supported by MIUR Projects DISCO (Distribution, Interaction, Specification, Composi-
tion for Object Systems), EPSRC EP/G015635/1 and EPSRC EP/F003757/1.

© Sara Capecchi, Elena Giachino and Nobuko Yoshida;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 338–351

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.338
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Capecchi, E. Giachino, N. Yoshida 339

exception signals modelled as natural linguistic constructs with a corresponding behaviours;
applications to large scale protocols among multiple peers, automatically offering communication
safety and deadlock-freedom. We apply our theory for well-known distributed protocols for
exception handling and resolutions (CAs) [13], and prove our method offers the lower complexity
w.r.t. a number of message exchanges than the previously studied algorithms.

As in [4] our extension is consistent (since despite synchrony and nesting of exceptions, com-
munications in default and exception handling conversations do not mix) and safe (since linearity
of communications inside sessions and absence of communication mismatch are enforced carrying
out fundamental properties of session types). We ensure these properties using: (i) an asynchronous
linguistic construct for exceptions signalling; (ii) multi-level queues: the different levels are used to
avoid the mix of messages belonging to standard conversations and exception handling ones, which
belong to different nesting levels; (iii) a type discipline based on the known technique of defining
global types that describe the whole conversation behaviour, and projected end-point types classifying
single peers behaviours.

The paper is organised as follows: in Section 2 we describe the syntax of our calculus and present
an example. In Sections 3, 4 we present semantics, typing and properties of our extension; Section 5
shows how a known distributed object model can be encoded with our calculus. Finally Section 6
closes the paper. Detailed definitions, proofs and more examples can be found in [3].

2 Multiparty Session Processes with Exceptions

We introduce the syntax of processes using the π−calculus with multiparty sessions [9]. The syntax is
given in Figure 1, where we use P and Q to range over process names, s over private channels, r over
indexed private channels (of the form sϕ), a over public channels, v over values, e over expressions,
x,y,z over variables, X, Y over term variables and l, li over labels. We adopt the notation s̃ as a
shorthand for s1, . . . , sn.

The session connection is performed by a multicast request a[2..n](s̃).P (over the public channel
a, specifying the number n of participants invited) and n accept operations a[p](s̃).P (over the same
channel a). In both cases s̃ are the private channels that will be used in the continuation. A process
engaged in a session can perform an output action r!〈e〉, sending on r the evaluation of the expression
e, an input action r?(x).P, receiving a value on r, bound by x in P. More than one labelled behaviour
may be offered on the channel r (rB {li : Pi}i∈I), so that it is possible for a partner to select a behaviour
by sending on r the corresponding label (rCl.P). The try-catch construct try(r̃){P} catch {Q} describes
a process P (called default process) that communicates on the private channels r̃. If some exception is
thrown on r̃ before P has ended, the compensation handler Q is going to take over. The construct
throw(r̃) throws the exception on the channels r̃. Try-catch blocks can be nested, but internal blocks
must involve a proper subset of the set of argument channels of the outer try block (this is enforced
by the type system). The idea behind this condition is that internal try blocks involve smaller sets
of participants using a subset of channels. The exception raised inside these blocks can be resolved
by the involved peers without affecting the whole system (or in general a wider sets of participants).
If something goes wrong during the execution of the handler, that is the exception cannot be solved
“internally” anymore, the control can be passed to the handler of the outer try block by throwing an
exception on r (see example 2).

As in [9], in order to model TCP-like asynchronous communications (with non-blocking send
but message order preservation between a given pair of participants), we use queues of messages L.
Queues have a bidimensional structure, this is necessary to guarantee communication consistency:
when performing an action on a channel sϕ, a process is going to write or read at the level ϕ of the
queue associated to s. However in the user written code the level is always zero (ϕ = 0), namely the

FSTTCS 2010

340 Global Escape in Multiparty Sessions

P,Q ::= a[2..n](s̃).P Multicast Request
| a[p](s̃).P Accept
| r!〈ẽ〉 Output
| r?(x̃).P Input
| r C l.P Select
| r B {li : Pi}i∈I Branch
| try(r̃){P} catch {P} Try-Catch
| throw(r̃) Throw

| if e then P else P Conditional
| P | P Parallel
| P; P Sequencing
| 0 Inaction
| (νn)P Hiding
| def D in P Recursion
| X〈ẽs̃〉 Process call
| s : L Named queue

v ::= a | true | false Value
e ::= v | x| e and e′ | not e . . . Expression

D ::= {Xi(x̃i s̃i) = Pi}i∈I Declaration
L ::= l · L | ṽ · L | � Queue

Figure 1 Syntax

programmer is not responsible of managing the queue levels, which are increased automatically at
runtime during the evaluation (for more detail see Section 3). For a consistent semantics we require
that a service can never occur in a try-catch block (this is enforced by the type system), otherwise if an
exception is captured and the handler is executed, the session inside the default process will disappear
while having still some pending communications. We believe this is only an apparent limitation,
because all the practical examples we encountered can be easily implemented in our language.

I Example 1. We present here a three-party use case that models criss-crossing global interaction [5],
which can be coded as in Figure 2 where we use different fonts for variables and values.

The Seller receives an order from a Client, then, inside a try block, he processes the order and
then sends back the confirmation. The Client waits for the order confirmation until, at some point,
he decides he has waited too long by throwing an exception. The handler of the Seller checks if the
confirmation has been sent by the Seller: if it has not (i.e., conf = false) then the interaction is aborted
by the Seller; otherwise conf = true means that the Client has raised the exception before receiving
the confirmation from the Seller; in this case execution goes on with POK and P′OK respectively. Thus
conf = true corresponds to order completion: from this moment on the interaction must proceed even
if the Client has decided differently (this is quite standard in business protocol specifications: when a
client aborts too late the transaction he is often compelled either to conclude the payment or to pay
some penalty fees). The above interaction contains an escape for the Client who has the right to abort
the transaction if the Seller is late for delivery. In P′OK the Client sends the code of his Bank account
to the Bank. The Bank checks if there is enough money then, according to the result of the test, sends
OK or NEM (Not Enough Money) to the Client. If the answer is OK, the Bank sends OK also to the
Seller who sends the delivery date to the Client. If the answer is NEM, the Client and the Bank start to
deal for a loan. Now let us concentrate on the Client-Bank deal. The Bank refreshes the offer every
n-seconds, where n is the value of timeout. The process iterates until an agreement is reached. The
time intervals are modelled through a timer construct (let h = timer(0) in . . .). Thus there are two
iterations in the process: one related to the deal (def X) and the other used by the Bank to iterate
on time intervals (def Y). The Client examines the Bank offer and, if he agrees on it, he throws an
exception to exit the iteration (this is implemented as a inner try-catch block involving only s2: when
the throw is raised the Seller is not involved) otherwise he waits for another offer and iterates the
negotiation. Dually the Bank sets the timer to 0 at each deal iteration; the internal recursion iterates
until the time-out is reached and then the loan offer is updated. The Bank calculates another offer
then iterates the outer recursive process sending the new loan to the Client. An interesting scenario
is when the time-out and the acceptance of the loan from the Client rise concurrently. It can then
happen that the Client has accepted an offer while the Bank was updating his offer after a time-out:
the Bank and the Client agreed on different amounts of money. This is resolved by the handlers P1

S. Capecchi, E. Giachino, N. Yoshida 341

Seller = BS[1](s1, s2).s1?(order).try(s1, s2){ elaborate order ; conf = true; s1!〈true〉; POK}
catch {try(s1, s2){if conf then POK else throw(s1, s2)} catch {abort}}

POK = s1 B {OK : s1!〈date〉, NOK : throw(s1, s2)}

Client = BS[2](s1, s2).s1!〈order〉; try(s1, s2){s1?(conf).P′OK | throw(s1, s2))}
catch {try(s1, s2){P′OK} catch {abort}}

P′OK = s1!〈code〉; s1 B {OK : s1?(date).0, NEM : s1!〈rf〉; s1?(f).
try(s2){defX(s2) = if OK(f) then throw(s2) else s2?(f).X < s2 > inX < s2 > catch{P1}}

P1 = s2!〈f〉; s1 B {OK : s2?(date), NOK : 0)}

Bank = BS[3](s1, s2).try(s2){0} catch {try(s1, s2){P′′OK} catch {abort}}

P′′OK = s1?(code). if enoughmoney then s1 C OK.s1 C OK.
else s1 C NEM.s1?(rf).s1!〈f〉; try(s2){defX(s2) = let h = timer(0) in defY(s2) =

if h = timeout then calculate{f}; s2!〈f〉; X < s2 > else
Y < s2 > inY < s2 > inX < s2 >} catch {P2}

P2 = s2?(f).if OK(f) then s1 C OK.s1 C OK. else s1 C NOK.s1 C NOK.

Figure 2 Client-Seller-Bank code

and P2: after the exception has been thrown the Bank sends to the Client the latest value of the loan.
The Client checks it and decide whether to accept it or not. In the latter case, being out of money, he
sends a NOK label to the Seller who aborts the transaction by throwing an exception.

3 Operational Semantics for Multiparty Exceptions

We extend the semantics of multiparty sessions with exception handling. Exceptions can be raised
inside try-catch blocks by means of the throw construct. We ensure that conversations are properly
carried on by increasing the level of involved channels in case of exception: handlers communicate
on a level ϕ+1 while pending messages (i.e. that are sent by main processes before passing the
execution to the handlers) are sent via channels of level ϕ. Reduction rules are defined in Figure 3.
The reduction system uses an Exception Environment Σ, which keeps track of the raised exceptions.
This will be used in rules [Thr], [RThr],[ZThr].

Reduction rules use evaluation contexts defined by the following grammars:

C := [] | def D in C | C; P E := C | E | P | (νn)E | try(r̃){E} catch {Q}

with the usual semantics: if a process P reduces to P′, then E[P] reduces to E[P′].
Rule [Link] establishes the connection among n peers on the private channels s̃, to be used for the

communications within the session. One queue for each private channel is produced.
Rules [Send], [Sel], [Recv], [Branch] are defined as usual, except for the fact that they put and get

values/labels from the ϕth level of the queue. At first the processes read and write at the first level
of the queue (ϕ = 0). When a process catches an exception, the indexes of all the occurrences of
channels involved are increased by one and the exception is propagated to the other peers, which can
safely continue to modify the queues at the previous level until they receive the exception. Those
messages delivered to the out-of-date level of the queues will be ignored by the peers that have already
caught the exception and increased their queue levels.

Rule [Thr] applies when the exception is thrown locally. In this rule a throw(r̃) is added to the
environment in order to acknowledge all the try-catch blocks on the same set of channels r̃. This
environment update is performed unless some other throw(r̃′), with r̃ ⊆ r̃′ is already in Σ, because this
would mean that an exception may be caught by an embedding block, causing the current try-catch
block to disappear. In that case throwing the exception on channels r̃ would be useless and possibly

FSTTCS 2010

342 Global Escape in Multiparty Sessions

Σ ` C1[a[2..n](s̃).P1] | C2[a[2](s̃).P2] | ... | Cn[a[n](s̃).Pn]
−→ Σ ` (νs̃) (C1[P1] | C2[P2] | ... | Cn[Pn] | s1 : � | ... | sm : �)

[Link]

Σ ` E[sϕ!〈ẽ〉] | s[ϕ] : L −→ Σ ` E | s[ϕ] : (L :: ṽ) (ẽ ↓ ṽ) [Send]

Σ ` E[sϕ C l.P] | s[ϕ] : L −→ Σ ` E[P] | s[ϕ] : (L :: l) [Sel]

Σ ` E[sϕ?(x̃).P] | s[ϕ] : (ṽ :: L) −→ Σ ` E[P{ṽ/x̃}] | s[ϕ] : L [Recv]

Σ ` E[sϕ B {li : Pi}i∈I] | s[ϕ] : (li0 :: L) −→ Σ ` E[Pi0] | s[ϕ] : L (i0 ∈ I) [Branch]

Σ ` try(r̃){C[throw(r̃)] | P} catch {Q} −→ Σ] throw(r̃) ` try(r̃){C | P} catch {Q} [Thr]

Σ, throw(r̃) ` try(r̃){P} catch {Q} −→ Σ, throw(r̃) ` Q{sϕ+1/sϕ}sϕ∈r̃ (throw(r̃′) ∈ Σ implies try(r̃′) . . . < P, r̃′ ⊆ r̃) [RThr]

Σ ` (νs̃)(
∏

i Ei[try(r̃){0} catch {Qi}])i∈1..n −→ Σ ` (νs̃)(
∏

i Ei)i∈1..n (throw(r̃) < Σ) [ZThr]

Figure 3 Reduction rules

dangerous (leading to some inconsistency on the queue levels).
The operation of environment update is defined as follows:

Σ] throw(r̃) =

Σ if throw(r̃′) ∈ Σ, \(r̃) ⊆ r̃′

Σ ∪ throw(\(r̃)) otherwise.

where, throw(r̃) is added to the environment only if there are no other throw on a bigger or equal set
of channels. We use \(r̃) to level down the indexes of the channels in r̃, as we can see in the following
definition: \(sϕ1

1 , . . . , s
ϕn
n) = sϕ1 , . . . , s

ϕ
n , where ϕ = min(ϕ1, . . . , ϕn).

The need of this operation is made clear by Example 2.
Rule [RThr] applies when an exception has been thrown and therefore it can be found in Σ. In

this case, the try block reduces to the handler, where all the queue levels are updated. Now let us
explain the side condition. The try block reduces only if no inner exception can be caught (i.e., if
throw(r̃′) ∈ Σ): this would mean that another peer could be executing the internal handler. In order to
be consistent with it, the current process must catch the same internal exception before catching the
external one. Then, when all the internal exceptions have been caught, even if a throw(r̃′) does occur
in Σ, it can be ignored, and the handler corresponding to the exception on r̃ can take over.

Rule [ZThr] deals with the cases in which the default process in a try block has been reduced to
0 and no pending exception occurs in Σ. No such completed try-catch block can be reduced to the
inaction, until every other peer has completed the corresponding try-block and are ready to continue
the execution. The reason is that even if one try-block has terminated, one among its communicating
peers could throw an exception and then the handlers have to interact. So we consider the try-catch
blocks in each peer at the same level, when every peer has terminated then they all can go on. Since
we consider only well-typed processes, and every process is type-checked with respect to the same
global type, it is safe to assume that if we have n communicating peers, then there will be n try-catch
blocks to be synchronized.

Rules for conditionals and recursive definitions are standard. Moreover, as usual, we consider
processes modulo structural congruence. Besides the standard structural rules, we define the following
one: try(r̃){(νn)P} catch {Q} ≡ (νn)try(r̃){P} catch {Q} if n < fn(Q).

The complete set of rules can be found in [3].

I Example 2. Let us consider the reduction of the following process:
∅ ` try(s1, s2){try(s1){throw(s1) | P} catch {throw(s1, s2)}} catch {Q} |

try(s1, s2){throw(s1, s2) | try(s1){P} catch {Q′}} catch {Q′′}

S. Capecchi, E. Giachino, N. Yoshida 343

In the first line, in the inner try-catch block both the default process and the handler contain a throw
and the latter’ is on (s1, s2). In this way we can model a situation in which if the handling of the
enclosed exception fails, the outer block is alerted to handle the failure. The default process in the
second line contains a throw on (s1, s2).
Case 1 Let us suppose that throw(s1) is raised first, by applying rule [Thr]:

throw(s1) ` try(s1, s2){try(s1){P} catch {throw(s1, s2) | P′}} catch {Q} |
try(s1, s2){throw(s1, s2) | try(s1){P} catch {Q′}} catch {Q′′}

Then throw(s1, s2) is raised and we apply [Thr] again:

throw(s1), throw(s1, s2) ` try(s1, s2){try(s1){P} catch {throw(s1, s2) | P′}} catch {Q} |
try(s1, s2){try(s1){P} catch {Q′}} catch {Q′′}

Then, by rule [RThr], the only exception that can be thrown is the one corresponding to throw(s1),
since, because of the side condition, the external try-blocks on (s1, s2) cannot reduce:

throw(s1), throw(s1, s2) ` try(s1, s2){throw(s1
1, s2) | P′{s1

1/s1}} catch {Q} |
try(s1, s2){Q′{s1

1/s1}} catch {Q′′}

Notice that, because of the queue level updating, the throw that was part of the inner handler is now
throw(s1

1, s2). If something goes wrong in handling the inner exception, throw(s1
1, s2) must reduce

even if the level of the channel arguments and of the outer try block do not match: this example shows
that the mismatch is due to the fact that some of the channels were involved in a failed exception
handling. To balance the levels of the channels in the throw we use the operation \ which flats all
levels to the minimum.
Now we apply rule [Thr] again. Since throw(\(s1

1, s2)) = throw(s1, s2), the environment Σ does not
change:

throw(s1), throw(s1, s2) ` try(s1, s2){P′{s1
1/s1}} catch {Q} | try(s1, s2){Q′{s1

1/s1}} catch {Q′′}

Finally, by rule [RThr], the try blocks on s1, s2 can reduce:

throw(s1), throw(s1, s2) ` Q{s2
1, s

1
2/s1

1, s2} | Q′′{s2
1, s

1
2/s1

1, s2}

Notice that the channels in Q and Q′′ are all at the same level.

Case 2 Now let us suppose that throw(s1, s2) is raised first:

throw(s1, s2) ` try(s1, s2){try(s1){P} catch {throw(s1, s2) | P′}} catch {Q} |
try(s1, s2){try(s1){P} catch {Q′}} catch {Q′′}

We apply rule [Thr] again to the inner throw(s1). Notice that throw(s1) is not added to the environment
since an enclosing throw is already present.

throw(s1, s2) ` try(s1, s2){try(s1){P} catch {throw(s1, s2) | P′}} catch {Q} |
try(s1, s2){try(s1){P} catch {Q′}} catch {Q′′}

then rule [RThr] is applied twice:

throw(s1, s2) ` Q{s1
1, s

1
2/s1, s2} | Q′′{s1

1, s
1
2/s1, s2}

.

4 Typing Structured Global Escapes

This section extends the type system in [9] to exception handling constructs. In particular the goals of
the system are:
(i) to check that the enclosed try-catch block is listening on a smaller set of channels. We want

to enforce this condition to enable the independence of the components w.r.t. exceptions: if an
exception is captured by an inner component, this is not going to affect the enclosing ones.

FSTTCS 2010

344 Global Escape in Multiparty Sessions

(ii) to check that no session request or accept occurs inside a try-catch block as we explained in
Section 2.

(iii) to check that throws were written by the programmer in the right position, that is a throw(r̃)
must be at the top level of the default process in a try block on the channels r̃.

For lack of space we cannot be self contained w.r.t. the original system so we just describe the new
features. The full type system can be found in [3].

Types. In defining the syntax of our types, we distinguish between global types, ranged over by G,
which describe the whole communication of a multiparty session, and end-point types, ranged over
by A, which describe the communication from the point of view of a single participant.

The grammar of a global type is as follows:

Partial γ ::= p1 → p2 : k〈S̃ 〉 | p1 → p2 : k{li : γi}i∈I | {[k̃, γ, γ]} | γ; γ | γ ‖ γ | µt.γ | t | ε

Global G ::= γ; end

Sorts S ::= bool | . . . | 〈G〉

A global type G is an ended partial type γ. The type p1 → p2 : k〈S̃ 〉 says that participant p1 sends
values of sort S̃ to participant p2 over the channel k (represented as a natural number). The type
p1 → p2 : k{li : γi}i∈I says that participant p1 sends one of the labels li to participant p2 over the
channel k. If the label l j is sent, the conversation continues as the corresponding γ j describes. The
type {[k̃, γ, γ′]} says that the conversation specified by γ is performed, unless some exception involving
channels k̃ arises. In this case the conversation γ′ takes over. Moreover, types can be composed by
sequential and parallel composition, and they can be recursively defined.

The grammar of an end-point type is as follows:

Partial action α, β ::= k!(S̃)| k?(S̃) send and receive
| k⊕{li : αi}i∈I | k&{li : αi}i∈I selection and branching
| {[k̃, α, α]} try-catch
| µt.α | t recursion and type variable
| ε | α;α inaction and sequencing

Action A, B ::= α | α; end | end

As in [9], a session type records the identity number of the session channel it uses at each action type,
and we use the located type A@p to represent the end-point type A assigned to participant p.
Types k!(S̃) and k?(S̃) represent output and input of values of type S̃ at sk. Types k ⊕ {li : αi}i∈I and
k&{li : αi}i∈I describe selection and branching: the former selects one of the labels provided by the
latter, say li at k then they behave as αi . The remaining types are a local version of the global ones.

Projection. As usual we define a projection that given a global type G and a participant p returns the
end-point corresponding to the local behaviour of p. We write G � p to denote such a projection.

The projection is defined first over global types and then over partial global types, that is (γ; end) �
p = (γ �� p).end.

The exception type is projected in every participant as a local exception type, even if the participant
has no activity in the try-catch block (we call these inactive blocks dummy try-catch). This to guarantee
that the structure of try-catch blocks is the same in each process.

({[k̃, γ1, γ2]}) �� p = {[k̃, (γ1 �� p), γ2 �� p]} if ch(γi) ⊆ k and
(
{[k̃′, γ′1, γ

′
2]} ∈ γi implies k̃′ ⊂ k̃

)
When the side condition does not hold the map is undefined.

Typing Rules. Type assumptions over names and variables are stored into the Standard environment Γ

that stores type assumptions over names and variables, and is defined by Γ ::= ∅ | Γ, u : S | Γ, X : S̃ Ã,
and into the Session environment ∆ that records session types associated to session channels and is
defined by ∆ ::= ∅ | ∆, k̃ : {A@p}p∈I .

S. Capecchi, E. Giachino, N. Yoshida 345

bNamec
Γ, a : S ` a : S

∆ end only
bInactc

Γ ` 0 . ∆ z̃

Γ, a : 〈G〉 ` P . ∆ z̃
bNResc

Γ `(νa)P . ∆ z̃

Γ ` a : 〈G〉 Γ ` P . ∆ ∪ {s̃ : (G � 1)@1} − |s̃| = |sid(G)|
bMReqc

Γ ` a[2..n](s̃).P . ∆−
Γ ` a : 〈G〉 Γ ` P . ∆ ∪ {s̃ : (G � p)@p} − |s̃| = |sid(G)|

bMAccc
Γ ` a[p](s̃).P . ∆−

∀ j.Γ ` e j : S j
bSendc

Γ ` sϕk !〈ẽ〉 . {s̃ : kϕ!(S̃)@p} z̃

Γ, x̃ : S̃ ` P . ∆ ∪ {s̃ : A@p} z̃
bRcvc

Γ ` sϕk ?(x̃).P . ∆ ∪ {s̃ : kϕ?(S̃); A@p} z̃

Γ ` P . ∆ ∪ {s̃ : A j@p} z̃ j ∈ I
bSelc

Γ ` sϕk C l j.P . ∆ ∪ {s̃ : kϕ ⊕ {li : αi}i∈I@p} z̃

Γ ` Pi . ∆ ∪ {s̃ : Ai@p} z̃ ∀i ∈ I
bBranchc

Γ ` sϕk B {li : Pi}i∈I . ∆ ∪ {s̃ : kϕ&{li : αi}i∈I@p} z̃

Γ ` P . {s̃ : α@p} z̃ Γ `Q . {s̃ : β@p} z̃′

ch(P) ⊆ z̃ (z̃′ , −)⇒ z̃ ⊂ z̃′
bTryc

Γ ` try(z̃){P} catch {Q} . {s̃ : {[z̃, α, β]}@p} z̃′

\(r̃) = \(z̃)
bThrowc

Γ ` throw(r̃) . ∅ z̃

Γ ` P . ∆ z̃ Γ `Q . ∆′ z̃ ∆ � ∆′

bParc
Γ ` P | Q . ∆ ◦ ∆′ z̃

Γ ` P . ∆ z̃ Γ `Q . ∆′ z̃
bSeqc

Γ ` P; Q . ∆ · ∆′ z̃

Γ ` e : bool Γ ` P . ∆ z̃ Γ `Q . ∆ z̃
bIfc

Γ ` if e then P else Q . ∆ z̃

Γ ` ẽ : S̃ ∆ end only
bVarc

Γ, X : S̃ Ã ` X〈ẽs̃1..s̃n〉 . ∆, s̃1 : A1@p1, .., s̃n : An@pn z̃

Γ, X : S̃ Ã, x̃ : S̃ ` P . s̃1 : A1@p1, .., s̃n : An@pn z̃ Γ, X : S̃ Ã `Q . ∆ z̃
bDefc

Γ ` def X(x̃s̃1..s̃n) = P in Q . ∆ z̃

Figure 4 Typing rules

The typing judgement has the form: Γ ` P . ∆ z̃, where P is the process to be typed and z̃ refers
to the channels on which the enclosing try-catch block is listening for an exception. We need to take
track of those channels in order to ensure (i), (ii) and (iii).

The complete set of typing rules is given in Figure 4. All the rules are standard w.r.t. multiparty
sessions theory, except for the two rules bTryc and bThrowc.

In rule bTryc the default process P and the exception handler Q are both typed with a session
environment composed by s̃ channels only, this is to guarantee that no other communications on
channels belonging to some other sessions would be interrupted due to the raising of an exception.
The channels z̃′ refers to the channels on which an eventual external try in listening for exceptions.
Notice that z̃′ may be an empty sequence, that is the try-block that is being type-checked is at the
top level. The default process P considers in its typing the sequence z̃ of the current try-block, while

FSTTCS 2010

346 Global Escape in Multiparty Sessions

the exception handler consider the sequence z̃′ of the external try-catch block: this is because when
executing the exception handler would be directly enclosed in the external try-catch block. Notice
that if z̃′ is different from the empty sequence (z̃′ , −) then z̃ must be a strict subsequence, this is to
guarantee that the current try-catch block is listening on a smaller set of channels w.r.t. the enclosing
one. The rule also checks that the channels on which P is communicating (ch(P)) are included in z̃:
this is to ensure that all the channels involved in some communication in P will be notified of the
exception.

In rule bThrowc we check that a throw(r̃) has been written at the right position: it must be at the
top level of a default process in a try-block on channels r̃. That is the z̃ recorded in the judgement
must be the same as r̃ (up to the \ operation). Note that given closed annotated processes (i.e. bound
variables and names are annotated by types), the type checking is decidable (since checking coherent
of G is polymonial with respect to the size of G [7]).

Properties. The type discipline ensures, as in previous session types literature [8, 9]:
the lack of standard type errors in expressions (Subject Reduction):
communication error freedom (Communication Safety),
the interactions of a typable process exactly follow the specification described by its global type
(Session Fidelity), and
once a communication has been established, well-typed programs will never stuck at communica-
tion points (Progress)

I Theorem 4.1 (Subject Congruence and Reduction). Suppose Γ ` P . ∅. Then (1) P ≡ P′ implies
Γ ` P′ . ∅; and (2) P→ P′ implies Γ ` P′ . ∅.

For the proof, see [3]. From this theorem, Session Fidelity Theorem (the interaction of a typable
process exactly follow the specification described by its global type) is straightforward. We also state
the two theorems which are derived following the technique developed in [9]; see [3] for the proofs.

Below we write P〈〈r!〉〉 (resp. P〈〈r?〉〉) if P contains an emitting (resp. receiving) active prefix at r
up to ≡, and we say that P has a redex at r if it has an active prefix at r among its redexes (Section 5
in [9] gives further details for the redexes). The reduction context E is defined in Section 3.

I Theorem 4.2 (Communication Safety). Suppose Γ ` P .r̃ ∆ s.t. ∆ is coherent and P has a redex at
free sϕ. Then:

1. (linearity) P ≡ E[s[ϕ] : h̃] such that either

a. P〈〈sϕ?〉〉, sϕ occurs exactly once in E and h̃ , ∅; or
b. P〈〈sϕ!〉〉 and sϕ occurs exactly once in E; or
c. P〈〈sϕ?〉〉, P〈〈sϕ!〉〉, and sϕ occurs exactly twice in E.

2. (error-freedom) if P ≡ E[R] with R〈〈sϕ?〉〉 being a redex:

a. If R ≡ sϕ?(ỹ); Q then P ≡ E′[s[ϕ] : ṽ · h̃] for some E′ and |ṽ| = |ỹ|.
b. If R≡ sϕ B {li : Qi}i∈I then P≡E′[s[ϕ] : l j ·h̃] for some E′ and j∈ I.

The type discipline ensures also the progress property. A process is simple when each prefixed
subterm in it has only a unique session.

I Definition 4.3 (simple). A process P is simple when it is typable with a type derivation where the
session typing in the premise and the conclusion of each prefix rule is restricted to at most a singleton.

In a simple well-linked P, each session is never hindered by other sessions nor by a name prefixing:

I Definition 4.4 (well-linked). We say P is well-linked when for each P→∗ Q, whenever Q has an
active prefix whose subject is a (free or bound) shared name, then it is always part of a redex.

S. Capecchi, E. Giachino, N. Yoshida 347

Robot

Robot Sensor

Press

Press Sensor

turn
robot &

extend
arm

grab plate

from press

enclosing action: remove plate

Figure 5 The coordinated action remove-plate.

Then the following theorem states that a progress holds for a simple process with a queue for each
session channel, such that each prefixed subterm in it has only a unique session and such that each
session is never hindered by other sessions nor by a name prefixing.

I Theorem 4.5 (Progress). Let P be a simple and well-linked program and Γ ` P . ∅. Then P has
the progress property in the sense that P→∗ P′ implies either P′ ≡ 0 or P′ → P′′ for some P′′.

5 Coordinated Exception Handling and Resolution: an Example

Coordinated Atomic Actions. In the context of distributed object systems, Coordinated Atomic
Actions (CAs) [13] represent conversation units w.r.t. resource access and recovery activities, in
the sense that when an exception is thrown inside a CA the handling is confined within the CA
participants, unless something goes wrong during exception handling. Namely two kind of exceptions
may be raised: internal exceptions E which can be handled locally and external exceptions ε that
must be signalled to the environment (the enclosing action or the whole system). Disjoint subsets of
participants may join nested CAs and, consequently, nested exception contexts. Exceptions can be
propagated along chains of nested actions: if the local handling of an exception E is not successful,
then a corresponding exception ε will be thrown to the enclosing action. When one or more exceptions
are raised in a CA the following actions are performed: (i) the cooperating threads are informed, (ii)
nested actions are aborted because E has been thrown outside them, (iii) during abortion the handler
may signal other exceptions, (iv) an algorithm determines which exception must be covered.

CAs have been adapted in [14] to model fault tolerant Web Services: the resulting Web Service
Composition Actions (WSCA) relax transactional requirements over external objects since they
cannot always be enforced in open systems. In the case of web services these transactional properties
can be abstracted and left optional in the various services.

We model the cooperating threads in a CA as a set of participants {p}{i∈I} performing a [Link]:
the established session represents the outermost CA while nested CAs are implemented by try-catch
blocks involving only a subset of threads/channels. For each (nested) CA we implement of an
“exception resolver“ participant. This process is inactive during normal execution, but when one or
more exceptions are thrown it collects the corresponding messages from the cooperating threads,
decides which exception must be covered, and then sends the corresponding label to all participants.
In the following we assume the resolver uses channel 1.

FSTTCS 2010

348 Global Escape in Multiparty Sessions

Let {Eh}h∈H and {εk}k∈K be sets of internal and external exception respectively and

(νs̃′)
(
... | try(s̃){0} catch {Q1} | try(s̃){P2} catch {Q2} |

... | try(s̃){Pn} catch {Qn} | s1 : � | ... | sm : �

)
represent a CA where s̃ ⊂ s̃′ = {s1, ...sm}: s̃′ is the set of channels involved in the enclosing action
while s̃ are the channels involved in the nested one (remember that nested actions, i.e. nested try-catch
blocks can only involve proper subsets of channels).
The handler of the resolver process is:

Q1 = try(s̃){s1?(x2). . . . s1?(xn).} catch {0}; Q1
G (1)

where Q1
G = try(s̃){ algorithm determining h ∈ H. s1!〈(h)〉 . . . s1!〈(h)〉} catch {0} (2)

The handlers Q j for j ∈ {2, . . . , n} have the shape:

Q j=try(s̃){if test then s1!〈h〉 else s1!〈0〉} catch {0}; Q j
G (3)

and Q j
G=try(s̃){s1?(x).; P j} catch {throw(s̃′)}, (4)

where test checks whether exception h has been raised by the current component.
Production Cell. We now implement a part of a case study modelling an industrial Production
Cell. This example was proposed as a challenging case study by the FZI in 1993 [12]. The pro-
duction cell consists of some devices (belts, elevating rotary table, press and rotary robot with
two orthogonal extensible arms) associated with a set of sensors, and its task is to get a metal
plate from its “environment” via the feed belt, transform it into the forged plate by using a press,
and return it to the environment via the deposit belt. For a detailed explanation of the model see
[16]. Here we just model the part of the system responsible of removing the plate from the press.
The components we are considering are Robot, RobotSensor, Press and PressSensor abbreviated
respectively as R, RS, P, PS. They are cooperating in the remove-plate action. There are two nested
actions: turn-robot-and-extend-arm abbreviated as TR and grab-plate-from-press abbreviated as
GP. For the sake of simplicity we assume that the exceptions that can be raised are Robot-failure,
Robot-sensor-failure, Press-failure, Press-Sensor-failure abbreviated respectively as RF, RSF,
PF, PSF. The handlers Q are indexed by the participants: QRS corresponds to the handler associated to
the robot-sensor. In case of problems during exception handling the control is passed to the enclosing
action by signalling one of the following exceptions: BadRobotRecovery, BadRobotSensorRecovery,
BadPressRecovery and BadPressSensorRecovery abbreviated respectively as BR, BRS, BP, BPS.

The enclosing action remove-plate uses channels s1, s2. Concerning nested actions channel s1 is
used in action turn-robot-and-extend-arm while channel s2 is used in action grab-plate-from-press.
We recall that we write s as a shorthand for s0. The action remove-plate is then implemented as in
the following (where we omit dummy try-catch):
ResolverTR | Robot | RobotSensor | Press | PressSensor | ResolverGP | s1 : L1 | s2 : L2 | s3 : L3

where
ResolverTR = try(s1, s2){try(s1){0} catch {RTR}} catch {0}
ResolverGP = try(s1, s2){try(s1){0} catch {RGP}} catch {0}
Robot = try(s1, s2){try(s1){PR} catch {QR}} catch {Q′R}
RobotSensor = try(s1, s2){try(s1){PRS } catch {QRS }; try(s2){P′RS } catch {Q′RS }} catch {Q′′RS }

Press = try(s1, s2){try(s2){PP} catch {QP}} catch {Q′P}
PressSensor = try(s1, s2){try(s2){PS } catch {QPS }} catch {Q′PS }.

Let us notice that each nested action has a corresponding resolver. Let us focus on Robot | RobotSensor
(where we put P′ = try(s2){P′RS } catch {Q′RS }) and suppose there is a failure in the Robot and concur-
rently in the Robot-sensor, that is:
ResolverTR | Robot | RobotSensor −→∗

ResolverTR | try(s1, s2){try(s1){throw(s1); P′′} catch {QR}} catch {Q′R} |
try(s1, s2){try(s1){throw(s1); P′′′} catch {QRS }; P′} catch {Q′RS }

We apply rule bThrc and bRThrc twice obtaining:
throw(s1) ` ResolverTR | try(s1, s2){QR{s1

1/s1}} catch {Q′R} |
try(s1, s2){QRS {s1

1/s1}} catch {Q′RS }

S. Capecchi, E. Giachino, N. Yoshida 349

After the substitution {s1
1/s1} we have:

throw(s1) ` try(s1, s2){try(s1
1){s1

1?(x1); s1
1?(x2)} catch {0}; QG{s1

1/s1}} catch {0} |
try(s1, s2){try(s1

1){if . . .} catch {0}; QR
G{s

1
1/s1}} catch {Q′R} |

try(s1, s2){try(s1
1){if . . .} catch {0}; QRS

G {s
1
1/s1}; P′} catch {Q′RS } | s1[1] : (∅),

we apply both rule bSendc and rule bRecc twice:
throw(s1) ` try(s1, s2){try(s1

1){0} catch {0}; QG{s1
1/s1}} catch {0} |

try(s1, s2){try(s1
1){0} catch {0}; QR

G{s
1
1/s1}} catch {Q′R} |

try(s1, s2){try(s1
1){0} catch {0}; QRS

G {s
1
1/s1}; P′} catch {QRS } | s1[1] : (∅).

Now the execution goes on with the general handlers processes:
try(s1, s2){try(s1

1){ algorithm determining h ∈ H. s1!〈(h)〉} catch {0}} catch {0} |
try(s1, s2){try(s1

1){s1?((x)); informing external objects} catch {throw(s1
1, s2)}} catch {QR} |

try(s1, s2){try(s1
1){s1?((x)); informing external objects; P′} catch {throw(s1

1, s2)}} catch {QRS } | s1[1] : (∅),

the resolver reads the value of the received labels, calculates which exception must be covered
and sends the corresponding label to the other processes. As explained above the handler of QG’s
processes is a throw on the outer set of channels: the reason is that if an exception is raised during the
general handler execution, the exception must be recovered by the enclosing action. Now there are
two cases:

1. the execution of the general handlers terminates without problems. In this case the execution
goes on with the next nested action grab-press-from-plate in which RobotSensor, Press and
PressSensor cooperate:

throw(s1) ` try(s1, s2){0} catch {Q′R} | try(s1, s2){P′} catch {Q′RS }

Press | PressSensor | s1 : . . .

2. something goes wrong during the general handlers execution (for instance QR
G −→

∗ throw(s1
1)).

Then the corresponding handler alerts the enclosing action by signalling a throw on channels
s1

1, s2:

throw(s1) ` try(s1, s2){try(s1
1){throw(s1

1)} catch {throw(s1
1, s2)}} catch {Q′R} |

try(s1, s2){try(s1
1){QRS

G } catch {throw(s1
1, s2)}; P′} catch {Q′RS },

we apply rule bThrc:
throw(s1), throw(s1

1) ` try(s1, s2){try(s1
1){0} catch {throw(s1

1, s2)}} catch {Q′R} |
try(s1, s2){try(s1

1){QRS
G } catch {throw(s1

1, s2)}; P′} catch {Q′RS },

we apply rule bRThrc twice:
throw(s1), throw(s1

1) ` try(s1, s2){throw(s1
1, s2)} catch {Q′R} |

try(s1, s2){throw(s1
1, s2); P′} catch {Q′RS }

we apply rule bThrc twice with:
throw(\(s1

1, s2)) = throw(s1, s2)
throw(s1), throw(s1

1), throw(s1, s2) ` try(s1, s2){0} catch {Q′R} | try(s1, s2){P′} catch {Q′RS },

Coming back to the complete action remove-plate:
throw(s1), throw(s1

1), throw(s1, s2) ` QR{s2
1, s

1
2/s1

1, s2} | QRS {s2
1, s

1
2/s1

1, s2} |

QP{s2
1, s

1
2/s1

1, s2} | QPS {s2
1, s

1
2/s1

1, s2}.

In this case the execution goes on handling an external exception i ∈ {BR,BRS,BP,BPS}. Let
us notice that the following nested action, grab-plate-from-press, is not executed because of a
failure involving the enclosing action.

Correctness and complexity. Let N the number of interacting participants, Tnmax be the maximum
time of message passing between participants, Treso be the upper bound of the time spent in resolving
current exceptions, Tabort be the maximum possible time for a thread to abort one nested CA, Tthrow

the cost for signalling the throw (namely to put it in the Σ), nmax be the maximum number of nesting
levels of CAs (if no nesting, then nmax = 0), ∆nmax be maximum possible time of handling an
(resolving) exception. We share with [16] the following results:

FSTTCS 2010

350 Global Escape in Multiparty Sessions

1. Any participant p, will complete exception handling ultimately in at most T , where T = (nmax +

3)Tnmax + nmax · Tabort + (nmax + 1)(Treso + ∆nmax) + Tthrow.
2. For a given CA A, if no exception is raised in any enclosing action of A, then no more new

exceptions will be raised within A once the exception resolution starts.
3. If multiple exceptions are raised concurrently, an ultimate resolving exception that covers all the

exceptions will be generated by the proposed algorithm.
4. The number of messages is independent of the number of concurrent exceptions. Taking the

nesting of actions into account, in the worst case, our approach requires exactly nmax(N − 1)
messages+ N throws. (Let us notice that in [16] the algorithm performs in O(N2) messages).

6 Conclusions

We have introduced a type-safe global escape mechanism for handling unexpected or unwanted
conditions changing the default execution of distributed communicational flows, by means of a
collection of asynchronous local exceptions. All the involved conversation parties are guaranteed of
the communication safety even after an unforeseen event has been encountered. We have defined a
calculus and a type discipline based on the multiparty session [9], and show that the multiparty session
types provide a rigorous discipline which can describe and validate complex exception scenarios
such as criss-crossing global interactions and fault tolerance for distributed cooperating threads. The
flexibility was actually realised allowing local exceptions to be thrown at any stage of the conversation
and to any subset of participants. Concerning the criss-cross example our implementation of the
protocol never moves to the situation where the Seller sends a confirmation to the Client but the Client
aborts the interaction or the Client accepts the wrong loan offer from the Bank.

Related work. Exception handling has been studied for many programming languages including
communication-based ones: in distributed object-oriented programming [13, 16], in particular [16]
presents the algorithm we implemented as an example in Section 5; several service-oriented calculi
(e.g. [2, 11, 15]) include mechanisms for compensation or termination handling, but none of those
mechanisms provide a means for coordinating all involved peers that move together to a new stage
of the conversation when the unexpected condition is encountered. The paper [10] compares the
expressive power of different approaches to compensation; w.r.t. their classification our approach has
a static compensation definition, is nested, and has no protection operator. In the context of session
types theory, [4, 6] proposed interactional exceptions, which inspired our work, for binary sessions
and for web service choreographies. The approach described in [4, 6] is significantly different from
ours, due to the fact that: (i) exceptions are modelled as special messages exchanged by the parties;
(ii) try-catch blocks cannot be at any point in the program but only after a session connection: this
means that for a conversation a default behaviour and an exceptional one are defined, while in our
calculus try-catch blocks can occur at any point, even nested; and (iii) in those calculi nested try-catch
blocks come from nested session connections, and inner exception handlers are refinements of outer
ones, while in our case nested try-catch blocks always belong to the same conversation (we forbid
session connections inside a try block) and inner exceptions always involve less peers than outer
exceptions.

Future work. For the sake of simplicity, so far we have not included in the calculus an important
mechanism in the context of session types: session delegation. Even if session delegation seems to
be less interesting in the multiparty sessions context than in the binary sessions one, because of the
presence of several participants instead of just two, we believe this mechanism is worth of further
investigation. Another feature that seems promising w.r.t. practical examples is the capability of
distinguishing among different kinds of exceptions (with corresponding different kinds of handlers):
the calculus can be easily extended in this direction by putting the right constraints (i.e. all participants

S. Capecchi, E. Giachino, N. Yoshida 351

must be able to handle the same set of exceptions). Finally we plan to integrate with multiparty logic
work [1] by which we can write a wide range of global escape scenarios which require fine-grained
behavioural specifications given by logical assertions, and still ensure communication safety and
progress.

Acknowledgments. We thank the FSTTCS reviewers for useful comments. The members of WS-
CDL (http://www.w3.org/2002/ws/chor/) and Scribble (http://www.jboss.org/scribble) (in particular,
Gary Brown, Kohei Honda and Nickolas Kavantzas) provided many use cases which motivated us to
study this subject: we used some of them as the main examples of this paper.

References

1 L. Bocchi, K. Honda, E. Tuosto, and N. Yoshida. A theory of design-by-contract for distributed
multiparty interactions. In CONCUR 2010, volume 6269 of LNCS, pages 162–176. Springer, 2010.

2 L. Bocchi, C. Laneve, and G. Zavattaro. A calculus for long-running transactions. In FMOODS
2003, volume 2884 of LNCS, pages 124–138. Springer, 2003.

3 S. Capecchi, E. Giachino, and N. Yoshida. Global Escape in Multiparty Sessions. Technical report,
Imperial College, London, GB, 2010.

4 M. Carbone, K. Honda, and N. Yoshida. Structured interactional exceptions for session types. In
CONCUR 2008, volume 5201 of LNCS, pages 402–417. Springer, 2008.

5 M. Carbone, K. Honda, and N. Yoshida. Theoretical aspects of communication-centred program-
ming. ENTCS, 209:125–133, 2008.

6 Marco Carbone. Session-based choreography with exceptions. ENTCS, 241:35–55, 2009.
7 P. Deniélou and N. Yoshida. Buffered communication analysis in distributed multiparty sessions.

In CONCUR 2010, volume 6269 of LNCS, pages 343–357. Springer, 2010.
8 K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disciplines for structured

communication-based programming. In ESOP’98, volume 1381 of LNCS, pages 22–138. Springer,
1998.

9 K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. volume 43, pages
273–284, New York, NY, USA, 2008. ACM.

10 I. Lanese, C. Vaz, and C. Ferreira. On the expressive power of primitives for compensation handling.
In ESOP 2010, volume 6012 of LNCS, pages 366–386. Springer, 2010.

11 A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus for orchestration of web services. In ESOP,
volume 4421 of LNCS, pages 33–47. Springer, 2007.

12 C. Lewerentz and T. Lindner, editors. Formal Development of Reactive Systems - Case Study
Production Cell, London, UK, 1995. Springer-Verlag.

13 C. M. F. Rubira and Zhixue Wu. Fault tolerance in concurrent object-oriented software through
coordinated error recovery. In FTCS ’95, page 499, Washington, DC, USA, 1995. IEEE Computer
Society.

14 F. Tartanoglu, V. Issarny, A. Romanovsky, and N. Levy. Coordinated forward error recovery for
compositeweb services. Reliable Distributed Systems, IEEE Symposium on, 0:167, 2003.

15 H. Torres Vieira, L. Caires, and J. Costa Seco. The conversation calculus: A model of service-
oriented computation. In ESOP 2008, volume 4960 of LNCS, pages 269–283. Springer, 2008.

16 J. Xu, A. Romanovsky, and B. Randell. Coordinated exception handling in distributed object sys-
tems: From model to system implementation. In ICDCS ’98, pages 12–21, Washington, DC, USA,
1998. IEEE Computer Society.

FSTTCS 2010

Computationally Sound Abstraction and
Verification of Secure Multi-Party Computations ∗

Michael Backes1,2, Matteo Maffei1, and Esfandiar Mohammadi1

1 Saarland University

{maffei,mohammadi}@cs.uni-saarland.de

2 Max-Planck Institute for Software Systems

backes@mpi-sws.org

Abstract

We devise an abstraction of secure multi-party computations in the applied π-calculus. Based

on this abstraction, we propose a methodology to mechanically analyze the security of crypto-

graphic protocols employing secure multi-party computations. We exemplify the applicability

of our framework by analyzing the SIMAP sugar-beet double auction protocol. We finally

study the computational soundness of our abstraction, proving that the analysis of protocols

expressed in the applied π-calculus and based on our abstraction provides computational se-

curity guarantees.

1998 ACM Subject Classification D.2.4 Software/Program Verification, D.4.6 Security and

Protection

Keywords and phrases Computational soundness, Secure multi-party computation, Process

calculi, Protocol verification

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.352

1 Introduction

Proofs of security protocols are known to be error-prone and security vulnerabilities have

accompanied academic protocols as well as carefully designed and widely deployed products

(e.g., Kerberos [10]). Hence work towards the automation of security proofs started soon after

the first protocols were developed. From the start, the actual cryptographic operations in such

proofs were idealized into so-called Dolev-Yao models [18]. This idealization simplifies proof

construction by freeing proofs from cryptographic details such as computational restrictions,

probabilistic behavior, and error probabilities. The work on the computational soundness of

Dolev-Yao models (e.g., [2, 7, 15, 14, 3])) has largely filled the gap between cryptographic

abstractions and computational cryptography, showing that security properties carry over

from the former to the latter.

While Dolev-Yao models traditionally comprise only non-interactive cryptographic op-

erations (i.e., cryptographic operations that produce a single message and do not involve

any form of communication, such as encryption and digital signatures), recent cryptographic

protocols rely on more sophisticated interactive primitives (i.e., cryptographic operations

that involve several message exchanges among parties), with unique features that go far

∗ This work was partially funded by the Cluster of Excellence “Multimodel Computing and Interaction”
(German Science Foundation), the Emmy Noether Programme (German Science Foundation), the
Miur’07 Project SOFT (Security Oriented Formal Techniques), the ERC starting grant “End-to-end
security”, and the DFG grant 3194/1-1.

© Michael Backes, Matteo Maffei and Esfandiar Mohammadi;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 352–363

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.352
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Backes, Maffei, Mohammadi 353

beyond the traditional goals of cryptography to solely offer secrecy and authenticity of

communication.

Secure multi-party computation (SMPC) constitutes arguably one of the most prominent

and most amazing such primitive. Intuitively, in an SMPC, a number of parties P1, . . . , Pn
wish to securely compute the value F (d1, . . . , dn), for some well-known public function F ,

where each party Pi holds a private input di. This multi-party computation is considered

secure if it does not divulge any information about the private inputs to other parties; more

precisely, no party can learn more from the participation in the SMPC than she could learn

purely from the result of the computation already.

SMPC provides solutions to various real-life problems such as e-voting, private bidding and

auctions, secret sharing etc. The recent advent of efficient general-purpose implementations

(e.g., FairplayMP [8]) paves the way for the deployment of SMPC into modern cryptographic

protocols. Recently, the effectiveness of SMPC as a building block of large-scale and practical

applications has been demonstrated by the sugar-beet double auction that took place in

Denmark: The underlying cryptographic protocol [9], developed within the Secure Information

Management and Processing (SIMAP) project, is based on SMPC.

Given the complexity of SMPC and its role as a building block for larger cryptographic

protocols, it is important to develop abstraction techniques to reason about SMPC-based

cryptographic protocols and to offer support for the automated verification of their security.

Our contributions. The contribution of this paper is threefold:

We present an abstraction of SMPC within the applied π-calculus [1]. This abstraction

consists of a process that receives the inputs from the parties involved in the protocol

over private channels, computes the result, and sends it to the parties again over private

channels, however augmented with certain details to enable computational soundness

results, see below. This abstraction can be used to model and reason about larger

cryptographic protocols that employ SMPC as a building block.

Building upon an existing type-checker [4], we propose an automated verification

technique for protocols based on our SMPC abstraction. We exemplify the applicability

of our framework by analyzing the sugar-beet double auction protocol proposed in [9].

We establish computational soundness results (in the sense of preservation of trace

properties) for protocols built upon our abstraction of SMPC. This computational sound-

ness result holds for SMPC that involve arbitrary arithmetic operations; moreover, it is

compositional, since the proof is parametric over the other (non-interactive) cryptographic

primitives used in the symbolic protocol and within the SMPC itself. Computational

soundness holds as long as these primitives are shown to be computationally sound

(e.g., in the CoSP framework [3]). We prove in particular the computational soundness

of a Dolev-Yao model with public-key encryption, signatures, and the aforementioned

arithmetic operations, leveraging and extending prior work in CoSP. Such a result allows

for soundly modelling and verifying many applications employing SMPC as a building

block, including the case studies considered in this paper.

Related work. Computational soundness was first shown by Abadi and Rogaway in [2]

for passive adversaries and symmetric encryption and later extended to active adversaries

and additional cryptographic primitives [2, 7, 15, 14, 3]. All these results, however, only

consider non-interactive cryptographic primitives, such as encryptions, signatures, and non-

interactive zero-knowledge proofs. To the best of our knowledge, our work presents the first

computational soundness proof for an interactive primitive.

F S T T C S 2 0 1 0

354 Computationally Sound Abstraction and Verification of SMPC

A salient approach for the abstraction of interactive cryptographic primitives is the

Universal Composability framework [11]. The central idea is to define and prove the security

of a protocol by comparison with an ideal trusted machine, called the ideal functionality.

Although this framework has proven a convenient tool for the modular design and verification

of cryptographic protocols, it is not suited to automation of security proofs, given the intricate

operational semantics of the UC framework and that ideal functionalities operate on bitstrings

(as opposed to symbolic terms). Dolev-Yao models (e.g., the applied π-calculus) offer a

higher level of abstraction compared to ideal functionalities in the UC framework. Most

importantly, Dolev-Yao models enable automation of security proofs. The different degree

of abstraction in these models is best understood by considering digital signatures: While

computational soundness proofs for Dolev-Yao abstractions of digital signatures use standard

techniques [7, 15, 3] finding a sound ideal functionality for digital signatures has proven to

be quite intricate [16]. Yet, securely realizable ideal functionalities constitute a useful tool

for proving computational soundness of a Dolev-Yao model. Similarly to [12], we leverage a

UC realizability result for showing the computational soundness of our symbolic abstraction.

A generic symbolic abstraction of ideal functionalities has been proposed in [17]. In

that work it is shown that the different notions of simulatability, known in the literature,

collapse in the symbolic abstraction. In contrast to our approach, that work does not address

computational soundness guarantees and does not explicitly consider SMPC.

Outline. Section 2 reviews the applied π-calculus and presents our SMPC abstraction.

Section 3 explains the technique used to statically analyze SMPC-based protocols and applies

it to our case study. Section 4 presents the computational implementation of a process and

studies the computational soundness of our abstraction and Section 5 concludes.

2 The symbolic abstraction of SMPC

In this section, we first review the syntax and the semantics of the calculus. We adopt a

variant of the applied π-calculus with destructors [4]. After that, we present the symbolic

abstraction of secure multi-party computation within this calculus.

2.1 Review of the applied π-calculus

We briefly review the syntax and the operational semantics of the applied π-calculus, and

define the additional notation used in this paper.

Cryptographic messages are represented by terms. The set of terms (ranged over by

K, L, M , and N) is the free algebra built from names (a, b, c, m, n, and k), variables (x,

y, z, v, and w), and function symbols – also called constructors – applied to other terms

(f(M1, . . . ,Mk)). We let u range over both names and variables. We assume a signature

Σ, which is a set of function symbols, each with an arity. For instance, the signature may

contain the function symbols enc/3 of arity 3 and pk/1 of arity 1, representing ciphertexts

and public keys, respectively. The term enc(M, pk(K), L) represents the ciphertext obtained

by encrypting M with key pk(K) and randomness L. We let M denote an arbitrary sequence

M1, . . . ,Mn of terms. Destructors are partial functions that processes can apply to terms.

Applying a destructor d to terms M either succeeds and yields a term N (denoted as

d(M) = N), or it fails (denoted as d(M) = ⊥). For instance, we may use the dec destructor

with dec(enc(M, pk(K), L),K) = M to model decryption in a public-key encryption scheme.

Plain processes are defined as follows. The null process 0 does nothing and is usually

omitted from process specifications; νn.P generates a fresh name n and then behaves as P ;

Backes, Maffei, Mohammadi 355

a(x).P receives a message N from channel a and then behaves as P{N/x}; a〈N 〉.P outputs

message N on channel a and then behaves as P ; P | Q executes P and Q in parallel; !P
behaves as an unbounded number of copies of P in parallel; let x = D then P else Q applies

if D = d(M) the destructor d to the terms M ; if application succeeds and produces the term

N (d(M) = N) or D equals a term N , then the process behaves as P{N/x}; otherwise, i.e.,

if d(M) = ⊥, the process behaves as Q.1

The scope of names and variables is delimited by restrictions, inputs, and lets. We write

fv(P) for the free variables and fn(P) for the free names in a process P . A term is ground if

it does not contain any variables. A process is closed if it does not have free variables. A

context C[•] is a process with a hole •. An evaluation context is a context whose hole is not

under a replication, a conditional, an input, or an output.

The operational semantics of the applied-π calculus is defined in terms of structural

equivalence (≡) and internal reduction (→). Structural equivalence relates the processes

that are considered equivalent up to syntactic re-arrangement. Internal reduction defines the

semantics of process synchronizations and destructor applications. For more detail on the

syntax and semantics of the calculus, we refer to the full version [5].

Safety properties. Following [19], we decorate security-related protocol points with logical

predicates and express security requirements in terms of authorization policies. Formally, we

introduce two processes assume F and assert F , where F is a logical formula. Assumptions

and assertions do not have any computational significance and are solely used to express

security requirements. Intuitively, a process is safe if and only if all its assertions are entailed

by the active assumptions in every protocol execution.

I Definition 1 (Safety). A closed process P is safe if and only if for every F and Q such

that P →∗ νa.(assert F | Q), there exists an evaluation context E[•] = νb. • | Q′ such that

Q ≡ E[assume F1 | . . . | assume Fn], fn(F) ∩ b = ∅, and we have that {F1, . . . , Fn} |= F .

A process is robustly safe if it is safe when run in parallel with an arbitrary opponent.

I Definition 2 (Opponent). A closed process is an opponent if it does not contain any assert.

I Definition 3 (Robust Safety). A closed process P is robustly safe if and only if P | O is

safe for every opponent O.

2.2 Abstracting SMPC in the applied π-calculus

We recall that a secure multi-party computation is a protocol among parties P1, . . . , Pn to

jointly compute the result of a function F applied to arguments m1, . . . ,mn, where mi is a

private input provided by party Pi. More generally, not only a function but a reactive, stateful

computation is performed, which requires the participants to maintain a (synchronized) state.

At the end of the computation, each party should not learn more than the result (or, more

generally, a local view ri of the result). Since the overall protocol may involve several secure

multi-party computations, a session identifier sid is often used to link the private inputs to

the intended session. Coming up with an abstraction of SMPC that is amenable to automated

verification and that can be proven computationally sound is technically challenging, and it

required us to refine the abstraction based on insights that were gained in the soundness proof.

For the sake of exposition, we thus present simple, intuitive abstraction attempts of SMPC

1 Using a destuctor equal that checks term equality, we write if a = b then P else Q for
let equals(a, b) = a in P else Q.

F S T T C S 2 0 1 0

356 Computationally Sound Abstraction and Verification of SMPC

in the applied π-calculus first, explain why these attempts do not allow for a computational

soundness result, and then successively refine them until we reach the final abstraction.

First attempt. A first, naive attempt to symbolically abstract SMPC in the applied

π-calculus is to let parties send to each other the public information along with the en-

veloped private input on a private channel. This message can be represented by a term

smpc(F, i,m, sid), where i is the principal’s identifier. The abstraction then consists of a

destructor result whose semantics is defined by a rule like

result(mi, i, smpc(F , 1,m1, sid), . . . , smpc(F , n,mn, sid)) = π(i,F(m1, . . . ,mn))

where π(i, ·) denotes the projection on the i-th element. This abstraction is unsound: a

computational attacker (i) is capable of altering the delivery of messages, and (ii) learns

the session identifiers that occur in the header of each individual message. Our abstraction

attempt does not grant the adversary any such capabilities; hence a symbolic adversary is

much stronger constrained than a computational adversary, thus preventing computational

soundness results. These problems could be tackled by modifying the abstraction such that

all messages are sent and received over a public channel. The adversary would then decide

which parties receive which messages. The resulting abstraction, however, would not be

tight enough anymore: Corrupted symbolic parties could send different messages to the

participants, and hence cause them to compute the function F on different inputs. Such an

attack, however, is computationally excluded by a secure multi-party computation protocol.

Second attempt. Inspired by the ideal functionality paradigm [11], we solve the aforemen-

tioned problems by introducing a trusted party to whom every participant i sends its private

input and receives its own result in return over a private channel ini. A first attempt, called

SMPC temp, could look as follows:

SMPC temp
4= sidc(sid).in1(x1,= sid) . . . inn(xn,= sid).
let (y1, . . . , yn) = result(F , x1, . . . , xn) in in1〈y1, sid〉 . . . inn〈yn, sid〉

There still is discrepancy between this abstraction and the computational model that in-

validates computational soundness: a computational adversary learns the session identifier,

which is instead concealed by SMPC temp. In addition, the computation of F is shifted

to the evaluation of the destructor result. Such a complicated destructor would make

mechanized verification extremely difficult.

Final abstraction. To make the abstraction amenable to automated verification, in

particular type-checking, we represent F as a context that explicitly performs the computation.

The resulting abstraction of secure multi-party computation is depicted in Figure 1 as the

process SMPC. This process is parametrized by an adversary channel adv, a session identifier

channel sidc, n private channels ini for each of the n participants, and a context F . We

implicitly assume that private channels are authenticated such that only the ith participant

can send messages on channel ini. The computational implementation of SMPC implements

this authentication requirement. Furthermore, SMPC contains two restricted channels for

every party i: an internal loop channel inloopi and an internal input channel lini.
SMPC receives a session identifier over the channel sidc. Then n+ 1 subprocesses are

spawned: a process inputi for every participant i that is responsible for collecting the ith

input and for divulging public information, such as the session identifier, to the adversary,

and a process that performs the actual multi-party computation. Here inputi waits (under a

replication) on the loop channel inloopi for the trigger message sync() of the next round, and

Backes, Maffei, Mohammadi 357

inputi
4= !inloopi(z).ini(xi, sid′).adv〈sid′〉.if sid = sid′

then lini〈xi〉 else inloopi〈sync()〉 | inloopi〈sync()〉
deliveri

4= ini〈yi, sid〉.inloopi〈sync()〉
SMPC(adv, sidc, in,F) 4= sidc(sid).νlin. νinloop.(

input1 | · · · | inputn | F [deliver1| · · · |delivern]
)

Figure 1 The process SMPC as the symbolic abstraction of SMPC

expects the private input xi and a session identifier sid′ over ini. It then sends the session

identifier sid′ to the adversary, checks whether the session identifier sid′ equals sid, and

finally sends the private input xi on the internal input channel lini. The actual multi-party

computation is performed in the last subprocess: after the private inputs of the individual

parties are collected from the internal input channels lini, the actual program F is executed.

After each computation round, the subprocesses deliveri send the individual outputs

over the private channels ini to every participant i along with the session identifier sid. In

order to trigger the next round, sync() is sent over the internal loop channels inloopi.
The abstraction allows for a large class of functionalities F as described below.

I Definition 4. [SMPC-suited context] An SMPC-suited context is a context F such that:

1. fv(F) = {sid} and fn(F [0]) = {lin1, . . . , linn}.
2. Bound names and variables are distinct and different from free names and free variables.

Although one might expect additional constraints on the context F (e.g., it is terminating,

it does not contain replications, etc.), it turns out that such constraints are not necessary

as, intuitively, having more traces in the symbolic setting does not break computational

soundness. Such constraints would probably simplify the proof of computational soundness,

but they would make our abstraction less intuitive and less general.

Finally, we briefly describe how we model the corruption of the parties involved in the

secure multi-party computation. In this paper we consider static corruption scenarios, in

which the parties to be corrupted are selected before the computation starts. As usual in

the applied π-calculus, we model corrupted parties by letting the adversary know the secret

inputs of the corrupted parties. This is achieved by letting the channel ini occur free in the

process if party i is corrupted. As we consider static corruption, we restrict our attention to

processes that do not send these channels ini over a public channel (see Section 4).

Arithmetics in the applied π-calculus. One of the most common applications of SMPC

is the evaluation of arithmetic operations on secret inputs. Modelling arithmetic operations

in the applied pi-calculus is straightforward. We encode numbers in binary form via the

string0(M), string1(M), and nil() constructor applications. Arithmetic operations are

modelled as destructors. For instance, the greater-equal relation is defined by the destructor

ge(M1,M2), which returns M1 if M1 is greater equal then M2, M2 otherwise. With this

encoding, numbers and cryptographic messages are disjoint sets of values, which is crucial

for the soundness of our analysis and the computational soundness results.

The Millionaires problem. For the sake of illustration, we show how to express the

Millionaires problem in our formalism (two parties wish to determine who is richer, i.e., whose

F S T T C S 2 0 1 0

358 Computationally Sound Abstraction and Verification of SMPC

input is bigger, without divulging their inputs to each other.) The protocol is parametrized

by two numbers x1 and x2:

MP
4= νsid, sidc, c1, c2. adv〈sid〉. sidc〈sid〉 | SMPC(adv, sidc, c,F) | P1 | P2

Pi
4= ci〈(xi, idi), sid〉.ci(yi, sidi)

F [•] 4= lin1((x1, z1)).lin2((x2, z2)).let z = ge(x1, x2) then [y1 := z, y2 := z]•

where [y1 := z, y2 := z] denotes the instantiation of variables y1 and y2 with variable z, which

can be defined by encoding, and • is the hole of the context.

3 Formal verification

We propose a technique for formally verifying processes that use the symbolic abstraction

SMPC. In principle, our abstraction is amenable to several verification techniques for the

applied π-calculus such as [19, 4]. In this paper, we rely on the type-checker for security

policies presented in [4], which we extend to support arithmetic operations. This type-checker

enforces the robust safety property (cf. the full version [5]).

We decorate the protocol linked to our SMPC abstraction with assumptions and assertions.

The assumptions are used to mark the inputs of the secure multi-party computation and to

specify the correctness property for the secure multi-party computation. The assertion is

used to check that the result of the SMPC fulfills the correctness property.

Specifically, for every party i an assumption assume Input(idi, xi, sid) is placed upon

sending a private input xi with session identifier sid, where idi is the (publicly known) identity

of party i. To check the correctness of the secure multi-party computation, assert P(z, sid)
is placed immediately after the reception of the result (z, sid). We also assume a security

policy, which takes in general the following form:

∀id, x, sid, z.
(
∧ni=1 Input(idi, xi, sid)

∧
i,j∈[n]

idi 6= idj ∧ Frel
)
⇒ P(z, sid)

The formula Frel characterizes the expected relation between the inputs and the output.

As an example, the policy and party annotations for the Millionaires problem would be as

follows:

∀id1, id2, x, y, sid.

(∧
i∈{1,2}

Input(idi, x, sid) ∧ id1 6= id2 ∧ x ≥ y
)
⇒ Richer(id1, sid).

Pi
4= assume Input(idi, xi, sid) | ci〈(xi, idi), sid〉.ci(yi, sidi).assert Richer(yi, sid).

Arithmetics in the analysis. We extended the type-checker to support arithmetic opera-

tions. Specifically, we modelled arithmetic operations as predicates in the logic, defined their

semantics following the semantics given in the calculus, and added a few general properties,

such as the transitivity of the greater-equal relation. The type theory is extended to track

the arithmetic properties of terms (e.g., while typing let z = ge(x1, x2) then P , the type-

checker tracks that z is the greatest value between x1 and x2 and uses this information to

type P). The type theory supports this kind of extensions as long as the set of added values

is disjoint from the set of cryptographic messages and the added destructors do not operate

on cryptographic terms, which holds true for our encoding of arithmetics.

Case study: sugar-beet double auction. As a case study for our symbolic abstraction,

we formalized and analyzed the sugar-beet double auction that has been realized within

Backes, Maffei, Mohammadi 359

the SIMAP project by using an SMPC [9]. This protocol constitutes the first large scale

application of an SMPC. The double auction protocol determines a market clearing price for

sugar-beets. More specifically, first, a set of prices is fixed; then, for every price each producer

commits itself to an amount of sugar-beets that it is willing to sell, and each buyer commits

itself to the amounts of sugar-beets that it is willing to buy. The market clearing price is the

maximal market clearing price for which the supply did not yet exceed the demand.

Both the producers and the buyers might want to keep their bids secret. Hence, the private

input of every party has to be kept private. In the sugar-beet double auction developed by the

SIMAP project, the sellers and buyers perform a joint secure multi-party computation. The

producer and buyer parties send initially an input and receive at the end of the computation

the result, i.e., the market clearing price. In addition, before the start of the protocol,

producers and buyers receive a signature on the list of participants, the session identifier,

and the set of prices from a trusted party. This signature is verified by each participant

and sent as an input to the SMPC, which verifies the signatures and checks whether the

data coincides This ensures that all participants agree on the common public inputs. Notice

that this SMPC performs arithmetic operations as well as cryptographic operations, yet on

distinct values.

Finally, we are ready to state the policy characterizing the result of the computation that

is performed: the predicate MCP(z, sid) holds true if there are appropriate input predicates

Input(idi, xi, sid) and z is the maximal price for which demand is greater than or equal to the

supply, which we characterize by the predicate Is max(x1, . . . , xn, z) (the semantics of this

predicate is defined in terms of basic arithmetic operations supported by our type-checker).

∀z, sid, x1, . . . , xm, id1, . . . , idn.Input(id1, x1, sid) ∧ · · · ∧ Input(idn, xn, sid)∧
i,j∈[n]

idi 6= idj ∧ Is max(x1, . . . , xm, z)⇒ MCP(z, sid)

The verification of this policy is challenging in that our abstraction comprises about 1400

lines of code and it relies on complex functions. The type-checker succeeds in 5 minutes and

30 seconds for the SMPC process and the ceritifcation issuer and additional 40 seconds for

every participant. 2

4 Computational soundness of symbolic SMPC

In this section, we establish the computational soundness of our abstraction. We first

introduce the computational implementation of a process. Thereafter, we define the notion

of robust computational safety. Finally, we state the computational soundness results.

Our computational soundness result is parameterized over the symbolic model (D,P); this

symbolic model consists of a set of constructors and destructors D (modelling non-interactive

primitives such as encryption and decryption) and a class P of processes.

Computational execution of a process. The semantics of the applied π-calculus is

purely symbolic (i.e., it does not involve probabilities, cryptographic messages are represented

as symbolic terms instead of bitstrings, the adversary is not computational, etc.). Along the

lines of [3], we introduce a probabilistic polynomial-time interactive Turing machine (ITM),

called the computational π-execution, that interacts with a ppt ITM, called the adversary.

2 The source code can be found at http://www.lbs.cs.uni-saarland.de/publications/smpc_simap.
spi. We type checked the protocol with 2 prices, 3 computation parties, and 2 input parties.

F S T T C S 2 0 1 0

http://www.lbs.cs.uni-saarland.de/publications/smpc_simap.spi
http://www.lbs.cs.uni-saarland.de/publications/smpc_simap.spi

360 Computationally Sound Abstraction and Verification of SMPC

The computational π-execution expects as input a process P and a security parameter k. We

summarize the main properties of this ITM. It enforces the reduction rules of the operational

semantics, draws a random bitstring for each fresh nonce (i.e., restricted name), and executes

each constructor and destructor application d(M) (for d ∈ D) as the computation of the

polynomial-time algorithm Ad on input M ; Ad is called the implementation of d and A is

the family of all implementations Ad (d ∈ D). In the operational semantics of the applied

π-calculus, the reduction rules are non-deterministic. This non-determinism is resolved in

the implementation by letting the adversary select the reduction steps: The computational

execution sends the current process to the adversary and receives back a message indicating

the next instruction to be executed. Whenever the execution encounters an assert F , it

stores a tuple of the form (F1, . . . , Fn, F, η, µ, P), called an assertion tuple, where Fi are the

active assumptions of the current process and η and µ are mappings assigning a bitstring to

each variable and name, respectively. We denote the interaction between the computational

π-execution using the implementations A and an adversary Adv as ExecπP,A,Adv(1k). Given

a polynomial p, the distribution of sequences of assertion tuples raised in an interaction of

ExecπP,A,Adv(1k) within the first p(k) computation steps is denoted as AssertionsπP,A,p,Adv(k).
Our computational π-execution is close in spirit to previously proposed computational

executions for the applied π-calculus (e.g., [3]). Such an implementation, however, treats each

SMPC(adv, sidc, in,F) abstraction as a trusted host performing a computation and sharing

a private channel with each party, whereas the final implementation runs a distributed SMPC

protocol. We thus refine the computational π-execution by letting the actual distributed

SMPC protocol be executed in place of the (implementation of the) SMPC(adv, sidc, in,F)
abstraction. The resulting computational execution Execsmpc

P,A,τ,Adv(1k), called computa-

tional SMPC-execution, is parameterized by the family τ of SMPC protocols implementing

each SMPC(adv, sidc, in,F) abstraction. AssertionssmpcP,A,τ,p,Adv(k) is defined analogous to

AssertionsπP,A,p,Adv(k) (see the full version [5] for the formal definitions).

Robust computational safety. The computational notion of robust safety depends on

the computational notion of logical entailment. A major difference between the standard

symbolic entailment relation and the computational entailment relation is that while the

former models destructor application tests d(M) = N via logical predicates of the form

Red(d#(M), N) (whose semantics follows from the symbolic rules of the applied π-calculus),

the latter computationally checks Ad(M̃) = Ñ , M̃ and Ñ being the bitstrings computed

for M and N using η, µ, and A. Thus, we denote the computational entailment relation as

|=η,µ,A. We now introduce two definitions of robust computational safety, with respect to

Execπ and Execsmpc, respectively.

I Definition 5 (Robust computational safety). Let P be a process, A an implementation of

the destructors in P , and τ a family of secure multi-party computations. We say that P is

π-(resp. SMPC-)robustly computationally safe using A (resp. A, τ) iff for all polynomial-

time interactive machines Adv and all polynomials p, Pr[for all ((F1, . . . , Fn), F, η, µ,Q) ∈ a,

{F1, . . . , Fn} |=η,µ,A F : a← AssertionsπP,A,p,Adv(k)] (resp. Pr[for all ((F1, . . . , Fn), F, η, µ,Q) ∈
a, {F1, . . . , Fn} |=η,µ,A F : a← AssertionssmpcP,A,τ,p,Adv(k)]) is overwhelming in k.

A symbolic model is computationally sound if robust safety carries over to the computational

setting. This definition is used in our first theorem, which is parameterized over the non-

interactive primitives used in the protocol.

I Definition 6 (Computationally sound model). Let A be a set of constructor and destructor

implementations. We say that a symbolic model (D,P) is computationally sound using A iff

for all P ∈ P such that P is robustly safe, P is π-robustly computationally safe using A.

Backes, Maffei, Mohammadi 361

There are properties for which computational soundness cannot be shown. For a function H

whose range is smaller than its domain (such as a collision-resistant hash function), consider

the injectivity property ∀x, y.x 6= y ⇒ H(x) 6= H(y). Symbolically, this property holds

true if H is a constructor. Computationally, however, this formula naturally does not hold

as x and y are universally quantified and collisions cannot be avoided. To exclude such

cases, we only consider quantification over protocol messages. This is formalized by requiring

that all quantified subformulas ∀x.F and ∃x.F are of the form ∀x.p(. . . , x, . . .) ⇒ F ′ and

∃x.p(. . . , x, . . .). ∧ F ′ (where p is a predicate) and we call the resulting class of first-order

formulas well-formed formulas (see the technical report [5] for a formal definition). Hence

∀x, y.x 6= y ⇒ H(x) 6= H(y) is not well-formed. Instead, ∀x, y.p(x)∧ p(y)∧x 6= y ⇒ H(x) 6=
H(y)3 (where p is a predicate, meant to be assumed upon reception of x and y) is well-formed.

As we exclude assumptions of the form ∀x.p(x), p(m) has to be assumed explicitly and m

must be a protocol message. For a collision-resistant hash function H, the above formula

holds computationally. We stress that in contrast to other computational soundness results

(e.g., [3]), where formulas are assumed to be term-free (i.e., contain nullary predicates only),

our result holds for formulas containing terms of the calculus and destructor application

tests.

In addition we require that (i) restricted channels ini are never output; (ii) session

identifiers are sent at most once on session identifier channels; and (iii) for all subpro-

cesses SMPC(adv, sidc, in,F) of P , the context F is SMPC-suited. Processes fulfilling

this constraints are called well-formed processes. A well-formed class of processes only

contains well-formed processes and enjoys some closeness properties, such as closeness under

subprocesses or top-level name restrictions (we refer to the full version [5] for more details).

Computational soundness of symbolic SMPC. We now state the main computational

soundness result of this work: the robust safety of a process using non-interactive primitives

and our SMPC abstraction carries over to the computational setting, as long as the non-

interactive primitives are computationally sound. This result ensures that the verification

technique from Section 3 provides computational safety guarantees. We stress that the

non-interactive primitives can be used both within the SMPC abstractions and within the

surrounding protocol. The proof uses a result from [13] on generic UC-realizable MPC

protocols that only holds under standard cryptographic assumptions: the setup assumption

of the CRS-model4 and the existence of enhanced trapdoor permutations. Moreover, as also

required in [3], all implementations A have to be length-regular.

I Theorem 7 (Computational soundness of symbolic SMPC). Let (D,P) be computationally

sound, well-formed model using A, where A is length-regular. If enhanced trapdoor permuta-

tions exist, then there is a family ρ of SMPC implementations in the CRS-model such that

for each well-formed P ∈ P, the robust safety of P implies the SMPC-robust computational

safety of P using A, ρ.

Computational soundness of arithmetic operations. We show that our computational

soundness result applies to a large class of protocols by proving the computational soundness

of a symbolic model with public-key encryption, signatures, and arithmetics5. We recall that

3 This formula is logically equivalent to ∀x.p(x) ⇒ ∀y.p(y) ⇒ x 6= y ⇒ H(x) 6= H(y). For the sake of
a clear presentation, the policies in Section 3 are not well-formed, but adding for every quantified
variable x a predicate p(x) to the premise makes these policies well-formed as well.

4 More precisely, in each SMPC session all parties have access to a shared bitstring, called the CRS.
5 This result extends prior work [3] in the CoSP framework to arithmetics and first-order logic formulas.

F S T T C S 2 0 1 0

362 Computationally Sound Abstraction and Verification of SMPC

numbers are modelled as symbolic bitstrings and arithmetic operations as destructors on these

bitstrings. In this way, we enforce a strict separation between numbers and cryptographic

terms, such as signatures and keys. Thus, it is not possible to apply an arithmetic operation

on nonces, signatures, or encrypted messages. Due to this separation, the impossibility result

for computational soundness of XOR [6] does not apply. As in [3], we impose some standard

conditions on protocols to ensure that all encryptions and signatures are produced using fresh

randomness and that secret keys are not sent around. A protocol satisfying these conditions

is called key-safe. We denote the resulting symbolic model as (DESA,PESA).
The computational soundness proof for (DESA,PESA) follows almost exactly the lines of

the symbolic model for key-safe protocols in the work of Backes, Hofheinz, and Unruh [3].

The proof can be found in the full version [5].

I Theorem 8 (Computational soundness of (DESA,PESA)). If enhanced trapdoor permutations

exist, there is an length-regular implementation A such that (DESA,PESA) is a computationally

sound, well-formed model.

As a corollary of Section 7 and Theorem 8, we get the computational soundness of protocols

using SMPC, public-key encryption, signatures, and arithmetics, with such non-interactive

cryptographic primitives possibly used within both SMPC and the surrounding protocol.

I Corollary 9 (SMPC computational soundness with (DESA,PESA)). There is an implementation

A and a family of UC-protocols τ such that for each well-formed P ∈ PESA, the robust safety

of P implies the SMPC-robust computational safety of P using A and τ .

5 Conclusion

We have presented an abstraction of SMPC in the applied π-calculus. We have shown that

the security of protocols based on this abstraction can be automatically verified using a

type system, and we have established computational soundness results for this abstraction

including SMPC that involve arbirtrary arithmetic operations. This is the first work to

tackle the abstraction, verification, and computational soundness of protocols based on an

interactive cryptographic primitive.

Our framework allows for the verification of protocols incorporating SMPC as a building

block. In particular, the type-checker ensures that the inputs provided by the participants to

the SMPC are well-formed and, after verifying the correctness of SMPC, the type-checker

obtains a characterization of the outputs (e.g., in the Millionaires problem, the output is

the identity of the participant providing the greatest input) that can be used to establish

global properties of the overall protocol. Our framework is general and covers SMPC based

on arithmetic operations as well as on cryptographic primitives.

This work focuses on trace properties, which include authenticity, integrity, authorization

policies, and weak secrecy (i.e., the attacker cannot compute a certain value)6. As a future

work, we plan to extend our framework to observational equivalence relations, possibly

building on recent results for a fragment of the applied π-calculus [14]. It would be interesting

to formulate and verify an indistinguishability-based secrecy property for SMPC. This task is

particularly challenging since the result of an SMPC typically reveals some information about

the secret inputs and standard secrecy definitions based on observational equivalence are

6 To symbolically model weak secrecy, one can add the process c(x).if x=n then assert false (where c
is a public channel) to check the secrecy of n: The protocol is robustly safe only if the attacker does
not learn n.

Backes, Maffei, Mohammadi 363

thus too restrictive. An additional problem is the computational soundness of observational

equivalence for processes with private channels, which are excluded in [14] but are needed in

our abstraction and, arguably, in any reasonable SMPC abstraction.

References

1 M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In

POPL, pages 104–115. ACM Press, 2001.

2 Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (the compu-

tational soundness of formal encryption). Journal of Cryptology, 15(2):103–127, 2002.

3 Michael Backes, Dennis Hofheinz, and Dominique Unruh. CoSP: A general framework

for computational soundness proofs. In CCS, pages 66–78. ACM Press, 2009.

4 Michael Backes, Catalin Hritcu, and Matteo Maffei. Type-checking zero-knowledge. In

CCS, pages 357–370, 2008.

5 Michael Backes, Matteo Maffei, and Esfandiar Mohammadi. Computationally sound

abstraction and verification of secure multi-party computations. Available at: http://

www.infesc.cs.uni-saarland.de/~mohammadi/publications/smpc.pdf.

6 Michael Backes and Birgit Pfitzmann. Limits of the cryptographic realization of Dolev-

Yao-style XOR. In ESORICS, volume 3679 of LNCS, pages 178–196. Springer, 2005.

7 Michael Backes, Birgit Pfitzmann, and Michael Waidner. A composable cryptographic

library with nested operations (extended abstract). In CCS, pages 220–230, 2003.

8 Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: a system for secure

multi-party computation. In CCS, pages 257–266. ACM, 2008.

9 Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler, Thomas P. Jakob-

sen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob

Pagter, Michael I. Schwartzbach, and Tomas Toft. Secure multiparty computation goes

live. In Financial Cryptography, volume 5628 of LNCS, pages 325–343. Springer, 2009.

10 F. Butler, I. Cervesato, A. D. Jaggard, A. Scedrov, and C. Walstad. Formal analysis of

Kerberos 5. Theoretical Computer Science, 367(1):57–87, 2006.

11 Ran Canetti. Universally composable security: A new paradigm for cryptographic pro-

tocols. In FOCS, pages 136–145, 2001.

12 Ran Canetti and Jonathan Herzog. Universally composable symbolic analysis of mutual

authentication and key exchange protocols. In TCC, volume 3876 of LNCS, pages 380–

403. Springer, 2006.

13 Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable

two-party and multi-party secure computation. In STOC, pages 494–503. ACM, 2002.

14 Hubert Comon-Lundh and Véronique Cortier. Computational soundness of observational

equivalence. In CCS, pages 109–118, 2008.

15 Véronique Cortier and Bogdan Warinschi. Computationally sound, automated proofs for

security protocols. In ESOP, pages 157–171, 2005.

16 Anupam Datta, Ante Derek, John Mitchell, Ajith Ramanathan, and Andre Scedrov.

Games and the impossibility of realizable ideal functionality. In TCC. Springer, 2006.

17 Stéphanie Delaune, Steve Kremer, and Olivier Pereira. Simulation based security in the

applied pi calculus. In FSTTCS, pages 169–180. Schloss Dagstuhl, 2009.

18 Danny Dolev and Andrew C. Yao. On the security of public key protocols. IEEE

Transactions on Information Theory, 29(2):198–208, 1983.

19 C. Fournet, A. D. Gordon, and S. Maffeis. A type discipline for authorization in dis-

tributed systems. In CSF, pages 31–45. IEEE, 2007.

F S T T C S 2 0 1 0

http://www.infesc.cs.uni-saarland.de/~mohammadi/publications/smpc.pdf
http://www.infesc.cs.uni-saarland.de/~mohammadi/publications/smpc.pdf

Model Checking Concurrent Programs with
Nondeterminism and Randomization
Rohit Chadha1, A. Prasad Sistla2, and Mahesh Viswanathan3

1 INRIA & LSV, ENS Cachan and CNRS, FRANCE
2 University of Illinois, Chicago, USA
3 University of Illinois, Urbana-Champaign, USA

Abstract
For concurrent probabilistic programs having process-level nondeterminism, it is often necessary
to restrict the class of schedulers that resolve nondeterminism to obtain sound and precise model
checking algorithms. In this paper, we introduce two classes of schedulers called view consis-
tent and locally Markovian schedulers and consider the model checking problem of concurrent,
probabilistic programs under these alternate semantics. Specifically, given a Büchi automaton
Spec, a threshold x ∈ [0, 1], and a concurrent program P, the model checking problem asks if the
measure of computations of P that satisfy Spec is at least x, under all view consistent (or locally
Markovian) schedulers. We give precise complexity results for the model checking problem (for
different classes of Büchi automata specifications) and contrast it with the complexity under the
standard semantics that considers all schedulers.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.364

1 Introduction

The use of randomization in concurrent or distributed systems is often key to achieving
certain objectives — it is used in distributed algorithms to break symmetry [22] and in
cryptographic protocols to achieve semantic security [19]. The formal analysis of such systems
has often modelled them as Markov Decision Processes [24], that has both nondeterministic
and probabilistic transitions.

In Markov Decision Processes (MDPs), the probability of events depends on the way
the nondeterministic choices are resolved during a computation. It is customary to resolve
the nondeterminism by a scheduler or adversary, who chooses a probabilistic transition
from a state based on the past sequence of states visited during the computation. When
verifying MDPs, one considers the worst possible scenario — one checks that no matter
which scheduler is chosen, the probabilistic properties of the system hold. Model checking
algorithms based on such semantics for MDPs [5, 24] are known, and tools based on these
algorithms have been developed that have been used to analyze many examples [1].

Recently, many researchers have observed [13, 12, 6, 15, 11] that in a number of appli-
cations, taking such a pessimistic view and considering all possible schedulers, can yield
incorrect verification results. The problem arises when one considers a concurrent system
where individual processes exhibit both probabilistic and nondeterministic behavior. For such
systems, there are certain perfect information schedulers that will resolve local process-level
nondeterminism based on information that would not be available to the local process, and
there by exhibit behavior that is unreasonable. For example, consider the example presented
in [18] of two processes “Toss” and “Guess” that do not communicate with each other. The
process Toss tosses a fair coin, and Guess guesses (nondeterministically) what the outcome
of Toss’s coin toss was. Clearly, since Toss and Guess do not communicate, the probability
that Guess makes the right guess should be bounded by 1

2 . However under a scheduler that
© Rohit Chadha and A. Prasad Sistla and Mahesh Viswanathan;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 364–375

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.364
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

R. Chadha and A. P. Sistla and M. Viswanathan 365

resolves Guess’s nondeterminism based on the result of Toss’s coin toss, the probability of a
correct guess can be as high as 1! (Additional examples can be found in [9].) Therefore, in
analyzing concurrent programs, in many cases, it is necessary to restrict attention to certain
“reasonable” schedulers that resolve local nondeterminism based only on information that is
locally visible to the process.

We call such schedulers to be view consistent. More precisely, a view consistent scheduler
is the composition of two schedulers — a global scheduler that picks the process to schedule,
and a local scheduler that chooses a probabilistic transition of the process. We assume that the
global scheduler can choose the process based on the entire computation thus far. However,
the local scheduler’s decision must only be based on the local view of the computation. In
other words, if σ and τ are computations such that the states as observable to process P are
identical at every step, then the local scheduler for P must pick the same transition after both
σ and τ . Observe that if the individual processes are purely probabilistic, then every scheduler
is view consistent; the difference arises only when there is local nondeterminism. A similar
class of schedulers called distributed schedulers has been considered in [18, 16, 17]. However,
there is a subtle difference between distributed schedulers and view consistent schedulers (see
Related Work) and the results presented here do not follow from those in [18, 16, 17]. In this
paper, we also consider another class of restricted schedulers that we call locally Markovian.
Locally Markovian schedulers are view consistent schedulers with the additional restriction
that the local scheduler’s decision only depends on the length of the computation and the
current local state, and not on the entire local view of the computation; note, that in a locally
Markovian scheduler, the global scheduler can still choose the process to execute based on
the entire history. Locally Markovian schedulers are the natural analog in the concurrent
case of Markovian schedulers that have been considered in other contexts [23, 4].

In this paper, we investigate the complexity of the verification problem for concurrent
programs. We assume that the correctness specification is given by a Büchi automaton Spec,
whose input alphabet consists of the states of the program P, and a threshold x ∈ [0, 1].
We say P |=vc

.x Spec (P |=lm
.x Spec), where . ∈ {>,≥}, if under all view consistent schedulers

(locally Markovian schedulers) the measure of computations of P accepted by Spec is .x.
Our results are summarized in Figure 1.

We show that the verification problem is in general undecidable, when we restrict to
either view consistent or locally Markovian schedulers. When the threshold is 0, both the
problems of checking P |=vc

>0 Spec and P |=lm
>0 Spec, remain undecidable even when Spec is

a deterministic Büchi automaton. For the case when x ∈ (0, 1), the problems of checking
P |=vc

>x Spec, P |=vc
≥x Spec, P |=lm

>x Spec, and P |=lm
≥x Spec, remain undecidable even when

Spec is a safety automaton.1

We then investigate the complexity of the verification problems left open by the above
undecidability results. Namely, we consider the problems of checking Spec that are determin-
istic or safety automata, when x = 1, and of checking safety properties when x = 0. We show
that many of these problems are indeed decidable, and we characterize their computational
complexity precisely. Specifically, we show that the problems of checking P |=vc

=1 Spec and
P |=lm

=1 Spec are PSPACE-complete, where Spec is a safety automaton; checking P |=lm
=1 Spec,

when Spec is deterministic, is EXPSPACE-complete; and checking P |=lm
>0 Spec, when Spec

is a safety automaton, is also EXPSPACE-complete. The decidability/complexity of check-

1 A safety automaton is a deterministic Büchi automaton such that all states are accepting except for a
unique rejecting state; all transitions from the rejecting state stay in the rejecting state. Every regular
safety property can be recognized by such an automaton, and hence the name.

FSTTCS 2010

366 Model Checking Nondeterministic, Randomized, Concurrent Programs

ing P |=vc
=1 Spec when Spec is deterministic, and checking P |=vc

>0 Spec when Spec is a
safety property, remain open. However, we show that these model checking problems for
view consistent schedulers are 2-EXPTIME-complete, for two special classes of programs.
The first class is that of programs P where all processes, except possibly one, are purely
probabilistic (i.e., have no local nondeterminism). The second class of programs are those
where each process has a set of global variables, and some local variables that are private to
the process. In addition, we restrict the program to be mutually exclusive, that requires that
in each global state exactly one process is enabled and we require the specification to be on
the shared state, that requires that the state of the specification depends only on the history
of global states visited.

We contrast the above complexity results with the complexity of the same verification
question when we consider all schedulers (not just view consistent or locally Markovian
schedulers). As previously observed [13], the complexity of verification with respect to perfect
information schedulers, is easier. We show that for safety specifications Spec and x = 1,
the verification problem is PSPACE-complete, just like in the case of view consistent and
locally Markovian schedulers. All the other verification problems, on the other hand, are
EXPTIME-complete. Note that, in contrast to the complexity results reported in [5] for
MDPs, the blowup in complexity when considering concurrent programs can be explained by
the state space explosion problem.

We conclude this introduction by comparing our model of concurrent programs under
view consistent schedulers to other probabilistic models for which model checking results
are known. Probabilistic automata on infinite strings [3], are a special case of programs
under locally Markovian schedulers (see Theorem 3.1 and Lemma 3.6). Partially Observable
MDPs [13] are a special case of programs where all, except possibly one, processes are purely
probabilistic (see discussion in Related Work). Finally, MDPs are equivalent to programs
where all processes are purely probabilistic. Thus, many of the commonly studied models
are special kinds of concurrent programs, and we exploit these connections to prove some
upper bounds using translations and embeddings in to these models. Our proofs of lower
bounds on the complexities are quite nontrivial and do not follow from any relationships to
the above models since our programs are given in a different notation.

The paper is organized as follows. Section 2 contains preliminaries, and definitions of
programs and schedulers. Section 3 contains the technical results and the conclusions are
presented in Section 4. Motivating examples and proofs of most of the theorems are given
in [9].

Related Work
Restricting the class of schedulers has been observed to be important in obtaining composi-
tional reasoning principles [14], and in correctly analyzing security protocols and distributed
algorithms [13, 12, 6, 15, 11]. The schedulers considered in these papers are very similar to
the class of view consistent schedulers that we consider. In [14], the processes are assumed
to run synchronously, and thus the scheduler is the composition of local schedulers that
resolve nondeterminism based on local views; there is no global scheduler. In [12, 6], the
nondeterministic choices are broken into tasks. A task scheduler chooses the task, and this
choice is assumed to be oblivious of the actual computation, and local scheduler picks the
actual transition within the task by looking at the local state. The task scheduler can be seen
as our global scheduler; however, the difference is that our global schedulers are not oblivious.
Finally, in [11], the authors don’t restrict attention to a specific class of scheduler but rather
develop a process calculus within which the schedulers can be specified. All these papers, are

R. Chadha and A. P. Sistla and M. Viswanathan 367

primarily interested in defining clean compositional semantics, and do not consider the model
checking problem per se. A closely related class of schedulers called distributed schedulers
is considered in [18, 16, 17], where the problem of model checking safety properties against
any threshold is shown to be undecidable. However, distributed schedulers are different
than view consistent schedulers that we consider here — in a distributed scheduler, a local
scheduler of process i is completely oblivious of steps in which process i did not get scheduled,
whereas in view consistent schedulers, it is aware that some other process was scheduled. This
difference is manifested in the fact that P |=>0 Spec for safety specifications is undecidable for
distributed schedulers [16, 17], whereas it is open for view consistent schedulers. Furthermore,
no decidability results are presented in [18, 16, 17].

As indicated in the introduction, the model checking problem and its complexity for
the related model of Partially Observable MDPs (POMDP) has been investigated in earlier
works [13, 20, 2, 10]. A POMDP P can be seen as a special case of a concurrent program
with two processes under view consistent semantics as follows. The POMDP itself is process
P1, and the second process (say P2) plays the role of “scheduling” the next transition of P1.
They share 3 variables: state that stores the partial state of P1 that is visible outside, trans
that is used by P2 to inform P1 what the next transition should be, and turn which is used by
the processes to alternate taking turns. In each “round”, P2 first picks P1’s next transition,
and then P1 “executes” that transition; observe, that P1 is a purely probabilistic process,
and all the nondeterminism has been deferred to P2. Under view consistent schedulers, the
two processes P1 and P2 are “equivalent” to the POMDP. Also decision problems for any
programs whose all, except possibly one processes are purely probabilistic, can in turn be
shown to be “equivalent” to a POMDP of size exponential in the length of the program (see
Lemma 3.9). This relationship is exploited by us to prove some upper bounds.

Similarly, the “equivalence" between decision problems on probabilistic automata on
infinite strings and decision problems on programs under “locally Markovian" schedulers is
exploited to obtain the undecidability results using the results of [2, 7]. This equivalence is
also exploited to obtain upper bounds for checking P |=lm

=1 Spec when Spec is deterministic,
and checking P |=lm

>0 Spec when Spec is a safety property.

2 Definitions

2.1 Preliminaries
The powerset of any set A will be denoted by 2A. Given any set Σ, Σ+ will denote the set
of nonempty finite words over Σ and Σω the set of infinite words over Σ. Given a word
α ∈ Σ+ ∪Σω, we will denote the length of α by length(α) (length of α is ω for α ∈ Σω). We
assume that the reader is familiar with basic measure theory. We will also assume familiarity
with finite automata on infinite strings and Partially Observable Markov Decision Processes
(POMDP).

2.1.1 Probabilistic Automata
We recall the definition of probabilistic Büchi automata (PBA)s [3]. Informally, a PBA is
like a deterministic Büchi automata except that the transition function from a state on a
given input is described as a probability distribution that determines the probability of the
next state. Formally, a PBA over a finite alphabet ∆ is a tuple B = (Q, qs, Qf , δ) where
Q is a finite set of states, qs ∈ Q is the initial state, Qf ⊆ Q is the set of accepting/final
states, and δ : Q×∆×Q→ [0, 1] is the transition relation such that for all q ∈ Q and a ∈ ∆,

FSTTCS 2010

368 Model Checking Nondeterministic, Randomized, Concurrent Programs

∑
q′∈Q δ(q, a, q′) = 1. For this paper, we assume that δ(q, a, q′) is a rational number for all

q, q′ ∈ Q and a ∈ ∆.
Intuitively, the PBA B starts in the initial state qs and if after reading a0, a1 . . . , ai

results in state q, it moves to state q′ with probability δ(q, ai+1, q
′) on symbol ai+1. Given a

word α ∈ ∆ω, B can be thought of as an infinite-state Markov chain which gives rise to the
standard σ-algebra defined using cylinders and the standard probability measure on Markov
chains [25, 21]. We denote this measure by µα,B. A run of B is an infinite sequence ρ ∈ Qω.
A run ρ is accepting if ρ satisfies the Büchi acceptance condition, i.e., ρ[i] ∈ Qf for infinitely
many i.

The set of accepting runs is measurable. Given α, the measure of the set of accepting
runs will be denoted by µaccB, α and is said to be the probability of accepting α. Given x ∈ [0, 1]
and . ∈ {>,=,≥}, we let L.x(B) = {α ∈ ∆ω | µaccB, α . x}.

We identify one useful syntactic restriction of PBAs, called finite probabilistic monitors
(FPM)s [7]. In a FPM, all the states are accepting except a special absorbing reject state
(a state qr is said to be absorbing if δ(qr, a, qr) = 1 for each input a ∈ ∆). By using a set
of Rabin pairs instead of a set of final states, we can define Probabilistic Rabin automata
(PRAs).

2.2 Programs
We will denote the set of Boolean expressions over Boolean variables V by BEXP(V). The
value of a Boolean expression BEXP under a truth assignment s : V → {0, 1} will be denoted
by [[Bexp]]s. We use 2V to denote the set of assignments on V . An update to variables in V
is a set of assignments of the form x := Bexp, such that each variable appears the left hand
side of at most one assignment in the set. An update A defines a function appA : 2V → 2V
as follows: if x := Bexp ∈ A then appA(s)(x) = [[Bexp]]s, and if x is not on the left hand side
of any assignment in A then appA(s)(x) = s(x). We say that s′ is obtained by applying the
update A to s if appA(s) = s′.

A probabilistic concurrent program P with n processes is a tuple (V, s0, (V1,P1), ..., (Vn,Pn)).
Here Vi is a finite set of Boolean variables that process i reads and writes to, with V = ∪ni=1Vi
being the set of program variables. s0 ∈ 2V is the initial state of the program, and Pi is
a finite set of transitions of process i defined as follows. Each transition τ of process Pi
is of the form (C, p1 : A1, p2 : A2, ..., pk : Ak) where C is a Boolean expression on Vi, and
(p1, ..., pk) is a sequence of nonzero rational probabilities that add up to 1 and A1, ..., Ak
are updates such that all the variables appearing (on the left hand side or right hand side
of an assignment) in Aj are in Vi. For any i, j, we say that processes i, j communicate if
Vi ∩ Vj 6= ∅. For any i, 1 ≤ i ≤ n, let Li = Vi − ∪j 6=iVj , namely, the set of variables of Pi
that are not visible to any other process. The variables in Li are said to be local variables of
process i. We will also assume, without loss of generality, that each process has at least one
variable — a process i without any variables can be modeled in our framework as a process
with one local variable whose value remains constant.

The states of P will be 2V . Let τ = (C, p1 : A1, p2 : A2, ..., pk : Ak) be a transition of a
process Pi. We say that τ is enabled in state s if C is satisfied in s. The process Pi is said
to be deterministic (or purely probabilistic) if for each state s, there is at most one transition
of Pi enabled in s. Assume that τ is enabled in s. If the transition τ is executed in state
s, then one of the updates A1, ..., Ak is chosen, with the probability distribution given by
p1, ..., pk and applied to the state s. Let ti be the state obtained by performing the update
Ai to the state s. We say that the probability that the next state is ti is pi when transition
τ is executed in state s. We assume that for each state s, there is some process Pi such that

R. Chadha and A. P. Sistla and M. Viswanathan 369

some transition of Pi is enabled in s. For any state s and process index i, 1 ≤ i ≤ n, we let
s|i denote the restriction of s to the variables in Vi. Intuitively, s|i denotes the part of the
state that is visible to process i, i.e., the local state.

A program is interpreted using schedulers which, depending on the history, resolve
nondeterminism by assigning which of the enabled actions is fired in a given state.
Classes of Schedulers. Let P be a program with n processes P1, . . .Pn. Let 2V be the
set of states of P and Trans be the set of transitions of P. A history is an element of
(2V)+. Given a history h = t0...tm, we define last(h) to be the state tm and length(h) to be
m+ 1. Given a process index i, 0 ≤ i ≤ n, we define h|i to be the word (t0|i)(t1|i)...(tm|i).
Intuitively, h|i denotes the view of process i in h.

A scheduler η : (2V)+ → Trans is a function that associates, with each history of a
program P, a transition τ of some process of P that is enabled in the last state of the history.
We say that a scheduler η is view consistent if the following property holds for every pair of
histories h, h′ and every process index 1 ≤ i ≤ n: if η(h), η(h′) are both transitions of process
i and h|i = h′|i then η(h) = η(h′). Intuitively, view consistency requires that the transition
of a process, chosen by the scheduler, should depend only on the view of the process; that
is, the nondeterminism within a process is resolved based purely on process’ view of the
computation history. Note that the above condition does not prevent the scheduler from
choosing transitions of different processes for h and h′.

We say that η is locally Markovian (or locally step dependent) if the following property
holds for every pair of histories h, h′ and every process i: if η(h), η(h′) are both transitions
of process i, length(h) = length(h′), and last(h)|i = last(h′)|i, then η(h) = η′(h). Note
that in this case, the transition scheduled should only depend on the length of the history
and the current local state of the process. Observe that every locally Markovian scheduler is
also view consistent.

Computations. In presence of a scheduler η, a program P with 2V as set of states can be
thought of as an infinite-state Markov chain which gives rise to the standard σ-algebra on
(2V)ω and the standard probability measure [25, 21]. We will denote this Markov chain as
MP,η and the standard probability measure generated as µMP,η . The set (2V)ω shall be
called the set of paths ofMP,η.

Let A be a Büchi automaton with 2V (the set of states of P) as its input alphabet. We
say that A accepts an infinite path ρ ∈ (2V)ω ofMP,η, if it accepts the infinite sequence ρ.
Let L(A) be the language accepted by A. Now L(A) is a measurable set in the space of paths
defined by MP,η and we call the measure of L(A), µMP,η(L(A)), to be the probability of
acceptance of MP,η. Given a rational number x and . ∈ {>,=,≥}, we shall write P, η |=.x A
if µMP,η (L(A)) . x. The automaton A will be henceforth called a specification automaton.

Predicate automaton. It is often useful to present the specification automaton A succinctly
in the following fashion. A predicate automaton Spec is a tuple (V,Q, qs, Qf ,→) where V
is a finite set of boolean variables, Q is a finite set of states, qs ∈ Q is the initial state,
Qf ⊆ Q is the set of final states and →⊆ Q × BEXP(V) × Q is a finite set of predicate
transitions. Given a predicate automaton Spec, we define a specification automaton [[Spec]]
as follows: [[Spec]] = (2V , Q, qs, Qf , δ) where (q, s, q′) ∈ δ iff there is a predicate transition
(q,Bexp, q′) ∈→ such that s satisfies Bexp. Please note given any specification (Büchi)
automaton A, there is a predicate automaton Spec such that [[Spec]] = A. Furthermore,
we will say that Spec is a deterministic predicate automaton (respectively safety) if [[Spec]]
is a deterministic automaton (respectively safety automaton). Whenever convenient, we
will often confuse Spec with [[Spec]]. Given any history h ∈ Σ∗ let Spec(h) be the state that

FSTTCS 2010

370 Model Checking Nondeterministic, Randomized, Concurrent Programs

ω-regular Spec Deterministic Spec Safety Spec
P |=vc

=1 Spec Undecidable ?b PSPACE-complete
P |=lm

=1 Spec Undecidable EXPSPACE-complete PSPACE-complete
P |==1 Spec EXPTIME-completea EXPTIME-complete PSPACE-complete
P |=vc

>0 Spec Undecidable Undecidable ?b

P |=lm
>0 Spec Undecidable Undecidable EXPSPACE-complete

P |=>0 Spec EXPTIME-completea EXPTIME-complete EXPTIME-complete
P |=vc

.x Spec Undecidable Undecidable Undecidable
P |=lm

.x Spec Undecidable Undecidable Undecidable
P |=.x Spec EXPTIME-completea EXPTIME-complete EXPTIME-complete

Figure 1 Summary of complexity results. For entries with superscript a, we assume that Spec is
given as a deterministic predicate Rabin automaton. For entries with superscript b, the problem
becomes 2-EXPTIME-complete if either (i) all but one processes of P are deterministic (purely
probabilistic), or (ii) if the processes communicate through global variables and are mutually
exclusive, and Spec is on the shared state.

[[Spec]] is in after reading h from its initial state.
Similar to the predicate automaton, we can define a predicate Rabin automaton, in which

instead of using a set of final states, we use a set of Rabin pairs. As in the case of predicate
automaton, a predicate Rabin automaton gives rise to a Rabin automaton.
Verification. Given a rational number x and . ∈ {≥,=, >}, we will write P |=.x Spec
if for every scheduler η, we have that P, η |=.x [[Spec]]. Similarly, we write P |=vc

.x Spec
(P |=lm

.x Spec, respectively) if for every view consistent scheduler η (locally Markovian
scheduler, respectively), P, η |=.x [[Spec]]. Thus, the verification problem we consider is one
where given P, Spec, rational number x ∈ [0, 1], and . ∈ {≥,=, >} as input, we want to
determine if P |=.x Spec (or P |=vc

.x Spec or P |=lm
.x Spec). The predicate automaton Spec is

often called the specification.

3 Complexity and decidability for general programs

In this section, we present results on the decidability and complexity of the verification
problems defined in Section 2. Our results are summarized in Figure 1. We will now state
the results. The missing proofs as well as all the proofs/results of all schedulers can be found
in [9].

3.1 Undecidability
We start by establishing the undecidability of the model checking problem for concurrent
programs in a variety of settings.

I Theorem 3.1. Given a program P and a predicate automaton Spec, the following problems
are undecidable.

(a) Determining if P |=vc
=1 Spec and P |=lm

=1 Spec.
(b) Determining if P |=vc

>0 Spec and P |=lm
>0 Spec, even when Spec is a deterministic specifica-

tion.
(c) Given a rational x ∈ (0, 1) and . ∈ {>,≥}, determining if P |=vc

.x Spec and P |=lm
.x Spec,

even when Spec is a safety specification.
The above undecidability results continue to hold even if P is restricted to be a program con-
sisting of two processes, one of which is purely nondeterministic (no probabilistic transitions)
and the other is purely probabilistic (no nondeterministic transitions).

R. Chadha and A. P. Sistla and M. Viswanathan 371

Theorem 3.1 is proved as follows: for part (a) we reduce the problem of checking if a given
PRA accepts every input with probability 1; for part (b) we reduce the problem of checking
if a given PBA accepts every input with probability > 0; and for part (c) we reduce the
problem of checking if a given FPM accepts every input with probability .x.

For a program P, the observations in Theorem 3.1, leave open the decidability of the
following questions.

(a) if Spec is a safety specification, check if P |=vc
=1 Spec (or check if P |=lm

=1 Spec)?
(b) if Spec is a safety specification, check if P |=vc

>0 Spec (or check if P |=lm
>0 Spec)?

(c) if Spec is a deterministic specification, check if P |=vc
=1 Spec (or check if P |=lm

=1 Spec)?
We address these questions in the forthcoming sections. The decidability of (a) is shown in
Theorem 3.2 in Section 3.2. The problems in (b) and (c) are also shown to be decidable for
locally Markovian schedulers, in Section 3.2; these problems remain open for the case of view
consistent schedulers. However, in Section 3.3, we show that these problems are decidable
for two special classes of programs.
I Remark. Distributed schedulers, introduced in [18] and further studied in [16, 17], are very
similar to view consistent schedulers that we consider here. However, there is one important,
subtle difference between them. In a view consistent scheduler, the local scheduler of process i
is aware of both the steps when process i was scheduled and those when it was not scheduled;
in distributed schedulers the local scheduler is only aware of the steps when it was scheduled.
Thus, the undecidability results presented here do not follow from [18, 16, 17]. Moreover,
in [16, 17], the problem of checking if P |=>0 Spec for safety specifications Spec under all
distributed schedulers is shown to be undecidable; however, that proof does not extend to
view consistent schedulers and this problem for view consistent schedulers (as stated in the
discussion above) is open.

3.2 Decidability results for locally Markovian semantics
We begin by establishing the decidability of checking if the measure of computations accepted
by a safety specification, under every scheduler in a class C, is 1. We, in fact, show that for
any of the three classes of schedulers that we consider, this problem is PSPACE-complete.

I Proposition 3.2. Given a program P and a safety specification Spec, the following problems
are PSPACE-complete: determining if P |=vc

=1 Spec, if P |=vc
=1 Spec and if P |=lm

=1 Spec.

We now establish that the problems of determining if P |=lm
>0 Spec when Spec is a safety

specification, and of determining if P |=lm
=1 Spec when Spec is deterministic are EXPSPACE-

complete. We begin by defining a special class of locally Markovian schedulers that we
call Spec-determined. These are schedulers that are required to choose the same transition
after equal length histories h and h′ that end in the same state, if the state reached by the
specification [[Spec]] after h (namely, Spec(h)) is the same as Spec(h′).

I Definition 3.3. Let P be a program with n processes, and let Σ be the set of states of P and
Trans be the set of transitions of P. Let Spec be a deterministic specification with Q as the
set of states. We say that a locally Markovian scheduler η : Σ+ → Trans is Spec-determined
if for any pair of histories h, h′ ∈ Σ+ such that length(h) = length(h′), Spec(h) = Spec(h′)
and last(h) = last(h′), we have that η(h) = η(h′).

The reason for considering Spec-determined schedulers is because we can show that
for the problems of verifying safety with non-zero probability and verifying deterministic
specifications with probability 1, we can restrict our attention to Spec-determined schedulers.
This is the content of the next proposition.

FSTTCS 2010

372 Model Checking Nondeterministic, Randomized, Concurrent Programs

I Proposition 3.4. For any program P and safety specification Spec, P |=lm
>0 Spec iff for any

Spec-determined locally Markovian scheduler η; P, η |=>0 Spec. For deterministic specification
Spec, P |=lm

=1 Spec iff for all Spec-determined locally Markovian schedulers η; P, η |==1 Spec.

We need one more definition.

I Definition 3.5. Let P be a program with n processes with V as the set of variables and
Trans as the set of transitions. Let Spec be a deterministic specification. We say a function
g : Q× 2V → Trans is Spec-determined and locally consistent if for all q ∈ Q and s ∈ 2V ,
g((q, s)) is enabled in s; and g((q1, s1)) = g((q2, s2)) whenever (q1, s1), (q2, s2) ∈ Q× 2V are
such that g(q1, s1), g(q2, s2) belong to the same process Pi and s1|i = s2|i. The set of Spec-
determined and locally consistent functions of program P shall be denoted as Loc(P, Spec).

Given a deterministic specification Spec, it is easy to see that there is a bijection between
the set of Spec-determined locally Markovian schedulers of a program P and (Loc(P, Spec))ω,
the set of infinite sequences over (Loc(P, Spec)). We call this function LocP,Spec. The key
technical idea exploited in our model checking algorithm is the following. Given a program
P and a specification Spec, one can construct a PBA B that accepts a word LocP,Spec(η) with
the same probability as the computation of P under scheduler η satisfies Spec.

I Lemma 3.6. Given a program P and a deterministic specification Spec, let ∆ be Loc(P, Spec),
the set of Spec-determined locally consistent functions. There is a PBA B on input alphabet
∆ such that the following hold–

The number of states of B is exponential in the size of P and Spec.
For any Spec-determined locally Markovian scheduler η, the probability that the computa-
tionMP,η satisfies Spec is the probability of LocP,Spec(η) being accepted by B.
B can be taken to be a FPM if Spec is a safety specification.

We have the following theorem.

I Theorem 3.7. Given a program P and a deterministic specification Spec the problem of
determining if P |=lm

=1 Spec is EXPSPACE-complete. If Spec is a safety specification, then
the problem of determining if P |=lm

>0 Spec is also EXPSPACE-complete.

We had shown in [7, 8] that given a PBA B, the problem of checking whether all words
are accepted with probability 1 is in PSPACE. We had also shown in [7] that given a
FPMM, the problem of checking whether all words are accepted with probability > 0 is in
PSPACE. In light of Lemma 3.6, this immediately implies that the problems of determining
whether a program satisfies a deterministic specification with probability 1 and whether a
program satisfies a safety specification with nonzero probability are decidable. However, note
that as the input alphabet constructed in Lemma 3.6 is doubly-exponential in the size of
the input, the straightforward application of the results in [7, 8] do not lead to inclusion
in EXPSPACE. The inclusion in EXPSPACE is achieved by a careful examination of
algorithms given in [7, 8] and running the algorithm without explicitly constructing the PBA.

3.3 Decidability results for view consistent semantics
Proposition 3.2 already establishes that checking whether every computation of a program P
generated by a view consistent scheduler satisfies a safety specification with probability 1 is
PSPACE-complete. We now consider the remaining questions, namely, checking whether
P |=vc

>0 Spec when Spec is a safety property, and checking whether P |=vc
=1 Spec when

Spec is a deterministic specification. While the decidability of these problems is open, we
prove decidability for special classes of programs P. First we show that these problems are
2-EXPTIME-complete when all processes of P, except possibly one, are deterministic.

R. Chadha and A. P. Sistla and M. Viswanathan 373

I Theorem 3.8. Given a program P and a deterministic specification Spec such that all
processes of P except one are deterministic, the problem of checking if P |=vc

=1 Spec is 2-
EXPTIME-complete. Given a safety specification Spec, the problem of checking if P |=vc

>0
Spec is also 2-EXPTIME-complete.

The main idea behind the proof of 2-EXPTIME membership is to reduce it to model
checking POMDPs. The following is proved in [9].

I Lemma 3.9. Given a program P and a deterministic specification (safety specification,
respectively) Spec such that all processes of P except one are deterministic, there is a POMDP
M and a subset Q of states ofM such that P |=vc

=1 Spec (P |=vc
>0 Spec, respectively) iff under

every observation based scheduler, the measure of paths ofM that visit Q infinitely often is
1 (> 0, respectively).

The second special class of programs that we consider are the following. Processes in a
program are said to communicate through global variables if every pair of processes share
the same set of variables. We say that processes in P are mutually exclusive if in every state
the transitions of only one process are enabled. A deterministic specification Spec is said to
be on the shared state if whenever (q,Bexp, q′) is a transition of Spec, Bexp evaluates to the
same value for any two program states in which the global variables take the same value.

I Theorem 3.10. Given a program P where the processes communicate through global
variables and are mutually exclusive, and a deterministic specification (safety specification,
respectively) Spec on the shared state, the problem of checking P |=vc

=1 Spec (P |=vc
>0 Spec,

respectively) is 2-EXPTIME-complete.

The proof of the 2-EXPTIME-decidability relies on showing that if there is a scheduler η
such that P, η |=<1 Spec (P, η |==0 Spec) for a deterministic specification on the shared state
(safety specification) then there is a “periodic” scheduler η′ that witnesses the same fact. The
model checking algorithm searches for such a periodic scheduler by reducing it to µ-calculus
model checking on a finite (doubly exponentially sized) bi-partite graph G. We illustrate the
construction of the graph G for the case when Spec is a deterministic specification.

Let P be a program where the processes communicate through global variables and are
mutually exclusive, and Spec be a deterministic specification on the shared state. We start
by some definitions. Assume that P has n processes, V is the set of shared variables and Vi is
the set of local variables of process i. It is easy to see that the set of states of P can be taken
to be 2V × 2V1 × . . .× 2Vn . We henceforth refer to this set as States(P). If Q is the set of
states of Spec then the set Q× States(P) is said to be the set of extended states and will be
referred to by EStates(Spec,P). An extended state es = (q, s) is said to be feasible if there is
a history h of P such that the measure of h is > 0, h(0) is the initial state of P, last(h) = s

and Spec(h) = q. Let πP : EStates(Spec,P)→ States(P) be the map πP((q, s)) = s. Given
es = (q, s) ∈ EStates(Spec,P) and a Spec-determined and locally consistent function g (see
Definition 3.5), let succg(es) = {(q′, s′) | (q, s, q′) is a transition of [[Spec]] & s′ is obtained
with nonzero probability when g((q, s)) is executed in s}.Given a set U ⊆ EStates(Spec,P),
let succg(U) = ∪es∈U succg(es).

A set of states S ⊆ States(P) is said to be closed if S = {v} × S1 × . . . × Sn for some
v ∈ 2V and Si ∈ 2Vi . A set U ⊆ EStates(Spec,P) is said to be an extended closed set if πP(U)
is closed. We show in [9] that for any extended closed set U , succg(U) can be partitioned into
a union of disconnected extended closed sets. Two extended closed sets U1 and U2 are said to
be disconnected if for each es1 ∈ U1 and es2 ∈ U2 and each process i, πP(es1)|i 6= πP(es2)|i.
We shall call these disconnected sets components of succg(U).

FSTTCS 2010

374 Model Checking Nondeterministic, Randomized, Concurrent Programs

The bi-partite graph G consists of 2 partitions, W1 and W2. The set W1 is the set of
extended closed sets. W2 is the set of pairs (U, g) where U is an extended closed set and
g a Spec-determined and locally consistent function. There is an edge from U ∈ W1 to
(U ′, g) ∈W2 iff U = U ′. There is an edge from (U, g) to U ′ iff U ′ is a component of succg(U).
We convert G into a Kripke structure by labeling each node of G by a special proposition F
or its negation ¬F as follows. A node U in W1 is labeled with F iff there is an extended
state es = (q, s) ∈ U such that q is a final state of Spec. Every other node of W1 and
each node of W2 is labeled by ¬F. We denote the resulting Kripke structure by G(Spec,P).
The 2-EXPTIME-decidability of checking if P |=vc

=1 Spec follows from the following lemma
shown in [9].

I Lemma 3.11. Given a program P where the processes communicate through global
variables and are mutually exclusive, and a deterministic specification Spec on the shared
state, let G(Spec,P) be the Kripke structure obtained as described above. There is a view
consistent scheduler η such thatMP,η satisfies the specification Spec with probability < 1 iff
there is a feasible extended state es such that the node {es} in G(Spec,P) satisfies the modal
µ-calculus formula f = νX(¬F ∧ ♦�X) where ♦ and � are the existential and universal
“nexttime” operators and νX is the greatest fixpoint operator.

4 Conclusions

Randomization and nondeterminism play an important role in concurrent processes, and
in this paper we showed that to get accurate verification results, one needs to consider
restricted classes of schedulers. Tight complexity bounds for verifying linear time properties
under restricted classes of schedulers were established. Our complexity results confirm
observations made in [13] that restricting the class of schedulers makes the verification
problem more difficult.

The global schedulers we consider can observe all the variables in the program. There may
be situations when we want to restrict the power of the global scheduler as well. However,
this is easily captured in our setting by adding a new process Pnew that can only see a part of
the state that is visible to the restricted global scheduler. This new process will execute odd
step (ensured by adding a new turn variable), and will pick the process to schedule based on
the partial state it sees.

View consistent and locally Markovian schedulers are just some of the classes that might
be useful in the concurrent setting. One natural class of schedulers we have not explicitly
mentioned in this paper are memoryless schedulers, where the choice made by the scheduler
depends only on the current state and not on the history. It is easy to see that the verification
problems are in co-NEXPTIME— guess the scheduler that violates the property, and
check that under the scheduler the system (which is now a finite state MDP) violates the
property. The verification problems are also likely to be co-NEXPTIME-hard based on
observations made in [13]; once again the blowup in complexity being explained by the state
space explosion problem. One restriction of the schedulers we consider here is that the local
scheduler for a process is “aware” of the fact that other processes were scheduled. This may
or may not be reasonable in some settings. In the future we would like to expand the current
investigations to other useful classes of schedulers.

Acknowledgements. The authors would like to thank anonymous referees for sending
pointers to [18, 16, 17]. A. Prasad Sistla was supported by NSF-0720525, NSF CCF-0916438,
NSF CNS-1035914 and Mahesh Viswanathan was supported by NSF CCF 0448178, NSF
CCF 1016989, and NSF CNS 1016791.

R. Chadha and A. P. Sistla and M. Viswanathan 375

References
1 PRISM — Probabilistic Symbolic Model Checker. http://www.prismmodelchecker.org.
2 C. Baier, N. Bertrand, and M. Größer. On decision problems for probabilistic Büchi au-

tomata. In Proceedings of FoSSaCS, pages 287–301, 2008.
3 C. Baier and M. Grö„er. Recognizing ω-regular languages with probabilistic automata. In

Proceedings of LICS, pages 137–146, 2005.
4 C. Baier, B. Haverkrot, H. Hermanns, and J.-P. Katoen. Efficient computation of time-

bounded reachability probabilisties in uniform continuous-time Markov decision processes.
In Proceedings of TACAS, pages 61–76, 2004.

5 A. Bianco and L. de Alfaro. Model checking of probabalistic and nondeterministic systems.
In Proceedings of FSTTCS, pages 499–513, 1995.

6 R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, P. Pereira, and R. Segala. Task-
Structured Probabilistic I/O Automata. In Workshop on Discrete Event Systems, 2006.

7 R. Chadha, A. P. Sistla, and M. Viswanathan. On the expressiveness and complexity of
randomization in finite state monitors. Journal of the ACM, 56(5), 2009.

8 R. Chadha, A. P. Sistla, and M. Viswanathan. Power of randomization in automata on
infinite strings. In Proceedings of CONCUR, pages 229–243, 2009.

9 R. Chadha, A. P. Sistla, and M. Viswanathan. Model checking concurrent programs with
nondeterminism and randomization. Technical Report LSV-10-15, LSV, ENS Cachan, 2010.

10 K. Chatterjee, L. Doyen, and T. Henzinger. Qualitative Analysis of Partially-observed
Markov Decision Processes. CoRR, abs/0909.1645, 2009.

11 K. Chatzikokolakis and C. Palamidessi. Making Random Choices Invisible to the Scheduler.
Information and Computation, 2010, to appear.

12 L. Cheung. Reconciling Nondeterministic and Probabilistic Choices. PhD thesis, Radboud
University of Nijmegen, 2006.

13 L. de Alfaro. The Verification of Probabilistic Systems under Memoryless Partial Informa-
tion Policies is Hard. In Proceedings of PROBMIV, 1999.

14 L. de Alfaro, T. Henzinger, and R. Jhala. Compositional methods for probabilistic systems.
In Proceedings of CONCUR, pages 351–365, 2001.

15 F.D. Garcia, P. van Rossum, and A. Sokolova. Probabilistic Anonymity and Admissible
Schedulers. CoRR, abs/0706.1019, 2007.

16 S. Giro. Undecidability results for distributed probabilistic systems. In Proceedings of
SBMF, pages 220–235, 2009.

17 S. Giro. On the automatic verification of Distributed Probabilistic Automata with Partial
Information. PhD thesis, Universidad Nacional de Córdoba, 2010.

18 S. Giro and P.R. D’Argenio. Quantitative model checking revisited: Neither decidable nor
approximable. In Proceedings of FORMATS, pages 179–194, 2007.

19 S. Goldwasser and S. Micali. Probabilistic encryption and how to play mental poker keeping
secret all partial information. In Proceedings of STOC, pages 365–377, 1982.

20 M. Größer. Reduction Meth. for Prob. Model Checking. PhD thesis, TU Dresden, 2008.
21 J. Kemeny and J. Snell. Denumerable Markov Chains. Springer-Verlag, 1976.
22 N.A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
23 M.L. Puterman. Markov Decision Processes: Discrete Stocastic Dynamical Programming.

John Wiley & Sons, 1994.
24 J. M. Rutten, M. Kwiatkowska, G. Norman, and D. Parker. Mathematical Techniques for

Analyzing Concurrent and Probabilistic Systems. AMS, 2004.
25 M. Vardi. Automatic verification of probabilistic concurrent systems. In Proceedings of

FOCS, pages 327–338, 1985.

FSTTCS 2010

Two Size Measures for Timed Languages
Eugene Asarin1 and Aldric Degorre2

1 LIAFA – Université Paris Diderot and CNRS, France
eugene.asarin@liafa.jussieu.fr

2 Université Libre de Bruxelles, Belgium
aldric.degorre@ulb.ac.be

Abstract
Quantitative properties of timed regular languages, such as information content (growth rate,
entropy) are explored. The approach suggested by the same authors is extended to languages of
timed automata with punctual (equalities) and non-punctual (non-equalities) transition guards.
Two size measures for such languages are identified: mean dimension and volumetric entropy.
The former is the linear growth rate of the dimension of the language; it is characterized as the
spectral radius of a max-plus matrix associated to the automaton. The latter is the exponential
growth rate of the volume of the language; it is characterized as the logarithm of the spectral
radius of a matrix integral operator on some Banach space associated to the automaton. Relation
of the two size measures to classical information-theoretic concepts is explored.

Keywords and phrases timed automata, entropy, mean dimension

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.376

1 Introduction

In a previous work [4, 3], we have formulated the problem of measuring the size (or information
content) of a timed regular language. There, we have associated with a language L the
volume V(Ln) of all its words of size n. This volume grows (or vanishes) exponentially as
n→∞, and its rate (i.e. limn logV(Ln)/n) is referred to as entropy H(L) of the language.
In [4, 3], we characterize this entropy as spectral radius of an integral operator and give some
methods to approximately compute it.

The volume-based definition of entropy has, however, some weaknesses when the automa-
ton contains “punctual” transitions guarded by clock constraints of the form x = c. Indeed, as
soon as a run of the automaton includes such a punctual transition, the volume corresponding
to this run becomes 0. Hence, the information content of such a run is disregarded. For
example, in the automaton on Fig. 1A, intuitively there are more runs on ba∗ than on a∗,
however, according to our previous definitions, the volume of all the runs starting by b is 0
(because they should cross a punctual edge), and they are disregarded.

Worse, if all the runs of some automaton include punctual transitions, the entropy becomes
log 0 = −∞ and does not adequately represent the information content.

In this paper, we address the problem of adequately measuring the language size/
information content of a timed language accepted by a timed automaton with punctual and
non-punctual transitions. Our solution is freely inspired by some ideas of symbolic dynamics
[9], and especially by Gromov’s mean dimension, see [10].

The first difficulty is conceptual: the language (up to n events) corresponding to a timed
automaton from a geometrical standpoint is a set of polyhedra in Rn. Without punctual
transitions, all these polyhedra are full-dimensional, and their cumulated volume is a good
aggregate measure of the language. Whenever we allow punctual transitions, the dimension
of polyhedra varies from 0 to n, and it becomes more difficult to find their total size. For

© Eugene Asarin and Aldric Degorre;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 376–387

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.376
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Asarin and Degorre 377

q0
b, x = 3/x := 0

a, x ∈ [0; 5]/x := 0a, x ∈ [0; 3]/x := 0

q0
b, x ∈ [2, 5]/x := 0

c, x = 1/x := 0

a, x ∈ [4, 5]/x := 0 a, b, c, x = 3/x := 0

a, b, c, x ∈ [0, 10000]/x := 0

a, b, c, x ∈ [1; 11]/x := 0

a, b, c, x ∈ [2; 3]/x := 0

Figure 1 A. Is it reasonable not to go right? B. Three paths. Who will win?

example, in the automaton of Fig. 1B, the geometric set contains some (exponentially many)
n-dimensional rectangles of volume 1 corresponding to the words aΣ∗, some n−1-dimensional
rectangles of volume 10n−1, and some (n− 1)/2-dimensional rectangles of volume 3 · 100n−1.
A priori it is not clear how to sum up all these volumes. To address this difficulty, we measure
the size of a multidimensional polyhedral set S using a variant of ε-entropy from [7], which
corresponds to the amount of information (in bits) needed to specify any point of S with
precision ε.

Applying this approach to a regular timed language L, we show that a typical timed
word of Ln, whenever time is measured with precision ε, contains n(α log(1/ε) +H) bits of
information. Thus, the size (growth rate, information production rate) of L is characterized
by two numbers (α,H) referred to as mean dimension and v-entropy1. Roughly, Ln resembles
to an αn-dimensional subset of Σn × Rn of a volume 2nH.

The main result of this paper is a characterization of α and H of the language L accepted
by a timed automaton A which proceeds as follows. After pre-processing the automaton
(splitting its states in regions and removing unreachable states), we obtain a timed automaton
A′ and associate with it a max-plus matrix Φ (a kind of adjacency matrix of A′). The mean
dimension α(L) is the max-plus spectral radius of Φ. The eigenspace corresponding to this
spectral radius leads to identification of several critical sub-automata Ac, where all the paths
have the same mean dimension α. For each such subautomaton Ac, we build an integral
operator Ψc acting on a space of functions on the state space of Ac. The v-entropy is the
logarithm of the largest (among all the critical components) spectral radius of Ψc.

The paper is structured as follows. In Section 2, we introduce and illustrate the notion
of ε-entropy and define mean dimension and v-entropy of a timed language. In Section 3,
we make some assumptions on timed automata and describe how to preprocess them, and
characterize volumes and dimensions of polyhedra in a timed regular language. In Section 4,
we obtain the characterization of mean dimension as spectral radius of a natural max-plus
matrix Φ (Theorem 9). We also describe the construction of the “critical sub-automata”
Ac. In Section 5, we associate to each Ac a Banach space and a positive linear operator
Ψc on this space. We characterize v-entropy in terms of its spectral radius in Theorem 14.
We also discuss how this spectral radius can be computed in practice. In Section 6, we
give an information-theoretic interpretation of α and H in terms of ε-entropy, which can

1 “v” for volumetric.

FSTTCS 2010

378 Two Size Measures for Timed Languages

be considered as correctness result for our algorithms. We conclude in Section 7, where we
discuss related work and perspectives.

2 Timed languages and their size measures

2.1 Some geometric terminology
A convex polyhedron P ⊂ Rd is a bounded finite intersection of half-spaces. If it is a
subset of some k-dimensional affine subspace, but not of any k − 1-dimensional one, we
say that dimP = k. A polyhedral set P is a finite union of convex polyhedra. It can be
decomposed into polyhedral components Pm of various dimensions m from 0 to dimP . Such
a decomposition could be non-unique, but we will always use a greedy algorithm: find
maximal polyhedral subset of maximal dimension - this is the first component. Remove it
from P , and repeat the procedure.

The notions above easily extend to subsets of S × Rd, with S a finite set. Given
such a subset P , we denote its component corresponding to an s ∈ S by Ps, that is
Ps = {x|(s, x) ∈ P} ⊂ Rd. We call a subset P polyhedral, if every component Ps is a
polyhedral set. The dimension of a polyhedral set P is the maximum of dimensions of its
components. Ps can be further decomposed into subcomponents of different dimensions Pms ,
with m ≤ d.

In this paper, we will use the well-known ∞-metric on Rd defined as follows:

d(x,x′) = max
i
|xi − x′i|,

balls in this metric are cubes. It can be naturally extended to S × Rd:

d((s,x), (s′,x′)) =
{
d(x,x′), if s = s′;
∞, otherwise.

2.2 Size of multidimensional sets
The key to measuring such multidimensional sets is provided by Kolmogorov and
Tikhomirov’s theory of ε-capacity and ε-entropy [7]. We will use a “diametric” variant
of the notion of ε-entropy, following [11]. Given a compact metric space X, and a ε > 0, we
define the ε-entropy of X as logarithm of the minimum cardinality of a partition of X into
(Borel) subsets of a diameter ≤ ε. The ε-entropy can be seen as the amount of information
(in bits) that is necessary to represent an arbitrary point in X with precision ε.

In particular, for an m-dimensional polyhedron P of a volume V , the minimum cardinality
of an ε-partition is close to V/εm, thus its logarithm is

hε(P) ≈ log V −m log ε.

For a disjoint union of finitely many polyhedra Pi of dimension mi and volume Vi, its
ε-partition has a size close to

∑
i Vi/ε

mi , (for small ε) and its logarithm can be considered
again as information content. Fig. 2 illustrates this simple fact.

This justifies the following:

I Definition 1. Formal ε-entropy of a finite disjoint family of polyhedra Pi of dimension mi

and volume Vi is defined as:
hε(P) = log

∑
i

Vi/ε
mi .

Asarin and Degorre 379

ε

Figure 2 Adding meters to square meters: two polyhedra and their minimal ε-partitions.

2.3 Timed languages and their polyhedra
Given a finite alphabet Σ, a timed word is a sequence t1a1t2a2 . . . tnan with events ai ∈ Σ
and delays ti ∈ [0;∞). A timed language is just a set of timed words. We will use a
natural geometrical interpretation of timed words and languages. Thus a timed word
w = t1a1t2a2 . . . tnan can be seen as a couple of a discrete word η(w) = a1a2 . . . an (called
untiming of w) and a point θ(w) = (t1, t2, . . . , tn) ∈ Rn called its timing, or equivalently as a
point in Σn ×Rn. Similarly, we associate with a timed language L and a natural n, a subset
Ln ⊂ Σn × Rn.

For L a timed regular language, all the geometrical sets described above are polyhedral.
In this paper, we will explore dimensionality and volume characteristics of L, such as

dim(Ln), the dimension of the set of n-event timed words in L, and V(Lmn), the volume of
the m-dimensional component of this set (clearly, it can be non zero only for m ≤ dim(Ln)).

2.4 Main definitions
The precise aim of this article is to explore the asymptotic behavior of

dim(Ln) as n→∞ (we will show that it is linear);
V(Lmn) as n→∞ and m ≈ dim(Ln) (we will show that it is exponential).

We will characterize this behavior by two rates (which are just real numbers):

I Definition 2. Two size measures of a timed regular language are defined as follows:
Mean dimension α(L) = limn→∞ dim(Ln)/n;
v-entropy H(L) = limn→∞ log max{V(Lmn) | αn− d < m < αn+ d}/n (with a constant
d specified below).

The definition of α(L) is very natural, it says that Ln has dimension ≈ αn. The definition
of H(L) saying that the volume of Lmn is approximately 2nH for dimension m close to its
maximal possible value, also seems plausible, the only possible doubt is related to the choice
of m. We will justify these definitions by Theorem 18, which relates α and H to the formal
ε-entropy hε(Ln).

2.5 Example
To illustrate the notions above, consider again the timed language of the automaton of
the Fig. 1B. Here we have the choice to explore three different areas of the automaton,
depending on the choice of the first symbol between a, b and c, yielding the following
language: LB = [4; 5]a([2; 3]Σ)∗ + [2; 5]b(3Σ[0; 10000]Σ)∗ + 1c([1; 11]Σ)∗. The first branch
produces 3n−1 copies of the n-dimensional rectangle [4; 5]× [2; 3]n−1, the second the same
number of rectangles [2; 5]× ({3} × [0; 10000])(n−1)/2 of dimension (n+ 1)/2 (we suppose n

FSTTCS 2010

380 Two Size Measures for Timed Languages

p q

a, x ∈ [0; 1]/x := 0

a, y ∈ [0; 1]/y := 0

b, x = 0/y := 0b, y = 0/x := 0

q0 q2

q1

a, x ∈ [1; 2]/x := 0 a, y ∈ [1; 2]/y := 0

a, y = 1

Figure 3 Two interesting automata

odd). The third branch has as many n− 1-dimensional rectangles {1} × [1; 11]n−1. Clearly
dim(Ln) = n, thanks to the first branch. Hence, the mean dimension α(L) = 1. Consider
now the volumes:

V(Lnn) = 3n−1; V(L(n+1)/2
n) = 300n−1 · 3; V(Ln−1

n) = 30n−1.

According to Def. 2, v-entropy takes into account only the first and the third volumes (with
m ≈ αn = n, and not the second one). The third volume wins the race, hence the v-entropy
H(L) = log 30 ≈ 4.9.

In order to understand why the huge second volume has been disqualified, let us consider
the formal ε-entropy of Ln. The sum under logarithm would be:∑

i

Vi/ε
mi = 3n−1ε−n + 300n−1 · 3ε(1−n)/2 + 30n−1ε1−n

= ε−n
(

3n−1 + (300ε1/2)n−1 · 3ε+ 30n−1ε
)
.

It shows that for ε < 1
100 , the third term, coming from the sublanguage 1c([1; 11]Σ)∗ is

the preponderant one, despite the huge interval in [2; 5]b(3Σ[0; 10000]Σ)∗, which appears
only every 2 events. Only terms with dimension m close to the maximum αn can contribute.

In the example considered, we were able to compute mean dimension, v-entropy and
formal ε-entropy directly from definitions. To convince the reader that it is not always
possible, and advanced methods could be useful, we propose to consider the two automata
on Fig. 3. We believe that their size parameters (at least v-entropy) cannot be obtained
using elementary methods. We will use the automaton on the right of the figure as a running
example.

3 Good timed automata and their pre-processing

We will be able to compute α and H for a subclass of timed automata, and, before proceeding
we have to put the automaton in some normal form. The subclass and the normal form are
very close to those from [3], the main difference is that punctual transitions are allowed.

We consider the following variant of Alur and Dill’s timed automata (see [1] for original
definition). A timed automaton (TA) is a tuple A = (Q,Σ, C,∆, q0). Its elements are
respectively the set of locations, the alphabet, the set of clocks, the transition relation,
and the initial location (we do not need to specify accepting states since all the states are
accepting, neither do we need any invariants). A generic state of A is a pair (q,x) of a control
location and a vector of clock values. A generic element of ∆ is written as δ = (q, a, g, r, q′)
meaning a transition from q to q′ with label a, guard g and reset r. We spare the reader the
definitions of a run of A and of acceptance, but we are obliged to fix some notations. Given
an automaton A, we write L(A) or just L for its accepted language, Lp(x) for the language

Asarin and Degorre 381

accepted by the runs starting at (p,x); if we want to also specify the last state, we write
Lpq(x); finally, for the language accepted along some fixed path π = δ1 . . . δn in A, we write
Lπ(x). This notation will be freely combined with two indices for dimension, thus Lmpn(x) is
the m-dimensional component of the set of traces of n-event runs starting at p with clock
values x.

We say that a deterministic timed automaton with all accepting states and all guards
bounded by a constant M is good if the following Assumption holds:

A1. There exists a D ∈ N such that on every run segment of D transitions, every clock is
reset at least once.

We say that a good TA A = (Q,Σ, C, δ, q0) is in a region-split form if the following
properties hold:

B1. Each location and each transition of A is visited by some run starting at (q0, 0).
B2. For every location q ∈ Q, a unique clock region rq (called its entry region) exists, such

that the set of clock values with which q is entered is exactly rq. For the initial location
q0, its entry region is the singleton {0}.

B3. The guard g of every non-punctual transition δ = (q, a, g, r, q′) ∈ ∆ is just one clock
region.

B4. The guard g of every punctual transition δ = (q, a, g, r, q′) ∈ ∆ has a form xi = c.

Similarly to [3], it is easy to prove the following:

I Proposition 3. Given a good TA A, a region-split TA A′ accepting the same language can
be constructed.

3.1 Recurrent formulas
Given a region-split automaton A, and a path π = δ1 . . . δn in this automaton, the timed
language Lπ(x) corresponds to one convex polyhedron in Σn×Rn, we will denote its projection
on Rn by Pπ(x). We will compute this polyhedron, its dimension and volume by recurrence
on π, starting with an empty path and adding transitions at its beginning one by one.

For the base case (empty path ε), we put

Pε(x) = {x}, dimPε(x) = 0, V(Pε(x)) = 1.

Suppose that we know P = Pπ(x). The recurrent formulas for Pδπ(x), its dimension and
volume look differently for punctual and non-punctual δ. We summarize them in Table 1
and deduce the following result:

I Proposition 4. The dimension and the volume of Pπ(x) for π = δ1 . . . δn are as follows:

dimPπ(x) =
n∑
i=1

φδi
; (1)

VPπ(x) = (ψδ1 . . . ψδn
1)(x). (2)

Knowing the volume and the dimension for every path, we can in principle compute2 them

2 Iterated integrals in the chain of ψδ only lead to polynomials and can be easily computed symbolically.

FSTTCS 2010

382 Two Size Measures for Timed Languages

Punctual δ Non-punctual δ

δ (q, a, y = c, r, q′) (q, a, g, r, q′)
Pδπ(x) {c− y} × Pπ(r(x + c− y))

⋃
τ :x+τ∈g

{τ} × Pπ(r(x + τ))
dimPδπ(x) = dimPπ(x) + φδ

φδ 0 1
V(Pδπ(x)) = (ψδVPπ)(x)

(ψδv)(x) v(r(x + c− y))
∫

x+τ∈g
v(r(x + τ)) dτ

Table 1 Recurrence equations for polyhedra, dimensions, and volumes. ψδ is an operator
transforming functions to functions.

(for given n and m) for the whole language and its sublanguages, in particular

dim(Ln) = max
{

n∑
i=1

φδi
|δ1 . . . δn a path from (q0, 0)

}
; (3)

V(Lmn) =
∑{

ψδ1 . . . ψδn
(1)|δ1 . . . δn a path from (q0, 0) s.t.

n∑
i=1

φδi
= m

}
. (4)

In two subsequent sections we will determine the asymptotical behavior of these quantities.

4 Max-plus and mean dimension

In this section, we show that dimLn is approximately linear wrt n and compute the rate of
this dependence. We also clean up the automaton removing the paths that do not give the
maximal dimension. The techniques used come from max-plus algebra (see [5]).

4.1 Recalling max-plus
Consider the set Rmax = R∪{−∞} endowed with two operations: max (“addition” denoted ⊕)
and + (“multiplication” denoted ⊗). Operations ⊕ and ⊗ are extended in a natural way to
vectors and matrices; An denotes the n-th max-plus power of a matrix A.

Similarly to usual linear algebra, for a matrix A we say that λ ∈ Rmax and x ∈ Rnmax are
respectively an eigenvalue and an eigenvector of A if A⊗ x = λ⊗ x. The highest eigenvalue
called spectral radius of A admits an interpretation in terms of paths in weighted graphs.
An n × n matrix A corresponds to a weighted graph G with vertices 1, . . . , n. Whenever
Aij > −∞, there is an edge (i, j) in the graph, its weight is Aij . For a path π in G, its
weight w(π) is the sum of weights of edges, and its mean weight is just w(π)/|π|. It is easy
to see that Anij is the maximal weight of a path of n edges from i to j.

As for the spectral radius α, it can be characterized as the maximum of mean weights
for all circuits in the graph G. All the circuits having the same mean weight α are called
critical. The critical subgraph Gcrit ⊂ G contains all the vertices and the edges of critical
circuits (see an example on Fig. 4). We will need the following well-known results on weights
of paths and powers of max-plus matrices:

I Proposition 5 (see [5]). Let A be a max-plus matrix, α(A) its spectral radius, Gcrit its
critical subgraph. Then,

α and Gcrit can be computed in O(n3) using Karp’s algorithm;
Gcrit is a union of several disjoint strongly connected graphs (critical components);

Asarin and Degorre 383

A =

−∞ −∞ 1 1 −∞ −∞
2 1 −∞ −∞ −∞ 1
−∞ 0 −∞ −∞ −∞ −∞
−∞ −∞ −∞ −∞ −∞ −∞
−∞ 0 −∞ 1 1 −∞
−∞ −∞ −∞ −∞ 0 −∞

1 2

3

4 5

6

1 0

2

1 0

1
1

0

1

0

1

1

Figure 4 A matrix and a graph; critical edges represented in thick lines, α = 1.

for i and j in the same critical component, all the n-paths in Gcrit from i to j have the
same weight equal to the maximal weight in the original graph: = Anij, and close to αn:
more precisely for some constant d we have |Anij − αn| < d;
for arbitrary i and j only the upper bound holds: Anij < αn+ d.

We see that α is the optimal asymptotic mean weight, and that it is attained by any path in
(an SCC of) the critical graph. On the other hand, any path visiting often enough non-critical
edges has a lesser weight:

I Proposition 6. For any path π in a matrix of {−∞, 0, 1}n×n with m non-critical and k
critical edges, the following upper bound holds:

w(π) < d+ αk + βm,

with some constant β < α which depends only on the matrix A.

4.2 Matrix Φ
The theory described above applies almost directly to dimension of timed polyhedra. Indeed,
let us define a max-plus matrix Φ such that Φpq = max{φδ | δ from p to q}. In other words,

Φpq =

−∞ if there is no transition from p to q;

0 if there is a transition and all transitions are punctual;
1 if there is a non-punctual transition.

Then, the following is almost immediate from (3).

I Proposition 7. Φnpq is the dimension of Lpqn(x) (for any clock valuation x).

Thus, we can apply the general theory, compute the spectral radius α(Φ), the critical
subgraph and its SCC decomposition. This way, for any SCC c we obtain a critical sub-
automaton Ac whose control states are the ones corresponding to vertices of c and whose
transitions are those of A, going along critical edges, and having maximal dimension for each
such edge3. Applying Prop. 5 to Ac we obtain:

I Corollary 8. In each critical subautomaton Ac, for any n-path π from p to q , the dimension
of Pπ(x) does not depend on the choice of the path. It is close to αn: more precisely for
some constant d we have |dimPπ(x)− αn| < d.

And we deduce the main result of this section:

3 We do not define the initial state for Ac.

FSTTCS 2010

384 Two Size Measures for Timed Languages

I Theorem 9. For any good region-split automaton A, let α > −∞ be the spectral radius of
its matrix Φ. Then, for some constant d and all n, the language L of A satisfies:

|dimLn − αn| < d.

Thus α is the mean dimension of L. (In the degenerate case when α = −∞, the automaton
is acyclic and Ln is empty for n large enough.)

I Example 10. We consider the automaton on the right of Fig. 3 and put it in region-split
form. We call p0, p1 and p2 the region-split states corresponding to q0, q1 and q2 with
respective entry regions [y = 1 < x < 2], [0 = x < 1 < y] and [y = 1 < x < 2]. The only
critical cycle is then p0

1<x<2, x:=0−−−−−−−−→ p1
1<y<2, y:=0−−−−−−−−→ p2

y=1−−→ p0. As it yields two non-punctual
and one punctual transition, its mean dimension, the max-plus spectral radius of Φ, is 2

3 .
Therefore, in this example, α = 2

3 .

5 Functional analysis and v-entropy

Exploration of the asymptotic behavior of the volume goes along the same lines as for
dimension, but instead of a max-plus matrix, a matrix of integral operators is iterated. As a
result, while dimension’s asymptotics is linear, the volume evolves exponentially.

5.1 Recalling functional analysis
In order to characterize and compute the v-entropy H, we will use the approach introduced
in [3], based on functional analysis (see e.g. [12]) and in particular the theory4 of positive
linear operators on Banach spaces (see [8]). We will need the following result:

I Theorem 11 (see [8]). Given a positive linear bounded compact operator Θ with a spectral
radius ρ > 0, defined on a Banach space ordered by a generating cone 5, the following holds:

1. ρ is an eigenvalue;
2. there exists a non-negative eigenvector f ≥ 0 corresponding to this eigenvalue;
3. Gelfand’s formula holds: limn ||Θn||1/n = ρ.

5.2 Banach space and operator Ψ
Similarly to [3], and to the previous section, we will represent equation (4) as iteration of
some positive operator, and apply Theorem 11. However, we must take into account the
two parameters n and m of the volume V(Lmn). Our solution is as follows: we will consider
the critical subgraph introduced above, and thus concentrate on the polyhedra of maximal
dimension m ≈ αn (which corresponds to the definition of v-entropy).

Given a good timed automaton in the region-split form, we first restrict to one critical
subautomaton Ac (we denote its state space by Qc). We define the Banach space Fc as the
set of continuous bounded functions on the set {(q,x)|q ∈ Qc,x ∈ rq}. The norm is defined
by ||f || = supq,x |f(q,x)|. An element f ∈ F can be seen as a vector of functions fq with
simplicial domains rq.

4 A generalisation of the classical Perron-Frobenius theory to infinite dimension.
5 The space F of continuous function considered below straightforwardly satisfies these properties.

Asarin and Degorre 385

For any p, q ∈ Qc, we define an operator ψpq which maps functions over rq to functions
over rp as the sum of all the operators ψδ (defined in Table 1) for the transitions going from
p to q. Next we define an operator Ψc on F with the matrix (ψ)pq:

(Ψcf)(p,x) =
∑
q

(ψpqfq)(x).

The operator Ψc provides a simple form to formulas (4) restricted to critical paths and
maximal dimension. Let Lc (with subscripts and arguments interpreted in the standard way)
denote the language of the critical subautomaton Ac.

I Proposition 12. For any p, q ∈ Qc:

V(Lcpqn(x)) = (Ψn
c 1q)p(x),

where the function 1q equals one on the state q (more precisely, on {q} × rq), and zero
elsewhere.

5.3 Characterization of v-entropy
In Prop. 12, we have characterized the volume of Lcpqn(x) in terms of nth iteration of the
matrix integral operator Ψc. On the other hand, this operator almost satisfies the hypotheses
of Theorem 11:

I Proposition 13. Ψc is a bounded linear positive operator. ΨD+1
c is compact with D as in

Assumption A1.

This allows to prove, using Theorem 11:

I Theorem 14. Let A be a good region-split TA, Ac its critical subautomaton, Ψc the operator
described above for Ac, and ρc the spectral radius of this operator. Then the following holds:

for any σ > 0, and n big enough, for any state (q,x) of Ac, the upper bound:

V(Lcqn(x)) < (ρc + σ)n;

and for some state q of Ac, some open set O inside rq and some γ > 0, for all x ∈ O,
for all n, the lower bound:

V(Lcqn(x)) > γρnc .

The theorem says that in a critical Ac, the volume grows roughly as ρnc , or, in exponential
form, as 2n log ρc . We can deduce now the required characterization of the v-entropy of the
whole language of A.

I Theorem 15. Let A be a good region-split TA. Then its v-entropy H is the maximum of
log ρc over all its critical subautomata Ac.

I Example 16. On the only critical component of the automaton on the right of Fig. 3
(containing only the three transitions of the critical cycle we mentioned earlier in Ex. 10),
the operators ψpq (defining Ψc) have the following expressions:

(ψp0p1f)(x, y) =
∫ 2−x

τ=0
f(0, y + τ)dτ ;

(ψp1p2f)(x, y) =
∫ 2−y

τ=0
f(x+ τ, 0)dτ ;

(ψp2p0f)(x, y) = f(x+ 1, 1).

FSTTCS 2010

386 Two Size Measures for Timed Languages

A close examination shows that the integral system Ψcf = λf can be rewritten using only
one real variable, then differentiated twice and finally solved symbolically as a linear ordinary
differential equation. Doing so, we find that the λ having the highest absolute value such
that the system still has non-trivial solutions is

(2
π

)2/3. Therefore H = 2
3 log 2

π .

5.4 Algorithmic aspects
Practical computation of the spectral radius of an operator Ψ represented by a matrix of
integral operators is a nontrivial task. However, the two methods proposed in [3] can be
applied almost without change. We refer the reader to [3, 2], and only sketch the two
methods:

The first one applies to the subclass of “1 1/2 clocks” automata such that all the regions
rq are of dimension 0 or 1 (it means that all the clocks but one should be reset when
taking a transition). For such an automaton it is possible to transform the integral
eigenvalue equation Ψv = λv to a system of linear ordinary differential equations (indeed,
unknown functions vq are functions of scalar arguments), solve it symbolically and thus
obtain a closed-form equation on the largest eigenvalue ρ.
The second (numerical) method uses iterations of operator Ψ. It is based on the following
fact on positive operators from [8]:
I Proposition 17. Let vn = Ψn1, and α = minq,x vn+1(q,x)

vn(q,x) ; β = maxq,x vn+1(q,x)
vn(q,x) .

Then α ≤ ρ(Ψ) ≤ β.
The bounds α and β can be obtained by a straightforward symbolic computation.

6 Size versus information

I Theorem 18. Let L be a timed language of a good automaton, α and H its mean dimension
and v-entropy. If α > 0 and H > −∞, then the formal ε-entropy of Ln satisfies the inequality,
for all η > 0, for ε small enough and n large enough:

n(−α log ε+H− η) ≤ hε(Ln) ≤ n(−α log ε+H+ η).

The second term of this inequality is logarithm of
∑
m V(Lmn)ε−m where the sum is

computed over all the dimensions m. The first and third terms are close to the logarithm of
the similar sum computed only for terms with m ≈ αn. The proof of the upper bound in
Theorem 18 is based on technical estimates showing that contribution of terms with m < αn

in the sum can be reasonably upper bounded.

7 Conclusions

This paper reports progress achieved recently in the information-theoretical studies of timed
regular languages, especially with punctual transitions. Two components of information
content have been identified and characterized: one represents the dimensionality, another the
volume. Both are characterized by spectral radii of linear operators, matrices of both operators
reproduce the structure of the automaton, but they are still very different in nature (one is
max-plus and finite-dimensional, other is a classical integral operator). Our understanding of
the role of punctual transitions in timed languages has substantially improved. As ongoing
and future work we are interested in relating these results to other information measures,
such as Kolmogorov complexity, and topological entropy, in the spirit of symbolic dynamics.
Our work went in parallel and in interaction with the MSc thesis [6] supervised by one

Asarin and Degorre 387

of us and exploring in depth symbolic dynamics of timed automata. These two research
lines would eventually merge. On the other hand, we believe that improved measures of
information content for a larger class of timed languages introduced here are more suitable
for eventual implementation and applications.

Acknowledgments

We are thankful to Dominique Perrin for encouraging discussions, to Mike Boyle for attiring
our attention to mean dimension, and to Nicolas Basset for sharing his inspiring ideas on
timed symbolic dynamics.

References
1 R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,

126:183–235, 1994.
2 E. Asarin and A. Degorre. Volume and entropy of regular timed languages. Preprint, 2009.

http://hal.archives-ouvertes.fr/hal-00369812/.
3 E. Asarin and A. Degorre. Volume and entropy of regular timed languages: Analytic

approach. In FORMATS’09, LNCS 5813, pages 13–27, 2009.
4 E. Asarin and A. Degorre. Volume and entropy of regular timed languages: Discretization

approach. In Concur’09, LNCS 5710, pages 69–83, 2009.
5 F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronization and Linearity.

2001. http://www-rocq.inria.fr/metalau/cohen/documents/BCOQ-book.pdf.
6 N. Basset. Dynamique symbolique et langages temporisés. Master’s thesis, Master Parisien

de la Recherche Informatique, 2010.
7 A. Kolmogorov and V. Tikhomirov. ε-entropy and ε-capacity of sets in function spaces.

Uspekhi Mat. Nauk, 14(2):3–86, 1959. Russian, partial English translation in [?].
8 M. Krasnosel’skij, E. Lifshits, and A. Sobolev. Positive Linear Systems: the Method of

Positive Operators. Heldermann Verlag, Berlin, 1989.
9 D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge

University Press, 1995.
10 E. Lindenstrauss and B. Weiss. Mean topological dimension. Israel J. of Math., 115:1–24,

2000.
11 E. C. Posner and E. R. Rodemich. Epsilon entropy and data compression. Ann. Math.

Statist, 42(6):2079–2125, 1971.
12 B. Rynne and M. Youngson. Linear Functional Analysis. Springer, 2008.

FSTTCS 2010

Average Analysis of Glushkov Automata under a
BST-Like Model

Cyril Nicaud1, Carine Pivoteau1, and Benoît Razet2

1 LIGM, Univ. Paris-Est, CNRS UMR 8049, France
{cyril.nicaud,carine.pivoteau}@univ-mlv.fr

2 Tata Institute of Fundamental Research, Mumbai, India
benoit.razet@gmail.com

Abstract
We study the average number of transitions in Glushkov automata built from random regular
expressions. This statistic highly depends on the probabilistic distribution set on the expressions.
A recent work shows that, under the uniform distribution, regular expressions lead to automata
with a linear number of transitions. However, uniform regular expressions are not necessarily a
satisfying model. Therefore, we rather focus on an other model, inspired from random binary
search trees (BST), which is widely used, in particular for testing. We establish that, in this
case, the average number of transitions becomes quadratic according to the size of the regular
expression.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.388

1 Introduction

Finite state automata are an essential data structure in computer science, which have been
extensively studied since the fifties. Kleene, in his seminal paper [14], introduced regular
expressions to describe the behavior of automata and showed a fundamental result: automata
and regular expressions define the same objects, regular languages. Regular expressions are
widely used in string searching programs and scripting languages such as grep, sed, awk,
Perl, Python and Ruby. And most often, programs involving regular expressions are more
efficient when the expressions are compiled into automata instead of interpreting them on
the fly. The study of algorithms compiling (or one can say translating) regular expressions
into automata is therefore a prolific area, which is still very active, in particular because of
the large variety of automata and compilation techniques. A classical method to compare
the resulting algorithms, besides time and space complexities, is to study the size of the
output automaton, defined either as its number of states or of transitions.

In this article we study the average number of transitions of the automaton computed
by a famous algorithm proposed by Glushkov [12] and independently by McNaughton and
Yamada [16]. The automaton produced is now called Glushkov automaton or position
automaton. The position automaton refers to the work of Berry and Sethi [3], who have
provided a fast algorithm for compilation that associates to each position symbol of an
expression, a state in the resulting automaton. This algorithm is also described in the
standard textbook on compilers by Aho, Sethi and Ullman [1]. The worst-case complexity
analysis on Berry-Sethi’s algorithm shows that it produces an automaton with at most a
quadratic number of transitions with respect to the size of the input regular expression (its
number of symbols). But one may wonder what is the behavior of the algorithm in practice,
which naturally leads to consider its average complexity.

© authors;
licensed under Creative Commons License NC-ND

IARCS Annual International Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 388–399

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.388
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Cyril Nicaud, Carine Pivoteau, and Benoît Razet 389

Figure 1 Random unary-binary tree (1000 nodes) according to the BST-like distribution.

Figure 2 Uniform
random unary-binary
tree (1021 nodes).

A recent work [17] has shown that, considering the uniform dis-
tribution on regular expressions, the average number of transitions
of Glushkov automaton is in fact linear, when the worst case is
quadratic. Since a distribution which is uniform seems to be a pri-
ori natural, one may conclude that, in practice, the average num-
ber of transitions should be linear and not quadratic. Nevertheless,
one can argue that this model may not be that relevant. For in-
stance, the number of nested stars in a typical random expression
is in Θ(

√
n), which is much larger than expected. For testing pur-

poses, an other natural distribution appears, inspired from random
binary search trees (for short, we call it the BST-like distribution).
In particular, this distribution has been used to generate random
formulas of Linear Temporal Logic in order to validate algorithms
in [6, 19]. To highlight the difference with the uniform model,
Figures 1 and 2 display two random trees according to the two
distributions: one shall be struck by their contrasting profiles, in
particular looking at their height.

The main result of this paper is that the average number of
transitions of Glushkov automaton is quadratic with respect to the
size of the regular expression under a BST-like distribution. In this
process, we also analyze in details the probability that a random
regular expression recognizes the empty word.

This article is organized as follows. In Section 2, we define
the BST-like distribution on regular expressions and recall some
basic facts on Glushkov automata. The main theorem is given in
Section 3. Intermediate results and their proofs are presented in
Section 4. Finally, in the concluding section, we give experimental
data to illustrate these results. Due to a lack of space, most of the
proofs are sketched or omitted in this extended abstract.

2 Definitions

2.1 The BST-like distribution

We devote this section to the presentation of the trees corresponding to regular expressions,
focusing on the fact that a BST-like distribution on such trees is not uniform. Recall that
the uniform distribution on a finite set S is achieved by giving the same probability 1/|S|
to all the elements of S.

FSTTCS 2010

390 Average Analysis of Glushkov Automata under a BST-Like Model

2.1.0.1 Unary-binary plane trees

We first consider the classical model of unary-binary trees that are defined inductively as
either single nodes (leaves) or nodes having exactly one child or two ordered children that
are themselves unary-binary trees. The regular expressions considered in the sequel are a
specialization of these trees. The number of nodes of a tree T is called its size, denoted by
|T |. Following the recursive definition, one has a quite natural and simple algorithm UB(n)
to produce a unary-binary tree of size n:

UB(n) ---

if n=1 then return a node (denoted by �)

if n=2 then return
�
|
�

else, choose if the root is unary or binary

if unary then return
�
|

UB(n−1)

else choose k between 1 and n− 2 and return
�
/\

UB(k) UB(n−k−1)

--

To transform this procedure into a random sampler, the (unspecified) choices are ran-
domized in order to obey probabilistic laws that dictate the random distribution on the
whole set of trees of size n. In this study, we consider the case where a unary node is chosen
with probability q ∈]0, 1[and a binary node with probability 1− q. The size of the left child
of a binary node is drawn uniformly at random. All the choices are independent, thus, in
this model, the probability p of a tree is defined inductively by:

p (�) = 1,

p
(
�
|
T

)
= q · p(T),

p

(
�
/\

T1 T2

)
= 1−q

n−2p(T1)p(T2), if |T1|+ |T2|+ 1 = n.

(1)

For any n ≥ 1, p is a discrete probability measure on the set of unary-binary trees of size n,
but one can notice that, for any value of q in]0, 1[, the probability distribution induced by
this definition is not uniform. This is readily checked, observing that the probabilities of the
two following unary-binary trees of size 5 cannot match: the equation p(T1) = p(T2) has no
solution for q in]0, 1[when p(T1) = (1− q)2/3 and p(T2) = (1− q)/3.

T1 = T2 =

Actually, this probabilistic model is a natural extension of what is obtained for binary trees
by choosing recursively the sizes of the two subtrees of a node uniformly at random; this
corresponds exactly to the common random distribution on binary search trees (see [15]):
to build a random BST of size n, nodes are inserted one at a time (using the standard
insertion procedure for BST [5]), according to a uniform random permutation of {1, . . . , n}.
Therefore, from now on, we call this model the BST-like distribution.

Cyril Nicaud, Carine Pivoteau, and Benoît Razet 391

•
∗
b

∗
∪

a •
b b

Figure 3 Unary-binary tree of size 9 representing the regular expression b∗ • (a ∪ b • b)∗.

2.1.0.2 Height of a random tree

To emphasize this dissimilarity, one can remark that the asymptotic profiles of the trees
according to these two distributions highly differ. This is observable on different parameters,
one of the most commonly studied being the height. According to [10], the average height
of a large uniform unary-binary tree with n nodes is in Θ(

√
n), when we show here that

it is in Θ(logn), according to our distribution. The later result was expectable, since this
corresponds to the average height of binary search trees [18, 7, 8]. This explains the difference
between the shapes of the two unary-binary trees of Figures 1 and 2, even though they are
about the same size.

I Proposition 1. The average height of a unary-binary tree of size n according to the
BST-like distribution is in Θ(logn).

Proof. (Sketch) This proof is adapted from the second edition of Introduction to Algo-
rithms [5, p. 265–268]. Let Xn be the random variable associated to the height of the
unary-binary trees of size n and let Yn = λXn , with λ = 3

2+q . Using the fact that the height
of a tree that is not reduced to a single node is bounded from above by the sum of the
heights of its children plus one, we get that for all positive integer n, E[Yn] ≤ yn, where
(yn)n∈N∗ is defined by: y1 = 1, y2 = λ, and for all n ≥ 3,

yn = λqyn−1 + 2λ(1− q)
n− 2

n−2∑
`=1

y`.

Since λ = 3
2+q , one can prove by direct induction that yn ≤

(
n+1

2
)
, for any positive integer n.

We conclude by Jensen’s inequality, since λE[Xn] ≤ E[λXn] ≤ yn. J

2.2 Random regular expressions
We consider non-empty regular expressions on an alphabet A, represented as unary-binary
plane trees. The internal nodes are either the unary star operator ∗ or one of the two binary
operators: union ∪ and concatenation •. The leaves (external nodes) are either letters
of A or the empty word ε (see example of Figure 3). Let Tn denote the set of all regular
expressions with n nodes (both internal and external), and T = ∪n∈NTn be the set of all
regular expressions. The size of an expression T ∈ T corresponds to the number of nodes
of the tree, that is the number of symbols in the expression (excluding parentheses). A
language defined on A is denoted by a regular expression when it is exactly the set of words
obtained by interpreting each symbol ∗, • or ∪ as the associated regular operation on sets
of words. Let L(T) be the language denoted by T ∈ T .

We extend the probabilistic model of the unary-binary trees defined in Section 2.1.0.1
to regular expressions as follows. Let pε ∈]0, 1[be the probability associated to ε and p

FSTTCS 2010

392 Average Analysis of Glushkov Automata under a BST-Like Model

be a mapping from A to]0, 1[such that
∑
a∈A p(a) = 1 − pε. The mapping p is extended

inductively to regular expressions by:

p
(∗
|
T

)
= p(T) if |T | = 1,

p
(∗
|
T

)
= q · p(T) if |T | ≥ 2,

p
(∪

/\
T1 T2

)
= 1−q

2(n−2)p(T1)p(T2) if |T1|+ |T2|+ 1 = n,

p
(•

/\
T1 T2

)
= 1−q

2(n−2)p(T1)p(T2) if |T1|+ |T2|+ 1 = n,

(2)

where q in]0, 1[is the probability for an internal node to be the star operator. One can
check by induction on n ≥ 1 that p is a discrete probability measure on Tn, i.e.,∑

T∈Tn

p(T) = 1. (3)

Note that the ∪-nodes and the •-nodes have the same probability to be generated in this
distribution (mostly to keep the following computations trackable).

According to this model, the algorithm UB(n) producing unary-binary trees transforms
into a random sampler RE(n) for regular expressions. This sampler has been used to generate
the random tree displayed by Figure 1, forgetting the labels, with q = 1/3. As for the uniform
tree of Figure 2, it has been produced by a Boltzmann sampler [9].

RE(n) ---
if n=1 then return ε with proba pε or a letter ` with proba p(`)
if n=2 then return (RE(1))∗

else, choose "unary" with proba q or "binary" with proba 1− q

if "unary" then return (RE(n− 1))∗

else choose k uniformly at random between 1 and n− 2
return RE(k) ∪ RE(n− k − 1) with proba 1/2
or return RE(k) • RE(n− k − 1) with proba 1/2

Note that to choose a random element in a set S = {s1, . . . , sn}, each with probability p(si),
one simply needs to pick a random value in the interval I = [0, 1[and return the element
corresponding to the subinterval of I where it belongs, when I is divided according to p:

I = [0, p(s1)[∪ [p(s1), p(s1) + p(s2)[∪ · · · ∪ [1− p(sn), 1[.

2.3 Glushkov automaton
We give here the formal construction to compute the Glushkov automaton [12, 16, 3] of any
regular expression and introduce the notations used in the sequel.

Let m be the number of letter symbols in T , for T ∈ T . We consider the expression T̃
obtained from T by distinguishing the letters with subscripts in {1, . . . ,m}, marking them
from left to right on its string representation, or equivalently using depth-first order on its
tree representation. For instance T0 = b∗ • (a∪ b• b)∗ is changed into T̃0 = b∗1 • (a2∪ b3 • b4)∗.
We denote by Pos (T) the set of subscripted letters in T̃ : Pos (T0) = {b1, a2, b3, b4} in the
example. We also denote by ν the function from Pos (T) to A that removes the subscripts;
for instance, ν(a2) = a.

Cyril Nicaud, Carine Pivoteau, and Benoît Razet 393

istart b1

b3

a2

b4

a

b

b

a

b

a

b

b
b

b

a

Figure 4 Glushkov automaton for the expression T̃0 = b∗1 • (a2 ∪ b3 • b4)∗.

The automaton construction we study relies on the relative positions of letters in the
words recognized by this automaton; thus we introduce the three following sets of distin-
guished letters that are used to describe these positions. For any regular expression T , let
First (T) and Last (T) be the sets defined by

First (T) = {α ∈ Pos (T) | ∃u ∈ L(T̃), u starts with the letter α},

and Last (T) = {α ∈ Pos (T) | ∃u ∈ L(T̃), u ends with the letter α}.

For instance, First (T0) = {b1, a2, b3} and Last (T0) = {b1, a2, b4}. And for any letter α in
Pos (T), the set Follow (T, α) is defined by

Follow (T, α) = {β ∈ Pos (T) | ∃u ∈ L(T̃), α and β are consecutive letters in u}.

The Glushkov automaton of T , also called the position automaton, is the automaton AT
defined by AT = (A,Q,R, {i}, F) with Q = Pos (T) ∪ {i}, F = Last (T) ∪ {i} if ε ∈ L(T)
and F = Last (T) otherwise, and

R = {i ν(α)−−−→ α | α ∈ First (T)} ∪ {α ν(β)−−−→ β | β ∈ Follow (T, α)}.

This classical construction provides an automaton that recognizes L(T). As an example,
the Glushkov automaton of T0 is depicted by Figure 4.

3 Main result

I Theorem 2. In the BST-like model, the average number of transitions in the Glushkov
automaton of a size n regular expression is quadratic, i.e., in Θ(n2).

Proof. First, assume that the expected size fn of First (its cardinality) is linear with
respect to the size n of the regular expression, i.e., that fn satisfies the asymptotic equivalent
fn ∼ Kn, for some positive real K that only depends on pε and q. The proof of this result
(Theorem 7), which is technical, is given in the next section.

Recall that Markov inequality states that if X is a non-negative random variable with
expectation E[X], then for any positive real number a,

P (X ≥ a) ≤ E[X]
a

.

For n ≥ 1, let Xn : Tn → R be the random variable that associates n − |First (T) | to
any T ∈ Tn. This random variable is non-negative, since |First (T) | is at most n for any

FSTTCS 2010

394 Average Analysis of Glushkov Automata under a BST-Like Model

element of Tn. Therefore, setting a = αn in Markov inequality, with 1 − K < α < 1, we
obtain that

P (Xn ≥ αn) ≤ E[Xn]
αn

,

and thus

P (|First (T) | ≤ (1− α)n) ≤ n− fn
αn

.

The right quantity is asymptotically equivalent to 1−K
α < 1, then there exists two real

numbers β and γ in]0, 1[, with β < (1 − α) and 0 < γ < 1 − 1−K
α , such that for n large

enough,

P (|First (T) | ≥ βn) ≥ γ.

By symmetry, this result also holds for Last (T). Moreover, the probability that a regular
expression T of size n+ 2 satisfies the following conditions:

T =
•
/\

T1 T2
, |T1| ∈

[
bn3 c, d

2n
3 e
]
, |Last (T1) | ≥ β|T1| and |First (T2) | ≥ β|T2|,

is at least, for n large enough,

1− q
2︸ ︷︷ ︸

root=•

1
3︸︷︷︸
|T1|

γ︸︷︷︸
|Last(T1)|

γ︸︷︷︸
|First(T2)|

= (1− q)γ2

6 > 0.

Note that for any a in Last (T1) and any b in First (T2), the transition a ν(b)−−→ b is in
the automaton, since the letter b is in Follow (T1 • T2, a). Therefore, any tree satisfying
the above conditions yields to an automaton with at least |Last (T1) | · |First (T2) | ≥ β2n2

transitions. Therefore, the expected number of transitions is bounded below by

(1− q)γ2

6 β2n2 = Ω
(
(n+ 2)2) ,

in the Glushkov automaton of a size n+ 2 expression. The O(n2) bound being obvious, the
result follows. J

The next section is devoted to the exposition of some intermediate results to complete
this proof. Among them, the key point is given by Theorem 7, which states that the
average size of First (resp. Last) is linear with respect to the size of the regular expression;
considering only the sub-expressions of the form T1 • T2, one can observe that the number
of new transitions they imply in the automata is |Last (T1) | · |First (T2) |, which justify the
quadratic number of transitions in the whole automata. The other point is that the size of
First (resp. Last) is highly related to the probability of recognizing the empty word, given
by Theorem 3 which states that a large expression recognizes ε with high probability.

4 Some properties of random expressions in the BST-like model

4.1 Analytic tools
In the sequel, the proofs mostly rely on techniques of analytic combinatorics. To study
the asymptotic behavior of a sequence (an)n∈N, the idea is to consider its generating func-
tion A(z), which is the formal power series defined by

A(z) =
∑
n∈N

anz
n.

Cyril Nicaud, Carine Pivoteau, and Benoît Razet 395

From a recursive specification of (an)n∈N, one can often get a functional equation satisfied
by A(z). At this point, several theorems exist to compute asymptotic estimates of its Taylor
coefficients, which are exactly the an’s. These theorems mainly use the theory of complex
analysis, seeing generating functions as analytic functions from C to C. The main idea is
that asymptotic equivalents for the coefficients of a generating function can be obtained by
studying it around its dominant singularities (its singularities of smallest moduli).

In this article, the recursive descriptions of sequences lead to ordinary differential equa-
tions for their generating functions. These equations can be solved using the well-known
variation-of-constants method, and the solutions have similar properties: they have a unique
dominant singularity at 1 and satisfy the required analytic conditions. Therefore, provided
the expansion of A(z) near 1 is of the form

A(z) = C(1− z)α +O
(
(1− z)β

)
with α ∈ R \ N, α < β and C 6= 0,

Transfer Theorem [11] gives that an ∼ C
Γ(−α)n

−α−1, where Γ is Euler’s Gamma function,
the analytic continuation of s 7→

∫∞
0 ts−1e−tdt.

For more information on analytic combinatorics techniques, the reader is referred to the
comprehensive book by Flajolet and Sedgewick [11].

4.2 Recognizing the empty word
This section is devoted to the proof of Theorem 3 which gives the probability that a regular
expression of a given size recognizes the empty word.

Let rn denote the probability that a size n regular expression does not recognize ε, with
the convention r0 = 0:

rn =
∑
T∈Tn

ε/∈L(T)

p(T).

I Theorem 3. A large random regular expression recognizes the empty word with high prob-
ability. More precisely, in the BST-like model, the probability that a size n regular expression
does not recognize ε is asymptotically equivalent to

rn ∼
C

nq
with C = (1− pε)

e1−qΓ(1− q)

(
1−

∫ 1

0

e(1−q)t(1− t)1−q − 1
t2

dt

)
.

Using basic computations, one can establish the following lemma from Equation (2):

I Lemma 4. The sequence (rn)n∈N satisfies r1 = 1− pε, r2 = 0 and for any n ≥ 1,

rn+2 = 1− q
n

n∑
`=1

r`.

Let R(z) =
∑
n∈N rnz

n, with r0 = 0, denote the generating function associated to the
sequence (rn)n∈N. For all n ∈ N, since it is as a probability, rn is in [0, 1]; then R(z) is
analytic at 0 and its radius of convergence is at least 1.

I Lemma 5. The generating function R(z) satisfies the following differential equation

z
d

dz
R(z)− (1− q)z2 − 2z + 2

1− z R(z) + (1− pε)z = 0.

FSTTCS 2010

396 Average Analysis of Glushkov Automata under a BST-Like Model

Proof. (Sketch) Multiply the general formula of Lemma 4 by nzn+2 and sum for n ≥ 1.
Then identify the expressions of the power series R(z) and d

dzR(z). J

I Proposition 6. Let g be the function defined by

g(z) = e(1−q)z(1− z)1−q − 1
z2 .

The function g(z) has a false pole at zero, that can be removed, and one has

R(z) = (1− pε)
(

1− z
∫ z

0
g(t)dt

)
ze(q−1)z(1− z)q−1.

Proof. The formula is obtained by the variation-of-constants method. Once stated, one can
also directly verify that it satisfies the differential equation of Lemma 5 with the same initial
conditions as R(z). J

of Theorem 3. The proof is an application of analytic combinatorics techniques, and more
precisely of singularity analysis of generating functions (see [11, Ch. VI]).

The function g(z) = z−2(e(1−q)z(1− z)1−q − 1) has its unique dominant singularity at 1
where we have:

g(z) = −1 + e1−q(1− z)1−q +O((1− z)).

Hence, by Singular Integration Theorem [11, p. 420], the antiderivative of g satisfies near 1
the following development:∫ z

0
g(t)dt = −1 +O(1− z)− e1−q

2− q (1− z)2−q +
∫ 1

0
(g(t) + 1)dt+O((1− z)2)

=
∫ 1

0
g(t)dt+O(1− z).

Hence, R(z) has its unique dominant singularity at 1 too, and near 1 one has

R(z) = (1− pε)eq−1
(

1−
∫ 1

0
g(t)

)
(1− z)q−1 +O((1− z)q).

Using Transfer Theorem [11, p. 393], we obtain

rn ∼
(1− pε)eq−1

(
1−

∫ 1
0 g(t)

)
Γ(1− q) n−q,

concluding the proof.
J

4.3 The average size of First is linear
In this section, we establish the following theorem. Some of the proofs are omitted, since
they are similar to those of Theorem 3.

I Theorem 7. The average size of First for a size n regular expression, according to the
BST-like model, is asymptotically equivalent to K n, for some real constant K ∈]0, 1[.

Let fn be the average cardinality of First for regular expressions of size n:

fn =
∑
T∈Tn

| First (T) | · p(T).

Note that, by symmetry, fn is also the average size of Last for regular expressions in Tn.

Cyril Nicaud, Carine Pivoteau, and Benoît Razet 397

I Lemma 8. The sequence (fn)n∈N satisfies f1 = f2 = 1− pε and for any n ≥ 1,

fn+2 = qfn+1 + 2(1− q)
n

n∑
`=1

f` −
1− q
2n

n∑
`=1

r`fn+1−`.

Let F (z) =
∑
n∈N fnz

n, with f0 = 0, be the generating function associated to the
sequence (fn)n∈N.
I Lemma 9. The generating function F (z) satisfies the following differential equation

z(1− qz) d
dz
F (z)−

(
2− qz + 2(1− q)z2

1− z − 1− q
2 zR(z)

)
F (z) + (1− pε)z = 0.

Solving this equation, we obtain the following proposition.
I Proposition 10. Let h be the function defined by

h(z) = (1− z)2

z2(1− qz)2/q −
1
z2 .

The function h(z) has a false pole at zero, which can be removed, and one has

F (z) = z(1− qz)2/q−1

(1− z)2 (1− pε) exp
(
−1− q

2

∫ z

0

R(t)
1− qtdt

)(
1 + (1− q)z − z

∫ z

0
h(t)dt

)
.

The proof of Theorem 7 is an analysis of F (z) near its unique dominant singularity 1,
using our result on R(z). We obtain that

F (z) = K

(1− z)2 (1 +O ((1− z)q)) and fn ∼ K n,

with

K = (1− pε)(1− q)2/q−1 exp
(
−1− q

2

∫ 1

0

R(t)
1− qtdt

)(
2− q −

∫ 1

0
h(t)dt

)
.

5 Conclusion and perspectives

In this article, we analyzed the average size of Glushkov automata associated to random
regular expressions, in the BST-like model. Using analytic combinatorics techniques, we
proved that, unlike in the uniform case, the average number of transitions in an automaton
is quadratic with respect to the size of the expression.

We implemented the procedure RE(n) given in Section 2.2 in order to confirm empirically
our theoretical results. One of these experiments is displayed by Figure 5 (plain line). The
x-axis represents the size of the regular expressions and the y-axis represents the number of
transitions in the corresponding Glushkov automata. The dotted line corresponds to an other
bench of experiments, involving a different kind of regular expressions, where the Kleene
Star operator ∗ (reflexive and transitive closure of the concatenation) has been replaced
by a + operator (only transitive closure of the concatenation). Considering the classical
regular expressions, the quadratic behavior clearly appears on Figure 5, whereas it seems to
be linear for expressions using only the + operator.

One can reasonably expect to prove the linear behavior observed in Figure 5b, using the
techniques of the present paper combined with those of [17]. This seems to be confirmed by
the calculations we have already performed. A natural extension of this work is therefore
to complete this proof. In a different direction, the average analysis of other constructions
related to Glushkov automata, could be considered. Among them are the Follow automaton
by Ilie and Yu [13] and Antimirov automaton [2], which are both quotients of Glushkov
automaton (see [4]).

FSTTCS 2010

398 Average Analysis of Glushkov Automata under a BST-Like Model

0

4e+06

8e+06

1.2e+07

1.6e+07

0 10000 20000 30000 40000

nu
m

be
r

of
 tr

an
si

tio
ns

size of expression

Number of transtitions for Glushkov automata

regular expressions
plus expressions

(a)

0

100000

200000

300000

400000

0 10000 20000 30000 40000

nu
m

be
r

of
 tr

an
si

tio
ns

size of expression

Number of transtitions for Glushkov automata

regular expressions
plus expressions

(b)

Figure 5 Number of transitions of Glushkov automata with respect to the size of expressions
defined on the alphabet A = {a, b}, with parameters q = 1

3 , pε = 1
100 and p(a) = p(b). Note that

(a) and (b) display the same data, but with different scales.

References
1 Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, techniques, and

tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.
2 Valentin Antimirov. Partial derivatives of regular expressions and finite automaton con-

structions. Theoretical Computer Science, 155(2):291–319, 1996.
3 Gérard Berry and Ravi Sethi. From regular expressions to deterministic automata. Theo-

retical Computer Science, 48(1):117–126, 1986.
4 Jean-Marc Champarnaud and Djelloul Ziadi. Canonical derivatives, partial derivatives and

finite automaton constructions. Theoretical Computer Science, 289(1):137 – 163, 2002.
5 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction

to Algorithms. MIT Press, Cambridge, MA, second edition, 2001.
6 Marco Daniele, Fausto Giunchiglia, and Moshe Y. Vardi. Improved automata generation

for Linear Temporal Logic. In Nicolas Halbwachs and Doron Peled, editors, CAV, volume
1633 of Lecture Notes in Computer Science, pages 249–260. Springer, 1999.

7 Luc Devroye. A note on the height of binary search trees. Journal of the ACM, 33(3):489–
498, 1986.

8 Michael Drmota. An analytic approach to the height of binary search trees. Journal of the
ACM, 50:89–119, 2001.

9 Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer. Boltzmann sam-
plers for the random generation of combinatorial structures. Combinatorics, Probability
and Computing, 13(4–5):577–625, 2004.

10 Philippe Flajolet and Andrew Odlyzko. The average height of binary trees and other simple
trees. The Journal of Computer and System Sciences, 25(2):171–213, 1982.

11 Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University
Press, 2009.

12 Victor Glushkov. The abstract theory of automata. Russian Mathematical Surveys, 16:1–
53, 1961.

13 Lucian Ilie and Sheng Yu. Follow automata. Information and Computation, 186(1):140–162,
2003.

14 Stephen Cole Kleene. Representation of events in nerve nets and finite automata. Automata
Studies, Annals of Mathematics Studies, 36, 1956.

Cyril Nicaud, Carine Pivoteau, and Benoît Razet 399

15 Conrado Martínez. Statistics Under the BST Model. PhD thesis, UPC, Spain, 1992.
16 Robert McNaughton and Hisao Yamada. Regular expressions and state graphs for au-

tomata. IRE Transactions on Electronic Computers, 9:39–47, 1960.
17 Cyril Nicaud. On the average size of Glushkov’s automata. In Adrian Horia Dediu, Armand-

Mihai Ionescu, and Carlos Martín-Vide, editors, LATA, volume 5457 of Lecture Notes in
Computer Science, pages 626–637. Springer, 2009.

18 John M. Robson. The height of binary search trees. Australian Computer Journal,
11(4):151–153, 1979.

19 Heikki Tauriainen and Keijo Heljanko. Testing SPIN’s LTL formula conversion into Büchi
automata with randomly generated input. In Klaus Havelund, John Penix, and Willem
Visser, editors, SPIN, volume 1885 of Lecture Notes in Computer Science, pages 54–72.
Springer, 2000.

FSTTCS 2010

Beyond Hyper-Minimisation—Minimising DBAs
and DPAs is NP-Complete∗

Sven Schewe

University of Liverpool

Abstract
In this paper we study the problem of minimising deterministic automata over finite and infinite
words. Deterministic finite automata are the simplest devices to recognise regular languages,
and deterministic Büchi, Co-Büchi, and parity automata play a similar role in the recognition
of ω-regular languages. While it is well known that the minimisation of deterministic finite and
weak automata is cheap, the complexity of minimising deterministic Büchi and parity automata
has remained an open challenge. We establish the NP-completeness of these problems. A second
contribution of this paper is the introduction of almost equivalence, an equivalence class for
strictly between language equivalence for deterministic Büchi or Co-Büchi automata and language
equivalence for deterministic finite automata. Two finite automata are almost equivalent if they,
when used as a monitor, provide a different answer only a bounded number of times in any
run, and we call the minimal such automaton relatively minimal. Minimisation of DFAs, hyper-
minimisation, relative minimisation, and the minimisation of deterministic Büchi (or Co-Büchi)
automata are operations of increasing reduction power, as the respective equivalence relations on
automata become coarser from left to right. Besides being a natural equivalence relation for finite
automata, almost equivalence is language preserving for weak automata, and can therefore also
be viewed as a generalisation of language equivalence for weak automata to a more general class
of automata. From the perspective of Büchi and Co-Büchi automata, we gain a cheap algorithm
for state-space reduction that also turns out to be beneficial for further heuristic or exhaustive
state-space reductions put on top of it.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Automata Theory, Complexity, Büchi Automata, Parity Automata

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.400

1 Introduction

The minimisation of deterministic finite automata (DFAs) is a classic problem with an
efficient solution [8, 9]. This paper was originally written with only the question in mind
of whether or not a similar result can be obtained for deterministic automata over infinite
words. Is their minimisation tractable? For weak automata, the answer is known to be
positive [12], which seems to encourage a quest for a tractable solution for Büchi, Co-Büchi,
and parity automata as well. However, it turns out that their minimisation is intractable
(NP-complete).

This raised the question whether there are natural tractable problems between the
minimisation of DFAs and deterministic Büchi automata (DBAs) or deterministic Co-Büchi
automata (DCAs). The hyper-minimisation of deterministic automata [2, 1, 7] is such an

∗ This work was partly supported by the Engineering and Physical Science Research Council (EPSRC)
through the grant EP/H046623/1 ‘Synthesis and Verification in Markov Game Structures’. An extended
version is available as a technical report [21], which also contains the omitted proofs.

© Sven Schewe;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 400–411

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.400
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Sven Schewe 401

Figure 1 Figure 1a shows a minimal DFA A over the two letter alphabet {a, b}. Figure 1b shows
a hyperminisation of A, Figure 1c shows a minimal almost equivalent automaton to A, and Figure
1d shows a minimal language equivalent DBA to A. (Neither hyperminimal nor relative minimal
automata need to be unique.) Hyperminimal automata are the minimal automata with a finite
symmetric language difference to the source automaton [2, 1, 7]; they may only differ from the
minimal automaton in the preamble. (The non-trivial SCCs of the automaton reachable from the
initial state.) Minimal almost equivalent automata only guarantee that the symmetrical difference
intersected with the prefixes of every infinite word are finite. (In both cases, finite implies bounded
by the number of states of the automaton.) For weak automata—automata whose language is
equivalent when read as DBA or DCA—a minimal almost equivalent automaton is also a minimal
weak automaton.

example: If we minimise a DFA while allowing for a finite symmetrical difference between the
language of the source and target automaton, we may be rewarded by a smaller automaton.

We introduce a second relaxation, almost equivalence, where we require that acceptance
differs only on finitely many prefixes of every infinite word. This provides the guarantee that,
on each infinite run, the result is equivalent in almost all positions (cf. Figure 1), which is
not only interesting in itself, but can also be viewed as a generalisation of the minimisation
problem of weak automata [12] to a more general class.

This is a natural notion of almost equivalence on DFAs, which also forms a promising
basis for state-space reduction of Büchi and Co-Büchi automata. Different to the NP-
completeness of minimising Büchi and Co-Büchi automata, we show that finding a minimal
almost equivalent DFA is cheap. It is also a useful starting point for a state-space reduction of
a DBA or DCA A, because minimisation with respect to almost equivalence (like minimisation
and hyper-minimisation) of A when read as a DFA are language preserving.

The algorithm we develop for finding a minimal almost equivalent DFA can be strengthened
by using language equivalence on A (when read as a Büchi or Co-Büchi automata) in the
algorithm, which provides for a smaller—yet still language equivalent—target automaton.
This automaton has the interesting property that one can focus on its strongly connected
components (SCCs) in isolation when reducing its state-space further.

While the NP-completeness of the minimisation problem of DBAs, DCAs, and determin-
istic parity automata (DPAs) seems to rule out the use of state-space reduction on large
scale problems, this reduction technique therefore suggests that one might often get far on
the way of reducing the state-space without having to pay a high price, while getting for free
a division of the remaining potential parts of the automaton for further reduction.

This is fortunate, because the standard verification technique for the verification of Markov
decision processes against LTL specifications [3] as well as the synthesis of distributed systems
from LTL specifications [19, 16, 17, 22, 15, 20] require working with these deterministic
ω-automata, and techniques for the minimisation, or, indeed, for the state-space reduction of
the automata involved are more than welcome. The argument in favour of such reductions
becomes even stronger for algorithms that synthesise distributed systems [18, 11, 13, 23, 6],

FSTTCS 2010

402 Minimising Deterministic Parity and Büchi Automata is NP-Complete

where deterministic automata occur in various steps of the construction.

2 Deterministic Automata

2.1 ω-Automata
Parity automata are word automata that recognise ω-regular languages over finite set of
symbols. A deterministic parity automaton is a tuple P = (Σ, Q, q0, δ, π), where

Σ denotes a finite set of symbols,
Q denotes a finite set of states,
q0 ∈ Q+ with Q+ = Q∪̇{⊥,>} denotes a designated initial state,
δ : Q+×Σ→ Q+ is a function that maps pairs of states and input letters to either a new
state, or to ⊥ (false, immediate rejection, blocking) or > (true, immediate acceptance)1,
such that δ(>, σ) = > and δ(⊥, σ) = ⊥ hold for all σ ∈ Σ, and
π : Q+ → P ⊂ N is a priority function that maps states to natural numbers (mapping ⊥
and > to an odd and even number, respectively), called their priority. (They are often
referred to as colours.)

Parity automata read infinite input words α = a0a1a2 . . . ∈ Σω. (As usual, ω = N0
denotes the non-negative integers.) Their acceptance mechanism is defined in terms of runs:
The unique run ρ = r0r1r2 . . . ∈ Q+

ω of P on α is the ω-word that satisfies r0 = q0 and,
for all i ∈ ω, ri+1 = δ(ri, ai). A run is called accepting if the highest number occurring
infinitely often in the infinite sequence π(r0)π(r1)π(r2) . . . is even, and rejecting if it is odd.
An ω-word is accepted by P if its run is accepting. The set of ω-words accepted by P is
called its language, denoted L(P).

We assume without loss of generality that maxP ≤ |Q|+ 1. (If a priority p � 2 does not
exist, we can reduce the priority of all states whose priority is strictly greater than p by 2
without affecting acceptance.)

Deterministic Büchi and Co-Büchi automata—abbreviated DBAs and DCAs—are DPAs
where the image of the priority function π is contained in {1, 2} and {2, 3}, respectively.
In both cases, the automaton is often denoted A = (Σ, Q, q0, δ, F), where F ⊆ Q+ denotes
those states with priority 2. The states in F are also called final or accepting states, while
the remaining states Q+ r F are called rejecting states.

2.2 Finite Automata
Finite automata are word automata that recognise the regular languages over finite set of
symbols. A deterministic finite automaton (DFA) is a tuple F = (Σ, Q, q0, δ, F), where Σ, Q,
q0, and δ are defined a for DPAs, and F ⊆ Q∪̇{>} is a set of final states that contains >
(but not ⊥).

Finite automata read finite input words α = a0a1a2 . . . an ∈ Σ∗. Their acceptance
mechanism is again defined in terms of runs: The unique run ρ = r0r1r2 . . . rn+1 ∈ Q+

+ of
F on α is the word that satisfies r0 = q0 and, for all i ≤ n, ri+1 = δ(ri, ai). A run is called
accepting if it ends in a final state (and rejecting otherwise), a word is accepted by F if its
run is accepting, and the set of words accepted by F is called its language, denoted L(F).

1 The question whether or not an automaton can immediately accept or reject is a matter of taste. Often,
immediate rejection is covered by allowing δ to be partial while there is no immediate acceptance.
For technical convenience, we allow both, but treat > and ⊥ as accepting and rejecting sink states,
respectively.

Sven Schewe 403

2.3 Automata Transformations & Conventions
For a deterministic automaton A = (Σ, Q, q0, δ, F) or A = (Σ, Q, q0, δ, π) and a state q ∈ Q+,
we denote with Aq = (Σ, Q, q, δ, F) or Aq = (Σ, Q, q, δ, π), respectively, the automaton
resulting from A by changing the initial state to q. We also read finite automata at times as
Büchi (or Co-Büchi) automata and Büchi (or Co-Büchi) automata as finite automata in the
constructions, and let DFAs run on infinite words where this is convenient and its meaning
is clear in the context.

Automata define a directed graph whose unravelling from the initial state defines the
possible runs. For an automaton A = (Σ, Q, q0, δ, F) or A = (Σ, Q, q0, δ, π), this is the
directed graph (Q+, T) with T = {(p, q) ∈ Q+ ×Q+ | ∃σ ∈ Σ. δ(p, σ) = q}. When referring
to the reachable states (which always means reachable from the initial state) and SCCs of an
automaton, this refers to this graph.

2.4 Emptiness and Equivalence
A DPA is called empty if its language is empty and universal if it accepts every word α ∈ Σω.
For two automata P1 = (Σ, Q1, q

1
0 , δ1, π1) and P2 = (Σ, Q2, q

2
0 , δ2, π2), two states q1 ∈ Q1

and q2 ∈ Q2 are called equivalent if L(P1
q1

) = L(P2
q2

). (Equivalence of states naturally
extends to the same automaton, as P1 and P2 are not necessarily different.) Two automata
are equivalent if their initial states are equivalent. (Or, likewise, if they recognise the same
language.)

Emptiness, universality, and equivalence of parity, Büchi, and Co-Büchi automata is
computationally easy:

I Theorem 1. Language inclusion, equivalence, emptiness, and universality of parity, Büchi,
and Co-Büchi automata and their co-problems are NL-complete.

3 Minimising Büchi and Parity Automata is NP-Complete

In this section we show that the minimisation of deterministic Büchi, Co-Büchi, and parity
automata are NP-complete problems. This is in contrast to the tractable minimisation of
finite [8] and weak automata [12].

The hardest part of the NP-completeness proof is a reduction from the problem of finding
a minimal vertex cover of a graph to the minimisation of deterministic Büchi automata. For
this reduction, we first define the characteristic language of a simple connected graph. For
technical convenience we assume that this graph has a distinguished initial vertex.

We show that the states of a deterministic Büchi automaton that recognises this charac-
teristic language must satisfy side-constraints, which imply that it has at least 2n+ k states,
where n is the number of vertices of the graph, and k is the size of its minimal vertex cover.
We then show that, given a vertex cover of size k, it is simple to construct a deterministic
Büchi automaton of size 2n + k that recognises the characteristic language of this graph.
(It can be constructed in linear time and logarithmic space.) Furthermore, we show that
minimising the automaton defined by the trivial vertex cover can be used to determine a
minimal vertex cover for this graph, which concludes the reduction.

We call a non-trivial (|V | > 1) simple connected graph Gv0 = (V,E) with a distinguished
initial vertex v0 ∈ V nice. As a warm-up, we have to show that the restriction to nice graphs
leaves the problem of finding a minimal vertex cover NP-complete.

I Lemma 2. The problem of checking whether a nice graph Gv0 has a vertex cover of size k
is NP-complete.

FSTTCS 2010

404 Minimising Deterministic Parity and Büchi Automata is NP-Complete

Proof. As a special case of the vertex cover problem, it is in NP, and the problem of finding
a vertex cover of size k for a graph (V,E) can be reduced to the problem of checking if the
nice graph Gv = (V ∪̇{v, v′}, E ∪

{
{w, v} | w ∈ V ∪̇{v′}

}
has a vertex cover of size k + 1: A

vertex cover of Gv must contain a vertex cover of (V,E) and v or v′, and a vertex cover of
(V,E) plus v is a vertex cover of Gv. J

We define the characteristic language L(Gv0) of a nice graph Gv0 as the ω-language over
V\ = V ∪̇{\} (where \ indicates a stop of the evaluation in the next step—it can be read
‘stop’) consisting of
1. all ω-words of the form v0

∗v1
+v2

+v3
+v4

+ . . . ∈ V ω with {vi−1, vi} ∈ E for all i ∈ N,
(words where v0, v1, v2, . . . form an infinite path in Gv0), and

2. all ω-words starting with v0
∗v1

+v2
+ . . . vn

+\vn ∈ V\∗ with n ∈ N0 and {vi−1, vi} ∈ E for
all i ∈ N. (Words where v0, v1, v2, . . . , vn form a finite—and potentially trivial—path in
Gv0 , followed by a \ sign, followed by the last vertex of the path v0, v1, v2, . . . , vn.)

We call the ω-words in (1) trace-words, and those in (2) \-words. The trace-words are in V ω,
while the \-words are in V\ω r V ω.

Let B be a deterministic Büchi automaton that recognises the characteristic language of
Gv0 = (V,E). We call a state of B

a v-state if it can be reached upon an input word v0
∗v1

+v2
+ . . . vn

+ ∈ V\∗, with n ∈ N0
and {vi−1, vi} ∈ E for all i ∈ N, that ends in v = vn (in particular, the initial state of B
is a v0-state), and
a v\-state if it can be reached from a v-state upon reading a \ sign.

We call the union over all v-states the set of vertex-states, and the union over all v\-states
the set of \-states.

I Lemma 3. Let Gv0 = (V,E) be a nice graph with initial vertex v0, and let B = (V,Q, q0, δ, F)
be a deterministic Büchi automaton that recognises the characteristic language of Gv0 . Then
(1) the vertex- and \-states of B are disjoint, and, for all v, w ∈ V with v 6= w, (2) the
v-states and w-states and (3) the v\- and w\-states are disjoint. For each vertex v ∈ V , there
is (4) a v\-state and (5) a rejecting v-state, and (6), for every edge {v, w} ∈ E, there is an
accepting v-state or an accepting w-state.

Proof. 1. Let q\v be a v\-state and q a vertex-state. As B recognises L(Gv0), Bq\
v
must accept

vω, while Bq must reject it.
2. Let qv be a v-state and let qw be a w-state with v 6= w. As B recognises L(Gv0), Bqv must

accept \vω, while Bqw
must reject it.

3. Let q\v be a v\-state and let q\w be a w\-state with v 6= w. As B recognises L(Gv0), Bq\
v

must accept vω, while Bq\
w
must reject it.

4. As Gv0 is connected, there is, for every v ∈ V , a path v0v1v2 . . . v in Gv0 , and the state
reached by B upon reading v1v2 . . . v\ is a v\-state.

5. As Gv0 is connected, there is, for every v ∈ V , a path v0v1v2 . . . v in Gv0 . After reading
v1v2 . . . v, B is in a v-state. B remains in v-states if it henceforth reads v’s. (Note that
the automaton cannot block/reject immediately, as it should accept a continuation \vω
at any time.) As the word is rejecting, almost all states in the run of the automaton are
rejecting v-states.

6. Let us consider an arbitrary edge {v, w}. As Gv0 is connected, there is a path from
v0v1v2 . . . v in Gv0 , and v1v2 . . . v(wv)ω is in L(Gv0); the run of B on this ω-word is
therefore accepting. As almost all states in this accepting run are v-states or w-states,
there must be an accepting v-state or an accepting w-state.

J

Sven Schewe 405

The sixth claim implies that the set C of vertices with an accepting vertex-state is a
vertex cover of Gv0 = (V,E). It is also clear that B has at least |V | rejecting vertex-states,
|C| accepting vertex-states, and |V | \-states:

I Corollary 4. For a deterministic Büchi automaton that recognises the characteristic
language of a nice graph Gv0 = (V,E) with initial vertex v0, the set C = {v ∈ V | there is an
accepting v-state} is a vertex cover of Gv0 , and B has at least 2|V |+ |C| states. J

It is not hard to define, for a given nice graph Gv0 = (V,E) with vertex cover C, a Büchi
automaton BGv0

C = (V\, (V × {r, \})∪̇(C × {a}), (v0, r), δ, (C × {a})∪̇{>}) with 2|V | + |C|
states that recognises the characteristic language of Gv0 : We simply choose

δ
(
(v, r), v′

)
= (v′, a) if {v, v′} ∈ E and v′ ∈ C,

δ
(
(v, r), v′

)
= (v′, r) if {v, v′} ∈ E and v′ /∈ C,

δ
(
(v, r), v′

)
= (v, r) if v = v′,

δ
(
(v, r), v′

)
= (v, \) if v′ = \, and

δ
(
(v, r), v′

)
= ⊥ otherwise;

δ
(
(v, a), v′

)
= δ

(
(v, r), v′

)
, and

δ
(
(v, \), v

)
= > and δ

(
(v, \), v′

)
= ⊥ for v′ 6= v.

BGv0
C simply has one v\-state for each vertex v ∈ V of Gv0 , one accepting v-state for each

vertex in the vertex cover C, and one rejecting v-vertex for each vertex v ∈ V of Gv0 . It
moves to the accepting copy of a vertex state v only upon taking an edge to v, but not on a
repetition of v.

I Lemma 5. For a nice graph Gv0 = (V,E) with initial vertex v0 and vertex cover C, BGv0
C

recognises the characteristic language of Gv0 .

Proof. To show L(BGv0
C) ⊆ L(Gv0), let us consider an ω-word α accepted by BGv0

C . Then it
is either eventually accepted immediately when reading a v from a state (v, \), or by seeing
accepting states in C × {a} infinitely many times. By the construction of BGv0

C , α must be a
v\-word in the first case, and a trace-word in the latter.

To show L(BGv0
C) ⊇ L(Gv0), it is apparent that \-words are accepted immedi-

ately after reading the initial sequence that makes them \-words, while a trace-word
v0
i0−1v1

i1v2
i2v3

i3 . . . ∈ V ω with ij ∈ N and {vj , vj+1} ∈ E for all j ∈ ω, has the run
ρ = (v0, r)i0(v1, p1)(v1, r)i1−1(v2, p2)(v2, r)i2−1(v3, p3) . . ., with pi = a (and hence (vi, pi)
accepting) if vi in C. As C is a vertex cover, this is at least the case for every second index.
(There is no n ∈ N with {vn, vn+1} ∩ C = ∅.) ρ therefore contains infinitely many accepting
states. J

Corollary 4 and Lemma 5 immediately imply:

I Corollary 6. Let C be a minimal vertex cover of a nice graph Gv0 = (V,E). Then BGv0
C

is a minimal deterministic Büchi automaton that recognises the characteristic language of
Gv0 . J

From here, it is a small step to the main theorem of this section:

I Theorem 7. The problem of whether there is, for a given deterministic Büchi automaton,
a language equivalent Büchi automaton with at most n states is NP-complete.

Proof. For containment in NP, we can simply use non-determinism to guess such an automa-
ton. Checking that it is language equivalent is then in NL by Theorem 1.

FSTTCS 2010

406 Minimising Deterministic Parity and Büchi Automata is NP-Complete

By Corollary 6, we can reduce checking if a nice graph Gv with m vertices has a vertex
cover of size k to checking if the deterministic Büchi automaton BGv

V —which has 3m states and
is easy to construct (in deterministic logspace)—has a language equivalent Büchi automaton
with 2m + k states. As the problem we reduced from is NP-complete by Lemma 2, this
concludes the reduction. J

As minimising Co-Büchi automata coincides with minimising the dual Büchi automata,
the similar claim holds for Co-Büchi automata.

I Corollary 8. The problem of whether there is, for a given deterministic Co-Büchi automaton,
a language equivalent Co-Büchi automaton with at most n states is NP-complete. J

The problem of minimising deterministic parity automata cannot be easier than the
problem of minimising Büchi automata, and the ‘in NP’ argument that we can simply guess
a language equivalent DPA and then inexpensively check correctness (by Theorem 1) extends
to parity automata.

I Corollary 9. The problem if there is, for a given parity automaton, a language equivalent
parity automaton with n states is NP-complete. J

Note that, while there is a minimal number of priorities required for every language, the
number of states cannot be reduced by increasing the number of priorities, and minimising
the number of priorities can be done in polynomial time, changing only the priority functions
[14, 4].

4 Relative DFA Minimisation

Minimisation techniques for deterministic finite automata can be used to minimise determin-
istic Büchi and Co-Büchi automata. They are cheap—Hopcroft’s algorithm works in time
O(n logn) [8]—and have proven to be powerful devices for state-space reduction. From a
practical point of view, this invites—in the light of the intractability result for minimising
deterministic Büchi and Co-Büchi automata—the question if such tractable minimisation
techniques can be used for a space reduction of Büchi and Co-Büchi automata. From a
theoretical point of view, this invites the question of whether there are interesting tractable
minimisation problems between the minimisation (or hyper-minimisation [2, 1, 7]) of finite
automata, and the minimisation of Büchi and Co-Büchi automata.

Both the theoretical and the practical question turn out to have a positive answer: An
answer to the theoretical question is that we can define almost equivalence on automata
and their states as a relation, where two automata or states are almost equivalent if their
language intersected with the initial sequences of every omega word have finite difference.
We show that a minimal almost equivalent automaton is easy to construct. Besides being
interesting on their own account (for example, if we want to construct a monitor that errs
only a bounded number of times for every input word), they are language preserving for
deterministic Büchi and Co-Büchi automata. What is more, a minimal almost equivalent
automata to a weak automaton (an automaton that recognises the same language as DBA
and DCA) is a minimal language equivalent weak automaton.

From a practical point of view, the algorithm suggests an approximation that is valid for
both Büchi and Co-Büchi automata. There is, however, a simple and apparent improvement
of the algorithm when used for the minimisation of Büchi and Co-Büchi automata: Instead
of almost equivalence of states, we can use language equivalence for Büchi or Co-Büchi
automata, respectively. But the algorithm provides for more: It isolates the minimisation

Sven Schewe 407

problem within in the SCC. That is, both precise and approximative minimisation techniques
can look into these simpler sub-structures.

While being language preserving when the DBA or DCA is read as a DFA is a sufficient
criterion for language preservation of the automaton itself, it is by no means necessary. In
this context it becomes apparent that the NP-completeness result of the previous section
may not hint at the fact that state-space reduction for DBAs and DCAs is beyond price; one
should rather take it as a hint that a high price might have to be paid for the additional
benefit one can get from stronger state-space reductions than those for DFAs.

However, even if we consider DFAs, there is at time a desire for stronger reductions
than language preserving minimisation. For this reason, hyper-minimisation, the problem
of finding a minimal automaton with a finite symmetrical difference in its language, has
been studied for DFAs [2, 1, 7]. In this section, we introduce relative minimisation where
we seek a minimal automaton for which the symmetrical difference intersected with the
initial sequences of every infinite word is bounded. The underlying notion of approximate
equivalence is weaker than the f -equivalence used for hyper-minimisation, and in my opinion
it is also more natural even for DFAs. (One is often not really interested in differences on
words that one never observes.) It surely is the better starting point for minimising DBAs
and DCAs. We develop a simple algorithm for relative minimisation, and discuss how it can
be strengthened to approximate minimal DBAs or DCAs even better.

4.1 Almost Equivalence

For two (not necessarily different) DFAs A1 = (Σ, Q1, q
1
0 , δ1, F1) and A2 = (Σ, Q2, q

2
0 , δ2, F2),

we call two states q1 ∈ Q1 and q2 ∈ Q2 almost equivalent if, for all ω-words α ∈ Σω, it holds
that for the runs r1

0r
1
1r

1
2r

1
3 . . . and r2

0r
2
1r

2
2r

2
3 . . . of A1

q1
and A2

q2
on α, membership of the states

in the final states is equivalent almost everywhere (∃n ∈ ω. ∀i ≥ n. r1
i ∈ F1 ⇔ r2

i ∈ F2). Two
DFAs are called almost equivalent if their initial states are, and we extend these definitions
to DBAs and DCAs.

Obviously, almost equivalence is a congruence and hence defines quotient classes on the
states of automata. It is also easy to compute:

I Lemma 10. Testing almost equivalence (or inequivalence) of two DFAs A and B is NL-
complete, and the quotient class of a DFA A can be computed in time quadratic in the size
of the automaton.

Proof. It is simple to construct in deterministic logspace an automaton A ᵀ B whose states
are ordered pairs of A and B states, with the pair of initial states of A and B as initial state,
whose final states are the pairs of a final and a non-final state (where the final state might
be an A or a B state). Two states qa and qb are obviously almost equivalent if, and only if,
the language of (A ᵀ B)(qa,qb) is empty when read as a DBA, which is in NL by Theorem 1.
For completeness, it is again easy to reduce the reachability problem of directed graphs to
refuting almost equivalence of two automata.

This simple construction also caters for a quadratic deterministic algorithm for finding
the quotients of almost equivalent states: We can construct A ᵀA in quadratic time and
find the SCCs in A ᵀA in time linear in A ᵀA. Two states p, q are obviously either almost
equivalent or one can reach a final state in a non-trivial SCC from (p, q) in A ᵀA, and these
states can be computed in time linear in A ᵀA by a simple fixed-point algorithm. J

FSTTCS 2010

408 Minimising Deterministic Parity and Büchi Automata is NP-Complete

4.2 Finding minimal almost equivalent automata is tractable
We call the problem of finding a minimal automaton almost equivalent to a DFA A relative
minimisation. Besides the usefulness of relative minimisation for DFAs themselves, let us
consider the usefulness of relative minimisation for the state-space reduction of deterministic
Büchi and Co-Büchi automata.

I Lemma 11. Two deterministic Büchi and Co-Büchi automata that are, when read as
deterministic finite automata, almost language equivalent recognise the same language.

We can therefore use the inexpensive DFA minimisation, hyper-minimisation (which in
particular results in an almost equivalent automaton), and the newly introduced relative
minimisation of DFAs for a state-space reduction of DBAs and DCAs. This provides the
back-bone for efficient relative minimisation: To find, for a given DFA A = (Σ, Q′, q′0, δ′′, F ′),
a minimal deterministic automaton D that accepts an almost equivalent language, we execute
the following algorithm:
I Construction 12. In a first step2, we construct the minimal language equivalent automaton
B = (Σ, Q, q0, δ, F) in quasi-linear time using Hopcroft’s algorithm [8].

For B, we then introduce a pre-order (Q+,�) on the states of B such that (1) two states
are equivalent if, and only if, they are in the same SCC of B, (2) if p is reachable from q

then p � q, and (3) > and ⊥ are bigger than all states in Q. (This can obviously be done in
linear time.)

In a third step, we determine the quotient classes of almost equivalent states of B, and
pick, for each quotient class [q], a representative r[q] ∈ [q] that is maximal with respect to �
among the states almost equivalent to q.

We then construct an automaton C = (Σ, Q, r[q0], δ
′, F) by choosing the representative

r[q0] of the quotient [q0] of states almost equivalent to the initial state as new initial state,
and changing all transitions that lead to states whose representative is bigger (with respect
to �) to the representatives of these states. That is, for δ(q, σ) = q′, we get δ′(q, σ) = q′ if
q ' r[q′] and δ′(q, σ) = r[q′] otherwise.

Finally, we minimise C using Hopcroft’s algorithm again, yielding a DFA D.

I Lemma 13. The DFAs A and D of the above construction are almost equivalent.

Proof. First, A and B are language equivalent.
To compare the language of B and C, we note that, if p and q are almost equivalent, then

so are δ(p, σ) and δ(q, σ) for all σ in Σ. (Assuming the opposite, there would be a word
α ∈ Σω for which priority of the runs of Bδ(p,σ) and Bδ(q,σ) differ on infinitely many positions,
which implied the same for σ · α and runs on Bp and Bq and hence lead to a contradiction.)

Let us now consider runs rb0rb1rb2rb3 . . . and rc0r
c
1r
c
2r
c
3 . . . of B and C on some ω-word α.

Then rbi and rci are almost equivalent for all i ∈ ω by the above observation. Also, states in
a run of C can never go down in the pre-order (Q+,�). In particular, there is a bounded (at
most |Q|) number of positions in the run, where C takes an adjusted transition—a transition
δ′(q, σ) 6= δ(q, σ)—as this involves going strictly up in (Q+,�). The number of positions
i ∈ ω where either only rbi or only rci are final can thus be estimated by the number of
changed transitions taken times the bounded number of differences that can occur between
almost equivalent states in B.

Finally, C and D are again language equivalent. J

2 This step is not necessary for the correctness of the algorithm or for its complexity.

Sven Schewe 409

An key observation for the proof that D is minimal is that almost equivalent states are
in the same quotient class.

I Lemma 14. Two states of D that are almost equivalent are in the same SCC.

The proof that D is minimal builds on the fact that, whenever we go up in (Q+,�), we
choose the same representative.

I Theorem 15. There is no DFA E almost equivalent to D that is strictly smaller than D.

Proof. For convenience, we now look at quotient classes of almost equivalent states that
cover both D and E in this proof.

First, as D is minimal (among the language equivalent automata), all states in D are
reachable. Let us assume that there is a smaller DFA E almost equivalent to D. Then E
must (at least) have the same quotient classes as D, and hence, there must be a particular
quotient class [q] of D (and E), such that there are strictly less representatives of this class
in E than in D.

By the previous lemma, the representatives of quotient classes of almost equivalent
states of D are all in the same SCC. For trivial SCCs, this implies that there is only one
representative in D and hence at least as many in E .

For non-trivial SCCs, there is a witness of language non-equivalence that does not leave
the SCC for all different occurrences. (Note that Construction 12 guarantees for C that, once
an SCC is left, the target state—and hence the remainder of the run—is the same, no matter
from which representative of a quotient class we start. And the proof of the previous lemma
showed that the minimisation of C′ is SCC preserving.)

As E has less representatives, we can pick one representative r ∈ [q] of this class in D
such that, for all representatives e ∈ [q] in E , we construct a finite word αe ∈ Σ∗ that is
accepted either only by Ee or only by Dr, such that the run of Dr on αe stays in the SCC
containing r. This invites a simple pumping argument: We can construct a word starting
with a sequence β0 that leads to r in D. It also leads to some state e1 almost equivalent to r
in E . Next, we continue our word with αe1 , witnessing a difference. From the resulting state
in D, we continue with a non-empty sequence β1 ∈ Σ+ that brings us back to r. (We stay in
the same SCC by construction.) Meanwhile, we have reached some state e2 almost equivalent
to r in E . Next, we continue our word with αe2 , witnessing a difference, and continue with a
non-empty sequence β2 ∈ Σ+ that brings us back to r in D, and so forth. We thus create an
infinite sequence β0αe1β1αe2β2αe3 . . . with infinitely many differences, which contradicts the
almost equivalence of D and E . J

I Corollary 16. We can construct a minimal almost equivalent automaton to a given DFA
A in time quadratic in the size of A. J

Note that the quadratic cost occurs only for constructing the quotients of almost equivalent
states. Hence, there is a clear critical path, and improvement on this path would lead to an
improvement of the overall algorithm.

It is interesting to observe that the minimal automaton almost equivalent to a weak
automaton (when read as a DFA) obtained by Construction 12 is weak, and a language
equivalent weak automata is almost equivalent. (An automaton is called weak if it recognises
the same language when read as a DBA or as a DCA, or, similarly, if all states in the same
SCC have the priority.)

I Theorem 17. The algorithm from Construction 12 can be used to minimise weak automata.

Almost equivalence can hence be read as a generalisation of language equivalence of weak
automata.

FSTTCS 2010

410 Minimising Deterministic Parity and Büchi Automata is NP-Complete

4.3 Space Reduction for DBAs and DCAs
The techniques introduced for finding minimal almost equivalent automata can easily be
adjusted to stronger state-space reductions for DBAs and DCAs: If we use language equiva-
lence for the respective automata instead of almost equivalence, the resulting automaton
remains language equivalent.

I Theorem 18. Swapping quotients of almost equivalent states for the coarser quotients
of language equivalent states for DBAs and DCAs in Construction 12 provides a language
equivalent automaton D, and the cost remains quadratic in the size of A.

An interesting corollary from the proofs (see [21]) of Theorems 18 and 15 is:

I Corollary 19. Minimisation techniques for DBAs or DCAs can treat the individual SCCs
of the resulting automaton D individually. J

An interesting aspect of this minimisation is that we can treat a local version of weak
automata: We call an SCC weak if all infinite paths within this SCC are accepting or all
infinite paths within this SCC are rejecting. For weak SCCs, we can obviously make all
states accepting or rejecting, respectively, without changing the language of a DBA or DCA.

Doing so in the automaton C in from Construction 12 leads to all states equivalent by
the respective equivalence relation (almost equivalence or language equivalence as DBA or
DCA) becoming language equivalent when the automaton is read as a DFA, and are therefore
merged in D. Thus, there is exactly one of these states in D, and the D is locally optimal.

A further tractable minimisation would be to greedily merge states: For an automaton
A we denote with Ap.q the automaton that results from changing the transition function
δ to δ′ such that δ′(r, σ) = q if δ(r, σ) = p and δ′(r, σ) = δ(r, σ) otherwise, choosing q as
initial state if q was the former initial state, and removing p from the state-space. A natural
tractable minimisation would be to greedily consider Ap.q for language equivalent states p
and q until no further states can be merged. Note that, by Corollary 19, it suffices to look at
the respective SCCs only, which may speed up the computation significantly.

This is even more important for exhaustive search for minimal automata, such as the
SAT based methods suggested by Ehlers [5].

5 Discussion

This paper has two main results: First, it establishes that minimising deterministic Büchi,
Co-Büchi and parity automata are NP-complete problems.

A second central contribution is the introduction of relative minimisation of DFAs,
a powerful technique to minimise deterministic finite automata when allowing for minor
differences in their language. This natural minimisation problem on DFAs is strictly between
the problem of hyper-minimising DFAs and minimising DBAs or DCAs and can be viewed as
a generalisation of the minimisation problem of weak automata. We show that the relative
minimisation of DFAs is tractable and provide a simple quadratic algorithm.

Finally, we strengthened this algorithm by relaxing the requirement for merging states
from almost to language equivalent states, which provides a promising technique to reduce
the state-space of DBAs and DCAs. This technique does not only have the potential to
reduce the state-space of the automaton significantly, it also suffices to focus on its SCCs
when seeking to reduce the state-space of the automaton further. This can be used to
accelerate further reduction heuristics—like the greedy merge discussed—and exhaustive
search methods alike.

Sven Schewe 411

References
1 Andrew Badr. Hyper-minimization in O(n2). International Journal of Foundations of

Computer Science, 20(4):735–746, 2009.
2 Andrew Badr, Viliam Geffert, and Ian Shipman. Hyper-minimizing minimized deterministic

finite state automata. Informatique Théorique et Applications, 43(1):69–94, 2009.
3 Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press, 2008.
4 Olivier Carton and Ramón Maceiras. Computing the rabin index of a parity automaton.

Theoretical Informatics and Applications (ITA), 33(6):495–506, 1999.
5 Rüdiger Ehlers. Minimising deterministic Büchi automata precisely using SAT. In Proc. of

SAT, pages 326–332, 2010.
6 Bernd Finkbeiner and Sven Schewe. Uniform distributed synthesis. In Proc. of LICS, pages

321–330, 2005.
7 Paweł Gawrychowski and Artur Jeż. Hyper-minimisation made efficient. In In Proc. of

MFCS, pages 356–368, 2009.
8 John E. Hopcroft. An n log n algorithm for minimizing states in a finite automaton.

Technical Report CS-190, 1970.
9 John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata

Theory, Languages, and Computation. Addison-Wesley, 2000.
10 Neil Immerman. Nondeterministic space is closed under complementation. SIAM Journal

on Computing, 17(5):935–938, 1988.
11 Orna Kupferman and Moshe Y. Vardi. Synthesizing distributed systems. In Proc. of LICS,

pages 389–398, 2001.
12 Christoph Löding. Efficient minimisation of deterministic weak automata. Information

Processing Letters, 79(3):105–109, 2001.
13 P. Madhusudan and P. S. Thiagarajan. Distributed controller synthesis for local specifica-

tions. In Proc. of ICALP, pages 396–407, 2001.
14 Damian Niwinski and Igor Walukiewicz. Relating hierarchies of word and tree automata.

In Proc. of STACS, pages 320–331. 1998.
15 Nir Piterman. From nondeterministic Büchi and Streett automata to deterministic parity

automata. Journal of Logical Methods in Computer Science, 3(3:5), 2007.
16 Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In Proc. of POPL,

pages 179–190, 1989.
17 Amir Pnueli and Roni Rosner. On the synthesis of an asynchronous reactive module. In

Proc. of ICALP, pages 652–671, 1989.
18 Amir Pnueli and Roni Rosner. Distributed reactive systems are hard to synthesize. In Proc.

FOCS, pages 746–757. 1990.
19 Michael O. Rabin. Automata on Infinite Objects and Church’s Problem, volume 13 of

Regional Conference Series in Mathematics. American Mathematical Society, 1972.
20 Sven Schewe. Tighter bounds for the determinisation of Büchi automata. In Proc. of

FoSSaCS, pages 167–181, 2009.
21 Sven Schewe. Minimisation of deterministic parity and buchi automata and relative min-

imisation of deterministic finite automata. CoRR, abs/1007.1333, 2010.
22 Sven Schewe and Bernd Finkbeiner. Synthesis of asynchronous systems. In Proc. of LOP-

STR, pages 127–142, 2006.
23 Igor Walukiewicz and Swarup Mohalik. Distributed games. In Proc. of FSTTCS, pages

338–351, 2003.

FSTTCS 2010

Parityizing Rabin and Streett∗

Udi Boker1, Orna Kupferman1, and Avital Steinitz1

1 Hebrew University of Jerusalem, School of Engineering and Computer Science
{udiboker,orna,avinu}@cs.huji.ac.il

Abstract
The parity acceptance condition for ω-regular languages is a special case of the Rabin and Streett
acceptance conditions. While the parity acceptance condition is as expressive as the richer con-
ditions, in both the deterministic and nondeterministic settings, Rabin and Streett automata are
more succinct, and their translation to parity automata may blow-up the state space. The appeal-
ing properties of the parity condition, mainly the fact it is dualizable and allows for memoryless
strategies, make such a translation useful in various decision procedures.

In this paper we study languages that are recognizable by an automaton on top of which
one can define both a Rabin and a Streett condition for the language. We show that if the
underlying automaton is deterministic, then we can define on top of it also a parity condition
for the language. We also show that this relation does not hold in the nondeterministic setting.
Finally, we use the construction of the parity condition in the deterministic case in order to solve
the problem of deciding whether a given Rabin or Streett automaton has an equivalent parity
automaton on the same structure, and show that it is PTIME-complete in the deterministic
setting and is PSPACE-complete in the nondeterministic setting.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.412

1 Introduction

Finite automata on infinite objects are widely used for the specification, verification, and
synthesis of nonterminating systems [3, 15, 21]. Since a run of an automaton on an infinite
word does not have a final state, acceptance is determined with respect to the set of states
visited infinitely often during the run. There are many ways to classify an automaton on
infinite words. One is the class of its acceptance condition. For example, in Büchi automata,
some of the states are designated as accepting states, and a run is accepting iff it visits states
from the accepting set infinitely often [1]. More general are Rabin automata. Here, the
acceptance condition is a set α = {〈G1, B1〉, . . . , 〈Gk, Bk〉} of pairs of sets of states, and a
run is accepting if there is a pair 〈Gi, Bi〉 for which the set of states visited infinitely often
intersects Gi and does not intersect Bi. The condition α can also be viewed as a Streett
condition, in which case a run is accepting if for all pairs 〈Gi, Bi〉, if the set of states visited
infinitely often intersects Gi, then it also intersects Bi. Note that the Rabin and Streett
conditions dualize each other. Thus, a run satisfies α when viewed as a Rabin condition
iff it does not satisfy α when viewed as a Streett condition. The analysis of logics with
fixed-points led to extensive study of the parity acceptance condition [5, 17]. There, the
acceptance condition is a sequence {F1, F2, . . . , F2k} of sets of states, and a run is accepting
iff the minimal index i for which the set Fi is visited infinitely often is even. It is not hard to
see that the parity condition is a special case of both the Rabin and Streett conditions, in
the sense that a given parity condition can be translated to equivalent Rabin and Streett
conditions. The number of pairs or sets in the acceptance conditions is referred to as the

∗ The first author is supported in part by a Lady Davis postdoctoral fellowship.

© Udi Boker, Orna Kupferman and Avital Steinitz;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 412–423

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.412
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

U. Boker, O. Kupferman and A. Steinitz 413

index of the automaton. We use NRW, NSW, and NPW to denote nondeterministic Rabin,
Streett, and parity word automata, respectively, and use DRW, DSW, and DPW to denote
the corresponding deterministic automata. We sometimes add the number of states and
index. So, for example, NRW(n, k) is a nondeterministic automaton with n states and index
k.

The type of an automaton influences its succinctness. For example, while Rabin, Streett,
and parity automata all recognize all ω-regular languages, the translation of a DRW to
a DSW (or vise versa) may involve a blow-up exponential in the index, and so does the
translation of a DRW or a DSW to a DPW [16]. The succinctness of Rabin and Streett
automata with respect to parity automata is carried over to the nondeterministic setting
[19, 20]. The type of an automaton also influences the difficulty of constructions and decision
problems for it. For example, while complementation of DPWs is straightforward, as it is easy
to dualize a parity condition, complementation of DRWs and DSWs involves a translation of
the dual DSWs and DRWs, respectively, back to DRWs and DSWs, which, as described above,
involves an exponential blow-up. As another example, while the nonemptiness problem for
DPW(n, k) can be solved in time O(n log k) [10] and is NLOGSPACE-complete, the one
for DRW(n, k) is still NLOGSPACE-complete but needs time O(nk), whereas the one for
DSW(n, k) is PTIME-complete [6], with on-going research on the precise, larger than O(nk),
bound [6, 8]. Thus, the succinctness of Rabin and Streett automata is traded-off by more
complex constructions and algorithms. Finally, only the parity acceptance condition allows
for memoryless strategies for both players [5]. The fact parity games are memoryless is
of great importance in synthesis algorithms, where one wants to generate transducers for
the winning strategies [4]. The fact both players have memoryless strategies is useful in
settings in which one considers strategies for both the system and its environment [13]. A
good evidence to the superiority of the parity condition in the application front is the fact
that the highlight of Piterman’s determinization construction for nondeterministic Büchi
automata [18] has been the fact it generates a DPW, rather than the DRW generated by
Safra’s construction [19], and less the saving in the state space it suggests.

Recall that while the parity condition can be translated to the Rabin and Streett conditions,
the other direction is not valid: the translations of Rabin and Streett automata to parity
automata cannot only modify the acceptance condition and they involve automata with
different, and substantially bigger, state spaces. In some cases, it is possible to translate
automata with a particular acceptance condition to automata with a weaker acceptance
condition without modifying the state space. For example, it is shown in [11] that DRWs are
Büchi type: if a DRW has an equivalent deterministic Büchi automaton, then there is also an
equivalent deterministic Büchi automaton on top of the same structure. Additional examples
of typeness for ω-regular languages are studied in [12]. We would like to study typeness for
parity automata, and in particular the ability to modify Rabin and Streett conditions to an
equivalent parity condition.

The connection between the combination of Rabin and Streett with the parity condition
was studied in the context of two-player games in [22]. There, Zielonka shows that if the
winning condition of a finitely colored game can be specified as both Rabin and Streett
conditions, then it can also be characterized by a parity (or chain, as it is called there)
condition. In this paper we study this connection in the context of automata on infinite words:
Suppose that some language can be defined on top of the same automaton by both Rabin
and Streett conditions. Can we define an equivalent parity condition on top of the same
automaton? Before describing our results, let us mention that they do not follow directly
from Zielonka’s result. In fact, our results are part of a general effort of lifting results from

FSTTCS 2010

414 Parityizing Rabin and Streett

the world of two-player games to the world of automata. By [7], the nonemptiness problem
for nondeterministic tree automata can be reduced to the solution of a two-player game.
The connection between games and automata is further formalized in [14]. As shown there,
since transitions of games are not associated with letters, games correspond to alternating
word automata over a singleton alphabet, and one cannot talk about a language of a game.
Indeed, results and methods that hold for games cannot in general be applied to automata.
For example, while today there are several algorithms that solve parity games in time less
than O(nk) [9], the best translation of alternating parity word automata to alternating weak
word automata (for which the 1-letter nonemptiness problem can be solved in linear time)
involves an O(nk) blow up, where n is the number of states and k is the index of the parity
condition. The challenge has to do with the fact that reasoning about games one can abstract
components of the game, whereas translations among automata must keep the exact same
language – every letter counts.

Back to our problem, our main result states that if the automaton is deterministic, then
one can define an equivalent parity condition on top of it! Formally, if A is a deterministic
automaton with n states and there is a Rabin condition α of index k and a Streett condition
β of index l such that the language of A with α is equal to the language of A with β, then
there exists a parity condition γ of index at most min{2k + 2, 2l + 2, n+ 2} such that the
language of A with γ is equal to the language of A with α and β. Our proof is constructive,
it proceeds by induction on the index of the constructed parity automaton, and it involves
a decomposition of A to its maximal strongly connected components, applications of the
translation on them, and a composition of the underlying parity conditions to a global
one. We study also the nondeterministic setting and show that the determinism of A is
essential. That is, we show that there is a nondeterministic automaton A such that there are
Rabin and Streett conditions on top of A that define the same language, and still no parity
automaton for the language can be defined on top of A. This result is another evidence
to the importance of the alphabet and the fact the setting of automata is different than
the one of games studied in [22]. Indeed, every nondeterministic automaton can be made
deterministic by enriching its alphabet (c.f., the cylindrification techniques of [2]).

In addition to formalizing the intuition of “parity is the intersection of Rabin and Streett”
and introducing a blow-up-free translation to DPW, a careful analysis of the construction of
the equivalent parity condition shows that it is independent of the Streett condition and relies
only on its existence. Consequently, we can use the construction in order to decide whether
a given DRW can be translated to an equivalent DPW on the same structure. We show
that this problem is PTIME-complete. Note that the duality between the Rabin and Streett
conditions and the self-duality of the parity condition imply that the problem of deciding
whether a given DSW can be translated to a DPW on the same structure is PTIME-complete
too. In addition, we prove that the problem of deciding whether a given NRW or NSW has
an equivalent NPW on the same structure is PSPACE-complete.

2 Preliminaries

Automata on infinite words. Given an alphabet Σ, an infinite word over Σ is an infinite
sequence w = σ0 · σ1 · σ2 · · · of letters in Σ. We denote by wl the suffix σl · σl+1 · σl+2 · · · of
w. An automaton on infinite words is U = 〈Σ, Q, δ,Qin, α〉, where Σ is the input alphabet,
Q is a finite set of states, δ : Q× Σ→ 2Q is a transition function, Qin ⊆ Q is a set of initial
states, and α is an acceptance condition (a condition that defines a subset of Qω).

Since the transition function of U may specify many possible transitions for each state
and letter and since the initial state may be one of the possibly few states in Qin, U is not

U. Boker, O. Kupferman and A. Steinitz 415

deterministic. If δ is such that for every q ∈ Q and σ ∈ Σ, we have that |δ(q, σ)| = 1 and
if |Qin| = 1, then U is a deterministic automaton. When U is deterministic we refer to
the single state in Qin by qin and to δ as to a function from Σ∗ to Q (rather than to 2Q).
We sometimes refer to the transition function δ of a deterministic automaton as a function
δ : Σ∗ → Q, where δ(ε) = qin and δ(w · σ) = δ(δ(w), σ)). Thus δ(w) is the state that U visits
after reading w. We say that a state q ∈ Q is reachable in U if there is a finite word w such
that δ(w) = q.

A run of U on w is an infinite word r = q0 · q1 · q2 · · · over Q, where q0 ∈ Qin (i.e., the
run starts in an initial state) and for every l ≥ 0, we have ql+1 ∈ δ(ql, σl) (i.e., the run obeys
the transition function). In automata over finite words, acceptance is defined according to
the last state visited by the run. When the words are infinite, there is no such thing “last
state”, and acceptance is defined according to the set inf (r) of states that r visits infinitely
often, i.e., inf (r) = {q ∈ Q : for infinitely many l ∈ IN,we have rl = q}. Hence, acceptance
is prefix independent, i.e. for all runs r1, r2 such that rl1 = rm2 for some l and m we have that
r1 is accepting iff r2 is accepting. As Q is finite, it is guaranteed that inf (r) 6= ∅. A run
r is accepting iff the set inf (r) satisfies the acceptance condition of U . Several acceptance
conditions are studied in the literature. We consider here three:

Rabin automata, where α = {〈G1, B1〉, 〈G2, B2〉, . . . , 〈Gk, Bk〉}, and inf (r) satisfies α iff
for some 1 ≤ i ≤ k, we have that inf (r) ∩Gi 6= ∅ and inf (r) ∩Bi = ∅.
Streett automata, where α = {〈L1, U1〉, 〈L2, L2〉, . . . , 〈Ll, Ul〉}, and inf (r) satisfies α iff
for all 1 ≤ i ≤ l, if inf (r) ∩ Li 6= ∅, then inf (r) ∩ Ui 6= ∅.
parity automata, where α = {F1, F2, . . . , F2k} with F1 ⊆ F2 ⊆ · · · ⊆ F2k = Q, and inf (r)
satisfies α iff the minimal index i for which inf (r) ∩ Fi 6= ∅ is even.

The number of sets in the parity acceptance condition or pairs in the Rabin and Streett
acceptance conditions is called the index of α (or U). Note that the Rabin and Streett
conditions are dual, in the sense that a set S satisfies a Rabin condition α iff S does not
satisfy α when viewed as a Streett condition. Similarly, the parity condition is dual to itself,
in the sense that a set S satisfies a parity condition {F1, F2, . . . , F2k} iff S does not satisfy
the parity condition {∅, F1, F2, . . . , F2k, F2k}.

Since U may not be deterministic, it may have many runs on w. In contrast, a deterministic
automaton has a single run on w. An automaton U is said to accept an input word w iff
there exists an accepting run of U on w. This implies that if U is deterministic it accepts an
input word w iff the single run of U on w is accepting. The language of U , denoted L(U), is
the set of words U accepts.

A (deterministic) pre-automaton A = 〈Σ, Q, δ,Qin〉 is a (deterministic, respectively)
automaton with no acceptance condition. For an acceptance condition α we use L(A, α) to
denote the language of the automaton U = 〈A, α〉.

For a pre-automaton A and a state q ∈ Q, let Aq denote the pre-automaton 〈Σ, Q, δ, {q}〉.
That is, Aq is the pre-automaton A except for having q as its single initial state (we sometimes
abuse notations and omit the { } around q). For a pre-automaton A, a subset C ⊆ Q and a
state q ∈ C, let A|qC denote the pre-automaton 〈Σ, C, δ|C , q〉 where δ|C is the restrictions of δ
to C, i.e. δ|C : C ×Σ→ 2C is such that δ|C(q, σ) = δ(q, σ)∩C. For an acceptance condition
α, denote by α|C the condition that is obtained from α by intersecting all its sets with C.

The underlying graph of a pre-automaton A, denoted GA, is the graph 〈Q,E〉, where
E(q, q′) iff there is a letter σ ∈ Σ such that q′ ∈ δ(q, σ). A strongly connected component
of a graph G = 〈Q,E〉 is a set of vertices C ⊆ Q such that every two states q, q′ ∈ C are
reachable from each other. A maximal strongly connected component (MSCC) in a graph G is
a strongly connected component C such that for all nonempty sets of vertices C ′ ∈ G \C the

FSTTCS 2010

416 Parityizing Rabin and Streett

set C ∪ C ′ is not strongly connected. A graph is said to be strongly connected if its vertices
consist a single strongly connected component. A pre-automaton is said to be strongly
connected if its underlying graph is strongly connected.

2.1 Simple Translations

Syntactic Translations. Parity automata can be viewed as a special case of Rabin and
of Streett automata. It is easy to see that a parity condition {F1, F2, . . . , F2k} is equivalent
to the Streett condition {〈F2k−1, F2k−2〉, . . . , 〈F3, F2〉, 〈F1, ∅〉} and to the Rabin condition
{〈F2k, F2k−1〉, . . . , 〈F4, F3〉, 〈F2, F1〉}. Similarly, a Rabin condition with a single pair 〈G,B〉,
is equivalent to the parity condition {B,B ∪G,Q,Q}. Generalizing, it is not hard to see that
a Rabin condition α = {〈G1, B1〉, . . . , 〈Gk, Bk〉} with nested “bad” sets, i.e. B1 ⊆ B2 ⊆ . . . ⊆
Bk, is equivalent to the parity condition γ = {B1, B1∪G1, B1∪G1∪B2, B1∪G1∪B2∪G2, . . .}.

“Typed” Translations. “Typed” translations depend on the structure of the associated
pre-automaton. For instance, according to [11], deterministic Rabin automata are Büchi
type. That is, given a pre-automaton A and a Rabin condition α, whenever L(A, α) is
Büchi recognizable there exists a Büchi condition β ⊆ Q, which is equivalent to the parity
condition {∅, β,Q,Q}, such that L(A, α) = L(A, β). However, the computation of β requires
an examination of A and does not depend only on the syntax of α. As another example, the
nested “bad” sets condition above can be relaxed to reproduce another typed translation
between Rabin and parity conditions. Indeed, if we replace the Bi ⊆ Bi+1 condition by a
weaker one, namely that for every cycle w in GA, it holds that w ∩Bi 6= ∅ ⇒ w ∩Bi+1 6= ∅,
then the translation is still valid, does not change the structure of the automaton, but
depends on it. Our goal is to extend the applicability of typed translations to DPWs.

3 The Deterministic Case

In this section we show that a DRW has an equivalent DPW on the same pre-automaton iff
it has an equivalent DSW on it. Obviously, the dual result holds when starting from a DSW.
Our proof is constructive, providing a polynomial procedure for generating the equivalent
parity condition or returning the answer that such a condition does not exist.

Our proof is iterative, proceeding by induction on the index of the generated parity
automaton. The first iteration is simple – all the states that cannot be visited infinitely
often in a Rabin accepting run (defined below as the “hopeless” states) are gathered to
the first (odd) set of the parity condition. After each iteration, the states gathered so far
are removed from the pre-automaton, which is then decomposed into maximally strongly
connected components. The next iterations are done separately for each component. The
second iteration looks for a Rabin pair of the form 〈Gi, ∅〉 (having no “bad” states). If such a
pair exists, then its “ultimately good” states are gathered to the next (even) set of the parity
condition. The procedure continues, gathering the hopeless states in odd iterations and the
ultimately good states in even iterations. In the end, the parity conditions for the separated
components are composed to a global condition. The main observation is that an equivalent
Streett condition guarantees the existence of the required 〈Gi, ∅〉 pair in every iteration.

We start with defining the notion of “hopeless states”. Consider a pre-automaton A and
a Rabin condition α over Q. A state q of A is hopeless in A with respect to α iff every run r
of A that visits q infinitely often is rejecting. Thus, for every run r of A, if q ∈ inf (r) then r
is rejecting with respect to α. Let HA,α denote the set of all the states that are hopeless

U. Boker, O. Kupferman and A. Steinitz 417

in A with respect to α. We say that a pre-automaton A is hopeless-free with respect to a
condition α iff HA,α = ∅.

Note that once a state is hopeless with respect to some condition, it is hopeless for all
other equivalent conditions on the same deterministic pre-automaton. We formalize this in
the following lemma.

I Lemma 1. Let A be a deterministic pre-automaton and α and β two acceptance conditions
over Q such that L(A, α) = L(A, β). Then, HA,α = HA,β.

Proof. Once we show that HA,α ⊆ HA,β the lemma will follow from symmetry. If both
HA,α and HA,β are empty then they are clearly equal. Otherwise, assume w.l.o.g. that
HA,α 6= ∅ and consider a state q ∈ HA,α. If no run of A visits q infinitely often, then
q ∈ HA,β vacuously. Otherwise, consider a run r of A such that q ∈ inf (r). Consider a word
w over Σ such that r is a run of A on w. Since q ∈ HA,α r is rejecting with respect to α and
w 6∈ L(A, α). Since L(A, α) = L(A, β) we have w 6∈ L(A, β). Since A is deterministic r is
the single run of A on w, therefore r is also rejecting with respect to β.

We therefore showed that for every r of A if q ∈ inf (r) then r is rejecting with respect to
β, therefore q ∈ HA,β . J

The next lemmas justify our decomposition and re-composition steps, showing that the
equivalence of acceptance conditions is carried over to and from hopeless-free MSCCs.

I Lemma 2 (Zoom In). Let A = 〈Σ, Q, δ,Qin〉 be a deterministic pre-automaton and let α
and β be two prefix-independent acceptance conditions such that L(A, α) = L(A, β). Then,
for every C ⊆ Q and reachable state q ∈ C we have L(A|qC , α|C) = L(A|qC , β|C).

Proof. From symmetry it suffices to show that L(A|qC , α|C) ⊆ L(A|qC , β|C). Consider a word
w ∈ L(A|qC , α|C), and let r be the run of A|qC on w (r is well defined since A is deterministic,
thus so is A|qC). Since r is accepting with respect to α|C , the set inf (r) satisfies the condition
α|C .

Since inf (r) ⊆ C, for every set S ⊆ Q we have that inf (r)∩ (S ∩C) = ∅ iff inf (r)∩S = ∅.
Since α|C is obtained from α by intersecting its sets with C, it follows that inf (r) satisfies
also α, hence w ∈ L(Aq, α).

Consider a word v ∈ Σ∗ such that δ(v) = q. Such a word clearly exists because q is
reachable. Let r′ be the run of A on v · w (the concatenation of the two words). Since
inf (r′) = inf (r) we have that r′ is an accepting run of A with respect to α, thus v·w ∈ L(A, α).
Therefore, we have v ·w ∈ L(A, β), and since A is deterministic it follows that r′ is accepting
with respect to β. Again, since inf (r′) = inf (r), we get that r is an accepting run of Aq with
respect to β, and since inf (r) ⊆ C, we get that r is an accepting run of A|qC with respect to
β|C . Thus, w ∈ L(A|qC , β|C) as required. J

I Lemma 3 (Zoom Out). Let 〈A, α〉 be a deterministic hopeless-free Rabin automaton. Let
C be the set of MSCCs of GA. For every MSCC C ∈ C, let γC be a parity condition of index
mC such that for every state q ∈ C, it holds that L(A|qC , α|C) = L(A|qC , γC). Then, there is
a parity condition γ of index maxC∈CmC such that L(A, α) = L(A, γ).

Proof. For every C ∈ C, let γC = {FC,1, FC,2, . . . , FC,mC
}, and let mC = maxC∈CmC . We

extend all γC to be of index mC (this can be done by padding the condition with C sets).
We define γ = {F1, F2, . . . , FmC}, where for all 1 6 i 6 mC, we have Fi =

⋃
C∈C FC,i. We

prove that L(A, α) = L(A, γ).
We first prove that L(A, α) ⊆ L(A, γ). Consider a word w ∈ L(A, α). Let r be the run

of A on w. Then, inf (r) satisfies α. Also, since r is an infinite path in GA there is a single

FSTTCS 2010

418 Parityizing Rabin and Streett

C ∈ C such that inf (r) ⊆ C, thus in particular inf (r)∩FC′,i = ∅ for every C ′ ∈ C other than
C and for every 1 6 i 6 mC . Thus, the minimal index i for which inf (r) ∩ Fi 6= ∅ is equal to
the minimal index i′ for which inf (r) ∩ FC,i′ 6= ∅.

To see that i′ is even, note that there exists an index l > 0 such that rl ⊆ C and
denote rl = q. Because inf (r) = inf (rl) we have that wl ∈ L(A|qC , α|C) and therefore also
wl ∈ L(A|qC , γC), thus i′ is even.

The other direction is similar. J

In fact, Lemma 3 above is valid also for automata that are not hopeless-free. To see
this, note that it would be enough to define the sets in γ as Fi = HA,α ∪

⋃
C∈C FC,i, thus

forbidding any accepting run that would be accepting according to γ from visiting hopeless
states infinitely often, and therefore restricting the accepting runs to the same MSCCs. We
therefore have the following:

I Lemma 4 (Zoom Out). Let 〈A, α〉 be a deterministic Rabin automaton. Let C be the set of
MSCCs of GA′ , where A′ is the restriction of A to its non-hopeless states. For every MSCC
C ∈ C, let γC be a parity condition of index mC such that for every state q ∈ C, it holds that
L(A|qC , α|C) = L(A|qC , γC). Then, there is a parity condition γ of index maxC∈CmC such
that L(A, α) = L(A, γ).

The Streett Limitation. Lemmas 2 and 4 suggest that we restrict our attention to
deterministic strongly connected Rabin and Streett automata that are hopeless-free. The
Lemma below provides the key observation that under these conditions one of the “bad”
Rabin sets must be empty.

I Lemma 5. Let A be a strongly connected deterministic pre-automaton, and let α =
{〈G1, B1〉, . . ., 〈Gk, Bk〉} and β = {〈L1, U1〉, . . . , 〈Ll, Ul〉} be Rabin and Streett conditions
such that L(A, α) = L(A, β). Further assume that A is hopeless-free with respect to the
equivalent conditions α and β. Then, there must be an index 1 6 i 6 k for which Bi = ∅.

Proof. Consider first the Streett condition β. Assume that there is an index 1 6 j 6 l

such that Uj = ∅. Then, all the states in Lj are hopeless with respect to β. Since A is
hopeless-free with respect to β it follows that if Uj = ∅ then Lj = ∅, thus the pair 〈Uj , Lj〉
can be removed from β. Therefore we can assume that for all 1 6 j 6 l, the set Uj is not
empty. Now, consider the Rabin condition α and assume by way of contradiction that for all
1 6 i 6 k we have Bi 6= ∅. Consider a word w such that the run r over w visits infinitely
often all the states of A. Such a word clearly exists, because A is strongly connected. Since
r visits all the sets Bi of α infinitely often it does not satisfy α. Thus w 6∈ L(A, α). On the
other hand, since r visits all the sets Uj (non of which is empty) infinitely often, it does
satisfy β, thus w ∈ L(A, β), contradicting the equivalence of L(A, α) and L(A, β) J

We continue to the main lemma, proving a special case of the desired theorem.

I Lemma 6. Let A be strongly connected deterministic pre-automaton, and let α = {〈G1,
B1〉, . . . , 〈Gk, Bk〉} and β = {〈L1, U1〉, . . . , 〈Ll, Ul〉} be Rabin and Streett conditions such
that L(A, α) = L(A, β). Further assume that A is hopeless-free with respect to the equivalent
conditions α and β. Then, there is a parity acceptance condition γ of index at most 2k + 2
such that L(A, α) = L(A, β) = L(A, γ).

Proof. The proof proceeds by induction on the index of the Rabin condition. When k = 1
it is easy, as α = 〈G,B〉 is equivalent to the parity condition {B,B ∪ G,Q,Q}. We

U. Boker, O. Kupferman and A. Steinitz 419

assume by induction that the claim holds for Rabin conditions of index at most k − 1.
Formally, we assume that given a strongly connected deterministic pre-automaton A′, Rabin
and Streett conditions α = {〈G1, B1〉, . . . , 〈Gk−1, Bk−1〉} and β = {〈L1, U1〉, . . . , 〈Ll′ , Ul′〉}
such that L(A, α) = L(A, β) and such that A′ is hopeless-free with respect to them, we
know how to construct a parity acceptance condition γ of index at most 2k, such that
L(A, α′) = L(A, β′) = L(A, γ′).

We consider a Rabin condition α of index k and decompose it into two Rabin conditions,
α′ and α′′, such that L(A, α) = L(A, α′)∪L(A, α′′). Next, using the induction hypothesis we
will construct parity conditions γ′ and γ′′ such that L(A′, α′) = L(A′, γ′) and L(A′, α′′) =
L(A′, γ′′). Finally, we will compose γ′ and γ′′ to get γ.

We start by constructing γ′′. According to Lemma 5 (w.l.o.g.) Bk = ∅. Consider the
Rabin condition α′′ = {〈Gk, ∅〉}. It is easy to see that α′′ is equivalent to the parity condition
γ′′ = {∅, Gk, Q,Q}. Intuitively, α′′ and γ′′ accept exactly all the words that could have been
accepted thanks to the pair 〈Gk, Bk〉.

We now proceed to construct γ′. Let α′ = {〈G1, B1 ∪ Gk〉, 〈G2, B2 ∪ Gk〉, . . . , 〈Gk−1,
Bk−1∪Gk〉}. Intuitively, α′ completes α′′ by accepting all the words in L(A, α)\L(A, α′′). It
is easy to see that L(A, α′)∩L(A, α′′) = ∅ and that L(A, α′) = L(A, α) \L(A, α′′). Consider
the Streett condition β′ = {〈L1, U1〉, . . . , 〈Ll, Ul〉, 〈Gk, ∅〉}. We claim that β′ is equivalent to
α′ on A. That is, L(A, β′) = L(A, α) \ L(A, α′′). To see that L(A, β′) ⊆ L(A, α) \ L(A, α′′),
consider a word w ∈ Σω, the single run r of A on w, and the set inf (r). If inf (r) satisfies β′
than it clearly satisfies β and therefore w ∈ L(A, β) = L(A, α). Additionally, r satisfies the
Streett pair 〈Gk, ∅〉 which implies that inf (r)∩Gk = ∅, so r does not satisfy α′ and therefore
w 6∈ L(A, α′). Showing the inclusion in the other way is similar.

Consider the pre-automaton A and the acceptance conditions α′ and β′. The underlying
graph of A is strongly connected and α′ and β′ are Rabin and Streett conditions such that
L(A, α′) = L(A, β′) and the index of α′ is k − 1. In order, however, to apply the induction
hypothesis, we also need A to be hopeless-free with respect to α′ and β′, which is clearly not
the case, as the vertices in Gk are hopeless in A with respect to α′.

Let C denote the set of MSCCs of GA′ , where A′ = A|Q′ and Q′ = Q \ HA,α′ . According
to Lemma 2, for every C ∈ C and for every q ∈ C we have L(A|qC , α′) = L(A|qC , β′). Each
C ∈ C is strongly connected and hopeless-free with respect to α′. Hence, the induction
hypothesis implies that for each C ∈ C there is a parity condition γC of index at most 2k,
such that for every q ∈ C, we have L(A|qC , α′) = L(A|qC , γC). According to Lemma 4, this
implies the existence of a single condition γ′ = {F ′1, . . . , F ′2k} such that L(A, α′) = L(A, γ′).

We define γ as the composition of γ′ and γ′′. Formally, γ = {∅, Gk, F3, . . . , F2k+2} where
for all 3 6 i 6 m+ 2, we set Fi = F ′i−2.

We show that L(A, α) = L(A, γ). Consider a word w ∈ Σω, the single run r of A on w,
and the set inf (r). If w ∈ L(A, α) then r satisfies α and there is an index 1 6 i 6 k such that
inf (r) ∩Gi 6= ∅ and inf (r) ∩Bi = ∅. If inf (r) ∩Gk 6= ∅ (i.e. i = k) then the minimal index
for which inf (r) ∩ Fj 6= ∅ is 2, which is even, and therefore r satisfies γ. Otherwise, r does
not satisfy α′′ and therefore since it is accepting and since L(A, α′) = L(A, α) \ L(A, α′′) it
must satisfy α′. This, in turn, implies that r also satisfies γ′. Let j be the minimal index for
which inf (r) ∩ F ′i 6= ∅. Since r satisfies γ′ the index j is even. Clearly, the minimal index
for which inf (r) ∩ Fi 6= ∅ equals j + 2, and is therefore also even, and therefore r satisfies γ,
thus w ∈ L(A, γ) and we have L(A, α) ⊆ L(A, γ).

The other direction of the inclusion is similar. J

Lemmas 2 and 4 imply the generalization of Lemma 6 to any pre-automaton. Formally,
we have the following.

FSTTCS 2010

420 Parityizing Rabin and Streett

I Theorem 7. Let A be a deterministic pre-automaton with n states, α a Rabin condition
of index k and β a Streett condition of index l such that L(A, α) = L(A, β). Then, there
exists a parity condition γ of index at most min{2k + 2, 2l + 2, n+ 2} such that L(A, α) =
L(A, β) = L(A, γ).

Proof. The proof follows a similar argumentation to the induction step in Lemma 6. Let
C denote the set of MSCCs of GA′ , where A′ = A|Q′ and Q′ = Q \ HA,α. According to
Lemma 2, for every C ∈ C and for every q ∈ C we have L(A|qC , α) = L(A|qC , β). Each C ∈ C
is strongly connected and hopeless-free with respect to α. Hence, Lemma 6 implies that for
each C ∈ C there is a parity condition γC of index at most 2k + 2, such that for every q ∈ C,
we have L(A|qC , α′) = L(A|qC , γC). According to Lemma 4, this implies the existence of a
single condition γ = {F1, . . . , Fm} of index at most 2k + 2 such that L(A, α) = L(A, γ).

By the above proof, the index of γ is at most 2k + 2. We now tighten it further. If k > l

we can switch the roles of α and β: Let α̃ and β̃ be α and β when viewed as Streett and Rabin
conditions, respectively. We still have L(A, α̃) = L(A, β̃), recognizing the complementing
language. By the above, there is a parity condition γ̃ of degree at most 2l + 2 such that
L(A, γ̃) = L(A, β̃). In order to obtain a parity condition that would be equivalent to the
original α, we dualize γ̃ (the way we have constructed γ̃ guarantees that a dualization would
not involve an increase in the index). Finally, a parity condition on n states that has more
than n+ 2 sets must contain equivalent subsequent sets and can therefore be simplified to
one with at most n+ 2 sets. Hence the min{2k + 2, 2l + 2, n+ 2} bound. J

As discussed in Section 1, the considerations behind our proof are different than these
used in [22] in the context of two-player games. In addition, our proof is constructive, and it
generates the equivalent parity condition. It is not clear to us whether and how the proof
in [22] can be adopted to the setting of automata. In particular, an attempt to generate a
parity condition following the considerations in [22] involves an examination of subsets of the
state space of the game, and is thus exponential. As we show below, our procedure requires
only polynomial time.

PTIME-completeness. The proof above is constructive, allowing to generate the equiva-
lent parity condition or return the answer that such a condition does not exist. We show below
that our procedure is in PTIME and that the related question is indeed PTIME-complete.

I Theorem 8. Consider a DRW or a DSW A. The problem of deciding whether A has an
equivalent DPW on the same structure is PTIME-complete.

Proof. We prove the result for DRW. By the duality of the Rabin and Streett conditions,
and the self-duality of the parity condition, the result for DSW follows.

We start with the upper bound. Assume that A has n states and its acceptance condition
α is of index k. As discussed above, the given Streett condition does not play a role in
the construction of the parity condition, and its essence is in guaranteeing the existence
of a Rabin pair with an empty “bad” set. Accordingly, the procedure described above for
generating γ works for every DRW and it always ends after up to min(n+ 1, k) iterations.
Each iteration is clearly in PTIME, as it only marks the hopeless states, which can be done
by exploring the loops in the automaton’s graph. If it completes all iterations, then the
DRW has an equivalent DPW on the same structure (the one generated by the procedure).
Otherwise, the procedure gets stuck in an iteration in which no Rabin pair with an empty bad
set exists, in which case the DRW does not have an equivalent DPW on the same structure.

It is left to prove PTIME-hardness. We do a reduction from DRW universality, which
is dual to DSW emptiness, proved to be PTIME-complete in [6]. In the proof, we consider

U. Boker, O. Kupferman and A. Steinitz 421

languages over an alphabet Σ1 × Σ2. For a word w ∈ (Σ1 × Σ2)ω, let w1 ∈ Σω1 be the word
obtained from w by projecting its letters on Σ1, and similarly for w2 and Σ2. For words
x1 ∈ Σω1 and x2 ∈ Σ2

ω, let x1⊕x2 denote the word w ∈ (Σ1×Σ2)ω with w1 = x1 and w2 = x2.
Given a DRW R with alphabet Σ1, we define another DRW A such that R is universal (that
is, L(R) = Σω1) iff A has an equivalent DPW on the same structure. Let R = 〈Σ1, Q, q0, δ, α〉,
and let R′ = 〈Σ2, Q

′, q′0, δ
′, α′〉 be a DRW such that there exists no DPW equivalent to R′

on the same structure. We define A = 〈Σ1 × Σ2, Q×Q′, 〈q0, q
′
0〉, δ′′, α′′〉, where

• δ′′(〈q, q′〉, 〈σ1, σ2〉) = 〈δ(q, σ1), δ′(q′, σ2)〉, and
• α′′ = {〈G×Q′, B ×Q′〉 : 〈G,B〉 ∈ α} ∪ {〈Q×G′, Q×B′〉 : 〈G′, B′〉 ∈ α′}.

It is easy to see that L(A) = {w : w1 ∈ L(R) or w2 ∈ L(R′)}. We prove that R is
universal iff A has an equivalent DPW on the same structure. First, if R is universal, so is A,
and hence it clearly has an equivalent DPW on the same structure. Assume now that R is
not universal, we show that there is no DPW equivalent to A on the same structure. Assume
by way of contradiction that γ is a parity condition defined on top of Q×Q′ such that the
language of A with γ is equal to L(A). In the full version we prove that the projection of γ
on Q′ results in a parity condition γ′ such that the language of R′ with acceptance condition
γ′ is equivalent to L(R′). This, however, contradicts the assumption that no DPW equivalent
to R′ can be defined on the same structure. Essentially, the claim follows from the fact that
if w1 ∈ Σω1 is a word rejected by R (since R is not universal, such a word exists), then the
behavior of A on words whose projection on Σ1 is w1 depends only on its R′ component. J

4 The Non-Deterministic Case

Can our results be generalized to the nondeterministic case? To show the converse we describe
a nondeterministic pre-automaton A on top of which we define Rabin and Streett conditions,
α and β, such that L(A, α) = L(A, β), however there is no parity condition γ such that
L(A, α) = L(A, γ). It follows that our main result does not hold in the nondeterministic
setting. Furthermore, by dualizing one gets a counterexample for the claim about universal
automata (that is, alternating automata in which transitions are only conjunctively related).
Indeed, the key role of the determinism in our proof is inevitable . We prove that the problem
of deciding whether a given NRW or NSW has an equivalent NPW on the same structure is
PSPACE-complete.

// ?>=<89:;q0

0
		

1

��

2

��

// ?>=<89:;r0

0
��

1

��

2

��

// ?>=<89:;s0

0
��

1

��

2

��?>=<89:;q2

0

EE

2
��

1 ,, ?>=<89:;q1

0

YY

1
��

2
ll ?>=<89:;r2

0

EE

2

55 1 ,, ?>=<89:;r1

0

YY

1
SS2

ll ?>=<89:;s2

0

EE

2

55 1 ,, ?>=<89:;s1

0

YY

1
SS2

ll

GFED@ABCq′2

0

JJ

2

55 1 ,,GFED@ABCq′1

0

TT

1VV2
ll

Figure 1 A nondeterministic pre-automaton A having equivalent Rabin and Streett conditions
for L with no corresponding parity condition.

Consider the nondeterministic pre-automaton A over Σ = {0, 1, 2} depicted in Figure 1.
We use Q,R and S to denote the sets of states of the different components, thus Q =
{q0, q1, q

′
1, q2, q

′
2}, R = {r0, r1, r2} and S = {s0, s1, s2}. Note that the nondeterminism of A is

FSTTCS 2010

422 Parityizing Rabin and Streett

limited to the choice of initial state , thus it is a non-ambiguous (or a single-run) automaton.
Consider the Rabin and Streett conditions

α = {〈{q1}, {q2, q
′
2}〉, 〈{q2}, {q1, q

′
1}〉} (Rabin), and

β = {〈Q ∪ {r1, s2}, ∅〉, 〈R, {r0}〉, 〈R, {r2}〉, 〈S, {s0}〉, 〈S, {s1}〉} (Streett).

We define L =
{
w ∈ Σω : inf (w) = {0, 1} or inf (w) = {0, 2}

}
and show that L(A, α) =

L = L(A, β). It is easy to see that a word w ∈ L has an accepting run. In fact, the single
run of A on w that is accepting with respect to α is the one that starts at q0. On the other
hand, a word w ∈ Σω belongs to L(A, α) if there is a run r of A that satisfies α. Such a run
must start at q0, as otherwise r never visits any of α’s “good” sets. Further, to satisfy the
pair 〈{q1}, {q2, q

′
2}〉 the run r must get trapped in the right part of Q, so w must contain

only finitely many 2’s and infinitely many 0’s and 1’s. Similarly, in order to satisfy the pair
〈{q2}, {q1, q

′
1}〉, the run r must get trapped in the left part of Q, so it must consist of only

finitely many 1’s and infinitely many 0’s and 2’s.
Consider L(A, β). It is easy to see that a word w ∈ L has an accepting run. In fact, if w

has only finitely many 1’s then the single run of A on w that is accepting with respect to β
is the one that starts at r0, and if w has only finitely many 2’s then the single run of A on w
that is accepting with respect to β is the one that starts at s0. On the other hand, a word
w ∈ Σω belongs to L(A, β) if there is a run r of A that satisfies β. Such a run must either
start at r0 or at s0, as otherwise it will be trapped in Q and violate the pair 〈Q∪ {r1, s2}, ∅〉.
If r starts at the state r0, then in order to accept, w must consist of infinitely many 0’s and
2’s but only finitely many 1’s. Otherwise, r must start at s0, then in order to accept, w must
consist of infinitely many 0’s and 1’s but only finitely many 2’s.

We now show that there is no parity condition γ such that L(A, α) = L(A, γ). Assume
by contradiction that γ = {F1, F2, . . . , Fm} such that L(A, α) = L(A, γ). Referring to the
minimal index i for which q ∈ Fi by the rank or q, we note that all states with self loops
cannot have an even rank, as otherwise words that consist of a single letter can have an
accepting run. Hence if a run is accepting with respect to γ it must be contained in Q. Since
(01)ω ∈ L(A, α) it must also be in L(A, γ), therefore the run (q0, q1)ω must be accepting
with respect to γ. Since q0 has a self loop it cannot be ranked evenly, therefore the rank of
q1 must be even. Similarly, q2’s rank must also be even. However, that would imply that the
run (q1q2)ω on (12)ω would be accepting with respect to γ, but (12)ω 6∈ L(A, α).

PSPACE-completeness. The counter example above suggests that the translation to an
equivalent parity condition on the same structure is more complicated in the nondeterministic
setting. Indeed, we show below that this problem is PSPACE-complete.

I Theorem 9. Consider an NRW or an NSW A. The problem of deciding whether A has
an equivalent NPW on the same structure is PSPACE-complete.

Proof. For the upper bound, one can go over all possible parity conditions for A and check
the equivalence of the obtained NPW with A. The lower bound is similar to the one described
in the proof of Theorem 8, only that here the Rabin and Streett cases are not dual (dualizing
an NRW, one gets a universal (rather than nondeterministic) Streett automaton), thus we
have to consider both cases. In addition, for the lower bounds, while the reductions are still
from the universality problem, now they are from NRW or NSW universality, which are
PSPACE-complete. J

U. Boker, O. Kupferman and A. Steinitz 423

References
1 J.R. Büchi. On a decision method in restricted second order arithmetic. In Proc. Int.

Congress on Logic, Method, and Philosophy of Science. 1960, pages 1–12, 1962.
2 Y. Choueka. Theories of automata on ω-tapes: A simplified approach. Journal of Computer

and Systems Science, 8:117–141, 1974.
3 C. Eisner and D. Fisman. A Practical Introduction to PSL. Springer, 2006.
4 A.E. Emerson and A.P. Sistla. Deciding full branching time logics. Information and Control,

61(3):175–201, 1984.
5 E.A. Emerson and C. Jutla. Tree automata, µ-calculus and determinacy. In Proc. 32nd

IEEE Symp. on Foundations of Computer Science, pages 368–377, 1991.
6 E.A. Emerson and C.-L. Lei. Temporal model checking under generalized fairness con-

straints. In Proc. 18th Hawaii Int. Conf. on System Sciences, 1985.
7 Y. Gurevich and L. Harrington. Trees, automata, and games. In Proc. 14th ACM Symp.

on Theory of Computing, pages 60–65. ACM Press, 1982.
8 M. Henzinger and J.A. Telle. Faster algorithms for the nonemptiness of Streett automata

and for communication protocol pruning. In Proc. 5th Scandinavian Workshop on Algorithm
Theory, volume 1097 of LNCS, pages 10–20. Springer, 1996.

9 M. Jurdzinski, M. Paterson, and U. Zwick. A deterministic subexponential algorithm for
solving parity games. SIAM Journal on Computing, 38(4):1519–1532, 2008.

10 V. King, O. Kupferman, and M.Y. Vardi. On the complexity of parity word automata.
In Proc. 4th Int. Conf. on Foundations of Software Science and Computation Structures,
volume 2030 of LNCS, pages 276–286. Springer, 2001.

11 S.C. Krishnan, A. Puri, and R.K. Brayton. Deterministic ω-automata vis-a-vis determinis-
tic Büchi automata. In Algorithms and Computations, volume 834 of LNCS, pages 378–386.
Springer, 1994.

12 O. Kupferman, G. Morgenstern, and A. Murano. Typeness for ω-regular automata. Inter-
national Journal on the Foundations of Computer Science, 17(4):869–884, 2006.

13 O. Kupferman and M.Y. Vardi. Safraless decision procedures. In Proc. 46th IEEE Symp.
on Foundations of Computer Science, pages 531–540, 2005.

14 O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-
time model checking. Journal of the ACM, 47(2):312–360, 2000.

15 R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton Univ.
Press, 1994.

16 C. Löding. Optimal bounds for the transformation of omega-automata. In Proc. 19th
FSTTCS Conference, volume 1738 of LNCS, pages 97–109, 1999.

17 A.W. Mostowski. Regular expressions for infinite trees and a standard form of automata.
In Computation Theory, volume 208 of LNCS, pages 157–168. Springer, 1984.

18 N. Piterman. From nondeterministic Büchi and Streett automata to deterministic parity
automata. In Proc. 21st LICS conference, pages 255–264. IEEE press, 2006.

19 S. Safra. On the complexity of ω-automata. In Proc. 29th FOCS, pages 319–327, 1988.
20 S. Safra and M.Y. Vardi. On ω-automata and temporal logic. In Proc. 21st ACM Symp.

on Theory of Computing, pages 127–137, 1989.
21 M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and

Computation, 115(1):1–37, 1994.
22 W. Zielonka. Infinite games on finitely colored graphs with applications to automata on

infinite trees. Theoretical Computer Science, 200(1-2):135–183, 1998.

FSTTCS 2010

Finding Sparser Directed Spanners∗

Piotr Berman1, Sofya Raskhodnikova1, and Ge Ruan1

1 Pennsylvania State University, USA
{berman,sofya,gur112}@cse.psu.edu

Abstract
A spanner of a graph is a sparse subgraph that approximately preserves distances in the original
graph. More precisely, a subgraph H = (V,EH) is a k-spanner of a graph G = (V,E) if for
every pair of vertices u, v ∈ V , the shortest path distance distH(u, v) from u to v in H is at
most k · distG(u, v). We focus on spanners of directed graphs and a related notion of transitive-
closure spanners. The latter captures the idea that a spanner should have a small diameter
but preserve the connectivity of the original graph. We study the computational problem of
finding the sparsest k-spanner (resp., k-TC-spanner) of a given directed graph, which we refer
to as Directed k-Spanner (resp., k-TC-Spanner). We improve all known approximation
algorithms for Directed k-Spanner and k-TC-Spanner for k ≥ 3. (For k = 2, the current
ratios are tight, assuming P 6=NP.) Along the way, we prove several structural results about the
size of the sparsest spanners of directed graphs.

Keywords and phrases Approximation algorithms, directed graphs, spanners

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.424

1 Introduction

A spanner of a graph is a sparse subgraph that approximately preserves distances in the
original graph.

I Definition 1.1 (k-spanner, [3, 24]). A subgraph H = (V,EH) is a k-spanner of a graph
G = (V,E) if for all vertices u, v ∈ V , the shortest path distance distH(u, v) from u to v in
H is at most k · distG(u, v). The parameter k is called the stretch.

Graph spanners have numerous applications, ranging from efficient routing [13, 14, 26, 31]
and simulating synchronized protocols in unsynchronized networks [25] to parallel and
distributed algorithms for approximating shortest paths [11, 12, 15] and algorithms for
distance oracles [5, 32].

We focus on spanners of directed graphs and a related notion of transitive-closure spanners
studied in [7, 28, 29, 30, 19, 8, 6]. The latter captures the idea that a spanner should have
a small diameter but preserve the connectivity of the original graph. The diameter here
means the largest distance between a pair (u, v) of nodes in a directed graph such that v is
reachable from u. Recall that the transitive closure of a graph G = (V,E), denoted TC(G),
is a graph (V,ETC) where (u, v) ∈ ETC if and only if G has a directed path from u to v.

I Definition 1.2 (k-TC-spanner, [7]). A directed graph H = (V,EH) is a k-transitive-
closure-spanner (k-TC-spanner) of a directed graph G = (V,E) if
1. EH is a subset of the edges in the transitive closure of G and

∗ S.R. was supported by National Science Foundation (NSF/CCF award 0729171 and NSF/CCF CAREER
award 0845701).

© Piotr Berman, Sofya Raskhodnikova, Ge Ruan;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 424–435

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.424
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

P. Berman, S. Raskhodnikova, G. Ruan 425

2. for all vertices u, v ∈ V , if distG(u, v) <∞, then distH(u, v) ≤ k.
The edges from the transitive closure of G that are added to G to obtain a TC-spanner are
called shortcuts.

Notice that a k-TC-spanner of G is a directed k-spanner of the transitive closure of G.
Nevertheless, TC-spanners are interesting in their own right due to the multiple TC-spanner-
specific applications, such as managing keys in access control hierarchies, data structures for
computing partial products in a semigroup, property testing and property reconstruction
(see the survey in [27] and references therein).

In this paper, we study the computational problem of finding the sparsest k-TC-spanner
(resp., k-spanner) of a given directed graph, which we refer to as k-TC-Spanner (resp.,
Directed k-Spanner).

1.1 Previous Work
To put the following results in proper context, observe that if a graph G has n vertices, every
k-spanner of G has O(n2) edges.

1.1.1 Computational Results
All algorithms for Directed k-Spanner immediately yield algorithms for k-TC-Spanner
with the same approximation ratio because k-TC-Spanner on input graph G is equivalent to
Directed k-Spanner on input TC(G). Elkin and Peleg [17] gave an O(logn)-approximation
algorithm for Directed 2-Spanner. Kortsarz [22] showed that the O(logn) approximation
ratio for Directed 2-Spanner cannot be improved unless P=NP, and [7] extended this
result to 2-TC-spanner. Thus, for k = 2 the ratio for both problems has been completely
resolved.

For k = 3, the first non-trivial approximation ratio for Directed k-Spanner was proved
by Elkin and Peleg [16] and slightly improved (by a factor polylogarithmic in n) by Bhat-
tacharyya et al. [7]. In general, for k ≥ 3, [7] gives an approximation ratio O((n logn)1−1/k).
For all δ, ε ∈ (0, 1) and 3 ≤ k ≤ n1−δ, it is impossible to approximate Directed k-Spanner
within a factor of 2log1−ε n in polynomial time, assuming NP 6⊆DTIME(npolylogn) [16, 18].
(DTIME(f(n)) denotes the class of languages decidable deterministically in time f(n).)
Thus, according to Arora and Lund’s classification [20] of NP-hard problems, Directed
k-Spanner is in class III, for k ∈ [3, n1−δ]. [7] extended this result to k-TC-Spanner for
constant k. [18] also showed that proving that Directed k-Spanner is in class IV, that is,
inapproximable within nδ for some δ ∈ (0, 1), would resolve a long standing open question
in complexity theory: namely, cause classes III and IV to collapse into a single class. Since
k-TC-Spanner is a special case of Directed k-Spanner, this statement also applies to
the former.

For the special case of k-TC-Spanner, [7] presented an O
(

n logn
k2+k logn

)
-approximation

algorithm. Observe that for large k, this is better than the inapproximability of Directed
k-Spanner, demonstrating that k-TC-Spanner is a strictly easier problem for this range of
parameters.

1.1.2 Structural Results
Unlike in the undirected setting, where for every k ≥ 1, all graphs on n vertices have (2k−1)-
spanners with O(n1+1/k) edges [2, 23, 32], sparsest TC-spanners (and hence, sparsest directed
spanners) can have Ω(n2) edges. An example of a graph with a sparsest 2-TC-spanner of

FSTTCS 2010

426 Finding Sparser Directed Spanners

Problem Stretch k Hardness Known Ratio Our Ratio

Directed span-
ner and
TC-spanner

2 Ω(logn) [22, 7] O(logn) [17] –

3 Ω(2log1−ε n) O((n logn)2/3)
O(
√
n logn)

[16, 18, 7] [16, 7]

Directed
Spanner

> 3 as above, for O((n logn)1−1/k)
O(k · n1−1/dk/2e logn)

k ≤ n1−δ [16, 18] [7]

TC-spanner
> 3 as above, for as above O(n1−1/dk/2e logn)

constant k [7]

Ω
(logn

loglogn

) (1 + δ), for
O
(

n logn
k2+k logn

)
[7] O

(
n
k2

)
k ≤ n1−δ [7]

Table 1 Summary of Results on Approximability of k-TC-Spanner and Directed k-Spanner

size Ω(n2) is the complete bipartite graph Kn
2 ,
n
2
with n/2 vertices in each part and all edges

directed from the first part to the second. Therefore, to the best of our knowledge, there are
no combinatorial results about the sizes of sparsest spanners for general directed graphs.

There are many combinatorial results on the sizes of the sparsest k-TC-spanners but, for
the reason mentioned above, almost all of them apply exclusively to special families of graphs:
directed lines and trees [10, 30], planar graphs [28], H-minor-free graphs [7], multi-dimensional
grids [6] and low-dimensional posets [9]. There are only two results that can be viewed as
structural results for general graphs. The first one is the TC-spanner-specific algorithm from
[7], which is obtained by showing that every graph can be turned into a k-TC-spanner by
adding O

(
n2 logn
k2+k logn

)
shortcut edges. The second one is a construction of Hesse [19] giving a

family of graphs with large TC-spanners and disproving Thorup’s conjecture [28] that all
directed graphs G on n nodes have TC-spanners with stretch polylogarithmic in n and size
at most 2|G|. (We use |G| to denoted the number of edges in G.) For all small ε > 0, Hesse
constructed a family of graphs with n1+ε edges for which all nε-TC-spanners require Ω(n2−ε)
edges.

1.2 Our Results and Techniques

1.2.1 Computational Results

Table 1 summarizes the best known results on approximability of k-TC-Spanner and
Directed k-Spanner, alongside with our results on these problems. We improve all known
approximation algorithms for Directed k-Spanner and k-TC-Spanner for k ≥ 3. (As
mentioned before, for k = 2, the current ratios are tight, assuming P 6=NP.)

First, we obtain O(k · n1−1/dk/2e logn)-approximation for Directed k-Spanner. In
particular, for both Directed k-Spanner and k-TC-Spanner, the best previously known
ratios were O((n logn)2/3) for k = 3 and O((n logn)3/4) for k = 4. Our algorithm improves
both of these ratios to O(

√
n logn). Second, we give a slightly better O(n1−1/dk/2e logn)-

approximation for k-TC-Spanner. Finally, we also present a O(n/k2)-approximation algo-
rithm for k-TC-Spanner, which outperforms our first algorithm for k = Ω(logn/ loglogn).

P. Berman, S. Raskhodnikova, G. Ruan 427

1.2.2 Our Techniques and Structural Results
The approach we take is very different from previous work. The best previously known
algorithm for small k > 2 from [7] (that works for k-TC-Spanner and Directed k-Spanner)
is based on solving a linear program and combining the solution with paths obtained by
random sampling. Our approximation algorithm for k-TC-Spanner for small k is based
on the following idea: since known approximation algorithms do much better for stretch
k = 2, we use a 2-TC-spanner produced by the approximation algorithm for 2-TC-spanner
to approximate the sparsest k-TC-spanner. To show that it provides a good approximation,
we prove that a k-TC-spanner of G cannot be much sparser than a 2-TC-spanner of G. More
precisely, we show how to transform a k-TC-spanner into a 2-TC-spanner while increasing
the number of edges by a factor of O(n1−1/dk/2e). These results are presented in Section 2.

In Section 3, we present our algorithm for Directed k-Spanner. First, we note that the
idea used to approximate k-TC-Spanner cannot be applied directly: as shown in Lemma 3.2,
there are directed graphs where the ratio between the sizes of the sparsest (k − 1)-spanner
and k-spanner is Ω(n). Instead, we build on the ideas of [21, 17] which use star graphs to
give an approximation algorithm for Directed 2-spanner. We generalize the notion of a
star to k-stars. Recall that stars contain a central node s and nodes of distance 1 from s.
Intuitively, k-stars also have a central node s and nodes of distance at most k from s. We
show that a k-spanner of a directed graph G can be approximated well by a collection of
k-stars such that each edge (u, v) of G is covered by some k-star in the collection—namely,
that k-star contains a path of length at most k from u to v. Then we use a greedy algorithm
to find such a collection of k-stars with nearly minimum cost, where the cost is the total
number of edges in all k-stars in the collection.

Our algorithm for Directed k-Spanner also works for stretch k = 2. Even though
an algorithm with the same (optimal) approximation ratio has already been presented by
Elkin and Peleg [17], our algorithm gives a unified treatment for all small k, including 2, and
is slightly simpler for the case of k = 2 than the algorithm in [17]. (Elkin and Peleg use
a slightly different greedy method to find stars. They categorize edges already covered by
selected stars into different types and calculate two types of density, ϕ-density and ρ-density,
to evaluate the benefit of adding a new star to the partial 2-spanner.)

In Section 4, we show that our transformation from a k-TC-spannner to a 2-TC-spanner
cannot be improved significantly. We show that this transformation is tight for k = 3 and
k = 4 by giving a simple example. For k ≥ 5, we prove that our transformation is nearly tight
by extending Hesse’s construction [19], which was originally devised to disprove Thorup’s
conjecture, as described above. For every sufficiently small positive ε, we exhibit graphs with
2k-TC-spanners of size n1+1/k and no 2-TC-spanners of size less than n2−ε.

Our approximation algorithm for k-TC-Spanner for large k, presented in Section 5, is
also based on a structural result. Namely, we show how to (efficiently) obtain a k-TC-spanner
of any graph by adding O(n2/k2) shortcut edges. This is based on a simple greedy procedure.
The algorithm for large stretch in [7] was based on random sampling.

1.3 Preliminaries
For a directed graph G, we denote the number of edges in G by |G| and the size of the
sparsest k-TC-spanner of G by Sk(G). (The size refers to the number of edges.) We say two
nodes in G are comparable if one of these nodes is reachable from the other.

A digraph G is weakly connected if replacing each directed edge in G with an undirected
edge results in a connected undirected graph. A digraph is strongly connected if each

FSTTCS 2010

428 Finding Sparser Directed Spanners

vertex in the graph is reachable from every other vertex via a directed path. The graph of
strongly connected components of a digraph G is the digraph obtained by contracting each
strongly connected component into one vertex, while maintaining all the edges between these
components.

A transitive reduction of G is a digraph G′ with the fewest edges for which TC(G′) =
TC(G). As shown by Aho et al. [1], a transitive reduction of a given graph can be computed
efficiently via a greedy algorithm. The algorithm contracts each strongly connected component
C to a vertex v(C) to get a supergraph H, obtains a supergraph H ′ by greedily removing
edges in H that do not change its transitive closure, and finally uncontracts v(C) to an
arbitrary directed cycle on vertices in C, choosing a representative vertex of C to be incident
to the edges incident to v(C) in H ′. Directed acyclic graphs have a unique transitive reduction.
We say G is transitively reduced if G is equal to its own transitive reduction.

2 Approximation Algorithm for k-TC-Spanner for small k

This section presents an approximation algorithm for k-TC-Spanner that provides the best
known ratio for all stretches k = O(logn/ loglogn).

I Theorem 2.1. k-TC-Spanner can be approximated with ratio O(n1−1/dk/2e logn) in
polynomial time.

The proof of this theorem appears at the end of this section. It relies on the following lemma
and corollary that relate Sk(G) and S2(G).

I Lemma 2.2. Let G be a directed graph of diameter at most k. Then one can efficiently con-
struct a 2-TC-spanner of G while increasing the number of edges by a factor of O(n1−1/dk/2e).

Proof. Let G be a directed graph on n nodes of diameter at most k. Set d = n1/dk/2e. We
call a vertex in G high-degree if its degree is at least d, and low-degree otherwise. (The degree
of a node counts both incoming and outgoing edges.)

Transformation from k-TC-spanners to 2-TC-spanners
Input: directed graph G = (V,E) of diameter k
1. Form graph H from G by adding shortcut edges as follows:

a. Connect every high-degree vertex u to all vertices comparable to u.
b. Consider the induced subgraph G′ of G containing only low-degree vertices.

Connect every vertex u in G′ to all vertices that are reachable from u by a
path of length at most dk/2e in G′.

2. Output H.

To see that the resulting graph H is a 2-TC-spanner, consider a pair of vertices (u, v)
with v reachable from u in G. Let P be a shortest path from u to v in G. If P contains a
high-degree vertex w then in step 1(a) of the transformation, u was connected to v by a path
of length at most 2 via w. Otherwise, all nodes in P are low-degree. Since G has diameter at
most k, path P contains a node w such that distG(u,w) ≤ dk/2e and distG(w, v) ≤ dk/2e.
Then in step 1(b) of the transformation, u was connected to v by a path of length at most 2
via w. Thus, every comparable pair of nodes in H is connected by a path of length 2 or 1.

Since the number of edges in a graph is 1/2 of the sum of its vertex degrees, to prove the
stated bound on |H|/|G|, it is enough to show that the degree of each vertex increases by a
factor of O(n1−1/dk/2e) when H is constructed from G. This holds for each high-degree node

P. Berman, S. Raskhodnikova, G. Ruan 429

because its degree increases from at least d = n1/dk/2e to at most 2(n− 1) (counting both
incoming and outgoing edges). Each low-degree vertex v of degree deg(v) connects to at most
deg(v) ·d vertices at distance 2, deg(v) ·d2 vertices at distance 3, . . ., deg(v) ·ddk/2e−1 vertices
at distance dk/2e. So, the degree of v in H is at most deg(v) · (ddk/2e − 1)/(d − 1), thus
increasing by a factor of O(ddk/2e−1) = O(n(dk/2e−1)/dk/2e) = O(n1−1/dk/2e), as desired. J

We obtain the following corollary by letting G in Lemma 2.2 be the sparsest k-TC-spanner
of a given graph.

I Corollary 2.3. S2(G)
Sk(G) = O(n1−1/dk/2e) for any digraph G. In particular, S2(G)

S3(G) = O(
√
n).

Proof of Theorem 2.1. Elkin and Peleg [17] gave an O(logn)-approximation algorithm
for Directed 2-spanner. Running this algorithm on the transitive closure of an input
graph G will yield an O(logn)-approximation to the sparsest 2-TC-spanner of G, which, by
Corollary 2.3, is a O(n1−1/dk/2e logn)-approximation to the sparsest k-TC-spanner of G. J

3 Approximation Algorithm for Directed k-Spanner

In this section, we present our approximation algorithm for Directed k-Spanner.

I Theorem 3.1. Directed k-Spanner can be approximated with ratio O(k ·n1−1/dk/2e logn)
in polynomial time.

The following lemma demonstrates that the idea of approximating a k-spanner with a
2-spanner does not work for Directed k-Spanner.

I Lemma 3.2. There is an infinite family of directed graphs G on n nodes for which every
2-spanner has Ω(n2) edges while there is a k-spanner with O(n) edges.

Proof. Let m be a parameter such that n = 2m+ 2. Our graph G has four layers of nodes,
L1, L2, L3 and L4, of sizes m, 1, 1, and m, respectively. All edges are directed from smaller to
larger layers. The following pairs of layers form complete bipartite graphs: (L1, L2), (L2, L3),
(L3, L4) and (L1, L4). This completes the description of G.

mm

G is the sparsest 2-spanner itself. It has m2 + 2m + 1 = Ω(n2) edges. To form a
3-spanner of G, we can delete all edges between layers L1 and L4. The resulting 3-spanner
has n− 1 = O(n) edges. By definition, a 3-spanner is also a k-spanner for all k ≥ 3. J

Thus, approximating the sparsest k-spanner with a sparse 2-spanner will give an Ω(n)
ratio in the worst case. Instead, we build on the ideas of [21, 17] which use star graphs to
give an approximation algorithm for Directed 2-spanner.
I Definition 3.3 (`-Star, full `-Star). For a digraph G, a 1-star is a complete 3-layered
subgraph of G where all edges are directed from smaller to larger layers and the 2nd layer
consists of a single node v. (Layers 1 and 3 can be empty.) More generally, an `-star Sv is
a (2` + 1)-layered subgraph of G where all edges start at some layer and end at the next

FSTTCS 2010

430 Finding Sparser Directed Spanners

layer, and the middle layer consists of a single node v, called the center. Moreover, nodes in
layers 1 to `+ 1 and edges between them form a shortest path tree (with respect to G) with
root v (and edges directed towards the root). Similarly, nodes in layers `+ 1 to 2`+ 1 and
edges between them form a shortest path tree with root v (and edges directed away from the
root). Some layers, can be empty, as long as the shortest path trees are valid. An `-star that
includes all vertices in G at distance at most ` from (to) the center is called full.

A full `-star with center v can be found by performing two breadth-first searches on G

starting from v (one on outgoing edges, another on incoming edges) and terminating both
when all nodes at distance at most ` from (to) v have been found. Note that `′-star is also
an `-star if `′ ≤ `. When ` is not specified or clear from the context, we omit it and call the
corresponding graph a star.

In the context of finding directed k-spanners, we say that a star S covers an edge (u, v)
of G if S contains a path of length at most k from u to v. A covering set C of stars is a set
of stars such that each edge in G is covered by at least one of the stars in C. The cost of a
set C of stars, denoted cost(C), is the sum of the sizes of stars in the set. Observe that by
taking all edges in the stars of a covering set C of stars, we obtain a directed k-spanner of
size at most cost(C).

Given a directed 2-spanner H of G, it is easy to construct a set C of 1-stars that cover
every edge in G with cost(C) ≤ 2|H|. E.g., we can include the full 1-star Sv with respect
to H for each node in H. Since H is a 2-spanner of G, each edge (u, v) in G has a path of
length at most 2 in H. This path is included in at least one of the stars in our set. Therefore,
each edge is covered by one of the stars in the set. Since each edge is included in at most 2
stars, cost(C) ≤ 2|H|.

The main idea of our algorithm for Directed k-Spanner is to cover all edges of G with
stars. The next lemma shows that a covering set of k-stars with relatively low cost always
exists.

I Lemma 3.4. Let G be a directed graph on n nodes, and H be a k-spanner of G. Then
there is a set C of k-stars that cover all edges in G with cost(C) = O(n1−1/dk/2e|H|).

Proof. We build on ideas in the proof of Lemma 2.2. As before, set d = n1/dk/2e. We call a
vertex high-degree if its degree in H is at least d, and low-degree otherwise.

Transformation from a k-spanner to a covering set of stars
Input: a k-spanner H of G
1. Form a collection C of stars as follows:

a. For every high-degree vertex u, add a full (with respect to H) k-star with
center u.

b. Consider the induced subgraph H ′ of H containing only low-degree vertices.
For every vertex u in H ′, add a dk/2e-star with center u containing all vertices
v with distH′(u, v) or distH′(v, u) at most dk/2e.

2. Output C.

First, we show that every edge (u, v) in G is covered by a star in C. Let P be a shortest
path (of length at most k) from u to v in H. If P contains a high-degree vertex w then in
step 1(a) of the transformation, a full k-star Sw with center w was added to C. By definition,
Sw must contain both u and v as well as shortest paths from u to w and from w to v. Since
w is on a shortest path u to v, it also contains a shortest path from u to v, and thus covers
(u, v).

P. Berman, S. Raskhodnikova, G. Ruan 431

Otherwise, all nodes on path P are low-degree. Let w be the "middle" node on path P :
that is, a node such that distP (u,w) ≤ dk/2e and distP (w, v) ≤ dk/2e. Then in step 1(b) of
the transformation, set C got a dk/2e-star Sw with center w containing all nodes on path P .
Since w is on a shortest path from u to v, this dk/2e-star contains a shortest path from u to
v via w. Thus, every edge in G is covered by a star in C.

Now we analyze cost(C). Let deg(u) denote the degree of node u in H. We add one star
Su to H for each node u. If u is a high-degree node, Su has at most 2n = O(n1−1/dk/2e)·deg(u)
edges. Each low-degree vertex u connects to at most deg(u) vertices at distance 1, deg(u) · d
vertices at distance 2, deg(u) · d2 vertices at distance 3, . . ., deg(u) · ddk/2e−1 vertices at
distance dk/2e. So, the number of edges in Su is O(ddk/2e−1) ·deg(v) = O(n1−1/dk/2e) ·deg(u).
Therefore, cost(C) =

∑
v in H

|Sv| = O(n1−1/dk/2e) ·
∑
v in H

deg(u) = O(n1−1/dk/2e|H|). J

Next we prove the main theorem of this section.

Proof of Theorem 3.1. Our algorithm for Directed k-Spanner works by greedily con-
structing a covering set C of stars for the input graph G. As we mentioned, such a set
easily yields a directed k-spanner of G of size cost(C). Observe that the problem of finding
a covering set of stars of minimum cost is a special case of Weighted Set Cover, where
edges of G correspond to elements to be covered, and each star with |S| edges corresponds to
a covering set of weight (or cost) |S|. There are too many possible stars to write down the
instance of Weighted Set Cover. However, recall that a simple greedy algorithm that
chooses the set with the smallest relative cost (i.e., the ratio of the cost of the set over the
number of new elements it covers) gives approximation ratio O(logn) to Weighted Set
Cover [33]. Therefore, if we had a subroutine that finds a star with the smallest relative cost
in polynomial time, we would have a O(logn)-approximation to our star covering problem.
Instead, we will give a subroutine that finds a k-approximation to a star with the smallest
relative cost, that is, it finds a star with relative cost at most k times the optimum. Then, the
standard analysis of the greedy algorithm for Weighted Set Cover yields approximation
ratio O(k logn).

It is not hard to see that a 1-star Sv with center v with smallest relative cost can be found
in polynomial time using flow techniques (e.g., Project Selection). By finding such a star
Sv for each v in G and selecting the best star, we can find the star with smallest relative cost.
Incidentally, together with Lemma 3.4 and the observations above about Weighted Set
Cover, this procedure gives a O(logn) approximation algorithm for Directed 2-Spanner.

Now let opt be the smallest relative cost of a k-star with center v. (Recall that an `-star
is also a k-star for ` ≤ k.) We will show how to find an k-star Sv with center v and relative
cost at most k · opt. Let G′ be a graph obtained from G by adding edges from v (resp., to v)
to all nodes reachable from v (resp., from all nodes from which v is reachable) at distance at
most k. We run the subroutine above for finding a 1-star with center v of smallest relative
cost on G′. It is guaranteed to output a 1-star of relative cost at most opt. This 1-star
corresponds to a k-star in G of relative cost at most k · opt, since the cost of adding each
node is at most k instead of 1. As before, we run this subroutine for all nodes v and select
the best star to obtain a k-approximation to a k-star with smallest relative cost.

We use the above subroutine to select k-stars for our collection C until all edges of G
are covered. Let OPT be the smallest cost of a covering set of k-stars. As we explained,
our algorithm will produce a covering set C of stars of cost O(OPT · k logn). Let H be a
sparsest k-spanner of G. By Lemma 3.4, there is a covering set C∗ of k-stars with cost(C∗) =
O(n1−1/dk/2e|H|). Therefore, cost(C) = O(cost(C∗) · k logn) = O(k · n1−1/dk/2e(logn)|H|),
as required. J

FSTTCS 2010

432 Finding Sparser Directed Spanners

4 Tightness of k-TC-spanner to 2-TC-spanner Transformation

In this section, we show that our transformation from a k-TC-spanner to a 2-TC-spanner
(specifically, Corollary 2.3) is nearly tight. The main result of this section, Theorem 4.1,
is proved by a construction that adapts ideas of Hesse [19]. At the end of the section, we
present a simple direct construction that gives a stronger result for k = 3 and k = 4: in
Lemma 4.5, we demonstrate that the transformation from a 3-TC-spanner to a 2-TC-spanner
is asymptotically tight. Since our transformation to 2-TC-spanners incurs the same increase
in the number of edges whether we start from 3- or 4-TC-spanners, and since S4(G) ≤ S3(G),
Lemma 4.5 also implies the tightness of the transformation from 4-TC-spanners.

I Theorem 4.1. For all k > 2 and ε > 0, there exists an infinite family of graphs G on n
nodes such that S2(G)/S2k(G) ≥ n1−1/k−ε.

Proof. The crux of our construction is the same as Hesse’s [19]. The main difference is that
he was trying to get an extreme example with a large number of layers, while our goal is
to keep the number of layers small. Consequently, Hesse did not analyze our variant of his
construction.

I Definition 4.2 (Sets Cr,d and Fr,d, [19]). blank
Cr,d is the set of vectors in Zd of Euclidean length at most r.
Fr,d is the set of extremal points, “corners”, of the convex hull of Cr,d.

Now we describe our graph, G = G(d, r, k). It has some similarity to the Butterfly
Network: in particular, its nodes are of the form (`, x1, . . . , xk) and its edges are of the form
((` − 1, x1, . . . , xk), (`, x′1, . . . , x′k)) where ` is the node level, an integer in the range from
0 to 2k. The remaining k coordinates are called data coordinates. Like in the Butterfly
network, only one data coordinate changes when an edge is traversed, as indicated by the
`-coordinate: namely, xi = x′i if i 6= ` and i 6= k + `. However, the range of data coordinates
and the allowed changes are different. In particular, before the first allowed change, each
data coordinate has range Cr,d, after the first change the allowed range is C2r,d and after the
second change, the range is C3r,d. The allowed change is x′i = xi + zi where zi ∈ Fr,d.

Observe that G is its own 2k-TC-spanner since every directed path has at most 2k edges.
That is, S2k(G) = |G|. One can also see that the out-degree of every node, except for nodes
in layer 2k, is |Fr,d|.

In the next lemma, we analyze paths between the first and the last layer of G.

I Lemma 4.3. For all x = (x1, . . . , xk) ∈ (Cr,d)k and all z = (z1, . . . , zk) ∈ (Fr,d)k, there
exists exactly one path from (0, x) to (2k, x+ 2z).

Proof. To analyze possible paths from (0, x) to (2k, x+ 2z), we will find all possible values
of each data coordinate in the node descriptions on that path. On a path from (0, x) to
(2k, x + 2z), we change the i-th data coordinate twice: when we go from layer i − 1 to i
and when we go from layer k + i− 1 to layer k + i. Thus, the only possible values of that
coordinate are the initial value xi, the final value xi + 2zi and the intermediate value, say,
xi + u. Let v = 2zi − u. Then u, v ∈ Fr,d and (u + v)/2 = zi. Because zi is a corner (an
extremal point) of the convex hull of Cr,d, this implies u = v = zi. Therefore, there is only
one possible value of each data coordinate for each node on such a path. J

We will call unique paths from (0, x) to (2k, x+ 2z), described in the lemma, straight paths.
Consider a 2-TC-spanner H. We say that an edge (u, v) ∈ H is long if the difference

between the level of v and the level of u is at least k. For every straight path P , say, starting

P. Berman, S. Raskhodnikova, G. Ruan 433

at some (0, x) and ending at some (2k, x+ 2z), there exists some (i, y) such that H contains
edges ((0, x), (i, y)) and ((i, y), (2k, x+ 2z)). We say that the path P is covered by these two
edges. One of the two edges must be long, and thus it uniquely determines x and z. That is,
a long edge can be used to cover at most one straight path. Therefore, H has to contain at
least as many long edges as there are straight paths.

Now we give bounds on the numbers n, |G| and s, where n is the number of nodes and s
is the number of straight paths in G. Recall that S2k(G) = |G| and that s is a lower bound
on S2(G). We use the following tight bound on the size of Fr,d by Bárány and Larman [4].

I Theorem 4.4. For every d ≥ 2 there exist constants c1(d), c2(d) such that

c1(d)rd
d−1
d+1 ≤ |Fr,d| ≤ c2(d)rd

d−1
d+1 .

Let c = |Cr,d|, a = |C3r,d|/|Cr,d| and f = |Fr,d|.
Note that each layer of G has more nodes than the previous. In particular, for sufficiently

large r, the size of layer 2k is at least (3/2)d times larger then the size of layer 2k− 1 because
the range of the last data coordinate is expanded from C2r,d to C3r,d, while the range of the
remaining data coordinates remains the same. Therefore, n equals the size of layer 2k times
a small constant factor, i.e., n ≈ (ac)k. Since the out-degree of each node in G is f or 0,
|G| < nf < nac ≈ n1+1/k.

The number of straight paths is s = (cf)k because a straight path can be specified using
any node in layer 0 (ck choices) and any sequence of the first k edges of the path (f choices
for each edge). We will show how to choose r and d, so that s ≥ n2−ε or, equivalently,
(cf)k ≥ (ac)k(2−ε). It is equivalent to cf ≥ (ac)2−ε, and finally to f ≥ a2−εc1−ε. Since a
does not increase with r while c does, we can guarantee a2 < cε/2 by choosing sufficiently
large r. By choosing d > 4/ε, we get f > c1−ε/2 (by Theorem 4.4). Thus, for sufficiently
large r and d, s ≥ n2−ε.

To summarize, S2(G)/S2k(G) ≥ s/|G| ≥ n2−ε/n1+1/k = n1−1/k−ε, as stated. J

For stretch k = 3 (and hence for stretch k = 4), a simple construction yields a stronger
(tight) lower bound.

I Lemma 4.5. There exists an infinite family of graphs G on n nodes with S2(G)/S3(G) =
Ω(
√
n).

Proof. For each m, we construct a 4-layered graph G with m2 nodes in layers 1 and 4 and
m nodes in layers 2 and 3, where the edges are directed from smaller to larger layers and are
formed as follows. There is a complete bipartite graph between layers 2 and 3. Each node in
layer 2 is connected to m nodes in layer 1, and each node in layer 1 has outdegree 1. The
edges between layers 3 and 4 are constructed in the same manner. The resulting graph has
3m2 edges and is a 3-TC-spanner. A 2-TC-spanner of this graph must connect m4 pairs of
vertices in layers 1 and 4 via paths of length at most 2. Each shortcut edge can be used by
at most m such pairs. Therefore, at least m3 shortcuts are required. Setting n = 2m2 + 2m,
we obtain a graph with a 3-TC-spanner of size O(n), for which every 2-TC-spanner requires
Ω(n3/2) edges. J

mm

m m m2m2

FSTTCS 2010

434 Finding Sparser Directed Spanners

5 Approximation Algorithm for k-TC-Spanner for large k

In this section, we present an algorithm for k-TC-Spanner that provides a better ratio than
the algorithm from Theorem 2.1 for stretch k = Ω(logn/ loglogn).

I Theorem 5.1. k-TC-Spanner can be approximated with ratio O(n/k2) in polynomial
time.

O(n/k2)-Approximation Algorithm for k-TC-Spanner
Input: directed graph G = (V,E), desired stretch k
1. Let H be a transitive reduction of G.
2. While H contains vertices u, v such that distH(u, v) > k

a. Let (v1 = u, v2, ..., vt = v) be the shortest path from u to v in H.
b. Add a shortcut edge (vbk/4c, vt−bk/4c) to H.

3. Output H.

Proof. To prove that the above algorithm has the desired approximation ratio, it is enough
to analyze it on each weakly connected component. Let OPT be the size of the sparsest
k-TC-spanner on a weakly connected component with n nodes. Then OPT ≥ TR(G) ≥ n−1
where TR(G) denotes the size of the transitive reduction of G. We will show that O(n2/k2)
shortcut edges are added to H, giving the desired ratio.

Observe that each shortcut edge decreases the distance from at least k/2 to less than
k/2 for Ω(k2) pairs of vertices (vi, vj) on the shortest path from u to v: namely, all pairs
for which i ≤ bk/4c and j ≥ t − bk/4c. Since initially there are O(n2) pairs of vertices at
distance larger than k/2, only O(n2/k2) shortcut with this property can be added. This
completes the proof of the lemma. J

References
1 Alfred V. Aho, M. R. Garey, and Jeffrey D. Ullman. The transitive reduction of a directed

graph. SIAM J. Comput., 1(2):131–137, 1972.
2 Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On sparse

spanners of weighted graphs. Discrete & Computational Geometry, 9(1):81–100, 1993.
3 Baruch Awerbuch. Communication-time trade-offs in network synchronization. In PODC,

pages 272–276, 1985.
4 Imre Bárány and David Larman. The convex hull of the integer points in a large ball.

Mathematische Annalen, 312:167–181, 1998.
5 Surender Baswana and Sandeep Sen. Approximate distance oracles for unweighted graphs

in expected Õ(n2) time. ACM Transactions on Algorithms, 2(4):557–577, 2006.
6 Arnab Bhattacharyya, Elena Grigorescu, Madhav Jha, Kyomin Jung, Sofya Raskhodnikova,

and David Woodruff. Lower bounds for local monotonicity reconstruction from transitive-
closure spanners. In RANDOM, pages 448–461, 2010.

7 Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David
Woodruff. Transitive-closure spanners. In SODA, pages 932–941, 2009.

8 Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David
Woodruff. Transitive-closure spanners of the hypercube and the hypergrid. ECCC Report
TR09-046, 2009.

9 Arnab Bhattacharyya, Elena Grigorescu, Sofya Raskhodnikova, and David Woodruff.
Steiner transitive-closure spanners of d-dimensional posets. Manuscript, 2010.

10 Hanls L. Bodlaender, Gerard Tel, and Nicola Santoro. Tradeoffs in non-reversing diameter.
Nordic Journal of Computing, 1(1):111 – 134, 1994.

P. Berman, S. Raskhodnikova, G. Ruan 435

11 Edith Cohen. Fast algorithms for constructing t-spanners and paths with stretch t. SIAM
J. Comput., 28(1):210–236, 1998.

12 Edith Cohen. Polylog-time and near-linear work approximation scheme for undirected
shortest paths. JACM, 47(1):132–166, 2000.

13 Lenore Cowen. Compact routing with minimum stretch. J. Algorithms, 38(1):170–183,
2001.

14 Lenore Cowen and Christopher G. Wagner. Compact roundtrip routing in directed networks.
J. Algorithms, 50(1):79–95, 2004.

15 M. Elkin. Computing almost shortest paths. In PODC, pages 53–62, 2001.
16 Michael Elkin and David Peleg. Strong inapproximability of the basic k-spanner problem.

In ICALP, pages 636–647, 2000.
17 Michael Elkin and David Peleg. The client-server 2-spanner problem with applications to

network design. In SIROCCO, pages 117–132, 2001.
18 Michael Elkin and David Peleg. The hardness of approximating spanner problems. Theory

Comput. Syst., 41(4):691–729, 2007.
19 William Hesse. Directed graphs requiring large numbers of shortcuts. In SODA, pages

665–669, 2003.
20 D. Hochbaum, editor. Approximation Algorithms for NP-hard Problems. PWS Publishing

Company, Boston, 1997.
21 G. Kortsarz and D. Peleg. Generating sparse 2-spanners. J. Algorithms, 17(2):222–236,

1994.
22 Guy Kortsarz. On the hardness of approximating spanners. Algorithmica, 30(3):432–450,

2001.
23 David Peleg. Distributed computing: a locality-sensitive approach. Society for Industrial

and Applied Mathematics, Philadelphia, PA, USA, 2000.
24 David Peleg and Alejandro A. Schäffer. Graph spanners. Journal of Graph Theory, 13(1):99–

116, 1989.
25 David Peleg and Jeffrey D. Ullman. An optimal synchronizer for the hypercube. SIAM J.

Comput., 18(4):740–747, 1989.
26 David Peleg and Eli Upfal. A trade-off between space and efficiency for routing tables.

JACM, 36(3):510–530, 1989.
27 Sofya Raskhodnikova. Transitive-closure spanners: a survey. In Oded Goldreich, editor,

Property Testing, volume LNCS 6390, pages 167–196. Springer, Heidelberg, 2010.
28 Mikkel Thorup. On shortcutting digraphs. In Graph-Theoretic Concepts in Computer

Science, volume 657, pages 205–211, 1993.
29 Mikkel Thorup. Shortcutting planar digraphs. Combinatorics, Probability & Computing,

4:287–315, 1995.
30 Mikkel Thorup. Parallel shortcutting of rooted trees. J. Algorithms, 23(1):139–159, 1997.
31 Mikkel Thorup and Uri Zwick. Compact routing schemes. In ACM Symposium on Parallel

Algorithms and Architectures, pages 1–10, 2001.
32 Mikkel Thorup and Uri Zwick. Approximate distance oracles. JACM, 52(1):1–24, 2005.
33 Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag, New York, NY, USA, 2007.

FSTTCS 2010

Combinatorial Problems with Discounted Price
Functions in Multi-agent Systems
Gagan Goel1, Pushkar Tripathi1, and Lei Wang1

1 College of Computing
Georgia Institute of Technology
Atlanta, USA
gagan,pushkar.tripathi,lwang@cc.gatech.edu

Abstract
Motivated by economic thought, a recent research agenda has suggested the algorithmic study
of combinatorial optimization problems under functions which satisfy the property of decreasing
marginal cost. A natural first step to model such functions is to consider submodular functions.
However, many fundamental problems have turned out to be extremely hard to approximate
under general submodular functions, thus indicating the need for a systematic study of subclasses
of submodular functions that are practically motivated and yield good approximation ratios.
In this paper, we introduce and study an important subclass of submodular functions, which
we call discounted price functions. These functions are succinctly representable and generalize
linear(additive) price functions. We study the following fundamental combinatorial optimization
problems: edge cover, spanning tree, perfect matching and s− t path. We give both upper and
lower bound for the approximability of these problems.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.436

1 Introduction

In the algorithmic theory of combinatorial optimization, much of the attention has been
focused on problems where one wishes to optimize an additive function under some com-
binatorial constraints. In these problems we are given a ground set E of elements and a
collection Ω of subsets of the ground set (Ω ⊆ 2E) that is usually defined implicitly by some
combinatorial property (such as the set of all spanning trees in a graph). We are also given a
cost for each element in E and the price of a subset S ∈ Ω is defined to be the sum of costs
of the elements in S. The objective is to find a subset in Ω with a minimum price.

However, additive price functions do not always model the complex dependencies of the
prices in a real-world setting. It is widely believed in economics that price structure satisfies
the decreasing marginal cost property. Intuitevly, it says that the price of adding an element
to a larger set is less than adding it to a smaller set. Largely motivated by this, in recent
years, a research agenda that has emerged out [9, 10, 11, 12, 20] is to study combinatorial
optimization problems under submodular functions. Submodular functions form a very broad
class of functions and mathematically capture the property of decreasing marginal cost. A
function f : 2E → R+ is said to be submodular if and only if for any two subsets S and
T ⊆ E such that S ⊆ T , the following holds: f(T ∪ i) − f(T) ≤ f(S ∪ i) − f(S) for all
elements i ∈ E − T .

Unfortunately, many of the fundamental optimization problems have turned out to
be extremely hard under submodular functions [9, 10, 11, 12, 20]. Thus, from a practical
standpoint, the applicability of these results is not very well-founded as the class of submodular
functions might be much more general than real-world functions. Moreover, the class of
submodular functions is defined over an exponentially large domain and thus requires

© Gagan Goel, Pushkar Tripathi and Lei Wang;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 436–446

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.436
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Gagan Goel, Pushkar Tripathi, and Lei Wang 437

exponential time to write down the function explicitly. This may not be the case in real-world
applications.

In this paper, we wish to explore functions that lie between the additive functions and the
general submodular functions, and that are also succinctly representable. In particular, we
study discounted price functions in which we are given an additive function c and a discount
function d : R+ → R+ that is a concave curve. The price of any subset S is defined to be
d(c(S)). It is not difficult to see that dicounted price functions form a subclass of submodular
functions. Discounted price functions have strong theoretical motivation as well. A common
technique (due to [10]) for designing optimal algorithms under general submodular functions
is to first approximate submodular functions by ellipsoid functions. These ellipsoid functions
form a special class of discounted price functions.

We study discounted price functions in a multi-agent setting. This is motivated by the
observation that often in a real-world scenario there are multiple agents, with different price
functions, each of whom can build different parts of the required combinatorial structure. For
instance, in the case of spanning tree, it might be more cost effective to buy only a subset of
the edges of the final tree from a particular agent. For additive functions, it is easy to see
that having multiple agents doesn’t change the complexity of the original problem. However,
this is not the case for more general price functions.

Discounted Price Model
We define a function d : R+ → R+ to be a discounted price function if it satisfies the following
properties: (1) d(0) = 0; (2) d is increasing; (3) d(x) ≤ x for all x; (4) d is concave.

We study combinatorial problems in the following general setting. We are given a set of
elements E, and a collection Ω of its subsets. We are also given a set A of k agents where
each agent a ∈ A specifies a cost function ca : E → R+ where ca(e) indicates her cost for
the element e. Each agent also declares a discounted price function da. If an agent a is
assigned a set T of elements, then her total price is specified by da(

∑
e∈T ca(e)). This is called

her discounted price. For the ease of notation we will use da(T) to denote da(
∑

e∈T ca(e)).
The objective is to select a subset S from Ω and a partition S1, S2, ..., Sk of S, such that∑

a∈A da(Sa) is minimized.
We study the following four problems over an undirected graph G = (V,E).

Discounted Edge Cover: In this problem, Ω is chosen to be the collection of edge
covers.
Discounted Spanning Tree: In this problem, Ω is the collection of spanning trees of
the graph.
Discounted Perfect Matching: In this problem, we assume the graph has an even
number of vertices. Ω is chosen to be the collection of perfect matchings of the graph.
Discounted s − t Path: In this problem, we are given two fixed vertices s and t. Ω
consists of all paths connecting s and t.

Our Results
In section 2.1, we show that the discounted edge cover and spanning tree problems are hard
to approximate within a factor of (1− o(1)) logn unless P = NP. In section 2.2 and 2.3, we
amplify this result to show that s− t path and matching are hard to approximate within
any polylog factor.

On the algorithmic front, in section 3.1 and 3.2, we show that our results are tight
by giving logn-approximate algorithms for the discounted edge cover and spanning tree

FSTTCS 2010

438 Combinatorial Problems with Discounted Price

problems. In section 3.3, we describe simple O(n)-approximate algorithms for discounted
s− t and perfect matching. We leave the design of sublinear approximation algorithms for
these two problems as an open question.

Related work

The classical versions of edge cover, spanning tree, perfect matching and s− t path are well
studied and polynomial time algorithms are known for all these problems, see [18, 14, 3, 7, 6, 4].
These have served as part of the most fundamental combinatorial optimization models in the
development of computer science and operations research.

Recently, Svitkina and Fleischer [20] generalized the linear(additive) cost settings of some
combinatorial optimization problems such as sparsest cut, load balancing and knapsack to a
submodular cost setting. They gave

√
n/ logn upper and lower bounds for all these problems.

[11] also studied combinatorial optimization problems in the single agent setting.
Multi-agent setting was first introduced in [9]. In their model of combinatorial problems

with multi-agent submodular cost functions they gave Ω(n) lower bounds for the problems
of submodular spanning tree and perfect matching, and gave a Ω(n2/3) lower bound for
submodular s− t path where the submodular functions are given by value oracles. They also
gave the matching upper bounds for all these problems. We remark that the lower bounds
presented in [20, 9] are information theoretic and not computational.

Similar generalization from additive objective functions to the more general submodular
functions was applied to maximization problems in [8, 15, 2]. The multi-agent generalization
of maximization problems which corresponds to combinatorial auction has been extensively
studied both in computer science and economics [5, 17] and tight information theoretic lower
bounds are known for these problems, see [16].

2 Hardness of Approximation

In this section we present hardness of approximation results for the four problems defined
earlier. Unlike some of the previous work on combinatorial optimization [9, 20] over non-linear
cost functions, the bounds presented here are not information theoretic but are contingent
on P 6= NP. In section 2.1, we show that all our problems are hard to approximate within
factor logn. In section 2.2 and 2.3, we amplify the hardness of approximation for discounted
s− t path and perfect matching to O(logc n) for any constant c.

Recall that in each of the problems we are given a graph G = (V,E) over n vertices. We
are also given a set A of k agents each of whom specifies a cost ca : E → R+. Here ca(e) is
the cost for building edge e for agent a. Each agent also specifies a discounted price function
given by da : R+ → R+. The objective is to build a specified combinatorial structure using
the edges in E, and allocate these edges among the agents such that the sum of discounted
prices for the agents is minimized.

2.1 Basic Reduction

To show the logarithmic hardness of approximation for the problems stated earlier we consider
the following general problem and use a reduction from set cover to establish its hardness.

Discounted Reverse Auction: We are given a a set E of n items and a set A of agents
each of whom specifies a function ca : E → R+. Here ca(e) is the cost for procuring item e

from agent a. Each agent also specifies a discounted price function given by da : R+ → R+.

Gagan Goel, Pushkar Tripathi, and Lei Wang 439

The task is to find a partition P = {P1 · · ·Pk} of E such that
∑

a∈A da(
∑

e∈Pa
ca(e)) is

minimized.

I Lemma 1. It is hard to approximate the discounted reverse auction problem within factor
(1− o(1)) logn unless P = NP.

Proof. We reduce set cover to the discounted reverse auction problem to prove this result.
Consider an instance I = (U,C,w) of set cover where we wish to cover all elements in
the universe U using sets from C and minimize the sum of weights under the weight
function w : C → R+. We define an instance, I ′ of our discounted reverse auction problem
corresponding to I in the following way. Let U be the set of items. For every set S ∈ C
define an agent aS , whose cost function ca assigns the value w(S) for every element s ∈ S
and sets the cost of all other elements in U to be infinity. The discounted price function for
the agent is shown in figure 1. Here the slope of the second segment is small enough.

Figure 1 Discount function for agent corresponding to set S

Consider a solution for I ′ where we procure at least one item from agent aS ; then we can
buy all elements in S from aS without a significant increase in our payment. So the cost of
the optimal solution to I can be as close to the price of the optimal solution for I ′ as we
want. By [1, 19], set cover is hard to approximate beyond a factor of logn unless P = NP.
Therefore the discounted reverse auction problem can not be approximated within factor
(1− o(1)) logn unless P = NP. J

This reduction can be extended to other combinatorial problems in this setting to give
logarithmic hardness of approximation for many combinatorial problems. This can be
achieved by considering an instance of the problem where we have just one combinatorial
object and our task is to allocate it optimally among the agents. For example, for the
discounted spanning tree problem we consider the instance when the input graph is itself
a tree and we have to optimally allocate its edges among the agents to minimize the total
price. Thus, we have the following:

I Theorem 2. It is hard to approximate discounted edge cover, spanning tree, perfect
matching and s− t path within factor of (1− o(1)) logn on a graph with n vertices unless
P = NP.

2.2 Amplification: Hardness for Discounted s− t Path
In this section we consider the discounted s− t path problem between two given vertices s
and t. We show that unless P = NP, this problem is hard to approximate within a factor
of O(logc n) for any fixed constant c. The proof is based on amplification of the result of
theorem 2. This is done by repeatedly applying a transformation σ on the given family of
problem instances, which amplifies the approximation factor on every application. Each

FSTTCS 2010

440 Combinatorial Problems with Discounted Price

application of σ also increases the size of the graph but only by a polynomial(in n) factor.
We now describe the transformation formally.

Consider the following instance (G,A,U): We are given a graph G = (V,E), vertices s,t
and a set A of agents. We are also given a collection U = {Ua}a∈A. Here Ua ⊆ E specifies
the set of edges that can be assigned to agent a, i.e., ca(e) = 1 for all e ∈ Ua and ca(e) = +∞
otherwise. The discounted price function da is such that da(x) = x for all x ≤ 1 and 1 for
all 1 < x < +∞. Observe that under this assumption, for any set S of edges, da(S) has
value 1 if S ⊆ Ua and ∞ otherwise. We may assume that the sets Ua for a ∈ A are pairwise
disjoint, by replacing a single edge that can be assigned to multiple agents by parallel edges
and assigning them to each of the agents. In future discussion, we will use F to denote the
family of instances {(G,A,U)}.

We define the transformation σ : F → F that takes an instance I = (G,A,U) in F , and
generates another instance I⊗ = (G⊗,A×A,U⊗) as follows. The graph G⊗ = (V ⊗, E⊗) is
constructed from G by replacing each edge (u, v) ∈ E with a copy of the graph G such that
s coincides with u and t coincides with v. Thus any edge e ∈ E can be identified with a
subgraph Ge, of G⊗ that is isomorphic to G. Each e′ ∈ Ge has a cost ca(e) for each agent a
and we define ρ(e′) = e and define γ(e′) to be the edge corresponding to e′ in G under this
isomorphism. There are |A|2 agents in the new instance who are indexed by A × A. We
define the elements of U⊗ as U⊗(a1,a2) = {e′ | ρ(e′) ∈ Ua1 and γ(e′) ∈ Ua2}.

Note that |E⊗| = |E|2, i.e. the size of instance I⊗ is bounded by a polynomial in the
size of I. We define σ(F) = {σ(I) | ∀I ∈ F}. In lemma 3, we show that we can amplify that
hardness result from theorem 2 by applying the transformation σ repeatedly.

I Lemma 3. If H = σr(F) is a family of instances for the s− t path problem that is hard
to approximate to a factor better than α, then σ(H) is hard to approximate within a factor
O(α2).

Proof. Let I = (G, s, t,A,U) be an instance in H. Let us begin by making some observations
about the structure of an optimal solution for σ(I) = (G⊗,A,U⊗).

I Claim 1. If there is a s− t path of price β in G, then there is a s− t path in G⊗ of price
at most β2.

Proof of claim 1. Let P = e1, e2 . . . et be a path of price β in G. We can construct a s− t
path in G⊗ by considering the set of graphs Ge1 . . . Get and picking the edges corresponding
to the edges in P in each of these copies. It can be verified that this gives us a valid path
that has price β2. J

Next we note that the converse is also true.

I Claim 2. If there is a s− t path of price β2 in G⊗ then there is a s− t path in G of price
at most β.

Proof of claim 2. Let P be a path of price β2 in G⊗. Let Ge1 . . . Get be the copies of G that
have non-empty intersection with P . Two cases may arise. Either the set of edges {e1 . . . et}
belong to at most β distinct agents in A or they belong to more than β agents in A. Note
that the set of edges {e1 . . . et} form a path in G, and in the first case this path has price at
most β. In the second case, the price of edges in P ∩Gei must be less than β for some copy
Gei of graph G. These edges also form a s− t path in G of price at most β. Thus in both
cases we can find a path of price at most β in G. J

Gagan Goel, Pushkar Tripathi, and Lei Wang 441

Using the observations above, if the price of the optimal solution to I is OPT , then the
price of the optimal solution to σ(I) is OPT 2. Furthermore, if we can approximate the
optimal solution to σ(I) to within a factor of o(α2) then we can approximate the optimal
solution for I to better than o(α), using the construction in claim 2. This yields the desired
contradiction. J

By theorem 2, F is hard to approximate within a factor of logn. Using this as the base
case and applying lemma 3 repeatedly we have the following theorem.

I Theorem 4. The discounted shortest s− t path problem is hard to approximate within a
factor of O(logc n) for any fixed constant c > 0.

2.3 Reduction: Hardness for Discounted Perfect Matching
In this section we consider the discounted perfect matching problem. We show that unless
P = NP, this problem is hard to approximate within a factor of O(logc n) for any fixed
constant c. The proof is based on a factor preserving reduction from the s− t path problem.
We now describe our reduction:

I Lemma 5. Let A be a β-approximate algorithm for the perfect matching problem, then we
can get a β-approximation for the s− t path problem using A as a subroutine.

Proof. Suppose we are given a graph G = (V,E). Construct an auxiliary graph G∗ in the
following way: Replace every vertex v ∈ V by v′ and v′′ and add an edge connecting them.
The price of this edge is zero for every agent. We replace each edge uv ∈ E with the gadgets
shown in figure 2.

Figure 2 Gadgets

On this graph G∗, use the algorithm A to get the minimum weight matching. Let M
be the matching returned. We can interpret M as a s − t path in G in the following way.
Let g(uv) be the edges in G∗ corresponding to the edge uv for the gadget shown in figure 2.
Observe that either one or two edges of every such gadget must belong to M . Let S be the
set of edges in G such that two edges in their corresponding gadget belong to M . One can
check that every vertex in V is incident with zero or two edges from S, whereas s and t are
each incident with exactly one edge in S. Therefore S consists of an s− t path PS and some
other circuits. Now the circuits in S must have cost zero. This is because if a circuit has
positive cost then the cost of the matching can be reduced further by pairing up the vertices
in the circuit as shown in figure 3.

J

Note that the reduction defined in lemma 5 defines a cost preserving bijection between
s− t paths in G to perfect matchings in G∗. Thus, using theorem 4 we have :

I Theorem 6. The discounted perfect matching problem is hard to approximate within a
factor of O(logc n) for any fixed constant c > 0.

FSTTCS 2010

442 Combinatorial Problems with Discounted Price

Figure 3 Circuits not involving edges in S should have zero costs

3 Algorithms for Discounted Combinatorial Optimization

In this section, we present approximation algorithms for the four problems defined earlier.

3.1 Discounted Edge Cover
We will establish a factor O(logn) algorithm for the discounted edge cover problem.

Given a discounted edge cover instance, we construct a set cover instance such that: 1)
An optimal edge cover corresponds to a set cover with the same cost and 2) A set cover
corresponds to an edge cover with a smaller price. For the set cover instance, we apply the
greedy algorithm from [13] to get a set cover whose cost is within logn of the optimal cost.
The corresponding edge cover gives a logn approximation of the optimum edge cover. We
remark that we will have exponentially many sets in the set cover instance that we construct
for our problem. To apply the greedy algorithm, we need to show that in each step, the set
with the lowest average cost can be found in polynomial time.

Now we state our algorithm formally. Consider a set cover instance where we have to
cover the set of vertices, V , with k2n subsets which are indexed by (a, S) ∈ A × 2V . The
cost of the set (a, S), denoted by cost(a, S), is defined as the minimum discounted price of
an edge cover for the vertices in S that can be built by agent a. For the instance of set cover
described above, we apply the greedy algorithm [13] to get a set cover S. Let Ua be the set
of vertices covered by sets of the form (a, S) ∈ S. Let Ca be agent a’s optimal discounted
edge cover of the vertices in Ua. We output {Ca : a ∈ A} as our solution.

The correctness of the algorithm follows from the observation that each Ca is a cover of
Ua thus their union must form an edge cover for V .

Now we show that the running time of the algorithm is polynomial in k and n. Given Ua,
Ca can be found in polynomial time. Thus our algorithm can be implemented in polynomial
time, if we can implement the greedy algorithm on our set cover instance efficiently.

Recall that the greedy algorithm from [13] covers the ground set iteratively. Let Q be
the set of covered elements at the beginning of a phase. The average cost of a set (a, S) is
defined as αa(S) = cost(a, S)/|S −Q|. In every iteration the algorithm picks the set with
the smallest average cost until all the vertices are covered. To show that this algorithm can
be implemented efficiently, we only need to show the following lemma.

I Lemma 7. For any Q ⊂ V , we can find min{cost(a, S)/|S − Q| : (a, S) ∈ A × 2V } in
polynomial time.

Proof. We can iterate over all choices of agent a ∈ A, thus the problem boils down to finding
min{cost(a, S)/|S −Q| : S ⊆ V } for each a ∈ A.

For each integer d, if we can find min{cost(a, S) : |S −Q| = d} in polynomial time, then
we are done since then we can just search over all the possible sizes of S −Q. Unfortunately,

Gagan Goel, Pushkar Tripathi, and Lei Wang 443

it is NP-hard to compute min{cost(a, S) : |S −Q| = d} for all integer d. We will use claim 3
to circumvent this problem.
I Claim 3. For any graph G = (V,E) and Q ⊆ V and for any positive integer d, we can find
the set (a, S) minimizing cost(a, S) such that |S −Q| is at least d, in polynomial time.

Proof. To find the desired set we construct a graph G′ = (V ′, E′) as follows: Add a set
X ∪ Y to the set of vertices in G, where |X| = |Q| and |Y | = |V | − |Q| − d. Match every
vertex in X to a vertex in Q with an edge of cost 0. Connect each vertex in Y to each
vertex in V by an edge of very large cost. Set the cost of each edge e ∈ E as ca(e). Find the
minimum cost edge cover in G′. Let S∗ be the set of vertices not adjacent to X ∪ Y in such
a cover. It is easy to verify that S∗ is the desired set. J

By claim 3 above we can generate a collection of subsets {Si ⊆ V : 1 ≤ i ≤ n}, such that
(a, Si) has the lowest value of cost(a, S) among all sets S which satisfy |S −Q| ≥ i.
I Claim 4. min{cost(a, S)/|S −Q| : S ⊆ V } = min{cost(a, Si)/|Si −Q| : 1 ≤ i ≤ n}.

Proof. Let S∗ be the set that has the minimum average cost with respect to agent a.
Suppose |S∗ − Q| = d. By our choice of Sd, we have |Sd − Q| ≥ d = |S∗ − Q| and
cost(a, Sd) ≤ cost(a, S∗). Therefore we have cost(a, Sd)/|Sd − Q| ≤ cost(a, S∗)/|S∗ − Q|,
hence they must be equal. J

By iterating over all a ∈ A, we can find min{cost(a, S)/|S − Q| : (a, S) ∈ A × 2V } in
polynomial time. J

Next we show that the approximation factor of our algorithm is logn. Let OPTEC

and OPTS denote the costs of the optimal solutions for the discounted edge cover instance
and the corresponding set cover instance respectively. Let {Ca : a ∈ A} be the edge cover
reported by our algorithm. For all a ∈ A let Oa be the set of vertices covered by agent a in
the optimal edge cover. The sets {(a,Oa) : a ∈ A} form a solution for the set cover instance.
Therefore OPTS ≤ OPTEC .

Since we use the greedy set cover algorithm to approximate OPTS , we have∑
a∈A

da(Ca) ≤ (logn)OPTS ≤ (logn)OPTEC

Thus we have the following theorem.

I Theorem 8. There is a polynomial time algorithm which finds a O(logn)-approximate
solution to the discounted edge cover problem for any graph over n vertices.

3.2 Discounted Spanning Tree
In this section, we study the discounted spanning tree problem and establish an O(logn)
approximation algorithm for this problem.

Let us first consider a simple O(log2 n)-approximation algorithm. Observe that a spanning
tree is an edge cover with the connectivity requirement. If we apply the greedy edge cover
algorithm in section 3.1, there is no guarantee that we will end up with a connected edge
cover. We may get a collection of connected components. We can subsequently contract
these components and run the greedy edge cover algorithm again on the contracted graph.
We repeat this until there is only one connected component. By this method, we will get a
connected edge cover containing a spanning tree.

FSTTCS 2010

444 Combinatorial Problems with Discounted Price

Now we will analyze the above algorithm. Let OPTST be the price of the minimum
discounted spanning tree. After each execution of the greedy edge cover algorithm, there is
no isolated vertex, hence the contraction decreases the number of vertices by at least a a
factor of half, therefore we will have to run the greedy edge cover algorithm at most O(logn)
times. Let OPT r

EC be the price of the minimum edge cover for the graph obtained after
the rth contraction and let Cr be the edge cover that we produce for this iteration. Using
theorem 8, the price of Cr is at most (logn)OPT r

EC . It is easy to see that OPT r
EC is at most

OPTST for every r. Hence the price of Cr is bounded by logn ·OPTST . Since there are at
most O(logn) iterations, the price of the spanning tree produced by the above algorithm is
bounded by O(log2 n)OPTST .

We observe that two main steps in the above algorithm are greedy edge cover and
contraction. Intuitively, they are used to satisfy the covering and connectivity requirements
respectively. The algorithm proceeds by alternately invoking these subroutines. Based on this
observation, our idea to get an O(logn) approximation algorithm is to apply the following
greedy algorithm: rather than apply contraction after each complete execution of the greedy
edge cover, we interleave contraction with the iterations of the greedy edge cover algorithm.
After each iteration, we modify the graph to coerce our algorithm to get a connected edge
cover at the end.

Now we describe our greedy algorithm. For every agent a and subset of vertices S we
define cost(a, S) as the cost of the optimal edge cover for S. We define the average cost
of a set (a, S) as αS

a = cost(a, S)/|S|. The algorithm proceeds in phases and each phase
has two steps, search and contraction. In the rth phase, during the search step we find
the set (ar, Sr) with the lowest average cost and set the potential of each vertex v ∈ Sr as
p(v) = αSr

ar
. The search step is followed by a contraction step, where we modify the graph by

contracting every connected component in the induced subgraph of agent ar’s optimal edge
cover for the set Sr. After this we begin the next phase. The algorithm terminates when we
have contracted the original graph to a single vertex. For every agent, we find the set of all
edges assigned to her across all the search steps declare this as her bundle of assigned edges.
Finally remove unnecessary edges from the set of assigned edges to get a spanning tree.

It is easy to see that we get a connected edge cover at the end of the algorithm, which
proves the correctness of the algorithm. To analyze the running time, we observe that there
can be at most n phases and by Lemma 7, each phase can be implemented in polynomial
time. Hence the algorithm runs in polynomial time.

Next, we prove that the approximation factor of the algorithm is O(logn). Let OPTST be
the price of the optimal solution of the discounted spanning tree instance and let {Ta : a ∈ A}
be our solution. Let V ′ be the set of contracted vertices we produced during the algorithm.
Number the elements of V and V ′ in the order in which they were covered by the algorithm,
resolving ties arbitrarily. Suppose V = {v1, ..., vn} and V ′ = {z1, ..., zn′}. Obviously, n′ ≤ n.

It is easy to verify that
∑

a da(Ta) ≤
∑

i p(vi) +
∑

j p(zj). Therefore we only need to
bound the potentials of the vertices in V ∪ V ′.
I Claim 5. p(vi) ≤ OP TST

n−i+1 for any i ∈ {1 · · ·n} and p(zj) ≤ OP TST

n′−j for any j ∈ {1 · · ·n′}.

Proof. For i ∈ {1 · · ·n}, suppose vi is covered in phase r. Let Gr be the underlying graph
at the beginning of phase r. Since vi, vi+1, ..., vn are not covered before phase r, Gr contains
at least n− i+ 1 vertices. Since the optimal spanning tree can cover the vertices in Gr by a
price of OPTST , by our greedy choice, p(vi) ≤ OPTST /(n− i+ 1).

Similarly, let 1 ≤ j ≤ n′ and assume zj is covered in phase r. Since we should be able
to produce zj+1, zj+2, ..., zn′ from contraction on vertices of Gr, there are at least n′ − r
vertices in Gr. Therefore we have p(zj) ≤ OPTST /(n′ − j). J

Gagan Goel, Pushkar Tripathi, and Lei Wang 445

From the above claim, we have∑
a

da(Ta) ≤
∑

1≤i≤n

OPTST

n− i+ 1 +
∑

1≤j≤n′

OPTST

n′ − j
≤ (logn+ logn′)OPTST ≤ O(logn)OPTST

Therefore we have the following theorem:

I Theorem 9. There is a polynomial time algorithm which finds an O(logn)-approximate
solution to the discounted spanning tree problem for any graph with n vertices.

3.3 Discounted s− t Path and Perfect Matching
In sections 2.2 and 2.3 we showed that unlike edge cover and spanning tree, no polylog-
approximate algorithm is likely to exist for discounted s− t path and perfect matching.

Now we describe a simple n-approximate algorithm for discounted s− t path problem.
For each edge e, define we = mina∈A da(ca(e)) and for each s− t path P , define its weight
w(P) =

∑
e∈P we. Use Dijkstra’s algorithm to find a path P0 with the minimum weight

and output it as the solution. Allocate the edges in P0 as follows: for each edge e ∈ P , we
allocate e to the agent a such that da(ca(e)) = we, with ties broken arbitrarily.

For the analysis, let us define Sa to be the set of edges allocated to agent a in our solution.
Since da is concave, we have da(Sa) ≤

∑
e∈Sa

da(ca(e)). Therefore, the total price of our
solution is bounded by

∑
a∈A

∑
e∈Sa

da(ca(e)) which is exactly w(P0). Let OPT be the path
chosen in the optimal solution (as an abuse of notation, we also use OPT to denote the optimal
value) and OPTa be the set of edges on the path allocated to agent a. By our choice of P0
and weight w, we have w(P0) ≤ w(OPT) =

∑
a∈A

∑
e∈OP Ta

we ≤
∑

a∈A
∑

e∈OP Ta
da(ca(e)).

Since da is increasing, we have∑
e∈OP Ta

da(ca(e)) ≤ |OPTa| · da(OPTa) ≤ n · da(OPTa).

Therefore w(OPT) ≤ n
∑

a∈A da(OPTa) = n ·OPT . This implies that our algorithm is an
n-approximate algorithm.

We apply the same idea for discounted perfect matching problem. Define the weight of
a perfect matching M as w(M) =

∑
e∈M we. Use Edmond’s algorithm to find a minimum

weight perfect matching M0 for this weight function. For every e ∈ M0, allocate it to the
agent a such that ca(e) = we. By a similar argument as above, we can show that this is a n
approximate algorithm.

Acknowledgements

We would like to thank Vijay Vazirani for is continued guidance and support throughout
the development of this paper. Also, we would like to thank the reviewers for many useful
suggestions.

References
1 Noga Alon, Dana Moshkovitz, and Shmuel Safra. Algorithmic construction of sets for

k-restrictions. ACM Trans. Algorithms, 2(2):153–177, 2006.
2 Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a sub-

modular set function subject to a matroid constraint (extended abstract). In IPCO ’07:
Proceedings of the 12th international conference on Integer Programming and Combinato-
rial Optimization, pages 182–196, Berlin, Heidelberg, 2007. Springer-Verlag.

FSTTCS 2010

446 Combinatorial Problems with Discounted Price

3 William Cook and Andre Rohe. Computing minimum-weight perfect matchings. INFORMS
J. on Computing, 11(2):138–148, 1999.

4 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, 2001.

5 Sven de Vries and Rakesh V. Vohra. Combinatorial auctions: A survey. INFORMS Journal
on Computing, (3):284–309, 2003.

6 Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

7 Jack Edmonds. Paths,trees and flowers. Canad J.Math, 17, 1965.
8 Uriel Feige and Vahab S. Mirrokni. Maximizing non-monotone submodular functions. In In

Proceedings of 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS,
page 2007, 2007.

9 Gagan Goel, Chinmay Karande, Pushkar Tripathi, and Lei Wang. Approximability of com-
binatorial problems with multi-agent submodular cost functions. In FOCS ’09: Proceedings
of the 2009 50th Annual IEEE Symposium on Foundations of Computer Science, 2009.

10 M.X. Goemans, N.J.A. Harvey, S. Iwata, and V. Mirrokni. Approximating submodular
functions everywhere. In SODA ’09: Proceedings of the 20th ACM-SIAM Symposium on
Discrete Algorithms, 2009.

11 Satoru Iwata and Kiyohito Nagano. Submodular function minimization under covering
constraints. In FOCS ’09: Proceedings of the 2009 50th Annual IEEE Symposium on
Foundations of Computer Science, 2009.

12 Stefanie Jegelka and Jeff Bilmes. Cooperative cuts: Graph cuts with submodular edge
weights. Technical Report, 2010.

13 David S. Johnson. Approximation algorithms for combinatorial problems. In STOC ’73:
Proceedings of the fifth annual ACM symposium on Theory of computing, pages 38–49, New
York, NY, USA, 1973. ACM.

14 Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7(1):48–50, February 1956.

15 Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Non-monotone
submodular maximization under matroid and knapsack constraints. In STOC ’09: Pro-
ceedings of the 41st annual ACM symposium on Theory of computing, pages 323–332, New
York, NY, USA, 2009. ACM.

16 Vahab Mirrokni, Michael Schapira, and Jan Vondrak. Tight information-theoretic lower
bounds for welfare maximization in combinatorial auctions. In EC ’08: Proceedings of
the 9th ACM conference on Electronic commerce, pages 70–77, New York, NY, USA, 2008.
ACM.

17 Noam Nisam, Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani. Algorithmic Game
Theory. Cambridge University Press, September 2007.

18 Seth Pettie and Vijaya Ramachandran. An optimal minimum spanning tree algorithm. J.
ACM, 49(1):16–34, 2002.

19 Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a sub-
constant error-probability pcp characterization of np. In STOC ’97: Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing, pages 475–484, New York,
NY, USA, 1997. ACM.

20 Zoya Svitkina and Lisa Fleischer. Submodular approximation: Sampling-based algorithms
and lower bounds. In FOCS ’08: Proceedings of the 2008 49th Annual IEEE Symposium
on Foundations of Computer Science, pages 697–706, Washington, DC, USA, 2008. IEEE
Computer Society.

Quasi-Random PCP and Hardness of 2-Catalog
Segmentation
Rishi Saket∗

Carnegie Mellon University
rsaket@cs.cmu.edu

Abstract
We study the problem of 2-Catalog Segmentation which is one of the several variants of seg-
mentation problems, introduced by Kleinberg et al. [11], that naturally arise in data mining
applications. Formally, given a bipartite graph G = (U, V,E) and parameter r, the goal is to
output two subsets V1, V2 ⊆ V , each of size r, to maximize,∑

u∈U

max{|E(u, V1)|, |E(u, V2)|},

where E(u, Vi) is the set of edges between u and the vertices in Vi for i = 1, 2. There is a simple
2-approximation for this problem, and stronger approximation factors are known for the special
case when r = |V |/2 [5, 16]. On the other hand, it is known to be NP-hard [11, 5, 12], and
Feige [7] showed a constant factor hardness based on an assumption of average case hardness of
random 3SAT.

In this paper we show that there is no PTAS for 2-Catalog Segmentation assuming that
NP does not have subexponential time probabilistic algorithms, i.e. NP 6⊆ ∩ε>0 BPTIME(2nε).
In order to prove our result we strengthen the analysis of the Quasi-Random PCP of Khot
[10], which we transform into an instance of 2-Catalog Segmentation. Our improved analysis of
the Quasi-Random PCP proves stronger properties of the PCP which might be useful in other
applications.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.447

1 Introduction

In Computer Science many important problems are known to be NP-hard, i.e. a polynomial
algorithm for any of these problems will imply P = NP. Many of these problems are in essence
optimization questions, for example the Max-3SAT problem of satisfying the maximum
number of clauses of a 3SAT instance. It follows from the NP-hardness of SAT that it is
NP-hard to compute the optimum of Max-3SAT as well. This, however, motivates the
study of efficient approximation algorithms for optimization problems. An algorithm (for a
minimization problem) is said to have an approximation factor of C > 1 if it computes a
solution which is at most factor C away from the optimum; and the definition is analogous
for a maximization problem so that the approximation factor C is always greater than 1. An
optimization problem is said to admit a Polynomial Time Approximation Scheme (PTAS)
if it has a 1 + ε approximation algorithm for every constant ε > 0, which runs in time
polynomial in the size of the problem. Several important problems have been found to admit
a PTAS, such as the classic Knapsack [15] and EuclideanTSP [2] problems.

For a long time it was an important open question as to whether Max-3SAT has a
PTAS, until the well known Probabilistically Checkable Proof (PCP) Theorem [4, 3] proved

∗ Supported in part by Venkatesan Guruswami’s Packard Fellowship

© Rishi Saket;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 447–458

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.447
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

448 Quasi-Random PCP and Hardness of 2-Catalog Segmentation

a constant factor hardness for Max-3SAT . Equivalently, the PCP Theorem shows the
existence of an efficient probabilistic verifier for NP : i.e. for any language L in NP, there is a
verifier which can efficiently decide whether x ∈ L, given a proof whose size is polynomial in
|x|. The verifier reads only a constant number of bits from the proof, uses only logarithmic (in
|x|) randomness, and for every correct statement there is a proof such that the verifier always
accepts it, while every proof for an incorrect statement is rejected with high probability. The
PCP Theorem, along with tools such as Fourier Analysis and Parallel Repetition [13], has led
to several important inapproximability results (many of them optimal) such as [9], [6], [8].

However, till some time ago, there remained some important problems such as Graph
Min-Bisection, Dense k-Subgraph and Bipartite Clique for which no hardness of
approximation was known. Feige [7] showed that these problems do not have a PTAS
under the assumption that random 3SAT instances are hard on average. Subsequently, in a
breakthrough work Khot [10] constructed the so called Quasi-Random PCP and used it to
rule out PTAS for the above mentioned problems under the standard assumption that NP
does not have subexponential time (randomized) algorithms, i.e. NP 6⊆ ∩ε>0 BPTIME(2nε).
More recently, the Quasi-Random PCP was used by [1] to rule out PTAS for the well known
Sparsest Cut problem.

In this paper we study the notorious question (as far as inapproximability results go) of 2-
CatalogSegmentation. In this problem, one is given a set of items and a set of customers,
where every customer is interested in a personal subset of items. Given a parameter r, the
goal is to construct two catalogs of r items each, and send exactly one of the two catalogs to
each customer. The payoff from any customer is the number of items on the catalog sent to
him that he is interested in, and the goal is to maximize the total payoff for all the customers.
2-CatalogSegmentation is one of the several variants of segmentation problems first
studied by Kleinberg, Papadimitriou and Raghavan [11]. Such problems arise naturally in
data mining for devising marketing strategies or production plans. It has also been used for
modeling certain coding theory problems [12].

The 2-CatalogSegmentation problem is known to be NP-hard [11], [5] and [12], while
there is a simple 2-approximation for it. Dodis, Guruswami and Khanna [5] studied the special
case when r = n/2, where n is the total number of items and gave a 1.76-approximation
algorithm for this special case, which was subsequently improved to 1.56 in [16]. Feige [7]
showed a constant factor hardness for 2-CatalogSegmentation under an assumption about
average case hardness of random 3SAT. However, under standard complexity assumptions, no
hardness of approximation was known till now for the 2-CatalogSegmentation problem.

In this paper we prove a hardness of approximation result for 2-CatalogSegmentation,
which is stated informally below.

I Theorem. There is no PTAS for the 2-CatalogSegmentation problem unless NP has
subexponential time randomized algorithms, i.e. unless NP ⊆ ∩ε>0 BPTIME(2nε).

In order to prove our result we strengthen the analysis of the Quasi-Random PCP of Khot
[10], which is then reduced to an instance of 2-CatalogSegmentation. Our improved
analysis of the Quasi-Random PCP proves stronger properties of the PCP which might be
useful in other applications.

In the next section we start with some preliminary definitions and statement of our
results. In Section 3 we shall prove the inapproximability of 2-CatalogSegmentation
based on the properties of the Quasi-Random PCP obtained by our strengthened analysis.
The subsequent sections are devoted to proving the desired properties of the Quasi-Random
PCP.

Rishi Saket 449

2 Preliminaries

We start with the formal definition of the 2-CatalogSegmentation problem.

I Definition 1. 2-CatalogSegmentation: Given a bipartite graph G = (U, V,E), and a
parameter r, the goal is to output two sets V1 and V2 such that V1, V2 ⊆ V and |V1|, |V2| = r

to maximize the following quantity.∑
u∈U

max {|E(u, V1)|, |E(u, V2)|} .

where E(u, Vi) is the set of edges incident on u with the other end in Vi, for i = 0, 1.

The vertices in U represent the customers and the ones in V represent the items, and an
edge (u, v) signifies that the customer u is interested in item v. One is required to construct
two catalogs V1 and V2 of r items each and send each customer one of the two catalogs. The
objective is to maximize the sum, over all customers, of the number of items each customer
receives in his catalog that he is interested in. Feige [7] proved a conditional inapproximability
result for 2-CatalogSegmentation under a hypothesis about the average case hardness of
3SAT, both of which are stated below.

I Hypothesis 2. (Random 3SAT Hypothesis) For every fixed ε > 0 and for ∆ a sufficiently
large constant independent of n, there is no polynomial time algorithm that on a random
3CNF formula with n variables and m = ∆n clauses, outputs YES if the formula is satisfiable,
and NO at least half the time if the formula is unsatisfiable.

I Theorem 3. (Feige [7]) Assuming Hypothesis 2, there is no polynomial time algorithm to
approximate 2-CatalogSegmentation within a factor of 1 + ε for some ε > 0.

Feige [7] also proved inapproximability results for other problems such as Graph Min-
Bisection, Dense k-subgraph and Bipartite Clique based on Hypothesis 2. As
mentioned in the previous section, Khot [10] subsequently constructed the Quasi-Random
PCP, which was used to rule out PTAS for Graph Min Bisection, Dense k-subgraph
and Bipartite Clique, under the standard assumption that NP has no subexponential
time algorithms. Before proceeding, we recall the formal statement of the Quasi-Random
PCP.

I Theorem 4. (Khot’s Quasi-Random PCP [10]) For every ε > 0, there exists an integer
d = O(1/ε log(1/ε)) such that the following holds : there is a PCP verifier for a SAT instance
of size n satisfying:
1. The proof for the verifier is of size 2O(nε).
2. The verifier reads 4d bits from the proof. Let Q be the 4d bits queried by the verifier in a

random test.
3. Every query bit is uniformly distributed over the proof, though different query bits within

Q are correlated.
4. (YES Case) Suppose that the SAT instance is satisfiable. Then there exists a correct

proof Π∗, such that if Π∗0 be the set of 0-bits in the proof Π∗, then,

Pr
Q

[Q ⊆ Π∗0] ≥ D 1
24d−1 ,

where D =
(
1−O

(1
d2

))
and the probability is taken over a random test of the verifier.

FSTTCS 2010

450 Quasi-Random PCP and Hardness of 2-Catalog Segmentation

5. (NO Case) Suppose that the SAT instance is unsatisfiable, and let Π′ be any set of half
the bits in the proof. Then, ∣∣∣∣Pr

Q
[Q ⊆ Π′]− 1

24d

∣∣∣∣ ≤ 1
240d

.

As one can see, in the NO case the PCP exhibits a quasi-randomness property, in the sense
that the probability is close to what is expected if each query bit were chosen uniformly at
random in the proof. However, the above statement does not seem strong enough to prove
an inapproximability for the 2-CatalogSegmentation problem. In our results we prove a
strengthened statement for the Quasi-Random PCP and apply it to prove the desired result
for 2-CatalogSegmentation. In the next few paragraphs we formally state the results of
this paper.

2.1 Our Results
For the purpose of convenience, we let the query Q of the PCP verifier be a tuple of 4d bits
in the proof, i.e. Q = (q1, q2, . . . , q4d). The verifier queries the bits qi (1 ≤ i ≤ 4d) as part of
the query Q. For a given proof Π, let val(Π, q) denote the 0 or 1 value of the proof Π at the
bit q. We prove the following strengthened theorem regarding the Quasi-Random PCP.

I Theorem 5. For every ε > 0, there exists an integer d = O(1/ε log(1/ε)) such that the
following holds : there is a PCP verifier for a SAT instance of size n satisfying the following
properties.
1. The proof for the verifier is of size 2O(nε).
2. The verifier reads 4d bits from the proof. Let Q = (q1, . . . q4d) be the tuple of 4d bits

queried by the verifier.
3. Every query bit qi is uniformly distributed over the proof, though different query bits

within Q are correlated.
4. (YES Case) Suppose that the SAT instance is satisfiable. Then there exists a correct proof

Π∗, which is 1 on exactly half the fraction of the bits and satisfies the following property.
Fix any 4d boolean values r1, r2, . . . , r4d ∈ {0, 1}, such that

∑4d
i=1 ri = 0 (mod 2). Then,

Pr
Q

[4d∧
i=1

(val(Π∗, qi) = ri)
]
≥ D 1

24d−1 ,

where D =
(
1−O

(1
d2

))
is independent of r1, . . . , r4d, and the probability is taken over a

random test of the verifier.
5. (NO Case) Suppose that the SAT instance is unsatisfiable, and let Π be any proof that is

1 on exactly half fraction of the bits. Fix any 4d boolean values s1, s2, . . . , s4d ∈ {0, 1}.
Then, ∣∣∣∣∣Pr

Q

[4d∧
i=1

(val(Π, qi) = si)
]
− 1

24d

∣∣∣∣∣ ≤ 1
240d

.

Note that in the above statement, we prove a stronger property of the Quasi-Random PCP
in the YES case, which is that the distribution of the 4d bit string read in the query Q is
close to that of a uniform distribution over all 4d bit strings with an even number of 1s.
This implies the property in the YES case proved in Theorem 4. In some sense we prove a
partial quasi-randomness property even in the YES case, except that it is with respect to
the uniform distribution over all 4d bit strings with even number of 1s. The property that
we prove in the NO case is also a similar generalization of the corresponding property in

Rishi Saket 451

Theorem 4. Essentially, the distribution of the 4d bit string read by the query Q is close to
what is obtained by picking 4d random bits from the proof given in the NO case.

Using the above strengthened statement of the Quasi-Random PCP we prove the following
inapproximability of the 2-CatalogSegmentation problem.

I Theorem 6. Let ε > 0 be an arbitrarily small constant. Assume that SAT has no
algorithm in BPTIME(2nε). Then there is no polynomial time algorithm for 2-Catal-
ogSegmentation that achieves an approximation of 1 + Ω(1

d), where d = O(1/ε log(1/ε)).
In particular, the 2-CatalogSegmentation problem does not admit a PTAS unless NP
⊆ ∩ε>0 BPTIME(2nε).

A sketch of the proof of Theorem 5 is given in Sections 4, 5 and 6. It requires describing,
at least to some extent, the construction of the Quasi-Random PCP of [10]. We start
with the description of HomAlgCSP problem in Section 4. This is the starting point for
constructing an Outer Verifier in Section 5 and the final Inner Verifier in Section 5.2. The
construction of these verifiers is same as in [10] except for some convenient notational changes
and appropriate selection of parameters. Section 6 gives a brief sketch of analysis of the PCP,
a key new ingredient in which is Lemma 11 that is used along with the techniques of [10] to
prove the strengthened property in the YES case.

In the next section we prove Theorem 6 assuming Theorem 5. We reduce from the
Quasi-Random PCP to an instance of 2-CatalogSegmentation. The reduction is similar
to the one used to prove Theorem 3 in [7].

3 Reduction to 2-CatalogSegmentation and proof of Theorem 6

In this section we describe the reduction to 2-CatalogSegmentation from the Quasi-
Random PCP given by Theorem 5. In the following construction, U and V will be the sets
of customers and items respectively. There is an edge between a customer and an item if the
customer is interested in that item. The reduction is as follows.
1. Let the set of customers U be the set of all the bits in the proof of the PCP.
2. For every tuple of 4d bits Q queried by the PCP verifier we have an item. We replicate

every item (tuple of 4d bits) proportional to the probability it is queried by the verifier.
Let V be the set of all items.

3. A bit in U is connected to all the tuples Q in V that contain it.
4. Set r = D|V | 1

24d−1 to be the catalog size. Here D =
(
1−O

(1
d2

))
as in the YES case of

Theorem 5.
The analysis is as follows.
YES Case. Let Π∗ be the correct proof to the PCP verifier given by Theorem 5. Construct
two catalogs V1, V2 ⊆ V where,

V1 ⊆ {Q | all bits of Q are set to 0 in Π∗}, (1)
V2 ⊆ {Q | all bits of Q are set to 1 in Π∗} (2)

Setting ri = 0 for i = 1, . . . , 4d in the property of the YES case in Theorem 5, we can ensure
that,

|V1| = D|V | 1
24d−1 .

Similarly, by setting ri = 1 for i = 1, . . . , 4d we can ensure that,

|V2| = D|V | 1
24d−1 .

FSTTCS 2010

452 Quasi-Random PCP and Hardness of 2-Catalog Segmentation

We note that both V1 and V2 are disjoint subsets of V .
Now send catalog V1 to the customers corresponding to the bits set to 0 in Π∗ and V2 to

the complement, i.e. customers corresponding to the bits set to 1 in Π∗. Clearly, each item
in V1 and V2 reaches 4d customers interested in it. Therefore the value of the solution is,

4d|V |2D
(

1
24d−1

)
= 8d|V |

(
1−O

(
1
d2

))(
1

24d−1

)
(3)

NO Case. For convenience we allow the two catalogs to be of size |V | 1
24d−1 , as this can

only increase the payoff. In the NO Case, one of the catalogs, call it V ′ reaches at most half
of the customers. Clearly, the payoff obtained by this catalog only increases if we enlarge
the set of customers to which V ′ is sent, without changing the other catalog and the set of
customers to which it is sent. Therefore, we may assume that V ′ is sent to exactly half of
the customers. Let the proof Π be constructed by setting the bits corresponding to these
customers to be 1 and the rest to 0. From the NO case of Theorem 5, by setting si = 1 for
i = 1, . . . , 4d, we obtain that at most 1

24d + 1
240d fraction of all the tuples Q queried have all

the 4d bits set to 1. Therefore, there are at most
(1

24d + 1
240d

)
|V | items in V ′ that reach 4d

customers interested in them. Therefore, at least
(1

24d − 1
240d

)
|V | items in V ′ reach at most

4d− 1 customers interested in them. The other catalog has a payoff of at most 4d|V | 1
24d−1 .

Hence, the value of any solution in the NO case is at most,

|V |
(

4d
(

1
24d−1

)
+ 4d

(
1

24d
+ 1

240d

)
+ (4d− 1)

(
1

24d
− 1

240d

))
≤ |V |

(
4d
(

1
24d−1

)
+ 4d

(
3
2 ·

1
24d

)
+ (4d− 1)

(
1
2 ·

1
24d

))
= 8d|V |

(
1− 1

32d

)(
1

24d−1

)
. (4)

Hardness Factor. From Equations (3) and (4) we obtain that the ratio of the value of the
solution in the YES case to the best solution in the NO case is at least,(

1−O
(1

d2

))(
1− 1

32d

) = 1 + Ω
(

1
d

)
(5)

Therefore, if 2-CatalogSegmentation is approximable within factor 1 + Ω
(1

d

)
, then NP

⊆ BPTIME(2nε), where d = O(1/ε log 1/ε). This rules out PTAS for 2-CatalogSegment-
ation unless NP ⊆ ∩ε>0BPTIME(2nε). This proves Theorem 6.

4 Homogeneous Algebraic CSP

We define the HomAlgCSP problem which is the starting point of the reduction in this
paper. This definition is a (slightly modified) restatement of Definition 3.1 of [10].

IDefinition 7. Given parameters k, d,m and a field F, let HomAlgCSP instanceA(k, d,m,F, C)
be the following problem (think of k as a fixed integer like 21, and d as a large constant
integer) :
1. C is a system of constraints on functions f : Fm 7→ F where every constraint is on values

of f on k different points and is given by a conjunction of homogeneous linear constraints
on those k values. A typical constraint C ∈ C looks like

Rishi Saket 453

k∑
i=1

γijf(pi) = 0 for j = 1, 2, . . . where pi ∈ Fm and γij ∈ F.

We denote a constraint C by the set of points {pi}k
i=1, while the γij ’s will be implicit.

2. C has |F|O(m) constraints.
The goal is to find a m-variate polynomial f , not identically zero, so as to maximize the
fraction of constraints satisfied. Let OPT (A) denote the maximum fraction of constraints
satisfied by any such polynomial of degree at most d.

5 Construction of the PCP

This section describes construction given in [10] of a PCP Outer Verifier and Inner Verifiers
for a HomAlgCSP instance A(k = 21, d∗,m,F, C) based on a variant of the Low-Degree
test of Rubinfeld and Sudan [14].

The Outer Verifier is given the polynomial f as a table of values at each point in Fm. It
picks a constraint in C uniformly at random and checks whether it is satisfied. Before the
description we need the definition of a curve.

I Definition 8. A curve L in Fm is a function L : F 7→ Fm, where L(t) = (a1(t), . . . , am(t)).
It is a degree d curve if each of the coordinate functions ai (1 ≤ i ≤ m) is degree d (univariate)
polynomial.

A line is a curve of degree 1.

Let C({pi}k
i=1) ∈ C, denote the constraint that the Verifier chooses at random to check.

Let t1, t2, . . . , tk+3 be distinct field elements in F which we fix for the rest of the paper. For
a, b, c ∈ Fm, let L = La,b,c be the unique degree k + 2 curve that passes through the points
{pi}k

i=1, a, b, c. More precisely,

L(ti) = pi, 1 ≤ i ≤ k, L(tk+1) = a, L(tk+2) = b, L(tk+3) = c.

In brief the strategy of the Outer Verifier is as follows. Suppose f is a degree d∗
multivariate polynomial over the vector space Fm. Clearly, its restriction to the curve
L(t) = La,b,c(t) is a degree d− 1 := (k + 2)d∗ univariate polynomial in t. This polynomial,
denoted by f |L, can be interpolated from any d values of f on the curve. This is precisely
what the verifier does: it picks d+ 1 points on the curve L, interpolates f |L from the first d
points and verifies that the value of f and f |L is the same on the last point. In addition, it
checks that the values of f |L at the points {pi}k

i=1 satisfies the constraint C. Note that the
values t1, . . . , tk+3 on which L depends, are fixed. This is combined with the line-point Low
Degree Test. Given a line `, the restriction of f , denoted by f |` is a degree d∗ univariate
polynomial, but we allow it degree up to d− 2, and interpolate it using the values of f at
d− 1 random points on `.

We next give the detailed description of the Modified Outer Verifier, which for technical
reasons, reads more values from the proof and makes additional tests, while building upon
the Outer Verifier. Also, it abstracts out the tasks of interpolation into multiplication by
an invertible matrix, and checking the homogeneous constraints of the Outer Verifier into
checking orthogonality with a certain subspace.

FSTTCS 2010

454 Quasi-Random PCP and Hardness of 2-Catalog Segmentation

5.1 Modified Outer Verifier
We first observe that F is an extension of F[2]. Therefore, we can represent the elements of F
as bit strings of a length l = log |F|. Moreover, the representation can be chosen such that
addition over F and multiplication by a constant in F are homogeneous linear operations on
these bit strings. The Modified Outer Verifier is given a table of values f(v) (in the form of l
bit strings) for every point v ∈ Fm and it executes the following steps:

Steps of the Modified Outer Verifier

1. Pick a constraint C = {pi}k
i=1 ∈ C at random.

2. Pick a random line ` (in Fm) and pick random points v1, . . . , vd−1, vd on the line.
3. Pick t ∈ F \ {t1, . . . , tk+3} at random, points a, b at random from Fm and let L be the

unique degree k + 2 curve L = La,b,c such that, L(ti) = pi, 1 ≤ i ≤ k, L(tk+1) = a,
L(tk+2) = b, and L(t) = vd so that c is automatically defined to L(tk+3).

4. Pick random points vd+1, . . . , v2d on the curve L.
5. Pick additional random points u1 . . . ud on the line ` and ud+1, . . . , u2d from the curve

L. (We assume that all the points chosen on the line ` and curve L are distinct, which
happens w.h.p)

6. Let T2ld×2ld be an appropriate invertible matrix over F[2] and H be an appropriate
subspace of F[2]2ld. Both depend only on the choice of the points {vi}2d

i=1 and {uj}2d
j=1.

Remark 1 explains how T and H are chosen.
7. Read the values of the function f from the table at the points v1, . . . , v2d and u1, . . . , u2d.

Since all the elements of the field are represented by bit strings, let
x = f(v1) ◦ f(v2) ◦ · · · ◦ f(v2d) (6)
y = f(u1) ◦ f(u2) ◦ · · · ◦ f(u2d) (7)

where ◦ represents concatenation of strings.
8. Accept iff,

x 6= 0, x = Ty and h · x = 0 ∀ h ∈ H (i.e. x ⊥ H). (8)

I Remark 1. The subspace H is chosen such that the constraint h · x = 0 ∀ h ∈ H ensures
that the values at the field elements {ti}k

i=1 of the degree d− 1 univariate polynomial interpo-
lated from f(vd+1) . . . f(v2d), (which are supposed to be the values of f at {pi}k

i=1) satisfy
the homogeneous linear constraints of C. In addition, H is chosen such that the polyno-
mial interpolated from the values f(v1) . . . f(vd−1) agrees with the degree d− 1 polynomial
interpolated from f(vd+1) . . . f(v2d) at the point vd, where both evaluate to f(vd).

The invertible matrix T is chosen such that the constraint x = Ty ensures the following
conditions are satisfied:
1. The degree d−1 polynomial interpolated from the values f(v1) . . . f(vd) is the same as the

polynomial interpolated from the values f(u1) . . . f(ud). (This polynomial will actually be
of degree d− 2 due to the constraint enforced by the subspace H).

2. The degree d − 1 polynomial interpolated from f(vd+1) . . . f(v2d) is the same as the
polynomial interpolated from the values f(ud+1) . . . f(u2d).

The condition x 6= 0 essentially ensures that f is not a zero polynomial.

5.2 Inner Verifier
We now construct the Inner Verifier which is essentially identical to the one constructed in
[10], except for some notational complications that we need to introduce. It expects, for

Rishi Saket 455

every point v ∈ Fm, the Hadamard Code of the string f(v) ∈ {0, 1}l (refer to Appendix A.3
of [10] for an overview). The following are the steps executed by the verifier.

Steps of the Inner Verfier

1. Pick a constraint C ∈ C and the points v1, . . . , v2d and u1, . . . , u2d as in steps 1 − 5 of
the Modified Outer Verifier.

2. Let T2ld×2ld and H be the matrix and subspace respectively chosen as in step 7 of the
Modified Outer Verifier.

3. Pick a random string z ∈ F2ld and a random h ∈ H. Write, z = z1 ◦ z2 ◦ · · · ◦ z2d,
h = h1 ◦ h2 ◦ · · · ◦ h2d, and zT = w1 ◦ w2 ◦ · · · ◦ w2d.

4. Let A1, . . . , A2d and B1, . . . , B2d be the (supposed) Hadamard Codes of f(v1), . . . , f(v2d)
and
f(u1), . . . , f(u2d) respectively, given by the proof Π.

5. Let Q be defined as the tuple of 4d ‘positions’ queried by the Inner Verifier. It is formally
set as: Q = (q1, . . . , q2d, q2d+1 . . . , q4d), where qi is the bit read at the position zi ⊕ hi of
the Hadamard Code Ai for 1 ≤ i ≤ 2d. Similarly, qj+2d is the bit read at position wj of
the Hadamard Code Bj for 1 ≤ j ≤ 2d.

6. Let val(qi,Π) ∈ {0, 1}4d be the value of the ith bit in the tuple Q given by the proof Π.
From the construction of Π and Q we have: val(qi,Π) = Ai(zi ⊕ hi), 1 ≤ i ≤ 2d, and
val(qj+2d,Π) = Bj(wj), 1 ≤ j ≤ 2d.

6. Accept iff ⊕4d
i=1val(qi,Π) = 0.

For our eventual application, we are in fact not interested in the acceptance probabilities of
the Inner Verifier in the YES and NO cases. Instead, we wish to study the distribution of
the number of 1s and 0s in the tuple of 4d bits Q.

6 Sketch of Analysis

We begin this sketch by first stating the two key lemmas regarding the behaviour of the
Inner Verifier depending on the instance A of HomAlgCSP.

The first lemma states that if the instance A of HomAlgCSP has a very good optimum,
then there is a proof to the Inner Verifier such that the distribution of the 4d bits of Q, read
by the verifier from the proof, is close to the uniform distribution over 4d bit strings with
even number of 1s.

I Lemma 9. Let r1, . . . , r4d ∈ {0, 1} be any fixed boolean values such that
∑4d

i=1 ri =
0 (mod 2). Suppose the A is an instance of HomAlgCSP with optimum OPT (A), given
by the polynomial f . Let Π∗ be the proof (for the Inner Verifier) constructed taking the
Hadamard Code for every value of f . Let Q = (q1, . . . , q4d) be the (random) tuple of length
4d bits queried, as described in the steps of the Inner Verifier. Similarly, let val(qi,Π∗) be
the value in the proof Π∗ at the ith bit in Q. Then,

Pr
Q

[4d∧
i=1

(val(qi,Π∗) = ri)
]
≥ OPT (A) · 1

24d−1 , (9)

where the probability is taken over the random test of the Inner Verifier.

Note that in the above lemma, the proof Π∗ is balanced i.e. it is 1 on half fraction of the
bits. This is because Hadamard Codes of non-zero values are balanced and since f is not
identically zero and has degree at most d∗, it is non-zero on all except a negligibly small
fraction of points in Fm.

FSTTCS 2010

456 Quasi-Random PCP and Hardness of 2-Catalog Segmentation

The next lemma states that if there is a proof to the Inner Verifier such that if the
distribution of the 4d bits of Q (read by the verifier from the proof) deviates significantly
from the uniform distribution over 4d bit strings from the proof, there is a constant degree
polynomial that satisfies a significant fraction of constraints of A.

I Lemma 10. Let A be an instance of HomAlgCSP and suppose Π is a proof to the Inner
Verifier for A, with the property that Π is 1 on exactly half fraction of the total bits. As
before, let Q = (q1, . . . , q4d) be the tuple of 4d bits queried by the Inner Verifier, and val(qi,Π)
be the value in the proof Π at the ith bit of the tuple Q. Let s1, . . . , s4d ∈ {0, 1} be any 4d
boolean values. If,∣∣∣∣∣Pr

Q

[4d∧
i=1

(val(qi,Π) = ri)
]
− 1

24d

∣∣∣∣∣ ≥ δ ≥ 0 (10)

then there is a polynomial of degree at most 50d∗, not identically zero, which satisfies δC′

fraction of the constraints of A, where C ′ is an absolute constant.

The proof of Lemma 10 follows from Theorem 7.6 of [10] which bounds the acceptance
probability of the Modified Outer Verifier. The proof of Theorem 5 follows from the above
two lemmas combined with Theorem 3.4 of [10] which proves the inapproximability of
HomAlgCSP. The various parameters need to be chosen appropriately and the analysis
follows the same scheme as given in Section 10 of [10].

Our main contribution is to strengthen the analysis in the YES case of Theorem 5, which
is done by proving a more general Lemma 9 as compared to Lemma 10.2 of [10]. The main
ingredient is the following lemma which we state and prove below. Before we do so, let us
recall some notation.

We shall consider a test of the Modified Outer Verifier. Let T be the 2ld× 2ld invertible
matrix over F[2] and H be the appropriate subspace of F[2]2ld constructed by the Modified
Outer Verifier depending on the (randomized) choice of the constraint C, line `, curve L and
the points v1, . . . , v2d, u1, . . . , u2d, as explained in Remark 1. Note that the values queried
by the Modified Outer Verifier are represented by l-bit strings over F[2].

I Lemma 11. Let C be a constraint in C that is satisfied by the polynomial f (of degree at most
d∗) given by Lemma 9. Let α, β ∈ F[2]2ld such that α := α1 ◦ · · · ◦ α2d and β := β1 ◦ · · · ◦ β2d

where αi, βj ∈ F[2]l for 1 ≤ i, j ≤ 2d. Also, let property P1 for α and β be defined as follows.
P1: Each αi is either 0 or f(vi) for 1 ≤ i ≤ 2d, and each βj is either 0 or f(uj) for

1 ≤ j ≤ 2d.

Then with probability 1 − O(d2/|F|) over the choice of the line `, curve L, and the points
{vi}2d

i=1 and {uj}2d
j=1, the following holds:

The only two solutions to α ⊥ H, β = T−1α satisfying property P1 are,

αi = βj = 0 ∀1 ≤ i, j ≤ 2d, (11)

and,

αi = f(vi), βj = f(uj) ∀1 ≤ i, j ≤ 2d. (12)

Proof. Firstly, we have that with probability at least 1 − O(d2/|F|), none of the values
{f(vi)}2d

i=1 and {f(uj)}2d
j=1 are 0. This is because each of the 4d points are uniformly

distributed over Fm and since f is not identically zero and of degree at most d∗ ≤ d, by

Rishi Saket 457

Schwartz-Zippel Lemma the probability that any of the 4d points is a root of f is at most
4d ·O(d/|F|) = O(d2/|F|). Since this probability is negligible, we can assume for the rest of
the argument that none of the values {f(vi)}2d

i=1 and {f(uj)}2d
j=1 are 0.

Next, from the construction of the matrix T (refer to Remark 1) we have that β = T−1α

implies the following two properties.
P2: The polynomial interpolated by the values αi at point vi for 1 ≤ i ≤ d is identical to

the one interpolated by the values βj at point uj for 1 ≤ j ≤ d.
P3: The polynomial interpolated by the values αi at point vi for d+ 1 ≤ i ≤ 2d is identical

to the one interpolated by the values βj at point uj for d+ 1 ≤ j ≤ 2d.
Also, from the construction of the subspace H (refer to Remark 1) we have that α ⊥ H

implies the following property.
P4: The polynomial interpolated from the values αi at points vi (1 ≤ i ≤ d − 1) agrees

with the polynomial interpolated from the values αj at points vj (d+ 1 ≤ j ≤ 2d) at
the point vd where both evaluate to αd.

Clearly the solution αi = βj = 0 for all 1 ≤ i, j ≤ 2d is a valid solution to α ⊥ H,α = T−1β

and satisfying property P1. Also, since f is a degree d∗ polynomial that satisfies the constraint
C, the solution αi = f(vi) and βj = f(uj) for all 1 ≤ i, j ≤ 2d is a valid solution as well.

Suppose that there is another solution α, β, different from the above two, satisfying the
properties P1, P2, P3 and P4. Then, at least one of the following eight cases must happen,
all of which we show have a low probability of occurring.
Case 1. αi = 0 for 1 ≤ i ≤ d and αj = f(vj) for d + 1 ≤ j ≤ 2d. This along with

property P4 implies that the univariate f ′ polynomial interpolated from the values
αj = f(vj) at points vj for d + 1 ≤ j ≤ 2d evaluates to αd = 0 at the point vd.
Clearly, since f ′ is unique, it has to evaluate to f |L(vd) = f(vd) at point vd. This
implies that f(vd) = 0 which contradicts our earlier assumption that all the values
f(vi) and f(uj) (1 ≤ i, j ≤ 2d) are non zero.

Case 2. αi = f(vi) for 1 ≤ i ≤ d and αj = 0 for d + 1 ≤ j ≤ 2d. Again, property P4
implies that zero polynomial interpolated from the values αj = 0 at points vj for
d+ 1 ≤ j ≤ 2d, evaluates to αd = f(vd) at point vd. This means that f(vd) = 0,
which is a contradiction to our assumption.

Case 3. βi = 0 for 1 ≤ i ≤ d and βj = f(uj) for d+ 1 ≤ j ≤ 2d. From properties P2 and
P3, this implies that αi = 0 for 1 ≤ i ≤ d and αj = f(vj) for d+ 1 ≤ j ≤ 2d. Thus
this reduces to Case 1.

Case 4. βi = f(ui) for 1 ≤ i ≤ d and βj = 0 for d+ 1 ≤ j ≤ 2d. Again, properties P2 and
P3 imply that αi = f(vi) for 1 ≤ i ≤ d and αj = 0 for d+ 1 ≤ j ≤ 2d. Thus this
reduces to Case 2.

Case 5. There exist 1 ≤ i′, j′ ≤ d such that αi′ = f(vi′) and βj′ = 0. Let f1 be the
univariate polynomial interpolated by the values αi at point vi for 1 ≤ i ≤ d. This
polynomial is not identically zero since αi′ = f(vi′) 6= 0 (by our initial assumption).
Also the degree of the polynomial is at most d. Property P2 implies that f1 takes
the value βj′ = 0 at the point uj′ . However, since the points {uj}d

j=1 are chosen
uniformly at random on the line ` (refer to Section 5.1), the probability that one
of them is a root of f1 is at most O(d2/|F|). Therefore, this case occurs with
probability at most O(d2/|F|).

Case 6. There exist d+ 1 ≤ i′, j′ ≤ 2d such that αi′ = f(vi′) and βj′ = 0. Let f2 be the
univariate polynomial interpolated by the values αi at point vi for d+ 1 ≤ i ≤ 2d.
This polynomial is not identically zero since αi′ = f(vi′) 6= 0. Also the degree of
the polynomial is at most d. Property P3 implies that f2 takes the value βj′ = 0

FSTTCS 2010

458 Quasi-Random PCP and Hardness of 2-Catalog Segmentation

at the point uj′ . However, since the points {uj}2d
j=d+1 are chosen uniformly at

random on the curve L, the probability that one of them is a root of f2 is at most
O(d2/|F|). Therefore, this case also occurs with probability at most O(d2/|F|).

Case 7. There exist 1 ≤ i′, j′ ≤ d such that αi′ = 0 and βj′ = f(uj′). This is analogous to
Case 5 and omitting the analysis we conclude that it occurs with probability at
most O(d2/|F|).

Case 8. There exist d + 1 ≤ i′, j′ ≤ 2d such that αi′ = 0 and βj′ = f(uj′). This is
analogous to Case 6 and we omit the analysis to conclude that this case occurs
with probability at most O(d2/|F|) as well.

Combining the above completes the proof of the lemma. J

References
1 C. Ambühl, M. Mastrolilli, and O. Svensson. Inapproximability results for sparsest cut,

optimal linear arrangement, and precedence constrained scheduling. In Proc. 48th IEEE
FOCS, pages 329–337, 2007.

2 S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and
other geometric problems. J. ACM, 45(5):753–782, 1998.

3 S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the
hardness of approximation problems. J. ACM, 45(3):501–555, 1998.

4 S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP. J.
ACM, 45(1):70–122, 1998.

5 Y. Dodis, V. Guruswami, and S. Khanna. The 2-catalog segmentation problem. In SODA,
pages 897–898, 1999.

6 U. Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.
7 U. Feige. Relations between average case complexity and approximation complexity. In

Proc. 34th ACM STOC, pages 534–543, 2002.
8 J. Håstad. Clique is hard to approximate within n1-epsilon. In Proc. 37th IEEE FOCS,

pages 627–636, 1996.
9 J. Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.

10 S. Khot. Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipartite clique.
SIAM J. Comput., 36(4):1025–1071, 2006.

11 J. Kleinberg, C. Papadimitriou, and P. Raghavan. A microeconomic view of data mining.
Data Min. Knowl. Discov., 2(4):311–324, 1998.

12 M. Mitzenmacher. On the hardness of finding optimal multiple preset dictionaries. IEEE
Transactions on Information Theory, 50(7):1536–1539, 2004.

13 R. Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763–803, 1998.
14 R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications to

program testing. SIAM J. Comput., 25(2):252–271, 1996.
15 S. Sahni. Approximate algorithms for the 0/1 knapsack problem. J. ACM, 22(1):115–124,

1975.
16 Y. Yubo and X. Chengxian. Improved randomized algorithm for the equivalent 2-catalog

segmentation problem. Numerical Mathematics, 14(2):128–135, 2005.

Determining the Winner of a Dodgson
Election is Hard∗

Michael Fellows1, Bart M. P. Jansen2, Daniel Lokshtanov3, Frances
A. Rosamond1, and Saket Saurabh4

1 Parameterized Complexity Research Unit, University of Newcastle
Callaghan, NSW Australia
{Michael.Fellows|Frances.Rosamond}@newcastle.edu.au

2 Department of Information and Computing Sciences, Utrecht University
P.O. Box 80.089, 3508 TB, Utrecht, The Netherlands
bart@cs.uu.nl

3 Department of Informatics, University of Bergen
N-5020 Bergen, Norway
daniello@ii.uib.no

4 Institute of Mathematical Sciences
CIT Campus, Taramani, 600 113 Chennai, India
saket@imsc.res.in

Abstract
Computing the Dodgson Score of a candidate in an election is a hard computational problem,
which has been analyzed using classical and parameterized analysis. In this paper we resolve
two open problems regarding the parameterized complexity of Dodgson Score. We show that
Dodgson Score parameterized by the target score value k does not have a polynomial kernel
unless the polynomial hierarchy collapses to the third level; this complements a result of Fellows,
Rosamond and Slinko who obtain a non-trivial kernel of exponential size for a generalization of
this problem. We also prove that Dodgson Score parameterized by the number n of votes is
hard for W [1].

1998 ACM Subject Classification F.2.2.

Keywords and phrases Dodgson Score, Parameterized Complexity, Kernelization Lower Bounds

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.459

1 Introduction

Complexity issues play an important role in the relatively new area of computational social
choice, especially in the area of election systems, which has applications in finance and
economics (agreement on the winner of an auction), internet search engines (agreement on
the order of web pages presented), web mining (consensus is the notion of “public opinion”),
mechanism design (agreement by participants in large networks involving autonomous software
agents), and computational biology (finding consensus in feature selection), among many
others [1, 14, 15]. The involvement of increasingly larger numbers of participants and the
increasing sophistication of the information objects of debate, have made election systems a
vital area of computer science research.

∗ Bart Jansen was supported by the Netherlands Organisation for Scientific Research (NWO), project
“KERNELS: Combinatorial Analysis of Data Reduction”.

© Michael Fellows, Bart M. P. Jansen, Daniel Lokshtanov, Frances A. Rosamond and Saket Saurabh;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 459–468

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.459
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

460 Determining the Winner of a Dodgson Election is Hard

In this paper we study the hard election problem Dodgson Score. We consider
an election in which we allow each voter to specify a complete preference ranking of the
candidates: each vote is a strict total order on the set of candidates, and a vote in an election
with three candidates could be represented as a < b < c stating that candidate a is least
preferred and c is most preferred. Given the votes that were cast in an election, we can
compare the relative ranking of two candidates a, b as follows: candidate a beats candidate b

in pairwise comparison if a is ranked above b more often than below b. A candidate who beats
every other candidate in pairwise comparison is said to be a Condorcet winner. If such a
winner exists then it must be unique, and it wins the election. But unfortunately a Condorcet
winner may not always exist, as is shown by the following election with three candidates and
three voters: a < b < c, b < c < a, c < a < b. This situation has a cyclic preference structure:
candidate a beats b, candidate b beats c and c beats a (in pairwise comparison), so there is
no candidate who beats all others. In 1876 the mathematician Charles Dodgson formulated
a rule that defines the winner of an election even if there is no Condorcet winner [11, 6].
The idea is to measure how close a candidate is to being a Condorcet winner; the candidate
who is closest then wins the election. This can be formalized as follows. The Dodgson score
of a candidate c in an election, is defined to be the minimum number of swaps of adjacent
candidates in the voter’s preference orders that have to be made to ensure that c becomes a
Condorcet winner. The candidates that have the minimum Dodgson score are the winners
of the election. Dodgson’s rule is not the only voting scheme resulting from Condorcet’s
criterion; similar schemes have been suggested by Young and Kemeny [22].

Unfortunately, Dodgson Score, Young Score and Kemeny Score and many other
election problems are NP-hard or worse, and finding an “approximate” winner of an election
is hard [10] and usually not appropriate. Thus, election problems are well-suited for parame-
terized analysis because it offers an exact result, taking advantage of natural parameters to
the problems, such as the number of votes that were cast, the number of candidates, or the
score of a candidate.

1.1 Earlier Work
Bartholdi et al. initiated the study of the complexity of the Dodgson voting scheme in 1989 [2],
when they showed that determining the winner of a Dodgson election is NP-hard. They also
proved that computing the Dodgson or Kemeny score of a given candidate is NP-complete.
The complexity of the winner problem for Dodgson elections was later established exactly;
Hemaspaandra et al. [20] showed in 1997 that this problem is complete for PNP

|| (“parallel
access to NP”).

McCabe-Dansted [21] was the first to investigate Dodgson Score using the framework
of parameterized complexity, and observed that the ILP formulation of the problem from
Bartholdi et al. [2] implies fixed-parameter tractability for the parameterization by the
number m of candidates in the election. The parameterization by the target score k was
first studied in 2007, when Fellows and Rosamond showed that k-Dodgson Score is in
FPT. The group of Betzler et al. [4, 5] independently reached the same conclusion and
obtained a dynamic programming algorithm with running time O(2k · nk + nm) where n is
the number of votes and m the number of candidates. Fellows, Rosamond and Slinko [16]
considered a generalization of Dodgson’s rule where each possible preference ranking specifies
a cost for every swap that can be made; a candidate wins the election if the minimum total
cost of making that candidate a Condorcet winner is not higher than the minimum cost of
making any other candidate a Condorcet winner. They obtained a kernel of exponential size
O(eO(k2)) for this k-Generalized Dodgson Score problem.

M. Fellows, B. M. P. Jansen, D. Lokshtanov, F. A. Rosamond and S. Saurabh 461

The election problems Kemeny Score and Young Score have also been studied
from the parameterized perspective. The Young Score problem is W [2]-complete when
parameterized by the target score, and the same holds when using the dual of this parameter [4,
5]. The Kemeny Score problem admits several natural parameterizations that lead to
fixed-parameter tractability. Results have been found for parameters ‘number of votes’,
‘average Kendall-Tau distance’, ‘maximum range (or maximum Kendall-Tau distance)’ and
combined parameters of ‘number of votes and average KT-distance’, and ‘number of votes
and maximum KT-distance’ [3].

1.2 Our Results
The parameterized analysis of Dodgson Score by Betzler et al. [5] left two open problems
unanswered: 1) does k-Dodgson Score admit a polynomial kernel when parameterized by
the target score, and 2) is the problem fixed-parameter tractable when parameterized by the
number of votes? We answer both questions in this paper. We use the framework developed
by Bodlaender et al. [7] in combination with a theorem by Fortnow and Santhanam [18]
to prove that there is no polynomial kernel for k-Dodgson Score unless the polynomial
hierarchy collapses to the third level (denoted as PH = Σp

3), and further [9]. Our second
result is a non-trivial reduction establishing that k-Dodgson Score parameterized by the
number of votes is hard for W [1].

2 Preliminaries

In this section we formalize some notions that were introduced in Section 1. An election is a
tuple (V, C) where V is a multiset of votes, and C is a set of candidates. A vote v ∈ V is
a preference list on the candidates, i.e. a strict total ordering. For candidates a, b ∈ C the
value na,b counts the number of votes in V that rank a above b. A Condorcet winner is a
candidate x ∈ C such that nx,y > ny,x for all y ∈ C \ {x}. To swap candidate x upwards in
a vote v ∈ V means to exchange the positions of x and the candidate immediately above
it in the ranking; an upward swap operation is undefined if x is already the most preferred
candidate in the vote. For example, if x < z < w < y is a vote, then swapping x upwards
once results in the vote z < x < w < y. We say that the candidate x gains a vote on
candidate z through this swap, since this swap increases nx,z by one and decreases nz,x by
one. The Dodgson score of a candidate x ∈ C is the minimum number of swaps needed to
make x a Condorcet winner. It is not hard to verify that if x can be made a Condorcet winner
by k swaps, then this can also be done by k swaps that only move candidate x upwards.
Consult [21, Lemma 4.0.5] for a formal proof of this claim. Therefore we may also define the
Dodgson score as the minimum number of upwards swaps of x that are required to make x a
Condorcet winner.

The theory of parameterized complexity [13] offers a toolkit for the theoretical analysis
of the structure of NP-hard problems. A parameterized decision problem is a language
L ⊆ Σ∗ ×N, where an instance (x, k) is composed of the classical input x and the parameter
value k that describes some property of x. A parameterized problem L is in the class
(strongly uniform) FPT (for Fixed-Parameter Tractable) if there is an algorithm that
decides L in f(k)p(|x|) time, where p is a polynomial and f is a computable function. A
kernelization algorithm (kernel) [23] is a mapping that transforms an instance (x, k) ∈ Σ∗×N
in p(|x| + k) time for some polynomial p, into an equivalent instance (x′, k′) such that
(x, k) ∈ L⇔ (x′, k′) ∈ L and such that |x′|, k′ ≤ f(k) for some computable function f . The
function f is called the size of the kernel. Recent developments in the theory of kernelization

FSTTCS 2010

462 Determining the Winner of a Dodgson Election is Hard

have yielded tools to show that certain problems are unlikely to have kernels of polynomial
size [7]. The Dodgson Score problem is formally defined as follows:

Dodgson Score
Instance: A set C of candidates, a distinguished candidate x ∈ C, a multiset V of
votes and a positive integer k.
Question: Can x be made a Condorcet winner by making at most k swaps between
adjacent candidates?

We consider two different parameterizations in this work. When the problem is parameterized
by the number of allowed swaps k then we will refer to it as k-Dodgson Score; the other
variant considers a bounded number of votes n := |V | which we call n-Dodgson Score.

3 Kernelization Lower Bound for k-Dodgson Score

In this section we prove that k-Dodgson Score does not have a polynomial kernel unless
PH = Σp

3. To prove this result we need some notions related to parameterized reducibility.

I Definition 1 ([8]). Let P and Q be parameterized problems. We say that P is polynomial
parameter reducible to Q, written P ≤P tp Q, if there exists a polynomial time computable
function g : Σ∗ × N → Σ∗ × N and a polynomial p, such that for all (x, k) ∈ Σ∗ × N (a)
(x, k) ∈ P ⇔ (x′, k′) = g(x, k) ∈ Q and (b) k′ ≤ p(k). The function g is called polynomial
parameter transformation.

I Theorem 2 ([8]). Let P and Q be parameterized problems and P̃ and Q̃ be the unpa-
rameterized versions of P and Q respectively. Suppose that P̃ is NP-hard and Q̃ is in NP.
Furthermore if there is a polynomial parameter transformation from P to Q, then if Q has a
polynomial kernel then P also has a polynomial kernel.

We use the following problem as the starting point for our transformation:

Small Universe Set Cover
Instance: A set family F ⊆ 2U of subsets of a finite universe U and a positive
integer k ≤ |F|.
Question: Is there a subfamily F ′ ⊆ F with |F ′| ≤ k such that ∪S∈F ′S = U?
Parameter: The value k + |U |.

Small Universe Set Cover is a parameterized version of the NP-complete Set Cover
problem [19, SP5]. We need the following incompressibility result for this problem [12,
Theorem 2]:

I Theorem 3. The problem Small Universe Set Cover parameterized by k + |U | does
not admit a polynomial kernel unless PH = Σp

3.

The transformation that we shall use to prove that k-Dodgson Score does not have a
polynomial kernel (unless PH = Σp

3) is similar in spirit to the reduction from Exact Cover
by 3-sets which was originally used to show that Dodgson Score is NP-complete [2]. Let
(U,F , k) be an instance of Small Universe Set Cover. We show how to construct an
equivalent instance (V, C, x, k′) of k-Dodgson Score with k′ := k(|U |+ 1) in polynomial
time. Since the problem can be solved in polynomial time when |F| < 3, we may assume
without loss of generality that the set family F contains at least 3 sets.

The set of candidates is composed of several parts. We create one candidate for each
element u in the universe U ; we will use an element u ∈ U to refer both to the corresponding

M. Fellows, B. M. P. Jansen, D. Lokshtanov, F. A. Rosamond and S. Saurabh 463

candidate and to the element of the finite universe, since the meaning will be clear from the
context. We also take one candidate x to use as the distinguished candidate for whom the
Dodgson score must be computed, one candidate y that will encode the fact that we must
cover the universe with exactly k subsets, and finally we use three sets of dummy candidates
D0, D1 and D2 that are needed for padding. These dummy candidates will ensure that we
can make the distance between x and y in the total orders sufficiently large, i.e. that it takes
a lot of swaps for x to gain a vote on y. We want to ensure that x beats all the dummy
candidates in pairwise comparison in the initial situation, to ensure that the dummies do not
interfere with the encoding of the set cover instance. Our three sets of dummies D0, D1 and
D2 each contain |U |+ 1 candidates. If we want to use some d ≤ |U |+ 1 dummy candidates
that rank above x in the i-th vote that we create, then we use d candidates from the set
Di mod 3; the other dummies are ranked below x. Since x beats every dummy candidate
in at least two out of three votes, this ensures that x will beat all dummy candidates in
pairwise comparison if we use at least 5 votes. Using this scheme we will from now on write
Dj to denote a set of j ≤ |U |+ 1 dummy candidates that can be used in the vote we are
constructing.

The set V of votes is built out of two parts, each containing |F| votes. Since |F| ≥ 3
this will ensure that we create at least 6 votes. Using the terminology of [2] we create a
set of swing votes corresponding to elements of F , and a set of equalizing votes that create
the proper initial conditions. We introduce an abbreviation to write down total orders: if
C ′ ⊆ C is a set of candidates, then by writing a total order a < C ′ < b we mean a total
order in which all candidates of C ′ are ranked below b and above a. The relative ranking of
the candidates in C ′ among each other is not important. We now define the two parts of the
vote set.

Swing votes. For every S ∈ F we make a vote (. . . < x < S < D|U |−|S| < y). All
candidates that are not explicitly mentioned in the construction are ranked below x in
arbitrary order. The set S in this vote represents the candidates corresponding to the
universe elements in S ⊆ U .

The swing votes correspond to the sets in the family F . Observe that it takes exactly |U |+1
switches for x to gain a swing vote on y. The name “swing vote" comes from the fact that
if x can become a Condorcet winner in k(|U |+ 1) switches, then all those switches must be
made in swing votes.

Equalizing votes. The goal of the set of equalizing votes is to create initial conditions
in which x must gain k votes on candidate y, and one vote on every candidate corresponding
to some u ∈ U in order to become the Condorcet winner. We construct the equalizing votes
so that no switches made in them will allow x to become a winner in k(|U |+ 1) steps. We do
not give an explicit construction for the equalizing votes; instead we present the conditions
that they must satisfy. It will be easy to see that such a set of votes exists, and can be
constructed in polynomial time.
1. For every candidate corresponding to an element u ∈ U , the number of equalizing votes

in which x is ranked above u is equal to the number of swing votes in which x is ranked
below u. This ensures that overall, every candidate u is ranked above x exactly as often
as below x; hence x needs to gain one vote on every u to beat it in pairwise comparison.

2. There are |F| − k + 1 equalizing votes in which x is ranked above y. Since x is ranked
below y in all swing votes, this implies that there are |F| − k + 1 votes in which x ranks
above y, and 2|F| − (|F| − k + 1) = |F| + k − 1 votes in which x ranks below y. The
reader may verify that this means that x needs to gain at least k votes on y to beat y in
a pairwise comparison.

FSTTCS 2010

464 Determining the Winner of a Dodgson Election is Hard

3. Whenever x is ranked below y, then (by inserting dummies if necessary) there are at least
|U |+ 1 candidates between x and y. This ensures that at least |U |+ 2 swaps are needed
for x to gain an equalizing vote on y.

This concludes the construction of the instance (V, C, x, k′).

I Lemma 4. If the instance (U,F , k) has a set cover of size k, then candidate x can be
made a Condorcet winner in the election (V, C, x, k′) by k′ swaps.

Proof. Suppose F ′ ⊆ F is a set cover of size k. Every S ∈ F ′ corresponds to a swing vote.
Consider the effect of swapping x upwards for |U |+ 1 steps in the swing votes corresponding
to the elements of F ′. Since there are exactly |U | candidates between x and y in every swing
vote, this means that x gains these k votes on y. Since F ′ is a set cover of U it follows from
the construction of the swing votes that we must have swapped x over every candidate u ∈ U

at least once. By the earlier observations this shows that after these k′ = k(|U |+ 1) swaps
the candidate x must be a Condorcet winner. J

I Lemma 5. If candidate x can be made a Condorcet winner in the election (V, C, x, k′)
by k′ swaps, then instance (U,F , k) has a set cover of size k.

Proof. Assume there is some series of k(|U |+ 1) swaps that makes x a Condorcet winner. By
the observations in the preliminaries we may assume that these swaps only move x upwards.
Since x needs to gain k votes on y in order to become a Condorcet winner, we can conclude
that at most |U |+ 1 swaps on average can be used for every vote that x gains over y. But
by construction it is impossible to improve over y using fewer than |U |+ 1 swaps per vote,
which shows that none of the swaps can be made in equalizing votes since there it takes at
least |U |+2 swaps for x to improve over y. It follows that the swaps that make x a Condorcet
winner in k(|U | + 1) steps must be composed of |U | + 1 swaps in k different swing votes.
Since x had to gain one vote on every candidate corresponding to u ∈ U in order to become
a Condorcet winner, we may conclude that in these k swing votes every candidate u ∈ U

was ranked above x at least once. But this shows that the sets corresponding to the k swing
votes form a set cover for U of size k, which shows that U has a set cover of the requested
size. J

It is not hard to verify that the transformation can be computed in polynomial time.
The transformation is a polynomial parameter transformation because the parameter k′ =
k(|U | + 1) of the k-Dodgson Score instance is bounded by the square of the original
parameter k + |U |. By combining Theorem 2 with Theorem 3 the existence of this polynomial
parameter transformation yields the following theorem.

I Theorem 6. k-Dodgson Score does not admit a polynomial kernel unless PH = Σp
3.

4 Parameterized Hardness of n-Dodgson Score

We now consider the parameterization by the number of votes n and show that this leads to
W [1]-hardness. We use a reduction from the following well-known problem [17].

Multi-Colored Clique
Instance: A simple undirected graph G = (V, E), a positive integer k and a coloring
function c : V → {1, 2, . . . , k} on the vertices.
Question: Is there a clique in G that contains exactly one vertex from each color
class?
Parameter: The value k.

M. Fellows, B. M. P. Jansen, D. Lokshtanov, F. A. Rosamond and S. Saurabh 465

We give a FPT-reduction from Multi-Colored Clique to n-Dodgson Score. In
particular, given an instance (G = (V, E), c, k) of Multi-Colored Clique we construct an
instance (C ′, V ′, x′, k′) of n-Dodgson Score such that |V ′| = n = 4(

(
k
2
)

+ k).
Let V1, . . . , Vk be the color classes of G, that is, for every v ∈ Vi we have c(v) = i. For

every pair of distinct integers 1 ≤ i < j ≤ k we define Ei,j to be the set of edges with one
endpoint in Vi and one in Vj . We will assume without loss of generality that all color classes
of G have the same number N of vertices, and that between every pair of color classes there
are exactly M edges. We define the target score value k′ of the Dodgson Score instance
as k′ := ((N + 1)(Mk + 1) + 2)k + (5M − 3)

(
k
2
)
. The set C ′ of candidates is built out of five

groups.
1. We have a distinguished candidate x′ for which we need to compute the Dodgson score.
2. We use 3k′ dummy candidates, just as in the proof of Theorem 6. This allows us to

use up to k′ dummy candidates in each vote, while maintaining the property that the
candidate x′ is ranked above every dummy candidate in more than half of the votes.

3. For every color class 1 ≤ i ≤ N there are candidates ap
i for 0 ≤ p ≤ N + 2.

4. For every pair of color classes 1 ≤ i < j ≤ k there are candidates ap
i,j for 1 ≤ p ≤M + 1.

5. For every edge e ∈ Ei,j there are candidates ei, e′i, ej and e′j .
From these definitions it is easy to verify that the number of candidates is polynomial in
the size of the Multi-Colored Clique instance. We now describe the vote set. As in the
proof of Theorem 6 we will distinguish between swing votes and equalizing votes. There are
2(

(
k
2
)

+ k) votes of each type, and hence |V ′| = n = 4(
(

k
2
)

+ k) from which it follows that the
parameter n for the n-Dodgson Score instance is polynomial in the parameter k of the
Multi-Colored Clique instance.

Equalizing votes. The equalizing votes create the right initial conditions for the election.
We build the equalizing votes such that in the resulting election the distinguished candidate x′

must gain exactly one vote on each non-dummy candidate in order to win the election. We
ensure that no swaps made in an equalizing vote can allow x′ to become a Condorcet winner
in k′ steps, by ranking k′ dummy candidates immediately above x′ in every equalizing vote.
It is not hard to see that we do not need more equalizing votes than swing votes to encode
these requirements.

Swing votes. The swing votes encode the behavior of the Multi-Colored Clique
instance into the election. Every edge e gets an identification number ID(e) between 1 and
M . Since the total number of edges is M

(
k
2
)
the identification of two edges may be the same,

but we ensure that for two distinct edges e1, e2 both in Ei,j we always have ID(e1) 6= ID(e2).
Similarly we give every vertex v ∈ V an identification number ID(v) between 1 and N , and
we ensure that distinct vertices in the same color class have different ID’s. As in the previous
construction we know that only the part of the vote above x′ is relevant, so we do not show
the remainder. None of the described candidates are dummies, unless specified otherwise.
For every pair of integers 1 ≤ i < j ≤ k we make two swing votes, v1

i,j and v2
i,j as follows.

v1
i,j : x < a1

i,j < . . . < a2
i,j < . . . < a3

i,j < (. . .) < aM+1
i,j (1)

v2
i,j : x < aM+1

i,j < . . . < aM
i,j < . . . < aM−1

i,j < (. . .) < a1
i,j (2)

The gaps between consecutive candidates ap
i,j are filled as follows. For every edge e ∈ Ei,j

we insert ei, e′i, ej and e′j between a
ID(e)
i,j and a

ID(e)+1
i,j in v1

i,j . Also, we insert ei, e′i, ej and
e′j between a

ID(e)+1
i,j and a

ID(e)
i,j in v2

i,j . Notice that between any consecutive ap
i,j ’s in v1

i,j and
v2

i,j there are exactly 4 other candidates.

FSTTCS 2010

466 Determining the Winner of a Dodgson Election is Hard

For every integer 1 ≤ i ≤ k we make two swing votes, v1
i and v2

i as follows.

v1
i : x < a0

i < . . . < a1
i < . . . < a2

i < . . . < a3
i < (. . .) < aN

i (3)
v2

i : x < aN+2
i < . . . < aN+1

i < . . . < aN
i < . . . < aN−1

i < (. . .) < a2
i (4)

For every edge e with one endpoint v in Vi we add ei between a
ID(v)−1
i and a

ID(v)
i in v1

i and
we add e′i between a

ID(v)+2
i and a

ID(v)+1
i in v2

i . Having done this for every edge, we add
dummy candidates between each consecutive pair of ap

i ’s in v1
i and v2

i such that the total
number of candidates between each consecutive pair of ap

i ’s in v1
i and v2

i is exactly kM . This
concludes the construction of (C ′, V ′, x′, k′).

I Lemma 7. If G contains a colored k-clique, then x′ can be made a winner of the election
(C ′, V ′, x′, k′) in k′ = ((N + 1)(kM + 1) + 2)k + (5M − 3)

(
k
2
)

swaps.

Proof. Let C = c1, c2 . . . ck be a clique in G such that ci ∈ Vi. For each vertex ci ∈ C we
move x′ in v1

i such that x beats a
ID(ci)
i . We also move x′ in v2

i such that x beats a
ID(ci)+1
i .

For each value of i this takes exactly (N + 1)(kM + 1) + 2 swaps: we need 1 swap to move
over a0

i in v1
i and 1 swap to move over aN+2

i in v2
i , and for all N + 1 other candidates ap

i

we need to swap over the block of kM in front of them and over the candidates themselves,
resulting in (N + 1)(kM + 1) more swaps. Thus in total there are ((N + 1)(kM + 1) + 2)k
swaps in the v1

i and v2
i swing votes.

For every pair of distinct integers 1 ≤ i < j ≤ k we move x′ in v1
i,j such that x beats

a
ID(cicj)
i,j , and move x′ in v2

i,j such that x beats a
ID(cicj)+1
i,j . The number of swaps to do this is

(5M − 3)
(

k
2
)
. Thus the total number of swaps is ((N + 1)(kM + 1) + 2)k + (5M − 3)

(
k
2
)

= k′.
We show that x has gained a swing vote on each non-dummy candidate. It is easy to see

that for every 1 ≤ i ≤ k, the candidate x′ has gained a swing vote on all ap
i ’s and that for

every 1 ≤ i < j ≤ k, x′ has gained a swing vote on all ap
i,j ’s. Observe that in the two swing

votes v1
i,j and v2

i,j , x′ has gained a swing vote on all candidates ei, e′i, ej and e′j except for the
four candidates corresponding to the edge e[i, j] = cicj . Let these four candidates be ei[i, j],
e′i[i, j], ej [i, j] and e′j [i, j] respectively. However, x′ gains a swing vote on ei[i, j] in v1

i , on
e′i[i, j] in v2

i , on ej [i, j] in v1
j and on e′j [i, j] in v2

j . This concludes the proof of the lemma. J

I Lemma 8. If x′ can be made a winner of the election (C ′, V ′, x′, k′) in k′ = ((N +1)(kM +
1) + 2)k + (5M − 3)

(
k
2
)

swaps, then G contains a colored k-clique.

Proof. Observe that for any fixed i we need to perform at least (N + 1)(kM + 1) + 2 swaps
in v1

i and v2
i in total in order to gain a swing vote on all ap

i ’s. Similarly for any fixed
1 ≤ i < j ≤ k we need to perform at least 5M − 3 swaps in v1

i,j and v2
i,j in total, in order to

gain a swing vote on all ap
i,j ’s.

Thus, if strictly more than (N + 1)(kM + 1) + 2 swaps are performed in v1
i and v2

i in total
for some i, or if more than 5M − 3 swaps are performed in v1

i,j and v2
i,j in total for some i, j,

then the total number of swaps performed must be greater than k′ if the swaps make x′ a
Condorcet winner. So under the given assumptions for each i, exactly (N + 1)(kM + 1) + 2
swaps are performed in v1

i and v2
i in total, and for each 1 ≤ i < j ≤ k, exactly 5M − 3 swaps

are performed in v1
i,j and v2

i,j in total.
For a fixed i, if x′ has gained a swing vote for all the ap

i ’s in v1
i and v2

i , then there must be
some ci ∈ Vi such that x′ has been moved right over a

ID(ci)
i in v1

i and right over a
ID(ci)+1
i in

v2
i . Similarly, for every 1 ≤ i < j ≤ k there must be some e[i, j] ∈ Ei,j such that x′ has been
moved right over a

ID(e[i,j])
i,j in v1

i,j and moved right over a
ID(e[i,j])+1
i,j in v2

i,j . Notice that x′ did
not get any swing vote on ei[i, j], e′i[i, j], ej [i, j] and e′j [i, j]. The only other places x′ could

M. Fellows, B. M. P. Jansen, D. Lokshtanov, F. A. Rosamond and S. Saurabh 467

have gotten a swing vote on these candidates are in v1
i , v2

i , v1
j and v2

j respectively. We prove
that e[i, j] is incident to ci. Let vi be the vertex incident to e[i, j] in Vi. If ID(ci) < ID(vi)
then x′ does not gain a swing vote on e[i, j]i. Hence ID(ci) ≥ ID(vi). If, on the other hand,
ID(ci) > ID(vi) then x′ does not gain a swing vote on e′[i, j]i, and therefore we must have
ID(ci) ≤ ID(vi). But then vi = ci and therefore we know that for each i the vertex ci that
is selected in the votes v1

i and v2
i is an endpoint of the edge that was selected in the votes

v1
i,j and v2

i,j . Using e[i, j]j and e′[i, j]j one can similarly prove that e[i, j] is incident to cj .
Hence C = {c1, c2, . . . , ck} forms a clique in G. This concludes the proof of the lemma. J

The construction of (C ′, V ′, x′, k′) together with Lemmata 7 and 8 shows that there
is a FPT-reduction from Multi-Colored Clique to n-Dodgson Score. Since it is
well-known [17] that Multi-Colored Clique is hard for W [1], we obtain the following
result.

I Theorem 9. n-Dodgson Score is hard for W [1].

5 Conclusions and Discussion

In this paper we answered two open problems with respect to the parameterized complexity
of Dodgson Score. The parameterization k-Dodgson Score does not admit a polynomial
kernel unless the polynomial hierarchy collapses, and n-Dodgson Score is hard for W [1].
The proof that k-Dodgson Score does not have a polynomial kernel unless PH = Σp

3 also
implies that the exponential size kernel by Fellows et al. [16] for k-Generalized Dodgson
Score cannot be improved to a polynomial kernel unless PH = Σp

3.
In a natural variant of the Dodgson Score problem we are given a set of votes over a

set of candidates C, together with an integer k, and asked whether any candidate can be
made a Condorcet Winner by performing at most k swaps. A simple construction extends
the hardness result of Theorems 6 and 9 to this problem as well.

References
1 Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information:

Ranking and clustering. J. ACM, 55(5), 2008.
2 J. J. Bartholdi, C. A. Tovey, and M. A. Trick. Voting schemes for which it can be difficult

to tell who won the election. Social Choice and Welfare, 6(2):157–165, 1989.
3 Nadja Betzler, Michael R. Fellows, Jiong Guo, Rolf Niedermeier, and Frances A. Rosamond.

Fixed-parameter algorithms for Kemeny rankings. Theor. Comput. Sci., 410(45):4554–4570,
2009.

4 Nadja Betzler, Jiong Guo, and Rolf Niedermeier. Parameterized computational complexity
of Dodgson and Young elections. In Proc. 11th SWAT, pages 402–413, 2008.

5 Nadja Betzler, Jiong Guo, and Rolf Niedermeier. Parameterized computational complexity
of Dodgson and Young elections. Information and Computation, 208(2):165–177, 2010.

6 Duncan Black, Robert Albert Newing, Iain McLean, Alistair McMillan, and Burt L. Mon-
roe. The theory of committees and elections. Springer, 1998.

7 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On
problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009.

8 Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint cycles
and disjoint paths. In Proc. 17th ESA, pages 635–646, 2009.

9 Jin-yi Cai, Venkatesan T. Chakaravarthy, Lane A. Hemaspaandra, and Mitsunori Ogihara.
Competing provers yield improved Karp-Lipton collapse results. Inf. Comput., 198(1):1–23,
2005.

FSTTCS 2010

468 Determining the Winner of a Dodgson Election is Hard

10 Ioannis Caragiannis, Jason A. Covey, Michal Feldman, Christopher M. Homan, Christos
Kaklamanis, Nikos Karanikolas, Ariel D. Procaccia, and Jeffrey S. Rosenschein. On the
approximability of Dodgson and Young elections. In Proc. 20th SODA, pages 1058–1067,
2009.

11 C. L. Dodgson. A method for taking votes on more than two issues. Clarendon Press,
Oxford, 1876.

12 Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Incompressibility through colors
and IDs. In Proc. 36th ICALP, pages 378–389, 2009.

13 Rod Downey and Michael R. Fellows. Parameterized Complexity. Monographs in computer
science. Springer, New York, 1999.

14 Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggregation methods
for the web. In WWW, pages 613–622, 2001.

15 Ronald Fagin, Ravi Kumar, and D. Sivakumar. Efficient similarity search and classification
via rank aggregation. In SIGMOD Conference, pages 301–312, 2003.

16 Michael Fellows, Frances Rosamond, and Arkadii Slinko. Sensing God’s will is fixed param-
eter tractable. Technical report, ResearchSpace@Auckland 561, 2008.

17 Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On
the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci.,
410(1):53–61, 2009.

18 Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct
PCPs for NP. In Proc. 40th STOC, pages 133–142, 2008.

19 Michael R. Garey and David S. Johnson. Computers and Intractability, A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

20 Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg Rothe. Exact analysis of Dodgson
elections: Lewis Carroll’s 1876 voting system is complete for parallel access to NP. J. ACM,
44(6):806–825, 1997.

21 John C. McCabe-Dansted. Approximability and computational feasibility of Dodgson’s
rule. Master’s thesis, University of Auckland, 2006.

22 I. McLean and A. Urken. Classics of Social Choice. University of Michigan Press, Ann
Arbor, Michigan, 1995.

23 Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press,
2006.

Verifying Recursive Active Documents with
Positive Data Tree Rewriting
Blaise Genest1,2, Anca Muscholl3, and Zhilin Wu4

1 CNRS, IPAL UMI, joint with I2R-A*STAR-NUS, Singapore
2 CNRS, IRISA UMR, joint with Université Rennes I, France

bgenest@irisa.fr
3 LaBRI, Université Bordeaux/CNRS, France

anca@labri.fr
4 LaBRI, Université Bordeaux/CNRS, France

zlwu@labri.fr

Abstract
This paper considers a tree-rewriting framework for modeling documents evolving through service
calls. We focus on the automatic verification of properties of documents that may contain data
from an infinite domain. We establish the boundaries of decidability: while verifying documents
with recursive calls is undecidable, we obtain decidability as soon as either documents are in the
positive-bounded fragment (while calls are unrestricted), or when there is a bound on the number
of service calls (bounded model-checking of unrestricted documents). In the latter case, the
complexity is NexpTime-complete. Our data tree-rewriting framework resembles Guarded Active
XML, a platform handling XML repositories that evolve through web services. The model here
captures the basic features of Guarded Active XML and extends it by node renaming and subtree
deletion.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.469

1 Introduction

From static in house solutions, databases have become more and more open to the world,
offering e.g. half-open access through web services. As usual for open systems, their design
requires a careful static analysis process, helping to guarantee that no malicious client may
take advantage of the system in a way for which the system was not designed. Static analysis
of such systems very recently brought together two areas - databases, with emphasis on
semi-structured XML data, and automated verification, with emphasis on model-checking
infinite-state systems. Systems modeling dynamical evolution of data are pretty challenging
for automated verification, as they involve feedback loops between semi-structured data,
possibly with values from unbounded domains, and the workflow of services. If both topics
have been studied extensively on its own, very few papers tackle decidability of algorithms
when all aspects are present at the same time.

An interesting model emerged recently for handling XML repositories evolving through
web services, namely Active XML (AXML) [4]. These are XML documents that evolve
dynamically, containing implicit data in form of embedded service calls. Services may be
recursive, so the evolution of such documents is both non-deterministic and unbounded in
time. A first paper analyzing the evolution of AXML documents considered monotonous
documents [3]. With this restriction, as soon as a service is enabled in a document, then from
this point on the service cannot be disabled and calling it can only extend the document.
In particular, information can never be deleted. Recently, a workflow-oriented version of
AXML was proposed in [5]: the Guarded AXML model (GAXML for short) adds guards

© Blaise Genest, Anca Muscholl and Zhilin Wu;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 469–480

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.469
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

470 Verifying Recursive Active Documents with Positive Data Tree Rewriting

to service calls, thus controlling the possible evolution of active documents. Decidability in
co-2NexpTime of static analysis for the recursion-free GAXML fragment w.r.t. a variant of
LTL with data tree patterns as atomic formulas was established in [5]. Static analysis is
more complex in [5], due to the presence of unbounded data. The crucial restriction needed
for decidability is a uniform bound on the number of possible service calls. Compared to [3],
service invocation can terminate, and more importantly, negative guards can be used. But
still, deletion of data is not possible. Finally, the GAXML model relies on a rather involved
semantics of service calls.

In this work, our aim is twofold. First, we aim at embedding and extending the GAXML
model in a simpler framework based on tree rewriting. Our model DTPRS (data tree pattern
rewriting systems) uses the same basic ingredients as GAXML, which are tree patterns
for guards and queries. However, our formalism allows to describe several possible effects
of a service call: materialization of implicit data like in GAXML, but also deletion and
modification of existing document parts. This model is a simplified version of the TPRS
model proposed in [15], but in this setting it can additionally handle unbounded data.

Our second, and main objective is to get decidability of static analysis of DTPRS without
relying on a bound on the number of service calls. For doing that, we use a technique that
emerged in the verification of particular infinite-state systems such as Petri nets and lossy
channel systems. The main concept is known in verification as well-structured transition
systems (WSTS for short) [1, 13]. WSTSs are one example for infinite-state systems
where (potentially) infinite sets of states can be represented (and effectively manipulated)
symbolically in a finite way.

Our basic objects are data trees, i.e., trees with labels from an infinite domain. We
view data trees as graphs, and define in a natural way a quasi-order on such graphs. Then
we show that a uniform bound on the length of simple paths in such graphs, together
with positive guards, makes DTPRS well-structured systems [1, 13]. As a technical tool
we use here tree decompositions of graphs. In a nutshell we trade here recursion against
positiveness, since considering both leads to undecidable static analysis. We show that
for positive-bounded DTPRS, termination and tree pattern reachability are both decidable.
On the negative side, we show that the verification of very simple Tree-LTL properties is
undecidable even for positive-bounded DTPRS. On the positive side, the decidability result
for pattern reachability can be extended to the verification of existential positive Tree-LTL
properties. We then consider the type-checking problem, another static analysis problem,
and show its Co-NexpTime-completeness for arbitrary DTPRS. Finally, we show that bounded
model-checking of arbitrary DTPRS is NexpTime-complete.

Related work: Verification of web services often ignores unbounded data (c.f. e.g. [17,
14]). On the other hand, several data-driven workflow process models have been proposed.
Document-driven workflow was proposed in [20]. Artifact-based workflow was outlined in
[16], in which artifacts are used to represent key business entities, including both their data
and life cycles. An early line of results involving data establishes decidability boundaries for
the verification of temporal (first-order based) properties of a data-driven workflow processes,
based on a relational data model [11, 10, 12]. This approach has been recently extended to
the artifact-based model [9].

On the verification side, there is a rich literature on the verification of well-structured
infinite transition systems [1, 13], ranging from faulty communication systems [7] to programs
manipulating dynamic data [2] (citing only a few recent contributions). The latter work is
one of the few examples where well-quasi-order on graphs is used.

Organization of the paper: In the next section, we fix some definitions and notations, then

Blaise Genest, Anca Muscholl, and Zhilin Wu 471

define the DTPRS model. In Section 3 we show that analysis of DTPRS with recursive DTD
or negated tree patterns is undecidable. In Section 4 we define positive-bounded DTPRS
and prove our decidability results. Then in Section 5, we show the undecidability of the
verification of simple Tree-LTL properties and the decidability of existential positive Tree-LTL
properties for positive-bounded DTPRS. In Section 6, we consider the type-checking problem
for DTPRS and show its Co-NexpTime completeness. Finally in Section 7, we consider
bounded model-checking problem for DTPRS and show its NexpTime-completeness.

2 Definitions and notations

In this paper, documents are labeled, unranked, unordered trees. We fix a finite alphabet Σ
(with symbols a, b, c, . . . , called tags) and an infinite data domain D (with symbols d, . . .).
A data tree (see Figure 1) is a (rooted) tree T with nodes labeled by Σ ∪ D. A data tree
T can be represented as a tuple T = 〈V,E, root, `〉, with labeling function ` : V → Σ ∪ D.
Internal nodes are Σ-labeled, whereas leaves are (Σ ∪ D)-labeled. We also fix a (finite) set
of variables X (with symbols X,Y, Z, . . .) that will take values in D, and use ∗ as special
symbol standing for any tag. Let T denote the set Σ ∪ X ∪ {∗}.

library

book

bid

123456

available

book

bid

826312

rid

M2036

lent

reader

rid

M2036

capacity

4

Figure 1 A document for a library system: The reader M2036 borrows a book with identifier
826312 from the library, and has capacity 4, namely he or she is able to borrow at most 4 other
books.

We now introduce the different components used in our rewriting rules: data tree patterns
to locate and specify a pattern of the document, data constraints to express data equalities
and inequalities, data tree pattern queries to extract information from a document.

A data constraint is a Boolean combination of relations X = Y , with1 X,Y ∈ X . A data
tree pattern (DTP) P = 〈V,E, root, `, τ, cond〉 is a (rooted) T -labeled tree 〈V,E, root, `〉,
together with an edge-labeling function τ : E → {|, ||} and a data constraint cond. Edges
that are |-labeled denote child edges, and ||-labeled edges denote descendant ones. Internal
nodes are labeled by Σ ∪ {∗}, and leaves by T . A matching of a DTP P into a data tree
T is defined as a mapping preserving the root, the Σ- and D-labels (with ∗ as wildcard),
the child and the descendant relations, satisfying cond and mapping X -labeled nodes to
D-labeled ones. In particular, a relation X = Y (X,Y ∈ X) in a DTP P means that the
corresponding leaves of P must be mapped to leaves of T carrying the same data value. An
injective matching of P into T means that the mapping above is injective. A relative DTP is
a DTP with one designated node self . A relative DTP (P, self) is matched to a pair (T, v),
where T is a tree and v is a node of T .

We use Boolean combinations of (relative) DTPs as rule guards. DTPs in a Boolean
combination are matched independently of each other, except that nodes designated by self

1 For simplicity we disallow here explicit data constants X = d (d ∈ D): they can be simulated by tags
from Σ.

FSTTCS 2010

472 Verifying Recursive Active Documents with Positive Data Tree Rewriting

library

book

bid

Y

rid

X

lent

reader

rid

X

4

Figure 2 A data tree pattern (DTP).

must be matched to the same node of T . Boolean operators are interpreted by the standard
meaning.

A data tree pattern query (DTPQ) is of the form body head, with body a DTP and
head a tree such that

the internal nodes of head are labeled by Σ and its leaves are labeled by (Σ ∪ D ∪ X),
every variable occurring in head also occurs in body,
there is at least one variable occurring in head, i.e., at least one leaf of head is labeled by
X (i.e., head is not a constant tree).

Let T be a data tree and Q = body head be a DTPQ. The evaluation result of Q over
T is the forest Q(T) of all instantiations of head by matchings from body to T . For example,
the DTPQ P head with P given by Figure 2 and head consisting of a unique node labeled
by Y , returns a forest consisting of one-node trees labeled by identifiers of books which are
borrowed by readers with capacity 4. A relative DTPQ is defined like a DTPQ, except that
its body is a relative DTP. A relative DTPQ Q is evaluated on a pair (T, v). The result of
Q(T, v) is defined as above, except that matchings of body must map node self to v. For
instance, the relative DTPQ P head where the reader node is labeled self will return a
forest of one-node trees labeled by identifiers of books which are borrowed by a particular
reader with capacity 4 designated by self .

Similar to GAXML, data tree rewriting rules are guarded by (Boolean combinations of)
DTPs and they can add information to a tree via queries. In addition, our rules can rename
tags and delete nodes, together with their subtrees. Each rule comes along with a context
called locator, that also describes all the operations related to a rewriting step. A locator
L is a relative DTP with additional labels append, del, and rena (a ∈ Σ). The meaning of
these labels is to add information (append), delete a node and its subtree (del) and rename
a tag into a (rena). Labels append and rena are not exclusive. They are restricted to be
attached to nodes of L that are labeled by Σ ∪ {∗}. Label del can be attached to any node.
We assume that all descendants in L of a node with del are also labeled by del, and that
nodes labeled by del cannot be labeled by append or rena.

library

book append(F)

available renlent

L

reader

rid

X

capacity

5 ren4

ridF

X

Figure 3 DTP rule “borrow”: The reader identifier is added as a subtree to the node “book”
whose state is renamed as “lent”, and the capacity of the reader is decreased by renaming.

A data tree pattern rewriting rule (DTP rule for short) R is a tuple 〈L,G,Q,F , χ〉 with:
L is a locator ,

Blaise Genest, Anca Muscholl, and Zhilin Wu 473

G is a guard: a Boolean combination of (relative) DTPs,
Q is a finite set of relative DTPQs,
F is a finite set of forests with internal nodes labeled by Σ and leaves labeled by
Σ ∪ D ∪ X ∪Q,
χ is a mapping from the set of nodes of L labeled by append to F .

A DTP rewriting system (DTPRS) is a pair (R,∆) consisting of a finite set R of DTP
rules and a static invariant ∆. The latter is a DTD τ together with a data invariant inv,
i.e. a Boolean combination of DTPs. As usual for unordered trees, the DTD τ describes
the syntax of trees. It is defined as a tuple (Σr,P) such that Σr is the set of allowed root
labels, and P is a finite set of rules a→ ψ such that a ∈ Σ and ψ is a Boolean combination
of inequalities of the form |b| ≥ k, where b ∈ Σ ∪ {dom} (dom is a symbol standing for any
data value), and k is a non-negative integer. A positive DTD is one where the Boolean
combinations above are positive. A non-recursive DTD is one where the rule graph is acyclic
(the rule graph has Σ as vertex set and edges (a, b) for every a, b such that b occurs in a
a→ ψ). For ∆ = (τ, inv) we write T |=∆ for a data tree T satisfying both τ and inv.

An example of a DTP rule for a reader of capacity 5 to borrow a book from a library is
illustrated in Figure 3, including the locator L and F = {F}.

We first describe the semantics of DTP rules informally. First, the locator is mapped
against the data tree in a non-deterministic way. Then, queries are evaluated, thus determining
the information that will possibly enhance the tree using the append-labels in the locator.
Deletion and renaming are performed as expected. The resulting data tree must satisfy the
static invariant ∆.

We now define the semantics formally. Let T = 〈V,E, root, `〉 be a data tree with T |=∆,
and let R = 〈L,G,Q,F , χ〉 be a DTP rule.

Let µ be an injective matching from L to T . Let ν be the assignment of data values to
variables in L such that ν(X) = `(µ(v)) for every v labeled by X ∈ X in L.
For each variable X ∈ X we denote its evaluation as X(T), with X(T) = ν(X) if defined,
and X(T) a fresh data value otherwise. Here a fresh data value is a data value
which does not appear in T . Furthermore, it is required that all the new variables of R,
i.e. variables occurring in F , but not in L, should take mutually distinct fresh values.
For each forest F ∈ F , we denote its evaluation by F (T), by replacing labels Q ∈ Q by
Q(T) and labels X ∈ X by X(T). Recall that all queries Q ∈ Q are evaluated relatively
to µ(self).
A data tree T ′ is obtained from T by

deleting subtrees rooted at nodes µ(v) whenever v is labeled by del in L,
changing the tag of a node µ(v) to a whenever v is labeled by rena in L,
appending F (T) as a subforest of nodes µ(v) whenever v is labeled by append in L
and χ(v) = F ,
every other node of T keeps its tag or data.

The rule R is enabled on data tree T if there exists an injective matching µ of L into T
such that (1) the guard G is true on (T, µ(v)) with v labeled by self in L, and (2) there
is a data tree T ′, obtained from T and µ by the operations specified above, satisfying
T ′|=∆.

Let T R−→ T ′ denote the transition from T to T ′ using DTP rule R ∈ R.

I Remark. 1. The injectivity of the matching µ ensures that the outcome of a rewriting
step is well-defined. In particular, no two nodes with label del and append (or rena),

FSTTCS 2010

474 Verifying Recursive Active Documents with Positive Data Tree Rewriting

resp., can be mapped to the same node in the data tree. Notice that mappings used for
guards or queries may be non-injective.

2. For the new variables occurring in F , but not in L, we choose mutually distinct fresh
values. We could have chosen arbitrary values instead, and enforce that they are fresh
and mutually distinct a posteriori using the data invariant inv. In this case, inv needs
negation. The inv (or the locator) can be also used to enforce that the (arbitrarily)
chosen values already occur in T . This kind of invariant would be positive.

3. In our definition of DTP rules, it might appear that guards are redundant w.r.t. the
locator. However, this is not the case in general, e.g. in the situation that guards include
disjunctions or negations of DTPs.

Given a DTPRS (R,∆), let T −→ T ′ denote the union of T R−→ T ′ for some R ∈ R,
and T

+−→ T ′ (or T ∗−→ T ′) denote the transitive (or reflexive and transitive) closure of
T −→ T ′. Moreover, let T ∗R(T) denote the set of trees that can be reached from a data tree
T by rewriting with DTP rules from R, i.e. T ∗R(T) = {T ′ | T ∗−→ T ′}. For a set of data trees
I, let T ∗R(I) be the union of T ∗R(T), for T ∈ I.

We are interested in the following questions, given a DTPRS (R,∆):
Pattern reachability: Given a DTP P and a set of initial trees2 Init, given as the
conjunction of a DTD and a Boolean combination of DTPs, is there some T ∈ T ∗R(Init)
such that P matches T?
Termination: Given an initial data tree T0, are all runs (rewriting paths) T0 → T1 → · · ·
starting from T0 finite?

The reason for the fact that termination of DTPRS is defined above w.r.t. a single initial
data tree is that termination from a set of initial trees is already undecidable without data
(see Proposition 3).

3 Undecidability

As one might expect, the analysis of DTPRS is quickly undecidable – and sometimes already
without using any unbounded data. The proof of the proposition below is obtained by a
straightforward simulation of 2-counter machines.
I Proposition 1. Both pattern reachability and termination for DTPRS (R,∆) are undecidable
whenever one of the following holds:
1. the DTD in ∆ is recursive,
2. either guards in R or the invariant ∆ contain negated DTPs.
The above result holds already without data.

The next result shows that with data, we can relax both conditions above and still get
undecidability of DTPRS. The main idea is to use data for creating long horizontal paths
(although trees are supposed to be unordered). Such horizontal paths can be obtained
e.g. with a tree of depth 2, with each subtree (of the root) containing three nodes, a node
plus its two children labeled respectively by data values di, di+1. Assuming all data values di

are distinct (and distinguishing d1), then a linear order on these subtrees is obtained.

I Theorem 2. Both pattern reachability and termination are undecidable for DTPRS (R,∆)
such that (1) the DTD in ∆ is non-recursive and (2) all DTPs from guards in R and the
invariant ∆ are positive.

2 We require that every tree in Init satisfies ∆.

Blaise Genest, Anca Muscholl, and Zhilin Wu 475

We end this section with a remark on the undecidability of termination from an initial
set of trees. First we notice that – already without data – DTPRS can simulate so-called
reset Petri nets [15]. These are Petri nets (or equivalently, multi-counter automata without
zero test) with additional transitions that can reset places (equivalently, counters) to zero.
They can be represented by trees of depth 2, where nodes at depth one represent places, and
their respective number of children (leaves) is the number of tokens on that place. A DTPRS
(without data) can easily simulate increments, decrements and resets (using deletion in
DTPRS). It is known that so-called structural termination for reset Petri nets is undecidable
[18], i.e., the question whether there are infinite computations from any initial configuration,
is undecidable. This implies:
I Proposition 3. The following question is undecidable: Given a DTPRS (R,∆), is there
some tree T0 satisfying ∆ and an infinite computation T0 −→ T1 −→ · · · in (R,∆)? This
holds already for non-recursive DTD in ∆ and without data constraints in DTPs.

It follows from Proposition 3 that termination from an initial set of trees, namely to
decide whether for every T0 ∈ Init, all the runs starting from T0 terminate, is undecidable.

4 Positive-bounded DTPRS

In this section we consider positive-bounded DTPRS, a fragment of DTPRS for which we
show that pattern reachability and termination are decidable.

From Proposition 1, we know that in order to get decidability, the DTD in the static
invariant ∆ must be non-recursive. For a non-recursive DTD, there is some B such that every
tree satisfying the DTD has depth bounded by B. In the following, we assume the existence
of such a bound B. Also from Proposition 1, we know that for obtaining decidability we
need to restrict ourselves to positive guards and positive data invariants.

However, from Theorem 2, we know that these restrictions alone do not suffice to achieve
decidability. We also need to disallow long linear orders created by data. For this, we
introduce a last restriction, called simple-path bounded, which is defined in the following.

Let T = 〈V,E, root, `〉 be a data tree. The graph G(T) associated with T is the undirected
graph obtained from T by merging all the nodes labeled by the same d ∈ D into a single node
d. Formally, G(T) = (V ′, E′), where V ′ = {v ∈ V | `(v) ∈ Σ} ∪ {`(v) | v ∈ V, `(v) ∈ D} and
E′ = {{v, w} | `(v), `(w) ∈ Σ, (v, w) ∈ E} ∪ {{v, d} | `(v) ∈ Σ,∃w s.t. (v, w) ∈ E, `(w) = d}.
A simple path of T is a simple path in G(T), i.e. a sequence of vertices v1, . . . , vn in G(T)
such that for all i 6= j, {vi, vi+1} ∈ E′ and vi 6= vj . The length of a path v1, . . . , vn is n− 1.

Formally, a DTPRS (R,∆) is positive-bounded with set of initial trees Init, if:
non-recursive-DTD: the DTD in the static invariant ∆ is non-recursive. In particular,
trees satisfying the DTD have depth bounded by some B > 0.
positive: all guards in R and the data invariant in ∆ are positive Boolean combinations
of DTPs. The DTD in ∆ is positive as well.
simple-path bounded: there exists K > 0 such that for any T0 ∈ Init, the length of
any simple path in any T ∈ T ∗R(T0), is bounded by K.

Notice that the third condition above implies that all data trees have depth bounded
by K. So we always assume that B ≤ K. Notice also that in positive-bounded DTPRS,
the data value inequality is allowed in DTPs, that is, we can state that two data values are
different. Moreover, fresh data values (for the new variables in DTP rules) can be used to
model some conceptually negative data constraints, like for instance key properties. Notice
also that there is no restriction on the DTD of the initial set Init. However, since the DTD
in the invariant ∆ is positive, “at most”-constraints must be ensured via the rewriting rules.

FSTTCS 2010

476 Verifying Recursive Active Documents with Positive Data Tree Rewriting

The library example illustrated in Figure 1 includes DTP rules for book borrowing (Figure
3) and returning, the registration of new books and new readers (where fresh data values can
be used to guarantee that the rid and bid are “keys”), and the deletion of reader accounts.
It is easy to notice that the library example satisfies the first 2 conditions above. It is also
the case for the third condition. Indeed, all simple paths are bounded by 7: A longest path
is for instance: library - book - rid - M2036 - rid - reader - capacity - 4. Notice that the
bound still holds even if the capacity of a reader is unbounded.

The rest of the section is devoted to the proof of the following result:

I Theorem 4. Given a positive-bounded DTPRS (R,∆), pattern reachability and termination
are both decidable.

We prove Theorem 4 by using the framework of well-structured transition systems
(WSTS) [1, 13], which has been applied to DTPRS without data in [15]. We recall briefly
some definitions. A WSTS is a triple (S,−→,�) such that S is an (infinite) state space, � is
a well-quasi-ordering3 (wqo for short) on S, and −→ is the transition relation on S. It is
required that −→ is compatible w.r.t. �: for any s, t, s′ ∈ S with s −→ t and s � s′, there
exists t′ ∈ S such that s′ −→ t′ and t � t′.

Let TB,K denote the set of data trees whose depths are bounded by B and lengths of
simple paths are bounded by K. From the definition of positive-bounded DTPRS, we know
that T ∗R(Init) ⊆ TB,K . In the following, we prove Theorem 4 by defining a binary relation �
on TB,K and showing that (TB,K ,−→,�) is a WSTS.

4.1 Well-structure of positive-bounded DTPRS
We define a binary relation � on TB,K as follows. Let T1 = 〈V1, E1, root1, `1〉, T2 =
〈V2, E2, root2, `2〉 ∈ TB,K , then T1 � T2 if there is an injective mapping φ from V1 to
V2 such that

root preservation: φ(root1) = root2,
parent-child relation preservation: (v1, v2) ∈ E1 iff (φ(v1), φ(v2)) ∈ E2,
tag preservation: If `1(v) ∈ Σ, then `1(v) = `2(φ(v)),
data value (in)equality preservation: If v1, v2 ∈ V1 and `1(v1), `1(v2) ∈ D, then
`2(φ(v1)), `2(φ(v2)) ∈ D, and `1(v1) = `1(v2) iff `2(φ(v1)) = `2(φ(v2)).

It is easy to see that � is reflexive and transitive, so it is a quasi-order. In the following,
we first assume that � is a wqo on TB,K and show that −→ is compatible with �, in order to
prove Theorem 4. We show in Section 4.2 that � is indeed a wqo: for any infinite sequence
of data trees T0, T1, . . . ∈ TB,K , there are i < j such that Ti � Tj .

I Proposition 5. Let (R,∆) be a positive-bounded DTPRS. Let T1, T
′
1, T2 ∈ TB,K , T1

R−→ T2

for some R ∈ R, and T1 � T ′1. Then there exists T ′2 ∈ TB,K such that T ′1
R−→ T ′2 and T2 � T ′2.

Consequently, in the positive-bounded fragment −→ is compatible w.r.t. � in TB,K , thus
(TB,K ,−→,�) is a WSTS.

In addition, it can be shown that (TB,K ,−→,�) satisfies some additional computability
conditions which are needed to show the decidability of pattern reachability and termination,
namely, effectiveness of pred-basis for pattern reachability and effectiveness of successor
relation for termination. With these computability conditions, Theorem 4 then follows from
the properties of WSTS (c.f. Theorem 3.6 and Theorem 4.6 in [13]).

3 A wqo � is a reflexive, transitive and well-founded relation with no infinite antichain.

Blaise Genest, Anca Muscholl, and Zhilin Wu 477

4.2 Well-quasi-ordering for data trees
In order to prove that � is a wqo over TB,K , we first represent a data tree T as a (labeled)
undirected graph G`(T), then we encode G`(T) into a tree (without data) of bounded depth
using the concept of tree decompositions. Define a binary relation ≤ on labeled trees (without
data) of bounded depth as follows: T1 ≤ T2 if there is an injective mapping from T1 to T2
preserving the root, the tags, and the parent-child relation. It is known that ≤ is a wqo on
labeled trees of bounded depth without data [15].

Let GK be the set of labeled graphs with the lengths of all simple paths bounded by K.
In the following, we show that � on TB,K corresponds to the induced subgraph relation
(formally defined later) on GK , and the fact that ≤ is a wqo for labeled trees of bounded
depth implies that the induced subgraph relation is a wqo on GK .

Given a data tree T = 〈V,E, root, `〉 ∈ TB,K , the labeled undirected graph representation
G`(T) of T is obtained from G(T), the graph associated to T , by adding labels encoding
information of data tree nodes (tag, depth . . .). Formally, G`(T), is a ((Σ× [B + 1]) ∪ {$})-
labeled (where [B + 1] = {0, 1, · · · , B}) undirected graph (V ′, E′, `′) defined as follows,

V ′ = {v ∈ V | `(v) ∈ Σ} ∪ {`(v) | v ∈ V, `(v) ∈ D},
E′ = {{v, w} | `(v), `(w) ∈ Σ, (v, w) ∈ E} ∪ {{v, d} | `(v) ∈ Σ,∃w, (v, w) ∈ E, `(w) = d},
Let v ∈ V such that `(v) ∈ Σ, then `′(v) = (`(v), i). In addition, `′(d) = $ for each
d ∈ V ′ ∩ D.

Let ΣG denote (Σ× [B + 1])∪{$}. For ΣG-labeled graphs, we define the induced subgraph
relation as follows. Let G1 = (V1, E1, `1), G2 = (V2, E2, `2) be two ΣG-labeled graphs, then
G1 is an induced subgraph of G2 (denoted G1 v G2) iff there is an injective mapping φ from
V1 to V2 such that

label preservation: `1(v1) = `2(φ(v1)) for any v1 ∈ V1,
edge preservation: let v1, v

′
1 ∈ V1, then {v1, v

′
1} ∈ E1 iff {φ(v1), φ(v′1)} ∈ E2.

From the definition of the labeled graph representation of data trees, it is not hard to
show that the induced subgraph relation v corresponds to the relation � on data trees.
I Proposition 6. Let T1, T2 ∈ TB,K , then T1 � T2 iff G`(T1) v G`(T2).

Now we show how to encode any ΣG-labeled graph belonging to GK into a labeled tree of
bounded depth by using tree decompositions.

Let G = (V,E, `) be a connected ΣG-labeled graph, then a tree decomposition of G is a
quadruple T = 〈U,F, r, θ〉 such that:

(U,F, r) is a tree with the domain U , the parent-child relation F , and the root r ∈ U ,
θ : U → 2V is a labeling function attaching each node u ∈ U a set of vertices of G,
For each edge {v, w} ∈ E, there is a node u ∈ U such that {v, w} ⊆ θ(u),
For each vertex v ∈ V , the set of nodes u ∈ U such that v ∈ θ(u) constitutes a connected
subgraph of T .

The sets θ(v) are called the bags of the tree decomposition. The depth of a tree decom-
position T = 〈U,F, r, θ〉 is the depth of the tree (U,F, r) and the width of T is defined as
max{|θ(u)| − 1 | u ∈ U}. The tree-width of a graph G = (V,E) is the minimum width of
tree decompositions of G. For a tree decomposition of width K of a graph G, without loss
of generality, we assume that each bag is given by a sequence of vertices of length K + 1,
v0 . . . vK , with possible repetitions, i.e. possibly vi = vj for some i 6= j (tree decompositions
in this form are sometimes called ordered tree decompositions).

I Theorem 7. ([19, 6]) If G ∈ GK , then G has a tree decomposition with both depth and
width bounded by K.

FSTTCS 2010

478 Verifying Recursive Active Documents with Positive Data Tree Rewriting

Now we describe how to encode labeled graphs by trees using tree decompositions.
LetG = (V,E, `) ∈ GK be a ΣG-labeled graph, and T = 〈U,F, r, θ〉 be a tree decomposition

of G with width K and depth at most K. Remember that each θ(u) is represented as a
sequence of exactly K + 1 vertices, and [K + 1] = {0, . . . ,K}. Define

ΣG,K := (ΣG)K+1 × 2[K+1]2 × 2[K+1]2 × 2[K+1]2 .

We transform T = 〈U,F, r, θ〉 into a ΣG,K-labeled tree T ′ = (U,F, r, η), which encodes
in a uniform way the information about G (including edge relations and vertex labels).
η : U → ΣG,K is defined as follows. Let θ(u) = v0 . . . vK , then η(u) = (`(v0) . . . `(vK), λ),
where λ = (λ1, λ2, λ3),

λ1 = {(i, j) | 0 ≤ i, j ≤ K, vi = vj},
λ2 = {(i, j) | 0 ≤ i, j ≤ K, {vi, vj} ∈ E},
If u = r, then λ3 = ∅, otherwise let u′ be the parent of u in T and θ(u′) = v′0 · · · v′K , then
λ3 = {(i, j) | 0 ≤ i, j ≤ K, v′i = vj}.

The encoding of labeled graphs into labeled trees establishes a connection between the
wqo ≤ of labeled trees and the induced subgraph relation (v) of labeled graphs.
I Proposition 8. Let G1, G2 be two ΣG-labeled graphs with tree-width bounded by K, and
T1, T2 be two tree decompositions of width K of resp. G1, G2, then the two ΣG,K-labeled
trees T ′1, T ′2 obtained from T1, T2 satisfy that: If T ′1 ≤ T ′2, then G1 v G2.

Now we are ready to show that � is a wqo for TB,K . Let T0, T1, . . . be an infinite sequence
of data trees from TB,K . Consider the infinite sequence of ΣG,K-labeled trees T ′0, T ′1, . . .
obtained from the tree decompositions (with width K and depth at most K) of graphs
G`(T0), G`(T1), Then there are i, j : i < j such that T ′i ≤ T ′j , because ≤ is a wqo for
labeled trees of depth at most K. So G`(Ti) v G`(Tj) from Proposition 8, and Ti � Tj from
Proposition 6. We thus prove following theorem.

I Theorem 9. � is a well-quasi-ordering over TB,K .

5 Verification of temporal properties

Until now we considered only two properties for static analysis: pattern reachability and
termination. (Non-)reachability of a DTP can be expressed easily in Tree-LTL [5], which
corresponds roughly to linear time temporal logics where atomic propositions are DTPs4.
We show in this section that allowing for runs of unbounded length makes the validation of
(even very simple) Tree-LTL properties undecidable, even without data:

I Theorem 10. It is undecidable whether a positive-bounded DTPRS satisfies a Tree-LTL
formula Fϕ, where ϕ is a positive Boolean combination of DTPs. This holds already without
data.

The proof of Theorem 10 is by a reduction from the halting problem of two-counter
machines. The idea is to simulate a two-counter machine by a positive bounded DTPRS
ignoring the zero-tests, and describe them by a Tree-LTL formula Fϕ. The proof relies on
the universal semantics of Tree-LTL, requiring that every run of the DTPRS satisfies the
formula.

4 Such formulas use actually free variables in patterns, which are then quantified universally. This is
consistent with the approach of testing whether a model satisfies the negation of a formula.

Blaise Genest, Anca Muscholl, and Zhilin Wu 479

If the existential semantics of Tree-LTL formulas is used instead, i.e. requiring that
there is a run of the DTPRS satisfying a given Tree-LTL formula, then the problem is still
undecidable if negations are available, since the negation of Fϕ in the universal semantics is
G¬ϕ in the existential semantics. If negations are also forbidden, then we get decidability:

I Proposition 11. It is decidable whether a positive-bounded DTPRS satisfies a given positive
existential Tree-LTL formula defined by the following rules,

ϕ ::= true | false | P | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | Xϕ1 | ϕ1Uϕ2,

where P is a DTP.

6 Type-checking DTPRS

This section shows that it can be checked statically whether DTP rules preserve the static
invariant ∆ = (τ, inv) consisting of a DTD τ and a data invariant inv.

Recall that in the definition of DTPRS, if T R−→ T ′, then it is required that T ′ |= ∆.
Here we drop this requirement and consider the following type-checking problem.

DTPRS Type-checking: Given a DTPRS (R,∆) with a non-recursive DTD5, decide
whether for each T, T ′ and each DTP rule R such that T |= ∆ and T R−→ T ′, it holds that
T ′ |= ∆.

I Theorem 12. DTPRS type-checking is Co-NexpTime-complete.

The upper bound of Theorem 12 is shown by a small model argument. The lower bound
follows from [8], that shows that satisfiability of DTPs on depth-bounded data trees relative
to a DTD is NexpTime-hard.

7 Bounded model-checking DTPRS

In this section we consider bounded model-checking for DTPRS: Given a DTPRS (R,∆)
with a non-recursive DTD 6, a set of initial trees Init, a DTP P and a bound N (encoded in
unary) we ask whether there is some T0 satisfying Init and some T s.t. P matches T and
T0
≤N−→ T . We have the following result:

I Theorem 13. Bounded model-checking for DTPRS is NexpTime-complete.

Theorem 13 can be extended to bounded model-checking Tree-LTL properties. Bounded
model-checking of a Tree-LTL formula ϕ with a bound N is the problem checking whether a
counter-example for ϕ can be obtained in at most N rewriting steps. For instance, bounded
model-checking for G¬P with a bound N is to check whether the DTP P can be reached in
≤ N steps.

The proof of Theorem 13 follows the similar line as the proof of Co-2NexpTime com-
pleteness of model-checking Tree-LTL properties over recursion-free GAXML ([5]): The
upper-bound is shown by a (exponential) small-model property, and the lower-bound is
shown by a simulation of the computations of NexpTime-Turing machines. The gap between

5 If the DTD is recursive, then the problem is undecidable, since the satisfiability of Boolean combinations
of DTPs over a recursive DTD is undecidable [8].

6 The recursive DTD will quickly lead to undecidability, as argued for the type-checking problem.

FSTTCS 2010

480 Verifying Recursive Active Documents with Positive Data Tree Rewriting

the NexpTime complexity above and the Co-2NexpTime complexity in [5] is essentially due
to the unary encoding of the bound N for bounded model checking.

Acknowledgements We would like to thank the participants of the ANR Docflow and
the CREATE Activedoc projects for the discussion on the verification of AXML systems,
and in particular Serge Abiteboul and Albert Benveniste.

References
1 P. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theorems for

infinite-state systems. In LICS’96, pages 313–321. IEEE, 1996.
2 P. A. Abdulla, A. Bouajjani, J. Cederberg, F. Haziza, and A. Rezine. Monotonic abstraction

for programs with dynamic memory heaps. In CAV’08, volume 5123 of LNCS, pages 341–
354. Springer, 2008.

3 S. Abiteboul, O. Benjelloun, and T. Milo. Positive Active XML. In PODS’04, pages 35–45.
ACM, 2004.

4 S. Abiteboul, O. Benjelloun, and T. Milo. The Active XML project: an overview. VLDB
Journal, 17(5):1019–1040, 2008.

5 S. Abiteboul, L. Segoufin, and V. Vianu. Static analysis of active XML systems. In
PODS’08, pages 221–230. ACM, 2008. Journal version in ACM Trans. Database Syst. 34(4):
2009.

6 A. Blumensath and B. Courcelle. On the monadic second-order transduction hierarchy.
HAL Archive, 2009. http://hal.archives-ouvertes.fr/hal-00287223/fr.

7 P. Bouyer, N. Markey, J. Ouaknine, P. Schnoebelen, and J. Worrell. On termination for
faulty channel machines. In STACS’08, pages 121–132, 2008.

8 C. David. Complexity of data tree patterns over XML documents. In MFCS ’08, pages
278–289, 2008.

9 A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic verification of data-centric
business processes. In ICDT’09, pages 252–267, 2009.

10 A. Deutsch, L. Sui, and V. Vianu. Specification and verification of data-driven web appli-
cations. JCSS, 73(3):442–474, 2007.

11 A. Deutsch, L. Sui, V. Vianu, and D. Zhou. Verification of communicating data-driven web
services. In PODS’06, pages 90–99, 2006.

12 A. Deutsch and V. Vianu. WAVE: Automatic verification of data-driven web services. IEEE
Data Eng. Bull., 31(3):35–39, 2008.

13 A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere! TCS, 256(1-
2):63–92, 2001.

14 X. Fu, T. Bultan, and J. Su. Conversation protocols: a formalism for specification and
verification of reactive electronic services. TCS, 328(1-2):19–37, 2004.

15 B. Genest, A. Muscholl, O. Serre, and M. Zeitoun. Tree pattern rewriting systems. In
ATVA’08, pages 332–346. Springer, 2008.

16 R. Hull. Artifact-centric business process models: Brief survey of research results and
challenges. In OTM’08, pages 1152–1163, 2008.

17 R. Hull, M. Benedikt, V. Christophides, and S. Jianwen. E-services: a look behind the
curtain. In PODS’03, pages 1–14, 2003.

18 R. Mayr. Undecidable problems in unreliable computations. TCS, 297(1-3):337–354, 2003.
19 J. Nes̆etr̆il and P. O. de Mendez. Tree-depth, subgraph coloring and homomorphism bounds.

Eur. J. Comb., 27(6):1022–1041, 2006.
20 J. Wang and A. Kumar. A framework for document-driven workflow systems. In BPM’05,

pages 285–301, 2005.

Temporal Logics on Words with Multiple Data
Values∗

Ahmet Kara1, Thomas Schwentick1, and Thomas Zeume1

1 TU Dortmund
Germany
{ahmet.kara, thomas.schwentick, thomas.zeume}@cs.tu-dortmund.de

Abstract
The paper proposes and studies temporal logics for attributed words, that is, data words with
a (finite) set of (attribute,value)-pairs at each position. It considers a basic logic which is a
semantical fragment of the logic LTL↓1 of Demri and Lazic with operators for navigation into
the future and the past. By reduction to the emptiness problem for data automata it is shown
that this basic logic is decidable. Whereas the basic logic only allows navigation to positions
where a fixed data value occurs, extensions are studied that also allow navigation to positions
with different data values. Besides some undecidable results it is shown that the extension by a
certain UNTIL-operator with an inequality target condition remains decidable.

1998 ACM Subject Classification F.4.1 [Mathematical Logic and Formal Languages]: Math-
ematical Logic – Temporal logic; F.4.3 [Mathematical Logic and Formal Languages]: Formal
Languages – Decision problems

Keywords and phrases Expressiveness, Decidability, Data words

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.481

1 Introduction

Motivated by questions from XML theory and automated verification, extensions of (finite
or infinite) strings by data values from unbounded domains have been studied intensely
in recent years. Various logics and automata for such data words have been invented and
investigated.

A very early study by Kaminski and Francez [16] considered automata on strings over
an “infinite alphabet”. In [7], data words were invented as finite sequences of pairs (σ, d),
where σ is a symbol from a finite alphabet and d a value from a possibly infinite domain. In
[6] multi-dimensional data words were considered where every position carries N variable
valuations, for some fixed N . Similar models can be found for instance in [2] and other work
on parameterized verification. More powerful models were investigated in [19] and [14] where
every position is labeled by the state of a relational database, i.e., by a set of relations over a
fixed signature.

For the basic model of data strings with one data value per position a couple of automata
models and logics have been invented and their algorithmic and expressive properties have
been studied. On the automata side we mention register automata [16, 8, 22] (named finite
memory automata in [16, 8]), pebble automata [22, 24], alternating 1-register automata [12],
data automata [5] (or the equivalent class memory automata [3]).

∗ We acknowledge the financial support by the German DFG under grant SCHW 678/4-1.

© Ahmet Kara, Thomas Schwentick, Thomas Zeume;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 481–492

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.481
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

482 Temporal Logics on Words with Multiple Data Values

On the logical side, classical logics like two-variable first-order logic [5] have been studied
and recently order comparisons between data values have been considered [20, 23]. The
satisfiability problem for two-variable first-order logic over data words is decidable if data
values can only be compared for equality but positions can be compared with respect to
the linear order and the successor relation [5]. However, the complexity is unknown. It is
elementary if and only if testing reachability in Petri nets is elementary as well [5]. The proof
of decidability uses data automata, a strong automata model with decidable non-emptiness.

More relevant for this paper are previous investigations of temporal logics on data words.
A pioneering contribution was by Demri and Lazic [12] (the journal version of [11]) which
introduced Freeze LTL. In a nutshell, Freeze LTL extends LTL by freeze quantifiers which1
allow to “store” the current data value in a register and to test at a possibly different
position whether that position carries the same value. Freeze LTL has a decidable finite
satisfiability problem if it is restricted to one register (LTL↓1) and to future navigation, but
the complexity is not primitive recursive. With one register and past (and future) navigation
it is undecidable. In [15] it is shown that these lower bounds even hold if only navigation
with F and P (but without X) are allowed.

In [12], also a restriction of LTL↓1, simple LTL↓1 , was investigated and it was shown that it
is expressively equivalent to two-variable logics. The restriction requires that (syntactically)
between each value test and the corresponding freeze quantifier there is at most one temporal
operator and it disallows Until and Since navigation but allows past navigation. Thanks to
the (effective) equivalence to two-variable logics, simple LTL↓1 is decidable.

One of our aims in this paper was to find a decidable temporal logic on data words with
past navigation that is more expressive than simple LTL↓1. In particular it should allow
Until navigation with reference to data values. On the other hand, the logics we study are
semantical fragments of LTL↓1. Furthermore this work was motivated by the decidable logic
CLTL� for multi-attribute data words [10]. It allows to test whether somewhere in the future
(or past) a current data value occurs and it can compare data values between two positions
of bounded distance. The logics proposed in this paper are intended to have more expressive
power than CLTL� while retaining its decidability.

Contribution

We propose and investigate temporal logics for multi-attribute data words. An attributed
word is a string which can have a finite number of (attribute,value)-pairs at each position (in
the spirit of XML) and has propositions rather than symbols (in the spirit of LTL).

We first define Basic Data LTL which mimics the navigation abilities of simple LTL↓1,
if only positive register tests are used. As sequences of such navigation steps do not do
any harm we drop the requirement to freeze the data value at every step and replace freeze
quantifiers by a class quantifier which restricts a sub-formula to the positions at which this
data value appears. We show that a slight extension of this logic captures simple LTL↓1
(Proposition 2) and that it is decidable (Theorem 1). Although strictly more expressive than
CLTL�, the decidability proof for Basic Data LTL is conceptually simpler than the proof
given in [10]. It uses an encoding of multi-attribute words by data words and a reduction to
non-emptiness of data automata. A similar multi-attribute encoding has already been used in
[13]. The result generalizes to attributed ω-words (Theorem 3). Some obvious extensions (by
navigation with respect to two data values or Until navigation where intermediate positions

1 We note that the freeze quantifier itself was used already in [9] and in previous work, e.g., in [1].

A. Kara, T. Schwentick, T. Zeume 483

can be tested by data-free formulas) are undecidable (Theorems 4 and 6, respectively).
Finally, we add a powerful Until-operator to Basic Data LTL, which allows to navigate

to a position with a data value that is different from the value of a given attribute at the
starting position. Furthermore, it can test properties of intermediate positions by arbitrary
sub-formulas and can even test (in a limited way) whether intermediate positions have
attribute values different from or equal to the value on the starting position. The resulting
logic can express all properties expessible in two-variable first-order logic and contains the
Until operator. That this logic is still decidable is the main technical contribution of the
paper.

The paper is organized as follows. In Section 2, we define attributed words and Basic
Data LTL and give some example properties. In Section 3, we compare Basic Data LTL with
other logics. Section 4 shows that Basic Data LTL is decidable and presents undecidability
results for some extensions. Section 5 introduces the extended Until operator and shows
decidability of the resulting logic. It also shows (the simple fact) that an Until-operator
that navigates with respect to equality and allows (only) data-free intermediate tests quickly
leads to an undecidable logic. We conclude in Section 6. Due to lack of space most proofs
are only sketched or even missing. They can be found in the full version of the paper [17].

Related work

We discussed many related papers above. Another approach, combining temporal and classical
logics, was studied in [14]. It allows to navigate by temporal operators and to evaluate
first-order formulas in states. Properties depending on values at different states can be stated
by global universal quantification of values. In [6] a first-order logic on multi-dimensional
data words was studied.

Acknowledgements

The idea to extend the temporal logic that is equivalent to two-variable logics by Until
operators (without reference to data) goes back to a suggestion by Mikołaj Bojanczyk [4].
We are also indebted to Volker Weber with whom we carried out first investigations before
he tragically passed away in 2009. The remarks by the reviewers of FSTTCS 2010 helped to
improve the presentation and to add some additional references.

2 Definitions

We first fix the data model and define BD-LTL afterwards. Finally we give an example that
illustrates the way in which properties can be expressed

2.1 Attributed words
Let PROP and AT T be (possibly infinite) sets of propositions and attributes and D an
infinite set of data values. An attributed word w is a finite word where every position carries
a finite set {p1, . . . , pl} of propositions from PROP and a finite set {(a1, d1), . . . , (ak, dk) |
ai 6= aj for i 6= j} of attribute-value pairs from AT T × D.

Given an attributed word w we denote the proposition set of position i in w by w[i].P.
A position i is a p-position if p ∈ w[i].P. By w[i].@a we denote the value of attribute a
on position i. If position i does not carry attribute a, then w[i].@a = nil /∈ D. The word
projection of an attributed word w = w1 . . . wn is defined by str(w) := w[1].P . . . w[n].P . By
posd(w) we denote the set of class positions of d in w, that is, the set of positions of w with

FSTTCS 2010

484 Temporal Logics on Words with Multiple Data Values

at least one attribute with value d. The class word classd(w) of w with respect to d is the
restriction of w to the positions of posd(w).

We always consider sets of words over some finite set P of propositions and a finite set V
of attributes2. We call an attributed word w V-complete for a finite set V ⊆ AT T if every
position of w has exactly one pair (a, da) for each a ∈ V. A {a}-complete word is called
1-attributed word . We refer to the value of attribute @a at a position i in a 1-attributed
word as the data value of i. There is an immediate correspondence between data strings
(that is, sequences of (symbol,value) pairs) and 1-attributed words. Thus, we use in this
paper automata and logics that were introduced for data strings also for 1-attributed words.

Attributed ω-words are defined accordingly.
For i, j ∈ N with i ≤ j we denote the interval {i, i+ 1, . . . j } by [i, j]. As usual we use

round brackets to denote open intervals, e.g., [3, 5) = {3, 4}.

2.2 Basic Data LTL
The logic Basic Data LTL (abbreviated: BD-LTL) has two main types of formulas, position
formulas and class formulas, where, intuitively, class formulas express properties of class words.
We first state the syntax of the logic and give an intuitive explanation of its non-standard
features afterwards.

We fix a finite set P ⊆ PROP of propositions and a finite set V ⊆ AT T of attributes.
The syntax of position formulas ϕ and class formulas ψ of BD-LTL (over P and V) are

defined as follows.

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | Yϕ | ϕUϕ | ϕSϕ | Cδ@aψ
ψ ::= ϕ | @a | ¬ψ | ψ ∨ ψ | X=ψ | Y=ψ | ψU= ψ | ψS=ψ

Here, p ∈ P, a ∈ V, δ ∈ Z. Intuitively, the quantifier C@aψ restricts the evaluation of ψ
to the class word induced by attribute a at the current position.

Next we define the formal semantics of position formulas. Let w be an attributed word
and i a position on w:

w, i |= p if p ∈ w[i].P;
w, i |= ¬ϕ if w, i 6|= ϕ;
w, i |= ϕ1 ∨ ϕ2 if w, i |= ϕ1 or w, i |= ϕ2;
w, i |= Xϕ if i+ 1 ≤ |w| and w, i+ 1 |= ϕ;
w, i |= ϕ1Uϕ2 if there exists a j ≥ i such that w, j |= ϕ2 and w, j′ |= ϕ1 for all j′ ∈ [i, j);
w, i |= Cδ@aψ if w[i].@a 6= nil, i+ δ ∈ [1, |w|], and w, i+ δ, w[i].@a |= ψ.

The operators Y and S are the past counterparts of X and U respectively. Their semantics is
defined analogously3.

Next, we define the semantics of class formulas. Let w be an attributed word, i a position
on w and d a data value.

w, i, d |= ϕ if w, i |= ϕ;
w, i, d |= @a if w[i].@a = d;
w, i, d |= X=ϕ if there exists a j ∈ posd(w) with j > i, and for the smallest such j it holds
w, j, d |= ϕ;

2 As we will use A for automata we use V here: Variables.
3 To avoid ambiguity: pSq holds if there is a q-position in the past and at the intermediate positions p

holds.

A. Kara, T. Schwentick, T. Zeume 485

w, i, d |= ϕ1 U= ϕ2 if there exists a j ∈ posd(w) with j ≥ i such that w, j, d |= ϕ2 and
w, k, d |= ϕ1 for all k ∈ posd(w) ∩ [i, j).

For the past class operators Y and S the semantics is defined analogously and the
semantics of the Boolean connectors is as usual. Finally, w |= ϕ, if w, 1 |= ϕ. We denote the
set of positional formulas by BD-LTL.

Besides ⊥ and > we use the following usual abbreviations:

Fϕ := >Uϕ Gϕ := ¬F¬ϕ Pϕ := >Sϕ Hϕ := ¬P¬ϕ

The abbreviations F= and G= and their past counterparts are defined analogously. Further-
more, we abbreviate Cδ@a@b by @a = Xδ@b.

2.3 Example: a simple client/server scenario
The following example illustrates how properties can be expressed in BD-LTL.

Consider an internet platform that uses m servers S1, . . . , Sm to process queries from
clients. Every client shall have a unique client number. As we do not know beforehand how
many clients will use the platform, we model the client numbers by the set D = N.

Each of the servers can either idle, be queried by a client or serve the answer for a
query. For server j, the actions are modeled by the set of propositions {qj , sj , ij}. Runs
of the internet platform can now be represented by an attributed word with attribute set
AT T = {S1, . . . , Sm} and set of propositions

⋃
1≤j≤m{qj , sj , ij}. That a server Sj shall

perform exactly one action from {qj , sj , ij} at any given time, can be easily expressed by a
BD-LTL-formula.

Let us look at an example system with three servers A, B and C. An example run
represented as an attributed word could look as follows.

Pos 1 2 3 4 5 6
Props {qA, qB , iC} {qA, qB , qC} {sA, qB , sC} {sA, sB , iC} {iA, sB , qC} {iA, sB , sC}
A 1 2 2 1 − −
B 2 3 4 2 3 4
C − 1 1 − 2 2

Here, e.g., at position 5 server A is idling, server B is serving client 3 and server C is queried
by client 2. Properties of runs can be expressed by BD-LTL formulas:

Queries are always served and a client can query a second time on a server only after the
previous query has been served:∧

Z∈{A,B,C}

G(qZ → C@Z(X=(@Z → ¬qZ) U=(@Z ∧ sZ)))

A server Z can serve a client only if there is an unanswered query by that client (i.e. the
last action by that client on Z was a query):∧

Z∈{A,B,C}

G(sZ → C@Z(Y=(¬@Z)S=(@Z ∧ qZ))))

A client with an open query on server A shall only be allowed to query server C until
server A answered the query:

G(qA → C@A(¬@B ∧X=((¬(qA ∧A) ∧ ¬(qB ∧B)) U= sA)))

FSTTCS 2010

486 Temporal Logics on Words with Multiple Data Values

3 Expressiveness of BD-LTL

In this section we will give a short overview of established logics on strings with data values
and outline how BD-LTL fits in. We give a short introduction to freeze LTL and CLTL�, see
[12] and [10] for more details. Afterwards we compare these two logics to BD-LTL.

3.1 BD-LTL versus LTL↓1
Freeze LTL is an extension of LTL for data words by a freeze quantifier that binds the data
value of the current position to a variable (aka register) and allows to compare the value of a
position with the value bound to a variable. Satisfiability for freeze LTL is undecidable even
for two registers [12], therefore [12] proposed the 1-register fragment LTL↓1. In the framework
of 1-attributed words, formulas of LTL↓1 are of the form

ϕ ::= p | ↓ϕ |↑| ¬ϕ | ϕ ∧ ϕ | Xϕ | Yϕ | ϕUϕ | ϕSϕ.

The formal semantics of LTL↓1 (on data strings) can be found in [12]. We illustrate it by a
simple example: the formula G(p→ ↓F(q ∧ ↑)) expresses that each p-position has a future
q-position with the same data value.

In [12], the fragment simple LTL↓1 was invented, where at most one temporal operator is
allowed between the the freeze quantifier ↓ and a value test ↑. Furthermore, only the unary
temporal operators Xk,Yk,XkF,YkP, k ∈ N are allowed. Here, XkF is considered a single
operator, that is ↓XkF↑ is an allowed formula. The relative expressive power of BD-LTL
and LTL↓1 can be summarized in the following two propositions.
I Proposition 1. Every property of 1-attributed words that is expressible in BD-LTL can
also be expressed in LTL↓1.
The statement also holds for all extensions of BD-LTL considered in Section 5. Note however,
that LTL↓1 is undecidable whereas BD-LTL and its main extension in Section 5 are decidable.
I Proposition 2. The following logics are equivalent on 1-attributed words
(i) Simple LTL↓1
(ii) BD-LTL without Until and Since extended by Fδ6= and Pδ6=.
Here, Fδ6=ϕ intuitively navigates to a future position of distance ≥ δ with a different data value
and evaluates ϕ there. In the notation of Section 5 it is an abbreviation for >Uδ

@a(@a ∧ ϕ).
Note, that an analogous operator F δ=ϕ for equal data values can be simulated by Cδ@aF=ϕ.
The proof of both propositions is straightforward and therefore omitted.

3.2 BD-LTL versus CLTL�

Temporal logic of repeating values (CLTL�) was introduced in [10]. CLTL�-formulas are
of the form ϕ ::= x = Xδy | x = �y | ϕ ∧ ϕ | ¬ϕ | Xϕ | ϕUϕ | Yϕ | ϕSϕ, where x, y
are from a set of variables. A CLTL�-formula with variables {x1, . . . , xm} is evaluated on
sequences of m-tuples of data values (without labels from a finite set) but the extension
to {x1, . . . , xm}-complete attributed strings is straightforward. A formula x = Xδy tests
whether component x of the current position has the same data value as component y of the
δ-next position. A formula x = �y is true if there is a (strict) future position with the same
data value on component y as the current position has on component x. The semantics of
all other operators is as usual. The following proposition is straightforward, since x = �y
and x = Xδy can be encoded by C0

@xX=F=@y and Cδ@x@y, respectively.
I Proposition 3. On {x1, . . . , xm}-complete attributed words BD-LTL is strictly more ex-
pressive than CLTL�.

A. Kara, T. Schwentick, T. Zeume 487

4 Decidability of Basic Data LTL

This section states the main decidability result for BD-LTL and undecidability results for
some of its extensions.

I Theorem 1. Satisfiability for BD-LTL is decidable.

The proof of this result proceeds in two main steps. First it is shown that the satisfiability
problem for arbitrary attributed words can be reduced to the case of 1-attributed words. A
similar reduction from the multi-attribute to the 1-attribute case (for a different logic) has
been given in [13]. For 1-attributed words, BD-LTL-formulas can be translated into data
automata [5] and thus the satisfiability problem for BD-LTL can be reduced to the decidable
non-emptiness problem for data automata.

In a nutshell, a data automaton A = (B, C) consists of a finite state transducer B (the
base automaton) and a finite state automaton C (the class automaton). The string projection
of a given 1-attributed word w is processed by the base automaton, firstly. Then the output
w′ of B is processed class-wise by the class automaton, i.e. C is run for every data value d on
the class word classd(w). A accepts w, if B accepts and C accepts all class words.

We give only a proof sketch, see the full version of this article for a detailed proof [17].

I Theorem 2. Satisfiability for BD-LTL on 1-attributed words is decidable.

Proof. (Sketch.)
Let ϕ be a BD-LTL formula over a proposition set P and the attribute set {a}.
In the following we often call 1-attributed words simply words. Our automata will

expect instead of words w over P extended words w′ with additional propositions. First,
w′ allows the subformulas of ϕ as propositions. The intention is that a position i of w′
is marked with ψ if and only if w, i |= ψ. Furthermore, we use propositions =r for every
r ∈ {−N, . . . ,−1, 1, . . . , N}, for some N that is at least as large as every δ occurring in ϕ.
Proposition =r shall hold at position i if and only if w[i].@a = w[i+ r].@a.

The data automaton A now checks whether those additional propositions are correct. A
is the intersection of data automata for the following conditions:

i) The propositions =r are placed correctly.
ii) Subformulas are placed correctly (i.e. position i is labeled with proposition ψ if and

only if ψ is fulfilled on position i).
iii) ϕ is placed on the first position

Condition iii) can be easily checked. Condition i) can be checked by a data automaton
[3].

For ii), a data automaton for every subformula ψ is constructed, assuming the correctness
of subformulas of ψ. Checking the correctness is straightforward for subformulas ψ of type p,
¬χ, χ ∨ χ, Xχ, Yχ, χUχ, χSχ. Basically, these formulas can be checked solely by the base
automaton. The construction is equally straightforward for all types of class formulas. In
these cases, basically only class automata are needed.

To deal with the δ-shift in formulas of the form Cδ@aψ we use the propositions =r. E.g.,
to validate propositions of the form ψ = C7

@aF=χ at position i, the class automaton Aψ
infers from the =r propositions how many positions the class word has between i and i+ 7,
then it skips these positions and starts searching for a χ-position from there.

J

Theorem 1 can be easily extended to the case of attributed attributed ω-words as in [5].

FSTTCS 2010

488 Temporal Logics on Words with Multiple Data Values

I Theorem 3. Satisfiability for BD-LTL on attributed ω-words is decidable.

Extensions of BD-LTL quickly yield undecidability. We consider two such extensions
here.

BD-LTL with Navigation along Tuples. We extend C@a to a quantifier C@a,@b that
‘freezes’ the values da and db of the attributes a and b, respectively. Operators X=,Y=,U=

and S= in the scope of C@a,@b then move along positions that have attributes with data
values da and db. At such positions the values of tuples of attributes can be tested for equality
with (da, db). For example the property ‘there is a future position with proposition p where
attribute c carries the same data value as attribute a at the current position, likewise for d
and b’ can be expressed by C@a,@bF

=((@c,@d) ∧ p).
However, already a restricted version of this extension is undecidable. We consider the

operators X@a,@b and Y@a,@b. Let the semantics of X@a,@b be defined by w, i |= X@a,@bϕ if
there is a j > i with w[i].@a = w[j].@a and w[i].@b = w[j].@b and for the smallest such j it
holds w, j |= ϕ. The operator Y@a,@b is defined analogously.

I Theorem 4. BD-LTL extended by the operators X@a,@b and Y@a,@b is undecidable on
finite (or infinite) attributed words.

The proof is along the lines of Proposition 27 in [5] by a reduction from the Post
Correspondence Problem (PCP).

BD-LTL with From-Now-On Operator. The from-now-on-operator N introduced in [18]
restricts the range of past operators. For an attributed word w = w1 . . . wn and a position i
of w let sufi(w) := wi . . . wn be the suffix of w starting at position i. The semantics of N is
then defined by

w, i |= Nϕ if sufi(w), 1 |= ϕ

I Theorem 5. BD-LTL extended by the operator N is undecidable on finite (or infinite)
attributed words.

The proof is by a reduction from the non-emptiness problem for Minsky two counter automata
[21].

5 Extended Navigation

As already discussed before, the navigational abilities of BD-LTL are limited. It seemingly
cannot4 even express the simple property that for every p-position i there is a q-position
j > i such that w[j].@b 6= w[i].@a. Furthermore, in class formulas ρU=τ , the formula ρ can
only refer to positions of the current class. Of course, it would be desirable to allow more
general forms of “Until navigation”.

In this section we discuss different possibilities to extend the navigational abilities of
BD-LTL in an “Until fashion”, some of which are decidable and some undecidable. In
particular, we exhibit an U-operator with the ability to navigate to a position with a
different attribute value and to state some properties on (all) intermediate positions and show
that BD-LTL remains decidable with this extension. The property stated in the previous
paragraph can be expressed using this operator.

The extensions we study allow formulas of the type ρUδ
@aτ , where δ ≥ 0. Intuitively, this

operator “freezes” the current value of attribute a and searches for a position j such that τ

4 We did not attempt to find a proof for this statement as we were aiming for an extended logic, anyway.
However, we did not find a simple way to express the property.

A. Kara, T. Schwentick, T. Zeume 489

holds at j and ρ hold everywhere in [i+ δ, j). In formulas as above, we will refer to ρ as the
intermediate formula and τ as the target formula. The “shift” parameter δ is needed as we
aim to design a semantic extension of simple LTL↓1.

Syntactically, the formulas ρ and τ are positive Boolean combinations of position formulas
and positive and negative attribute tests. More formally, we define the syntax of U-subformulas
χ by χ ::= ϕ | @b | @b | χ ∨ χ | χ ∧ χ. Intuitively, negative attribute tests @b check that
attribute b has a value (!) that is different from the current frozen value.

Thus, the semantics of formulas ρUδ
@aτ , where ρ and τ are U -subformulas, is defined by

the following additional rules.
w, i |= ρUδ

@aτ if there exists a j ≥ i+ δ such that w, j, w[i].@a |= τ and w, k, w[i].@a |= ρ

for all k ∈ [i+ δ, j)
w, i, d |= @b if w[i].@b 6∈ {nil, d}.

We simply use U@a instead of U0
@a. We remark that ρU−δ@aτ , for δ ≥ 0 can be expressed by

(ρU@a τ ∧
∧δ
i=1 ρi)∨(

∨δ
j=1(τj ∧

∧δ
i=j+1 ρi)), where, for k ∈ [1, δ], ρk and τk are obtained from

ρ and τ , respectively, by replacing every position formula ϕ by Ykϕ, every @b by @a = Y k@b
and every @b by ¬@a = Y k@b. It can be observed that this formula has the intended
meaning (that is, the semantics obtained by using −δ in the above semantics definition).
ρS@aτ is defined analogously.

First of all, we will see that the above mentioned restriction for class formulas ρU=τ is
indeed crucial. More precisely, if we allow positive attribute tests in the target formula of a
formula ρU@a τ then the logic becomes undecidable even if the intermediate formulas are
restricted to position formulas.

I Theorem 6. Let L denote the extension of BD-LTL by the formation rule ϕ ::= χU@a χ,
where χ denotes U-subformulas such that

all intermediate formulas are position formulas and
all target formulas are of the form @a ∧ ϕ with a position formula ϕ.

Then, satisfiability of L on finite (or infinite) attributed words is undecidable. This holds
even for 1-attributed words.

The proof is again by a reduction from the non-emptiness problem for Minsky two counter
automata [21]. As Theorem 6 does not leave much room for extensions of U@a operators
with positive attribute tests in the target formula we focus on negative attribute tests in
target formulas. However, as ρUδ

@a(τ1 ∨ τ2) ≡ (ρUδ
@aτ1) ∨ (ρU@a τ2) and position formulas

are closed under conjunctions it is clearly sufficient to consider target formulas of the form
ϕ ∧@b1 ∧ · · · ∧@bk. Unfortunately, at this point our techniques can only deal with the case
k = 1.

We turn our attention now to the intermediate formulas ρ. We recall that in the case of
positive attribute tests in target formulas even position formulas as intermediate formulas
yield undecidability. In the case of (single) negative attribute tests in target formulas we can
allow arbitrary intermediate position formulas.

Furthermore, we can add positive and negative attribute tests, but only in a limited
way. More precisely, we define the logic XD-LTL by adding ϕ ::= χUδ

@aχ
′ | χSδ@aχ′, to the

formation rules of BD-LTL and requiring that

1. χ is restricted to formulas of the form ρ∨ (@b∧ ρ=)∨ (@b∧ ρ 6=) where ρ=, ρ6= are position
formulas and ρ 6= logically implies5 ρ=, and

5 Readers who prefer a syntactical criterion might think of a formula ρ= of the form ϕ ∨ ρ6=.

FSTTCS 2010

490 Temporal Logics on Words with Multiple Data Values

2. χ′ is restricted to formulas of the form @b ∧ τ , where τ is a position formula.

Intuitively, ρ= constrains positions where @b equals the current value of @a whereas ρ 6=
constrains those where it does not. The requirement that ρ6= implies ρ= is needed for the
proof of Theorem 8.

Clearly XD-LTL strictly extends BD-LTL and is contained in LTL↓1. Further it strictly
extends two-variable logic on 1-attributed words.

Following the general idea of the decidability proof for BD-LTL we first show decidability
of satisfiability for 1-attributed words and reduce the general case to this one.

I Theorem 7. Satisfiability for XD-LTL on finite 1-attributed words is decidable.

Proof. (Sketch.) The proof basically extends the proof of Theorem 2 for formulas of type
ψ = (@a ∧ ρ=) ∨ (@a ∧ ρ6=)Uδ

@a(@a ∧ τ). Note that in the case of 1-attributed words, any
additional disjunct ρ in the intermediate formula can be pushed into the disjunction by or-ing
it with both ρ= and ρ 6=.

For a given position i with data value d fulfilling w, i |= ψ we call the minimal position j
that fulfills ρ6= and has a data value different from d, the ψ-shepherd for i. We write H(j) for
the herd of j, that is the set of positions for which j is a ψ-shepherd. With each τ -position j
we associate a set S(j) of special positions. Roughly speaking, if i is in the herd of j, then
positions in [i, j) with the same data value as i are special. The special interval I(j) for a
shepherd j is the minimal interval containing S(j). Two crucial observations are that (1) all
positions in S(j) have the same data value and (2) |I(j) ∩ I(j′)| ≤ δ for j 6= j′.

In a nutshell, the idea for the construction of the data automaton for ψ is as follows.
Besides the propositions for the subformulas, we use further propositions of the form H, e+

and e− with the intention that for each shepherd marked by τ , the end points of the special
interval are marked by e+ and e−, respectively, and all positions in H(j) are marked by H.

As we are testing satisfiability, we can safely assume that all those propositions are already
present in the input word, but their consistency has to be verified by the automaton. The
automaton then checks that for each τ -position j the corresponding e+- and e−-positions are
as intended. Further it guesses and checks all other positions in S(j). Finally consistency of
H- and τ -positions is verified.

As for BD-LTL, special attention is needed for δ 6= 0. For the detailed proof, we refer the
reader to the full version of the paper [17].

J

By a straightforward extension of the proof of Theorem 1 we get the following.

I Theorem 8. Satisfiability for XD-LTL on finite attributed words is decidable.

6 Conclusion

We conclude by stating some questions that should be investigated further. We would be
interested to understand the exact border of undecidability. At this point, it is not exactly
clear which kinds of intermediate and target formulas can be allowed for Uδ

@a. It would also
be interesting to compare our logics with other logics that can deal with values, particularly
with guarded LTL-FO of [14]. Further investigations could try to identify fragments with
more reasonable complexity and try to add more arithmetics to the data domain.

A. Kara, T. Schwentick, T. Zeume 491

References
1 R. Alur and T. A. Henzinger. A really temporal logic. J. ACM, 41(1):181–204, 1994.
2 T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. D. Zuck. Parameterized verification with

automatically computed inductive assertions. In CAV, volume 2620 of Lecture Notes in
Computer Science, pages 221–234, 2001.

3 H. Björklund and T. Schwentick. On notions of regularity for data languages. Theor.
Comput. Sci., 411(4-5):702–715, 2010.

4 M. Bojanczyk. Personal communication, 2006.
5 M. Bojanczyk, A. Muscholl, T. Schwentick, L. Segoufin, and C. David. Two-variable logic

on words with data. In LICS, pages 7–16. IEEE Computer Society, 2006.
6 A. Bouajjani, P. Habermehl, Y. Jurski, and M. Sighireanu. Rewriting systems with data. In

Fundamentals of Computation Theory, volume 4639 of Lecture Notes in Computer Science,
pages 1–22. Springer Berlin / Heidelberg, 2007.

7 P. Bouyer. A logical characterization of data languages. Inf. Process. Lett., 84(2):75–85,
2002.

8 P. Bouyer, A. Petit, and D. Therien. An algebraic approach to data languages and timed
languages. Inf. Comput., 182(2):137–162, 2003.

9 S. Demri. LTL over integer periodicity constraints. In FoSSaCS, pages 121–135, 2004.
10 S. Demri, D. D’Souza, and R. Gascon. A decidable temporal logic of repeating values. In

S. N. Artëmov and A. Nerode, editors, LFCS, volume 4514 of Lecture Notes in Computer
Science, pages 180–194. Springer, 2007.

11 S. Demri and R. Lazic. LTL with the freeze quantifier and register automata. In LICS
’06: Proceedings of the 21st Annual IEEE Symposium on Logic in Computer Science, pages
17–26, Washington, DC, USA, 2006. IEEE Computer Society.

12 S. Demri and R. Lazic. LTL with the freeze quantifier and register automata. ACM Trans.
Comput. Log., 10(3), 2009.

13 S. Demri, R. Lazić, and D. Nowak. On the freeze quantifier in constraint LTL: Decidability
and complexity. Inf. Comput., 205(1):2–24, 2007.

14 A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic verification of data-centric
business processes. In ICDT, pages 252–267, 2009.

15 D. Figueira and L. Segoufin. Future-looking logics on data words and trees. In R. Královic
and D. Niwinski, editors, MFCS, volume 5734 of Lecture Notes in Computer Science, pages
331–343. Springer, 2009.

16 M. Kaminski and N. Francez. Finite-memory automata. Theor. Comput. Sci., 134(2):329–
363, 1994.

17 A. Kara, T. Schwentick, and T. Zeume. Temporal logics on words with multiple data values.
Available from arXiv:1010.1139, 2010.

18 F. Laroussinie and P. Schnoebelen. A hierarchy of temporal logics with past. Theor.
Comput. Sci., 148(2):303–324, 1995.

19 A. Lisitsa and I. Potapov. Temporal logic with predicate lambda-abstraction. In TIME
2005, pages 147–155, 2005.

20 A. Manuel. Two orders and two variables. In MFCS, volume 6281 of Lecture Notes in
Computer Science, pages 513–524, 2010.

21 M. L. Minsky. Computation: finite and infinite machines. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1967.

22 F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Log., 5(3):403–435, 2004.

23 T. Schwentick and T. Zeume. Two-variable logic with two order relations. In CSL, volume
6247 of Lecture Notes in Computer Science, pages 499–513, 2010.

FSTTCS 2010

492 Temporal Logics on Words with Multiple Data Values

24 T. Tan. On pebble automata for data languages with decidable emptiness problem. In
MFCS, volume 5734 of Lecture Notes in Computer Science, pages 712–723, 2009.

First-Order Logic with Reachability Predicates on
Infinite Systems
Stefan Schulz

Lehrstuhl für Informatik 7, RWTH Aachen, 52056 Aachen, Germany

Abstract
This paper focuses on first-order logic (FO) extended by reachability predicates such that the
expressiveness and hence decidability properties lie between FO and monadic second-order logic
(MSO): in FO(R) one can demand that a node is reachably from another by some sequence of
edges, whereas in FO(Reg) a regular set of allowed edge sequences can be given additionally.
We study FO(Reg) logic in infinite grid-like structures which are important in verification. The
decidability of logics between FO and MSO on those simple structures turns out to be sensitive
to various parameters. Furthermore we introduce a transformation for infinite graphs called set-
based unfolding which is based on an idea of Lohrey and Ondrusch. It allows to transfer the
decidability of MSO to FO(Reg) onto the class of transformed structures. Finally we extend
regular ground tree rewriting with a skeleton tree. We show that graphs specified in this way
coincide with those expressible by vertex replacement and product operators. This allows to
extend decidability results of Colcombet for FO(R) to those graphs.

Keywords and phrases First-Order Logic, Reachability, Infinite Grid, Structure Transformation,
Unfolding, Ground Tree Rewriting, Vertex Replacement with Product

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.493

1 Introduction

The general task in verification is to check whether an infinite graph structure satisfies
a given specification, which is usually expressed by a logical formula in the fundamental
first-order (FO) or monadic second-order (MSO) logic. These logics are well-studied and
over the years many classes of infinite structures have been identified where the theory of
one of these logics is decidable. The most prominent examples are automatic structures
[13, 15, 2] like Presburger arithmetic (N, 0, 1,+) for FO, and natural numbers with successor
(N,S) by Büchi [3] and the binary tree ({0, 1}∗,S1,S2) by Rabin [20] for MSO. In verification
one often specifies properties dealing with reachability in graph structures. These cannot
be expressed in FO logic. One could switch to MSO logic which comes at the expense of
worse decidability properties. To overcome this problem we consider FO logic extended
by reachability predicates. In FO(R) logic these predicates express that some element is
reachable from another by using a subset of the available edge relations. In FO(Reg) logic one
can express reachability by sequences of edge relations which form a regular language. Both
logics lie strictly between FO and MSO according to their expressiveness and decidability.

In Section 3 we mainly study the decidability of FO(Reg) logic on infinite grids. Although
they look simple one can express strong properties by formulas which makes them interesting
for verification. Furthermore FO logic is known to be decidable whereas MSO logic is
undecidable. We consider an n-dimensional grid to be a structure having Nn as domain
and a successor and predecessor relation for each dimension. The decidability of FO(Reg)
logic turns out to be sensitive to the various parameters, which is mostly inherited from
important, closely related formalisms like Petri nets, vector addition systems, pushdown
automata, register machines, and logic over arithmetic. Furthermore we extend studies of

© Stefan Schulz;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 493–504

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.493
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

494 First-Order Logic with Reachability Predicates on Infinite Systems

Wöhrle and Thomas [21] about FO logic extended by an operator for transitive closure,
which reveals interesting parallels to the situation of FO(Reg) logic.

A generic way of generating structures having some particular decidable logic is by
structure transformation. A standard transformation is interpretation where a new structure
is defined by specifying its domain and relations by formulas. It preserves the decidability of
FO or MSO logic, respectively, when the formulas come from this logic. Another approach for
graph structures is unfolding where the new structure is the tree of all finite paths starting in
a given initial vertex in the original structure. This transformation preserves the decidability
of MSO logic [10]. In Section 4 we define set-based unfolding which is an abstraction of
unfolding. It does not preserve the decidability of full MSO logic but FO(Reg) logic is
decidable anyhow. The idea for this transformation goes back to a construction of Lohrey
and Ondrusch [18]. Thus set-based unfolding is such a type of transformation, which maps
the decidability of one particular logic to the decidability of a weaker logic. Another example
of such a transformation is finite set interpretation by Colcombet and Löding [9] which maps
decidability of weak MSO logic to FO logic in the resulting structure.

Lastly in Section 5 we extending an equivalence result for a class of graphs where FO(R)
logic is decidable. The first way to describe this class is by regular ground tree rewriting
(RGTR) systems, where the domain is given as a set of finite trees and edge relations are
induced by rewriting rules which replace a subtree by another. The decidability of FO(R)
logic on RGTR graphs was shown by a transformation to tree automata and tree transducers
[11]. The second formalism is completely differently motivated and describes graphs by
operations on colored graphs: the vertex replacement and product (VRP) operators. Usually
those operators are aligned in a (possibly infinite) tree, called the VRP tree, and specify the
graph which is its least fixed point. Colcombet [7, 8] showed RGTR graphs to be equivalent
to graphs represented by regular VRP trees. He furthermore showed the FO(R) theory to
be decidable for graphs of VRP trees with decidable MSO theory. With this motivation
we extend RGTR to regular skeleton ground tree rewriting (RSGTR) by adding a usually
infinite skeleton tree and obtain the equivalence to graphs of arbitrary VRP trees. The
transformation furthermore preserves decidability of MSO logic of the VRP tree and skeleton
tree, which makes the FO(R) theory of RSGTR graphs decidable if the skeleton has a
decidable MSO theory.

2 Preliminaries

We use the following notations for intervals of integers: Z ∶= (−∞,∞) and N ∶= [0,∞). By
℘(S) we denote the powerset of a set S. Let Σ be an alphabet, i.e., a finite set of symbols,
then Σ∗ is the set of words over Σ, i.e., finite sequences of its symbols, and a language is a set
of words. The number of occurrences of a symbol σ ∈ Σ in a word w is ∣w∣σ ∈N, the length
of w is ∣w∣ ∈N and the empty word ε is the word of length ∣ε∣ = 0. We assume the reader to
be familiar with regular languages, i.e., the languages specified by regular expressions or
equivalently by finite automata.

A structure A = (A, (fi)i∈f, (Ri)i∈R) consists of a (possibly infinite) domain A, functions
fi ∶ Ani → A and relations Ri ⊆ Ami each of arity ni and mi, respectively. A relational
structure has only relations, and it is a graph structure if all relations are of arity 1 or 2. We
consider only structures with finitely many functions and relations. An equivalence relation
∼ ⊆ A ×A is a congruence on a relational structure A = (A, (Ri)i∈R) if Ri(x1, . . . , xmi)⇔
Ri(y1, . . . , ymi) for all Ri and x1 ∼ y1, . . . , xmi ∼ ymi . Its quotient A/∼ = (A′, (R′

i)i∈R)
is defined as A′ ∶= { [x] ∣ x ∈ A} and ([x1], . . . , [xmi]) ∈ R′

i ∶⇔ (x1, . . . , xmi) ∈ Ri with

Stefan Schulz 495

[x] ∶= { y ∣ y ∼ x}.
With first-order (FO) logic one can specify properties of a structure by using terms of

variables (x, y, z, . . .) and functions (fi), comparing terms (=,Ri), quantifying elements (∃,∀)
and its boolean combinations (¬,∧,∨,→). Monadic second-order (MSO) logic additionally
allows quantification over element sets (X,Y,Z, . . .) and using them as unary relations. Weak
MSO (WMSO) logic is a variant which only quantifies over finite sets. The theory of a
logic and a structure is the set of formulas of that logic which have no free variables and
hold in the structure. The property that an element can be reached from another in some
graph structure can be expressed in MSO and WMSO logic but not in FO logic. For a
graph structure G = (V, (Pγ)γ∈Γ, (Eσ)σ∈Σ) we define FO(Reg) logic to be the extension of FO
logic by regular reachability predicates reachL(x, y), for variables x, y and a regular language
L ⊆ Σ∗ (finitely represented by a regular expression or finite automaton), meaning that
position y can be reached from position x by some sequence of edges Eσ1 , . . . ,Eσn such that
σ1⋯σn ∈ L. Let FO(R) logic be its restriction to simple reachability predicates reachΣ∗0(x, y)
with Σ0 ⊆ Σ. Reachability predicates can be expressed in MSO and WMSO logic by induction
on the operators of a regular expression for the language of the predicate. It uses the fact
that the transitive closure is expressible in MSO and WMSO. The expressiveness of the
above logics increases as follows:

FO ≤ FO(R) ≤ FO(Reg) ≤ { MSO
WMSO

Note that WMSO is usually a sublogic of MSO since finiteness is MSO-definable in most
standard structures. FO(Reg) logic over G can furthermore be identified with FO logic over
(V, (Pγ)γ∈Γ, (EL)L⊆Σ∗,L regular), i.e., reachability is considered only with respect to the edge
relations instead of arbitrary FO-definable relations (analogous for FO(R) logic).

3 Reachability in Infinite Grids

We consider the n-dimensional infinite grid Nn ∶= (Nn, (Si, S̄i)1≤i≤n) to be the n-th product
of the natural numbers N = (N,S, S̄) with successor and predecessor, i.e., Si and S̄i are the
successor and predecessor relation of dimension i. The MSO theory is known to be decidable
for N [3] but undecidable for its products. By using Büchi’s result about the decidability of
Presburger arithmetic, i.e., the FO theory of (N,0,1,+), one can easily see that the FO(R)
theory is decidable for grids Nn of any dimension n. For this reason we study the situation
for FO(Reg) logic, which reveals an interesting phenomenon.

▸ Theorem 1. The FO(Reg) theory of N 2 is decidable.

Proof. We reduce this theory to Presburger arithmetic. To this end we transform a given
FO(Reg) formula over N 2 into an equivalent Presburger formula by interpreting each grid
position x = (x1, x2) ∈ N2 as numbers x1, x2 ∈ N. Then the standard FO operators can be
transformed straightforward. It remains to express a reachability predicate reachL(x, y) as
Presburger formula, which we will do by use of vector addition systems with states (VASS).

A 2-dimensional VASS V = (Q,∆) consists of a finite state set Q and a finite transition
relation ∆ ⊆ Q × Z2 × Q. For states p, q ∈ Q we define the reachability relation Rp,q ⊆
(N2)2 consisting of all (x, y) ∈ (N2)2 such that there exist sequences z0, . . . , zk ∈ N2 and
(q0, d0, q1), . . . , (qk−1, dk, qk) ∈ ∆ with x = z0, zk = y, p = q0, qk = q and zi = zi−1 + di for all
i ∈ {1, . . . , k}. For a reachability predicate reachL(x, y) with language L = L(A) of some
automaton A = (Q,{S1, S̄1,S2, S̄2}, δ, q0, F) we define the VASS (Q,∆) with (p, ei, q) ∈ ∆ iff

FSTTCS 2010

496 First-Order Logic with Reachability Predicates on Infinite Systems

S1

S2

x=2 y=3 z=5

(y, y) (x+y, y)

0

(S1⋅S2)
∗

S∗2

(S1⋅S2)
∗

S∗1

S∗2

(a) Geometric addition x + y = z

S2

S3

n=40

t(4) = 10

(b) Geometric multiplication simulated
by the function t(n) ∶= n ⋅ (n + 1) ÷ 2

Figure 1 Arithmetic in the grid by: simulating addition and multiplication

δ(p,Si) = q, and (p,−ei, q) ∈ ∆ iff δ(p, S̄i) = q where e1 ∶= (1,0) and e2 ∶= (0,1). It is obvious
from the construction, that for x, y ∈ N2 in the grid reachL(x, y) holds iff (x, y) ∈ Rq0,qf

for some qf ∈ F . Now we can make use of a result from Leroux and Sutre [16], stating
that for any two states p, q of a 2-dimensional VASS the reachability relation Rp,q ⊆ (N2)2

is semi-linear (when identifying (N2)2 with N4), i.e., a finite union of linear sets. Hence,
⋃qf ∈F Rq0,qf

is the relation defined by reachL(x, y), which is still semi-linear (over N4). This
finishes the proof since semi-linear sets are effectively equivalent to the sets definable in
Presburger arithmetic [12]. ◂

If we consider the simpler model of the grid Nn
+ = (Nn, (Si)1≤i≤n) with only successor

relations Si, then the FO(Reg) theory is decidable for any dimension. This can be proven
similarly to the above theorem by reducing a reachability predicate reachL(x, y) to its Parikh
image { (∣w∣S1 , . . . , ∣w∣Sn) ∣ w ∈ L} ⊆ Nn, i.e., the tuples of occurrences of each symbol in
words of L, which is effectively semi-linear for any n [19]. On the other hand the proof of
Theorem 1 cannot be extended to dimension 3 as in this case the semi-linearity is not present
any longer [14]. The next result shows the sharpness of Theorem 1.

▸ Theorem 2. The FO(Reg) theory of N 3 is undecidable.

Proof. We reduce the FO arithmetic, i.e., the FO theory of (N,0,1,+, ⋅), which is known
to be undecidable, to the considered theory. Thus we transform a given FO formula over
the arithmetic into an equivalent FO(Reg) formula over N 3 by encoding a number n ∈N as
grid position (n,0,0) ∈N3. W.l.o.g. we treat the arithmetic as relational, i.e., with relations
0,1 ⊆ N1 and +, ⋅ ⊆ N3. It is easy to transform the standard FO operators as well as the
relations 0 and 1. Thus only the relations + and ⋅ are remaining.

The addition x+ y = z can be defined geometrically in the grid as motivated in Fig. 1a by
finding intersection points along horizontal, vertical and diagonal lines:

ψ+(x, y, z) ∶= ∃y′, z′ (reach(S1 ⋅S2)∗(0, y
′) ∧ reachS∗2

(y, y′) ∧
reach(S1 ⋅S2)∗(x, z

′) ∧ reachS∗2
(z, z′) ∧ reachS∗1

(y′, z′)).

We reduce the multiplication to addition and the triangle function t(n) ∶= n ⋅ (n + 1) ÷ 2
since x ⋅ y = z iff t(x + y) = t(x) + t(y) + z. Figure 1b geometrically motivates t(n) =
∣{ (i, j) ∈N2 ∣ i + j < n}∣ as the number of positions in the triangle below (n, 0) in the plane.
It further shows a path along the counterdiagonals with length exactly t(n). To lift the input

Stefan Schulz 497

from (n,0,0) to the starting point (0, n,0) in the plane of the second and third dimension,
we have to swap the position of the input n ∈ N, which is done by a path of the language
L′ ∶= (S̄1 ⋅ S2)∗. Then the counterdiagonal path can be described by the language

L′′ ∶= ((S1 ⋅ S̄2) ⋅ (S1 ⋅ S̄2 ⋅ S3)∗ + (S1 ⋅ S̄3) ⋅ (S1 ⋅ S2 ⋅ S̄3)∗)
∗

where the first dimension is used to count the length of the path. Now we can define t(n) to
be the maximal first component that is reachable by L ∶= L′ ⋅L′′ from (n,0,0):

ψt(x, y) ∶= reachL(x, y) ∧ ∀y′ (reachL(x, y′)→ reach(S1+S̄2+S̄3)∗
(y′, y)).

This guarantees that the path turns only at border positions, i.e., from x = (n,0,0) one
reaches (0, n,0) by L′ and then y = (t(n),0,0) by L′′. For the correctness it is obvious that
n ≤ t(n) for all n ∈N, and that taking a shortcut in L′ or L′′ yields a smaller result. ◂

By a reduction to the FO arithmetic, we showed the FO(Reg) theory of N 3 to be highly
undecidable as well: each set of the arithmetical hierarchy (which consists of the sets definable
in FO arithmetic) can be reduced to it. This fact makes it surprising that the same logic is
decidable in the 2-dimensional case (cf. Theorem 1) anyhow. The hardness is introduced by
the limitation of natural numbers, i.e., the boundedness in one direction. One can easily show
the FO(Reg) theory of the grid Zn ∶= (Zn, (Si, S̄i)1≤i≤n) to be decidable by using Parikh
images again.

We end this section with a digression on FO(TC)(1), i.e., FO logic extended by an operator
for the transitive closure (TC) of FO(TC)(1)-definable binary relations. Here we consider two
variants which are powerful enough: FO(TC)1

(1) is FO logic with TC only for FO-definable
relations, and FO(TC)2

(1) is FO logic with TC only for FO(TC)1
(1)-definable relations, i.e.,

the TC operator can not be nested, or at most once, respectively. Their expressiveness stays
below MSO and WMSO on grid structures (without proof):

FO ≤ FO(R) ≤ { FO(Reg)
FO(TC)1

(1)
} ≤ FO(TC)2

(1) ≤ FO(TC)(1) ≤ { MSO
WMSO

Wöhrle and Thomas [21] studied the decidability of these logics on the 2-dimensional grid.
They showed the FO(TC)1

(1) theory of N 2 to be decidable by a reduction to Presburger
arithmetic, and the FO(TC)2

(1) theory of N 2 to be highly undecidable by reducing FO
arithmetic. By copying the proof of Theorem 2 one can furthermore show the FO(TC)1

(1)
theory of N 3 to be highly undecidable as well. It is interesting to observe the same
phenomenon that the logic changes from being decidable to highly undecidable between
dimension 2 and 3.

4 Set-Based Unfolding

The unfolding (or unraveling) Unfv0(G) of a graph structure G is a tree, the vertices of which
are finite paths of G starting at the initial vertex v0. The relations are inherited from G:
unary relations are set according to the last vertex of a path, and edge relations are used to
extend paths, i.e., following an edge of the last vertex. Courcelle and Walukiewicz [10] have
shown that Unfv0(G) preserves the decidability of MSO logic of G for any initial vertex v0
that is MSO-definable in G.

We present a model-theoretic structure transformation which is similar to the unfolding
and preserves some logic decidability too. Instead of having finite paths as domain, we
abstract each such path v0Eσ1v1 . . .Eσnvn to the trace (vn,{v0, v1, . . . , vn}), in which vn is
the last vertex and {v0, v1, . . . , vn} is the (finite) set of visited vertices of the path:

FSTTCS 2010

498 First-Order Logic with Reachability Predicates on Infinite Systems

(0,{0}) ⋯

⋯

⋯

⋯

(1,{0, 1})

(0,{0, 1})

(−1,{−1, 0})

(0,{−1, 0}) (1,{−1, 0, 1})

(0,{−1, 0, 1})

(−1,{−1, 0, 1})

P0

P0

P0

P0

S
S̄

S
S̄

S
S̄

S
S̄

S S

S S
S̄

S̄

S̄

S̄

Figure 2 Set-based unfolding SetUnf0(Z) of the structure Z = (Z, P0,S, S̄)

▸ Definition 3. Let G = (V, (Pγ)γ∈Γ, (Eσ)σ∈Σ) be a graph structure with unary and binary
relations Pγ and Eσ, respectively. For some set of initial traces I ⊆ V × ℘(V), i.e., for each
(v, V0) ∈ I: V0 is finite and v ∈ V0, the set-based unfolding SetUnfI(G) of G from I is the
graph structure (V ′, (P ′

γ)γ∈Γ, (E′
σ)σ∈Σ) with

1. domain V ′ ⊆ V × ℘(V) being the smallest set of traces which contains I, and for all
σ, v, v′, V0 if (v, V0) ∈ V ′ and (v, v′) ∈ Eσ then (v, V0 ∪ {v′}) ∈ V ′,

2. predicates (v, V0) ∈ P ′
γ iff v ∈ Pγ , and

3. edges ((v, V0), (v′, V ′
0)) ∈ E′

σ iff (v, v′) ∈ Eσ and V ′
0 = V0 ∪ {v′}.

We abbreviate SetUnfv0(G) for SetUnf{(v0,{v0})}(G) with the initial trace (v0,{v0}) rep-
resenting some v0 in G. Note that SetUnfv0(G) may not be a tree in contrast to Unfv0(G):

▸ Example 4 (Free group and free inverse monoid). Consider the graph structure Z =
(Z, P0,S, S̄) with unary relation for 0, successor and predecessor relation, which is isomorphic
to the free group FG({S}) of the singleton alphabet {S}. Its set-based unfolding SetUnf0(Z)
from vertex 0 yields the structure depicted in Fig. 2, which is isomorphic to the free inverse
monoid FIM({S}) of the same alphabet.

▸ Theorem 5. The FO(Reg) theory of a quotient SetUnfI(G)/∼ is decidable, if the MSO
theory of the graph G is decidable and the set I of initial traces, the congruence ∼, as well as
finiteness are MSO-definable in G.

Proof. This proof is based on one from Lohrey and Ondrusch [18]. It goes by interpretation,
i.e., each FO(Reg) formula ϕ over SetUnfI(G)/∼ can be transformed effectively into an
equivalent MSO formula ϕ̂ over G. Thereby each trace of SetUnfI(G) is encoded in G by a
tuple (x,X) of a position and a set variable. Given formulas ψI(x,X) for the initial traces,
and ψ∼(x,X, y, Y) for the congruence, we define the transformation ϕ̂ of ϕ inductively:

x̂ = y ∶= ψ∼(x,X, y, Y) ¬̂ϕ ∶= ¬ϕ̂
P̂γ(x) ∶= Pγ(x) ϕ̂ ∨ ψ ∶= ϕ̂ ∨ ψ̂
̂Eσ(x, y) ∶= ̂reachσ(x, y) ∃̂xϕ ∶= ∃x∃X (ϕ̂ ∧ ψdom(x,X))

̂reachL(x, y) ∶= ∃y′ ∃Y ′, Z (ReachL(x, y′, Z) ∧ (Y ′ =X ∪Z) ∧ ψ∼(y, Y, y′, Y ′) ∧ ψdom(y′, Y ′))

Stefan Schulz 499

where ψdom(x,X) ∶= ∃y ∃Y,Z (ψI(y, Y) ∧ ReachΣ∗(y, x,Z) ∧ (X = Y ∪ Z)) is the domain
formula, and ReachL(x, y,Z) is an extended reachability predicate stating that y is reachable
from x by a path labeled by some word in L and exactly visiting the vertices Z, which was
shown to be MSO-definable [18] since finiteness is MSO-definable in G. The transformation
of the reachability predicate is correct since the congruence ∼ also applies to finite paths,
and hence reachability, i.e., (x,X) reaches (y, Y) by some edge sequence iff (x′,X ′) reaches
(y′, Y ′) by the very same sequence for all traces (x,X) ∼ (x′,X ′), (y, Y) ∼ (y′, Y ′). ◂

The main result is a simpler version of this theorem with equality as trivial congruence:

▸ Corollary 6. The FO(Reg) theory of SetUnfv0(G) is decidable if the MSO theory of the
graph G is decidable and the vertex v0, as well as finiteness are MSO-definable in G.

This reads similar to the preservation of MSO-decidability for unfolding [10] although it is
a weaker result. On the other hand Example 4 demonstrates the sharpness of Corollary 6. The
structure Z = (Z, P0,S, S̄) has a decidable MSO theory [3] and finiteness is MSO-definable in
Z. Thus SetUnf0(Z) has a decidable FO(Reg) theory whereas the MSO theory is undecidable
(by interpretation of the infinite grid [4]). Note that the results of this section also apply to
WMSO, respectively. A good usage of set-based unfolding would be the Caucal hierarchy
[6], which is a strict hierarchy of graph structures obtained by alternately unfolding and
MSO-interpreting the class of finite graphs1, since all such graphs have decidable MSO and
WMSO theories [6, 17].

5 Regular Ground Tree Rewriting with Skeleton

We are dealing with trees over a ranked alphabet Σ, i.e., each symbol f ∈ Σ has a certain
arity or rank ∣f ∣ ∈ N. A tree t = f(t1, . . . , t∣f ∣) has a symbol f ∈ Σ at its root and each ti
is a tree again. We can view t as a (partial) function, which maps its domain dom(t) ∶=
{ε} ∪⋃1≤i≤∣f ∣ (i ⋅ dom(ti)) ⊆ N∗ to Σ with t(ε) ∶= f and t(i ⋅w) ∶= ti(w) for 1 ≤ i ≤ ∣f ∣. The
subtree t∣v of t at a position v ∈ dom(t) is defined as t∣v(w) = t(v ⋅ w). A tree is infinite
if its domain is infinite, and it is furthermore regular if it has only finitely many different
subtrees. We can view t also as a graph structure (dom(t), (Ei)1≤i≤∣f ∣,f∈Σ, (Pf)f∈Σ) with
Ei ∶= { (w,w ⋅ i) ∣ w ⋅ i ∈ dom(t) } and Pf ∶= {w ∣ t(w) = f }. TΣ (T fin

Σ) denotes the set of
(finite) trees over Σ. Subsets of TΣ are called tree languages. Analogous to words we use
automata to specify languages of finite trees. A tree automaton A = (Q,Σ, (∆f)f∈Σ, F)
consists of a finite state set Q with some accepting states F ⊆ Q, a finite ranked alphabet
Σ and transition relations ∆f ⊆ Q ×Q∣f ∣ for each f ∈ Σ. A finite tree t ∈ T fin

Σ is in the tree
language T (A) recognized by A if there exists a run ρ ∶ dom(t) → Q, which is accepting,
i.e., ρ(ε) ∈ F , and which respects ∆, i.e., (ρ(r), ρ(r ⋅ 1), . . . , ρ(r ⋅ ∣f ∣)) ∈ ∆f for each position
r ∈ dom(t) with t(r) = f . We call A bottom-up deterministic if for all f ∈ Σ, (q1, . . . , q∣f ∣) ∈ Q∣f ∣

there is at most one q ∈ Q with (q, q1, . . . , q∣f ∣) ∈ ∆f . A is top-down deterministic if ∣F ∣ = 1
and for all f ∈ Σ, q ∈ Q there is at most one (q1, . . . , q∣f ∣) ∈ Q∣f ∣ with (q, q1, . . . , q∣f ∣) ∈ ∆f .
Tree languages recognizable by a bottom-up deterministic (top-down deterministic) tree
automata are called regular (top-down deterministic recognizable).

A regular ground tree rewriting (RGTR) system (T,Σ,A,→) consists of a top-down
deterministic recognizable domain T ⊆ T fin

Σ and finitely many rewriting rules L aÐ→ R with

1 In [6] Caucal actually defined the hierarchy with inverse rational mappings instead of MSO interpretation,
which is shown to be equivalent [5].

FSTTCS 2010

500 First-Order Logic with Reachability Predicates on Infinite Systems

regular tree languages L,R ⊆ T fin
Σ and label a ∈ A. It defines a graph structure with T as

vertices, and a-labeled edges between trees t, t′ ∈ T if there is some rule L aÐ→ R such that t′
is obtained by replacing one subtree l ∈ L in t by r ∈ R. Furthermore there is a constant for
each tree. Dauchet and Tison [11] have shown that the FO(R) theory is decidable for RGTR
graphs (T,Σ,A,→) with complete domain T = T fin

Σ and rules of the form {l} aÐ→ {r} with only
singletons. The proof uses a translation to tree transducers and tree-automatic relations,
such that one can actually extend the proof to general RGTR graphs. This result cannot be
extended to higher logics like FO(Reg) or FO(TC)1

(1) since we showed these theories to be
undecidable on N 3 and grids are some of the simplest structures representable by ground
tree rewriting:

▸ Example 7 (Infinite grid). Let (T,Σ,A,→) be an RGTR system over the ranked al-
phabet Σ = {2,1,0L,0R}, each symbol having the arity according to its number, with
T = {2(1x(0L),1y(0R)) ∣ x, y ∈N}, labels A = {S1,S2}, and rewriting rules 0L

S1Ð→ 1(0L),
0R

S2Ð→ 1(0R). Its graph is isomorphic to the infinite grid N 2
+ = (N2,S1,S2).

An algebraically motivated way of specifying infinite graphs is vertex replacement with
product (VRP) [7, 8] where graphs are the least fixed point of equations of operations
on colored graphs. These are structures G = (V, (Pc)c∈C , (Ea)a∈A) with (possibly infinite)
domain of colored vertices V = ⊎c∈C Pc and edge relations Ea for a finite set C of colors and
A of actions. The family of those graphs is called GA,C . For the following let us fix some sets
actions A and colors C. The five VRP operators on colored graphs are
1. Constant singleton graph: ċ ∶ GA,C0 → GA,C , just one vertex having color c ∈ C,
2. Recoloring: [φ] ∶ GA,C1 → GA,C , for some color mapping φ ∶ C → C,
3. Adding edges: [c a⊳⊲ d] ∶ GA,C1 → GA,C , labeled by a ∈ A between colors c, d ∈ C,
4. Disjoint union: ⊕ ∶ GA,C2 → GA,C , and
5. Asynchronous product: ⊗η ∶ GA,C2 → GA,C , for a function η ∶ C2 → C merging the colors2.
To specify an infinite graph we use a (possibly infinite) term of VRP operators called VRP
tree, i.e., a tree over the ranked alphabet ΩA,C consisting of the VRP operators ċ, [φ], [c a⊳⊲ d],
⊕, ⊗η with arities 0, 1, 1, 2, 2, respectively. The interpretation ⟦t⟧ of a VRP tree t ∈ TΩA,C

is
defined as its least fixed point according to the subgraph relation3. This is a complete partial
order with the empty graph as least element, which guarantees the existence of a unique
least fixed point ⟦t⟧ that furthermore is equal to the supremum of the chain ⟦t⟧0 ⊆ ⟦t⟧1 ⊆ ⋯
where ⟦t⟧d is the partial interpretation up to depth d ∈ N, i.e., ⟦t⟧0 = � (the empty graph)
and ⟦f(t1, . . . , tn)⟧d+1 = f(⟦t1⟧d, . . . , ⟦tn⟧d) with VRP operator f ∈ ΩA,C .

▸ Example 8 (Infinite grid). Let A = {S1,S2}, C = {0,1,2}, and the VRP tree t as follows
(depicted in Fig. 3):

t ∶= t1 ⊗[(c,d)↦0] t2, ti ∶= [0 Si⊳⊲ 1](0̇ ⊕ [0↦1
1↦2
2↦2

] ti) for i ∈ {1,2}.

The interpretation ⟦t⟧ of t is isomorphic to N 2
+ = (N2,S1,S2) when ignoring colors.

Colcombets main results are, that interpretations of regular VRP trees are effectively
equivalent to RGTR graphs (up to isomorphism and color removal), and that the FO(R)
theory of an interpretation is decidable if the VRP tree has a decidable MSO theory [7]. We

2 The asynchronous product ⊗η has a fixed function η in [7]; and is called ◻η in [8].
3

(V, (Pc)c∈C , (Ea)a∈A) ⊆ (V ′, (P ′c)c∈C , (E
′
a)a∈A) if V ⊆ V ′, Ea ⊆ E′a, and Pc ⊆ P ′c for each a ∈ A, c ∈ C.

Stefan Schulz 501

⊗[(c,d)↦0]

[0
S2
⊳⊲ 1] ⊕

0̇

[

0↦1
1↦2
2↦2

]
[0

S2
⊳⊲ 1] ⊕

0̇

[

0↦1
1↦2
2↦2

] ⋯

[0
S1
⊳⊲ 1] ⊕

0̇

[

0↦1
1↦2
2↦2

]
[0

S1
⊳⊲ 1] ⊕

0̇

[

0↦1
1↦2
2↦2

] ⋯

Figure 3 VRP tree defining the infinite grid N 2
+ = (N2,S1,S2)

are going to remove the regularity demand from the equivalence result by making RGTR
as powerful as VRP trees in general. To this end we equip RGTR with a (usually infinite)
tree, which functions as a skeleton for the specification of the domain and the rewriting rules.
This concept is based on the overlay t∥s of trees t ∶ dom(t)→ Σ and s ∶ dom(s)→ Γ with

t∥s ∶ dom(t)→ Σ∥Γ, t∥s(w) ∶=
⎧⎪⎪⎨⎪⎪⎩

(t(w), s(w)) if w ∈ dom(s),
(t(w),�) otherwise

with overlay alphabet Σ∥Γ ∶= Σ× (Γ⊎{�}) of rank ∣(f, g)∣ ∶= ∣f ∣. We write T ∥s ∶= { t∥s ∣ t ∈ T }.

▸ Definition 9. A regular skeleton ground tree rewriting (RSGTR) system (s,Γ, T,Σ,A,→)
consists of a skeleton s ∈ TΓ, i.e., a tree over the ranked alphabet Γ, such that (T,Σ∥Γ,A,→)
forms an RGTR system. The graph structure it defines is the graph of the RGTR system
(T,Σ∥Γ,A,→) restricted to T fin

Σ ∥s, i.e., trees where the overlaid component corresponds to
the skeleton tree s ∈ TΓ.

▸ Theorem 10. VRP interpretations are effectively equivalent to RSGTR graphs (up to
isomorphism and color removal). Furthermore the conversion between the VRP tree and the
skeleton tree preserves the decidability of MSO logic and regularity.

Proof. The first part is the direction from VRP trees to RSGTR systems. Consider a given
VRP tree t ∈ TΩA,C

. We can simulate it by an RSGTR system (depending only on A and C)
with t as skeleton. From the definition of the interpretation via chains, it follows that each
node of the interpretation is represented by exactly one finite prefix of t. This is a part of t
starting from the root, such that for each vertex with label f ∈ ΩA,C of the prefix:
1. if f ∈ {[φ], [c a⊳⊲ d]} then the (unique) child has to belong to the prefix as well,
2. if f = ⊕ then either the left or the right child belongs to the prefix, and
3. if f = ⊗η then both children belong to the prefix.
Figure 4 depicts (when ignoring the numbers below the vertices) such a finite prefix of the
infinite VRP tree of Fig. 3. Those prefixes form a deterministic top-down recognizable set
when using the overlay alphabet Σ∥ΩA,C

with Σ ∶= {0,1,2,2L,2R}, each symbol having its
number as rank. Then use 0 for constants, 1 for unary operators, 2 for products, and 2L, 2R
for the left and right branches of disjoint unions, respectively.

To simulate the edges as introduced by the edge adding operators of t we have to look
at the coloring of vertices. The colors of a prefix can be computed easily in a bottom-up
manner for each subtree such that the color of each subtree corresponds to the color of the
vertex which is VRP-represented by that very subtree. Starting by copying the constant
colors at the leaves, the computation simply merges at each subtree the colors of its children
according to the semantic of the considered operator. In Fig. 4 the colors are written next to
each vertex. If a subtree is labeled by an operator [c a⊳⊲ d] and has color c assigned to it then

FSTTCS 2010

502 First-Order Logic with Reachability Predicates on Infinite Systems

⊗[(c,d)↦0]

[0
S2
⊳⊲ 1] ⊕

0̇

[

0↦1
1↦2
2↦2

]
[0

S2
⊳⊲ 1] ⊕

0̇

[

0↦1
1↦2
2↦2

] ⋯

[0
S1
⊳⊲ 1] ⊕

0̇

[

0↦1
1↦2
2↦2

]
[0

S1
⊳⊲ 1] ⊕

0̇

[

0↦1
1↦2
2↦2

] ⋯

0

001
11

0

0 0

0

Figure 4 A finite prefix of the VRP tree of Fig. 3 representing grid position (1,0)

it can be rewritten to another one of color d. In Fig. 4 this means that there would be an
S2-labeled transition from the subtree with operator [0 S2⊳⊲ 1] and color 0 to another subtree
of color 1, which can only lead to the prefix where the paths at both children are of the same
length, i.e., grid position (1, 1). This can be implemented by regular rewriting rules over the
overlay alphabet Σ∥ΩA,C

. We skip the exact definition, since it is easy but purely technical
and does not bring any deeper insight than the explanation above. The MSO-decidability
and regularity are preserved trivially since we chose t itself to be the skeleton.

Showing the converse is a bit more challenging. Consider a given RSGTR system
(s,Γ, T,Σ,A,∆). To finish the proof we define a transformation of s into a VRP tree t whose
structure mimics s and T in a top-down manner, whereas the definition of ∆ is simulated
bottom-up in its colors. Let T be specified by a deterministic top-down tree automaton
A = (Q,Σ∥Γ, (δf)f∈Σ∥Γ

, q0), and let ∆ be represented by both the deterministic bottom-up
tree automaton A′q = (Q′,Σ∥Γ, (δ′f)f∈Σ∥Γ

,{q}) and the relation ∆′ ⊆ Q′ ×A ×Q′, such that
l ∈ L, r ∈ R for some rule L aÐ→ R of ∆ iff l ∈ T (Ap), r ∈ T (Aq) for some (p, a, q) ∈ ∆′. This
alternative representation of the transitions can be obtained by a product construction of
the automata in the rules of ∆. The transformation mentioned above is the composition of
the following tree transformations, each of which has the desired preservation properties:
1. For simplicity we first extend s ∈ TΓ to an infinite m-ary tree s′ ∈ TΓ′ where m ∶=

max { ∣f ∣ ∣ f ∈ Σ} is the maximal rank of Σ, each symbol of Γ′ ∶= Γ⊎ {�} has rank m, and
s′(w) ∶= s(w) if w ∈ dom(s), or s′(w) ∶= � otherwise. Then t∥s = t∥s′ for each t ∈ TΣ.

2. The actual work is done by transforming s′ ∈ TΓ′ into a relaxed VRP tree t′ ∈ TΩ′
A,C

where
Ω′
A,C is like ΩA,C but the operators ⊕ and ⊗η are lifted to their n-ary correspondents
⊕i∈{1,...,n} and ⊗η with η ∶ Cn → C for bounded n ∈ N. We set actions A as in A′ and
the colors C ∶= Q′. We transform s′ into t′ ∶= ⌊s′⌋q0 with q0 ∈ Q from A where ⌊s′⌋q for
each q ∈ Q and tree s′ = g′(s′1, . . . , s′m) ∈ TΩ′

A,C
is defined as the (unique) tree

⌊s′⌋q ∶= ⋯[p′ a⊳⊲ q′]⋯
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

for each
(p′,a,q′)∈∆′

⊕
δ(f,g′)(q)=

(p1,...,p∣f ∣)

⎛
⎝⊗ δ′

(f,g′)
(⌊s′1⌋p1 , . . . , ⌊s′∣f ∣⌋p∣f ∣

)
⎞
⎠
.

When ignoring everything that deals with colors in this construction, one can verify that
this defines just the domain T by top-down simulating A with respect to the skeleton s.
When just looking at the colors, then they exactly simulate The bottom-up behavior of A′
is exactly simulated by the colors, where we use the relation ∆′ to specified by transitions
of A′. The way the transformation is defined allows the preservance of regularity and
MSO-decidability.

3. Finally we transform t′ ∈ TΩ′
A,C

into t ∈ TΩA,C′
by simply reducing the n-ary operators

⊕,⊗η to their binary versions ⊕,⊗η or constants (for empty products). In general large
products require the introduction of new colors C ′ for n-tuples of old colors C. ◂

Stefan Schulz 503

The restriction of Theorem 10 to regular trees, this yields exactly Colcombet’s equivalence
result [7], since a regular skeleton tree can already be simulated by the domain of an RGTR
system. By combining Theorem 10 with the other main result of Colcombet we can lift the
decidability of the FO(R) theory from RGTR to RSGTR:

▸ Corollary 11. The FO(R) theory of an RSGTR graph is decidable if the skeleton tree has
a decidable MSO theory.

6 Conclusion

Let us summarize the main results of this work about FO logic extended by reachability.
We have classified the decidability of FO(Reg) logic on infinite grids where the boundary of
decidability turned out to be between dimension 2 and 3 (Theorems 1 and 2). By set-based
unfolding we have introduced a new graph transformation which does not preserve the
decidability of MSO logic but still transfers it to a decidable FO(Reg) logic on the unfolded
graph (Corollary 6). By extending RGTR systems with a skeleton tree we have given an
automaton-based formalism with the same expressive power as VRP trees (Theorem 10).
One can furthermore reduce FO(Reg) logic on the graphs of those systems to MSO logic on
its skeleton tree (Corollary 11).

Besides these results there still remain open questions. From graphs with decidable
MSO theory we can generate members of the family of graphs having decidable FO(Reg)
theories by set-based unfolding. Although not proven, we suppose that this family contains
more graphs than obtainable in this way. And if so, how can this family be characterized?
Furthermore it is known that interpretations of regular VRP trees are equivalent to RGTR
graphs [7] whereas interpretations of regular VR trees (without the product operation) are
equivalent to prefix recognizable graphs [1]. Which subclass of RSGTR graphs is described
by interpretations of (possibly irregular) VR trees with decidable MSO theory?

Acknowledgements With thanks to Arnaud Carayol and Christof Löding for introducing
me to these topics and constantly sharing their valuable ideas.

References
1 Klaus Barthelmann. When can an equational simple graph be generated by hyperedge

replacement? In MFCS, volume 1450, pages 543–552, 1998.
2 Achim Blumensath and Erich Grädel. Automatic structures. In LICS, pages 51–62. IEEE

Computer Society, 2000.
3 J. R. Büchi. On a decision method in restricted second-order arithmetic. In E. Nagel,

P. Suppes, and A. Tarski, editors, Int. Congr. for Logic, Methodology and Philosophy of
Science, pages 1–11. Stanford University Press, 1962.

4 Hugues Calbrix. La théorie monadique du second ordre du monoïde inversif libre est
indécidable. Bulletin of the Belg. Math. Soc., 4(1):53–65, 1997.

5 Arnaud Carayol and Stefan Wöhrle. The caucal hierarchy of infinite graphs in terms of
logic and higher-order pushdown automata. In FSTTCS, volume 2914 of LNCS, pages
112–123, 2003.

6 Didier Caucal. On infinite terms having a decidable monadic theory. In MFCS, volume
2420 of LNCS, pages 165–176. Springer, 2002.

7 Thomas Colcombet. On families of graphs having a decidable first order theory with
reachability. In ICALP, volume 2380 of LNCS, pages 98–109. Springer, 2002.

FSTTCS 2010

504 First-Order Logic with Reachability Predicates on Infinite Systems

8 Thomas Colcombet. Propriétés et représentation de structures infinies. PhD thesis, Uni-
versité Rennes I, March 2004.

9 Thomas Colcombet and Christof Löding. Transforming structures by set interpretations.
LMCS, 3(2):1–36, 2007.

10 Bruno Courcelle and Igor Walukiewicz. Monadic second-order logic, graph converings and
unfoldings of transition systems. Ann. Pure Appl. Logic, 92(1):35–62, 1998.

11 M. Dauchet and S. Tison. The theory of ground rewrite systems is decidable. In LICS,
pages 242–248. IEEE Computer Society, 1990.

12 Seymour Ginsburg and Edwin H. Spanier. Semigroups, presburger formulas, and languages.
Pacific Journal of Mathematics, 16(2):285–296, 1966.

13 Bernard R. Hodgson. Décidabilité par automate fini. Ann. Sci. Math. Québec, 7(3):39–57,
1983.

14 John E. Hopcroft and Jean-Jacques Pansiot. On the reachability problem for 5-dimensional
vector addition systems. Theoretical Computer Science, 8:135–159, 1979.

15 Bakhadyr Khoussainov and Anil Nerode. Automatic presentations of structures. In Logical
and Computational Complexity, volume 960 of LNCS, pages 367–392. Springer, 1995.

16 Jérôme Leroux and Grégoire Sutre. On flatness for 2-dimensional vector addition systems
with states. In CONCUR, volume 3170 of LNCS, pages 402–416. Springer, 2004.

17 Christof Löding. Logic and automata over infinite trees, 2009. Habilitation thesis, RWTH
Aachen.

18 Markus Lohrey and Nicole Ondrusch. Inverse monoids: Decidability and complexity of
algebraic questions. Inf. Comput., 205(8):1212–1234, 2007.

19 Rohit J. Parikh. On context-free languages. JACM, 13(4):570–581, 1966.
20 Michael O. Rabin. Decidability of second-order theories and automata on infinite trees.

Transactions of the American Mathematical Society, 141:1–35, 1969.
21 Stefan Wöhrle and Wolfgang Thomas. Model checking synchronized products of infinite

transition systems. In LICS, pages 2–11. IEEE Computer Society, 2004.

Generalized Mean-payoff and Energy Games∗

Krishnendu Chatterjee1, Laurent Doyen2, Thomas A. Henzinger1,
and Jean-François Raskin3

1 IST Austria (Institute of Science and Technology Austria)
2 LSV, ENS Cachan & CNRS, France
3 Département d’Informatique, Université Libre de Bruxelles (U.L.B.)

Abstract
In mean-payoff games, the objective of the protagonist is to ensure that the limit average of an
infinite sequence of numeric weights is nonnegative. In energy games, the objective is to ensure
that the running sum of weights is always nonnegative. Generalized mean-payoff and energy
games replace individual weights by tuples, and the limit average (resp. running sum) of each
coordinate must be (resp. remain) nonnegative. These games have applications in the synthesis
of resource-bounded processes with multiple resources.

We prove the finite-memory determinacy of generalized energy games and show the inter-
reducibility of generalized mean-payoff and energy games for finite-memory strategies. We also
improve the computational complexity for solving both classes of games with finite-memory
strategies: while the previously best known upper bound was EXPSPACE, and no lower bound
was known, we give an optimal coNP-complete bound. For memoryless strategies, we show that
the problem of deciding the existence of a winning strategy for the protagonist is NP-complete.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.505

1 Introduction

Graph games and multi-objectives. Two-player games on graphs are central in many appli-
cations of computer science. For example, in the synthesis problem, implementations are
obtained from winning strategies in games with a qualitative objective such as ω-regular
specifications [18, 17, 1]. In these applications, the games have a qualitative (boolean)
objective that determines which player wins. On the other hand, games with quantitative
objective which are natural models in economics (where players have to optimize a real-valued
payoff) have also been studied in the context of automated design [19, 10, 20]. In the recent
past, there has been considerable interest in the design of reactive systems that work in
resource-constrained environments (such as embedded systems). The specifications for such
reactive systems are quantitative, and these give rise to quantitative games. In most system
design problems, there is no unique objective to be optimized, but multiple, potentially
conflicting objectives. For example, in designing a computer system, one is interested not
only in minimizing the average response time but also the average power consumption. In this
work we study such multi-objective generalizations of the two most widely used quantitative
objectives in games, namely, mean-payoff and energy objectives [11, 20, 6, 3].
Generalized mean-payoff games. A generalized mean-payoff game is played on a finite weighted
game graph by two players. The vertices of the game graph are partitioned into positions
that belong to Player 1 and positions that belong to Player 2. Edges of the graphs are
labeled with k-dimensional vectors w of integer values, i.e., w ∈ Zk. The game is played as
follows. A pebble is placed on a designated initial vertex of the game graph. The game is

∗ Full proofs are available in [9].

© Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 505–516

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.505
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

506 Generalized Mean-payoff and Energy Games

played in rounds in which the player owning the position where the pebble lies moves the
pebble to an adjacent position of the graph using an outgoing edge. The game is played for
an infinite number of rounds, resulting in an infinite path through the graph, called a play.
The value associated to a play is the mean value in each dimension of the vectors of weights
labeling the edges of the play. Accordingly, the winning condition for Player 1 is defined by
a vector of integer values v ∈ Zk that specifies a threshold for each dimension. A play is
winning for Player 1 if its vector of mean values is at least v. All other plays are winning
for Player 2, thus the game is zero-sum. We are interested in the problem of deciding the
existence of a finite-memory winning strategy for Player 1 in generalized mean-payoff games.
Note that in general infinite memory may be required to win generalized mean-payoff games,
but for practical applications such as the synthesis of reactive systems with multiple resource
constraints, the generalized mean-payoff games with finite memory is the relevant model.
Moreover, they provide the framework for the synthesis of specifications defined by [2, 8],
and the synthesis question for such specifications under regular (ultimately periodic) words
correspond to generalized mean-payoff games with finite-memory strategies.
Generalized energy games. In generalized energy games, the winning condition for Player 1
requires that, given an initial credit v0 ∈ Nk, the sum of v0 and all the vectors labeling edges
up to position i in the play is nonnegative, for all i ∈ N. The decision problem for generalized
energy games asks whether there exists an initial credit v0 and a strategy for Player 1 to
maintain the energy nonnegative in all dimensions against all strategies of Player 2.
Contributions. In this paper, we study the strategy complexity and computational complexity
of solving generalized mean-payoff and energy games. Our contributions are as follows.
First, we show that generalized energy and mean-payoff games are determined when played
with finite-memory strategies, however, they are not determined for memoryless strategies.
For generalized energy games determinacy under finite-memory coincides with determinacy
under arbitrary strategies (each player has a winning strategy iff he has a finite-memory
winning strategy). In contrast, we show for generalized mean-payoff games that determinacy
under finite-memory and determinacy under arbitrary strategies do not coincide. Thus
with finite-memory strategies these games are determined, they correspond to the synthesis
question with ultimately periodic words, and enjoy pleasant mathematical properties like
existence of the limit of the mean value of the weights, and hence we focus on the study of
generalized mean-payoff and energy games with finite-memory strategies.
Second, we show that under the hypothesis that both players play either finite-memory or
memoryless strategies, the generalized mean-payoff game and the generalized energy game
problems are equivalent.
Third, our main contribution is the study of the computational complexity of the decision
problems for generalized mean-payoff games and generalized energy games, both for finite-
memory strategies and the special case of memoryless strategies. Our complexity results can
be summarized as follows: (A) For finite-memory strategies, we provide a nondeterministic
polynomial time algorithm for deciding negative instances of the problems1. Thus we
show that the decision problems are in coNP. This significantly improves the complexity as
compared to the EXPSPACE algorithm that can be obtained by reduction to Vass (vector
addition systems with states) [4]. Furthermore, we establish a coNP lower bound for these
problems by reduction from the complement of the 3SAT problem, hence showing that the
problem is coNP-complete. (B) For the case of memoryless strategies, as the games are not

1 Negative instances are those where Player 1 is losing, and by determinacy under finite-memory where
Player 2 is winning.

K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin 507

determined, we consider the problem of determining if Player 1 has a memoryless winning
strategy. First, we show that the problem of determining if Player 1 has a memoryless
winning strategy is in NP, and then show that the problem is NP-hard (i) even when the
weights are restricted to {−1, 0, 1}; or (ii) when the weights are arbitrary and the dimension
is 2.
Related works. Mean-payoff games, which are the one-dimension version of our generalized
mean-payoff games, have been extensively studied starting with the works of Ehrenfeucht
and Mycielski in [11] where they prove memoryless determinacy for these games. Because of
memoryless determinacy, it is easy to show that the decision problem for mean-payoff games
lies in NP ∩ coNP, but despite large research efforts, no polynomial time algorithm is known
for that problem. A pseudo-polynomial time algorithm has been proposed by Zwick and
Paterson in [20], and improved in [5]. The one-dimension special case of generalized energy
games have been introduced in [6] and further studied in [3] where log-space equivalence
with classical mean-payoff games is established.

Generalized energy games can be viewed as games played on Vass (vector addition
systems with states) where the objective is to avoid unbounded decreasing of the counters.
A solution to such games on Vass is provided in [4] (see in particular Lemma 3.4 in [4]) with
a PSPACE algorithm when the weights are {−1, 0, 1}, leading to an EXPSPACE algorithm
when the weights are arbitrary integers. We drastically improve the EXPSPACE upper-bound
by providing a coNP algorithm for the problem, and we also provide a coNP lower bound
even when the weights are restricted to {−1, 0, 1}.

2 Generalized Mean-payoff and Energy Games

Well quasi-orders. Let D be a set. A relation � over D is a well quasi-order, wqo for
short, if the following holds: (a) � is transitive and reflexive; and (b) for all f : N → D,
there exists i1, i2 ∈ N such that i1 < i2 and f(i1) � f(i2).

I Lemma 1. (Nk,≤) is well quasi-ordered.

Multi-weigthed two-player game structures. A multi-weigthed two-player game struc-
ture is a tuple G = (S1, S2, sinit, E, k, w) where S1 ∩ S2 = ∅, and Si (i = 1, 2) is the finite set
of Player i positions, sinit ∈ S1 is the initial position, E ⊆ (S1 ∪ S2)× (S1 ∪ S2) is the set of
edges such that for all s ∈ S1 ∪ S2, there exists s′ ∈ S1 ∪ S2 such that (s, s′) ∈ E, k ∈ N is
the dimension of the multi-weights, w : E → Zk is the multi-weight labeling function. G is a
multi-weighted one-player game structure if S2 = ∅.

A play in G is an infinite sequence of π = s0s1 . . . sn . . . such that (i) s0 = sinit, (ii) for
all i ≥ 0 we have (si, si+1) ∈ E. A play π = s0s1 . . . sn . . . is ultimately periodic if it can
be decomposed as π = ρ1 · ρω2 where ρ1 and ρ2 are two finite sequences of positions. The
prefix up to position n of a play π = s0s1 . . . sn . . . is the finite sequence π(n) = s0s1 . . . sn,
its last element sn is denoted by Last(π(n)). A prefix π(n) belongs to Player i (i ∈ {1, 2})
if Last(π(n)) ∈ Si. The set of plays in G is denoted by Plays(G), the corresponding set of
prefixes is denoted by Prefs(G), the set of prefixes that belongs to Player i (i ∈ {1, 2}) is
denoted by Prefsi(G), and the set of ultimately periodic plays in G is denoted by Playsup(G).

The energy level vector of a prefix of play ρ = s0s1 . . . sn is EL(ρ) =
∑i=n−1
i=0 w(si, si+1),

and the mean-payoff vector of an ultimately periodic play π = s0s1 . . . sn . . . is MP(π) =
limn→∞

1
nEL(π(n)).

Strategies. A strategy for Player i (i ∈ {1, 2}) in G is a function λi : Prefsi(G)→ S1 ∪ S2
such that for all ρ ∈ Prefsi(G) we have (Last(ρ), λi(ρ)) ∈ E. A play π = s0s1 · · · ∈ Plays(G)

FSTTCS 2010

508 Generalized Mean-payoff and Energy Games

is consistent with a strategy λi of Player i if sj+1 = λi(s0s1 . . . sj) for all j ≥ 0 such that
sj ∈ Si. The outcome of a pair of strategies, λ1 for Player 1 and λ2 for Player 2, is the
(unique) play which is consistent with both λ1 and λ2. We denote outcomeG(λ1, λ2) this
outcome.

A strategy λ1 for Player 1 has finite-memory if it can be encoded by a deterministic
Moore machine (M,m0, αu, αn) whereM is a finite set of states (the memory of the strategy),
m0 ∈ M is the initial memory state, αu : M × (S1 ∪ S2) → M is an update function, and
αn : M × Si → S1 ∪ S2 is the next-action function. If the game is in a Player-1 position
s ∈ S1 and m ∈ M is the current memory value, then the strategy chooses s′ = αn(m, s)
as the next position and the memory is updated to αu(m, s). Formally, 〈M,m0, αu, αn〉
defines the strategy λ such that λ(ρ · s) = αn(α̂u(m0, ρ), s) for all ρ ∈ (S1 ∪ S2)∗ and s ∈ S1,
where α̂u extends αu to sequences of positions as expected. A strategy is memoryless if
|M | = 1. For a finite-memory strategy λ1 of Player 1, let Gλ1 be the graph obtained as the
product of G with the Moore machine defining λ1, with initial vertex 〈m0, sinit〉 and where
(〈m, s〉, 〈m′, s′〉) is a transition in Gλ1 if m′ = αu(m, s), and either s ∈ S1 and s′ = αn(m, s),
or s ∈ S2 and (s, s′) ∈ E. The set of inifinite paths in Gλ1 and the set of plays consistent
with λ1 coincide. A similar definition can be given for the case of Player 2.
Objectives. An objective for Player 1 in G is a set of plays W ⊆ Plays(G). A strategy λ1
for Player 1 is winning for W in G if for all plays in π ∈ Plays(G) that are consistent with
λ1, we have that π ∈W . A strategy λ2 for Player 2 is spoiling for W in G if for all plays in
π ∈ Plays(G) that are consistent with λ2, we have that π 6∈ W . We consider the following
objectives:

Multi Energy objectives. Given an initial energy vector v0 ∈ Nk, the multi energy objective
PosEnergyG(v0) = {π ∈ Plays(G) | ∀n ≥ 0 : v0 + EL(π(n)) ∈ Nk} requires that the energy
level in all dimensions remains always nonnegative.
Multi Mean-payoff objectives. Given a threshold vector v ∈ Zk, the multi mean-payoff
objective MeanPayoffG(v) = {π ∈ Playsup(G) | MP(π) ≥ v} requires for all dimensions j
the mean-payoff for dimension j is at least v(j).

Decision problems. We consider the following decision problems:

The unknown initial credit problem asks, given an multi-weighted two-player game
structure G, to decide whether there exists an initial credit vector v0 ∈ Nk and a winning
strategy λ1 for Player 1 for the objective PosEnergyG(v0).
The mean-payoff threshold problem (for finite memory) asks, given an multi-weighted
two-player game structure G and a threshold vector v ∈ Zk, to decide whether there
exists a finite-memory strategy λ1 for Player 1 such that for all finite-memory strategies
λ2 of Player 2, outcomeG(λ1, λ2) ∈ MeanPayoffG(v).

Note that in the unknown initial credit problem, we allow arbitrary strategies (and we
show in Theorem 5 that actually finite-memory strategies are sufficient), while in the mean-
payoff threshold problem, we require finite-memory strategy which is restriction (according
to Theorem 8) of a more general problem of deciding the existence of arbitrary winning
strategies.
Determinacy and determinacy under finite-memory. A game G with an objective
W is determined if either Player 1 has a winning strategy, or Player 2 has a spoiling strategy.
A game G with an objective W is determined under finite-memory if either (a) Player 1 has
a finite-memory strategy λ1 such that for all finite-memory strategies λ2 of Player 2, we
have outcomeG(λ1, λ2) ∈W ; or (b) Player 2 has a finite-memory strategy λ2 such that for

K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin 509

all finite-memory strategies λ1 of Player 1, we have outcomeG(λ1, λ2) 6∈ W . Games with
objectives W are determined (resp. determined under finite-memory) if all game structures
with objectives W are determined (resp. determined under finite-memory). We say that
determinacy and determined under finite-memory coincide for a class of objectives, if for all
objectives in the class and all game structures, the answer of the determinacy and determined
under finite-memory coincide (i.e., Player 1 has a winning strategy iff there is a finite-memory
winning strategy, and similarly for Player 2). Generalized mean-payoff and energy objectives
are measurable: (a) generalized mean-payoff objectives can be expressed as finite intersection
of mean-payoff objectives and mean-payoff objectives are complete for the third level of Borel
hierarchy [7]; and (b) generalized energy objectives can be expressed as finite intersection of
energy objectives, and enery objectives are closed sets. Hence determinacy of generalized
mean-payoff and energy games follows from the result of [15].

I Theorem 2 (Determinacy [15]). Generalized mean-payoff and energy games are determined.

3 Determinacy under Finite-memory and Inter-reducibility

In this section, we establish four results. First, we show that to win generalized energy games,
it is sufficient for Player 1 to play finite-memory strategies. Second, we show that to spoil
generalized energy games, it is sufficient for Player 2 to play memoryless strategies. As a
consequence, generalized energy games are determined under finite-memory. Third, using
this finite-memory determinacy result, we show that the decision problems for generalized
energy and mean-payoff games (see Section 2) are log-space inter-reducible. Finally, we
show that infinite-memory strategies are more powerful than finite-memory strategies in
generalized mean-payoff games.

For generalized energy games, we first show that finite-memory strategies are sufficient
for Player 1, and then that memoryless strategies are sufficient for Player 2.

I Lemma 3. For all multi-weighted two-player game structures G, the answer to the unknown
initial credit problem is Yes iff there exists a initial credit v0 ∈ Nk and a finite-memory
strategy λFM

1 for Player 1 such that for all strategies λ2 of Player 2, outcomeG(λFM
1 , λ2) ∈

PosEnergyG(v0).

Proof. One direction is trivial. For the other direction, assume that λ1 is a (not necessary
finite-memory) winning strategy for Player 1 in G with initial credit v0 ∈ Nk. We show how
to construct from λ1 a finite-memory strategy λFM

1 which is winning against all strategies
of Player 2 for initial credit v0. For that we consider the unfolding of the game graph G in
which Player 1 plays according to λ1. This infinite tree, noted TG(λ1), has as set of nodes
all the prefixes of plays in G when Player 1 plays according to λ1. We associate to each
node ρ = s0s1 . . . sn in this tree the energy vector v0 + EL(ρ). As λ1 is winning, we have
that v0 + EL(ρ) ∈ Nk for all ρ. Now, consider the set (S1 ∪ S2)× Nk, and the relation v on
this set defined as follows: (s1, v1) v (s2, v2) iff s1 = s2 and v1 ≤ v2 i.e., for all i, 1 ≤ i ≤ k,
v1(i) ≤ v2(i). The relation v is a wqo (easy consequence of Lemma 1). As a consequence,
on every infinite branch π = s0s1 . . . sn . . . of TG(λ1), there exists two positions i < j such
that Last(π(i)) = Last(π(j)) and EL(π(i)) ≤ EL(π(j)). We say that node j subsumes node
i. Now, let T FM

G(λ1) be the tree TG(λ1) where we stop each branch when we reach a node n2

which subsumes one of its ancestor node n1. Clearly, T FM
G(λ1) is finite. Also, it is easy to see

that Player 1 can play in the subtree rooted at n2 as she plays in the subtree rooted in n1
because its energy level in n2 is greater than in n1. From T FM

G(λ1), we can construct a Moore

FSTTCS 2010

510 Generalized Mean-payoff and Energy Games

q0q1 q2

(0, 0)

(0, 0)

(−1, 1)

(1,−1)
(−2, 0)

Figure 1 Player 1 (round states) wins with initial credit (2, 0) when Player 2 (square states) can
use memoryless strategies, but not when Player 2 can use arbitrary strategies.

machine which encode a finite-memory strategy λFM
1 which is winning the generalized energy

game G as it is winning for initial energy level v0. �

I Lemma 4. [4] For all multi-weigthed two-player game structures G, the answer to the
unknown initial credit problem is No if and only if there exists a memoryless strategy λ2 for
Player 2, such that for all initial credit vectors v0 ∈ Nk and all strategies λ1 for Player 1 we
have outcomeG(λ1, λ2) 6∈ PosEnergyG(v0).

As a consequence of the two previous lemmas, we have the following theorem.

I Theorem 5. Generalized energy games are determined under finite-memory, and determi-
nacy coincide with determinacy under finite-memory for generalized energy games.

I Remark. Note that even if Player 2 can be restricted to play memoryless strategies in
generalized energy games, it may be that Player 1 is winning with some initial credit vector v0
when Player 2 is memoryless, and is not winning with the same initial credit vector v0 when
Player 2 can use arbitrary strategies. This situation is illustrated in Figure 1 where Player 1
(owning round states) can maintain the energy nonegative in all dimensions with initial credit
(2, 0) when Player 2 (owning square states) is memoryless. Indeed, either Player 2 chooses
the left edge from q0 to q1 and Player 1 wins, or Player 2 chooses the right edge from q0
to q2, and Player 1 wins as well by alternating the edges back to q0. Now, if Player 2 has
memory, then Player 2 wins by choosing first the right edge to q2, which forces Player 1 to
come back to q0 with multi-weight (−1, 1). The energy level is now (1, 1) in q0 and Player 2
chooses the left edge to q1 which is losing for Player 1. Note that Player 1 wins with initial
credit (2, 1) and (3, 0) (or any larger credit) against all arbitrary strategies of Player 2.

We now show that generalized mean-payoff games (where players are restricted to play
finite-memory strategies by definition) are log-space equivalent to generalized energy games.
First note that the mean-payoff threshold problem with threshold vector v ∈ Zk can be
reduced to the mean-payoff threshold problem with threshold vector {0}k, by shifting all
multi-weights in the game graph by v (which has the effect of shifting the mean-payoff
value by v). Given this reduction, the following result shows that the unknown initial credit
problem (for multi-energy games) and the mean-payoff threshold problem (with finite-memory
strategies) are equivalent.

I Theorem 6. For all multi-weigthed two-player game structures G with dimension k,
the answer to the unknown initial credit problem is Yes if and only if the answer to the
mean-payoff threshold problem (for finite memory) with threshold vector {0}k is Yes.

Proof. First, assume that there exists a winning strategy λ1 for Player 1 in G for the multi
energy objective PosEnergyG(v0) (for some v0). Theorem 5 establishes that finite memory is

K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin 511

sufficient to win multi-energy games, so we can assume that λ1 has finite memory. Consider
the restriction of the graph Gλ1 to the reachable vertices, and we show that the energy vector
of every simple cycle is nonnegative. By contradcition, if there exists a simple cycle with
energy vector negative in one dimension, then the infinite path that reaches this cycle and
loops through it forever would violate the objective PosEnergyG(v0) regardless of the vector
v0.

Now, this shows that every reachable cycle in Gλ1 has nonnegative mean-payoff value in
all dimensions, hence λ1 is winning for the multi mean-payoff objective MeanPayoffG({0}k).

Second, assume that there exists a finite-memory strategy λ1 for Player 1 that is winning
in G for the multi mean-payoff objective MeanPayoffG({0}k). By the same argument as
above, all simple cycles in Gλ1 are nonnegative and the strategy λ1 is also winning for the
objective PosEnergyG(v0) for some v0. Taking v0 = {nW}k where n is the number of states
in Gλ1 (which bounds the length of the acyclic paths) and W ∈ Z is the largest weight in
the game suffices. �

Note that the result of Theorem 6 does not hold for arbitrary strategies as shown in the
following lemma.

I Lemma 7. In generalized mean-payoff games, infinite memory may be necessary to win
(finite-memory strategies may not be sufficient).

Proof. To show this, we first need to define the mean-payoff vector of arbitrary plays
(because arbitrary strategies, i.e., infinite-memory strategies, may produce non-ultimately
periodic plays). In particular, the limit of 1

n · EL(π(n)) for n → ∞ may not exist for
arbitrary plays π. Therefore, two possible definitions are usually considered, namely either
MP(π) = lim infn→∞ 1

n · EL(π(n)), or MP(π) = lim supn→∞ 1
n · EL(π(n)). In both cases,

better payoff can be obtained with infinite memory: the example of Figure 2 shows a game
where all states belong to Player 1. We claim that (a) for MP, Player 1 can achieve a
threshold vector (1, 1), and (b) for MP, Player 1 can achieve a threshold vector (2, 2); (c) if
we restrict Player 1 to use a finite-memory strategy, then it is not possible to win the multi
mean-payoff objective with threshold (1, 1) (and thus also not with (2, 2)). To prove (a),
consider the strategy that visits n times qa and then n times qb, and repeats this forever
with increasing value of n. This guarantees a mean-payoff vector (1, 1) for MP because in
the long-run roughly half of the time is spent in qa and roughly half of the time in qb. To
prove (b), consider the strategy that alternates visits to qa and qb such that after the nth
alternation, the self-loop on the visited state q (q ∈ {qa, qb}) is taken so many times that the
average frequency of q gets larger than 1

n in the current finite prefix of the play. This is always
possible and achieves threshold (2, 2) for MP. Note that the above two strategies require
infinite memory. To prove (c), notice that finite-memory strategies produce an ultimately
periodic play and therefore MP and MP coincide with MP. It is easy to see that such a
play cannot achieve (1, 1) because the periodic part would have to visit both qa and qb and
then the mean-payoff vector (v1, v2) of the play would be such that v1 + v2 < 2 and thus
v1 = v2 = 1 is impossible. �

Theorem 6 and Lemma 7, along with Theorem 5 gives the following result.

I Theorem 8. Generalized mean-payoff games are determined under finite-memory, however
determinacy and determined under finite-memory do not coincide for generalized mean-payoff
games.

FSTTCS 2010

512 Generalized Mean-payoff and Energy Games

qa qb

(2, 0) (0, 2)
(0, 0)

(0, 0)

Figure 2 A generalized mean-payoff game where infinite memory is necessary to win (Lemma 7).

4 coNP-completeness for Finite-Memory Strategies

In this section, we present a nondeterministic polynomial time algorithm to recognize the
instances for which there is no winning strategies for Player 1 in a multi-energy game. First,
we show that the one-player version of this game can be solved by checking the existence of a
circuit (i.e., a not necessarily simple cycle) with overall nonnegative effect in all dimensions.
Second, we build on this and the memoryless result for Player 2 to define a coNP algorithm.
The main result (Theorem 9) is derived from Lemma 11 and Lemma 12 below.

I Theorem 9. The unknown initial credit and the mean-payoff threshold problems for
multi-weighted two-player game structures are coNP-complete.

coNP upper bound. First, we need the following result about finding zero circuits in multi-
weighted directed graphs (a graph is a one-player game). A zero circuit is a finite sequence
s0s1 . . . sn such that s0 = sn, (si, si+1) ∈ E for all 0 ≤ i < n, and

∑n−1
i=0 w(si, si+1) =

(0, 0, . . . , 0). The circuit need not be simple.

I Lemma 10 ([14]). Determining if a k-dimensional directed graph contains a zero circuit
can be done in polynomial time.

I Lemma 11. The unknown initial credit and the mean-payoff threshold problems for multi-
weighted two-player game structures are in coNP.

Proof. By Lemma 4, we know that Player 2 can be restricted to play memoryless strategies.
A coNP algorithm can guess a memoryless strategy λ and check in polynomial time that it
is winning using the following argument.

First, consider the graph Gλ as a one-player game (in which all states belong to player 1.
We show that if there exists an initial energy level v0 and an infinite play π = s0s1 . . . sn . . . in
Gλ such that π ∈ PosEnergy(v0) then there exist a reachable circuit inGλ that has nonnegative
effect in all dimensions. To show that, we extend π with the energy information as follows:
π′ = (s0, w0)(s1, w1) . . . (sn, wn) . . . where w0 = v0 and for all i ≥ 1, wi = v0 + EL(π(i)). As
π ∈ PosEnergy(v0), we know that for all i ≥ 0, wi ∈ Nk. So, we can define the following order
on the pairs (s, w) ∈ (S1 ∪ S2)× Nk in the run: (s, w) v (s′, w′) iff s = s′ and w(j) ≤ w′(j)
for all 1 ≤ j ≤ k. From Lemma 1, it is easy to show that v is a wqo. Then there exist two
positions i1 < i2 in π′ such that (si1 , wi1) v (si2 , wi2). The circuit underlying those two
positions has nonnegative effect in all dimensions.

Based on this, we can decide if there exists an initial energy vector v0 and an infinite path
in Gλ that satisfies PosEnergyG(v0) using the result of Lemma 10 on modified version of Gλ
obtained as follows. In every state of Gλ, we add k self-loops with respective multi-weight
(−1, 0, . . . , 0), (0,−1, 0, . . . , 0), . . . , (0, . . . , 0,−1), i.e. each self-loop removes one unit of
energy in one dimension. It is easy to see that Gλ has a circuit with nonnegative effect in all

K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin 513

C1

C2

Ck

...

}
}

}

literal

literal

literal

Figure 3 Game graph construction for a 3SAT formula (Lemma 12).

dimensions if and only if the modified Gλ has a zero circuit, which can be determined in
polynomial time. The result follows. �

Lower bound: coNP-hardness. We show that the unknown initial credit problem for
multi-weighted two-player game structures is coNP-hard. We present a reduction from the
complement of the 3SAT problem which is NP-complete [16].
Hardness proof. We show that the problem of deciding whether Player 1 has a winning
strategy for the unknown initial credit problem for multi-weighted two-player game structures
is at least as hard as deciding whether a 3SAT formula is unsatisfiable. Consider a 3SAT
formula ψ in CNF with clauses C1, C2, . . . , Ck over variables {x1, x2, . . . , xn}, where each
clause consists of disjunctions of exactly three literals (a literal is a variable or its complement).
Given the formula ψ, we construct a game graph as shown in Figure 3. The game graph is
as follows: from the initial position, Player 1 chooses a clause, then from a clause Player 2
chooses a literal that appears in the clause (i.e., makes the clause true). From every literal
the next position is the initial position. We now describe the multi-weight labeling function
w. In the multi-weight function there is a component for every literal. For edges from the
initial position to the clause positions, and from the clause positions to the literals, the weight
for every component is 0. We now define the weight function for the edges from literals back
to the initial position: for a literal y, and the edge from y to the initial position, the weight
for the component of y is 1, the weight for the component of the complement of y is −1,
and for all the other components the weight is 0. We now define a few notations related to
assignments of truth values to literals. We consider assignments that assign truth values
to all the literals. An assignment is valid if for every literal the truth value assigned to the
literal and its complement are complementary (i.e., for all 1 ≤ i ≤ n, if xi is assigned true
(resp. false), then the complement xi of xi is assigned false (resp. true)). An assignment
that is not valid is conflicting (i.e., for some 1 ≤ i ≤ n, both xi and xi are assigned the same
truth value). If the formula ψ is satisfiable, then there is a valid assignment that satisfies all
the clauses. If the formula ψ is not satisfiable, then every assignment that satisfies all the
clauses must be conflicting. We now present two directions of the hardness proof.
ψ satisfiable implies Player 2 winning. We show that if ψ is satisfiable, then Player 2 has
a memoryless winning strategy. Since ψ is satisfiable, there is a valid assignment A that
satisfies every clause. The memoryless strategy is constructed from the assignment A as
follows: for a clause Ci, the strategy chooses a literal as successor that appears in Ci and is
set to true by the assignment. Consider an arbitrary strategy for Player 1, and the infinite
play: the literals visited in the play are all assigned truth values true by A, and the infinite
play must visit some literal infinitely often. Consider the literal x that appears infinitely

FSTTCS 2010

514 Generalized Mean-payoff and Energy Games

often in the play, then the complement literal x is never visited, and every time literal x is
visited, the component corresponding to x decreases by 1, and since x appears infinitely often
it follows that the play is winning for Player 2 for every finite initial credit. It follows that
the strategy for Player 2 is winning, and the answer to the unknown initial credit problem is
“No".
ψ not satisfiable implies Player 1 is winning. We now show that if ψ is not satisfiable, then
Player 1 is winning. By determinacy, it suffices to show that Player 2 is not winning, and
by existence of memoryless winning strategy for Player 2 (Lemma 4), it suffices to show
that there is no memoryless winning strategy for Player 2. Fix an arbitrary memoryless
strategy for Player 2, (i.e., in every clause Player 2 chooses a literal that appears in the
clause). If we consider the assignment A obtained from the memoryless strategy, then since
ψ is not satisfiable it follows that the assignment A is conflicting. Hence there must exist
clause Ci and Cj and variable xk such that the strategy chooses the literal xk in Ci and
the complement variable xk in Cj . The strategy for Player 1 that at the starting position
alternates between clause Ci and Cj , along with that the initial credit of 1 for the component
of xk and xk, and 0 for all other components, ensures that the strategy for Player 2 is not
winning. Hence the answer to the unknown initial credit problem is “Yes", and we have the
following result.

I Lemma 12. The unknown initial credit and the mean-payoff threshold problems for multi-
weighted two-player game structures are coNP-hard.

Observe that our hardness proof works with weights restricted to the set {−1, 0, 1}.

5 NP-completeness for Memoryless Strategies

In this section we consider the unknown initial credit and the mean-payoff threshold problems
for multi-weighted two-player game structures when Player 1 is restricted to use memoryless
strategies. We will show NP-completeness for these problems.

I Lemma 13. The unknown intial credit and the mean-payoff threshold problems for multi-
weighted two-player game structures for memoryless strategies for Player 1 lie in NP.

Proof. The inclusion in NP is obtained as follows: the polynomial witness is the memoryless
strategy for Player 1, and once the strategy is fixed we obtain a game graph with choices for
Player 2 only. The verification problem for the unknown initial credit checks that for every
dimension there is no negative cycle, and the verification problem for mean-payoff threshold
checks that for every dimension every cycle satisfy the threshold condition. Both the above
verification problem can be achieved in polynomial time by solving the energy-game and
mean-payoff game problem on graphs with choices for Player 2 only [13, 3, 6]. The desired
result follows. �

Lemma 14 shows NP-hardness for dimension k = 2 and arbitrary integral weights, and is
obtained by a reduction from the Knapsack problem. If k = 1, then the problems reduces to
the classical energy and mean-payoff games, and is in NP ∩ coNP [3, 6, 20] (so the hardness
result cannot be obtained for k = 1).

I Lemma 14. The unknown intial credit and the mean-payoff threshold problems for multi-
weighted two-player game structures for memoryless strategies for Player 1 are NP-hard,
even in one-player game structures with dimension k = 2 for the weight function.

K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin 515

In Lemma 15 we show the hardness of the problem when the weights are in {−1, 0, 1},
but the dimension is arbitrary. It has been shown in [12] that if the weights are {−1, 0, 1}
and the dimension is 2, then the problem can be solved in polynomial time.

I Lemma 15. The unknown intial credit and the mean-payoff threshold problems for multi-
weighted two-player game structures for memoryless strategies for Player 1 are NP-hard,
even in one-player game structures when weights are restricted to {−1, 0, 1}.

Proof. We present a reduction from the 3SAT problem. Consider a 3SAT formula Φ over
a set X = {x1, x2, . . . , xn} of variables, and a set C1, C2, . . . , Cm of clauses such that each
clause has 3-literals (a literal is a variable or its complement). We construct a one-player
game structure with a weight function of dimension m from Φ. The set of positions is
S1 = X ∪ {(xi, j) | xi ∈ X, j ∈ {T, F}} ∪ {xn+1} and S2 = ∅. The set of edges is as
follows: E = {(xi, (xi, T)), (xi, (xi, F)) | xi ∈ X} ∪ {((xi, T), xi+1), ((xi, F), xi+1) | xi ∈
X} ∪ {(xn+1, x1)}. Intuitively, in the game structure, for every variable Player 1 has a choice
to set xi as “True" (edge from xi to (xi, T)), and choice to set xi as “False" (edge from xi
to (xi, F)). From (xi, T) and (xi, F) the next position is xi+1, and from the position xn+1
the next position is x1. The weight function w : E → Zm has m dimensions: (a) for an edge
e = (xi, (xi, T)) (resp. e = (xi, (xi, F))) and 1 ≤ k ≤ m, the k-th component of w(e) is 1 if
the choice xi as “True" (resp. “False") satisfies clause Ck, and otherwise the k-th component
is 0; (b) for edges e = ((xi, j), xi+1), with j ∈ {T, F}, every component of w(e) is 0; and
(c) for the edge e = (xn+1, x1), for all 1 ≤ k ≤ m, the k-th component of w(e) = −1. If Φ is
satisfiable, then consider a satisfying assignment A, and we construct a memoryless strategy
λ1 as follows: for a position xi, if A(xi) is “True", then choose (xi, T), otherwise choose
(xi, F). The memoryless strategy λ1 with initial credit vector {0}m ensures that the answer
to the unknown initial credit problem for memoryless strategies is “Yes". Conversely, if there
is a memoryless strategy λ1 for the unknown initial credit problem, then the memoryless
strategy must satisfy every clause. A satisfying assignment A for Φ is as follows: A(xi) is
“True" if λ1(xi) = (xi, T), and “False", otherwise. It follows that Φ is satisfiable iff the answer
to the unknown initial credit problem for memoryless strategies is “Yes". The argument for
the mean-payoff threshold problem is analogous. The desired result follows. �

The following theorem follows from the results of Lemma 13, Lemma 14 and Lemma 15.

I Theorem 16. The unknown initial credit and the mean-payoff threshold problems for multi-
weighted two-player game structures for memoryless strategies for Player 1 are NP-complete.

6 Conclusion

In this work we considered games with multiple mean-payoff and energy objectives, and
established determinacy under finite-memory, inter-reducibility of these two classes of games
for finite-memory strategies, and improved the complexity bounds from EXPSPACE to
coNP-complete.

Two interesting problems are open: (A) for generalized mean-payoff games, the winning
strategies with infinite memory are more powerful than finite-memory strategies, and the
complexity of solving generalized mean-payoff games with infinite-memory strategies remains
open. (B) it is not knwon how to compute the exact or approximate Pareto curve (trade-off
curve) for multi-objective mean-payoff and energy games.
Acknowledgement. We are grateful to Jean Cardinal for pointing the reference [14].

FSTTCS 2010

516 Generalized Mean-payoff and Energy Games

References
1 M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable specifications of reactive

systems. In Proc. of ICALP, LNCS 372, pages 1–17. Springer, 1989.
2 R. Alur, A. Degorre, O. Maler, and G. Weiss. On omega-languages defined by mean-payoff

conditions. In Proc. of FOSSACS, LNCS 5504, pages 333–347. Springer, 2009.
3 P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, and J. Srba. Infinite runs in weighted

timed automata with energy constraints. In Proc. of FORMATS, LNCS 5215, pages 33–47.
Springer, 2008.

4 T. Brázdil, P. Jancar, and A. Kucera. Reachability games on extended vector addition
systems with states. In Proc. of ICALP, LNCS 6199, pages 478–489. Springer, 2010.

5 L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J.-F. Raskin. Faster algorithms for
mean-payoff games (submitted for publication). Technical report, 2010.

6 A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Resource interfaces. In
Proc. of EMSOFT: Embedded Software, LNCS 2855, pages 117–133. Springer, 2003.

7 K. Chatterjee. Concurrent games with tail objectives. Theor. Comput. Sci., 388(1-3):181–
198, 2007.

8 K. Chatterjee, L. Doyen, H. Edelsbrunner, T. A. Henzinger, and P. Rannou. Mean-payoff
automaton expressions. In Proc. of CONCUR, LNCS 6269, pages 269–283. Springer, 2010.

9 K. Chatterjee, L. Doyen, T. Henzinger, and J.-F. Raskin. Generalized mean-payoff and
energy games. CoRR, 2010. http://arxiv.org/abs/1007.1669.

10 A. Condon. The complexity of stochastic games. Inf. Comput., 96(2):203–224, 1992.
11 A. Ehrenfeucht and J. Mycielski. Positional strategies for mean-payoff games. Int. J. of

Game Theory, 8:109–113, 1979.
12 Chaloupka J. Z-reachability problem for games on 2-dimensional vector addition systems

with states is in P. In Proceedings of RP 2010: Reachability Problems, LNCS 6227, pages
104–119. Springer-Verlag, 2010.

13 R.M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete Mathe-
matics, 23:309–311, 1978.

14 S. R. Kosaraju and G. F. Sullivan. Detecting cycles in dynamic graphs in polynomial
time (preliminary version). In Proc. of STOC: Symposium on Theory of Computing, pages
398–406. ACM, 1988.

15 D. Martin. Borel determinacy. In Annals of Mathematics, volume 102, pages 363–371,
1975.

16 C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1993.
17 A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. of POPL, pages

179–190, 1989.
18 P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event

processes. SIAM Journal on Control and Optimization, 25(1):206–230, 1987.
19 L. S. Shapley. Stochastic games. In Proc. of the National Acadamy of Science USA,

volume 39, pages 1095–1100, 1953.
20 U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Th. Comp.

Sc., 158:343–359, 1996.

	2847
	Preface
	Conference Organization

	2853
	Introduction
	Regular String Transductions
	Streaming Transducer Model
	Heap-based Transducer Model
	Expressiveness
	From Two-way Transducers to Heap-based Transducers
	From Heap-based Transducers to Streaming Transducers
	From Streaming Transducers to MSO

	Conclusions

	2849
	Introduction
	Clique-width
	Monadic second-order logic
	Edge set quantifications
	Special tree-width
	Automata for monadic second-order formulas with edge set quantifications
	Conclusion
	References

	2851
	Introduction
	Preliminaries
	Propositional proof systems
	Polynomial search problems
	The Karchmer-Wigderson game

	Razborov's characterization of circuit complexity
	Feasible interpolation
	From communication protocols to proofs
	Generalizations

	2852
	Introduction
	Basic definitions

	Problems
	Optimization
	Integration/Counting
	Learning
	Sampling
	Rounding.

	Geometric inequalities and conjectures
	Rounding
	Measure and concentration
	Isoperimetry
	Localization

	Algorithms
	Geometric random walks
	Annealing
	PCA

	2850
	Introduction
	Perfect information stochastic games – basic definitions
	Notation.
	Games and Arenas
	Payoff mappings
	Mean-payoff games
	Parity games

	Priority mean-payoff games
	Optimal strategies

	Playing without players – 0-player games
	Multi-armed bandits
	Optimal strategies for one-player games
	From one-player games to two-player games
	Final remarks

	2854
	Introduction
	Definitions
	Rank-width
	Signed graphs of CNF formulas

	Algorithm for Propositional Model Counting #SAT
	Parse trees for rank-decompositions
	Recording partial assignments of a formula
	The dynamic processing algorithm

	Algorithm for the Max-SAT Problem
	Conclusions

	2855
	Introduction
	Preliminaries
	Parameterized Complexity

	Polynomial-time SAT Decision for -acyclic CNF Formulas
	Backdoor Sets
	Deletion Backdoor Sets

	-Hypertree Width and Clique-Width
	Conclusion

	2856
	Introduction
	Preliminaries
	On Graphs of Girth 3 and 4 : W[2]-Hardness
	On Graphs of girth 5 or More: kO(k) kernel or FPT
	On Graphs of girth 5 and 6: No Polynomial Kernels
	Known Lower Bound Machinery
	Kernel lower bounds

	On Graphs of girth 7 or More: A Cubic Kernel
	Conclusion

	2857
	Introduction
	Preliminaries
	Limit objectives
	Termination

	2858
	Introduction
	ATL with strategy contexts
	Concurrent game structures.
	Alternating-time temporal logics.

	The expressive power of strategy contexts
	Alternating bisimulation.
	Relative expressiveness of ATL-sc and ATL*-sc .

	From ATL-sc to alternating tree automata
	Trees and alternating tree automata
	Unwinding of a CGS
	Strategy quantification
	Boolean operations, projection, non-determinization, ...
	Transforming an ATL-sc formula into an alternating tree automaton

	Conclusions

	2859
	Introduction
	Preliminaries
	Strategy Logic
	Model Checking
	Satisfiability

	2860
	Introduction
	Distribution Testing
	Testing with Quantum Queries
	Quantum Lower Bounds

	Graph Isomorphism Testing
	Periodicity Testing

	Preliminaries
	Bucketing
	Quantum Queries and Approximate Counting

	Proof of Theorem 1
	Testing Uniformity Tolerantly
	Testing Closeness to a Known Distribution

	Proof of Theorem 4
	Quantum Upper Bound
	Classical Lower Bound

	Summary and Open Problems

	2861
	Introduction
	Preliminaries
	A Lower Bound on Any Oblivious Transfer Protocol
	From Oblivious Transfer to Coin Flipping
	Proof of the Learning-In-Sequence Lemma

	A Two-Message Protocol With Bias 1/4
	Oblivious Transfer as a Forcing Primitive
	Extending Kitaev's Lower Bound to Forcing Oblivious Transfer
	A Protocol with Optimal Forcing Bias

	2890
	Introduction
	Applications
	Related Work
	Our Results
	Preliminaries

	Interval Scheduling: Theorem 2
	General Instances with Interval Jobs
	Proper Instances with Interval Jobs

	Real-time Scheduling: Theorem 3
	Real-time Scheduling for Moldable Jobs: Theorem 4
	Interval Scheduling with Unit Demands: Theorem 5
	Laminar Instances
	A PTAS and more for Cliques

	2862
	Introduction
	BagVBRap Problem Definition
	Prior Work
	Our Result and Discussion

	Preliminaries
	BagVBRap with NBA: The Case of Integral Profiles
	Partitioning Sopt into Slice-respecting Solutions
	Approximating the Optimum Slice-respecting Solution

	A Constant Factor Approximation for the General Case

	2863
	Introduction
	Vector Addition Systems
	Limits of reachable states of a VAS
	Between the cover and the reachability set: the filtered covers
	Computing the cover of a VAS with one zero-test
	Conclusion and perspectives

	2864
	Introduction
	Preliminaries
	Message sequence charts
	Time-constrained message sequence charts
	Timed message sequence charts
	Message sequence graphs
	Time-constrained message sequence graphs
	Timed automata
	The model checking problem

	An extended event clock automaton – the MSC-ECA
	Determinization and complementation of MSC-ECA
	From MSC-ECA to TA

	From a locally synchronized TCMSG to a finite MSC-ECA
	Solving the model checking problem

	2865
	Introduction
	Preliminaries
	Ordered Multi-Pushdown Systems
	Multi-pushdown systems
	Symbolic representation of MPS configurations
	Ordered multi-pushdown systems

	Computing the set of predecessors for an OMPS
	Applications to Linear-Time Global Model Checking
	The repeated state global reachability problem
	w-regular properties

	Conclusion

	2866
	Introduction
	Preliminaries
	Model Checking Collapsible HOBPA Against Fixed Formulas
	Branching Time
	Lower Bounds for EF
	Lower Bounds for CTL
	Lower Bounds for CTL+

	Linear Time
	Upper Bounds for LTL
	Lower Bounds for LTL

	Future Work

	2867
	Introduction
	Our results
	Independent sets in bipartite graphs
	The linear-width of a graph
	Analysis of the single bond flip chain for trees
	The canonical paths
	The congestion of M

	Conclusions

	2868
	Introduction
	Preliminaries
	Weighted 2-MaxCIS Problem on Perfect Graphs
	Integrality Gaps
	2-MaxCIS : Hardness Results

	2869
	Introduction
	Preliminaries
	Outline of the algorithm
	Implementation of the algorithm

	2870
	Introduction
	Background
	Coalgebras
	Algebras

	Motivating examples
	Non-deterministic automata
	Partial automata

	Algebraically structured coalgebras
	Examples
	Partial Mealy machines
	Structured Moore automata

	Coalgebras and T-Algebras
	Discussion

	2871
	Introduction
	Definitions

	Preliminary Results
	Normal Forms Equivalent to Constants
	Shrinking Witnesses

	Decidability for Flat and Shallow Rewrite Systems
	Undecidability of UN= for some Rewrite Systems
	Conclusion

	2872
	Introduction
	Techniques

	Preliminaries
	A Generator for -Oblivious ABPs
	Properties of the Generator
	Proof of Claim 1

	A Black-Box PIT Algorithm for -OABPs
	Separation Results and Lower Bounds for OABPs

	2873
	Introduction
	Preliminaries
	TC0 Tools
	Deciding RadicalSumEQ in TC0
	Further Work

	2874
	Introduction.
	Preliminaries
	Quasigroups
	Complexity Classes

	Nondeterministic Circuit Complexity of QGroupIso
	Computing Parity by Shallow Circuits with Limited Non-Determinism
	Discussion

	2875
	Introduction
	Preliminaries
	Permutation group problems
	Fpt algorithms for Colored Hypergraph Isomorphism
	Discussion

	2876
	Introduction
	Multiparty Session Processes with Exceptions
	Operational Semantics for Multiparty Exceptions
	Typing Structured Global Escapes
	Coordinated Exception Handling and Resolution: an Example
	Conclusions

	2877
	Introduction
	The symbolic abstraction of SMPC
	Review of the applied -calculus
	Abstracting SMPC in the applied -calculus

	Formal verification
	Computational soundness of symbolic SMPC
	Conclusion

	2878
	Introduction
	Definitions
	Preliminaries
	Probabilistic Automata

	Programs

	 Complexity and decidability for general programs
	Undecidability
	Decidability results for locally Markovian semantics
	Decidability results for view consistent semantics

	Conclusions

	2879
	Introduction
	Timed languages and their size measures
	Some geometric terminology
	Size of multidimensional sets
	Timed languages and their polyhedra
	Main definitions
	Example

	Good timed automata and their pre-processing
	Recurrent formulas

	Max-plus and mean dimension
	Recalling max-plus
	Matrix

	Functional analysis and v-entropy
	Recalling functional analysis
	Banach space and operator
	Characterization of v-entropy
	Algorithmic aspects

	Size versus information
	Conclusions

	2880
	Introduction
	Definitions
	The BST-like distribution
	Random regular expressions
	Glushkov automaton

	Main result
	Some properties of random expressions in the BST-like model
	Analytic tools
	Recognizing the empty word
	The average size of First is linear

	Conclusion and perspectives

	2881
	Introduction
	Deterministic Automata
	-Automata
	Finite Automata
	Automata Transformations & Conventions
	Emptiness and Equivalence

	Minimising Büchi and Parity Automata is NP-Complete
	Relative DFA Minimisation
	Almost Equivalence
	Finding minimal almost equivalent automata is tractable
	Space Reduction for DBAs and DCAs

	Discussion

	2882
	Introduction
	Preliminaries
	Simple Translations

	The Deterministic Case
	The Non-Deterministic Case

	2883
	Introduction
	Previous Work
	Computational Results
	Structural Results

	Our Results and Techniques
	Computational Results
	Our Techniques and Structural Results

	Preliminaries

	Approximation Algorithm for k-TC-Spanner for small k
	Approximation Algorithm for Directed k-Spanner
	Tightness of k-TC-spanner to 2-TC-spanner Transformation
	Approximation Algorithm for k-TC-Spanner for large k

	2884
	Introduction
	Hardness of Approximation
	Basic Reduction
	Amplification: Hardness for Discounted s-t Path
	Reduction: Hardness for Discounted Perfect Matching

	Algorithms for Discounted Combinatorial Optimization
	Discounted Edge Cover
	Discounted Spanning Tree
	Discounted s-t Path and Perfect Matching

	2885
	Introduction
	Preliminaries
	Our Results

	Reduction to 2-CatalogSegmentation and proof of Theorem 6
	Homogeneous Algebraic CSP
	Construction of the PCP
	Modified Outer Verifier
	Inner Verifier

	Sketch of Analysis

	2886
	Introduction
	Earlier Work
	Our Results

	Preliminaries
	Kernelization Lower Bound for k-Dodgson Score
	Parameterized Hardness of n-Dodgson Score
	Conclusions and Discussion

	2887
	Introduction
	Definitions and notations
	Undecidability
	Positive-bounded DTPRS
	Well-structure of positive-bounded DTPRS
	Well-quasi-ordering for data trees

	Verification of temporal properties
	Type-checking DTPRS
	Bounded model-checking DTPRS

	2888
	Introduction
	Definitions
	Attributed words
	Basic Data LTL
	Example: a simple client/server scenario

	Expressiveness of BD-LTL
	BD-LTL versus LTL"3223379 1
	BD-LTL versus CLTL

	Decidability of Basic Data LTL
	Extended Navigation
	Conclusion

	2889
	Introduction
	Preliminaries
	Reachability in Infinite Grids
	Set-Based Unfolding
	Regular Ground Tree Rewriting with Skeleton
	Conclusion

	2848
	Introduction
	Generalized Mean-payoff and Energy Games
	Determinacy under Finite-memory and Inter-reducibility
	coNP-completeness for Finite-Memory Strategies
	NP-completeness for Memoryless Strategies
	Conclusion

