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Preface

This volume contains the extended abstracts selected for presentation at ESA 2017, the
25th European Symposium on Algorithms, held in Vienna, Austria, on 4-6 September
2017, as part of ALGO 2017. ESA scope includes original research on both theoretical and
applied algorithmics. Since 2002, it has had two tracks, the Design and Analysis Track
(Track A), intended for papers on the design and mathematical analysis of algorithms, and
the Engineering and Applications Track (Track B), for submissions dealing with real-world
applications, engineering, and experimental analysis of algorithms. Information on past
symposia, including locations and proceedings, is maintained at http://esa-symposium.org.
In response to the call for papers for ESA 2017, 271 papers were submitted, 229 for Track A
and 42 for Track B. Paper selection was based on originality, technical quality, interestingness,
exposition quality, and relevance. Each paper received at least three reviews. After extensive
discussions, the two program committees selected 69 papers for inclusion in the program,
58 from track A and 11 from track B. Thus the acceptance rate was about 25% for both
tracks. The symposium featured two invited lectures: The first by David P. Woodruff
(Carnegie Mellon University) and the second by David Mount (University of Maryland). The
European Association for Theoretical Computer Science (EATCS) sponsored a best paper
award and a best student paper award. A submission was eligible for the best student paper
award if all authors were doctoral, master, or bachelor students at the time of submission.
The best student paper award was given to Marc Roth for the paper “Counting restricted
homomorphisms via Möbius inversion over matroid lattices”.

The best paper award for track A was given to Marek Cygan, Lukasz Kowalik and
Arkadiusz Socala for the paper “Improving TSP tours using dynamic programming over tree
decompositions”. The best paper award for track B was given to Hisao Tamaki for the paper
“Positive-instance driven dynamic programming for treewidth”.

We wish to thank all the authors who submitted papers for consideration, the invited
speakers, the members of the Program Committees for their hard work, and all the external
reviewers who assisted the Program Committees in the evaluation process. Special thanks go
to the Local Organizing Committee, who helped us with the organization of the conference.
Finally, we would like to thank Nicole Funk and Marvin Böcker for their valuable help in
editing these proceedings.

Kirk Pruhs
Christian Sohler
July 2017
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Sketching for Geometric Problems
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Abstract
In this invited talk at the European Symposium on Algorithms (ESA), 2017, I will discuss a
tool called sketching, which is a form of data dimensionality reduction, and its applications to
several problems in high dimensional geometry. In particular, I will show how to obtain the
fastest possible algorithms for fundamental problems such as projection onto a flat, and also
study generalizations of projection onto more complicated objects such as the union of flats
or subspaces. Some of these problems are just least squares regression problems, with many
applications in machine learning, numerical linear algebra, and optimization. I will also discuss
low rank approximation, with applications to clustering. Finally I will mention a number of other
applications of sketching in machine learning, numerical linear algebra, and optimization.
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1 Projection

Formally, in the projection problem, we are given a point b ∈ Rn and a d-dimensional flat
(affine subspace) H, and would like to compute the distance of b to H. In a typical setting,
n is very large, and d, while much smaller than n, is also fairly large. Thus we cannot afford
algorithms that say, are exponential in d. One way of being presented H is in its coordinate
representation, so we can think of H as being the set of points y of the form y = Ax + v,
where A is an n×d matrix and v is a point in Rn, which we think of as an offset. Note that A
is a tall and thin matrix. Letting dist(b,H) denote the Euclidean distance of b to H, we have
that dist(b,H) = dist(b− v,H − v) by translation, where H − v is the set of points y of the
form y = Ax. Thus we can write dist(b− v,H − v) = minx∈Rd ‖Ax− (b− v)‖2, which is just
a regression problem. If A has linearly independent columns, i.e., represents a d-dimensional
flat instead of a lower-dimensional flat, then the solution x∗ = (ATA)−1AT (b− v). One can
compute x∗ in O(nd2) time, or faster by using fast matrix multiplication algorithms, but for
large n and d this is too slow.

In the sketch and solve paradigm, one first relaxes the problem to a randomized approx-
imation problem, instead allowing for one to output an x′ ∈ Rd for which ‖Ax′ − b‖2 ≤
(1 + ε)‖Ax∗ − b‖2 with large probability. We refer the reader to the survey [21] for more
details and proofs of claims, but we describe the basic idea below. The crux of the sketch
and solve paradigm is to first choose S from a random family of matrices, and many such
families of matrices work, with the important property that S is wide and fat, that is, it has
k rows and n columns for k � n. One then computes S · A and S · b. Then one replaces
the original regression problem with minx ‖(SA)x− (Sb)‖2. For small k, which we should
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think of as being poly(d/ε), this problem does not even depend on the large dimension n.
Therefore, one can now afford to compute the minimizer x′ to this small regression problem
using the closed form expression above, in only poly(d/ε) time. The goal is to choose S from
an appropriate random family of matrices so that if one does this, then the minimizer x′ is
such that ‖Ax′ − b‖2 ≤ (1 + ε)‖Ax∗ − b‖2 with large probability.

It turns out that a number of families of random matrices work, such as a k × n matrix
S of i.i.d. normal random variables, where k = O(d/ε2), and the entries in S are scaled by
1/
√
k. The main difficulty with such matrices is that computing S · A is slow. That is, S

is a dense matrix, and computing S · A naïvely takes at least nd2/ε2 time, which is even
slower than the exact algorithm for computing x∗, which just took nd2 time. Note that for
the exact algorithm, the bottleneck was in the computation of ATA, and note that both
algorithms can be sped up with fast matrix multiplication. While this is too slow for our
purposes, in a very nice paper of Sárlos [19], he showed that one could choose S from a much
more structured random family of matrices called Fast Johnson Lindenstrauss transforms.
This reduces the time for computing S ·A to nd logn, and using the connection to regression
described above, gives an overall algorithm in nd logn + poly(d/ε) time for least squares
regression. While this is optimal in the matrix dimensions, often A is itself a sparse matrix
and one would like algorithms which run in time proportional to the number nnz(A) of
non-zero entries of A. In work with Clarkson [7] we show this is in fact possible by using the
so-called CountSketch matrices from the data stream literature, where we achieve an overall
running time of O(nnz(A)) + poly(d/ε) for regression. The key property of CountSketch
matrices is that they are extremely sparse, having only a single non-zero entry per column.
This enables the matrix-matrix product S ·A to be computed in only nnz(A) time. This is
easily shown to be optimal, as any algorithm achieving relative error for general matrices
A needs to read a constant fraction of the non-zero entries, as otherwise it might miss a
very large entry. A number of interesting tradeoffs between the number of rows of S and its
sparsity are possible, see also the followup works [15, 17].

In many settings one does not only want to project a point to a flat, but rather to a much
more complicated object, such as the union of flats. A natural question is what properties
of the object allow for sparse, low-dimensional sketching matrices S. A natural concept
that arises is the sphereical mean width, or equivalently, the Gaussian mean width of the
object. Intuitively this measures the average fatness of an object, over all directions on the
unit sphere. While the sphere is very fat, a line is not. The less fat the object, the fewer
dimensions one needs to preserve the norms of points in the object by a sketching matrix. In
recent work of Bourgain, Dirksen, and Nelson, sparse sketching matrices for projecting onto
general objects were developed [4]. One application of this is to tensor regression [14].

2 Low Rank Approximation

I will also discuss the low rank approximation problem, where the goal is to approximate a
high rank matrix by a matrix of much lower rank. Low rank matrices have fewer parameters,
and consequently can be stored much more efficiently in factored form and applied to vectors
very quickly. Also, in many instances one has an underlying matrix which is of low rank,
which then becomes high rank because of noise that was added. Hence in some settings, low
rank approximation can also be viewed as a tool for noise removal.

Formally, one is given an n× d matrix A, and think of the n rows of A as being points
in Rd. The goal is to find a rank k matrix A′ such that ‖A − A′‖F ≤ (1 + ε)‖A − Ak‖F ,

where for a matrix B, ‖B‖F =
(∑

i∈[n],j∈[d] B
2
i,j

)1/2
is the Frobenius norm, and Ak is the
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best rank-k approximation to A under Frobenius norm. A natural way of solving low rank
approximation is via the truncated singular value decomposition (SVD). Recalling that any
matrix A can be expressed as UΣV T , where U and V have orthonormal columns, and Σ is a
diagonal matrix with non-negative non-increasing values as one moves down the diagonal, we
have that Ak is given by zero-ing out all but the top k diagonal entries of Σ, obtaining Σk.
This effectively selects the k leftmost vectors of U and k uppermost vectors of V T , which are
also known as the principal components.

While the SVD gives an exact solution, it runs in time min(nd2, dn2), which can be sped
up using fast matrix multiplication, but is still much slower than what we would like. As
in the case of least squares regression, we can use sketching to obtain significantly faster
algorithms if we allow randomization and approximation. Namely, if we allow for outputting
a rank-k matrix A′ for which ‖A−A′‖F ≤ (1 + ε)‖A−Ak‖F , then we can solve this problem
in nnz(A) + (n+d)poly(k/ε) time [7]. To get some perspective on this, even when A is dense,
the time, up to poly(k/ε) factors, is nd, which is significantly faster than what is achievable
by the SVD. For sparse matrices, we obtain even larger speedups.

The basic idea behind using sketching for low rank approximation is to first compute
S ·A, where S is one of the random matrices discussed above with a small number of rows, on
the order of poly(k/ε). One then argues that there is a (1 + ε)-approximate rank-k solution
in the span of the rows of SA. It follows that by projecting each of the rows of A onto the
rowspan of SA, and then working in the coordinate representation of SA, one effectively
reduces the dimension from d to poly(k/ε). Since the running time of the SVD is O(nd2),
this smaller value of d allows one to now compute the SVD in only n · poly(k/ε) time. One
argues by the Pythagorean theorem that by first projecting the rows of A onto the rowspan
of SA, and then performing an SVD, that one still obtains a (1 + ε)-approximation. Choosing
S to be a CountSketch matrix, this whole procedure, except for the projection of the rows
of A onto the rowspan of SA, can be executed in nnz(A) + (n + d)poly(k/ε) time. The
bottleneck is the projection of the rows of A onto the rowspan of SA, but this can be done
in nnz(A) + (n+ d)poly(k/ε) time by using the approximate projection algorithms discussed
above.

I will also discuss applications of low rank approximation to k-means clustering. Here
the general idea is, if given n points in Rd, to form an n× d matrix A and then compute a
so-called projection-cost preserving sketch of A, which can then be used to prove a low rank
approximation with certain strong properties [10, 11, 12]. One then replaces the original
dimension d with a much smaller dimension depending on only k and 1/ε. Given such a
small dimension, one then runs standard algorithms from the coreset literature to reduce the
number n of points to poly(k/ε).

3 Additional Applications

Finally, I will conclude by mentioning a number of other problems sketching has been applied
to, such as special kinds of low rank approximations callled CUR decompositions, in which
the goal is to approximate a matrix A by a low rank matrix in which the factors of the
low rank matrix consist of actual rows and columns of A. Thus, if A has sparse rows or
columns, then so do its factors. Sketching has been applied successfully to obtain nnz(A)
time algorithms for CUR decompositions [5, 20].

Another interesting use of sketching is to high precision regression. One might complain
that the natural sketch and solve algorithm producing a vector x′ ∈ Rd for which ‖Ax′−b‖2 ≤
(1 + ε)‖Ax∗ − b‖2 has running time nnz(A) + poly(d/ε) and is undesirable if ε is very small.

ESA 2017
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By using sketching it is possible to obtain algorithms running in roughly nnz(A) log(1/ε)
time [7]. The main idea is to use sketching to obtain an O(1)-approximate initialization to
gradient descent as well as an O(1)-approximate preconditioner.

Other applications include robust low rank approximation [8, 20], kernelized problems
[1], distributed and streaming computation [2, 3, 6, 13], tensor low rank approximation
[20], weighted low rank approximation [18], structure-preseving low rank approximation
[9, 16], etc. I refer the reader to my recent monograph for many of the details and additional
applications of sketching [21]. While this accompanying article to my ESA talk is primarily
focused on my own work, this is just due to the nature of the talk, and please see the above
monograph for many other references on these and related topics.
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Abstract
We study permuting and batched orthogonal geometric reporting problems in the External
Memory Model (EM), assuming indivisibility of the input records. Our main results are two-
fold. First, we prove a general simulation result that essentially shows that any permutation
algorithm (resp. duplicate removal algorithm) that does αN/B I/Os (resp. to remove a fraction
of the existing duplicates) can be simulated with an algorithm that does α phases where each
phase reads and writes each element once, but using a factor α smaller block size.

Second, we prove two lower bounds for batched rectangle stabbing and batched orthogonal
range reporting queries. Assuming a short cache, we prove very high lower bounds that currently
are not possible with the existing techniques under the tall cache assumption.
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1 Introduction

The I/O model [7] is the well-established model to design and analyze algorithms for massive
data. In this model, the internal memory has size M and the input data is stored in a disk of
infinite size that is divided into blocks of size B. The transfer of data between disk and the
memory is done via I/Os where each I/O can read or write one block. We define m = M/B.
All computation must take place in the internal memory. The goal is to minimize the total
number of I/Os. This is an elegant model for problems where the size of the input data far
exceeds the size of the available memory. Sometimes, algorithms require that M ≥ B1+ε for
a constant ε and this is known as the tall cache assumption (and the converse as the short
cache assumption).

Batched Input with Constrained Output. The I/O model has been extensively studied [9,
8, 24]. In this paper, we will focus on proving lower bounds for batched geometric problems as
well as engaging in a more in-depth study of the permutation algorithms. The two important
batched problems that we study are the following.

∗ MADALGO Center for Massive Data Algorithmics is supported in part by the Danish National Research
Foundation grant DNRF 84.

© Peyman Afshani and Ingo van Duijn;
licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 2; pp. 2:1–2:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2:2 Permuting and Batched Geometric Lower Bounds in the I/O Model

I Problem 1 (Batched rectangle stabbing (BRS)). The input comprises a set I of N axis-
aligned rectangles and a query set Q of N points in Rd.

I Problem 2 (Batched orthogonal range reporting (BORR)). The input comprises a set P of
N points and a query set R of N axis-aligned rectangles in Rd.

In a batched query problem, it is often required that the output should consist of all the
pairs (ei, qj) where ei is an input element that matches the query qj . In this case, which we
call the paired output format, the two problems stated above are equivalent; both output the
set of incidence between an input set of points and rectangles.

In this paper, we consider a different query output format: for every query qj , we require
that all the input elements that match qj must be placed consecutively in the output. In
other words, the algorithm should list the answer to qj fully before answering any other
query. However, there is no restriction on the order in which the queries are answered nor on
the order of elements reported for each query. We call this query output format. Thus, BRS
and BORR are equivalent when we consider the paired output format but they could behave
differently if we consider the query output format.

As we shall see shortly, a very connected research direction is in-depth study of algorithms
that permute a given set of input elements in the I/O model. A major or interesting (in our
opinion) rather open-ended unsolved questions are the following.

I Question 3. Can one prove an ω(N/B) lower bound assuming M > B2 for
(i) explicit permutations
(ii) or general permuting using any proof technique that is not based on counting?

I Question 4. Let A be an algorithm that can compute some permutation π of a given N
input elements in αN/B I/Os, for some parameter α. Can we transform A into another
algorithm A′ that computes the same permutation π using O(αN/B) I/Os, such that A′ has
a “usefully structured canonical” form, e.g., it uses simple permutation algorithms as building
blocks?

Previous work. Sorting and permuting are possibly the two most fundamental problems in
the area of I/O algorithms, with permuting being one of the first problems studied in an
I/O setting [19]. Sorting N elements requires O(Sort(N)) = O

(
N
B logm N

B

)
I/Os and this

bound is tight [7]. The permutation problem is very similar to the sorting problem where
the goal is to produce (possibly an implicitly defined) permutation of the input elements. It
is also known that any permutation can be performed in O(Sort(N)) I/Os and there exists
permutations that require asymptotically that many I/Os; however, the proof is existential
and no such explicit permutation is known to this date [7]. This lower bound (as well as
many of the lower bounds in the I/O model) are proved in the so-call Indivisibility Model:
the data elements are assumed to be indivisible and atomic and each block can store B data
elements and the only computation allowed on the atomic elements is to move, delete, or
copy them (to or from memory). All other information or computation (unless explicitly
mentioned) is free. In the rest of this article, we will only focus on algorithms that work in
the indivisibility model. Within the context of permutations in the indivisibility model, there
has been attempts to answer Question 3 (or alternatively, to study “easy” permutations) but
all the known explicit permutations can be shown to be easier [7, 16, 21] and in particular,
they all can be done in O(N/B) I/Os when we do not have a short cache.

Additionally, there has been a lot of interest in batched problems. For example, in a
survey Vitter [24] cites 12 different problems that can be answered in O(Sort(N) +K/B)
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I/Os where N is the total input size and K is the total output size. See also [10, 13, 17, 18, 20].
In particular Arge et al. [11] show that a slightly less restrictive version of Problem 2 can be
solved in O

(
N/B logd−1

m N/B +K/B
)
I/Os. These results produce paired output format.

For the lower bounds, the permutation and sorting lower bounds as well as a problem
known as “proximate neighbors” [15], provide a basis of Ω(Sort(N)) lower bounds for a lot
of problems, including problems with batches of N input elements and N queries. Showing
a lower bound of roughly Ω(Sort(N)) for smaller batches is more difficult but some such
results are also known [4, 6] (although not explicitly stated in these papers). Lower bounds
for dynamic batched queries have also been proved [5]. In general, Ω(Sort(N)) is the only
lower bound available for all of these problems, in particular because in the indivisibility
model we can consider any algorithm that solves a batched problem as an algorithm that
computes an implicitly defined permutation of the input elements (possibly with duplicates).

Our results. In relation to Question 4, we prove a simulation result that shows any algorithm
in the indivisibility model that performs αn I/Os such that it reads and writes each element
O(α) times, can be “simplified” into an algorithm that performs O(α) rounds where in each
round each element is read and written once, using α factor smaller blocks.

In relation to the batched problems and assuming query output format, we prove that
if a data structure answers BRS queries in f(N) + c0K/B I/Os, for a constant c0, then

f(N) = N
logB+log log N

B

·
(

logN
mO(α)

)d−1
, assuming m ≤ Bε for a small enough constant ε. For

the BORR problem, then we prove f(N) = Ω
(
N
B logd−1

m (N)
)
. Interestingly, this might mean

that BRS is a more difficult problem than BORR in the query output format.

1.1 Preliminaries
Technical barriers. The indivisibility model has been extremely successful in proving lower
bounds for algorithmic and data structure problems. However, despite the considerable
attention, there are still some very natural questions left open. For instance, we consider
Question 3 as a major open question. The situation becomes more exasperating when one
considers that the known existential proof in fact shows that almost all permutations should
require Ω(Sort(N)) I/Os to permute but yet, we do not know of a single permutation that
even requires ω(N/B) I/Os. Furthermore, the existential proof (as well as the comparison-
based lower bounds for sorting) only can show a Ω(logm(N !)) = Ω(Sort(N)) lower bound
for any reasonably defined batched problem. For example, we can only obtain a Ω(Sort(N))
lower bound for the d-dimensional BORR problem (for a constant d) since the total number
of “combinatorially” different point sets of size N in Rd is at most N !d and logm(N !d) =
Θ(Sort(N)) for a constant d. Obviously, it is extremely unlikely that this bound is tight and
that the d-dimensional BORR problem can be solved in O(Sort(N)) I/Os.

However, if we assume a short cache, then both of these obstacles go away: we can in fact
show lower bounds for explicit permutations such as the matrix transpose permutation and
using a different proof strategy [7]. So the natural question becomes, can we actually prove
meaningful lower bounds for batched geometric queries under the short cache assumption?
Apart from the above considerations, this is also motivated by the desire to understand the
effects of short cache on the performance of the algorithms.

Hong-Kung’s rounds. While trying to prove a lower bound for the complexity of fast
Fourier transform, Hong and Kung [23] presented a general transformation of any I/O
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2:4 Permuting and Batched Geometric Lower Bounds in the I/O Model

algorithm into a more standard form that works in rounds. While their transformation is
originally presented for B = 1, it is easily generalizable to larger block sizes. We can thus
present their transformation as follow.

I Theorem 5. An I/O algorithm A that runs in a machine with memory size M can be
transformed into an equivalent algorithm A′ with the same asymptotic running time on a
machine with memory size 2M and the same block size such that A′ runs in rounds and
during each round, A′ first reads 2M/B blocks, performs some computation and then writes
2M/B blocks and clears the memory.

The increase in the block size of the machine in the above theorem is not consequential.
It is easy to show that two machines where the block sizes and memory sizes differ only by a
constant amount are equivalent, up to constant factors.

I Corollary 6. Let A be an algorithm that works in Hong and Kung’s rounds that creates a
permutation π of a set of N input elements using αN/B I/Os. At least half of the elements
are written at most O(α) times. Therefore, every such element occurring in an output block
can be traced back to one of mO(α) possible input blocks.

Proof. By an averaging argument, not more than half of the elements can be written more
than 2α times, thus at least half of the elements are written at most 2α times. Since A works
in Hong-Kung rounds, we can trace the elements in an output block to 2m other blocks
written previously by the algorithm. Those elements, subsequently can be traced back to
(2m)2 other blocks. For the elements that are written O(α) times, the output block is traced
back to mO(α) input blocks. J

2 Universal External Permuting Algorithm

To study the hardness of permuting, we need to consider arbitrary algorithms that perform
a specific permutation. That is, the hardness of a permutation is determined by the optimal
algorithm performing it. Often, one admirable goal towards this end is to reduce any
permuting algorithm into a “canonical” permuting algorithm that is simpler and easier to
study. In fact, Hong and Kung’s rounds is one such attempt. However, we would like to
probe much deeper. Our basic building block is the following.

2.1 Blocked Shuffle Exchange
To simplify analysing external memory permuting lower bounds, we only consider a single
type of algorithm that we call a Blocked Shuffle Exchange (BSE).

I Definition 7. In a machine with block size B and memory size M , a blocked shuffle
exchange with α phases is an algorithm with the following structure.
(i) it runs in α phases
(ii) in each phase, the algorithm does the following until
all elements are read and written once: read at most m = M/B blocks into the memory,
write some permutation of the read elements to the disk, and then clear the memory.

The goal is to show that we can (partially) simulate any permuting algorithm with a
BSE. In particular, the goal is to simulate an algorithm A that uses at most αN/B I/Os,
with a BSE containing O(α) phases. We can in fact do this but under two caveats. The
first caveat is that we only simulate the permutation of the elements that are written O(α)



P.Afshani and I. van Duijn 2:5

︸ ︷︷ ︸

αN/B blocks

α̂



 · · ·

· · ·

· · ·

Block B with |B| = B
︷ ︸︸ ︷

B/α︷︸︸︷
...

...

Figure 1 The write history of A consists of αN/B blocks of size B. Sparse layer blocks can be
compactified using blocks of size B/α (2 in this example). Note that all columns contain at most
one element.

times. This is necessary because of some (rather uninteresting) bad examples: an algorithm
that sorts the first O(N/ logN) elements of an input using N/B I/Os, obviously cannot be
simulated with O(1) phases of a BSE. However, the algorithm reads and writes a small
portion of the elements many times while not touching the rest. So it is only meaningful to
demand a simulation on the subset of the input elements that are not read or written many
times. This is what we demand with the first caveat. For the second caveat (that we do not
know if it is necessary or not) we define work as block size times number of I/Os performed;
for an optimal simulation in terms of work, we need to run our simulation BSE on a smaller
block size. The exact formulation of our result is the following.

I Theorem 8. Let A be an algorithm that creates a permutation π of a set of N input
elements using αN/B I/Os. Furthermore, we assume that A writes any element O(α) times.

Then, we can create a BSE that creates π using O(α) phases and either (i) uses α2N/B

I/Os or (ii) uses the same amount of work but using blocks of size B/α .

Proof. Observe that we can assume A writes every element exactly α̂ := cα times for a
constant c; if some elements are written fewer times, we can just read them and perform
dummy writes.

To describe a BSE, we model the sequential write history of A. That is, all the writes
that A makes laid out sequentially in the order in which they are written. Now conceptually
imagine having α̂ copies of this array stacked on top of each other, where each copy forms
a layer. Every write performed by A thus corresponds to a column that is composed of α̂
layer-blocks stacked on top of each other. Assume the layer-blocks in one block are numbered
from one to α̂, so that the ith block the kth column contains all elements written for the ith
time at the kth write. Thus, simulating an I/O by algorithm A corresponds to reading or
writing in the corresponding column.

The observation is that in the simulation, we can compute the i + 1st layer by only
reading from the ith layer. This follows from the fact that every read A makes is from a
previously written block (or input block), and to produce all the i+ 1st writes only requires
reading elements written i times. Thus, to compute the next layer, we run A but replace
every read with a read to the corresponding block in the ith layer (and similar for writing to
the i+ 1st layer). Since A uses αN/B I/Os, computing the next layer also takes at most
that many I/Os. Since layer-blocks can be very sparse, this gives a work of α̂αN = O

(
α2N

)
.

To achieve O(αN) work, the layer blocks are tightly packed in smaller B/α-sized blocks.
Every simulated I/O is now a sequence of densely filled B/α-sized blocks and one additional
sparse block. Since every element occurs exactly once per layer, there are at most N/(B/α) =
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2:6 Permuting and Batched Geometric Lower Bounds in the I/O Model

αN/B dense I/Os per layer. The same bound holds for sparse I/Os, since there are α̂N/B
columns, and at most one sparse I/O per column. Together, this yields α̂αN/B I/Os and
(α̂αN/B)(B/α) = α̂N work. J

The factor α reduction in block size in this result might not be optimal. For small
block size, it might happen that α = Ω(B), and thus the simulation essentially becomes an
internal memory simulation. However, for simulations where α is a constant, the theorem is
particularly useful.

I Corollary 9. To prove that an explicit permutation π requires ω(N/B) I/Os (and thus
ω(N) work), it is sufficient to prove that permuting π with a BSE requires ω(N) work.

2.2 Abstract Duplicate Removal
As we show in Section 3, creating the output of a batched problem is not modelled as a
permutation problem, but as a duplicate removal problem. Essentially, we can think of the
algorithm as an algorithm that runs “backwards” and given the output of the batched problem,
it is trying to remove all the duplicates and produce the input set of elements. Because of
this, we prove a different simulation result that shows a duplicate removal algorithm can
be manipulated to produce a particular permutation of a subset of the elements with some
nice properties. Before stating our simulation result, we need to introduce some definitions
pertaining to duplicate removal.

I Definition 10. Consider a set S of K atomic elements together with an equivalence relation
≡ defined on S. An element e1 is a duplicate of an element e2 if and only if e1 ≡ e2. The
duplicate removal problem is the problem of finding the quotient set or specifically, it is
the problem of finding a subset S′ ⊂ S of N elements such that no two elements in S′ are
equivalent but for every element in S there is an equivalent element in S′.

The duplicate removal problem is trivial if the algorithm has full knowledge of which
elements are duplicates and if we only care about the movement of the elements. However,
such an algorithm is highly unrealistic. To tie up the algorithm into a more realistic behavior,
we force the algorithm into duplicate elimination framework (DEF).
1: The algorithm starts with an input of K atomic elements, but with no knowledge of the

equivalent relation ≡.
2: At cost of one I/O, the algorithm can read or write a block.
3: The algorithm can move or delete elements in the main memory.
4: The algorithm works in the Hong-Kung’s rounds.
5: The algorithm can detect all elements e1, e2 in the main memory s.t., e1 ≡ e2. From now

on, the algorithm remembers this for free, for all copies of e1 and e2.

Crucially, an algorithm A can actually delete all copies of an element, if it detects that
it is a duplicate of another element. This is a problem for showing lower bounds for the
batched problem since this operation can shrink the input size of the duplicate removal
algorithm, leaving an easier instance of the problem. In the following theorem, we overcome
this difficulty.

I Theorem 11. Consider an algorithm A that works in the DEF and given an input S of
size K it detects a subset S′ ⊂ S of K/2 duplicate pairs in αK/B I/Os.

Then, using O(αK/B) I/Os, and using a machine with M ′ = M +B memory, we can
create a permutation of a subset S′′ ⊂ S such that S′′ contains K/4 pairs of elements (e, e′)
of S where e is a duplicate of e′ and e and e′ are placed in the same block.
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Proof. Our overall proof strategy is as follows. We allocate a special buffer of size B in
the memory where we collect pairs of elements (e, e′) such that e is a duplicate of e′. Once
the special buffer is full, we write them to the disk. To fill the special buffer we simulate
A two times: once forward and once backwards. During the backwards execution of A we
make some modifications where instead of writing an element e into a block B, we may write
an element e′ instead. This means that, in the future, when we read the block B, we will
have the element e′ instead of e. We continue the backwards execution of A while treating
e′ the same way e was treated; this is possible since A only moves or copies the element e
and both can be applied obliviously to e′ instead. It is important to observe that A might
copy elements (consider it bookkeeping), even though it is a duplicate removal algorithm.
Ultimately, what we want to show is that by using the sequence of I/Os that A performs, we
can create an algorithm that produces a permutation of the input such that at least half of
the elements reside in a block with at least one equivalent element. In order to show this, we
define two notions.

Consider the original execution of A. First, every element e defines a copy tree C(e),
which is a rooted tree, as follows. There is a node in C(e) for every time e was loaded
into a Hong-Kung round. The root of C(e) is the first time the element e is loaded into
memory. More than one copy of e could be in memory in a specific round. Therefore, pick
one arbitrarily to be the representative that round. Two nodes u and v in C(e) are connected
if the block u is loaded from was written in the round where v was the representative. Note
that this implies that C(e) is a path if e is only ever moved around and never duplicated.

Second, for every equivalence class E we define an equivalence tree T (E). Two elements
ei and ej in T (E) are connected if the algorithm discovered their equivalence. This implies
in particular that (some copies of) ei and ej were in the memory at the same time. It
is therefore easy to write all edges of T (E) to a special buffer during the execution of A.
However, this would not be a permutation since every element of the equivalence tree is
written as many times as its degree.

The basic idea is to output siblings of T (E) in pairs, so that in the at least half of the
elements of T (E) are output as disjoint pairs. There are two obstacles with this approach.
The most important is that siblings might not reside in memory at the same time. The other
obstacle is that nodes might not have an even number of children.

First we show how to handle the second obstacle with the following grouping scheme
(the algorithm does not actually perform these operations, but it is considered known by the
algorithm). Consider the deepest internal node e. If it has an even number of children they
are marked to belong to the same group, meaning that they will be paired up later. If e has
an odd number of children, then e is grouped together with its children. In either case, e and
its children are discarded and the scheme is repeated until there are no nodes left to group.
Note that some elements are not grouped (i.e. those that had an even number of children),
but at least half of the elements will be grouped. The goal now is to pair each element with
exactly one member of its group.

We first run A with a memory of sizeM+B. The special buffer is used to write discovered
pairs to disk, and it is written to the output section on disk when it is full. If an element
meets a member of its group in the memory, we write the pair to the buffer. The two elements
are now disregarded for the rest of the procedure, meaning they will not be paired up with
other elements anymore. Note that all nodes that were grouped with their children have
been written to disk. What is left is to show how to pair up the remaining unpaired siblings.

We do this by performing the I/Os of A backwards by considering writes as reads and
vice versa. Elements that have already been paired up will not be used to form new pairs,
but are still moved around in the backwards run. Consider the situation where the algorithm
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ei ei
C(ei)

ekej

ekej

Figure 2 An element ei and its children in the equivalence tree (left), and ei as a supernode
showing the underlying copy tree C(ei) (right).

“discovers” an equivalence between ei and ej , where ei is the parent in the equivalence tree
and ej is still unpaired. Since ei is either already paired in the forward run, or will not
be paired at all, we can safely substitute it with ej . That means that for the rest of the
backwards run, every copy of this ei upwards in the copy tree is now replaced by ej . The
claim is that all unpaired siblings will be paired up in this way.

Figure 2 depicts part of the equivalence tree of ei. The two children ej and ek were never
in memory at the same time. However, if we replace the copy of ei (call it a) that discovers ej
by ej (and similarly for the copy b that discovers ek) the following happens. The substituted
elements will end up in the memory at the same time, namely at the round where some copy
of ei wrote copies a and b to disk. At this point the elements are written to the buffer and
ignored for the rest of the backwards run as usual. If more than two substituted elements
meet in memory, then at most one (namely the one that was not written to the buffer) will
propagate up the copy tree of ei. By construction, an even number of siblings were left, so
all of them will eventually be paired and written to the buffer.

Thus, all elements that were grouped are written to disk exactly once, and always paired.
Since at least half of the elements were grouped, the proof is complete. J

3 Batched Lower Bounds for Short Cache

In this section, we describe our lower bounds for offline problems under the short cache
assumption. As discussed earlier, a major open problem is to obtain some non-trivial lower
bound of ω(Sort(N)) for some offline problem without the short cache assumption and
unfortunately, none of the known techniques seem capable of doing that.

In general, proving lower bounds for geometric problems involves first building a “difficult”
input set and then proving that the input is indeed difficult. For our problems, this first part
is now considered standard since there have been plenty of lower bounds that have been
using similar set of basic constructions of points and rectangles [2, 3, 12, 14, 22].

These standard constructions have been summarized in the following theorems.

I Theorem 12. [2, 3, 14] For any parameter n, we can place a set P of n points inside the
unit cube U in Rd such that for any two points p, q ∈ P , the rectangle created by p and q has
volume Ω(1/n). Furthermore, any rectangle of volume v contains Ω(vn−O(1)) points.

I Theorem 13. [3, 14, 12] For any two parameters n and `, 2 ≤ ` ≤ n1/3, we can place a
set R of n rectangles inside the unit cube U in Rd with the following properties. There are
t := ct(log` n)d−1 types of rectangles, for a constant ct, with each type having the dimensions( 1
`

)i1 × ( 1
`

)i2 × · · · ( 1
`

)id−1 × t`i1+i2+...id−1

n , for some integers ix ∈ {0, . . . , log`(n/t)}. The set
R has the following properties:
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(i) each rectangle has volume t
n ,

(ii) Θ(nt ) rectangles of each type are sufficient to tile U ,
(iii) every two rectangles of same type are disjoint, and
(iv) r rectangles that have distinct types intersect at a volume at most t

n`r .

3.1 Batched rectangle stabbing problem
In BRS we are given an input set I of N rectangles and a query set Q of N points. The goal
is to find for every point q in Q, the set of rectangles that contain q. For every query point q,
the algorithm is required to output the set of rectangles that contain q in contiguous blocks.
However, the algorithm is given freedom to choose the order in which to report the queries,
and within each query, the order of the rectangles that contain q.

I Theorem 14. Let A be an algorithm that given the input sets I and Q for the BRS problem,
answers the queries in query order format and in f(N) + c0K/B I/Os for a constant c0. We

prove that f(N) = N
logB+log logn ·

(
logN
mO(c0)

)d−1
, assuming B = Ω(log logN).

The first step is to construct the difficult input sets. First, we create a set Q of N points
using Theorem 12. Then, using Theorem 13, we create a set I1 of n initial rectangles for a
parameter n. Next, we “clone” each initial rectangle β times, where β is a parameter. This
is inspired by a data structure lower bound of [1]. Specifically, we create β copies of each
initial rectangle and then place the copies in the input set I. Thus, we can construct a set
I of N = nβ rectangles. One should think of the clones as slightly perturbed copies of the
original rectangles, meaning, the cloned rectangles are distinct atomic rectangles. However,
for simplicity we consider them to cover the same area. If an initial rectangle is stabbed by
k query points, all its clones are said to have multiplicity k.

Thus, we have a set Q of query points, and a set I of rectangles. Assume that the
algorithm decides to answer the set of queries in the order < q1, · · · , qN >. For each qi, let
Iqi refer to the subset of I that contains the point qi. By Theorem 13 and because of our
cloning, Iqi contains tβ rectangles where t = (log` n)d−1. The output of the algorithm can
therefore be described as O := Iq1 , ..., IqN . Thus, O is a sequence of atomic elements, where
each atomic element is a rectangle from I. Let K be the total length of O. With the input
and output formalised, we have the necessary tools to prove the theorem.

Proof of Theorem ??. Consider the input (Q, I) and the output O as described above. O is
generated from the sequence in which I is presented to the algorithm. Multiple query points
might stab the same rectangle, so O can contain many duplicates. Since the operations of
the algorithm are reversible in the indivisibility model, we can consider the algorithm in
reverse. In this setting, the sequence O is the input and the goal is to remove duplicates.
Observe that we have many duplicates; by Theorem 13, each rectangle r ∈ I has volume
t/n, and therefore by Theorem 12 it contains Θ( tnN) = Θ(tβ) points. This means r appears
Θ(tβ) times among the query answers, and thus it is duplicated Θ(tβ) times. By assumption
the algorithm spends at most f(N) + c0K/B I/Os to remove all the duplicates. We claim it
is enough to prove that this duplicate removal requires more than (c0 + 1)K/B I/Os. Most
of this proof is devoted to proving this main claim, and in the end we show how it implies
that f(N) ≥ K/B.

By contradiction, assume the duplicate removal can be done in αK/B I/Os, for α = c0 +1.
If there are more than K/10 elements of O that are written more than 10α times, then it
follows that the algorithm has spent more than (10α · K/10)/B = αK/B I/Os, which is
not possible. Thus, let O′ be the subset of O where each element of O′ is written at most
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10α times and now we know that O′ contains at least 9K/10 elements. Since O contains N
unique elements, it follows that O′ contains 9K/10−N ≥ 8K/10 duplicates. Now ignore any
element that is not in O′ (or assume the algorithm can just remove the duplicates for free
outside O′). This means, the algorithm has an input of size at least 9K/10 and it remove at
least 8K/10 duplicates.

By Theorem 11, we can do a simulation of the duplicate removal with an α (i.e. constant)
factor overhead on the number of I/Os. Let Ô be the sequence of elements produced by the
simulation, and consider a block B in Ô. By Theorem 11, we know B is filled with pairs
of elements that are duplicates and by Corollary 6, B can be traced back to w = mO(α)

blocks of size B in the sequence O′ and in particular to blocks in the sequence Iq1 , ..., IqN .
Each block of size B can store answers for max{1, Btβ } queries and thus w blocks of size B
correspond to u = w ·max{1, Btβ } queries. Since every rectangle is stored in the same block
with at most β of its clones, there are at least B

cβ un-cloned (initial) rectangles in I1 with
multiplicity > 1. That means that there exists a subset S ⊆ Q of queries (where |S| ≤ u), so
that in the set of rectangles in I1 stabbed by S, there are at least B

cβ rectangles stabbed by
at least two query points.

We show that for the right choice of parameters, this is impossible which would in turn
prove our main claim above. To do this, it is enough to show that two query points qi and
qj cannot stab r = B

cβu2 common initial rectangles; if that holds, then the total of common
initial rectangles over all u2 pairs in S cannot amount to B

cβ .
By an area argument, we show that two query points qi and qj cannot stab r = B

cβu2 + 1
initial rectangles. If the area of the intersection of r initial rectangles, which is t

n`r−1 , is
smaller than the area spanned by qi and qj , which is at least Ω( 1

N ) = Ω( 1
nβ ) by Theorem 12,

then we are done. Thus, we must ensure that t
n`r−1 < 1

c′nβ , (i.e. c
′βt < `r−1) for some

constant c′. By substituting t = ct(log` n)d−1 and r we get:

c′ctβ(log` n)d−1 < `
B

cβu2 (1)

(d− 1) log log` n+ log β +O(1) < B log `
cβu2 (2)

β((d− 1) log log` n+ log β +O(1)) < B log `
cu2 (3)

We set β = B/(logB + log logn) and thus we get u = w since βt ≥ B. We assume
B = Ω(log logN) and thus this implies β ≥ 1 and thus it is a valid choice for β. Then, we
observe that setting the value log ` = mO(α) satisfies the inequality 3. We thus we obtain
a lower bound of f(N) = Ω(K/B). Since each query point hits exactly tβ rectangles, the

output size is K = Ntβ. For our choice of `, we have t =
(

logN
mO(α)

)d−1
. Using the notation

f � g for f = Ω(g), we get

f(N)� K

B
= N ·

(
logN
mO(α)

)d−1 1
logB + log logn (4)

J

This lower bound is higher than the upper bound shown in [11] for the paired output
format. One trivial approach to achieve the query output format is sorting the paired
output format. This yields O

(
N/B logd−1

m N/B +K/B logmK/B
)
I/Os, which of course

does not match our lower bound. Besides, our theorem only applies to algorithms that use
O(f(N) + αK/B) I/Os. It would be interesting to see if our lower bounds can be matched
by a specialised algorithm tailored for the query output format.
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3.2 Batched Orthogonal Range Reporting
I Theorem 15. Let A be an algorithm that given the input sets P and R for the BORR
problem, answers the queries in f(N) + c0K/B I/Os. And assume Bε > mc0 for some small
enough constant ε. We prove that

f(N) = Ω
(
N

B
logd−1

m (N) +K/B

)
.

Proof. The proof of this theorem follows the same reasoning as the proof of Theorem 14,
but the input objects (points) are not cloned. Consider an input (P,R) where P is a set of
N points as in Theorem 12 and R is set of n query ranges as in Theorem 13. The value of n
is determined by a parameter β so that β = N/n. Note that we create fewer rectangles than
points.

As before, we look at the problem as a duplicate removal problem, define the sequence O
of size K and observe that it is sufficient to prove that removal of duplicates from O requires
at least αK/B I/Os where α = c0 + 1. As before, we assume otherwise, meaning, we assume
that the algorithm can remove duplicates in αK/B I/Os. We then define the sequence O′
and use Theorem 11 to define the sequence Ô. We know that every block in Ô contains
B/c duplicates for some constant c. However, here the role of the rectangles and points are
swapped and proofs start to diverge.

The volume of a rectangle is t
n , so by Theorem 12 it contains Θ(N t

n ) = Θ(tβ) points.
Since the points contained in a rectangle are reported consecutively, a block of size B can
store answers to max{1, Btβ } queries. Thus, setting β to be max{1,Θ

(
B
t

)
}, every block can

store the answers to O(1) queries. As before, every block in Ô can be traced back to only
mO(α) blocks in the sequence O and since very block in the sequence O stores answers of
at most O(1) queries, it follows that every block in Ô can be traced back to w = mO(α)

rectangles that contains B/c points that are contained in at least two of the rectangles. This
means, for some pair of rectangles q1, q2, we must have B/(cu2) common points. Observe
that the area of q1 ∩ q2 is at most O( t

n` ) and thus by Theorem 12, q1 ∩ q2 can contain at
most 1 +N ·O( t

n` ) = 1 + c′ tβ` points, for some constant c′.
Thus, we can get a contradiction by satisfying the inequality

1 + c′
tβ

`
<

B

w2 .

Observe that if B
w2 > 1, then we can pick ` large enough such that it satisfies the inequality.

In particular, we set ` = Ω(w2). The assumption of B
w2 > 1 translates to Bε > mc0 which is

satisfied by our short cache assumption. Thus, we get a lower bound

f(N) = Ω
(
K

B

)
= Ω

(
tβn

B

)
= Ω

(
tN

B

)
= Ω

(
N logd−1

w2 N

B

)
= Ω

(
N

B
logd−1

m N

)
. J
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Abstract
In the independent range sampling (IRS) problem, given an input set P of n points in Rd, the
task is to build a data structure, such that given a range R and an integer t ≥ 1, it returns
t points that are uniformly and independently drawn from P ∩ R. The samples must satisfy
inter-query independence, that is, the samples returned by every query must be independent of
the samples returned by all the previous queries. This problem was first tackled by Hu et al. [15],
who proposed optimal structures for one-dimensional dynamic IRS problem in internal memory
and one-dimensional static IRS problem in external memory.

In this paper, we study two natural extensions of the independent range sampling problem.
In the first extension, we consider the static IRS problem in two and three dimensions in internal
memory. We obtain data structures with optimal space-query tradeoffs for 3D halfspace, 3D
dominance, and 2D three-sided queries. The second extension considers weighted IRS problem.
Each point is associated with a real-valued weight, and given a query range R, a sample is drawn
independently such that each point in P ∩R is selected with probability proportional to its weight.
Walker’s alias method is a classic solution to this problem when no query range is specified. We
obtain optimal data structure for one dimensional weighted range sampling problem, thereby
extending the alias method to allow range queries.
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1 Introduction

Range searching is a fundamental problems in computational geometry.. The input is a
set P of n data points in d-dimensional real space, Rd (possibly weighted). The goal is to
preprocess the points into a data structure, s.t., given a query range R, the points in P ∩R
can be counted or reported efficiently. Range searching has been studied extensively and we
refer the reader to the survey by Agarwal and Erickson [5] for a broad overview of the area.

Sampling is one of the most natural operations to deal with large data, making efficient
and robust sampling vital in many applications. Here, we consider the range sampling
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problem, where the goal is to design a data structure to support efficient methods to sample
from data in the query range. These queries do not fit in the traditional range searching
frameworks (such as, the semi-group range searching framework). However, the ability to
generate random samples for a given range is useful in many database applications, such
as online aggregation [14], interactive queries [6] and query optimization [10]. Within the
context of database systems, the importance of sampling queries were identified early on.
Olken and Roten’s survey from 1995 [20] presents various possible sampling strategies as well
as attempts to solve them (see also [19]). However, for spatial queries, i.e., range queries,
most of the existing solutions have shortcomings. In one category of solutions, the idea is
to use R-trees or Quadtrees where the performance of the data structures depend on input
parameters such as “density” and “coverage” [19]. Thus, the worst-case performance of such
solutions could be very bad. In another category of solutions, one can select a random sample
of the points, preprocess and store them in a data structure (see [15] for more details) but
this does not guarantee independence between future and past queries (i.e., asking the same
query twice will return the same set of samples).

Hu et al. [15] studied the independent range sampling problem for the first time using
the worst-case analysis. In this variant, it is required that the results of every query
must be independent from those returned by the previous queries. Thus, issuing the same
query multiple times will fetch different samples, which is desirable in many data analytic
applications [12, 26, 17], For example, in interactive spatial exploration and analytics [12, 26],
the user specifies a query range on the map, and the goal is to continuously generating
samples from that range for analytic purpose. The query process is interactive since the
user can terminate the query whenever s/he finds the precision of the analysis is acceptable.
Independence among the sampling results of all queries is crucial in interactive spatial
exploration and analytics, since the user may issue queries with similar query ranges and
expect to get independent estimations. Hu et al. [15] studied the problem in one dimension
for unweighted points, and proposed a data structure that consumes O(n) space, can be
updated in O(logn) time and can answer queries in O(logn+ t) time, where t is the number
of samples. In this paper, we study the problem in two and three dimensions, and obtain
optimal data structures for some important categories of queries: three dimensional halfspaces
and by extension, three-dimensional dominance queries, and two-dimensional three-sided
queries. We also propose optimal data structure for one-dimensional weighted range sampling
problem, in which the sampling probability is defined by the weights of the points.

We focus on the space-query time trade-off for static data structures that solve the
independent range sampling problem. We focus on the with-replacement sampling, in which
each sample is independent selected from the query range. We defer the discussion on
without-replacement sampling to the full version of the paper [1]. For the unweighted case,
the input is a set P = {p1, · · · , pn} of n points in Rd where U is the domain size, and a
range space R. Given a range R ∈ R and an integer t ≥ 1, the query returns a sequence of
t points, where each element of the sequence is a random point of P ∩ R that is sampled
uniformly and independently (i.e., with probability 1

|P∩R| ). We impose the constraint that
the sampling result must be independent from those returned by the previous queries.

For the weighted case, each input point pi is associated with a real-valued weight wi.
The query returns a sequence of t points, where each element of the sequence is a point
pi ∈ P ∩ R sampled independently and with probability wk/

∑
pj∈P∩R wj . Note that if

range R is omitted in each query, such sampling oracle can be implemented with a classic
data structure called Walker’s alias method, which uses linear space and returns a weighted
sample in constant time. Alias method has been successfully adapted in many data mining
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algorithms [16, 7], so it is also of theoretical interest to see if it can be extended to support
range queries. We assume the existence of an oracle that can generate random real numbers
or integers in O(1) time. We assume real RAM model of computation: a machine that is
equipped with w-bit integer registers, for w = Ω(logn), as well as real-valued registers that
can store any real number. Arithmetic operations take constant time but storing the contents
of a real-valued register into an integer register (via the “floor” function) is only allowed
when the result has at most w bits 1.

Our results. We obtain an optimal data structure for three dimensional halfspace ranges
for the unweighted independent range sampling problem. Given a query halfspace h, it
can extract t independent uniform random samples from h in O(logn + t) expected time.
The structure uses O(n) space. This also implies optimal data structures for two-sided and
three-dimensional dominance queries. For weighted range sampling problem, we obtain an
optimal data structure for one dimensional point sets in the real RAM model. More precisely,
we assume the coordinate of each point can fit in a word of Θ(logU) bits, and the real value
weights are stored in real registers. The reason we make this assumption is to assure that
the space used to store the weights cannot be charged to the space used to store the points.
The query is given as an interval [a, b], where a and b are indices. The goal is to extract
t independent samples from the indices in [a, b], such that each index i ∈ [a, b] is selected
independently with probability proportional to its weight wi. Our solution uses O(n) space
and answers a query in O(Pred(U,w, n) + t) time, where Pred(U,w, n) is the query time of
a predecessor search data structure that uses O(n) space on an input of size n from the
universe [U ] and on a machine with w-bit integers [22].

1.1 Related Work
In the database community, the problem has a long history and it dates back to the 80’s
when it was introduced as the random sampling queries problem. For a database and a given
query (range, relational operator, etc.), the goal is to return a random sample set in the query
result rather than the entire query result itself. Olken and Rotem considered the problem of
independently returning random samples from a query range on B-trees [20], and obtained
a structure that returns a sample with O(logB n) cost. Olken and Rotem also studied the
range sampling problem in high dimensional space using R-tree based structures [21]. We
refer the readers to see an excellent survey in [20].

This problem has regained attention recently, due to the “big query” phenomenon where
a query result may contain a huge number of elements, and thus it is infeasible to list them
all. As mentioned, Hu et al. [15] studied the range sampling problem for one dimensional
points, with insertions and deletions. They proposed a dynamic RAM structure of O(n)
space that answers a range sampling query in O(logn+ t) expected time, and supports an
update in O(logn) time. The static unweighted range sampling problem is trivial for one
dimensional point sets, since given a query with range R = [a, b] and parameter t, one can
perform two predecessor queries to identify the boundaries of the points in R, and one range
counting query with constant cost to obtain P ∩ R, the number of points in R. Then, we
can simply sample from P ∩R by generating t random integers between 1 and |P ∩R| and
accessing the corresponding t points.

1 We actually don’t need a “floor” instruction since we can simulate it using binary search in O(w) time.
As this is used during the preprocessing phase, the query cost can still be kept constant.
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Walker’s Alias Method. In the weighted sampling problem, the input is a set of non-
negative real numbers w1, . . . , wn, and the goal is to build a data structure, such that a
query extracts an index i with probability pi = wi/

∑n
j=1 wj . The indices returned by

different queries should be independent. The classic solution to this problem is Walkers’ alias
method [25], which uses O(1) query time and O(n) preprocessing time. See the full version
of th paper [1] for short description of this method.

Another problem very related to halfspace range sampling is the halfspace range reporting
problem where the goal is to simply report all the points in the query halfspace. To see this
relationship, observe that extracting t random samples from a query range that contains
only t points should extract a faction of the points in the range with constant probability.
Halfspace range reporting has been extensively studied for over 30 years, and various results
were obtained on this problem. In 2D, the problem was optimally solved in 1985 by Chazelle,
Guibas, and Lee [11] but in contrast, the first optimal solution in 3D was obtained relatively
recently in 2009 by Afshani and Chan [3], where they showed that one can report the set of
points in a query halfspace in O(logn+ t) time using O(n) space where t is the output size.
The 3D solution is based on powerful tools created by Matoušek [24, 18] which have been a
vital part of all the previous attempts to solve halfspace range reporting problems in three
and higher dimensions [8, 24, 23]. Note that the fact that we can match the performance of
the best reporting data structures for the queries considered is very desirable.

2 Unweighted Range Sampling in Three Dimensions

Let p1, · · · , pn be a set of three-dimensional points. The main result of this section is an
optimal data structure that given a query halfspace h, it can extract t independent uniform
random samples from h in O(logn+ t) expected time.

We will use most of the known tools in range reporting: shallow cutting, shallow partition,
and partition theorems together with new ideas that take advantage of the structure of the
range sampling queries. The rough summary of our approach is as follows: we first build a
“core” data structure to sample from query halfspaces that contain many points; later by
using shallow cuttings we can extend this to all query halfspaces. To build the core data
structure, we create a hierarchy of shallow cuttings and then for each cell in the resulting
cuttings, we build data structures that can sample a point uniformly randomly from inside
the cell. This part is the main technical contribution since without additional ideas, this
approach is not going to give us a linear-space solution2. To use only linear space, we build
one “global” data structure which is an array that stores the point set in some order, and
then for each cell in a shallow cutting, we store a data structure of sublinear size that can be
used to generate one “random” entry point per sample, into the global array; the final sample
point is obtained through this random entry point in constant time. A careful analysis shows
that the space complexity of the data structure is indeed linear and that each sample is
picked with the correct probability.

2 An expert reader can verify that this approach can easily give us a solution that uses O(n logn) space, if
we spend O(n) space per each shallow cutting level. By using another classical idea, that is, building the
shallow cuttings every log logn levels and bootstrapping using simplex range searching data structures,
this can be reduced to O(n log logn). However, this approach seems hopeless to get to O(n) space.
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Figure 1 (left) For a k-shallow cutting F , a triangle τ ∈ ∆(F) is shown. For every point on τ ,
there are at least k and at most O(k) hyperplanes passing below it (not shown here). Hτ is the set
of hyperplanes h that are below at least one of the vertices of τ . (right) In dual space, h is a point
that is below at least one of the hyperplanes corresponding to the vertices of τ .

2.1 Preliminaries and Definitions
We present the dual of a hyperplane h (resp. point p) with h (resp. p): a point p that is below
a hyperplane h is mapped to a hyperplane p that passes below the point h. An xy-monotone
function in R3 is a surface, s.t., any line parallel to the z-axis intersects the surface exactly
once. Given an xy-monotone surface F in 3D and a point q = (qx, qy, qz) ∈ R3, we say q is
above F iff the “downward” ray (qx, qy)× [qz,−∞) intersects F . The below relationship is
defined analogously. Let P be a set of points in 3D and let H be a set of n hyperplanes dual
to points in P . A k-shallow cutting F for H is an xy-monotone surface that is a piece-wise
linear function composed of O(n/k) vertices, edges, and triangles, s.t., there are at least k
and at most O(k) hyperplanes passing below every point of F . The conflict list of a point p
on F is defined as the set of all the hyperplanes in H that pass below p and it is denoted by
Hp. The conflict list of a triangle τ ∈ ∆(F) is the set of hyperplanes that pass below τ and
is denoted by Hτ . The set of points dual to Hτ is denoted by Pτ . See Figure 1.

I Theorem 1 (Shallow Cutting Theorem [24]). For any given set H of n hyperplanes in 3D
and an integer 1 ≤ k < n/2, k-shallow cuttings exist. Furthermore, for ki = 2i, 0 ≤ i < logn,
ki-shallow cuttings Fi, together with the conflict lists of all their vertices, can be constructed
in O(n logn) total time.

I Lemma 2. Given a shallow cutting Fi and its set ∆(Fi) of O(n/ki) triangles, we can
build a data structure of size O(n/ki) s.t., given a point p ∈ R3, we can decide if p is below
Fi or not. In the first case, the triangle τ ∈ ∆(Fi) that lies directly above p can be found in
O(logn) time.

Proof. Simply project all the triangles onto the xy-plane. Since Fi is xy-monotone, we
obtain a decomposition of the plane into O(n/ki) triangles. Build a point location data
structure on the planar decomposition [13]. Given the query point p, project it onto the
xy-plane, find the triangle τ whose projection contains the projection of p, and decide if p is
below τ or not. J

I Theorem 3 (Partition Theorem [18]). Given a set P of n points in 3D and an integer
0 < r ≤ n/2, there exists a partition of P into r subsets P1, · · · , Pr, each of size Θ(n/r), s.t.,
each subset Pi is enclosed by a tetrahedron Ti, s.t., any hyperplane crosses O(r2/3) tetrahedra.

I Theorem 4 (Shallow Partition Theorem [24]). Given a set P of n points in 3D and an
integer 0 < r ≤ n/2, there exists a partition of P into r subsets P1, · · · , Pr, each of size
Θ(n/r), s.t., each subset Pi is enclosed by a tetrahedron Ti, s.t., any halfspace that has at
most n/r points of P crosses O(log r) tetrahedra.

We also need the following known optimal data structures for halfspace range reporting
(Theorem 5) and approximate halfspace range counting (Theorem 6).
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I Theorem 5 ([3]). Given a set P of n points in R3, one can build a data structure of linear
size s.t., given a query halfspace h, it can list the points in P ∩ h in O (logn+ |P ∩ h|) time.

I Theorem 6 ([4, 2]). Given a set P of n points in R3, and a constant ε > 0, one can build
a data structure of linear size s.t., given a halfspace h, in O(logn) time, one can produce an
integer k̃ s.t., k̃/(1 + ε) ≤ |h ∩ P | ≤ k̃.

2.2 The Overall Data Structure
We now return to our original problem. Our input is a set P of n points in R3. Let H be
the set of hyperplanes dual to P . Define ki = 2i, 0 ≤ i < logn. We say an integer m is large
if it is greater than 2C(log logn)2 , for a global constant C to be set later. The following lemma
will be proved in the next subsection.

I Lemma 7. Given a set P of n points, we can build a structure of linear size to answer the
following queries. Given any query halfspace h in which |P ∩ h| is large, we can extract t
independent random samples from P ∩ h in O(logn+ t) time.

Furthermore, the query can be carried over in an “online” fashion. After the initial search
time of O(logn), the data structure can fetch each subsequent sample in O(1) expected time,
until interrupted by the user.

By standard techniques, this gives us our main theorem. See the full version of the
paper [1] for the proof.

I Theorem 8. Given a set P of n points in R3, we can build a data structure of size O(n)
s.t., given a halfspace h and a parameter t, we can extract t samples from the subset P ∩ h
in O(logn+ t) expected time.

Furthermore, the query can be carried over in an “online” fashion, without knowledge
of t: After the initial search time of O(logn), the data structure can fetch each subsequent
sample in O(1) expected time, until interrupted by the user.

The above theorem easily extends to sampling from dominance queries as well. Given two
points p and q in d-dimensional space, q dominates p if every coordinate of q is greater than
that of p. In dominance reporting, the goal is to preprocess a set of n points s.t., given a
query point q all the points dominated by q can be reported efficiently. As observed by Chan
et al. [9], three-dimensional dominance queries can be solved using halfspace queries. It is
also known that a dominance query can solve two-dimensional a three-sided query, that is, a
query region [a, b]× (−∞, c] given by three values a, b, and c.

2.3 Proof of Lemma 7
As previously mentioned, this is the heart of the problem and this is where we significantly
deviate from the previous techniques (even though we use similar building blocks): To obtain
optimal halfspace range reporting, Afshani and Chan [3] rely heavily on the fact that if a
halfspace h contains too many points, then the data structure is allowed to spend a lot of
time on the query, since we will spend a lot of time producing the output; in other words, the
search time can be charged to the output size. In our case, we might be interested only in a
small subset of points in h and thus the search cost cannot be charged to the output size.

Our idea is to build two main components: a global array and a number of local structures.
The global array will store each point once in an array of size n, in some carefully selected
order. The array compactly stores a number of “canonical sets” of total size O(n logn). We
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use shallow cuttings to build the local structures. The important point is that the local
structures in total will have sublinear size and their utility is to find entry points into the
global structure: given a query, using the local structures we locate a subarray of the global
array and then uniformly sample from the subarray. We present the technical details below.

Using Shallow Cutting Theorem, we build a ki-shallow cutting Fi (as well as its set of
triangles ∆(Fi)), for each large ki where ki = 2i, 0 ≤ i < logn, We have |∆(Fi)| = O(n/ki)
by the Shallow Cutting theorem. For a triangle τ ∈ ∆(Fi), the conflict lists Hτ and Pτ are
defined as before. Observe that for each triangle τ ∈ ∆(Fi), with vertices p1, p2 and p3, Hτ

is the union of Hp1 , Hp2 , and Hp3 (with duplicates removed). In this subsection, h will refer
to the query halfspace in the primal space. In dual space we will denote h with q. Thus, our
objective is to either sample a random point of P below h, or a random member of Hq (a
random hyperplane of H that passes below q).

The Global Structure. Using Shallow Partition Theorem, we build a partition tree Tglobal

as follows. The root of Tglobal represents P . Consider a node of Tglobal that represents a
subset S ⊆ P . We use Shallow Partition Theorem with parameter r = |S|ε to obtain subsets
S1, · · · , Sr, for a small enough constant ε > 0. If a subset Si contains at most b points, for a
parameter b to be defined later, we call it a base subset. Unlike the approach in [3], we only
recurse on subsets Si that are not base subsets. Thus, the leaves of Tglobal are base subsets.
For each base subset B, we build a secondary data structure that is another partition tree
TB: The root of TB represents B. At a node of TB that represents a subset S ⊆ B, we
use Partition Theorem (not the shallow version) with parameter r = |S|ε to obtain subsets
S1, · · · , Sr. We recurse on each subset Si until we reach subproblems of constant size. We
store an in-order traversal of the leaves of TB, in an array AB; the size of AB is exactly
equal to |B| and for every internal node v ∈ TB the points in the subtree of v are mapped
to a contiguous interval of array AB . We build our global array A by concatenating all the
arrays AB over all base subsets B. Finally, we build a data structure for approximate range
counting queries (Theorem 6).

The Local Structure for τ . Consider a triangle τ ∈ ∆(Fi) and let p1, p2, and p3 be the
vertices of τ . Remember that Hτ was defined as the union of conflict lists of p1, p2, and p3
after duplicate removal (Figure 1). We will store a local structure for τ that consumes o(|Hτ |)
space (O(|Hτ |/ logO(1) n) to be more precise). p1, p2 and p3 correspond to three different
hyperplanes, p1, p2 and p3 in the primal space; a hyperplane h ∈ Hτ corresponds to a point
h ∈ P that is below one of the hyperplanes p1, p2 or p3. Let Pτ be the set of such points (in
other words, Pτ is the set of points dual to hyperplanes in Hτ ). Let B1, · · · , Bm be the base
subsets that are intersected by or are below at least one hyperplane pi, 1 ≤ i ≤ 3. We will
store a data structure of size O(mb3/4) at triangle τ : For each base subset Bi, we consider
the partition tree TBi . For every node v ∈ TBi , the subset of points in the subtree of v defines
a canonical subset of Bi. By the properties of partition trees (see e.g., [18]), we can write
Pτ ∩Bi as the union of O(|Bi|2/3 log |Bi|O(1)) = O(|Bi|3/4) = O(b3/4) canonical subsets of Bi.
However, as each subtree of TBi maps to a contiguous interval of ABi , it follows that we can
represent Pτ ∩Bi as the union of O(|Bi|3/4) intervals from ABi . We collect all these intervals,
over all base subsets B1, · · · , Bm. Let I1, · · · , IM be the set of all such intervals. Observe that
we have |I1|+ |I2|+ · · ·+ |IM | = |Pτ | since the intervals partition Pτ . Also, M = O(mb3/4).
We store the numbers |I1|, |I2|, · · · , |IM | in a data structure Tsample(τ) for weighted sampling,
using the Alias method; the data structure consumes O(M) = O(mb3/4) space and in O(1)
time can produce a pointer to an interval Ij with probability |Ij |

|I1|+|I2|+···+|IM | = |Ij |
|Pτ | .
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Answering Queries. Using approximate halfspace range counting data structure, we can
produce an integer k̃ s.t., k̃/2 ≤ k ≤ k̃. Let i be the smallest index s.t., k̃ ≤ ki. We can
find k̃ and i in O(logn) time, by Theorem 6. Clearly, q is below ki-shallow cutting Fi. Let
τ ∈ ∆(Fi) be the triangle that lies above the query point q. τ can be found in O(logn) time
using a point location query. We claim it is sufficient to be able to sample from Hτ : to
sample a hyperplane that passes below q, we repeat extracting independent uniform samples
from the set Hτ until we find one that passes below q. Since Hq is a subset of Hτ , this
guarantees independent uniform sampling. On the other hand, since |Hq| ≥ k̃/2 we get
that |Hτ | = O(k), and thus on average we need to extract O(t) random samples from Hτ

to produce t random samples from Hq
3. Note that after initial O(logn) time to find τ , we

spend O(1) expected time per sample and thus we can continue without knowledge of t.

Sampling fromHτ . Consider the intervals I1, · · · , IM stored for the triangle τ ; by construc-
tion, the points stored in these intervals form a partition of Pτ . Using structure Tsample(τ),
in O(1) time, we can select an interval Ij with probability |Ij ||Pτ | . Next, we generate a random
integer ` between 1 and |Ij | and output the `-th point in the interval Ij . Clearly, the
probability of outputting an element of Pτ is exactly equal to 1

|Pτ | and query time is O(1)
per sample.

Space Analysis. This is the main part of the proof. First, observe that the global structure
clearly consumes linear space since points in every base subset B are stored only once in
the array AB . Thus it remains to bound the space usage of the local structures. Consider a
triangle τ ∈ ∆(Fi) with its three vertices p1, p2, and p3. Let Hp1 be the set of hyperplanes
of H below p1, or equivalently, let Pp1 be the subset of points of P below the hyperplane p1.
Let k = |Hp1 |. Let f(n, k) be the maximum number of base subsets of Tglobal intersected by
any hyperplane h that lies above k point of P . Remember that we have used the Shallow
Partition theorem with parameter r = nε. If n ≤ b, then we are already at a base subset
so f(b, k) = 1. Otherwise, depending on the value of k, we might intersect either all the r
subsets or only O(log r) subsets. So we get the following recurrence, which is a generalization
of the one found in [3] (we must note that the recurrence in [3] bounds the query time where
here we are only bounding the crossing number):

f(n, k) ≤


1 if n ≤ b∑O(logn)
i=1 f(cn1−ε, ki) if k ≤ n1−ε = n

r∑nε

i=1 f(cn1−ε, ki) if k > n1−ε = n
r

where k =
∑
i ki.

We solve the recurrence by guessing that it solves to the “correct” bound, that is, it solves
to f(n, k) = 2c(log logn)2 + kg(n)/b1−3ε, where g(n) is a monotonously increasing function
that is always upper bounded by a constant and c is a constant. This is similar to the
analysis done in [3], so we postpone the details to the full version of the paper [1].

The analysis shows that the total number of the base sets intersected by three hyperplanes
p1, p2, or p3 is at most 3f(n,O(ki)). Thus, the value m in the local structure of τ is bounded
by 3f(n,O(ki)). The local structure of τ consumes O(mb3/4) space. Remember that we are
aiming to build the data structure for halfspace containing large number of points. Thus,

3 This is the only part that breaks down for the weighted range sampling problem. This is also the only
hurdle that makes the query time “expected”. All the other parts of the data structure work with a
worst-case query time.
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ki = Ω(2C(log logn)2). We set the constant C in the definition of a large integer to 2c, which
means ki = Ω(22c(log logn)2). We also set b = logC

′
n for a large enough constant C ′. We

plug the values in f(n, k), and thus space used by the local structure of τ is bounded by

O(mb 3
4 ) = O

(
f(n,O(ki))b

3
4

)
= O

((
2c(log logn)2

+ ki
b1−3ε

)
b

3
4

)
= O

(
(logn) 3C′

4 2c(log logn)2
+ ki

(logn)( 3C′
4 −3ε)

)
= O

(
ki

log2 n

)
if we set C ′ large enough and set ε < 1/4. The number of triangles τ in ∆(Fi) is O(n/ki)
and thus the total amount of space used by the triangles is O(n/ log2 n) and over all the
indices this sums up to o(n). This proves all the local data structures consume sublinear
space and concludes the proof of Lemma 7.

3 Weighted Range Sampling in One Dimensions

In this section, we address the one-dimensional range sampling problem. Let U be an integer
that denotes the universe size of the coordinates. We assume the word size w = Θ(logU),
such that the coordinate of each point can fit in a word. The input is a set P = {p1, · · · , pn}
of n points on grid [u], and each point pi is associated with a non-negative real-valued weight
wi. Given an interval R = [a, b] and an integer t ≥ 1, the query returns a sequence of t
points, where each element of the sequence is random point pi ∈ P ∩ R that is sampled
independently and with probability wk/

∑
pj∈P∩R wj .

Note that the coordinate of a point can be stored in a word of w = Θ(logU) bits, but a
weight is a real number and cannot be stored in an integer word. We say the space usage of
a data structure is S(n) if it uses at most S(n) words and at most S(n) real registers.

Weighted vs. Uniform IRS. We first offer some intuition to show that weighted independent
range sampling is a non-trivial problem, even in one-dimension. Consider one-dimensional
uniform independent range sampling problem. There is a simple solution: we store the points
of P in ascending order using an array A. Given a query range [a, b] and an integer t, we
perform predecessor/successor search to identify the subsequence in A that consists of the
elements covered by q. Then, we can simply sample from the subsequence by generating t
random ranks and accessing t points. The total query cost is O(Pred(U,w, n) + t) where
Pred(U,w, n) is the query time of a predecessor search data structure that uses O(n) space
on an input of size n from the universe [U ] and on a machine with w-bit integers [22]. For
the weighted IRS problem, the above approach does not work. The main issue is that
sampling from the identified subsequence requires an alias structure designed specifically to
that subsequence. Since there are Ω(n2) difference subsequences, one needs Ω(n2) space to
make this approach work.

Notations. We begin by defining some notations. Given a set S, we use W (S) to denote
its weight. With a slight abuse of notation, we also use W (S) to denote the set S. Given two
integers 1 ≤ a ≤ b ≤ u, [a, b] is the range from a to b. With a slight abuse of notation, we will
also use [a, b] to denote the points in range [a, b], and W (a, b) =

∑
pk∈[a,b] wk to denote the

total weights in [a, b]. We use Ppre(a) to denote the predecessor of a in P , and Psuc(a) to de-
note the successor of a in P . Given a point pi ∈ [a, b], we use Wpre(pi, a, b) =

∑
pj∈[a,b],j<i wj

to denote the prefix sum of point pi in [a, b], and Wsuc(pi, a, b) =
∑
pj∈[a,b],j>i wj to denote

the suffix sum of point pi in [a, b], respectively.
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u

v

h

a b

Wpre(Psuc(b), Gb′)Wsuc(Ppre(a), Ga′)

u1

u2 u′1

W (R(u,Ga′)) W (L(u,Gb′)
s = log2 n

Figure 2 A schematic illustration of the
fat points and partial sums.

Less than 1/s2

At most 1/s poured out

Maximum rk∗

r1
Rational probability r′1

Figure 3 A schematic illustration of the
rounding process.

Let T denote a balanced binary tree on the n points, with height h = logn. Given
an internal node u, we use W (u) to denote the total weight of the subtree rooted by u.
Fixing an internal node u and a leaf v in u’s subtree, let P(u, v) be the set of nodes on
the path from u to v, excluding node u. We define the left canonical set of P(u, v) to be
L(u, v) = {w ∈ P(u, v) | w is a left child} ∪ {v}, and similarly the right canonical set to be
R(u, v) = {w ∈ P(u, v) | w is a right child} ∪ {v}. It is easy to see that the point set in
range [a, b] is made up by the subtrees rooted at the nodes in R(u, Ppre(a)) ∪ L(u, Psuc(b)).
Here we define Ppre(a) = Psuc(a) if a is in S.

A baseline structure. We will use the following baseline structure, which uses O(n log2 n)
space draws sample with constant cost. The proof of Lemma 9 is deferred to the ful version
of the paper.

I Lemma 9. For the one-dimensional weighted IRS problem, there is a structure of O(n log2 n)
space that can answer a weighted sampling query in O(Pred(U,w, n) + t) time.

3.1 A structure with linear space and O(log∗ n) query cost
In this subsection, we improve the space of our structure to linear by sacrificing the per-sample
query cost.

Structure. We group the points into m = n/s fat points, G1, · · · , Gm, where each fat
point Gi includes s = log2 n consecutive points. The weight of Gi is defined to be the
summation of weights in Gi. Then we build the baseline structure, denoted by T , on the
fat points. Since the number of fat points is n/s = n/ log2 n, the space usage is reduced to
O(n). Inside each fat point Gi, we bootstrap a baseline structure, denoted by T (Gi), for all s
points contained in Gi. This takes O(s log2 s) = O(log2 n log2 logn) space for each fat point,
and O(n log2 logn) space for all n/ logn fat points. For each point pk ∈ Gi, we also store
Wpre(pk, Gi) and Wsuc(pk, Gi), the prefix and suffix sums of point pk in Gi, respectively.
Finally, we store n global prefix sums, Wpre(pi, P ), for i = 1, . . . , n. It is easy to see the total
space usage is O(n log2 logn).

Answering Queries. Given a query range [a, b], we first find Ppre(a), the predecessor of a
and Psuc(b), the successor of b in P , in Pred(U,w, n) time. Then we locate the fat points
Ga′ and Gb′ that contains Ppre(a) and Psuc(b), respectively. Figure 2 illustrates that W (a, b)
can be decomposed into the summation of partial weights in fat leaves Ga′ and Gb′ , and
weights of subtrees in canonical sets R(u,Ga′) and L(u,Gb′). More precisely, we have

W (a, b) =Wsuc(Ppre(a), Ga′) +Wpre(Psuc(b), Gb′) +W (R(u,Ga′)) +W (L(u,Gb′)).
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We retrieve these four weights and sample one of the weights. If W (R(u,Ga′)) or
W (L(u,Gb′)) is selected, we sample a fat leaf Gi from Ga′ , . . . , Gb′ using baseline solution
T , and then sample a point pk from Gi using the alias structure A(Gi). Otherwise, assume
that the partial sum Wsuc(Ppre(a), Ga′) is selected. We simply query the baseline structure
in T (Ga′) with range [a,∞) to retrieve a sample as the query result.

Analysis. To see that above sampling procedure gives the correct probability distribution,
note that a point pk in fat pointGa′ is selected if and only if the partial sumWsuc(Ppre(a), Ga′)
is sampled from W (a, b), and pk is sampled from Wsuc(Ppre(a), Ga′). Thus the probability is

wk
Wsuc(Ppre(a), Ga′)

· Wsuc(Ppre(a), Ga′)
W (a, b) = wk

W (a, b) .

On the other hand, consider a point pk in fat point Gi that lies completely in (a, b). Without
loss of generality, we assume Gi is in left canonical set R(u,Ga′) of the baseline structure
T . Observe that pk is selected if and only if the following events happen: 1. W (R(u,Ga′))
is selected from W (a, b); 2. W (Gi) is selected from alias structure A(R(u,Ga′)); 3. pk
is selected from alias structure A(Gi). Thus the probability for pk being picked can be
computed as

W (R(u,Ga′))
W (a, b) · W (Gi)

W (R(u,Ga′))
· wk
W (Gi)

= wk
W (a, b) .

Bootstrap. Now that we have a structure that uses O(n log2 logn) space and answers
weighted IRS queries in O(Pred(U,w, n) + t) time, we can bootstrap this structure to reduce
the space usage. More precisely, we note that the extra log2 logn factor comes from the
baseline structure in each fat point. Thus, we can group the points in a fat point into
secondary fat point of size log2 logn and build the baseline structure in the secondary fat
point to reduce the space usage to O(n log2 log logn). Repeat the bootstrap process log∗ n
times and we will have a structure with O(n) space and O(log∗ n) per-sample query time.
The number of predecessor queries need to be performed is O(log∗ n). However, for dataset
with size O(log logn), a predecessor query can be answered in constant time, which implies
that the time for performing predecessor queries is still bounded by O(PredU,w, n).

I Lemma 10. There is a structure of O(n) space that can answer a one-dimensional weighted
IRS query in O(Pred(U,w, n) + t log∗ n) time.

3.2 A structure with linear space and constant query cost.
In this subsection, we show how to obtain constant query cost by using RAM tricks to pack
multiple integers into a single word.

Packing weights. We first apply the fat point technique twice to reduce the size of a fat
point to s = log2 logn. Note that if there is a linear size structure for s points with constant
per-sample query time, we can apply it to each fat point, and achieve a linear size structure
and constant per-sample query time for arbitrary number of weights.

Consider point sequence p1, . . . , ps with weights w1, · · · , ws, where s = log2 logn. If we
maintain an alias structure for point sequence {wi, . . . , wj}, for any pair 1 ≤ i ≤ j ≤ s, then
we can answer weighted IRS queries with constant time per sample. The problem is that
there are O(s2) such pairs, so it requires Ω(s3) space to store these structures.
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To reduce the space cost, we round the probabilities to rational numbers with precision
up to 1/s2, and pack multiple rational numbers into a single word. While constructing O(s2)
alias structures for real weights is costly, constructing O(s2) alias structures for rational
weights can be made space-efficient.

More precisely, given index pair 1 ≤ i ≤ j ≤ s, let rk = wk/W (pi, pj), k = i, . . . , j,
be the probability that pk is sampled from {pi, . . . , pj}, and let rk∗ denote the maximum
probability in {ri, . . . , rj}. We conceptually perform the following probability transfers: for
every index ` ∈ [i, j], ` 6= k∗, we define rational probability r′` = dr`s2e/s2, and deviation
α` = r′` − r` < 1/s2. We then pour α` probability mass from rk∗ to r`, to form the rational
probability r′`, for ` 6= k∗. Note that the probability mass left for k∗ is

r′k∗ = rk∗ −
∑
j 6=i1

αj > rk∗ − s ·
1
s2 ≥ rk∗ −

1
s
> 0.

See figure 3. Then we build an alias structure A′(i, j) for r′i, . . . , r′j . Here A′ indicates that we
build the alias structure on the rational probabilities rather than on the original probabilities.
The key insight for this probability transfer is that we can store each rational probability r′i
with 2 log s bits, thus the alias structure A′(a, b) can be represented by O(s log s) bits. Over
all possible pairs (i, j), this sums up to O(s3 log s) = O(log6 logn log log logn) = o(logn)
bits. Thus, we only need one word to store all rational alias structures. We also record the
index k∗ for each pair (i, j), which takes s2 · log s = o(logn) bits and fits in a word. Finally,
we maintain all s prefix sums W (1, pi), i = 1 . . . , s and this requires O(s) real-valued storage.
It is easy to see that the structure takes O(s) space.

Answering queries. We focus on query ranges of form [pi, pj ], 1 ≤ i ≤ j ≤ s. Recall that s
is the size of the secondary fat leaves. Note that each query visits at most two fat leaves of size
s, so if we can generate a sample in constant time from ranges of form [pi, pj ], 1 ≤ i ≤ j ≤ s,
we can answer weighted IRS queries on n points in O(Pred(U,w, n) + t) time.

Given such a query [pi, pj ], we first compute W (pi, pj) by subtracting two prefix sums
W (p1, pj)−W (p1, pi−1). Then we retrieve wk∗ , the maximum weight in [pi, pj ], and compute
probability rk∗ = wk∗/W (a, b). We then sample an point pk from the rational alias structure
A′(a, b). If k = k∗, we return pk∗ as a sample. Otherwise, we compute rk = wk/W (a, b)
and roll a random dice z uniformly chosen in [0, r′k]. If z ≤ ri, we return pk as the sample,
otherwise, we return pk∗ as the sample.

Analysis. Since W (pi, pj) and k∗ can be supplied in constant time, the total query cost is
constant. To verify the probability distribution, first consider a point pk ∈ [pi, pj ], k 6= k∗.
Observe that pk is sampled if and only if its rational probability r′k is sampled from A′(a, b),
and the random dice z from [0, r′k] is smaller than rk. The probability is r′i · rir′

i
= ri. On the

other hand, this also implies that k∗ is returned with probability 1−
∑
pk∈[pi,pj ],k 6=k∗ rk = rk∗ .

Thus the sampling probability distribution is correct, and we obtain the following theorem.

I Theorem 11. Given a set P = {p1, · · · , pn} of n points on grid [U ], such that each point
pi is associated with an non-negative real-valued weight wi, we can build a data structure
of size O(n), such that given a interval [a, b] and a parameter t, we can extract t weighted
random samples from the subset P ∩ [a, b] in O(Pred(U,w, n) + t) time.
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4 Conclusions

In this paper we considered the range sampling queries where the goal is to store a given set
of points in a data structure such that given a geometric range, a query returns a random
sample of the points contained in the query range. We optimally solved some of the important
cases of the problem: 3D halfspace queries for unweighted points, 3D dominance queries and
2D three-sided queries, and 1D two-sided (interval) queries for weighted points.

There are still a number of interesting open problems left to consider. For example, we
have not investigated weighted 2D orthogonal queries at all. Also, while we solve three-sided
and two-sided queries for the unweighted case, 2d four-sided queries for the unweighted case
is still unsolved. Another direction is to consider weighted 3D halfspace queries.
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Abstract
We consider the approximate nearest neighbor (ANN) problem where the input set consists of
n k-flats in the Euclidean Rd, for any fixed parameters 0 ≤ k < d, and where, for each query
point q, we want to return an input flat whose distance from q is at most (1 + ε) times the
shortest such distance, where ε > 0 is another prespecified parameter. We present an algorithm
that achieves this task with nk+1(log(n)/ε)O(1) storage and preprocessing (where the constant of
proportionality in the big-O notation depends on d), and can answer a query in O(polylog(n))
time (where the power of the logarithm depends on d and k). In particular, we need only near-
quadratic storage to answer ANN queries amid a set of n lines in any fixed-dimensional Euclidean
space. As a by-product, our approach also yields an algorithm, with similar performance bounds,
for answering exact nearest neighbor queries amid k-flats with respect to any polyhedral distance
function. Our results are more general, in that they also provide a tradeoff between storage and
query time.
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databases, machine learning, and data mining; see [4, 11] for comprehensive surveys. The very
basic scenario, referred to as the post-office problem in [23], asks to preprocess a collection S
of n points in Rd (called sites), where d is a fixed parameter, into a data structure, so that
the site in S nearest to a query point q ∈ Rd, i.e., the site NN(q, S) = arg mins∈S dist(q, s),
where dist(·, ·) is the Euclidean distance, can be reported quickly.1 This basic version has
been extended in numerous ways over the last four decades. Most notably, in such extensions
the sites and/or the queries can be chosen from richer families of geometric objects (say, lines,
k-flats, or even convex polyhedra, not to mention curved objects like balls), and dist(·, ·) can
be another distance function, such as an lp-norm, a polyhedral distance function, or the
Hausdorff distance (for non-point sites or queries) [4, 11]. The best known solution for the
post-office problem requires roughly ndd/2e storage in the worst case, for answering queries in
O(logn) time, in any fixed dimension d ≥ 2. The extended versions of the problem, for non-
point sites and/or for other metrics/distance-functions, are naturally even more challenging.
In the search for more efficient data structures, we therefore give up the goal of finding the
exact nearest neighbor, and settle for structures that can answer efficiently approximate
nearest neighbor (or, shortly, ANN) queries. That is, given a prespecified error parameter
ε > 0, an ε-ANN query returns a site s ∈ S satisfying dist(q, s) ≤ (1 + ε)dist(q,NN(q, S)). In
what follows we use ANN(q, S) to denote the set of all sites with this property, i.e.,

ANN(q, S) = {s | dist(q, s) ≤ (1 + ε)dist(q,NN(q, S))}.

This paper focuses on the scenario in which S is a collection of n k-flats lying in the
Euclidean space Rd, of any fixed dimension d > k (where d and k are treated as constants),
and the queries are points q ∈ Rd. For a point q ∈ Rd and a site s ∈ S (assumed to
be closed), dist(q, s) is the minimum Euclidean distance between q and a point of s, i.e.,
dist(q, s) = minp∈s distp∈s(q, p). Given S and a parameter ε > 0, the goal is to preprocess
S into a data structure so that, for any query point q ∈ Rd, a k-flat s ∈ ANN(q, S) can be
reported quickly.

Related work. As mentioned above, nearest-neighbor (NN) searching, especially when the
input sites are points, has been studied extensively. It is beyond the scope of this paper to
review all the related work on nearest-neighbor searching, so we focus on the most relevant
work, and refer the reader to [4, 11, 30] for more comprehensive reviews.

The most obvious approach to answering NN queries is to construct the Voronoi diagram
of the set S of input objects, and perform point location in the diagram with the query point.
Recall that the Voronoi diagram of S is the decomposition of space into cells, where each
cell, associated with one of the input sites, consists of all points whose nearest site in S is
that site. It is well known that the complexity of the Euclidean Voronoi diagram of a set
of n points in Rd is Θ(ndd/2e) in the worst case. Better bounds on the complexity of the
diagram are known, though, in some special cases. For example, the expected complexity of
the Voronoi diagram of a set of n random points chosen uniformly in [0, 1]d is linear; see [19].

Recently, there has been some work on Voronoi diagrams of non-point sites. For example,
Chew et al. [17] have shown that the complexity of the Voronoi diagram of a set of n lines
in R3 under the polyhedral metric (or distance function) defined by a convex polytope Q
of constant complexity (see Section 2 for the definition of polyhedral distance functions)
is O(n2α(n) logn), where the constant of proportionality depends on the complexity of

1 The site NN(q, S) is uniquely defined, unless q belongs to a set of measure zero (namely, if q lies on the
boundaries of two or more cells in the Voronoi diagram of S).
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Q. The near-quadratic bound was subsequently extended to the case when the input sites
are constant-complexity convex polyhedra in R3 [25]. It is an open question whether the
complexity of the Euclidean Voronoi diagram of a set of lines in R3 is nearly quadratic; so
far, the near-quadratic upper bound has been confirmed only for lines with constantly many
orientations [24]. See the book by Aurenhammer et al. [13] for comprehensive studies of
Voronoi diagrams.

Because of the potentially large complexity of the Voronoi diagram, there has also been
work on constructing a data structure for answering NN queries directly, that does not require
the construction of the Voronoi diagram. For example, an NN query amid a set of n points
in Rd can be answered in Õ(n1−1/dd/2e) time using linear space.2 More generally, for a given
parameter n ≤ m ≤ ndd/2e, a query can be answered in Õ(n/m1/dd/2e) time using O(m)
space. The known lower-bound results on range searching [2] suggest that this is the best
bound one can hope for.

Consequently, attention has focused on answering ANN queries, as described above (see,
e.g., [7, 12, 15, 20, 22], to name a few works that follow this paradigm). Earlier methods for
answering ANN queries stored the input points in a (compressed) quad tree, k-tree, or their
variants, and performed a spiral search to return a point in ANN(q, S) for a given query point
q; see, e.g., [21]. More recently, the notion of an approximate Voronoi diagram (AVD for
short) has been introduced; similar to a Voronoi diagram, AVD is a decomposition of space
into cells, each associated with a site s, so that s is an approximate nearest neighbor for all
query points in that cell. Har-Peled [20] constructed an approximate Voronoi diagram (AVD)
of a set of n points in Rd of size Õ

( 1
εdn
)
. Another AVD was proposed by Arya, Malamitos

and Mount [8, 9]; its size is linear in n, and it can be constructed in near-linear time.
A more elaborate approach yields a data structure for ANN queries that can answer an

ε-ANN query in O(log(n/ε)) time using O(n/εd/2) space; more generally, for a parameter
log 1

ε ≤ θ ≤ 1
εd/2 log(1/ε) , a query can be answered in O(logn + 1

θεd/2 ) time using O(nθ)
space [7].

The performance of these and of many earlier data structures for answering ANN queries
depends exponentially on d, so they are not efficient for large values of d. This has lead to
extensive work on data structures for ANN-queries whose query time and size have polynomial
dependence on d, most notably using the locality-sensitive-hashing (LSH) technique and its
variants [3, 6]. The best-known data structure of this kind computes in n7/(8c2)+O(1/c3) time
a (c− 1)-ANN with high probability, for c > 1, using n1+7/(8c2)+O(1/c3) space. See [4] for a
survey of higher-dimensional NN problems and techniques.

Relatively little is known about ANN-queries for non-point input sites (e.g., lines, k-flats,
or even convex polyhedra); see, e.g., [5, 27, 29]. The best structures obtained for ANN-search
in such extended setups are typically more expensive than those obtained for the point-to-
point problem. The result of Koltun and Sharir [25] implies that an AVD for a set of n
pairwise disjoint triangles in R3, of size Õ(n2), can be constructed in near-quadratic time,
and thus an ANN-query for this setting can be answered in O(logn) time using Õ(n2) space.
A simple grid-like construction shows that any AVD for a set of n lines in any dimension
d ≥ 2 has Ω(n2) complexity [20], which suggests that a near-linear-size data structure with
O(logn) query time is unlikely. For higher dimensions, the best known data structure for
lines is by Mahabadi [27]; it answers an ε-ANN query for lines in Rd in (d+ logn+ 1/ε)O(1)

time, using (n+ d)O(1/ε2) space; see also [14, 26].

2 Throughout this paper, we use Õ(f(n)) to denote O(f(n) polylog(n)).
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There is also some work on the dual problem, in which the input sites are points
but the query objects are k-flats. For the case when the query is a line, i.e., a 1-flat,
Andoni et al. [5] proposed a data structure that answers an ε-ANN query in O

(
d3n1/2+δ)

time, using d2nO(1/ε2+1/δ2) space, for any constant δ > 0. Later, Mulzer et al. [29] proposed
a data structure for the case where the query objects are k-flats. Assuming there is an ANN
data structure, when both input sites and query objects are points in Rd, with O(nρ) query
time and O(nσ) space, for some parameters ρ, σ > 0, their data structure answers a query
with a k-flat in time O

(
nk/(k+1−ρ)+δ), using O (n1+σk/(k+1−ρ) + n logO(1/δ) n

)
space, for

any constant δ > 0.

Our results. We present an efficient data structure for answering ANN-queries when the
input sites are k-flats in Rd. The main results are summarized in the following theorem.

I Theorem 1. Let d be a constant, let 0 ≤ k ≤ d − 1 be an integer, let ε > 0 be a given

error parameter, and let γ = O

(
(1/ε)

d−1
2 min(d−k,k+1)

)
. For a given parameter m with

n ≤ m ≤ nk+1, a given set S of n k-flats in Rd can be preprocessed in Õ(γm) expected time
into a data structure of Õ(γm) size, so that, for a query point q ∈ Rd, a flat f ∈ ANN(q, S),

with respect to the Euclidean metric, can be reported in Õ
(
γn/m

1
k+1

)
time.

In particular, in the high-storage/fast-query regime, choosing m = nk+1, we can perform,
in any dimension d > k, ANN search with Õ(1) query cost (a) amid points (k = 0), using
a near-linear structure, or (b) amid k-flats, for k ≥ 1, using a structure of size Õ

(
γnk+1).

For k = 1, i.e., for lines in Rd (d ≥ 2), our data structures requires storage that is nearly
quadratic in n in order to answer a query in Õ(1) time. For d = 3, our bound nearly coincides
with that obtained from the three-dimensional AVD construction of Chew et al. [17], but no
near-quadratic data structure was known for d > 3.

Unlike some of the recent ANN data structures for point sites [8, 9], we do not explicitly
maintain the AVD of S. Instead, we approximate the Euclidean distance by a suitable
polyhedral metric (see Section 2 for the definition), and use multi-level partition trees
(designed for simplex range searching) [2] to answer (exact) NN-queries amid the flats of S
with respect to the approximating polyhedral metric. As a byproduct, we obtain a simple
and efficient data structure for answering exact NN queries amid k-flats with respect to
a polyhedral distance function; see Theorem 2. An advantage of this approach is that it
allows a trade-off between the size of the data structure and the query time, as stated in
Theorem 1. In particular, an ANN query amid k-flats can be answered in Õ

(
n1−1/(k+1))

time with near-linear storage.

2 Warm-up: Lines in R3

In this section we establish Theorem 1 for a set of lines in R3. Let L be a set of n lines in R3,
and let ε > 0 be a parameter. We wish to preprocess L into a data structure that answers
efficiently queries of the form: given a point q ∈ R3, find a line ` ∈ L such that

dist(q, `) ≤ (1 + ε)dist(q, L), where dist(q, L) := min
`′∈L

dist(q, `′),

and where dist denotes the Euclidean distance.
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We(q)

`

qq + λQ

q + λe

Figure 1 The Q-distance distQ(q, `) is the scaling factor λ for which the line ` touches q+ λQ, at
some edge q + λe (and misses the interior of q + λQ).

Polyhedral distance functions. In the general d-dimensional case, given a centrally sym-
metric convex polytope Q ⊂ Rd, the polyhedral distance (with respect to Q) distQ(p, q), for a
pair of points p, q ∈ Rd, is defined as3

distQ(p, q) = sup {t | q /∈ p+ tQ},

and, more generally, for a point q and a convex object c not containing q,

distQ(q, c) = sup {t | c ∩ (q + tQ) = ∅}.

The classical result of Dudley [18] implies that, for any ε > 0, there exists a convex polytope
Qε, which is an intersection of O

( 1
ε(d−1)/2

)
halfspaces, or, alternatively, the convex hull of

a similar number of vertices, such that distQε
approximates the Euclidean metric up to a

factor of 1 + ε; that is, for any pair of points p, q, we have

dist(p, q) ≤ distQε
(p, q) ≤ (1 + ε)dist(p, q). (1)

The advantage of using polyhedral distance functions for answering ANN-queries is that,
when q is a point and f is a k-flat, distQ(q, f) can be characterized as the smallest expansion
factor t for which f makes contact with some (d−k−1)-face of the expanding polytope q+tQ.
This allows us to process each of the O(1) (d − k − 1)-faces σ of Q for fast face-shooting
queries, in which, given a query point q, we seek the smallest t for which q + tσ hits a flat
in S, and return that flat. For example, for the case of line sites in R3, the case studied in
this section, each such query shoots a fixed segment from the query point q; the expanding
segment traces a flat (two-dimensional) wedge that emanates from q and is a translate of
some fixed wedge (that depends on the edge of Q that we shoot). We seek the first time at
which the expanding wedge hits an input line and return that line.4 Hence, in the general
case of k-flats in Rd, we prepare a constant number of face-shooting structures, one for each
face of Q of the appropriate dimension, search with the query point q in each of them, and
return the smallest expansion factor that the queries output, and the corresponding flat of S
as the nearest neighbor.

In what follows we return to the special case of lines in R3. Given the error parameter
ε > 0, we approximate the Euclidean unit ball by a centrally symmetric convex polytope
Q = Qε, of complexity O(1/ε) (using Dudley’s bound). We then solve the exact NN problem

3 In fact, the polyhedral metric also can be defined for non-centrally-symmetric polytopes (or, for that
matter, for any compact convex body Q), but, to simplify matters in this presentation and to ensure
that the distance function is a metric, we take Q to be centrally symmetric.

4 Note that the wedge might miss the line completely, in which case we output +∞.
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q + λe(q, `)e

`

p`
q

∆e(q, `)

We(q)

Figure 2 The wedge We(q) is the union of all the copies q+λ∆e, for λ ≥ 0. λe(q, `) is the scaling
factor λ for which the triangle q + λ∆e touches ` at its edge q + λe, and ∆e(q, `) is that triangle.
For each boundary edge e of Q, we seek the line ` ∈ L which minimizes the scaling distance λe(q, `).

for the lines of L with respect to distQ, that is, for any query point q, the algorithm computes
distQ(q, L), and returns the line of L that is nearest to q under this metric. In fact, the
procedure presented next solves the exact NN problem for any convex polytope Q, not even
assuming that it is centrally symmetric with respect to the origin.

Exact NN-search for L with respect to an arbitrary polytope Q. Given a point q and a
line `, there exists at least one edge e of Q (that depends on q and `), such that the distance
distQ(q, `) is the scaling factor λ for which (i) q+ λe and ` touch one another, and (ii) ` does
not meet the interior of q + λQ. See Figure 1.

To decompose the problem, we consider, for each edge e of Q, the triangle ∆e ⊂ Q

spanned by the origin o and e. Assume with no loss of generality that no ` ∈ L is parallel
to ∆e.5 Thus, for each ` ∈ L there exists a unique scaling factor λe(q, `) ∈ R ∪ {∞}, such
that the homothetic placement q + λe(q, `)∆e touches ` at a point of q + λe(q, `)e (we put
λe(q, `) := +∞ when there is no such placement). We have λe(q, `) < ∞ if and only if `
intersects the planar wedge We(q) which is the union of all the copies q + λ∆e, for λ ≥ 0. In
what follows, we denote the resulting placement q + λe(q, `)∆e by ∆e(q, `); see Figure 2.

As already noted, our strategy for computing distQ(q, L) is to design a separate data
structure De for each edge e of Q, which answers efficiently queries of the form: Given a point
q, find the smallest scaling factor λe(q) := min`∈L λe(q, `), and report the corresponding line
`∗ that attains λe(q) = λe(q, `∗).

With this machinery available, we return to our approximating polytope Qε, query each
of its O(1/ε) edge-structures De with q, and report the minimum of the corresponding output
values λe(q), and the line attaining that minimum. As is easily checked, the output gives a
(1 + ε)-approximation to the Euclidean dist(q, L).

The edge structures De. Let e be a fixed edge of Q. Given a point q, we wish to return
λe(q) := min`∈L λe(q, `) as well as the corresponding line `∗e that attains λe(q) = λe(q, `∗).
To simplify the presentation, and with no loss of generality, assume that e is the edge z = 0,
x = 1, −a ≤ y ≤ a, for some a > 0.

Let us express a query in algebraic terms. Recall that we assume no line in L to be
parallel to ∆e, i.e., no line in L is normal to the z-axis. Hence, we parametrize such a line `

5 If L contains lines that are parallel to ∆e, we apply an infinitesimally small rotation to Q which preserves
all of its essential properties.
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in R3 by the pair of equations

x = ux(`)z + vx(`), y = uy(`)z + vy(`),

for a suitable quadruple of real parameters (ux(`), vx(`), uy(`), vy(`)).
Let q = (x0, y0, z0) be the query point, and let ` be a line in L with the parameters

(ux(`), vx(`), uy(`), vy(`)). Notice that We(q) is contained in the plane z = z0, and this plane
meets ` at the point

p` = (ux(`)z0 + vx(`), uy(`)z0 + vy(`), z0).

The condition that p` lies in the wedge We(q) can be expressed as

−a (ux(`)z0 + vx(`)− x0) ≤ uy(`)z0 + vy(`)− y0 ≤ +a (ux(`)z0 + vx(`)− x0) ,

or (uy(`) + aux(`))z0 + (vy(`) + avx(`)) ≥ y0 + ax0 (2)
(uy(`)− aux(`))z0 + (vy(`)− avx(`)) ≤ y0 − ax0.

Both constraints in (2) are linear in ux(`), vx(`), uy(`), vy(`), with coefficients depending on
the query q and the constant a (that is, on the edge e). Among the lines that satisfy these
inequalities, our goal is to return the one that minimizes the scaling factor λe(q, `), given by

λe(q, `) = ux(`)z0 + vx(`)− x0,

which is also linear in the chosen parameterization of `.
In view of the above observations, we construct a three-level partition tree (see [1, 2, 16, 28])

on the lines of L. The first two levels are used to collect, for any given query point
q = (x0, y0, z0), the lines that satisfy both conditions in (2), as the (disjoint) union of a small
number of pre-stored “canonical” subsets, and the third level supports linear-programming-
like queries, where each query specifies a linear objective function and asks for the point in
the canonical subset that attains its minimum.

In more detail, we represent each line ` ∈ L, parametrized by (ux(`), vx(`), uy(`), vy(`)),
by the triple of points p+(`), p−(`), p◦(`) ∈ R2, where

p+(`) := (uy(`) + aux(`), vy(`) + avx(`))
p−(`) := (uy(`)− aux(`), vy(`)− avx(`)), and
p◦(`) := (ux(`), vx(`)),

and put

P+ := {p+(`) | ` ∈ L}, P− := {p−(`) | ` ∈ L}, P ◦ := {p◦(`) | ` ∈ L}.

A line ` satisfies (2) if and only if p+(`) lies above the line z0x+ y = y0 + ax0 and p−(`) lies
below the line z0x+ y = y0 − ax0.

Following the standard methodology of multi-level data structures, each of the three
levels of our partition tree, each of whose levels supports halfplane range searching queries
amid points of one of the planar sets P+, P− or P ◦. This is done as follows. We fix a
parameter n ≤ m ≤ n2. The first level is a partition tree T , as described in [16], over the set
P+. Each node of T is associated with some canonical subset P+

v . For a query halfplane
h, h ∩ P+ can be represented as the disjoint union of O(n/

√
m+ logn) canonical subsets

(those stored at the nodes of T that the query with h reaches). Next, for each node v of T ,
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4:8 Approximate Nearest Neighbor Search Amid Higher-Dimensional Flats

we construct a similar partition tree T (v), as a second-level structure, on the corresponding
subset P−v = {p−(`) | p+(`) ∈ P+

v } of P−. Again, each node z ∈ T (v) is associated with a
suitable canonical subset P−z,v ⊂ P−v . Finally, at the third level, we preprocess the point set
P ◦z,v = {p◦(`) | p−(`) ∈ P−z,v} into a data structure so that, for a query vector u ∈ R2, the
point of P ◦z,v that is minimal in direction u can be computed efficiently. Using a linear-size
halfplane range reporting data structure6 (see, e.g., [2]), such an extremal query can be
answered in O(logn) time. Putting everything together, we obtain a data structure of Õ(m)
size, so that, for a query point q ∈ R3, λe(q), and the corresponding line `∗e ∈ L, can be
computed in Õ(1 + n/

√
m) time. The further details, omitted here, can be found in the

aforementioned papers.
Hence, for any choice of n ≤ m ≤ n2, and for each of the O(1/ε) edges e of Qε, we

construct, in Õ(m) time, the data structure De, as just described. This takes a total of
Õ(m/ε) storage and preprocessing. Given a query point q ∈ R3, we query with q in each of
these structures, and output the smallest scaling factor λe(q), over all edges e, and the line
` ∈ L that attains this minimum. The total cost of a query is Õ( 1

ε (n/m1/2)).
In particular, we can answer ANN queries amid a set of n lines in R3 under the Euclidean

distance, in Õ(1) time using a data structure that requires only Õ(n2/ε) storage and
preprocessing time.

3 Proof of Theorem 1

The preceding algebraic approach can be extended, in a fairly straightforward manner, to
nearest-neighbor problems involving k-flats, for k ≥ 1, in Rd, for d ≥ 3 (and d > k). This is
done as follows.

Let F be a collection of n k-flats, in general position, in Rd, for some fixed d > k ≥ 1 and
d ≥ 3. We approximate the Euclidean unit ball by a fixed convex polytope Q = Qε, which is
centrally symmetric with respect to the origin o, so that the resulting Q-distance function
dQ, satisfies (1). By Dudley’s theorem [18], this can be achieved by a polytope Qε that has
either O

(
1/ε d−1

2

)
vertices, or O

(
1/ε d−1

2

)
facets.

As in Section 2, we next present a solution of the (exact) NN search problem for F with
respect to the Q-distance function distQ, for an arbitrary fixed convex polytope Q, not even
requiring it to be centrally symmetric.

Exact nearest neighbor search with respect to Q. For a k-flat f ∈ F and a point q, the
distance λ = distQ(q, f) is attained at a point v ∈ f such that v lies on a (d − k − 1)-face
of q + λQ. Thus, in complete analogy to the preceding treatment, we construct, for each
(d− k − 1)-face σ of Q, a data structure that supports queries of the form: given a query
point q, find the smallest λ such that q + λσ touches a flat of F .

By triangulating Q, if necessary, we may assume that σ is a simplex. Let Eσ be the
(d− k)-dimensional affine space spanned by o and σ, and let Kσ :=

⋃
λ≥0 λσ be the (d− k)-

dimensional wedge contained in Eσ.
The region Kσ(q) := q +Kσ =

⋃
λ≥0(q + λσ) is a (d− k)-dimensional simplicial wedge

whose (also (d− k)-dimensional) affine hull Eσ(q) is q+Eσ. Assuming general position, each
flat f of F intersects Eσ(q) at a unique point, denoted as fσ(q).

6 In this very special case, the structure is simply the convex hull of the underlying set.
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For each (d− k)-face σ of Q, we collect those points fσ(q) that lie in Kσ(q), and choose
among them a point that minimizes the scaling factor λσ(q) = λσ(q, f) at which q + λσ

touches the point fσ(q). As in Section 2, this is done by constructing a separate data
structure Dσ for each (d− k − 1)-face σ of Q.

The face structures Dσ. Without loss of generality, assume that the coordinate system
is such that the linear subspace Eσ spanned by σ is the x1x2 · · ·xd−k-space Rd−k (given by
xd−k+1 = xd−k+2 = · · · = xd = 0). Regard Kσ as the intersection of d− k fixed halfspaces
(through the origin) h+

1 , h
+
2 , . . . , h

+
d−k within Rd−k, and write h+

j = {x ∈ Eσ | x · ui ≥ 0}, for
fixed respective vectors u1, . . . , ud−k in Eσ.

We now cast the preceding observations in algebraic form. In general position, each k-flat
f ∈ F can be expressed by d− k linear equations of the form

xi =
k∑
j=1

aij(f)xd−k+j + bi(f), (3)

for i = 1, . . . , d− k. Let A(f) denote the (d− k)× k matrix of the coefficients aij(f), and let
b(f) denote the (d− k)-dimensional vector (b1(f), . . . , bd−k(f)).

For each flat f ∈ F , the condition that fσ(q) lies in Kσ(q) is equivalent to the condition
that fσ(q) − q lies in Kσ (within Eσ). The point fσ(q) is obtained by substituting in (3)
the last k coordinates of q. To simplify the notation, add the vector b(f) as a last column
of A(f) (and continue to denote the matrix as A(f)). Then fσ(q) = A(f)q∗, where q∗ is
the (k + 1)-dimensional vector whose first k coordinates are the last k coordinates of q, and
whose last coordinate is 1.

Hence, the condition that fσ(q)− q lies in Kσ is

uTj (A(f)q∗ − q) ≥ 0, for j = 1, . . . , d− k. (4)

Let ud−k+1 denote the outward normal of σ within Eσ. In analogy with Section 2, we
construct a (d− k + 1)-level partition tree, whose first d− k levels are used to collect the set
Fq of k-flats f that satisfy (4), and whose bottommost level is used to determine the flat
f ∈ Fq that minimizes the linear function fσ(q) · ud−k+1 = uTd−k+1A(f) · q∗ in Fq.

Notice that the intrinsic dimension at each level is only k+ 1, as we represent each f ∈ F
by the d− k + 1 (k + 1)-dimensional vectors:

cj(f) = uTj A(f), for j = 1, . . . , d− k + 1.

Since the vectors uj , for 1 ≤ j ≤ d− k + 1, are fixed, each vector cj(f) is a linear expression
in A(f), independent of the query q.

We thus prepare a (d − k + 1)-level (k + 1)-dimensional partition tree, each of whose
levels corresponds to a (k + 1)-dimensional halfspace range-searching data structure. Again,
we fix a parameter m with n ≤ m ≤ nk+1, and construct a partition tree of size O(m) in
O(m logm) expected time, using Chan’s algorithm [16] over the set {c1(f) | f ∈ F} ⊂ Rk+1.
Suppose we have constructed j − 1 levels of the data structure, for 2 ≤ j ≤ d − k. For
each canonical subset F ′ of the (j − 1)-level of the data structure, we construct a partition
tree, using Chan’s algorithm, over the set {cj(f) | f ∈ F ′} ⊂ Rk+1. Finally, for each
canonical node F ′ of level d − k, we again construct a partition tree on the point set
{cd−k+1(f) | f ∈ F ′} ⊂ Rk+1 so that, for a query vector u ∈ Rk+1, the minimal point in
direction u, i.e., fu = arg minf∈F ′ cd−k+1(f) · u is returned. The overall preprocessing time
and size of the data structure are Õ(m) [2, 16].
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Answering queries. Given a query point q, we query with q, for each (d− k − 1)-face σ of
Q, the corresponding structure Dσ, so as to find the flat f ∈ F that satisfies (4) and (among
all such flats) attains the minimum value cd−k+1(f) · q∗ − ud−k+1 · q.

Specifically, at each level 1 ≤ j ≤ d− k, we access each of its structures, built over the
canonical sets that the query retrieved at the preceding level j − 1, and query it with the
halfspace cj(f) · q∗ ≥ uj · q. As a result, after accessing all levels j = 1, . . . , d− k, we obtain
a compact representation of the above set Fq of flats f ∈ F that satisfy (4), as a union of
canonical sets that are stored at the (d− k)-level. We then query, for each of these canonical
sets F ′ ⊆ Fq, its (d − k + 1)-level structure, so as to find the flat f ∈ F ′ that minimizes
the objective function cd−k+1(f) · q∗ − ud−k+1 · q, and return the flat fσ that attains the
overall minimum value, along with that value, which is in fact equal to λσ(q) = λσ(q, fσ), as
defined above. Note that fσ exists if and only if (4) is satisfied for at least one f ∈ F . If this
process has failed to find any flat f ∈ Fq, we make fσ undefined, and return λσ(q) = +∞.
Nevertheless, there always exists at least one (d− k − 1)-face σ of Q for which fσ exists, so
at least one of the output values λσ(q, fσ) will be finite.

We iterate this process for each (d− k − 1)-face σ of Q, and return the flat fσ with the
minimum corresponding scaling factor λσ(q, fσ); as just observed, this minimum is always
finite, so the output flat is always well defined (and is unique for a generic query q).

Using the standard results on multi-level partition-trees and on halfspace range search-
ing [2, 16, 28], the overall size and preprocessing time of the data structure are Õ(m) and a
query can be answered in Õ(n/m1/d) for every face of Q. Summing this bound over all faces
of Q, we obtain the following general result for exact NN-search with respect to a polyhedral
distance functions.

I Theorem 2. Let d ≥ 2 be a constant, let 0 ≤ k ≤ d− 1, let Q be a convex polytope in Rd
with γ faces of dimension d− k − 1. For a given parameter m with n ≤ m ≤ nk+1, a given
set F of n k-flats in Rd can be preprocessed in Õ(γm) expected time into a data structure
of Õ(γm) size, so that, for a query point q ∈ Rd, a flat f ∈ F that attains the smallest
Q-distance dQ(q, f) can be reported in Õ

(
γ
(
n/m

1
k+1

))
time.

Back to Euclidean ANN-search. We now apply the machinery just derived to obtain an
efficient solution to the Euclidean ANN-search problem. Given ε > 0, we take a convex
centrally symmetric polytope Qε that approximates the Euclidean ball, in the sense that its
corresponding Qε-distance function satisfies (1). Recall that, using Dudley’s bound, we can
take Qε to have either O

(
(1/ε) d−1

2

)
vertices or O

(
(1/ε) d−1

2

)
facets.

The maximum number γ of (d− k − 1)-faces of such a polytope Qε satisfies

γ = O
(

(1/ε)
d−1

2 min(d−k,k+1)
)
.

In this bound, we use a polytope Qε with a small number of facets (resp., vertices) when
k + 1 ≤ d− k (resp., k + 1 > d− k).

Plugging this into Theorem 2 finally yields Theorem 1. �

4 Discussion and Open Problems

Our data structure answers ANN queries amid a set F of k-flats in Rd by answering exact NN
queries amid F with respect to a suitable polyhedral Q-metric. The most obvious direction
towards further improving the bounds of Theorem 1 is to replace the exact NN-search under
the Q-norm by some approximate version. Ideally, this would allow us to avoid the use of the
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fairly expensive halfspace range searching structures. Unfortunately, our parametrization of
k-flats by (k + 1)-dimensional points does not preserve distances, so the existing machinery
of approximate range searching, such as in [10], does not directly apply.

The most interesting instance of the problem involves lines in Rd. Notice that our fast
structure, using only nearly quadratic storage in n, does not yield an approximate Voronoi
diagram whose description complexity is also nearly quadratic. A challenging open problem
is whether an approximate Voronoi diagram of near-quadratic size exists for a set of lines in
Rd, for d > 3. More generally, does an approximate Voronoi diagram of size O(nk+1) exist
for a set of k-dimensional flats in Rd, for d > k?

Acknowledgement. The authors thank Sariel Har-Peled for helpful discussions. We also
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An ε-approximate incidence between a point and some geometric object (line, circle, plane, sphere)
occurs when the point and the object lie at distance at most ε from each other. Given a set of
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in many database and web-based applications in computer vision and graphics, including robust
model fitting, approximate point pattern matching, and estimating the fundamental matrix in
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in two or three dimensions, a set S of n objects (lines, circles, planes, spheres), and an error
parameter ε > 0, and our goal is to report all pairs (p, s) ∈ P × S that lie at distance at most
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1 Introduction

Approximate incidences. Given a finite point set S1 and finite set S2 of geometric primitives
(e.g., lines, planes, circles, or spheres in R2 or R3), and some ε > 0, we define the set of
ε-incidences (also referred to as ε-approximate incidences, or just approximate incidences)
between S1 and S2 to be

Iε(S1, S2) = {(s1, s2) | s1 ∈ S1, s2 ∈ S2, dist(s1, s2) ≤ ε},

where dist(s1, s2) = inf{dist(s1, y) | y ∈ s2} is the Euclidean distance between s1 and s2.
We are interested in efficient algorithms for computing Iε(S1, S2), ideally in time linear in
|S1| + |S2| + |Iε(S1, S2)|. Most classical work in discrete and computational geometry is
focused on exact incidences (ε = 0). When S2 is a set of lines in the plane and ε = 0, detecting
whether I0(S1, S2) is empty or not is the well studied Hopcroft’s problem (see, e.g., [8]). In
contrast, the notion of approximate incidences, as we define here, probably received less
theoretical attention, but has many important applications which we review below. We
consider the problem of reporting all pairs in Iε(S1, S2). Our algorithms, though, can also
estimate |Iε(S1, S2)|, rather than report its members, and do it faster when |Iε(S1, S2)| is
small.

This problem can be viewed as a range searching problem. Specifically, we treat each
member s2 of S2 as the range s2(ε) = {p ∈ Rd | dist(p, s2) ≤ ε}, d = 2, 3, which is the
Minkowski sum of s2 with a disk (ball in R3) of radius ε (centered at the origin); thus points
become disks, lines become slabs (in R2) or cylinders (in R3), circles become annuli (in R2)
or tori (in R3), and so on. The goal now is to report all pairs (s1, s2) ∈ S1 × S2 such that
s1 ∈ s2(ε). As mentioned, the known algorithms for such tasks have a rather large overhead.
For example, when S1 is a set of m points and S2 is a set of n lines in the plane, i.e., the
ranges s2(ε) are fixed-width slabs, the best known algorithms for solving the problem have
an overhead close to m2/3n2/3, and there are matching lower bounds in certain models of
computation. The overhead is larger when the objects in S2 are of more complex shapes
(e.g., arbitrary circles) or when we move to three (or higher) dimensions; see [1]. In addition,
these algorithms, while interesting and sophisticated from a theoretical point of view, are a
nightmare to implement in practice.

Instead, with the goal of obtaining algorithms that are really simple to implement (and
therefore with good performance in practice), and that run in time linear in the input and
output sizes, we adopt the approach of using approximation schemes, in which we still
report all the pairs (s1, s2) that satisfy dist(s1, s2) ≤ ε, but are willing to report additional
pairs, provided that all pairs that we report satisfy dist(s1, s2) ≤ αε, for some constant
problem-dependent parameter α > 1. To be more precise, assuming that the test whether
dist(s1, s2) ≤ ε is cheap, we can filter the reported pairs by such a test, and actually report
only the pairs that pass it. The actual number of pairs that we have to inspect will typically
be larger than |Iε(S1, S2)|, but it will always be at most |Iαε(S1, S2)| (and in practice
considerably less than that), and the hope is that the number of inspected pairs will not
be much larger than those that we actually report. (We expect it to be larger by only a
constant factor, which depends on α and on the geometry of the setup under consideration.)

Our results. We present simple and efficient output-sensitive algorithms (in the above sense)
for approximate-incidence reporting problems between points and various simple geometric
shapes, in two and three dimensions.

To calibrate the merits of our solutions, we first note that these approximate incidence
reporting problems can also be solved by naive grid-based algorithms, as follows. Consider,
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for example, the problem of reporting approximate incidences between a set S1 of m points
and a set S2 of n lines in the plane. We assume that all the incidences that we seek occur
in the unit disk (ball in R3). We partition the unit disk by a uniform grid, each of whose
cells is a square of side length ε. We store each point in S1 in a bucket corresponding to the
grid cell that contains it, and, for each line ` ∈ S2, we report all the pairs involving ` and
the points in the grid cells that ` crosses, and in their neighboring cells. The running time
is O(m+ n/ε+ k), where k is the number of reported approximate incidences. Clearly, all
pairs (p, `) ∈ S1 × S2 with dist(p, `) ≤ ε are reported, and each reported pair (p, `) satisfies
dist(p, `) ≤ 2

√
2ε, as is easily checked. If n is much larger than m, we can use duality (where

some care is needed to preserve point-line distances), to map the points to lines and the lines
to points, and thereby reduce the complexity to O(n+m+ min{m,n}/ε+ k). This method
can also be applied in three dimensions, and yields the same time bounds as in the preceding
primal-only approach (duality is much trickier in these situations), namely, O(m+ n/ε+ k),
when S2 consists of one-dimensional objects (e.g., lines or circles), but the running time
deteriorates to O(m+ n/ε2 + k) when S2 consists of surfaces (e.g., planes or spheres). In
these latter cases (involving planes or congruent spheres) duality can be applied, to improve
the time bound to O(n+m+ min{m,n}/ε2 + k).

While superficially these simple solutions might look ideal, as they are linear in m, n,
and k, their dependence on ε is too naive and weak, and when m and n are large and ε small
(as is typically the case in practice), the algorithms are rather slow in practice.

In this paper we address this issue, and develop a series of “primal-dual” grid-based
algorithms for several approximate incidence reporting problems, that are faster than this
naive scheme for suitable ranges of the parameters m, n, and ε (which cover most of the
practical instances of these problems). Specifically, we present the following results. In all of
them, S1 is a set of m points, contained in the unit ball in two or three dimensions.
(a) In the plane, for a set S2 of n lines, all k approximate incidences can be reported in

time O (m+ n+
√
mn/
√
ε+ k). (The dependency of the complexity on ε is improved

by a factor of
√
ε compared to the naive scheme when n and m are comparable.)

(b) In three dimensions, for a set S2 of n planes, all k approximate incidences can be reported
in time O (m+ n+

√
mn/ε+ k). (The dependency of the complexity on ε is improved

by a factor of ε compared to the naive scheme, when n and m are comparable.)
(c) In the plane, for a set S2 of n congruent circles, all k approximate incidences can be

reported in time O (m+ n+
√
mn/
√
ε+ k).

(d) In the plane, for a set S2 of n arbitrary circles, all k approximate incidences can be
reported in time O

(
m+ n+m1/3n2/3/ε2/3 + k

)
.

(e) In three dimensions, for a set S2 of n congruent spheres, all k approximate incidences
can be reported in time O ((m+ n)/ε+ k).

(f) In three dimensions, for a set S2 of n lines, all k approximate incidences can be reported
in time O

(
m+ n+m1/3n2/3/ε2/3 + k

)
.

(g) In three dimensions, for a set S2 of n congruent circles, all k approximate incidences
can be reported in time O

(
(m+ n)/ε1/2 +m1/3n2/3/ε7/6 + k

)
.

In Section 4, we use the algorithms in (e) and (g), to obtain an efficient algorithm to find
nearly congruent triangles which is the first step in solving the approximate point pattern
matching problem in R3.

A comparison with the naive solutions sketched above clearly shows the superiority of
our technique. For example, for lines or congruent circles in the plane, assuming that n ≤ m,
our algorithms (in (a) and (c), respectively) are asymptotically faster than the naive method
when

√
mn/ε ≤ n/ε, that is, when ε ≤ n/m, an assumption that holds in most practical

applications.
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To recap, we show that, by allowing to report some additional approximate incidences
between pairs that are at most αε apart, one can obtain substantially better bounds than the
naive ones. Our methods are based on grids and on duality – they construct much coarser
primal grids, and pass each subproblem, consisting of the points in a grid cell and of the
objects that pass through or near that cell, to a secondary dual stage, in which another
coarse grid is constructed in a suitably defined dual space. The output pairs are obtained
from the cells of these secondary grids, and the gain is in the overhead, as each primal or dual
object crosses much fewer grid cells than in the naive solutions. Although this primal-dual
paradigm is fairly standard, its power in the approximate incidences context, as considered
here, has not been demonstrated before (to the best of our knowledge). The analysis (and
the particular duality one has to use) for some of the three-dimensional variants is fairly
challenging, but the algorithms all remain simple to describe and to implement.

Motivation and applications. Approximate incidence reporting and counting problems
arise in several basic practical applications, in computer vision, pattern recognition, and
related areas. Three major applications of this sort are robust model fitting, approximate point
pattern matching under rigid motions, and estimating the fundamental matrix in (stereo)
epipolar geometry. All three problems share a common paradigm, which we first explain
for model fitting. In this problem, we are given a set P of n points, say in R3 (typically,
these are so-called interest points, extracted from some image or 3D sensors), and we want
to fit objects (called models) from some given family, such as lines, circles, planes, or spheres,
so that each model passes near (i.e., is approximately incident to) many points of P ; the
quality of the model is measured in terms of the number of approximately incident points.
The standard approach is to construct (usually, by repeated random sampling) a sufficiently
rich collection of candidate models. (For example, for line models, one can simply sample
pairs of points of P , and for each pair construct the line passing through its points.) One
then counts, for each candidate line, the number of approximately incident points (for some
specified error parameter ε > 0), and reports the models that have sufficiently many such
points.

Similar reductions arise in the other problems. In approximate point pattern matching,
we are given two sets A, B of points, and want to find rigid motions that map sufficiently
large subsets of A to sets whose (unidirectional) Hausdorff distance to B is at most ε. Here
too we construct candidate rigid motions, and test the quality of each of them. For example,
in the plane, we sample pairs of points from A, and find, for each sampled pair, the pairs of
points of B that are nearly at the same distance. For each such pair of pairs we construct a
rigid motion that maps the first pair to near the other pair, and then test the quality of each
of these motions, namely, the number of points of A that lie, after the motion, near points of
B. The first step can be reduced to approximate incidence counting involving circles (whose
radii correspond to the distances between the sampled points of A, and which are centered
at the points of B) and the points of B. In three dimensions, we need to sample triples of
points of A, and for each triple a, b, c, we need to find those triples of B that span triangles
that are nearly congruent to ∆abc (because to determine a rigid motion in R3 we need to
specify how it maps three (noncollinear) source points to three respective image points).
This step is described in detail in Section 4.

In epipolar geometry, we have two stereo images A, B of the same scene, and we want
to estimate the fundamental matrix F that best matches A to B, where a point p ∈ A

is (exactly) matched to a point q ∈ B if pTFq = 0. We construct a sample of candidate
matrices, by repeatedly sampling O(1) interest points from both images, and test the quality
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of each matrix. To do so for a candidate matrix F , we left-multiply each point p ∈ A by F ,
interpret the resulting vectors pTF , for p ∈ A, as lines, and count the approximate incidences
of each line with the points of B. If sufficiently many lines have sufficiently high counts, we
regard F as a good fit and output it.

To recap, in each of these applications, and in other applications of a similar nature, we
generate a random sample of candidate models, motions, or matrices, and need to test the
quality of each candidate. Approximate incidence reporting and counting arises either in the
generation step, or in the quality testing step, or in both. Improving the efficiency of these
steps is therefore a crucial ingredient of successful solutions for these problems. The standard
approach, used “all over” in computer vision in practice, is the RANSAC technique [6, 9],
which checks in brute force each model against each point. Replacing it by efficient methods
for approximate incidence counting, which is our focus here, can drastically improve the
running time of these applications.

To support the claim that this is indeed the case in practice, we have conducted preliminary
experiments (not reported here) with some of our algorithms, tested them on real and random
data, and compared them with other existing methods. Roughly, they demonstrate that our
approach is significantly faster than the other approaches. Our experiments also support
our feeling that the cost of reporting more pairs than really needed (pairs that might be at
most αε apart, rather than just ε), is negligible compared to the cost of the other steps (in
themselves much more efficient than the competing techniques). We leave the project of
conducting a through experimental study for future work, and focus this paper on developing
the algorithms and establishing their worst-case guarantees.

Related work. Model fitting and point pattern matching have been the focus of many
studies, both theoretical and practical; see for example [2, 3, 4, 5, 7, 10, 11, 12, 14].

We first note that many of the common approaches used in practice (e.g., RANSAC
for model fitting [6, 9]), reporting or counting approximate incidences between models and
points is done using brute force, examining every pair of a model and a point. Some heuristic
improvements have also been proposed (see, e.g., [5] and the references therein). A similar
brute-force technique is commonly used for approximate point pattern matching too (e.g., in
the Alignment method [12] and its many variants).

The use of (exact) geometric incidences in algorithms for exact point pattern matching is
well established; see, e.g., Brass [4] for details. Similar connections have also been used for
the more practical problem of approximate point pattern matching. Gavrilov et al. [10] gave
efficient algorithms for approximate pattern matching in two and three dimensions (where
the entire sets A and B are to be matched), that use algorithms for reporting approximate
incidences. One of the main results in [10] is that in the plane, all pairs of points at distance
in [(1− ε)r, (1 + ε)r] can be reported in O(n

√
r/ε) time, using a grid-based search. (In a

way, part of the study in this paper formalizes, extends, and improves this method.)
Aiger et al. [3] proposed a method for point pattern matching in R3, called 4PCS (4-Points

Congruent Sets), which iterates over all coplanar pairs of quadruples of points, one from
A and one from B, that can be matched via an affine transformation, and then tests the
quality of each pair, focusing on pairs where the transformation is rigid. This algorithm does
not use approximate incidences, and assumes the existence of coplanar tuples.

In a more recent work, Aiger and Kedem [2] describe another algorithm for computing
approximate incidences of points and circles, following a similar approach by Fonseca and
Mount [7] for points and lines, which is better than the one of [10] for n = Ω(1/ε3/2), and
use this for approximate point pattern matching. This algorithm has been used in Mellado
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5:6 Output Sensitive Algorithms for Approximate Incidences and Their Applications

et al. [14], to reduce the running time of the 4PCS algorithm in [3] to be asymptotically
linear in n and in the output size.

The method of [2, 7] provides an alternative approach to approximate incidence reporting,
for the cases of points and lines or congruent circles (the analysis in [2] is rather sketchy,
though). This technique runs in O(m+ n+ log(1/ε)/ε2 + k) time. For the case of lines in
the plane, the scheme exploits the fact that we can approximate (up to an error of O(ε))
all lines in the plane that cross the unit disk, by O(1/ε2) representative lines, such that if a
point in the unit disk is close to a representative line `, then it is also close to all the lines in
the input that ` represents (and vice versa). Assuming, for example, that m is constant, this
alternative scheme is better than our new algorithm (for these restricted scenarios) when√
n/
√
ε ≥ 1/ε2, that is, when n ≥ 1/ε3 (we ignore the factor log(1/ε) in this calculation).

(This technique seems to be extendible to three dimensions, and to surfaces, but the formal
details have not yet been worked out, as far as we know.)

Paper organization. The full version of the paper presents seven algorithms for various
instances of approximate incidence reporting, as listed in (a)–(g) above. Although the
high-level structure of the algorithms is fairly uniform, the specific details are rather different,
and each case requires careful analysis to ensure its correctness and efficiency. Working out
the details, including the appropriate form of duality (which, in some cases, is rather intricate
and requires extra care), the choice of the various parameters, and the analysis that makes
everything work, turned out to be fairly demanding and nontrivial. Due to lack of space,
this version contains full details of only the first algorithm (for points and lines in the plane),
and of the last one (finding all nearly congruent triangles in R3), and then describes, briefly
and informally, the main features of the rest.

2 Approximate incidences in point-line configurations

We consider the approximate incidences problem between a set P of m points in the unit disk
B in R2, and a set L of n lines that cross B, with a given accuracy parameter 0 < ε ≤ 1/2.

We approximate the distance dist(p, `) by the vertical distance between p ∈ P and ` ∈ L,
which we denote by distv(p, `). For this approximation to be good, the angle between ` and
the x-direction should not be too large. To ensure this, we partition L into two subfamilies,
one consisting of the lines with positive slopes, and one of the lines with negative slopes. We
fix one subfamily, rotate the plane by 45◦, and get the desired property.

Without loss of generality, we replace the unit disk B by the unit square S = [0, 1]2, and
apply the following two-stage partitioning procedure. First we partition S into 1/δ2

1 pairwise
openly disjoint smaller squares, each of side length δ1, where δ1 is a parameter whose exact
value will be set later. See Figure 1.

Enumerate these squares as S1, S2, . . . , S1/δ2
1
. For i = 1, . . . , 1/δ2

1 , let Pi denote the set
of all points of P that lie either in Si or in one of the two squares that are directly above
and below Si (if they exist), and let Li be the set of all the lines of L that cross Si. Put
mi := |Pi| and ni := |Li|. We have

∑
imi ≤ 3m and

∑
i ni ≤ 2n/δ1, because each line of L

crosses at most 2/δ1 squares Si.
We now apply a duality transformation to each small square Si separately. For nota-

tional simplicity, and without loss of generality, we may assume that Si = [−δ1/2, δ1/2]2.
(Technically, this means that we shift the cells by δ1/2 in both coordinate directions, so
that the grid vertices now represent the centers of the cells.) We map each point p = (ξ, η)
in Pi to the line p∗ : y = ξx − η, and each line ` : y = cx + d in Li to the point
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Figure 1 The partition of S into sub-
squares, and the subproblem associated with
the middle highlighted subsquare.
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Figure 2 The reference triangle ∆abc

aligned with ∆pqo. The shaded region is
K. The circle is the a cross section of Tp,q.

`∗ = (c,−d). This duality preserves the vertical distance distv between a point p and
a line `; that is, distv(p, `) = distv(`∗, p∗). Note that the slope condition ensures that
dist(p, `) ≤ distv(p, `) ≤

√
2dist(p, `).

Let ` : y = cx+ d be a line in Li, that is, ` crosses Si. By the slope condition we have
−1 ≤ c ≤ 1 and −δ1 ≤ d ≤ δ1, so the dual point `∗ lies in the rectangle R := [−1, 1]×[−δ1, δ1].
Each point p = (ξ, η) ∈ Pi satisfies −δ1/2 ≤ ξ ≤ δ1/2 and −3δ1/2 ≤ η ≤ 3δ1/2 so the
coefficients of the dual line p∗ : y = ξx− η satisfy these inequalities.

We now partition R into 1/δ2
2 small rectangles, each of width 2δ2 and height 2δ1δ2, where

δ2 is another parameter that we will shortly specify. Each dual line p∗ crosses at most 2/δ2
small rectangles. To facilitate the following analysis, we choose δ1, δ2 so that they satisfy
δ1δ2 = ε; we still have one degree of freedom in choosing them, which we will exploit later.

I Lemma 1. For each small rectangle R′, if `∗ is a dual point in R′ and p∗ is a dual line that
crosses either R′ or one of the small rectangles directly above or below R′ (in the y-direction,
if they exist), then the vertical distance distv(`∗, p∗) (which is the same as distv(p, `)) is at
most 5δ1δ2 = 5ε.

Proof. Indeed, if p∗ crosses a small rectangle R′′, which is either R′ or one of the two adjacent
rectangles, as above, then, since the slope of p∗ is in [−δ1/2, δ1/2], its maximum vertical
deviation from R′′ is at most 2δ2 · (δ1/2) = δ1δ2. Adding the heights 2δ1δ2 of R′′, and of R′
when R′′ 6= R′, the claim follows. J

I Lemma 2.
(a) Let (p, `) ∈ P ×L be such that dist(p, `) ≤ ε. Let Si be the small square containing p. If

δ1 ≥ ε
√

2, then ` must cross either Si or one of the two squares directly above and below
Si. In other words, there exists a j such that (p, `) ∈ Pj × Lj.

(b) Continue to assume that dist(p, `) ≤ ε, let i be such that (p, `) ∈ Pi × Li, and let R′ be
the dual small rectangle (that arises in the dual processing of Si) that contains `∗. Then
the dual line p∗ must cross either R′ or one of the two small rectangles lying directly
above and below R′ (in the y-direction, if they exist).

Proof. Both claims are obvious; in (a) we use the fact that distv(p, `) ≤ ε
√

2, and the
assumption that ε

√
2 ≤ δ1; see below how this is enforced. In (b) we use the fact that

distv(p, `) = distv(`∗, p∗) and that the height of a small rectangle is 2δ1δ2 = 2ε > ε
√

2. J
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The algorithm. We first compute, for each point p ∈ P , the square Si it belongs to; this
can be done in O(1) time, assuming a model of computation in which we can compute the
floor function in constant time. Similarly, we find, for each line ` ∈ L the squares that it
crosses, in O(1/δ1) time. This gives us all the sets Pi, Li, in overall O(m+ n/δ1) time.

We then iterate over the small squares in the partition of S. For each such square Si, we
construct the dual partitioning of the resulting dual rectangle R into the smaller rectangles
R′. As above, we find, for each dual point `∗, for ` ∈ Li, the small rectangle that contains
it, and, for each dual line p∗, for p ∈ Pi, the small rectangles that it crosses. This takes
O(ni +mi/δ2) time.

We now report, for each small rectangle R′, all the pairs (p, `) ∈ Pi × Li for which `∗ lies
in R′ and p∗ crosses either R′ or one of the small rectangles lying directly above or below R′

(if they exist). We repeat this over all small squares Si and all respective small rectangles R′.
Note that a pair (p, `) may be reported more than once in this procedure, but its multiplicity
is at most some small absolute constant. The running time of this algorithm is

O

m+ n

δ1
+

1/δ2
1∑

i=1

(
ni + mi

δ2

)
+ k

 = O

(
n

δ1
+ m

δ2
+ k

)
,

where k is the number of pairs that we report. Lemma 1 guarantees that each reported pair
is at distance ≤ 5ε and Lemma 2 guarantees that every pair (p, `) at distance at most ε is
reported.

We optimize the running time by choosing δ1, δ2 to satisfy m/δ2 = n/δ1 and δ1δ2 = ε.
That is, we want to choose δ1 =

√
nε/m and δ2 =

√
mε/n. These choices are effective,

provided that both δ1, δ2 are at most 1, for otherwise the primal partition or the dual
partitions does not exist. If δ2 > 1, that is, if n < mε, we simply choose δ1 = ε, and run
only the primal part of the algorithm, outputting all the pairs in

⋃
i Pi ×Li. The cost is now

O(m+ n/ε+ k) = O(m+ k). (This is the naive implementation, which is now efficient since
n is so small.) If δ1 > 1, we pass directly to the dual plane, flip the roles of P and L, and
solve the problem in the naive manner just described, at the cost of O(n+ k). Otherwise
(when both δ1 and δ2 are ≤ 1), the cost is O (

√
mn/
√
ε+ k). The cost of the algorithm is

therefore always bounded by O (n+m+
√
mn/
√
ε+ k).

Recall also that in the proof of Lemma 2 we needed the inequality ε
√

2 ≤ δ1. This will
hold when m ≤ n (and ε ≤ 1/2, as we assume). In the complementary case m > n, we
simply flip the roles of points and lines (that is, we start the analysis in the dual plane).

In conclusion, we have obtained the following main result of this section.

I Theorem 3. Let P be a set of m points in the unit disk B in the plane, let L be a set of n
lines that cross B, and let 0 < ε ≤ 1/2 be a prescribed parameter. We can report all pairs
(p, `) ∈ P × L, for which dist(p, `) ≤ ε, in time O

(
n+m+

√
mn/
√
ε+ k

)
, where k is the

actual number of pairs that we report; all pairs at distance at most ε are reported, and every
reported pair lies at distance at most 5ε.

3 Review of the other algorithms

Near neighbors in point-plane configurations. Here we are given a set P of m points in
the unit ball B in R3, a set Π of n planes crossing B, and a prescribed error parameter
0 < ε ≤ 1/2, We solve the approximate incidences problem for P and Π with accuracy ε.
As in the planar case, we approximate the point-plane distance dist(p, π) by the z-vertical
distance distv(p, π). We partition Π into O(1) subfamilies, according to the directions of the
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normals, and treat each family separately, assuming that all the normal directions in this
family are close to the z-direction, making the distance approximation behave well.

We assume that P ⊂ S = [0, 1]3, and apply a two-stage partitioning, one in the primal
space and one in the dual space, with a suitable choices for the corresponding parameters δ1,
δ2, similar to the way it was done in the plane. We obtain an approximate incidence reporting
algorithm that runs in O

(
n+m+

√
mn/ε+ k

)
time, where k is the actual number of pairs

that we report.

Nearly congruent pairs in the plane. We are given two point sets P , Q, of respective sizes
m and n, and parameters r, ε, and present an algorithm that reports all pairs (p, q) ∈ P ×Q
in the unit disk B, such that |pq| ∈ [r− ε, r + ε], and each pair that it reports lie at distance
in [r − αε, r + αε], for some constant α > 1. The problem is equivalent to an approximate
incidences problem between P and the set of congruent circles C := {cq | q ∈ Q} where cq is
the circle of radius r centered at a point q. We assume that r is bounded away from 0 and
that ε� r ≤ 1/2.

We present two different solutions. The first one, inspired by an idea of Indyk et al. [13],
does not use duality, so it is insensitive to cases where m and n differ significantly. The
second solution does use duality, and is sensitive to such differences; it is more similar to the
preceding solutions for the point-line and point-plane approximate incidences problems. We
review here only the first solution.

We take the circle co of radius r centered at the origin o, and partition it into 2π/
√
ε

equal canonical arcs, each with a central angle
√
ε. We replace each arc γ by a sector of

an annulus Aγ of radii r ± ε that has γ as its ‘midline’, and enclose Aγ by a rectangle Rγ .
Simple calculations show that the sides of Rγ are at most

√
ε× 3ε.

We fix γ, and for each q ∈ Q we translate Rγ to Rγ(q) := q + Rγ . We get a collection
of n isothetic rectangles, and the m points of P . We tile up the unit disk by a grid whose
cells are isothetic to Rγ , partition the points of P among the grid cells, and, for each Rγ(q),
report all pairs (p, q) such that p lies in one of the at most four cells that Rγ(q) overlaps.
We repeat this for each of the O(1/

√
ε) canonical arcs. The resulting algorithm runs in

time O
(
(m+ n)/

√
ε+ k

)
, where k is the actual number of pairs that we report. Our second

approach, which uses duality, yields runs in O
(
m+ n+

√
mn/
√
ε+ k

)
time, which is an

improvement when m and n differ significantly.

Near-neighbor point-circle configurations. The duality-based approach can be extended
to handle the approximate incidence reporting problem for points and arbitrary (rather than
congruent) circles in the plane. The main difference is that general circles can be dualized
into points in three dimensions, so our algorithm uses a standard grid decomposition in the
primal plane, as in the cases of lines and congruent circles, but the dual partitionings take
place in three dimensions, as in the case of planes.

To facilitate the second dual decomposition step, we replace the standard distance
between points and circles by the power of a point with respect to a disk. We show that
the distortion caused by this change is small, and our gain is that in the dual setup the
points of P become planes (and the circles become points), so the machinery used for points
and planes can be easily adapted to handle this case too. The algorithm runs in time
O
(
m+ n+m1/3n2/3/ε2/3 + k

)
, where k is the actual number of pairs that we report.

Reporting all nearly congruent pairs in three dimensions. Here we consider the three-
dimensional version of the problem of nearly congruent pairs, where we are given sets P and
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Q of m and n points, respectively, in the unit ball B in R3, and parameters 0 < ε� r ≤ 1/2,
and wish to report all pairs (p, q) ∈ P ×Q such that dist(p, q) ∈ [r − ε, r + ε], ensuring that
each pair (p, q) that we report satisfies dist(p, q) ∈ [r−αε, r+αε], for some absolute constant
α > 1. This is an approximate incidence reporting problem between P and spheres of radius
r centered at the points of Q.

As before, we have two alternative solutions, one using the technique of Indyk et al. [13],
and one using duality. Both extensions are reasonably routine, although some nontrivial
technical issues have to be faced when extending the techniques to three dimensions. The
first approach, runs in time O ((m+ n)/ε+ k). By using duality one can get a better bound
(replacing (m+ n)/ε by

√
mn/ε) when the sizes of P and Q differ substantially.

Reporting all point-line neighbors in three dimensions. Let P be a set of m points in the
unit ball B in three dimensions, let L be a set of n lines that cross B, and let ε > 0 be a
given error parameter. We present an algorithm for the approximate incidence reporting
problem involving P and L.

We represent each line in R3 by the pair of equations y = ax+ b, z = cx+ d. Let ` be
the line y = ax + b, z = cx + d, and let p = (ξ, η, ζ) ∈ R3. We approximate dist(p, `) by
slicing space by the plane πp : x = ξ, and by computing the distance between the points
p and `p := ` ∩ πp = (ξ, aξ + b, cξ + d). As before, for this approximation to be good, the
angle between ` and the x-direction should not be too large, say at most π/4, and we ensure
this by partitioning L into O(1) subfamilies, such that each subfamily has this property with
respect to some direction u′. We focus on a single family, keep calling it L, and assume that
u′ is the x-axis. We show that dist(p, `p) ≤

√
2dist(p, `) for all p ∈ P and ` ∈ L.

We assume that P is contained in the unit cube S = [0, 1]3, and apply the following
two-stage partitioning procedure. For a pair of parameters δ1, δ2, whose values will be set
later we partition S into 1/δ3

1 pairwise openly disjoint smaller cubes, each of side length
δ1. For each small cube Si, let Pi denote the set of all points of P that lie in Si or in one
of the (at most) eight cubes that surround Si and have the same x-projection as Si, and
let Li denote the set of all the lines of L that cross Si. For each such small cube Si, we
pass to a parametric dual four-dimensional space, in which we represent each line ` ∈ Li,
given by y = ax + b, z = cx + d, by the point `∗ = (a, b, c, d), and represent each point
p = (ξ, η, ζ) ∈ Pi by the 2-plane (in R4) p∗ = {(a, b, c, d) | aξ + b = η, cξ + d = ζ}; p∗ is the
locus of all points dual to lines that pass through p.

We define the distance in the dual space between a point `∗ = (a, b, c, d) and a plane p∗, for
a primal point p = (ξ, η, ζ), to be the distance between `∗ and the point (a, η − aξ, c, ζ − cξ),
which is the intersection of p∗ with the plane defined by x = a and z = c. It follows that the
distance between `∗ and p∗, as defined above, is equal to dist(p, `p) in the primal space.

Fix a small cube Si, and assume without loss of generality that Si = [0, δ1]3. Let ` be a
line in Li, given by y = ax+ b, z = cx+ d. One can show that `∗ lies in the box R given
by −1 ≤ a, c ≤ 1 and −δ1 ≤ b, d ≤ 2δ1. We now partition R into 1/δ4

2 smaller boxes, each
of which is a homothetic copy of R scaled down by δ2. Concretely, each smaller box R′ is
congruent to the box [0, 2δ2]× [0, 3δ1δ2]× [0, 2δ2]× [0, 3δ1δ2].

We then show that, for each small box R′, if `∗ = (a`, b`, c`, d`) is a dual point (of some
` ∈ Li) in R′ and p∗ is a dual plane (of some point p = (ξ, η, ζ) ∈ Pi) that crosses R′ or
one of its surrounding boxes of the same xz-range, then dist(p, `) ≤ 8

√
2δ1δ2. Conversely,

if dist(p, `) ≤ δ1δ2 then (p, `) belong to some subproblem Pj × Lj , and p∗ crosses the small
dual region R′ containing `∗ or one of its nearby regions.

The algorithm is now immediate: We compute the sets Pi, Li, for i = 1, . . . , 1/δ3
1 , in

overall O(m+ n/δ1) time. Then, for each small cube Si, we consider the partitioning of the
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resulting dual box R into the smaller boxes R′. As above, we find, for each ` ∈ Li, the small
region that contains the dual point `∗, and, for each p ∈ Pi, the small regions that the dual
plane p∗ crosses. We report, for each small region R′, all the pairs (p, `) ∈ Pi × Li for which
`∗ lies in R′ and p∗ crosses either R′ or one of the at most eight small regions that surround
R′ and have the same xz-range. We repeat this over all small cubes Si and all respective
small regions R′. With a suitable optimization of the values of δ1 and δ2, the running time
is O

(
m+ n+m1/3n2/3/ε2/3 + k

)
.

Reporting all point-circle neighbors in three dimensions. In preparation for the final
algorithm, that finds all nearly congruent copies of a given triangle in a set of n points in R3,
we first solve the following problem. Let P be a set of m points in the unit ball B in R3, let
C be a set of n congruent circles in R3 of radius r ≤ 1/2 that cross B, and let ε� r be a
prescribed error parameter. We present an efficient algorithm for the approximate incidence
reporting problem for P and C.

This is perhaps the most complex algorithm in our collection. We slice each circle into
canonical arcs, replace each arc by a sector of a torus of width ε around it, enclose each
torus sector by a suitable (bounded) cylinder, and reduce our problem to that of reporting
point-cylinder containments. We further reduce the problem by cutting space by parallel
slabs of width

√
ε in some suitable direction, say the x-direction, by partitioning the points

of P among the slabs, and by considering only those toric/cylindrical pieces that form
sufficiently small angle with the x-direction. For each such slab σ, we take the points in
σ, replace each cylinder that intersects σ, or a nearby slab, by the full line that supports
its axis, and run the approximate incidence reporting algorithm involving the points in the
slab and the lines associated with the slab, repeating this over all slabs and tori sectors.
The resulting algorithm runs in time O

(
(m+ n)/ε1/2 +m1/3n2/3/ε7/6 + k

)
, where k is the

number of (distinct) reported pairs.

4 Reporting all nearly congruent triangles

In this section we put to work the algorithms in (e) and (g) (see Section 1), to obtain an
efficient solution of the first step in solving the approximate point pattern matching problem
in R3 (see its review in the introduction), where we are given a sampled “reference” triangle
∆abc, for a triple of points a, b, c in the first set A, and a prescribed error parameter ε > 0.
Our goal is to report all triples p, q, o in the second set B that span a triangle “nearly
congruent” to ∆; that is, triples that satisfy∣∣|pq| − |ab|∣∣ ≤ ε, ∣∣|po| − |ac|∣∣ ≤ ε, and

∣∣|qo| − |bc|∣∣ ≤ ε. (1)

We allow to report triples that satisfy (1) with αε on the right-hand sides rather than ε, for
some fixed constant α. Let ab be the longest edge of ∆. We require that β ≤ |ab| ≤ 1/2 for
some fixed constant β. We also require that the height h of ∆ from c (perpendicular to ab) is
larger than some fixed constant s. We assume that β, s� ε. Our approximation guarantee
α increases as β and s decrease.

We first report all pairs (p, q) ∈ B2 such that
∣∣|pq| − |ab|∣∣ ≤ ε, using the algorithm

specified in (e) (incidences between congruent spheres and points). This takes O(n/ε+N)
time, where N is the number of pairs that we report. Let Π denote the set of reported pairs.
We know that all the desired pairs are included in Π, and that every pair (p, q) in Π satisfies∣∣|pq| − |ab|∣∣ ≤ α′ε, for some absolute constant α′. We prune Π, leaving in it only pairs (p, q)
satisfying

∣∣|pq| − |ab|∣∣ ≤ ε. We continue to denote the resulting set as Π, and its size by N .
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Let (p, q) be a pair in Π. Any point o that satisfies
∣∣|po| − |ac|∣∣ ≤ ε and

∣∣|qo| − |bc|∣∣ ≤ ε
lies in the intersection K = Kp,q of two spherical shells, one centered at p with radii |ac| ± ε,
and one centered at q with radii |bc| ± ε. The following lemma allows us to replace K by a
torus that is congruent to a fixed torus that depends only on ∆. See Figure 2.

I Lemma 4. Assume that ∆ is sufficiently fat, in the sense that β ≤ |ab| ≤ 1/2 and h ≥ s,
for some absolute positive constants β, s that satisfy ε� β, s. Then there exists a circle γp,q
of radius h such that K is contained in the torus Tp,q that is the Minkowski sum of γp,q and
a ball of radius ε′ ≤ δε around the origin, where the constant δ depends on β and s.

Proof. Denote the lengths of the edges of the triangle ∆abc by u = |ab|, v = |ac| and
w = |bc|. Let g the point where h meets ab and let z = |ag|. We have z2 + h2 = v2 and
(u− z)2 + h2 = w2, from which we obtain that z = u2+v2−w2

2u , and we denote this expression
as z = z(u, v, w). Consider an alignment of ∆ within the plane of ∆pqo, such that a coincides
with p and ab overlaps pq. Let g now be a point on pq at distance z from p = a. Then c lies
on the circle γp,q of radius h, centered at g, and contained in the plane perpendicular to pq
through g. See Figure 2(b).

Fix some point o ∈ K. We claim that o must be at distance ≤ δε from γp,q, for some
fixed constant δ that depends on β and s. Indeed, since (p, q) ∈ Π and o ∈ K, we can write
|pq| = u+ ε1, |po| = v + ε2, and |qo| = w + ε3, where |εi| ≤ ε for i = 1, 2, 3.

Consider the alignment of ∆ with ∆pqo, as above, and imagine that we perturb the edges
ab, ac, and bc of ∆ by ε1, ε2, and ε3, respectively, so that ∆ is continuously deformed into
∆pqo. We claim that o cannot move too far as a result of this deformation so the distance
between o and c must be small.

To see this, let h′ be the height of ∆pqo from o, let g′ be the point at which h′ meets
pq, and let z′ = |pg′|. We claim that |z′ − z| ≤ δε and |h′ − h| ≤ δε for some absolute
constant δ. To see this, using the function z = z(u, v, w) defined above, we have z′ =
z(u+ ε1, v + ε2, w + ε3), and routine calculations show that, for ε sufficiently small, we have
|z′ − z| = O(|∇z(u, v, w) · (ε1, ε2, ε3)|) ≤ δ′ε, where δ′ depends on β.

Similarly, by Heron’s formula, we can think of h as a function h(u, v, w), given by

h(u, v, w) = 2Area(∆)
u

=
2
√
τ(τ − u)(τ − v)(τ − w)

u
,

where τ = 1
2 (u + v + w). Then h′ = h(u + ε1, v + ε2, w + ε3), and, by another routine

calculation, |h′ − h| = O(|∇h(u, v, w) · (ε1, ε2, ε3)|) ≤ δ′′ε, for another constant δ′′ that
depends on β and s. Take δ =

√
(δ′)2 + (δ′′)2, and the lemma follows. J

We have thus reached the following scenario. We have a set T of N congruent tori Tp,q, for
(p, q) ∈ Π, and a set B (the original one) of n points. By construction, each triple (p, q, o) that
defines a triangle for which (1) holds, satisfies o ∈ Tp,q. Using our algorithm for point-circle
near neighbors in R3, as reviewed in Section 3, we can report all the triples (p, q, o) such that
o ∈ Tp,q, in time O

(
n+N/ε1/2 + n1/3N2/3/ε7/6 + k

)
, where k is the number of (distinct)

triples that we report; each of the desired triples is reported, and each triple that we report
is such that the distance from o to γp,q is at most αε for some other fixed constant α > δ.
Therefore each triple which we report satisfies (1) with αε on the right-hand sides, rather
than ε. In summary, we have:

I Theorem 5. Let B be a set of n points in the unit ball in R3. Let ∆abc be a fixed reference
triangle and let ε an error parameter, so that ∆ and ε satisfy the constraints specified in
Lemma 4. We can then report all triples (p, q, o) ∈ B3 that span a triangle nearly congruent to
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∆, in the sense of (1), in time
(
n+N/ε1/2 + n1/3N2/3/ε7/6 + k

)
, where N is the number of

pairs reported by our algorithm for approximate congruent pairs in R3 (reviewed in Section 3),
applied to P with distance |ab|, the largest edge length of ∆, and k is the number of (distinct)
triples that the algorithm in this section reports; each of the desired triples is reported, and
each triple that we report satisfies (1) with αε replacing ε, where α is a suitable absolute
constant. Each pair is reported at most O(1) times.
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Abstract
We show that Karger’s randomized contraction method [7] can be adapted to multiobjective
global minimum cut problems with a constant number of edge or node budget constraints to give
efficient algorithms.

For global minimum cuts with a single edge-budget constraint, our extension of the ran-
domized contraction method has running time Õ(n3) in an n-node graph improving upon the
best-known randomized algorithm with running time Õ(n4) due to Armon and Zwick [1]. Our
analysis also gives a new upper bound of O(n3) for the number of optimal solutions for a single
edge-budget min cut problem. For the case of (k − 1) edge-budget constraints, the extension
of our algorithm saves a logarithmic factor from the best-known randomized running time of
O(n2k log3 n). A main feature of our algorithms is to adaptively choose, at each step, the appro-
priate cost function used in the random selection of edges to be contracted.

For the global min cut problem with a constant number of node budgets, we give a randomized
algorithm with running time Õ(n2), improving the current best determinisitic running time of
O(n3) due to Goemans and Soto [5]. Our method also shows that the total number of distinct
optimal solutions is bounded by

(
n
2
)
as in the case of global min-cuts. Our algorithm extends

to the node-budget constrained global min cut problem excluding a given sink with the same
running time and bound on number of optimal solutions, again improving upon the best-known
running time by a factor of O(n). For node-budget constrained problems, our improvements arise
from incorporating the idea of merging any infeasible super-nodes that arise during the random
contraction process.

In contrast to cuts excluding a sink, we note that the node-cardinality constrained min-cut
problem containing a given source is strongly NP-hard using a reduction from graph bisection.
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6:2 Randomized Contractions for Multiobjective Minimum Cuts

1 Introduction

Cut problems play a central role in combinatorial optimization and arise routinely in many
practical areas such as telecommunications, project networks and databases [7] as well as
the bottleneck computation in the separation routine for important network optimization
problems such as the TSP [12]. Let G = (V,E) be an undirected simple graph with n nodes
and m edges, and c1, . . . , ck : E → Z+ (w1, . . . , wk−1 : V → Z+) be k (k − 1) non-negative
cost functions defined on the set of edges (nodes), where k is a constant. A cut X in G is
a subset of nodes X ⊆ V such that ∅ 6= X 6= V , and it determines the set δ(X) of edges
with exactly one end in X. The cost of cut X in criterion j is cj(δ(X)) :=

∑
e∈δ(X) c

j(e)
(wj(X) :=

∑
v∈X w

j(v)). Given k − 1 cost bounds b1, . . . , bk−1, we study the following
multiobjective versions of the minimum cut problem.

Edge-budget constraints: find a cut C∗ minimizing edges cost ck subject to the constraints
ci(δ(C∗)) ≤ bi for i = 1, . . . , k − 1.
Node-budget constraints: find a cut C∗ minimizing edges cost ck subject to the constraints
wi(C∗) ≤ bi for i = 1, . . . , k − 1.
Node-budget constraints including a source s (excluding a sink t): given a specific node
s ∈ V (t ∈ V ), find a cut C∗ minimizing edges cost ck such that wi(C∗) ≤ bi for
i = 1, . . . , k − 1, and s ∈ C∗ (t 6∈ C∗).

1.1 Previous Work

Randomized contraction: Karger [7] gave an elegant randomized contraction algorithm
that finds a global minimum cut with high probability. A consequence of its probabilistic
analysis is a strongly polynomial bound on the number of (near-) optimal global minimum
cuts. Karger and Stein [8] improve its running time using a recursive construction that
carefully traded off the probability of success with the size of the recursive subproblems. Our
work builds on these methods and extends them to budgeted versions of the global minimum
cut problem.

Edge-budget constraints: While most budgeted versions of standard combinatorial optim-
ization problems are NP-hard [4], Armon and Zwick [1] give an efficient strongly polynomial
time algorithm for solving the minimum cut problem with a constant number k of edge-budget
constraints. Their algorithm guesses the optimal value by performing a binary search using
O(logn) calls to a subproblem called the min-max cut problem. Here, the goal is to find a cut
C̄ for which maxi=1,...,k c

i(C̄) is minimized, i.e., a cut C̄ whose largest cost is the smallest
possible. This problem is in turn reduced to enumerating all cuts that are at most at factor
of k larger than the global minimum cut for a single cost function. Karger and Stein [8] show
that every graph contains at most O(n2k) such cuts. In order to enumerate them, Armon
and Zwick use either the O(mn2k) deterministic algorithm of Nagamochi et al. [11] or the
O(n2k log2 n) randomized algorithm of Karger and Stein [8]. Thus, their approach leads
to an O(mn2k logn) time deterministic algorithm and an O(n2k log3 n) time randomized
one. The minimum cut problem with edge-budget constraints may be of interest in itself
but also arises as a subproblem in other fields, e.g., interdiction problems. Zenklusen [16]
shows the link between the problem of maximally decreasing the optimal value of the global
minimum cut by removing a limited set of edges and the minimum cut problem with a single
edge-budget constraint.
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Node-Budget Constraints: Armon and Zwick [1] consider the problem of finding a cut of
minimum cost with at most b vertices on its smaller side. This problem corresponds to a
special case of the single node-budget constraint (k = 2) with w(v) = 1 for all node v ∈ V .
The authors reduce this problem to the problem of minimum cut with a single edge-budget
constraint and give deterministic and randomized algorithms running in O(mn4 logn) and
O(n4 log3 n) times respectively. Goemans and Soto [5] consider the more general problem of
minimizing a symmetric submodular functions (SSF) f over a family of sets I that are closed
under inclusion. Note that the cut function over the node set of a graph G = (V,E) is a SSF.
Moreover, the family of all subset of nodes X ⊆ V satisfying the node-budget constraints is a
typical example of sets closed under inclusion. Goemans and Soto [5] extended Queyranne’s
algorithm [13] (which in turn is based on the work of Nagamochi and Ibaraki [10]) in order
to enumerate all the O(n) minimal minimizers using O(n3) oracle calls to function f and I.
In the particular case of graphs, their result implies that the minimum cut problem with
node-budget constraints can be solved in O(n3) running time. Interestingly, Goemans and
Soto’s algorithm does not introduce any slowdown with respect to the running time of solving
the global minimum cut problem.

Cardinality Constraints: Bruglieri et al. [2] study the version of minimum cut problem
where the cardinality of the edge cut must be exactly the given bound k, or at least the
given bound k, and show NP-hardness via reduction from MAX-CUT. The node-cardinality
constrained version on the side containing a given source has been studied by Hayrapetyan et
al. [6] under the name MINSBCC (Minimum-size bounded-capacity cut): their version bounds
the cost of the cut and minimizes the node cardinality of the cut. They show NP-hardness
of the problem on general graphs with uniform node weights and on trees (with non-uniform
node weights), and provide bicriteria approximation algorithms with ratio ( 1

λ ,
1

1−λ ) for any
0 < λ < 1. The s− t separating version of this unbalanced cut problem was studied by Li
and Zhang [9], and by Zhang [17]. The node-cardinality constrained version of this problem
generalizes the famous graph bisection problem. For the exact version of the problem where
the side containing s must have exactly k nodes, an O(logn)-approximation was given by
Räcke [14].

1.2 Our contributions

The main contribution of our paper is to extend the Karger’s randomized contraction
algorithm [7] to handle node or edge budget constraints.

Edge-budget Constraints. The original randomized contraction algorithm for a single edge
cost solves the global minimum cut problem by repeatedly picking a random edge with
probability proportional to its cost and contracting it, until only two vertices remain. Karger
shows that with high probability the cut formed by the edges joining these (super-)nodes
is a minimum cut. The key ingredient in the proof of the success probability of Karger’s
algorithm is that the optimal value of the minimum cut problem is at most the cost of any
cut formed by a singleton node. However, if budget constraints are added to the original
problem, some of these singleton cuts may be infeasible (for the budget constraint) and hence
may have a cost smaller than the optimal value of the budgeted problem. On the other hand,
the cost of a feasible cut formed by a singleton node is larger than the optimal value but the
current graph may contain few such nodes. Our main result uses new ideas to overcome this
difficulty.
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I Theorem 1. For the global minimum cut problem with a single edge-budget constraint
in a graph on n nodes, a randomized contraction algorithm returns any particular optimal
solution in O(n3 log4 n log logn) time with probability 1− 1

Ω(n) .

For the case of a single edge-budget constraint, our randomized contraction algorithm
decides to contract, at each step, edges based on either the budget-cost function c1 or the
objective-cost function c2, depending on whether the number of feasible cuts (obeying the
budget) formed by the current singletons is sufficiently “large” or not. This modification is
crucial to ensure the high success probability of returning at the end an optimal cut, and
represents our main technical contribution.

Our final algorithm for this problem is presented in Section 2 and runs with high
probability in Õ(n3) time. This result improves upon the current best running time of Õ(n4)
given in [1]. As a byproduct of our analysis, we save a factor of O(n) from the best-known
upper bound on the number of optimal solutions of this problem given in [1].

In the general case, multiple edge-budget constraints make the problem harder because
the number of infeasible cuts formed by a singleton may increase. With more than two budget
constraints, a cut satisfying the ith budget constraint may violate the jth one. Therefore, even
though the number of cuts formed by a singleton node satisfying the ith budget constraint
may be large (the property we used with a single budget constraint), few of them may satisfy
all the budget constraints. Therefore, we need a different idea to tackle multiple budget
constraints. For this case, we extend Karger’s algorithm [7] differently by first sampling
the cost function that is then used to randomly choose an edge to be contracted. Our final
algorithm (Theorem 13) saves a logarithmic factor from the best-known running time of
O(n2k log3 n) given in [1].

Node-budget Constraints. We derive in Section 3 faster randomized algorithms for finding
global minimum cuts with a constant number of node budget constraints.

I Theorem 2. For the global minimum cut problem with a constant number of node-budget
constraint in a graph on n nodes, a randomized contraction algorithm returns any particular
optimal solution in O(n2 logn) time with probability Ω(1/ logn). Furthermore, all the optimal
solutions can be computed with high probability in O(n2 log3 n) time.

For this case, we use an observation similar to that of Goemans and Soto [5]: whenever
the contraction produces two (node-budget) infeasible super-nodes, we merge them into
one. Adding this idea to Karger’s random contraction gives an algorithm with a randomized
running time of Õ(n2) (Theorem 17). This considerably improves their current best running
time of O(n3) [5] even though their algorithm is deterministic. As a byproduct, we show that
the total number of distinct optimal global minimum cuts in the node-budget constrained
case is also bounded by

(
n
2
)
as in the non-budgeted case.

Our algorithm can be adapted to the node-budget constrained global min cut problem
excluding a given sink t ∈ V with the same running time and bound on number of optimal
solutions (Theorem 18). In this case, the running time of our algorithm improves upon the
previous deterministic running time of Goemans and Soto by a factor of O(n).

Our results indicate that for the global minimum cut problem, the node-budget constraints
are easier to handle than edge-budget ones, even though both are efficiently solvable. In
contrast to the above results, we note that even the node-cardinality constrained global
minimum cut problem containing a given source is strongly NP-hard using a reduction from
graph bisection (Theorem 19).
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Algorithm 1 Random edge contraction for a single edge-budget constraint.
Input: a simple graph G = (V,E) with two nonnegative edge costs c1, c2, a bound b1, and

integer q ≥ 10
Output: a cut ∅ 6= C∗ ⊂ V minimizing cost c2 subject to edge-budget constraint c1(δ(C∗)) ≤

b1
1: let E0 ← E, V0 ← V , G0 ← G, r ← 0
2: while |Vr| > 4 do
3: let Êr ← ∅
4: if c1(Er) ≤ b1(|Vr|−1)

6 then
5: pick an edge e ∈ Er with probability p(e) = c2(e)

c2(Er) and add it to Êr
6: else
7: for i = 1 to q do
8: for each edge e ∈ Er \ Êr do
9: add e to Êr with probability p′(e) = 3c1(e)

b1(|Vr|−1)
10: end for
11: end for
12: end if
13: if Êr 6= ∅ then
14: contract all the edges in Êr by merging their endpoints
15: replace all resulting parallel edges e1, . . . , ep joining any pair of nodes u, v ∈ Vr by a

single edge e such that ch(e) =
∑p
i=1 c

h(ei), h = 1, 2, and remove self-loops
16: end if
17: r ← r + 1
18: let Gr = (Vr, Er) denote the resulting graph
19: end while
20: randomly partition the nodes in the final graph G′ and return the cut C∗ in G associated

with this partition

2 Edge-budget constrained Global Minimum cuts

We discuss in Sections 2.1 and 2.2 our randomized algorithms for the single budget constraint
and for multiple ones, respectively.

2.1 Single edge-budget constraint
The algorithm consists of two steps. The first reduces the graph by doing edge contractions

until a minor graph G′ with at most four nodes is obtained. In the second step, we randomly
pick a cut in the resulting four-node graph.

Starting from G0 = (V0, E0) = G = (V,E), the first step of each iteration r ≥ 1 consists of
a possible reduction of graph Gr = (Vr, Er) to a graph Gr+1 = (Vr+1, Er+1) by contracting
a sample edge set Êr ⊆ Er. The construction of Êr is performed as follows. First we set
Êr = ∅. Then two cases are considered: (i) If c1(Er) ≤ b1(|Vr|−1)

6 , then we randomly pick
an edge e ∈ Er with probability p(e) = c2(e)

c2(Er) , and add it to Êr. (ii) If this is not the
case, then we add each edge e ∈ Er to Êr with probability p′(e) = 3c1(e)

b1(|Vr|−1) . Note that the
resulting sample edge set Êr may be empty. In order to boost the probability that Êr is
non-empty, the process of random sampling is repeated q times, where q is a constant that
will be specified later. If Êr 6= ∅ at the end of the q trials, then we contract Êr and obtain a
smaller graph Gr+1 = (Vr+1, Er+1). Otherwise, we set Gr+1 = Gr.

ESA 2017



6:6 Randomized Contractions for Multiobjective Minimum Cuts

An iteration r of the algorithm where condition c1(Er) > b1(|Vr|−1)
6 holds and Êr = ∅

is called void. Note that at most |V | − 4 non void iterations are performed but the total
number of iterations may be large.

As a result of the edge contractions, parallel edges may join some pairs of vertices. Note
that parallel edges are in the same cuts. Therefore, they can be replaced by a single edge
with a cost equal to the sum of their costs. In contrast to Karger’s algorithm [7], we need to
consider only simple graphs at each step of Algorithm 1 in order to get the claimed running
time (Lemma 10). This step is not essential for the analysis of Algorithm 1 but since it will
be implemented recursively (Algorithm 2), |Er| must be bounded by O(|Vr|2) at each step r.
All these details are summarized in Algorithm 1.

The following result gives a lower bound on the success probability that a particular
optimal cut is returned by Algorithm 1.

I Proposition 3. Any fixed optimal cut C∗ is returned by Algorithm 1 with probability
Ω
(
n
− 3

1−exp(− q2 )
)
.

Our strategy to prove Proposition 3 is to handle separately the two cases in each iteration
of the algorithm depending on whether c1(Er) ≤ b1(|Vr|−1)

6 or not. In the following two
lemmas, we prove that the success probability of not contracting an edge in the optimal cut
is at least 1− 3

(|Vr|−1)(1−exp(− q2 )) in each of these cases respectively.
Any edge in the current graph Gr = (Vr, Er) represents one or more edges in the original

graph G. On the contrary, any edge in E is associated to at most one edge in Er. Let E−1
r

denote the set of all the edges in E that are associated to the edges in Er. For any set S of
edges in E, let Er(S) denote, if any, the set of edges in Er associated to the edges in S. An
edge e ∈ E has survived in graph Gr if e ∈ E−1

r .

I Lemma 4. Fix a particular optimal solution C∗ and suppose that all the edges in δ(C∗)
have survived in graph Gr(Vr, Er). If c1(Er) ≤ b1(|Vr|−1)

6 , then the success probability of
contracting an edge not in Er(δ(C∗)) is at least 1− 3

|Vr|−1 .

Proof. Let V ≤r ⊆ Vr denote the set of feasible nodes v ∈ Vr, i.e., c1(δ({v})) ≤ b1 for all
v ∈ V ≤r . Observe that after replacing any parallel edges by a single one, the cost of any cut in
the current graph Gr is the same as in the original graph G. Therefore, c2(δ(C∗)) ≤ c2(δ({v}))
for all node v ∈ V ≤r . Moreover, we have

∑
v∈Vr c

1(δ({v})) = 2c1(Er) ≤ b1(|Vr|−1)
3 , and∑

v∈Vr c
1(δ({v})) ≥

∑
v∈Vr\V ≤r

c1(δ({v})) > b1|Vr \ V ≤r |. Thus, |Vr \ V ≤r | <
b1(|Vr|−1)

3b1
=

|Vr|−1
3 , and hence,

|V ≤r | ≥
2
3(|Vr| − 1). (1)

Since all the edges in δ(C∗) have survived in Gr, we have c2(Er(δ(C∗)) = c2(δ(C∗)).
Therefore, the error probability of randomly picking an edge e ∈ Er(δ(C∗)) is

Pr(e ∈ Er(δ(C∗))) = c2(Er(δ(C∗))
c2(Er)

= c2(δ(C∗))
c2(Er)

≤
∑
v∈V ≤r

c2(δ({v}))

|V ≤r |c2(Er)
≤
∑
v∈Vr c

2(δ({v}))
|V ≤r |c2(Er)

= 2
|V ≤r |

≤ 3
|Vr| − 1 (by (1)). J

I Lemma 5. Fix a particular optimal solution C∗ and suppose that all the edges in δ(C∗) have
survived in graph Gr(Vr, Er). If c1(Er) > b1(|Vr|−1)

6 , then Pr(Er(δ(C∗)) ∩ Êr 6= ∅) ≤ 3
|Vr|−1 .
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Proof. Let Êir denote the set of edges in Er added to Êr in trial i = 1, . . . , q. Let µ denote
the expected cardinality of Er(δ(C∗)) ∩ Êr. We have

µ =
q∑
i=1

∑
e∈Er(δ(C∗))∩Êir

(1− p′(e))i−1p′(e) ≤
∑

e∈Er(δ(C∗))

p′(e)

=
∑

e∈δ(C∗)

3c1(e)
b1(|Vr| − 1) (all the edges in δ(C∗) have survived)

= 3c1(δ(C∗))
b1(|Vr| − 1) ≤

3
|Vr| − 1 .

The last inequality comes from that C∗ is a feasible cut, and thus c1(δ(C∗)) ≤ b1. Con-
sequently,

Pr
(
Er(δ(C∗))∩Êr 6= ∅

)
= Pr

(
|Er(δ(C∗))∩Êr| ≥ 1

)
≤ Pr

(
|Er(δ(C∗))∩Êr| ≥

|Vr| − 1
3 µ

)
.

By Markov’s inequality, Pr
(
|Er(δ(C∗)) ∩ Êr| ≥ |Vr|−1

3 µ
)
≤ 3
|Vr|−1 and thus

Pr(Er(δ(C∗)) ∩ Êr 6= ∅) ≤
3

|Vr| − 1 . (2)

J

I Lemma 6. In graph Gr = (Vr, Er), if c1(Er) > b1(|Vr|−1)
6 , then Pr(Êr 6= ∅) > 1−exp(− q2 ).

Proof. If c1(Er) > b1(|Vr|−1)
6 , then Algorithm 1 constructs Êr by randomly sampling all

edges. Let F ir denote the event that the sample set Êir obtained during trial i is non-empty
and F̄ ir be the complementary event, i = 1, . . . , q. We have

Pr(Êr 6= ∅) = Pr
(
∪qi=1 F

i
r

)
= 1− Pr

(
∩qi=1 F̄

i
r

)
= 1− Pr(F̄ qr | ∩

q−1
i=1 F̄

i
r)Pr(F̄ q−1

r | ∩q−2
i=1 F̄

i
r) · · ·Pr(F̄ 2

r |F̄ 1
r )Pr(F̄ 1

r )

= 1−
(
Πe∈Er

(
1− p′(e)

))q = 1−
(
Πe∈Er

(
1− 3c1(e)

b1(|Vr| − 1)
))q

> 1−
(
Πe∈Er exp

(
− 3c1(e)
b1(|Vr| − 1)

))q = 1−
(

exp
(
−
∑
e∈Er

3c1(e)
b1(|Vr| − 1)

))q
= 1− exp

(
− 3qc1(Er)
b1(|Vr| − 1)

)
> 1− exp

(
− q

2
)
.

The last inequality comes from the fact that c1(Er) > b1(|Vr|−1)
6 . J

Proof of Proposition 3: If the condition of Lemma 4 holds, then the success probability at
iteration r is Pr(Er(δ(C∗))∩ Êr = ∅) ≥ 1− 3

|Vr|−1 . Otherwise, we need to consider two cases
depending on whether iteration r is void or not. In the former case, the success probability
is Pr(Er(δ(C∗)) ∩ Êr = ∅|Êr = ∅) = 1. Now if iteration r is non void, then by Lemma 5 we
have Pr(Er(δ(C∗)) ∩ Êr 6= ∅) ≤ 3

|Vr|−1 . In this case, we have

Pr(Er(δ(C∗)) ∩ Êr 6= ∅|Êr 6= ∅) = Pr(Er(δ(C∗)) ∩ Êr 6= ∅)
Pr(Êr 6= ∅)

<
3

(|Vr| − 1)(1− exp(− q2 )) ,

where the last equality follows from Lemma 6. Therefore, the success probability satisfies
Pr(Er(δ(C∗)) ∩ Êr = ∅|Êr 6= ∅) > 1− 3

(|Vr|−1)(1−exp(− q2 )) .
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Algorithm 2 Recursive random edge contraction for a single edge-budget constraint.
Input: a graph G = (V,E) with two nonnegative edge costs c1, c2, a bound b1, and α =

3
1−exp(− q2 ) for q = Ω(log(log2 n)) (this implies α = O(1))

Output: a cut ∅ 6= C∗ ⊂ V minimizing cost c2 subject to edge-budget constraint c1(δ(C∗)) ≤
b1

1: if |V | ≤ 6 then
2: randomly partition the nodes in G and return the cut C∗ defined by this partition
3: else
4: t← d |V |α√2 + 1e
5: repeat twice
6: apply the while loop in Line 2 of Algorithm 1 and contract at each iteration r all

the edges in Êr until obtaining a graph G′ = (V ′, E′) with at most t nodes
7: recursively solve the problem on graph G′
8: return the best of the two cuts (obtained from the two different runs)
9: end if

By taking the product of all the success probabilities over all the iterations, the probability
that all the edges in δ(C∗) have survived in the final graph G′ is at least

(1−
3/(1− exp(− q2 ))
|V | − 1) )(1−

3/(1− exp(− q2 ))
|V | − 2 ) · · · (1−

3/(1− exp(− q2 ))
4 ) = Ω(|V |

− 3
1−exp(− q2 ) ).

The probability of picking uniformly a cut in the final graph, formed by at most four
nodes, is 2−4. Therefore, multiplying both probabilities gives the desired result.

Using the same probabilistic argument to bound the number of minimum cuts as in
Karger [7] and setting q = O(log(log2 n)) in Proposition 3, we get the following result.

I Corollary 7. The number of optimal solutions of the single edge-budget constrained global
minimum cut problem is bounded by O(n3).

The number of iterations required to have a nonempty sample set is a geometric random
variable, which by Lemma 6, has an expected value bounded by 1

1−exp(− q2 ) . Observe that the
O(m) = O(n2) running time of the random sampling is bottleneck in Algorithm 1. Therefore,
the expected running time of the algorithm is O(q · n3).

In order to amplify the success probability given by Proposition 3, one needs to perform
O(n

3
1−exp(− q2 ) logn) runs of Algorithm 1, which is excessive. Hence, we embed it in the

recursive framework of Karger and Stein’s [8] algorithm.
Our recursive algorithm can be represented using a binary tree where the root corresponds

to graph G. And for every node of the tree, associated with some graph H = (W,F ), the
algorithm constructs two graphs H1 = (W1, F1) and H2 = (W2, F2) obtained by performing
two sequences of contractions as in Algorithm 1. However, in contrast to Algorithm 1, these
contractions are stopped when the number of nodes in W is reduced by a factor α

√
2, where

α = 3
1−exp(− q2 ) and q = Ω(log(log2 n)). It is known that the depth of such tree is bounded

by blog α√2 nc and the number of leaves is at most

O(2blog α√2 nc) ≤ O(2log α√2 n) = O(nlog α√2 2) = O(nα) = O(n
3

1−exp(− q2 ) ) = O(n3).

See Cormen et al. [3] for more details. This procedure is summarized in Algorithm 2.
The following result (restatement of Theorem 1) gives bounds on the probability of success

and the running time of Algorithm 2.
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I Theorem 8. Algorithm 2 returns any particular optimal solution in O(n3 log4 n log logn)
time with probability 1− 1

Ω(n) .

The proof of Theorem 8 will be a consequence of the following lemmas (the proofs are
omitted due to space limitations). The first one shows that Algorithm 2 has the same success
probability as the recursive algorithm of Karger and Stein [8].

I Lemma 9. A fixed optimal solution C∗ is returned by Algorithm 2 with probability Ω
( 1

logn
)
.

I Lemma 10. For q = O(log(log2 n)), the expected running time is O(n3 logn log logn).

Using the observation that the running time of Algorithm 2 can be analyzed as a sum
of several sums of geometric random variables, we provide an upper bound that holds with
high probability.

I Lemma 11. The probability that the running time of Algorithm 2 exceeds O(n3 log2 n log logn)
is bounded by O(1/n).

By Lemmas 9 and 10, a particular optimal solution C∗ is returned with high probability
by performing O(log2 n) calls to Algorithm 2, with each call to this algorithm taking expected
O(n3 logn log logn) time. By using the same argument as in Lemma 11, the running times
of all these calls is O(n3 log4 n log logn) with high probability. This shows Theorem 8.

2.2 Multiple edge-budget constraints
We consider in this section the more general case where we have a constant number k of
edge-budget constraints. Note that if k is variable, the problem is strongly NP-hard [1].
In the case of a single edge-budget constraint, Lemmas 4 and 5 show that the edges of an
optimal cut form a small fraction of all the edges. Algorithm 1 exploits this crucial property
in order to return an optimal cut with high probability. If the condition of Lemma 4 holds,
then the number of feasible cuts formed by a singleton node is large. With more than
two budget constraints, a cut satisfying the ith budget constraint may violate the jth one.
Therefore, even though the number of cuts formed by a singleton node satisfying the ith
budget constraint may be large, few of them may satisfy all the budget constraints. Therefore,
we need a different idea to tackle the difficulties raised by multiple constraints.

The basic idea of the following algorithm is to repeat contracting randomly chosen edges
until obtaining a graph formed by 2k nodes. At this point, the algorithm returns a cut
uniformly chosen at random in this graph. The main difference with Algorithm 1 lies in the
way how the random selection is done.

In graph Gr = (Vr, Er) obtained at iteration r of the algorithm, a node v ∈ Vr is called
feasible if the cut δ({v}) satisfies all the edge-budget constraints. Otherwise, it is called
infeasible. Let V ir for i = 1, . . . , k − 1 denote a subset of infeasible nodes in Vr violating the
edge-budget constraint associated to cost ci and V kr denote the subset of feasible nodes in
Vr. We partition the nodes in Vr by assigning all the feasible nodes to V kr and assigning
arbitrary any infeasible node v to one of the subsets V ir such that ci(δ({v})) > bi. Let Eir
denote the subset of edges in Er incident to at least a node in V ir for i = 1 . . . , k. We choose
randomly a set V ir with probability pi = |V ir |

|Vr| and then pick an edge e ∈ Eir with probability
ci(e)
ci(Eir) and contract it. This procedure is summarized in Algorithm 3.

The following result gives a lower bound on the success probability of Algorithm 3
following arguments similar to Proposition 3 (the proof is omitted due to space limitation).

I Lemma 12. Algorithm 3 outputs any fixed optimal cut C∗ with probability Ω(n−2k).
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Algorithm 3 Random edge contraction for the edge-budget constrained minimum cut
problem.
Input: a graph G = (V,E) with k nonnegative edges cost c1, . . . , ck and k − 1 nonnegative

bounds b1, . . . , bk−1
Output: a cut ∅ 6= C∗ ⊂ V minimizing edges cost ck subject to the constraints ci(C∗) ≤ bi,

for i = 1, . . . , k − 1
1: let E1 ← E, V1 ← V , G1 ← G, r ← 1
2: while |Vr| > 2k do
3: flip a biased coin and choose set Eir with probability pi = |V ir |

|Vr|

4: pick randomly an edge e ∈ Eir with probability p(e) = ci(e)
ci(Eir)

5: contract e by merging its vertices and removing self-loops
6: r ← r + 1
7: let Gr = (Vr, Er) denote the resulting graph
8: end while
9: randomly partition the nodes in the final graph and return the cut C∗ in G associated

to this partition

Note that the lower bound given in Lemma 12 is the same as the one given in [8, Theorem
8.5] for the success probability of computing a specific k-approximate cut, i.e. a cut within
a multiplicative factor k of the minimum. Therefore, by embedding Algorithm 3 in the
recursive algorithm of Karger and Stein, one can show the following result.

I Theorem 13. Algorithm 3 returns all optimal solutions for the edge-budget constrained
min cut problem with k − 1 budgets in O(n2k log2 n) with high probability.

3 Node-Constrained Cut Problems

3.1 Node Budget-constrained Global Minimum Cut Problem

We discuss in this section a randomized algorithm for the minimum cut problem with node-
budget constraints based on an extension of Karger’s randomized contraction algorithm [7].
The algorithm exploits an observation given by Goemans and Soto [5] for solving the problem
of minimizing a SSF f over a family of sets I that are closed under inclusion over a ground
set V . A typical example of such a family is the knapsack family: Given a weight function
w : V → R+, consider the family I = {A ⊆ V :

∑
v∈A w(v) ≤ 1}. Let us first briefly review

Goemans and Soto’s algorithm which is based on an extension of Queyranne’s algorithm [13].
Queyranne gave a combinatorial algorithm for minimizing a SSF f by extending the

deterministic minimum cut algorithm of Nagamochi and Ibaraki [10]. The basic idea of
Queyranne’s algorithm is to construct an ordering (v1, . . . , vn) of the elements of the ground
set V such that f(vn) ≤ f(X) for all X ⊂ V that separates vn and vn−1. Note that the
element v1 may be chosen arbitrary in this algorithm. The ordered pair (vn−1, vn) is called a
pendant pair. The algorithm stores {vn} as a candidate solution and merges vn and vn−1.
The process continues until only two elements are left. The best among all the stored
candidates is an optimal solution.

In order to handle the knapsack constraint, Goemans and Soto [5] construct first a new
element v1 obtained by merging all the infeasible elements of V (not in I) and compute an
ordering (v1, . . . , vr). The authors observed that as in Queyranne’s algorithm [13], (vr−1, vr)
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Algorithm 4 Random edge contraction for the node-budget constrained min cut problem.
Input: a graph G = (V,E) with nonnegative edges cost c, nonnegative node weights wi for

i = 1, . . . , k − 1, and node budgets bi for i = 1, . . . , k − 1
Output: a feasible cut ∅ 6= C∗ ⊂ V with minimum cost
1: let E1 ← E, V1 ← V , r ← 1, V > ← {v ∈ V |wi(v) > bi for some i ∈ {1, . . . , k − 1}},
G1 ← G� V >, i.e. G with all nodes of V > merged into a single infeasible supernode.

2: while |Vr| > 3 do
3: choose an arbitrary edge e ∈ Er with probability c(e)

c(Er)
4: contract e by merging its endpoints and removing self-loops
5: if there exists two supernodes v and v′ in Vr that are infeasible then
6: merge v and v′
7: end if
8: r ← r + 1
9: let Gr = (Vr, Er) denote the resulting graph
10: end while
11: return a feasible cut C∗ in the final graph G′ with minimum cost

is still a pendant pair. Our approach uses the same idea but our starting point is the random
contraction algorithm of Karger.

Denote a cut X or a supernode representing a cut infeasible if its shore exceeds any of the
node budget constraints, i.e. wi(X) > bi for some i ∈ {1, . . . , k − 1}. Algorithm 4 maintains
at most one infeasible supernode (denoting the contraction of many vertices) at any time
and repeatedly tries to contract a randomly chosen edge. After a random contraction if
a new infeasible supernode is formed, it is merged with the previously existing infeasible
supernode deterministically. This process continues until the final graph Gr formed by only
three supernodes. At this point, the algorithm selects a feasible cut C∗ in Gr with minimum
cost and outputs it as a candidate optimal solution. The full algorithm is described in
Algorithm 4.

If Vr contains at least two infeasible nodes then any feasible cut does not separate them.
In this case, these supernodes are merged safely in Step 6. Otherwise, Vr contains at most
one infeasible supernode and in this case, Algorithm 4 randomly contracts, in Step 4, an edge
in Er. The following results show that the algorithm always find a feasible cut in the final
graph G′ and returns any fixed optimal cut with high probability (the proofs are omitted
due to space limitation).

I Lemma 14. The final graph G′ always contain a feasible cut.

I Lemma 15. Algorithm 4 outputs any fixed optimal cut C∗ with probability Ω(n−2).

Using the same probabilistic argument to bound the number of minimum cuts as in
Karger [7], Lemma 15 implies the following result.

I Corollary 16. The number of optimal solutions of the node-budget constrained global
minimum cut problem is bounded by

(
n
2
)
.

Note that Algorithm 4 has the same error probability and running time as the original
contraction algorithm [8, Theorem 2.2]. Therefore, we can embed it in the sophisticated
recursive algorithm [8, Section 4] in order to produce an optimal cut with the same success
probability and the same running time as for the global minimum cut problem (without the
budget constraints). Furthermore, similarly to [8, Theorem 4.4], by executing the recursive
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algorithm O(log2 n) times, all the optimal solutions can be computed with high probability.
The following result (restatement of Theorem 2) summarizes the resulting running times.

I Theorem 17. An optimal cut of the node-budget constrained global minimum cut prob-
lem on an n-node graph can be computed in O(n2 logn) time with probability Ω(1/ logn).
Furthermore, all the optimal solutions can be computed with high probability in O(n2 log3 n)
time.

3.2 Node Budget-constrained sink-excluding Global Minimum Cut
Problem

It is not hard to adapt Algorithm 4 for the node-budget constrained global minimum cut
problem excluding a given sink t ∈ V , where we have a set of k − 1 node-weight budget
constraints on the shore of the cut excluding t. We obtain the following result (the full
algorithm description is given in the full paper).

I Theorem 18. An optimal cut of the node-budget constrained global minimum cut problem
excluding a given sink in an n-node graph can be computed in O(n2 logn) time with probability
Ω(1/ logn). Furthermore, all the optimal solutions can be computed with high probability in
O(n2 log3 n) time.

3.3 Node-cardinality constrained Source-including Min-cuts
In contrast to the sink-excluding case, we show that even the node-cardinality constrained
minimum cut problem containing a given source is strongly NP-hard using a reduction from
graph bisection. Note that Hayrapetyan et al. [6] study the version that bounds the edge
costs of the cut and minimizes the node-cardinality of the cut, and show NP-hardness of
that version via a reduction from max-clique. We provide a direct hardness proof for our
version (omitted due to space limitation) by reducing from graph bisection.

I Theorem 19. The node-cardinality constrained minimum cut containing a given source is
strongly NP-hard.

On the other hand, for the exact version of the problem where the side containing s must
have exactly k nodes, an O(logn)-approximation was given by Räcke [14] using his approach
for the graph bisection problem.

4 Conclusion

Our results show that beyond the running time improvement, Karger’s randomized contraction
algorithm is sufficiently flexible to tackle efficiently budget constraints. An important open
question is whether the exact algorithms of Nagamochi and Ibaraki [10] and Stoer and
Wagner [15] can be extended in order to handle these budget constraints, since they are based
on similar observations but have the potential to lead to better deterministic algorithms for
the problems we study.
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Abstract
We resolve a number of long-standing open problems in online graph coloring. More specific-
ally, we develop tight lower bounds on the performance of online algorithms for fundamental
graph classes. An important contribution is that our bounds also hold for randomized online
algorithms, for which hardly any results were known. Technically, we construct lower bounds
for chordal graphs. The constructions then allow us to derive results on the performance of
randomized online algorithms for the following further graph classes: trees, planar, bipartite,
inductive, bounded-treewidth and disk graphs. It shows that the best competitive ratio of both
deterministic and randomized online algorithms is Θ(logn), where n is the number of vertices of
a graph. Furthermore, we prove that this guarantee cannot be improved if an online algorithm
has a lookahead of size O(n/ logn) or access to a reordering buffer of size n1−ε, for any 0 < ε ≤ 1.
A consequence of our results is that, for all of the above mentioned graph classes except bipartite
graphs, the natural First Fit coloring algorithm achieves an optimal performance, up to constant
factors, among deterministic and randomized online algorithms.
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1 Introduction

Online graph coloring is a classical problem in graph theory and online computation. It
has applications in job scheduling, dynamic storage allocation and resource management
in wireless networks [19, 23, 24]. A problem instance is defined by an undirected graph
G = (V,E), consisting of a vertex set V and an edge set E. Let |V | = n. The vertices arrive
one by one in a sequence σ = v1, . . . , vn that may be determined by an adversary. Whenever
a new vertex vt arrives, 1 ≤ t ≤ n, its edges to previous vertices vs with s < t are revealed.
An online algorithm A has to immediately assign a feasible color to vt, i.e. a color that is
different from those assigned to the neighbors of vt presented so far. The goal is to minimize
the total number of colors used.

For a graph G, let A(G) be the number of colors used by A. Let χ(G) be the chromatic
number of G, which is the minimum number of colors needed to color G offline. An online
algorithm A is c-competitive if A(G) ≤ c · χ(G) holds for every graph G [25]. If A is a
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randomized algorithm, then E[A(G)] is the expected number of colors used by A. The
algorithm is c-competitive against oblivious adversaries if E[A(G)] ≤ c · χ(G) holds for every
G [5]. An oblivious adversary, when determining σ, does not know the outcome of the
random choices made by A. We always evaluate randomized online algorithms against this
type of adversary. When considering specific graph classes, for a deterministic or randomized
algorithm, the competitive factor of c must hold for every graph from the given class.

The framework defined above is the standard online one. It is also interesting to explore
settings where an algorithm is given more power. An online algorithm A has lookahead l if,
upon the arrival of vertex vt, the algorithm also sees the next l vertices vt+1, . . . , vt+l along
with their adjacencies to vertices in {v1, . . . , vt+l}. Alternatively, an algorithm might have a
buffer of size b in which vertices can be stored temporarily. The requirement is that at the
end of step t the algorithm must have colored at least t− b vertices. A buffer is more powerful
than lookahead because it allows the algorithm to partially reorder the input sequence and
delay coloring decisions. The value of a buffer has recently been explored for a variety of
online problems, see e.g. [1, 11] and references therein.

Previous work: For general graphs, the competitive ratios are high compared to the trivial
upper bound of n. Lovasz, Saks and Trotter [22] developed a deterministic online algorithm
that achieves a competitive factor of O(n/ log∗ n). Vishwanathan [26] devised a randomized
algorithm that attains a competitiveness of O(n/

√
logn). This bound was improved to

O(n/ logn) by Halldorsson [16]. Halldorsson and Szegedy [17] proved that the competitive
ratio of any deterministic online algorithm is Ω(n/ log2 n). This lower bound also holds for
randomized algorithms. Moreover, it holds if a randomized algorithm has a lookahead or a
buffer of size O(log2 n) [17].

There has also been considerable research interest in online coloring for various graph
classes. An early and celebrated result proved by Bean [4] in 1976 is that, for trees, every
deterministic online algorithm can be forced to use Ω(logn) colors. The First Fit algorithm
colors every tree with O(logn) colors [15]. The natural strategy First Fit assigns the lowest-
numbered feasible color to each incoming vertex. Since trees have a chromatic number
of 2, the best competitive ratio achievable by deterministic online algorithms is Θ(logn).
For bipartite graphs, there also exists a deterministic online algorithm that uses O(logn)
colors [22], implying that the best competitiveness of deterministic strategies is again Θ(logn).
However, First Fit performs poorly, as there are bipartite graphs for which it requires Ω(n)
colors. Kierstead and Trotter [20] proved that, for interval graphs, the best competitive ratio
of deterministic online algorithms is equal to 3.

A paper directly related to our work is by Irani [18]. She examined d-inductive graphs, also
referred to as d-degenerate graphs. They are defined as the graphs which admit a numbering
of the vertices such that each vertex is adjacent to at most d higher-numbered vertices. Every
planar graph is 5-inductive and every chordal graph G is (χ(G) − 1)-inductive. Irani [18]
proved that First Fit colors every d-inductive graph with O(d · logn) colors. Furthermore,
for every deterministic online algorithm A, there exist graphs such that A uses Ω(d · logn)
colors [18]. Since d-inductive graphs have a chromatic number of at most d + 1, the best
competitive ratio achieved by deterministic online algorithms is Ω(logn). For planar graphs
a tight bound of Θ(logn) holds because trees are planar. However, it was an open problem
if a tight competitiveness of Θ(logn) holds for general chordal graphs. In fact, Irani [18]
raised the question if, for every deterministic online algorithm A and every d, there exists
a chordal graph with chromatic number d such that A uses Ω(d · logn) colors. Finally, for
d-inductive graphs, Irani [18] analyzed deterministic online algorithms with lookahead l and
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showed that the best competitiveness is Θ(min{logn, n/l}). A lower bound of Ω(log logn)
on the competitive ratio of randomized online algorithms for d-inductive graphs was given
by Leonardi and Vitaletti [21].

We address two further graph classes. Downey and McCartin [10] studied online coloring
of bounded treewidth graphs. For an introduction to treewidth see [7]. For any graph of
treewidth d, First Fit uses O(d · logn) colors. This is a consequence of Irani’s work [18]
because a graph of treewidth d is d-inductive [10, 18]. Downey and McCartin [10] showed
that, on graphs of treewidth d, First Fit can be forced to use Ω( d

log(d+1) logn) colors. Last but
not least, a disk graph is the intersection graph of a set of disks in the Euclidean plane. Each
vertex represents a disk; two vertices are adjacent if the two corresponding disks intersect.
Online coloring of disk graphs has received quite some attention because it models frequency
assignment problems in wireless communication networks, see [13] for a survey. The best
competitiveness achieved by a deterministic online algorithm is Θ(min{logn, log ρ}), where
ρ is the ratio of the largest to smallest disk radius [9, 12]. The result relies on the common
assumption that an online algorithm does not use the disk representation, when making
coloring decisions [9, 12, 13]. It has been repeatedly raised as an open problem if the bound
of Θ(min{logn, log ρ}) can be improved using randomization [9, 12, 13].

Recent work on online graph coloring has studied scenarios where an online algorithm can
query oracle information about future input [8, 6]. Moreover, online coloring of hypergraphs
has been explored [2, 3].

Our Contribution: In this paper we settle the performance of online coloring algorithms
for fundamental and widely studied graph classes. More precisely, we prove lower bounds on
the performance of online algorithms. These bounds match the best upper bounds known in
the literature. An important contribution is that our bounds also hold for randomized online
algorithms, for which very few results were known.

First, in Sections 2 and 3 we investigate chordal graphs. They have been studied
extensively, cf. textbook [27]. We remind the reader that a graph is chordal if every induced
cycle with four or more vertices has a chord. For a chordal graph G, the chromatic number
χ(G) is equal to the largest clique size ω(G). Interval graphs are a subfamily of chordal
graphs. Chordal graphs in turn are perfect graphs, for which the offline coloring, maximum
clique and independent set problems can be solved in polynomial time.

In Section 2 we examine deterministic online coloring algorithms. We prove that, for
every deterministic algorithm A and every integer d ≥ 2, there exists a family of chordal
graphs G with χ(G) = d such that A uses Ω(d · logn) colors. This resolves the open problem
raised by Irani [18]. In Section 3 we extend this result to randomized online algorithms. The
statement is identical to the one for deterministic algorithms, except that a randomized
online algorithm uses an expected number of Ω(d · logn) colors. Although the result for
randomized algorithms is more general, we give proofs for both deterministic and randomized
policies. Our lower bound construction for deterministic algorithms exhibits an adversarial
strategy for generating worst-case graphs. Given this strategy, we show how to define a
probability distribution on graphs so that Yao’s principle [28] can be applied. First Fit
colors every chordal graph G with χ(G) = d using O(d · logn) colors. Hence, the optimal
competitiveness of deterministic and randomized online algorithms is Θ(logn).

In Section 4 we derive lower bounds for further graph classes, focusing on randomized
online algorithms. For d = 2, our lower bound construction for chordal graphs generates trees.
It follows that, for any randomized online algorithm A, there exists a family of trees such
that A needs an expected number of Ω(logn) colors. This complements the fundamental and
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early result by Bean [4] for deterministic algorithms. To the best of our knowledge, no lower
bound on the performance of randomized online coloring algorithms for trees was previously
known. Recall that trees have a chromatic number of 2. Vishwanathan [26] gave a lower
bound of Ω(logn) on the expected number of colors used by randomized online algorithms for
graphs of chromatic number 2, i.e. bipartite graphs. However, the graphs in his construction
have cycles. Thus, Vishwanathan’s lower bound does not apply to trees. Obviously, trees
are planar and bipartite. Hence, our result for trees directly implies that every randomized
online algorithm can be forced to use Ω(logn) colors in expectation for graphs of these two
classes. The lower bounds are tight because known deterministic online algorithms color
trees, planar and bipartite graphs with O(logn) colors [15, 18, 22].

Section 4 also addresses inductive and bounded-treewidth graphs. Since every chordal
graph G is (χ(G)− 1)-inductive and has treewidth χ(G)− 1, we derive the following results.
For every randomized online algorithm A and every d ≥ 1, there exists a family of d-inductive
graphs such that A uses Ω(d · logn) colors. The same statement holds for graphs of treewidth
d. We further show that the statement also holds for strongly chordal graphs with chromatic
number d. A chordal graph is strongly chordal if every cycle of even length consisting of at
least six vertices has an odd chord, i.e. an edge connecting two vertices that have an odd
distance from each other in the cycle [14]. First Fit colors any d-inductive graph and any
graph of treewidth d using O(d · logn) colors. We conclude that, for all the graph classes
considered so far, Θ(logn) is the best competitiveness of deterministic and randomized online
algorithms. Finally, in Section 4 we study disk graphs. We prove that, for d = 2, every graph
of the probability distribution defined in Section 3 translates to a disk graph. We then show
that, for every randomized online algorithm A that does not use the disk representation, there
exists a family of disk graphs forcing A to use an expected number of Ω(min{logn, log ρ})
colors, where ρ is again the ratio of the largest to smallest disk radius. Hence randomization
does not improve the asymptotic performance of online coloring algorithms for disk graphs,
cf. [9, 12, 13].

In Section 5 we explore the settings where an online algorithm has lookahead or is
equipped with a reordering buffer. We show that a lookahead of size O(n/ logn) does not
improve the asymptotic performance of randomized online algorithms. We prove the result
for chordal graphs and then derive analogous results for all the other graph classes. Irani [18]
gave a similar result for deterministic algorithms, considering inductive graphs. As a final
result of this paper we demonstrate that a reordering buffer of size n1−ε, for any 0 < ε ≤ 1,
does not yield an improvement in the asymptotic performance guarantees of deterministic
online algorithms. Again, we develop the result for chordal graphs and derive corollaries for
the other graph classes.

Our Proof Technique: We devise a technique for proving lower bounds that is relatively
simple; we view this as a strength of our results. The main idea is to recursively construct
trees of cliques, which in turn form forests. In a recursive step the construction combines
forests by adding or not adding a new clique in a specific way. Our construction resembles
the one by Bean [4] but differs in an important aspect that allows us to obtain lower bounds
for randomized algorithms. The construction by Bean builds a tree Tk, k ∈ N, by joining
trees Tj , for j < k, so that any deterministic online algorithm must use a k-th new color for
some vertex of Tk. This vertex then becomes the root of Tk. An oblivious adversary, playing
against a randomized online algorithm, cannot identify with sufficiently high probability
such vertices exhibiting a new color. Instead, our construction maintains the invariant that
the root vertices of each forest use a large number of colors, given any deterministic online
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algorithm. For randomized algorithms, a corresponding invariant holds with probability of
at least 1/2.

Convention: Unless otherwise stated, logarithms are base 2.

2 Deterministic online algorithms for chordal graphs

We establish a lower bound on the performance of any deterministic online coloring algorithm.

I Theorem 1. Let d ∈ N with d ≥ 2 be arbitrary. For every deterministic online algorithm
A and every n ∈ N with n ≥ 2d2, there exists a n-vertex chordal graph G with chromatic
number χ(G) = d such that A uses Ω(d · logn) colors to color G.

The proof of Theorem 1 relies on Lemma 2, which we prove first.

I Lemma 2. Let d ∈ N with d ≥ 2 be arbitrary. For every deterministic online algorithm A
and every k ∈ N, there exists a chordal graph Gk having chromatic number χ(Gk) = d and
consisting of nk ≤ d2k vertices such that A is forced to use at least ck ≥ (d− 1)k/4 colors to
color Gk.

Proof. We describe how an adversary constructs a chordal graph Gk, k ∈ N. Such a graph is
built up recursively and consists of graphs Gj , where j < k. We assume that d is even. The
construction of Gk can be adapted easily if d is odd; details will be given later. On a high
level Gk is a forest, i.e. a collection of disjoint trees, each having a distinguished root node.
In every tree T of Gk, each tree node represents a clique of size d/2 in Gk. If two tree nodes
uT and vT are connected by a tree edge in T , then any two vertices u ∈ uT and v ∈ vT are
connected by an edge in Gk. Hence uT and vT form a clique of size d in Gk. Since Gk is a
forest, it consists of several connected components. One can add a final vertex and edges in
order to connect the various trees; details will be given at the end of the proof.

We proceed with the concrete construction of Gk, for increasing values of k ∈ N. As
mentioned above, each tree T of Gk has a distinguished root node consisting of d/2 vertices
in Gk. Let r(T ) be the set of these d/2 vertices. Moreover, let r(Gk) be the union of these
sets r(T ), taken over all T of Gk. We refer to the elements of r(Gk) as the root vertices of
Gk. They are important because the online algorithm A will be forced to use a large number
of colors for r(Gk). For any subset V ′ of the vertices of Gk, let CA(V ′) be the set of colors
used by A to color V ′.

The strategy of the adversary to generate a graph Gk is adaptive, i.e. the exact structure
of the graph depends on the coloring decisions of A. Nevertheless, during the bottom-up
construction of Gk, for increasing k ∈ N, the following invariants will be maintained.
(1) Algorithm A uses at least d

4 · k colors for the root vertices of Gk, i.e. |CA (r(Gk))| ≥ d
4 · k.

(2) Gk is a union of connected components, each of which can be represented by a tree
T . Each tree node is a clique of size d/2. Every tree T has a distinguished root node
containing a set r(T ) of d/2 root vertices in Gk.

(3) Gk is chordal.
(4) The maximum clique size is ω(Gk) = d.
(5) The number of vertices satisfies nk ≤ d

2 · (2
k+1 − 1).

Invariants (3) and (4) together imply that χ(Gk) = ω(Gk) = d holds. In invariant (1) and
the following technical exposition integer values are compared to expressions of the form d

4 ·k,
which might not be integer. We remark that the statements, comparisons and calculations
hold without considering the rounded expressions.
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Figure 1 The tree T representing G1.
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Figure 2 The general structure of Gl
k−1 and

Gr
k−1 restricted to the root vertices.

Construction of the base graph G1: G1 is a clique of size d. The adversary may present
the corresponding vertices in an arbitrary order. The set of root vertices r(G1) is an arbitrary
subset R of size d/2 of the vertices of G1. The remaining d/2 vertices form a second tree
node. The resulting tree T is depicted in Figure 1. We can easily verify properties (1–5).
(1) Since R = r(G1) is a clique of size d/2, A uses d/2 colors for it, i.e. |CA(r(G1))| ≥ d

4 .
(2) G1 consists of one connected component which represents a tree, as described above and

shown in Figure 1.
(3) G1 is a clique and thus chordal.
(4) The maximum clique size ω(G1) is exactly d.
(5) There holds n1 = d ≤ 3

2 · d = d
2 · (2

1+1 − 1).

Construction of the graph Gk, k > 1: Assume that the adversary can generate graphs
Gj , for any j < k, satisfying invariants (1–5). The construction of Gk proceeds as follows.
First the adversary recursively generates two independent graphs of type Gk−1, i.e. it twice
executes the strategy for generating a graph Gk−1. Let Glk−1 and Grk−1 be these two graphs.
They are created one after the other. We remark that Glk−1 and Grk−1 need not be identical
because A’s coloring decision in one graph can affect its decisions in the other one.

In the following we focus on the root vertices of Glk−1 and Grk−1. In particular, we
consider the colors used by A. Invariant (1) implies that

∣∣CA(r(Glk−1))
∣∣ ≥ d

4 (k − 1) and∣∣CA(r(Grk−1))
∣∣ ≥ d

4 (k− 1). We distinguish two cases depending on the total number of colors
used, i.e. the cardinality of CA(r(Glk−1) ∪ r(Grk−1)). To this end we introduce some notation.
Assume that Glk−1 consists of s connected components, which we number in an arbitrary way.
Each component/tree T li has a distinguished root containing a set r(T li ) of d/2 root vertices.
We abbreviate Rli = r(T li ), 1 ≤ i ≤ s. Similarly, assume that Grk−1 consists of t connected
components. Set r(T rj ) is the set of root vertices in the component T rj . Let Rlj = r(T rj ),
1 ≤ j ≤ t. There holds r(Glk−1) =

⋃s
i=1 R

l
i and r(Grk−1) =

⋃t
j=1 R

r
j . Figure 2 shows the

general structure of Glk−1 and Grk−1 by focusing on the roots. The left-hand side of the figure
depicts Glk−1 as a union of connected components rooted at Rl1, . . . , Rls, respectively. The
right-hand side shows Grk−1 as a collection of components rooted at Rr1, . . . , Rrs.

Case 1: Assume that
∣∣CA(r(Glk−1) ∪ r(Grk−1))

∣∣ ≥ d
4 · k. In this case the adversary defines

Gk as the union of Glk−1 and Grk−1. No further vertices or edges are added. It is easy to
verify the five invariants because Glk−1 and Grk−1 satisfy them by inductive assumption.
(1) The condition of Case 1 ensures |CA(r(Gk))| =

∣∣CA(r(Glk−1) ∪ r(Grk−1))
∣∣ ≥ d

4 · k.
(2) The invariant is satisfied since Gk is the union of Glk and Grk.
(3) Gk is chordal because Glk and Grk are, and no further vertices or edges have been added.
(4) There holds ω(Gk) = d, as ω(Glk−1) = ω(Grk−1) = d.
(5) Let nlk−1 and nrk−1 be the number of vertices in Glk−1 and Grk−1, respectively. There

holds nk = nlk−1 + nrk−1 ≤ 2 · (d2 · (2
k − 1)) = d

2 · (2
k+1 − 2) ≤ d

2 · (2
k+1 − 1). The first

inequality follows because (5) holds for nlk−1 and nrk−1.
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Figure 3 The graph Gk with the new addition of R.

Case 2: Next assume that
∣∣CA(r(Glk−1) ∪ r(Grk−1))

∣∣ < d
4 · k. In this case the adversary

adds a set R of d/2 vertices that form a clique. Moreover, for every vertex of R there is
an edge to every vertex in Rli, for i = 1, . . . , s. In other words, every vertex of R has edges
to all root vertices of r(Glk−1). The vertices of R together with their adjacent edges may
be presented by the adversary in an arbitrary order. The resulting structure is depicted in
Figure 3. Set R and the connected components of Glk−1 rooted at Rl1, . . . , Rls form a single
component rooted at R. There is a tree edge between R and every Rli, 1 ≤ i ≤ s. The newly
created component forms a tree rooted at R because the components of Glk−1 represent trees
rooted at Rl1, . . . , Rls. Graph Gk is the union of the new component and the components of
Grk−1. The set of root vertices of Gk consists of R and the root vertices of Grk−1. Formally,
r(Gk) = R ∪Rr1 ∪ . . . ,∪Rrt . It remains to verify the five invariants.

(1) We analyze the number of colors that A uses for the root vertices in Gk. In a first
step, among the colors CA(r(Glk−1)) ∪ CA(r(Grk−1)) for the roots of Glk−1 and Grk−1,
we upper bound the number q of colors occurring in CA(r(Grk−1)) only. By assump-
tion

∣∣CA(r(Glk−1)) ∪ CA(r(Grk−1))
∣∣ =

∣∣CA(r(Glk−1) ∪ r(Grk−1))
∣∣ < d

4 · k. There holds
CA(r(Glk−1)) ≥ d

4 (k− 1). We obtain q =
∣∣CA(r(Grk−1)) \ CA(r(Glk−1))

∣∣ =
∣∣CA(r(Grk−1))∪

CA(r(Glk−1))
∣∣−∣∣CA(r(Glk−1))

∣∣ < d
4 . Next consider the vertices in R. We upper bound the

number of colors from CA(r(Grk−1)) that A can use for R. Observe that CA(r(Grk−1)) is the
disjoint union of CA(r(Glk−1))∩CA(r(Grk−1)) and CA(r(Grk−1)) \ CA(r(Glk−1)). Every ver-
tex of R is adjacent to every vertex in r(Glk−1). Hence, A cannot apply a color occurring in
CA(r(Grk−1))∩CA(r(Glk−1)) to a vertex in R. Only a color of CA(r(Grk−1)) \ CA(r(Glk−1))
is feasible, and the latter set has cardinality q < d/4. Since R is a clique of size d/2 al-
gorithm A must use at least d/2−q > d/4 colors not contained in CA(r(Grk−1)) to color the
vertices of R. As r(Gk) = R ∪ r(Grk−1), we conclude |CA(r(Gk))| =

∣∣CA(R ∪ r(Grk−1))
∣∣ =∣∣CA(r(Grk−1))

∣∣+
∣∣CA(R) \ CA(r(Grk−1))

∣∣ ≥ d
4 (k − 1) + d

4 = d
4k.

(2) By construction Gk is a collection of connected components, forming trees rooted at R
and Rr1, . . . , Rrt , respectively.

(3) In Gk consider a simple cycle C with at least four vertices and assume that at least one
vertex is in R. If three or more vertices of C are in R, then there is a chord because R
is a clique. If C contains one or two vertices of R, then C can visit only one connected
component of Glk−1. Suppose that it visits the one rooted at Rli. Cycle C must contain
two vertices of Rli. Each of these two vertices has an edge to every vertex of R in C. Hence
C has a chord. Since Glk−1 and Grk−1, and thus the components rooted at Rl1, . . . , Rls
and Rr1, . . . , Rrt , are chordal, so is Gk.

(4) Set R and each Rli, 1 ≤ i ≤ s, form a clique of size d. The vertices of R are not connected
to any vertices outside Rli, 1 ≤ i ≤ s. Hence no other cliques are formed by the addition
of R. Since ω(Glk−1) = ω(Grk−1) = d it follows ω(Gk) = d.

(5) Again, let nlk−1 and nrk−1 be the number of vertices in Glk−1 and Glk−1. We have
nk = nlk−1 + nrk−1 + d

2 ≤ 2 · (d2 · (2
k − 1)) + d

2 = d
2 · (2

k+1 − 2) + d
2 = d

2 · (2
k+1 − 1).

The construction and analysis of Gk is complete.
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7:8 Tight Bounds for Online Coloring of Basic Graph Classes

Graph Gk consists of several connected components if k > 1. The adversary can create a
connected graph by adding a final vertex vf that has an edge to exactly one root vertex in
each of the components. The resulting graph remains chordal because there is no simple cycle
containing vf . By the addition of vf the maximum clique size does not change. Including vf
the total number of vertices is upper bounded by d

2 (2k+1 − 1) + 1 ≤ d2k because d ≥ 2. The
lemma follows from invariants (1) and (3–5) because χ(Gk) = ω(Gk) = d.

We finally address the case that d is odd. In this case the adversary executes the graph
construction described above for parameter d − 1, which is even. In the end when Gk is
generated for the desired k, the adversary adds a final vertex to each base graph G1. This
vertex has edges to every other vertex of the corresponding G1. This increases the maximum
clique size from d − 1 to d. The new graph remains chordal. The number of colors used
by algorithm A is at at least d−1

4 k. We observe that the number of base graphs G1 in Gk
is 2k−1. Hence, in the extended graph the total number of vertices is upper bounded by
d−1

2 (2k+1 − 1) + 2k−1 ≤ d
2 (2k+1 − 1). If k > 1, the adversary can add a final vertex to link

the various components. Again the lemma follows. J

Proof of Theorem 1. Given d and n, let k = blog(n/d)c. There holds k ∈ N because
n ≥ 2d2 > 2d. For every deterministic online algorithm, by Lemma 2, there exists a chordal
graph Gk with chromatic number χ(Gk) = d such that A uses at least ck ≥ (d − 1)k/4
colors. Graph Gk has nk ≤ d2k vertices. By the choice of k = blog(n/d)c, we have
nk ≤ n. To Gk we add n − nk vertices, all of which have one edge to an arbitrary vertex
of Gk. The resulting n-vertex graph remains chordal and χ(G) = d. Since d ≥ 2, there
holds ck ≥ dk/8. We have k ≥ logn − log d − 1. Inequality n ≥ 2d2 is equivalent to
d ≤

√
n/2. Thus, k ≥ log(n/2)− 1/2 · log(n/2) = 1/2 · log(n/2). As n ≥ 2d2 ≥ 4, there holds

log(n/2) ≥ 1/2 · logn. Hence, the number of colors used by A is at least ck ≥ d logn/32. J

In Theorem 1 the lower bound on n can be reduced from 2d2 to 2d1+ε, for any 0 < ε < 1.
Then the number of colors used by A is Ω(ε · d · logn).

3 Randomized online algorithms for chordal graphs

We extend the result of Theorem 1 to randomized algorithms against oblivious adversaries.

I Theorem 3. Let d ∈ N with d ≥ 2 be arbitrary. For every randomized online algorithm
A and every n ∈ N with n ≥ 12d2, there exists a n-vertex chordal graph G with chromatic
number χ(G) = d, presented by an oblivious adversary, such that the expected number of
colors used by A to color G is Ω(d · logn).

In order to prove Theorem 3 we resort to Yao’s principle [28] and show the following Lemma 4.

I Lemma 4. Let d ∈ N with d ≥ 2 be arbitrary. For every k ∈ N, there exists a probability
distribution on a set Gk of chordal graphs with the following properties. For every Gk ∈ Gk,
χ(Gk) = d and the number of vertices is at most d · 12k. The expected number of colors used
by any deterministic online algorithm to color a graph drawn according to the distribution is
at least (d− 1)k/8.

Proof. For every k ∈ N we define a set Gk of chordal graphs Gk, each having a chromatic
number of d. Moreover, we specify the order in which the vertices of any Gk ∈ Gk are
presented to a deterministic online algorithm A. The distribution on Gk is the uniform one,
i.e. each Gk ∈ Gk is chosen with the same probability. We assume that d is even. The
definition of Gk can be adapted easily if d is odd; details are given at the end of the proof.
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The set Gk is built recursively based on Gk−1. The construction of graphs Gk ∈ Gk is a
generalization of the one presented in the proof of Lemma 2. A major difference is that any
Gk ∈ Gk contains twelve graphs of Gk−1, which are grouped into six pairs. For each pair a
clique of size d/2 may or may not be added. As before, every Gk ∈ Gk is a union of connected
components. Each such component can be represented by a tree with a distinguished root
vertex. Every tree vertex is a set of d/2 vertices forming a clique in Gk. We reuse the
notation of the proof of Lemma 2. Given Gk ∈ Gk, for any component/tree T of Gk, r(T ) is
the set of d/2 vertices in the root of T . Set r(Gk) is the union of all r(T ), taken over all T
of Gk. Finally CA(r(Gk)) is the set of colors used by A for the vertices of r(Gk).

During the recursive construction of Gk, for increasing k ∈ N, the following invariants
are maintained. Compared to the proof of Lemma 2, (1) and (5) differ. Invariant (1) states
that, for a randomly chosen Gk, every deterministic online algorithm needs, with probability
greater than 1/2, at least dk/4 colors for the root vertices r(Gk). Invariant (5) gives an
adjusted bound on the size of any Gk.

(1) If Gk is chosen uniformly at random from Gk, then for any deterministic online al-
gorithm A, Pr[|CA (r(Gk))| ≥ dk/4] > 1/2. This holds independently of other connected
components A might have already colored.

(2) Every Gk ∈ Gk is a union of connected components, each of which can be represented by
a tree T . Each tree node is a clique of size d/2. Every tree T has a distinguished root
containing a set r(T ) of d/2 root vertices in Gk.

(3) Every Gk ∈ Gk is chordal.
(4) For every Gk ∈ Gk, the maximum clique size is ω(Gk) = d.
(5) For every Gk ∈ Gk, the number nk of vertices satisfies nk ≤ d(12k − 1).

Graph set G1: The set only contains G1, the base graph used in the proof of Lemma 2,
which is a clique of size d. The vertices of G1 may be presented in any order to a deterministic
online algorithm. Again, the set r(G1) of root vertices is an arbitrary subset of size d/2 of
the vertices of G1. The remaining d/2 vertices form a second tree node. Every deterministic
online algorithm, with probability 1, needs d/2 colors for r(G1), which implies (1). Invariants
(2–4) are obvious. As for (5), there holds n1 = d ≤ d(12− 1).

Graph set Gk, k > 1: Assume that the set Gk−1 satisfying (1–5) has been constructed.
First, in order to build Gk, all possible 12-tuples of graphs of Gk−1 are formed. In assigning
tuple entries, graphs of Gk−1 are selected with replacement. Hence, a total of |Gk−1|12 tuples
are built. For each tuple, 26 graphs are added to Gk in the following way. Let τ be any
fixed tuple. Six graph pairs are formed. For i = 1, . . . , 6, let Gi,lk−1 and Gi,rk−1 be the graphs
in tuple entries 2i− 1 and 2i, respectively. To the i-th pair a clique Ri of size d/2 may or
may not be added. The possible additions, over the six pairs, can be represented by a bit
vector ~b = (b1, . . . , b6). More specifically, given τ and any such bit vector ~b, a graph Gk is
constructed as follows. For i = 1, . . . , 6, a subgraph Gik is generated. If bi = 0, then Gik is the
union of Gi,lk−1 and Gi,rk−1. The set r(Gik) of root vertices is the union of r(Gi,lk ) and r(Gi,rk ).
If bi = 1, then a clique Ri of size d/2 is added to Gi,lk−1 and Gi,rk−1. Every vertex of Ri has
an edge to every vertex of r(Gi,lk−1). Subgraph Gik consists of the newly created component
rooted at Ri and r(Gi,rk−1), i.e. r(Gik−1) = Ri ∪ r(Gi,rk−1). Graph Gk is the union of the Gik
and the set r(Gk) is the union of the r(Gik), 1 ≤ i ≤ 6. When Gk is presented to A, the
subgraphs Gik are revealed one by one, 1 ≤ i ≤ 6. For each Gik the graphs Gi,lk−1 and Gi,rk−1
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7:10 Tight Bounds for Online Coloring of Basic Graph Classes

are presented recursively. Finally, the vertices of Ri, if they exist, are shown. It remains to
verify the invariants.

(1) Let Gk be a graph drawn uniformly at random from Gk. Consider any subgraph
Gik, 1 ≤ i ≤ 6, containing Gi,lk and Gi,rk . By the construction of Gk, both Gi,lk and Gi,rk
represent graphs drawn uniformly at random from Gk−1. Let A be any deterministic online
algorithm. Invariant (1) for k − 1 implies Pr[|CA(r(Gi,lk−1))| ≥ d(k − 1)/4] > 1/2 and
Pr[|CA(r(Gi,rk−1))| ≥ d(k − 1)/4] > 1/2. Moreover it implies Pr[|CA(r(Gi,lk−1))| ≥ d(k −
1)/4 and |CA(r(Gi,rk−1))| ≥ d(k−1)/4] > 1/4. Let E i be the latter event that |CA(r(Gi,lk−1))| ≥
d(k − 1)/4 and |CA(r(Gi,rk−1))| ≥ d(k − 1)/4 hold.

Assume that E i holds. There are two cases, which correspond to those analyzed in the
proof of Lemma 2. If |CA(r(Gi,lk−1) ∪ r(Gi,lk−1))| ≥ dk/4, then |CA(r(Gik))| ≥ dk/4 if Ri is
not added to Gi,lk and Gi,rk , which happens with probability 1/2. On the other hand, if
|CA(r(Gi,lk−1) ∪ r(Gi,rk−1))| < dk/4, then the addition of Ri ensures that |CA(r(Gik))| ≥ dk/4.
Again, Ri is added with probability 1/2. In either case, given E i, Pr[|CA(r(Gik))| ≥ dk/4] ≥
1/2. We obtain Pr[|CA(r(Gik))| ≥ dk/4] ≥ Pr[|CA(r(Gik))| ≥ dk/4 | E i] · Pr[E i] ≥ 1

2 ·
1
4 = 1

8 .
Equivalently, Pr[|CA(r(Gik))| < dk/4] ≤ 7/8. If |CA(r(Gk))| < dk/4, then |CA(r(Gik))| < dk/4
must hold true for i = 1, . . . , 6. The latter event occurs with probability at most (7/8)6.
We conclude Pr[|CA(r(Gk))| ≥ dk/4] ≥ 1− (7/8)6 > 1/2. This holds independently of A’s
coloring decisions made in other components.

Invariants (2–4) are immediate, based on the arguments given in the proof of Lemma 2.
As for the number of vertices of any Gk ∈ Gk, we observe that it is upper bounded by
12 · d · (12k−1 − 1) + 6 · d/2 < d · (12k − 1).

If d is odd, the above construction of sets Gk, k ≥ 1, is performed for parameter d− 1.
In G1, graph G1 is extended by a single vertex having edges to all other vertices in G1.
Invariant (5) holds because any graph Gk ∈ Gk contains 12k−1 copies of G1.

The lemma follows from (1) and (3–5). In particular, (1) implies that the expected number
of colors used by any deterministic online algorithm is at least 1/2·(d−1)k/4 = (d−1)k/8. J

Proof of Theorem 3. For the given d and n, choose k = blog(n/d)c. In this proof, logarithms
are base 12. There holds k ∈ N, because n ≥ 12d2 > 12d. By Lemma 4, there exists a
probability distribution on a set Gk of chordal graphs with chromatic number d such that
the expected number of colors used by every deterministic online algorithm is at least
(d − 1)k/8. The number of vertices of any graph in Gk is at most d12k. Hence, by the
choice of k, it is upper bounded by n. For every Gk ∈ Gk, we add a suitable number
of vertices so that the total number of vertices is equal to n. Every new vertex has one
edge to an arbitrary vertex in the original graph Gk. Hence, there exists a probability
distribution on a set of n-vertex graphs with chromatic number d such that the expected
number of colors used by any deterministic online algorithm is at least (d− 1)k/8. By Yao’s
principle [28], for every randomized online algorithm, there exists an n-vertex chordal graph
G with χ(G) = d such that the expected number of color is ck ≥ (d− 1)k/8 ≥ dk/16. We
have k ≥ logn− log d− 1 = log(n/12)− log d ≥ 1/2 · log(n/12), because 12d2 ≤ n, and hence
d ≤

√
n/12. Since 12d2 ≤ n, we have log(n/12) ≥ 1/3 · logn and thus ck ∈ Ω(d · logn). J

Again, in Theorem 3 we can reduce the lower bound on n from 12d2 to 12d1+ε, for any
0 < ε < 1. The expected number of colors used by A is Ω(ε · d · logn).
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4 Further graph classes

Given Theorem 3, we can derive lower bounds on the performance of randomized online
coloring algorithms for other important graph classes.

4.1 Trees, planar, bipartite, d-inductive and bounded-treewidth graphs
I Corollary 5. For every randomized online algorithm A and every n ∈ N with n ≥ 48, there
exists a n-vertex tree T , presented by an oblivious adversary, such that the expected number
of colors used by A to color T is Ω(logn).
The proof is given in the full version of the paper. Since trees are planar and bipartite graphs,
we obtain the following two corollaries.
I Corollary 6. For every randomized online algorithm A and every n ∈ N with n ≥ 48, there
exists a n-vertex planar graph G, presented by an oblivious adversary, such that the expected
number of colors used by A to color G is Ω(logn).
I Corollary 7. For every randomized online algorithm A and every n ∈ N with n ≥ 48,
there exists a n-vertex bipartite graph G, presented by an oblivious adversary, such that the
expected number of colors used by A to color G is Ω(logn).
Every chordal graph G is (χ(G)− 1)-inductive and has treewidth ω(G)− 1 = χ(G)− 1 [7].
Hence, Theorem 3 gives the following two results.
I Corollary 8. Let d ∈ N be an arbitrary positive integer. For every randomized online
algorithm A and every n ∈ N with n ≥ 12d2, there exists a n-vertex d-inductive graph G,
presented by an oblivious adversary, such that the expected number of colors used by A to
color G is Ω(d · logn).
I Corollary 9. Let d ∈ N be an arbitrary positive integer. For every randomized online
algorithm A and every n ∈ N with n ≥ 12d2, there exists a n-vertex graph G of treewidth d,
presented by an oblivious adversary, such that the expected number of colors used by A to
color G is Ω(d · logn).
The graphs used in the proof of Theorem 3 are strongly chordal, which yields the following
corollary. The proof can be found in the full version of the paper.
I Corollary 10. Let d ∈ N be an arbitrary positive integer. For every randomized online
algorithm A and every n ∈ N with n ≥ 12d2, there exists a n-vertex strongly chordal graph G
with chromatic number χ(G) = d, presented by an oblivious adversary, such that the expected
number of colors used by A to color G is Ω(d · logn).

4.2 Disk graphs
A disk graph is the intersection graph of disks in the Euclidean plane. Every vertex corresponds
to a disk; two vertices are connected by an edge if the respective disks intersect. The following
theorem implies that it is not possible to improve on the performance of deterministic online
coloring algorithms by using randomization. We use the common assumption that when an
online algorithm makes coloring decisions, it does not use the disk representation [9, 12, 13].
The proof of Theorem 11 is presented in the full version of the paper.
I Theorem 11. Let A be an arbitrary randomized online algorithm. For every n ∈ N and
ρ ∈ R with min{n, ρ} ≥ 25, there exists a n-vertex disk graph G with chromatic number
χ(G) = 2, presented by an oblivious adversary, in which the ratio of the largest to smallest
disk radius is ρ, such that the expected number of colors used by A is Ω(min{logn, log ρ}).
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5 Lookahead and buffer reordering

Lookahead: We first assume that a randomized online coloring algorithm A has lookahead l.
Theorem 12 below shows that, for chordal graphs, a lookahead of size O(n/ logn) leads to
no improvement. The proof is given in the full version of the paper.

I Theorem 12. Let d ∈ N and c ∈ R be arbitrary numbers with d ≥ 2 and c ≥ 1. For every
randomized online algorithm A with lookahead l and every n ∈ N with n ≥ max{12d2, d ·122c}
and l ≤ cn/ log(n/d), there exists a n-vertex chordal graph G with chromatic number χ(G) = d,
presented by an oblivious adversary, such that the expected number of colors used by A to
color G is Ω( 1

c · d · logn).

Based on Theorem 12 we can derive analogous results for all the other graph classes
considered in Section 4. Loosely speaking, a lookahead of size O(n/ logn) is of no help. The
next Corollary 13 addresses trees. Exactly the same statement holds for planar and bipartite
graphs, respectively. For brevity, we omit the corresponding corollaries.

I Corollary 13. Let c ≥ 1 be an arbitrary real number. For every randomized online algorithm
A with lookahead l and every n ∈ N with n ≥ max{48, 2 · 122c} and l ≤ cn/ log(n/2), there
exists a n-vertex tree G, presented by an oblivious adversary, such that the expected number
of colors used by A to color G is Ω( 1

c · logn).

For d-inductive graphs, graphs of treewidth d and strongly chordal graphs with chromatic
number d, the formulation of Theorem 12 directly carries over. In fact, the result holds for
all integers d ≥ 1. For disk graphs, Theorems 11 and 12 give the following corollary.

I Corollary 14. Let c ∈ R with c ≥ 1 be arbitrary. For every randomized online algorithm A
with lookahead l, every n ∈ N and ρ ∈ R with min{n, ρ} ≥ 2 ·122c and l ≤ cn/ log(n/2), there
exists a n-vertex disk graph G with chromatic number χ(G) = 2, presented by an oblivious
adversary, in which the ratio of the largest to smallest disk radius is ρ, such that the expected
number of colors used by A to color G is Ω( 1

c · logn).

Buffer reordering: Next we examine the setting in which a deterministic online coloring
algorithm A has a reordering buffer. We prove that a buffer of size n1−ε, for any 0 < ε ≤ 1,
does not improve the asymptotic performance of the algorithms.

I Theorem 15. Let d ∈ N and ε ∈ R be arbitrary numbers with d ≥ 2 and 0 < ε ≤ 1.
For every deterministic online algorithm A having a buffer of size b and every n ∈ N with
b ≤ n1−ε and n ≥ max{2d2, 27/ε}, there exists a n-vertex chordal graph G with chromatic
number χ(G) = d such that the number of colors used by A is Ω(ε · d · logn).

The proof of Theorem 15 is presented in the full version of the paper. Given Theorem 15, we
derive analogous results for the other graph classes. Corollary 16 shows a result for trees.
Identical statements hold for planar and bipartite graphs. Again, for brevity, we omit the
corresponding corollaries.

I Corollary 16. Let ε ∈ R with 0 < ε ≤ 1 be arbitrary. For every deterministic online
algorithm A having a buffer of size b and every n ∈ N with b ≤ n1−ε and n ≥ 27/ε, there
exists a n-vertex tree G such that the number of colors used by A is Ω(ε · logn).

For d-inductive graphs, graphs of treewidth d and strongly chordal graphs with chromatic
number d, the statement of Theorem 15 directly carries over. In this case it holds for any
d ≥ 1. The corollaries are omitted here. Finally, we give a result for disk graphs.
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I Corollary 17. Let A be an arbitrary deterministic online algorithm having a buffer of size
b and let ε ∈ R be an arbitrary real number with 0 < ε ≤ 1. For every n ∈ N and ρ ∈ R
with b ≤ min{n1−ε, ρ1−ε} and min{n, ρ} ≥ 27/ε, there exists a n-vertex disk graph G with
chromatic number χ(G) = 2, in which the ratio of the largest to smallest disk radius is ρ,
such that the number of colors used by A is Ω(ε ·min{logn, log ρ}).
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Abstract
Local search for combinatorial optimization problems is becoming a dominant algorithmic paradigm,
with several papers using it to resolve long-standing open problems. In this paper, we prove the
following ‘4-local’ version of Hall’s theorem for planar graphs: given a bipartite planar graph
G = (B,R,E) such that |N(B′)| ≥ |B′| for all |B′| ≤ 4, there exists a matching of size at
least |B|4 in G; furthermore this bound is tight. Besides immediately implying improved bounds
for several problems studied in previous papers, we find this variant of Hall’s theorem to be of
independent interest in graph theory.
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1 Introduction

One of the exciting developments in the field of geometric algorithms in recent years has
been the use of local search techniques to resolve several open problems in combinatorial
optimization. Remarkably, all these following NP-hard problems are approximately solved
by the same meta-algorithm:
1. Minimum hitting set problem for pseudo-disks1 [16]. Given a set X of points and a

set D of pseudo-disks in the plane, compute a minimum size subset of X that hits all
pseudo-disks in D.

2. Maximum independent set in the intersection graph of pseudo-disks [1, 8]. Given a set D
of pseudo-disks in the plane, compute a maximum size pairwise disjoint subset of D.

3. Terrain guarding problem [10]. Given a 1.5D terrain2 T and two subsets X,G ⊆ T ,
compute a minimum size subset of G such that every point of X is visible from some
point of G.
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4. Minimum dominating set in disk intersection graphs [11]. Given a set D of disks in the
plane, compute a minimum size subset D′ ⊆ D such that each D ∈ D is either in D′ or
intersects some disk in D′.

5. Minimum dominating set in pseudo-disk intersection graphs [12]. Given a set D of
pseudo-disks in the plane, compute a minimum size subset D′ of D such that each D ∈ D
is either in D′ or intersects some pseudo-disk in D′.

6. Minimum set-cover problem for disks in the plane [7, 15]. Given a set of points X and a
set of disks D in the plane, compute the minimum sized subset of D that covers all the
points of X. This problem can be reduced to the minimum hitting set problem for disks.

The Meta-Algorithm: Local Search
The meta-algorithm can be parameterized by an integer k representing the search radius.
Abstractly, let X be a set of given base elements, and Π : 2X −→ {0, 1} be a function that
assigns feasibility to each subset of X with respect to the specific problem. Then the goal is
to find a minimum/maximum sized subset of X for which Π(·) is feasible. The local-search
algorithm proceeds as follows: start with any feasible solution S ⊆ X, and iteratively improve
S by changing3 subsets of S of size at most k, as long as the new solution is also feasible.
We restrict the discussion below to instances of minimization problems; the maximization
case is similar.

Local-Search Method With Search Radius k (minimization instance).

Let S ⊆ X be any feasible solution.
while there exists S ′ with π(S ′) feasible and where |S ′ \ S| < |S \ S ′| ≤ k do

set S = S ′.
return S

The analysis of the approximation factor of a local search algorithm, assuming the problem
has some planar features, usually proceeds as follows.

Recall that for a graph G = (V,E) and a subset V ′ of V , NG(V ′) = {v ∈ V : ∃u ∈
V ′, {u, v} ∈ E} denotes the set of neighbors of V ′ in G.

IDefinition 1. Let k ≥ 1 be given. A bipartite graphG = (B,R,E) satisfies a local expansion
property if, for every subset B′ of B of cardinality at most k, we have |NG(B′)| ≥ |B′|. Then
G is called a k-expanding graph. If k = |B| then G is called an expanding graph.

I Lemma 2 ([8, 16]). There is an absolute constant c0 such that any planar bipartite
k-expanding graph G = (B,R,E) satisfies |R| ≥

(
1− c0√

k

)
|B|.

The analysis of local-search algorithm with search radius k proceeds by first constructing
a certain bipartite planar graph G = (S,O, E) on S and O, where S is the local-search
solution with radius k and O is an (unknown) optimal solution, such that G is k-expanding.

Now setting k = Θ( 1
ε2 ) and applying Lemma 2 to G implies that the local optimum S

has size
(
1 + O(ε)

)
times the optimal size |O|, hence near-optimality. A straightforward

implementation of the local-search algorithm gives a running time of nO( 1
ε2 ), so this is a PTAS

(polynomial-time approximation scheme). Note that as most of the problems listed earlier
are W [1]-hard [13, 14], it is unlikely that algorithms exist that do not have a dependency on
1/ε in the exponent of n.

3 In case of a minimization problem, replace some k elements of S with some k − 1 elements of X; for a
maximization problem replace some k elements of S with some k + 1 elements of X.
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Combinatorics of Local Search: Hall’s Theorem for Planar Graphs

The reader will notice the resemblance between the Local Expansion Property and pre-
conditions of Hall’s theorem – Local Expansion Property is simply the pre-condition of Hall’s
theorem restricted to subsets of size at most k. And indeed, the statement of Lemma 2 can
be re-cast as a ‘local’ version of Hall’s theorem for planar graphs, as follows. One of the
cornerstones of graph theory, Hall’s theorem, can be rephrased as:

I Theorem 3 (Hall’s Theorem). Let G = (B,R,E) be a |B|-expanding bipartite graph. Then
there exists a matching in G of size |B|.

Note that if we restrict the expanding subsets to be of size at most k for some integer k,
then the theorem fails, as one cannot guarantee a matching of size more than k – e.g., take
G to be the complete bipartite graph K|B|,k. Interestingly, Lemma 2 implies that unlike the
general graph case, a ‘local’ version of Hall’s theorem is indeed true for planar graphs. We
first observe that Lemma 2 can be used to get a local variant of Hall’s theorem for planar
graphs:

I Theorem 4 (k-local Hall’s Theorem for Planar Graphs). Let G = (B,R,E) be a k-expanding
bipartite planar graph. Then there exists a matching in G of size at least

(
1− c0√

k

)
|B|.

Proof. Let B′ ⊆ B for any subset of B. Observing that the subgraph of G induced by
B′ ∪ NG(B′) is planar, bipartite and k-expanding, we have |NG(B′)| ≥

(
1 − c0√

k

)
|B′| by

Lemma 2. Let S be a new set of c0|B|√
k

dummy vertices. Construct a bipartite graph
G′ = (B,R ∪ S,E ∪E′), where E′ is the set of all |B| · |S| edges between B and S. Then G′
satisfies the conditions of Hall’s theorem, as for any B′ ⊆ B, we have

|NG′(B′)| = |NG(B′)|+ |S| ≥
(
1− c0√

k

)
|B′|+ c0|B|√

k
≥ |B′|.

Thus there is a matching of size |B| in G′ by Hall’s theorem. Removing the vertices of S
from this matching still leaves a matching of size at least

(
1− c0√

k

)
|B|. J

Note that Theorem 4 is more general than Lemma 2, so it can be interpreted as a
strengthening of Lemma 2. Summarizing this discussion, the above local version of Hall’s
theorem for planar graphs is the key combinatorial reason why local-search works for a wide
variety of geometric optimization problems. The proof of Lemma 2 relies on separators in
planar graphs, and there has been work in generalizing these ideas to classes of non-planar
graphs which still have small separators (see [6, 2, 5]).

Our Results

While local-search with search radius k = Θ( 1
ε2 ) theoretically gives the best possible result

in terms of approximation factors, these problems are far from being solved satisfactorily:
As stated earlier, most of these problems are W [1]-hard [13, 14]: therefore unless W [1] =
FTP , there is no efficient polynomial-time approximation scheme for most of the listed
problems; i.e., algorithms with running time O(nc), where c is a constant independent of
1
ε . This effectively restricts local search to small constant values of k.
Furthermore, local-search is often the only approach known for these problems that yields
good approximations. For example, the best approximation ratio for the hitting set
problem for disks without using local-search is 13.4 [4] via the theory of ε-nets (see the
chapter [17] for details); or O(logn)-approximation for dominating sets in disk intersection
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graphs [11]. Any effective solution to these problems entails examining closely the limits
of efficiency and quality of local search for small values of k.
While the construction of the graph is specific to the problem at hand, all these algorithms
rely on the same Local Expansion Property of planar graphs, and thus the quantitative
approximation bounds are the same across all the problems. The constants involved in
Theorem 4 unfortunately make this result inefficient even for small values of k; e.g., the
current best work shows that setting k to get a 3-approximation implies a running time
of Ω(n66) for the hitting set problem for disks [9].

Thus the natural way forward is to explore the limits of local search for small values
of k. In this paper, we will consider the combinatorial aspect, and evaluate the quality of
local-search – alternatively, the precise statement of local Hall’s theorem for planar graphs:

k = 1,2. The local Hall’s theorem fails (and so does local search) for the same reason as
for general graphs – K|B|,2 is a 2-expanding planar graph, but with a matching of size
only 2.
k = 3. An optimal local Hall’s theorem was shown in [3] by a short argument: any planar
bipartite 3-expanding graph has a matching of size |B|8 and this is tight.

The next fundamental case of local search that is open is for k = 4; the previous-best
bound was |B|5 and the resolution of the optimal bound was the main problem left open in [3].
In this paper we settle this question by presenting an optimal bound for local Hall’s theorem
for 4-expanding planar graphs.

I Theorem 5 (Main Theorem). Let G =
(
B,R,E

)
be a bipartite planar graph on vertex sets

R and B, such that G is 4-expanding; i.e., for all B′ ⊆ B with |B′| ≤ 4, |NG(B′)| ≥ |B′|.
Then there exists a matching in G of size at least |B|4 . Furthermore, this bound is tight up to
lower-order terms.

I Corollary 6. The local search algorithm with parameter k = 4 gives a 4-approximation to
these problems in geometric combinatorial optimization:
1. Minimum hitting set problem for pseudo-disks in the plane.
2. Maximum independent set problem in the intersection graph of pseudo-disks.
3. Terrain guarding problem.
4. Minimum dominating set in the pseudo-disk intersection graphs.
5. Minimum set-cover problem for disks in the plane.

Tightness

The optimality of the bound follows from the example shown in Figure 1, where R consists
of n vertices of a

√
n×
√
n grid, and each ‘grid cell’ contains 4 vertices of B connected to the

four red vertices of that cell. It is easy to verify that there is no matching of size greater than
|B|
4 +O(

√
|B|) (this is trivial, as |B| = 4n−O(

√
n)), and the graph is planar and bipartite.

Finally, the fact that it is 4-expanding follows from the observation that, except at the
grid boundary, any set of two vertices of B of degree 3 or any set of three vertices of B of
degree 2 has at least 4 neighbors in R.

The proof of the upper-bound relies on the following key lemma, presented in Section 2:

I Lemma 7. Let G =
(
B,R,E

)
be a bipartite planar graph on vertex sets R and B, such

that G is 4-expanding. Then |R| ≥ |B|4 .

Lemma 7 can be seen as a version of Lemma 2 for k = 4 and c0 = 3
2 , leading to the Main

Theorem via an argument identical to the proof of Theorem 4.
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Figure 1 A lower-bound construction for 4-expanding bipartite planar graphs.
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Figure 2 A bipartite planar graph G(B, R, E) and its corresponding graph H(R, E).

2 Proof of Lemma 7

The proof, at its core, uses the discharging method [18] of combinatorial geometry. Henceforth,
a graph satisfying 4-expanding property is said to satisfy 4L.

First note that no vertex in B can have degree zero, as otherwise the neighborhood of
such a vertex would violate 4L. Moreover, it can be assumed that every vertex in B has
degree at least two, since it is always possible to add edges to all vertices of B which have
degree one in G while maintaining the planarity and bipartiteness of the graph (as any such
vertex v must lie in a face which has at least two vertices of R, at least one of which is not
adjacent to v).

Let B=i ⊆ B be the subset of vertices of B of degree exactly i, and B≥i ⊆ B the set of
vertices of degree at least i.

For the remainder of the proof, we fix a planar embedding of G.
Let H(R,E) be a planar graph on R constructed from G as follows: two vertices r1 ∈ R

and r2 ∈ R are adjacent in H iff there is at least one vertex b ∈ B=2 which is adjacent to
both r1 and r2 in G. Note that H is planar since G is planar, and the edges between r1 and
r2 can be routed via one such vertex b. Note also that vertices in B=3 lie in the interior of
faces of H. Vertices of R will be called the red vertices, and vertices of B the blue vertices.

Note that for a fixed pair {r1, r2} ⊆ R, there cannot be three distinct vertices b1, b2,
b3 ∈ B=2 adjacent to both r1 and r2, since in this case the neighborhood of set {b1, b2, b3} is
of size two and the graph G would violate 4L. Therefore, each edge of H corresponds to one
or two vertices in B=2. Edges corresponding to a single vertex in B=2 are called single edges
and the set of all such edges is denoted by E1, while edges mapped to two vertices in B=2
are called double edges and its set is denoted by E2. In Figure 2, {r1, r2} is a single edge
and {r2, r3} is a double edge. In later figures, the numbers 1 and 2 will be used to indicate
whether an edge is single or double. When referring to a particular face f , ∂f will denote its
set of edges while Ef1 and Ef2 will denote the set of single and double edges of f , respectively.
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For the rest of the proof, fix an embedding of H as well as the counter-clockwise ordering
on ∂V f for each f ∈ F , where ∂V f denotes the vertices of f . Let Fi be the set of faces of H
with exactly i edges on its boundary, and let F be the set of all faces of H. A face in F3
will be called a triangular face and a face in F4 a rectangular face. If ∂f is a cycle then f is
called a face cycle. An edge e on the boundary of two different faces is called a boundary
edge; it is called a cut edge otherwise.

In proceeding with the proof, we now encounter a technical difficulty: H need not be
2-connected, and so the structure of the faces can be arbitrarily complex. We first prove, in
the next subsection, Lemma 7 for the case when H is 2-connected. Then we show how to
handle the general case by reducing it to the 2-connected case.

2.1 Case: H(R, E) is 2-connected
If H is 2-connected then all its faces are face cycles; in particular, each edge of H is a
boundary edge, and there are no cut edges.

2.1.1 Structural properties of H

I Claim 8. For i ≥ 4, let f ∈ Fi. Then |Ef2 | ≤ b
i

2c. A triangular face has no double edges.

Proof. Let f be a triangular face with vertices {r1, r2, r3}, and with, say, {r1, r2} ∈ Ef2 .
Recall that edges of H are associated with vertices of B=2. Thus the two single edges and
one double edge of f correspond to a set B′ ⊆ B of four vertices, with N(B′) = {r1, r2, r3},
violating 4L. For i ≥ 4, if a face f ∈ Fi has |Ef2 | > b

i

2c, then there must exist two double
edges incident to the same vertex of f and 4L is again violated. J

For a face f ∈ Fi, f is called a full face if |Ef2 | = b
i

2c. Let Bf=3 denote the set of B=3

vertices lying in the interior of f . Note that due to planarity, for a fixed face f in the
embedding of H, each vertex v ∈ Bf=3 can be written uniquely (up to rotation) as an ordered
triple v = (r1, r2, r3), where r1, r2, r3 ∈ R are vertices of f in counter-clockwise order with
{v, ri} ∈ E(G) for i = 1, 2, 3.

I Claim 9. For i ≥ 4, let f ∈ Fi. Then |Bf=3| ≤ (i− 2).

Proof. Note that we can assume that |Ef2 | = 0, as a double edge can only make it harder to
‘pack’ more vertices of B=3 into f . Define a chain τ of f to be a consecutive set of vertices
of ∂V f . The size |τ | of a chain is equal to its number of vertices, and define Bτ=3, in the
natural way, as the set of vertices of Bf=3 with edges only to vertices of τ . We show that for a
chain τ of size n, |Bτ=3| ≤ n− 2. The proof will be by induction on the size of τ . For |τ | = 2,
|Bτ=3| = 0, trivially. For |τ | = j, any fixed v ∈ Bτ=3 divides τ into three distinct sub-chains,
τ1, τ2, τ3, with |τ1|+ |τ2|+ |τ3| = j + 3. Applying the induction hypothesis on each sub-chain,

|Bτ=3| ≤ (|τ1| − 2) + (|τ2| − 2) + (|τ3| − 2) + 1 = j + 3− 6 + 1 = j − 2. J

For the next steps, we will need the list of ‘forbidden’ substructures in graphs satisfying 4L.

I Claim 10. H satisfies 4L if and only if it does not contain the structures shown in Figure 3.

For the next claim, we will need the following independent property for planar graphs.
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Figure 3 Forbidden structures for a graph H satisfying 4L.
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I Claim 11. Let G be a planar graph consisting of one (external) cycle C = 〈r1, . . . , ri〉
of i vertices and a set V of internal vertices, such that each vertex of V has exactly three
neighbors, all in C, with these three neighbors not being consecutive vertices of C. Then
|V | ≤ i− 4.

Proof. The proof is inductive. For i = 4, we have |V | = 0 = i − 4, as there cannot exist
a vertex not adjacent to three consecutive vertices of C. Consider the case where i ≥ 5.
By an extremal argument, there must exist a vertex v0 ∈ V , say connected to {ri1 , ri2 , ri3}
where we can assume without loss of generality that 1 = i1 < i2 < i3, such that the two
regions – one with boundary vertices 〈v0, ri1 , ri1+1, . . . , ri2〉 and the other with boundary
vertices 〈v0, ri2 , ri2+1, . . . , ri3〉 – are both empty of vertices of V (see Figure 4). Furthermore,
by the assumption that v does not have edges to three consecutive vertices of C, we have
(i3 − i1) ≥ 3. If there exists a vertex, other than v0, in V with edges to both ri1 and ri3 , call
it v1 (note that due to planarity, there can exist only one such vertex). Consider a new cycle
C ′ = 〈r1, ri3 , ri3+1, . . . , ri〉 of size i− (i3 − i1) + 1 ≤ (i− 2), and set V ′ = V \ {v0, v1} to be
a subset of vertices lying inside C ′. It is easy to see that no vertex of V ′ can have edges to
three consecutive vertices of C ′, and thus by induction, we have |V ′| ≤ |C ′| − 4 ≤ (i− 2)− 4,
and thus |V | ≤ |V ′|+ 2 ≤ (i− 4). J

I Claim 12. For i ≥ 4, let f ∈ Fi be a full face. If i is even then |Bf=3| ≤ (i − 4). If i is
odd then |Bf=3| ≤ (i− 3).
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Proof. Let f ∈ Fi and |Ef=2| = b
i

2c. Label the vertices of ∂V f as 〈r1, . . . , ri〉 in the assumed
counter-clockwise ordering.

i is even: Note that as f is full, the edges around f alternate between single and double
edges. Therefore 4L implies that there does not exist a v ∈ Bf=3 with edges to three
consecutive vertices of ∂V f . Claim 11 applied to f shows that |Bf=3| ≤ i− 4.

i is odd: For i ≥ 5, as f is a full face, the edges around f alternate between single and
double edges – with one exception where two adjacent edges are both single. Say these
adjacent single edges are {r1, r2} and {r2, r3} (see Figure 5). 4L implies that there does not
exist a v ∈ Bf=3 with edges to three consecutive vertices of ∂V f , except possibly there could
exist a single vertex v123 ∈ Bf=3 with edges to {r1, r2, r3}. Claim 11 applied to f shows that
|Bf=3 \ {v123}| ≤ i− 4, and thus |Bf=3| ≤ i− 3. J

2.1.2 Bounding |B|
We first observe that to bound the size of B, it suffices to bound the number of vertices of
degree 2 and 3 in B. We will need the following fact on planar graphs.

I Fact 13. Let G = (V,E) be a simple, connected, planar bipartite graph. Then |E| ≤ 2|V |−4.

I Claim 14. |B| ≤ |B=2|+
|B=3|

2 + |R|.

Proof. We count the number of edges in G in two ways – first by summing up the degrees of
the vertices in B (recall that G is a bipartite graph), and secondly by using the upper-bound
on the number of edges of planar bipartite graphs from Fact 13:

2 · |B=2|+ 3 · |B=3|+
∑
i=4

i · |B=i| = |E(G)| ≤ 2
(
|R|+ |B|

)
− 4.

Simplifying,

2 · |B=2|+ 3 · |B=3|+
∑
i=4

i · |B=i| ≤ 2 ·
(
|R|+ |B=2|+ |B=3|+

∑
i=4
|B=i|

)
.

Re-arranging the terms,∑
i=4

(i− 2) · |B=i| ≤ 2|R| − |B=3| =⇒ 2
∑
i=4
|B=i| ≤ 2|R| − |B=3|

|B≥4| ≤ |R| −
|B=3|

2 . (1)

Now one can get an upper-bound on |B| from inequality (1):

|B| = |B=2|+ |B=3|+ |B≥4| ≤ |B=2|+ |B=3|+ |R| −
|B=3|

2 = |B=2|+
|B=3|

2 + |R|. J

Thus it remains to bound |B=2|+ |B=3|
2 . Towards this, a charging intuition leads one to

classify the contribution of a face f ∈ F as 2 · |Ef2 |+ |E
f
1 |+

|Bf=3|
2 . It turns out that the right

discharging function is slightly different; define the weight of a face f ∈ F to be

w(f) = |Ef2 |+
|Ef1 |

2 + |B
f
=3|
2 ,
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and the weight of the graph H to be

w(H) = |B=2|+
|B=3|

2 .

Note that as each edge is part of the boundary of precisely two faces and each vertex of B=3
lies in precisely one face, we have

∑
f∈F

w(f) =
∑
f∈F

(
|Ef2 |+

|Ef1 |
2 + |B

f
=3|
2

)
= 2·|E2|+|E1|+

|B=3|
2 = |B=2|+

|B=3|
2 = w(H). (2)

I Claim 15. w(H) ≤ 1
4
∑
i≥3

(
5i− 6

)
|Fi| −

1
4
∑

i is odd
|Fi| −

1
2 |F4| −

1
2 |F3|.

Proof. Let If ∈ {0, 1} be an indicator variable such that If = 1 if and only if f is a full face.
For f ∈ Fi and i an even number, by applying the upper bounds in Claims 8, 9 and 12,

w(f) = |Ef2 |+
|Ef1 |

2 + |B
f
=3|
2 ≤

( i
2 − 1 + If

)
+
i−
(
i
2 − 1 + If

)
2 + (i− 2)− 2If

2

= 5i− 6− 2If
4 ≤ 5i− 6

4 .

For i = 4, a better bound is possible. For a face f ∈ F4, let αf = |Ef2 |. Then

w(f) ≤ αf + 4− αf

2 + (4− 2)− αf

2 = 4 · 4− 4
4 = 5 · 4− 6

4 − 1
2 = 5i− 6

4 − 1
2 . (3)

For i an odd number,

w(f) ≤
( i− 1

2 − 1 + If

)
+
i−
(
i−1

2 − 1 + If

)
2 + (i− 2)− If

2 = 5i− 7
4 . (4)

For i = 3, note that for a face f ∈ F3, |Ef2 | = 0, |Ef1 | = 3 and |Bf=3| = 0, since f
cannot have neither a B=3 vertex in its interior nor a double edge, as otherwise the forbidden
structures Γ3 or Γ2 would be present. Then,

w(f) = |Ef2 |+
1
2 |E

f
1 |+

|Bf=3|
2 = 3

2 = 5i− 7
4 − 1

2 . (5)

By Equations (2)–(5),

w(H) =
∑
f∈F

w(f) =
∑

f∈F3

w(f) +
∑

f∈F4

w(f) +
∑
i≥5

i is odd

∑
f∈Fi

w(f) +
∑
i≥6

i is even

∑
f∈Fi

w(f)

≤
(5 · 3− 7

4 − 1
2

)
|F3|+

(5 · 4− 6
4 − 1

2

)
|F4|+

∑
i≥5

i is odd

(5i− 7
4

)
|Fi|+

∑
i≥6

i is even

(5i− 6
4

)
|Fi|

= 1
4
∑
i≥3

i is odd

(
5i− 7

)
|Fi|+

1
4
∑
i≥4

i is even

(
5i− 6

)
|Fi| −

1
2 |F4| −

1
2 |F3|

= 1
4
∑
i≥3

(
5i− 6

)
|Fi| −

1
4
∑

i is odd

|Fi| −
1
2 |F4| −

1
2 |F3|. J

Finally we can bound the number of vertices of B of degree 2 and 3.
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I Lemma 16. w(H) = |B=2|+
|B=3|

2 ≤ 3|R|.

Proof. Let F odd be the set of faces of H with an odd number of edges. By Claim 15,

w(H) ≤ 1
4
∑
i≥3

(
5i− 6

)
|Fi| −

1
4
∑

i is odd
|Fi| −

1
2 |F4| −

1
2 |F3|

= 5
4
∑
i≥3

i|Fi| −
3
2
∑
i≥3
|Fi| −

1
4
∑

i is odd
|Fi| −

1
2 |F4| −

1
2 |F3|

= 5
2 |E| −

3
2 |F | −

1
4 |F

odd| − 1
2 |F4| −

1
2 |F3| = ŵ(H). (6)

Now note that the last quantity – ŵ(H) as defined in Equation (6) – is maximized when H
is a triangulation. To see this, consider an index i and a face f ∈ Fi of H. Then decompose
f into a face f ′ ∈ Fi−1 and a triangular face, resulting in a graph H ′. Then comparing the
bounds of Equation (6) for H and H ′:

Case i = 4: ŵ(H ′) ≥ ŵ(H) + 1− 2
4 + 1

2 −
2
2 = ŵ(H).

Case i ≥ 5 and i is odd: ŵ(H ′) ≥ ŵ(H) + 1− 1
2 −

1
2 = ŵ(H).

Case i ≥ 6 and i is even: ŵ(H ′) ≥ ŵ(H) + 1− 2
4 −

1
2 = ŵ(H).

Consider any triangulation H ′ of H. Then,

w(H) ≤ ŵ(H) ≤ ŵ(H ′) = 5
2 |EH

′ | − 3
2 |FH

′ | − 1
4 |FH

′ | − 1
2 |FH

′ | = 5
2 |EH

′ | − 9
4 |FH

′ |

= 5
2 |EH

′ | − 9
4 ·

2
3 |EH

′ | = 5
2 |EH

′ | − 3
2 |EH

′ | = |EH′ |.

By using Euler’s formula for planar graphs,

|R| − |EH′ |+ 2
3 |EH

′ | = 2 =⇒ |R| = 2 + 1
3 |EH

′ |.

Therefore,

w(H)
|R|

≤ |EH′ |
2 + 1

3 |EH′ |
≤ 3,

implying that w(H) ≤ 3|R| and we’re done. J

Now, Claim 14 and Lemma 16 imply the proof of the required Lemma 7.

2.2 Case: H(R, E) is not 2-connected
Now we deal with the case when H is not 2-connected. The general idea will be to transform
each such planar graph H to a 2-connected planar graph H ′ while respecting the 4L property
as well as planarity. Consider a straight-line embedding of H in the plane. If H is not
2-connected, there exists a cut edge e, say e = {ri1 , r}. Let I = {ri1 , ri2 , . . .} be the vertices
in the connected component of ri1 once e is removed. These vertices are called the inner
vertices. Let O = {r, ro1 , ro2 , . . . , rom} be the vertices in the connected component of r.
These vertices are called the outer vertices. Further assume that ro1 ∈ O is the first vertex
after ri1 , in the clockwise order, that is adjacent to r (see Figure 6).

Our goal is to connect an inner vertex in I to an outer vertex in O iteratively until H
becomes 2-connected. In order to achieve that, we will apply the following transformation:
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e

ro1

ri1

ri2

ri3

ro2

ro3

r

Figure 6 Inner vertices component and outer
vertices component connected by cut edge e.

p1
p2

Figure 7 Gadget used for the clustering op-
eration.

Clustering operation on {p1, p2}, where p1 is an inner vertex and p2 is an outer vertex:
Add a set Q of two new red vertices to H. Furthermore, add sets B′′2 of 5 new degree-2 and
B′′3 of 2 new degree-3 blue vertices. Connect these vertices as shown in Figure 7. Note that
p1 and p2 are not adjacent in H.

We are going to argue that it is always possible to execute this while respecting planarity
and 4L.

First we show that upper-bounding w(·) after a clustering operation gives an upper-bound
for the original problem.

I Claim 17. Let H ′(B′, R′, E′) be the graph resulting from an application of the clustering
operation on a graph H(B,R,E). If w(H ′) ≤ 3|R′| then w(H) ≤ 3|R|.

Proof. More generally, assume we add b2 new degree-two vertices to H ′, b3 degree-three
vertices and r red vertices. Then from assumption, we have

w(H ′) = |B=2|+ b2 + |B=3|
2 + b3

2 ≤ 3(|R|+ r),

which implies that

w(H) = |B=2|+
|B=3|

2 ≤ 3|R|+ 3r − b2 −
b3
2 ≤ 3|R|,

assuming 3r ≤ b2 + b3
2 . This condition is satisfied for the clustering operation, where r = 2,

b2 = 5 and b3 = 2. J

Next we show that a clustering operation does not violate the 4L condition.

I Claim 18. The clustering operation preserves the 4L property.

Proof. Let p1 be any inner and p2 be any outer vertex. Then add a set Q of two red vertices,
a set B′′2 of 5 blue degree-2 vertices and a set B′′3 of 2 blue degree-3 vertices (see Figure 8).
Let B′ ∪B′′ be any subset of size at most 4, where B′ ⊆ B and B′′ ⊆ B′′2 ∪B′′3 . We need to
show that then |N(B′ ∪B′′)| ≥ |B′ ∪B′′|.
1. |B′′| = 0. Then |N(B′ ∪B′′)| = |N(B′)| ≥ |B′|, as H satisfies 4L.
2. |B′′| = 1. As any vertex of B′′ has at least one neighbor in Q, we have |N(B′ ∪B′′)| ≥
|N(B′)|+ 1 ≥ |B′|+ 1 = |B′ ∪B′′|.

3. |B′′| = 2, 3. As any two vertices of B′′ have at least three neighbors in Q ∪ {p1, p2}, and
any vertex of B′ must have at least one neighbor not in Q ∪ {p1, p2} (recall that p1 and
p2 are not adjacent in H!), we get that |N(B′ ∪B′′)| ≥ |N(B′′)|+ 1 ≥ 4.

4. |B′′| = 4. It can be verified that any set of 4 vertices of B′′ have the set Q ∪ {p1, p2} of
size 4 as its neighbor. J
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e

ro1

ri1

p1

p2

r

Figure 8 Clustering operation on p1 and p2.

e

ro1

ri1

ri?

ro?
r

· · ·
w1 wk

wk+1

Figure 9 A planar path between ri? to ro? .

Finally, we show that there exists an inner and an outer vertex which can be connected
via a clustering operation while maintaining planarity.

I Claim 19. It is always possible to find an inner vertex ri? and an outer vertex ro? such
that there exists a path that connects them without violating planarity.

Proof. Denote by Br=3 the set of degree-3 vertices adjacent to vertex r. If Br=3 is empty,
then clearly there exists a path from the inner vertex ri1 to the outer vertex ro1 . Similarly, if
there exists a vertex w ∈ Br=3 with one edge to an inner vertex and one to an outer vertex
(other than the edge to r), then there exists a planar path between these inner and outer
vertices by following the path along the edges of w.

Otherwise, sort the vertices in Br=3 clockwise by the order of their edges around r, say
labeled w1, . . . , wt. If w1 has both edges (other than to r) to outer vertices, then clearly
there is a planar path from ri1 to one of these outer vertices (see Figure 9). Similarly, if wt
has both edges (other than to r) to inner vertices, then there is a planar path from ro1 to
one of these inner vertices. Now by a parity argument, there must exist two vertices, say wk
and wk+1, such that wk has both neighbors to inner vertices, and wk+1 has both neighbors
to outer vertices. Then there exists a path from one of inner vertices adjacent to wk to one
of the outer vertices adjacent to wk+1. J

I Lemma 20. Let H be a 1-connected planar graph. Then w(H) ≤ 3|R|.

Proof. Claim 19 implies that – as long as the current graph H is not 2-connected – it is
always possible to do a clustering operation between an inner vertex and an outer vertex
while maintaining planarity. By Claim 18, the resulting graph H ′ still satisfies the condition
4L. Crucially, note that each new edge introduced by the clustering operation is not a cut
edge in the derived graph H ′, and further, the edge e which was a cut edge in H is no longer
a cut edge in H ′. Thus the clustering operation reduces the total number of cut edges, and
so the process terminates after a finite number of steps. Apply this iteratively to get a
2-connected graph H ′, which, by Lemma 16, satisfies w(H ′) ≤ 3|R′|. Then w(H) ≤ 3|R|
follows by Claim 17. J
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Abstract
We present a sorting algorithm that works in-place, executes in parallel, is cache-efficient, avoids
branch-mispredictions, and performs work O(n logn) for arbitrary inputs with high probabil-
ity. The main algorithmic contributions are new ways to make distribution-based algorithms
in-place: On the practical side, by using coarse-grained block-based permutations, and on the
theoretical side, we show how to eliminate the recursion stack. Extensive experiments show that
our algorithm IPS4o scales well on a variety of multi-core machines. We outperform our closest
in-place competitor by a factor of up to 3. Even as a sequential algorithm, we are up to 1.5 times
faster than the closest sequential competitor, BlockQuicksort.
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Keywords and phrases shared memory, parallel sorting, in-place algorithm, comparison-based
sorting, branch prediction
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1 Introduction

Sorting an array A[1..n] of n elements according to a total ordering of their keys is a
fundamental subroutine used in many applications. Sorting is used for index construction,
for bringing similar elements together, or for processing data in a “clever” order. Indeed,
often sorting is the most expensive part of a program. Consequently, a huge amount
of research on sorting has been done. In particular, algorithm engineering has studied
how to make sorting practically fast in presence of complex features of modern hardware
like multi-core (e.g., [30, 29, 5, 28]), instruction parallelism (e.g., [27]), branch prediction
(e.g., [27, 19, 18, 10]), caches (e.g., [27, 7, 11, 5]), or virtual memory (e.g., [24, 17]). In
contrast, the sorting algorithms used in the standard libraries of programming languages like
Java or C++ still use variants of quicksort – an algorithm that is more than 50 years old. A
reason seems to be that you have to outperform quicksort in every respect in order to replace
it. This is less easy than it sounds since quicksort is a pretty good algorithm – it needs
O(n logn) expected work, it can be parallelized [30, 29], it can be implemented to avoid
branch mispredictions [10], and it is reasonably cache-efficient. Perhaps most importantly,

∗ A full version of the paper is available at https://arxiv.org/abs/1705.02257.
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quicksort works (almost) in-place1 which is of crucial importance for very large inputs. This
feature rules out many contenders. Further algorithms are eliminated by the requirement to
work for arbitrary data types and input distributions. This makes integer sorting algorithms
like radix sort (e.g., [21]) or using specialized hardware (e.g., GPUs or SIMD instructions)
less attractive, since these algorithms cannot be used in a reusable library where they have to
work for arbitrary data types. Another portability issue is that the algorithm should use no
code specific to the processor architecture or the operating system like non-temporal writes
or overallocation of virtual memory (e.g. [26]). One aspect of making an algorithm in-place
is that such “tricks” are not needed. Hence, this paper focuses on portable comparison-based
algorithms and also considers how the algorithms can be made robust for arbitrary inputs,
e.g., with a large number of repeated keys.

The main contribution of this paper is to propose a new algorithm – In-place Parallel
Super Scalar Samplesort (IPS4o)2 – that combines enough advantages to become an attractive
replacement of quicksort. Our starting point is super scalar samplesort (s3-sort) [27] which
already provides a very good sequential non-in-place algorithm that is cache-efficient, allows
considerable instruction parallelism, and avoids branch mispredictions. s3-sort is a variant
of samplesort, which in turn is a generalization of quicksort to multiple pivots. The main
operation is distributing elements of an input sequence to k output buckets of about equal
size. We parallelize this algorithm using t threads and make it more robust by taking
advantage of inputs with many identical keys. Our main innovation is to make the algorithm
in-place. The first phase of IPS4o distributes the elements to k buffer blocks. When a
buffer becomes full, it is emptied into a block of the input array that has already been
distributed. Subsequently, the memory blocks are permuted into the globally correct order.
A cleanup step handles empty blocks and half-filled buffer blocks. The distribution phase is
parallelized by assigning disjoint pieces of the input array to different threads. The block
permutation phase is parallelized using atomic fetch-and-add operations for each block move.
Once subproblems are small enough, they can be solved independently in parallel.

After discussing related work in Section 2 and introducing basic tools in Section 3, we
describe our new algorithm IPS4o in Section 4. Section 5 makes an experimental evaluation.
An overall discussion and possible future work is given in Section 6. The full paper [3] gives
further experimental data and proofs.

2 Related Work

Variants of Hoare’s quicksort [15, 23] are generally considered some of the most efficient
general purpose sorting algorithms. Quicksort works by selecting a pivot element and
partitioning the array such that all elements smaller than the pivot are in the left part and all
elements larger than the pivot are in the right part. The subproblems are solved recursively.
A variant of quicksort (with a fallback to heapsort to avoid worst case scenarios) is currently
used in the C++ standard library of GCC [23]. Some variants of quicksort use two or three
pivots [31, 22] and achieve improvements of around 20% in running time over the single-pivot
case. Dual-pivot quicksort [31] is the default sorting routine in Oracle Java 7 and 8. The basic
principle of quicksort remains, but elements are partitioned into three or four subproblems

1 In algorithm theory, an algorithm works in-place if it uses only constant space in addition to its input.
We use the term strictly in-place for this case. In algorithm engineering, one is sometimes satisfied if
the additional space is sublinear in the input size. We adopt this convention but use the term almost
in-place when we want to make clear what we mean. Quicksort needs logarithmic additional space.

2 The Latin word “ipso” means “by itself”, referring to the in-place feature of IPS4o.
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instead of two. Increasing the number of subproblems (from now on called buckets) even
further leads to samplesort [6, 5]. Unlike single- and dual-pivot quicksort, samplesort is
usually not in-place, but it is well-suited for parallelization and more cache-efficient.

Super scalar samplesort [27] (s3-sort) improves on samplesort by avoiding inherently hard-
to-predict conditional branches linked to element comparisons. Branch mispredictions are very
expensive because they disrupt the pipelined and instruction-parallel operation of modern
processors. Traditional quicksort variants suffer massively from branch mispredictions [19].
By replacing conditional branches with conditionally executed machine instructions, branch
mispredictions can be largely avoided. This is done automatically by modern compilers if only
a few instructions depend on a condition. As a result, s3-sort is up to two times faster than
quicksort (std::sort), at the cost of O(n) additional space. BlockQuicksort [10] applies
similar ideas to single-pivot quicksort, resulting in a very fast in-place sorting algorithm.

Super scalar samplesort has also been adapted for efficient parallel string sorting [4]. Our
implementation is influenced by that work with respect to parallelization and handling equal
keys. Moreover, we were also influenced by an implementation of s3-sort written by Lorenz
Hübschle-Schneider. A prototypical implementation of sequential non-blocked in-place s3-sort
in a student project by our student Florian Weber motivated us to develop IPS4o.

The best practical comparison-based multi-core sorting algorithms we have found are
based on multi-way mergesort [29] and samplesort [28], respectively. The former algorithm is
used in the parallel mode of the C++ standard library of GCC. Parallel in-place algorithms
are based on quicksort so far. Intel’s Thread Building Blocks library [25] contains a variant
that uses only sequential partitioning. The MCSTL library [29] contains two implementations
of the more scalable parallel quicksort by Tsigas and Zhang [30].

There is a considerable amount of work by the theory community on (strictly) in-place
sorting (e.g., [11, 12]). However, there are few – mostly negative – results on transferring
these results into practice. Katajainen and Teuhola [20] report that in-place mergesort is
slower than heapsort, which is quite slow for big inputs due to its cache-inefficiency. Chen [8]
reports that in-place merging takes about six times longer than non-in-place merging. There
is previous work on (almost) in-place multi-way merging or data distribution. However, few
of these papers seem to address parallelism. There are also other problems. For example, the
multi-way merger in [14] needs to allocate very large blocks to become efficient. In contrast,
the block size of IPS4o does not depend on the input size. In-place data distribution, e.g.,
for radix sort [9], is often done element by element. Using this for samplesort would require
doing the expensive element classification twice and would also make parallelization difficult.

3 Preliminaries

(Super Scalar) Samplesort. Samplesort [13] can be viewed as a generalization of quicksort
which uses multiple pivots to split the input into k buckets of about equal size. A robust
way for determining the pivots is to sort αk − 1 randomly sampled input elements. The
pivots s1,. . . sk−1 are then picked equidistantly from the sorted sample. Element e goes to
bucket bi if si−1 ≤ e < si (with s0 = −∞ and sk =∞). The main contribution of s3-sort [27]
is to eliminate branch mispredictions for element classification. Assuming k is a power of two,
the pivots are stored in an array a representing a complete binary search tree: a1 = sk/2,
a2 = sk/4, a3 = s3k/4, . . . More generally, the left successor of ai is a2i and its right successor
is a2i+1. Thus, navigating this tree is possible by performing a conditional instruction for
incrementing an array index. We adopt (and refine) this approach to element classification
but change the organization of buckets in order to make the algorithm in-place.
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︸ ︷︷ ︸
b

Buffer

A

b1 b2 b3 b4

b︷ ︸︸ ︷
1)2)

3)

Figure 1 Local classification. Blue elements have already been classified, with different shades
indicating different buckets. Unprocessed elements are green. Here, the next element (in dark green)
has been determined to belong to bucket b3. As that buffer block is already full, we first write it
into the array A, then write the new element into the now empty buffer.

Buffers

A

Thread t − 1 Thread t

· · ·
b1 b2 b3 b4 b1 b2 b3 b4

︸ ︷︷ ︸︸ ︷︷ ︸

Figure 2 Input array and block buffers of the last two threads after local classification.

4 In-Place Parallel Super Scalar Samplesort (IPS4o)

IPS4o is based on the ideas of s3-sort. It is a recursive algorithm, where each step divides the
input into k buckets, such that each element of bucket bi is smaller than all elements of bi+1.
As long as problems with at least β n

t elements exist, we partition those problems one after
another with t threads in parallel. Here, β is a tuning parameter. Then we assign remaining
problems in a balanced way to threads, which sort them sequentially.

The partitioning consists of four phases. Sampling determines the bucket boundaries.
Local classification groups the input into blocks such that all elements in each block belong
to the same bucket. Block permutation brings the blocks into the globally correct order.
Finally, we perform some cleanup around the bucket boundaries. The following sections
will explain each of these phases in more detail.

Sampling. The sampling phase is similar to the sampling in s3-sort. The main difference is
that we swap the sample to the front of the input array to keep the in-place property even if
the oversampling factor α depends on n.

4.1 Local Classification
The input array A is viewed as an array of blocks each containing b elements (except possibly
for the last one). For parallel processing, we divide the blocks of A into t stripes of equal
size – one for each thread. Each thread works with a local array of k buffer blocks – one for
each bucket. A thread then scans its stripe. Using the search tree created in the previous
phase, each element in the stripe is classified into one of the k buckets, then moved into the
corresponding local buffer block. If this buffer is already full, it is first written back into the
local stripe, starting at the front. It is clear that there is enough space to write b elements
into the local stripe, since at least b more elements have been scanned from the stripe than
have been written back – otherwise no full buffer could exist.

In this way, each thread creates blocks of b elements belonging to the same bucket.
Figure 1 shows a typical situation during this phase. To achieve the in-place property, we
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r1 rir2

A

d1 d2 d3,...,i−1 di di+1

w1 w2 wi

Figure 3 Invariant during block permutation. In each bucket bi, blocks in [di, wi) are already
correct (blue), blocks in [wi, ri] are unprocessed (green), and blocks in [max(wi, ri + 1), di+1) are
empty (white).

do not track which bucket each block belongs to. However, we do keep count of how many
elements are classified into each bucket, since we need this information in the following
phases. This information can be obtained almost for free as a side effect of maintaining the
buffer blocks. Figure 2 depicts the input array after local classification. Each stripe contains
a number of full blocks, followed by a number of empty blocks. The remaining elements are
still contained in the buffer blocks.

4.2 Block Permutation
In this phase, the blocks in the input array will be rearranged such that they appear in the
correct order. From the previous phase we know, for each stripe, how many elements belong
to each bucket. We perform a prefix sum operation to compute the exact boundaries of the
buckets in the input array. In general, these will not coincide with the block boundaries. For
the purposes of this phase, we will ignore this: We mark the beginning of each bucket bi

with a delimiter pointer di, rounded up to the next block. We similarly mark the end of the
last bucket bk with a delimiter pointer dk+1. Adjusting the boundaries may cause a bucket
to “lose” up to b− 1 elements; this doesn’t affect us, since this phase only deals with full
blocks, and any elements not constituting a full block remain in the buffers. Additionally, if
the input size is not a multiple of b, some of the dis may end up outside the bounds of A.
To avoid overflows, we allocate a single empty overflow block which the algorithm will use
instead of writing to the final (partial) block.

For each bi, a write pointer wi and a read pointer ri is introduced; these will be set such
that all unprocessed blocks, i.e., blocks that still need to be moved into the correct bucket,
are found between wi and ri. During the block permutation, we maintain the following
invariant for each bucket bi, visualized in Figure 3:

Blocks to the left of wi (exclusive) are correctly placed, i.e., contain only elements
belonging to bi.
Blocks between wi and ri (inclusive) are unprocessed, i.e., may need to be moved.
Blocks to the right of max(wi, ri + 1) (inclusive) are empty.

In other words, each bucket follows the pattern of correct blocks followed by unprocessed
blocks followed by empty blocks, with wi and ri determining the boundaries. In the parallel
case, we may need to establish this invariant by moving some empty blocks to the end of
a bucket (see the full paper [3] for details); in the sequential algorithm, the result of the
classification phase already has this pattern. The read pointers ri are then set to the first
non-empty block in each bucket, or di − 1 if there are none.

We are now ready to start the block permutation. Each thread maintains two local swap
buffers. We define a primary bucket bp for each thread; whenever both its buffers are empty,
a thread tries to read an unprocessed block from its primary bucket. To do so, it decrements
the read pointer rp (atomically) and reads the block it pointed to into one of its swap buffers.
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(a) Swapping a block into its correct position.
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(b) Moving a block into an empty position, fol-
lowed by refilling the swap buffer.

Figure 4 Block permutation examples.

If bp contains no more unprocessed blocks (i.e., rp < wp), it switches its primary bucket
to the next bucket (cyclically). If it completes a whole cycle and arrives back at its initial
primary bucket, there are no more unprocessed blocks and this phase ends. The starting
points for the threads are distributed across that cycle to reduce contention.

Once it has a block, each thread classifies the first element of that block to find its
destination bucket bdest. There are now two possible cases, visualized in Figure 4:

As long as wdest ≤ rdest, write pointer wdest still points to an unprocessed block in bucket
bdest. In this case, the thread increases wdest, reads the unprocessed block into its empty
swap buffer, and writes the other one into its place.
If wdest > rdest, no unprocessed block remains in bucket bdest but wdest now points to an
empty block. In this case, the thread increases wdest, writes its swap buffer to the empty
block and then reads a new unprocessed block from its primary bucket.

We repeat these steps until all blocks are processed. We can skip unprocessed blocks
which are already correctly placed: We simply classify blocks before reading them into a
swap buffer, and skip as needed. We omitted this from the above description for the sake of
clarity. In some cases, this reduces the number of block moves significantly.

It is possible that one thread wants to write to a block that another thread is currently
reading from (when the reading thread has just decremented the read pointer, but has not
yet finished reading the block into its swap buffer). To avoid data races, we keep track of
how many threads are reading from each bucket. Threads are only allowed to write to empty
blocks if no other threads are currently reading from the bucket in question, otherwise they
wait. Note that this situation occurs at most once for each bucket, namely when wdest and
rdest cross each other. In addition, we store each wi and ri in a single 128-bit word which we
read and modify atomically. This ensures a consistent view of both pointers for all threads.

4.3 Cleanup
After the block permutation, some elements may still be in incorrect positions. This is due to
the fact that we only moved blocks, which may span bucket boundaries. We call the partial
block at the beginning of a bucket its head and the partial block at its end its tail.

We assign consecutive buckets evenly to threads; if t > k, some threads will not receive
any buckets, but those that do only need to process a single bucket each. Each thread reads
the head of the first bucket of the next thread into one of its swap buffers. Then, each
thread processes its buckets from left to right, moving incorrectly placed elements into empty
array entries. The incorrectly placed elements of bucket bi consist of the elements in the
head of bi+1 (or the swap buffer, for the last bucket), the partially filled buffers from the
local classification phase (of all threads), and, for the corresponding bucket, the overflow
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Figure 5 An example of the steps performed during cleanup.

buffer. Empty array entries consist of the head of bi and any (empty) blocks to the right
of wi (inclusive). Although the concept is relatively straightforward, the implementation is
somewhat involved, due to the many parts that have to be brought together. Figure 5 shows
an example of the steps performed during this phase. Afterwards, all elements are back in
the input array and correctly partitioned, ready for recursion.

4.4 The Case of Many Identical Keys
Having inputs with many identical keys can be a problem for samplesort, since this might
move large fractions of the keys through many levels of recursion. We turn such inputs into
easy instances by introducing separate buckets for elements identical to pivots (keys occurring
more then n

k times are likely to become pivots). Finding out whether an element has to
go into an equality bucket (and which one) can be implemented using a single additional
comparison [4] and, once more, without a conditional branch. Equality buckets can be
skipped during recursion and thus are not a load balancing problem.

4.5 Analysis
Algorithm IPS4o inherits from s3-sort that it has virtually no branch mispredictions (this
includes the comparisons for placing elements into equality buckets discussed in subsection 4.4).
More interesting is the parallel complexity. Here, the main issue is the number of accesses to
main memory. We analyze this aspect in the parallel external memory (PEM) model [1],
where each of the t threads has a private cache of sizeM and access to main memory happens
in blocks of size B. In the full paper [3], we prove:

I Theorem 1. Assuming b = Θ(tB) (buffer block size), M = Ω(ktB), n0 = O(M) (base
case size), α ∈ Ω(log t) ∩ O(t) (oversampling factor), and n = Ω

(
max(k, t)t2B

)
, IPS4o has

an I/O-complexity of O
(

n
tB logk

n
n0

)
block transfers with high probability.

Basically, Theorem 1 tells us that IPS4o is asymptotically I/O efficient if certain rather steep
assumptions on cache size and input size hold. In particular, the blocks need to have size
b = Θ(tB) in order to amortize contention on shared block pointers. Lifting those could
be an interesting theoretical question and we would have to see how absence of branch
mispredictions and the in-place property can be combined with previous techniques [1, 5].
However, it is likely that the constant factors involved are much larger than for our simple
implementation. Thus, the constant factors will be the main issue in bringing theory and
practice further together. To throw some light on this aspect, let us compare the constant
factors in I/O-volume (i.e., data flow between cache and main memory) for the sequential
algorithms IS4o (IPS4o with t = 1) and s3-sort. To simplify the discussion, we assume a single
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level of recursion, k = 256 and 8-byte elements. In the full paper [3], we show that IS4o needs
about 48n bytes of I/O volume, whereas s3-sort needs (more than) 86n – almost twice that
of IS4o. This is surprising since on first glance, the partitioning algorithm of IS4o writes the
data twice, whereas s3-sort does this only once. However, this is more than offset by “hidden”
overheads of s3-sort like memory management, allocation misses, and associativity misses.

Finally, we consider the memory overhead of IPS4o. In the full paper [3], we show:

I Theorem 2. IPS4o requires additional space O
(
kbt+ logk

n
n0

)
.

In practice, the term O(kbt) (mostly for the distribution buffers) will dominate. However,
for a strictly in-place algorithm in the sense of algorithm theory, we need to get rid of the
O(logn) term which depends on the input size. We discuss this separately in subsection 4.6.

4.6 From Almost In-Place to Strictly In-Place
We now explain how the space consumption of IPS4o can be made independent of n in a
rather simple way. We can restrict ourselves to the sequential case, since only O(logk t) levels
of parallel recursion are needed to arrive at subproblems that are solved sequentially. We
require the partitioning operation to mark the beginning of each bucket by storing the largest
element of a bucket in its first entry. By searching the next larger element, we can then find
the end of the bucket. Note that this is possible in time logarithmic in the bucket size using
exponential/binary search. We assume that the corresponding function searchNextLargest
returns n+ 1 if no larger elements exists – this happens for the last bucket. The following
pseudocode uses this approach to emulate recursion in constant space for sequential IS4o.

i := 1 –– first element of current bucket
j := n+ 1 –– first element of next bucket
while i < n do

if j − i < n0 then smallSort(a, i, j − 1); i := j –– base case
else partition(a, i, j − 1) –– partition first unsorted bucket
j := searchNextLargest(A[i], A, i+ 1, n) –– find beginning of next bucket

4.7 Implementation Details
The strategy for handling identical keys described in subsection 4.4 is enabled conditionally:
After the splitters have been selected from the initial sample, we check for and remove
duplicates. Equality buckets are only used if there were duplicate splitters.

For buckets under a certain base case size n0, we stop the recursion and fall back on
insertion sort. Additionally, we use an adaptive number of buckets on the last two levels
of the recursion, such that the expected size of the final buckets remains reasonable. For
example, instead of performing two 256-way partitioning steps to get 216 buckets of 2 elements,
we might perform two 64-way partitioning steps to get 212 buckets of about 32 elements.
Furthermore, on the last level, we perform the base case sorting immediately after the bucket
has been completely filled in the cleanup phase, before processing the other buckets. This is
more cache-friendly, as it eliminates the need for another pass over the data.

IPS4o has several parameters that can be used for tuning and adaptation. We performed
our experiments using (up to) k = 256 buckets, an oversampling factor of α = 0.2 logn, an
overpartitioning factor of β = 1, a base case size of n0 = 16 elements, and a block size of
about 2 KiB, or b = max

(
1, 2b11−log2 sc) elements, where s is the size of an element in bytes.

In the sequential case, we avoid the use of atomic operations on pointers. All algorithms
are written in C++ and compiled with version 6.2.0 of the GNU compiler collection, using
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the optimization flags “-march=native -O3”. For parallelization, we employ OpenMP. Our
implementation can be found at https://github.com/SaschaWitt/ips4o.

5 Experimental Results

We present the results of our in-place parallel sorting algorithm IPS4o. We compare
the results of IPS4o with its in-place competitors, parallel sort from the Intel® TBB lib-
rary [25] (TBB), parallel unbalanced quicksort from the GCC STL library (MCSTLubq),
and parallel balanced quicksort from the GCC STL library (MCSTLbq). We also give
results on the parallel non-in-place sorting algorithms, parallel samplesort from the prob-
lem based benchmark suite [28] (PBBS) and parallel multiway mergesort from the GCC
STL library [29] (MCSTLmwm). We also ran sequential experiments and present the results
of IS4o, the sequential implementation of IPS4o. We compare the results of IS4o with its
sequential competitors, a recent implementation [16] of non-in-place Super Scalar Sample-
sort [27] (s3-sort) optimized for modern hardware, BlockQuicksort [10] (BlockQ), Dual-Pivot
Quicksort [31] (DualPivot), and introsort from the GCC STL library (std-sort).

We ran benchmarks with nine input distributions: Uniformly distributed (Uniform),
exponentially distributed (Exponential), and almost sorted (AlmostSorted), proposed by
Shun et. al. [28]; RootDup, TwoDup, and EightDup from Edelkamp et. al. [10]; and Sorted
(sorted Uniform input), ReverseSorted, and Ones (just ones). The input distribution RootDup
sets A[i] = i mod b√nc, TwoDup sets A[i] = i2 + n

2 mod n, and EightDup sets A[i] = i8 + n
2

mod n. We ran benchmarks with 64-bit floating point elements and Pair, Quartet, and
100Bytes data types. Pair (Quartet) consists of one (three) 64-bit floating point elements as
key and one 64-bit floating point element of associated information. 100Bytes consists of
10 bytes as key and 90 bytes of associated information. Quartet and 100Bytes are compared
lexicographically. For n < 230, we perform each measurement 15 times and for n ≥ 230, we
perform each measurement twice. Unless stated otherwise, we report the average over all
runs and use 64-bit floating point elements.

We ran our experiments on machines with one AMD Ryzen +1800 8-core processor
(AMD1S), two Intel Xeon E5-2683 v4 16-core processors (Intel2S), and four Intel Xeon
E5-4640 8-core processors (Intel4S). Intel2S and Intel4S are equipped with 512 GiB of
memory, AMD1S is equipped with 32 GiB of memory. We use the taskset tool to set the
CPU affinity for speedup benchmarks. We tested all parallel algorithms on Uniform input
with and without hyper-threading. Hyper-threading did not slow down any algorithm. Thus,
we give results of all algorithms with hyper-threading. Overall, we executed more than 12 000
combinations of different algorithms, input distributions and sizes, data types and machines.
We now present a selection of our measurements and discuss our results. For the remaining
(detailed) running time and hardware counter measurements, we refer to the full paper [3].

Sequential Algorithms. Figure 6 shows the running times of sequential algorithms on
Uniform input executed on machine Intel2S. We see that IS4o is faster than its closest
competitor, BlockQ, by a factor of 1.14 for n = 232. On machine Intel4S (AMD1S), IS4o
outperforms BlockQ even by a factor of 1.22 (1.57). DualPivot and std-sort, which do not
avoid branch mispredictions, are at least a factor of 1.86 slower than IS4o for n = 232. The
number of branch mispredictions of these algorithms for this input size is about 10 times
larger than that of IS4o. s3-sort is the slowest sequential sorting algorithm avoiding branch
mispredictions and has fluctuations in running time for varying input sizes. Due to the initial
overhead, IS4o is slower than BlockQ for n ≤ 215.
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elements of input distribution Uniform.

As expected, the running times for inputs with a moderate number of different keys
(TwoDup) are similar to the running times for Uniform. When the number of different keys
decreases (Exponential, EightDup, and RootDup in decreasing order), IS4o becomes even
faster by a factor of up to two on all machines. The running times of the competitors also
decrease. However, only DualPivot on Intel2S with RootDup distributed input comes close
for n ≥ 228. Only input Ones and (almost) sorted input are hard for IS4o; for example,
DualPivot outperforms IS4o on AlmostSorted input by a factor of 1.70 for n = 232 (Intel2S).

Parallel Algorithms. Figure 8 (a–c) presents experiments of parallel algorithms on different
machines for Uniform input. We see that IPS4o outperforms its closest competitors, e.g., for
n = 232 on Intel2S (AMD1S) by a factor of 2.13 (1.75), and all but TBB and IPS4o fail to
sort this input size on AMD1S due to memory limitations. For n ≥ 226, IPS4o outperforms
its closest non-in-place competitors on Intel2S (AMD1S) on average by a factor of 2.26 (1.69)
and its closest in-place competitors by a factor of 2.78 (1.98). For the same input sizes, IPS4o
outperforms its closest competitors on Intel4S in average just by a factor of 1.41. We believe
that the small difference in running time between IPS4o and its competitors on Intel4S is
caused by two factors: The slower memory modules (DDR4 vs. DDR3), and the long load
delays due to a ring interconnect between four sockets.

In Figure 8 (d–e), we present running times of parallel algorithms on input distributions
with duplicates (TwoDup and RootDup) on machine Intel2S. For n ≥ 226 and a moderate
number of different keys (TwoDup), IPS4o still outperforms its in-place competitors on average
by a factor of at least 2.88 and its non-in-place competitors on average by a factor of at least
1.91. Experiments have shown that the running times on EightDup and Exponential are
similar to the running times on TwoDup. We also see that the non-in-place algorithms become
almost as fast as IPS4o if we sort inputs which contain few different keys (RootDup). However,
IPS4o still outperforms its in-place competitors by a factor of at least 3.43 on this input
for n ≥ 220. Figure 8 (f) depicts the running times of parallel algorithms on AlmostSorted
distributions on Intel2S. On AlmostSorted and ReverseSorted, the fastest non-in-place
algorithm, PBBS, performs similarly to IPS4o for large input sizes. Only on Sorted and Ones,
IPS4o is outperformed by TBB, an in-place competitor. This is because TBB detects these
pre-sorted input distributions and terminates immediately. Further benchmarks on machines
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Intel4S and AMD1S show that IPS4o also outperforms its non-in-place competitors on any
machine and that IPS4o is much faster than its in-place competitors except in the case of
Sorted and Ones inputs.

In Figure 8 (g–h), we give running times of Pair and 100Bytes data types on machine
Intel2S with uniformly distributed keys. We see that IPS4o outperforms its competitors, e.g.,
by a factor of 1.33 (non-in-place competitor) and by a factor of 2.67 (its in-place competitor)
for 229 100Bytes elements. Further benchmarks on machines Intel4S and AMD1S show
similar running times.

Figure 7 depicts the speedup of parallel algorithms executed on different numbers of cores
relative to our sequential implementation IS4o on Intel2S, sorting Uniform input (n = 230).
We see that IPS4o outperforms its competitors on any number of cores. IPS4o outperforms
IS4o on 32 cores by a factor of 28.71, whereas its fastest non-in-place competitor, PBBS,
outperforms IS4o just by a factor of 14.54. The in-place algorithms, MCSTLubq and MCSTLbq,
scale similarly to PBBS up to 16 cores but begin lagging behind for larger numbers of cores.
Further measurements show that IPS4o scales similarly on AMD1S. On Intel4S, IPS4o scales
well on the first processor. However, as the input data is stored in the memory of the first
processor, adding the second, third and fourth processors speeds up IPS4o by an additional
factor of only 1.45; again caused by the slower memory modules (DDR4 vs. DDR3) and the
long load delays due to a ring interconnect between four sockets.

6 Conclusion and Future Work

In-place super scalar samplesort (IPS4o) is among the fastest comparison-based sorting
algorithms both sequentially and on multi-core machines. The algorithm can also be used
for data distribution and local sorting in distributed memory parallel algorithms (e.g., [2]).
Somewhat surprisingly, there is even an advantage over non-in-place algorithms because
IPS4o saves on overhead for memory allocation, associativity misses and write allocate misses.
Compared to previous parallel in-place algorithms, improvements by more than a factor of
two are possible. The main case where IPS4o is slower than the best competitors (s3-sort
and BlockQuicksort) is for sequentially sorting large objects (Quartet and 100Bytes, see the
full paper [3]) because IPS4o moves elements twice in one distribution step. In this case, the
overhead for the oracle information of s3-sort is small and we could try an almost-in-place
variant of s3-sort with element-wise in-place permutation.

Several improvements of IPS4o can be considered. Besides careful adaptation of parameters
like k, b, α, and the choice of base case algorithm, one would like to avoid contention on the
bucket pointers in the block permutation phase when t is large. Perhaps the most important
improvement would be to make IPS4o aware of non-uniform memory access costs (NUMA)
depending on the memory module holding a particular piece of data. This can be done by
preferably assigning pieces of the input array to “close-by” cores both for local classification
and when switching to sequential sorting. In situations with little NUMA effects, we could
ensure that our data blocks correspond to pages of the virtual memory. Then, one can replace
block permutation with relabelling the virtual memory addresses of the corresponding pages.

Coming back to the original motivation for an alternative to quicksort variants in standard
libraries, we see IPS4o as an interesting candidate. The main remaining issue is the code
complexity. When code size matters (e.g., as indicated by a compiler flag like -Os), quicksort
should still be used. Formal verification of the correctness of the implementation might help
to increase trust in the remaining cases.
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Abstract
Cardinality constrained bin packing or bin packing with cardinality constraints is a basic bin
packing problem. In the online version with the parameter k ≥ 2, items having sizes in (0, 1]
associated with them are presented one by one to be packed into unit capacity bins, such that the
capacities of bins are not exceeded, and no bin receives more than k items. We resolve the online
problem in the sense that we prove a lower bound of 2 on the overall asymptotic competitive
ratio. This closes the long standing open problem of finding the value of the best possible overall
asymptotic competitive ratio, since an algorithm of an absolute competitive ratio 2 for any fixed
value of k is known. Additionally, we significantly improve the known lower bounds on the
asymptotic competitive ratio for every specific value of k. The novelty of our constructions is
based on full adaptivity that creates large gaps between item sizes. Thus, our lower bound inputs
do not follow the common practice for online bin packing problems of having a known in advance
input consisting of batches for which the algorithm needs to be competitive on every prefix of the
input. Last, we show a lower bound strictly larger than 2 on the asymptotic competitive ratio
of the online 2-dimensional vector packing problem, and thus provide for the first time a lower
bound larger than 2 on the asymptotic competitive ratio for the vector packing problem in any
fixed dimension.
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Bin packing with cardinality constraints (CCBP, also called cardinality constrained bin
packing) is a well-known variant of bin packing [18, 19, 17, 9, 10, 11, 15]. In this problem, a
parameter k is given. Items of indices 1, 2, . . . , n, where item i has a size si ∈ (0, 1] are to be
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split into subsets called bins, such that the total size of items packed into each bin is at most
1, and no bin has more than k items. In the standard bin packing problem, only the first
condition is required.

CCBP is a special case of vector packing (VP) [14]. In VP with dimension d ≥ 2, a set of
items, where every item is a non-zero d-dimensional vector whose components are rational
numbers in [0, 1], are to be split into subsets (called bins in this case as well) such that the
vector sum of every subset does not exceed 1 in any component. Given an input for CCBP,
an input for VP is created as follows. For every item, let the first component be 1

k , the
second component is si, and the remaining components are equal to zero (or to 1

k ).
In this paper we study online algorithms, which receive input items one by one, and pack

each new item irrevocably before the next item is presented, into an empty (new) bin or
non-empty bin. Such algorithms receive an input as a sequence, while offline algorithms
receive an input as a set. By the definition of CCBP, an item i can be packed into a
non-empty bin B if the packing is feasible both with respect to the total size of items already
packed into that bin and with respect to the number of packed items (i.e., the bin contains
items of total size at most 1− si and it contains at most k − 1 items). An optimal offline
algorithm, which uses a minimum number of bins for packing the items, is denoted by OPT .
For an input L and algorithm A, we let A(L) denote the number of bins that A uses to pack
L. We also use OPT (L) to denote the number of bins that OPT uses for a given input L.
The absolute competitive ratio of an algorithm A is the supremum ratio over all inputs L
between the number of its bins A(L) and the number of the bins of OPT , OPT (L). The
asymptotic approximation ratio is the limit of absolute approximation ratios RK when K
tends to infinity and RK takes into account only inputs for which OPT uses at least K bins,
that is the asymptotic competitive ratio of A is

lim
K→∞

sup
OPT (L)≥K

A(L)
OPT (L) .

The term competitive ratio is used for online algorithms instead of approximation ratio and
it is equivalent. In this paper we mostly deal with the asymptotic competitive ratio, and
also refer to it by the term competitive ratio. When we discuss the absolute competitive
ratio, we use this last term explicitly.

In this paper, we resolve the long standing open problem of online CCBP, in the sense
that we find the best overall asymptotic competitive ratio and the best overall absolute
competitive ratio. An algorithm with an asymptotic competitive ratios of 2 has been designed
by Babel et al. [4], and a similar algorithm was shown to have an absolute competitive ratio
of 2 [6] (earlier, it was known that the competitive ratio of a suitable variant of First Fit
is below 2.7 for any k [18]). However, prior to this work, all lower bounds were strictly
smaller than the best lower bounds for standard bin packing [23, 5]. With the exception of
the case k = 2 for which simple algorithms have competitive ratios of 1.5 [18, 10], and a
more sophisticated algorithm has a competitive ratio of at most 1.44721 [4], all lower bounds
on the competitive ratio were implied by partial inputs of ones used to prove lower bounds
for standard bin packing [24, 23, 5] (such lower bounds can be used for k ≥ 1

δ when all
items have sizes no smaller than δ, for a fixed value δ > 0), and modifications of such inputs
[4, 12, 6]. That is, all lower bounds had the form where a number of lists may be presented,
each list has a large number of items of a certain size (the sequence of sizes of the different
lists is increasing, and the numbers of items in the lists are not necessarily equal). The
unknown factor is the number of presented lists, that is, the input can stop after any of the
lists. See Table 1 for values of previously known lower bounds (and note that for k = 3, 4, 5, 6
algorithms with competitive ratios strictly below 2 are known [10]).
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Table 1 Bounds for 2 ≤ k ≤ 10. The middle column contains the previously best known
asymptotic lower bounds on the asymptotic competitive ratio for CCBP with parameter k. The
right column contains our improved lower bounds.

Value of k previous lower bound new lower bound

2 1.42764 [12] 10
7 ≈ 1.42857

3 3
2 = 1.5 [4] 1.55642

4 3
2 = 1.5 [12] 1.63330

5 3
2 = 1.5 [6] 1.69776

6 3
2 = 1.5 [24] 1.74093

7 217
143 ≈ 1.51748 [6] 1.77223

8 32
21 ≈ 1.52381 [6] 1.79634

9 189
124 ≈ 1.524194 [6] 1.81563

10 235
154 ≈ 1.52597 [6] 1.83148

200000 1.54037 [5] 1.99999
k →∞ 248

161 ≈ 1.54037 [5] 2

In this work, we take a different approach for proving lower bounds, where many of the
item sizes are based on the complete and precise action of the algorithm up to the time it is
presented. While some ingredients of our approach were used for the very limited special
case of k = 2 in the past [7, 4, 12], it was unclear how and if it could be used for k > 2. In a
nutshell, in these lower bound sequences for k = 2, sub-inputs were constructed such that
items packed in certain ways (for example, as the second item of a bin) had much larger sizes
than items of the same sub-input packed in other ways. Here, we generalize the approach
for larger values of k by defining careful constructions where sufficiently large multiplicative
gaps are created. This requires much more delicate procedures where item sizes are defined.

Additionally, we improve the lower bounds for all values of k, and in particular, prove
lower bounds above the best known lower bound on the competitive ratio for standard online
bin packing, 1.54037 [5] for k ≥ 3. Already for k = 3 our lower bound is above 1.55, and
already for k = 4, our lower bound is above the competitive ratio of many algorithms for
standard online bin packing (see for example [21, 22]).

Our result for CCBP provides, in particular, a lower bound of 2 for the asymptotic
competitive ratio of VP in two dimensions. The previously known lower bounds for VP are
as follows. The best results for constant dimensions are fairly low, and tending to 2 as the
dimension d grows to infinity [13, 8, 7], while a lower bound of Ω(d1−ε) was given by Azar et
al. [2] for the case where both d and the optimal cost are functions of a common parameter
n that grow to infinity when n grows to infinity, and thus this result does not give any lower
bound on the competitive ratio for constant values of d (see also [1, 3] for results on vectors
with small components). In particular, the best lower bound for d = 2 prior to this work was
1.67117 [13, 8, 7]. An upper bound of d+ 0.7 on the competitive ratio is known [14]. We
conclude this work by establishing a lower bound strictly larger than 2 on the competitive
ratio of 2-dimensional VP, and thus we show here for the first time that the 2-dimensional
VP is provably harder for online algorithms than its special case of CCBP.

Note that the offline CCBP problem is NP-hard in the strong sense, and approximation
schemes are known for it [9, 11, 15]. We note that for online CCBP, it is sometimes the
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case that the competitive ratio for some specific algorithms for CCBP is larger by 1 with
comparison to that of the corresponding algorithms for standard bin packing [18, 16, 20, 10].
Interestingly, this is not the case with respect to the results shown in this paper.

1.1 Paper outline
We discuss general properties in Section 2, and we define procedures for constructing sub-
inputs in Section 3. Our main result, an overall lower bound of 2 on the competitive ratio of
any online algorithm for CCBP is proved in Section 4, and improved lower bounds for fixed
values of k are given in Section 5. Our result for VP is established in Section 6. Omitted
proofs appear in the full version of this work.

2 Preliminaries

The analysis of the lower bounds on the asymptotic competitive ratio of online algorithms
will be based on the following lemma that basically allows us to disregard a constant number
of bins in the costs of the optimal solution and the solution returned by the algorithm.

I Lemma 1. Consider an algorithm ALG, such that the asymptotic competitive ratio of the
algorithm ALG is at most R, where R ≥ 1 is a fixed value, and let f(n) denote a positive
function such that f(n) = o(n) and for any input, ALG(I) ≤ R ·OPT (I) + f(OPT (I)). Let
Ca ≥ 0, Cb ≥ 0 be constants. Assume that for a given integer N0, for any integer n ≥ N0
there is an input In for which OPT (In) = Ω(n), then we have

R ≥ lim sup
n→∞

ALG(In) + Ca
OPT (In)− Cb

.

Proof. We have

ALG(In) + Ca
n

≤ R · OPT (In)− Cb
n

+ Ca +R · Cb
n

+ f(OPT (In))
n

for any n ≥ N0.
Since ALG(In) + Ca ≥ OPT (In)− Cb and OPT (In)− Cb = Ω(n) while Ca + R · Cb +

f(OPT (In)) = o(n), letting n grow to infinity implies that

R ≥ lim sup
n→∞

ALG(In) + Ca
OPT (In)− Cb

. J

In what follows, we will use Lemma 1 as follows. We construct inputs whose size depends
on a parameter N , so that the costs of optimal solutions increase with the input size. We
will compare the cost of a fixed online algorithm ALG plus a suitable non-negative constant
to the optimal cost minus a suitable non-negative constant by considering their ratio.

3 Constructions of sub-inputs

In this section we introduce the core of our lower bound constructions. In such constructions,
we adaptively present inputs that are based on the behavior of the algorithm. More specifically,
we define several procedures that construct sub-inputs according to certain conditions.
Similarly to [4, 12, 7] (and other work on online problems), a new input item is presented
at each time, where its size is based on the action of the algorithm on previous items. For
example, if the previous item was packed into an empty bin, the size of the next item is
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different from the size that would be used if the previous item is added to a non-empty bin.
In order to ensure that the properties are satisfied, we will define invariants, and we will
prove the specific properties that we need in the sequel via induction. The constructions
use k as a parameter since they are defined to be used for CCBP. However, they can be
used for any packing problem of items into bins and the property that k is the cardinality
constraint is not used in the constructions of sub-inputs (it is used later in the analysis of
inputs constructed using these sub-inputs). Thus, if the constructions are used for other
problems like we do for VP, the parameter k should be specified.

In the first procedure, the most important property is that there will be a gap between
two types of items constructed by applying the procedure, in the sense that the procedure
creates items that will be called small and items that will be called large, any large item is
larger than any small item, and there is a requirement on the size ratio that will be satisfied
(a multiplicative gap between the size of the smallest large item and the largest small item).
Such constructions differ from previous work [4, 12, 7] where only an additive gap was created.
The gap was always positive, but it could be arbitrarily small. In particular, one limitation
was that it was unknown how such an approach could be used for CCBP with parameter
k > 2.

We will also use this method to construct sub-inputs with large items, such that there
is a multiplicative gap in the differences between 1 and the items sizes. This new method
will allow us to provide a tight overall result for CCBP, new and significantly improved
lower bounds on the asymptotic competitive ratio for CCBP with fixed values of k, and our
improved lower bound for VP.

3.1 Procedure SMALL
In this first procedure called SMALL, a rational value 0 < ε ≤ 1, and an integer upper bound
N on the number of items to be presented are given. The goal is to present (at most) N
items of sizes in (0, ε], such that every item will be seen as either a small item or a large
item, and such that any large item is more than k times larger than any small item. In fact,
a stronger requirement on the item sizes will hold. Moreover, all item sizes will be rational.
Given two logical conditions, C1 and C2 specified for each construction (such that for every
packed item, exactly one of them holds), a new item will be defined as small if C1 holds and
it will be defined as large if C2 holds. There is a third condition C3 that is based on the
packing of the prefix of items introduced so far, and the sub-input is stopped if C3 holds.

Let N be an upper bound on the number of items that will be created by the procedure.
Let N ′ ≤ N be the actual number of items (where N is known in advance and used for
the sequence construction, while N ′ is not necessarily known in advance and it becomes
known when C3 holds for the first time). The item sizes a1, a2, . . . , aN ′ will be defined based
on another sequence x1, x2, . . . , xN ′ , such that ai = ε · k−xi for 1 ≤ i ≤ N ′. The values xi
will be integral in order to ensure that the values ai will be rational. There will also be
two sequences of values τ1, . . . , τN ′ and ρ1, . . . , ρN ′ , representing thresholds on item sizes of
further items.

Let τ0 = 2N+2, ρ0 = 2N+3, and i = 1. The process is defined as follows for any given
value of i (such that 1 ≤ i ≤ N ′). Let xi = τi−1+ρi−1

2 (we will show that these values are
integers). After the algorithm packs item i, if C1 holds, let τi = τi−1 and ρi = xi and if C2
holds, let τi = xi and ρi = ρi−1. If C3 holds or i = N , stop and otherwise increase i by 1.

Intuitively, the process is as follows. The interval (τi, ρi) contains the xj values of all
further items (with j > i), and for j ≤ i, all items satisfying C1 have xj values in [ρi, ρ0) and
all items satisfying C2 have xj values in (τ0, τi]. In each iteration i, the new values τi, ρi are
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defined such that these requirements are satisfied. In particular, the xi values of any item
satisfying C1 are larger than those of items satisfying C2. Next, we establish the invariants
of this procedure.

I Lemma 2. Let N ′ be the number of items. For any i such that 1 ≤ i ≤ N ′, ρi ≤ ρi−1
and τi ≥ τi−1. Additionally, we have ρi − τi = 2N+2−i, all xi values are integral, if item i

satisfies C1, xi ≥ ρN ′ and otherwise xi ≤ τN ′ .

Proof. We start with showing that the xi values as well as ρi and τi are integral and
ρi − τi = 2N+2−i. We prove this by induction. Indeed ρ0 = 2N+3 that is integral, τ0 = 2N+2

that is an integer as well. Furthermore, ρ0 − τ0 = 2N+2, and x1 = 3 · 2N+1 that is an integer,
and no matter if the first item satisfies C1 or C2, we have that both ρ1 and τ1 are integers,
and ρ1 − τ1 = 2N+1. Thus, the cases i = 0 and i = 1 for the induction claim hold. Assume
that ρi−1 − τi−1 = 2N+3−i holds for some i where 1 ≤ i ≤ N ′ − 1. Then,

xi = τi−1 + ρi−1

2 = τi−1 + ρi−1 − τi−1

2 = τi−1 + 2N+3−i ,

which is an integer for 1 ≤ i ≤ N , since τi−1 is an integer. Moreover, if τi = τi−1 and
ρi = xi, then ρi − τi = xi − τi−1 = ρi−1−τi−1

2 , and otherwise τi = xi and ρi = ρi−1, then
ρi − τi = ρi−1 − xi = ρi−1−τi−1

2 . In both cases, ρi − τi = 2N+2−i and both τi and ρi are
integers. Since, in particular, for any i, ρi > τi holds and xi+1 is their average, we find
τi < xi+1 < ρi. Thus, ρi ≤ ρi−1 and τi ≥ τi−1 holds for any i.

Finally, since in the case that item i satisfies C1, we let ρi = xi, and in the case that
item i satisfies C2, we let τi = xi, we get xi = ρi ≥ ρi+1 ≥ . . . ≥ ρN ′ in the first case, and
xi = τi ≤ τi+1 ≤ . . . ≤ τN ′ in the second case. J

I Corollary 3. For any item i, ai ∈
(
ε · k−2N+3

, ε · k−2N+2
)
, and in particular ai ≤ 1

k4 . For
any item i1 satisfying C1 and any item i2 satisfying C2, it holds that

ai2
ai1

> k.

Note that it is possible that the constructed input is such that there are only items
satisfying C1 or only items satisfying C2.

Proof. The first claim holds by definition. Since we have xi1 ≥ ρN ′ and xi2 ≤ τN ′ , we get
ai2
ai1

> kρN′−τN′ , Using ρN ′ − τN ′ = 2N+2−N ′ ≥ 4 as N ′ ≤ N , we find ai2
ai1
≥ k4 > k. J

3.2 Procedure LARGE
The second type of input is such that all items have sizes in (1− ε, 1) for a given value ε > 0.
The construction is the same as before, but the size of the ith item is bi = 1− ai. The terms
“small” and “large” refer to the difference between the size of the item and 1.

I Corollary 4. All bi for 1 ≤ i ≤ N are in (1− ε · k−2N+2
, 1− ε · k−2N+3). The sizes of any

small item is and any large item il satisfy 1− bil > k · (1− bis).

3.3 Procedure SMALLandLARGE
We will also use a procedure where the conditions C1 and C2 are not fixed, and they are
based on additional properties of the packing and the input that has been presented so
far. Moreover, in this case the size of each item is based on ai, but it is fixed for each
item separately (it will be either ai or 1 − ai). In this construction the sub-input will be
decomposed into parts where for an item of an odd indexed part the size of the item will
be 1− ai, whereas for an item of an even indexed part the size of the item will be ai. The
definitions of C1 and C2 will also depend on the parity of the index of the part containing
the item. This procedure is called SMALLandLARGE.
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4 A lower bound of 2 for CCBP

The general structure of inputs constructed in this section is as follows. There are a large
number of very small items, such that the first item packed into a bin by the algorithm is
significantly larger than small items packed as a second item or later. Afterwards, there
are two cases. In the first case there are very large items (of sizes almost 1) that can be
combined with k − 1 items that arrived earlier, but only with those that are smaller. Thus,
an optimal solution can pack all items densely except for those items that are first in their
bins (for the algorithm). The algorithm cannot use its previously packed bins again to pack
new items, and therefore the best approach is to pack a large number of items into each bin
(otherwise the percentage of larger small items is larger, which makes the optimal packing
more sparse, but the algorithm has an even larger number of bins, and the effect of the last
property is more significant). Another option is that instead of the very large items, items
slightly larger than 1

2 will arrive, in which case it turns out that the algorithm should have
packed k − 1 items into each bin (so that a new item could be still packed there). For very
large values of k, the two values k − 1 and k are not very different, and since the algorithm
does not know which items will arrive, packing k − 1 items into each bin (if k is very large)
is a good strategy. The result of packing k − 1 items into each bin is that in the first case
the very large items increase the number of bins roughly by a factor of 2, while an optimal
solution has relatively few bins with k small items. Note that the order of options in the
construction below is reversed for the sake of convenience.

Let N be a large integer. Apply procedure SMALL with ε = 1 for the construction of N
items (i.e., condition C3 never happens). The condition C2 is that the item is packed as the
first item of some bin (into an empty bin), and the condition C1 is that the item is packed
into a non-empty bin. The item sizes are no larger than 1

k4 . The multiplicative gap between
the smallest large item and the largest small item is larger than k. The N items presented
so far will be called the first phase items. Let δ > 0 denote the largest size of any first phase
item packed not as a first item of a bin (the largest small item). Let α = k · δ. Any first
phase item that is packed as the first item of a bin (a large item) has size strictly above α.
Let ∆ < 1

k3 be the largest size of any first phase item. Obviously, 1− k∆ > 1− 1
k2 >

1
2 .

For the first phase items, let Xk denote the number of bins packed by the algorithm that
contain k items, and let Y denote the number of other bins (such that there are Xk + Y bins
in total after N items have been presented).

The first phase items are followed by another set of items called the second phase items.
This set of items is selected out of two possible options. The first option is that d N

k−1e items
of size 1− k∆ arrive, and the second option is that dN−Xk−Y

k−1 e items of size 1− α = 1− kδ
arrive. In both cases it is possible to create an offline solution such that each bin (except
for possibly two bins) has k items. In the first case, an offline solution has d N

k−1e bins, each
with one item of size 1− k∆ and an arbitrary subset of k − 1 first phase items (the last bin
may have a smaller number of such items). Such a solution is optimal. In the second case,
an offline solution has dN−Xk−Y

k−1 e bins, each with one item of size 1− kδ and k − 1 small
first phase items, and dXk+Y

k e bins with k large first phase items (for each one of these two
bin types, the last bin may have a smaller number of such items). Indeed the last solution is
an optimal solution though we will only use that it is a feasible solution.

In the first case, the algorithm cannot use the bins that already have k items for packing
second phase items, and its cost is at least Xk + d N

k−1e ≥ Xk + N
k−1 . In the second case, the

algorithm cannot use any of its bins to pack any second phase item, as each bin has a large
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first phase item of size above α, so its cost is

Xk + Y +
⌈
N −Xk − Y

k − 1

⌉
≥ Xk + Y + N −Xk − Y

k − 1 .

We call the two inputs (of the two cases) I1 and I2. Obviously, since each input consists
of more than N items, OPT (I1) = Ω(Nk ) and OPT (I2) = Ω(Nk ) hold. Letting N = kn

provides an input In as required. By Lemma 1, we will analyze modified competitive ratios
of the form ALG(I)+Ca

OPT (I)−Cb
for fixed constants Ca and Cb.

For the input I1, OPT (I1) − 1 ≤ N
k−1 and ALG(I1) ≥ Xk + N

k−1 . For the input I2,
OPT (I2)− 2 ≤ N−Xk−Y

k−1 + Xk+Y
k and ALG(I2) ≥ Xk + Y + N−Xk−Y

k−1 .
First, we analyze the competitive ratio r for input I2 and show that it tends to 2 as k grows

to infinity. Let Z = Xk + Y . We have OPT (I2)− 2 ≤ N−Z
k−1 + Z

k and ALG(I2) ≥ Z + N−Z
k−1 .

Thus,

r ≥ kZ(k − 1) + k(N − Z)
k(N − Z) + (k − 1)Z = Z(k2 − 2k) + kN

kN − Z
.

Since Z ≥ N
k and the last lower bound on r is a ratio between an increasing function of Z and

a decreasing function of Z, we conclude that by substituting N
k instead of Z in the last bound,

we achieve a valid lower bound on r. Thus, we have r ≥ N(k−2)+kN
kN−N

k

= 2−2/k
1−1/(k2) = 2k

k+1 and
the last bound tends to 2 when k grows to infinity. By Lemma 1, the overall (asymptotic)
competitive ratio is at least 2. Since there is a 2-competitive algorithm for any value of k [4]
(even for the absolute competitive ratio [6]), we establish the following.

I Theorem 5. The overall best possible asymptotic and absolute competitive ratios for bin
packing with cardinality constraints are equal to 2.

To obtain a better lower bound on the asymptotic competitive ratio r for a fixed value of
k ≥ 3, we use I1 as well. By r ≥ ALG(I1)

OPT (I1)−1 ≥
Xk+N/(k−1)
N/(k−1) we have (k − 1)Xk ≤ (r − 1) ·N .

By counting arguments, N ≤ kXk + (k − 1)Y holds, and we get Xk ≥ N − (k − 1)Z, and
(r− 1)N ≥ (k− 1)Xk ≥ (k− 1)(N − (k− 1)Z) = (k− 1)N − (k− 1)2 ·Z. Rearranging gives

Z ≥ (k − r)N
(k − 1)2 .

As we saw earlier, by using I2 we have r ≥ Z(k2−2k)+kN
kN−Z , which is equivalent to

Z(k2 − 2k + r) ≤ kN(r − 1).

Combining the lower bound and upper bound on Z results in

(k − r)N(k2 − 2k + r)
(k − 1)2 ≤ kN(r − 1),

or equivalently

r2 + r(k3 − k2 − 2k)− (2k3 − 4k2 + k) ≥ 0.

Since k3−k2−2k ≥ 0 holds for k ≥ 2 and 2k3−4k2 +k > 0 holds for k ≥ 2, it is sufficient to
find the (unique) positive root which is equal to 2k+k2−k3+

√
(k3−k2−2k)2+4(2k3−4k2+k)

2 . The
last expression is a lower bound on r and thus the following holds.
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I Theorem 6. For any k ≥ 3, the asymptotic competitive ratio for bin packing with cardinality
constraints is at least

2k + k2 − k3 +
√
k6 − 2k5 − 3k4 + 12k3 − 12k2 + 4k

2 .

The last lower bound is equal to approximately 1.54983 for k = 3, 1.63330 for k = 4,
1.69047 for k = 5, 1.73214 for k = 6, 1.76388 for k = 7, 1.78888 for k = 8, 1.80909 for k = 9,
and 1.82575 for k = 10. For k = 2 the resulting lower bound is

√
2 and the construction (for

the case k = 2) is indeed similar to that of [7, 4].

5 Better lower bounds for CCBP for some small values of k

In this section we prove the next theorem that improves the resulting bounds of Theorem 6
for these values of k.

I Theorem 7. The following approximate values are lower bounds on the asymptotic com-
petitive ratio:The value 1.42857 for k = 2 (the exact value of this lower bound is 10

7 ), 1.55642
for k = 3, 1.69776 for k = 5, 1.74093 for k = 6, 1.77223 for k = 7, 1.79634 for k = 8,
1.81563 for k = 9, and 1.83148 for k = 10.

6 Vector packing

As explained in the introduction, vector packing is a generalization of CCBP, and thus the
results of the previous sections imply, in particular, a lower bound of 2 on the asymptotic
competitive ratio for VP in two or more dimensions. In this section we show that VP is more
general, by improving the result, and showing a lower bound above 2 for VP with constant
dimensions. Our result is the first lower bound strictly above 2 for any fixed dimension VP
(recall that currently, the best known upper bound for d-dimensional VP is d+ 0.7 and for
2-dimensional VP 2.7 [14]). We prove the result for two dimensions (and the result for higher
dimensions follows since the asymptotic competitive ratio is monotone in the dimension, as
any d-dimensional vector can be augmented by d′ − d zeroes to become a d′-dimensional
vector). Once again we consider a fixed deterministic online algorithm ALG, but this time it
is an algorithm for VP. Let R be the asymptotic competitive ratio.

The main idea of the lower bound is at follows. First, there are items whose first
component is 1

k for an appropriately chosen integer k, while the second components are very
small. The items are such that the second components are sufficiently larger for items packed
first into their bins by the algorithm compared to those that are not packed first. Afterwards,
one option is that the following items have a very large second component and their first
component is zero (this is equivalent to the items in the construction for CCBP). Every such
item could be packed with k items that arrived earlier, but never with the first item of a bin
of the algorithm, and thus the new items require new bins, while an optimal solution can
pack almost everything densely. For this option it is most profitable for the algorithm to
pack k items in each bin. In the other cases, it turns out that it is better to pack much less
than k items per bin, as further items will have first components of ak for an integer value
of a (which is selected based on the action of the algorithm). Those items will have second
components above 1

3 , and there may be further items whose second components are above 1
2 .

Let k ≥ 10 be a large integer. The set of inputs we define will consist of at most
three phases (where a phase is a sub-input). The first phase of the input is based on the
construction for CCBP as follows. For a large integer N ≥ 1000, there are N items whose
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first component is 1
k . The second components of items are constructed using procedure

SMALL with ε = k−2N+4 , such that SMALL is applied for the construction of N elements
(i.e., condition C3 never happens). The condition C2 is that the item is packed as the first
item of some bin (i.e., it is packed into an empty bin), and the condition C1 is that the item
is packed into a non-empty bin. The N (two-dimensional) items presented so far will be
called the first phase items. The second components of the first phase items are no larger
than k−2N+4 ≤ 1

k4 . Due to the value of the first component, in any packing every bin has at
most k first phase items. A first phase item packed as the first item of a bin will be called
large and any other first phase item will be called small.

The multiplicative gap between the smallest second component of any large item and the
largest second component of any small item is greater than k. Let δ > 0 denote the largest
second component of any small first phase item. Let α = k · δ. Any large first phase item
has a second component strictly above α. Let ∆ < 1

k3 be the largest second component of
any first phase item. Obviously, 1− α = 1− kδ > 1− 1

k3 > 0.999.

Let Xi denote the number of bins packed with i first phase items and let Θ = (
∑k

i=1
Xi)

N ,
where Θ ≤ 1 as every bin has at least one item out of the N items. Let the input of
first phase items be denoted by I. At this time, any k items can be packed into a bin,
and thus OPT (I) ≤ dNk e. If ALG(I) = ΘN ≥ 3N

k , we get R ≥ ALG(I)
OPT (I)−1 ≥ 3. Thus, we

assume in what follows that Θ < 3
k . Since every bin of the algorithm contains exactly one

large item and the remaining items are small, there are ΘN < 3N
k large items and at least

N −ΘN > (k−3)N
k ≥ 7N

10 small items.
The first option for the second part of the input is similar to the construction for CCBP

(the second part of the input will also be the last part of the input in this specific case). The
next phase of items will consist of dN−Θ·N

k e items called second phase items, whose first
component is zero and the second component is 1− α = 1− kδ. This input (consisting of
the first phase items and the second phase items) is called I ′. By the following lemma we
have 1 + (k − 1)Θ ≤ R.

I Lemma 8. We have ALG(I ′) = ΘN + dN−ΘN
k e ≥ ΘN + N−ΘN

k = N+(k−1)ΘN
k and

OPT (I ′)− 2 ≤ N−ΘN
k + ΘN

k = N
k .

Proof. It is possible to create a feasible solution for I ′ where each bin (except for possibly
two bins) has k first phase items. This solution has dN−ΘN

k e bins, each with one second
phase item and k small first phase items, and dΘN

k e bins with k large first phase items
(for each one of these two bin types, the last bin may have a smaller number of first phase
items). Indeed the last solution is an optimal solution (since second phase items cannot be
packed with large first phase items), though we will only use that it is a feasible solution.
We conclude that OPT (I ′)− 2 ≤ N−ΘN

k + ΘN
k = N

k . The algorithm uses a different new bin
for each second phase item, since every such item has a second component larger than 1

2 ,
and every bin with first phase items has a total size above α in its second component. Thus,
we get ALG(I ′) = ΘN + dN−ΘN

k e ≥ ΘN + N−ΘN
k = N+(k−1)ΘN

k . J

Let b be an integer such that b < k−4
2 . For any integer a such that 1 ≤ a ≤ b, there will

be two possible inputs I1
a and I2

a . All inputs start with the first phase items defined above.
The second phase of items is identical for the two inputs I1

a and I2
a (but it is different for

different values of a). Let Γa = dN−NΘ
k−2a e. Intuitively, when considering an optimal packing of

the small first phase items in I1
a and I2

a , most of the bins will contain k− 2a small first phase
items, and thus Γa is approximately their number. The second phase items are constructed
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using SMALL with the same value of k as for the first phase items as follows. The number
of items is Na = Γa (and once again C3 never happens and all items are presented). The
sizes are built using ε = 1, and the conditions C1 and C2 are as follows. We let C2 be the
condition that the item is packed into a bin that does not have a second phase item, and
C1 is the condition that the item is packed into a bin that already has a second phase item.
The first component of each item is a

k . Given the ith output of SMALL denoted by z, for
the ith item, the second component is defined as 1

3 + z. If z is defined when C2 holds, we say
that the item whose vector is (ak ,

1
3 + z) is large, and otherwise it is small. Since 0 < z ≤ 1

k4

for any item, the items satisfy that their second components are strictly larger than 1
3 , and

they are not larger than 1
3 + 1

k4 < 0.3335. Furthermore, we conclude that the difference
between the smallest second component of a large second phase item and the largest second
component of a small second phase item is at least k−2N+3 .

Obviously, since second phase items have second components above 1
3 , no bin can have

more than two such items. Let Y a1 and Y a2 denote the numbers of bins with one second
phase item and two second phase items, respectively (note that there may be such bin that
contain first phase items and bins that do not, and both kinds are included in these two
values according to their numbers of second phase items, while bins with only first phase
items are not included). There are Y a2 small second phase items and Y a1 + Y a2 large second
phase items (and Y a1 + 2Y a2 = Γa). Note that since the first component of second phase items
is a

k , they could not have been packed into bins with at least k − a+ 1 first phase items.
Input I1

a continues with Γa items, each of the form (ak , 0.6). Let 1
3 + δ′ be the largest

second component of a small second phase item (such that for any large second phase item,
its second component is larger than 1

3 + 2δ′), and observe that since δ′ ≥ k−2N+3 , the total
sum of second component of a set of at most k first phase items is at most δ′. Input I2

a

continues with the third phase items as follows. dΓa+2Y a
2

4 e items, each of the form (ak ,
2
3 −2δ′),

and dN4k e items, each of the form (0, 1− α). Let ∆c =
∑k
i=cXi.

I Lemma 9. The costs of the algorithm satisfy

ALG(I1
a) ≥ ∆k−a+1 + Y a2 + Γa

and

ALG(I2
a) ≥ ∆k−a+1 + Y a1 + Y a2 + Γa + 2Y a2

4 + N

4k .

Proof. For I1
a , the algorithm cannot use any bin with at least k − a+ 1 first phase items

to pack any other items (as second phase and third phase items afterwards have a first
component of value a

k ), and the algorithm cannot pack an item of the form (ak , 0.6) into a
bin with two second phase items. Thus, using ∆c =

∑k
i=cXi, the total number of bins of

the algorithm is at least ∆k−a+1 + Y a2 + Γa.
For I2

a , the algorithm cannot use any bin with at least k− a+ 1 first phase items to pack
items whose first component is a

k , and it cannot use any bins with first phase items to pack
items whose second component is 1− α. Moreover, since every bin with second phase items
has a large second phase item, the algorithm cannot pack any third phase item into a bin
containing at least one second phase item (and each bin with a third phase item will contain
exactly one third phase item). The only bins that can possibly be used for third phase items
are those with at most k − a first phase items and no other items. Thus, the number of bins
is at least ∆k−a+1 + Y a1 + Y a2 + Γa+2Y a

2
4 + N

4k . J

We next analyze optimal solutions for I1
a and I2

a .
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I Lemma 10. The cost of the optimal solutions for I1
a and I2

a satisfy

OPT (Ia1 ) ≤ Γa + dNΘ
k
e

and

OPT (I2
a) ≤ N

4k + Y a1 + Y a2
2 + Γa + 2Y a2

4 + 9N
4k2 + 4 = N

4k + 3Γa
4 + 9N

4k2 + 4 .

Proof. For I1
a consider the following feasible solution. There are Γa bins, each with a second

phase item (whose first component is a
k and its second component is in ( 1

3 , 0.3335)), one
item of the form (ak , 0.6), and k − 2a first phase items where each such item has a first
component of 1

k and its second component is no larger than 1
k4 (the last bin may contain

a smaller number of first phase items). The first component of the sum of the vectors of
these items is 1, and the second component is at most 0.3335 + 0.6 + 1

k3 < 1. The remaining
first phase items (there are at most NΘ such items) are packed k in a bin. We find that
OPT (Ia1 ) ≤ Γa + dNΘ

k e.
For I2

a , there are dN4k e bins, each with one item of the form (0, 1− α) and k small first
phase items (recall that the number of small first phase items is larger than N

4 +k), dY
a
1 +Y a

2
2 e

bins with at most two large second phase items and at most k−2a first phase items, dΓa+2Y a
2

4 e
bins with one item of the form (ak ,

2
3 − 2δ′), and at most one small second phase item, and at

most k − 2a first phase items. The remaining first phase items are packed into additional
bins, such that every bin has k such items. All items are packed since the number of small
second phase items, Y a2 , is no larger than Γa

2 , so Γa+2Y a
2

4 ≥ Y a2 . The total space for first
phase items in the first three kinds of bins is at least

N

4 + (k − 2a)
(
Y a1 + Y a2

2 + Γa + 2Y a2
4

)
= N

4 + k − 2a
4 · 3Γa

≥ N

4 + 3
4N(1−Θ) = N − 3

4NΘ ,

so the number of bins of the last kind is at most d 3NΘ
4k e ≤

9N
4k2 + 1 since Θ ≤ 3

k . We find that

OPT (I2
a) ≤ N

4k + Y a1 + Y a2
2 + Γa + 2Y a2

4 + 9N
4k2 + 4 = N

4k + 3Γa
4 + 9N

4k2 + 4 . J

We get

R ≥ ALG(Ia1 )
OPT (Ia1 )− 2 ≥

∆k−a+1 + Y a2 + N−NΘ
k−2a

N−NΘ
k−2a + NΘ

k

,

R ≥ ALG(I2
a)

OPT (Ia2 )− 5 ≥
∆k−a+1 + Y a1 + Y a2 +

N−NΘ
k−2a +2Y a

2
4 + N

4k
N
4k + 3 N−NΘ

k−2a

4 + 9N
4k2

.

We let β = b/k and let k grows to infinity. Choosing β ≈ 0.192806 and using the
inequalities we showed, we find R ≥ 2.03731129, and thus we conclude the following theorem.

I Theorem 11. The asymptotic competitive ratio of any online algorithm for vector packing
with d ≥ 2 is at least 2.03731129.
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Abstract
We study the problem of computing constrained shortest paths for battery electric vehicles. Since
battery capacities are limited, fastest routes are often infeasible. Instead, users are interested
in fast routes where the energy consumption does not exceed the battery capacity. For that,
drivers can deliberately reduce speed to save energy. Hence, route planning should provide
both path and speed recommendations. To tackle the resulting NP-hard optimization problem,
previous work trades correctness or accuracy of the underlying model for practical running times.
In this work, we present a novel framework to compute optimal constrained shortest paths for
electric vehicles that uses more realistic physical models, while taking speed adaptation into
account. Careful algorithm engineering makes the approach practical even on large, realistic
road networks: We compute optimal solutions in less than a second for typical battery capacities,
matching performance of previous inexact methods. For even faster performance, the approach
can easily be extended with heuristics that provide high quality solutions within milliseconds.
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1 Introduction

Battery electric vehicles (EVs) have matured, giving the prospect of high powertrain efficiency
and independence of fossil fuels, but a major hindrance of their adoption remains the limited
battery capacity of most vehicles combined with a lengthy recharge time. To overcome range
anxiety, careful route planning that prevents battery depletion during a ride is paramount.
Besides a limited cruising range, another substantial difference to vehicles run by combustion
engines is the ability to recuperate energy when braking. Naturally, such aspects have to be
reflected in any kind of route planning application for EVs.

Classic route planning approaches make use of a graph-based representation of the consid-
ered transportation network, where scalar edge weights correspond to, e. g., travel times. A
shortest path is then found by Dijkstra’s algorithm [15]. A wide range of speedup techniques [3]
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enable provably correct but faster queries in practice. For instance, A* Search [27] uses
vertex potentials to guide the search towards the target. Contraction Hierarchies (CH) [23],
on the other hand, employs a preprocessing step to obtain a directed acyclic search graph
that allows to skip vast parts of the network at query time. For that, it iteratively contracts
vertices according to a heuristic vertex ranking, while adding shortcut edges to maintain
distances within the remaining graph. Extensions to multicriteria scenarios exist for both
A* [17, 32, 33, 36] and CH [21, 22, 38]. Moreover, CH and A* can be combined to Core-
ALT [6], where all but the highest-ranked vertices are contracted, which form the core graph.
On that, a variant of A* uses precomputed distances to landmark vertices [24].

Route planning for EVs requires handling battery capacity constraints and negative edge
weights (due to recuperation), which is tractable when optimizing energy consumption as a
single criterion [9, 16, 35]. However, energy-optimal routes often exhibit disproportionate
detours, as using minor, slow roads can save energy due to less air drag [9]. Variants of the
NP-hard Constrained Shortest Path (CSP) problem [26] overcome this by minimizing energy
consumption without exceeding a given time limit [37] or finding the fastest route that does not
exceed battery constraints [7, 41]. Yet, time–consumption tradeoffs are not only affected by
choice of route but also by driving behavior. Assuming a single, fixed speed per road segment
neglects attractive solutions that may still use major roads (e. g., motorways), saving energy
by deliberately driving below posted speed limits, instead. Sampling such alternative speeds,
tradeoffs can be modeled by parallel edges [8, 25], but this yields too many nondominated
intermediate solutions, growing exponentially even for chains of vertices. Accordingly, only
heuristics offer acceptable performance for common vehicle ranges [8, 25]. By discretizing
a continuous range of possible speeds, the approach has further undesirable effects: The
majority of its many intermediate solutions offers insignificant tradeoffs [8], while interesting
solutions are lost to the discretization; adding degree-two vertices (commonly included for
visualization) affects the solution space, even when distributing speeds and consumption
evenly. Instead, Hartmann and Funke [28] model tradeoffs as continuous functions per edge,
assuming the driver can go at any speed within limits. Yet, for that model they propose
only a heuristic extension of CH that requires minutes to answer queries on large networks.
Lv et al. [31] use dynamic programming to plan the speed of a solar-powered EV, but their
approach aims at simulation and is too slow for interactive applications.

Contribution and Outline. We study a generalization of the CSP problem to capture the
characteristics of EVs, considering continuous, adaptive speeds: We allow the EV to adjust
its speed to reach its target quickly and with sufficient state of charge (SoC). Using realistic
consumption models, we obtain for each road segment a function mapping travel time to
energy consumption, yielding a challenging, more precise problem setting (Section 2). As a
first solution, we propose an exponential-time extension of Dijkstra’s algorithm: By propa-
gating continuous consumption functions during network exploration, we greatly improve
performance and solution quality over previous discretized approaches (Section 3). We
also incorporate techniques based on A* and CH, for which a particular challenge is the
computation of shortcuts that represent bivariate functions to capture the constraints of our
model (Section 4). Our experimental evaluation (Section 5) reveals that we can compute
optimal solutions in well below a second for typical battery capacities and less than a minute
for large battery capacities, on par or faster than previous heuristic algorithms. Our own
heuristic variant provides high-quality solutions and is fast enough for interactive applications.
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2 Model and Problem Statement

We use directed graphs G = (V,E) to model road networks, where edges e ∈ E represent
road segments. For each, we assume that a given tradeoff function ge : R>0 → R maps desired
driving time x ∈ R>0 along e to energy consumption ge(x). Consumption can be negative,
due to recuperation. In reality, driving time cannot be chosen arbitrarily: Lower bounds are
induced by speed limits and the vehicle’s maximum speed. On the other hand, driving slower
than a reasonable minimum speed would mean to become an obstacle for other drivers. This
yields minimum and maximum driving times

¯
τ ∈ R>0 and τ̄ ∈ R>0, respectively, for ge. We

incorporate them into a consumption function ce : R≥0 → R ∪ {∞} with

ce(x) :=


∞ if x <

¯
τ,

ge(τ̄) if x > τ̄,

ge(x) otherwise.

Thus, driving times below
¯
τ are infeasible (modeled as infinite consumption) and driving

times above τ̄ become unprofitable. In the special (degenerate) case of
¯
τ = τ̄ , the function

ce represents a constant pair (
¯
τ, ce(¯

τ)) of driving time and consumption. We then call ce
constant, as the edge e allows no speed adaptation.

Further, the EV is equipped with a battery that has a capacity M ∈ R≥0. The SoC
must not drop below 0 nor exceed M . Incorporating these constraints, we obtain a bivariate
SoC function fe : R≥0 × [0,M ] ∪ {−∞} → [0,M ] ∪ {−∞} for every e = (u, v) ∈ E, mapping
SoC at u to SoC at v when traversing e with a specific driving time. It is given by

fe(x, b) :=


−∞ if b− ce(x) < 0,
M if b− ce(x) > M,

b− ce(x) otherwise,

where an SoC of −∞ denotes an empty battery. Hence, fe(x, b) = −∞ means that the edge
cannot be traversed at the corresponding speed (as the battery would run empty).

An s–t path in G is a sequence P = [s = v1, v2 . . . , vk = t] of vertices with (vi, vi+1) ∈ E
for 1 ≤ i ≤ k − 1. If s = t, we call P a cycle. Given the SoC bs ∈ [0,M ] at s, we obtain
a corresponding SoC at t by iteratively picking driving times xi ∈ R≥0 (starting at s) and
evaluating the SoC function f(vi,vi+1) for xi and the SoC at vi. Due to physical constraints,
we presume that for cycles this procedure never increases the SoC at s = t. For paths
P = [v1, . . . vi] and Q = [vi, . . . , vk], P ◦Q := [v1, . . . , vi, . . . , vk] is their concatenation.

Given a source s ∈ V , a target t ∈ V , and an initial SoC bs ∈ [0,M ], the Electric Vehicle
Constrained Shortest Path (EVCSP) Problem is to find an s–t path P = [s = v1, v2 . . . , vk = t]
together with driving times xi, i ∈ {1, . . . , k − 1}, for every edge in P that respect battery
constraints and minimize overall travel time x :=

∑k−1
i=1 xi in G. This yields an NP-hard

problem by reduction from CSP [26]. An instance of CSP corresponds to an instance of
EVCSP where all functions are degenerate constant tuples with nonnegative consumption.

A Simplified Model. We illustrate SoC functions in an example using simplistic but vivid
tradeoff functions. For now, let tradeoff functions be decreasing and linear, i. e., ge(x) = αx+β
for every e ∈ E, where α ∈ R≤0 and β ∈ R are constant coefficients. The values α and β
may differ between edges to reflect different road types or other relevant factors [12, 42].
Figures 1a and 1b show consumption functions (plugging in limits

¯
τ and τ̄ on driving time)

for two edges (u, v) and (v, w). We are interested in the consumption function of the path
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Figure 1 Consumption functions based on a simple model. (a) Function c(u,v) of an edge (u, v)
with

¯
τ = 1 and τ̄ = 3. (b) Function c(v,w) of an edge (v, w) with

¯
τ = 1 and τ̄ = 2. (c) The function

cP of P = [u, v, w]. The shaded area indicates possible pairs of driving time and consumption.
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Figure 2 The bivariate SoC function of the path P from Figure 1, for M = 4. (a) The SoC fP

at v, subject to driving time x on P for different fixed values b of initial SoC. (b) The SoC fP at v,
subject to initial SoC b for different fixed values x of driving time.

P = [u, v, w], i. e., a function cP that maps driving time x spent on P to minimum energy
consumption cP (x). Formally, to get cP (x) for a driving time x ∈ R≥0, we must pick values
x1 ∈ R≥0 and x2 ∈ R≥0, such that x = x1 + x2 and c(u,v)(x1) + c(v,w)(x2) is minimized.
Figure 1c shows possible distributions of driving times among the two edges and the resulting
energy consumption. Their lower envelope yields the desired function cP . Intuitively, we
want to spend as much of the available time as possible on the edge that provides the better
tradeoff for saving the most energy, i. e., the function with steeper slope. As a result, the
consumption function of a path is always convex on its finite imaginary part. Moreover,
while tradeoff functions of edges are linear in the interval [

¯
τ, τ̄ ] of admissible driving times,

the tradeoff function of a path is piecewise linear within its corresponding interval.
When considering battery constraints, energy consumption depends not only on driving

time but also on initial SoC. Note that consumption is positive on (u, v) and negative on (v, w).
As before, the edge (v, w) provides the better tradeoff. However, for low initial SoC, we must
ensure that (u, v) can be traversed first, spending additional time on this edge in order to
obtain a feasible solution at all. In contrast, high initial SoC values may prevent recuperation
along (v, w), limiting the payoff of driving slower. Figure 2 illustrates the resulting bivariate
SoC function fP for specific values of initial SoC and driving time.

A Realistic Model. In this work, we use a more realistic model, detailed below. Both
driving time and energy consumption depend on the vehicle’s speed. In accordance with
realistic physical models [1, 2, 10, 18, 28, 30, 31], we assume that energy consumption on a
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Figure 3 Linking consumption functions. (a) Function c1 with α1 = 4, β1 = 1, γ1 = −1,
¯
τ = 2,

and τ̄1 = 4. (b) Function c2 with α1 = 0.5, β1 = 1, γ1 = 1,
¯
τ1 = 2, and τ̄1 = 5. (c) Function

c = link(c1c2), with c(x) = c1(∆opt(x)) + c2(x−∆opt(x)). It is defined by three subfunctions with
subdomains [4, 5], [5, 6.5], [6.5, 9]. Values ∆opt(x) and x−∆opt(x) indicate the share of c1 and c2.

road segment e ∈ E is expressed by a function he : R>0 → R with he(v) = λ1v
2 + λ2se + λ3,

where v ∈ R>0 is the (constant) vehicle speed, se ∈ R is the (constant) slope of the road
segment, and λ1 ∈ R≥0, λ2 ∈ R≥0, and λ3 ∈ R≥0 are constant nonnegative coefficients of the
consumption model (all values may vary for different edges). Note that assuming constant
speed and slope per edge is not a restriction, as intermediate vertices can be added to model
changing conditions. Further, one can show that varying the speed on a single road segment
(with constant slope and speed limit) never pays off in our model [28, Corollary 1].

As we are interested in functions mapping driving time x ∈ R>0 to energy consump-
tion ge(x), we substitute v = `e/x, where `e is the length of the road segment. Slope and
length of an edge are fixed, so we simplify this by setting α := λ1/`

2
e and γ := λ2se + λ3.

Observe that α ∈ R≥0 is nonnegative, while γ ∈ R may be negative (for downhill edges).
We introduce a third constant β ∈ R≥0, needed later to shift functions along the time axis.
Altogether, we obtain the tradeoff function ge : R>0 → R with

ge(x) := α

(x− β)2 + γ. (1)

For single edges, we always obtain β = 0 and assume driving time x to be strictly positive.
Thus, the denominator x− β is strictly positive and ge(x) is finite. Further, ge is decreasing
and convex on R>0 in this case. In the simplistic model discussed above, we have seen that
tradeoff functions of paths may be piecewise linear. Similarly, we allow tradeoff functions in
the realistic model to be defined piecewise, so they may consist of multiple subfunctions of
the form in Equation 1. Tradeoff functions of paths may also use values 0 < β < x to reflect
additional time spent on previous edges. Plugging in the values

¯
τ ∈ R>0 and τ̄ ∈ R>0, we

obtain the consumption function ce : R≥0 → R ∪ {∞}.

3 Basic Approach

We generalize the (exponential-time) bicriteria variant [34] of Dijkstra’s algorithm [15] to
solve EVCSP. As a crucial ingredient, the algorithm requires a link operation: For two
consumption functions c1 and c2 modeling consumption on two paths P1 and P2, the function
c := link(c1, c2) maps driving time spent on P := P1 ◦ P2 to minimum possible energy
consumption (bar battery constraints). Let

¯
τ1, τ̄1, ¯

τ2, and τ̄2 denote the respective minimum

ESA 2017



11:6 Constrained Shortest Path Algorithms for Battery Electric Vehicles

and maximum driving times of c1 and c2. We obtain c(x) = ∞ for all x <
¯
τ1 +

¯
τ2 and

c(x) = c1(τ̄1) + c2(τ̄2) for x > τ̄1 + τ̄2. For all x ∈ [
¯
τ1 +

¯
τ2, τ̄1 + τ̄2], we have to compute

c(x) = min
∆∈[

¯
τ1,τ̄1]

∆∈[x−τ̄2,x−¯
τ2]

c1(∆) + c2(x−∆).

In other words, we have to divide the amount of time that exceeds the minimum possible
total driving time among the two paths such that consumption is minimized; see Figure 3 for
an example. Although realistic functions require a more technical analysis, many observations
made for our simplistic (linear) model from the previous section carry over to the more
realistic (nonlinear) tradeoff functions. In fact, the function c can be computed in linear time
in the number of subfunctions defining c1 and c2.

Algorithm Description. Given a source s ∈ V , a target t ∈ V , and initial SoC bs ∈ [0,M ],
the tradeoff function propagating (TFP) algorithm solves EVCSP. It propagates labels
consisting of consumption functions (defined piecewise, by sequences of tradeoff functions)
and applies battery constraints on-the-fly. Hence, it does not have to maintain bivariate
SoC functions explicitly. The algorithm starts with the constant label cs ≡ M − bs at s.
The label is also added to a priority queue, which uses minimum driving time of a label as
key. In each step of its main loop, the algorithm extracts and settles a label cu (at some
vertex u ∈ V ) with minimum key from the queue. For every edge (u, v) ∈ E, the function
c := link(cu, c(u,v)) is computed. Note that c may violate battery constraints, so we set
c(x) :=∞ for all x ∈ R≥0 with c(x) > M and c(x) := 0 for all x ∈ R≥0 with c(x) < 0. The
resulting function is added to the priority queue, unless it is dominated by existing labels
at v; we say that a label c1 dominates another label c2 if c1(x) ≤ c2(x) for all x ∈ R≥0.

To keep the number of label comparisons low, each vertex v ∈ V maintains a set Lset(v)
and a heap Luns(v) containing its settled and unsettled labels, respectively. We maintain
the invariant that for each v ∈ V , the unsettled label in Luns(v) with minimum key is not
dominated by any settled label in Lset(v). Labels (at v) added to the priority queue are
also pushed into Luns(v). Every time the minimum element of Luns(v) changes (because an
element is added or extracted), we check whether the new minimum element is dominated
by any settled label in Lset(v) and discard it in this case [7]. Dominance is tested as follows.
For two subfunctions (with the form of Equation 1), we can test in constant time whether
one dominates the other (by evaluating extreme points of their difference and subdomain
borders). For piecewise-defined consumption functions, we exploit that we only need to
compare subfunctions whose subdomains intersect. This allows us to test for dominance
in a linear scan (comparing subfunctions in increasing order of driving time). Given a
consumption function c in the set Luns(v) of some vertex v ∈ V , a naïve implementation then
performs pairwise comparisons to functions in Lset(v) to determine whether c is dominated
by any of them. In doing so, the algorithm may miss cases where c is merely partially
dominated, or dominated only by the lower envelope of several functions. Although including
dominated labels in Lset(v) does not affect correctness, it may lead to unnecessary vertex
scans and increases the label size. Instead of pairwise dominance checks, we therefore identify
dominated parts of c in a single coordinated scan over c and all functions in Lset(v).

TFP is label setting, i. e., labels extracted from the queue are never dominated later on.
An optimal (constrained) path is found once a label at t is extracted, which gives the optimal
driving time. It is also possible to retrieve the optimal path and driving speeds.

A Polynomial-Time Heuristic. To improve running times, TFP can easily be extended to a
heuristic search, at the cost of inexact results. We propose a polynomial-time approach based
on ε-dominance [4]. When testing dominance of a label c ∈ Luns(v) at some vertex v ∈ V ,
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it is kept in Luns(v) only if it yields an improvement (over labels in Lset(v)) by at least a
certain fraction εM , with ε ∈ (0, 1], for some driving time. Hence, we test for every x ∈ R≥0
whether c(x) + εM ≤ cset(x) holds for all settled functions cset ∈ Lset(v). Then, the number
of settled labels per set can become at most d1/εe, which yields polynomial running time.

4 Speedup Techniques

We propose speedup techniques based on A* and CH for TFP (and its heuristic variant).
Combining both techniques, we obtain our fastest variant, CHAsp (CH, A*, Adaptive Speeds).
Our techniques do not alter the output of the algorithm, so correctness of TFP is maintained.

A* Search. This well-known technique [27, 33] uses a potential function π : V → R≥0. The
potential π(v) of a vertex v ∈ V is added to all keys of labels when running TFP, so labels
are extracted in a different order. We compute the potential function at query time.

Our first variant uses a cost functions
¯
d : E → R≥0 with

¯
d(e) = ce(¯

τe), i. e., minimum
driving time on an edge. Before running TFP, a backward search (i. e., Dijkstra’s algorithm
traversing edges in backward direction) from the target t computes, for each vertex v ∈ V ,
the minimum unconstrained driving time

¯
d(v, t) from v to the t. We obtain a consistent

potential function πd : V → R≥0 by setting πd(v) :=
¯
d(v, t) [40]. Similarly, we compute lower

bounds on energy consumption, which allow us to prune the TFP search [8].
The potential function πd(v) may be too conservative if consumption on the optimal path

is very high. In such cases, it pays off to use a potential function πf : V × [0,M ] → R≥0
that incorporates current SoC at a vertex [7]. We represent πf (v, b) with a convex, piecewise
linear function that maps SoC b ∈ [0,M ] at a vertex v ∈ V to a lower bound on remaining
driving time. The functions are determined in a label-correcting backward search from t.

Contraction Hierarchies. We propose an adaptation of CH to our scenario, which adds a
preprocessing step for faster queries. As in plain CH [23], vertices are contracted iteratively
(ordered by heuristic rank) during preprocessing and shortcut edges are added to maintain
distances. However, we contract only a subset of the vertices, leaving an uncontracted
core graph – a common approach in complex scenarios [7, 14, 28, 37]. Since the SoC at a
vertex u ∈ V is only known at query time in our setting, any shortcut (u, v) has to store
a bivariate SoC function f(u,v). Figure 4 illustrates how the initial SoC influences energy
consumption in our model. Their bivariate nature makes explicit construction and comparison
of SoC functions rather challenging. We discuss simple representations of SoC functions in
certain cases, exploiting that most consumption values are positive in realistic instances. We
say that a path P is discharging if the SoC on P never exceeds the (arbitrary) initial SoC,
i. e., there is no prefix of P that has negative minimum consumption for arbitrary driving
times (subpaths with negative consumption are allowed, though). Hence, it is not necessary
to explicitly check whether the SoC exceeds M on a discharging path. We show how the
SoC function of a discharging path is represented by at most two consumption functions.

As a first example, assume we are given a path P = P1 ◦P2 consisting of two subpaths P1
and P2 with respective consumption functions c1 and c2, as in Figure 4. Let

¯
τ1, τ̄1,¯

τ2, τ̄2
denote their corresponding minimum and maximum driving times. Assume that c1(x) > 0 is
positive for all x ∈ R≥0, while c2(x) ≤ 0 is nonpositive for all x ∈ [

¯
τ2,∞). Finally, assume

that |c1(τ̄1)| ≥ |c2(τ̄2)|, i. e., the cost of P1 is higher than the gain of P2 for any driving time,
so P is discharging. To derive the SoC function of P we introduce two auxiliary functions: a
positive part c+ with c+(x) := c1(x−

¯
τ2), and a negative part c− with c−(x) := c2(x+

¯
τ2).
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Figure 4 Constructing a consumption function depending on initial SoC. (a) Function c1 of a
path P1. (b) Function c2 of a path P2. (c) Due to battery constraints, the minimum driving time on
P = P1 ◦P2 is 5 for an initial SoC b = 5. This yields the consumption function c = link(c+

b , c
−). The

shaded area indicates possible values of consumption functions for different values of initial SoC.

The original functions are shifted along the x-axis to simplify the analysis (note that the
minimum feasible driving time of c− is 0). Given some initial SoC b ∈ [0,M ], the positive
part c+, and the negative part c−, we first define the constrained positive part c+b as

c+b (x) :=
{
∞ if b < c+(x)
c+(x) otherwise,

which applies battery constraints along P1 for an initial SoC of b; see Figure 4. Then, the
SoC function fP of the path P evaluates to fP (x, b) = b − link(c+b , c−)(x) for arbitrary
x ∈ R≥0 and b ∈ [0,M ]. The function first applies battery constraints on the positive part
and links the resulting function with the negative part.

We now describe how SoC functions representing general discharging paths are constructed
from two given SoC functions of discharging paths. Assume we are given a discharging
path P1 whose SoC function is defined by two consumption functions c+1 and c−1 , as described
above. Similarly, we are given a discharging path P2 with respective consumption functions
c+2 and c−2 . Observe that the path P := P1 ◦ P2 must be discharging as well. Apparently,
if we know the initial SoC, we can compute energy consumption on P by computing
link(link(link(c+1 , c

−
1 )c+2 )c−2 ) and applying battery constraints before each link operation,

like in the TFP algorithm. However, we want to represent P with only two consumption
functions c+ and c−. Recall that the only constraint we have to check for discharging paths
is whether the SoC drops below 0. Thus, we identify a new positive part c+ as follows. Since
both c−1 and c−2 are nonpositive for all admissible driving times, the constraint needs only
to be checked for c+1 and c+2 (i. e., before the first and third link operation). To integrate
these checks into a single positive part c+, we first compute the function h := link(c−1 , c

+
2 ).

Clearly, the battery can only run empty on P2 if this consumption function is positive for
some admissible driving time. To distinguish this case, we split h into a positive part h+

with h+(x) := max{h(x), 0} and a negative part h− with h−(x) := h(x) if h(x) ≤ 0
and h−(x) :=∞ otherwise. Since h is a decreasing consumption function, so are h+ and h−.
We obtain the positive part c+ of P by setting c+(x) := link(c+1 , h+)(x−

¯
τ) and the negative

part c− by setting c−(x) := link(h−, c−2 )(x+
¯
τ), where

¯
τ is the minimum driving time of h−.

The SoC function of P is obtained from c+ and c− as described above.
During preprocessing, we only allow a vertex v ∈ V to be contracted if all new shortcuts

created as part of its contraction are discharging. We call v active in this case. Note that
the number of active vertices grows as contraction proceeds, as contraction produces longer
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Table 1 Benefits of our approach (Eur-PG, 2 kWh). For TFP and TFP-dom. (improved dominance
tests), we report the number of settled labels (#Lbls.), number of label comparisons during the
forward search (#Dom.), average and maximum running times, and relative driving time savings
over the constrained path found by BSP on discretized speeds.

Query Path Savings

Algo. #Lbls. #Dom. avg. [ms] max. [ms] avg. [%] max. [%]

BSP 30 990 276 21 300 657 522 47 755 779 756 – –
TFP 103 119 4 399 002 444 14 347 2.7% 9.4%
TFP-dom. 46 228 700 546 103 3 851 2.7% 9.4%

shortcuts, which are more likely to consist of long positive parts. Since we deal with a
bicriteria scenario, vertex contraction may produce multi-edges. In such cases, we only want
to keep shortcuts whose SoC functions are not dominated by parallel shortcuts. Hence, after
contraction of a vertex, we delete (parts of) SoC functions of shortcut candidates that are
dominated by existing functions between the same pair of vertices (and vice versa). To
this end, we derive efficient dominance checks for (simple) bivariate SoC functions that
can be performed in linear time (in the number of subfunctions of all involved functions).
Finally, before adding a (nondominated) shortcut candidate to the graph, we run a witness
search [23] to test if the shortcut is necessary to maintain distances. As an exact approach
would require propagation and comparison of bivariate SoC functions, our witness search
computes univariate upper bounds on energy consumption instead. This does not violate
correctness, but may result in unnecessary shortcuts.

Queries. Plain CH uses a bidirectional search, which scans only edges to vertices of higher
rank in the input graph enriched with shortcuts obtained during preprocessing. In our case,
however, the SoC at the target vertex t ∈ V is not known at query time, which makes
backward search difficult. Instead, we extract the search space in a (backward) BFS from t,
scanning and marking only edges to vertices of higher rank. Afterwards, we execute TFP from
the source vertex s, scanning upward edges (with respect to ranks of incident vertices), core
edges, and marked downward edges. For faster queries, we can combine this search with A*.

5 Experiments

We implemented all approaches in C++, using g++ 4.8.3 (-O3) as compiler. Experiments
were conducted on a single core of a 4-core Intel Xeon E5-1630v3 clocked at 3.7GHz, with
128GiB of DDR4-2133 RAM, 10MiB of L3 cache, and 256KiB of L2 cache.

We consider road networks of Europe with 22 198 628 vertices and 51 088 095 edges
and Germany with 4 692 091 vertices and 10 805 429 edges, provided by PTV AG (http:
//ptvgroup.com). Combining reasonable minimum speeds for different road types (e. g.,
80 km/h on motorways and 30 km/h in residential areas) with the posted speed limits (if
higher), we get intervals of allowed speeds per road segment, resulting in 25% and 38% of
nonconstant edges for Germany and Europe, respectively. Applying elevation data from
the Shuttle Radar Topography Mission, v4.1 (srtm.csi.cgiar.org), we derived realistic
energy consumption from two detailed micro-scale emission models [29]: one based on a
Peugeot iOn and one artificial model [39] that additionally accounts for auxiliary consumers
(e. g., air conditioning). These data sources are proprietary, but enable evaluation on
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Figure 5 Scalability of BSP, our TFP algorithm, TFP with improved dominance tests (TFP-dom.),
speedup techniques (A*-πd, CHAsp-πd, and CHAsp-πf ), and our heuristic approach CHAsp-ε-πd

with ε := 0.1. A capacity of 512 kWh corresponds to a range of roughly 3 000 km.

detailed and realistic input data. We denote our instances by Germany-Aux (Ger-AX),
Germany-Peugeot (Ger-PG), Europe-Aux (Eur-AX), and Europe-Peugeot (Eur-PG). They
have negative consumption (for at least some driving times) on 7.8% (Ger-AX) to 12.9% (Eur-
PG) of their edges.

For comparison, we consider parallel edges and bicriteria shortest paths (BSP) [34]
to model adaptive speeds, as was best practice in previous approaches [8]. We generate
multi-edges by sampling consumption functions at discrete velocity steps of 10 km/h.

We evaluate random in-range queries, i. e., we pick a source vertex s ∈ V uniformly at
random. Among all vertices in range from s with an initial SoC bs = M , we pick the target
vertex t ∈ V uniformly at random. Since unreachable targets are easily detected by backward
search phases of A* (or any algorithm for computing energy-optimal routes [9, 16, 35]), this
yields more challenging and interesting queries for us.

Model Validation and Scalability. We have argued that an approach based fully on con-
sumption functions unlocks both better tractability and improved solution quality compared
to discrete speeds and BSP. Indeed, we observe a significant speedup by simply switching to
our more realistic model, as Table 1 shows. TFP is up to two orders of magnitudes faster than
BSP and finds paths that are up to 9.4% quicker (within SoC constraints), since it evaluates
speed–consumption tradeoffs more fine-granularly while maintaining less query state (labels
of continuous functions expressed by few parameters instead of large, discrete Pareto sets).
This is interesting, as sampling was expressly considered to manage tractability [8, 25, 28].
In fact, even though atomic operations (linking and comparing labels) are more expensive
for TFP, a drastic reduction in the number of vertex scans explains the speedup.

Figure 5 gives an overview of our approaches and their scalability across increasing battery
capacities. For each capacity, we ran 100 random in-range queries, reporting median running
time if all 100 queries terminated within one hour. Beyond the previously discussed BSP,
TFP, and TFP-dom., A* enables reasonable running times for capacities of up to 32 kWh,
without any preprocessing. Adding preprocessing, CHAsp-πd provides further speedup by
about an order of magnitude. In comparison, median running times of CHAsp-πf are slower
for all ranges up to 32 kWh. However, this algorithm is more robust against outliers and



M. Baum, J. Dibbelt, D. Wagner, and T. Zündorf 11:11

Table 2 Impact of core size on performance (Ger-PG, 16 kWh). Vertex contraction stopped once
the average degree of active vertices in the core reached a given threshold (ØDeg). We report the
resulting core size (#Vertices), preprocessing time, and average query times for 1 000 queries using
CHAsp with potential functions πd and πf , respectively.

Core size Prepr. Query [ms]

ØDeg. #Vertices [h:m:s] πd πf

0 – – 3 326.0 4 861.5
8 720 514 (15.36%) 5:07 737.2 798.3

16 400 174 (8.53%) 13:25 496.2 485.0
32 305 301 (6.51%) 31:44 451.8 434.0
64 268 436 (5.72%) 1:11:13 505.5 473.1

128 251 410 (5.36%) 2:37:23 649.1 586.1

Table 3 Preprocessing and exact query performance for the potential functions πd and πf . For
the ranges 16 kWh and 85 kWh, we show number of labels settled during the forward search (#Lbls.),
number of label comparisons during the forward search (#Dom.) and total query times.

Prepro. 16 kWh 85 kWh

Inst. [h:m:s] Algo. #Lbls. #Dom. Query [ms] #Lbls. #Dom. Query [ms]

Ger-AX 30:34 CHAsp-πd 152 3 788 4.2 24 715 4 312 923 552.3
Ger-AX 30:34 CHAsp-πf 61 448 17.0 406 11 813 1 236.7

Ger-PG 31:44 CHAsp-πd 32 773 6 352 488 451.8 2 272 350 2 130 447 427 131 562.0
Ger-PG 31:44 CHAsp-πf 6 008 491 173 434.0 32 182 6 836 380 14 873.5

Eur-AX 3:10:43 CHAsp-πd 124 2 175 4.0 27 358 12 159 343 960.9
Eur-AX 3:10:43 CHAsp-πf 73 1 006 15.8 871 46 529 1 174.7

Eur-PG 3:13:01 CHAsp-πd 23 304 5 024 403 346.1 – – –
Eur-PG 3:13:01 CHAsp-πf 6 629 800 430 341.7 105 792 44 986 403 34 617.4

is the only exact method that terminates within an hour for all queries at 64 kWh and up.
Finally, our heuristic variant scales very well with vehicle range: Query times actually bottom
out for large battery capacities, as the vehicle range gets close to the graph diameter.

Detailed Experiments. We evaluate different variants of our fastest approach, CHAsp.
Table 2 shows CH preprocessing effort and query performance subject to core size on Ger-PG,
for a common battery capacity of 16 kWh (corresponding to a range of 100 km). Contraction
becomes much slower beyond a core degree of 32, which is explained by the small number of
remaining active (i. e., contractable) vertices in the core. This also explains why speedup
compared to the baseline (Ødeg = 0 is equivalent to plain TFP combined with A*) is much
smaller than in simpler applications, where CH typically improves the baseline by several
orders of magnitude [23]. Similar observations were made in other complex settings, including
time-dependent [5, 11] and multicriteria [21, 22] scenarios. Nevertheless, CH still yields an
improvement by up to an order of magnitude in our case. In our subsequent experiments, we
pick an average core degree of 32 as stopping criterion of CH preprocessing.

Table 3 reports performance of CHAsp on all instances for capacities of 16 kWh and
85 kWh (as in Tesla models, with a range of 400–500 km). Figures are average values for 1 000
in-range queries. For 16 kWh, our techniques find the optimal solution in well below a second
on average. For Ger-AX and Eur-AX, we even achieve query times in the order of milliseconds.
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Table 4 Performance of the heuristic variant of CHAsp-πd, for different choices of the parameter ε
(see Section 3) on the hard instances Ger-PG and Eur-PG. We show figures on query performance for
1 000 random queries with a range of 16 kWh, as in Table 3. Additionally, we report the percentage
of feasible and optimal results, as well as the average and maximum relative error.

Query Result Quality

Inst. Prepro. ε #Lbls. #Dom. T. [ms] Feas. Opt. Avg. Max.

G
er
-P

G 31:43 0.00 32 773 6 352 488 451.8 100.0% 100.0% 1.0000 1.0000
30:41 0.01 19 922 1 949 458 225.6 100.0% 89.4% 1.0001 1.0047
25:49 0.10 6 891 208 058 75.6 98.9% 62.8% 1.0013 1.0502
17:48 1.00 1 742 11 149 30.7 95.1% 47.6% 1.0144 1.2294

E
ur
-P

G 3:09:22 0.00 23 304 5 024 403 346.1 100.0% 100.0% 1.0000 1.0000
3:04:48 0.01 12 803 1 132 685 151.6 100.0% 82.8% 1.0001 1.0145
2:47:09 0.10 5 045 126 662 60.9 99.5% 57.5% 1.0020 1.0418
2:14:03 1.00 1 428 7 641 28.2 92.7% 45.8% 1.0203 1.3960

This gap in running time is explained by the difference in the number of edges with negative
cost, caused by the underlying consumption model. One could even argue that the instances
Ger-PG and Eur-PG are actually rather excessive in this regard, by not accounting for any
auxiliary consumers at all. As a result, these instances are significantly more difficult to solve.
Regarding the potential functions πd and πf , the search space is consistently smaller when
using πf , but the backward search is more expensive. In fact, it becomes the major bottleneck
for a battery capacity of 16 kWh on the easier instances. Consequently, query times are slower
by about a factor of 4. For harder scenarios, however, the potential function πf provides
better results due to better scalability. Note that when using πd, at least one query exceeded
our threshold of one hour in computation time on Eur-PG. In summary, we can solve EVCSP
optimally for typical ranges in less than a second, even on hard instances. For very long
ranges, our algorithm computes the optimum in well below a minute on average (using πf ),
despite its exponential running time.

In Table 4, we evaluate our heuristic approach for different choices of ε (in % of total SoC).
During preprocessing, new shortcuts are included only if they significantly improve on the
existing ones. Thus, preprocessing becomes faster and core sizes (not reported in the table)
decrease by up to 30%. Regarding queries, we achieve a speedup by an order of magnitude.
However, the choice of ε clearly matters. For ε = 0.01, the decrease in quality is negligible,
but speedup (about a factor of 2) is rather limited as well. For ε = 0.1, on the other hand,
the optimal solution is still found very often. The average error is roughly 0.2%, while the
overall maximum error is 5%, which is acceptable in practice. Finally, for ε = 1.0, both
the average and maximum error increase significantly. Given that speedup is also limited
compared to ε = 0.1, we conclude that the latter provides the best tradeoff in terms of
quality and query performance: providing high-quality solutions, it enables query times of
well below 100ms, which is fast enough even for interactive applications. Moreover, note
that in cases where no path is found (about 1% of all queries for ε = 0.1), a simple fallback
solution could return the energy-optimal path, which can be computed quickly [9, 16, 35].

6 Conclusion

We introduced a novel framework for computing constrained shortest paths for EVs in
practice, using realistic consumption models. Our base algorithm TFP respects battery
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constraints and accounts for adaptive speeds in a mathematically sounder way that unlocks
both better query performance and improved solution quality when compared to previous
approaches using discretized, sampled speeds. Nontrivial speedup techniques based on A*
and CH make the algorithm practical. For typical EV ranges, it computes optimal solutions
in less than a second, making it the first practical exact approach – with running times
similar to previous inexact methods [8, 25, 28]. Our own heuristic enables even faster queries
while retaining high-quality solutions.

The result of our computations is not only the suggested route from source to target but
also optimal driving speeds along that route. In practice, these can be passed to the driver as
recommendations or directly to a cruise control unit. With the advent of autonomous vehicles,
the output of our algorithms can also be used for speed planning of self-driving EVs, either
directly or after further refinement [19]. For future work, a next step would be the integration
of planned charging stops [7, 37]. From a practical point of view, it might also be interesting
to consider adaptive speeds only on the fastest roads (e. g., motorways), where going below
the speed limit really pays off the most. Then, contracting vertices incident to constant
edges in CH might be a promising approach. Finally, we are interested in the integration of
variable speed limits imposed by, e. g., historic knowledge of traffic patterns [5, 13, 20].
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Abstract
The Capacitated Vehicle Routing problem is a generalization of the Traveling Salesman
problem in which a set of clients must be visited by a collection of capacitated tours. Each
tour can visit at most Q clients and must start and end at a specified depot. We present the
first approximation scheme for Capacitated Vehicle Routing for non-Euclidean metrics.
Specifically we give a quasi-polynomial-time approximation scheme for Capacitated Vehicle
Routing with fixed capacities on planar graphs. We also show how this result can be extended
to bounded-genus graphs and polylogarithmic capacities, as well as to variations of the problem
that include multiple depots and charging penalties for unvisited clients.
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1 Introduction

Vehicle routing refers to a class of problems in which one selects routes for a vehicle that
must make deliveries or pickups at specified locations. Irnich et al., in the introductory
chapter [14, p. 3] of a book on vehicle routing, define the capacitated vehicle routing
problem (CVRP) as follows: there is a (directed or undirected) graph G with edge costs, a
distinguished vertex r called the depot, and for each vertex v, a demand q(v). Finally, there
is a number Q, which is the capacity of the vehicle(s). A solution is a set of tours, where
each tour starts and ends at the depot and serves the demands of some of the vertices it
visits. Each tour must serve a total demand of at most Q, and every demand must be served
by one of the tours. The goal is to find a solution whose total cost is minimum.

To be consistent with the algorithms literature, we use a slightly different definition
of capacitated vehicle routing: we assume that the demands are all 0 or 1, i.e. that
there is a set Z of vertices, called the clients, where the demand is 1, and demands at other
vertices are zero. (One can model multiple clients located at the same vertex v by introducing
artificial vertices, adjacent to v via artificial edges of cost zero.)
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12:2 A QPTAS for Vehicle Routing on Planar and Bounded-Genus Graphs

The problem is APX-hard for an arbitrary graph when Q ≥ 3 [5], and to approximate it
within a factor 1.5 is NP-complete even in a tree when Q is unbounded [10]. We are interested
in finding solutions that are within a factor 1 + ε of optimal for any given ε. However, despite
the fact that the problem is often described as a problem in road networks, theoretical
work on algorithms achieving 1 + ε approximation has been restricted to the Euclidean case.

Since the family of planar graphs (or more generally graphs of bounded genus) are
useful for modeling road networks,1 it is desirable to find an algorithm that achieves a 1 + ε

approximation on such graphs with arbitrary nonnegative edge costs. Before this work, no
such approximation scheme was known for any graph class (except trees, where the problem
is polynomial-time-solvable for fixed capacity).

I Theorem 1. For any ε > 0 and any Q > 0, there is a quasi-polynomial-time algorithm
that, given an instance of capacitated vehicle routing in which the capacity is Q and
the graph is planar, finds a solution whose cost is at most 1 + ε times optimum.

A family of algorithms of this form, where for each ε > 0 there is an algorithm that achieves
a 1 + ε approximation, is an approximation scheme. By quasi-polynomial is meant a function
f(n) that is O(nlogc n) for some constant c.

As pointed out in [14], with a limited fleet, it may be impossible to service all requests,
and there is an advantage in simultaneously optimizing both routing and request selection.
We model this using a natural generalization of the capacitated-vehicle-routing problem: an
instance specifies also a penalty for each client; the solution is allowed to miss some clients
and the goal is to find a solution that minimizes the sum of cost plus penalties. We call this
Capacitated Vehicle Routing with Penalties.

This generalization can handle the vehicle routing problem with private fleet and common
carrier (VRPPC), “where customers may either be served by using owned vehicles with
traditional routes or be assigned to a common carrier, which serves them directly at a prefixed
cost” [14, p. 13].

Our quasi-polynomial-time approximation scheme can also be extended to handle Ca-
pacitated Multiple-Depot Vehicle Routing. In this version, several vertices are
designated as depots, and tours can start and end at different depots.

The algorithm can also handle a graph of bounded genus and a capacity Q that is
polylogarithmic. (Q is considered constant in Theorem 1.)

I Theorem 2. For any ε > 0, any g ≥ 0, any R ≥ 0 and any c ≥ 0, there is a quasi-
polynomial-time algorithm that, given an instance of Capacitated Multiple-Depot
Vehicle Routing with Penalties in which the capacity Q is O(logc n) and the graph has
genus g with R designated depots, finds a solution whose cost is at most 1 + ε times optimum.

1.1 Related work
Capacitated Vehicle Routing is a generalization of Traveling Saleman Problem
(for TSP Q = n).

Haimovich and Rinnoy Kan [12] showed the following:

I Lemma 3. For Capacitated Vehicle Routing with capacity Q and client set Z,

OPT ≥ 2
Q

∑
{d(c, r) : c ∈ Z} . (1)

1 Aside from highways, the nonplanarities in road networks tend to be localized, and informally approx-
imation schemes for planar graphs can often “work around” these localized nonplanarities.
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This lemma implies a constant-factor approximation in general metrics, where the constant
depends on the approximation ratio for TSP. Capacitated Vehicle Routing in general
graphs is APX-hard for every fixed Q ≥ 3 [4, 5]. Haimovich and Rinnoy Kan [12] gave a
polynomial-time approximation scheme (PTAS) for the Euclidean plane for the case when
the capacity Q is constant. Asano et al. [5] gave an algorithm that was a PTAS when Q
is O(logn/ log logn). Mathieu and Das [7] gave a quasi-polynomial-time approximation
scheme that handles arbitrary Q. Building on [7], Adamaszek, Czumaj, and Lingas [1] give a
polynomial-time approximation scheme that for any ε > 0 can handle Q up to 2logδ n where δ
is a positive number that depends on ε. There has been some work on approximation schemes
to R3 [16] and Rd [15] but these require that Q be O(log1/d logn). No polynomial-time
approximation scheme is known for arbitrary Q, even for R2.

There is little known about approximation of vehicle routing in special metrics other
than low-dimensional Euclidean metrics. Hamaguchi and Katoh [13] and Asano, Katoh, and
Kawashima [3] gave better constant-factor approximation algorithms for the case where the
graph is a tree.

1.2 Our Approach

Our algorithm uses a recursive decomposition of the graph via shortest-path separators. That
is, there is a recursive clustering in which the vertices on the boundary of each cluster lie
on a small number of shortest paths. This general idea has been used in several previous
approximation schemes for planar and bounded-genus graphs [2, 6, 8, 11]. The closest
previous use was in addressing the k-center problem [8], and we use a lemma from that paper
stating that such a recursive decomposition exists that has logarithmic depth.2

This paper introduces several new ideas in order to apply the recursive decomposition
to vehicle routing. Before finding the recursive decomposition, the algorithm must prune
the graph to eliminate vertices too far from the depot to participate in an optimal solution.
The shortest paths bounding each cluster are subpaths of shortest paths from the depot. This
ensures that if one vertex of a bounding shortest path is farther along the bounding shortest
path than another, it is also farther from the depot. This in turn is useful since, as we saw
in Section 1.1, there is a lower bound (3) on OPT that is based on the distance of clients
from the depot.

Some of the vertices of these bounding shortest paths are designated as portals, and
(some) paths of the solution are restricted to entering and leaving clusters via portals. This
in itself is not novel; portals have been used before. We introduce two new ideas. In previous
use of portals in approximation schemes for planar graphs, portals are selected uniformly
along a path. In this paper, it is essential that the portals be selected in a nonuniform
fashion: the farther from the depot, the greater the spacing between portals. This introduces
more error in areas of the graph farther from the depot but such error can be tolerated due
to the lower bound (3).

Second, requiring the entire solution to pass in and out of clusters via portals would
introduce too much error. Instead, we only require a tour to use portals in between picking
up clients. That way, we can bound the error in terms of clients and their distance from the
depot. (This error also depends on the depth of nesting of the recursion, since in the process

2 Such a decomposition was earlier described by Thorup [17] in the context of approximate distance
oracles. However, in addressing the generalization to multiple depots we use a generalization of the
decomposition that follows from slight modification of the proof in [8].
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of picking up a client the tour might pass through many clusters at different levels of nesting,
but the depth of nesting is merely logarithmic.)

Having shown that an (approximately) optimal solution can be assumed to use clusters in
this way, we reduce the problem to one we can address using dynamic programming. In most
previous work on approximation schemes for planar graphs, this consists in simply finding an
optimal solution in a graph of bounded branchwidth (or treewidth) but because the solution
can pass through the boundary without using portals, that does not quite suffice in our case;
the dynamic program must also make use of the metric on the entire graph as well.3

Paper Outline. Section 2 provides preliminary definitions. In Section 3 we describe the
graph decomposition and portal selection. In Section 4 we prove a structure theorem that
shows a near-optimal solution with the restricted structure exists. Section 5 provides the
dynamic program that finds such a near optimal solution in quasi-polynomial time. Finally
in Section 6 we describe several generalizations of our result.

2 Preliminaries

Let G = (V,E) be a graph. We denote the vertex set of G by V (G). G is planar if it can be
embedded on the surface of a sphere without any edge crossings. We let n = |V |. A planar
graph with n vertices and no parallel edges has O(n) edges.

For any edge set F ⊆ E the boundary of F , denoted ∂(F ), is the set of vertices that are
incident both to edges in F and edges in E − F .

We use d(u, v) to denote the (shortest path) distance from u to v. We can easily compute
all-pairs shortest paths in polynomial time, so we assume throughout the paper that we have
access to all (precomputed) distances. Additionally we assume that the cost of any edge
(u, v) is d(u, v); if not, it would not be used and can be removed from the graph. We use
d(P ) =

∑
(u,v)∈P d(u, v) to denote the cost of a path P .

For a graph G and vertex r, an r-rooted shortest path tree T is an r-rooted tree in which
for all v in V the r-to-v path in T is a shortest path. For any vertex u on a shortest r-to-v
path, we call the u-to-v subpath a from-r shortest subpath. Such a subpath must also be a
shortest u-to-v path.

A triangulated planar graph is one in which every face has exactly three incident edges.
A planar graph can easily be triangulated in linear time by adding edges that recursively
subdivide faces with more than three incident edges. Each new edge (u, v) is given cost
d(u, v). Triangulating a planar graph requires adding O(n) edges.

A recursive partition of a set Y is a rooted binary tree in which each node is labeled with
a cluster C ⊆ Y such that the root node is labeled with C = Y , and for any node labeled
with cluster C0 the children nodes are labeled with clusters C1 and C2 that form a partition
of C0 [8].

A recursive clustering of a graph G is a rooted binary tree in which
each node is labeled with a cluster C ⊆ V (G),
If x is a child of y then the cluster associated with x is a subset of the cluster associated
with y, and
there is a mapping φ(·) that maps each vertex v of G to a leaf cluster φ(v) that contains v.

Each vertex v is considered to be assigned to each cluster containing φ(v).

3 A similar technique was used in [8].



A. Becker, P. N. Klein, and D. Saulpic 12:5

A vertex v of a cluster C is a boundary vertex of the cluster if v also belongs to a cluster
C′ that neither contains nor is contained in C. An edge uv of G is a boundary edge of the
cluster if u is in the cluster and v is not. The depth of a recursive clustering is the depth of
the rooted binary tree.

For an instance of Capacitated Vehicle Routing, Z is the set of clients, r is the
depot, and Q is the capacity. A solution is a collection of tours, each starting and ending at
r and visiting at most Q clients.

3 Decomposing the Graph

3.1 Graph Pruning
As a preprocessing step, the algorithm prunes from the graph those vertices that have no
clients and are very far from the depot. Specifically, the algorithm deletes each vertex that
does not lie on some u-to-v shortest path with u, v ∈ Z ∪ {r}. Since the optimal solution is
composed of such paths, pruning does not increase OPT .

I Lemma 4. For all vertices w that remain after the preprocessing step, d(r, w) ≤ OPT

Proof. Since w survived the pruning step, it must lie on some u-to-v shortest path with
u, v ∈ Z ∪ {r}. Without loss of generality, assume that the optimal solution visits u before
visiting v. Therefore OPT ≥ d(r, u) + d(u, v) ≥ d(r, u) + d(u,w) ≥ d(r, w) where the final
inequality comes from the triangle inequality. J

3.2 Cluster Decomposition
The following lemma is a slight generalization of a lemma in [8] (though it is probably
folklore):

I Lemma 5 (Generalization of Lemma 3.1 in [8]). Let T be a tree of degree at most three. Let
Y be a subset of the vertices. There is a depth-O(log |Y |) recursive clustering of T such that

there are no boundary vertices,
each leaf cluster is assigned only one vertex of Y , and
each cluster C has at most four boundary edges.

Let G be a planar embedded graph and let T be a spanning tree of G. Let G′ be obtained
from G by adding artificial edges to triangulate G. Let G∗ be the planar dual of G′. Let
T ∗ be the set of edges of G∗ corresponding to edges of G′ that are not in T . Then T ∗ is
a spanning tree of G∗ (the interdigitating tree). Each edge of T ∗ corresponds to a nontree
edge in G, which in turn defines a cycle consisting of that nontree edge together with a path
through T . Since G′ is triangulated, G∗ has degree at most three. Map each vertex of G′
to one of the faces to which it is incident. Let Y be the faces to which elements of Z are
mapped. By choosing T to be an r-rooted shortest-path tree of G and applying Lemma 5,
we obtain the following generalization of a corollary of [8].

I Lemma 6 (Generalization of Corollary 3.1 of [8]). Let G be a planar embedded triangulated
graph with edge costs, let Z be a subset of the vertices, and let r be a vertex of G. There is a
depth-O(log |Z|) recursive clustering of G with the following properties:

there are no boundary edges,
for each cluster, there are at most eight from-r shortest paths such that the boundary
vertices of the cluster are the vertices that lie on these paths, and
at most three vertices of Z are assigned to each leaf cluster.

The algorithm computes a recursive clustering as described in Lemma 6.
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3.3 Choosing Portals
The algorithm designates portals along each cluster boundary in a two-step process. First it
designates some of the vertices as spacers. Second, for each cluster it designates as portals a
subset of the cluster’s boundary vertices, including those boundary vertices that are spacers
and also some additional vertices.

The choice of spacers depends on a parameter δ. We will choose

δ = ε

(Q+ 4)c log |Z| (2)

where c is an absolute constant to be determined in the proof of Theorem 11.
We first describe spacer selection. Let T be the shortest-path tree. Let v̂ be the vertex

farthest from r that remains after the pruning step and let δ > 0. Consider the unpruned
vertices in increasing order of distance from r. For each vertex v in turn, designate v
as a spacer if no ancestor in T of v within distance δ max(d(r, si−1), 1

|Z|d(r, v̂)) has been
designated a spacer.

I Lemma 7. Each from-r shortest path has at most 2 + log1+δ
|Z|
δ spacers.

Proof. Let P be a from-r shortest path, and let r=s0, s1, . . . , s` be the spacers on P in
increasing order of distance from r. We bound ` as follows. For each i > 0, d(si−1, si) >
δ d(r, si−1), so

d(r, si) = d(r, si−1) + d(si−1, si) > (1 + δ)d(r, si−1) .

By induction,

d(r, s`) > (1 + δ)`−1d(r, s1) .

Since d(r, s1) > δ 1
|Z|d(r, v̂), we infer d(r, s`) > (1 + δ)`−1 δ

|Z|d(r, v̂), which implies

(1 + δ)`−1 <
|Z|
δ

d(r, s`)
d(r, v̂) ≤

|Z|
δ

which shows

`− 1 < log1+δ
|Z|
δ
. J

The algorithm then designates some of each cluster’s boundary vertices as portals. For
each cluster C, the boundary vertices of C lie on O(1) from-r shortest subpaths. For each
such from-r subpath P , designate as portals the first vertex of P and all the vertices of P
that are spacers.

By Lemma 7, each path P contributes O(δ−1 log(δ−1|Z|)) portals. Using the definition
of δ in Equation 2, we obtain

I Lemma 8. For each cluster boundary, the above algorithm designates O(Qε−1 log2 |Z|)
portals.

We also show a bound on the distance along the boundary to the nearest portal.

I Lemma 9. For every cluster C and boundary vertex v ∈ ∂(C), there is a portal p of C and
a p-to-v path of cost at most δ (d(r, v) +OPT/|Z|).
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Proof. By Lemma 6, v must lie on some from-r shortest subpath of a from-r shortest path P .
Let s be v’s closest ancestor in T that is a spacer. By the algorithm for designating spacers,

d(s, v) ≤ δ max(d(r, s), 1
|Z|

d(r, v̂)) ≤ δ max(d(r, v), OPT/|Z|) .

If s belongs to P then s is a boundary vertex of C and hence a portal of C. In this case, we
take p = s. If not, then let p be the first vertex of P and note that d(p, v) ≤ d(s, v). J

4 Structure Theorem

Consider a solution to Capacitated Vehicle Routing. It consists of a set of tours.
Associated with each tour P is a set of vertices in V (P ) ∩ Z that the tour is considered to
visit. For a cluster C, a tour fragment with respect to C is a maximal subpath of a tour all of
whose vertices are in C. Every tour starts and ends at the depot r. If r is in C then it is
a boundary vertex of C. Therefore, by maximality, each endpoint of a tour fragment with
respect to C is a boundary vertex of C.

A tour fragment is visiting if it visits clients and passing if it does not. The endpoints of
a visiting fragment are called gates.

I Lemma 10. Any solution to Capacitated Vehicle Routing crosses through O(log |Z|)
gates between two consecutive visits to clients.

Proof. Consider a solution to Capacitated Vehicle Routing. Let u and v be two
consecutive clients visited by the solution, and let P be the subpath of the tour between its
visit to u and its visit to v. Let C be a cluster and let S be a visiting tour segment with an
endpoint x on P . Since S is a visiting segment, it visits some vertex. Since no visits occur
on P between u and v, the other endpoint y of P must not be an internal vertex of P . Thus
either u or v must be assigned to the cluster C. If u is assigned to C then all edges on the
u-to-x subpath of P belong to C, and the edge of P after x does not. If v is assigned to C
then all edges on the x-to-v subpath of P belong to C, and the edge of P before x does not.

Let Cu,0 ⊂ Cu,1 ⊂ ... ⊂ Cu,` be the clusters that are assigned u, and let Cv,0 ⊂ Cv,1 ⊂ ... ⊂
Cv,k be the clusters that are assigned v.

For i = 0, 1, . . . , `, let tu,i be the last vertex x of P such that the u-to-x subpath of P
consists of edges of cluster Cu,i. For i = 0, 1, . . . , k, let tv,i be the first vertex x of P such
that the x-to-u subpath of P consists of edges of cluster Cv,i.

Since the clusters are non-crossing, P visits tu,0, tu,1, . . . , tu,`, tv,k, tv,k−1, ..., tv,0 in order
(See Figure 1a). The argument above shows that every gate is one of tu,0, . . . , tv,0.

By Lemma 6, the depth of the decomposition is O(log |Z|), so k + ` is O(log |Z|). J

Now we break up tours in a different way. Again consider a solution to Capacitated
Vehicle Routing. It consists of a set of tours. For a cluster C, a tour segment P with
respect to C is portal-respecting if P has a portal-to-portal subpath P ′ such that every vertex
not in P ′ is a boundary vertex of C.

I Theorem 11. There exists a portal-respecting solution with cost at most (1 + ε)OPT .

Proof. Let S∗ be an optimal solution to Capacitated Vehicle Routing. To prove the
theorem, we show how to modify S∗ to construct a portal-respecting solution Ŝ by introducing
detours at every gate, and bound the cost incurred by these detours.

Consider a tour fragment P with respect to some cluster C, and let t be an endpoint
of P . The corresponding detour is the subpath of a from-r shortest subpath from t to the
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(a) Gates (b) Detour

Figure 1 (a) Gates are depicted by large, hollow circles at crossings. Non-gate crossings enclose
passing segments (b) Boundary portals are denoted by squares. The double-line paths depict a
detour.

nearest portal, and back. (See Figure 1b.) Splicing such a detour into the solution at each
gate ensures that the solution is still feasible and is portal-respecting. It remains to show
that the cost of these detours is small.

Let u and v be two consecutive clients visited by S∗. By Lemma 10 there is some constant
c such that there are at most c log |Z| gates between u and v where detours will be added.
We use this constant c in the definition of δ given in Equation 2. By Lemma 9 the distance
from any crossing t to the nearest portal is at most δ (d(r, t) +OPT/|Z|), so the cost of each
detour is at most 2δ (d(r, t) +OPT/|Z|).

Since S∗ is optimal, the path that S∗ takes from u to v must be a shortest path. By
the triangle inequality, d(r, t) ≤ d(r, v) + d(v, t) ≤ d(r, v) + d(v, u). Therefore, the cost
of each detour is at most 2δ (d(u, v) + d(r, v) + OPT/|Z|). Summing over all gates gives
2δc log |Z|

(
d(u, v) + d(r, v) +OPT/|Z|

)
, and summing over all pairs of consecutive clients

and using Lemma 3,∑
(u,v)∈S∗

2δc log |Z|
(
d(u, v) + d(r, v) +OPT/|Z|

)
≤ 2δc logn(OPT + Q

2 OPT +OPT )

= δc log |Z|(Q+ 4)OPT .

The definition of δ given in Equation 2 ensures that the total detour cost is at most
εOPT . J

The notion of portal-respecting can be applied not just to a solution but to a partial
solution as well. This is used in the next section.

5 Dynamic Program

We present two dynamic programs: the first is slow but is the basis of the second, which
gives a QPTAS. Both have the same configurations but enumerate the transitions in different
ways.

5.1 Configurations
For each cluster, the dynamic program computes the minimal cost of a portal-respecting
solution that visits all the clients assigned to the cluster. A configuration for a cluster C
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Figure 2 The segment (i, o, q) of the parent cluster is shown in red (short-dashed line). The
green path (long-dashed line) shows one way to map this segment onto the child clusters: segment
(b1, e1) visits q1 clients and (b2, e2) visits q2 clients with q1 + q2 = q. Segments (i, b1), (e1, b2), and
(e2, o) are passing segments and visit no clients

describes the tour segments formed by the intersection of C with a solution. Recall that if
the depot r is contained in a cluster, it is a portal of its boundary. Additionally, since each
client is assigned to exactly one leaf cluster, we avoid overcounting any client’s demand. For
a client z, let DC,z be the demand of z inside the cluster C. DC,z = 1 if z is assigned to C,
otherwise DC,z = 0.

A configuration X for cluster C specifies, for each pair of portals (i, o) of the cluster
and for each q ∈ {1, ..., Q}, a number Xi,o,q of segments that enter C at portal i, visit
exactly q clients in C, and leave C at portal o. A configuration for cluster C is admissible if
Σi,o,qqXi,o,q = Σz∈CDC,z.

A partial solution S for cluster C is a set of tour segments that stays inside the cluster.
We say that a partial solution S for cluster C induces the configuration X if every visiting
segment of S corresponds to a segment described in X (recall that a visiting segment is one
that visits a client).

Our dynamic program computes, for each cluster C and admissible configuration X , the
weight DP (C,X ) of the minimum-weight, portal-respecting partial solution that induces the
configuration X .

5.2 Compatibility

To compute the minimal cost of a partial solution for a cluster C0 that induces the configuration
X 0, the algorithm determines possible configurations for the two child clusters of C0, namely
C1 and C2. Let C0 be a cluster, with two child clusters C1 and C2, and let X 0, X 1, and X 2 be
three configurations such that X ı is admissible for Cı. We say that X 1 and X 2 are compatible
with X 0 if each segment (i, o, q) described in X 0 can be mapped to a tuple of segments of
X 1 and X 2,

(
(b1, e1, j1, q1), · · · , (bK , eK , jK , qK)

)
, where jı ∈ {1, 2}, bı and eı are portals

of Cjı , and such that 0 < qı < Q and ΣK
ı=1qı = q. We use (X 1,X 2) ∼ X 0 to denote that

X 1 and X 2 are compatible with X 0. To ensure that partial solutions are portal-respecting,
configurations only need to describe the segments that visit clients. The other segments
need not cross boundaries at portals, so we assume them to be shortest paths in the original
graph.

Conversely, every segment of X 1 and X 2 must correspond to exactly one segment of X 0.
Intuitively, this means that every segment in X 0 can be broken into subsegments that respect
the portals of C1 and C2. The path from i to o can be divided into a shortest path from i to
b1, segments from bı to eı visiting qı clients in the cluster Cjı , and shortest paths from eı to
bı+1 and from eK to o visiting 0 clients.
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We define the price, P , of the compatible configurations to be the cost of connecting
the segments: P (C0,X 0,X 1,X 2) = d(i, b1) + ΣK−1

ı=1 d(eı, bı+1) + d(eK , o). Therefore, the
minimal cost of a partial solution for a cluster C0 that induces the configuration X 0 is
DP (C0,X 0) = min(X 1,X 2)∼X 0 DP (C1,X 1) +DP (C2,X 2) + P (C0,X 0,X 1,X 2).

The algorithm enumerates all possible configurations X 1 and X 2 that are compatible with
X 0. As in the above definitions, the algorithm breaks every segment of X 0 into subsegments,
each visiting some clients in C1 or in C2. It then adds each subsegment to the corresponding
subconfiguration: the subsegment is added to X jı . As qı > 0 and ΣK

i=ıqı = q ≤ Q, K ≤ Q.
The algorithm enumerates all possibilities and calculates the value of DP (C0,X 0).

5.3 Base Cases
Each base case is a cluster in which there are at most three clients. It is therefore straight-
forward to find the minimal cost of a configuration.

5.4 Final Output and correctness
Since the topmost cluster has r as its only portal, all configurations will consist of r-to-r
segments visiting at most Q clients, and collectively visiting all clients of Z. These are
exactly the feasible Capacitated Vehicle Routing solutions. The algorithm returns the
minimum over all admissible configurations of the top-level cluster, which is the cost of the
optimal portal-respecting solution.

I Theorem 12. The dynamic programming algorithm described above outputs the minimal
weight of a portal-respecting solution to Capacitated Vehicle Routing.

The proof is omitted here due to space limitations.

5.5 Complexity Analysis
The complexity is determined by the number of compatible configurations. For each cluster
and each admissible configuration for this cluster, the algorithm computes

|{ways of breaking a segment}||{segments}|

compatible subconfigurations. We first count the number of admissible configurations for a
cluster.

I Lemma 13. The number of admissible configurations X for a given cluster C is

|Z|O(Q3ε−2 log2 |Z|) .

Proof. An admissible configuration is a vector X indexed by two portals (i, o) and a number
of clients q. Xi,o,q is the number of segments going from i to o visiting q clients. As
the configuration is admissible, Σi,o,qqXi,o,q = Σz∈CDC,z ≤ |Z| (because DC,z ∈ {0, 1}).
Therefore Xi,o,q ≤ |Z|. Moreover, q ≤ Q and because by Lemma 8 there are O(Qε−1 log |Z|)
portals for C the number of choices of (i, o) is less than O(Q2ε−2 log2 |Z|). The number of
admissible configurations X for a given cluster is thus |Z|O(Q3ε−2 log2 |Z|) J

We now count the number of compatible subconfigurations for a given configuration X .

I Lemma 14. There are O
(
(2Q3ε−2 log2 |Z|)Q|Z|

)
compatible subconfiguration pairs for a

given configuration.
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Proof. Using the same argument as in Lemma 13, Σi,o,qqXi,o,q ≤ |Z|, and as q > 0 we can
bound the number of segments of a configuration: Σi,o,qXi,o,q ≤ |Z|. To break a segment,
the algorithm chooses at most Q subsegments, each one consisting of a boolean, a pair
of portals and a number of clients visited by the segment (see Section 5.2). As there are
O(Qε−1 log |Z|) child-cluster portals by Lemma 8 and the capacity is bounded by Q, there
are O((2 · Q · Q2ε−2 log2 |Z|)Q) ways of breaking a single segment. As there are fewer
than |Z| segments, we have O((2Q3ε−2 log2 |Z|)Q|Z|) compatible subconfiguration pairs per
configuration. J

I Lemma 15. The overall complexity of the dynamic program is

|Z|O(Q
3 log4 |Z|
ε2 ) ·O(Q

3 log4 |Z|
ε2

)Q|Z| .

Proof. As stated above, the dynamic program computes for each cluster and each admissible
configuration, all compatible subconfigurations. As the decomposition is a binary tree with at
most one leaf per client, the number of clusters is O(Z). Combining this with Lemma 13 and
Lemma 14, the total complexity is therefore O

(
|Z| · |Z|O(Q3ε−2 log2 |Z|)(2Q3ε−2 log2 |Z|

)Q|Z|).
J

5.6 QPTAS
The slowest operation in the DP is generating all compatible subconfigurations for a given
cluster. But this is very redundant: two different segments can be broken into the same
subsegments. We present a preprocessing step that computes, for every cluster and every
triplet of configurations for parent and children clusters, the minimal price P (C0,X 0,X 1,X 2)
of passing segments needed to make the configurations compatible. Recall that a passing
segment is one that visits no clients and that they are necessary to connect the visiting
segments of the subconfigurations.

5.6.1 Preprocessing Algorithm
We describe a recursive algorithm. The entries are a cluster C0, a configuration X 0 of C0 and
two configurations X 1 and X 2 of the children of C0. To determine the price for connecting
these three configurations, the algorithm considers the first segment appearing in X 0 and
breaks it into subsegments belonging to the children. It then deletes this segment from X 0

(giving a new configuration X̂ 0) and deletes the subsegments from the children configurations,
to obtain the subconfigurations X̂ 1 and X̂ 2. It tries all possibilities for breaking this segment
and returns the cheapest one :

P [C0,X 0,X 1,X 2] = min
(
P (C0, X̂ 0, X̂ 1, X̂ 2) + d(i, b1) + Σd(eı, bı+1) + d(bK , o)

)
.

The base case is when there are no segments in X 0 (i.e. X 0
i,o,q = 0, ∀i, o, q). Here the

algorithm just checks that there are no remaining segments in X 1 and X 2. It returns 0 if
there are none and ∞ otherwise. This algorithm can be memoized because the number of
segments in the first configuration is strictly decreasing.

5.6.2 Correctness
We prove the correctness of this algorithm by induction. The base case is an empty
configuration for the parent cluster. The two subconfigurations are therefore compatible
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with it only if they are also empty. If X 0 is compatible with X 1 and X 2, then the chosen
segment of X 0 corresponds by definition to at most Q subsegments in X 1 and X 2. The
algorithm enumerates all possible ways to break the segment, so at least one will result in a
compatible configuration. Reciprocally, if X 0 is not compatible with X 1 and X 2, the first
segment cannot be broken in such a way that results in three compatible configurations, so
the algorithm avoids false positives.

5.6.3 Complexity
The complexity of this preprocessing step is

O
(
|{clusters}| · |{configurations}|3 · |{ways of breaking a segment}|

)
.

We showed in Lemma 13 that there is |Z|O(Q3ε−2 log4 |Z|) configurations and we showed in
the proof of Lemma 14 that there are O

(
(2Q3ε2 log4 |Z|)Q

)
ways of breaking a segment,

so the preprocessing can be achieved in O(|Z| · |Z|O
(
Q3ε−2 log4 |Z|

)
(2Q3ε−2 log4 |Z|)Q) =

O(2P (log |Z|,Q,ε−1)) where P is some polynomial.
We can use this preprocessing step to improve the complexity of the main DP. Instead of

breaking segments we try all compatible configurations for the children clusters, of which
there are at most O(|{configuration}|2). The complexity of this improved DP is therefore
O(|{clusters}| × |{configuration}|3) and is dominated by the preprocessing step. Combining
this analysis with Theorem 11 gives a QPTAS for planar graphs, proving Theorem 1.

6 Generalizations

6.1 Multiple depots
The techniques presented in this paper can be extended to address the multiple-depot version
of Vehicle Routing, assuming a constant number of depots. In this variation, each tour
can start and end at different depots. Let R denote the set of depots, and for v ∈ Z let rv
denote the closest depot to v (note that the tour that visits v does not necessarily visit rv).
The generalization relies on two key observations.

First, the recursive clustering can be slightly modified in the following way. Let a from-R
shortest path be a from-r shortest path for some r ∈ R.

I Lemma 16. Let G be a planar embedded graph with edge costs, and let R and Z be subsets
of the vertices. There is a depth-O(log |Z|) recursive clustering of G with the following
properties:

there are no boundary edges,
for each cluster, there are O(|R|) from-R shortest subpaths such that the boundary vertices
of the cluster are the vertices that lie on these paths, and
at most three vertices of Z are assigned to each leaf cluster.

Proof. We sketch the proof. It follows the proof of Lemma 6, which in turn follows that
of [8]. Consider the R-rooted shortest-path forest F . Each tree is rooted at some r ∈ R, and
consists of those vertices v for which rv = r. Construct a tree T by arbitrarily linking the
trees of F , and then use the construction of Lemma 6. This gives a decomposition such that
each cluster is bounded by four fundamental cycles of the tree T . Since a fundamental cycle
in T consists of at most 2|R| from-R shortest paths, this concludes the proof. J
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Figure 3 Here, u and v are depots. The forest is in black, the plain lines are the shortest-path
trees from u and v and the dashed one is the connecting edge. The dashed, grey lines are edges not
in T . The arrow is the boundary of a cluster: there is one fundamental cycle in T , and thus two
from-R shortest paths.

Portals in this decomposition are designated the same way as in Section 3. The cost
of a detour becomes δ(d(v, rv) + OPT/Z) (using the notation of Section 3), and therefore
Lemma 3 has to be adapted in order to obtain an approximate solution.

Each tour P in the optimal solution contains a trip between one depot and the farthest
client in P , so the cost of P is at least max{d(c, rc) : c is a client of P}, which in turn is at
least

1
Q

∑
{d(c, rc) : c is a client of P}

by averaging over the at-most Q clients in P .
Using these modified bounds, we can prove a multiple-depot version of the structure

theorem, analogous to Theorem 11. Assuming that |R| is constant, we can adapt the dynamic
program for this decomposition to get a QPTAS.

6.2 Bounded genus
To extend our algorithm to handle the case when G is embedded on a surface of genus g > 0,
we adapt a technique previously used by Eistenstat et al. [8]. Let T be any spanning tree of
G, in our case the shortest-path tree rooted at the depot. The algorithm selects [9] 2g edges
not in T such that cutting the surface along the corresponding cycles (each edge forms a
cycle with the corresponding simple path in T ) yields a surface (with boundary) of genus 0,
and a graph embedded on this surface. The vertices of these cycles lie on shortest from-r
paths where r is the depot. The algorithm then cuts along these cycles, duplicating the
vertices (an edge belonging to such a cycle ends up on one side or the other). The resulting
graph is planar. Next the algorithm forms the cluster decomposition for that graph. Finally,
the algorithm merges duplicate vertices together. Merging the duplicates can result in those
merged vertices being boundary vertices of the clusters, but fortunately all of those merged
vertices lie on at most 2g from-r shortest paths, so designation of portals can continue as in
Section 3.3 and in total the number of portals per cluster will be O(Qgε−1 log2 |Z|).

6.3 Handling penalties
The dynamic program of Section 5 computes, for each cluster and each admissible configura-
tion of that cluster, the minimum cost partial solution that induces that configuration. To
handle penalties, we change the definition of solution, of admissible and of cost. A solution
is now allowed to not visit all the clients, an admissible configuration is allowed to not
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visit all the clients, and the cost includes the penalties of unvisited clients. The base cases
change slightly to accommodate these changes, but otherwise the dynamic program is mostly
unchanged.

One other change to the algorithm is needed. As described in Section 3.1, the algorithm
needs to prune the graph, removing vertices that are too far to be included. To handle
penalties, we need a more complicated pruning step. The algorithm computes an upper bound
b on the value of the optimum that is at most Q times the value of the optimum, and then
prunes away every vertex whose distance from the depot is greater than b/2. This ensures
that, for any cluster found in the pruned graph, the value d(r, v̂) is at most (Q/2)OPT, and
our analysis can be adapted to show that the number of portals is not too large.

I Lemma 17. There exist a polynomial-time algorithm that computes a Q-approximation of
the penalty variant of vehicle routing.

Proof. Consider an instance of the penalty version with capacity Q, and a modified version
in which the capacity is 1. Solving the modified instance is easy: for each client, include
a depot-to-client round-trip if the cost of this trip is no more than the client’s penalty. It
remains to show that the optimum value for the original instance is at most Q times the
optimum value for the modified instance.

Consider an optimal solution for the original instance. For each tour T in that solution,
the cost of T is at least the cost of a round-trip from the depot to the farthest client visited
by T . Replace T by a collection of tours, one visiting each of the clients visited by T . Each
of these tours is a round trip, and there are Q of them, so their total cost is at most Q times
the cost of T . The set of unvisited clients has not changed so the sum of their penalties
remains unchanged. Thus the total value of the solution thus obtained is at most Q times
the optimum value for the original instance. J
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Abstract
In the k disjoint shortest paths problem (k-DSPP), we are given a graph and its vertex pairs
(s1, t1), . . . , (sk, tk), and the objective is to find k pairwise disjoint paths P1, . . . , Pk such that
each path Pi is a shortest path from si to ti, if they exist. If the length of each edge is equal to
zero, then this problem amounts to the disjoint paths problem, which is one of the well-studied
problems in algorithmic graph theory and combinatorial optimization. Eilam-Tzoreff [5] focused
on the case when the length of each edge is positive, and showed that the undirected version of
2-DSPP can be solved in polynomial time. Polynomial solvability of the directed version was
posed as an open problem in [5]. In this paper, we solve this problem affirmatively, that is, we
give a first polynomial time algorithm for the directed version of 2-DSPP when the length of each
edge is positive. Note that the 2 disjoint paths problem in digraphs is NP-hard, which implies
that the directed 2-DSPP is NP-hard if the length of each edge can be zero. We extend our result
to the case when the instance has two terminal pairs and the number of paths is a fixed constant
greater than two. We also show that the undirected k-DSPP and the vertex-disjoint version of
the directed k-DSPP can be solved in polynomial time if the input graph is planar and k is a
fixed constant.
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Keywords and phrases Disjoint paths, shortest path, polynomial time algorithm

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.13

1 Introduction

1.1 Disjoint paths problem and disjoint shortest paths problem
The vertex-disjoint paths problem is one of the classic and well-studied problems in algorithmic
graph theory and combinatorial optimization. In the problem, the input is a graph (or a
digraph) G = (V, E) and k pairs of vertices (s1, t1), . . . , (sk, tk), and the objective is to find
k pairwise vertex-disjoint paths from si to ti, if they exist. If k is part of the input, the
vertex-disjoint paths problem is NP-hard [9], and it remains NP-hard even if the input graph
is constrained to be planar [12]. The vertex-disjoint paths problem in undirected graphs can
be solved in polynomial time when k = 2 [17, 19, 22], and Robertson and Seymour’s graph
minor theory gives an O(|V |3)-time algorithm for the problem when k is a fixed constant [15].
The running time of this algorithm is improved to O(|V |2) in [10]. The vertex-disjoint paths
problem in digraphs is much harder than the undirected version. Indeed, the directed version
is NP-hard even when k = 2 [6]. The vertex-disjoint paths problem in planar digraphs can
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be solved in polynomial time for fixed k [16], and it is fixed parameter tractable with respect
to parameter k [3].

The vertex-disjoint paths problem has many applications, for example in transportation
networks, VLSI-design [7, 14], or routing in networks [13, 20]. When we deal with such
practical applications, it is natural to generalize the problem to finding short or cheap vertex-
disjoint paths. There are many results on the problem to find disjoint paths minimizing a
given objective function such as the total length of the paths or the length of the longest path
(see Section 1.2). In this paper, we consider the disjoint shortest paths problem introduced
in [5], in which each path has to be a shortest path from si to ti. Note that, in contrast to
the other problems, the length of each path appears in the constraint of the problem. For an
integer k, our problem is formally described as follows.

k Disjoint Shortest Paths Problem (k-DSPP)
Input. A digraph (or a graph) G = (V, E) with a length function ` : E → R+ and k pairs of

vertices (s1, t1), . . . , (sk, tk) in G.
Find. Pairwise disjoint (vertex-disjoint or edge-disjoint) paths P1, . . . , Pk such that Pi is a

shortest path from si to ti for i = 1, 2, . . . , k, if they exist.

Note that R+ denotes the set of non-negative real numbers. We can consider both directed
and undirected variants of this problem, which we call the directed k-DSPP and the undirected
k-DSPP, respectively. For each problem, we can consider vertex-disjoint and edge-disjoint
versions. If the length of each edge is equal to zero, then these problems amount to the
directed or the undirected version of the k disjoint paths problem. With this observation,
most hardness results on the k disjoint paths problem can be extended to the directed (or
undirected) k-DSPP. In particular, since the k disjoint paths problem in digraphs is NP-hard
even when k = 2 [6], almost all variants of the directed k-DSPP are hard.

Only few positive results are known for k-DSPP. An important positive result is a
polynomial time algorithm of Eilam-Tzoreff [5] for the undirected 2-DSPP, in which the
length of each edge is positive. It is interesting to note that the algorithm in [5] is completely
different from the algorithms for the 2 disjoint paths problem in [17, 19, 22]. This means
that properties or tractability of k-DSPP will be different from those of the k disjoint paths
problem by assuming that the length of each edge is positive. This fact motivates us to study
polynomial solvability of the directed k-DSPP under this assumption. Indeed, for the case
when k is a fixed constant and the length of each edge is positive, polynomial solvability of
the directed k-DSPP was posed as an open problem in [5].

1.2 Related work
There are many results on the problem in which we find k disjoint paths minimizing a given
objective function. Such a problem is sometimes called the shortest disjoint paths problem. A
natural objective function is the total length of the paths. That is, the aim of the problem is
to find disjoint paths P1, . . . , Pk that minimize

∑
i `(Pi) when we are given a length function

` : E → R+, which we call the min-sum k disjoint paths problem. Here, `(Pi) denotes the
length of Pi. We note that a solution of the k disjoint shortest paths problem must be an
optimal solution of the corresponding min-sum k disjoint paths problem, which shows that if
we can solve the min-sum k disjoint paths problem, then we can also solve the k disjoint
shortest paths problem. Another objective function is the length of the longest path. That is,
the aim of the problem is to find disjoint paths P1, . . . , Pk that minimize maxi `(Pi), which
we call the min-max k disjoint paths problem.
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Table 1 Results on the k disjoint paths problem and the k-DSPP. In the results with (∗), we
assume that the length of each edge is positive.

Conditions Disjoint Paths Disjoint Shortest Paths
k = 2 undirected P [17, 19, 22] P [5] (∗)

directed NP-hard [6] NP-hard (Proposition 1)
P (Theorem 2) (∗)

k: fixed undirected P [14] OPEN
planar, vertex-disjoint P (Corollary 11)
planar, edge-disjoint P (Theorem 5)

directed NP-hard [6] OPEN (∗) / NP-hard
planar, vertex-disjoint P [16] P (Theorem 4)
planar, edge-disjoint OPEN OPEN
acyclic P [6] P (Proposition 10)

k: general undirected/directed NP-hard [9] NP-hard

Since the min-sum or min-max k disjoint paths problem is a generalization of the k disjoint
paths problem, hardness results on the k disjoint paths problem can be extended to the
optimization problem. See [11] for classical results on the min-sum and min-max k disjoint
paths problems. We now describe several positive results on the min-sum k disjoint paths
problem. Colin de Verdière and Schrijver [4] presented a polynomial time algorithm for the
case when the input digraph (or graph) is planar, s1, . . . , sk are on the boundary of a common
face, and t1, . . . , tk are on the boundary of another face. Kobayashi and Sommer [11] gave a
polynomial time algorithm for the case when the graph is planar, k = 2, and the terminals
are on at most two faces. Borradaile et al. [2] gave a polynomial time algorithm for the case
when the graph is planar, the terminals are ordered nicely on a common face. Björklund and
Husfeldt [1] gave a randomized polynomial time algorithm for the case when k = 2 and each
edge has a unit length, which is based on interesting algebraic techniques. This result was
recently generalized to the case with two terminal pairs by Hirai and Namba [8].

1.3 Our results
In this subsection, we describe our results, which are summarized in Table 1.

As mentioned in Section 1.1, it is not difficult see that the directed k-DSPP is NP-hard
even when k = 2 if the length of each edge can be zero.

I Proposition 1. Both vertex-disjoint and edge-disjoint versions of the directed k-DSPP are
NP-hard even when k = 2.

Proof. Suppose that the length of each edge is equal to zero. In this case, since any path
is a shortest path, the directed k-DSPP is equivalent to finding two vertex-disjoint (or
edge-disjoint) paths P1 and P2 such that Pi is from si to ti. This problem is known to be
NP-hard [6], and hence the directed k-DSPP is NP-hard even when k = 2. J

The main result of this paper is to show that the directed k-DSPP can be solved in
polynomial time when the length of each dicycle (directed cycle) is positive and k = 2.

I Theorem 2. If the length of each dicycle is positive, both vertex-disjoint and edge-disjoint
versions of the directed 2-DSPP can be solved in polynomial time. In particular, the directed
2-DSPP can be solved in polynomial time if each edge has a positive length.
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vu vu

xe

ye
e

Figure 1 Reduction to the directed case.

The proof of this theorem is given in Section 3. It is posed as an open problem by Eilam-
Tzoreff [5] to determine whether or not the directed k-DSPP can be solved in polynomial
time when each edge has a positive length and k is a fixed constant. Theorem 2 answers this
problem affirmatively for the case of k = 2. It is interesting to note that the assumption on
the edge length affects the polynomial solvability of the problem as we can see in Proposition 1
and Theorem 2. We also note that a polynomial time algorithm for the undirected version
can be derived from Theorem 2, that is, we obtain an alternative elementary proof for the
following result.

I Corollary 3 (Eilam-Tzoreff [5]). If each edge has a positive length, both vertex-disjoint and
edge-disjoint versions of the undirected 2-DSPP can be solved in polynomial time.

Proof. Suppose we are given an instance of the undirected 2-DSPP in which `(e) > 0
for every e ∈ E. Replace each edge e = uv with two new vertices xe, ye and five new
directed edges uxe, vxe, xeye, yeu, yev (see Fig. 1). Define a new length function `′ by
`′(uxe) = `′(vxe) = `′(xeye) = `′(yeu) = `′(yev) = `(uv)

3 . Then, each edge has a positive
length in the obtained digraph. In this way, we can reduce the undirected 2-DSPP to the
directed 2-DSPP, which shows the corollary by Theorem 2. J

Theorem 2 can be extended to the case when the input digraph contains two terminal
pairs and k is a fixed constant, which is discussed in Section 4.

We also discuss the case when the input (di)graph is restricted to be planar in Section 5.
We first show that the vertex-disjoint version of the directed k-DSPP can be solved in
polynomial time in planar digraphs.

I Theorem 4. If k is a fixed constant and the input digraph is planar, the vertex-disjoint
version of the directed k-DSPP can be solved in polynomial time.

The proof is given in Section 5. Our proof is based on the reduction technique used in
the proof of Theorem 2 and the algorithm for the disjoint paths problem in planar digraphs
proposed in [16]. Note that this result implies that we can also solve the undirected version
in polynomial time. Since Schrijver’s algorithm for the disjoint paths problem [16] works only
for the vertex-disjoint case, the proof of Theorem 4 cannot be extended to the edge-disjoint
case directly. However, when the graph is undirected, we can show the following theorem,
whose proof is given in Section 5.

I Theorem 5. If k is a fixed constant and the input graph is planar, the edge-disjoint version
of the undirected k-DSPP can be solved in polynomial time.

2 Preliminary

For a digraph G = (V, E), a directed edge from u to v is denoted by uv. For a directed edge
e in G, the head and the tail of e are denoted by headG(e) and tailG(e), respectively, that is,
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Figure 2 Reduction to the edge-disjoint version.

e is a directed edge from tailG(e) to headG(e). A dipath (or a directed path) is a sequence
(v0, e1, v1, e2, . . . , ep, vp) such that v0, v1, . . . , vp ∈ V are distinct vertices and ei = vi−1vi ∈ E

for each i. If v0 = vp in the definition of a dipath, the sequence is called a dicycle (or a
directed cycle). If no confusion may arise, a dicycle, a dipath, and a directed edge are simply
called a cycle, a path, and an edge, respectively. For a dipath, a dicycle, or a subgraph Q, its
vertex set and edge set are denoted by V (Q) and E(Q), respectively. For a length function
` : E → R+ and for an edge set F ⊆ E, we denote `(F ) =

∑
e∈F `(e). For a dipath or a

dicycle Q, we identify Q with its edge set, and `(E(Q)) is simply denoted by `(Q).

3 Proof of Theorem 2

In this section, we give a proof of Theorem 2, that is, we show that the directed 2-DSPP
can be solved in polynomial time if the length of each dicycle is positive. To solve this
problem, we will efficiently reduce it to a set of 2 disjoint paths problem in acyclic digraphs.
Although the original digraph is not necessarily acyclic, we decompose the digraph into
smaller subgraphs and modify each subgraph to an acyclic digraph.

We first note that the vertex-disjoint version of the directed 2-DSPP can be reduced to
the edge-disjoint version of the directed 2-DSPP by the following procedure: replace each
vertex v with two vertices v+ and v−, replace each edge uv with an edge u+v− of the same
length, and add an edge v−v+ of length zero for each v (see Fig. 2). Therefore, it suffices to
give a polynomial time algorithm for the edge-disjoint version of the problem.

Suppose we have an instance of the edge-disjoint version of the directed 2-DSPP in which
each dicycle is of positive length. For i = 1, 2, let Ei ⊆ E be the set of edges that are
contained in some shortest path from si to ti. By the definition, an si-ti path is a shortest
si-ti path if and only if it consists of edges in Ei. Note that we can compute Ei in polynomial
time as follows. We first apply a shortest path algorithm (e.g., Dijkstra’s algorithm) and
obtain the distance di(v) from si to v for every v ∈ V . Let E′i ⊆ E be the set of all the edges
uv with di(v)− di(u) = `(uv). Then, {uv ∈ E′i | E′i contains a v-ti path} is the desired set
Ei. With this observation, the edge-disjoint version of the directed 2-DSPP can be reduced
to the following problem: given a digraph G = (V, E), subsets E1, E2 ⊆ E, and two pairs of
vertices (s1, t1) and (s2, t2) in G, find edge-disjoint paths P1 and P2 such that E(Pi) ⊆ Ei

and Pi is a path from si to ti for i = 1, 2. We now show some properties of Ei.

I Lemma 6. The edge set Ei forms no dicycle for i = 1, 2.

Proof. Assume that Ei forms a dicycle C. By the definition of di and Ei, di(v)−di(u) = `(uv)
for each uv ∈ E(C). This shows that `(C) =

∑
uv∈E(C) `(uv) =

∑
uv∈E(C)(di(v)−di(u)) = 0,

which contradicts that the length of each dicycle is positive. J

For a set F of directed edges, let F be the set of directed edges obtained from F by
reversing all the edges, that is, F = {vu | uv ∈ F}. Then, we have the following lemma.
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I Lemma 7. Suppose that C is a dicycle in E1∪E2. Then, E1∩E(C) ⊆ E2 and E2∩E(C) ⊆
E1.

Proof. Since C is a dicycle in E1 ∪ E2, it can be decomposed into subpaths P1, Q1, P2, Q2,
. . . , Pr, Qr such that Pi is a dipath from ui to vi with E(Pi) ⊆ E1 and Qi is a dipath from
ui+1 to vi with E(Qi) ⊆ E2 for i = 1, . . . , r, where we denote ur+1 = u1. By the definition
of d1 and E1, d1(vi) − d1(ui) = `(Pi) and d1(vi) − d1(ui+1) ≤ `(Qi) for i = 1, . . . , r. By
combining them, we obtain

∑r
i=1 `(Pi) ≤

∑r
i=1 `(Qi). Similarly, by the definition of d2 and

E2, d2(vi)− d2(ui) ≤ `(Pi) and d2(vi)− d2(ui+1) = `(Qi) for i = 1, . . . , r, which shows that∑r
i=1 `(Pi) ≥

∑r
i=1 `(Qi). Therefore,

∑r
i=1 `(Pi) =

∑r
i=1 `(Qi) and all the above inequalities

are tight. That is, d1(vi) − d1(ui+1) = `(Qi) and d2(vi) − d2(ui) = `(Pi) for i = 1, . . . , r,
which shows that E(Qi) ⊆ E′1 and E(Pi) ⊆ E′2. Since E(Pi) ⊆ E1 for i = 1, . . . , r, there is a
vi-t1 path in E′1. This implies that E′1 contains a v-t1 path for any v ∈ V (Qi), and hence
E(Qi) ⊆ E1. Similarly, since E(Qi) ⊆ E2 for i = 1, . . . , r, there is a vi-t2 path in E′2, which
shows that E(Pi) ⊆ E2. J

We add four vertices s′1, s′2, t′1, and t′2, and four edges s′1s1, s′2s2, t1t′1, and t2t′2. We
update Ei ← Ei ∪ {s′isi, tit

′
i} for i = 1, 2. Then, a path from si to ti is corresponding to a

path whose first and last edges are s′isi and tit
′
i, respectively. By using this correspondence,

we can rephrase the problem to the following: find edge-disjoint paths P1 and P2 such that
E(Pi) ⊆ Ei and Pi is a path whose first and last edges are s′isi and tit

′
i, respectively.

Let E0 := E1 ∩ E2, E∗1 = E1 \ E0, and E∗2 = E2 \ E0. We remove all the edges in
E \ (E1 ∪ E2) from G, contract all the edges in E0, and reverse all the edges in E∗2 . Then,
we obtain a digraph G∗ = (V ∗, E∗). Let V0 ⊆ V ∗ be the set of all the vertices in V ∗ that
are newly created by contracting E0. In other words, V ∗ \ V0 ⊆ V is the set of all original
vertices. For v ∈ V0, let Gv be the subgraph of G− (E \ (E1 ∪E2)) induced by the vertex
set corresponding to v. For any edge e in Gv, by the definition of Gv, either e ∈ E0 or there
exist edges f1, f2, . . . , fr ∈ E0 such that e, f1, f2, . . . , fr form a cycle when we ignore the
direction of the edges. In the latter case, these edges induce a dicycle C in E1 ∪ E2, which
shows that e ∈ E0 by Lemma 7. Thus, every edge in Gv is in E0, which implies that we can
identify E∗ with E∗1 ∪ E∗2 . Furthermore, since every edge in Gv is in E0, Gv is an acyclic
digraph by Lemma 6.

We can also see that, by Lemma 7, G∗ is an acyclic digraph. In what follows, roughly,
we find two disjoint paths in G∗ such that one is from s′1 to t′1 and the other is from t′2 to
s′2. Our algorithm is based on the algorithm for finding disjoint paths in digraphs proposed
in [6].

We define a new digraph G whose vertex set is W = E∗1×E∗2 as follows. For (e1, e2), (e′1, e′2) ∈
W , G has a directed edge from (e1, e2) to (e′1, e′2) if one of the following holds.

e′1 = e1, headG∗(e2) = tailG∗(e′2) =: v, and there is no path in G∗ from headG∗(e1) to v.
Furthermore, if v ∈ V0, then Gv contains a path from tailG(e′2) to headG(e2).
e′2 = e2, headG∗(e1) = tailG∗(e′1) =: v, and there is no path in G∗ from headG∗(e2) to v.
Furthermore, if v ∈ V0, then Gv contains a path from headG(e1) to tailG(e′1).
headG∗(e1) = headG∗(e2) = tailG∗(e′1) = tailG∗(e′2) =: v. Furthermore, if v ∈ V0, then
Gv contains two edge-disjoint paths such that one is from headG(e1) to tailG(e′1) and the
other is from tailG(e′2) to headG(e2).

To construct G, it suffices to solve the two disjoint paths problem in each acyclic digraph Gv,
which can be done in polynomial time by [6]. We now show that we can solve the edge-disjoint
version of the directed 2-DSPP by finding a path in G from (s′1s1, t′2t2) to (t1t′1, s2s′2).
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I Lemma 8. There is a path in G from (s′1s1, t′2t2) to (t1t′1, s2s′2) if and only if G has two
edge-disjoint paths P1 and P2 such that Pi is from si to ti and E(Pi) ⊆ Ei for i = 1, 2.

Proof. Sufficiency (“if” part). Suppose that G has two edge-disjoint paths P1 and P2 such
that Pi is from si to ti and E(Pi) ⊆ Ei for i = 1, 2. E(P1) \E0 forms a path P ∗1 from s1 to t1
in G∗, and E(P2) \ E0 forms a path P ∗2 from t2 to s2 in G∗. Suppose that P ∗1 traverses edges
e1

1, e2
1, . . . , ep

1 in this order, and let e0
1 := s′1s1 and ep+1

1 := t1t′1. Similarly, suppose that P ∗2
traverses edges e1

2, e2
2, . . . , eq

2 in this order, and let e0
2 := t′2t2 and eq+1

2 := s2s′2. It is obvious
that ei

1 ∈ E∗1 for i = 0, 1, . . . , p + 1 and ej
2 ∈ E∗2 for j = 0, 1, . . . , q + 1. Since G∗ is acyclic,

for any i = 0, 1, . . . , p + 1 and for any j = 0, 1, . . . , q + 1, at least one of the following holds.
(1) There is no dipath in G∗ from headG∗(ei

1) to headG∗(ej
2).

(2) There is no dipath in G∗ from headG∗(ej
2) to headG∗(ei

1).
(3) headG∗(ei

1) = headG∗(ej
2).

For each case, we obtain the following by the definition of the edge set of G.
If (1) holds and j 6= q + 1, then G has an edge from (ei

1, ej
2) to (ei

1, ej+1
2 ). Note that

if v := headG∗(ej
2) ∈ V0, then E(P2) ∩ E(Gv) forms a path in Gv from tailG(ej+1

2 ) to
headG(ej

2).
If (2) holds and i 6= p + 1, then G has an edge from (ei

1, ej
2) to (ei+1

1 , ej
2). Note that

if v := headG∗(ei
1) ∈ V0, then E(P1) ∩ E(Gv) forms a path in Gv from headG(ei

1) to
tailG(ei+1

1 ).
If (3) holds, then G has an edge from (ei

1, ej
2) to (ei+1

1 , ej+1
2 ). Note that if v :=

headG∗(ei
1) = headG∗(ej

2) ∈ V0, then E(P1) ∩ E(Gv) and E(P2) ∩ E(Gv) form two
edge-disjoint paths in Gv such that one is from headG(ei

1) to tailG(ei+1
1 ) and the other is

from tailG(ej+1
2 ) to headG(ej

2).
By observing that (1) holds if i = p + 1 and (2) holds if j = q + 1, we can see that G has an
edge from (ei

1, ej
2) to (ei

1, ej+1
2 ), (ei+1

1 , ej
2), or (ei+1

1 , ej+1
2 ) unless (i, j) = (p + 1, q + 1). We

begin with (i, j) = (0, 0) and find an edge leaving (ei
1, ej

2) in G as above, repeatedly. Then,
we obtain a path in G from (e0

1, e0
2) = (s′1s1, t′2t2) to (ep+1

1 , eq+1
2 ) = (t1t′1, s2s′2), which shows

the sufficiency.
Necessity (“only if” part). Suppose that there is a path in G from (f0

1 , f0
2 ) := (s′1s1, t′2t2)

to (fr
1 , fr

2 ) := (t1t′1, s2s′2) that traverses vertices (f0
1 , f0

2 ), (f1
1 , f1

2 ), . . . , (fr
1 , fr

2 ) of G in this
order. In this proof, we regard a path in G as a sequence of edges, and the concatenation of
two paths P and Q is denoted by P ·Q. We define two paths P1 and P2 as follows.
1. Set P1 = P2 = ∅.
2. For i = 0, 1, 2, . . . , r, we update Pi as follows.

Suppose that f i+1
1 = f i

1, headG∗(f i
2) = tailG∗(f i+1

2 ) =: v, and there is no dipath in
G∗ from headG∗(f i

1) to v. In this case, let Q be the path in Gv from tailG(f i+1
2 ) to

headG(f i
2) if v ∈ V0 and let Q = ∅ if v 6∈ V0. Then, update P2 as P2 ← f i+1

2 ·Q · P2.
Suppose that f i+1

2 = f i
2, headG∗(f i

1) = tailG∗(f i+1
1 ) =: v, and there is no dipath in

G∗ from headG∗(f i
2) to v. In this case, let Q be the path in Gv from headG(f i

1) to
tailG(f i+1

1 ) if v ∈ V0 and let Q = ∅ if v 6∈ V0. Then, update P1 as P1 ← P1 ·Q · f i+1
1 .

Suppose that headG∗(f i
1) = headG∗(f i

2) = tailG∗(f i+1
1 ) = tailG∗(f i+1

2 ) =: v. In this
case, if v ∈ V0, then Gv contains two edge-disjoint paths Q1 and Q2 such that Q1 is from
headG(f i

1) to tailG(f i+1
1 ) and Q2 is from tailG(f i+1

2 ) to headG(f i
2). Let Q1 = Q2 = ∅

if v 6∈ V0. Then, update P1 and P2 as P1 ← P1 ·Q1 · f i+1
1 and P2 ← f i+1

2 ·Q2 · P2.
Then, P1 and P2 are edge-disjoint paths in G such that Pi is from si to ti and E(Pi) ⊆ Ei

for i = 1, 2, which shows the necessity. J
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Since G contains at most |E|2 vertices, we can detect a path in G in polynomial time. Thus,
Lemma 8 shows that the directed 2-DSPP can be solved in polynomial time.

We note that the most time consuming part of our algorithm is to construct G. We have
already seen that, for each pair of vertices in G, the existence of an edge between them
can be checked by solving the two disjoint paths problem in an acyclic digraph. Thus, in a
naive implementation of our algorithm, we solve the two disjoint paths problem in an acyclic
digraph O(|E|4) times. If we adopt the algorithm of [18] for the two disjoint paths problem,
which runs in O(|V ||E|) time, the total running time of our algorithm is O(|V ||E|5). Note
that a faster algorithm for the two disjoint paths problem is proposed in [21]. Although the
above estimation of the running time is very rough, we do not discuss its improvement in
this paper, since we focus on the polynomial solvability of the problem.

4 Disjoint Shortest Paths with Two Terminal Pairs

In this section, we extend Theorem 2 to the case when the digraph has two terminal pairs.
More precisely, for fixed integers k1 and k2, we consider the following problem and give a
polynomial time algorithm for it.

Directed Disjoint Shortest Paths Problem with Two Terminal Pairs.
Input. A digraph G = (V, E) with a length function l : E → R+, two pairs of vertices (s1, t1)

and (s2, t2) in G.
Find. Internally-vertex-disjoint (or edge-disjoint) paths P 1

1 , . . . , P 1
k1

, P 2
1 , . . . , P 2

k2
such that

P i
j is a shortest path from si to ti for i = 1, 2 and j = 1, 2, . . . , ki.

Our result is formally stated as follows.

I Theorem 9. Let k1 and k2 be fixed integers. If the length of each dicycle is positive, both
internally-vertex-disjoint and edge-disjoint versions of the directed disjoint shortest paths
problem with two terminal pairs can be solved in polynomial time.

Proof. In the same way as the proof of Theorem 2, it suffices to give an algorithm for the
edge-disjoint version. For i = 1, 2, let Ei ⊆ E be the set of all the edges that are contained
in some shortest path from si to ti, which satisfy Lemmas 6 and 7. Then, an si-ti path is a
shortest si-ti path if and only if it consists of edges in Ei.

We add 2(k1 + k2) vertices s′1,1, . . . , s′1,k1
, s′2,1, . . . , s′2,k2

, t′1,1, . . . , t′1,k1
, t′2,1, . . . , t′2,k2

, and
2(k1 + k2) edges s′1,js1 and t1, t′1,j for j = 1, . . . , k1, and s′2,js2 and t2, t′2,j for j = 1, . . . , k2.
We update Ei ← Ei ∪ {s′i,jsi, tit

′
i,j | j = 1, . . . , ki} for i = 1, 2. Then, we can rephrase

the problem to the following: find edge-disjoint paths P 1
1 , . . . , P 1

k1
, P 2

1 , . . . , P 2
k2

such that
E(P i

j ) ⊆ Ei and P i
j is a path whose first and last edges are s′i,jsi and tit

′
i,j for each i and j.

Define E0, E∗1 , E∗2 , G∗, V0, and Gv for v ∈ V0 in the same way as the proof of Theorem 2.
Let S0 := {(i, j) | i = 1, 2, j = 1, . . . , ki}. We define a digraph G whose vertex set is W =
(E∗1 )k1 × (E∗2 )k2 as follows. For (e1

1, . . . , e1
k1

, e2
1, . . . , e2

k2
) ∈W and (f1

1 , . . . , f1
k1

, f2
1 , . . . , f2

k2
) ∈

W , G has an edge from (e1
1, . . . , e1

k1
, e2

1, . . . , e2
k2

) to (f1
1 , . . . , f1

k1
, f2

1 , . . . , f2
k2

) if there exists a
non-empty set S ⊆ S0 and a vertex v ∈ V ∗ such that

headG∗(ei
j) = tailG∗(f i

j) = v for (i, j) ∈ S, and ei
j = f i

j and there is no path in G∗

from headG∗(ei
j) to v for (i, j) ∈ S0 \ S. Furthermore, if v ∈ V0, then Gv contains |S|

edges disjoint paths such that each path is from headG(e1
j ) to tailG(f1

j ) with (1, j) ∈ S

or from tailG(f2
j ) to headG(e2

j ) with (2, j) ∈ S.
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Note that this is a generalization of the construction in the proof of Theorem 2. To construct
G, it suffices to solve the disjoint paths problem with at most k terminal pairs in each acyclic
digraph Gv, which can be done in polynomial time by [6].

In the same way as Lemma 8, there is a path in G from (s′1,1s1, . . . , s′1,k1
s1, t′2,1t2, . . . , t′2,k2

t2)
to (t1t′1,1, . . . , t1t′1,k1

, s2s′2,1, . . . , s2s′2,k2
) if and only if G has k1 + k2 edge-disjoint paths

P 1
1 , . . . , P 1

k1
, P 2

1 , . . . , P 2
k2

such that E(P i
j ) ⊆ Ei and P i

j is a path whose first and last edges
are s′i,jsi and tit

′
i,j for each i and j. Since G has a polynomial size in |V |, we can detect a

path in G from (s′1,1s1, . . . , s′1,k1
s1, t′2,1t2, . . . , t′2,k2

t2) to (t1t′1,1, . . . , t1t′1,k1
, s2s′2,1, . . . , s2s′2,k2

)
in polynomial time. Hence, we can solve the directed disjoint shortest paths problem with
two terminal pairs in polynomial time. J

In order to construct G, we solve the k disjoint paths problem in an acyclic digraph
|E|O(k) times. Since the k disjoint paths problem in an acyclic digraph can be solved in
|E|O(k) time [6], the total running time of our algorithm is |E|O(k), which is also denoted by
|V |O(k).

We note that, by using the same argument as the proofs of Theorems 2 and 9, we can
show that the directed k-DSPP in acyclic digraphs can be solved in polynomial time if k is a
fixed constant.

I Proposition 10. If k is a fixed constant and the input graph is acyclic, both vertex-disjoint
and edge-disjoint versions of the directed k-DSPP can be solved in polynomial time.

Proof. It suffices to consider the edge-disjoint version. For i = 1, . . . , k, let Ei ⊆ E be
the set of all the edges that are contained in some shortest path from si to ti. Then, an
si-ti path is a shortest si-ti path if and only if it consists of edges in Ei. We add 2k

vertices s′1, . . . , s′k, t′1, . . . , t′k, and 2k edges s′1s1, . . . , s′ksk, t1t′1, . . . , tkt′k, and update Ei ←
Ei ∪ {s′isi, tit

′
i} for i = 1, . . . , k. The obtained acyclic digraph is also denoted by G. Then,

the directed k-DSPP is equivalent to finding k edge-disjoint paths P1, . . . , Pk such that
E(Pi) ⊆ Ei and Pi is a path whose first and last edges are s′isi and tit

′
i, respectively.

We define a digraph G whose vertex set is W = E1×· · ·×Ek as follows. For (e1, . . . , ek) ∈
W and (f1, . . . , fk) ∈ W , G has an edge from (e1, . . . , ek) to (f1, . . . , fk) if there exists an
index i such that ej = fj for j ∈ {1, . . . , k} \ {i}, headG(ei) = tailG(fi) =: v, and there is no
path in G from headG(ej) to v for j ∈ {1, . . . , k} \ {i}.

In the same way as Lemma 8, there is a path in G from (s′1s1, . . . , s′ksk) to (t′1t1, . . . , t′ktk)
if and only if G has k edge-disjoint paths P1, . . . , Pk such that E(Pi) ⊆ Ei and Pi is a path
whose first and last edges are s′isi and tit

′
i for each i. Since G has |V |O(k) vertices, a path in

G from (s′1s1, . . . , s′ksk) to (t′1t1, . . . , t′ktk) can be detected in |V |O(k) time. J

5 Planar Cases

In this section, we discuss the case when the input (di)graph is planar. We first give a proof
of Theorem 4, that is, we show that the vertex-disjoint version of the directed k-DSPP can
be solved in polynomial time if k is a fixed constant and the input digraph is planar.

Proof of Theorem 4. For i = 1, . . . , k, let Ei ⊆ E be the set of all the edges that are
contained in some shortest path from si to ti. Since an si-ti path is a shortest si-ti path if
and only if it consists of edges in Ei, the directed k-DSPP in a planar digraph can be reduced
to the following problem: given a planar digraph G = (V, E), subsets E1, . . . , Ek ⊆ E, and
k pairs of vertices (s1, t1), . . . , (sk, tk) in G, find vertex-disjoint paths P1, . . . , Pk such that
E(Pi) ⊆ Ei and Pi is a path from si to ti for i = 1, . . . , k. It is shown in [16] that this
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13:10 The Directed Disjoint Shortest Paths Problem

problem can be solved in |V |O(k) time if G is planar. Therefore, for fixed k, the directed
k-DSPP can be solved in polynomial time if the input digraph is planar. J

By replacing each edge with two parallel edges in opposite directions, we can reduce the
undirected version to the directed version. Hence, Theorem 4 implies the following as a
corollary.

I Corollary 11. If the input graph is planar, the vertex-disjoint version of the undirected
k-DSPP can be solved in |V |O(k) time.

We note that Schrijver’s algorithm for finding disjoint paths P1, . . . , Pk with E(Pi) ⊆
Ei [16] works only for the vertex-disjoint case, and no polynomial time algorithm is known
for the edge-disjoint version of this problem. However, when the graph is undirected, the
edge-disjoint version of k-DSPP can be solved in polynomial time (Theorem 5). To prove
Theorem 5, we first give a polynomial time algorithm for the case when the obtained paths
do not cross each other. Here, we say that two edge-disjoint paths P and Q in a planar
graph cross at a vertex v if P contains two edges e1 and e2 and Q contains two edges f1
and f2 such that e1, f1, e2, and f2 are incident to v clockwise in this order. The problem is
formally described as follows.

Undirected k Edge-disjoint Non-crossing Shortest Paths Problem
Input. A planar graph G = (V, E) with a length function ` : E → R+ and k pairs of vertices

(s1, t1), . . . , (sk, tk) in G.
Find. Pairwise edge-disjoint paths P1, . . . , Pk such that Pi is a shortest path from si to ti

for i = 1, 2, . . . , k and they do not cross each other, if they exist.

I Proposition 12. The undirected k edge-disjoint non-crossing shortest paths problem can
be solved in |V |O(k) time.

Proof. We first reduce the problem to the case when each terminal is of degree one. Suppose
we are given an instance of the the undirected k edge-disjoint non-crossing shortest paths
problem. For i = 1, . . . , k, we guess the first and last edges of Pi, say siui and viti. Then,
replace edge siui with a new vertex u′i and a new edge u′iui of length `(siui), and define
a new terminal s′i = u′i. Similarly, replace edge viti with a new vertex v′i and a new edge
viv
′
i of length `(viti), and define a new terminal t′i = v′i. In the obtained graph, we consider

the undirected k edge-disjoint non-crossing shortest paths problem with terminal pairs
(s′1, t′1), . . . , (s′k, t′k). Note that each terminal is of degree one in the obtained instance. Since
the number of choices of siui and viti is at most |V |O(k), in order to solve the original
instance, it suffices to solve |V |O(k) instances in which each terminal is of degree one.

In what follows, we give an algorithm for the case when each terminal is of degree one by
using a reduction to the vertex-disjoint version of the undirected k-DSPP. Suppose that we
are given an instance G = (V, E), ` : E → R+, and (s1, t1), . . . , (sk, tk) of the undirected k

edge-disjoint non-crossing shortest paths problem in which each terminal is of degree one.
For a vertex v ∈ V of degree at least four, let e1, . . . , er be the edges that are incident to
v clockwise in this order. We replace v with r vertices w1, . . . , wr so that each edge ei is
incident to wi, and add r edges w1w2, w2w3, . . . , wr−1wr, wrw1 of length zero (see Fig. 3).
Note that this transformation keeps the planarity of the graph.

By applying this transformation to every vertex v ∈ V of degree at least four, we obtain
a new planar graph G′ = (V ′, E′) whose maximum degree is at most three. We can easily see
that the undirected k edge-disjoint non-crossing shortest paths problem in G is equivalent to
that in G′. Since the maximum degree of G′ is at most three and the degree of each terminal
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v
e1

e2
e3

er
e1

e2
e3

er

Figure 3 Reduction to the vertex-disjoint version.

is one, edge-disjoint paths in G′ have to be vertex-disjoint, and hence it suffices to solve the
vertex-disjoint version of the undirected k-DSPP in G′. This can be done in |V |O(k) time by
Corollary 11, which completes the proof. J

We are now ready to prove Theorem 5.

Proof of Theorem 5. Suppose we are given an instance of the edge-disjoint version of the
undirected k-DSPP in a planar graph. We begin with the following claim.

I Claim 13. If there exists a solution of the edge-disjoint version of the undirected k-DSPP
in a planar graph, then there exists a solution P1, . . . , Pk such that Pi and Pj cross at most
once for every pair i, j ∈ {1, . . . , k}.

Proof. Let P1, . . . , Pk be a solution of the edge-disjoint version of the undirected k-DSPP
that minimizes the total number of crossings of the paths. We show that this solution satisfies
the condition in the claim. Assume to the contrary that Pi and Pj cross at two distinct
vertices u and v. Then, there exists a subpath Qi of Pi and a subpath Qj of Pj such that both
Qi and Qj are paths from u to v. Since Pi is a shortest path from si to ti and Pj is a shortest
path from sj to tj , we have `(Qi) = `(Qj). This shows that, we can obtain another solution
of the edge-disjoint version of the undirected k-DSPP by replacing Pi and Pj with two paths
P ′i and P ′j such that E(P ′i ) = (E(Pi)\E(Qi))∪E(Qj) and E(P ′j) = (E(Pj)\E(Qj))∪E(Qi).
We can see that the number of crossings of P ′i and P ′j is strictly smaller than that of Pi and
Pj . We can also see that, for any h ∈ {1, . . . , k} \ {i, j}, the number of crossings of Ph and
{P ′i , P ′j} is at most that of Ph and {Pi, Pj}. Therefore, the total number of crossings of the
obtained solution is smaller than the original solution, which is a contradiction. J

Let P1, . . . , Pk be a solution of the edge-disjoint version of the undirected k-DSPP
satisfying the condition in the above claim. For i = 1, . . . , k, by the above claim, there
exist at most k − 1 vertices ui

1, ui
2, . . . , ui

ri
such that Pi crosses another path at some ui

j and
si =: ui

0, ui
1, ui

2, . . . , ui
ri

, ui
ri+1 := ti appear in this order along Pi. Then, Pi can be divided

into ri + 1 ≤ k subpaths Qi
1, . . . Qi

ri+1, where Qi
j is a shortest path from ui

j−1 to ui
j . By the

definition of Qi
j , we can see that Qi

j (i = 1, . . . , k, j = 1, . . . , ri + 1) are edge-disjoint paths
and they do not cross each other.

With this observation, we can solve the edge-disjoint version of the undirected k-DSPP
as follows.
Step 1. For i = 1, . . . , k, guess an integer ri ≤ k − 1 and vertices ui

1, ui
2, . . . , ui

ri
.

Step 2. Find pairwise edge-disjoint paths Qi
j (i = 1, . . . , k, j = 1, . . . , ri + 1) such that they

do not cross each other and Qi
j is a shortest path from ui

j−1 to ui
j , where ui

0 = si and
ui

ri+1 = ti.
Step 3. For each i, define Pi as the concatenation of Qi

1, . . . , Qi
ri+1. Check whether or not

P1, . . . , Pk form a solution of the original instance.

ESA 2017
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In Step 1, the number of choices of ri and ui
1, ui

2, . . . , ui
ri

is at most |V |O(k2). In Step 2,
we can find desired edge-disjoint paths Qi

j (i = 1, . . . , k, j = 1, . . . , ri + 1) if they exist in
|V |O(k2) time by Proposition 12. Note that the number of terminals is at most O(k2). In
Step 3, we can easily check whether or not P1, . . . , Pk are a solution of the original problem
in polynomial time. Therefore, the edge-disjoint version of the undirected k-DSPP can be
solved in |V |O(k2) time if the input graph is planar. J
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Abstract
Given a tournament T and a positive integer k, the C3-Packing-T problem asks if there exists
a least k (vertex-)disjoint directed 3-cycles in T . This is the dual problem in tournaments of
the classical minimal feedback vertex set problem. Surprisingly C3-Packing-T did not receive
a lot of attention in the literature. We show that it does not admit a PTAS unless P=NP,
even if we restrict the considered instances to sparse tournaments, that is tournaments with a
feedback arc set (FAS) being a matching. Focusing on sparse tournaments we provide a (1+ 6

c−1 )
approximation algorithm for sparse tournaments having a linear representation where all the
backward arcs have “length” at least c. Concerning kernelization, we show that C3-Packing-
T admits a kernel withO(m) vertices, wherem is the size of a given feedback arc set. In particular,
we derive a O(k) vertices kernel for C3-Packing-T when restricted to sparse instances. On the
negative size, we show that C3-Packing-T does not admit a kernel of (total bit) size O(k2−ε)
unless NP ⊆ coNP / Poly. The existence of a kernel in O(k) vertices for C3-Packing-T remains
an open question.

1998 ACM Subject Classification G.2.2 [Graph Theory] Graph Algorithms

Keywords and phrases Tournament, triangle packing, feedback arc set, approximation and para-
meterized algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.14

1 Introduction and related work

Tournament

A tournament T on n vertices is an orientation of the edges of the complete undirected
graph Kn. Thus, given a tournament T = (V,A), where V = {vi, i ∈ [n]}, for each i, j ∈ [n],
either vivj ∈ A or vjvi ∈ A. A tournament T can alternatively be defined by an ordering
σ(T ) = (v1, . . . , vn) of its vertices and a set of backward arcs Aσ(T ) (which will be denoted
A(T ) as the considered ordering is not ambiguous), where each arc a ∈ A(T ) is of the
form vi1vi2 with i2 < i1. Indeed, given σ(T ) and A(T ), we can define V = {vi, i ∈ [n]}
and A = A(T ) ∪ A(T ) where A(T ) = {vi1vi2 : (i1 < i2) and vi2vi1 /∈ A(T )} is the set of
forward arcs of T in the given ordering σ(T ). In the following, (σ(T ),A(T )) is called a linear

∗ An extended version of this paper is available at [4], https://hal-lirmm.ccsd.cnrs.fr/
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representation of the tournament T . For a backward arc e = vjvi of σ(T ) the span value
of e is j − i− 1. Then minspan(σ(T )) (resp. maxspan(σ(T ))) is simply the minimum (resp.
maximum) of the span values of the backward arcs of σ(T ).
A set A′ ⊆ A of arcs of T is a feedback arc set (or FAS) of T if every directed cycle of T
contains at least one arc of A′. It is clear that for any linear representation (σ(T ),A(T )) of
T the set A(T ) is a FAS of T . A tournament is sparse if it admits a FAS which is a matching.
We denote by C3-Packing-T the problem of packing the maximum number of vertex disjoint
triangles in a given tournament, where a triangle is a directed 3-cycle. More formally, an
input of C3-Packing-T is a tournament T , an output is a set (called a triangle packing)
S = {ti, i ∈ [|S|]} where each ti is a triangle and for any i 6= j we have V (ti)∩V (tj) = ∅, and
the objective is to maximize |S|. We denote by opt(T ) the optimal value of T . We denote
by C3-Perfect-Packing-T the decision problem associated to C3-Packing-T where an
input T is positive iff there is a triangle packing S such that V (S) = V (T ) (which is called a
perfect triangle packing).

Related work

We refer the reader to the extended version of the paper [4] where we recall the definitions
of the problems mentioned bellow as well as the standard definitions about parameterized
complexity and approximation. A first natural related problem is 3-Set-Packing as we can
reduce C3-Packing-T to 3-Set-Packing by creating an hyperedge for each triangle.

Classical complexity / approximation. It is known that C3-Packing-T is polynomial
if the tournament does not contain the three forbidden sub-tournaments described in [5].
From the point of view of approximability, the best approximation algorithm is the 4

3 + ε

approximation of [7] for 3-Set-Packing, implying the same result for K3-packing and
C3-Packing-T. Concerning negative results, it is known [9] that even K3-packing is MAX
SNP-hard on graphs with maximum degree four. The related “dual” problems FAST and
FVST received a lot of attention with for example the NP-hardness and PTAS for FAS
in [6] and [12] respectively, and the 7

3 approximation and inapproximability results for FVST
in [13].

Kernelization. We precise that the implicitly considered parameter here is the size of the
solution. There is a O(k2) vertex kernel for K3-packing in [14], and even a O(k2) vertex
kernel for 3-Set-Packing in [1], which is obtained by only removing vertices of the ground
set. This remark is important as it directly implies a O(k2) vertex kernel for C3-Packing-
T (see Section 4). Let us now turn to negative results. There is a whole line of research
dedicated to finding lower bounds on the size of polynomial kernels. The main tool involved
in these bounds is the weak composition introduced in [10] (whose definition is recalled in [4]).
Weak composition allowed several almost tight lower bounds, with for examples the O(kd−ε)
for d-Set-Packing and O(kd−4−ε) for Kd-packing of [10]. These results where improved
in [8] to O(kd−ε) for perfect d-Set-Packing, O(kd−1−ε) for Kd-packing, and leading to
O(k2−ε) for perfect K3-packing. Notice that negative results for the “perfect” version of
problems (where parameter k = n

d , where d is the number of vertices of the packed structure)
are stronger than for the classical version where k is arbitrary. Kernel lower bound for these
“perfect” versions is sometimes referred as sparsification lower bounds.
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Our contributions

Our objective is to study the approximability and kernelization of C3-Packing-T. On the
approximation side, a natural question is a possible improvement of the 4

3 + ε approximation
implied by 3-Set-Packing. We show that, unlike FAST, C3-Packing-T does not admit a
PTAS unless P=NP, even if the tournament is sparse. We point out that, surprisingly, we
were not able to find any reference establishing a negative result for C3-Packing-T, even
for the NP-hardness. As these results show that there is not much room for improving the
approximation ratio, we focus on sparse tournaments and followed a different approach by
looking for a condition that would allow ratio arbitrarily close to 1. In that spirit, we provide
a (1 + 6

c−1 ) approximation algorithm for sparse tournaments having a linear representation
with minspan at least c. Concerning kernelization, we complete the panorama of sparsification
lower bounds of [11] by proving that C3-Perfect-Packing-T does not admit a kernel of
(total bit) size O(n2−ε) unless NP ⊆ coNP / Poly. This implies that C3-Packing-T does
not admit a kernel of (total bit) size O(k2−ε) unless NP ⊆ coNP / Poly. We also prove that
C3-Packing-T admits a kernel of O(m) vertices, where m is the size of a given FAS of
the instance, and that C3-Packing-T restricted to sparse instances has a kernel in O(k)
vertices (and so of total size bit O(k log(k))). The existence of a kernel in O(k) vertices for
the general C3-Packing-T remains our main open question.

2 Specific notations and observations

Given a linear representation (σ(T ),A(T )) of a tournament T , a triangle t in T is a
triple t = (vi1 , vi2 , vi3) with il < il+1 such that either vi3vi1 ∈ A(T ), vi3vi2 /∈ A(T ) and
vi2vi1 /∈ A(T ) (in this case we call t a triangle with backward arc vi3vi1), or vi3vi1 /∈ A(T ),
vi3vi2 ∈ A(T ) and vi2vi1 ∈ A(T ) (in this case we call t a triangle with two backward arcs
vi3vi2 and vi2vi1). Given two tournaments T1, T2 defined by σ(Tl) and A(Tl) we denote by
T = T1T2 the tournament called the concatenation of T1 and T2, where σ(T ) = σ(T1)σ(T2)
is the concatenation of the two sequences, and A(T ) = A(T1) ∪A(T2). Given a tournament
T and a subset of vertices X, we denote by T \X the tournament T [V (T ) \X] induced by
vertices V (T ) \X, and we call this operation removing X from T . Given an arc a = uv we
define h(a) = v as the head of a and t(a) = u as the tail of a. Given a linear representation
(V (T ),A(T )) and an arc a ∈ A(T ), we define s(a) = {v : h(a) < v < t(a)} as the span
of a. Notice that the span value of a is then exactly |s(a)|. Given a linear representation
(V (T ),A(T )) and a vertex v ∈ V (T ), we define the degree of v by d(v) = (a, b), where
a = |{vu ∈ A(T ) : u < v}| is called the left degree of v and b = |{uv ∈ A(T ) : u > v}|
is called the right degree of v. We also define V(a,b) = {v ∈ V (T )|d(v) = (a, b)}. Given a
set of pairwise distinct pairs D, we denote by C3-Packing-TD the problem C3-Packing-
T restricted to tournaments such that there exists a linear representation where d(v) ∈ D
for all v. Notice that when DM = {(0, 1), (1, 0), (0, 0)}, instances of C3-Packing-TDM are
the sparse tournaments. Finally let us point out that it is easy to decide in polynomial
time if a tournament is sparse or not, and if so, to give a linear representation whose FAS is
a matching. The corresponding algorithm is detailed in [4]. Thus, in the following, when
considering a sparse tournament we will assume that a linear ordering of it where backward
arcs form a matching is also given. Finally, due to space limitations, the proofs of the results
marked with ‘(?)’ have been removed and are available in [4].
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Figure 1 Example of a variable gadget Li.

3 Approximation for sparse tournaments

3.1 APX-hardness for sparse tournaments
In this subsection we prove that C3-Packing-TDM is APX-hard by providing a L-reduction
(see Definition in [4]) from Max 2-SAT(3), which is known to be APX-hard [2, 3]. Recall that
in the Max 2-SAT(3) problem each clause contains exactly 2 variables and each variable
appears in at most 3 clauses (and at most twice positively and once negatively).

Definition of the reduction. Let F be an instance of Max 2-SAT(3). In the following, we
will denote by n the number of variables in F and m the number of clauses. Let {xi, 1 ∈ [n]}
be the set of variables of F and {Cj , j ∈ [m]} its set of clauses.

We now define a reduction f which maps an instance F of Max 2-SAT(3) to an instance
T of C3-Packing-TDM . For each variable xi with i ∈ [n], we create a tournament Li as
follows and we call it variable gadget. We refer the reader to Figure 1 where an example
of variable gadget is depicted. Let σ(Li) = (Xi, X

′
i, Xi, Xi

′
, {βi}, {β′i} , Ai, Bi, {αi}, A′i, B′i).

We define C = {Xi, X
′
i, Xi, Xi

′
, Ai, Bi, A

′
i, B
′
i}. All sets of C have size 4. We denote Xi =

(x1
i , x

2
i , x

3
i , x

4
i ), and we extend the notation in a straightforward manner to the other others

sets of C. Let us now define A(Li). For each set of C, we add a backward arc whose head
is the first element and the tail is the last element (for example for Xi we add the arc
x4
ix

1
i ). Then, we add to A(Li) the set {e1, e2, e3, e4} where e1 = x3

i a
3
i , e2 = x

′3
i a

′3
i , e3 = x3

i b
3
i ,

e4 = x
′3
i b

′3
i and the set {m1,m2} where m1 = a

′2
i a

2
i , m2 = b

′2
i b

2
i called the two medium arcs

of the variable gadget. This completes the description of tournament Li. Let L = L1 . . . Ln
be the concatenation of the Li.

For each clause Cj with j ∈ [1,m], we create a tournament Kj with ordering σ(Ki) =
(θj , d1

j , c
1
j , c

2
j , d

2
j) and A(Ki) = {d2

jd
1
j}. We also define K = K1 . . .Km. Let us now define

T = LK. We add to A(T ) the following backward arcs from V (K) to V (L). If Cj = li1 ∨ li2
is a clause in F then we add the arcs c1jvi1 , c2jvi2 where vic is the vertex in {x2

ic
, x

′2
ic
, x2
ic
}

corresponding to lic : if lic is a positive occurrence of variable ic we chose vic ∈ {x2
ic
, x

′2
ic
},

otherwise we chose vic = x2
ic
. Moreover, we chose vertices vic in such a way that for any

i ∈ [n], for each v ∈ {x2
i , x

′2
i , x

2
i } there exists a unique arc a ∈ A(T ) such that h(a) = v. This

is always possible as each variable has at most two positive occurrences and one negative
occurrence. Thus, x2

i represent the first positive occurrence of variable i, and x′2
i the second

one. We refer the reader to Figure 2 where an example of the connection between variable
and clause gadget is depicted.

Notice that vertices of X ′i are never linked to the clauses gadget. However, we need this
set to keep the variable gadget symmetric so that setting xi to true or false leads to the same
number of triangles inside Li. This completes the description of T . Notice that the degree of
any vertex is in {(0, 1), (1, 0), (0, 0)}, and thus T is an instance of C3-Packing-TDM .

Let us now distinguish three different types of triangles in T . A triangle t = (v1, v2, v3) of T
is called an outer triangle iff ∃j ∈ [m] such that v2 = θj and v3 = clj (implying that v1 ∈ V (L)),
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d2jc2jd1j c
1
jθjX ′

3

e2

L3
Kj representing Cj = x3 ∨ x5

X5

L5

e3

Figure 2 Example showing how a clause gadget is attached to variable gadgets.

variable inner iff ∃i ∈ [n] such that V (t) ⊆ V (Li), and clause inner iff ∃j ∈ [m] such that
V (t) ⊆ V (Kj). Notice that a triangle t = (v1, v2, v3) of T which is neither outer, variable or
clause inner has necessarily v3 = clj for some j, and v2 6= θj (v2 could be in V (L) or V (K)).
In the following definition, for any Y ∈ C (where C = {Xi, X

′
i, Xi, Xi

′
, Ai, Bi, A

′
i, B
′
i})

with Y = (y1, y2, y3, y4), we define t2Y = (y1, y2, y4) and t3Y = (y1, y3, y4). For example,
t2X′

i
= (x′1

i , x
′2
i , x

′4
i ). For any i ∈ [n], we define Pi and Pi, two sets of vertex disjoint variable

inner triangles of V (Li), by:
Pi = {t3Xi

, t3X′
i
, t2

Xi
, t2

X′
i

, t3Ai
, t2Bi

, t3A′
i
, t2B′

i
, (h(e3), βi, t(e3)), (h(e4), β′

i, t(e4)), (h(m1), αi, t(m1))}

Pi = {t2Xi
, t2X′

i
, t3

Xi
, t3

X′
i

, t2Ai
, t3Bi

, t2A′
i
, t3B′

i
, (h(e1), βi, t(e1)), (h(e2), β′

i, t(e2)), (h(m2), αi, t(m2))}

Notice that Pi (resp. Pi) uses all vertices of Li except {x2
i , x

′2
i } (resp. {x2

i , x
′2
i }). For any

j ∈ [m], and x ∈ [2] we define the set of clause inner triangle of Kj , that is Qxj = {(d1
j , c

x
j , d

2
j )}.

Informally, setting variable xi to true corresponds to create the 11 triangles of Pi in Li (as
leaving vertices {x2

i , x
2′

i } available allows to create outer triangles corresponding to satisfied
clauses), and setting it to false corresponds to create the 11 triangles of Pi. Satisfying a
clause j using its xth literal (represented by a vertex v ∈ V (L)) corresponds to create triangle
in Q3−x

j as it leaves cxj available to create the triangle (v, θj , cxj ). Our final objective (in
Lemma 4) is to prove that satisfying k clauses is equivalent to find 11n+m+k vertex disjoint
triangles.

Restructuration lemmas. Given a solution S, let ILi = {t ∈ S : V (t) ⊆ V (Li)}, IKj = {t ∈
S : V (t) ⊆ V (Kj)}, IL = ∪i∈[n]I

L
i be the set of variable inner triangles of S, IK = ∪j∈[m]I

K
j

be the set of clause inner triangles of S, and O = {t ∈ S t is an outer triangle } be the set
of outer triangles of S. Notice that a priori IL, IK , O does not necessarily form a partition
of S. However, we will show in the next lemmas how to restructure S such that IL, IK , O
becomes a partition.

I Lemma 1 (?). For any S we can compute in polynomial time a solution S′ = {t′l, l ∈ [k]}
such that |S′| ≥ |S| and for all j ∈ [m] there exists x ∈ [2] such that I ′K

j = Qxj and
either S′ does not use any other vertex of Kj (V (S′) ∩ V (Kj) = V (Qxj ))
either S′ contains an outer triangle t′l = (v, θj , c3−xj ) with v ∈ V (L) (implying V (S′) ∩
V (Kj) = V (Kj))

I Corollary 2. For any S we can compute in polynomial time a solution S′ such that
|S′| ≥ |S|, and S′ only contains outer, variable inner, and clause inner triangles. Indeed,
in the solution S′ of Lemma 1, given any t ∈ S′, either V (t) intersects V (Kj) for some j
and then t is an outer or a clause inner triangle, or V (t) ⊆ V (Li) for i ∈ [n] as there is no
backward arc uv with u ∈ V (Li1) and v ∈ V (Li2) with i1 6= i2 .

I Lemma 3 (?). For any S we can compute in polynomial time a solution S′ such that
|S′| ≥ |S|, S′ satisfies Lemma 1, and for every i ∈ [n], I ′L

i = Pi or I
′L
i = Pi.
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Proof of the L-reduction. We are now ready to prove the main lemma (recall that f is the
reduction from Max 2-SAT(3) to C3-Packing-TDM described in Section 3.1), and also the
main theorem of the section.

I Lemma 4. Let F be an instance of Max 2-SAT(3). For any k, there exists an assignment
a of F satisfying at least k clauses if and only if there exists a solution S of f(F) with
|S| ≥ 11n+m+ k, where n and m are respectively is the number of variables and clauses in
F . Moreover, in the ⇐ direction, assignment a can be computed from S in polynomial time.

Proof. For any i ∈ [n], let Ai = Pi if xi is set to true in a, and Ai = Pi otherwise. We
first add to S the set ∪i∈[n]Ai. Then, let {Cjl

, l ∈ [k]} be k clauses satisfied by a. For any
l ∈ [k], let il be the index of a literal satisfying Cjl

, let x ∈ [2] such that cxjl
corresponds to

this literal, and let Zl = {x2
il
, x

′2
il
} if literal il is positive, and Zl = {x2

il
} otherwise. For any

j ∈ [m], if j = il for some l (meaning that j corresponds to a satisfied clause), we add to
S the triangle in Q3−x

j , and otherwise we arbitrarily add the triangle Q1
j . Finally, for any

l ∈ [k] we add to S triangle tl = (yl, θjl
, cxjl

) where yl ∈ Zl is such that yl is not already used
in another triangle. Notice that such an yl always exists as triangles of Ai, i ∈ [n] do not
intersect Zl (by definition of the Ai), and as there are at most two clauses that are true
due to positive literal, and one clause that is true due to a negative literal. Thus, S has
11n+m+ k vertex disjoint triangles.

Conversely, let S a solution of f(F) with |S| ≥ 11n + m + k. By Lemma 3 we can
construct in polynomial time a solution S′ from S such that |S′| ≥ |S|, S′ only contains outer,
variable or clause inner triangles, for each j ∈ [m] there exists x ∈ [2] such that I ′K

j = Qxj ,
and for each i ∈ [n], I ′L

i = Pi or I
′L
i = Pi. This implies that the k′ ≥ k remaining triangles

must be outer triangles. Let {t′l, l ∈ [k′]} be these k′ outer triangles with t′l = (yl, θjl
, cxl
jl

)
Let us define the following assignation a: for each i ∈ [n], we set xi to true if I ′L

i = Pi, and
false otherwise. This implies that a satisfies at least clauses {Cjl

, l ∈ [k′]}. J

I Theorem 5. C3-Packing-TDM is APX-hard, and thus does not admit a PTAS unless
P = NP.

Proof. Let us check that Lemma 4 implies a L-reduction (whose definition is recalled in [4]).
Let OPT1 (resp. OPT2) be the optimal value of F (resp. f(F)). Notice that Lemma 4
implies that OPT2 = OPT1 + 11n + m. It is known that OPT1 ≥ 3

4m (where m is the
number of clauses of F). As n ≤ m (each variable has at least one positive and one negative
occurrence), we get OPT2 = OPT1 + 11n+m ≤ αOPT1 for an appropriate constant α, and
thus point (a) of the definition is verified. Then, given a solution S′ of f(F), according to
Lemma 4 we can construct in polynomial time an assignment a satisfying c(a) clauses with
c(a) ≥ S′ − 11n−m. Thus, the inequality (b) of the Definition of a L-reduction with β = 1
becomes OPT1 − c(a) ≤ OPT2 − S′ = OPT1 + 11n+m− S′, which is true. J

Reduction of Theorem 5 does not imply the NP-hardness of C3-Perfect-Packing-T as
there remain some unused vertices. However, it is straightforward to adapt the reduction
by adding backward arcs whose head (resp. tail) are before (resp. after) T to consume the
remaining vertices. This leads to the following result.

I Theorem 6 (?). C3-Perfect-Packing-TDM is NP-hard.

To establish the kernel lower bound of Section 4, we also need the NP-hardness of C3-
Perfect-Packing-T where instances have a slightly simpler structure (to the price of losing
the property that there exists a FAS which is a matching).
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I Theorem 7 (?). C3-Perfect-Packing-T remains NP-hard even restricted to tournaments
T admitting the following linear ordering.
T = LK where L and K are two tournaments
tournaments L and K are “fixed”:
K = K1 . . .Km for some m, where for each j ∈ [m] we have V (Kj) = (θj , cj)
L = R1L1 . . . LnR2, where each Li has is a copy of the variable gadget of Section 3.1,
Ri = {rli, l ∈ [n′]} where n′ = 2n−m, and in addition L also contains R = {(rl2rl1), l ∈
[n′]} which are called the dummy arcs.

3.2 (1 + 6
c−1)-approximation when backward arcs have large minspan

Given a set of pairwise distinct pairs D and an integer c, we denote by C3-Packing-TD
≥c

the problem C3-Packing-TD restricted to tournaments such that there exists a linear
representation of minspan at least c and where d(v) ∈ D for all v. In all this section we
consider an instance T of C3-Packing-TDM

≥c with a given linear ordering (V (T ),A(T ))
of minspan at least c and whose degrees belong to DM . The motivation for studying the
approximability of this special case comes from the situation of MAX-SAT(c) where the
approximability becomes easier as c grows, as the derandomized uniform assignment provides
a 2c

2c−1 approximation algorithm. Somehow, one could claim that MAX-SAT(c) becomes
easy to approximate for large c as there are many ways to satisfy a given clause. As the
same intuition applies for tournaments admitting an ordering with large minspan (as there
are c− 1 different ways to use a given backward in a triangle), our objective was to find a
polynomial approximation algorithm whose ratio tends to 1 when c increases.

Let us now define algorithm Φ. We define a bipartite graph G = (V1, V2, E) with
V1 = {v1

a : a ∈ A(T )} and V2 = {v2
l : vl ∈ V(0,0)}. Thus to each backward arc we associate

a vertex in V1 and to each vertex vl with d(vl) = (0, 0) we associate a vertex in V2. Then
{v1
a, v

2
l } ∈ E iff (h(a), vl, t(a)) is a triangle in T .

In phase 1, Φ computes a maximum matching M = {el, l ∈ [|M |]} in G. For every
el = {v1

ij , v
2
l } ∈ M create a triangle t1l = (vj , vl, vi). Let S1 = {t1l , l ∈ [|M |]}. Notice that

triangles of S1 are vertex disjoint. Let us now turn to phase 2. Let T 2 be the tournament
T where we removed all vertices V (S1). Let (V (T 2),A(T 2)) be the linear ordering of T 2

obtained by removing V (S1) in (V (T ),A(T )). We say that three distinct backward edges
{a1, a2, a3} ⊆ A(T 2) can be packed into triangles t1 and t2 iff V ({t1, t2}) = V ({a1, a2, a3})
and the ti are vertex disjoint. For example, if h(a1) < h(a2) < t(a1) < h(a3) < t(a2) < t(a3),
then {a1, a2, a3} can be packed into (h(a1), h(a2), t(a1)) and (h(a3), t(a2), t(a3)) (recall that
when A(T ) form a matching, (u, v, w) is triangle iff wu ∈ A(T ) and u < v < w), and if
h(a1) < h(a2) < t(a2) < h(a3) < t(a3) < t(a1), then {a1, a2, a3} cannot be packed into two
triangles. In phase 2, while it is possible, Φ finds a triplet of arcs of Y ⊆ A(T 2) that can be
packed into triangles, create the two corresponding triangles, and remove V (Y ). Let S2 be
the triangle created in phase 2 and let S = S1 ∪ S2.

I Observation 8. For any a ∈ A(T ), either V (a) ⊆ V (S) or V (a)∩V (S) = ∅. Equivalently,
no backward arc has one endpoint in V (S) and the other outside V (S).

According to Observation 8, we can partition A(T ) = A0 ∪ A1 ∪ A2, where for i ∈ {1, 2},
Ai = {a ∈ A(T ) : V (a) ⊆ V (Si) is the set of arcs used in phase i, and A0 =def {bi, i ∈ [x]}
are the remaining unused arcs. Let AΦ = A1 ∪ A2, mi = |Ai|, m = m0 + m1 + m2 and
mΦ = m1 + m2 the number of arcs (entirely) consumed by Φ. To prove the 1 + 6

c−1
desired approximation ratio, we will first prove in Lemma 9 that Φ uses at most all the arcs
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(mA ≥ (1− ε(c))m), and in Theorem 10 that the number of triangles made with these arcs
is “optimal”. Notice that the latter condition is mandatory as if Φ used its mΦ arcs to only
create 2

3 (mΦ) triangles in phase 2 instead of creating m′ ≈ mΦ triangle with m′ backward
arcs and m′ vertices of degree (0, 0), we would have a 3

2 approximation ratio.

I Lemma 9 (?). For any c ≥ 2, mΦ ≥ (1− 6
c+5 )m

I Theorem 10. For any c ≥ 2, Φ is a polynomial (1 + 6
c−1 ) approximation algorithm for

C3-Packing-TDM

≥c .

Proof. Let OPT be an optimal solution. Let us define OPTi ⊆ OPT and A∗i ⊆ A(T ) as
follows. Let t = (u, v, w) ∈ OPT . As the FAS of the instance is a matching, we know that
wu ∈ A(T ) as we cannot have a triangle with two backward arcs. If d(v) = (0, 0) then we
add t to OPT1 and wu to A∗1. Otherwise, let v′ be the other endpoint of the unique arc a
containing v. If v′ /∈ V (OPT ), then we add t to OPT3 and {wu, a} to A∗3. Otherwise, let
t′ ∈ OPT such that v′ ∈ V (t′). As the FAS of the instance is a matching we know that v′
is the middle point of t′, or more formally that t′ = (u′, v′, w′) with u′w′ ∈ A(T ). We add
{t, t′} to OPT2 and {wu, a, w′u′} to A∗2. Notice that the OPTi form a partition of OPT , and
that the A∗i have pairwise empty intersection, implying |A∗1|+ |A∗2|+ |A∗3| ≤ m. Notice also
that as triangles of OPT1 correspond to a matching of size |OPT1| in the bipartite graph
defined in phase 1 of algorithm Φ, we have |OPT1| = |A∗1| ≤ |A1|.

Putting pieces together we get (recall that S is the solution computed by Φ) |OPT | =
|OPT1|+ |OPT2|+ |OPT3| = |A∗1|+ 2

3 |A
∗
2|+ 1

2 |A
∗
3| ≤ |A∗1|+ 2

3 (|A∗2|+ |A∗3|) ≤ |A∗1|+ 2
3 (m−

|A∗1|) ≤ 1
3 |A1|+ 2

3m and |S| = |S1|+ |S2| = |A1|+ 2
3 |A2| ≥ |A1|+ 2

3 ((1− 6
c+5 )m− |A1|) =

1
3 |A1|+ 2

3 (1− 6
c+5 )m which implies the desired ratio. J

4 Kernelization

In all this section we consider the decision problem C3-Packing-T parameterized by the
size of the solution. Thus, an input is a pair I = (T , k) and we say that I is positive iff there
exists a set of k vertex disjoint triangles in T .

4.1 Positive results for sparse instances
Observe first that the kernel in O(k2) vertices for 3-Set Packing of [1] directly implies a
kernel in O(k2) vertices for C3-Packing-T. Indeed, given an instance (T = (V,A), k) of
C3-Packing-T, we create an instance (I ′ = (V,C), k) of 3-Set Packing by creating an
hyperedge c ∈ C for each triangle of T . Then, as the kernel of [1] only removes vertices,
it outputs an induced instance (I ′ = I ′[V ′], k′) of I with V ′ ⊆ V , and thus this induced
instance can be interpreted as a subtournament, and the corresponding instance (T [V ′], k′)
is an equivalent tournament with O(k2) vertices.

As shown in the next theorem, as we could expect it is also possible to have kernel
bounded by the number of backward arcs.

I Theorem 11. C3-Packing-T admits a polynomial kernel with O(m) vertices, where m is
the number of arcs in a given FAS of the input.

Proof. Let I = (T , k) be an input of the decision problem associated to C3-Packing-T.
Observe first that we can build in polynomial time a linear ordering σ(T ) whose backward
arcs A(T ) correspond to the given FAS. We will obtain the kernel by removing useless vertices
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of degree (0, 0). Let us define a bipartite graph G = (V1, V2, E) with V1 = {v1
a : a ∈ A(T )}

and V2 = {v2
l : vl ∈ V(0,0)}. Thus, to each backward arc we associate a vertex in V1 and

to each vertex vl with d(vl) = (0, 0) we associate a vertex in V2. Then, {v1
a, v

2
l } ∈ E iff

(h(a), vl, t(a)) is a triangle in T . By Hall’s theorem, we can in polynomial time partition
V1 and V2 into V1 = A1 ∪ A2, V2 = B0 ∪ B1 ∪ B2 such that N(A2) ⊆ B2, |B2| ≤ |A2|,
and there is a perfect matching between vertices of A1 and B1 (B0 is simply defined by
B0 = V2 \ (B1 ∪B2)).

For any i, 0 ≤ i ≤ 2, let Xi = {vl ∈ V(0,0) : v2
l ∈ Bi} be the vertices of T corresponding

to Bi. Let V6=(0,0) = V (T ) \ V(0,0). Notice that |V 6=(0,0)| ≤ 2m. We define T ′ = T [V 6=(0,0) ∪
X1 ∪X2] the sub-tournament obtained from T by removing vertices of X0, and I ′ = (T ′, k).
We point out that this definition of T ′ is similar to the final step of the kernel of [1] as
our partition of V1 and V2 (more precisely (A1, B0 ∪B1)) corresponds in fact to the crown
decomposition of [1]. Observe that |V (T ′)| ≤ 2m+ |A1|+ |A2| ≤ 3m, implying the desired
bound of the number of vertices of the kernel.

It remains to prove that I and I ′ are equivalent. Let k ∈ N, and let us prove that
there exists a solution S of T with |S| ≥ k iff there exists a solution S′ of T ′ with |S′| ≥ k.
Observe that the ⇐ direction is obvious as T ′ is a subtournament of T . Let us now
prove the ⇒ direction. Let S be a solution of T with |S| ≥ k. Let S = S(0,0) ∪ S1

with S(0,0) = {t ∈ S : t = (h(a), v, t(a)) with v ∈ V(0,0), a ∈ A(T )} and S1 = S \ S(0,0).
Observe that V (S1) ∩ V(0,0) = ∅, implying V (S1) ⊆ V6=(0,0). For any i ∈ [2], let Si(0,0) =
{t ∈ S(0,0) : t = (h(a), v, t(a)) with v ∈ V(0,0), v

1
a ∈ Ai} be a partition of S(0,0). We

define S′ = S1 ∪ S2
(0,0) ∪ S

′1
(0,0), where S

′1
(0,0) is defined as follows. For any v1

a ∈ A1, let
v2
µ(a) ∈ B1 be the vertex associated to v1

a in the (A1, B1) matching. To any triangle
t = (h(a), v, t(a)) ∈ S1

(0,0) we associate a triangle f(t) = (h(a), vµ(a), t(a)) ∈ S′1
(0,0), where

by definition vµ(a) ∈ X1. For the sake of uniformity we also say that any t ∈ S1 ∪ S2
(0,0) is

associated to f(t) = t.
Let us now verify that triangles of S′ are vertex disjoint by verifying that triangles of

S
′1
(0,0) do not intersect another triangle of S′. Let f(t) = (h(a), vµ(a), t(a)) ∈ S′1

(0,0). Observe
that h(a) and t(a) cannot belong to any other triangle f(t′) of S′ as for any f(t′′) ∈ S′,
V (f(t′′)) ∩ V6=(0,0) = V (t′′) ∩ V 6=(0,0) (remember that we use the same notation V6=(0,0) to
denote vertices of degree (0, 0) in T and T ′). Let us now consider vµ(a). For any f(t′) ∈ S1,
as V (f(t′)) ∩ V(0,0) = ∅ we have vµ(a) /∈ V (f(t′)). For any f(t′) = (h(a′), vl, t(a′)) ∈ S2

(0,0),
we know by definition that v1

a′ ∈ A2, implying that v2
l ∈ B2 (and vl ∈ X2) as N(A2) ⊆ B2

and thus that vl 6= vµ(a). Finally, for any f(t′) = (h(a′), vl, t(a′)) ∈ S
′1
(0,0), we know that

vl = vµ(a′), where a 6= a′, leading to vl 6= vµ(a) as µ is a matching. J

Using the previous result we can provide a O(k) vertices kernel for C3-Packing-T re-
stricted to sparse tournaments.

I Theorem 12 (?). C3-Packing-T restricted to sparse tournaments admits a polynomial
kernel with O(k) vertices, where k is the size of the solution.

4.2 No (generalised) kernel in O(k2−ε)

In this section we provide an OR-cross composition (see [4] where we recall the definition) from
C3-Perfect-Packing-T restricted to instances of Theorem 7 to C3-Perfect-Packing-
T parameterized by the total number of vertices.
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Definition of the instance selector. The next lemma build a special tournament, called
an instance selector that will be useful to design the cross composition.

I Lemma 13 (?). For any γ = 2γ′ and ω we can construct in polynomial time (in γ and ω)
a tournament Pω,γ such that

there exists γ subsets of ω vertices Xi = {xij : j ∈ [ω]}, that we call the distinguished set
of vertices, such that

the Xi have pairwise empty intersection
for any i ∈ [γ], there exists a packing S of triangles of Pω,γ such that V (Pω,γ)\V (S) =
Xi (using this packing of Pω,γ corresponds to select instance i)
for any packing S of triangles of Pω,γ with |V (S)| = |V (Pω,γ)| − ω there exists i ∈ [γ]
such that V (Pω,γ) \ V (S) ⊆ Xi

|V (Pω,γ)| = O(ωγ).

Definition of the reduction. We suppose given a family of t instances F = {Il, l ∈ [t]} of
C3-Perfect-Packing-T restricted to instances of Theorem 7 where Il asks if there is a
perfect packing in Tl = LlKl. We chose our equivalence relation of the cross-composition
such that there exist n and m such that for any l ∈ [t] we have |V (Ll)| = n and |V (Kl)| = m.
We can also copy some of the t instances such that t is a square number and g =

√
t is a

power of two. We reorganize our instances into F = {I(p,q) : 1 ≤ p, q ≤ g} where I(p,q) asks if
there is a perfect packing in T(p,q) = LpKq. Remember that according to Theorem 7, all the
Lp are equals, and all the Kq are equals. We point out that the idea of using a problem on
“bipartite” instances to allow encoding t instances on a “meta” bipartite graph G = (A,B)
(with A = {Ai, i ∈

√
t}, B = {Bi, i ∈

√
t}) such that each instance p, q is encoded in the

graph induced by G[Ai∪Bi] comes from [8]. We refer the reader to Figure 3 which represents
the different parts of the tournament. We define a tournament G = LMGL̃M̃GP(n,g), where
L = L1 . . . Lg, M̃G is a set of n vertices of degree (0, 0), MG is a set of (g − 1)n vertices
of degree (0, 0), L̃ = L̃1 . . . L̃g where each L̃p is a set of n vertices, and P(n,g) is a copy of
the instance selector of Lemma 13. Then, for every p ∈ [g] we add to G all the possible n2

backward arcs going from L̃p to Lp. Finally, for every distinguished set Xp of P(n,g) (see in
Lemma 13), we add all the possible n2 backward arcs from Xp to L̃p.

Now, in a symmetric way we define a tournament D = KMDK̃M̃DP
′
(m,g), where K =

K1 . . .Kg, M̃D is a set of m vertices of degree (0, 0), MD is a set of (g − 1)m vertices of
degree (0, 0), K̃ = K̃1 . . . K̃g where each K̃q is a set of m vertices, and P ′(m,g) is a copy of
the instance selector of Lemma 13. Then, for every q ∈ [g] we add to G all the m2 possible
backward arcs going from K̃p to Kp. For every distinguished set X ′q of P ′(m,g) we also add
all the possible m2 backward arcs from X

′q to K̃q. Finally, we define T = GD. Let us add
some backward arcs from D to G. For any p and q with 1 ≤ p, q ≤ g, we add backward arcs
from Kq to Lp such that T [KqLp] corresponds to T(p,q). Notice that this is possible as for
any fixed p, all the T(p,q), q ∈ [g] have the same left part Lp, and the same goes for any fixed
right part.

Restructuration lemmas. Given a set of triangles S we define S⊆P ′ = {t ∈ S|V (t) ⊆
P ′(m,g)}, S⊆P = {t ∈ S : V (t) ⊆ P(n,g)}, SM̃D

= {t ∈ S : V (t) intersects K̃, M̃D and P ′m,g},
SMD

= {t ∈ S : V (t) intersects K, MD and K̃}, SM̃G
= {t ∈ S : V (t) intersects L̃, M̃G

and Pn,g}, SMG
= {t ∈ S : V (t) intersects L, MG and L̃}, SD = {t ∈ S : V (t) ⊆ V (D)},

SG = {t ∈ S : V (t) ⊆ V (G)}, and SGD = {t ∈ S : V (t) intersects V (G) and V (D)}. Notice
that SG, SGD, SD is a partition of S.
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(g − 1)n nn m

G D

θj cj

L̃1 L̃p0 L̃nL1 Lp0 Ln K1 Kq0 Km K̃1 K̃q0 K̃m

Xp0n (g − 1)m X
′q0m

outer arcs of T(p0,q0)

mP(n,g) P ′
(m,g)

Figure 3 A example of the weak composition. All depicted arcs are backward arcs. Bold arcs
represents the n2 (or m2) possible arcs between the two groups.

I Claim 14. If there exists a perfect packing S of T , then |SM̃D
| = m and |SMD

| = (g−1)m.
This implies that V (SM̃D

∪SMD
)∩V (K̃) = V (K̃), meaning that the vertices of K̃ are entirely

used by SM̃D
∪ SMD

.

Proof. We have |SM̃D
| ≤ m since |M̃D| = m. We obtain the equality since the vertices of

M̃D only lie in the span of backward arcs from P ′m,g to K̃, and they are not the head or the
tail of a backward arc in T . Thus, the only way to use vertices of M̃D is to create triangles in
SM̃D

, implying |SM̃D
| ≥ m. Using the same kind of arguments we also get |SMD

| = (g− 1)m.
As |V (K̃)| = gm we get the last part of the claim. J

I Claim 15. If there exists a perfect packing S of T , then there exists q0 ∈ [g] such that
K̃S = K̃q0 , where K̃S = K̃ ∩ V (SM̃D

).

Proof. Let SP ′ be the triangles of S with at least one vertex in P ′m,g. As according to Claim 14
vertices of K̃ are entirely used by SM̃D

∪SMD
, the only way to consume vertices of P ′m,g is by

creating local triangles in P ′m,g or triangles in SM̃D
. In particular, we cannot have a triangle

(u, v, w) with {u, v} ⊆ K̃ and w ∈ P ′m,g, or with u ∈ K̃ and {v, w} ⊆ P ′m,g. More formally,
we get the partition SP ′ = S⊆P ′ ∪ SM̃D

. As S is a perfect packing and uses in particular
all vertices of P ′m,g we get |V (SP ′)| = |V (P ′m,g)|, implying |V (S⊆P ′)| = |V (P ′m,g)| −m by
Claim 14. By Lemma 13, this implies that there exists q0 ∈ [g] such that X ′ ⊆ X ′q0 where
X ′ = V (P ′m,g)\V (S⊆P ′). As X ′ are the only remaining vertices that can be used by triangles
of SM̃D

, we get that the m triangles of SM̃D
are of the form (u, v, w) with u ∈ K̃q0 , v ∈ M̃D,

and w ∈ X ′. J

I Claim 16. If there exists a perfect packing S of T , then there exists q0 ∈ [g] such that
V (SP ′ ∪ SM̃D

∪ SMD
) = V (D) \Kq0 .

Proof. By Claim 14 we know that |SMD
| = (g − 1)m. As by Claim 15 there exists q0 ∈ [g]

such that K̃S = K̃q0 , we get that the (g − 1)m triangles of SMD
are of the form (u, v, w)

with u ∈ K \Kq0 , v ∈MD, and w ∈ K̃ \ K̃q0 . J

I Lemma 17 (?). If there exists a perfect packing S of T , then V (SGD) ∩ V (G) ⊆ V (L).
Informally, triangles of SGD do not use any vertex of MG, L̃, M̃T and Pn,g.

Lemma 17 will allow us to prove Claims 18, 19 and 20 using the same arguments as in
the right part (D) of the tournament as all vertices of MG, L̃, M̃T and Pn,g must be used by
triangles in SG.

I Claim 18 (?). If there exists a perfect packing S of T , then |SM̃G
| = n and |SMG

| = (g−1)n.
This implies that V (SM̃G

∪ SMG
) ∩ V (L̃) = V (L̃), meaning that vertices of L̃ are entirely

used by SM̃G
∪ SMG

.
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I Claim 19 (?). If there exists a perfect packing S of T , then there exists p0 ∈ [g] such that
L̃S = L̃p0 , where L̃S = L̃ ∩ V (SM̃G

).

I Claim 20 (?). If there exists a perfect packing S of T , then there exists p0 ∈ [g] such that
V (SP ∪ SM̃G

∪ SMG
) = V (G) \ Lp0 .

We are now ready to state our final claim is now straightforward as according Claim 16
and 20 we can define S(p0,q0) = S \ ((SP ′ ∪ SM̃D

∪ SMD
) ∪ (SP ∪ SM̃G

∪ SMG
)).

I Claim 21. If there exists a perfect packing S of T , there exists p0, q0 ∈ [g] and S(p0,q0) ⊆ S
such that V (S(p0,q0)) = V (T(p0,q0)) (or equivalently such that S(p0,q0) is a perfect packing of
T(p0,q0)).

Proof of the weak composition

I Theorem 22. For any ε > 0, C3-Perfect-Packing-T (parameterized by the total
number of vertices N) does not admit a polynomial (generalized) kernelization with size bound
O(N2−ε) unless NP ⊆ coNP / Poly.

Proof. Given t instances {Il} of C3-Perfect-Packing-T restricted to instances of The-
orem 7, we define an instance T of C3-Perfect-Packing-T as defined in Section 4.
We recall that g =

√
t, and that for any l ∈ [t], |V (Ll)| = n and |V (Kl)| = m. Let

N = |V (T )|. As N = |V (P ′(m,g))|+m+(g−1)m+2mg+ |V (P(n,g))|+n+(g−1)n+2ng and
|V (P(ω,γ))| = O(ωγ) by Lemma 13, we get N = O(g(n+m)) = O(t

1
2+o(1) max(|Il|)). Let us

now verify that there exists l ∈ [t] such that Il admits a perfect packing iff T admits a perfect
packing. First assume that there exist p0, q0 ∈ [g] such that I(p0,q0) admits a perfect packing.
By Lemma 21, there is a packing SP ′ of P ′(m,g) such that V (Sp′) = V (P ′(m,g))\X

′q0 . We define
a set SM̃D

of m vertex disjoint triangles of the form (u, v, w) with u ∈ L̃q0 , v ∈ M̃D, w ∈ X
′q0 .

Then, we define a set SMD
of (g − 1)m vertex disjoint triangles of the form (u, v, w) with

u ∈ L\Lq0 , v ∈MD, w ∈ L̃\L̃q0 . In the same way we define SP , SM̃G
and SMG

. Observe that
V (T )\ ((SP ′ ∪SM̃D

∪SMD
)∪ (SP ∪SM̃G

∪SMG
)) = Kq0 ∪Lp0 , and thus we can complete our

packing into a perfect packing of T as I(p0,q0) admits a perfect packing. Conversely if there
exists a perfect packing S of T , then by Claim 21 there exists p0, q0 ∈ [g] and S(p0,q0) ⊆ S
such that V (S(p0,q0)) = V (T(p0,q0)), implying that I(p0,q0) admits a perfect packing. J

I Corollary 23. For any ε > 0, C3-Packing-T (parameterized by the size k of the solution)
does not admit a polynomial kernel with size O(k2−ε) unless NP ⊆ coNP / Poly.

5 Conclusion and open questions

Concerning approximation algorithms for C3-Packing-T restricted to sparse instances,
we have provided a (1 + 6

c+5 )-approximation algorithm where c is a lower bound of the
minspan of the instance. On the other hand, it is not hard to solve by dynamic programming
C3-Packing-T for instances where maxspan is bounded above. Using these two opposite
approaches it could be interesting to derive an approximation algorithm for C3-Packing-
T with factor better than 4/3 even for sparse tournaments.

Concerning FPT algorithms, the approach we used for sparse tournament (reducing to the
case where m = O(k) and apply the O(m) vertices kernel) cannot work for the general case.
Indeed, if we were able to sparsify the initial input such that m′ = O(k2−ε), applying the
kernel in O(m′) would lead to a tournament of total bit size (by encoding the two endpoint
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of each arc) O(m′log(m′)) = O(k2−ε), contradicting Corollary 23. Thus the situation for C3-
Packing-T could be as in vertex cover where there exists a kernel in O(k) vertices, derived
from [15], but the resulting instance cannot have O(k2−ε) edges [8]. So it is challenging
question to provide a kernel in O(k) vertices for the general C3-Packing-T problem.
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Abstract
Recently there has been extensive work on maintaining (approximate) maximum matchings in
dynamic graphs. We consider a generalisation of this problem known as themaximum b-matching:
Every node v has a positive integral capacity bv, and the goal is to maintain an (approximate)
maximum-cardinality subset of edges that contains at most bv edges incident on every node v.
The maximum matching problem is a special case of this problem where bv = 1 for every node v.

Bhattacharya, Henzinger and Italiano [ICALP 2015] showed how to maintain a O(1) approx-
imate maximum b-matching in a graph in O(log3 n) amortised update time. Their approximation
ratio was a large (double digit) constant. We significantly improve their result both in terms
of approximation ratio as well as update time. Specifically, we design a randomised dynamic
algorithm that maintains a (2 + ε)-approximate maximum b-matching in expected amortised
O(1/ε4) update time. Thus, for every constant ε ∈ (0, 1), we get expected amortised O(1) up-
date time. Our algorithm generalises the framework of Baswana, Gupta, Sen [FOCS 2011] and
Solomon [FOCS 2016] for maintaining a maximal matching in a dynamic graph.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases dynamic data structures, graph algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.15

1 Introduction

In dynamic graph algorithms, we want to maintain a solution to an optimisation problem on
an input graph that is undergoing a sequence of edge insertions/deletions. The time taken to
modify the solution after an update (edge insertion/deletion) is called the update time of the
dynamic data structure. The challenge is to design dynamic data structures whose update
times are significantly faster than recomputing the solution from scratch after each update
using the best static algorithm. In recent years, there has been extensive work on dynamic
graph algorithms for (approximate) maximum matching [10, 1, 12, 8, 3, 9, 2, 11, 6, 5]. A
matching M ⊆ E in a graph G = (V,E) is a subset of edges that do not share a common
endpoint. In this problem, the goal is to maintain a matching of (approximately) maximum
size in an input graph undergoing a sequence of edge insertions/deletions.

The first significant result on dynamic matching was due to Onak and Rubinfeld [10],
who gave a randomised data structure with approximation ratio O(1) and amortised update
time of O(log2 n). Baswana, Gupta and Sen [1] improved this approximation ratio to 2 and
the amortised update time to O(logn). Very recently, in a breakthrough result Solomon [12]
built upon the algorithmic framework of Baswana, Gupta and Sen [1] to present a randomised
data structure with approximation ratio 2 and constant amortised update time. This is the
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first paper to achieve constant (and hence optimal) update time for any graph problem. All
the data structures described so far are randomised. There are deterministic data structures
for this problem, with (2 + ε)-approximation ratio and O(poly logn) amortised update time,
that are due to Bhattacharya, Henzinger and Italiano [5] and Bhattacharya, Henzinger and
Nanongkai [6]. They show how to maintain a (2 + ε)-approximate maximum fractional
matching in O(logn/ε2) amortised update time. Then they round these fractional weights
deterministically in a dynamic setting to get an integral matching.

We focus on a generalisation of the dynamic matching problem. We are given an input
graph G = (V,E) with n = |V | nodes. At each time-step, an edge is inserted into/deleted
from the graph. Each node v ∈ V has a positive integral capacity bv. The node-set V and
the capacities {bv} remain unchanged over time. A b-matching is a subset of edgesM⊆ E
that contains at most bv edges incident on every node v ∈ V . Note that if bv = 1 for every
node v ∈ V , thenM is a matching. Our goal is to maintain a b-matching of (approximately)
maximum size in this dynamic graph G. This problem was first considered by Bhattacharya,
Henzinger and Italiano [4]. Extending the dynamic data structure for fractional matching [5],
they first showed how to maintain a fractional b-matching. Then they randomly sampled the
edges from this fractional b-matching, with probabilities proportional to their edge-weights,
and got an integral b-matching. This leads to a randomised data structure with a (large,
double digit) constant approximation ratio and O(log3 n) amortised update time with high
probability. Recently, Gupta et. al [7] improved the update time in [4] for the set cover
problem. However, their result does not imply our b-matching result.

Our result. We significantly improve upon the previous result on dynamic b-matching [4],
both in terms of the approximation ratio and update time. Specifically, we present a
randomised data structure with approximation ratio (2 + ε) and expected amortised update
time O(1/ε4). Note that our update time does not depend on the capacities {bv}. On the
other hand, similar to the previous paper [4], we assume an oblivious adversary.

Our technique. We build upon the work of Baswana, Gupta, Sen [1] and Solomon [12].
Before proceeding any further, we briefly review their framework for dynamic matching. A
matchingM ⊆ E is maximal if every unmatched edge (u, v) ∈ E\M has at least one matched
endpoint. The size of a maximal matching is a 2-approximation to the size of the maximum
matching. Note that we can easily maintain a maximal matching in a dynamic graph in
O(d) update time, where d is an upper bound on the maximum degree of a node. This holds
since after the insertion/deletion of an edge (u, v), we only need to check the neighbours of
u and v to preserve maximality, and there are at most O(d) such neighbours. To improve
the update time, the papers [1, 10, 12] use the following idea. We pick a neighbour y of x
uniformly at random from the set Nx, where Nx is the set of all neighbours of x, and add the
edge (x, y) to the matching M . If the sequence of edge insertions/deletions in G is oblivious
to the random bits used by the algorithm, then in expectation this edge (x, y) will not be
deleted from G before half of the current edges in Nx gets deleted. And when such an edge
(x, z) ∈ Nx \ {(x, y)} gets deleted, the algorithm does not need to perform any computation
for the node x (since the node remains matched in M). Thus, although the algorithm takes
O(|Nx|) time to find a new mate for x, it does not need to do anything for the next |Nx|/2
edge deletions incident on x, in expectation. This helps bring down the amortised update
time to O(1). This is the high level idea behind the dynamic algorithms in [1, 12]. The actual
algorithms, however, are significantly more complicated, for the following reason. In the
preceding summary, we said that the node x picks a neighbour y uniformly at random from
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the set Nx. But what if the node y itself is matched to some other node z (i.e., (y, z) ∈M)?
In that case, in order to add the edge (x, y) to the matching M , we first need to unmatch
the edge (y, z) by removing it from M . But this means that we will now need to find a new
mate for z. In general, this can lead to a long chain of edges alternately being matched and
unmatched. To address this concern, the papers [1, 12] construct a hierarchical partition of
the node-set into O(logn) levels. Suppose that a node x is at level i, and want to find a new
mate for x. The papers [1, 12] ensure that x has roughly αi many neighbours at strictly
lower levels {0, . . . , i − 1}, for some constant α > 1. We now pick a node y uniformly at
random only from these neighbours of x at levels j < i. The papers further ensure that
every matched edge has both its endpoints at the same level. Hence, the node (say z) that
is matched to y will have `(z) = `(y) < i = `(x). We now match the edge (x, y), bring the
node y up to level i, and unmatch the edge (y, z). The node z now has to find a new mate
for itself. But note that the level of z is strictly less than the level of x. Hence, this chain of
alternate matchings and unmatchings of edges cannot go on for more than O(logn) levels.

In order to extend the above framework to maximum b-matching, we have to overcome
several technical difficulties. First, since a node can have multiple matched edges incident on
it in a b-matching, we can no longer ensure that both the endpoints of every matched edge
are on the same level. Instead, we maintain an invariant which states that if a node v has bv
matched edges incident on it, then at least one of these matched edges, say (u, v), must have
its other endpoint u at a level that is not larger than the level of v (see Invariant 3). Second,
unlike the papers [1, 12], we can no longer ensure that if a node z becomes unmatched while
we are finding a new mate for a different node x, then `(x) > `(z). Indeed, there are instances
in our algorithm where both x and z can be at the same level, and we need to show that this
situation does not occur too often. Finally, in the papers [1, 12], at any point in time there
can be multiple nodes in the hierarchical partition that are dirty, meaning that they violate
one of the invariants. The algorithms in [1, 12] run a While loop, and each iteration of the
While loop picks any arbitrary dirty node and restores all the invariants it ought to satisfy
(this can lead to other nodes becoming dirty). In sharp contrast, the While loop in our
dynamic algorithm has to pick the dirty nodes in a specific order, preferring one type of dirty
nodes over another. This preferential ordering among the dirty nodes turns out to be crucial
in analysing the amortised update time of our algorithm. See Sections 2 and 3 for details.

2 Our Dynamic Algorithm for Maximum b-Matching

Let G = (V,E) denote the input graph whose edge-set E changes dynamically. Every node
v ∈ V has a positive integral capacity bv associated with it. The node-set V and the capacities
{bv} do not change over time. Let n = |V | be the number of nodes in G. A subset of edges
M⊆ E is a b-matching iff for all nodes v ∈ V , we have |{(u, v) ∈M| (u, v) ∈ E}| ≤ bv. We
say that an edge e ∈ E is matched inM iff e ∈M.

Throughout this paper, we fix any constant ε ∈ (0, 1/2) and define α = 5/ε. We will
maintain a partition of the node-set V into L+ 2 levels {−1, 0, . . . , L}, where L = dlogα ne.
Let `(v) ∈ {−1, . . . , L} denote the level of a node v. The value of `(v) changes over time. In
our dynamic algorithm, whenever a node v moves to a level j, we will require that it has at
most 2bv · αj+1 neighbours u with `(u) ≤ j. Further, any node v at level −1 has at most
O(bv · α0) = O(bv) many neighbours at level −1.

The level of an edge is the maximum level among its endpoints, i.e., `(u, v) = max(`(u), `(v))
for all (u, v) ∈ E. For every node v ∈ V and every level j ∈ [−1, L], we let Ejv = {(u, v) ∈ E :
`(u, v) = j} be the set of edges incident on v that are at level j. Since `(u, v) ≥ `(v) for all
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edges (u, v) ∈ E, it follows that Ejv = ∅ for all levels j < `(v). We say that an edge (u, v) ∈ E
is owned by its endpoint v iff `(u) < `(v). Equivalently, we say that v is the owner of the
edge (u, v). We let Ov = {(u, v) ∈ E : `(u) < `(v)} denote the set of edges owned by v ∈ V
(Note that if both the end-points are at the same level then no vertex owns the edge). In a
b-matchingM⊆ E, we letMv = {(u, v) ∈M} denote the set of all matched edges incident
on a node v ∈ V . For any level i ∈ [−1, L], we defineMv(i) = {(u, v) ∈Mv : `(u, v) = i} as
the set of all matched edges incident on a node v at level i. We say that a node v ∈ V is
Full in a b-matchingM⊆ E iff |Mv| = bv, and v is Deficient inM iff |Mv| < (1− ε)bv.
The node v is Non-deficient inM iff |Mv| ≥ (1− ε)bv. Finally, for every node v ∈ V , if v
is Full, then we define Base(v) to be the smallest level j for which there is a matched edge
(u, v) ∈Mv at level `(u, v) = j. Else if v is not Full, then we set Base(v) = `(v).

We maintain a b-matching M ⊆ E in G satisfying the three invariants below. The
approximation guarantee of the algorithm follows from the first two invariants (see Theorem 4).
Invariant 3 will be useful in bounding the amortised update time. The main result in this
paper follows from Theorems 4, 5.

I Invariant 1. Every node v ∈ V at level `(v) ≥ 0 is non-deficient.

I Invariant 2. Every unmatched edge with level −1 has at least one Non-deficient endpoint.

I Invariant 3. For every node v ∈ V , we have |{(u, v) ∈M : `(u) > `(v)}| < bv.

We will assume that the initial graph is empty. So, all the three invariants hold. We now
compare our invariants with those in ([1], [12]), that is in the maximal matching case when
bv = 1 for all v ∈ V . non-deficient vertices are free vertices in this simple case. The first
invariant then say that all the vertices at level ≥ 0 are matched . The second invariant says
that each un-matched edge at level −1 has both endpoints free. In ([1],[12]), there can be no
edge at level −1, since only free vertices settle at level −1. That is why the corresponding
invariant for maximal matching is that there is no edge with level −1. We have generalised
this invariant for b-matching. The last invariant implies that if at any point of time all the
other endpoints of the matched edges incident on v have levels greater than v, then v has to
move to a higher level. In the simple maximal matching case, this implies that end-points
of the matched edges should always be at the same level. The reader can check that these
three invariants are maintained in ([1],[12]), and here we generalise them for b-matching.

I Theorem 4. Invariants 1, 2 imply thatM is a (2 + ε)-approximate maximum b-matching.

Proof. (Sketch) Invariants 1, 2, ensure thatM is almost maximal, as every unmatched edge
has one endpoint x with |Mx| ≥ (1− ε)bx. This implies (2 + ε)-approximation. J

I Theorem 5. There is a randomised algorithm that maintains a b-matching in a dynamic
graph satisfying Invariants 1, 2, 3. It has an amortised update time of O(1/ε4) in expectation.

2.1 Handling the insertion/deletion of an edge
Data structures. Each node x ∈ V maintains the edge-sets Mx,Mx(j), Ejx and Ox as
doubly linked lists, and the node also maintains the sizes of these sets. From the size ofMx,
we can infer whether the node x is Deficient, Non-Deficient or Full. With appropriate
pointers, an edge can be inserted into or deleted from a linked list in O(1) time. Further,
each node x ∈ V maintains its level `(x) and the value of Base(x).
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01. While the set of Dirty nodes is nonempty
02. If the set of Full-from-above nodes is nonempty, Then
03. Let x be a Full-from-above node with the largest value of Base(x).
04. Call the subroutine FIX-DIRTY(x). // See Section 2.1.1.
05. Else
06. Let x be any Dirty node that is Deficient at level `(x) ≥ 0.
07. Call the subroutine FIX-DIRTY(x). // See Section 2.1.2.

Figure 1 Fixing the dirty nodes.

Insertion/deletion of an edge (u, v). When an edge (u, v) is inserted into or deleted from
the graph G = (V,E), we first update the relevant data structures in O(1) time. For the time
being, to highlight the main idea behind our algorithm, we assume that the insertion/deletion
of the edge (u, v) does not lead to a violation of Invariant 2 (which pertains to the subgraph
induced by the nodes at level −1). In Section 2.1.4, we will show how to handle the nodes in
level −1 and how to maintain Invariant 2. Right now we focus on maintaining the remaining
two invariants. Accordingly, suppose that after the insertion/deletion of the edge (u, v), at
least one of its endpoints violates Invariant 1 or 3. In general, if a node x ∈ V violates
Invariant 1 or 3, then we say that the node x is Dirty. A dirty node is either Deficient (if
it violates Invariant 1) or Full-from-above (if it violates Invariant 3). Thus, a node x is
Full-from-above iff Base(x) > `(x) and |Mx| = bx. Due to the insertion/deletion of an
edge, its endpoints can become Dirty. To ensure that no node remains Dirty, we call the
following subroutine in Figure 1.

We highlight two important aspects of this subroutine. First, during an iteration of the
While loop in Figure 1, the node x can move to a new level due to the call to FIX-DIRTY(x).
Immediately after the call to FIX-DIRTY(x), the node x is no longer Dirty. But the call to
FIX-DIRTY(x) might lead to some other nodes becoming Dirty, and these newly Dirty
nodes will be handled in subsequent iterations of the While loop. Second, the While loop
in Figure 1 always gives preference to the Full-from-above nodes over the Dirty nodes
that are Deficient at a nonnegative level. Furthermore, among the Full-from-above
nodes, the While loop picks the one with the largest Base(.) value. The While loop picks
a Dirty and Deficient node only if there is no Full-from-above node. This aspect of
our algorithm will ensure that Lemma 9 holds, which, in turn, will play a crucial role in the
analysis of the amortised update time.

2.1.1 The subroutine FIX-DIRTY(x) on a Full-from-above node x

Suppose that the subroutine FIX-DIRTY(x) is called on a Full-from-above node x at
level `(x) = i with Base(x) = j (say). Since the node x is Full-from-above, we have
j > i. We first move the node x up from level i to level j, and update all the relevant data
structures (as described in the beginning of Section 2.1). We next check the number of edges
in Ejx, and, accordingly, we consider two cases.

Case 1. |Ejx| ≤ 2bx · αj+1. In this case, the node x stays at level j and we terminate the
subroutine. At this stage the node x has |Mx| = bx and Base(x) = j = `(x). Hence, the
node x is no longer Dirty.
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Case 2. |Ejx| > 2bx · αj+1. In this case, we find the minimum level k ∈ [j + 1, L] such that
the number of edges (x, y) with `(y) ≤ k lies in the range (2bx · αk, 2bx · αk+1]. Such a level
exists since bx · αL+1 ≥ n > degree of x. We now move the node x from level j to level k.
In doing so, x becomes the owner of all the edges whose other endpoints are at level < k and
we update all the relevant data structures. Next, we unmatch all edges (x, y) ∈Mx whose
other endpoints are at levels `(y) < k, and update all the relevant data structures. Let λx be
the value of |Mx| at this stage. We now select (bx−λx) edges from Ox uniformly at random,
and add them toM by calling Random-Settle(x)(See Section 2.1.3). At this stage we
have |Mx| = bx and Base(x) = k = `(x), and hence x is no longer Dirty. We terminate
the subroutine at this point. This procedure can lead to other nodes becoming Dirty, for
two reasons. (1) When we unmatch an edge (x, y) with `(y) < k, the node y might become
Deficient and Dirty. (2) Suppose that while executing Random-Settle(x), we add an
edge (x, y) ∈ Ox toM. Then the node y can become Full-from-above (and Dirty). Else,
it might happen that |My| becomes equal to (by + 1) after we add the edge (x, y) to M.
Then we will need to unmatch some edge (y, z) ∈ My, so as to ensure thatM remains a
valid b-matching. But this might lead to z becoming Deficient and Dirty. These newly
Dirty nodes will be handled in subsequent iterations of the While loop in Figure 1.

I Lemma 6. Suppose that we call FIX-DIRTY(x) on a Full-from-above node x, and
this moves the node x up from level i to level k > i. Then it takes O(bx · αk+1) time.

Proof (Sketch). Only the edges (x, y) ∈ E with `(y) ≤ k get affected as the node x moves
to level k. The data structure associated with every other edge remains unchanged. Thus,
the total runtime of the subroutine is proportional to the number of edges in {(x, y) ∈ E :
`(y) ≤ k}, plus the time taken by the potential call to Random-Settle(x). The latter
quantity is bounded in Lemma 10. It is easy to check that the former quantity is at most
2bxαk+1, for otherwise the node x would have moved up to a level larger than k. J

2.1.2 The subroutine FIX-DIRTY(x) on a Deficient node x

Suppose that the subroutine FIX-DIRTY(x) is called on a Deficient node x at level
`(x) = j ≥ 0. We first check the number of edges in Ejx. Accordingly, we consider two cases.

Case 1. |Ejx| > 2bx · αj+1. Here, we perform the same steps as in Case 2 in Section 2.1.1.

Case 2. |Ejx| ≤ 2bx · αj+1. In this case, we try to find a maximal level k in range [0, j] such
that the number of edges (x, y) with `(y) < k lies in the range (2bx · αk, 2bx · αk+1]. If no
such level exists, then we set k = −1. Next, we move the node x from level j to level k. In
doing so, x dis-owns all the edges (and the other endpoints becomes the owner) that are at
level [k, j] and we update the relevant data structures. We then unmatch all the edges (x, y)
whose other endpoints are at levels `(y) < j, and update the relevant data structures. Let λx
be the value of |Mx| at this stage. If k ≥ 0, then we call Random-Settle(x), which selects
(bx−λx) edges uniformly at random from Ox = {(x, y) ∈ E : `(y) < k}, and adds those edges
toM. At this point |Mx| = bx and Base(x) = k = `(x), and hence x is no longer Dirty.
So we terminate the subroutine. If k = −1, then instead of calling Random-Settle(x), we
follow the procedure in Section 2.1.4.

I Lemma 7. Suppose that we call FIX-DIRTY(x) on a Deficient node x at level j ≥ 0.
If the subroutine moves the node x to a level k > j, then it takes O(bx · αk+1) time.

Proof. Exactly similar to the proof of Lemma 6. J
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01. While |Mx| < bx
02. Pick a uniformly random edge (x, y) ∈ Ox \Mx, and add it to the b-matching.

Specifically, setM←M∪ {(x, y)}, and update the relevant data structures.
03. If |My| = by + 1, Then
04. Select an edge (y, z) ∈My \ {(x, y)} which minimises the value of `(y, z),

and unmatch the edge (y, z). Specifically, setM←M\ {(y, z)},
and update the relevant data structures.

Figure 2 Random-Settle(x).

I Lemma 8. Suppose that we call FIX-DIRTY(x) on a Deficient node x at level j ≥ 0.
If the subroutine moves the node x to a level k ≤ j, then it takes O(bx · αj+1) time.

Proof (Sketch). Only the edges (x, y) ∈ E with `(y) ≤ j get affected as the node x moves
to level k. The data structure associated with every other edge remains unchanged. Thus,
the total running time of the subroutine is proportional to the number of edges (x, y) with
`(y) ≤ j, plus the time for the call to Random-Settle(x) or the procedure in Section 2.1.4.
The latter quantity is bounded in Lemma 10 and in Section 2.1.4. As we are in Case 2, the
former quantity is by definition at most 2bx · αj+1. J

2.1.3 The subroutine Random-Settle(x)
Suppose that we call RANDOM-SETTLE(x) on a node x at level `(x) = k ≥ 0. From
Sections 2.1.1 and 2.1.2, we infer that 2bx · αk < |Ox| ≤ 2bx · αk+1 at this point in time.
Let λx = |Mx| be the number of matched edges incident on x just before the call to the
subroutine. The subroutine selects (bx − λx) edges uniformly at random from Ox and adds
them toM. Thus, at the end of the subroutine we have |Mx| = bx. The following lemma
crucially uses our preferential treatment to Full-From-Above nodes over Deficient nodes.

I Lemma 9. If a call to RANDOM-SETTLE(x) matches an edge (x, y) and unmatches an
edge (y, z) (Step (04) in Figure 2), then we have `(z) < `(x) during that call.

Proof. Consider two possible cases, depending on the state of the node x.

Case 1. The node x is Deficient just before the call to FIX-DIRTY(x) in Figure 1. Then
at this stage there is no Full-from-above node. This holds since the While loop in
Figure 1 always picks a Full-from-above node over a Deficient node. In particular, the
node y is not Full-from-above. Since (y, z) is a matched edge that minimises the value of
`(y, z), and since y is not Full-from-above, we must have `(z) ≤ `(y, z) = `(y). Finally,
note that (x, y) ∈ Ox, and hence we get: `(z) ≤ `(y) < `(x).

Case 2. The node x is Full-from-above just before the call to FIX-DIRTY(x) in Figure 1.
Then at this stage the node x has the highest Base(x) value among all the Full-from-
above nodes. Suppose that Base(x) = j at this point in time. Since the subroutine
FIX-DIRTY(x) called the subroutine RANDOM-SETTLE(x), we must have been in Case 2
of Section 2.1.1. This means that the node x moves to a level strictly larger than j. Thus,
we have `(x) > j during the call to RANDOM-SETTLE(x). We now consider two cases,
depending on the state of the node y. (a) If the node y is not Full-from-above during
the call to RANDOM-SETTLE(x), then using an argument exactly similar to the one used
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in Case 1, we infer that: `(z) ≤ `(y, z) = `(y) < `(x). This concludes the proof. (b) Else if
the node y is Full-from-above during the call to RANDOM-SETTLE(x), then we claim
that Base(y) ≤ j at the same time-instant. This is true since the While loop in Figure 1
picked the node x over y, and so we must have j = Base(x) ≥ Base(y) just before the call
to FIX-DIRTY(x). Since (y, z) is an edge in M that minimises the value `(y, z), we get:
`(z) ≤ `(y, z) = Base(y) ≤ j < `(x). This concludes the proof. J

I Lemma 10. A call to the subroutine RANDOM-SETTLE(x) takes O(bx · α`(x)+1) time.

Proof (Sketch). Let λx = |Mx| be the number of matched edges incident on x just before
the call to the RANDOM-SETTLE(x). The subroutine picks (bx − λx) edges uniformly
at random from its set of owned edges Ox. This takes O(|Ox|) time. Further, steps (03) –
(04) in each iteration of the While loop in Figure 2 takes O(1) time. Thus, the total time
taken by the subroutine is O(|Ox| + bx) = O(bx · α`(x)+1). The last equality holds since
|Ox| ≤ 2bx · α`(x)+1 (see the discussion in the beginning of Section 2.1.3). J

2.1.4 Handling the nodes in level −1: Maintaining Invariant 2
Every node at level −1 can be in two states: dead or alive. A node x becomes alive when:
(1) x moves down to level −1 from a higher level. In this case, it scans all its incident edges

at level −1 and tries to add them toM till |Mx| becomes equal to bx. If it cannot find
sufficient number of edges at level −1 to be Full, then it remains alive, otherwise it
becomes dead. The total computation cost for this step is O(bx) since x has at most
O(bx · α0) neighbours in level −1. This cost is charged to Lemma 8.

(2) x is dead at level −1, and it becomes Deficient due to either an unmatching or a
deletion of an incident edge. In case (1), x became dead only when it was Full. Thus,
at least εbx edges incident on x have been either deleted from the graph or removed from
M. In the former event, we give one unit of credit to x for each edge deletion incident on
it. In the latter event, we give one unit of credit to x for every unmatching of an edge
incident on it at level j ≥ 0 from the Fix-Dirty(·) procedure that removes this edge
from the matching. Thus, node x accumulates at least εbx worth of credit by the time it
becomes Deficient. Hence, it can now scan all its incident edges at level −1, as there
are O(bx) such edges.

Finally, if x is not Full, and an edge (x, y) is added at level −1 where y is also not Full,
then we add the edge (x, y) to the b-matching. This takes O(1) time. A node x at level −1
becomes dead when it is Full. Once x becomes dead, we wait till it becomes Deficient
again. So there is no processing done on x as long as it remains dead. The only non-trivial
processing done on x is when it becomes alive, and this takes O(bx) time. We amortise this
cost over the εbx many edge deletions/unmatchings that lead to the change in the state of x.

3 Bounding the Amortised Update Time of Our Algorithm

We fix a sequence of T edge insertions/deletions starting from an empty graph. We show that
our algorithm takes O(T/ε4) time in expectation to handle these T edge insertions/deletions.
This implies an amortised update time of O(1/ε4). Without any loss of generality, we assume
that the graph G becomes empty at the end of this sequence of edge insertion/deletions.1

1 Otherwise, we can ourselves delete the existing edges from G one after the other, and get a new sequence
of at most 2T edge insertions/deletions. We then bound the total update time on this new sequence.
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Further, to highlight the main ideas, we only focus on bounding the time spent on handling
the nodes at levels j ≥ 0. From the discussion in Section 2.1.4, it is easy to infer that the
amortised time spent on the nodes at level −1 is at most O(1/ε) per update.

Epochs. The notion of an epoch will play a key role in our analysis of the amortised update
time. We say that a node x ∈ V creates an epoch when it matches a new edge (x, y) during
a given iteration of the While loop in RANDOM-SETTLE(v). Note that this is the only
way an edge can be added to the b-matching at levels ≥ 0. At most bv matched edges can
be created in RANDOM-SETTLE(v). For the j-th edge selected by v, define the epoch of
j-th edge, γj to be the contiguous time interval for which this edge remains in the matching.
While creating an epoch γj , we select an edge (x, y) uniformly at random from Ox \ M
and add this edge toM (see Step (02) in Figure 2). This random edge (x, y) is called the
candidate edge of epoch γj . We denote the level of epoch γj by `(γj). This is same as the
level of x during the call to RANDOM-SETTLE(x) in Figure 2. We say that an epoch
is destroyed when its candidate edge is removed from the b-matching M. This happens
either when the candidate edge gets deleted from the graph, or when the candidate edge gets
unmatched during the course of our algorithm. As the graph G is empty at the end of T
edge insertions/deletions, every epoch gets destroyed at some point in time.

Overview of the analysis. For every node v ∈ V and level i ∈ [0, L], let Xv,i be a random
variable that denotes the total number of epochs created by v at level i, as we handle the
fixed sequence of T edge insertions/deletions. In Lemma 11, we express the total update
time as a function of these random variables {Xv,i}. In Lemma 12, we upper bound the
expected value of this function in terms of T . The bound on the expected amortised update
time of our algorithm follows from Lemmas 11 and 12 (see Corollary 13).

I Lemma 11. It takes
∑
v,iXv,i ·O(αi+1/ε) time to handle T edge insertions/deletions.

Proof (Sketch). The time taken is dominated by the While loop in Figure 1. Hence, it
suffices to bound the time spent on the calls to FIX-DIRTY(v) over all v ∈ V . We will charge
the total time spent in Fix-Dirty to the start or an end of an epoch in the following way:

Scenario 1. We have `(v) = i, v is Deficient, and FIX-DIRTY(v) moves the node v up to
some level j > i and calls Random-Settle. By Lemma 7 the runtime of FIX-DIRTY(v) is
O(bvαj+1). When v comes to level j, it calls RANDOM-SETTLE(v) and starts at least εbv
new epochs at level j. So, the computation cost charged per new epoch created is O(αj+1/ε).

Scenario 2. We have `(v) = i, v is Deficient, and FIX-DIRTY(v) moves v down to some
level j ≤ i. By Lemma 8 the runtime of FIX-DIRTY(v) is O(bvαi+1). Since, v became
deficient at level i, at least εbv epochs involving v have been destroyed (since the last time v
came to level i, Fix-Dirty makes it Full). Note that all such epochs have level ≥ i. So,
the computation cost charged to all epochs destroyed is O(αi+1/ε).

Scenario 3. The hard case is as follows: `(v) = i, v is Full-from-above, and FIX-
DIRTY(v) moves the node v up to some level j = Base(v) (or at j >Base(v), Case 2,
Section 2.1.1). By Lemma 6 the runtime of FIX-DIRTY(v) is O(bvαj+1). However, it is
not necessary that v starts εbv epochs when it arrives at level j. So, we cannot charge this
computation cost new epoch of v as no new epochs are created at level j. To overcome this
problem, we crucially use the fact that v will eventually become deficient at some higher
level. This holds since there are only logn levels in our partition and v cannot always be
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Full-From-Above. Formally, define a phase φ of v to be the maximal time interval in which
Fix-Dirty is not called on v. A phase of v is called Deficient if v becomes deficient during
the phase, otherwise it is called Full-from-above. Define a directed graph Hv = (Uv, Ev)
where Uv is the set of all phases of v. For two phases φ1, φ2 ∈ Uv, we have (φ1, φ2) ∈ Ev
iff φ1 is a Full-from-above phase and φ2 is the phase that begins just after φ1 ends. If
l(φ) denote the level of v when the phase φ starts, then `(φ1) < `(φ2). The graph Hv is a
collection of paths and each path ends with a Deficient phase. Let Φ = (φ1, φ2, . . . , φk) be
a maximal path in Hv. So φk is a Deficient phase and φi is a Full-from-above phase
for all i < k, and hence `(φ1) < · · · < `(φk). Let YΦ be the total computation cost (due to
Fix-Dirty(v)) in phases in Φ. We get: YΦ ≤

∑k
i=1 2bv · α`(φi)+1 = O(bv · α`(φk)+1). So all

the computation cost can be charged to the epochs destroyed during the deficient phase of
v, that is φ(k). When v move to φk, it is full (or it calls Random-Settle(v) to become
full. So at least εbv epochs involving v must be destroyed for v to become deficient (All such
epochs have level ≥ i). So we can charge the computation cost Yφ to these εbv epochs and
the cost associated with each epoch is O(αi+1/ε).

From Scenario 1,2 and 3, the computation cost charged to each epoch at level i is
O(αi+1/ε). So the total time taken by our algorithm is

∑
v,iXv,iO(αi+1/ε) J

I Lemma 12. We have
∑
v,iE[Xv,i].O(αi+1/ε) = O(α4T ).

I Corollary 13. The expected amortised update time of our algorithm is O(1/ε4).

We now focus on justifying Lemma 12. In Section 3.1, we classify the epochs into three
types. Due to space constraints, in Section 3.2 we present a (hand-wavy) intuition behind
the proof of Lemma 12. A complete proof appears in the full version of the paper.

3.1 Natural, induced and forced epochs

We say that an epoch is natural iff it gets destroyed when its candidate edge is deleted from
the graph. If an epoch is not natural, then it gets destroyed when its candidate edge is
removed fromM (but does not get deleted from G). This can happen under four possible
situations: (1) In Case 2 of Section 2.1.1, when a node x moves up from level j to level k > j,
we unmatch all its incident edges (x, y) ∈ E whose other endpoints are at levels `(y) < k.
(2) In Case 1 of Section 2.1.2, when a node x moves up from a level j to a level k > j, we
unmatch all its incident edges (x, y) ∈ E whose other endpoints are at levels `(y) < k. (3)
During a call to the subroutine RANDOM-SETTLE(x), we unmatch an edge (y, z) because
y gets matched to x. See Step (04) in Figure 1. (4) In Case 2 of Section 2.1.2, when a node
x moves down from a level j, we unmatch all its incident edges (x, y) whose other endpoints
are at levels `(y) < j. The epochs whose candidate edges get unmatched under situations
(1), (2) and (3) are called induced epochs. In contrast, the epochs whose candidate edges get
unmatched under situation (4) are called forced epochs.

3.2 Intuition behind the proof of Lemma 12: A token based argument

Let V be the set of all epochs. We assign T (γ) = α`(γ)+1 tokens to every epoch γ ∈ V.
Since the computation cost charged to γ (by Lemma 11) is O(αl(γ)+1/ε), each token is
charged with O(1/ε) amount of computation cost. In Lemma 14, we show that the sum∑
γ∈V T (γ) is at most O(1/ε) times the total number of tokens assigned to the natural epochs,
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which is given by the sum
∑
γ∈N T (γ). In the paragraph below, we intuitively explain that

E
[∑

γ∈N T (γ)
]

= O(α · T ). These observations, taken together, justify Lemma 12.2

Suppose that each time an edge (x, y) gets deleted from G, we generate 2 dollars and
give 1 dollar to each of the endpoints {x, y}. For the sequence of T edge insertions/deletions
in G, the total number of dollars generated is O(T ). We will try to convince the reader
that a natural epoch γ at level `(γ) = i receives Θ(α`(γ)) dollars under this scheme, in
expectation. This will give us: E

[∑
γ∈N T (γ)

]
= O(α · T ). Accordingly, suppose that a

node x at level `(x) = i creates an epoch γ as per Step (02) in Figure 2. From the discussion
in the beginning of Section 2.1.3, we get |Ox \ M| > bx · αi at this point in time. We
say that each edge e ∈ Ox \M is a witness for the epoch γ. Since the sequence of edge
insertions/deletions in G is oblivious to the random bits used by the algorithm, in expectation
half of these witness-edges will get deleted before the candidate edge (x, y) of the epoch
γ. Thus, intuitively, if the epoch is natural, then in expectation at least (bx/2) · αi of its
witness edges get deleted during the lifespan of the epoch. For each of these deletions of the
witness edges, the node x receives 1 dollar. Note that each such edge can be a witness to
at most bx epochs of x (since |Mx| ≤ bx). Consider the time-instant when an edge (x, y)
gets deleted from G and the node x receives 1 dollar. If we distribute this 1 dollar received
by x evenly among all the epochs of x which have (x, y) as a witness, then each of those
epochs will receive at least 1/bx dollars. From the preceding discussion, recall that at least
(bx/2) · αi many witness edges get deleted from G during the lifespan of a natural epoch
γ of x at level i. Hence, as promised, we conclude that such an epoch will receive at least
(1/bx) · (bx/2) · αi = Θ(αi) dollars during its lifespan, in expectation.

I Lemma 14. Let V be the set of all epochs, and let N ⊆ V be the set of all natural epochs.
Assign T (γ) = α`(γ)+1 tokens to every epoch γ ∈ V. Then

∑
γ∈V T (γ) = O(1/ε) ·

∑
γ∈N T (γ).

We devote the rest of this section to the proof of Lemma 14. Towards this end, we
construct a directed graph G = (V, E). To distinguish this from the input graph G = (V,E),
we refer to each vertex in V as a meta-node and each edge in E as a meta-edge. The set of
meta-nodes V corresponds to the set of all epochs. The set of meta-edges E is defined as
follows. Each natural epoch has no incoming meta-edge. Each induced or forced epoch has
exactly one incoming meta-edge. Thus, without any loss of generality, for every meta-edge
(x, y) ∈ E directed from x towards y, we say that y is the parent of x and x is a child of y.
Note that each meta-node has at most one parent, but it can have multiple children. We will
now describe the rules that specify the parent of each induced or forced epoch.

The parent of an induced epoch is specified as follows. Note that an induced epoch is
destroyed under three possible scenarios: These are situations (1), (2) and (3) as described
in Section 3.1. In situation (3), we define the parent of the induced epoch (with (y, z) as
the candidate edge) to be the epoch of x which lead to its destruction (i.e., the epoch with
(x, y) as the candidate edge). Both in situation (1) and situation (2), a node x moves up to
a higher level, unmatches some incident edges (thereby destroying some induced epochs),
and adds some new incident edges toM (thereby creating some new epochs). As per the
descriptions in Sections 2.1.1 and 2.1.2, the node x becomes Full after these operations.
Hence, the number of new epochs created during these steps is at least the number of induced
epochs that get destroyed. Accordingly, for each induced epoch γ that gets destroyed, we

2 This intuitive argument implies that the total expected running time of the algorithm is O(α · T/ε2). A
technically precise argument will lose an extra α multiplicative factor in the running time.
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find a unique epoch γ′ that gets created, and make γ′ the parent of γ. This way of defining
parents for the induced epochs ensures the following property.

I Claim 15. If an epoch γ′ is the parent of an induced epoch γ, then `(γ′) > `(γ). Further,
an epoch γ′ can have at most two children that are induced epochs.

Proof. Let γ′ be the parent of an induced epoch γ. Let x and z respectively be the nodes
that created the epochs γ′ and γ. If γ is destroyed during situation (3) in Section 3.1, then
Lemma 9 implies that `(γ′) = `(x) > `(y, z) = `(γ) when γ is destroyed. Else if γ is destroyed
during situation (1) or (2) in Section 3.1, then the descriptions in Sections 2.1.1, 2.1.2 lead us
to the following conclusion: The node x moves up from a level l to some higher level l′ > l.
The epoch γ′ is created at level l′. Further, the candidate edge of the epoch γ had both
endpoints at a level strictly less than l′ when γ was created. Thus, we again get `(γ′) > `(γ).
Finally, an epoch γ′ can have at most one child that is an induced epoch which gets destroyed
during situation (1) or (2) in Section 3.1, and at most one child that is an induced epoch
which gets destroyed during situation (3) in Section 3.1. The claim follows. J

We now define the parents of forced epochs. The forced epochs are destroyed during
situation (4) in Section 3.1. Thus, we consider the following scenario. A node x is at
level `(x) = j ≥ 0, and it becomes Deficient at time t1 (say). At this stage we have
|Mx| < (1 − ε) · bx. Hence, as the node x moves down, at most (1 − ε) · bx many forced
epochs get destroyed. Let F denote the set of these forced epochs. We have |F | ≤ (1− ε) · bx.
Also note that the node x must have been Full the last time (say t0) it settled at level j
after a call to FIX-DIRTY(x). Thus, for situation (4) to occur, the node x must have lost at
least εbx many edges inMx during the time-interval [t0, t1]. Let H denote the set of these
epochs that were alive at time t0, were destroyed before time t1, and whose candidate edges
were part ofMx. We have |H| ≥ ε · bx.

We claim that `(h) > j for every forced epoch h ∈ H. To see why this is true, let (x, y)
be the candidate edge for h. Clearly, when h was destroyed the node x stayed put at level
j. It follows that since h is a forced epoch, the node y must have created h. The claim is
equivalent to the statement that `(y) > j when h gets created, and this in turn is equivalent
to the statement that `(y) > j when h gets destroyed (since `(y) does not change during the
lifespan of epoch h). To see why the latter statement is true, note that by definition y moves
down to a lower level when the epoch h gets destroyed. Thus, as per Case 2 of Section 2.1.2,
the node y can unmatch the edge (x, y) only if `(y) > j at that time-instant. Hence, we get:

I Property 16. Every forced epoch h ∈ H has level `(h) > j.

We now assign the epochs in F evenly among the epochs in H. To be more specific, after
this step, each epoch h ∈ H gets |F |/|H| ≤ (1− ε)/ε many epochs f ∈ F assigned to it. We
are now ready to define the parents of the forced epochs F . Suppose that an epoch f ∈ F is
assigned to an epoch h ∈ H. If `(h) > j, then h becomes the parent of f . Else if `(h) = j,
then from Property 16 it follows that either h is a natural epoch or h is an induced epoch. In
the former event, again h becomes the parent of f . In the latter event, Claim 15 guarantees
that h has a parent, say p(h), and this epoch p(h) becomes the parent of f . Claim 15 also
implies that `(p(h)) > `(h) = j. Since `(f) = j, we immediately get the following claim.

I Claim 17. Suppose that an epoch γ′ is the parent of a forced epoch γ. Then either (1)
{`(γ′) > `(γ)} or (2) {γ′ is a natural epoch and `(γ′) ≥ `(γ)}.

Claim 18 holds since: (1) An epoch h ∈ H gets at most (1− ε)/ε many epochs f ∈ F assigned
to it. (2) An epoch γ can have two children h, h′ ∈ H both of which are induced epochs (see
Claim 15), and both h, h′ can get at most (1− ε)/ε many epochs f ∈ F assigned to them.
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I Claim 18. An epoch can have at most 3(1− ε)/ε many forced epochs as its children.

Proof of Lemma 14. In the meta-graph G, every induced or forced epoch has exactly one
incoming edge, and every natural epoch has zero incoming edge. Hence, the meta-graph G is
a collection of rooted directed trees, where the tree-edges are directed away from the roots.
The root of each tree is a natural epoch, and any internal node is either an induced epoch or
a forced epoch. Let V ′ be the set of meta-nodes in any such tree with r ∈ V ′ as its root. To
prove the lemma, it suffices to show that

∑
γ∈V′ T (γ) = O(1/ε) · T (r).

Only the root r is a natural epoch in V ′. Hence, Claims 15, 17, 18 imply that: (1)
`(γ′) > `(γ) whenever an internal meta-node γ′ ∈ V ′ is the parent of γ ∈ V ′. (2) Any internal
meta-node in V ′ has at most 2 + 3(1− ε)/ε ≤ 3/ε children. (3) The root also has at most
2 + 3(1− ε)/ε ≤ 3/ε children. Let C be the set of children of the root. Then for all γ ∈ C,
we have `(r) ≥ `(γ).

Consider a meta-node γ ∈ C. Let T ∗(γ) denote the total number of tokens assigned to
the meta-nodes in the subtree rooted at γ. From the above discussions, we get: T ∗(γ) ≤∑`(γ)
j=0

( 3
ε

)`(γ)−j · αj+1 = O(α`(γ)+1) = O(α`(r)+1). The first inequality holds since there
are at most (3/ε)`(γ)−j descendants of γ at level j ≤ `(γ), and each of these descendants
get αj+1 tokens. The second equality holds since α = 5/ε >> (3/ε). The third equality
holds since `(γ) ≤ `(r). Hence, the total number of tokens assigned to the tree is given by:∑
γ∈V′ T (γ) = T (r) +

∑
γ∈C T ∗(γ) ≤ α`(r)+1 + (3/ε) ·O(α`(r)+1) = O(1/ε) · T (r).
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Abstract
We present a highly optimized implementation of tiered vectors, a data structure for maintaining
a sequence of n elements supporting access in time O(1) and insertion and deletion in time O(nε)
for ε > 0 while using o(n) extra space. We consider several different implementation optimizations
in C++ and compare their performance to that of vector and set from the standard library on
sequences with up to 108 elements. Our fastest implementation uses much less space than set
while providing speedups of 40× for access operations compared to set and speedups of 10.000×
compared to vector for insertion and deletion operations while being competitive with both data
structures for all other operations.
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1 Introduction

We present a highly optimized implementation of a data structure solving the dynamic array
problem, that is, maintain a sequence of elements subject to the following operations:

access(i): return the ith element in the sequence.
access(i, m): return the ith through (i+m− 1)th elements in the sequence.
insert(i, x): insert element x immediately after the ith element.
delete(i): remove the ith element from the sequence.
update(i, x): exchange the ith element with x.

This is a fundamental and well studied data structure problem [2, 4, 7, 8, 3, 1, 5, 6] solved
by textbook data structures like arrays and binary trees. Many dynamic trees provide all the
operations in O(lgn) time including 2-3-4 trees, AVL trees, splay trees, etc. while Dietz [2]
gives a data structure that matches the lower bound of Ω(lgn/ lg lgn) showed by Fredman
and Saks [4]. In this paper however, we focus on the problem where access must run in O(1)
time. Goodrich and Kloss present what they call tiered vectors [5] with a time complexity of
O(1) for access and update and O(n1/l) for insert and delete for any constant integer l ≥ 2,
similar to the ideas presented by Frederickson in [3]. The data structure only uses o(n) extra
space beyond that required to store the actual elements. At the core, the data structure is a
tree with out degree n1/l and constant height l − 1.
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Goodrich and Kloss compare the performance of an implementation with l = 2 to that
of vector from the standard library of Java and show that the structure is competitive for
access operations while being significantly faster for insertions and deletions. Tiered vectors
provide a performance trade-off between standard arrays and balanced binary trees for the
dynamic array problem.

Our Contribution. In this paper, we present what we believe is the first implementation of
tiered vectors that supports more than 2 tiers. Our C++ implementation supports access and
update in times that are competitive with the vector class from C++’s standard library while
insert and delete run more than 10.000× faster. It performs access and update more than
40× faster than the set class from the standard library while insert and delete is only a few
percent slower. Furthermore set uses more than 10× more space than our implementation.
All of this when working on large sequences of 108 32-bit integers.

To obtain these results, we significantly decrease the number of memory probes of the
original tiered vector. Our best variant requires only half as many memory probes as the
original tiered vector for access and update operations which is critical for the practical
performance. Our implementation is cache efficient which makes all operations run fast in
practice even on tiered vectors with several tiers.

We experimentally compare the different variants of tiered vectors. Besides the comparison
to the two commonly used C++ data structures, vector and set, we compare the different
variants of tiered vectors to find the best one. We show that the number of tiers have a
significant impact on the performance which underlines the importance of tiered vectors
supporting more than 2 tiers.

Our implementations are parameterized and thus support any number of tiers ≥ 2. It
uses a number of tricks like template recursion to keep the code rather simple while enabling
the compiler to generate highly optimized code.

2 Preliminaries

The first and ith element of a sequence A are denoted A[0] and A[i− 1] respectively and the
ith through jth elements are denoted A[i− 1, j − 1]. Let A1 ·A2 denote the concatenation of
the sequences A1 and A2. |A| denotes the number of elements in the sequence A. A circular
shift of a sequence A by x is the sequence A[|A| − x, |A| − 1] ·A[0, |A| − x− 1]. Define the
remainder of division of a by b as a mod b = a− qb where q is the largest integer such that
q · b ≤ a. Define A[i, j] mod w to be the elements A[i mod w], A[(i+ 1) mod w], . . . , A[j
mod w], i.e. A[4, 7] mod 5 = A[4], A[0], A[1], A[2]. Let bxc denote the largest integer smaller
than x.

3 Tiered Vectors

In this section we will describe how the tiered vector data structure from [5] works.

Data Structure. An l-tiered vector can be seen as a tree T with root r, fixed height l − 1
and out-degree w for any l ≥ 2. A node v ∈ T represents a sequence of elements A(v)
where A(r) is the sequence represented by the tiered vector. The capacity cap(v) of a node
v is wheight(v)+1. For a node v with children c1, c2, . . . , cw, A(v) is a circular shift of the
concatenation of the elements represented by its children, A(c1) · A(c2) · . . . · A(cw). The
circular shift is determined by an integer off(v) ∈ [cap(v)] that is explicitly stored for all
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PQRSTUVXY???ABCDEFGHIJKLMNO => ABCDEFGHIJKLMNOPQRSTUVX???

Figure 1 An illustration of a tiered vector with l = w = 3. The elements are letters, and the
tiered vector represents the sequence ABCDEFGHIJKLMNOPQRSTUVX. The elements in the
leaves are the elements that are actually stored. The number above each node is its offset. The
strings above an internal node v with children c1, c2, c3 is respectively A(c1) ·A(c2) ·A(c3) and A(v),
i.e. the elements v represents before and after the circular shift. ? specifies an empty element.

nodes. Thus the sequence of elements A(v) of an internal node v can be reconstructed by
recursively reconstructing the sequence for each of its children, concatenating these and
then circular shifting the sequence by off(v). See Figure 1 for an illustration. A leaf v of T
explicitly stores the sequence A(v) in a circular array elems(v) with size w whereas internal
nodes only store their offsets. Call a node v full if |A(v)| = cap(v) and empty if |A(v)| = 0.
In order to support fast access, for all nodes v the elements of A(v) are located in consecutive
children of v that are all full, except the children containing the first and last element of
A(v) which may be only partly full.

Access & Update. To access an element A(r)[i] at a given index i; one traverses a path
from the root down to a leaf in the tree. In each node the offset of the node is added to
the index to compensate for the cyclic shift, and the traversing is continued in the child
corresponding to the newly calculated index. Finally the desired element is returned from
the elements array of that leaf. Let access(v, i) return the element A(v)[i], it can recursively
be computed as:

v is internal: Compute i′ = (i+ off(v)) mod cap(v), let v′ be the bi′/wcth child of v and
return the element access(v′, i′ mod cap(v′)).
v is leaf: Compute i′ = (i+ off(v)) mod w and return the element elems(v)[i′].

The time complexity is Θ(l) as we visit all nodes on a root-to-leaf path in T . To navigate
this path we must follow l − 1 child pointers, lookup l offsets, and access the element itself.
Therefore this requires l − 1 + l + 1 = 2l memory probes.

The update operation is entirely similar to access, except the element found is not returned
but substituted with the new element. The running time is therefore Θ(l) as well. For further
use, let update(v, i, e) be the operation that sets A(v)[i] = e and returns the element that
was substituted.

Range Access. Accessing a range of elements, can obviously be done by using the access-
operation multiple times, but this results in redundant traversing of the tree, since consecutive
elements of a leaf often – but not always due to circular shifts – corresponds to consecutive
elements of A(r). Let access(v, i,m) report the elements A(v)[i . . . i+m− 1] in order. The
operation can recursively be defined as:

ESA 2017



16:4 Fast Dynamic Arrays

v is internal: Let il = (i+ off(v)) mod cap(v), and let ir = (il +m) mod cap(v). The
children of v that contains the elements to be reported are in the range [bil ·w/cap(v)c, bir ·
w/cap(v)c] mod w, call these cl, cl+1, . . . , cr. In order, call access(cl, il,min(m, cap(cl)−
il)), access(ci, 0, cap(ci)) for ci = cl+1, . . . , cr−1, and access(cr, er−1, 0, ir mod cap(cr)).
v is leaf: Report the elements elems(v)[i, i+m− 1] mod w.

The running time of this strategy is O(lm), but saves a constant factor over the naive
solution.

Insert & Delete. Inserting an element in the end (or beginning) of the array can simply
be achieved using the update-operation. Thus the interesting part is fast insertion on an
arbitrary position; this is where we utilize the offsets.

Consider a node v, the key challenge is to shift a big chunk of elements A(v)[i, i+m− 1]
one index right (or left) to A(v)[i+1, i+m] to make room for a new element (without actually
moving each element in the range). Look at the range of children cl, cl+1, . . . , cr that covers
the range of elements A(v)[i, i+m− 1] to be shifted. All elements in cl+1, . . . , cr−1 must be
shifted. These children are guaranteed to be full, so make a circular shift by decrementing
each of their offsets by one. Afterwards take the element A(ci−1)[0] and move it to A(ci)[0]
using the update operation for l < i ≤ r. In cl and cr only a subrange of the elements might
need shifting, which we do recursively. In the base case of this recursion, namely when v is a
leaf, shift the elements by actually moving the elements one-by-one in elems(v).

Formally we define the shift(v, e, i,m) operation that (logically) shifts all elements
A(v)[i, i+m− 1] one place right to A[i+ 1, i+m], sets A[i] = e and returns the value that
was previously on position A[i+m] as:

v is internal: Let il = (i+ off(v)) mod cap(v), and let ir = (il +m) mod cap(v). The
children of v that must be updated are in the range [bil · w/cap(v)c, bir · w/cap(v)c]
mod w call these cl, cl+1, . . . , cr. Let el = shift(cl, e, il,min(m, cap(cl) − il)). Let ei =
update(ci, size(c)−1, ei−1) and set off(ci) = (off(ci)−1) mod cap(c) for ci = cl+1, . . . , cr−1.
Finally call shift(cr, er−1, 0, ir mod cap(cr)).
v is leaf: Let eo = elems(v)[(i+m) mod w]. Move the elements elems(v)[i, (i+m− 1)
mod w] to elems(v)[i+ 1, (i+m) mod w], and set elems(v)[i] = e. Return eo.

An insertion insert(i, e) can then be performed as shift(root, e, i, size(root) − i − 1). The
running time of an insertion is T (l) = 2T (l − 1) + w · l⇒ T (l) = O(2lw).

A deletion of an element can basically be done as an inverted insertion, thus deletion
can be implemented using the shift-operation from before. A delete(i) can be performed as
shift(r,⊥, 0, i) followed an update of the root’s offset to (off(r) + 1) mod cap(r).

Space. There are at most O(wl−1) nodes in the tree and each takes up constant space,
thus the total space of the tree is O(wl−1). All leaves are either empty or full except the
two leaves storing the first and last element of the sequence which might contain less than w
elements. Because the arrays of empty leaves are not allocated the space overhead of the
arrays is O(w). Thus beyond the space required to store the n elements themselves, tiered
vectors have a space overhead of O(wl−1).

To obtain the desired bounds w is maintained such that w = Θ(nε) where ε = 1/l and n is
the number of elements in the tiered vector. This can be achieved by using global rebuilding
to gradually increase/decrease the value of w when elements are inserted/deleted without
asymptotically changing the running times. We will not provide the details here. We sum up
the original tiered vector data structure in the following theorem:
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I Theorem 1 ([5]). The original l-tiered vector solves the dynamic array problem for l ≥ 2
using Θ(n1−1/l) extra space while supporting access and update in Θ(l) time and 2l memory
probes. The operations insert and delete take O(2ln1/l) time.

4 Improved Tiered Vectors

In this paper, we consider different new variants of the tiered vector. This section considers
the theoretical properties of these approaches. In particular we are interested in the number
of memory accesses that are required for the different memory layouts, since this turns out
to have an effect on the experimental running time. In Section 5.1 we analyze the actual
impact in practice through experiments.

4.1 Implicit Tiered Vectors
As the degree of all nodes is always fixed to the same value w (it may be changed for all
nodes when the tree is rebuilt due to a full root), it is possible to layout the offsets and
elements such that no pointers are necessary to navigate the tree. Simply number all nodes
from left-to-right level-by-level starting in the root with number 0. Using this numbering
scheme, we can store all offsets of the nodes in a single array and similarly all the elements
of the leaves in another array.

To access an element, we only have to lookup the offset for each node on the root-to-leaf
path which requires l − 1 memory probes plus the final element lookup, i.e. in total l which
is half as many as the original tiered vector. The downside with this representation is that it
must allocate the two arrays in their entirety from the beginning (or when rebuilding). This
results in a Θ(n) space overhead which is worse than the Θ(n1−ε) space overhead from the
original tiered vector.

I Theorem 2. The implicit l-tiered vector solves the dynamic array problem for l ≥ 2 using
O(n) extra space while supporting access and update in O(l) time requiring l memory probes.
The operations insert and delete take O(2ln1/l) time.

4.2 Lazy Tiered Vectors
We now combine the original and the implicit representation, to get both few memory probes
and small space overhead. Instead of having one array storing all the elements of the leaves,
we store for each leaf a pointer to a location with an array containing the leaf’s elements.
The array is lazily allocated in memory when elements are actually inserted into it.

The total size of the offset-array and the element pointers in the leaves is O(n1−ε). At
most two leaves are only partially full, therefore the total space is now again reduced to
O(n1−ε). To navigate a root-to-leaf path, we now need to look at l − 1 offsets, follow a
pointer from a leaf to its array and access the element in the array, giving a total of l + 1
memory accesses.

I Theorem 3. The lazy l-tiered vector solves the dynamic array problem for l ≥ 2 using
Θ(n1−1/l) extra space while supporting access and update in Θ(l) time requiring l+1 memory
probes. The operations insert and delete take O(2ln1/l) time.

5 Implementation

We have implemented a generic version of the tiered vector data structure such that the number
of tiers and the size of each tier can be specified at compile time. To the best of our knowledge,
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all prior implementations of the tiered vector are limited to the considerably simpler 2-tier
version. Most of the performance optimizations applied in the 2-tier implementation do not
easily generalize. We have implemented the following variants of tiered vectors:

Original. The data structure described in Theorem 1.
Optimized Original. As described in Theorem 1 but with the offset of a node v located
in the parent of v, adjacent in memory to the pointer to v. Leaves only consists of an
array of elements (since their parent store their offset) and the root’s offset is maintained
separately as there is no parent to store it in.
Implicit. This is the data structure described in Theorem 2 where the tree is represented
implicitly in an array storing the offsets and the elements of the leaves are located in a
single array.
Packed Implicit. This is the data structure described in Theorem 2 with the following
optimization; The offsets stored in the offset array are are packed together and stored
in as little space possible. The maximum offset of a node v in the tree is nε(height(v)+1)

and the number of bits needed to store all the offsets is therefore
∑l
i=0 n

1−iε log(niε) =
log(n)

∑l
i=0 iεn

1−iε ≈ εn1−ε log(n). Thus the n1−ε offsets can be stored in approximately
εn1−ε words giving a space reduction of a constant factor ε. The smaller memory footprint
could lead to better cache performance.
Lazy. This is the data structure described in Theorem 3 where the tree is represented
implicitly in an array storing the offsets and every leaf store a pointer to an array storing
only the elements of that leaf.
Packed Lazy. This is the data structure described in Theorem 3 with the following
optimization; The offset and the pointer stored in a leaf is packed together and stored at
the same memory location. On most modern 64-bit system – including the one we are
testing on – a memory pointer is only allowed to address 48 bits. This means we have
room to pack a 16 bit offset in the same memory location as the elements pointer, which
results in one less memory probe during an access operation.
Non-Templated. All other implementations used C++ templating for recursive functions
in order to let the compiler do significant code optimizations. This implementation
is template free and serves as a baseline to compare the performance gains given by
templating.

In Section 7 we compare the performance of these implementations.

5.1 C++ Templates
As almost all other general purpose data structures in C++, we have used templates to
support storing different types of data in our tiered vector. This is a well-known technique
which we will not describe in detail.

However, we have also used template recursion which is basically like a normal recursion
except that the recursion parameter must be a compile-time constant. This allows the
compiler to unfold the recursion at compile-time eliminating all (recursive) function calls by
inlining code, and allowing for better local code optimizations. In our case, we exploit that
the height of a tiered vector is constant and therefore can be used for this.

To show the rather simple code resulting from this approach (disregarding the template
stuff itself), we have included a snippet of the internals of our access operation:
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template <class T, class Layer>
struct helper {

static T& get(size_t node, size_t idx) {
idx = (idx + get_offset(node)) % Layer::capacity;
auto child = get_child(node, idx / Layer::child::capacity);
return helper<T, typename Layer::child>::get(child, idx);

}
}

template <class T, size_t W>
struct helper<T, Layer<W, LayerEnd> > {

static T& get(size_t node, size_t idx) {
idx = (idx + get_offset(node)) % L::capacity;
return get_elem(node, idx);

}
}

We also briefly show how to use the data structure. To specify the desired height of the tree,
and the width of the nodes on each tier, we also use templating:

Tiered<int, Layer<8, Layer<16, Layer<32>>>> tiered;

This will define a tiered vector containing integers with three tiers. The height of the
underlying tree is therefore 3 where the root has 8 children, each of which has 16 children
each of which contains 32 elements. We call this configuration 8-16-32.

In this implementation of tiered vectors we have decided to let the number of children on
each level be a fixed number as described above. This imposes a maximum on the number of
elements that can be inserted. However, in a production ready implementation, it would be
simple to make it grow-able by maintaining a single growth factor that should be multiplied
on the number of children on each level. This can be combined with the templated solution
since the growing is only on the number of children and not the height of the tree (per
definition of tiered vectors the height is constant). This will obviously increase the running
time for operations when growing/shrinking is required, but will only have minimal impact
on all other operations (they will be slightly slower because computations now must take the
growth factor into account).

In practice one could also, for many uses, simply pick the number of children on each
level sufficiently large to ensure the number of elements that will be inserted is less than
the maximum capacity. This would result in a memory overhead when the tiered vector is
almost empty, but by choosing the right variant of tiered vectors and the right parameters
this overhead would in many cases be insignificant.

6 Comparison with C++ STL Data Structures

In the following we have compared our best performing tiered vector (see next section) to
the vector and the multiset class from the C++ standard library. The vector class directly
supports the operations of a dynamic array. The multiset class is implemented as a red-black
tree and is therefore interesting to compare with our data structure. Unfortunately, multiset
does not directly support the operations of a dynamic array (in particular it has no notion of
positions of elements). To simulate an access operation we instead find the successor of an
element in the multiset. This requires a root-to-leaf traversal of the red-black tree, just as
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an access operation in a dynamic array implemented as a red-black tree would. Insertion is
simulated as an insertion into the multiset, which again requires the same computations as a
dynamic array implemented as a red-black tree would.

Besides the random access, range access and insertion tests considered in the previous
sections, we have also tested the operations data dependent access, insertion in the end,
deletion, and successor. In the data dependent access tests, the next index to lookup depends
on the value at the prior lookups. This ensures that the processor cannot successfully pipeline
consecutive lookups, but must perform them in sequence. We test insertion in the end,
since this is a very common use case. Deletion is performed by deleting elements at random
positions. The successor operation returns the successor of an element and is not actually
part of the dynamic array problem, but is included since it is a commonly used operation
on a set in C++. It is simply implemented as a binary search over the elements in both
the vector and tiered vector tests where the elements are now inserted in sorted order. The
number of tests and operations is the same as in the other tests.

The results are summarized in Table 1 which shows that the vector performs slightly better
than the tiered vector on all access and successor tests. As expected from the Θ(n) running
time, it performs extremely poor on random insertion and deletion. For insertion in the end
of the sequence, vector is also slightly faster than the tiered vector. The interesting part is
that even though the tiered vector requires several extra memory lookups and computations,
we have managed to get the running time down to less than the double of the vector for
access, even less for data dependent and only a few percent slowdown for range access. As
discussed earlier, this is most likely because the entire tree structure (without the elements)
fits within the CPU cache, and because the computations required has been minimized.

Comparing our tiered vector to set, we would expect access operations to be faster
since they run in O(1) time compared to O(logn). On the other hand, we would expect
insertion/deletion to be significantly slower since it runs in O(n1/l) time compared to O(logn)
(where l = 4 in these tests). We see our expectations hold for the access operations where
the tiered vector faster by more than an order of magnitude. In random insertions however,
the tiered vector is only 8% slower – even when operating on 100.000.000 elements. Both the
tiered vector and set requires O(logn) time for the successor operation. In our experiment
the tiered vector is 3 times faster for the successor operation.

Finally, we see the memory usage of vector and tiered vector is almost identical. This is
expected since in both cases it is primarily the elements themselves that take up space. The
set uses more than 10 times as much space, so this is also a considerable drawback of the
red-black tree behind this structure.

To sum up, the tiered vectors performs better on all tests but insertion, but is even here
highly competitive.

7 Tiered Vector Experiments

In this section we compare different variants of the tiered vector. We first consider how the
performance of the different representations of the data structure listed in Section 5, and also
how the height of tree and the capacity of the leaves affects the running time. Afterwards we
compare it to some widely used C++ standard library containers.

Environment. All experiments have been performed on a Intel Core i7-4770 CPU @ 3.40GHz
with 32 GB RAM. The code has been compiled with GNU GCC version 5.4.0 with flags
“-O3”. The reported times are an average over 10 test runs.
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Table 1 The table summarizes the performance of the implicit tiered vector compared to the
performance of set and vector from the C++ standard library. dd-access refers to data dependent
access.

tiered vector set set / tiered vector vector / tiered
access 34.07 ns 1432.05 ns 42.03 21.63 ns 0.63
dd-access 99.09 ns 1436.67 ns 14.50 79.37 ns 0.80
range access 0.24 ns 13.02 ns 53.53 0.23 ns 0.93
insert 1.79 µs 1.65 µs 0.92 21675.49 µs 12082.33
insertion in end 7.28 ns 242.90 ns 33.38 2.93 ns 0.40
successor 0.55 µs 1.53 µs 2.75 0.36 µs 0.65
delete 1.92 µs 1.78 µs 0.93 21295.25 µs 11070.04
memory 408 MB 4802 MB 11.77 405 MB 0.99
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Figure 2 Figures (a) and (b) show the performance of the original ( ), optimized original ( ),
lazy ( ) packed lazy ( ), implicit ( ) and packed implicit ( ) layouts.

Procedure. In all tests 108 32-bit integers are inserted in the data structure as a preliminary
step to simulate that it has already been used1. For all the access and successor operations
109 elements have been accessed and the time reported is the average time per element.
For range access, blocks of 10.000 elements have been used. For insertion/deletion 106

elements have been (semi-)randomly2 added/deleted, though in the case of “vector” only
10.000 elements were inserted/deleted to make the experiments run within reasonable time.

7.1 Tiered Vector Variants Experiments

In this test we compare the performance of the implementations listed in Section 5 to that
or the original data structure as described in Theorem 1.

Optimized Original. By co-locating the child offset and child pointer, the two memory
lookups are at adjacent memory locations. Due to the cache lines in modern processors,
this means the second memory lookup will often be answered directly by the fast L1-cache.
As can be seen on Figure 2, this small change in the memory layout results in a significant
improvement in performance for both access and insertion. In the latter case, the running
time is more than halved.

1 In order to minimize the overall running time of the experiments, the elements were not added randomly,
but we show this does not give our data structure any benefits

2 In order to not impact timing, a simple access pattern has been used instead of a normal pseudo-random
generator.
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Figure 3 Figures (a), (b) and (c) show the performance of the implicit ( ) and the optimized
original tiered vector ( ) for different tree widths.

Lazy and Packed Lazy. Figure 2 shows how the fewer memory probes required by the
lazy implementation in comparison to the original and optimized original results in better
performance. Packing the offset and pointer in the leaves results in even better performance
for both access and insertion even though it requires a few extra instructions to do the actual
packing and unpacking.

Implicit. From Figure 2, we see the implicit data structure is the fastest. This is as expected
because it requires fewer memory accesses than the other structures except for the packed
lazy which instead has slight computational overhead due to the packing and unpacking.

As shown in Theorem 2 the implicit data structure has a bigger memory overhead than
the lazy data structure. Therefore the packed lazy representation might be beneficial in some
settings.

Packed Implicit. Packing the offsets array could lead to better cache performance due to
the smaller memory footprint and therefore yield better overall performance. As can be seen
on Figure 2, the smaller memory footprint did not improve the performance in practice. The
simple reason for this, is that the strategy we used for packing the offsets required extra
computation. This clearly dominated the possible gain from the hypothesized better cache
performance. We tried a few strategies to minimize the extra computations needed at the
expense of slightly worse memory usage, but none of these led to better results than when
not packing the offsets at all.

7.2 Width Experiments
This experiment was performed to determine the best capacity ratio between the leaf nodes
and the internal nodes. The six different width configurations we have tested are: 32-32-32-
4096, 32-32-64-2048, 32-64-64-1024, 64-64-64-512, 64-64-128-256, and 64-128-128-128. All
configurations have a constant height 4 and a capacity of approximately 130 mio.

We expected the performance of access operations to remain unchanged, since the number
of operations it must perform only depends on the height of the tree, and not the widths. We
expect range access to perform better when the leaf size is increased, since more elements will
be located in consecutive memory locations. For insertion there is not a clearly expected
behavior as the time used to physically move elements in a leaf will increase with leaf size,
but then less operations on the internal nodes of the tree has to be performed.

On Figure 3 we see access times are actually decreasing slightly when leaves get bigger.
This is a bit unexpected, but is most likely due to small changes in the memory layout that
results in slightly better cache performance. The same is the case for range access, but this
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Figure 4 Figures (a),(b) and (c) show the performance of the implicit ( ) and the optimized
original tiered vector ( ) for different tree heights.
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Figure 5 Figures (a) and (b) show the performance of the base ( ), rotated ( ), non-aligned
sizes ( ), non-templated ( ) layouts.

was expected. For insertion, we see there is a tipping point. For our particular instance, the
best performance is achieved when the leaves have size around 512.

Based on this, we have performed the remaining tests with the 64-64-64-512 configuration
(unless otherwise specified).

7.3 Height Experiments
In these tests we have studied how different heights affect the performance of access and
insertion operations. We have tested the configurations 8196-16384, 512-512-512, 64-64-64-
512, 16-16-32-32-512, 8-8-16-16-16-512. All resulting in the same capacity, but with heights
in the range 2-6.

We expect the access operations to performance better for lower trees, since the number
of operations that must be performed is linear in the height. On the other hand we expect
insertion to perform significantly better with higher trees, since its running time is O(n1/l)
where l is one the height plus one.

On Figure 4 we see the results follow our expectations. However, the access operations
only perform slightly worse on higher trees. We expect this to be because all internal nodes
fit within the L3-cache. Therefore the dominant running time comes from the lookup of the
element itself. (It is highly unlikely that the element requested by an access to a random
position would be among the small fraction of elements that fit in the L3-cache).

Regarding insertion, we see significant improvements up until a height of 4 after that,
increasing the height does not change the running time noticeably. This is most likely due to
the hidden constant in O(n1/l) increases rapidly with the height.

7.4 Configuration Experiments
In these experiments, we test a few hypotheses about how different changes impact the
running time. The results are shown on Figure 5, the leftmost result (base) is our final and
best implementation to which we compare our hypotheses.
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Rotated: As already mentioned, the insertions performed as a preliminary step to the tests
are not done at random positions. This means that all offsets are zero when our real operations
start. The purpose of this test is the ensure that there are no significant performance gains
in starting from such a configuration which could otherwise lead to misleading results. To
this end, we have randomized all offsets (in a way such that the data structure is still valid,
but the order of elements change) after doing the preliminary insertions but before timing
the operations. As can be seen on Figure 5, the difference between this and the normal
procedure is insignificant, thus we find our approach gives a fair picture.

Non-Aligned Sizes: In all our previous tests, we have ensured all nodes had an out-degree
that was a power of 2. This was chosen in order to let the compiler simplify some calculations,
i.e. replacing multiplication/division instructions by shift/and instructions. As Figure 5
shows, using sizes that are not powers of 2 results in significantly worse performance. Besides
from showing that one should always pick powers of 2, it also indicates that not only the
number of memory accesses during an operation is critical for our performance, but also the
amount of computation we make.

Non-Templated: The non-templated results in Figure 2 the show that the change to
templated recursion has had a major impact on the running time. It should be noted that
some improvements have not been implemented in the non-templated version, but it gives a
good indication that this has been quite useful.

8 Conclusion

This paper presents the first implementation of a generic tiered vector supporting any constant
number of tiers. We have shown a number of modified version of the tiered vector, and
employed several speed optimizations to the implementation. These implementations have
been compared to vector and multiset from the C++ standard library. The benchmarks
show that our implementation stays on par with vector for access and on update operations
while providing a considerable speedup of more than 40× compared to set. At the same time
the asymptotic difference between the logarithmic complexity of multiset and the polynomial
complexity of tiered vector for insertion and deletion operations only has little effect in
practice. For these operations, our fastest version of the tiered vector suffers less than 10%
slowdown. Arguably, our tiered array provides a better trade-off than the balanced binary
tree data structures used in the standard library for most applications that involves big
instances of the dynamic array problem.
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Abstract
To what extent does the structure of the players’ strategy space influence the efficiency of decent-
ralized solutions in congestion games? In this work, we investigate whether better performance
is possible when restricting to load balancing games in which players can only choose among
single resources. We consider three different solutions concepts, namely, approximate pure Nash
equilibria, approximate one-round walks generated by selfish players aiming at minimizing their
personal cost and approximate one-round walks generated by cooperative players aiming at min-
imizing the marginal increase in the sum of the players’ personal costs. The last two concepts
can also be interpreted as solutions of simple greedy online algorithms for the related resource
selection problem. Under fairly general latency functions on the resources, we show that, for
all three types of solutions, better bounds cannot be achieved if players are either weighted or
asymmetric. On the positive side, we prove that, under mild assumptions on the latency func-
tions, improvements on the performance of approximate pure Nash equilibria are possible for
load balancing games with weighted and symmetric players in the case of identical resources.
We also design lower bounds on the performance of one-round walks in load balancing games
with unweighted players and identical resources (in this case, solutions generated by selfish and
cooperative players coincide).

1998 ACM Subject Classification F.7.2 Algorithmic Game Theory and Mechanism Design,
F.7.2.6 Quality of Equilibria, F.5.5 Online Algorithms

Keywords and phrases Congestion games, Nash equilibrium, price of anarchy, online load bal-
ancing, greedy algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.17

1 Introduction

Congestion games [25] are non-cooperative games in which there is a set of selfish players
competing for a set of resources, and each resource incurs a certain latency, expressed by
a congestion-dependent function, to the players using it. Each player has a certain weight
and an available set of strategies, where each strategy is a non-empty subset of resources,
and aims at choosing a strategy minimizing her personal cost which is defined as the sum of
the latencies experienced on all the selected resources. We speak of weighted games/players
when players have arbitrary non-negative weights and of unweighted games/players when all
players have unitary weight.

Stable outcomes in this setting are the pure Nash equilibria [24]: strategy profiles in
which no player can lower her cost by unilaterally deviating to another strategy. However,
they are demanding solution concepts, as they might not always exist in weighted games
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[18] and, even when their existence is guaranteed, as, for instance, in unweighted games
[25] and in weighted games with affine latency functions [18, 21], their computation might
be an intractable problem [1, 16]. For such a reason, more relaxed solution concepts are
usually considered in the literature, as ε-approximate pure Nash equilibria or ε-approximate
one-round walks. An ε-approximate pure Nash equilibrium is the relaxation of the concept of
pure Nash equilibrium in which no player can lower her cost of a factor more than 1 + ε by
unilaterally deviating to another strategy, while an ε-approximate one-round walk is defined
as a myopic process in which players arrive in an arbitrary order and, upon arrival, each of
them has to make an irrevocably strategic choice aiming at approximatively minimizing a
certain cost function. In this work, we shall consider two variants of this process: in the first,
players choose a strategy approximatively minimizing, up to a factor of 1 + ε, their personal
cost (selfish players), while, in the second, players choose the strategy approximatively
minimizing, up to a factor of 1 + ε, the marginal increase in the social cost (cooperative
players) which is defined as the sum of the players’ personal costs (for the case of ε = 0,
we use the term exact one-round walk). In particular, approximate one-round walks can be
interpreted as simple greedy online algorithms for the equivalent resource selection problem
associated with a given congestion game, and, in most of the cases, these algorithms are
optimal in the context of online optimization of load balancing problems [9]. The worst-case
efficiency of these solution concepts with respect to the optimal social cost is termed as
the ε-approximate price of anarchy (for the case of pure Nash equilibria, the term price
of anarchy [22] is adopted) and as the competitive ratio of ε-approximate one-round walks,
respectively. Interesting special cases of congestion games are obtained by restricting the
combinatorics of the players’ strategy space. In symmetric congestion games, all players share
the same set of strategies; in network congestion games the players’ strategies are defined
as paths in a given network; in matroid congestion games [1, 2], the strategy set of every
player is given by the set of bases of a matroid defined over the set of available resources; in
k-uniform matroid congestion games [15], each player can select any subset of cardinality k
from a prescribed player-specific set of resources; finally, in load balancing games, players can
only choose single resources.

To what extent does the structure of the players’ strategy space influence the efficiency
of decentralized solutions in congestion games? In this work, we investigate whether better
performance is possible when restricting to load balancing games. Previous work established
that the price of anarchy does not improve when restricting to unweighted load balancing
games with polynomial latency functions [10, 20], while better bounds are possible in
unweighted symmetric load balancing games with fairly general latency functions [17].
Under the assumption of identical resources with affine latency functions, improvements
are also possible when restricting to both unweighted load balancing games [10, 27] and
weighted symmetric load balancing games [23]. Finally, [6] proves that the price of anarchy
does not improve when restricting to weighted symmetric load balancing games under
polynomial latency functions. For the competitive ratio of exact one-round walks generated
by cooperative players, no improvements are possible in unweighted load balancing games
with affine latency functions [10, 27], while improved performance can be obtained under
the additional assumption of identical resources [10] (we observe that, in this case, solutions
generated by both types of players coincide); however, for weighted players, no improvements
are possible even under the assumption of identical resources [9, 10]. For one-round walks
generated by selfish players, instead, no specialized limitations are currently known.

Our Contribution. We obtain an almost precise picture of the cases in which improved per-
formance can be obtained in load balancing congestion games. This is done by either solving
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open problems or extending previously known results to both approximate solution concepts
and more general latency functions. Specifically, we provide the following characterizations.

Let C be a class of non-negative and non-decreasing functions such that, for each f ∈ C and
α ∈ R≥0, the function g such that g(x) = αf(x) belongs to C and let C′ ⊂ C be the subclass
of C such that, for each f ∈ C′ and α ∈ R≥0, the function h such that h(x) = f(αx) belongs
to C′. A function f is semi-convex if xf(x) is convex, it is unbounded if limx→∞ f(x) =∞.
We prove that:

for weighted players: under unbounded latency functions drawn from C′, the approximate
price of anarchy does not improve when restricting to symmetric load balancing games
(this solves an open problem raised in [6], where a similar limitation was shown only
with respect to pure Nash equilibria and polynomial latency functions). Under latency
functions drawn from C′, the competitive ratio of approximate one-round walks generated
by selfish players does not improve when restricting to load balancing games (this solves
an open problem raised in [8]). If all functions in C′ are semi-convex, then the same
limitation applies to the competitive ratio of approximate one-round walks generated by
cooperative players (this generalizes results in [5, 9, 10] which hold only with respect to
exact one-round walks for games with polynomial latency functions). We also provide a
parametric formula for the relative bounds which we use to obtain the exact values for
polynomial latency functions;
for unweighted players: under latency functions drawn from C, either the approximate
price of anarchy and the competitive ratio of approximate one-round walks generated by
both selfish and cooperative players do not improve when restricting to load balancing
games (these generalize a result in [10, 20] which holds only with respect to pure Nash
equilibria and polynomial latency functions, a result in [10, 27] which holds only with
respect to exact one-round walks generated by cooperative players in games with affine
latency functions, and solve an open problem raised in [8] for one-round walks generated
by selfish players). Also in this case we provide a parametric formula for the relative
bounds which we use to obtain the exact bounds for polynomial latency functions.

These negative results, together with the positive ones achieved by [10, 17], imply that
better bounds on the approximate price of anarchy are possible only when dealing with
unweighted symmetric load balancing games. However, under the additional hypothesis of
identical resources, better performance is still possible. Let f be an increasing, continuous
and semi-convex function. We prove that the approximate price of anarchy of weighted
symmetric load balancing games with identical resources whose latency functions coincide
with f is equal to supx∈R>0 supλ∈(0,1)

{
λxf(x)+(1−λ)inv(x)f(inv(x))

opt(x)f(opt(x))

}
, where inv(x) := inf{t ≥

0 : f(x) ≤ (1 + ε)f(x/2 + t)} and opt(x) := λx + (1 − λ)inv(x). This generalizes a result
by [23] which holds only with respect to the price of anarchy under affine latency functions.
Furthermore, by using the previous formula, we compute the exact price of anarchy of
weighted symmetric load balancing games with identical resources and polynomial latency
functions.

Finally, still for the case of identical resources, we design lower bounds on the performance
of exact one-round walks in load balancing games with unweighted players (this improves
and generalizes a result in [10] which holds only for affine latency functions).

Related Work. The price of anarchy in congestion games was first considered in [4] and
[11] where it was independently shown that the price of anarchy is 5/2 and (3 +

√
5)/2 for,

respectively, unweighted and weighted congestion games with affine latency functions. In [11],
it is also proved that no improved bounds are possible both in symmetric unweighted games
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and in unweighted network games; these results were improved by [14] which shows that the
price of anarchy stays the same even in symmetric unweighted network games. In [10], it is
shown that the previous bounds are tight also for load balancing games. For the special case
of load balancing games on identical resources, the works of [27] and [10] show that the price
of anarchy is 2.012067 for unweighted games and at least 5/2 for weighted ones. In [23], it is
proved that, for symmetric load balancing games, the price of anarchy drops to 4/3 if the
games are unweighted, and to 9/8 if the games are weighted with identical resources. For
symmetric unweighted k-uniform matroid congestion games with affine latency functions,
[15] proves that the price of anarchy is at most 28/13 and at least 1.343 for a sufficiently
large value of k (for k = 5, it is roughly 1.3428). Tight bounds on the price of anarchy of
either weighted and unweighted congestion games with polynomial latency functions have
been given by [3]. Under fairly general latency functions, [17] shows that the price of anarchy
of unweighted symmetric load balancing games coincides with that of non-atomic congestion
games (thus generalizing a first result by [19] which proves an upper bound of

∑
i∈[d] Bi,

where Bi is the ith Bell number for the case of polynomial latency functions of maximum
degree equal to d), while [6] proves that assuming symmetric strategies does not lead to
improved bounds in unweighted games and gives exact bounds for the case of weighted
players. It also shows that, for the case of weighted players, no improvements are possible
even in symmetric load balancing games with polynomial latency functions. Finally, [12] and
[7] characterize the approximate price of anarchy, respectively, in unweighted and weighted
games under affine latency functions.

The competitive ratio of exact one-round walks generated by cooperative players in load
balancing games with polynomial latency functions has been first considered in [5], where,
for the special case of affine functions, an upper bound of 3 + 2

√
2 is provided for weighted

players. For unweighted players, this result has been improved to 17/3 in [27], where it
is also shown that, for identical resources, the upper bound drops to 2 +

√
5 in spite of a

lower bound of 3.0833. Finally, [10] shows matching lower bounds of 3 + 2
√

2 and 17/3 for,
respectively, weighted and unweighted players. For weighted games with polynomial latency
functions, tight bounds have been given in [9]; the lower bounds, in particular, hold even
for identical resources, thus improving previous results from [5]. In [10] it is also shown
that, for unweighted players and identical resources, the competitive ratio lies between 4 and
2
3
√

21 + 1. For the case of selfish players and still under affine latency functions, [8, 13] show
that the competitive ratio is 2 +

√
5 for unweighted congestion games, while, for weighted

players, [13] gives an upper bound of 4 + 2
√

3. In this setting, no specialized results are
known for restrictions to load balancing games.

2 Definitions and Notation

For two integers 0 ≤ k1 ≤ k2, let [k1, k2] := {k1, k1 + 1, . . . , k2 − 1, k2} and [k1] := [1, k1].
A congestion game is a tuple CG = (N,E, (`e)e∈E , (wi)i∈N , (Σi)i∈N ), where N is a set

of n ≥ 2 players, E is a set of resources, `e : R≥0 → R≥0 is the latency function of resource
e ∈ R, and, for each i ∈ N , wi ≥ 0 is the weight of player i and Σi ⊆ 2R \ ∅ is her set of
strategies. We speak of weighted games/players when players have arbitrary weights and of
unweighted games/players when wi = 1 for each i ∈ N . A congestion game is symmetric if
Σi = Σ for each i ∈ N , i.e., if all players share the same strategy space. A load balancing
game is a congestion game in which for each i ∈ N and S ∈ Σi, |S| = 1, that is, all players’
strategies are singleton sets. Given a class C of latency functions, let W(C) be the class of
weighted congestion games, U(C) be the class of unweighted congestion games, ULB(C) be the
class of unweighted load balancing games, WLB(C) be the class of weighted load balancing
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games, and WSLB(C) be the class of weighted symmetric load balancing games, all having
latency functions in the class C.

A strategy profile is an n-tuple of strategies σ = (σ1, . . . , σn), that is, a state of the game
in which each player i ∈ N is adopting strategy σi ∈ Σi, so that Σ := ×i∈NΣi denotes the set
of strategy profiles which can be realized in CG. For a strategy profile σ, the congestion of
resource e ∈ E in σ, denoted as ke(σ) :=

∑
i∈N :e∈σi wi, is the total weight of the players using

resource e in σ, (observe that, in unweighted games, ke(σ) coincides with the number of users
of resource e in σ). The personal cost of player i in σ is defined as costi(σ) =

∑
e∈σi `e(ke(σ))

and each player aims at minimizing it. For the sake of conciseness, when the strategy profile
σ is clear from the context, we write ke in place of ke(σ). Fix a strategy profile σ and
a player i ∈ N . We denote with σ−i the restriction of σ to all the players other than i;
moreover, for a strategy S ∈ Σi, we denote with (σ−i, S) the strategy profile obtained from σ

when player i changes her strategy from σi to S, while the strategies of all the other players
are kept fixed. The quality of a strategy profile in congestion games is measured by using
the social function SUM(σ) =

∑
i∈N wicosti(σ) =

∑
e∈E ke(σ)`e(ke(σ)), that is, the sum

of the players’ personal costs. A social optimum is a strategy profile σ∗ minimizing SUM.
For the sake of conciseness, once a particular social optimum has been fixed, we write oe to
denote the value ke(σ∗).

For any ε ≥ 0, an ε-approximate pure Nash equilibrium is a strategy profile σ such that,
for any player i ∈ N and strategy S ∈ Σi, costi(σ) ≤ (1 + ε)costi(σ−i, S). We denote
by NEε(CG) the set of ε-approximate pure Nash equilibria of a congestion game CG. For
any ε ≥ 0, an ε-approximate one-round walk is an online process in which players appear
sequentially according to an arbitrary order and, upon arrival, each player irrevocably chooses
a strategy approximatively minimizing a certain cost function. Let σi denote the strategy
profile obtained when the first i players have performed their strategic choice, while the
remaining ones have not entered the game yet (so, it may be assumed that each of them
is playing the empty strategy). The i-th selfish player aims at minimizing her personal
cost, so that costi(σi) ≤ (1 + ε) minS∈Σi costi(σi−1, S); the i-th cooperative player aims at
minimizing the marginal increase in the social function SUM, so that SUM(σi)−SUM(σi−1) ≤
(1 + ε) minS∈Σi(SUM(σi−1, S) − SUM(σi−1)). For ε = 0, we speak of an exact one-round
walk. We denote by ORWs

ε(CG) (resp. ORWc
ε(CG)) the set of strategy profiles which can be

constructed by an ε-approximate one-round walk involving selfish (resp. cooperative) players
in a congestion game CG.

The ε-approximate price of anarchy of a congestion game CG is defined as PoAε(CG) =
maxσ∈NEε(CG){SUM(σ)/SUM(σ∗)}, where σ∗ is a social optimum for CG. Similarly, the
competitive ratio of ε-approximate one-round walks generated by selfish (resp. cooperative)
players, is defined as CRsε(CG) = maxσ∈ORWs

ε(CG){SUM(σ)/SUM(σ∗)} (resp. CRcε(CG) =
maxσ∈ORWc

ε(CG){SUM(σ)/SUM(σ∗)}). Given a class of congestion games G, the ε-approximate
price of anarchy of G is defined as PoAε(G) = supCG∈GPoAε(CG). For the case of ε = 0, we
refer to this metric simply as to the price of anarchy. The competitive ratio of ε-approximate
one-round walks of G generated by both selfish and cooperative players is defined accordingly.
Throughout the paper, we shall assume that, in any considered class of latency functions,
there always exists a non-constant function, otherwise the inefficiency of all the ε-approximate
solution concepts we consider is always equal to 1 + ε.

3 Weighted Load Balancing Games

In this section, we first show that the approximate price of anarchy of weighted congestion
games cannot improve even when restricting the players’ strategy space to the simplest
possible combinatorial structure, i.e., to the case of symmetric load balancing games.
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I Theorem 1. Let C = {f : R≥0 → R≥0} be a class of non-decreasing latency functions
whose members, except for the constant ones, are unbounded and such that, for any f ∈ C
and α ≥ 0, the functions g, h : R≥0 → R≥0 such that g(x) = αf(x) and h(x) = g(αx) for
each x ∈ R≥0 belong to C. Then, PoAε(W(C)) = PoAε(WSLB(C)).

Proof Sketch. We make use of a multi-graph representation of a pair of strategy profiles
for a (symmetric) load balancing game, denoted as load balancing graph, defined as follows:
nodes are all the resources in E, and each player is associated to a weighted edge (e1, e2, w),
where {e1} is denoted as her first strategy, {e2} is her second strategy, and w is her weight.

Let k1 > 0 and k2 ≥ 0 be two real numbers, n be a positive integer, and f1, f2 be two
non-constant (and so, unbounded) functions belonging to C. Consider a load balancing
graph LB(k1, k2) yielded by a directed n-ary tree, organized in 2s levels, numbered from
1 to 2s, and whose edges are oriented from the root to the leaves, with the addition of n
self-loops on the nodes of level 2s. The weight of a player associated to an edge outgoing
from a node at level i ∈ [s] (resp. i ∈ [s+ 1, 2s]) is equal to (k1/n)i (resp. (k1/n)s(k2/n)i−s).
For i, j ∈ [2], define θi,j = fi(ki)

(1+ε)fj(kj+1) and θi = θi,i. Each resource at level i has latency

gi(x) = θi−1
1 f1

((
n
k1

)i−1
x

)
if i ∈ [1, s] and gi(x) = θs−1

1 θ1,2θ
i−s−1
2 f2

((
n
k1

)s (
n
k2

)i−s−1
x

)
,

otherwise.
For a sufficiently large n, the strategy profile σ in which all players select their first

strategy is an ε-approximate pure Nash equilibrium. Towards this end, consider a player
whose first strategy is a resource from level i. Since the game is symmetric, we have to
consider the following cases: (1) if i ∈ [1, 2s− 1] and the player deviates to a resource from
level i + 1, her cost decreases exactly of a factor of 1 + ε; (2) if i ∈ [2, 2s] and the player
deviates to a resource from level j ≤ i, her cost does not decrease; if i ∈ [1, 2s− 2] and the
player deviates to a resource from level j > i + 1, for a sufficiently large n, her cost does
not decrease. Let σ∗ be the strategy profile in which each player plays her second strategy.
We can show that, for each M < PoAε(W(C)), there exist k1 > 0 and k2 ≥ 0 such that
lims→∞

SUM(σ)
SUM(σ∗) > M , thus proving the thesis. This technical claim, together with the full

proof of the theorem, resembles a similar result used in [6, 26]. J

Then, we prove that no improvements are possible for approximate one-round walks when
restricting to load balancing games.

I Theorem 2. Let C = {f : R≥0 → R≥0} be a class of non-decreasing latency functions
such that, for any f ∈ C and α ≥ 0, the functions g, h : R≥0 → R≥0 such that g(x) = αf(x)
and h(x) = g(αx) for each x ∈ R≥0 belong to C. Then CRsε(W(C)) = CRsε(WLB(C)). If all
functions in C are semi-convex, we have that CRcε(W(C)) = CRcε(WLB(C)).

Proof Sketch. Let us start with the case of selfish players. We extend the load balancing
graph LB(k1, k2) used in the proof of Theorem 1 as follows. Denote as i(v) the level of
resource v. For each node u in the load balancing graph, consider an arbitrary enumeration
of all the n outgoing edges of u. Since each node has a unique incoming edge, we denote by
h(v) ∈ [n] the position associated to the unique edge entering v in the given ordering.

Consider the ε-approximate one-round walk in which players enter the game in non-
increasing order of level (with respect to their first strategy) and, within the same level,
players are processed in non-decreasing order of position.

For i, j ∈ [2] and h ∈ [n], define θi,j(h) =
fi
(
hki
n

)
(1+ε)fj(kj+1) and θi(h) = θi,i(h). Resource

v has latency function gv(x) = f1(x) if i(v) = 1, gv(x) = θ1(h(v))Au︸ ︷︷ ︸
Av

f1

((
n
k1

)i(v)−1
x

)
if
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d Selfish Players Coordinated Players d Selfish Players Coordinated Players
1 7.464 5.828 6 27,089,557 7,553,550
2 90.3 56.94 7 974,588,649 222,082,591
3 1,521 780.2 8 39,729,739,895 7,400,694,480
4 32,896 13,755 9 1,809,913,575,767 275,651,917,450
5 868,567 296,476 ∞ (Θ(d))d+1 (Θ(d))d+1

Figure 1 The competitive ratio of exact one-round walks generated by either selfish or cooperative
players in weighted load balancing games with polynomial latency functions of maximum degree d.

i(v) ∈ [2, s], gv(x) = θ1,2(h(v))Au︸ ︷︷ ︸
Av

f2

((
n
k1

)s
x
)
if i(v) = s+ 1, while, in all the other cases,

gv(x) = θ2(h(v))Au︸ ︷︷ ︸
Av

f2

((
n
k1

)s (
n
k2

)i(v)−s−1
x

)
, where (u, v) denotes the unique incoming

edge of v and Av is recursively defined on the basis of Au by setting Av = 1 for i(v) = 1, i.e.,
for v being the root of the tree.

The strategy profile σ in which all players select their first strategy is a possible outcome
of an ε-approximate one-round walk generated by selfish players. Let σ∗ be the strategy
profile in which all players select their second strategy. As the game is not symmetric, we can
assume that all players can choose among these two strategies only. We can show that, for
each M < CRsε(W(C)), there exist k1 > 0 and k2 ≥ 0 such that lims→∞ limn→∞

SUM(σ)
SUM(σ∗) >

M , thus proving the thesis. Again, this technical claim, together with the full proof
of the theorem, resembles a similar result used in [6, 26]. For the case of cooperative
players, it suffices considering the same load balancing graph, with n = 1 and θi,j(1) =

kifi(ki)
(1+ε)((kj+1)fi(kj+1)−kjfj(kj)) . J

3.1 Polynomial Latency Functions
Consider the class P(d) of polynomials with non-negative coefficients and maximum degree d.
Observe that this class of latency functions satisfies the hypothesis required by Theorems 1
and 2. By applying similar arguments to those used in [3], we get CRsε(P(d)) = (ϕε,d+1)d+1

and CRcε(P(d)) =
(
ϕ′ε,d+1

)d+1
, where ϕε,d+1 and ϕ′ε,d+1 are the unique solutions of the

equations xd+1

d+1 − (1 + ε)(x+ 1)d = 0 and (2 + ε)xd+1 − (1 + ε)(x+ 1)d+1 = 0, respectively.
Observe that ϕ′ε,d+1 = 1

d+1
√

2+ε
1+ε−1

which generalizes the bounds given in [9] for the case

ε = 0. Some values for the case of ε = 0 are reported in Figure 1.

4 Unweighted Load Balancing Games

In this section, we first show that the ε-approximate price of anarchy of unweighted congestion
games cannot improve when restricting to load balancing games.

I Theorem 3. Let C be a class of non-decreasing latency functions such that f ∈ C, α ≥
0⇒ αf ∈ C. Then PoAε(ULB(C)) = PoAε(U(C)).

Proof Sketch. Let k1, o1, o2 > 0 and k2 ≥ 0 be non-negative integers. Consider a load
balancing game defined by a multi-partite directed graph LB(k1, k2, o1, o2) organized in 2s
levels, numbered from 1 to 2s, and defined as follows. For each i ∈ [s] (resp. i ∈ [s+ 1, 2s])
there are os−i1 ki−1

1 os2 (resp. o2s−i
2 ki−s−1

2 ks1) nodes/resources. Edges can only connect nodes
of consecutive levels, except for nodes at level 2s, each of which has k2 self-loops. The
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out-degree of each node at level i ∈ [s] (resp. i ∈ [s + 1, 2s]) is k1 (resp. k2), and the
in-degree of each node at level i ∈ [2, s] (resp. i ∈ [s+ 1, 2s] without considering self-loops)
is o1 (resp. o2); observe that this configuration can be realized since the total number of
nodes at level i ∈ [s − 1] (resp. i = s, resp. i ∈ [s + 1, 2s − 1]) multiplied by k1 (resp. k1,
resp. k2) is equal to the number of nodes at level i+ 1 multiplied by o1 (resp. o2, resp. o2).
For i, j ∈ [2], define θi,j = fi(ki)

(1+ε)fj(kj+1) and θi = θi,i. Each resource at level i has latency
function gi(x) = θi−1

1 f1 (x) if i ∈ [s], and gi(x) = θs−1
1 θ1,2θ

i−s−1
2 f2 (x) otherwise.

Let σ and σ∗ be the strategy profiles in which all players select their first and second
strategy, respectively. As the game is not symmetric, we can assume that all players can
choose among these two strategies only. Analogously to Theorem 1, it is possible to show
that, for any M < PoAε(U(C)), there exist suitable non-negative integers k1, k2, o1, o2 such
that σ is an ε-approximate pure Nash equilibrium and lims→∞

SUM(σ)
SUM(σ∗) > M . J

Then, we prove a similar limitation for approximate one-round walks.
I Theorem 4. Let C = {f : R≥0 → R≥0} be a class of non-decreasing latency functions
such that f ∈ C, α ≥ 0 ⇒ αf ∈ C. Then CRsε(U(C)) = CRsε(WLB(C)). If functions of C are
semi-convex, we have that CRcε(U(C)) = CRcε(WLB(C)).
Proof Sketch. Let us start with the case of selfish players. Define j(i) = 1 if i ∈ [s] and
j(i) = 2 otherwise. We extend the load balancing graph LB(k1, k2, o1, o2) used in the proof
of Theorem 3 according to the following recursive procedure.

Base Case: partition the resources of the first level (resp. second level) in oj(2) (resp.
kj(1)) groups of equal size, and add edges from the first level to the second one in such a
way that each resource in the first level has exactly kj(1) outgoing edges, each ending in a
different group of the second level, and each resource in the second level has exactly oj(2)
incoming edges, each coming from a different group of the first level; number the groups
of the second level from 1 to kj(1) and label each resource with the number associated to
the group it belongs to, for an illustrating example see figure 2 where resources belonging
to different groups at level 1 are represented with different colors, resources belonging
to different groups at level 2 belong to different squares and they are labeled with the
number of the square they belong to.
Inductive Case: as inductive hypothesis, suppose that resources at level i ∈ [2s− 1] have
been partitioned into m(i) groups of equal size and labeled with values from 1 to kj(i−1),
where each label is assigned to m(i)/kj(i−1) distinct groups, and that all the edges from
level i− 1 to level i have been added. Partition resources at level i+ 1 in a temporary
partition of m(i) groups of equal size, and consider a bijective correspondence between
groups at level i and groups at level i+ 1 (in Figure 2, groups at levels 2 and 3 which are
in bijective correspondence, have been depicted in the same dashed square). Partition
each group at level i into oj(i+1) subgroups of equal size, and the corresponding group at
level i+ 1 into kj(i) subgroups of equal size (this defines the final partitioning of nodes
at level i + 1 into m(i)kj(i) groups), and add edges from the first group to the second
one in the same way as described in the basic case, i.e. each resource in the first group
has exactly kj(i) outgoing edges, each ending in a different subgroup of the second group,
and each resource in the second group has exactly oj(i) incoming edges, each coming
from a different subgroup of the first group. For each group at level i+ 1, number its
subgroups with values from 1 to kj(i) and label each resource with the number associated
to subgroup it belongs to. For instance, in Figure 2, consider an arbitrary dashed square
including two groups at levels 2 and 3 which are in bijective correspondence. Analogously
to the base case, resources belonging to different subgroups of the first (resp. second)
group are represented with different colors (resp. belong to different squares and are
labeled with the number of the square they belong to).
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Let h(v) be the label of resource v. Consider the ε-approximate one-round walk in which
players enter the game in non-increasing order of level (with respect to their first strategy)
and, within the same level, players are processed in non-decreasing order of position defined
by labeling function h.

For i, j ∈ [2] and h ∈ ki, define θi,j(h) = fi(h)
(1+ε)fj(kj+1) and θi(h) = θi,i(h). Resource

v has latency function gv(x) = f1(x) if i(v) = 1, gv(x) = θ1(h(v))Au︸ ︷︷ ︸
Av

f1(x) if i(v) ∈ [2, s],

gv(x) = θ1,2(h(v))Au︸ ︷︷ ︸
Av

f2(x) if i(v) = s + 1, and gv(x) = θ2(h(v))Au︸ ︷︷ ︸
Av

f2(x) otherwise, where

(u, v) is an arbitrary incoming edge of v and Av is recursively defined on the basis of Au by
setting Av = 1 for i(v) = 1. By using the recursive structure of the load balancing graph,
one can prove, by induction on the level of each resource v, that Au = Au′ if (u, v) and (u′, v)
are both edges of the load balancing graph, so that the definition of gv is independent of the
particular incoming edge of v.

The strategy profile σ all players select their first strategy is a possible outcome of an
ε-approximate one-round walk generated by selfish players. Let σ∗ be the strategy profile in
which all players select their second strategy. We can show that, for each M < CRsε(U(C)),
there exist suitable non-negative integers k1, k2, o1, o2 such that lims→∞ limn→∞

SUM(σ)
SUM(σ∗) >

M , thus proving the claim. For the case of cooperative players, it suffices considering the
same load balancing graph with θi,j(h) = hifi(hi)−(hi−1)fi(hi−1)

(1+ε)((kj+1)fi(kj+1)−kjfj(kj)) . J

4.1 Polynomial Latency Functions
Consider the class P(d) of polynomials with non-negative coefficients and maximum de-
gree d. For ε-approximate one-round walks generated by cooperative players, by using
similar arguments to those exploited in [3], one can prove that CRcε(ULB(P(d))) is equal to
CRcε(WLB(P(d))) if ϕ′d,ε is an integer (see Subsection 3.1), otherwise we get CRcε(ULB(P(d))) =
γd,ε

(⌊
ϕ′d,ε

⌋)
, where γd,ε(k) := kd+1 + xd,ε(k)

(
−kd+1 + (1 + ε) ·

(
(k + 1)d+1 − kd+1)), and

xd,ε(k) is such that γd,ε(k) = γd,ε(k + 1). Some values for the case of ε = 0 are reported
in Figure 3. For the case of selfish players, by using the approach in [7], we get that
CRs0(ULB(P(1))) = 2 +

√
5, CRs0(ULB(P(2))) = 3383

90 and CRs0(ULB(P(3))) = 17929
34 .

5 The Case of Identical Resources

In this section, we characterize the approximate price of anarchy of weighted symmetric load
balancing games with identical resources having semi-convex latency functions. We start by
showing the upper bound.

I Theorem 5 (Upper bound). Let f : R≥0 → R≥0 be a non-decreasing and semi-convex
latency function. Let WSILG(f) be the class of weighted symmetric load balancing games with
identical resources having latency function f . For any ε ≥ 0, let

inv(x) := inf{t ≥ 0 : f(x) ≤ (1 + ε)f(x/2 + t)},
opt(x, λ) := λx+ (1− λ)inv(x),

upp(x, λ) := λxf(x) + (1− λ)inv(x)f(inv(x))
opt(x, λ)f(opt(x, λ)) .

If inv(x) 6= 0 for each x ∈ R>0, then:

PoAε(WSILG(f)) ≤ sup
x∈R>0

max
λ∈(0,1)

upp(x, λ). (1)
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321

32111 2 2 33

level 1

level 2

level 3

level 4

level 5

level 6

level 4

Figure 2 The load balancing graph described in the proof of Theorems 3 and 4, with s = 3,
k1 = 3, o1 = 2, k2 = 4 and o2 = 1. We also describe the partitioning and labeling structures used in
the proof of Theorem 4.

d Competitive Ratio d Competitive Ratio d Competitive Ratio
1 5.66 4 13,170 7 220,349,064
2 55.46 5 289,648 8 7,022,463,077
3 755.2 6 7,174,495 ∞ (Θ(d))d+1

Figure 3 The competitive ratio of exact one-round walks generated by cooperative players in
unweighted load balancing games with polynomial latency functions of maximum degree d.

Proof Sketch. Let WSILG(f,W,m) ⊆ WSILG(f) be the subclass of load balancing games
having m resources and such that

∑
i∈N wi = W . First, we prove that the optimal social

cost of games in WSILG(f,W,m) is lower bounded by the cost of a strategy profile σ∗(W,m)
in which all resources have the same congestion, so that SUM(σ∗(W,m)) = Wf

(
W
m

)
.

Furthermore, we prove that the supremum of the social cost over all ε-approximate pure
Nash equilibria of games in WSILG(f,W,m) is upper bounded by the supremum of the social
cost over all strategy profiles σ(m,x, h) in which all the resources can have three possible
congestions, namely x, y, z, such that z = inv(x) ≤ y ≤ x, one resource has congestion y and
h ∈ [0,m − 1] resources have congestion equal to x, so that SUM(σ(m,x, h)) = hxf(x) +
yf(y)+(m−h−1)inv(x)f(inv(x)). Observe that it must beW = hx+y+(m−h−1)inv(x).
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One can show that that:

PoAε(WSILG(f)) (2)
= sup
W≥0,m∈N

PoAε(WSILG(f,W,m))

≤ sup
m∈N,h∈[0,m−1],x≥0,y:inv(x)≤y≤x

SUM(σ(m,x, h))/m
SUM(σ(hx+ y + (m− h− 1)inv(x)))/m

= sup
m∈N,h∈[0,m−1],x≥0,y:inv(x)≤y≤x

hxf(x)+yf(y)+(m−h−1)inv(x)f(inv(x))
m(

hx+y+(m−h−1)inv(x)
m

)
f
(
hx+y+(m−h−1)inv(x)

m

)
= lim
m→∞

sup
h∈[0,m−1],x≥0,y:inv(x)≤y≤x

hxf(x)+yf(y)+(m−h−1)inv(x)f(inv(x))
m(

hx+y+(m−h−1)inv(x)
n

)
f
(
hx+y+(m−h−1)inv(x)

m

) (3)

= sup
x∈R>0

max
λ∈(0,1)

λxf(x) + (1− λ)inv(x)f(inv(x))
opt(x, λ)f(opt(x, λ))

= sup
x∈R>0

max
λ∈(0,1)

upp(x, λ) (4)

thus proving the claim (in (3) we have replaced h/m with λ, (m− h− 1)/m with 1− λ and
y/m with 0). J

We show that, under mild assumptions, a tight lower bound can be obtained.

I Theorem 6 (Lower Bound). For any ε ≥ 0, let λ∗(x) := arg maxλ∈(0,1) upp(x, λ) for any
x ∈ R≥0. If λ∗(x) ≤ 1

2 and opt(x, λ∗(x))− x/2 ≥ 0, then

PoAε(WSILG(f)) = sup
x∈R>0

max
λ∈(0,1)

upp(x, λ). (5)

Proof Sketch. Givenm ∈ N, let h(m) ∈ [m]. We prove that, if h(m)/m approaches λ∗(x) for
m→∞, the strategy profiles σ∗ := σ∗(mx+y+(m−h−1)inv(x),m) and σ := σ(m,x, h(m))
defined in the proof of Theorem 5, can be enforced as an optimal strategy profile and an
ε-approximate pure Nash equilibrium for the relative game, respectively. Thus, by using
similar arguments to those exploited to obtain (4), we get

lim
m→∞

sup
x≥0,y:inv(x)≤y≤x

SUM(σ)
SUM(σ∗) = sup

x∈R>0

upp(x, λ∗(x)),

thus concluding the proof. J

5.1 Polynomial Latency Functions

By exploiting (5), we derive exact bounds on the price of anarchy of weighted symmetric
load balancing games with identical resources having polynomial latency functions. In Figure
4, we show a comparison between the cases of general and identical resources with respect to
the price of anarchy for games with polynomial latency functions.

I Theorem 7. Let P(d) be the class of polynomial latency functions of maximum degree d.
Then, PoA0(P(d)) = dd(2d+1−1)d+1

2d(d+1)d+1(2d−1)d ∈ Θ
(
(2 + o(1))d

)
.
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d Identical Resources General Resources d Identical Resources General Resources
1 1.125 2.618 6 7.544 14,099
2 1.412 9.909 7 12.866 118,926
3 1.946 47.82 8 22.478 1,101,126
4 2.895 277 9 39.984 11,079,429
5 4.571 1,858 ∞ Θ

(
(2 + o(1))d

) (
Θ
(

d
log d

))d+1

Figure 4 The price of anarchy of weighted symmetric load balancing games with polynomial
latency functions of maximum degree d: a comparison between the cases of identical and general
resources.

5.2 Lower Bounds for Exact One-Round Walks
The following construction gives a class of lower bounding instances for exact one-round walks
generated by selfish/cooperative players in load balancing games with identical resources
having latency function f . Fix n ∈ N and a sequence of integers 1 = o1 ≤ o2 ≤ . . . ≤ on. Let
E = E0 ⊃ E1 ⊃ E2 ⊃ . . . ⊃ En ⊃ En+1 = ∅ be a sequence of sets of resources such that
(|Ei−1| − |Ei|)oi = |Ei| (observe that such a sequence exists). For any i ∈ [n], we have |Ei|
players of type i whose set of strategies is Ei−1. Suppose that players enter the game in
non-decreasing order with respect to their type. One can easily prove that the strategy profile
σ in which each player of type i selects a different resource e ∈ Ei is a possible outcome for
an exact one-round walk generated by selfish/cooperative players. Consider the strategy
profile in which, for any resource e ∈ Ei−1 \Ei, there are exactly oi players of type i selecting
e. We get:

CRs0({f}) ≥ SUM(σ)
SUM(σ∗) =

∑n
i=1(|Ei| − |Ei+1|)if(i)∑n
i=1(|Ei−1| − |Ei|)oif(oi)

. (6)

For linear latency functions, by using n = 1013 and oi =
⌊
i44411
100000 + 1 +

⌊√
i

7

⌋⌋
, by (6), we get

a lower bound of at least 4.0009 which improves the currently known lower bound of 4 given
in [10]. We conjecture that a tight class of lower bounding instances for linear and more
general polynomial latency functions is given by the union of all the instances described
above, over all values of n ∈ N and all sequences (oi)i∈[n].

6 Open Problems

Our work leaves two open problems. The first is to understand whether better performance
is possible for approximate one-round walks in weighted symmetric load balancing games (we
conjecture this is not the case), while the second is to give upper bounds on the performance
of one-round walks in weighted and unweighted load balancing games with identical resources.
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Figure 1 A (5:2)-coloring of the dodecahedron (left) which can be seen as a homomorphism to
KG5,2 (the Petersen graph, right). The homomorphism is given by identifying the pairs of opposite
vertices in the corresponding regular solid.

1 Introduction

The complexity of determining the chromatic number of a graph is undoubtedly among the
most intensively studied computational problems. Countless variants and generalizations of
graph colorings have been introduced and investigated. Here, we focus on multicolorings, also
known as (a:b)-colorings. In this setting, we are given a graph G, a palette of a colors, and
a number b ≤ a. An (a:b)-coloring of G is any assignment of b distinct colors to each vertex
so that adjacent vertices receive disjoint subsets of colors. The (a:b)-coloring problem
asks whether G admits an (a:b)-coloring. For b = 1 we obtain the classic graph coloring
problem. The smallest a for which an (a:b)-coloring exists is called the b-fold chromatic
number, denoted by χb(G).

The motivation behind (a:b)-colorings can be perhaps best explained by showing the
connection with the fractional chromatic number. For a graph G, it is denoted as χf (G) and
defined as the optimum value of the natural LP relaxation of the problem of computing the
chromatic number of G, expressed as finding a cover of the vertex set using the minimum
possible number of independent sets. It can be easily seen that by relaxing the standard
coloring problem by allowing b times more colors while requiring that every vertex receives b
colors and adjacent vertices receive disjoint subsets, with increasing b we approximate χf (G)
better and better. Consequently, limb→∞ χb(G)/b = χf (G).

Another connection concerns Kneser graphs. Recall that for positive integers a, b with
b < a/2, the Kneser graph KGa,b has all b-element subsets of {1, 2, . . . , a} as vertices, and
two subsets are considered adjacent if and only if they are disjoint. For instance, KG5,2 is
the well-known Petersen graph (see Fig. 1, right). Thus, (a:b)-coloring of a graph G can be
interpreted as a homomorphism from G to the Kneser graph KGa,b (see Fig. 1). Kneser
graphs are well studied in the context of colorings, mostly due to the celebrated result
of Lovász [28], who determined their chromatic number, initiating the field of topological
combinatorics.

Multicolorings and (a:b)-colorings have been studied both from combinatorial [6, 12, 26]
and algorithmic [5, 18, 19, 24, 25, 29, 30, 33] points of view. The main real-life motivation
comes from the problem of assigning frequencies to nodes in a cellular network so that
adjacent nodes receive disjoint sets of frequencies on which they can operate. This makes
(near-)planar and distributed settings particularly interesting for practical applications. We
refer to the survey of Halldórsson and Kortsarz [17] for a broader discussion.
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In this paper we focus on the paradigm of exact exponential time algorithms: given a graph
G on n vertices and numbers a ≥ b, we would like to determine whether G is (a:b)-colorable
as quickly as possible. Since the problem is already NP-hard for a = 3 and b = 1, we do not
expect it to be solvable in polynomial time, and hence look for an efficient exponential-time
algorithm. A straightforward dynamic programming approach yields an algorithm with
running time1 O?(2n · (b+ 1)n) as follows. For each function η : V (G)→ {0, 1, . . . , b} and
each k = 0, 1, . . . , a, we create one boolean entry D[η, k] denoting whether one can choose k
independent sets in G so that every vertex v ∈ V (G) is covered exactly η(v) times. Then
value D[η, k] can be computed as a disjunction of values D[η′, k − 1] over η′ obtained from η

by subtracting 1 on vertices from some independent set in G.
This simple algorithm can be improved by finding an appropriate algebraic formula for the

number of (a:b)-colorings of the graph and using the inclusion-exclusion principle to compute
it quickly, similarly as in the case of standard colorings [2]. Such an algebraic formula was
given by Nederlof [32, Theorem 3.5] in the context of a more general Multi Set Cover
problem. Nederlof also observed that in the case of (a:b)-coloring, a simple application
of the inclusion-exclusion principle to compute the formula yields an O?((b + 1)n)-time
exponential-space algorithm. Hua et al. [21] noted that the formulation of Nederlof [32]
for Multi Set Cover can be also used to obtain a polynomial-space algorithm for this
problem. By taking all maximal independent sets to be the family in the Multi Set Cover
problem, and applying the classic Moon-Moser upper bound on their number [31], we obtain
an algorithm for (a:b)-coloring that runs in time O?(3n/3 · (b+ 1)n) and uses polynomial
space. Note that by plugging b = 1 to the results above, we obtain algorithms for the
standard coloring problem using O?(2n) time and exponential space, or using O?(2.8845n)
time and polynomial space, which almost matches the fastest known procedures [2].

The complexity of (a:b)-coloring becomes particularly interesting in context of the
Graph Homomorphism problem: given graphs G and H, with n and h vertices respectively,
determine whether G admits a homomorphism to H. By the celebrated result of Hell and
Nešetřil [20] the problem is in P if H is bipartite and NP-complete otherwise. For quite a
while it was open whether there is an algorithm for Graph Homomorphism running in
time 2O(n+h). It was recently answered in the negative by Cygan et al. [9]; more precisely,
they proved that an algorithm with running time 2o(n logh) contradicts the Exponential Time
Hypothesis (ETH) of Impagliazzo et al. [22]. However, Graph Homomorphism is a very
general problem, hence researchers try to uncover a more fine-grained picture and identify
families of graphs H such that the problem can be solved more efficiently whenever H ∈ H.
For example, Fomin, Heggernes and Kratsch [13] showed that when H is of treewidth at
most t, then Graph Homomorphism can be solved in time O?((t + 3)n). It was later
extended to graphs of cliquewidth bounded by t, with O?((2t+ 1)max{n,h}) time bound by
Wahlström [35]. On the other hand, H needs not be sparse to admit efficient homomorphism
testing: the family of cliques admits the O?(2n) running time as shown by Björklund et
al. [2]. As noted above, this generalizes to Kneser graphs KGa,b, by the O?((b+ 1)n)-time
algorithm of Nederlof. In this context, the natural question is whether the appearance of b
in the base of the exponent is necessary, or is there an algorithm running in time O?(cn) for
some universal constant c independent of b.

Our contribution. We show that the algorithms for (a:b)-coloring mentioned above are
essentially optimal under the Exponential Time Hypothesis. Specifically, we prove the
following results:

1 The O?(·) notation hides factors polynomial in the input size.
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I Theorem 1. If there is an algorithm for (a:b)-coloring that runs in time f(b) · 2o(log b)·n,
for some computable function f(b), then ETH fails. This holds even if the algorithm is only
required to work on instances where a = Θ(b2 log b).

I Corollary 2. If there is an algorithm for Graph Homomorphism that runs in time f(h) ·
2o(log logh)·n, for some computable f(h), then ETH fails. This holds even if the algorithm is
only required to work on instances where H is a Kneser graph KGa,b with a = Θ(b2 log b).

The bound for (a:b)-coloring is tight, as the straightforward O?(2n ·(b+1)n) = 2O(log b)·n

dynamic programming algorithm already shows. At first glance, one might have suspected
that (a:b)-coloring, as an interpolation between classical coloring and fractional coloring,
both solvable in 2O(n) time [16], should be just as easy; Theorem 1 refutes this suspicion.

Corollary 2 in particular excludes any algorithm for testing homomorphisms into Kneser
graphs with running time 2O(n+h). It cannot give a tight lower bound matching the result of
Cygan et al. [9] for general homomorphisms, because h = |V (KGa,b)| =

(
a
b

)
is not polynomial

in b. On the other hand, it exhibits the first explicit family of graphs H for which the
complexity of Graph Homomorphism increases with h.

In our proof, we first show a lower bound for the list variant of the problem, where every
vertex is given a list of colors that can be assigned to it (see Section 2 for formal definitions).
The list version is reduced to the standard version by introducing a large Kneser graph
KGa+b,b; we need a and b to be really small so that the size of this Kneser graph does not
dwarf the size of the rest of the construction. However, this is not necessary for the list
version, where we obtain lower bounds for a much wider range of functions b(n).

I Theorem 3. If there is an algorithm for List (a:b)-coloring that runs in time 2o(log b)·n,
then ETH fails. This holds even if the algorithm is only required to work on instances
where a = Θ(b2 log b) and b = Θ(b(n)) for an arbitrarily chosen polynomial-time computable
function b(n) such that b(n) ∈ ω(1) and b(n) = O(n/ logn).

The crucial ingredient in the proof of Theorem 3 is the usage of d-detecting matrices
introduced by Lindström [27]. We choose to work with their combinatorial formulation,
hence we shall talk about d-detecting families. Suppose we are given some universe U and
there is an unknown function f : U → {0, 1, . . . , d− 1}, for some fixed positive integer d. One
may think of U as consisting of coins of unknown weights that are integers between 0 and
d−1. We would like to learn f (the weight of every coin) by asking a small number of queries
of the following form: for a subset X ⊆ U , what is

∑
e∈X f(e) (the total weight of coins in

X)? A set of queries sufficient for determining all the values of an arbitrary f is called a
d-detecting family. Of course f can be learned by asking |U | questions about single coins,
but it turns out that significantly fewer questions are needed: there is a d-detecting family of
size O(|U |/ log |U |), for every fixed d [27]. The logarithmic factor in the denominator will be
crucial for deriving our lower bound.

Let us now sketch how d-detecting families are used in the proof of Theorem 3. Given
an instance ϕ of 3-SAT with n variables and O(n) clauses, and a number b ≤ n/ logn,
we will construct an instance G of List (a:b)-coloring for some a. This instance will
have a positive answer if and only if ϕ is satisfiable, and the constructed graph G will have
O(n/ log b) vertices. It can be easily seen that this will yield the promised lower bound.

Partition the clause set C of ϕ into groups C1, C2, . . . , Cp, each of size roughly b; thus
p = O(n/b). Similarly, partition the variable set V of ϕ into groups V1, . . . , Vq, each of size
roughly log2 b; thus q = O(n/ log b). In the output instance we create one vertex per each
variable group—hence we have O(n/ log b) such vertices—and one block of vertices per each
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clause group, whose size will be determined in a moment. Our construction ensures that the
set of colors assigned to a vertex created for a variable group misses one color from some
subset of b colors. The choice of the missing color corresponds to one of 2log2 b = b possible
boolean assignments to the variables of the group.

Take any vertex u from a block of vertices created for some clause group Cj . We make
it adjacent to vertices constructed for precisely those variable groups Vi, for which there is
some variable in Vi that occurs in some clause of Cj . This way, u can only take a subset
of the above missing colors corresponding to the chosen assignment on variables relevant
to Cj . By carefully selecting the list of u, and some additional technical gadgeteering, we
can express a constraint of the following form: the total number of satisfied literals in some
subset of clauses of Cj is exactly some number. Thus, we could verify that every clause of Cj
is satisfied by creating a block of |Cj | vertices, each checking one clause. However, the whole
graph output by the reduction would then have O(n) vertices, and we would not obtain any
non-trivial lower bound. Instead, we create one vertex per each question in a d-detecting
family on the universe U = Cj , which has size O(|Cj |/ log |Cj |) = O(|Cj |/ log b). Then, the
total number of vertices in the constructed graph will be O(n/ log b), as intended.

Finally, we observe that from our main result one can infer a lower bound for the
complexity of the (r, k)-Monomial Testing problem. Recall that in this problem we are
given an arithmetic circuit that evaluates a homogenous polynomial P (x1, x2, . . . , xn) over
some field F; here, a polynomial is homogenous if all its monomials have the same total
degree k. The task is to verify whether P has some monomial in which every variable
has individual degree not larger than r, for a given parameter r. Abasi et al. [1] gave a
randomized algorithm solving this problem in time O?(2O(k· log r

r )), where k is the degree of
the polynomial, assuming that F = GF(p) for a prime p ≤ 2r2 + 2r. This algorithm was
later derandomized by Gabizon et al. [14] within the same running time, but under the
assumption that the circuit is non-cancelling: it has only input, addition, and multiplication
gates. Abasi et al. [1] and Gabizon et al. [14] gave a number of applications of low-degree
monomial detection to concrete problems. For instance, r-Simple k-Path, the problem of
finding a walk of length k that visits every vertex at most r times, can be solved in time
O?(2O(k· log r

r )). However, for r-Simple k-Path, as well as other problems that can be tackled
using this technique, the best known lower bounds under ETH exclude only algorithms with
running time O?(2o( k

r )). Whether the log r factor in the exponent is necessary was left open
by Abasi et al. and Gabizon et al.

We observe that the List (a:b)-coloring problem can be reduced to (r, k)-Monomial
Testing over the field GF(2) in such a way that an O?(2k·o(

log r
r ))-time algorithm for the latter

would imply a 2o(log b)·n-time algorithm for the former, which would contradict ETH. Thus,
we show that the known algorithms for (r, k)-Monomial Testing most probably cannot
be sped up in general; nevertheless, the question of lower bounds for specific applications
remains open. However, going through List (a:b)-coloring to establish a lower bound for
(r, k)-Monomial Testing is actually quite a detour, because the latter problem has a much
larger expressive power. Therefore, we also give a more straightforward reduction that starts
from a convenient form of Subset Sum; this reduction also proves the lower bound for a
wider range of r, expressed as a function of k.

Outline. In Section 2 we set up the notation as well as recall definitions and well-known
facts. We also discuss d-detecting families, the main combinatorial tool used in our reduction.
In Section 3 we prove the lower bound for the list version of the problem, i.e., Theorem 3, and
sketch the few steps needed for the standard version, thereby proving Theorem 1. Section 4 is
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devoted to deriving lower bounds for low-degree monomial testing. Due to space constraints,
proofs of statements marked with (♠) are deferred to the full version [3] of this paper.

2 Preliminaries

Notation. We use standard graph notation, see e.g. [10, 11]. All graphs we consider in this
paper are simple and undirected. For an integer k, we denote [k] = {0, . . . , k − 1}. By ]
we denote the disjoint union, i.e., by A ]B we mean A ∪B with the indication that A and
B are disjoint. If I and J are instances of decision problems P and R, respectively, then
we say that I and J are equivalent if either both I and J are YES-instances, or both are
NO-instances of the respective problems.

Exponential-Time Hypothesis. The Exponential Time Hypothesis (ETH) of Impagliazzo
et al. [22] states that there exists a constant c > 0, such that there is no algorithm solving
3-SAT in time O?(2cn). During the recent years, ETH became the central conjecture used
for proving tight bounds on the complexity of various problems. One of the most important
results connected to ETH is the Sparsification Lemma [23], which essentially gives a reduction
from an arbitrary instance of k-SAT to an instance where the number of clauses is linear in
the number of variables. The following well-known corollary can be derived by combining
ETH with the Sparsification Lemma.

I Theorem 4 (see e.g. Theorem 14.4 in [10]). Unless ETH fails, there is no algorithm for
3-SAT that runs in time 2o(n+m), on formulas with n variables and m clauses.

We need the following regularization result of Tovey [34]. Following Tovey, by (3,4)-SAT
we call the variant of 3-SAT where each clause of the input formula contains exactly 3
different variables, and each variable occurs in at most 4 clauses.

I Lemma 5 ([34]). Given a 3-SAT formula ϕ with n variables and m clauses one can
transform it in polynomial time into an equivalent (3,4)-SAT instance ϕ′ with O(n + m)
variables and clauses.

I Corollary 6. Unless ETH fails, there is no algorithm for (3,4)-SAT that runs in time
2o(n), where n denotes the number of variables of the input formula.

List and nonuniform list (a:b)-coloring. For integers a, b and a graph G with a function
L : V (G) → 2[a] (assigning a list of colors to every vertex), an L-(a:b)-coloring of G is an
assignment of exactly b colors from L(v) to each vertex v ∈ V (G), such that adjacent vertices
get disjoint color sets. The List (a:b)-coloring problem asks, given (G,L), whether an
L-(a:b)-coloring of G exists.

As an intermediary step of our reduction, we use the following generalization of list
colorings where the number of demanded colors varies with every vertex. For integers a, b,
a graph G with a function L : V (G) → 2[a] and a demand function β : V (G) → {1, . . . , b},
an L-(a:β)-coloring of G is an assignment of exactly β(v) colors from L(v) to each vertex
v ∈ V (G), such that adjacent vertices get disjoint color sets. Nonuniform List (a:b)-
coloring is then the problem in which given (G,L, β) we ask if an L-(a:β)-coloring of G
exists.

d-detecting families. In our reductions the following notion plays a crucial role.
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I Definition 7. A d-detecting family for a finite set U is a family F ⊆ 2U of subsets of U
such that for every two functions f, g : U → {0, . . . , d − 1}, f 6= g, there is a set S in the
family such that

∑
x∈S f(x) 6=

∑
x∈S g(x).

A deterministic construction of sublinear, d-detecting families was given by Lindström [27],
together with a proof that even the constant factor 2 in the family size cannot be improved.

I Theorem 8 ([27]). For every constant d ∈ N and finite set U , there is a d-detecting family
F on U of size 2|U |

logd |U |
· (1 + o(1)). Furthermore, F can be constructed in poly(|U |) time.

Other constructions, generalizations, and discussion of similar results can be found in
Grebinski and Kucherov [15], and in Bshouty [4]. Note that the expression

∑
x∈S f(x) is just

the product of f as a vector in [d]|U | with the characteristic vector of S. Hence, instead of
subset families, Lindström speaks of detecting vectors, while later works see them as detecting
matrices, that is, (0, 1)-matrices with these vectors as rows (which define an injection on
[d]|U | despite having few rows). Similar definitions appear in the study of query complexity,
e.g., as in the popular Mastermind game [7].

3 Hardness of List (a:b)-coloring

In this section we show our main technical contribution: an ETH-based lower bound for
List (a:b)-coloring. We begin with key part: reducing an n-variable instance 3-SAT to
an instance of Nonuniform List (a:b)-coloring with only O( n

log b ) vertices. Next, it is
rather easy to reduce Nonuniform List (a:b)-coloring to List (a:b)-coloring.

3.1 The nonuniform case
We prove the following theorem through the remaining part of this section.

I Theorem 9. For any instance φ of (3,4)-SAT with n variables and any integer 2 ≤ b ≤
n/ log2 n, there is an equivalent instance (G, β, L) of Nonuniform List (a:2b)-coloring
such that a = O(b2 log b), |V (G)| = O( n

log b ) and G is 3-colorable. Moreover, the instance
(G, β, L) and the 3-coloring of G can be constructed in poly(n) time.

Consider an instance φ of 3-SAT where each variable appears in at most four clauses.
Let V be the set of its variables and C be the set of its clauses. Note that 1

3 |V | ≤ |C| ≤
4
3 |V |.

Let a = 12b2 · blog2 bc. We shall construct, for some integers nV = O(|V |/ log b) and
nC = O(|C|/b):

a partition V = V1 ] . . . ] VnV
of variables into groups of size at most blog2 bc,

a partition C = C1 ] . . . ] CnC
of clauses into groups of size at most b,

a function σ : {1, . . . , nV } → [12 · b · blog2 bc],
such that the following condition holds:

For any j = 1, . . . , nC , the variables occurring in clauses of Cj are all different
and they all belong to pairwise different variable groups. Moreover, the indices
of these groups are mapped to pairwise different values by σ.

(z)

In other words, any two literals of clauses in Cj have different variables, and if they belong
to Vi and Vi′ respectively, then σ(i) 6= σ(i′).

I Lemma 10 (♠). Partitions V = V1 ] . . . ] VnV
, C = C1 ] . . . ] CnC

and a function σ

satisfying (z) can be found in time O(n).
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V1

blog2 bc variables
V2 V3 . . . VnV

C1 b clauses

. . . . . .
CnC

. . .

v1 v2 v3 . . .
vnV

u1,1 u1,2
. . .

u1,2nF

w1

. . .
unC ,1 unC ,2

. . .
unC ,2nF

wnC

Figure 2 (left) The groups of variables and clauses of the formula; literals in C1 are joined with
their variables. Since no variable of V2 occurs in C1, we have 2 6∈ I1 – this may allow us to make σ(2)
the same number as σ(3), say, reducing the total number a of colors needed. (right) The constructed
graph; thick lines represent edges to all vertices corresponding to C1.

For every 1 ≤ i ≤ nV , the set Vi of variables admits 2|Vi| ≤ b different assignments. We
will therefore say that each assignment on Vi is given by an integer x ∈ [b], for example by
interpreting the first |Vi| bits of the binary representation of x as truth values for variables
in Vi. Note that when |Vi| < log2 b, different integers from [b] may give the same assignment
on Vi.

For 1 ≤ j ≤ nC , let Ij ⊆ {1, . . . , nV } be the set of indices of variable groups that contain
some variable occurring in the clauses of Cj . Since every clause contains exactly three literals,
property (z) means that |Ij | = 3|Cj | and that σ is injective over each Ij . See Fig. 2.

For 1 ≤ j ≤ nC , let {Cj,1, . . . , Cj,nF } be a 4-detecting family of subsets of Cj , for some
nF = O( b

log b ) (we can assume nF does not depend on j by adding arbitrary sets when
|Cj | < b). For every 1 ≤ k ≤ nF , let Cj,nF +k = Cj \ Cj,k.

We are now ready to build the graph G, the demand function β : V (G) → {1, . . . , 2b},
and the list assignment L as follows.

1. For 1 ≤ i ≤ nV , create a vertex vi with β(vi) = b− 1 and L(vi) = {b · σ(i) + x | x ∈ [b]}.
2. For 1 ≤ j ≤ nC and 1 ≤ k ≤ 2nF , create a vertex uj,k adjacent to each vi for i ∈ Ij .

Let β(uj,k) = |Cj,k| and

L(uj,k) = {b·σ(i) + x | 1 ≤ i ≤ nV , x ∈ [2|Vi|] such that
x gives an assignment of Vi that satisfies some clause of Cj,k}.

3. For 1 ≤ j ≤ nC , create a vertex wj , adjacent to each vi for i ∈ Ij and to each uj,k
(1 ≤ k ≤ 2nF ). Let β(wj) = 2|Cj | and L(wj) =

⋃
i∈Ij
{b · σ(i) + x | x ∈ [b]}.

Before giving a detailed proof of the correctness, let us describe the reduction in intuitive
terms. Note that vertices of type vi get all but one color from their list; this missing color, say
b · σ(i) + xi, for some xi ∈ [b], defines an assignment on Vi. For every j = 1, . . . , nC the goal
of the gadget consisting of wj and vertices uj,k is to express the constraint that every clause
in Cj has a literal satisfied by this assignment. Since wj , uj,k are adjacent to all vertices in
{vi | i ∈ Ij}, they may only use the missing colors (of the form b · σ(i) + xi, where i ∈ Ij).
Since |Ij | = 3|Cj |, there are 3|Cj | such colors and 2|Cj | of them go to wj . This leaves exactly
|Cj | colors for vertices of type uj,k, corresponding to a choice of |Cj | satisfied literals from
the 3|Cj | literals in clauses of Cj . The lists and demands for vertices uj,k guarantee that
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exactly |Cj,k| chosen satisfied literals occur in clauses of Cj,k. The properties of 4-detecting
families will ensure that every clause has exactly one chosen, satisfied literal, and hence at
least one satisfied literal. We proceed with formal proofs.

I Lemma 11. If φ is satisfiable then G is L-(a:β)-colorable.

Proof. Consider a satisfying assignment η for φ. For 1 ≤ i ≤ nV , let xi ∈ [2|Vi|] be an
integer giving the same assignment on Vi as η. For every clause c of φ, choose one literal
satisfied by η in it, and let ic be index of the group Vic containing the literal’s variable.
Let α : V (G) →

( [a]
≤2b
)
be the L-(a:β)-coloring of G defined as follows, for 1 ≤ i ≤ nV ,

1 ≤ j ≤ nC , 1 ≤ k ≤ 2nF :
α(vi) = L(vi) \ {b · σ(i) + xi}
α(uj,k) = {b · σ(ic) + xic | c ∈ Cj,k}
α(wj) = {b · σ(i) + xi | i ∈ Ij \ {ic | c ∈ Cj}}.

Let us first check that every vertex v gets colors from its list L(v) only. This is immediate
for vertices vi and wj , while for uj,k it follows from the fact that xic gives a partial assignment
to Vi that satisfies some clause of Cj,k.

Now let us check that for every vertex v, the coloring α assigns exactly β(v) colors to v. For
α(vi) this follows from the fact that |L(vi)| = b and 0 ≤ xi < 2|Vi| ≤ b. Since by property (z),
σ is injective on Ij , and thus on {ic | c ∈ Cj,k} ⊆ Ij , we have |α(uj,k)| = |Cj,k| = b(uj,k).
Similarly, since σ is injective on Ij and |Ij \ {ic | c ∈ Cj}| = 3|Cj | − |Cj | = 2|Cj |, we get
|α(wj)| = 2|Cj | = β(wj).

It remains to argue that the sets assigned to any two adjacent vertices are disjoint. There
are three types of edges in the graph, namely viuj,k, viwj , and wjuj,k. The disjointness of
α(wj) and α(uj,k) is immediate from the definition of α, since Cj,k ⊆ Cj . Fix j = 1, . . . , nC .
Since σ is injective on Ij , for any two different i, i′ ∈ Ij , we have b · σ(i) + xi 6∈ L(vi′). Hence,⋃

i∈Ij

α(vi) = {b · σ(i) + x | i ∈ Ij and x ∈ [b]} \ {b · σ(i) + xi | i ∈ Ij}.

Since α(uj,k), α(wj) ⊆ {b · σ(i) + xi | i ∈ Ij}, it follows that edges of types viuj,k and viwj
received disjoint sets of colors on their endpoints, concluding the proof. J

I Lemma 12. If G is L-(a:β)-colorable then φ is satisfiable.

Proof. Assume that G is L-(a:β)-colorable, and let α be the corresponding coloring.
For 1 ≤ i ≤ nV , we have |L(vi)| = b and |α(vi)| = b− 1, so vi misses exactly one color

from its list. Let b · σ(i) + xi, for some xi ∈ [b], be the missing color. We want to argue that
the assignment x for φ given by xi on each Vi satisfies φ.

Consider any clause group Cj , for 1 ≤ j ≤ nC . Every vertex in {wj}∪{uj,k | 1 ≤ k ≤ 2nF}
contains {vi | i ∈ Ij} in its neighborhood. Therefore, the sets α(uj,k) and α(wj) are disjoint
from

⋃
i∈Ij

α(vi). Since L(uj,k), L(wj) ⊆ {b · σ(i) + x′ | i ∈ Ij , x′ ∈ [b]}, we get that α(uj,k)
and α(wj) are contained in the set of missing colors {b · σ(i) + xi | i ∈ Ij} (corresponding
to the chosen assignment). By property (z), this set has exactly |Ij | = 3|Cj | different
colors. Of these, exactly 2|Cj | are contained in α(wj). Let the remaining |Cj | colors be
{b · σ(i) + xi | i ∈ Jj}, for some subset Jj ⊆ Ij of |Cj | indices.

Since α(uj,k) is disjoint from α(wj), we have α(uj,k) ⊆ {b · σ(i) + xi | i ∈ Jj} for all k.
By definition of Ij , for every i ∈ Jj ⊆ Ij there is a variable in Vi that appears in some clause
of Cj . By property (z), it can only occur in one such clause, so let li be the literal in the
clause of Cj where it appears. For every color b · σ(i) + xi ∈ α(uj,k), by definition of the lists
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for uj,k we know that xi gives a partial assignment to Vi that satisfies some clause of Cj,k.
This means xi makes the literal li true and li occurs in a clause of Cj,k. Therefore, for each
k, at least |α(uj,k)| = |Cj,k| literals from the set {li | i ∈ Jj} occur in clauses of Cj,k and are
made true by the assignment x.

Let f : Cj → {0, 1, 2, 3} be the function assigning to each clause c ∈ Cj the number of
literals of c in {li | i ∈ Jj}. By the above,

∑
c∈Cj,k

f(c) ≥ |Cj,k| for 1 ≤ k ≤ 2nF . Since each
literal in {li | i ∈ Jj} belongs to some clause of Cj , we have

∑
c∈Cj

f(c) = |Jj | = |Cj |. Then,∑
c∈Cj,k

f(c) =
∑
c∈Cj

f(c)−
∑

c∈Cj,nF +k

f(c) ≤ |Cj | − |Cj,nF +k| = |Cj,k|.

Hence
∑
c∈Cj,k

f(c) = |Cj,k| for 1 ≤ k ≤ 2nF . Let g : Cj → {0, 1, 2, 3} be the constant
function g ≡ 1. Note that∑

c∈Cj,k

g(c) = |Cj,k| =
∑
c∈Cj,k

f(c).

Since {Cj,1, . . . , Cj,nF } is a 4-detecting family, this implies that f ≡ 1. Thus, for every clause
c of Cj we have f(c) = 1, meaning that there is a literal from the set {li | i ∈ Jj} in this
clause. All these literals are made positive by the assignment η, therefore all clauses of Cj
are satisfied. Since j = 1, . . . , nC was arbitrary, this concludes the proof that η is a satisfying
assignment for φ. J

The construction can clearly be made in polynomial time and the total number of vertices
is nV + nC · O( b

log b ) + nC = O( n
log b ). Moreover, we get a proper 3-coloring of G, by coloring

vertices of the type vi by color 1, vertices of the type uj,k by color 2, and vertices of the type
wj by color 3. By Lemmas 11 and 12, this concludes the proof of Theorem 9.

3.2 The uniform case
In this section we reduce the nonuniform case to the uniform one, and state the resulting
lower bound on the complexity of List (a:b)-coloring.

I Lemma 13. For any instance I = (G, β, L) of Nonuniform List (a:b)-coloring
where the graph G is t-colorable, there is an equivalent instance (G,L′) of List ((a+ tb):b)-
coloring. Moreover, given a t-coloring of G the instance (G,L′) can be constructed in time
polynomial in |I|+ b.

Proof. Let c : V (G) → [t] be a t-coloring of G. For every vertex v, define a set of filling
colors F (v) = {a+ c(v)b+ i : i = 0, . . . , b− |β(v)| − 1} and put L′(v) = L(v) ∪ F (v).

Let α : V (G)→ 2[a] be an L-(a:β)-coloring of G. We define a coloring α′ : V (G)→ 2[a+tb]

by setting α′(v) = α(v) ∪ F (v) for every vertex v ∈ V (G). Observe that α′(v) ⊆ L′(v) and
|α′(v)| = |α(v)|+ (b− |β(v)|) = b. Since α was a proper L-(a:β)-coloring, adjacent vertices
can only share the filling colors. However, the lists of adjacent vertices have disjoint subsets
of filling colors, since these vertices are colored differently by c. It follows that α′ is an
L′-(a:b)-coloring of G.

Conversely, let α′ : V (G)→ 2[a+tb] be an L′-(a:b)-coloring of G. For every vertex v, we
have |α′(v) ∩ [a]| = b − |α′(v) ∩ F (v)| ≥ b − (b − |β(v)|) = |β(v)|. Define α(v) to be any
cardinality β(v) subset of α′(v) ∩ [a]. It is immediate that α is an L-(a:β)-coloring of G. J

We are now ready to prove one of our main results.
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I Theorem 3. If there is an algorithm for List (a:b)-coloring that runs in time 2o(log b)·n,
then ETH fails. This holds even if the algorithm is only required to work on instances
where a = Θ(b2 log b) and b = Θ(b(n)) for an arbitrarily chosen polynomial-time computable
function b(n) such that b(n) ∈ ω(1) and b(n) = O(n/ logn).

Proof. Let b(n) be a function as in the statement. We can assume w.l.o.g. that 2 ≤ b(n) ≤
n/ log2 n (otherwise, replace b(n) with b′(n) = 2 + bb(n)/cc in the reasoning below, for c a big
enough constant; clearly b′(n) = Θ(b(n))). Fix a function f(b) = o(log b) and assume there
is an algorithm A for List (a:b)-coloring that runs in time 2f(b)·n, whenever b = Θ(b(n)).
Consider an instance of (3,4)-SAT with n variables. Let b = b(n). By Theorem 9 in poly(n)
time we get an equivalent instance (G, β, L) of Nonuniform List (a:(2b))-coloring
such that a = Θ(b2 log b), |V (G)| = O( n

log b ), and a 3-coloring of G. Next, by Lemma 13
in poly(n) time we get an equivalent instance (G,L′) of List ((a + 6b):(2b))-coloring.
Finally, we solve the instance (G,L′) using algorithm A. Since b(n) = ω(1), we have
f(b(n)) = o(log(b(n))), and A runs in time 2o(log b(n))·|V (G)|. Thus, we solved (3,4)-SAT in
time 2o(log b(n))·|V (G)| = 2o(log b(n))· n

log b(n) = 2o(n). By Corollary 6, this contradicts ETH. J

Finally, we reduce List (a:b)-coloring to (a:b)-coloring. This is done by increasing
the number of colors by b, adding a Kneser graph KGa+b,b (which can be colored essentially
only by assigning each b-set of colors to its corresponding vertex), and replacing the lists by
edges to appropriate vertices of the Kneser graph.

I Lemma 14 (♠). Given an instance of List (a:b)-coloring with n vertices, an equivalent
instance of (a+ b : b)-coloring with n+

(
a+b
b

)
vertices can be computed in poly(n,

(
a+b
b

)
)-

time.

For b ∈ o( logn
log logn ), a = O(b2 log b), we show that

(
a+b
b

)
= o(n), allowing us to compose

our reductions with Lemma 14. An analysis similar to the one in Theorem 3 then concludes
the proof of Theorem 1 and Corollary 2; we refer to the full version [3] for details.

4 Low-degree testing

In this section we derive lower bounds for (r, k)-Monomial Testing. In this problem, we
are given an arithmetic circuit C over some field F (with input, constant, addition, and
multiplication gates). One gate is designated to be the output gate, and it computes some
polynomial P of the variables x1, x2, . . . , xn that appear in the input gates. We assume that
P is a homogenous polynomial of degree k, i.e., all its monomials have total degree k. The
task is to verify whether P contains an r-monomial, i.e., a monomial in which every variable
has its individual degree bounded by r, for a given r ≤ k. Abasi et al. [1] gave a very fast
randomized algorithm for (r, k)-Monomial Testing.

I Theorem 15 (Abasi et al. [1]). Fix integers r, k with 2 ≤ r ≤ k. Let p ≤ 2r2 + 2r be a
prime, and let g ∈ GF(p)[x1, . . . , xn] be a homogenous polynomial of degree k, computable by
a circuit C. There is a randomized algorithm running in time O(r2k/r|C|(rn)O(1)) which:

with probability at least 1/2 answers YES when g contains an r-monomial,
always answers NO when g contains no r-monomial.

This result was later derandomized by Gabizon et al. [14] under the assumption that
the circuit is non-cancelling, that is, it contains only input, addition, and multiplication
gates. Many concrete problems like r-Simple k-Path can be reduced to (r, k)-Monomial
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Testing by encoding the set of candidate objects as monomials of some large polynomial,
so that “good” objects correspond to monomials with low individual degrees.

As we show in the full version [3] of this paper, this is also the case for List (a:b)-
coloring. Namely, for an instance (G,L) of List (a:b)-coloring we can construct a
homogeneous polynomial pG of degree k = 2bn with n(a+1) variables, together with a circuit
of size 2n poly(a, n) evaluating it, such that G admits a list (a:b)-coloring iff pG contains a
b-monomial. Using Theorem 15 with r = b, we get yet another polynomial-space algorithm
for List (a:b)-coloring, running in time O(bO(n) poly(n)). Similarly, if the running time in
Theorem 15 was improved to 2o(log r/r)·k · |C| poly(r, n), then we would get an algorithm for
List (a:b)-coloring in time O(2o(log b)n poly(n)), which contradicts ETH by Theorem 3.
However, a careful examination shows that this chain of reductions would only yield instances
of (r, k)-Monomial Testing with r = O(

√
k/ log k). Hence, this does not exclude the

existence of a fast algorithm that works only for large r. Below we show a more direct
reduction, which excludes fast algorithms for a wider spectrum of pairs (r, k).

In the Carry-Less Subset Sum problem, we are given n+ 1 numbers s, a1, . . . , an, each
represented as n decimal digits. For any number x, the j-th decimal digit of x is denoted by
x(j). It is assumed that

∑n
i=1 a

(j)
i < 10, for every j = 1, . . . , n. The goal is to verify whether

there is a sequence of indices 1 ≤ i1 < . . . < ik ≤ n such that
∑k
q=1 aiq = s. Note that by the

small sum assumption, this is equivalent to the statement that
∑k
q=1 a

(j)
iq

= s(j), for every
j = 1, . . . , n. The standard NP-hardness reduction from 3-SAT to Subset Sum (see e.g. [8])
in fact gives instances of Carry-Less Subset Sum of linear size, yielding the following.

I Lemma 16 (♠). Unless ETH fails, the Carry-Less Subset Sum problem cannot be
solved in 2o(n) time.

We proceed with a sketch of the reduction from Carry-Less Subset Sum to (r, k)-
Monomial Testing; details can be found in the full version [3] of this paper. Let us
choose a parameter t ∈ {1, . . . , n}. Assume w.l.o.g. that t divides n (otherwise, add zeroes at
the end of every input number). Let q = n/t. For an n-digit decimal number x, for every
j = 1, . . . t, let x[j] denote the q-digit number given by the j-th block of q digits in x, i.e.,
x[j] = (x(jq−1) · · ·x((j−1)q))10.

Let r = 10q − 1. Define the following polynomial over GF(2):

qS =
n∏
i=1

yi + zi ·
t∏

j=1
x
a

[j]
i
j

 · t∏
j=1

xr−s
[j]

j =
∑

S⊆{1,...,n}

t∏
j=1

x

∑
i∈S

a
[j]
i

+r−s[j]

j

∏
i 6∈S

yi
∏
i∈S

zi.

Let pS denote the polynomial obtained from qS by filtering out all the monomials of
degree different than k = tr + n. The first expression defining qS gives a circuit of size
O(nt), and thus with a standard construction, we show pS can be evaluated by a circuit of
size O(nt2r + n2t). It is relatively easy to see that by construction, (s, a1, . . . , an) is a YES-
instance of Carry-Less Subset Sum iff qS contains the monomial

∏t
j=1 x

r
j

∏
i 6∈S yi

∏
i∈S zi,

for some S ⊆ {1, . . . , n} (the variables yi and zi guaranteeing that no pair of monomials
cancels out). This in turn holds iff pS contains an r-monomial (with exactly n variables yi
and zi, and hence degree exactly r for each xi variable).

With this reduction, we obtain our main lower bound for (r, k)-Monomial Testing.
We state it in the most general, but technical form, and derive an exemplary corollary below.

I Theorem 17 (♠). If there is an algorithm solving (r, k)-Monomial Testing in time
2o(k log r/r)|C|O(1), then ETH fails. The statement remains true even if the algorithm works
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only for instances where r = 2Θ(n/t(n)) and k = t(n)2Θ(n/t(n)), for an arbitrarily chosen
function t : N→ N computable in 2o(n) time, such that t(n) = ω(1) and t(n) ≤ n for every n.

I Theorem 18 (♠). Let σ ∈ [0, 1). Then, unless ETH fails, there is no algorithm for
(r, k)-Monomial Testing that solves instances with r = Θ(kσ) in time 2o(k·

log r
r ) · |C|O(1).

In particular, no algorithm solves (r, k)-Monomial Testing in time 2o(
log r

r )·k · |C|O(1)

for all input values r, unless ETH fails.
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Abstract
Robust network design concerns the design of networks to support uncertain or varying traffic
patterns. An especially important case is the VPN problem, where the total traffic emanating
from any node is bounded, but there are no further constraints on the traffic pattern. Recently,
Fréchette et al. [10] studied a generalization of the VPN problem where in addition to these so-
called hose constraints, there are individual upper bounds on the demands between pairs of nodes.
They motivate their model, give some theoretical results, and propose a heuristic algorithm that
performs well on real-world instances.

Our theoretical understanding of this model is limited; it is APX-hard in general, but tractable
when either the hose constraints or the individual demand bounds are redundant. In this work,
we uncover further tractable cases of this model; our main result concerns the case where each
terminal needs to communicate only with two others. Our algorithms all involve optimally
embedding a certain auxiliary graph into the network, and have a connection to a heuristic
suggested by Fréchette et al. for the capped hose model in general.
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1 Introduction

Robust network design (RND) [2] is concerned with designing networks that can efficiently
handle uncertain or varying utilization. The motivation comes primarily (though not
exclusively) from communication networks. Let G = (V,E), be a graph with edge costs
that describes an existing, high-capacity network. A set of terminals W ⊆ V is required to
communicate over the network, and to enable this, we must reserve capacity on the edges
of G for our exclusive use (this is in order to guarantee reliable performance). On each
edge, we may buy multiple units of capacity (measured, say, in Mb/s); the cost of the edge
represents the per-unit cost of capacity. In the RND framework, demand uncertainty is
described by a demand universe U . It is simply a set containing all of the demands that need
to be routed; the choice of this set will be determined by operational needs or historical data.
More precisely, each D ∈ U is a matrix where entry Dij describes the demand (measured
again, say, in Mb/s) from terminal i to terminal j. It turns out that the universe can always
be taken to be a convex set, and will frequently be a polytope.
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We will consider only single-path, oblivious routing (other routing schemes are possible,
but less relevant to practice). This means that a solution to the RND problem must specify,
for each pair of terminals i, j ∈W , a path Pij that will be used to route the demand between
this pair. This path must be fixed ahead of time, and cannot be adjusted as a function of the
current demand. Once all these paths have been fixed, a capacity reservation must be made
on the network. For any edge e ∈ E, the capacity u(e) must be chosen so that no matter
which demand matrix D ∈ U is instantiated, the total amount of traffic traversing e does not
exceed u(e).

The most studied case of universe is the hose model [5, 8]. Here, each terminal i ∈W has
an associated marginal bi, and the universe H(b) consists of all demand matrices D for which∑

j∈W Dij ≤ bi for all i, and Dij = Dji
1. The optimization problem for the hose model is

called the VPN problem, and it was shown by Goyal et al. [11] to be polynomially solvable.
While the hose model is particularly appealing, especially given its exact solvability,

it is very natural to consider generalizations with more expressive modelling power. A
number of such generalizations have been considered in the literature [7, 17, 10, 9]. One such
generalization, the capped hose model was introduced by Fréchette, Shepherd, Thottan and
Winzer [10]. It is very natural: in addition to the hose constraints bi for each i ∈W , there is
an upper bound dij on the demand between a given pair i, j ∈W . This leads to the capped
hose polytope Hcap(b,d). If dij =∞ for all pairs i, j ∈W , then this recovers the hose model;
and if bi = ∞ for all i ∈ W , then this recovers the pipe model, the somewhat trivial case
where the problem is to route a single fixed demand matrix. We refer to Fréchette et al. [10]
for further discussion and motivation.

As Fréchette et al. [10] observed, the problem of finding the cheapest solution in the
capped hose model generalizes Steiner tree, and hence is APX-hard. Simply consider, for an
arbitrarily chosen root r ∈W , the choice bi = 1 for all i ∈W , and dir = dri = 1 for all i ∈W ,
dij = 0 otherwise. Beyond this, the complexity and approximability of this problem is poorly
understood. In particular, it is open as to whether there is a constant factor approximation
algorithm. (The general robust network design problem is hard to approximate within polylog
factors [17], but this construction does not apply to this restricted setting.) Moreover, the
RND problem under Hcap(b,d) is polynomially solvable for some choices of b and d, for
example when d is sufficiently large (recovering the hose model), or b is sufficiently large
(recovering the pipe model). Our goal in this work is to expand the class of exactly solvable
cases.

We focus on the setting where bi = 1 for all i ∈ W and dij ∈ {0,∞} (or equivalently,
dij ∈ {0, 1}) for all i, j ∈W , which we call the masked hose model. Instead of parametrizing
an instance with d and b, we can describe it via the mask graph H, which has vertex set W
and an edge between each pair of terminals which may communicate. In other words, the
universe is the set of all fractional matchings in H. The resulting masked VPN problem is a
clean generalization of the standard VPN problem (the case where H is the complete graph),
and is already very rich from a theoretical standpoint. Again, it is not known if a constant
approximation factor is possible for arbitrary mask graphs, and the case where H is a star is
APX-hard. It is harmless to restrict to connected mask graphs, since otherwise the problem
can be solved separately on each connected component, and the resulting solutions overlaid
in G.

1 This is the symmetric hose model; an asymmetric variant which does not require Dij = Dji is also
possible, and different [14, 6, 13].
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H Ĥ Embedding into G

Figure 1 The embedding algorithm for H a cycle; in this example, G is a grid.

Our main result is the following

I Theorem 1. The masked VPN problem is polynomially solvable if H is a cycle.

The algorithm is based on embedding an appropriate auxiliary graph (see Figure 1). Let Ĥ
denote the graph obtained by replacing each terminal i by a new node î, and then adding
back the terminal i along with the edge {i, î}. We give each edge e of Ĥ a capacity of 1. An
embedding of Ĥ into G is simply a mapping φ satisfying the following. Each node of Ĥ is
mapped to a node of G, with φ(i) = i for all i ∈ W ; and each edge {u, v} ∈ E(Ĥ) maps
to a path in G between φ(u) and φ(v). Any embedding implies a path in G between any
adjacent pair of adjacent terminals {i, j} ∈ E(H); simply the image under the embedding of
the path (i, î, ĵ, j). After assigning a capacity reservation u(e) = |{f ∈ E(Ĥ) : e ∈ φ(f)}|, it
is easy to see that this yields a feasible solution to the masked VPN problem for H. Our
algorithm simply finds the cheapest possible embedding of Ĥ into G; this can easily be done
by dynamic programming. We show that this is optimal; an overview of the proof strategy
can be found in Section 3.1

The cycle may seem like a very specific and restricted case. But understanding cycles has
historically been an important stepping stone in the area towards more general results. The
VPN Conjecture on the polynomial solvability of the hose model was first solved for the case
where the network is a cycle [15, 12], and ideas from [12] were crucial for the resolution of
the full conjecture.

We also prove the following.

I Theorem 2. The masked VPN problem is exactly solvable if H is a tree with bounded
degree.

Technically, this result is much more straightforward, and we give the proof in Section 4.
It exploits the well-known Dreyfus-Wagner algorithm for Steiner tree on a fixed number of
terminals [4], which corresponds to the case where H is a bounded degree star. We make
heavy use of the dual viewpoint, discussed in Section 2, in order to argue that the solution
can be efficiently decomposed into Steiner tree problems. And while our focus is on exactly
solvable cases, we remark that an O(1)-approximation without any degree bound can readily
be obtained (see Theorem 15 in Section 4).

While this result does not require major technical novelty, it yields an interesting message.
The algorithm can also be interpreted as an embedding algorithm. This time, however, there
are multiple options regarding which graph to embed, and we have to choose the best. Begin
by constructing Ĥ in the same fashion as above, splitting out each terminal. But now we go
further; for each node v ∈ V (Ĥ) with degree 4 or more, consider all possible ways of “blowing
up” v into a tree with only degree 3 nodes (see Figure 2). Each possible way of blowing up

ESA 2017
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H Ĥ H(1) H(2) H(3)

Figure 2 Potential graphs to embed in the case where H is a star.

each node v yields a graph whose embedding yields a solution. The algorithm computes the
cheapest possible embedding from all of these possibilities; by using dynamic programming,
combined with the assumption of bounded degree, this can be done in polynomial time.
Again, this is precisely the idea of the Dreyfus-Wagner algorithm for Steiner tree [4], extended
from H a star to H a tree. We also observe that if H was a path, then Ĥ has maximum
degree 3, and so only Ĥ itself needs to be embedded.

Further, embedding algorithms of this form have been used before in RND, though only
embeddings of trees. For the standard VPN problem, the optimal solution is simply the
optimal embedding of a star with a leaf for each terminal [11]. This is very natural when
one considers that the demand universe for the hose model – fractional matchings on the
complete graph – is nothing more than the set of demands that are routable on such a star.
A generalization of the hose model (different to the one discussed here) defines the universe
to be the set of demands routable on a given capacitated tree (with leaf set equal to W ) [17].
It has been conjectured that the optimal algorithm is given by the optimal embedding of
this tree [18]; it is only known that this yields a constant factor approximation [17].

Partially motivated by this, Fréchette et al. proposed a tree embedding algorithm as
a heuristic for the capped hose model. The tree they embed is chosen carefully, albeit
heuristically, and they show that this performs well in practice. Our work can be seen as
providing an initial theoretical basis for their approach, while suggesting that extending
beyond trees may be beneficial.

2 Problem definition and preliminaries

An instance of the masked VPN (mVPN) problem consists of a graph G = (V,E), with edge
costs c : E → R+ (where R+ denotes the nonnegative reals), a set of terminals W ⊆ V , and
a second graph H which has W as its vertex set.

We use
(

W
2
)
to denote the collection of unordered pairs of distinct terminals. The demand

universe is defined as

Hmask(H) :=
{
D ∈ R(W

2 )
+ :

∑
j

Dij ≤ 1 ∀i and Dij = 0 unless {i, j} ∈ E(H)
}
.

Our goal is to specify a routing template P = {Pij : {i, j} ∈ E(H)}, where Pij is a fixed
(possibly non-simple) i-j-path used for traffic between terminal i and j. (Pij and Pji refer to
the same path.) Given a set of routing paths, we are required to make a capacity reservation
u : E → R, sufficient to route any traffic vector in Hmask(H). The minimum capacity
requirement on edge e is therefore

u(e) = max
D∈Hmask(H)

∑
{i,j}∈(W

2 ):e∈Pij

Dij . (1)

The resulting solution has cost
∑

e c(e)u(e), and this we wish to minimize.
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We will often take a dual viewpoint of (1). This viewpoint has been exploited before,
see [1, 15, 11]. Since (1) is a fractional matching problem, its dual is a fractional vertex cover
problem:

u(e) = min
∑
i∈W

yi(e)

s.t. yi(e) + yj(e) ≥ 1 ∀{i, j} ∈ E(H), e ∈ Pij

yi(e) ≥ 0 .

(2)

So, we may rephrase the problem as follows. Each terminal i buys a capacity vector yi,
with the property that {e ∈ E : yi(e)+yj(e) ≥ 1} contains an i-j-path, for each {i, j} ∈ E(H).
The goal is to minimize the total cost

∑
i c(yi), where c(yi) =

∑
e∈E c(e)yi(e).

Let y denote the vector whose i’th component yi is the capacity vector purchased by
i ∈ W . At this point we note that, since (2) is a fractional vertex cover problem, y can
always assumed to be half-integral. In fact, we will mainly be able to restrict ourselves to
integral capacity vectors. In such a case it is convenient to express the solution as a collection
of edge sets Y = (Yi)i∈W where Yi = {e : yi(e) = 1}.
I Remark. Through this dual viewpoint, a connection can be made with the work of Iglesias
et al. [16]. With a completely different motivation, they consider essentially this problem,
explicitly requiring integrality but also connectivity of the set of edges purchase by each
terminal. Since we show that the optimal solutions satisfy these properties, our results apply
in their setting as well.

3 The cycle case

We consider the case where H is a cycle. Let k denote the number of terminals, and assume
for convenience thatW = {1, 2, . . . , k}, with the ordering corresponding to the cycle structure
of H. We will interpret all references to terminals modulo k; so terminal 0 refers to terminal
k, and terminal k + 1 to terminal 1.

Our main technical theorem shows that there is always an optimal solution to the mVPN
problem that satisfies a simple structure.

I Theorem 3 (Hubbed solution). There exists an optimal solution to the mVPN problem on
cycles such that:

for each terminal i there exists a hub vertex hi; and
the routing path Pi,i+1 is given by concatenating shortest paths from i to hi, from hi to
hi+1, and from hi+1 to i+ 1.

The optimal location of the hub vertices minimizes the cost∑
i∈W

spc(i, hi) + spc(hi, hi+1),

where spc denotes the shortest path distance with respect to the edge costs c. Since H is
a cycle the optimal location of hubs hi+1, . . . , hj−1 are independent of hubs hj+1, . . . , hi−1
given the location of hi and hj , so we can find these hubs in polynomial time with dynamic
programming, yielding Theorem 1.

3.1 Overview
The proof of Theorem 3 involves first showing that there is always an optimal solution of a
certain nice form, albeit not yet of the hubbed form we are looking for. We first argue that
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we may restrict our focus to solutions y that are integral. Next, we show that there is an
integral solution satisfying a certain structure theorem. Roughly speaking, this structure
is similar to the hubbed structure we are looking for, but instead of a single hub hi, there
is an odd-cardinality set Ti; instead of a path between i and hi, we have a ({i} 4 Ti)-join;
and instead of a path between hi and hi+1, we have a (Ti 4 Ti+1)-join. The final step of
the argument is then to show that we can take |Ti| = 1 for each i, which is then precisely a
hubbed solution. This step uses a rather non-obvious “rotation” of the solution to reduce
the cardinality of the Ti’s.

3.2 Integrality
It will be convenient to work with integral solutions. If k is even, so that H is bipartite, then
each fractional matching problem in (2) has an integral optimum. We have to work a bit
harder in the case where k is odd.

I Lemma 4. There exists an integral optimal solution to the cycle mVPN problem.

Proof. Since any strict subgraph of a cycle is bipartite, the only case where (2) does not have
an integral optimal solution, is if it corresponds to a vertex cover problem on the complete
cycle. This only happens if the routing path between every pair of neighbours uses the edge.
So suppose e = {u, v} is used on every routing path in a solution y. We claim the integral
solution Z, given by taking Zi to be the edges of a shortest i-v-path for all terminals i, costs
no more than y.

Let D be a traffic vector with Di,i+1 = 1
2 for all i. Now if we route D according to the

solution y, the flow between i and i+ 1 can be split into half a unit of i-v flow and half a
unit of v-(i+ 1)-flow, since every routing path passes through e, and thus v.

So D induces a unit i-v flow for each i ∈W . So y has sufficient capacity to route 1 unit
of flow from each i ∈W simultaneously. But this costs at least as much as the sum of the
shortest paths from each terminal to v, as required. J

For the remainder of the proof we will therefore assume that each terminal buys a set of
edges. It will be useful to partition these edges into a different collection of sets based on the
routing paths they support.

I Definition 5. A feasible solution X̄ consists of edge sets X̄i and X̄i,i+1 for each i, such
that all edge sets are disjoint and for each i there exists a path Pi,i+1 connecting terminal i
to i+ 1 with

Pi,i+1 ⊆ X̄i ∪ X̄i,i+1 ∪ X̄i+1.

The cost of the solution is
∑

i c(X̄i) +
∑

i c(X̄i,i+1).

One should think of X̄i as the edges on both Pi,i+1 and Pi−1,i and X̄i,i+1 as the remaining
edges on Pi,i+1. Such a solution can be transformed into a feasible solution in original form
by setting Xi = X̄i ∪ X̄i,i+1 for all i. Indeed, the definition does not confer any advantage to
choosing any of the sets X̄i,i+1 to be nonempty. But as we will see in the next section, this
formulation provides a natural way to express the structure of a feasible solution.

3.3 Structure theorem
For the remainder we will assume that G is a complete graph satisfying the triangle inequality.
We may simply replace G with its metric completion to ensure this, and it allows us to
bypass some substantial technical awkwardness.
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I Definition 6. Let T be a collection consisting of an odd cardinality sets Ti ⊆ V \W for
each terminal i. Then a T -solution X̄ consists of a collection of edge sets X̄i and X̄i,i+1 for
each terminal i satisfying:
1. X̄i is a perfect matching on Ti 4 {i},
2. X̄i,i+1 is a perfect matching on Ti 4 Ti+1.
The cost of the solution is

∑
i c(X̄i) +

∑
i c(X̄i,i+1).

It is good to observe that Property 1 and 2 of this definition imply that X̄ is a feasible
solution. The odd degree vertices of X̄i ∪̇ X̄i,i+1 ∪̇ X̄i+1 are precisely

Ti 4 {i} 4 Ti 4 Ti+1 4 Ti+1 4 {i+ 1} = {i, i+ 1},

implying that i and i+ 1 are in the same component.
The restriction in the above definition that Ti ∩W = ∅ is without loss of generality, since

we may always modify any given instance by replacing each terminal i in the instance and
the solution with a new dummy node ī, and then replacing i in the instance at the same
location, attaching the terminal to this dummy node by an edge of zero cost, and including
{i, ī} in X̄i.

The following lemma shows that we do not lose anything if we restrict ourselves to
T -solutions.

I Lemma 7 (Weak Structure Lemma). Any feasible solution X̄ may be transformed into a
T -solution Ȳ of no higher cost for some T satisfying Ti ⊆ V (X̄i) \ {i} for all i ∈W .

Proof. Define:
Ȳ ′i = X̄i ∩ E(Pi−1,i) ∩ E(Pi,i+1), and
Ȳ ′i,i+1 = E(Pi,i+1) \ (X̄i ∪ X̄i+1).

We then obtain Ȳ from Ȳ
′ by shortcutting paths, so that Ȳi is a collection of vertex disjoint

edges for each i ∈W .
Now for each terminal i choose the vertex set Ti such that Ti 4 {i} is the set of vertices

incident to an edge in Ȳi. We claim that Ȳ is a T -solution.
By construction, Ȳi is a perfect matching on Ti 4 {i}. To see that Ȳi,i+1 is a perfect

matching on Ti 4 Ti+1, note that since Ȳ ′i and Ȳ ′i+1 are both contained in the path Pi,i+1,
we may write

Ȳ ′i,i+1 = E(Pi,i+1)4 Ȳi 4 Ȳi+1.

Thus the odd degree nodes of Ȳ ′i,i+1 are precisely

{i, i+ 1} 4 Ti 4 {i} 4 Ti+1 4 {i+ 1} = Ti 4 Ti+1.

As the odd degree nodes in Ȳ ′i,i+1 and Ȳi,i+1 are equal, the result follows. J

I Definition 8. A strong T -solution is a T -solution with the additional properties:
(i) X̄i ∪̇ X̄i,i+1 ∪̇ X̄i+1 consists of a single i-(i+ 1)-path, and
(ii) each edge in X̄i,i+1 is incident to one vertex in Ti and one in Ti+1.

Notice that in a strong T -solution X̄, |Ti| = |Tj | for all i, j ∈W .

I Lemma 9 (Strong Structure Lemma). Any T -solution X̄ can be transformed into a strong
R-solution Ȳ of no higher cost, with Ri ⊆ Ti for all i ∈W .

For the proof of this lemma we will need two auxilliary lemmas.
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I Lemma 10. Let X̄ be a T -solution such that for some i ∈ W , X̄i ∪̇ X̄i,i+1 ∪̇ X̄i+1 does
not satisfy property (i) of Definition 8. Then there exists an R-solution Ȳ of no higher cost,
with Rj ⊆ Tj for all j ∈W , and Ri ( Ti.

Proof. Since i and i+ 1 are the only vertices that do not have degree 2 in X̄i ∪̇ X̄i,i+1 ∪̇ X̄i+1,
the connected component containing i and i+ 1 contains an i-(i+ 1)-path; call it P .

Define Ri = Ti ∩ V (P ), Ri+1 = Ti+1 ∩ V (P ), and Rj = Tj for all other j ∈ W . Note
that Ri ( Ti. We will now construct a R-solution Ȳ as follows. Define Ȳj = X̄j for all
j /∈ {i, i+ 1}, and Ȳj,j+1 = X̄j,j+1 for all j /∈ {i− 1, i, i+ 1}. Now define Ȳi,i+1 = X̄i,i+1 ∩P ,
so it is a perfect matching on Ri 4 Ri+1 with c(Ȳi,i+1) ≤ c(X̄i,i+1). Also let Ȳi = X̄i ∩ P ,
which is a perfect matching on Ri 4 {i}. We have c(Ȳi) = c(X̄i)− c(Q), where Q = X̄i \ P
is a perfect matching on Ti \Ri. To define Ȳi−1,i, first let

Ȳ ′i−1,i = X̄i−1,i 4 (X̄i \ P ).

Notice that the odd degree nodes of Ȳ ′i−1,i are precisely

(Ti−1 4 Ti)4 (Ti \Ri) = Ti−1 4Ri = Ri−1 4Ri.

Now, by discarding any cycles and shortcutting paths, we can choose Ȳi−1,i to be a perfect
matching on Ri−14Ri that costs no more than Ȳ ′i−1,i. So we have c(Ȳi−1,i) ≤ c(X̄i−1,i)+c(Q).

We make precisely the symmetric construction to define Ȳi+1 and Ȳi+1,i+2. We have
obtained the required R-solution Ȳ . J

I Lemma 11. Let X̄ be a T -solution that satisfies Property (i) of Definition 8 but where
Property (ii) fails for some terminal i. Then there exists an R-solution Ȳ of no higher cost,
with Rj ⊆ Tj for all j ∈W , and Ri ( Ti.

Proof. Suppose w.l.o.g. e = {u, v} is an edge in X̄i,i+1 with both u, v ∈ Ti. Because of
Property (i) we know there exists a u-v-path in X̄i−1 ∪̇ X̄i−1,i ∪̇ X̄i, say Q.

Let us define a new solution Ȳ equal to X̄ except for:

Ȳi = (X̄i \ E(Q)) ∪ {e}
Ȳi,i+1 = X̄i,i+1 ∪ (X̄i ∩ E(Q)) \ {e}.

The i-(i+ 1)-path in X̄ is still feasible in Ȳ , and we can get an (i− 1)-i-path Ȳ from
the respective path in X̄, by replacing the subpath Q with the edge e. Thus, Ȳ is a feasible
solution.

Let P be the maximal path in Ȳi that contains e. Since every edge on P is used both on
some (i− 1)-i-path and i-(i+ 1)-path, we can replace P by an edge connecting the endpoints
in Ȳi and retain a feasible solution, with the property that

V (Ȳi) \ {i} ( V (X̄i) \ {i} = Ti,

and V (Ȳj) = V (X̄j) for j 6= i. By Lemma 7 it now follows that we can find an R-solution Z̄

with Ri ⊆ V (Yi) \ {i} ( Ti and Rj ⊆ Tj for j ∈W , as required. J

Proof. Lemma 9 We arrive at our Lemma from the fact that we can alternatingly apply
Lemmas 10 and 11 to a T -solution X̄ until we have a strong R-solution Ȳ . Since every time
we apply Lemma 10,

∑
i∈W |Ti| strictly decreases, this procedure must terminate in a finite

number of steps. J
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3.4 From a T -solution to an optimal embedding
I Observation 12. Suppose X̄ is a strong T -solution with |Ti| = 1 for all i ∈W . Then X̄

is a hubbed solution.

As we will see, as long as we have a strong T -solution that is not a hubbed solution (implying
that |Ti| = α > 1 for some α and all i), we can find an R-solution such that R is strictly
smaller than T .

I Lemma 13. Given a strong T -solution X̄ with |Ti| > 1 for all i, there exists a strong
R-solution Ȳ of no higher cost with Ri ( Ti+1 for all i.

Proof. We claim that we can find a new solution Ȳ with V (Ȳi) = Ti+1 \ {ui+1} ∪ {i} for
some node ui+1 ∈ Ti+1. It then follows by Lemma 7 and Lemma 9 that we can find a strong
R-solution Z̄ with

Ri ⊆ V (Ȳi) \ {i} = Ti+1 \ {ui+1},

which implies the required result.
For each terminal i we define ui ∈ Ti as the node matched to i in X̄i, and wi ∈ Ti+1 as

ui if ui ∈ Ti+1, or the vertex matched to ui in X̄i,i+1 otherwise. Finally let Li denote the
i-ui-wi path in X̄i ∪ X̄i,i+1.

Now take a solution Ȳ equal to X̄ except for

Ȳi = {{i, wi}} ∪ X̄i+1 \ Li+1

and Ȳi,i+1 = X̄i+1,i+2 \ Li+1 \ Li+2.

1

3

2

1

3

2

4

1

3

2

4

X̄ Ȳ Z̄

u1

u3

u2

u4w2

w4

w3

w1

X̄1

X̄1,2

4

We will show that |Ti| > 1 implies that Ȳi ∪ Ȳi,i+1 ∪ Ȳi+1 contains an i-(i+ 1)-path. Note
that:

Ȳi ∪ Ȳi,i+1 ∪ Ȳi+1 = {{i, wi}, {i+ 1, wi+1}} ∪ E(Pi+1,i+2 \ Li+1 \ Li+2).

As wj ∈ Tj+1 for all j, clearly Pi+1,i+2 contains a wi-wi+1-subpath. Since |Tj | > 1 for all j ∈
W , we must have that Li+1 and Li+2 are vertex disjoint, and therefore E(Pi+1,i+2\Li+1\Li+2)
induces a single non-empty connected component.

Now

V (Pi+1,i+2 \ Li+1 \ Li+2) =
{
V (Pi+1,i+2) \ {i+ 1, ui+1, i+ 2} if ui+1 6= wi+1

V (Pi+1,i+2) \ {i+ 1, i+ 2} otherwise
.

But as Li and Li+1 are vertex disjoint, wi 6= ui+1. Therefore Pi+1,i+2 \ Li+1 \ Li+2 contains
a wi-wi+1-path, implying that Ȳi ∪ Ȳi,i+1 ∪ Ȳi+1 contains an i-(i+ 1)-path.

ESA 2017
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We conclude that Ȳ is a feasible solution. Finally note that:

V (Ȳi) = V (X̄i+1) \ {i+ 1, ui+1} ∪ {i, wi}
= Ti+1 4 {i+ 1} \ {i+ 1, ui+1} ∪ {i, wi}
= Ti+1 \ {ui+1} ∪ {i},

where in the last equality we have used that wi ∈ Ti+1. This proves our claim and hence the
lemma. J

Recall that |Ti| = |Tj | for all i, j ∈ W in a strong T -solution. By repeatedly apply-
ing Lemma 13, we obtain an optimal T -solution with |Ti| = 1 for all i ∈ W , which by
Observation 12 is a hubbed solution. This completes the proof of Theorem 3.

4 The tree case

We consider the case where H is a bounded-degree tree. Since H is bipartite, we may restrict
ourselves to integral solutions to (2). We first show that there is an optimal solution of a
particular form, which we refer to as a hubbed solution.

I Lemma 14. There exists an optimal solution Y to the tree mVPN problem, such that,
for some choice hij ∈ V for each {i, j} ∈ E(H) (which we call hub vertices), Yi is the edge
set of a Steiner tree with terminals {i} ∪ {hij : {i, j} ∈ E(H)}.

Proof. We prove that we can transform an arbitrary solution Y into a feasible solution Z of
the required form.

Choose an arbitrary terminal and consider H to be rooted at this node. Let C(i) denote
the set of children of terminal i in H. We construct Z as follows.

We initialize Zi = ∅ for all leaf terminals i. Now suppose we have defined Zj for all the
children of a node i. Then define

Z ′i =
⋃

j∈C(i)

{e ∈ Yi ∪ Yj : e ∈ Pij} \ Zj .

Now let Zi be the connected component of (V,Z ′i) that contains i. By working up from the
leaves of H, this clearly defines Z.

Since Zi ⊆
⋃

j∈{i}∪C(i) Yj for all i, and Zi ∩ Zj = ∅ for all j ∈ C(i), Z costs no more in
Y .

To see that Z is indeed feasible and of the required form, note that for any terminal i
and child j ∈ C(i), by definition Z ′i ∪ Zj must contain an i-j-path. If Zj is empty, clearly Zi

must contain an i-j path. We set hij = j and we are done. If not, then there exists a vertex
hij in the single nonempty connected component of Zj such that Z ′i contains a path from i

to hij . But that path must be contained in the connected component of Z ′i that contains i,
which is exactly Zi, as required. J

With this structural lemma in place, Theorem 2 follows easily.

Proof. Theorem 2 We can solve the Steiner tree problem for a fixed number of terminals in
polynomial time [4]. Therefore, for H a tree of bounded degree, finding an optimal solution
reduces to finding the location of the hub vertices. We will show that we can do this efficiently
with dynamic programming.
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Suppose we root H at some terminal r. For each terminal i we let ζ(i, h) denote the
minimum cost of the edge sets bought by all terminals in the subtree rooted at i, over all
hubbed solutions such that the hub between i and its parent is located at h.

Now, define MSt(X) for X ⊆ V as the minimum cost of a Steiner tree on terminal set X.
We can calculate ζ(·, ·) recursively as follows:

ζ(i, h) = min
(hj)j∈C(i)∈V C(i)

MSt({i, h} ∪ {hj : j ∈ C(i)}) +
∑

j∈C(i)

ζ(j, hj).

In other words, we simply try all possible combinations of choices of hj1 , hj2 , . . . for j1, j2, . . . ∈
C(i). As the degree of H is bounded, the number of combinations is polynomially bounded.
Since we can solve the Steiner tree instance in polynomial time as well, the result follows. J

As remarked in the introduction, a constant factor approximation can easily be obtained
when H is an arbitrary tree, again from the structural lemma.

I Theorem 15. The mVPN problem where H is a tree has a 2α-approximation, where α is
the approximation ratio for Steiner tree.

Proof. Root H at an arbitrary terminal. Again, let C(i) denote the set of children of terminal
i. Take any optimal solution Y . Then define a new solution Zi :=

⋃
j∈{i}∪C(i) Yj , which

costs at most 2OPT . Now for each terminal i, Zi contains a Steiner tree on i and its children
C(i).

Let Xi be an α-approximate Steiner tree on i and its children C(i). Then X is a feasible
solution, and c(X) ≤ α · c(Z) ≤ 2α ·OPT . J

At the time of writing the best known approximation for Steiner tree is ln 4 + ε < 1.39 [3],
so the mVPN problem where H is a tree is approximable within 2.78.

5 Conclusion

Our results for H a tree can be extended easily to the capped hose model where the support
(edges with dij > 0) forms a tree. If the support of d is a cycle, but b and d are otherwise
arbitrary, the situation is unclear. There is a natural analog of the embedding algorithm.
First, ensure that the components of b and d are all minimal, i.e., no component can be
decreased without changing the uncertainty set. Then compute the cheapest embedding of
the weighted version of the graph used in Section 3; edges {i, hi} get weight bi, and edges
{i, i+ 1} get weight di,i+1. We leave it as an open question whether this algorithm is always
optimal. More speculatively, we feel that our results suggest that embedding algorithms may
play a deeper role in the subject than is currently apparent.
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Abstract
Real-world networks, like social networks or the internet infrastructure, have structural properties
such as large clustering coefficients that can best be described in terms of an underlying geometry.
This is why the focus of the literature on theoretical models for real-world networks shifted from
classic models without geometry, such as Chung-Lu random graphs, to modern geometry-based
models, such as hyperbolic random graphs.

With this paper we contribute to the theoretical analysis of these modern, more realistic
random graph models. Instead of studying directly hyperbolic random graphs, we introduce a
generalization that we call geometric inhomogeneous random graphs (GIRGs). Since we ignore
constant factors in the edge probabilities, GIRGs are technically simpler (specifically, we avoid
hyperbolic cosines), while preserving the qualitative behaviour of hyperbolic random graphs, and
we suggest to replace hyperbolic random graphs by this new model in future theoretical studies.

We prove the following fundamental structural and algorithmic results on GIRGs. (1) As
our main contribution we provide a sampling algorithm that generates a random graph from
our model in expected linear time, improving the best-known sampling algorithm for hyperbolic
random graphs by a substantial factor O(

√
n). (2) We establish that GIRGs have clustering

coefficients in Ω(1), (3) we prove that GIRGs have small separators, i.e., it suffices to delete a
sublinear number of edges to break the giant component into two large pieces, and (4) we show
how to compress GIRGs using an expected linear number of bits.
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1 Introduction

Real-world networks, like social networks or the internet infrastructure, have structural
properties that can best be described using geometry. For instance, in social networks two
people are more likely to know each other if they live in the same region and share hobbies,
both of which can be encoded as spatial information. This geometric structure may be
responsible for some of the key properties of real-world networks, e.g., an underlying geometry
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naturally induces a large number of triangles, or large clustering coefficient: Two of one’s
friends are likely to live in one’s region and have similar hobbies, so they are themselves
similar and thus likely to know each other.

Classic mathematical models of real-world networks are scale-free (i.e., have a power-law
degree distribution) and small worlds (i.e., most pairs of vertices have small graph-theoretic
distance), thus reproducing these two key findings of large real-world networks. But since
they have no underlying geometry their clustering coefficient is as small as n−Ω(1); this holds
in particular for preferential attachment graphs [3] and Chung-Lu random graphs [24, 25, 26]
(and their variants [13, 41]). In order to close this gap between the empirically observed
clustering coefficient and theoretical models, much of the recent work on models for real-world
networks focussed on scale-free random graph models that are equipped with an underlying
geometry, such as hyperbolic random graphs [11, 42], spatial preferred attachment [2], and
many others [13, 14, 15, 35]. The basic properties – scale-freeness, small-world, and large
clustering coefficient – have been rigorously established for most of these models. Beyond
the basics, experiments suggest that these models have some very desirable properties.

In particular, hyperbolic random graphs are a promising model, as Boguñá et al. [11]
computed a (heuristic) maximum likelihood fit of the internet graph into the hyperbolic
random graph model and demonstrated its quality by showing that greedy routing in the
underlying geometry of the fit finds near-optimal shortest paths. Further properties that
have been studied on hyperbolic random graphs, mostly agreeing with empirical findings
on real-world networks, are scale-freeness and clustering coefficient [33, 20], existence of a
giant component [9], diameter [37, 32], average distance [1], separators and treewidth [6],
spectral gap [38], bootstrap percolation [21], and clique number [7]. Algorithmic aspects
include sampling algorithms [47], embedding algorithms [8], and compression schemes [45].

Our goal is to improve algorithmic and structural results on the promising model of
hyperbolic random graphs. However, it turns out to be beneficial to work with a more general
model, that we introduce with this paper: In a geometric inhomogeneous random graph
(GIRG), every vertex v comes with a weight wv (which we assume to follow a power law in
this paper) and picks a uniformly random position xv in the d-dimensional torus Td. Two
vertices u, v then form an edge independently with probability puv, which is proportional to
wuwv and inversely proportional to some power of their distance ‖xu − xv‖, see Section 2 for
details. A major difference between hyperbolic random graphs and our generalisation is that
we ignore constant factors in the edge probabilities puv. This allows to greatly simplify the
edge probability expressions, thus reducing the technical overhead. GIRGs can be interpreted
as a geometric variant of the classic Chung-Lu random graphs. Recently, with scale-free
percolation a closely related model has been introduced [28] where the vertex set is given
by the grid Zd. This model is similar with respect to component structure, clustering, and
small-world properties [29, 34], but none of the algorithmic aspects studied in the present
paper (sampling, compression, also separators) has been regarded thereon.

The basic connectivity properties of GIRGs follow from more general considerations
in [17], where an even more general model of generic augmented Chung-Lu graphs is studied.
In particular, with high probability1 GIRGs have a giant component and polylogarithmic
diameter, and a.a.s. doubly-logarithmic average distance within the giant. However, general
studies such as [17] are limited to properties that do not depend on the specific underlying
geometry. Recently, GIRGs turned out to be accesible for studying processes such as bootstrap
percolation [39] and greedy routing [19].

1 We say that an event holds with high probability (w.h.p.) if it holds with probability 1 − n−ω(1). If it
holds with probability 1 − o(1), we say that it holds asymptotically almost surely (a.a.s.).
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Our contribution. As our main result, we present a sampling algorithm that generates a
random graph from our model in expected linear time. This improves the trivial sampling
algorithm by a factor O(n) and the best-known algorithm for hyperbolic random graphs by
a factor O(

√
n) [47]. We also prove that the underlying geometry indeed causes GIRGs to

have a clustering coefficient in Ω(1). Moreover, we show that GIRGs have small separators of
expected size n1−Ω(1); this is in agreement with empirical findings on real-world networks [5].
We then use the small separators to prove that GIRGs can be efficiently compressed (i.e., they
have low entropy), specifically, we show how to store a GIRG using O(n) bits in expectation.
Finally, we show that hyperbolic random graphs are indeed a special case of GIRGs, so that
all aforementioned results also hold for hyperbolic random graphs.

2 Model and Results

2.1 Definition of the Model
We prove algorithmic and structural results in a new random graph model which we call
geometric inhomogeneous random graphs. In this model, each vertex v comes with a weight
wv and with a random position xv in a geometric space, and the set of edges E is also random.
We start by defining the by-now classical Chung-Lu model and then describe the changes
that yield our variant with underlying geometry.

Chung-Lu random graph. For n ∈ N let w = (w1, . . . ,wn) be a sequence of positive weights.
We call W :=

∑n
v=1 wv the total weight. The Chung-Lu random graph G(n,w) has vertex

set V = [n] = {1, . . . , n}, and two vertices u 6= v are connected by an edge independently
with probability puv = Θ

(
min

{
1, wuwv

W
})

[24, 25]. Note that the term min{1, .} is necessary,
as the product wuwv may be larger than W. Classically, the Θ simply hides a factor 1, but
by introducing the Θ the model also captures similar random graphs, like the Norros-Reittu
model [41], while important properties stay asymptotically invariant.

Geometric inhomogeneous random graph (GIRG). Note that we obtain a circle by iden-
tifying the endpoints of the interval [0, 1]. Then the distance of x, y ∈ [0, 1] along the circle
is |x − y|C := min{|x − y|, 1 − |x − y|}. We fix a dimension d ≥ 1 and use as our ground
space the d-dimensional torus Td = Rd/Zd, which can be described as the d-dimensional cube
[0, 1]d where opposite boundaries are identified. As distance function we use the ∞-norm on
Td, i.e., for x, y ∈ Td we define ‖x− y‖ := max1≤i≤d |xi − yi|C .

As for Chung-Lu graphs, we consider the vertex set V = [n] and a weight sequence w (in
this paper we require the weights to follow a power law with exponent β > 2, see next para-
graph). Additionally, for any vertex v we draw a point xv ∈ Td uniformly and independently
at random. Again we connect vertices u 6= v independently with probability puv = puv(r),
which now depends not only on the weights wu,wv but also on the positions xu, xv, more
precisely, on the distance r = ‖xu − xv‖. We require for some constant α > 1 the following
edge probability condition:

puv = Θ
(

min
{

1
‖xu − xv‖αd

·
(wuwv

W

)α
, 1
})

. (EP1)

We also allow α =∞ and in this case require that

puv =
{

Θ(1) if ‖xu − xv‖ ≤ O
((wuwv

W
)1/d)

0 if ‖xu − xv‖ ≥ Ω
((wuwv

W
)1/d)

,
(EP2)
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where the constants hidden by O and Ω do not have to match, i.e., there can be an interval
[c1( wuwv

W )1/d, c2( wuwv
W )1/d] for ‖xu− xv‖ where the behaviour of puv is arbitrary. This finishes

the definition of GIRGs. The free parameters of the model are α ∈ (1,∞], d ∈ N, the
concrete weights w with power-law exponent β > 2 and average weight W/n, the concrete
function fuv(xu, xv) replacing the Θ in puv, and for α =∞ the constants hidden by O,Ω in
the requirement for puv. We will typically hide the constants α, d, β,W/n by O-notation.

Power-law weights. As is often done for Chung-Lu graphs, we assume throughout this
paper that the weights follow a power law: the fraction of vertices with weight at least w is
proportional to w1−β for some 2 < β < 3 (the power-law exponent of w). More precisely, we
assume that for some w̄ = w̄(n) with nω(1/ log logn) ≤ w̄ ≤ n(1−Ω(1))/(β−1), the sequence w
satisfies the following conditions:
(PL1) the minimum weight is constant, i.e., wmin := min{wv | 1 ≤ v ≤ n} = Ω(1);
(PL2) for all η > 0 there exist constants c1, c2 > 0 such that

c1
n

wβ−1+η ≤ #{1 ≤ v ≤ n | wv ≥ w} ≤ c2
n

wβ−1−η ,

where the first inequality holds for all wmin ≤ w ≤ w̄ and the second for all w ≥ wmin.
We remark that these are standard assumptions for power-law graphs with average degree
Θ(1). In particular, (PL2) implies that the average weight W/n is Θ(1). An example is the
widely used weight function wv := δ · (n/v)1/(β−1) with parameter δ = Θ(1).

Discussion of the model. The choice of the ground space Td is in the spirit of the classic
random geometric graphs [44]. We prefer the torus to the hyper-cube for technical simplicity,
as it yields symmetry. However, one could replace Td by [0, 1]d or other manifolds like the
d-dimensional sphere; our results will still hold verbatim. Moreover, since in fixed dimension
all Lp-norms on Td are equivalent and since the edge probabilities puv have a constant factor
slack, our choice of the L∞-norm is without loss of generality (among all norms).

The model is already motivated since it generalizes the celebrated hyperbolic random
graphs (see Theorem 7). Let us nevertheless discuss why our choice of edge probabilities
is natural: The term min{., 1} is necessary, as in the Chung-Lu model, because puv is a
probability. To obtain a geometric model, where adjacent vertices are likely to have small
distance, puv should decrease with increasing distance ‖xu − xv‖, and an inverse polynomial
relation seems reasonable. The constraint α > 1 is necessary to cancel the growth of the
volume of the ball of radius r proportional to rd, so that we expect most neighbors of a
vertex to lie close to it. Finally, the factor

(wuwv
W
)α ensures that the marginal probability of

vertices u, v with weights wu,wv forming an edge is Pr[u ∼ v] = Θ
(
min

{wuwv
W , 1

})
, as in the

Chung-Lu model, and this probability does not change by more than a constant factor if we
fix either xu or xv. This is why we see our model as a geometric variant of Chung-Lu random
graphs. For a fixed vertex u ∈ V we can sum up Pr[u ∼ v | xu] over all vertices v ∈ V \ {u},
and it follows E[deg(u)] = Θ(wu). The main reason why GIRGs are also technically easy is
that for any vertex u with fixed position xu the incident edges {u, v} are independent.

Finally, after rescaling the parameters (x̃v := n1/dxv, α̃ := dα, τ := 1 + (β− 1)/α, see [46]
for details), the GIRG model is closely related to scale-free percolation [28].

Sampling the weights. In the definition we assume that the weight sequence w is fixed.
However, if we sample the weights independently according to an appropriate power-law
distribution with minimum weight wmin and density f(w) ∼ w−β , then the sampled weight
sequence will follow a power law and fulfils (PL1) and (PL2) with probability 1 − n−Ω(1).
Hence, a model with sampled weights is a.a.s. included in our model.
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2.2 Structural Properties of GIRGs
As discussed in the introduction, reasonable random graph models for real-world networks
should reproduce a power-law degree distribution and small graph-theoretical distances
between nodes. For the GIRG model, these structural properties follow from a more general
class of generic augmented Chung-Lu random graphs that have been studied in [17]. This
framework has weaker assumptions on the underlying geometry than GIRGs. A short
comparison reveals that GIRGs are a special case of this general class of random graph
models. In the following we list the results of [17] transferred to GIRGs. As we are using
power-law weights and E[deg(v)] = Θ(wv) holds for all v ∈ V , it is not surprising that the
degree sequence follows a power-law.

I Theorem 1 (Theorem 2.1 in [17]). W.h.p. the degree sequence of a GIRG follows a power
law with exponent β and average degree Θ(1).

The next result determines basic connectivity properties. Note that for β > 3, they are not
well-behaved, in particular since in this case even threshold hyperbolic random graphs do not
possess a giant component of linear size [10]. This is one reason why we assume 2 < β < 3
throughout the paper. For the following theorem, we require the additional assumption
w̄ = ω(n1/2) in the limit case α =∞.

I Theorem 2 (Theorems 2.2 and 2.3 in [17]). W.h.p. the largest component of a GIRG has
linear size and diameter logO(1) n, while all other components have size logO(1) n. Moreover,
the average distance of vertices in the largest component is (2± o(1)) log logn

| log(β−2)| in expectation
and with probability 1− o(1).

We remark that most results of this paper crucially depend on an underlying geometry, and
thus do not hold in the general model from [17].

2.3 Results
Sampling. Sampling algorithms that generate a random graph from a fixed distribution are
known for Chung-Lu random graphs and others, running in expected linear time [4, 40]. As
our main result, we present such an algorithm for GIRGs. This greatly improves the trivial
O(n2) sampling algorithm (throwing a biased coin for each possible edge), as well as the best
previous algorithm for threshold hyperbolic random graphs with expected time O(n3/2) [47].
It allows to run experiments on much larger graphs than the ones with ≈ 104 vertices in [11].
In addition to our model assumptions, here we assume that the Θ in our requirement on puv
is sufficiently explicit, i.e., we can compute puv exactly and we know a constant c > 0 such
that replacing Θ by c yields an upper bound on puv, see Section 3 for details.

I Theorem 3 (Section 3). Sampling a GIRG can be done in expected time O(n).

Clustering. In social networks, two friends of the same person are likely to also be friends
with each other. This property of having many triangles is captured by the clustering
coefficient, defined as the probability when choosing a random vertex v and two random
neighbors v1 6= v2 of v that v1 and v2 are adjacent (if v does not have two neighbors then
its contribution to the clustering coefficient is 0). While Chung-Lu random graphs have a
very small clustering coefficient of n−Ω(1), it is easy to show that the clustering coefficient of
GIRGs is Θ(1). This is consistent with empirical data of real-world networks [31] and the
constant clustering coefficient of hyperbolic random graphs determined in [20, 33, 45].
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I Theorem 4. W.h.p. the clustering coefficient of a GIRG is Θ(1).

Proof Outline. We show that the clustering coefficient is dominated by the contribution
of constant-weight vertices v. Let v ∈ V be a vertex of weight wv = Θ(1). Then, with at
least constant probability, (i) deg(v) ≥ 2, and (ii) all neighbors of v are located in a ball
of radius cn−1/d around xv, for a sufficiently small constant c > 0. If the neighborhood of
v has this property, then two random neighbors v1, v2 of v are connected with constant
probability. Therefore, the expected contribution of v to the clustering coefficient is Ω( 1

n ).
As the number of such vertices v is Θ(n), it follows that the expected clustering coefficient is
Θ(1). Proving the w.h.p.-statement requires additional arguments and the application of
Azuma-type concentration inequalities with bad events. The detailed proof is included in
the full version [18]. J

Stability. For real-world networks, a key property to analyze is their stability under attacks.
It has been empirically observed that many real-world networks have small separators of
size nc, c < 1 [5]. In contrast, Chung-Lu random graphs are unrealistically stable, since
any deletion of o(n) nodes or edges reduces the size of the giant component by at most
o(n) [13]. We show that GIRGs agree with the empirical results much better. Specifically, if
we cut the ground space Td into two halves along one of the axes then we roughly split the
giant component into two halves, but the number of edges passing this cut is quite small,
namely n1−Ω(1). Thus, GIRGs are prone to (quite strong) adversarial attacks, just as many
real-world networks. Furthermore, their small separators are useful for many algorithms, e.g.,
the compression scheme of the next paragraph.

I Theorem 5 (Section 4). A.a.s. it suffices to delete O
(
nmax{2−α,3−β,1−1/d}+o(1)) edges of

a GIRG to split its giant component into two parts of linear size each.

Since we assume α > 1, β > 2, and d = Θ(1), the number of deleted edges is indeed n1−Ω(1).
Recently, Bläsius et al. [6] proved a better bound of O(n(3−β)/2) for threshold hyperbolic
random graphs which correspond to GIRGs with parameters d = 1 and α =∞.

Entropy. The internet graph has empirically been shown to be well compressible, using
only 2-3 bits per edge [5, 12]. This is not the case for the Chung-Lu model, as its entropy
is Θ(n logn) [23]. We show that GIRGs have linear entropy, as is known for threshold
hyperbolic random graphs [45].

I Theorem 6 (Section 4). We can store a GIRG using O(n) bits in expectation. The resulting
data structure allows to query the degree of any vertex and its i-th neighbor in time O(1).
The compression algorithm runs in time O(n).

Hyperbolic random graphs. We establish that hyperbolic random graphs are an example
of one-dimensional GIRGs, and that the often studied special case of threshold hyperbolic
graphs is obtained by our limit case α = ∞. Specifically, we obtain hyperbolic random
graphs from GIRGs by setting the dimension d = 1, the weights to a specific power law, and
the Θ in the edge probability puv to a specific, complicated function.

I Theorem 7. For every choice of parameters in the hyperbolic random graph model, there
is a choice of parameters in the GIRG model such that the two resulting distributions of
graphs coincide.
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In particular, all our results on GIRGs hold for hyperbolic random graphs, too. Moreover,
as our proofs are much less technical than typical proofs for hyperbolic random graphs, we
suggest to switch from hyperbolic random graphs to GIRGs in future studies. We prove
Theorem 7 in the full version of this paper [18].

2.4 Preliminaries
We introduce a geometric ordering of the vertices, which we will use both for the sampling
and for the compression algorithm. Consider the ground space Td, split it into 2d equal
cubes, and repeat this process with each created cube; we call the resulting cubes cells.
Cells are cubes of the form C = [x12−`, (x1 + 1)2−`)× . . .× [xd2−`, (xd + 1)2−`) with ` ≥ 0
and 0 ≤ xi < 2`. We represent cell C by the tuple (`, x1, . . . , xd). The volume of C is
vol(C) = 2−`·d. For 0 < x ≤ 1 we let dxe2d be the smallest number larger or equal to
x that is realized as the volume of a cell, or in other words x rounded up to a power of
2d, dxe2d = min{2−`·d | ` ∈ N0 : 2−`·d ≥ x}. Note that the cells of a fixed level ` partition
the ground space. We obtain a geometric ordering of these cells by following the recursive
construction of cells in a breadth-first-search manner. This yields the following lemma.

I Lemma 8 (Geometric ordering). There is an enumeration of the cells C1, . . . , C2`d of level `
such that for every cell C of level `′ < ` the cells of level ` contained in C form a consecutive
block Ci, . . . , Cj in the enumeration.

3 Sampling Algorithm

In this section we show that GIRGs can be sampled in expected time O(n). The running
time depends exponentially on the fixed dimension d. In addition to our model assumptions,
in this section we require that (1) edge probabilities puv can be computed in constant time
(given any vertices u, v and positions xu, xv) and (2) we know an explicit constant c > 0 such
that if α <∞ we have

puv ≤ min
{
c

1
‖xu − xv‖αd

·
(wuwv

W

)α
, 1
}
.

Note that existence of c follows from our model assumptions. In the remainder of this
section we introduce building blocks of our algorithm (Section 3.1) and present our algorithm
(Section 3.2) and its analysis (Section 3.3). Note that in the full version, we also show how
the sampling algorithm can be adapted to the case α =∞.

3.1 Building Blocks
Data structures. We first build a basic data structure on a set of points P that allows to
access the points in a given cell C (of volume at least ν) in constant time.

I Lemma 9. Given a set of points P and 0 < ν ≤ 1, in time O(|P |+ 1/ν) we can construct
a data structure Dν(P ) supporting the following queries in time O(1):

given a cell C of volume at least ν, return |C ∩ P |,
given a cell C of volume at least ν and a number k, return the k-th point in C ∩ P (in a
fixed ordering of C ∩ P depending only on P and ν).

Proof. Let µ = dνe2d = 2−`·d, so that ν ≤ µ ≤ O(ν). Following the recursive construction
of cells, we can determine a geometric ordering of the cells of volume µ as in Lemma 8 in
time O(1/µ) = O(1/ν); say C1, . . . , C1/µ are the cells of volume µ in the geometric ordering.
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We store this ordering by storing a pointer from each cell Ci = (`, x1, . . . , xd) to its successor
Ci+1 = (`, x′1, . . . , x′d), which allows to scan the cells C1, . . . , C1/µ in linear time. For any
point x ∈ P , using the floor function we can determine in time O(1) the cell (`, x1, . . . , xd)
of volume µ that x belongs to (in our machine model we assume that the floor function can
be computed in constant time). This allows to determine the numbers |Ci ∩ P | for all i in
time O(|P |+ 1/ν). We also compute each prefix sum si :=

∑
j<i |Cj ∩ P | and store it at cell

Ci = (`, x1, . . . , xd). Using an array A[.] of size |P |, we store (a pointer to) the k-th point in
Ci ∩ P at position A[si + k]. This preprocessing can be performed in time O(|P |+ 1/ν).

A given cell C of volume at least ν may consist of several cells of volume µ. By Lemma 8,
these cells form a contiguous subsequence Ci, Ci+1, . . . , Cj−1, Cj of C1, . . . , C1/µ, so that the
points C ∩ P form a contiguous subsequence of A. For constant access time, we store for
each cell C of volume at least ν the indices sC , eC of the first and last point of C ∩ P in A.
Then |C ∩ P | = eC − sC + 1 and the k-th point in C ∩ P is stored at A[sC + k]. Thus, both
queries can be answered in constant time. Note that the ordering A[.] of the points in C ∩ P
is a mix of the geometric ordering of cells of volume µ and the given ordering of P within a
cell of volume µ, in particular this ordering indeed only depends on P and ν. J

Next we construct a partitioning of Td×Td into products of cells Ai×Bi. This partitioning
allows to split the problem of sampling the edges of a GIRG into one problem for each
Ai ×Bi, which is beneficial, since each product Ai ×Bi has one of two easy types. For any
A,B ⊆ Td we denote the distance of A and B by d(A,B) = infa∈A,b∈B ‖a− b‖.

I Lemma 10. Let 0 < ν ≤ 1. In time O(1/ν) we can construct a set
Pν = {(A1, B1), . . . , (As, Bs)} such that
(1) Ai, Bi are cells with vol(Ai) = vol(Bi) ≥ ν,
(2) for all i, either d(Ai, Bi) = 0 and vol(Ai) = dνe2d (type I) or d(Ai, Bi) ≥ vol(Ai)1/d

(type II),
(3) the sets Ai ×Bi partition Td × Td,
(4) s = O(1/ν).

Proof. Note that for cells A,B of equal volume we have d(A,B) = 0 if and only if either
A = B or (the boundaries of) A and B touch. For a cell C of level ` we let par(C) be
its parent, i.e., the unique cell of level ` − 1 that C is contained in. Let µ = dνe2d . We
define Pν as follows. For any pair of cells (A,B) with vol(A) = vol(B) ≥ ν, we add
(A,B) to Pν if either (i) vol(A) = vol(B) = µ and d(A,B) = 0, or (ii) d(A,B) > 0 and
d(par(A), par(B)) = 0.

Property (1) follows by definition. Regarding property (2), the pairs (A,B) added in
case (i) are clearly of type I. Observe that two cells A,B of equal volume that are not equal
or touching have distance at least the sidelength of A, which is vol(A)1/d. Thus, in case (ii)
the lower bound d(A,B) > 0 implies d(A,B) ≥ vol(A)1/d, so that (A,B) is of type II.

For property (3), consider (x, y) ∈ Td × Td and let A,B be the cells of volume µ
containing x, y. Let A(0) := A and A(i) := par(A(i−1)) for any i ≥ 1, until A(k) = Td.
Similarly, define B = B(0) ⊂ . . . ⊂ B(k) = Td and note that vol(A(i)) = vol(B(i)). Observe
that each set A(i)×B(i) contains (x, y). Moreover, any set A′×B′, where A′, B′ are cells with
vol(A′) = vol(B′) and (x, y) ∈ A′ ×B′, is of the form A(i) ×B(i). Thus, to show that Pν
partitions Td×Td we need to show that it contains exactly one of the pairs (A(i), B(i)) (for any
x, y). To show this, we use the monotonicity d(A(i), B(i)) ≥ d(A(i+1), B(i+1)) and consider two
cases. If d(A,B) = 0 then we add (A,B) to Pν in case (i), and we add no further (A(i), B(i)),
since d(A(i), B(i)) = 0 for all i. If d(A,B) > 0 then since d(A(k), B(k)) = d(Td,Td) = 0 there
is a unique index 0 ≤ i < k with d(A(i), B(i)) > 0 and d(A(i+1), B(i+1)) = 0. Then we add
(A(i), B(i)) in case (ii) and no further (A(j), B(j)). This proves property (3).
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Algorithm 1 Sampling algorithm for GIRGs in expected time O(n)
1: E := ∅
2: sample the positions xv, v ∈ V , and determine the weight layers Vi
3: for all 1 ≤ i ≤ L do build data structure Dν(i)({xv | v ∈ Vi}) with ν(i) := wiw0

W

4: for all 1 ≤ i ≤ j ≤ L do
5: construct partitioning Pν(i,j) with ν(i, j) := wiwj

W
6: for all (A,B) ∈ Pν(i,j) of type I do
7: for all u ∈ V Ai and v ∈ V Bj do with probability puv add edge {u, v} to E
8: for all (A,B) ∈ Pν(i,j) of type II do
9: p̄ := min

{
c · 1

d(A,B)αd ·
(wiwj

W
)α
, 1
}

10: r := Geo(p̄)
11: while r ≤ |V Ai | · |V Bj | do
12: determine the r-th pair (u, v) in V Ai × V Bj
13: with probability puv/p̄ add edge {u, v} to E
14: r := r + Geo(p̄)
15: if i = j then remove all edges with u > v sampled in this iteration

Property (4) follows from the running time bound of O(1/ν), which we show in the
following. Note that we can enumerate all 1/µ = O(1/ν) cells of volume µ, and all of the at
most 3d = O(1) touching cells of the same volume, in time O(1/ν), proving the running time
bound for case (i). Moreover, we can enumerate all 2`·d cells C in level `, together with all
of the at most 3d = O(1) touching cells C ′ in the same level. Then we can enumerate all
2d = O(1) cells A that have C as parent as well as all O(1) cells B that have C ′ as parent.
This enumerates (a superset of) all possibilities of case (ii). Summing the running time
O(2`·d) over all levels ` with volume 2−`·d ≥ ν yields a total running time of O(1/ν). J

Weight layers. We set w0 := wmin and wi := 2wi−1 for i ≥ 1. This splits the vertex set
V = [n] into weight layers Vi := {v ∈ V | wi−1 ≤ v < wi} for 1 ≤ i ≤ L with L = O(logn).
We write V Ci for the restriction of weight layer Vi to cell C, V Ci := {v ∈ Vi | xv ∈ C}.

Geometric random variates. For 0 < p ≤ 1 we write Geo(p) for a geometric random
variable, taking value i ≥ 1 with probability p(1− p)i−1. Geo(p) can be sampled in constant
time using the simple formula

⌈ log(R)
log(1−p)

⌉
, where R is chosen uniformly at random in (0, 1),

see [30]. To evaluate this formula exactly in time O(1) we need to assume the RealRAM
model of computation. However, also on a bounded precision machine like the WordRAM
Geo(p) can be sampled in expected time O(1) [16].

3.2 The Algorithm
Given the model parameters, our Algorithm 1 samples the edge set E of a GIRG. To this end,
we first sample all vertex positions xv uniformly at random in Td. Given weights w1, . . . , wn
we can determine the weight layers Vi in linear time (we may use counting sort or bucket sort
since there are only L = O(logn) layers). Then we build the data structure from Lemma 9
for the points in Vi setting ν = ν(i) = wiw0

W , i.e., we build Dν(i)({xv | v ∈ Vi}) for each i. In
the following, for each pair of weight layers Vi, Vj we sample the edges between Vi and Vj .
To this end, we construct the partitioning Pν(i,j) from Lemma 10 with ν(i, j) = wiwj

W . Since
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Pν(i,j) partitions Td × Td, every pair of vertices u ∈ Vi, v ∈ Vj satisfies xu ∈ A, xv ∈ B for
exactly one (A,B) ∈ Pν(i,j). Thus, we can iterate over all (A,B) ∈ Pν(i,j) and sample the
edges between V Ai and V Bj .

If (A,B) is of type I, then we simply iterate over all vertices u ∈ V Ai and v ∈ V Bj and
add the edge {u, v} with probability puv; this is the trivial sampling algorithm. Note that
we can efficiently enumerate V Ai and V Bj using the data structure Dν(i)({xv | v ∈ Vi}) that
we constructed above.

If (A,B) is of type II, then the distance ‖x− y‖ of any two points x ∈ A, y ∈ B satisfies
d(A,B) ≤ ‖x − y‖ ≤ d(A,B) + vol(A)1/d + vol(B)1/d ≤ 3d(A,B), by the definition of
type II. Thus, p̄ = min

{
c· 1
d(A,B)αd ·

(wiwj
W
)α
, 1
}
is an upper bound on the edge probability puv

for any u ∈ V Ai , v ∈ V Bj , and it is a good upper bound since d(A,B) is within a constant
factor of ‖xu − xv‖ and wi, wj are within constant factors of wu,wv. Now we first sample
the set of edges Ē between V Ai and V Bj that we would obtain if all edge probabilities were
equal to p̄, i.e., any (u, v) ∈ V Ai × V Bj is in Ē independently with probability p̄. From this
set Ē, we can then generate the set of edges with respect to the true edge probabilities puv
by throwing a coin for each {u, v} ∈ Ē and letting it survive with probability puv/p̄. Then
in total we choose a pair (u, v) as an edge in E with probability p̄ · (puv/p̄) = puv, proving
that we sample from the correct distribution. Note that here we used puv ≤ p̄. It is left
to show how to sample the “approximate” edge set Ē. First note that the data structure
Dν({xv | v ∈ Vi}) defines an ordering on V Ai , and we can determine the `-th element in this
ordering in constant time, similarly for V Bj . Using the lexicographic ordering, we obtain an
ordering on V Ai × V Bj for which we can again determine the `-th element in constant time.
In this ordering, the first pair (u, v) ∈ V Ai × V Bj that is in Ē is geometrically distributed,
according to Geo(p̄). Since geometric random variates can be generated in constant time, we
can efficiently generate Ē, specifically in time O(1 + |Ē|).

Finally, the case i = j is special. With the algorithm described above, for any u, v ∈ Vi we
sample whether they form an edge twice, once for xu ∈ A, xv ∈ B (for some (A,B) ∈ Pν(i,j))
and once for xv ∈ A′, xu ∈ B′ (for some (A′, B′) ∈ Pν(i,j)). To fix this issue, in the case i = j

we only accept a sampled edge (u, v) ∈ V Ai × V Bj if u < v; then only one way of sampling
edge {u, v} remains. This changes the expected running time only by a constant factor.

3.3 Analysis
Correctness of our algorithm follows immediately from the above explanations. In the
following we show that Algorithm 1 runs in expected linear time. This is clear for lines
1-2. For line 3, since building the data structure from Lemma 9 takes time O(|P |+ 1/ν),
it takes total time

∑L
i=1O

(
|Vi|+ W/(wiw0)

)
. Clearly, the first summand |Vi| sums up to

n. Using w0 = wmin = Ω(1), W = O(n), and that wi grows exponentially with i, implying∑
i 1/wi = O(1), also the second summand sums up to O(n). For line 5, all invocations in total

take time O
(∑

i,j W/(wiwj)
)
, which is O(n), since again W = O(n) and

∑
i 1/wi = O(1).

We claim that for any weight layers Vi, Vj the expected running time we spend on any
(A,B) ∈ Pν(i,j) is O(1 + E[|EA,Bi,j |]), where E

A,B
i,j is the set of edges in V Ai × V Bj . Summing

up the first summand O(1) over all (A,B) ∈ Pν(i,j) sums up to 1/ν(i, j) = W/(wiwj). As
we have seen above, this sums up to O(n) over all i, j. Summing up the second summand
O(E[|EA,Bi,j |]) over all (A,B) ∈ Pν(i,j) and weight layers Vi, Vj yields the total expected
number of edges O(E[|E|]), which is O(n), since the average weight W/n = O(1) and thus
the expected average degree is constant.

It is left to prove the claim that for any weight layers Vi, Vj the expected time spent on
(A,B) ∈ Pν(i,j) is O(1 + E[|EA,Bi,j |]). If (A,B) is of type I, then any pair of vertices (u, v) ∈
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V Ai × V Bj has probability Θ(1) to form an edge: Since the volume of A and B is wiwj/W,
their diameter is (wiwj/W)1/d and we obtain ‖xu − xv‖ ≤ (wiwj/W)1/d = O((wuwv/W)1/d),
which yields puv = Θ

(
min

{( wuwv
‖xu−xv‖dW

)α
, 1
})

= Θ(1). As we spend time O(1) for any
(u, v) ∈ V Ai × V Bj , we stay in the desired running time bound O(E[|EA,Bi,j |]).

If (A,B) is of type II, we first sample edges Ē with respect to the larger edge probability p̄,
and then for each edge e ∈ Ē sample whether it belongs to E. This takes total time O(1+|Ē|).
Note that any edge e ∈ Ē has constant probability puv/p̄ = Θ(1) to survive: It follows
from wu = Θ(wi),wv = Θ(wj), and ‖xu − xv‖ = Θ(d(A,B)) that puv = Θ(p̄). Hence, we
obtain E[|Ē|] = O(E[|EA,Bi,j |]), and the running time O(1 + |Ē|) is in expectation bounded by
O(1 + E[|EA,Bi,j |]). This finishes the proof of the claim.

4 Stability of the Giant, Entropy, and Compression Algorithm

In this section we prove Theorems 5 and 6. More precisely, we show that w.h.p. the graph
(and its giant) has separators of sublinear size, and we make use of these small separators to
devise a compression algorithm that can store the graph using a linear number of bits in
expectation. Note that the compression maintains only the graph up to isomorphism, not the
underlying geometry. The main idea is to enumerate the vertices in an ordering that reflects
the geometry, and then storing for each vertex i the differences i− j for all neighbors j of i.
We start with a technical lemma that gives the number of edges intersecting an axis-parallel,
regular grid. (For γ > 0 with 1/γ ∈ N, the axis-parallel, regular grid with side length γ is
the union of all d− 1-dimensional hyperplanes that are orthogonal to an axis and that are
in distance kγ from the origin for a k ∈ Z.) Both the existence of small separators and the
efficiency of the compression algorithm follow easily from that formula. For detailed proofs
we refer to the full version [18].

I Lemma 11. Let η > 0. Let 1 ≤ µ ≤ n1/d be an integer, and consider an axis-parallel,
regular grid with side length 1/µ on Td. Then in expectation the grid intersects at most
O(n · (n/µd)2−β+η + (n2−αµd(α−1) + n1−1/dµ)(1 + log(n/µd))) edges.

Proof Outline. For u, v ∈ V , let ρuv be the probability that the edge uv exists and cuts the
grid. Let rmax := 1/2 be the diameter of Td. We write

ρuv =
∫ rmax

0
Pr[‖xu − xv‖ = r] · puv(r) · Pr[xu, xv in different cells of µ-grid] dr. (1)

Observe that u and v have distance r with probability density Pr[‖xu − xv‖ = r] = O(rd−1).
For puv(r) we plug in the bound from (EP1) or (EP2), respectively. Finally, using symmetry
of Td we can show that the last probability in (1) is bounded by O(min{µr, 1}). The
remainder of the proof is a straight-forward, yet technical calculation of the integral. J

Compression algorithm. We remark that our Theorem 6 does not directly follow from the
general compression scheme on graphs with small separators in [5], since our graphs only
have small separators in expectation, in particular, small subgraphs of size O(

√
logn) can

form expanders and thus not have small separators. However, our algorithm loosely follows
their algorithm as well as the practical compression scheme of [12], see also [22].

We first enumerate the vertices as follows. Recall the definition of cells from Section 2.4,
and consider all cells of level `0 := blogn/dc. Note that the boundaries of these cells induce
a grid as in Lemma 11. Since each such cell has volume Θ(1/n), the expected number of
vertices in each cell is constant. We fix a geometric ordering of these cells as in Lemma 8,
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Algorithm 2 Finding the s-th neighbor of vertex i
1: b := Select(i, BV ) . starting position of vertex i
2: k := Rank(b, BE) . number of edges and vertices before b
3: b1 := Select(k + s,BE) . starting position of s-th edge of vertex i
4: b2 := Select(k + s+ 1, BE) . bit after ending position of s-th edge of vertex i
5: return B[b1 : b2 − 1] . block that stores s-th edge of vertex i

and we enumerate the vertices in the order of the cells, breaking ties (between vertices in the
same cell) arbitrarily. From now on we assume that the vertices are enumerated in this way,
i.e., we identify V = [n], where i ∈ [n] refers to the vertex with index i.

Having enumerated the vertices, for each vertex i ∈ [n] we store a block of 1 + deg(i)
sub-blocks. The first sub-block consists of a single dummy bit (to avoid empty sequences
arising from isolated vertices). In the other deg(i) sub-blocks we store the differences i− j
using log2 |i− j|+O(1) bits, where j runs through all neighbors of i. We assume that the
information for all vertices is stored in a successive block B in the memory. Moreover, we
create two more blocks BV and BE of the same length. Both BV and BE have a one-bit
whenever the corresponding bit in B is the first bit of the block of a vertex, and BE has also
a one-bit whenever the corresponding bit in B is the first bit of an edge (i.e., the first bit
encoding a difference i− j). All other bits in BV and BE are zero.

It is clear that with the data above the graph is determined. To handle queries efficiently,
we replace BV and BE each with a rank/select data structure. This data structure allows to
handle in constant time queries of the form “Rank(b)”, which returns the number of one-bits
up to position b, and “Select(i)”, which returns the position of the i-th one-bit [36, 27, 43].
Given i, s ∈ N, we can find the index of the s-th neighbor of i in constant time by Algorithm 2.
Note that we can also compute deg(i) in constant time as Rank(bi+1, BE)−Rank(bi, BE)−1,
where bi = Select(i, BV ) and bi+1 = Select(i+ 1, BV ) are the starting positions of vertex
i and i+ 1, respectively. In particular, it is possible for Algorithm 2 to first check whether
s ≤ deg(i).

We need to show that the data structure needs O(n) bits in expectation. There are n
dummy bits, so we must show that we require O(n) bits to store all differences i− j, where
ij runs through all edges of the graph. We need log2 |i− j|+O(1) bits for each edge, and
the O(1) terms sum up to O(|E|), which is O(n) in expectation. Thus, it remains to prove
the following.

I Lemma 12. If V is enumerated geometrically, then E[
∑
ij∈E log(|i− j|)] = O(n).

Proof outline. The geometric ordering puts all the vertices that are in the same cell of a
2−`-grid in a consecutive block, for all 1 ≤ ` ≤ `0. Therefore, if e = ij does not intersect the
2−`-grid then |i− j| ≤ #{vertices in the 2−`-cell of e} ≈ n2−`. Hence, if E`+1 is the number
of edges intersecting the 2−`-grid, but not the 2−`−1-grid, then E[

∑
ij∈E log(|i − j|)] ≈∑`0

`=0 E[E`+1] log(n2−`), and we show that the latter term is O(n) using Lemma 11. J
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Abstract
We study the problem of computing the triplet distance between two rooted unordered trees
with n labeled leafs. Introduced by Dobson 1975, the triplet distance is the number of leaf triples
that induce different topologies in the two trees. The current theoretically best algorithm is
an O(n logn) time algorithm by Brodal et al. (SODA 2013). Recently Jansson et al. proposed a
new algorithm that, while slower in theory, requiring O(n log3 n) time, in practice it outperforms
the theoretically faster O(n logn) algorithm. Both algorithms do not scale to external memory.

We present two cache oblivious algorithms that combine the best of both worlds. The first
algorithm is for the case when the two input trees are binary trees and the second a generalized
algorithm for two input trees of arbitrary degree. Analyzed in the RAM model, both algorithms
require O(n logn) time, and in the cache oblivious model O( n

B log2
n
M ) I/Os. Their relative

simplicity and the fact that they scale to external memory makes them achieve the best practical
performance. We note that these are the first algorithms that scale to external memory, both in
theory and practice, for this problem.

1998 ACM Subject Classification G.2.2 Trees, G.2.1 Combinatorial Algorithms

Keywords and phrases Phylogenetic tree, tree comparison, triplet distance, cache oblivious al-
gorithm

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.21

1 Introduction

Background. Trees are data structures that are often used to represent relationships. For
example in the field of Biology, a tree can be used to represent evolutionary relationships, with
the leafs corresponding to species that exist today, and internal nodes to ancestor species that
existed in the past. For a fixed set of n species, different data or construction methods (e.g.
Q* [2], neighbor joining [13]) can lead to trees that look structurally different. An interesting
question that arises then is, given two trees T1 and T2 over n species, how different are they?
An answer to this question could potentially be used to determine whether the difference is
statistically significant or not, which in turn could help with evolutionary inferences. Several
ways of comparing two trees have been proposed in the past, with different types of trees (e.g.
rooted versus unrooted, binary versus arbitrary degree) having different distance measures
(e.g. Robinson-Foulds distance [12], triplet distance [6], quartet distance [7]). In this paper
we focus on the triplet distance computation, which is defined for rooted trees.
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x y z

(a) xy|z

x z y

(b) xz|y

y z x

(c) yz|x

x y z

(d) xyz

Figure 1 Triplet topologies.

Problem Definition. For a given rooted unordered tree T where each leaf has a unique
label, a triplet is defined by a set of three leaf labels x, y and z and their induced topology
in T . The four possible topologies are illustrated in Figure 1. For two such trees T1 and T2
that are built on n identical leaf labels, the triplet distance D(T1, T2) is the number of triplets
that are different in T1 and T2. Let S(T1, T2) be the number of shared triplets in the two
trees, i.e. leaf triples with identical topologies in the two trees. We have the relationship
that D(T1, T2) + S(T1, T2) =

(
n
3
)
.

Results. All related work can be found in [5, 1, 14, 3, 15, 9, 10, 11]. Previous and new results
are shown in the table below. For the cache oblivious model [8], the papers [5, 1, 14, 3, 10, 11]
do not provide an analysis, so here we provide an upper bound.

Year Reference Time IOs Space Non-Binary Trees

1996 Critchlow et al. [5] O(n2) O(n2) O(n2) no
2011 Bansal et al. [1] O(n2) O(n2) O(n2) yes
2013 Brodal et al. [14] O(n log2 n) O(n log2 n) O(n) no
2013 Brodal et al. [3] O(n logn) O(n logn) O(n logn) yes
2015 Jansson et al. [10, 11] O(n log3 n) O(n log3 n) O(n logn) yes
2017 new O(n logn) O( n

B
log2

n
M

) O(n) yes

The common main bottleneck with all previous approaches is that the data structures
used rely intensively on Ω(n logn) random memory accesses. This means that all algorithms
are penalized by cache performance and thus do not scale to external memory. We address
this limitation by proposing new algorithms for computing the triplet distance on binary
and non-binary trees, that match the previous best O(n logn) time and O(n) space bounds
in the RAM model, but for the first time also scale to external memory. More specifically,
in the cache oblivious model, the total number of I/Os required is O( n

B log2
n
M ). The basic

idea is to essentially replace the dependency of random access to data structures by scanning
contracted versions of the input trees. A careful implementation of the algorithms is shown
to achieve the best practical performance, thus essentially documenting that the theoretical
results carry over to practice.

2 Previous Approaches

A naive algorithm would enumerate over all
(

n
3
)
sets of 3 labels and find for each set whether

the induced topologies in T1 and T2 differ or not, giving an O(n3) algorithm. This naive
approach does not exploit the fact that the triplets are not completely independent. For
example the triplets xy|z and yx|u share the leafs x and y and the fact that the lowest
common ancestor of x and y is at a lower depth than the lowest common ancestor of z with
either x or y and the lowest common ancestor of u with either x or y. Dependencies like this
can be exploited to count the number of shared triplets faster.
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Critchlow et al. [5] exploit the depth of the leafs’ ancestors to achieve the first improvement
over the naive approach. Bansal et al. [1] exploit the shared leafs between subtrees and
reduce the problem to computing the intersection size (number of shared leafs) of all pairs of
subtrees, one from T1 and one from T2, which can be solved with dynamic programming.

The O(n2) Algorithm for Binary Trees in [14]. The algorithm for binary trees in [14]
is the basis for all subsequent improvements [14, 3, 10], including ours as well, so we will
describe it in more detail here. The dependency that was exploited is the same as in [1],
but the procedure for counting the shared triplets is completely different. More specifically,
each triplet in T1 and T2, defined by the leafs i, j and k, is implicitly anchored in the lowest
common ancestor of i, j and k. For a node u in T1 and v in T2, let s(u) and s(v) be the set of
triplets that are anchored in u and v respectively. For the number of shared triplets S(T1, T2)
we then have that

S(T1, T2) =
∑

u∈T1

∑
v∈T2

|s(u) ∩ s(v)| .

For the algorithm to be O(n2) the value |s(u) ∩ s(v)| must be computed in O(1) time.
This is achieved by a leaf colouring procedure as follows: Fix a node u in T1 and color the
leafs in the left subtree of u red, the leafs in the right subtree of u blue, let every other leaf
have no color and then transfer this coloring to the leafs in T2, i.e. identically labelled leafs
get the same color. To compute |s(u) ∩ s(v)| we do as follows: let l and r be the left and
right children of v, and let wred and wblue be the number of red and blue leafs in a subtree
rooted at a node w in T2. We then have that

|s(u) ∩ s(v)| =
(
lred

2

)
rblue +

(
lblue

2

)
rred +

(
rred

2

)
lblue +

(
rblue

2

)
lred . (1)

Subquadratic Algorithms. To reduce the time, Brodal et al. [14] applied the smaller half
trick, which specifies a depth first order to visit the nodes u of T1, so that each leaf in T1
changes color at most O(logn) times. To count shared triplets efficiently without scanning T2
completely for each node u in T1, the tree T2 is stored in a data structure denoted a
hierarchical decomposition tree (HDT ). This HDT maintains for the current visited node u
in T1, according to (1) the sum

∑
v∈T2
|s(u) ∩ s(v)|, so that each color change in T1 can be

updated efficiently in T2. In [14] the HDT is a binary tree of height O(logn) and every update
can be done in a leaf to root path traversal in the HDT, which in total gives O(n log2 n) time.
In [3] the HDT is generalized to also handle non-binary trees, each query operates the same,
and now due to a contraction scheme of the HDT the total time is reduced to O(n logn).
Finally, in [10] as an HDT the so called heavy-light tree decomposition is used. Note that the
only difference in all O(n polylogn) results that are available until now is the type of HDT
used.

In terms of external memory efficiency, every O(n polylogn) algorithm performs Θ(n logn)
updates to an HDT data structure, which means that for sufficiently large input trees every
algorithm requires Ω(n logn) I/Os.

3 The New Algorithm for Binary Trees

Overview. We will use the O(n2) algorithm described in Section 2 as a basis. The main
difference lies in the order that we visit the nodes of T1 and how we process T2 when we
count. We propose a new order of visiting the nodes of T1, which we find by applying a
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hierarchical decomposition on T1. Every component in this decomposition corresponds to a
connected part of T1 and a contracted version of T2. In simple terms, if Λ is the set of leafs
in a component of T1, the contracted version of T2 is a binary tree on Λ that preserves the
topologies induced by Λ in T2 and has size O(|Λ|). To count shared triplets, every component
of T1 has a representative node u that we use to scan the corresponding contracted version
of T2 in order to find

∑
v∈T2
|s(u) ∩ s(v)|. Unlike previous algorithms, we do not store T2 in

a data structure. We process T2 by contracting and counting, both of which can be done
by scanning. At the same time, even though we apply a hierarchical decomposition on T1,
the only reason why we do so, is so we can find the order in which to visit the nodes of T1.
This means that we do not need to store T1 in a data structure either. Thus, we completely
remove the need of data structures (and thereby random memory accesses) and scanning
becomes the basic primitive in the algorithm. To make our algorithm I/O efficient, all that
remains to be done is to use a proper layout to store the trees in memory, so that every time
we scan a tree of size s we spend O(s/B) I/Os.

Preprocessing. As a preprocessing step, first we make T1 left heavy, by swapping children
so that for every node u in T1 the left subtree is larger than the right subtree, by a depth first
traversal. Second, we change the leaf labels of T1, which can also be done by a depth first
traversal of T1, so that the leafs are numbered 1 to n from left to right. This step takes O(n)
time in the RAM model. The second step is done to simplify the process of transferring the
leaf colors between T1 and T2. The coloring of a subtree in T1 will correspond to assigning
the same color to a contiguous range of leaf labels. Determining the color of a leaf in T2 will
then require one if-statement to find in what range (red or blue) its label belongs to.

Centroid Decomposition. For a given rooted binary tree T we let |T | denote the number
of nodes in T (internal nodes and leafs). For a node u in T we let l and r be the left and
right children of u, and p the parent. Removing u from T partitions T into three (possibly
empty) connected components Tl, Tr and Tp containing l, r and p, respectively. A centroid is
a node u in T such that max{|Tl|, |Tr|, |Tp|} ≤ |T |/2. A centroid always exists and can be
found by starting from the root of T and iteratively visiting the child with a largest subtree,
eventually we will reach a centroid. Finding the size of every subtree and identifying u
takes O(|T |) time in the RAM model. By recursively finding centroids in each of the three
components, we will in the end get a ternary tree of centroids, which is called the centroid
decomposition of T , denoted CD(T ). We can generate a level of CD(T ) in O(|T |) time, given
the decomposition of T into components by the previous level. Since we have to generate at
most 1 + log2(|T |) levels, the total time required to build CD(T ) is O(|T | log |T |), hence we
get Lemma 1.

I Lemma 1. For any rooted binary tree T with n leafs, building CD(T ) takes O(n logn)
time in the RAM model.

A component in a centroid decomposition CD(T ), might have many edges crossing its
boundaries (connecting nodes inside and outside the component). The below modified centroid
decomposition, denoted MCD(T ), generates components with at most two edges crossing the
boundary, one going towards the root and one down to exactly one subtree.

Modified Centroid Decomposition. An MCD(T ) is built recursively as follows: If a com-
ponent C has no edge from below, we select the centroid c of C as a splitting node as
described above. Otherwise, let (x, y) be the edge that crosses the boundary from below,
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where x is in C and let c be centroid of C. As a splitting node choose the lowest common
ancestor of x and c. By induction every component has at most one edge from below and
one edge from above. A useful property of MCD(T ) is captured by the following lemma:

I Lemma 2. For any rooted binary tree T with n leafs, we have that h(MCD(T )) ≤ 2+2 log2 n,
where h(MCD(T )) denotes the height of MCD(T ).

Since each level of MCD(T ) can be constructed in O(n) time, we have

I Theorem 3. For any rooted binary tree T with n leafs, building MCD(T ) takes O(n logn)
time in the RAM model.

To return to our original problem, we visit the nodes of T1, given by the depth first
traversal of the ternary tree MCD(T1), where the children of every node u in MCD(T1) are
visited from left to right. For every such node u we process T2 in two phases, the contraction
phase and the counting phase.

Contraction. Let L(T2) denote the set of leafs in T2 and Λ ⊆ L(T2). In the contraction
phase, T2 is compressed into a binary tree of size O(|Λ|) whose leaf set is Λ. The contraction
is done in a way so that all the topologies induced by Λ in T2 are preserved in the compressed
binary tree. This is achieved by the following three sequential steps: prune all leafs of T2
that are not in Λ, repeatedly prune all internal nodes of T2 with no children and repeatedly
contract unary internal nodes, i.e. nodes having exactly one child.

Let u be a node of MCD(T1) and Cu the corresponding component of T1. For every
such node u we have a contracted version of T2, from now on referred to as T2(u), where
L(T2(u)) = L(Cu). The goal is to augment T2(u) with counters (see counting phase below),
so that we can find

∑
v∈T2
|s(u) ∩ s(v)| by scanning T2(u). One can imagine MCD(T1) as

being a tree where each node u is augmented with T2(u). To generate all contractions of T2
for level i of MCD(T1), which correspond to a set of disjoint connected components in T1,
we can reuse the contractions of T2 at level i− 1 in MCD(T1). This means that we have to
spend O(n) time to generate the contractions of level i, so to generate all contractions of T2
we need O(n logn) time. Note that by explicitly storing all contractions, we will also need to
use O(n logn) space. For our problem, we traverse MCD(T1) in a depth first manner, so we
only have to store a stack of contractions corresponding to the stack of nodes of MCD(T1)
that we have to remember during our traversal. Since the components at every second level
of MCD(T1) have at most half the size of the components two levels above, Lemma 4 states
that the size of this stack is always O(n).

I Lemma 4. Let T1 and T2 be two rooted binary trees with n leafs and u1, u2, ..., uk a root
to leaf path of MCD(T1). For the corresponding contracted versions T2(u1), T2(u2), ..., T2(uk)
we have that

∑k
i=1|T2(ui)| = O(n).

Counting. In the counting phase, we find
∑

v∈T2
|s(u) ∩ s(v)| by scanning T2(u) instead

of T2. This makes the total time of the algorithm in the RAM model O(n logn). We consider
the following two cases:

Cu has no edges from below.
In this case Cu corresponds to a complete subtree of T1. We act exactly like in the O(n2)
algorithm (Section 2) but now instead of scanning T2 we scan T2(u).
Cu has one edge from below.
In this case Cu does not correspond to a complete subtree of T1, since the edge from
below Cu, will point to a subtree Xu, that is located outside of Cu (for an illustration of
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Figure 2 MCD(T1): Triplets that can be anchored in u with the leafs not being in the compon-
ent Cu.

this case see Figure 2). Note that because T1 is left heavy, Xu is always rooted in a node
on the left most path from u. The leafs in Xu are important because they can be used to
form triplets that are anchored in u. Acting in the same manner as in the previous case
is not sufficient because we need to count the triplets involving Xu as well.
To address this problem, every edge (pv, v) in T2(u) between a node v and its parent pv,
is augmented with some counters about the leafs from Xu that were contracted away
in T2. For every such edge (pv, v), let s1, s2, ..., sk be the contracted subtrees rooted on
the edge. Every such subtree contains either leafs with no color or leafs from Xu that
have the color red (the color can not be blue because T1 is left heavy). For every node v
in T2(u) the counters that we have are the following:

vred: total number of red leafs in the subtree of v (including those coming from Xu).
vblue: total number of blue leafs in the subtree of v.
vts: total number of red leafs in s1, s2, ..., sk.
vps: total number of pairs of red leafs in s1, s2, ..., sk such that each pair comes from
the same contracted subtree, i.e.

∑k
i=1
(

ri

2
)
where ri is the number of red leafs in si.

The number of shared triplets that are anchored in a non-contracted node v of T2(v) can
be found like in the O(n2) algorithm using the counters vred and vblue in (1). As for the
number of shared triplets that are anchored in a contracted node on edge (pv, v), this
value is exactly

(
v.blue

2
)
· vts + vblue · vps.

Scaling to External Memory. If we store T1 in an array of size 2n− 1 by using a preorder
layout, i.e. if a node v is stored in position p, the left child of v is stored in position p+ 1 and
if x is the size of the left subtree of v the right child of v is stored in position p+ x+ 1, we
can make T1 left heavy in two depth first traversals using O(n/B) I/Os. The preprocessing
step that changes the labels of the leafs in T1 and T2 can be done in O( n

B log2
n
M ) I/Os with

a cache oblivious sorting routine, e.g. using merge sort. By scanning the left most path that
starts from the root of a component Cu, we can find the splitting node of Cu in O(|Cu|/B)
I/Os, so in total the number of I/Os spent processing T1 becomes O( n

B log2
n
M ).

We use the proof of Lemma 4 (see [4]) to initialize an array that can fit the contractions
that we need to remember while traversing MCD(T1). This array is used as a stack that
we use to push and pop the contractions of T2. Each contraction of T2 is stored in memory
using a post order layout, i.e. if a node v is stored in position p and y is the size of the right
subtree of v, the left child of v is stored in position v− y− 1 and the right child of v is stored
in position v − 1. By using a stack, counting and contracting T2(u) requires O(|T2(u)|/B)
I/Os, so the total number of I/Os spent processing T2 becomes O( n

B log2
n
M ) as well.
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Overall, our algorithm requires O( n
B log2

n
M ) I/Os in the cache oblivious model.

4 The New Algorithm for General Trees

In this algorithm we anchor the triplets of T1 and T2 in edges. Let t be a triplet with leafs i, j
and k that is either a resolved triplet ij|k or an unresolved triplet ijk, where i is to the left
of j and for the triplet ijk, k is also to the right of j. Let w be the lowest common ancestor
of i and j and (w, c) the edge from w to the child c whose subtree contains j. We anchor t
in edge (w, c). Define s′(w, c) to be the number of triplets anchored in edge (w, c).

Preprocessing. In the preprocessing step of the algorithm, we start by transforming T1 into
a binary tree, denoted b(T1). Let w be a node of T1 that has exactly k children, where k > 2.
The k edges that connect w to its children in T1 are replaced in b(T1) by a so called orange
binary tree. The root of this binary tree is w and the leafs are the k children of w in T1.
Every internal node (except the root) and edge is colored orange, hence the given name. We
assume that node w and its k children in T1, in b(T1) have the color black. This binary tree is
built in a way so that every orange node is on the left most path that starts from w, and its
left most leaf stores the heaviest child of w in T1, thus making b(T1) left heavy. The order in
which the other children of w in T1 are stored in the remaining leafs does not matter, however
for the notation below to be mathematically correct, we assume that after constructing b(T1),
the left to right order of the children of w in T1 is implicitly updated, so that it matches
the left to right order in which they appear in the leafs of the orange binary tree below w

in b(T1).
Let u be a node in b(T1) and c its right child. By construction, c must be a black node.

If u is orange, then let uroot be the root of the orange binary tree that u is part of. If u
is black, then let uroot = u. Again by construction, uroot must be the parent of c in T1.
For the edge (u, c) in b(T1), we define s′′(u, c) to be the set of triplets that are anchored in
edge (uroot, c) of T1. Note that for an edge (u′, c′) in b(T1) connecting u′ with its left child c′

we have s′′(u′, c′) = 0.
For the number of shared triplets we then have:

S(T1, T2) =
∑

(u,c)∈b(T1)

∑
(v,c′)∈T2

|s′′(u, c) ∩ s′(v, c′)| .

We can capture all triplets in T1 by coloring b(T1) instead of T1. For the nodes u and c
where c is the right child of u, the leafs of b(T1) are colored according to edge (u, c) as follows:
the leafs in the left subtree of u are colored red, the leafs in the right right subtree of u are
colored blue. If u is an orange node, then the black leafs in the remaining subtrees of the
orange binary tree that u is part of are colored green. All other leafs of b(T1) maintain their
color black.

The reason behind transforming T1 into the binary tree b(T1), is because now we can
use exactly the same core ideas described in Section 3. The tree b(T1) is a binary tree,
so we apply the same preprocessing step, except we do not make it left heavy because by
construction it already is. However, we change the labels of the leafs in b(T1) and T2, so that
the leafs in b(T1) are numbered 1 to n from left to right.

Modified Centroid Decomposition. After the preprocessing step, we build MCD(b(T1)) as
described in Section 3. Then we traverse the nodes of b(T1), given by a depth first traversal
of MCD(b(T1)), where we visit the children of every node u in MCD(b(T1)) from left to right.
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Figure 3 How a component in b(T1) translates to a component in T1.
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Figure 4 T2(u): Contracted children subtrees rooted on node v and contracted subtrees rooted
on contracted nodes (gray color) in edge (pv, v).

Like in the binary algorithm, while traversing MCD(b(T1)) we process T2 in two phases,
the contraction phase and the counting phase. The only difference after this point in the
algorithm for general trees, is the counters that we have to maintain in the contracted versions
of T2, but otherwise, the same analysis from Section 3 holds.

Contraction. The contraction of T2 with respect to a set of leafs Λ ⊆ L(T2), happens in
the exact same way as described in Section 3, i.e. we start by pruning all leafs of T2 that are
not in Λ, then we prune all internal nodes of T2 with no children, and finally, we contract
the nodes that have exactly one child.

Let u be a node of MCD(b(T1)) and Cu the corresponding component of b(T1). For every
such node u we have a contracted version of T2, denoted T2(u), where L(T2(u)) = L(Cu).
Like in the binary algorithm, the goal is to augment T2(u) with counters, so that we can
find

∑
(v,c′)∈T2

|s′′(u, c) ∩ s′(v, c′)| by scanning T2(u) instead of T2.
Because of the location where the triplets are anchored, in T2(u) every leaf that was

contracted away, must have a color and be stored in some way. The color of each leaf depends
on the type of the component that we have in b(T1) and the splitting node that is used for
that component. For example, in Figure 3 the contracted leafs from Xu will have the red
color because like in the binary algorithm b(T1) is left heavy. The contracted leafs from the
children subtrees of up in T1 can either have the color green or black. If u in b(T1) happens
to be orange and part of the orange binary tree that up is the root of, then the color must
be green, otherwise black. Finally, every leaf that is not in the subtree defined by up, and
thus is in Yu, must have the color black. The way we store this information is described in
the counting phase below.

Counting. In Figure 4 we illustrate how a node v in T2(u) can look like. The contracted
subtrees are illustrated with the dark gray color. Every such subtree contains some number



G. S. Brodal and K. Mampentzidis 21:9

of red, green and black leafs. The counters that we need to maintain should be so that if v
has k children in T2(u), then we can count all shared triplets that are anchored in every child
edge (including those of the contracted children subtrees) of v in O(k) time. At the same
time, in O(1) time we should be able to count all shared triplets that are anchored in every
child edge of every contracted node that lies on edge (pv, v). In this way, the counting phase
will require O(|T2(u)|) time, hence we will get the same bounds like in the binary algorithm.
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In v we have the following counters:
vi: number of leafs with color i (including the contracted leafs) in the subtree of v,
where i ∈ {red, blue, green}.
vblack: number of black leafs (including the contracted leafs) not in the subtree of v.

We divide the rest of the counters into two categories. The first category corresponds to
the leafs in the contracted children subtrees of v and each counter will be stored in a variable
of the form vA.x. The second category corresponds to the leafs in the contracted subtrees in
edge (pv, v) and each counter will be stored in a variable of the form vB.x.

For the first category A we have the following counters:
vA.i: total number of leafs with color i in the contracted children subtrees of v, where
i ∈ {red, green, black}.
vA.red,green: total number of pairs of leafs where one is red, the other is green and one leaf
comes from one contracted child subtree of v and the other leaf comes from a different
contracted child subtree of v.

While scanning the k children edges of v from left to right, for the child c′ that is the mth

child of v, we also maintain the following:
ai: total number of leafs with color i from the first m− 1 children subtrees, including the
contracted children subtrees, where i ∈ {red, blue, green}.
pi,j: total number of pairs of leafs from the first m− 1 children subtrees, including the
contracted children subtrees, where one has color i, the other has color j and they both
come from different subtrees (one might be contracted and the other non-contracted).
We have that (i, j) ∈ {(red, green), (red, blue), (blue, green)}.
tred,blue,green: total number of leaf triples from the first m−1 children subtrees, including
the contracted children subtrees, where one is red, one is blue and one is green, and
all three leafs come from different subtrees (some might be contracted, some might be
non-contracted).

Every variable is initialized and updated in the following order:
(ared, ablue, agreen) = (vA.red, 0, vA.green)
pred,green = vA.red,green

pred,blue = pblue,green = tred,blue,green = 0
ai = ai + c′

i, where i ∈ {red, blue, green}.
pi,j = pi,j + ai · c′

j + aj · c′
i, where (i, j) ∈ {(red, green), (red, blue), (blue, green)}

tred,blue,green = tred,blue,green + pred,green · c′
blue + pred,blue · c′

green + pblue,green · c′
red

After finishing scanning the k children edges of v, we can compute the shared triplets that
are anchored in every child edge of v (including the children edges pointing to contracted
subtrees) as follows: for the total number of shared resolved triplets, denoted totA.res, we
have that totA.res = pred,blue · vblack and for the total number of shared unresolved triplets,
denoted totA.unres, we have that totunres = tred,blue,green.

The second category B of counters will help us count triplets involving leafs (contracted
and non-contracted) from the subtree of v and leafs from the contracted subtrees rooted on
edge (pv, v). We maintain the following:

vB.i: total number of leafs with color i in all contracted subtrees rooted on edge (pv, v),
where i ∈ {red, green, black}.
vB.red,green: total number of pairs of leafs where one is red and the other is green such
that one leaf comes from a contracted child subtree of a contracted node v′ and the other
leaf comes from a different contracted child subtree of the same contracted node v′.
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vB.red,black: total number of pairs of leafs where one is red and the other is black such
that the red leaf comes from a contracted child subtree of a contracted node v′ and the
black leaf comes from a contracted child subtree of a contracted node v′′. For v′ and v′′

we have that v′′ is closer to vp than v′.

For the total number of shared unresolved triplets, denoted totB.unres, that are anchored
in the children edges of every contracted node that exists in edge (vp, v), we have that
totB.unres = vblue · vB.red,green. For the total number of shared resolved triplets, de-
noted totB.res, that are anchored in the children edges of every contracted node that exists
in edge (vp, v), we have that totB.res = vblue · vB.red,black + vblue · vB.red · (vblack − vB.black).

5 Experiments

The implementation of both algorithms was made using the C++ programming language.
The source code can be found in https://github.com/kmampent/CacheTD.

The Setup. The experiments were performed on a machine with 8GB RAM, Intel(R)
Core(TM) i5-3470 CPU @ 3.20GHz, 32K L1 cache, 256K L2 cache and 6144K L3 cache. The
operating system was Ubuntu 16.04.2 LTS. The compiler used was g++ 5.4 and cmake 3.5.1.

Generating Random Trees. We use two different models for generating input trees. The
first model is called the random model. A tree T with n leafs in this model is generated as
follows:

Create a binary tree T ′ with n leafs as follows: start with a binary tree T ′ with two leafs.
Iteratively pick a leaf l uniformly at random. Make l an internal node by appending a
left child node and a right child node to l, thus increasing the number of leafs in T ′ by
exactly 1.
With probability p contract every internal node u of T ′, i.e make the children of u be the
children of u’s parent and remove u.

The second model is called the skewed model. In this model, we can control more directly
the shape of the input trees. A tree T with n leafs in this model is generated as follows:

Create a binary tree T ′ with n leafs as follows: let 0 ≤ α ≤ 1 be a parameter, u some
internal node in T , l and r the left and right children of u, and T (u), T (l) and T (r) the
subtrees rooted on u, l and r respectively. Create T ′ so that for every internal node u
we have |T (l)|

|T (u)| ≈ α, i.e. |Tl| = max(1,min(ba · nc, n− 1)) and |Tr| = 1− |Tl|, where |Tl|
and |Tr| are the number of leafs in T (l) and T (r) respectively.
With probability p contract every internal node u of T ′ like in the random model.

In both models, after creating T , we shuffle the leaf labels by using std::shuffle1

together with std::default_random_engine2.

Implementations Tested. Let p1 and p2 denote the contraction probability of T1 and T2
respectively. When p1 = p2 = 0, the trees T1 and T2 are binary trees, so in our experiments
we use the algorithm from Section 3. In all other cases, the algorithm from Section 4 is used.
Note that the algorithm from Section 4 can handle binary trees just fine, however there is an

1 http://www.cplusplus.com/reference/algorithm/shuffle/
2 http://www.cplusplus.com/reference/random/default_random_engine/
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Figure 5 Time performance in the random model.

extra overhead (factor 1.8 slower) compared to the algorithm from Section 3 that comes due
to the additional counters that we have to maintain for the contractions of T2.

We compared our implementation with previous implementations of [10] and [14, 3] avail-
able at http://sunflower.kuicr.kyoto-u.ac.jp/~jj/Software/ and http://users-cs.
au.dk/cstorm/software/tqdist/ respectively. The implementation of the O(n log3 n) al-
gorithm in [10] has two versions, one that uses unordered_map3, which we refer to as CPDT,
and another that uses sparsehash4, which we refer to as CPDTg. For binary input trees
the hash maps are not used, thus CPDT and CPDTg are the same. The tqdist library [15],
which we will refer to as tqDist, has an implementation of the binary O(n log2 n) algorithm
from [14] and the general O(n logn) algorithm from [3]. If the two input trees are binary
the O(n log2 n) algorithm is used. We will refer to our new algorithm as CacheTD.

Statistics. We measured the execution time of the algorithms with the clock_gettime
function in C++. Due to the different parser implementations, we do not consider the time
taken to parse the input trees. We used the PAPI library5 for statistics related to L1, L2 and
L3 cache accesses and misses. Finally, we count the space of the algorithms by considering
the Maximum resident set size returned by /usr/bin/time -v.

Results. The experiments are divided into two parts. In the first part, we look at how the
algorithms perform when the memory requirements do not exceed the available main memory
(8G RAM). In the second part, we look at how they perform when the memory requirements
exceed the available main memory (by limiting the available RAM to the operating system
to be 1GB), thus forcing the operating system to use the swap space, which in turn can for
large enough input trees yield the very expensive disk I/Os.

RAM experiments. For the random model, in Figure 5 we illustrate a time comparison
of all implementations for trees of up to 221 leafs (∼ 2 million) with varying contraction
probabilities. Every data point is the average of 10 runs. In all cases CacheTD achieves the
best time performance. The space and L1/L2/L3 cache performance of CacheTD is the best

3 http://en.cppreference.com/w/cpp/container/unordered_map
4 https://github.com/sparsehash/sparsehash
5 http://icl.utk.edu/papi/

http://sunflower.kuicr.kyoto-u.ac.jp/~jj/Software/
http://users-cs.au.dk/cstorm/software/tqdist/
http://users-cs.au.dk/cstorm/software/tqdist/
http://en.cppreference.com/w/cpp/container/unordered_map
https://github.com/sparsehash/sparsehash
http://icl.utk.edu/papi/
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Figure 6 How the alpha parameter affects running time (n = 221).

Table 1 Time performance when limiting the available RAM to be 1GB. For both tables we have
α = 0.5. For the left table we have p1 = p2 = 0 and for the right table p1 = p2 = 0.5.

n CPDT/CPDTg tqDist CacheTD

217 0m:01s 0m:08s 0m:01s
218 0m:02s 3m:10s 0m:01s
219 0m:05s 2h:16m 0m:01s
220 0m:34s - 0m:01s
221 7h:09m - 0m:03s
222 - - 0m:35s
223 - - 10m:09s
224 - - 43m:52s

n CPDT CPDTg tqDist CacheTD

217 0m:01s 0m:01s 0m:03s 0m:01s
218 0m:03s 0m:03s 1m:18s 0m:01s
219 0m:10s 0m:07s 19m:02s 0m:01s
220 1h:58m 6h:32m >10h 0m:02s
221 - - - 0m:56s
222 - - - 4m:11s
223 - - - 24m:44s
224 - - - 2h:13m

as well (see [4]). For the skewed model, in Figure 6 we plot the alpha parameter against
the execution time of the algorithms, when n = 221. The alpha parameter has the least
effect on CacheTD, with the maximum running time being only a factor of 1.1 larger than
the minimum. From Section 2, CPDT and CPDTg use the heavy light decomposition for T2.
When α approaches 0 or 1, the number of heavy paths that will be updated because of a leaf
color change decreases, thus the total number of operations of the algorithm decreases as
well (see [4]).

I/O experiments. The results are included in Table 1. Each cell contains the execution
time (including the waiting time due to disk I/Os). For this experiment we used the time
function of Ubuntu and thus also considered the time taken to parse the input trees. Each
cell contains the result of 1 run and for input trees with 223 and 224 leafs we used the 128 bit
implementation of the new algorithms to avoid numeric overflows. The exact running times
vary from run to run, but the general outcome is the same: unlike CacheTD, the performance
of CPDT, CPDTg and tqDist deteriorates significantly the moment they start performing disk
I/Os. More elaborate I/O experiments can be found in the arXiv version of the paper [4].
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Abstract
In the adversarial edge arrival model for maximum cardinality matching, edges of an unknown
graph are revealed one-by-one in arbitrary order, and should be irrevocably accepted or rejected.
Here, the goal of an online algorithm is to maximize the number of accepted edges while main-
taining a feasible matching at any point in time. For this model, the standard greedy heuristic
is 1/2-competitive, and on the other hand, no algorithm that outperforms this ratio is currently
known, even for very simple graphs.

We present a clean Min-Index framework for devising a family of randomized algorithms,
and provide a number of positive and negative results in this context. Among these results, we
present a 5/9-competitive algorithm when the underlying graph is a forest, and prove that this
ratio is best possible within the Min-Index framework. In addition, we prove a new general
upper bound of 2

3+1/φ2 ≈ 0.5914 on the competitiveness of any algorithm in the edge arrival
model. Interestingly, this bound holds even for an easier model in which vertices (along with
their adjacent edges) arrive online, and when the underlying graph is a tree of maximum degree
at most 3.
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method.
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1 Introduction

Graph matchings are cornerstone problems in combinatorial optimization, that have extens-
ively been studied by the discrete mathematics, computer science, and operations research
communities. In the most fundamental setting, given an undirected graph G = (V,E), our
objective is to identify a maximum cardinality matching, namely, a subset of edges M ⊆ E
without any vertices in common. Motivated by emerging applications in online advertising,
numerous generalizations of this classic problem have been investigated in the last two
decades from the perspective of both offline and online settings.
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In online computation, the seminal work of Karp, Vazirani, and Vazirani [14] studies an
online model of maximum cardinality matching in which the underlying graph is bipartite.
Specifically, the vertices on one side of the partition are known in advance, whereas those
on the other side arrive one-by-one in online fashion. Upon the arrival of a vertex, all its
adjacent edges are revealed simultaneously; the algorithm is then required to irrevocably
decide how to match the newly arrived vertex. For this setting, Karp et al. designed a
randomized (1− 1/e)-competitive algorithm, and showed that the latter factor is best possible.
Due to the breadth and depth of subsequent research on this one-sided arrival model, it
is beyond the scope of this paper to provide a comprehensive literature review. For this
purpose, we refer the reader to a number of selected papers on this topic [12, 3, 18, 1, 6, 7],
as well as to additional work on non-adversarial settings, in which the input sequence is
randomly generated [10, 5, 9, 15, 13, 16], and finally, to the excellent survey of Mehta [17].

Additional online models, most of which are somewhat more difficult in terms of the
achievable competitive ratio, have been proposed in recent years. Wang and Wong [20]
introduced a vertex arrival model, where vertices from either side of the partition arrive
online. Here, whenever a vertex arrives, all edges connecting this vertex to previously arrived
vertices are revealed simultaneously. Wang and Wong demonstrated that this model is strictly
harder than the one-sided vertex arrival model of Karp et al. [14] by proving an upper bound
of 0.6252 < 1 − 1/e. In addition, they presented a fractional matching algorithm with a
competitive ratio of 0.526. An even harder setting is the edge arrival model, where edges
are revealed one-by-one in arbitrary order, and should be irrevocably accepted or rejected.
For this model, the simple greedy heuristic, that deterministically adds an arriving edge to
the current matching whenever possible, is 1/2-competitive. Consequently, the main open
question is whether we can attain competitiveness strictly better than 1/2.

Existing results for relaxed models. As addressing the above question in the edge arrival
model seems particularly challenging, recent efforts have mainly concentrated on various
relaxations. One such relaxation allows for preemption, where the algorithm is allowed to
discard previously accepted edges. For this model, Epstein, Levin, Segev, and Weimann [8]
established an upper bound of 1

1+ln 2 ≈ 0.591 on the competitiveness of any algorithm, even
on bipartite graphs. To our knowledge, this is the best known upper bound for the edge
arrival model without preemption as well. Chiplunkar, Tirodkar, and Vishwanathan [4]
designed a 15/28 ≈ 0.535-competitive algorithm for a special case of the vertex arrival model
on a tree graph. Very recently, Tirodkar and Vishwanathan [19] devised a 33/64 ≈ 0.515-
competitive algorithm for trees in the edge arrival model. As mentioned earlier, these results
are heavily based on preemptions. Guruganesh and Singla [11] studied a different type of
relaxation, in which edges arrive according to a uniformly-picked random permutation, rather
than in an arbitrary adversarial order. Under this assumption, they were able to design
a (1/2 + δ)-competitive algorithm, for some absolute constant δ > 0. Nevertheless, for the
adversarial edge arrival model, no algorithm that outperforms the basic greedy heuristic
is known at present time, even for seemingly-simple network topologies, such as trees or
bounded-degree graphs.

The Min-Index framework. In this paper, we consider the adversarial edge arrival model
for maximum cardinality matching. Here, a randomized algorithm can be thought of as
a procedure that maintains at any given time, explicitly or implicitly, a distribution over
matchings. These are updated whenever a new edge arrives, subject to the respective online
constraints on the allowable updates. However, since maintaining a general distribution of this
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Algorithm 1 Min-Index(k, p1, . . . , pk)
Initialization: Mi ← ∅, for every i = 1, . . . , k.
When edge e arrives:
If e cannot be added to any of the matchingsM1, . . . ,Mk, reject this edge. Otherwise, update
Mi ←Mi ∪ {e}, where i is the minimal index for which Mi ∪ {e} is a feasible matching.
Return Mi with probability pi.

nature may be a difficult task, we propose a simple family of randomized algorithms, which is
referred to as the Min-Index framework. Our generic algorithm maintains a pre-determined
distribution over k matchings, M1, . . . ,Mk, and associates each matching Mi with a fixed
probability pi, such that

∑k
i=1 pi = 1. Whenever a new edge arrives, it is greedily accepted

to the first matching (index-wise) for which this augmentation is possible; when no such
matching exists, the current edge is rejected. As a result, we obtain a clean framework that
directly leads to a randomized online matching algorithm, whose formal statement is given
in Algorithm 1.

1.1 Our results
Our main contribution is to prove tight upper and lower bounds of 5/9 ≈ 0.555 for the
Min-Index framework on forest graphs, as stated in the following theorem.

I Theorem 1. For a forest graph, the generic Min-Index algorithm instantiated with k = 3
and (p1, p2, p3) = (5/9, 3/9, 1/9) is 5/9-competitive for the edge arrival model. Moreover, any
instantiation of Min-Index, with any number of matchings and respective probabilities, is at
most 5/9-competitive for forest graphs.

This result improves on that of Chiplunkar et al. [4], who obtained (in a vertex arrival
model) a competitive ratio of 15/28 ≈ 0.535 on forests, as well as on the results of Tirodkar
and Vishwanathan [19], who obtained (for the edge arrival model) a 33/64 ≈ 0.515-competitive
algorithm. In fact, as mentioned earlier, both of these bounds are in an easier model, allowing
the online algorithm to preempt edges.

As a warmup, we also show that for graphs of maximum degree 2 (i.e., union of paths
and cycles) the Min-Index algorithm with k = 2 matchings, picked with probabilities
(p1, p2) = (2/3, 1/3), is 2/3-competitive. This result is shown to be best possible for any
algorithm in the edge arrival model.

For graphs of maximum degree d, we prove that any instantiation of Min-Index is at
most 1

2 (1 + 1
2d−1 )-competitive, even on bipartite graphs. In spite our best efforts, we could

not match this bound. However, inspired by the general idea behind this framework, we
design a fractional 1

2 (1 + 1
2d−1 )-competitive algorithm on graphs of maximum degree d. In

other words, our online procedure computes a fractional matching whose objective value
with respect to the standard LP-relaxation of maximum cardinality matching (see Figure 1)
is within factor 1

2 (1 + 1
2d−1 ) of optimal.

Our final contribution is to establish a general upper bound for any online algorithm.

I Theorem 2. The competitive ratio of any fractional (or randomized) online algorithm for
maximum matching in the vertex arrival model even for subcubic trees is at most 2

3+1/φ2 ≈
0.5914, where φ = 1+

√
5

2 is the golden ratio.

Interestingly, this result holds even in the vertex arrival model, when the underlying
graph is a tree of maximum degree 3. On the one hand, this bound still leaves some marginal
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(P) maximize
∑
e∈E

ye (D) minimize
∑
v∈V

xv

subject to:
∑
e∈δ(v)

ye ≤ 1 ∀v ∈ V subject to: xu + xv ≥ 1 ∀e ∈ E

ye ≥ 0 ∀e ∈ E xv ≥ 0 ∀v ∈ V

Figure 1 The primal matching problem (P) and its dual the vertex cover problem (D).

room for improvements in comparison to our 5/9 ≈ 0.555-competitive algorithm on forests,
and our fractional 4/7 ≈ 0.571 algorithm for subcubic graphs (note that 1

2 (1 + 1
2d−1 ) = 4/7

for d = 3). On the other hand, 2
3+1/φ2 ≈ 0.5914 improves on the currently best-known upper

bound of 0.6252 for the vertex arrival model, due to Wang and Wong [20]. We note in passing
that, for the more restrictive edge arrival model (even with preemption), a slightly better
upper bound of 1

1+ln 2 ≈ 0.5906 was proven by Epstein et al. [8]. However, their bound holds
for high-degree bipartite graphs, while our bound holds even for trees of maximum degree 3.

Organization. All algorithms are given in Section 2, with corresponding upper bounds on
the Min-Index framework in Section 3. Our general upper bound is established in Section 4.

1.2 Techniques

The main technical ingredient in proving lower bounds on the competitiveness of our
algorithms is based on a primal-dual approach. Specifically, we make use of the standard
fractional matching LP and its dual, the fractional vertex cover LP, both stated in Figure 1.
To analyze the performance of our algorithms on various classes of graphs, we construct in
each setting a feasible fractional vertex cover, that will eventually allow us to bound the
expected cardinality of the resulting matching with respect to the optimal vertex cover,
and in turn, with respect to the optimal matching via weak duality. In some cases, this
construction is performed in an offline fashion, requires complete knowledge of the final input
graph, and hence can be viewed as employing a dual-fitting approach. In other cases, our
construction is fully online, and therefore also yields a monotonically increasing fractional
vertex cover. Such solutions can be rounded online with no loss in optimality on bipartite
graphs [20].

To prove upper bounds for the Min-Index algorithm, we construct adversarial sequences
that allow us to derive linear inequalities on the achievable competitive ratio in terms of
the choice probabilities of the different matchings. These inequalities naturally induce
a linear program whose optimal solution provides an upper bound on the best-possible
competitiveness. An approach in this spirit has recently been employed by Azar, Cohen, and
Roytman [2]. For our general upper bound of 2

3+1/φ2 , the adversarial sequences we consider
are parameterized according to the phase number m upon which they terminate. As a result,
in order to derive an upper bound on the competitiveness of any fractional online algorithm,
we are required to solve a corresponding linear program, parameterized by m as well. Rather
than solving this LP numerically, we obtain an explicit closed-form solution for its optimum,
thereby proposing an analytical proof for the desired upper bound, as the number of phases
m tends to infinity.
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2 Algorithms

In this section, we establish lower bounds on the competitive ratio of the generic Min-Index
framework. Specifically, in Section 2.1, we show that for graphs of maximum degree 2, an
appropriate instantiation of the Min-Index algorithm is 2/3-competitive. In Section 2.2, we
prove the first part of Theorem 1, arguing that the right instantiation of the Min-Index
algorithm is 5/9-competitive on forest graphs. Finally, in Section 2.3, we design a fractional
1
2 (1 + 1

2d−1 )-competitive algorithm for graphs of maximum degree at most d.

2.1 A 2/3-competitive algorithm for graphs of maximum degree 2
As a warm-up, we demonstrate some of our ideas by analyzing how the Min-Index algorithm
performs on graphs of maximum degree 2. Such graphs can be viewed as a union of vertex-
disjoint cycles and paths, whose edges are revealed to the algorithm one-by-one. Due to
space limitations, the proof of Theorem 3 below is omitted. We remark that this proof also
shows that a competitive ratio of 3/2 can be attained for the online fractional vertex cover
problem in graphs of maximum degree 2.

I Theorem 3. On graphs on maximum degree 2, the Min-Index algorithm with k = 2
matchings, picked with probabilities (p1, p2) = (2/3, 1/3), is 2/3-competitive.

2.2 A 5/9-competitive algorithm for forest graphs
In this section, we design a randomized 5/9-competitive algorithm when the underlying graph
is a forest. Specifically, as stated in the next theorem, this competitive ratio is attained by
our Min-Index algorithm.

I Theorem 4. On forests, the Min-Index algorithm with k = 3 matchings, picked with
probabilities (p1, p2, p3) = (5/9, 3/9, 1/9), is 5/9-competitive.

Proof. Clearly, the algorithm returns a feasible matching. Thus, it remains to analyze the
expected cardinality of its output matching, given by p1 · |M1| + p2 · |M2| + p3 · |M3| =
5
9 · |M1| + 3

9 · |M2| + 1
9 · |M3|. To this end, we use once again a primal-dual approach, by

constructing a feasible fractional vertex cover to the dual LP (D), shown in Figure 1. We
then prove that the expected cardinality of the matching produced by the algorithm is at
least 5/9 times the value of this fractional vertex cover.

In the (omitted) proof of Theorem 3, we construct a dual solution step-by-step, resulting
in an algorithm with a similar competitive ratio for the online fractional vertex cover problem.
On the other hand, in this case the (dual) fractional vertex cover is constructed retrospectively,
once the input sequence has ended. As the final graph is guaranteed to be a forest, we
separately define a feasible vertex cover for each tree of the forest. To this end, consider such
a tree, T . We first root T at an arbitrarily-picked vertex r, and orient the edges from the
root down toward the leaves, such that each vertex other than r has one ingoing edge. With
respect to this orientation, for each edge e = (u, v) that was oriented u→ v, we update the
fractional vertex cover according to the 4 possible decisions of our algorithm:
1. When e = u→ v is accepted to M1: xu ← xu + 3/5 and xv ← xv + 2/5.
2. When e = u→ v is accepted to M2 (after being rejected from M1): xu ← xu + 2/5 and

xv ← xv + 1/5.
3. When e = u → v is accepted to M3 (after being rejected from both M1 and M2):

xu ← xu + 1/5 and xv is not updated.
4. When e = u → v is rejected from M1, M2, and M3: The values xu and xv are not

updated.

ESA 2017
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First, we claim that the expected cardinality of the matching produced by our algorithm
is precisely 5

9 times the value of the fractional vertex cover solution we have just constructed.
This claim is straightforward, as whenever an edge e is accepted to one of the matchings Mi,
corresponding to cases 1-3 above, the expected cardinality of the matching increases by pi.
On the other hand, it is easy to verify that, by our construction, the increase in the fractional
vertex cover solution is exactly 9

5pi. In case 4, when an edge e is not accepted to any of the
matchings, the vertex cover solution remains unchanged. Thus, it remains to prove that the
fractional vertex cover is indeed feasible. To this end, we show that xu + xv ≥ 1 for every
edge e = u→ v by inspecting the 4 possible decisions of our algorithm.

Case 1: The edge e = u→ v is accepted to M1. In this case, due to the updates
xu ← xu + 3/5 and xv ← xv + 2/5, we clearly have xu + xv ≥ 1.

Case 2: The edge e = u→ v is accepted to M2. Since e was rejected from M1, there
must be an edge e′ ∈M1 that is adjacent to e. By construction, the vertex cover update due
to the edge e increases xu + xv by 3

5 , whereas that of e
′ contributes at least 2

5 to xu + xv,
meaning that e is fractionally covered.

Case 3: The edge e = u→ v is accepted to M3. Since e was rejected from both M1
and M2, there must be a pair of edges, e1 ∈ M1 and e2 ∈ M2, that are both adjacent to
e. Due to the update rule in this case, the edge e caused xu + xv to increase by 1

5 , and it
remains to show that the combined contribution of e1 and e2 to xu + xv is at least 4

5 . Note
that the orientation of T guarantees that u has at most one ingoing edge. Therefore, at most
one of e1 and e2 is of the form w → u, and we are left with considering the following cases:

When e1 = w → u: Here, e2 is necessarily of the form v → z or u→ z. It follows that e1
contributes 2

5 to xu whereas e2 contributes 2
5 to either xv or xu.

When e2 = w → u: Then, e1 is of the form v → z or u→ z. In this case, e2 contributes
1
5 to xu, and e1 contributes 3

5 to either xv or xu.
When both e1 and e2 are of the form v → z or u→ z: The respective contributions of e1
and e2 to xu + xv are 3

5 and 2
5 .

Case 4: The edge e = u→ v is rejected from M1, M2, and M3. Since e is rejected
from M1, M2, and M3, this edge must be adjacent to some e1 ∈M1, e2 ∈M2, and e3 ∈M3.
We prove that the total contribution of these three edges to xu + xv is at least 1. Similar to
the argument used in case 3, at most one edge out of e1, e2, and e3 is of the form w → u,
and we therefore consider the following cases:

When e1 = w → u: The contribution of e1 to xu is 2
5 . The contribution of e2 to xv or xu

is 2
5 , and the contribution of e3 to xv or xu is 1

5 . Hence, xu + xv ≥ 1.
When e2 = w → u: The contribution of e2 to xu is 1

5 . The contribution of e1 to xv or xu
is 3

5 , and the contribution of e3 to xv or xu is 1
5 . Once again, xu + xv ≥ 1.

When e3 = w → u: Even though e3 does not contribute to xu, the respective contributions
of e1 and e2 to xv + xu are 3

5 and 2
5 , implying that xu + xv ≥ 1.

When e1, e2, and e3 are all of the form v → z or u→ z: The contributions of e1, e2, and
e3 to xv + xu are 3

5 ,
2
5 , and

1
5 , respectively, and we have xu + xv = 6

5 > 1. J

2.3 Fractional 1
2(1 + 1

2d−1)-competitiveness for maximum degree d

In this section, we design a 1
2 (1 + 1

2d−1 )-competitive algorithm for fractional matching and
vertex cover in graphs with maximum degree d, assuming that the value d is known to the
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Algorithm 2 Fractional matching and vertex cover for graphs of maximum degree d:
Initialize y ← 0 and x← 0.
When edge e = (u, v) arrives:
Let 0 ≤ i ≤ d− 1 be the maximal integer for which ψi ≤ 1−max{

∑
e′∈δ(u) ye′ ,

∑
e′∈δ(v) ye′}.

Primal update: Set ye = ψi = 2i

2d−1 .
Dual update: Set xu ← xu + 2i

2d and xv ← xv + 2i

2d .

algorithm in advance. A fractional algorithm should irrevocably assign each arriving edge
e a fraction ye, subject to the constraint that the total sum of fractions assigned to edges
emanating from each vertex v can be at most 1, i.e.,

∑
e∈δ(v) ye ≤ 1. Although the algorithm

proposed here deviates from our general Min-Index framework, it has the same flavor. As
shown is Algorithm 2, each new edge is assigned a certain fraction, out of d possible values,
which is (greedily) chosen as the largest possible such value. In order to simplify subsequent
notation, for i = 0, 1, . . . , d− 1, let ψi = 2i

2d−1 , noting that
∑d−1
i=0 ψi = 1.

At first, it is not clear that our algorithm is well-defined, i.e., that upon the arrival of
(u, v) an integer 0 ≤ i ≤ d− 1 satisfying ψi ≤ 1−max{

∑
e′∈δ(u) ye′ ,

∑
e′∈δ(v) ye′} necessarily

exists. The next claim proves this property, which is useful for our analysis later on.

I Lemma 5. For every vertex u, as long as fewer than d edges adjacent to u have arrived,
we have 1−

∑
e∈δ(u) ye ≥

1
2d−1 .

Proof. Let us focus on a particular point in time, such that at most d− 1 edges adjacent to
u have arrived thus far. For 0 ≤ i ≤ d− 1, let ai be the number of edges e ∈ δ(u) for which
we currently have ye = ψi. With this notation,

∑
e∈δ(u) ye =

∑d−1
i=0 aiψi ≤ 1 and in addition∑d−1

i=0 ai ≤ d− 1.
Given a0, . . . , ad−1, we define a corresponding sequence b0, . . . , bd−1 through the following

iterative procedure. Initially, bi = ai for every i. Then, while there exists an index i with
bi ≥ 2, we decrease bi by 2 and increase bi+1 by 1. Since ψi+1 = 2ψi, this operation keeps the
sum

∑d−1
i=0 biψi unchanged (and always equal to

∑d−1
i=0 aiψi) and strictly decreases

∑d−1
i=0 bi.

It is worth noting that we could never have bd−1 ≥ 2, or otherwise
∑d−1
i=0 aiψi =

∑d−1
i=0 biψi ≥

2ψd−1 = 2 · 2d−1

2d−1 > 1. At the end of this procedure, each of b0, . . . , bd−1 takes a binary value,
and moreover,

∑d−1
i=0 bi ≤

∑d−1
i=0 ai ≤ d− 1. The desired claim now follows by observing that

∑
e∈δ(u)

ye =
d−1∑
i=0

aiψi =
d−1∑
i=0

biψi ≤
d−1∑
i=1

ψi =
d−1∑
i=1

2i

2d − 1 = 1− 1
2d − 1 ,

where the above inequality holds since the binary vector with
∑d−1
i=0 bi ≤ d−1 that maximizes∑d−1

i=0 biψi = 1
2d−1 ·

∑d−1
i=0 bi · 2i is clearly b0 = 0 and b1 = · · · = bd−1 = 1. J

I Theorem 6. On graphs of maximum degree d, Algorithm 2 is 1
2 (1 + 1

2d−1 )-competitive for
online fractional matching and fractional vertex cover.

Proof. First, the fractional matching y returned by the algorithm is feasible, as our choice of
ψi in each step guarantees that the matching constraints are satisfied. In addition, our dual
update rule ensures that the total contribution of the edge (u, v) to the fractional vertex
cover value is ∆xu + ∆xv = 2i

2d−1 = 2d−1
2d−1 · ye = [ 1

2 (1 + 1
2d−1 )]−1 · ye. Thus, the final fractional

matching value is exactly 1
2 (1 + 1

2d−1 ) times the fractional vertex cover produced by the
algorithm. It remains to prove that the latter is indeed feasible.

For this purpose, let e = (u, v) be an edge that has just arrived. We prove that, after its
dual update step, this edge is fractionally covered. For any vertex u, let yu =

∑
e′∈δ(u) ye′ be
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the total fractions assigned to edges adjacent to u just before the arrival of the edge e. Since
the input graph is guaranteed to be of degree at most d, by Lemma 5, we necessarily assigned
ye with one of the values ψ0, . . . , ψd−1. If ye = ψd−1, then ∆xu = ∆xv = 1

2 , and we have
xu+xv+∆xu+∆xv ≥ 1. In the opposite case, where ye = ψi for some 0 ≤ i ≤ d−2, since the
edge e could not be assigned with the value ψi+1, we must have max{yu, yv} > 1− 2i+1

2d−1 . As
ψ0, . . . , ψd−1 are all integer multiples of 1

2d−1 , it follows that yu and yv are such multiples as
well, meaning that the latter inequality implies max{yu, yv} ≥ 1− 2i+1

2d−1 + 1
2d−1 . In addition,

our primal and dual update rules ensure that xu = 2d−1
2d · yu and hence, max{xu, xv} =

2d−1
2d ·max{yu, yv} ≥ 2d−1

2d · (1− 2i+1−1
2d−1 ). By these observations, after the current update we

have

xu+xv+∆xu+∆xv ≥ max{xu, xv}+∆xu+∆xv ≥
2d − 1

2d ·
(

1− 2i+1 − 1
2d − 1

)
+ 2i+1

2d = 1 .J

3 Upper Bounds for our Framework

In this section, we prove upper bounds on the competitive ratio of the Min-Index algorithm,
as stated in the following theorem.

I Theorem 7. For any number of matchings k ≥ 1 and probabilities p1, . . . , pk, the Min-Index
algorithm is:
1. At most 2/3-competitive on graphs of maximum degree at most 2.
2. At most 5/9-competitive on forest graphs.
3. At most 1

2 (1 + 1
2d−1 )-competitive for bipartite graphs of maximum degree at most d.

3.1 A 2/3 upper bound for graphs of maximum degree at most 2
Proof of Theorem 7, Part (1). Consider any instantiation of the Min-Index algorithm that
makes use of k matchings with probabilities p1, . . . , pk. We define two simple adversarial
sequences of edge arrivals.
Sequence 1: A single edge e = (u, v) arrives.
Sequence 2: First, an edge e = (u, v) arrives. Then, two additional edges e1 = (u, z) and

e2 = (v, w) arrive (in any order).
Clearly, both sequences form graphs of maximum degree at most 2. Let c be the competitive
ratio of the algorithm. In Sequence 1, the optimal matching consists of the single edge
e, whereas Min-Index adds e to M1 and obtains a matching with expected cardinality p1,
meaning that c ≤ p1. In Sequence 2, the optimal matching consists of e1 and e2. However,
Min-Index adds e to M1, and subsequently adds e1 and e2 to M2. As a result, a matching
with expected cardinality p1 + 2p2 is obtained, and therefore c ≤ p1

2 + p2. To derive an upper
bound on the competitive ratio c, it remains to solve the following linear program, where p1
and p2 are treated as probabilities (i.e., required to satisfy p1 + p2 ≤ 1 and p1, p2 ≥ 0):

maximize c

subject to p1 ≥ c
p1

2 + p2 ≥ c

p1 + p2 ≤ 1
p1, p2 ≥ 0

The optimal solution to this LP is p1 = 2
3 , p2 = 1

3 , and c = 2
3 , concluding our proof. J
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M2 M1 M2 M1 M2 M1 M2

M3 M3 M3 M3 M3 M3

Figure 2 An example for Sequence 2.

I Remark. For graphs of maximum degree at most 2, a similar proof actually shows that 2/3

is the best competitive ratio achievable by any algorithm (not necessarily in our framework),
even when the algorithm is allowed to produce a fractional matching.

3.2 A 5/9 upper bound for forests
Proof of Theorem 7, Part (2). The proof follows the same lines as that of Part (1), with
more involved adversarial sequences. Consider an algorithm in our Min-Index framework
that makes use of k matchings with probabilities p1, . . . , pk. Letting N = d1/εe, we define
the following 3 adversarial sequences of edge arrivals, each forming a tree graph.
Sequence 1: A single edge e = (u, v) arrives.
Sequence 2: In this sequence, a path of length 2N + 1 is constructed, one edge after the

other. By first presenting edges located at even positions of the path, and then those in
odd positions, we ensure that the algorithm picks N edges in M1 and N + 1 edges in M2.
Once the entire path is constructed, we add next to each internal vertex u an additional
edge (u, v) connecting it to a distinct vertex v. In total, there are 2N such edges. The
final tree is depicted in Figure 2.

Sequence 3: Figure 3 describes our last sequence. Here, the overall tree is comprised of N
copies of a basic gadget, that consists of a 9-edge path with 3 additional edges emanating
from middle vertices. Two edges are “going up” from the 5-th and 6-th vertex on the
path (marked with bold lines) and another edge is “going down” from the 6-th vertex
(marked with dashed lines). The edge arrival sequence proceeds as follows: First, all
edges marked with M1 over all copies arrive, then those marked with M2, then M3, and
finally M4. Clearly, Min-Index accepts each edge according to its marked matching, since
every edge in Mi is adjacent upon arrival to edges that have already been accepted to
M1, . . . ,Mi−1. Note that all edges marked with bold lines are accepted to M4, except for
a single edge in the first copy.

Let c be the competitive of the algorithm. To obtain bounds on c in terms of the
probabilities p1, . . . , p4, for each arrival sequence we compare between the cardinality of the
optimal matching and the expected cardinality of the matching produced by the algorithm:

In Sequence 1, the optimal matching consists of the single edge e, whereas Min-Index
adds e to M1 and obtains a matching with expected cardinality p1, meaning that c ≤ p1.
In Sequence 2, the optimal matching is composed of all 2N edges in M3, whereas the
expected cardinality of the matching returned by Min-Index is N ·p1 +(N+1) ·p2 +2N ·p3.
Thus, c ≤ 1

2p1 + 1
2p2 + p3 + 1

2N p2 ≤ 1
2p1 + 1

2p2 + p3 + ε, where the last inequality holds
since N = d1/εe.
In Sequence 3, the optimal matching consists of 6N edges, by picking from each gadget
the two edges marked in bold and the 1-st, 3-rd, 7-th, and 9-th edges on the path. It is
easy to verify that this matching is indeed optimal, as its cardinality is equal to the vertex
cover created by picking the 2-nd, 4-th, 5-th, 6-th, 7-th, and 9-th vertices on each path.
On the other hand, copies 2, . . . , N of the gadget have 3 edges in M1, 4 edges in M2, 3
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1
M2 M1 M3 M2

M1

M2 M3 M1 M2

M3

M3

M4

2
M2 M1 M3 M2

M1

M2 M3 M1 M2M3

M4 M4

3
M2 M1 M3 M2

M1

M2 M3 M1 M2M3

M4 M4

Figure 3 An example for Sequence 3.

edges in M3, and 2 edges of M4 each. The first copy has one more edge in M3 and one
less edge in M4. Thus, the expected cardinality of the matching returned by Min-Index is
N ·(3p1 + 4p2 + 3p3 + 2p4)+p3−p4. Therefore, c ≤ 1

2p1 + 2
3p2 + 1

2p3 + 1
3p4 + 1

6N (p3−p4) ≤
1
2p1 + 2

3p2 + 1
2p3 + 1

3p4 + ε, where the last inequality holds since N = d1/εe.
To obtain an upper bound on the competitive ratio c, we now solve the following linear
program, where p1, . . . , p4 are treated as probabilities:

LP(ε) =maximize c

subject to p1 ≥ c
1
2p1 + 1

2p2 + p3 + ε ≥ c

1
2p1 + 2

3p2 + 1
2p3 + 1

3p4 + ε ≥ c

p1 + p2 + p3 + p4 ≤ 1
p1, p2, p3, p4 ≥ 0

It is easy to verify that the optimal solution to LP(ε) has c ≤ 5
9 + ε. To see this, note that

LP(0) ≤ LP(ε) ≤ LP(0) + ε and that the optimal solution to LP(0) is given by p1 = 5
9 ,

p2 = 3
9 , p3 = 1

9 , p4 = 0, and c = 5
9 . We conclude that 5

9 is the best competitive ratio
achievable through the Min-Index framework, even for trees with maximum degree 4. J

3.3 A 1
2(1 + 1

2d−1) upper bound for bipartite graphs
Proof of Theorem 7, Part (3). Consider an algorithm in our Min-Index framework that
makes use of k matchings with probabilities p1, . . . , pk. Given an integer parameter d, we
define the following d adversarial sequences of edge arrivals, each forming a bipartite graph
of maximum degree at most d:
Sequence 1: A single edge e = (u, v) arrives.
Sequences ` = 2, . . . , d: Let G be an (` − 1)-regular bipartite graph, with n vertices on

each side. It is well-known, as an immediate corollary of Hall’s Marriage Theorem, that
the edge set of such graphs can be partitioned into ` − 1 perfect matchings. In the
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e`4 e`3 e`2
e1 er2 er3 er4

ê`1 êr1ê`2 êr2

Figure 4 A sequence terminated at round n = 4.

sequence of edge arrivals, these matchings are presented one after the other, with an
arbitrary order for the edges within each matching. Clearly, Min-Index accepts the first
matching into M1, the second into M2, and so on. Next, we create a new edge emanating
from each of the 2n vertices into a new distinct vertex. As these edges are disjoint and
cannot be accepted to any of the matchings M1, . . . ,M`−1, they are all accepted into M`.

Let c be the competitive of the algorithm. To obtain bounds on c in terms of the
probabilities p1, . . . , pk, for each arrival sequence we compare between the cardinality of the
optimal matching and the expected cardinality of the matching produced by the algorithm:

In Sequence 1, the optimal matching consists of the single edge e, whereas Min-Index
adds e to M1 and obtains a matching with expected cardinality p1, meaning that c ≤ p1.
In Sequence 2 ≤ ` ≤ d, the optimal matching consists of all 2n edges in M`, whereas
the expected cardinality of the matching returned by Min-Index is n ·

∑`−1
t=1 pt + 2n · p`.

Therefore, c ≤ 1
2 ·
∑`−1
t=1 pt + p`.

Multiplying both sides of the upper bound due to Sequence ` by 1
2d−` , and summing the

resulting inequalities over all 1 ≤ ` ≤ d, we get
∑d
`=1 p` ≥ c ·

∑d
`=1

1
2d−` = c · (2− 1

2d−1 ). Since∑d
`=1 p` ≤ 1, it follows that the competitive ratio satisfies c ≤ (2− 1

2d−1 )−1 = 1
2 (1+ 1

2d−1 ). J

4 Upper Bound for any Algorithm

In this section, we present our general upper bound, formally stated in Theorem 2. In
particular, we prove that the competitive ratio of any fractional (or randomized) online
algorithm for maximum matching is at most 2

3+1/φ2 ≈ 0.5914, where φ = 1+
√

5
2 is the golden

ratio. In fact, this result holds even in the vertex arrival model, when the underlying graph
is a tree of maximum degree 3.

We first note that any randomized algorithm induces a marginal expected value of ye
for accepting each edge e. As these marginal values must satisfy the packing constraints of
the standard matching linear program (P), shown in Figure 1, they induce a valid fractional
algorithm. Therefore, proving an upper bound for fractional online algorithms suffices.

Arrival sequence. To understand the upcoming construction, we advise the reader to
consult Figure 4. Consider an adversarial sequence consisting of 2n − 1 edges (and 2n
vertices) that eventually forms a path as follows. In the first round, an edge e1 = (v`1, vr1)
arrives. Then, for i ≥ 2, the i-th round introduces two edges of the form e`i = (v`i , v`i−1) and
eri = (vri−1, v

r
i ), that augment the path on both sides. The adversary may terminate the

sequence once round n ends. Terminating the sequence for any n ≥ 3 is done by introducing
2(n− 2) additional “leaf edges”, adjacent to the inner vertices v`1, . . . , v`n−2 and vr1, . . . , vrn−2.
The leaf edges adjacent to v`i and vri are denoted by ê`i and êri , respectively.

Upper bound as a linear program. Consider any fractional algorithm. For an edge e, let
ye be the fraction given to this edge. In addition, for i ≥ 2, the sum of fractions given to the
edges e`i and eri is denoted by yi = ye`

i
+ yer

i
; it is convenient to denote y1 = ye1 as well.
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First observe that, since the algorithm is required to meet the matching constraints∑
e∈δ(v) ye ≤ 1 at any point in time, as soon as e`2 and er2 arrive we must have ye1 + ye`

2
≤ 1

and ye1 + yer
2
≤ 1. By adding up these inequalities, it follows that

2y1 + y2 ≤ 2 . (1)

Based on precisely the same logic, for i ≥ 2, once e`i+1 and eri+1 arrive we would get
ye`

i
+ ye`

i+1
≤ 1 and yer

i
+ yer

i+1
≤ 1, implying in turn that

yi + yi+1 ≤ 2 . (2)

Now let c be the competitive ratio of the algorithm. After rounds 1 and 2, the optimal
matchings are of cardinality 1 and 2, respectively, and therefore

c ≤ y1 and c ≤ 1
2 (y1 + y2) . (3)

In addition, if the adversarial sequence ends at round n ≥ 3, the matching constraints due to
the inner vertices v`1, . . . , v`n−2 and vr1, . . . , vrn−2 lead to the aggregate inequality

2(n− 2) ≥
n−2∑
i=1

 ∑
e∈δ(v`

i
)

ye +
∑

e∈δ(vr
i

)

ye

 = yn−1 + 2 ·
n−2∑
i=1

yi +
n−2∑
i=1

(
yê`

i
+ yêr

i

)
.

Consequently, it follows that the total fractions assigned by the algorithm to all edges is
n∑
i=1

yi +
n−2∑
i=1

(
yê`

i
+ yêr

i

)
≤

n∑
i=1

yi + 2(n− 2)− yn−1 − 2 ·
n−2∑
i=1

yi = 2(n− 2) + yn −
n−2∑
i=1

yi .

However, the optimal matching consists of 2(n− 1) edges: e`n, ern, ê`1, . . . , ê`n−2, ê
r
1, . . . , ê

r
n−2.

Thus, we get the following upper bound on the competitive ratio c:

c ≤ 1
2(n− 1) ·

(
2(n− 2) + yn −

n−2∑
i=1

yi

)
∀n ≥ 3 (4)

To summarize, the competitive ratio is upper bounded by the supremum value of c that
satisfies Inequalities (1), (2), (3), and (4), noting that the latter actually provides a separate
inequality for each n ≥ 3. Therefore, any finite subset of these inequalities provides a concrete
upper bound on the value c. For every m ≥ 4, let cm be the bound attained by the following
(finite) LP, consisting of a subset of the constraints that are equivalent to truncating the
input sequence after m rounds:

cm =maximize c

subject to c ≤ y1 (5)

c ≤ 1
2 (y1 + y2) (6)

c ≤ 1
2(n− 1) ·

(
2(n− 2) + yn −

n−2∑
i=1

yi

)
∀n = 3, . . . ,m (7)

ym−1 + ym ≤ 2 (8)

I Lemma 8. cm = 2Fm+1−2
3Fm+1+Fm−1−4 , where Fm is the m-th Fibonacci number.

Due to space limitations, we omit the proof. As the competitive ratio of any algorithm
is at most cm for any m ≥ 4, and limm→∞

Fm−1
Fm+1

= 1
φ2 , we conclude the proof by observing

that, limm→∞ cm = limm→∞
2Fm+1−2

3Fm+1+Fm−1−4 = 2
3+1/φ2 ≈ 0.591372.
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Abstract
Computing optimal deformations between two curves is a fundamental question with various
applications, and has recently received much attention in both computational topology and in
mathematics in the form of homotopies of disks and annular regions. In this paper, we examine
this problem in a geometric setting, where we consider the boundary of a polygonal domain with
spikes, point obstacles that can be crossed at an additive cost. We aim to continuously morph
from one part of the boundary to another, necessarily passing over all spikes, such that the most
expensive intermediate curve is minimized, where the cost of a curve is its geometric length plus
the cost of any spikes it crosses.

We first investigate the general setting where each spike may have a different cost. For the
number of inflection points in an intermediate curve, we present a lower bound that is linear in
the number of spikes, even if the domain is convex and the two boundaries for which we seek a
morph share an endpoint. We describe a 2-approximation algorithm for the general case, and an
optimal algorithm for the case that the two boundaries for which we seek a morph share both
endpoints, thereby representing the entire boundary of the domain.

We then consider the setting where all spikes have the same unit cost and we describe a
polynomial-time exact algorithm. The algorithm combines structural properties of homotopies
arising from the geometry with methodology for computing Fréchet distances.
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Figure 1 Polygonal domain
R bounded by polylines f ∪ g ∪
γ0 ∪ γ1. K in red squares.

f

g

γ0

γ1

D
γ

Figure 2 Disk D is convex
relative to R. γ is backwards-
but not forwards-convex.
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Figure 3 The convex hull
ghR(γ) of a curve γ ∈ Γ.

1 Introduction

Computing optimal deformations between two input curves is a fundamental building block
in many application areas, such as robotics, motion planning, geographic information systems,
and graphics. Such deformations or morphs have several salient properties, for example,
the maximum necessary length of intermediate curves. The properties of an optimal morph
between two curves also serve as a natural measure of similarity between these curves.
Examples of such measures include the Fréchet distance and its variants.

In this paper we consider the following scenario: our input is a polygonal domain with
point obstacles, similar to [6]. We aim to continuously morph from one part of the boundary
to another. The intermediate curves (or leashes) are allowed to pass over the point obstacles,
albeit for a fixed cost. We hence refer to the point obstacles as spikes to reinforce the
intuition that encountering them is costly, but that they do not form impassable barriers.
Our goal is to minimize the cost of the most expensive leash during the morph, where the
cost of a leash is defined as its length plus the cost of the spikes it encounters. We consider
both variable-cost spikes and unit-cost spikes, and describe several structural results as well
as algorithms. In the following we first introduce some necessary definitions which allow us
to state our our results more precisely.

Definitions and problem statement. Let f, g, γ0, γ1 : [0, 1] → R2 be four interior-disjoint
simple polylines (possibly of length 0) in the plane, with f(0) = γ0(0), f(1) = γ1(0), g(0) =
γ0(1), and g(1) = γ1(1), whose union bounds a polygonal domain R of n vertices. Let K ⊂ R
be a finite set of k point-obstacles which we call spikes (see Figure 1). The cost of a spike is
given by a function w : K → R≥0. We assume that spikes lie in general position in the sense
that no three spikes lie on the same geodesic in R. Standard perturbation techniques (as
also described below) can lift this assumption.

Let Γ be the family of simple curves in R from f to g; that is, all curves γ : [0, 1]→ R

with γ(0) ∈ Im(f) and γ(1) ∈ Im(g). A homotopy on R from γ0 to γ1 is a continuous
map h : [0, 1] × [0, 1] → R with h(0, ·) = γ0, h(1, ·) = γ1. All homotopies we consider
have h(t, ·) ∈ Γ for all t ∈ [0, 1]. With slight abuse of terminology, we refer to these simply as
homotopies. We call a homotopy monotone if it is injective after infinitesimal perturbation.
We refer to each curve γt : p 7→ h(t, p) as the leash of h at time t, and define the cost of a leash
as its length plus the total cost of spikes in K (with multiplicity) it encounters. The cost of
a homotopy is the cost of its maximum-cost leash. We are interested in the minimum-cost
homotopy on R from γ0 to γ1 and refer to the cost of this homotopy as the homotopy height
from γ0 to γ1 on (R,K,w).
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For two curves γ and γ′ from a monotone homotopy, denote the region between them
by R(γ, γ′); that is, R(γ, γ′) is the (possibly degenerate) topological disk bounded by γ, γ′,
the arc of f between γ(0) and γ′(0), and the arc of g between γ(1) and γ′(1). For a simple
curve γ ∈ Γ, define its swept region as R(γ0, γ) and symmetrically define its unswept region
as R(γ, γ1). We call a region D ⊆ R convex relative to R if for any two points in D, the
shortest path in R connecting those points also lies in D [20]; for this definition we do not
not charge the additional cost of any spikes. A curve γ ∈ Γ is forwards-convex if it lies on
the boundary of a region D convex relative to R, and D is contained in the swept region
of γ. Symmetrically, γ is backwards-convex if it lies on the boundary of a region D convex
relative to R, and D is contained in the unswept region of γ (see Figure 2). A curve may be
both forwards- and backwards-convex; a shortest path is always both.

Region R is convex relative to itself, and the intersection of any two convex sets relative
to R is also convex relative to R. For γ ∈ Γ define its convex hull (also known as geodesic
hull) ghR(γ) relative to R as the unique minimal region containing γ which is convex relative
to R (see Figure 3).

Consider a homotopy h that contains a leash γt that crosses several spikes. Infinitesimal
perturbation of the leash at the spikes ensures that γt no longer crosses a spike, but is
then forced into some homotopy class. In particular, this has two implications: (1) as the
perturbation tends to zero, this has no effect on the length of the leash and thus, strictly
speaking, the optimal homotopy is an infimum rather than a minimum if the given leash is
the maximum-cost one in the optimal homotopy; (2) we can decompose a single leash crossing
a number of spikes into a homotopy crossing each spike separately, essentially holding the
leash fixed—hence an optimal homotopy exists that crosses spikes one at the time.

Results and organization. We consider various settings of a spiked plane with polygonal
boundary. In Section 2, we investigate the general setting where each spike may have a
different cost. First, we consider the number of inflection points that the leash may need in
an optimal homotopy and present a lower bound that is linear in the number of spikes, even
if R is convex and only f has positive length. We then present a 2-approximation algorithm
for the general case and an optimal algorithm for computing the homotopy height for the
case that f and g have length 0 (i.e., γ1 and γ2 together form the boundary of R).

In Section 3, we consider the setting where all spikes have the same unit cost. Here we
present our main result: an algorithm to compute the exact homotopy height in polynomial
time. The algorithm combines structural properties of homotopies arising from the geometry
with methodology for computing Fréchet distances. To the best of our knowledge, these are
the first polynomial-time algorithms to compute the exact homotopy height in any setting.

Related work. Chambers et al. [5] recently proved that there always is a minimum-cost
homotopy between the boundaries of an annular surface that is an isotopy and monotone,
that is, the intermediate leashes never move “backwards”. This proof readily transfers to our
setting and is indeed supporting our results as described in Section 3.

Homotopy height was introduced independently in the computational geometry commu-
nity [7] and in the combinatorics community [4]. On triangulated surfaces, the best known
algorithm gives an O(logn) approximation, where n is the complexity of the surface [18].
More recently, it has also been studied in more general settings, where instead of having
point obstacles, obstacles are modeled by assigning a non-Euclidean metric to R [10, 11, 12].

Fréchet distance is a well studied metric. Also known as the dog-leash distance, the goal
is to minimize the length of the longest leash connecting a man walking along one curve
and a dog along the other, where the man and dog walk monotonically along the curves.
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The classic algorithm computes this metric in O(n2 logn) time [1], with many variants and
approximation algorithms having been studied since. The geodesic and homotopic Fréchet
distance are particularly related to our setting. The former is a variant where the leashes
must stay inside a polygonal boundary and remain geodesic, but no obstacles are present
inside the polygon [13]. For the latter, point or polygonal obstacles are given which no leash
may cross: this case can be solved in polynomial time [6].

Optimal morphs have also been studied in a variety of other settings. From the topology
end, minimum-area homotopies can be computed for planar or surface embedded curves
in polynomial time [9, 17, 19]. Minimum-area homologies are a closely related similarity
measure on curves that can be computed very quickly using linear algebra packages [8, 14],
but do not yield intuitive deformations or morphings in the same way as homotopy.

From the geometry and graph theory communities, much work has been done on computing
morphs between inputs; indeed, it is well known that any two drawings of the same planar
graph can be morphed to each other. Optimal morphs between such graphs are still being
studied, including work that bounds the complexity of the morph [2, 3]. However, none
these morphs bound the length of any of the "leashes" tracing the paths of vertices during
the morph. Morphs based on geodesic width [16] force all intermediate curves to not cross
the input curves (which are part of the boundary polygon in our setting); however, none of
these have been considered in the presence of obstacles. Dynamic time warping and related
concepts [15] also consider ways to match and morph curves, but again do not extend to
more general settings.

2 Variable-cost spikes

In this section, we consider the setting where each spike may have a different cost. As we
prove, the variable costs have a profound effect on the leash complexity. Nonetheless, we
obtain a general approximation algorithm as well as an optimal algorithm for a special case.

Leash complexity. We define the complexity of a leash as the number of inflection points
that are not caused by the boundary of R. In particular, the leash complexity needed for
an optimal homotopy is defined by the number of spikes that cause an inflection point.
Unfortunately, in the general case, the complexity may be linear, even when R is convex.
Correspondingly, we do not have a polynomial-time algorithm even when R is convex.

I Lemma 1. In the worst case, the leash complexity for an optimal homotopy for (R,K,w)
is Ω(|K|), even if γ0, γ1 and g have length 0 and f is convex.

Proof. For ease of exposition, we first argue the general case, using the construction illustrated
in Figure 4(a). We have n spikes, K = k1, . . . , kn, lined up in the middle, at vertical distance 1
from each other and f and g; k1 is the highest- and kn the lowest-positioned spike. Moreover,
the odd-numbered spikes have a closest point on the first half of f and the even-numbered
spikes have a closest point on the second half of f ; these closest points are at distance 0.75.
This implies that the optimal leash crossing ki has cost n − i + 1.75 + w(ki). By setting
w(ki) = c+ i, all these leashes have the same cost, for suitable constant c > 0, depending on
the longest leash necessary that does not cross a spike. Now, the homotopy height of this
instance is 1.75 + w(kn) = 1.75 + c+ n. This requires the leashes to cross the spikes in the
order of their closest points along f , that is, odd-numbered before even-numbered spikes (see
Figure 4(b)). When crossing spike k1, the leash has crossed all other odd-numbered spikes,
but none of the even-numbered spikes. Thus, the leash has a linear number of inflection
points, if we perturb all odd-numbered spikes slightly.
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(a) (c)

f

g

k1

kn

f
γ0 γ1

γ0 = γ1 = g(b)

f

g

kn−2

kn

γ0 γ1

Figure 4 (a) A leash may need linear complexity when considering variable-cost spikes. (b) Part
of the optimal homotopy, after crossing kn up to crossing kn−2. (c) This even holds in the convex
case, with one boundary path and the two initial leashes having length 0. The closest point and
corresponding distance circles are indicated for each spike.

γ0
γ1

γmid

Figure 5 When f and g have length 0, we can apply a simple greedy strategy to shrink both γ0

and γ1 onto γmid.

A similar construction can be made when we require that f is convex and γ0, γ1 and g
have length 0. This is illustrated in Figure 4(c). The same principle applies: we position
spikes such that their closest point is alternatingly on the left half and right half of f . By
setting the weights appropriately, we can again ensure that the optimal homotopy must cross
the spikes in some order along f and force a linear number of inflection points. J

Algorithms. If f and g collapse onto a point, we can compute the homotopy height in
polynomial time with a greedy algorithm. Interestingly, this contrasts the potential complexity
of the problem if γ0 and γ1 and even g collapse onto a point, as suggested by the lower bound
in Lemma 1.

I Lemma 2. We can compute in polynomial time the homotopy height of (R,K,w), if f
and g have length 0.

Proof. Consider the geodesic leash γmid between f(0) and g(0), ignoring any spikes; see
Figure 5. As described below, we greedily shrink γ0 until we reach γmid. We first compute
the geodesic leash γt between f(0) and g(0) in the same homotopy class as γ0. By definition,
γt cannot be longer than γ0. Then, we cross the minimal-cost spike k ∈ K ∩ γt, resulting
in a cost ‖γt‖ + w(k). We repeat the process from γt, until we reach γmid. Analogously,
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we shrink γ1 to γmid. The maximum of ‖γ0‖, ‖γ1‖ and all intermediate ‖γt‖+ w(k) is the
homotopy height of (R,K,w).

As all intermediate leashes from γ0 to γmid are backwards-convex, these leashes grow only
shorter. In particular, this implies that we cannot make a leash on some spike k shorter, by
first crossing other spikes that are not on the leash but in the unswept area. In other words,
we cannot improve the cost by crossing a spike k on a geodesic by first crossing spikes that
are not on the geodesic. Hence, the greedy choice is optimal. J

The above proof readily implies that the longest leash in the optimal homotopy is
determined by the initial and final leash, and thus results in the following lemma. Note that
we are interested here only in the geometric length, excluding any spikes. We capture this in
a separate lemma as it supports the unit-cost case, detailed in the next section.

I Lemma 3. If l ∈ Γ is backwards-convex and r ∈ Γ is forwards-convex, with l(0) =
r(0), l(1) = r(1), such that l and r together bound a region D convex relative to R, then
there is a monotone homotopy from l to r consisting of only backwards- and forwards-convex
leashes, and whose longest leash has length max{‖l‖, ‖r‖}.

For the general case, there is also a simple 2-approximation achievable, by using the
algorithm for the geodesic Fréchet distance.

I Lemma 4. We can compute in O(|R|2 log2 |R|) time a 2-approximation of the homotopy
height of (R,K,w).

Proof. The algorithm computes the geodesic Fréchet distance [13] in R, that is, ignoring
the spikes. Consider the optimal geodesic Fréchet matching µ. We may extend µ into a
homotopy h by infinitesimal perturbation to cross only one spike at once and by shortening
γ0 and γ1 to the geodesics between f(0) and g(0) and between f(1) and g(1) respectively.
We prove that h is a 2-approximation of the minimal-cost homotopy h∗ including the spikes.

Let c be the longest leash in h and let wmax denote the maximal cost of a spike. The
cost of h is bounded by c + wmax. Either c is defined by γ0 or γ1 (which must be in any
homotopy) or c is defined by a leash in µ: in either case, c provides a lower bound on the
maximal leash length in h′. Moreover, h′ must also cross the maximal-cost spike. Hence, the
cost of h′ is at least max{c, wmax}. We now have that c + wmax ≤ 2 ·max{c, wmax}, thus
proving that h is a 2-approximation of h∗. J

3 Unit-cost spikes

In this section, we give an algorithm to compute the homotopy height in the case where all
spikes have cost 1. We start by proving properties on the homotopy classes and lengths of
curves in Γ. These properties allow us to construct for any homotopy, a homotopy of similar
cost with a regular structure. Finally, we show how to decide the existence of such a regular
homotopy cheaper than a given cost in polynomial time.

Shortcutting curves. Consider a curve γ ∈ Γ and let D = gh(γ) be its convex hull. Let l
and r respectively be the backwards- and forwards-convex arcs of ∂D between the endpoints
of γ. Consider an arc ϕ of γ \ l or γ \ r. Let ϕ̄ be the corresponding arc of l or r between the
endpoints of ϕ. Then we refer to the disk bounded by ϕ ∪ ϕ̄ as a pocket of γ, and refer to ϕ̄
as its lid, see Figure 6. Each lid is a shortest path in R, and the pockets of γ partition D.

I Lemma 5. Let γ and γ′ ∈ Γ be two non-crossing simple curves. Each arc ψ of γ′ ∩ gh(γ)
has both endpoints on the same lid of the containing pocket of γ.
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γ′

γ

l

Figure 6 Pockets of γ with lids on r (shaded).

(b)

ri lj

γi

γjDi

Dj

x

x′

(a) (c)

γ
γ′

r′i l′j

Figure 7 (a) The curves ri and lj on ∂Di and ∂Dj , respectively. (b) The curves r′i and l′j obtained
after replacing arcs with the geodesic between x and x′. (c) An example curve γ′ in the homotopy
class of r′i that is shorter than γ (dashed).

Proof. Since the endpoints of γ′ lie on the boundary of R, ψ must have both endpoints on
the boundary of its pocket. Since ψ does not cross γ, and the pocket is bounded by an arc
of γ and a lid, the endpoints of ψ lie on the lid. J

Consider a forwards-convex and a backwards-convex curve in Γ. If these curves intersect,
they intersect in at most two points or geodesics, and occur in the same order and direction
along the curves. As such, their first and last point of intersection are naturally well defined.

I Lemma 6. Let γi and γj ∈ Γ be two non-intersecting simple curves, and assume γi lies in
the swept region of γj. Let Di = gh(γi) and Dj = gh(γj) be their convex hulls. Let ri ∈ Γ
be the forwards-convex arc of ∂Di and let lj ∈ Γ be the backwards-convex arc of ∂Dj. If ri
and lj intersect, let x and x′ be the first and last points of intersection of ri and lj. Let r′i
and l′j be the curves obtained from ri and lj by replacing their arcs in Di ∩Dj by the geodesic
between x and x′. If ri and lj do not intersect, let r′i = ri and l′j = lj. Assume the region
between γi and γj contains no spikes in its interior and consider a third simple curve γ in
this region. There is a curve γ′ with the same endpoints as γ and ‖γ′‖ ≤ ‖γ‖, such that γ′
lies in the homotopy class of r′i and l′j.

Proof. The setup is illustrated in Figure 7. We consider three cases illustrated in Figure 8,
depending on the number of bends of ri and lj on ∂(Di ∩ Dj) that are induced by γi
and γj .
(a) In the first case, assume there are no such bends on ri or lj , then the interior of Di ∩Dj

is empty. Since Di and Dj are disjoint, so are the pockets of γi and γj . If we replace all
arcs of γ that lie in pockets of γi or γj by the geodesic between the endpoints on the
corresponding lid, then we obtain a curve γ′ between r′i and l′j with ‖γ′‖ ≤ ‖γ‖. Since
there are no spikes between r′i and l′j , γ′ lies in the same homotopy class as r′i.

(b) In the second case, assume either ri or lj has no such bend on ∂(Di ∩ Dj), but the
other has at least one bend. Without loss of generality, assume that ri has at least one
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(b)

b′
b d

a
a′

c

(c)

c

c′ a
a′

(a)

Figure 8 The three cases of Lemma 6. Di ∩Dj shaded.

bend. If lj has one, a symmetric argument applies. We replace γ by a curve that passes
through both x and x′. If γ does not pass through x already, then let ϕ̄ and ψ̄ be the
lids of pockets of γi and γj , respectively, that intersect in x. It is also possible that ϕ̄ is
an edge of γi; the proof is then similar. Denote by a the arc ϕ̄ \Dj , by a′ the arc ϕ̄∩Dj

and by c the arc ψ̄ \Di. For the lids ϕ̄′ and ψ̄′ of ri and lj crossing in x′, denote by b
the arc ϕ̄′ \Dj , by b′ the arc ϕ̄′ ∩Dj and by d the arc ψ̄′ \Di, see Figure 8 (b).
We claim that γ crosses either c, or both a and a′. If γ crosses c, we are done, so assume
it does not. As a ∪ c connects γi and γj , γ must cross a ∪ c (and therefore a) an odd
number of times to connect f and g. Lemma 5 implies that γ crosses a ∪ a′ an even
number of times. Hence, a′ is crossed an odd number of times. We can thus find an arc
of γ with endpoints on a and a′, and since this arc does not cross c, it lies in the pocket
of ϕ̄. Replace this arc by the arc of ϕ̄ between those endpoints, which is a shortest path
in R that passes through x. We now have a curve with the same endpoints as γ that
passes through c or x, and this curve is not longer than γ. We allow the resulting curve
to cross γi and γj along ϕ̄, however the resulting curve contains a subcurve of γ that
connects a, a′ or c to g. Analogously, we can replace this subcurve by a curve that
crosses either x′ or d. This yields a curve from f to g that passes through c or x, and
then through x′ or d. Since lj has no bends, c and d lie on the same lid, which passes
through x and x′. Since this lid is a shortest path, we can replace the subpath between c
or x and x′ or d by a shortest path in R that passes through both x and x′.
The portions of the curve before x and after x′ can be shortcut using the techniques of
case (a) such that they lie between lj and ri and not in Di ∩Dj . This yields a curve γ′
in the homotopy class of r′i with the same endpoints as γ, and ‖γ′‖ ≤ ‖γ‖.

(c) In the final case, both ri and lj have bends on ∂(Di ∩Dj). As before, we shortcut γ
such that it first passes through x and then through x′. Let the arcs a, a′, c be as before,
and let c′ be the arc ψ̄ ∩Di. As a ∪ a′, as well as c ∪ c′ are crossed an even number of
times, but a∪ c is crossed an odd number of times, we have that either both a and a′, or
both c and c′ are crossed by γ. Replacing the arc between the crossings by the shortest
path on the corresponding lid yields a path through x with length at most that of γ.
Similarly, we can replace the remainder of the resulting path to also pass through x′.
From here, we can use the same technique as in case (b) to obtain a curve γ′ in the
homotopy class of r′i with the same endpoints as γ, and ‖γ′‖ ≤ ‖γ‖. J

3.1 Regular homotopies
Let G(a, b) denote the geodesic in R between f(a) and g(b). Given a homotopy class σ,
Gσ(a, b) denotes the geodesic between f(a) and g(b) in σ. For γ ∈ Γ denote its homotopy
class by σ(γ). If γ is a geodesic in R, we say that σ(γ) is a straight homotopy class.
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γ0

γ1

Figure 9 A decomposed homotopy. Subhomotopies Si shaded green, and Bi shaded orange.

ri li+1
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γti+1li
ri+1

(a) (c)

r′i

l′i+1

l′′i+1

r′′i

(b)

γt

γ′′t

Figure 10 (a) The region between ri and li+1 obtained from the geodesic hulls of γti and γti+1 .
(b) The curves r′i and l′i+1, and the corresponding geodesics r′′i and l′′i+1 in the same homotopy class.
(c) For all ti ≤ t ≤ ti+1, the curve γt lies in the region between the curves γti and γti+1 .

For an optimal homotopy, we may without loss of generality start by shortening γ0 into
the geodesic Gσ(γ0)(0, 0) in its homotopy class, use an optimal homotopy h from Gσ(γ0)(0, 0)
to Gσ(γ1)(1, 1), and end by lengthening the geodesic Gσ(γ1)(1, 1) into γ1. The resulting
homotopy has cost max{‖γ0‖, cost(h), ‖γ1‖}, and the computational challenge is to efficiently
find an optimal homotopy h.

We call a homotopy from Gσ(γ0)(0, 0) to Gσ(γ1)(1, 1) a regular homotopy of order m if
it can be decomposed into a sequence of homotopies S0, B1, S1, . . . , Bi, Si, . . . , Bm, Sm,
subject to the following constraints, see also Figure 9.

Si(1) = Bi+1(0) for 0 ≤ i ≤ m − 1 and Bi(1) = Si(0) for 1 ≤ i ≤ m, that is, the last
leash of a homotopy matches the first leash of the next homotopy.
For each homotopy Bi, the leashes all have the same endpoints on f and g, but the
leashes can move over spikes. Moreover, the longest leash in Bi is either Bi(0) or Bi(1).
For each homotopy Si, all leashes are geodesics in the same homotopy class σi, but the
endpoints of leashes can move along f and g.
The respective homotopy classes of leashes in S0 and Sm are σ0 = σ(γ0) and σm = σ(γ1).

In Lemma 7, we show that there exists a minimum-cost homotopy h between Gσ(γ0)(0, 0)
and Gσ(γ1)(1, 1) that is a regular homotopy of order at most k. In Lemma 8, we show that
each σi (except possibly σ0 and σm) can be assumed to be a straight homotopy class. For
each homotopy Bi, some leash can be assumed be the geodesic in R between its endpoints.

For a homotopy h, denote by αh(t) ∈ [0, 1], the position of the start of leash h(t) in the
parameter space of f (such that f(αh(t)) = h(t, 0)). Symmetrically, denote by βh(t) ∈ [0, 1]
the position of the end of that leash in the parameter space of g (such that g(βh(t)) = h(t, 1)).
If h is monotone, then αh and βh : [0, 1]→ [0, 1] are continuous nondecreasing surjections.

I Lemma 7. Let h be a monotone homotopy from Gσ(γ0)(0, 0) to Gσ(γ1)(1, 1) of cost less
than L, then there exists a regular homotopy of cost at most L.
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Proof. By monotonicity, as t increases, the number of spikes in the swept region of γt cannot
decrease. Let {t1, . . . , tk} be the minimum value ti for which the swept region of γti contains
at least i spikes. For each leash γti of h, let Di = ghR(γti) be its geodesic hull, and let li
and ri ∈ Γ respectively be the backwards-convex and forwards-convex curves on the boundary
of Di connecting γti(0) with γti(1). For 1 ≤ i ≤ k, define r′i and l′i+1 respectively to be the
curves obtained by replacing the arcs of ri and respectively li+1 inside Di ∩ Di+1 by the
geodesic between the crossings of li+1 and ri (if any), dashed in Figure 10(a). Then l′i lies in
the swept region of r′i, and r′i lies in that of l′i+1. Let r′′i and l′′i be the geodesics with the
same endpoints and homotopy class as r′i and l′i, respectively (see Figure 10(b)).

Lemma 3 gives us a homotopy Bi from l′′i to r′′i whose leashes have length at most
max{‖l′′i ‖, ‖r′′i ‖}. Including the cost of spikes, the cost of Bi is at most max{‖l′′i ‖, ‖r′′i ‖}+1+ε
(for any ε > 0) by perturbing leashes to each encounter at most one spike. Because l′′i is a
geodesic in the same homotopy class as l′i, we have ‖l′′i ‖ ≤ ‖l′i‖. Moreover, l′i is a copy of li
with a subpath replaced by a shortest path, we have ‖l′i‖ ≤ ‖li‖. Finally, because li lies on
arcs of the convex hull of γti , we have ‖li‖ ≤ ‖γti‖. Therefore, we have ‖l′′i ‖ ≤ ‖γti‖, and by
symmetry , ‖r′′i ‖ ≤ ‖γti‖. Since γti encounters a spike, and the cost of h is less than L, we
have ‖γti‖ < L− 1. Hence, cost(Bi) ≤ max{‖l′′i ‖, ‖r′′i ‖}+ 1 + ε ≤ ‖γti‖+ 1 + ε ≤ L.

Define r′′0 = Gσ(γ0)(0, 0) and l′′k+1 = Gσ(γ1)(1, 1). Moreover, let t0 = 0 and tk+1 = 1. It
remains to construct homotopies Si between r′′i and l′′i+1 for 0 ≤ i ≤ k. Since there are
no spikes interior to the region between r′i and l′i+1, they lie in the same homotopy class,
which we denote by σi. To construct a homotopy from r′′i to l′′i+1, we consider the curves γt
with ti ≤ t ≤ ti+1, and replace them by the geodesic γ′′t = Gσi(αh(t), βh(t)) in homotopy
class σi (see Figure 10(c)). These geodesics move continuously with t, so it remains to
show that ‖γ′′t ‖ ≤ ‖γt‖. This is not immediate since γ′′t may lie in a different homotopy
class than γt. Instead, we use Lemma 6, which tells us that there is a curve with the same
endpoints in the homotopy class of r′i with length at most that of γt. Because γ′′t is a geodesic
in the same homotopy class, its length is also at most that of γt. J

The straight homotopy classes in R can be enumerated by taking the geodesic between
any two spikes in R, and extending it to the two points on the boundary of R. It is at
these points where the geodesic hits the boundary of R that the homotopy class of the
geodesic between points on the boundary of R changes: one can slide these points clockwise
or counter-clockwise such the geodesic between them ends up in a different straight homotopy
class. There are O(k2) straight homotopy classes.

I Lemma 8. For 1 ≤ i ≤ k − 1, we can assume σi to be a straight homotopy class without
increasing its cost.

Proof. Curve ri is forwards-convex and li+1 is backwards-convex, and the endpoints of ri
on f and g are not ahead of those of li+1. If ri and li+1 are disjoint, then we can find a
geodesic in R separating ri and li+1, and hence r′′i and l′′i+1.

If they are not disjoint, then the shortest path between their points of intersection lies on
a geodesic between f and g, separating r′i and l′i+1, and hence r′′i and l′′i+1. J

3.2 Computation
A tool that is commonly used to compute the Fréchet distance is the free space diagram [1].
This tool captures between which points of f and g the geodesic is sufficiently short to be
used as a leash in a homotopy of a given cost L. Formally, the free space diagram is defined
as F(L) = {(a, b) ∈ [0, 1] × [0, 1] | ‖G(a, b)‖ ≤ L}. More generally, for a given homotopy
class σ, we define Fσ(L) = {(a, b) ∈ [0, 1]× [0, 1] | ‖Gσ(a, b)‖ ≤ L} to capture the geodesics
in σ of length at most L.
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Let Σ be the set of homotopy classes consisting of σ(γ0), σ(γ1), and all straight homotopy
classes. There are 2 + O(k2) = O(k2) such homotopy classes, assuming k ≥ 1. Let h
be a regular homotopy of cost at most L, and let ti and t′i be the values of t in h at
which the constituent homotopy Si starts and stops, respectively. For all t ∈ [ti, t′i], we
have ‖h(t)‖ ≤ cost(Si) ≤ L, so (αh(t), βh(t)) ∈ Fσi

(L), where σi is the homotopy class
of the leashes in Si. For t ∈ [t′i−1, ti], the leashes h(t) are part of homotopy Bi, and we
even have ‖h(t)‖ + 1 ≤ L, such that accounting for the spikes the leash passes over, we
have cost(Bi) ≤ max{‖h(t′i−1)‖+ 1, ‖h(ti)‖+ 1} ≤ L by the construction of Lemma 7. Recall
that the endpoints of leashes do not move throughout any homotopy Bi, so αh(t) = αh(ti)
and βh(t) = βh(ti) for all t ∈ [t′i−1, ti]. Additionally, as the construction of Lemma 7 preserves
monotonicity, we can assume αh and βh to both be continuous nondecreasing surjections. By
Lemma 8, we can also assume that each σi lies in Σ. For the sake of presentation, since αh
and βh are constant in the intervals [t′i−1, ti], we assume from now on that t′i−1 = ti, and
prove that any homotopy with the structure imposed by Lemma 9 can be turned into a
regular homotopy of cost L.

I Lemma 9. We can construct a regular homotopy of cost at most L if we can find appropri-
ate αh, βh, ti and t′i and values of σi ∈ Σ, with the following conditions. Let α and β : [0, 1]→
[0, 1] be continuous nondecreasing surjections. Let σ0 = σ(γ0), σm = σ(γ1), and σi ∈ Σ
for i ∈ {1, . . . ,m − 1}. Let 0 = t0 ≤ t1 ≤ · · · ≤ tm+1 = 1. Then, if (α(t), β(t)) ∈ Fσi(L)
for each t ∈ [ti, ti+1], and additionally (α(t), β(t)) ∈ Fσi

(L− 1) ∩ Fσi+1(L− 1) for each ti
with i ∈ {1, . . . ,m}, this corresponds to a regular homotopy of cost at most L.

Proof. We use geodesics of σi for t ∈ [ti, ti+1], and they move continuously. By Lemma 3,
we can find a homotopy Bi of cost at most L if the geodesics of σi and σi+1 based at α(t)
and β(t) both have length at most L − 1. Furthermore, since (α(t), β(t)) ∈ Fσi

(L) for
each t ∈ [ti, ti+1], we can find a homotopy Si of cost at most L between σi and σi+1. J

Computing free space diagrams. To compute the free space diagram in our setting, we
subdivide the edges of f and g in such a way that for each pair of (subdivided) edges, the
length of the geodesic can be described as a quadratic function in two parameters a and b.
This subdivision is based on the lines through any pair of spikes and vertices of ∂R, and
finding their projection onto f or g, if any. In total, this yields subdivided curves f ′ and g′
of O((n+ k)2) vertices. Using a standard rotating sweep around every spike and vertex, we
can compute the projections in O((n+ k)2 log(n+ k)) time and sort them along every edge
of f and g in the same time, giving the subdivided curves f ′ and g′.

Now, given any straight homotopy class, or the homotopy class of γ0 or γ1, we compute
the quadratic function for each pair of edges (ef ′ , eg′) of f ′ and g′. To this end, we take
a straight homotopy class σ and determine the induced partition of K into K1 and K2.
Then we compute the convex hulls ghR(K1) and ghR(K2) of K1 and K2 relative to the
domain R. Using the common inner tangents of ghR(K1) and ghR(K2) in R we can find all
pairs of edges (ef ′ , eg′) of f ′ and g′ for which the geodesic in σ is straight, and determine
the corresponding quadratic functions (which are ellipses). For other pairs of edges of f ′
and g′, the geodesic contains vertices of ghR(K1), ghR(K2), and R itself, and their lengths
are determined by a hyperbolic part in a, a hyperbolic part in b, and a constant part (between
the first and last vertices not on f ′ and g′). We fix an edge eg′ of g′ and traverse all edges of
f ′ sequentially, updating the three parts of the quadratic function when needed. Updates
of the constant part happen only at the ends of the geodesic, and amortized we can do all
updates in time linear in the number of parts of f ′, that is, O((n+ k)2).
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Hence, we can compute all quadratic functions for all straight homotopy classes in time
O(k2) (for the straight homotopy classes) times O((n+ k)2) (for the number of segments of
g′) times O((n+ k)2) (for the number of segments of f ′). In total, this is O((n+ k)4k2) =
O(n4k2 +k6) time. The O(n4 +k4) cells of the free space diagram each have O(k2) quadratic
functions, at most one for each of the homotopy classes.

Decision algorithm. For a parameter L, we define the reachable free space as the set of
coordinates (σ, a, b) ∈ Σ × [0, 1] × [0, 1], such that there exist continuous nondecreasing
surjections α : [0, 1] → [0, a] and β : [0, 1] → [0, b], a value m, values 0 = t0 ≤ t1 ≤ · · · ≤
tm+1 = 1, and homotopy classes σi ∈ Σ with σ0 = σ(γ0) and σm = σ, such that for each t ∈
[ti, ti+1], we have (α(t), β(t)) ∈ Fσi

(L) and for each i ∈ {1, . . . ,m}, we have (α(ti), β(ti)) ∈
Fσi(L − 1) ∩ Fσi+1(L − 1). The reachable free space corresponds to the classes σ and
points f(a) and g(b) that have a monotone regular homotopy from Gσ0(0, 0) to Gσ(f(a), g(b))
of cost at most L. Deciding whether a regular homotopy of at most a certain cost L exists is
then equivalent to testing whether (σ(γ1), 1, 1) lies in the reachable free space for parameter L.
We can compute the reachable free space using dynamic programming. In contrast algorithms
for most variants of the Fréchet distance, which need only information about the free space
on the boundary of cells, we also need information about their interiors. In our dynamic
program, we compute the reachable free space on the boundary of each cell.

The restriction of the free space to any cell and homotopy class is convex. Therefore, if a
point (σ, a, b) lies in the reachable free space, then for all a′ ≥ a and b′ ≥ b, in the same cell
as (a, b), if (a′, b′) ∈ Fσ(e)(L), then (σ, a′, b′) also lies in the reachable free space. Moreover,
for σ and σ′ ∈ Σ, if (a, b) ∈ Fσ(L−1) and (a, b) ∈ Fσ′(L−1), then (σ, a, b) lies in the reachable
free space if and only if (σ′, a, b) lies in the reachable free space. Our dynamic program
starts as follows: for a homotopy of cost at most L to exist, check whether (0, 0) ∈ Fσ0(L).
If so, (σ0, 0, 0) lies in the reachable free space, and otherwise the reachable free space is
empty. Now we propagate the reachable free space on a cell-by-cell basis, maintaining for
each cell [a, a′]× [b, b′] and for each homotopy class σ, two pieces of information. First, the
minimum a∗ ∈ [a, a′] for which (σ, a∗, b) lies in the reachable free space (if any); and second,
the minimum b∗ ∈ [b, b′] for which (σ, a, b∗) lies in the reachable free space (if any). The first
piece of information can be propagated to a neighboring cell [a, a′]× [b′, b′′], and the second
piece can be propagated to a neighboring cell [a′, a′′]× [b, b′].

To propagate this information, we use a horizontal sweep line that maintains the reachable
free space intersecting the sweep line for the cell [a, a′]× [b, b′] in each of the O(k2) relevant
homotopy classes, based on the coordinates (σ, a, b∗) and (σ, a∗, b) in each of those homotopy
classes. Naively, we can propagate this information in O(k6) time per cell, using the
coordinates of the O(k4) intersections of the boundary of free space cells from different
homotopy classes as events for the sweep line.

After propagating the information through all O(n4 + k4) cells of the free space in
O(n4k6 + k10) time, we can return whether (σ(γ1), 1, 1) lies in the reachable free space to
decide whether there exists a homotopy of cost at most L.

Exact computation. The candidate values for the minimum-cost regular homotopy depend
on the values of L where the a- or b-coordinates of different intersections align. There
are O(((n + k)2k4)2) intersections that can align in this way, which yields O(n4k8 + k12)
critical values, which we can enumerate in O(1) time per value. We perform a binary
search over these critical values, using linear-time median finding and running the decision
procedure O(lognk) times to find the minimum cost of a regular homotopy. Doing so, we
compute the homotopy height in O(n4k6 logn+ n4k8 + k12) time.
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4 Conclusion

We have shown that in a spiked plane with polygonal boundary, we can compute the homotopy
height between two curves on the boundary in polynomial time for various cases. In particular,
this holds if all spikes have the same (unit) weight, or if the two curves together form the
entire boundary of the domain. We also provide a 2-approximation algorithm for the general
case. We have also shown that intermediate leashes may require many inflection points for
an optimal homotopy, even if the polygonal domain is convex. This complexity of the leash
has been preventing us from developing a polynomial-time algorithm, and thus it remains
open whether the general case can be solved optimally in polynomial time.

Future work. Various other settings can also be studied. The case where f and g are not
on the boundary of the polygonal domain is a natural first step. However, the monotonicity
[5] that supports our results is not known to hold in this case, which is likely a premise for
efficient optimal algorithms. Our approximation algorithm (Lemma 4) extends to deal with
the case that γ0 and γ1 are still on the boundary, since the algorithm upon which it is based
[13] does not require f and g to lie on the boundary. If the initial leashes γ0 and γ1 are
no longer specified, we readily get a 2-approximation algorithm by using the algorithm by
Chambers et al. [6] to solve the decision variant combined with an appropriate search.
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Abstract
We consider the online vector packing problem in which we have a d dimensional knapsack and
items u with weight vectors wu ∈ Rd+ arrive online in an arbitrary order. Upon the arrival of
an item, the algorithm must decide immediately whether to discard or accept the item into the
knapsack. When item u is accepted, wu(i) units of capacity on dimension i will be taken up, for
each i ∈ [d]. To satisfy the knapsack constraint, an accepted item can be later disposed of with
no cost, but discarded or disposed of items cannot be recovered. The objective is to maximize
the utility of the accepted items S at the end of the algorithm, which is given by f(S) for some
non-negative monotone submodular function f .

For any small constant ε > 0, we consider the special case that the weight of an item on
every dimension is at most a (1 − ε) fraction of the total capacity, and give a polynomial-time
deterministic O( kε2 )-competitive algorithm for the problem, where k is the (column) sparsity of
the weight vectors. We also show several (almost) tight hardness results even when the algorithm
is computationally unbounded. We first show that under the ε-slack assumption, no deterministic
algorithm can obtain any o(k) competitive ratio, and no randomized algorithm can obtain any
o( k

log k ) competitive ratio. We then show that for the general case (when ε = 0), no randomized
algorithm can obtain any o(k) competitive ratio.

In contrast to the (1 + δ) competitive ratio achieved in Kesselheim et al. (STOC 2014) for
the problem with random arrival order of items and under large capacity assumption, we show
that in the arbitrary arrival order case, even when ‖wu‖∞ is arbitrarily small for all items u, it
is impossible to achieve any o( log k

log log k ) competitive ratio.
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Online Vector Packing Problem. We consider the following online submodular maximiza-
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and items arrive online in an arbitrary order. Each item u ∈ Ω has a weight vector wu ∈ Rd+,
i.e., when item u ∈ Ω is accepted, for each i ∈ [d], item u will take up wu(i) units of capacity
on every dimension i of the knapsack. By rescaling the weight vectors, we can assume that
each of the d dimensions has capacity 1. Hence we can assume w.l.o.g. that wu ∈ [0, 1]d for
all u ∈ Ω. The (column) sparsity [6, 26] is defined as the minimum number k such that every
weight vector wu has at most k non-zero coordinates. The objective is to pack a subset of
items with the maximum utility into the knapsack, where the utility of a set S of items is
given by a non-negative monotone submodular function f : 2Ω → R+.

The vector packing constraint requires that the accepted items can take up a total amount
of at most 1 capacity on each of the d dimensions of the knapsack. However, as items come
in an arbitrary order, it can be easily shown that the competitive ratio is arbitrarily bad, if
the decision of acceptance of each item is decided online and cannot be revoked later. In
the literature, when the arrival order is arbitrary, the free disposal feature [19] is considered,
namely, an accepted item can be disposed of when later items arrive. On the other hand, we
cannot recover items that are discarded or disposed of earlier.

We can also interpret the problem as solving the following program online, where variables
pertaining to u arrive at step u ∈ Ω. We assume that the algorithm does not know the
number of items in the sequence. The variable xu ∈ {0, 1} indicates whether item u is
accepted. During the step u, the algorithm decides to set xu to 0 or 1, and may decrease xu′
from 1 to 0 for some u′ < u in order to satisfy the vector packing constraints.

max f({u ∈ Ω : xu = 1})
s.t.

∑
u∈Ω wu(i) · xu ≤ 1, ∀i ∈ [d]

xu ∈ {0, 1}, ∀u ∈ Ω.

In some existing works [8, 18, 27, 26], the items are decided by the adversary, who sets
the value (the utility of a set of items is the summation of their values) and the weight vector
of each item, but the items arrive in a uniformly random order. This problem is sometimes
referred to as Online Packing LPs with random arrival order, and each choice is irrevocable.
To emphasize our setting, we refer to our problem as Online Vector Packing Problem (with
submodular objective and free disposal).

Competitive Ratio. After all items have arrived, suppose S ⊂ Ω is the set of items
currently accepted (excluding those that are disposed of) by the algorithm. The objective is
ALG := f(S). Note that to guarantee feasibility, we have

∑
u∈S wu ≤ 1, where 1 denotes

the d dimensional all-one vector. The competitive ratio is defined as the ratio between the
optimal objective OPT that is achievable by an offline algorithm and the (expected) objective
of the algorithm: r := OPT

E[ALG] ≥ 1.

1.1 Our Results and Techniques
We first consider the Online Vector Packing Problem with slack, i.e., there is a constant
ε > 0 such that for all u ∈ Ω, we have wu ∈ [0, 1 − ε]d, and propose a deterministic
O( kε2 )-competitive algorithm, where k is the sparsity of weight vectors.

I Theorem 1. For the Online Vector Packing Problem with ε slack, there is a (polynomial-time)
deterministic O( kε2 )-competitive algorithm for the Online Vector Packing Problem.

Observe that by scaling weight vectors, Theorem 1 implies a bi-criteria (1 + ε, kε2 )-
competitive algorithm for general weight vectors, i.e., by relaxing the capacity constraint by
an ε fraction, we can obtain a solution that is O( kε2 )-competitive compared to the optimal
solution (with the augmented capacity).
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We show that our competitive ratio is optimal (up to a constant factor) for deterministic
algorithms, and almost optimal (up to a logarithmic factor) for any (randomized) algorithms.
Moreover, all our following hardness results (Theorem 2, 3 and 4) hold for algorithms with
unbounded computational power.

I Theorem 2 (Hardness with Slack). For the Online Vector Packing Problem with slack
ε ∈ (0, 1

2 ), any deterministic algorithm has a competitive ratio Ω(k), even when the utility
function is linear and all items have the same value, i.e., f(S) := |S|; for randomized
algorithms, the lower bound is Ω( k

log k ).

We then consider the hardness of the Online Vector Packing Problem (without slack) and
show that no (randomized) algorithm can achieve any o(k)-competitive ratio.

I Theorem 3 (Hardness without Slack). Any (randomized) algorithm for the Online Vector
Packing Problem has a competitive ratio Ω(k), even when f(S) := |S|.

As shown by [26], for the Online Vector Packing Problem with random arrival order, if we
have ‖wu‖∞ = O( ε2

log k ) for all items u ∈ Ω, then a (1 + ε) competitive ratio can be obtained.
Hence, a natural question is whether better ratio can be achieved under this “small weight”
assumption. For example, if maxu∈Ω{‖wu‖∞} is arbitrarily small, is it possible to achieve a
(1 + ε) competitive ratio like existing works [18, 16, 27, 26]? Unfortunately, we show that
even when all weights are arbitrarily small, it is still not possible to achieve any constant
competitive ratio.

I Theorem 4 (Hardness under Small Weight Assumption). There does not exist any (random-
ized) algorithm with an o( log k

log log k ) competitive ratio for the Online Vector Packing Problem,
even when maxu∈Ω{‖wu‖∞} is arbitrarily small and f(S) := |S|.

Our hardness result implies that even with free disposal, the problem with arbitrary
arrival order is strictly harder than its counter part when the arrival order is random. For
space reason, we defer the proof the Theorem 3 and 4 to the full version of the paper [10].

Our Techniques. To handle submodular functions, we use the standard technique by
considering marginal cost of an item, thereby essentially reducing to linear objective functions.
However, observe that the hardness results in Theorems 2, 3 and 4 hold even for linear
objective function where every item has the same value. The main difficulty of the problem
comes from the weight vectors of items, i.e., when items conflict with one another due to
multiple dimensions, it is difficult to decide which items to accept. Indeed, even the offline
version of the problem has an Ω( k

log k ) NP-hardness of approximation result [24, 28].
For the case when d = 1, i.e., wu ∈ [0, 1], it is very natural to compare items based on

their densities [23], i.e., the value per unit of weight, and accept the items with maximum
densities. A naive solution is to use the maximum weight ‖wu‖∞ to reduce the problem to
the 1-dimensional case, but this can lead to Ω(d)-competitive ratio, even though each weight
vector has sparsity k � d. To overcome this difficulty, we define for each item a density on
each of the d dimensions, and make items comparable on any particular dimension.

Even though our algorithm is deterministic, we borrow techniques from randomized
algorithms for a variant of the problem with matroid constraints [7, 9]. Our algorithm
maintains a fractional solution, which is rounded at every step to achieve an integer solution.
When a new item arrives, we try to accept the item by continuously increasing its accepted
fraction (up to 1), while for each of its k non-zero dimensions, we decrease the fraction of
the currently least dense accepted item, as long as the rate of increase in value due to the
new item is at least some factor times the rate of loss due to disposing of items fractionally.
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The rounding is simple after every step. If the new item is accepted with a fraction
larger than some threshold α, then the new item will be accepted completely in the integer
solution; at the same time, if the fraction of some item drops below some threshold β, then
the corresponding item will be disposed of completely in the integer solution. The ε slack
assumption is used to bound the loss of utility due to rounding. The high level intuition
of why the competitive ratio depends on the sparsity k (as opposed to the total number d
of dimensions) is that when a new item is fractionally increased, at most k dimensions can
cause other items to be fractionally disposed of.

Then, we apply a standard argument to compare the value of items that are eventually
accepted (the utility of our algorithm) with the value of items that are ever accepted (but
maybe disposed of later). The value of the latter is in turn compared with that of an optimal
solution to give the competitive ratio.

1.2 Related Work
The Online Vector Packing Problem (with free disposal) is general enough to subsume many
well-known online problems. For instance, the special case d = 1 becomes the Online Knapsack
Problem [23]. The offline version of the problem captures the k-Hypergraph b-Matching Problem
(with sparsity k and wu ∈ {0, 1

b}
d, where d is the number of vertices), for which an Ω( k

b log k )
NP-hardness of approximation is known [24, 28], for any b ≤ k

log k . In contrast, our hardness
results are due to the online nature of the problem and hold even if the algorithms have
unbounded computational power.

Free Disposal. The free disposal setting was first proposed by Feldman et al. [19] for the
online edge-weighted bipartite matching problem with arbitrary arrival order, in which the
decision whether an online node is matched to an offline node must be made when the online
node arrives. However, an offline node can dispose of its currently matched node, if the new
online node is more beneficial. They showed that the competitive ratio approaches 1 − 1

e

when the number of online nodes each offline node can accept approaches infinity. It can
be shown that in many online (edge-weighted) problems with arbitrary arrival order, no
algorithm can achieve any bounded competitive ratio without the free disposal assumption.
Hence, this setting has been adopted by many other works [13, 5, 17, 14, 22, 20, 11, 23, 7].

Online Generalized Assignment Problem (OGAP). Feldman et al. [19] also considered a
more general online biparte matching problem, where each edge e has both a value ve and a
weight we, and each offline node has a capacity constraint on the sum of weights of matched
edges (assume without loss of generality that all capacities are 1). It can be easily shown
that the problem is a special case of the Online Vector Packing Problem with d equal to the
total number of nodes, and sparsity k = 2: every item represents an edge e, and has value
ve, weight 1 on the dimension corresponding to the online endpoint, and weight we on the
dimension corresponding to the offline endpoint.

For the problem when each edge has arbitrary weight and each offline node has capacity
1, it is well-known that the greedy algorithm that assigns each online node to the offline
node with maximum marginal increase in the objective is 2-competitive, while no algorithm
is known to have a competitive ratio strictly smaller than 2. However, several special cases
of the problem were analyzed and better competitive ratios have been achieved [2, 15, 11, 1].

Apart from vector packing constraints, the online submodular maximization problem with
free disposal has been studied under matroid constraints [7, 9]. In particular, the uniform
and the partition matroids can be thought of special cases of vector packing constraints,
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where each item’s weight vector has sparsity one and the same value for non-zero coordinate.
However, using special properties of partition matroids, the exact optimal competitive ratio
can be derived in [9], from which we also borrow relevant techniques to design our online
algorithm.

Other Online Models. Kesselheim et al. [26] considered a variant of the problem when
items (which they called requests) arrive in random order and have small weights compared
to the total capacity; this is also known as the secretary setting, and free disposal is not
allowed. They considered a more general setting in which an item can be accepted with
more than one option, i.e., each item has different utilities and different weight vectors for
different options. For every δ ∈ (0, 1

2 ), for the case when every weight vector is in [0, δ]d,
they proposed an O(k δ

1−δ )-competitive algorithm, and a (1 + ε)-competitive algorithm when
δ = O( ε2

log k ), for ε ∈ (0, 1). In the random arrival order framework, many works assumed that
the weights of items are much smaller than the total capacity [18, 16, 27, 26]. In comparison,
our algorithm just needs the weaker ε slack assumption that no weight is more than 1− ε
fraction of the total capacity.

The Online Vector Bin Packing problem [4, 3] is similar to the problem we consider in
this paper. In the problem, items (with weight wu ∈ [0, 1]d) arrive online in an arbitrary
order and the objective is to pack all items into a minimum number of knapsacks, each with
capacity 1. The current best competitive ratio for the problem is O(d) [21] while the best
hardness result is Ω(d1−ε) [4], for any constant ε > 0.

Future Work. We believe that it is an interesting open problem to see whether an O(k)-
competitive ratio can be achieved for general instances, i.e., wu ∈ [0, 1]d. However, at least
we know that it is impossible to do so using deterministic algorithms (see Lemma 5).

Actually, it is interesting to observe that similar slack assumptions on the weight vectors
of items have been made by several other literatures [12, 4, 26]. For example, for the
Online Packing LPs problem (with random arrival order) [26], the competitive ratio O(k δ

1−δ )
holds only when wu ∈ [0, δ]d for all u ∈ Ω, for some δ ≤ 1

2 . For the Online Vector Bin
Packing problem [4], while a hardness result Ω(d1−ε) on the competitive ratio is proof for
general instances with wu ∈ [0, 1]d; when wu ∈ [0, 1

B ]d for some B ≥ 2, they proposed an
O(d 1

B−1 (log d) B
B−1 )-competitive algorithm.

Another interesting open problem is whether the O(k)-competitive ratio can be improved
for the problem under the “small weight assumption”. Note that we have shown in Theorem 4
that achieving a constant competitive ratio is impossible.

2 Preliminaries

We use Ω to denote the set of items, which are not known by the algorithm initially and
arrive one by one. Assume that each of the d dimensions of the knapsack has capacity 1. For
u ∈ Ω, the weight vector wu ∈ [0, 1]d is known to the algorithm only when item u arrives.
A set S ⊂ Ω of items is feasible if

∑
u∈S wu ≤ 1. The utility of S is f(S), where f is a

non-negative monotone submodular function. For a positive integer t, we use [t] to denote
{1, 2, . . . , t}. We say that an item u is discarded if it is not accepted when it arrives; it is
disposed of if it is accepted when it arrives, but later dropped to maintain feasibility.

Note that in general (without constant slack), no deterministic algorithm for the problem
is competitive, even with linear utility function and when d = k. A similar result when k = 1
has been shown by Iwama and Zhang [25].
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I Lemma 5 (Generalization of [25]). Any deterministic algorithm has a competitive ratio
Ω(
√

k
ε ) for the Online Vector Packing Problem with weight vectors in [0, 1− ε]d, even when

the utility function is linear and d = k.

Proof. Since the algorithm is deterministic, we can assume that the instance is adaptive.
Consider the following instance with k = d. Let the first item have value 1 and weight

1− ε on all d dimensions; the following (small) items have value
√

ε
k and weight 2ε on one

of the d dimension (and 0 otherwise). Stop the sequence immediately if the first item is
not accepted. Otherwise let there be 1

2ε items on each of the d dimensions. Note that to
accept any of the “small” items, the first item must be disposed of. We stop the sequence
immediately once the first item is disposed of.

It can be easily observe that we have either ALG = 1 and OPT =
√

k
4ε , or ALG =

√
ε
k

and OPT ≥ 1, in both cases the competitive ratio is Ω(
√

k
ε ). J

Note that the above hardness result (when k = 1) also holds for the Online Generalized
Assignment Problem (with one offline node). We use OPT to denote both the optimal utility,
and the feasible set that achieves this value. The meaning will be clear from the context.

3 Online Algorithm for Weight Vectors with Slack

In this section, we give an online algorithm for weight vectors with constant slack ε > 0.
Specifically, the algorithm is given some constant parameter ε > 0 initially such that for all
items u ∈ Ω, its weight vector satisfies ‖wu‖∞ ≤ 1− ε. On the other hand, the algorithm
does not need to know upfront the upper bound k on the sparsity of the weight vectors.

3.1 Deterministic Online Algorithm
Notation. During the execution of an algorithm, for each item u ∈ Ω, we use Su and Au to
denote the feasible set of maintained items and the set of items that have ever been accepted,
respectively, at the moment just before the arrival of item u.

We define the value of u as v(u) := f(u|Au) = f(Au ∪ {u})− f(Au). Note that the value
of an item depends on the algorithm and the arrival order of items. For u ∈ Ω, for each
i ∈ [d], define the density of u at dimension i as ρu(i) := v(u)

wu(i) if wu(i) 6= 0 and ρu(i) :=∞
otherwise. By considering a lexicographical order on Ω, we may assume that all ties in values
and densities can be resolved consistently.

For a vector x ∈ [0, 1]Ω, we use x(u) to denote the component corresponding to coordinate
u ∈ Ω. We overload the notation dxe to mean either the support dxe := {u ∈ Ω : x(u) > 0}
or its indicator vector in {0, 1}Ω such that dxe(u) = dx(u)e.

Online Algorithm. The details are given in Algorithm 1, which defines the parameters
β := 1− ε, α :=

√
β = 1−Θ(ε) and γ := 1

2 (1− β
α ) = Θ(ε). The algorithm keeps a (fractional)

vector s ∈ [0, 1]Ω, which is related to the actual feasible set S maintained by the algorithm
via the loop invariant (of the for loop in lines 2-24): S = dse. Specifically, when an item
u arrives, the vector s might be modified such that the coordinate s(u) might be increased
and/or other coordinates might be decreased; after one iteration of the loop, the feasible
set S is changed according to the loop invariant. The algorithm also maintains an auxiliary
vector a ∈ [0, 1]Ω that keeps track of the maximum fraction of item u that has ever been
accepted.
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Algorithm Intuition. The algorithm solves a fractional variant behind the scenes using
a linear objective function defined by v. For each dimension i ∈ [d], it assumes that the
capacity is β < 1. Upon the arrival of a new element u ∈ Ω, the algorithm tries to increase
the fraction of item u accepted via the parameter θ ∈ [0, 1] in the do...while loop starting
at line 16. For each dimension i ∈ [d] whose capacity is saturated (at β) and wu(i) > 0, to
further increase the fraction of item u accepted, some item uθi with the least density ρi will
have its fraction decreased in order to make room for item u. Hence, with respect to θ, the
value decreases at a rate at most

∑
i wu(i) · ρi(uθi ) due to disposing of fractional items. We

keep on increasing θ as long as this rate of loss is less than γ times v(u) (which is the rate of
increase in value due to item u).

After trying to increase the fraction of item u (and disposing of other items fractionally),
the algorithm commits to this change only if at least α fraction of item u is accepted, in
which case any item whose accepted fraction is less than β will be totally disposed of.

3.2 Competitive Analysis
For notational convenience, we use the superscripted versions (e.g., su, au, Su = dsue,
Au = daue) to indicate the state of the variables at the beginning of the iteration in the for
loop (starting at line 2) when item u arrives. When we say the for loop, we mean the one
that runs from lines 2 to 24. When the superscripts of the variables are removed (e.g., S and
A), we mean the variables at some moment just before or after an iteration of the for loop.

We first show that the following properties are loop invariants of the for loop.

I Lemma 6 (Feasibility Loop Invariant). The following properties are loop invariants of the
for loop:
(a) For every i ∈ [d],

∑
v∈Ω s(v) ·wv(i) ≤ β, i.e., for every dimension, the total capacity

consumed by the fractional solution s is at most β.
(b) The set S = dse ⊂ Ω is feasible for the original problem.

Proof. Statement (a) holds initially because s is initialized to ~0. Next, assume that for some
item u ∈ Ω, statement (a) holds for su. It suffices to analyze the non-trivial case when the
changes to s are committed at the end of the iteration. Hence, we show that statement (a)
holds throughout the execution of the do...while loop starting at line 16. It is enough show
that for each i ∈ [d], gi(θ) :=

∑
v∈Ω xθ(v) ·wv(i) ≤ β holds while θ is being increased.

To this end, it suffices to prove that if gi(θ) = β, then dgi(θ)
dθ ≤ 0. We only need to consider

the case wu(i) > 0, because otherwise gi(θ) cannot increase. By the rules updating x, we
have in this case dgi(θ)

dθ ≤ dxθ(u)
dθ wu(i) + dxθ(uθi )

dθ wuθ
i
(i) ≤ 0, as required.

We next show that statement (b) follows from statement (a). Line 20 ensures that
between iterations of the for loop, for all v ∈ S = dse, s(v) ≥ β.

Hence, for all i ∈ [d], we have
∑
v∈S wv(i) ≤ 1

β

∑
v∈S s(v) ·wv(i) = 1

β

∑
v∈Ω s(v) ·wv(i) ≤

1, where the last inequality follows from statement (a). J

For a vector x ∈ [0, 1]Ω, we define v(x) :=
∑
u∈Ω v(u) · x(u); for a set X ⊂ Ω, we define

v(X) :=
∑
u∈X v(u). Note that the definitions of v(dxe) are consistent under the set and the

vector interpretations.
The following simple fact (which is similar to Lemma 2.1 of [9]) establishes the connection

between the values of items (defined by our algorithm) and the utility of the solution (defined
by the submodular function f).

I Fact 7 (Lemma 2.1 in [9]). The for loop maintains the invariants f(A) = f(∅) + v(A) and
f(S) ≥ f(∅) + v(S), where A = dae and S = dse.
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Algorithm 1: Online Algorithm
Parameters :α :=

√
1− ε, β := 1− ε, γ := 1

2 (1−
√

1− ε)
1 initialize s,a ∈ [0, 1]Ω as all zero vectors; . dse is the current feasible solution
2 for each round when u arrives do
3 Define v(u) := f(u|dae);
4 Initialize θ ← 0, x0 ← s;
5 do
6 Increase θ continuously (variables xθ and uθi all depend on θ):
7 for every i ∈ [d] do
8 if

∑
v∈Ω xθ(v)wv(i) = β and wu(i) > 0 then

9 Set uθi ← arg min{ρi(v) : v ∈ Ω \ {u},xθ(v)wv(i) > 0};
10 end
11 if

∑
v∈Ω xθ(v)wv(i) < β or wu(i) = 0 then

12 Set uθi ← ⊥ and ρi(uθi )← 0;
13 end
14 end
15 Change xθ(v) (for all v ∈ Ω) at rate:

dxθ(v)
dθ

=


1, v = u;

−maxi∈[d]:uθ
i
=v

{
wu(i)

w
uθ
i

(i)

}
, v ∈ {uθi }i∈[d];

0, otherwise.

16 while θ < 1 and γ · v(u) >
∑
i∈[d] wu(i) · ρi(uθi ) ;

17 if θ ≥ α then
18 s← xθ, a(u)← xθ(u); . update phase
19 for v ∈ Ω with s(v) < β do
20 s(v)← 0; . dispose of small fractions
21 end
22 end
23 . if θ < α, then s and a will not be changed
24 end
25 return dse.

Our analysis consists of two parts. We first show that v(a) is comparable to the value
of our real solution S in Lemma 8. Then, we compare in Lemma 9 the value of an (offline)
optimal solution with v(a). Combining the two lemmas we are able to prove Theorem 10.

I Lemma 8. The for loop maintains the invariant: (1− β
α ) · v(S) ≥ (1− β

α −γ) · v(a), where
S = dse. In particular, our choice of the parameters implies that v(a) ≤ 2 · v(S).

Proof. We prove the stronger loop invariant that:

v(s) ≥ (1− γ − β

α
)
∑
r∈A\S

v(r) · a(r) + (1− γ)
∑
r∈S

v(r) · a(r),

where S = dse is the current feasible set and A \S is the set of items that have been accepted
at some moment but are already discarded.
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The invariant holds trivially initially when S = A = ∅ and s = ~0. Suppose the invariant
holds at the beginning of the iteration when item u ∈ Ω arrives. We analyze the non-trivial
case when the item u is accepted into S, i.e., s and a are updated at the end of the iteration.
Recall that su and au refer to the variables at the beginning of the iteration, and for the rest
of the proof, we use the ŝ and â to denote their states at the end of the iteration.

Suppose in the do...while loop, the parameter θ is increased from 0 to a(u) ≥ α. Since for
all r 6= u, au(r) = â(r), we can denote this common value by a(r) without risk of ambiguity.
We use xu to denote the vector xθ when θ = a(u). Then, we have

v(xu)− v(su) ≥ v(u) · a(u)−
∫ a(u)

0

∑
i∈[d]:uθ

i
6=⊥

( wu(i)
wuθ

i
(i) · v(uθi ))dθ

> v(u) · a(u)−
∫ a(u)

0
γ · v(u)dθ = (1− γ) · v(u) · a(u),

where the second inequality holds by the criteria of the do...while loop.
Next, we consider the change in value v(ŝ)− v(xu), because some (fractional) items are

disposed of in line 20. Let D ⊆ Su be such discarded items. Since an item is discarded only if
its fraction is less than β, the value lost is at most β

∑
r∈D v(r) ≤ β

α

∑
r∈D v(r) · a(r), where

the last inequality follows because a(r) ≥ α for all items r that are ever accepted. Therefore,
we have

v(ŝ)− v(xu) ≥ −β
α

∑
r∈D

v(r) · a(r).

Combining the above two inequalities, we have

v(ŝ)− v(su) ≥ (1− γ) · v(u) · a(u)− β

α

∑
r∈D

v(r) · a(r).

Hence, using the induction hypothesis that the loop invariant holds at the beginning of
the iteration, it follows that

v(ŝ) ≥(1− γ − β

α
)
∑

r∈Au\Su
v(r) · a(r) + (1− γ)

∑
r∈Su

v(r) · a(r) + (1− γ) · v(u) · a(u)

− β

α

∑
r∈D

v(r) · a(r)

≥(1− γ − β

α
)
∑
r∈Â\Ŝ

v(r) · a(r) + (1− γ)
∑
r∈Ŝ

v(r) · a(r),

where Â = dâe and Ŝ = dŝe, as required.
We next show that the stronger invariant implies the result of the lemma. Rewriting the

invariant gives

v(s) ≥ (1− γ− β

α
)
∑
r∈A

v(r) ·a(r) + β

α

∑
r∈S

v(r) ·a(r) ≥ (1− γ− β

α
)
∑
r∈A

v(r) ·a(r) + β

α
· v(s),

where the last inequality follows because a(r) ≥ s(r) for all r ∈ S. Finally, the lemma follows
because v(S) = v(dse) ≥ v(s). J
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The following lemma gives an upper bound on the value of the items in a feasible set
that are discarded right away by the algorithm.

I Lemma 9. The for loop maintains the invariant that if OPT is a feasible subset of items
that have arrived so far, then γ · v(OPT \A) ≤ k

β(1−α) · v(a), where A = dae. In particular,
our choice of the parameters implies that v(OPT \A) ≤ O( kε2 ) · v(S).

Proof. Consider some u ∈ OPT \ A. Since u /∈ A, in iteration u of the for loop, we know
that at the end of the do...while loop, we must have θ < α, which implies γ · v(u) ≤∑
i∈[d] wu(i) · ρi(uθi ) at this moment.
Recall that by definition, ρi(uθi ) is either (i) 0 in the case

∑
v∈Ω xθ(v) ·wv(i) < β and

wu(i) > 0, or (ii) the minimum density ρi(v) in dimension i among items v 6= u such that
xθ(v) ·wv(i) > 0.

Hence, in the second case, we have

ρi(uθi ) ≤
∑
v 6=u:xθ(v)wv(i)>0 xθ(v) · v(v)∑
v 6=u:xθ(v)wv(i)>0 xθ(v) ·wv(i)

=
∑
v 6=u:xθ(v)wv(i)>0 xθ(v) · v(v)

β − θ ·wu(i)

≤
∑
v:wv(i)>0 a(v) · v(v)

β(1− α) = Vi
β(1− α) ,

where Vi :=
∑
v:wv(i)>0 a(v) · v(v) depends only on the current a and i ∈ [d]. In the last

inequality, we use θ ·wu(i) ≤ αβ and a very loose upper bound on the numerator. Observe
that for the case (i) ρi(uθi ) = 0, the inequality ρi(uθi ) ≤ Vi

β(1−α) holds trivially.
Hence, using this uniform upper bound on ρi(uθi ), we have γ · v(u) ≤

∑
i∈[d] wu(i) · Vi

β(1−α) .
Therefore, we have

γ · v(OPT \A) ≤
∑

u∈OPT\A

∑
i∈[d]

wu(i) · Vi
β(1− α) =

∑
i∈[d]

 ∑
u∈OPT\A

wu(i)

 · Vi
β(1− α)

≤
∑
i∈[d]

Vi
β(1− α) ≤

k · v(a)
β(1− α),

where the second to last inequality follows because OPT\A is feasible, and
∑
i∈[d] Vi ≤ k ·v(a),

because for each v ∈ Ω, |{i ∈ [d] : wv(i) > 0}| ≤ k. J

I Theorem 10. Algorithm 1 is O( kε2 )-competitive.

Proof. Suppose OPT is a feasible subset. Recall that S is the feasible subset currently
maintained by the algorithm. Then, by the monotonicity and the submodularity of f , we
have f(OPT) ≤ f(OPT∪A) ≤ f(A) +

∑
u∈OPT\A f(u|A) ≤ f(∅) + v(A) + v(OPT \A), where

we use Fact 7 and submodularity f(u|A) ≤ f(u|Au) = v(u) in the last inequality.
Next, observe that for all u ∈ A, a(u) ≥ α. Hence, we have v(A) ≤ v(a)

α = O(1) · v(a).
Combining with Lemma 9, we have f(OPT) ≤ f(∅) +O( kε2 ) · v(a).

Finally, using Lemma 8 and Fact 7 gives f(OPT) ≤ O( kε2 ) · f(S), as required. J

3.3 Hardness Results: Proof of Theorem 2
We show that for the Online Vector Packing Problem with slack ε ∈ (0, 1

2 ), no deterministic
algorithm can achieve o(k)-competitive ratio, and no randomized algorithm can achieve
o( k

log k )-competitive ratio. To prove the hardness result for randomized algorithms, we apply
Yao’s principle [29] and construct a distribution of hard instances, such that any deterministic
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algorithm cannot perform well in expectation. Specifically, we shall show that each instance
in the support of the distribution has offline optimal value Θ( k

log k ), but any deterministic
algorithm has expected objective value O(1), thereby proving Theorem 2.

In our hard instances, the utility function is linear, and all items have the same value, i.e.,
the utility function is f(S) := |S|. Moreover, we assume all weight vectors are in {0, 1− ε}d,
for any arbitrary ε ∈ (0, 1

2 ). Hence, we only need to describe the arrival order of items, and
the non-zero dimensions of weight vectors. In particular, we can associate each item u with
a k-subset of [d]. We use

([d]
k

)
to denote the collection of k-subsets of [d].

Notations. We say that two items are conflicting, if they both have non-zero weights on
some dimension i (in which case, we say that they conflict with each other on dimension i).
We call two items non-conflicting if they do not conflict with each other on any dimension.

Our hard instances show that in some case when items conflict with one another on
different dimensions, the algorithm might be forced to make difficult decisions on choosing
which item to accept. By utilizing the nature of unknown future, we show that it is very
unlikely for any algorithm to make the right decisions on the hard instances. Although
accepted items can be later disposed of to make room for (better) items, by carefully setting
the weights and arrival order, we show that disposing of accepted items cannot help to get a
better objective (hence in a sense, disabling free-disposal).

Hard instance for deterministic algorithms. Let d := 2k2. Recall that each item is specified
by an element of

([d]
k

)
, indicating which k dimensions are non-zero. Consider any deterministic

algorithm. An arriving sequence of length at most 2k is chosen adaptively. The first item
is picked arbitrarily, and the algorithm must select this item, or else the sequence stops
immediately. Subsequently, in each round, the non-zero dimensions for the next arriving
item u are picked according to the following rules.
1. Exactly k− 1 dimensions from [d] are chosen such that no previous item has picked them.
2. Suppose û ∈

([d]
k

)
is the item currently kept by the algorithm. Then, the remaining

dimension i is picked from û such that no other arrived item conflicts with û on dimension i.
If no such dimension i can be picked, then the sequence stops.

I Lemma 11. Any deterministic algorithm can keep at most 1 item, while there exist at least
k items that are mutually non-conflicting, implying that an offline optimal solution contains
at least k items.

Proof. By adversarial choice, every arriving item conflicts with the item currently kept by
the algorithm. Hence, the algorithm can keep at most 1 item at any time.

We next show that when the sequence stops, there exist at least k items in the sequence
that are mutually non-conflicting. For the case when there are 2k items in the sequence,
consider the items in reversed order of arrival. Observe that each item conflicts with only
one item that arrives before it. Hence, we can scan the items one by one backwards, and
while processing a remaining item, we remove any earlier item that conflicts with it. After we
finish with the scan, there are at least k items remaining that are mutually non-conflicting.

Suppose the sequence stops with less than 2k items. It must be the case that while we are
trying to add a new item u, we cannot find a dimension i contained in the item û currently
kept by the algorithm such that no already arrived item conflicts with û on dimension i.
This implies that for every non-zero dimension i of û, there is already an item ui conflicting
with û on that dimension. Since by choice, each dimension can cause a conflict between at
most 2 items, these k items ui’s must be mutually non-conflicting. J
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Distribution of Hard Instances. To use Yao’s principle [29], we give a procedure to sample
a random sequence of items. For some large enough integer ` that is a power of 2, define
k := 100` log2 `+ 1, which is the sparsity of the weight vectors. Observe that ` = Θ( k

log k ),
and define d := `+ 400`2 log2 ` = O( k2

log k ) to be the number of dimensions. We express the
set of dimensions [d] = I ∪J as the disjoint union of I := [`] and J := [d]\I. The items arrive
in ` phases, and for each i ∈ [`], 4`− i+ 1 items arrive. Recall that each item is characterized
by its k non-zero dimensions (where the non-zero coordinates all equal 1 − ε > 1

2 ). We
initialize J1 := J . For i from 1 to `, we describe how the items in phase i are sampled as
follows.
1. Each of the 4`− i+ 1 items will have i ∈ I = [`] as the only non-zero dimension in I.
2. Observe that (inductively) we have |Ji| = (4` − i + 1) · 100` log2 `. We partition Ji

randomly into 4`− i+ 1 disjoint subsets, each of size exactly k − 1 = 100` log2 `. Each
such subset corresponds to the remaining (k − 1) non-zero dimensions of an item in
phase i. These items in phase i can be revealed to the algorithm one by one.

3. Pick Si from those 4`− i+ 1 subsets uniformly at random; define Ji+1 := Ji \Si. Observe
that the algorithm does not know Si until the next phase i+ 1 begins.

I Claim 12. In the above procedure, the items corresponding to Si’s for i ∈ [`] are mutually
non-conflicting. This implies that there is an offline optimal solution containing ` = Θ( k

log k )
items. We say that those ` items are good, while other items are bad.

We next show that bad items are very likely to be conflicting.

I Lemma 13. Let E be the event that there exist two bad items that are non-conflicting.
Then, Pr[E ] ≤ 1

`2 .

Proof. An alternative view of the sampling process is that the subsets S1, S2, . . . , S` are first
sampled for the good items. Then, the remaining bad items can be sampled independently
across different phases (but note that items within the same phase are sampled in a dependent
way).

Suppose we condition on the subsets S1, S2, . . . , S` already sampled. Consider phases
i and j, where i < j. Next, we further condition on all the random subsets generated in
phase j for defining the corresponding items. We fix some bad item v in phase j.

We next use the remaining randomness (for picking the items) in phase i. Recall that
each bad item in phase i corresponds to a random subset of size k− 1 = 100` log2 ` in Ji \Si,
where |Ji \ Si| ≤ 4(k − 1)`. If we focus on such a particular (random) subset from phase i,
the probability that it is disjoint from the subset corresponding to item v (that we fixed from
phase j) is at most (1− k−1

4(k−1)` )k−1 ≤ exp(−25 log2 `) ≤ 1
`7 .

Observe that there are in total at most 4`2 items. Hence, taking a union over all possible
pairs of bad items, the probability of the event E is at most (4`2)2 · 1

`7 ≤ 1
`2 . J

I Lemma 14. For any deterministic algorithm ALG applied to the above random procedure,
the expected number of items kept in the end is O(1).

Proof. Let X denote the number of good items and Y denote the number of bad items kept
by the algorithm at the end.

Observe that the sampling procedure allows the good item (corresponding to Si) in
phase i to be decided after the deterministic algorithm finishes making all its decisions in
phase i. Hence, the probability that the algorithm keeps the good item corresponding to Si
is at most 1

4`−i+1 ≤
1
3` . Since this holds for every phase, it follows that E[X] ≤ 1

3` · ` = 1
3 .
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Observe that conditioning on the complementing event E (refer to Lemma 13), at most 1
bad item can be kept by the algorithm, because any two bad items are conflicting. Finally,
because the total number of items is at most 4`2, we have E[Y ] = Pr[E ]E[Y |E ]+Pr[E ]E[Y |E ] ≤
1
`2 · 4`2 + 1 · 1 ≤ 5.

Hence, E[X + Y ] ≤ 6, as required. J

I Corollary 15. By Claim 12 and Lemma 14, Yao’s principle implies that for any randomized
algorithm, there exists a sequence of items such that the value of an offline optimum is at
least Θ( k

log k ), but the expected value achieved by the algorithm is O(1).
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Abstract
We present an algorithm that computes a (1 + ε)-approximation of the diameter of a weighted,
undirected planar graph of n vertices with non-negative edge lengths inO

(
n logn

(
logn+ (1/ε)5))

expected time, improving upon the O
(
n
(
(1/ε)4 log4 n+ 2O(1/ε)))-time algorithm of Weimann

and Yuster [ICALP 2013]. Our algorithm makes two improvements over that result: first and
foremost, it replaces the exponential dependency on 1/ε with a polynomial one, by adapting and
specializing Cabello’s recent abstract-Voronoi-diagram-based technique [SODA 2017] for approx-
imation purposes; second, it shaves off two logarithmic factors by choosing a better sequence of
error parameters during recursion.

Moreover, using similar techniques, we improve the (1 + ε)-approximate distance oracle of
Gu and Xu [ISAAC 2015] by first replacing the exponential dependency on 1/ε on the prepro-
cessing time and space with a polynomial one and second removing a logarithmic factor from the
preprocessing time.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases planar graphs, diameter, abstract Voronoi diagrams

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.25

1 Introduction

In this paper we study the problem of computing the diameter of a weighted, undirected
planar graph of n vertices with non-negative edge lengths1, defined as the longest shortest
path distance between two vertices of the graph. Since Frederickson in 1983 [7] solved the
problem in O

(
n2) time (by determining the all-pairs shortest paths distance matrix and

returning the largest value therein), a natural question arose as to whether the diameter can
be computed in subquadratic time. Poly-logarithmic speedups were given by Chan [5] in
2006 and by Wulff-Nilsen [22] in 2010; the algorithm of the former works for the unweighted
case and requires O

(
n2 log logn/ logn

)
time; the algorithm of the latter requires the same

amount of time for the unweighted case and O
(
n2(log logn)4/ logn

)
time for the weighted.

However, a truly subquadratic algorithm, i.e., an algorithm running in O
(
n2−δ) time for

some constant δ > 0, still eluded researchers for many years.
Thus, not surprisingly, the dearth of truly subquadratic algorithms led to the consid-

eration of approximation algorithms. A c-approximation of the diameter, ∆, of a graph is

1 For the rest of the introduction, we assume, unless otherwise stated, that all the discussed graphs are
weighted, undirected planar graphs with non-negative edge lengths.
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a value ∆̃ such that ∆ ≤ ∆̃ ≤ c∆. Using the linear-time SSSP algorithm of Henzinger et
al. [12] one can trivially compute a 2-approximation. The first non-trivial approximation
result was given by Berman et al. [2] in 2007; their algorithm requires O

(
n3/2) time and

gives a 3/2-approximation. Weimann and Yuster [21] in 2012, in a breakthrough, presented
an algorithm computing a (1+ε)-approximation of the diameter in near-linear time, namely
O
(
n
(
(1/ε)4 log4 n+ 2O(1/ε))). Nevertheless, their solution did not settle the problem com-

pletely because the running time has exponential dependency on 1/ε. Another problem with
their solution is the multiple (four) logarithmic factors.

Unexpectedly, the next result came in the context of exact algorithms. In 2017, Ca-
bello [3] (full paper in [4]) made headway, by giving the first exact truly subquadratic
algorithm, requiring Õ

(
n11/6) expected time. The techniques used by Cabello are as inter-

esting as the result itself, as he used a seemingly alien concept to planar graphs, abstract
Voronoi diagrams, originating from computational geometry.

Cabello’s seminal result bifurcates the study of the diameter problem into two main
avenues. First, one could try to improve its running time. This has been partially treated in
a recent paper by Gawrychowski et al. [8], who presented an algorithm requiring Õ

(
n5/3)

worst-case time. No lower bound is available presently, but Cabello [4] conjectured that the
diameter cannot be computed exactly in time faster than O

(
n1+δ), for some constant δ > 0.

Second, one could try to use some of the techniques in Cabello’s paper to approximate the
diameter.

In this paper we take the second avenue. Namely, we improve the running time of
Weimann and Yuster [21] by eliminating the 2O(1/ε) factor. To do this, we adapt Cabello’s
technique involving abstract Voronoi diagrams. It turns out that a much simplified version
of his technique is sufficient for approximation purposes, and can be combined nicely with
Weimann and Yuster’s algorithm. Our contribution however does not stop here; we also
eliminate two of the four logn factors along the way, by using a better sequence of error
parameters in the recursion from Weimann and Yuster’s algorithm. Our main result is
summarized by the following theorem.

I Theorem 1 (Diameter). Given a weighted, undirected planar graph of n vertices with non-
negative edge lengths, we can compute a (1 + ε)-approximation of its diameter in expected
O
(
n logn

(
logn+ (1/ε)5)) time.

Another important problem in planar graphs is the construction of efficient (1 + ε)-
approximate distance oracles, i.e., data structures that in a query for a pair of vertices u, v
of a planar graph G, return a value d̃ such that dG(u, v) ≤ d̃ ≤ (1+ε)dG(u, v), where dG(u, v)
is the shortest path distance from u to v in G. Thorup [20] presented a (1 + ε)-approximate
distance oracle, requiring O

(
(1/ε)2n log3 n

)
preprocessing time, O ((1/ε)n logn) space, and

O(1/ε) query time, later simplified by Klein [15]. Kawarabayashi et al. [14] improved the
dependency on 1/ε of the space-query time product from 1/ε2 to 1/ε. Gu and Xu [9]
combined the ideas of those results with the techniques of the diameter algorithm of Weimann
and Yuster [21] to obtain the first distance oracle with constant query time (independent
of both n and ε); it requires O

(
n logn

(
(1/ε)2 log3 n+ 2O(1/ε))) preprocessing time and

O
(
n logn

(
(1/ε) logn+ 2O(1/ε))) space.

Using similar techniques as the ones for our diameter result, we can also improve the
(1 + ε)-approximate distance oracle of Gu and Xu [9]; namely, we eliminate the exponential
dependency on 1/ε on the preprocessing time and space and at the same time remove a
logarithmic factor from the preprocessing time.

I Theorem 2 (Distance Oracle). Given a weighted, undirected planar graph of n vertices with
non-negative edge lengths, we can construct a (1 + ε)-approximate distance oracle, requiring
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O(1) query time, O
(
n logn

(
logn

(
logn+ (1/ε)5)+ (1/ε)6)) expected preprocessing time,

and O
(
n logn

(
logn+ (1/ε)6)) space.

Throughout the paper we operate under the standard RAM model of computation. Let
[W ] = {1, . . . ,W}. We assume that all the planar graphs under discussion have a fixed,
combinatorial embedding and are triangulated.

2 A Streamlined Version of Cabello’s Technique

The main purpose of this section is to construct the following farthest neighbor data struc-
ture, which will be crucial in obtaining our diameter result in Section 3:

I Theorem 3 (Farthest neighbor). Let H be a weighted, undirected planar graph of n vertices
with non-negative edge lengths and W be an integer. Let X be a set of b vertices on the
boundary of the outer face of H. Let H+ be the graph obtained by adding to H a vertex z0,
with an edge from z0 to each vertex x ∈ X of unspecified length.

We can preprocess H in O
(
nb3W 2) expected time, such that the following query can be

answered in O(b log b) time: given lengths drawn from [W ] for the b edges z0x (x ∈ X), find
the distance to the farthest neighbor of z0 in H+, i.e., compute maxu∈V (H) dH+(z0, u).

In our application, b = W = O(1/ε), so the preprocessing time would be near linear
in n. Cabello established a similar theorem [4, Theorem 21] for the more general setting
where each edge z0x (x ∈ X) may have a real length, but his preprocessing time bound is
Õ
(
n2b3 + b4

)
. We show that when the length of each edge z0x (x ∈ X) is a small integer,

the preprocessing time can be greatly improved, and at the same time the method becomes
simpler.

To avoid degeneracies we need to ensure uniqueness of the shortest paths. That can be
done by perturbing the lengths of the edges of H with known techniques (e.g., see [11]).
Note that we do not need to perturb the weights of the sites, which remain integers.

2.1 Defining Voronoi diagrams in planar graphs
The general concept of abstract Voronoi diagrams in R2 was defined by Klein [17]. Ca-
bello [4] applied the concept to planar graphs with weighted sites. We reiterate here the
main definitions for the sake of completeness.

Each site s of a Voronoi diagram in a planar graph is a pair (vs, ws), where vs is the
site’s placement, i.e., a vertex of the graph, and ws is its weight. Given a graph G and a
set of sites S, the Voronoi region of a site s ∈ S is defined as VRG(s, S) = {u ∈ V (G) |
dG(vs, u) + ws ≤ dG(vt, u) + wt, ∀ t ∈ S − {s}}, i.e., as the set of all vertices closer to s
than to any other site under the weighted metric; the Voronoi diagram of S is defined as
VDG(S) = R2 \

⋃
s∈S VRG(s, S).

A key concept in Voronoi diagrams is bisectors. The bisector of two sites s and t,
bisG(s, t), is defined as the set of the duals of the edges in EG(s, t) = {uv ∈ E(G) |
dG(u, vs) + ws ≤ dG(u, vt) + wt and dG(v, vt) + wt ≤ dG(v, vs) + ws}, i.e., the bisector
contains the duals of all the edges whose endpoints are not both closer to the same site.
Let {p, q} be a generic (i.e., for each u ∈ V (G) we have dG(u, vp) + wp 6= dG(u, vq) + wq)
and independent (i.e., each Voronoi region is non-empty) set of sites on the boundary of the
outer face of a planar graph G. Then the bisector of p and q is a simple cycle in the dual,
passing through the dual vertex, v∞, of the outer face ([4, Lemma 5]).

As Cabello [4] showed, a Voronoi diagram in a planar graph for b sites on the boundary
of the outer face fulfills Klein’s axioms of abstract Voronoi diagrams [17], so it can be
represented abstractly as a collection of Voronoi vertices and Voronoi edges, forming a
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planar graph itself of size O(b). A Voronoi edge corresponds to a simple path in the dual
(subpath of a bisector), and a Voronoi vertex corresponds to the meeting point of three
Voronoi edges.

2.2 Computing abstract Voronoi diagrams in planar graphs
Since abstract Voronoi diagrams can be constructed efficiently by an existing algorithm by
Klein et al. [18] based on randomized incremental construction, we have:

I Theorem 4 (Abstract Voronoi diagram construction). We can construct the abstract Voronoi
diagram in a planar graph with b sites on the outer face, using an expected O(b log b) number
of elementary operations. Here, an elementary operation refers to the computation of the
abstract Voronoi diagram of any four sites.

To prove Theorem 3, we need to construct the abstract Voronoi diagram in the graph
H for the b sites at X quickly for any given assignment of weights on X from [W ], after
an initial preprocessing that does not depend on the weights. By Theorem 4, it suffices to
show how to compute the abstract Voronoi diagram of any four such sites.

We start by showing how to compute all different bisectors, given two vertices of X as
placements of sites, whose weights are drawn from [W ], by building upon [4, Lemma 17].
We need O(nW ) total time for constructing the bisectors, whereas Cabello needed O

(
n2)

time for general real weights; we can return a pointer to a bisector in O(1) time instead of
O(logn) time.

I Lemma 5 (Bisectors). Given two vertices vs, vt ⊆ X as placements of sites, the family of
bisectors bisH((vs, ws), (vt, wt)), over all possible weights ws and wt drawn from [W ], has
at most O(W ) different bisectors. We can compute all these bisectors in O(nW ) total time,
such that, given two weights ws, wt ∈ [W ], we can return a pointer to the relevant bisector
in O(1) time.

Proof. Assuming w.l.o.g. that ws ≥ wt, we can write bisH((vs, ws), (vt, wt)) as
bisH((vs, w), (vt, 0)), where w = ws − wt, so we need to consider only bisH((vs, w), (vt, 0)),
where w ∈ [W ]. Hence, there can be at most O(W ) different bisectors for a pair of sites.

Let s = (vs, ws), t = (vt, wt), and S = {s, t}. For each vertex u ∈ V (H) we compute
the value ηu = dH(vt, u) − dH(vs, u), by first running the linear-time SSSP algorithm of
Henzinger et al. [12] from vs and vt and then visiting each vertex; u ∈ V (H) belongs to
VDH(s, {s, t}) when w ≤ ηu and to VDH(t, {s, t}) otherwise. For each w ∈ [W ] we compute
the bisector bisH((vs, w), (vt, 0)), by marking each edge uv ∈ E(G) such that w ≤ ηu and
w > ηv. The bisector is composed of the duals of the marked edges and is a cycle in the dual,
passing through v∞; we represent it as a linked list, LLs,t,w. Finally, we store the linked-list
representation of every different bisector bisH((vs, w), (vt, 0)) in a table, Ts,t, indexed by w.

The total time spent is O(nW ) because we have at most W different bisectors, and
computing each takes O(n) time. Given two sites s and t with weights ws and wt ∈ [W ]
respectively, we can return a pointer to the pertinent bisector in O(1) time by looking up
Ts,t[w], assuming w.l.o.g. that ws ≥ wt. J

Next, we show how to compute all different Voronoi diagrams, given three vertices of X
as placements of sites, whose weights are drawn from [W ], by building upon [4, Lemma 18].
We need O

(
nW 2) time, whereas Cabello had O

(
n2); we can return a pointer to a Voronoi

diagram in O(1) time instead of O(logn). Furthermore, our proof is simpler since it does
not involve line arrangements and amortization.
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I Lemma 6 (Abstract Voronoi diagrams of three sites). Given three vertices vs, vt, vq ⊆ X as
placements of sites, the family of Voronoi diagrams over all possible weights ws, wt, wq ∈ [W ],
has at most O

(
W 2) different Voronoi diagrams. We can compute all these Voronoi diagrams

in O
(
nW 2) total time, such that given weights ws, wt, wq ∈ [W ] we can return a pointer to

the relevant Voronoi diagram in O(1) time.

Proof. We invoke Lemma 5 to compute and store all the different bisectors of each pair
of the three sites in O(nW ) time. We can assume w.l.o.g. that wq = 0, so there are at
most O

(
W 2) different Voronoi diagrams. Let s = (vs, ws), t = (vt, wt), q = (vq, wq), and

S = {s, t, q}. For each vertex u ∈ V (H) we compute the values ηstx = dH(vs, u)− dH(vt, u),
ηqtx = dH(vq, u)− dH(vt, u), and ηsqx = dH(vs, u)− dH(vq, u) by running the SSSP algorithm
of [12]; u belongs to VRH(s, {s, t, q}) if ηstu ≤ wt − ws and ηsqu ≤ −ws; similar statements
can be made for VRH(t, {s, t, q}) and VRH(q, {s, t, q}).

For every ws, wt ∈ [W ], we find in linear time the Voronoi diagram VDH(S) as follows.
Each bisector (i) does not participate at all, (ii) participates wholly, or (iii) only a subpath
of it, passing through v∞, participates in VDH(S) (that is implied by that fact that VDH(S)
has at most one vertex besides v∞; see [4, Lemma 13]). We provide two pointers for each
bisector, which mark the bisector’s part that constitutes a Voronoi edge: one for its first and
one for its last edge participating in VDH(S). Starting from v∞, we scan the edges of each
bisector in clockwise order; the first pointer of bisH(s, t) is created for the first encountered
edge uv such that u is closer to s than to t and to q, and v is closer to t or q than to s
(which can be determined using their η values). The second pointer is created for the last
such edge. If no such edges are encountered, both pointers are set to NULL. We can find
in O(1) time if there exists a Voronoi vertex; to do so, we scan each triple of pointers of
the bisectors to see if the corresponding edges meet at a common dual vertex. If that is the
case, we set that vertex to be a Voronoi vertex.

The representation of VDH(S) for weights ws, wt ∈ [W ] is composed of (i) a linked list
of each bisector participating in it, (ii) the first and last pointers of each such bisector, and
(iii) the one, if any, Voronoi vertex therein, besides v∞. Each different Voronoi diagram is
stored in a two-dimensional table Ts,t,q, indexed by ws and wt. Given weights ws, wt, and
wq, where w.l.o.g ws, wt ≥ qq we can return a pointer to the pertinent Voronoi diagram
in O(1) time by looking up Ts,t,q[ws − wq, wt − wq], assuming w.l.o.g that ws ≥ wq and
wt ≥ wq. J

The final step before using Theorem 4 is to provide a data structure that, given four
vertices ofX as placements of sites, whose weights are drawn from [W ], returns their Voronoi
diagram. The following lemma builds upon [4, Lemma 19]; we refer the reader therein for
the proof. Our preprocessing time is O

(
nb3W 2), whereas Cabello had O

(
n2b3

)
; also our

query time is O(1) instead of O(logn).

I Lemma 7 (Abstract Voronoi diagrams of four sites). We can construct a data structure,
such that (i) its preprocessing time is O

(
nb3W 2), and (ii) for any four vertices of X as

placements of sites that are generic, independent and have weights drawn from [W ], their
abstract Voronoi diagram can be computed in O(1) time.

Now we can use Lemma 7 and Theorem 4 to compute the abstract Voronoi diagram of b
sites, given all the vertices of X as placements of sites, whose weights are drawn from [W ].
Our preprocessing time is O

(
nb3W 2) expected, whereas Cabello had O

(
n2b3

)
; our query

time is O(b log b), while Cabello had multiple logn factors.
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I Theorem 8 (Abstract Voronoi diagrams in planar graphs). Let H,X, n, b, and W be as in
Theorem 3. We can preprocess H in O

(
nb3W 2) time, such that, given the vertices of X as

placements of sites, whose weights are drawn from [W ], we can compute the Voronoi diagram
of the sites in O(b log b) expected time.

Proof. We first construct the data structure of Lemma 7, which after O
(
nb3W 2) prepro-

cessing time can compute the abstract Voronoi diagram of any set of four sites in O(1) time.
Then, using Theorem 4, we compute the abstract Voronoi diagram of the b sites in O(b log b)
time. J

2.3 Constructing the farthest neighbor data structure
As one last ingredient for our farthest neighbor data structure, we need the following lemma,
taken almost verbatim from [4, Corollary 6].

I Lemma 9. Let F be an undirected planar graph of n vertices, each having a cost c(u) > 0,
and let q0 be one of them. Let Π = {π1, . . . , π`} be a family of simple paths in the dual of F
with a total of h edges, counted with multiplicity. After O(n+h) preprocessing time, we can
answer the following query in O(k) time: given a q0-star-shaped cycle γ in the dual, i.e., a
cycle such that (i) q0 is in the interior of γ, and (ii) for every vertex in the interior of γ its
shortest path to q0 is fully contained in γ, described as a concatenation of k subpaths from
Π, return maxu∈U (Vint (γ, F )), where Vint(γ, F ) is the set of vertices of F enclosed by γ.

We can now prove the main theorem of this section.

Proof of Theorem 3. We construct the data structure of Theorem 8 for H, for a set S of b
sites where each one is placed in a different vertex of X and apply Lemma 5 to compute the
bisector of each pair of sites. For each site s ∈ S and each bisector bisH(s, ·), we assign a cost
to every vertex u ∈ V (H), equal to dH(vs, u), and construct the data structure of Lemma 9
(a bisector bisH(s, t) enclosing s is an s-star shaped cycle in the dual), where F = H, Π is
the set of bisectors, ` = bW , h = nbW , and k = b. The preprocessing time is O

(
nb3W 2).

In a query, we compute the abstract Voronoi diagram of H, where for each s ∈ S we
set ws to be equal to the given length of the edge w0vs, by using the data structure of
Theorem 8. For each site s ∈ S, we query the data structure of Lemma 9 for s to find the
vertex of VRH(s, S) with the largest distance from s by walking along its boundary, which
is the concatenation of at most b subpaths of the bisectors bisH(s, ·). From Lemma 9 we
need O(b) time to find maxu∈VRH(s,S){dH(vs, u) + ws}. We return the maximum of those
distances. Thus, the total query time is O(b log b). J

3 Improving Weimann and Yuster’s Diameter Approximation
Algorithm

For approximating the diameter, we employ the recursive scheme of Weimann and Yuster [21],
which is as follows.

Let G be the original graph and N its size. Let d (G1, G2, G3) denote the longest shortest
path distance between a marked vertex of G1 and a marked vertex of G2 in G3. Initially
G = G, n is the size of G, all vertices are marked, and we want to approximate d (G,G,G).
Let ε > 0. The outline of the recursive scheme is as follows.

1. Find a cycle C of G, such that the removal of C’s vertices decomposes G into two disjoint
and connected planar graphs A and B, each having between n/3 and 2n/3 vertices; C
may have up to n vertices. Let Gin = A∪C and Gout = B ∪C and assume w.l.o.g. that
A (resp. B) lies inside (resp. outside) C.
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2. Approximate d (Gin, Gout, G) (Sections 2.1 and 2.2 in [21]).
3. Unmark all vertices of C and build graphs G+

in and G+
out such that (i) they are planar,

and connected graphs, (ii) each of G+
in and G+

out has at most roughly 2n/3 vertices, (iii)
together they have at most roughly n vertices, and (iv) d

(
Gin, Gin, G

+
in
)
is a (1 + ε′)-

approximation of d (Gin, Gin, G) for an appropriate choice of parameter ε′. Then recurse
in G+

in to approximate d
(
Gin, Gin, G

+
in
)
and do the same for G+

out (Section 2.3 in [21]).
4. Return max

{
d (Gin, Gout, G) , d

(
Gin, Gin, G

+
in
)
, d
(
Gout, Gout, G

+
out
) }

.

3.1 Decomposing G to Gin and Gout

To decompose the graph G into two subgraphs Gin and Gout, we use a shortest path separa-
tor, similarly to Thorup’s work [20]. We compute the shortest path tree T of an arbitrarily
selected marked vertex z of G in linear time by employing the algorithm of Henzinger et
al. [12]. Let ∆̃ = maxu∈V (G) dG(v, u); we know that ∆̃ ≤ ∆ ≤ 2∆̃. We can find in linear
time (see [19, Lemma 2]) two paths P and Q, both starting at v, such that the removal of
the vertices on V (C), where C = P ∪ Q, from G gives us two disjoint planar subgraphs A
and B, where V (A) (resp. V (B)) contains the vertices of V (G) that are strictly inside (resp.
outside) C and |V (A)|, |V (B)| ≤ 2n/3. The size of C, however, can be as big as n. The
graph Gin (resp. Gout) is the graph induced by A∪C (resp. B∪C). The time to decompose
the graph is O(n).

3.2 Reducing d (Gin, Gout, G) to d (Gin, Gout, Gp)
Before approximating d (Gin, Gout, G) we need to address the following issue. A shortest
path between a marked vertex of Gin and another in Gout has to go through a vertex of
C. However, since C can have as many as n vertices, we cannot consider for each such pair
all the vertices of C; instead, we select only a small subset of vertices of C and construct
a graph Gp that allows us to approximate the distance between every aforementioned pair.
The following lemma can be found in [21, Section 2.1 and Lemma 2.1].

I Lemma 10. We can select a set Y of O(1/ε) vertices (called portals) on C in linear time,
such that if d (Gin, Gout, G) ≥ ∆̃, then maxu∈V (Gin),v∈V (Gout) miny∈Y {dG(u, y) + dG(y, v)}
is a (1 + 2ε)-approximation of d (Gin, Gout, G). Otherwise, it is at most (1 + 2ε)∆̃.

We run an SSSP algorithm from each portal of Y in G; let ` be the largest distance
found. We construct a graph Gp = Gp,in ∪ Gp,out, such that V (Gp,in) = V (A) ∪ Y and
V (Gp,out) = Y ∪ V (B). We create an edge between each vertex of Gp,out and each portal,
whose length is equal to their shortest path distance in G, after rounding it to the closest
multiple of ε` and dividing it by that number. The edges between vertices of Gp,in are the
same as in G, but their lengths are also divided by ε`. The total time for the reduction is
O((1/ε)n).

3.3 Approximating d (Gin, Gout, Gp)
We construct the farthest neighbor data structure of Theorem 3 for H = Gin, X = Y ,
b = O(1/ε), and W = 1/ε. Then, we query it n times, by using each vertex u ∈ V (Gout)
as z0 and setting w(z0, x) = dGout(u, x) for each x ∈ X, to find its farthest neighbor among
the vertices of V (Gin). Finally, we return the maximum of the distances found, multiplied
by ε`. The total time for approximating d (Gin, Gout, Gp) is thus O

(
nb3W 2 + nb log b

)
=

O
(
(1/ε)5n

)
.
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Weimann and Yuster’s paper [21] did not use a farthest neighbor data structure but
instead employed a brute-force search, observing that there are only 2O(1/ε) combinatorially
different vertices in A and B (in terms of their vectors of distances to the portals). This is
where we eliminate the exponential dependency on ε from their algorithm.

3.4 Reducing d (Gin, Gin, G) to d
(
Gin, Gin, G+

in

)
After approximating d (Gin, Gout, G), we need to approximate d (Gin, Gin, G) and
d (Gout, Gout, G); however, we cannot directly recurse in Gin and Gout respectively because
two problems arise (since the treatment is symmetrical for both Gin and Gout, we concern
ourselves only with the former). First, a path realizing d (Gin, Gin, G) could have a subpath
lying in Gout. Second, Gin can have up to O(n) vertices because C, which is part of Gin,
itself could have that many. However, Gin has at most 2n/3 marked vertices, which are the
only ones used for computing d (Gin, Gin, G). Therefore, we need to construct graphs G+

in
and G+

out such that (i) they are planar, and connected graphs, (ii) each of G+
in and G+

out has
at most roughly 2n/3 vertices, (iii) together they have at most roughly n vertices, and (iv)
d
(
Gin, Gin, G

+
in
)
is a (1 + ε′)-approximation of d (Gin, Gin, G) for an appropriate choice of

parameter ε′. The following lemma is from [21, Lemma 2.3].

I Lemma 11. If d (Gin, Gin, G) ≥ ∆̃, then d
(
Gin, Gin, G

+
in
)
is a (1 + 2ε′)-approximation of

d (Gin, Gin, G). Otherwise, d
(
Gin, Gin, G

+
in
)
≤ (1 + 2ε′)∆̃.

As in the algorithm of Weimann and Yuster, to construct G+
in, we start by umarking

all vertices of C and selecting O(1/ε′) vertices therein, called dense portals, similarly to
Section 3.2. Let Bin be the union of the shortest paths between every pair of dense portals
in Gout. We produce a graph B′in, where we keep all the vertices of Bin of degree more than
two and shrink the rest. Since there are O(1/ε′) dense portals, there are O

(
(1/ε′)2) such

shortest paths. Also, any pair of those paths shares at most one subpath since we assume
that shortest paths are unique, so there are at most O

(
(1/ε′)4) vertices of Bin of degree

more than two, i.e., V (B′in) = O
(
(1/ε′)4). It remains to show (i) how to compute B′in and

(ii) how to set ε′. These two points are where we deviate from the approach of Weimann
and Yuster.

First, to construct B′in, we do not construct Bin explicitly, as their algorithm does, which
would require O ((1/ε′)n) time. By using a slightly modified version of the multiple-source
shortest paths data structure of Klein [16] we construct B′in in O

(
n logn+ (1/ε′)4 logn

)
time instead. Second, Weimann and Yuster chose a fixed value for ε′ for every recursive
call. Since the recursion has O(logN) levels and error accumulates, they were forced to
set ε′ = ε/ logN , and so the (1/ε′)4 factors in the running time resulted in four logN
factors. Here, we make ε′ adaptive, i.e., dependent on the current input size n. Specifically,
we set ε′ = ε/n1/8. With this choice of ε′ we show that the approximation factor of our
algorithm remains 1 + O(ε) (Section 3.5) and the final running time has only two logN
factors (Section 3.5).

I Theorem 12. We can build the graph B′in in O
(
n logn+ (1/ε′)4 logn

)
time.

Proof. We apply the multiple-source shortest paths data structure of Klein, which prepro-
cesses a planar graph F of n vertices in O(n logn) time, such that given a vertex u on the
boundary of the outer face and another vertex v, we can query the shortest path tree of u
to find the distance to v in O(logn) time. We need to augment that data structure to also
support the following two queries on the shortest path tree of a vertex on the boundary of
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the outer face: (i) find the lowest common ancestor of any two vertices; and (ii) find the level
ancestor of any vertex and any level. To do that, we just replace the (persistent) dynamic
trees used internally in Klein’s data structure with the (persistent) top-tree structures of
Alstrup et al. [1], so we can support both queries in O(logn) time. We construct the data
structure for F = Gout, after redrawing in linear time such that C lies on the outer face.

We build a list Γ that contains all the vertices of Gout that have degree more than three
in Bin; as argued before, |Γ| = O

(
(1/ε′)4). There are three possibilities for each pair of

shortest paths between dense portals: the paths do not intersect, they intersect only at one
vertex, or they share a common subpath starting on a vertex p1 and ending at another
vertex p2. Our goal is to find for each such pair the vertices p1 and p2 (which may not exist,
may be the same, or may be distinct) and insert them to Γ. We focus on finding p1 since
finding p2 is similar. Suppose that the first shortest path is from a to b and the second from
c to d. What makes the problem nontrivial is that the two paths are not available explicitly.

We find p1 by performing a binary search on the a-to-b shortest path as follows. Let p′
and p′′ be initially set to a and b respectively. Let p be the vertex midway between p′ and p′′
on the a-to-b path, which can be found by a level ancestor query. We want to find whether
p is (i) between p1 and p2 (i.e., on the c-to-d path), (ii) between a and p1, or (iii) between
p2 and b. To do so, we find the lowest common ancestor lca of p and d on the shortest path
tree of c. If lca = p, then we are in case (i). Else, we perform a level ancestor query for p and
d to find the children p̂ and d̂ of lca that lie on the lca-to-p and lca-to-d paths respectively
and compare the order of p̂ and d̂ around lca. We assume w.l.o.g. that c is between a and b
in P . If p̂ is to the left of d̂, then we are in case (ii), else we are in case (iii).2 For case (i)
or (iii) we recurse with p′′ = p; for case (ii) we recurse with p′ = p. We stop when p′ = p′′.

Once we are done with every pair of paths, we shrink every vertex in V (Gout)− Γ, thus
procuring B′in. J

We unmark all vertices of B′in and append it to Gin to create the graph G′in, which is
a planar graph and has |V (Gin)| + O

(
(1/ε′)4) vertices. Then, we have to shrink G′in, such

that it will have at most 2n/3 vertices (remember that |V (Gin)| could be as big as O(n)).
As in [21], we walk down on C and do the following steps. For any consecutive pair yi
and yi+1 of dense portals on C we create an edge between them of weight equal to their
shortest path distance in G. Then we visit all the vertices p1, . . . , pk between yi and yi+1
on C. For each vertex u having an edge to such a vertex, we create an edge between u and
yi of weight equal to minj{`(u, pj) + dG(pj , yi)}. Finally, we delete all vertices p1, . . . , pk
and their incident edges. We call the resulting graph G+

in; it has 2n/3 +O
(
1/(ε′)4) vertices.

G+
out is constructed similarly. The total time spent is O

(
n logn+ (1/ε′)4 logn

)
.

3.5 Analyzing the approximation factor and the running time
I Lemma 13. The approximation factor of our algorithm is 1 +O(ε).

Proof. Let G(µ) be the graph of a node µ of the recursion tree, and G
(µ)
in and G

(µ)
out be

the two graphs created by decomposing it, as in Section 3.1. We (1 + O(ε))-approximate
d
(
G

(µ)
in , G

(µ)
out, G

(µ)
)

for each node µ of the recursion tree, so the approximation factor of

our algorithm is (1 +O(ε)) maxµ
d
(
G

(µ)
in ,G

(µ)
out,G

(µ)
)

d
(
G

(µ)
in ,G

(µ)
out,G

) ≤ (1 +O(ε))
∏
i

(1 + εi) where εi = ε/n
1/8
i ,

2 If the shortest path tree is not unique, we pick the right-most one; see [16] for details.
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for some sequence n1, n2, . . . , nk satisfying ni−1/3+Θ((1/εi)4) ≤ ni ≤ 2ni−1/3+Θ((1/εi)4)
with n1 = N and nk = O

(
(1/ε)4).

Now,
∏
i

(1 + εi) ≤ exp
(∑

i

εi

)
. Since ni decreases at least exponentially, εi grows at

least exponentially; thus the sum
∑
i εi is similar to a geometric series and can be bounded

by the last term, which is O(ε). Therefore, the approximation factor of our algorithm is
(1+O(ε))(1+O(ε)) = 1+O(ε) (which can be refined to 1+ε after adjusting ε by a constant
factor). J

I Lemma 14. The running time of our algorithm is O
(
N logN

(
logN + (1/ε)5)).

Proof. The running time satisfies the following recurrence relation:

T (n) ≤ max
1/3≤α≤2/3

(
T
(
αn+O

(
(1/ε)4√n

))
+ T

(
(1− α)n+O

(
(1/ε)4√n

))
+

O
(
n
(
logn+ (1/ε)5))) .

In the base case n = O
(
(1/ε)4), so we can run a quadratic-time APSP algorithm in O

(
n2)

time. Since we have O
(
ε4N

)
such graphs, the total time for the base case is O

(
(1/ε)4N

)
.

The solution of the recurrence is T (N) = O
(
N logN

(
logN + (1/ε)5)). J

This completes the proof of Theorem 1. It is not difficult to see that in the same amount
of time we can also compute a (1 + ε)-approximation of the radius and of the Wiener index
of the graph and of the eccentricity of each node.

4 Conclusion

Gawrychowski et al. [8] recently improved Cabello’s algorithm [4] for computing the exact
diameter in planar graphs; their algorithm is deterministic instead of randomized and re-
quires Õ(n5/3) time instead of Õ(n11/6). It is worth investigating whether the techniques
therein could be used to make our approximation algorithm deterministic and perhaps shave
off some 1/ε factors. Another possible research direction is generalizing the techniques for
the case of directed graphs.

An interesting consequence of our result is that we can compute the exact diameter of
an unweighted planar graph in O

(
n logn

(
logn+ ∆O(1))) expected time, where ∆ is the

diameter, simply by setting ε near 1/∆. If one wants running time near linear in n, the
best previous result we are aware of was by Eppstein [6] and had exponential dependence
in ∆ (namely, the time bound is O

(
n2∆ log ∆)). Note that our result beats Cabello’s or

Gawrychowski et al.’s algorithm when the diameter is smaller than nδ for some constant δ.
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A Approximate Distance Oracles

To construct an approximate distance oracle, we build upon the general framework of the
oracles of Thorup, Kawarabayashi et al., and Gu and Xu ([20, 14] and [9] respectively).
Given a weighted, undirected planar graph G with non-negative edge lengths, we will focus
on constructing a distance oracle with additive stretch ε∆ (also called additive distance
oracle), where ∆ is the diameter of G. Such an oracle returns, given two vertices u and v of
G, an approximation d̂ of their distance dG(u, v) in G, such that dG(u, v) ≤ d̂ ≤ dG(u, v)+ε∆.
A known scaling technique (see Kawarabayashi et al. [13] and Section 4 in [9]) can convert
the additive distance oracle to a (1 + ε)-approximate distance oracle.

To construct the additive distance oracle, we recursively decompose the given graph G
as in Sections 3.1 and 3.4, but here we also store the graphs in a tree, called the recursive
decomposition tree. Let N be the size of G. Let µ be an internal node of the recursive
decomposition tree, G(µ) its graph, and n = |V

(
G(µ)) |. In the root ν of the tree, G(ν) = G.

Let C(µ) be the shortest path separator used to decompose G(µ) into two disjoint and
connected planar subgraphs G(µ)

in and G(µ)
out as described in Section 3.1. We find a set Y (µ)

of O(1/ε) vertices on C(µ), called portals, such that we can approximate any shortest path
between any u ∈ V

(
G

(µ)
in

)
and v ∈ V

(
G

(µ)
out

)
by routing it through one of these portals.

Let ∆̃ be a 2-approximation of the diameter of G, computed as in 3.1. To find the portals
we use Lemma 10, slightly changed for the current setting.

I Lemma 15. We can select a set Y (µ) of O(1/ε) vertices, where ε > 0, on C(µ) in linear
time, such that dG(µ)(u, v) ≤ miny∈Y (µ){dG(µ)(u, y) + dG(µ)(y, v)} ≤ dG(µ)(u, v) + 2ε∆̃ for
any u ∈ V

(
G

(µ)
in

)
and v ∈ V

(
G

(µ)
out

)
.

We prove the following theorem (similar to Theorem 3), which is crucial into substituting
the exponential dependency on 1/ε in the space and the preprocessing time of the additive
distance oracle in [9] with a polynomial one, while retaining the constant query time.

I Theorem 16. Let H be a weighted, undirected planar graph of n vertices with non-negative
edge lengths and W be an integer. Let X be a set of b vertices on the boundary of the outer
face of H. Let H+ be the graph obtained by adding to H a vertex z0, with an edge from z0
to each vertex x ∈ X of unspecified length. Let there be O(n) different b-tuples of lengths for
those edges.

We can preprocess H in O
(
nb3W 2 + b4W 2) expected preprocessing time and space, such

that the following query can be answered in O(1) time: given an O(logn)-bit identifier of
one of those tuples and a vertex u ∈ V (H), return dH+(z0, u).

Proof. We create a set S of b sites where each site is placed on a different vertex of X. For
each pair of sites we construct all the different bisectors by using Lemma 5. There are O(W )
bisectors for each pair of sites (Lemma 5), so there are O

(
b2W

)
bisectors in total. For each

bisector and each vertex we store a boolean flag which is set to true if the vertex is enclosed
by the bisector and false otherwise (that can be done by a variant of BFS) in O

(
nb2W

)
time. We find all the O

(
b4W 2) pieces of the graph into which it is decomposed by all the

bisectors in that much time. The boundary of each such piece is the concatenation of at
most b bisectors. For each vertex of H we find in O(b) time the piece that it belongs to and
store a pointer to it in O(nb) total time.

For each tuple of lengths we construct the abstract Voronoi diagram of S in O
(
nb3W 2)

time, by using Lemma 8, find in O
(
b4W 2) time the Voronoi region enclosing each piece of

the previous paragraph, and create a pointer to it. We store the pointer of each piece in
a hash table using the identifier of each tuple, but we do not store any abstract Voronoi
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diagram. The total preprocessing time is O
(
nb3W 2 + b4W 2) expected. The space required

is O
(
n+ b4W 2).

In a query, given a O(logn)-bits identifier representing a tuple of lengths and a vertex
u ∈ V (H), we find the piece containing u, by using u’s pointer, and then query the hash
table of that piece to find the site s, such that vs = arg mint∈S{dH(vt, u) + wt} by using
the given identifier as key. Then, we return dH(vs, u) +ws, which is dH+(z0, u). The query
time is constant. J

We run an SSSP algorithm from the portals of every internal node µ of the recursive
decomposition tree. Let ` be the largest distance found. We construct the data structure of
Theorem 16 for H = G

(µ)
in , after dividing the length of every edge therein by ε`, X = Y (µ),

b = O(1/ε), and W = 1/ε. Each of the n tuples of lengths corresponds to the tuple of
the shortest path distances of a different vertex of G(µ)

out, after rounding each to the closest
multiple of ε` and dividing by that number, to the portals. Each such tuple is provided with
a unique O(logn)-bits identifier.

We create graphs G(µ)+
in and G(µ)+

out , where ε′ = ε/n1/8, in O
(
n logn+ (1/ε′)4 logn

)
time,

as in Section 3.4, assign them to the children of µ, and recurse. We stop when the size of the
graph is O(1/ε). The height of the recursive decomposition tree is O(logn). For each leaf
node of the tree we run a brute-force APSP algorithm and store the distance matrix. We
also preprocess the tree as in [10], such that we can answer lowest common ancestor queries
in O(1) time.

To answer a query, given two vertices u and v, let µu and µv respectively be the nodes
of the recursive decomposition tree containing it. If µu = µv and µu is a leaf, we return the
shortest path distance from u to v by visiting the distance matrix therein. Else, we find in
O(1) time their lowest common ancestor µu,v; supposing w.l.o.g. that u ∈ V

(
G

(µu,v)
in

)
and

v ∈ V
(
G

(µu,v)
out

)
, we properly query the data structure of Theorem 16 of µu,v, and return

the distance found, multiplied with ε`. Similarly to Lemma 13 we have the following lemma.

I Lemma 17. For two vertices u, v ∈ V (G) the additive oracle returns an value d̂ such that
dG(u, v) ≤ d̂ ≤ dG(u, v) +O(ε)∆.

Finally, we bound the query time, the space, and the preprocessing time of our additive
distance oracle.

I Theorem 18. The space occupied by the additive oracle is O
(
N
(
logN + (1/ε)6)) , the

preprocessing time required is O
(
N
(
logN

(
logN + (1/ε)5)+ (1/ε)6)) , and a query can be

answered in O(1) time.

Proof. It takes O(1) time to find the lowest common ancestor of two nodes and to query
the distance of any vertices therein. It also takes O(1) time to query the distance matrix in
a leaf. Therefore, the query time is O(1).

The preprocessing time T (n) and space S(n) satisfy the following recurrence relations:

T (n) ≤ max
1/3≤α≤2/3

(
T
(
αn+O

(
(1/ε)4√n

))
+ T

(
(1− α)n+O

(
(1/ε)4√n

))
+

O
(
n
(
logn+ (1/ε)5)+ (1/ε)6)) ,

S(n) ≤ max
1/3≤α≤2/3

(
S
(
αn+O

(
(1/ε)4√n

))
+ S

(
βn+O

(
(1/ε)4√n

))
+O

(
n+ (1/ε)6)) .

In the base case n = O
(
1/ε4), so we run a quadratic-time APSP algorithm in O

(
n2)

time. Since we have O
(
ε4N

)
such graphs, the total time for the base case is O

(
(1/ε)4N

)
.

The solutions to the recurrences are T (N) = O
(
N
(
logN

(
logN + (1/ε)5)+ (1/ε)6)) and

S(N) = O
(
N
(
logN + (1/ε)6)) . J

ESA 2017





Stability and Recovery for Independence Systems∗

Vaggos Chatziafratis1, Tim Roughgarden†2, and Jan Vondrak3

1 Stanford University, Computer Science Department, Stanford, CA, USA
vaggos@stanford.edu

2 Stanford University, Computer Science Department, Stanford, CA, USA
tim@stanford.edu

3 Stanford University, Department of Mathematics, Stanford, CA, USA
jvondrak@stanford.edu

Abstract
Two genres of heuristics that are frequently reported to perform much better on “real-world”
instances than in the worst case are greedy algorithms and local search algorithms. In this paper,
we systematically study these two types of algorithms for the problem of maximizing a mono-
tone submodular set function subject to downward-closed feasibility constraints. We consider
perturbation-stable instances, in the sense of Bilu and Linial [11], and precisely identify the sta-
bility threshold beyond which these algorithms are guaranteed to recover the optimal solution.
Byproducts of our work include the first definition of perturbation-stability for non-additive ob-
jective functions, and a resolution of the worst-case approximation guarantee of local search in
p-extendible systems.
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1 Introduction

Designing polynomial-time approximation algorithms with worst-case guarantees is one
of the most common approaches to coping with NP -hard optimization problems. For
many problems, even the best-achievable worst-case guarantee (assuming P 6= NP ) is too
weak to be immediately meaningful. Fortunately, it has been widely observed that most
approximation algorithms typically compute solutions that are much better than their
worst-case approximation guarantee would suggest (e.g. [17, 37]). Is there a mathematical
explanation for this phenomenon?

One line of work addresses this question by restricting attention to instances that satisfy
a stability condition, stating that there should be a “sufficiently prominent” optimal solution.
Such conditions are analogs of the “large margin” assumptions that are often made in machine
learning theory. Such assumptions reflect the belief that the instances arising in practice are
ones that have a “meaningful solution”. For example, if we run a clustering algorithm on a
data set, it’s because we’re expecting that a “meaningful clustering” exists. The hope is that
formalizing the assumption of a “meaningful solution” imposes additional structure on an
instance that provably makes the problem easier than on worst-case instances.

Several such stability notions have been studied. In this work, we focus on the most
well-studied one, that of perturbation-stability introduced by Bilu and Linial [11]. The idea
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behind the definition is that the optimal solution should be robust to small changes in the
input (e.g., the edge weights of a graph). For if this is not true, then a minor misspecification
of the data (which is often noisy in practice, anyways) can change the output of the algorithm.
In data analysis, one is certainly hoping that the conclusions reached are not sensitive to
small errors in the data. An informal definition of γ-perturbation-stability (henceforth simply
γ-stability) is the following:

I Definition 1 (γ-stability). Given a weighted graph and an optimal solution S∗ for some
problem, we say that the instance is γ-stable if S∗ remains the unique optimal solution, even
when each edge weight is increased by an (edge-dependent) factor between 1 and γ.

Thus 1-stability is equivalent to the assumption that the optimal solution is unique. The bigger
the γ, the stronger the assumption (since there are fewer instances we are required to solve),
and hence, the easier the problem. The basic question is then whether sufficiently stable
instances of computationally hard problems are easier to solve. The ultimate goal
is to determine the stability threshold of a problem: the smallest value of γ such that
the problem is polynomial-time solvable on γ-stable instances. We note that there is no
general connection between hardness of approximation thresholds and stability thresholds of
a problem – depending on the problem, each could be larger than the other (e.g., [7], where
even though asymmetric k-center cannot be approximated to any constant factor, it can be
solved optimally under 2-stability). Thus a good approximation algorithm need not recover
an optimal solution in stable instances, and conversely.1

1.1 Our Results
Two genres of algorithms that are frequently reported to perform much better on “real-world”
instances than in the worst case are greedy algorithms and local search algorithms. The goal
of this paper is to systematically study these two types of algorithms through the lens of
perturbation-stability. We carry this out for the rich and well-motivated class of problems
that concern maximizing a monotone submodular set function subject to downward-closed
feasibility constraints (as in e.g. [29, 34, 22]). Both greedy and local search algorithms can
be naturally defined for all problems in this class. Special cases include [31] k-dimensional
matching, asymmetric traveling salesman, influence maximization [24], welfare maximization
in combinatorial auctions (with submodular valuations) [27, 41], and so on.

We organize our results along two different axes: whether the objective function is additive
or submodular, and according to the “complexity” of the feasibility constraints. For the
latter, we use the classic notions of the intersection of p matroids (for a parameter p), the
more general notion of p-extendible systems (where a feasible solution can accommodate a
new element after deleting at most p old ones), and the still more general notion of p-systems
(where the cardinality of maximal independent sets can only differ by a p factor). Figure 1
summarizes our main results. We also prove that all of our results are tight.

Section 3 proves our results for the greedy algorithm in the case of additive objective
functions. An interesting finding here is that for the most general set systems that we
consider (p-systems), the greedy algorithm can have an infinite stability threshold, even

1 For a silly example, consider an algorithm that checks if an instance is stable (by brute-force), if so
returns the optimal solution (computed by brute force), and if not returns a terrible solution. Similarly,
consider an α-approximation algorithm that uses brute force to always output a suboptimal solution, in
every instance where one within α of optimal exists. For more natural (and polynomial-time) examples,
see [7, 30].



V. Chatziafratis, T. Roughgarden, and J. Vondrak 26:3

Figure 1 Summary of old and new results. On the left we have previous approximation results
about greedy and local search algorithms [25, 34, 22, 38] and our new local search approximation
guarantees. (Each table entry indicates the worst-case approximation factor.) On the right are our
recovery results for greedy and local search algorithms, with each table entry indicating the smallest
γ such that the algorithm is optimal in every γ-stable instance. All of the results are tight.

though it is a good worst-case approximation algorithm. In fact, this crucial difference
between approximation and stability also led us to give a different characterization of the
p-extendible systems. Another interesting differentiation between stability and approximation
shows up in the case of a uniform matroid (cardinality constraints).

Section 4 considers the greedy algorithm for maximizing a monotone submodular func-
tion. As all previous works on perturbation-stability have considered only problems with
additive objective functions, here we need to formulate a notion of perturbation-stability for
submodular functions, which boils down to defining the class of allowable perturbations of a
submodular function f . The “sweet spot” – neither too restrictive nor too permissive – turns
out to be the set of perturbed functions f̃ such that: (i) f̃ is also monotone and submodular;
(ii) f̃ is a pointwise approximation of f (f̃(S) ∈ [f(S), γ · f(S)] for every S); and (iii) the
marginal value of an element j with respect to a set S can only go up (in f̃), and by at
most (γ − 1) times the stand-alone value of j.2 This definition specializes to the usual one in
the special case of additive functions. Towards the end of this section, we also present an
application for the welfare maximization problem, for which a weaker stability assumption is
sufficient to guarantee recovery of the optimal allocation.

Section 5 identifies the smallest γ such that all local optima of γ-stable instances are also
global optima, with both additive and submodular functions. A byproduct of our results here
is new tight worst-case approximation guarantees for local search in p-extendible systems,
which surprisingly were not known previously. The tight approximation guarantees are p2

for additive functions and p2 + 1 for monotone submodular functions.

2 Each additional constraint on allowable perturbations f̃ weakens the stability assumption, resulting in a
harder problem. For example, if one only assumes (i) and (ii) and not (iii), then the problem becomes
“too easy”, and every α-approximation algorithm automatically recovers the optimal solution in α-stable
instances. If (iii) is replaced by the stronger condition that all marginal values change by a factor in
[1, γ], the problem becomes “too hard”, with no positive recovery results possible (essentially because
zero marginal values in f must stay zero in f̃).
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1.2 Further Related Work
Perturbation-stability was defined by Bilu and Linial [11] in the context of the MaxCut
problem. Subsequent work on perturbation-stability includes [10, 30, 2, 8, 7, 3, 39, 32, 6].
Independently of Bilu and Linial [11], Balcan, Blum and Gupta [5] introduced the related
notion of approximation stability in the context of clustering problems like k-means and
k-median. More technically distant analogs of these stability conditions (but with similar
motivation) were proposed by [1, 19, 36]; see Ben-David [9] for further discussion.

2 Preliminaries

In this section we describe the notation and definitions which we use through the rest of
the paper. We start by defining the family of p-systems and the problem of submodular
maximization; then we present our two protagonist algorithms and the standard (additive)
stability definition.

p-Systems [25, 26]: Suppose we are given a (finite) ground set X of m elements (this could
be the set of edges in a graph) and we are also given an independence family I ⊆ 2X , a
family of subsets that is downward closed; that is, A ∈ I and B ⊆ A imply that B ∈ I.
A set A is independent iff A ∈ I. For a set Y ⊆ X, a set J is called a base of Y , if J
is a maximal independent subset of Y ; in other words J ∈ I and for each e ∈ Y \ J ,
J + e 6∈ I. Note that Y may have multiple bases and that a base of Y may not be a base
of a superset of Y . (X, I) is said to be a p-system if for each Y ⊆ X the following holds:

maxJ:J is a base of Y |J |
minJ:J is a base of Y |J |

≤ p

All set systems are assumed to be down-closed. There are some interesting special cases
of p-systems [31, 12]:
intersection of p matroids ⊆ p-circuit-bounded systems ⊆ p-extendible systems ⊆ p-
systems
p-extendible: An independence system (X, I) is p-extendible if the following holds:
suppose we have A ⊆ B,A,B ∈ I and A+ e ∈ I; then there should exist a set Z ⊆ B \A
such that |Z| ≤ p and B \ Z + e ∈ I. We note here that p-extendible systems make
sense only for integer values of p, whereas p-systems can have p being fractional and
that 1-systems as well as 1-extendible systems are exactly matroids. It is a family of
independence systems containing many important and seemingly unrelated problems
like welfare maximization, k-dimensional Matching, Asymmetric Travelling Salesman
Problem, weighted ∆-Independent Set (∆: maximum degree) and others [31].
Submodular Maximization: A set function f : 2X → R+ ∪ {0} is submodular if for every
A,B ⊆ X, we have f(A) + f(B) ≥ f(A ∪B) + f(A ∩B). Given a p-system (X, I) and a
monotone submodular function f , we are interested in the problem of maximizing f(S)
over the independent sets S ∈ I; in other words we wish to find maxS∈I f(S). If f is
additive, we can associate a weight we with each element e ∈ X and we want to find
maxS∈I w(S), where w(S) =

∑
e∈S we.

Greedy algorithm: It starts with S = ∅ and greedily picks elements of X that will
increase its objective value by the most, while remaining feasible i.e. picks e∗ =
arg maxe∈X,S+e∈I(f(S + e) − f(S)). It is a well-known fact [25, 34], that for any p-
system, the standard greedy algorithm is a (p+ 1)-approximation (if f is additive, Greedy
is a p-approximation).
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(p, q)-Local Search: It starts from a feasible solution and at each iteration seeks for an
improving move. In particular, starting from any S ∈ I, it tries to find a better S′ ∈ I
with: |S \ S′| ≤ p, |S′ \ S| ≤ q and f(S′) > f(S). If it finds such a feasible solution S′, it
switches to S′ and repeats. It stops when no improving move can be made. Note that
the stopping condition and its performance depend on the size of the (p, q)-neighbourhood
used. We note that (p, 1)-local search is necessary for p-extendible systems. For recent
improvements on Local Search performance in the case of matroids, we refer the reader
to [26].
Stable instances: Stability can be defined in general for instances of weighted optimization
problems [11], where the objective function w is additive. In our case, given a p-system
and an additive function w we wish to maximize over the p-system, we call the instance
γ-stable, if the optimal solution S∗ ∈ I remains the unique optimum, even after assigning
a new weight w̃e to an element e such that we ≤ w̃e ≤ γ · we. In an extreme case, we
can keep the weights of the elements in optimum the same and increase all others by a
factor of γ; the optimum should remain the same. Sometimes, we say that we γ-perturb
the input when we multiply some weights by at most γ. We will see in Section 4 how to
extend this additive stability definition to stability for submodular functions.

3 Warm-up: Additive Case and Greedy Recovery

In this section, as a warm-up, we deal with additive functions, proving the first positive
recovery result for the greedy algorithm and showing that it is tight.

3.1 Exact Recovery for p-extendible, p-stable systems
We are given an independence set system (X, I, w) and we want to find an independent
solution S∗ ∈ I with maximum weight, where for I ∈ I : w(I) =

∑
e∈I w(e). We are

interested in the performance of the standard greedy algorithm and we can prove the
following:

I Theorem 2. Given an instance of a p-extendible independence system (X, I, w), that has
a p-stable optimal solution S∗ = arg maxI∈I w(I), the Greedy algorithm exactly recovers S∗.

Proof. From the definition of p-extendibility we know that for the system I, the following
holds: suppose A ⊆ B,A,B ∈ I and A + e ∈ I, then there is a set Z ⊆ B \ A such that
|Z| ≤ p and B \Z+ e ∈ I. The Greedy starts from the empty set and greedily picks elements
with maximum weight subject to being feasible; it finally outputs S which is a maximal
solution, i.e. S ∪ {e} /∈ I,∀e ∈ X \ S. In order to get exact recovery, we want to show that
S ≡ S∗.

Let’s suppose S \S∗ 6= ∅. Then, out of all the elements of S \S∗ that the Greedy selected,
let’s focus on the first element e1 ∈ S \ S∗. Let S{e1} denote the greedy solution right
before it picked element e1. Note that before choosing e1, greedy S{e1} was in agreement
with the optimal solution, i.e. S{e1} ⊆ S∗. Since e1 6∈ S∗, we can use the p-extendibility,
where we specify A = S{e1}, B = S∗, e = e1 (A + e ≡ S{e1} + e1 ∈ I, since Greedy is
always feasible) and we get, following the above definition, that there exists set of elements
Z ⊆ S∗ \A ≡ S∗ \ S{e1}, with |Z| ≤ p and (S∗ \ Z) ∪ {e1} ∈ I. This intuitively means that
the element e1 has conflicts with the elements in Z ⊆ S∗ \ S{e1}, but if we remove at most
|Z| ≤ p elements from S∗ \ S{e1}, we get no conflicts and thus an independent (feasible)
solution according to the system I.
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We call this solution J , i.e. J = (S∗ \Z)∪ {e1} ∈ I (note J 6= S∗) and we will show that
we can perturb the instance (new weight function w̃) no more than a factor of p, so that J ’s
weight is at least that of the optimal, i.e. w̃(J) ≥ w̃(S∗), which would be a contradiction to
the p-stability of the given instance. All we have to do is perturb the instance by multiplying
the weight of the element e1 by p. By the greedy criterion for picking elements (note that all
elements of Z were available to Greedy at the point it chose e1) and the fact that |Z| ≤ p we
get:

∀e ∈ Z ⊆
(
S∗ \ S{e1}

)
: w(e1) ≥ w(e) =⇒ p · w(e1) ≥

∑
e∈Z

w(e) = w(Z) (1)

which implies that the weight of the set J is actually no less than the weight of S∗ in the
aforementioned perturbed instance (weight function w̃). Indeed:

w̃(J) = w̃((S∗ \ Z)∪e1) = w̃(S∗ \Z)+ w̃(e1) = w(S∗)−w(Z)+p ·w(e1) ≥ w(S∗) = w̃(S∗)

where for the last inequality we used (1). This is a contradiction because it violates the
p-stability property (the optimal solution should stand out as the unique optimum for any
p-perturbation) and thus we conclude that S \ S∗ = ∅. Since Greedy outputs a maximal
solution, we conclude that S coincides with S∗ and so Greedy exactly recovers the optimal
solution. J

We next show that our result is tight both in terms of the stability factor and the
generality of p-extendible systems.

I Proposition 3. There exist p-extendible systems with a (p− ε)-stable optimal solution S∗,
for which the Greedy fails to recover it.

Proof. Take a Maximum Weight Matching instance (here p = 2): a path of length 3 with
weights (1,1 + ε′,1). The Greedy fails to recover the optimal solution S∗, since it picks the
(1 + ε′) edge whereas it should have picked both the other edges. For the right choice of ε′
(ε′ < ε

2−ε ), we can make the instance arbitrarily close to (p− ε) = (2− ε) stable. Observe
that we can give such examples for any value of p (consider the p-dimensional Matching
problem) and that the example can be made arbitrarily large just by repeating it. J

I Proposition 4. There are p-systems whose optimal solution S∗ is M -stable (for arbitrary
M > 1) and for which the greedy algorithm fails to recover it.

Proof. The example is based on a knapsack constraint. Fix M ′ > 1 and let the size of the
knapsack B = M ′+ 1. We will have elements of type A (|A| = M ′), a special element e∗ and
elements of type C (|C| = M ′). The pair (value, size) for elements in A,C is respectively:
(2, 1), (1, 1

M ′ ) and for e∗ : (1 + ε, 1), ε > 0. Note that the optimal solution S∗ is A ∪ C with
total value 2M ′+M ′ = 3M ′ and size M ′+M ′ · 1

M ′ = M ′+ 1 (fits in the knapsack). However,
Greedy will pick A ∪ {e∗} for a total value of 2M ′ + 1 + ε and size M ′ + 1. Note that this is
a p-system for a value of p < 2 since any feasible solution S can be extended to a solution
S′ with |S′| ≥ M ′ + 1 and the largest feasible solution has 2M ′ elements (there are only
2M ′ + 1 elements in total). However, this is not a 2-extendible system (it is actually an
M ′-extendible system) and we see that even if it is (M ′−1)-stable, Greedy still fails to recover
the optimal solution S∗. To see why it is (M ′ − 1)-stable, note that the only γ-perturbation
(perturbations are allowed only on the values, not the sizes) we can make to favour the
greedy solution is to the element e∗, thus we would need γ(1 + ε) ≥M ′ =⇒ γ > M ′ − 1 (ε
is small). Choose M ′ = M + 1 and this concludes the proof. We also note that a variation of
this counterexample would trick as well the (more natural) Greedy that sorts the elements
according to value density ( vi

si
) instead of just their value. J
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We find Proposition 4 surprising, given that the greedy algorithm is a good worst-case
approximation algorithm for such problems. The above “bad” example leads us to the
definition of hereditary systems; it turns out that this is another characterization of the
p-extendible systems. Due to space constraints, we give the formal definition in the full
version (in Appendix B).

4 The Case of Submodular Functions

This section considers recovery results for stable instances where the objective function is
monotone and submodular. Submodular functions are widely used in many areas ranging
from mathematics to economics, and they model situations with diminishing returns. Famous
examples include influence maximization [24, 33, 20, 13] and welfare maximization in auctions
and game theory [27, 35]. For example, in influence maximization, the goal is to “activate” a
subset of the participants in a social network (e.g., provide with information, or a promotional
product) so as to maximize the expected spread of the idea or product. The diffusion of
information is usually modeled with submodular functions (indicating the probability that
a node adopts a new idea or product as a function of how many of her neighbors in the
social network have already done so). In practice, the submodular functions in the input are
estimated from data and hence are noisy (e.g. [4]). One hopes that the output of an influence
maximization algorithm (which is typically a greedy algorithm [24]) is robust to modest
errors in the specification of the submodular function. This section proposes a definition to
make this idea precise, and proves tight results for greedy and local search algorithms under
this stability notion.

4.1 Stability for submodular functions
All previous work on perturbation-stability considered only additive objective functions. We
next state our extension to submodular functions.

I Definition 5 (γ-perturbation, γ ≥ 1). Given a monotone submodular function f : 2X →
R+ ∪ {0}, we define fS(j) = f(S + j)− f(S). A γ-perturbation of f is any function f̃ such
that the following three properties hold:
1. f̃ is monotone and submodular.
2. f ≤ f̃ ≤ γf , or in other words f(S) ≤ f̃(S) ≤ γf(S) for all S ⊆ X.
3. For all S ⊆ X and j ∈ X \ S, 0 ≤ f̃S(j)− fS(j) ≤ (γ − 1) · f({j}).
The definition of a γ-stable instance is then defined as usual.

I Definition 6 (γ-stability). Given an independence system (X, I) and a monotone submod-
ular function f : 2X → R+ ∪ {0}, let S∗ := arg maxS∈I f(S). The instance is γ-stable if for
every γ-perturbation of the initial function f , S∗ remains the unique optimal solution.

As discussed in the Introduction, while Definition 5 is perhaps not the first one that comes to
mind, it appears to be the “sweet spot”. Natural modifications3 of the definition are generally
either too restrictive (rendering the problem impossible, e.g. if property 3 is replaced with

3 If we dropped Property 3, then any c-approximation algorithm (c ≥ 1) returning a solution S with
f(S) ≥ 1

c · f(S∗), could be made to have value equal with S∗ in the c-perturbed version f̃(S) = cf(S) ≥
f(S∗) = f̃(S∗). If we dropped Property 2, then the definition would not be a generalization for the case
of additive perturbations as we could have f̃(S) > γf(S) for some set S, because of the quantity f({j})
in Property 3, which is relative to the empty set and may be large compared to fS(j).
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relative perturbations since then the zero marginal values in f must stay zero in f̃) or too
permissive (rendering the problem uninteresting, with all α-approximation algorithms equally
good).

I Proposition 7. Definition 5 specializes to perturbation-stability in the special case of an
additive objective function.

Proof. This follows easily since if the function f is additive, then there will be no dependence
of the element’s j marginal value on the current set S and thus property 3 from the above
γ-perturbation definition just becomes:

0 ≤ f̃S(j)−fS(j) ≤ (γ−1)·f(j) ⇐⇒ 0 ≤ f̃(j)−f(j) ≤ (γ−1)·f(j) ⇐⇒ f(j) ≤ f̃(j) ≤ γ·f(j)

which is exactly the standard notion of stability introduced by [11]. Note that this also
implies the first condition for all sets S: f(S) ≤ f̃(S) ≤ γf(S), by the additivity of f . J

We now prove a useful proposition that we will often use when proving recovery results for
submodular maximization. Informally, we show that multiplying the marginal improvements
of the choices made by an algorithm by γ is a valid γ-perturbation.

I Proposition 8. Let f be a monotone submodular function. Fix an ordered sequence of
elements e1, e2, . . . , ek, and let δi = f({e1, . . . , ei}) − f({e1, . . . , ei−1}). Then f̃ defined by
f̃(S) := f(S) + (γ − 1)

∑
i:ei∈S δi is a valid γ-perturbation of f .

Proof. Let us verify the conditions of a γ-perturbation.
First, f̃ is monotone submodular, since it is a sum of a monotone submodular and a

monotone additive function (δi ≥ 0 by monotonicity).
Second, we have f(S) ≤ f̃(S) = f(S)+(γ−1)

∑
i:ei∈S δi ≤ f(S)+(γ−1)f(S∩{e1, . . . , ek})

by submodularity, and by monotonicity this is at most γf(S).
Third, the marginal values of f̃ are f̃S(ei) = fS(ei) + (γ − 1)δi ≤ fS(ei) + (γ − 1)f({ei})

(and unchanged for elements other than the ei). J

4.2 Greedy recovery and submodularity
The main result here is that the standard greedy algorithm can recover the optimal solution
of a p-extendible system, if the optimal solution is (p + 1)-stable (as it was defined in
Section 4.1).

I Theorem 9 (Greedy Recovery). Given a monotone submodular function f to maximize over
a p-extendible system (X, I), if the optimal solution S∗ = arg maxS∈I f(S) is (p+ 1)-stable,
then the greedy algorithm recovers S∗ exactly.

Proof. The proof generalizes the argument we used in the additive case so that we handle
submodularity and the proving strategy resembles the proof of the approximation guarantee
for the greedy algorithm for submodular maximization on p-extendible systems [12]. Let’s
denote by S = {e1, . . . , ek} the solution produced by Greedy (in the order that Greedy picked
them) and S∗ the optimal solution. To give some intuition, in the additive case before, we
used the property of p-extendibility in order to say that every element that appears in S
but not in S∗ could be “boosted” by a factor of p to obtain an even better optimal solution,
which would be a contradiction, because of the p-stability. Now, due to submodularity, we
need to be careful that we make this exchange argument in a cautious manner.
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For 0 ≤ i ≤ k, let Si = {e1, e2, . . . , ei} denote the first i elements picked by Greedy (with
S0 = ∅). Let δi = fSi−1(ei) = f(Si)− f(Si−1). Using the p-extendibility property, we can
find a chain of sets S∗ = T0 ⊇ T1 ⊇ · · · ⊇ Tk = ∅ such that for 1 ≤ i ≤ k:

Si ∪ Ti ∈ I, Si ∩ Ti = ∅ and |Ti−1 \ Ti| ≤ p.

The above means that every element in Ti is a candidate for Greedy in step i + 1. We
construct the chain as follows: Let T0 = S∗; we show how to construct Ti from Ti−1:
1. If ei ∈ Ti−1, we define S∗i = {ei} and Ti = Ti−1 − ei. This corresponds to the trivial

case when Greedy, at stage i, happens to choose an element ei that also belongs to the
optimal solution S∗.

2. Otherwise (ei /∈ Ti−1), we let S∗i be a smallest subset of Ti−1 such that (Si−1∪Ti−1)\S∗i +ei
is independent and since I is p-extendible, we have |S∗i | ≤ p. We let Ti = Ti−1 \ S∗i .

By the above definitions for Si, Ti, S∗i it follows that Si ∪ Ti ∈ I and Si ∩ Ti = ∅. By the
maximality of Greedy (stopping condition: {e|Sk +e ∈ I} = ∅) and the fact that Sk ∪Tk ∈ I,
it also follows that Tk = ∅. Since Greedy could have picked, instead of ei, any of the elements
in S∗i (in fact Ti−1) we get: δi ≥ 1

pfSi−1(S∗i ) (recall that |S∗i | ≤ p).
Let us assume now that the Greedy solution S is not optimal. We use Proposition 8

to define a (p + 1)-perturbation that produces a new optimal solution. Let’s suppose
|S \ S∗| = l and let’s rename the elements ei such that |S \ S∗| = {e1, e2, . . . , el} in
the order that the Greedy picked the elements. Then we define f̃(T ) for every T by
f(T ) = f(T ) + p

∑
1≤i≤l:ei∈T δi, where δi = fSi

(ei) = f({e1, . . . , ei}) − f({e1, . . . , ei−1).
Using Proposition 8, this is a valid (p + 1)-perturbation. For the greedy solution S, we
obtain:

f̃(S) = f(S) + p

l−1∑
i=0

fSi(ei+1) ≥

≥ f(S) +
l−1∑
i=0

fSi
(S∗i+1) ≥ f(S) +

l−1∑
i=0

fS(S∗i+1) ≥ f(S) + fS(S∗ \ S) =

= f(S) + (f((S∗ \ S) ∪ S)− f(S)) = f(S∗ ∪ S) ≥ f(S∗) = f̃(S∗).

We ended up with f̃(S) ≥ f̃(S∗) which means that S∗ is no longer the unique optimum and
hence we get a contradiction to the (p+ 1)-stability of S∗. J

I Remark. If instead of exact access to the values of the function f , we had an α-approximate
oracle, then the proof easily extends to handle this case as well. In particular, suppose each
element ei picked by Greedy at stage i satisfies fSi−1(ei) ≥ αmaxe∈Ai fSi−1(e), where Ai is
the set of all candidate augmentations of Si−1. Here α ≤ 1. We would then have that the
greedy marginal improvement δi ≥ α

p fSi−1(S∗i ) and thus we would need γ − 1 = p
α leading to

exact recovery of
(
p+α
α

)
-stable instances (α ≤ 1).

4.3 Welfare Maximization
In many situations, like the welfare maximization problem [27, 35, 41], the submodular
function f we wish to maximize has a special form, e.g. it may be written as a sum of
other submodular functions fi (each of which may correspond to the player’s i valuation
on different allocations of the items). In this special case, we have f(S) =

∑n
i=1 fi(S) and

from Theorem 9 Greedy recovers the optimal solution S∗ for the case of matroids, which are
1-extendible, if S∗ is 2-stable.
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However, for sum functions f =
∑
i fi, we may as well hope that a stronger recovery

result is true, i.e. that Greedy recovers the optimal solution of max{f(S) =
∑
i fi : S ∈ I},

where the optimum is 2-stable only with respect to 2-perturbations of the individual functions
fi. This is indeed true (for the proof, we refer the reader to Appendix A of the full version).

I Theorem 10. Let (X, I) be a matroid on the elements of X, let B1, B2, . . . , Bk be a
partition of X, fi : 2Bi → R+ ∪ {0}, for i ∈ {1, 2, . . . , k} be monotone submodular and let
f =

∑k
i=1 fi. Suppose the optimal solution S∗ of max{f(S) : S ∈ I} is 2-stable only with

respect to individual perturbations of the functions fi. Then, Greedy recovers S∗.

5 Local Search Performance

In this section we discuss local search [28] (described in Section 2). Local search often gives
better results than Greedy, at the cost of a slower running time – for example for submodular
maximization subject to the intersection of k matroids [26, 21], and for k-set packing
[40, 18, 23]. For some interesting recent results about local search in beyond-worst-case
settings and on geometric optimization we refer the reader to [14, 15, 16].

Somewhat surprisingly, it was not known (to our knowledge) how local search performs
for p-systems and p-extendible systems. (We recall that the greedy algorithm gives a factor of
1/p for maximization of an additive function and 1/(p+ 1) for maximization of a monotone
submodular function under these constraints.) Here, we prove that local search in fact
performs worse than Greedy for these constraints. Although it gives a 1/p-approximation for
cardinality maximization under a p-system constraint (essentially by definition), it does not
give any bounded approximation factor for additive function maximization under a p-system,
and only a 1/p2-approximation under a p-extendible system.

5.1 Local search fails for p-systems
We construct simple examples where local search will not recover any fraction of the maximum-
weight solution for p-systems (even if it is arbitrarily stable, p = 2, and even if we allow large
exchange neighborhoods). In particular, consider a ground set X = A ∪ {e∗} where |A| = n.
The independent sets of I are:

any subset of A, or
e∗ plus any subset of at most n/2 elements of A.

Note that this is a 2-system, because for S ⊆ X, any independent subset of S can be
extended to an independent set of size at least min{|S|, n/2}, and the maximum independent
subset of S has size at most min{|S|, n}. The weights could be 0 on A, and 1 on the special
element e∗. So the optimum is w(e∗) = 1 (observe that the optimal solution is c-stable for
arbitrarily large c). However, A is a local optimum, unless we are willing to swap out n/2
elements, which is not possible for efficient local search.

5.2 Lower bound for p-extendible systems
Let us consider the following instance. Let X = A ∪ B where A,B are disjoint sets. We
define I ⊆ 2X as follows: S ∈ I iff
|S ∩A|+ p|S ∩B| ≤ |A|, or
p|S ∩A|+ |S ∩B| ≤ |B|.

I Lemma 11. For any A,B disjoint, the above is a p-extendible system.
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Proof. Let S ⊆ T and i ∈ X \ T be such that S + i ∈ I and T ∈ I. We need to prove that
there is Z ⊆ T \ S, |Z| ≤ p such that (T \ Z) + i ∈ I.

We can assume that |T \ S| > p, because otherwise we can set Z = T \ S and obviously
(T \Z)+i = S+i ∈ I. Assuming |T \S| > p, let Z be an arbitrary set of p elements from T \S.
We consider 2 cases: If |T ∩A|+ p|T ∩B| ≤ |A|, then |(T \Z)∩A|+ p|(T \Z)∩B| ≤ |A| − p.
Adding the element i can increase the left-hand side by at most p, and so |(T \ Z + i) ∩A|+
p|(T \ Z + i) ∩ B| ≤ |A|. Similarly, in the second case, if p|T ∩ A| + |T ∩ B| ≤ |B|, then
p|(T \ Z) ∩ A|+ |(T \ Z) ∩ B| ≤ |B| − p. Adding the element i can increase the left-hand
side by at most p, and so p|(T \ Z + i) ∩A|+ |(T \ Z + i) ∩B| ≤ |B|. J

Now we choose the cardinalities of A and B and the weights of their elements appropriately
to get a negative result.

I Lemma 12. For ε > 0, let |A| = n and |B| = (p− ε)n, and set the weights as wa = 1 for
a ∈ A and wb = p− ε for b ∈ B. Then A is a local optimum of value w(A) = w(B)/(p− ε)2,
unless the local search explores exchanges of size at least ε

pn.

Proof. Both A and B are independent sets. Note that for any i ∈ B, we need to remove
Z ⊆ A of cardinality at least |Z| = p to obtain S = (A\Z)+i satisfying |S∩A|+p|S∩B| ≤ |A|.
More generally, for Y ⊆ B, we need to remove Z ⊆ A, |Z| = p|Y | to obtain S = (A \ Z) ∪ Y
that satisfies |S ∩ A| + p|S ∩ B| ≤ |A|. Possibly, we could satisfy the second condition,
p|S∩A|+ |S∩B| ≤ |B|, but this will not happen unless |A\Z| = |S∩A| ≤ |B|/p = (1− ε

p )n.
Therefore, we would need to remove Z of cardinality at least ε

pn.
If the swaps considered are smaller than ε

pn then A is a local optimum because adding
Y ⊆ B and removing Z ⊆ A, |Z| = p|Y | results in a solution of lower weight. In conclusion,
A is a local optimum of value w(A) = n, while the optimum is OPT = w(B) = (p− ε)2n. J

5.3 Upper bound for p-extendible systems
Here we prove that local search does in fact provide a 1/p2-approximation for weighted
maximization under a p-extendible system. More generally, we prove (here, we will ignore
the technicalities of stopping the local search in polynomial time as this can be handled using
standard techniques, while losing 1/poly(n) in the approximation factor) the following:

I Theorem 13. For any p-extendible system I ⊆ 2X and a monotone submodular function
f : 2X → R+, local search with (p, 1)-swaps (including at most 1 element and removing at
most p elements) provides a 1/(p2 + 1)-approximation. For additive f , the factor is 1/p2.

Proof. Let A be a local optimum under (p, 1)-swaps, and let B be an optimal solution. (For
convenience, let us also assume that we always try to add elements to A if possible, even
if they bring zero marginal value.) We proceed in two steps, the first one inspired by the
analysis of the greedy algorithm for p-extendible systems [12] and the second one similar to
other analyses of local search.

Let A = {a1, . . . , ak} be a greedy ordering of A in the sense that a1 is the element of
A maximizing f∅(a1); given a1, a2 is the element of A− a1 maximizing f{a1}(a2), a3 is the
element of A−a1−a2 maximizing f{a1,a2}(a3), etc. Using the p-extendible property, there is
a subset B1 ⊆ B, |B1| ≤ p such that (B \B1) +a1 ∈ I. Further, since {a1, a2} ∈ I, there is a
subset B2 ⊆ B \B1, |B2| ≤ p such that (B \ (B1 ∪B2)) ∪ {a1, a2} ∈ I, etc. Generally, there
are disjoint subsets B1, . . . , Bk ⊆ B, |Bi| ≤ p such that (B \ (B1 ∪ . . . Bi))∪ {a1, . . . , ai} ∈ I.
In fact, if |A| = k, the sets B1, . . . , Bk form a partition of B. Otherwise there would be
additional elements in B \ (B1 ∪ . . . ∪Bk) which can be added to A, which would contradict
the local optimality of A.
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Now, we claim that for each b ∈ Bi, we have fA(b) ≤ pf{a1,...,ai−1}(ai). If not, we
would be able to add b and, since {a1, . . . , ai−1, b} ∈ I, we could remove at most p elements
Z ⊆ A \ {a1, . . . , ai−1} so that (A \ Z) + b ∈ I. By submodularity and the greedy ordering,
we would have f(A \ Z) ≥ f(A)− pf{a1,...,ai−1}(ai) and again by submodularity, we would
have f((A \ Z) + b) ≥ f(A \ Z) + fA(b) > f(A \ Z) + pf{a1,...,ai−1}(ai) ≥ f(A). Therefore,
this would be an improving local swap.

Since A is a local optimum, we conclude that fA(b) ≤ pf{a1,...,ai−1}(ai) for each b ∈ Bi.
Since B = B1 ∪ . . . ∪Bk and |Bi| ≤ p, we have by submodularity

fA(B) ≤
k∑
i=1

∑
b∈Bi

fA(b) ≤
k∑
i=1
|Bi|pf{a1,...,ai−1}(ai) ≤ p

2
k∑
i=1

f{a1,...,ai−1}(ai) ≤ p
2f(A)

For f monotone submodular, we have f(B) ≤ f(A) + fA(B) ≤ (p2 + 1)f(A). For f additive,
we have f(B) = fA(B) ≤ p2f(A). This completes the proof. J

5.4 Recovery for p-extendible systems
I Theorem 14. Given a p-extendible system I ⊆ 2X and a monotone submodular function
f : 2X → R+∪{0} we wish to maximize, if the optimal solution B is (p2 +1)-stable, then local
search with (p, 1)-swaps exactly recovers it. If f is additive, recovery holds if B is p2-stable.

Proof. The basic idea is that we can contract the elements that belong to A ∩ B and
then use the same charging argument from above. Using the notation from the proof of
Theorem 13, for elements ai ∈ A ∩B the corresponding Bi block is just {ai}. Now we can
rename elements in A \B = {a1, . . . , am} with corresponding blocks B1, . . . , Bm such that
B \A = B1 ∪ . . . ∪Bm and |Bi| ≤ p. Rewriting the local search guarantee:

fA(B\A) ≤
m∑
i=1

∑
b∈Bi

fA(b) ≤
m∑
i=1
|Bi|pf{a1,...,ai−1}(ai) ≤ p

2
m∑
i=1

f{a1,...,ai−1}(ai) ≤ p
2f(A\B)

Since fA(B \A) = f(B ∪A)− f(A) ≥ f(B)− f(A), we can (p2 + 1)-perturb the input (only
the marginal of elements in A\B) and get: f̃(B) = f(B) ≤ f(A)+p2f(A\B) = f̃(A), hence
contradicting the (p2 + 1)-stability. In the case of additive f , fA(B \ A) = f(B \ A) and
f̃(B) = f(B) = f(B\A)+f(B∩A) ≤ p2f(A\B)+f(B∩A) ≤ f(A)+(p2−1)f(A\B) = f̃(A),
where we p2-perturbed the instance, hence contradicting the p2-stability of the instance. J

5.5 Recovery for the intersection of Matroids
If the independence system I is the intersection of p matroids: I = ∩pi=1Ii, local search with
(p, 1)-swaps recovers (p+ 1)-stable optimal solutions (for proof, see full version of the paper).

I Theorem 15. Given (X, I), with I = ∩pi=1Ii where each Ii is a matroid and f monotone
submodular, such that the optimal solution is (p+ 1)-stable, Local Search exactly recovers it.
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Abstract
Bounded context switching (BCS) is an under-approximate method for finding violations to safety
properties in shared-memory concurrent programs. Technically, BCS is a reachability problem
that is known to be NP-complete. Our contribution is a parameterized analysis of BCS.

The first result is an algorithm that solves BCS when parameterized by the number of context
switches (cs) and the size of the memory (m) in O∗(mcs · 2cs). This is achieved by creating
instances of the easier problem Shuff which we solve via fast subset convolution. We also present
a lower bound for BCS of the form mo(cs/ log(cs)), based on the exponential time hypothesis.
Interestingly, the gap is closely related to a conjecture that has been open since FOCS’07. Further,
we prove that BCS admits no polynomial kernel.

Next, we introduce a measure, called scheduling dimension, that captures the complexity of
schedules. We study BCS parameterized by the scheduling dimension (sdim) and show that it
can be solved in O∗((2m)4sdim4t), where t is the number of threads. We consider variants of the
problem for which we obtain (matching) upper and lower bounds.
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programs prone to programming errors. As a result, substantial effort has been devoted to
developing automatic verification tools. The current trend for shared memory is bug-hunting:
Algorithms that look for misbehavior in an under-approximation of the computations.

The most prominent method in the under-approximate verification of shared-memory
concurrent programs is bounded context switching (BCS) [48]. A context switch occurs
when a thread leaves the processor for another thread to be scheduled. The idea of BCS is
to limit the number of times the threads may switch the processor. Effectively this limits
the communication that can occur between the threads. (Note that there is no bound on
the running time of each thread.) Bounded context switching has received considerable
attention [37, 4, 3, 1, 38, 39, 2, 47] for at least two reasons. First, the under-approximation has
been demonstrated to be useful in numerous experiments, in the sense that synchronization
bugs show up in few context switches [46]. Second, compared to other verification methods,
BCS is algorithmically appealing, with the complexity dropping from PSPACE to NP in the
case of Boolean programs.

The hardness of verification problems, also the NP-hardness of BCS, is in sharp contrast
to the success that verification tools see on industrial instances. This discrepancy between
the worst-case behavior and efficiency in practice has also been observed in other areas
within algorithmics. The response was a line of research that refines the classical worst-case
complexity. Rather than only considering problems where the instance-size determines
the running time, so-called parameterized problems identify further parameters that give
information about the structure of the input or the shape of solutions. The complexity
class of interest consists of the so-called fixed-parameter tractable problems. A problem is
fixed-parameter tractable if the parameter that has been identified is indeed responsible
for the non-polynomial running time or, phrased differently, the running time is f(k)p(n)
where k is the parameter, n is the size of the input, f is a computable function, and p is
a polynomial.

Within fixed-parameter tractability, the recent trend is a fine-grained analysis to under-
stand the precise functions f that are needed to solve a problem. From an algorithmic point
of view, an exponential dependence on k, at best linear so that f(k) = 2k, is particularly
attractive. There are, however, problems where algorithms running in 2o(k log(k)) are unlikely
to exist. As common in algorithmics, unconditional lower bounds are hard to achieve, and
none are known that separate 2k and 2k log(k). Instead, one works with the so-called expo-
nential time hypothesis (ETH): After decades of attempts, n-variable 3-SAT is not believed
to admit an algorithm of running time 2o(n). To derive a lower bound for a problem, one
now shows a reduction from n-variable 3-SAT to the problem such that a running time in
2o(k log(k)) means ETH breaks.

The contribution of our work is a fine-grained complexity analysis of the bounded context
switching under-approximation. We propose algorithms as well as matching lower bounds in
the spectrum 2k to kk. This work is not merely motivated by explaining why verification
works in practice. Verification tasks have also been shown to be hard to parallelize. Due to
the memory demand, the current trend in parallel verification is lock-free data structures [6].
So far, GPUs have not received much attention. With an algorithm of running time 2kp(n),
and for moderate k, say 12, one could run in parallel 4096 threads each solving a problem of
polynomial effort.

When parameterized only by the context switches, BCS is quickly seen to be W[1]-hard
and hence does not admit an FPT-algorithm. Since it is often the case that shared memory
communication is via signaling (flags), the memory requirements are not high. We additionally
parameterize by the memory. Our study can be divided into two parts.
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We first give a parameterization of BCS (in the context switches and the size of the
memory) that is global in the sense that all threads share a budget of cs many context
switches. For the upper bound, we show that the problem can be solved in O∗(mcs2cs). We
first enumerate the sequences of memory states at which the threads could switch context,
and there are mcs such sequences where m is the size of the memory. For a given such
sequence, we check a problem called Shuff: Do the threads have computations that justify
the sequence (and lead to their accepting state)? Here, we use fast subset convolution to
solve Shuff in O∗(2cs). Note that Shuff is a problem that may be interesting in its own right.
It is an under-approximation that still leaves much freedom for the local computations of the
threads. Indeed, related ideas have been used in testing [33, 12, 24, 31].

For the lower bound, the finding is that the global parameterization of BCS is closely
related to Subgraph Isomorphism (SGI). Whereas the reduction is not surprising, the
relationship is, with SGI being one of the problems whose fine-grained complexity is not fully
understood. Subgraph isomorphism can be solved in O∗(nk) where k is the number of edges
in the graph that is to be embedded. The only lower bound, however, is no(k/ log k), and has,
to the best of our knowledge, not been improved since FOCS’07 [44, 45]. However, the belief
is that the log k-gap in the exponent can be closed. We show how to reduce SGI to the global
version of BCS, and obtain an mo(cs/ log cs) lower bound. Phrased differently, BCS is harder
than SGI but admits the same upper bound. So once Marx’ conjecture is proven, we obtain
a matching bound. If we proved a lower upper bound, we had disproven Marx’ conjecture.

Our second contribution is a study of BCS where the parameterization is local in the sense
that every thread is given a budget of context switches. Here, our focus is on the scheduling.
We associate with computations so-called scheduling graphs that show how the threads take
turns. We define the scheduling dimension, a measure on scheduling graphs (shown to be
closely related to carving width) that captures the complexity of a schedule. Our main
finding is a fixed-point algorithm that solves the local variant of BCS exponential only in
the scheduling dimension and the number of threads. We study variants where only the
budget of context switches is given, the graph is given, and where we assume round robin as
a schedule. Verification under round robin has received quite some attention [10, 46, 40]. In
that setting, we show that we get rid of the exponential dependence on the number of threads
and obtain an O∗(m4cs) upper bound. We complement this by a matching lower bound.

The following table summarizes our results and highlights the main findings in gray.

Problem Upper Bound Lower Bound

Shuff O∗(2k) (2− ε)k

BCS O∗(mcs2cs) mo(cs/ log cs),
no poly. kernel

BCS-L-RR O∗(m4cs) 2o(cs log(m))

BCS-L-FIX O∗((2m)4sdim) 2o(sdim log(m))

BCS-L O∗((2m)4sdim4t) 2o(sdim log(m))

The organization is by expressiveness, measured in terms of the amount of computations
that an analysis explores. Considering shuffle membership Shuff as an under-approximate
analysis in its own right, Shuff is less expressive than the globally parameterized BCS. BCS
is less expressive than round robin BCS-L-RR, which is an instance of fixing the scheduling
graph BCS-L-FIX. The most liberal parameterization is via the scheduling dimension BCS-L.
In the paper, we present algorithms for the case where the threads are finite state. Our results
also hold for more general classes of programs, notably recursive ones. The only condition
that we require is that the chosen automaton model for the threads has a polynomial time
decision procedure for checking non-emptiness when intersected with a regular language.
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There have been previous efforts in studying fixed-parameter tractable algorithms for
automata and verification-related problems. In [21], the authors introduced the notion of
conflict serializability under TSO and gave an FPT-algorithm for checking serializability.
In [24], the authors studied the complexity of predicting atomicity violation on concurrent
systems and showed that no FPT solution is possible for the same. In [18], various model
checking problems for synchronized executions on parallel components were considered and
proven to be intractable. Parameterized complexity analyses for different problems on finite
automata were given in [25, 26, 50].

Verification of concurrent systems has received considerable attention. The parameterized
verification was studied in [20, 22, 29, 34, 38]. Concurrent shared-memory systems with a
fixed number of threads were also studied in [2, 3, 5].

2 Preliminaries

We define the bounded context switching problem of interest [48] and recall the basics on
fixed-parameter tractability following [19, 27].

Bounded Context Switching. We study the safety verification problem for shared-memory
concurrent programs. To obtain precise complexity results, it is common to assume both the
number of threads and the data domain to be finite. Safety properties partition the states of
a program into unsafe and safe states. Hence, checking safety amounts to checking whether
no unsafe state is reachable. In the following, we develop a language-theoretic formulation of
the reachability problem that will form the basis of our study.

We model the shared memory as a (non-deterministic) finite automaton of the form
M = (Q,Σ, δM , q0, qf ). The states Q correspond to the data domain, the set of values that
the memory can be in. The initial state q0 ∈ Q is the value that the computation starts from.
The final state qf ∈ Q reflects the reachability problem. The alphabet Σ models the set of
operations. Operations have the effect of changing the memory valuation, formalized by the
transition relation δM ⊆ Q× Σ×Q. We generalize the transition relation to words u ∈ Σ∗.
The set of sequences of operations that lead from a state q to another state q′ is the language
L(M(q, q′)) := {u ∈ Σ∗ | q′ ∈ δM (q, u)}. The language of M is L(M) := L(M(q0, qf )). The
size of M , denoted |M |, is the number of states.

We also model the threads operating on the shared memory M as finite automata
Aid = (P,Σ× {id}, δA, p0, pf ). Note that they use the alphabet Σ of the shared memory,
indexed by the name of the thread. The index will play a role when we define the notion
of context switches below. The automaton Aid is nothing but the control flow graph of the
thread id. Its language is the set of sequences of operations that the thread could potentially
execute to reach the final state. As the thread language does not take into account the effect
of the operations on the shared memory, not all these sequences will be feasible. Indeed,
the thread may issue a command write(x, 1) followed by read(x, 0), which the automaton
for the shared memory will reject. The computations of A that are actually feasible on the
shared memory are given by the intersection L(M) ∩ L(Aid). Here, we silently assume the
intersection to project away the second component of the thread alphabet.

A concurrent program consists of multiple threads A1 to At that mutually influence
each other by accessing the same memory M . We mimic this influence by interleaving the
thread languages, formalized with the shuffle operator X. Consider languages L1 ⊆ Σ∗1 and
L2 ⊆ Σ∗2 over disjoint alphabets Σ1 ∩Σ2 = ∅. The shuffle of the languages contains all words
over the union of the alphabets where the corresponding projections (− ↓ −) belong to the
operand languages, L1 X L2 := {u ∈ (Σ1 ∪ Σ2)∗ | u ↓ Σi ∈ Li ∪ {ε}, i = 1, 2}.
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With these definitions in place, a shared-memory concurrent program (SMCP) is a
tuple S = (Σ,M, (Ai)i∈[1..t]). Its language is L(S) := L(M) ∩ ( Xi∈[1..t] L(Ai) ). The
safety verification problem induced by the program is to decide whether L(S) is non-empty.
Note that we use [1..t] to identify the set {1, . . . , t}.

We formalize the notion of context switching. Every word in the shuffle of the thread
languages, u ∈Xi∈[1..t] L(Ai), has a unique decomposition into maximal infixes that are
generated by the same thread. Formally, u = u1 . . . ucs+1 so that there is a function
ϕ : [1..cs + 1]→ [1..t] satisfying ui ∈ (Σ×{ϕ(i)})+ and ϕ(i) 6= ϕ(i+ 1) for all i ∈ [1..cs]. We
refer to the ui as contexts and to the thread changes between ui to ui+1 as context switches.
So u has cs +1 contexts and cs context switches. Let Context(Σ, t, cs) denote the set of words
(over Σ with t threads) that have at most cs-many context switches. The bounded context
switching under-approximation limits the safety verification task to this language.

Bounded Context Switching (BCS)
Input: An SMCP S = (Σ,M, (Ai)i∈[1..t]) and a bound cs ∈ N.
Question: Is L(S) ∩ Context(Σ, t, cs) 6= ∅ ?

Fixed Parameter Tractability. BCS is NP-complete, even for unary alphabets [23]. Our
goal is to understand which instances can be solved efficiently and, in turn, what makes an
instance hard. Parameterized complexity addresses these questions.

A parameterized problem L is a subset of Σ∗×N. The problem is fixed-parameter tractable
(FPT) if there is a deterministic algorithm that, given (x, k) ∈ Σ∗ × N, decides (x, k) ∈ L in
time f(k) · |x|O(1). Here, f is a computable function that only depends on the parameter k.
It is common to denote the running time by O∗(f(k)) and suppress the polynomial part.

While many parameterizations of NP-hard problems were proven to be fixed-parameter
tractable, there are problems that are unlikely to be FPT. A famous example that we shall
use is k-Clique, the problem of finding a clique of size k in a given graph. k-Clique is complete
for the complexity class W[1], and W[1]-hard problems are believed to lie outside FPT.

A theory of relative hardness needs an appropriate notion of reduction. Given param-
eterized problems L,L′ ⊆ Σ∗ × N, we say that L is reducible to L′ via a parameterized
reduction, denoted by L ≤fpt L′, if there is an algorithm that transforms an input (x, k) to
an input (x′, k′) in time g(k) · nO(1) so that (x, k) ∈ L if and only if (x′, k′) ∈ L′. Here, g is
a computable function and k′ is computed by a function only dependent on k.

For BCS, a first result is that a parameterization by the number of context switches and
additionally by the number of threads, denoted by BCS(cs, t), is not sufficient for FPT: The
problem is W[1]-hard. It remains in W[1] if we only parameterize by the context switches.

I Proposition 1. BCS(cs) and BCS(cs, t) are both W[1]-complete.

The running time of an FPT-algorithm is dominated by f . The goal of fine-grained
complexity theory is to give upper and lower bounds on this non-polynomial function. For
lower bounds, the problem that turned out to be hard is n-variable 3-SAT. The Exponential
Time Hypothesis (ETH) is that n-variable 3-SAT does not admit a 2o(n)-time algorithm [36].
We will prove a number of lower bounds that hold, provided ETH is true.

In the remainder of the paper, we consider parameterizations of BCS that are FPT. Our
contribution is a fine-grained complexity analysis.
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3 Global Parameterization

Besides the number of context switches cs, we now consider the size m of the memory as
a parameter of BCS. This parameterization is practically relevant and, as we will show,
algorithmically appealing. Concerning the relevance, note that communication over the
shared memory is often implemented in terms of flags. Hence, when limiting the size of the
memory we still explore a large part of the computations.

Upper Bounds. The idea of our algorithm is to decompose BCS into exponentially many
instances of the easier problem shuffle membership (Shuff) defined below. Then we solve
Shuff with fast subset convolution. To state the result, let the given instance of BCS be
S = (Σ,M, (Ai)i∈[1..t]) with bound cs. To each automaton Ai, our algorithm will associate
another automaton Bi of size polynomial in Ai. Let b = maxi∈[1..t] |Bi|. Moreover, let
Shuff(b, k, t) = O(2k · t · k · (b2 + k · bc(k))) be the complexity of solving the shuffle problem.
The factor bc(k) appears as we need to multiply k-bit integers (see below). The currently
best known running time is bc(k) = k log k · 2O(log∗k) [32, 35].

I Theorem 2. BCS can be solved in O(mcs+1 · Shuff(b, cs + 1, t) + t ·m3 · b3).

We decompose BCS along interface sequences. Such an interface sequence is a word
σ = (q1, q

′
1) . . . (qk, q′k) over pairs of states of the memory automaton M . The length is k. An

interface sequence is valid if q1 is the initial state of the memory automaton, q′k the final state,
and q′i = qi+1 for i ∈ [1..k − 1]. Consider a word u ∈ L(S) with contexts u = u1 . . . um. An
interface sequence σ = (q0, q1)(q1, q2) . . . (qm−1, qm) is induced by u, if there is an accepting
run of M on u such that for all i ∈ [1..m], qi is the state reached by M upon reading u1 . . . ui.
Note that we only consider the states that occur upon context switches. Moreover, induced
sequences are valid by definition. Finally, note that a word with cs-many context switches
induces an interface sequence of length precisely cs + 1. We define IIF(S) ⊆ (Q×Q)∗ to be
the language of all induced interface sequences.

Induced interface sequences witness non-emptiness of L(S): L(S) 6= ∅ iff IIF(S) 6= ∅.
Since the number of context switches is bounded by cs, we can thus iterate over all sequences
in (Q × Q)≤cs+1 and test each of them for being an induced interface sequence, i.e. an
element of IIF(S). Since induced sequences are valid, there are at most mcs+1 sequences to
test.

Before turning to this test, we do a preprocessing step that removes the dependence on
the memory automaton M . To this end, we define the interface language IF(Aid) of a thread.
It makes visible the state changes on the shared memory that the contexts of this thread may
induce. Formally, the interface language consists of all interface sequences (q1, q

′
1) . . . (qk, q′k)

so that L(Aid) ∩ ( L(M(q1, q
′
1)) . . . L(M(qk, q′k)) ) 6= ∅. These sequences do not have to be

valid as the thread may be interrupted by others. Below, we rely on the fact that IF(Aid) is
again a regular language, a representation of which is easy to compute.

I Lemma 3.
(i) We have IIF(S) = Xi∈[1..t]IF(Ai) ∩ {σ ∈ (Q×Q)∗ | σ valid }.
(ii) One can compute in time O(|Aid |3 · |M |3) an automaton Bid with L(Bid) = IF(Aid).

It remains to check whether a valid sequence σ ∈ (Q × Q)cs+1 is included in the shuf-
fle Xi∈[1..t]L(Bi). This means we address the following problem:
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Shuffle Membership (Shuff)
Input: NFAs (Bi)i∈[1..t] over the alphabet Γ, an integer k, and a word w ∈ Γk.
Question: Is w in Xi∈[1..t]L(Bi) ?

We obtain the following upper bound, with b and bc(k) as defined above.

I Theorem 4. Shuff can be solved in time O(2k · t · k · (b2 + k · bc(k))).

Our algorithm is based on fast subset convolution [7], an algebraic technique for summing
up partitions of a given set. Typically, fast subset convolution is applied to graph problems:
Björklund et al. [7] used it to present the first O∗(2k)-time algorithm for the Steiner Tree
problem with k terminals and bounded edge weights. Cygan et al. incorporated a generalized
version as a subprocedure in applications of their Cut & Count technique [17]. Variants of
Dominating Set parameterized by treewidth were solved by van Rooij et al. in [49] using fast
subset convolution. We are not aware of an automata-theoretic application.

Let f, g : P(B)→ Z be two functions from the powerset of a k-element set B to the ring
of integers. The convolution of f and g is the function f ∗ g : P(B)→ Z that maps a subset
S ⊆ B to the sum

∑
U⊆S f(U)g(S \ U). Note that the convolution is associative. There is a

close connection to partitions. For t ∈ N, a t-partition of a set S is a tuple (U1, . . . , Ut) of
subsets of S such that U1 ∪ · · · ∪ Ut = S and Ui ∩ Uj = ∅ for all i 6= j. Now it is easy to see
that the convolution of t functions fi : P(B)→ Z, i ∈ [1..t], sums up all t-partitions of S:

(f1 ∗ · · · ∗ ft)(S) =
∑

(U1,...,Ut)
is a t-parition of S

f1(U1) · · · ft(Ut) .

To apply the convolution, we give a characterization of Shuff in terms of partitions. Let
((Bi)i∈[1..t], k, w) be an instance of Shuff. The following observation is crucial. The word
w lies in the shuffle of the L(Bi) if and only if there are non-overlapping, possibly empty
(scattered) subwords w1, . . . , wt of w that decompose w and that satisfy wi ∈ L(Bi)∪{ε} for
all i ∈ [1..t]. By scattered, we mean that the subwords do not have to form an infix of w. Such
a decomposition induces a t-partition (U1, . . . , Ut) of the set of positions Pos = {1, . . . , k} of
w, where each Ui holds exactly the positions of wi. In turn, given a t-partition (U1, . . . , Ut)
of Pos, we can derive a decomposition of w by setting wi = w[Ui] for all i ∈ [1..t]. Here,
w[Ui] is the projection of w to the positions in Ui. Hence, w lies in the shuffle if and only if
there is a t-partition (U1, . . . , Ut) of Pos such that w[Ui] ∈ L(Bi) ∪ {ε} for all i ∈ [1..t].

To express the language membership in L(Bi) in terms of functions, we employ the
characteristic functions fi : P(Pos)→ Z that map a set S to 1 if w[S] ∈ L(Bi) ∪ {ε}, and to
0 otherwise. By the above formula, it follows that (f1 ∗ · · · ∗ ft)(Pos) > 0 if and only if there
is a t-partition (U1, . . . , Ut) of Pos such that fi(Ui) = 1 for i ∈ [1..t]. Altogether, we have
proven the following lemma:

I Lemma 5. The word w ∈ Γk is in Xi∈[1..t]L(Bi) if and only if (f1 ∗ · · · ∗ ft)(Pos) > 0.

Our algorithm for Shuff computes the characteristic functions fi and t− 1 convolutions to
obtain f1 ∗ · · · ∗ ft. Then it evaluates the convolution at the set Pos. Computing and storing
a value fi(S) for a subset S ⊆ Pos takes time O(k · b2) since we have to test membership of
a word of length at most k in Bi. Hence, computing all fi takes time O(2k · t · k · b2). Due to
Björklund et al. [7], we can compute the convolution of two functions f, g : P(Pos)→ Z in
O(2k · k2) multiplications in Z. Furthermore, if the ranges of f and g are bounded by C,
we have to perform these operations on O(k logC)-bit integers [7]. Since the characteristic
functions fi have ranges bounded by a constant, we only need to compute with O(k)-bit
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integers. Hence, the t− 1 convolutions can be carried out in time O(2k · k2 · (t− 1) · bc(k)).
Altogether, this proves Theorem 4.

Lower Bound for Bounded Context Switching. We prove a lower bound for the NP-hard
BCS by reducing the subgraph isomorphism problem (SGI) to it. The result is such that it
also applies to BCS(cs) and BCS(cs,m). We explain why the result is non-trivial.

In fine-grained complexity, lower bounds for W[1]-hard problems are often obtained by
reductions from k-Clique. Chen et al. [13] have shown that k-Clique cannot be solved in time
f(k)no(k) for any computable function f , unless ETH fails. To transport the lower bound
to a problem of interest, one has to construct a parameterized reduction that blows up the
parameter only linearly. In the case of BCS, this fails. We face a well-known problem which
was observed for reductions using edge-selection gadgets [45, 16]: A reduction from k-Clique
would need to select a clique candidate of size k and check whether every two vertices of
the candidate share an edge. This needs O(k2) communications between the chosen vertices,
which translates to O(k2) context switches. Hence, we only obtain no(

√
k) as a lower bound.

To overcome this, we follow Marx [45] and give a reduction from SGI. This problem
takes as input two graphs G and H and asks whether G is isomorphic to a subgraph of
H. This means that there is an injective map ϕ : V (G) → V (H) such that for each edge
(u, v) in G, the pair (ϕ(u), ϕ(v)) is an edge in H. We use V (G) to denote the vertices and
E(G) to denote the edges of a graph G. Marx has shown that SGI cannot be solved in time
f(k)no(k/ log k), where k is the number of edges of G, unless ETH fails. In our reduction, the
number of edges is mapped linearly to the number of context switches.

I Theorem 6. Assuming ETH, there is no f s.t. BCS can be solved in f(cs)no(cs/ log(cs)).

Roughly, the idea is this: The alphabet V (G)× V (H) describes how the vertices of G are
mapped to vertices of H. Now we can use the memory M to output all possible injective
maps from V (G) to V (H). There is one thread Ai for each edge of G. Its task is to verify
that the edges of G get mapped to edges of H.

Note that Theorem 6 implies a lower bound for the FPT-problem BCS(cs,m). It cannot
be solved in time mo(cs/ log(cs)), unless ETH fails.

Lower Bound for Shuffle Membership. We prove it unlikely that Shuff can be solved in
O∗((2− δ)k) time, for a δ > 0. Hence, the O∗(2k)-time algorithm above may be optimal. We
base our lower bound on a reduction from Set Cover. An instance consists of a family of sets
(Si)i∈[1..m] over a universe U =

⋃
i∈[1..m] Si, and an integer t ∈ N. The problem asks for t

sets Si1 , . . . , Sit from the family such that U =
⋃
j∈[1..t] Sij .

We are interested in a parameterization of the problem by the size n of the universe.
It was shown that this parameterization admits an O∗(2n)-time algorithm [28]. But so
far, no O∗((2− ε)n)-time algorithm was found, for an ε > 0. Actually, the authors of [15]
conjecture that the existence of such an algorithm would contradict the Strong Exponential
Time Hypothesis (SETH) [36, 11]. This is the assumption that n-variable SAT cannot be
solved in O∗((2 − ε)n) time, for an ε > 0 (SETH implies ETH). By now, there is a list of
lower bounds based on Set Cover [8, 15]. We add Shuff to this list.

I Proposition 7. If Shuff can be solved in time O∗((2− δ)k) for a δ > 0, then Set Cover can
be solved in time O∗((2− ε)n) for an ε > 0.

Lower Bound on the Size of the Kernel. Kernelization is a preprocessing technique for
parameterized problems that transforms a given instance to an equivalent instance of size
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bounded by a function in the parameter. It is well-known that any FPT-problem admits
a kernelization and any kernelization yields an FPT-algorithm [16]. The search for small
problem kernels is ongoing research. A survey can be found in [42].

There is also the opposite approach, disproving the existence of a kernel of polynomial
size [9, 30]. Such a result indicates hardness of the problem at hand, and hence serves as
a lower bound. Technically, the existence of a polynomial kernel is linked to the inclusion
NP ⊆ coNP/poly. The latter is unlikely as it would cause a collapse of the polynomial
hierarchy to the third level [51]. Based on this approach, we show that BCS(cs,m) does not
admit a kernel of polynomial size. We introduce the needed notions, following [16].

A kernelization for a parameterized problem Q is an algorithm that, given an instance
(I, k), returns an equivalent instance (I ′, k′) in polynomial time such that |I ′|+ k′ ≤ g(k) for
some computable function g. If g is a polynomial, Q is said to admit a polynomial kernel.

We also need polynomial equivalence relations. These are equivalence relations on Σ∗,
with Σ some alphabet, such that: (1) There is an algorithm that, given x, y ∈ Σ∗, decides
whether (x, y) ∈ R in time polynomial in |x|+ |y|. (2) For every n, R restricted to Σ≤n has
at most polynomially (in n) many equivalence classes.

To relate parameterized and unparameterized problems, we employ cross-compositions.
Consider a language L ⊆ Σ∗ and a parameterized language Q ⊆ Σ∗ × N. Then L cross-
composes into Q if there is a polynomial equivalence relation R and an algorithm A, referred
to as the cross-composition, with: A takes as input a sequence x1, . . . , xt ∈ Σ∗ of strings
that are equivalent with respect to R, runs in time polynomial in Σti=1 |xi|, and outputs an
instance (y, k) of Q such that k ≤ p(maxi∈[1..t] |xi|+ log(t)) for a polynomial p. Moreover,
(y, k) ∈ Q if and only if there is an i ∈ [1..t] such that xi ∈ L. Cross-compositions are the
key to lower bounds for kernels:

I Theorem 8 ([16]). Assume that an NP-hard language cross-composes into a parameterized
language Q. Then Q does not admit a polynomial kernel, unless NP ⊆ coNP/poly.

To show that BCS(cs,m) does not admit a polynomial kernel, we cross-compose 3-SAT
into BCS(cs,m). Then Theorem 8 yields the following:

I Theorem 9. BCS(cs,m) does not admit a polynomial kernel, unless NP ⊆ coNP/poly.

Proof Idea. For the cross-composition, we first need a polynomial equivalence relation R.
Assume some standard encoding of 3-SAT-instances over a finite alphabet Γ. We let two
encodings ϕ,ψ be equivalent with respect to R if both are proper 3-SAT-instances and have
the same number of clauses and variables.

Let ϕ1, . . . , ϕt be instances of 3-SAT that are equivalent with respect to R. Then each ϕi
has exactly ` clauses and k variables. We can assume that the set of variables is {x1, . . . , xk}.
To handle the evaluation of these, we introduce the NFAs Ai, i ∈ [1..k], each storing the
value of xi. We further construct an automaton B that picks one out of the t formulas ϕj .
Automaton B tries to satisfy ϕj by iterating through the ` clauses. To satisfy a clause, B
chooses one out of the three variables and requests the corresponding value.

The request by B is synchronized with the memoryM . After every such request,M either
ensures that the sent variable xi actually has the requested value or stops the computation.
This is achieved by a synchronization with the corresponding variable automaton Ai, which
keeps the value of xi. The number of context switches lies in O(`) and the size of the memory
in O(k). Hence, all conditions for a cross-composition are met. J
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4 Local Parameterization

In the previous section, we considered a parameterization of BCS that was global in the sense
that the threads shared the number of context switches. We now study a parameterization
that is local in that every thread is given a budget of context switches.

We would like to have a measure for the amount of communication between processes
and consider only those computations in which heavily interacting processes are scheduled
adjacent to each other. The idea relates to [43], where it is observed that a majority of
concurrency bugs already occur between a few interacting processes.

Given a word u ∈Xi∈[1..t] L(Ai), we associate with it a graph that reflects the order
in which the threads take turns. This scheduling graph of u is the directed multigraph
G(u) = (V,E) with one node per thread that participates in u, V ⊆ [1..t], and edge weights
E : V × V → N defined as follows. Value E(i, j) is the number of times the context switches
from thread i to thread j in u. Formally, this is the number of different decompositions
u = u1.a.b.u2 of u so that a is in the alphabet of Ai and b is in the alphabet of Aj . Note that
E(i, i) = 0 for all i ∈ [1..t]. In the following we refer to directed multigraphs simply as graphs.

In the scheduling graph, the degree of a node corresponds to the number of times the
thread has the processor. The degree of a node n in G = (V,E) is the maximum over the
outdegree and the indegree, deg(n) = max{indeg(n), outdeg(n)}. As usual, the outdegree of a
node n is the number of edges leaving the node, outdeg(n) =

∑
n′∈V E(n, n′), the indegree is

defined similarly. To see the correspondence, observe that a scheduling graph can have three
kinds of nodes. The initial node is the only node where the indegree equals the outdegree
minus 1, and the thread has the processor outdegree many times. For the final node, the
outdegree equals the indegree minus 1, and the thread computes for indegree many contexts.
For all other (usual) nodes, indegree and outdegree coincide. Any scheduling graph either
has one initial, one final, and only usual nodes or, if the computation starts and ends in the
same thread, only consists of usual nodes. The degree of the graph is the maximum among
the node degrees, deg(G) = max{deg(n) | n ∈ V }.

Our goal is to measure the complexity of schedules. Intuitively, a schedule is simple if
the threads take turns following some pattern, say round robin where they are scheduled in
a cyclic way. To formalize the idea of scheduling patterns, we iteratively contract scheduling
graphs to a single node and measure the degrees of the intermediary graphs. If always the
same threads follow each other, we will be able to merge the nodes of such neighboring
threads without increasing the degree of the resulting graph. This discussion leads to a
notion of scheduling dimension that we define in the following paragraph. In the full version
of the paper [14], we elaborate on the relation to an established measure: The carving-width.

Given a graph G = (V,E), two nodes n1, n2 ∈ V , and n /∈ V , we define the operation of
contracting n1 and n2 into the fresh node n by adding up the incoming and outgoing edges.
Formally, the graph G[n1, n2 7→ n] = (V ′, E′) contains the vertices V ′ = (V \ {n1, n2}) ∪ {n}
and has the edge weights E′(n′, n) = E(n′, n1) +E(n′, n2), E′(n, n′) = E(n1, n

′) +E(n2, n
′),

and E′(m,m′) = E(m,m′) for all other nodes. Using iterated contraction, we can reduce a
graph to only one node. Formally, a contraction process of G is a sequence π = G1, . . . ,G|V |
of graphs, where G1 = G, Gk+1 = Gk[n1, n2 7→ n] for some n1, n2 ∈ V (Gk) and n /∈ V (Gk),
k ∈ [1.. |V | − 1], and G|V | consists of a single node. The degree of a contraction process is the
maximum of the degrees of the graphs in that process, deg(π) = max{deg(Gi) | i ∈ [1.. |V |]}.
The scheduling dimension of G is sdim(G) = min{deg(π) | π a contraction process of G}.

We study the complexity of BCS when parameterized by the scheduling dimension. To
this end, we define the language of all words where the scheduling dimension is bounded by
the parameter sdim ∈ N: SDL(Σ, t, sdim) = {u ∈ (Σ× [1..t])∗ | sdim(G(u)) ≤ sdim}.
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Bounded Context Switching – Local Parameterization (BCS-L)
Input: S = (Σ,M, (Ai)i∈[1..t]) and bound sdim ∈ N on the scheduling dimension.
Question: Is L(S) ∩ SDL(Σ, t, sdim) 6= ∅ ?

I Theorem 10. BCS-L can be solved in time O∗((2m)4sdim4t).

We present a fixed-point iteration that mimics the definition of contraction processes
by iteratively joining the interface sequences of neighboring threads. Towards the defi-
nition of a suitable composition operation, let the product of two interface sequences σ
and τ be σ ⊗ τ =

⋃
ρ∈σXτ ρ ↓. Language ρ ↓ consists of all interface sequences ρ′ obtained

by summarizing subsequences in ρ. Summarizing (r1, r
′
1) . . . (rn, r′n) where r′1 = r2 up to

r′n−1 = rn means to contract the sequence to (r1, r
′
n). We write σ ⊗k τ for the variant of the

product that only returns interface sequences of length at most k ≥ 1, (σ ⊗ τ) ∩ (Q×Q)≤k.
Our algorithm computes a fixed point over the powerset lattice (ordered by inclusion)

P( (Q×Q)≤sdim×P([1..t]) ). The elements are generalized interface sequences, pairs consisting
of an interface sequence together with the set of threads that has been used to construct it. We
generalize ⊗k to this domain. For the definition, consider (σ1, T1) and (σ2, T2). If the sets of
threads are not disjoint, T1∩T2 6= ∅, the sequences cannot be merged and we obtain (σ1, T1)⊗
(σ2, T2) = ∅. If the sets are disjoint, we define (σ1, T1)⊗k (σ2, T2) = (σ1 ⊗k σ2)× {T1 ∪ T2}.
The fixed-point iteration is given by L1 =

⋃
i∈[1..t] IF(Ai)× {{i}} and Li+1 = Li ∪ (Li⊗sdim

Li). The following lemma states that it solves BCS-L. We elaborate on the complexity in
the full version of the paper [14].

I Lemma 11. BCS-L holds iff the least fixed point contains ((qinit , qfinal), T ) for some T .

Problem BCS-L can be generalized and can be restricted in natural ways. We discuss both
options and show that variants of the above algorithm still apply.

Let BCS-L-ANY be the variant of BCS-L where each thread is given a budget of running cs
times, but where we do not make any assumption on the scheduling. Still, the scheduling di-
mension is bounded by t ·cs. The above algorithm solves BCS-L-ANY in time O∗((2m)4t·cs4t).

Fixing the Scheduling Graph. We consider BCS-L-FIX, a variant of BCS-L where we fix
a scheduling graph together with a contraction process of degree bounded by sdim. We
are interested in finding an accepting computation that switches contexts as depicted by
the fixed graph. Formally, BCS-L-FIX takes as input an SMCP S = (Σ,M, (Ai)i∈[1..t]), a
scheduling graph G, and a contraction process π of G of degree at most sdim. The task is to
find a word u ∈ L(S) such that G(u) = G. Our main observation is that a variant of the
above algorithm applies and yields a running time polynomial in t.

I Theorem 12. BCS-L-FIX can be solved in time O∗((2m)4sdim).

Fixing the scheduling graph G = (V,E) and contraction process π has two crucial
implications on the above algorithm. First, we need to contract interface sequences according
to the structure of G. To this end, we introduce a new product. Secondly, instead of a fixed
point we can now compute the required products iteratively along π. Hence, we do not have
to maintain the set of threads in the domain but can compute on P((Q×Q)≤sdim).

Towards obtaining the algorithm, we first describe the new product that summarizes
interface sequences along the graph structure. Let σ and τ be interface sequences. Further,
let ρ ∈ σXτ . We call a position in ρ an out-contraction if it is of the form (q, q′)(p, p′) so
that (q, q′) belongs to σ, (p, p′) belongs to τ , and q′ = p. Similarly, we define in-contractions.
These are positions where a pair of states of τ is followed by a pair of σ. The directed product
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of σ and τ is defined as: σ �(i,j) τ =
⋃
ρ∈σXτ ρ ↓(i,j). The language ρ ↓(i,j) contains all

interface sequences ρ′ obtained by summarizing subsequences of ρ, in total containing exactly
i out-contractions and j in-contractions. Note that for σ ∈ (Q×Q)n and τ ∈ (Q×Q)k, the
directed product contracts at i+ j positions and yields: σ �(i,j) τ ⊆ (Q×Q)n+k−(i+j).

Now we describe the iteration. First, we may assume that V = [1..t]. Otherwise, the
non-participating threads in S can be deleted. We distinguishes two cases.

In the first case, we assume that G has a designated initial vertex v0 and final ver-
tex vf . Let π = G1, . . . , Gt. The iteration starts by assigning to each v ∈ V the set
Sv = IF(Av) ∩ (Q×Q)deg(v). For Sv0 , we further require the first component of the first pair
occurring in an interface sequence to be qinit . Similarly, for Svf

we require that the second
component of the last pair is qfinal .

Now we iterate along π: For each contraction Gj+1 = Gj [n1, n2 7→ n], we compute
Sn = (Sn1 �(i,k) Sn2), where i = E(n1, n2) and k = E(n2, n1). Then Sn ⊆ (Q × Q)deg(n),
where deg(n) is the degree of n in Gj+1. Let V (Gt) = {w}. Then the algorithm terminates
after Sw has been computed.

For the second case, suppose that no initial vertex is given. This means that initial and
final vertex coincide. Then we iterate through all vertices in V , designate any to be initial
(and final), and run the above algorithm. The correctness is shown in the following lemma.

I Lemma 13. BCS-L-FIX holds iff (qinit , qfinal) ∈ Sw.

Round Robin. We consider an application of BCS-L-FIX. We define BCS-L-RR to be the
round-robin version of BCS-L. Again, each thread is given cs contexts, but now we schedule
the threads in a fixed order: First thread A1 has the processor, then A2, followed by A3 up
to At. For a new round, the processor is given back to A1. The computation ends in At.

I Proposition 14. BCS-L-RR can be solved in time O∗(m4cs).

The problem BCS-L-RR can be understood as fixing the scheduling graph to a cycle where
every node i is connected to i+ 1 by an edge of weight cs for i ∈ [1..t− 1] and the nodes
t and 1 are connected by an edge of weight cs − 1. We can easily describe a contraction
process: Contract the vertices 1 and 2, then the result with vertex 3 and up to t. We refer to
this as π. Then we have deg(π) = cs. Hence, we have constructed an instance of BCS-L-FIX.

An application of the algorithm for BCS-L-FIX takes time at most O∗(m4cs) in this
case: Let Gj+1 = Gj [n1, n2 7→ n] be a contraction in π with j < t − 1. Note that
Sn1 , Sn2 ⊆ (Q×Q)cs. We have E(n1, n2) = cs and E(n2, n1) = 0. Hence, the corresponding
set Sn is given by (Sn1 �(cs,0) Sn2) ⊆ (Q × Q)cs. The directed product σ �(cs,0) τ can be
computed in linear time: Any sequence ρ′ in σ�(cs,0) τ is obtained from a sequence ρ ∈ σXτ

by summarizing cs many out-contractions. Since σ and τ both have length cs, ρ has to be
the sequence where pairs of states of σ and τ alternatively take turns. Hence, σ �(cs,0) τ

either only consists of ρ′ and it is a linear-time procedure to find it, or is empty. For the last
contraction Gt = Gt−1[n′1, n′2 7→ n′] we have Sn′ = (Sn′1 �(cs,cs−1) Sn′2). Similar to σ�(cs,0) τ ,
one can compute σ�(cs,cs−1) τ in linear time. This avoids the cost of the product, the factor
24cs, in the complexity estimation.

Lower Bound for Round Robin. We prove the optimality of the algorithm for BCS-L-RR by
giving a reduction from k× k Clique. This variant of the classical clique problem asks for a
clique of size k in a graph whose vertices are the elements of a k×k matrix. Furthermore, the
clique must contain exactly one vertex from each row. The problem was introduced as a part
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of the framework in [41]. It was shown that the brute-force approach is optimal: k× k Clique
cannot be solved in 2o(k log k) time, unless ETH fails. We transport this to BCS-L-RR.

I Lemma 15. Assuming ETH, BCS-L-RR cannot be solved in time 2o(cs log(m)).

5 Discussion

Our main motivation was to find bugs in shared-memory concurrent programs. We restricted
our analysis to under-approximations and considered behaviors that are bounded in the
number of context switches, the memory size, or the scheduling. While this is enough to find
bugs, there are cases where we need to check correctness of a program. We shortly outline
an FPT upper bound, as well as a matching lower bound for the problem.

The reachability problem on a shared-memory concurrent program in full generality is
PSPACE-complete. However, in real-world scenarios, it is often the case that only few (a fixed
number of) threads execute in parallel with unbounded interaction. Thus, a first attempt is
to parameterize the system by the number of threads t. But this yields a hardness result.
Indeed, the problem with t as a parameter is hard for any level of the W-hierarchy.

We suggest a parameterization by the number of threads t and by a, the maximal size of
the thread automata Aid . We obtain an FPT-algorithm by constructing a product automaton.
The complexity is O∗(at). However, there is not much hope for improvement: By a reduction
from k× k Clique, we can show that the algorithm is indeed optimal.
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Abstract
Rips complexes are important structures for analyzing topological features of metric spaces. Un-
fortunately, generating these complexes constitutes an expensive task because of a combinatorial
explosion in the complex size. For n points in Rd, we present a scheme to construct a 3

√
2-

approximation of the multi-scale filtration of the L∞-Rips complex, which extends to a O(d0.25)-
approximation of the Rips filtration for the Euclidean case. The k-skeleton of the resulting
approximation has a total size of n2O(d log k). The scheme is based on the integer lattice and on
the barycentric subdivision of the d-cube.
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1 Introduction

Persistent homology [4, 10, 11] is a technique to analyze of data sets using topological
invariants. The idea is to build a multi-scale representation of the data set and to track its
homological changes across the scales.

A standard construction for the important case of point clouds in Euclidean space is the
Vietoris-Rips complex (or just Rips complex): for a scale parameter α ≥ 0, it is the collection
of all subsets of points with diameter at most α. When α increases from 0 to ∞, the Rips
complexes form a filtration, an increasing sequence of nested simplicial complexes whose
homological changes can be computed and represented in terms of a barcode.

The computational drawback of Rips complexes is their sheer size: the k-skeleton of a
Rips complex (that is, only subsets of size ≤ k + 1 are considered) for n points consists of
Θ(nk+1) simplices because every (k+ 1)-subset joins the complex for a sufficiently large scale
parameter. This size bound turns barcode computations for large point clouds infeasible
even for low-dimensional homological features1. This poses the question of what we can say
about the barcode of the Rips filtration without explicitly constructing all of its simplices.

∗ A longer version of the paper is available on arXiv [7].
† MK is supported by the Austrian Science Fund (FWF) grant number P 29984-N35.
‡ SR acknowledges support of NSF CRII grant CCF-1464276.
1 An exception are point clouds in R2 and R3, for which alpha complexes [10] are an efficient alternative.
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We address this question using approximation techniques. Barcodes form a metric space:
two barcodes are close if the same homological features occur on roughly the same range
of scales (see Section 2 for the precise definition). The first approximation scheme by
Sheehy [16] constructs a (1 + ε)-approximation of the k-skeleton of the Rips filtration using
only n( 1

ε )O(λk) simplices for arbitrary finite metric spaces, where λ is the doubling dimension
of the metric. Further approximation techniques for Rips complexes [9] and the closely
related Čech complexes [1, 5, 13] have been derived subsequently, all with comparable size
bounds. More recently, we constructed an approximation scheme for Rips complexes in
Euclidean space that yields a worse approximation factor of O(d), but uses only n2O(d log k)

simplices [8], where d is the ambient dimension of the point set.

Contributions. We present a 3
√

2-approximation for the Rips filtration of n points in
Rd in the L∞-norm , whose k-skeleton has size n2O(d log k). This translates to a O(d0.25)-
approximation of the Rips filtration in the Euclidean metric and hence improves the asymp-
totic approximation quality of our previous approach [8] with the same size bound.

On a high level, our approach follows a straightforward approximation scheme: given a
scaled and appropriately shifted integer grid on Rd, we identify those grid points that are
close to the input points and build an approximation complex using these grid points. The
challenge lies in how to connect these grid points to a simplicial complex such that close-by
grid points are connected, while avoiding too many connections to keep the size small. Our
approach first selects a set of active faces in the cubical complex defined over the grid, and
defines the approximation complex using the barycentric subdivision of this cubical complex.

We also describe an output-sensitive algorithm to compute our approximation. By
randomizing the aforementioned shifts of the grids, we obtain a worst-case running time of
n2O(d) log ∆ + 2O(d)M , where ∆ is spread of the point set (that is, the ratio of the diameter
to the closest distance of two points) and M is the size of the approximation.

Additionally, this paper makes the following technical contributions:
We follow the standard approach of defining a sequence of approximation complexes
and establishing an interleaving between the Rips filtration and the approximation. We
realize our interleaving using chain maps connecting a Rips complex at scale α to an
approximation complex at scale cα, and vice versa, with c ≥ 1 being the approximation
factor. Previous approaches [8, 9, 16] used simplicial maps for the interleaving, which
induce an elementary form of chain maps and are therefore more restrictive.
The explicit construction of such maps can be a non-trivial task. The novelty of our
approach is that we avoid this construction by the usage of acyclic carriers [15]. In
short, carriers are maps that assign subcomplexes to subcomplexes under some mild extra
conditions. While they are more flexible, they still certify the existence of suitable chain
maps, as we exemplify in Section 4. We believe that this technique is of general interest
for the construction of approximations of cell complexes.
We exploit a simple trick that we call scale balancing to improve the quality of approx-
imation schemes. In short, if the aforementioned interleaving maps from and to the
Rips filtration do not increase the scale parameter by the same amount, one can simply
multiply the scale parameter of the approximation by a constant. Concretely, given maps

φα : Rα → Xα ψα : Xα → Rcα

interleaving the Rips complex Rα and the approximation complex Xα, we can define
X ′α := Xα/√c and obtain maps

φ′α : Rα → X ′√cα ψα : X ′α → R√cα
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which improves the interleaving from c to
√
c. While it has been observed that the same

trick can be used for improving the worst-case distance between Rips and Čech filtrations2,
our work seems to be the first to make use of it in the context of approximations.

Our technique can be combined with dimension reduction techniques in the same way as
in [8] (see Theorems 19, 21, and 22 therein), with improved logarithmic factors. We omit the
technical details in this paper. Also, we point out that the complexity bounds for size and
computation time are for the entire approximation scheme and not for a single scale as in [8].
However, similar techniques as the ones exposed in Section 5 can be used to improve the
results of [8] to hold for the entire approximation as well3.

Outline. We start the presentation by discussing the relevant topological concepts in
Section 2. Then, we present few results about grid lattices in Section 3. Building on these
ideas, the approximation scheme is presented in Section 4. Computational aspects of the
approximation scheme are discussed in Section 5. We conclude in Section 6. Many of the
proofs are detailed in the arXiv version of our paper [7].

2 Background

We review the essential topological concepts needed; see [2, 6, 10, 15] for more details.

Simplicial complexes. A simplicial complex K on a finite set of elements S is a collection
of subsets {σ ⊆ S} called simplices such that each subset τ ⊂ σ is also in K. The dimension
of a simplex σ ∈ K is k := |σ| − 1, in which case σ is called a k-simplex. A simplex τ is a
subsimplex of σ if τ ⊆ σ. We remark that, commonly a subsimplex is called a ’face’ of a
simplex, but we reserve the word ’face’ for a different structure. For the same reason, we do
not introduce the common notation of of ’vertices’ and ’edges’ of simplicial complexes, but
rather refer to 0- and 1-simplices throughout. The k-skeleton of K consists of all simplices of
K whose dimension is at most k. For instance, the 1-skeleton of K is a graph defined by its
0-simplices and 1-simplices.

Given a point set P ⊂ Rd and a real number α ≥ 0, the (Vietoris-)Rips complex on
P at scale α consists of all simplices σ = (p0, . . . , pk) ⊆ P such that diam(σ) ≤ α, where
diam denotes the diameter. In this work, we write Rα for the Rips complex at scale α
with the Euclidean metric, and R∞α when using the metric of the L∞-norm. In either
way, a Rips complex is an example of a flag complex, which means that whenever a set
{p0, . . . , pk} ⊆ P has the property that every 1-simplex {pi, pj} is in the complex, then the
k-simplex {p0, . . . , pk} is also in the complex.

A simplicial complexK ′ is a subcomplex ofK ifK ′ ⊆ K. For instance, Rα is a subcomplex
of Rα′ for 0 ≤ α ≤ α′. Let L be a simplicial complex. Let ϕ̂ be a map which assigns to each
vertex of K, a vertex of L. A map ϕ : K → L is called a simplicial map induced by ϕ̂, if
for every simplex {p0, . . . , pk} in K, the set {ϕ̂(p0), . . . , ϕ̂(pk)} is a simplex of L. For K ′ a
subcomplex of K, the inclusion map inc : K ′ → K is an example of a simplicial map. A
simplicial map K → L is completely determined by its action on the 0-simplices of K.

2 Ulrich Bauer, private communication
3 An extended version of [8] containing these improvements is currently under submission.
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Chain complexes. A chain complex C∗ = (Cp, ∂p) with p ∈ N is a collection of abelian
groups Cp and homomorphisms ∂p : Cp → Cp−1 such that ∂p−1 ◦ ∂p = 0. A simplicial complex
K gives rise to a chain complex C∗(K) by fixing a base field F , defining Cp as the set of
formal linear combinations of p-simplices in K over F , and ∂p as the linear operator that
assigns to each simplex the (oriented) sum of its sub-simplices of codimension one4.

A chain map φ : C∗ → D∗ between chain complexes C∗ = (Cp, ∂p) and D∗ = (Dp, ∂
′
p)

is a collection of group homomorphisms φp : Cp → Dp such that φp−1 ◦ ∂p = ∂′p ◦ φp. For
example, a simplicial map ϕ between simplicial complexes induces a chain map ϕ̄ between
the corresponding chain complexes. This construction is functorial, meaning that for ϕ the
identity function on a simplicial complex K, ϕ̄ is the identity function on C∗(K), and for
composable simplicial maps ϕ,ϕ′, we have that ϕ ◦ ϕ′ = ϕ̄ ◦ ϕ̄′.

Homology and carriers. The p-th homology group Hp(C∗) of a chain complex is defined
as ker ∂p/im ∂p+1. The p-th homology group of a simplicial complex K, Hp(K), is the p-th
homology group of its induced chain complex. In either case Hp(C∗) is a F-vector space
because we have chosen our base ring F as a field. Intuitively, when the chain complex is
generated from a simplicial complex, the dimension of the p-th homology group counts the
number of p-dimensional holes in the complex (except for p = 0, where it counts the number
of connected components). We write H(C∗) for the direct sum of all Hp(C∗) for p ≥ 0.

A chain map φ : C∗ → D∗ induces a linear map φ∗ : H(C∗) → H(D∗) between the
homology groups. Again, this construction is functorial, meaning that it maps identity maps
to identity maps, and it is compatible with compositions.

We call a simplicial complex K acyclic, if K is connected and all homology groups Hp(K)
with p ≥ 1 are trivial. For simplicial complexes K and L, an acyclic carrier Φ is a map that
assigns to each simplex σ in K, a non-empty subcomplex Φ(σ) ⊆ L such that Φ(σ) is acyclic,
and whenever τ is a subsimplex of σ, then Φ(τ) ⊆ Φ(σ). We say that a chain c ∈ Cp(K) is
carried by a subcomplex K ′, if c takes value 0 except for p-simplices in K ′. A chain map
φ : C∗(K)→ C∗(L) is carried by Φ, if for each simplex σ ∈ K, φ(σ) is carried by Φ(σ). We
state the acyclic carrier theorem [15]:

I Theorem 1. Let Φ : K → L be an acyclic carrier.
There exists a chain map φ : C∗(K)→ C∗(L) such that φ is carried by Φ.
If two chain maps φ1, φ2 : C∗(K)→ C∗(L) are both carried by Φ, then φ∗1 = φ∗2.

Filtrations and towers. Let I ⊆ R be a set of real values which we refer to as scales. A
filtration is a collection of simplicial complexes (Kα)α∈I such thatKα ⊆ K ′α for all α ≤ α′ ∈ I.
For instance, (Rα)α≥0 is a filtration which we call the Rips filtration. A (simplicial) tower
is a sequence (Kα)α∈J of simplicial complexes with J being a discrete set (for instance
J = {2k | k ∈ Z}), together with simplicial maps ϕα : Kα → Kα′ between complexes at
consecutive scales. For instance, the Rips filtration can be turned into a tower by restricting to
a discrete range of scales, and using the inclusion maps as ϕ. The approximation constructed
in this paper will be another example of a tower.

We say that a simplex σ is included in the tower at scale α′, if σ is not the image of
ϕα : Kα → Kα′ , where α is the scale preceding α′ in the tower. The size of a tower is the
number of simplices included over all scales. If a tower arises from a filtration, its size is
simply the size of the largest complex in the filtration (or infinite, if no such complex exists).

4 To avoid thinking about orientations, it is often assumed that F = Z2 is the field with two elements.
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However, this is not true for in general for simplicial towers, since simplices can collapse
in the tower and the size of the complex at a given scale may not take into account the
collapsed simplices which were included at earlier scales in the tower.

Barcodes and Interleavings. A collection of vector spaces (Vα)α∈I connected with linear
maps λα1,α2 : Vα1 → Vα2 is called a persistence module, if λα,α is the identity on Vα and
λα2,α3 ◦ λα1,α2 = λα1,α3 for all α1 ≤ α2 ≤ α3 ∈ I for the index set I.

We generate persistence modules using the previous concepts. Given a simplicial tower
(Kα)α∈I , we generate a sequence of chain complexes (C∗(Kα))α∈I . By functoriality, the
simplicial maps ϕ of the tower give rise to chain maps ϕ between these chain complexes.
Using functoriality of homology, we obtain a sequence (H(Kα))α∈I of vector spaces with
linear maps ϕ∗, forming a persistence module. The same construction can be applied to
filtrations.

Persistence modules admit a decomposition into a collection of intervals of the form [α, β]
(with α, β ∈ I), called the barcode, subject to certain tameness conditions. The barcode of a
persistence module characterizes the module uniquely up to isomorphism. If the persistence
module is generated by a simplicial complex, an interval [α, β] in the barcode corresponds to
a homological feature (a “hole”) that comes into existence at complex Kα and persists until
it disappears at Kβ .

Two persistence modules (Vα)α∈I and (Wα)α∈I with linear maps λ·,· and µ·,· are said to
be weakly (multiplicatively) c-interleaved with c ≥ 1, if there exist linear maps γα : Vα →Wcα

and δα : Wα → Vcα, called interleaving maps, such that the diagram

· · · // Vαc
γ

""

λ // Vαc3 // · · ·

· · · // Wα
µ //

δ

==

Wαc2 //

δ

;;

· · ·

(1)

commutes for all α ∈ I, that is, µ = γ ◦ δ and λ = δ ◦γ (we have skipped the subscripts of the
maps for readability). In such a case, the barcodes of the two modules are 3c-approximations
of each other in the sense of [6]. We say that two towers are c-approximations of each other,
if their persistence modules that are c-approximations. Under the more stringent conditions
of strong interleaving, the approximation ratio can be improved. See [7] for more details.

3 Grids and cubes

Let I := {λ2s | s ∈ Z} with λ > 0 be a discrete set of scales. For a scale αs := λ2s, we
inductively define a grid Gs on scale αs which is a scaled and translated (shifted) version of
the integer lattice: for s = 0, Gs is simply λZd, the scaled integer grid. For s ≥ 0, we choose
an arbitrary O ∈ Gs and define

Gs+1 = 2(Gs −O) +O + αs
2 (±1, . . . ,±1) (2)

where the signs of the components of the last vector are chosen uniformly at random (and
the choice is independent for each s). For s ≤ 0, we define

Gs−1 = 1
2(Gs −O) +O + αs−1

2 (±1, . . . ,±1). (3)

It is then easy to check that 2 and 3 are consistent at s = 0. A simple instance of the
above construction is the sequence of lattices with Gs := αsZd for even s, and Gs :=
αsZd + αs−1

2 (1, . . . , 1) for odd s.
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We motivate the shifting next. For a finite point set Q ⊂ Rd and x ∈ Q, the Voronoi
region V orQ(x) ⊂ Rd is the (closed) set of points in Rd that have x as one of its closest
points in Q. If Q = Gs, it is easy to see that the Voronoi region of any grid point x is a cube
of side length αs centered at x. The shifting of the grids ensures that each x ∈ Gs lies in
the Voronoi region of a unique y ∈ Gs+1. By an elementary calculation, we show a stronger
statement; for shorter notation, we write V ors(x) instead of V orGs(x).

I Lemma 2. Let x ∈ Gs, y ∈ Gs+1 such that x ∈ V ors+1(y). Then, V ors(x) ⊂ V ors+1(y).

Cubical complexes. The integer grid Zd naturally defines a cubical complex, where each
element is an axis-aligned, k-cube with 0 ≤ k ≤ d. Let � denote the set of all integer
translates of faces of the unit cube [0, 1]d, considered as a convex polytope in Rd. We call
the elements of � faces. Each face has a dimension k; the 0-faces, or vertices are exactly the
points in Zd. The facets of a k-face f are the (k − 1)-faces contained in f . We call a pair of
facets of f opposite if they are disjoint. Obviously, these concepts carry over to scaled and
translated versions of Zd, so we define �s as the cubical complex defined by Gs.

We define a map gs : �s → �s+1 as follows: for vertices, we assign to x ∈ Gs the (unique)
vertex y ∈ Gs+1 such that x ∈ V ors+1(y) (cf. Lemma 2). For a k-face f of �s with vertices
(p1, . . . , p2k ) in Gs, we set gs(f) to be the convex hull of {gs(p1), . . . , gs(p2k )}; the next
lemma shows that this is indeed a well-defined map (see [7]).

I Lemma 3. {gs(p1), . . . , gs(p2k )} are the vertices of a face e of Gs+1. Moreover, if e1, e2
are any two opposite facets of e, then there exists a pair of opposite facets f1, f2 of f such
that gs(f1) = e1 and gs(f2) = e2.

Barycentric subdivision. A flag in �s is a set of faces {f0, . . . , fk} of �S such that f0 ⊆
. . . ⊆ fk. The barycentric subdivision sds of �s is the (infinite) simplicial complex whose
simplices are the flags of �s; in particular, the 0-simplices of sds are the faces of �s. An
equivalent geometric description of sds can be obtained by defining the 0-simplices as the
barycenters of the faces in sds, and introducing a k-simplex between (k + 1) barycenters if
the corresponding faces form a flag. It is easy to see that sds is a flag complex. Given a face
f in �s, we write sd(f) for the subcomplex of sds consisting of all flags that are formed only
by faces contained in f .

4 Approximation scheme

We define our approximation complex at scale αs as a finite subcomplex of sds. To simplify
the subsequent analysis, we define the approximation in a slightly generalized form.

Barycentric spans. For a fixed s, let V denote a non-empty subset of Gs. We say that a
face f ∈ �s is spanned by V if f ∩ V 6= ∅ and is not contained in any facet of f . Trivially,
the vertices of �s spanned by V are precisely the points in V . We point out that the set of
spanned faces is not closed under taking sub-faces; for instance, if V consists of two antipodal
points of a d-cube, the only faces spanned by V are the d-cube and the two vertices.

The barycentric span of V is the subcomplex of sds defined by all flags {f0, . . . , fk} such
that all fi are spanned by V . This is indeed a subcomplex of sds because it is closed under
taking subsets. Moreover, for a face f ∈ �k, we define the f-local barycentric span of V as
the set of all flags {f0, . . . , fk} in the barycentric span such that fi ⊆ f for all i. This is a
subcomplex both of sd(f) and of the barycentric span of V and is a flag complex.
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Figure 1 The left figure shows a two-dimensional grid, along with its cubical complex. The green
points (small dots) denote the points in P and the red vertices (encircled) are the active vertices.
The figure on the right shows the generated simplicial complex. The blue vertices (small dots) are
the barycenters of the active faces.

I Lemma 4. For each face f , the f -local barycentric span of V is either empty or acyclic.

Furthermore, if W ⊆ V , it is easy to see that faces spanned by W are also spanned by V .
Consequently, the barycentric span of W is a subcomplex of the barycentric span of V .

Approximation complex. We denote by P ⊂ Rd a finite set of points. For each point p ∈ P ,
we let as(p) denote the grid point in Gs that is closest to p (we assume for simplicity that
this closest point is unique). We define the active vertices of Gs, Vs, as as(P ), that is, the set
of grid points that are closest to some point in P . The next statement is a direct application
of the triangle inequality; let diam∞ denote the diameter in the L∞-norm.

I Lemma 5. Let Q ⊆ P be such that diam∞(Q) ≤ αs. Then, the set as(Q) is contained
in a face of �s. Equivalently, for a simplex σ = (p0, . . . , pk) ∈ R∞αs

on P , the set of active
vertices {as(p0), . . . , as(pk)} is contained in a face of �s.

Vice versa, we define a map bs : Vs → P by mapping an active vertex to its closest point
in P (again, assuming for simplicity that the assignment is unique). The map bs is a section
of as, that is, as ◦ bs is the identity on Vs.

Recall that the map gs : �s → �s+1 from Section 3 maps grid points of Gs to grid points
of Gs+1. With Lemma 2, it follows at once:

I Lemma 6. For all x ∈ Vs, gs(x) = (as+1 ◦ bs)(x).

We now define our approximation tower: for scale αs, we define Xαs as the barycentric
span of the active vertices Vs ⊂ Gs. See Figure 1 for an illustration. To simplify notations,
we call the faces of �s spanned by Vs active faces, and simplices of Xαs active flags.

To complete the construction, we need to define simplicial maps Xαs
→ Xαs+1 . First, we

show:

I Lemma 7. Let f be an active face of �s. Then, gs(f) is an active face of �s+1.

Proof. From Lemma 3, e := gs(f) is a face of Gs+1. If e is a vertex, it is active, because
f contains at least one active vertex v, and gs(v) = e in this case. If e is not a vertex, we
assume for a contradiction that it is not active. Then, it contains a facet e1 that contains
all active vertices in e. Let e2 denote the opposite facet. By Lemma 3, f contains opposite
facets f1, f2 such that gs(f1) = e1 and gs(f2) = e2. Since f is active, both f1 and f2 contain
active vertices, in particular, f2 contains an active vertex v. But then, the active vertex gs(v)
must lie in e2, contracting the fact that e1 contains all active vertices of e. J
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Recall that a simplex σ ∈ Xαs is a flag f0 ⊆ . . . ⊆ fk of active faces in �s. We set g̃(σ) as
the flag g(f0) ⊆ . . . ⊆ g(fk), which consists of active faces in �s+1 by Lemma 7, and hence
is a simplex in Xαs+1 . It follows that g̃ : Xαs

→ Xαs+1 is a simplicial map. This finishes our
construction of the simplicial tower (Xλ2s)s∈Z, with simplicial maps g̃ : Xλ2s → Xλ2s+1 .

4.1 Interleaving
To relate our tower with the L∞-Rips filtration, we start by defining two acyclic carriers.
We write α := αs = λ2s to simplify notations.

C1 : R∞α → Xα: let σ = (p0, . . . , pk) be any simplex of R∞α . We set C1(σ) as the
barycentric span of U := {as(p0), . . . , as(pk)}, which is a subcomplex of Xα. U lies in a
face f of �s by Lemma 5 hence C1(σ) is also the f -local barycentric span of U . Using
Lemma 4, C1(σ) is acyclic.
C2 : Xα → R∞2α: let σ be any flag e0 ⊆ . . . ⊆ ek of Xα. Let {q0, . . . , qm} be the set
of active vertices of ek. We set C2(σ) := {bs(q0), . . . , bs(qm)}. With a simple triangle
inequality, we see that C2(σ) is a simplex in R∞2α, hence it is acyclic.

Using the Acyclic Carrier Theorem (Theorem 1), there exist chain maps c1 : C∗(R∞α ) →
C∗(Xα) and c2 : C∗(Xα)→ C∗(R∞2α), which are carried by C1 and C2, respectively. Aggregating
the chain maps, we have the following diagram:

· · · // C∗(R∞2α)

c1

��

inc // C∗(R∞4α) // · · ·

· · · // C∗(Xα) g̃ //

c2

99

C∗(X2α) //

c2

99

· · ·

(4)

where inc corresponds to the inclusion chain map and g̃ denotes the chain map for the
corresponding simplicial maps (we removed indices for readability). The chain complexes
give rise to a diagram of the corresponding homology groups, connected by the induced linear
maps c∗1, c∗2, inc∗, g̃∗.

I Lemma 8. inc∗ = c∗2 ◦ c∗1 and g̃∗ = c∗1 ◦ c∗2. In particular, the persistence modules
(H(X2s))s∈Z and (H(R∞α ))α≥0 are weakly 2-interleaved.

Proof. To prove the claim, we consider both triangles separately. We show that the chain
maps g̃ and c1 ◦c2 are carried by a common acyclic carrier. Then we show the same statement
for inc and c2 ◦ c1. The claim then follows from the Acyclic Carrier Theorem.

Lower triangle: The map C1 ◦ C2 : Xα → X2α is an acyclic carrier, because C2(σ) is a
simplex for any simplex σ ∈ Xα. Clearly, C1 ◦ C2 carries the map c1 ◦ c2. We show that
it also carries g̃.
Let σ be a flag f0 ⊆ . . . ⊆ fk in Xα and let V (fi) denote the active vertices of fi. Then,
C1◦C2(σ) is the barycentric span of U := {as+1◦bs(q) | q ∈ V (fk)} = {gs(q) | q ∈ V (fk)}
(Lemma 6). On the other hand, V (fi) ⊆ V (fk) and hence g(V (fi)) ⊆ U . Then, g(fi) is
spanned by U : indeed, since fi is active, g(fi) is active and hence spanned by all active
vertices, and it remains spanned if we remove all active vertices not in U , since they are
not contained in fi. It follows that the flag g(f0) ⊆ . . . ⊆ g(fk), which is equal to g̃(σ), is
in the barycentric span of U .
Upper triangle: We define an acyclic carrier D : R∞2α → R∞4α which carries both inc

and c2 ◦ c1. Let σ = (p0, . . . , pk) ∈ R∞2α be a simplex. The active vertices U :=
{a(p0), . . . , a(pk)} ⊂ Gs+1 lie in a face f of G2α, using Lemma 5. We can assume that
f is active, as otherwise, we pass to a facet of f that contains U . We set D(σ) as the
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simplex on the subset of points in P whose closest grid point in Gs+1 lies in U . Using a
simple application of triangle inequalities, D(σ) ∈ R∞4α, so D is an acyclic carrier. The
0-simplices of σ are a subset of D(σ), so D carries the map inc. We next show that D
carries c2 ◦ c1.
Let δ be a simplex in X2α for which the chain c1(σ) takes a non-zero value. Since c1(σ) is
carried by C1(σ), δ ∈ C1(σ) which is the barycentric span of V (f). Furthermore, for any
τ ∈ C1(σ), C2(τ) is of the form {b(q0), . . . , b(qm)} with {q0, . . . , qm} ∈ V (f). It follows
that C2(τ) ⊆ D(σ). In particular, since c2 is carried by C2, c2(c1(σ)) ⊆ D(σ) as well. J

4.2 Scale balancing
We improve the approximation factor with a simple modification. Let (Aλγk )k∈Z and
(Bλγk )k∈Z be two simplicial towers with simplicial maps f3 and f4 respectively, with λ, γ > 0.
Assume that there exist interleaving linear maps f∗1 , f∗2 such that the diagram

· · · // H(Bαγ)

f∗2
��

f∗4 // H(Bαγ2) // · · ·

· · · // H(Aα)
f∗3 //

f∗1

99

H(Aαγ) //

f∗1
99

· · ·

(5)

commutes for all scales α = λγk, which implies that the persistence modules are weakly
γ-interleaved. Defining another tower (A′λ√γγk )k∈Z with A′α := Aα/√γ , we obtain a diagram

· · · // H(Bαγ)
f∗2

&&

f∗4 // H(Bαγ2) // · · ·

· · · // H(A′α√γ)
f∗3 //

f∗1

99

H(A′αγ√γ) //

f∗1

88

· · ·

(6)

which implies that the persistence modules are weakly √γ-interleaved. Therefore, scale
balancing improves the interleaving ratio by only scaling the persistence module.

In our context, we improve the weak 2-interleaving of (H(X2kα))k∈Z and (H(R∞α ))α≥0
to a weak

√
2-interleaving. Using the proximity results for persistence modules [6],

I Theorem 9. The persistence module
(
H(X2k/

√
2)
)
k∈Z is a 3

√
2- approximation of the

L∞-Rips persistence module
(
H(R∞α )

)
α≥0.

For any pair of points p, p′ ∈ Rd, it holds that ‖p − p′‖2 ≤ ‖p − p′‖∞ ≤
√
d ‖p − p′‖2

which implies that the L2- and the L∞-Rips complexes are strongly
√
d-interleaved. The

scale balancing technique also works for strongly interleaved persistence modules and yields

I Lemma 10. (H(Rα/d0.25))α≥0 is strongly d0.25-interleaved with (H(R∞α ))α≥0.

Using Theorem 9, Lemma 10 and the fact that interleavings satisfy the triangle inequality [3,
Theorem 3.3], we see that (H(X2k/

√
2))k∈Z is weakly

√
2d0.25-interleaved with the scaled

Rips module (H(Rα/d0.25))α≥0. We can remove the scaling in the Rips filtration simply by
multiplying both sides with d0.25 and obtain our final approximation result.

I Theorem 11. The persistence module
(
H(X 2k 4√

d√
2

)
)
k∈Z is a 3

√
2d0.25-approximation of the

Euclidean Rips persistence module
(
H∗(Rα)

)
α≥0.
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5 Size and computation

Set n := |P | and let CP (P ) denote the closest pair distance of P . At scale α0 := CP (P )
3d

and lower, no d-cube of the cubical complex contains more than one active vertex, so the
approximation complex consists of n isolated 0-simplices. At scale αm := diam(P ) and
higher, points of P map to active vertices of a common face by Lemma 5, so the generated
complex is acyclic using Lemma 4. We inspect the range of scales [α0, αm] to construct the
tower, since the barcode is explicitly known for scales outside this range. The total number
of scales is dlog2 αm/α0e = dlog2 ∆ + log2 3de = O(log ∆ + log d).

5.1 Size of the tower
Recall that the size of a tower is the number of simplices that do not have a preimage. We
start by considering the case of 0-simplices.

I Lemma 12. The number of 0-simplices included in the tower is at most n2O(d).

The proof can be summarized as follows: 0-simplices in the tower correspond to active
faces. Active vertices are only added at the lowest scale, hence they account for n inclusions.
Active faces of higher dimensions have at least one active vertex on their boundary. We
charge the inclusion of such a face to one point in P that is “close” to the face. In this way,
we show that every point in P is charged at most 2O(d) times. See [7] for further details.

The next lemma follows from a simple combinatorial counting argument for the number
of flags in a d-dimensional cube (see [7]).

I Lemma 13. Each 0-simplex of Xα has at most 2O(d log k) incident k-simplices.

I Theorem 14. The k-skeleton of the tower has size at most n2O(d log k).

Proof. Let σ = f0 ⊆ . . . ⊆ fk be a flag included at some scale α. The crucial insight is that
this can only happen if at least one face fi in the flag is included in the tower at the same
scale. Indeed, if each fi has a preimage ei on the previous scale, then e0 ⊆ . . . ⊆ ek is a flag
on the previous scale which maps to σ under g̃.

We charge the inclusion of the flag to the inclusion of fi. By Lemma 13, the 0-simplex
fi of X is charged at most

∑k
i=1 2O(d log i) = 2O(d log k) times in this way, and by Lemma 12,

there are at most n2O(d) 0-simplices that can be charged. J

5.2 Computing the tower
Recall from the construction of the grids that Gs+1 is built from Gs using an arbitrary
translation vector (±1, . . . ,±1) ∈ Zd. In our algorithm, we pick the components of this
translation vector uniformly at random, and independently for each scale.

Recall the cubical map gs : �s → �s+1 from Section 3. For a fixed s, we denote by
g(j) : �s → �s+j the j-fold composition of g, that is g(j) = gs+j−1 ◦ gs+j−2 ◦ . . . ◦ gs.

I Lemma 15. For a k-face f of �s, let Y be the minimal integer j such that g(j)(f) is a
vertex. Then E[Y ] ≤ 3 log k.

The proof idea is as follows. A k-face has a non-zero length in k coordinate direction. In
order to map to a point, g(j)(f) has to “collapse” all these dimensions. For a fixed direction
xi, such a collapse happens for g(f) if the random translation moves a grid point in the
xi-range of the face, which happens for exactly half of the translations (depending on the sign
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at the i-position of the translation vector). The number of steps for which the xi-direction is
not collapsed is thus equivalent to the number of flips of a fair coin until heads shows for
the first time, which is 2 in expectation. The entire k-face is collapsed to a point if k coins
flipped simultaneously all have shown heads at least once. This takes at most 3 log k steps in
expectation. See [7] for details.

As a consequence of the lemma, the expected “lifetime” of k-simplices in our tower with
k > 0 is rather short: given a flag e0 ⊆ . . . ⊆ e`, the face e` will be mapped to a vertex after
O(log d) steps, and so will be all its sub-faces, turning the flag into a vertex. It follows that
the total number of k-simplices in the tower is upper bounded by n2O(d log k) as well.

Algorithm description. We first specify what it means to “compute” the tower. We make
use of the fact that a simplicial map between simplicial complexes can be written as a
composition of simplex inclusions and contractions of 0-simplices [9, 12]. That is, when
passing from a scale αs to αs+1, it suffices to specify which pairs of 0-simplices in Xαs are
mapped to the same image under g̃ and which simplices in Xαs+1 are included.

The input is a set of n points P ⊂ Rd. The output is a list of events, where each event
is of one of the three following types: a scale event defines a real value α and signals that
all upcoming events happen at scale α (until the next scale event). An inclusion event
introduces a new simplex, specified by the list of 0-simplices on its boundary (we assume
that every 0-simplex is identified by an integer). A contraction event is a pair of 0-simplices
(i, j) and signifies that i and j are identified as the same from that scale.

In a first step, we calculate the range of scales that we are interested in. We compute
a 2-approximation of diam(P ) by taking any point p ∈ P and calculating maxq∈P ‖p− q‖.
Then we compute CP (P ) using a randomized algorithm in n2O(d) expected time [14].

Next, we proceed scale-by-scale and construct the list of events accordingly. On the lowest
scale, we simply compute the active vertices by point location for P in a cubical grid, and
enlist n inclusion events (this is the only step where the input points are considered in the
algorithm). We use an auxiliary container S and maintain the invariant that whenever a
new scale is considered, S consists of all simplices of the previous scale, sorted by dimension.
In S, for each 0-simplex, we store an id and a coordinate representation of the active face to
which it corresponds. Every `-simplex with ` > 0 is stored just as a list of integers, denoting
its boundary 0-simplices. We initialize S with the n 0-simplices at the lowest scale.

Let α < α′ be any two consecutive scales with �,�′ the respective cubical complexes and
X ,X ′ the approximation complexes, with g̃ : X → X ′ being the simplicial map connecting
them. Suppose we have already constructed all events at scale α. We enlist the scale event
for α′. Then, we enlist the contraction events. For that, we iterate through the 0-simplices
of X and compute their value under g, using point location in a cubical grid. We store the
results in a list S′ (which contains the simplices of X ′). If for a 0-simplex j, g(j) is found to
be equal to g(i) for a previously considered 0-simplex, we choose the minimal such i and
enlist a contraction event for i and j.

We turn to the inclusion events and start with the case of 0-simplices. Every 0-simplex
is an active face at scale α′ and must contain an active vertex, which is also a 0-simplex
of X ′. We iterate through the elements in S′. For each active vertex v encountered, we go
over all faces of the cubical complex �′ that contain v as vertex and check whether they are
active. For every active face encountered that is not in S′ yet, we add it to S′ and enlist an
inclusion event of a new 0-simplex. At termination, all 0-simplices of X ′ have been detected.

Next, we iterate over the simplices of S of dimension ≥ 1 and compute their image
under g̃, and store the result in S′. To find the simplices of dimension ≥ 1 included at X ′,
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we exploit our previous insight that they contain at least one 0-simplex that is included
at the same scale (see the proof of Theorem 14). Hence, we iterate over the 0-simplices
included in X ′ and proceed inductively in dimension. Let v be the current 0-simplex under
consideration; assume that we have found all (p− 1)-simplices in X ′ that contain v. Each
such (p− 1)-simplex σ is a flag in �′. We iterate over all faces e that extend σ to a flag of
length p+ 1. If e is active, we found a p-simplex in X ′. If this simplex is not in S′ yet, we
add it and enlist an inclusion event for it. We also enqueue the simplex in our inductive
procedure, to look for (p+ 1)-simplices in the next iteration. At the end of the procedure,
we have detected all simplices in X ′ without preimage, and S′ contains all simplices of X ′.
We set S ← S′ and proceed to the next scale. This ends the description of the algorithm.

I Theorem 16. To compute the k-skeleton, the algorithm takes time
(
n2O(d) log ∆+2O(d)M

)
time in expectation and M space, where M is the size of the tower. In particular, the expected
time is bounded by

(
n2O(d) log ∆ + n2O(d log k)) and the space is bounded by n2O(d log k).

The first summand of the time bound comes from the fact that on each scale, the number
of 0-simplices of X is bounded by n3d, and we employ local searches in the cubical complex
to find 0-simplices included in X ′. This local search only causes an overhead of O(2d) per
active vertex. The second summand arises because we find the higher-dimensional simplices
of X ′ inductively and can therefore charge the cost for this search to the number of simplices
encountered. Finally, computing the image of g̃ for all simplices in X can be bounded in
expectation by O(2O(d)M), because the total size of all X in the algorithm is bounded by
O(log dM) (see the remark after Lemma 15). More details are in [7].

6 Conclusion

We gave an approximation scheme for the Rips filtration, with improved approximation ratio,
size and computational complexity than previous approaches for the case of high-dimensional
point clouds. Moreover, we introduced the technique of using acyclic carriers to prove
interleaving results. We point out that, while the proof of the interleaving in Section 4.1 is
still technically challenging, it greatly simplifies by the usage of acyclic carriers; defining the
interleaving chain maps explicitly significantly blows up the analysis. There is also no benefit
in knowing the interleaving maps because they are only required for the analysis, not for the
computation.

Our tower is connected by simplicial maps; there are (implemented) algorithms to compute
the barcode of such towers [9, 12]. It is also quite easy to adapt our tower construction to a
streaming setting [12], where the output list of events is passed to an output stream instead
of being stored in memory.

An interesting question is whether persistence can be computed efficiently for more
general chain maps, which would allow more freedom in building approximation schemes.
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Abstract
Estimating the size of the maximum matching is a canonical problem in graph analysis, and one
that has attracted extensive study over a range of different computational models. We present
improved streaming algorithms for approximating the size of maximum matching with sparse
(bounded arboricity) graphs.

(Insert-Only Streams) We present a one-pass algorithm that takes O(α logn) space and ap-
proximates the size of the maximum matching in graphs with arboricity α within a factor
of O(α). This improves significantly upon the state-of-the-art Õ(αn2/3)-space streaming al-
gorithms, and is the first poly-logarithmic space algorithm for this problem.
(Dynamic Streams) Given a dynamic graph stream (i.e., inserts and deletes) of edges of an
underlying α-bounded arboricity graph, we present an one-pass algorithm that uses space
Õ(α10/3n2/3) and returns an O(α)-estimator for the size of the maximum matching on the
condition that the number edge deletions in the stream is bounded by O(αn). For this class
of inputs, our algorithm improves the state-of-the-art Õ(αn4/5)-space algorithms, where the
Õ(.) notation hides logarithmic in n dependencies.

In contrast to prior work, our results take more advantage of the streaming access to the input
and characterize the matching size based on the ordering of the edges in the stream in addition
to the degree distributions and structural properties of the sparse graphs.
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1 Introduction

In this paper, we address a core graph analysis question of finding the size of a maximum
matching, using space asymptotically smaller than even the number of nodes. Graphs
naturally capture relationships between entities, whether entities of the same type (simple
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graphs), of two types (bipartite graphs), or other combinations of types (encoded via
multigraphs and hypergraphs). In modern applications, it is not uncommon to encounter
graphs with many millions or billions of nodes (capturing the huge number of entities that
can interact), and billions to trillions of edges (enumerating the vast number of possible
interactions). This has led to significant interest in addressing traditional graph analysis
problems in novel computational models: external memory, parallel and streaming models.

Problems related to (maximum) matchings in graph have a long history in Computer
Science. They arise in many contexts, from choosing which advertisements to display to
online users [34], to characterizing properties of chemical compounds [42]. Stable matchings
have a suite of applications, from assigning students to universities, to arranging organ
donations [41]. These have been addressed in a variety of different computational models,
from the traditional RAM model, to more recent sublinear (property testing [38]) and external
memory/parallel (e.g. MapReduce [25]) models. Matching has also been studied for a number
of classes of input graph, including general graphs, bipartite graphs, weighted graphs, and
those with some sparsity structure.

Our work focuses on the streaming case, where each edge is seen once only, and we are
restricted to space sublinear in the size of the graph (ie., the number of vertices). This
captures the scenario when the number of edges is overwhelmingly large, such as when
analyzing connections between a massive number of individuals in a communication or social
network. Now the objective is to find (approximately) the size of the matching. That is,
while we cannot hope to retrieve a full description of the matching in sublinear space, we
can hope to estimate how big the matching is. Even here, results for general graphs are
either weak or make assumptions about the input or the stream order. In this work, we
seek to improve the guarantees by restricting to graphs that have some measure of sparsity –
bounded arboricity, or bounded degree. This aligns with reality, where most massive graphs
have asymptotically fewer than Θ(n2) edges. For example, in graphs that arise in the context
of social networks, most nodes have a degree that is less than a few hundred, as people can
only maintain this number of active connections (Dunbar’s number), although a few nodes
(“celebrities”) have very high (in-)degree in the multi-millions.

Estimating the matching size for graphs in the streaming model has been the subject
of some study in the algorithms and data analysis community in recent years. Kapralov,
Khanna, and Sudan [21] developed a streaming algorithm which computes an estimate
of matching size for general graphs within a factor of O(polylog(n)) in the random-order
streaming model using O(polylog(n)) space. In the random-order model, the input stream
is assumed to be chosen uniformly at random from the set of all possible permutations of
the edges. Esfandiari et al. [15] were the first to study streaming algorithms for estimating
the size of matching in bounded arboricity graphs in the adversarial-order streaming model,
where the algorithm is required to provide a good approximation for any ordering of edges.
Graph arboricity is a measure to quantify the density of a given graph. A graph G(V,E)
has arboricity α if the set E of its edges can be partitioned into at most α forests. Since
a forest on n nodes has at most n − 1 edges, a graph with arboricity α can have at most
α(n− 1) edges. Indeed, by a result of Nash-Williams [36, 37] this holds for any subgraph of
a α-bounded arboricity graph G. Formally, the Nash-Williams Theorem [36, 37] states that

α = max
U⊆V

|E(U)|
(|U | − 1) ,

where |U | and |E(U)| are the number of nodes and edges in the subgraph induced by the nodes
U , respectively. Several important families of graphs have constant arboricity. Examples
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include planar graphs (that have arboricity α = 3), bounded genus graphs, bounded treewidth
graphs, and more generally, graphs that exclude a fixed minor.1

The important observation in [15] is that the size of matching in bounded arboricity
graphs can be approximately characterized by the number of high degree vertices (vertices
with degree above a fixed threshold) and the number of so-called shallow edges (edges with
both low degree endpoints). This characterization allows for estimation of the matching size
in sublinear space by taking samples from the vertices and edges of the graph. The work of
[15] implements the characterization in Õ(αn2/3) space and gives a O(α) approximation of the
matching size. Subsequent works [6, 30] consider alternative characterizations and improve
upon the approximation factor however they do not result in major space improvements.

1.1 Our Contributions
We present major improvements in the space usage of streaming algorithms for sparse graphs
(α-bounded Arboricity Graphs). Our main result is a polylog space algorithm that beats the
nε space bound of prior algorithms. More precisely, we show:

I Theorem 1. Let G(V,E) be a graph with arboricity bounded by α. Let S be an (adversarial
order) insertion-only stream of the edges of the underlying graph G. Let M∗ be the size of
the maximum matching of G (or S interchangeably). Then, there is a randomized 1-pass
streaming algorithm that outputs a (22.5α+ 6)(1 + ε)-approximation to M∗ with probability
at least 1− δ and takes O( αε2 logn) space.

This result is notable, since it is the first demonstration that the polynomial space cost can
be beaten for matching size estimation, and shows a that polylogarithmic space is sufficient
for a constant factor approximation. Subsequent to our initial statement of results [10],
McGregor and Vorotnikova have provided a new analysis of our algorithm to improve the
constants in the approximation factor to achieve a (α+ 2)(1 + ε) factor [32].

For the case of dynamic streams (i.e, streams of inserts and deletes of edges), we design a
different algorithm using Õ(α10/3n2/3) space which improves the Õ(αn4/5)-space dynamic
(insertion/deletion) streaming algorithms of [6, 7]. The following theorem states this result
(proved in Section 3.3).

I Theorem 2. Let G(V,E) be a graph with the arboricity bounded by α. Let M∗ be the size
of the maximum matching of G. Let S be a dynamic stream of edge insertions and deletions
of the underlying graph G of length at most O(αn). Let

β = µ
(2µ)

(µ− 2α+ 1) + 1 where µ > 2α.

Then, there exists a streaming algorithm that takes O(β
4/3(nα)2/3

ε4/3 ) space in expectation and
outputs a (1 + ε)β approximation of M∗ with probability at least 0.86.

Quite recently Assadi et al. [3] gave an Ω(n
1/2

α2.5 ) space lower bound for getting a c-
approximation of the matching size in dynamic graph streams with arboricity bounded by α.
We obtain our n2/3 bound by first defining an algorithm for insert-only streams with as n1/2

behavior, which suggests that this could also be feasible in the dynamic setting.
Our algorithms for bounded arboricity graphs are based on two novel streaming-friendly

characterizations of the maximum maching size. The first characterization is a modification

1 For any H-minor-free graph, the arboricity is O(h
√
h) where h is the number of vertices of H. [24]
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Table 1 Known results for estimating the size of a maximum matching in data streams.

Reference Graph class Stream Approx. Factor2 Space Bound3

[21] General Random Order O(polylog(n)) O(polylog(n))

[15] Arboricity ≤ α Insert-Only 5α+ 9 Õ(αn2/3)

[30] Arboricity ≤ α Insert-Only α+ 2 Õ(αn2/3)

[6, 7] Arboricity ≤ α Insert/Delete O(α) Õ(αn4/5)

This paper Arboricity ≤ α Insert-Only (2α+ 1)(2α+ 2) Õ(α2.5√n)

This paper Arboricity ≤ α Insert/Delete (2α+ 1)(2α+ 2) Õ(α10/3n2/3)

This paper Arboricity ≤ α Insert-Only 22.5α+ 6 Õ(α logn)

of the characterization in [15] which approximates the size of the maximum matching by
hµ + sµ where hµ is defined as the number of high degree vertices (vertices with degree more
than a threshold µ) and sµ is the number of shallow edges (edges with low degree endpoints).
While hµ can be easily approximated by sampling the vertices and checking if they are high
degree or not, approximating sµ in sublinear space is a challenge because in one pass we
cannot determine if a sampled edge is shallow or not. The work of [15] resolves this issue
by sampling the edges at a high rate and manages to implement their characterization in
Õ(αn2/3) space for adversarial insert-only streams.

To bring the space usage down to Õ(α2.5n1/2) (for insert-only streams), we modify the
formulation of the above characterization. We still need to approximate hµ but instead of sµ
we approximate nµ the number of non-isolated vertices in the induced subgraph Gµ defined
over the low degree vertices. Note that sµ is the number of edges in Gµ. This subtle change
of definition turns out to be immensely helpful. Similar to hµ we only need to sample the
nodes and check if their degrees are below a certain threshold or not. However we carry the
additional constraint that we have to avoid counting the nodes in Gµ that are isolated (have
only high degree nodes as neighbors). To satisfy this additional constraint, our algorithm
stores the neighbors of the sampled vertices along with a counter for each that maintains
their degree in the rest of the stream. Although we only obtain a lower bound on the degree
of the neighbors, as it turns out the lower bound information on the degree is still useful
because we can ensure the number of false positives that contribute to our estimate is within
a certain limit. As a result, we can approximate hµ + nµ using Õ(αn1/2) space which gives a
(2α+ 1)(2α+ 2) approximation of the maximum matching size after choosing appropriate
values for µ and other parameters. This characterization is of particular importance, as it
can be adapted to work under edge deletions as well as long as the number of deletions is
bounded by O(αn). Details of the characterization and the associated algorithms are given
in Lemma 4 and Section 3.2.

To obtain a polylog(n) space algorithm (and prove the claim of Theorem 1), we give
a totally new characterization. This characterization, unlike the previous ones that only
depend on the parameters of the graph, also takes the ordering of the edges in the stream
into account. Roughly speaking, we characterize the size of a maximum matching by the
number of edges in the stream that have few neighbor edges in the rest of the stream. To
understand the connection with maximum matching, consider the following simplistic special

2 In some entries, a (1 + ε) multiplicative factor has been suppressed for concision.
3 The Õ(.) notation hides logarithmic in n dependencies.
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case. Suppose the input graph G is a forest composed of k disjoint stars. Observe that the
maximum matching on this graph is just to pick one edge from each star. We relate this to
a combinatorial characterization that arises from the sequence of edges in the stream: no
matter how we order the edges of G in the stream, from each star there is exactly one edge
that has no neighboring edges in the remainder of the stream (in other words, the last edge of
the star in the stream). Our characterization generalizes this idea to graphs with arboricity
bounded by α by counting the γ-good edges, i.e. edges that have at most γ = 6α neighbors
in the remainder of the stream. We prove this characterization gives an O(α) approximation
of the maximum matching size. More important, a nice feature of this characterization is
that it can be implemented in polylog(n) space if one allows a 1 + ε approximation. The
implementation adapts an idea from the well-known L0 sampling algorithm. It runs O(logn)
parallel threads each sampling the stream at a different rate. At the end, a thread “wins”
that has sampled roughly Θ(logn) elements from the γ-good edges (samples the edges with
a rate of logn

k where k is the number of γ-good edges). The threads that under-sample will
end up with few edges or nothing while the ones that have oversampled will keep too many
γ-good edges and will be terminated as soon as they hit a space threshold as a result. Table 1
summarizes the known and new results for estimating the size of a maximum matching.

1.2 Related Work
We discuss the most relevant work to matching size estimation earlier in the introduction.
Here, we give an overview of related work by providing the context of matching and streaming
algorithms in general, before focusing in on the most related works at the intersection. The
problem of computing the maximum matching of G has been extensively studied in the
classical offline model, where we assume we have enough space to store all vertices and edges
of a graph G = (V,E). The classical result in this model is the algorithm due to Micali and
Vazirani [35] with running time O(m

√
n), where n = |V | and m = |E|. Recent work has given

improved results for sparse bipartite graphs [27]. A matching of size within (1− ε) factor of
a maximum cardinality matching can be found in O(m/ε) time [19, 35]. Recently, Duan and
Pettie [12] developed a (1− ε)-approximate maximum weighted matching algorithm in time
O(m/ε).

The model of streaming data analysis has received a similar level of scrutiny. A survey by
McGregor [31] gives an overview of results in the graph streaming model. Many fundamental
questions have been tackled: counting the number of occurrences of specific small subgraphs
such as triangles [33]; estimating properties of neighborhoods [8]; and using ‘sketch’ techniques
to track local and global properties of graphs like connectivity [2].

The question of finding an approximation to the maximum cardinality matching has been
extensively studied in the streaming model. An O(n)-space greedy algorithm trivially obtains
a maximal matching, which is a 2-approximation for the maximum cardinality matching [16].
A natural question is whether one can beat the approximation factor of the greedy algorithm
with O(n polylog(n)) space. Recently, it was shown that obtaining an approximation factor
better than e

e−1 ' 1.58 in one pass requires n1+Ω(1/ log logn) space [17, 20], even in bipartite
graphs and in the vertex-arrival model, where the vertices arrive in the stream together with
their incident edges. This setting has also been studied in the context of online algorithms,
where each arriving vertex has to be either matched or discarded irrevocably upon arrival.
Seminal work due to Karp, Vazirani and Vazirani [22] gives an online algorithm with e

e−1
approximation factor in this model.

Closing the gap between the upper bound of 2 and the lower bound of e
e−1 remains

one of the most appealing open problems in the graph streaming area (see [39]). The
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factor of 2 can be improved on if one either considers the random-order model or allows for
two passes [23]. By allowing even more passes, the approximation factor can be improved
to multiplicative (1 − ε)-approximation via finding and applying augmenting paths with
successive passes [28, 29, 13, 1].

Another line of research [16, 28, 43, 14, 11] has explored the question of approximating
the maximum-weight matching in one pass and O(n polylog(n)) space. The latest result
is that a (2 + ε) approximation factor is possible using an O(n logn) space deterministic
algorithm, essentially meeting the unweighted matching case [40]. These results are for the
insert-only case. Where deletions are allowed (the dynamic, or turnstile case), the problem
is harder: Ω(n2−3ε) space is needed to provide an O(nε) approximation [5]; and Ω(n/α2) to
provide an O(α) approximation [4]. However, our focus is on finding the size of the maximum
matching without materializing it, and so our aim is for sublinear space algorithms.

2 Preliminaries and Notations

Let G(V,E) be an undirected unweighted graph with n = |V | vertices and m = |E| edges.
For a vertex v ∈ V , let degG(v) denote the degree of vertex v in G. A matching M of G is
a set of pairwise non-adjacent edges, i.e., no two edges share a common vertex. Edges in
M are called matched edges; the other edges are called unmatched. A maximum matching
of graph G(V,E) is a matching of maximum size. Throughout the paper, when we fix a
maximum matching of G(V,E), we denote it by M∗. A matching M of G is maximal if it is
not a proper subset of any other matching in graph G. Abusing the notation, we sometimes
use M∗ and M for the size of the maximum and maximal matching, respectively. It is
well-known (see for example [26]) that the size of a maximal matching is at least half of
the size of a maximum matching, i.e., M ≥ M∗/2. Thus, we say a maximal matching is
a 2-approximation of a maximum matching of G. It is known [26] that the simple greedy
algorithm, where we include each new edge if neither of its endpoints are already matched,
returns a maximal matching.

3 Algorithms for Bounded Arboricity Graphs

Throughout this section, hµ denotes the number of vertices in graph G = (V,E) that have
degree above µ. Let Gµ = (L,F ) be the induced subgraph of G where L = {v| degG(v) ≤ µ}
and (u, v) ∈ F ⊆ E when u and v are both in L. Note that Gµ might have isolated vertices.
In the following we let Mµ denote the size of maximum matching in Gµ.

3.1 Characterization lemmas
I Lemma 3 ([15]). For a α-bounded arboricity graph G(V,E) and µ > 2α, we have hµ ≤

2µ
µ−2α+1M

∗.

I Lemma 4. For a α-bounded arboricity graph G(V,E) and µ > 2α, we have

M∗ ≤ hµ +Mµ ≤
(

2µ
µ− 2α+ 1 + 1

)
M∗ .

Proof. The lower bound is easy to see: every edge of a maximum matching either has an
endpoint with degree more than µ or both of its endpoints are vertices with degree at most
µ. The number of matched edges of the first type are bounded by hµ whereas the number of
matched edges of the second type are bounded by Mµ.

To prove the upper bound, we use the fact Mµ ≤M∗ and Lemma 3. J
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I Definition 5. Let S = (e1, . . . , em) be a sequence of edges. We say the edge ei = (u, v) is
γ-good with respect to S if max{di(u), di(v)} ≤ γ where di(x) is defined as |{ej |j > i, ej =
(x,w)}|, i.e. the number of edges incident on x that appear after the i-th edge in the stream.
We write Eγ(S) as the set of γ-good edges in S, and usually drop (S) in context.

To illustrate the power of this definition, we first consider the case of trees. Trees are a
good test case for understanding matchings, since they can have widely varying matching
sizes: from 1 (a star graph on n nodes) to O(n) (a path of length n or a binary tree on n
nodes). In fact the following lemma suggests that counting the number of 1-good edges gives
a 2 factor approximation to the matching size on trees. (Due to the space limitations we
have deferred the proof of this lemma to the full version of this paper.)

I Lemma 6. For trees we have M∗ ≤ |E1| ≤ 2M∗.

Our main result on γ-goodness is for general graphs with α-bounded arboricity.

I Lemma 7. Let µ > 2α be a (large enough) integer, and let Eγ be the set of γ-good edges
in an edge stream for a graph with arboricity at most α. We have:(

1
2 −

α

µ+ 1

)
M∗ ≤ |Eγ | ≤

(
5
4γ + 2

)
M∗,

where γ = max{µ− 1, 4α(µ+1)
µ+1−2α}. In particular for µ = 6α− 1, we have

M∗ ≤ 3|E6α| ≤ (22.5α+ 6)M∗

Proof. First we prove the lower bound on |Eγ |. In particular we show a relation involving the
number of edges where both endpoints have low degree. Define hµ = |{v|v ∈ V,degG(v) > µ}|,
and sµ = |{e = (u, v)|e ∈ E,degG(u) ≤ µ, degG(v) ≤ µ}|, i.e. the number of edges in the
graph Gµ. Then:(

1
2 −

α

µ+ 1

)
hµ + sµ ≤ |Eγ |.

The claim in the lemma follows from the relatively loose bound that M∗ ≤ hµ + sµ. Let
H be the set of vertices in the graph with degree above µ and let L = V \H. Recall that
hµ = |H|. Let H0 be the vertices in H that have no neighbor in L, and let H1 = H \H0.
First we notice that |H1| ≥ (1 − 2α

µ )|H|. To see this, let E′ be the edges with at least
one endpoint in H0. By definition, every node in H0 has degree at least µ+ 1, so we have
|E′| ≥ µ+1

2 |H0|. At the same time, the total number of edges in the subgraph induced by
the nodes H is at most α(|H| − 1), using the arboricity assumption. Therefore,

α(|H| − 1) ≥ |E′| ≥ 1
2 (µ+ 1)|H0|

It follows that |H0| ≤ 2α
µ+1 (|H| − 1) which further implies that

|H1| ≥ (1− 2α
µ+ 1)|H| = (1− 2α

µ+ 1)hµ. (1)

Now let degH(v) be the degree of v in the subgraph induced by H. We have∑
v∈H1

degH(v) ≤ 2α|H|, again using the arboricity bound and the fact that summing
over degrees counts each edge at most twice. Therefore, taking the average over nodes in H1,

degH(v) ≤ 2α
1− 2α

µ+1
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for v ∈ H1. Consequently, at least half of the vertices in H1 have their degH bounded by
4α(µ+1)
µ+1−2α (via the Markov inequality). Let H ′1 be those vertices. For each v ∈ H ′1 we find
a γ-good edge. Let e∗ = (v, u) be the last edge in the stream where u ∈ L. Then, there
cannot be too many edges that neighbor (v, u) and come after it in the stream: the total
number of edges that share an endpoint with e∗ in the rest of the stream is bounded by
max{µ− 1, 4α(µ+1)

µ+1−2α}. Consequently, for

γ = max{µ− 1, 4α(µ+ 1)
µ+ 1− 2α},

we have |Eγ | ≥ ( 1
2 −

α
µ+1 )hµ, based on the set of |H1|/2 edges connected to the vertices in

H ′1 and using (1). For γ ≥ µ, Eγ also contains the disjoint set of edges from L×L, which are
all guaranteed to be γ-good since both their endpoints have degree bounded by µ. Therefore,
as claimed,

|Eγ | ≥ sµ +
(

1
2 −

α

µ+ 1

)
hµ.

To prove the upper bound on |Eγ |, we notice that the subgraph containing only the edges
in Eγ has degree at most γ + 1. Such a graph has a matching size of at least 4|Eγ |

5(γ+1)+3 [18].
It follows that |Eγ | ≤ 5γ+8

4 M∗. This finishes the proof of the lemma. J

3.2 Õ(
√

n) space algorithm for insert-only streams
In this section, we present Algorithm 1 to estimate Mµ +hµ and prove the following theorem.

I Theorem 8. Let G(V,E) be a graph with the arboricity bounded by α. Let S be an
(adversarial order) insertion-only stream of the edges of the underlying graph G. Let

β = µ((2µ)/(µ− 2α+ 1) + 1) where µ > 2α.

Then, there exists a streaming algorithm (Algorithm 1) that processes S, takes O(β
√
αn
ε logn)

space in expectation and outputs a (1 + ε)β approximation of M∗ with probability at least
0.86, where M∗ is a maximum matching of G.

For each w in Γ(T ) (the set of neighbors of nodes in T ), the algorithm maintains l(w),
the number of occurrences of w observed since the first time a neighbor of w was added to T .
Note that in this algorithm, l(w) is a lower bound on the degree of w. For the output, T1 is
the subset of nodes in T whose degree is bounded by µ and additionally for each node in T1,
there is a neighbor w whose observed degree (d(w) or l(w)) is at most µ. Meanwhile, T2 is
the set of “high degree” nodes in T .

I Lemma 9. Let ε ∈ (0, 1) and β = µ( 2µ
µ−2α+1 + 1). With probability at least 1− e

−ε2M∗p
4β2 ,

Algorithm 1 outputs s where

(1− ε)M∗ ≤ s ≤ (1 + ε)βM∗.

Proof. First we prove the following bounds on E(s).

Mµ + hµ ≤ E(s) ≤ µ(Mµ + hµ).

Let L be the set of vertices in G that have degree at most µ and let GL be the induced graph
on L. Let H = V \ L. Note that GL might have isolated vertices. Let N be the non-isolated
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Algorithm 1: Estimate-Mµ + hµ

Initialization: Each node is sampled to set T with probability p (determined
below).

Stream Processing:
forall edges e = (u, v) in the stream do

if u ∈ T or v ∈ T then
store e in H;
if u ∈ T then increment d(u) else increment l(u);
if v ∈ T then increment d(v) else increment l(v);

Post Processing:
Let T1 = {v ∈ T |d(v) ≤ µ, ∃w ∈ Γ(v) : d(w) + l(w) ≤ µ}
Let T2 = {v ∈ T |d(v) > µ}
return s = (|T1|+ |T2|)/p

Algorithm 2: Estimate-M∗

Initialization: Let ε ∈ (0, 1) and t = dβ
√

8nc
ε e where β is as defined in Lemma 9.

Stream Processing: Do the following tasks in parallel:
(1) Greedily keep a maximal matching of size at most r ≤ t (and terminate this task if

this size bound is exceeded).
(2) Run the Estimate-(Mµ + hµ) procedure (Algorithm 1) with p ≥ 8

λ2t where λ = ε
β .

Post processing: If r < t then output 2r as the estimate for M∗, otherwise output
the result of the Estimate-(Mµ + hµ) procedure.

vertices in GL. It is clear that if the algorithm samples v ∈ N , v will be in T1. Likewise, if it
samples a vertex w ∈ H, w will be in T2. Given the fact that |H| = hµ and |N | ≥Mµ, this
proves the lower bound on E(s).

The expectation may be above Mµ, as the algorithm may pick an isolated vertex in GL
(a vertex that is only connected to the high-degree vertices) and include it in T1 because one
of its high-degree neighbours w was identified as low degree, i.e., w ∈ Γ(T ) and l(w) ≤ µ but
w ∈ H. Let u ∈ H and let U = {a1, . . . , aµ} be the last µ neighbours of u according to the
ordering of the edges in the stream. The algorithm can only identify u as low degree when it
picks a sample from U and no samples from Γ(u) \U . This restricts the number of unwanted
isolated vertices to at most µhµ. Together with the fact that |N | ≤ µMµ, it establishes the
upper bound on E(s). Now using a Chernoff bound,

Pr
[
|s− E(s)| ≥ λE(s)

]
= Pr

[
|s.p− E(s.p)| ≥ λE(s.p)

]
≤ exp(−λ2(Mµ + hµ)p/4) ≤ exp(−λ2M∗p/4).

Therefore with probability at least 1− e
−λ2M∗p

4 ,

(Mµ + hµ)− λµ(hµ +Mµ) ≤ s ≤ µ(1 + λ)(Mµ + hµ) (2)

Setting λ = ε
β and combining with Lemma 4, we derive the statement of the lemma. J

Proof of Theorem 8. SupposeM∗ < t. Clearly the size of the maximal matching r obtained
by the first task will be less than t. In this case, M∗ ≤ 2r ≤ 2M∗. Now suppose M∗ ≥ t.
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By Lemma 4, we will have Mµ + hµ ≥ t and hence by Lemma 9, with probability at least
1−e−2 ≥ 0.86, the output of the algorithm will be within the promised bounds. The expected
space of the algorithm is O((t+ pnα) logn). Setting t = β

√
8nα/ε to balance the space costs,

the space complexity of the algorithm will be O(β
√
αn
ε logn) as claimed. J

3.3 O(n2/3) space algorithm for insertion/deletion streams
Algorithms 1 and 2 form the basis of our solution in the more general case where the stream
contains deletions of edges as well. In the case of Algorithm 1, the algorithm has to maintain
the induced subgraph on T and the edges of the cut (T,Γ(T )). However if we allow an
arbitrary number of insertions and deletions, the size of the cut (T,Γ(T )) can grow as large
as O(n) even when |T | = 1. This is because each node at some intermediate point could
become high degree and then lose its neighbours because of the subsequent deletion of edges.
Therefore here in order to limit the space usage of the algorithm, we make the assumptions
that number of deletions is bounded by O(αn). Since the processed graph has arboricity at
most α this forces the number of insertions to be O(αn) as well. Under this assumption, if
we pick a random vertex, still, in expectation the number of neighbours is bounded by O(α).

Another complication arises from the fact that, with edge deletions, a vertex added to
Γ(T ) might become isolated at some point. In this case, we discard it from Γ(T ). Additionally
for each vertex in T ∪Γ(T ), the counters d(v) (or l(v) depending on if it belongs to T or Γ(T ))
can be maintained as before. The space complexity of the algorithm remains O(pnα logn) in
expectation as long as the arboricity factor remains within O(α) in the intermediate graphs.
In the case of Algorithm 2, we need to keep a maximal matching of size O(t). This can be
done in O(t2) space using a randomized algorithm [7]. Setting t at ( 8βnα

ε2 )1/3 to rebalance
the space costs, we obtain the result of Theorem 2.

3.4 The polylog space algorithm for insert-only streams
In this section we present our polylog space algorithm by presenting an algorithm for
estimating |Eγ | within a (1 + ε) factor. Our algorithm is similar in spirit to the well-known
L0 sampling strategy [9]. We first describe it in terms of running O(logn) parallel threads
each sampling the stream at a different rate. At the end, a thread “wins” that has sampled
roughly Θ(logn) elements from |Eγ | (samples the edges with a rate of logn

|Eγ | ). The threads that
under-sample will end up with few edges or nothing while the ones that have oversampled
will keep too many elements of Eγ and will be aborted as result. Finally, we mention how
a suitable implementation can reduce the space dependency to O(α logn) (treating ε as
constant).

First we give a simple subroutine (Algorithm 3) that is the building block of the algorithm.
Given γ and an edge e in the stream, it simply counts up the number of subsequent edges that
are incident on either endpoint of e, and consequently determines whether e is in Eγ . Our
main algorithm (Algorithm 4) samples edges, and applies this subroutine to them. Multiple
sampling rates pi are used in parallel; however, if at any point the number of sampled edges
in a level exceeds a threshold τ , the level is “terminated”, and no further samples are taken
at this level. This ensures that the space used remains bounded.

I Lemma 10. With high probability, Algorithm 4 outputs a 1±O(ε) approximation of |Eγ |
where γ is defined according to Lemma 7.

Proof. Consider the sets of active γ-good tests at each level at the conclusion of the algorithm,
Xi. First we observe that if |X0| ≤ τ then X0 = Eγ and the algorithm makes no error.
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Algorithm 3: The γ-good test
Initialization: given the edge e = (u, v) in the stream, let r(u) = 0 and r(v) = 0.
forall subsequent edges e′ = (t, w) do

if u ∈ {t, w} then increment r(u);
if v ∈ {t, w} then increment r(v);
if max{r(u), r(v)} > γ then terminate and report NOT γ-good;

Algorithm 4: An algorithm for approximating |Eγ |
Initialization: ∀i.Xi = ∅ . Xi represents the current set of sampled γ-good edges.

Stream Processing:
forall levels i ∈ {0, 1, . . . , [blog1+ε n

2c} in parallel do
forall edges e do

Feed e to the active γ-good tests and update Xi

With probability pi = 1
(1+ε)i add e to Xi and start a γ-good test for e.

Let |Xi| be the number of active γ-good tests within this level.
if |Xi| > τ = 64γ2 logn

αε2 then terminate level i;

Post processing:
if |X0| ≤ τ then

return |X0|
else . |X0| > τ

let j be smallest integer s.t. |Xj | ≤ 8 logn(1+ε)
ε2 and j-th level was not terminated;

if there is no such j then return fail else return |Xj |
pj

;

In case |Xi| > τ , we claim that |Eγ | > α
2γ2 τ . To prove this, let t be the time step where

|Xi| exceeds τ (i.e. when this level is terminated) and let Gt = (V,E(t)) be the graph
where E(t) = {e1, . . . , et}. Clearly M∗(G) ≥M∗(Gt) because the size of the matching only
increases as new edges arrive. Abusing the notation, let Eγ(Gt) denote the set of γ-good
edges at time t. By Lemma 7 and definition of γ, we have

τ < |Eγ(Gt)| ≤
(5

4γ + 2
)
M∗(Gt) ≤ 4γM∗(G) ≤ 2(µ+ 1)

µ− 2α+ 14γ|Eγ | ≤
(
γ

2α

)
4γ|Eγ | (3)

This proves the claim that |Eγ | > α
2γ2 τ when |Xi| > τ . Let τ ′ = 8 logn

ε2 and let i∗ be the
integer such that

(1 + ε)i
∗−1τ ′ ≤ |Eγ | ≤ (1 + ε)i

∗
τ ′.

Assuming the i∗-th level does not terminate before the end, we have τ ′

(1+ε) ≤ E[|Xi∗ |] ≤
τ ′. By a Chernoff bound, for each i we have (again assuming we do not terminate the
corresponding level)

Pr
[∣∣|Xi| − E(|Xi|)

∣∣ ≥ εE(|Xi|)
]
≤ exp

(
−ε

2pi|Eγ |
4

)
.

So, Pr
[∣∣|Xi∗ | − E(|Xi∗ |)

∣∣ ≥ εE(|Xi∗ |)
]
≤ exp (− ε2|Eγ |

2(1 + ε)i∗ ) ≤ exp (2 logn
1 + ε

) ≤ O(n−1).

As a result, with high probability |Xi∗ | ≤ 8 logn(1+ε)
ε2 . Moreover for all i < i∗ − 1,

the corresponding levels either terminate prematurely or in the end we will have |Xi| >

ESA 2017
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8 logn(1+ε)
ε2 with high probability. Consequently j ∈ {i∗, i∗ − 1}. It remains to prove that

runs corresponding to i∗ and i∗ − 1 will survive until the end with high probability. We
prove this for i∗. The case of i∗ − 1 is similar.

Consider a fixed time t in the stream and let X(t)
i∗ be the set of sampled γ-good edges at

time t corresponding to the i∗-th level. Note that X(t)
i∗ contains the a subset of γ-good edges

with respect to the stream St = (e1, . . . , et). From the definition of i∗ and Inequality (3) we
have

E[|X(t)
i∗ |] = |Eγ(Gt)|

(1 + ε)i∗ ≤
2γ2|Eγ |
α(1 + ε)i∗ ≤

2γ2τ ′

α
.

By the Chernoff inequality for δ ≥ 1,

Pr
[
|X(t)

i∗ | ≥ (1 + δ)E(|X(t)
i∗ |)

]
≤ exp

(
−δ
3 E(|X(t)

i∗ |)
)
.

From δ = τ

E(|X(t)
i∗ |)
− 1 = τ(1+ε)i

∗

|Eγ(Gt)| − 1, we get

Pr
[
|X(t)

i∗ | ≥ τ
]
≤ exp

(
−τ
3 + |Eγ(Gt)|

(1 + ε)i∗
)
≤ exp

(
−τ
3 + 2γ2τ ′

α

)
For τ ≥ 8γ2τ ′

α , the term inside the exponent is smaller than −2 logn. It also satisfies
δ ≥ 1. After applying the union bound, for all t the size of X(t)

i∗ is bounded by τ = 64γ2 logn
αε2

with high probability. This finishes the proof of the lemma. J

Next, putting everything together, we prove Theorem 1.

Proof of Theorem 1. The theorem follows from Lemmas 7 and 10 and taking γ = µ+1 = 6α.
Observe that the space cost of Algorithm 4 can be bounded: we have log1+ε n

2 levels where
each level runs at most τ concurrent γ-good tests otherwise it will be terminated. Each γ-good
test keeps an edge and two counters and as result it occupies O(1) space. Consequently the
space usage of the algorithm is bounded by O(τ log1+ε n). Using the fact that τ = O( αε2 logn)
for γ = 6α, we obtain a space bound of O( αε2 log2 n).

A simple implementation optimization is not to run multiple guesses of p in parallel,
but instead to begin with i = 1 and p1 = 1. Whenever |Xi| > τ , then we increment i and
uniformly sample elements from Xi into Xi+1 with probability 1

1+ε . It is immediate that
the resulting Xi+1 corresponds to a sample of the γ-good edges in the stream so far with a
sampling probability of pi = 1

(1+ε)i , by the principle of deferred decisions. Consequently, the
space bound is reduced to O( αε2 logn). J
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Abstract
Given a traveling salesman problem (TSP) tour H in graph G a k-move is an operation which
removes k edges from H, and adds k edges of G so that a new tour H ′ is formed. The popular
k-OPT heuristic for TSP finds a local optimum by starting from an arbitrary tour H and then
improving it by a sequence of k-moves.

Until 2016, the only known algorithm to find an improving k-move for a given tour was the
naive solution in time O(nk). At ICALP’16 de Berg, Buchin, Jansen and Woeginger showed an
O(nb2/3kc+1)-time algorithm.

We show an algorithm which runs in O(n(1/4+εk)k) time, where limk→∞ εk = 0. It improves
over the state of the art for every k ≥ 5. For the most practically relevant case k = 5 we provide
a slightly refined algorithm running in O(n3.4) time. We also show that for the k = 4 case,
improving over the O(n3)-time algorithm of de Berg et al. would be a major breakthrough: an
O(n3−ε)-time algorithm for any ε > 0 would imply an O(n3−δ)-time algorithm for the All Pairs
Shortest Paths problem, for some δ > 0.
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1 Introduction

In the Traveling Salesman Problem (TSP) one is given a complete graph G = (V,E) and
a weight function w : E → N. The goal is to find a Hamiltonian cycle in G (also called
a tour) of minimum weight. This is one of the central problems in computer science and
operation research. It is well known to be NP-hard and has been researched from different
perspectives, most notably using approximation [1, 4, 25], exponential-time algorithms [13, 16]
and heuristics [24, 20, 5].

In practice, TSP is often solved by means of local search heuristics where we begin from
an arbitrary Hamiltonian cycle in G, and then the cycle is modified by means of some local
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changes in a series of steps. After each step the weight of the cycle should improve; when the
algorithm cannot find any improvement it stops. One of the most successful examples of this
approach is the k-opt heuristic, where in each step an improving k-move is performed. Given
a Hamiltonian cycle H in a graph G = (V,E) a k-move is an operation that removes k edges
from H and adds k edges of G so that the resulting set of edges H ′ is a new Hamiltonian
cycle. The k-move is improving if the weight of H ′ is smaller than the weight of H. The
k-opt heuristic has been introduced in 1958 by Croes [5] for k = 2, and then applied for
k = 3 by Lin [21] in 1965. Then in 1972 Lin and Kernighan designed a complicated heuristic
which uses k-moves for unbounded values of k, though restricting the space of k-moves to
search to so-called sequential k-moves. A variant of this heuristic called LKH, implemented
by Helsgaun [14], solves optimally instances up to 85 900 cities. Among other modifications,
the variant searches for non-sequential 4- and 5-moves. From the theory perspective, the
quality of the solutions returned by k-opt, as well as the length of the sequence of k-moves
needed to find a local optimum, was studied, among others, by Johnson, Papadimitriou and
Yannakakis [15], Krentel [18] and Chandra, Karloff and Tovey [3]. More recently, smoothed
analysis of the running time and approximation ratio was investigated by Manthey and
Veenstra [19] and Künnemann and Manthey [22].

In this paper we study the k-opt heuristic but we focus on its basic ingredient, namely
on finding a single improving k-move. The decision problem k-opt Detection is to decide,
given a tour H in an edge weighted complete graph G, if there is an improving k-move.
In its optimization version, called k-opt Optimization, the goal is to find a k-move that
gives the largest weight improvement, if any. Unfortunately, this is a computationally hard
problem. Namely, Marx [23] has shown that k-opt Detection is W [1]-hard, which means
that it is unlikely to be solvable in f(k)nO(1) time, for any function f . Later Guo, Hartung,
Niedermeier and Suchý [12] proved that there is no algorithm running in time no(k/ log k),
unless Exponential Time Hypothesis (ETH) fails. This explains why in practice people use
exhaustive search running in O(nk) time for every fixed k, or faster algorithms which explore
only a very restricted subset of all possible k-moves.

Recently, de Berg, Buchin, Jansen and Woeginger [8] have shown that it is possible to
improve over the naive exhaustive search. For every fixed k ≥ 3 their algorithm runs in time
O(nb2k/3c+1) and uses O(n) space. In particular, it gives O(n3) time for k = 4. Thus, the
algorithm of de Berg et al. is of high practical interest: the complexity of the k = 4 case now
matches the complexity of k = 3 case, and hence it seems that one can use 4-opt in all the
applications where 3-opt was fast enough. De Berg et al. show also that a progress for k = 3
is unlikely, namely k-opt Detection has an O(n3−ε)-time algorithm for some ε > 0 iff All
Pairs Shortest Paths problem can be solved in O(n3−δ)-time algorithm for a δ > 0.

Our Results. In this paper we extend the line of research started in [8]: we show an
algorithm running in time O(n(1/4+εk)k) and using space O(n(1/8+εk)k) for every fixed k,
where lim εk = 0. We are able to compute the values of εk for k ≤ 10. These values show that
our algorithm improves the state of the art for every k = 5, . . . , 10 (see Table 1). A different
adjustment of parameters of our algorithm results in time O(nk/2+3/2) and additional space
of O(

√
n), which improves the state of the art for every k ≥ 8.

We also show a good reason why we could not improve over the O(n3)-time algorithm of
de Berg et al. for 4-opt Optimization: an O(n3−ε)-time algorithm for some ε > 0 would
imply that All Pairs Shortest Paths can be solved in time O(n3−δ) for some δ > 0.
Note that although the family of 4-moves contains all 3-moves, it is still possible that there
is no improving 3-move, but there is an improving 4-move. Thus the previous lower bound
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Table 1 New running times for k = 5, . . . , 10.

k 5 6 7 8 9 10
previous algorithm [8] O(n4) O(n5) O(n5) O(n6) O(n7) O(n7)
our algorithm O(n3.4) O(n4) O(n4.25) O(n4 2

3 ) O(n5) O(n5.2)

of de Berg et al. does not imply our lower bound, though our reduction is essentially an
extension of the one by de Berg et al. [8] with a few additional technical tricks.

We also devote special attention to the k = 5 case of k-opt Optimization problem,
hoping that it can still be of a practical interest. Our generic algorithm works in O(n3.67)
time in this case. However, we show that it can be further refined, obtaining the O(n3.4)
running time. We suppose that similar improvements of order nΩ(1) should be also possible
for larger values of k. In Table 1 we present the running times for k = 5, . . . , 10.

Our Approach. Our algorithm applies dynamic programming on a tree decomposition.
This is a standard method for dealing with some sparse graphs, like series-parallel graphs or
outerplanar graphs. However, in our case we work with complete graphs. The trick is to
work on an implicit structure, called dependence graph D. Graph D has k vertices which
correspond to the k edges of H that are chosen to be removed. A subset of edges of D
corresponds to the pattern of edges to be added (as we will see the number of such patterns
is bounded for every fixed k, and one can iterate over all patterns). The dependence graph
can be thought of as a sketch of the solution, which needs to be embedded in the input graph
G. Graph D is designed so that if it has a separator S, such that D − S falls apart into two
parts A and B, then once we find an optimal embedding of A ∪ S for some fixed embedding
of S, one can forget about the embedding of A. This intuition can be formalized as dynamic
programming on a tree decomposition of D, which is basically a tree of separators in D. The
idea sketched above leads to an algorithm running in time O(n(1/3+εk)k) for every fixed k,
where lim εk = 0. The reason for the exponent in the running time is that D is of maximum
degree 4 and hence it has treewidth at most (1/3 + εk)k, as shown by Fomin et al. [9].

The further improvement to O(n(1/4+εk)k) is obtained by yet another idea. We partition
the n edges of H into n1/4 buckets of size n3/4 and we consider all possible distributions of
the k edges to remove into buckets. If there are many nonempty buckets, then graph D has
fewer edges, because some dependencies are forced by putting the corresponding edges into
different buckets. As a result, the treewidth of D decreases and the dynamic programming
runs faster. The case when there are few nonempty buckets does not give a large speed-up
in the dynamic programming, but the number of such distributions is small.

2 Preliminaries

Throughout the paper let w1, w2, . . . , wn and e1, . . . , en be sequences of respectively sub-
sequent vertices and edges visited by H, so that ei = {wi, wi+1} for i = 1, . . . , n − 1 and
en = {wn, w1}. For i = 1, . . . , n − 1 we call wi the left endpoint of ei and wi+1 the right
endpoint of ei. Also, wn is the left endpoint of en and w1 is its right endpoint.

We work with undirected graphs in this paper. An edge between vertices u and v is
denoted either as {u, v} or shortly as uv.

For a positive integer i we denote [i] = {1, . . . , i}.
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2.1 Connection patterns and embeddings
Formally, a k-move is a pair of sets (E−, E+), both of cardinality k, where E− ⊆ {e1, . . . , en},
E+ ⊆ E(G), and E(H)\E−∪E+ is a Hamiltonian cycle. This is the most intuitive definition
of a k-move, however it has a drawback, namely it is impossible to specify E+ without
specifying E− first. For this reason instead of listing the edges of E+ explicitly, we will define
a connection pattern, which together with E− expressed as an embedding fully specifies a
k-move.

A k-embedding (or shortly: embedding) is any function f : [k] → [n]. A connection
k-pattern (or shortly: connection pattern)1 is any perfect matching in the complete graph
on the vertex set [2k]. We call a connection pattern valid when one obtains a single k-cycle
from M by identifying vertex 2i with vertex (2i+ 1) mod 2k for every i = 1, . . . , k.

Let us show that every pair (E−, E+) that defines a k-move has a corresponding pair of
an embedding and a connection pattern, consequently giving an intuitive explanation of the
above definition of embeddings and connection patterns. Consider a move Q = (E−, E+).
Let E− = {ei1 , . . . , eik}, where i1 < i2 < · · · < ik. For every j = 1, . . . , k, let v2j−1 and
v2j be the left and right endpoint of eij , respectively. An embedding of the k-move Q is
the function fQ : [k] → [n] defined as fQ(j) = ij for every j = 1, . . . , k. Note that fQ is
increasing. A connection pattern of Q is every perfect matching M in the complete graph
on the vertex set [2k] such that E+ = {{vi, vj} | {i, j} ∈ M}. Note that at least one such
matching always exists, and if E− contains two incident edges then there is more than one
such matching. Note also that M is valid, because otherwise after applying the k-move Q we
do not get a Hamiltonian cycle.

Conversely, consider a pair (f,M), where f is an increasing embedding and M is a
valid connection pattern. We define E−f = {ef(j) | j = 1, . . . , k}. For every j = 1, . . . , k,
let v2j−1 and v2j be the left and right endpoint of ef(j), respectively. Then we also define
E+

(f,M) = {vivj | {i, j} ∈M}. It is easy to see that (E−f , E
+
(f,M)) is a k-move.

Because of the equivalence shown above, in what follows we abuse the notation slightly
and a k-move Q can be described both by a pair of edges to remove and add (E−Q , E

+
Q)

and by an embedding-connection pattern pair (fQ,MQ). The gain of Q is defined as
gain(Q) = w(E−Q) − w(E+

Q). Given a connection pattern M and an embedding f , we can
also define an M -gain of f , denoted by gainM (f) = gain(Q), where Q is the k-move defined
by (f,M). Note that k-opt Optimization asks for a k-move with maximum gain.

2.2 Tree decomposition and nice tree decomposition
To make the paper self-contained, in this section we recall the definitions of tree and path
decompositions and state their basic properties which will be used later in the paper. The
content of this section comes from the textbook of Cygan et al. [6].

A tree decomposition of a graph G is a pair T = (T, {Xt}t∈V (T )), where T is a tree whose
every node t is assigned a vertex subset Xt ⊆ V (G), called a bag, such that the following
three conditions hold:
(T1)

⋃
t∈V (T )Xt = V (G).

(T2) For every uv ∈ E(G), there exists a node t of T such that u, v ∈ Xt.
(T3) For every u ∈ V (G), the set {t ∈ V (T ) | u ∈ Xt} induces a connected subtree of T .

1 We note that the notion of connection pattern of a k-move was essentially introduced by de Berg et
al. [8] under the name of ‘signature’, though they used a permutation instead of a matching, which we
find more natural.
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The width of tree decomposition T = (T, {Xt}t∈V (T )), denoted by w(T ), equals maxt∈V (T ) |Xt|−
1. The treewidth of a graph G, denoted by tw(G), is the minimum possible width of a tree
decomposition of G. When E is a set of edges and V (E) the set of endpoints of all edges in
E, by tw(E) we denote the treewidth of the graph (V (E), E).

A path decomposition is a tree decomposition T = (T, {Xt}t∈V (T )), where T is a path.
Then T is more conveniently represented by a sequence of bags (X1, . . . , X|V (T )|), corres-
ponding to successive vertices of the path. The pathwidth of a graph G, denoted by pw(G),
is the minimum possible width of a path decomposition of G.

In what follows we frequently use the notion of nice tree decomposition, introduced by
Kloks [17]. These tree decompositions are more structured, making it easier to describe
dynamic programming over the decomposition. A tree decomposition T = (T, {Xt}t∈V (T ))
can be rooted by choosing a node r ∈ V (T ), called the root of T , which introduces a natural
parent-child and ancestor-descendant relations in the tree T . A rooted tree decomposition
(T, {Xt}t∈V (T )) is nice if Xr = ∅, X` = ∅ for every leaf ` of T , and every non-leaf node of T
is of one of the following three types:

Introduce node: a node t with exactly one child t′ such that Xt = Xt′ ∪ {v} for some
vertex v /∈ Xt′ .
Forget node: a node t with exactly one child t′ such that Xt = Xt′ \ {w} for some
vertex w ∈ Xt′ .
Join node: a node t with two children t1, t2 such that Xt = Xt1 = Xt2 .

A path decomposition is nice when it is nice as tree decomposition after rooting the path
in one of the endpoints. (Note that it does not contain join nodes.)

I Proposition 1 (see Lemma 7.4 in [6]). Given a tree (resp. path) decomposition T =
(T, {Xt}t∈V (T )) of G of width at most k, one can in time O(k2 ·max(|V (T )|, |V (G)|)) compute
a nice tree (resp. path) decomposition of G of width at most k that has at most O(k|V (G)|)
nodes.

We say that (A,B) is a separation of a graph G if A ∪B = V (G) and there is no edge
between A \B and B \A. Then A ∩B is a separator of this separation.

I Lemma 2 (see Lemma 7.3 in [6]). Let (T, {Xt}t∈V (T )) be a tree decomposition of a graph
G and let ab be an edge of T . The forest T − ab obtained from T by deleting edge ab consists
of two connected components Ta (containing a) and Tb (containing b). Let A =

⋃
t∈V (Ta)Xt

and B =
⋃
t∈V (Tb)Xt. Then (A,B) is a separation of G with separator Xa ∩Xb.

3 The algorithm

In this section we present our algorithms for k-opt Optimization. The brute-force algorithm
verifies all possible k-moves. In other words, it iterates over all possible valid connection
patterns and increasing embeddings. The brilliant observation of Berg et al. [8] is that we
can iterate only over all possible connection patterns, whose number is bounded by (2k)!.
In other words, we fix a valid connection pattern M and from now on, our goal is to find
an increasing embedding f : [k]→ [n] which, together with M , defines a k-move giving the
largest weight improvement over all k-moves with connection pattern M . Instead of doing
this by enumerating all Θ(nk) embeddings, Berg et al. [8] fix carefully selected b2/3kc values
of f in all nb2/3kc possible ways, and then show that the optimal choice of the remaining
values can be found by a simple dynamic programming running in O(nk) time. Our idea is
to find the optimal embedding for a given connection pattern using a more efficient approach.
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3.1 Basic setup
Informally speaking, instead of guessing some values of f , we guess an approximation of f
defined by appropriate bucketing. For each approximation b, finding an optimal embedding
consistent with b is done by a dynamic programming over a tree decomposition. We stress
that even without bucketing (i.e, by using a single trivial bucket of size n) our algorithm
works in n(1/3+εk)k time. Therefore bucketing is used to further improve the running time,
but it is not essential to perform the dynamic programming on a tree decomposition.

More precisely, we partition the set [n], corresponding to the edges of H, into buckets.
Each bucket is an interval {i, i + 1, . . . , j} ⊆ [n], for some 1 ≤ i ≤ j ≤ n. Let nb be the
number of buckets and let Bj denote the j-th bucket, for j = 1, . . . , nb. A bucket assignment
is any nondecreasing function b : [k]→ [nb].

Unless explicitly modified, we use all buckets of the same size dnαe, for a constant α
which we set later. Then, for j = 1, . . . , b the j-th bucket is the set Bj = {(j − 1) dnαe +
1, . . . , j dnαe} ∩ [n].

Given a bucket assignment b we define the set

Ob = {{i, i+ 1} ⊂ [k] | b(i) = b(i+ 1)}.

I Definition 3 (b-monotone partial embedding). Let f : S → [n] be a partial embedding for
some S ⊆ [k]. We say that f is b-monotone when
(M1) for every i ∈ S we have f(i) ∈ Bb(i), and
(M2) for every {i, i+ 1} ∈ Ob, if {i, i+ 1} ⊆ S, then f(i) < f(i+ 1).

Note that a b-monotone embedding f : [k]→ [n] is always increasing, but a b-monotone
partial embedding does not even need to be non-decreasing (this seemingly artificial design
simplifies some of our proofs). In what follows, we present an efficient dynamic programming
algorithm which, given a valid connection pattern M and a bucket assignment b finds a
b-monotone embedding of maximum M -gain. To this end, we need to introduce the gain of
a partial embedding. Let f : S → [n] be a b-monotone partial embedding, for S ⊆ [k]. For
every j ∈ S, let v2j−1 and v2j be the left and right endpoint of ef(j), respectively. We define

E−f = {ef(i) | i ∈ S}

E+
f = {{vi′ , vj′} | i, j ∈ S, i′ ∈ {2i− 1, 2i}, j′ ∈ {2j − 1, 2j}, {i′, j′} ∈M}.

Then, gainM (f) = w(E−f )− w(E+
f ).

Note that gainM (f) does not necessarily represent the actual cost gain of the choice of
the edges to remove represented by f . Indeed, assume that for some pair i, j ∈ [k] there are
i′ ∈ {2i− 1, 2i} and j′ ∈ {2j − 1, 2j} such that {i′, j′} ∈M . Then we say that i interferes
with j, which means that we plan to add an edge between an endpoint of the i-th deleted
edge and the j-th deleted edge. Note that if i ∈ S (the i-th edge is chosen) and j 6∈ S

(the j-th edge is not chosen yet) this edge to be added is not known yet, and its cost is
not represented in gainM (f). However, the value of f(i) influences this cost. Consider the
following set of interfering pairs:

IM = {{i, j} | i interferes with j}.

Note that IM is obtained from M by identifying vertex 2i− 1 with vertex 2i for every
i = 1, . . . , k (and the new vertex is simply called i). In particular, this implies that every
connected component of the graph ([k], IM ) is a cycle or a single edge.
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3.2 Dynamic programming over tree decomposition
Now we define the graph DM,b, called the dependence graph, where V (DM,b) = [k] and
E(DM,b) = Ob ∪ IM . The vertices of DM,b correspond to the k edges to be removed from
H (i.e., j corresponds to the j-th deleted edge in the sequence e1, . . . , en). The edges of
DM,b correspond to dependencies between the edges to remove (equivalently, elements of the
domain of an embedding). The edges from Ob are order dependencies: edge {i, i+ 1} means
that the (i+ 1)-th deleted edge should appear further on H than the i-th deleted edge. In
Ob there are no edges between the last element of a bucket and the first element of the next
bucket, because the corresponding constraint is forced by the assignment to buckets. The
edges from IM are cost dependencies (resulting from interference explained in Section 3.1).

The goal of this section is a proof of the following theorem.

I Theorem 4. Let M be a valid connection k-pattern and let b : [k] → [n] be a bucket
assignment, where every bucket is of size dnαe. Then, a b-monotone embedding of maximum
M -gain can be found in O(nα(tw(DM,b)+1)k2 + 2k) time.

Let T = (T, {Xt}t∈V (T )) be a nice tree decomposition of DM,b with minimum width.
Such a decomposition can be found in O∗(1.7347k) time by an algorithm of Fomin and
Villanger [11], though for practical purposes a simpler O∗(2k)-time algorithm is advised by
Bodlaender et al. [2]. For every t ∈ V (T ) we denote by Vt the union of all the bags in the
subtree of T rooted in t.

For every node t ∈ V (T ), and for every b-monotone function f : Xt → [n], we will
compute the following value.

Tt[f ] = max
g:Vt→[n]
g|Xt=f

g is b-monotone

gainM (g).

Then, if r is the root of T , and ∅ denotes the unique partial embedding with empty
domain, then Tr[∅] is the required maximum M -gain of a b-monotone embedding. The
embedding itself (and hence the corresponding k-move) can be also found by using standard
DP techniques. The values of Tt[f ] are computed in a bottom-up fashion. Let us now present
the formulas for computing these values, depending on the kind of node in the tree T .

Leaf node. When t is a leaf of T , we know that Xt = Vt = ∅, and we just put Tt[∅] = 0.

Introduce node. Assume Xt = Xt′ ∪ {i}, for some i 6∈ Xt′ where node t′ is the only child
of t. Denote ∆E+

f = E+
f \ E

+
f |X

t′
. Then, we claim that for every b-monotone function

f : Xt → [n],

Tt[f ] = Tt′ [f |Xt′ ] + w(ef(i))−
∑

{u,v}∈∆E+
f

w({u, v}). (1)

We show that (1) holds by showing the two relevant inequalities. Let g be a function
for which the maximum from the definition of Tt[f ] is attained. Let g′ = g|Vt′ . Note that
g′ is b-monotone because g is b-monotone. Hence, gainM (g′) ≤ Tt′ [f |Xt′ ]. It follows that
Tt[f ] = gainM (g) = gainM (g′) + w(ef(i))−

∑
{u,v}∈∆E+

f
w({u, v}) ≤ Tt′ [f |Xt′ ] + w(ef(i))−∑

{u,v}∈∆E+
f
w({u, v}).

Now we proceed to the other inequality. Assume g′ is a function for which the maximum
from the definition of Tt′ [f |Xt′ ] is attained. Let g : Vt → [n] be the function such that
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g|Vt′ = g′ and g(i) = f(i). Let us show that g is b-monotone. The condition (M1) is
immediate, since g′ and f are b-monotone. For (M2), consider any {j, j + 1} ∈ Ob such
that {j, j + 1} ⊆ Vt. If i 6∈ {j, j + 1} then g(j) < g(j + 1) by b-monotonicity of g′, so
assume i ∈ {j, j + 1}. Then {j, j + 1} ⊆ Xt, for otherwise Xt ∩ Xt′ does not separate j
from j + 1, a contradiction with Lemma 2. For {j, j + 1} ⊆ Xt, we have g(j) < g(j + 1)
since f(j) < f(j + 1). Hence g is b-monotone, which implies Tt[f ] ≥ gainM (g). Then
it suffices to observe that gainM (g) = gainM (g′) + w(ef(i)) −

∑
{u,v}∈∆E+

f
w({u, v}) =

Tt′ [f |Xt′ ] + w(ef(i))−
∑
{u,v}∈∆E+

f
w({u, v}). This finishes the proof that (1) holds.

Forget node. Assume Xt = Xt′ \ {i}, for some i ∈ Xt′ where node t′ is the only child of t.
Then the definition of Tt[f ] implies that

Tt[f ] = max
f ′:Xt′→[n]
f ′|Xt=f

f ′ is b-monotone

Tt′ [f ′]. (2)

Join node. Assume Xt = Xt1 = Xt2 , for some nodes t, t1 and t2, where t1 and t2 are the
only children of t. Then, we claim that for every b-monotone function f : Xt → [n] the
following holds,

Tt[f ] = Tt1 [f ] + Tt2 [f ] +
(
w(E−f )− w(E+

f )
)
, (3)

which we prove by using arguments very similar to the ones used for the introduce nodes, and
hence due to space limitations the proof is omitted and can be found in the full version [7].

Running time. Since |V (T )| = O(k), in order to complete the proof of Theorem 4 it suffices
to prove the following lemma.

I Lemma 5. Let T = (T, {Xt}t∈V (T )) be a nice tree decomposition of D. Let t be a node of
T . For every i ∈ Xt let si be the size of the bucket assigned to i. Then, all the values of Tt
can be found in time O(k

∏
i∈Xt si). In particular, if all buckets are of size dnαe, then t can

be processed in time O(knα|Xt|).

Proof. Obviously, in every leaf node the algorithm uses only O(1) time.
For an introduce node, observe that evaluation of the formula (1) takes O(k) time for

every f , since |∆E+
f | ≤ 2 (the factor O(k) is needed to read off a single value from the table).

By (M1), each value f(i) of a b-monotone function f can be fixed in si ways, so the number
of b-monotone functions f : Xt → [n] is bounded by

∏
i∈Xt si. Hence all the values of Tt are

computed in time O(k
∏
i∈Xt si), which is O(knα|Xt|) when all buckets are of size dnαe.

For a forget node, a direct evaluation of (2) for all b-monotone functions f : Xt → [n]
takes O(k

∏
i∈Xt′

si) time, where t′ is the only child of t.
Finally, for a join node a direct evaluation of (3) takes O(k) time, since |E−f | ≤ k and

|E+
f | ≤ k. Hence all the values of Tt are computed in time O(k

∏
i∈Xt si). J

3.3 An algorithm running in time O(n(1/3+ε)k) for k large enough
We will make use of the following theorem due to Fomin, Gaspers, Saurabh, and Stepanov [9].
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I Theorem 6 (Fomin et al. [9]). For any ε > 0, there exists an integer nε such that for every
graph G with n > nε vertices,

pw(G) ≤ 1
6n3 + 1

3n4 + 13
30n5 + 23

45n6 + n≥7 + εn,

where ni is the number of vertices of degree i in G for any i ∈ {3, . . . , 6} and n≥7 is the
number of vertices of degree at least 7.

We actually use the following corollary, which is rather immediate.

I Corollary 7. For any ε > 0, there exists an integer nε such that for every multigraph G
with n > nε vertices and m edges where for every vertex v ∈ V (G) we have 2 ≤ degG(v) ≤ 4,
the pathwidth of G is at most (m− n)/3 + εn.

Proof. The corollary follows from Theorem 6 by the following chain of equalities.

1
6n3 + 1

3n4 = 1
3

(
1
2n3 + n4

)
= 1

3

(
1
2(2n2 + 3n3 + 4n4)− (n2 + n3 + n4)

)

= 1
3

1
2
∑

v∈V (G)

degG(v)− n

 = 1
3(m− n). (4)

J

Let Pk = {{i, i+ 1} | i ∈ [k − 1]}.

I Lemma 8. For any A ⊆ Pk we have pw(IM ∪A) ≤ |A|/3 + εkk, where limk→∞ εk = 0.

Proof. Although ([k], IM ∪A) may not be of minimum degree 2, we may consider the edge
multiset I ′M of the graph obtained from ([k], IM ) by replacing every single edge component
{u, v} by a 2-cycle uvu. Then I ′M is a cycle cover, so every vertex in multigraph ([k], I ′M ∪A)
has degree between 2 and 4. Hence, by Corollary 7, for some sequence εk with limk→∞ εk = 0
we have that pw(IM ∪A) = pw(I ′M ∪A) ≤ (|I ′M |+ |A| − k)/3 + εkk ≤ |A|/3 + εkk. J

By Lemma 8 it follows that the running time in Theorem 4 is bounded by O(n(α3 +ε)k).
If we do not use the buckets at all, i.e., α = 1 and we have one big bucket of size n, we get
the O(n(1/3+ε)k) bound. By iterating over all at most (2k)! connection patterns we get the
following result, which already improves over the state of the art for large enough k.

I Theorem 9. For every fixed integer k, k-opt Optimization can be solved in time
O(n(1/3+εk)k), where limk→∞ εk = 0.

3.4 An algorithm running in time O(n(1/4+ε)k) for k large enough
LetMk be the set of all valid connection k-patterns.

I Lemma 10. k-opt Optimization can be solved in time 2O(k log k)nc(k), where

c(k) = max
M∈Mk

min
α∈[0,1]

max
A⊆Pk

((1− α)(k − |A|) + α(tw(IM ∪A) + 1)) . (5)

Proof. We perform the algorithm from Theorem 4 for each possible valid connection pattern
M and every bucket assignment b, with all the buckets of size dnαM e, for some αM ∈ [0, 1].
Let us bound the total running time. Let A ⊆ Pk and consider a bucket assignment b such
that Ob = A. There are n(1−αM )(k−|A|) such bucket assignments, and by Theorem 4 for each
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of them the algorithm uses time O(nαM (tw(IM∪A)+1)k2 + 2k). Hence the total running time
is bounded by∑

M∈Mk

∑
A⊆Pk

∑
b:[k]→[dn/dnαM ee]
b nondecreasing

Ob=A

O(nαM (tw(IM∪A)+1)k2 + 2k) =

O(2k)
∑

M∈Mk

∑
A⊆Pk

n(1−αM )(k−|A|) · nαM (tw(IM∪A)+1) (6)

For every M ∈Mk, the optimal value of αM can be found by a simple LP (see Section 3.6).
The claim follows. J

I Theorem 11. For every fixed integer k, k-opt Optimization can be solved in time
O(n(1/4+εk)k), where limk→∞ εk = 0.

Proof. Fix the same value α = 3/4 for every connection pattern M . By Lemma 8 we have
(1− α)(k − |A|) + α(tw(IM ∪A) + 1) ≤ ( 1

4 + 3
4k + 3

4ε
′
k)k. The claim follows by Lemma 10,

after putting εk = 3
4k + 3

4ε
′
k. J

3.5 Saving space
The algorithm from Theorem 11, as described above, uses O(n(1/4+εk)k) space. However,
a closer look reveals that the space can be decreased to O(n(1/8+εk)k). This is done by
exploiting some properties of the specific tree decomposition of graphs of maximum degree 4,
described by Fomin et al. [9], which we used in Theorem 6.

This decomposition is obtained as follows. Let D be a k-vertex graph of maximum degree
4. As long as D contains a vertex v of degree 4, we remove v. As a result we get a set of
removed vertices S and a subgraph D′ = D − S of maximum degree 3. Then we construct a
tree decomposition T ′ of D′, of width at most (1/6 + εk)k, given in the paper of Fomin and
Høie [10]. The tree decomposition T of D is then obtained by adding S to every bag of T ′.
An inductive argument (see [9]) shows that the width of T is at most 1

3k4 + 1
6k3 + εkk.

Assume we are given a partial b-monotone embedding f0 : S → [n], where S is the set of
removed vertices mentioned in the previous paragraph. Consider the dynamic programming
algorithm from Theorem 4, which finds a b-monotone embedding of maximum M -gain, for a
given bucket assignment b and connection pattern M . It is straightforward to modify this
algorithm so that it computes a b-monotone embedding of maximum M -gain that extends f0.
The resulting algorithm runs in time O(nα(tw(D−S)+1)k2) and uses space O(nα(tw(D−S)+1)).
Recalling that α = 3/4 and tw(D−S) ≤ (1/6+εk)k, we get the space bound of O(n(1/8+εk)k).
Repeating this for each of nα|S| embeddings of S takes time O(nα(|S|+tw(D−S)+1)) instead of
O(nα(tw(D)+1)) from Theorem 4. However, as explained above, the bound on tw(D) from
Theorem 6 used in the proof of Theorem 11 is also a bound on |S|+ tw(D − S), so the time
of the whole algorithm is still bounded by O(n(1/4+εk)k).

Another interesting observation is that if we build set S by picking an arbitrary vertex of
every edge in Ob, then D′ := D − S contains no edges of Ob, so it has maximum degree at
most 2. It follows that tw(D′) ≤ 2. Thus, in Lemma 10 we can bound tw(IM ∪A) ≤ |A|+ 2
and for α = 1/2 we get the running time of O(nk/2+3/2). By using the approach of fixing all
embeddings of S described above, we get the space of O(nαtw(D′)) = O(n3/2) which is less
than the Θ(n2) space needed to store all the distances of the TSP instance. The additional
space can be further improved to O(n1/2), details in the full version [7].
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3.6 Small values of k
The value of c(k) in Lemma 10 can be computed using a computer programme for small values
of k, by enumerating all connection patterns and using formula (5) to find optimum α. We
used a C++ implementation (see http://www.mimuw.edu.pl/˜kowalik/localtsp/localtsp.cpp
for the source code) including a simple O(2k) dynamic programming for computing treewidth
described in the work of Bodlaender et al. [2]. For every valid connection pattern M our
program finds the value of minα∈[0,1] maxA⊆Pk ((1− α)(k − |A|) + α(tw(IM ∪A) + 1)) by
solving a simple linear program, as follows.

minimize v

subject to v ≥ (1− α)(k − s) + α max
A⊆Pk
|A|=s

(tw(IM ∪A) + 1), s = 0, . . . , k − 1

α ∈ [0, 1]

We get running times for k = 5, . . . , 10 as described in Table 1, except that for k = 5
the running time is n3 2

3 . Because of the practical relevance we investigated the k = 5 case
by hand. A closer look reveals that the source of hardness of this case is a single (up to
isomorphism) graph ([5], IM ∪A) of treewidth 3. It turns out that using a different bucket
partition design one can decrease the running time to O(n3.4). The full argument proving
the theorem below requires extensive case analysis, and does not fit in the page limit of the
present conference version. It can be found in the full version [7].

I Theorem 12. 5-opt Optimization can be solved in time O(n3.4).

4 Lower bound for k = 4

In this section we show a hardness result for 4-opt Optimization. More precisely, we work
with the decision version, called 4-opt Detection, where the input is the same as in 4-opt
Optimization and the goal is to determine if there is a 4-move which improves the weight
of the given Hamiltonian cycle. To this end, we reduce the Negative Edge-Weighted
Triangle problem, where the input is an undirected, complete graph G, and a weight
function w : E(G)→ Z. The goal is to determine whether G contains a triangle whose total
edge-weight is negative.

I Lemma 13. Every instance I = (G,w) of Negative Edge-Weighted Triangle can
be reduced in O(|V (G)|2) time into an instance I ′ = (G′, w′, C) of 4-opt Detection such
that G contains a triangle of negative weight iff I ′ admits an improving 4-move. Moreover,
|V (G′)| = O(|V (G)|), and the maximum absolute weight in w′ is larger by a constant factor
than the maximum absolute weight in w.

Proof. Let V (G) = {v1, . . . , vn}, Vup = {a1, b1, . . . , an, bn}, Vdown = {a′1, b′1, . . . , a′n, b′n} and
V (G′) = Vup ∪̇ Vdown. Let W be the maximum absolute value of a weight in w. Then let
M1 = 5W + 1 and M2 = 21M1 + 1 and let

w′(u, v) =



0 if (u, v) is of the form (ai, b′i)
w(vi, vj) if (u, v) is of the form (ai, bj) for i < j or (a′i, bj) for j < i

M1 if (u, v) is of the form (ai, bi)
−3M1 if (u, v) is of the form (a′i, b′i)
−M2 if (u, v) is of the form (bi, ai+1) or (b′i, a′i+1) or (a1, a

′
1) or (bn, b′n)

M2 in other case.
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ai
bi

aj bj
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a′1
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M1

−3M1

0

w(vi, vj) w(vj , vk)

w(v
i , v

k )

Figure 1 A simplified view of the instance (G′, w′, C) together with an example of a 4-move. The
added edges are marked as blue (dashed) and the removed edges are marked as red (dotted).

Note that the cases are not overlapping. (Note also that although some weights are negative,
we can get an equivalent instance with nonnegative weights by adding M2 to all the weights.)
The construction is illustrated in Fig. 1

If there is a negative triangle vi, vj , vk for some i < j < k in G then we can improve C by re-
moving edges (ai, bi), (aj , bj), (ak, bk) and (a′k, b′k) and inserting edges (ai, bj), (aj , bk), (ak, b′k)
and (a′k, bi). The total weight of the removed edges is M1 +M1 +M1 + (−3M1) = 0 and the
total weight of the inserted edges is w(vi, vj) + w(vj , vk) + 0 + w(vk, vi) < 0 hence indeed
the cycle is improved.

The proof in the other direction is presented in a shortened form due to space constraints
(see the full version [7] for a more elaborate proof). Let us assume that C can be improved
by removing 4 edges and inserting 4 edges. Note that all the edges of weight −M2 belong to
C and all the edges of weight M2 do not belong to C. By the way the weights M1 and M2
are defined, we treat edges of weights ±M2 as fixed, i.e., they cannot be inserted or removed
from the cycle in any improving 4-move. Note that the edges of C that can be removed are
only the edges of the form (ai, bi) (of weights M1) and (a′i, b′i) (of weights −3M1).

All the edges of weight −3M1 already belong to C, and in the next step we prove that
we cannot remove more than one edge of the weight −3M1 from C. Also, if we do remove
one edge of the weight −3M1 (i.e., of the form (a′i, b′i)) from C we need to remove also three
edges of the weights M1 (i.e., of the form (aj , bj)) in order to compensate the loss of 3M1.

Next, we investigate the possible locations of removed edges in an improving 4-move. We
show, that if any edge is removed, then exactly three edges of the form (ai, bi) and exactly
one edge of the form (a′j , b′j) have to be removed. Note that this implies also that the total
weight of the removed edges has to be equal to zero.

Clearly the move has to remove at least one edge in order to improve the weight of
the cycle. Let us assume that the removed edges are (ai, bi), (aj , bj) and (ak, bk) for some
i < j < k and (a′`, b′`) for some `. We argue that in order to obtain a Hamiltonian cycle one
of the inserted edges has to be the edge (a′`, bi). Also the vertex bj has to be connected with
something but the vertex a′` is already taken and hence it has to be connected with the vertex
ai. Similarly the vertex bk has to be connected with aj because a′` and ai are already taken.
Thus ak has to be connected with b′` and this means that k = `. The total weight change of the
move is negative and therefore the total weight of the added edges has to be negative. Thus
we have w(vi, vj) +w(vj , vk) +w(vk, vi) = w′(ai, bj) +w′(aj , bk) +w′(a′k, bi) +w′(ak, b′k) < 0.
So vi, vj , vk is a negative triangle in (G,w). J
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I Theorem 14. If there is ε > 0 such that 4-opt Detection admits an algorithm in time
O(n3−ε · polylog(M)), then there is δ > 0 such that both Negative Edge-Weighted Tri-
angle and All Pairs Shortest Paths admit an algorithm in time O(n3−δ · polylog(M)),
where in all cases we refer to n-vertex input graphs with integer weights from {−M, . . . ,M}.

Proof. The first part of the claim follows from Lemma 13, while the second part follows from
the reduction of All Pairs Shortest Paths to Negative Edge-Weighted Triangle
by Vassilevska-Williams and Williams (Theorem 1.1 in [26]). J
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Abstract
We study the classical scheduling problem of assigning jobs to machines in order to minimize
the makespan. It is well-studied and admits an EPTAS on identical machines and a (2− 1/m)-
approximation algorithm on unrelated machines. In this paper we study a variation in which
the input jobs are partitioned into bags and no two jobs from the same bag are allowed to be
assigned on the same machine. Such a constraint can easily arise, e.g., due to system stability
and redundancy considerations. Unfortunately, as we demonstrate in this paper, the techniques
of the above results break down in the presence of these additional constraints.

Our first result is a PTAS for the case of identical machines. It enhances the methods from
the known (E)PTASs by a finer classification of the input jobs and careful argumentations why a
good schedule exists after enumerating over the large jobs. For unrelated machines, we prove that
there can be no (logn)1/4−ε-approximation algorithm for the problem for any ε > 0, assuming
that NP * ZPTIME(2(logn)O(1) ). This holds even in the restricted assignment setting. However,
we identify a special case of the latter in which we can do better: if the same set of machines we
give an 8-approximation algorithm. It is based on rounding the LP-relaxation of the problem in
phases and adjusting the residual fractional solution after each phase to order to respect the bag
constraints.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases approximation algorithms, scheduling, makespan minimization

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.31

1 Introduction

Minimizing the makespan is a classical problem in scheduling [8, 9]. Given a set of machines
M and set of jobs J , we seek to assign each job to a machine. In the setting where all
machines are identical, the processing time of each job j is given by a value pj for each job j.
For unrelated machines the processing time of a job j can depend on the machine i on which
it is scheduled. In this case the input contains a value pij ∈ R+

0 ∪ {∞} for each combination
of a machine i and a job j. The objective is to minimize the makespan, i.e., the maximum
load of a machine i which is the total processing time of jobs assigned to i. The problem is
well-studied, for identical machines it is strongly NP-hard and there are PTASs [11, 17] and
even EPTASs, e.g., [12, 13, 10]. For unrelated machines there is a 2-approximation algorithm

∗ This work was partially supported by the Millennium Nucleus Information and Coordination in Networks
ICM/FIC RC130003.

© Syamantak Das and Andreas Wiese;
licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 31; pp. 31:1–31:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.31
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


31:2 Minimizing the Makespan When Some Jobs Cannot Be Assigned on the Same Mach.

due to Lenstra, Shmoys, and Tardos [16], an improvement to 2− 1/m due to Shchepin and
Vakhania [19], and a lower bound of 3/2 [16].

In practice, one often finds side constraints in addition to the above scheduling setting
that make the problem harder. A typical constraint is that some jobs have to be assigned on
different machines. For instance, on-board computers of aeroplanes typically have several
CPUs (modeled as machines) and for system stability considerations some tasks need to
be executed on different CPUs [6]. The idea is that if one CPU fails then the plane still
continues to operate safely. Minimizing the makespan is closely related to the bin packing
problem where the bins and the items correspond to the machines and the jobs, respectively.
There are several applications of bin packing where the items are partitioned into groups
and no two items from the same group can be assigned to the same bin, for instance in
distributed systems and other settings, see [18].

To model the above, in this paper we assume that the input jobs are partitioned into
bags J = B1∪̇B2∪̇...∪̇Bb and that no two jobs from the same bags are allowed to be assigned
on the same machine. We call these new requirements the bag-constraints.

In this paper we study the problem of minimizing the makespan on identical and unrelated
machines with bag-constraints.

1.1 Identical machines
The known (E)PTASs [12, 13, 10, 11, 17] for minimizing the makespan on identical machines
follow the idea of enumerating the solution for the large jobs, e.g., jobs that are larger
than ε ·OPT , and then adding the small jobs via a greedy algorithm. More precisely, one
enumerates patterns for the large jobs that indicate how many large jobs of each size are
assigned on each machine. The large jobs are then assigned according to these patterns and
it does not matter which exact job is assigned to which slot of each pattern as long as the
size of the slot is respected. In the case of bag-constraints this unfortunately does not work
directly anymore. One can still enumerate the mentioned patterns and, with some additional
effort, assign the large jobs to them such that they respect the bag-constraints. However,
we cannot guarantee that the large jobs are assigned exactly like in the optimal solution. It
could be that the jobs from the different bags are distributed completely differently on the
machines than in the optimal solution (while still respecting the enumerated slots). In fact,
there are instances for which the above procedure can lead to an assignment of the large jobs
such that any solution for the remaining jobs has a makespan of at least (2−O(ε))OPT , see
Figure 1 for an example.

Hence, we need additional ideas for the setting with bag-constraints. First, we observe
that in the mentioned example many bags have relatively many large jobs (more than ε ·m
many). There can be only Oε(1) such large bags and hence we can afford to be more careful
for them when we enumerate their large jobs. Indeed, we manage to assign the large jobs
in such bags as in an optimal solution. Then we assign all other large jobs according to
the enumerated pattern such that we respect the bag-constraints. To assign the remaining
(non-large) jobs, we partition them into medium and small jobs such that the total processing
time of the medium jobs is small, at most ε2OPT ·m. We find a way to assign the latter
to the machines such that via some swapping and charging arguments we can guarantee
that for the remaining small jobs there exists a solution with small overall makespan. For
the small jobs the argumentation is again not as easy as without the bag-constraints since
some machines already have jobs from some bags which prevents small jobs of such bags
to be assigned to them. We solve the remaining problem with a combination of a dynamic
programming algorithm and a modified greedy routine. Overall, we obtain a PTAS for
minimizing the makespan under bag-constraints. Hence, like without bag-constaints, there is
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0 1 0 1 2−O(ε)

Figure 1 Left: an optimal schedule for the given instance. The bold lines indicate the enumerated
patterns for the big jobs, all of them having size ε. The colors show the different bags of the jobs.
Each white (striped) job j is in a (private) bag that contains only j. Right: a schedule in which the
big jobs are assigned according to the same patterns but differently than in OPT . Thus, all non-big
jobs have to be assigned to the last machine in order to satisfy the bag-constraints. This yields an
approximation ratio of 2−O(ε).

a (1 + ε)-approximation in polynomial time, but clearly new ideas are necessary to construct
such an algorithm.

I Theorem 1. There is a PTAS for minimizing the makespan on identical machine with
bag-constraints.

1.2 Unrelated machines
For makespan minimization on unrelated machines, the mentioned LP-based 2- and (2−1/m)-
approximation algorithms [16, 19] are known. There are several rounding strategies for the
natural LP such as an argumentation via bipartite matchings [16], rounding via (sparse)
extreme point solutions [19], and, related to the latter, iterated rounding [20]. The bag-
constraints induce a linear constraint for each combination of a bag and a machine. Thus,
it seems natural to enhance the normal LP by these constraints and try to adapt one of
the known rounding techniques. However, in this paper we show that this is deemed to fail.
We prove that on unrelated machines the problem is hard to approximate with a ratio of
(logn)1/4−ε for any ε > 0. This holds also in the restricted assignment case where each job j
has a size pj and there are some machines on which it cannot be assigned, i.e, pij ∈ {pj ,∞}
for each job j and each machine i. On the other hand, we show that a randomized rounding
algorithm yields a O(logn/ log logn)-approximation.

I Theorem 2. For minimizing the makespan on unrelated machines with bag-constraints
there can be no (logn)1/4−ε-approximation algorithm for any ε > 0 unless
NP ⊆ ZPTIME(2(logn)O(1)). This holds even for the restricted assignment case.

Thus, in contrast to the case of identical machines we see here an increase in complexity
due to the bag-constraints. However, we identify a special case of the restricted assignment
setting where we can do better than in the general case: if all jobs from each bag can be
assigned to exactly the same set of machines then we obtain a 8-approximation algorithm
based on the above mentioned LP. For this we need several new ideas on top of the above
mentioned known rounding techniques. First, we round the job sizes to powers of 2 and
process the jobs in groups according to their sizes. We show that if all jobs have exactly the
same size then even with the bag-constraints the LP is almost exact. We then assign the jobs
with largest size via LP-rounding. Together with the fractional solution of the remaining
jobs this might violate the bag-constraints. However, by carefully exploiting the properties
of our special case we are able to construct a new fractional solution for the remaining jobs
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that satisfies the bag-constraints. We continue iteratively. When we change the residual
fractional solution after each iteration we employ some careful geometric sum arguments in
order to ensure that the final solution has a makespan that is at most by a factor 8 larger
than the value of the initial LP-solution.

I Theorem 3. There is a 8-approximation algorithm for minimizing the makespan with
bag-constraints in the restricted assignment case if for each bag all jobs in the bag can be
assigned to the same set of machines.

Due to space constraints we give the statement of several lemmas and theorems without
proofs and details in this extended abstract.

1.3 Other related work
Makespan. For the restricted assignment case without bag-constraints, Svensson [21] gave
an estimation algorithm with a ratio of 33/17 + ε, i.e., his algorithm can estimate the optimal
makespan up to this factor in polynomial time but does not necessarily find the corresponding
schedule within this time bound. This algorithm was improved recently by Jansen and
Rohwedder [15] to an (11/6 + ε)-estimation algorithm. If there are only two different jobs
sizes, there is even a 5/3-estimation due to Jansen, Land, and Maack [14]. Moreover, for
the special case that each job has either size 1 or size ε there is a (2 − δ)-approximation
algorithm due to Chakrabarty, Khanna, and Li for a small constant δ > 0 [2]. In contrast
to the previous algorithms, it computes the actual schedule in polynomial time. All above
algorithms are based on the configuration-LP in the restricted assignment case. Note that for
general unrelated machines the latter LP has an integrality gap of (asympotically) 2 [5, 22].

Scheduling with conflicts. Typically, in these settings, there is an underlying conflict graph
with the jobs forming the vertices; there is an edge between any two vertices if and only if the
corresponding jobs cannot be scheduled on the same machine. In [1], for example, the authors
give a tight 2-approximation algorithm for makespan minimization when the underlying
conflict graph is polynomial time colorable. A slightly different setting is considered in [7].
Here, an edge between any two jobs in the conflict graph dictates that they cannot be
scheduled in overlapping intervals on different machines. The authors, among other results,
prove that the makespan minimization problem is APX-hard even for 4 different job sizes
and give 4/3-approximation algorithms for the case of three different job sizes and an exact
algorithm for two different job sizes. A related setting, called the multi-level bottleneck
assignment is considered in [4]. It can be thought of as a generalization of our setting where
each bag has the same number of jobs and the additional restriction that each machine gets
exactly the same number of jobs in a schedule. The authors prove a 2-approximation for the
special case with 3 bags.

2 A PTAS for identical machines

In this section we present our PTAS for minimizing the makespan under bag-constraints
on an arbitrary number of identical machines. As we will see, the standard techniques of
enumerating over large jobs and then adding small jobs greedily are not sufficient since a bag
can contain large and small jobs and, therefore, these jobs interact with each other much
more than without the bag-constraints.

Let ε > 0 and assume for simplicity that 1/ε ∈ N. First, we assume that we guess the
optimal makespan T ? via a binary search framework and we assume by scaling that T ? = 1.
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We round all job lengths to powers of 1 + ε, i.e., we assume that for each job j ∈ J we have
that pj = (1 + ε)k for some k ∈ N. Due to this we lose at most a factor of 1 + ε in the
objective.

2.1 Straight-forward approach
As mentioned in the introduction, a natural approach would be to classify jobs into large and
small jobs, e.g., define a job j to be large if pj ≥ ε and small otherwise and to enumerate over
the large jobs. More precisely, one would enumerate over the patterns of the large jobs where
a pattern indicates how many large jobs of each size are assigned to a machine. Since each
machine can have at most 1/ε large jobs and there are only O(log1+ε 1/ε) many different
sizes of large jobs, this yields (1/ε)O(log1+ε 1/ε) =: Kε many different patterns. Thus, in time
(m+ 1)Kε we can enumerate how many machines follow each pattern and thus enumerate the
machine patterns of the optimal solution (up to permutation of machines). Then, one would
compute a solution for the large jobs following the enumerated patterns, e.g., via assigning
them greedily to the patterns’ slots. However, the computed assignment of jobs to slots
might be different than in the optimal solution and if a large job is assigned to a machine i
then a small job from the same bag cannot be assigned to i anymore. Figure 1 shows an
example where such an algorithm enumerates the patterns of some optimal solution but then
assigns the large jobs differently than OPT such that any assignment for the remaining small
jobs yields a makespan of at least (2−O(ε))T ?. Hence, this approach does not work directly.

2.2 Refined job classification and enumeration
Instead, we use a classification of the jobs into large, medium, and small jobs. Using a
standard shifting argument we define these groups such that the medium jobs have small
total processing time.

I Lemma 4. For any given instance we can compute a value k ∈ {1, ..., 1/ε2} such that∑
j∈J:pj∈[εk+1,εk) pj ≤ m · ε2.

With the value k from Lemma 4 we define a job j to be large if pj ≥ εk, medium if
pj ∈ [εk+1, εk) and small if pj < εk+1. Note that in the example in Figure 1 there are some
bags that have a large number of large jobs (m− 1 many). We call a bag large if it contains
at least ε ·m large or medium jobs and small otherwise. The following proposition shows
that there can be only constantly many large bags (since otherwise the total processing time
of their jobs would be bigger than m).

I Proposition 5. There can be at most O(1/εk+2) large bags.

In our algorithm, we want to enumerate over patterns that contain large jobs and
additionally medium jobs from large bags. However, for the large and medium jobs in large
bags we want to be more careful: we want to assign them to the slots of the enumerated
pattern like in an optimal solution. Since there are only Oε(1) large bags, we can incorporate
the enumeration of this this assignment in to the enumeration of the patterns.

Assume that after our rounding the medium and large jobs have sizes S = {s1, ..., s|S|}
with |S| = O(log1+ε(1/εk+1)). A pattern p consists of at most (1 + ε)/εk+1 slots (note that
each machine can have at most (1 + ε)/εk+1 jobs that are medium or large) where each slot
is characterized by a size s ∈ S and a label that specifies either one of the O(1/εk+2) large
bags (and then only jobs from that bag can be assigned to the slot) or that the slot can be
used only for jobs from small bags. If s belongs to the size of a medium job then we do not
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allow the latter type of label, i.e., we allow slots of medium size only for jobs from large bags.
Let K ′ε = Oε(1) be the total number of patterns. Hence, in time (m+ 1)K′ε we can guess a
pattern for each machine such that all patterns together correspond to an optimal solution.
From these patterns we can directly conclude the complete assignment of medium and large
jobs from the large bags. Hence, we obtain an assignment for the latter jobs and a pattern
for the large jobs in small bags.

I Lemma 6. In time mK , where K = ( 1
ε2 log( 1

ε ))O( 1
ε3 ) we can guess the assignment of the

large and medium jobs from the large bags and a pattern for each machine for the large jobs
in small bags (both corresponding to an optimal solution).

Next, we assign the large jobs of the small bags to the slots given by the enumerated
pattern. We do this via a dynamic program (DP). This DP will successfully assign all
remaining large jobs, however, not necessarily to the slots to which the optimal solution
assigned them.

I Lemma 7. There is a dynamic program that assigns all large jobs in small bags to the
machines such that (i) no two large jobs from the same (small) bag are assigned to the same
machine and (ii) for each size s ∈ S each machine i gets the same number of jobs of size s
as there are slots of size s for jobs from small bags in the pattern assigned to i.

2.3 Assignment of remaining medium jobs
So far we have assigned all large jobs and additionally all medium jobs in large bags. We
want to assign the medium jobs from the small bags now. If we were allowed to assign each
such job to any machine then we could distribute them evenly on the machines (essentially
with some greedy algorithm) such that each machine gets at most m·ε2

m·εk+1 = 1/εk−1 jobs with
thus a total load of at most εk/εk−1 = ε. For the medium jobs of a small bag B we observe
that up to ε ·m machines already have a large job from B assigned to them but we can still
use at least (1 − ε)m machines for the medium jobs from B. We obtain almost the same
bound as above due to an assignment via a flow network that we use to round a fractional
solution in which each bag distributes its medium jobs evenly among its at least (1− ε)m
available machines.

I Lemma 8. In polynomial time we can compute an assignment of the medium jobs of the
small bags such that each machine gets at most 2/εk−1 medium jobs with a total load of at
most O(ε) and no machine has two medium or a medium and a large job from the same bag.

2.4 Assignment of small jobs
It remains to assign all small jobs, from the large as well as from the small bags. Note that
at this point it is not even clear that after the assignment of the large and medium jobs we
can add the small jobs such that the overall makespan is 1 + O(ε) (recall the example in
Figure 1). Therefore, we prove this in the following lemma.

I Lemma 9. Given the previously computed assignment of large and medium jobs, there
exists an assignment of the small jobs to the machines such that the overall makespan is
bounded by 1 +O(ε).

Proof. Consider the (possibly infeasible) schedule S in which the small jobs are assigned as
in the optimal solution and the large and medium jobs are assigned as in our so far computed
solution. Let B be a bag. There might be a machine i such that two jobs of B are assigned
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to i in S. Note that B has to be a small bag. Let m′ be the number of these machines and
call these machines and the corresponding small jobs problematic. Assume w.l.o.g. that B
contains exactly m jobs (if not then we can add some small dummy jobs of zero length). Then
there must be m′ machines on which no job of B was assigned, we call these machines free.
We take the problematic small jobs of B from their (problematic) machines and distribute
them on the free machines such that no two small jobs are assigned to the same machine.
We do this operation for each bag. Denote by S′ the resulting schedule. We argue that our
operation did not increase the load on each machine by more than O(ε). Suppose that we
moved a problematic job j in a small bag B from some machine i to some machine i′. Since
i′ did not have any job from B assigned to it in S and each bag has exactly m jobs, this
means that in OPT machine i′ must have a medium or a large job from B assigned to it.
If i′ has a large job j′ from B in OPT then we charge pj to pj′ , using that pj < εpj′ . If i′
has a medium job j′′ from B in OPT then we charge pj to pj′′ . Recall that we assigned the
medium jobs of the small bags to the machines such that the load of each machine due to
medium jobs in small bags is O(ε) (see Lemma 8). Hence, we can still use pj′′ to pay for one
other job assigned to i′ in S′.

For a machine i let OPT large
i , OPTmed

i , OPT small
i denote the load in OPT due to large,

medium, and small jobs, respectively, and by Smed
i the load due to the medium jobs in S.

Thus, in S′ the load of machine i is bounded by

OPT large
i +OPTmed

i +OPT small
i + εOPT large

i + Smed
i ≤ (1 +O(ε))OPT.

where OPT large
i bounds the load due to large jobs, OPTmed

i +εOPT large
i bounds the load due

to medium jobs in large bags and reassigned small jobs from small bags, OPT small
i bounds

the load from non-reassinged small jobs, and Smed
i bounds the load from medium jobs in

small bags. J

In order to compute an assignment of the small jobs, observe that after assigning the
large and medium jobs the machines have only Oε(1) different loads since there are at most
1/εk+1 jobs on each machine that are large or medium and the size of each of them comes
from a set of only O(log1+ε 1/εk+1) different values. Thus, we can partition the machines
into Oε(1) different groups such that two machines in the same group have the same load and
their medium and large jobs from large bags come from exactly the same set of large bags
(there are only Oε(1) possibilities for the latter property). We devise a dynamic program
that assigns the small jobs to these groups of machines, rather than directly to machines.
This DP ensures that the average load of a machine in each group is at most 1 +O(ε) and
that for each machine group and each bag B we can schedule all small jobs in B assigned to
this group on its machines without violating the bag-constraint. Formally, assume that the
machines are divided into groups M1, ...,MK′′ with the above properties where K ′′ε = Oε(1)
and let αs denote the load due to medium and large jobs of each machine in group Ms. Let
βs denote the load of the small jobs assigned to machines in group Ms. For each bag B
and each machine group Ms denote by MB

s ⊆Ms the machines in Ms that do not have a
medium or large job from B assigned to it.

I Lemma 10. There is a polynomial time algorithm that assigns the small jobs to the
machine groups M1, ...,MK′′ such that for each s ∈ [K ′′] we have that from each bag B at
most |MB

s | jobs are assigned to Ms and αs + βs
|Ms| ≤ 1 +O(ε). The algorithm runs in time

b2(mnε )O(K′′), where K ′′ = ( 1
ε )2 log( 1

ε ).

Once the jobs are assigned to the groups, we need to assign the jobs to the machines
within each group. For the case without the bag-constraints, one can easily show that a
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simple greedy algorithm will ensure that the load of the small jobs will be almost equally
distributed among the machines, i.e., the makespan of any two machines will differ by at
most the size of one small job. In the setting of the bag-constraints this is no longer that
easy. Consider a group Ms and let Js denote the small jobs assigned to Ms due to Lemma 10.
We group the small jobs by their respective bags, denote by J`s := Js ∩B` for each bag B`.
Assume w.l.o.g. that |J`s | = |MB`

s | for each bag B`. In each iteration we assign all jobs from
one bag as follows. Consider the `-th iteration in which we assign the jobs in J`s . We order
the jobs in J`s non-increasingly by length, i.e., assume that J`s = {j1, j2, ..., j|B`|} such that
p1 ≥ p2 ≥ ... ≥ p|B`|. We order the machines in MB`

s non-decreasingly by the total load that
they obtained from jobs in B1, ..., B`−1 that we previously assigned to them. Let i1, ..., i|B`|
be this order. Then for each `′ ∈ {1, ..., |J`s |} we assign job j`′ to machine i`′ . We call this
algorithm bag-LPT.

If for each bag B` we have that MB`
s = Ms then we can again argue that at the end the

load on any two machines differs by at most the size of one small job, i.e., εk+1. However,
this is no longer the case if MB`

s 6= Ms for some bag B` since then there is a machine
i ∈Ms \MB`

s that does not gspaet a small job from a bag B`. This happens if B` is a small
bag and machine i already has a large or medium job from B` assigned to it. However, to
each machine i we assigned in total at most O(1/εk) jobs in small bags that are medium or
large: at most O(1/εk) large jobs since each large job has a size of at least εk and at most
O(1/εk−1) medium jobs due to Lemma 8. Hence there can be only O(1/εk) bags B` such that
i ∈Ms \MB`

s . This allows us to bound the error due to the above by O(1/εk) · εk+1 = O(ε).

I Lemma 11. For each group Ms bag-LPT assigns the small jobs such that each machine
in Ms has a load of at most αs + βs

|Ms| +O(1/εk) · εk+1 ≤ 1 +O(ε).

Hence, we assigned all large, medium, and small jobs such that each machine has a load
of 1 +O(ε). This completes the proof of Theorem 1.

3 Special Case of Restricted Assignment

In this section we present our 8-approximation algorithm for minimizing the makespan
on unrelated machines under bag-constraints in the restricted assignment case where we
additionally assume that all jobs in each bag B` can be assigned to the same set of machines.

Our starting point is the LP-relaxation for the minimization the makespan on unrelated
machines as it was used in [16, 19] and we add additional inequalities for the bag-constraints
to it. Let T be a guessed value of the optimal makespan. We define a linear program LP (T )
that models the problem of finding a solution with makespan T . Recall that for each job j
there is a value pj such that pij ∈ {pj ,∞} for each machine i. For each job j denote by Mj

the set of machines i such that pij = pj .

LP (T ) :
∑

j:i∈Mj

xijpij ≤ T ∀i ∈M (1)

∑
i∈Mj

xij = 1 ∀j ∈ J (2)

∑
j∈B`

xij ≤ 1 ∀i ∈M,∀` ∈ [b] (3)

xij ≥ 0 ∀j ∈ J, i ∈Mj (4)
xij = 0 if pij > T, ∀j ∈ J, i ∈M (5)
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Figure 2 The flow-network for assigning the jobs in J(p). Note that arcs of the type {v`, wi}
exist only if there is a job j ∈ B` ∩ J(q) such that xij > 0. The values above the arcs indicate their
respective capacities.

Using a binary search framework we determine T ? which we define to be the smallest
value T for which LP (T ) is feasible. Denote by x? the corresponding fractional solution. In
the remainder of this section, we will prove that from x? we can obtain an integral solution
of makespan at most 4T ? + 4 maxi,j pij ≤ 8OPT .

Assume w.l.o.g. that pij ∈ N for each machine i ∈M and each job j ∈ J . We round each
finite job size pij and each value pj to the next larger power of 2, denote by p̄ij and p̄j the
new respective values. This increases the fractional load on each machine by at most a factor
of 2. Based on this, we group the jobs into classes. A job j belongs to class q if p̄j = 2q. We
define cl(j) to be the class of a job j and J(q) to be the set of all jobs of class q. Let qmax
denote the highest class of a job in the instance. We compute our integral job assignment
in phases, one phase for each job class in the order qmax, qmax − 1, ..., 0. In each phase q we
determine an integral assignment of all jobs of class q.

Assume that we are given a fractional solution
{
x

(q)
ij

}
i∈M,j∈J≤(q)

at the beginning of

phase q that satisfies constraints (2)-(5) of LP (T ) for all jobs in J≤(q) where for each q′ we
define J≤(q′) :=

⋃
q′′:q′′≤q′ J(q′′). In the first phase where q = qmax this solution x(q) equals

the optimal LP-solution x?.

3.1 Job assignment via flow network
Similarly as in the proof of Lemma 8 we interpret the fractional assignment of the jobs in
J(q) given by x(q) as the fractional solution to an instance of maximum flow with integral
edge capacities. Then, using flow theory we will argue that there exists also an integral
solution to this instance which will then yield our integral job assignment.

Our (directed) flow-network consists of a source node s, a node v` for each bag B`, a node
wi for each machine i, and a sink node t (see Figure 2 for a sketch). For each bag B` there is
an arc (s, v`) whose capacity equals the number of jobs in B` of class q, i.e., |B` ∩ J(q)|. For
each bag B` and each machine i there is an arc (v`, wi) of capacity 1 if and only if there is a
job j ∈ B` ∩J(q) such that xij > 0. For each machine i there is an arc (wi, t) whose capacity
equals d

∑
j∈J(q) x

(q)
ij e, i.e., the fractional number of jobs of class q assigned to i, rounded

up. Let G(p) be the resulting graph and denote by (G(p), s, t) the overall flow network. The
solution x yields a fractional flow in this network that sends |J(q)| units of flow from s to t.
Hence, standard flow theory implies the following proposition.
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I Proposition 12. There is an integral flow y for (G(p), s, t) that sends |J(q)| units of flow
from s to t.

The integral flow due to Proposition 12 yields an assignment of the jobs in J(q) that
respects the bag constraints: we assign a job from a bag B` to a machine i if and only if
y(v`,wi) = 1. This yields the following lemma.

I Lemma 13. Given a class q and a solution x(q) that satisfies constraints (2)-(5) of LP (T )
for all jobs in J≤(q). Then in polynomial time we can compute an integral assignment
{x̄(q)

ij }i∈M,j∈J(q) for all jobs in J(q) such that (i) each machine i has at most d
∑
j∈J(q) x

(q)
ij e

jobs of J(q) assigned to it and (ii) if for some bag B` a job j ∈ B` ∩ J(q) is assigned to a
machine i then there is a job j′ ∈ B` ∩ J(q) with x(q)

ij′ > 0, and (iii) the solution x̄(q) assigns
at most one job from each bag to each machine.

3.2 Reassignment of jobs
In the next phase q − 1 we cannot directly apply the above procedure to assign the jobs in
J(q − 1) starting with the solution x(q): it might be that there is a bag B` and two jobs
j, j′ ∈ B` such that cl(j) = q, cl(j′) = q − 1, j is assigned to some machine i in phase q, and
x

(q)
ij′ > 0. Hence, in phase q−1 potentially j′ is also assigned to machine i which then violates

the bag constraints. Therefore, based on x? we construct a solution {x(q−1)
ij }i∈M,j∈J≤(q−1)

in which all jobs in J≤(q − 1) are fractionally assigned such that if x(q−1)
ij > 0 for a job

j ∈ J≤(q − 1) in some bag B` then there is no job j′ ∈ B` with cl(j′) ≥ q that we assigned
integrally to machine i in any of the previous phases. As we will see, this might increase the
load on some machines, but only by a bounded amount.

Intuitively, suppose that x?ij > 0 for some job j ∈ J≤(q − 1) in some bag B` and some
machine i, and assume that in phase q′ ≥ q we assigned a job j′ ∈ J(q′) ∩B` to machine i.
We call such a pair (i, j) problematic. Then x?ij′ ≤ 1− x?ij due to constraint (3). Hence, at
least a fraction of x?ij of job j′ was assigned to some machine i′ 6= i by x?. Therefore, we
can move x?ij units of job j to machine i′ without violating the bag constraints. Even more,
if job j is of class q̃ (note that q̃ ≤ q − 1) then p̄j ≤ 2q̃−q′ p̄j′ , i.e., the additional load on
machine i′ is by a factor 2q̃−q′ smaller than the original load due to job j′.

More formally, initially we define x(q−1) := x?. Consider a bag B` and denote by M̃`

the set of all machines to which the jobs in B` can be assigned and to which we did not
assign a job from B` in phases q, ..., qmax. As long as there is a problematic pair (i, j) with
x

(q−1)
ij > 0 we reassign the “problematic fraction” x(q−1)

ij of job j greedily to the machines in
M̃` while we ensure that each machine i ∈ M̃` gets at most

∑
j∈B`∩(J\J≤(q−1)) x

?
ij jobs from

B` reassigned overall (fractionally). Thus, at the end for each problematic pair (i, j) we have
that x(q−1)

ij = 0. We perform this reassignment for each bag B`.

I Lemma 14. Given the integral assignment {x̄(q′)
ij }i∈M,j∈J(q′) of the jobs in J(q′) for each

phase q′ ≥ q due to Lemma 13. In polynomial time we can compute a (fractional) solution
{x(q−1)

ij }i∈M,j∈J≤(q−1) for the jobs in J≤(q − 1) such that
(i) x(q−1) satisfies constraints (2)-(5) of LP (T ),
(ii) for each job j ∈ J(q − 1) in some bag B` we have that x(q−1)

ij = 0 if x̄(q′)
ij′ = 1 for some

job j ∈ J(q′) ∩B` for some q′ ≥ q,
(iii) for each machine i we have that∑

j∈J(q−1) x
(q−1)
ij p̄ij ≤

∑
j∈J(q−1) x

?
ij p̄ij +

∑
q′>q−1 2(q−1)−q′∑

j∈J(q′) x
?
ij p̄ij.
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Figure 3 Sketch of the reduction from vector scheduling to group-restricted assignment.

We then proceed with phase q − 1 where we start with the fractional solution x(q−1)

as computed in Lemma 14. When we finish the last phase, we have computed an integral
assignment {x̄ij}i∈M,j∈J of the jobs to the machines. Due to Lemma 13(ii) and Lemma 14(ii)
our assignment respects the bag-constraints. In the next lemma we bound the load on each
machine in the computed assignment which completes the proof of Theorem 3.

I Lemma 15. In the computed assignment each machine has a load of at most 4T ? +
4 maxi,j pij ≤ 8T ? ≤ 8OPT .

4 Hardness of restricted assignment with bag-constraints

Our goal is to prove Theorem 2, i.e., we want to show that for minimizing the makespan
on unrelated machines with bag-constraints there can be no (logn)1/4−ε-approximation
algorithm for any ε > 0 unless NP ⊆ ZPTIME(2(logn)O(1)), even for the restricted assignment
case. We reduce the vector scheduling (VS) problem [3] to the problem of minimizing
the makespan in the restricted assignment setting with bag-constraints. In the vector
scheduling problem, we are given a set of identical machines M , a dimension d ∈ N, and
a set of n d-dimensional vectors p1, ..., pn ∈ [0,∞)d. The goal is to assign each vector to
a machine, i.e., find a partition A1, ..., A|M | of the vectors. The objective is to minimize
maxi∈M

∥∥∥∑j∈Ai pj

∥∥∥
∞
. Our reduction is gap-preserving and in particular we will show that

any c-approximation algorithm for our problem yields a c-approximation algorithm for vector
scheduling for any value c. In [3] it was shown that the vector scheduling problem does not
admit a c-approximation algorithm for any constant c, assuming that P 6= ZPP (with the
newer in approximability result for Independent Set in [23] it suffices to assume that P 6= NP).
We are able to prove that one cannot get a (logn)1/4−γ-approximation for VS for any constant
γ > 0 in polynomial time or quasi-polynomial time, assuming that NP * ZPTIME(2(logn)O(1)).
Then the same inapproximability bound holds for our problem as well.

Given an instance I of vector scheduling, defined by a number of dimensions d, a set of
M identical machines, and n vectors p1, ..., pn where for each vector pi we denote by pki its
size in the k-th dimension. Denote by OPT (I) its optimal objective value. We define an
instance of makespan minimization on unrelated machines with bag-constraints. For each
combination of a machine i and a dimension k in I we introduce a machine mi,k, see Figure 3
for a sketch. For each vector p` we introduce a set of jobs that form a group J`. There is one
job j`1 with size p1

` . The job j`1 can be assigned to each machine mi,1 for each i. Intuitively, if
j`1 is assigned to machine mi,1 this corresponds to assigning the vector p` to machine i in I.

ESA 2017



31:12 Minimizing the Makespan When Some Jobs Cannot Be Assigned on the Same Mach.

We will design the remaining machines and jobs for vector p` such that if j`1 is assigned to
machine mi,1 then for each dimension k

each machine mi,k will get a load of pk` from the jobs in J` and
each machine mi′,k with i′ 6= i will get a load of 0 from the jobs in J`.

Then, for each combination of a vector p`, a dimension k ≤ d, and a machine i in I we
introduce

a dummy machine m̄`
i,k,

a dummy job j̄`i,k of size 0 that can be assigned to only mi,k and m̄`
i,k, and

if k ≥ 2 then we also introduce a job j`i,k of size pk` that can be assigned to only mi,k and
m̄`
i,k−1.

Observe that for each dummy machine m̄`
i,k there are globally at most two jobs that can

be assigned to it (and both are in J`). Denote by I ′ the resulting instance and denote by
OPT (I ′) its optimal solution value. Intuitively, we want to show that OPT (I) = OPT (I ′)
and that any solution S(I) to I yields a solution S(I ′) to I ′ with the same objective value.
This needs some preparation. We have the following two lemmas.

I Lemma 16. Let `, i, k ∈ N. Consider any feasible solution. If the job j`1 is assigned to
machine mi,1 then each machine mi,k has exactly one job j ∈ J` assigned to it with pj = pk` .

The next lemma intuitively states that we can restrict ourselves to solutions to I ′ that are of
the form described in the statement of the lemma.

I Lemma 17. Consider any feasible solution S for the instance I ′ and let i, `, k ∈ N. Further
let job j`,1 is assigned to machine mi,1 in S. Then there exists another feasible solution S′
such that each machine mi′,k with i′ 6= i has at most one job from J` assigned to it and this
job has size 0, while all other jobs have exactly the same assignment as that in S. Further,
the makespan of S′ is at most the makespan of S.

I Theorem 18. For any given instance I of the vector scheduling problem, in polynomial time
we can construct an instance I ′ of the restricted assignment case of makespan minimization
on unrelated machines with bag-constraints such that for any solution S(I) for I there is a
corresponding solution S′(I ′) for I ′ with objective value at most that of S(I) and vice versa.
In particular, this implies that OPT (I) = OPT (I ′).

5 Conclusion

In this paper we showed that for minimizing the makespan on identical machines with
bag-constraints there is a (1 + ε)-approximation algorithm like in the setting without the bag-
constraints (and the problem is strongly NP-hard). However, we proved that for unrelated
machines we see a change in complexity since in the classical setting the problem admits a
(2− 1/m)-approximation [19] while with the bag-constraints it seems unlikely to obtain a
better approximation ratio than (logn)1/4−ε for any ε > 0. It remains open to investigate
more scheduling scenarios under bag-constraints such as makespan minimization on related
machines or minimizing the weighted sum of completion time in any machine model. Also,
for identical machines it remains open whether there is an EPTAS (which exists without the
bag-constraints [12, 13, 10, 11, 17]).

Acknowledgments. We would like to thank the anonymous referees of this paper for many
helpful comments and for pointing us to papers related to the setting of the bag-constraints.
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Abstract
Suppose that we are given sample access to an unknown distribution p over n elements and an
explicit distribution q over the same n elements. We would like to reject the null hypothesis
“p = q” after seeing as few samples as possible, when p 6= q, while we never want to reject the
null, when p = q. Well-known results show that Θ(

√
n/ε2) samples are necessary and sufficient

for distinguishing whether p equals q versus p is ε-far from q in total variation distance. However,
this requires the distinguishing radius ε to be fixed prior to deciding how many samples to request.
Our goal is instead to design sequential hypothesis testers, i.e. online algorithms that request i.i.d.
samples from p and stop as soon as they can confidently reject the hypothesis p = q, without
being given a lower bound on the distance between p and q, when p 6= q. In particular, we want
to minimize the number of samples requested by our tests as a function of the distance between
p and q, and if p = q we want the algorithm, with high probability, to never reject the null. Our
work is motivated by and addresses the practical challenge of sequential A/B testing in Statistics.

We show that, when n = 2, any sequential hypothesis test must see Ω
(

1
dtv(p,q)2 log log 1

dtv(p,q)

)
samples, with high (constant) probability, before it rejects p = q, where dtv(p, q) is the—unknown
to the tester—total variation distance between p and q. We match the dependence of this
lower bound on dtv(p, q) by proposing a sequential tester that rejects p = q from at most
O
( √

n
dtv(p,q)2 log log 1

dtv(p,q)

)
samples with high (constant) probability. The Ω(

√
n) dependence

on the support size n is also known to be necessary. We similarly provide two-sample sequential
hypothesis testers, when sample access is given to both p and q, and discuss applications to
sequential A/B testing.
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1 Introduction

A central problem in Statistics is testing how well observations of a stochastic phenomenon
conform to a statistical hypothesis. A common scenario involves access to i.i.d. samples from
an unknown distribution p over some set Σ and a hypothesis distribution q over the same
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set. The goal is to distinguish between p = q and p 6= q. This problem, in myriads of forms,
has been studied since the very beginnings of the field. Much of the focus has been on the
asymptotic analysis of tests in terms the error exponents of their type I or type II errors.

More recently, the problem received attention from property testing, with emphasis on
the finite sample regime. A formulation of the problem that is amenable to finite sample
analysis is the following: given sample access to p and a hypothesis q as above, together with
some ε > 0, how many samples are needed to distinguish, correctly with probability at least
2/3,1 between p = q and d(p, q) > ε, for some distance of interest d? For several distances
d, we know tight answers on the number of samples required. For instance, when we take
d to be the total variation distance, dtv,2 we know that Θ(

√
n/ε2) samples are necessary

and sufficient, where n = |Σ| [7, 27, 33]. Tight answers are also known for other distances,
variants of this problem, and generalizations [15, 8, 32, 9, 29, 13, 2, 1, 10, 12, 11], but our
focus will be on distinguishing the identity of p and q under total variation distance.

While the existing literature gives tight upper and lower bounds for this problem, it still
requires a lower bound ε on the distance between p and q when they differ, aiming for that
level of distinguishing accuracy, when choosing the sample size. This has two implications:
1. Even when p and q are blatantly far from each other, the test will still request Θ(

√
n/ε2)

samples, as the distance of p and q is unknown to the test when the sample size is
determined.

2. When p 6= q, but dtv(p, q) ≤ O(ε), there are no guarantees about the output of the test,
just because the sample is not big enough to confidently decide that p 6= q.

Both issues above are intimately related to the fact that these tests predetermine the
number of samples to request, as a function of the support size n and the desired distinguishing
radius ε.

In practice, however, samples are costly to acquire. Even, when they are in abundance,
they may be difficult to process. As a result, it is a common practice in clinical trials or
online experimentation to “peek” at the data before an experiment is completed, in the hopes
that significant evidence is collected supporting or rejecting the hypothesis. Done incorrectly
this may induce statistical biases invalidating the reported significance and power bounds of
the experiment [25].

Starting with a demand for more efficient testing during World War II, there has been a
stream of work in Statistics addressing the challenges of sequential hypothesis testing; see,
e.g., [34, 35, 28, 30, 26, 24, 36, 23, 22, 6, 31, 18, 20, 3, 5] and their references. These methods
include the classical sequential probability ratio test (SPRT) [34, 35] and its generalizations [22,
6], where the alternative hypothesis is either known exactly or is parametric (i.e. p either equals
q, or p is different than q, but belongs in the same parametric class as q). An alternative to
SPRT methods are methods performing repeated significance tests (RST) [28, 26, 24, 36, 18, 5].
These methods target scalar distributions and either make parametric assumptions about p
and q (e.g. Bernoulli, Gaussian, or Exponential family assumptions), or compare moments
of p and q (usually their means). In particular these methods are closely related to the task
of choosing the best arm in bandit settings; see, e.g., [17] and its references.

In contrast to the existing literature, we want to study categorical random variables, and
do not want to make any parametric assumptions about p and q. In particular, we do not

1 As usual the probability “2/3” in the definition of the problem can be boosted to any constant 1− δ, at
a cost of an extra log 1

δ factor in the sample complexity.
2 See Section 2 for a definition.
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want to make any assumptions about the alternatives. If the null hypothesis, p = q, fails, we
do not know how it will fail. We are simply interested in determining whether p = q or p 6= q,
as soon as possible. Our goal is to devise an online policy such that, given any sequence of
samples from p, the policy decides to
(i) either continue, drawing another sample from p; or
(ii) stop and declare p 6= q.

We want that our policy:
1. has small error rate, i.e. for some user-specified constants α, β > 0,

a. If p = q, the policy will stop, with probability at most α; i.e. the type I error is α.
b. If p 6= q, the policy will stop (i.e. declare p 6= q), with probability at least 1− β; i.e.

the type II error is β.
2. draws as few samples as possible, when p 6= q, in the event that it stops (which happens

with probability at least 1− β).

In other words, we want to define a stopping rule such that, for as small a function
k = k(n, ·) as possible, the stopping time τ satisfies:
(i) Prq[τ = +∞] ≥ 1− α, and
(ii) Prp[τ < k(n, dtv(p, q))] ≥ 1− β for all p 6= q,
where n is the cardinality of the set Σ on which p and q are supported. Henceforth we will call
a stopping rule proper if it satisfies property (i) above. We want to design proper stopping
rules that satisfy (ii) for as small a function k(·, ·) as possible. That is, with probability at
least 1− β, we want to reject the hypothesis “p = q” as soon as possible. As we focus on the
dependence of our stopping times on n and dtv(p, q), we only state and prove our results
throughout this paper for α = β = 1/3. Changing α and β to different constants will only
change the constants in our bounds. Our results are the following:3
1. In Theorem 1, we show that, when n = 2, i.e. when p and q are Bernoulli, and

even when q is uniform, there is no proper stopping rule such that k(2, dtv(p, q)) <
1

16dtv(p,q)2 log log 1
dtv(p,q) .

4,5 Our lower bound is reminiscent of the lower bound on the
number of samples needed to identify the best of two arms in a bandit setting, proven
in [17]. This was shown by an application of an information theoretic lower bound of
Farrel for distinguishing whether an exponential family has positive or negative mean [14].
Farrel lower bounds the expected number of observations that are needed, while we show
that not even a constant probability of stopping below our bound can be achieved. This
is a weaker target, hence the lower bound is stronger. Finally, our goal is even weaker
as we only want to determine whether p 6= q, but not to identify the Bernoulli with the
highest mean. Our proof is combinatorial and concise.

2. In Theorem 2, we construct, for any q and n, a proper stopping rule satisfying k(n, dtv(p, q))
< c

√
n

dtv(p,q)2 log log 1
dtv(p,q) , for some constant c. By Theorem 1 the dependence of this

bound on dtv(p, q) is optimal. Moreover, it follows from standard testing lower bounds,
that the dependence on n is also optimal.6 In fact Theorem 2 achieves something stronger.
It shows that, whenever p 6= q, with probability at least 2/3, the stopping rule will actually
stop later than Ω

( √
n

χ2(p,q) log log 1
χ2(p,q)

)
and prior to O

( √
n

dtv(p,q)2 log log 1
dtv(p,q)

)
.

3 The formal statements of our theorems are given in the notation introduced in Section 1.1.
4 Note that for Bernoulli’s dtv(p, q) equals the difference of their means.
5 Throughout the paper, we assume that log means logarithm to the base e.
6 In particular, as we have already noted, it is known that Ω(

√
n/ε2) samples are necessary to distinguish

p = q from dtv(p, q) > ε, for small enough constant ε. As our task is harder than distinguishing whether
p 6= q for a fixed radius of accuracy ε, we need to pay at least this many samples.
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3. In Theorem 3, we study two-sample sequential hypothesis testing, where we are given
sample access to both distributions p and q. Similarly to the one-sample case, our goal is
to devise a stopping rule that is proper, i.e. when p = q, it does not stop with probability
at least 2/3, while also minimizing the samples it takes to determine that p 6= q. That
is, when p 6= q, it stops, with probability at least 2/3, after having seen as few samples
as possible. We show that there is a proper stopping rule which, whenever p 6= q, stops
after having seen Θ

(
n/ logn
dtv(p,q)2 log log 1

dtv(p,q)

)
samples, with probability at least 2/3. The

dependence on dtv(p, q) is optimal from Theorem 1. As our tight upper and lower bounds
on the number of samples allow us to estimate dtv(p, q) to within a constant factor, the
lower bounds of [32] for estimating the distance between distributions imply that the
dependence of our bounds on n is also optimal.

4. The dependence of our upper bounds on dtv(p, q) is reminiscent of recent work in the
bandit literature [19, 17] and sequential non-parametric testing [5], where stopping times
with iterated log complexity have appeared. These results are intimately related to the
Law of Iterated Logarithm [21, 4]. Our results are instead obtained in a self-contained and
purely combinatorial fashion. Moreover, as discussed earlier, our testing goals are different
than those in these works. While both works study scalar distributions, distinguishing
them in terms of their means, we study categorical random variables distinguishing them
in terms of their total variation distance.

1.1 Model
Let p, q be discrete distributions over Σ = [n], where [n] = {0, 1, . . . , n− 1}. We assume that
n ≥ 2. In the one-sample sequential hypothesis testing problem, distributions q and sample
access is provided to distribution p. Our goal is to distinguish between p = q and p 6= q.
Since p and q could be arbitrarily close even when they differ, our goal is to reject hypothesis
p = q as soon as possible when p 6= q, as explained below.

Let [n]∗ be the Kleene star of [n], i.e., the set of all strings of finite length consisting
of symbols in [n]. A function T : [n]∗ → {0, 1} is called a stopping rule if T (x1 · · ·xk) = 1
implies T (x1 · · ·xkxk+1 · · ·xk+`) = 1 for any integers k, ` ≥ 0 and xi ∈ [n] (i = 1, . . . , k + `).
For all sequences x ∈ {0, 1}∗, T (x) = 1 and T (x) = 0 mean respectively that the rule
rejects hypothesis p = q or it continues testing, after having seen x. For an infinite sequence
x = (x1x2 . . . ) ∈ [n]N, we define the stopping time to be the min{t | T (x1 · · ·xt) = 1}. Let
N(a | x) be the number of times symbol a ∈ [n] occurs in the sequence x ∈ [n]∗. Let τ(T, p)
be a random variable that represents the stopping time when the sequence is generated by p,
i.e, for all k:

Pr[τ(T, p) ≤ k] =
∑
x∈[n]k

(
T (x)

∏k
i=1 pxi

)
=
∑
x∈[n]k

(
T (x)

∏
i∈[n] p

N(i|x)
i

)
.

With the above notation, our goal in the one-sample sequential hypothesis testing problem is
to find, for a given distribution q, a stopping rule T such that
(a) Pr[τ(T, q) ≤ k] ≤ 1/3 for any k, and
(b) Pr[τ(T, p) ≤ k] ≥ 2/3 for k as small as possible whenever p 6= q.
We call a stopping rule proper if it satisfies the condition (a).7

We also consider the two-sample sequential hypothesis testing problem where p and q are
both unknown distributions over [n], and sample access is given to both. For simplicity,
this paper only studies stopping rules that use the same number of samples from each

7 As noted earlier there is nothing special with the constants “1/3” and “2/3” here. We could turn these
to any constants α and 1− β respectively at a cost of a constant factor in our sample complexity.
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distribution. This assumption increases the sample complexity by a factor of at most 2.
Then a stopping rule T is defined as a function from

⋃
k∈N([n]k × [n]k) to {0, 1} such that

T (x, y) = 1 implies T (xz, yw) = 1 for any strings x, y, z, w ∈ [n]∗ with |x| = |y| and |z| = |w|.
Here, |x| represents the length of x ∈ [n]∗. The stopping time for infinite sequences x, y ∈ [n]N
is given by min{t | T (x1 · · ·xt, y1 · · · yt) = 1}. Also, the stopping time τ(T, p, q) is a random
variable such that

Pr[τ(T, p, q) ≤ k] =
∑
x∈[n]k

∑
y∈[n]k

(
T (x, y)

∏
i∈[n] p

N(i|x)
i

∏
j∈[n] q

N(j|y)
j

)
.

Now, our task is to find a stopping rule T such that
(1) Pr[τ(T, p, q) ≤ k] ≤ 1/3 for any k whenever p = q, and
(2) Pr[τ(T, p, q) ≤ k] ≥ 2/3 for k as small as possible whenever p 6= q.

Before describing our results, we briefly review notations and definitions used in the
results. The total variation distance between p and q, denoted by dtv(p, q), is defined to be
dtv(p, q) = 1

2
∑
i∈[n] |pi − qi| =

1
2‖p− q‖1. The χ2-distance between p and q (which is not a

true distance) is given by χ2(p, q) =
∑
i∈[n](pi−qi)2/qi =

(∑
i∈[n] p

2
i /qi

)
−1. Note that these

two distances satisfy dtv(p, q)2 ≤ 1
4χ

2(p, q) for any distributions p, q by Cauchy–Schwartz
inequality.

1.2 Our results
We first prove that any proper stopping rule for the one-sample sequential hypothesis testing
problem, must see 1

16·dtv(p,q)2 log log 1
dtv(p,q) samples before it stops, even when n = 2, i.e.

both distributions are Bernoulli, and the known distribution q is Bernoulli(0.5).

I Theorem 1 (One-Sample Sequential Hypothesis Testing Lower Bound). Even when n = 2
and q = (1/2, 1/2), there exist no proper stopping rule T and positive real ε0 such that

Pr
[
τ(T, p) ≤ 1

16 · dtv(p, q)2 log log 1
dtv(p, q)

]
≥ 2/3 (whenever 0 < dtv(p, q) < ε0). (1)

Here, we remark that dtv(p, q) = |1/2− p0| = |1/2− p1|.

As we noted earlier, our lower bound involving the iterated logarithm appears similar to
that of Farrel [14], but it is a slightly stronger statement. More precisely, he proved that
lim supp→q

dtv(p,q)2·E[τ(T,p)]
log log 1

dtv(p,q)
≥ c for a certain positive constant c. Theorem 1 implies the

result but not vice versa. Also, our proof is elementary and purely combinatorial. It is given
in Section 3.

We next provide a black-box reduction, obtaining optimal sequential hypothesis testers
from “robust” non-sequential hypothesis testers. In particular, we use algorithms for robust
identity testing where the goal is, given some accuracy ε, to distinguish whether p and q are
O(ε)-close in some distance versus Ω(ε)-far in some (potentially) different distance [32, 1].
We propose a schedule for repeated significance tests, which perform robust identity testing
with different levels of accuracy ε, ultimately compounding to optimal sequential testers. In
the inductive step, given the current value of ε, we run the non-sequential test with accuracy
ε for Θ(log log 1/ε) times, and take the majority vote. If the majority votes ε-far, we stop the
procedure. Otherwise, we decrease ε geometrically and continue. The accuracy improvement
by the Θ(log log 1/ε)-fold repetition allows the resulting stopping rule to be proper.

Our theorems for one-sample and two-sample sequential hypothesis testing are stated below
and proven in Section 4. As noted earlier, stopping times involving the iterated logarithm
have appeared in the multi-armed bandit and sequential hypothesis testing literature. As
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explained, our testing goals are different than those in this prior work. While they study
scalar distributions, distinguishing them in terms of their means, we study categorical random
variables distinguishing them in terms of their total variation distance. Moreover, our results
do not appeal to the law of the iterated logarithm and are obtained in a purely combinatorial
fashion, using of course prior work on property testing.

I Theorem 2 (One-Sample Sequential Hypothesis Testing Upper Bound). For any known
distribution q over [n], there exists a proper stopping rule T and positive reals ε0 and c such
that

Pr
[ √

n

c · χ2(p, q) log log 1
χ2(p, q) ≤ τ(T, p) ≤ c

√
n

dtv(p, q)2 log log 1
dtv(p, q)

]
≥ 2/3 (2)

holds for any p satisfying 0 < χ2(p, q) < ε0. Note that 0 < dtv(p, q) < √ε0/2 holds when
0 < χ2(p, q) < ε0 since dtv(p, q)2 ≤ 1

4χ
2(p, q).

I Theorem 3 (Two-Sample Sequential Hypothesis Testing Upper Bound). There exists a proper
stopping rule T and positive reals ε0 and c such that

Pr
[

n/ logn
c · dtv(p, q)2 log log 1

dtv(p, q) ≤ τ(T, p, q) ≤ c · n/ logn
dtv(p, q)2 log log 1

dtv(p, q)

]
≥ 2/3 (3)

holds for any unknown distributions p, q over [n] satisfying 0 < dtv(p, q) < ε0.

Since the lower bounds on the stopping time in both (2) and (3) go to infinity as p goes
to q, the stopping rules never stop with probability at least 2/3 when p = q. Hence, the
stopping rules are proper. As noted earlier, we can improve the confidence from 2/3 to 1− δ
at the cost of a multiplicative factor log(1/δ) in the sample complexity. The dependence of
both upper bounds on dtv(p, q) is tight as per Theorem 1. The

√
n dependence in Theorem

2 is tight because it is known that testing whether dtv(p, q) = 0 or dtv(p, q) ≥ 1/2 requires
Ω(
√
n) samples [15, 8]. In addition, Theorem 3, allows us to estimate the total variation

distance between p and q because the stopping time and the total variation distance satisfy
the relation τ(T, p) = Θ

(
n/ logn
dtv(p,q)2 log log 1

dtv(p,q)

)
. This and the lower bounds for estimating

the `1 distance of distributions provided in [32], imply that the dependence of Theorem 3 on
n is also optimal.

As a simple corollary of the above results, we can also provide an efficient algorithm for
sequential A/B testing, replicating the bounds obtainable from [19, 17, 5], without appealing
to the Law of the Iterated Logarithm.

I Theorem 4. There exists an algorithm that distinguishes between the cases (a) p > q and
(b) q > p, using Θ

(
1

|p−q|2 log log 1
|p−q|

)
samples for any unknown Bernoulli distributions

with success probabilities p and q.

2 Known Results

In this section, we state known results for robust identity testing, which we use in our upper
bounds.

I Theorem 5 ([2]). For any known distribution q, there exists an algorithm with sample
complexity Θ(

√
n/ε2) which distinguishes between the cases

(a)
√
χ2(p, q) ≤ ε/2 and

(b) dtv(p, q) ≥ ε,
with probability at least 2/3.
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I Theorem 6 ([32]). Given sample access to two unknown distributions p and q, there exists
an algorithm with sample complexity Θ( n

ε2 logn ) which distinguishes between the cases
(a) dtv(p, q) ≤ ε/2 and
(b) dtv(p, q) ≥ ε,
with probability at least 2/3.

We remark that, even though the proofs of Theorems 5 and 6 may use Poisson sampling,
i.e., the sample complexities are Poisson distributed, we can assume that the numbers of
samples are deterministically chosen. This is because the Poisson distribution is sharply
concentrated around the expected value.

In our analysis of the upper and lower bounds of sample complexities, we use the following
Hoeffding’s inequality.

I Theorem 7 (Hoeffding’s inequality [16]). Let X be a binomial distribution with n trials and
probability of success p. Then, for any real ε, we have Pr [X ≤ (p− ε)n] =

∑b(p−ε)nc
i=0

(
n
i

)
pi(1−

p)n−i ≤ exp(−2ε2n).

3 Lower bound

In this section, we prove Theorem 1, i.e., our lower bound on the sample complexity for the
binary alphabet case n = 2. We abuse notation using p, q to denote the probabilities that
our distributions output 1. In particular, 1− p and 1− q are the probabilities they output 0.

We first observe that, for any stopping rule T , the stopping times τ(T, p) and τ(T, q) take
similar values when p, q are close.

I Lemma 8. Let p < 1/2, q = 1/2, 1 > α > 0 and s, t be positive integers such that s > t.
If Pr [t ≤ τ(T, p) ≤ s] ≥ α, then we have

Pr [t ≤ τ(T, q) ≤ s] ≥ (α− α2) · (1/e)4( 1
2−p)2·s+4( 1

2−p)
√
s log(1/α)

.

Proof. Let A = {x ∈ {0, 1}s | T (x1 . . . xt−1) = 0 and T (x1 . . . xs) = 1}. Then the stopping
probability for p can be written as

Pr [t ≤ τ(T, p) ≤ s] =
∑
x∈A

pN(1|x)(1− p)N(0|x).

Recall that N(a | x) is the number of times a symbol a ∈ {0, 1} occurs in a string x ∈ {0, 1}∗.
Note that |x| = N(1 | x) +N(0 | x). Let A1 = {x ∈ A | N(1 | x) < p · s−

√
s log(1/α)} and

A2 = {x ∈ A | N(1 | x) ≥ p · s−
√
s log(1/α)}. By using Hoeffding’s inequality, we have∑

x∈A1

pN(1|x)(1− p)N(0|x) ≤
∑

x∈{0,1}s: N(1|x)<p·s−
√
s log(1/α)

pN(1|x)(1− p)N(0|x)

≤
bp·s−

√
s log(1/α)c∑
k=0

(
s

k

)
pk(1− p)s−k ≤ exp

−2
(√

s log(1/α)
s

)2

· s

 = α2.

Hence, it holds that∑
x∈A2

pN(1|x)(1− p)N(0|x) =
∑

x∈A\A1

pN(1|x)(1− p)N(0|x) ≥ α− α2. (4)
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In what follows, we bound the value Pr [t ≤ τ(T, q) ≤ s]. Since A2 ⊆ A and s = N(1 |
x) +N(0 | x), we have

Pr [t ≤ τ(T, q) ≤ s] =
∑
x∈A

1
2s ≥

∑
x∈A2

1
2s =

∑
x∈A2

1
4N(1|x) ·

1
2N(0|x)−N(1|x) .

Since p(1− p) = −(p− 1/2)2 + 1/4 ≤ 1/4, it holds that

∑
x∈A2

1
4N(1|x) ·

1
2N(0|x)−N(1|x) ≥

∑
x∈A2

pN(1|x)(1− p)N(1|x) ·
(

1
2

)N(0|x)−N(1|x)

=
∑
x∈A2

pN(1|x)(1− p)N(0|x) ·
(

1/2
1− p

)N(0|x)−N(1|x)
. (5)

Note that, for x ∈ A2, we haveN(0 | x)−N(1 | x) = s−2N(1 | x) ≤ s−2(p·s−
√
s log(1/α)) =

2(1/2− p)s+ 2
√
s log(1/α) since s = N(1 | x) +N(0 | x) and N(1 | x) ≥ p · s−

√
s log(1/α).

Also, we have 1/2
1−p = 1

1+(1−2p) < 1 since p < 1/2. Thus, we get

(
1/2

1− p

)N(0|x)−N(1|x)
≥
(

1
1 + (1− 2p)

)2(1/2−p)s+2
√
s log(1/α)

. (6)

Applying (6) and (4) to (5) yields

∑
x∈A2

pN(1|x)(1− p)N(0|x) ·
(

1/2
1− p

)N(0|x)−N(1|x)

≥
∑
x∈A2

pN(1|x)(1− p)N(0|x) ·
(

1
1 + (1− 2p)

)2(1/2−p)s+2
√
s log(1/α)

≥ (α− α2) ·
(

1
1 + (1− 2p)

)2(1/2−p)s+2
√
s log(1/α)

.

Here, 1 + (1− 2p) ≤ e1−2p holds since 1 + x ≤ ex for any x. Therefore, we conclude that

Pr [t ≤ τ(T, q) ≤ s] ≥ (α− α2) · (1/e)4(1/2−p)2s+4(1/2−p)
√
s log(1/α)

,

which is our claim. J

Next, we see that the stopping time τ(T, p) is not so small when T is proper.

I Lemma 9. Suppose that 1/4 < p < 1/2, q = 1/2, and T is a proper stopping rule. Then
we have Pr

[
τ(T, p) ≤ 1

10000·|p−1/2|2

]
≤ 1/2.

Proof. Let s =
⌊

1
10000·|p−1/2|2

⌋
and B = {x ∈ {0, 1}s | T (x) = 1}. By the assumption that

the rule is proper, we have Pr
[
τ(T, q) ≤ 1

10000·|p−1/2|2

]
= Pr [τ(T, q) ≤ s] = |B|/2s ≤ 1/3.

Let B1 = {x ∈ {0, 1}s | T (x) = 1, |N(1 | x) − ps| > 2
√
s} and B2 = {x ∈ {0, 1}s | T (x) =

1, |N(1 | x) − ps| ≤ 2
√
s}. Then we have Pr [τ(T, p) ≤ s] =

∑
x∈B p

N(1|x)(1 − p)N(0|x) =∑
x∈B1

pN(1|x)(1−p)N(0|x) +
∑
x∈B2

pN(1|x)(1−p)N(0|x). We bound the two terms separately.
By using Hoeffding’s inequality, we have

∑
x∈B1

pN(1|x)(1− p)N(0|x) ≤ 2 exp
(
−2
(

2
√
s

s

)2

· s

)
= 2
e8 < 0.1.
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Also, we have∑
x∈B2

pN(1|x)(1− p)N(0|x) ≤
∑
x∈B2

pps−2
√
s(1− p)(1−p)s+2

√
s

≤
∑
x∈B

(p(1− p))ps · (1− p)(1−2p)s ·
(

1− p
p

)2
√
s

≤ 2s

3 ·
(

1
4

)ps
· (1− p)(1−2p)s ·

(
1 + 1− 2p

p

)2
√
s

= 1
3 · (1 + (1− 2p))(1−2p)s ·

(
1 + 1− 2p

p

)2
√
s

≤ 1
3 · exp

(
(1− 2p)2s+ 8 · (1− 2p)

√
s
)

(7)

≤ 1
3 · exp

(
4

10000 + 16
100

)
= e0.1604

3 < 0.4.

Here, (7) holds since 1 + x ≤ ex for any x ≥ 0 and 1/4 < p < 1/2.
Therefore, we obtain

Pr
[
τ(T, p) ≤ 1

10000 · |p− 1/2|2

]
< 0.1 + 0.4 = 1

2 . J

Now we are ready to prove Theorem 1. Recall that q = 1/2.

Proof of Theorem 1. To obtain a contradiction, suppose that a proper stopping rule T

satisfies Condition (1) for some ε0, i.e., Pr
[
τ(T, p) ≤

log log 1
|p−1/2|

16|p−1/2|2

]
≥ 2

3 holds for any p such

that 0 < |p − 1/2| < ε0. By Lemma 9, we have Pr
[
τ(T, p) > 1

10000·|p−1/2|2

]
≥ 1

2 holds for
any p such that 1/4 < p < 1/2. Hence, we have

Pr
[

1
10000 · |p− 1/2|2 < τ(T, p) ≤

log log 1
|p−1/2|

16|p− 1/2|2

]
≥ 2

3 + 1
2 − 1 = 1

6

for any p such that 1/2−min{ε0, 1/4} < p < 1/2.
Let p(k) = 1/2−1/Mk2 where k is a natural number andM is a real number that satisfies

M > max{ee32
, 1/ε0}. Since 0 < 1/2 − p(k) < 1/M < min{ε0, 1/ee

32} ≤ min{ε0, 1/4} for
any k ≥ 1, we have

Pr
[
M2k2

10000 < τ(T, p(k)) ≤ M2k2

16 log logMk2

]
≥ 1

6 .

Let Uk be the interval
(
M2k2

10000 ,
M2k2

16 log logMk2
]
. Then Ui ∩ Uj = ∅ holds, for any distinct

natural numbers i, j, because we have

M2(k+1)2

10000 = M2k2+4k+2

10000 = M2

10000 ·M
2k2
·M4k >

M2k2

16 log logMk2
.

Here, we use the facts that M2/10000 > 1/16 and M4k > log logMk2 . The former fact holds
by M > ee

32
> 25 =

√
10000/16. The later fact holds since M4k = M3k ·Mk > 2Mk >

M +Mk > log logM + log k2 = log logMk2 by M > ee
32
> 2.
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In what follows, we produce a contradiction by evaluating the probability

P (`) = Pr
[
τ(T, q) ≤ M2`2

16 log logM `2

]

for a sufficiently large integer `. As the intervals Ui are disjoint, we have

P (`) ≥ Pr
[
τ(T, q) ∈

⋃̀
k=1

Uk

]
=
∑̀
k=1

Pr [τ(T, q) ∈ Uk] .

Applying Lemma 8 with p = 1/2 − 1/Mk2 , s = M2k2

16 log logMk2 , t = M2k2

10000 , and α = 1/6,
we have

Pr [τ(T, q) ∈ Uk] ≥ 5
36 ·

(
1
e

)4· 1
M2k2 ·M

2k2

16 log logMk2
+4· 1

Mk2

√
M2k2

16 (log logMk2 ) log 6

≥ 5
36 ·

(
1
e

) 1
4 log logMk2

+
√

2 log logMk2

.

Since 1
4 log log x ≥

√
2 log log x holds for log log x ≥ 32 (i.e., x ≥ ee32), we have

1
4 log logMk2

+
√

2 log logMk2 ≤ 1
2 log logMk2

.

Hence, we obtain

P (`) ≥
`∑

k=1

5
36 ·

(1
e

) 1
4 log logMk2

+
√

log logMk2

≥
`∑

k=1

5
36 ·

(1
e

) 1
2 log logMk2

=
`∑

k=1

5
36 ·

(
1

logMk2

)1/2

= 5
36
√

logM

`∑
k=1

1
k
≥ 5

36
√

logM

∫ `+1

1

dx

x
= 5 log(`+ 1)

36
√

logM
.

By choosing ` = bMc, we get P (bMc) ≥ 5 logM
36
√

logM
= 5

36
√

logM > 5
36

√
log ee32 > 1, which

is a contradiction. J

4 Upper bounds

In this section, we give stopping rules for testing identity with small sample complexity.

4.1 The case when q is explicit but p is unknown
In this subsection, we first provide a framework to obtain stopping rules from algorithms for
robust identity testing and then prove Theorem 2.

We state a lemma to improve the success probability of a test by repeatedly running the
test and taking a majority vote.

I Lemma 10. Suppose that we have an algorithm for a decision problem with success
probability at least 2/3. Then, by running the algorithm d18 log(3k)e times and taking the
majority, the success probability increases to at least 1− 1

9k2 .
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Algorithm 1: Stopping rule T q induced by T q,ε

input : x1 · · ·xt ∈ [n]∗, distributions q over [n] output: 0 or 1
1 Let s0 = 0;
2 for k = 1, 2, . . . do
3 Let εk = 1/2k and sk = sk−1 + f(q, εk) · d18 log(3k)e;
4 if sk > t then return 0;
5 else if T q,εk (xsk−1+1 · · ·xsk

) = 1 then return 1;

Suppose that we have an algorithm, for a given q, with sample complexity f(q, ε) that
distinguishes between the cases
(a) d1(p, q) ≥ ε and
(b) d2(p, q) ≤ ε/2,
with probability at least 2/3, where d1 and d2 are distance measures that depend on the
application. Then, by Lemma 10, we can obtain a stopping rule T q,ε such that

Pr
[
τ(T q,ε, p) ≤ f(q, ε) · d18 log(3k)e

]
≥ 1− 1

9k2 if d1(p, q) ≥ ε, and

Pr
[
τ(T q,ε, p) ≤ f(q, ε) · d18 log(3k)e

]
≤ 1

9k2 if d2(p, q) ≤ ε/2.

We then formulate a stopping rule T q for identity testing as follows. The tester guesses ε
and then tests identity of p, q by using T q,ε. If T q,ε does not stop with f(q, ε) · d18 log(3k)e
samples, it reduces ε to half and continue the procedure recursively. The stopping rule T q is
summarized as Algorithm 1.

We show that T q is the desired stopping rule.

I Lemma 11. If p 6= q, the stopping time τ(T q, p) for T q in Algorithm 1 satisfies Pr[sa ≤
τ(T q, p) ≤ sb] ≥ 2/3, where a = blog2

1
2d2(p,q)c, b = dlog2

1
d1(p,q)e, and s` =

∑`
k=1 f(q, εk) ·

d18 log(3k)e.

Proof. Since d1(p, q) ≥ 1/2b = εb by b = dlog2
1

d1(p,q)e, the stopping time is larger than sb
with probability at most

Pr [τ(T q, p) > sb] = Pr [τ(T q, p) ≥ sb] · Pr [τ(T q, p) 6= sb | τ(T q, p) ≥ sb]
= Pr [τ(T q, p) ≥ sb] · (1− Pr [τ(T q, p) = sb | τ(T q, p) ≥ sb])
≤ 1− Pr [τ(T q, p) = sb | τ(T q, p) ≥ sb]

= 1− Pr
[
τ(T q,εb , p) ≤ f(q, εb) · d18 log(3b)e

]
≤ 1

9 ·
1
b2 ≤

1
9 .

On the other hand, since d2(p, q) ≤ 1
2 ·

1
2a ≤ εk/2 for any 1 ≤ k ≤ a by a = blog2

1
2d2(p,q)c,

the stopping time is smaller than sa with probability at most

Pr [τ(T q, p) < sa] =
a−1∑
k=1

Pr [τ(T q, p) = sk] ≤
a−1∑
k=1

Pr [τ(T q, p) = sk | τ(T q, p) ≥ sk]

=
a−1∑
k=1

Pr
[
τ(T q,εk , p) ≤ f(q, εk) · d18 log(3k)e

]
≤
a−1∑
k=1

1
9 ·

1
k2 <

∞∑
k=1

1
9 ·

1
k2 = 1

9 ·
π2

6 <
2
9 .
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Hence, the stopping time of T q satisfies

Pr[sa ≤ τ(T q, p) ≤ sb] = 1− Pr[τ(T q, p) > sb]− Pr[τ(T q, p) < sa] ≥ 1− 1
9 −

2
9 = 2

3 ,

which completes the proof. J

Next, we prove Theorem 2. To provide stopping rules, we use robust identity testing
algorithm in Theorem 5. When T q is the stopping rule induced by the algorithm in Theorem
5, we have d1(p, q) = dtv(p, q), d2(p, q) =

√
χ2(p, q), and f(q, ε) = b cq

√
n

ε2 c for a constant cq,
which depends only on q. Note that maxq cq = O(1). Then, we have

s` =
∑̀
k=1

⌊
cq
√
n · d18 log(3k)e

ε2k

⌋
=
∑̀
k=1

⌊
cq
√
n · 4k · d18 log(3k)e

⌋
= Θ(

√
n · 4` log `).

Here, the last equality holds since

4` log(3`) <
∑̀
k=1

4k log(3k) <
∑̀
k=1

4k log(3`) = 4
3(4` − 1) log(3`) < 4

3 · 4
` log(3`).

By setting a =
⌊

log2
1

2
√
χ2(p,q)

⌋
and b =

⌈
log2

1
dtv(p,q)

⌉
, we have

sa = Θ
( √

n

χ2(p, q) log log 1
χ2(p, q)

)
and sb = Θ

( √
n

dtv(p, q)2 log log 1
dtv(p, q)

)
,

and hence, we obtain Theorem 2.

4.2 The case when p and q are both unknown
We next consider the case when p and q are both unknown. We build a similar framework
for the case and then provide a stopping rule for Theorem 3.

Suppose that we have an algorithm with sample complexity g(ε) that distinguishes
between the cases
(a) d1(p, q) ≥ ε and
(b) d2(p, q) ≤ ε/2,
with probability at least 2/3. Then, by Lemma 10, we can obtain a stopping rule T ε such
that

Pr
[
τ(T q,ε, p) ≤ g(ε) · d18 log(3k)e

]
≥ 1− 1

9k2 if d1(p, q) ≥ ε, and

Pr
[
τ(T q,ε, p) ≤ g(ε) · d18 log(3k)e

]
≤ 1

9k2 if d2(p, q) ≤ ε/2.

Our framework is almost the same as Algorithm 1. The stopping rule T induced by T ε is
shown as Algorithm 2.

Then we can prove the following lemma in the same way as the proof of Lemma 11.

I Lemma 12. If p 6= q, the stopping time τ(T, p, q) for T in Algorithm 2 satisfies

Pr[sa ≤ τ(T, p, q) ≤ sb] ≥ 2/3

where a =
⌊
log2

1
2d2(p,q)

⌋
, b =

⌈
log2

1
d1(p,q)

⌉
, and s` =

∑`
k=1 f(q, εk) · d18 log(3k)e.
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Algorithm 2: Stopping rule T induced by T ε

input : x1 · · ·xt ∈ [n]∗ and y1 · · · yt ∈ [n]∗ output: 0 or 1
1 Let s0 = 0;
2 for k = 1, 2, . . . do
3 Let εk = 1/2k and sk = sk−1 + g(εk) · d18 log(3k)e;
4 if sk > t then return 0;
5 else if T εk (xsk−1+1 · · ·xsk

, ysk−1+1 · · · ysk
) = 1 then return 1;

When T q is the stopping rule induced by the algorithm in Theorem 6, we have d1(p, q) =
d2(p, q) = dtv(p, q) and g(ε) = b cn

ε2 lognc for a constant c. Then, we have

s` =
∑̀
k=1

⌊
cn · d18 log(3b)e

ε2k logn

⌋
=
∑̀
k=1

⌊
cn · 4k · d18 log(3b)e

logn

⌋
= Θ

(
n · 4` log l

logn

)
.

By setting a =
⌊
log2

1
2dtv(p,q)

⌋
and b =

⌈
log2

1
dtv(p,q)

⌉
, we have

sa = Θ
(
n/ logn
dtv(p, q)2 log log 1

dtv(p, q)

)
and sb = Θ

(
n/ logn
dtv(p, q)2 log log 1

dtv(p, q)

)
.

Hence, we obtain Theorem 3.
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Abstract
We introduce and study the online house numbering problem, where houses are added arbitrarily
along a road and must be assigned labels to maintain their ordering along the road. The online
house numbering problem is related to classic online list labeling problems, except that the
optimization goal here is to minimize the maximum number of times that any house is relabeled.
We provide several algorithms that achieve interesting tradeoffs between upper bounds on the
number of maximum relabels per element and the number of bits used by labels.
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1 Introduction

In this paper we study a new version of the fundamental online monotonic list labeling
problem [14, 6, 23] (OMLL), where the goal is to maintain labels for a dynamic ordered list
of at most n elements that, due to monotonicity requirements of appropriate applications,
must have (integer) labels that strictly increase in the direction of the ordering. When a
new element is inserted into the list, either between two existing elements or at an endpoint
of the list, we must assign a label to the new element that is consistent with the order of
the list. To avoid labels becoming too long, algorithms for list-labeling problems relabel
elements from time to time thereby maintaining the ordering using relatively few bits for
the labels. There are several common variants of OMLL that differ in the number of bits
allowed for each label. For example, the special case of logn+O(1) bits1 is known as the
file-maintenance problem [27, 26, 6, 7], where labels are viewed as corresponding to addresses
in a size O(n) array.

∗ This research was supported in part by NSF grants CCF-1617727, 1228639, CCF-1526631, CCF-1514383
and CCF-16375, and by the Canada Research Chair for Algorithm Design. This article is also supported
in part by DARPA under agreement no. AFRL FA8750-15-2-0092. The views expressed are those
of the authors and do not reflect the official policy or position of the Department of Defense or the
U.S. Government.

1 Unless another base is indicated, all logarithms in this paper are base 2.

© William E. Devanny, Jeremy T. Fineman, Michael T. Goodrich, and Tsvi Kopelowitz;
licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 33; pp. 33:1–33:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.33
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


33:2 The Online House Numbering Problem: Min-Max Online List Labeling

Solutions for OMLL are used as foundational building blocks in several areas of computer
science, ranging from cache-oblivious data structures [4, 5, 10] to distributed computing [17],
and they play a central role in deamortization [14, 9, 16]. As an illustration of the data
structure’s central role in the field, it is used as a black box in order-maintenance data
structures [14, 23], which themselves are used as black boxes throughout computer science
(for examples see [2, 15, 13, 20, 1, 18, 24]).

The focus of previous work solving the OMLL problem in the RAM model has been on
minimizing the worst-case or amortized number of relabels per update. For example, when
using O(logn) bits per label the worst-case number of relabels per update is known to be
O(logn) [23], which is tight [11]. A particular element, however, can be relabeled as many as
Ω(n) times during a sequence of n insertions using existing algorithms. This paper considers
the goal of minimizing the maximum number of times an element in the list is relabeled,
while using only a small number of bits per label. We refer to this version of OMLL as
the online house numbering problem, since it captures the challenges that take place when
maintaining a strictly increasing numbering for a collection of houses representing their order
along a road. When a new house is built between any two existing houses (or at either end of
the row of houses), this new house needs to be assigned a house number. If no such integer
house number is available, however, then other houses need to be renumbered (or relabeled)
to make room for a number for the new house. Formally stated, the online house numbering
problem is to maintain a labelling of an initially empty ordered list subject to n operations of
the form, insert(x, a): insert x immediately after a in the ordered list. Remarkably, existing
solutions for list labeling problems do not seem to lead to efficient solutions for the online
house numbering problem.

The online house numbering problem raises some interesting combinatorial questions
while also addressing label-update complexity, which is motivated from use of solid-state
memories, like flash memory, that have an upper bound on the number of erasures that can
occur for any memory cell [8, 25, 28]. For example, consider a database with an ordered set
of large records, where each record maintains a label respecting the order. Due to the use
of these modern types of memory, the number of times that the label is changed must be
minimized, since each relabeling entails rewriting that area in memory. A typical assumption
in models for solid-state memories is that the algorithm or data structures also have access
to a sublinear amount of additional scratch space for computational purposes (see Ben-Aroya
and Toledo [3]), which is exempt from the erasure limits. In the context of our online house
numbering, this would mean that each element in the data structure has a fixed record
containing, e.g., the label and any other auxiliary information that is updated whenever a
label changes (for our solution, we also store a counter as part of the record). Any additional
components of the data structure must be restricted to the o(n) scratch space.

There are two competing objectives that we consider in designing solutions for the online
house numbering problem. The first objective is to minimize, over all elements in the list,
the maximum number of times that the label of the element changes throughout the n
insertions. Notice that with large labels, a trivial solution in which no relabels are needed
is obtainable by assigning x the average of a and b, where b is the element succeeding x.
This trivial solution requires Ω(n) bits per label, and so if each word of memory contains
Θ(logn) bits (which is a standard assumption), each label requires Ω(n/ logn) words. A large
number of words directly impacts the efficiency of establishing the order of two elements,
since comparing their labels entails scanning that many words. Thus, the second objective is
to minimize the number of bits used in labels.

Since we are interested in minimizing two competing objectives, we express the complexities
of our data structures using a pair of functions. A data structure supporting n insertions
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with g(n) maximum relabels and using h(n) bits per label is said to have complexity of
〈g(n), h(n)〉. Notice that h(n) ≥ dlogne since n elements must be labeled. If one is interested
in h(n) = O(logn) (constant number of words per label), then the OMLL lower bounds of [11]
imply that g(n) = Ω(logn). Thus, if there existed a solution for online house numbering
with complexity 〈O(logn), O(logn)〉, it would be asymptotically optimal.

1.1 Our Results
In this paper we describe two data structures that are close to the target bound of
〈O(logn), O(logn)〉, but each solution introduces an extra logarithmic factor in one of
the functions. In a third solution, we investigate the dependence on the leading constant of
h(n) and provide a solution with complexity 〈O(nε), logn+O(1/ε)〉. Our solutions, which
can be adapted to work with o(n) scratch space (deferred to the full version of the paper),
establish the following results.

I Theorem 1. There exists a house numbering data structure with complexity 〈O(log2 n),
O(logn)〉.

I Theorem 2. There exists a house numbering data structure with complexity 〈O(logn),
O(log2 n)〉.

I Theorem 3. For any positive constant ε, there exists a house numbering data structure
with complexity 〈O(nε), logn+O(1/ε)〉.

Proofs of Theorems 1 and 3 appear in Section 3. Theorem 2 is deferred to the full
version of the paper. Our solution complexities exhibit an interesting feature: the online
house numbering problem seems to exhibit a different tradeoff from OMLL, depending more
strongly on the label lengths.

Overview of Challenges and Techniques. The main idea of our approach is that once a
particular element has been relabeled many times, structural restrictions assure that this
element will not be relabeled much in the future. To achieve this goal, we employ a tree-like
structure similar to an (a, b)-tree (or B-tree) that stores at most O(γ) elements in nodes of
the tree, where γ ≥ 2 is a parameter controlling the tradeoff between the two objectives. (For
the purpose of this overview it is helpful to assume γ = 2.) Roughly speaking, the inorder
traversal of this tree corresponds to the order of elements in the list. The elements in a node
each have a local label, which is local to that node. The global label assigned to an element
corresponds to the concatenation of the local labels on the path from the root to the element
(with 0s padded at the end if the element is in an inner node). We require the local labels of
elements to respect the order of elements in each node, thereby guaranteing that the global
labels respect the total order of the list. To simplify things when extending to nonconstant
γ, we employ (classic) file-maintenance data structures within each node for maintaining the
local labels. Notice that changing the local label of an element also changes the global labels,
which must be stored explicitly, of all elements in that element’s subtree.

Our main strategy is to employ node splits to “promote” elements that have been relabeled
too many times to higher levels in the tree. Promoting an element e that is currently in node
u entails: splitting the elements of u around e into two new nodes, moving e into u’s parent,
and making the two new nodes children of u’s parent. The intuition behind the promotions
is that elements in higher nodes are less affected by insertions, and hence these elements
need not be relabeled as often. Element promotions happen due to three possible reasons:
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(1) if the element has been relabeled too many times since its last promotion,
(2) if the node has too many elements, which would cause the performance of the file-

maintenance black box to degrade, or
(3) if the node becomes sufficiently imbalanced, according to a non-obvious weight-balance

rule.

The key component of the analysis is ensuring that the height H of the data structure is
well bounded, i.e., that elements are never promoted too far. The height H not only places
an upper bound on the length of the labels, but in conjunction with the first trigger for
element promotion also directly implies a bound on the number of times each element can
be relabeled. We emphasize that the analysis bounding H leverages a potential argument
in an atypical and non-obvious way, which we view as a surprising component of our data
structure.

1.2 Related Prior Work
There is no prior work for the online house numbering problem, but it is closely related
to the classic file maintenance and online list labeling problems for which several authors
have shown how to achieve optimal polylogarithmic update times, in either worst-case or
amortized senses (e.g., see [6, 14, 22, 23, 11, 7]).

Regarding algorithms in computational models that capture the challenges of solid-state
memory, Ben-Aroya and Toledo [3] provide competitive analyses for several such algorithms,
but they do not study OMLL problems as a specific topic of interest. See also the work of
Irani et al. [21]. Subsequent work on efficiently implementing specific data structures and
algorithms in such models includes methods for database algorithms [12] and hash tables [19].

2 Preliminaries

In our house numbering data structures, we make use of instances of file maintenance data
structures. The following lemma highlights the features that our algorithms leverage. Here,
a file-maintenance data structure corresponds to an array, where placing an element in the
ith slot in the array corresponds to assigning a label of i to the element.

I Lemma 4. For any capacity η, there exists a file maintenance data structure with the
following properties:

The data structure assigns to each element a slot in the range [1, 4η]. Slots are such that
a is before b if and only if in the total order a’s slot is before b’s slot.
If the data structure has at most η elements then it can be split into two data structures
with each element being moved at most once.
Starting from an empty data structure, or a data structure that is the output of a split, as
long as the number of elements in the structure does not exceed η, the amortized number
of elements that are moved to a new slot per insertion is O(log2 η).

Proof. A data structure by Itai et al. satisfies these conditions [22]. More detail is given in
the full version of the paper. J

Using the notation of the statement of Lemma 4, a file maintenance data structure f is
characterized by a capacity (i.e., η), a slot range (i.e., [1, 4η]), and an amortized moving
cost cost(η) (i.e., O(log2 η)), which are all static. The capacity specifies how many elements
can be inserted while still maintaining the cost(η) bound. In addition, we define the usage
of f , denoted usage(f), to be the number of elements currently inside f .
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3 A Generic House Numbering Data Structure

We describe our data structure in terms of several variables, namely κ1, κ2, κ3, π1, and π2.
These will allow us to balance various overheads in the data structure and shall be fixed
in the analysis. Additionally, our house numbering data structure is parameterized by a
value γ ≥ 2, which controls a tradeoff between the label lengths and the number of relabels
performed. Setting γ to a constant attains the 〈O(log2 n), O(logn)〉 data structure. When
considering a data structure for flash memory, the data structure itself, in addition to the
actual list, should reside in scratch space. We ignore this issue in the current section but
address it in the full version of the paper.

The tree. Our house-numbering structure is a perfect rooted (4κ1γ + 1)-ary tree T . Each
internal node u in the tree maintains an instance fu of a κ1γ-capacity file-maintenance data
structure (à la Lemma 4) and the leaves of the tree are associated with space for a single
element. The leaves store the actual elements e in the tree, but leaves may be empty. Each
element e also maintains a relabel counter c(e).

The internal nodes store (conceptual) copies of elements, which we call representatives,
that have been promoted to a higher level in the tree. We refer to all the copies of a particular
element e as the representatives e. Representatives are analogous to duplicate keys in
internal nodes of a B+ tree, with each non-empty node containing exactly one representative
that has been promoted to the parent node.

Each file-maintenance data structure fu assigns slots in the range [1, 4κ1γ] to the repre-
sentatives in node u. Equivalently, the file-maintenance structure specifies how to store the
representatives in a size-κ1γ array, starting from slot 1. We use the 0th slot in the array for a
special dummy representative d−u , which corresponds to the only representative in node
u that has also been promoted to the parent. (As such, d−u is a representative of the leftmost
left element in u’s subtree.) Note that since the slot storing the dummy representative is
not part of the file-maintenance structure fu, the dummy representative never moves from
slot 0. The i-th slot in fu corresponds to the i-th child of u in an inorder tree walk. For
representative r in fu let s(r) denote the slot in fu that is assigned to r.

Without yet worrying about precisely how elements are labelled, we state a property
about how they must appear in T . Naturally, the order property constrains the way we label
elements.

I 1 (Order Property). An inorder traversal of T encounters the elements in their house
numbering order.

We use Tu to denote the subtree rooted at node u. Let v be the parent of u in T . Since
u is represented as a slot s in the slot range of fv, we will abuse notation and sometimes
denote Tu by Ts. A subtree is empty if it contains no elements.

The labels. The label for an element e, denoted `T (e), is based on the root-to-leaf path
down to the leaf node containing e. In particular, labels are base-(4κ1γ + 1) numbers with a
number of digits equal to the height of the tree. Consider the path u1, u2, . . . , uHT+1 down
to the leaf containing e, where u1 is the root, uHT+1 is the leaf containing e, and HT is
the height of T . For 1 ≤ i ≤ HT let si denote the slot of ui+1 in fui . Then e’s label is the
concatenation of digits s1, s2, . . . , sHT . An example of determining the labels of elements is
depicted in Figure 1. The label of each element uses dlog(4κ1γ + 1)e bits per level of T for a
total of HT dlog(4κ1γ + 1)e bits.

Notice that by construction and the Order Property, the labels of elements respect the
order of the elements in the house numbering.
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d−

0 1 2 3 4 `T ( ) = 0 · 51 + 1 · 50 = 1

`T ( ) = 2 · 51 + 2 · 50 = 12

`T ( ) = 2 · 51 + 0 · 50 = 10`T ( ) = 1 · 51 + 0 · 50 = 5

`T ( ) = 4 · 51 + 1 · 50 = 21`T ( ) = 4 · 51 + 0 · 50 = 20

−∞

−∞

Figure 1 This tree illustrates how elements are labelled based on their representative’s node’s
file maintenance labels and the node labels of their parents. Empty leaf nodes are omitted and we
note that the root node is violating the Capacity Property.

Relabeling and subtrees. To maintain the Order Property, whenever a representative r is
moved from slot s to slot s′ in fu, all of the elements and file-maintenance representatives in
Ts are moved to the same exact location, but in Ts′ . The following property will guarantee
that this movement does not violate the Order Property.

I 2 (Representative Property). The representatives for an element e induce a path from
the parent of the leaf containing e to the highest representative. Each representative of e
except for the highest one is the dummy representative of its corresponding node.

Following the Representative Property, we abuse notation and refer to the highest repre-
sentative of an element e as the canonical representative of e, and denote this representative
by r(e).

3.1 Insertions
We now discuss the implementation of the insert(x, a) operation. Let u be the parent of the
leaf node containing a, and assume for now that usage(fu) < κ1γ. A new representative r
of x is inserted into fu immediately after the representative representing a in fu (possibly
causing elements in fu to change slots). Because this insertion is into a file maintenance data
structure, this insertion may cause some movement of other elements. Element x is placed
into the leaf node corresponding to the slot assigned to r in fu.

The insertion respects the Order Property, so x receives a valid label. The insertion
causes some number of other representatives in fu to be relabelled and also increases the
usage of fu. Eventually fu will reach capacity. The capacity of the file maintenance instances
needs to be respected and so when fu reaches capacity we move around representatives in
T to create room (thereby guaranteeing again that fu is below capacity before the next
insertion). This is captured by the following property.

I 3 (Capacity Property). For any internal node u in T , usage(fu) < κ1γ.

In order to maintain the Capacity Property, the data structure employs promoting
canonical representatives to higher nodes in T . The promotion procedure is detailed in
Section 3.2.

Relabel counters. The relabel counter of an element is incremented whenever the label of
the element is changed. To prevent any one element from being relabelled too many times,
we enforce a bound on the relabel counter. Recall that the cost(η) function is defined in
Section 2.
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Algorithm 1 Insert x into the house numbering data structure immediately after element a.
1: function insert(x, a)
2: u← parent of a’s leaf
3: insert a representative of x into fu
4: move any relabeled elements to their new leaves
5: place x into the corresponding leaf of u
6: repeatedly fix property violations using promote()
7: end function

Promoting the full node’s median element

Figure 2 The blue median representative of the full file maintenance data structure is promoted
dividing the subtree into two parts.

I 4. Counter Property: For any element e, c(e) < κ2 cost(κ1γ).

In order to enforce the Counter Property, whenever the counter of element e reaches its
threshold, r(e) is moved one level higher in the tree by a promotion operation, which we
describe shortly, and sets c(e) = 0.

Notice that moving a representative to a new slot higher up in T will tend to relabel
more elements compared to moving a representative to a new slot in a lower node in T .
This presents a subtle challenge. Consider two representatives in fu where u is relatively
high up in T , such that one representative r has every file maintenance instance in Ts(r)
half full while the other representative r′ has every file maintenance instance in Ts(r′) just
below capacity. This implies that the number of elements contained in the two subtrees
differ exponentially in the height of the subtrees. The consequence of this imbalance is that
insertions of elements into the lighter subtree Ts(r) can cause frequent promotions into fu,
each time causing r′ to move to a new slot in fu. When r′ moves to a new slot, all of the
elements in Ts(r′) must be relabeled. This imbalance creates some difficulties in keeping a
tab on the complexities of the data structure. To overcome these difficulties, we enforce
a requirement on the data structure to have the following property, which helps ensure a
promotion does not relabel too many elements that are too high in the tree by restricting the
weight of any subtree. For a representative r in fu where u has height h in T , let w(r) = γh.

I 5. Balance Property: For any node u,
∑

node v∈Tu
∑

canonical representative r∈fv w(r) <
κ3γ

height(u).
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Promote to the top node

Figure 3 The black representative’s subtree passed the threshold of the Balance Property and the
weighted median representative, shown in green, is promoted. The subtrees of representatives less
and greater than the median are copied and possibly shifted if they need a new root representative.
Empty subtrees are omitted.

Algorithm 2 Promote an element x into a node u
1: function promote(x, u)
2: v ← node containing the canonical representative for x
3: remove x from fv
4: a← predecessor of x in fu
5: insert a new canonical representative of x after a in fu
6: move the entire subtree of any relabeled elements
7: split the subtree below a’s canonical representative into:
8: - T1 a subtree of elements < x and >= a

9: - T2 a subtree of elements >= x

10: place T1 below a’s canonical representative
11: place T2 below x’s canonical representative
12: end function

3.2 Promotions
For element e, the promotion of r = r(e) from fu to fv, where v is a proper ancestor of u,
is performed as follows. Let r̂ be the representative in the slot in fv that contains e in its
subtree:
1. Insert r′, which is a new representative of e, into fv immediately after r̂ in the order fv

is maintaining (this may cause some elements in fu to change their slots).
2. Any element in Ts(r̂) that is after e (inclusive) and its representatives in Ts(r̂) are moved

into identical locations in the subtree of Ts(r′).
3. The previous step partitions some file maintenance instances into two pieces. Each

such instance respaces the representatives it contains according to the split operation of
Lemma 4. Notice that if the dummy representative is part of one piece, the data structure
adds a new dummy representative in the other piece. This new dummy representative is
a representative of e.

Examples of promotions are shown in Figures 2 and 3.
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I Lemma 5. Promotions preserve the Order and Representative Properties.

Proof. Before the promotion, the Order Property held and so an inorder traversal encountered
the elements with label less than `T (e), then e, and then the elements with label greater
than `T (e). After the promotion, the inorder traversal will traverse Ts(r̂) which contains the
elements less than e and then Ts(r′) which contains e followed by the elements greater than
e. The two new subtrees preserved the original inorder traversal of their contained elements.
So the inorder traversal before and after the promotion traverses the elements in T in the
exact same order and the Order Property holds. The last step of a promotion ensures that
the representatives of e still behave properly with respect to the Representative Property.
Since we split along the path of elements less than and greater than e, no other path of
representatives was altered and the Representative Property still holds. J

The only operations we perform on T are insertions of elements at leaves and promotions.
Both of these preserve the Order and Representative Properties. Violations of the Capacity,
Balance, and Counter Properties are fixed by promoting certain representatives. When a
node u with parent v violates the Capacity Property, promote the median representative in
fu (which must be a canonical representative) into fv. When the subtree of s(r) becomes
too heavy and violates the Balance Property, promote the weighted median canonical
representative in the subtree of s(r) into the node that contains r. When c(e) passes the
threshold of the Counter Property, promote the canonical representative of e into the parent
of its current node, and reset c(e) to be zero. Figure 3 shows a promotion due to a violation
of the Balance Property and Figure 2 shows a promotion due to a violation of the Capacity
Property.

Promoting a representative may introduce new property violations. For example, suppose
fu for some internal node u contains κ1γ representatives and its parent v has exactly κ1γ− 1
representatives. Promoting the median representative from fu to fv will cause the fv to
violate the Capacity Property.

The very rough pseudocode in Algorithms 1 and 2 describes the high level steps for
insertions and promotions. We describe exactly how violations are processed next.

Property violations. Since several properties may be violated at the same time, we employ
the following prioritization for fixing these violations. We process the property violations
by alternating between processing all violations of the Capacity and Balance Properties
in a highest first fashion and then processing a single violation of the Counter Property.
Algorithm 3 shows this procedure in pseudocode.

It is not yet clear that this processing terminates. We address this in Section 4. Whenever
the initial insertion or a promotion causes an element to be relabeled, we increment the
corresponding relabel counter.

During the processing of violations, a given relabel counter may be increased well past
the bound in the Counter Property. But our potential argument only allows us to charge for
relabelings that occur when the counter is at or below the threshold. To keep from relabeling
the corresponding element each time an above-threshold counter is pushed even higher during
a single (recursive) house numbering insertion, we perform the invariant violation processing
on a logical copy of the data structure and only relabel elements with the final label. While
a relabel counter may be incremented many times, any element is only relabelled at most
once per insert operation.
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Algorithm 3 Process the violations in the tree
1: function process_violations
2: while there is a violated property do
3: while there is a violation of the capacity or balance properties do
4: process the highest capacity or balance violation
5: (capacity violations have priority)
6: end while
7: if there is a violation of the counter property then
8: process one violation of the counter property
9: end if

10: end while
11: end function

4 Bounding the Height and Complexities

LetH(n) denote an upper bound on the maximum possible height of a canonical representative
in our house-numbering data structure after n elements are inserted. (We shall bound H(n)
as a function of γ in Lemma 9.) Then we can directly bound the length of labels at
H(n) · dlog(4κ1γ + 1)e bits. In particular, if κ1 and γ are constants, we will prove that
H(n) = O(logn) and hence the labels use O(logn) bits. Moreover, since we guarantee the
Counter Property, each element e can be relabeled at most κ2 cost(κ1γ) times before r(e)
is moved up a level. So the maximum number of times that an element is relabeled is
O(κ2H(n)) = O(κ2 logn), assuming κ1γ is a constant and H(n) = O(logn).

The intuition behind our height analysis is as follows. Each insertion causes cost(κ1γ)
representatives to be relabeled. Thus we need roughly κ2 insertions to trigger enough relabels
that a single representative could be promoted by the Counter Property. In other words, at
most a 1/κ2 fraction of representatives are promoted due to insertions of elements and the
Counter Property. This argument extends up the tree; promotions into height-h nodes can
cause at most a 1/κ2 fraction of representatives to be promoted from height h. If this were
the only effect, we would see (1/κ2)h representatives promoted to height h.

This challenge turns out to be even more complex, since each promotion into a height-h
node u also causes the elements in subtrees of any locally relabeled representatives in u

to be completely relabeled. The Balance Property helps us to bound the total weight of
representatives in these subtrees by κ3γ

h. By increasing κ2 enough, we effectively amortize
the high number of relabelings due to moving a subtree against the geometrically decreasing
number of promotions to that height, i.e., about κ3γ

h/κh2 per insertion. Since there are some
“feedback” effects that arise from the interaction of fixing property violations, the analysis
must proceed with care.

Before we turn to bounding the height, we prove a useful lemma.

I Lemma 6. If all of the properties hold before an insertion, the processing of the resulting
violations will never promote a representative into a node that:

violates the Capacity Property or
contains a representative whose subtree violates the Balance Property.

Proof. Call a promotion into such a node an invalid promotion. We claim that in addition to
never performing an invalid promotion, the violation processing maintains the property that
violations of the Capacity and Balance Properties each occur at most once in each level of T .
We call this the Once Per Level Property. When a representative is inserted or promoted
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into u: the usage of u is increased, the weight of every subtree of every representative on the
path to the root is increased, and the relabel counters of any relabeled elements are increased.
So an insertion or promotion will only introduce violations of the Capacity Property at u
and violations of the Balance Property along the path from u to the root (and some other
violations of the Counter Property). For example in Figures 2 and 3, each promotion can
only create Counter Property violations lower in the subtree while it may introduce Capacity
and Balance Property violations at the root. Hence the initial insertion or promotion from
processing a Counter Property violation in a tree with no violations of the Capacity or
Balance Properties is valid and will maintain the Once Per Level Property.

When the Once Per Level Property holds, there is some highest violation of each type.
There is a highest node violating the Capacity Property and a highest node containing a
representative violating the Balance Property. Let u be the higher of these two nodes. If
both nodes have equal height, then let u be the highest node violating the Capacity Property.
We consider the cases when u violates the Capacity Property or when u does not violate the
Capacity Property and violates the Balance Property.

In the first case, fu violates the Capacity Property by containing κ1γ representatives.
Because the parent of u is not violating either of the two properties, promoting the median of
fu is valid. That promotion may introduce violations at the parent of u or higher, but they
will only be in levels of the tree where there were previously no violations. The violations
that were either at u or below will be unaffected by the promotion (except for the one being
processed). Therefore the Once Per Level Property still holds after the violation is processed.

In the second case, fu does not violate the Capacity Property but it does have one
representative violating the Balance Property. Because no other representative in fu violates
the Balance Property due to the Once Per Level Property, processing the violation is valid.
By promoting the weighted median descendant into u, only fu can be newly in violation of
the Capacity Property and only representatives in ancestors of u can be newly in violation
of the Balance Property. Both of these types of new violations are introduced at levels that
did not contain a violation of that type before. The splitting of the subtree below into two
pieces can only eliminate violations in the levels below u. So after validly processing this
violation, the Once Per Level Property holds.

In either case, processing a violation does not make an invalid promotion and maintains
the Once Per Level Property. Thus, the invariant processing never promotes a representative
into a node violating the Capacity Property or containing a representative whose subtree
violates the Balance Property. J

Potential argument. To formalize the intuition outlined in the beginning of this section,
we analyze our data structure using the following three potential functions, each of which
corresponds to one of our properties:

Φfmds = π1
∑

internal nodes u max
(
2γheight(u) · usage(fu)− κ1γ

height(u)+1, 0
)

Φcounters =
∑
e w(r(e))c(e)

Φtree = π2
∑
u max

(
2
∑

node v∈T(u)
∑

canonical representative r∈fv w(r)− κ3γ
height(u), 0

)
The total potential, Φ(T ), is the sum of these three potential functions, that is Φ =

Φfmds+ Φcounters+ Φtree. Each potential function corresponds to one of our three properties
and guarantees that when a property is violated we have sufficient potential to “pay” for the
promotion.

The next few lemmas show how the potential functions work with the properties. The
change in Φ due to a processing a violation can be separated into the two phases of a
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promotion. First, there is the decrease in potential when the promoted element’s relabel
counter is reset and the node containing the canonical representative of the element is split.
Second, there is the increase in potential due to the insertion of the canonical representative of
the element into a higher up node which results in relabeling many other elements, increasing
that node’s usage, and increasing the weight of every subtree containing the higher up node.
Lemma 7 gives an upper bound on the increase in potential due to either an insertion or the
second part of a promotion. Lemma 8 gives a lower bound on the decrease in potential due
to the first part of a promotion. In conjunction these two Lemmas show that as long as the
maximum height H(n) is small, the lower bound on the decrease in potential is greater than
the upper bound on the increase in potential. So a promotion results in a net decrease in
potential and only insertions of new elements at the leaves increase the potential. Finally
Lemma 9 contrasts the amount of potential gained from these insertions with the amount of
potential needed to promote one representative to a height of logγ n. Because the former is
strictly smaller, the height of the tree must be H(n) < logγ n.

I Lemma 7. During a promotion, the insertion of a representative into a file maintenance
data structure at height h increases Φ(T ) by at most (2π1 + κ3 cost(κ1γ) + 2π2 height(T ))γh.
Moreover, the insertion of an element increases Φ(T ) by at most 2π1 + κ3 cost(κ1γ) +
2π2 height(T ).

Proof. Placing a canonical representative into a node u at height h causes the potential
functions to change as follows:

∆(Φfmds) ≤ 2π1γ
h, because fu had its size increased by 1

∆(Φcounters) ≤ κ3γ
h cost(κ1γ), because cost(κ1γ) representatives in fu are relabeled,

each causing subtrees with total weight at most κ3γ
h to be relabeled.

∆(Φtree) ≤ 2π2 height(T )γh, because each representative on the path to the root has the
potential of its subtree increased by at most γh

The bound on ∆(Φcounters) is in an amortized sense and is due to Lemma 6. This is
because by Lemma 6 we never promote a representative into a node that is violating the
Capacity Property, so there are at most cost(κ1γ) relabels, or into a node violating the
Balance Property, so incrementing the relabel counters of each subtree costs at most κ3γ

h

potential.
In total these sum up to (2π1 + κ3 cost(κ1γ) + 2π2 height(T ))γh which upper bounds the

increase in all three potential functions. J

I Lemma 8. If height(T ) ≤ H(n), there exist settings of πi’s and κi’s such that promoting
a representative to fix a violation does not increase the total potential and κ2 = O(γH(n)).

Proof. Depending on which violation caused the promotion, we must analyze the de-
crease in potential differently to account for the potential increase from Lemma 7 of
(2π1 + κ3 cost(κ1γ) + 2π2H(n)) γh where h is again the height of the node the promoted
element is moved into.

If a Capacity Property violation was processed, then Φfmds decreased by at least π1κ1γ
h.

If a Counter Property violation was processed, then Φcounters decreased by at least
γh−1κ2 cost(κ1γ) due to the potential from c(e).
If a Balance Property violation was processed, then Φtree decreased by more than π2κ3γ

h

because of the subtree containing r.
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To ensure the potential available is always at least the potential cost π1κ1, κ2 cost(κ1γ)
γ ,

and π2κ3 must all be greater than 2π1 + κ3 cost(κ1γ) + 2π2H(n). Analyzing the system of
inequalities leads to setting κ1 = 3, κ2 = 72γH(n), κ3 = 12H(n), π1 = 24 cost(3γ)H(n), and
π2 = 6 cost(3γ).

Plugging these values back into the original formula, the potential increases by at most

(2(24 cost(3γ)H(n)) + (12H(n)) cost(3γ) + 2(6 cost(3γ))H(n))γh = 72 cost(3γ)H(n)γh.

On the other hand, the potential decrease is at least
(24 cost(3γ)H(n))(3)γh in the case of a Capacity Property violation,
γh−1(72γH(n)) cost(3γ) in the case of a Counter Property violation, or
(6 cost(3γ))(12H(n))γh in the case of a Balance Property violation.

In all three cases, the lower bound of the decrease in potential is equal to 72 cost(3γ)γhH(n)
and therefore it is at least the increase in potential due to a promotion. J

I Lemma 9. For the same setting of πi’s and κi’s as Lemma 8, and γ ≤ n, after n insertions
there are no promotions to height above logγ n.

Proof. Initially the tree is empty and has height zero. By Lemma 8, setting logγ n = H(n),
until height(T ) exceeds H(n) promoting a representative does not increase the potential.
Thus, while the height bound holds the only mechanism for increasing the potential is by
inserting a new element. By Lemma 7, the increase in potential from inserting an element is
at most 72 cost(3γ) logγ n and so after n insertions, the potential of the entire data structure
is at most 72 cost(3γ)n logn.

To complete the proof, we observe that a representative can only be promoted to height h if
the total potential in the data structure is at least 72 cost(3γ)γh logγ n. Specifically, the proof
of Lemma 8 shows that the potential has to decrease by at least this amount when performing
the promotion, so the potential has to exist before the promotion. In order to reach a height
of at least logγ n+ 1, we would need at least 72 cost(3γ)γlogγ n+1 logγ n > 72 cost(3γ)n logn
potential. Thus, a height logγ n structure cannot have enough potential. J

I Theorem 10. There exists a house numbering data structure with complexity 〈O(γ log2 n),
logγ n · dlog(12γ + 1)e〉.

Proof. By Lemma 9, after n insertions there are no promotions into nodes at height higher
than logγ n, so a tree of this height suffices. Thus, each label uses logγ n “digits”, where
each digit uses dlog(12γ + 1)e bits, for a total of logγ n · dlog(12γ + 1)e bits per label. For
the relabel bound, by the Counter Property, each canonical representative is promoted at
most κ2 cost(3γ) = O(γH(n)) cost(3γ) = O(γ logγ n · log2 γ) times. Summing on all possible
levels and applying Lemma 4, each element is only relabeled O(γ log2 n) times. J

Theorem 1 is a special case of Theorem 10 obtained by setting γ = 2.

4.1 Achieving 〈O(nε), logn+ O(1/ε)〉
Proof of Theorem 3. Setting γ = nε in Theorem 10, the number of bits used is 1/εdlog(12nε+
1)e = logn+O(1/ε). The maximum relabel bound becomes O(nε log2(nε)) = O(nε log2 n).
That is when γ = nε, it is an 〈O(nε log2 n), logn+O(1/ε)〉 house numbering data structure.
This bound is improved to 〈O(nε), logn + O(1/ε)〉 by using the same solution with some
constant ε′ < ε. J

ESA 2017



33:14 The Online House Numbering Problem: Min-Max Online List Labeling

5 Conclusion

The house numbering problem is an interesting variant of the very well studied file maintenance
and online list labelling problems. It poses some unique challenges that previous techniques
do not solve. Our two data structures are able to come near optimal for the problem, but an
〈O(logn), O(logn)〉 house numbering data structure remains as an open problem.
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Abstract
We study the problem of clustering sequences of unlabeled point sets taken from a common metric
space. Such scenarios arise naturally in applications where a system or process is observed in
distinct time intervals, such as biological surveys and contagious disease surveillance. In this more
general setting existing algorithms for classical (i.e. static) clustering problems are not applicable
anymore.

We propose a set of optimization problems which we collectively refer to as temporal clus-
tering. The quality of a solution to a temporal clustering instance can be quantified using three
parameters: the number of clusters k, the spatial clustering cost r, and the maximum cluster dis-
placement δ between consecutive time steps. We consider spatial clustering costs which generalize
the well-studied k-center, discrete k-median, and discrete k-means objectives of classical cluster-
ing problems. We develop new algorithms that achieve trade-offs between the three objectives k,
r, and δ. Our upper bounds are complemented by inapproximability results.
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1 Introduction

Clustering points in a metric space is a fundamental problem that can be used to express
a plethora of tasks in machine learning, statistics, and engineering, and has been studied
extensively both in theory and in practice [4, 8, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31]. Typically,
the input consists of a set P of points in some metric space and the goal is to compute
a partition of P minimizing a certain objective, such as the number of clusters given a
constraint on their diameters.

We study the problem of clustering sequences of unlabeled point sets taken from a
common metric space. Our goal is to cluster the points in each ‘snapshot’ so that the cluster
assignments remain coherent across successive snapshots (across time). We formulate the

∗ This work was partially supported by the NSF grants CCF 1318595, CCF 1423230, DMS 1547357, and
NSF award CAREER 1453472.

† A full version of the paper is available at http://arxiv.org/abs/1704.05964.

© Tamal K. Dey, Alfred Rossi, and Anastasios Sidiropoulos;
licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 34; pp. 34:1–34:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.34
http://arxiv.org/abs/1704.05964
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


34:2 Temporal Clustering

problem in terms of tracking the centers of the clusters that may merge and split over time
while satisfying certain constraints. Such instances are common in the study of time-evolving
processes and phenomena under discrete observation. As an example consider a hypothetical
study which aims to track the spread of a certain genetic mutation in plants. Here, data
collection efforts center on annual field surveys in which a technician collects and catalogs
samples. The location and number of mutation positive specimens change from year to
year. Clustering such spaces is clearly a generalization of classical (static) clustering, which
we refer to as temporal clustering. In this dynamic variant of the problem, apart from the
number of clusters and their radii, we also wish to minimize the extent by which each cluster
moves between consecutive snapshots.

Related work. Clustering of moving point sets has been studied in the context of kinetic
clustering [2, 6, 17, 18, 16, 14, 1]. In that setting points have identities (labels) which are
fixed throughout their motion, the trajectories of the points are known beforehand, and the
goal is to design a data structure which can efficiently compute a near-optimal clustering for
any given time step. In our setting, since the points are not labeled there is, a priori, no
explicit motion. Instead we are given a sequence of unlabeled points in a metric space and
are required to assign the points of each to a limited number of temporally coherent clusters.
Motion emerges as a consequence of cluster assignment. Consequently, kinetic clustering
algorithms cannot be used in our setting. Another related problem concerns clustering time
series under the Fréchet distance [11], with the clusters being constrained to move along
polygonal trajectories of bounded complexity. This constraint is used to avoid overfitting, and
is conceptually similar to our requirement that the clusters remain close between snapshots.

1.1 Problem formulations
Let us now formally define the algorithmic problems that we study in this paper. Perhaps
surprisingly, very little is known for temporal clustering problems. There are of course
different optimization problems that one could define; here we propose what we believe are
the most natural ones.

We first define how the input to a temporal clustering problem is described. LetM = (X, d)
be a metric space. Let P (1), . . . , P (t) be a sequence of t finite, non-empty metric subspaces
(points) of M . We refer to individual elements of this sequence (the ‘snapshots’) as levels,
and collectively to P as a temporal-sampling of M of length t. The size of P is the total
number of points over all levels, that is

∑
i∈[t] |P (i)|. Let {τ(i)}ti=1 be a sequence of points

such that τ(i) ∈ P (i) is a single point. We say that τ is a trajectory of P , and we let T (P )
denote the set of all possible trajectories of P . For some C ⊆ T (P ), we denote by C(i) the
set of points of the trajectories in C which lie in P (i). In other words, C(i) =

⋃
τ∈C τ(i). The

set of trajectories C induces a clustering on each level P (i) by assigning each p ∈ P (i) to the
trajectory τ ∈ C that minimizes d(p, τ(i)). We refer to the points of C(i) as the centers of
level i. Intuitively, this formulation allows points in different levels of P which are assigned
to the same trajectory to be part of the same cluster; see Figure 1. Further, observe that
trajectories may overlap allowing clusters to merge and split implicitly; see Figure 3a. We
refer to C as a temporal-clustering of P .

We now formalize the clustering objectives. Our approach is to treat temporal clustering
as a multi-objective optimization problem where we try to find a collection of trajectories
such that their induced clustering ensures three conditions:
(i) points in the same cluster remain near between successive levels (locality),
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(a) P

δ(C)

rad∞(C)

(b) A temporal 3-clustering

δ(C)

rad∞(C)

(c) A temporal 2-clustering

Figure 1 (1a) A temporal-sampling P of length 4 where P (i) ⊂ R is drawn horizontally. Each
level of P is depicted as a row starting from P (1) at the top. (1b) The temporal-sampling P shown
with a clustering C, consisting of 3 clusters. The centers of each of 3 trajectories are depicted as
filled circles in each level. Arrows are drawn between τj(i) and τj(i + 1) for each trajectory τj ,
j ∈ {1, 2, 3}. In the first level, a pair of points which achieve the spatial cost are joined to their
respective cluster centers by a dashed edge. The arrow between the pair of centers which achieves
maximum displacement is shown in bold. (1c) The temporal-sampling P shown with 2 clusters.

(ii) the restriction of the clustering to any single level fits the shape of the data (spatial
constraint), and

(iii) we do not return excessively many clusters (complexity).
To measure how far some trajectory τ jumps, we define its displacement, denoted by
δ(τ), to be δ(τ) = maxi∈[t−1] d(τ(i), τ(i + 1)). We also define the displacement of C to be
δ(C) = maxτ∈C δ(τ). Finally, we consider three different objectives for the spatial cost, which
correspond to generalization of the k-center, k-median, and k-means respectively. The first
one, corresponding to k-center, is the maximum over all levels of the maximum cluster radius;
formally rad∞(C) = maxi∈[t] maxp∈P (i) d(p, C(i)), where d(p, C(i)) = minτ∈C d(p, τ(i)). The
second and third spatial cost objectives, which corresponding to discrete k-median, and
discrete k-means (respectively), are defined to be rad1(C) = maxi∈[t]

∑
p∈P (i) d(p, C(i)), and

rad2(C) = maxi∈[t]
∑
p∈P (i) d(p, C(i))2.

I Definition 1. Let r ∈ R≥0, δ ∈ R≥0. We say that a set of trajectories C ⊆ T (P ) is a
temporal (k,r,δ)-clustering of P if rad∞(C) ≤ r, δ(C) ≤ δ, and |C| ≤ k. (See Figure 1 for an
example.) We further define temporal (k, r, δ)-median-clustering and (k, r, δ)-means-clustering
analogously by replacing rad∞ by rad1 and rad2 respectively.

We now formally define the optimization problems that we study. In the case of static
clustering, a natural objective is to minimize the maximum cluster radius, subject to the
constraint that only k clusters are used; this is the classical k-Center problem [23]. Another
natural objective in the static case is to minimize the number of clusters subject to the
constraint that the radius of each cluster is at most r, for some given r > 0; this is the
r-Dominating Set problem [22]. Our definition of temporal clustering includes the temporal
analogues of k-Center and r-Dominating Set as special cases.

I Definition 2 (Temporal (k,r,δ)-Clustering problem). An instance of the Temporal
(k,r,δ)-Clustering problem is a tuple (M,P, k, r, δ), where M is a metric space, P is a
temporal-sampling of M , k ∈ N, r ∈ R≥0, and δ ∈ R≥0. The goal is to decide whether P
admits a temporal (k,r,δ)-clustering.

I Definition 3 (Temporal (k,r,δ)-Clustering approximation). Given an instance of the
Temporal (k,r,δ)-Clustering problem consisting of a tuple (M,P, k, r, δ), a (α,β,γ)-
approximation is an algorithm which either returns a temporal (αk,βr,γδ)-clustering of P , or
correctly decides that no temporal (k,r,δ)-clustering exists. In general α, β, and γ can be
functions of the input.
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We analogously define the Temporal (k,r,δ)-Median Clustering problem and ap-
proximation, and the Temporal (k,r,δ)-Means Clustering problem and approximation
by replacing in Definitions 2 and 3 (·, ·, ·)-clustering by (·, ·, ·)-median-clustering and (·, ·, ·)-
means-clustering respectively.

1.2 Our contribution
To the best of our knowledge, this is the first study of the above models of temporal clustering.
Our main contributions consist of polynomial-time approximation algorithms for several
temporal clustering variants, and hardness of approximation results for others.

Temporal clustering. We begin by discussing our results on Temporal (k,r,δ)-Cluster-
ing. We first consider the problem of minimizing r and δ while keeping k fixed. This is a
generalization of the static k-Center problem. We present a polynomial-time (1, 2, 1 + 2ε)-
approximation algorithm where ε = r/δ using a different method. More specifically, our result
is obtained via a reduction to a network flow problem. We show that the problem is NP-hard
to approximate to within polynomial factors even if we increase the radius by a polynomial
factor. Formally, we show that it is NP-hard to obtain a (1, poly(n), poly(n))-approximation.

Next we consider the problem of minimizing the number of clusters k, while fixing r
and δ. This is a generalization of the static r-Dominating Set problem. We obtain a
polynomial-time (lnn, 1, 1)-approximation algorithm. For the static case, the polynomial-
time (lnn)-approximation algorithm follows by a reduction to the Set-Cover problem, and
is known to be best-possible [10, 30, 12]. However, in the temporal case, this reduction
produces an instance of Set-Cover of exponential size. Thus, it does not directly imply
a polynomial-time algorithm for Temporal r-Dominating Set. We bypass this obstacle
by showing how to run the greedy algorithm for Set-Cover on this exponentially large
instance in polynomial-time, without explicitly computing the Set-Cover instance. We also
argue that (lnn, 1, 1)-approximation is best possible by observing that ((1− ε) lnn, 2− ε′, ·)-
approximation is NP-hard for any ε, ε′ > 0.

We further present a result that can be thought of as a trade-off between the above
two settings by allowing both the number of clusters and the radius to increase. More
precisely, we obtain a polynomial-time (2, 2, 1 + ε)-approximation algorithm where ε = r/δ.
Interestingly, we can show that obtaining a (1.005, 2− ε, poly(n))-approximation is NP-hard.

The following summarizes the above approximation algorithms.

I Theorem 4. Temporal (k,r,δ)-Clustering admits the following algorithms:
1. (1,2,1 + 2ε)-approximation where ε = r/δ,
2. (ln(n),1,1)-approximation,
3. (2,2,1 + ε)-approximation where ε = r/δ,
where n is the size of the temporal-sampling. Moreover, the running time of all of these
algorithms is O(n3).

We prove Theorems 1, 2, 3 in Sections 2.1, 2.2, 2.3, respectively.
It is important that the approximation in displacements for Theorem 1 and Theorem 3

takes into account the factor ε = r/δ if a polynomial time algorithm is aimed for. This
is because our inapproximability results as summarized below show that the problem is
NP-hard otherwise.

I Theorem 5. The status of Temporal (k,r,δ)-Clustering with temporal-samplings of
size n is as follows:
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1. There exist universal constants c > 0, c′ > 0 such that (1,cns(1−ε),c′n(1−s)(1−ε))-
approximation is NP-hard for any ε, s ∈ R where ε > 0 and s ∈ [0, 1].

2. ((1− ε) ln(n),2− ε′,·)-approximation is NP-hard for any fixed ε > 0, ε′ > 0.
3. There exists a universal constant c such that (1.00579,2− ε′,cn1−ε)-approximation is

NP-hard for any fixed ε > 0, ε′ > 0.
Moreover, items 1 and 3 remain NP-hard even for temporal-samplings in 2-dimensional

Euclidean space.

Due to space constraints, we defer extended discussion of Theorem 1, Theorem 2, and
Theorem 3 to the full version of the paper [9].

Temporal median clustering. We next discuss our result on the Temporal (k,r,δ)-
Median Clustering problem. The static k-Median problem admits an O(1)-approx-
imation via local search [5, 28]. In Section 2.4 we show that the local search approach fails
in the temporal case, even on temporal samplings of length two. We present an algorithm
that achieves a trade-off between the number of clusters and the spatial cost. The result
is obtained via a greedy algorithm, which is similar to the one used for the k-Set Cover
problem. The result is summarized in the following theorem.

I Theorem 6. For any fixed ε > 0, there exists an (O(log(n∆/ε)), 1 + ε, 1)-median-
approximation algorithm with running time poly(n, log(∆/ε)), on an instance of size n and a
metric space of spread ∆.

The result is obtained by iteratively selecting a trajectory which minimizes a certain
potential function. The proof uses submodularity and monotonicity of the potential function.
These properties remain true if the potential function is modified by replacing d(p, C(i)) with
d(p, C(i))2, and thus an identical theorem holds for Temporal k-Means.

We complement the above algorithm by showing the following hardness result.

I Theorem 7. The status of Temporal (k,r,δ)-Median Clustering with temporal-
samplings of size n is as follows:
1. There exist universal constants cr, cδ such that (1,crns(1−ε),cδn(1−s)(1−ε))-approximation

for Temporal k-Median is NP-hard for any ε, s ∈ R where ε > 0 and s ∈ [0, 1].
2. Let c, s be the constants from Theorem 4.6 (3) in [7]. Let 0 ≤ f < c − s. Then

( 3−(s+f)
3−c , 1+crf, cδn1−ε)-approximation is NP-hard for any fixed ε > 0 and some constants

cr, cδ.
Moreover, item 1 remains hard even for temporal-samplings from 2-dimensional Euclidean
space.

The clustering instances used in the proofs of Theorem 1 and Theorem 2 involve clusterings
which use only a constant number of points per cluster, thus the same constructions suffice
to prove hardness of Temporal (k,r,δ)-Means Clustering with only slight modification
of the distances. See the discussion in the full version [9].

Additional notation and preliminaries. Let r > 0. An r-net in some metric space (X, d) is
some maximal Y ⊆ X, such that for any x, y ∈ Y , with x 6= y, we have d(x, y) > r. Let P be
a temporal-sampling of length t in some metric space (X, d). Let V (P, i) =

⋃
x∈P (i){(i, x)}

for all i ∈ [t]. For any trajectory τ , and for any r ≥ 0, the tube around τ of radius r, denoted
by tube(τ, r), is defined to be tube(τ, r) =

⋃
i∈[t]{(i, x) ∈ V (P, i) | x ∈ ball(τ(i), r)}, where

for x ∈ X, r ∈ R≥0, we use the notation ball(x, r) to denote a closed ball of radius r. Let
δ ∈ R≥0. The directed graph Gδ(P ) has as vertices V (P, i) for all i ∈ [t]. For any i ∈ [t− 1]
there is an edge between p ∈ V (P, i) and q ∈ V (P, i+ 1) whenever d(p, q) ≤ δ (see Figure 2).
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Figure 2 The graph Gδ(P ) for P from the previous diagram and some δ. Points which are within
a distance of δ in adjacent levels are connected by a directed edge which points toward the higher
indexed level.

2 Algorithms

2.1 Exact number of clusters: (1,2,1 + 2ε)-approximation
In this section, we consider the problem of computing a temporal clustering by relaxing
the radius and the displacement, while keeping the number of clusters exact. This is
a temporal analogue of the k-Center problem. We first present a polynomial time
(1,2,1 + 2ε)-approximation where ε = r/δ. In the full version [9], we complement this with
an inapproximability result.

An auxiliary network flow problem. The high-level idea of the polynomial time algorithm
is to use a reduction to a specific network flow problem. Specifically, we seek a minimum flow
which satisfies lower bound constraints along certain edges. This is the so-called minimum
flow, or minimum feasible flow problem [3, 15]. We now formally define this flow network.
For each i ∈ [t], let C(i) ⊆ P (i). Let γ > 0. We construct a flow network, denoted by
Nγ(P,C) where C is the sequence of centers C(i) for i ∈ [t]. We start with the graph Gγ(P ).
In level i, we replace each vertex v = (i, c) for c ∈ C(i) by a pair of vertices tail(v) and
head(v), and we connect them by an edge (tail(v), head(v)). For vertices v = (i, p) where
p ∈ P (i) \ C(i) we define tail(v) = head(v) = v. Now for any vertex v, all incoming edges to
v become incoming edges to tail(v), and all outgoing edges from v become outgoing edges
from head(v). We add a source vertex s and a sink vertex s′. For all p ∈ P (1), we add an
edge from s to tail((1, p)). Similarly, for all p ∈ P (t), we add an edges from head((t, p)) to s′.
We set the capacity of each edge to be ∞. Finally, we set a lower bound of 1 to the capacity
of every edge (tail(v), head(v)), for all v = (i, c), c ∈ C(i), i ∈ [t] (see Figure 3b).

Algorithm. We first compute a net at every level of the temporal-sampling and then we
reduce the problem of computing a temporal clustering to a flow instance, using the network
flow defined above. By computing an integral flow and decomposing it into paths, we obtain
a collection of trajectories. The lower bound constraints ensure that all net points are
covered; this allows us to show that all points are covered by the tubular neighborhoods of
the trajectories. Formally, the algorithm consists of the following steps:
Step 1: Computing nets. For each i ∈ [t], compute a 2r-net C(i) of P (i). If for some i ∈ [t],
|C(i)| > k, then return nil.

Step 2: Constructing a flow instance. We construct the minimum flow instance
N2r+δ(P,C).

Step 3: Computing a collection of trajectories. If the flow instance N2r+δ(P,C) is not
feasible, then return nil. Otherwise, find a minimum integral flow F in N2r+δ(P,C),
satisfying all the lower bound constraints. Decompose F into a collection of paths, each
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(a) The graph Gγ(P ). (b) The flow network Nγ(P,C).

Figure 3 (3a) The graph Gγ(P ) for P (i) ⊂ R and some γ > 0. The vertices in C(i), i ∈ [4], are
indicated with filled circles. (3b) The flow network Nγ(P,C) corresponding to Gγ(P ). Every node
from C has been split into an edge.

carrying a unit of flow. The restriction of each path in G is a trajectory. Output the set
of all these trajectories.

Throughout the rest of this section let P be a temporal-sampling. We now show that
if there exists a temporal (k,r,δ)-clustering, then the above algorithm outputs a temporal
(k, 2r, (1 + 2ε)δ)-clustering where ε = r/δ.

I Lemma 8. Suppose that P admits a temporal (k,r,δ)-clustering, Q. For each i ∈ [t]
let Q(i) denote the level i centers of Q, and let C(i) be a 2r-net of P (i). Then the map
πi : C(i)→ Q(i) which sends each 2r-net center to a nearest center in Q(i) is injective.

Proof. First, observe that for each c ∈ C(i), d(c, πi(c)) ≤ r because r-balls centered at the
points in Q(i) cover P (i) and hence C(i). For injectivity of πi, observe that, πi(c) 6= πi(c′)
for c 6= c′ because otherwise the inequality d(c, c′) ≤ d(c, πi(c)) + d(c′, πi(c′)) ≤ 2r holds
violating the property that C(i) is a 2r-net. J

Since for each i ∈ [t], the map πi is injective, it follows that |C(i)| ≤ |Q(i)| ≤ k. So, we
have the following immediate Corollary.

I Corollary 9. If P admits a temporal (k,r,δ)-clustering then for any i ∈ [t], any 2r-net C(i)
of P (i) has |C(i)| ≤ k.

I Lemma 10. If P admits a temporal (k,r,δ)-clustering then for any level-wise 2r-net C,
the flow instance N2r+δ(P,C) admits a feasible flow of value k.

Proof. Fix a temporal (k,r,δ)-clustering Q and let τ denote one of its k trajectories. The
graph G2r+δ(P ) contains a path corresponding to τ as the distance between any pair of
consecutive points in P is at most δ. For each i, let πi : C(i)→ Q(i) denote a map which
sends each 2r-center of C(i) to a nearest center in Q(i). We modify τ to produce some path
τ ′ in G2r+δ(P ) as follows: for every level i such that τ(i) = πi(ci) for some net-point ci ∈ C(i)
we let τ ′(i) = ci, otherwise we set τ ′(i) = τ(i). We observe that in the worst case the distance
between consecutive points, say u = τ ′(i) and v = τ ′(i+ 1), is at most 2r + δ because of the
following inequality (see Figure 4) d(u, v) ≤ d(u, τ(i)) + d(τ(i), τ(i+ 1)) + d(τ(i+ 1), v) ≤
r + δ + r. It follows that τ ′ is indeed a path in G2r+δ(P ). Further, by the injectivity of each
map πi (Lemma 8) which is used in deforming τ to τ ′, we have that for every net point,
there exists some τ ′ that contains it. In other words, all net points C(i) are covered by the
paths τ ′. For each optimal trajectory τ , let τ ′′ be the path in N2r+δ(P,C) obtained from τ ′
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≤ δ

≤ 2r + δ

P (i)

P (i+ 1)

Figure 4 The crosses, filled circles, and empty circles are optimal centers, net points, and other
points respectively. The paths (τ) in optimal solution and the deformed paths(τ ′) are indicated with
solid and dotted edges respectively.

by connecting s to the first vertex in τ ′, and the last vertex in τ ′ to t. By routing a unit of
flow in N2r+δ(P,C) along each such τ ′′ we obtain a flow of value at most k that meets all
the demands along the edges corresponding to net points C, concluding the proof. J

I Lemma 11. Given k, r, δ, and a temporal-sampling P , with |P | = n, there exists an O(n3)-
time algorithm that either correctly decides P does not admit a temporal (k,r,δ)-clustering,
or outputs some temporal (k,2r,2r + δ)-clustering.

Proof. Lemmas 9 and 10 imply that if a temporal (k,r,δ)-clustering exists, then the algorithm
does not return nil, and thus outputs a set T of at most k trajectories. Let C be the temporal
clustering corresponding to T . Each trajectory in T corresponds to a path in G2r+δ(P ), thus
has displacement at most 2r+δ. Therefore δ(C) ≤ 2r+δ. Since F is a feasible flow, it follows
that all lower bound constraints in N2r+δ(P,C) are satisfied. Thus for all i ∈ [t], for all
c ∈ C(i), there exists at least one unit of flow along the edge (tail(v), head(v)) corresponding
to the vertex v = (i, c); it follows that there exists some trajectory containing c in level i.
Since for all i ∈ [t], C(i) is a 2r-net of P (i), it follows that P (i) ⊆

⋃
c∈C(i) ball(c, 2r). Thus⋃

i∈[t] V (P, i) ⊆
⋃
τ∈T tube(τ, 2r), which implies that rad∞(C) ≤ 2r. We thus obtain that C

is a temporal (k,2r,2r + δ)-clustering. Finally, we bound the running time. Computing the
2r-nets over all levels, checking their sizes can be done in O(nk) time. Building G2r+δ(P )
and N2r+δ(P,C) can be done in O(n2) time. Finding an integral solution to N2r+δ(P,C)
takes O(n3) time using the algorithm of Gabow and Tarjan [15]. Decomposing the resulting
flow takes O(n3) time. We conclude that the entire procedure completes in O(n3) time. J

Writing ε = r/δ, we immediately obtain Theorem 1 from Lemma 11.

2.2 Exact radius and displacement: (ln(n),1,1)-approximation
In this section we consider the case where the number of clusters is allowed to be approximated
in analogy to the static r-Dominating Set problem. We present a polynomial-time (ln(n),1,1)-
approximation algorithm. In the full version [9], we argue that this result is tight in the
sense that obtaining a ((1− ε) ln(n),1,1)-approximation is NP-hard for any fixed ε > 0.

Let P be a temporal-sampling of length t. For any δ ≥ 0, we denote by Tδ(P ) the
set of all trajectories of displacement at most δ. Given an instance of the Temporal
(k,r,δ)-Clustering problem consisting of a tuple (M,P, k, r, δ), the high level idea is to
express the problem as an instance of Set-Cover. Recall that an instance of Set-Cover
consists of a pair (U,S), where U is a set, and S is a collection of subsets of U . The goal
is to find some S ′ ⊆ S, minimizing |S ′|, such that U ⊆

⋃
X∈S′ X, if such S ′ exists. We

set U =
⋃
i∈[t] V (P, i), and S =

⋃
τ∈Tδ(P ){tube(τ, r)}. We will show that a solution to the

Set-Cover instance (U,S) can be used to obtain a temporal (ln(n)k,r,δ)-clustering. Note
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that S can have cardinality exponential in the size of the input. However, as we shall see, we
can still obtain an approximate solution for (U,S) in polynomial-time.

We first establish that any α(n)-approximate solution to (U,S) can be converted, in
polynomial-time, to a temporal (α(n)k,r,δ)-clustering. Let sOPT denote the minimum
cardinality of any feasible solution for (U,S) when it exists. Similarly, let kOPT denote the
smallest value of k′ such that P admits a temporal (k′,r,δ)-clustering.

I Lemma 12. kOPT = sOPT.

The proof of Lemma 12 is deferred to the full version [9]. We next establish the following
result which allows us to run the greedy algorithm for Set-Cover on the instance (U,S) in
polynomial-time, even though |S| can be exponentially large.

I Lemma 13. Let S ′ ( S. There exists an O(n2) time algorithm which computes some
X ∈ S \ S ′, maximizing

∣∣X ∩ (U \⋃Y ∈S′ Y
)∣∣. Moreover, the algorithm outputs some

trajectory τ ∈ Tδ(P ), such that X = {tube(τ, r)}.

The proof of Lemma 13 is deferred to the full version [9]. We are now ready to prove
Theorem 2.

Proof of Theorem 2. Recall that the classical greedy algorithm for Set-Cover computes
a solution S ′ ⊆ S, if one exists, as follows: Initially, we set S ′ = ∅. At every iteration, we
pick some X ∈ S \S ′ such that

∣∣X ∩ (U \⋃Y ∈S′ Y
)∣∣ is maximized, and we add X to S. The

algorithm stops when either U is covered by S, or when no further progress can be made,
i.e. when

∣∣X ∩ (U \⋃Y ∈S′ Y
)∣∣ = 0; in the latter case, the instance (U,S) is infeasible. It

is well-known that this algorithm achieves an approximation ratio of lnn for Set-Cover
[25]. Now if (U,S) is infeasible the above procedure detects this and terminates. Otherwise,
let S ′ ⊆ S be the feasible solution found by repeatedly using the procedure described in
Lemma 13. The corresponding trajectories returned by this procedure form a temporal
(k′,r,δ)-clustering of P , for some k′ = |S ′| ≤ lnn · sOPT. By Lemma 12 it follows that
k′ ≤ lnn · kOPT ≤ lnn · k. Thus we obtain an (ln(n),1,1)-approximation. Finally, to bound
the running time note that in the worst case, the total number of calls to the procedure
in Lemma 13 is n since at every step we cover at least uncovered point. The theorem now
follows by the fact that each call takes O(n2) time. J

2.3 Approximating all parameters: (2,2,1 + ε)-approximation
So far we have constrained either the number of clusters or the radius and the displacement
to be exact. We now describe an algorithm that relaxes all three parameters simultaneously.
We present a polynomial-time (2, 2, 1 + ε)-approximation algorithm where ε = r/δ. We
complement this solution in the full version [9] by showing that it is NP-hard to obtain a
(1.005, 2− ε, poly(n))-approximation for any ε > 0.

I Lemma 14. If P admits a temporal (k,r,δ)-clustering then for any level-wise 2r-net C,
the flow instance Nr+δ(P,C) admits a feasible flow of value 2k.

Proof. Fix a temporal (k,r,δ)-clustering C = {τi}ki=1. We inductively define a sequence
Q0, . . . ,Qt, where for each i ∈ {0, . . . , t}, Qi is a multiset of paths in Gr+δ(P ). We set
Q0 = {σ1

1 , σ
2
1 , . . . , σ

1
k, σ

2
k}, where for each j ∈ [k], we have σ1

j = σ2
j = τj . Next, we inductively

define Qi, for some i ∈ {1, . . . , t}. Starting with Qi = Qi−1, we proceed to modify Qi. By
induction, it follows that the paths σ1

j , σ2
j , and τj share the same suffix at levels i, . . . , t. Thus,

τj(i) ∈ σ1
j and τj(i) ∈ σ2

j . Now, for the modification, we consider each c ∈ C(i), and proceed
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(a) (b) (c)

Figure 5 An example of the inductive construction of the multisets of paths Qi, for i = 0 (Figure
5a), i = 1 (Figure 5b), and i = 2 (Figure 5c). Dotted lines show where a trajectory has been rounded
to a net point. Thin and thick solid lines indicate where one or two trajectories are coincident to an
optimal trajectory, respectively. Initially (Figure 5a), Q0 consists of 2k trajectories σ1

j = σ2
j = τj ,

for the trajectories of some optimal solution τ1, . . . , τk. At step i, for any j ∈ [k] such that τj(i) is
within a distance of r from some net point, c, we obtain Qi by replacing τj(i) with c in either σ1

j or
σ2
j , depending on the parity of i.

as follows (see Figure 5 for an illustration). Since C is a valid temporal (k,r,δ)-clustering, it
follows from Lemma 8 that there exists an injective map πi from C(i) to the set τ1(i), . . . , τk(i)
so that πi(c) = τj(i) for some j ∈ [k] and d(τj(i), c) ≤ r. We consider the following two cases:
Case 1: If i is odd and τj(i) = πi(c) for some c ∈ C(i), then we modify σ1

j by replacing the
vertex τj(i) with c.

Case 2: If i is even and τj(i) = πi(c) for some c ∈ C(i), then we modify σ2
j by replacing the

vertex τj(i) with c.
We next argue that the result is indeed a path in Gr+δ(P ). Suppose that in the above step,
we modify the path σ`j , for some ` ∈ {1, 2} so that σ`j(i) = c. It follows by induction on i
that the path σ`j was not modified when constructing Qi−1; thus σ`j(i− 1) = τj(i− 1). Since
δ(τj) ≤ r, it follows by the triangle inequality that d(σ`j(i − 1), σ`j(i)) = d(τj(i − 1), c) ≤
d(τj(i− 1), τj(i)) + d(τj(i), c) ≤ δ + r. It follows that δ(σ`j) ≤ r + δ, which implies that each
element of Qi is indeed a path in Gr+δ(P ). This completes the inductive definition of the
multisets Q0, . . . ,Qt. It is immediate by induction that for each i ∈ [t], for each c ∈ C(i),
there exist some path σ ∈ Qt that visits c. We next transform the collection Qt into a
flow F in Nr+δ(P,C). For each path σ ∈ Qt, we obtain a path in the network Nr+δ(P,C)
starting from the source s, then replacing for each i ∈ [t], each c ∈ C(i) ∩ σ by the edge
(tail(v), head(v)), for v = (i, c), then terminating at the sink s′; we route a unit of flow along
the resulting path. Since for each i ∈ [t], there exists some path in Qt visiting each c ∈ C(i),
it follows that all lower-bound constraints in Nr+δ(P,C) are satisfied by F . Since Qt contains
2k paths, it follows that the value of the resulting flow is 2k, as required. J

We are now ready to prove Theorem 3.

Proof of Theorem 3. For each i ∈ [t], compute a 2r-net C(i) of P (i), and construct the flow
network Nr+δ(P,C). Compute a minimum flow F in Nr+δ(P,C) satisfying all lower-bound
constraints. If Nr+δ(P,C) is infeasible (i.e. if there is no flow satisfying all lower bound
constraints), or if the the value of the minimum flow in Nr+δ(P,C) is greater than 2k, it
follows by Lemma 14 that P does not admit a temporal (k,r,δ)-clustering. Thus, in this case
the algorithm terminates. Otherwise, we compute a minimum flow in Nr+δ(P,C). Since all
capacities and lower-bound constraints in Nr+δ(P,C) are integers, it follows that F can be
taken to be integral. We decompose F into a collection of at most 2k paths, each carrying
a unit of flow. Arguing as in Lemma 11 we have that the restriction of these paths on
Gr+δ(P ) is a set of trajectories that induces a valid temporal (2k,2r,r + δ)-clustering of P .
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P (1)

P (2)

(a) The clustering C∗.

P (1)

P (2)
D

(b) The clustering C.

Figure 6 An example demonstrating that local search fails. Consider a temporal-sampling P of
length 2 where P (1) = P (2) consists of a sequence of 5 points where successive points are separated
by D. (6a) A temporal (5, r, δ)-median-clustering, C∗, for any r, δ ∈ R≥0 with rad1(C∗) = 0. (6b) A
temporal (5, D, δ)-median-clustering, C, for any D ≤ δ < 2D. Note that swapping any trajectory in
C with one in Tδ(P ) is non-improving. The clustering C is therefore a local minimum of local search,
yet the ratio rad1(C)/rad1(C∗) remains unbounded.

This provides a (2,2,1 + ε)-approximation where ε = r/δ. Finally, the running time is easily
seen as O(n3) by the same argument that appears in Lemma 11, concluding the proof. J

2.4 Approximation algorithm for temporal median clustering
In this section we consider variants of Temporal Clustering which evaluate the spatial
cost of clustering by taking the level-wise maximum of discrete k-median and discrete k-means
objectives. A natural question is whether or not the problem admits a O(1)-approximation
via local search, as in static case [5, 28]. In Figure 6 we show that the local search approach
fails, even on temporal samplings of length two. Instead, the result is obtained by iteratively
selecting a trajectory which most improves a certain potential function. The result in this
section is presented for the Temporal (k,r,δ)-Median Clustering problem, and follows
by submodularity and monotonicity of the potential function. These properties remain if
d(p, C(i)) is replaced with the d(p, C(i))2, and thus holds identically for Temporal k-Means.

We now present an approximation algorithm for the Temporal (k,r,δ)-Median Clus-
tering problem. Let I = (M,P, k, r, δ) be an input to the problem, where P is a temporal-
sampling of length t. Let n denote the size of the P . Let also ∆ denote the spread of
M = (X, d). That is, ∆ = diam(M)

infp,q∈X{d(p,q):d(p,q)>0} . Since we only consider finite metric
spaces, and since the single point case is trivial, w.l.o.g. we may assume that the diameter
of M is ∆ and minimum interpoint distance in M is 1. For a set of trajectories C we
define cost(i; C) =

∑
p∈P (i) d(p, C(i)). We also define W (C) =

∑t
i=1 max{0, cost(i; C) − r}.

Intuitively, the quantity W (C) measures how far the solution C is from the optimum; in
particular, if W (C) = 0 then the spatial cost is within the desired bound.

I Lemma 15. The set function −W is submodular.

Proof. Since the sum of submodular functions is submodular, it is enough to show that
−max{0, cost(i; C) − r} = min{0,−cost(i; C) + r} is submodular. Thus it suffices to show
that −cost(i; C) is submodular, and thus it suffices to show that −d(p, C(i)), for all p ∈ P (i),
which is immediate since d(p, C(i)) = minτ∈C d(p, τ(i)). J

Algorithm. Our goal is to compute some set of trajectories C such that W (C) is sufficiently
small, while minimizing |C|. The algorithm consists of the following steps:
Step 1. Let C0 be a set containing a single arbitrary trajectory.
Step 2. For any i ∈ [L], let τi be a minimizer of W (Ci−1 ∪ {τi}). Set Ci = Ci−1 ∪ {τi}.
Step 3. Return CL.

The parameter L > 0 will be determined later. The following Lemma bounds the running
time of Step 2.
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I Lemma 16. Given a clustering C, we can find τ minimizingW (C∪{τ}), in time poly(|C|, n).

The above Lemma can be done via dynamic programming. The proof is essentially the
same as in Lemma 13 and is thus omitted. We next show that for some value of L, the
algorithm computes a low cost solution. To that end, we argue that with each iteration of
the main loop, W (Ci) decreases significantly.

I Lemma 17. If I admits a temporal (k, r, δ)-median-clustering, then for any i ∈ {1, . . . , L},
there exists some feasible trajectory σi such that W (Ci−1 ∪ {σi}) ≤ (1− 1/k) ·W (Ci−1).

Proof. Let C∗ = {τ∗1 , . . . , τ∗k′} be a set of at most k trajectories that yields a (k, r, δ)-
median temporal clustering. W.l.o.g. we may assume that k′ = k. Let K0 = W (Ci−1), and
for any j ∈ [k], let Kj = W (Ci−1 ∪ {τ∗1 , . . . , τ∗j }). Since C∗ is a (k, r, δ)-median temporal
clustering, it follows thatW (Ci−1) = K0 ≥ K1 ≥ . . . ≥ Kk = 0. For any j ∈ [k], we also define
K ′j = W (Ci−1∪{τ∗j }). By Lemma 15 we have that for all j ∈ [k],W (Ci−1)−W (Ci−1∪{τ∗j }) ≥
W (Ci−1 ∪ {τ∗1 , . . . , τ∗j−1}) −W (Ci−1 ∪ {τ∗1 , . . . , τ∗j }). That is, K0 −K ′j ≥ Kj−1 −Kj . Let
` = arg maxj∈[k]{K0−K ′j}. It follows thatK0−K ′` = maxj∈[k]{K0−K ′j} ≥ maxj∈[k]{Kj−1−
Kj} ≥ 1

k

∑k
j=1(Kj−1 −Kj) = (K0 −Kk)/k = K0/k. Let σi = τ∗` . It immediately follows

that W (Ci−1 ∪ {σi}) = K ′` ≤ (1− 1/k) ·K0 = (1− 1/k) ·W (Ci−1), concluding the proof. J

We are now ready to prove Theorem 6.

Proof of Theorem 6. We first note that if r = 0, then a solution with k trajectories can
be computed, if one exists, as follows: Since r = 0, it follows that every level of P has at
most k points. We construct the flow network instance Nδ(P, P ), as in Section 2.1. It is
immediate that the flow instance is feasible iff there exists a solution with k trajectories.
We may thus assume that r > 0. Since the minimum distance in M is 1, it follows that
r ≥ 1. In a generic step 1 ≤ i ≤ L, let τi denote the trajectory returned by the dynamic
program of Lemma 16, which minimizes W (C ∪ {τi}). By Lemma 17, if I admits a temporal
(k, r, δ)-median-clustering, then there exists some trajectory σi such that W (Ci−1 ∪ {σi}) ≤
(1−1/k) ·W (Ci−1). ThusW (Ci) = W (Ci−1∪{τi}) ≤W (Ci−1∪{σi}) ≤ (1−1/k) ·W (Ci−1) ≤
(1 − 1/k)i ·W (C0). Since the diameter of M is ∆, we get W (C0) ≤ ∆

∑
i∈[t] |P (i)| = ∆n.

Setting L = k ln(n∆/ε) = O(k log(n∆/ε)), we obtainW (CL) ≤ (1−1/k)Ln∆ ≤ ε ≤ εr. Thus
maxi∈[t] max{0, cost(i; CL)−r} ≤

∑t
i=1 max{0, cost(i; CL)−r} ≤ εr, which implies rad1(CL) =

maxi∈[t] cost(i; C) ≤ (1 + ε)r. It follows that either CL is a (L, 1 + ε, 1)-approximation, or I
does not admit a (k, r, δ)-median-clustering. Finally, the running time follows by the fact
that we perform L iterations of the main loop; each in time bounded by Lemma 16. J

3 Inapproximability and Conclusion

We now briefly state our inapproximability results. Due to space constraints we defer all proofs
to the full version [9]. There, we show that it is NP-hard to obtain a (1, poly(n), poly(n))-
approximation, complementing Theorem 1. Further, we show that the problem remains
hard to approximate, even for an inexact number of clusters where the points are taken
from a nice metric space. Specifically, we prove that (1.005, 2− ε, poly(n))-approximation
is NP-hard for points sampled from 2-dimensional Euclidean space. We show that the
(lnn, 1, 1)-approximation (Theorem 2) is best possible by observing that ((1−ε) lnn, 2−ε′, ·)-
approximation is NP-hard, though the construction involves a somewhat unnatural metric
space. Finally, we adapt the hardness results for (1, poly(n), poly(n))-approximation and
(1.005, 2− ε, poly(n))-approximation to Temporal k-Median/Means.
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Conclusion. Our results show that many instances of temporal clustering are hard to
approximate. On the other hand, our polynomial time approximations show that sometimes
if we allow approximations in terms of parameters like r/δ or the spread ∆, the approximation
becomes tractable. We wish to better understand the boundary between these cases. Another
direction comes from altering the model; an alternative formulation could allow centers from
the ambient metric space. We plan to investigate this model in future research.
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Abstract
Social goods are goods that grant value not only to their owners but also to the owners’ sur-
roundings, be it their families, friends or office mates. The benefit a non-owner derives from the
good is affected by many factors, including the type of the good, its availability, and the social
status of the non-owner. Depending on the magnitude of the benefit and on the price of the
good, a potential buyer might stay away from purchasing the good, hoping to free ride on others’
purchases. A revenue-maximizing seller who sells social goods must take these considerations into
account when setting prices for the good. The literature on optimal pricing has advanced consid-
erably over the last decade, but little is known about optimal pricing schemes for selling social
goods. In this paper, we conduct a systematic study of revenue-maximizing pricing schemes for
social goods: we introduce a Bayesian model for this scenario, and devise nearly-optimal pricing
schemes for various types of externalities, both for simultaneous sales and for sequential sales.
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1 Introduction

Many goods exhibit a positive externality not only on their owner, but also on other parties.
For instance, a coffee machine purchased by an employee benefits all of her office mates, and
essentially reduces the probability of another coffee machine to be purchased. Examples of
these kinds of goods are abundant: A high-schooler who has many friends with cars that can
drive him around might be less tempted to buy a new car. A reputable store might draw
large customer traffic and benefit other stores in the shopping mall. Therefore, an aggressive
advertising campaign carried out by such a store might reduce the likelihood of another store
running a campaign in parallel. In all of these scenarios the externalities depend on the type
of good, on the social status of the party with whom the good is shared, and on the set of
parties who own the good. In the coffee machine example, the machine is typically used by
all the individuals sharing the office space. In the shopping mall, some types of stores (e.g.,
fast food restaurants) might benefit from any traffic in the shopping mall, whereas more
specialized stores may benefit from ad campaigns that draw costumers interested in a similar
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kind of product (e.g., Staples may attract costumers similar to those interested in Office
Depot products). The benefit of a high school student depends on his social status and on
the set of friends who own a car.

Because of the abundance of goods that exhibit externalities similar to the ones in the
examples above, their study is of great applicability. We term these goods social goods. When
selling social goods, a seller must take into account the types of buyers in the market and
the benefit they derive from other sets of buyers purchasing the good. Our main goal is to
study how to sell goods in a way that approximately maximizes the seller’s revenue in the
presence of externalities.

To study this problem, we consider a setting with a single type of good, of unlimited
supply, and a set of n agents; each agent i ∈ [n] has a non-negative valuation vi for purchasing
the good, drawn independently from a distribution Fi. We denote the product distribution
by F = ×i∈[n]Fi. Unless stated otherwise, we assume the Fi’s are regular.1

If an agent does not purchase the good, but the good is purchased by others, then this
agent derives only a fraction of her value, depending on the set of agents and the type
of externality the good exhibits on the agent. This type of externality is captured in our
model by an externality function xi : 2[n] → [0, 1], where xi(S) denotes the fraction of vi an
agent i derives when the good is purchased by the set of agents S. We assume that xi is
publicly known (as it captures the agent’s externalities), monotonically non-decreasing and
normalized; i.e., xi(∅) = 0, for every T ⊆ S, xi(T ) ≤ xi(S), and xi(S) = 1 whenever i ∈ S.
We consider three structures of the function xi, corresponding to three types of externalities
of social goods.
(a) Full externalities (commonly known as “public goods"): in this scenario all agents derive

their entire value if the good is purchased by any agent. Therefore, xi(S) = 1 if and only
if S 6= ∅. This model captures goods that are non-excludable, such as a coffee machine
in a shared office. A special case of this scenario, where valuations are independently
and identically distributed, has been studied in [10].

(b) Status-based externalities: in this scenario, agent i’s “social status" is captured by some
discount factor wi ∈ [0, 1], which corresponds to the fraction of the value an agent i
derives from a good when purchased by another party. That is,

xi(S) =


1 i ∈ S,
wi i /∈ S and S 6= ∅,
0 otherwise.

(1)

This model captures settings that exhibit asymmetry with respect to the benefit different
agents derive from goods they do not own (e.g., a fast food restaurant or a popular
high-school student in the above examples).

(c) Availability-based externalities: in this scenario, the availability of a good increases as
more agents purchase a good, and therefore, an agent derives a larger fraction of her
value as more agents purchase a good. This is captured by the following externality
function.

xi(S) =
{

1 i ∈ S,
w(|S|) i /∈ S.

(2)

Here, w : {0, . . . , n−1} → [0, 1] is a monotonically non-decreasing function with w(0) = 0.
Examples of such scenarios include objects that are often shared by neighbors (e.g.,
snow blowers, lawn mowers), office supplies, etc.

1 This means that the virtual valuation function φ(v) = v − 1−F (v)
f(v) is non-decreasing.
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Notice that the full externalities scenario is a special case of both the social-status (where
wi = 1 for every i) and the availability (where w(k) = 1 for every k > 0) models.

Our focus is on posted-price mechanisms, which exhibit many desired properties: they are
simple, distributed, straightforward, and strategyproof. Our goal is to maximize the revenue
extracted by the seller. We distinguish between discriminatory and non-discriminatory prices.
Naturally, using discriminatory prices can often lead to higher revenue for the seller [18, 15].
Price discrimination is commonly used in the US [12], but user studies reveal that many
users believe that this practice is illegal, and consider these acts to be an invasion of privacy
[5]. Therefore, offering non-discriminatory prices may be critical for maintaining the seller’s
reputation. We show scenarios in which setting the same price for all users produces (almost)
as much revenue as engaging in price discrimination.

We consider two natural sale models: (a) a simultaneous sale, where the seller simultan-
eously sets take-it-or-leave-it prices for all agents, after which agents play a simultaneous
Bayesian game, and each agent decides whether or not to buy at the price offered to her;
and (b) a sequential sale, in which the agents arrive sequentially, and each one is offered a
take-it-or-leave-it price upon arrival. In this case, the price and the agent’s decision may
depend on the set of agents that purchased the good before the arrival of the current agent.
We distinguish between adaptive and non-adaptive pricing schemes, which differ in whether
the price can depend upon the set of agents who purchased the good prior to the agent’s
arrival.

In both simultaneous and sequential sales, assuming that agent i is offered a take-it-or-
leave-it price pi, and that the good is eventually purchased by a set S ⊆ [n] of agents, the
utility of agent i is:

ui(S, pi) =
{
vi − pi if i ∈ S,
vi · xi(S) if i /∈ S.

(3)

As shown in Section 2, a set of prices induces equilibria of the game (multiple equilibria
in the simultaneous model, and a single one in the sequential model). Every equilibrium is
characterized by a set of threshold strategies for the agents, where an agent buys the good if
and only if her value exceeds the threshold.

1.1 Our contribution
We provide results for the three aforementioned models. In this section, we provide informal
statements of our results. The exact bounds we achieve are summarized in Table 1. Due to
space limitation, some of the formal statements and proofs are deferred to the full version.

(a) Full externalities

Theorem (informal): There exist poly-time algorithms for computing pricing schemes for
settings with full externalities that give a constant factor approximation to the optimal
pricing scheme, for both simultaneous and sequential sales. Moreover, this result can be
achieved using non-discriminatory prices, despite asymmetry among buyers.

To derive this result, we first analyze the equilibria in simultaneous and sequential models.
We show a surprising equivalence between the revenue attainable in the best equilibrium
at simultaneous and sequential sales, albeit induced by different prices. A corollary of this
equivalence is that the optimal attainable revenue at a sequential sale does not depend on
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the order of agents. Furthermore, we observe that in both simultaneous and sequential sales,
the revenue attainable is upper bounded by the optimal revenue from selling a single private
good (i.e., a good that grants value only to their owners)2.

We proceed as follows. For simultaneous sales, we establish a method for transforming
prices for the sale of a single private good in expectation into prices for selling public goods,
which preserve the revenue up to a constant factor in every equilibrium. Since selling a single
good in expectation yields at least as much revenue as selling a single good deterministically,
this implies a near-optimal pricing scheme for simultaneous sales of public goods.

For sequential sales, we use the theory of prophet inequalities. Consider prices that induce
thresholds that are equal to the prices that emerge from the prophet inequalities. We show
that such prices obtain at least half of the revenue obtained from the prophet inequalities
prices in the private good model. We use this connection to obtain a pricing scheme that
gives 4-approximation to the revenue of the optimal sequential sale of public goods.

Finally, we show how to compute nearly-optimal non-discriminatory prices, even for
asymmetric agents, in both the simultaneous and sequential models.

(b) Status-based externalities

Theorem (informal): There exist poly-time algorithms for computing pricing schemes for
settings with status-based externalities that give a constant factor approximation to the
optimal pricing scheme, for both simultaneous and sequential sales.3

For sequential sales, we devise a non-adaptive pricing scheme, while the benchmark is the
optimal adaptive pricing scheme. To obtain this result, we first show that a seller who is
restricted to set only two prices per agent can extract as much revenue as one who can present
exponentially many prices. We then show that the optimal revenue in this simpler case can
be decomposed into two components: a private component (monotonically decreasing in the
agents’ discount factors) and a public component (monotonically increasing in the discount
factors). The private component can be approximated by simulating n private sales, setting
thresholds equal to the monopoly prices. The public component can be approximated by
similar techniques to the ones introduced for public goods. Therefore, the better of the two
mechanisms extracts a constant fraction of the optimal revenue. A similar decomposition
technique is established for the case of simultaneous sales. Our result for the sequential case
is essentially a reduction: given prices that yield a c-approximation for the optimal sequential
sale in the full externalities model, one can find prices that (c+ 2)-approximate the optimal
sequential sale in the status-based externalities model.

(c) Availability-based externalities

Theorem (informal): There exists a poly-time algorithm for computing a pricing scheme
for sequential sales with availability-based externalities, that gives a logarithmic factor
approximation (with regard to the number of buyers) to the optimal pricing scheme.

In this case, both the pricing scheme and the benchmark set a pricing function for each
agent, which depends on the number of agents who have purchased the good before the
arrival of the agent. To obtain this result, we decompose the revenue into n components.

2 A similar argument was used in [10] for the special case of simultaneous sales where valuations are
identically distributed.

3 We note that no non-discriminatory prices can achieve a constant approximation in this model. Indeed,
the case of private digital goods is a special case of this model, with wi = 0 for every i.
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Table 1 Summary of our results. The columns correspond to sale models, whereas the rows
correspond to externality types. The rows are further divided to sales using discriminatory and
non-discriminatory prices. All the unreferenced results appear in the full version.

Simultaneous Sequential
disc. non-disc. disc. non-disc.

Full (Public goods) i.i.d. ≥ 4/e 4 – 4
non i.i.d. 5.83 Thm. 3.5 4e 4 4e

Status-based 6.83 Ω(logn) 6 Cor. 4.4 Ω(logn)
availability-based – – O(logn) –
network-based Ω

(
n1−ε) – Ω

(
n1−ε) –

Component k = 1, . . . , n is upper bounded by the optimal revenue obtainable by selling k
identical private goods, scaled by w(k)− w(k − 1). We then partition the components into
buckets, and compute prices based on the sequential posted pricing scheme developed by
Chawla et al. [8] for selling private goods.

General externalities. Given the near-optimal pricing schemes above, one may be tempted
to infer that every social goods scenario is amenable to a near-optimal pricing scheme. We
complement our positive results with the following hardness result, refuting this hope. We
consider a natural family of social goods proposed by Feldman et al. [10]: network-based
externalities. In this model, externalities are represented by a graph, and an agent derives
her entire value when a neighboring agent buys a good. We show that there is no poly-time
algorithm to compute prices that give a non-trivial approximation to the optimal posted-price
mechanism. This negative result holds for both the simultaneous and sequential models. We
show that even in very restricted cases (i.e., where agents’ valuations are independently and
uniformly distributed on [0, 1] in the simultaneous case, and agents’ valuations are fixed in
the sequential case), it is NP-hard to find prices that approximate the optimal posted-price
mechanism to within a factor of n1−ε. A Θ(n) approximation can be trivially achieved by
offering the good only to the agent maximizing the monopolist revenue. We note that this
negative result rules out other natural externality structures.4

Irregular distributions. Although our results are stated and proved for regular distributions,
some of our results extend to irregular distributions. Namely, we establish near optimal
pricing schemes for sequential and simultaneous sales under full externalities and status-based
externalities. The results of non-discriminatory prices do not extend to irregular distributions
since the anonymous pricing devised in [4] do not perform well for irregular distributions.
(there exist irregular distributions that there is no anonymous price that give constant
approximation.)

Organization. Due to space limitations, some of the results and proofs are deferred to the
full version5. In the extended abstract, we state two of our main results along with their
proof ideas. The provided proofs give the flavor of the techniques that seem to be useful in
studying pricing mechanisms for social goods.

4 Some examples include: (a) for every pair of agents i, j, agent i can borrow the good from agent j
with some probability wij . Thus, xi(S) = 1−

∏
j∈S,j 6=i(1− wij); and (b) for every pair of agents i, j,

xi(S) = maxj∈S,j 6=i wij .
5 The full version appears in https://arxiv.org/abs/1706.10009.
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The extended abstract is organized as follows. In Section 2 we describe the simultaneous
and sequential sale models. In Section 3 we study the case of full externalities: In Section
3.1 we establish useful properties of equilibria, and in Section 3.2 we devise a near-optimal
pricing scheme for simultaneous sales. The following are deferred to the full version:
(a) a near-optimal pricing scheme for sequential sales,
(b) a non-discriminatory pricing scheme, and
(c) lower bounds for simultaneous sales.
In Section 4 we present our near-optimal pricing scheme for sequential sales under status-
based externalities. The near-optimal pricing scheme for simultaneous sales is deferred to
the full version. The case of availability-based externalities is deferred to the full version in
its entirety. The same is true for the hardness results for general externalities, as well as a
discussion about the irregular case.

1.2 Related work

The most famous and well studied instance of social goods is public goods, when all agents
derive their full value whenever a good is purchased. The study of public goods was initiated
by Samuelson [19], who observed that private provisioning of public goods is not necessarily
efficient; see also [17] for an overview.

The closest work to ours is that of Feldman et al. [10]. For their positive results,
they consider a special case of our full externalities model — in their model agents arrive
simultaneously with valuations that are drawn independently and identically from a known
distribution. Our work extends this work in several dimensions. First, we consider more
realistic forms of externalities that go beyond public goods. Second, we consider settings
where agent valuations are drawn from non-identical distributions. Third, we provide results
for settings where agents arrive either sequentially or simultaneously. Finally, some of our
results extend to irregular distributions.

A line of work similar in flavor to ours, yet inherently different, is that of revenue
maximization in the presence of positive externalities [1, 11, 13, 2, 6]. In this line of work,
an agent’s value for the good increases as more agents purchase the goods, but only if the
agent purchased the good as well. Therefore, an agent is more likely to purchase the good
as more agents purchase it. This is in stark contrast to our setting, where agents are less
inclined to buy a good as more agents do.

Finally, there is a rich body of literature on the design of posted price mechanisms for
the sale of private goods (where agents do not derive value from goods they do not own).
See Chapter 4 in [14] for a textbook treatment. A sample of the work can be found in
[8, 4, 16, 9, 7]. An overview of some results that are directly referred to in this work is given
in the full version.

2 Models and preliminaries

Simultaneous sales model. We view a simultaneous sale game as the following two-stage
game. First, the seller posts a price vector p = (p1, . . . , pn) to the agents (agent i is offered
to purchase an item at price pi). Subsequently, the agents play a simultaneous Bayesian
game. In this model, we assume that the probability distribution of every agent is atomless.6

6 Meaning that for every q there exists p for which Fi(p) = q.
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Agents wish to maximize their expected utility. Given a price pi, agent i buys the
good if her expected utility from buying, vi − pi, exceeds the utility from not buying,
vi ·ES 63i[xi(S)] (where ES 63i is shorthand for ES:i 6∈S). Therefore, an agent buys if and only if
vi ≥ pi

1−ES 63i[xi(S)] =: Ti. The strategy of every agent i is therefore defined by a threshold Ti.
Denote by T = (T1, . . . , Tn) a strategy profile, given by a vector of thresholds. A strategy
profile T induces a probability distribution over the set S of agents that purchase the good;
denote this distribution by µT, and the distribution µT conditioned on i not being in the set
of purchasing agents by µ−iT . A Nash equilibrium is characterized by a threshold vector T
such that:

Ti = pi
1− ES∼µ−i

T
[xi(S)] ∀i ∈ [n]. (4)

The following theorem establishes the existence of Nash equilibria via a fixed point
argument.

I Theorem 2.1. In the simultaneous model, for any set of externality functions {xi}i∈[n], for
any set of atomless distributions F , and for any price vector p, there exists an equilibrium T.

One of the challenges in our model stems from the fact that a single price vector may
induce multiple equilibria. Consider the simple setting of a single public good and two agents,
Alice and Bob, where FAlice and FBob are both uniform on [0, 1], and the seller sets a non
discriminatory price of 1/2. Applying the equilibrium condition in Eq. (4), we get that every
tuple (TAlice, TBob) ∈ [0, 1]2 satisfying TAlice · TBob = 1/2 forms an equilibrium strategy.7
Therefore, in this case, there is a continuum of equilibria. It is not hard to see, however,
that a set of thresholds T can be the consequence of only a single price vector, which can be
derived via Eq. (4). This is cast in the following observation:

I Observation 2.2. In the simultaneous model, a given price vector can induce multiple
equilibria, but any given equilibrium T can be induced by a single price vector p.

Let Eq(F ,p) denote the set of equilibria induced by a price vector p, given a product dis-
tribution F . For a given price vector p and an equilibrium T ∈ Eq(F ,p), let Rsim(F ,p,T) =∑
i pi · (1− Fi(Ti)) denote the seller’s expected revenue. Given a price vector p, we define

Rsim(F ,p) = max
T∈Eq(F,p)

Rsim(F ,p,T) and Rsim(F ,p) = min
T∈Eq(F,p)

Rsim(F ,p,T)

to be the revenue obtained in the respective best and worst equilibrium induced by p. We
refer to these revenues as the optimistic and pessimistic revenues, respectively.

The strongest approximation results one can hope for are ones that consider the pessimistic
revenue obtained by our pricing scheme against an optimistic benchmark. This is exactly
the approach we take. In particular, our benchmark is the revenue obtained by the best
pricing, assuming the best equilibrium induced by every pricing. We denote the benchmark
by R∗sim(F) = maxp∗ Rsim(F ,p∗). The performance of a price vector p is measured by the
worst equilibrium induced by p; i.e., Rsim(F ,p). Our goal is to calculate a price vector p
that minimizes the ratio between the former and the latter expressions.

7 For a comprehensive discussion regarding the equilibrium condition in the public goods model, see
Eq.(5) in Section 3.
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Sequential sales model. In the sequential sales model, n agents arrive one by one according
to an order σ : [n]→ [n], where agent i is the σ(i)th agent to arrive. For ease of notation,
we assume that agent i is the ith agent to arrive, unless explicitly stated otherwise. In
sequential sales, the price set by the seller for agent i can depend on the set of agents who
have purchased the good prior to agent i’s arrival. Thus, it can be viewed as a function
pi : 2[i−1] → R+.8 The subgame perfect equilibrium in this auction is unique and can be
found by a (possibly exponential) backward induction. An agent who receives a price buys
if and only if her utility from buying exceeds her expected derived value from not buying
conditioned on the set of agents that purchased the good prior to her arrival. Of course, this
might impose a different threshold for every scenario which might lead to an exponential
strategy space for the agents and an exponential time to compute each threshold in the
strategy of an agent. As we discuss in the following sections, we devise pricing schemes in
which the seller has a simple nearly optimal pricing scheme which leads to a simple strategy
space and a poly-time threshold computation.

3 Pricing goods with full externalities (public goods)

3.1 Equilibrium and revenue equivalence

In this section we focus on the case where all agents derive their entire value from a good if
purchased by any agent. We first characterize the equilibrium condition for a simultaneous
sale. Given an equilibrium T = (T1, . . . , Tn), the expected value agent i derives from other
agents is ES∼µ−i

T
[xi(S)] = 1 ∗ Pr [some agent j 6= i buys] = 1 − Pr [no agent j 6= i buys] =

1 −
∏
j 6=i Fj(Tj). Plugging this expression into Eq. (4) yields the following equilibrium

condition:

Ti = pi∏
j 6=i Fj(Tj)

for all i. (5)

For a given price vector p and an equilibrium T ∈ Eq(F ,p), the expected revenue is

Rsim(F ,p,T) =
∑
i

pi (1− Fi(Ti))
(5)=
∑
i

Ti ·
(∏
j 6=i

Fj(Tj)
)
· (1− Fi(Ti)) . (6)

We turn to describe the equilibrium in the sequential sales model. In this case, whenever
an agent buys an item, no subsequent agent will ever buy an item. Therefore, we can assume
without loss of generality that the seller sets a single price per agent. Let p = (p1, . . . , pn)
denote the vector of offered prices.

We now show how to compute the unique subgame perfect equilibrium of the game.
When the last agent (agent n) is offered a price, her best strategy is to buy if her value
exceeds the price; i.e., Tn = pn. When agent i = n − 1, . . . , 1 is offered a price, she faces
the following tradeoff: if she buys, her utility is vi − pi. If she does not buy, her util-
ity is vi

(
1−

∏
j>i Pr [j does not buy]

)
= vi

(
1−

∏
j>i Fj(Tj)

)
. Consequently, the unique

8 Indeed, there are cases where the seller can gain higher revenue by setting such prices (an explicit
example for availability-based externalities is given in the full version).
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equilibrium T is given by910

Ti = pi∏
j>i Fj(Tj)

∀i ∈ [n]. (7)

Given a product distribution F , a price vector p, and an arrival order σ, let TF (σ,p) be the
function that returns the unique equilibrium. Since every price vector p defines a unique
strategy vector T, the expected revenue from agent i is also uniquely defined, and can be
calculated by∏
j<i

Pr [j does not buy] · pi · (1− Fi(Ti))
(7)=

(∏
j<i

Fj(Tj)
)
· Ti ·

(∏
j>i

Fj(Tj)
)
· (1− Fi(Ti))

= Ti ·
(∏
j 6=i

Fj(Tj)
)
· (1− Fi(Ti)).

Therefore, the expected revenue from all agents can be written as

Rseq(F , σ,p,T = TF (σ,p)) =
∑
i

Ti ·
(∏
j 6=i

Fj(Tj)
)
· (1− Fi(Ti)) . (8)

Given an arrival order σ, let R∗seq(F , σ) = maxpRseq(F , σ,p,T = TF (σ,p)) denote the
highest revenue a seller can obtain. We note that given a threshold vector T and an arrival
order σ, there is also a unique price vector that produces this threshold vector T, which can
be calculated by (7), thus TF (σ, ·) is a bijection. This is cast in the following observation.

I Observation 3.1. Fix an arrival order. An equilibrium strategy vector T is uniquely
determined by a price vector p, and a price vector p is uniquely determined by a strategy
vector T.

Theorem 3.2 establishes revenue equivalence in simultaneous and sequential sales.

I Theorem 3.2. For every product distribution F and for every order of arrival σ in the
sequential model, we have that R∗seq(F , σ) = R∗sim(F).

It immediately follows that the optimal revenue is independent of the arrival order.

I Corollary 3.3. For every two arrival orders σ, σ′, R∗seq(F , σ) = R∗seq(F , σ′).

In the sequel, we use R∗seq(F) to denote the optimal revenue in the sequential model.
We next draw a connection between selling public goods and selling a single private good.

This connection is later used in proving approximation results for mechanisms for the sale
of public goods. Let Myer(F) denotes the optimal revenue a seller can obtain by selling a
single private good to a set of agents drawn from F (i.e., the revenue obtained by Myerson’s
optimal auction). Using similar arguments to ones used in [10], we have the following:

I Lemma 3.4. For every product distribution F , R∗seq(F) ≤ Myer(F)
(
and therefore,

R∗sim(F) ≤Myer(F) by Theorem 3.2
)
.

9 Unlike the simultaneous model, an equilibrium exists for non atomless distributions, whenever tie-
breaking is done consistently by agents. That is, agents always take the same action when their value is
equal to their threshold.

10For n, we let
∏
j>n

Fj(Tj) = 1.
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3.2 Near optimal simultaneous sale

In our construction, we use the ex-ante relaxation (EAR) [3, 4] for selling a private good.
The EAR relaxes the feasibility constraint, so that instead of selling at most one item
ex post, this constraint holds only in expectation. Since the feasible region increases, the
revenue of an optimal mechanism for this case can only be higher than Myerson’s optimal
mechanism. Combined with Lemma 3.4, it suffices to provide a pricing scheme for our setting
that approximates the revenue of the EAR. As it turns out, when agents’ values are drawn
from regular distributions, the optimal mechanism for the ex-ante setting is a posted price
mechanism. These prices can be computed in polynomial time by a convex programming
formulation [14].

We use these prices to determine prices for the sale of public goods. To do so, we partition
the agents into valuable and non-valuable agents, based on their contribution to the revenue
of the EAR. All the revenue obtained in our pricing scheme comes from the valuable agents.
Their prices are set so that if there exists a valuable agent that buys with low probability, the
equilibrium condition guarantees that other agents buy with a sufficiently high probability.

I Theorem 3.5. For social goods with full externalities and for any regular product distribu-
tion F , there exists a poly-time algorithm that computes prices p for which Rsim(F ,p) ≥
R∗sim(F)/5.83.

Proof. Let p̂ = (p̂1, . . . , p̂n) be the posted prices that maximize the revenue in the EAR,
and let R =

∑
i p̂i(1 − Fi(p̂i)) be the optimal revenue of the EAR. As mentioned above,

R ≥Myer(F). Let c1, c2 > 1 be two parameters, to be determined later. We partition the
agents into two groups as follows. Let B = {i ∈ [n] : p̂i ≥ R/c1} and S = [n] \B. For every
agent i we set

pi =
{
p̂i/c2 i ∈ B
∞ i ∈ S

.

The revenue from the agents in S in the optimal EAR mechanism is bounded by
∑
i∈S p̂i ·

Pr [i buys] ≤ Rc1

∑
i∈S(1− Fi(p̂i)) ≤ Rc1

, where the last inequality stems from the fact that
the EAR sells at most 1 item in expectation. Therefore, the revenue extracted from agents
in B in the EAR is

∑
i∈B

p̂i · (1− Fi(p̂i)) ≥ R−
R
c1

= (1− 1/c1)R. (9)

Let T be an equilibrium induced by the price vector p = (p1, . . . , pn). We consider two cases:

Case 1: Ti ≤ p̂i for every i ∈ B. In this case,

Rsim(F ,p,T) =
∑
i

pi · (1− Fi(Ti)) =
∑
i∈B

pi · (1− Fi(Ti))

≥
∑
i∈B

p̂i
c2
· (1− Fi(p̂i))

(9)
≥
(

1− 1/c1

c2

)
R,

where the first inequality follows from case 1 and the monotonicity of Fi.
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Case 2: There exists i ∈ B such that Ti > p̂i. For such an agent i,

p̂i/c2∏
j 6=i Fj(Tj)

= pi∏
j 6=i Fj(Tj)

(5)= Ti > p̂i ⇒
∏
j

Fj(Tj) ≤
∏
j 6=i

Fj(Tj) ≤
1
c2
. (10)

Let pmin = mini pi. The expected revenue in this case is at least

pmin · Pr[at least one agent buys] ≥ R
c1c2

(
1−

∏
j

Fj(Tj)
) (10)
≥
(

1− 1/c2

c1c2

)
R,

where the first inequality follows from the fact that all prices are at least R
c1c2

.
Therefore, we get an approximation factor of min

{(
1−1/c1
c2

)
,
(

1−1/c2
c1c2

)}
. Setting c1 =

√
2

and c2 = 1 + 1√
2 optimizes the approximation ratio and gives revenue of at least a 1

3+2
√

2
fraction of R. Since R ≥Myer(F) ≥ R∗sim(F) (by Lemma 3.4), we get that Rsim(F ,p) ≥
R∗sim(F)
3+2
√

2 ≈
R∗sim(F)

5.83 . J

I Remark. An approximation ratio of 8 is given in [10] for the special case of i.i.d. distributions.
The last theorem improves the approximation ratio to 5.83 even for the more general case
of non-identical distributions. Moreover, in the full version we give a non-discriminatory
pricing that gives 4 approximation for the case of identical distributions. We also show that
no pricing scheme can give better approximation than 4/e, even for identical distributions.

4 Near optimal sequential sale under status-based externalities

Recall that in this setting, every agent is associated with a discount factor wi ∈ [0, 1], Let
w = (w1, . . . , wn). We devise a non-adaptive pricing scheme (i.e., where an agent’s price
does not depend on the previous purchases) that approximates the revenue of the optimal
adaptive pricing scheme.11 In our scheme, every agent is assigned with a single price.

Let p0 and p>0 be the price vectors posted by the seller who uses two price vectors,
where p0

i (resp., p>0
i ) is the price offered to agent i when no agent (resp., at least one agent)

has purchased a good prior to i’s arrival. Let p = (p0,p>0). In the full version, we show
that we it is without loss of generality to restrict attention to two price vectors.

In contrast to the full externalities settings, agent i may have two different thresholds
in the equilibrium — one for the case where no agent bought a good before she arrives,
denoted by T 0

i , and one for the case where at least one agent buys the good, denoted by
T>0
i . For every agent i, if some agent bought the good before she arrived, she faces the

following trade-off — if she buys the good, her utility is vi − p>0
i ; otherwise, her utility is

wi · vi. Therefore, the threshold satisfies the following equation:

T>0
i − p>0

i = wi · T>0
i ⇒ p>0

i = (1− wi) · T>0
i . (11)

If no agent bought the good before before agent i arrived, then12

T 0
i − p0

i = wi · T 0
i · Pr[Agent j > i buys a good] = wi · T 0

i ·
(

1−
∏
j>i

Fj(T 0
j )
)

⇒ p0
i = (1− wi) · T 0

i + wi · T 0
i ·
∏
j>i

Fj(T 0
j ). (12)

11Which sets a price for the current agent depending on the set of agents that purchased the good prior
her arrival.

12For the case of i = n, the RHS product is naturally defined to be 1, and therefore T 0
n = p0

n.
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For every agent i and pricing p = (p0,p>0), let q0
i = q0

i (p) (resp., q>0
i = q>0

i (p)) denote
the probability that no agent (resp., at least one agent) has bought a good before agent i
arrived. The revenue can now be written as

R(p) =
∑
i

(
q0
i · p0

i · (1− Fi(T 0
i )) + q>0

i · p
>0
i · (1− Fi(T

>0
i ))

)
(12)
=

∑
i

q0
i ·
(

(1− wi) · T 0
i + wi · T 0

i ·
∏
j>i

Fj(T 0
j )
)
· (1− Fi(T 0

i ))

+
∑
i

q>0
i · p

>0
i · (1− Fi(T

>0
i ))

(11)
=

∑
i

q0
i · (1− wi) · T 0

i · (1− Fi(T 0
i )) +

∑
i

q0
i · wi · T 0

i ·
(∏
j>i

Fj(T 0
j )
)
· (1− Fi(T 0

i ))

+
∑
i

q>0
i · T

>0
i · (1− wi) · (1− Fi(T>0

i )).

By removing factors smaller than 1 (q0
i , q

>0
i , wi) in the last expression, we get

R(p) ≤
∑
i

(1− wi) · T 0
i · (1− Fi(T 0

i )) +
∑
i

(∏
j<i

Fj(T 0
j )
)
· T 0
i ·
(∏
j>i

Fj(T 0
j )
)
· (1− Fi(T 0

i ))

+
∑
i

T>0
i · (1− wi) · (1− Fi(T>0

i ))

=
∑
i

(1− wi) · T 0
i · (1− Fi(T 0

i )) +
∑
i

(1− wi) · T>0
i · (1− Fi(T>0

i ))

+
∑
i

T 0
i ·
(∏
j 6=i

Fj(T 0
j )
)
· (1− Fi(T 0

i )). (13)

Given a thresholds vector T = (T1, T2, . . . , Tn), we define R1(T,w) =
∑
i(1− wi) · Ti ·

(1− Fi(Ti)) and R2(T) =
∑
i Ti ·

(∏
j 6=i Fj(Tj)

)
· (1− Fi(Ti)). It follows from Eq. (13) that

max
p
R(p) ≤ 2 max

T
R1(T,w) + max

T
R2(T). (14)

That is, the RHS sum in Eq. (14) is an upper bound on the optimal revenue that can be
obtained. R1(T,w) can be viewed as the private component of the revenue, which becomes
more significant as wi’s get smaller, while R2(T) can be viewed as the public component,
which becomes more significant as wi’s grow. Notice that maxTR2(T) is exactly R∗seq(F),
where R∗seq(F) is the optimal posted prices revenue in a sequential sale in the full externalities
model, as defined in Section 3.

The following lemmas (4.1 and 4.2) show that it is possible to find prices that approximate
maxTR1(T,w) and prices that approximate maxTR2(T). In fact, they show a stronger
result, namely that for each of the terms in the sum, there exists a single price vector
p = p0 = p>0 that approximates it.

I Lemma 4.1. There exists a poly-time algorithm for computing prices p such that R(p) ≥
maxTR1(T,w).

The following allows us to reduce the problem of finding “good” prices in the status-based
externalities model to finding “good” prices in the full externalities model.

I Lemma 4.2. Given prices p′, there exist poly-time computable prices p such that R(p) ≥
Rseq(F ,p′).
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We now present the main result of this section:

I Theorem 4.3. Given a c-approximation pricing for sequential sales in the full externalities
model, there exists a poly-time computable pricing that guarantees a (c+ 2)-approximation
for the optimal sequential sales in the model of status-based externalities.

Proof. Since maxTR2(T) = R∗seq(F), if one can find prices that c-approximate the op-
timal prices in the full externalities model, by Lemma 4.2, one can compute prices that
c-approximate maxTR2(T) in the status-based externalities model.

Let p1 and p2 be the sets of prices for which R(p1) ≥ maxTR1(T,w) and c · R(p2) ≥
maxTR2(T), respectively. These prices can be computed in poly time by Lemmas 4.1 and
4.2. We have that

max
p
R(p)

(14)
≤ 2 max

T
R1(T,w) + max

T
R2(T)

≤ 2 · R(p1) + c · R(p2)
≤ (c+ 2) ·max{R(p1),R(p2)}. J

The following corollary follows from Theorem 4.3 and by the existence of a 4-approximation
pricing for sequential sales in the full externalities model, as shown in the full version.

I Corollary 4.4. For goods that exhibit status-based externalities, there exists a poly-time
algorithm for computing prices that give a 6-approximation to the optimal pricing scheme.
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Abstract
We study the half-integral k-Directed Disjoint Paths Problem ( 1

2kDDPP) in highly strongly
connected digraphs. The integral kDDPP is NP-complete even when restricted to instances
where k = 2, and the input graph is L-strongly connected, for any L ≥ 1. We show that when
the integrality condition is relaxed to allow each vertex to be used in two paths, the problem
becomes efficiently solvable in highly connected digraphs (even with k as part of the input).
Specifically, we show that there is an absolute constant c such that for each k ≥ 2 there exists
L(k) such that 1

2kDDPP is solvable in time O(|V (G)|c) for a L(k)-strongly connected directed
graph G. As the function L(k) grows rather quickly, we also show that 1

2kDDPP is solvable in
time O(|V (G)|f(k)) in (36k3 + 2k)-strongly connected directed graphs. We show that for each
ε < 1, deciding half-integral feasibility of kDDPP instances is NP-complete when k is given as
part of the input, even when restricted to graphs with strong connectivity εk.
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Digital Object Identifier 10.4230/LIPIcs.ESA.2017.36

1 Introduction

Let k ≥ 1 be a positive integer. An instance of a directed k-linkage problem is an ordered
tuple (G,S, T ) where G is a directed graph and S = (s1, . . . , sk) and T = (t1, . . . , tk) are
each ordered sets of k distinct vertices in G. The instance is integrally feasible if there exist
paths P1, . . . , Pk such that Pi is a directed path from si to ti for 1 ≤ i ≤ k and the paths Pi

are pairwise vertex disjoint. The paths P1, . . . , Pk will be referred to as an integral solution
to the linkage problem.

The k-Directed Disjoint Paths Problem (kDDPP) takes as input an instance of a directed
k-linkage problem. If the problem is integrally feasible, we output an integral solution and
otherwise, return that the problem is not feasible. The kDDPP is notoriously difficult. The
problem was shown to be NP-complete even under the restriction that k = 2 by Fortune,
Hopcroft and Wyllie [4].
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In an attempt to make the kDDPP more tractable, Thomassen [16] asked if the problem
would be easier if we assume the graph is highly connected . Define a separation in a directed
graph G as a pair (A,B) with A,B ⊆ V (G) such that A ∪B = V (G) and where there does
not exist an edge (u, v) with u ∈ A \B and v ∈ B \A. The order of the separation (A,B) is
|A ∩B|. The separation is trivial if A ⊆ B or B ⊆ A. The graph G is strongly k-connected
if |V (G)| ≥ k + 1 and there does not exist a nontrivial separation of order at most k − 1.
Let k ≥ 1 and define a directed graph G to be integrally k-linked if every linkage problem
(G,S, T ) is integrally feasible. Thomassen conjectured [16] that there exists a function f such
that every f(k)-strongly connected digraph G is integrally k-linked. He later answered his
own conjecture in the negative [17], showing that no such function f(k) exists. Moreover, he
also showed [17] for all L ≥ 1, the 2DDPP is NP-complete even when restricted to problem
instances where the graph is L-strongly connected.

In this article, we relax the kDDPP problem by requiring that a potential solution not use
any vertex more than twice. Define a directed k-linkage problem (G,S, T ) to be half-integrally
feasible if S = (s1, . . . , sk), and T = (t1, . . . , tk) and there exist paths P1, . . . , Pk such that:

for all 1 ≤ i ≤ k, Pi is a directed path from si to ti, and
for every vertex v ∈ V (G), v is contained in at most two distinct paths Pi.

The paths P1, . . . , Pk form a half-integral solution.
The main result of this article is that the 1

2kDDPP is polynomial time solvable (even
with k as part of the input) when the graph is sufficiently highly connected. Define a graph
G to be half-integrally k-linked if every k disjoint paths problem (G,S, T ) is half-integrally
feasible.

I Theorem 1. For all integers k ≥ 1, there exists a value L(k) such that every strongly
L(k)-connected graph is half-integrally k-linked. Moreover, there exists an absolute constant
c such that given an instance (G,S, T ) of the 1

2kDDPP where G is L(k)-connected, we can
find a solution in time O(|V (G)|c).

The assumption that G is highly connected in Theorem 1 cannot be omitted under the usual
complexity assumptions.

I Theorem 2. For all ε < 1, it is NP-complete to determine whether a given kDDPP
instance (G,S, T ) is half-integrally feasible, even under the assumption that G is εk-strongly
connected.

The value for L(k) in Theorem 1 grows extremely quickly. However, when we fix k, we
can still efficiently solve the 1

2kDDPP with a significantly weaker bound on the connectivity
than that given in Theorem 1.

I Theorem 3. There exists a function f satisfying the following. Let k ≥ 1 be a positive
integer. Given a k-linkage problem (G,S, T ) such that G is (36k3 + 2k)-strongly connected,
we can determine if the problem is half-integrally feasible and if so, output a half-integral
solution, in time O(|V (G)|f(k)).

Given that the kDDPP is NP-complete even in the case k = 2, previous work on the
problem has focused on various relaxations of the problem. Schrijver [14] showed that for
fixed k, the kDDPP is polynomial time solvable when the input graph is assumed to be
planar. Later, Cygan et al. [1] improved this result, showing that the kDDPP is fixed
parameter tractable with the assumption that the input graph is planar. In their recent
series of articles [8, 7, 10] leading to the breakthrough showing the grid theorem holds for
directed graphs, Kawarabayashi and Kreutzer and Kawarabayashi et al. showed the following
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relaxation of the kDDPP can be efficiently resolved for fixed k. They showed that there exists
a polynomial time algorithm which, given an instance (G,S = (s1, . . . , sk), T = (t1, . . . , tk))
of the kDDPP, does one of the following:

find directed paths Pi, 1 ≤ i ≤ k, such that Pi links si to ti and for every vertex v of G,
v is in at most four distinct Pi, or
determine that no integral solution to (G,S, T ) exists.

In terms of hardness results, Slivkins [15] showed that the kDDPP is W [1]-complete even
when restricted to acyclic graphs. Kawarabayashi et al. [7] announced that the proof of
Slivkins result can be extended to show that the 1

2kDDPP is also W [1]-complete.
There are two primary steps in the proof of Theorem 1. First, we show that any highly

connected graph contains a large structure which we can use to connect up the appropriate
pairs of vertices. The exact structure we use is a bramble of depth two. A bramble is a set
of pairwise touching, connected (strongly connected) subgraphs; they are widely studied
certificates of large tree-width both in directed and undirected graphs. See Sections 2 and
3 for the exact definitions and further details. The existence of such a bramble of depth
two follows immediately from Kawarabayashi and Kreutzer’s proof of the grid theorem [9];
however, the algorithm given in [9] only runs in polynomial time for fixed size of the bramble.
We show in Section 4 that from appropriate assumptions which will hold both in the proof of
Theorem 1 and Theorem 3, we are able to find a large bramble of depth two in time O(nc)
for a graph on n vertices and some absolute constant c.

The second main step in the proof of Theorem 1 is to show how we can use such a bramble
of depth two to find the desired solution to a given instance of the 1

2kDDPP. Define a linkage
to be a set of pairwise disjoint paths. We show in Section 5 that given an instance (G,S, T )
and a large bramble B of depth two, we can find a smaller, sub-bramble B′ ⊆ B along with
a linkage P of order k such that every element of P is a path from an element of S to a
distinct subgraph in B′. Moreover, the linkage P is internally disjoint from B′. At the same
time, we find a linkage Q from distinct subgraphs of B′ to the vertices T . Thus, by linking
the appropriate endpoints of Q and P in the bramble B′, we are able to find the desired
solution to (G,S, T ). The fact that the bramble B′ has depth two ensures that the solution
we find uses each vertex at most twice. This result is given as Theorem 11; the statement
and proof are presented in Section 5.

Linking to a well-behaved structure (the bramble of depth two in the instance above) is
a common technique in disjoint path and cycle problems in undirected graphs. See [6, 13]
for examples. The main contribution of Theorem 11 is to extend the technique to directed
graphs, and in particular, simultaneously find the linkage from S to B′ and the linkage Q
from B′ to T . This is made significantly more difficult in the directed case by the directional
nature of separations in directed graphs and the fact that there is no easy way to control
how the separations between S and B′ and those between B′ and T cross.

The proofs of Theorems 1 and 3 are given in Section 6. The construction showing
NP-completeness in Theorem 2 is given in the full version of this article [3], Section 7. Due
to space constraints, some of the more technical proofs are also found in that version; see
Sections 4 and 5.2 in particular.

2 Directed tree-width

An arborescence is a directed graph R such that R has a vertex r0, called the root of R, with
the property that for every vertex r ∈ V (R) there is a unique directed path from r0 to r.
Thus every arborescence arises from a tree by selecting a root and directing all edges away
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from the root. If r, r′ ∈ V (R) we write r′ > r if r′ 6= r and there exists a directed path in R
from r to r′. If (u, v) ∈ E(R) and r ∈ V (R), we write r > (u, v) if r > v or r = v. Let G be
a directed graph and Z ⊆ V (G). A set S ⊆ V (G) \Z is Z-normal if there is no directed walk
in G− Z with the first and last vertex in S which also contains a vertex of V (G) \ (S ∪ Z).
Note that every Z-normal set is a union of strongly connected components of G− Z.

Let G be a directed graph. A tree decomposition of G is a triple (R, β, γ), where R is an
arborescence, β : V (R)→ 2V (G) and γ : E(R)→ 2V (G) are functions such that:
1. {β(r) : r ∈ V (R)} is a partition of V (G) into non-empty sets and
2. if e ∈ E(R), then {β(r) : r ∈ V (R), r > e} is γ(e)-normal.
The sets β(r) are called the bags of the decomposition and the sets γ(e) are called the guards
of the decomposition. For any r ∈ V (R), we define Γ(r) := β(r) ∪ {γ(e) : e incident to r}.
The width of (R, β, γ) is the smallest integer w such that |Γ(r)| ≤ w + 1 for all r ∈ V (R).
The directed tree-width of G is the minimum width of a tree decomposition of G.

Johnson, Robertson, Seymour, and Thomas showed that if we assume k and w are fixed
positive integers, then we can efficiently resolve the kDDPP when restricted to directed
graphs of tree-width at most w [5].

I Theorem 4 ([5], Theorem 4.8). For all t ≥ 1, there exists a function f satisfying the
following. Let k ≥ 1, and let (G,S, T ) be an k-linkage problem such that the directed tree-
width of G is at most t. Then we can determine if (G,S, T ) is integrally feasible and if so,
output an integral solution, in time O(|V (G)|f(k)).

A simple construction shows that the same result holds to efficiently resolve k-linkage
problems half-integrally when k and the tree-width of the graph are fixed. We first define the
following operation. To double a vertex v in a directed graph G, we create a new vertex v′ and
add the edges (u, v′) for all edges (u, v) ∈ E(G), the edges (v′, u) for all edges (v, u) ∈ E(G)
and the edges (v, v′) and (v′, v).

I Corollary 5. For all t ≥ 1, there exists a function f satisfying the following. Let k ≥ 1,
and let (G,S, T ) be an instance of a k-linkage problem such that the directed tree-width of G
is at most t. Given in input (G,S, T ) and a directed tree-decomposition of G of width at most
t, we can determine if the problem is half-integrally feasible and if so, output a half-integral
solution, in time O(|V (G)|f(k)).

Proof. Fix w ≥ 1 to be a positive integer. Let (G,S = (s1, . . . , sk), T = (t1, . . . , tk)) be
an instance of a k-linkage problem where G has tree-width at most w. Let G′ be the
directed graph obtained by doubling every vertex v ∈ V (G). Define the k-linkage problem
(G′, S∗ = (s∗1, . . . , s∗k), T ∗ = (t∗1, . . . , t∗k)) by letting s∗i = si and t∗i = t′i for 1 ≤ i ≤ k. Thus,
(G,S, T ) is half-integrally feasible if and only if (G′, S∗, T ∗) is integrally feasible. Moreover,
any integral solution to (G′, S∗, T ∗) can be easily converted to a half-integral solution for
the original problem (G,S, T ).

Let (R, β, γ) be a tree decomposition of G of width w. Observe that (R, β′, γ′) defined by
β′(r) = {{v, v′} : v ∈ β(r)} and γ′(r) = {{v, v′} : v ∈ γ(r)} yields a tree decomposition of G′
of width at most 2w. Thus, by Theorem 4, we can determine if (G′, S∗ = (s∗1, . . . , s∗k), T ∗ =
(t∗1, . . . , t∗k)) is integrally feasible and find an solution when it is, in polynomial time assuming
k and w are fixed, proving the claim. J

3 Certificates for large directed tree-width

A bramble in a directed graph G is a set B of strongly connected subgraphs B ⊆ G such that
if B,B′ ∈ B, then V (B) ∩ V (B′) 6= ∅ or there exists edges e, e′ ∈ E(G) such that e links B
to B′ and e′ links B′ to B. A cover of B is a set X ⊆ V (G) such that V (B) ∩X 6= ∅ for all
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B ∈ B. The order of a bramble is the minimum size of a cover of B. The bramble number,
denoted bn(G), is the maximum order of a bramble in G. The elements of a bramble are
called bags, and the size of a bramble, denoted |B|, is the number of bags it contains.

The bramble number of a directed graph gives a good approximation of the tree-width,
as seen by the following theorem of [12] as formulated by [10].

I Theorem 6 ([12],[10]). There exist constants c, c′ such that for all directed graphs G, it
holds that

bn(G) ≤ c · tw(G) ≤ c′ · bn(G).

Johnson, Robertson, Seymour, and Thomas showed one can efficiently (in fixed-parameter
time) either find a large bramble in a directed graph or explicitly find a directed tree-
decomposition. Note that the result is not stated algorithmically, but that the algorithm
follows from the construction in the proof. Additionally, they looked at an alternate certificate
of large tree-width, namely havens, but a haven of order 2t immediately gives a bramble of
order t by the definitions.

I Theorem 7 ([5], 3.3). There exist constants c1, c2 such that for all t and directed graphs
G, we can algorithmically find in time O(|V (G)|c1) either a bramble in G of order t or a
tree-decomposition of G of order at most c2t. Moreover, if we find the bramble, it has at most
|V (G)|2t elements.

A long open question of Johnson, Robertson, Seymour, and Thomas [5] was whether
sufficiently large tree-width in a directed graph would force the presence of a large directed
grid minor. Let r ≥ 2 be a positive integer. The directed r-grid Jr (or cylindrical grid) is
the graph defined as follows. Let C1, . . . , Cr be directed cycles of length 2r. Let the vertices
of Ci be labeled vi

1, . . . , v
i
2r for 1 ≤ i ≤ r. For 1 ≤ i ≤ 2r, i odd, let Pi be the directed

path v1
i , v

2
i , . . . , v

r
i . For 1 ≤ i ≤ 2r, i even, let Pi be the directed path vr

i , v
r−1
i , . . . , v1

i . The
directed grid Jr =

⋃r
1 Ci ∪

⋃2r
1 Pi.

In a major recent breakthrough, Kreutzer and Kawarabayashi have confirmed the conjec-
ture of Johnson et al.

I Theorem 8 ([10]). There is a function f : N→ N such that given any directed graph and
any fixed constant k, in polynomial time, we can obtain either
1. a cylindrical grid of order k as a butterfly minor, or
2. a directed tree decomposition of width at most f(k).

For our purposes, we will use brambles when attempting to solve the 1
2kDDPP. However,

in order to ensure that the paths we find don’t use any vertex more than twice, we require
the bramble to have depth two. Define the depth of a bramble B = {B1, . . . , Bt} in a directed
graph G to be the maxv∈V (G) |{i : v ∈ V (Bi)}|; in other words, a bramble has depth at most
k for some positive integer k if no vertex is contained in more than k distinct subgraphs in
the bramble. Note that if B has depth k and size t, then it has order at least dt/ke.

I Lemma 9. For all t ≥ 2, the directed t-grid contains a model of a bramble B of size t and
depth two.

Proof. Let the cycles C1, . . . , Ct, paths P1, . . . , P2t, and vertex labels vj
i , 1 ≤ i ≤ 2t,

1 ≤ j ≤ t, be as in the definition of the directed t-grid. For every l, 1 ≤ l ≤ t, and for every
i, 1 ≤ i ≤ 2t, let Pi(l) be the subpath of Pi with endpoints v1

i and vl
i. For 1 ≤ i ≤ t − 1,

let C ′i be the (unique) cycle in Ci ∪ C1 ∪ P2i−1(i) ∪ P2i(i) which contains all the vertices vj
1,

1 ≤ j ≤ 2k. Let C ′t = Ct. The cycles C ′1, . . . , C ′t form a bramble of depth two and size t, as
desired. J
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4 Finding a bramble of depth two

As described in the introduction, we can actually find a bramble of depth two in time O(nc)
for some absolute constant c without appealing to the full power of the directed grid theorem
of [10]. Indeed, we can show that in a graph with large enough directed treewidth, we find
what is called a sufficiently large well-linked set of vertices in a directed graph, and from
that we are able to efficiently find a large bramble of depth two.1

I Theorem 10. There exists a function f which satisfies the following. Let G be a directed
graph on n vertices and t ≥ 1 a positive integer. Let P be a directed path and X ⊆ V (P )
a well-linked set with |X| ≥ f(t). Then G contains a bramble B = B1, . . . , Bt of depth two.
Moreover, given G, P , and X in input, we can find B in time O(nc) for some absolute
constant c.

The proof of Theorem 10 is given in [3], Section 4. The argument in many ways follows
Diestel et al.’s proof of Robertson and Seymour’s grid theorem (see [2] for the proof) for
undirected graphs.

5 Linking in a bramble of depth two

The main result of this section is the following which shows that if we have a sufficiently large
bramble of depth two, we can use it to efficiently resolve a given instance of the 1

2kDDPP
under a modest assumption on the connectivity of the graph.

I Theorem 11. For all k ≥ 1, there exists a positive integer t such that if G is a (36k3 +2k)-
strongly connected directed graph, and G contains a bramble B of depth two and size t, then
for every k-linkage problem instance (G,S, T ) is half-integrally feasible. Moreover, given
(G,S, T ) and the bags of B, we can find a solution in time O(k4n2).

We begin with some notation. Recall that the doubling of a vertex in a directed graph was
defined in Section 2. To contract a set of vertices U inducing a strongly connected subgraph of
G is to delete U and create a new vertex v, then add edges (w, v) for all edges (w, u) ∈ E(G)
with u ∈ U,w /∈ U and edges (u,w) for all edges (v, u) ∈ E(G) with u ∈ U,w /∈ U .

Let B be a depth two bramble in a directed graph G and B1 ⊆ B. Define the graph
G(B1;B) as follows: First, let G′ be the graph obtained from G by doubling every vertex
belonging to two bags of B and to at least one bag of B1. For each such vertex v, denote its
double by v′. Let B′ be the collection of |B1| subsets of V (G′) obtained from B1 by replacing
each vertex v belonging to a bag of B with v′ in exactly one of the bags it belongs to. Thus,
the elements of B′ are pairwise disjoint and each induces a strongly connected subgraph
of G′, so B′ is a depth 1 bramble in G′. Let G(B1;B) be the graph obtained from G′ by
contracting each element of B′. Denote by KB1 the set of contracted vertices in G(B1;B);
note that the vertices of KB1 form a bidirected clique. Observe that every double of a vertex
of G′ gets contracted, so V (G(B1;B)) \KB1 ⊆ V (G). For a vertex v ∈ KB1 , we write im(v)
for the bag of B1 corresponding to the vertices contracted to v. We stress that each im(v) is
a bag of B1; in particular im(v) ⊆ V (G).

Let S, T be disjoint subsets of the vertices of a directed graph G. A separation (A,B)
separates S from T if S ⊆ A and T ⊆ B. The separation (A,B) properly separates S from T

if S \B and T \A are both nonempty. For a positive integer α, we say S is α-connected to
T if every separation separating S from T has order at least α.

1 A subset X ⊆ V (G) of vertices of a directed graph G is well-linked if for any pair of subsets U1, U2 ⊆ X
with |U1| = |U2|, there exists a directed U1 to U2 linkage of order |U1|.
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Let G be a directed graph, and B′ ⊆ B be brambles of depth two. Let X ⊆ V (G(B′;B)) \
KB′ . We say an X −KB′ or KB′ −X linkage P1, . . . , P|X| is B-minimal if none of the paths
contains internally a vertex in KB′ or in im(v) for some v ∈ KB \ ∪iPi.

We now give a quick outline of how the proof will proceed. Let us denote S = (s1, . . . , sk)
and T = (t1, . . . , tk). Our approach to proving half-integral feasibility is in two steps. We
find three sets of paths, one set of k paths linking S to the bramble B, another set linking B
to T , and a third linking the appropriate ends of paths in the first two sets to each other
inside of B. To get the first two sets of paths, we take advantage of the high connectivity of
the graph. Linking half-integrally inside of the bramble is easy, and its structure allows us
to link any pairs of vertices we like half-integrally. We need the union of the three sets of
paths to form a half-integral solution, so we will choose the first and second sets each to be
(almost) vertex-disjoint, and to intersect the bramble B in a very limited way. The third set
of paths will be half-integral and completely contained in B.

The underlying idea behind our approach to finding the first two sets of paths is to
contract each bag of the bramble (after doubling vertices in two bags) and try to apply
Menger’s theorem. In trying to do this, some issues arise. First, we want the ends of all
2k paths to belong to distinct bags of B. More concerningly, contracting the bags of the
bramble may destroy the connectivity between the bramble and the terminals S and T . We
solve this by throwing away a bounded number of bags from the bramble until we are left
with a sub-bramble that is highly connected to S and from T . In Subsection 5.1, we will
show how to find the first two sets of paths (Lemma 12), modulo finding the sub-bramble
(Lemma 13), and the third set of paths (Lemma 14). Then we show how to put these pieces
together to prove Theorem 11. The proof of Lemma 13 can be found in the full version of
this paper [3], Section 5.2.

5.1 Linking into and inside of a depth two bramble
I Lemma 12. Let G be a (36k3 + 2k)-strongly connected directed graph and B be a bramble
of depth two and size > 188k3 in G. Let (G,S = (s1, . . . , sk), T = (t1, . . . , tk)) be a k-linkage
problem instance. Then we can find paths P s

1 , . . . , P
s
k , P

t
1 , . . . , P

t
k and B′ ⊆ B satisfying the

following:
A1: For each i, P s

i is a directed path from si to some vertex s′i, and P t
i is a directed path

from some vertex t′i to ti.
A2: The vertices s′1, . . . , s′k, t′1, . . . , t′k belong to distinct bags of B′, say Bs

1, . . . , B
s
k, B

t
1, . . . , B

t
k,

respectively.
A3: Every vertex belongs to at most two of P s

1 , . . . , P
s
k , and if a vertex v does belong to two

paths, say P s
i and P s

j (i 6= j), then v = s′i or v = s′j.
A4: Similarly, every vertex belongs to at most two of P t

1 , . . . , P
t
k, and if a vertex v does

belong to two paths, say P t
i and P t

j (i 6= j), then v = t′i or v = t′j.
A5: For each i, the internal vertices of P s

i and of P t
i belong to at most one bag of B′.

A6: For each i, j, ` all distinct , P s
i ∩ P t

j ∩ (Bs
` ∪Bt

`) = ∅.
A7: Every vertex belongs to at most two of P s

1 , . . . , P
s
k , P

t
1 , . . . , P

t
k.

Moreover, given the bags of B, we can find the paths P s
1 , . . . , P

s
k , P

t
1 , . . . , P

t
k in time O(k4n2).

We will prove the following lemma as an intermediate step to Lemma 12.

I Lemma 13. Let G be a (36k3 + 2k)-strongly connected directed graph and B be a bramble
of depth two and size > 188k3 in G. Let (G,S, T ) be a k-linkage problem instance. Assume B
is disjoint from {si, ti; 1 ≤ i ≤ k}. Then there exist brambles BS and BT with BT ⊆ BS ⊆ B
such that S is (36k3 + 2k)-connected to KBS

in G(BS ;B) and T is 3k-connected to KBT
in

G(BT ;BS). Also |BS | − |BT | < 36k3. Moreover we can find BS and BT in time O(k4n2).
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The proof of Lemma 13 is found in [3], Section 5.2. But first, let’s see how Lemma 13
implies Lemma 12.

Proof of Lemma 12. Consider the brambles BS and BT given by Lemma 13. Denote by W
the vertices in G(BT ;B) that belong to exactly one bag in BT and to two bags in BS .

I Claim. There exist k vertex-disjoint paths P1, . . . , Pk in G(BT ;B) \W where Pi links si

to vi, for some vi ∈ KBT
.

Suppose not; then by Menger’s theorem there exists a separation (A,B) of order < k in
G(BT ;B) \W separating S from KBT

. But then consider the following separation in G(BS).
Let

A′ = (A ∩ V (G(BS ;B))) ∪ {v ∈ KBS
: im(v) ∩A 6= ∅} ∪ (KBS

\KBT
)

and

B′ = (B ∩ V (G(BS ;B))) ∪ {v ∈ KBS
: im(v) ∩B 6= ∅} ∪ (KBS

\KBT
).

Intuitively, (A′, B′) is the separation (A,B) viewed in the graph G(BS ;B), plus we add the
vertices of KBS

\KBT
to each side. It’s easy to check that (A′, B′) is a separation in G(BS ;B),

since every vertex in V (G(BT ;B)) \ V (G(BS ;B)) belongs to im(v) for some v ∈ KBS
. Also,

we have |A′ ∩B′| ≤ 2|A ∩B|+ 36k3 because every vertex belongs to at most two bags of BS

and every vertex in W belongs to one bag of BS \ BT . But this contradicts Lemma 13 and
proves the claim.

Choose the paths P1, . . . , Pk so that they are BT -minimal in G(BT ;B). Let us now view
these as paths in the original graph G: Since V (G(BT ;B)) \KBT

⊆ V (G), each vertex in Pi

except vi is a vertex of G, for each 1 ≤ i ≤ k. So choose s′i ∈ im(vi) such that there exists
an edge from the second to last vertex of Pi to s′i. Then let P s

i be the path obtained from Pi

by replacing vi with s′i. Notice that P s
i is a path in G. The paths P s

1 , . . . , P
s
k are internally

disjoint, so they satisfy A3 .

I Claim. There exist vertex-disjoint paths Q1, . . . , Qk in G(BT ;BS) \ {v1, . . . , vk, s
′
1, . . . , s

′
k}

where Qi links wi to ti for some wi ∈ KBT
. Moreover, the vertices v1, . . . , vk, w1, . . . , wk are

distinct.

Suppose not; then by Menger’s theorem, in the graph G(BT ;BS) \ {v1, . . . , vk, s
′
1, . . . , s

′
k}

there is a separation (A,B) of order < k properly separating KBT
from T . But then

(A∪{v1, . . . , vk, s
′
1, . . . , s

′
k}, B∪{v1, . . . , vk, s

′
1, . . . , s

′
k}) has order < 3k and properly separates

KBT
from T in G(BT ;BS), contradicting Lemma 13. This proves the claim.

We may also choose the paths Q1, . . . , Qk to be BT -minimal in G(BT ;BS). Viewing these
paths as paths in G as above (symmetrically), we obtain paths P t

1 , . . . , P
t
k, with P t

i joining
t′i to ti. These paths satisfy A4 .

Let B′ = {im(v) : v ∈ {v1, . . . , vk, w1, . . . , wk}}. For each i, set Bs
i = im(vi) and

Bt
i = im(wi). We now check that the paths P s

1 , . . . , P
s
k , P

t
1 , . . . , P

t
k satisfy the seven assertions

in the lemma statement. A1 , A2 , A3 and A4 have already been established.
To see that A5 holds, note that each of P1, . . . , Pk is internally disjoint from KBT

in
G(BT ;B). Similarly, the Q1, . . . , Qk paths are internally disjoint from KBT

in G(BT ;BS).
Moreover, by the definition of G(BT ;B) and G(BT ;BS), every vertex not in KBT

in either of
those graphs belongs to at most one bag of BT and therefore to at most one bag of B′. It
follows that for each i, each internal vertex of P s

i and P t
i belongs to at most one bag of B′,

proving A5 .
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To see A6 , let 1 ≤ i, j, ` ≤ k be distinct. Suppose for contradiction that some vertex v
belongs to P s

i ∩P t
j ∩ (Bs

` ∪Bt
`). If v is an internal vertex of either P s

i or P t
j then v belongs to

only one bag of B′ by A5 . Also, if v = s′i or t′j then v belongs to two bags of B′. We deduce
that v is an internal vertex of both P s

i and P t
j . Since we found Pi in the graph G(BT ;B) \W ,

we know v /∈W so v belongs to one bag in BT and one bag of BS . But we found Qj in the
graph G(BT ;BS), so v belongs to one bag of BT and two bags of BS . This is a contradiction,
proving A6 .

Finally, let us check A7 . Suppose for contradiction’s sake that some vertex v ∈ V (G)
belongs to three paths. By A3 and A4 , we must have v ∈ P s

i ∩P s
j ∩P t

` or v ∈ P t
i ∩P t

j ∩P s
` for

some 1 ≤ i, j, ` ≤ k. If v ∈ P s
i ∩P s

j ∩P t
` , then by A3 we may assume without loss of generality

that v = s′i. But the path Q` was found in a graph not containing vi or s′i, so we must have
s′i ∈ Bt

` ∩Bs
i . Since B′ is depth two, v /∈ Bs

j so v is an internal vertex of P s
j , contradicting

A5 . If v ∈ P t
i ∩ P t

j ∩ P s
` , then without loss of generality v = t′i ∈ Bt

i = im(wi). By the
BT -minimality of P1, . . . , Pk, v cannot be an internal vertex of P` so we have v = s′` ∈ Bs

` .
Since v belongs to two bags, A5 implies that v = t′j , a contradiction.

It remains to check that we can indeed find these paths in time O(k4n2). Indeed finding
the brambles BS and BT takes time O(k4n2) using Lemma 13. Then, the sets of paths
P1, . . . , Pk and Q1, . . . , Qk can be found in time O(n2) according to Menger’s Theorem (see
[11]), and from these we can easily get P s

1 , . . . , P
s
k , P

t
1 , . . . , P

t
k in linear time. J

The following lemma shows how to solve any linkage problem half-integrally in a depth
two bramble, provided the terminals belong to distinct bags.

I Lemma 14. For all k ≥ 2, let G be a directed graph and let S′ = (s′1, . . . , s′k) and
T ′ = (t′1, . . . , t′k)) be two ordered k-tuples of vertices in G. Suppose B is a bramble of depth
two in G, and s′1, . . . , s′k, t′1, . . . , t′k belong to distinct bags Bs

1, . . . , B
s
k, B

t
1, . . . , B

t
k, respectively

of B. Then there exist paths P1, . . . , Pk such that Pi links s′i to t′i and, additionally, every
vertex of G is in at most two distinct paths Pi. Finally, it also holds that Pi ⊆ Bs

i ∪Bt
i for

each i, and we can find the paths P1, . . . , Pk in time O(kn2).

Proof. For each i, we obtain Pi as follows. By the definition of a bramble, there exist vertices
vi ∈ Bs

i and wi ∈ Bt
i with either vi = wi or (vi, wi) ∈ E(G). Since Bs

i and Bt
i are both

strongly connected, there exist a directed path from s′i to vi contained in Bs
i and a directed

path from wi to t′i contained in Bt
i . Take Pi to be the concatenation of these two paths. By

construction, each Pi belongs to Bs
i ∪ Bt

i . Further, since the bags Bs
1, . . . , B

s
k, B

t
1, . . . , B

t
k

are distinct, and every vertex in G belongs to at most two distinct bags, it follows that
P1, . . . , Pk is the desired collection of paths. Each Pi can be found in time O(n2), and so the
overall running time of O(kn2) follows. J

We can deduce Theorem 11 from Lemmas 12 and 14 as follows.

Proof of Theorem 11. Let P s
1 , . . . , P

s
k , P

t
1 , . . . , P

t
k and s′1, . . . , s

′
k, t
′
1, . . . , t

′
k and

B′ = Bs
1, . . . , B

s
k, B

t
1, . . . , B

t
k satisfy A1 - A7 , as given by Lemma 12.

By A2 , G, S′ = (s′1, . . . , s′k) and T ′ = (t′1, . . . , t′k)) satisfying the hypothesis of Lemma
14. Let P1, . . . , Pk be the paths guaranteed by that lemma.

For each 1 ≤ i ≤ k, let Qi = P s
i PiP

t
i be the concatenation of these three paths. Clearly,

each Qi is a directed walk linking si to ti and therefore contains a directed path from si to
ti. We just need to check that the k paths are half-integral. Suppose for contradiction’s sake
that some vertex v ∈ Qi ∩Qj ∩Q` for some 1 ≤ i, j, ` ≤ k all distinct. By symmetry, we can
consider four cases.
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Case 1: v ∈ Pi ∩ Pj .
Then, by Lemma 14, v ∈ (Bs

i ∪Bt
i ) ∩ (Bs

j ∪Bt
j), so v belongs to two bags of B′. Then by A5

v is not an internal vertex of P s
` or P t

` , a contradiction.

Case 2: v ∈ P s
i ∩ P s

j ∩ P`.
By A3 in Lemma 12, we may assume v = s′i, so v ∈ Pi. Since v ∈ P`, it follows v ∈
Bs

i ∩ (Bs
` ∪Bt

`). By A5 , v is not an internal vertex of P s
j , so v ∈ Bs

j as well, a contradiction.

Case 3: v ∈ P t
i ∩ P t

j ∩ P`.
By A4 in Lemma 12, we may assume v = t′i, so v ∈ Pi. Again, since v ∈ P`, it follows
v ∈ Bt

i ∩(Bs
` ∪Bt

`). By A5 , v is not an internal vertex of P t
j so v ∈ Bs

j as well, a contradiction.

Case 4: v ∈ P s
i ∩ P t

j ∩ P`.
By Lemma 14 P` ⊆ (Bs

` ∩ Bt
`), but this contradicts A6 . By A6 v /∈ Bs

` ∩ Bt
` so v /∈ P`, a

contradiction.
The running time bound of O(k4n2) follows from the bounds given by Lemmas 12, 13

and 14. J

6 Proofs of Theorems 1 and 3

Given Theorems 10 and 11, it is now easy to complete the proofs of Theorems 1 and 3. We
begin with Theorem 1.

Proof of Theorem 1. Let f be the function from Theorem 10. Let t = t(k) be the value
necessary for the size of the bramble in order to apply Theorem 11 and resolve an instance
of 1

2kDDPP.
Let G be an f(t)-strongly connected graph on n vertices, and let (G,S = (s1, . . . , sk), T =

(t1, . . . , tk)) be an instance of the 1
2kDDPP. We can greedily find a path P with |V (P )| ≥ f(k).

Note that any subset of at most f(k) vertices is well-linked, and thus, V (P ) is a well-linked set.
By Theorem 10, we can find in time O(nc1) a bramble B of size at least t. As f(t) ≥ 36k3 +2k,
by Theorem 11, we can find a solution to (G,S, T ) in time O(k4n2), completing the proof of
the theorem. J

For the proof of Theorem 3, we will need two additional results from [9]. Note that in
[9], neither statement is algorithmic, but the existence of the algorithm follows immediately
from the constructive proof.

I Lemma 15 ([9], 4.3). Let G be a directed graph on n vertices and B a bramble in G. Then
there is a path P intersecting every element of B and given G and B in input, we can find
the path P in time O(|B|n2).

I Lemma 16 ([9], 4.4). Let G be a directed graph graph on n vertices, B a bramble of order
k(k + 2) and P a path intersecting every element of B. Then there exists a set X ⊆ V (P ) of
order 4k which is well-linked. Given P , B, and G in input, we can algorithmically find X in
time |B|nO(k).

Proof of Theorem 3. Let (G,S = (s1, . . . , sk), T = (t1, . . . , tk)) be an instance of the
1
2kDDPP. Let n = |V (G)|. Let t be the necessary size of a bramble in order to apply
Theorem 11 to resolve an instance of the 1

2kDDPP. Let f be the function in Theorem 10.
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By Theorem 7, we can either find a tree decomposition of G of width at most c2((f(t)+2)2)
or a bramble B of order (f(t) + 2)2. Given the tree decomposition, by Corollary 5, we can
solve (G,S, T ) in time O(nf1(c2(f(t)+2)2)) for some function f1.

If instead we find the bramble B, in order to apply Theorem 11, we will have to convert it
to a bramble of depth two. By Theorem 7, we may assume that |B| ≤ n2(f(t)+2)2 . Thus, in
time nO(f(t)2), we can find a path P intersecting every element of B by Lemma 15. By Lemma
16, again in time nO(f(t)2), we can find a well-linked subset X ⊆ V (P ) with |X| ≥ f(t).
Finally, applying Theorem 10, we find can find a bramble B′ of size t and depth two. Finally,
by Theorem 11, we can resolve (G,S, T ) in time O(k4n2). In total, the algorithm takes time
O(nf2(k)) for some function f2, as desired. J
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Abstract
Propositional satisfiability (SAT) is one of the most fundamental problems in computer science.
The worst-case hardness of SAT lies at the core of computational complexity theory. The average-
case analysis of SAT has triggered the development of sophisticated rigorous and non-rigorous
techniques for analyzing random structures.

Despite a long line of research and substantial progress, nearly all theoretical work on random
SAT assumes a uniform distribution on the variables. In contrast, real-world instances often
exhibit large fluctuations in variable occurrence. This can be modeled by a scale-free distribution
of the variables, which results in distributions closer to industrial SAT instances.

We study random k-SAT on n variables, m = Θ(n) clauses, and a power law distribution
on the variable occurrences with exponent β. We observe a satisfiability threshold at β =
(2k−1)/(k−1). This threshold is tight in the sense that instances with β 6 (2k−1)/(k−1)−ε for
any constant ε > 0 are unsatisfiable with high probability (w. h. p.). For β > (2k−1)/(k−1) + ε,
the picture is reminiscent of the uniform case: instances are satisfiable w. h. p. for sufficiently
small constant clause-variable ratios m/n; they are unsatisfiable above a ratio m/n that depends
on β.
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model checking, hardware and software verification, automated planning and scheduling, and
circuit design. Even large industrial instances with millions of variables can often be solved
very efficiently by modern SAT solvers. The structure of these industrial SAT instances
appears to allow a much faster processing than the theoretical worst-case of this NP-complete
problem. It is an open and widely discussed question which structural properties make a
SAT instance easy to solve for modern SAT solvers.

Random SAT. For modeling typical inputs, we study random propositional formulas. In
random satisfiability, we have a distribution over Boolean formulas in conjunctive normal
form (CNF). The degree of a variable in a CNF formula is the number of disjunctive clauses
in which that variable appears either positively or negatively. Two interesting properties
of random models are its degree distribution and its satisfiability threshold. The degree
distribution F (x) of a formula Φ is the fraction of variables that occur more than x times
(negated or unnegated). A satisfiability threshold is a critical value around which the
probability that a formula is satisfiable changes from 0 to 1.

Uniform random SAT. In the classical uniform random model, the degree distribution is
binomial. On uniform random k-SAT, the satisfiability threshold conjecture [1] asserts if Φ is
a formula drawn uniformly at random from the set of all k-CNF formulas with n variables
and m clauses, there exists a real number rk such that

lim
n→∞

Pr{Φ is satisfiable} =
{

1 m/n < rk;
0 m/n > rk.

A well-known result of Friedgut [20] establishes that the transition is sharp, even though
its location is not known exactly for all values of k (and may also depend on n). For k = 2,
the critical threshold is r2 = 1 [13, 16, 22]. Recently, Coja-Oghlan and Panagiotou [15]
gave a sharp bound (up to lower order terms) with rk = 2k log 2 − 1

2 (1 + log 2) ± ok(1).
Ding, Sly, and Sun [18] derive an exact representation of the threshold for all k > k0,
where k0 is a large enough constant. Explicit bounds also exist for low values of k, e.g.,
3.52 6 r3 6 4.4898 [23, 24, 17], and numerical estimates using the cavity method from
statistical mechanics [28] suggest that r3 ≈ 4.26.

Other random SAT models. In the regular random model [10], formulas are constructed
at random, but the degree distribution is fixed: each literal appears exactly bkm2n c or b

km
2n c+ 1

times in the formula. Similarly, Bradonjic and Perkins [11] considered a random geometric
k-SAT model in which 2n points are placed at random in [0, 1]d. Each point corresponds to
a unique literal, and clauses are formed by all k-sets of literals that lie together within a ball
of diameter Θ(n−1/d). Again, this model has a binomial variable distribution.

Power law random SAT. Recently, there has been a paradigm shift when modeling real-
world data. In many applications, it has been found that certain quantities do not cluster
around a specific scale as suggested by a uniform distribution, but are rather inhomoge-
neous [14, 30]. In particular, the degree distribution in complex networks often follows a
power law [29]. This means that the fraction of vertices of degree k is proportional to k−β ,
where the constant β depends on the network. To mathematically study the behavior of
such networks, random graph models that generate a power law degree distribution have
been proposed [9, 26, 2, 31].
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Figure 1 Illustration of our asymptotic results for the power law satisfiability threshold location
when n → ∞ (left) compared with empirical results for randomly generated power law 3-SAT
formulas on n = 106 variables checked with the SAT solver MiniSAT (right). The timeout was set
to one hour.

While there has been a large amount of research on power law random graphs in the past
few years [32], there is little previous work on power law SAT formulas. Nevertheless, the
observation that quantities follow a power law in real-world data has also emerged in the
context of SAT [10]. As all aforementioned random SAT models assume strongly concentrated
degree distributions, it was conjectured that this property might be modeled well by random
formulas with a power law degree distribution.

To address this conjecture, and to help close the gap between the structure of uniform
random and industrial instances, Ansótegui, Bonet, and Levy [6] recently proposed a power-
law random SAT model. This model has been studied experimentally [6, 7, 4, 5], and
empirical investigations found that (1) indeed the constraint graphs of many families of
industrial instances obey a power-law and (2) SAT solvers that are constructed to specialize
on industrial instances perform better on power-law formulas than on uniform random
formulas. To complement these experimental findings, we contribute with this paper the
first theoretical results on this model.

Our results. We study random k-SAT on n variables and m = Θ(n) clauses. Each clause
contains k = Θ(1) different, independently sampled variables. Each variable xi is chosen
with non-uniform probability pi and negated with probability 1/2. A formal definition can
be found in Section 2. We first study sufficient conditions under which the resulting k-SAT
instances are unsatisfiable. Assume a probability distribution ~p on the variables where pi is
non-decreasing in i ∈ {1, . . . , n}. If the k most frequent variables are sufficiently common,
we prove in Section 3 the following statement:

I Theorem 1.1. Let Φ be a random k-SAT formula with probability distribution ~p on the
variables (c.f. Definition 2.1), with k > 2 and m

n = Ω(1). If pn−k+1 = Ω(( logn
n )1/k), then Φ

is w. h. p. unsatisfiable.

Our focus are power law distributions with some exponent β. Theorem 1.1 implies that
power law random k-SAT formulas with β = 2k−1

k−1 − ε for an arbitrary constant ε > 0 are
unsatisfiable with high probability1, cf. Corollary 3.1.

1 We say that an event E holds w. h. p., if there exists a δ > 0 such that Pr[E] > 1−O(n−δ).
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In Section 4 we show that something similar holds for the clause-variable ratio m
n , i.e.

power law random k-SAT formulas with m
n bigger than some constant are unsatisfiable with

high probability. Although this already follows from basic observations, we derive a better
bound on the value of the constant.

I Theorem 1.2. Let Φ be a random k-SAT formula with probability distribution ~p on the
variables (c.f. Definition 2.1), with k > 2 and r = m

n . Φ is unsatisfiable w. h. p. if

(
1− 1

2k
)r [ n∏

i=1

[
2−

(
1− k · pi

2k − 1
1(

1− 1
2k

2‖~p‖22
))m]] 1

n

< 1.

In Section 5 we prove the following positive result, which complements our picture of the
satisfiability landscape:

I Theorem 1.3. Let Φ be a random k-SAT formula whose variable probabilities follow a
power law distribution (c.f. Definition 2.2). If the power law exponent is β > 2k−1

k−1 + ε for
an arbitrary ε > 0, Φ is satisfiable with high probability if mn is a small enough constant.

Together our main theorems prove that random k-SAT instances whose variables follow
power law distributions do not only exhibit a phase transition for some clause-variable ratio
r = m

n , but also around the power law exponent β = 2k−1
k−1 . Figure 1 contains an overview of

our results. To prove these statements, we borrow tools developed for the uniform random
SAT model. Note, however, that many of their common techniques like the differential
equation method seem difficult to apply to non-uniform distributions; as removing a variable
results in a more complex rescaling of the rest of the distribution. It is therefore crucial to
perform careful operations on the formulas that leave the distribution of variables intact. To
this end, we use techniques known from the analysis of power law random graphs.

Clause length. We focus on power law variable distributions but fix the length of every
clause to k > 2. Power law models have also been proposed in which clause length is
distributed by a power law as well [6, 7]. As long as there is a constant minimum clause
length kmin > 2, our results can be extended to this case in the following way.

If the clause lengths are distributed as a power law, there will appear Θ(n) clauses of
length kmin, and all other clauses are of larger size. In that case, Theorems 1.1 and 1.3 are
directly applicable to the linear number of clauses with size kmin (obtaining different hidden
constants); and we have that the formula is satisfiable with high probability if β > 2kmin−1

kmin−1 +ε
and m/n is a small enough constant. On the other hand, the formula is unsatisfiable with
high probability, if β 6 2kmin−1

kmin−1 − ε. Consequently, the satisfiability of the formula does
(asymptotically) not depend on the second power law.

2 Definition of the Model and Preliminaries

We analyze random k-SAT on n variables and m = Θ(n) clauses, where k > 2. The constant
r := m

n is called clause-variable ratio or constraint density. We denote by x1, . . . , xn the
Boolean variables. A clause is a disjunction of k literals `1 ∨ . . . ∨ `k, where each literal
assumes a (possibly negated) variable. Finally, a formula Φ in conjunctive normal form is a
conjunction of clauses c1 ∧ . . . ∧ cm. We conveniently interpret a clause c both as a Boolean
formula and as a set of literals. Following standard notation, we write |`| to refer to the
indicator of the variable corresponding to literal `. We say that Φ is satisfiable if there exists
an assignment of variables x1, . . . , xn such that the formula evaluates to 1.
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I Definition 2.1 (Random k-SAT). Let m,n be given, and consider any probability distribu-
tion ~p on n variables with

∑n
i=1 pi = 1. To construct a random SAT formula Φ, we sample

m clauses independently at random. Each clause is sampled as follows:
1. Select k variables independently at random from the distribution ~p. Repeat until no

variables coincide.
2. Negate each of the k variables independently at random with probability 1/2.

Observe that by setting pi = 1
n for all i, we obtain again the uniform random SAT model.

One can show (see full version [21]) that for power law distributions, the probability to
sample a specific clause c is

(1 + o(1)) k!
2k
∏
`∈c

p|`|. (1)

Power law Distributions. In this paper, we are mostly concerned with distributions pi that
follow a power law. To this end, we define two models: A general model to capture most
power law distributions (which is harder to analyze), and a concrete model that gives us one
instance of ~p depending only on n that can be used to compute precise leading constants. We
use the general model to derive some asymptotic results; and the concrete model to compare
with the uniform random SAT model and for the experiments.

Before we define these two models, let us establish the concept of a weight wi of a
variable xi. The weight gives us (roughly) the expected number of times the variable appears
in the formula. That is,

pi := wi∑
j wj

.

Thus, fixing the weights ~w = (w1, . . . , wn) also fixes the probability distribution ~p. It
is important to distinguish between the initial distribution of variables ~p and modified
distributions that may arise as a result of stochastic considerations. For instance, the
smallest-weight variable in a clause is clearly not distributed according to ~p (except in 1-SAT).
To avoid confusion, we identify a variable with its weight, as the weights stay fixed throughout
the analysis. For convenience, we further assume W. l. o. g. that the variables are ordered
increasingly by weight, i. e. for i 6 j we have wi 6 wj . Note that our definition of power law
ensures that for β > 2, we have

∑
j wj = Θ(n).

We are now ready to define the two models.

I Definition 2.2 (General Power Law). Let the weights ~w := w1, . . . , wn be given, and let W
be a weight selected uniformly at random. We say that ~w follows a power law with exponent
β, if w1 = Θ(1), wn = Θ(n

1
β−1 ), and for all w ∈ [w1, wn] it holds

F (w) := Pr[W > w] = Θ(w1−β) (2)

Whenever we need the explicit constants bounding the distribution function, we refer to
them by α1, α2 as in

α1w
1−β 6 F (w) 6 α2w

1−β . (3)

We point out that Definition 2.2 assumes a deterministic weight sequence; but it can be
easily generalized to also support randomly generated weights.

For the concrete model, we define the weights as follows.
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I Definition 2.3 (Concrete Power Law). Given a power law exponent β, we call ~w the concrete
power law sequence, if

wn−i+1 := (ni )
1

β−1 . (4)

One can check that for these concrete weights, it holds n · F (w) = bnw1−βc, so in a sense,
they are a canonical choice for producing a power law weight distribution.

It remains to show that using a power law distribution in Definition 2.1 indeed results in
a power law distribution of variable occurrences. Ansótegui et al. [7] provide a proof sketch
for this fact, we prove it rigorously in the full version [21] of the paper.

I Theorem 2.4. Let Φ be a random k-SAT formula that follows an arbitrary power law distri-
bution with exponent β (c.f. Definition 2.2) and m = Θ(n). Then, there are dmin = Θ (wmin)
and dmax = Θ (wmax), such that for all dmin 6 d 6 dmax w. h. p. it holds that

N>d = Θ(n · d1−β),

where N>d is the number of variables that appear at least d times in Φ.

To analyze power law distributions, we often make use of the following result of Bringmann,
Keusch, and Lengler [12, Lemma B.1], which allows replacing sums by integrals.

I Theorem 2.5 ([12]). Let f : R → R be a continuously differentiable function, and let
F>(w) := Pr[W > w]. Then, for any 0 6 w 6 w̄,

∑
i∈[n],w6wi6w̄

1
nf(wi) = f(w) · F (w)− f(w̄) · F>(w̄) +

∫ w̄

w

f ′(w) · F (w) dw.

Using this theorem, the following corollary can be shown (see full version [21]):

I Corollary 2.6. Let the variables wi be power law distributed with exponent β > 2, and
define W>w :=

∑
i∈[n] : wi>w wi. Then, W>w = Θ(nw2−β).

Hence,
∑
j wj = W>w1 = Θ(n) and therefore pi = Θ(win ). Finally, we denote by V

the random variable describing the weight of a SAT variable chosen according to a power
law distribution pi, that is, Pr[V = w] =

∑
i pi · 1[wi = w], where 1 denotes the indicator

variable of the event. Note that this is not equivalent to W , since there is a subtle difference
in the two random processes: W is a random variable drawn uniformly at random from
w1, . . . , wn, whereas V is a random variable drawn from the same set, but with the non-
uniform distribution p1, . . . , pn. Hence, by Corollary 2.6,

Pr[V > w] = Θ(w2−β). (5)

3 Small Power Law Exponents are Unsatisfiable

For small power law exponents, one can show that they result in formulas that are unsatisfiable
(for large n) for all constant clause-variable ratios. The rationale behind this is that large
variables with weight Θ(wn) appear polynomially often together in a clause. For constant k,
they thus appear in all 2k configurations (negated and non-negated), making the formula
trivially unsatisfiable. Theorem 1.1, already stated in the introduction, gives a sufficient
condition on the variable distribution to make a random k-SAT formula unsatisfiable.
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I Theorem 1.1. Let Φ be a random k-SAT formula with probability distribution ~p on the
variables (c.f. Definition 2.1), with k > 2 and m

n = Ω(1). If pn−k+1 = Ω(( logn
n )1/k), then Φ

is w. h. p. unsatisfiable.

Proof. Recall that pi is without loss of generality increasing in i. Consider the k largest
variables n− k+ 1, . . . , n. We call Ei the event that clause i consists of these variables. Then,

Pr[Ei] = Ω(pkn−k+1) = Ω( logn
n ).

Since each clause is drawn independently at random, we obtain by a Chernoff bound (see
for example Theorem 1.1 in [19]) that with high probability, the total number of clauses
consisting of these variables is

|E| :=
m∑
i=1

1[Ei] = Ω(logn).

In other words, the number of clauses in which the k largest variables appear together
increases as a logarithm in n. Since in each of these clauses, the literals appear negated
or non-negated with constant probability 1/2, we have that all 2k possible combinations of
negated and non-negated literals appear in the formula with probability at least

1− 2k · ( 2k−1
2k )|E| = 1− n−Ω(1)

by the union bound. Since all 2k combinations cannot be satisfied at once, the resulting
formula is unsatisfiable. J

By applying Theorem 1.1 to a power law distribution on the variables, we obtain the following
power law threshold for unsatisfiability.

I Corollary 3.1. Let Φ be a random k-SAT formula that follows an arbitrary power law
distribution fulfilling Definition 2.2. If the power law exponent is β 6 2k−1

k−1 − ε for an
arbitrary ε > 0, Φ is unsatisfiable with high probability.

Proof. Observe that from β = 2k−1
k−1 − ε it follows k = β−1

β−2 − ε
′ for some constant ε′. By

setting nF (w) 6 k we obtain that the largest k variables all have weight Θ(wn) = Θ(n
1

β−1 ).
Consequently, when β > 2,

(pn−k)k = Θ(n−k
β−2
β−1 ) = Θ(n−1+ε′ β−2

β−1 ) = ω( logn
n ),

and the statement follows from Theorem 1.1. For the case where β 6 2, one can show
using Theorem 2.5 that

∑
i wi = Θ(n

1
β−1 ), and therefore pn−k = Ω(1). Again, the statement

follows from Theorem 1.1. J

4 Large Clause-Variable Ratios are Unsatisfiable

It is a well-known result that random SAT on any probability distribution will result in
unsatisfiable formulas if the clause-variable ratio is high. This follows from the probabilistic
method: The expected number of assignments that satisfy a formula is 2n(1− 2−k)m. This is
independent from the variable distribution as long as each variable is negated with probability
1/2. Hence, if the clause-variable ratio exceeds ln(2)/ ln( 2k

2k−1 ), the resulting formula will be
unsatisfiable with high probability. This constant is rather large, however: In the case of
k = 3 this yields an upper bound on the clause-variable ratio of ≈ 5.191. For the concrete
power law distribution in Definition 2.3, the true threshold is much smaller. In fact, it
appears to be below the satisfiability threshold for uniform random SAT.

Let us restate the main result, which will be proven with the Single Flip Method [25].
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37:8 Bounds on the Satisfiability Threshold for Power Law Distributed Random SAT

Table 1 Numerical upper bounds on the density threshold obtained from the Single-Flip Method
(cf. Theorems 1.2 and 4.2). Empty fields indicate unsatisfiability for all constant densities by
Theorem 1.1. To the best of our knowledge, the bounds for uniform random SAT with k > 4 are the
currently best known numerical upper bounds. For k = 3 the best known unconditional numerical
upper bound is 4.4898 [17].

power law distribution with exponent β uniform
dist.

k 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

3 3.48 3.71 3.87 3.99 4.08 4.67
4 7.87 8.42 8.78 9.04 9.23 9.37 10.23
5 16.27 17.75 18.64 19.21 19.61 19.90 20.11 21.33
7 67.21 75.74 79.81 82.09 83.49 84.42 85.07 85.54 87.88

10 619.28 662.48 680.93 690.36 695.77 699.12 701.34 702.88 708.94

I Theorem 1.2. Let Φ be a random k-SAT formula with probability distribution ~p on the
variables (c.f. Definition 2.1), with k > 2 and r = m

n . Φ is unsatisfiable w. h. p. if

(
1− 1

2k
)r [ n∏

i=1

[
2−

(
1− k · pi

2k − 1
1(

1− 1
2k

2‖~p‖22
))m]] 1

n

< 1.

The following is a corollary from this theorem:

I Corollary 4.1. Let Φ be a random k-SAT formula that follows Definition 2.1 with k > 2,
r = m

n and ‖~p‖22 = o(1). With high probability, Φ is unsatisfiable if

(
1− 1

2k
)r (2− exp

(
−
(

k

2k − 1r
)

(1 + o(1))
))

< 1.

The proof can be found in the full version [21] of the paper. Interestingly, the above
corollary gives the same inequality as the Single-Flip Method for uniform random SAT [25].
This shows that the uniform distribution resembles a worst-case for this method; and all
other distributions can only improve this bound.

If ~p follows a power law distribution as in Definition 2.3, we can derive the following
theorem, which gives an upper bound independent of n.

I Theorem 4.2. Let Φ be a random k-SAT formula with k > 2 and r = m
n that follows a

power law distribution fulfilling Definition 2.3. Let further N ∈ N+ be any constant. If the
power law exponent is β > 2, then Φ is w. h. p. unsatisfiable if(1− 1

2k
)r 2 1

N

N−1∏
l=1

[
2− exp

(
− (1 + o(1)) r k

2k − 1
β − 2
β − 1

(
N

l

) 1
β−1
)] 1

N

 < 1.

The bound from this Theorem improves as N →∞. As this expression is rather terse,
we also numerically determine in Table 1 the smallest constant r such that the formula
is unsatisfiable. We compare these values to the upper bounds for uniform random SAT
obtained from the Single-Flip Method.

In the remainder of this section, we show Theorem 1.2 and defer the proof of Theorem 4.2
to the full version of the paper [21].
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I Definition 4.3 (Single-Flip Property). For a random formula Φ a truth assignment A has
the single-flip property iff A satisfies Φ and every assignment A′ obtained from A by flipping
exactly one zero to one does not satisfy Φ.

Let NSF be the number of truth assignments with the single-flip property for Φ. As
argued in [25], such an assignment exists if Φ is satisfiable. From Markov’s Inequality, we
thus know Pr[Φ satisfiable] 6 E [NSF ] .

In the following, we derive a bound on E [NSF ]. Using the non-uniform birthday paradox
from [3] we can show that the probability of choosing a clause c is at most

k!
2k ·

∏
`∈c p|`|

1− 1
2k

2‖~p‖22
.

To bound the number of assignments with the single-flip property, we use the following result.

I Lemma 4.4 ([25]). The expected number of assignments with the single-flip property is

E [NSF ] =
(
1− 1

2k
)m ∑

assignment A
Pr[A single-flip | A satisfying].

Proof. Note that for a certain truth assignment A, the probability of choosing a clause which
is not satisfied by A is 1/2k. Therefore, the probability that A is a satisfying assignment for
Φ is exactly

(
1− 1

2k
)m. J

We next bound the probability that a satisfying assignment A has the single-flip property.

I Lemma 4.5. For a satisfying assignment A = (a1, a2, . . . , an) ∈ {0, 1}n it holds that

Pr[A single-flip | A satisfying] 6
∏

i: ai=0
1−

(
1− k · pi

2k − 1
1(

1− 1
2k

2‖~p‖22
))m.

Proof. For a satisfying assignment A to have the single-flip property, all assignments Ai
obtained by flipping a bit ai = 0 of A must not satisfy Φ. To fulfill this property for Ai,
we have to choose at least one clause which contains X̄i and k − 1 other variables with
appropriate signs so that Ai does not satisfy the clause. Let Si(c) denote the event that a
clause c is satisfied by A, but not by Ai. Then,

Pr[Si(c)] =
k! · pi

∑
J∈Pk−1([n]\{i})

∏
j∈J pj

2k
(
1− 1

2k
2‖~p‖22

) 6
k · pi

2k
(
1− 1

2k
2‖~p‖22

)
since

∑
J∈Pk−1([n]\{i})

∏
j∈J pj 6

‖~p‖k−1
1

(k−1)! . The probability of choosing a clause not satisfied
by Ai under the condition that A is satisfying is then

Pr[Si(c) | A sat] = Pr[Si(c) | A satisfies c] 6 k · pi
2k − 1

1(
1− 1

2k
2‖~p‖22

)
as the probability of choosing a clause which is satisfied by any assignment is exactly 2k−1

2k .
For a fixed assignment Ai we conclude

Pr[Ai unsat | A sat] = 1−
(
1− Pr[Si(c) | A sat]

)m
6 1−

(
1− k · pi

2k − 1
1(

1− 1
2k

2‖~p‖22
))m . (6)
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Algorithm 1 Clause Shrinking Algorithm
Input: k-SAT formula Φ; weight distribution ~w

1: for all c ∈ Φ do
2: `1 ← argmin`∈c{w|`|}
3: `2 ← argmin`∈c\{`1}{w|`|}
4: c← (`1 ∨ `2)
5: Solve Φ using any polynomial time 2-SAT algorithm

It remains to find the joint probability that all single-flipped assignments Ai for 1 6 i 6 n

with ai = 0 are not satisfying. We show this using a correlation inequality by Farr [27].
The sets of clauses which are not satisfied by the Ai’s are pairwise disjoint as each clause
in the set for Ai has to contain X̄i, whereas each clause in the set for Aj (j 6= i) can not
contain X̄i. In the context of the correlation inequality from [27] we set V = {1, 2, . . . ,m},
I = {i ∈ {1, 2, . . . , n} | ai = 0}, Xv = i iff the v-th clause is satisfied by A, but not by Ai,
and Fi the “increasing” collection of non-empty subsets of V . The application of the Theorem
then directly yields

Pr[A single-flip | A sat] = Pr[
⋂

i: ai=0
Ai unsat | A sat]

6
∏

i: ai=0

[
1−

(
1− k · pi

2k − 1
1(

1− 1
2k

2‖~p‖22
))m]. J

Combining Lemmas 4.4 and 4.5 we get that the expected number of assignments with
single-flip property is at most

E [NSF ] 6
(
1− 1

2k
)m ∑

I⊆{1,2,...,n}

∏
i∈I

[
1−

(
1− k · pi

2k − 1
1(

1− 1
2k

2‖~p‖22
))m]

=
(
1− 1

2k
)m n∏

i=1

[
2−

(
1− k · pi

2k − 1
1(

1− 1
2k

2‖~p‖22
))m].

This establishes Theorem 1.2.

5 Conditions for Satisfiability

In this section, we provide a complementary result to Theorems 1.1 and 4.2 proving that if
β > 2k−1

k−1 + ε and the clause-variable ratio r = m
n does not exceed some small constant, then

a random k-SAT formula with exponent β is satisfiable with high probability. Let us first
restate the main result:

I Theorem 1.3. Let Φ be a random k-SAT formula whose variable probabilities follow a
power law distribution (c.f. Definition 2.2). If the power law exponent is β > 2k−1

k−1 + ε for
an arbitrary ε > 0, Φ is satisfiable with high probability if mn is a small enough constant.

We show this statement by constructing an algorithm that satisfies Φ w. h. p. if the
clause-variable ratio is small. Algorithm 1 contains a formal description. The main idea is to
shrink all clauses to size 2 by selecting the literals with smallest weight in each clause; and
then running any well-known (polynomial time) 2-SAT algorithm (e. g. [8]).

In the following, we seek to establish that Algorithm 1 will find a satisfying assignment
(for small constraint densities) with high probability. To this end, we first analyze the
probability distribution of a clause c after it has been shrunk.
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I Lemma 5.1. Let `1, `2 be the selected literals of an arbitrary clause c ∈ Φ in Algorithm 1.
Then,

Pr[|`1| = i, |`2| = j] + Pr[|`1| = j, |`2| = i] 6 O( 1
n2 (wiwj)1− 1

2 (k−2)(β−2)).

Proof. W. l. o. g., we assume that wi 6 wj . Then, Pr[|`1| = j, |`2| = i] = 0 by the definition
of Algorithm 1. For the event |`1| = i, |`2| = j to happen, all other k− 2 literals in the clause
must be of larger weight. By Equations (1) and (5),

Pr[|`1| = i, |`2| = j] = 1
2 ·
(
k

2

)
· (1 + o(1)) · pi · pj · Pr[V > wj ]k−2

= Θ( 1
n2 ) · wiw1−(k−2)(β−2)

j

6 O( 1
n2 ) · (wiwj)1− 1

2 (k−2)(β−2).

The last statement holds since wi 6 wj . J

Having derived a bound on the probability distribution of a shrunk clause, it is possible to
compute the probability that the resulting 2-SAT formula is satisfiable. We use that the
clauses are sampled independently. To avoid confusion, we write Φ′ and c′, whenever we
talk about the shrunk formula and clauses. To upper bound the probability of Φ not being
satisfiable, we look at so-called bi-cycles in Φ′.

I Definition 5.2. A bi-cycle of length l is a sequence of l + 1 clauses of the form

(u, `1) ,
(¯̀1, `2) , . . . , (¯̀l−1, `l

)
,
(¯̀
l, v
)
,

where `1, . . . , `l are literals of distinct variables and u, v ∈
{
`1, . . . , `l, ¯̀1, . . . , ¯̀

l

}
.

Chvatal and Reed [13, Theorem 3] show that if the formula Φ′ is unsatisfiable, it must
contain a bi-cycle. Consequently, by upper bounding the probability that a bi-cycle appears,
we immediately obtain an upper bound on the probability that Φ′ and henceforth Φ is
unsatisfiable.

I Theorem 5.3 (Chvatal and Reed [13]). Let Φ′ be any 2-SAT formula. If Φ′ contains no
bi-cycle, it is satisfiable.

Before we are able to prove the main Theorem, we need the following auxiliary Lemma, the
proof of which can be found in the full version of the paper [21].

I Lemma 5.4. Let β = δ + 1 + ε for some ε > 0. For all 1 6 l 6 n, there is a constant c
with ∑

S⊆[n] :
|S|=l

∏
i∈S

wδi 6 nl · cl 1
l! .

We are now able to show Theorem 1.3. As discussed above, we do this by upper bounding
the probability that a bi-cycle appears in Φ′. To this end, we calculate the expected number
of bi-cycles in Φ′, observe that it is poly(n)−1, and apply Markov’s inequality. This yields
that w. h. p., Φ′ and thus Φ are satisfiable.
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Proof of Theorem 1.3. We calculate the expected number of bi-cycles in Φ′. First, we fix a
set S ⊆ [n] of l > 2 variables to appear in a bi-cycle. Let XB denote the random variable
counting how many times a specific bi-cycle B with the variables from S appears in F . Then

E [XB ] 6
(

m

l + 1

)
(l + 1)! · Pr[u ∨ x1] Pr[x̄l ∨ v] ·

l−1∏
i=1

Pr[x̄i ∨ xi+1].

The factor
(
m
l+1
)
(l + 1)! counts the possible positions of B in F . By Lemma 5.1,

E [XB ] 6 ml+1 ·
(
c1
n2

)l+1 ·

(
w|u|w|v|

∏
i∈S

w2
i

)1− 1
2 (k−2)(β−2)

for some suitable constant c1. Now let XS denote the random variable counting how many
times any bi-cycle with the variables from S appears in F . There are l! permutations of the
l variables; and 2l combinations of literals on l variables. Similarly, literals u and v have 4
possible sign combinations. Thus,

E [XS ] 6 ml+1 · l! · 2l ·
(
c1
n2

)l+1 · 4
(∑
i∈S

w
1− 1

2 (k−2)(β−2)
i

)2∏
i∈S

w
2−(k−2)(β−2)
i .

To estimate the sum, we upper bound wi 6 wn for all sets up to a certain size l0, which we
will determine later. We set δ := 2− (k − 2)(β − 2) and define α(l) as

(∑
i∈S

w
δ/2
i

)2

6 α(l) :=


O(l2), if δ 6 0,
l20 · wδn, if δ > 0 and l 6 l0,

O(n2), otherwise.

Now let X denote the random variable counting the number of bi-cycles that appear in F .

E [X ] 6
n∑
l=2

2l+2 ·ml+1 · l! · ( c1
n2 )l+1 · α(l)

∑
S⊆[n]
|S|=l

∏
i∈S

wδi .

Since δ + 1 = 2 − (k − 2)(β − 2) + 1 < β by our assumption β > 2k−1
k−1 + ε, we can apply

Lemma 5.4. Using r := m/n, we obtain that the right-hand side is at most

E [X ] 6
n∑
l=2

2l+2 ·ml+1 · l! · ( c1
n2 )l+1 · α(l) · nl · cl 1

l! 6
1
n

n∑
l=2

cl2 · rl · α(l), (7)

for some suitable constant c2. Since r is a small enough constant we thus have c2 · r < 1. If
δ 6 0, we are finished, since then

1
n

n∑
l=2

cl2 · rl · α(l) 6 1
n

n∑
l=2

(c2 · r)l · l2 6 O( 1
n ).

Otherwise, if δ > 0, we choose l0 := −4 · ln−1(c2r) ln(n), which ensures (r · c2)l = O(n−4) for
all l > l0. For l = 2, . . . , l0, equation (7) sums up to at most

1
n

l0∑
l=2

(c2r)l · l20 · wδn = O(log3(n) · n1−k β−2
β−1 ),
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where we substituted wn = Θ(n
1

β−1 ) and δ = 2 − (k − 2)(β − 2). Since β > 2k−1
k−1 + ε, the

exponent 1− k β−2
β−1 < −ε

′ is negative, and we thus have

E [X ] 6 1
n

n∑
l=2

cl2r
lα(l) 6 O(log3(n) · n−ε

′
) +O( 1

n ),

which proves the Theorem by Markov’s inequality. J

6 Discussion of the Results

In this work, we have shown that with high probability, a power law random k-SAT formula
is satisfiable, if β > 2k−1

k−1 + ε and the clause-variable ratio is not too large; and that it is
unsatisfiable if β 6 2k−1

k−1 − ε, or if the clause-variable ratio is too large. Here, we give a few
observations following these results.

First, as explained in Section 1 our results translate directly to the model where clause
lengths are power law distributed. This observation might help to explain a phenomenon that
arose in [7]: The authors experimentally observed that a random-sat formula with double
power law distribution (both variables and clause lengths are drawn from a power law) can
be solved extremely fast by MiniSAT. Although the formula was of length 5 · 105, MiniSAT
already gave an answer after 4 seconds! Using our results, we are now able to provide a
potential explanation for this phenomenon: Disregarding the double power law distribution,
the smallest clause length kmin occurring in their generated formulas is one. Thus, there will
be Θ(n) clauses of length one and by Theorem 1.1 the formula is likely unsatisfiable.

Second, we observe a sharp threshold in the sense of Friedgut [20] (for small constraint
densities r) for β at the point 2k−1

k−1 . In contrast, it is unclear whether such a sharp threshold
exists (and can be analytically derived) for fixed β but variable r. Considering however, that
decades of research were dedicated to the same question in the uniform case—an arguably
simpler model—it is unlikely that we obtain a satisfying answer any time soon; at least for
all k. As in the uniform model, however, it might be more tractable to get sharp thresholds
for k →∞.
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Abstract
Encoding data structures store enough information to answer the queries they are meant to
support but not enough to recover their underlying datasets. In this paper we give the first
encoding data structure for the challenging problem of order-preserving pattern matching. This
problem was introduced only a few years ago but has already attracted significant attention
because of its applications in data analysis. Two strings are said to be an order-preserving match
if the relative order of their characters is the same: e.g., 4, 1, 3, 2 and 10, 3, 7, 5 are an order-
preserving match. We show how, given a string S[1..n] over an arbitrary alphabet of size σ and
a constant c ≥ 1, we can build an O(n log logn)-bit encoding such that later, given a pattern
P [1..m] with m ≤ logc n, we can return the number of order-preserving occurrences of P in S in
O(m) time. Within the same time bound we can also return the starting position of some order-
preserving match for P in S (if such a match exists). We prove that our space bound is within
a constant factor of optimal if log σ = Ω(log logn); our query time is optimal if log σ = Ω(logn).
Our space bound contrasts with the Ω(n logn) bits needed in the worst case to store S itself,
an index for order-preserving pattern matching with no restrictions on the pattern length, or an
index for standard pattern matching even with restrictions on the pattern length. Moreover, we
can build our encoding knowing only how each character compares to O(logc n) neighbouring
characters.
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1 Introduction

As datasets have grown even faster than computer memories, researchers have designed
increasingly space-efficient data structures. We can now store a sequence of n numbers from
{1, . . . , σ} with σ ≤ n in about n words, and sometimes n log σ bits or even nH bits, where H
is the empirical entropy of the sequence, and still support many powerful queries quickly. If we
are interested only in queries of the form “what is the position of the smallest number between
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the ith and jth?”, however, we can do even better: regardless of σ or H, we need store only
2n+ o(n) bits to be able to answer in constant time [21]. Such a data structure, that stores
enough information to answer the queries it is meant to support but not enough to recover
the underlying dataset, is called an encoding [38]. As well as the variant of range-minimum
queries mentioned above, there are now efficient encoding data structures for range top-
k [14, 24, 27], range selection [34], range majority [35], range maximum-segment-sum [23] and
range nearest-larger-value [20] on sequences of numbers, and range-minimum [26] and range
nearest-larger-value [30, 31] on two-dimensional arrays of numbers; all of these queries return
positions but not values from the sequence or array. Perhaps Orlandi and Venturini’s [36]
results about sublinear-sized data structures for substring occurrence estimation are the
closest to the ones we present in this paper, in that they are more related to pattern matching
than range queries: the authors showed how we can store a sequence of n numbers from
{1, . . . , σ} in fewer than n log σ bits but such that we can estimate quickly how often any
pattern occurs in the sequence, with the additive error in our estimate proportional to our
compression ratio.

Encoding data structures can offer better space bounds than traditional data structures
that store the underlying dataset somehow (even in succinct or compressed form), and
possibly even security guarantees: if we can build an encoding data structure using only
public information, then we need not worry about it being reverse-engineered to reveal
private information. From the theoretical point of view, encoding data structures pose new
interesting combinatorial problems and promise to be a challenging field for future research.

In this paper we give the first encoding for order-preserving pattern matching, a problem
which asks us to search in a text for substrings whose characters have the same relative
order as those in a pattern. For example, in 6, 3, 9, 2, 7, 5, 4, 8, 1, the order-preserving matches
of 2, 1, 3 are 6, 3, 9 and 5, 4, 8. Kubica et al. [33] and Kim et al. [32] formally introduced
this problem and gave efficient online algorithms for it. Other researchers have continued
their investigation, and we briefly survey their results in Section 2. As well as its theoretical
interest, this problem has practical applications in data analysis. For example, mining for
correlations in large datasets is complicated by amplification or damping – e.g., the euro
fluctuating against the dollar may cause the pound to fluctuate similarly a few days later, but
to a greater or lesser extent – and if we search only for sequences of values that rise or fall
by exactly the same amount at each step we are likely to miss many potentially interesting
leads. In such settings, searching for sequences in which only the relative order of the values
is constrained to be the same is certainly more robust.

In Section 2 we discuss some previous work on order-preserving pattern matching. In
Section 3 we review the algorithmic tools we use in the rest of the paper. In Section 4 we
prove our first result showing how, given a string S[1..n] over an arbitrary alphabet [σ]
and a constant c ≥ 1, we can store O(n log logn) bits – regardless of σ – such that later,
given a pattern P [1..m] with m < logc n, in O(n logc n) time we can scan our encoding
and report all the order-preserving matches of P in S. Our space bound contrasts with
the Ω(n logn) bits needed in the worst case, when log σ = Ω(logn), to store S itself, an
index for order-preserving pattern matching with no restriction on the pattern length, or
an index for standard pattern matching even with restrictions on the pattern length. (If
S is a permutation then we can recover it from an index for unrestricted order-preserving
pattern matching, or from an index for standard matching of patterns of length 2, even when
they do not report the positions of the matches. Notice this does not contradict Orlandi
and Venturini’s result, mentioned above, about estimating substring frequency, since that
permits additive error.) In fact, we build our representation of S knowing only how each
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character compares to 2 logc n neighbouring characters. We show in Section 5 how to adapt
and build on this representation to obtain indexed order-preserving pattern matching, instead
of scan-based, allowing queries in O

(
m log3 n

)
time but now reporting the position of only

one match.
In Section 6 we give our main result showing how to speed up our index using weak prefix

search and other algorithmic improvements. The final index is able to count the number
of occurrences and return the position of an order-preserving match (if one exists) in O(m)
time. This query time is optimal if log σ = Ω(logn). Finally, in Section 7 we show that our
space bound is optimal (up to constant factors) even for data structures that only return
whether or not S contains any order-preserving matches.

2 Previous Work

Although recently introduced, order-preserving pattern matching has received considerable
attention and has been studied in different settings. For the online problem, where the pattern
is given in advance, the first contributions were inspired by the classical Knuth–Morris–Pratt
and Boyer–Moore algorithms [5, 12, 32, 33]. The proposed algorithms have guaranteed linear
time worst-case complexity or sublinear time average complexity. However, for the online
problem the best results in practice are obtained by algorithms based on the concept of
filtration, in which some sort of “order-preserving” fingerprint is applied to the text and the
pattern [6, 7, 8, 10, 11, 18, 15]. This approach was successfully applied also to the harder
problem of matching with errors [8, 25, 28].

There has also been work on indexed order-preserving pattern matching. Crochemore et
al. [13] showed how, given a string S[1..n], in O

(
n
√

logn
)
time we can build an O(n logn)-bit

index such that later, given a pattern P [1..m] over an alphabet polynomially bounded in
m, we can return the starting positions of all the occ order-preserving matches of P in S
in optimal O(m+ occ) time. Their index is a kind of suffix tree, and other researchers [39]
are trying to reduce the space bound to n log σ + o(n log σ) bits, where σ is the size of the
alphabet of S, by using a kind of Burrows–Wheeler Transform instead (similar to recent
work [22] on parameterized pattern matching [1]). Even if they succeed, however, when
σ = nΩ(1) the resulting index will still take linear space – i.e., Ω(n) words or Ω(n logn) bits.
(It could be interesting to apply the techniques we develop here to parameterized pattern
matching, but we leave that as future work.)

In addition to Crochemore et al.’s result, other offline solutions have been proposed
combining the idea of fingerprints and indexing. Chhabra et al. [9] showed how to speed
up the search by building an FM-index [19] on the binary string expressing whether in the
input text each element is smaller or larger than the next one. By expanding this approach,
Decaroli et al. [15] show how to build a compressed file format supporting order-preserving
matching without the need of full decompression. Experiments show that this compressed
file format takes roughly the same space as gzip and that in most cases the search is orders
of magnitude faster than the sequential scan of the text. We point out that these approaches,
although interesting for the applications, do not have competitive worst case bounds on the
search cost as we get from Crochemore et al. and in this paper.

3 Background

In this section we collect a set of algorithmic tools that will be used in our solutions. In
the following we report each result together with a brief description of the solved problem.
More details can be obtained by consulting the corresponding references. All the results
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hold in the unit cost word-RAM model, where each memory word has size w = Ω(logn) bits,
where n is the input size. In this model arithmetic and boolean operations on memory words
require O(1) time.

Rank queries on binary vector. In the next solutions we will need to support Rank queries
on a binary vector B[1..n]. Given an index i, Rank(i) on B returns the number of 1s in the
prefix B[1..i]. We report here a result in [29].

I Theorem 1. Given a binary vector B[1..n], we can support Rank queries in constant time
by using n+ o(n) bits of space.

Elias-Fano representation. In the following we will need to encode an increasing sequence
of values in almost optimal space. There are several solutions to this problem, we report
here the result obtained with the, so-called, Elias-Fano representation [16, 17].

I Theorem 2. An increasing sequence of n values up to u can be represented by using
log
(
u
n

)
+ O(n) = n log u

n + O(n) bits, so that we can access any value of the sequence in
constant time.

Minimal perfect hash functions. In our solution we will make use of Monotone minimal
perfect hash functions (Mmphf) [2]. Given a set S = {x1, x2, . . . , xn} of size n, a minimal
perfect hash function (Mphf) has to injectively map keys in S to the integers in [n].

A monotone minimal perfect hash function (Mmphf) is an Mphf h() that preserves the
lexicographic ordering, i.e., for any two strings x and y in the set, x ≤ y iff h(x) ≤ h(y).
Results on Mmphfs have been focused on dictionaries of binary strings [2]. The results can be
easily generalized to dictionaries with strings over larger alphabets. The following theorem
reports the obvious generalization of Theorem 3.1 in [2] and Theorem 2 in [4].

I Theorem 3. Given a dictionary of n strings drawn from the alphabet [σ], there is a
monotone minimal perfect hash function h() that occupies O(n log(` log σ)) bits of space,
where ` is the average length of the strings in the dictionary. Given a string P [1..m], h(P )
is computed in O(1 +m log σ/w) time.

Weak prefix search. The Prefix Search Problem is a well-known problem in data-structure
design for strings. It asks for the preprocessing of a given set of n strings in such a way that,
given a query-pattern P , (the lexicographic range of) all the strings in the dictionary which
have P as a prefix can be returned efficiently in time and space.

Belazzougui et al. [4] introduced the weak variant of the problem that allows for a
one-sided error in the answer. Indeed, in the Weak Prefix Search Problem the answer to a
query is required to be correct only in the case that P is a prefix of at least one string in
dictionary; otherwise, the algorithm returns an arbitrary answer.

Due to these relaxed requirements, the data structures solving the problem are allowed
to use space sublinear in the total length of the indexed strings. Belazzougui et al. [4] focus
their attention on dictionaries of binary strings, but their results can be easily generalized to
dictionaries with strings over larger alphabets. The following theorem states the obvious
generalization of Theorem 5 in [4].

I Theorem 4. Given a dictionary of n strings drawn from the alphabet [σ], there exists a
data structure that weak prefix searches for a pattern P [1..m] in O(m log σ/w + log(m log σ))
time. The data structure uses O(n log(` log σ)) bits of space, where ` is the average length of
the strings in the dictionary.
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We remark that the space bound in [4] is better than the one reported above as it is
stated in terms of the size the hollow trie, a conceptual tool introduced in [3], associated to
the indexed dictionary. This measure is always within O(n log(` log σ)) bits but it may be
much better depending on the dictionary. However, the weaker space bound suffices for the
aims of this paper.

4 An Encoding for Scan-Based Search

As an introduction to our techniques, we show an O(n log logn) bit encoding supporting
scan-based order-preserving matching. Given a sequence S[1..n] we define the rank encoding
E(S)[1..n] as

E(S)[i] =



0.5 if S[i] is lexicographically smaller than any
character in {S[1], . . . , S[i− 1]},

j
if S[i] is equal to the lexicographically jth
character in {S[1], . . . , S[i− 1]},

j + 0.5
if S[i] is larger than the lexicographically jth
character in {S[1], . . . , S[i − 1]} but smaller
than the lexicographically (j + 1)st,

|{S[1], . . . , S[i− 1]}|+ 0.5 if S[i] is lexicographically larger than any
character in {S[1], . . . , S[i− 1]}.

This is similar to the representations used in previous papers on order-preserving matching.
We can build E(S) in O(n logn) time. However, we would ideally need E(S[i..n]) for
i = 1, . . . , n, since P [1..m] has an order-preserving match in S[i..i + m − 1] if and only if
E(P ) = E(S[i..i+m− 1]). Assuming P has polylogarithmic size, we can devise a more space
efficient encoding.

I Lemma 5. Given S[1..n] and a constant c ≥ 1, let ` = logc n. We can store O(n log logn)
bits such that later, given i and m ≤ `, we can compute E(S[i..i+m− 1]) in O(m) time.

Proof. For every position i in S which is a multiple of ` = logc n, we store the ranks of the
characters in the window S[i..i + 2`]. The ranks are values at most 2` + 1, thus they are
stored in O(log `) bits each. We concatenate the ranks of each window in a vector V , which
has length O(n) and takes O(n log `) bits. Every range S[i..i + m − 1] of length m ≤ ` is
fully contained in at least one window and in constant time we can convert i into i′ such
that V [i′..i′ +m− 1] contains the ranks of S[i], . . . , S[i+m− 1] in that window.

Computing E(S[i..i+m− 1]) naïvely from these ranks would take O(m logm) time. We
can speed up this computation by exploiting the fact that S[i..i+m− 1] has polylogaritmic
length. Indeed, a recent result [37] introduces a data structure to represent a small dynamic
set S of O(wc) integers of w bits each supporting, among the others, insertions and rank
queries in O(1) time. Given an integer x, the rank of x is the number of integers in S that
are smaller than or equal to x. All operations are supported in constant time for sets of size
O(wc). This result allows us to compute E(S[i..i+m− 1]) in O(m) time. Indeed, we can
use the above data structure to insert S[i..i+m− 1]’s characters one after the other and
compute their ranks in constant time. J

It follows from Lemma 5 that given S and c, we can store an O(n log logn)-bit encoding of
S such that later, given a pattern P [1..m] with m ≤ logc n, we can compute E(S[i..i+m−1])
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for each position i in turn and compare it to E(P ), and thus find all the order-preserving
matches of P in O(nm) time. (It is possible to speed this scan-based algorithm up by avoiding
computing each E(S[i..i+m− 1]) from scratch but, since this is only an intermediate result,
we do not pursue it further here.) We note that we can construct the encoding in Lemma 5
knowing only how each character of S compares to O(logc n) neighbouring characters.

I Corollary 6. Given S[1..n] and a constant c ≥ 1, we can store an encoding of S in
O(n log logn) bits such that later, given a pattern P [1..m] with m ≤ logc n, we can find all
the order-preserving matches of P in S in O(nm) time.

We will not use Corollary 6 in the rest of this paper, but we state it as a baseline easily
proven from Lemma 5.

5 Adding an Index to the Encoding

Suppose we are given S[1..n] and a constant c ≥ 1. We build the O(n log logn)-bit encoding
of Lemma 5 for ` = logc n + logn and call it S`. Using S` we can compute E(S′) for any
substring S′ of S of length |S′| ≤ ` in O(|S′|) time. We now show how to complement S`
with a kind of “sampled suffix array” using O(n log logn) more bits, such that we can search
for a pattern P [1..m] with m ≤ logc n and return the starting position of an order-preserving
match for P in S, if there is one. Our first solution has O

(
m log3 n

)
query time; we will

improve the query time to O(m) in the next section.
We define the rank-encoded suffix array R[1..n] of S such that R[i] = j if E(S[j..n]) is the

lexicographically ith string in {E(S[1..n]), E(S[2..n]), . . . , E(S[n..n])}. Note that E(S[i..n])
has length n− i+ 1. Figure 1 shows an example. Our algorithm consists of a searching phase
followed by a verification phase. The goal of the searching phase is to identify a range [l, r]
in R which contains all the encodings prefixed by E(P ), if any, or an arbitrary interval if P
does not occur. The verification phase has to check if there is at least one occurrence of P in
this interval, and return a position at which P occurs.

Searching phase. Similarly to how we can use a normal suffix array and S to support
normal pattern matching, we could use R and S to find all order-preserving matches for a
pattern P [1..m] in O(m logn) time via binary search, i.e., at each step we choose an index
i, extract S[R[i]..R[i] +m− 1], compute its rank encoding and compare it to E(P ), all in
O(m) time. If m ≤ ` we can compute E(S[R[i]..R[i] +m− 1]) using S` instead of S, still in
O(m) time, but storing R still takes Ω(n logn) bits.

Therefore, for our searching phase we sample and store only every d-th element of R, by
position, and every element of R equal 1 or n or a multiple of d, where d = blogn/ log lognc.
This takes O(n log logn) bits. Notice we can still find in O(m logn) time via binary search
in the sampled R an order-preserving match for any pattern P [1..m] that has at least d
order-preserving matches in S. If P has fewer than d order-preserving matches in S but
we happen to have sampled a cell of R pointing to the starting position of one of those
matches, then our binary search still finds it. Otherwise, we find an interval of length at
most d− 1 which contains pointers at least to all the order-preserving matches for P in S;
on this interval we perform the verification phase.

Verification phase. The verification phase receives a range R[l, r] (although R is not stored
completely) and has to check if that range contains the starting position of an order preserving
match for P and, if so, return its position. This is done by adding auxiliary data structures
to the sampled entries of R.
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i R[i] L[i] B[i] D[i] E(S[R[i]..n])

1 30 0.5
2 29 2 1.5 4 0.5 0.5
3 22 2 0.5 2 0.5 0.5 0.5 0.5 1.5 5 5.5 6.5 1
4 13 0.5 0.5 0.5 1 0.5 1.5 4 4.5 1 4 3.5 3.5 2 3 6 7 7.5 2
5 2 2 0.5 1 0.5 0.5 0.5 1.5 2.5 3.5 5.5 2.5 2 5 4 8 4 1 1 0.5 1.5 6 7 1 6 5 4 2 3 6 7 8 2
6 23 3 3.5 3 0.5 0.5 0.5 1.5 4.5 5.5 6.5 1
7 8 0.5 0.5 0.5 2.5 2.5 5.5 3 0.5 1 0.5 1.5 6 7 1 6 5 4 2 3 6 7 7.5 2
8 14 0.5 0.5 1 0.5 1.5 4 4.5 1 4 3.5 3.5 2 3 6 7 7.5 2
9 20 0.5 0.5 1.5 1.5 1.5 1.5 2.5 6 7 7.5 2

10 3 3 3.5 1 0.5 0.5 1.5 2.5 3.5 5.5 2.5 2 5 4 7.5 4 1 1 0.5 1.5 6 7 1 6 5 4 2 3 6 7 8 2
11 16 0.5 0.5 1.5 3.5 4.5 1 4 3.5 3.5 2 3 6 7 7.5 2
12 24 0.5 0.5 1.5 3.5 4.5 5.5 1
13 11 2 0.5 3 0.5 0.5 2.5 1 0.5 1 0.5 1.5 4 5 1 4 3.5 3.5 2 3 6 7 7.5 2
14 9 3 3.5 3 0.5 0.5 2.5 2.5 4.5 3 0.5 1 0.5 1.5 6 7 1 6 5 4 2 3 6 7 7.5 2
15 15 2 1.5 1 0.5 1 0.5 1.5 3.5 4.5 1 4 3.5 3.5 2 3 6 7 7.5 2
16 28 0.5 1.5 0.5
17 7 3 1.5 4 0.5 1.5 0.5 0.5 3 2.5 5.5 3 0.5 1 0.5 1.5 6 7 1 6 5 4 2 3 6 7 7.5 2
18 19 3 1.5 5 0.5 1.5 0.5 2 1.5 1.5 1.5 2.5 6 7 7.5 2
19 12 0.5 1.5 1 0.5 1 0.5 1.5 4 4.5 1 4 3.5 3.5 2 3 6 7 7.5 2
20 1 0.5 1.5 1.5 0.5 2 2.5 3.5 5.5 2.5 2 5 4 8 4 1 1 0.5 1.5 6 7 1 6 5 4 2 3 6 7 8 2
21 21 2 2.5 1 0.5 1.5 1.5 1.5 1.5 2.5 6 6.5 7.5 2
22 10 2 1.5 2 0.5 1.5 1.5 3.5 2 0.5 1 0.5 1.5 5 6 1 5 4.5 4 2 3 6 7 7.5 2
23 27 4 1.5 2 0.5 1.5 2.5 0.5
24 6 0.5 1.5 2.5 0.5 0.5 4 3 5.5 3 0.5 1 0.5 1.5 6 7 1 6 5 4 2 3 6 7 7.5 2
25 18 4 1 3 0.5 1.5 2.5 0.5 3 2.5 2.5 2 2.5 6 7 7.5 2
26 26 4 0.5 1 0.5 1.5 2.5 3.5 0.5
27 17 2 2.5 3 0.5 1.5 2.5 3.5 1 3 2.5 2.5 2 2.5 6 7 7.5 2
28 5 0.5 1.5 2.5 3.5 1.5 1 4 3 5.5 3 0.5 1 0.5 1.5 6 7 1 6 5 4 2 3 6 7 7.5 2
29 25 2 2.5 4 0.5 1.5 2.5 3.5 4.5 1
30 4 0.5 1.5 2.5 3.5 4.5 2.5 2 5 4 6.5 4 1 1 0.5 1.5 6 7 1 6 5 4 2 3 6 7 7.5 2

Figure 1 The rank-encoded suffix array R[1..30] for S[1..30] =
3 9 7 2 3 5 6 8 4 3 6 5 9 5 2 2 0 1 5 6 0 5 4 3 1 2 5 6 7 1, with L[i], B[i] and D[i] computed for d = 4.
Stored values are shown in boldface.

Suppose that for each unsampled element R[i] = j we store the following data.
the smallest number L[i] (if one exists) such that S[j − 1..j + L[i] − 1] has at most d
order-preserving matches in S;
the rank B[i] = E(S[j−1..j+L[i]−1]rev)[L[i]+1] ≤ L[i]+1/2 of S[j−1] in S[j..j+L[i]−1],
where the superscript rev indicates that the string is reversed;
the distance D[i] to the cell of R containing j − 1 from the last sampled element x such
that E(S[x..x+ L[i]]) is lexicographically smaller than E(S[j − 1..j + L[i]− 1]).

Figure 1 shows the values in L, B and D for our example.
Assume we are given P [1..m] and i and told that S[R[i]..R[i]+m−1] is an order-preserving

match for P , but we are not told the value R[i] = j. If R[i] is sampled, of course, then
we can return j immediately. If L[i] does not exist or is greater than m then P has at
least d order-preserving matches in S, so we can find one in O(m) time: we consider the
sampled values from R that precede and follow R[i] and check with Lemma 5 whether
there are order-preserving matches starting at those sampled values. Otherwise, from L[i],
B[i] and P , we can compute E(S[j − 1..j + L[i] − 1]) in O(m logm) time: we take the
length-L[i] prefix of P ; if B[i] is an integer, we prepend to P [1..L[i]] a character equal to
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the lexicographically B[i]th character in that prefix; if B[i] is r + 0.5 for some integer r with
1 ≤ r < L[i], we prepend a character lexicographically between the lexicographically rth and
(r + 1)st characters in the prefix; if B[i] = 0.5 or B[i] = L[i] + 0.5, we prepend a character
lexicographically smaller or larger than any in the prefix, respectively. We can then find in
O(m logn) time the position in R of x, the last sampled element such that E(S[x..x+ L[i]])
is lexicographically smaller than E(S[j − 1..j + L[i]− 1]). Adding D[i] to this position gives
us the position i′ of j − 1 in R. Repeating this procedure until we reach a sampled cell of R
takes O

(
m log2 n/ log logn

)
= O

(
m log2 n

)
time, and we can then compute and return j. As

the reader may have noticed, the procedure is very similar to how we use backward stepping
to locate occurrences of a pattern with an FM-index [19], so we refer to it as a backward
step at position i.

Even if we do not really know whether S[R[i]..R[i] +m− 1] is an order-preserving match
for P , we can still start at the cell R[i] and repeatedly apply this procedure: if we do not find
a sampled cell after d− 1 repetitions, then S[R[i]..R[i] +m− 1] is not an order-preserving
match for P ; if we do, then we add the number of times we have repeated the procedure
to the contents of the sampled cell to obtain the contents of R[i] = j. Then, using S` we
compute E(S[j..j + m − 1]) in O(m) time, compare it to E(P ) and, if they are the same,
return j. This still takes O

(
m log2 n

)
time. Therefore, after our searching phase, if we find

an interval [l, r] of length at most d− 1 which contains pointers to all the order-preserving
matches for P in S (instead of an order-preserving match directly), then we can check each
cell in that interval with this procedure, in a total of O

(
m log3 n

)
time.

If R[i] = j is the starting position of an order-preserving match for a pattern P [1..m]
with m ≤ logc n that has at most d order-preserving matches in S, then L[i] ≤ logc n.
Moreover, if R[i′] = j − 1 then L[i′] ≤ logc n+ 1 and, more generally, if R[i′′] = j − t then
L[i′′] ≤ logc n + t. Therefore, we can repeat the stepping procedure described above and
find j without ever reading a value in L larger than logc n+ logn and, since each value in
B is bounded in terms of the corresponding value in L, without ever reading a value in B
larger than logc n+ logn+ 1/2. It follows that we can replace any values in L and B greater
than logc n + logn + 1/2 by the flag −1, indicating that we can stop the procedure when
we read it. With this modification, each value in L and B takes O(log logn) bits, so L, B
and D take a total of O(n log logn) bits. Since also the encoding S` from Lemma 5 with
` = logc n+ logn takes O(n log logn) bits, the following intermediate theorem summarizes
our results so far.

I Theorem 7. Given S[1..n] and a constant c ≥ 1, we can store an encoding of S in
O(n log logn) bits such that later, given a pattern P [1..m] with m ≤ logc n, in O

(
m log3 n

)
time we can return the position of an order-preserving match of P in S (if one exists).

A complete search example. Suppose we are searching for order-preserving matches for
P = 2 3 1 2 in the string S[1..30] shown in Figure 1. Binary search on R tells us that pointers
to all the matches are located in R strictly between R[16] = 28 and R[19] = 12, because

E(S[28..30]) = E(6 7 1) = 0.5 1.5 0.5 ≺ E(P ) = E(2 3 1 2) = 0.5 1.5 0.5 2
≺ E(S[12..14]) = E(5 9 5) = 0.5 1.5 1 ;

notice R[16] = 28 and R[19] = 12 are stored because 16, 28 and 12 are multiples of d = 4.
We first check whether R[17] points to an order-preserving match for P . That is, we

assume (incorrectly) that it does; we take the first L[17] = 3 characters of P ; and, because
B[17] = 1.5, we prepend a character between the lexicographically first and second, say
1.5. This gives us 1.5 2 3 1, whose encoding is 0.5 1.5 2.5 0.5. Another binary search on R
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shows that R[20] = 1 is the last sampled element x such that E(S[x..x + 3]), in this case
0.5 1.5 1.5 0.5, is lexicographically smaller than 0.5 1.5 2.5 0.5. Adding D[17] = 4 to 20, we
would conclude that R[24] = R[17] − 1 (which happens to be true in this case) and that
0.5 1.5 2.5 0.5 is a prefix of E(S[R[24]..n]) (which also happens to be true). Since R[24] = 6
is sampled, however, we compute E(S[7..10]) = 0.5 1.5 0.5 0.5 and, since it is not the same
as P ’s encoding, we reject our initial assumption that R[17] points to an order-preserving
match for P .

We now check whether R[18] points to an order preserving match for P . That is, we
assume (correctly this time) that it does; we take the first L[18] = 3 characters of P ; and,
because B[18] = 1.5, we prepend a character between the lexicographically first and second,
say 1.5. This again gives us 1.5 3 2 1, whose encoding is 0.5 1.5 2.5 0.5. As before, a binary
search on R shows that R[20] = 1 is the last sampled element x such that E(S[x..x+ 3]) is
lexicographically smaller than 0.5 1.5 2.5 0.5. Adding D[18] = 5 to 20, we conclude (correctly)
that R[25] = R[18]− 1 and that 0.5 1.5 2.5 0.5 is a prefix of E(S[R[25]..n])

Repeating this procedure with L[25] = 4, B[25] = 1 and D[25] = 3, we build a string with
encoding 0.5 1.5 2.5 0.5, say 2 3 4 1, and prepend a character equal to the lexicographically
first, 1. This gives us 1 2 3 4 1, whose encoding is 0.5 1.5 2.5 3.5 1. Another binary search shows
that R[24] = 6 is the last sampled element x such that E(S[x..x+ 4]) is lexicographically
smaller than 0.5 1.5 2.5 3.5 1. We conclude (again correctly) that R[27] = R[18]− 2 and that
0.5 1.5 2.5 3.5 1 is a prefix of E(S[R[27]..n]).

Finally, repeating this procedure with L[27] = 2, B[27] = 2.5 and D[27] = 3, we build a
string with encoding 0.5 1.5, say 1 2, and prepend a character lexicographically greater than
any currently in the string, say 3. This gives us 3 1 2, whose encoding is 0.5 0.5 1.5. A final
binary search show that R[8] = 14 is the last sampled element x such that E(S[x..x+ 2]) is
lexicographically smaller than 0.5 0.5 1.5. We conclude (again correctly) that R[11] = R[18]−3
and that 0.5 0.5 1.5 is a prefix of E(S[R[11]..n]). Since R[11] = 16 is sampled, we compute
E(S[19..22]) = 0.5 1.5 0.5 2 and, since it matches P ’s encoding, we indeed report S[19..22] as
an order-preserving match for P .

6 Achieving O(m) query time

In this section we prove our main result:

I Theorem 8. Given S[1..n] and a constant c ≥ 1, we can store an encoding of S in
O(n log logn) bits such that later, given a pattern P [1..m] with m ≤ logc n, in O(m) time
we can return the position of an order-preserving match of P in S (if one exists). In O(m)
time we can also report the total number of order-preserving occurrences of P in S.

Compared to Theorem 7, we improve the query time from O
(
m log3 n

)
to O(m). This is

achieved by speeding up several steps of the algorithm described in the previous section.

Speeding up pattern’s encoding. Given a pattern P [1..m], the algorithm has to compute
its encoding E(P [1..m]). Doing this naïvely as in the previous section would cost O(m logm)
time, which is, by itself, larger than our target time complexity. However, since m is
polylogarithmic in n, we can speed this up as we sped up the computation of the rank-
encoding of S[i..i+m− 1] in the proof of Lemma 5, and obtain E(P ) in O(m) time. Indeed,
we can insert P ’s characters one after the other in the data structures of [37] and compute
their ranks in constant time.
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Dealing with short patterns. The approach used by our solution cannot achieve a o(d)
query time. This is because we answer a query by performing Θ(d) backward steps regardless
of the pattern’s length. This means that for very short patterns, namely m = o(d) =
o(logn/ log logn), the solution cannot achieveO(m) query time. However, we can precompute
and store the answers of all these short patterns in o(n) bits. Indeed, we can find a constant
c such that the encoding of a pattern of length at most c logn/ log logn is a binary string of
length at most 1

2 logn bits. Thus, there are O(
√
n) possible encodings. For each of these

encodings we explicitly store the number of its occurrences and the position of one of them
in o(n) bits. From now on, thus, we can safely assume that m = Ω(logn/ log logn).

Speeding up searching phase. The searching phase of the previous algorithm has two
important drawbacks. First, it costs O(m logn) time and, thus, it is obviously too expensive
for our target time complexity. Second, binary searching on the sampled entries in R gives
too imprecise results. Indeed, it finds a range [l, r] of positions in R which may be potential
matches for P . However, if the entire range is within two consecutive sampled positions,
we are only guaranteed that all the occurrences of P are in the range but there may exist
positions in the range which do not match P . This uncertainty forces us to explicitly check
every single position in the range until a match for P is found, if any. This implies that we
have to check r − l + 1 = O(d) positions in the worst case. Since every check has a cost
proportional to m, this gives ω(m) query time.

We use the data structure for weak prefix search of Theorem 4 to index the encodings
of all suffixes of the text truncated at length ` = logc n + logn. This way, we can find
the range [l, r] of suffixes prefixed by E(P [1..m]) in O(m log logn/w + log(m log logn)) =
O(m log logn/w + log logn) time with a data structure of size O(n log logn) bits. This is
because E(P [1..m]) is drawn from an alphabet of size O(logc n), and both m and ` are in
O(logc n). Apart from its faster query time, this solution has stronger guarantees. Indeed, if
the pattern P has at least one occurrence, the range [l, r] contains all and only the occurrences
of P . Instead, if the pattern P does not occur, [l, r] is an arbitrary and meaningless range.
In both cases, just a single check of any position in the range is enough to answer the
order-preserving query. This property gives an O(logn/ log logn) factor improvement over
the previous solution.

Speeding up verification phase. It is clear by the discussion above that the verification
phase has to check only one position in the range [l, r]. If the range contains at least one
sampled entry of R, we are done. Otherwise, we have to perform at most d backward steps.

We now improve the computation of every single backward step. Assume we have to
perform a backward step at i, where R[i] = j. Before performing the backward step, we
have to compute the encoding E(S[j − 1..j + L[i]− 1]) given E(S[j..j + u]), for some value
of L[i] and u with u ≥ L[i]. Our goal is to do this in O(1 +m log logn/w) time. Notice that
removing symbols at the end of S[j..j + u] does not change the encoding of the remaining
symbols. However, after the insertion of S[j − 1] the encoding of S[k] in S[j − 1..j +L[i]− 1]
either does not change, if S[j − 1] ≥ S[k], or has to be increased by one, if S[j − 1] > S[k].
The main issue is that we have to process O(w/ log logn) symbols in parallel. To this
end, apart from E(S[j − 1..j + L[i] − 1]), we also keep a different encoding R(S[j..j + u])
for S[j..j + u]. The encoding R stores O(log logn)-bit ranks which represent the relative
order among symbols in S[j..j + u]. More precisely, for any two symbols S[k] and S[k′],
R(S[j..j + u])[k] < R(S[j..j + u])[k′] iff S[k] < S[k′]. Notice that we are not constraining
these ranking values to form a consecutive interval, i.e., there may be missing values.
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Our goal is to compute R(S[j−1..j+L[i]−1]) from R(S[j..j+u]) as we perform backward
steps. For this reason, we no longer store the value B[i] as in the previous solution. Instead,
we store the values P [i] and O[i] which are the positions of the predecessor and an occurrence
of S[j − 1] in S[j..j +L[i]− 1], if any. This way, we can compute R(S[j − 1..j +L[i]− 1]) by
prepending an appropriate rank r for symbol S[j−1]. It is r = R(S[j..L[i]−1])[O[i]], if there
already exists an occurrence of S[j − 1] in S[j..L[i] − 1], or r = R(S[j..L[i] − 1])[P [i]] + 1,
otherwise. In the latter case, we increase any value in R(S[j..L[i]− 1]) which is larger than
or equal to r to guarantee that there is no collision with the assigned rank. This can be
done in O(1 + L[i] log logn/w) = O(1 +m log logn/w) time by exploiting word parallelism.
We observe that the positions with a rank larger than r are exactly the positions that we
need to increase by one in order to compute E(S[j − 1..j + L[i]− 1]). The backward step
at i is i′ = k + D[i], where k is the sampled entry in R whose encoding has the prefix of
length L[i] which is the largest prefix which is (lexicographically) smaller than or equal to
E(S[j − 1..j + L[i] − 1]). Notice that equality may occur only for at most one prefix as
otherwise S[j − 1..j + L[i]− 1] would occur more than d times.

To compute k, given i and E(S[j−1..j+L[i]−1]), we observe that E(S[j−1..j+L[i]−1])
depends only on S and L[i] and not on the pattern P we are searching for. Thus, there
exists just one valid E(S[j− 1..j+L[i]− 1]) that could be used at query time for a backward
step at i. Notice that, if the pattern P does not occur, the encoding that will be used at i
may be different, but in this case it is not necessary to compute a correct backward step.
Consider the set E of all these, at most n, encodings. The goal is to map each encoding in E
to its corresponding sampled entry in R. This can be done as follows. We build a monotone
minimal perfect hash function h() on E to map each encoding to its lexicographic rank.
Obviously, the encodings to be mapped to a certain sampled entry i in R form a consecutive
range in the lexicographic ordering. Moreover, none of these ranges overlap. Thus, we can
use a binary vector B to mark each of these ranges, so that, given the lexicographic rank
of an encoding, we can infer its closest sampled entry. The binary vector is obtained by
processing the sampled entries in R in lexicographic order and by writing the size of its range
in unary. It is easy to see that the sampled entry prefixed by x = E(S[j − 1..j + L[i]− 1])
can be computed as Rank1(h(x)) in constant time. The data structure that stores B and
supports Rank requires O(n) bits (see Theorem 1).

Since the evaluation of h() is the dominant cost, a backward step takes
O(1 +m log logn/w) time. The overall space usage of this solution is O(n log logn) bits,
because B has at most 2n bits and h() requires O(n log logn) bits by Theorem 3. Since we per-
form at most d backward steps, the overall query time is O(d× (1 +m log logn/w) = O(m).
The equality follows by observing that d = O(logn/ log logn), m = Ω(logn/ log logn) and
w = Ω(logn).

Query algorithm. We report here the query algorithm for a pattern P [1..m], with m =
Ω(logn/ log logn). Recall that for shorter patterns we store all possible answers.

We first compute E(P [1..m]) in O(1 +m log logn/w) time. Then, we perform a weak
prefix search to identify the range [l, r] of encodings that are prefixed by E(P [1..m]) in
O(m log logn/w + log logn) time. If P has at least one occurrence, the search is guaranteed
to find the correct range; otherwise, the range may be arbitrary but the subsequent check
will identify the mistake and report zero occurrences.

In the checking phase there are two possible cases. If [l, r] contains a sampled entry,
say i, in R we use the encoding from Lemma 5 to compare E(S[R[i]..R[i] + m − 1]) and
E(P [1..m]) in O(m) time. If they are equal, we report R[i]; otherwise, we are guaranteed
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that there is no occurrence of P in S. If [l, r] contains no sampled entry we arbitrarily
select an index i ∈ [l, r] and we perform a sequence of backward steps starting from i. If
P has at least one occurrence, we are guaranteed to find a sampled entry e in at most d
backward steps. The overall time of these backward steps is O(d×m log logn/w) = O(m).
If e is not found, we conclude that P has no occurrence. Otherwise, we explicitly compare
E(S[R[e] + b..R[e] + m + b − 1]) and E(P [1..m]) in O(m) time, where b is the number of
performed backward steps. We report R[e] + b only in case of a successful comparison. Note
that if P occurs, then the number of its occurrences is r − l + 1.

7 Space Lower Bound

In this section we prove that our solution is space optimal. This is done by showing a lower
bound on the space that any data structure must use to solve the easier problem of just
establishing if a given pattern P has at least one order-preserving occurrence in S.

I Theorem 9. For any n, for any σ such that log σ = Ω(log logn), and for any encoding
data structure that, given a pattern P [1..m] with m = logn, establishes if P has any order-
preserving occurrence in a given string, there exists a string S[1..n] over the alphabet [σ] such
that the encoding must use Ω(n log logn) bits of space.

By contradiction assume there exists a data structure D that uses o(n log logn) bits. We
prove this implies we can store any string S[1..n] in less than n log σ bits, which is impossible.
We start by splitting S into n/m blocks of size m = logn. Let Bi denote the ith block.
Observe that if we know the set L(Bi) of characters that occur in Bi, we can recover Bi.
This is because E(Bi) implicitly tells us how to permute the characters in L(Bi) to obtain
Bi. Obviously, if we are able to reconstruct each Bi, we can reconstruct S. Thus, our goal is
to use D together with additional data structures to obtain E(Bi) and L(Bi), for any Bi.

We encode L(Bi) for each i by encoding the sorted sequence of characters with the
Elias-Fano representation. By Theorem 2, we know that this requires ` log σ

` + O(`) bits,
where ` = |L(Bi)| ≤ m. If σ ≥ m, this is at most m log σ

m +O(m) bits. Summing over all
the blocks, the overall space is at most n log σ

m +O(n) bits. If σ < m, the representation
uses O(m) bits per block and, thus, O(n) bits overall.

To represent the encodings of all the blocks, consider the set E of the encodings of all the
substrings of S of length m. We do not store E because it would require too much space.
Instead, for each block Bi, we store the lexicographic rank of Bi in E . This way, we are
keeping track of those elements in E that are blocks and their positions in S. This requires
O(n) bits, because there are n/ logn blocks and storing each rank needs O(logn) bits.

We are now ready to retrieve the encoding of all the blocks. This is done by searching in
D for every possible encoding of exactly m characters. The data structure will tell us the ones
that occur in S, i.e., we are retrieving the entire set E . Thus, we sort E and replace each the
stored rank of each block with its original encoding. Thus, we are able to reconstruct S by
using D and additional data structures which uses at most max(0, n log σ−n log logn)+O(n)
bits of space. This implies that D cannot use o(n log logn) bits.
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Abstract
We consider the problem of finding small distance-preserving subgraphs of undirected, unweighted
interval graphs that have k terminal vertices. We show that every interval graph admits a distance-
preserving subgraph withO(k log k) branching vertices. We also prove a matching Ω(k log k) lower
bound by exhibiting an interval graph based on bit-reversal permutation matrices. In addition,
we show that interval graphs admit subgraphs with O(k) branching vertices that approximate
distances up to an additive term of +1.
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1 Introduction

We consider the following problem. Given an undirected graph G = (V,E) with k vertices
designated as terminals, our goal is to construct a small subgraph H of G. Our notion of
smallness is non-standard: we compare solutions based on the number of vertices of degree
three or more. We have the following definition.

I Definition 1. Given an undirected, unweighted graph G = (V,E) and a set R ⊆ V (the
terminals), we say that a subgraph H(V,E′) of G is distance-preserving for (G,R) if for all
terminals u, v ∈ R, dG(u, v) = dH(u, v), where dG and dH denote the distances in G and H
respectively. Let deg≥3(H) denote the number of vertices in H with degree at least three
(referred to as branching vertices). Let

B(G,R) = min
H

deg≥3(H),

where H ranges over all subgraphs that are distance-preserving for (G,R). For a family of
graphs F (such as planar graphs, trees, interval graphs), let

BF (k) = max
G

B(G,R),

where G ranges over all graphs in F , and R ranges over all subsets of V (G) of size k.

In this work, we obtain essentially tight upper and lower bounds on BI(k), where I is the
class of interval graphs.
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I Theorem 2 (Main result). Let I denote the class of interval graphs (see Theorem 6).
(a) (Upper bound) BI(k) = O(k log k).
(b) (Lower bound) There exists a constant c such that for each k, a positive power of two,

there exists an interval graph Gint with |R| = k terminals such that B(Gint, R) ≥ c k log k.
This implies that BI(k) = Ω(k log k).

Parts (a) and (b) imply that BI(k) = Θ(k log k).

Remark (i). Part (a) is constructive. Our proof of the upper bound can be turned into an
efficient algorithm that, given an interval graph G with n vertices, produces the required
distance-preserving subgraph H in running time polynomial in n.
Remark (ii). Our interval graphs are unweighted. If we consider the family of interval graphs
with non-negative weights on their edges (Iw), then using [9, Section 5], it is easy to prove
that BIw

(k) = Θ(k4). Details appear in the full version of the paper.

1.1 Motivation and Related Work

The problem of constructing small distance-preserving subgraphs bears close resemblance to
several well-studied problems in graph algorithms: graph compression [5], graph spanners [3,
11], Steiner point removal [7, 8], graph contractions [4], etc.

We emphasize two motivations for studying distance-preserving subgraphs, while basing
the measure of efficiency on the number of branching vertices. First, this problem is
closely related to the notion of distance-preserving minors introduced by Krauthgamer and
Zondiner [10]. Second, although the problem restricted to interval graphs is interesting in its
own right, it can be seen to arise naturally in contexts where intervals represent time periods
for tasks. Let us now elaborate on our first motivation. Later, we elaborate on the second.

I Definition 3. Let G(V,E,w) be an undirected graph with weight function w : E → R≥0

and a set of terminals R ⊆ V . Then, H(V ′, E′, w′) with R ⊆ V ′ ⊆ V and weight function
w′ : E′ → R≥0 is a distance-preserving minor of G if: (i) H is a minor of G, and (ii)
dH(u, v) = dG(u, v)∀u, v ∈ R.

Subsequent work by Krauthgamer, Nguyên and Zondiner [9, 10] implies that BG(k) =
Θ(k4), where G is the family of all undirected graphs. Details appear in the full version of
the paper.

Using a reduction from the set cover problem, we prove that it is NP-hard to determine
if B(G,R) ≤ m, when given a general graph G ∈ G, a set of terminals R ⊆ V (G), and a
positive integer m. Details appear in the full version of the paper.

Following the work of Krauthgamer and Zondiner [10], Cheung et al. [1] introduced the
notion of distance-approximating minors.

I Definition 4. Let G(V,E,w) be an undirected graph with weight function w : E → R≥0

and a set of terminals R ⊆ V . Then, H(V ′, E′, w′) with R ⊆ V ′ ⊆ V and weight function
w′ : E′ → R≥0 is an α-distance-approximating minor (α-DAM) of G if: (i) H is a minor of
G, and (ii) dG(u, v) ≤ dH(u, v) ≤ α · dG(u, v)∀u, v ∈ V .

In analogy with distance-approximating minors one may ask if interval graphs admit distance-
approximating subgraphs with a small number of branching vertices.
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I Theorem 5. Every interval graph G with k terminals admits a subgraph H with O(k)
branching vertices such that for all terminals u and v of G

dG(u, v) ≤ dH(u, v) ≤ dG(u, v) + 1.

A proof of Theorem 5 will appear in the full version of the paper.
We now elaborate on our second motivation. The following example1 illustrates the

relevance of distance-preserving (-approximating) subgraphs for interval graphs.

1.2 The Shipping Problem
The port of Bandarport is a busy sea port. Apart from ships with routes originating or
terminating at Bandarport, there are many ships that dock at Bandarport en route to their
final destination. Thus, Bandarport can be considered a hub for many ships from all over
the world.

Consider the following shipping problem. A cargo ship starts from some port X, and
has Bandarport somewhere on its route plan. The ship needs to deliver a freight container
to another port Y , which is not on its route plan. The container can be dropped off at
Bandarport and transferred through a series of ships arriving there until it is finally picked
up by a ship that is destined for port Y . Thus, the container is transferred from X to Y via
some “intermediate” ships at Bandarport2.

However, there is a cost associated with transferring a container from one ship to another.
This is because each transfer operation requires considerable manpower and resources. Thus,
the number of ship-to-ship transfers that a container undergoes should be as small as possible.

Furthermore, there is an added cost if an intermediate ship receives containers from
multiple ships, or sends containers to multiple ships. This is mainly because of the bookkeeping
overhead involved in maintaining which container goes to which ship. If a ship is receiving
all its containers from just one ship and sending all those containers to just one other ship,
then the cost associated with this transfer is zero (since a container cannot be directed to a
wrong ship if there is only one option), and this cost increases as the number of to and from
ships increases.

Thus, given the docking times of ships at Bandarport, and a small subset of these ships
that require a transfer of containers between each other, our goal is to devise a transfer
strategy that meets the following objectives.

Minimize the number of transfers for each container.
Minimize the number of ships that have to deal with multiple transfers.

Representing each ship’s visit to the port as an interval on the time line, this problem
can be modelled using distance-preserving (-approximating) subgraphs of interval graphs. In
this setting, a shortest path from an earlier interval to a later interval corresponds to a valid
sequence of transfers across ships that moves forward in time. The first objective corresponds
to minimizing pairwise distances between terminals; the second objective corresponds to
minimizing the number of branching vertices.

1 This is not a real-life problem, though we learnt that minimizing the number of branching vertices in
shipping schedules is logistically desirable.

2 The container cannot be left at the warehouse/storage unit of Bandarport itself beyond a certain limited
period of time.
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Let us now quantify this. Suppose that there are a total of n ships that dock at the port
of Bandarport. Out of these, there are k ships that require a transfer of containers between
each other (typically k � n). Our results for interval graphs imply the following.
1. If we must make no more than the minimum number of transfers required for each

container, then there is a transfer strategy in which the number of ships that have to
deal with multiple transfers is O(k log k).

2. If we are allowed to make one more than the minimum number of transfers required for
each container, then there is a transfer strategy in which the number of ships that have
to deal with multiple transfers is O(k).

3. Neither bound can be improved, i.e. there exist scheduling configurations in which Ω(k)
and Ω(k log k) ships, respectively, have to deal with multiple transfers.

1.3 Our Techniques
The linear upper bound for BI(k) mentioned in Theorem 5 is easy to prove, and appears
in the full version of the paper. However, if we require that distances be preserved exactly,
then the problem becomes non-trivial. We now present a broad overview of the techniques
involved in proving our main result.

The Upper Bound: We may restrict attention to interval graphs that have interval
representations where the terminals are intervals of length 0 (their left and right end points
are the same) and the non-terminals are intervals of length 1 (details appear in the full version
of the paper). It is well-known that shortest paths in interval graphs can be constructed
using a simple greedy algorithm. We build a subgraph consisting of such shortest paths
starting at different terminals and add edges to it so that all inter-terminal shortest paths
become available in the subgraph. We use a divide-and-conquer strategy, repeatedly “cutting”
the graph down the middle into smaller interval graphs. Then we glue the solutions to the
two smaller problems together. For this, we need a key observation (which appears to be
applicable specifically to interval graphs) that allows one shortest path to “hop” onto another.
In this, our upper bound method is significantly different from methods used previously for
other families of graphs.

The Lower Bound: We construct an interval graph and arrange its vertices on a two-
dimensional grid instead of the more natural one-dimensional number line. We then show
that this grid can be thought of as a matrix, in particular, the bit-reversal permutation
matrix (where the ones corresponding to terminals and the zeros to non-terminals). The
bit-reversal permutation matrix has seen many applications, most notably in the celebrated
Cooley-Tukey algorithm for Fast Fourier Transform [2]. Prior to our work too, it has been
used to devise lower bounds (e.g. [6, 12]). Examining the routes available for shortest paths
in our interval graph constructing using the bit-reversal permutation matrix requires (i) an
analysis of common prefixes of binary sequences, and (ii) building a correspondence between
branching vertices and the k log k/2 edges of a (log k)-dimensional Boolean hypercube.

In our formulation, we count the number of branching vertices (vertices with degree ≥ 3).
It is also reasonable to consider the number of edges incident on non-terminal branching
vertices (we refer to such edges as branching edges) as the measure of complexity. Our
Ω(k log k) lower bound is clearly applicable to the number of branching edges as well. In fact,
using a more direct argument, one can show that there are interval graphs with k terminals
that admit distance-preserving subgraphs with O(k) branching vertices, but need Ω(k log k)
branching edges. Details appear in the full version of the paper. However, we do not know if
all interval graphs admit distance-preserving subgraphs with O(k log k) branching edges: the
best upper bound we know for this variant is O(k log2 k).
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2 Interval Graphs

We work with the following definition of interval graphs.

I Definition 6. An interval graph is an undirected graph G(V,E, left, right) with vertex set
V , edge set E, and real-valued functions left : V → R and right : V → R such that:

left(x) ≤ right(x) ∀x ∈ V ;
(u, v) ∈ E ⇔ [left(u), right(u)] ∩ [left(v), right(v)] 6= ∅.

We order the vertices of the interval graph according to the end points of their corresponding
intervals. For simplicity, we assume that all the end points of the intervals have distinct
values. Define relations “�” and “≺" on the set of vertices V as follows.

u � v ⇔ right(u) ≤ right(v) ∀u, v ∈ V.
u ≺ v ⇔ right(u) < right(v) ∀u, v ∈ V.

Note that if u ≺ v, then u 6= v.

It is well-known that shortest paths in interval graphs can be constructed using a greedy
algorithm which proceeds as follows. Suppose we need to construct a shortest path from
interval u to interval v (assume u ≺ v). The greedy algorithm starts at u. In each step
it chooses the next interval that intersects the current interval and reaches farthest to the
right. It stops as soon as the current interval intersects v. Let P gr

G (u, v) be the shortest path
produced by this greedy algorithm between u and v (u ≺ v).

Given real numbers a, b ∈ R such that a ≤ b, let G[a, b] be the induced subgraph on those
vertices v of G such that [left(v), right(v)] ∩ [a, b] 6= ∅. Similarly, let G[a, b) be the induced
subgraph on those vertices v of G such that [left(v), right(v)] ∩ [a, b) 6= ∅.

3 Proof of the Upper Bound

In this section, we show that any interval graph G with k terminals has a distance-preserving
subgraph with O(k log k) branching vertices, which is simply Theorem 2 (a), restated here
for completeness.

I Theorem 7. If I is the family of all interval graphs, then BI(k) = O(k log k).

Fix an interval graph G on k terminals. Our goal to obtain a distance-preserving subgraph
H of G with O(k log k) branching vertices. Note that the H that we obtain is not necessarily
an interval graph. This is because H need not be an induced subgraph of G. We may assume
(details in the full version of the paper) that all terminals in G are point intervals and all
non-terminals are unit intervals.

Consider the greedy path P gr
G (ti, tk) (i < k), where tk is the rightmost terminal. Our

distance-preserving subgraph includes greedy paths from ti to tk for all 1 ≤ i < k. Let

H0 =
⋃

1≤i<k
P gr
G (i, k). (1)

Now, H0 already provides for shortest paths from each terminal ti to tk. In fact, it can be
viewed as a shortest path tree with root tk, but constructed backwards. Thus, the total
number of branching vertices in H0 is O(k). We still need to arrange for shortest paths
between other pairs of terminals (ti, tj). The path P gr

G (ti, tj) (for i < j < k) is either entirely
contained in P gr

G (ti, tk), or it follows P gr
G (ti, tk) until it reaches a neighbour of tj and then

branches off to connect to tj . We can consider including all paths of the form P gr
G (ti, tj) in
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H0. That is, we need to link each such tj to vertices from H0 so that each path P gr
G (ti, tj)

becomes available. If this is done without additional care, we might end up introducing Ω(k)
additional branching vertices per terminal, and Ω(k2) branching vertices in all, far more than
we claimed.

The crucial idea for overcoming this difficulty is contained in the following lemma.

I Lemma 8. Suppose v ≺ w and d(v, w) = 1. Let (v, v1, v2, . . . , v`) and (w,w1, w2, . . . , w`′)
be greedy shortest paths starting from v and w respectively. Suppose right(v`) < right(w`′).
Then, ` ≤ `′.

Proof. Since d(v, w) = 1, the greedy strategy reaches at least as far in j + 1 steps from
v as it does in j steps from w. Suppose for contradiction that ` > `′ (that is ` ≥ `′ + 1).
Then, we have right(w`′) ≤ right(v`′+1) ≤ right(v`), contradicting our assumption that
right(v`) < right(w`′). J

The above lemma is crucial for the construction of our subgraph H. For example, suppose
ti and tj both need to reach tr via a shortest path. Suppose (wi, tr) is the last edge of
P gr
G (ti, tr) and (wj , tr) is the last edge of P gr

G (tj , tr). We claim that it is sufficient to include
only one of these edges in H. If right(wj) < right(wi), then it is enough to include the edge
(wj , tr) in H; as long as ti has a shortest path to wj , this edge serves for shortest paths to tr
from both ti and tj . In the construction below, we add links to the greedy paths of H0 so
that we need to provide only one such edge per terminal. This idea forms the basis of the
divide-and-conquer strategy which we present below.

Suppose G has 2` terminals. We find a point x so that both Gleft = G[−∞, x] and
Gright = G[x,∞] have ` terminals. By induction, we find distance-preserving subgraphs Hleft
and Hright of Gleft and Gright with at most f(`) branching vertices each. The union of Hleft
and Hright has just 2f(`) branching vertices, but it does not yet guarantee shortest paths
from terminals in Hleft to terminals in Hright. Using Theorem 8 and the discussion above,
we connect each terminal tj in Hright to only one of the greedy shortest paths of terminals
from Hleft, and ensure that shortest paths to tj are preserved from all terminals ti in Hleft.
This creates O(`) additional branching vertices and give us a recurrence of the form

f(2`) ≤ 2f(`) +O(`),

and the desired upper bound of O(k log k). Unfortunately, there are technical difficulties in
implementing the above strategy as stated. It is therefore helpful to augment H0 by adding
all greedy paths P gr

G (ti, tj), where d(i, j) ≤ 4. As a result, for each terminal ti, the first three
vertices on P gr

G (ti, tk) might become branching vertices. In all, this adds a one-time cost of
O(k) branching vertices to our subgraph. We now present the argument formally.

For each (a, b), let f(a, b) be the minimum number of non-terminals in a subgraph H of
G[a, b] such that H0 ∪H preserves all inter-terminal distances in G[a, b]; let

f(`) = max
(a,b)

f(a, b),

where (a, b) ranges over all pairs such that G[a, b] has at most ` terminals. The following
lemma is the basis of our induction.

I Lemma 9.
(i) f(1) = 0;
(ii) f(2`) ≤ 2f(`) +O(`).
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Proof. Part (i) is trivial. For part (ii), fix a pair (a, b) such that G[a, b] has at most 2`
terminals. If b−a ≤ 1, H0 already preserves distances between every two terminals in G[a, b].
So, we may take H to be empty. Now assume that b − a > 1. Pick x ∈ [a, b] as large as
possible such that (i) b− x ≥ 1, and (ii) G[x, b] has at least ` terminals.

Let Gleft = G[a, x) and Gright = G[x, b]. Since Gright has at least ` terminals, Gleft has at
most ` terminals. So, we obtain (by induction) a subgraph Hleft of G[a, b] with at most f(`)
non-terminals, such that H0 ∪Hleft preserves inter-terminal distances in Gleft. If b− x > 1,
then Gright has exactly ` terminals, and we obtain by induction a subgraph Hright with at
most f(`) non-terminals such that H0∪Hright preserves all inter-terminal distances in G[x, b].
If b− x = 1, then we may take Hright to be empty (for H0 already preserves inter-terminal
distances in G[x, b]).

Our final subgraph H shall be of the form Hleft ∪Hright ∪HA ∪HB , where HA and HB

are defined as follows. First, consider HA. Let Pleft be the set of greedy paths from the
terminals in Hleft to the terminal tk. Let VA be the set of all non-terminal intervals of Pleft
that intersect with the interval [x, x+ 1]. It is easy to see that any path in Pleft contributes
at most 4 non-terminals to VA. So, |VA| ≤ 4`. Let HA be the subgraph of G[a, b] induced by
VA and the terminals in G[x, x+ 1].

Note that H0 ∪Hleft ∪Hright ∪HA preserves all inter-terminal distances in G[a, x+ 1] as
well as all inter-terminal distances in G[x+ 1, b]. It, in fact, does more. For each terminal ti
in G[a, x), let vi be the last vertex on the greedy path P gr

G (ti, tk) that is in VA. Then, the
above graph contains the greedy shortest path from every terminal tj in G[a, x] to vi.

Now, it only remains to ensure that distances between terminals in G[a, x) and terminals
in G[x+ 1, b] are preserved. Let us now define HB . For each terminal tj in G[x+ 1, b], let v
be the earliest interval (with respect to ≺) of Pleft that contains tj . Then, we include the
edge (v, tj) in HB. Thus, HB contains at most one non-terminal per vertex in G[x+ 1, b],
that is, O(`) non-terminals in all. This completes the description of HA and HB . The final
subgraph is H = Hleft ∪Hright ∪HA ∪HB .

I Claim 10. Let ti be a terminal in G[a, x) and tr be a terminal in G[x, b]. Then, H0 ∪H
preserves the distance between terminal ti and tr.

Proof of Claim 10. Let v be the vertex that we attached to tr in HB . If v is on P gr
G (ti, tk),

then it follows that P gr
G (ti, tr) is in H, and we are done. So we assume that v is not on

P gr
G (ti, tk). Then, let j 6= i be such that v ∈ P gr

G (tj , tk). Then, we have paths

PG(ti, tr) = (ti, w1, w2, . . . , wp, wp+1, . . . , w`′ , tr);
PH(ti, tr) = (ti, w1, w2, . . . , wp, vq+1, . . . , v` = v, tr),

where vq+1 is the last vertex on P gr
G (tj , tk) in G[x, x + 1], and wp is the first vertex on

P gr
G (ti, tr) such that (wp, vq+1) ∈ E(G). From the construction of HA, (wp, vq+1) ∈ E(H).

Following vq, (vq+1, . . . , v` = v, tr) are the subsequent vertices on P gr
G (tj , tr). Note that: (i)

vq+1 ≺ wp+1 (otherwise v is on P gr
G (ti, tk)), (ii) d(vq+1, wp+1) = 1 (both intervals contain

right(wp)), and (iii) right(v`) < right(w`′) (since v is the earliest interval of Pleft that contains
tj). By Theorem 8, `− q − 1 ≤ `′ − p− 1. Thus, PH(ti, tr) is no longer than P gr

G (ti, tr). J
J

We can now complete the proof of Theorem 7. By Theorem 9, there is a subgraph H ′ of
G such that H = H0 ∪H ′ preserves all inter-terminal distances in G, H0 has O(k) branching
vertices and H ′ has O(k log k) non-terminals. It follows that H has O(k log k) branching
vertices.
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4 Proof of the Lower Bound

In this section, we show that there exists an interval graph Gint such that any distance-
preserving subgraph of Gint has Ω(k log k) branching vertices, which is simply Theorem 2
(b), restated here for completeness.

I Theorem 11. If I is the family of all interval graphs, then BI(k) = Ω(k log k).

4.1 Preliminaries
We first set up some terminology that we use in this section. Let k = 2γ , where γ is a positive
integer. We identify the numbers in the set {0, 1, . . . , k − 1} with elements of {0, 1}γ using
the γ-bit binary representation. We index the bits of the binary strings from left to right
using integers i = 1, 2, . . . , γ. Thus, x[i] denotes the i-th bit of x (from the left); we use x[i, j]
to denote the string x[i]x[i+ 1] . . . x[j] of length j − i+ 1 (here i, j satisfy 1 ≤ i ≤ j ≤ γ).

For a string of bits a, we use revγ(a) to represent the reverse of a, that is, the binary
string obtained by writing the bits of a in the reverse order (e.g., revγ(00010) = 01000). We
may arrange binary strings in a binary tree. Refer to Figure 1 for an example. The root is the
empty string; the left child of a vertex x is the vertex x 0, and its right child is the vertex x 1.
In particular, the string y is a descendant of the string x if y is obtained by concatenating
x with some (possibly empty) string z, that is, y = x z. Consider the binary tree of depth
γ, whose leaves correspond to elements of {0, 1}γ . For distinct elements x, y ∈ {0, 1}γ , let
lca(x, y) be the lowest common ancestor of x and y defined as follows:

lca(x, y) = x[1, `− 1] = y[1, `− 1], where ` = min {i ∈ [γ] : x[i] 6= y[i]} .

For example, lca(0100111, 0101010) = 010. Let blca(x, y)c be the floor of lca(x, y), and
dlca(x, y)e be the ceiling of lca(x, y) defined as follows:

blca(x, y)c = lca(x, y) 0 1γ−`

dlca(x, y)e = lca(x, y) 1 0γ−`

Since blca(x, y)c, dlca(x, y)e ∈ {0, 1}γ , we may regard blca(x, y)c and dlca(x, y)e as numbers
in the set {0, 1, . . . , k − 1}. Note that blca(x, y)c = dlca(x, y)e − 1, and if x < y, then
blca(x, y)c ∈ [x, y) and dlca(x, y)e ∈ (x, y]3.

Strings in {0, 1}γ can also be viewed as vertices of an γ-dimensional hypercube, with
edge set

Hγ = {(x, x′) : x, x′ ∈ {0, 1}γ and x < x′ and Ham(x, x′) = 1},

where Ham(x, x′) is the Hamming distance between x and x′. Thus, if (x, x′) ∈ Hγ , then x
and x′ differ at a unique location where x has a zero and x′ a one.

I Claim 12. Suppose (x, x′) and (y, y′) are distinct edges of Hγ .
(a) If lca(x, x′) = lca(y, y′), then [revγ(x), revγ(x′)] ∩ [revγ(y), revγ(y′)] = ∅.
(b) If {blca(x, x′)c , blca(y, y′)c} ⊆ [x, x′) ∩ [y, y′), then

[revγ(x), revγ(x′)] ∩ [revγ(y), revγ(y′)] = ∅.

3 [x, y] , {x, x+ 1, x+ 2, . . . , y} and [x, y) , {x, x+ 1, x+ 2, . . . , y − 1}.
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0 1

0 1 0 1

0 1

0 1 0 1

0 1 0 1 0 1 0 1

blca(x, y)c dlca(x, y)e

x y

lca(x, y)

height=γ

Figure 1 A complete binary tree of height γ having k = 2γ leaves. In this example, γ = 5,
x = 01001 and y = 01101. Thus, Ham(x, y) = 1 and |lca(x, y)| = 2.

Proof. Although part (b) implies part (a), it is easier to show part (a) first, and then derive
part (b) from it. For part (a), let |lca(x, x′)| = |lca(y, y′)| = `− 1. Let a, b ∈ {0, 1}γ−` be
such that

a = x[`+ 1, γ] = x′[`+ 1, γ] 6= y[`+ 1, γ] = y′[`+ 1, γ] = b.

In particular, we have a 6= b (implying revγ−`(a) 6= revγ−`(b)). Note that revγ(a) represents
the γ − ` most significant bits of revγ(x) and revγ(x′); similarly, revγ(b) represents the
γ − ` most significant bits of revγ(y) and revγ(y′).

If revγ−`(a) < revγ−`(b) then revγ(x′) < revγ(y); and if revγ−`(b) < revγ−`(a) then
revγ(y′) < revγ(x). In either case, [revγ(x), revγ(x′)] and [revγ(y), revγ(y′)] are disjoint,
proving part (a).

Next, consider part (b). Suppose blca(x, x)c , blca(y, y′)c ∈ [x, x′) ∩ [y, y′). Since every
p ∈ [x, x′) is a descendant of lca(x, x′), we conclude that lca(y, y′) is a descendant of
lca(x, x′). Similarly, lca(x, x′) is a descendant of lca(y, y′). But then lca(x, x′) = lca(y, y′),
and part (b) follows from part (a). J

4.2 Manhattan Graphs
In this section, we describe a directed grid graph Gbit

k (which we refer to as the Manhattan
graph) with 3k terminals. We show that any distance-preserving subgraph of Gbit

k has
Ω(k log k) branching vertices. The graph has k2 + 2k vertices arranged in a square grid. The
vertices and edges of Gbit

k are defined as follows. (Figure 2 makes this definition easier to
understand.)
1. V (Gbit

k ) = {0, 1, 2, . . . , k − 1} × {−1, 0, 1, . . . , k}.
2. There are three kinds of edges: horizontal, upward and downward; the edge set is given

by E(Gbit
k ) = Ehor ∪ Eup ∪ Edown, where

Ehor = {((i, j), (i, j + 1)) : i = 0, 1, . . . , k − 1 and j = −1, 0, . . . , k − 1};
Eup = {((i1, j), (i2, j)) : 0 ≤ i2 < i1 ≤ k − 1 and j = −1, 0, . . . , k};

Edown = {((i1, j), (i2, j)) : 0 ≤ i1 < i2 ≤ k − 1 and j = −1, 0, . . . , k}.
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Figure 2 The bit-reversal permutation matrix for k = 16. Each cell represents a vertex: the
blue cells represent the terminal vertices of Tmid; all the other vertices are non-terminals. Edges are
named horizontal, upward and downward in the natural way.

3. The edge weights are given by the function w : E(Gbit
k ) → {0, 1}, defined as follows:

w(e) = 1 if e ∈ Ehor ∪ Eup, and w(e) = 0 if e ∈ Edown.
The set of terminals are of the form T = Tleft ∪ Tmid ∪ Tright, where

Tleft = {0, 1, . . . , k − 1} × {−1},
Tright = {0, 1, . . . , k − 1} × {k};
Tmid = {(revγ(i), i) : i = 0, 1, . . . , k − 1}.

This completes the definition of Gbit
k .

Fix an optimal distance-preserving subgraph Hbit
k of Gbit

k . We shall show that Hbit
k has

Ω(k log k) vertices of degree at least 3.

I Lemma 13. V (Hbit
k ) = V (Gbit

k ) and Ehor ⊆ E(Hbit
k ).

Proof. Note that the unique shortest path between the terminals (i,−1) and (i, k) is precisely
((i,−1), (i, 0), . . . , (i, k)). Thus, all vertices and all horizontal edges in the i-th row of Gbit

k

must be part of Hbit
k . J

It follows from Theorem 13 that every non-terminal vertex in Hbit
k has degree at least two,

namely the two horizontal edges incident on it.
Special edges: From now on, we rely solely on the fact that Hbit

k is distance-preserving
for every pair of terminals in Tmid, i.e. we prove the stronger statement that just preserving
terminal distances in Tmid requires Ω(k log k) branching vertices.

Order the vertices in Tmid as t0, t1, . . . , tk−1, where ti = (revγ(i), i). Note that these
terminals appear in different rows and columns. Consider the following pairs of terminals.

Ttwins = {(ti, tj) : (i, j) ∈ Hγ}.

For each twin (ti, tj), fix P (i, j), a path of minimum distance between ti and tj in Hbit
k . We

are now set to formally define special edges.



K. Gajjar and J. Radhakrishnan 39:11

I Definition 14. Let spcl(i, j) = ((rij , blca(i, j)c), (rij , dlca(i, j)e)) be an edge of P (i, j),
where revγ(i) ≤ rij ≤ revγ(j). (By Theorem 15, such an edge exists.) Let spcl =
{spcl(i, j) : (ti, tj) ∈ Ttwins}.

I Lemma 15. Let (ti, tj) ∈ Ttwins; let ` = blca(i, j)c. Then, there is an rij ∈
[revγ(i), revγ(j)] such that P (i, j) contains the edge ((rij , `), (rij , `+ 1)).

Proof. We have i < j, ti = (revγ(i), i) and tj = (revγ(j), j). Also note that since (i, j) ∈ Hγ ,
revγ(i) < revγ(j). Thus, d(i, j) = j − i, and the shortest path P (ti, tj) goes from column i
to column j and never skips a column. Since ` ∈ [i, j), there must be an edge in P (i, j) of
the form ((rij , `), (rij , `+ 1)) (say, the edge of P (i, j) that leaves column ` for the last time).
We claim that rij ∈ [revγ(i), revγ(j)]. For otherwise, P (i, j) would contain an edge in Eup.
Then, apart from the j − i edges from Ehor, P (i, j) would contain an additional edge from
Eup of weight 1; that is, the length of P (i, j) would be at least j − i+ 1—contradicting the
fact that d(i, j) = j − i. J

I Lemma 16 (Key lemma). Suppose (tx, tx′) and (ty, ty′) are distinct pairs in Ttwins such
that their special edges are in the same row r, that is,

spcl(x, x′) = ((r, α), (r, α+ 1))
spcl(y, y′) = ((r, β), (r, β + 1)),

where α = blca(x, x′)c and β = blca(y, y′)c.
(a) Then, α 6= β. In particular, spcl(x, x′) 6= spcl(y, y′).
(b) Suppose α < β. Then, there exists an ` ∈ [α+ 1, β] such that (r, `) is either a branching

vertex or a terminal in Hbit
k .

Proof. Part (a) follows from Claim 12 (a). Consider part (b). By our definition of spe-
cial edge, r ∈ [revγ(x), revγ(x′)] and r ∈ [revγ(y), revγ(y′)]. So, [revγ(x), revγ(x′)] ∩
[revγ(y), revγ(y′)] 6= ∅, and by Claim 12 (b) (in the contrapositive) either α /∈ [y, y′) or
β /∈ [x, x′). If α /∈ [y, y′), spcl(x, x′) is not on P (y, y′). The first vertex in row r that is
part of P (y, y′) is in a column ` ∈ [α+ 1, β]. Then, (r, `) is either a branching vertex or the
terminal ty. On the other hand, if β /∈ [x, x′), then the last vertex of P (tx, tx′) in row r lies
in a column ` ∈ [α+ 1, β], so (r, `) is either a branching vertex or the terminal tx′ . J

I Corollary 17.
(a) |spcl| = |Ttwins| = k log k/2 (since |Ttwins| = |Hγ | = k log k/2).
(b) If two edges in spcl fall in the same row, then there is a branching vertex or a terminal

separating them.

I Theorem 18. Hbit
k has Ω(k log k) branching vertices.

Proof. For each i ∈ {0, 1, . . . , k − 1}, let δi be the number of distinct edges in spcl in row i.
Then, by Theorem 17 (a), we have

k−1∑
i=0

δi = |spcl| =
(
k log k

2

)
.

Furthermore, Theorem 17 (b) implies that there are at least δi − 2 many branching vertices
of the form (i, x) in Hbit

k , where 0 ≤ x ≤ k− 1. Thus, the total number of branching vertices
in Hbit

k is at least

(δ0 − 2) + (δ1 − 2) + · · ·+ (δk−1 − 2) =
(
k−1∑
i=0

δi

)
− 2k =

(
k log k

2

)
− 2k.

Since this quantity is Ω(k log k), this completes the proof. J
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4.3 Translating the Lower Bound to Interval Graphs
In this section, we present an interval graph Gint with O(k) terminals, for which every
distance-preserving subgraph has Ω(k log k) branching vertices. Our lower bound relies on
the lower bound for the Manhattan graph shown in the previous section. Let us describe the
interval graph. Let J be the set of intervals.

J = {[x, x+ 1] : x = −1,−1 + 1/k, . . . ,−1/k, 0, . . . , k, k + 1/k, . . . , k + 1− 1/k}.

Thus, we have unit intervals starting at all integral multiples of 1/k in the range [−1, k +
1− 1/k]; in all we have k(k + 2) intervals in J . These intervals naturally define an interval
graph. Furthermore, the edges of Gint are directed as follows. Orient the edges of Gint from
an earlier interval to a later interval, i.e. ([x, x+ 1], [y, y+ 1]) is a directed edge from [x, x+ 1]
to [y, y + 1] if and only if x < y ≤ x+ 1. Note that this orientation does not affect shortest
paths. Any shortest path from [i, i+ 1] to [j, j + 1] (where i < j) in the undirected interval
graph is also a valid directed shortest path in Gint. Also, Gint has k2 + 2k vertices, which
(surprisingly?) is the number of vertices in the Manhattan graph of the previous section. In
fact, the connection is deeper. Let us arrange the intervals in a two-dimensional array

A = 〈ai,j : i = 0, . . . , k − 1 and j = −1, 0, . . . , k〉,

where aij corresponds to the interval [j + (k − 1 − i)/k, j + 1 + (k − 1 − i)/k]. Thus, the
first k intervals of J occupy the left most column of the array A (from bottom to top); the
next k intervals occupy the next column (again from bottom to top), and so on. It is easy to
check that, after this arrangement, the directed edges of Gint are of three types: horizontal,
upward and slanting.

Ehor(Gint) = {(ai,j , ai,j+1) : 0 ≤ i ≤ k − 1 and − 1 ≤ j ≤ k − 1};
Eup(Gint) = {(ai,j , ai′,j) : 1 ≤ i ≤ k − 1 and 0 ≤ i′ < i and − 1 ≤ j ≤ k };

Eslant(Gint) = {(ai,j , ai′,j+1) : 0 ≤ i ≤ k − 2 and i < i′ ≤ k − 1 and − 1 ≤ j ≤ k − 1}.

Thus, E(Gint) = Ehor(Gint) ∪ Eup(Gint) ∪ Eslant(Gint). All edges in E(Gint) have weight 1.
This 2d array can be viewed as a k × (k + 2) grid, and we place terminals in this graph at
the same 3k locations as in the Manhattan graph. This completes the description of Gint.
Using the lower bound shown for Manhattan graphs in the previous section (Theorem 18),
we complete the proof of Theorem 11. (Details appear in the full version of the paper.)
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Abstract
In the k-dispersion problem, we need to select k nodes of a given graph so as to maximize the
minimum distance between any two chosen nodes. This can be seen as a generalization of the
independent set problem, where the goal is to select nodes so that the minimum distance is larger
than 1. We design an optimal O(n) time algorithm for the dispersion problem on trees consisting
of n nodes, thus improving the previous O(n logn) time solution from 1997.

We also consider the weighted case, where the goal is to choose a set of nodes of total weight
at least W . We present an O(n log2 n) algorithm improving the previous O(n log4 n) solution.
Our solution builds on the search version (where we know the minimum distance λ between the
chosen nodes) for which we present tight Θ(n logn) upper and lower bounds.
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1 Introduction

Facility location is a family of problems dealing with the placement of facilities on a network
in order to optimize certain distances between the facilities, or between facilities and other
nodes of the network. Such problems are usually if not always NP-hard on general graphs.
There is a rich literature on approximation algorithms (see e.g. [14, 16] and references therein)
as well as exact algorithms for restricted inputs. In particular, many linear and near-linear
time algorithms were developed for facility location problems on edge-weighted trees.

In the most basic problem, called k-center, we are given an edge-weighted tree with n
nodes and wish to designate up to k nodes to be facilities, so as to minimize the maximum
distance of a node to its closest facility. This problem was studied in the early 80’s by
Megiddo et al. [12] who gave an O(n log2 n) time algorithm that was subsequently improved
to O(n logn) by Frederickson and Johnson [9]. In the early 90’s, an optimal O(n) time
solution was given by Frederickson [8, 6] using a seminal approach based on parametric search,
also for two other versions where points on edges can be designated as facilities or where we
minimize over points on edges. In yet another variant, called weighted k-center, every node
has a positive weight and we wish to minimize the maximum weighted distance of a node
to its closest facility. Megiddo et al. [12] solved this in O(n log2 n) time, and Megiddo and
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40:2 Dispersion on Trees

Tamir [11] designed an O(n log2 n log logn) time algorithm when allowing points on edges
to be designated as facilities. The latter complexity can be further improved to O(n log2 n)
using a technique of Cole [5]. A related problem, also suggested in the early 80’s [1, 13], is
k-partitioning. In this problem the nodes have weight and we wish to delete k edges in the
tree so as to maximize the weight of the lightest resulting subtree. This problem was also
solved by Frederickson in O(n) time [7] using his parametric search framework.

The focus of this paper is the k-dispersion problem, where we wish to designate k nodes
as facilities so as to maximize the distances among the facilities. In other words, we wish
to select k nodes that are as spread-apart as possible. More formally, let d(u, v) denote the
distance between nodes u and v, and for a subset of nodes P let f(P ) = minu,v∈P {d(u, v)}.

The Dispersion Optimization Problem. Given a tree with non-negative edge lengths, and
a number k, find a subset P of nodes of size k such that f(P ) is maximized.

The dispersion problem can be seen as a generalization of the classical maximum independent
set problem (that can be solved by binary searching for the largest value of k for which the
minimum distance is at least 2). It can also be seen as a generalization of the diameter
problem (i.e., when k = 2).

It turns out that the dispersion and the k-partitioning problems are actually equivalent
in the one-dimensional case (i.e., when the tree is a path). The reduction simply creates a
new path whose edges correspond to nodes in the original path and whose nodes correspond
to edges in the original path. However, such equivalence does not apply to general trees, on
which k-dispersion seems more difficult than k-partitioning. In particular, until the present
work, no linear time solution for k-dispersion was known. The dispersion optimization
problem can be solved by repeatedly querying a feasibility test that solves the dispersion
search problem.

The Dispersion Search Problem (feasibility test). Given a tree with non-negative edge
lengths, a number k, and a number λ, find a subset P of nodes of size k such that
f(P ) ≥ λ, or declare that no such subset exists.

Bhattacharya and Houle [2] presented a linear-time feasibility test, and used a result by
Frederickson [9] that enables binary searching over all possible values of λ (i.e., all pairwise
distances in the tree). That is, a feasibility test with a running time τ implies an O(n logn+
τ · logn) time algorithm for the dispersion optimization problem. Thus, the algorithm of
Bhattacharya and Houle for the dispersion optimization problem runs in O(n logn) time.
We present a linear time algorithm for the optimization problem. Our solution is based on a
simplified linear-time feasibility test, which we turn into a sublinear-time feasibility test in a
technically involved way closely inspired by Frederickson’s approach.

In the weighted dispersion problem, nodes have non-negative weights. Instead of k we are
given W , and the goal is then to find a subset P of nodes of total weight at least W s.t. f(P )
is maximized. Bhattacharya and Houle considered this generalization in [3]. They presented
an O(n log3 n) feasibility test for this generalization, that by the same reasoning above solves
the weighted optimization problem in O(n log4 n) time. We give an O(n logn)-time feasibility
test, and a matching lower bound. Thus, our algorithm for the weighted optimization
problem runs in O(n log2 n) time. Our solution uses novel ideas, and differs substantially
from Frederickson’s approach.

Our technique for the unweighted dispersion problem. Our solution to the k-dispersion
problem can be seen as a modern adaptation of Frederickson’s approach based on a hierarchy
of micro-macro decompositions. While achieving this adaptation is technically involved, we
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believe this modern view might be of independent interest. As in Frederickson’s approach for k-
partitioning and k-center, we develop a feasibility test that requires linear time preprocessing
and can then be queried in sublinear time. Equipped with this sublinear feasibility test, it is
still not clear how to solve the whole problem in O(n) time, as in such complexity it is not
trivial to represent all the pairwise distances in the tree in a structure that enables binary
searching. To cope with this, we maintain only a subset of candidate distances and represent
them using matrices where both rows and columns are sorted. Running feasibility tests on
only a few candidate entries from such matrices allows us to eliminate many other candidates,
and prune the tree accordingly. We then repeat the process with the new smaller tree. This
is similar to Frederickson’s approach, but our algorithm (highlighted below) differs in how
we construct these matrices, in how we partition the input tree, and in how we prune it.

Our algorithm begins by partitioning the input tree T into O(n/b) fragments, each with
O(b) nodes and at most two boundary nodes incident to nodes in other fragments: the root of
the fragment and, possibly, another boundary node called the hole. We use this to simulate
a bottom-up feasibility test by jumping over entire fragments, i.e., knowing λ, we wish to
extend in O(log b) time a solution for a subtree of T rooted at the fragment’s hole to a subtree
of T rooted at the fragment’s root. This is achieved by efficient preprocessing: The first step
of the preprocessing computes values λ1 and λ2 such that (1) there is no solution to the
search problem on T for any λ ≥ λ2, (2) there is a solution to the search problem on T for
any λ ≤ λ1, and (3) for most of the fragments, the distance between any two nodes is either
smaller or equal to λ1 or larger or equal to λ2. This is achieved by applying Frederickson’s
parametric search on sorted matrices capturing the pairwise distances between nodes in the
same fragment. The (few) fragments that do not satisfy property (3) are handled naively
in O(b) time during query time. The fragments that do satisfy property (3) are further
preprocessed. We look at the path from the hole to the root of the fragment and run the
linear-time feasibility test for all subtrees hanging off from it. Because of property (3), this
can be done in advance without knowing the actual exact value of λ ∈ (λ1, λ2), which will
only be determined at query time. Let P be a solution produced by the feasibility test to a
subtree rooted at a node u. It turns out that the interaction between P and the solution
to the entire tree depends only on two nodes of P , which we call the certain node and the
candidate node. We can therefore conceptually replace each hanging subtree by two leafs,
and think of the fragment as a caterpillar connecting the root and the hole. After some
additional pruning, we can precompute information that will be used to accelerate queries to
the feasibility test. During a query we will be able to jump over each fragment of size O(b)
in just O(log b) time, so the test takes O(nb log b) time.

The above sublinear-time feasibility test is presented in Section 3, with an overall
preprocessing time of O(n log logn). The test is then used to solve the optimization problem
within the same time. This is done, again, by maintaining an interval [λ1, λ2) and applying
Frederickson’s parametric search, but now we apply a heavy path decomposition to construct
the sorted matrices. To accelerate the O(n log logn) time algorithm, we construct a hierarchy
of feasibility tests by partitioning the input tree into larger and larger fragments. In each
iteration we construct a feasibility test with better running time, until finally, after log∗ n
iterations we obtain a feasibility test with O( n

log4 n
· log logn) query-time, which we use to

solve the dispersion optimization problem in linear time. It is relatively straightforward to
implement the precomputation done in a single iteration in O(n) time. However, achieving
total O(n) time over all the iterations, requires reusing the results of the precomputation
across iterations as well as an intricate global analysis of the overall complexity. Thus, the
details of the linear-time algorithm are technically involved and appear in the full version.
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Our technique for the weighted dispersion problem. Our solution for the weighted case
differs substantially from Frederickson’s approach. In contrast to the unweighted case, where
it suffices to consider a single candidate node, in the weighted case each subtree might have
a large number of candidate nodes. To overcome this, we represent the candidates of a
subtree with a monotonically decreasing polyline: for every possible distance d, we store the
maximum weight W (P ) of a subset of nodes P such that the distance of every node of P to
the root of the subtree is at least d. This can be conveniently represented by a sorted list
of breakpoints, and the number of breakpoints is at most the size of the subtree. We then
show that the polyline of a node can be efficiently computed by merging the polylines of its
children. If the polylines are stored in augmented balanced search trees, then two polylines of
size x and y can be merged in time O(min(x, y) log max(x, y)), and by standard calculation
we obtain an O(n log2 n) time feasibility test. To improve on that and obtain an optimal
O(n logn) feasibility test, we need to be able to merge polylines in O(min(x, y) log max(x,y)

min(x,y) )
time. An old result of Brown and Tarjan [4] is that, in exactly such time we can merge two
2-3 trees representing two sorted lists of length x and y (and also delete x nodes in a tree
of size y). This was later generalized by Huddleston and Mehlhorn [10] to any sequence of
operations that exhibits a certain locality of reference. However, in our specific application
we need various non-standard batch operations on the lists. any balanced search tree with
split and join capabilities. Our data structure both simplifies and extends that of Brown and
Tarjan [4], and might be of independent interest.

2 A Linear Time Feasibility Test

Given a tree T with non-negative lengths and a number λ, the feasibility test finds a subset
of nodes P such that f(P ) ≥ λ and |P | is maximized, and then checks if |P | ≥ k. To this end,
the tree is processed bottom-up while computing, for every subtree Tr rooted at a node r, a
subset of nodes P such that f(P ) ≥ λ, |P | is maximized, and in case of a tie minu∈P d(r, u)
is additionally maximized. We call the node u ∈ P , s.t. d(r, u) < λ

2 , the candidate node of
the subtree (or a candidate with respect to r). There is at most one such candidate node.
The remaining nodes in P are called certain (with respect to r) and the one that is nearest
to the root is called the certain node. When clear from the context, we will not explicitly
say which subtree we are referring to.

In each step we are given a node r, its children nodes r1, r2, . . . , r` and, for each child ri,
a maximal valid solution Pi for the feasibility test on Tri together with the candidate and the
certain node. We obtain a maximal valid solution P for the feasibility test on Tr as follows:

1. Take all nodes in P1, . . . , P`, except for the candidate nodes.

2. Take all candidate nodes u s.t. d(u, r) ≥ λ
2 (i.e., they are certain w.r.t. r).

3. If it exists, take u′, the candidate node farthest from r s.t. d(u′, r) < λ
2 and d(u′, x) ≥ λ,

where x is the closest node to u′ we have taken so far.

4. If the distance from r to the closest vertex in P is at least λ, add r to P .
Iterating over the input tree bottom-up as described results in a valid solution P for the
whole tree. Finally, we check if |P | ≥ k.

I Lemma 1. The above feasibility test works in linear time and finds P such that f(P ) ≥ λ
and |P | is maximized.
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3 An O(n log log n) Time Algorithm for the Dispersion Problem

To accelerate the linear-time feasibility test described in Section 2, we will partition the tree
into O(n/b) fragments, each of size at most b. We will preprocess each fragment to implement
the bottom-up feasibility test in sublinear time by “jumping” over fragments in O(log b) time
instead of O(b). The preprocessing takes O(n log b) time (Section 3.1), and each feasibility
test can then be implemented in sublinear O(nb · log b) time (Section 3.2). Using heavy-path
decomposition, we design an algorithm for the unweighted dispersion optimization problem
whose running time is dominated by O(log2 n) calls it makes to the sublinear feasibility test
(Section 3.3). By setting b = log2 n we obtain an O(n log logn) time algorithm.

Each fragment is defined by one or two boundary nodes: a node u, and possibly a
descendant v of u. The fragment whose boundary nodes are u and v consists of the subtree
of u without the subtree of v (v does not belong to the fragment). Thus, each fragment is
connected to the rest of the tree only through its boundary nodes. We call the path from u

to v the fragment’s spine, and v’s subtree its hole. If the fragment has only one boundary
node, i.e., the fragment consists of a node and all its descendants, we say that there is no
hole. A partition of a tree into O(n/b) such fragments, each of size at most b, is called a
good partition. Note that we can assume that the input tree is binary: given a non-binary
tree, we can replace every degree d ≥ 3 node with a binary tree on d leaves. The edges of
the binary tree are all of length zero, so at most one node in the tree can be taken.

I Lemma 2. For any binary tree on n nodes and a parameter b, a good partition of the tree
can be found in O(n) time.

3.1 The preprocessing
Recall that the goal in the optimization problem is to find the largest feasible λ∗. Such λ∗ is
a distance between an unknown pair of vertices in the tree. The first goal of the preprocessing
step is to eliminate many possible pairwise distances, so that we can identify a small interval
[λ1, λ2) that contains λ∗. We want this interval to be sufficiently small so that for (almost)
every fragment F , handling F during the bottom up feasibility test for any value λ in [λ1, λ2)
is the same. Observe that the feasibility test in Section 2 for value λ only compares distances
to λ and to λ/2. We therefore call a fragment F inactive if for any two nodes u1, u2 ∈ F the
following two conditions hold: (1) d(u1, u2) ≤ λ1 or d(u1, u2) ≥ λ2, and (2) d(u1, u2) ≤ λ1

2 or
d(u1, u2) ≥ λ2

2 . For an inactive fragment F , all the comparisons performed by the feasibility
test for any λ ∈ [λ1, λ2) only depend on the interval [λ1, λ2), but not on the particular value
of λ. Therefore, once we find an interval [λ1, λ2) for which (almost) all fragments are inactive,
we can precompute, for each inactive fragment F , information that will enable us to process
F in O(log b) time during any subsequent feasibility test with λ ∈ (λ1, λ2).

The first goal of the preprocessing step is therefore to find a small enough interval [λ1, λ2).
For each fragment F , we construct an implicit representation of O(b) sorted matrices of total
side length O(b log b), s.t. for every two nodes u1, u2 in F , d(u1, u2) (and also 2d(u1, u2))
is an entry in some matrix. This is done using the standard centroid decomposition, in
O(nb · b log b) = O(n log b) total time using the following lemma.

I Lemma 3. Given a tree T on b nodes, we can construct in O(b log b) time an implicit
representation of O(b) sorted matrices of total side length O(b log b) such that, for any
u, v ∈ T , d(u, v) is an entry in some matrix.

Then, we repeatedly choose an entry of a matrix and run a feasibility test with its value.
Depending on the outcome, we then appropriately shrink the current interval [λ1, λ2) and
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discard this entry. Because the matrices are sorted, running a single feasibility test can
actually allow us to discard multiple entries in the same matrix (and, possibly, also entries in
some other matrices). The following theorem by Frederickson shows how to exploit this to
discard most of the entries with very few feasibility tests.
I Theorem 4 ([7]). Let M1,M2, ...,MN be a collection of sorted matrices in which mat-
rix Mj is of dimension mj × nj, mj ≤ nj, and

∑N
j=1 mj = m. Let p be nonnegative.

The number of feasibility tests needed to discard all but at most p of the elements is
O(max{log(maxj{nj}), log( m

p+1 )}), and the total running time exclusive of the feasibility
tests is O(

∑N
j=1 mj · log(2nj/mj)).

Setting m = b log b · nb = n log b and p = n/b2, the theorem implies that we can use
O(log b) calls to the linear time feasibility test and discard all but n/b2 elements of the
matrices. Therefore, all but at most n/b2 fragments are inactive.

The second goal of the preprocessing step is to compute information for each inactive
fragment that will allow us to later “jump” over it in O(log b) time when running the feasibility
test. We next describe this computation. We choose λ arbitrarily in (λ1, λ2). This is done
just so that we have a concrete value of λ to work with.
1. Reduce the fragment to a caterpillar: a fragment consists of the spine and the subtrees

hanging off the spine. We run our linear-time feasibility test on the subtrees hanging off
the spine, and obtain the candidate and the certain node for each of them. The fragment
can now be reduced to a caterpillar with at most two leaves attached to each spine node:
a candidate node and a certain node.

2. Find candidate nodes that cannot be taken into the solution: for each candidate node
we find its nearest certain node. Then, we compare their distance to λ and remove the
candidate node if it cannot be taken. To find the nearest certain node, we first scan all
nodes bottom-up (according to the natural order on the spine nodes they are attached
to) and compute for each of them the nearest certain node below it. Then, we repeat
the scan in the other direction to compute the nearest certain node above. This gives
us, for every candidate node, the nearest certain node above and below. We delete all
candidate nodes for which one of these distances is smaller than λ. We store the certain
node nearest to the root, the certain node nearest to the hole and the total number of
certain nodes, and from now on ignore certain nodes and consider only the remaining
candidate nodes.

3. Prune leaves to make their distances to the root non-decreasing: let the i-th leaf, ui,
be connected with an edge of length yi to a spine node at distance xi from the root, and
order the leaves so that x1 < x2 < . . . < xs. Note that yi < λ

2 , as otherwise ui would be a
certain node. Suppose that ui−1 is farther from the root than ui (i.e., xi−1+yi−1 > xi+yi),
then: d(ui, ui−1) = xi−xi−1 +yi+yi−1 = xi+yi−xi−1 +yi−1 < 2yi−1 < λ. Therefore an
optimal solution cannot contain both ui and ui−1. We claim that if the solution contains
ui then it can be replaced with ui−1. To prove this, it is enough to argue that ui−1 is
farther away from any node above it than ui, and ui is closer to any node below it than
ui−1. Consider a node uj that is above ui−1 (so j < i−1), then: d(uj , ui−1)−d(uj , ui) =
yi−1− (xi−xi−1)−yi = xi−1 +yi−1− (xi+yi) > 0. Now consider a node uj that is below
ui (so j > i), then: d(uj , ui−1)−d(uj , ui) = yi−1 +(xi−xi−1)−yi > 2(xi−xi−1) > 0. So
in fact, we can remove the i-th leaf from the caterpillar if xi−1 + yi−1 > xi + yi. To check
this condition efficiently, we scan the caterpillar from top to bottom while maintaining
the most recently processed non-removed leaf. This takes linear time in the number of
candidate nodes and ensures that the distances of the remaining leaves from the root are
non-decreasing.
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4. Prune leaves to make their distances to the hole non-increasing: this is done as in
the previous step, except we scan in the other direction.

5. Preprocess for any candidate and certain node with respect to the hole: we call
u1, u2, . . . , ui a prefix of the caterpillar and, similarly, ui+1, ui+2, . . . , us a suffix. For
every possible prefix, we would like to precompute the result of running the linear-time
feasibility test on that prefix. In Section 3.2 we will show that, in fact, this is enough
to efficiently simulate running the feasibility test on the whole subtree rooted at r if we
know the candidate and the certain node w.r.t. the hole. Consider running the feasibility
test on u1, u2, . . . , ui. Recall that its goal is to choose as many nodes as possible, and in
case of a tie to maximize the distance of the nearest chosen node to r. Due to distances
of the leaves to r being non-decreasing, it is clear that ui should be chosen. Then,
consider the largest i′ < i such that d(ui′ , ui) ≥ λ. Due to distances of the leaves to the
hole being non-decreasing, nodes ui′+1, ui′+2, . . . , ui−1 cannot be chosen and furthermore
d(uj , ui) ≥ λ for any j = 1, 2, . . . , i′. Therefore, to continue the simulation we should
repeat the reasoning for u1, u2, . . . , ui′ . This suggests the following implementation: scan
the caterpillar from top to bottom and store, for every prefix u1, u2, . . . , ui, the number
of chosen nodes, the certain node and the candidate node. While scanning we maintain
i′ in amortized constant time. After increasing i, we only have to keep increasing i′ as
long as d(ui, ui′) ≥ λ. To store the information for the current prefix, copy the computed
information for u1, u2, . . . , ui′ and increase the number of chosen nodes by one. Then,
if the certain node is set to NULL, we set it to be ui. If there is no ui′ , and ui is the
top-most chosen candidate, we need to set it to be the candidate (if d(r, ui) < λ

2 ) or the
certain node otherwise.

3.2 The feasibility test

The sublinear feasibility test for a value λ ∈ (λ1, λ2) processes the tree bottom-up. For every
fragment with root r, we would like to simulate running the linear-time feasibility test on
the subtree rooted at r to compute: the number of chosen nodes, the candidate node, and
the certain node. We assume that we already have such information for the fragment rooted
at the hole of the current fragment. If the current fragment is active, we process it naively in
O(b) time using the linear-time feasibility test. If it is inactive, we process it (jump over it)
in O(log b) time. This can be seen as, roughly speaking, attaching the hole as another spine
node to the corresponding caterpillar and executing steps (2)-(5).

We start by considering the case where there is no candidate node w.r.t. the hole. Let
v be the certain node w.r.t. the hole. Because distances of the leaves from the hole are
non-increasing, we can compute the prefix of the caterpillar consisting of leaves that can be
chosen, by binary searching for the largest i such that d(v, ui) ≥ λ. Then, we retrieve and
return the result stored for u1, u2, . . . , ui (after increasing the number of chosen nodes and,
if the certain node is set to NULL, updating it to v).

Now consider the case where there is a candidate node u w.r.t. the hole. We start with
binary searching for i as explained above. Then, we check if the distance between u and
the certain node nearest to the hole is smaller than λ or d(ui, r) > d(u, r), and if so return
the result stored for u1, u2, . . . , ui. Then, again because distances of the leaves to the hole
are non-increasing, we can binary search for the largest i′ ≤ i such that d(ui′ , u) ≥ λ (note
that this also takes care of pruning leaves uk that are closer to the hole than u). Finally, we
retrieve and return the result stored for u1, u2, . . . , ui′ (after increasing the number of chosen
nodes and possibly updating the candidate and the certain node).
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We process every inactive fragment in O(log b) time and every active fragment in O(b)
time, so the total time is O(nb · log b) +O( nb2 · b) = O(nb · log b).

3.3 The algorithm for the optimization problem
The general idea is to use a heavy path decomposition to solve the optimization problem with
O(log2 n) feasibility tests. The heavy edge of a non-leaf node of the tree is the edge leading
to the child with the largest number of descendants. The heavy edges define a decomposition
of the nodes into heavy paths. A heavy path p starts with a head head(p) and ends with a
tail tail(p) such that tail(p) is a descendant of head(p), and its depth is the number of heavy
paths p′ s.t. head(p′) is an ancestor of head(p). The depth is always O(logn) [15].

We process all heavy paths at the same depth together while maintaining an interval
[λ1, λ2) such that λ1 is feasible while λ2 is not, that is, the sought λ∗ belongs to the interval.
The goal of processing the heavy paths at depth d is to further shrink the interval so that,
for any heavy path p at depth d, the result of running the feasibility test on any subtree
rooted at head(p) is the same for any λ ∈ [λ1, λ2) and therefore can be already determined.
We start with the heavy paths of maximal depth and terminate with λ∗ = λ1 after having
determined the result of running the feasibility test on the whole tree.

Let nd denote the total size of all heavy paths at depth d. For every such heavy path
we construct a caterpillar by replacing any subtree that hangs off by the certain and the
candidate node (this is possible, because we have already determined the result of running
the feasibility test on that subtree). To account for the possibility of including a node of the
heavy path in the solution, we attach an artificial leaf connected with a zero-length edge to
every such node. The caterpillar is then pruned similarly to steps (2)-(4) from Section 3.1,
except that after having found the nearest certain node for every candidate node we cannot
simply compare their distance to λ. Instead, we create an 1× 1 matrix storing the relevant
distance for every candidate node. Then, we apply Theorem 4 with p = 0 to the obtained
set of O(nd) matrices of dimension 1× 1. This allows us to determine, using only O(logn)
feasibility tests and O(nd) time exclusive of the feasibility tests, which distances are larger
than λ∗, so that we can prune the caterpillars and work only with the remaining candidate
nodes. Then, for every caterpillar we create a row- and column-sorted matrix storing pairwise
distance between its leaves. By applying Theorem 4 with p = 0 on the obtained set of square
matrices of total side length O(nd) we can determine, with O(logn) feasibility tests and
O(nd) time exclusive of the feasibility tests, which distances are larger than λ∗. This allows
us to run the bottom-up procedure described in Section 2 to produce the candidate and the
certain node for every subtree rooted at head(p), where p is a heavy path at depth d.

All in all, for every d we spend O(nd) time and execute O(logn) feasibility tests. Summing
over all depths d, this is O(n) plus O(log2 n) calls to the feasibility test. Setting b = log2 n,
the total time is thus O(n+ n log logn+ n

log2 n
· log logn · log2 n) = O(n log logn).

4 The Weighted Dispersion Problem

In this section we present an O(n logn) time algorithm for the weighted search problem (a
matching lower bound is shown in the full version). As explained in the introduction, this
then implies an O(n log2 n) time solution for the optimization problem. Similarly to the
unweighted case, we compute for each node of the tree, the subset of nodes P in its subtree
s.t. f(P ) ≥ λ and the total weight of P is maximized. We compute this by going over the
nodes of the tree bottom-up. Previously, the situation was simpler, as for any subtree we
had just one candidate node (i.e., a node that may or may not be in the optimal solution
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for the entire input tree). This was true because nodes had uniform weights. Now however,
there could be many candidates in a subtree, as the certain nodes are only the ones that are
at distance at least λ from the root (and not λ

2 as in the unweighted case).
Let P be a subset of the nodes in the subtree rooted at v, and h be the node in P

minimizing d(h, v). We call h the closest chosen node in v’s subtree. In our feasibility test, v
stores an optimal solution P for each possible value of d(h, v) (up to λ, otherwise the closest
chosen node does not affect nodes outside the subtree). That is, a subset of nodes P in v’s
subtree, of maximal weight, s.t. the closest chosen node is at distance at least d(h, v) from
v, f(P ) ≥ λ. This can be viewed as a monotone polyline, since the weight of P (denoted
W (P )) only decreases as the distance of the closest chosen node increases (from 0 to λ).
W (P ) changes only at certain points called breakpoints of the polyline. Each point of the
polyline is a key-value pair, where the key is d(h, v) and the value is W (P ). We store with
each breakpoint the value of the polyline between it and the next breakpoint, i.e., for a pair
of consecutive breakpoints with keys a and a+ b, the polyline value of the interval (a, a+ b]
is associated with the former. The representation of a polyline consists of its breakpoints,
and the value of the polyline at key 0.

The algorithm computes such a polyline for the subtrees rooted at every node v of the
tree by merging the polylines computed for the subtrees rooted at v’s children. We assume
w.l.o.g. that the input tree is binary (for the same reasoning as in the unweighted case), and
show how to implement this step in time O(x log( 2y

x )), where x is the number of breakpoints
in the polyline with fewer breakpoints, and y is the number of breakpoints in the other.

Constructing a polyline. We now present a single step of the algorithm. We postpone
the discussion of the data structure used to store the polylines for now, and first describe
how to obtain the polyline of v from the polylines of its children. Then, we state the exact
interface of the data structure that allows executing such a procedure efficiently, show how to
implement such an interface, and finally analyze the complexity of the resulting algorithm.

If v has only one child, u, we build v’s polyline by querying u’s polyline for the case that
v is in the solution (i.e., query u’s polyline with distance of the closest chosen node being
λ− d(v, u)), and add to this value the weight of v itself. We then construct the polyline by
taking the obtained value for d(h, v) = 0 and merging it with the polyline computed for u,
shifted to the right by d(v, u) (since we now measure the weight of the solution as a function
of the distance of the closest chosen node to v, not to u). The value between zero and d(v, u)
will be the same as the value of the first interval in the polyline constructed for u, so the
shift is actually done by increasing the keys of all but the first breakpoint by d(v, u).

If v has a left child u1 and a right child u2, we have two polylines p1 and p2 (that represent
the solutions inside the subtrees rooted at u1 and u2), and we want to create the polyline p
for the subtree rooted at v. Denote the number of breakpoints in p1 by x and the number of
breakpoints in p2 by y. Assume w.l.o.g. that x ≤ y. We begin with computing the value
of p for key zero (i.e. v is in the solution). In this case we query p1 and p2 for their values
with keys λ− d(v, u1) and λ− d(v, u2) respectively (if one of these is negative, we take zero
instead), and add them together with the weight of v. Note that it is possible for the optimal
solution in v’s subtree not to include v. Therefore we need to check, after constructing the
rest of the polyline, whether the value stored at the first breakpoint (which is the weight of
the optimal solution where v is not included) is greater than the value we computed for the
case v is chosen. If so, we store the value of the first breakpoint also as the value for key zero.

It remains to construct the rest of the polyline p. Notice that we need to maintain that
d(h1, h2) ≥ λ (where h1 is the closest chosen node in u1’s subtree and h2 is the closest chosen
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node in u2’s subtree). We start by shifting p1 and p2 to the right by d(v, u1) and d(v, u2)
respectively, because now we measure the distance of h from v, not from u1 or u2. We then
proceed in two steps, each computing half of the polyline p.

4.1 Constructing the second half of the polyline.
We start by constructing the second half of the polyline, where d(h, v) ≥ λ

2 . In this case we
query both polylines with the same key, since d(h1, v) ≥ λ

2 and d(h2, v) ≥ λ
2 implies that

d(h1, h2) ≥ λ. The naive way to proceed would be to iterate over the second half of both
polylines in parallel, and at every point sum the values of the two polylines. This would not
be efficient enough, and so we only iterate over the breakpoints in the second half of p1 (the
smaller polyline). These breakpoints induce intervals of p2. For each of these intervals we
increase the value of p2 by the value in the interval in p1. This might require inserting some
of the breakpoints from p1, where there is no such breakpoint already in p2. Thus, we obtain
the second half of p by modifying the second half of p2.

4.2 Constructing the first half of the polyline.
We need to consider two possible cases: either d(h1, v) < d(h2, v) (i.e. the closest chosen
node in v’s subtree is inside u1’s subtree), or d(h1, v) > d(h2, v) (h is in u2’s subtree). Note
that in this half of the polyline d(h, v) < λ

2 , and therefore d(h1, v) 6= d(h2, v). For each of the
two cases we will construct the first half of the polyline, and then we take the maximum of
the two resulting polylines at every point, in order to have the optimal solution for each key.

Case I: d(h1, v) < d(h2, v). Since we are only interested in the first half of the polyline,
we know that d(h1, v) < λ

2 . Since d(h2, v) + d(h1, v) ≥ λ we have that d(h2, v) > λ
2 . Again,

we cannot afford to iterate over the breakpoints of p2, so we need to be more subtle.
We start by splitting p1 at λ

2 and taking the first half (denoted by p′1). We then split p2
at λ

2 and take the second half (denoted by p′2). Consider two consecutive breakpoints of p′1
with keys x and x+ y. We would like to increase the value of p′1 in the interval (x, x+ y] s.t.
the new value is the maximal weight of a valid subset of nodes from both subtrees rooted at
u1 and u2, s.t. x < d(h1, v) ≤ x + y. Therefore d(h2, v) ≥ λ − x − y. p′2 is monotonically
decreasing, and so we query it at λ− x− y, and increase by the resulting value.

This process might result in a polyline which is not monotonically decreasing, because as
we go over the intervals of p′1 from left to right we increase the values there more and more.
To complete the construction, we make the polyline monotonically decreasing by scanning it
from λ

2 to zero and deleting unnecessary breakpoints. We can afford to do this, since the
number of breakpoints in this polyline is no larger than the number of breakpoints in p1.
Note that we have assumed we have access to the original data structure representing p2,
but this structure has been modified to obtain the second half of p. However, we started
with computing the second half of p only to make the description simpler. We can simply
start with the first half.

Case II: d(h1, v) > d(h2, v). Symmetrically to the previous case, we increase the values in
the intervals of p2 induced by the breakpoints of p1 by the appropriate values of p1 (similarly
to what we do in Subsection 4.1). Again, the resulting polyline may be non-monotone, but
this time we cannot solve the problem by scanning the new polyline and deleting breakpoints,
since there are too many of them. Instead, we go over the breakpoints of the second half
of p1. For each such breakpoint with key k, we check if the new polyline has a breakpoint
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with key λ− k. If so, denote its value by w, otherwise continue to the next breakpoint of
p1. These are the points where we might have increased the value of p2. We then query the
new polyline with a value predecessor query: this returns the breakpoint with the largest
key s.t. its key is smaller than λ − k and its value is at least w. If this breakpoint exists,
and it is not the predecessor of the breakpoint at λ− k, then the values of the new polyline
between its successor breakpoint and λ− k should all be w (i.e. we delete all breakpoints in
this interval and set the successor’s value to w). If it does not exist, then the values between
zero and λ− k should be w (i.e. we delete all the previous breakpoints). This ensures that
the resulting polyline is monotonically decreasing.

Merging cases I and II. We now need to build one polyline for the first half of the polyline,
taking into account both cases. Let pa and pb denote the polylines we have constructed in
cases I and II respectively (so the number of breakpoint in pa is at most x, the number of
breakpoints in pb is at most y, and x ≤ y).

We now need to take the maximum of the values of pa and pb, for each key. We do this
by finding the intersection points of the two polylines. Notice that since both polylines are
monotonically decreasing, these intersections can only occur at (i) the breakpoints of pa, and
(ii) at most one point between two consecutive breakpoints of pa.

We iterate over pa and for each breakpoint, we check if the value of pb for the same key
is between the values of this breakpoint and the predecessor breakpoint in pa. If so, this is
an intersection point. Then, we find the intersection points which are between breakpoints
of pa, by running a value predecessor query on pb for every breakpoint in pa except for the
first. After such computation, we know which polyline gives us the best solution for every
point between zero and λ

2 , and where are the intersection points where this changes. We
can now build the new polyline by doing insertions and deletions in pb according to the
intersection points: For every interval of pb defined by a pair of consecutive intersection
points, we check if the value of pa is larger than the value of pb in the interval, and if so,
delete all the breakpoints of pb in the interval, and insert the relevant breakpoints from pa.
The number of intersection points is linear in the number of breakpoints of pa, and so the
total number of interval deletions and insertions is O(x).

To conclude, the final polyline p is obtained by concatenating the value computed for key
zero, the polyline computed for the first half, and the polyline computed for the second half.

4.3 The polyline data structure
We now specify the data structure for storing the polylines. The required interface is:
1. Split the polyline at some key.
2. Merge two polylines (s.t. all keys in one polyline are smaller than all keys in the other).
3. Retrieve the value of the polyline for a certain key d(h, v).
4. Return a sorted list of the breakpoints of the polyline.
5. Batched interval increase – Given a list of disjoint intervals of the polyline, and a number

for each interval, increase the values of the polyline in each interval by the appropriate
number. Each interval is given by the keys of its endpoints.

6. Batched value predecessor – Given a list of key-value pairs, (ki, vi), find for each ki, the
maximal key k′i, s.t. k′i < ki and the value of the polyline at k′i is at least vi, assuming
that the intervals (k′i, ki) are disjoint.

7. Batched interval insertions – Given a list of pairs of consecutive breakpoints in the
polyline, insert between each pair a list of breakpoints.
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8. Batched interval deletions – Given a list of disjoint intervals of the polyline, delete all the
breakpoints inside the intervals.

We now describe the data structure implementing the above interface. We represent a
polyline by storing its breakpoints in an augmented 2-3 tree, where the data is stored in the
leaves. Each node stores a key-value pair, and we maintain the following property: the key
of each breakpoint is the sum of the keys of the corresponding leaf and of all its ancestors,
and similarly for the values. In addition, we store in each node the maximal sum of keys
and values on a path from that node to a leaf in its subtree. We also store in each node the
number of leaves in its subtree. Operations 1 and 2 use standard split and join procedures
for 2-3 trees in logarithmic time. Operation 3 runs a predecessor query and returns the value
at the returned breakpoint in logarithmic time. Operation 4 is done by an inorder traversal
of the tree (of p1 in O(x) time). Operations 1-4 are performed only a constant number of
times per step, and so their total cost is O(log x+ log y + x). The next four operations are
more costly, since they consists a batch of O(x) operations given in sorted order (by keys).

Operation 5 – batched interval increase. Consider the following implementation for Op-
eration 5. We iterate over the intervals, and for each of them, we find its left endpoint,
and traverse the path from the left endpoint, through the LCA, to the right endpoint. The
traversal is guided by the maximal key stored in the current node (that are used to find the
maximal key of a breakpoint stored in its subtree by adding the sum of all keys from the
root to the current node, which is maintained in constant time after moving to a child or the
parent). While traversing the path from the left endpoint to the LCA (from the LCA to the
right endpoint), we increase the value of every node hanging to the right (left) of this path.
We also update the maximal value field in each node we reach (including the nodes on the
path from the LCA to the root). Notice that if one of the endpoints of the interval is not
in the structure, we need to insert it. We might also need to delete a breakpoint if it is a
starting point of some interval and its new value is now equal to the value of its predecessor.
This implementation would take time which is linear in the number of traversed nodes, plus
the cost of insertions and deletions (whose number is linear in the number of intervals).
Because the depth of a 2-3 tree of size O(y) is O(log y), this comes up to O(x log y). Such
time complexity for each step would imply O(n log2 n) total time for the feasibility test.

We improve the running time by performing the operations on smaller trees. The operation
therefore begins by splitting the tree into O(x) smaller trees, each with O( yx ) leaves. This is
done by recursively splitting the tree, first into two trees with O(y2 ) leaves, then we split each
of these trees into two trees with O(y4 ) leaves, and so on, until we have trees of size O( yx ).
We then increase the values in the relevant intervals using the small trees. For this, we scan
the roots of the small trees, searching for the left endpoint of the first interval (by using the
maximal key stored in the root of each tree). Once we have found the left endpoint of the
interval, we check if the right endpoint of the interval is in the same tree or not (again, using
the maximal key). In the first case, the interval is contained in a single tree, and can be
increased in this tree in time O(log( 2y

x )) using the procedure we have previously described.
In the second case, the interval spans several trees, and so we need to do an interval increase
in the two trees containing the endpoints of the interval, and additionally increase the value
stored in the root of every tree that is entirely contained in the interval. We then continue
to the next interval, and proceed in the same manner. Since the intervals are disjoint and we
do at most two interval increases on small trees per interval, the total time for the increases
in the small trees is O(x · log( 2y

x )). Scanning the roots of the small trees adds O(x) to the
complexity, leading to O(x · log( 2y

x ) +x) = O(x log( 2y
x )) overall for processing the small trees.
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Before the operation terminates, we need to join the small trees to form one large tree.
This is symmetric to splitting and analyzed with the same calculation.

I Lemma 5. The time to obtain the small trees is O(x log( 2y
x )).

The cost of all joins required to patch the small trees together can be bounded by the
same calculation as the cost of the splits made to obtain them, and so the operation takes
O(x log( 2y

x )) time in total. The rest of the batched operations are also done by splitting the
tree into small trees. There is an additional technical difficulty in Operation 6, as in our case
the intervals (ki′ , ki) might not be disjoint. We make them disjoint with some extra work. In
Operation 7, some of the small trees might become much larger due to the insertions. This
also requires some extra work, see the full version for a complete description.

I Theorem 6. The above implementation implies an O(n logn) weighted feasibility test.
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Abstract
In the streaming multi-pattern search problem, which is also known as the streaming dictionary
matching problem, a set D = {P1, P2, . . . , Pd} of d patterns (strings over an alphabet Σ), called
the dictionary, is given to be preprocessed. Then, a text T arrives one character at a time and
the goal is to report, before the next character arrives, the longest pattern in the dictionary that
is a current suffix of T . We prove that for a constant size alphabet, there exists a randomized
Monte-Carlo algorithm for the streaming dictionary matching problem that takes constant time
per character and uses O(d logm) words of space, where m is the length of the longest pattern
in the dictionary. In the case where the alphabet size is not constant, we introduce two new
randomized Monte-Carlo algorithms with the following complexities:
O(log log |Σ|) time per character in the worst case and O(d logm) words of space.
O( 1

ε ) time per character in the worst case and O(d|Σ|ε log m
ε ) words of space for any 0 < ε ≤ 1.

These results improve upon the algorithm of Clifford et al. [12] which uses O(d logm) words of
space and takes O(log log(m+ d)) time per character.
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1 Introduction

We consider one of the most fundamental pattern matching problems, the dictionary matching
problem [12, 16, 5, 6, 30, 20, 7, 21, 17, 18, 4], where a set of patterns D = {P1, P2, . . . , Pd},
called the dictionary, is given along with a string T , called the text, such that each pattern
Pi is a string of length mi, and all the strings are over an alphabet Σ. The goal is to
find all the occurrences of patterns from D in T . The dictionary matching problem is a
natural generalization of the simple pattern matching problem of one pattern, and it has
many applications in different areas. For example, in the area of Intrusion Detection and
Anti-Viruses systems [36], the goal is to detect viruses in a stream of data by looking for
known digital signatures of these viruses. Due to the importance of the problem, significant
efforts have been made to speed up algorithms for this problem, for example, by using
GPUs [38, 39, 37, 40, 43, 26] or even using a designated hardware [15, 2, 41, 29, 42, 9].
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The streaming model. In the streaming model [3, 25, 32, 28], we have a stream of data to
process in near real-time while using only sublinear space. For pattern matching problems,
the pattern is given in advance and the text arrives one character at a time, and the goal is
to decide after the arrival of each character, whether the current suffix of the text matches
the preprocessed pattern. Since the seminal paper of Porat and Porat [33] which introduced
the first algorithm for this problem in the streaming model, there has been a rising interest
in solving pattern matching problems in the streaming model [10, 14, 31, 11, 27, 12, 13, 22].

For the dictionary matching problem in the streaming model, D is given in advance, and
the text T arrives one character at a time. After the arrival of T [q] the algorithm must report
the longest1 suffix of T [1..q], which is a pattern in D. The space usage of the algorithm is
limited to sublinear space, hence, one cannot even store the dictionary D explicitly. The
efficiency of algorithms in this model is measured by the amount of time required to process
a text character and the total space usage of the algorithm. Another closely related model is
the online model, which is the same as the streaming model without the constraint of using
sublinear space.

Previous results and related work. The current most efficient algorithm for the streaming
dictionary matching is due to Clifford et al. [12] which uses O(d logm) words2 of space and
takes O(log log(d+m)) time per character, where m = max{mi} is the length of the longest
pattern. This algorithm assumes that there are no two patterns Pi, Pj ∈ D such that Pi is a
suffix of Pj . Otherwise, the algorithm reports any time some pattern that is a current suffix
of the text, but not necessarily the longest one. The algorithm is a randomized Monte-Carlo
algorithm and is correct with high probability.

In the online model, most of the algorithms are variations of the Aho and Corasick [1]
algorithm. This algorithm has two versions, the DFA (deterministic finite automaton) and
the state-machine. The DFA version takes O(1) time per character and uses O(M |Σ|) words
of space, where M =

∑d
i=1 mi is the sum of the patterns’ length. The state-machine version

uses only O(M) words of space, and its amortized running time is also constant. However,
for the online model, which measures the running time per character, in the worst case the
state-machine version takes Ω(m) time per character, which is unreasonable. Hence, the
algorithm of Kopelowitz et al. [30], improves the state-machine algorithm, to O(log log |Σ|)
time per character, and it still uses O(M) words of space and O(1) amortized time per
character. Both Aho and Corasick [1] and Kopelowitz et al. [30] algorithms are deterministic,
and we use some of their concepts in our results.

Our results. Our first result is for the case of a constant alphabet and is stated in the
following theorem:

I Theorem 1. For a constant size alphabet, there exists a randomized Monte-Carlo algorithm
for the streaming dictionary matching problem that succeeds with probability 1− 1/poly(n),
spends constant time per arriving text character and uses O(d logm) words of space.

1 This is a common simplification in which one must only report the longest pattern that has arrived (if
several patterns end at the same text location), since converting such a solution to one that reports all
the patterns is straightforward with additional time which is linear in the number of reported patterns,
and this way the focus is on the time cost that is independent from the output size.

2 We assume the RAM model where each word has size of Ω(log n) bits
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We mention the open problem of Breslauer and Galil [10] who solve the problem for
the case of one pattern. They ask whether Ω(d logm) words of space is required for any
streaming dictionary matching algorithm. If the answer to this problem is positive, then the
algorithm of Theorem 1 has optimal time and space.

For the general case where the alphabet size is arbitrary, we introduce two new algorithms,
and each of them suffices as a proof for Theorem 1. The first algorithm is an improvement
over the algorithm of Clifford et al. [12] with the same space usage, but with running time of
O(log log |Σ|) time per character, compared to O(log log(m+ d)) time per character of [12].
Moreover, our algorithm solves the stronger version of the problem where the algorithm has
to report the longest1 pattern in D which is a current suffix of the text.

I Theorem 2. There exists a randomized Monte-Carlo algorithm for the streaming dictionary
matching problem that succeeds with probability 1− 1/poly(n), spends O(log log |Σ|) time per
arriving text character and uses O(d logm) words of space.

We point out that even though someone who is familiar with the area would expect an
amortized O(1) time per character for the algorithm of Theorem 2, unfortunately this is not
the case. In the algorithm for the online model by Kopelowitz et al. [30], the algorithm has a
tree of states, and after the arrival of a character the algorithm moves to a state which its
depth is larger than the former state’s depth by at most one. Thus, the amortized analysis
of this algorithm was based on the depth of algorithm’s state. In our algorithm, we also have
states with depths but we could sometimes jump into a state that is much deeper than the
former state, therefore, such an amortized analysis will not hold. An interesting question is
whether one can design an algorithm with the same space usage and worst case time per
character, but with amortized O(1) time per character.

Our second algorithm is a real-time algorithm, with a small amount of extra space.

I Theorem 3. For any constant 0 < ε ≤ 1 there exists a randomized Monte-Carlo algorithm
for the streaming dictionary matching problem that succeeds with probability 1− 1/poly(n),
spends O( 1

ε ) time per arriving text character and uses O(d|Σ|ε log m
ε ) words of space.

1.1 Algorithmic Overview
We prove simultaneously Theorem 2 and a degenerate version of Theorem 3, where ε = 1, as
stated in the following lemma:

I Lemma 4. There exists a randomized Monte-Carlo algorithm for the streaming dictionary
matching problem that succeeds with probability 1− 1/poly(n), spends O(1) time per arriving
text character and uses O(d|Σ| logm) words of space.

Then, Theorem 3 is deduced from Lemma 4 by implying the following theorem of Rozen [34].

I Theorem 5. Let A be an algorithm for the online dictionary pattern matching problem which
uses O(sA(d,m, |Σ|)) words of space and takes O(tA(d,m, |Σ|)) time per character. Then,
for any 0 < ε ≤ 1, there exists an algorithm Aε for this problem which uses O(sA(d, m

ε , |Σ|
ε))

words of space and takes O( 1
ε tA(d, m

ε , |Σ|
ε)) time per character.

The algorithms for Theorem 2 and Lemma 4 are very similar and have only small number
of differences, therefore we describe them as one algorithm, and demonstrate only the
differences. We follow the basic partition of D, presented by Clifford et al. [12], into three
types of patterns. The types are short patterns, long patterns with a small period length,
and long patterns with a large period length. We introduce an algorithm for each type,
A1, A2a, and A2b, respectively. Theorem 2 and Lemma 4 are obtained by running all three
algorithms in parallel.
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Each one of the algorithms A1, A2a, and A2b is composed of two phases. At the
high level, the algorithm considers for each pattern logm prefixes, called heads of the
pattern. For a pattern Pi of length mi, the algorithm considers all the prefixes of length
` ∈ (mi − 2 logm,mi − logm]. Thus, the total number of heads is at most d logm. The
algorithm utilizes the fact that each occurrence of Pi in the text must begin with an occurrence
of some head, such that this occurrence ends at a position which is a multiple of logm.3

In the first phase, at each text position that is a multiple of logm, the algorithm finds
the current longest suffix that is a head of some pattern. The running time of the first phase
is as stated in Theorem 2 or Lemma 4, with additional O(logm) running time for each text
position that is a multiple of logm. This runtime is de-amortized during the arrival of logm
characters between each two such positions. We introduce the first phase of A1 in Section 4
and the first phase of A2a and A2b in Section 5.

In the second phase, after finding the longest suffix that is a head of some pattern, the
algorithm reads the text one character at a time using a state machine, which is inspired by
the Aho and Corasick [1] algorithm. The initial state is obtained by the longest head that is
found in the first phase, and each state transition is done according to the character that
arrived. Whenever a pattern in the dictionary is a current suffix of the text, the state of the
machine represents this pattern or a longer string which this pattern is its suffix. Hence, the
algorithm has the correct pattern to report at any time. The details of the second phase
appear in Section 3.

2 Preliminaries

A string S of length |S| = ` is a sequence of characters S[1]S[2] . . . S[`] over an alphabet Σ.
A substring of S is denoted by S[x..y] = S[x]S[x+ 1] . . . S[y] for 1 ≤ x ≤ y ≤ `. If x = 1, the
substring is called a prefix of S, and if y = `, the substring is called a suffix of S.

A prefix of S of length y ≥ 1 is called a period of S if and only if S[i] = S[i+ y] for all
1 ≤ i ≤ `− y. The shortest period of S is called the principal period of S, and its length is
denoted by ρS . If ρS ≤ |S|2 we say that S is periodic.

The proof of this lemma and other lemmas will appear in the final version of this paper.

I Lemma 6. Let u be a periodic string with principal period length ρu. If v is a substring of
u of length at least 2ρu then ρu = ρv.

The cyclic shift of S is σ(S) = S[2..`]S[1]. For any 0 ≤ i < ` the ith cyclic shift of S is
σi(S) = S[i+ 1..`]S[1..i].

Fingerprints. For a natural number n we denote [n] = {1, 2, . . . , n}. For the following
let u, v ∈

⋃n
i=0 Σi be two strings of length at most n. Porat and Porat [33] and Breslauer

and Galil [10] proved that for every constant c > 1 there exists a fingerprint function
φ :

⋃n
i=0 Σi → [nc], such that:

1. If |u| = |v| and u 6= v then φ(u) 6= φ(v) with high probability (at least 1− 1
nc−1 ).

2. The sliding property: Let w=uv be the concatenation of u and v. If |w| ≤ n, then given
the length and the fingerprints of any two strings from u,v and w, one can compute the
fingerprint of the third string in constant time.

3 For the sake of simplicity we assume that log m is an integer, if this is not the case we use dlog me
instead.
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Our algorithms often uss fingerprints in order to quickly validate if two strings are equal
or not. To ease presentation, in the rest of the paper we assume that fingerprints never
give false positives. This assumption is covered by the algorithms only failing with small
probability.

2.1 Multi-labeled Trees with Lowest Labeled Ancestor queries
Let L be a set of labels of size |L| = λ. A multi-labeled tree T is a rooted tree such that
each node v ∈ T is associated with some Lv ⊆ L. For each v ∈ T and ` ∈ L, the lowest label
ancestor LLA(v, `) is the lowest node u on the path from the root of T to v such that ` ∈ Lu,
or ⊥ if such u does not exist. We denote the total size of all the labels among the entire tree
by M =

∑
v∈T |Lv|. The following theorem is due to Kopelowitz et al. [30].

I Theorem 7 (Deduced from [30, Theorem 3]). For any multi-labeled tree T with a label set
L = {1, 2, . . . , λ}, there exists a data structure that supports LLA queries in O(log log λ) time
and uses O(n+M) words of space where n is the size of the tree and M =

∑
v∈T |Lv|.

3 The Second Phase Algorithm

In this section, we introduce the second phase of algorithms A1, A2a, and A2b. For each
Pi ∈ D we define the jth head of Pi to be Pi[1..mi − j]. The jth heads set is Headsj(D) =
{Pi[1..mi − j] |Pi ∈ D , |Pi| ≥ j} and for a set of lengths L we define:

HeadsL(D) =
⋃
j∈L

Headsj(D) = {Pi[1..mi − j] |Pi ∈ D , j ∈ L , |Pi| ≥ j}

We assume that an algorithm A for the first phase is given such that at each text position
q that is a multiple of logm, A finds the longest string in Heads[log m,2 log m)(D) that is a suffix
of T [1..q]. The time per character and space usage of A matches Theorem 2 or Lemma 4,
with additional O(logm) time per text position that is a multiple of logm.

Our algorithm uses concepts from the Aho and Corasick algorithm [1] and especially
from its online version of Kopelowitz et al. [30]. The main idea in our implementation is
that instead of creating the complete Aho and Corasick state machine, we create only states
that correspond to strings in Heads[0,2 log m)(D), which are all the 2 logm longest prefixes
of each pattern in the dictionary. Thus, the number of states is O(d logm). To overcome
the missing states, the algorithm uses the pattern prefixes reported by A to jump into the
correct state soon enough, before it has to report on a pattern occurrence.

The algorithm creates a state vS for each S ∈ Heads[0,2 log m)(D) and one additional state
vε for the empty string. In addition, the algorithm creates a perfect hash table [19, 23, 24, 35]
that stores a pointer from the fingerprint of any S ∈ Heads[log m,2 log m)(D) to the state vS .
Another perfect hash table stores for the fingerprint of each S ∈ Heads[0,2 log m)(D) the index
of the longest pattern in D which is a suffix of S, if such a pattern exists.

Intuitively, the goal is that whenever the machine’s state is vS and the character that
arrived is ω, the machine transits into the state vS′ where S′ is the longest suffix of Sω
among all the states’ strings. Since vε exists, such a transition is always well defined. For the
algorithm of Lemma 4 each state stores explicitly all the |Σ| transitions that correspond to
any possible character, as in DFA. However, for Theorem 2 this goal is apparently impossible
without a factor of |Σ| for the space usage. Therefore, we are satisfied with a slightly weaker
property, which is sufficient for the goal of reporting all patterns’ occurrences. In the following
paragraphs we introduce the details of the algorithm for Theorem 2.
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State machine for Theorem 2. For each state vS that represents the string S and for each
ω ∈ Σ, if there exists a state corresponding to the string S′ = Sω, the algorithm has a goto
link from S to S′ with the label ω. All the goto links of vS are maintained in a perfect hash
table due to their labels. In addition, vS has a failure link to vS∗ where S∗ is the longest
proper suffix of S that has a state in the machine. Since the empty string has a state, vε,
the failure link is defined for every state, except for vε itself.

The failure tree. We define the failure tree of the state machine, Tfail, as the tree induced
by the states of the machine and the failure links. Since each state has exactly one failure
link, except for vε, Tfail is well defined. We consider Tfail as a multi-labeled tree, with L = Σ
as the set of labels, and for each state vS ∈ Tfail and ω ∈ Σ we have that ω ∈ LvS

if and
only if vS has a goto link with the character ω. The algorithm creates the data structure of
Theorem 7, which supports LLA queries in O(log log |Σ|) time on Tfail.

Performing a transition. When the machine’s state is vS and the character ω arrives, the
algorithm performs the following transition. Firstly, if vS has a goto link with label ω, the
algorithm uses this link and moves into vSω. If such a link does not exist, the algorithm
performs the LLA(vS , ω) query. Let vS′ ∈ T be the result of the query, then vS′ has a goto
link with the label ω, and the algorithm uses this link to move into vS′ω. If LLA(vS , ω) =⊥,
the algorithm moves to state vε. This ends the special part of the algorithm for Theorem 2.

Text processing. The second phase algorithm runs A to process each text character that
arrives. On each position q which is a multiple of logm the algorithm creates a new process,
which is alive until the time T [q + 2 logm] arrives, and then the process is terminated by the
algorithm. Hence, at any time the algorithm runs two processes.

Focus on the process that starts when T [q] arrives for q which is a multiple of logm.
While the first log m

2 characters (T [q], . . . , T [q + log m
2 − 1]) arrive, the algorithm executes A

for O(logm) time to retrieve S ∈ Heads[log m,2 log m)(D) which is the longest suffix of T [1..q],
and keeps a buffer of the arriving characters. This execution takes O(1) time per character by
standard de-amortization. Then, when the subsequent log m

2 characters arrive the algorithm
uses the buffer, and performs all the logm transitions beginning at vS . Thus, by performing
two transitions per arriving character, using the buffer, when T [q+logm] arrives, the machine
already performed the transitions corresponding to the first logm characters.

At the following logm characters, the algorithm continues to perform transitions according
to the text characters. Whenever the machine is in a state vS′ , the algorithm reports the
longest suffix of S′ that is a pattern in D, as the current longest suffix of the text that is a
pattern in D, using the preprocessed hash table.

Due to the following lemma, the machine’s state corresponds to a sufficiently long suffix
of the text at any time. In particular, while processing the last logm characters of each
process, if some Pi is a suffix of the text, then Pi is also a suffix of the machine’s state string.

I Lemma 8. Consider the process that starts when T [k logm] arrives. Let vS be the state
of the machine after processing T [k logm+ i] for 0 ≤ i < 2 logm. Then, the longest suffix of
T [1..k logm+ i] in Heads[max{0,log m−i},2 log m−i)(D) is a suffix of S.

Hence, since at any time there is a process which reads the arriving character as part of
its last logm characters and reports matches, we deduce the following corollary.

I Corollary 9. When T [q] arrives, the algorithm reports the longest pattern in D that is a
suffix of T [1..q].
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Complexities. The number of states in the machine is O(|Heads[0,2 log m)(D)|) = O(d logm).
For the algorithm of Lemma 4, each state has |Σ| links, one for each ω ∈ Σ. Therefore, the
space usage of the second phase is O(d|Σ| logm). The second phase for Lemma 4 takes O(1)
time per character, since each transition is performed in constant time.

For the algorithm of Theorem 2, each state vS has at most one goto link into vS and one
failure link from vS . Therefore, there are O(d logm) links. Since Tfail has O(d logm) nodes,
and the total size of all the nodes’ labels sets is exactly the number of goto links, then the
LLA data structure uses O(d logm) words of space. Therefore, the total space usage of the
algorithm is O(d logm) words. The processing of each character requires a LLA query, thus,
the second phase of Theorem 2 takes O(log log |Σ|) time per character.

4 Short Patterns

For very short strings Pi ∈ D of length at most 2 logm, we use the algorithm of Aho
and Corasick [1]. More specifically, for the algorithm of Theorem 2, we use the version of
Kopelowitz et al. [30], which takes O(log log |Σ|) time per character in the worst-case and
uses O(d logm) words of space. For the algorithm of Lemma 4, we use the DFA version of [1,
Section 6], which takes O(1) time per character and uses O(d|Σ| logm) words of space.

In this section, we introduce the first phase of A1, which deals with patterns of D1 =
{Pi ∈ D | 2 logm < mi ≤ 8d logm}. Intuitively, at each position that is a multiple of logm
the algorithm performs kind of a binary search for the longest text suffix which is a string in
Heads[log m,2 log m)(D1), similarly to the fat binary search of Belazzougui et al. [8]. We define
the text fingerprint of position q as φ(T [1..q]). The algorithm maintains a sliding window of
the last 8d logm text fingerprints. Maintaining this window takes O(1) time per character
using the sliding property of φ. Using this sliding window, for any 0 ≤ ` < 8d logm, one
can compute the fingerprint of T [q − `+ 1..q] in constant time. Hence, if the algorithm had
all the fingerprints of all the suffixes of strings from Heads[log m,2 log m)(D1), the algorithm
can easily perform the binary search where for each length it would make one query on a
perfect hash table that maintains the suffixes’ fingerprints. However, there exist too many
such suffixes to maintain in a perfect hash table.

Let imax = dlog2 min{m, 8d logm}e be the number of bits required to represent the
lengths of patterns in D1. The algorithm performs the binary search on the interval [0, 2imax ],
such that at each iteration the length of range considered by the algorithm is a power
of 2. For each P ∈ Heads[log m,2 log m)(D1) the algorithm maintains the fingerprints of
all the suffixes whose lengths may be queried by the binary search. These lengths are
exactly the lengths whose binary representation is the same as the binary representation
of |P |, except for some suffix of the representation that is replaced by zeros. Let ∆|P | =
{|P | − (|P |mod 2i) | 0 ≤ i ≤ imax} be the set of suffixes lengths for the string P . We define
Suffixes1 =

⋃
P∈Heads[log m,2 log m)(D1){P [|P | − `+ 1..|P |] | ` ∈ ∆|P |} to be the set of all suffixes

that may be queried by the binary search. Notice that |∆|P || ≤ imax ≤ dlogme and therefore
the total size of Suffixes1 is O(d log2 m). Given a perfect hash table that maintains the
fingerprints of all the strings in Suffixes1, the algorithm is able to find the longest string
in Suffixes1 that is a current suffix of the text by a binary search. At each iteration, the
algorithm computes the fingerprint of some suffix of T [1..q] and queries the hash table
with this fingerprint to validate that this suffix is in Suffixes1. By maintaining with each
S ∈ Suffixes1, the longest suffix of S from Heads[log m,2 log m)(D1), the algorithm is able to
report in O(logm) time the longest string from Heads[log m,2 log m)(D1) that is suffix of the
text. However, storing such a perfect hash table takes O(d log2 m) words of space, which is
too much. Thus, we have to reduce the space usage to O(d logm).
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Suffixes tree. In order to reduce the number of strings, we consider for each S ∈ Suffixes1
the string p(S) which must precede S in the binary search as the parent string of S.
Formally, if S is a suffix of some P ∈ Heads[log m,2 log m)(D1) of length |S| = ` ∈ ∆|P | and
`′ = max{`′ ∈ ∆|P | | `′ < `} is the length preceding ` in ∆|P | (if ` = 0, which is the minimum
value in ∆|P | let `′ = 0). Then, we define p(S) = P [|P | − `′ + 1..|P |] to be the suffix of S of
length `′. It is straightforward that p(S) ∈ Suffixes1. We define the suffixes tree, Tsuf , as the
tree induced by the strings and the parent string relation. Since each string has exactly one
parent, except for the empty string, Tsuf is well defined. Notice that a binary search that
finds S ∈ Suffixes1 as an intermediate result, must consider all the strings on the path from
the root to the node of S during its execution. Moreover, for each string S of length ` that is
an intermediate result of the binary search, in the iteration after finding S, the binary search
focuses on the range [`, `+ 2i(S)] where i(S) = max{i | `mod 2i−1 = 0}.

Compress Tsuf . The algorithm traverses the tree from the root to the leaves. For any string
S which has only one child, the algorithm shrinks the path from S to its first descendant
S′ that has at least two children, or S′ is in Heads[log m,2 log m)(D1). The shrinking is done
by setting child(S) = S′ and removing all the strings between. Let Suffixes′1 be the set of
remaining strings in the tree after the compression. The algorithm maintains a perfect hash
table that maps any S ∈ Suffixes′1 into i(S), and if S has only one child, S is associated also
with the length |child(S)|. In addition, S is associated with the index of the longest string
from Heads[log m,2 log m)(D1) that is a suffix of S as well.

Query processing. For each text position which is a multiple of logm, the algorithm finds
the current longest suffix from Heads[log m,2 log m)(D1) as follows. The algorithm initializes a
length ` = 0 and an exponent i = imax + 1. At each iteration, it must be that the suffix of
the text of length ` is in Suffixes′1, let denote this string as T`. On iterations where T` has
multiple children (which can be retrieved from the hash table), the algorithm decrements
i by one, computes the fingerprint of the text suffix of length `+ 2i and queries the hash
table with this fingerprint. If this fingerprint is maintained in the table then the length ` is
updated to `+ 2i. On iterations where T` has only one child, the algorithm computes the
fingerprint of the text of length |child(T`)| and queries the hash table with this fingerprint.
If this fingerprint is maintained in the table then the length ` is updated. Otherwise, the
search is terminated. When i < 0, the search is also terminated.

The following lemma states that the longest suffix of T [1..q] from Suffixes′1 is found by
the binary search. Since Heads[log m,2 log m)(D1) ⊆ Suffixes′1, it is guaranteed that if S is
the current longest suffix of the text from Heads[log m,2 log m)(D1) then the algorithm finds a
string S′ such that S is a suffix of S′. Hence, since the algorithm reports the longest suffix
of S′ that is a string from Heads[log m,2 log m)(D1), this string must be S.

I Lemma 10. When T [q] arrives, for q which is a multiple of logm, the first phase of A1
finds the longest suffix of T [1..q] that is a string in Suffixes′1.

Complexities. For every text character, the first phase of the algorithm just updates the
sliding window of fingerprints, in constant time. For a text position that is a multiple of
logm, the binary search is performed in O(imax) = O(logm) time. The algorithm maintains
a sliding window of O(d logm) text fingerprints. In addition, it stores a hash table that
maintains a constant number of words per each string in Suffixes′1. By simple analysis,
we have that |Suffixes′1| = O(d logm), so, the total space usage of the first phase of A1 is
O(d logm) words of space.
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5 Long Patterns

In this section, we treat the patterns whose length is at least 8d logm. The algorithm
distinguishes between patterns with a small period length and those with a large period
length. For each pattern Pi with length mi > 8d logm, we define Qi to be the prefix of Pi of
length |Qi| = mi − (2d+ 2) logm. In Section 5.1, we introduce the first phase of algorithm
A2a for D2a = {Pi ∈ D |mi > 8d logm and ρQi ≤ d logm}. In Section 5.2, we introduce the
first phase of algorithm A2b for D2b = {Pi ∈ D |mi > 8d logm and ρQi

> d logm}.

5.1 Long Patterns with Short Periods
In this section, we introduce the first phase of A2a which considers patterns Pi of length
at least 8d logm, with ρQi

< d logm. Intuitively, we utilize the periodicity of the patterns
prefixes and search for the same periodicity in the text in a sufficiently long substring. At
each position, if a string from Heads[log m,2 log m)(D2a) ended in this position, there exists an
occurrence of Qi which ends at the (2d+ 2) logm preceding positions. In particular, since
ρQi < d logm, it must be that the text contains a long substring that has a period length ρQi

that continues (at least) until the last (2d+ 2) logm positions. At any text position that is a
multiple of logm, by computing the fingerprint of the last 6d logm characters, the algorithm
determines a set of optional strings from Heads[log m,2 log m)(D2a) whose suffix of length
6d logm is a current suffix of the text. Notice that for each pair of such strings, one string
must be the suffix of the other. This is because for each S ∈ Heads[log m,2 log m)(D2a) there
exists a Qi, which is a prefix of S, and the suffix of S of length 6d logm must contain at least
two periods of Qi, thus, this periodicity must continue until the suffix of S of length 6d logm.
Therefore, to identify the longest text suffix that is a string in Heads[log m,2 log m)(D2a), the
algorithm finds the longest optional string that appears in the text due to the length of
the periodic subtext. The main challenge is in maintaining the periodicity of the text in a
manner that is easy to update (in constant time per character) and query. To tackle this
challenge we utilize the combinatorial relationships between different Qis.

For each Pi ∈ D2a, we denote prefix(Pi) = Pi[1..2d logm]. Due to Lemma 6 we have that
ρprefix(Pi) = ρQi

. So, if Pi occurs at position c of the text, then in particular, prefix(Pi) occurs
at c, and by the periodicity of Qi, prefix(Pi) occurs also at any position ck = c+ k · ρprefix(Pi)
for any positive integer k such that ck + |prefix(Pi)| ≤ c + |Qi|. To identify occurrences
of prefixes of Pi from Heads[log m,2 log m)(D2a) the algorithm searches for a sufficiently long
arithmetic progression of prefix(Pi) occurrences in the text. Since all the prefix(·) strings that
the algorithm searches for are of the same length 2d logm, the algorithm is able to search
them with a constant time per character by using the sliding window of the last 8d logm
text fingerprints and a perfect hash table of all the prefixes of patterns in D2a.

Let Prefixes2a = {prefix(Pi) |Pi ∈ D2a} be the set of all prefixes of length 2d logm, and
let pi, pj ∈ Prefixes2a be two strings from this set. We distinguish between two cases: in the
first case, the prefixes pi and pj agree with each other, which means that between two close
occurrences of one of them, there must exist an occurrence of the other. In the second case,
pi and pj disagree, and whenever there exist two close occurrences of one of them, there is
no occurrence of the other.

Formally, for each p ∈ Prefixes2a, let α(p) = min{σs(P [1..ρp]) | s ∈ {0, 1, . . . , ρp − 1}} be
the identify period (also known as the Lyndon representation) of p, where σ(·) is the cyclic
shift function (see Section 2), and the minimum is taken according to lexicographic order.
The following lemma formalizes the possible relations between prefixes of patterns from D2a.
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I Lemma 11. Let pi, pj ∈ Prefixes2a, and let S be the string of length 2d logm+ ρpi such
that the prefix and suffix of S are both equal pi. Then, S contains an occurrence of pj if and
only if α(pi) = α(pj).

Detect periodic substrings. In the preprocessing phase, we cluster the strings of Prefixes2a

according to their identify period. Let Prefixesu
2a = {pi | pi ∈ Prefixes2a and α(pi) = u} be

the cluster of prefixes with identify period u. We associate with each prefix pi ∈ Prefixesu
2a

a shift value 0 ≤ s(pi) < ρpi
, such that the prefix of pi of length |u| is σs(pi)(u). Let

Ψ = {s(pi) | pi ∈ Prefixesu
2a} be the set of all shift values of strings in Prefixesu

2a and let
s1 < s2 < · · · < sh be the elements of Ψ ordered by increasing value. With each string
pi ∈ Prefixesu

2a such that s(pi) = sj , the algorithm maintains the length δ(pi) = sj − sj−1
(for j = 0 we have δ(pi) = |u| − sh + s1), and the string p′ ∈ Prefixesu

2a with shift value
s(p′) = si−1 (for i = 0, s(p′) = sh).

For each cluster Prefixesu
2a, we say that a stringX is u-periodic if and only if |X| ≥ 2d logm,

the prefix and suffix of length 2d logm of X are strings in Prefixesu
2a, and the principal period

length of X is |u| (i.e., ρX = |u|).
In order to detect periodic substrings of the text, the algorithm maintains a sliding

window of the last 8d logm positions, where at each text position q, which is the end of some
string pi ∈ Prefixes2a, the algorithm maintains (1) the id number of pi and (2) the length of
the maximal suffix of T [1..q] that is α(pi)-periodic string. Whenever a new character arrives,
the algorithm computes the fingerprint of the current suffix of length 2d logm and checks
if it is a fingerprint of some pi ∈ Prefixes2a. If there exists such pi, let u = α(pi) and let p′
be the string preceded pi in the cluster Prefixesu

2a according to the cyclic shift. To compute
the total length of the maximal u-periodic suffix of T [1..q], the algorithm checks whether an
occurrence of p′ ended at T [q − δ(pi)]. If such an occurrence exists, the length of the current
maximal suffix is the sum of the length of the u-periodic suffix of T [1..q− δ(pi)] and δ(pi). If
p′ does not end at T [q− δ(pi)], then the length of the u-periodic sequence up to position q is
exactly 2d logm.

Heads detection. For each S ∈ Heads[log m,2 log m)(D2a), we denote by suffix(S) the suffix
of S of length 6d logm. The algorithm stores the fingerprints of all the strings in Suffixes2a =
{suffix(S) |S ∈ Heads[log m,2 log m)(D2a)} in a perfect hash table (notice that Suffixes1 and
Suffixes2a are two sets of heads suffixes, but their definitions are quite different). For each
s ∈ Suffixes2a, there exists a string S ∈ Heads[log m,2 log m)(D2a) such that s = suffix(S). By
definition, we have that S is a prefix of some Pi ∈ D2a and Qi is a prefix of S. Hence, due
to the periodicity of Qi, it must be that the prefix of s of length 3d logm has a principal
period length ρQi

. Let v be the prefix of s of length 2d logm, and let u = α(v). By the
periodicity, it must be that all the strings in Prefixesu

2a appears in s. We denote by δ′(s)
the distance between the last occurrence of some string from Prefixesu

2a and the end of s.
Formally, δ′(s) = |s| −max{j | s[j − 2d logm+ 1..j] ∈ Prefixesu

2a}. Since there exists a string
from Prefixesu

2a that appears in s, it is obvious that δ′(s) is less than 6d logm. The following
lemma proves that in order to detect occurrences of strings from Heads[log m,2 log m)(D2a), it
suffices to detect suffixes and periodic substrings of the text.

I Lemma 12. Let S ∈ Heads[log m,2 log m)(D2a) we have that S = T [q − |S| + 1..q] if and
only if T [q − 6d logm+ 1..q] = suffix(S) and the length of maximal periodic suffix of T [1..q −
δ′(suffix(S))] is at least |S| − δ′(suffix(S)).

Whenever the algorithm finds an occurrence of s ∈ Suffixes2a ended at position q, it
might be the end of all the strings in Heads[log m,2 log m)(D2a) which their suffix is s. Let
Optionals = {S |S ∈ Heads[log m,2 log m)(D2a) and suffix(S) = s} be the set of heads which are
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optional occurrences when s occurs. It is straightforward that |Optionals| ≤ m due to the
periodicity of sufficiently long prefixes of D2a. The algorithm stores all the indices of these
strings indexed according to their length in a balanced binary tree. Due to Lemma 12, in
order to detect the longest string from Optionals that is a suffix of the text, the algorithm
has to find the longest string whose length is at most the sum of the length of the longest
periodic suffix of T [1..q − δ′(s)] and δ′(s).

At each text position q that is a multiple of logm, the algorithm computes the fingerprint
of the last 6d logm characters using the sliding window of text fingerprints. If this suffix is
some s ∈ Suffixes2a, the algorithm uses the sliding window of periodic suffixes to retrieve
the length ` of the longest periodic suffix of T [1..q − δ′(s)]. Then, the algorithm finds the
predecessor of `+ δ′(s) in the binary tree and reports the string associated with this length.

Complexities. The algorithm maintains the fingerprints of strings from Prefixes2a and
Suffixes2a, and since each of them is of size O(d logm), we have O(d logm) fingerprints and
each of them is maintained within constant space. Moreover, the algorithm maintains sliding
windows of fingerprints and periodic sequences information, each of them of length O(d logm)
and at each position the sliding windows use O(1) words of space. Therefore the first phase
of A2a uses O(d logm) words of space. The first phase takes O(1) time per character for
computing the fingerprint of the current 2d logm suffix and an additional O(logm) time per
each text position that is a multiple of logm, for the predecessor query.

5.2 Long Patterns with Long Periods
In this section, we introduce the first phase of A2b, which considers patterns Pi of length
at least 8d logm, with ρQi

> d logm. An overview of the algorithm is as follows. First, the
algorithm finds all the occurrences of strings Qi, with a delay of at most d logm characters.
Each occurrence of Qi is a possible occurrence of Pi, so the algorithm computes the position
q that is a multiple of logm and is in the range of [logm, 2 logm) positions preceding the end
of the possible occurrence of Pi. Then, the algorithm computes the expected text fingerprint
in this position if this occurrence of Qi is indeed an occurrence of Pi. The expected text
fingerprint is maintained in a designated data structure. When T [q] arrives, the algorithm
checks if the text fingerprint matches the expected fingerprint, and if so, it reports the
appropriate prefix of Pi from Heads[log m,2 log m)(D2b).

Finding Qi with a delay. The algorithm finds all the occurrences of any Qi in the text.
The algorithm uses a similar technique to algorithm A2b of Clifford et al. [12], which creates
O(logm) levels for each pattern in the dictionary. Each level maintains occurrences of a
prefix of the pattern of length which is a power of two. The algorithm finds for each pattern
occurrences of the shortest prefix of the pattern whose principal period length is greater
than d logm, by applying algorithms A1 and A2a. Thus, all the longer prefixes have at least
d logm characters between any two occurrences, and therefore by a round-robin fashion their
levels are treated in O(1) time per character. The algorithm has the guarantee that each
occurrence of any Qi in the text is found by the algorithm with a delay of at most d logm
text characters. The complexities of this part are according to Theorem 2 or Lemma 4 and
the complete details will appear in the final version of this paper.

Extend Qi to prefix from Heads[log m,2 log m)(D2b). After finding each Qi with a delay
of at most d logm text characters, the goal is to find at each position q that is a multiple
of logm, the longest suffix of the text that is a string from Heads[log m,2 log m)(D2b). Let c
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be a text index where an occurrence of Qi begins. Thus, c is a possible occurrence of Pi,4
and the algorithm must validate it. The algorithm computes qc that is the text index in the
range qc ∈ (c+mi − 1− 2 logm, c+mi − 1− logm] which is a multiple of logm. Since the
length of the range is logm, there is exactly one such position. Let S be the prefix of Pi of
length ` = qc− c+ 1, by definition S ∈ Heads[log m,2 log m)(D2b). The algorithm computes the
expected fingerprint of the text in position qc from φ(T [1..c− 1]) and φ(S). This fingerprint,
together with the index of S is maintained in a data structure associated with position qc.

The algorithm maintains a sliding window of the subsequent (2d+ 1) positions that are
multiples of logm. Since mi−2 logm < |S| ≤ mi− logm and |Qi| = mi− (2d+ 2) logm, the
distance (in text characters) between the end of the Qi’s occurrence and qc is in the range
(2d logm, (2d+1) logm]. Hence, qc is in the sliding window. For each position q in the sliding
window, the algorithm maintains an AVL tree, which maintains expected text fingerprints.
Each expected fingerprint is maintained with an id number of the corresponding string from
Heads[log m,2 log m)(D2b). When a new occurrence of some Qi is found, the algorithm inserts
into the AVL tree the expected fingerprint it computes, associated with the id number of the
corresponding S ∈ Heads[log m,2 log m)(D2b). If this fingerprint already exists in the tree, the
algorithm updates the corresponding string to be the longest between the existing string and
the new string.

Since ρQi
> d logm, at any sequence of 2d logm characters, there exist at most 2

occurrences of Qi. Thus, the total number of values inserted into the trees in a sequence of
2d logm characters is at most O(d). In addition, for each position q in the sliding window
the number of elements in the AVL tree is at most d, hence, the insertion takes O(log d)
time. So, the total time of insertions in a sequence of 2d logm characters is O(d log d). Since
D2b 6= ∅ we have some strings of length at least 8d logm, and therefore m > d and thus
O(d log d) = O(d logm). Using the round-robin fashion, all the insertions to the trees are
de-amortized to O(1) time per character. The round-robin fashion may create a delay of at
most d logm text characters. Recall that any occurrence of Qi is found with a delay of at
most d logm characters and that the distance between the end of the Qi’s occurrence and qc

is at least 2d logm. Thus, there exists at least d logm characters between the recognizing of
Qi’s occurrence and qc. Hence, when T [q] arrives, its expected fingerprints tree contains all
the expected fingerprints corresponding to occurrences of all Qis which their qc is q.

When T [q] arrives, for q that is a multiple of logm, the algorithm searches for the current
text fingerprint φ(T [1..q]) in the AVL tree of position q. The time required for this search is
O(log d) = O(logm). In the following lemma, we prove that the algorithm indeed finds the
longest suffix of T [1..q] from Heads[log m,2 log m)(D2b) for every q that is a multiple of logm.

I Lemma 13. When T [q] arrives, for q which is a multiple of logm, the first phase of A2b

finds the longest suffix of T [1..q] that is a string in Heads[log m,2 log m)(D2b).

Complexities. Since all the usage of round-robin fashion described above is on ranges of
size O(d logm), the de-amortization uses O(d logm) words of space. Hence, summing all the
parts, the time and space of the first phase of A2b are as stated in Theorem 2 or Lemma 4
with O(logm) additional time for any position which is a multiple of logm.

4 For the sake of simplicity, we assume that for any two different patterns Pi, Pj ∈ D2b, we have Qi 6= Qj .
Otherwise, we treat each occurrence of Qi multiple times, each time as the prefix of another Pi ∈ D2b.
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Abstract
Given a set of n real numbers, the 3SUM problem is to decide whether there are three of them
that sum to zero. Until a recent breakthrough by Grønlund and Pettie [FOCS’14], a simple
Θ(n2)-time deterministic algorithm for this problem was conjectured to be optimal. Over the
years many algorithmic problems have been shown to be reducible from the 3SUM problem or its
variants, including the more generalized forms of the problem, such as k-SUM and k-variate linear
degeneracy testing (k-LDT). The conjectured hardness of these problems have become extremely
popular for basing conditional lower bounds for numerous algorithmic problems in P.

In this paper, we show that the randomized 4-linear decision tree complexity1 of 3SUM is
O(n3/2), and that the randomized (2k − 2)-linear decision tree complexity of k-SUM and k-
LDT is O(nk/2), for any odd k ≥ 3. These bounds improve (albeit being randomized) the
corresponding O(n3/2√logn) and O(nk/2

√
logn) bounds obtained by Grønlund and Pettie. Our

technique includes a specialized randomized variant of the fractional cascading data structure.
Additionally, we give another deterministic algorithm for 3SUM that runs in O(n2 log logn/ logn)
time. The latter bound matches a recent independent bound by Freund [Algorithmica 2017], but
our algorithm is somewhat simpler, due to a better use of the word-RAM model.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases 3SUM, k-SUM, Linear Degeneracy, Linear Decision Trees, Fractional
Cascading

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.42

1 Introduction

The general 3SUM problem is formally defined as
3SUM: Given a finite set A ⊂ R, determine whether there exist a, b, c ∈ A such that

a+ b+ c = 0.
An equivalent variant is that the input consists of three finite sets A, B, C ⊂ R of the same
size, and the goal is to determine whether there are elements a ∈ A, b ∈ B, c ∈ C such

∗ For the full version of this paper see [21]. Work on this paper has been supported by Grant 892/13 from
the Israel Science Foundation, by Grant 2012/229 from the U.S.-Israeli Binational Science Foundation,
by the Israeli Centers of Research Excellence (I-CORE) program (Center No. 4/11), by the Blavatnik
Research Fund in Computer Science at Tel Aviv University, and by the Hermann Minkowski–MINERVA
Center for Geometry at Tel Aviv University.

† A full version of the paper is available at http://arxiv.org/abs/1512.05279.
1 An r-linear decision tree is one in which each branching is based on a sign test of a linear expression

with at most r terms. The complexity of the tree is its depth.
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that a+ b+ c = 0. When the sets A,B,C are not of the same size, the problem is named
unbalanced 3SUM.

The 3SUM problem and its variants are among the most fundamental problems in
algorithm design. Although the 3SUM problem itself does not seem to have many compelling
practical implications, it has been of wide interest due to numerous problems that can be
reduced from it. The notion of 3SUM-Hardness is often used to describe such problems,
namely, problems that are at least as hard as 3SUM. Thus, lower bounds on 3SUM imply lower
bounds on dozens of other problems. Among them are fundamental problems in computational
geometry [20, 3, 7, 30], dynamic graph algorithms [29, 1, 27], triangle enumeration [2, 27],
and pattern matching [31, 5, 9, 27, 6].

In the last decades, starting with a study of Gajentaan and Overmars [20], it was conjec-
tured that any algorithm for 3SUM requires Ω(n2) time. However, a recent breakthrough by
Grønlund and Pettie [22] showed that 3SUM can be solved in subquadratic time. Specific-
ally, they gave a deterministic algorithm that runs in O(n2(log logn/ logn)2/3) time, and
a randomized algorithm that runs in O(n2(log logn)2/ logn) expected time and with high
probability. Furthermore, they showed that there is a 4-linear decision tree for 3SUM with
depth O(n3/2√logn) (i.e., the depth bounds the number of branching operations, each one is
based on sign test of a linear expression with at most 4 terms). These results raised serious
doubts on the optimality of many algorithms for 3SUM-Hard problems. For example, the
following problems are known to be 3SUM-Hard. (1) Given an n-point set in R2, determine
whether it contains three collinear points (Gajentaan and Overmars [20]). (2) Given n

triangles in R2, determine whether their union contains a hole, or compute the area of their
union [20]. (3) Given two n-point sets X,Y ⊂ R, each of size n, determine whether all
elements in X + Y = {x+ y | x ∈ X, y ∈ Y } are distinct (Barequet and Har-Peled [7]). (4)
Given two n-edge convex polygons, determine whether one can be placed inside the other
via translation and rotation [7].

Problems 1 and 2 are solvable in O(n2) time (see [20]). Problems 3 and 4 are solvable
in O(n2 logn) time (see [7]). In face of the new 3SUM result of Grønlund and Pettie [22],
it is natural to ask whether these bounds are optimal. However, no better bounds are
currently known (in spite of the improvement in [22]). Problem 3 (or its stronger variant
of sorting X + Y ) has special importance, as it is used for basing the conditional lower
bounds for the problems in [7] and in [23]; these problems are therefore also classified as
“(Sorting X + Y )-Hard”. It is a prominent long-standing open problem whether Problem 3
can be solved in o(n2 logn) time (see [14]).

In view of the results in [22], the 3SUM conjecture has been replaced by a relaxed,
modern variant, asserting that 3SUM cannot be solved in strongly subquadratic time (even
in expectation), i.e., in O(n2−ε) time, for any ε > 0. This conjecture is widely accepted
and believed by the computer science community, and so are its implications for deriving
lower bounds for other problems. Abboud and Vassilevska-Williams [2] argue, based on
the collective computer science community efforts, that lower bounds that are based on the
relaxed 3SUM conjecture should be at least as believable as any other known conditional
lower bounds for a problem in P.

The 3SUM problem was also extensively studied in its generalized forms, k-SUM and
k-variate linear degeneracy testing (k-LDT), formally defined as
k-LDT and k-SUM: Given a k-variate linear function φ(x1, . . . , xk) =α0+

∑k
i=1 αixi, where

α0, . . . , αk ∈ R, and a finite set A ⊂ R, determine whether there exists (x1, . . . , xk) ∈ Ak
such that φ(x1, . . . , xk) = 0. When φ is

∑k
i=1 xi the problem is called k-SUM.

There are simple algorithms that solve k-LDT in time O(n(k+1)/2) when k is odd, or
O(nk/2 logn) when k is even; see [4]. These algorithms are based on straightforward reduc-
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tions to a 2SUM problem or to an unbalanced 3SUM problem, depending on whether k is
even or odd, respectively. These are currently the best known upper bounds for the running
time of solving k-LDT. Erickson [16] showed that, for an even k, there is a k-linear decision
tree with depth O(nk/2), removing an O(logn) factor when comparing to the uniform model.
The above bounds match with the seminal lower bound results of Erickson [16], and of Ailon
and Chazelle [4], who showed that any k-linear decision tree for solving k-LDT must have
depth Ω(nk/2) when k is even and Ω(n(k+1)/2) when k is odd. In particular, any 3-linear
decision tree for 3SUM has depth Ω(n2). Grønlund and Pettie [22] showed that using only
one more variable per comparison leads to a dramatic improvement in the depth of the tree,
which significantly beats the above lower bounds. Specifically, as will be reviewed below, they
showed that there is a 4-linear decision tree for 3SUM with depth O(n3/2√logn), and by the
reduction from k-LDT to unbalanced 3SUM, they concluded that there is a (2k − 2)-linear
decision tree for k-LDT with depth O(nk/2

√
logn), for any odd k ≥ 3. Cardinal, Iacono, and

Ooms [10] showed that if we allow arbitrarily many variables in a comparison (polynomial in
n), then the linear decision tree complexity of k-SUM and k-LDT is O(n3 log3 n). This bound
was recently improved by Ezra and Sharir [17] to O(n2 log2 n). A very recent breakthrough
by Kane, Lovett, and Moran [26] significantly improves these results, not only by showing an
O(n log2 n) bound, but also by using only 2k variables in a comparison, namely, a 2k-linear
decision tree (see below for further details).

Apart from the many lower bounds obtained from the conjectured hardness of 3SUM
and its variants, in recent years, many lower bounds were obtained also from two other
plausible conjectures. The first is that computing the (min,+)–product of two n×n matrices
takes Ω(n3−o(1)) time (aka APSP-Hardness); see for examples [32, 2, 1]. The second is that
CNF-SAT takes Ω(2(1−o(1))n) time. The latter is often referred to as the Strong Exponential
Time Hypothesis (SETH) [24, 25]. A natural question is whether any of these conjectures
(3SUM, SETH, APSP) are in fact equivalent, or whether they all derive from a basic unifying
hypothesis. At the current state of knowledge, there is no strong relationship between
any pair of these problems, so it may be possible that any one of them could be true or
false, independently of the status of the others. A recent breakthrough by Carmosino,
Gao, and Impagliazzo [11] provides evidence that such a relationship is unlikely, based on a
nondeterministic variant of SETH; see [11] for details.

1.1 Our Results and Related Work
Before presenting our results, we recall the definition of the randomized r-linear decision tree
complexity, for a particular target function f . Consider a probability distribution P over a
set T of (deterministic) r-linear decision trees that compute f . For a particular input x, let
c(P, x) be the expected number of branching operations a tree chosen from T will make on
input x. Then, the randomized r-linear decision tree complexity of f is

min
P

max
x

c(P, x).

The following theorems capture our main results.

I Theorem 1. The randomized 4-linear decision tree complexity of 3SUM is O(n3/2).

I Theorem 2. The randomized (2k − 2)-linear decision tree complexity of k-SUM and of
k-LDT is O(nk/2), for any odd k ≥ 3.

We show these results by giving a randomized algorithm that constructs a (2k − 2)-linear
decision tree whose expected depth is O(nk/2). Theorems 1 and 2 improve (albeit in a
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randomized setting) the respective O(n3/2√logn)-depth and O(nk/2
√

logn)-depth decision
trees given by Grønlund and Pettie [22]. The aforementioned recent breakthrough by Kane,
Lovett, and Moran [26] gives a 6-linear decision tree for 3SUM with depth O(n log2 n), and
in general, a 2k-linear decision tree for k-SUM, and a (2k + 2)-linear decision tree for k-LDT,
both with depth O(kn log2 n). These bounds nearly match the standard Ω(n logn) lower
bound. Viewing our (and Grønlund and Pettie’s) k-SUM results for (2k − 2)-linear decision
tree, with respect to Erickson’s Ω(ndk/2e) k-linear decision tree lower bound, and the 2k-linear
decision upper bound by Kane, Lovett, and Moran [26], shows that even adding only 1 or 2
terms for each linear comparison, can significantly improve the depth of the tree.

Our technique includes some new insights into the 3SUM problem, and uses a specialized
data structure, based on an unusual randomized variant of fractional cascading in a grid.

Additionally, in the full version of this paper [21], we give an actual deterministic
algorithm for 3SUM that runs in O(n2 log logn/ logn) time.2 The latter improves the
O(n2(log logn/ logn)2/3)-time bound of Grønlund and Pettie [22], and matches the bound
given by a recent independent work of Freund [19]. Both algorithms, Freund’s [19] and ours,
have common high-level ideas, but ours makes a better use of the word-RAM model, and is
hence somewhat simpler.3

Recently, Lincoln, Vassilevska-Williams, Wang, and Williams [28] showed a reduction
result in which they apply our 3SUM algorithm (based on an initial version of this paper [21])
as a black-box, leading to a 3SUM algorithm that uses only O

(√
n logn/ log logn

)
space,

while preserving the time bound of our algorithm.

2 Methods and Lemmas

We give an overview of the techniques we use. Some of them were also used for some of the
results mentioned above. This includes Fredman’s prominent work from 1976 [18]. For our
result, we will develop a special randomized variant of fractional cascading (Chazelle and
Guibas [12, 13]). In this section we also briefly review the standard fractional cascading
method, to set the infrastructure upon which we will later develop our specialized variant.

Throughout the paper we refer to the trivial (albeit ingenious) observation that a+ b <

a′ + b′ iff a− a′ < b′ − b as Fredman’s trick. We denote by [N ] the first dNe natural numbers
succeeding zero {1, . . . , dNe}, where N may or may not be an integer.

Fredman showed that, given n numbers whose sorted order is one of Π ≤ n! realizable
permutations, they can be sorted using a linear number of comparisons when Π is sufficiently
small. More generally, we have:

I Lemma 3 (Fredman 1976 [18]). A list L of n numbers, whose sorted order is one of Π
possible permutations, can be sorted with 2n+ log Π pairwise comparisons.

Sorting Pairwise Sums and its Geometric Interpretation. Fredman describes the relation
between the complexity of hyperplane arrangements and the decision tree complexity of
sorting pairwise sums. Grønlund and Pettie [22] use similar arguments in their 3SUM decision

2 We consider a simplified Real RAM model. Real numbers are subject to only two unit-time operations:
addition and comparison. In all other respects the machine behaves like a w = O(logn)-bit word RAM
with the standard repertoire of unit-time AC0 operations: bitwise Boolean operations, left and right
shifts, addition, and comparison.

3 The independent result of Freund [19] was brought to our attention after the completion of an initial
version of this paper; see [21].
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tree, where they sort pairwise sums. Specifically, given lists A = (ai)i∈[n] and B = (bi)i∈[n] of
distinct real numbers, define the pairwise sum A+B = {ai + bj | i, j ∈ [n]}. The input A,B
can be regarded as a point p = (a1, . . . , an, b1, . . . , bn) ∈ R2n. The points in R2n that agree
with a fixed permutation of A + B form a convex cone bounded by the set H of the

(
n2

2
)

hyperplanes xi + yj − xk − yl = 0, for i, j, k, l ∈ [n], (i, j) 6= (k, l). The number of possible
sorted orders of A+B is therefore bounded by the number of regions (of all dimensions) in
the arrangement A(H) of H. As shown by Buck [8], the number of regions in an arrangement
of m hyperplanes in Rd of dimension k ≤ d is at most(

m

d− k

)((
m− d+ k

0

)
+
(
m− d+ k

1

)
+ · · ·+

(
m− d+ k

k

))
.

Thus, the number of regions of all dimensions is O(md) (where the constant of proportionality
is independent of d). Hence, the number of possible sorting permutations of A + B is
O
(
(n4)2n) = O(n8n). One can also construct the hyperplane arrangement explicitly in O(md)

time by a standard incremental algorithm [15]. The following lemma, taken from Grønlund
and Pettie [22], extends this analysis by considering only a subset of these hyperplanes, and
is an immediate consequence of these observations.

I Lemma 4. Let A = (ai)i∈[n] and B = (bi)i∈[n] be two lists, each of n real numbers, and
let F ⊆ [n]2 be a set of positions in the n × n grid. The number of realizable orders of
(A+B)|F := {ai + bj | (i, j) ∈ F} is O

((|F |
2
)2n)

, and therefore (A+B)|F can be sorted with
at most 2|F |+ 4n log |F |+O(1) comparisons.

In Lemma 4, the case F = [n]2 goes back to Fredman [18], who showed that O(n2) comparisons
suffice to sort A+B.

For some of the algorithms presented and reviewed in this paper, it is important to
assume that the elements of the pairwise sum are distinct, and therefore have a unique
sorting permutation. When numbers do appear multiple times, a unique sorting permutation
can be obtained by breaking ties consistently (see [22] for details).

Iterative Search and Fractional Cascading. In our decision tree construction for 3SUM,
we aim to speed-up binary searches of the same number, in many sorted sets. We will use
for this task a special randomized variant of fractional cascading, which will be described in
Section 4. First, we briefly recall the standard fractional cascading technique, which was
introduced by Chazelle and Guibas [12, 13], for solving the iterative search problem, defined
as follows. Let U be an ordered universe of keys. Define a catalog as a finite ordered subset
of U . Given a set of k catalogs C1, C2, . . . , Ck over U , such that |Ci| = ni for each i ∈ [k],
and

∑k
i=1 ni = n, the iterative search problem is to provide a data structure that supports

efficient execution of queries of the form: given a query x ∈ U , return the largest value less
than or equal to x in each of the k catalogs.

Fractional cascading lets one preprocess the catalogs in O(n) time, using O(n) storage,
and answer iterative search queries in O(logn+k) time per query. This is essentially optimal
in terms of query time, storage size and preprocessing time. The idea is to maintain a
sufficient number of pointers across catalogs, so that, once we have the answer ci to a query
in a catalog Ci, we can follow a pointer to an element in Ci+1, which is only O(1) indices
away from the answer ci+1 ∈ Ci+1.

In order to obtain optimal query time, the fractional cascading method expands each
catalog Ci to an augmented catalog Li, starting with Lk and proceeding backwards down to
L1. Lk is the same as Ck, and for each 1 ≤ i < k, Li is formed by merging Ci with every
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second element of Li+1. The items in Ci that were not originally in the catalog are marked
as synthetic keys. From each synthetic key in Ci we add a bridge (pointer) to the element in
Li+1 on which it was based. Using these bridges and additional pointers, from each real key
to the two consecutive synthetic keys nearest to it, one can follow directly from each element
of Li (real or synthetic) to the elements in Li+1 nearest to it, and by construction, the gap
between these elements is 2. Thus, given a query number x, after spending O(logn) time for
searching it in L1, it takes only O(1) time to locate x in each subsequent catalog, for a total
of O(logn+ k) time, as desired. Since the total number of elements that were copied to the
catalogs form a convergent geometric series, one can show that the total number of elements
that are copied through the catalogs is only O(n), and that the cost of doing it is also O(n).

Fractional cascading can also be extended to support a collection of catalogs stored at
the vertices of a directed acyclic graph (DAG), and each query searches with some specified
element x through the catalogs stored at the nodes of some specified path in the DAG. In
more detail, a catalog graph is a DAG in which each vertex stores a catalog (ordered list of
keys). A query consists of a key x and a path π in the graph, and the goal is to search with x
in the catalog of each node of π. When the maximum in/out degree ∆ of the catalog graph
is constant, fractional cascading can be extended to this scenario, with the same bounds
as before (albeit with larger constants of proportionality). Here too each catalog Cv at a
node v, is expanded into an augmented catalog Lv, and each Lv passes to its predecessors
every 2∆-th element (instead of every second element in the earlier case, where ∆ was 1).
See [12, 13] for more details on the construction of the data structure, proof of correctness,
and performance analysis.

In our algorithms we will present a special non-standard variant of this method, that lets
us preserve the advantages of the other techniques (e.g., Fredman’s trick) that we use.

The Quadratic 3SUM Algorithm. We next give a brief overview of the quadratic-time
algorithm. We follow the implementation given by Grønlund and Pettie [22], which is slightly
different from the standard approach, but is useful for the explanation of the results of [22]
and of this paper. For later references, we present the algorithm for the more general three-set
version of 3SUM, as defined in the first paragraph of Section 1.

The algorithm runs over each c ∈ C and searches for −c in the pairwise sum A+B. With
a careful implementation, given below, each search takes O(|A|+ |B|) time, for a total of
O(|C|(|A| + |B|)) time. We view A + B as being a matrix whose rows correspond to the
elements of A and columns to the elements of B, both listed in increasing order. To help
visualizing some steps of the algorithms, we think of the rows arranged in increasing order
from top to bottom, and of the columns from left to right.

1. Sort A and B in increasing order as A(0), . . . , A(|A| − 1) and B(0), . . . , B(|B| − 1).
2. For each c ∈ C,
2.1. Initialize lo← 0 and hi← |B| − 1.
2.2. Repeat:
2.2.1. If −c = A(lo) +B(hi), report witness “(A(lo), B(hi), c)”.
2.2.2. If −c > A(lo) +B(hi) then increment lo, otherwise decrement hi.
2.3. Until lo = |A| or hi = −1.
3. If no witnesses were found report “no witness.”

The correctness easily follows from the fact that each row and column of A+B is sorted
in increasing order. Note that when a witness is discovered in Step 2.2.1, the algorithm
can stop right there. However, in order to simplify future definitions and explanations, this
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372 389 407 439 454 480 534 609 635 655
397 414 432 464 479 505 559 634 660 680
420 437 455 487 502 528 582 657 683 703
442 459 477 509 524 550 604 679 705 725
478 495 513 545 560 586 640 715 741 761
500 517 535 567 582 608 662 737 763 783
523 540 558 590 605 631 685 760 786 806
548 565 583 615 630 656 710 785 811 831
594 611 629 661 676 702 756 831 857 877
627 644 662 694 709 735 789 864 890 910

Figure 1 The sky-blue colored entries form contour(710), and the purple colored ones form
contour(558); A shared cell is shown in green. The lighter colors (light purple and light sky-blue)
depict their partial contour, that is, the positions of the contours where we chose to go down. All
the elements in the matrix whose values are in [558, 710) are enclosed between these two contours,
excluding the partial contour of 558 and including the partial contour of 710.

implementation continues to search for more witnesses. After finding a witness we will always
choose to decrement hi. This choice will be made throughout the paper.

Define the contour of x, contour(x,A+B), (contour(x), when the context is clear)
to be the sequence of positions (lo, hi) encountered while searching for x in A + B in the
preceding algorithm. Lemma 5 is straightforward.

I Lemma 5. For x < y ∈ R, contour(x) lies fully above contour(y); that is, for each
i, i′, j ∈ {0, . . . , n− 1}, if (i, j) ∈ contour(x) and (i′, j) ∈ contour(y), then i ≤ i′.

By Lemma 5 a pair of contours can overlap, but never cross. Moreover, Lemma 5 implies a
weak total order relation ≺ on the contours, which corresponds to the order between the
searched elements, such that x < y iff contour(x) ≺ contour(y), where the latter relation
means that the two contours satisfy the properties stated in the lemma; see Figure 1.

3 Grønlund and Pettie’s Subquadratic 3SUM Decision Tree

In this section we give an overview of the subquadratic decision tree of Grønlund and
Pettie [22]. In the following sections we show how their ideas can be extended and combined
with additional techniques, to yield our improved results.

We give an overview of the subquadratic decision tree for 3SUM over a single input set
A of size n, taken from [22], resulting in a 4-linear decision tree with depth O(n3/2√logn).
This is shown by an algorithm that performs at most O(n3/2√logn) comparisons, where
each comparison is a sign test of a linear expression with at most 4 terms.

1. Sort A in increasing order as A(0), . . . , A(n − 1). Partition A into dn/ge groups
A1, . . . , Adn/ge, each of at most g consecutive elements, where g is a parameter that we
will fix later, by setting Ai := {A((i− 1)g), . . . , A(ig − 1)}, for each i = 1, . . . , dn/ge − 1,
where Adn/ge may be shorter. The first and last elements of Ai are min(Ai) = A((i− 1)g)
and max(Ai) = A(ig − 1).

2. Sort D :=
⋃
i∈[n/g] (Ai −Ai) = {a− a′ | a, a′ ∈ Ai for some i}.

3. For all i, j ∈ [n/g], sort Ai,j := Ai +Aj = {a+ b | a ∈ Ai and b ∈ Aj}.
4. For k from 1 to n,
4.1. Initialize lo← 1 and hi← dn/ge.
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4.2. Repeat:
4.2.1. If −A(k) ∈ Alo,hi, report “solution found” and halt.
4.2.2. If max(Alo) + min(Ahi) > −A(k) then decrement hi, otherwise increment lo.
4.3. Until lo = dn/ge+ 1 or hi = 0.
5. Report “no solution” and halt.
This algorithm can be generalized in a straightforward way to solve the (unbalanced) three-set
version of 3SUM. For the easy argument concerning the correctness of the algorithm, see [22].

With a proper choice of g, the decision tree complexity of the algorithm is O(n3/2√logn).
Step 1 requires O(n logn) comparisons. By Lemma 4, Step 2 requires O(n logn + |D|) =
O(n logn + gn) comparisons to sort D. By Fredman’s trick, if a, a′ ∈ Ai and b, b′ ∈ Aj ,
a+b < a′+b′ holds iff a−a′ < b′−b, and both sides of this inequality are elements of D. Thus,
Step 3 does not requires any real input comparisons, given the sorted order on D. For each
iteration of the outer loop (in Step 4) there are at most 2dn/ge iterations of the inner loop
(Step 4.2), since each iteration ends by either incrementing lo or decrementing hi. In Step 4.2.1
we can determine whether −A(k) is in Alo,hi using binary search, in log |Alo,hi| = O(log g)
comparisons. The total number of comparisons is thus O(n logn+ gn+ (n2 log g)/g), which
becomes O(n3/2√logn) when g =

√
n logn.

4 Improved Decision Trees for 3SUM, k-SUM, and k-LDT

In this section we show that the randomized decision tree complexity of 3SUM is O(n3/2),
and more generally, that the randomized decision tree complexity of k-LDT is O(nk/2), for
any odd k ≥ 3. This bound removes the O(

√
logn) factor in Grønlund and Pettie’s decision

tree bound. We show these results by giving a randomized algorithm that constructs a
(2k − 2)-linear decision tree whose expected depth is O(nk/2).

To make the presentation more concise, we present it for the variant where we have three
different sets A, B, C of n real numbers each, and we want to determine whether there exist
a ∈ A, b ∈ B, c ∈ C, such that a+ b+ c = 0.

As in the previous section, we partition each of the sorted sets A and B into dn/ge
blocks, each consisting of g consecutive elements, denoted by A1, . . . , An/g, and B1, . . . , Bn/g,
respectively. As above, but with a slightly different notation, we consider the n× n matrix
M = MAB , whose rows (resp., columns) are indexed by the (sorted) elements of A (resp., of
B), so that M(k, `) = ak + b`, for k, ` ∈ [n]. The partitions of A and of B induce, as before,
a partition of M into n2/g2 boxes Mi,j , for i, j ∈ [n/g], where Mi,j is the portion of M with
rows in Ai and columns in Bj .

As above, Fredman’s trick allows us to sort all the boxes Mi,j with O(n logn + ng)
comparisons. Since the problem is fully symmetric in A, B, C, we can also define analogous
matrices MAC and MBC , constructed in the same manner for the pairs A, C and B, C,
respectively, partition each of them into n2/g2 boxes, and obtain the sorted orders of all the
corresponding boxes, with O(n logn+ ng) comparisons.

The crucial (costliest) step in Grønlund and Pettie’s algorithm, which we are going
to improve, is the searches of the elements of −C in MAB. For each c ∈ C, let σ(c) =
contour(−c) denote the staircase path contour of −c, as defined before Lemma 5. The
length of σ(c) is thus at most 2n. Each of the paths σ(c) visits some (at most 2dn/ge) of the
boxes Mi,j , and the index pairs (i, j) of these boxes also form a staircase pattern, as in the
preceding sections. For each c ∈ C, the sequence of boxes that σ(c) visits can be obtained
by invoking (an appropriate variant of) Step 4 of the algorithm in Section 3, excluding the
binary search in Step 4.2.1. The total running time of this step, over all c ∈ C, is O(n2/g).
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The paths σ(c), being contours, have the structure given in Lemma 5, including the weak
total order ≺ between them. Thus, we obtain the following.

I Corollary 6. For each box Mi,j, let Ci,j denote the set of elements of C whose paths σ(c)
traverse Mi,j. Then Ci,j is a contiguous subsequence of (the sorted) C.

Put κi,j := |Ci,j |. Then we clearly have
∑
i,j∈[n/g] κi,j = O(n2/g). That is, the average

number of elements of C that visit a box is O(g), and, for each box, these elements form a
contiguous subsequence of C, as just asserted in Corollary 6. Let C∗i,j denote the contiguous
sequence of indices in C of the elements of Ci,j . That is, Ci,j = {c` | ` ∈ C∗i,j}. With all
these observations, we next proceed to derive the mechanism by which, for each box Mi,j , we
can efficiently search in Mi,j with the (negations of the) κi,j corresponding elements of Ci,j .

We apply a special variant of fractional cascading. The twist is in the way in which we
construct the augmented catalogs. Note that in each box Mi,j , we have g2 elements of the
form ak + b`, but only 2g indices k, `. We want to sample elements from a box, and then copy
and merge them into its neighbor boxes. However, in order to be able to use Fredman’s trick,
we have to preserve the property that the number of element-indices (rows and columns)
in each augmented box stays O(g) (unlike a naive implementation of fractional cascading,
where it is enough that each augmented box be of size O(g2)).

Thus, we sample elements from A (row elements) and elements from B (column elements)
separately. We construct augmented sets A′1, . . . , A′dn/ge. Starting with A′dn/ge = Adn/ge,
we sample each element in A′dn/ge with probability p = 1

4 . Each sampled element is copied
and merged with Adn/ge−1, and we denote by A′dn/ge−1 the new augmented set. Then we
sample each element from A′dn/ge−1 with the same probability p, copy and merge the sampled
elements with Adn/ge−2, obtaining A′dn/ge−2, and continue this process until the augmented
set A′1 is constructed. Similarly, we construct the augmented sets B′1, . . . , B′dn/ge, but we do
it in the opposite direction, starting from B′1 = B1 and ending with B′dn/ge. Clearly, similar
to standard fractional cascading, the expected size of each of the augmented sets is O(g), as
the expected numbers of additional elements placed in each box form a convergent geometric
series. Now we sort

DA′ =
⋃

i∈[n/g]

(A′i −A′i) = {a− a′ | a, a′ ∈ A′i for some i}.

In each A′i−A′i, the expected number of elements ak−ak′ is O(g2), and the expected number
of element indices k, k′ is only O(g). Thus, by Lemma 4, we can sort DA′ with expected
O(n logn + ng) comparisons. Similarly, we sort DB′ =

⋃
j∈[n/g]

(
B′j −B′j

)
with the same

expected number of comparisons. Then, we form the union D′ = DA′ ∪DB′ and obtain its
sorted order by merging DA′ and DB′ . This costs additional expected O(ng) comparisons.
By Fredman’s trick, from the sorted order of D′, we can, and do, obtain the sorted order of
the augmented boxes A′i +B′j , for each i, j ∈ [n/g], without further comparisons.

With these augmentations of the row and column blocks, the matrix MAB itself is now
augmented, such that each modified box Mi,j = A′i +B′j receives some fraction of the rows
from the box Mi+1,j below it, and a fraction of the columns from the box Mi,j−1 to its
left. Each box Mi,j corresponds to a vertex in the catalog graph, and it has (at most) two
outgoing edges, one to the vertex that corresponds to Mi+1,j and one to the vertex that
corresponds to Mi,j−1 (it also has at most two incoming edges). Clearly this is a DAG with
maximum in/out degree ∆ = 2, which is why we sampled 1

2∆ = 1
4 of the rows/columns in

each step. We complete the construction of this special fractional cascading data structure,
by adding the appropriate pointers, similar to what is done in a standard implementation of
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60 70 80 90 100 110 120 130 140 150
160 170 180 190 200 210 220 230 240 250
260 270 280 290 300 310 320 330 340 350

Figure 2 An expensive step in the fractional cascading search: Assume that only the first and
third rows (appearing in gray) are sent to the preceding box (above the current one), and that we
search with −c = 205. The previous search locates −c between ξ− = 150 and ξ+ = 260, say, and
now we have to examine the entire second row to locate −c in the current box.

fractional cascading (see Section 2). This does not require any further comparisons, since
the pointers from synthetic keys (the sampled elements) to real keys, and pointers from real
keys to synthetic keys, depend only on the sorted order of the augmented sets Mi,j , which
we already computed. So the overall expected number of comparisons needed to construct
this data structure is still O(n logn+ ng).

Consider now the search with −c, for some c ∈ C. Assume that the search has just visited
some box Mi′,j′ , and now proceeds to search in box Mi,j , where either (i, j) = (i′ + 1, j′) or
(i, j) = (i′, j′ − 1). Assume, without loss of generality, that (i, j) = (i′ + 1, j′); a symmetric
argument applies when (i, j) = (i′, j′ − 1), using columns instead of rows. In this case, the
fractional cascading mechanism has sampled, in a random manner, an expected quarter
of the rows of (the already augmented) Mi,j and has sent them to Mi′,j′ = Mi−1,j . The
output of the search at Mi−1,j , if −c was not found there, includes two pointers to the largest
element ξ− of Mi,j that is smaller than −c, and to the smallest element ξ+ of Mi,j that is
larger than or equal to −c. We need to go over the elements in the sorted order of Mi,j that
lie between ξ− and ξ+, and locate −c among them. If we do not find it, we get the two
consecutive elements that enclose −c, retrieve from them two corresponding pointers to a
pair of elements in the next box to be searched, that enclose −c between them, and continue
the fractional cascading search in the next box, in between these elements.

The main difficulty in this approach is that the number of elements of Mi,j between ξ−
and ξ+ might be large, because there might be many elements between ξ− and ξ+ in rows
that we did not sample, and then we have to inspect them all, slowing down the search.

Concretely, in this case we sample, in expectation, a quarter of the rows of Mi,j (recall
that, we actually sample the rows from an augmented box that has already received data
from previous boxes, but let us ignore this issue for now). Collectively, these rows contain
(in expectation) Θ(g2) elements of Mi,j , but we have no good control over the size of the
gaps of non-sampled elements between consecutive pairs of sampled ones. This is because
there might be rows that we did not sample which contain many elements between ξ− and
ξ+, and searching through such large gaps could slow down the procedure considerably. See
Figure 2 for an illustration. (For a normal fractional cascading, this would not be an issue,
but here the peculiar and implicit way in which we sample elements has the potential for
creating this problem.)

We handle this problem as follows. Consider any gap of non-sampled elements of Mi,j

between a consecutive pair ξ− < ξ+ of sampled ones. We claim that the expected number of
rows to which these elements belong is O(1). Indeed, the probability to have k distinct rows
in such a gap, conditioned on the choice of the row containing ξ−, is 1

4
( 3

4
)k, which follows

since each row is sampled independently with probability 1/4. Hence, the (conditionally)
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expected row-size of a gap is

∑
k≥0

k
1
4

(
3
4

)k
= O(1),

as claimed. Denote this expected value as β. In other words, for each c ∈ Ci,j , let Rc be the
set of rows that show up in the gap between the corresponding elements ξ− and ξ+ for c.
The overall expected size

∑
c∈Ci,j

|Rc| is thus β|Ci,j |.
Fix a box Mi,j . For each ` ∈ C∗i,j and for each k ∈ Rc`

, we need to locate −c` among
the elements in row k of Mi,j . That is, we need to locate −c` among the elements of the set
ak +B′j . This however is equivalent to locating −ak − c` among the elements of B′j .

We therefore collect the set S of all the sums −ak − c`, for ` ∈ C∗i,j and k ∈ Rc`
, and

recall that in expectation we have |S| = O(|Ci,j |). The crucial observation is that we already
(almost) know the order of these sums. To make this statement more precise, partition, in the
usual manner, the sorted sequence C into dn/ge blocks C1, C2, . . . , Cdn/ge, each consisting of
g consecutive elements in the sorted order. As mentioned earlier, a symmetric application of
Fredman’s trick allows us to obtain the sorted order of each box of the form A′i +Cj , using a
total of O(ng) comparisons.

The number of (consecutive) blocks Cs of C that overlap Ci,j is ti,j ≤ dκi,j/ge + 2.
Moreover, each sum in S belongs to −(A′i + Cs) for one of these ti,j blocks. Since each of
these sets is already sorted, we extract from them (with no extra comparisons) the elements
of S as the union of ti,j sorted sequences Si,s, where Si,s ⊂ −(A′i+Cs) for each s. Arguing as
above, the expected size of Si,s is β|Cs| = O(g). We now merge each of the sorted sequences
Si,s with B′j , using an expected O(g) comparisons for each merge. As a result, each sum
−ai − c` is located between two consecutive elements b−i,` < b+i,` of B′j . In other words, for
each c` ∈ Ci,j , we have at most |Rc`

| candidates for being the largest element of Mi,j that is
smaller than −c` (these are the elements ai + b−i,`, for i ∈ Rc`

), and we select the largest of
them, requiring no comparisons, as these are all elements of the already sorted A′i +B′j . In
the same manner, we find the smallest element of Mi,j that is larger than −c`. Having found
these two elements, we can proceed to search −c` in the next box, using the appropriate
pointers created by the fractional cascading mechanism (see Section 2).

The overall number of merges is∑
i,j∈[n/g]

ti,j ≤
∑

i,j∈[n/g]

(κi,j/g + 2) = O(n2/g2),

and each of them costs O(g) expected comparisons, for a total of O(n2/g) expected compar-
isons. Thus, the overall number of expected comparisons is O(n logn+ ng + n(log g + n/g)),
which is O(n3/2), when g =

√
n. This completes the proof of Theorem 1. J

4.1 k-SUM and Linear Degeneracy Testing
The standard algorithm for k-variate linear degeneracy testing (k-LDT) for odd k ≥ 3, is based
on a straightforward reduction to an instance of unbalanced 3SUM, where |A| = |B| = n(k−1)/2

and |C| = n; see [4] and [22]. The analysis of this section also applies for unbalanced 3SUM,
and directly implies that it can be solved by using an expected number of

O (|A| log |A|+ |B| log |B|+ |C| log |C|+ g (|A|+ |B|+ |C|) + |C| ((|A|+ |B|)/g + log g))

comparisons, where the first four terms come from the cost of sorting the blocks of (the
augmented) MAB, MAC , and MBC , and where the last term is the cost of the fractional
cascading searches. We have |A| = |B| = n(k−1)/2, |C| = n, so by choosing g =

√
n, the
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bound becomes O(nk/2). Thus, the randomized decision tree complexity of k-LDT (and thus
of k-SUM) is O(nk/2), for any odd k ≥ 3, as stated in Theorem 2.

References
1 A. Abboud and V. Vassilevska Williams. Popular conjectures imply strong lower bounds

for dynamic problems. In Proc. 55th Annu. Sympos. on Foundations of Computer Science
(FOCS), pages 434–443, 2014.

2 A. Abboud, V. Vassilevska Williams, and H. Yu. Matching triangles and basing hardness
on an extremely popular conjecture. In Proc. 47th Annu. ACM on Sympos. on Theory of
Computing (STOC), pages 41–50, 2015.

3 O. Aichholzer, F. Aurenhammer, E. D. Demaine, F. Hurtado, P. Ramos, and J. Urrutia.
On k-convex polygons. Comput. Geom., 45(3):73–87, 2012.

4 N. Ailon and B. Chazelle. Lower bounds for linear degeneracy testing. J. ACM, 52(2):157–
171, 2005.

5 A. Amir, T. M. Chan, M. Lewenstein, and N. Lewenstein. On hardness of jumbled indexing.
In Proc. 41st Int’l Colloq. on Automata, Languages, and Programming (ICALP), pages 114–
125, 2014.

6 A. Amir, T. Kopelowitz, A. Levy, S. Pettie, E. Porat, and B. Riva Shalom. Mind the gap:
Essentially optimal algorithms for online dictionary matching with one gap. In Proc. 27th
Int’l Sympos. on Algorithms and Computation (ISAAC), pages 12:1–12:12, 2016.

7 G. Barequet and S. Har-Peled. Polygon containment and translational min-Hausdorff-
distance between segment sets are 3SUM-hard. Int. J. Comput. Geometry Appl., 11(4):465–
474, 2001.

8 R. C. Buck. Partition of space. Amer. Math. Monthly, 50:541–544, 1943.
9 A. Butman, P. Clifford, R. Clifford, M. Jalsenius, N. Lewenstein, B. Porat, E. Porat, and

B. Sach. Pattern matching under polynomial transformation. SIAM J. Comput., 42(2):611–
633, 2013.

10 J. Cardinal, J. Iacono, and A. Ooms. Solving k-SUM using few linear queries. In Proc.
24th Annu. European Sympos. on Algorithms (ESA), pages 25:1–25:17, 2016.

11 M. L. Carmosino, J. Gao, R. Impagliazzo, I. Mihajlin, R. Paturi, and S. Schneider. Non-
deterministic extensions of the strong exponential time hypothesis and consequences for
non-reducibility. In Proc. 2016 ACM Conference on Innovations in Theoretical Computer
Science, pages 261–270, 2016.

12 B. Chazelle and L. J. Guibas. Fractional cascading: I. A data structuring technique. Al-
gorithmica, 1(2):133–162, 1986.

13 B. Chazelle and L. J. Guibas. Fractional cascading: II. Applications. Algorithmica,
1(2):163–191, 1986.

14 E. D. Demaine, J. S. B. Mitchell, and J. O’Rourke. The open problems project. Accessed:
2015-10-28.

15 H. Edelsbrunner, J. O’Rourke, and R. Seidel. Constructing arrangements of lines and
hyperplanes with applications. SIAM J. Comput., 15(2):341–363, 1986.

16 J. Erickson. Bounds for linear satisfiability problems. Theor. Comput. Sci, 8:388–395, 1999.
17 E. Ezra and M. Sharir. A nearly quadratic bound for the decision tree complexity of k-SUM.

To Appear in Proc. 33st Int’l Sympos. on Computational Geometry (SoCG), 2017.
18 M. L. Fredman. How good is the information theory bound in sorting? Theor. Comput.

Sci, 1(4):355–361, 1976.
19 A. Freund. Improved subquadratic 3SUM. Algorithmica, 77(2):440–458, 2017.
20 A. Gajentaan and M. H. Overmars. On a class of O(n2) problems in computational geo-

metry. Comput. Geom., 5:165–185, 1995.



O. Gold and M. Sharir 42:13

21 O. Gold and M. Sharir. Improved bounds for 3SUM, k-SUM, and linear degeneracy. CoRR,
abs/1512.05279, 2015. URL: http://arxiv.org/abs/1512.05279.

22 A. Grønlund and S. Pettie. Threesomes, degenerates, and love triangles. In Proc. 55th
Annu. Sympos. on Foundations of Computer Science (FOCS), pages 621–630, 2014.

23 A. Hernández-Barrera. Finding an o(n2 logn) algorithm is sometimes hard. In Proc. 8th
Canadian Conference on Computational Geometry, pages 289–294, 1996.

24 R. Impagliazzo and R. Paturi. On the complexity of k-SAT. J. Comput. Syst. Sci.,
62(2):367–375, March 2001.

25 R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential com-
plexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

26 D. M. Kane, S. Lovett, and S. Moran. Near-optimal linear decision trees for k-SUM and
related problems. CoRR, abs/1705.01720, 2017.

27 T. Kopelowitz, S. Pettie, and E. Porat. Higher lower bounds from the 3SUM conjecture. In
Proc. 27th Annu. ACM-SIAM Sympos. on Discrete Algorithms (SODA), pages 1272–1287,
2016.

28 A. Lincoln, V. Vassilevska Williams, J. R. Wang, and R. Williams. Deterministic time-
space trade-offs for k-SUM. In Proc. 43rd Int’l Colloq. on Automata, Languages, and
Programming (ICALP), pages 58:1–58:14, 2016.
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Abstract
We study utility games (Vetta, FOCS 2002) where a set of players join teams to produce social
utility, and receive individual utility in the form of payments in return. These games have many
natural applications in competitive settings such as labor markets, crowdsourcing, etc. The
efficiency of such a game depends on the profit sharing mechanism – the rule that maps utility
produced by the players to their individual payments. We study three natural and widely used
profit sharing mechanisms – egalitarian or equal sharing, marginal gain or value addition when
a player joins, and marginal loss or value depletion when a player leaves. For these settings, we
give tight bounds on the price of anarchy, thereby allowing comparison between these popular
mechanisms from a (worst case) social welfare perspective.

1998 ACM Subject Classification J.4 Social and Behavioral Sciences: Economics
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1 Introduction

In utility games (introduced by Vetta [20], see also [14]), individual agents (e.g., employees)
offer their services to entities (e.g., employers) to create social utility, and receive individual
utility in the form of payments in return. It is natural to expect the agents to behave
strategically, i.e., offer their services to the entity giving them the highest payment. This
represents a game where each agent (called a player) selects one of the available entities
(called teams) to maximize their individual payments (called payoffs), but the overall social
welfare is the total utility cumulatively produced by all the teams. A stable outcome, called
a Nash equilibrium or ne, is achieved when no player can unilaterally change her team
and increase her payoff. The goal of this paper is to study the (in)efficiency of such stable
outcomes – the maximum (worst-case) ratio between the social welfare produced by an
optimal allocation and that in an ne, called the Price of Anarchy or poa of the game. Clearly,
the social welfare produced at equilibrium depends on the profit sharing mechanism in use,
i.e., the payoff of the players as a function of the utility produced by them. We consider
three natural and widely used profit sharing rules:

egalitarian: any unit of utility produced by a team is divided equally among the team
members who helped produce it.

∗ A full version of this paper is available at http://theory.stanford.edu/~kkollias/profit_sharing.
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marginal gain: the payoff of a player in a team is the utility that the team gained when
she joined.
marginal loss: the payoff of a player in a team is the utility that the team would lose if
she were to leave.

The main motivation for this work is to compare these popular profit sharing mechanisms in
terms of their impact on (worst case) social utility.

Formally, there is a set of players N and a set of teams T that they can join. The utility
produced by a team is given by a weighted coverage function over the players in the team. To
interpret this, consider a set of tasks S with respective utilities vs for s ∈ S. If each player
i ∈ N can perform a subset of tasks Si ⊆ S, then the tasks completed by a team t ∈ T is
given by St = ∪i∈tSi, and the utility produced is Ut =

∑
s∈St

vs. This is precisely a weighted
coverage function over the team members; we say that team t covers task s if s ∈ St.

From a social perspective, the goal is to maximize the total utility produced by all teams,

U =
∑
t∈T

Ut =
∑
t∈T

∑
s∈St

vs.

We will call U the social welfare or objective value.

Profit Sharing Mechanisms

Each player i is interested in maximizing her own payoff, denoted ui, which depends on the
profit sharing mechanism. We consider the following popular profit sharing mechanisms.

Egalitarian Profit Sharing. For every task that is covered in a team, the utility of the task
is equally shared among the members of the team who perform the task. We may note that
the egalitarian model is an instantiation of the Shapley value utility sharing method [19].
This is defined as the expected contribution of a player to her team’s utility, assuming players
are sequentially added to the team using a uniformly random ordering.

For egalitarian sharing, we exactly determine the poa to be 1.6 by proving matching
upper and lower bounds on the poa. The upper bound employs the smoothness framework
due to Roughgarden [18]. However, unlike the standard approach of applying the smoothness
inequality for every resource, (in our setting, for every team), we apply the smoothness
inequality across all teams and players simultaneously for a single task. The matching lower
bound of 1.6, on the other hand, uses a careful combinatorial construction of the worst case
poa instance, using symmetrization techniques to argue stability of the solution. Both these
results appear in Section 2, thereby proving the following theorem.

I Theorem 1. The poa of egalitarian profit sharing is 1.6.

Marginal Gain Profit Sharing. In this model, players have an order of arrival and each
player’s utility is the value added to the team when that player joins. The marginal gain
method is an instantiation of an ordinal Shapley value, which is a variation on the Shapley
value discussed above where player ordering is not random but predefined.

For marginal gain profit sharing, we show an upper bound of 1.71 and a lower bound of
1.58 on the poa. The lower bound can be established by hardness of approximation results
(see [11]) assuming P 6= NP. We give an alternative proof of this result based on an explicit
construction that does not rely on complexity theoretic assumptions in our full paper. On the
other hand, our upper bound, which appears in Section 3, is based on a charging argument,
which carefully matches tasks that are not covered in the ne to covered tasks.
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I Theorem 2. The poa of marginal gain profit sharing is at most 1 + 1√
2 ' 1.71 and at

least e
e−1 ' 1.58.

Marginal Loss Profit Sharing. In this model, the utility of a player is the value lost if
she were to leave the team. The marginal loss model is an instantiation of the marginal
contribution method, where each player is rewarded with her marginal contribution to the
utility of her team [19, 10]. One interesting point of difference between the this and the
previous two models is that the sum of individual payoffs in this case may be strictly smaller
than the overall social utility, whereas this sum was exactly equal to the social utility in
the previous cases. This is because the only tasks whose utility is awarded as payoff in this
model are those that are uniquely performed by a single team member.

For marginal loss profit sharing, we prove the poa is exactly 2. An upper bound of
2 follows from the work of Vetta [20]. We show a matching lower bound via an explicit
construction with ideas that are similar to the lower bound construction in Theorem 1. Due
to space constraints, we present this lower bound construction in our full paper, thereby
proving the next theorem.

I Theorem 3. The poa of marginal loss profit sharing is 2.

Existence of ne. Omitting further details, we briefly mention why existence of a ne is
guaranteed in all three profit sharing models. Egalitarian profit sharing induces a congestion
game [17, 15], which implies existence of a ne is guaranteed. In marginal gain profit sharing,
the property follows by equivalence to the process of having players appear online and letting
each player select the team yielding the higher profit at the time of her arrival. In marginal
loss profit sharing, the optimal solution is always a ne since any beneficial deviation by a
player by definition increases the objective value.

Extensions

Submodular Utilities. While we primarily consider utility functions that are weighted
coverage functions of the players in a team, Vetta [20] has originally proposed the utility
game framework for more general submodular utility functions. The marginal gain and
marginal loss profit sharing models naturally extend to this setting with the same definitions.
In both cases, we show that the poa is 2, i.e., that Vetta’s upper bound is tight. For
the marginal loss model, this follows as a corollary of Theorem 3 since weighted coverage
functions are a special case of submodular functions. For the marginal gain mode, however,
this establishes a separation between the poa for general submodular functions and the special
case of weighted coverage functions. Our lower bound construction for general submodular
functions makes use of a knapsack welfare function, and appears in our full paper.

I Theorem 4. The poa of marginal gain and marginal loss profit sharing with submodular
utilities is 2.

One can also extend the egalitarian profit sharing model to the case of general submodular
functions by using the analogy with Shapley profit sharing. In particular, for submodular
functions, the payoff of a player in the egalitarian case is her expected contribution to the
utility of the team, assuming a uniform random order of arrival of players. Determining the
poa in this case is an interesting problem for future work.
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Asymmetric Utilities. We can also consider an asymmetric setting, where the utility
functions of teams are not necessarily identical. This is the case, e.g., if a task produces
different utility to different teams. In this case, even for weighted coverage utility functions
(and therefore, also for submodular utilities), we show that the poa is 2, i.e., Vetta’s upper
bound is tight. For the marginal loss model, this follows from Theorem 3 since symmetric
utilities are a special case, but for the egalitarian and symmetric gain models, we require
new lower bound constructions that are given in our full paper.

I Theorem 5. The poa in the egalitarian, marginal gain, and marginal loss models for
asymmetric teams is 2.

Related Work

Utility games were introduced by Vetta [20] to model strategic agents who produce submodular
social welfare in a team, and seek to maximize their individual utility or payoff in return.
For this general setting, Vetta showed an upper bound of 2 on the poa, subject to some
mild conditions on the agent payoff functions that are satisfied in all our models above. The
profit sharing models that we study in this paper are inspired by standard cost sharing rules
from the economics literature such as Shapley and marginal contribution costs as mentioned
earlier. The poa of these cost sharing models has been studied in several resource selection
problems with negative externalities among players. Specifically, Marden and Wierman [14]
studied utility sharing methods in a general distributed utility maximization model, and
Harks and Miller [9] studied cost sharing methods in networking applications. Bachrach
et al. [1] considered the effect of positive externalities among players working on multiple
projects simultaneously, but restricted by an effort budget. In [13], the authors study a
special case of utility games where the welfare produced by a resource is a function of the
number of players on it, and prove that under certain conditions (such as symmetric players),
the poa drops below 2.

Utility games with coverage utility functions are also related to congestion games [17, 15];
in fact, utility games in the egalitarian profit sharing model are congestion games. The
poa of cost sharing methods in generalizations of congestion games has been extensively
studied [3, 12, 8]. Gairing [7] studied a congestion game with a coverage utility function and
showed how to modify the payoffs of the tasks so that better-response dynamics reaches an
equilibrium with an inefficiency of 1− 1

e or better in polynomial time.
Finally, we mention known results for the corresponding optimization problem – make an

assignment of players to teams to maximize overall social utility, where the utility on every
team is given by a weighted coverage function. This problem is called submodular welfare
maximization with coverage functions. The best approximation ratio in the general case is
e
e−1 ' 1.58 [2, 5, 6]. Algorithmic results on combinatorial auctions, which are similar to our
setting (teams are bidders and players are items) include a 1− 1

e approximation algorithm
for submodular valuations [4], a proof of optimality of the greedy algorithm in various online
and offline settings [16], and a (matching) hardness of approximation result [11].

2 Egalitarian Payoffs

In this section, we prove Theorem 1, i.e., show that the poa for the egalitarian profit sharing
model is exactly 1.6. This comprises two parts: a lower bound of 1.6 (in Section 2.1) and a
matching upper bound of 1.6 (in Section 2.2).
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2.1 Lower Bound for Egalitarian Payoffs
I Lemma 6. The poa of egalitarian profit sharing is at least 1.6.

We construct of an instance of the egalitarian model and an assignment of players to
teams that is an ne and whose social welfare is a 5

8 fraction of the optimal solution. We
begin with an overview of this construction, and then give details of each step. First, we
create a simple instance parameterized by integers x and y (we will precisely define these
integers later), and an assignment of players to teams with utility x+y

2x+y times the optimal.
Our assignment in this preliminary game will not be an ne. We then modify the instance
in two stages, where we preserve the ratio x+y

2x+y w.r.t. the optimal solution, while creating
sufficient structure to argue that the final assignment is an ne for appropriate values of x
and y. The worst case among these equilibrium-inducing (x, y) values will yield the poa
lower bound of 1.6.

Checking whether the final assignment is an ne can be a complicated task in general,
since there will eventually be a large number of players and possible deviations in the game.
Our two-stage transformation will ensure, however, that this task reduces to verifying a single
inequality. This will be achieved by imposing symmetry across players (first transformation)
and symmetry across possible deviations of a player (second transformation). We now present
the four stages of our proof (initialization, imposing player symmetry, imposing deviation
symmetry, and picking the values of x, y) in detail.

Stage 1: Initialization. Our preliminary game uses the parameter k = 2x+ y. There are k
tasks s1, s2, . . . , sk, and k types of players where a player of type i can only perform task si.
There are k players for each type, i.e., a total of k2 players. The number of teams is also k.
The utility produced by covering any single task in a team is 1.

We will crucially maintain two properties of the assignment. The first property imposes
symmetry over how players are divided among teams.

I Property 7. Note that there are k = 2x+y players who can perform a task. Our assignment
will ensure that every task is covered by 2 players in x teams, by 1 player in y teams, and
remains uncovered in x teams. We will also ensure that every team has k = 2x+ y players.
These k players in any team will cover tasks as follows: x tasks will be covered by 2 players,
y tasks will be covered by 1 player, and x tasks will remain uncovered.

Note that the above property ensures that every team only covers x + y tasks out of the
total of k = 2x+ y tasks. Similarly, every task is covered in only x+ y teams out of the total
of k = 2x+ y teams.

The second property relates our assignment to an optimal assignment (call it opt). To
encode opt, let us use k colors c1, c2, . . . , ck, where all players assigned to team i by opt
are said to have color ci.

I Property 8. opt will satisfy the property that there is exactly one player with color ci who
can perform a specific task sj, for any i and j. In other words, the k = 2x+ y players who
can perform any specific task will be divided among the k = 2x+ y teams, thereby ensuring
that all tasks in all teams are covered. Contrast this to our assignment that only covers x+ y

tasks in every team, and x+ y teams cover every task, according to Property 7. Finally, in
our assignment, there will be exactly one player of each color ci in every team t. In other
words, the overlap between any team in our assignment and any team in opt will be exactly
one player.
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Figure 1 The preliminary assignment for x =
y = 1. Teams are rows, tasks are columns.
Cell (i, j) corresponds to team i, task sj . opt
has all white players in team 1, all gray players
in team 2, and all black players in team 3. The
occupancy is symmetric across rows and columns
and each color appears once per row and column.

s1 s2 s3 s′1 s′2 s′3 s′′1 s′′2 s′′3

Figure 2 The intermediate assignment
for x = y = 1. The first copy is the ori-
ginal preliminary assignment. In the second
one, white becomes gray, gray becomes black,
black becomes white. In the third we shift
the colors again. All three together form the
intermediate assignment.

As noted above, Property 7 implies that the coverage of our assignment is x+y
2x+y times

the total number of tasks, while Property 8 ensures that the optimal solution covers every
task. However, it is not aprioiri clear that these properties can be satisfied by an assignment:
the next lemma asserts this.

I Lemma 9. Given k teams, k tasks, and, for each task, k players who can perform only
that task, there is an assignment of the players to the teams and a coloring that satisfies
Properties 7 and 8.

Proof. (See Fig. 1 for an illustration of the x = y = 1 case.) The first team’s structure
is as follows: tasks s1, s2, . . . , sx are covered by two players, tasks sx+1, sx+2, . . . , sx+y
are covered by one player each, and tasks sx+y+1, sx+y+2, . . . , sk are left uncovered. For
this first team, we use any coloring that has a different color for each of the k players. The
structure and coloring of the second team is obtained by performing a left circular shift
to the first team’s structure, i.e., sk, s1, s2, . . . , sx−1, are covered by 2 players, sx, sx+1,
. . . , sx+y−1 are covered by 1 player, and sx+y, sx+y+1, . . . , sk−1, are left uncovered. Colors
are also shifted, i.e., the color(s) of the player(s) covering si in the first team is applied
to the player(s) covering si−1 (sk, if i = 1) in the second team. We continue with similar
left circular shifts to define the remaining teams. This assignment and coloring satisfies
Properties 7 and 8. J

We have now completed the first stage; we will call this the preliminary assignment. By
Property 8, the optimal assignment covers all tasks; hence, the ratio of the coverage of this
preliminary assignment to the optimum is x+y

2x+y . However, this assignment is not an ne, since
players sharing a task have unilateral incentive to deviate to a team where the corresponding
task is not covered. We now proceed to the next stages, which will modify this assignment
to an ne.

Stage 2: Imposing player symmetry. During this stage, we will augment the game by
adding new tasks. In our preliminary assignment, not all players have the same payoff since
some of them share a task with a teammate while others do not. In this stage, we impose
symmetry across players: every player will share exactly 2x tasks with another player and will
cover exactly y tasks by herself. To do this, we create k copies of our preliminary assignment,
and exchange roles between players in the different copies in a way that they all end up
being symmetric. We will call this the intermediate assignment.

The first copy is identical to the preliminary assignment. In the second copy, we take the
preliminary assignment and perform a circular shift on the colors, i.e., we change color ci to
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Figure 3 All 6 versions of the intermediate assignment for x = y = 1. The first one is the original
intermediate assignment. The rest are all possible permutations of the team structures (i.e., rows).
All 6 together form the final assignment with 9 players: one white, one gray, and one black player in
each team.

color ci+1 (color ck changes to c1). Next, we rename the tasks so that they are distinct from
those in the first copy. We continue this process of doing a circular shift on the colors and
renaming the tasks in each subsequent copy until we have k copies in total. (See Fig. 2 for all
the copies of the x = y = 1 case.) The intermediate assignment is constructed by appending
all k copies (recall that the tasks are distinct in the copies), and merging all players in the
same team with the same color into a single player.

Note that properties 7 and 8 continue to hold; in particular, this implies that the
intermediate assignment covers a x+y

2x+y fraction of tasks in each team, while opt covers every
task in every team. Moreover, since every color assumes the role of every other color in
the preliminary assignment in one of the copies, it follows that every player covers 2x tasks
with another player and y tasks by herself in the intermediate assignment. This implies that
the players are symmetric in their coverage and payoff in their current team. However, the
possible deviations of a player to another team are not symmetric, i.e., the payoff of a player
depends on the team that the player moves to. In the next stage, we impose symmetry on
the deviations of players, thereby reducing the equilibrium condition to a single inequality.

Stage 3: Imposing Deviation Symmetry. In this stage, we repeatedly perform an operation
that we call team structure switch. Switching the structure of team t to that of t′ involves
taking each player in t, stripping her of her existing tasks, and granting her the tasks of the
player in t′ with the same color. By Property 8, this player in t′ is uniquely defined given a
specific player in t. A team structure permutation is said to be performed when we switch
the structure of every team t to the structure of team π(t), where π is a permutation on the
teams T .

For every possible permutation π, we generate a copy of the intermediate assignment
and perform a team structure permutation based on π. As we did in the previous stage, we
rename tasks so that they are different for each permuted copy and incorporate all k! copies
into our game by merging players in the same team with the same color into a single player
with k ·k! tasks. This generates our final assignment. (See Fig. 3 for the copies corresponding
to the six permutations for the x = y = 1 case.)

Again, note that Properties 7 and 8 continue to hold; as a consequence, each team only
covers a x+y

2x+y of the tasks in the final assignment whereas opt covers every task in every
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team. Additionally, every deviation of a player to another team now result in exactly the
same utility; therefore, not only are the players symmetric in their current team, but their
deviation to any other team is also symmetric.

I Lemma 10. In the final assignment, the utility of any player i who deviates to a team t′

that is not her assigned team t is given by[(
x− 1

3 + y

2 + x

)
2x+

(
x

3 + y − 1
2 + x

)
y

]
k(k − 2)!.

Proof. Consider a player i, and call her assigned team t. Fix some structure for t in an
intermediate assignment, and focus on all versions of the intermediate assignment in which
team t has that structure. There will be (k − 1)! such versions. Consider any task s that is
covered by i and another player in this structure. Our first goal is to determine the coverage
of task s in any other team t′ in each of the (k − 1)! versions of the intermediate assignment
that we are considering.

The copies of t′ in the (k−1)! versions we are considering can assume one of k−1 possible
structures, excluding the structure that we have fixed for t. Each one of these k − 1 possible
structures for t′ appears an equal number of times, i.e., (k − 2)! times. By Property 7, x− 1
of these k − 1 structures have 2 players covering task s. (Note that t itself has 2 players
covering s, hence the number is x − 1 and not x.) Similarly, in y of these structures, s is
covered by a single player, and it is not covered at all in x structures. This implies that the
payoff of i due to s, if she deviates to t′, will be x−1

3 + y
2 + x when we sum across one copy

of each structure of t′. For the overall payoff of i after deviation to t′ due to tasks shared
with another player in t, we need to multiply this expression by:

2x, which represents the number of different tasks s that are covered by i and another
player in t,
(k − 2)!, which represents the number of copies with the same structure of t′, given a
fixed structure of t, and
k, which is the number of different structures of t.

This yields a payoff of:(
x− 1

3 + y

2 + x

)
2xk · (k − 2)!. (1)

In a similar manner, we can calculate the payoff that i would get by deviating to t′ due
to the tasks she uniquely covers in t. This comes out to:(

x

3 + y − 1
2 + x

)
yk · (k − 2)!. (2)

The total payoff after deviation for player i is then given by:[(
x− 1

3 + y

2 + x

)
2x+

(
x

3 + y − 1
2 + x

)
y

]
k · (k − 2)!, (3)

which is independent of i, t and t′. This completes the proof of the lemma. J

Stage 4: Choice of the parameters x and y. Note that the payoff of a player in the final
assignment is (x+ y)k!, since the payoff in every copy of the intermediate assignment is x+ y

and there are k! copies. Therefore, by Lemma 10, the equilibrium condition is:[(
x− 1

3 + y

2 + x

)
2x+

(
x

3 + y − 1
2 + x

)
y

]
k(k − 2)! ≤ (x+ y)k!.
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Since k = 2x+ y, this simplifies to:

(x+ y)(2x+ y − 1) ≥
(
x− 1

3 + y

2 + x

)
2x+

(
x

3 + y − 1
2 + x

)
y.

We can verify that this equilibrium condition holds if we set y = 2+ε
3 x, with ε > 0 arbitrarily

small, and let x → ∞. We then get a 2x+y
x+y lower bound on the poa, which is arbitrarily

close to 1.6. This completes the proof of Lemma 6.

2.2 Upper Bound for Egalitarian Payoffs
I Lemma 11. The poa of egalitarian profit sharing is at most 1.6.

We will apply the (λ, µ) smoothness framework of Roughgarden [18]. For the purposes
of this proof, we extend the game by introducing a new strategy for each player, which is
to split herself into |T | fractions of 1

|T | each, and assign each fraction to a different team;
call this the fractional strategy. We define the payoff of a 1

|T | -sized fractional player sharing
a task s with another n (integral) players in a team as 1

|T | ·
vs

n+1 . If every player plays her
fractional strategy, then we denote the outcome opt-fr. Let Ns be the set of players who
can perform task s. We define the utility of a task s in team t in the outcome opt-fr
as vs ·min

{
|Ns|
|T | , 1

}
.

We prove two important properties of this augmented game. The first property is that
opt-fr represents an optimal fractional solution to the optimization problem maximizing
the total utility; therefore, its utility is at least that of opt, which is the optimal integral
solution to the same problem.

I Property 12. The total utility (social welfare) of opt-fr is at least that of opt.

This property allows to compare the utility in any ne with that in opt-fr instead of opt in
order to obtain an upper bound on the poa. Since opt-fr is highly symmetric, this is a
simpler comparison that does not require delving into the structure of opt.

The second property establishes that any ne in the original game is also an ne in the
augmented game, i.e., no player has an incentive to deviate to her fractional strategy. This
property holds because a deviation to the fractional strategy would produce payoff for the
player that is a convex combination of her current payoff and the payoffs produced by
deviating (integrally) to the other teams. Since none of these integral deviations produces a
higher payoff, neither does the deviation to the fractional strategy.

I Property 13. If nash is an ne in the original game, then no player has an incentive to
deviate to her fractional strategy.

Let udi be the payoff of player i if she unilaterally deviates from her team in nash to her
fractional strategy. Also, let U be the total utility (social welfare) in nash and U∗ be the
total utility in opt-fr. Our goal will be to identify positive parameters λ and µ such that
for any equilibrium nash,∑

i∈N
udi ≥ λU∗ − µU. (4)

Using Property 13, we have: U =
∑
i∈N ui ≥

∑
i∈N u

d
i ≥ λU∗ − µU . By rearranging the

terms, we get U∗

U ≤
µ+1
λ . A poa bound of µ+1

λ now follows from Property 12. We will show
Eq. (4) with λ = 5

6 and µ = 1
3 , which will then give us the desired upper bound of 1.6.
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Our task, therefore, is to prove Eq. (4) with λ = 5
6 and µ = 1

3 . Let us initially focus on
a single task s. Let n be the number of players who can perform task s, k be the number
of teams, and h be the total utility produced by task s across all the teams in opt-fr. To
compare this utility with that in the equilibrium nash, we use γ to denote the ratio of
utilities for task s in the two assignment opt-fr and nash. In other words, γh denotes the
total utility produced by task s in nash. We examine two cases: γ < 1

2 and γ ≥ 1
2 . (Since

we argue Eq. (4) for each task separately, we assume wlog that vs = 1.)

Case 1: γ < 1
2 . When a player i ∈ Ns deviates to her fractional strategy unilaterally, her

payoff from task s is the sum of payoffs from the k − γh teams that do not cover task s and
the γh teams that already cover s. This is given by:

1
k

(k − γh) + 1
k

∑
t:ns,t>0

1
ns,t + 1 ≥

1
k

(k − γh) + 1
k
· γh · 1

n
γh + 1 (by convexity). (5)

Summing over the n players who can perform task s gives:
n

k
(k − γh) + n

k
· (γh)2

n+ γh
≥ (1− γ)h+ (γh)2

h+ γh
. (6)

The inequality follows by replacing n and k with their smaller or equal number h, since the
left-hand side is increasing as a function of n and k. We can then verify that for our values
of λ = 5

6 and µ = 1
3 and for any γ < 1

2 , the last expression from (6) satisfies,

(1− γ)h+ (γh)2

h+ γh
≥ λh− µγh. (7)

Case 2: γ ≥ 1
2 . Similar to Case 1, the sum of payoffs for deviating from nash to the

fractional strategies is at least
n

k
(k − γh) + n

k

∑
t:ns,t>0

1
ns,t + 1 . (8)

Note that the sum of all ns,t values must be equal to n. Also, note that an adversary
minimizing

∑
t:ns,t>0

1
ns,t+1 sets all ns,t values equal and, if it turns out to be non-integral,

then rounds some of them up and some down to keep their sum at n. Now consider the
expression n

∑
t:ns,t>0

1
ns,t+1 and suppose that the ns,t values have been picked by the

adversary as above. Consider increasing n by one. Then the adversary will also increase
exactly one of the ns,t values to restore the property that they sum to n. This will clearly
increase the value of the expression n

∑
t:ns,t>0

1
ns,t+1 . Hence, we again get a lower bound

on (8) by substituting n and k with their smaller number h, and letting the adversary
pick ns,t values summing to h.

At this point, we know that the sum of ns,t values will be equal to h and that the number
of ns,t variables is γh, with γ ≥ 1

2 . Therefore, each ns,t value chosen by the adversary will
be either 1 or 2. Since the average of the ns,t values must be equal to 1

γ , there is also the
constraint that 2β+ 1(1−β) = 1

γ , where β is the fraction of ns,t variables with value 2. After
solving, we get β = 1

γ − 1. Then, the inequality corresponding to (7) in Case 1 becomes

(1− γ)h+
(

1
γ
− 1
)
γh

1
3 +

(
2− 1

γ

)
γh

1
2 ≥ λh− µγh, (9)

which is always true for λ = 5
6 and µ = 1

3 .
Combining the above two cases, and summing over all tasks s, we can conclude that (4)

holds as desired.
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3 Marginal Gain Payoffs

In this section, we prove our upper bound from Theorem 2, i.e., show that the poa for
marginal gain is at most 1 + 1√

2 . We note that the lower bound of Theorem 2 can be
established by hardness of approximation results (see [11]) assuming P 6= NP but we also
provide an explicit construction in our full paper.

I Lemma 14. The poa of marginal gain is at most 1 + 1√
2 .

We will assume wlog that all tasks have unit utility, since any task can be decomposed
into multiple unit-utility tasks. We say that player i has a hit on a task that she can perform
if she receives payoff for it, i.e., is the first person in her team to perform the task; if not,
we call it a waste of the task. We will write opt for the optimal outcome and nash for
some given ne. Consider some task s ∈ S and denote the number of hits on this task in opt
(resp., nash) by h∗s (resp., hs) and the number of wastes by w∗s (resp., ws). Consider the
quantity w+

s = ws − w∗s . For tasks that have w+
s > 0, we will arbitrarily select w+

s of the
wastes in nash and label them as the additional wastes of nash against opt. Note that
since h∗s + w∗s = hs + ws, w+

s is precisely the difference in social utilities of nash and opt
due to task s. For ease of exposition we make the following modification to the values of h∗s
and w∗s : for tasks with w+

s < 0, we raise h∗s (and accordingly lower w∗s) until w+
s = 0. These

changes improve the situation for opt, and so an upper bound after the modification also
holds for the original scenario.

In what follows, let k = |T | be the number of teams and m = |S| be the number of tasks.
Now focus on any of the additional wastes w, which was a waste of s by player i in team t.
We can charge this waste to k hits as follows:
1. Task s was already covered in team t when i appeared; hence, we can infer that a hit

occurred for task s in team t in a previous arrival. We charge to that hit.
2. For every team t′ 6= t:

a. either has s covered (a hit from a previous arrival),
b. or has some other task s covered, for which i received payoff in t (again a hit from a

previous arrival). If not, player i would have chosen t′ over t.
We charge to these hits in teams t′ 6= t.

We now need to bound the maximum number of times that a hit can be charged in the above
scheme. Whenever some hit h for some task s is charged for an additional waste w, one of
the following is true:

Another hit h′, on the same task s as h, is happening at the same time as w. This is true
for charging arguments of the form (2b).
w is a waste of the same task s that is a hit in h. This is true for charging arguments of
the form (1) and (2a).

Hence, a hit h on task s may be charged in the above scheme only if, at the time of the
charging, there is a hit h′ on the same task s or a waste w of the same task s. We also note
that if a player i incurs multiple wastes in her selected team t, then for each team t′ 6= t and
for each of these wastes (that are labeled as additional), we can find a distinct hit to charge
with an argument of the form (2a) or (2b).

It follows that the first hit on s can be charged at most hs − 1 + w+
s = h∗s − 1 times, the

second hit on s can be charged at most h∗s − 2 times, and so on. Recall that the total number
of hits on task s in nash is hs. Therefore, the total number of times that a hit on s can be
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charged, denoted χs, is upper bounded as

χs ≤ (h∗s − 1) + (h∗s − 2) + (h∗s − 3) + . . .+ (h∗s − hs) =
hs∑
j=1

(h∗s − j) .

Then, it follows that the total number of times all hits are charged is upper bounded as
follows, with U (resp., U∗) denoting the total utility of nash (resp., opt).

∑
s∈S

χs ≤
∑
s∈S

hs∑
j=1

(h∗s − j) =
∑
s∈S

hsh
∗
s −

∑
s∈S

(
1
2hs (hs + 1)

)
=
∑
s∈S

hsh
∗
s −

1
2
∑
s∈S

h2
s −

U

2

≤
√∑
s∈S

h2
s

√∑
s∈S

h∗s
2 − 1

2
∑
s∈S

h2
s −

U

2 (Cauchy-Schwarz inequality)

≤
√
m
U

m
·
√
m
U∗

m
− 1

2m ·
U2

m2 −
U

2 = U · U∗

m
− U2

2m −
U

2 . (10)

Eqn. (10) follows from the following facts: (a) the sum of squares of m nonnegative numbers
with a given sum (here the sum of all hs is U and the sum of all h∗s is U∗) is minimized when
they are all equal, and (b) the expression is decreasing as a function of the sum of all hs and
as a function of the sum of all h∗s.

We also know that the total number of times a hit is charged is k times the number of
additional wastes. Hence,∑

s∈S
χs = k

∑
s∈S

w+
s = k

∑
s∈S

(ws − w∗s) = k
∑
s∈S

(h∗s − hs) = k(U∗ − U). (11)

From (10) and (11) we get that:

U · U∗

m
− U2

2m −
U

2 ≥ k(U∗ − U) (12)

Now let γ = U
U∗ . Note that upper bounding 1

γ gives an upper bound on the poa. Substituting
in (12) and using the fact that U∗ ≤ mk, we get

−k2γ
2 + 4k − 1

2 γ − k ≥ 0

Since, by definition, γ ∈ [0, 1], the expression is increasing in γ and, hence, for the inequality
to hold, it must be the case that γ is greater than or equal to the unique root in [0, 1]. This
gives the following upper bound for the poa:

U∗

U
≤ 2k

4k − 1−
√

8k2 − 8k + 1
.

This is increasing in k and as k goes to ∞, the limit is 1 + 1√
2 . This completes the proof.

4 Price of Stability

Studying the efficiency of the best ne in our setting is an interesting direction. The more
optimistic metric that corresponds to the price of anarchy in this framework is the price
of stability, i.e., the worst case ratio of the efficiency in opt over the efficiency in the best
ne. We conclude the paper with a brief discussion on the topic. For marginal loss profit
sharing, we observe that any beneficial unilateral deviation also improves the social objective,
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hence, opt is also a ne and the price of stability is 1. For marginal gain profit sharing, it
is possible to take any given ne, nash, and modify the instance so that nash becomes the
unique ne in the modified instance. The modification is performed by means of making a
very large number of copies of each task and introducing new unit tasks for tie-breaking
purposes. Then, we get that the price of stability for marginal loss profit sharing is equal
to the price of anarchy. We omit the exact details of this modification process. In contrast
to the two previous models, determining the price of stability for egalitarian profit sharing
appears to be a challenging question that invites future research.
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edges. Typical examples include cut sparsifiers [3], spectral sparsifiers [36], spanners [40]
and transitive reductions [1], which are subgraphs defined on the same vertex set of the
original graph G while having much smaller number of edges and still well preserving the
cut structure, spectral properties, pairwise distances, transitive closure of G, respectively.
Another way of performing sparsification is by reducing the number of vertices, which is most
appealing when only the properties among a subset of vertices (which are called terminals)
are of interest (see e.g., [34, 2, 26]). We call such small graphs vertex sparsifiers of the original
graph. In this version of the paper, we will focus on vertex cut and reachability sparsifiers.

More specifically, given a capacitated undirected graph G = (V,E, c), and a set of
terminals K, we are looking for a graph H = (VH , EH , cH) with as few vertices as possible
and K ⊆ VH such that the properties (e.g., reachability) or quantities (e.g., cut value,
multi-commodity flow, distance) among vertices in K in H are the same as or close to the
corresponding properties or quantities in G. If |K| = k, we call the graph G a k-terminal
graph. We say H is a quality-q (vertex) cut sparsifier of G, if for every bipartition (U,K \ U)
of the terminal set K, the value of the minimum cut separating U from K \U in G is within
a factor of q of the value of minimum cut separating U from K \ U in H. If H is a quality-1
cut sparsifier, then it will be also called a mimicking network [22]. Similarly, we define
vertex flow and distance sparsifiers that (approximately) preserve multicommodity flows
and distances among terminal pairs, respectively (formal definitions are deferred to the full
version). These type of sparsifiers have proven useful in approximation algorithms [34] and
also find applications in network routing [12].

Vertex reachability sparsifiers in directed graphs is another important and fundamental
notion in Graph Sparsification, which has been implicitly studied in the dynamic graph
algorithms community [37, 15], and explicitly in [24]. Specifically, given a digraph G = (V,E),
K ⊂ V , a digraph H = (VH , EH), K ⊂ VH is a vertex reachability sparsifier of G if for any
x, x′ ∈ K, there is a directed path from x to x′ in H iff there is a directed path from x to x′ in
G. Note that any k-terminal digraph G always admits a trivial vertex reachability sparsifier
H, which corresponds to the transitive closure restricted to the terminals. In this work, we
initiate the study of reachability-preserving minors, i.e., vertex reachability sparsifiers with
H required to be a minor of G. The restriction on H being a minor of G is desirable as it
makes sure that H is structurally similar to G, e.g., any minor of a planar graph remains
planar. We ask the question whether general graphs admit reachability-preserving minors
whose size can be bounded independently of the input graph G, and study it from both the
lower- and upper-bound perspective.

Our Results. We provide new constructions for quality-1 (exact) cut, flow and distance
sparsifiers for k-terminal planar graphs, where all the terminals are assumed to lie on the
same face. We call such k-terminal planar graphs Okamura-Seymour (OS) instances. They
are of particular interest in the algorithm design and optimization community, due to the
classical Okamura-Seymour theorem that characterizes the existence of feasible concurrent
flows in such graphs (see e.g., [35, 8, 9, 30]).

We show that the size of quality-1 sparsifiers can be as small as O(k2) for such instances,
for which only exponential (in k) size of cut and flow sparisifiers were known before [27, 2].
Formally, we have the following theorem.

I Theorem 1. For any OS instance G, i.e., a k-terminal planar graph in which all terminals
lie on the same face, there exist quality-1 vertex cut, flow and distance sparsifers of size
O(k2). Furthermore, the resulting sparsifiers are also planar.
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We remark that all the above sparsifiers can be constructed in polynomial time (in n and
k), but we will not optimize the running time here. As we mentioned above, previously the
only known upper bound on the size of quality-1 cut and flow sparsifiers for OS instance
was O(k222k), given by [27, 2]. Our upper bound for cut sparsifier also matches the lower
bound of Ω(k2) for OS instance given by [27]. More specifically, in [27], an OS instance (that
is a grid in which all terminals lie on the boundary) is constructed, and used to show that
any mimicking network for this instance needs Ω(k2) edges, which is thus a lower bound
for planar graphs (see the table below for an overview). Note that that even though our
distance sparsifier is not necessarily a minor of the original graph G, it still shares the nice
property of being planar as G. It is worth mentioning that in [29], it is proven that there
exists a k-terminal planar graph G (not necessarily an OS instance), such that any quality-1
distance sparsifier of G that is planar requires at least Ω(k2) vertices.

Type of sparsifier Graph family Upper Bound Lower Bound

Cut Planar O(k222k) [27]
Cut Planar OS O(k2) [new] |E(G′)| ≥ Ω(k2) [27]

Flow Planar OS O(k222k) [2] follows from cut
Flow Planar OS O(k2) [new] follows from cut

Distance (minor) Planar OS O(k4) [26] Ω(k2) [26]
Distance (planar) Planar OS O(k2) [new]

Our second main contribution is the study of reachability-preserving minors. Although
reachability is a weaker requirement in comparison to shortest path distances, directed graphs
are usually much more cumbersome to deal with from the perspective of graph sparsification.
Surprisingly, we show that general digraphs admit reachability-preserving minors with O(k4)
vertices (see Corollary 20), thus matching the bound of Krauthgamer et al. [26] for distances
in undirected graphs. A tight integration of our techniques with the compact distance oracles
for planar graphs by Thorup [39] yields the following theorem.

I Theorem 2. Given a k-terminal planar digraph, there exists a reachability-preserving
minor H of G with size O(k2 log2 k).

We complement the above result by showing that there exist instances where the above
upper-bound is tight up to a O(log2 k) factor. The proof is deferred to the full version.

I Theorem 3. For infinitely many k ∈ N there exists a k-terminal acyclic directed grid G
such that any reachability-preserving minor of G must use Ω(k2) non-terminals.

Our third contribution is a lower bound on the size of any data structure (not necessarily
a graph) that approximately preserves pairwise terminal distances of general k-terminal
graphs, which provides a trade-off between the distance stretch and the space complexity.
The proof is deferred to the full version.

I Theorem 4. For any ε > 0 and t ≥ 2, there exists a (sparse) k-terminal n-vertex graph
such that k = o(n), and any data structure that approximates pairwise terminal distances
within a multiplicative factor of t− ε or an additive error 2t− 3 must use Ω(k1+1/(t−1)) bits.

I Remark. Recently and independently of our work, Krauthgamer and Rika [28] constructed
quality-1 cut sparsifiers of size O(γ522γk4) for planar graphs whose terminals are incident to
at most γ = γ(G) faces. In comparison with our upper-bound which only considers the case
γ = 1, the size of our sparsifiers from Theorem 1 is better by a Ω(k2) factor.
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Our Techniques. We construct our quality-1 cut and distance sparsifiers by repeatedly
performing Wye-Delta transformations, which are local operations that preserve cut values
and distances and have proven very powerful in analyzing electrical networks and in the theory
of circular planar graphs (see e.g., [14, 18]). Khan and Raghavendra [25] used Wye-Delta
transformations to construct quality-1 cut sparsifiers of size O(k) for trees, while our case
(i.e., the planar OS instances) is more general and complicated and previously it was not
clear at all how to apply such transformations to a more broad class of graphs.

Our approach is as follows. Given a k-terminal planar graph with terminals lying on the
same face, we first embed it into some large grid with terminals lying on the boundary of
the grid. Next, we show how to embed this grid into a “more suitable” graph, which we will
refer to as “half-grid”. Finally, using the Wye-Delta operations, we reduce the “half-grid”
into another graph whose number of vertices can be bounded by O(k2). Since we argue that
the above graph reductions preserve exactly all terminal minimum cuts, our result follows.
Gitler [19] proposed a similar approach for studying the reducibility of multi-terminal graphs
with the goal to classify all Wye-Delta reducible graphs, which is very different from our
motivation of constructing small vertex sparsifiers with good quality.

The distance sparsifiers can be constructed similarly by slightly modifying the Wye-Delta
operation. Our flow sparsifiers follow from the construction of cut sparsifiers and the flow/cut
gaps for OS instances (which has also been observed by Andoni et al. [2]).

The results for reachability-preserving minors are obtained by exploiting the technique
of Coppersmith and Elkin [13] on counting “branching” events between shortest paths in
the directed setting (this technique has also been recently leveraged by Bodwin [4]). We
then combine our construction with the compact reachability oracle for planar graphs by
Thorup [39], to show our upper-bound for planar graphs. The lower-bound follows by adapting
the ideas of Krauthgamer et al. [26] from their lower-bound proof on distance-preserving
minors for undirected graphs.

Our lower bound of the space complexity of any compression function approximately
preserving terminal pairwise distance is derived by combining extremal combinatorics con-
struction of Steiner Triple System that was used to prove lower bounds on the size of distance
approximating minors (see [10]) and the incompressibility technique from [33].

Related Work. There has been a long line of work on investigating the tradeoff between
the quality of the vertex sparsifier and its size (see e.g., [17, 27, 2]). (Throughout, cut, flow
and distance sparsifiers will refer to their vertex versions.) Quality-1 cut sparsifiers (or
equivalently, mimicking networks) were first introduced by Hagerup et al. [22], who proved
that for any graph G, there always exists a mimicking network of size O(22k ). Krauthgamer
and Rika [27] showed how to build a mimicking network of size O(k222k) for any planar
graph G that is minor of the input graph. They also proved a lower bound of Ω(k2) on the
number of edges of the mimicking network of planar graphs, and a lower bound of 2Ω(k) on
the number of vertices of the mimicking network for general graphs.

Quality-1 vertex flow sparsifiers have been studied in [2, 20], albeit only for restricted
families of graphs like quasi-bipartite, series-parallel, etc. It is not known if any general
undirected graph G admits a constant quality flow sparsifier with size independent of |V (G)|
and the edge capacities. For the quality 1 distance sparsifiers, Krauthgamer, Nguyen and
Zondiner [26] introduced the notion of distance-preserving minors, and showed an upper-
bound of size O(k4) for general undirected graphs. They also gave a lower bound of Ω(k2)
on the size of such a minor for planar graphs. Over the last two decades, there has been a
considerable amount of work on understanding the tradeoff between the sparsifier’s quality q
and its size for q > 1, i.e., when the sparsifiers only approximately preserve the corresponding
properties [11, 2, 34, 31, 6, 17, 32, 21, 7, 5, 17, 23, 10, 16].
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2 Preliminaries

Let G = (V,E, c) be an undirected graph with terminal set K ⊂ V of cardinality k, where
c : E → R≥0 assigns a non-negative capacity to each edge. We will refer to such a graph as a
k-terminal graph. Throughout the paper we will be dealing with two special types of graphs.

A grid graph is a graph with n × n vertices {(u, v) : u, v = 1, . . . , n}, where (u, v) and
(u′, v′) are adjacent if |u′ − u|+ |v′ − v| = 1. For k < n, a half-grid graph with k terminals is
a graph Tnk = (V,E) with K ⊂ V and n(n+ 1)/2 vertices {(i, j) : i ≤ j and i, j = 1, . . . , n},
where (i, j) and (i′, j′) are connected by an edge if |i′ − i| + |j′ − j| = 1, and additional
diagonal edges between (i, i) and (i+ 1, i+ 1) for i = 1, . . . , n− 1. Moreover, each terminal
vertex in Tnk must be one of its diagonal vertices, i.e., every x ∈ K is of the form (m,m) for
some m ∈ {1, . . . , n}. Let T̂nk be the same graph as Tnk but excluding the diagonal edges.

Let U ⊂ V and S ⊂ K. We say that a cut (U, V \ U) is S-separating if it separates
the terminal subset S from its complement K \ S, i.e., U ∩ K is either S or K \ S. We
will refer to such cut as a terminal cut. The cutset δ(U) of a cut (U, V \ U) represents the
edges that have one endpoint in U and the other one in V \ U . The cost capG(δ(U)) of
a cut (U, V \ U) is the sum over all capacities of the edges belonging to the cutset. We
let mincutG(S,K \ S) denote the minimum cost of any S-separating cut of G. A graph
H = (VH , EH , cH), K ⊂ VH is a vertex cut sparsifier of G with quality q ≥ 1 if for any
S ⊂ K, mincutG(S,K \ S) ≤ mincutH(S,K \ S) ≤ q ·mincutG(S,K \ S).

Let G = (V,E) be a directed graph with terminal set K ⊂ V , |K| = k, which we will
refer to as a k-terminal digraph. We say G is a k-terminal DAG if G has no directed cycles.
The in-degree of a vertex v, denoted by deg−G(v), is the number of edges directed towards
v in G. A digraph H = (VH , EH), K ⊂ VH is a vertex reachability sparsifier of G if for
any x, x′ ∈ K, there is a directed path from x to x′ in H iff there is a directed path from
x to x′ in G. If H is obtained by performing minor operations in G, then we say that
H is a reachability-preserving minor of G. We define the size of H to be the number of
non-terminals in H, i.e. |VH \K|.

Wye-Delta Transformations. In this section we investigate the applicability of some graph
reduction techniques that aim at reducing the number of non-terminals in a k-terminal
graph. We start by reviewing the so-called Wye-Delta operations in graph reductions. These
operations consist of five basic rules, which we describe below.
1. Degree-one reduction: Delete a degree-one non-terminal and its incident edge.
2. Series reduction: Delete a degree-two non-terminal y and its incident edges (x, y) and

(y, z), and add a new edge (x, z) of capacity min{c(x, y), c(y, z)}.
3. Parallel reduction: Replace all parallel edges by a single edge whose capacity is the sum

over all capacities of parallel edges.
4. Wye-Delta transformation: Let x be a degree-three non-terminal with neighbours δ(x) =
{u, v, w}. Assume w.l.o.g.1 that for any pair (u, v) ∈ δ(x), c(u, x) + c(v, x) ≥ c(w, x),
where w ∈ δ(v) \ {u, v}. Then we can delete x (along with all its incident edges)
and add edges (u, v), (v, w) and (w, u) with capacities (c(u, x) + c(v, x) − c(w, x))/2,
(c(v, x) + c(w, x)− c(u, x))/2 and (c(u, x) + c(w, x)− c(v, x))/2, respectively.

1 Suppose there exist a pair (u, v) ∈ δ(x) with c(u, x) + c(v, x) < c(w, x), where w ∈ δ(v) \ {u, v}. Then
we can simply set c(w, x) = c(u, x) + c(v, x), since any terminal minimum cut would cut the edges (u, x)
and (v, x) instead of the edge (w, x).
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5. Delta-Wye transformation: Delete the edges of a triangle connecting x, y and z, introduce
a new non-terminal vertex w and add new edges (w, x), (w, y) and (w, z) with edge
capacities c(x, y) + c(x, z), c(x, y) + c(y, z) and c(x, z) + c(y, z) respectively.

The following lemma (which follows from the above definitions) shows that the above rules
preserve exactly all terminal minimum cuts.

I Lemma 5. Let G be a k-terminal graph and G′ be a k-terminal graph obtained from G by
applying one of the rules 1− 5. Then G′ is a quality 1-vertex cut sparsifier of G.

For our application, it will be useful to enrich the set of rules by introducing two new
operations. These operations can be realized as series of the operations 1-5.

6. Edge deletion (with vertex x): For a degree-three non-terminal with neighbours u, v, the
edge (u, v) can be deleted, if it exists. To achieve this, we use a Delta-Wye transformation
followed by a series reduction.

7. Edge replacement: For a degree-four non-terminal vertex with neighbours x, u, v, w, if
the edge (x, u) exists, then it can be replaced by the edge (v, w). To achieve this, we use
a Delta-Wye transformation followed by a Wye-Delta transformation.

A k-terminal graph G is Wye-Delta reducible to another k-terminal graph H, if G is
reduced to H by repeatedly applying one of the operations 1-7. We obtain the following
lemma, whose proof we defer to the full version.

I Lemma 6. Let G and H be k-terminal graphs. Moreover, let G be Wye-Delta reducible to
H. Then H is a quality 1-vertex cut sparsifier of G.

Graph Embeddings. Throughout this paper, we will be dealing with the embedding of a
planar graph into a square grid graph. One way of drawing graphs in the plane are orthogonal
grid-embeddings [41]. In such a setting, the vertices correspond to distinct points and edges
consist of alternating sequences of vertical and horizontal segments. Equivalently, one can
view this as drawing our input graph as a subgraph of some grid. Formally, a node-embedding
ρ of G1 = (V1, E1) into G2 = (V2, E2) is an injective mapping that maps V1 into V2, and
E1 into paths in G2, i.e., (u, v) maps to a path from ρ(u) to ρ(v), such that every pair of
paths that correspond to two different edges in G1 is vertex-disjoint (except possibly at the
endpoints). If G2 is a planar graph, then ρ(G1) and G1 are also planar. Thus, if G1 and G2
are planar we then refer to ρ as an orthogonal embedding. Moreover, given a planar graph
G1 drawn in the plane, the embedding ρ is called region-preserving if ρ(G1) and G1 have the
same planar topological embedding.

Let G1 be a k-terminal graph. Since the embedding does not affect the vertices of G1,
the terminals of G1 are also terminals in ρ(G1). Although the embedding does not consider
capacity of the edges in G1, we can still guarantee that such an embedding preserves all
terminal minimum cuts, for which we make use of the following operation:
1. Edge subdivision: Let (u, v) be an edge of capacity c(u, v). Delete (u, v), introduce a

new vertex w and add edges (u,w) and (w, v), each of capacity c(u, v).

The proof of the following Lemma is deferred to the full version.

I Lemma 7. Let ρ be a node-embedding and let G1 and ρ(G1) be k-terminal graphs defined
as above. Then ρ(G1) preserves exactly all terminal minimum cuts of G.
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3 An Exact Vertex Cut Sparsifier of Size O(k2)

In this section we show that given a k-terminal planar graph, where all terminals lie on the
same face, one can construct a quality-1 vertex cut sparsifier of size O(k2). Note that it
suffices to consider the case when all terminals lie on the outer face.

Embedding into Grids. It is well-known that one can obtain an orthogonal embedding of a
planar graph with maximum-degree at most three into a grid (see Valiant [41]). However,
our input planar graph can have arbitrarily large maximum degree. In order to be able to
make use of such an embedding, we need to first reduce our input graph to a bounded-degree
graph while preserving planarity and all terminal minimum cuts. We achieve this by making
use of a vertex splitting technique, which we describe below.

Given a k-terminal planar graph G′ = (V ′, E′, c′) with K ⊂ V ′ lying on the outer face,
vertex splitting produces a k-terminal planar graph G = (V,E, c) with K ⊂ V such that
the maximum degree of G is at most three. Specifically, for each vertex v of degree d > 3
with neighboring vertices u1, . . . , ud, we delete v and introduce new vertices v1, . . . , vd along
with edges {(vi, vi+1) : i = 1, . . . , d − 1}, each of capacity C + 1, where C =

∑
e∈E′ c′(e).

Further, we replace the edges {(ui, v) : i = 1, . . . , d} with {(ui, vi) : i = 1, . . . , d}, each of
corresponding capacity. If v is a terminal vertex, we set one of the vi’s to be a terminal
vertex. It follows that the resulting graph G is planar and terminals can be still embedded
on the outer face. Note that while the degree of every vertex vi is at most 3, the degree of
any other vertex is not affected. The proof of the claim below is deferred to the full version.

I Claim 8. Let G′ and G be k-terminal graphs defined as above. Then G preserves exactly
all minimum terminal cuts of G′, i.e., G is a quality-1 cut sparsifier of G′.

Let G = (V,E) be a k-terminal graph obtained by vertex splitting of all vertices of degree
larger than 3 of G′ = (V ′, E′). Further, let n′ = |V ′|, m′ = |E′|, n = |V | and m = |E|. Then
it is easy to show that n ≤ 2m′ and m ≤ m′ + n ≤ 3m′. Since G′ is planar, we have that
n = O(n′) and m = O(n′). Thus, by just a linear blow-up on the size of vertex and edge
sets, we may assume w.l.o.g. that our input graph is a planar graph of degree at most three.

Valiant [41] and Tamassia et al. [38] showed that a k-terminal planar graph G with n
vertices and degree at most three admits an orthogonal region-preserving embedding into
some square grid of size O(n) × O(n). By Lemma 7, we know that the resulting graph
exactly preserves all terminal minimum cuts of G. We remark that since the embedding is
region-preserving, the outer face of the input graph is embedded to the outer face of the grid.
Therefore, all terminals in the embedded graph lie on the outer face of the grid. Performing
appropriate edge subdivisions, we can make all the terminals lie on the boundary of some
possibly larger grid. Further, we can add dummy non-terminals and zero edge capacities
to transform our graph into a full-grid H. We observe that the latter does not affect any
terminal min-cut. The above leads to the following:

I Lemma 9. Given a k-terminal planar graph G, where all terminals lie on the outer face,
there exists a k-terminal grid graph H, where all terminals lie on the boundary such that H
preserves exactly all terminal minimum cuts of G. The resulting graph has O(n2) vertices
and edges.
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Figure 1 Embedding grid into half-grid. Black vertices represent terminals while white vertices
represent non-terminals. The counter-clockwise ordering starts at the top right terminal. Coloured
edges and paths correspond to the mapping of the respective edges: blue for edges ((i, 1), (i, 2)),
red for edges ((n− 1, j), (n, j)), green for edges ((1, j), (2, j)) and yellow for edges ((i, n− 1), (i, n)),
where i, j = 2, . . . , n− 1.

Embedding Grids into Half-Grids. Next, we show how to embed square grids into half-grid
graphs (see Section 2), which will facilitate the application of Wye-Delta transformations.
The existence of such an embedding was claimed in the thesis of Gitler [19], but no details
on its construction were given.

Let G be a k-terminal square grid on n× n vertices where terminals lie on the boundary
of the grid. We obtain the following:

I Lemma 10. There exists a node embedding of the grid G into T `k , where ` = 4n− 3.

Proof. Our construction works as follows (See Fig. 1 for an example). We first fix an ordering
on the vertices lying on the boundary of the grid in the order induced by the grid. Then we
embed each vertex according to that order into the diagonal vertices of the half-grid, along
with the edges that form the boundary of the grid. The sub-grid obtained by removing all
boundary vertices is embedded appropriately into the upper-part of the half-grid. Finally,
we show how to embed edges between the boundary and the sub-grid vertices and argue that
such an embedding is indeed vertex-disjoint for any pair of paths.

We start with the embedding of the vertices of G. Let us first consider the boundary
vertices. The ordering imposed on these vertices can be viewed as starting with the upper-
right vertex (1, n) and visiting the rest of vertices in a counter-clockwise direction until
reaching the vertex (2, n). We map the vertices on the boundary as follows.
1. The vertex (1, j) is mapped to the vertex (n− j + 1, n− j + 1) for j = 2, . . . , n,
2. The vertex (i, 1) is mapped to the vertex (n+ i− 1, n+ i− 1) for i = 1, . . . , n− 1,
3. The vertex (n, j) is mapped to the vertex (2n+ j − 2, 2n+ j − 2) for j = 1, . . . , n− 1,
4. The vertex (i, n) is mapped to the vertex (4n− i− 2, 4n− i− 2) for i = 2, . . . , n.
Now we consider the vertices that belong to the induced sub-grid S of G of size (n − 2)2

when removing the boundary vertices of our input grid. We map the vertex (i, j) to the
vertex (n+ i− 1, 2n+ j − 2) for i, j = 2, . . . , n− 1. In other words, for every vertex of S we
make a vertical shift by n− 1 units and an horizontal shift by 2n− 2 units. By construction,
it is not hard to check that every vertex of G is mapped to a different vertex of T `k and all
terminal vertices lie on the diagonal of T `k .
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We continue with the embedding of the edges of G. First, every edge between two
boundary vertices in G is embedded to the edge between the corresponding mapped diagonal
vertices of T `k , except the edge between (1, n) and (2, n). For this edge, we define an edge
embedding between the corresponding vertices (1, 1) and (4n− 4, 4n− 4) of T `k by using the
path:

(1, 1)→ (1, 2)→ . . .→ (1, 4n−3)→ (2, 4n−3)→ . . .→ (4n−4, 4n−3)→ (4n−4, 4n−4).

Next, every edge of the sub-grid S is embedded in to the edge connecting the mapped
endpoints of that edge in T `k . In other words, if (i, j) and (i′, j′) were connected by an edge
e in S, then (n + i − 1, 2n + j − 2) and (n + i′ − 1, 2n + j′ − 2) are connected by an edge
e′ in T `k and e is mapped to e′. Finally, the only edges that remain are those connecting a
boundary vertex of G with a boundary vertex of S. We distinguish four cases depending on
the edge position.
1. The edge ((i, 2), (i, 1)) is mapped to the horizontal path given by:

(n+ i− 1, 2n)→ (n+ i− 1, 2n− 1)→ . . .→ (n+ i− 1, n+ i− 1) for i = 2, . . . , n− 1.

2. The edge ((n− 1, j), (n, j)) is mapped to the vertical path given by:

(2n−2, 2n+j−2)→ (2n−1, 2n+j−2)→ . . .→ (2n+j−2, 2n+j−2) for j = 2, . . . , n−1.

3. The edge ((2, j), (1, j)) is mapped to the L-shaped path:

(n+ 1, 2n+ j − 2)→ (n, 2n+ j − 2)→ . . .→ (n− j + 1, 2n+ j − 2)
→ (n− j + 1, 2n+ j − 3)→ . . .→ (n− j + 1, n− j + 1) for j = 2, . . . , n− 1.

4. The edge ((i, n− 1), (i, n)) is mapped to the L-shaped path:

(n+ i− 1, 3n− 3)→ (n+ i− 1, 3n− 2)→ . . .→ (n+ i− 1, 4n− i− 2)
→ (n+ i, 4n− i− 2)→ . . .→ (4n− i− 2, 4n− i− 2) for i = 2, . . . , n− 1.

By construction, it follows that the paths in our edge embedding are vertex disjoint. J

Reducing Half-Grids and Bringing the Piece Together. We now review the construction
of Gitler [19], which shows how to reduce half-grids to much smaller half-grids (excluding
diagonal edges) whose size depends only on k. Recall that T̂nk is the graph Tnk without the
diagonal edges. The proof of the lemma below is deferred to the full version.

I Lemma 11 ([19]). For any positive k, n with k < n, Tnk is Wye-Delta reducible to T̂ kk .

Combining the above reductions leads to the following theorem:

I Theorem 12. Let G be a k-terminal planar graph where all terminals lie on the outer face.
Then G admits a quality 1-vertex cut sparsifier of size O(k2), which is also a planar graph.

Proof. Let n denote the number of vertices in G. First, we apply Lemma 9 on G to obtain
a grid graph H with O(n2) vertices, which preserves exactly all terminal minimum cuts of
G. We then apply Lemma 10 on H to obtain a node embedding ρ into the half-grid T `k ,
where ` = 4n − 3. By Lemma 7, ρ(H) preserves exactly all terminal minimum cuts of H.
We can further extend ρ(H) to the full half-grid T `k , if dummy non-terminals and zero edge
capacities are added. Finally, we apply Lemma 11 on T `k to obtain a Wye-Delta reduction
to the reduced half-grid graph T̂ kk . It follows by Lemma 6 that T̂ kk is a quality 1-vertex cut
sparsifier of T `k , where the size guarantee is immediate from the definition of T̂ kk . J

The results about flow and distance sparsifiers are deferred to the full version.
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4 Rechability-Preserving Minors for General Digraphs

In this section we show that any k-terminal digraph admits a reachability-preserving minor of
size O(k4). We accomplish this by first restricting our attention to DAGs, and then showing
how to generalize the result to any digraph. Details are deferred to the full version.

We first introduce the following definition. Given a k-terminal digraph G with a terminal
pair-set P , we say that H is a reachability-preserving minor with respect to P , if H is a
minor of G that preserves the reachability information only among the pairs in P . Note that
the previous definition of reachability-preserving minor of G corresponds to the special case
when the pair-set P is trivial, i.e., for any pair x, x′ ∈ K, both (x, x′) and (x′, x) belong to
P . Observe that the trivial pair-set contains k(k − 1) terminal-pairs.

We next review a useful scheme for breaking ties between shortest paths connecting some
vertex pair from P . This tie-breaking is usually achieved by slightly perturbing the edge
lengths of the original graph such that no two paths have the same length (note that in our
case, edge lengths are initially one). The perturbation gives a consistent scheme in the sense
that whenever π is chosen as a shortest path, every sub-path of π is also chosen as a shortest
path. Below we formalize these ideas using two definitions and a lemma from [4].

I Definition 13 (Tie-breaking Scheme). Given a k-terminal G, a shortest path tie breaking
scheme is a function π that maps every pair of vertices (s, t) to some shortest path between s
and t in G. For any pair-set P , we let π(P ) denote the union over all shortest paths between
pairs in P with respect to the scheme π.

I Definition 14 (Consistency). A tie-breaking scheme is consistent if, for all vertices y, x, x′, y′,
if x, x′ ∈ π(y, y′) with d(y, x) < d(y, x′), then π(x, x′) is a sub-path of π(y, y′).

I Lemma 15 ([4]). For any k-terminal G, there is a consistent tie-breaking scheme in G.

Let G be a k-terminal DAG. Given a tie-breaking scheme π, the first step to construct
a reachability-preserving minor is to start with an empty graph H and then for every pair
p ∈ P , repeatedly add the shortest-path π(p) to H. We can alternatively think of this as
deleting vertices and edges that do not participate in any shortest path among terminal-pairs
in P with respect to the scheme π. Clearly, the DAG H = (VH , EH), EH := π(P ), is a
minor of G and preservers all reachability information among pairs in P . We next review
the notion of a branching event, which will be useful to bound the size of H.

I Definition 16 (Branching Event). A branching event is a set of two distinct directed edges
{e1 = (u1, v), e2 = (u2, v)} that enter the same node v.

I Lemma 17. The DAG H has at most |P |(|P | − 1|)/2 branching events.

The proof of the above lemma is deferred to the full version. We now have all the tools
to present our algorithm for constructing reachability-preserving minors for DAGs.

The proofs of the lemma and the theorem below are deferred to the full version.

I Lemma 18. Given a k-terminal DAG G with a pair-set P , the above algorithm outputs a
reachability-preserving minor H of size O(|P |2) for G with respect to P .

I Theorem 19. Given a k-terminal digraph G with a pair-set P , there is an algorithm that
constructs a reachability-preserving minor H of size O(|P |2) with respect to P .

Taking P to be the trivial pair-set we obtain the following corollary.

I Corollary 20. Any k-terminal digraph admits reachability-preserving minor of size O(k4).



G. Goranci, M. Henzinger, and P. Peng 44:11

Algorithm 1 MinorSparsifyDag (k-terminal DAG G, pair-set P )
1: Set H = ∅ and compute a consistent tie-breaking scheme π for shortest paths in G.
2: For each p ∈ P , add the shortest path π(p) to H.
3: while there is an edge (u, v) directed towards a non-terminal v with deg−H(v) = 1 do
4: Contract the edge (u, v).
5: end while
6: return H

5 Reachability-Preserving Minors for Planar Digraphs

In this section we show that any k-terminal planar digraph G admits a reachability-preserving
minor of size O(k2 log2 k). This matches the lower-bound of Theorem 3 up to a O(log2 k)
factor. The main idea is as follows. Given a k-terminal planar digraph G with the trivial
pair-set P , |P | = k(k− 1), our goal will be to slightly increase the number of terminals while
considerably reducing the size of the pair-set P , under the condition that no reachability
information is lost among the terminal-pairs in P .

We apply the following Preprocessing Step. Given a k-terminal digraph G, we apply
Theorem 19 to get a reachability-preserving minor G′. To simplify the notation, we will use
G instead of G′, i.e., throughout we assume that G has at most O(k4) vertices.

Decomposition into Path-Separable Digraphs and the Algorithm. We say that a graph
G = (V,E) admits an α-separator if there exists a set S ⊂ V whose removal partitions G
into connected components, each of size at most α · |V |, where 1/2 ≤ α < 1. If the vertices
of S consist of the union over r paths of G, for some r ≥ 1, we say that G is (α, r)-path
separable. We now review the following reduction due to Thorup [39].

I Theorem 21 ([39]). Given a digraph G, we can construct a series of digraphs G0, . . . , Gn
such that the number of vertices and edges over all Gi’s is linear in the number of vertices
and edges in G, and
1. Each vertex and edge of G appears in at most two Gi’s.
2. For all u, v ∈ V , if there is a dipath R from u to v in G, there is a Gi that contains R.
3. Each Gi = (Vi, Ei) is (1/2, 6)-path separable.
4. Each Gi is a minor of G. In particular, if G is planar, so is Gi.

Now we review how directed reachability can be efficiently represented by separator
dipaths. Let G be a k-terminal directed graph that contains some directed path Q. Assume
that the vertices of Q are ordered in increasing order in the direction of Q. For each terminal
x ∈ K, let tox[Q] be the first vertex in Q that can be reached by x, and let fromx[Q] be the
last vertex in Q that reaches x. Let (s, t) be a terminal pair and let R be the directed path
from s to t in G. We say that R intersects Q iff s can reach tos[Q] and t can be reached
from fromt[Q] in Q, and tos[Q] precedes fromt[Q] in Q.

We now are going to combine the above tools to give our labelling algorithm aimed at
reducing the size of the trivial pair-set P . By Theorem 21, we restrict our attention only to
the digraphs Gi. Let Ki := V (Gi) ∩K be the set of terminals restricted to the graph Gi.

I Lemma 22. Let G be a k-terminal planar digraph. Let P ′ := ∪t−1
i=1P

′
i be the union over

all pair-sets output by running Algorithm 2 below on each digraph Gi. Then the size of |P ′|
is at most O(k log k). Moreover, if H is a reachability-preserving minor of G with respect to
P ′, then H is a reachability-preserving minor of G with respect to all terminal pairs.
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Algorithm 2 ReducePairSet (planar digraph Gi, terminals Ki)
1: if |V (Gi)| ≤ 1 or Ki = ∅ then return ∅.
2: Let P ′i = ∅ be the new pair-set.
3: Compute a 1/2-separator S of Gi consisting of 6 dipaths by Item 4 of Theorem [39].
4: for each dipath Q ∈ S do
5: // Addition of terminal connections with Q

6: Let Q′ be the set of existing terminals of Q.
7: for each terminal x ∈ Ki do
8: Compute tox[Q] and fromx[Q], declare them terminals and add them to Q′.
9: Add (x, tox[Q]) and (fromx[Q], x) to P ′i .

10: end for
11: // Sparsification of Q using Q′

12: Define directed pairs (s, t), where s and t are consecutive terminals of Q′,
according to the ordering of Q and add all these pairs to P ′i .

13: end for
14: Let (G(1)

i ,K
(1)
i ) and (G(2)

i ,K
(2)
i ) be the resulting graphs from G \ S,

where K(1)
i and K(2)

i are disjoint subsets of the terminals K separated by S.
15: // Note that reachability info. about terminals in S are taken care of.
16: return P ′i ∪

⋃2
j=1 ReducePairSet(G(j)

i ,K
(j)
i ).

Proof. By preprocessing, G has at most O(k4) vertices. Throughout, it will be useful to
think of the above algorithm as simultaneously running it on each digraph Gi. By Item 2 of
Theorem 21, each terminal appears in at most two Gi’s. Thus at each recursive level, there
will be at most O(k) active Gi’s. Also, note that the separator properties imply that there
are O(log k) recursive calls overall.

We next bound the size of the pair-set P ′. Let q denote the total number of newly added
terminals in Line 8 per recursive level. Since there are O(k) terminals, each adding at most
O(1) new terminals, it follows that q = O(k). First, we argue about the number of pairs
added in Line 9. Since this is bounded by O(q), we get that there are O(k log k) pairs overall.
Second, we bound the number of pairs added when sparsifying the separator paths, i.e.,
pair additions in Line 13. For all the separators in the same recursive level, we can write
q :=

∑
i |Q′j |, where Q′j denotes the set newly added terminals for some separator dipath

(Line 7). By Line 12, it follows that we need only (|Q′j | − 1) pairs to represent each such
dipath. Thus, per recursive call, the total number of pairs added in Line 13 is O(q) = O(k).
Summing these overall O(log k) levels, and combining this with the previous bound, gives
the claimed bound on |P ′|.

Finally, we argue that P ′ is a pair-set that can recover reachability information among
terminals. Fix any terminal pair (s, t) and let R be a directed path from s to t in G. By
Item 3 of Theorem 21, there is some digraph Gi that contains R. Then, R must intersect
with some separator dipath Q, at some level of the recursion of the above algorithm on Gi.
The above discussion gives that P ′ contains all the necessary information to give a (possibly)
another directed path from s to t in G. J

Applying Theorem 19 on the digraph G with pair-set P ′, as defined by the above lemma, we
get Theorem 2.
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Abstract
We introduce a new algorithmic framework for designing dynamic graph algorithms in minor-free
graphs, by exploiting the structure of such graphs and a tool called vertex sparsification, which
is a way to compress large graphs into small ones that well preserve relevant properties among a
subset of vertices and has previously mainly been used in the design of approximation algorithms.

Using this framework, we obtain a Monte Carlo randomized fully dynamic algorithm for (1+ε)-
approximating the energy of electrical flows in n-vertex planar graphs with Õ(rε−2) worst-case
update time and Õ((r+ n√

r
)ε−2) worst-case query time, for any r larger than some constant. For

r = n2/3, this gives Õ(n2/3ε−2) update time and Õ(n2/3ε−2) query time. We also extend this
algorithm to work for minor-free graphs with similar approximation and running time guarantees.
Furthermore, we illustrate our framework on the all-pairs max flow and shortest path problems
by giving corresponding dynamic algorithms in minor-free graphs with both sublinear update and
query times. To the best of our knowledge, our results are the first to systematically establish
such a connection between dynamic graph algorithms and vertex sparsification.

We also present both upper bound and lower bound for maintaining the energy of electrical
flows in the incremental subgraph model, where updates consist of only vertex activations, which
might be of independent interest.
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1 Introduction

A dynamic graph is a graph that undergoes constant changes over time. Such changes or
updates may correspond to inserting/deleting an edge or activating/deactivating a vertex
from the graph. The goal of a dynamic graph algorithm is to maintain some property
of a graph and support an intermixed sequence of update and query operations that can
be processed quickly. In particular, the algorithm should at least beat the trivial one
that recomputes the solution from scratch after each update. The last three decades have
witnessed a large body of research on dynamic graph algorithms for a number of fundamental
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properties, including connectivity, minimum spanning tree, shortest path, matching and so
on. Most of these problems have been considered in both general graphs as well as planar
graphs, with quite different techniques and trade-offs between update and query times. In
particular, many dynamic algorithms for planar graphs heavily depend on the duality of
planar graphs [41, 26, 19] and do not seem easily generalizable to a larger class of graphs,
e.g., the family of minor-free graphs.

In this paper, we provide a new algorithmic framework for designing dynamic graph
algorithms in minor-free graphs that are free of a Kt-minor for any fixed integer t ≥ 1,
by utilizing a tool called vertex sparsification as well as the structure of minor-free graphs.
Vertex sparsification is a way of compressing large graphs into smaller ones that well preserve
the relevant properties (e.g., cut, flow and distance information) among a subset of vertices
(called terminals) (e.g., [36, 7, 29]). Besides the natural motivation of achieving more space-
efficient storage and obtaining faster algorithms on the reduced graphs, it has also found
applications in the design of approximation algorithms [36], network design and routing [11].
We show that good quality and efficiently constructible vertex sparsifiers can be used to give
efficient dynamic graph algorithms. To the best of our knowledge, our results are the first to
systematically establish such a connection between dynamic graph algorithms and vertex
sparsification.

We illustrate our algorithmic framework on the all-pairs electrical flow, all-pairs max
flow and all-pairs shortest path problems in minor-free graphs. Previously, there is no known
dynamic algorithms for the first problem (even for special class of graphs), and for the second
problem, we only know dynamic algorithms for planar graphs. Due to space constraints, we
focus on electrical flow in the conference version of the paper and give the results for max
flow and shortest path in the full version.

The electrical flow problem is one of the most fundamental problems in electrical engin-
eering and physics [12], and recently received increasing interest in computer science due to
its close relation to linear equation solvers [40, 28], graph sparsification [39, 38], maximum
flows (and minimum cuts) [10, 31, 33, 22, 34]. Slightly more formally, the s− t electrical flow
problem asks to find the flow (current) that minimizes the energy dissipation of a weighted
graph when one unit of flow is injected at the source s and extracted at the sink t.

In the dynamic all-pairs electrical flow problem, our objective is to minimize the update
time and the query time for outputting the exact (or approximate) energy of the s − t
electrical flow (see Section 2 for formal definitions) in the current graph, for any two vertices
s, t. In the following, we will focus on fully dynamic graphs, in which updates consist of both
edge insertions and deletions. Specifically, we allow the following operations:

Insert(u, v, r): Insert the edge (u, v) with resistance r in G, provided that the new edge
preserves the planarity (or minor-freeness) of G.
Delete(u, v): Delete the edge (u, v) from G.
ElectricalFlow(s, t): Return the exact (or approximate) energy of the s− t electrical
flow in the current graph G.

For a graph G and two vertices s, t, we let EG(s, t) denote the energy of the s − t elec-
trical flow. For any α ≥ 1, we say that an algorithm is an α-approximation to EG(s, t) if
ElectricalFlow(s, t) returns a positive number k such that EG(s, t) ≤ k ≤ α · EG(s, t).

1.1 Our Results
We present the first non-trivial fully dynamic algorithm for maintaining a (1+ε)-approximation
to the energy of the s − t electrical flow in planar and minor-free graphs. Our algorithm
achieves both sublinear worst-case query and update times. (Throughout the paper, we
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use Õ(·) to hide polylogarithmic factors, i.e., Õ(f(n)) = O(f(n) · poly log f(n)); “with high
probability” refers to “with probability at least 1− 1

nc , for some c > 0”.)

I Theorem 1. Fix ε ∈ (0, 1) and integer t > 0. Let r ≥ c for some large constant c > 0.
Given a Kt-minor-free graph G = (V,E,w) with positive edge weights, we can maintain a
(1 + ε)-approximation to the all-pairs electrical flow problem with high probability. The worst-
case update time per operation is Õ(n

ξ·r
ε2 ) and the worst-case query time is Õ((r+n/

√
r)ε−2),

for any constant ξ > 0. Furthermore, if G is planar, then ξ can be chosen to be 0.

Note that by setting r = n2/3, we obtain a dynamic algorithm for planar graphs with
worst-case Õ(n2/3ε−2) update time and Õ(n2/3ε−2) query time. One may be tempted to
reduce our problem to dynamically maintaining spectral sparsifiers. Despite the fact that such
sparsifiers approximately preserve electrical flows and that a (1± ε)-spectral sparsifier can
be maintained with amortized update time poly(logn, ε−1) [5], performing query operations
on the sparsifier about the energy of s− t electrical flow still requires Ω(n) time.

We also give a dynamic algorithm for all-pairs electrical flow for minor-free graphs in
the incremental subgraph model, where the updates in the dynamic graph are a sequence
of vertex activation operations. Our algorithm maintains a (1 + ε)-approximation of the
energy of electrical flows in minor-free graphs with Õ(rε−2) amortized update time and
Õ((r + n/

√
r)ε−2) worst-case query time, for any r ≥ c. For r = n2/3, this gives Õ(n2/3ε−2)

amortized update and worst-case query time. We complement this result by showing the
following conditional lower bound: there is no incremental algorithm in the subgraph model
that C-approximates the energy of the electrical flows in general graphs with both O(n1−ε)
worst-case update time and O(n2−ε) worst-case query time, for any C > 0 and constant ε > 0,
unless the online matrix vector multiplication (oMv) conjecture if false. Our results show
a polynomial gap of dynamic algorithms for subgraph electrical flows between minor-free
graphs and general graphs, conditioned on the oMv conjecture. These results might be of
independent interest and the details are deferred to the full version, due to space constraints.

Our second result from our algorithmic framework is a dynamic algorithm for all-pairs
max flows in minor free graphs. In this problem, the query MaxFlow(s, t) asks the exact
(or approximate) s− t max flow value in the current graph.

I Theorem 2. Let t > 0 be a fixed integer. Let r ≥ c for some large constant c > 0.
Given a Kt-minor-free graph G = (V,E,w) with positive edge weights, we can maintain
a O(1)-approximation to the all-pairs max-flows problem. The worst-case update time is
Õ(nξr+ r3) for any constant ξ > 0, and the worst-case query time is Õ(r+ n/

√
r). One can

also maintain a O(log4 n)-approximation to the all-pairs max-flows problem, with worst-case
update time Õ(nξr + r), and worst-case query time Õ(r + n/

√
r).

Note that by setting r ∈
(
poly logn, o(n1/3)

)
, we can maintain a O(1)-approximation

to the all-pairs max flows problem in minor free graphs with both sublinear worst-case
update and query times. By setting r = n2/3, we can obtain O(log4 n)-approximation with
worst-case Õ(nξ+2/3) update time and Õ(n2/3) query time.

We remark that Italiano et al. [19] have given a fully dynamic algorithm for exact all-pairs
max-flow in planar graphs with worst-case Õ(n2/3) update and Õ(n2/3) query time. Their
algorithm is based on maintaining an edge decomposition (called r-division) of the planar
graph, which is similar to ours, while there are some substantial differences. First of all, their
algorithm does not seem easily generalizable to minor-free graphs since it depends on the
duality of planar graphs. Second, it is required that the embedding of the graph does not
change throughout the sequence of updates [19], which is not necessary in our algorithm.
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Third, though their algorithm can answer the exact max flow value with the aforementioned
running time guarantee, it does not provide an update/query trade-off as ours.

Our third result is a fully dynamic algorithm for all-pairs shortest paths in minor-free
graphs. In this problem, the query ShortestPath(s, t) asks the exact (or approximate)
shortest path length between s and t in the current graph.

I Theorem 3. Let t, q ≥ 1. Given a Kt-minor-free graph G = (V,E,w) with positive edge
weights, we can maintain a (2q− 1)-approximation to the all-pair shortest path problem. The
worst-case expected update time is Õ(n6/7) and the worst-case query time is Õ(n

6
7 + 3

7q ).

Note that for q ≥ 4, both update time and query time of the above algorithm will be
sublinear. We remark that for the special case of planar graphs, the above running time
and approximation guarantee are worse than the result of Abraham et al. [3], who gave a
fully dynamic (1 + ε)-approximation for planar shortest path problem with worst-case Õ(

√
n)

update and query time. However, it is unclear how to generalize their algorithm to minor-free
graphs. There are also works on fully dynamic all-pairs shortest path in general graphs (e.g.,
[9, 4]), for which there is no known algorithm with non-trivial worst-case update time that
breaks O(n) barrier.

We want to point it out that all the above results might be generalized to a larger class
of graphs that admit efficiently constructible good separators, while our main focus is to
bring up this new algorithmic framework. Due to space constraints, the proofs of Theorem 2
and 3 are deferred to the full version.

1.2 Our Techniques
Our fully dynamic algorithms in planar and minor-free graphs combine the ideas of maintain-
ing an edge decomposition of the current graph G and approximately preserving the relevant
properties or quantities by smaller “substitutes”, which allow us to operate on a small piece
of the graph during each update (in the amortized sense) and significantly reduce the size
of the query graph that well preserves the property of G. These “substitutes” refer to the
vertex sparsifiers for the corresponding properties.

Such an edge decomposition is called r-division [15]. Given some graph G and a parameter
r, we partition G into a collection of O(n/r) edge disjoint subgraphs (called regions), each
contains at most O(r) vertices. This induces a partitioning of the vertex set into interior
vertices (those that are incident only to vertices within the same region) and boundary
vertices (those that are incident to vertices in different regions). In addition, we ensure that
the total number of boundary vertices is O(n/

√
r). Maintaining an r-division has also been

used in some previous dynamic algorithms for planar graphs [41, 26, 16, 19].
Now a key observation is that for any s, t, by removing all the interior vertices from other

regions that do not contain s, t and adding some edges with appropriate weights among
boundary vertices, one can guarantee that the resulting graph exactly preserves the quantities
between s, t (e.g., the energy of s− t electrical flow, the value of s− t max flow). Now let us
elaborate on the electrical flow problem, for which the aforementioned reduction is called
Schur Complement. The problem of performing such a Schur Complement on a region is that
it is very time-consuming as it adds too many edges among boundary vertices. Instead, we
resort to a recent tool called approximate Schur Complement ([13]; see Section 3.1), which
well approximates the pairwise effective resistances among boundary vertices and also gives a
sparse graph (or a substitute) induced by all boundary vertices. Now for an update, we only
recompute a constant number of such substitutes (and we need to periodically rebuild the
data structure); for a query, we take the small graph defined by choosing appropriate regions
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and substitutes, and answer the query according to the s− t effective resistance on this small
graph. Since such a substitute can be computed very fast and is sparse, we are ensured to
obtain sublinear amortized update time and worst-case query time. Using a global rebuilding
technique, we show that one can also achieve worst-case update time.

Our approach differs from the previous dynamic planar graph algorithms in that the
r-division we use does not require that the boundary of each region contains a constant
number of faces or the duality of planar graphs, since we only need to maintain the r-division
and fast compute the approximate Schur Complement.

Such an approximate Schur Complement can be viewed as a vertex spectral/resistance
sparsifier by treating boundary vertices as terminals. To obtain dynamic algorithms for the
all-pairs max flows (resp., shortest paths) problems, we can use vertex cut sparsifiers (resp.,
distance sparsifiers), which well preserve the values of minimum cut separating any subset of
terminals (resp., the distances among all terminal pairs).

1.3 Related Work
In the static setting, the electrical flow problem amounts to solving a system of linear
equations, where the underlying matrix is a Laplacian (see the monograph of Doyle and
Snell [12]). Christiano et al. [10] used the electrical flow computation as a subroutine
within the multiplicative-weights update framework [8], to obtain the breakthrough result of
(1− ε)-approximating the undirected maximum s− t flow (and the minimum s− t cut) in
Õ(mn1/3ε−11/3) time. This has inspired and led to further development of fast algorithms
for approximating s− t maximum flow, which culminated in an Õ(m) time algorithm for
this problem in undirected graphs [37].

Lipton, Rose and Tarjan [32] consider the problem of designing fast algorithms for exactly
solving linear systems where the matrix is positive definite and the associated graph is planar.
Their result implies an O(n3/2) time algorithm for electrical flow in planar graphs. This was
latter improved to O(nω/2) by Alon and Yuster [6], where ω = 2.37.. is the exponent in the
running time of the fastest algorithm for matrix multiplication [42]. Miller and Koutis [27]
consider parallel algorithms for approximately solving planar Laplacian systems. Their
algorithm runs in Õ(n1/6+c) parallel time and O(n) work, where c is any positive constant.
We refer the reader to [24] for other useful properties of Laplacians on planar graphs.

Related data structure concepts dealing with spectral properties of graphs include semi-
streaming and dynamic algorithms for maintaining spectral sparsifiers. Kelner and Levin [23]
give single-pass incremental streaming algorithm using near-linear space and total update
time. This was extended by Kapralov et al. [20] to the dynamic semi-streaming model which
allows both edge insertions and deletions. Recently, Abraham et al. [5] give a fully-dynamic
algorithm for maintaining spectral sparsifiers in poly-logarithmic amortized update time.

There is a line of work on dynamic algorithms for planar graphs that maintains informa-
tion about important measures like reachability, connectivity, shortest path, max-flow etc.
Subramanian [41] shows a fully-dynamic algorithm for maintaining reachability in directed
planar graphs in O(n2/3 logn) time per operation. For the connectivity measure, Eppstein
et al. [14] give an algorithm with O(log2 n) amortized update time and O(logn) query
time. Dynamic all-pairs shortest path problem in planar graphs was initiated by Klein and
Subramanian [26], who showed how to maintain a (1 + ε)-approximation to shortest paths in
O(n2/3 log2 n logD) amortized update time and O(n2/3 log2 n logD) worst-case query time,
where D denotes the sum of edge lengths. The best known algorithm is due to Abraham,
Chechik and Gavoille [3] and maintains a (1 + ε)-approximation in O(

√
n log2 n/ε) worst-case

time per operation. Italiano et al. [19] obtain a fully-dynamic algorithm for exact s − t
max-flow in planar graphs with O(n2/3 log8/3) worst-case time per operation.
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Motivated by the recent developments on proving conditional lower-bounds for dynamic
problems [2, 18], Abboud and Dahlgaard [1] give conditional lower-bounds for a class of
dynamic graph problems restricted to planar graphs. Specifically, under the conjecture that
all-pair-shortest path problem cannot be solved in truly subcubic time, they show that no
algorithm for dynamic shortest path in planar graphs can support both updates and queries
in O(n1/2−ε) amortized time, for ε > 0.

2 Preliminaries

We consider a weighted undirected graph G undergoing edge insertions/deletions or vertex
activations/deactivations. Our dynamic algorithms are characterized by two time measures:
query time, which denotes the time needed to answer a query, and update time, which denotes
the time needed to perform an update operation. We say that an algorithm has O(t(n))
worst-case update time, if it takes O(t(n)) time to process each update. We say that an
algorithm has O(t(n)) amortized update time if it takes O(f · t(n)) total update time for
processing f updates (edge insertions/deletions or vertex activations/deactivations).

Basic Definitions. Let G = (V,E,w) be any undirected weighted graph with n vertices and
m edges, where for any edge e, its weight w(e) > 0. Let A denote the weighted adjacency
matrix, let D denote the weighted degree diagonal matrix, and let L = D−A denote the
Laplacian matrix of G. We fix an arbitrary orientation of edges, that is, for any two vertices
u, v connected by an edge, exactly one of (u, v) ∈ E or (v, u) ∈ E holds. Let B ∈ Rm×n
denote the incidence matrix of G such that for any edge e = (u, v) and vertex w ∈ V ,
B((u, v), w) = 1 if u = w, −1 if v = w, and 0 otherwise. We will also think of the weight
w(e) of any edge e as the conductance of e, and its reciprocal 1

w(e) , denoted as r(e), as the
resistance of e. Let R ∈ Rm×m denote a diagonal matrix with R(e, e) = r(e), for any edge e.
Note that L = BTR−1B.

For any x ∈ Rn, the quadratic form associated with L is given by xTLx. For any two
different vertices u, v, let χu,v ∈ Rn denote the vector such that χu,v(w) = 1 if w = u,
−1 if w = v and 0 otherwise. For any two vertices s, t ∈ V , an s − t flow is a mapping
f : E → R+ satisfying the following conservation constraint: for any v 6= s, t, it holds
that

∑
e=(v,u) f(e) =

∑
e=(u,v) f(e), where for any edge e = (v, u), f(e) := f(v, u) and

f(u, v) := −f(v, u).
We will let val(f) =

∑
v:(s,v)∈E f(s, v) denote the value of an s − t flow. Note that for

an s− t flow with value 1, it holds that BT f = χs,t. Given an s− t flow f , its energy (with
respect to the resistance vector r) is defined as Er(f , s, t) =

∑
e r(e)f(e)2 = fTRf .

We define the s− t electrical flow in G to be the s− t flow that minimizes the energy
Er(f , s, t) among all s−t flows with unit flow value. It is known that such a flow is unique [12].

Any s− t flow f in G is an s− t electrical flow with respect to r, iff there exists a vertex
potential function φ : V → R+ such that for any e = (u, v) that is oriented from u to v,
f(e) = φ(v)−φ(u)

r(e) . It is known that such a vector φ satisfies that φ = L†χs,t, where L† denotes
the (Moore-Penrose) pseudo-inverse of L. In addition, f = R−1BTφ = R−1BTL†χs,t [12].

The effective s − t resistance RG(r, s, t) of G with respect to the resistances r is the
potential difference between s, t when we send one unit of electrical flow from s to t. That
is, RG(r, s, t) = φ(s)− φ(t) = χTs,tL†χs,t, where φ is the vector of vertex potentials induced
by the s− t electrical flow of value 1. We will often denote RG(r, s, t) by RG(s, t) when r is
clear from the context. It is known that the effective s− t resistance is equal to the energy
of the s− t electrical flow of value 1, that is RG(r, s, t) = Er(f , s, t).
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Graph r-Divisions. Let G = (V,E) be a graph. Let F ⊂ E be a subset of edges. We call
the subgraph GF induced by all edges in F a region. For a subgraph P of G, any vertex
that is incident to vertices not in P is called a boundary vertex. The vertex boundary of P ,
denoted by ∂G(P ) is the set of boundary vertices belonging to P . All other vertices in P will
be called interior vertices of P .

I Definition 4. Let c1, c2 > 0 be some constant. For any r ∈ (1, n), a weak r-division (with
respect to c1, c2) of an n-vertex graphG is an edge partition of it into regions P = {P1, . . . , P`},
where ` ≤ c1 · nr such that

Each edge belongs to exactly one region.
Each region Pi contains r vertices.
The total number of all boundary vertices, i.e., ∪i∂G(Pi), is at most c2n/

√
r.

It is known that such an r-division (even with the stronger guarantee that each region has
O(
√
r) boundary vertices) for planar graphs can be constructed in linear time [17, 25, 15].

I Lemma 5 ([25]). Let c > 0 be some constant. There is an algorithm that takes as input
an n-vertex planar graph G and for any r ≥ c, outputs an r-division of G in O(n) time.

We will need the following property on the boundary vertices of the r-division output by
the above algorithm (see Section 3.3 in [25]).

I Lemma 6 ([25]). For an n-vertex planar graph G, let P = {P1, . . . , P`}, ` = O(n/r) be
the r-division by the algorithm in Lemma 5. Then it holds that

∑`
i=1 |∂G(Pi)| = O(n/

√
r).

Graph Sparsification. Graph Sparsification aims at compressing large graphs into smaller
ones while (approximately) preserving some characteristics of the original graph. We present
two notions of sparsification. The first requires that the quadratic form of the large and
sparsified graph are close. The second requires that all-pairs effective resistances of the
corresponding graphs are close.

I Definition 7 (Spectral Sparsifier). Let G = (V,E,w) be a weighted graph and ε ∈ (0, 1).
A (1 ± ε)-spectral sparsifier for G is a subgraph H = (V,EH ,wH) such that for all x ∈
Rn, (1− ε)xTLx ≤ xT L̃x ≤ (1 + ε)xTLx, where L and L̃ are the Laplacians of G and H,
respectively.

I Definition 8 (Resistance Sparsifier). Let G = (V,E,w) be a weighted graph and ε ∈ (0, 1).
A (1 ± ε)-resistance sparsifier for G is a subgraph H = (V,EH ,wH) such that for all
u, v ∈ V, (1−ε)RH(u, v) ≤ RG(u, v) ≤ (1+ε)RH(u, v), where RG(u, v) and RH(u, v) denote
the effective u− v resistance in G and H, respectively.

We remark that Definition 7 implies approximations for the pseudoinverse Laplacians, that is

∀x ∈ Rn
1

(1 + ε)xTL†x ≤ xT L̃†x ≤ 1
(1− ε)xTL†x,

Since by definition, the effective resistance between any two nodes u and v is the quadratic
form defined by the pseudo-inverse of the Laplacian computed at the vector χu,v, it follows
that the effective resistances between any two nodes in G and H are the same up to a (1± ε)
factor. By our definitions for resistance and spectral sparsifiers, we have the following fact.

I Fact 9. Let ε ∈ (0, 1) and let G be a graph. Then every (1± ε)-spectral sparsifier of G is
a (1± ε)-resistance sparsifier of G.
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The following lemma says that given a graph, by decomposing the graph into several
pieces, and computing a good sparsifier for each piece, then one can obtain a good sparsifier
for the original graph which is the union of the sparsifiers for all pieces. The proof is deferred
to the full version of the paper.

I Lemma 10 (Decomposability). Let G = (V,E,w) be a weighted graph whose set of edges
is partitioned into E1, . . . , E`. Let Hi be a (1± ε)-spectral sparsifier of Gi = (V,Ei), where
i = 1, . . . , `. Then H =

⋃`
i=1 Hi is a (1± ε)-spectral sparsifier of G.

3 A Dynamic Algorithm for Electrical Flow in Minor-Free Graphs

In order to present our dynamic algorithm for electrical flows, we first introduce the notion
of approximate Schur Complement.

3.1 Schur Complement as Vertex Resistance Sparsifier
In the previous section we introduced graph sparsification for reducing the number of edges.
For our application, it will be useful to define sparsifiers that apart from reducing the number
of edges, they also reduce the number of vertices. More precisely, given a weighted graph
G = (V,E,w) with terminal set K ⊂ V , we are looking for a graph H = (VH , EH ,wH) with
K ⊆ VH and as few vertices and edges as possible while preserving some important feature
among terminals vertices. Graph H is usually referred to as a vertex sparsifier of G.

Exact Schur Complement. We first review a folklore result [35] on constructing vertex
sparsifiers that preserve effective resistances among terminal pairs. For sake of simplicity, we
first work with Laplcians of graphs. For a given connected graph G as above, let N = V \K
be the set of non-terminal vertices in G. The partition of V into N and K naturally induces
the following partition of the Laplacian L of G into blocks:

L =
[

LN LM
LTM LK

]
We remark that since G is connected and N and K are non-empty, LN is invertible. We
next define the Schur complement of L, which can be viewed as an equivalent to L only on
the terminal vertices.

I Definition 11 (Schur Complement). The Schur complement of a graph Laplacian L with
respect to a terminal set K is LKS := LK − LTML−1

N LM .

It is known that the matrix LKS is a Laplacian matrix for some graph G′ [30]. We can think
of Schur Complement as performing Gaussian elimination on the non-terminals V \K. This
process recursively eliminates a vertex v ∈ V \K by deleting v and adding a clique with
appropriate edge weights on the neighbors of v in the current graph (see, e.g. [30]). The
following lemma shows that the quadratic form of the pseudo-inverse of the Laplacian L will
be preserved by taking the quadratic form of the pseudo-inverse of its Schur Complement,
for vectors supported on the terminals. See the full version for the proof.

I Lemma 12. Let d be a vector of a graph G whose vertices are partitioned into terminals
K, and non-terminals N and only terminals have non-zero entries in d. Let dK be the
restriction of d on the terminals and let LKS be the Schur complement of the Laplacian L of
G with respect to K. Then dTL†d = dTK(LKS )†dK .
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Using interchangeability between graphs and their Laplacians, we can interpret the above
result in terms of graphs as well. We first present the following notion of sparsification.

I Definition 13 (Vertex Resistance Sparsifier). Let G = (V,E,w) be a weighted graph with
K ⊂ V and α ≥ 1. An α-vertex resistance sparsifier of G with respect to K is a graph
H = (K,EH ,wH) such that for all s, t ∈ K, RH(s, t) ≤ RG(s, t) ≤ α ·RH(s, t).

The lemma below relates the Schur Complement and resistance sparsifiers.

I Lemma 14. Let G = (V,E,w) be a weighted graph with K ⊂ V , Laplacian matrix L and
Schur Complement LKS (with respect to the terminal set K). Then the graph H = (K,EH ,wH)
associated with the Laplacian LKS is a 1-vertex resistance sparsifier of G with respect to K.

Proof. Fix some terminal pair (s, t) and consider the vectors χs,t and χ′s,t of dimension n and
k, respectively. Lemma 12, the definition of effective resistance and the fact that χs,t and χ′s,t
are valid vectors for L and LKS give: RG(s, t) = χTs,tL†χs,t = χ′

T
s,tL

K†
S χ′s,t = RH(s, t). J

Approximate Schur Complement. We need the following lemma due to Durfee et al. [13].

I Lemma 15 ([13]). Fix ε ∈ (0, 1/2) and δ ∈ (0, 1). Let G = (V,E,w) be a weighted graph
with n vertices, m edges. Let K ⊂ V with |K| = k. Let L be the Laplacian of G and
LKS be the corresponding Schur complement with respect to K. Then there is an algorithm
ApproxSchur(G,K, ε, δ) that returns a Laplacian matrix L̃KS with associated graph H̃ on
the terminals K such that the following statements hold with probability at least 1− δ:
1. The graph H̃ has O(kε−2 log(n/δ)) edges.
2. LKS and L̃KS are spectrally close, that is

∀x ∈ Rk (1− ε)xTLKS x ≤ xT L̃KS x ≤ (1 + ε)xTLKS x.

The total running time for producing H̃ is Õ((n+m)ε−2 log4(n/δ)).

In the following, we call the Laplacian L̃KS (or equivalently, the graph H̃) satisfying the above
two conditions an approximate Schur Complement of G with respect to K. Note that by
definition, the graph H̃ is a (1± ε)-spectral sparsifier of the graph H that is associated with
graph LKS , which in turn is a 1-vertex resistance sparsifier of G with respect to K. Therefore,
H̃ is a (1±O(ε))-vertex resistance sparsifier of G with respect to K (see Section 2).

3.2 Proof of Theorem 1
We now present a fully dynamic algorithm for maintaining the energy of electrical flows up
to a (1 + ε) factor in minor-free graphs and prove Theorem 1. We start with the special case
of planar graphs.

Data Structure. In our dynamic algorithm, we will maintain an r-division P = {P1, · · · , P`}
ofG with ` = O(n/r) and for each region Pi, we compute a graph H̃i by invoking the algorithm
ApproxSchur in Lemma 15 with parameters Pi, K = ∂G(Pi), ε = ε

6 and δ = 1/n3.
Let D(G) denote such a data structure for G, and let TD(G) denote the time to compute

D(G). Note that by Lemma 5 and 15, TD(G) = Õ(n+ n
r · rε

−2) = Õ(nε−2). Furthermore,
note that there are at most O(n/r) regions, and for each such a region Pi, the corresponding
graph H̃i is not an approximate Schur Complement of Pi with respect to its boundary ∂G(Pi)
with probability at most 1/n3. Therefore, by the union bound, with probability at least
1− n · 1

n3 = 1− 1
n2 , for any i ≤ `, the graph H̃i is an approximate Schur Complement of Pi

ESA 2017
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with respect to ∂G(Pi), and thus a (1± ε
6 )-spectral sparsifier of Hi, where Hi denotes the

exact Schur complement of Pi with respect to ∂G(Pi). In the following, we will condition on
this event. This data structure D(G) will be recomputed every Tdiv := Θ(n/r) operations.

Handling Edge Insertions/Deletions. We now describe the Insert operation. Whenever we
compute an approximate Schur Complement, we assume that the procedure ApproxSchur
from Lemma 15 is invoked on the corresponding region and its boundary vertex set, with
ε = ε

6 and error probability δ = 1/n3. Let us consider inserting an edge e = (x, y).
If both x, y belong to the same region, say Pi, then we add the edge e to Pi, and recompute
an approximate Schur Complement H̃i of the region Pi (with respect to its boundary
vertex set) from scratch.
If x and y do not belong to the same region, we do the following.

If x is an interior vertex of some region Px, then adding an edge (x, y) will make x a
boundary vertex. We then recompute an approximate Schur Complement H̃x of Px.
If y is an interior vertex of some region, then we handle it in the same way as we did
for the interior vertex x.
We treat the edge (x, y) as a new region containing only this edge.

Observe that for each insertion, the number of vertices in any region is always at most r,
and we perform only a constant number of calls to ApproxSchur, Lemma 15 implies that
the time to handle an edge insertion is Õ(rε−2). Furthermore, since each edge insertion may
increase by a constant the number of boundary nodes and the total number of regions.

We now describe the Delete operation. If we delete some edge e = (x, y), let Pi be
the region such that both x, y ∈ Pi. We remove the edge from Pi, and then recompute an
approximate Schur Complement H̃i of Pi with respect to its boundary. By Lemma 15, the
cost of this resparsification step is bounded by Õ(rε−2).

Since we recompute the data structure every Θ(n/r) operations, the amortized update
time is Õ

(
nε−2

n/r + rε−2
)

= Õ(rε−2).

Handing Queries. In order to return a (1+ε)-approximation of the energy of s− t electrical
flow for an ElectricalFlow(s, t) query, it suffices to return a (1− ε

2 )-approximation of the
effective s− t resistance, for which we first need to review the static algorithm for computing
effective resistance. The following result is due to Durfee et al. [13] (which builds and/or
improves upon [10, 28, 39]).

I Theorem 16 ([13]). Fix ε ∈ (0, 1/2) and let G = (V,E,w) be a weighted graph with n
vertices and m edges. There is an algorithm EffectiveResistance that computes a value
ψ such that (1− ε)RG(s, t) ≤ ψ ≤ (1 + ε)RG(s, t), in time Õ(m+ n

ε2 ) with high probability.

To answer the query ElectricalFlow(s, t), we will form a smaller auxiliary graph
that is the union of the regions containing s, t and the approximate Schur Complements
of the remaining regions with respect to their boundaries, and output the approximate
effective s− t resistance of the smaller graph. More precisely, let Ps and Pt be two regions
that contain s and t, respectively. Let J denote the index set of all the remaining regions,
i.e., J = {i : Pi ∈ P \ {Ps, Pt}}. For each region Pi such that i ∈ J , as before, let H̃i

be the approximate Schur Complement of Pi that we have maintained. Now we form an
auxiliary graph H by taking the union over the regions Ps and Pt and all the approximate
Schur Complements of the remaining regions, i.e., H = Ps ∪ Pt ∪

⋃
i∈J H̃i. We then run the

algorithm EffectiveResistance on H with ε = ε
6 to obtain an estimator ψ and return

cH(s, t) := (1− ε
6 )ψ. Next we show that the returned value is a good approximation to the

actual effective resistance.
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I Lemma 17. Fix ε ∈ (0, 1). Let G = (V,E,w) be some current graph and s, t ∈ V . Further,
let H = Ps ∪ Pt ∪

⋃
i∈J H̃i be defined as above and let cH(s, t) be the value returned as above

by invoking EffectiveResistance on H. Then, with high probability, we get

(1− ε

2)RG(s, t) ≤ cH(s, t) ≤ (1− ε

2)RG(s, t).

Proof. For the sake of analysis, we divide the sequence of updates into intervals each
consisting of Tdiv = Θ(n/r) operations. Let I be the interval in which the query is made. Let
G(0) denote the graph at the beginning of I. We compute the data structure D(G(0)) of G(0),
which contains an r-division P(0) and the corresponding approximate Schur Complements
H̃

(0)
i . As mentioned before, with probability at least 1− 1

n2 , each of the graphs H̃(0)
i will be

a (1± ε
6 )-spectral sparsifier of the exact Schur Complement H(0)

i of the corresponding region
with respect to its boundary vertex set.

Let G be the current graph when the query is made, which is formed from G(0) after some
updates in I. Let P = {Pi}i, H̃i, 1 ≤ i ≤ O(n/r) be the r-division and the approximate Schur
Complements in the current data structure, respectively. Let Hi denote the exact Schur
Complement of the region Pi with respect to its boundary vertex set. Since the total number
of updates in I is Θ(n/r), and each update only involves a constant number of invocations
of ApproxSchur with error probability 1/n3 that recomputes the approximate Schur
Complements of some regions, we have that with probability at least 1−O(n/r) · 1

n3 ≥ 1− 1
n2 ,

these recomputed approximate Schur Complements are (1 ± ε
6 )-spectral sparsifiers of the

corresponding exact Schur Complements. Therefore, for the current graph G and its data
structure, with probability 1− 2 · 1

n2 = 1− 2
n2 , for all i, the graph H̃i is a (1± ε

6 )-spectral
sparsifier of Hi. In the following, we will condition on this event.

Recall that Ps and Pt are two regions that contain s and t, respectively. Consider the
graph G′ = Ps ∪ Pt ∪

⋃
i∈J Hi. We have the following lemma whose proof is deferred to the

full version of the paper.

I Lemma 18. For any two vertices u, v ∈ V (G′), it holds that RG(u, v) = RG′(u, v).

It follows from the above lemma that RG(s, t) = RG′(s, t). We next argue that H is a
(1± ε

6 )-resistance sparsifier to G′ with high probability. First, note that each of the subgraphs
Ps, Pt, Hi and H̃i, i ∈ J can be treated as graphs defined on the same vertex set V (G′) with
appropriate isolated vertices. Second, since for each i ∈ J , H̃i is (1± ε

6 )-spectral sparsifier of
Hi, and Ps, Pt are sparsifiers of itself, we know that by Lemma 10 about the decomposability
of sparsifiers, H is a (1± ε

6 )-spectral sparsifier of G′. Since every (1± ε
6 )-spectral sparsifier

is a (1± ε
6 )-resistance sparsifier, it holds that

(1− ε

6)RH(s, t) ≤ RG′(s, t) ≤ (1 + ε

6)RH(s, t). (1)

Since by definition we have cH(s, t) := (1− ε
6 )ψ, Theorem 16 implies that

(1− ε

6)2RH(s, t) ≤ (1− ε

6)ψ ≤ (1− ε

6)(1 + ε

6)RH(s, t), (2)

with high probability. Combining (1) and (2) we get

(1− ε
6 )2

(1 + ε
6 ) RG

′(s, t) ≤ (1− ε

6)ψ ≤ (1 + ε

6)RG′(s, t),

which in turn along with RG(s, t) = RG′(s, t) imply that,

(1− ε

2)RG(s, t) ≤ (1− ε

6)ψ ≤ (1 + ε

2)RG(s, t).
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Therefore, with high probability, the algorithm outputs a (1 − ε
2 )-approximation to the

effective s− t resistance. J

To bound the query time, we need to bound the size of the H = Ps ∪ Pt ∪
⋃
i∈J H̃i. As

in the proof of Lemma 17, we let G(0) denote the graph right after the last rebuilding of
the data structure. Let P(0) denote the corresponding r-division. By definition, for each
P ∈ P(0), |P | ≤ r and the size of all the boundary vertices is c2n/

√
r. By Lemma 6, we have

that
∑
P∈P(0) |∂G(0)(P )| ≤ O(n/

√
r), i.e., the sum of the numbers of boundary vertices over

all regions of G(0) is at most O(n/
√
r).

Note that there will be at most Tdiv = Θ(n/r) updates between G(0) and G, the graph
to which the query is performed, and each update can only increase the number of boundary
vertices and the total number of regions by a constant. These facts imply that the size of
all boundary nodes is O(n/

√
r). Therefore, we have that |V (H)| ≤ O(r + n/

√
r), and that

the sum of the numbers of boundary vertices of the regions of G is at most O(n/
√
r), i.e.,∑

i |V (H̃i)| ≤ O(n/
√
r).

On the other hand, by Lemma 15, for each i, |E(H̃i)| = O(|V (H̃i)| · ε−2 logn). Thus,

|E(H)| ≤ |E(Ps)|+ |E(Pt)|+
∑
i

|E(H̃i)| ≤ O(r) +
∑
i

|V (H̃i)| ·O(ε−2 logn)

= O((r + n/
√
r)ε−2 logn).

By Theorem 16, it follows that the worst-case query time is Õ((r + n/
√
r)ε−2).

To achieve asymptotically the same worst-case update time, we use a standard global
rebuilding technique (see the full version for details), which then finishes the proof of
Theorem 1 when the input graph is planar.

Extension to Minor-Free Graphs. In the following, we briefly discuss how one can adapt
the previous dynamic algorithms for planar graphs to minor-free graphs.

The key observation is that since the approximate Schur Complement can be constructed
in nearly-linear time for any graph, it suffices for us to efficiently maintain an r-division
of any minor-free graph, i.e., we need fast algorithms for computing a separator of order√
n in such graphs. (A separator is a subset S of vertices whose deletion will partition the

graph into connected components, each of size at most 2n
3 ). Kawarabayashi and Reed [21]

showed that for any Kt-minor-free graph G, one can construct in O(n1+ξ) time a separator
of size O(

√
n) for G, for any constant ξ > 0 and constant t. (The O(·) notation for the

running time hides huge dependency on t.) Applying this separator construction recursively
as in Frederickson’s algorithm [15], we can maintain an r-division of any Kt-minor-free G in
Õ(n1+ξ) time. Furthermore, by analysis in [15], it holds that the total sum of the sizes of
all boundary vertex sets is also bounded by O( n√

r
) as guaranteed by Lemma 6 for planar

graphs.
Now we can dynamically maintain the data structure for electrical flows in minor-free

graphs almost the same as we did for planar graphs, except that we use the above Õ(n1+ξ)
time algorithm to compute the r-divisions. Thus, the time to compute the data structure for
any minor-free graph is then Õ(n1+ξ +nε−2), for arbitrarily small constant ξ > 0. Then from
previous analysis, the worst-case update time is Õ(nξrε−2) update time, and the worst-case
query time is Õ((r + n/

√
r)ε−2). This completes the proof of Theorem 1.
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Abstract
We study a generalization of the Steiner tree problem, where we are given a weighted network
G together with a collection of k subsets of its vertices and a root r. We wish to construct a
minimum cost network such that the network supports one unit of flow to the root from every
node in a subset simultaneously. The network constructed does not need to support flows from
all the subsets simultaneously.

We settle an open question regarding the complexity of this problem for k = 2, and give a 3
2 -

approximation algorithm that improves over a (trivial) known 2-approximation. Furthermore, we
prove some structural results that prevent many well-known techniques from doing better than
the known O(logn)-approximation. Despite these obstacles, we conjecture that this problem
should have an O(1)-approximation. We also give an approximation result for a variant of the
problem where the solution is required to be a path.
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1 Introduction

We study a robust version of a single-sink network design problem that we call the Single-sink
fractionally-subadditive network design (f-SAND) problem. In an instance of f-SAND, we
are given an undirected graph G = (V,E) with edge costs we ≥ 0 for all e ∈ E, a root node
r ∈ V , and k colors represented as vertex subsets Ci ⊆ V \ {r} for all i ∈ [k], that wish to
send flow to r. A feasible solution is an integer capacity installation on the edges of G, such
that for every i ∈ [k], each node in Ci can simultaneously send one unit of flow to r. Thus,
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the total flow sent by color i nodes is is |Ci| while the flows sent from nodes of different
colors are instead non-simultaneous and can share capacity. An optimal solution is a feasible
one that minimizes the total cost of the installation.

The single-sink nature of the problem suggests a natural cut-covering formulation, namely:

min
∑
e∈E

wexe s.t.∑
e∈δ(S)

xe ≥ f(S) ∀S ⊂ V \ {r}

x ≥ 0 , x ∈ Z , (IP)

where δ(S) denotes the set of edges with exactly one endpoint in S, and

f(S) := max
i∈[k]
{|Ci ∩ S|} (1)

for all S ⊆ V \ {r}. Despite having exponentially many constraints, the LP-relaxation of (IP)
can be solved in polynomial-time because the separation problem reduces to performing k
max-flow computations. The main challenge is to round the resulting solution into an integer
solution.

Rounding algorithms for the LP relaxation of (IP) have been investigated by many
authors, under certain assumptions of the function f(S). Prominent examples are some
classes of 0/1-functions (such as uncrossable functions), or integer-valued functions such as
proper functions, or weakly supermodular functions [12, 19]; however, these papers consider
arbitrary cut requirements rather than the single-sink connectivity requirements we study.

Our single-sink problem is a special case of a broader class of subadditive network design
problems where the function f is allowed to be a general subadditive function. Despite their
generality, the single-sink network design problem for general subadditive functions can be
approximated within an O(log |V |) factor by using a tree drawn from the probabilistic tree
decomposition of the metric induced by G using the results of Fakcharoenphol, Rao, and
Talwar [8], and installing the required capacity on the tree edges. Hence, a natural direction
is to consider special cases of such subadditive cut requirement functions.

Our function f(S) defined in (1) is an interesting and important special case of subadditive
functions. It was introduced as XOS-functions (max-of-sum functions) in the context of
combinatorial auctions by Lehman et al. [20]. Feige [9] proved that this function is equivalent
to fractionally-subadditive functions which are a strict generalization of submodular functions
(hence the title). These functions have been extensively studied in the context of learning
theory and algorithmic game theory [1, 3, 20]. Our work is an attempt to understand their
behavior as single-sink network design requirement functions.

f-SAND was first studied by Oriolo et al. [21] in the context of robust network design,
where the goal is to install minimum cost capacity on a network in order to satisfy a given
set of (non-simultaneous) traffic demands among terminal nodes. Each subset Ci can in
fact be seen as a way to specify a distinct traffic demand that the network would like to
support. They observed that f-SAND generalizes the Steiner tree problem: an instance of the
Steiner tree problem with k + 1 terminals t1, . . . , tk+1 is equivalent to the f-SAND instance
with r := tk+1 and Ci := {ti} for all i ∈ [k]. This immediately shows that f-SAND is NP-hard
(in fact, APX-hard [6]) when k is part of the input. The authors in [21] strengthened the
hardness result by proving that f-SAND is NP-hard even if k is not part of the input, and in
particular for k = 3 (if k = 1 the problem is trivially solvable in polynomial-time by computing
a shortest path tree rooted at r). From the positive side, they observed that there is a trivial
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k-approximation algorithm, that relies on routing via shortest paths, and an O(log | ∪i Ci|)-
approximation algorithm using metric embeddings [8, 17]. The authors conclude their paper
mentioning two open questions, namely whether the problem is polynomial-time solvable for
k = 2, and whether there exists an O(1)-approximation algorithm.

1.1 Our results
1. In this paper, we answer the first open question in [21] by showing that f-SAND is NP-hard

for k = 2 via a reduction from SAT.
2. We give a 3

2 -approximation algorithm for this case (k = 2). This is the first improve-
ment over the (trivial) k-approximation obtained using shortest paths for any k. Our
approximation algorithm is based on pairing terminals of different groups together, and
therefore reducing to a suitable minimum cost matching problem. While the idea behind
the algorithm is natural, its analysis requires a deeper understanding of the structure of
the optimal solution.

3. We also introduce an interesting variant of f-SAND, which we call the Latency-f-SAND
problem, where the network built is restricted to being a path with the root r being one
of the endpoints (f-SAND-path). We show a O(log2 k logn)-approximation using a new
reformulation of the problem that allows us to exploit techniques recently developed for
latency problems [4].

4. While being a generalization of well-studied problems, f-SAND does not seem to admit an
easy O(1)-approximation via standard LP-rounding techniques for arbitrary values of k.
We prove some structural results that highlight the difficulty of the general problem (see
full version [18]). In particular, we show a family of a instances providing a super-constant
gap between an optimal f-SAND solution and an optimal tree-solution, i.e., a solution
whose support is a tree – this rules out many methods that output a solution with a
tree structure. The bulk of the construction was shown in [13] and we amend it to our
problem using a simple observation. Furthermore, we give some evidence that an iterative
rounding approach (as in Jain’s fundamental work [19]) is unlikely to work. This follows
by considering a special class of Kneser Graphs, where the LP seems to put low fractional
weight on each edge in an extreme point.

5. Open Questions. We offer the following conjecture as our main open question.1
I Conjecture 1. There exists an O(1)-approximation algorithm for the f-SAND problem.
Although standard LP-based approaches seem to fail in providing a constant factor
approximation, the worst known integrality gap example we are aware of yields a (trivial)
lower bound of 2 on the integrality gap of (IP) for f-SAND. A related open question is if
there is an instance of f-SAND for which the integrality gap of (IP) is greater than 2.

1.2 Related work
Network design problems where the goal is to build a minimum cost network in order to
support a given set of flow demands, have been extensively studied in the literature (we
refer to the survey [5]). There has been a huge amount of research focusing on the case the
set of demands is described via a polyhedron (see e.g. [2]). In this context a very popular
model is the Virtual private network [7, 11], for which many approximation results have been
developed (see e.g. [14, 15, 16] and the references therein). For the case where the set of

1 Although the problem is known in some circles, it has not been explicitly stated as a conjecture. We do
so here, in the hopes that it will encourage others to work on this problem.
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demands is instead given as a (finite) discrete list, the authors in [21] developed a constant
factor approximation algorithm on ring networks, and proved that f-SAND is polynomial-time
solvable on ring networks.
Regarding the formulation (IP), Goemans and Williamson [12] gave a O(log(fmax))-ap-
proximation algorithm for solving (IP) whenever f(S) is an integer-valued proper function
that can take values up to fmax, based on a primal-dual approach. Subsequently, Jain [19]
improved this result by giving a 2-approximation algorithm using iterative rounding of the
LP-relaxation. Recently, a strongly-polynomial time FPTAS to solve the LP-relaxation of
(IP) with proper functions has been given in [10].

2 3/2-approximation for the two color case

The goal of this section is to give a 3
2 -approximation algorithm for SAND with two colors.

We remark that our algorithm bypasses the difficulties mentioned in the previous section. In
particular, the final output is not a tree.

2.1 Simplifying Assumptions
We will refer to the two colors as green and blue, and let CG ⊂ V denote the set of green
terminals, and CB ⊂ V denote the set of blue terminals. Without loss of generality, we will
assume that |CG| = |CB |, i.e., the cardinality of green terminals is equal to the cardinality
of blue terminals (if not, we could easily add dummy nodes at distance 0 from the root).
Furthermore, by replacing each edge in the original graph with |CG| parallel edges of the
same cost, we can assume that in a feasible solution the capacity installed on each edge must
be either 0 or 1. This means that each edge is used by at most one terminal of CG (resp.
CB) to carry flow to the root. Lastly, we assume that every terminal in CG shares at least
one edge with some terminal in CB in the optimal solution.2

Let OPT denote an optimal solution to a given instance of SAND with two colors. We
start by developing some results on the structure of OPT, that will be crucial to analyze our
approximation algorithm later.

2.2 Understanding the structure of OPT
A feasible solution of a SAND instance consists of a (integer valued) capacity installation on
the edges that allows for a flow from the terminals to the root. Given a feasible solution,
each terminal will send its unit of flow to t on a single path. Let us call the collection of
such paths a routing associated with the feasible solution. The first important concept we
need is the concept of splits.

2.2.1 Shared Edges and Splits
Given a routing, for each terminal g ∈ CG (and b ∈ CB respectively) let Pg (Pb) denote the
path along which g (b) sends flow to the root; i.e. Pg := {g = x0, x1, . . . , x|Pg| = r}. We say
that an edge e is shared if the paths of two terminals of different color contain the edge.
We say that g ∈ CG and b ∈ CB are partners with respect to a shared edge e = uv, if their
respective paths use the edge e; i.e. e ∈ Pg ∩ Pb.

2 We can easily ensure this e.g. by modifying our instance as follows: we add a dummy node r′ which is
only connected to r with |CG| parallel edges of 0 cost, and we make r′ be the new root. In this way, all
terminals will use one copy of the edge (r, r′).
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I Definition 2. A split in the path Pg is a maximal set of consecutive edges of the path
such that g is partnered with some b on all the edges of this set.

If {(xi, xi+1), (xi+1, xi+2), . . . , (xi+j−1, xi+j)} is a split in the path Pg = {g = x0, x1, . . . ,

x|Pg| = r} for g ∈ CG, then there exists a unique terminal b ∈ CB such that Pb contains the
edges {(xi, xi+1), (xi+1, xi+2), . . . , (xi+j−1, xi+j)}, Pb does not contain the edge (xi−1, xi),
and if xi+j 6= r then Pb does not contain the edge (xi+j , xi+j+1). By our assumptions, the
terminal b is unique as each edge is used by at most one terminal of each color.

Since the flow is going from a terminal g to r, the path Pg naturally induces an orientation
on its edges given by the direction of the flow, even though the edges are undirected. Of
course, the paths of different terminals could potentially induce opposite orientations on
(some of) the shared edges (see Figure 1).

I Definition 3. A split is wide, if the paths of the two terminals that are partners on the
edges of the split induce opposite orientations on the edges. A split is thin, if the paths of
the two terminals that are partners on the edges of the split induce the same orientation on
the edges.

The above notions are well defined for any routing with respect to a feasible solution.
Now, we focus on the structure of an optimal routing, i.e., a routing with respect to an
optimal solution. For the rest of this section, we let {Pg}g∈CG

and {Pb}b∈CB
be an optimal

routing. The following lemma is immediate.

I Lemma 4. Let {(xi, xi+1), (xi+1, xi+2), . . . , (xi+j−1, xi+j)} be a split in the path Pg (for
some g ∈ CG). The edges of the split form a shortest path from xi to xi+j.

Proof. If not, we could replace this set of edges with the set of edges of a shortest path
from xi to xi+j , in both Pg and Pb, where b is the partner of g on the split. Therefore, we
can install one unit of capacity on these edges, and remove the unit of capacity from the
edges of the split. We get another feasible solution with smaller cost, a contradiction to the
optimality of our initial solution. J

2.2.2 Split Graph

A consequence of Lemma 4 is each split is entirely characterized by the endpoints of the split
and the terminals that share them. We denote each split by a tuple (u, v, g, b) which states
that there is a shortest path between u and v whose edges are shared by g and b.

Let S denote the set of all splits in the optimal routing. We construct a directed graph GS

whose vertex set corresponds to V = S ∪CG ∪CB (i.e. the vertex set contains one vertex for
each split and one vertex for each terminal). For each g ∈ CG, we place a directed green edge
going between two consecutive splits in Pg. Specifically, if {(xi, xi+1), . . . , (xi+j−1, xi+j)}
and {(xi′ , xi′+1), . . . , (xi′+j′−1, xi′+j′)} are two splits in Pg with i < i′, we say that they are
consecutive if the subpath from xi+j to xi′ does not contain any split. In this case, we place
a directed edge in GS whose tail is the vertex corresponding to the first split, and whose
head is the vertex corresponding to the second one. Similarly, for each b ∈ CB we place a
directed blue edge between vertices of consecutive splits that appear in Pb. Furthermore, for
each g ∈ CG (resp. b ∈ CB) we place a directed green (resp. blue) edge from g (resp. b) to
the vertex corresponding to the first split on the path Pg (resp. Pb), if any. This graph is
denoted as the Split Graph (see Figure 1).
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r

b2

b1

g2

g1

g1 − b2 g2 − b1

g1 − b1
b2

b1

g2

g1

Figure 1 The above left graph (where each undirected edge is supposed to have unit capacity)
shows an optimal routing for some f-SAND instance. Note that b1 and g2 (resp. b2 and g1) send
flow to r going counterclockwise (resp. clockwise) on the edges of the cycle. The path Pb1 contains
two splits: the first is wide (b1 is partnered with g1), the second is thin (b1 is partnered with g2).
The graph on the right is the Split Graph for the optimal solution on the left. The pair of vertices
g1, b1 and the pair of vertices g2, b2 constitute the fresh pairs.

Each split indicates that two terminals of different colors are sharing the capacity on a set
of edges in an optimal routing. Hence, each split-vertex in GS has indegree 2 (in particular,
one edge of each color). Furthermore, each split-vertex in GS has outdegree either 0 or 2; if
it has two outgoing edges, one is green and one is blue. Similarly, each terminal has indegree
0, and outdegree 1 (as we assume that each terminal shares at least one edge).

2.2.3 Fresh Pairs
We need one additional definition before proceeding to the algorithm.

I Definition 5. An S-alternating sequence is a sequence of vertices of the Split Graph
{v, s1, s2, . . . , sh, w} with h ≥ 1, that satisfies the following:
(i) (v, s1) and (w, sh) are directed edges in GS and v, w are terminals of different color.
(ii) For all even i ≥ 2, (si, si−1) and (si, si+1) are both directed edges in GS with opposite

colors.
We call the path obtained by taking the edges in (i) and (ii) an S-alternating path. We
call (v, w) a fresh pair if they are the endpoints of an S-alternating path.

By definition, in an S-alternating sequence the vertices s1, . . . , sh are all split-vertices, and
h is odd. We remark here that an S-alternating path is not a directed path. (See again
Figure 1).

I Lemma 6. We can find a set of edge-disjoint S-alternating paths in the Split Graph such
that each terminal is the endpoint of exactly one path in this set.

Proof. We construct the desired set as follows. For each vertex g ∈ CG, there is a unique
outgoing edge to a split vertex s ∈ S (as we assume every terminal participates in a split).
Since each split-vertex has indegree 2, s has another ingoing edge coming from a different
vertex w. If w ∈ CB , then (v, w) is a fresh pair and we have found an S-alternating sequence
{v, s, w}. If w is a split-vertex, then it has another outgoing edge to a different split-vertex
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s′, which in its turn has another incoming edge from a different vertex w′. We continue to
build an alternating sequence (and a corresponding alternating path) in this way until it
terminates in a terminal. Since the path is of even length and the colors alternate, we can
conclude that this will terminate in a terminal of opposite color. We remove the edges of this
path from the Split Graph, and iterate the process. Each terminal will belong to exactly one
S-alternating path, as it has outdegree exactly 1, and all the paths are edge-disjoint, proving
the lemma. J

2.3 The Algorithm
We are now ready to present our matching algorithm. The algorithm has two steps. First,
construct a complete bipartite graph H with the bipartitions CG and CB , where the weight
on the edge (g, b) ∈ CG ×CB is equal to the cost of the Steiner tree in G connecting g, b and
the root. Note that the graph H can be computed in polynomial time, since a Steiner tree
on 3 vertices can be easily computed in polynomial time.

Second, find a minimum-weight perfect matchingM in H, and for each edge (g, b) ∈M
install (cumulatively) one unit of capacity on each edge of G that is in the Steiner tree
associated to the edge (g, b) ∈M. The capacity installation output by this procedure is a
feasible solution to f-SAND, and has total cost equal to the weight ofM.

I Lemma 7. The matching algorithm is a 3
2 -approximation algorithm.

Proof. First, we partition OPT into four parts; let wb (and wg respectively) be the cost of
the edges which are used only by blue (green respectively) terminals in OPT , and let wt
(wd) be the cost of edges in thin (wide) splits in OPT . Thus, w(OPT ) = wb +wg +wt +wd.
By Lemma 6, we can extract from the Split Graph associated to OPT a set of S-alternating
paths such that each terminal is contained in exactly one fresh pair. Consider the matching
M1 determined by the set of fresh pairs found by the aforementioned procedure. We will
now bound the weight ofM1.

I Claim 8. The weight of the matching formed by connecting the fresh pairs is at most

3
2 · wb + 3

2 · wg + 1 · wt + 3 · wd.

Proof. Let (g, b) be a fresh pair and (g, s1, . . . , sh, b) be the corresponding S-alternating
sequence. The edges of the associated S-alternating path naturally correspond to paths in G
composed by non-shared edges (that connect either the endpoints of two different splits, or
one terminal and one endpoint of a split). These paths together with the edges of the wide
splits in the sequence, naturally yield a path P (b, g) in G connecting g and b.

If we do this for all fresh pairs, we obtain that the total cost of the paths P (b, g) is
upper bounded by 1 · wb + 1 · wg + 2 · wd. The reason for having a coefficient of 2 in front
of wd is because the S-alternating paths of Lemma 6 are edge-disjoint, but not necessarily
vertex-disjoint: however, since each split-vertex has at most 4 edges incident into it, it can
be part of at most 2 S-alternating paths.

Using the aforementioned connection, we can move all terminals in CG to their partners in
CB . Subsequently, we connect them to the root using the Pb for all b ∈ CB . This connection
to the root will incur a cost of 1 ·wb + 1 ·wd + 1 ·wt. Combining this together, we get a total
cost of 2 ·wb+1 ·wg +1 ·wt+3 ·wd. Analogously, if we connect the partners in CG to the root
using the the path Pg for all g ∈ CG, we will incur a total cost of 1 ·wb+ 2 ·wg + 1 ·wt+ 3 ·wd.
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Since the sum of the cost of the Steiner trees connecting the fresh pairs to the root is no
more than either of these two values, we can bound the weight ofM1 by their average:

3
2 · wb + 3

2 · wg + 1 · wt + 3 · wd. J

I Claim 9. There exists a matching in H of weight at most 1 · wb + 1 · wg + 2 · wt.

Proof. Consider the flow routed on the optimal paths by the set of all terminals CG ∪ CB.
We modify the flow (and the corresponding routing) as follows. Whenever two terminals
traverse a wide-split, re-route the flows so as to not use the wide-split. This is always possible
as the two terminals traverse these edges in opposite directions (by definition of wide splits).
This re-routing ensures that all the edges of wide-splits are not used anymore in the resulting
paths. However, thin-splits which contained terminals of different colors passing in the same
direction, might now contain two terminals of the same color passing through the edges.
This means that these edges will be used twice (or must have twice the capacity installed).
All other edges do not need to have their capacity changed. Thus, the resulting flow can
be associated with a feasible solution of cost at most 1 · wb + 1 · wg + 2 · wt + 0 · wd. This
flow corresponds to all vertices directly connecting to the root as any shared edge is counted
twice. Hence, this is a bound on any matching in H. J

The average weight of the above matchings is an upper-bound on the minimum weight of a
matching in H. Hence, the weight ofM is at most

1
2 ·
(3

2 · wb + 3
2 · wg + 1 · wt + 3 · wd

)
+ 1

2 ·
(
1 · wb + 1 · wg + 2 · wt + 0 · wd

)
≤ 3

2 ·
(
wb + wg + wt + wd)

Therefore, the matching algorithm is 3
2 -approximation algorithm. J

3 Hardness for two colors

We prove that the SAND problem is NP-hard even with just two colors.

I Theorem 10. The SAND problem with 2 colors is NP-hard.

Proof. We use a reduction from a variant of the Satisfiability (SAT) problem, where each
variable can appear in at most 3 clauses, that is known to be NP-hard [22]. Formally, in a
SAT instance we are given m clauses K1, . . . ,Km, and p variables x1, . . . , xp. Each clause
Kj is a disjunction of some literals, where a literal is either a variable xi or its negation x̄i,
for some i in 1, . . . , p. The goal is to find a truth assignment for the variables that satisfies
all clauses, where a clause is satisfied if at least one of its literals takes value true. In the
instances under consideration, each variable xi appears in at most 3 clauses, either as a
literal xi, or as a literal x̄i. It is not difficult to see that, without loss of generality, we can
assume that every variable appears in exactly 3 clauses. Furthermore, by possibly replacing
all occurrences of xj with x̄j and vice versa, we can assume that each variable xi appears in
exactly one clause in its negated form (x̄i).

Given such a SAT instance, we define an instance of SAND as follows (see Fig. 2). We
construct a graph G = (V,E) by introducing one sink node r, one node kj for each clause
Kj , and 7 distinct nodes y`i , (` = 1, . . . , 7), for each variable xi. That is,

V := {r} ∪ {k1, . . . , km} ∪

{
p⋃
i=1
{y1
i , y

2
i , y

3
i , y

4
i , y

5
i , y

6
i , y

7
i }

}
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Figure 2 The picture shows the subgraph introduced for every variable xi. Bold edges have cost
2, solid edges have cost 1, and dashed edges have cost M . Black circles indicate nodes in C1, and
grey circles indicate nodes in C2. Nodes in C1 ∩ C2 are colored half-black and half-grey.

The set of edges E is the disjoint union of three different sets, E := E1 ∪E2 ∪E3, where:

E1 :=
p⋃
i=1

{ 4⋃
`=1
{r, y2`−1

i }

}
; E2 :=

p⋃
i=1

{ 6⋃
`=1
{y`i , y`+1

i }

}
.

To define the set E3, we need to introduce some more notation. For a variable xi, we
let i1 and i2 be the two indices of the clauses containing the literal xi, and we let i3 be the
index of the clause containing the literal x̄i. We then have

E3 :=
p⋃
i=1

{
{y2
i , ki1}, {y4

i , ki3}, {y6
i , ki2}

}
.

We assign cost 2 to the edges in E1, unit cost to the edges in E2, and a big cost M >> 0 to
the edges of E3 (in particular, M > 2m+ 8p). Finally, we let the color classes3 be defined as:

C1 := {k1, . . . , km} ∪

{
p⋃
i=1
{y1
i , y

5
i }

}
; C2 := {k1, . . . , km} ∪

{
p⋃
i=1
{y3
i , y

7
i }

}
.

We claim that there exists an optimal solution to the SAND instance of cost at most
(M + 2)m+ 8p if and only if there is a truth assignment satisfying all clauses for the SAT
instance.

3.1 Completeness
First, let us assume that the SAT instance is satisfiable. For each clause Kj , we select one
literal that is set to true in the truth assignment. We define the paths for our terminal nodes
in C1 as follows. For each node y ∈

⋃p
i=1{y1

i , y
5
i }, we let the flow travel from y to r along

the edge {y, r}. For each kj , we let the flow travel to r on a path P j1 , that we define based
on the literal selected for Kj . Specifically, let xi be the variable corresponding to the literal
selected for the clause Kj . Then:

if Kj = Ki1 , we let P j1 be the path with nodes {kj , y2
i , y

3
i , r},

if Kj = Ki2 , we let P j1 be the path with nodes {kj , y6
i , y

7
i , r},

if Kj = Ki3 , we let P j1 be the path with nodes {kj , y4
i , y

3
i , r}.

3 We here have C1 ∩ C2 6= ∅. However, the reduction can be easily modified to prove hardness of instances
where C1 ∩ C2 = ∅, by simply adding for all j two nodes k1

j , k2
j adjacent to kj with an edge of zero cost,

and by letting k1
j (resp. k2

j ) be in C1 (resp. C2) instead of kj .
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We define the paths for our terminal nodes in C2 similarly. For each node y ∈
⋃p
i=1{y3

i , y
7
i },

we let the flow travel from y to r along the edge {y, r}. For each kj , we let the flow travel to
r on a path P j2 defined as follows. Let xi be the variable corresponding to the literal selected
for the clause Kj . Then:

if Kj = Ki1 , we let P j2 be the path with nodes {kj , y2
i , y

1
i , r},

if Kj = Ki2 , we let P j2 be the path with nodes {kj , y6
i , y

5
i , r},

if Kj = Ki3 , we let P j2 be the path with nodes {kj , y4
i , y

5
i , r}.

Note that the paths of terminals belonging to the same color set do not share edges. In
fact, by construction, the paths of two terminals in C1 could possibly share an edge only if
for two distinct clauses Kj 6= Kj′ we selected a literal corresponding to the same variable
xi, and we have Kj = Ki1 and Kj′ = Ki3 , since in this case the paths P j1 and P j

′

1 would
share the edge {y3

i , r}. However, selecting xi for Ki1 means xi takes value true in the truth
assignment, while selecting xi for Ki3 means xi takes value false in the truth assignment,
which is clearly a contradiction. A similar observation applies to paths of terminals in C2.
It follows that installing one unit of capacity on every edge that appears in (at least) one
selected path is enough to support the flow of both color sets. The total installation cost is
exactly 8p+ (M + 2)m.

3.2 Soundness
Suppose there is an optimal solution to the SAND instance of cost at most (M + 2)m+ 8p.
Let S denote such solution. Since the support of any feasible solution has to include at least
one distinct edge of cost M for each node kj , and M > 2m+ 8p, it follows that S has exactly
m edges of cost M in its support, each with one unit of capacity installed. Hence, if we
denote by P j1 (resp. P j2 ) the path used by kj to send flow to r with terminals in C1 (resp.
C2), we have the following fact.

Fact 1. For each j = 1, . . . ,m, the paths P j1 and P j2 from kj to r share the first edge.
We use this insight to construct a truth assignment for the SAT variables. Specifically, let

y`i be the endpoint of the first edge of P j1 and P j2 . We set xi to true if y`i = y2
i or if y`i = y6

i ,
and we set xi to false if y`i = y4

i . We repeat this for all clauses j = 1, . . . ,m, and we assign
an arbitrary truth value to all remaining variables, if any. In order to finish the proof, we
have to show that this assignment is consistent for all i = 1, . . . , p. To this aim, let us say
that a variable xi is in conflict if there is a node kj sending flow to r on a path whose first
edge has endpoint y4

i , and there is node kj′ 6= kj sending flow to r on a path whose first edge
has endpoint y2

i or y6
i . Note that our assignment procedure is consistent and yields indeed a

valid truth assignment if and only if there is no variable in conflict.
We now make a few claims on the structure of S, that will be useful to show that no

variable can be in conflict. Next fact follows from basic flow theory.

Fact 2. Without loss of generality, we can assume that the flow sent from terminals in C1
(resp. C2) to r, does not induce directed cycles.

I Claim 11. Without loss of generality, we can assume that every terminal sends flow to r
on a path that contains exactly one node y ∈

⋃p
i=1{y1

i , y
3
i , y

5
i , y

7
i }.

We defer the proof of this claim which is central to the remaining proof to the end. Let
Gi be the subgraph of G induced by the nodes {r, y1

i , . . . , y
7
i }, and let χi be the total cost

of the capacity that S installs on the subgraph Gi. Note that, by Fact 1, the cost of S is
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m ·M +
∑m
i=1 χi. We will use Claim 1 to give a bound on the value χi. To this aim, let ni

be the number of nodes kj whose path P j1 contains edges of Gi. Note that 0 ≤ ni ≤ 3, and
each kj contributes to exactly one ni, for some i = 1, . . . , p.

I Claim 12. We have χi ≥ 8 + 2ni, with the inequality being strict if the variable xi is in
conflict.

Claim 12 finishes our proof, since it implies that the cost of S is at least

m ·M +
p∑
i=1

χi ≥ m ·M +
p∑
i=1

(8 + 2ni) = m ·M + 8p+ 2m,

with the inequality being tight if and only if there is no variable in conflict. J

4 Latency SAND

By adapting a construction from [13], there is a Ω(logn) gap between the tree and graph
version of f-SAND. This naturally raises the question of approximating f-SAND when the
solution must be restricted to different topologies. In this section, we consider the f-SAND
when the output topology must be a path. Since this variant of f-SANDis not easy to solve
on a tree, it is not clear how to solve it using tree metrics.

I Definition 13. In the latency-f-SAND problem, we are given an instance of f-SAND, but
require the output to be a path with the root r as one of its endpoints. Our goal is output a
minimum cost path, where the cost of an edge is we· (load on e). The load on an edge is the
maximum number of nodes of one color it separates from the root.

We assume that the lengths are integers and polynomially bounded in the input and give
a time-indexed length formulation for this problem. This linear programming formulation
was introduced by Chakrabarty and Swamy [4] for orienteering problems.

The Linear Programming Formulation for Latency-f-SAND.

min
∑
j,t

t · xj,t (LPbP)

s.t.
∑
t

xj,t ≥ 1 ∀j ∈ [m] (2)∑
P∈Pb·t

zP,t ≤ 1 ∀t ∈ [T ] (3)

∑
P∈Pb·t:j∈P

zP,t ≥
∑
t′≤t

xj,t′ ∀j ∈ [m], t ∈ [T ] (4)

x, z ≥ 0

We assume without loss of generality, that |Ci| = m for all i ∈ [k]. Pt denotes the set of
paths of weight at most t starting from the root. Since the lengths are polynomially bounded,
we can contain a variable for each possible length (we denote T to be the maximum possible
length). We use j ∈ Pt to indicate that the path Pt contains j terminals of each color. The
variable xj,t indicates that we have seen j terminals of each color by time t and zP,t indicates
that we use path P to visit the terminals at time t.

I Lemma 14. The linear program LPbP is a relaxation of Latency-f-SANDfor b ≥ 1.
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Proof. We show that the contraints and objective are valid for any feasible solution to
Latency-f-SAND.

Constraint 2 ensures that j terminals of each color are covered at some given time period,
for every j ∈ [m].
Constraint 3 ensures that only one path is (fractionally) picked for each time period t.
Constraint 4 indicates that we must have picked a path P that covers j terminals by
time t if

∑
t′≤t xj,t′ = 1.

The objective function correctly captures the cost of the path. For an integer solution,
xj,t = 1 indicates that time t is the first time j terminals of each color are present in the
path. Thus the objective counts the prefix length t1 corresponding to where x1,t1 = 1 in
all m of the terms, the next prefix of length t2 − t1 in m − 1 of them and so on. This
accurately accounts for the loads in these segments of the path according to the objective
function in f-SAND. Finally, b ≥ 1 only allows the paths to be of lengths longer by a
factor of b so keeps the optimal solution feasible. J

First, we can relax the above LP by replacing Pt with Tt which is the set of all trees of
size at most t. This is a relaxation as Pt ⊆ Tt. Lemma 15, shows that we can round LPbT to
get a O(b) approximation to latency-f-SAND.

I Lemma 15. Given a fractional solution (x, z) to LPbT , we can round it to a solution to
latency-f-SAND with cost at most O(b) times the cost of LPbT .

We defer the proof to the full version [18] due to space constraints but briefly sketch the
argument. Roughly, we sample the trees at geometric intervals and “eulerify” them to
produce a solution whose cost is not too much larger than the LP-objective.

Despite, being able to round the LP, we cannot hope to solve it effeciently due to the
exponential number of variables in the primal. We will use the dual to obtain a solution to a
relaxed version of the primal.

max
∑
j

αj −
∑
t

βt (DualbP)

s.t. αj ≤ t+
∑
t′≥t

θj,t′ ∀j, t (5)

∑
j∈P

θj,t ≤ βt ∀t, P ∈ Pbt (6)

α, β, θ ≥ 0. (7)

Following [4] it is suffient that an “approximate separation oracle” in the sense of Lemma 16
is sufficient to compute an optimal solution to LPbT .

I Lemma 16. Given a solution (α, β, θ), we can show that either (α, β, θ) is a solution to
Dual1T or find a violated inequality for (α, β, θ) for DualbT for b = O(log2 k logn).

Once again, we defer the proof to the full version [18], but sketch the argument. To
efficiently separate, we observe that constraint 6 can be recast as a covering Steiner tree
problem. Using approximation algorithms for this problem, we find a violated inequality for
a (stronger) constraint. This results in the “approximate separation oracle”.

I Theorem 17. There exists a O(log2 k logn) approximation to the Latency-SAND problem.

Proof. Combining Lemma 3.2 of [4] with Lemma 16, we can now compute an ε-additive
optimal solution to LPbT for b = O(log2 k logn). Using Lemma 15, we then achieve an O(b)
approximation for our problem. J
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Abstract
We study several problems related to graph modification problems under connectivity constraints
from the perspective of parameterized complexity: (Weighted) Biconnectivity Deletion, where we
are tasked with deleting k edges while preserving biconnectivity in an undirected graph, Vertex-
deletion Preserving Strong Connectivity, where we want to maintain strong connectivity of a
digraph while deleting exactly k vertices, and Path-contraction Preserving Strong Connectivity,
in which the operation of path contraction on arcs is used instead. The parameterized tractability
of this last problem was posed in [Bang-Jensen and Yeo, Discrete Applied Math 2008] as an open
question and we answer it here in the negative: both variants of preserving strong connectivity
are W[1]-hard. Preserving biconnectivity, on the other hand, turns out to be fixed parameter
tractable (FPT) and we provide an FPT algorithm that solves Weighted Biconnectivity Dele-
tion. Further, we show that the unweighted case even admits a randomized polynomial kernel.
All our results provide further interesting data points for the systematic study of connectivity-
preservation constraints in the parameterized setting.
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1 Introduction

Some of the most well studied classes of network design problems involve starting with a
given network and making modifications to it so that the resulting network satisfies certain
connectivity requirements, for instance a prescribed edge- or vertex-connectivity. This class of
problems has a long and rich history (see e.g. [1, 8]) and has recently started to be examined
through the lens of parameterized complexity. Under this paradigm, we ask whether a (hard)
problem admits an algorithm with a running time f(k)nO(1), where n is the size of the input,
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k the parameter, and f some computable function. A natural parameter to consider in this
context is the number of editing operations allowed and we can reasonably assume that this
number is small compared to the size of the graph.

To approach this line of research systematically, let us identify the ‘moving parts’ of the
broader question of editing under connectivity constraints: first and foremost, the network
in question might best be modelled as either a directed or undirected graph, potentially
with edge- or vertex-weights. This, in turn, informs the type of connectivity we restrict, e.g.
strong connectivity or fixed value of edge-/vertex-connectivity. Additionally, the connectivity
requirement might be non-uniform, i.e. it might be specified for individual vertex-pairs. The
constraint one operates under might either be to preserve, to augment, or to decrease said
connectivity. Finally, we need to fix a suitable editing operation; besides the obvious vertex-
and edge-removal, more intricate operations like edge contractions are possible.

While not all possible combinations of these factors might result in a problem that
currently has an immediate real-world application, they are nonetheless important data
points in the systematic study of algorithmic tractability. For example, if we fix the editing
operation to be the addition of edges (often called ‘links’ in this context) and our goal is
to increase connectivity, then the resulting class of connectivity augmentation problems has
been thoroughly researched. We refer to the monograph by Frank [8] for further results on
polynomial-time solvable cases and approximation algorithms. Under the parameterized
complexity paradigm, Nagamochi [16] and Guo and Uhlmann [10] studied the problem of
augmenting a 1-edge- connected graph with k links to a 2-edge-connected graph. Nagamochi
obtained an FPT algorithm for this problem while Guo and Uhlmann showed that this
problem, alongside its vertex-connectivity variant, admits a quadratic kernel. Marx and
Végh [14] studied the more general problem of augmenting the edge-connectivity of an
undirected graph from λ − 1 to λ, via a minimum set of links that has a total cost of at
most k, and obtained an FPT algorithm as well as a polynomial kernel for this problem.
Basavaraju et al. [3] improved the running time of their algorithm and further showed the
fixed-parameter tractability of a dual parameterization of this problem.

A second large body of work can be found in the antithetical class of problems, where we
ask to delete edges from a network while preserving connectivity. Probably the most studied
member of these connectivity preservation problems is the Minimum Strong Spanning
Spanning Subgraph (MSSS) problem: given a strongly connected digraph we are asked
to find a strongly connected subgraph with a minimum number of arcs. The problem is
NP-complete (an easy reduction from the Hamiltonian Cycle problem) and there exist a
number of approximation algorithms for it (see the monograph by Bang-Jensen and Gutin
for details and references [1]). Bang-Jensen and Yeo [2] were the first to study MSSS from
the parameterized complexity perspective. They presented an algorithm that runs in time
2O(k log k)nO(1) and decides whether a given strongly connected digraph D on n vertices and
m arcs has a strongly connected subgraph with at most m− k arcs provided m > 2n− 2.
Basavaraju et al. [4] extended this result not only to arbitrary number m of arcs but also
to λ-arc-strong connectivity for an arbitrary integer λ, and they further extended it to
λ-edge-connected undirected graphs.

We consider the undirected variant of this problem, however, we aim to preserve the
vertex-connectivity instead of edge-connectivity. As noted by Marx and Végh [14], vertex-
connectivity variants of parameterized connectivity problems seem to be much harder to
approach than their edge-connectivity counterparts.1 Moreover, even the complexity of the

1 Marx and Végh [14] compare [18] and [7] to [9] and [17] with respect to polynomial-time exact and
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problem of augmenting the vertex-connectivity of an undirected graph from 2 to 3, via a
minimum set of up to k new links remains open [14]. Our main result in this direction is the
first FPT algorithm for the following problem2:

Input: A biconnected graph G, k ∈ N, w∗ ∈ R>0 and a function w : E(G)→ R>0.
Problem: Is there a set S ⊆ E(G) of size at most k such that G − S is biconnected and

w(S) > w∗?

Weighted Biconnectivity Deletion parametrised by k

I Theorem 1. Weighted Biconnectivity Deletion can be solved in time 2O(k log k)nO(1).

We further show that this problem has a randomized polynomial kernelization when the
edges are required to have only unit weights. To be precise, all inputs for the unweighted
variant Unweighted Biconnectivity Deletion (UBD) are of the form (G, k,w∗, w),
where w∗ = k and w(e) = 1 for every e ∈ E(G).

I Theorem 2. UBD has a randomized kernel with O(k9) vertices.

Along with arc-additions and arc-deletions, a third interesting operation on digraphs is
the path-contraction operation which has been used to obtain structural results on paths in
digraphs [1]. To path-contract an arc (x, y) in a digraph D, we remove it from D, identify
x and y and keep the in-arcs of x and the out-arcs of y for the combined vertex. The
resulting digraph is denoted by D // (x, y). It is useful to extend this notation to sequences
of contractions: let S = (a1, a2, . . . , ap) be a sequence of arcs of a digraph D. Then D // S is
defined as (. . . ((D // a1) // a2) // . . . ) // ap. Since the resulting digraph does not depend on
the order of the arcs [1], this notation can equivalently be used for arc-sets.

Bang-Jensen and Yeo [2] asked whether the problem of path-contracting at least k arcs
to maintain strong connectivity of a given digraph D is fixed-parameter tractable. Formally,
the problem is stated as follows:

Input: A strongly connected digraph D and an integer k.
Problem: Is there a sequence S = (a1, . . . , ak) of arcs of D such that D // S is also strongly

connected?

Path-contraction Preserving Strong Connectivity parametrised by k

Our first result is a negative answer to the question of Bang-Jensen and Yeo. That is, we
show that this problem is unlikely to be FPT.

I Theorem 3. Path-contraction Preserving Strong Connectivity is W[1]-hard.

We follow up this result by considering a natural vertex-deletion variant of the problem and
extending our W[1]-hardness result to this problem as well. In this variant, the objective is
to check for the existence of a set of exactly3 k vertices such that on deleting these vertices
from the given digraph, the digraph stays strongly connected.

I Theorem 4. Vertex-deletion Preserving Strong Connectivity is W[1]-hard.

approximation algorithms.
2 Note that since 1-vertex-connectivity is trivially equivalent to 1-edge-connectivity, the 1-vertex-

connectivity case was proved to be FPT by Basavaraju et al. [4].
3 We require exactly k vertices rather than at least k vertices to be deleted since the one-vertex digraph

is strongly connected [1].
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Our Methodology. Our algorithm for Weighted Biconnectivity Deletion builds upon
the recent approach introduced by Basavaraju et al. [4] to handle connectivity preservation
problems, in particular the p-λ-Edge Connected Subgraph (p-λ-ECS) problem where
the objective is to delete k edges while keeping the graph λ-edge connected. Call an edge
deletable (we refer to it as non-critical in the case of vertex-connectivity) if deleting it keeps
the given (di)graph λ-edge connected, undeletable (critical) otherwise, and call an edge
irrelevant if there is a solution disjoint from the edge.

For an even value of λ and a λ-edge-connected undirected graph G, Basavaraju et al. [4]
proved that unless the total number of deletable edges is bounded by O(λk2), it is possible in
polynomial time to obtain a set F of k edges such that G− F is still λ-edge-connected. This
result does not hold for odd values of λ as can be seen, e.g., when λ = 1 and G is a cycle.
In this much more involved case, unless the total number of deletable edges is bounded by
O(λk3), it is possible in polynomial time to obtain either a set F of k edges such that G−F
is still λ-edge-connected or to identify an irrelevant edge.

Weighted Biconnectivity Deletion is similar to the case of odd λ as we find either
a solution or an irrelevant edge. The main difference between our FPT algorithm and the
one presented by Basavaraju et al. is the deep structural analysis necessitated by the shift
from edge-connectivity to vertex-connectivity: While in the former case the failure to find
a solution means that G can be decomposed into a ‘cycle-like’ structure as shown in [4],
in our case no such simple structure arises. Instead, we perform a careful examination of
mixed cuts in the graph, each of which comprises precisely one critical edge e and a vertex w
which we call the partner of e. We show that either a large number of critical edges share a
common partner or there is a large number of critical edges with pairwise distinct partners.
In the former case, we prove the existence of an irrelevant edge while in the latter case we
are able to construct a solution. Our result is based on a non-trivial combination of several
new structural properties of biconnected graphs and critical edges which we believe is of
independent interest and useful in the study of other connectivity-constrained problems.

The kernel stated in Theorem 2 relies on the powerful cut-covering lemma of Kratsch and
Wahlström [13] which has been central to the development of several recent kernelization
algorithms [12]. While Basavaraju et al. obtained a randomized compression for the p-λ-ECS
problem using sketching techniques from dynamic graph algorithms, we provide an alternative
approach and show that when dealing with biconnectivity it is also possible to obtain a
(randomized) polynomial kernel. We believe that this approach could be applicable for higher
values of vertex- connectivity and for other connectivity deletion problems, as long as one
is able to bound the number of critical or undeletable edges in the given instance by an
appropriate function of the parameter.

Further related work. In the Minimum Equivalent Digraph problem, given a digraph
D, the aim is to find a spanning subgraph H of D with minimum number of arcs such that
if there is an x-y directed path in D then there is such a path in H for every pair x, y of
vertices of D. Since it is not hard to solve Minimum Equivalent Digraph for acyclic
digraphs, Minimum Equivalent Digraph for general digraphs can be reduced to MSSS
in polynomial time. Chapter 12 of the monograph of Bang- Jensen and Gutin [1] surveys
pre-2009 results on Minimum Equivalent Digraph. The first exact algorithm for the
Mnimum Equivalent Digraph problem, running in time 2O(m), was given by Moyles and
Thompson [15] in 1969, where m is the number of arcs in the graph. More recently, Fomin,
Lokshtanov, and Saurabh [6] gave the first vertex-exponential algorithm for this problem, i.e.
an algorithm with a running time of 2O(n).
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Paper organization. This paper is a shortened version of the full paper [11]. Due to the
space limit, we omitted several results, proofs, and other material.

2 Preliminaries

Graphs. For an undirected graph G and vertex set S ⊆ V (G), we denote by E(S) the set
of edges of G with both endpoints in S. For a vertex set X ⊆ V (G), we denote by NG(X)
the set of vertices of V (G) \X which are adjacent to a vertex in X. A vertex in a connected
undirected graph is a cut-vertex if deleting this vertex disconnects the graph. A biconnected
graph is a connected graph on two or more vertices having no cut-vertices.

I Definition 5. Let G be a graph and x, y ∈ V (G) two vertices. An x-y separator (an x-y
cut) is a set S ⊆ V (G) \ {x, y} (respectively S ⊆ E(G)) such that there is no x-y path in
G− S. A mixed x-y cut is a set S ⊆ V (G) ∪E(G) such that |S ∩E(G)| = 1 and there is no
x-y path in G− S.

I Definition 6. Let G be a graph and x, y ∈ V (G). Let P be a set of internally vertex-disjoint
x-y paths in G. Then, we call P an x-y flow. The value of this flow is |P|. We say that an
edge e participates in the x-y flow P if e ∈

⋃
P∈P P .

We denote by κG(x, y) the value of the maximum x-y flow in G with the reference to G
dropped when clear from the context.

Let P be a set of paths in G which have an endpoint in Y and intersect only in x. Then,
we refer to P as an x-Y flow, with the value of this flow defined as |P|.

Directed graphs. We will refer to edges in a digraph as arcs. For a vertex x in a digraph D
we write N−D (x) and N+

D (x) to denote its in- and out-neighbours, respectively. A sink is a
vertex with no out-neighbours and a source is a vertex with no in-neighbours.

Parameterized Complexity. An instance of a parameterized problem Π is a pair (I, k)
where I is the main part and k is the parameter ; the latter is usually a non-negative integer.
A parameterized problem is fixed-parameter tractable if there exists a computable function f
such that instances (I, k) can be solved in time O(f(k)|I|c) where |I| denotes the size of I.
The class of all fixed-parameter tractable decision problems is called FPT and algorithms
which run in the time specified above are called FPT algorithms.

To establish that a problem under a specific parameterization is not in FPT (under
common complexity-theoretic assumptions) we provide parameter-preserving reductions from
problems known to lie in intractable classes like W[1] or W[2]. In such a reduction, an
instance (I1, k1) is reduced in FPT time to an instance (I2, k2) where k2 6 f(k1) for some
function f . In the context of this paper we will use that Independent Set under its natural
parameterization (the size of the independent set) is W[1]-hard [5].

A reduction rule for a parameterized problem Π is an algorithm that given an instance
(I, k) of a problem Π returns an instance (I ′, k′) of the same problem. The reduction rule is
said to be sound if it holds that (I, k) ∈ Π if and only if (I ′, k′) ∈ Π. A kernelization is a
polynomial-time algorithm that given any instance (I, k) returns an instance (I ′, k′) such
that (I, k) ∈ Π if and only if (I ′, k′) ∈ Π and |I ′|+k′ 6 f(k) for some computable function f .
The function f is called the size of the kernelization, and we have a polynomial kernelization
if f(k) is polynomially bounded in k. A randomized kernelization is an algorithm which is
allowed to err with certain probability. That is, the returned instance will be equivalent to
the input instance only with a certain probability.
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3 Preserving strong connectivity

In this section, we prove Theorem 3.

I Theorem 3. Path-contraction Preserving Strong Connectivity is W[1]-hard.

Proof. We reduce Independent Set to Path-contraction Preserving Strong Con-
nectivity.

Construction. Let (G, k) be an instance of Independent Set. We now define a digraph D
as follows. We begin with the vertex set of D. For every vertex v ∈ V (G), D has two vertices
v−, v+. For every edge e = (u, v) ∈ E(G), the digraph D has k + 2 vertices ê, ê1, . . . , êk+1.
Finally, there are 2k + 4 special vertices x, y, x1, . . . , xk+1, y1, . . . , yk+1. This completes the
definition of V (D). We now define the arc set of D (see Figure 1).

For every v ∈ V (G), we add the arc (v−, v+) in D .
For every i ∈ [k + 1], we add the arcs {(x, xi), (xi, x), (y, yi), (yi, y), (y, x)}.
For every edge e = (u, v) ∈ E(G) and i ∈ [k + 1], we add the arcs {(ê, êi), (êi, ê), (v−, ê),
(ê, v+), (u−, ê), (ê, u+)} in D .
For every v ∈ V (G), we add the arc (x, v−) and the arc (v+, y).

This completes the construction of the digraph D. Clearly, D is strongly-connected.
For an edge e = (u, v) ∈ E(G), we denote by Be the set of arcs {(v−, ê), (ê, v+),

(u−, ê), (ê, u+)} and by Fe, the set of arcs

Be ∪ {(ê, êi), (êi, ê)|i ∈ [k + 1]} ∪ {(u−, u+), (v−, v+), (x, v−), (v+, y), (x, u−), (u+, y), (y, x)}.

We refer to the subgraph of D induced by Fe as the edge-selection gadget in D corresponding
to e (see Figure 1). The intuition here is that, as we will prove formally, any solution in D
will contain at most one of the two arcs (u−, u+), (v−, v+).

Proof of correctness. We now argue that (G, k) is a yes-instance of Independent Set
if and only if (D, k) is a yes-instance of Path-contraction Preserving Strong Con-
nectivity. In the forward direction, suppose that (G, k) is a yes-instance of Independent
Set and let X ⊆ V (G) be a solution. Observe that S = {(v−, v+) | v ∈ X} is a pairwise
vertex-disjoint set of arcs. We claim that S is a solution for the instance (D, k). That is,
|S| > k and D // S is strongly connected. The former is true by definition. We prove the
latter, as the claim below, in the full version of the paper.

I Claim 7. D′ = D // S is strongly connected.

We now consider the converse direction. Suppose that (D, k) is a yes-instance of Path-
contraction Preserving Strong Connectivity and let S = {a1, . . . , ak} be a solution
for this instance. We require the following claim whose proof can be found in the full version
of the paper.

I Claim 8. For every edge e = (u, v) ∈ E(G), |S ∩ {(u−, u+), (v−, v+)}| 6 1. Furthermore,
S ⊆ {(v−, v+) | v ∈ V (G)}.

The claim above implies that ifX is a solution for the reduced instance of Path-contraction
Preserving Strong Connectivity, then the set S of arcs corresponds independent set in
G. In other words, (G, k) is a yes-instance of Independent Set. This proves the correctness
of the reduction and completes the proof of the theorem. J
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Figure 1 An illustration of the arcs in the reduced instance of Path-contraction Preserving
Strong Connectivity. The second figure only contains the arcs of the edge-selection gadget
corresponding to the edge e = (vi, vj) ∈ E(G). Vertices with a padlock have additional k +1 pendant
vertices with arcs in both directions.

4 Edge deletion to biconnected graphs

In this section, we consider the Weighted Biconnectivity Deletion problem on undi-
rected graphs. Recall that the problem is defined as follows:

Input: A biconnected graph G, k ∈ N, w∗ ∈ R>0 and a function w : E(G)→ R>0.
Problem: Is there a set S ⊆ E(G) of size at most k such that G − S is biconnected and

w(S) > w∗?

Weighted Biconnectivity Deletion parametrised by k

We refer to a set S ⊆ E(G) such that G − S is biconnected as a biconnectivity deletion
set of G. For an instance (G, k,w∗, w) of Weighted Biconnectivity Deletion and a
biconnectivity deletion set S of G, we say that S is a solution if |S| 6 k and w(S) > w∗.
The main result of this section is the following.

I Theorem 1. Weighted Biconnectivity Deletion can be solved in time 2O(k log k)nO(1).

We denote by κ(G) the vertex-connectivity of a graph G. Let G be a biconnected graph.
An edge e ∈ E(G) is called critical if κ(G− e) < 2. We denote by CriticalG(e) the subset of
E(G) comprising edges which are critical in G− e but not in G. We denote by CriticalG(∅)
the set of edges which are already critical in G. In all notations, we ignore the explicit
reference to G when it is clear from the context. We say that e is critical for a pair of
vertices u, v in G if u and v are non-adjacent and e participates in every u-v flow of value
two in G.

4.1 The FPT algorithm for Weighted Biconnectivity Deletion
To prove Theorem 1 we consider a more general version of the Weighted Biconnectivity
Deletion problem where the input also includes a set E∞ ⊆ E(G) and the objective is to
decide whether there is a solution disjoint from this set. Henceforth, instances of Weighted
Biconnectivity Deletion will be of the form (G, k,w∗, w,E∞) and any solution S is
required to be disjoint from E∞. We will refer to edges of E(G) \ E∞ as potential solution
edges. We say that a potential solution edge e is irrelevant if either the instance has no
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solution, or has a solution that does not contain e. For an instance I = (G, k,w∗, w,E∞)
and r ∈ N, we denote by HeavyI(r) the heaviest r potential solution edges of G with respect
to the function w. If I is clear from the context, we simply write Heavy(r) when referring to
HeavyI(r).

Observe that no edge from the set CriticalG(∅) can be part of a solution. As a result, we
assume without loss of generality that for any instance (G, k,w∗, w,E∞), the set CriticalG(∅)
is contained in E∞. Furthermore, since the edges in E∞ can never be part of a solution,
we assume without loss of generality that for every edge e ∈ E∞, w(e) = 0. The proof
of Theorem 1 is based on the following lemma which states that either a) the number of
potential solution edges in the instance is already bounded polynomially in k, or b) a ‘small’
set of the heaviest edges in the instance must intersect a solution, or c) there is an irrelevant
edge which can be found in polynomial time. For ease of presentation, let use define the
polynomial µ(x) := 20x3 + 46x2 + x for the rest of this section.

I Lemma 9. Let I = (G, k,w∗, w,E∞) be an instance of Weighted Biconnectivity
Deletion. If |E(G) \ E∞| > µ(k), then the set Heavy(µ(k)) contains either a solution edge
or an irrelevant edge which can be computed in polynomial time.

Proof. We give a brief proof sketch for the lemma. Note that the individual claims below do
not map directly to claims in the full paper, but are present to illustrate the important ideas.

The general strategy of our result, following Basavaraju et al. [4], is a greedy algorithm
that iteratively selects a non-critical edge e ∈ Heavy(µ(k)) for inclusion into a solution,
computes which other edges become critical by the deletion of e, and either proceeds to select
another edge for inclusion or halt, if either all edges of the remaining graph are critical or if
the solution already contains k edges. Let us first cover the latter case.

I Claim 10. If there exists a biconnectivity deletion set S ⊆ Heavy(µ(k)) with |S| = k, then
any solution to the instance must intersect Heavy(µ(k)).

Recall that this is one of the positive outcomes of Lemma 9. Therefore, we henceforth
assume that there are more than µ(k) potential solution edges, but that the greedy algorithm
terminates after fewer than k steps due to all edges of the remaining graph being critical. Let
f1, . . . , ft, t < k be the sequence of edges selected by the greedy algorithm. By a pigeonhole
argument, there must then be some index r ∈ [t] such that |CriticalG−{f1,...,fr−1}(fr)| >
20k2 + 46k. Let S = {f1, . . . , fr−1} be the edges deleted until this point, let e = fr = (x, y),
and let G′ = G−S. We proceed to analyse the structure implied by the edges in CriticalG′(e).

I Claim 11. The following hold.
1. The maximum value of an x-y flow in G′ is 2.
2. For any x-y flow P = {P1, P2} in G′, every edge of CriticalG′(e) participates in P.
3. For every edge e′ ∈ CriticalG′(e), say e′ ∈ E(P1), there is a mixed x-y cut {e′, w} in

G′ − e, and for every such mixed cut we have w ∈ V (P2).

In the latter case, we refer to w as a partner vertex of e′, and to the set of all partner
vertices of e′ as the partner set of e′. The crux of the remainder of the proof lies in analysing
the interaction between different mixed cuts and partner sets in G′. For convenience,
we fix an order on P1 and P2 where we traverse both paths from x to y. We denote
Ê = CriticalG′(e)∩E(P1), and assume without loss of generality that |Ê| > 10k2 + 23k. The
following is the most important structural observation on which our proof is based. For each
edge ei ∈ Ê, let Vi denote the partner set of ei.
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I Claim 12. For every pair of edges ei, ej in Ê, where ei lies before ej on P1, |Vi ∩ Vj | 6 1,
and if Vi ∩ Vj contains such a common vertex w, then w is the last vertex of Vi and the first
vertex of Vj on P2.

Our proof now splits into two fundamentally different cases. Either the flow P contains a
long sequence of pairwise essentially non-interacting mixed cuts, or there are many edges of
Ê with pairwise identical partner sets. We cover the first case now.

I Claim 13. Let e1, . . . , e3k+1 be a sequence of edges of Ê, traversed in this order from x to
y, such that for every i ∈ [3k] the edges ei and ei+1 have distinct partner sets. Then the set
F = {e1, e4, . . . , e3k−2} is a biconnectivity deletion set for G.

By Claim 10, this would imply Lemma 9, so it remains to consider the case when Claim 13
fails to apply. In fact, Claim 13 applies whenever there is a sufficiently large number of
distinct partner sets for edges of Ê; hence we may assume that there is a large number of
distinct edges of Ê with identical partner sets. Let Ê′ ⊆ Ê be a set of Ω(k) edges with
pairwise identical partner sets. Then by Claim 12, there is a single vertex w ∈ V (P2) such
that for any e′ ∈ Ê′ the partner set of e′ is simply {w}. We show that this case implies an
irrelevant edge rule. For simplicity, we illustrate the rule for the case that S = ∅.

I Claim 14. Assume that G = G′ and |Ê′| > 2k + 4. Let e′ = arg mine′∈Ê′ w(e′). Then for
any biconnectivity deletion set S′ of size k in G we have |S′ ∩ Ê′| 6 1, and if e′ ∈ S then
there exists an edge e′′ ∈ Ê′ \ {e′} such that the set S′′ = (S′ \ {e′})∪{e′′} is a biconnectivity
deletion set with |S′′| = k and w(S′′) > w(S′). Hence e′ is an irrelevant edge in G.

By additional arguments omitted from this sketch, a similar result also holds for the
general case of S 6= ∅, and under the assumption that |Ê| > 10k2 + 23k we can show that
either Claim 13 or Claim 14 applies. Hence in every case we find either an irrelevant edge or
a large biconnectivity deletion set, and Lemma 9 follows. J

Given Lemma 9, Theorem 1 is proved as follows. Let I = (G, k,w,w∗, E∞) be an instance
of Weighted Biconnectivity Deletion. If the number of potential solution edges in
this instance is already bounded by µ(k), then we simply enumerate all k-sized subsets of
this set (there are 2O(k log k) choices) and check in polynomial time whether one of these
subsets is a solution. Otherwise, we invoke Lemma 9 and either correctly conclude that the
set Heavy(µ(k)) contains a solution edge, or we compute an irrelevant edge e in polynomial
time. In the first case we branch on the set Heavy(µ(k)), reduce the budget k by 1 and the
target weight w∗ accordingly and recursively solve the resulting instance. In the second case,
we add the edge e to the set E∞ (thus decreasing the set of potential solution edges) and
repeat.

4.2 A randomized kernel for Unweighted Biconnectivity Deletion
We now present our randomized kernel for the Weighted Biconnectivity Deletion
problem where instances are of the form (G, k,w∗, w,E∞) where w(e) = 1 for every e ∈
E(G) \ E∞, w(e) = 0 for every e ∈ E∞, and w∗ = k. This version of the problem will be
referred to as Unweighted Biconnectivity Deletion and instances of this problem will
henceforth be of the form (G, k,E∞) where a solution is a biconnectivity deletion set of size
k contained in E(G) \E∞. We continue to refer to the set E(G) \E∞ as the set of potential
solution edges and assume without loss of generality that at any point, any edge in the set
CriticalG(∅) is already part of E∞. Finally, recall that a linkage from A to B in a digraph

ESA 2017



47:10 Path-Contractions, Edge Deletions and Connectivity Preservation

D, where A and B are vertex sets, is a collection of |A| = |B| pairwise vertex-disjoint paths
originating in A and terminating in B.

Our kernelization relies on a result of Kratsch and Wahlström [13]. Before we are able to
state it formally, we need the following definitions. Let us define a potentially overlapping
A-B vertex cut in a digraph D to be a set of vertices C ⊆ V (D) such that D−C contains no
directed path from A \ C to B \ C. For any digraph D and set X ⊆ V (D), a set Z ⊆ V (D)
is called a cut-covering set for (D,X) if for any A,B,R ⊆ X, there is a minimum-cardinality
potentially overlapping A-B vertex cut C in D −R such that C ⊆ Z.

I Lemma 15 (Corollary 3, [13]). Let D be a directed graph and let X ⊆ V (D). We can
identify a cut-covering set Z for (D,X) of size O(|X|3) in polynomial time with failure
probability O(2−|V (D)|).

We first give a randomized kernelization that outputs an instance whose size is bounded
polynomially in the number of the potential solution edges in the input instance.

I Lemma 16. Unweighted Biconnectivity Deletion has a randomized kernel with
number of vertices bounded by O(|E(G) \ E∞|3).

Proof. Let F = E(G) \ E∞ be the set of potential solution edges. Now, the kernelization
task essentially consists of retaining enough information from the input graph G to verify
for any set S ⊆ F , whether S is a biconnectivity deletion set for G. Observe that this is
equivalent to verifying whether there exists an edge e = (u, v) ∈ S, such that the maximum
value of a u-v flow in G− S is less than 2. We show an equivalent formulation of this as a
question about the existence of linkages in an auxiliary digraph, followed by an application
of Lemma 15.

For the formulation, we create a digraph DG,F from G and F . We refer to this digraph
as D when G and F are clear from the context. In the first step, subdivide every edge
e ∈ F with a new vertex xe. That is, for an edge e = (u, v) ∈ F , we create a new vertex
xe, remove the edge e and add edges (u, xe) and (v, xe). Let G1 be the resulting undirected
graph. In the second step, replace every edge (u, v) in E(G1) by a pair of arcs (u, v), (v, u).
Finally, for every vertex v incident to any edge of F in G, add vertices v+, v− and add
arcs from v+ to all vertices in NG1(v) and from all vertices in NG1(v) to v−. Let D be
the resulting digraph. Note that N+

D (v−) = ∅ and N−D (v+) = ∅. Let XE = {xe | e ∈ F},
XV = {v+, v−, v | e ∈ F, e = (u, v)} and X = XE ∪XV . We now relate solutions for the
given instance and linkages in D. The following assertion is proved in the full version of the
paper.

I Claim 17. For any S ⊆ F , S is a biconnectivity deletion set for G if and only if for every
edge (u, v) ∈ S there is a linkage from {u+, u} to {v−, v} in D − {xe | e ∈ S}.

Let Z ⊆ V (D) be the cut-covering set for (D,X), as computed by the algorithm of Lemma 15.
Having in hand the set Z, we define the set Y = (Z ∩ V (G)) ∪ V (F ). Note that Z could
contain vertices from XV , but we want Y to be a subset of V (G). Therefore, we first add
to Y those vertices in Z which are also vertices in G and then add the vertices of V (F ).
Our objective now is to reduce G down to what is commonly known as the torso graph of
G defined by Y (see [13]). We now make this precise in the form of reduction rules. In the
rest of the proof of the lemma, we fix Z to be a set computed using Lemma 15 and let Y
be as defined above. We now state three reduction rules which will be applied on the given
instance in the order in which they are presented.

I Reduction Rule 18. If k = 0, then return an arbitrary yes-instance of constant size.
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I Reduction Rule 19. Suppose that Reduction Rule 18 has been applied on the given instance.
If there is an edge (u, v) ∈ F such that G contains a u-v path avoiding all edges of F and all
vertices of Y \ {u, v}, then delete (u, v) from G and reduce the budget k by 1. That is, return
the instance (G− {(u, v)}, k − 1, E∞).

I Reduction Rule 20. Suppose that Reduction Rule 18 and Reduction Rule 19 have been
applied exhaustively on the given instance. For every pair u, v ∈ Y such that (u, v) /∈ E(G)
and there is a u-v-path in G that is internally vertex-disjoint from Y , we add the edge (u, v).
Finally, return the instance (G′, k, E′∞), where G′ = G[Y ] and E′∞ = (E∞ ∩ E(G′)) ∪
(E(G′) \ E(G)).

The soundness of Rule 18 is trivial and we move on to prove the soundness of the remaining
two rules.

I Claim 21. Reduction Rules 19 and 20 are sound.

Proof. Let e = (p, q) ∈ F be an edge which is deleted in an application of Reduction Rule 19.
Observe that in order to argue the soundness of this reduction rule, it suffices to argue that
e is part of some solution for the given instance (if there exist any). Let S be an arbitrary
subset of F containing e such that S \ {e} is a solution. If S itself is a biconnectivity deletion
set then we may correctly conclude that e is part of some solution for the given instance.
Suppose that this is not the case.

Recall that by the previous claim, S is a biconnectivity deletion set for G if and only if
there is a linkage from {u+, u} to {v−, v} in D − {xe | e ∈ S} for every (u, v) ∈ S. Since
we are in the case that S is not a biconnectivity deletion set, there is a (u, v) ∈ S, with
A = {u+, u}, B = {v−, v}, and R = {xe | e ∈ S} such that there is no linkage from A to
B in D −R. Since S \ {e} is a biconnectivity deletion set, we may assume without loss of
generality that u = p and v = q and furthermore, κG−S(p, q) = 1. In addition, the fact that
Z is a cut-covering set for (D,X) implies that Z contains a vertex w such that C = {w} is a
minimum-cardinality potentially overlapping A-B vertex cut in D −R. It is straightforward
to see that w /∈ {p, q, p+, q−} since otherwise, there will be at least one path from A to B
which is disjoint from w. Finally, since κG−S(p, q) = 1, it follows that every p-q path in
G−S intersects w. If w ∈ XE then we know that it corresponds to an edge in F . Otherwise,
it corresponds to a vertex in Y . In either case, we obtain a contradiction to the applicability
of Reduction Rule 19 on the edge (p, q), completing the proof of soundness for this rule.

We now argue the soundness of Reduction Rule 20. To do so, we prove that S ⊆ F is a
solution for (G, k,E∞) if and only if it is a solution for (G′, k, E′∞). Let D1 = DG,F and let
D2 = DG′,F .

In the forward direction, suppose that S is a solution for (G, k,E∞). By Claim, 17,
it follows that for every edge (u, v) ∈ S, there is a linkage from {u+, u} to {v−, v} in
D1 − {xe | e ∈ S}. Fix such an edge (u, v) and let the paths in the linkage be P1, P2. If
we demonstrate such a linkage in D2, then we are done. This can be achieved as follows.
Let i ∈ {1, 2} and consider a pair of vertices xi, yi ∈ V (Pi) ∩ Y such that the subpath of Pi

from xi to yi has all its internal vertices disjoint from Y . Then, we know that the graph
G′ contains the edge (xi, yi) and hence the digraph D2 contains the arc (xi, yi). We replace
the subpath from xi to yi with the arc (xi, yi) and we do this for every such subpath of Pi.
It is straightforward to see that what results is indeed a linkage from {u+, u} to {v−, v} in
D2 − {xe | e ∈ S}. Hence, we conclude that S is a solution for (G′, k, E′∞).

The same argument can be reversed for the converse direction in order to convert, for
any (u, v) ∈ S, a linkage from {u+, u} to {v−, v} in D2 − {xe | e ∈ S} to a a linkage from
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{u+, u} to {v−, v} in D1 −{xe | e ∈ S}. This completes the proof of soundness of Reduction
Rule 20. J

The above claim implies that if (G′, k′, E(G′) \ F ′) is the instance obtained by exhaustively
applying the three reduction rules above, then (G′, k′, E(G′) \ F ′) is indeed equivalent to
(G, k,E∞). Furthermore, the size |V (G′)| = O(|F |3) and the randomized polynomial running
time follow from Lemma 15. This completes the proof of the lemma. J

I Theorem 2. UBD has a randomized kernel with O(k9) vertices.

Proof sketch. Let (G, k,E∞) be the given instance and let F = E(G) \ E∞ be the set of
potential solution edges in this instance. We present reduction rules which reduce F (while
maintaining equivalence) to size O(k3); the result then follows from Lemma 16.

If |F | = O(k3), we are done. Otherwise, following the approach described in Subsection
4.1 in the full version [11], we greedily construct a biconnectivity deletion set in G, at each
step keeping track of the edges that become critical. That is, we let Ŝ = {f1, . . . , fr} ⊆ F
be a set greedily constructed as follows. The edge f1 is an arbitrary edge in F and for each
2 6 i 6 r, fi is an arbitrary edge which is not critical in G− {f1, . . . , fi−1}. As earlier, we
terminate this procedure after k steps if we manage to find edges {f1, . . . , fk} or earlier if for
some r < k, every remaining edge of F is critical in G− {f1, . . . , fr}.

If r = k, then we identify the instance as a yes-instance and return an arbitrary yes-
instance of constant size. Otherwise, if there is an i ∈ [r] such that G − {f1, . . . , fi} is
biconnected and |CriticalG−{f1,...,fi−1}(fi)| > 20k2 + 46k, then we execute the case analysis,
as in Subsection 4.1 in the full version [11], and in polynomial time, either find 3k+ 1 distinct
partner sets or an irrelevant edge. In the latter case, we simply remove this irrelevant edge
from F (add it to the set E∞). Finally, if we reach a case with at least 3k+ 1 distinct partner
sets, we can find a biconnectivity deletion set S ⊆ F with |S| > k in polynomial time (see
the full version), and since we are dealing with the unweighted case, we can simply identify
the instance as a yes-instance and return an arbitrary yes-instance of constant size.

The only remaining case is that this greedy algorithm fails to produce a large enough
solution yet never marks too many edges as critical at once. That is, it terminates in r < k

steps and never marks more than 20k2 + 46k edges as critical in step i for any i ∈ [r]. This
implies that |F | 6 20k3 + 46k2 + k = O(k3), completing the proof of the theorem. J

5 Conclusions

Our results on Path-contraction Preserving Strong Connectivity and Weighted
Biconnectivity Deletion provide additional data points for the algorithmic landscape of
graph editing problems under connectivity constraints and its application in network design.

Since we established that Path-contraction Preserving Strong Connectivity is
W[1]-hard for general digraphs, we ask whether the problem becomes FPT when restricted to
planar digraphs or other structurally sparse classes.

Concerning the parameterized algorithm for Weighted Biconnectivity Deletion,
we ask whether the dependence of 2O(k log k) can be improved to single-exponential or proven
to be optimal. Naturally, we would further like to know whether we can reach beyond
biconnectivity and extend our algorithm to higher values of vertex-connectivity. Is it possible
to obtain a similar algorithm on digraphs?

Finally, regarding our polynomial kernel for Unweighted Biconnectivity Deletion,
we ask whether it is possible to obtain a deterministic kernel. It is also left open whether the
weighted case admits a polynomial kernel.
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The results presented in this paper raise more questions than they answer, a clear
indication that connectivity constraints are far from properly explored under the paradigm
of parameterized complexity. As such, the topic offers exciting but challenging opportunities
for further research.
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Abstract
In this paper, we study the problem of opening centers to cluster a set of clients in a metric
space so as to minimize the sum of the costs of the centers and of the cluster radii, in a dynamic
environment where clients arrive and depart, and the solution must be updated efficiently while
remaining competitive with respect to the current optimal solution. We call this dynamic sum-
of-radii clustering problem.

We present a data structure that maintains a solution whose cost is within a constant factor
of the cost of an optimal solution in metric spaces with bounded doubling dimension and whose
worst-case update time is logarithmic in the parameters of the problem.
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1 Introduction

The main goal of clustering is to partition a set of objects into homogeneous and well
separated subsets (clusters). Clustering techniques have long been used in a wide variety of
application areas, see for example the excellent surveys [25, 21].

There are several ways to model clustering. Among them, the problem of sum-of-radii (or
sum-of-diameter) clustering has been extensively studied: the clients are located in a metric
space and one must open facilities to minimize facility opening cost (or keep the number of
open facilities limited to at most k) plus the sum of the cluster radii (or, in other applications,
cluster diameters). To give a concrete example, imagine a telecommunications agency setting
up mobile towers that provide wireless access to selected clients, incurring costs for setting
up towers as well as for configuring a tower to serve the customers lying within a certain
distance, where that latter contribution to the cost increases with the maximum distance
served by the tower.

Assume the number of facilities is limited to k. For sum-of-diameter clustering, Doddi,
Marathe, Ravi, Taylor and Widmayer [15] prove hardness of approximation to within better
than a factor of 2. More recently, NP-hardness was proved for the sum-of-radii problem even
for shortest path metrics on weighted planar graphs [24], or, in the case of sum-of-diameters,
even for metrics of constant doubling dimension [17]. Turning to approximation algorithms,
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Charikar and Panigraphy [13] design and analyze an O(1) approximation algorithm for
sum-of-radii and for sum-of-diameter clustering with k clusters. They start from a linear-
programming relaxation, use a primal-dual type approach and, along the way, design a
bicriteria algorithm. They also design an incremental algorithm that handles arrivals of
clients, merging clusters as needed so that at any time the clustering has O(k) clusters and
the cost is O(1) times the optimal cost for k clusters.

There have been many other papers on sum-of-radii or sum-of-diameters clustering. A few
papers focus on the problems of partitioning the clients into a constant number of clusters
as quickly as possible [20, 24]. Some papers concern themselves with bicriteria results such
as [2]. Consider the special case of a metric that is Euclidean in two dimensions. Lev-Tov
and Peleg [23] give a polynomial time approximation scheme (PTAS) for the related problem
of covering input clients by a min-cost set of disks centered at the servers, where both clients
and potential servers are located in the Euclidean plane and are part of the input. Recently,
Behsaz and Salavatipour [4] gave a PTAS for the minimum sum of diameters problem on
the plane with Euclidean distances. See also [1, 18] for other work on the two-dimensional
geometric setting.

The problems are complicated by situations where the set of clients may change over
time, for example documents in a very large database that must be efficiently searchable and
maintained. This then leads to various models: online [14, 16], incremental[13], streaming,
or dynamic. The dynamic setting, where clients may not only arrive but also depart, has
been empirically studied at least since 1993 [12], and is the focus of the present paper, with
the joint goals of maintaining clusterings whose objective value is close to optimal, and of
updating the cluster quickly after each event.

This paper can be interpreted as part of a recent focus on exploiting primal-dual techniques
in the dynamic setting. In the online setting (where new elements arrive but never depart),
primal-dual techniques are extremely successful [11]. Initially it seemed that such techniques
were inherently restricted to settings with arrivals only, and no departures, but there recently
has been exciting progress to handle the dynamic setting as well, starting with [8, 7] and
continuing with [3, 9, 26, 10]. Of particular notice for us is recent work by Gupta et al [19] for
the set cover problem (and Bhattacharya et al [6], restricted to vertex cover) in the dynamic
setting where elements arrive and depart.

In this paper, we study the dynamic sum-of-radii clustering problem, defined as follows:
The original input consists of a (possibly infinite) set V of potential clients or points, a finite
set F ⊆ V of facilities with an opening cost fj for each facility j, and a metric d over V .
For the online input, a set C of live clients evolves over time: at each timestep t, either a
new client arrives and is added to C, or a client from C departs and is removed from C, or
a query is made for the approximate cost of an optimal solution (cost query), or a query
asks for the entire current solution (solution query). For the output, at each timestep the
algorithm maintains a set of open facilities, each open facility j being associated to a radius
Rj , such that every client of C is covered, i.e. belongs to some open ball B(j, Rj), and the
goal is to minimize the cost, namely, the sum over open facilities j of fj +Rj .

The dynamic sum-of-radii clustering problem can actually be interpreted as a special
case of dynamic set cover: our metric space is the universe, our clients are the elements,
and for each center c and radius r, the ball B(c, r) defines a set of cost r consisting of those
clients covered by the ball. The dynamic set cover algorithm from [19], specialized to our
setting, maintains competitive ratio O(logn) and has update time O(f logn), where f is the
maximum number of sets containing any element; [19] also gives an O(f3) approximation
in time O(f2) for set cover, and for the related dynamic k-coverage problem, they give a
constant approximation fully dynamic algorithm with O(f logn) update time.
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The doubling dimension of a metric space (V, d) is said to be bounded by κ if any ball
B(x, r) in (V, d) can be covered by 2κ balls of radius r/2 [22]. For example, D-dimensional
Euclidean space has doubling dimension Θ(D).

In this paper we give an algorithm for constant doubling dimension, that maintains a
solution whose cost is within a constant factor of the optimal cost, and with logarithmic update
times for arrival or departure events. The algorithm answers cost queries in constant time
and solution queries in linear time in the size of the solution, up to a factor of log(W/fmin),
where W is the diameter of the metric space and fmin is the minimum opening cost of any
facility (which is strictly positive without loss of generality, since facilities of cost 0 can
remain open at all times). The universe is known ahead of time, and only the collection of
active clients changes dynamically. Note that for the above mentioned algorithm by [19] f
would be Θ(22κ log(W/fmin)).

I Theorem 1. There exists an algorithm for the dynamic sum-of-radii clustering problem,
when clients and facilities live in a metric space with doubling dimension κ, such that at
every timestep the solution has cost at most O(22κ) times the cost of an optimal solution at
that time, and such that the update time is O(26κ log(W/fmin)), where W is the diameter of
the space and in the current number of clients and fmin is the minimum opening cost. A cost
query can be answered in constant time, a solution query in time O(s log(W/fmin)), where s
is the size of the output.

The 26κ factor in the update time is due to fixed-radius nearest neighbor query that we
solve using only the basic data structure already present in the algorithm. However, it can
be improved – for example in case of finite metric spaces where a O(1) lookup table over the
space is possible (e.g., graphs with the shortest path distance), the update time reduces to
O(log(W/fmin)) at the cost of additional preprocessing time. More generally, if the metric
space allows to answer fixed-radius nearest neighbor queries in time O(d), then the update
time becomes O(d log(W/fmin)), at the cost of preprocessing time necessary to construct the
oracle.

We show the following structural property for the sum-of-radii clustering problem (The-
orem 8): there exists a collection Π of pairs 〈j, r〉 where j ∈ F and r is a non-negative integer,
each with an associated area A(j, r) of V , and an abstract tree T over Π, with the following
properties:
1. T has height O(log(W/fmin)) and degree at most 24κ.
2. The collection A of areas is a laminar family, its laminar structure is given by T , and for

each area, A(j, r) ⊆ B(j, 7 · 5r)
3. For any subset C of V , there exists a collection S of areas covering C and whose cost,∑

〈j,r〉∈S fj + 7 · 5r, is O(22κ) times the optimal cost for C.

Our algorithm has two phases. First, in the preprocessing phase (Section 2), the algorithm
constructs Π, the laminar family of areas A and corresponding abstract tree T . Thanks
to the last property above, it suffices to restrict attention to solutions that use only areas
A(j, r) for coverage, with 〈j, r〉 ∈ Π. Second, in the dynamic phase (Section 3), while clients
arrive and depart, the algorithm maintains an optimal set of pairs 〈j, r〉 of Π such that the
corresponding areas A(j, r) cover all current clients. The hierarchical structure of T makes
this simple, so that each update takes time proportional to the height times 26κ.

The main contribution of the paper is the definition of Π and the corresponding laminar
family of areas A. The latter is reminiscent of the cover tree data structure of [5]. However,
the cover tree is tailored to the nearest neighbor problem and its covers, to the best of our
knowledge, lack the structural properties of areas that we need to prove the approximation
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factor for the sum-of-radii clustering problem. We expect that our new structure can be used
for other clustering-type problems.

2 Preprocessing phase

2.1 Discretization of radii
Given the set of clients C ⊆ V , let OPT denote the cost of an optimum solution for C.

I Lemma 2. For all C ⊆ V , there exists a solution such that every ball B(j, R) has
fmin ≤ fj ≤ R ≤ 5 ·W , the radius R is an integer power of 5, and the cost is O(OPT ).

Proof. Consider the unknown optimal solution. If some ball is such that max(fj , R) > W

then replace the entire solution by a ball centered at the facility of cost fmin and of radius
W . Else, for each ball B(j, R) of the optimal solution:

if fj > R then increase the radius of the ball from R to fj
Increase R to the smallest integer power of 5 that is greater than or equal to R.

The new solution satisfies the desired constraints, and the cost has increased by a factor of
10 at most. J

A logradius is an integer r such that fmin ≤ 5r ≤ 5 ·W . Let ρmin = blog5 fminc and
ρmax = dlog5 W e. Then the number of different logradii, ρmax − ρmin + 1, is O(log(W/fmin)).

2.2 Maximal subsets of distant facilities
We construct a set Π of pairs 〈j, r〉 where j is a facility and r is a logradius, satisfying the
following properties:
1. (Covering) For every facility j ∈ J and every logradius r such that fj ≤ 5r, there exists a

facility j′ ∈ Jr with d(j, j′) ≤ 5r+1 and 〈j′, r〉 ∈ Π.
2. (Separating) For all distinct 〈j′, r〉, 〈j′, r〉 ∈ Π, we have d(j, j′) > 5r+1.

For each logradius r ∈ [ρmin, ρmax]:
let J ′r = {j ∈ F | fj ≤ 5r}.
let Jr be a maximal subset of J ′r such that any two facilities in Jr are at distance greater
than 5r+1.

Π←
⋃
r{〈j, r〉 | j ∈ Jr}.

Note that for r = ρmax, the set Jr contains just one facility.

2.3 Hierarchical decomposition of Π

Construct an abstract tree T over Π as follows (with ties broken arbitrarily):
the root of T is the unique pair 〈j, ρmax〉.
for all r < ρmax and j ∈ Jr:

let j′ be the facility of Jr+1 closest to j
parent(j, r)← 〈j′, r + 1〉

By construction, T has height at most ρmax − ρmin + 1 and the parent of a pair 〈j, r〉 is a
pair of the form 〈j′, r + 1〉.

The following Lemma is simple, but it captures the essential way in which using larger
balls will greatly simplify the structure, and is the main step towards constructing a laminar
set of areas for covering clients.



M. Henzinger, D. Leniowski, and C. Mathieu 48:5

I Lemma 3. (Nesting of balls) If parent(j, r) = 〈j′, r+ 1〉, then B(j, 7 · 5r) ⊆ B(j′, 7 · 5r+1).

Proof. We have 〈j, r〉 ∈ Π, so j ∈ J ′r ⊆ J ′r+1. By the Covering property of Π the maximum
distance from any point in B(j, 7 · 5r) to j′ is d(j, j′) + 7 · 5r ≤ 5r+2 + 7 · 5r ≤ 7 · 5r+1. J

I Lemma 4. For any point p and radius r, the set of pairs

Π(p, r) = {〈j, r〉 ∈ Π | d(p, j) < 2α5r+1}

has at most 2(α+1)κ elements, where κ is the doubling dimension of the metric space.

Proof. By definition of doubling dimension, B(p, 2α · 5r+1) can be covered by a set of at
most (2κ)α+1 balls of radius (1/2) · 5r+1. By the Separating property of Π, any two pairs
〈j, r〉 of Π(p, r) are at distance greater than 5r+1 from each other, hence must belong to
different balls of the set, and so Π(p, r) has cardinality at most (2κ)α+1. J

I Lemma 5. A node 〈j, r〉 of T has at most 24κ children

Proof. Children of 〈j, r〉 have logradius r−1, so by the Covering property of Π their distance
to j is at most 5r+1, so they belong to Π(j, r − 1) for α = 3, and so Lemma 4 applies. J

2.4 Hierarchical decomposition of V into a laminar family of areas
Recall that a collection A of sets is laminar if for any two A,B ∈ A, either A ∩ B = ∅ or
A ⊆ B or B ⊆ A. We partition V into a laminar family of areas, denoted by A, such that
no two same-logradius areas overlap.

For each 〈j, r〉 ∈ Π, initialize A(j, r)← ∅.
For each point p ∈ V :

let r∗ be minimum such that there exists pairs 〈j, r∗〉 with p ∈ B(j, 7 · 5r∗).
Among all such pairs, let 〈j∗, r∗〉 denote the one minimizing d(p, j∗).
Add p to the set A(j∗, r∗) and to every set A(j′, r′) with (j′, r′) ancestor of (j∗, r∗) in
T .

I Lemma 6. For every 〈j, r〉 ∈ Π, A(j, r) ⊆ B(j, 7 · 5r).

Proof. Let p ∈ A(j, r). Either it’s been added directly, in which case it belongs to B(j, 7 ·5r),
or it’s been inherited, in which case it also belongs to it by Lemma 3. J

I Lemma 7. For every subset C ⊆ V of clients there exists S ⊆ Π such that C is covered by
∪{A(j, r) : 〈j, r〉 ∈ S} and

∑
〈j,r〉∈S(fj + 7 · 5r) = O(22κ ·OPT ).

Proof. Let S∗ be a solution of cost O(OPT ) satisfying the properties of Lemma 2. For each
ball B(j, 5r) of S∗, put in S all the pairs 〈j′, r〉 ∈ Π such that d(j, j′) ≤ 8 · 5r.

We claim that C is covered by ∪{A(j′, r) : 〈j′, r〉 ∈ S}. Indeed, consider a client p ∈ C and
a ball B(j, 5r) of S∗ containing p. By the Covering property of Π, there exists 〈j′, r〉 ∈ Π with
d(j, j′) ≤ 5r+1. Then d(p, j′) ≤ 5r+1 + 5r < 7 · 5r, and so in the definition of areas covering
p we must have r∗ ≤ r. Along the path from 〈j∗, r∗〉 to the root of T , there exists a pair for
logradius r, 〈j′′, r〉. By definition of areas and by Lemma 6, p ∈ A(j′′, r) ⊆ B(j′′, 7 · 5r), so
d(j, j′′) ≤ d(j, p) + d(p, j′′) ≤ 8 · 5r, and therefore 〈j′′, r〉 ∈ S and p is covered.

In terms of costs, since all these areas are associated to pairs within distance 8·5r < 2·5r+1

from j, by Lemma 4 for α = 1, there are at most 22κ of them. J
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By Lemma 6 and the definition of areas, we note that ∪JrA(j, r) = ∪JrB(j, 7 · 5r), so we
also give hereafter an equivalent description of the same laminar family, illustrating the way
in which the parent-child relations in tree T and the proximity relations in the metric space
are balanced against one another. (This also has the advantage of being constructive even if
V is infinite).
Partition ∪Jρmin

B(j, 7 · 5ρmin), using the facilities of Jρmin as centers, into Voronoi cells
A(j, ρmin).
For r ∈ (ρmin, ρmax]:

Partition ∪j∈JrB(j, 7 · 5r) \ ∪j∈Jr−1B(j, 7 · 5r−1), using the facilities of Jr as centers, into
Voronoi cells A(j, r).
For each 〈j, r〉 ∈ Π, A(j, r)← A(j, r) ∪

⋃
{A(j′, r − 1) : parent(j′, r − 1) = 〈j, r〉}

The construction of this section can be summarized in the following structural Theorem.

I Theorem 8. Let a metric space (V, d) of doubling dimension κ be given, as well as a
subset F of elements of V called facilities, with an associated cost fj for each j ∈ F . Then
there exists an abstract tree T whose nodes are indexed by facilities j ∈ F and non-negative
integers r ≥ 0, and, for each node 〈j, r〉, an associated area A(j, r) ⊆ V with the following
properties
1. T has height O(log(W/fmin)) and degree at most 24κ, and for each 〈j, r〉 ∈ T and its

parent node 〈j′, r + 1〉, B(j, 7 · 5r) ⊆ B(j′, 7 · 5r+1).
2. A is a laminar family, its laminar structure is given by T , and for each area A(j, r),

A(j, r) ⊆ B(j, 7 · 5r)
3. For any subset C of V , for any collection of balls B centered at facilities of F and

covering C, there exists a collection S of areas covering C, such that
∑
〈j,r〉∈S fj + 7 · 5r =

O(22κ)
∑
B(j,R)∈B(fj +R).

3 Data structure

3.1 Solving the offline restricted problem
Given C ⊆ V , we wish to compute the solution of minimum cost among all solutions that are
restricted to covering C using areas A(j, r) for 〈j, r〉 ∈ Π, where using area A(j, r) has cost
fj + c2 · 5r. We call that the restricted problem. By Theorem 8 the optimal restricted cost is
a O(22κ) approximation of the optimal (unrestricted) cost.

Computing the optimal solution to the restricted problem in an offline manner is straight-
forward, thanks to the laminar structure of the candidate areas. We first compute, for each
node 〈j, r〉 of T , the cost cj,r = fj +c2 ·5r of area A(j, r), as well as the number nj,r of clients
that are in area A(j, r) but not in any of the areas of children nodes: since areas A(j′, r−1) are
all disjoint by laminarity, we have nj,r = |C∩A(j, r)|−∪〈j′,r−1〉:parent(j′,r−1)=j |C∩A(j′, r−1)|.
We then compute the optimal cost xj,r of covering the clients of C ∩A(j, r) using only areas
of the subtree of T rooted at 〈j, r〉, using the following bottom-up recurrence:

For 〈j, r〉 ∈ Π in bottom-up order in T :

xj,r =
{
cj,r if nj,r > 0
min (cj,r,

∑
{xj′,r−1 : 〈j, r〉 = parent(j′, r − 1)}) otherwise.

Indeed, if nj,r 6= 0 then the solution must use area A(j, r); but then by laminarity area
A(j, r) covers all clients in that subtree, so no other area is needed in the solution, and
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the cost is exactly the cost cj,r of A(j, r). If on the other hand nj,r = 0, then we have an
alternative possibility: we could do without A(j, r). Then, by disjointness of sibling areas
the problem separates into independent subproblems, one for each child of 〈j, r〉, hence the
recurrence simply sums their costs.

The cost of the optimal restricted solution is then xj,ρmax for the root 〈j, ρmax〉 of T .
Given cj,r and xj,r, computing the optimal restricted solution, a collection S of areas, is

done recursively:

S(j, r) =


∅ if xj,r = 0
{A(j, r)} if xj,r = cj,r

∪{S(j′, r − 1) : parent(j′, r − 1) = 〈j, r〉} otherwise.

Thus the algorithm to compute the optimal set S of areas covering C in the restricted problem,
given the values of cj,r, xj,r explores a tree T ′ that, as it is a partial subtree of T , also has
height at most O(log(W/fmin)) and degree at most 24κ; moreover its internal nodes are
all ancestors of areas added to the solution S, so the running time to compute S itself is
O(24κ log(W/fmin)|S|).

3.2 The dynamic data structure
The dynamic data structure supports insertions of clients, deletions of clients, queries for the
cost of the optimal restricted solution, and queries for the set of open facilities and areas of
the optimal restricted solution.

The algorithm will maintain two dynamic data structures:
1. a list of the currently existing clients C ⊆ V , with, for each client p, the 〈j, r〉 ∈ Π such

that p ∈ A(j, r) and r is minimum; and
2. an annotated dependency tree TA, keeping for each node v = 〈j, r〉 the following additional

information:
a. its cost cv = fj + 7 · 5r,
b. the number nv of currently existing clients that belong to A(j, r) but not to any

descendant area,
c. the value xv, which is the minimum cost needed to cover all clients belonging to A(j, r)

using only areas A(j′, r′) for 〈j′, r′〉 ∈ Π, and
d. the value yv =

∑
u child of v xu.

To initialize the data structures, from the preprocessing phase the algorithm is given the
set Π of pairs 〈j, r〉, as well as the laminar family of areas A with its dependency tree T
using the following representation, which can be easily computed in time linear in its size:
(1) An array of size ρmax − ρmin + 1, keeping for each logradius r ∈ [ρmin, ρmax] a list of all
the facilities of Jr, and (2) An annotated tree data structure obtained from T by setting
every nv, xv, yv equal to 0, and cj,r = fj + 7 · 5r. The initial set of clients is C = ∅.

Answering queries is done as in Section 3.1.
We next describe the client deletions. When a client p is deleted, we start from 〈j, r〉 in

TA, such that p ∈ A(j, r) and r is minimum; we decrement nv and we traverse the path from
〈j, r〉 up to the root of TA, updating xv and yparent(v) for every node visited along the way
using the recurrence from Section 3.1. This takes time proportional to the height of the tree,
O(log(W/fmin)).
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Similarly, when a client p is inserted, we first find 〈j, r〉 in TA, such that p ∈ A(j, r) and
r is minimum, in a way to be described shortly; we increment nv, and then we traverse the
path from 〈j, r〉 up to the root of TA, similarly updating xv and yparent(v).

Thus, it only remains to determine the pair 〈j∗, r∗〉 with smallest logradius such that
p ∈ A(j∗, r∗). By Lemma 6, p ∈ B(j∗, 7 · 5r∗). Thus we will first find all pairs 〈j, r〉 such
that p ∈ B(j, 7 · 5r), based on them determine r∗, and then look for 〈j∗, r∗〉 in that set of
balls. Thanks to Lemma 3, the first part can be done using a simple recursive algorithm
starting from the root of TA (see below). The second part simply uses the definition of areas,
i.e., it finds the pair 〈j∗, r∗〉 where j∗ has with minimum distance to p out of all pairs 〈j, r∗〉
withp ∈ B(j, 7 · 5r∗).

Pairs(p, j, r) =
{
∅ if p /∈ B(j, 7 · 5r)
{〈j, r〉} ∪

⋃
{Pairs(p, j′, r − 1) : parent(j′, r − 1) = 〈j, r〉} otherwise.

let r∗ be minimum such that there exists pairs 〈j, r∗〉 in the set Pairs(p, jroot, ρmax).
Among all such pairs, output the pair 〈j∗, r∗〉 minimizing d(p, j∗).

The running time is dominated by the first part, which is O(24κ) times the number of
pairs 〈j, r〉 such that p ∈ B(j, 7 · 5r). There are log(W/fmin) possible values of r. For each
r, by Lemma 4 there are at most 22κ pairs 〈j, r〉 ∈ Π such that p ∈ B(j, c2 · 5r) and the
algorithm has to test the O(24κ) children of each of them. Thus the running time to do an
insertion is O(26κ log(W/fmin)).
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Abstract
We study the problem of finding shortest paths in the plane among h convex obstacles, where
the path is allowed to pass through (violate) up to k obstacles, for k ≤ h. Equivalently, the
problem is to find shortest paths that become obstacle-free if k obstacles are removed from the
input. Given a fixed source point s, we show how to construct a map, called a shortest k-path
map, so that all destinations in the same region of the map have the same combinatorial shortest
path passing through at most k obstacles. We prove a tight bound of Θ(kn) on the size of this
map, and show that it can be computed in O(k2n logn) time, where n is the total number of
obstacle vertices.
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1 Introduction

Given a set of polygonal obstacles in the plane and an integer parameter k, which k obstacles
should we remove to obtain the shortest obstacle-free path between two points s and t?
Equivalently, what is the shortest path that is allowed to violate (pass through) up to k
obstacles? We call a path violating at most k obstacles a k-path, generalizing a traditional
obstacle-free path, which is a 0-path. More precisely, we assume a polygonal environment P
containing h disjoint convex obstacles in the plane, with a total of n vertices, all lying inside
a rectangle R (the outer boundary). The complement of the obstacles within R is called
free space. Given a fixed source point s in free space, we want to compute shortest k-paths,
for k ≤ h, to all other points of free space. The description of these shortest paths can be
compactly encoded as a finite partition of the plane, called the shortest k-path map. We use
the notation πk(t) to denote the shortest k-path from s to t, with the fixed source s being
implicit, and denote the length of this path by dk(t).

In this paper, we investigate structural and computational aspects of shortest k-paths.
The problem differs from the 0-path problem in nontrivial ways even in the plane. In
particular, two shortest 0-paths originating at a common source cannot intersect, by the
triangle inequality, and this non-crossing property of 0-paths is an essential ingredient for
computing them in optimal time [15]. In contrast, two shortest k-paths can cross each
other, for any k > 0. The geometric k-path problem is interesting both theoretically, as
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49:2 Shortest Paths with Obstacle Violations

part of the broad category of optimization with violations [6,21] or network augmentation
problems [2, 10], and practically, for applications such as robot motion planning, where it
may be beneficial to modify a robot’s environment to shorten frequently used paths. (The
geometric k-path problem can be seen as a more complex form of network augmentation,
since removal of a single obstacle can create many additional “edges” in the path space.)
Besides robot motion planning, the problem can also model situations in which the obstacles
are “avoidable” at additional cost, for instance by paying a bridge or tunnel toll in a road
network.

Our approach to solving the k-path problem is to compute a shortest k-path map SPM k,
which is a partition of the plane into equivalence classes of cells (regions), where all destination
points inside a cell have the same combinatorial structure of shortest k-paths to s. Once
the map is known, the shortest k-path to any destination can be computed by performing a
point location query on the map [8,18].

Our Results. We show that SPM k has O(kn) regions and O(kn) edges and that this
bound is tight (Section 3). We present an O(k2n logn) time algorithm for computing SPM k

(Section 4), using the continuous Dijkstra framework, which constructs each SPM j for
0 ≤ j ≤ k sequentially. The running time of the algorithm is optimal for k = O(1). Due to
space limitations, some of the proofs are omitted from this version of the paper.

Related Work. The problem of computing shortest paths in the presence of obstacles has
a long history in computational geometry, dating back to the 1970s. The case of polygonal
obstacles in the plane, in particular, has been a subject of intense research [3, 4, 11, 17, 22, 23,
25,26,28], culminating in an optimal O(n logn) time algorithm using the continuous Dijkstra
framework [15]. Many other variations of the problem, including shortest paths inside a
simple polygon [12,14,19], among weighted regions [24], and among curved obstacles [7, 16],
have also been studied. The general flavor of our problem is related to geometric optimization
where a small number of constraints can be violated. This line of work has been pursued
in [6, 13, 21, 27], in the context of low-dimensional linear programming, separability with
outliers, and geometric optimization. Our problem can also be viewed as a form of network
augmentation, where the goal is to add edges to the network to improve connectivity, diameter,
or spanning ratio etc. [1, 2, 5, 10].

The prior work most closely related to our research is a recent result by Maheshwari et
al. [20], which presents an O(n3) time algorithm for computing the 1-violation path inside
a simple polygon: that is, a shortest path inside a simple n-gon that is allowed to leave
the polygon once. Our work deals with finding k-violation paths, for arbitrary k, in an
environment containing possibly O(n) convex obstacles.

2 Properties of k-paths

Given a point p in free space, a shortest k-path πk(p) connects s to p, crosses the interiors
of at most k obstacles, and has minimum length among all such paths. On occasion, we
also need to reason about paths crossing exactly k obstacles, and we refer to such a path
as an (= k)-path. We begin with the easy observation that the problem can be solved in
polynomial (quadratic) time, using a Dijkstra-like search on a “visibility graph.”

I Theorem 1. Given a polygonal domain P with h convex obstacles and n vertices, a source
point s and a destination t, we can compute a shortest k-path from s to t in worst-case time
O((kn+ h2) logn+ kh2).
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Figure 1 Two intersecting 1-paths.

The visibility graph-based approach is inherently quadratic in the worst case, because
the number of obstacles can be h = Ω(n). It also is limited to computing the shortest k-path
to only one point (or a fixed set of points) at a time, although it can be extended to support
queries in O(h(k + logn)) time apiece after quadratic preprocessing.

The main result of our paper is an algorithm to compute shortest k-paths from s to
all points of free space in sub-quadratic time O(k2n logn). We do this by computing a
shortest k-path map of free space; we also prove a tight bound of Θ(kn) on the combinatorial
complexity of SPM k. Note that the length of a shortest k-path to a point is unique, although
some points (along bisectors forming the boundaries of regions in the shortest path map)
can be reached by multiple shortest k-paths. For simplicity, however, we assume that the
obstacles are in general position, so that the shortest k-path to each obstacle vertex is unique.
(Otherwise, if a vertex is reached from s by multiple shortest k-paths, we pick one of them
arbitrarily.)

We begin by highlighting a conceptual difficulty with shortest k-paths. The shortest paths
to two different destinations can cross each other, which poses an inherent difficulty for the
continuous Dijkstra framework of geometric shortest paths [15], since that method depends
on the fact that two Euclidean shortest paths from a common source cannot intersect.

I Lemma 2. There exist obstacle configurations such that for two destinations t1, t2 in free
space, the shortest k-paths πk(t1) and πk(t2) cross each other, for k > 0.

Proof. The construction, shown in Figure 1, has two identical obstacle bundles A and B
placed parallel to the y-axis. Each bundle contains four vertical strips with perforations
(single-point openings that split the original strip into disjoint sub-strips). The horizontal
spacing between the strips in a bundle is infinitesimal, but for clarity the strips are shown
separated in the figure. The points s and t both lie on the x-axis at distance 1 to the left and
right of bundles A and B, respectively. We show that there are two shortest 1-paths from s

to t, which cross each other, as shown in the figure. We then conclude that by perturbing t
up and down slightly we obtain two destination points t1 and t2 with their shortest 1-paths
crossing, as claimed.

Within each bundle, the openings form an upper and a lower group. In the upper group,
strips 2 and 3 have an opening at y = (1 + δ/2), and strips 1 and 4 have openings at y = 1.
In the lower group, all except strip 3 have an opening at y = −1. If the distance between
the bundles is D, then a shortest 0-path has length 2

√
2 + D + 2δ, and a shortest 2-path

has length 2
√

2 + D. A path with exactly one crossing in an upper group has length at
least 2

√
2 + D + 3δ/2, and a shortest path with one crossing in a lower group has length

2
√

2 +
√
D2 + 4 + δ < 2

√
2 + D + 2/D + δ. By choosing D = 10, say, and δ = 4/D, we

can force a shortest 1-path to go through exactly one group of each type. This gives two

ESA 2017
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intersecting shortest k-paths, π1(t) and π′1(t). Now, let t1 (resp. t2) be a destination point
obtained by shifting t vertically up (resp. vertically down) infinitesimally. Then it is easy to
see that the shortest 1-paths π1(t1) and π1(t2) cross each other. J

Fortunately, as we show in this section, shortest k-paths can always be decomposed into
appropriate non-crossing subpaths to which the continuous Dijkstra method can be applied,
working on multiple copies of free space connected using the metaphor of a k-level garage.
Toward that goal, we establish a series of lemmas.

I Lemma 3. A shortest path with exactly k crossings can be decomposed into a shortest path
with exactly (k − 1) crossings, a straight line segment inside an obstacle, and a shortest path
with zero crossings.

Proof. Let π = (v1, v2, . . . , vm) be an (= k)-path from v1 to vm. Going backward from
vm along π, let vi be the first vertex such that the segment vi−1vi intersects one or more
obstacles. Let H be the obstacle that is closest to vi along the segment vi−1vi. By the
convexity of H, the segment vi−1vi intersects H at two points, which we call p and q, and
the segment pq lies entirely within H. By subpath optimality, the path from v1 to p is a
shortest path with exactly k − 1 crossings; by construction, the segment pq lies inside the
obstacle; and the subpath from q to vm crosses no obstacles. J

I Corollary 4. In a shortest k-path, the path segments preceding and following any obstacle
crossing are collinear with the path segment inside the obstacle.

Lemma 3 allows us to break any πk(t) into a (k−1)-path πk−1(p), a subpath line segment
pq, and an obstacle-free subpath between q and t. We label the last two subpaths with
the number of obstacles crossed by the prefix of the path, and call these labels the prefix
counts. In particular, the prefix count for the subpath pq is k − 1, and the prefix count for
the subpath from q to t is k. By a recursive application of Lemma 3, we can decompose πk(t)
into 2k + 1 disjoint subpaths whose labels are in non-decreasing order.

The key consequence of this decomposition is the following lemma, which says that
subpaths with the same prefix count cannot cross.

I Lemma 5. Let πk(t) and π′k(t′) be two subpaths whose prefix counts are the same. Then
πk(t) and π′k(t′) do not cross each other.

Proof. The proof follows from a simple application of the triangle inequality: if two subpaths
with the same prefix count intersect, then we can reconnect the prefix of each path to the
suffix of the other, and possibly perform a local shortcut, either shortening at least one path
or leaving them the same length but without a crossing. Since the intersecting subpaths are
either both inside some obstacle or in free space, avoiding the intersection does not increase
the number of obstacle crossings for either path. For instance, in the example in Figure 1,
the intersecting edges of the two crossing shortest k-paths have different prefix counts. J

The next two lemmas establish properties of shortest k-paths that will be useful later.

I Definition 6. A point p is k-visible from the source s if the segment sp passes through at
most k obstacles. A k-visibility edge is a shortest k-path with exactly one edge.

I Lemma 7. If p is not (k − 1)-visible from s, then the path πk(p) must be an (= k)-path.
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Proof. By contradiction. Suppose πk(p) passes through fewer than k obstacles. Since p is
not (k−1)-visible from s, πk(p) must have at least one bend. The path can then be shortened
by going through the obstacle causing this bend, thereby increasing the number of crossings
by 1. The resulting path is shorter than πk(p) and has at most k crossings, contradicting the
optimality of πk(p). J

Let dk(p) be the length of a shortest k-path to a point p. Clearly, a path that crosses j
obstacles and contains at least two segments can be made even shorter if it is allowed to
pass through more obstacles. Thus, it follows that for any point p that is not (k − 1)-visible
from s, we must have dj(p) > dj+1(p), for j < k.

I Lemma 8. For any point p that is not (k − 1)-visible from s, the lengths of the shortest
j-paths form a decreasing sequence:

d0(p) > d1(p) > . . . > di(p) > . . . > dk(p)

3 Shortest Path Map SPM k: Properties and Bounds

Having established the basic properties of shortest k-paths, we now begin our discussion of
the shortest k-path map SPM k.

I Definition 9. Given a shortest k-path πk(p), we define the k-predecessor of p to be the
vertex of P (including s) that is adjacent to p in πk(p). The partition of free space into
connected regions with the same k-predecessor is called the shortest k-path map, and denoted
SPM k. The subset of SPM k for which the shortest path πk(p) to every point p has exactly
k crossings is called the shortest (= k)-path map and denoted by SPM =k. See Figure 2 for
an example.

Unlike SPM 0, in which the predecessor of a region is always inside or on the boundary
of the region, the predecessor of a region in SPM k may lie outside the region. Moreover,
multiple regions in SPM k may have the same predecessor. (See Figure 2.) Thus, we need
to maintain additional information with polygon vertices to disambiguate the predecessor
relation. In particular, let v be the k-predecessor of p, namely, the vertex adjacent to v in
πk(p). Suppose the line segment vp crosses (k − i) obstacles, for some 0 ≤ i ≤ k. Then the
length dk(p) of πk(p) is the sum of the length of the i-path to v and the length of segment vp.
We need to maintain the values di(v) for all obstacle vertices v and all integers i = 0, 1, . . . , k.
In other words,

For a point p in SPM =k, we identify the k-predecessor of p by the pair (v, i), where
v is a vertex of P and i ∈ {0, 1, . . . , k}, such that dk(p) = di(v) + |vp| and the segment
vp crosses (k − i) obstacles.

Thus, the total number of k-predecessors is O(kn). However, this alone does not bound
the number of regions in SPM =k because multiple regions can have the same k-predecessor
and the same crossing sequence. Toward our goal of bounding the combinatorial complexity
of the map, let us begin with the notion of k-visibility.

We define Vk to be the region consisting of k-visible points, which is star-shaped and
therefore simply connected (Figure 3). Now if πk(p) crosses fewer than k obstacles, then by
Lemma 7, p must lie in Vk−1. The path πk(p) is a straight line segment and the k-predecessor
of p is s. Therefore, we have the following.
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s

Figure 2 The 1-predecessor
of all points in the shaded re-
gion of SPM 1 is (s, 0).

s

Figure 3 The boundary ∂V1 of the region V1 is dash-dotted,
and it encloses the boundary ∂V0, which is shown with dotted
segments. The region V1 \ V0 is shown shaded gray.

I Lemma 10. All points p such that πk(p) has fewer than k crossings lie in Vk−1. Outside
of Vk−1, SPM k is the same as SPM =k, the shortest path map with exactly k crossings.

This simplifies our discussion and allows us to decompose SPM k into two distinct regions,
Vk−1 and SPM =k. In the following, we study structural properties of these regions and use
them to compute upper bounds on their respective sizes. Later, we combine them to compute
an upper bound on the size of the map SPM k.

3.1 k-Visibility Region
We first bound the complexity of the boundary of Vk, the region visible from s by a segment
crossing at most k obstacles.

I Lemma 11. The number of edges on the boundary ∂Vk is O(n+ h) = O(n).

Proof. Every vertex of ∂Vk is either a vertex of P or a projection of one of the 2h tangents
from s to an obstacle of P . The edges on the boundary ∂Vk are therefore sub-segments of
the tangents or parts of obstacle boundaries. Each projection vertex belongs to a segment of
∂Vk collinear with s, and the endpoint x farther from s is the end of a maximal segment sx
that crosses exactly k obstacles. Therefore, each of the 2h tangents gives rise to at most one
segment of ∂Vk and at most two vertices. J

More interestingly, the bound on the total complexity of these regions is less than the
sum of the individual bounds.

I Lemma 12. The total number of edges on all ∂Vi, for 0 ≤ i ≤ k, is O(n+ hk).

By connecting s to all vertices on boundary ∂Vk−1, we can easily decompose Vk−1 into
constant complexity regions in SPM k.

3.2 The k-Level Garage and the Structure of SPM =k

We now introduce our main idea for computing the shortest k-path map. By Lemma 3, an
(= k)-path from s to a point p is the concatenation of a (k − 1)-path to the boundary of
some obstacle H, a shortest path inside H, and a shortest path in free space from the other
side of H to p. This suggests an incremental construction of SPM =k from SPM =(k−1). We
describe this construction using the metaphor of a k-level parking garage with elevators.1

1 The garage metaphor is also used in the context of finding homotopically different paths in [9], but the
properties and technical details of our k-garage are quite different.
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The idea is to create multiple copies of the input polygonal domain and stack them in levels
such that the shortest paths at each level have the same prefix count and therefore do not
intersect. The planar subdivision of free space at the top level is SPM =k.

I Definition 13 (k-garage). We construct the k-garage structure by stacking k copies (or
floors) of the input polygonal domain P on top of one another, with special connections at
the obstacle boundaries. We connect the obstacle H on floor i to its counterpart on floor
i+ 1 such that any path that enters H on floor i can exit only on the next higher floor—in a
sense, obstacles act as elevators.

Our algorithm to construct SPM =k makes use of the continuous Dijkstra method, which
simulates the expansion of a unit speed wavefront from the source s in free space. The
wavefront at time T contains all points p whose shortest path distance from s is T . The
boundary of the wavefront is a set of circular arcs called wavelets, each generated by an
obstacle vertex (including s) already covered by the wavefront. The generating vertex v
is called the generator of the wavelet and is identified by the pair (v, w), where w is the
time at which v was reached by the wavefront. The generators can be thought of as sources
additively weighted with delays, since they start emitting wavelets at time w after the start
of the simulation. The locus of the meeting points of two adjacent wavelets is a bisector
curve. Taken together with the obstacle boundaries, bisector curves partition free space into
regions of the shortest path map.

We extend the continuous Dijkstra method to our k-garage structure. Each level of the
garage is a plane with polygonal obstacles on which wavefronts propagate as usual, but the
wavelets can now move to higher floors by entering the obstacles (elevators). More precisely,
when the wavefront hits an obstacle H, it is absorbed by the outer boundary of H and
is immediately re-emitted into the interior of H. When that wavefront reaches the inner
boundary on the other (previously unreached) side of H, it is absorbed and immediately
re-emitted on the next higher floor of the garage. This vertical movement therefore adds no
delay. In this modified setting, the wavefront at time T contains points on all floors that are
at distance T from the source.

The region Vk−1 is removed from the polygonal domain on floor k of the k-garage because
the shortest k-path is known for every point p in Vk−1—it is simply the line segment sp—and
leaving these points in the polygonal domain on floor k would create redundant copies of
this path. We defer the exact details of our algorithm to Section 4. In the following, we note
some properties of the k-garage structure useful to our algorithm.

1. If π is a shortest s–t path from s on floor 0 to t on floor k, then the downward projection
π↓ of π, obtained by projecting π into the planar domain P , is a shortest k-path to t. (To
see this, suppose for contradiction we have another k-path πc from s to t that is shorter.
Then by applying Lemma 3 recursively, we can break πc into 2k + 1 disjoint subpaths
ordered by their prefix counts. We now lift the paths into the levels of the garage and
concatenate them in order: if the prefix counts of the current and the next subpath are
the same, join their common endpoint at the same level as the prefix count; otherwise
join their common endpoint at the next level. This transforms the path πc into a shortest
path π↑c from s on floor 0 to t on floor k. Since the vertical movement between the garage
floors incurs no delay, the lifted path π↑c is shorter than π, which is a contradiction.)

2. Since wavefront propagation on floor i is affected only by wavelets coming from floors
below it, we can think of wavefront propagation on floor i as occurring in a polygonal
domain with multiple sources. On floor i > 0, all sources correspond to generators of
wavelets coming from lower floors.
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3. To compute the sources at floor i > 0, we need to consider only wavelets coming from
floor i− 1. This follows from Lemma 8, which implies that even if wavelets were allowed
to ascend multiple floors in an elevator, a wavelet from floor i− 1 would reach floor i no
later than the wavelets from other lower floors.

4. The planar subdivision formed by bisectors of colliding wavelets on floor i is the shortest
path map for (= i)-paths, SPM =i. Note that since the obstacles are convex, a shortest
path to a point on floor i cannot cross the same obstacle (on any floor) more than once,
or else it can be made even shorter.

This suggests a natural way of computing the shortest path map SPM =k. We construct
maps SPM =i for i = 0, 1, . . . , k iteratively. Each iteration i > 0 is defined by ordinary
shortest path propagation with a set of sources that come from the previous iteration. In the
following section we use these observations to compute a bound on the size of the shortest
k-path map SPM k.

3.3 Complexity of SPM k

The shortest k-path map SPM k on the top floor of the k-garage is precisely SPM =k in the
portion of free space that is outside Vk−1, as shown in Lemma 7. The boundary of Vk−1
has linear size, and so we only need to bound the complexity of SPM =k. To bound the
complexity of SPM =k, we consider the embedded planar graph Gk formed by SPM =k, Vk−1,
and the obstacle polygons. We note the following property of planar graphs, which is a direct
consequence of Euler’s formula.

I Lemma 14. Let f be the number of faces in a planar graph G = (V,E). If all the vertices
of G have degree three or more, then the size of G is O(f).

Observe that the “interesting” vertices in Gk are the points where bisectors meet obstacle
boundaries or meet each other, and therefore have degree at least three. If f is the number
of faces, then by Lemma 14 the complexity of the map due to these vertices is O(f). In
addition to this, Gk can also have O(n) vertices of degree two corresponding to the vertices
of obstacle polygons, giving a total complexity bound of O(f + n).

Therefore, in order to compute a bound on the complexity of SPM =k, it suffices to bound
the number of faces f in the graph Gk. We begin with the following well-known result [15].

I Lemma 15. The shortest path map of m sources weighted by their delays in a polygonal
domain with n vertices and h holes has f ≤ m+ n+ h ≤ m+ 2n faces. By planarity, the
total complexity of the map is O(f + n).

The key to the proof of the preceding lemma is that each shortest path map region is
star-shaped and connected to the predecessor of all points in the region. Since the total
number of predecessors is at most (m+ n), the number of faces due to these regions is also
at most (m + n). Crucially, this lemma does not immediately apply to SPM =k, because
some predecessors of regions on the kth floor belong to regions below the kth floor. That is,
some of the m sources are not in the polygonal domain, so the argument that each region
is connected to its predecessor does not hold. Fortunately, the argument of Lemma 15 is a
topological one, and we can create a topological domain in which the argument applies.

Every point p ∈ ∂P outside of Vk−1 is labeled by a (k− 1)-crossing distance dk−1(p). If p
belongs to an obstacle H, and there exists some q ∈ ∂H such that dk−1(q) + |qp| < dk−1(p),
then πk(p) may reach p by passing through H. The wavefront that determines SPM =k will
be initialized with a weighted source that reaches p by “elevator” passing through H. If
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q ∈ ∂H minimizes dk−1(q) + |qp|, then the predecessor of q on πk−1(q) is the generator of
the wavelet that first reaches p in the wavefront. We partition each edge of ∂H into maximal
sub-edges with the same predecessor. For each sub-edge with predecessor v, we construct a
triangular “flap” by drawing the segments from the sub-edge endpoints to v. Shortest paths
propagate from v toward the kth garage floor inside the flap, and in the pseudo-polygonal
domain obtained by gluing all the flaps onto the boundary of free space, each shortest path
map region is connected to its predecessor. If these flaps were projected into the plane, they
would likely overlap, but topologically they do not alter the structure of the domain, and
they add only two edges per flap.

I Lemma 16. Let P be a polygonal domain with n vertices and h holes. If P is extended by
gluing at most m triangular flaps to its boundary, then the shortest path map of m sources
weighted by their delays in this extended polygonal domain has f ≤ m+ n+ h ≤ m+ 2n
faces and total complexity O(m+ n).

The preceding lemma applies to the propagation of shortest paths on each floor of the
k-garage and also to propagation inside the obstacles (elevators). In both cases the key to
bounding the complexity of an iterated construction is bounding the number of sources that
propagate into the next level, whether elevator or garage floor. In each elevator and on
each garage level i > 0, the sources are located on the domain boundary. For simplicity we
partition the sources at obstacle vertices, so each source is a maximal (sub-)edge ` on some
obstacle boundary ∂H, with an associated generator (v, w). We refer to such a source as a
boundary source and represent it by the triple (v, w, `). Shortest paths from a source (v, w, `)
enter the domain through edge `, and their predecessor is vertex v with weight (delay) w.
As noted above, each boundary source defines a triangular flap glued onto the boundary of
the propagation domain; the flap is the convex hull of ` and v.

When boundary sources propagate into some domain (either P or the interior of an
obstacle), they define a shortest path map S in the domain. We say that if the region of S
corresponding to a source s = (v, w, `) intersects a domain edge, then s claims the intersection
interval on that edge. An entry claim of a source (v, w, `) is a claim on edge ` itself; entry
claims can be ignored for further propagation, since a path that enters the domain through `
and exits through the same edge can be shortened. Exit claims (ones on edges other than
`) define the sources for the next level of shortest path propagation. Within any edge, a
maximal sequence of exit claims with the same source is called an exit claim cluster. If an
exit claim cluster on an edge e has source (v, w, `), then the corresponding boundary source
at the next level is (v, w, `′), where `′ is the minimal subsegment of e containing the cluster.
As noted, entry claims inside `′ do not affect shortest path propagation at the next level.

I Lemma 17. Let S be the shortest path map obtained by propagating m boundary sources
into a polygonal domain with n vertices. Then the number of exit claim clusters of S is at
most m+O(n).

We are now ready to bound the complexity of SPM =k.

I Lemma 18. The number of faces fk in SPM =k is O(n(k+ 1)). The complexity of SPM =k

has the same asymptotic bound.

Proof. The proof is by induction. Our goal is to show that there exists a constant C such
that the number of faces fk in SPM =k is at most Cn(k + 1) for all k ≥ 0.

We begin with the inductive step. Let m be the number of exit claim clusters in
SPM =(k−1). This is the number of boundary sources in “elevator” propagation across the
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A BS

. . . . . .
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Figure 4 A shortest k-path map with complexity Ω(nk). Bundle A has 2k black strips and k
gray strips; bundle B has k strips. The thick strip S has Ω(n) openings. A shortest k-path π(p)
from s is shown. Observe that π(p) crosses (k − 1) strips in bundle A and therefore can cross only
the first strip in bundle B.

obstacle interiors, going from level k − 1 to level k. By Lemma 17, the resulting number
of exit claim clusters is m′ = m+O(n). But m′ is the number of boundary sources in the
construction of SPM =k, and once again by Lemma 17, the resulting number of exit claim
clusters is m′′ = m′ +O(n) = m+O(n), that is, m′′ ≤ m+ c1n for some constant c1.

To establish the base case, recall that a shortest path map with no crossings (SPM 0)
has complexity O(n), which implies that the number of exit claims on its boundary is O(n),
i.e., at most c2n for some constant c2. Combining the base case and inductive step, we
have shown that the number of exit claim clusters on the boundary of SPM =k is at most
c2n+ k · c1n. The number of faces of SPM =k is at most equal to the number of boundary
sources, which is at most Cn(k + 1), for C = max(c1, c2). Lemma 14 establishes the total
complexity bound. J

AMatching Lower Bound. We will now bound the size of SPM k from below by constructing
a map with Ω(nk) regions. We construct an arrangement of obstacles as shown in Figure 4.
We start with two obstacle bundles A and B placed parallel to the y-axis. Within each
bundle, the horizontal spaces between strips are infinitesimal, but they are shown enlarged
for clarity. The source s lies on the x-axis with bundle A placed right next to it. Bundle A
consists of 3k perforated strips. In the first 2k strips, the odd numbered ones have openings
at y = 0 and the even numbered ones have openings at y = −0.5. The next k strips have an
opening at y = 0. Bundle B is placed at a distance D to the right of A and consists of k
strips with no openings.

The last k strips in bundle A ensure that shortest k-paths starting at s must exit from
the opening of the last strip in A (denoted by y∗); a path that crosses the last strip in A at
some point other than y∗ can be shortened while preserving the same number of crossings.
Observe that a shortest path starting at s can reach y∗ with i crossings, where 0 ≤ i ≤ k.
However, each crossing avoided results in an additional length of 1 unit. Therefore a shortest
path with i crossings at y∗ has an additional length of (k− i) units. Also note that a shortest
path with i crossings prior to y∗ can cross the first (k − i) of the k strips in bundle B, but
cannot cross any farther. Therefore, to the right of strip j in bundle B, we get a region with
k-predecessor (y∗, k − j) and a total path length (to a point on the x-axis) of D + j. This
gives us a total of k regions.

We extend this construction to Ω(nk) regions by adding a vertical strip S, which acts as
a path splitter. This special strip has a total of m single-point openings at y = 0, 1, . . . ,m,
denoted by yi. We place S at an infinitesimal distance to the left of bundle B, creating k new
regions for each opening of S. Note that in the range 0 ≤ y ≤ m, a path that crosses S other
than at one of the perforations yi can be shortened by detouring through the nearest yi and
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inserting one more crossing before y∗. Hence a shortest k-path always passes through one of
the yi. This gives a total of O(mk) regions: the k-predecessor of the region at y = i and to
the right of strip j of bundle B will be (yi, k − j), with a total path length of

√
D2 + i2 + j.

The total number of vertices in our construction is 3k × 4 + k × 2 + (m+ 1)× 2 =
14k + 2m+ 2. By choosing m = (n− 14k − 2)/2 and assuming k < n/28, we have m = Θ(n)
and the total number of regions in SPM k is Ω(nk). This gives us the following lemma.

I Lemma 19. The worst-case complexity of SPM k is Ω(nk).

Combining Lemmas 11, 18, and 19, we get the main result of this section.

I Theorem 20. The shortest k-path map SPM k has size Θ(kn).

4 Computing SPM k

In this section we describe an O(k2n logn) algorithm to construct SPM k. Recall from our
discussion about the k-garage (Definition 13), we can construct SPM =k iteratively, one level
at a time. To compute the map at each level, we propagate the sources from the previous
level and then perform wavefront propagation at the current level. For this, we use the
algorithm for shortest paths in the presence of polygonal obstacles by Hershberger and
Suri [15] as a subroutine. Except for a few small modifications required for our setting, most
of the algorithm carries over unchanged. In the following, we briefly review the key ideas
and discuss the necessary modifications.

The Hershberger-Suri algorithm uses the continuous Dijkstra method, which simulates the
propagation of a unit speed wavefront in free space. The wavefront is a collection of circular
wavelets. It changes its shape as it propagates and hits obstacles. Each wavelet originates at
a generator, which may be a point source or an obstacle vertex (an intermediate source). A
generator for a wavelet γ is identified by the pair (v, w), where v is an input vertex and w is
the time at which v starts emitting γ. The Hershberger-Suri algorithm simulates wavefront
propagation over a planar subdivision called the conforming subdivision of free space. For
each subdivision edge e, and every point p ∈ e, the algorithm identifies the generator whose
wavelet first reaches p. Combining these results for all p ∈ e gives the wavefront for e. The
key idea of the algorithm is to localize interesting events (such as wavelet collisions) within
a constant number of cells in the subdivision. Each free-space edge e of this subdivision is
contained in the union of a constant number of cells, called its well-covering region U(e).
The wavefront for edge e is computed by combining and propagating the wavefront through
U(e). The computed wavefronts are then merged to compute the shortest path map. This is
the main result relevant to our algorithm:

I Lemma 21 ( [15]). Given a set of polygonal obstacles with n vertices and a set of O(n)
sources with delays, one can compute the shortest path map in O(n logn) time and O(n logn)
space.

From the discussion preceding Lemma 17, recall that the sources on floor i are identified
by triples (v, w, `), where ` is a (sub-)edge of some obstacle H, (v, w) is a weighted point
source on some floor j < i, and the wavelet γ generated by (v, w) enters floor i from the
interior of H (an elevator) passing through edge `. Each source (v, w, `) defines a triangular
flap glued onto the boundary of free space at `. Conceptually, we think of the wavelet γ from
(v, w, `) as propagating in the flap before it enters floor i. Algorithmically, we can ignore the
flap and start the propagation in free space at edge `. This calls for a slight modification in
the initialization step of the Hershberger-Suri algorithm. In particular, we do the following
for each edge e of the conforming subdivision:
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1. Find all boundary sources (v, w, `) such that the well-covering region U(e) contains `.
2. Initialize covertime(e), which is the time at which e would be engulfed by the wavefront,

minimizing over all boundary sources (v, w, `) with ` ∈ U(e), and for each such source
considering paths from v with delay w, constrained to pass through `.

3. For each source (v, w, `) with ` ∈ U(e), propagate its wavelet γ to e inside U(e).

In the following lemma we show how to compute the boundary sources for each step of
wavefront propagation.

I Lemma 22. Given m boundary sources in a polygonal domain with n vertices, we can
compute the exit claims of the sources in O((m+ n) log(m+ n)) time and space.

Proof. We apply the Hershberger-Suri algorithm, modified for boundary sources as described
above. The algorithm computes the shortest path map for the sources inside the polygonal
domain in total time and space O((m+n) log(m+n)). The shortest path map partitions the
boundary into O(m+ n) intervals, each claimed by its own source. The boundary sources
form another set of m intervals. Overlaying these two sets of intervals in additional linear
time and space, we identify the exit claims, i.e., those with a claiming source from a different
segment. J

With these primitives in place, we are ready to describe our algorithm. The input is a
polygonal domain P with convex obstacles. We will use M to denote the set of boundary
sources passed as input to the Hershberger-Suri algorithm. The algorithm computes two
things: the (k − 1)-visibility region V and the (= k)-path map SPM =k, which combined
together form SPM k. The length of the shortest path to any point p can then be easily
computed by first locating the region containing p in the map SPM k and then connecting p
to the k-predecessor of this region as described in the beginning of Section 3.

Algorithm to construct SPM k.
1. SetM = {s} and call the Hershberger-Suri algorithm to compute SPM 0 for the polygonal

domain P . Initialize V to be the empty region ∅.
2. Repeat for each i ∈ 1, 2, . . . , k:

a. Using Lemma 22, propagate the sources in SPM i−1 through the obstacles in P to
compute the set of boundary sources Mnew for SPM =i.

b. Identify all the regions in SPM =(i−1) for which the predecessor is s. Observe that this
is precisely the region V ′ = Vi−1 \ Vi−2. Set P to be the new polygonal domain with
this region removed.

c. If V = ∅, then set V = V ′. Otherwise merge V with V ′ at the common vertices.
d. Set M = Mnew and call the Hershberger-Suri algorithm to compute SPM =i for the

polygonal domain P .
3. Merge SPM =k with V at the boundary of regions of SPM =k that have s as predecessor

(i.e. V ′ = Vk \ Vk−1), to obtain SPM k.

Observe that after Step 2c of iteration i, the region V is equal to Vi−1. Because Vi−1
contains Vi−2 and because both regions have linear size (by Lemma 11), Step 2c takes linear
time. Therefore, the total running time is dominated by k calls to the Hershberger-Suri
algorithm with O(nk) sources (Theorem 20). We have the following result.

I Theorem 23. If P is a polygonal domain bounded by convex obstacles with a total of n
vertices, the shortest k-path map for P with respect to a source point s can be computed in
O(k2n logn) time and (kn logn) space.
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5 Conclusion

In this paper, we studied the problem of finding shortest paths that are allowed to pass
through a bounded number of convex obstacles. We showed that although two such k-paths
may cross each other, they can be decomposed into non-crossing subpaths based on prefix-
counts. This decomposition allows us to compute shortest k-paths efficiently, using the
continuous Dijkstra framework. We showed that the size of the shortest k-path map is Θ(kn)
and that it can be computed in worst-case time O(k2n logn) using (kn logn) space. Our
algorithm’s time complexity is optimal when k = O(1).
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50:2 Contracting a Planar Graph Efficiently

1 Introduction

An edge contraction is one of the fundamental graph operations. Given an undirected graph
and an edge e, contracting the edge e consists in removing it from the graph and merging its
endpoints. The notion of a contraction has been used to describe a number of prominent
graph algorithms, including Edmonds’ algorithm for computing maximum matchings [4] or
Karger’s minimum cut algorithm [11].

Edge contractions are of particular interest in planar graphs, as a number of planar graph
properties are easiest described using contractions. For example, it is well-known that a
graph is planar precisely when it cannot be transformed into K5 or K3,3 by contracting edges
or removing vertices or edges. Moreover, contracting an edge preserves planarity.

While a contraction operation is conceptually very simple, its efficient implementation is
challenging. By using standard data structures (e.g. balanced binary trees), one can maintain
adjacency lists of a graph in polylogarithmic amortized time. However, in many planar graph
algorithms this becomes a bottleneck. As an example, consider the problem of computing a
5-coloring of a planar graph. There exists a very simple algorithm based on contractions [17],
but efficient implementations use some more involved planar graph properties [5, 17, 18].
For example, the algorithm by Matula, Shiloach and Tarjan [17] uses the fact that every
planar graph has either a vertex of degree at most 4 or a vertex of degree 5 adjacent to at
least four vertices each having degree at most 11. Similarly, although there exists a very
simple algorithm for computing a MST of a planar graph based on edge contractions, various
different methods have been used to implement it efficiently [5, 15, 16].

Our Results. We show a data structure that can efficiently maintain a planar graph subject
to edge contractions in O(n) total time, assuming the standard word-RAM model with
word size Ω(logn). It can report groups of parallel edges and self-loops that emerge. It
also supports constant-time adjacency queries and maintains the neighbor lists and degrees
explicitly. The data structure can be used as a black-box to implement planar graph
algorithms that use contractions. In particular, it can be used to give clean and conceptually
simple implementations of the algorithms for computing 5-coloring or MST that do not
manipulate the embedding. More importantly, by using our data structure we give improved
algorithms for a few problems in planar graphs. In particular, we obtain optimal algorithms
for decremental 2-edge-connectivity, finding unique perfect matching, and computing maximal
3-edge-connected subgraphs. We also obtain improved algorithms for decremental 2-vertex
and 3-edge connectivity, where the bottleneck in the state-of-the-art algorithms [7] is detecting
parallel edges under contractions. For detailed theorem statements, see Sections 3 and 4.

Related work. The problem of detecting self-loops and parallel edges under contractions is
implicitly addressed by Giammarresi and Italiano [7] in their work on decremental (edge-,
vertex-) connectivity in planar graphs. Their data structure uses O(n log2 n) total time.

In their book, Klein and Mozes [12] show that there exists a data structure maintaining a
planar graph under edge contractions and deletions and answering adjacency queries in O(1)
worst-case time. The update time is O(logn). This result is based on the work of Brodal and
Fagerberg [1], who showed how to maintain a bounded outdegree orientation of a dynamic
planar graph so that edge insertions and deletions are supported in O(logn) amortized time.

Gustedt [9] showed an optimal solution to the union-find problem, in the case when at
any time, the actual subsets form disjoint, connected subgraphs of a given planar graph G.
In other words, in this problem the allowed unions correspond to the edges of a planar graph
and the execution of a union operation can be seen as a contraction of the respective edge.
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Our Techniques. It is relatively easy to give a simple vertex merging data structure for
general graphs, that would process any sequence of contractions in O(m log2 n) total time
and support the same queries as our data structure in O(logn) time. To this end, one
can store the lists N(v) of neighbors of individual vertices as balanced binary trees. Upon
a contraction of an edge uv, or a more general operation of merging two (not necessarily
adjacent) vertices u, v, N(u) and N(v) are merged by inserting the smaller set into the larger
one (and detecting loops and parallel edges by the way, at no additional cost). If we used
hash tables instead of balanced BSTs, we could achieve O(logn) expected amortized update
time and O(1) query time. In fact, such an approach was used in [7].

To obtain the speed-up we take advantage of planarity. Our general idea is to partition
the graph into small pieces and use the above simple-minded vertex merging data structures
to solve our problem separately for each of the pieces and for the subgraph induced by the
vertices contained in multiple pieces (the so-called boundary vertices). Due to the nature of
edge contractions, we need to specify how the partition evolves when our graph changes.

The data structure builds an r-division (see Section 2) R = P1, P2, . . . of G0 for r = log4 n.
The set ∂R of boundary vertices (i.e., those shared among at least two pieces) has size
O(n/ log2 n). Let (V0, E0) denote the original graph, and (V,E) denote the current graph
(after performing some number of contractions). Then we can denote by φ : V0 → V a
function such that the initial vertex v0 ∈ V0 is contracted into φ(v0). We use vertex merging
data structures to detect parallel edges and self-loops in the “top-level” subgraph G[φ(∂R)],
which contains only edges between boundary vertices, and separately for the “bottom-level”
subgraphs G[φ(V (Pi))] \G[φ(R)]. At any time, each edge of G is contained in exactly one of
the defined subgraphs, and thus, the distribution of responsibility for handling individual
edges is based solely on the initial r-division.

However, such an assignment of responsibilities gives rise to additional difficulties. First,
a contraction of an edge in a lower-level subgraph might cause some edges “flow” from this
subgraph to the top-level subgraph (i.e., we may get new edges connecting boundary vertices).
As such an operation turns out to be costly in our implementation, we need to prove that
the number of such events is only O(n/ log2 n).

Another difficulty lies in the need of keeping the individual data structures synchronized:
when an edge of the top-level subgraph is contracted, pairs of vertices in multiple lower-level
subgraphs might need to be merged. We cannot afford iterating through all the lower-level
subgraphs after each contraction in G[φ(∂R)]. This problem is solved by maintaining a
system of pointers between representations of the same vertex of V in different data structures
and another clever application of the smaller-to-larger merge strategy.

Such a two-level data structure would yield a data structure with O(n log logn) total
update time. To obtain a linear time data structure, we further partition the pieces Pi and
add another layer of maintained subgraphs on O(log4 log4 n) = O(log4 logn) vertices. These
subgraphs are so small that we can precompute in O(n) time the self-loops and parallel edges
for every possible graph on t vertices and every possible sequence of edge contractions.

We note that this overall idea of recursively reducing a problem with an r-division to a size
when microencoding can be used has been previously exploited in [9] and [14] (Gustedt [9]
did not use r-divisions, but his concept of a patching could be replaced with an r-division).
Our data structure can be also seen as a solution to a more general version of the planar
union-find problem studied by Gustedt [9]. However, maintaining the status of each edge e
of the initial graph G (i.e., whether e has become a self-loop or a parallel edge) subject to
edge contractions turns out to be a serious technical challenge. For example, in [9], the
requirements posed on the bottom-level union-find data structures are in a sense relaxed and
it is not necessary for those to be synchronized with the top-level union-find data structure.
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Organization of the Paper. The remaining part of this paper is organized as follows. In
Section 2, we introduce the needed notation and definitions, whereas in Section 3 we define
the operations that our data structure supports. Then, in Section 4 we present a series of
applications of our data structure. In Section 5, we provide a detailed implementation of our
data structure. Due to space constraints, many of the proofs, along with the pseudocode for
example algorithms using our data structure, can be found in the full version of this paper [10].

2 Preliminaries

Throughout the paper we use the term graph to denote an undirected multigraph, that is
we allow the graphs to have parallel edges and self-loops. Formally, each edge e of such a
graph is a pair ({u,w}, id(e)) consisting of a pair of vertices and a unique identifier used to
distinguish between the parallel edges. For simplicity, we skip this third coordinate and use
just uw to denote one of the edges connecting vertices u and w. If the graph contains no
parallel edges and no self-loops, we call it simple.

For any graph G, we denote by V (G) and E(G) the sets of vertices and edges of G,
respectively. A graph G′ is called a subgraph of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). We
define G1 ∪G2 = (V (G1) ∪ V (G2), E(G1) ∪E(G2)) and G1 \G2 = (V (G1), E(G1) \E(G2)).
For S ⊆ V (G), we denote by G[S] the induced subgraph (S, {uv : uv ∈ E(G), {u, v} ⊆ S}).

For a vertex v ∈ V , we define N(v) = {u : uv ∈ E, u 6= v} to be the neighbor set of v.
A cycle of a graph G is a nonempty set C ⊆ E(G), such that for some ordering of edges

C = {u1w1, . . . , ukwk}, we have wi = ui+1 for 1 ≤ i < k and wk = u1, and the vertices
u1, . . . , uk are distinct. The length of a cycle C is simply |C|. Note that this definition allows
cycles of length 1 (self-loop) or 2 (a pair of parallel edges), but does not allow non-simple
cycles of length 3 or more. A cut is a minimal (w.r.t. inclusion) set C ⊆ E(G), such that
G \ C has more connected components than G.

Let G = (V,E) be a graph and xy = e ∈ E. We use G− e to denote the graph obtained
from G by removing e and G/e to denote the graph obtained by contracting an edge e
(in the case of a contraction e may not be a self-loop, i.e., x 6= y). We will often look at
contraction from the following perspective: as a result of contracting e, all edge endpoints
equal to x or y are replaced with some new vertex z. In some cases it is convenient to
assume z ∈ {x, y}. This yields a 1-to-1 correspondence between the edges of G− e and the
edges of G/e. Formally, we assume that the contraction preserves the edge identifiers, i.e.,
e1 ∈ E(G− e) and e2 ∈ E(G/e) are corresponding if and only if id(e1) = id(e2).

Note that contracting an edge may introduce parallel edges and self-loops. Namely, for
each edge that is parallel to e in G, there is a self-loop in G/e. And for each cycle of length
3 that contains e in G, there is a pair of parallel edges in G/e.

Planar graphs. An embedding of a planar graph is a mapping of its vertices to distinct
points and edges to non-crossing curves in the plane. We say that a planar graph G is
plane, if some embedding of G is assumed. A face of a connected plane G is a maximal open
connected set of points not in the image of any vertex or edge in the embedding of G.

Duality. Let G be a plane graph. We denote by G∗ the dual graph of G. Each edge of G
naturally corresponds to an edge of G∗. We denote by e∗ the edge of G∗ that corresponds to
e ∈ E(G). More generally, if E1 ⊆ E(G) is a set of edges of G, we set E∗1 = {e∗|e ∈ E1}.

We exploit the following relations between G and G∗. Deleting an edge e of G corresponds
to contracting the edge e∗ in G∗, that is (G− e)∗ = G∗/e∗. Moreover, C ⊆ E is a cut in G
iff C∗ is a cycle in G∗. In particular, a bridge e in G corresponds to a self-loop in G∗ and a
two-edge cut in G corresponds to a pair of parallel edges in G∗.
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Figure 1 Contracting the blue dotted edge will merge two groups of parallel edges.

Planar graph partitions. Let G be a simple planar graph. Let a piece be subgraph of G
with no isolated vertices. For a piece P , we denote by ∂P the set of vertices v ∈ V (P ) such
that v is adjacent to some edge of G that is not contained in P . ∂P is also called the set of
boundary vertices of P . An r-division R of G is a partition of G into O(n/r) edge-disjoint
pieces such that each piece P ∈ R has O(r) vertices and O(

√
r) boundary vertices. For an

r-division R, we also denote by ∂R the set
⋃
Pi∈R ∂Pi. Clearly, |∂R| = O(n/

√
r).

I Lemma 1 ([8, 13, 19]). An r-division of a planar graph G can be computed in linear time.

3 The Data Structure Interface

In this section we specify the set of operations that our data structure supports so that it
fits our applications. It proves beneficial to look at the graph undergoing contractions from
two perspectives.
1. The adjacency viewpoint allows us to track the neighbor sets of the individual vertices, as

if G was simple at all times.
2. The edge status viewpoint allows us to track, for all the original edges E0, whether they

became self-loops or parallel edges, and also track how E0 is partitioned into classes of
pairwise-parallel edges.

Let G0 = (V0, E0) be a planar graph used to initialize the data structure. Recall that
any contraction alters both the set of vertices and the set of edges of the graph. Throughout,
we let G = (V,E) denote the current version of the graph, unless otherwise stated.

Each edge e ∈ E(G) can be either a self-loop, an edge parallel to some other edge e′ 6= e

(we call such an edge parallel), or an edge that is not parallel to any other edge of G (we call
it simple in this case). An edge e ∈ E(G) that is simple might either get contracted or might
change into a parallel edge as a result of contracting other edges. Similarly, a parallel edge
might either get contracted or might change into a self-loop. Note that, during contractions,
neither can a parallel edge ever become simple, nor can a self-loop become parallel.

Observe that parallelism is an equivalence relation on the edges of G. Once two edges
e1, e2 connecting vertices u, v ∈ V become parallel, they stay parallel until some edge e3
(possibly equal to e1 or e2) parallel to both of them gets contracted. However, groups of
parallel edges might merge (Figure 1) and this might also be a valuable piece of information.

To succinctly describe how the groups of parallel edges change, we report parallelism in a
directed manner, as follows. Each group Y ⊆ E of parallel edges in G is assumed to have its
representative edge α(Y ). For e ∈ Y we define α(e) = α(Y ). When two groups of parallel
edges Y1, Y2 ⊆ E merge as a result of a contraction, the data structure chooses α(Yi) for
some i ∈ {1, 2} to be the new representative of the group Y1 ∪Y2 and reports an ordered pair
α(Y3−i)→ α(Yi) to the user. We call each such pair a directed parallelism. After such an
event, α(Y3−i) will not be reported as a part of a directed parallelism anymore. The choice
of i can also be made according to some fixed strategy, e.g., if the edges are assigned weights
`(·) then we may choose α(Yi) so that `(α(Yi)) ≤ `(α(Y3−i)). This is convenient in what
Klein and Mozes [12] call strict optimization problems, such as MST, where we can discard
one of any two parallel edges based only on these edges.
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Note that at any point of time the set of directed parallelisms reported so far can be seen
as a forest of rooted trees T , such that each tree T of T represents a group Y of parallel
edges of G. The root of T is equal to α(Y ).

When some edge is contracted, all edges parallel to it are reported as self-loops. Clearly,
each edge e is reported as a self-loop at most once. Moreover, it is reported as a part of a
directed parallelism e→ e′, e′ 6= e, at most once.

We are now ready to define the complete interface of our data structure.
init(G0 = (V0, E0), `): initialize the data structure. ` is an optional weight function.
(s, P, L) := contract(e), for e ∈ E: contract the edge e. Let e = uv. The call contract(e)
returns a vertex s resulting from merging u and v, and two lists P , L of new directed
parallelisms and self-loops, respectively, reported as a result of contraction of e.
vertices(e), for e ∈ E: return u, v ∈ V such that e = uv.
neighbors(u), for u ∈ V : return an iterator to the list {(v, α(uv)) : v ∈ N(u)}.
deg(u), for u ∈ V : find the number of neighbors of u in G.
edge(u, v), for u, v ∈ V : if uv ∈ E, then return α(uv). Otherwise, return nil.

The following theorem summarizes the performance of our data structure.

I Theorem 2. Let G = (V,E) be a planar graph with |V | = n and |E| = m. There exists
a data structure supporting edge, vertices, neighbors and deg in O(1) worst-case time,
and whose initialization and any sequence of contract operations take O(n+m) expected
time, or O(n+m) worst-case time, if no edge operations are performed. The data structure
supports iterating through the neighbor list of a vertex with O(1) overhead per element.

4 Applications

Decremental Edge- and Vertex-Connectivity. In the decremental k-edge (k-vertex) con-
nectivity problem, the goal is to design a data structure that supports queries about the
existence of k edge-disjoint (vertex-disjoint) paths between a pair of given vertices, subject
to edge deletions. We obtain improved algorithms for decremental 2-edge-, 2-vertex- and
3-edge-connectivity in dynamic planar graphs. For decremental 2-edge-connectivity we obtain
an optimal data structure with both updates and queries supported in amortized O(1) time.
In the case of 2-vertex- and 3-edge-connectivity, we achieve the amortized update time of
O(logn), whereas the query time is constant. For all these problems, we improve upon the
20-year-old update bounds by Giammarresi and Italiano [7] by a factor of O(logn).

I Theorem 3. Let G = (V,E) be a planar graph and let n = |V |. There exists a deterministic
data structure that maintains G subject to edge deletions and can answer 2-edge connectivity
queries in O(1) time. Its total update time is O(n).

Proof. Denote by G0 the initial graph. Suppose wlog. that G0 is connected. Let B(G) be
the set of all bridges of G. Note that two vertices u, v are in the same 2-edge-connected
component of G iff they are in the same connected component of the graph (V,E \B(G)).

Observe that if e is a bridge, then deleting e from G does not influence the 2-edge-
components of G. Hence, when a bridge e is deleted, we may ignore this deletion. We denote
by G′ be the graph obtained from G0 by the same sequence of deletions as G, but ignoring the
bridge deletions. This way, G′ is connected at all times and the 2-edge-connected components
of G′ and G are the same. It is also easy to see that E(G) \ B(G) = E(G′) \ B(G′) and
B(G) = B(G′) ∩ E(G). Moreover, the set E(G′) shrinks in time whereas B(G′) only grows.
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First we show how the set B(G′) is maintained. Recall that e ∈ E(G′) is a bridge of G′ iff
e∗ is a self-loop of G′∗. We build the data structure of Theorem 2 for G′∗, which initially
equals G∗0. As deleting a non-bridge edge e of G′ translates to a contraction of a non-loop
edge e∗ in G′∗, we can maintain B(G′) in O(n) total time by detecting self-loops in G′∗.

Denote by H the graph (V,E(G′) \ B(G′)). To support 2-edge connectivity queries,
we maintain the graph H with the decremental connectivity data structure of Łącki and
Sankowski [14]. This data structure maintains a planar graph subject to edge deletions in
linear total time and supports connectivity queries in O(1) time. When an edge e is deleted
from G, we first check whether it is a bridge and if so, we do nothing. If e is not a bridge,
the set E(G′) shrinks and thus we remove the edge e from H. The deletion of e might cause
the set B(G′) to grow. Any new edge of B(G′) is also removed from H afterwards.

To conclude, note that each 2-edge connectivity query on G translates to a single
connectivity query in H. All the maintained data structures have O(n) total update time. J

As an almost immediate consequence of Theorem 3 we improve upon [6] and obtain an
optimal algorithm for the unique perfect matching problem when restricted to planar graphs.

I Corollary 4. Given a planar graph G = (V,E) with n = |V |, in O(n) time we can find a
unique perfect matching of G or detect that the number of perfect matchings in G is not 1.

To obtain improved bounds for 2-vertex connectivity and 3-edge connectivity we use the data
structure of Theorem 2 to remove bottlenecks in the existing algorithms by Giammarresi
and Italiano [7].

I Theorem 5. Let G = (V,E) be a planar graph and let n = |V |. There exists a deterministic
data structure that maintains G subject to edge deletions and can answer 2-vertex connectivity
and 3-edge connectivity queries in O(1) time. Its total update time is O(n logn).

Maximal 3-Edge-Connected Subgraphs. A k-edge-connected component of a graph G is a
maximal (w.r.t. inclusion) subset S of vertices, such that each pair of vertices in S is k-edge-
connected. However, if k ≥ 3, in the subgraph of G induced by S, some pairs of vertices may
not be k-edge-connected (see [2] for an example). Thus, for k ≥ 3, maximal k-edge-connected
subgraphs can be different from k-edge-connected components. Very recently, Chechik et
al. [2] showed how to compute maximal k-edge-connected subgraphs in O((m+ n logn)

√
n )

time for any constant k, or O(m
√
n ) time for k = 3. Using the results of [7] one can compute

maximal 3-edge-connected subgraphs of a planar multigraph in O(m+ n logn) time. Our
new approach allows us to improve this to an optimal O(m+ n) time bound.

I Lemma 6. The maximal 3-edge-connected subgraphs of a planar graph can be computed in
linear time.

Simple Linear-Time Algorithms. Finally, we present two examples showing that Theorem 2
might be a useful black-box in designing linear time algorithms for planar graphs. The details
and the relevant pseudocode can be found in the full version of this paper [10].

I Example 7. Every planar graph G can be 5-colored in expected linear time.

Proof. A textbook proof of the 5-color theorem proceeds by induction as follows (see Figure 2).
Each simple planar graph has a vertex u of degree at most 5. The case when u has degree
less than 5 is easy: for any v ∈ N(u), we can color G/uv inductively, uncontract the edge uv
and finally recolor u with a color not used among the vertices N(u). When, however, u has
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ux y

Figure 2 The degree ≤ 5 vertex and its two independent neighbors may be colored using the
remaining two colors.

degree exactly 5, there exist two neighbors of x, y of u such that x and y are not adjacent,
as otherwise G would contain K5. We could thus obtain a planar graph G′ by contracting
both ux and uy. After inductively coloring G′ and “uncontracting” ux and uy, we obtain a
coloring of G that is valid, except that x, y and u have the same colors assigned. Thus, at
most 4 colors are used among the neighbors of u and we recolor u to the remaining color in
order to get a valid coloring of G.

Note that this proof can be almost literally converted into a linear time 5-coloring
algorithm (see the full version [10] for the pseudocode) using the data structure of Theorem 2
built for G. We only need to maintain a subset Q of vertices of G with degree at most 5. The
subset Q can be easily maintained in linear total time, since all vertices that potentially change
their degrees after the call contract(e) are endpoints of the reported parallel edges. J

I Example 8. An MST of a planar graph G can be computed in linear time.

5 Maintaining a Planar Graph Under Contractions

In this section we prove Theorem 2. We defer the discussion on supporting arbitrary weights
`(·) to the full version [10]. Hence, in the following, we assume all edges have equal weights.

5.1 A Vertex Merging Data Structure
We first consider a more general problem, which we call the bordered vertex merging problem.
The data structure presented below will constitute a basic building block of the multi-level
data structure. Let us now describe the data structure for the bordered vertex merging
problem in detail. Suppose we have a dynamic simple planar graph G = (V,E) and a border
set B ⊆ V . Assume G is initially equal to G0 = (V0, E0) and no edge of E0 connects two
vertices of B. The data structure handles the following update operations.

Merge (or in other words, an identification) of two vertices u, v ∈ V (u 6= v), such that
the graph is still planar. If {u, v} 6⊆ B, then u and v have to be connected by an edge
and in such a case the merge is equivalent to a contraction of uv.
Insertion of an edge e = uv (where uv /∈ E is not required), preserving planarity.

After each update operation the data structure reports the parallel edges and self-loops
that emerge. Once reported, each set of parallel edges is merged into one representative edge.
Moreover, the data structure reports and removes any edges that have both endpoints in B.
Thus, the following invariants are satisfied before the first and after each modification:
1. G is planar and simple.
2. No edge of E has both its endpoints in B.

Clearly, merging vertices alters the set V by replacing two vertices u, v with a single
vertex. Thus, at each step, each vertex of G corresponds to a set of vertices of the initial
graph G0. We explicitly maintain a mapping φ : V0 → V such that for a ∈ V0, φ(a) is a
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vertex of the current vertex set V “containing” a. The reverse mapping φ−1 : V → 2V0 is
also stored explicitly. We now define how the merge of u and v influences the set B. When
{u, v} ⊆ B, the resulting vertex is also in B. When u ∈ B, v /∈ B (or v ∈ B, u /∈ B, resp.),
the resulting vertex is included in B in place of u (v, resp.). Finally, for u, v /∈ B, the
resulting vertex does not belong to B either.

Let Ẽ be the set of inserted edges. At any time, the edges of E constitute a subset of
E0 ∪ Ẽ in the following sense: for each e = xy ∈ E there exists an edge e′ = uv ∈ E0 ∪ Ẽ
such that id(e) = id(e′), and vertices u and v have been merged into x and y, respectively.

Note that some modifications might break the second invariant: both an edge insertion
and a merge might introduce an edge e with both endpoints in B. We call such an edge a
border edge. Each border edge e that is not a self-loop is reported and deleted from (or not
inserted to) G. Apart from reporting and removing new edges of B × B appearing in E,
we also report the newly created parallel edges that might arise after the modification and
remove them. The reporting of parallel edges is done in the form of directed parallelisms, as
described in Section 3. Again, it is easy to see that each edge of E0 ∪ Ẽ is reported as the
first coordinate of a directed parallelism at most once.

Note that an edge e may be first reported parallel (in a directed parallelism of the form
e′ → e, where e′ 6= e) and then reported border.

The Graph Representation. The data structure for the bordered vertex merging problem
internally maintains G using the data structure of the following lemma for planar graphs.

I Lemma 9 ([1]). There exists a deterministic, linear-space data structure, initialized in
O(n) time, and maintaining a dynamic, simple planar graph H with n vertices, so that:

adjacency queries in H can be performed in O(1) worst-case time,
edge insertions and deletions can be performed in O(logn) amortized time.

I Fact 10. The data structure of Lemma 9 can be easily extended so that:
Doubly-linked lists N(v) of neighbors, for v ∈ V , are maintained within the same bounds.
For each edge xy of H, some auxiliary data associated with e can be accessed and updated
in O(1) worst-case time.

In addition to the data structure of Lemma 9 representing G, for each unordered pair
x, y of vertices adjacent in G, we maintain an edge α(x, y) = e, where e is the unique edge in
E connecting x and y. Recall that in fact α(x, y) corresponds to some of the original edges
of E0 or one of the inserted edges Ẽ. By Fact 10, we can access α(x, y) in constant time.

The mapping φ is stored in an array, whereas the sets φ−1(·) – in doubly-linked lists.
Suppose we merge two vertices u, v ∈ V . Instead of creating a new vertex w, we merge

one of these vertices into the other. Suppose we merge u into v. In terms of the operations
supported by the data structure of Lemma 9, we need to remove each edge ux and insert an
edge vx, unless v has been adjacent to x before.

To update our representation, we only need to perform the following steps:
For each v0 ∈ φ−1(u), set φ(v0) = v and add v0 to φ−1(v).
Compute the list Nu = {(x, α(u, x)) : x ∈ N(u)}. Remove all edges adjacent to u from G.
For each (x, α(u, x)) ∈ Nu, x 6= v, check whether x ∈ N(v) (this can be done in O(1)
time, by Lemma 9). If so, report the parallelism α(u, x)→ α(v, x). Otherwise, if vx is
not a border edge, insert an edge vx to G and set α(v, x) = α(u, x). If, on the other hand,
v ∈ B and x ∈ B (i.e., vx is a border edge), report α(u, x) as a border edge.

Observe that our order of updates issued to G guarantees that G remains planar at all times.
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The decision whether we merge u into v or v into u heavily affects both the correctness
and efficiency of the data structure. First, if one of u, v (say v) is contained in B, whereas the
other (say u) is not, we merge u into v. If, however, we have {u, v} ⊆ B or {u, v} ⊆ V \B,
we pick a vertex (say u) with a smaller set φ−1(u) and merge u into v.

To handle an insertion of a new edge e = xy, we first check whether xy is a border edge.
If so, we discard e and report it. Otherwise, check whether x and y are adjacent in G. If so,
report the parallelism e→ α(x, y). If not, add an edge xy to G and set α(x, y) = e.

I Lemma 11. Let G be a graph initially equal to a simple planar graph G0 = (V0, E0) such
that n = |V0|. There is a data structure for the bordered vertex merging problem that processes
any sequence of modifications of G0, along with reporting parallelisms and border edges, in
O((n+ f) log2 n+m) total time, where m is the total number of edge insertions and f is the
total number of insertions of edges connecting non-adjacent vertices.

Proof. Clearly, by Lemma 9, building the initial representation takes O(n logn) time, as we
insert O(n) edges to G. The reporting of parallel edges and border edges takes O(n+m)
time, since each (initial or inserted) edge is reported as a border edge or occurs as the first
coordinate of a reported directed parallelism at most once.

Also note that, by Lemma 9, an insertion of a parallel edge costs O(1) time, for a total
of O(m) time over all insertions, as G is not updated in that case. Recall that, by Fact 10,
accessing and updating values α(x, y) for xy ∈ E(G) takes O(1) time.

The total cost of maintaining the representation of G is O(g logn), where g is the total
number of edge updates to the data structure of Lemma 9. We prove that g = O((n+f) logn).
To this end, we look at the merge of u into v from a different perspective: instead of removing
an edge e = ux and inserting an edge vx, imagine that we simply change an endpoint u of e
to v, but the edge itself does not lose its identity. Then, new edges in G are only created
either during the initialization or by inserting an edge connecting the vertices that have not
been previously adjacent in G. Hence, there are O(n+ f) creations of new edges.

Consider some edge e = xy of G immediately after its creation. Denote by q(e) the pair
(|φ−1(x)|, |φ−1(y)|). The value of q(e) always changes when some endpoint of e is updated.
Suppose a merge of u into v (u 6= v) causes the change of some endpoint u of e to v. We either
we have u /∈ B and v ∈ B or |φ−1(v)| ≥ |φ−1(u)| before the merge. The former situation can
arise at most once per each endpoint of e, since we always merge a non-border vertex into a
border vertex, if such case arises. In the latter case, on the other hand, one coordinate of
q(e) grows at least by a factor of 2, and clearly this can happen at most O(logn) times, as
the size of any φ−1(x) is never more than n. Since there are O(n+ f) “created” edges, and
each such edge undergoes O(logn) endpoint updates, indeed we have g = O((n+ f) logn).

A very similar argument can be used to show that the total time needed to maintain the
mapping φ along with the reverse mapping φ−1 is O(n logn). J

A Micro Data Structure. In order to obtain an optimal data structure, we need the
following specialized version of the bordered vertex merging data structure that handles
very small graphs in linear total time. Suppose we disallow inserting new edges into G.
Additionally, assume we are allowed to perform some preprocessing in time O(n). Then,
due to a monotonous nature of allowed operations on G, when the size of G0 is very small
compared to n, we can maintain G faster than by using the data structure of Lemma 11.

I Lemma 12. After preprocessing in O(n) time, we can repeatedly solve the bordered vertex
merging problem without edge insertions for planar simple graphs G0 with t = O(log4 log4 n)
vertices in O(t) time.



J. Holm, G. F. Italiano, A. Karczmarz, J. Łącki, E. Rotenberg, and P. Sankowski 50:11

5.2 A Multi-Level Data Structure
Recall that our goal is to maintain G under contractions. Below we describe in detail how to
take advantage of graph partitioning and bordered vertex merging data structures to obtain a
linear time solution. To simplify the further presentation, we assume that the initial version
G0 = (V0, E0) of G is simple and of constant degree. The standard reduction assuring that
is described in the full version [10].

We build an r-division R = {P1, P2, . . . , } of G with r = log4 n, where n = |V0| (see
Lemma 1). Then, for each piece Pi ∈ R, we build an r-division Ri = {Pi,1, Pi,2, . . .} of Pi
with r = log4 log4 n. By Lemma 1, building all the necessary pieces takes O(n) time in
total. Since G0 is of constant degree, any vertex v ∈ V0 is contained in O(1) pieces of R.
Analogously, for any v ∈ Pi, v is contained in O(1) pieces of Ri.

As G undergoes contractions, let φ : V0 → V be a mapping such that for each v ∈ V0,
v “has been merged” into φ(v). As we later describe, a vertex resulting from contracting an
edge uv will be called either u or v, which guarantees that V ⊆ V0 at all times. Of course,
initially φ(v) = v for each v ∈ V = V0.

Let G = (V,E) denote the maximal simple subgraph of G, i.e., the graph G with self-loops
discarded and each group Y of parallel edges replaced with a single edge α(Y ). The key
component of our data structure is a 3-level set of (possibly micro-) bordered vertex merging
data structures Π = {π} ∪ {πi : Pi ∈ R} ∪ {πi,j : Pi ∈ R, Pi,j ∈ Ri}. The data structures Π
form a tree such that π is the root, {πi : Pi ∈ R} are the children of π and {πi,j : Pi,j ∈ Ri}
are the children of πi. For D ∈ Π, let par(D) be the parent of D and let A(D) be the set of
ancestors of D. We call the value h(D) = |A(D)| a level of D. The data structures of levels 0
and 1 are stored as data structures of Lemma 11, whereas the data structures of level 2 are
stored as micro structures of Lemma 12.

Each data structure D ∈ Π has a defined set VD ⊆ V0 of interesting vertices, defined as
follows: Vπ = ∂R, Vπi = ∂Pi ∪ ∂Ri and Vπi,j = V (Pi,j). The data structure D maintains a
certain subgraph GD of G defined inductively as follows (recall that we define G1 \G2 to be
a graph containing all vertices of G1 and edges of G1 that do not belong to G2)

GD = G[φ(VD)] \
( ⋃
D′∈A(D)

GD′

)
.

I Fact 13. For any D ∈ Π, GD is a minor of G0.

I Fact 14. For any uv = e ∈ E, there exists D ∈ Π such that e ∈ E(GD).

Each D ∈ Π is initialized with the graph GD, according to the initial mapping φ(v) = v

for any v ∈ V0. We define the set of ancestor vertices AVD = VD ∩
(⋃
D′∈A(D) VD′

)
.

Now we discuss what it means for the bordered vertex merging data structure D to
maintain the graph GD. Note that the vertex set used to initialize D is VD. We write φD, φ−1

D
to denote the mappings φ, φ−1 maintained by D ∈ Π, respectively. Throughout a sequence
of contractions, we maintain the following invariants for any D ∈ Π:

There is a 1-1 mapping between the sets φ(VD) and φD(VD) such that for the corresponding
vertices x ∈ φ(VD) and y ∈ φD(VD) we have φ−1

D (y) = φ−1(x) ∩ VD. We also say that x
is represented in D in this case.
There is an edge xy ∈ E(GD) if and only if there is an edge x′y′ in the graph maintained
by D, where x′, y′ ∈ φD(VD) are the corresponding vertices of x and y, respectively.
The border set BD of D is always equal to φD(AVD).

ESA 2017
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Thus, the graph maintained by D is isomorphic to GD but can technically use a different
vertex set. Observe that in GD there are no edges between the vertices φ(AVD) and the
following fact describes how this is reflected in D.

I Fact 15. In the graph stored in D, no two vertices of BD are adjacent.

Note that as the sets VD and VD′ might overlap for D 6= D′, the vertices of V can be
represented in multiple data structures.

I Lemma 16. Suppose for v ∈ V we have v ∈ V (GD1) and v ∈ V (GD2). Then, v ∈ V (GD),
where D is the lowest common ancestor of D1 and D2.

By Lemma 16, each vertex v ∈ V is represented in a unique data structure of minimal
level, a lowest common ancestor of all data structures where v is represented. We denote
such a data structure by D(v). Observe that for any D ∈ Π the vertices {v : D(v) = D} are
represented in D by φD(VD) \ φD(AVD).

We now describe the way we index the vertices of V . This is required, as upon a
contraction, our data structure returns an identifier of a new vertex. We also reuse the
names of the initial vertices V0, as the bordered vertex merging data structures do. Namely,
a vertex v ∈ V is labeled with φD(v)(v′) ∈ V0, where v′ represents v in D(v).

Note that, as the bordered vertex merging data structures always merge one vertex
involved into the other, for any D ∈ Π we have φD(VD) \ φD(AVD) ⊆ VD \ AVD. Hence
the label sets used by distinct sets {v : D(v) = D} are distinct, since the sets of the form
VD \ AVD are pairwise disjoint. Such a labeling scheme makes it easy to find the data
structure D(v) by looking only at the label.

For brevity, in the following we sometimes do not distinguish between the set V and the
set of labels

⋃
D∈Π (φD(VD) \ φD(AVD)).

I Lemma 17. Let uv = e ∈ E and h(D(u)) ≥ h(D(v)). Then e ∈ E(GD(u)) and either
D(u) = D(v) or D(u) is a descendant of D(v).

I Lemma 18. Let uv be an edge of some GD, D ∈ Π. If {u, v} ⊆ V (GD′), where D′ 6= D,
then D′ is a descendant of D and both u and v are represented as border vertices of D′.

I Lemma 19. Let v ∈ φ(VD), where D ∈ Π. Then, v is represented in O(|φ−1
D (v)|) data

structures D′ such that par(D′) = D.

We also use the following auxiliary components for each D ∈ Π:

For each x ∈ φD(AVD) we maintain a pointer βD(x) into y ∈ φpar(D)(AVD), such that x
and y represent the same vertex of the maintained graph G.
A dictionary (we use a balanced BST) γD mapping a pair (D′, x), where D′ is a child of
D and x ∈ φD(VD), to a vertex y ∈ φD′(AVD) iff x and y represent the same vertex of V .

Another component of our data structure is the forest T of reported parallelisms: for
each reported parallelism e→ α(e), we make e a child of α(e) in T . Note that the forest T
allows us to go through all the edges parallel to α(e) in time linear in their number.

I Lemma 20. For v0 ∈ V0, we can compute φ(v0) and find D(φ(v0)) in O(1) time.

I Lemma 21. Let v ∈ V (GD). For any D′, such that par(D′) = D, we can compute the
vertex v′ representing v in GD′ (or detect that such v′ does not exist) in O(log |VD|) time.
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We now describe how to implement the call (s, P, L) := contract(e), where uv = e ∈ E,
u, v ∈ V . Suppose the initial endpoints of e were u0, v0 ∈ V0. First, we iterate through the
tree Te ∈ T containing e to find α(e). By Lemma 20, we can find the vertices u, v along
with the respective data structures D(u),D(v), based on u0, v0 in O(1) time. Assume wlog.
that h(D(u)) ≥ h(D(v)). By Lemma 17, α(e) is an edge of GD(u). Although we are asked
to contract e, we conceptually contract α(e), by issuing a merge of u and v to D(u). To
reflect that we were actually asked to contract e, we include all the edges of Te \ {e} in L as
self-loops. The merge might make D(u) report some parallelisms e1 → e2. In such a case we
report e1 → e2 to the user (by including it in P ) and update the forest T .

We now have to reflect the contraction of e in all the required data structures D ∈ Π, so
that our invariants are satisfied. Assume wlog. that u is merged into v in D. If before the
contraction, both u and v were the vertices of some GD′ , D′ 6= D, then by Lemma 18, D′ is
a descendant of D. By a similar argument as in the proof of Lemma 11, we can afford to
iterate through φ−1

D (u) without increasing the asymptotic performance of the u-into-v merge
performed by D, as long as we spend O(log |VD|) time per element of φ−1

D (u). By Lemma 19,
there are O(|φ−1

D (u)|) data structures D1,D2, . . . that are the children of D and contain the
representation of u. For each such Di, we first use the dictionary γD to find the vertex x
representing u in Di, and update βDi

(x) to v. Then, using Lemma 21, we check whether
v ∈ V (GDi

) in O(log |VD|) time. If not, we set γD(Di, v) to x. Otherwise, we merge u and
v in Di and handle this merge – in terms of updating the auxiliary components β and γ –
analogously as for D. This is legal, as u, v ∈ φDi

(AVDi
) and thus u and v are border vertices

in Di, by Fact 15. The merge may cause Di to report some parallelisms. We handle them
as described above in the case of the data structure D. Note however that merging border
vertices cannot cause reporting of new border edges (i.e., those with both endpoints in BDi

).
The merge of u and v in D might also create some new edges e′ = xy between the vertices

φD(AVD) in GD. Note that in this case D reports xy as a border edge and also we know that
h(D(x)) < h(D) and h(D(y)) < h(D). Hence, e′ should end up in some of the ancestors of D.
We insert e′ to par(D). par(D) might also report xy as a border edge and in that case e′ is
inserted to the grandparent of D. It is also possible that e′ will be reported a parallel edge in
some of the ancestors of D: in such a case an appropriate directed parallelism is added to P .

Note that all the performed merges and edge insertions are only used to make the
graphs represented by the data structures satisfy their definitions. Fact 13 implies that the
represented graphs remain planar at all times.

We now describe how the other operations are implemented. To compute u, v ∈ V such
that {u, v} = vertices(e), where e ∈ E, we first use Lemma 20 to compute u = φ(u0) and
v = φ(v0), where u0, v0 are the initial endpoints of e. Clearly, this takes O(1) time.

To maintain the values deg(v) of each v ∈ V , we simply set deg(s) := deg(u) + deg(v)− 1
after a call (s, P, L) := contract(e). Additionally, for each directed parallelism e1 → e2 we
decrease deg(x) and deg(y) by one, where {x, y} = vertices(e1).

For each u ∈ V we maintain a doubly-linked list E(u) = {α(uv) : uv ∈ E}. Additionally,
for each e ∈ E we store the pointers to the two occurrences of e in the lists E(·). Again after
a call (s, P, L) := contract(e), where e = uv, we set E(s) to be a concatenation of the lists
E(u) and E(v). Finally, we remove all the occurrences of edges {α(e)} ∪ {e1 : (e1 → e2) ∈ P}
from the lists E(·). Now, the implementation of the iterator neighbors(u) is easy, as the
endpoints not equal to u of the edges in E(u) form exactly the set N(u).

I Lemma 22. The operations vertices, deg and neighbors run in O(1) worst-case time.
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To support the operation edge(u, v) in O(1) time, we first turn all the dictionaries γD into
hash tables with O(1) expected update time and O(1) worst-case query time [3]. Our data
structure thus ceases to be deterministic, but we obtain a more efficient version of Lemma 21
that allows us to compute the representation of a vertex in a child data structure D′ in O(1)
time. By Lemma 17, the edge uv can be contained in either D(u) or D(v), whichever has
greater level. Wlog. suppose h(D(u)) ≥ h(D(v)). Again, by Lemma 17, D(u) is a descendant
of D(v). Thus, we can find v in D(u) by applying Lemma 21 at most twice.

I Lemma 23. If the dictionaries γD are implemented as hash tables, the operation edge
runs in O(1) worst-case time.

I Lemma 24. The cost of all operations on the data structures D ∈ Π is O(n).

Proof of Theorem 2. To initialize our data structure, we initialize all the data structures
D ∈ Π and the auxiliary components. This takes O(n) time. The time needed to perform
any sequence of operations contract is proportional to the total time used by the data
structures Π, as the cost of maintaining the auxiliary components can be charged to the
operations performed by the individual structures of Π. By Lemma 24, this time is O(n). If
the dictionaries γD are implemented as hash tables, this bound is valid only in expectation.

By combining the above with Lemmas 22 and 23, the theorem follows. J
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Abstract
We consider a setting where selfish agents want to schedule jobs on related machines. The agent
submitting a job picks a server that minimizes a linear combination of the server price and the
resulting response time for that job on the selected server. The manager’s task is to maintain
server prices to (approximately) optimize the maximum response time, which is a measure of
social good. We show that the existence of a pricing scheme with certain competitiveness is
equivalent to the existence of a monotone immediate-dispatch algorithm. Our main result is a
monotone immediate-dispatch algorithm that is O(1)-competitive with respect to the maximum
response time.
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1 Introduction

1.1 Motivation and Background
Many large companies foster a competitive internal environment to create flexibility, challenge
the status quo, and motivate employees. However, it is recognized that internal competition
has to be managed so that the costs do not outweigh the benefits [9, 6]. In this paper, we
consider one such management task. Namely, we consider managing compute servers, used
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by competing self-interested agents, to optimize social good. As agents are self-interested,
you would expect them to greedily choose the server that will finish their task first. In the
setting that we consider, this can lead to schedules with highly suboptimal social good. Thus
the manager might reasonably want to implement some mechanism that will incentivize the
agents to produce a schedule with high social good. Following the lead of [10] we consider a
dynamic posted price mechanism; that is, the manager maintains a dynamically changing
price for each server (like Amazon’s EC2). Thus a self-interested agent would take into
account both response time and price when selecting a server.

In [10] various common models of compute servers are considered, and it is assumed that:
all agents sequentially select servers at the same moment of time,
jobs on one machine are scheduled in a First-Come-First-Served manner,
agents greedily pick the server that minimizes a linear combination of the resulting
response time of the agent’s job and the current price for that server, and
the social good is measured by (technically the inverse of) the makespan of the schedule.

The main result in [10] is a pricing scheme that guarantees that selfish agents construct a
schedule that is O(1)-competitive with respect to makespan on related machines. In this
scheme the prices are essentially set so that the resulting schedule is identical to the schedule
produced by the (non-pricing based) online algorithm, called Slow-Fit in [4], that was shown
to be O(1)-competitive in [3]. Slow-Fit assigns each job to the slowest machine that would
not result in a response time greater than some constant times the current estimate of the
optimal makespan (and doubles the estimate if this isn’t possible).

[11] posed the question of whether this O(1)-approximation result could be extended to
the (arguably more natural) setting where agents may submit jobs over time, and the social
good is the natural generalization of makespan, namely the maximum response time of any
job. The maximum response time is the maximum time a job waits in the system after its
arrival to be completed.

The combinatorics of the scheduling of related machines with the objective of maximum
flow are a bit tricky, and it wasn’t until recently that any O(1)-competitive online algorithm
(or even any polynomial-time O(1)-approximation offline algorithm) was known [5]. [5] called
this online algorithm Double-Fit. Double-Fit delays assigning jobs, and collects them into
batches. Periodically the jobs in a batch are assigned to machines. In assigning a batch of
jobs, the jobs are considered in decreasing order of size. Each job is then assigned to a server
using essentially a two level generalization of Slow-Fit. The conclusion of [5] states that:

Note that our algorithm Double-Fit is not immediate dispatch, i.e., it does not
dispatch a job to a machine immediately upon arrival. We are unable to extend the
ideas here to obtain an O(1)-competitive immediate dispatch algorithm, and it is not
clear to us whether such an algorithm exists.

Immediate dispatch algorithms have some practical advantages, most notably, they do not
require the maintenance of a global queue of unprocessed work, which could be a potential
bottleneck to scalability.

1.2 Our Results
We start by observing that the open questions from [11] and [5] are related. More precisely,
we observe that a monotone immediate-dispatch algorithm can be converted into a dynamic
posted price algorithm, preserving the competitive ratio. Similarly, we observe that a posted
price algorithm can be converted into a monotone immediate-dispatch algorithm, preserving
the competitive ratio. An algorithm is monotone if the speed of the server that an agent
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would pick is monotonically increasing in the size of a job. Monotonicity is a natural property
in that the bigger a job is, the more critical it is that it be assigned to a fast server (in the
extreme, an infinite sized job must be assigned to the fastest server if one is to achieve a
competitive ratio independent of server speeds).

Using this equivalence, we establish the existence of an O(1)-competitive posted price
scheme by giving a monotone immediate-dispatch O(1)-competitive algorithm, which we call
Immediate-Double-Fit (IDF). Thus we affirmatively answer both the open question from [11]
and the open question from [5].

The algorithm IDF immediately assigns jobs using the same strategy as Double-Fit does.
After observing that IDF is monotone, we turn to analyzing IDF’s competitiveness. The
fact that Double-Fit assigns jobs within a batch in size order was critical to the analysis
of Double-Fit in [5]. Intuitively the main difficulty of analyzing IDF is that there may be
no relationship between the size of a job and when it is assigned a server, thus making the
analysis of Double-Fit in [5] inapplicable. Not surprisingly, the key to our being able to
analyze IDF was finding the “right” inductive hypothesis, which is substantially different
than the inductive hypothesis used in [5]. Perhaps somewhat surprisingly, our inductive
hypothesis is actually simpler than the one used in [5], and as a consequence, we also get a
slightly better bound on the competitive ratio of IDF, namely 25/2, than the bound of 27/2
on the competitive ratio of Double-Fit obtained in [5].

One intuitive take away point from these results is that dynamic posted prices gives
management essentially the same power as being able to impose arbitrary job to server
assignments, when the setting is related machines and the objective is maximum flow time.

1.3 Other Related Work
[10] showed that for unrelated machines, every pricing scheme can lead to schedules that are
Ω(m)-competitive with respect to makespan. In the unrelated machine setting the processing
time of a job is machine dependent. They also showed that static pricing schemes (where
server prices do not change over time) are in some sense equivalent to the natural greedy
algorithm.

Intuitively prices are necessary to achieve O(1)-competitiveness for maximum response
time on related machine. To understand why, note that it is well-known that FIFO is optimal
on a single machine for the objective of maximum response time. In addition to being
optimal, FIFO is the unique scheduling policy that allows each agent to know with certainty
the response time of its job on each server. However, [5] showed that the natural greedy
algorithm is Ω(m)-competitive for maximum response time on related machines.

There is a significant literature on mechanism design for scheduling, starting with the
paper [14] that instigated the study of mechanism design within the algorithmic community.
Much of this work focuses on finding and/or analyzing coordination mechanisms with respect
to the price of anarchy, which compares the social good of some equilibrium to the optimal
social good. We mention a few such results that seem most closely related to the results in
this paper. A coordination mechanism for identical machines with constant price of anarchy
with respect to makespan can be found in [7]. [13] studies coordination mechanisms for
four classes of multiprocessor machine scheduling problems and derive upper and lower
bounds for the price of anarchy with respect to makespan of these mechanisms. [1] considers
coordination mechanisms for unrelated machines in which agents control subsets of jobs, and
each player’s objective is to minimize the weighted sum of completion time of her jobs.

There is a significant literature on mechanism design using posted prices, most of it
focused on auctions and markets (see [15] for an overview). [8] focuses on server problems,
motivated in part by the SFPark system (SF-park.org), which sets parking prices in San
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Francisco based on parking congestion. [8] gives pricing schemes for the classical problems of
k-server, metrical task systems, and metrical matching that in some cases achieve competitive
ratios that are close to the optimal competitive ratios for general online algorithms.

There is significant literature on online scheduling. Good starting points into this literature
are [16] and [12]. Probably the most relevant results come from [2], which gave scalable
algorithms for minimizing maximum flow time on unrelated machines, and for minimizing
weighted maximum flow time on related machines. Resource augmentation is required for
both problems in order to achieve constant approximation.

2 Notation and Definitions

In the standard related machines environment the m servers/machines have associated speeds,
s1, . . . , sm. We assume without loss of generality that s1 ≤ s2 ≤ . . . ≤ sm. A collection of n
jobs arrive over time. The release time rj of job j is when it is submitted to be scheduled.
Further, each job j has a size pj . A (nonpreemptive) schedule specifies for each job j, a
starting time λj and an assigned server ij , with the restriction the time intervals [λj , Cj ]
should be disjoint for all jobs assigned to the same machine. Here Cj = λj + pj/sij

is the
time that job j completes. If j has been run on server i for τ ≤ pj/si units of time, then its
unprocessed volume is pj − siτ . The flow/response time of the job is defined as Fj := Cj − rj ,
and the objective we consider is to minimize the maximum flow time Fmax = maxj Fj . The
makespan of a schedule is the maximum completion time.

In this paper, we assume that an online scheduler learns job j’s size pj at time rj when it
is released. An online scheduler is called immediate dispatch if it always assigns a job to a
machine at the job’s release time. The scheduler need not start job j at time rj , but the
scheduler must make an irrevocable decision about which machine the job will eventually
run on. Let At(p) be the speed of the machine that an algorithm A would assign a job of
size p to if it was released at the current time t; here it is assumed that job identity plays no
role in A’s assignment decision. Then algorithm A is monotone if for all possible instances,
and for all possible t, At(p) is non-decreasing in p.

A dynamic posted pricing scheme is a special type of online scheduler. Jobs assigned
to a server are processed in First-Come-First-Served order. So every processor is always
processing the earliest released, uncompleted job assigned to it. The online schedule maintains
a dynamically changing price for each server. Let ci(t) denote the price/cost for server i
at time t. Let Li(t) denote the unprocessed volume of jobs previously assigned to server
i at time t, divided by machine i’s speed. In other words, it takes Li(t) units of time for
machine i to complete its unprocessed workload assuming that no more jobs arrive. Then
job j is assigned to the server i that minimizes Li(rj) + pj/si + ci(t). Intuitively the job
selfishly assigns itself to the machine that minimizes its flow time plus the machine cost. It is
important that the prices ci(rj) are posted prior to job j’arrival; that is, they cannot depend
on the value of pj , and may only depend on past events. For notational convenience we may
drop the current time from the notation if it is clear from the context. For example, we may
simply use ci in place of ci(t).

One take away point from [10], as well as earlier work on posted price mechanisms, is
that dealing with ties can be annoying. The issue of ties manifests itself in two ways in our
setting. Firstly, in order to show that our pricing scheme is monotone, we need that the
machine speeds are distinct, that is that s1 < s2 < . . . < sm. This can be achieved with
probability one by decreasing each machine speed by some random infinitesimal amount,
at the cost of raising the competitive ratio by an infinitesimal amount. The mechanism
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can simulate a slower machine by delaying the start date of each job appropriately. Thus
technically our mechanism involves both pricing and slightly delaying some jobs.

The second way in which the issue of ties manifests itself is when there are two different
servers that simultaneously minimize Li(rj) + pj/si + ci(t). But this is also handled by
the random decrement of the processor speeds, as this sort of tie will then arise with
probability zero. Thus we assume in our analysis that there is a unique server i that
minimizes Li(rj) + pj/si + ci(t).

[10] takes a different approach to this second issue of ties. They assume that in the case of
ties, the job may be adversarially assigned to any minimizing server. This has the advantage
of imposing minimal assumptions on the actions of the agent, but it has the disadvantage of
cluttering/complicating the algorithmic design/analysis process. The majority of the effort
in [10] is related to handling ties.

3 Algorithm and Analysis

In Subsection 3.1 we establish the equivalence of posted price algorithms and monotone
immediate-dispatch algorithms. In Subsection 3.2 we describe the Immediate-Double-Fit
algorithm. In Subsection 3.3 we first note that the Immediate-Double-Fit algorithm is
monotone, and then give an inductive argument bounding its competitiveness.

3.1 Equivalence between Monotonicity and Post-pricing Scheme
I Lemma 1. An immediate-dispatch, monotone algorithm A can be converted into a posted
pricing algorithm/scheme B. In particular, there is a pricing algorithm B where each job is
assigned to the same machines in both A and B. Thus, both algorithms produce exactly the
same schedule.

Proof. We explain how to convert A into B. Assume that a job j is released at time t.
Price any machine on which A would never run j no matter what its processing time is
at infinite. For notational convenience, drop them from our ordering and assume that m
machines remain. Assume according to algorithm A that at size pi the speed of the selected
processor changes from si to si+1 for i ∈ [1,m− 1]; more precisely, A(p) ≤ si for all p < pi

and A(p) ≥ si+1 for all p > pi. Define gc(p) as the cost function that takes a job size p and
returns the minimum cost the job has to pay under the pricing c. Let Li denote the load
on machine i just before j is assigned. By setting the price vector c so that the following is
satisfied for all 1 ≤ i ≤ m− 1:

Li + ci + pi/si = Li+1 + ci+1 + pi/si+1,

we get a cost function gc(p) where the cost for a job of size p ∈ (pi−1, pi) is minimized on
machine i. Hence under this post-pricing scheme, each job is assigned exactly to the same
machine as it were by the given algorithm A. Also by setting c1 to be sufficiently large and
using the fact that s1 < s2 < ... < sm, we can ensure that all prices are positive. J

Although it is not needed to establish our main results, we now prove the converse of
Lemma 1.

I Lemma 2. A pricing algorithm A is an immediate dispatch, monotone algorithm.

Proof. It it obvious that it is an immediate dispatch algorithm. To establish monotonicity,
consider the arrival of a job. Let ci be the price for machine i. Note that job of size p pays
Li + ci + p/si if it chooses machine i. Let g(p) denote the minimum cost a job of size p has to
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pay on any machine. Due to the greedy nature of clients, we have g(p) := mini(Li +ci +p/si),
which is a piece-wise linear function. This implies that if there is a value of p for which
machine i minimizes the cost, the set of such values must form an interval. Let pi be the
size of a job where a greedy client would change from a machine with speed si to a machine
with speed sk when we increase p. Note that the uniqueness of pi follows from the above
observation. Knowing that Li +ci +pi/si = Lk +ck +pi/sk and Li +ci +p/si > Lk +ck +p/sk

for p > pi, we conclude that si < sk, thus proving monotonicity of the algorithm. J

3.2 Description of the Immediate-Double-Fit Algorithm
We start by making some simplifying assumptions, and defining some concepts and notation.
Assume for the moment that the algorithm knows Opt, the objective value of the optimal
solution. If not, we show at the end of the analysis how to remove this assumption using the
standard doubling trick. For simplicity, we assume that jobs arrive at distinct times. We
can easily extend our analysis to remove this assumption by considering jobs released at the
same time from the largest to smallest, but this would complicate the analysis.

Time is broken into epochs. The length of a epoch depends on when jobs are released.
Define epochs to be of length εOpt, where ε is an arbitrarily small parameter such that at
most one job arrives in each epoch. The first epoch begins at time 0 before any job arrives.
At the start of an epoch we assign the job that arrived in the last epoch. We now describe
how to assign an arriving job j. Let [ij ,m] be the machines i on which pj/si is at most Opt.
The algorithm is parameterized by constants α, β ≥ 1 which will be fixed later.

We are now ready to describe the Immediate-Double-Fit (IDF) Algorithm. When a new
job j arrives, IDF does the following:
1. If there is a machine in [ij ,m] with load less than αOpt, then schedule j on the slowest

such machine. We say in this case that j was placed in the saturation phase.
2. Else if there is a machine in [ij ,m] with load less than βOpt then schedule j on the

slowest such machine. We say in this case that j was placed in the slow fit phase.
3. Else the algorithm admits failure.

3.3 Analysis
We begin by establishing in Lemma 3 that the IDF algorithm is monotone. We then turn to
analyzing IDF’s competitiveness. We show that IDF never admits failure for proper choice
of α and β, under the assumption that its estimation of Opt is correct. Noting that the
algorithm is immediate dispatch for sufficiently small ε the algorithm can be converted to
a pricing algorithm as shown in Lemma 3. We then finish by showing how to apply the
standard doubling trick to remove the assumption that the algorithm knows Opt.

I Lemma 3. Algorithm A is a monotone algorithm.

Proof. Let p < q be two possible job sizes. Let [ip,m] be the machines on which a job of
size p would run less than Opt time units. That is, p/sk ≤ Opt for k ∈ [ip,m]. Similarly
define [iq,m]. Note that ip ≤ iq. If a job of size q was placed on a machine i during the
saturation phase, then this machine has load less than αOptsi. By definition of the algorithm,
a job of size p would also be assigned during the saturation phase to a machine no faster
than machine i, since machine i’s load is less than αOptsi, and p can run on machine i. If
instead a job of size q was placed on machine i during the slow fit phase, then all machines
in the range [iq,m] have load at least αOpt. Thus a job of size p could either be placed on a
machine slower than iq during the saturation phase, or on a machine no faster than i in the
slow fit phase by definition of the algorithm. J
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We now turn to analyzing IDF’s competitiveness. For notational compactness, we will
now starting using A to denote the algorithm IDF. We will show that the following statements
hold by induction on epochs:

A(i, k) is the statement Ai(k) ≤ A∗i (k) + cOptSi

and

B(i, k) is the statement Bi(k) ≤ B∗i (k) + cOptSi

where
Si =

∑m
k=i sk is the total speed of machines [i,m].

Ai(k) is the total load on machines [i,m] under the algorithm A just before jobs are
assigned at the start of epoch k.
Bi(k) is the total load on machines [i,m] under the algorithm A just after all jobs are
assigned by the algorithm at the start of epoch k.
Define restricted opt to be the optimum under the restriction that jobs can only be
assigned to machines at the start of the epoch. Note that by making ε sufficiently small,
this is does not change the optimal solution.
A∗i (k) is the total load on machines [i,m] for the restricted opt just before jobs are
assigned by restricted opt at the start of epoch k.
B∗i (k) is the total load on machines [i,m] for the restricted opt just after all jobs are
assigned by restricted opt at the start of epoch k.

In order for our induction to go through, we will need the various parameters to satisfy the
following inequalities:

α ≥ β − c+ 1
c ≥ α+ 1
1 + c+ ε ≤ β

We observe in Lemma 4 that these inductive statements imply that IDF/A is β + 1
competitive. We then show in Lemma 5 that B(i, k) implies A(i, k + ε). We then complete
the inductive proof by showing in Lemma 6 that A(i, k) implies B(i, k).

I Lemma 4. If ∀i∀k [A(i, k) and B(i, k)] then A is (β + 1)-competitive.

I Lemma 5. ∀i B(i, k) implies ∀i A(i, k + ε).

Proof. The proof is by reverse induction on i. For a base case, i = m + 1, the claim is
vacuously true. For the inductive case, assume that A(i+ 1, k + ε) holds and our goal is to
prove A(i, k + ε).

For the first case, say that machine i at epoch k + ε has at most cOptsi work assigned
to it. This implies that Ai(k + ε) ≤ Ai+1(k + ε) + cOptsi. Knowing that Ai+1(k + ε) ≤
A∗i+1(k + ε) + cOptSi+1 is true (that is, A(i+ 1, k + ε) holds), we have the following.

Ai(k + ε) ≤ Ai+1(k + ε) + cOptsi

≤ A∗i+1(k + ε) + cOptSi+1 + cOptsi

= A∗i+1(k + ε) + cOptSi

For the second case, machine i at epoch k + ε has strictly more than cOptsi assigned to
it. Let a denote the last job assigned to machine i. We know that pa/si ≤ Opt by definition
of the algorithm. Knowing this, it must be the case that machine i was loaded to more than
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(c− 1)siOpt when job a was assigned. Knowing that c− 1 ≥ α it is the case that job a was
assigned by the slow-fit phase of the algorithm. Also we know that machine i is not ready
to process job a at epoch k + ε since it hasn’t completed all jobs assigned to it that have
arrived before job a since at the epoch machine i has a strictly positive load excluding the
last job a assigned to it. Since a was assigned by the slow-fit phase, when job a arrived, it
must be the case that all machines i, i+ 1, ... ,m have load at least αOpt. This implies that
at epoch k + ε, all machines i, i+ 1, ... ,m have strictly positive loads.

Thus, we now know that m,m− 1, . . . , i are busy processing some job between epoch k
and k + ε. We know that Bi(k) ≤ B∗i (k) + cOptSi since B(i, k) holds. We further know that
B∗i (k) can decrease by at most εSi to get A∗i (k + ε) as this is the most work Opt can process
on machines m,m− 1, . . . , i between epoch k and k + ε. The above argument implies that
Bi(k) decreases by εSi since all machines i or greater are processing jobs during [k, k + ε].
Thus, in the inequality Bi(k) ≤ B∗i (k) + cOptSi the left hand side decreases by at least as
much as the right, giving the lemma. J

I Lemma 6. ∀iA(i, k) implies ∀iB(i, k).

Proof. Assume that a job j arrives in epoch k − 1. By assumption, only one job arrives in
epoch k− 1. The proof is first by induction on k, and then by reverse induction on i, where i
is the machine to which job j is assigned. We handle at the end the case where job j cannot
be assigned and the algorithm declares failure.

We consider two cases. In the first case, assume that the load on machine i for the
algorithm after jobs have been assigned at the start of epoch k is at most cOptsi. Then
in this case we know by induction that Bi+1(k) ≤ B∗i+1(k) + cOptSi+1. Thus using the
assumption that the load on machine i is at most cOptsi, we know that

Bi(k) ≤ B∗i+1(k) + cOptSi+1 + cOptsi ≤ B∗i (k) + cOptSi

Now consider the case that the load on machine i is strictly more than cOptsi. Thus we
know that the last job put on machine i by the algorithm at the start of epoch k was assigned
in the slow fit phase since c ≥ α+ 1. If pj/si−1 > Opt or i = 1, then optimal cannot run j on
a slower machine than i, and thus A(i, k) implies B(i, k) as Bi(k)−Ai(k) and B∗i (k)−A∗i (k)
both increase by pj . Otherwise let h be minimal such that all machines in the range [h, i− 1]
have load at least βOpt. Then we know that either h = 1 or pj/sh−1 > Opt, otherwise the
algorithm would have put job j on machine h− 1. In either case, optimal cannot put job
j on a machine with index ≤ h − 1. Thus A(h, k) implies B(h, k) as Bh(k) − Ah(k) and
B∗h(k)−A∗h(k) both increase by pj .

Now consider what happens to B(g, k) as g increases from h to i. Assume g ∈ (h, i]. Then
Bg−1(k)− Bg(k) ≥ βOptsg−1. So intuitively Bg(k) decreases at a rate of at least β. Also
B∗g−1(k)−B∗g (k) ≤ (1 + ε)Optsg−1, otherwise the load on machine g − 1 for optimal would
be greater than (1 + ε)Optsg−1, contradicting the definition of Opt. Thus intuitively, B∗g (k)
decreases at a rate of at most ε+ 1. Also cOptSg−1− cOptSg = cOptsg−1. So intuitively this
term decreases at a rate of exactly c. Thus using the fact that 1 + c+ ε ≤ β, B(h, k) implies
B(i, k).

Now consider the case that the algorithm couldn’t assign job j. Then machine m has
load at least βOptsm. Let h be minimal such that all machines in the range [h,m] have load
at least βOpt. Then we know that either h = 1 or pj/sh−1 > Opt, otherwise the algorithm
would have put job j on machine h−1. In either case, optimal cannot put job j on a machine
with index ≤ h − 1. Thus A(h, k) implies B(h, k) as Bh(k) − Ah(k) and B∗h(k) − A∗h(k)
both increase by pj . Now we just repeat the argument in the last paragraph to prove that
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Bm(k) ≤ B∗m(k) + csmOpt. Since Bm(k) ≥ βsmOpt, we have B∗m(k) ≥ (β − c)smOpt, which
is a contradiction to Opt if β − c > ε+ 1. J

I Lemma 7. One can verify that α = 2, c = 3 and β = 4 satisfies the stated inequalities
when ε = 0, and thus IDF with these parameters is 5-competitive, assuming that its estimate
of Opt is correct.

Now consider the case that the algorithm does not know Opt. It is easy to see that the
whole analysis goes through as long as our estimate of Opt is no smaller than the actual Opt.
If our algorithm fails to assign a job, the algorithm sets its new estimate of optimal, Opt′,
to be Opt(β + 1)/α. Then we know that Ai ≤ αSiOpt′ since Ai ≤ (β + 1)SiOpt. Lemma
6 still goes through since all machines have load at most αOpt′. More precisely, the proof
of Lemma 6 does not need to appeal to the slow fit phase to prove the invariants since no
machine is currently saturated. Since our estimate of Opt can be at most (β + 1)/α larger
than the true Opt, we derive a competitive ratio of (β + 1)2/α, which is 25/2 for the above
choice of α and β.
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Abstract
Let P be a set of n points in the plane in general position, and consider the problem of finding an
axis-parallel rectangle with a given perimeter, or area, or diagonal, that encloses the maximum
number of points of P . We present an exact algorithm that finds such a rectangle in O(n5/2 logn)
time, and, for the case of a fixed perimeter or diagonal, we also obtain (i) an improved exact
algorithm that runs in O(nk3/2 log k) time, and (ii) an approximation algorithm that finds, in

O

(
n+ n

kε5 log5/2 n

k
log
(

1
ε

log n
k

))
time, a rectangle of the given perimeter or diagonal that

contains at least (1− ε)k points of P , where k is the optimum value.
We then show how to turn this algorithm into one that finds, for a given k, an axis-parallel

rectangle of smallest perimeter (or area, or diagonal) that contains k points of P . We obtain the
first subcubic algorithms for these problems, significantly improving the current state of the art.
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1 Introduction

In the basic problem studied in this paper, we are given a set P of n points in the plane
in general position, and a fixed parameter τ > 0, and we seek an axis-parallel rectangle of
perimeter 2τ that encloses the maximum number of points of P . We denote this problem as
max-pts(τ). We also consider variants of the problem, involving rectangles with other fixed
parameters, such as the area or the length of the diagonal. Such problems have been studied
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by many researchers (as we survey below) and arise in statistical clustering and pattern
recognition (see [1] and the references therein).

Earlier works on these problems have mainly studied the “dual” version, where we specify
k and seek an axis-parallel rectangle of minimum perimeter (or area, or diagonal) that
encloses k points of P . This so-called min-perim(k) (or min-area(k), or min-diag(k))
problem has been studied in Aggarwal et al. [1], who gave an O(nk2 logn)-time solution.
Eppstein and Erickson [7] gave an algorithm that runs in O(n logn+ nk2) time and requires
O(n logn+nk) storage. They observed that the k points in the optimal rectangle are among
the O(k) rectilinear nearest neighbors of each other. This allowed them to partition the
problem into O(n/k) subproblems, each on a subset of O(k) points, and to apply a naive
O(k3)-algorithm of Aggarwal et al. [1] to each subset. The partition is obtained using a data
structure for planar rectilinear nearest neighbors.

Datta et al. [5] suggested a different scheme to break the problem into O(n/k) subproblems,
each of size O(k). Their algorithm runs within the same time bound as the algorithm of
Eppstein and Erickson but requires only linear storage.

Segal and Kedem [15] gave algorithms for min-perim(k) and min-area(k), that are linear
for very large values of k. Their algorithms run in O(n+ k(n− k)2) time.

A very recent work on this problem, by De Berg et al. [6], develops a near linear algorithm
for min-area(k), for small values of k. Their algorithm runs in O(nk2 logn+ n log2 n) time.
They also give a (1− ε)-approximation algorithm for the dual min-pts(A) problem, which
asks for an axis-parallel rectangle of a given area A that contains the largest number of
points of P . Notice that all algorithms for min-perim(k) and min-area(k) are cubic in the
worst-case for some values of k.

As noted in [6], the variants of the problem involving area are harder. For example, it is
no longer the case that the k points in an optimal rectangle are among the O(k) rectilinear
nearest neighbors of each other. Our paper too, which handles all three variants, derives
faster algorithms for the cases of perimeter or diagonal, and the approximation algorithms
that we obtain apply only for these two cases.

Let us return to the case of perimeter. Using an algorithm for min-perim(k), one can
solve the original problem, that we have denoted as max-pts(τ), using binary search in
a straightforward manner. The overall cost of this algorithm is O(logn) times the cost of
min-perim(k).

The converse direction, to turn a given algorithm for max-pts(τ) into an efficient solution
of min-perim(k), is somewhat more involved, but is doable. Indeed, in this paper we first
solve max-pts(τ) directly, and then show how to solve min-perim(k) by a logarithmic
number of calls to max-pts(τ).

1.1 Our results

We first present, in Section 2, an algorithm for max-pts(τ) that runs in O(n5/2 logn) time.
The method is sufficiently general, so the algorithm also solves the variants where the area
or the diagonal of the rectangle are fixed (and we want to maximize the number of points of
P that it contains), within the same running time bound.

We then use, in Section 2.3, a simple grid-based construction that allows us to solve
max-pts(τ) in an output-sensitive manner. Specifically, the running time improves to
O(nk3/2 log k), where k is the output size, the maximum number of points of P contained in
such a rectangle. A simple modification of the same approach yields the same improvement
for the case of fixed diagonal, but, unfortunately, not for the case of fixed area.
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We also obtain, in Section 3, an approximation algorithm that finds, in near-linear time
(see Theorem 3 for the precise bound), an axis-parallel rectangle of the given perimeter that
contains at least (1−ε)k points of P , for a prespecified error parameter ε. The approximation
algorithm extends to the case of diagonal but not to the case of area.

Finally, we consider the dual problem min-perim(k), as defined above, and present an
algorithm that solves it in O(nk3/2 log k logn) time, which is only O(logn) times slower
than the running time of our algorithm for max-pts(τ). We obtain this result by reducing
min-perim(k) to a logarithmic number of calls to max-pts(τ). This bound improves (for
almost all values of k) the previous best bound O(n logn+ nk2) of [5, 7]. Our reduction is
fairly general, and can also be applied to the cases of area or diagonal. For the case of area,
our algorithm is not output-sensitive, and runs in O(n5/2 log2 n) time. These are the first
subcubic algorithms for these problems (for any value of k), improving upon [1, 6, 5, 7, 15].
For the case of area, the algorithm in [6] is faster when k is small; for the cases of perimeter
or diagonal, our algorithms, as already noted, are significantly faster for almost all values
of k.

2 An exact algorithm for max-pts(τ )

We recall our basic problem: Let P be a set of n points in the plane in general position
(in particular, no two points of P have the same x- or y-coordinate), and let τ be a given
positive real number. We want to find an axis-parallel rectangle R of perimeter 2τ that
contains the largest number of points of P .

Let Q = Q(τ) denote the collection of all axis-parallel rectangles R of perimeter 2τ . Each
rectangle R ∈ Q can be parameterized by three parameters (x, y, z), where (x, y) is the
bottom-left vertex of R, and z is its width (x-span); its height (y-span) is then τ − z. In
other words, we identify the rectangles of Q with the points of R2 × [0, τ ].

A point p = (p1, p2) lies in a rectangle R ∈ Q, parameterized by (x, y, z), if and only if

x ≤ p1 ≤ x+ z and y ≤ p2 ≤ y + τ − z. (1)

For each p = (p1, p2) ∈ P , let Kp denote the set of all rectangles in Q that contain p. In
the parametric 3-space, Kp is a tetrahedron, bounded by the four halfspaces specified in (1).
Our problem is now reduced to that of finding a point of maximum depth in the arrangement
of these n isothetic tetrahedra (i.e., a point contained in the largest possible number of
tetrahedra; note that these tetrahedra are indeed translates of one another).

The cross-section of a tetrahedron Kp, at any fixed z, is an axis-parallel rectangle Kp(z),
given by

p1 − z ≤ x ≤ p1 and p2 − τ + z ≤ y ≤ p2. (2)

All the rectangles Kp(z), for p ∈ P , are translates of one another; they are in fact the sets
p−R0(z), for p ∈ P , where R0(z) = [0, z]× [0, τ − z]. Let R(z) denote the collection of these
rectangles, for any z ∈ [0, τ ], and let A(z) denote the planar arrangement of the rectangles
of R(z). Our problem now is to find a z at which the maximum depth ∆(z) of a point in
A(z) is maximized.

As z varies from 0 to τ , the rectangles of R(z) simultaneously deform, as their common
width (x-span) increases and their common height (y-span) decreases. The arrangement
A(z) varies continuously, but its combinatorial structure remains unchanged as long as both
the left-to-right order of the y-vertical edges of the rectangles, and the bottom-to-top order
of the x-horizontal edges of the rectangles, remain unchanged. Under the general position
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assumption, no pair of left edges, of right edges, of top edges, or of bottom edges, can ever
attain the same x- or y-coordinate. Hence, the critical values of z at which the combinatorial
structure of A(z) changes are those at which either the lines supporting the left side of one
rectangle and the right side of another coincide, or the lines supporting the bottom side of
one rectangle and the top side of another coincide. The set of critical values is therefore{

p1 − q1, p2 − q2 + τ | p = (p1, p2) 6= q = (q1, q2) ∈ P
}
∩ (0, τ).

There are at most n(n − 1) such critical values (for each pair p, q, at most one of p1 − q1,
q1 − p1 can lie in (0, τ), and the same holds for p2 − q2 + τ , q2 − p2 + τ), and we may assume
them to be all distinct, by our general position assumption. At each such critical value,
either the left edge of one rectangle and the right edge of another rectangle in R(z), that
are adjacent in the left-to-right order of the vertical edges, are swapped in this order, or
the bottom edge of one rectangle and the top edge of another rectangle, adjacent in the
bottom-to-top order of the horizontal edges, are swapped.

In what follows, we present a data structure that maintains the arrangement A(z), updates
it at each critical value of z, and keeps track of the maximum depth in A(z) after each update.
The data structure requires O

(
n3/2 logn

)
storage, can be initialized in O

(
n3/2 logn

)
time,

and each update takes O
(
n1/2 logn

)
amortized time. Using this structure, we obtain our

exact algorithm.

I Theorem 1. Given a set P of n points in the plane in general position, and a parameter
τ > 0, one can find, in O

(
n5/2 logn

)
time, an axis-parallel rectangle of perimeter 2τ that

contains the maximum number of points of P . The algorithm requires O
(
n3/2 logn

)
storage.

Other fixed parameters. As already noted, the approach described so far can also handle,
with minor modifications, other fixed parameters, such as the area, or the length of the
diagonal, or any parameter that depends on the lengths of the edges of the rectangles, so that
the length of one edge uniquely determines the length of the other edge (all the parameters
mentioned so far have this property). For example, in the case where our rectangles have a
fixed area A, we have to replace (1) and (2) by

x ≤ p1 ≤ x+z, y ≤ p2 ≤ y+A/z, and p1−z ≤ x ≤ p1, p2−A/z ≤ y ≤ p2,

respectively. The latter pair of inequalities defineKp, so it is no longer a simplex. Nevertheless,
the cross sections Kp(z), for any z > 0, are all isothetic rectangles, and the critical values
of z are similarly constructed – they are now of the form |p1 − q1| or A/|p2 − q2|. This
allows the rest of the analysis to proceed more or less verbatim. The case of fixed diagonal
is also handled in a fully analogous manner. That is, these variants can also be solved in
O(n5/2 logn) time.

2.1 The data structure
For any fixed value of z, one can compute the maximum depth of A(z) in O(n logn) time
and O(n) space [12, 14]. If we allow O(n logn) space (and O(n logn) time) then we can
perform this computation in a straightforward manner by sweeping R(z) from left to right
by a vertical line, while maintaining the cross sections of the rectangles in R(z) with the
sweepline in a dynamic segment tree T [3]. To efficiently recompute the maximum depth
after each update of T , we also store at each node of T the maximum depth of a leaf in its
subtree. (The depth of a leaf is the number of rectangles containing the vertical interval
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B1 Bj B√
n

Ci,j

A√
n

Ai

A1

Figure 1 The grid G(z), the coarser grid,
its horizontal and vertical slabs, and a single
highlighted cell.

Ci,j

Figure 2 The sets Hi,j and Vi,j , and the
respective sets RH

i,j , RV
i,j of the rectangles

forming them, within a single highlighted cell
Ci,j .

that it represents within the sweepline.) An update affects these counters only at the nodes
on the two paths to the endpoints of the inserted or deleted segment, and it is therefore
straightforward to update these counters when we insert or delete a segment to/from the
segment tree, and to propagate them to the root, whose counter represents maximum the
depth that we seek.

One could attempt at making this (static) structure dynamic, under swaps of vertical
or horizontal rectangle edges, by maintaining all the versions of T , constructed during the
sweep, in some persistent data structure, and by updating that structure at each swap of
edges. Unfortunately, it is not clear how to perform such updates efficiently. (This is because
a swap of two horizontal edges might affect arbitrarily many versions of T ; vertical swaps, in
contrast, affect only two consecutive versions.) Instead, we present a slower, more symmetric
data structure for computing the maximum depth of A(z), which can be made dynamic at a
reasonably low cost.

The grid. Consider the grid G = G(z) formed by the horizontal and vertical lines supporting
the edges of the rectangles in R = R(z). (The other notations introduced below also depend
on z, but we make this dependence implicit from now on, to simplify the notation.) Assuming
that z is not critical, G is formed by 2n vertical lines and by 2n horizontal lines.

Partition G into
√
n×
√
n cells, by the

√
n− 1 horizontal lines and the

√
n− 1 vertical

lines whose indices are multiples of 2
√
n, referred to as dividers; the number of cells in the

resulting coarser grid is n. (We ignore in what follows the insignificant rounding issues.)
The horizontal dividers partition the plane into

√
n horizontal slabs, denoted A1, . . . , A√n

in this bottom-to-top order, and the vertical dividers partition the plane into
√
n vertical

slabs, denoted B1, . . . , B√n in this left-to-right order. See Figure 1. We regard each vertical
(resp., horizontal) slab as closed at its left (resp., bottom) boundary, and open at its right
(resp., top) boundary, so that each vertical (resp., horizontal) line is contained in exactly one
vertical (resp., horizontal) slab. Accordingly, each cell in the coarser grid is closed at its left
and bottom boundaries, and open at its right and top boundaries, making the cells pairwise
disjoint and covering all rectangles.

For each cell Ci,j = Ai ∩Bj of the coarser grid, let vi,j denote the number of corners of
the rectangles in R that lie in Ci,j . We have

∑
i,j vi,j = 4n, so, on average, each cell contains

four vertices, but some cells might contain many more vertices. Still, by construction, no cell
contains more than 4

√
n vertices. In fact, we have the stronger property that no vertical

or horizontal slab contains more than 4
√
n vertices (At most two on each vertical line in a

vertical slab, and similarly for horizontal slabs).
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Ci,j

Figure 3 Two short rectangles in Ci,j , and
the partition into query subcells that they
induce.

τ/2

τ/2

Figure 4 A rectangle R of perimeter 2τ
can intersect at most six grid cells.

Computing the depth within a cell: Rectangles fully containing the cell. Consider the
problem of computing for each such cell Ci,j , a counter wi,j , equal to the number of
rectangles of R that fully contain Ci,j . We compute the wi,j ’s by a sweep over the vertical
slabs, maintaining a dynamic segment tree (see [3]) over the horizontal slabs, or rather cells,
within the currently swept vertical slab. When moving from one vertical slab to the next, we
find the wi,j ’s of all cells in the new slab, in the following three steps. First, we remove all
the vertical segments that correspond to rectangles with a right edge in the current vertical
slab (since these rectangles do not contribute to the wi,j ’s in this slab). Then, we traverse
the segment tree bottom-up and compute, for each leaf, the number of segments (the y-spans
of the active rectangles) containing the cell that corresponds to the leaf, thereby obtaining
the desired counters wi,j . We then add the segments that correspond to rectangles with a
left edge in the current vertical slab (provided that their right edge is not in the slab). We
have O(n) insertions and deletions to/from this segment tree, each taking O(logn) amortized
time. In addition, the number of nodes in the segment tree is O(

√
n) and we traverse it

√
n

times, to compute the counters wi,j . It follows that the sweep takes O(n logn) total time.

Rectangles that straddle the cell. Let R be a rectangle that intersects Ci,j (without fully
containing it) and is not one of the O(vi,j) rectangles that have a corner in Ci,j . Then R
crosses Ci,j in either a horizontal strip or a vertical strip; that is, Ci,j ∩ ∂R consists either of
portions of one or two horizontal edges of R that cross Ci,j from side to side, or of portions
of one or two vertical edges that cross Ci,j from side to side. Let Hi,j (resp., Vi,j) denote the
set of the horizontal (resp., vertical) edges of this kind, and let RHi,j (resp., RVi,j) denote the
set of the rectangles that contain the edges of Hi,j (resp., of Vi,j). See Figure 2. The edges
in Hi,j partition Ci,j into at most 2

√
n horizontal strips, and the depth within each strip,

with respect to the rectangles in RHi,j , is fixed, and changes by ±1 as we move from one strip
to the next. Analogous properties hold for the edges in Vi,j .

It follows that if we ignore the O(vi,j) rectangles with vertices in Ci,j (we refer to them
as short rectangles) and the rectangles that fully contain Ci,j , the maximum depth in Ci,j
is the maximum depth δHi,j of the rectangles of RHi,j , plus the maximum depth δVi,j of the
rectangles of RVi,j . Each of δHi,j , δVi,j is the maximum of a sequence of depths, of length at
most 2

√
n, where consecutive elements differ by ±1.

We maintain the vertical projections (i.e., y-spans) of the intersections of the rectangles
of RHi,j with Ci,j in a segment tree THi,j (which we will make dynamic in the next section).
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Each leaf v of THi,j is associated with a strip [h′, h), where h′ and h are consecutive edges of
Hi,j . The depth of this strip (with respect to RHi,j is the sum of the numbers of segments
stored at the ancestors of v).

We use this data structure to find, in O(logn) time, the strip of maximum depth in any
subsequence of consecutive strips, by storing at each internal node v of THi,j the maximum
depth of the leaves in its subtree (we omit the straightforward and fairly routine details of
this mechanism).

We maintain RVi,j in an analogously defined dynamic segment tree TVi,j . Clearly, THi,j and
TVi,j allow us to answer maximum depth queries, with respect to RHi,j ∪ RVi,j , where each
query specifies a range of consecutive horizontal strips and a range of consecutive vertical
strips, and asks for the maximum depth (with respect to RHi,j ∪RVi,j) within the rectangular
Cartesian product of these ranges. Each such query takes O(logn) time.

Short rectangles and computing the maximum depth. We use the structures THi,j and
TVi,j to compute the real maximum depth within Ci,j , which also takes into account the wi,j
rectangles that fully contain Ci,j , and the O(vi,j) short rectangles. To do so, we partition
Ci,j into O(v2

i,j) axis-parallel rectangular subcells by the horizontal and vertical lines that
pass through the vertices inside Ci,j ,1 and query THi,j and TVi,j for the maximum depth (in
RHi,j ∪ RVi,j) within each of the resulting subcells, to which we refer as query subcells. See
Figure 3. (Note that, in general, the left and right boundary edges of each query subcell
cross the interiors of two vertical strips stored in TVi,j , and the bottom and top boundary
edges of each query subcell cross the interiors of two vertical strips stored in THi,j . We expand
the horizontal and the vertical ranges of the query subcell to fully include the four relevant
strips.) Each query subcell, though, has an additional weight, equal to the number of short
rectangles that fully contain the subcell (by construction, there is no partial overlap of any
short rectangle with a query subcell). We refer to this additional weight of a query subcell as
the short weight of the subcell. These short weights are easy to compute in O(v2

i,j) time, by
constructing the coarse grid of these subcells (within Ci,j), followed by a suitable traversal
of the subcells, updating the count by 0, +1, or −1, as we pass from one subcell to the next.
For each query subcell, we add this short weight, and the global counter wi,j , to the depths
returned by the queries to THi,j and TVi,j . We then output the maximum of the resulting
depths, over all the O(v2

i,j) query subcells.

Analysis. The running time of this algorithm is bounded as follows. We first sort the
vertices of the rectangles by their x- and y-coordinates, and compute the global counters
wi,j . This initialization takes O(n logn) time. Then, for each cell Ci,j , we construct the
trees THi,j and TVi,j , in O(

√
n) time (the relevant edges are already sorted), for an overall

O(n3/2) time. We then spend O(v2
i,j) time for constructing the coarse grid of query subcells

within Ci,j , and O(v2
i,j logn) time for querying THi,j and TVi,j with these subcells. Summing

over all cells, and using the fact that vi,j ≤ 4
√
n for each cell Ci,j , we get a total time of

O
(
n3/2 +

√
n
∑
i,j vi,j logn

)
= O

(
n3/2 logn

)
.

1 When constructing this partition into query subcells, we also consider vertices on the bottom and left
edges of ∂Ci,j , because, by our convention, these vertices are considered to be internal to the cell.
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2.2 Updating the data structure
In this section we show how to dynamically maintain the counters wi,j ’s, the trees THi,j and
TVi,j , the number of short rectangles in Ci,j containing each query subcell, and the depth
of each query subcell, as we increase z from 0 to τ . To retrieve the maximum depth after
updating the structures at each critical z-value, we also maintain the depths of the query
subcells, over all cells Ci,j , in a priority queue, and keep track of the maximum value in this
queue. The overall maximum depth, i.e., the maximum number of points of P contained in
an axis-parallel rectangle of perimeter 2τ , is the maximum attained by this priority queue
throughout the z-sweep.

Note that at z = 0 each rectangle is essentially a vertical line segment (The lines supporting
the left and right edges of the same rectangle are identical, and formally they are regarded
as consecutive in G.). This simplifies that initialization of the data structure. For example
initially wi,j = 0 for all 1 ≤ i, j ≤

√
n.

As the value of z increases, the coordinates of the vertices of the rectangles in R(z) vary
continuously, and so do the coordinates of the vertical and horizontal supporting lines that
form the grid G(z). However, discrete changes in the structure of G(z) occur only when two
horizontal or two vertical sides of two distinct rectangles partially overlap, or, in the looser
sense that we follow, when the lines supporting two such edges coincide. The maximum
depth in A(z) can change only at these discrete events.

Consider an event where the right side of one rectangle R1 and the left side of another
rectangle R2 swap their vertical order; that is, the two vertical lines supporting these edges
in G(z) coincide and then swap their order. The event where two horizontal sides partially
overlap is handled in a fully symmetric fashion This swap takes place either within a single
vertical slab Bj , or across the boundary (‘divider’) between two adjacent slabs. In total, this
affects up to 4

√
n cells of G (within these slabs). We describe here the case in which the

swap occurs within a single vertical slab Bj ; the other case is handled in a similar manner,
with a few minor modifications, and will appear in the full version of this paper.

Consider first the cells of Bj that do not contain the vertices of R1 and of R2. Within
each such cell Ci,j , the effect of the swap is that the right endpoint of the horizontal segment
corresponding to R1 and the left endpoint of the horizontal segment corresponding to R2
swap their order in TVi,j , assuming they both cross Ci,j . As a result, the depth of a single
vertical strip with respect to RVi,j increases by 2. This is because the x-spans of the rectangles
in R(z) increase as z increases; in the symmetric case of horizontal strips, the opposite holds
– the depth of a single strip decreases by 2. (As already mentioned, this holds only for cells
within the common y-range of R1 and R2; no change occurs in the other cells.) We update
the corresponding segments in the tree TVi,j . This takes O(logn) amortized time per cell, and
O(
√
n logn) time for all cells that are affected by the swap.

We now need to reapply the rectangular depth queries for the query subcells within each
affected cell Ci,j , but we note that only O(vi,j) of the queries can change their output – these
are the queries whose subcells are crossed by the vertical strip that has changed its depth.
We perform these queries, as in the static case, and update the depths of these query subcells
in the global priority queue accordingly (wi,j , and the short weights of the affected subcells,
do not change).

Consider next the at most four cells Ci,j that contain vertices of R1 or of R2 (that is,
endpoints of the swapped vertical edges). Here the swap does not affect TVi,j , because only
one (or none, when endpoints of both edges lie in Ci,j) of the swapped vertical edges belongs
to this set. We split the rest of the description of the required updates according to whether
Ci,j contains vertices only of R1 or only of R2, or vertices of both R1 and R2.
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Consider first the case where Ci,j contains only vertices of R1, either the top-right vertex,
or the bottom-right vertex, or both; Ci,j may also contain left vertices of R1, but they have
no effect on the update procedure. The case where Ci,j contains only the top-left vertex or
the bottom-left vertex of R2, or both (and maybe also right vertices), is handled in a fully
symmetric manner. Denote by λR1 (resp., λL2 ) the vertical line supporting the right side of
R1 (resp., the left side of R2); these are the lines that swap their left-to-right order. In this
case the partition of Ci,j into query subcells essentially does not change, except that one line
in Vi,j , namely λL2 (it is in Vi,j because the left vertices of R2, which it supports, are not in
Ci,j) moves from one column of query subcells (just to the right of λR1 ) to another column
(just on the left of that line). We query THi,j and TVi,j to get the new depth of each of the
query subcells to the left and to the right of λR1 , with respect to the rectangles in RHi,j ∪RVi,j ,
add to it wi,j and the short weight of the subcell, and update the depths of all these subcells
in the priority queue.

If Ci,j contains at least one vertex of R1 and at least one vertex of R2 then, in the grid
defining the partition of Ci,j into query subcells, the corresponding vertical lines λR1 and λL2
swap (with the former moving to the right of the latter). Consequently, the short weights
of some of the subcells in the column bounded these two lines (which ‘closes’ at the swap
and ‘re-opens’ afterwards) increases by 2; the affected cells are those that lie in the overlap
between the y-spans of R1 and R2 (as before, the corresponding short weights decrease by 2
in the symmetric case of a horizontal swap). We locally update these short weights and the
depths of these subcells accordingly, and similarly update the priority queue.

In both cases, the number of affected query subcells of Ci,j is only O(vi,j), so the total
amortized update time is O(vi,j logn).

The overall amortized time spent on maximum depth queries in THi,j and in TVi,j , and on
updates of short weights, is O (

∑
i vi,j logn), where we sum over all cells Ci,j in the single

vertical column Bj . Fortunately,
∑
i vi,j ≤ 4

√
n, so the overall (amortized) cost of an update

is O (
√
n logn).

As we mentioned the case where the swap occurs across a horizontal or a vertical divider
between adjacent is similar and takes the same amortized time. This completes the description
and analysis of the data structure, including both correctness and performance bounds, and
justifies the bounds given in Theorem 1.

2.3 An output-sensitive algorithm
Let k be the maximum number of points of P in an axis-parallel rectangle of perimeter 2τ .
In this section we show how to modify our algorithm so that it runs in O(nk3/2 log k) time.
The same modification holds for the case of fixed diagonal, but not for fixed area.

We cover the plane by a grid whose cells are of size τ/2× τ/2, and count the number of
points of P in each nonempty cell. Using the floor function and a universal hashing scheme
(see, e.g., [4]), this takes O(n) expected time. Let k0 denote the maximum number of points
in any grid cell. It follows that k0 ≤ k ≤ 6k0, where the left inequality follows since each grid
cell has perimeter 2τ , and the right inequality follows since any rectangle R of perimeter 2τ
(and in particular the optimal one) can intersect at most six grid cells as is easily checked;
see Figure 4.

We collect, in O(n) time, all the 2×3 and 3×2 clusters C of grid cells such that C contains
at least k0 points of P , and observe that the number of such clusters is O(n/k0) = O(n/k).
We apply our algorithm to each cluster separately and return the rectangle containing the
largest number of points in any of the clusters. We thus obtain the following theorem.
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I Theorem 2. Given a set P of n points in the plane in general position, and a parameter
τ > 0, let k denote the maximum number of points of P in an axis-parallel rectangle of
perimeter 2τ . One can find, in O((n/k)k5/2 log k) = O(nk3/2 log k) time, an axis-parallel
rectangle of perimeter 2τ that contains the maximum number k of points of P . The algorithm
requires O(n+ k3/2 log k) storage.

I Remark.
(1) The technique in this subsection also works for finding an axis-parallel rectangle with

diagonal of length d containing the maximum number of points of P . We use a (d/
√

2)×
(d/
√

2) grid (each of whose cells has diagonal = d), argue that any axis-parallel rectangle
of diagonal d is contained in some small local cluster of grid cells, and obtain, as above,
an algorithm that runs in O(nk3/2 log k) time, where k is the maximum number of points
in a rectangle of diagonal d.

(2) The technique in this subsection does not extend to the case of rectangles with a fixed
area, since no single grid can localize every rectangle of area A within a small cluster of
its cells. (In contrast, as already noted, the main algorithm, which runs in O(n5/2 logn)
time, does extend to the case of fixed area.)

Nevertheless, for the case of a fixed area, say A, we can use a similar idea to get an
algorithm whose running time depends (albeit rather weakly) on A, as follows. Assume that
P ⊂ [0, 1]2, and that the given area is A < 1 (the case A ≥ 1 is clearly trivial). Without
loss of generality, it suffices to consider only rectangles of width between A and 1, with
the corresponding height between 1 and A. We can partition the problem into O(log(1/A))
subproblems, so that in each subproblem we only consider rectangles whose widths are
between z0 and 2z0, and heights between A/z0 and A/(2z0), for some fixed z0. To each
subproblem we can apply a suitable variant of the preceding grid construction, and solve the
subproblem in O(nk3/2 log k) time, for a total cost of O(nk3/2 log k log(1/A)) time. We leave
it as an open problem to obtain an algorithm whose running time bound is k-sensitive and
independent of A, in the style of Theorem 2.

3 An approximate solution

In this section we present a randomized algorithm that computes, with high probability,
a rectangle of perimeter 2τ that contains at least (1 − ε)k points of P , for a prescribed
0 < ε < 1, where k is the maximum possible value, and runs in time

O

(
n+ n

kε5 log5/2 n

k
log
(

1
ε

log n
k

))
.

We use the grid partitioning of Section 2.3, and obtain (i) an approximation k0 of k, up
to a factor 6, and (ii) O(n/k0) = O(n/k) clusters of points, each of size Θ(k). We apply
the following procedure to each cluster separately, and return the rectangle containing the
largest number of points of P , among those output for each of the clusters.

So let C be a fixed “heavy” cluster of grid cells, and let PC = P ∩ C denote the set

of points of P in C (of size Θ(k)). We take a random sample S of size s = Θ
(

1
ε2 log 1

δ

)
,

for some 0 < δ < 1. For a suitable sufficiently large constant of proportionality, S is an
(ε/12)-approximation of P for axis-parallel rectangular ranges, with probability at least
1 − δ. That is, with probability ≥ 1 − δ, we have, for each axis-parallel rectangle R,
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∣∣∣∣ |R ∩ S||S|
− |R ∩ PC |

|PC |

∣∣∣∣ ≤ ε

12 (see, e.g., [11]).2

We now run the exact algorithm of Section 2.3 on S, and obtain an axis-parallel rectangle
RS (of perimeter 2τ) that contains the maximum number of points of S.

Correctness. Let R be an optimum rectangle (of perimeter 2τ) that contains k points of P ,
and let C be a cluster that fully contains R; by the arguments in Section 2.3, such a cluster
always exists. Let S be the corresponding random sample of s points of PC , and let RS denote,
as above, the axis-parallel rectangle of perimeter 2τ that contains the maximum number

of points, denoted s∗, of S. Then, with probability ≥ 1 − δ, we have
∣∣∣∣ |R ∩ S|s

− k

t

∣∣∣∣ ≤ ε

12 ,

where t = |PC | = Θ(k). On the other hand,∣∣∣∣ |RS ∩ S|s
− |RS ∩ PC |

t

∣∣∣∣ =
∣∣∣∣s∗s − |RS ∩ PC |t

∣∣∣∣ ≤ ε

12 ,

that is, |RS ∩ PC | ≥
s∗t

s
− 1

12εt ≥
|R ∩ S|t

s
− 1

12εt ≥
(
k − 1

12εt
)
− 1

12εt = k − 1
6εt.

Since t ≤ 6k, this is ≥ (1− ε)k. That is, the procedure will find, with probability at least
1− δ, a rectangle that contains at least (1− ε)k points of P .

Running time. Finding the heavy clusters C takes a total of O(n) time, and the overall
cost of drawing the random samples S also takes O(n) time. We take δ = (k/n)c, for some
suitably large exponent c, so as to guarantee correctness with high probability in all clusters.
(There are only O(n/k) clusters, so the probability to fail in at least one of them is at most
O((n/k) · (k/n)c) = O((k/n)c−1).) The cost of a single application of the exact algorithm is

O

(
1
ε5 log5/2 n

k
log
(

1
ε

log n
k

))
. Since the number of heavy clusters is O(n/k), we obtain a

total running time of O
(
n+ n

kε5 log5/2 n

k
log
(

1
ε

log n
k

))
. Assuming that k is not too small

and neglecting the logarithmic terms, we can even take ε = 1/k1/5, and obtain an algorithm
whose running time is ≈ O(n), which returns, with high probability, an axis-parallel rectangle
of perimeter 2τ that contains at least k −O(k4/5) points of P .

The same technique applies with minor modifications also to the case of a fixed diagonal.
We summarize the results of this section in the following theorem.

I Theorem 3. Let P be a set of n points in the plane, and let τ > 0 and ε ∈ (0, 1) be given

parameters. We can compute, in time O
(
n+ n

kε5 log5/2 n

k
log
(

1
ε

log n
k

))
, an axis-parallel

rectangle of perimeter 2τ that contains at least (1− ε)k points of P , where k is the maximum
number of points contained in such a rectangle. Within the same time bound we can compute
an axis-parallel rectangle of diagonal d that contains at least (1− ε)k points of P , where k is
the maximum number of points contained in such a rectangle.

We note that for the case of a fixed area, an approximation algorithm, based on a totally dif-
ferent approach, was recently obtained by De Berg et al. [6]; it runs in O((n/ε4) log2 n log(1/ε))
time.

2 Using discrepancy based methods one can find a smaller ε-approximation of size O( 1
ε log2( 1

ε )) [2].
However, such an ε-approximation is less efficient to compute (although polynomial).
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pL

pR

pB

pT

pL

pR

pB

pT

Figure 5 A quadruple (pL, pR, pB , pT ) that defines a valid rectangle (left), and a quadruple that
does not (right).

4 An efficient exact algorithm for min-perim(k)

In this section we present an efficient algorithm for the dual version of the problem, in which
we specify k, and seek an axis-parallel rectangle of smallest perimeter that contains k points
of P . The same technique also applies to the cases where the objective is to minimize the
area, or the diagonal, of the enclosing rectangle. For the case of maximum diagonal, we
obtain the same bound, and for the case of maximum area, we obtain a bound that is not
output sensitive. In what follows we focus on the case of minimum perimeter, and only later
discuss the extensions to the cases of minimum area or diagonal.

Let Q be an optimum rectangle, namely, an axis-parallel rectangle of smallest perimeter
that contains k points of P . Clearly, each side of Q must contain a point of P , where these
four points are not necessarily distinct (the number of distinct points is always between
two and four). Denote by pL, pR, pB , and pT the points that lie on the left, right, bottom,
and top sides of Q, respectively. Naively, there are

(
n
2
)
candidate pairs (pL, pR), and

(
n
2
)

candidate pairs (pB , pT ). However, using an observation of [7], the number of candidate pairs
is only O(nk), because pR is one of the O(k) rectilinear nearest neighbors of pL, and similarly
for pT and pB. We find the O(nk) left-right candidate pairs, and the O(nk) bottom-top
candidate pairs, in O(n logn + nk) time, as in [7]. We sort the ordered pairs (pL, pR) of
distinct points of P , with pL lying to the left of pR, in increasing order of the differences
between their x-coordinates, into a list X, and apply a symmetric construction with respect
to the bottom-top pairs (pB , pT ) and their y-coordinates, to obtain another sorted list Y .

Consider the matrix M whose rows are the elements of X (in sorted order) and whose
columns are the elements of Y (in sorted order). For each pair of pairs π1 = (pL, pR) of
X and π2 = (pB , pT ) of Y , put M(π1, π2) = (x(pR)− x(pL)) + (y(pT )− y(pB)) , and note
that M(π1, π2) is half the perimeter of the axis-parallel rectangle defined by the quadruple
(pL, pR, pB , pT ). To be precise, not every such quadruple defines a valid rectangle, but each
valid candidate rectangle is defined by such a quadruple; See Figure 5.

The matrix M is a monotone matrix, that is, each of its rows and each of its columns is
sorted in increasing order. Using the algorithm of Frederickson and Johnson [10] (see also
[8, 9, 13]), We can find the ρ-th largest element in M in time O(nk), for any rank ρ.

We thus run a binary search through the O((nk)2) critical perimeters (that is, entries of
M), by making O(logn) calls to our algorithm max-pts(τ), where the outcome of each call
guides the continuation of the binary search. Each call incurs an overhead of O(nk) time
to find in M the relevant perimeter τ , and the algorithm itself takes time O(nk3/2

τ log kτ )
where kτ is the maximum number of points in a rectangle of perimeter 2τ (see Theorem
2). To make the overall running time bound k-sensitive, we pause the execution of the
algorithm for max-pts(τ) after the step where it obtains an approximation k0 to kτ , satisfying
k0 ≤ kτ ≤ 6k0. If k0 > k we know that kτ > k, and we continue the binary search with a
smaller τ . If k > 6k0 we know that k > kτ , and we continue the binary search with a larger
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τ . If k0 ≤ k ≤ 6k0, we let the algorithm run to completion, and bifurcate depending on the
relation between the output kτ and k. Altogether, we obtain the following result.

I Theorem 4. Given a set P of n points in the plane, and a parameter k ≤ n, we can find
an axis-parallel rectangle of minimum perimeter that contains k points of P in time

O
(
nk3/2 log k logn

)
.

I Remark. The same procedure applies to the cases of minimum area or minimum diagonal.
For the case of diagonal, we obtain the same performance bound. For the case of area, we
have to put all

(
n
2
)
pairs of points in X and Y , so selection in M takes O(n2) time, and

the “decision procedure” max-pts(A), where A is the given area, now takes O(n5/2 logn)
time, resulting in a k-insensitive algorithm that runs in time O(n5/2 log2 n). This is still a
significant improvement over the recent algorithm of De Berg et al. [6] when k is not too
small. It is an open problem to get an output sensitive bound, similar to the one in Theorem
4, for the case of area.
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Abstract
We present a deterministic algorithm that constructs in linear time and space the LZ-End parsing
(a variation of LZ77) of a given string over an integer polynomially bounded alphabet.
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1 Introduction

Lempel–Ziv (LZ77) parsing [34] has been a cornerstone of data compression for the last 40
years. It lies at the heart of many common compressors such as gzip, 7-zip, rar, and lz4.
More recently LZ77 has crossed-over into the field of compressed indexing of highly repetitive
data that aims to store repetitive databases (such as repositories of version control systems,
Wikipedia databases [31], collections of genomes, logs, Web crawls [8], etc.) in small space
while supporting fast substring retrieval and pattern matching queries [4, 7, 13, 14, 15, 23, 27].
For this kind of data, in practice, LZ77-based techniques are more efficient in terms of
compression than the techniques used in the standard compressed indexes such as FM-index
and compressed suffix array (see [24, 25]); moreover, often the space overhead of these
standard indexes hidden in the o(n) term, where n is the length of the uncompressed text,
turns out to be too large for highly repetitive data [4].

One of the first and most successful indexes for highly repetitive data was proposed
by Kreft and Navarro [24]. In its simplest form LZ77 greedily splits the input text into
substrings (called phrases) such that each phrase is a first occurrence of a single letter or
the longest substring that has an earlier occurrence. The index in [24] is built upon a small
modification of LZ77 parsing called LZ-End (introduced in [22]) which assumes that the end
of an earlier occurrence of each phrase aligns with the end of some previous phrase. This
enables much faster retrieval of substrings of the compressed text without decompression.

While basic LZ77 parsing is solved optimally in many models [2, 9, 17, 18, 21, 26, 30], the
construction of LZ-End remains a problem. Kreft and Navarro [24] presented an algorithm
that constructs the LZ-End parsing of a string of length n in O(n`(log σ+log logn)) time and
O(n) space, where ` is the length of the longest phrase in the parsing and σ is the alphabet
size. They also presented a more space efficient version that works in O(n` log1+ε n) time
and uses O(n log σ) bits of space, where ε is an arbitrary positive constant. This construction
algorithm provides unsatisfactory time guarantees: it is quadratic in the worst case.

In [19] we described an algorithm that builds the LZ-End parsing of a read-only string of
length n in O(n log `) expected time and O(z+ `) space, where z is the number of phrases and
` is the length of the longest phrase. In this paper we present an optimal-time deterministic
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algorithm constructing the LZ-End parsing. We assume that the input string (of length n) is
drawn from a polynomially bounded integer alphabet {0, 1, . . . , nO(1)} and the computational
model is the standard word RAM with Θ(logn)-bit machine words.

I Theorem 1. The LZ-End parsing of a string of length n over the alphabet {0, 1, . . . , nO(1)}
can be computed in O(n) time and space.

The paper is organized as follows. In Section 2 we describe an algorithm that constructs
the LZ-End parsing in O(n log logn) time and linear space; we believe that this intermediate
result is especially interesting for practice. In Section 3, we obtain an O(n log2 n)-time
algorithm based on a completely different approach. Finally, we combine the two developed
techniques in Section 4 and thus obtain a linear algorithm.

Preliminaries. Let s be a string of length |s| = n. We write s[i] for the ith letter of s and
s[i..j] for s[i]s[i+1] · · · s[j]. The reversal of s is the string ←s = s[n] · · · s[2]s[1]. A string u is
a substring of s if u = s[i..j] for some i and j; the pair (i, j) is not necessarily unique and we
say that i specifies an occurrence of u in s. A substring s[1..j] (resp., s[i..n]) is a prefix (resp.
suffix) of s. For any i, j, the set {k ∈ Z : i ≤ k ≤ j} (possibly empty) is denoted by [i..j].
Our notation for arrays is similar: e.g., a[i..j] denotes an array indexed by the numbers [i..j].

Hereafter, s denotes the input string of length n over the integer alphabet {0, 1, . . . , nO(1)}.
We extensively use a number of classical arrays built on the reversal ←s (the definitions
slightly differ from the standard ones to avoid excessive mappings between the positions
of s and ←s ): the suffix array SA[1..n] such that

←−−−−−−−
s[1..SA[1]] <

←−−−−−−−
s[1..SA[2]] < · · · <

←−−−−−−−
s[1..SA[n]]

(lexicographically), the inverse suffix array ISA[1..n] such that SA[ISA[i]] = i for i ∈ [1..n],
and the longest common prefix (LCP) array LCP[1..n−1] such that, for i ∈ [1..n−1], LCP[i]
is equal to the length of the longest common prefix of

←−−−−−−
s[1..SA[i]] and

←−−−−−−−−−
s[1..SA[i+1]]. We

equip the array LCP with the range minimum query (RMQ) data structure [10] that, for
any i, j ∈ [1..n] such that ISA[i] < ISA[j], allows us to compute in O(1) time the value
min{LCP[k] : ISA[i] ≤ k < ISA[j]}, which is equal to the length of the longest common suffix
of s[1..i] and s[1..j]. For brevity, this combination of LCP and RMQ is called the LCP
structure. It is well known that all these structures can be built in O(n) time (e.g., see [6]).

The LZ-End parsing [22, 23, 24] of a string s is a decomposition s = f1f2 · · · fz constructed
by the following greedy process: if we have already processed a prefix s[1..k] = f1f2 · · · fi−1,
then fi[1..|fi|−1] is the longest prefix of s[k+1..|s|−1] that is a suffix of a string f1f2 · · · fj
for some j < i; the substrings fi are called phrases. For instance, the string ababaaaaaac
has the LZ-End parsing a.b.aba.aa.aaac.

2 First Suboptimal Algorithm

Our first approach is based on two combinatorial properties of the LZ-End parsing that were
observed in [19]. First, the definition of the LZ-End parsing easily implies the following lemma
suggesting a way how to perform the construction of the LZ-End parsing incrementally.

I Lemma 2. Let f1f2 · · · fz be the LZ-End parsing of a string s. If i is the maximal
integer such that the string fz−ifz−i+1 · · · fz is a suffix of a string f1f2 · · · fj for j < z − i,
then, for any letter a, the LZ-End parsing of the string sa is f ′1f ′2 · · · f ′z′ , where z′ = z − i,
f ′1 = f1, f

′
2 = f2, . . . , f

′
z′−1 = fz′−1, and f ′z′ = fz−ifz−i+1 · · · fza.

Secondly, it turns out that the number of phrases that might “unite” into a new phrase
when a letter has been appended (as in Lemma 2) is severely restricted.
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I Lemma 3 (see [19]). If f1f2 · · · fz is the LZ-End parsing of a string s, then, for any letter
a, the last phrase in the LZ-End parsing of the string sa is 1) fz−1fza or 2) fza or 3) a.

The algorithm presented in this section builds the LZ-End parsing incrementally. When
a prefix s[1..k] is processed, we have the LZ-End parsing f1f2 · · · fz of s[1..k] and we are to
construct the parsing for the string s[1..k+1]. By Lemma 3, if fz−1fz (resp., fz) is a suffix of
f1f2 · · · fj for some j < z − 1 (resp., j < z), then the last phrase in the parsing of s[1..k+1]
is fz−1fzs[k+1] (resp., fzs[k+1]); otherwise, the last phrase is s[k+1].

To process the cases of Lemma 3 efficiently, we maintain a bit array M [1..n] that marks
those prefixes in the lexicographically sorted set of all reversed prefixes of s that end at
phrase boundaries: for i ∈ [1..n], M [i] = 1 iff s[1..SA[i]] = f1f2 · · · fj for some j ∈ [1..z] in
the LZ-End parsing f1f2 · · · fz of the current prefix s[1..k]. We equip M with the van Emde
Boas data structure [33] that allows us to compute, for any given i, the maximal j < i (resp.,
the minimal j′ > i) (if any) such that M [j] = 1 (resp., M [j′] = 1); we use a dynamic version
of this data structure that occupies O(n) space and supports queries on M and modifications
of the form M [i]← 1 or M [i]← 0 in O(log logn) deterministic time (e.g., see [5]).

Let us describe how to check whether fz has an earlier occurrence in s[1..k] = f1f2 · · · fz
that ends at a phrase boundary. We first find in O(log logn) time the maximal j < ISA[k]
and the minimal j′ > ISA[k] such that M [j] = 1 and M [j′] = 1. Suppose such j and j′

exist (the case when either M [1..ISA[k]−1] or M [ISA[k]+1..n] consists of all zero is similar
but simpler). Using the LCP structure, we compute in O(1) time the length t (resp., t′)
of the longest common suffix of s[1..k] and s[1..SA[j]] (resp., s[1..k] and s[1..SA[j′]]). It is
straightforward that fz has an earlier occurrence in s[1..k] ending at a phrase boundary iff
max{t, t′} ≥ |fz|.

Analogously, to check whether fz−1fz has an earlier occurrence in s[1..k] ending at a
phrase boundary different from the boundary |f1f2 · · · fz−1|, we temporarily unmark the bit
M [ISA[k − |fz|]] modifying the van Emde Boas data structure accordingly, then obtain the
numbers t and t′ in the same way as above, and restore M [ISA[k − |fz|]] with the van Emde
Boas data structure, all in O(log logn) time; fz−1fz has the required earlier occurrence iff
max{t, t′} ≥ |fz−1fz|. Finally, by Lemmas 2 and 3, we obtain the LZ-End parsing of the
prefix s[1..k+1] by removing, based on the above computations, zero, one, or two last phrases
from the list of all phrases and adding a new last phrase. The array M and the van Emde
Boas data structure are modified accordingly. Thus, we have proved the following lemma.

I Lemma 4. The LZ-End parsing of a string of length n over the alphabet {0, 1, . . . , nO(1)}
can be computed in O(n log logn) time and O(n) space.

This algorithm provides good time guarantees (unlike the algorithms of Kreft and
Navarro [24]) and seems to be of practical interest.

It is easy to see that the van Emde Boas data structure that is required to search
predecessors and successors in the dynamic bit array M is the bottleneck of the described
algorithm. It is known that for the insertion-only bit arrays there is an analogous data
structure (the split-find data structure discussed below) that works in O(n) overall time.
Then, it is natural to ask whether the array M really requires a lot of deletions in the worst
case or, based on the LZ77 intuition1, only a few phrases in the LZ-End parsing of the
current prefix might be removed in the future. The following example shows that a significant

1 A similar incremental construction procedure for LZ77 would, at each step, append a letter to the end
of the current string and then modify only the last phrase of the currently built parsing.
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· · · fi−2 fi−1 fi · · · fj+1

f ′
︸ ︷︷ ︸ fi−1 fi

p+1
Figure 1 Case (2) in Lemma 6; fi occurs at position p+1 located inside the phrase fj+1.

amount of phrases from the LZ-End parsing of the current prefix can be removed in the final
parsing and, therefore, the described approach strongly relies on the dynamic predecessor
structure, which is known to require ω(1) query time [1, 28].

I Example 5. Choose an integer k > 0. Define sk = ak and si = aibi+1si+1 for i =
k−1, . . . , 2, 1, where ai and bi are distinct letters. Define ti = ckck−1 · · · ci, where ci are
letters different from ai and bi. Our example is the string s = sktksk−1tk−1 · · · s2t2s1t1b2s2
(notice the ending b2s2). The string s is depicted below with separators “|”, which are not
real letters, at the end of each phrase of the LZ-End parsing of s (for readability, s is split
into lines corresponding to the substrings siti and the lines are aligned):

ak|ck|
ak−1|bk|akckck−1|
. . . . . . . . . . . .

a2|b3|a3b4a4 · · · bk−2ak−2bk−1ak−1bkakckck−1ck−2 · · · c2|
a1|b2|a2b3a3b4a4 · · · bk−2ak−2bk−1ak−1bkakckck−1ck−2 · · · c2c1|
b2a2|b3a3|b4a4| · · · bk−2ak−2|bk−1ak−1|bkak|.

The parsing of any substring siti, for i ∈ [2..k], consists of three phrases: two phrases
corresponding to the letters ai and bi+1 that did not occur before and the phrase si+1ti+1ci,
where si+1ti+1 is the previous line and ci is a letter that did not occur before. Now consider
the parsing of the last line b2s2. For i < k, there is only one occurrence of ai before the last
line that is succeeded by a separator “|” and this occurrence is preceded by ci+1. Analogously,
for i ≤ k, the only earlier occurrence of bi succeeded by “|” is preceded by ciai−1. This
observation easily implies that the parsing of the last line consists of k−1 phrases biai.

Now consider the string st0 = sckck−1 · · · c0. The last phrase of the LZ-End parsing of
st0 is b2s2t0 because b2s2t1 is a suffix of the substring s1t1 (kth line). Thus, this last phrase
“absorbs” k − 1 last phrases of the parsing of s. It remains to notice that the length of s is
Θ(k2) and the number of phrases in the parsing of s is Θ(k).

3 Second Suboptimal Algorithm

Our second algorithm follows the definition of the LZ-End parsing constructing phrases
greedily one by one from left to right. The algorithm itself is inefficient but we will show in
Section 4 that its techniques can be combined with the incremental solution of Section 2 in
order to obtain a linear algorithm.

Suppose that f1, f2, . . . , fj are the first j phrases of the LZ-End parsing of s and f is
a candidate for a new phrase, i.e., f1f2 · · · fjf is a prefix of s and f [1..|f |−1] is a suffix of
f1f2 · · · fk for k ∈ [1..j]. Our method “grows” f relying on the following lemma (see Fig. 1).

I Lemma 6. Suppose that f1f2 · · · fz is the LZ-End parsing of a prefix of s. If, for j ∈
[1..z−1], the phrase fj+1 is not present in the LZ-End parsing of the whole string s, then there
exists i ∈ [1..j] such that either (1) fj+1 is a suffix of the phrase fi or (2) f1f2 · · · fi has a suffix
f ′ such that f1f2 · · · fjf ′ is a prefix of s, fj+1 is a prefix of f ′, and 0 < |f ′| − |fi| < |fj+1|.
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Proof. Since fj+1 is not a phrase of the LZ-End parsing of s, it follows from Lemma 2
that there exists j′ ∈ [1..j] such that the first j′+1 phrases of the LZ-End parsing of s are
f1, f2, . . . , fj′ , f , where f [1..|f |−1] contains fj+1 as a substring. By definition, there exists
i′ ∈ [1..j′] such that f [1..|f |−1] is a suffix of f1f2 · · · fi′ . Suppose that the corresponding copy
of fj+1 in f1f2 · · · fi′ occurs at position q. Then, by construction, the suffix of f1f2 · · · fi′
starting at position q occurs at position |f1f2 · · · fj |+1. Hence, if s[q..q+|fj+1|−1] = fj+1 is
a suffix of a phrase or is “intersected” by a phrase boundary, we easily obtain, respectively, (1)
or (2). Otherwise, there is a phrase f̂ such that s[q..q+|fj+1|−1] = fj+1 is a substring of
f̂ [1..|f̂ |−1] and the suffix of f̂ starting at position q occurs at position |f1f2 · · · fj |+1. In
other words, this situation is analogous to the situation with f and we can analogously
consider the “source” of f̂ [1..|f̂ |−1] and the corresponding copy of fj+1 in this source. Then
we repeat the analysis. Since this recursive procedure moves us to the left every time, it
cannot continue forever and we will eventually find that either (1) or (2) holds. J

To extend f according to the case (1) of Lemma 6, we store all constructed phrases
f1, f2, . . . , fj in the lexicographically sorted order of their reversals, i.e., we store a permutation
i1, i2, . . . , ij of [1..j] such that

←
f i1 ≤

←
f i2 ≤ · · · ≤

←
f ij . By the binary search in this sorted

set, we find in O(logn) time, using the LCP structure, whether f is a suffix of fi for some
i ∈ [1..j]. This part is similar to the incremental approach of Section 2 (but less efficient).

To extend f according to the case (2) of Lemma 6, we process every position p of the
considered occurrence of f in s and try to find a phrase fi such that, as it is depicted in
Figure 1 (assuming fj+1 = f), i ∈ [1..j], fi occurs at position p+1 embracing the last position
of f (i.e., p + |fi| ≥ |f1f2 · · · fjf |), and the prefix of f ending at position p is a suffix of
f1f2 · · · fi−1 (the details follow). Let us describe the data structures required to find such fi.

Auxiliary data structures. First, we build the suffix tree of the string s (see the definition
in, e.g., [6]); note that, unlike the suffix array SA that was built for the reversal ←s , the suffix
tree is built for the string s itself and, thus, contains the suffixes s[1..n], s[2..n], . . . , s[n..n].
For simplicity, assume that s[n] is a special letter that does not occur in s[1..n−1] and, hence,
the suffixes of s are in the one-to-one correspondence with the leaves of the tree. We build
an array of pointers mapping suffixes of s to the corresponding leaves. It is well known (e.g.,
see [6]) that the suffix tree of s with this array can be constructed in O(n) time.

Recall that the suffix tree has explicit and implicit vertices. The string depth of an
(explicit or implicit) vertex is the length of the string written on the path connecting the
root and the vertex. We augment the suffix tree with the following dynamic data structure.

I Lemma 7. In O(n) time one can build on the suffix tree of s a data structure supporting
the following operations:
1. for a given number w ∈ [1..n] and (explicit or implicit) vertex v, mark v and assign the

weight w to v, all in O(logn) time;
2. for given numbers i, j, d and a leaf, find a marked vertex v that is an ancestor of this leaf,

has weight w ∈ [i..j], and has string depth at least d, all in O(log2 n) time.

Proof. The heavy path decomposition [32] is a decomposition of all vertices of the suffix tree
into disjoint paths (called heavy paths), each of which descends from a vertex to a leaf, so
that all ancestors of any given leaf belong to at most logn distinct heavy paths. It is shown
in [32] that the heavy path decomposition can be constructed in O(n) time.

We equip each heavy path with an (initially empty) dynamic 2-dimensional orthogonal
range reporting data structure of [3]. To mark a given vertex v and assign a weight w ∈ [1..n]
to it, we simply insert in O(logn) time [3] the pair (d,w), where d is the string depth of v,
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into the range reporting data structure corresponding to the heavy path containing v. In
order to answer a query for given numbers i, j, d and a leaf, we consecutively process each of
O(logn) ancestral heavy paths of this leaf starting from the deepest one: for each path, we
perform in O(logn) time [3] the range reporting query [d..d′]× [i..j], where d′ is equal to the
string depth of the vertex having the “head” of the previously processed heavy path as a
child and d′ = n for the path containing the leaf. It is easy to see that one of these range
reporting queries must find (if any) the required marked ancestor whose weight is in the
given range [i..j] and whose string depth is at least d. Auxiliary structures organizing all
fast navigation on the heavy paths can be easily constructed in O(n) time. J

Also we utilize the following data structure, which can be viewed as a simplified version
of the weighted ancestor data structures from [16, 20].

I Lemma 8 (see [16, 20]). In O(n) time one can build on the suffix tree of s a data structure
that, for a given leaf and a number d, allows us to find in O(logn) time the ancestor (explicit
or implicit) of the leaf with the string depth d.

To find an (explicit or implicit) vertex corresponding to a substring s[i..j], one can
perform the query of Lemma 8 on d = j − i+ 1 and on the leaf corresponding to s[i..n].

Algorithm. At the beginning, the algorithm builds in O(n) time the LCP structure and
the suffix tree of s equipped with the data structures of Lemmas 7 and 8. We maintain the
following invariant: if the first j phrases f1, . . . , fj of the LZ-End parsing of s are already
constructed, then, for each i ∈ [1..j], the vertex (implicit or explicit) of the suffix tree of s
corresponding to the string fi is marked and has weight ISA[|f1 · · · fi−1|]; we also store in a
dynamic balanced tree a permutation i1, . . . , ij of the set [1..j] such that

←
fi1 ≤ · · · ≤

←
fij .

Suppose that we have already constructed j phrases f1, f2, . . . , fj and f is a candidate
for the new phrase fj+1, i.e., f [1..|f |−1] is a suffix of f1f2 · · · fk for some k ∈ [1..j]. First,
using the LCP structure and the balanced tree containing i1, . . . , ij , we perform in O(logn)
time the binary search in the sorted set

←
fi1 , . . . ,

←
fij and find whether f is a suffix of fi for

some i ∈ [1..j]. If such fi exists, then we “grow” f by one letter according to the case (1)
of Lemma 6 and the string fa, where a = s[|f1 · · · fjf |+1], becomes a new candidate for
fj+1. Otherwise, we consecutively process from left to right each position p in the considered
occurrence of f (i.e., |f1f2 · · · fj | < p < |f1f2 · · · fjf |) and check whether there is a phrase
fi, for i ∈ [1..j], such that the prefix u of f ending at p (i.e., u = s[|f1f2 · · · fj |+1..p]) is a
suffix of f1f2 · · · fi−1 and fi occurs at position p+1 embracing the position |f1f2 · · · fjf | (i.e.,
p+ |fi| ≥ |f1f2 · · · fjf |); the procedure finding such fi for a given p works in O(log2 n) time
and is described below in Lemma 9. Once such fi is found for a position p, we “grow” f
according to the case (2) of Lemma 6 so that the string s[|f1f2 · · · fj |+1..p+|fi|+1], which
contains f as a proper prefix, becomes a new candidate for fj+1. Obviously, if we processed
a position p in this way and could not extend f , then there is no reason to consider p in the
future. Hence, the whole left to right processing of the positions of f can start not from the
first position |f1f2 · · · fj |+1 of f but from the last processed position of f (if any).

It follows from Lemma 6 that if we could not grow f neither by the processing of all
positions p inside f nor by the processing of the case (1) of Lemma 6 described above, then
f is the new phrase fj+1. In this case, to maintain the invariant, we find the (explicit or
implicit) vertex corresponding to the string f = fj+1, mark this vertex, and assign the
weight ISA[|f1f2 · · · fj |] to it; all this is done in O(logn) time using the data structures from
Lemmas 7 and 8. Further, using the binary search and the LCP structure, we insert the
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string
←
f j+1 in an appropriate place of the sorted set

←
fi1 , . . . ,

←
fij and modify the balanced

tree storing i1, . . . , ij accordingly, all in O(logn) time. Finally, the string s[|f1 · · · fj+1|+1]
becomes a candidate for the next phrase fj+2 and we continue the construction.

Once we have performed in O(log2 n) time the procedure finding an “extending” phrase fi
for a given position p inside f (see Lemma 9 below), we either grow the current candidate f
by at least one letter or we do not grow f and this was the last processing of this position. By
this observation, the overall running time of the algorithm is O(n log2 n). The procedure itself
is described in the following lemma, assuming that h−1 = j, fh = f , and S = {f1, f2, . . . , fj};
the lemma is formulated in a more general form that will be useful below in Section 4.

I Lemma 9. Let f1f2 · · · fh be the LZ-End parsing of a prefix of s. Suppose that, for each
fi from a subset S of phrases, the vertex of the suffix tree of s corresponding to fi is marked
and has weight ISA[|f1f2 · · · fi−1|]. Then, for any position p such that |f1f2 · · · fh−1| < p <

|f1f2 · · · fh|, one can find in O(log2 n) time fi ∈ S (if any) such that p+ |fi| ≥ |f1f2 · · · fh|,
fi occurs at position p+1, and s[|f1f2 · · · fh−1|+1..p] is a suffix of f1f2 · · · fi−1.

Proof. Suppose that the required phrase fi ∈ S indeed exists. By assumption, the
vertex v of the suffix tree that corresponds to the string fi is marked and has weight
ISA[|f1f2 · · · fi−1|]. The vertex v is an ancestor of the leaf corresponding to s[p+1..n]. De-
note u = s[|f1f2 · · · fh−1|+1..p]. Let [`u..ru] be the maximal subrange of the range [1..n]
such that, for each d ∈ [`u..ru], the string s[1..SA[d]] has a suffix u; the range [`u..ru] can be
calculated by the binary search in O(logn) time using the LCP structure. Since u is a suffix
of f1f2 · · · fi−1, the weight ISA[|f1f2 · · · fi−1|] of the vertex v lies in the range [`u..ru]. Using
the data structure of Lemma 7, we try to find in O(log2 n) time a marked ancestor v of the
leaf corresponding to s[p+1..n] such that the weight of v is in the range [`u..ru] and the
string depth of v is at least |f1f2 · · · fh|−p (so that the string fi corresponding to v occurs at
position p+1 and embraces the last position of fh; see Figure 1 assuming fj+1 = fh). If such
ancestor exists, we have found fi. Otherwise, we decide that such fi ∈ S does not exist. It is
straightforward that in this way we will necessarily find such fi ∈ S if it really exists. J

4 Linear Algorithm

Now we combine the two approaches described in Sections 2 and 3. On a high level, it is
convenient to think that our algorithm is incremental as in Section 2 but it is guaranteed that
only at most log3 n last phrases from the LZ-End parsing of the currently processed prefix can
be removed in the future. (In fact, any polylogarithmic threshold from ω(log2 n) will suffice.)
After the processing of a prefix s[1..k], we have the LZ-End parsing s[1..k] = f1f2 · · · fz and
the phrases of this parsing are split into two groups: a set of first phrases f1, f2, . . . , fj that
cannot be removed from the parsing in the future (this is similar to the approach of Section 3)
and at most log3 n last phrases fj+1, fj+2, . . . , fz that might be removed in the future. The
phrases from the former group are called static. When the number of non-static phrases
exceeds the threshold log3 n, the algorithm rebuilds the set of non-static phrases and, during
this process, possibly marks some of them as static (see the detailed discussion below).

The algorithm maintains a bit array M [1..n] defined as in Section 2 but only for the static
phrases: M [i] = 1 iff s[1..SA[i]] = f1f2 · · · fh for a static phrase fh of the current parsing
f1f2 · · · fz. It follows from the above high level description that one can modify M only
changing bits to ones. Therefore, the van Emde Boas data structure that answered prede-
cessor/successor queries on M can be replaced with the following split-find data structure [12]
(the settings of bits to ones can be viewed as splittings of continuous ranges of zeroes.)
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I Lemma 10 (see [12]). There is a (split-find) data structure that, for any i ∈ [1..n], can
find (if any) the maximal j ≤ i (resp., minimal j ≥ i) such that M [j] = 1 in O(1) time and
can perform (at most) n assignments M [i]← 1 in overall O(n) time.

I Lemma 11. For any p ∈ [1..n], one can find in O(1) time a static phrase fi for which the
length of the longest common suffix of s[1..p] and f1f2 · · · fi is maximal (among all static fi).

Proof. The procedure is the same as in Section 2 but now we use the structure of Lemma 10
for predecessor/successor queries. We omit the details as they are straightforward. J

An analogous data structure for predecessor/successor queries on non-static phrases is
organized using the so-called fusion tree [11].

I Lemma 12 (see [11, 29]). The fusion tree can maintain a set of at most log3 n integers
under the following operations, each of which takes O(1) time:
1. insert an integer x with user-defined satellite information into the set;
2. remove an integer x from the set;
3. for an integer x, find (if any) in the set the maximal y ≤ x (resp., minimal y ≥ x) with

the corresponding satellite information.

I Lemma 13. Suppose that, for each phrase fi from a set S of phrases, the fusion tree stores
the number ISA[|f1f2 · · · fi|] with the satellite information containing a pointer to fi. Then,
for any p ∈ [1..n], one can find in O(1) time a phrase fi ∈ S for which the length of the
longest common suffix of s[1..p] and f1f2 · · · fi is maximal (among all fi ∈ S).

Proof. The proof is analogous to the proof of Lemma 11. We omit the obvious details. J

During the incremental construction, the fusion tree stores the set of all non-static phrases
as described in Lemma 13. Suppose that we have processed a prefix s[1..k] and f1f2 · · · fz
is the LZ-End parsing of this prefix. To check whether fz has an earlier occurrence ending
at a phrase boundary, we temporarily remove fz from the fusion tree, apply Lemmas 11
and 13 thus obtaining, respectively, static and non-static phrases fi and fi′ described in these
lemma, and use the LCP structure to calculate the lengths of the longest common suffixes of
fz and f1f2 · · · fi, and of fz and f1f2 · · · fi′ ; then, fz has the required occurrence iff one of
these two computed lengths is greater than or equal to |fz|. To check whether fz−1fz has
an earlier occurrence ending at a phrase boundary, we do the same but also temporarily
remove fz−1 from the fusion tree. After this, the temporarily removed phrases fz−1 and fz
are restored. According to the results of the checking, we remove zero, or one (fz), or two
(fz−1, fz) phrases from the fusion tree and insert a new phrase, resp., s[k+1], or fzs[k+1],
or fz−1fzs[k+1], thus constructing the parsing of s[1..k+1]. The whole procedure takes O(1)
time. Clearly, such incremental algorithm works in O(n) overall time but sometimes we have
a problem: the new non-static phrase inserted in the fusion tree can exceed the limit of
log3 n elements. Such overflows of the fusion tree are fixed in two ways described below.

Overflows of the fusion tree 1. Let the fusion tree contain the phrases fj+1, fj+2, . . . , fz
of the LZ-End parsing f1f2 · · · fz of s[1..k]. Suppose that the fusion tree overflows when the
letter s[k+1] is appended; obviously, this can happen only if z − j = blog3 nc and the last
phrase of the parsing of s[1..k+1] is s[k+1]. We are to rebuild the current set of non-static
phrases fj+1, fj+2, . . . , fz (we assume that s[k+1] is not inserted in the fusion tree yet) in
order to fix the coming overflow. The algorithm maintains a variable t that contains the sum
of the lengths of all non-static phrases, i.e., t = |fj+1fj+2 · · · fz| at the given moment.
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We try to unload the fusion tree performing the following procedure consecutively for
each of the t positions k + 1, k + 2, . . . , k + t from left to right (for simplicity, assume that
k + t < n; the case k + t ≥ n is analogous): for a position p, we apply Lemmas 11, 13
and use the LCP structure in the same way as above in order to check in O(1) time
whether the string s[|f1f2 · · · fz−1|+1..p] is a suffix of a string f1f2 · · · fi for some i ∈ [1..z−1].
Suppose that this checking has succeeded and q ∈ [k+1..k+t] is the leftmost position
for which s[|f1f2 · · · fz−1|+1..q] is a suffix of f1f2 · · · fi for some i ∈ [1..z−1]. Then, it
follows from Lemma 3 that the parsing of the string s[1..q+1] is f1f2 · · · fz−1f , where
f = s[|f1f2 · · · fz−1|+1..q+1]. Hence, once such position q is found, we stop the processing
of the positions and modify the fusion tree in O(1) time removing the phrase fz and
putting the new phrase f inside. Since the modified fusion tree contains only the phrases
fj+1, fj+2, . . . , fz−1, f (i.e., the same number z − j), it is not overflowed and, therefore, our
incremental algorithm can continue the execution from the prefix s[1..q+1].

Since each position is analyzed in O(1) time, the processing takes O(q − k) time if such
position q was found (and O(t) time otherwise). Therefore, if every overflow of the fusion
tree during the work of the algorithm is successfully fixed by the described method, then
the construction of the LZ-End parsing of the whole string s takes O(n) time. It remains to
consider the case when this method could not find the required position q.

Overflows of the fusion tree 2. As in Section 3, at the beginning, our algorithm builds
the suffix tree of s equipped with the data structures of Lemmas 7 and 8. We maintain the
following invariant: for each static phrase fi such that |fi| ≥ log3 n, the (explicit or implicit)
vertex of the suffix tree corresponding to fi is marked and has weight ISA[|f1f2 · · · fi−1|], i.e.,
the invariant is like in Section 3 but only for static and sufficiently long phrases.

Suppose that, after the fusion tree overflow occurred on the prefix s[1..k+1] of s, we
processed all t = |fj+1fj+2 · · · fz| positions k + 1, k + 2, . . . , k + t as above but could not
“grow” the last phrase fz of the parsing f1f2 · · · fz of s[1..k]. We say that a phrase fh of the
parsing is extendable if there is q ≥ |f1f2 · · · fh| such that s[|f1f2 · · · fh−1|+1..q] is a suffix
of f1f2 · · · fi for some i ∈ [1..h−1]. (Note that q cannot be equal to n since we assumed
that s[n] does not occur in s[1..n−1].) Since the positions k + 1, k + 2, . . . , k + t all were
unsuccessfully processed by the above procedure trying to “extend” fz, q must be greater
than k + t and, by Lemma 6, the phrase fi “extending” fh can be chosen so that fi starts
inside fh (as in Fig. 1) and has length at least t+ 1 ≥ log3 n. For simplicity of exposition,
we summarize this in the following lemma, which is an easy corollary of Lemma 6.

I Lemma 14. Let t be a positive integer. Denote by f1f2 · · · fz the LZ-End parsing of
a prefix s[1..k] of s. Suppose that, for each q ∈ [k..k+t], there is no i ∈ [1..z−1] such
that s[|f1f2 · · · fz−1|+1..q] is a suffix of f1f2 · · · fi. Then, for any extendable phrase fh with
h ∈ [1..z], there exist i ∈ [1..h−1] and a position p such that |f1f2 · · · fh−1| < p < |f1f2 · · · fh|,
p+|fi| > k+t, fi occurs at position p+1, and s[|f1f2 · · · fh−1|+1..p] is a suffix of f1f2 · · · fi−1.

Since t = |fj+1fj+2 · · · fz|, at most log2 n non-static phrases have length ≥ t/ log2 n and
most non-static phrases (≥ z − j − log2 n = blog3 nc − log2 n) have length < t/ log2 n. (The
choice of the threshold t/ log2 n is clarified below.) By a simple traversal of non-static phrases,
we find in O(z− j) ⊂ O(t) time the rightmost non-static phrase fh such that |fh| < t/ log2 n.
By Lemma 14, if fh is extendable, then it can be “extended” by a phrase fi of length >t such
that fi occurs at a position inside fh. Since |fi| > t and t is the sum of the lengths of all
non-static phrases, fi must be static. Therefore, by the invariant, the vertex of the suffix tree
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corresponding to fi is marked and has weight ISA[|f1f2 · · · fi−1|]. Based on this observation,
the algorithm decides whether fh is extendable processing each position of fh in O(log2 n)
time by the procedure of Lemma 9 (assuming that the set S from Lemma 9 corresponds
to the invariant) in the same way as in Section 3. The overall time of this processing is
O(|fh| log2 n) = O( t

log2 n
log2 n) = O(t). (That is why the threshold is t/ log2 n.) The further

overflow fixing procedure depends on whether the phrase fh is extendable.
Suppose that fh is not extendable (it is a simpler case). Then, the algorithm marks the non-

static phrases fj+1, fj+2, . . . , fh as static, sets M [ISA[|f1f2 · · · fh′ |]] ← 1, for h′ ∈ [j+1..h],
modifying the data structure of Lemma 10 accordingly, and removes these phrases from the
fusion tree. This is correct due to the following straightforward lemma.

I Lemma 15. Suppose that f1f2 · · · fz is the LZ-End parsing of a prefix s[1..k] of s. For
h ∈ [1..z], if the phrase fh is non-extendable, then so are all the phrases f1, f2, . . . , fh−1.

To maintain the invariant, for each new static phrase fh′ such that |fh′ | ≥ log3 n,
the algorithm finds in O(logn) time using the data structure of Lemma 8 the vertex of
the suffix tree corresponding to the string fh′ and marks this vertex assigning the weight
ISA[|f1f2 · · · fh′−1|] to it in O(logn) time using the data structure of Lemma 7. After this,
only phrases of length ≥t/ log2 n can remain in the fusion tree. Since there are at most log2 n

such phrases, the fusion tree is not overflowed and we can continue our incremental algorithm
from the prefix s[1..k+1] whose parsing is f1f2 · · · fzs[k+1]. (This case of non-extendable fh
makes the overall time estimation of the algorithm non-trivial; see the discussion below.)

Suppose that fh is extendable and we found q > k + t and a static phrase fi such that
s[|f1f2 · · · fh−1|+1..q] is a suffix of f1f2 · · · fi (it is important that fi is static). We are to
compute the LZ-End parsing of the string s[1..q+1] based on the following lemma.

I Lemma 16. Let f1f2 · · · fz be the LZ-End parsing of a prefix s[1..k] of s. Suppose that,
for h ∈ [1..z] and q > k, s[|f1f2 · · · fh−1|+1..q] is a suffix of f1f2 · · · fi for a static phrase fi.
Then, the LZ-End parsing of s[1..q+1] has one of the following forms: (1) f1f2 · · · fmf , for
m < h, or (2) f1f2 · · · fmf ′f , for m < h− 1, such that f1f2 · · · fz is a prefix of f1f2 · · · fmf ′.

Proof. Suppose that the LZ-End parsing of s[1..q] coincides with the parsing of s[1..k] on the
first d phrases, i.e., s[1..q] = f1f2 · · · fdf ′1f ′2 · · · f ′c for some c ≥ 1. It follows from Lemma 2
that f1f2 · · · fz is a prefix of f1f2 · · · fdf ′1. Since fi is static, we have i ≤ d, i.e., the phrases
f1, f2, . . . , fi are presented in the parsing of s[1..q]. Therefore, by Lemma 2, the LZ-End
parsing of s[1..q+1] is either f1f2 · · · fdf ′1f (here, the new phrase f “absorbs” the phrases
f ′2, f

′
3, . . . , f

′
c; we put m := d and f ′ := f ′1) or f1f2 · · · fmf for some m ≤ d (the new phrase f

“absorbs” f ′1 and, probably, some of the phrases fd, fd−1, . . .). Since f necessarily “absorbs”
the phrases fhfh+1 · · · fz, we have d < h− 1 in the former case and, hence, m < h− 1. J

The main problem is to find f and f ′ from Lemma 16 (and to determine whether f ′
really exists). For this, we perform a version of the incremental algorithm for the positions
k+ t+ 1, k+ t+ 2, . . . , q from left to right; the difference is that, during this, we do not store
any auxiliary phrases that appear as substrings of s[k+1..q] because anyway, by Lemma 16,
they are not present in the final parsing of s[1..q+1]. Let us discuss this in more details.

Let Q = {q1, q2, . . . , qc} be the increasing sequence of all positions from [k+t+1..q] such
that the LZ-End parsing of s[1..qd+1], for any d ∈ [1..c], has the form f1f2 · · · fmd

f ′d for
some md ≤ z and some phrase f ′d. It is convenient to imagine an incremental algorithm
(as in Section 2) that builds the parsing of the string s[1..q+1] incrementally starting from
the parsing of s[1..k+t]; our goal is to determine the moments when this algorithm passes
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· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

t
k

· · · fh−3 fh−2 fh−1 fh fz

q5+1 q+1
· · · fh−3 f ′5 = f ′ f

q4+1

· · · fh−3 f ′4

q3+1
· · · fh−3 fh−2 f ′3

q2+1

· · · fh−3 fh−2 f ′2

q1+1
· · · fh−3 fh−2 fh−1 f ′1

Figure 2 Construction of the parsing from Lemma 16; here h = z − 1, c = 5, m1 = h− 1, m2 =
m3 = h−2, m4 = m5 = m = h−3. Each line depicts the parsing of s[1..q′+1] for q′ ∈ {q1, q2, q3, q4, q}.

the positions from Q (also see Fig. 2 for clarifications). By the choice of q, the string
s[|f1f2 · · · fh−1|+1..q] is a suffix of f1f2 · · · fi, for static phrase fi, and, therefore, if none
of the positions [k+t+1..q−1] belongs to Q, then q must belong to it. By definition of Q,
the case (1) of Lemma 16 is realized iff qc = q. Further, the phrases f ′, f and the number
m from Lemma 16 can be determined as follows: f = f ′c and m = mc if qc = q (case (1)),
and f ′ = f ′c, f = s[qc+2..q+1], m = mc otherwise (case (2)). Note that the “source” of the
phrase f found during the calculation of qc and mc below might differ from the “source”
f1f2 · · · fi and might have a longer common suffix with s[1..q]. Thus, it remains to compute
qc and mc through the imitation of the work of our imaginary incremental algorithm.

During the processing of the positions [k+t+1..q], our real algorithm maintains a variable
m that is equal to md for the last processed position qd ∈ Q (initially, m = z) and the
fusion tree stores only the phrases fj+1, fj+2, . . . , fm (so that, initially, it stores all non-static
phrases). For each p = k + t+ 1, k + t+ 2, . . . , q from left to right, we apply Lemmas 11, 13
and use the LCP structure (in the same way as in the beginning of this section) to find in
O(1) time a phrase fi′ such that fi′ either is static or is currently in the fusion tree and the
length ` of the longest common suffix of s[1..p] and f1f2 · · · fi′ is maximal (among all such
phrases fi′). Then, p belongs to Q iff ` ≥ p− |f1f2 · · · fm|. Further, if ` ≥ p− |f1f2 · · · fm−1|
and i′ 6= m, we remove the phrase fm from the fusion tree and decrease m by one; in the
special case when ` ≥ p − |f1f2 · · · fm−1| and i′ = m, we remove fm from the fusion tree,
repeat the processing of p, and, if m did not change in this second attempt, restore fm.
The variable m is decreased only by one since, as it follows from Lemmas 2 and 3, for any
d ∈ [1..c], we have either md = md−1 or md = md−1 − 1, assuming m0 = z. The described
algorithm computes the numbers qc and mc (and, thus, f , f ′, and m) in O(q − k) time.

We remove the phrases fm+1, . . . , fz from the fusion tree and put f and f ′ (if f ′ does
exist) in it. So, by Lemma 16, the set of non-static phrases of s[1..q+1] consists of either
fj+1, fj+2, . . . , fm, f , form < h, or fj+1, fj+2, . . . , fm, f

′, f , form < h−1. Since h−j ≤ z−j,
there are at most z − j = blog3 nc phrases in this set. Therefore, the fusion tree is not
overflowed anymore and the algorithm can continue the execution from the prefix s[1..q+1].

The correctness of the whole algorithm of this section should be clear at this point.

Time estimation. The algorithm processes each position of s in O(1) time from left to
right until it reaches a position k+1 where the fusion tree overflows when the letter s[k+1]
is appended. The overflow is fixed in two ways. First, the algorithm processes each of the
positions k + 1, k + 2, . . . , k + t in O(1) time from left to right, for an appropriate value
of t, until it finds a position q such that our usual algorithm can continue the execution
from the prefix s[1..q+1] with the fixed non-overflowed fusion tree. It is obvious that all
fixing procedures of this kind take O(n) overall time. Thus, it remains to consider the
time required to fix the overflows in which the processing of the corresponding positions
k + 1, k + 2, . . . , k + t could not help; we refer to the overflows of this kind as hard overflows.

ESA 2017
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· · · fh−3 fh−2 fh−1 fh fh+1 fh+2 fh′−1 fh′ fh′+1 fh′+2 fh′+3 fh′+4fh′+5 fh′+6
bi eiti

bi+1 ei+1ti+1
bi+2 ei+2ti+2

︷ ︸︸ ︷≤ log2 n phrases

Figure 3 The case in the proof of Lemma 17 when fh and fh′ both are not extendable. The
depicted phrases are from the LZ-End parsing of the prefix s[1..ei+2].

To maintain the invariant, the algorithm marks in the suffix tree the vertices corresponding
to the static phrases of length at least log3 n. As there are at most O(n/ log3 n) such phrases
and each marking takes O(logn) time, the overall time required for the maintenance of the
invariant is o(n) and, hence, we can exclude the time spent on these markings from the
consideration. Denote by ti the value of the variable t at the moment when the ith hard
overflow occurs. Suppose that the ith hard overflow occurs when the algorithm reaches a
prefix s[1..ki], for some ki, and tries to process s[1..ki+1]. The processing of this hard overflow
takes O(ti + qi − ki) time, where s[1..qi+1] is a prefix from which the algorithm continues its
execution after the fixing of the overflow. It is easy to see that

∑
i(ti+qi−ki) = O(n)+

∑
i ti

and, hence, it suffices to prove that, for any input string s[1..n], we have
∑
ti = O(n).

Consider the ith hard overflow. Suppose that it occurs on a prefix s[1..k] with the LZ-End
parsing f1f2 · · · fz and the fusion tree contains the phrases fj+1, fj+2, . . . , fz at this moment.
Denote bi = |f1f2 · · · fj |+ 1 and ei = |f1f2 · · · fz| (“b” and “e” are shortenings for “begin”
and “end”). Since ti = |fj+1fj+2 · · · fz|, we have ei = bi + ti − 1.

I Lemma 17. Suppose that d is the number of hard overflows occurred during the processing
of a string s. Then, for any i ∈ [1..d−2], we have bi+2 + ei+2 ≥ bi + ei + ti.

Proof. Note that the sequences {bi} and {ei} are non-decreasing and bi < ei for any i ∈ [1..d].
Recall that the ith hard overflow occurs after the processing of the prefix s[1..ei] and the
procedure fixing the overflow tries to “extend” a non-static phrase fh of the LZ-End parsing
of s[1..ei]. Due to Lemma 14, if fh is extendable, then the algorithm continues its execution
from a prefix s[1..q+1] for some q > ei + ti. Therefore, we obtain ei+1 ≥ q > ei + ti and,
hence, bi + ei + ti < bi + ei+1 ≤ bi+2 + ei+2.

Suppose that fh is not extendable. Then, the algorithm marks fh and all phrases to the
left of fh as static and only at most log2 n phrases (of length ≥ ti/ log2 n) remain in the
fusion tree (see Fig. 3 and 4). Now consider the (i+1)st hard overflow. It follows from the
above discussion that only at most log2 n first phrases of the fusion tree can contain phrases
of the parsing of s[1..ei] at this moment. The procedure fixing the (i+1)st hard overflow
analogously tries to “extend” a non-static phrase fh′ of the LZ-End parsing of s[1..ei+1].
This phrase fh′ is the rightmost phrase of length < ti+1/ log2 n. Since there are at least
blog3 nc − log2 n phrases of length < ti+1/ log2 n, the phrase fh′ cannot coincide with any
of the phrases from the parsing of s[1..ei] and, therefore, it must occur at a position to the
right of the position ei (see Fig. 3 and 4 for a clarification).

Suppose that fh′ is not extendable (see Fig. 3). Then, the algorithm marks fh′ and all
phrases to the left of fh′ as static. Hence, during the (i+2)nd hard overflow, bi+2 must
be greater than the rightmost position of fh′ and, thus, bi+2 > ei (see Fig. 3). Since
ei = bi + ti − 1, the later implies bi + ti ≤ bi+2 and, hence, bi + ei + ti ≤ bi+2 + ei+2.

Suppose that fh′ is extendable. Since ti ≤ (bi+1 − bi) + ti+1 (see Fig. 4), we derive
bi + ei + ti ≤ bi + ei + (bi+1− bi) + ti+1 = bi+1 + ei + ti+1 ≤ bi+1 + ei+1 + ti+1. By Lemma 14,
since fh′ is found to be extendable, after the (i+1)st hard overflow the algorithm continues
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· · · fh−3 fh−2 fh−1 fh fh+1 fh+2 fh′−1 fh′ fh′+1 fh′+2
bi eiti

bi+1 ei+1ti+1 ti+1
bi+2 ei+2ti+2

︷ ︸︸ ︷≤ log2 n phrases

q

Figure 4 The case in the proof of Lemma 17 when fh is not extendable and fh′ is extendable.
The depicted phrases are from the LZ-End parsing of the prefix s[1..ei+1].

its execution from a prefix s[1..q+1] for some q > ei+1 + ti+1. Therefore, we obtain ei+2 ≥
q > ei+1 + ti+1 (see Fig. 4), which implies bi + ei + ti ≤ bi+1 + ei+1 + ti+1 < bi+2 + ei+2. J

It follows from Lemma 17 that
∑d−2
i=1 ti ≤

∑d−2
i=1 (bi+2 + ei+2 − bi − ei) = bd + ed + bd−1 +

ed−1 − b1 − e1 − b2 − e2, which is obviously O(n). Therefore, since td + td−1 = O(n), we
obtain

∑d
i=1 ti = O(n). This finally proves Theorem 1.
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Abstract
Many fundamental NP-hard problems can be formulated as integer linear programs (ILPs). A
famous algorithm by Lenstra allows to solve ILPs in time that is exponential only in the di-
mension of the program. That algorithm therefore became a ubiquitous tool in the design of
fixed-parameter algorithms for NP-hard problems, where one wishes to isolate the hardness of
a problem by some parameter. However, it was discovered that in many cases using Lenstra’s
algorithm has two drawbacks: First, the run time of the resulting algorithms is often doubly-
exponential in the parameter, and second, an ILP formulation in small dimension can not easily
express problems which involve many different costs.

Inspired by the work of Hemmecke, Onn and Romanchuk [Math. Prog. 2013], we develop
a single-exponential algorithm for so-called combinatorial n-fold integer programs, which are
remarkably similar to prior ILP formulations for various problems, but unlike them, also allow
variable dimension. We then apply our algorithm to a few representative problems like Closest
String, Swap Bribery, Weighted Set Multicover, and obtain exponential speedups in
the dependence on the respective parameters, the input size, or both.

Unlike Lenstra’s algorithm, which is essentially a bounded search tree algorithm, our result
uses the technique of augmenting steps. At its heart is a deep result stating that in combinatorial
n-fold IPs an existence of an augmenting step implies an existence of a “local” augmenting step,
which can be found using dynamic programming. Our results provide an important insight into
many problems by showing that they exhibit this phenomenon, and highlights the importance of
augmentation techniques.
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1 Introduction

The Integer Linear Programming (ILP) problem is fundamental as it models many
combinatorial optimization problems. Since it is NP-complete, we naturally ask about the
complexity of special cases. A fundamental algorithm by Lenstra from 1983 shows that
ILPs can be solved in polynomial time when their number of variables (the dimension) d is
fixed [30]; that algorithm is thus a natural tool to prove that the complexity of some special
cases of other NP-hard problems is also polynomial.

A systematic way to study the complexity of “special cases” of NP-hard problems has
been developed in the past 25 years in the field of parameterized complexity. There, the
problem input is augmented by some integer parameter k, and one then measures the problem
complexity in terms of both the instance size n as well as k. Of central importance are
algorithms with run times of the form f(k)nO(1) for some computable function f , which are
called fixed-parameter algorithms; the key idea is that the degree of the polynomial does not
grow with k. For background on parameterized complexity, we refer to the monograph [7].

Kannan’s improvement [23] of Lenstra’s algorithm runs in time dO(d)n, which is thus a
fixed-parameter algorithm for parameter d. Gramm et al. [17] pioneered the application of
Lenstra’s and Kannan’s algorithm in parameterized complexity, giving a fixed-parameter
algorithm for the Closest String problem [17]. This led Niedermeier [34] to propose:

[...] It remains to investigate further examples besides Closest String where
the described ILP approach turns out to be applicable. More generally, it would
be interesting to discover more connections between fixed-parameter algorithms and
(integer) linear programming.

Since then, many more applications of Lenstra’s and Kannan’s algorithm for parameterized
problems have been proposed. However, essentially all of them [5, 9, 10, 21, 33, 29] share
a common trait with the algorithm for Closest String: they have a doubly-exponential
dependence on the parameter. Moreover, it is difficult to find ILP formulations with small
dimension for problems whose input contains many objects with varying cost functions, such
as in Swap Bribery [4, Challenge #2].

Our contributions. We show that a certain form of ILP, which is closely related to the
previously used formulations for Closest String and other problems, can be solved in
single-exponential time and in variable dimension. For example, Gramm et al.’s [17] algorithm
for Closest String runs in time 22O(k log k) logL and has not been improved since 2003, while
our algorithm runs in time kO(k2) logL. Moreover, our algorithm has a strong combinatorial
flavor and is based on different notions than are typically encountered in parameterized
complexity, most importantly augmenting steps.

As an example of our form of ILP, consider the following ILP formulation of the Closest
String problem. We are given k strings s1, . . . , sk of length L that come (after some
preprocessing) from alphabet [k] := {1, . . . , k}, and an integer d. The goal is to find a string
y ∈ [k]L such that, for each si, the Hamming distance dH(y, si) is at most d, if such y
exists. For i ∈ [L], (s1[i], . . . , sk[i]) is the i-th column of the input. Clearly there are at
most kk different column types in the input, and we can represent the input succinctly with
multiplicities bf of each column type f ∈ [k]k. Moreover, there are k choices for the output
string y in each column. Thus, we can encode the solution by, for each column type f ∈ [k]k
and each output character e ∈ [k]k, describing how many solution columns are of type (f , e).
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This is the basic idea behind the formulation of Gramm et al. [17], as depicted on the left:∑
e∈[k]

∑
f∈[k]k

dH(e, fj)xf ,e ≤ d
∑

f∈[k]k

∑
(f ′,e)∈[k]k+1

dH(e, fj)xf
f ′,e ≤ d ∀j ∈ [k]∑

e∈[k]

xf ,e = bf
∑

(f ′,e)∈[k]k+1

xf
f ′,e = bf ∀f ∈ [k]k

xf ,e ≥ 0 ∀(f , e) ∈ [k]k+1

xf ′
f ,e = 0 ∀f ′ 6= f ,∀e ∈ [k]

0 ≤ xf
f ,e ≤ bf ∀f ∈ [k]k

Let (1 · · · 1) = 1ᵀ be a row vector of all ones. Then we can view the above as

D1 D2 · · · Dkk ≤ d D D · · · D ≤ d
1ᵀ 0 · · · 0 = b1 1ᵀ 0 · · · 0 = b1

0 1ᵀ · · · 0 = b2 0 1ᵀ · · · 0 = b2

...
...

. . .
... =

...
...

...
. . .

... =
...

0 0 · · · 1ᵀ = bk
k 0 0 · · · 1ᵀ = bk

k

,

where D = (D1 D2 . . . Dkk ). The formulation on the right is clearly related to the one
on the left, but contains “dummy” variables which are always zero. This makes it seem
unnatural at first, but notice that it has the nice form

min
{
f(x) | E(n)x = b , l ≤ x ≤ u , x ∈ Znt

}
, where E(n) :=


D D · · · D

A 0 · · · 0
0 A · · · 0
...

...
. . .

...
0 0 · · · A

 . (1)

Here, r, s, t, n ∈ N, u, l ∈ Znt, b ∈ Zr+ns and f : Znt → Z is a separable convex function, E(n)

is an (r+ns)×nt-matrix, D ∈ Zr×t is an r×t-matrix and A ∈ Zs×t is an s×t-matrix. We call
E(n) the n-fold product of E = (DA ). This problem (1) is known as n-fold integer programming
(IP )E(n),b,l,u,f . Building on a dynamic program of Hemmecke, Onn and Romanchuk [19]
and a so-called proximity technique of Hemmecke, Köppe and Weismantel [18], Knop and
Koutecký [25] prove that:

I Proposition 1 ([25, Theorem 7]). There is an algorithm that, given (IP )E(n),b,l,u,f encoded
with L bits, solves1 it in time aO(trs+t2s) · n3L, where a = max{‖D‖∞, ‖A‖∞}.

However, since the ILP on the bottom right of the previous page has t = kk, applying
Proposition 1 gives no advantage over applying Lenstra to solve the Closest String
problem. We overcome this by focusing on a special case with A = (1 · · · 1) = 1ᵀ ∈ Z1×t,
(b1, . . . , bn) ≥ 0, uij ∈ {0, ‖b‖∞} for all i ∈ [n] and j ∈ [t]2, and f(x) = wᵀx, i.e., the
objective is linear. We denote f i(xi) = wiᵀxi. We call this form combinatorial n-fold IP3,
and achieve an exponential speed-up in t:

1 Given an (IP), we say that to solve it is to either (i) declare it infeasible or unbounded or (ii) find a
minimizer of it.

2 More precisely, x ≥ 0 and 1ᵀxi = bi imply xij ≤ bi and thus we just need either uij = 0 or uij ≥ bi.
3 We deliberately use the term “n-fold IP” even if our objective is linear, making it an ILP, in order to be

consistent with the previous literature [19, 31, 35].
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54:4 Huge n-fold integer programming and applications.

I Theorem 2. Let (IP )E(n),b,0,u,w be a combinatorial n-fold IP instance with L = 〈b,0,u,w〉
and a = ‖D‖∞. Then it can be solved in time tO(r)(ar)O(r2)n3L.

Observe that, when applicable, our algorithm is not only faster than Lenstra’s, but works
even if the number n is variable (not parameter).

By applying this result to a few selected problems we obtain exponential improvements in
the dependence on the parameter, the length of the input, or both, as presented in Table 1.
Statements whose proofs are omitted due to space constraints are marked with ?.

Stringology. A typical problem from stringology is to find a string y satisfying certain dis-
tance properties with respect to k strings s1, . . . , sk. All previous fixed-parameter algorithms
for such problems we are aware of for parameter k rely on Lenstra’s algorithm, or their
complexity status was complexity open (e.g., the complexity of Optimal Consensus [1] was
unknown for all k ≥ 4). Interestingly, Boucher and Wilkie [3] show the counterintuitive fact
that Closest String is easier to solve when k is large, which makes the parameterization
by k even more significant. Finding an algorithm with run time only single-exponential
in k was a repeatedly posed open problem, e.g. [6, Challenge #1] and [2, Problem 7.1]. By
applying our result, we close this gap for a wide range of problems.

I Theorem 3 (?). The problems
Closest String, Farthest String, Distinguishing String Selection, Neighbor
String, Closest String with Wildcards, Closest to Most Strings, c-HRC
and Optimal Consensus are solvable in time kO(k2) logL, and,
d-Mismatch is solvable in time kO(k2)L2 logL,

where k is the number of input strings, L is their length, and we are assuming that the input
is presented succinctly by multiplicities of identical columns.

Computational Social Choice. A typical problem in computational social choice involves
an election with voters (V ) and candidates (C). A natural and much studied parameter is
the number of candidates |C|. For a long time, only algorithms double-exponential in |C|
were known, and improving upon them was posed as a challenge [4, Challenge #1]. Recently,
Knop et al. [27] solved the challenge using Proposition 1. However, Knop et al.’s result has a
cubic dependence O(|V |3) on the number of voters, and the dependence on the number of
candidates is still quite large, namely |C|O(|C|6). We improve their result as follows:

I Theorem 4 (?). R-Swap Bribery can be solved in time
|C|O(|C|2)T 3(log |V |+ log σmax) for R any natural scoring protocol, and,
|C|O(|C|4)T 3(log |V |+ log σmax) for R any C1 rule,

where T ≤ |V | is the number of voter types and σmax is the maximum cost of a swap.

Weighted Set Multicover. Bredereck et al. [5] define the Weighted Set Multicover
(WSM) problem, which is a significant generalization of the classical Set Cover problem.
Their motivation to study WSM was that it captures several problems from computational
social choice and optimization problems on graphs [11, 13, 29, implicit in]. Bredereck et al. [5]
design an algorithm for WSM that runs in time 22O(k log k) logn, using Lenstra’s algorithm.

Again, applying our result yields an exponential improvement over that of Bredereck et
al. [4] both in the dependence on the parameter and the size of the instance:

I Theorem 5. There is an algorithm that solves the Weighted Set Multicover problem
and runs in time kO(k2)W 3(logn+ logwmax), where k is the size of the universe, n denotes
the number of sets, W is the number of different weights and wmax is the maximum weight.
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Table 1 Complexity improvements for a few representative problems.

Problem Previous best runtime Our result

Closest String 22O(k log k)
logL [17] kO(k2) logL

Optimal Consensus FPT for k ≤ 3, open for k ≥ 4 [1] kO(k2) logL

Score-Swap Bribery 22O(|C| log |C|)
log |V | [9] / |C|O(|C|6)|V |3 [27] |C|O(|C|2)T 3 log |V |, with T ≤ |V |

C1-Swap Bribery 22O(|C| log |C|)
log |V | [9] / |C|O(|C|6)|V |3 [27] |C|O(|C|4)T 3 log |V |, with T ≤ |V |

Weighted Set Multicover 22O(k log k)
n [5] kO(k2) logn

Huge n-fold IP FPT with D = I and A totally unimodular FPT with parameter-sized domains

Huge n-fold IP. Onn [36] introduces a high-multiplicity version of the standard n-fold IP
problem (1). It is significant because of its connection to the Bin Packing problem in the
case of few item sizes, as studied by Goemans and Rothvoss [16]. Previously, Huge n-fold
IP was shown to be fixed-parameter tractable when D = I and A is totally unimodular; using
our result, we show that it is also fixed-parameter tractable when D and A are arbitrary,
but the size of variable domains is bounded by a parameter.

A summary of our results is given in Table 1; this list is not meant to be exhaustive.
In fact, we believe that for any Lenstra-based result in the literature which only achieves
double-exponential run times, there is a good chance that it can be sped up using our
algorithm. The only significant obstacle seem to be large coefficients in the constraint matrix.
We provide further insights and discussion in the full version of the paper [26].

Related work. Our main inspiration are augmentation methods based on Graver bases,
especially a fixed-parameter algorithm for n-fold IP of Hemmecke, Onn and Romanchuk [19].
Our result improves the runtime of their algorithm for a special case. All the following
related work is orthogonal to ours in either the achieved result, or the parameters used for it.

In fixed dimension, Lenstra’s algorithm [30] was generalized for arbitrary convex sets and
quasiconvex objectives by Khachiyan and Porkolab [24]. The currently fastest algorithm
of this kind is due to Dadush et al. [8]. The first notable fixed-parameter algorithm for
a non-convex objective is due to Lokshtanov [32], who shows that optimizing a quadratic
function over the integers of a polytope is fixed-parameter tractable if all coefficients are
small. Ganian and Ordyniak [14] and Ganian et al. [15] study the complexity of ILP with
respect to structural parameters such as treewidth and treedepth, and introduce a new
parameter called torso-width.

Besides fixed-parameter tractability, there is interest in the (non)existence of kernels of
ILPs, which formalize the (im)possibility of various preprocessing procedures. Jansen and
Kratsch [22] show that ILPs containing parts with simultaneously bounded treewidth and
bounded domains are amenable to kernelization, unlike ILPs containing totally unimodular
parts. Kratsch [28] studies the kernelizability of sparse ILPs with small coefficients.

2 Preliminaries

For positive integers m,n we set [m : n] = {m, . . . , n} and [n] = [1 : n]. For a graph G we
denote by V (G) the set of its vertices. We write vectors in boldface (e.g., x,y etc.) and their
entries in normal font (e.g., the i-th entry of x is xi). Given an matrix A ∈ Zm×n, vectors
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54:6 Huge n-fold integer programming and applications.

b ∈ Zm, l,u ∈ Zn and a function f : Zn → Z, we denote by (IP )A,b,l,u,f the problem

min {f(x) | Ax = b , l ≤ x ≤ u , x ∈ Zn} .

We say that x is feasible for (IP )A,b,l,u,f if Ax = b and l ≤ x ≤ u. If we want to talk about
any such IP, we simply denote it as (IP).

Graver Bases and Augmentation. Let us now introduce Graver bases, how they can be
used for optimization, and also the special case of n-fold IPs. For background, we refer to
the books of Onn [35] and De Loera et al. [31].

Given two n-dimensional integer vectors x and y, we say they are sign-compatible if they
lie in the same orthant, or equivalently, if for each i ∈ [n], the sign of xi and yi is the same.
We say

∑
i gi is a sign-compatible sum if all gi are pair-wise sign-compatible. Moreover, we

write y v x if x and y are sign-compatible and |yi| ≤ |xi| for each i ∈ [n], and write y @ x if
at least one of the inequalities is strict. Clearly, v imposes a partial order called “conformal
order” on n-dimensional vectors. For an integer matrix A ∈ Zm×n, its Graver basis G(A)
is the set of v-minimal non-zero elements of the lattice of A, kerZ(A) = {z ∈ Zn | Az = 0}.
An important property of G(A) is the following.

I Proposition 6 ([35, Lemma 3.2]). Every integer vector x 6= 0 with Ax = 0 is a sign-
compatible sum x =

∑
i gi of Graver basis elements gi ∈ G(A), with some elements possibly

appearing with repetitions.

Given a feasible solution x to an (IP), we call g a feasible step if x + g is feasible in (IP).
Moreover, we call a feasible step g augmenting if f(x + g) < f(x). Given a feasible solution
x to (IP), we call a tuple (g, α) with α ∈ Z a Graver-best step if g is an augmenting step and
∀g̃ ∈ G(A) and ∀α′ ∈ Z, f(x +αg) ≤ f(x +α′g̃). We call α the step length. The Graver-best
augmentation procedure for an (IP) and a given feasible solution x0 works as follows:
1. If there is no Graver-best step for x0, return it as optimal.
2. If a Graver-best step (α,g) for x0 exists, set x0 := x0 + αg and go to 1.

I Proposition 7 ([31, implicit in Theorem 3.4.1]). Given a feasible solution x0 and a separable
convex function f , the Graver-best augmentation procedure finds an optimum in at most
2n− 2 logM steps, where M = f(x0)− f(x∗) and x∗ is any minimizer.

n-fold IP. The structure of E(n) (in problem (1)) allows us to divide the nt variables of x
into n bricks of size t. We use subscripts to index within a brick and superscripts to denote
the index of the brick, i.e., xij is the j-th variable of the i-th brick with j ∈ [t] and i ∈ [n].

3 Combinatorial n-fold IPs

This section is dedicated to proving Theorem 2. We fix an instance of combinatorial n-fold
IP, that is, a tuple (n,D,b,u,w).

3.1 Graver complexity of combinatorial n-fold IP
The key property of the n-fold product E(n) is that, for any n ∈ N, the number of nonzero
bricks of any g ∈ G

(
E(n)) is bounded by some constant g(E) called the Graver complexity

of E. A proof is given for example by Onn [35, Lemma 4.3]; it goes roughly as follows.
Consider any g ∈ G

(
E(n)) and take its restriction to its nonzero bricks ḡ. By Proposition 6,
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each brick ḡj can be decomposed into elements from G(A), giving a vector h whose bricks
are elements of G(A). Then, consider a compact representation v of h by counting how many
times each element from G(A) appears. Since g ∈ G

(
E(n)) and h is a decomposition of its

nonzero bricks, we have that
∑
j Dhj = 0. Let G be a matrix with the elements of G(A) as

columns. It is not difficult to show that v ∈ G(DG). Since ‖v‖1 is an upper bound on the
number of bricks of h and thus of nonzero bricks of g and clearly does not depend on n,
g(E) = maxv∈G(DG) ‖v‖1 is finite. Let us make precise two observations from this proof.

I Lemma 8 ([20, Lemma 3.1], [35, implicit in proof of Lemma 4.3]). Let (g1, . . . ,gn) ∈ G
(
E(n)).

Then, for all i ∈ [n] there exist vectors hi,1, . . . ,hi,ni ∈ G(A) such that gi =
∑ni

k=1 hi,k, and∑n
i=1 ni ≤ g(E).

I Lemma 9 ([20, Lemma 6.1], [35, implicit in proof of Lemma 4.3]). Let D ∈ Zr×t, A ∈ Zs×t,
G ∈ Zt×p be the matrix whose columns are elements of G(A) and p = |G(A)| ≤ ‖A‖st∞, and
let E = (DA ). Then g(E) ≤ maxv∈G(DG) ‖v‖1 ≤ ‖A‖st∞ · (r‖DG‖∞)r.

Notice that this bound on g(E) is exponential in t. Our goal now is to exploit the fact
that the matrix A in a combinatorial n-fold IP is very simple and thus get a better bound.

I Lemma 10. Let D ∈ Zr×t, E =
(
D
1ᵀ

)
, and a = ‖D‖∞. Then, g(E) ≤ t2(2ra)r.

To see this, we will need to understand the structure of G(1ᵀ):

I Lemma 11. It holds that G(1ᵀ) = {g | g has one 1 and one −1 and 0 otherwise} ⊆ Zt,
|G(1ᵀ)| = t(t− 1), and for all g ∈ G(1ᵀ), ‖g‖1 = 2.

Proof. Observe that the claimed set of vectors is clearly v-minimal in kerZ(1ᵀ). We are
left with proving there is no other non-zero v-minimal vector in kerZ(1ᵀ). For contradiction
assume there is such a vector h. Since it is non-zero, it must have a positive entry hi. On the
other hand, since 1ᵀh = 0, it must also have a negative entry hj . But then g with gi = 1,
gj = −1 and gk = 0 for all k 6∈ {i, j} is g @ h, a contradiction. The rest follows. J

Proof of Lemma 10. We simply plug into the bound of Lemma 9. By Lemma 11, p =
t(t − 1) ≤ t2. Also, ‖DG‖∞ ≤ maxg∈G(1ᵀ) {‖D‖∞ · ‖g‖1} ≤ 2a where the last inequality
follows from ‖g‖1 = 2 for all g ∈ G(1ᵀ), again by Lemma 11. J

3.2 Dynamic programming
Hemmecke, Onn and Romanchuk [19] devise a clever dynamic programming algorithm to find
augmenting steps for a feasible solution of an n-fold IP. Lemma 8 is key in their approach, as
they continue by building a set Z(E) of all sums of at most g(E) elements of G(A) and then
use it to construct the dynamic program. However, such a set Z(E) would clearly be of size
exponential in t, which we cannot afford. Our insight here is to build a different dynamic
program. In [20], the layers of the dynamic program correspond to partial sums of elements
of G(A); in our dynamic program, the layers will correspond directly to elements of G(A).
This makes it impossible to enforce feasibility with respect to lower and upper bounds in the
same way as done in [20]; however, we work around this by exploiting the special structure of
G(A) = G(1ᵀ) and simpler lower and upper bounds and enforce them by varying the number
of layers of given types. Additionally, we also differ in how we enforce feasibility with respect
to the upper rows (D D · · · D).

Given a brick i ∈ [n] and j ∈ [t], let Hij =
{

h ∈ G(1ᵀ) | hj = −1,h ≤ ui
}
∪ {0 ∈ Zt};

here Hij represents the steps which can decrease coordinate xij . Observe that |Hij | ≤ t. Let
Σ(E) =

∏r
j=1 [−2g(E)a : 2g(E)a] be the signature set of E whose elements are signatures.
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S

h, Dh

...

...

h,σ

...

...

ĥ,
σ +Dĥ

...

...

·,0

·,0

...

...

· · · · · · · · ·

T

M layers

|Hij | · |Σ(E)|

xij layers correspond-
ing to coordinate xij

Figure 1 A schema of the augmentation graph DP (x).

Essentially, we will use the signature set to keep track of partial sums of selected elements
from h ∈ G(1ᵀ) to ensure that a resulting vector g satisfies Dg = 0. However, we notice
that to ensure Dg = 0, it is sufficient to remember the partial sum of elements Dh for
h ∈ G(1ᵀ), thus shrinking them to dimension r. This is another insight which allows us
to avoid the exponential dependence on t. Note that |Σ(E)| ≤ (1 + 4g(E)a)r. Given x
with 0 ≤ x ≤ u, we define an index function µ: for i ∈ [n], j ∈ [t] and ` ∈ [xij ] let
µ(i, j, `) :=

(∑i−1
k=1 ‖xk‖1

)
+
(∑j−1

j′=1 x
i
j′

)
+ `. In the following text, we consider any vector x

satisfying 0 ≤ x ≤ u even though it would be natural to consider a feasible solution. This is
deliberate, as we will later show that we need these claims to hold also for vectors x derived
from feasible solutions which, however, need not be feasible solutions themselves.

I Definition 12 (Augmentation Graph). Given a vector x with 0 ≤ x ≤ u, we define the
augmentation graph DP (x) to be the following vertex weighted directed layered graph.

There are two distinguished vertices S and T in DP (x), called the source and the sink. We
split the remaining vertices of DP (x) into M = ‖x‖1 layers, denoted L(1), . . . ,L(M). With
i ∈ [n], j ∈ [t] and ` ∈ [xij ] we associate the layer L(1) = {(1,h, Dh) | h ∈ H1

1} if µ(i, j, `) = 1
and L

(
µ(i, j, `)

)
=
{
µ(i, j, `)

}
×Hij ×Σ(E) otherwise. Let L = max`=1,...,M |L(`)|. A vertex(

µ(i, j, `),h,σ
)
has weight f i(h + xi)− f i(xi).

There are the following edges in DP (x). From S to every vertex in the first layer L(1).
Let u ∈ L(`) and v ∈ L(` + 1) be vertices in consecutive layers with u = (`,h`,σ`) and
v = (`+ 1,h`+1,σ`+1). If σ`+1 = σ` +Dh`+1, then there is an edge oriented from u to v.
Finally, there is an edge from every vertex u ∈ L(M) to T if u = (M,h,0).

Note that by the bounds on |G(1ᵀ)| (Lemma 11) and g(E) (Lemma 10), there are at
most L ≤ t

(
t2(2ra)r

)r vertices in each layer of DP (x). For an overview of the augmentation
graph refer to Fig. 1.

Let P be an S–T path in DP (x) and let h` ∈ G(1ᵀ) be such that (`,h`,σ) is its (`+ 1)-st
vertex. For each i ∈ [n], let gi =

∑t
j=1

∑xi
j

`=1 hµ(i,j,`). We say that h = (h1, . . . ,hM ) is
the P -augmentation vector and that g = (g1, . . . ,gn) is the compression of h (denoted by
g = h↓). Conversely let g ∈ G

(
E(n)) and recall that M is the number of layers of DP (x). By

Lemma 8, for all i ∈ [n] there exist vectors hi,1, . . . ,hi,ni ∈ G(1ᵀ) such that gi =
∑ni

k=1 hi,k,
and

∑n
i=1 ni ≤ g(E). For each i ∈ [n] and j ∈ [t], let mi

j be the number of hi,k with
hi,kj = −1. The expansion of g is h = (h1, . . . ,hM ) defined as follows (we denote this as
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h = g↑). Fix i ∈ [n] and j ∈ [t]. Assign the distinct mi
j vectors hi,k with hi,kj = −1 to

hµ(i,j,`) for ` ∈ [mi
j ], and let hµ(i,j,`) = 0 for ` ∈ [mi

j + 1 : xij ]. Essentially, we pad the
vector h obtained by Lemma 8 with 0 bricks to construct an h = g↑. Also notice that
an S–T path P such that h is a P -augmentation vector can be constructed by choosing
appropriate σ ∈ Σ(E) for each brick of h.

Let 0 ≤ x ≤ u. We say that g is a solution of DP (x) if 0 ≤ x + g ≤ u and there exists
an S–T path P with P -augmentation vector h and g = h↓; the weight w(g) is then defined
as the weight of the path P ; note that w(g) = f(x + g) − f(x). A solution g is called a
minimal solution of DP (x) if it is a solution of minimal weight. The following lemma relates
solutions of DP (x) to potential feasible steps in G

(
E(n)).

I Lemma 13. Let x ∈ Znt satisfy 0 ≤ x ≤ u and let g be a solution of DP (x). It holds that
0 ≤ x + g ≤ u and E(n)g = 0.

Proof. It follows from the definition that there are exactly xij layers in which it is possible
to select a vector h such that hij = −1. Observe further that all other layers that are derived
from the i-th brick can only increase the value of gij . It follows that x + g ≥ 0.

Recall that uij ∈ {0, ‖b‖∞}. If uij = 0, then we have excluded all vectors h with hij = 1
from Hik for all k ∈ [t]. Thus xij + gij = xij = 0 ≤ 0 as claimed. On the other hand, if
uij = ‖b‖∞, then observe that

∑t
k=1 g

i
k = 0 and because x + g ≥ 0, we conclude that

xij + gij ≤ bi ≤ ‖b‖∞ = uij .
Let (hk,σk), for each k ∈ [M ], be the vertex from the k-th layer of path P corresponding

to g↑. Note that σM = 0. If follows that σ`+1 =
(∑`

k=1 Dhk
)

+Dh`+1 for all 1 ≤ ` ≤M−1.

Thus
∑M
k=1 Dhk = 0 and because we have Ahk = 0 from the definition of Hij we conclude

that E(n)g = 0. J

I Lemma 14. (?) Let x ∈ Znt satisfy 0 ≤ x ≤ u. Every g̃ ∈ G
(
E(n)) with 0 ≤ x + g̃ ≤ u

is a solution of DP (x).

We define the g(E)-truncation of x as the vector x given by xij = min{xij , g(E)}.

I Lemma 15. (?) Let x ∈ Znt satisfy 0 ≤ x ≤ u. Every g̃ ∈ G
(
E(n)) with 0 ≤ x + g̃ ≤ u

is a solution of DP (x).

Clearly our goal is then to find the lightest S–T path in the graph DP (x). However,
there will be edges with negative weights. Still, finding the lightest path can be done in a
layer by layer manner (see e.g. [19, Lemma 3.4]) in time O(|V (DP (x))| · L) = O(‖x‖1 · L2).
The following lemma is then an immediate consequence of Lemmas 14 and 15.

I Lemma 16 (Optimality certification). Given x ∈ Znt with 0 ≤ x ≤ u, it is possible to find
a vector g such that E(n)g = 0, 0 ≤ x + g ≤ u, and f(x + g) < f(x), or decide there is none
such g, in time ‖x‖1 · L2 ≤ tO(r)(ar)O(r2)n.

Proof. It follows from Lemma 13 that all solutions of DP (x) fulfill the first two conditions.
Observe that if we take g to be a minimal solution of DP (x), then either f(x) = f(x + g) or
f(x) < f(x + g). Due to Lemma 15 the set of solutions of DP (x) contains all g̃ ∈ G

(
E(n))

with 0 ≤ g̃ ≤ u. Thus, by Proposition 7, if f(x) = f(x + g), no g satisfying all three
conditions exist.

Now simply plug in our bounds on ‖x‖1 and L and compute a minimal S–T path:

L ≤ |G(1ᵀ)| · |Σ(E)| ≤ t2 ·
(
1 + 4t2a(2ra)r

)r ≤ tO(r)(ar)O(r2)

is the maximum size of a layer and ‖x‖1 ≤ nt · g(E) ≤ nt · t2(2ra)r ≤ O(t2)(ar)O(r)n is the
number of layers. J
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3.3 Long steps

So far, we are able to find an augmenting step in time independent of M ; however, each step
might only bring an improvement of O(1) and thus possibly many improving steps would be
needed. Now, given a step length α ∈ N, we will show how to find a feasible step g such that
f(x + αg) ≤ f(x + αg̃) for any g̃ ∈ G

(
E(n)). Moreover, we will show that there are not too

many step lengths that need to be considered in order to find a Graver-best step which, by
Proposition 7, leads to a good bound on the required number of steps.

Let α ∈ N and let x with 0 ≤ x ≤ u. We define xα to be the α-reduction of x, xα =
⌊x
α

⌋
.

This operation takes priority over the truncation operation, that is, by xα we mean the
g(E)-truncation of vector xα (i.e., xα = (xα)). Note that for large enough α, DP (xα)
contains only two vertices S and T and no arcs and thus there is no S–T path and no
solutions.

I Lemma 17. (?) Let α ∈ N and let x with 0 ≤ x ≤ u. Every g̃ ∈ G
(
E(n)) with

0 ≤ x + αg̃ ≤ u is a solution of DP (xα).

However, a Graver-best step might still be such that its step length α is large and thus
we cannot afford to find a minimal solution of DP (xα) for all possible step lengths. We need
another observation to see that many step lengths need not be considered. Let the state of
xα, ψ(xα) ∈ {0, 1, 2}[n]×[t], be defined by:

ψ(xα)ij = 0 if (xα)ij = 0,
ψ(xα)ij = 1 if 1 ≤ (xα)ij < g(E), and,
ψ(xα)ij = 2 if (xα)ij ≥ g(E).

Given a feasible solution x, we call a step length α interesting if xα 6= xα+1 and boring
otherwise. Moreover, α is irrelevant if there is no Graver-best step with step length α.

I Lemma 18. (?) If α is boring, then it is irrelevant.

I Definition 19 (Candidate step lengths Γ). Let Γ be a set of candidate step lengths
constructed iteratively as follows:

Input: vector x with 0 ≤ x ≤ u and g(E)
Computes: set of candidate steps Γ
Γ← {1} and γ ← 2
while xγ > 0 do

foreach i, j with ψ(xγ)ij = 1 do
Γij ←

{(
k, bxij/kc

)
| k ∈ N, 0 <

⌊
xij/k

⌋
< (xγ−1)ij

}
γij ← k such that (k, q) ∈ Γij , q is maximal, and secondary to this k also
maximal

γ̃1 ← min
{
γij | ψ(xγ)ij = 1

}
γ̃2 ← min

{⌊
xi

j

g(E)

⌋
| ψ(xγ)ij = 2

}
add min{γ̃1, γ̃2} to Γ
γ ← max Γ + 1

return Γ

I Lemma 20. If α is the step length of a Graver-best step, then α ∈ Γ.
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Proof. We will prove that Γ contains all interesting step lengths. Consider an α 6∈ Γ. Either
xα = 0 and clearly in that case DP (xα) does not yield an augmenting step since it has no
layers and thus no weighted vertices, and thus α is irrelevant.

Otherwise, take γ := min{γ′ | γ′ ∈ Γ, γ′ ≥ α}. Because of the minimality of γ with
respect to all of the min{·} clauses of the algorithm of Definition 19, we have that xα = xγ
and thus α is boring and by Lemma 18 irrelevant.

Since Γ contains all remaining step lengths, it also contains all interesting steps and must
contain the step length for any Graver-best step. J

I Lemma 21. |Γ| ≤ O(nt · g(E)) and Γ can be constructed in time O(|Γ| · log ‖x‖∞).

Proof. Fix a coordinate xij of x and consider a run of the algorithm of Definition 19. If

xij > g(E), γ̃2 :=
⌊

xi
j

g(E)

⌋
is added to Γ at some point. For every γ > γ̃2 we have that

(xγ)ij < g(E) and thus we need not consider the min{·} clause for ψ(xγ)ij = 2.
Consider a step of the algorithm which adds γ̃1, and observe that γ̃1 is chosen such that

(xγ̃1)ij > (xγ̃1+1)ij . But since (xγ̃2+1)ij < g(E), such situation can occur at most g(E) times.
Thus we have added at most O(g(E)) different step lengths to Γ per coordinate, O(nt·g(E))

step lengths in total.
Regarding the time it takes to construct Γ, we perform O(|Γ|) arithmetic operations,

and since we are dealing with numbers of size at most ‖x‖∞, each operation takes time
O(log ‖x‖∞), concluding the proof. J

I Lemma 22 (Graver-best computation). Given a feasible solution x of a combinatorial n-fold
IP, in time tO(r)(ar)O(r2)n2 one can either find a Graver-best step (α,g) or decide that none
exists.

Proof. For γ ∈ Γ let gγ be a minimal solution ofDP (xγ) and let α := arg minγ∈Γ
(
f(x + γgγ)

)
.

Finally, let g := gα. Then we claim that (α,g) is a Graver-best step.
By Lemma 17 for all g̃ ∈ G

(
E(n)) it holds that f(x + αg) ≤ f(x + αg̃). Moreover, by

Lemma 20, if there exists a Graver-best step with step length γ, then γ ∈ Γ, and thus by the
construction of α, (α,g) is Graver-best step.

Regarding the time complexity, to obtain g we need to solve DP (xγ) for each γ ∈ Γ by
Lemma 16, requiring time |Γ| · tO(r)(ar)O(r2)n ≤ tO(r)(ar)O(r2)n2. J

3.4 Finishing the proof
Proof of Theorem 2. In order to prove Theorem 2 we need to put the pieces together.
First, let us assume that we have an initial feasible solution x0. In order to reach the
optimum, by Proposition 7 we need to make at most (2nt − 2) · O(L) Graver-best steps,
where L = 〈b,0,u,w〉; this is because O(L) is an upper bound on f(x0)− f(x∗) for some
minimum x∗. By Lemma 22, it takes time tO(r)(ar)O(r2)n2 to find a Graver-best step.

Now we are left with the task of finding a feasible solution. We follow along the lines
of [19, Lemma 3.8] and solve an auxiliary combinatorial n-fold IP given by the bimatrix
Ê =

(
D̂
Â

)
with D̂ := (D Ir − Ir 0) and Â := (A 12r+1) = 1ᵀ ∈ Zt+2r+1, where Ir is the

identity matrix of dimension r, 0 is a column vector of length r and 12r+1 is the vector of all
1s of length 2r + 1.

The variables x̂ of this problem have a natural partition into nt variables x corresponding
to the original problem and n(2r + 1) new auxiliary variables x̃. Keep the original lower
and upper bounds on x and introduce a lower bound 0 and upper bound ‖b‖∞ on each
auxiliary variable. Finally, let the new linear objective ŵᵀx̂ be the sum of the auxiliary

ESA 2017



54:12 Huge n-fold integer programming and applications.

variables. Observe that it is easy to construct an initial feasible solution by setting x = 0
and computing x̃ accordingly, as x̃ serve the role of slack variables.

Then, applying the algorithm described previously either finds a solution with objective
value 0, implying x̃ = 0, and thus x is feasible for the original problem, or no such solution
exists, meaning that the original problem is infeasible. J

4 An Application to Weighted Set Multicover

In applications, it is practical to use combinatorial n-fold IP formulations which contain
inequalities. Given an n-fold IP (in particular a combinatorial n-fold IP), we call the upper
rows (D D · · · D)x = b0 globally uniform constraints, and the lower rows Axi = bi, for
all i ∈ [n], locally uniform constraints. In the full version [26] we show that introducing
inequalities into a combinatorial n-fold IP is possible, however we need a slightly different
approach than in a standard n-fold IP to keep the rigid format of a combinatorial n-fold IP.

Weighted Set Multicover. We demonstrate Theorem 2 on the following problem:

Weighted Set Multicover
Input: A universe of size k, U = [k], a set system represented by a multiset

F = {F1, . . . , Fn} ⊆ 2U , weights w1, . . . , wn ∈ N, demands d1, . . . , dk ∈ N.
Find: A multisubset F ′ ⊆ F minimizing

∑
Fi∈F′ wi and satisfying

∣∣{i | Fi ∈ F ′, j ∈ Fi}
∣∣ ≥ dj

for all j ∈ [k].

Proof of Theorem 5. Observe that since W is the number of different weights, and there
can be at most 2k different sets F ∈ 2U , each pair (F,w) on the input is of one of T ≤W2k
different types; let n1, . . . , nT ∈ N be a succinct representation of the instance.

We shall construct a combinatorial n-fold IP to solve the problem. Let xτf for each f ∈ 2U
and each τ ∈ [T ] be a variable. Let uτf = 0 for each f ∈ 2U such that f 6= F τ , and let
uτf = max nτ for f = F τ . The variable xτf with f = F τ represents the number of sets of type
τ in the solution. The formulation is straightforward and reads

min
T∑
τ=1

∑
f∈2U

wτxτf

s.t.
T∑
τ=1

∑
f∈2U

fix
τ
f ≥ di, for all i ∈ [k]

∑
f∈2U

xτf ≤ nτ for all τ ∈ [T ];

note that fi is 1 if i ∈ f and 0 otherwise. Let us determine the parameters â, r̂, t̂, n̂ and L̂ of
this combinatorial n-fold IP instance. Clearly, the largest coefficient â is 1, the number of
globally uniform constraints r̂ is k, the number of variables per brick t̂ is 2k, the number of
bricks n̂ is T , and the length of the input L̂ is at most logn+ logwmax. J

5 Open problems

Can our result be extended to minimizing a separable convex function f? Is Huge n-fold
IP fixed-parameter tractable for parameters r, s, t and a? It is not difficult to see that
optimality certification is fixed-parameter tractable using ideas similar to Onn [36]; however,
one possibly needs exponentially (in the input size) many augmenting steps.
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For most of our applications, complexity lower bounds are not known to us. Our
algorithms yield complexity upper bounds of kO(k2) on the dependence on parameter k for
various problems, such as Closest String, Weighted Set Multicover, Score-Swap
Bribery or even Makespan Minimization [25]. Is this just a common feature of our
algorithm, or are there hidden connections between some of these problems? And what are
their actual complexities? All we know so far is a trivial ETH-based 2o(k) lower bound for
Closest String based on its reduction from Satisfiability [12].
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Abstract
The Maximum Carpool Matching problem is a star packing problem in directed graphs.
Formally, given a directed graph G = (V,A), a capacity function c : V → N, and a weight
function w : A → R+, a carpool matching is a subset of arcs, M ⊆ A, such that every v ∈ V
satisfies:
(i) dinM (v) · doutM (v) = 0,
(ii) dinM (v) ≤ c(v), and
(iii) doutM (v) ≤ 1.
A vertex v for which doutM (v) = 1 is a passenger, and a vertex for which doutM (v) = 0 is a driver
who has dinM (v) passengers. In the Maximum Carpool Matching problem the goal is to find
a carpool matching M of maximum total weight. The problem arises when designing an online
carpool service, such as Zimride [4], which tries to connect between users based on a similarity
function. The problem is known to be NP-hard, even in the unweighted and uncapacitated
case. The Maximum Group Carpool Matching problem, is an extension of Maximum
Carpool Matching where each vertex represents an unsplittable group of passengers. Formally,
each vertex u ∈ V has a size s(u) ∈ N, and the constraint dinM (v) ≤ c(v) is replaced with∑

u:(u,v)∈M s(u) ≤ c(v).
We show that Maximum Carpool Matching can be formulated as an unconstrained sub-

modular maximization problem, thus it admits a 1
2 -approximation algorithm. We show that the

same formulation does not work for Maximum Group Carpool Matching, nevertheless, we
present a local search ( 1

2−ε)-approximation algorithm for Maximum Group Carpool Match-
ing. For the unweighted variant of both problems when the maximum possible capacity, cmax, is
bounded by a constant, we provide a local search ( 1

2 + 1
2cmax

− ε)-approximation algorithm. We
also show that the problem is APX-hard, even if the maximum degree and cmax are at most 3.
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1 Introduction

As traveling costs become higher and parking becomes sparse it is only natural to share
rides or to carpool. Originally, carpooling was an arrangement among a group of people
by which they take turns driving the others to and from a designated location. However,
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taking turns is not essential, instead passengers can share the cost of the ride with the driver.
Carpooling has social advantages other than reducing the costs: it reduces fuel consumption
and road congestion and frees parking space. While in the past carpooling was usually
a fixed arrangement between friends or neighbors, the emergence of social networks has
made carpooling more dynamic and wide scale. These days applications like Zimride [4],
BlaBlaCar [1], Moovit [2] and even Waze [3] are matching passengers to drivers.

The matching process of passengers to drivers entails more than matching the route.
Passenger satisfaction also needs to be taken into account. Given several riding options
(including taking their own car), passengers have preferences. For example, a passenger may
prefer to ride with a co-worker or a friend. She may have an opinion on a driver that she
rode with in the past. She may prefer a non-smoker, someone who shares her taste in music,
or someone who is recommended by others. Moreover, the matching process may take into
account driver preferences. For instance, we would like to minimize the extra distance that
a driver has to take. Preferences may also be computed using past information. Knapen
et al. [16] described an automatic service to match commuting trips. Users of the service
register their personal profile and a set of periodically recurring trips, and the service advises
registered candidates on how to combine their commuting trips by carpooling. The service
estimates the probability that a person a traveling in person’s b car will be satisfied by the
trip. This is done based on personal information and feedback from users on past rides.

In this paper we assume that potential passenger-driver satisfactions are given as input
and the goal is to compute an assignment of passengers to drivers so as to maximize the global
satisfaction. More formally, we are given a directed graph G = (V,A), where each vertex
v ∈ V corresponds to a user of the service, and an arc (u, v) exists if the user corresponding
to vertex u is willing to commute with the user corresponding to vertex v. We are given a
capacity function c : V → N which bounds the number of passengers each user can drive if
she is selected as a driver. A non-negative weight function w : A→ R+ is used to model the
amount of satisfaction w(u, v) of assigning u to v. If (u, v) ∈ A implies that (v, u) ∈ A and
w(u, v) = w(v, u), the instance is undirected. If w(v, u) = 1, for every (v, u) ∈ A, then the
instance is unweighted. If c(v) = deg(v), for every v, then the instance is uncapacitated.

Given a directed graph G and a subset M ⊆ A, define dinM (v) , |{u : (u, v) ∈M}| and
doutM (v) , |{u : (v, u) ∈M}|. A feasible carpool matching is a subset of arcs, M ⊆ A, such
that every v ∈ V satisfies: (i) dinM (v) · doutM (v) = 0, (ii) dinM (v) ≤ c(v), and (iii) doutM (v) ≤ 1. A
feasible carpool matching M partitions V as follows:

PM ,
{
v : doutM (v) = 1

}
DM ,

{
v : dinM (v) ≥ 1

}
ZM ,

{
v : doutM (v) = dinM (c) = 0

}
where PM is the set of passengers, DM is the set of active drivers, and ZM is the set of solo
drivers. In the Maximum Carpool Matching problem the goal is to find a matching M
of maximum total weight, namely to maximize w(M) ,

∑
(v,u)∈M w(v, u). In other words,

the Maximum Carpool Matching problem is about finding a set of (directed toward the
center) vertex disjoint stars that maximizes the total weight of the arcs. Figure 1 contains
an example of a Maximum Carpool Matching instance. Note that in the unweighted
case the goal is to find a carpool matching M that maximizes |PM |. Moreover, observe that
if G is undirected, DM ∪ ZM is a dominating set. Hence, in this case, an optimal carpool
matching induces an optimal dominating set and vice versa. Since Minimum Dominating
Set is NP-hard, it follows that Maximum Carpool Matching is NP-hard even if the
instance is undirected, unweigthed, and uncapacitated.

We also consider an extension of Maximum Carpool Matching, called Maximum
Group Carpool Matching, in which each vertex represents a group of passengers, and
each group may have a different size. Such a group may represent a family or two friends
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(a) An instance containing a directed
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(b) A feasible carpool matching with total weight
of 23. PM is the set of blue vertices, and DM is
the set of red, dashed vertices, and ZM contains
only the dotted, black vertex.

Figure 1 A Maximum Carpool Matching example.

traveling together. Formally, each vertex u ∈ V has a size s(u) ∈ N, and the constraint
dinM (v) ≤ c(v) is replaced with the constraint

∑
u:(u,v)∈M s(u) ≤ c(v). Notice that Knapsack

is the special case where only arcs directed at a single vertex have non-zero (integral) weights.

Related work. Agatz et al. [5] outlined the optimization challenges that arise when devel-
oping technology to support ride-sharing and survey the related operations research models
in the academic literature. Hartman et al. [15] designed several heuristic algorithms for the
Maximum Carpool Matching problem and compared their performance on real data.
Other heuristic algorithms were developed by Knapen et al. [17]. Hartman [14] proved that
the Maximum Carpool Matching problem is NP-hard even in the case where the weight
function is binary and c(v) ≤ 2 for every v ∈ V . In addition, Hartman presented a natural
integer linear program and showed that if the set of drivers is known, then an optimal
assignment of passengers to drivers can be found in polynomial time using a reduction to
Network Flow (see also [18].) Kutiel [18] presented a 1

3 -approximation algorithm for
Maximum Carpool Matching that is based on a Minimum Cost Flow computation and
a local search 1

2 -approximation algorithm for the unweighted variant of Maximum Carpool
Matching. The latter starts with an empty matching and tries to improve the matching by
turning a single passenger into a driver.

Nguyen et al. [19] considered the Spanning Star Forest problem. A star forest is a
graph consisting of vertex-disjoint star graphs. In the Spanning Star Forest problem, we
are given an undirected graph G, and the goal is to find a spanning subgraph which is a star
forest that maximizes the weight of edges that are covered by the star forest. Notice that this
problem is equivalent to Maximum Carpool Matching on undirected and uncapacitated
instances. We also note that if all weights leaving a vertex are the same, then the instance is
referred to as vertex-weighted. Nguyen et al. [19] provided a PTAS for unweighted planner
graphs and a polynomial-time 3

5 -approximation algorithm for unweighted graphs. They gave
an exact optimization algorithm for weighted trees, and used it on a maximum spanning tree
of the input graph to obtain a 1

2 -approximation algorithm for weighted graphs. They also
shows that it is NP-hard to approximate unweighted Spanning Star Forest within a ratio
of 259

260 + ε, for any ε > 0. Chen et al. [13] improved the approximation ratio for unweighted
graphs from 3

5 to 0.71 and gave a 0.64-approximation algorithm for vertex weighted graphs.
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They also showed that the edge- and vertex-weighted problem cannot be approximated to
within a factor of 19

20 +ε, and 31
32 +ε, resp., for any ε > 0, assuming that P 6= NP. Chakrabarty

and Goel [11] improved the lower bounds to 10
11 + ε and 13

14 .
Athanassopoulos et al. [7] improved the ratio for the unweighted case to 193

240 ≈ 0.804.
They considered a natural family of local search algorithms for Spanning Star Forest.
Such an algorithm starts with the solution where all vertices are star centers. Then, it
repeatedly tries to turn t ≤ k from leaves to centers and t+ 1 centers to leaves. A change is
made if it results in a feasible solution, namely if each leave is adjacent to at least one center.
The algorithm terminates when such changes are no longer possible. Athanassopoulos et
al. [7] showed that, for any k and ε ∈ (0, 1

2(k+2) ], there exists an instance G and a local
optima whose size is smaller than ( 1

2 + ε)opt, where opt is the size of the optimal spanning
star forest. We note that, for a given k, the construction of the above result requires that
the maximum degree of G is at least 2(k + 2). Hence, this result does not hold in graphs
with maximum degree ∆.

Arkin et al. [6] considered the Maximum Capacitated Star Packing problem. In this
problem the input consists of a complete undirected graph with non-negative edge weights
and a capacity vector c = {c1, . . . , cp}, where

∑p
i=1 ci = |V | − p. The goal is to find a set

of vertex-disjoint stars in G of size c1, . . . , cp of maximum total weight. Arkin et al. [6]
provided a local search algorithm whose approximation ratio is 1

3 , and a matching-based
1
2 -approximation algorithm for the case where edge weights satisfy the triangle inequality.

Bar-Noy et al. [8] considered the Minimum 2-Path Partition problem. In this problem
the input is a complete graph on 3k vertices with non-negative edge weights, and the goal
is to partition the graph into disjoint paths of length 2. This problem is the special case
of the undirected carpool matching where c(v) = 2, for every v ∈ V . They presented two
approximation algorithms, one for the weighted case whose ratio is 0.5833, and another for
the unweighted case whose ratio is 3

4 .
Another related problem is k-Set Packing, where one is given a collection of weighted sets,

each containing at most k elements, and the goal is to find a maximum weight subcollection
of disjoint sets. Chandra and Halldórsson [12] presented a 3

2(k+1) -approximation algorithm
for this problem. Maximum Carpool Matching can be seen as a special case of k-Set
Packing with k = cmax + 1. Consider a subset of vertice U of size at most k. Observe
that each subset of vertices has an optimal internal assignment of passenger to drivers. Let
the weight of this assignment be the profit of U , denoted by p(U). If k = O(1), p(U) can
be computed for every U of size at most k in polynomial time. The outcome is a k-Set
Packing instance. This leads to a 3

2(cmax+2) -approximation algorithm when cmax = O(1).

Our contribution. Section 2 contains approximation algorithms for Maximum Carpool
Matching. First, in Section 2.1 we show that Maximum Carpool Matching can
be formulated as an unconstrained submodular maximization problem, thus it has a 1

2 -
approximation algorithm due to [10, 9]. We present a local search algorithm for Maximum
Carpool Matching which repeatedly checks whether the current carpool matching can
be improved by means of a star centered at a vertex, and it terminates when such a step
is not possible. The approximation ratio of this algorithm is 1

2 if weights are polynomially
bounded, and its ratio is 1

2 − ε in general.
In Section 3 we consider Maximum Carpool Matching with bounded maximum

capacity. In Section 3.1 we show that Maximum Carpool Matching is APX-hard even
for undirected and unweighted instances with ∆ ≤ b, for any b ≥ 3. In Section 3.2 we
provide another local search algorithm, whose approximation ratio is 1

2 + 1
2cmax

− ε, for any
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ε > 0, for unweighted Maximum Carpool Matching, where cmax , maxv∈V c(v). Given
a parameter k, our algorithm starts with the empty carpool matching. Then, it repeatedly
tries to find a better matching by replacing t ≤ k arcs in the current solution by t+ 1 arcs
that are not in the solution. We show that our analysis is tight. We also note that our
algorithm falls within the local search family defined in [7]. However, on undirected and
uncapaciated instances we have that cmax = ∆, and as mentioned above the result from [7]
does not hold in bounded degree graphs.

Finally, Section 4 discusses Maximum Group Carpool Matching. We show that the
unconstrained submodular maximization formulation for Maximum Carpool Matching
does not work for Maximum Group Carpool Matching. We show, however, that this
problem still admits a ( 1

2 − ε)-approximation algorithm by extending our first local search
algorithm. In addition, we show that the second local search algorithm generalizes to
unweighted Maximum Group Carpool Matching with the same approximation ratio.

2 Approximation Algorithms

We present two algorithms for Maximum Carpool Matching: a 1
2 -approximation algorithm

that is based on formulating the problem as an unconstrained submodular maximization
problem and a local search ( 1

2 − ε)-approximation algorithm. While the latter does not
improve upon the former, it will be shown (in Section 4) that it can be generalized to
Maximum Group Carpool Matching without decreasing the approximation ratio.

2.1 Submodular Maximization
In this section we show that the Maximum Carpool Matching problem can be formulated
as an unconstrained submodular maximization problem, and thus it has a 1

2 -approximation
algorithm due to Buchbinder et al. [10, 9].

Given a Maximum Carpool Matching instance (G = (V,A), c, w), consider a subset
S ⊆ V . LetM(S) be a maximum weight carpool matching satisfying DM(S) ⊆ S ⊆ V \PM(S),
namely M(S) is the best carpool matching whose drivers belong to S and whose passengers
belong to V \ S. In other words, M(S) is the maximum weight carpool matching that is a
subset of A∩(V \S)×S. Given S, the carpool matchingM(S) can be computed in polynomial
time by computing a maximum b-matching in the bipartite graph B = (V \S, S,A∩(V \S)×S)
which can be done using an algorithm for Minimum Cost Flow as shown in [18].

Consider the function w̄ : 2V → R, where w̄(S) , w(M(S)) =
∑

e∈M(S) w(e). Observe
that w̄(∅) = w̄(V ) = 0, and that w̄ is not monotone. In the next lemma we prove that
w̄ is a submodular set function. Recall that a function f is submodular if f(S) + f(T ) ≥
f(S ∪ T ) + f(S ∩ T ) for every two sets S and T in the domain of f .

I Lemma 1. w̄ is submodular.

Proof. Consider any two subsets S, T ⊆ V . We show that w̄(S)+w̄(T ) ≥ w̄(S∪T )+w̄(S∩T ).
Let M(S ∪ T ) and M(S ∩ T ) be optimal carpool matchings with respect to S ∪ T and S ∩ T .
To prove the lemma we construct two feasible carpool matchings MS and MT such that
MS ⊆ (V \ S)× S, MT ⊆ (V \ T )× T , and MS ∪MT = M(S ∪ T ) ∪M(S ∩ T ). The lemma
follows, since w̄(S) ≥ w(MS) and w̄(T ) ≥ w(MT ).

First, add all the edges in M(S ∪ T ) entering S \ T to MS . Similarly, add all the edges
in M(S ∪ T ) entering T \ S to MT . Observe that dinMS

(v) = dinM(S∪T )(v) ≤ c(v), for every
v ∈ S \ T and that dinMT

(v) = dinM(S∪T )(v) ≤ c(v), for every v ∈ T \ S. Next, add the edges
in M(S ∩ T ) leaving T \ S to S and add the edges in M(S ∩ T ) leaving S \ T to T . It
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remains to distribute the edges leaving V \ (S ∪ T ) and entering S ∩ T in both M(S ∪ T )
and M(S ∩ T ). Note that there may exist edges (v, u), where v 6∈ S ∪ T , and u ∈ S ∩ T
such that (v, u) ∈M(S ∪ T ) and M(S ∩ T ). We refer to this edges as duplicate edges. We
add all edges leaving V \ (S ∪ T ) and entering S ∩ T in M(S ∩ T ) to MS . Notice that this
is possible, since after this addition we have that dinMS

(v) ≤ dinM(S∩T )(v) ≤ c(v), for every
vertex v ∈ S ∩T . Then we add all duplicate edges in M(S ∪T ) to MT . The remaining edges
are distributed between MS and MT without violating capacities. This can be done, since
dinM(S∪T )(v) + dinM(S∩T )(v) ≤ 2c(v), for every v ∈ S ∩ T . J

Buchbinder et al. [10, 9] presented a general 1
2 -approximation algorithm for unconstrained

submodular maximization, thus we have the following theorem.

I Theorem 2. There exists a polynomial time 1
2 -approximation algorithm for Maximum

Carpool Matching.

2.2 A Star Improvement Algorithm
In this section we give a local search ( 1

2−ε)-approximation algorithm for Maximum Carpool
Matching. This algorithm repeatedly checks whether the current carpool matching M
can be improved by means of a star centered at a vertex v. The profit from this star is the
total weight of the arcs in the star, and the cost is the total weight of lost arcs (e.g., arcs
from passengers to drivers that became passengers of v). If the profit is larger than the cost,
then an improvement step is performed. The algorithm terminates when such a step is not
possible. We remind the reader that this algorithm will be extended to Maximum Group
Carpool Matching in Section 4.

We need a few definitions before presenting our algorithm. Given a directed graphs
G = (V,A), define N in , {u : (u, v) ∈ A} and Nout , {u : (v, u) ∈ A}. Let M be a feasible
carpool matching. The weight wM (v) of a vertex v with respect to M is the sum of the
weights of the arcs in M that are incident on v, namely

wM (v) , w(M ∩N in) + w(M ∩Nout) =
∑

(u,v)∈M w(u, v) +
∑

(v,u)∈M w(v, u) .

For a subset of vertices U ⊆ V we define wM (U) ,
∑

v∈U wM (v).
We now argue that, with respect to any carpool matching M , the total weight of all the

vertices is equal to twice the weight of the matching.

I Observation 3. wM (V ) = 2w(M).

Proof.
∑
v∈V

wM (v) =
∑
v∈V

∑
(u,v)∈M

w(u, v) +
∑
v∈V

∑
(v,u)∈M

w(v, u) = 2
∑
e∈M

w(e). J

Denote by δ(u, v) the difference between the weight of the arc and the weight of its
source vertex, that is: δM (u, v) , w(u, v) − wM (u). For a subset S ⊆ A of arcs define
δ(S) ,

∑
(u,v)∈S δ(u, v).

A subset Sv of arcs entering a vertex v, whose size is not greater than the capacity of v,
is called an improvement to vertex v if δ(Sv) is greater than the value of v. More formally,

I Definition 4. A subset Sv ⊆ A ∩ (V × {v}) is an improvement with respect to a carpool
matchingM , if |Sv| ≤ c(v) and δM (Sv) > wM (v). Furthermore, if there exists an improvement
for a vertex v, we say that vertex v can be improved.
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Figure 2 In this example M is the set of the blue, dashed arcs. In this case wM (2) = 7, wM (5) = 2,
and wM (6) = 0. Also, δM (2, 3) = 1 and δM (6, 3) = 2. The set {(2, 3), (6, 3)} is an improvement to
vertex 3 and Γ(2, 3) = {(1, 2), (4, 2), (3, 5), (6, 3)}.

Algorithm 1: StarImprove(G, c)
1 M ← ∅
2 repeat
3 done← True
4 for v ∈ V do
5 if there exists an improvement Sv then
6 M ←M \ Γ(Sv) ∪ Sv

7 done← False

8 until done;

Given an arc (u, v) ∈ A, let Γ(u, v) be the set of arcs that incident (u, v), namely define
Γ(u, v) , (N in(u)×{u})∪ ({v}×Nout(v)). If S is a set of arcs, then Γ(S) ,

⋃
(u,v)∈S Γ(u, v).

Figure 2 depicts all the above definitions.
We are now ready to describe our local search algorithm, which is called StarImprove

(Algorithm 1). It starts with an empty carpool matching M , and in every iteration it looks
for a vertex that can be improved. If there exists such a vertex v, then the algorithm removes
the arcs that are incident on it from M , and adds the arcs in Sv. The algorithm terminates
when no vertex can be improved. Figure 3 depicts an improvement step.

We proceed to bound the approximation ratio of the algorithm, assuming termination.
For a vertex v and a set S of edges entering v, let N in

S (v) = {u : (u, v) ∈ S} be the set
in-neighbors corresponding to S.

I Lemma 5. Let M be a matching computed by StarImprove. Let v be a vertex with no
improvement, and let S ⊆ N in

M (v), such that |S| ≤ c(v), then w(S) ≤ wM (v) + wM (N in
S (v)).

Proof. If no improvement exists, then we have that
w(S)− wM (N in

S (v)) =
∑

(u,v)∈S(w(u, v)− wM (u)) = δM (S) ≤ wM (v) . J

To bound the approximation ratio of the algorithm, we use a charging scheme argument.

I Lemma 6. If StarImprove terminates, then the computed solution is 1
2 -approximate.

Proof. Let M be the matching produced by the algorithm, and let M∗ be an optimal
matching. We load every vertex v with an amount of money equal to wM (v), and then we
show that this is enough to pay for every arc in the optimal matching. Due to Observation 3
the total amount of money that we use is exactly twice the weight of M .

Consider a driver v ∈ DM∗ , and let S = (V × {v}) ∩M∗. By lemma 5 we know that
w(S) ≤ wM (v) + wM (N in

S (v)), thus we can pay for S, using the money on v and on N−S (v).
Clearly, these vertices will not be charged again. J
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(a) A matching that can be improved.
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(b) The matching after improving vertex 3.

Figure 3 An improvement example.

1 1 12 2 · · · 1

Figure 4 Consider a path with 2n+1 arcs, and alternating arc weights (2 and 1), if StarImprove
selects all arcs of weight 1, then no further improvement can be done and the value of the matching
is n+ 1, while the optimal matching has value of 2n.

We show that our analysis is tight using in Figure 4.
It remains to consider the running time of the algorithm.

I Theorem 7. Algorithm StarImprove is a 1
2 -approximation algorithm for Maximum

Carpool Matching, if edge weights are integral and polynomially bounded.

Proof. First, observe that determining if a vertex v can be improved can be done efficiently
by considering the incoming arcs to v in a non-increasing order of their δM s, and only ones
with positive values. A vertex v can be improved, then, if the δs of the first c(v) (or less) arcs
sum up to more than wM (v). It follows that the running time of an iteration of the for-loop
is polynomial. Since the edge weights are integral and polynomially bounded, the weight of
an optimal carpool matching is polynomially bounded. The algorithm runs in polynomial
time, because in each iteration the algorithm improves the weight of the matching by at least
one or otherwise it terminates. J

It remains to consider the case of general weights. It can be shown that one can use
standard scaling and rounding to ensure a polynomial running time in the cost of a (1 + ε)
factor in the approximation ratio. The proof is omitted for lack of space.

I Theorem 8. There exists a ( 1
2 − ε)-approximation algorithm for Maximum Carpool

Matching, for every ε ∈ (0, 1
2 ).

3 Constant Maximum Capacity

In this section we study the Maximum Carpool Matching problem when the maximum
capacity is constant, i.e., when cmax = O(1). We show that this variant of the problem is
APX-hard even for unweighted and undirected instances. We also describe and analyze a
local search algorithm for the unweighted variant of the problem, and show that the algorithm
achieves a 1

2 + 1
2cmax

− ε approximation ratio, for any ε > 0.
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3.1 Hardness
As we mentioned earlier, Spanning Star Forest has a lower bound of 10

11 + ε for any ε > 0,
unless P=NP [11], and this bound applies to Maximum Carpool Matching. The result,
however, does not hold for the case where ∆ = O(1) (and cmax = O(1)). In this section we
show that the problem remains APX-hard even in this case.

Formally, the (unweighted) Minimum Dominating Set problem is defined as follows.
The input is an undirected graph G = (V,E), and a feasible solution, or a dominating
set, is a subset D ⊆ V that dominates V namely such that D ∪

⋃
v∈D N(v) = V , where

N(v) is the neighborhood of v. The goal is to find a minimum cardinality dominating set.
Minimum Dominating Set-b is the special case of Minimum Dominating Set in which
the maximum degree of a vertex in the input graph G is bounded by b. The problem was
shown to be APX-hard, for b ≥ 3, by Papadimitriou and Yannakakis [20].

We now consider the unweighted and undirected special case of the Maximum Carpool
Matching problem. In this case, the input consists of an undirected graph G and a capacity
function c, and the goal is to find a carpool matching M that maximizes |PM |.

Given an undirected graph G, letD∗ be a minimum cardinality dominating set, and letM∗
be an optimal carpool matching with respect to G and the capacity function: c(v) = deg(v),
for every v ∈ V .

I Observation 9. |PM∗ |+ |D∗| = |V |

Proof. Given a carpool matching M , observe that DM ∪ ZM is a dominating set. In the
other direction, a dominating set D induces a carpool matching of size |V \D|. J

We use this duality to obtain a hardness result for Maximum Carpool Matching.

I Theorem 10. The Maximum Carpool Matching problem is APX-hard, even for
undirected and unweighted instances with maximum degree bounded by b, for b ≥ 3.

Proof. We prove the theorem by presenting an L-reduction from Minimum Dominating
Set-b. (For details on L-reductions the reader is referred to [20].) We define a function f
from Minimum Dominating Set-b instances to Maximum Carpool Matching instances
as follows: f(G) = (G, c), where c(v) = deg(v), for every v ∈ V . Next, we define a function g
that given a carpool matching computes a dominating set as follows: g(M) = V \ PM . Both
f and g can be computed in polynomial time.

Let D∗ be an optimal dominating set with respect to G, and letM∗ be an optimal carpool
matching with respect to G and c. Since |D∗| ≥ |V |

b+1 , it follows that |PM∗ | ≤ b |D∗|, In
addition, ifM is a carpool matching, we have that |DM ∪ ZM |−|D∗| = (|V |−|PM |)−|D∗| =
|PM∗ | − |PM |. Hence, there is an L-reduction from Minimum Dominating Set-b to
unweighted and undirected Maximum Carpool Matching with bounded capacity b. J

3.2 Local Search
In this section we present a local search ( 1

2 + 1
2cmax

−ε)-approximation algoithm for unweighted
Maximum Carpool Matching whose running time is polynomial if cmax = O(1).

Let k be a constant integer to be determined later. Algorithm EdgeSwap (Algorithm 2)
maintains a feasible matching M throughout its execution and operates in iterative manner
where in each iteration it tries to find a better solution by replacing a subset of at most k
edges in the current solution with another (larger) subset of edges not in the solution. The
algorithm halts when no improvement can be done.
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Algorithm 2: EdgeSwap(G, c, k)
1 M ← ∅
2 repeat
3 done← true
4 forall M ′ ⊆M : |M ′| ≤ k do
5 forall A′ ⊆ A \M : |A′| = |M ′|+ 1 do
6 if M \M ′ ∪A′ is feasible then
7 M ←M \M ′ ∪A′
8 done← false

9 until done;
10 return M

a

b

c d

e

f

hi j kl

(a)M∗ is depicted by the dashed red edges, and
M is depicted by the solid green edges. The
optimal stars are outlined.

(b) The star graph: each vertex corresponds to a
star in G. The upper left vertex corresponds to the
star that contains the vertices a,b,c.

Figure 5 An example of a star graph.

Algorithm EdgeSwap terminates in polynomial time, since in every non-final iteration
it improves the value of the solution by one. Thus, after at most n iterations the algorithm
terminates. In every iteration the algorithm examines all subsets of edges of a fixed size and
tests for feasibility, both these operations can be done in polynomial time.

Observe that a vertex v ∈ DM ∪ ZM is the center of a directed star whose leaves are the
passengers in the set PM (v) = {u : (u, v) ∈M} (PM (v) = ∅, for v ∈ ZM ). Given a carpool
matching M , we define S(M) to be the set of stars that are induced by M . Denote by V (S)
the set of vertices of a star, i.e., if v is the center of S, then V (S) = {v} ∪ PM (v). Also, let
A(S) be the arcs of S. For T ⊆ S(M), define V (T ) ,

⋃
S∈T V (S) and A(T ) ,

⋃
S∈T A(S).

It remains to analyze the approximation ratio of EdgeSwap. Let M∗ be an optimal
matching, and let M be the matching computed by EdgeSwap. Given both matchings
we build the star graph in which each vertex represents a star from the optimal solution,
namely from S(M∗), and an edge exists between two vertices if there is a star in S(M) that
intersects the two corresponding stars of the optimal solution. Formally H = (S(M∗), E)
where E =

{
(S∗i , S∗j ) : ∃S ∈ S(M), V (S) ∩ V (S∗i ) 6= ∅ ∧ V (S) ∩ V (S∗j ) 6= ∅

}
. Figure 5 de-

picts a star graph.

I Lemma 11. The maximum degree of H is cmax(cmax + 1).

Proof. Each star in S(M∗) contains at most cmax + 1 vertices and each such vertex can
belong to a star in S(M) containing additional cmax vertices, each of which is located in a
different star in S(M∗). J
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In what follows we compare |M | and |M∗| in maximal connected components of the star
graph H. Intuitively, we show that M is optimal on small maximal components, and that
the approximation ratio on medium (non-necessarily) components can be bounded due to
the termination condition of EdgeSwap. Large maximal components will be partitioned
into medium components.

We first show that large connected graphs (or maximal connected components) can be
partitioned into medium size components. The proof is omitted for lack of space.

I Lemma 12. An undirected connected graph G = (V,E) with maximum degree ∆, can be
decomposed into connected components of size at least ` and at most ∆`, if ` ≤ |V |.

Define degM (v) , dinM (v) + doutM (v). For a subset U ⊆ V of vertices define degM (U) ,∑
v∈U degM (u). Observe that |M | = 1

2 degM (V ).
In the next lemma we bound the degree ratio in a component that contains stars with at

most k arcs.

I Lemma 13. Let T ⊆ S(M∗) that induces a connected subgraph of H. If |A(T )| ≤ k, then

degM (V (T ))
degM∗(V (T )) ≥

1
2 + 1

2cmax
− 1

2cmax |T |
.

Proof. Consider the solution M ′ obtained from M by removing all the edges from M that
intersect V (T ) and adding all the edges from M∗ that intersect V (T ). Observe that if an
edge (u, v) in M∗ intersects V (T ), then {u, v} ∈ V (T ) by the definition of the graph H.
Hence, M ′ is feasible carpool matching.

Since T induces a connected subgraph of H, the removal of edges in M that intersect
V (T ) decreased |M | by at most degM (V (T ))− |T |+ 1. On the other hand, the increase in
size is exactly 1

2 degM∗(V (T )) ≤ cmax |T |. Since |A(T )| ≤ k, we know that this difference
can not be positive, or else, EdgeSwap would not have terminated. Thus 1

2 degM∗(V (T )) ≤
degM (V (T ))− |T |+ 1, and so

degM (V (T ))
degM∗(V (T )) ≥

1
2 + |T | − 1

degM∗(V (T )) ≥
1
2 + |T | − 1

2cmax |T |
= 1

2 + 1
2cmax

− 1
2cmax |T |

,

as required. J

It remains to bound the approximation ratio of EdgeSwap.

I Lemma 14. If k ≥ cmax, then |M | ≥ ( 1
2 + 1

2cmax
− cmax(cmax+1)

2k ) · |M∗|.

Proof. Consider a maximal (with respect to set inclusion) connected component of H induced
by the vertices in T ⊆ S(M∗). If |M ∩A(T )| ≤ k, then it must be that |M ∩A(T )| =
|M∗ ∩A(T )|, since otherwise M ∩A(T ) could be improved.

It remains to consider a maximal component T such that If |M ∩A(T )| > k. Since
the number of edges in S ∈ S(M∗) is at most cmax, it must be that |V (T )| > k

cmax
. Due

to Lemma 12 (with ` = k
c2

max(cmax+1) ) we can partition T into connected components each
of which contains between k

c2
max(cmax+1) and k

cmax
vertices. Since each such vertex set X is

connected and contains at most k
cmax

stars, it follows that |A(X )| ≤ k. Due to Lemma 13 we
have that degM (V (X ))

degM∗ (V (X )) ≥
1
2 + 1

2cmax
− cmax(cmax+1)

2k . Since degM∗(V (T )) =
∑
X degM∗(V (X ))

and degM (V (T )) =
∑
X degM (V (X )), it follows that degM (V (T ))

degM∗ (V (T )) ≥
1
2 + 1

2cmax
− cmax(cmax+1)

2k ,

and thus |M ∩A(T )| ≥
(

1
2 + 1

2cmax
− cmax(cmax+1)

2k

)
|M∗ ∩A(T )|. J
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21 1

2

A B

Figure 6 An unweighted Maximum Carpool Matching instance. Capacities are written
inside vertices, and arcs are labeled with their size. We have that w̄(A) + w̄(B) = 2 < 3 =
w̄(A ∪B) + w̄(A ∩B).

By setting k = dcmax(cmax + 1)/2εe, we get the following result.

I Corollary 15. There exists a ( 1
2 + 1

2cmax
− ε)-approximation algorithm for unweighted

Maximum Carpool Matching, for every ε > 0.

4 Group Carpool

We now consider Maximum Group Carpool Matching which a variant of Maximum
Carpool Matching in which we are given a size function s : V → N, and the constraint
dinM (v) ≤ c(v) is replaced with the constraint

∑
u:(u,v)∈M s(u) ≤ c(v).

We start by showing that this variant of the problem does not fit the submodular
maximization formulation as defined for Maximum Carpool Matching. Recall the
submodular maximization formulation given in Section 2.1, namely w̄ : 2V → R, where
w̄(S) , w(M(S)) andM(S) is the maximum weight carpool matching that satisfies DM(S) ⊆
S ⊆ V \ PM(S). Figure 6 contains an instance that shows that the function w̄ is not
submodular anymore.

We show that Maximum Group Carpool Matching has a ( 1
2 − ε)-approximation

algorithm by extending the algorithm from Section 2.2. The main concern when trying to
adopt the algorithm to Maximum Group Carpool Matching is how to determine if a
vertex can be improved. With Maximum Carpool Matching, if weights are polynomially-
bounded, it was enough to consider the incoming arcs to a vertex v in a non-increasing
order of δM (see proof of Theorem 7). This does not work anymore, since in the Maximum
Group Carpool Matching we have sizes. In fact, given v, finding the best star with
respect to δM is a Knapsack instance where the size of the knapsack is c(v). If weights
are polynomially-bounded, then δM (e) is bounded for every arc e ∈ A, and therefore this
instance of Knapsack can be solved in polynomial time using dynamic programming.

I Theorem 16. Algorithm StarImprove is a 1
2 -approximation algorithm for Maximum

Group Carpool Matching, if edge weights are integral and polynomially bounded.

Using standard scaling and rounding we obtain the following result.

I Theorem 17. There exists a ( 1
2 − ε)-approximation algorithm for Maximum Group

Carpool Matching, for every ε ∈ (0, 1
2 ).

Finally, we show that a variant of Algorithm EdgeSwap from Section 3.2 can be used
to solve Maximum Group Carpool Matching while keeping the same approximation
guarantees. The only difference is that when checking feasibility of a set of arcs we do not
compare the number of passengers to the capacity of a driver, but rather compare the total
size of the passengers to the capacity.
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I Theorem 18. There exists a ( 1
2 + 1

2cmax
− ε)-approximation algorithm for unweighted

Maximum Group Carpool Matching, for every ε > 0.
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discussions.

References
1 Blablacar. https://www.blablacar.com.
2 Moovit carpool. https://moovitapp.com/.
3 Waze. https://www.waze.com/.
4 Zimride by enterprise. https://zimride.com/.
5 Niels A. H. Agatz, Alan L. Erera, Martin W. P. Savelsbergh, and Xing Wang. Optimization

for dynamic ride-sharing: A review. European Journal of Operational Research, 223(2):295–
303, 2012.

6 Esther M. Arkin, Refael Hassin, Shlomi Rubinstein, and Maxim Sviridenko. Approxima-
tions for maximum transportation with permutable supply vector and other capacitated
star packing problems. Algorithmica, 39(2):175–187, 2004.

7 Stavros Athanassopoulos, Ioannis Caragiannis, Christos Kaklamanis, and Maria Kyro-
poulou. An improved approximation bound for spanning star forest and color saving. In
34th International Symposium on Mathematical Foundations of Computer Science, pages
90–101, 2009.

8 Amotz Bar-Noy, David Peleg, George Rabanca, and Ivo Vigan. Improved approximation
algorithms for weighted 2-path partitions. In 23rd Annual European Symposium on Al-
gorithms, volume 9294 of LNCS, pages 953–964, 2015.

9 Niv Buchbinder and Moran Feldman. Deterministic algorithms for submodular maximiz-
ation problems. In 27th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
392–403, 2016.

10 Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. SIAM J. Comput., 44(5):1384–
1402, 2015.

11 Deeparnab Chakrabarty and Gagan Goel. On the approximability of budgeted allocations
and improved lower bounds for submodular welfare maximization and GAP. SIAM J.
Comput., 39(6):2189–2211, 2010.

12 Barun Chandra and Magnús M. Halldórsson. Greedy local improvement and weighted set
packing approximation. J. Algorithms, 39(2):223–240, 2001.

13 Ning Chen, Roee Engelberg, C. Thach Nguyen, Prasad Raghavendra, Atri Rudra, and
Gyanit Singh. Improved approximation algorithms for the spanning star forest problem.
Algorithmica, 65(3):498–516, 2013.

14 Irith Ben-Arroyo Hartman. Optimal assignment for carpooling. submitted.
15 Irith Ben-Arroyo Hartman, Daniel Keren, Abed Abu Dbai, Elad Cohen, Luk Knapen,

Ansar-Ul-Haque Yasar, and Davy Janssens. Theory and practice in large carpooling prob-
lems. In 5th International Conference on Ambient Systems, Networks and Technologies,
pages 339–347, 2014.

16 Luk Knapen, Daniel Keren, Ansar-Ul-Haque Yasar, Sungjin Cho, Tom Bellemans, Davy
Janssens, and Geert Wets. Estimating scalability issues while finding an optimal assign-
ment for carpooling. In 4th International Conference on Ambient Systems, Networks and
Technologies, pages 372–379, 2013.

17 Luk Knapen, Ansar-Ul-Haque Yasar, Sungjin Cho, Daniel Keren, Abed Abu Dbai, Tom
Bellemans, Davy Janssens, Geert Wets, Assaf Schuster, Izchak Sharfman, and Kanishka

ESA 2017

https://www.blablacar.com
https://moovitapp.com/
https://www.waze.com/
https://zimride.com/


55:14 Local Search Algorithms for the Maximum Carpool Matching Problem

Bhaduri. Exploiting graph-theoretic tools for matching in carpooling applications. J. Am-
bient Intelligence and Humanized Computing, 5(3):393–407, 2014.

18 Gilad Kutiel. Approximation algorithms for the maximum carpool matching problem. In
12th International Computer Science Symposium in Russia, volume 10304 of LNCS, pages
206–216, 2017.

19 C. Thach Nguyen, Jian Shen, Minmei Hou, Li Sheng, Webb Miller, and Louxin Zhang.
Approximating the spanning star forest problem and its application to genomic sequence
alignment. SIAM J. Comput., 38(3):946–962, 2008.

20 Christos Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and com-
plexity classes. In 12th Annual ACM Symposium on Theory of Computing, pages 229–234,
1988.



Computing Maximum Agreement Forests without
Cluster Partitioning is Folly∗

Zhijiang Li1 and Norbert Zeh2

1 Microsoft Canada, Vancouver, BC, Canada
zhijiang.li@dal.ca

2 Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
nzeh@cs.dal.ca

Abstract
Computing a maximum (acyclic) agreement forest (M(A)AF) of a pair of phylogenetic trees is
known to be fixed-parameter tractable; the two main techniques are kernelization and depth-
bounded search. In theory, kernelization-based algorithms for this problem are not competitive,
but they perform remarkably well in practice. We shed light on why this is the case. Our results
show that, probably unsurprisingly, the kernel is often much smaller in practice than the theoret-
ical worst case, but not small enough to fully explain the good performance of these algorithms.
The key to performance is cluster partitioning, a technique used in almost all fast M(A)AF al-
gorithms. In theory, cluster partitioning does not help: some instances are highly clusterable,
others not at all. However, our experiments show that cluster partitioning leads to substantial
performance improvements for kernelization-based M(A)AF algorithms. In contrast, kernelizing
the individual clusters before solving them using exponential search yields only very modest per-
formance improvements or even hurts performance; for the vast majority of inputs, kernelization
leads to no reduction in the maximal cluster size at all. The choice of the algorithm applied
to solve individual clusters also significantly impacts performance, even though our limited ex-
periment to evaluate this produced no clear winner; depth-bounded search, exponential search
interleaved with kernelization, and an ILP-based algorithm all achieved competitive performance.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory, G.2.3 Applications

Keywords and phrases Fixed-parameter tractability, agreement forests, hybridization, subtree
prune-and-regraft
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1 Introduction

Phylogenetic trees are the classical model of evolution. All extant taxa are assumed to descend
from the same common ancestor and diverge in a tree-like fashion through speciation events.
While this is still the accepted model for the evolution of individual genes, the evolution
particularly of microbial organisms and plants is complicated by reticulation events, such as
lateral gene transfer (LGT) and hybridization, which are known to play an important role, for
example, in the development of antibiotic resistance of bacteria [20]. LGT allows an organism
to acquire genetic material from an unrelated species in the same habitat. Hybridization
allows an organism to inherit genetic material from more than one ancestor. Different genes
shared by a group of taxa then have different tree-like evolutionary histories, which we
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call gene trees. The differences between these trees provide the basis for discovering likely
reticulation events in the evolution of this set of taxa.

A single LGT has the effect that, in the tree representing the transferred gene, the
descendants of the recipient taxon appear genetically most similar to the descendants of the
donor taxon, while all other relationships between taxa are preserved. Thus, the “true tree”
can be transformed into the gene tree for the transferred gene by cutting off a subtree and
grafting it onto the donor edge, a subtree prune-and-regraft (SPR) operation [11]. A series of
LGTs translates into a sequence of SPR operations that transforms one input tree into the
other. A set of hybridizations yields a network that displays each gene tree, that is, each
tree can be obtained from the network by deleting edges and suppressing degree-2 nodes [2].

Reticulation events are assumed to be rare. Thus, it is common to assume that the smallest
set of reticulations consistent with the input trees is the most likely scenario, and we aim to
construct a hybridization network of the input trees with as few hybridizations as possible
(its hybridization number) or a minimum-length sequence of SPR operations transforming one
input tree into the other. The length of this sequence is the SPR distance between the two
trees. Both problems are NP-hard [5, 7] and fixed-parameter tractable [7, 8, 14, 15, 18] when
parameterized by the hybridization number or SPR distance. Despite these FPT results,
solving either problem for more than two trees is challenging in practice. (It is unclear how to
even extend the SPR distance to more than two trees. SPR supertrees [27] offer one possible
approach.) For two input trees, very fast solutions exist [16, 17, 22, 23, 24, 25, 26]. Almost
all of them use kernelization or depth-bounded search and compute the SPR distance or
hybridization number via maximum (acyclic) agreement forests (M(A)AFs). The best known
kernel sizes for MAF and MAAF of binary trees are 28k [7] and 14k [8], where k is the SPR
distance or hybridization number. Combined with an O(3nn)-time M(A)AF algorithm [1], a
MAF or MAAF can thus be found in O(328kn) or O(314kn) time. For multifurcating trees, the
best known kernel sizes are 28k and 89k [18], and the exact M(A)AF algorithm takes O(4nn)
time. Thus, a MAF or MAAF can be found in O(428kn) or O(489kn) time. In contrast,
the best depth-bounded search algorithms for M(A)AF take between O(2kn) and O(5.08kn)
time [16, 17, 23, 24, 25, 26] depending on whether a MAF or MAAF is to be computed and
whether the input trees are binary or multifurcating. This leaves an astronomical gap between
the theoretical running times of kernelization-based and depth-bounded search algorithms
for finding M(A)AFs of all but the simplest inputs. Yet, in practice, kernelization-based
algorithms perform remarkably well [1, 9].

In this paper, we try to answer two questions: (1) Why do kernelization-based algorithms
perform much better in practice than predicted in theory? (2) Which is the “ultimate”
algorithm for computing agreement forests of two trees? Part of the answer to the first question
is that the kernel is often much smaller than predicted, less than 4k. This reduces the difference
between the running times of kernelization-based and depth-bounded search algorithms
significantly but still leaves a gap of more than 8k even after porting the improvements
from the depth-bounded search algorithms back to exponential search. This gap is massive,
since values of k ≥ 50 are not uncommon. The key to fast running times for almost all
existing M(A)AF algorithms is cluster partitioning [3, 19], which allows us to break many
non-trivial instances into smaller pieces that can be solved independently and whose total
SPR distance or hybridization number (roughly) equals the SPR distance or hybridization
number of the original input. This has the potential to lead to an exponential speed-up
and often does in practice. We verified experimentally that cluster partitioning is the real
reason why kernelization-based M(A)AF algorithms are fast: it significantly improves the
performance of kernelization-based M(A)AF algorithms (and also of depth-bounded search
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algorithms [27]), while kernelization leads to only modest performance gains of algorithms
using only cluster partitioning and exponential search and often even hurts performance.
A recent theoretical result [6] shows that agreement-based phylogenetic distances are fixed-
parameter tractable in the level of the optimal hybridization network, which is in fact exactly
the maximum hybridization number of the clusters in a cluster partition. This sheds light on
the effectiveness of cluster partitioning when it is applicable. Our results suggest that many
real-world inputs are highly clusterable, that is, their optimal networks have small level.
To answer question (2), we investigated which algorithm, used to solve the subproblems
in a cluster partition, results in the fastest running time overall. In our somewhat limited
experiments for this question, three winners emerged: depth-bounded search, integer linear
programming, and interleaving of kernelization and exponential search.

Section 2 formally defines SPR distance, hybridization number, agreement forests, and
related concepts. Section 3 gives an overview of the techniques used to compute agreement
forests. Section 4 presents our experimental results. Section 5 offers conclusions.

2 Subtree Prune-and-Regraft, Hybridization, and Agreement Forests

A (rooted phylogenetic) X-tree is a tree T with a root labelled ρ and with |X| leaves labelled
bijectively with the elements in X; ρ has degree 1; all internal nodes have at least two
children. Edges are directed away from the root. If all internal nodes have out-degree exactly
two, T is binary; otherwise it is multifurcating. T is a resolution of another tree S if S can
be obtained from T by contracting edges. Figures 1a,c illustrate these definitions.

A (rooted phylogenetic) X-network is a directed acyclic graph (DAG) with a single source
ρ and |X| sinks labelled bijectively with the elements in X. The nodes with in-degree
at least two are called hybrid nodes. An X-network N displays an X-tree T if T can be
obtained from N by deleting edges and suppressing unlabelled out-degree-1 nodes. Since we
always suppress unlabelled out-degree-1 nodes, we do not state this explicitly from here on.
N is a hybridization network of a pair of X-trees (S, T ) if it displays both S and T . The
hybridization number of N is the number of edges we need to delete to obtain a tree. The
hybridization number hyb(S, T ) of a pair of X-trees (S, T ) is the minimum hybridization
number of all hybridization networks of (S, T ). Figure 1e illustrates these definitions.

A subtree prune-and-regraft (SPR) operation on a binary X-tree T deletes the parent
edge of some node v, splits some edge by introducing a new node u, and makes v a child
of u. The SPR distance dSPR(S, T ) between two binary X-trees S and T is the minimum
number of SPR operations needed to transform S into T ; see Figure 1d.

A (rooted binary) X-forest is a forest F that can be obtained from a (binary) X-tree by
deleting edges. An X-forest F1 refines another X-forest F2 if F1 can be obtained from F2
by deleting edges. An X-forest F is an agreement forest (AF) of a pair of binary X-forests
(FS , FT ) if it refines both FS and FT . A maximum agreement forest (MAF) of (FS , FT ) is an
AF of (FS , FT ) with the minimum number of components; see Figure 1f. For a component
C of a forest F that refines an X-tree T , let LCAT (C) be the lowest common ancestor in
T of all leaves of C. A component C1 of F is an ancestor of another component C2 of F
in T if LCAT (C1) is an ancestor of LCAT (C2). The ancestry graph GT (F ) of F w.r.t. T
has the components of F as its nodes and contains a directed edge (C1, C2) if the ancestors
of C1 are exactly the proper ancestors of C2. For an AF F of a pair of X-trees (S, T ),
let GS,T (F ) = GS(F ) ∪ GT (F ). We call F an acyclic agreement forest (AAF) of (S, T ) if
GS,T (F ) is a DAG. A maximum acyclic agreement forest (MAAF) of (S, T ) is an AAF of
(S, T ) with the minimum number of components. Figures 1f–i illustrate these definitions.
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Figure 1 (a,b) Two binary X-trees S and T . (c) A multifurcating X-tree that has S as a
resolution. (d) A sequence of SPR operations that turns S into T . (e) A hybridization network of
(S, T ). (f) A MAF of (S, T ) that can be obtained by deleting the thin red (dashed or solid) edges in
S and T . These are exactly the parent edges of the subtrees of S that are moved by SPR operations
in (d). This is not an AAF, since its ancestry graph shown in (g) has a cycle. (h) A MAAF of
(S, T ) that can be obtained by deleting the dotted edges in S and T . Its ancestry graph shown in (i)
is acyclic. We can also obtain this MAAF by deleting the parent edges of all hybrid nodes of the
network in (e), which in turn correspond to the dotted edges in S and T .

Let m(S, T ) be the size (number of components) of a MAF of (S, T ) and let m̃(S, T ) be
the size of a MAAF of (S, T ). As shown in [2, 7], we have m(S, T ) = 1 + dSPR(S, T ) and
m̃(S, T ) = 1 + hyb(S, T ). In fact, it is easy to convert back and forth between any (A)AF and
a corresponding SPR sequence or hybridization network, as illustrated in Figures 1d,e,f,h.

Multifurcating trees usually arise due to lack of confidence in the order of speciation
events derived using statistical inference methods. In order to avoid the inference of spurious
reticulation events necessary only to reconcile differences in the ordering of these events in
different gene trees, low-confidence edges are contracted, resulting in nodes with more than
two children. Given this source of multifurcations, it is common to define the SPR distance or
hybridization number of two multifurcating trees S and T to be the minimum SPR distance
or hybridization number of all pairs of binary resolutions of S and T ; a M(A)AF of (S, T ) is
the smallest M(A)AF over all pairs of binary resolutions of S and T .

3 Techniques for Computing Agreement Forests

Almost every existing algorithm for computing a M(A)AF of two trees uses a combination
of four techniques: kernelization, exponential search, depth-bounded search, and cluster
partitioning. In this section, we review these techniques. We discuss only binary trees here.
The techniques for multifurcating trees are similar albeit more complicated.
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(c) MAAF chain reduction.

Figure 2 Kernelization rules for binary trees.

3.1 Kernelization

A pendant subtree of a binary X-tree T is a subtree induced by the descendants of a node in T .
An m-chain of T is a sequence of leaves 〈`1, `2, . . . , `m〉 of T whose parents p1, p2, . . . , pm

form a directed path from p1 to pm in T . The kernelization algorithm for M(A)AF of binary
trees uses two reduction rules, with separate chain reductions for MAF and MAAF:
Subtree reduction: Let P be a maximal common pendant subtree of S and T . Remove all

nodes of P except the root from both S and T . This turns the root of P into a common
leaf of S and T . Give both these leaves the same label, distinct from all labels already
in X. See Figure 2a. This preserves m(S, T ) and m̃(S, T ).

Chain reduction (MAF): Replace every maximal common m-chain of S and T with m > 3
with a 3-chain 〈a, b, c〉 in both trees, where a, b, c are three new leaves currently not in X.
See Figure 2b. This preserves m(S, T ).

Chain reduction (MAAF): Replace every maximal common m-chain of S and T with m > 2
with a 2-chain 〈a, b〉. This does not preserve m̃(S, T ), but m̃(S, T ) (along with a corres-
ponding MAAF) can still be computed from the weight w(F ′) of an appropriate AAF F ′

of the kernel (S′, T ′). As a basis for defining w(F ′) below, add {a, b} to a collection W
of subsets of X and define w({a, b}) = m− 1. See Figure 2c.

Bordewich and Semple [7] proved that subtree reduction and MAF chain reduction preserve
m(S, T ) and produce a kernel (S′, T ′) of size at most 28m(S, T ). In the case of MAAF,
a legitimate AAF F ′ of the kernel (S′, T ′) is an AAF where, for every pair {a, b} ∈ W ,
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either a and b are singletons (i.e., are each in their own component) or belong to the same
component. Let Ws ⊆W be the subset of pairs {a, b} ∈W such that a and b are singletons
in F ′ and let w(F ′) = |F ′| +

∑
{a,b}∈Ws

w({a, b}). Bordewich and Semple [8] proved that
subtree reduction and MAAF chain reduction produce a kernel (S′, T ′) of size at most
14m̃(S, T ), every legitimate AAF F ′ of (S′, T ′) corresponds to an AAF of (S, T ) of size
w(F ′), and one of these AAFs of (S, T ) is in fact a MAAF of (S, T ). Thus, it suffices to
find a minimum-weight legitimate AAF of (S′, T ′), which is easily done by augmenting the
exponential search algorithm in Section 3.2 so it ignores non-legitimate AFs.

3.2 Exponential Search

The exponential search algorithm for finding a M(A)AF of (S, T ) [1] uses a recursive procedure
M(A)AF(FS , FT , F ), where FS refines S; FT refines T , F is an AF of (FS , FT ), and every
component of F is a pendant subtree of both FS and FT . MAF(FS , FT , F ) computes a MAF
of (FS , FT ). MAAF(FS , FT , F ) computes the smallest AAF of (S, T ) that refines FT and is
refined by F ; if no such AAF exists, MAAF(FS , FT , F ) reports failure. Thus, the top-level
invocation M(A)AF(S, T, FX), where FX has one singleton component per element in X,
finds a M(A)AF of (S, T ). Since M(A)AF(FS , FT , F ) treats components of F as indivisible
units, we describe the algorithm as if each of these components were replaced by a single leaf
in both FS and FT . M(A)AF(FS , FT , F ) first applies the following two rules:
Cherry reduction (MAF only): Let a and c be two sibling leaves of FS , a cherry. If a and

c are siblings also in T , then merge a and c, that is, contract them into their common
parent in both FS and FT , and replace them with a single node in F . See Figure 3a.
F remains an AF of (FS , FT ).

Singleton reduction: If FT has a singleton leaf that is not a singleton in FS , then cut its
parent edge in FS . F remains an AF of (FS , FT ). See Figure 3b.

Let F ′S , F ′T , and F ′ be the forests obtained once neither rule is applicable. If F ′ = F ′T (and
hence F ′ = F ′S), then F ′ is a MAF of (F ′S , F ′T ) and, after undoing all cherry reductions, of
(FS , FT ), so MAF(FS , FT , F ) returns F ′ in this case. Since MAAF(FS , FT , F ) does not apply
cherry reduction, we have F ′ = F and F ′T = FT in MAAF(FS , FT , F ). Thus, if F ′ = F ′T ,
F is the only forest that refines FT and is refined by F . MAAF(FS , FT , F ) checks whether
F is an AAF of (S, T ) and either returns F or reports failure. If F ′ 6= F ′T , then there
exists a cherry (a, c) in F ′S . If (a, c) is not a cherry of F ′T and w.l.o.g. a’s depth in FT is
no less than c’s, then a has a sibling b in F ′T that is not an ancestor of c and any M(A)AF
of (F ′S , F ′T ) is a M(A)AF of (F ′S , F ′T // {a}), (F ′S , F ′T // {b}) or (F ′S , F ′T // {c}), where F // V

is the forest obtained from F by cutting the parent edges of all nodes in V (see e.g. [1]).
See Figure 3c. Thus, M(A)AF(FS , FT , F ) makes three recursive calls M(A)AF(F ′S , F ′′T , F ′)
where F ′′T ∈ {F ′T // {a}, F ′T // {b}, F ′T // {c}}. If (a, c) is a cherry of F ′T , which is possible only
for MAAF(FS , FT , F ) because MAF(FS , FT , F ) applies cherry reduction, then any AAF F ′′

of (S, T ) that refines F ′T either refines FT // {a} or FT // {c} or (a, c) is a cherry of F ′′. Thus,
MAAF(FS , FT , F ) makes three recursive calls MAAF(F ′S , F ′′T , F ′′), where either F ′′ = F ′

and F ′′T = F ′T // {a} or F ′′T = F ′T // {c}, or F ′′T = F ′T and F ′′ is obtained from F ′ by applying
cherry reduction to (a, c). See Figure 3d. Since each invocation makes three recursive calls
and the recursion depth can be shown to be at most n, the running time is O(3nn).

Similar ideas give an O(4nn)-time algorithm for multifurcating trees (see [13, 25]). Faster
algorithms for both binary and multifurcating M(A)AF are possible, either by using dynamic
programming [12] or by porting some of the ideas from the currently fastest depth-bounded
search algorithms [23, 25, 26] back to exponential search.
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(d) If (a, c) is a cherry of FT , MAAF(FS , FT )
makes three recursive calls, two cutting the
parent edges of a and c and one that applies
the cherry reduction shown in (a).

Figure 3 Reduction and branching rules in the exponential search algorithm for binary trees.

3.3 Depth-Bounded Search

The depth-bounded search algorithm for MAF is practically identical to the exponential
search algorithm. The invocation MAF(FS , FT , F, k) now takes an additional parameter
k and decides whether there exists an AF of (FS , FT ) of size at most k. If |FT | > k,
MAF(FS , FT , k) can immediately report failure, which limits the search depth to k because
|FT | increases by at least one from one level of recursion to the next. Thus, the running
time of MAF(S, T, FX , k) is O(3kn) for binary trees and O(4kn) for multifurcating trees. A
MAF can be found in O(3m(S,T )n) or O(4m(S,T )n) time, by running MAF(S, T, FX , k) with
parameter k = 1, 2, . . . until we find the first AF. This approach combined with improved
branching rules and other techniques results in the currently fastest MAF algorithms, with
running time O(2kn) for binary trees [23, 26] and O(2.42kn) for multifurcating trees [25].

The exponential search algorithm for MAAF cannot be translated directly into a depth-
bounded search algorithm because, when (a, c) is a common cherry of F ′S and F ′T , the
algorithm makes three recursive calls and the branch that applies cherry reduction cuts no
edges. To obtain a depth-bounded search algorithm for MAAF, we apply the MAF algorithm
(including cherry reduction!) to find a collection of AFs. It turns out that, given a parameter
k ≥ m̃(S, T ), MAF(S, T,X, k) finds an AF F that can be refined to a MAAF of (S, T ) by
cutting more edges [24]. Thus, to find an AAF of (S, T ) of size at most k, if it exists, we
run MAF(S, T,X, k) and, for each AF F it finds, check whether an AAF of (S, T ) of size
at most k can be obtained by cutting more edges in F . This takes O(n) ·

∑k−|F |
i=0

(|F |−1
i

)
time [24]. The currently fastest hybridization algorithms for two trees use this approach and
take O(3.18kn) time for binary trees [24] and O(5.08kn) time for multifurcating trees [16, 17].
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Figure 4 (a) A pair of X-trees (S, T ). The highlighted nodes are shared by S and T . (b) A
cluster partition of (S, T ) corresponding to the highlighted subtrees of S and T .

3.4 Cluster Partitioning
Every node of an X-tree defines a cluster consisting of the labels of its descendant leaves.
An X-tree is fully described by the set of clusters of its nodes, so we can view it as a set
of clusters and define C = (S ∩ T ) \ {X ∪ {ρ}} to be the set of non-root nodes shared by S
and T . Each cluster C ∈ C defines two subtrees SC and TC of S and T consisting of the
parents of C in S and T and all nodes that are subsets of C but not proper subsets of any
cluster C ′ ∈ C with C ′ ⊂ C. Let L = {`(C) | C ∈ C} be a label set disjoint from X ∪ {ρ}.
We label the roots of SC and TC with `(C) and each leaf C ′ ∈ C of SC and TC with `(C ′).
The cluster partition of (S, T ) is the collection of instances {(SC , TC) | C ∈ C}; see Figure 4.

Remarkably, a MAAF of (S, T ) can be obtained by computing a MAAF for each pair
(SC , TC) with C ∈ C [3]: A MAAF FC of each pair (SC , TC) can be obtained by cutting a
set of edges of SC . Cutting every edge of S that belongs to the union of these sets produces
a MAAF of (S, T ). A MAF of (S, T ) can similarly be obtained from a collection of AFs of
the clusters, but the details are more complicated [19, 27].

4 Experimental Evaluation

4.1 The Competitors
We implemented the techniques discussed in Section 3 in C++, compiled with gcc -O2, and
evaluated different combinations of these techniques for finding M(A)AFs of binary and
multifurcating trees. Our platform was a 2.4GHz AMD Opteron workstation with 16GB of
DDR-1333 RAM running Debian GNU/Linux 7. The algorithms we evaluated were:
K: Apply kernelization and then solve the kernel using exponential search.
CP: Apply cluster partitioning and then solve each cluster using exponential search.
CP+K: Apply cluster partitioning, apply kernelization to each cluster, and then solve each

cluster kernel using exponential search.
CP+DBS: Apply cluster partitioning and solve each cluster using depth-bounded search.
We also included two competing algorithms in our evaluation. Since we did not have the
(source) code available, we are only able to refer to the experimental results reported by the
authors or were able to run the compiled code provided by the authors:
ILP [28]: This solution expresses the problem of finding a MAAF as an integer linear

program and then uses CPLEX to solve this instance. The experimental results were
obtained on a 3.2GHz Intel Xeon workstation using the Poaceae data set below [28].

INTER [9]: This algorithm uses cluster partitioning and solves each cluster using kerneliza-
tion and exponential search, applying kernelization in each recursive call. The authors
provided a Java implementation as a JAR file.
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Figure 5 Kernel sizes for the Aquificae data set. The x-axis shows the ratio between kernel size
and SPR distance or hybridization number, grouped into buckets where the ith bucket contains all
instances with a ratio in the interval (i − 1, i]. The y-axis shows the percentage of the inputs in each
bucket.

We excluded a number of competitors from our evaluation. One is the dynamic programming
algorithm of [12]. It achieves a running time of O(2npoly(n)) but uses exponential space,
which is prohibitive. Faster depth-bounded search algorithms with running times of O(2kn)
for binary trees [23, 26] and O(2.42kn) for multifurcating trees [25] exist and translate into
corresponding improvements for exponential search. However, both algorithms are difficult
to implement. An implementation of the O(2kn)-time algorithm for binary trees exists [27],
while the O(2.42kn)-time algorithm for multifurcating trees has not been implemented yet. In
order to avoid performance differences due only to differences in the implementation, we chose
to implement all competitors (except ILP and INTER) ourselves and opted for the simpler
algorithms discussed in Section 3. Since any improvement applicable to depth-bounded
search is applicable to exponential search and vice versa, the qualitative conclusions of our
results apply also to faster branching algorithms.

4.2 Data Sets
Aquificae. This data set was provided by Robert Beiko [4] and contained gene trees of the
phylum Aquificae, which is generally believed to have a high rate of reticulation events in its
history. The input trees were unrooted. A rooting was obtained by Chris Whidden [27], who
used a subset of 40,463 of these trees over a set of 1,251 taxa, computing an MRP supertree
and rooting the gene trees to match the MRP supertree. Each tree had between 4 and 74
taxa. Comparisons between pairs of trees were made only on the subtrees induced by their
common taxa. The original trees were binary. Multifurcating versions were obtained by
collapsing bipartitions with support below 0.8. We carried out pairwise comparisons between
all pairs of these 40,463 trees. Our experimental evaluation excluded all pairs with SPR
distance 0, leaving us with roughly 170,000 non-trivial input pairs.

Poaceae. This data set was provided by Heiko Schmidt [21], who constructed rooted binary
trees from the sequence data of six loci (ITS, ndhF, phyB, rbcL, rpoC2, and waxy) provided
by the Grass Phylogeny Working Group [10]. The resulting data set contained 15 tree pairs.
We used this data set in our final experiment that included ILP and INTER because we did
not have the code of ILP available and the authors of [28] reported results on this data set.

4.3 Results
Kernel size. The first question we wanted to answer was: How much smaller than the
theoretical prediction are the kernels produced by the kernelization algorithms in practice?
Figure 5 shows the kernel sizes observed for the Aquificae data set in our experiments.
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Figure 6 Running times of CP, K, and CP+K on the Aquificae data set. Each instance is
represented as a point with the running time of CP or K as the x-coordinate and the running time
of CP+K as the y-coordinate. Points below the diagonal indicate that CP+K performed better.

The average kernel size was less than 4k for both MAF and MAAF and for binary and
multifurcating trees, and the kernel sizes were quite tightly concentrated in the range [3, 5].

Kernelization vs. cluster partitioning. Next we aimed to quantify the relative impact of
cluster partitioning and kernelization on the performance of algorithms that combine these
techniques. Figure 6 compares the running times of K, CP, and CP+K on a subset of the
Aquificae data set. For binary M(A)AF and multifurcating MAF, we removed trivial instances
that all three methods were able to solve in less than 1ms. We also removed all instances
that K was not able to solve in 8 hours, even though some of these instances could be solved
by CP+K in a reasonable time. Multifurcating MAAF is a much harder problem, so even
the easy instances took up to 1s to solve and took roughly the same amount of time to solve
with any of the three methods. Thus, for multifurcating MAAF, we removed all instances
that could be solved in less than 1s or for which K took more than 8 hours. This left 6,800
binary MAF instances, 25,000 binary MAAF instances, 40,000 multifurcating MAF instances,
and 5,300 multifurcating MAAF instances. The right-hand figures in the four panels show
that adding cluster partitioning to K led to significant performance improvements for almost
all instances. For binary M(A)AF and multifurcating MAF, adding kernelization to CP
led to only very modest performance improvements. Moreover, there were about as many
instances where the overhead of kernelization hurt performance as there were instances where
performance improved. The exception is multifurcating MAAF, where adding kernelization
to CP led to more significant performance improvements in many instances.

Another useful comparison can be obtained by summing the running times of each
algorithm across all test instances, as this amplifies performance gains made on the difficult
instances that took a long time to solve. For all but multifurcating MAAF, kernelization
did not help and in fact increased the total running time of CP by a factor of almost 5
in the case of binary MAF. For multifurcating MAAF, a modest speed-up by a factor of
2.2 was achieved. In contrast, the performance improvements achieved by adding cluster
partitioning to K ranged from 8.5 for binary SPR to 160.8 for multifurcating SPR, again
demonstrating the effectiveness of cluster partitioning. The results for binary SPR are to
be treated with caution. Almost all binary SPR instances were solved by CP and CP+K
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Figure 7 Running times of CP+K and CP+DBS on the Aquificae data set. Each instance is
represented as a point with the running time of CP+K as the x-coordinate and the running time of
CP+DBS as the y-coordinate. Points below the diagonal indicate that CP+DBS performed better.

in less than 100ms and in less than 10s even using only K. On such “easy” instances, the
overhead of any added optimization is fairly large compared to the achievable gain, which we
believe explains the detrimental impact of kernelization on the performance of CP and the
only modest improvement of performance when adding cluster partitioning to K.

Impact of kernelization on maximal cluster size. Since the running time of an exponential
search algorithm across multiple clusters is dominated by the running time on the largest
cluster, the lack of impact of kernelization on the performance of CP can be explained by
investigating the decrease of the maximal cluster size for each instance due to kernelization.
In our experiments, no decrease was achieved in over 99.8% of the inputs for binary M(A)AF
and multifurcating MAF, which correlates with our running time comparisons above. For
multifurcating MAAF, no reduction was achieved for 93.8% of the inputs while about 6% of
the inputs achieved a reduction of the maximal cluster size by 10-30%. While we expected
the impact of kernelization on the cluster size to be modest, we were surprised to see that
the vast majority of instances did not see any decrease in the maximal cluster size.

Kernelization vs depth-bounded search. The next question we aimed to answer was which
algorithm to choose to solve individual clusters. Our first experiment with this goal compared
CP+K vs CP+DBS. Figure 7 shows that CP+DBS was significantly faster than CP+K. We
excluded trivial instances that both methods were able to solve in less than 10ms as well
as instances that took CP+K more than 8 hours to solve from the evaluation, even though
CP+DBS was able to solve all instances in a reasonable time. A comparison of the total
running times of these two methods across all inputs shows that overall CP+DBS was between
135 times (for multifurcating MAAF) and 1,000 times (for binary MAF) faster than CP+K.
Since kernelization of the individual clusters was largely ineffective, this is not surprising.

Which is the fastest MAAF algorithm? Since we did not have the source code of ILP
and the results in [28] were reported on the Poaceae data set, we chose this data set for a
horse race between all the competitors listed in Section 4.1. INTER only computes binary
MAAFs, so this was the only type of MAAF we computed in our experiments. As a result,
this evaluation is fairly limited. Table 1 shows the results. We report two running times for
INTER. The first (A) was obtained on inputs where string labels were replaced with integer
labels; the second (B) was obtained using the Poaceae data files bundled with the code of
[9], where every leaf was labelled with the name of the taxon. Apart from that, the inputs
were identical. We do not know why this change would have such a significant impact on
the running time of the implementation. Table 1 shows that ILP, INTER, and CP+DBS
each achieved the fastest running time on at least one input and were significantly faster
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Table 1 Running times of the different algorithms for computing MAAFs of the instances in the
Poaceae data set. For each input consisting of “Tree 1” and “Tree 2”, we list its number of taxa (n)
and hybridization number (k).

Input ILP INTER CP+ CP K CP+K
Tree 1 Tree 2 n k A B DBS

ndhF phyB 40 14 5s 20s 14s 13s 210s >3h 206s
ndhF rbcL 36 13 10s 3s 3s 16s 220s >3h 218s
ndhF rpoC2 34 12 7s 6s 3s 10s 559s >3h 563s
ndhF waxy 19 9 1s <1s 1s <1s 2s 56s 2s
ndhF ITS 46 19 51s 255s 1197s 78s >3h >3h >3h
phyB rbcL 21 4 <1s <1s <1s <1s 1s 6s 1s
phyB rpoC2 21 7 3s <1s <1s <1s 2s 222s 2s
phyB waxy 14 3 1s <1s <1s <1s 1s 1s 1s
phyB ITS 30 8 1s <1s <1s <1s 1s >3h 1s
rbcL rpoC2 26 13 14s 7s 5s 32s 662s >3h 619s
rbcL waxy 12 7 1s <1s <1s <1s 2s 2s 2s
rbcL ITS 29 14 80s 586s 1979s 49s >3h >3h >3h
rpoC2 waxy 10 1 <1s <1s <1s <1s 1s 1s 1s
rpoC2 ITS 31 15 115s 53s 1650s 17s >3h >3h >3h
waxy ITS 15 8 1s <1s <1s <1s 6s 67s 6s

than K, CP, and CP+K. ILP and CP+DBS substantially outperformed INTER on the hardest
inputs (ndhF/ITS and rbcL/ITS), highlighted in bold. These inputs have among the highest
hybridization numbers in this data set, suggesting that INTER cannot keep up with ILP and
CP+DBS as the hybridization number increases.

5 Conclusions

We investigated the impact of cluster partitioning on the performance of kernelization-based
M(A)AF algorithms. Together with results for depth-bounded search reported in [27], our
results support the following conclusions: (i) Cluster partitioning is by far the most important
tool for obtaining fast M(A)AF algorithms. (ii) When used in conjunction with cluster
partitioning, kernelization offers very little benefit and may even hurt performance due to the
cost of computing the kernel. (iii) Depth-bounded search offers superior performance over
kernelization. The exception is an approach that re-kernelizes the input after each branching
step in the exponential search (INTER). Depth-bounded search and INTER have much in
common in that the cherry and singleton reductions can be viewed as partially applying
kernelization until it is safe to apply the next branching step.

Given the importance of cluster partitioning for the performance of M(A)AF algorithms,
an important question is whether cluster partitioning can be improved further. When an
input or large cluster cannot be split into smaller clusters, “long-distance” reticulations
between distant taxa are often to blame. Empirical evidence suggests that most reticulations
happen between fairly closely related taxa, so long-distance reticulations should be rare. If
there exists an efficient algorithm for finding these long-distance reticulations, they could be
eliminated, resulting in a modified input with only local reticulations that can therefore be
split into small clusters for which M(A)AFs can be found efficiently. This would likely allow
us to find M(A)AFs for larger and harder inputs currently well beyond our reach.
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Abstract
The optimization version of the Unique Label Cover problem is at the heart of the Unique
Games Conjecture which has played an important role in the proof of several tight inapproximab-
ility results. In recent years, this problem has been also studied extensively from the point of view
of parameterized complexity. Chitnis et al. [FOCS 2012, SICOMP 2016] proved that this problem
is fixed-parameter tractable (FPT) and Wahlström [SODA 2014] gave an FPT algorithm with an
improved parameter dependence. Subsequently, Iwata, Wahlström and Yoshida [SICOMP 2016]
proved that the edge version of Unique Label Cover can be solved in linear FPT-time, and
they left open the existence of such an algorithm for the node version of the problem. In this pa-
per, we resolve this question by presenting the first linear-time FPT algorithm for Node Unique
Label Cover.
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Unique Label Cover(ε) problem over the years has become a canonical problem to obtain
tight inapproximability results. We refer the reader to a survey of Khot [28] for more detailed
discussion on UGC.

In recent times Unique Label Cover has also attracted a lot of attention in the realm
of parameterized complexity. In particular two parameterizations, namely, Edge Unique
Label Cover and Node Unique Label Cover have been extensively studied. These
problems are, not only, interesting combinatorial problems on its own but they also generalize
several well-studied problems in the realm of parameterized complexity. The objective of
this paper is to study the following problem.

Node Unique Label Cover Parameter: |Σ| + k

Input: A simple graph G, finite alphabet Σ, integer k and for every edge e = (u, v) ∈
E(G), permutations φe,u and φe,v of Σ such that φe,u = φ−1

e,v and a function τ : V (G)→
2Σ.
Question: Does there exist a set X ⊆ V (G) and a function Ψ : V (G) \X → Σ such that
|X| ≤ k and for any v ∈ V (G)\X, for any (u, v) ∈ E(G−X), we have (Ψ(u),Ψ(v)) ∈ φuv,u
where Ψ(v) ∈ τ(v) for every v ∈ V (G)?

We remark that the standard formulation of this problem excludes the function τ . However,
this formulation is a clear generalization of the standard formulation (simply set τ(v) = Σ
for every vertex v) and the way we describe our algorithm makes it notationally convenient
to deal with this statement. To make the presentation simpler, we assume that Σ = [|Σ|] =
{1, . . . , |Σ|}.

The parameterized complexity of the Node Unique Label Cover problem was first
studied by Chitnis et al. [5] who proved it is FPT by giving an algorithm running in time
2O(k2·log |Σ|)n4 logn. They complemented this result by proving that an FPT algorithm for
this problem parameterized only by k is unlikely to exist. Subsequently, Wahlström [38]
(see also [25]) improved the parameter dependence by giving an algorithm running in time
O(|Σ|2knO(1)). The edge version of this problem was proved to be solvable in FPT-linear
time by Iwata et al. [25] who gave an algorithm running in time O(|Σ|2k(m+ n)). However,
their approach does not apply to the much more general node version of the problem and they
asked whether there is an FPT algorithm for the node version with a linear time dependence
on the input size. In this paper, we answer this question in the affirmative by giving a linear
time FPT algorithm for this problem. Note that we have stated the problem in a slightly
more general form than is usually seen in literature. However, this modification does not
affect the solvability of the problem in linear FPT time. We now state our theorem formally.

I Theorem 1.1. There is a 2O(k·|Σ| log |Σ|)(m+ n) algorithm solving Node Unique Label
Cover, where m and n are the number of edges and vertices respectively in the input graph.

Not only does our result answer the open question of Iwata et al. [25], when the label set
Σ is of constant-size for some fixed constant, our algorithm also achieves optimal asymptotic
dependence on the budget k under the Exponential Time Hypothesis [22].

By its very nature, the Node Unique Label Cover problem is a problem about
breaking various types of dependencies between vertices. Since these dependencies are
propagated along edges, it is reasonable to view the problem as breaking these dependencies
by hitting appropriate sets of paths in the graph. Chitnis et al. [5] used this idea to argue that
highly connected pairs of vertices will always remain dependent on each other and hence one
can recursively solve the problem by first designing an algorithm for graphs that are ‘nearly’
highly connected and then use this algorithm as a base case in a divide and conquer type
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approach. However, the polynomial dependence of their algorithm is O(n4 logn) where n is
the number of vertices in the input. Subsequently, Wahlström [38] improved the parameter
dependence by using a branching algorithm based on the solution to a specific linear program.
However, since this algorithm requires solving linear programs, the dependence on the input
is far from linear. Iwata et al. [25] showed that for several special kinds of LP-relaxations,
including those involved in the solution of the edge version of Unique Label Cover, the
corresponding linear program can be solved in linear-time using flow-based techniques and
hence they were able to obtain the first linear-time FPT algorithm for the edge version of
Unique Label Cover. However, their approach fails when it comes to the node version of
this problem.

Our Techniques. In this paper, we view the Node Unique Label Cover problem as
a problem of hitting paths between certain pairs of vertices in an appropriately designed
auxiliary graph H whose size is greater than that of the input graph G by a factor depending
only on the parameter. The high level road map for the solution follows those in the algorithms
developed for solving graph separation problems via important separators in [31, 4], the
LP-guided branching in [14, 6, 29, 23], the Valued CSP-based algorithms in [38, 25], the
skew-symmetric branching algorithm for 2-SAT Deletion in [33] and most recently, the
branching algorithm for the edge version of Group Feedback Vertex Set [32]. We show
that for any prescribed labeling on the vertices of G, it is possible to select (in linear time) a
constant-size set of vertices of G such that after guessing the intersection of this set with a
hypothetical solution, if we augment the labeling by branching over all permitted labelings
of the remaining vertices in this set then we reduce a pre-determined measure of the input
which depends only on the parameter. By repeatedly doing this, we obtain a branching
algorithm for this problem where each step requires linear time. The main technical content
of the paper is in proving that
(a) there exists a constant-size vertex set and an appropriate measure for the instance such

that the measure ‘improves’ in each step of the branching and
(b) such a vertex set can be computed in linear time.

Related work on improving dependence on input size in FPT algorithms. Our algorithm
for Node Unique Label Cover belongs to a large body of work where the main goal
is to design linear time algorithms for NP-hard problems for a fixed value of k. That is,
to design an algorithm with running time f(k) · O(|I|), where |I| denotes the size of the
input instance. This area of research predates even parameterized complexity. The genesis
of parameterized complexity is in the theory of graph minors, developed by Robertson and
Seymour [35, 36, 37]. Some of the important algorithmic consequences of this theory include
O(n3) algorithms for Disjoint Paths and F-Deletion for every fixed values of k. These
results led to a whole new area of designing algorithms for NP-hard problems with as small
dependence on the input size as possible; resulting in algorithms with improved dependence
on the input size for Treewidth [1, 2], FPT approximation for Treewidth [3, 34], Planar
F-Deletion [1, 2, 8, 10, 9], and Crossing Number [11, 12, 19], to name a few.

The advent of parameterized complexity started to shift the focus away from the running
time dependence on input size to the dependence on the parameter. That is, the goal became
designing parameterized algorithms with running time upper bounded by f(k)nO(1), where
the function f grows as slowly as possible. Over the last two decades researchers have tried
to optimize one of these objectives, but rarely both at the same time. More recently, efforts
have been made towards obtaining linear (or polynomial) time parameterized algorithms that
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compromise as little as possible on the dependence of the running time on the parameter k.
The gold standard for these results are algorithms with linear dependence on input size as well
as provably optimal (under ETH) dependence on the parameter. New results in this direction
include parameterized algorithms for problems such as Odd Cycle Transversal [24, 33],
Subgraph Isomorphism [7], Planarization [26, 15], Subset Feedback Vertex Set [30]
as well as a single-exponential and linear time parameterized constant factor approximation
algorithm for Treewidth [3]. Other recent results include parameterized algorithms with
improved dependence on input size for a host of problems [13, 16, 17, 18, 20, 21].

2 Preliminaries

We fix a label set Σ and assume that all instances of Node Unique Label Cover we deal
with are over this label set. When we refer to a set X being a solution for a given instance
of Node Unique Label Cover, we implicitly assume that X is a set of minimum size. We
denote the set of functions {φe,u}e∈E(G),u∈e simply as φ (without any subscript).

Before we proceed to describe our algorithm for Node Unique Label Cover, we make
a few remarks regarding the representation of the input. We assume that the input graph is
given in the form of an adjacency list and for every edge e = (u, v) the permutations φe,v
and φe,u are included in the two nodes of the adjacency list corresponding to the edge e.
This is achieved by representing the permutations as |Σ|-length arrays over the elements in
[|Σ|]. It is straightforward to check that given the input to Label Cover in this form, the
decision version of the problem can be solved in time O(|Σ|O(1)(m+ n)). We assume that
the input to Node Unique Label Cover is also given in the same manner.

3 Setting up the tools

3.1 Defining the auxiliary graph
I Definition 3.1. Let (G, k, φ, τ) be an instance of Node Unique Label Cover and let
Ψ : V (G)→ Σ. We say that Ψ is a feasible labeling for this instance if for all (u, v) ∈ E(G),
(Ψ(u),Ψ(v)) ∈ φuv,u. For τ : V (G)→ 2Σ, we say that Ψ is consistent with τ if for every
v ∈ V (G), Ψ(v) ∈ τ(v).

For an instance I = (G, k, φ, τ) of Node Unique Label Cover, we define an associated
auxiliary graph HI as follows. The vertex set of HI is V (G)×Σ. For notational convenience,
we denote the vertex (v, i) by vi. The vertex vi is meant to represent the (eventual) labeling
of v by the label i. The edge set of HI is defined as follows. For every edge e = (u, v) and
for every i ∈ Σ, we have an edge (ui, vφe,u(i)). That is, we add an edge between ui and uj
where j is the image of i under the permutation φe,u.

We now prove certain structural lemmas regarding this auxiliary graph which will be
used in the design as well as analysis of our algorithm. For ease of description, we will treat
instances of Label Cover as instances of Node Unique Label Cover. To be precise, we
represent an instance (G,φ) of Label Cover as the trivially equivalent instance (G, 0, φ, τ0)
of Node Unique Label Cover where, τ0(v) = Σ for every v ∈ V (G). The first observation
follows from the definition of HI and the fact that since G is a simple graph, for every edge
e ∈ E(G), the set of edges in HI that correspond to this edge form a matching.

I Observation 3.2. Let I = (G, 0, φ, τ) be an instance of Node Unique Label Cover.
Then, for every v ∈ V (G), for every distinct i, j ∈ Σ, vi and vj have no common neighbors
in HI .
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I Observation 3.3. Let I = (G, 0, φ, τ) be a Yes instance of Node Unique Label Cover
and let Ψ be a feasible labeling for this instance. Let v ∈ V (G) and i = Ψ(v). Then, for
any vertex u ∈ V (G) and j ∈ Σ, if uj is in the same connected component as vi in HI then
Ψ(u) = j.

The above observation describes the ‘dependency’ between pairs of vertices which are in
the same connected component of G. Moving forward, we will characterize the dependencies
between vertices when subjected to additional constraints.

I Definition 3.4. Let I = (G, k, φ, τ) be an instance of Node Unique Label Cover. For
v ∈ V (G), we use [v] to denote the set {v1, . . . , v|Σ|}. For a subset S ⊆ V (G), we use [S]
to denote the set

⋃
v∈S [v]. Similarly, for e = (u, v) ∈ E(G), we use [e] to denote the set

{(ui, vj)}i∈Σ,j=φe,u(i) of edges and for a subset X ⊆ E(G), we use [X] to denote the set⋃
e∈X [e]. For the sake of convenience, we also reuse the same notation in the following way.

For v ∈ V (G) and α ∈ Σ, we also use [vα] to denote the set {v1, . . . , v|Σ|}. This definition
extends in a natural way to sets of vertices and edges of the auxiliary graph HI . Finally, for
a set S ⊆ V (HI) ∪ E(HI), we denote by S−1 the set {s|s ∈ V (G) ∪ E(G) : [s] ∩ S 6= ∅}.

I Definition 3.5. Let I = (G, k, φ, τ) be an instance of Node Unique Label Cover.
We say that a set Z ⊆ V (HI) ∪ E(HI) is regular if |Z ∩ [v]| ≤ 1 for any v ∈ V (G) and
|Z ∩ [e]| ≤ 1 for any e ∈ V (G) and irregular otherwise. That is, regular sets contain at
most 1 copy of any vertex and edge of G.

Now that we have defined the notion of regularity of sets, we prove the following lemma
which shows that the auxiliary graph displays a certain symmetry with respect to regular
paths. This will allow us to transfer arguments which involve a regular path between vertices
vi and uj to one between vertices vi1 and uj1 where i 6= i1 and j 6= j1.

I Lemma 3.6. Let I = (G, k, φ, τ) be an instance of Node Unique Label Cover. Let P
be a regular path in HI from vi to uj. Let V (P ) denote the set of vertices of G in P and
let U denote the set [V (P )]. Then, there are vertex disjoint paths P1, . . . , P|Σ| in HI and a
partition of U into sets U1, . . . , U|Σ| such that for each r ∈ [|Σ|], V (Pr) = Ur and Pr is a
path from vi1 to ui2 for some i1, i2 ∈ Σ.

In the next lemma, we describe additional structural properties of the auxiliary graph. In
particular, we establish the relation between various copies of the same vertex set. Intuitively,
the following lemma says that for every connected and regular set of vertices Z, simply
observing the set N [Z] can allow one to make certain useful assertions about the set of
vertices in the neighborhood of the set Z ′ = [Z] \ Z. Note that for a graph H and set
Z ⊆ V (H), we use NH [Z] and NH(Z) to denote the closed and open neighborhoods of Z in
H respectively. If H is clear from the context, then we drop the subscript.

I Lemma 3.7. Let Z ⊆ V (HI) be a connected regular set of vertices and let Y = N(Z).
Further, suppose that N [Z] is regular. Let Z ′ = [Z] \ Z and Y ′ = [Y ] \ Y . Then, Y ′ ⊆
N(Z ′) ⊆ [Y ]. Furthermore, for every connected component C in HI [Z ′], N(C) ∩ [v] 6= ∅ for
every v ∈ V (G) for which there is a j ∈ Σ such that vj ∈ Y .

Using the observations and structural lemmas proved so far, we will now give a forbidden-
structure characterization of Yes instances of Node Unique Label Cover.

I Lemma 3.8. Let I = (G, 0, φ, τ) be a Yes instance of Node Unique Label Cover
where G is connected. Let v ∈ V (G) and i ∈ Σ. Then, there is a feasible labeling Ψ such
that Ψ(v) = i if and only if there is no j ∈ Σ such that vi and vj are in the same connected
component of HI .
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So far, we have studied the structure of Yes instances of this problem when the budget
k = 0. The next lemma is a direct consequence of Lemma 3.8 and allows us to characterize
Yes instances of the problem for values of k greater than 0.

I Lemma 3.9. Let I = (G, k, φ, τ) be an instance of Node Unique Label Cover. Then,
I is a Yes instance if and only if there is a set S ⊆ V (G) of at most k vertices such that for
every v ∈ V (G) \ S, there is an iv ∈ Σ such that [S] intersects all paths from viv to vj for
every Σ 3 j 6= iv in the graph HI . Moreover if there is a feasible labeling for G−S consistent
with τ that labels v with the label i ∈ τ(v) then for every u ∈ V (G) and j ∈ Σ \ τ(u), [S]
intersects all vi-uj paths.

Using the above lemma, we will interpret the Node Unique Label Cover problem
as a parameterized cut-problem and use separator machinery to design a linear-time FPT
algorithm for this problem.

3.2 Defining the associated cut-problem
We begin by recalling standard definitions of separators in undirected graphs.

I Definition 3.10. Let G be a graph and X and Y be disjoint vertex sets. A set S disjoint
from X ∪ Y is said to be an X-Y separator if there is no X-Y path in the graph G − S.
We denote the vertices in the components of G− S which intersect X by R(X,S) and we
denote by R[X,S] the set R(X,S) ∪ S. We say that an X-Y separator S1 covers an X-Y
separator S2 if R(X,S1) ⊇ R(X,S2).

I Definition 3.11. Let I be an instance of Node Unique Label Cover and let X and Y
be disjoint vertex sets of HI . We say that a minimal X-Y separator S is good if the set
R[X,S] is regular and bad otherwise.

Note that if S is a minimal X-Y separator then N(R(X,S)) = S. We are now ready to
prove the Persistence Lemma which plays a major role in the design of the algorithm. In
essence this lemma says that if we are guaranteed the existence of a solution whose deletion
leaves a graph with a feasible labeling Ψ and if we are given a vertex v excluded from the
deletion set which has a single label α in its allowed label set, then we can define a set T
such that the solution under consideration must separate vα from T . Furthermore, if we find
a good minimum vα-T separator S, then we can correctly fix the labels of all vertices which
have exactly one copy in R(vα, S). It will be shown later that once we fix the labels of these
vertices, the subsequent exhaustive branching steps will decrease a pre-determined measure
of the input instance.

I Lemma 3.12 (Persistence Lemma). Let I = (G, k, φ, τ) be a Yes instance of Node Unique
Label Cover. Let X ⊆ V (G) be a minimal set of size at most k such that G−X has a
feasible labeling and let Ψ be a feasible labeling for G−X consistent with τ . Let v be a vertex
not in X with |τ(v)| = 1 and let α ∈ Σ be such that α = Ψ(v) and τ(v) = {α}. Let T denote
the set

⋃
u∈V (G)

⋃
γ∈Σ\τ(u){uγ}.

[X] is a vα-T separator in HI .
Let S be a good vα-T minimum separator in HI and let Z = R(vα, S). Then, there is a
solution for the given instance disjoint from Z−1.

Proof. The first statement follows from Lemma 3.9. We now prove the second statement.
We begin by observing that T contains the set [v] \ {vα}. This is because τ(v) is a singleton
and only contains the label α. As a result, we know that the set [X] must intersect all vα-vβ
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paths for α 6= β. Let X1 denote the set X ∩ Z−1. If X1 is empty then we are already done.
Therefore, X1 6= ∅. Let S′ denote the subset of S \ [X] which is not reachable from vα in the
graph HI − [X] via paths whose internal vertices lie in Z. We now have 2 cases depending
on S′ being empty or non-empty. We will argue that the first case cannot occur since it
contradicts the minimality of X. In the second case we use very similar arguments but show
that we can modify X to get an alternate solution X ′ which is disjoint from the set Z.

Case 1: S′ is empty. That is, every vertex in S \ [X] is reachable from vα in HI − [X] via
paths whose internal vertices lie in Z. Let u ∈ X1 and let b ∈ Σ such that ub ∈ Z. Since Z
is regular, Z ∩ [u] must in fact be equal to {ub}. We now claim that X ′ = X \ {u} is also a
set such that G−X ′ has a feasible labeling, contradicting the minimality of X.

Suppose that this is not the case. That is, G − X ′ does not have a feasible labeling.
Since every connected component of G−X ′ which does not contain u is also a connected
component of G−X, all such components do have a feasible labeling. Indeed any feasible
labeling of G −X restricted to the vertices in these components is a feasible labeling for
these components. Therefore, there is a single component in G−X ′ which does not have a
feasible labeling – the component containing u.

By Lemma 3.8, if there is no b′ ∈ Σ \ {b} such that the connected component of HI − [X ′]
containing ub also contains ub′ , then there is a feasible labeling of the component of G−X ′
which contains u, a contradiction. Therefore, there is a b′ ∈ Σ \ {b} such that there is a
ub-ub′ path in HI − [X ′]. If this path contains vertices of [u] other than ub and ub′ , then we
pick the vertex of [u] \ {ub} which is closest to ub on this path and call it ub′ . Therefore,
the path P from ub to ub′ is internally disjoint from [u]. We now have the following claim
regarding P .

I Claim 3.13. The path P is internally regular.

We now return to the proof of the first case. Since ub ∈ Z and ub′ /∈ Z (as N [Z] is
regular), P must intersect N(Z) which is the same as S, in S \ [X]. Furthermore, P must
intersect N(C) where C is the connected component of Z ′ = [Z]\Z containing the vertex ub′ .
We now have the following 2 subcases based on the intersection of P with the(not necessarily
non-empty) set S ∩ N(C). In both subcases we will demonstrate the presence of a vα-vβ
path in HI − [X] for some β ∈ Σ \ {α}.

Case 1.1: P contains a vertex in S∩N(C). Let w` be a vertex in S∩N(C) which appears
in P . We let P1 denote the subpath of P from ub to w` and P2 denote the subpath of P
from w` to ub′ . Furthermore, since P is internally regular, P1 and P2 are regular. We apply
Lemma 3.6 to the regular path P2 to get a path P ′2 with ub as one endpoint and wh as
the other endpoint, where wh 6= w`. Now, since W` ∈ N [Z] and N [Z] is regular by our
assumption, it must be the case that wh /∈ Z. Therefore the path P ′2 must intersect S at
a vertex other than w`. Let xr be such a vertex, where x ∈ V (G) and r ∈ Σ. However, in
the case we are in, we know that xr (which is contained in S \ [X]) is reachable from vα in
HI − [X] by a path Q whose internal vertices lie in Z. We let the subpath of P ′2 from xr to
wh be denoted by J . Furthermore, the case we are in guarantees that w` is reachable from
vα in HI − [X] via a path L whose internal vertices lie in Z. Since L lies completely in N [Z],
it is regular and we may apply Lemma 3.6 on this path to obtain a path L′ with wh s one
endpoint and vβ as the other endpoint for some β ∈ Σ. Since we have already argued that
wh 6= w`, it follows that β 6= α. Therefore, we get a concatenated walk Q+ J +L′ which is a
walk that is present in the graph HI − [X] and contains vα and vβ , contradicting the premise
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of the lemma that there is a feasible labeling for G−X setting v to α. This completes the
argument for this subcase.

Case 1.2: P does not contain a vertex in S ∩N(C). Let xr be the last vertex of S which
is encountered when traversing P from ub to ub′ and let w` be the last vertex of N(C)
encountered in the same traversal. Observe that since the previous subcase does not hold, it
must be the case that xr occurs before w` in this traversal. We let J denote the subpath of
P between xr and w`. Now, Lemma 3.7 implies that there is a h ∈ Σ \ {`} such that wh ∈ S.
This is because N(C) ⊆ [S]. Now, the case we are in guarantees the presence of paths L and
Q from vα to wh and xr respectively such that L and Q both lie strictly inside N [Z] and
hence are regular. Now, we apply Lemma 3.6 on the regular path J to get a path J ′ with
wh as one endpoint and xr1 as the other for some r1 ∈ Σ. Since we have already argued that
wh 6= w`, it must be the case that r1 6= r. Now, we apply Lemma 3.6 on the regular path Q
to get a path Q′ with xr1 as one endpoint and vβ as the other for some β ∈ Σ. Since we have
shown that r1 6= r, we infer that β 6= α. Now, the concatenated walk L+ J ′ +Q′ implies the
presence of a vα-vβ path in HI − [X], a contradiction to the premise of the lemma. This
completes the argument for this subcase.

Thus we have concluded that G−X ′ has a feasible labeling, contradicting the minimality
of X. This completes the argument for the first case.

Case 2: S′ is non-empty. Let Q be a set of |S|-many vα-S paths contained entirely in N [Z]
which are vertex disjoint except for the vertex vα. Since S is a minimum vα-T separator,
such a set of paths exists. Recall that X1 denotes the set X ∩Z−1. We let X̂1 denote the set
[X] ∩ Z. That is, those copies of X1 present in Z. Due to the presence of the set of paths
Q and the fact that v is disjoint from X, it must be the case that X̂1 contains at least one
vertex in each path in Q that connects v and S′. Furthermore, since S is a good separator,
we conclude that |X1| = |(X̂1)−1| ≥ |(S′)−1|. We now claim that X ′ = (X \X1) ∪ (S′)−1 is
also a solution for the given instance. That is, |X ′| ≤ |X| and G−X ′ has a feasible labeling.
By definition, |X ′| ≤ |X| holds. Therefore, it remains to prove that G−X ′ has a feasible
labeling.

Again, it must be the case that any connected component of G−X ′ which does not have
a feasible labeling must intersect the set X1. Any other component of G−X ′ is contained
in a component of G−X and already has a feasible labeling by the premise of the lemma.

By Lemma 3.8, there must be a vertex u1 ∈ X1 and distinct labels b, b′ ∈ Σ such that
u1
b ∈ Z and there is a u1

b − u1
b′ path P in HI − [X ′]. We now consider the intersection of P

with the set [X1] and let pγ1 and qγ2 be vertices on P such that pγ1 , qγ2 ∈ [Z], the subpath
of P from pγ1 to qγ2 is internally disjoint from [X1] and pγ1 ∈ Z and qγ2 /∈ Z. We first argue
that such a pair of vertices exist.

We begin by setting pγ1 = u1
b and qγ2 = u1

b′ . If the path P is already internally disjoint
from [X1] then we are done. Otherwise, let u2

c be the vertex of [X1] closest to pγ1 along the
subpath between pγ1 and qγ2 . Now, if u2

c is not in Z then we are done by setting qγ2 = u2
c .

Otherwise, we continue by setting pγ1 = u2
c . Since this process must terminate, we conclude

that the vertices pγ1 and qγ2 with the requisite properties must exist.
For ease of notation we will now refer to the path between pγ1 and qγ2 as P . Note that

by definition, P is internally disjoint from [X1]. We now have a claim identical to that in
the previous case.

I Claim 3.14. The path P is internally regular.
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We now complete the proof of this case. Since pγ1 ∈ Z and qγ2 ∈ [Z]\Z, P must intersect
N(Z) in (S \ [X]) \ S′. Furthermore, P must also intersect N(C) where C is the connected
component of HI [Z ′] containing qγ2 , where Z ′ = [Z] \Z. We again consider 2 subcases based
on the intersection of the path P with the (not necessarily non-empty) set N(C) ∩ S.

Case 2.1: P contains a vertex in S∩N(C). Let w` be a vertex in S∩N(C) which appears
in P . We let P1 denote the subpath of P from pγ1 to w` and P2 denote the subpath of P
from w` to qγ2 . Since P is internally regular, P1 and P2 are regular. Furthermore, since
qγ2 /∈ Z, there is a γ3 ∈ Σ \ {γ2} such that qγ3 ∈ Z. We now apply Lemma 3.6 on the regular
path P2 to get a path P ′2 with qγ3 as one endpoint and wh as the other, where h 6= ` since
γ2 6= γ3. Furthermore, since w` ∈ N [Z] and N [Z] is regular, it must be the case that wh /∈ Z.
Therefore the path P ′2 must intersect N(Z) at a vertex xr. Let J be the subpath of P ′2 from
xr to wh. Now, since xr ∈ (S \ [X]) \ S′, we know that there is a vα-xr path in HI − [X]
which lies entirely in N [Z]. Let Q be such a path. Similarly, we know that there is a vα-w`
path L in HI − [X] which also lies entirely in N [Z] and hence is regular. We now apply
Lemma 3.6 on L to get a path L′ with wh as one endpoint and vβ as the other endpoint for
some β ∈ Σ. Since we have already argued that wh 6= w`, we conclude that β 6= α. However,
the concatenated walk Q+ J +L′ is present in HI − [X], implying a vα-vβ path in HI − [X],
a contradiction to the premise of the lemma. We now address the second subcase under the
assumption that this subcase does not occur.

Case 2.2: P does not contain a vertex in S ∩N(C). Let xr be the last vertex of S which
is encountered when traversing P from pγ1 to qγ2 and let w` be the last vertex of N(C)
encountered in the same traversal. Since the previous subcase is assumed to not hold, xr
must occur before w` in this traversal. We let J denote the subpath of P between xr and
w`. Lemma 3.7 implies the existence of a label h ∈ Σ \ {`} such that wh ∈ S. This follows
from the fact that N(C) ⊆ [S]. Also, since w` occurs in P , wh is not contained in S′ or
[X]. The same holds for xr Therefore, the case we are in guarantees the presence of paths L
and Q from vα to wh and xr respectively, where L and Q are contained within the set N [Z]
and hence they must be regular and amenable to applications of Lemma 3.6. We begin by
applying Lemma 3.6 on the regular path J to get a path J ′ with wh as one endpoint and
xr1 as the other for some r1 ∈ Σ. However, since h 6= `, we conclude that r1 6= r. Therefore,
we now apply Lemma 3.6 on the path Q to obtain a path Q′ with xr1 as one endpoint with
the other endpoint being vβ for some β ∈ Σ. Again, since r1 6= r, we conclude that β 6= α.
Now, observe that the concatenated walk L+ J ′ +Q′ implies the presence of a vα-vβ path
in HI − [X], a contradiction to the premise of the lemma. This completes the argument for
this subcase as well and consequentially that for Case 2.

We have thus proved that Case 1 cannot occur at all and in Case 2, there is an exchange
argument which constructs an alternate solution X ′ which is disjoint from Z. This completes
the proof of the lemma. J

The main consequence of the above lemma is that at any point in the run of our algorithm
solving an instance I = (G, k, φ, τ), if there is a vertex v whose label is ‘fixed’, i.e. τ(v) = {α}
for some α ∈ Σ and there is a good vα-T separator S where T is defined as in the premise of
the above lemma, then we can correctly ‘fix’ the labelings of all vertices in the set (R(vα, S))−1.
That is, we can define a new function τ ′ as follows. For every u ∈ V (G) and γ ∈ Σ, we
set τ ′(u) = {γ} if uγ ∈ R(vα, S) and τ ′(u) = τ(u) otherwise. Lemma 3.12 implies that the
given graph has a deletion set of size at most k which leaves a graph with a feasible labeling
consistent with τ if and only if the graph has deletion set of size at most k which leaves a
graph with a feasible labeling consistent with τ ′.
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3.3 Computing good separators
I Lemma 3.15. Let I = (G, k, φ, τ) be an instance of Node Unique Label Cover, v
be a vertex in G and let α ∈ Σ. Let Tαv denote the set [v] \ {vα} and T ⊇ Tαv be a set not
containing vα. There is an algorithm that, given I, v, α, and T runs in time O(|Σ| ·k(m+n))
and either

correctly concludes that there is no vα-T separator of size at most |Σ| · k or
returns a pair of minimum vα-T separators S1 and S2 such that S2 covers S1, S1 is
good, S2 is bad and for any vertex u ∈ R(vα, S2) \R[vα, S1], the size of a minimal vα-T
separator containing u is at least |S1|+ 1 or
returns a good minimum vα-T separator S such that no other minimum vα-T separator
covers S or
correctly concludes that there is no good vα-T minimum separator.

I Lemma 3.16. Let I = (G, k, φ, τ) be an instance of Node Unique Label Cover, v be
a vertex in G, α ∈ Σ, T ⊇ [v] \ {vα} be a set not containing vα and let ` > 0 be the size of
a minimum vα-T separator in HI . Let S1 and S2 be a pair of minimum vα-T separators
such that S1 is good, S2 is bad, and for any vertex y ∈ R(vα, S2) \ R[vα, S1], the size of a
minimal vα-T separator containing y is at least `+ 1. Let u ∈ V (G) and γ1, γ2 ∈ Σ such that
uγ1 , uγ2 ∈ R[vα, S2]. Then,
1. R[vα, S2] contains a pair of paths P1 and P2 such that for each i ∈ {1, 2}, the path Pi is

a vα-uγi path and both paths are internally vertex disjoint from S2 and contain at most
one vertex of S1.

2. Given I, vα, S1 and S2, there is an algorithm that, in time O(|Σ| · k(m+ n)), computes
a pair of paths with the above properties.

3. For i ∈ {1, 2}, any minimum vα-T ∪ {uγi
} separator disjoint from V (Pi) ∩ (S1 ∪ S2) and

R(vα, S1) has size at least `+ 1, where ` is the size of a minimum vα-T separator.

We are now ready to prove Theorem 1.1 by describing our algorithm for Node Unique
Label Cover. Before doing so, we make the following important remark regarding the way
we use the algorithms described in this subsection. In the description of our main algorithm,
there will be points where we make a choice to not delete certain vertices. That is, we will
choose to exclude them from the solution being computed. At such points, we say that we
make these vertices undeletable.

All the above algorithms also work when given an undeletable set of vertices in the graph
and the minimum separators we are looking for are the minimum among those separators
disjoint from the undeletable set of vertices. Regarding the running time of these algorithms,
there will be a multiplicative factor of |Σ| · k which arises due to potentially blowing up the
size of the graph by a factor of |Σ| · k by making (|Σ| · k) + 1 copies of every undeletable
vertex.

4 The Linear time algorithm for Node Unique Label Cover

Before we describe our algorithm, we state certain assumptions we make regarding the input.
We assume that at any point, we are dealing with a connected graph G. Furthermore, we
assume that instances of Node Unique Label Cover are given in the form of a tuple –
(G, k, φ, τ, w∗, V∞) where the element w∗ denotes either a vertex from V (G) or it is undefined.
If w∗ denotes a vertex then, |τ(w∗)| = 1 and we will attempt to solve the problem on the
tuple (G, k, φ, τ, w∗, V∞) under the assumption that w∗ is not in the solution (which is
required to be disjoint from V∞). Furthermore the definition of the problem allows us to
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assume that if there is a feasible labeling for this instance (after deleting a solution) then
there is one consistent with τ . Since τ(w∗) is singleton, any feasible labeling consistent with
τ must set w∗ to the unique label in τ(w∗).

We first check if G already has a feasible labeling (not necessarily one consistent with τ).
If so, then we are done. If not and k = 0 then we return No. If any connected component of
G has a feasible labeling then we remove this component. Otherwise, we check if w∗ is defined.
If w∗ is undefined, then we pick an arbitrary deletable vertex v ∈ V (G). That is v /∈ V∞.
We then recursively solve the problem on the instances Iq0 , . . . , Iqr where {q1, . . . , qr} = τ(v)
and for each qi where i ≥ 1, the instance Iqi

is defined to be (G, k, φ, τv=qi
, w∗, V∞1 ) with

τv=qi defined as the function obtained from τ by restricting the image of v to the singleton
set {qi}, w∗ defined as w∗ = v and V∞1 defined as V∞1 = V∞ ∪ {v}. The instance Iq0 is
defined as (G− {v}, k − 1, φ′, τ ′, w∗, V∞) where φ′ and τ ′ are restrictions of φ and τ to the
graph G− {v}. This will be the only branching rule which has a branching factor depending
on the parameter (in this case the size of the label set Σ) and we call this rule, B0.

We now describe the steps executed by the algorithm in the case when w∗ is defined.
Suppose that w∗ = v, τ(v) = α. Recall that by our assumption regarding well-formed inputs,
if w∗ is defined then τ(w∗) must be a singleton set. We set T =

⋃
u∈V (G)

⋃
γ∈Σ\τ(u) uγ .

Intuitively, T is the set of all vertices uγ such that if there is a feasible labeling of G (after
deleting the solution) which sets v to α then it cannot be consistent with τ unless the solution
hits all paths in HI (where I is the given instance) between vα and uγ . We remark that
since T depends only on the input instance I, we use T (I) to denote the set T corresponding
to any input instance I. Once we set T as described we first check if there is a vα-T path
in HI . If not, then the algorithm deletes the component of G containing v and recurses by
setting w∗ to be undefined. The correctness of this operation is argued as follows. Observe
that T contains all vertices of [v] \ {vα} and excludes vα. Therefore, Lemma 3.8 implies that
the component of G containing v already has a feasible labeling and hence can be removed.

Otherwise if there is a vα-T path in HI , then we execute the algorithm of Lemma 3.15
with this definition of v, α and T and undeletable set [V∞]. Observe that T contains all
vertices of [v] \ {vα} but excludes vα. This is because τ(v) = {α}. The next steps of our
algorithm depend on the output of this subroutine. For each of the four possible outputs, we
describe an exhaustive branching.

Case 1: The subroutine returns that there is no vα-T separator of size at most |Σ| · k
which is disjoint from [V∞]. In this case, our algorithm returns No. The correctness of this
step follows from Lemma 3.12.

Case 2: The subroutine returns a good vα-T separator S which is smallest among all vα-T
separators disjoint from [V∞] such that no other vα-T separator disjoint from [V∞] and
having the same size as S, covers S. In this case, we do the following. For each vertex
uγ in the set R(vα, S) where u ∈ V (G) and γ ∈ Σ, we set τ(u) = {γ} and add u to V∞.
That is, we set V∞ = V∞ ∪ (R(vα, S))−1. Note that prior to this operation, γ ∈ τ(u) since
otherwise uγ would belong to T . We then pick an arbitrary vertex xδ ∈ S and recursively
solve the problem on 2 instances I1 and I2 defined as follows. The instance I1 is defined
to be (G − {x}, k − 1, φ′, τ ′, V∞) where φ′ and τ ′ are restrictions of φ and τ to G − {x}.
The instance I2 is defined to be (G, k, φ, τ ′, V∞1 ) where V∞1 = V∞ ∪ {x} and τ ′ is defined
to be the same as τ on all vertices but x and τ ′(x) = {δ}. We call this branching rule, B1.
The exhaustiveness of this branching step follows from the fact that once the vertices in
(R(vα, S)−1) are made undeletable, unless the vertex x is deleted, Observation 3.3 forces any
feasible labeling that labels v with α to label x with δ.
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Case 3: The subroutine correctly concludes that there is no good vα-T separator which is
also smallest among all vα-T separators disjoint from [V∞]. In this case, we compute S,
the minimum vα-T separator that is disjoint from V∞ and closest to vα. Since S is not
good, R[vα, S] contains a pair of vertices uγ1 and uγ2 for some u ∈ V (G) and γ1, γ2 ∈ Σ.
Furthermore, since S is a vα-T separator, it must be the case that uγ1 and uγ2 are not in T .
This implies that {γ1, γ2} ⊆ τ(u). We now recursively solve the problem on 3 instances I0,
I1, I2 defined as follows. The instance I0 is defined as (G− {u}, k− 1, φ′, τ ′, w∗, V∞), where
φ′ and τ ′ are defined as the restrictions of φ and τ to the graph G− {u}. The instance I1 is
defined as (G, k, φ, τ ′, w∗, V∞1 ) where V∞1 = V∞ ∪ {u} and τ ′ is defined to be be the same
as τ on all vertices but u and τ ′(u) = τ(u) \ {γ1}. Similarly, the instance I2 is defined as
(G, k, φ, τ ′, w∗, V∞1 ) where V∞1 = V∞ ∪ {u} and τ ′ is defined to be be the same as τ on all
vertices but u and τ ′(u) = τ(u) \ {γ2}. We call this branching rule B2.

The exhaustiveness of this branching follows from the fact that if u is not deleted (the
first branch) then any feasible labeling of G−X for a hypothetical solution X must label
u with at most one label out of γ1 and γ2. Therefore, if I is a Yes instance then for at
least one of the 2 instances I1 or I2, there is a feasible labeling of G−X consistent with the
corresponding τ ′.

Case 4: Finally, we address the case when the subroutine returns a pair of minimum (among
those disjoint from [V∞]) vα-T separators S1 and S2 such that S2 covers S1, S1 is good,
S2 is bad and there is no minimum (among those disjoint from V∞) vα-T separator which
covers S1 and is covered by S2. In this case, R[vα, S2] contains a pair of vertices uγ , uδ for
some vertex u ∈ V (G) and γ, δ ∈ Σ.

We execute the algorithm of Lemma 3.16 to compute in time O(|Σ| · k(m+ n)), a vα-uγ
path P1 and a vα- uδ path P2 such that both paths are internally vertex disjoint from S2
and contain at most one vertex of S1 each. Let x1, x2 ∈ V (G) and β1, β2 ∈ Σ be such that
x1
β1

and x2
β2

are the vertices of S1 in P1 and P2 respectively. Note that P1 or P2 may be
disjoint from S1. If Pi (i ∈ {1, 2}) is disjoint from S1 then we let xiβi

be undefined. We now
recurse on the following (at most) 5 instances I1, . . . , I5 defined as follows.

I1 = (G−x1, k−1, φ′, τ ′, w∗, V∞) where φ′ and τ ′ are restrictions of φ and τ to G−{x1}.
I2 = (G−x2, k−1, φ′, τ ′, w∗, V∞) where φ′ and τ ′ are restrictions of φ and τ to G−{x2}.
I3 = (G− u, k − 1, φ′, τ ′, w∗, V∞) where φ′ and τ ′ are restrictions of φ and τ to G− {u}.
I4 = (G, k, φ, τ ′, w∗, V∞1 ) where V∞1 = V∞ ∪ (R(vα, S1))−1 ∪ {x1} and τ ′ is the same as
τ on all vertices of G except u and τ ′(u) = τ(u) \ {γ}.
I5 = (G, k, φ, τ ′, w∗, V∞1 ) where V∞1 = V∞ ∪ (R(vα, S1))−1 ∪ {x2} and τ ′ is the same as
τ on all vertices of G except u and τ ′(u) = τ(u) \ {δ}.

This branching rule is called B3 and we now argue the exhaustiveness of the branching.
The first three branches cover the case when the solution intersects the set {x1, x2, u}.
Suppose that a hypothetical solution, say X, is disjoint from {x1, x2, u}. By Lemma 3.12,
we may assume that X is disjoint from R(vα, S1). Since any feasible labeling of G−X sets
u to at most one of {γ1, γ2}, branching into 2 cases by excluding γ1 from τ(u) in the first
case and excluding γ2 from τ(u) in the second case gives us an exhaustive branching. This
completes the description of the algorithm. The correctness follows from the exhaustiveness
of the branchings. We will now prove the running time bound.

Analysis of running time. It follows from the description of the algorithm and the bounds
already proved on the running time of each subroutine, that each step can be performed in
time O((Σ + k)O(1)(m+ n)). Therefore, we only focus on bounding the number of nodes in
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the search tree resulting from this branching algorithm. In order to analyse this number, we
introduce the following measure for the instance I = (G, k, φ, τ, w∗, V∞) corresponding to
any node of the search tree. We define µ(I) = (Σ + 1)k − λ(I) where λ(I) is λ(w∗, T (I)) if
w∗ is defined and 0 otherwise.

Note that λ(w∗, T (I)) denotes the size of the smallest w∗-T (I) separator in HI among
those disjoint from [V∞]. Furthermore, observe that µ(I) ≤ (|Σ|+ 1) · k for any instance
on which the algorithm can potentially branch. We now argue that this measure strictly
decreases in each branch of every branching rule and since the number of branches in any
branching rule is bounded by max {|Σ|+ 1, 5} (Rules B0 and B3), the time bound claimed
in the statement of Theorem 1.1 follows.
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Abstract
We consider space efficient hash tables that can grow and shrink dynamically and are always
highly space efficient, i.e., their space consumption is always close to the lower bound even while
growing and when taking into account storage that is only needed temporarily. None of the
traditionally used hash tables have this property. We show how known approaches like linear
probing and bucket cuckoo hashing can be adapted to this scenario by subdividing them into
many subtables or using virtual memory overcommitting. However, these rather straightfor-
ward solutions suffer from slow amortized insertion times due to frequent reallocation in small
increments.

Our main result is DySECT (Dynamic Space Efficient Cuckoo Table) which avoids these
problems. DySECT consists of many subtables which grow by doubling their size. The resulting
inhomogeneity in subtable sizes is equalized by the flexibility available in bucket cuckoo hashing
where each element can go to several buckets each of which containing several cells. Experiments
indicate that DySECT works well with load factors up to 98%. With up to 2.7 times better
performance than the next best solution.
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1 Introduction

Dictionares represented as hash tables are among the most frequently used data structures
and often play a critical role in achieving high performance. Having several compatible
implementations, which perform well under different conditions and can be interchanged
freely, allows programmers to easily adapt known solutions to new circumstances.

One aspect that has been subject to much investigation is space efficiency [3, 4, 7, 8, 17, 19].
Modern space efficient hash tables work well even when filled to 95% and more. To reach
filling degrees like this, the table has to be initialized with the correct final capacity, thereby,
requiring programmers to know tight bounds on the maximum number of inserted elements.
This is typically not realistic. For example, a frequent application of hash tables aggregates
information about data elements by their key. Whenever the exact number of unique
keys is not known a priori, we have to overestimate the initial capacity to guarantee good
performance. Dynamic space efficient data structures are necessary to guarantee both good
performance and low overhead independent of the circumstances.
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To visualize this, assume the following scenario. During a word count benchmark, we
know an upper bound nmax to the number of unique words. Therefore, we construct a hash
table with at least nmax cells. If an instance only contains 0.7 · nmax unique words, no static
hash table can fill ratios greater than 70%. Thus, dynamic space efficient hash tables are
required to achieve guaranteed near-optimal memory usage. In scenarios where the final
size is not known, the hash table has to grow closely with the actual number of elements.
This cannot be achieved efficiently with any of the current techniques used for hashing and
migration.

Many libraries – even ones that implement space efficient hash tables – offer some kind of
growing mechanism. However, all existing implementations either lose their space efficiency or
suffer from degraded performance once the table grows above its original capacity. Growing
is commonly implemented either by creating additional hash tables – decreasing performance
especially for lookups or by migrating all elements to a new table – losing the space efficiency
by multiplying the original size.

To avoid the memory overhead of full table migrations, during which both the new and
the old table coexist, we propose an in-place growing technique that can be adapted to most
existing hashing schemes. However, frequent migrations with small relative size changes
remain necessary to stay space efficient at all times.

To avoid both of these pitfalls we propose a variant of (multi-way) bucket cuckoo
hashing [7, 8]. A technique where each element can be stored in one of several associated
constant sized buckets. When all of them are full, we move an element into one of its
other buckets to make space. To solve the problem of efficient migration, we split the table
into multiple subtables, each of which can grow independently of all others. Because the
buckets associated with one element are spread over the different subtables, growing one
subtable alleviates pressure from all others by allowing moves from a dense subtable to the
newly-grown subtable.

Doubling the size of one subtable increases the overall size only by a small factor while
moving only a small number of elements. This makes the size changes easy to amortize. The
size and occupancy imbalance between subtables (introduced by one subtable growing) is
alleviated using displacement techniques common to cuckoo hashing. This allows our table
to work efficiently at fill rates exceeding 95%.

We begin our paper by presenting some previous work (Section 2). Then we go into
some notations (Section 3) that are necessary to describe our main contribution DySECT
(Section 4). In Section 5 we show our in-place migration techniques. Afterwards, we test all
Hashtables on multiple benchmarks (Section 6) and draw our conclusion (Section 7)

2 Related Work

The use of hash tables and other hashing based algorithms has a long history in computer
science. The classical methods and results are described in all major algorithm textbooks [14].

Over the last one and a half decades, the field has regained attention, both from theoretical
and the practical point of view. The initial innovation that sparked this attention was the
idea that storing an element in the less filled of two “random” chains leads to incredibly well
balanced loads. This concept is called the power of two choices [16].

It led to the development of cuckoo hashing [19]. Cuckoo hashing extends the power of
two choices by allowing to move elements within the table to create space for new elements
(see Section 3.2 for a more elaborated explanation). Cuckoo hashing revitalized research
into space efficient hash tables. Probabilistic bounds for the maximum fill degree [3, 4] and
expected displacement distances [9, 10] are often highly non-trivial.
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Cuckoo hashing can be naturally generalized into two directions in order to make it more
space efficient: allowing H choices [8] or extending cells in the table to buckets that can store
B elements. We will summarize this under the term bucket cuckoo hashing.

Further adaptations of cuckoo hashing include:multiple concurrent implementations either
powered by bucket locking, transactional memory [15], or fully lock-less [18]; a de-amortization
technique that provides provable worst case guarantees for insertions [1, 13]; and a variant
that minimizes page-loads in a paged memory scenario [6].

Some non-cuckoo space efficient hash tables continue to use linear probing variants. Robin
Hood hashing is a technique that was originally introduced in 1985 [2]. The idea behind Robin
Hood hashing is to move already stored elements during insertions in a way that minimizes
the longest possible search distance. Robin Hood hashing has regained some popularity in
recent years, mainly for its interesting theoretical properties and the possibility to reduce
the inherent variance of linear probing.

All these publications show that there is a clear interest in developing hash tables that
can be more and more densely filled. Dynamic hash tables on the other hand seem to be
considered a solved problem. One paper that takes on the problem of dynamic hash tables
was written by Dietzfelbinger at al. [5]. It predates cuckoo hashing, and much of the attention
for space efficient hashing. All memory bounds presented are given without tight constant
factors. The lack of implementations and theory about dense dynamic hash tables is where
we pick up and offer a fast hash table implementation that supports dynamic growing with
tight space bounds.

3 Preliminaries

A hash table is a data structure for storing key-value-pairs (〈key, data〉) that offers the
following functionality: insert – stores a given key-value pair or returns a reference to it,
if it is already contained; find – given a key returns a reference to said element if it was
stored, and ⊥ otherwise; and erase – removes a previously inserted element (if present).

Throughout this paper n denotes the number of elements and m the number of cells
(m > n) in a hash table. We define the load factor as δ = n/m. Tables can usually only
operate efficiently up to a certain maximum load factor. Above that, operations get slower
or have a possibility to fail. When implementing a hash table one has to decide between
storing elements directly in the hash table – Closed Hashing – or storing pointers to elements
– Open Hashing. This has an immediate impact on the amount of memory required (closed:
m · |element| and open: m · |pointer|+ n · |element|).

For large elements (i.e., much larger then the size of a pointer), one can use a non-space
efficient hash table with open hashing to reduce the relevant memory factor. Therefore, we
restrict ourselves to the common and more interesting case of elements whose size is close to
that of a pointer. For our experiments we use 128bit elements (64bit keys and 64bit values).
In this case, open hashing introduces a significant memory overhead (at least 1.5×). For this
reason, we only consider closed hash tables. Their memory efficiency is directly dependent
on the table’s load. To reach high fill degrees with closed hashing tables, we have to employ
open addressing techniques. This means that elements are not stored in predetermined cells,
but can be stored in one of several possible places (e.g. linear probing, or cuckoo hashing).

3.1 α–Space Efficient Hash Tables
Static. We call a hashing technique α-space efficient when it can work efficiently using at
most α · ncurr · size(element) +O(1) memory. We define working efficiently, for a table with

ESA 2017



58:4 Dynamic Space Efficient Hashing

load factor δ, as having average insertion times in O( 1
1−δ ). This is a natural estimation for

insertion times, since it is the expected number of fully random probes needed to hit an
empty cell.

In many closed hashing techniques (e.g. linear probing, cuckoo hashing) cells are the
same size as elements. Therefore, being α-space efficient is the same as operating with a
load factor of δ = α−1. Because of this, we will mostly talk about the load factor of a table
instead of its memory usage.

Dynamic. The definition of a space efficient hashing technique given above is specifically
targeted for statically sized hash tables. We call an implementation dynamically α-space
efficient if an instantiated table can grow arbitrarily large over its original capacity while
remaining smaller than α · nmax · size(element) +O(1) at all times.

One problem for many implementations of space efficient hash tables is the migration.
During a normal full table migration, both the original table and the new table are allocated.
This requires mnew +mold cells. Therefore, a normal full table migration is never more than
2-space efficient. The only option for performing a full table migration with less memory is
to increase the memory in-place (see Section 5). Similar to static α-space efficiency, we will
mostly talk about the minimum load factor δmin = 1

α instead of α.

3.2 Cuckoo Hashing
Cuckoo hashing [7, 8, 17, 19] is a technique to resolve hash conflicts in a hash table using open
addressing. Its main draw is that it guarantees constant lookup times even in densely filled
tables. The distinguishing technique of cuckoo hashing is that H hash functions (h1, ..., hH)
are used to compute H independent positions. Each element is stored in one of its positions.
Even if all positions are occupied one can often move elements to create space for the current
element. We call this process displacing elements.

Bucket cuckoo hashing is a variant where the cells of the hash table are grouped into
buckets of size B. Each element assigned to one bucket can be stored in any of the bucket’s
cells. Using buckets one can drastically increase the number of elements that can be displaced
to make room for a new one, thus decreasing the expected length of displacement paths.

Find and erase operations have a guaranteed constant running time. Independent from
the table’s density, there are H buckets – H ·B cells – we have to check to find an element.

During an insert the element is hashed to H buckets. We store the element in the bucket
with the most free space. When all buckets are full we have to move elements within the
table such that a free cell becomes available.

To visualize the problem of displacing elements, one can think of the directed graph
implicitly defined by the hash table. Each bucket corresponds to a node and each element
induces an edge between the bucket it is stored in and its H − 1 alternate buckets. To insert
an element into the hash table we have to find a path from one of its associated buckets to a
bucket that has free capacity. Then we move elements along this path to make room in the
initial bucket. The two common techniques to find such paths are random walks and breadth
first searches.

4 DySECT (Dynamic Space Efficient Cuckoo Table)

A commonly used growing technique is to double the size of a hash table by migrating all its
elements into a table with twice its capacity. This is of course not memory efficient. The
idea behind our dynamic hashing scheme is to double only parts of the overall data structure.
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Figure 1 Schematic Representation of a DySECT Table.

This increases the space in part of our data structure without changing the rest. We then
use cuckoo displacement techniques to make this additional memory reachable from other
parts of the hash table.

4.1 Overview
Our DySECT hash table consists of T subtables (shown in Figure 1) that in turn consist of
buckets, wich can store B elements each. Each element has H associated buckets – similar
to cuckoo hashing – which can be in the same or in different subtables. T , B, and H are
constants, which will not change during the lifetime of the table. Additionally, each table is
initialized with a minimum fill ratio δmin. The table will never exceed δ−1

min · n cells once it
begins to grow over its initial size.

To find a bucket associated with an element e, we compute e’s hash value using the
appropriate hash function hi(e). The hash is then used to compute the subtable and the
bucket within that subtable. To make this efficient we use powers of two for the number
of subtables (T = 2t), as well as for the number of buckets per subtable (subtable size
s = 2x ·B). Since the number of subtables is constant, we can use the first t bits from the
hashed key to find the appropriate subtable. From the remaining bits we compute the bucket
within that subtable using a bitmask (hi(e) & (2x − 1) = hi(e) mod 2x).

4.2 Growing
As soon as the (overall) table contains enough elements such that the memory constraint
can be kept during a subtable migration, we grow one subtable by migrating it into a table
twice its size. We migrate subtables in order from first to last. This ensures that no subtable
can be more than twice as large as any other.

When the data structure contains j large subtables (2s) then there are m = (T + j) · s
cells. When δ−1

min ·n > m+ 2s we can grow the first subtable while obeying the size constraint
(the newly allocated table will have 2s cells). Doubling the size of a subtable increases the
global number of cells from mold = (T + j) · s to mnew = mold + s = (T + j + 1) · s (grow
factor T+j+1

T+j ). Note that all subsequent growing operations migrate one of the smaller tables
until all tables have the same size. Therefore, each grow until then increases the overall
capacity by the same absolute amount (smaller relative to the current size).

The cost of growing a subtable is amortized by all insertions since the last subtable
migration. There are δmin · s = Ω(s) insertions between two migrations. One migration takes
Θ(s) time. Apart from being amortized, the migration is cache efficient since it accesses cells
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in a linear fashion. Even in the target table cells are accessed linearly. We assign elements to
buckets by using bits from their hash value. In the grown table we use exactly one more bit
than before (double the number of buckets). This ensures that all elements from one original
bucket are split between two buckets in the target table. Therefore no bucket can overflow
and no displacements are necessary.

In the implicit graph model of the cuckoo table (Section 3.2), growing a subtable is
equivalent to splitting each node that represents a bucket within that subtable. The resulting
graph becomes more sparse, since the edges (elements) are not doubled, making it easier to
insert subsequent elements.

4.3 Shrinking
If shrinking is necessary it can work similarly to growing. We replace a subtable with a
smaller one by migrating elements from one to the other. During this migration we join
elements from two buckets into one. Therefore it is possible for a bucket to overfill. We
reinsert these elements at the end of the migration. Obviously, this can only affect at most
half the migrated elements.

When automatically triggering the size reduction, one has to make sure that the migration
cost is amortized. Therefore, a grow operation cannot immediately follow a shrink operation.
When shrinking is enabled we propose to shrink one subtable when δ−1

min ·n < m− s′ elements
(s′ size of a large table, mnew = mold − s′/2). Alternatively, one could implement a shrink to
size operation that is explicitly called by the user.

4.4 Difficulties for the Analysis of DySECT
There are two factors specific to DySECT impacting its performance: inhomogeneous table
resolution and element imbalance.

Imbalance through Inhomogeneous Table Resolution. By growing subtables individually
we introduce a size imbalance between subtables. Large subtables contain more buckets but
the number of elements hashed to a large subtable is not generally higher than the number
of elements that are hashed to a small subtable. This makes it difficult to spread elements
evenly among buckets. Imbalanced bucket fill ratios can lead to longer insertion times.

Assume there are n elements in a hash table with T subtables, j of which have size 2s
the others have size s. If elements are spread equally among buckets then all small tables
have around n/(T + j) elements, and the bigger tables have 2n/(T + j) elements. For each
table there are about Hn/T elements that have an associated bucket within that table. This
shows that having more hash functions can lead to a better balance.

For two hash functions (H = 2) and only one grown table (j = 1) this means that
≈ 2n/(T + 1) elements should be stored in the first table to achieve a balanced bucket
distribution. Therefore, nearly all elements associated with a bucket in the first table
(≈ 2n/T ) have to be stored there. This is one reason why H = 2 does not work well in
practice.

Imbalance through Size Changes. In addition to the problem of inhomogeneous tables
there is an inherent balancing problem introduced by resizing subtables. It is clear that a
newly grown table is not filled as densely as other tables. Since we double the table size,
grown tables can only be filled to about 50%.
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Assume the global table is filled close to 100% when the first table grows. Now there
is capacity for s new elements but this capacity is only in the first table, elements that are
not hashed to the first table, automatically trigger displacements leading to slow insertions.
Notice that repeated insert and erase operations help to equalize this imbalance, because
elements are more likely inserted into the sparser areas, and more likely to be deleted from
denser areas.

4.5 Implementation Details
For our experiments (Section 6) we use three hash functions (H = 3) and a bucket size
of (B = 8). These values have consistently outperformed other options both in maximum
load factor and in insert performance. T is set to 256 subtables for all our tests. To find
displacement opportunities we use breadth first search. In our tests it performed better than
random walks, since it better uses the read cache lines from one bucket.

The hash table itself is implemented as a constant sized array of pointers to subtables.
We have to lookup the corresponding pointer whenever a subtable is accessed. This does not
impact performance much since all subtable pointers will be cached – at least if the hash
table is a performance bottleneck.

Reducing the Number of Computed Hash Functions. Evaluating hash functions is ex-
pensive, therefore, reducing the number of hash functions computed per operation can
increase the performance of the table. The hash function we use computes 64bit hash values
(i.e. xxHash1). We split the 64bit hash value into two 32bit values. All common bucket
hash table sizes can be addressed using 32 bits (up to 232 buckets 235 ≈ 34 billion elements
consuming 512GiB memory).

When H > 2 we can use double hashing [11, 12] to further reduce the number of computed
hash functions. Double hashing creates an arbitrary number of hash values using only two
original hash functions h′ and h′′. The additional values are linear combinations computed
from the original two values, hi(key) = h′(key) + i · h′′(key).

Combining both of these techniques, we can reduce the number of computed hash functions
to one 64bit hash function. This is especially important during large displacements where
each encountered element has to be rehashed to find its alternative buckets.

5 (Ab)Using Virtual Memory

In this section we show how one can use virtual memory and memory overcommitting, to
eliminate the indirections from a DySECT hash table. The same technique also allows us to
implement hash tables that can grow using an in-place full table migration. If we grow these
tables in small increments, they can grow while enforcing a strict size constraint.

To explain these techniques, we first have to explain how to use memory overcommitting
and virtual memory to create a piece of memory that can grow in-place. Note that this
technique violates best programming practices and is not fully portable to some systems.

The idea is the following: the operating system will – if configured to do so – allow
memory allocations larger than the machine’s main memory, with the anticipation that not
all allocated memory will actually be used. Only memory pages that are actually used will
be mapped from virtual to physical memory pages. Thus, for the purpose of space efficiency
the memory is not yet used. Initializing parts of this memory is similar to allocating and
initializing new memory.

1 http://xxhash.com
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5.1 Improving DySECT
Accessing a DySECT subtable usually takes one indirection. The pointer to the subtable has
to be read from an array of pointers before accessing the actual subtable. Instead of using
an array of pointers, we can implement the subtables as sections within one large allocation
(size u). We choose u larger than the actual main memory, to allow all possible table sizes.
This has the advantage that the offset for each table can be computed quickly (ti = u

T · i),
without looking it up from a table.

The added advantage is that we can grow subtables in-place. To increase the size of a
subtable, it is enough to initialize a consecutive section of the table (following the original
subtable). Once this is done, we have to redistribute the table’s elements. This allows us to
grow a subtable without the space overhead of reallocation. Therefore, we can grow earlier,
staying closer to the minimum load factor δmin. The in-place growing mechanism is easy in
this case, since the subtable size is doubled.

5.2 Implementing other size constrained tables
Similarly to the technique above, we can implement any hash table using a large allocation,
initializing only as much memory as the table initially needs. The used hash table size can
be increased in-place by initializing more memory. To use this additional memory for the
hash table, we have to perform an in-place migration.

To implement fast in-place migration, we need the correct addressing technique. There are
two natural ways to map a hash value h(e) to a cell in the table (size s). Most programmers
would use a slow modulo operation (h(e) mod s). This is the same as using the least
significant digits when addressing a table whose size is a power of two. A better way is to use
a scale factor (bh(e) · s

max(h)c). This is similar to using the most significant bits to address a
table whose size is a power of two. The second method has two important advantages, it
is faster to compute and it helps to make the migration cache efficient. When we use the
second method the elements in the hash table are close to being sorted by their hash value
(in the absence of collisions they would be sorted).

The main idea of all our in-place migration techniques is the following. If we use a scale
factor for our mapping – in the new table – most elements will be mapped to a position that
is larger than their position in the old table. Therefore, rehashing elements starting from the
back of the original table creates very few conflicts. Elements that are mapped to a position
earlier than their current position are buffered and reinserted at the end of the migration.
When using this technique, both the old and the new table, are accessed linearly in reverse
order (from back to front). Making the migration cache efficient and easy to implement.

For a table that was initialized with a min load factor δmin we trigger growing once the
table is loaded more than δmin+1

2 . We then increase the capacity m to δ−1
min · n. Repeated

migrations with small growing amounts are still inefficient, since each element has to be
moved.

This blueprint can be used, to implement in-place growing variants of most if not all
common hashing techniques. We used these same ideas to implement variants of linear
probing, robin hood hashing, and bucket cuckoo hashing. Although some variants have their
own optimized migration. Robin Hood hashing can be adapted such that the table is truly
sorted by hash value (without much overhead) making the migration faster than repeated
reinsertions. Bucket cuckoo hashing has a somewhat more complicated migration technique –
each element has multiple possible positions and buckets can overflow. Here we first try to
reinsert each element with the hash function (h1, ..., hH) that was previously used to store it.
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6 Experiments

There are many factors that impact hash table performance. To show that our ideas work in
practice we use both micro-benchmarks and practical experiments.

All reported numbers are averaged by running each experiment five times. The experiments
were executed on a server with two Intel Xeon E5-2670 CPUs (2.3GHz base frequency) and
128GB RAM (using gcc 6.2.0 and Ubuntu 14.04).2

To put the performance of our DySECT table into perspective, we implement and test
several other options for space efficient hashing using the method described in Section 5.2.
We use our own implementations, since no hash table found online supports our strict
space-efficiency constraint. With the technique described in Section 5.2, we implement and
test hash tables with linear probing, robin hood hashing, and bucket cuckoo hashing (similar
to DySECT we choose B = 8 and H = 3). For each table, we implemented an individually
tuned cache efficient in-place migration algorithm.

Alternative Implementation Without Virtual Overcommitting (dashed lines). All imple-
mentations described above work with the trick described in Section 5. The usefulness of
this technique is arguable, since abusing the concept of virtual memory in this way is bad
from a software design perspective. It violates best practices, and reduces the portability to
many systems. Therefore, we want to present some additional measurements that do not use
this technique. These measurements are presented using dashed lines.

The only table that can achieve dynamic α-space efficiency without virtual memory over-
committing is our DySECT hash table. It is notable that the variant without overcommitting
is never significantly worse than DySECT with overcommitting.

For each competitor table we implement a variant that uses subtables combined with
subtable migrations. Elements are first hashed to subtables and then hashed within that
subtable. They cannot move between subtables. Even when growing by small steps these
versions can violate their space efficiency. But since subtables are small (≈ n/T ), migrations
will usually not violate the size constraint significantly. There can be larger subtables, since
imbalances between subtables cannot be regulated.

6.1 Influence of Fill Ratio (Static Table Size)

The following test was performed by initializing a table with ≈ 25 000 000 cells (non-growing).
Then elements are inserted until there is a failing insertion. At different stages, we measure
the running time of new insertion (Figure 2), and find (Figure 3) operations (averaged
over 1000 operations). Finds are measured using either randomly selected elements from
within the table (successful), or by searching random elements from the whole key space
(unsuccessful). We omit testing multi table variants of the competitor tables. They are not
suitable for this test since forcing a static size limits the possibility to react to size imbalances
between subtables (in the absence of displacements).

As to be expected, the insertion performance of depends highly on the fill degree of the
table. Therefore, we show it normalized with 1

1−δ which is the expected number of fully
random probes to find a free cell and thus a natural estimate for the running time. We see
that – up to a certain point – the insertion time behaves proportional to 1

1−δ for all tables.

2 Experiments on a desktop machine yielded similar results.
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Figure 2 Insertions into a Static Table. Here we show the influence from the load factor, on the
performance of insertions. To make insertion time more readable, we normalize it with top · (1 − δ).
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Figure 3 Performance of Successful (left) and Unsuccessful (right) Finds. DySECT’s find
performance is independent from the load factor, and the operations success.

Close to the capacity limit of the table, the insertion time increases sharply. DySect has a
smaller capacity limit than cuckoo due inhomogeneous table resolution (see Section 4.4).

Figure 3 shows the performance of find operations. Linear probing performs relatively
well on successful find operations, up to a fill degree of over 95%. The reason for this is
that many elements were inserted into the table when the table was still relatively empty.
They have very short search distances, thus improving find performance. Successful find
performance can still be an issue in applications. An element that is inserted when the table
is already decently filled can have an extremely long search distance. This leads to a high
running time variance on find operations. Unsuccessful finds perform really badly, since all
cells until the next free cell have to be probed. Their performance is much more related
to the filling degree of the hash table. Robin Hood hashing performs somewhat similar to
linear probing. It worsens the successful find performance by moving previously inserted
elements from their original position, in order to achieve better unsuccessful find performance
on highly filled tables. Overall, Robin Hood hashing is objectively worse than both DySECT
and classic cuckoo hashing. Cuckoo hashing and its variants like DySECT have guaranteed
constant running times for all find operations – independent of their success and the table’s
filling degree.
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Figure 4 Insertions into a dynamic growing table enforcing a minimum load factor δmin.

6.2 Influence of Fill Ratio (Dynamic Table Size)
In this test 20 000 000 elements are inserted into an initially empty table. The table is
initialized expecting 50 000 elements, thus growing is necessary to fit all elements. The tables
are configured to guarantee a load factor of at least δmin at all times. Figure 4 shows the
performance in relation to the load factor. Insertion times are computed as average of all
20 000 000 insertions. They are normalized similar to Figure 2 (divided by 1

1−δmin
).

We see that DySECT performs by far the best even with load factors around 85%. Here
we achieve a speedup of 1.6 over the next best solution (299ns vs. linear probing 479ns). On
denser instances with 97.5% load, we can increases thes speedup to 2.7 (1580ns vs Cuckoo
with subtables 4210ns). With growing load, we see the insertion times of our competitors
degrade due to the combination of long insertion times, and frequent growing phases. There
are only few insertions between two growing phases. Making the amortization of each growing
phase challenging since each growing phase has to move all elements. Any growing technique
that uses a less cache efficient migration algorithm, would likely perform significantly worse.
DySECT however remains close to O( 1

1−δmin
) even for fill degrees up to 97.5%. This is

possible, because only very few elements are touched by each subtable migration (≈ n
T ).

We also measured the performance of find operations on the created tables, they are
similar to the performance on the static table in Section 6.1 (see Figure 3), therefore, we
omit displaying them for space reasons.

6.3 Word Count – a Practical use Case
Word count and other aggregation algorithms are some of the most common use cases
for hash tables. Data is aggregated according to its key. This is a common application,
in which static hash tables can never be space efficient, since the final size of the hash
table is usually unknown. Here we use the first block of the CommonCrawl dataset (http:
//commoncrawl.org/the-data/get-started) and compute a word count of the contained
words. The chosen block has 4.2GB and contains around 240 000 000 words, with around
20 000 000 unique words. For the test, we hash each word to a 64 bit key and insert it together
with a counter. Subsequent accesses to the same key increase this counter. Similar to the
growing benchmark, we start with an empty table initialized for 50 000 elements.

The performance results can be seen in Figure 5 (left). We do not use any normalization
since each word is repeated 12 times (on average). This means that most operations will
actually behave more like successful find operations instead of insertions. When using our
DySECT table, the running time seems to be nearly independent from the fill degree. We
experience little to no slowdown until around 97%. The tables using full table migration
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Figure 5 (left) Word Count Benchmark. Behaves like a mix of insert and find operations.
DySECT’s performance is nearly independent form the load factor. (right) Experimental Max Load
Bounds. Dependent on the number of cells (different B/H parametrizations).

however become very inefficient on high load degrees. For high load factors, the performance
closely ressambles that of the insertion benchmark (Figure 4). This indicates that inserts
can dominate performance even in find intensive workloads.

6.4 Experimental Maximum Load Bounds

After some investigation, we are confident that our approach can be analyzed using methods
similar to those used for statically sized tables. Until then we can offer some bounds we
found experimentally. We used T = 4096 subtables (smaller grow steps) and different values
of B and H. To fill the table as much as possible we configured the table, to only grow once
an insertion fails (16384 probing distance). Figure 5 (right) shows the load bound after each
subtable migration. It indicates that the maximum load degree depends on the number of
large subtables. This creates the periodic nature of the plot with maximums whenever the
table has a size close to a power of two. There the table reaches the performance of a classic
cuckoo hash table (displayed as dashed lines).

7 Conclusion

We have shown that dynamically growing hash tables can be implemented to always consume
space close to the lower bound. We find it surprising that even our simple solutions based
on linear probing seem to be new. DySECT is a sophisticated solution that exploits the
flexibility offered by bucket cuckoo hashing to significantly decrease the number of object
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migrations over more straightforward approaches. When very high space efficiency is desired,
it is up to 2.7 times better than simple solutions.

For future work, a theoretical analysis of DySECT looks interesting. After some discussion,
we expect that techniques previously used to analyze bucket cuckoo hashing will be applicable
to the new situations. But the calculations have to take into account all possible ratios of
small versus large subtables. Even for the static case and classical bucket cuckoo hashing,
it is a fascinating open question wether the observed proportionality of insertion time to
1/(1− δ) can be proven. Previous results on insertion time show much more conservative
bounds [8, 9, 10, 7]. On the practical side, DySECT looks interesting for concurrent hashing
[15, 18] since it grows only small parts of the table at a time.
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Abstract
We show that for a number of parameterized problems for which only 2O(k)nO(1) time algo-
rithms are known on general graphs, subexponential parameterized algorithms with running time
2O(k1− 1

1+δ log2 k)nO(1) are possible for graphs of polynomial growth with growth rate (degree) δ,
that is, if we assume that every ball of radius r contains only O(rδ) vertices. The algorithms
use the technique of low-treewidth pattern covering, introduced by Fomin et al. [18] for planar
graphs; here we show how this strategy can be made to work for graphs of polynomial growth.

Formally, we prove that, given a graph G of polynomial growth with growth rate δ and an
integer k, one can in randomized polynomial time find a subset A ⊆ V (G) such that on one hand
the treewidth of G[A] is O(k1− 1

1+δ log k), and on the other hand for every set X ⊆ V (G) of size
at most k, the probability that X ⊆ A is 2−O(k1− 1

1+δ log2 k). Together with standard dynamic
programming techniques on graphs of bounded treewidth, this statement gives subexponential
parameterized algorithms for a number of subgraph search problems, such as Long Path or
Steiner Tree, in graphs of polynomial growth.

We complement the algorithm with an almost tight lower bound for Long Path: unless the
Exponential Time Hypothesis fails, no parameterized algorithm with running time 2k

1− 1
δ
−ε
nO(1)

is possible for any ε > 0 and any integer δ ≥ 3.
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1 Introduction

In recent years, research on parameterized algorithms had a strong focus on understanding
the optimal form of dependence on the parameter k in the running time f(k)nO(1) of
parameterized algorithms. For many of the classic algorithmic problems on graphs, algorithms
with running time 2O(k)nO(1) exist, and we know that this form of running time is best
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possible, assuming the Exponential-Time Hypothesis (ETH) [8, 22, 26]. This means that
we have an essentially tight understanding of these problems when considering graphs in
their full generality, but it does not rule out the possibility of improved algorithms when
restricted to some class of graphs. Indeed, many of these problems become significantly easier
on certain important graph classes. The most well-studied form of this improvement is the
so-called “square root phenomenon” on planar graphs (and some if its generalizations): there
is a large number of parameterized problems that admit 2O(

√
k·polylogk)nO(1) time algorithms

on planar graphs [7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 23, 24, 29, 30, 31]. Many of
these positive results can be explained by the theory of bidimensionality [11] and explicity or
implicitly rely on the relation between treewidth and grid minors.

Very recently, a superset of the present authors showed a new technique to obtain subex-
ponential algorithms in planar graphs for problems related to the Subgraph Isomorphism
problem [18], such as the Long Path problem of finding a simple path of length k in the
input graph. The approach of [18] can be summarized as follows: a randomized polynomial-
time algorithm is showed that, given a planar graph G and an integer k, selects a random
induced subgraph of treewidth sublinear in k in such a manner that, for every connected
k-vertex subgraph H of G, the probability that H survives in the selected subgraph is
inversely-subexponential in k. Such a statement, dubbed low-treewidth pattern covering,
together with standard dynamic programming techniques on graphs of bounded treewidth,
gives subexponential algorithms for a much wider range of Subgraph Isomorphism-type
problems than bidimensionality; for example, while bidimensionality provides a subexponen-
tial algorithm for Long Path in undirected graphs, it seems that the new approach of [18]
is needed for directed graphs.

The proof of the low treewidth pattern covering theorem of [18] involves a number
of different partitioning techniques in planar graphs. In this work, we take one of these
techniques – called clustering procedure, based on the metric decomposition tool of Linial and
Saks [25] and the recursive decomposition used in the construction of Bartal’s hierarchically
well-separated trees (so-called HSTs) [3] – and observe that it is perfectly suited to tackle
the so-called graphs of polynomial growth.

To explain this concept formally, let us introduce some notation. All graphs in this
paper are unweighted, and the distance function distG(u, v) measures the minimum possible
number of edges on a path from u to v in G. For a graph G, integer r, and vertex v ∈ V (G)
by BG(v, r) we denote the set of vertices w ∈ V (G) that are within distance less than r from
v in G, BG(v, r) = {w ∈ V (G) : distG(v, w) < r}, while by ∂BG(v, r) we denote the set of
vertices within distance exactly r, that is, ∂BG(v, r) = {w ∈ V (G) : distG(v, w) = r}. We
omit the subscript if the graph is clear from the context.

I Definition 1.1 (polynomial growth, [4]). We say that a graph G (or a graph class G) has
polynomial growth of degree (growth rate) δ if there exists a universal constant C such that
for (every graph G ∈ G and) every radius r and every vertex v ∈ V (G) we have

|B(v, r)| ≤ C · rδ.

The algorithmic consequences (and some of its variants) of this definition have been studied
in the literature in various contexts (see, for example, [2, 21, 4, 1]). A standard example
of a graph of polynomial growth with degree δ is a δ-dimensional grid. Graph classes of
polynomial growth include graphs of bounded doubling dimension (with unit-weight edges),
a popular assumption restricting the growth of a metric space in approximation algorithms
or routing in networks (cf. the thesis [5] of Chan or [1] and references therein).

Our main result is the following low treewidth pattern covering statement.
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I Theorem 1.2. For every graph class G of polynomial growth with growth rate δ, there
exists a polynomial-time randomized algorithm that, given a graph G ∈ G and an integer k,
outputs a subset A ⊆ V (G) with the following properties:
1. the treedepth of G[A] is O(k1− 1

1+δ log k);
2. for every set X ⊆ V (G) of size at most k, the probability that X ⊆ A is 2−O(k1− 1

1+δ log2 k).

Note that Theorem 1.2 uses the notion of treedepth, a much more restrictive graph measure
than treewidth (cf. [28]), that in particular implies the same treewidth bound. Thus, together
with standard dynamic programming techniques on graphs of bounded treewidth, Theorem 1.2
gives the following.

I Corollary 1.3. There exist randomized parameterized algorithms with running time bound
2O(k1− 1

1+δ log2 k)nO(1) for Long Path and Steiner Tree parameterized by the size of the
solution, when restricted to a graph class of polynomial growth with growth rate δ.

In the corollary above we only listed the two most classic applications, refraining from
repeating the lengthy discussion on the applications of low treewidth pattern covering
statements that can be found in the introduction of Fomin et al. [18].

We complement the algorithmic statement of Theorem 1.2 with the following lower bound.

I Theorem 1.4. If there exists an integer δ ≥ 3, a real ε > 0, and an algorithm that decides
if a given subgraph of a δ-dimensional grid of side length n contains a Hamiltonian path in
time 2O(nδ−1−ε), then the ETH fails.

Since a subgraph of a δ-dimensional grid of side length n has polynomial growth with degree
at most δ and at most nδ vertices, Theorem 1.4 shows that, unless the ETH fails, one cannot
hope for a better term than k1− 1

δ in the low treewidth pattern covering statement as in
Theorem 1.2.

2 Upper bound: proof of Theorem 1.2

In this section we prove Theorem 1.2. Without loss of generality, we assume k ≥ 4.
Our main tool is a clustering procedure, or metric decomposition tool of [25], which can

be informally described as follows. As long as the analysed graph G is not empty, we carve
out a new cluster as follows. We pick any vertex v ∈ V (G) as a center of the new cluster,
and set its radius r := 1. Iteratively, with some chosen probablity p, we accept the current
radius, and with the remaining probability 1 − p we increase r by one and repeat. That
is, we choose r with geometric distribution with success probability p. Once a radius r is
accepted, we set BG(v, r) as a new cluster, and delete BG(v, r) ∪ ∂BG(v, r) from G. In this
manner, BG(v, r) is carved out as a separated cluster, at the cost of sacrificing ∂BG(v, r). A
typical usage would be as follows: If one chooses p of the order of k−1, then a simple analysis
shows that every cluster has radius O(k logn) w.h.p., while a fixed set X ⊆ V (G) of size k is
fully retained in the union of clusters with constant probability.

We apply the aforementioned clustering procedure in two steps. In the first one, we use
p ∼ k−1 and the goal is to chop the graph into components of radius O(k log k), which –
by the polynomial growth property – are of polynomial size. The polynomial size bound is
crucial for the second phase, when we consider every component independently, sparsifying it
further using the clustering procedure with much higher cutoff probability, namely p ∼ k−

1
1+δ .

These two steps are described in the subsequent two subsections.
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We remark here that, because we rely only on the clustering procedure, and not the other
arguments of [18], we do not need the assumption on the connectivity of the pattern G[X].
This assumption was essential for the planar case of [18].

2.1 Chopping the graph into parts of polynomial size
The goal of the first step is to delete a number of vertices from the graph so that on one
hand every connected component of G has radius O(k log k), and on the other hand the
probability of deleting a vertex from an unknown vertex set X ⊆ V (G) of size at most k is
small. The proof of the following lemma is of the same nature as the clustering step in [18,
Section 4.1 of the full version], with one subtlety: the obtained radii are of order k log k
instead of k logn. This improvement, crucial for the second step, heavily depends on the
polynomial growth property.

I Lemma 2.1. Let G be a graph class of polynomial growth with growth rate δ. There exists
a constant cr > 0 and a polynomial-time randomized algorithm that, given a graph G ∈ G
and positive integer k ≥ 4, outputs a subset A ⊆ V (G) such that
1. every connected component of G[A] is of radius at most crk log k;
2. for every set X ⊆ V (G) of size at most k, the probability that X ⊆ A is at least 17/256.

Proof. For a sufficiently large constant cr > 0 depending on the graph class G, we perform
the following iterative process. We start with G0 := G and A0 := ∅. In i-th iteration
(i = 1, 2, 3, . . .), we consider the graph Gi−1. If the graph Gi−1 is empty, we stop. Otherwise,
we pick an arbitrary vertex vi ∈ V (Gi−1) and pick a radius ri according to the geometric
distribution with success probability 1/k, capped at value R := crk log k (i.e., if the choice
of the radius is greater than R, we set ri := R). For further analysis, we would like to look
at the choice of the radius ri as the following iterative process: we start with ri = 1 and
iteratively accept the current radius with probability 1/k or increase it by one and repeat
with probability 1 − 1/k, stopping unconditionally at radius R. Given vi and ri, we set
Ai := Ai−1 ∪ BGi−1(vi, ri) and Gi := Gi−1 − (BGi−1(vi, ri) ∪ ∂BGi−1(vi, ri)). That is, we
remove from Gi all vertices within distance at most ri from vi, while retaining in Ai only
those that are within distance less than ri.

Clearly, as we remove a vertex from Gi at every step, the process stops after at most
|V (G)| steps. Let ι be the last index of the iteration. Consider the graph G′ := G[Aι]. Recall
that in the i-th step we put BGi−1(vi, ri) into Ai, but remove not only BGi−1(vi, ri) from
Gi−1 but also ∂BGi−1(vi, ri) = NGi−1(BGi−1(vi, ri)). Consequently, the vertex sets of the
connected components of G′ are exactly sets BGi−1(vi, ri) for 1 ≤ i ≤ ι. Since the radii ri
are capped at value R = crk log k, every connected component of G′ has radius at most R.

We now claim the following.

I Claim 2.2. For every X ⊆ V (G) of size at most k, the probability that X ⊆ V (G′) is at
least 17/256.

Proof. Fix X ⊆ V (G) of size at most k. Note that X 6⊆ V (G′) only if at some iteration i,
some vertex x ∈ X is exactly within distance ri from vi in the graph Gi−1. We now bound
the probability that this happens, split into two subcases: either ri = R or ri < R.

Case 1: hitting a vertex within distance ri = R. Let Y =
⋃
x∈X BG(x,R + 1). Note

that if x ∈ X is exactly within distance ri ≤ R from vi in the graph Gi−1, then necessarily
vi ∈ Y . On the other hand, by the polynomial growth property,

|Y | ≤ k · C · (R+ 1)δ = Ck(crk log k + 1)δ = O(kδ+1 logδ k).
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We consider ourselves lucky if whenever vi ∈ Y , we have ri < R, that is, the process
choosing ri does not hit the cap of R for every center in Y . Note that, for a fixed iteration i,
we have

Pr(ri = R) =
(

1− 1
k

)R−1
=
(

1− 1
k

)crk log k−1
≤ k−0.1·cr .

Thus, for sufficiently large constant cr (depending only on C and δ), we have that

Pr(ri = R) < (k · |Y |)−1
.

We infer that, for such a choice of cr, the probability that we are not lucky is at most 1/k.

Case 2: hitting a vertex within distance ri < R. It is convenient to think here of the
choice of the radius ri as an interative process that starts from ri = 1, accepts the current
radius with probability 1/k, or increases it by one and repeats with probability 1− 1/k. For
a fixed iteration i and a choice of vi, consider a potential radius ri < R when there is a vertex
x ∈ X within distance exactly ri from vi in Gi−1. If we do not accept this radius (which
happens with probability 1 − 1/k), the vertex x is included in BGi−1(vi, ri) and is surely
included in G′. Consequently, in the whole process we care about not accepting a given
radius only k times, at most once for every vertex x ∈ X. We infer that the probability that
for some iteration i there is a vertex x ∈ X within distance exactly ri from vi and ri < R is
at most 1− (1− 1/k)k.

Considering both cases, by union bound, the probability that X ⊆ V (G′) is at least

1−
(

1−
(

1− 1
k

)k
+ 1
k

)
=
(

1− 1
k

)k
− 1
k
≥ 17

256 .

The last estimate uses the assumption k ≥ 4. J

Claim 2.2 concludes the proof of Lemma 2.1. J

2.2 Handling a component of polynomial size
I Lemma 2.3. Let G be a graph class of polynomial growth with growth rate δ. For every
constant cr > 0 there exists a constant c > 0 and a polynomial-time randomized algorithm
that, given a positive integer k, and a connected graph G ∈ G of radius crk log k, outputs a
subset A ⊆ V (G) such that
1. the treedepth of G[A] is O(k1− 1

1+δ log k);
2. for every set X ⊆ V (G) of size at most k, the probability that X ⊆ A is at least

2−c·|X|·k
− 1

1+δ ·log2 k.

We emphasize here the linear dependency on |X| in the exponent of the probability bound.
This dependency, similarly as in the analysis of [18], allows us to easily analyse independent
runs of the algorithm on multiple connected components.

To prove Lemma 2.3, we again use the clustering procedure, but with a significantly higher
cutoff probability, namely of the order of k−

1
1+δ , as opposed to k−1 from the previous section.

This yields clusters of sublinear size, namely of size roughly k
δ

1+δ . However, this comes with
a cost: we can no longer claim that the solution X survives in the clustered graph with large
probability, but – on average – k

δ
1+δ vertices of X of size k will be deleted by the clustering

clustering procedure. To recover from that, we crucially depend on the fact that the graph
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has size polynomial in k: there is only a subexponential, namely
(poly(k)

k
δ

1+δ

)
= 2O(k1− 1

1+δ log k),
number of choices for the removed vertices of X, and we can afford to guess them.

Let us make a quick comparison with the techniques of [18]. The usage of the clustering
technique in Lemma 2.3 is significantly different than the one in [18, Section 4.1 of the full
version]: we choose a higher cutoff probability, which leads to smaller radii, at the cost of
allowing some vertices of the set X on the boundary (that need to be subsequently guessed).
The charging argument used here (Claim 2.5) is inspired by the argument of [18, Claim 28
in the full version]. However, the reason why we obtain sublinear treedepth (Claim 2.4) and
the consequent tradeoffs in the exponent are specific to our polynomial growth setting.

Let us now proceed with the formal arguments.

Proof of Lemma 2.3. The random process we employ is similar to the one of the previous
section, but more involved. Let c′r > 0 be a constant to be fixed later.

We start with G0 = G, A0 = ∅ and B0 = ∅. In the i-th iteration of the process, we
consider the graph Gi−1. If the graph Gi−1 is empty, we stop. Otherwise, we pick an
arbitrary vertex vi ∈ V (Gi−1) and pick a radius ri according to the geometric distribution
with success probability k−1/(1+δ) log k, capped at value R′ := c′rk

1/(1+δ) (i.e., as before, if
the choice of the radius is greater than R′, we set ri := R′). In other words, we start with
ri = 1 and iteratively accept the current radius with probability k−1/(1+δ) log k or increase it
by one and repeat with the remaining probability, stopping unconditionally at radius R′.

As before, we setAi := Ai−1∪BGi−1(vi, ri) andGi := Gi−1−(BGi−1(vi, ri)∪∂BGi−1(vi, ri)).
However, now, as the radii are smaller, we may want to retain some vertices of ∂BGi−1(vi, ri),
as they can be part of the vertex set X; for this, we use the sets Bi. With probability
1− 1/(k|V (G)|) we put Pi = ∅ and Bi = Bi−1. With the remaining probability, we proceed
as follows. Uniformly at random, we choose a number 1 ≤ `i ≤ k1−1/(1+δ) log k and a set Pi
of `i vertices of ∂BGi−1(vi, ri) (or all of them, if there are less than `i vertices in this set).
We put Bi := Bi−1 ∪ Pi.

Let i0 be the index of the last iteration. If |Bi0 | > k1−1/(1+δ) log k, then we output A = ∅.
Otherwise, we output A := Ai0 ∪Bi0 . Let us now verify that A has the desired properties.

I Claim 2.4. The treedepth of G[A] is O(kδ/(1+δ) log k).

Proof. The claim is trivial ifA = ∅, so assume otherwise; in particular, |Bi0 | ≤ k1−1/(1+δ) log k.
We use the following inductive definition of treedepth: the treedepth of an empty graph is 0,
while for any graph G on at least one vertex we have that

treedepth(G) =
{

1 + min{treedepth(G− v) : v ∈ V (G)} if G is connected
max{treedepth(C) : C connected component of G} otherwise.

Upon deleting from G[A] the at most k1−1/(1+δ) log k vertices of Bi0 , we are left with G[Ai0 ].
Similarly as in the previous section, every connected component of G[Ai0 ] is of radius at
most R′ = c′rk

1/(1+δ). Consequently, every connected component of G[Ai0 ] is of size at most
C · (c′r)δkδ/(1+δ). The claim follows. J

I Claim 2.5. For every set X ⊆ V (G) of size at most k, the probability that X ⊆ A is at
least 2−c|X|k−1/(1+δ) log2 k for some constant c > 0 depending only on cr, δ, and C.

Proof. Fix a vertex set X. The claim is trivial for X = ∅ so assume otherwise. In particular,
as |X| ≥ 1, then we can estimate the desired probability as

2−c|X|k
−1/(1+δ) log2 k ≤ 2−ck

−1/(1+δ) log2 k = 1− Ω
(

log2 k

k1/(1+δ)

)
. (1)
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Consider a fixed iteration i, and the moment when, knowing vi, we choose the radius ri.
Given Gi−1 and vi, we say that a radius r is bad if∣∣X ∩ ∂BGi−1(vi, r)

∣∣ > (k−1/(1+δ) log k
)
·
∣∣X ∩BGi−1(vi, r)

∣∣ . (2)

Let 1 ≤ r0 < r1 < r2 < . . . < rt be a sequence of bad radii. First, note thatX∩∂B(vi, r0) 6= ∅,
and thus |X∩B(vi, r1)| ≥ 1. Furthermore, as for every j ≥ 1 we have ∂B(vi, rj) ⊆ B(vi, rj+1),
we have

|X ∩B(vi, rj+1)| ≥
(

1 + k−1/(1+δ) log k
)
|X ∩B(vi, rj)|.

Consequently,

|X ∩B(vi, rj)| ≥
(

1 + k−1/(1+δ) log k
)j−1

.

Since |X| ≤ k, we infer that

t < 10k1/(1+δ). (3)

We are interested in the following event A: every chosen radius ri is not bad and is
smaller than R′ (i.e., we did not hit the cap of R′). Recall the iterative interpretation of
the choice of the radii ri: we start with ri = 1, accept the current radius with probability
k−1/(1+δ) log k, or increase ri by one and repeat with the remaining probability. Thus, we are
interested in the intersection of the following two events: we do not accept any bad radius,
but we accept some good radius before the cap R′.

Whenever we do not accept a bad radius r, a vertex of X ∩ ∂B(vi, r) is included in
B(vi, ri) ⊆ Ai. Consequently, in the whole algorithm we encounter at most |X| bad radii;
each is independently accepted with probability k−1/(1+δ) log k.

By (3), in a fixed iteration i there are at most 10k1/(1+δ) bad radii. Consequently, if we
count only acceptance of good radii, the probability that the radius ri reaches the bound R′
is at most(

1− k−1/(1+δ) log k
)(c′r−10)k1/(1+δ)

≤ k−0.1c′r .

Consequently, since |V (G)| ≤ C · (crk log k)δ, by choosing c′r large enough, we can ensure
that the probability that there exists a radius ri equal to R′ is at most k−1. Since the choices
of acceptance of different radii are independent, we infer that the probability of the event A
is at least(

1− k−1) · (1− k−1/(1+δ) log k
)|X|

≥ 2−c1|X|k−1/(1+δ) log k

for some positive constant c1. Here, we have used (1) to estimate the first factor.
Assume that the event A happens, and let us fix one choice of vi and ri. Note that these

choices determine the sets Ai and the graphs Gi; the only remaining random choices are
whether to include some vertices into the sets Bi.

For an iteration i, define Xi := X ∩ ∂BGi−1(vi, ri). We are now considering the following
event B: in every iteration i we have Pi = Xi. Note that if B happens, then X ⊆ A. Thus,
we need to estimate the probability of the event B.

If Xi = ∅, then we guess so with probability 1−1/(k|V (G)|). As there are at most |V (G)|
iterations, with probability at least 1− 1/k we will make correct decision in all iterations i
for which Xi = ∅.
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Consider now an iteration i for which Xi 6= ∅. Since the radius ri is good, we have∣∣X ∩ ∂BGi−1(vi, ri)
∣∣ ≤ k−1/(1+δ) log k

∣∣X ∩BGi−1(vi, ri)
∣∣ . (4)

In particular, |X ∩BGi−1(vi, ri)| ≥ k1/(1+δ)/ log k, and thus there are at most kδ/(1+δ) log k
such iterations. Furthermore,∣∣∣∣∣

i0⋃
i=1

Xi

∣∣∣∣∣ ≤ |X|k−1/(1+δ) log k.

In every such iteration i, we need to correctly guess that Xi is nonempty (1/(k|V (G)|) success
probability), correctly guess `i = |Xi| (at least 1/k success probability) and correctly guess
Pi = Xi (at least |V (G)|−|Xi| success probability). All these choices are independent. Since
|V (G)| is bounded polynomially in k, the probability of the event B is at least(

1− 1
k

)
·
∏

i:Xi 6=∅

1
k|V (G)| ·

1
k
· 1
|V (G)||Xi|

≥
(

1− 1
k

)
· (|V (G)|2 · k)−|X|·k

−1/(1+δ) log k

≥ 2−c2|X|·k−1/(1+δ) log2 k

for some constant c2 depending on cr, δ, and C. This finishes the proof of the claim. J

Lemma 2.3 follows directly from Claims 2.4 and 2.5. J

2.3 Summary
Let us now wrap up the proof of Theorem 1.2, using Lemmata 2.1 and 2.3. We first apply
the algorithm of Lemma 2.1 to the input graph G and integer k, obtaining a set A0 ⊆ V (G).
Then, we apply the algorithm of Lemma 2.3 independently to every connected component
C of G[A0], obtaining a set AC ⊆ C; recall that every such component is of radius at most
R = crk log k. As the output A, we return the union of the returned sets AC . Clearly, the
treedepth bound holds. If we denote XC := X ∩ C for a component C, we have that the
probability that X ⊆ A is at least

17
256 ·

∏
C

2−c|XC |k
−1/(1+δ) log2 k ≥ 17

256 · 2
−ck1−1/(1+δ) log2 k.

This finishes the proof of Theorem 1.2.

3 Lower bound: proof of Theorem 1.4

In this section we prove Theorem 1.4. The reduction is heavily inspired by the reduction
for δ-dimensional Euclidean TSP by Marx and Sidiropolous [27]. In particular, our starting
point is the same CSP pivot problem.

I Theorem 3.1 ([27]). For every fixed δ ≥ 2, there is a constant λδ such that for every
constant ε > 0 an existence of an algorithm solving in time 2O(nδ−1−ε) CSP instances with
binary constraints, domain size at most λδ, and Gaifman graph being a δ-dimensional grid
of side length n would refute ETH.

Let us recall that a binary CSP instance consists of a domain D, a set V of variables,
and a set E of constraints. Every constraint is a binary relation ψu,v ⊆ D ×D that binds
two variables u, v ∈ V . The goal is to find an assignment φ : V → D that satisfies every
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Figure 1 A 2-chain with two ways how a Hamiltonian path can traverse it, called henceforth
modes.

Figure 2 An endpoint of a 2-chain, allowing traversing the 2-chain in both modes.

constraint; a constraint ψu,v is satisfied if (φ(u), φ(v)) ∈ ψu,v. The Gaifman graph of a binary
CSP instance has vertex set V and an edge uv for every constraint ψu,v.

Similarly as in the case of [27], our goal is to take a given CSP instance as in Theorem 3.1
and turn it into a Hamiltonian path instance by local gadgets. That is, we are going to replace
every variable of the CSP instance with a constant-size gadget (i.e., with size depending
only on δ and λδ); the way the gadget is traversed by the Hamiltonian path indicates the
choice of the value of the variable. The neighboring gadgets are wired up to ensure that the
constraint binding them is satisfied.

More formally, let us fix an integer δ ≥ 3. The input of a reduction is a CSP instance as
in Theorem 3.1: of domain size at most λδ and whose Gaifman graph is a δ-dimensional grid
of size length n. The output is a subgraph of a δ-dimensional grid of side length cn for some
constant c depending only on δ and λδ that has a Hamiltonian path if and only if the input
CSP instance is satisfiable.

Let us fix a δ-dimensional graph of side length cn for some sufficiently large constant
c to be defined later (we will see that c = Θ(δλ2

δ) suffices). We partition this grid into nδ
subgrids of side length c, each corresponding to a variable of the input CSP instance in a
natural fashion.

3.1 2-chains
The base gadget of the construction is a 2-chain as presented on Figure 1. A direct check
shows that there are two ways how a 2-chain can be traversed by a Hamiltonian path, as
depicted on the figure.

Figure 2 shows a gadget present on both left and right endpoints of a 2-chain. As shown
on the figure, it allows choosing how the 2-chain is traversed.

We will refer to the two depicted Hamiltonian paths of a 2-chain as modes of the chain.
Given one of the horizontal edges of the 2-chain, a mode is consistent with this edge if the
corresponding Hamiltonian path traverses the edge in question, and inconsistent otherwise.

We will attach various gadgets to 2-chains via one of the horizontal edges. To maintain
the properties of the 2-chains, in particular the effectively two ways of traversing a 2-chain,
we need to space out the attached gadgets. More formally, we partition every 2-chain into
sufficiently long chunks (chunks of length 8 are more than sufficient), and allow gadgets to
attach only to one of the two middle horizontal edges on one side of the chain (see Figure 3),
with at most one gadget per chunk. A gadget is always attached to an edge e by adding two
new vertices u and v near the edge e, in the same 2-dimensional plane as the 2-chain itself,
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e

u v

e

u v

e

u v

e

u v

Figure 3 From top to bottom, left to right: a chunk on a 2-chain, with two attachment edges
marked red and blue; a standard attachment of a gadget; three ways how a 2-chain with attached
gadget can be traversed.

such that the endpoints of e, u, and v form a square. Properties of such an attachment can
be summarized in the following straightforward claim.

I Claim 3.2. Consider a chunk c on a 2-chain A, and a gadget attached to an edge e
in c. Then every Hamiltonian path traverses c in one of the following three ways (see
Figure 3):
1. as on Figure 1, inconsistently with e;
2. as on Figure 1, consistently with e;
3. as on Figure 1, consistently with e, but with the edge e replaced with an edge towards

vertex u and towards vertex v.

In particular, Claim 3.2 allows us to formally speak about a mode of a 2-chain, even if
multiple gadgets are attached to it.

3.2 Placing 2-chains
For every variable of the input CSP instance, we create λδ 2-chains of length L = O(dλδ) (to
be determined later). They are positioned parallelly in the following fashion (see Figure 4):
we choose an arbitrary 3-dimensional subspace of the δ-dimensional subgrid of sidelength
c devoted to a particular variable, and place 2-chains such that the i-th 2-chain occupies
vertices {0, 1, . . . , L} × {0, 1, 2} × {i}. The edges indicated as attachment points for gadgets
are on the one side of all chains.

All chains, for all variables, are wired up into a Hamiltonian path: for every variable,
we connect the constructed 2-chains into a path in a straightforward fashion, we take an
arbitrary Hamiltonian path of the original Gaifman graph of the input CSP instance (which
is a δ-dimensional grid, and thus trivially admits a Hamiltonian path), and connect endpoints
of the 2-chains in the same order using simple paths. This is straightforward to perform if
we space out the variable gadgets enough.
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Figure 4 Left: Placing parallel 2-chains for a single variable x. Right: A tube gadget attached to
the 2-chains, with intended Hamiltonian path.

Since all constructed 2-chains are isomorphic, we indicate one mode of a 2-chain as a
low mode, and the other one as high mode. Our goal is to introduce gadgets that (i) ensure
that for every variable, exactly one of the corresponding 2-chains is in high mode, indicating
the choice of the value for this variable; (ii) for every two variables that are bound by a
constraint, for every pair of values that is forbidden by the constraint, ensure that the two
variables in question do not attain the values in question at the same time, that is, the
corresponding two 2-chains are not both in high mode at the same time.

3.3 OR-checks
The construction of 2-chains allow us to implement a simple “OR” constraint on two 2-chains.
Consider two 2-chains A and B, and two horizontal edges eA and eB on A and B, respectively.
By attaching an OR-check to these edges we mean the following construction:
1. we create vertices uA and vA near eA as well as uB and vB near eB , as in the description

of gadget attachment;
2. we connect uA to uB by a path and vA to vB by a path.
If the 2-chains are spaced enough, it is straightforward to implement the above construction
such that the resulting graph is a subgraph of a d-dimensional grid.

Claim 3.2 allows us to observe the following.

I Claim 3.3. If A is traversed in a way consistent with eA, then one can modify the
Hamiltonian path traversing A so that it visits the OR gadget: replace eA with a path
traversing first a path from uA to uB, the edge uBvB, and then the path from vB to vA. A
symmetrical claim holds if B is traversed in a way consistent with eB.

In the other direction, there is no Hamiltonian path that traverses both A and B in a way
inconsistent with eA and eB, respectively.

We now observe that, by attaching OR-checks in a straightforward manner, we can ensure
that:
1. for every variable x, at most one 2-chain corresponding to x is in high mode (we wire up

every pair of 2-chains with an OR-check forbidding two high modes at the same time);
2. for every two variables x and y that are bound by a constraint ψ, for every pair of values

(αx, αy) that is forbidden by the constraint ψ, the αx-th 2-chain of x and the αy-th
2-chain of y are not in the high mode at the same time.
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We are left with ensuring that for every variable x, at least one of the corresponding 2-chains
is in the high mode. This is the aim of the next gadget.

3.4 Tube gadget
Fix a variable x. Without loss of generality, we can assume that the first chunk of every
2-chain for x has not been used by the OR-checks introduced previously. Let ei be the
attachment edge of the i-th 2-chain that is consistent with the high mode of the 2-chain;
note that the edges ei lie next to each other (see Figure 4).

We create a 2 × 2 × λδ grid, called henceforth a tube gadget, placed near the edges ei,
such that every edge ei can be attached to an edge of the grid in a standard way discussed
earlier. See Figure 4 for an illustration.

Since a 2× 2× λδ grid admits a Hamiltonian cycle that traverses every edge in one of the
first two dimensions, if the i-th chain is traversed in high mode for some i, we can replace ei
on the Hamiltonian path with a traversal along the aforementioned Hamiltonian cycle. This
observation, together with Claim 3.2, proves the following claim.

I Claim 3.4. If there exists an index i such that the i-th 2-chain is traversed in high mode,
then the Hamiltonian path of this 2-chain can be altered to visit every vertex of the 2× 2× λδ
grid.

On the other hand, any Hamiltonian path of the entire graph needs to traverse at least
one 2-chain in high mode, in order to visit the vertices of the 2× 2× λδ grid.

3.5 Summary
The tube gadgets ensure that, for every variable, at least one corresponding 2-chain is in
high mode. The first type of the attached OR-checks ensure that at most one such 2-chain is
in high mode. Thus, effectively the gadgets introduced for a single variable x can be in one
of λδ by choosing the 2-chain that is in high mode, which corresponds to the choice of the
value for x in an assignment.

The second type of the attached OR-checks ensure that the values of the neighboring
variables satisfy the constraint that binds them, completing the proof of the correctness of
the reduction.

To conclude, let us observe that every 2-chain is attached to one tube gadget and O(δλδ)
OR-checks, and the whole gadget replacing a single variable takes part in O(δλ2

δ) OR-checks.
Thus taking L = O(δλ2

δ) suffices. By leaving space of size O(δλ2
δ) between consecutive

variable gadgets we can ensure more than enough space for all connections. This gives
c = O(δλ2

δ), that is, the constructed graph is a subgraph of a d-dimensional grid of side
length O(δλ2

δn), and admits a Hamiltonian path if and only if the input CSP instance is
satisfiable. This finishes the proof of Theorem 1.4.

4 Conclusions

We have shown a low treewidth pattern covering statement for graphs of polynomial growth
with subexponential term being 2k

1− 1
1+δ , where δ is the growth rate of the graph class. An

almost tight lower bound shows that, assuming ETH, one should not hope for a better term
than 2k

1− 1
δ .

Two natural questions arise. The first one is to close the gap between 1
1+δ and 1

δ ; we
conjecture that our lower bound is tight, and the term k1− 1

1+δ in the running time bound
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of Theorem 1.2 is only a shortfall of our algorithmic techniques. The second one is to
derandomize the algorithms of this work and of [18]. The clustering step is the only step of
the algorithm of [18] that we do not know how to derandomize, despite its resemblance to
the construction of Bartal’s HSTs [3] that was subsequently derandomized [6].
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Abstract
The state-of-the-art solvers for the graph isomorphism problem can readily solve generic instances
with tens of thousands of vertices. Indeed, experiments show that on inputs without particular
combinatorial structure the algorithms scale almost linearly. In fact, it is non-trivial to create
challenging instances for such solvers and the number of difficult benchmark graphs available is
quite limited.

We describe a construction to efficiently generate small instances for the graph isomorphism
problem that are difficult or even infeasible for said solvers.

Up to this point the only other available instances posing challenges for isomorphism solvers
were certain incidence structures of combinatorial objects (such as projective planes, Hadamard
matrices, Latin squares, etc.). Experiments show that starting from 1500 vertices our new in-
stances are several orders of magnitude more difficult on comparable input sizes. More im-
portantly, our method is generic and efficient in the sense that one can quickly create many
isomorphism instances on a desired number of vertices. In contrast to this, said combinatorial
objects are rare and difficult to generate and with the new construction it is possible to generate
an abundance of instances of arbitrary size.

Our construction hinges on the multipedes of Gurevich and Shelah and the Cai-Fürer-Immerman
gadgets that realize a certain abelian automorphism group and have repeatedly played a role in
the context of graph isomorphism. Exploring limits, we also explain that there are group theoretic
obstructions to generalizing the construction with non-abelian gadgets.
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1 Introduction

The graph isomorphism problem, which asks for structural equivalence of two given input
graphs, has been extensively investigated since the beginning of theoretical computer science,
both from a theoretical and a practical point of view. Designing isomorphism solvers in
practice is a non-trivial task. Nevertheless various efficient algorithms, namely nauty and
traces [15], bliss [9], conauto [11], and saucy [6] are available as software packages. These state-
of-the-art solvers for the graph isomorphism problem (or more generally graph canonization)
can readily solve generic instances with tens of thousands of vertices. Indeed, experiments
show that on inputs without particular combinatorial structure the algorithms scale almost
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linearly. In practice, this sets the isomorphism problem aside from typical NP-complete
problems which usually have an abundance of difficult benchmark instances. The practical
algorithms underlying these solvers differ from the ones employed to obtain theoretical results.
Indeed, there is a big disconnect between theory and practice [2]. One could interpret Babai’s
recent breakthrough, the quasipolynomial time algorithm [1], as a first step of convergence.
The result implies that if graph isomorphism is NP-complete then all problems in NP have
quasi-polynomial time algorithms, which may lead one to also theoretically believe that
graph isomorphism is not NP-complete.

In this paper we are interested in creating difficult benchmark instances for the graph
isomorphism problem. It would be a misconception to think that for unstructured randomly
generated instances graph isomorphism should be hard in practice. Quite the opposite is true.
Instances that encompass sufficient randomness usually turn out to be among the easiest
instances (see [14] for extensive tests on various graphs and [3, 10] for theoretical arguments).
In fact, it is non-trivial to create challenging instances for efficient isomorphism solvers and
so far the number of difficult benchmark graphs available is quite limited.

The prime source for difficult instances are graphs arising from combinatorial structures.
In 1978, Mathon [13] provided a set of benchmark graphs arising from combinatorial objects
such as strongly regular graphs, block designs and coherent configurations. The actual graphs
that are provided, having less than 50 vertices, are small by todays standards. Nowadays,
larger combinatorial objects yielding difficult graphs are known. The most challenging
examples are for instance incidence graphs of projective planes, Hadamard matrices, or Latin
squares (see [14]). It is important to understand that not all such incidence structures yield
difficult graphs. Indeed, typically there is an algebraic version that can readily be generated.
For example to obtain a projective plane it is possible to consider incidences between one-
and two-dimensional subspaces of a three-dimensional vector space over a finite field. If
however one uses such an algebraic construction then the resulting graph automatically has
a large automorphism group. The practical isomorphism solvers are tuned to finding such
automorphisms and to exploit them for search space contraction. On top of that, there are
also theoretical reasons that lead one to believe that graphs with automorphisms make easier
examples for the practical tools (see [22, Theorem 9]). The non-algebraic counterparts of
combinatorial structures often do not have the shortcoming of having a large automorphism
group, but in contrast to the algebraic constructions they are rare and difficult to generate.

The second source of difficult instances is based on modifications of the so called Cai-Fürer-
Immerman construction [5]. This construction is connected to the family of Weisfeiler-Leman
algorithms, which for every integer k contains a k-dimensional version that constitutes a poly-
nomial time algorithm used to distinguish non-isomorphic graphs. The 1-dimensional variant
(usually called color refinement) is a subroutine in all competitive practical isomorphism
solvers. For larger k, however, the k-dimensional variant becomes impractical due to excessive
space consumption. For each k, Cai, Fürer and Immerman construct pairs of non-isomorphic
graphs that are not distinguished by the k-dimensional variant of algorithm. In 1996, the
construction was adapted by Miyazaki to explicitly show that the then current version
of nauty has exponential running time in the worst case [16]. The Cai-Fürer-Immerman
graphs and the Miyazaki graphs constitute families of benchmark graphs that (despite being
specifically designed to fool the Weisfeiler-Leman isomorphism algorithm and the canonical
labeling tool nauty, respectively) are infeasible for ad hoc graph isomorphism algorithms.
Nowadays, however, most state-of-the-art solvers scale reasonably well on these instances.
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Contribution. We describe a construction to efficiently generate instances on any desired
number of vertices for the graph isomorphism problem that are difficult or even infeasible for
all state-of-the-art graph isomorphism solvers.

Experiments show the graphs pose by far the most challenging graphs to date. Already
for 1500 vertices our new instances are by several orders of magnitude more difficult than all
previously available benchmark graphs on comparable input sizes. More importantly, the
algorithm that generates the instances is generic and efficient in that one can quickly create
an abundance of isomorphism instances on a desired number of vertices. We can thereby
generate instances in size ranges for which no other difficult benchmark graphs are available.

Our construction, the resulting graphs of which we call shrunken multipedes, hinges on a
construction of Gurevich and Shelah [8]. For every k, they describe combinatorial structures
that are rigid but cannot be distinguished by the k-dimensional Weisfeiler-Leman algorithm.
Guided by the intuition that rigid graphs (i.e., graphs without non-trivial automorphisms)
constitute harder instances, we alter the construction to a simple efficient algorithm. In
this algorithm we start with a bipartite rigid base graph that is obtained by connecting two
explicit graphs (cycles with added diagonals) randomly. We then apply a suitable adaptation
of the Cai-Fürer-Immerman (CFI) construction. We prove that the resulting graph is rigid
asymptotically almost surely. Our experiments show that even for small sizes the graphs
are already rigid with high probability. The result is a simple randomized algorithm that
efficiently creates challenging instances of the graph isomorphism problem. The algorithm
can be used to create instances for any desired size range. Moreover it is possible to create
many non-isomorphic graphs such that every set of two of them forms a difficult instance.

To create practical benchmark graphs, it is imperative to keep all gadget constructions as
small as possible. We therefore employ two techniques to save vertices without changing the
local automorphism structure of the gadgets. The first technique is based on linear algebra
and reduces the vertices in a manner that maintains the rigidity of the graphs. The second
technique bypasses certain vertices of the gadgets used in the CFI-construction.

The CFI-gadgets have repeatedly played a role in the context of graph isomorphism.
Exploring limits of such constructions, we also explain that there are group theoretic
obstructions to generalizing the construction with non-abelian gadgets.

Finally we show with experimental data that our benchmark instances constitute quite
challenging problems for all state-of-the-art isomorphism solvers. We compare the running
times on the new benchmarks with the combinatorial graphs, the CFI-graphs and the
Miyazaki graphs mentioned above.

Canonical forms vs. Isomorphism testing. The task of computing a canonical form is to
compute a graph isomorphic to a given input graph so that the output only depends on
the isomorphism type of the input and not the actual input (see [15]). Various practical
applications require the computation of canonical forms rather than isomorphism tests.

The isomorphism problem reduces, theoretically and practically, to the task of computing
a canonical form. Indeed, to check two graphs for isomorphism one computes their canonical
forms and then performs a trivial equality check of the results. While computing a canonical
form of a graph could in principle be harder than testing isomorphism, several (but not all)
of the currently fastest isomorphism solvers actually compute a canonical labeling and then
perform the equality check. Our graphs constitute difficult instances both for the task to
compute canonical forms and for graph isomorphism. While for the former single graphs
need to be constructed, for the latter we need pairs of graphs. (See Subsection 3.1.)

ESA 2017
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Theoretical bounds. The benchmark graphs described in this paper are explicitly designed
to pose a challenge for practical isomorphism solvers. Since they have bounded degree they
can be solved (theoretically) in polynomial time [12]. We should remark that we expect a
tailored algorithm can be designed that reduces our benchmarks to instances of bounded color
class size and then efficiently performs an isomorphism test. Concerning individualization-
refinement algorithms, which the tools mentioned above are, using a different but related
construction, exponential lower bounds can be proven. We refer to [20].

Obtaining benchmark graphs. Our families of benchmark graphs can be downloaded
at https://www.lii.rwth-aachen.de/research/95-benchmarks.html. While some of
our instances may constitute the most difficult instances yet, in practice, worst-case running
time is not the most important measure. In many applications, the solvers have to sift
through an enormous number of instances, most of which are easy. It is therefore important
to perform extremely well on easy instances, and adequately on difficult instances, not the
other way around. We refer to [14] for a well-rounded library in that regard. Nevertheless,
we hope our benchmark graphs help to improve current and future isomorphism solvers.

2 Preliminaries

Graphs and isomorphism. A graph is a pair G = (V,E) with vertex set V = V (G) and edge
relation E = E(G). In this work all graphs are simple, undirected graphs. The neighborhood
of v ∈ V (G) is denoted N(v). A path is a sequence (v1, . . . , v`) of distinct vertices such that
{vi, vi+1} ∈ E(G) for all i ∈ {1, . . . , `− 1}. If additionally {v1, v`} ∈ E(G) then the sequence
(v1, . . . , v`) is a cycle of G. An isomorphism from a graph G to another graph H is a bijective
mapping ϕ : V (G)→ V (H) which preserves the edge relation, that is {v, w} ∈ E(G) if and
only if {ϕ(v), ϕ(w)} ∈ E(H) for all v, w ∈ V (G). The notation G ∼= H indicates that such
an isomorphism exists. The graph isomorphism problem asks, given two graphs G and
H, whether G ∼= H. An automorphism of a graph G is an isomorphism from G to itself.
By Aut(G) we denote the automorphisms of G. A graph G is rigid (or asymmetric) if its
automorphism group Aut(G) is trivial, that is, the only automorphism of G is the identity.

The Cai-Fürer-Immerman Construction. Our constructions presented in this paper make
use of a construction of Cai, Fürer and Immerman [5]. In terms of the graph-isomorphism
problem, they used the construction to show that for every k there is a pair of graphs not
distinguished by the k-dimensional Weisfeiler-Leman algorithm. The basic building block
for these graphs is the CFI gadget X3. This gadget has 4 inner vertices m1, . . . ,m4 and
3 pairs of outer vertices ai, bi with i ∈ {1, 2, 3}. The edges are a1m3, a1m4, b1m1, b1m2,
a2m2, a2m4, b2m1, b2m3, a3m2, a3m3, b3m1, and b3m4. The crucial property of X3 is that
a bijection of the outer vertices mapping the set {ai, bi} to itself for all i ∈ {1, 2, 3} extends
to an automorphism of X3 if and only if an even number of pairs of outer vertices is swapped.

Now let G be a connected 3-regular graph called the base graph of the construction
and let T ⊆ E(G) be a subset of its edges. Then the CFI construction applied to G

results in the following graph CFI(G,T ). For every vertex v ∈ V (G) with incident edges
ei = (v, wi) ∈ E(G) we add a copy of X3. The inner vertices are denoted by m1(v), . . . ,m4(v).
Each pair {ai, bi} is associated with the edge ei and we denote the vertices by a(v, wi) and
b(v, wi). For every edge e = {v, w} ∈ E(G) with e ∈ T we add edges {a(v, w), b(w, v)} and
{b(v, w), a(w, v)}. If e /∈ T we add edges {a(v, w), a(w, v)} and {b(v, w), b(w, v)}. The edges
e ∈ T are called twisted edges whereas edges e /∈ T are non-twisted.

https://www.lii.rwth-aachen.de/research/95-benchmarks.html
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Using the properties of the gadget X3 described above one can now show that the
isomorphism type of CFI(G,T ) depends only on the parity of |T |. That is CFI(G,T ) ∼=
CFI(G,T ′) if and only if |T | ≡ |T ′| mod 2. We obtain a pair of non-isomorphic graphs
CFI(G) := CFI(G, ∅) and C̃FI(G) := CFI(G, {e}) for some edge e ∈ E(G).

For appropriate base graphs G (i.e., large tree width [7]) these graphs are difficult to
distinguish by the Weisfeiler-Leman algorithms. This makes them candidates for being
difficult instances for isomorphism testing. However, practical isomorphism solvers cope with
CFI graphs reasonably well. The main reason for this is that the underlying algorithms
take advantage of automorphisms of the input graphs to restrict their search space and CFI
graphs typically have many automorphisms. Indeed, let C = (v1, . . . , v`) be a cycle in the
base graph G. Then there is an automorphism of CFI(G) that exactly swaps those a(v, w)
and b(v, w) for which {v, w} is an edge in C and fixes all other a(v, w) and b(v, w) vertices.
Thus, if ` is the dimension of the cycle space of G then CFI(G) has at least 2` automorphisms.
In the next section we address this issue and describe a similar but probabilistic construction
that gives with high probability graphs without non-trivial automorphisms.

3 A Rigid Base Construction

Desirable properties. Before we describe our construction we would like to give some
intuition about the desirable properties that we want the final graph to have and why we
think they are responsible for making the graphs difficult.

(rigidity) There are some arguments that may make us believe that rigid graphs are
more difficult for isomorphism solvers than graphs with automorphisms. Indeed, the
graphs for which we can prove theoretical lower bounds [20] are rigid. Furthermore, it is
possible to obtain upper bounds on the running time in terms of |Γ|/|Aut(G)| where Γ
is a group known to contain all automorphisms (see [22] for a discussion). However,
we can also offer an intuitive explanation. Isomorphism solvers are used in practice in
search algorithms (e.g., SAT-solvers) to exploit symmetry and thereby cut off parts of
the search tree. However, the isomorphism solvers themselves also exploit this strategy in
bootstrapping manner, using symmetries to cut off parts of their own search tree.
(small constants) For our practical purposes it is imperative to keep the graphs small.
We thus need to diverge from the theoretical construction in [20]. As a crucial part of the
construction we devise two methods to reduce the number of vertices while maintaining
the difficulty level of the graph. These reductions are described in the next section.
(simplicity) We strive to have a simple construction that is not only easy to understand
but can also be quickly generated by a simple algorithm. In contrast, for many other
graphs coming from combinatorial constructions it takes far longer to construct the
graphs than to perform isomorphism tests. The simplicity also allows us to construct an
abundance of benchmark graphs.
(difficult for the WL algorithm) TheWeisfeiler-Leman algorithms are a family of theoretical
graph isomorphism algorithms. For a description and intuition as to why one may believe
they can be used as a measure of the difficulty of a graph, we refer to [20].

3.1 The multipede construction
In the following we describe an explicit construction for families of similar, rigid, non-
isomorphic graphs. This construction is based on the multipedes of Gurevich and Shelah [8]
yielding finite rigid structures and uses the construction by Cai, Fürer and Immerman [5].
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W

V
v1 v2 v3

w1 w2 w3 w4 w5 w6

a(w1) b(w1) a(w2) b(w2) a(w3) b(w3) a(w4) b(w4) a(w5) b(w5) a(w6) b(w6)

Figure 1 The figure depicts a base graph G on the top and the graph R(G) obtained by applying
the multipede construction on the bottom.

Let G = (V,W,E) be a bipartite graph such that every vertex v ∈ V has degree 3. Define
the multipede construction as follows. We replace every w ∈ W by two vertices a(w) and
b(w). For w ∈ W let F (w) = {a(w), b(w)} and for X ⊆ W let F (X) =

⋃
w∈X F (w). We

then replace every v ∈ V by a copy of X3 and identify the vertices ai and bi with a(wi) and
b(wi) where w1, . . . , w3 are the neighbors of v. The resulting graph will be denoted by R(G).
An example of this construction is shown in Figure 1.

I Definition 1. Let G = (V,W,E) be a bipartite graph. We say G is odd if for every
∅ 6= X ⊆W there is a v ∈ V such that |X ∩N(v)| is odd.

For a graph G and a vertex v ∈ V (G) we define the second neighborhood of v to be
N2

G(v) = {u ∈ V (G) | u 6= v ∧ ∃w ∈ V (G) : {v, w}, {w, u} ∈ E(G)}.

I Lemma 2. Let G = (V,W,E) be a bipartite graph, such that
1. |N(v)| = 3 for all v ∈ V ,
2. G is odd,
3. G is rigid, and
4. there are no distinct w1, w2 ∈W , such that N2

G(w1) = N2
G(w2).

Then R(G) is rigid.

We now present a simple randomized algorithm to construct rigid bipartite graphs that
are odd. Let G be a 3-regular graph and let σ : E(G) → E(G) be a random permutation
of the edges of G. We define the bipartite graph B(G, σ) = (VB ,WB , EB) by setting
VB = V (G)× {0, 1}, WB = E(G), and EB = {{(v, 0), e} | v ∈ e} ∪ {{(v, 1), e} | v ∈ σ(e)}.

Thus, the edges of G correspond to the vertices in the partition classWB of B(G, σ). Each
such edge e = {v, w} has an associated edge σ(e) = {v′, w′} and e has exactly four neighbors,
namely (v, 0), (w, 0), (v′, 1) and (w′, 1). Another way of visualizing this construction is to
start with two copies of G, subdivide all edges in each copy and then identify the newly
added vertices in the one copy with the newly added vertices in the other copy using a
randomly chosen matching.

Let Gn be the 2n-cycle with diagonals added. More precisely, Gn := (Vn, En) where
Vn = {1, . . . , 2n} and En = {{i, i+ 1 mod 2n} | 1 ≤ i ≤ 2n} ∪ {{i, i+ n} | 1 ≤ i ≤ n}. We
call the edges of the form {i, i+ n} diagonals.
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In reference to [8] we call the graphs R(B(Gn, σ)) the multipede graphs. Observe that
the multipede graphs can be constructed in linear time1. It can be computed that the
graph R(B(Gn, σ)) has an average degree of 48/11 ≈ 4.363.

We can analyze this construction and show that for the base graphs Gn the resulting
graphs R(B(Gn, σ)) are with high probability rigid. For this, building on Lemma 2, we show
that with high probability the graph B(Gn, σ) is odd, rigid, and has no distinct vertices in
WB with equal second neighborhoods.

I Theorem 3. The probability that R(B(Gn, σ)) is not rigid is in O
(

log2 n
n

)
.

While it is difficult to extract hidden constants in the theorem, our experiments show that
even for small n the probability that R(B(Gn, σ)) is not rigid is close to 0.

Creating pairs. The construction presented up to this point produces a single graph given n
and σ, but instances to the graph isomorphism problem are pairs of graphs. Isomorphic pairs
can of course always be obtained using two random permutations of one graph. For non-
isomorphic pairs, following [5], to obtain the second graph, we twist one of the connections
in one of the gadgets, that is, we switch the neighborhoods of the vertices a(w) and b(w)
within one of the gadgets when creating R(B(Gn, σ)) from B(Gn, σ). Arguments similar to
those for Theorem 3 show that this creates with high probability pairs of non-isomorphic
graphs. (This is not true anymore if the reduction from Subsection 4.1 is applied.)

4 The shrunken multipedes

As we described before we are interested in keeping the number of vertices of our construction
small. In this section we describe two methods to reduce the number of vertices of the
multipede graphs while, according to our experiments, essentially preserving the difficulty.

4.1 A linear algebra reduction
For a bipartite graph G = (V,W,E) let AG ∈ FV×W

2 be the matrix with Av,w = 1 if and
only if vw ∈ E(G) and let rk(A) be the F2-rank of A.

I Lemma 4. A bipartite graph G = (V,W,E) is odd if and only if rk(AG) = |W |.

Proof. For the forward direction suppose x ∈ FW
2 such that AGx = 0. Set X = {w ∈ W |

xw = 1}. Suppose towards a contradiction that X 6= ∅. Since G is odd there is some v ∈ V
such that |N(v) ∩X| is odd. But then (AG)vx = 1 where (AG)v is the v-th row of AG. This
is a contradiction and thus, {x ∈ FW

2 | AGx = 0} = {0}. So rk(AG) = |W |.
Suppose rk(AG) = |W |. Then {x ∈ FW

2 | AGx = 0} = {0}. Let ∅ 6= X ⊆ W and let
x ∈ FW

2 be the vector with xw = 1 if and only if w ∈ X. Since x /∈ {x ∈ FW
2 | AGx = 0}

there is some v ∈ V such that (AG)vx = 1. But this means that |N(v) ∩X| is odd. J

I Corollary 5. Let G = (V,W,E) be an odd bipartite graph. Then there is some V ′ ⊆ V

with |V ′| ≤ |W | such that the induced subgraph G[V ′ ∪W ] is odd.

Using Gaussian elimination, we can compute such a set in polynomial time. Now suppose
B(Gn, σ) is odd. Then we can use the previous corollary to compute an induced subgraph
B∗ := B∗(Gn, σ) of B(Gn, σ) which is odd and has fewer vertices. Applying the rigid base

1 Explicit pseudocode for constructing the multipede graphs is given in the full version [19].
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construction to B∗ the resulting graph has |V (R(B∗))| = 4 ·3 ·n+ 2 ·3 ·n = 18n vertices. The
average degree has decreased to 4. In comparison, |V (R(B(Gn, σ)))| = 4 ·4 ·n+2 ·3 ·n = 22n.

We want to stress at this point that the twisted and non-twisted version of R(B∗) are
indeed isomorphic. A simple trick to overcome this problem (but not investigated here) is to
retain one more element of V \ V ′ and to twist an edge of the respective additional gadget.

4.2 Bypassing the outer vertices
Consider the CFI-construction applied to a 3-regular base graph on n vertices. An easy
trick is to identify the a and b vertices for each edge of the base graph instead of connecting
them by an edge. More precisely, for each edge e = {v, w} in the base graph, we can identify
a(v, w) with a(w, v) and b(v, w) with b(w, v) in case of a non-twisted connection or identify
a(v, w) with b(w, v) and b(v, w) with a(w, v) in case of a twisted connection. This way the
number of vertices reduces from 10n to 7n. This can further be improved by removing all a
and b vertices altogether and connecting inner vertices mi(v) to mj(w) if both are connected
to either a(v, w) or b(v, w). This way the construction only has 4n vertices.

A similar technique can also be applied to the rigid base construction. For this we bypass
all vertices of degree 8 by directly joining their neighbors and then removing all such vertices.
Given a bipartite base graph G we denote by R∗(G) the graph obtained form R(G) by
bypassing the outer vertices. When reducing the graphs in that fashion one has to be aware
that combinatorial structure of the graph might get lost. In particular it can be the case that
vertices of degree 4 (in G) had the same neighborhood before they were removed, leading to
inhomogeneity in the graph R∗(G). In fact our experiments show that there is wider spread
concerning the difficulty of the graphs R∗(G) than the graphs R(G). In other words, the
rigidity and difficulty of those graphs depends more heavily on the choice of the matching σ
than for the rigid base construction. However, the graphs R∗(G) turn out to be more difficult
than those obtained from the multipede construction.

4.3 Applying both reductions
We can combine the two vertex reduction techniques presented in this section by first applying
Corollary 5 to the base graph and then bypassing the outer vertices. The number of vertices
in the combined reduction decreases to 12n. It is not difficult to see that the graphs have an
average degree of at most 24, but the average degree varies among graphs on equally many
vertices since there may be multiple bypass edges having the same endpoints.

Our experiments show that the combination of the two reductions (Section 6) yields the
most difficult graphs. We call the resulting graphs R∗(B∗(Gn, σ)) the shrunken multipedes.

5 Cai-Fürer-Immerman gadgets for other groups

The constructions described in the previous sections revolve around the CFI-gadget X3. On
the outer vertices, the automorphism group of that gadget induces the set of all permu-
tations that swap an even number of pairs. This corresponds to the subgroup of (Z2)3 of
elements (g1, g2, g3) with g1g2g3 = 1. A natural idea to push the CFI-construction to its
limits is to encode other groups by the use of other gadgets.

Indeed, it is not difficult to see that for every permutation group ∆ acting on a set Ω
there is a graph gadget X∆ with a vertex set containing Ω as Aut(X∆)-invariant subset such
that Aut(X∆) ∼= ∆ and Aut(G)|Ω = ∆. (See [21, Lemma 16] for a construction.) In other
words, every permutation group ∆ can be realized by a graph gadget X∆. As explained
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before, the original CFI-gadget realizes a group that is a subdirect product of Z3
2, which is

in particular an abelian group. In analogy to our previous terminology we call the vertices
in Ω the outer vertices and the vertices in V (X∆) \ Ω the inner vertices. For our purpose of
creating benchmark graphs, we are interested in keeping the number of inner vertices small.

In our constructions, Ω naturally decomposes into sets C1, C2, C3, . . . , Ct of equal size n
as the classes of the outer vertices. We think of the sets as being colored with different colors
and only consider color preserving isomorphisms, i.e., permutations mapping each vertex to
a vertex of the same color. If we insert a gadget X∆ with Ω = C1 ∪ C2 ∪ . . . Ct we obtain a
subgroup of Sym(C1)× Sym(C2)× · · · × Sym(Ct), the direct product of symmetric groups.

For simplicity, we focus on the case t = 3 from now on. Thus we consider colored graph
gadgets X∆ such that C1∪C2∪C3 ⊆ V (X∆) and for which the automorphism group Aut(X∆)
induces on C1 ∪ C2 ∪ C3 a certain subgroup ∆ ≤ Sym(C1)× Sym(C2)× Sym(C3). Once we
have a suitable gadget X∆ we can use it to obtain a generalized CFI-construction (see [19]).

This brings us to the question, what types of gadgets are suitable for our purpose of
creating hard benchmark graphs. Various results in the context of algorithmic group theory
can lead one to believe that small groups and also abelian groups may be algorithmically
easier than large or non-abelian groups ([4, 12, 24]). Thus, one may wonder whether more
difficult benchmark graphs arise when employing graph gadgets inducing more complicated
abelian or even non-abelian automorphism groups. We now explore these thoughts.

5.1 Examples for more general groups

General abelian groups. Let Γ ≤ Sn be an abelian permutation group on n elements.
Then ∆ := {(a, b, c) ∈ Γ3 | abc = 1} is a subgroup of Sn × Sn × Sn. Here Sn denotes the
symmetric group of the set {1, . . . , n}. A description of a gadget realizing this group for the
case in which Γ is transitive is described in the full version [19].

For Γ = Z2 we recover the CFI-gadget. Let us point out that for Γ = Zk these gadgets
were used in [23] to show hardness of graph isomorphism for certain complexity classes.

Applying the gadgets to suitable base graphs, this gives us a generalization of the rigid
base construction to arbitrary abelian groups. However the difficulty of the graphs does not
increase for the algorithms tested here as we will see in Section 6.

Since in various contexts abelian groups are algorithmically easier to handle than non-
abelian groups, we would like to generalize the rigid base construction to non-abelian groups.

Semidirect products. Our next example is that of a semidirect product. Let Γ = N oH ≤
Sn be a semidirect product with an abelian normal subgroup N . For example Γ could be the
dihedral group Dn. Then ∆ := {(ah, bh, ch) ∈ Γ3 | a, b, c ∈ N, h ∈ H, abc = 1} is a subgroup
of Sn × Sn × Sn. Applying the gadget construction to suitable base graphs we obtain a
family of new benchmark graphs that we call the dihedral construction.

Unentwined gadgets. As last example suppose Γ1 = H2 ×H3, Γ2 = H1 ×H3 and Γ3 =
H1 ×H2 with arbitrary finite groups Hi. Then the group ∆ := {((h2, h3), (h1, h3), (h1, h2))}
is a subgroup of Sn × Sn × Sn. We call these gadgets unentwined since they only create a
pairwise interconnection between the classes. In particular, the gadgets are not beneficial for
our cause since they do not force an interplay between all three classes C1, C2 and C3.
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5.2 Group theoretic restrictions on the gadgets
As discussed before, every group ∆ ≤ Sym(C1)×Sym(C2)×Sym(C3) can be realized by such
a gadget X∆. Our intuition is that the isomorphism solvers can locally analyze a bounded
size gadget and thus implicitly determine the automorphism group ∆ = Aut(X∆)|C1∪C2∪C3

of such a gadget. The goal must therefore be to encode the difficulty in the global dependency
across the entire graph rather than in a local gadget.

Note that ∆ ≤ π1(∆)× π2(∆)× π3(∆), where πi is the projection on the i-th component.
We say that ∆ is a subdirect product of π1(∆)× π2(∆)× π3(∆). To understand what kind of
gadgets can be constructed we should therefore investigate subdirect products. We call such
a group ∆ ≤ π1(∆) × π2(∆) × π3(∆) 2-factor injective if each projection onto two of the
factors is injective and 2-factor surjective if each of these projections is surjective.

Intuitively, 2-factor injectivity says that two components determine the third. Thus when
two different gadgets that are not 2-factor injective are attached (via parallel edges say) this
may create local automorphism in the resulting graph, which we are trying to avoid. We are
therefore interested in creating 2-factor injective gadgets. In fact, it is possible to restrict
ourselves to 2-factor injective gadgets altogether, since we can quotient out the elements
responsible for non-injectivity. It turns out however that the abelian example in the previous
subsection are the only 2-factor injective and 2-factor surjective groups.

I Lemma 6 ([18]). Let Γ = Γ1 × Γ2 × Γ3 be a finite group and ∆ a subdirect product of Γ
that is 2-factor surjective and 2-factor injective. Then Γ1, Γ2 and Γ3 are isomorphic abelian
groups and ∆ is isomorphic to the subgroup of Γ3

1 given by {(a, b, c) ∈ (Γ1)3 | abc = 1}, which
in turn is isomorphic to (Γ1)2 as an abstract group.

Thus, if we want to move beyond abelian groups, we cannot require 2-factor surjectivity.
In general, however, it can be shown that every 2-factor injective group ∆ ≤ π1(∆)×π2(∆)×
π3(∆) is obtained by a combination of the three example constructions described in the
previous subsection. Indeed, in [18] it is in particular shown that if one wants an entwined
gadget then it is necessary to use an abelian group of the form described in Lemma 6. One
can then take a finite extension similar to the semidirect product construction described
above. We refer to [18] for more details. Overall we conclude that there are some group
theoretic obstructions to using non-abelian gadgets, and are left with the intuition that the
original construction leads to the most difficult examples.

6 Experimental Results

In the following we discuss experimental results for the constructions presented in this paper.
The experiments were each performed on single node of a compute cluster with 2.00 GHz
Intel Xeon X5675 processors. We always set a time limit of three hours (i.e., 10800 seconds)
and the memory limit to 4 GB. Every single instance was processed once, but multiple
instances were generated for each possible number of vertices with the same construction.
We evaluated the following isomorphism solvers: Bliss version 0.72, Nauty/Traces version
25r9, Saucy version 3.0, and Conauto version 2.03.

All our instances consist of two graphs and the task for the algorithms was to check
for isomorphism. For Bliss and Nauty/Traces this means that both graphs are canonized
and the canonical forms are compared for equality. Conauto directly supports isomorphism
testing and for Saucy, which only supports automorphism group computation, we compute
the automorphism group of the disjoint union to check for isomorphism. In each series we
performed the tests in increasing number of vertices with a time limit, which implied that
once timeouts are reached repeatedly only a handful of further examples are computed.
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Figure 2 Performance of various algorithms on R(B(Gn, σ)) for random permutations σ in linear
(left) and logarithmic scale (right).

We want to stress at this point that while the memory limit is irrelevant for Bliss,
Nauty, Saucy and Conauto, it is significant for Traces. In fact, in many larger instances
Traces reaches the memory limit before the time limit. For the sake of readability we do
not distinguish between the two cases and in our figures runs that reached the memory limit
are displayed as reaching the time limit. See [15] for details on the memory usage of Traces.

While all constructions pose difficult challenges for the solvers, those with more involved
gadgets do not seem to yield more difficult examples. A reason for this effect could lie in
the size of the gadgets. If the gadget is too large, asymptotic difficulty may emerge only for
graphs with a number of vertices drastically larger than what could be tested. In any case,
all of our constructions yield efficient methods to generate difficult isomorphism instances
even with the size of the vertex set in regimes where no other difficult instances are available.

6.1 Shrunken Multipedes
Figure 2 shows the running times of the various isomorphism solvers on the multipede graphs
described in Section 3 without any reductions. We observe that the multipede construction
yields graphs which become infeasible for all solvers already for a few thousand vertices.
Similarly, Figure 3 shows the running times on shrunken multipedes, i.e., the graphs to which
the two node reductions of Section 4 have been applied. In comparison we observe that
similar running times to the unreduced graphs are obtained already on graphs that have
roughly half the number of vertices. While the shrunken version results in more difficult
graphs one can also see that there is a significantly larger fluctuation (presumably depending
on σ) among the graphs on a fixed number of vertices.

6.2 Comparison
We outline the main observations made in comparing our constructions with existing families
of graphs. For a detailed comparison of the presented constructions among each other and
to other families of difficult graphs we refer to the full version [19].

Reduction Techniques and other groups. We performed a series of experiments investigat-
ing the effect of the two reduction techniques from Section 4. Both reductions yield instances
significantly more difficult and combining the two reductions yields the best results.

In experiments for the rigid base construction on other groups, we observe that the
original construction based on Z2 yields the most difficult graphs.
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Figure 3 Performance of various algorithms on shrunken multipedes R∗(B∗(Gn, σ)) (both
reductions applied) for random permutations σ in linear (left) and logarithmic scale (right).

Comparison with other benchmarks. Finally we compared the running times to benchmark
graphs that previously existed. Since the existing benchmark graphs typically do not come
in pairs of graphs we always take two copies, for each of which we randomly permute its
vertices, and then perform an isomorphism test for the two copies.

We compared our graphs to the most difficult graphs from the library at [14]. We performed
experiments for the families of Combinatorial graphs of Gordan Royle (combinatorial),
Projective Planes of order 25 and 27 (pp), non-disjoint unions of tripartite graphs (tnn),
Cai-Fürer-Immerman graphs (cfi), and Miyazaki graphs (mz-aug2). Starting from 1500
vertices our instances are several orders of magnitude more difficult on comparable input
sizes.

7 Discussion

Variance. For each graph we tested each algorithm only once. Not all of the algorithms
are deterministic and even for deterministic algorithms, there is also the question whether
permuting the input graphs has any influence on the running times. We ran permutations of
the same graph several times for each of the algorithms. Only saucy exhibits a non-negligible
variance in some of the runs. However, even that variance is negligible in comparison to the
exponential scaling of the running times on the benchmark graphs in the number of vertices.

Input size. The experiments we present all order the graphs according to the number of
vertices. However, in practice one may be interested in sparse graphs, and the various
algorithms are in particular tuned for this case. While all our graphs are sparse in that
they only have a linear number of edges, average degrees vary. For shrunken multipedes we
provided the coarse bound of 24 for the average degree. The multipedes have average degree
4.363, while the graphs obtained by only applying the linear algebra reduction (R(B∗(Gn, σ)))
have average degree 4. It seems thus that when input size is measured in terms of the number
of edges the graphs R(B∗(Gn, σ)) are the most difficult.

Conclusion. Overall we conclude that the new construction constitutes a simple algorithm
that yields the most difficult benchmark graphs to date and experimentally we observe
exponential behavior in terms of the running times of practical isomorphism solvers.
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Abstract
In the Tree Augmentation problem we are given a tree T = (V, F ) and a set E ⊆ V × V of
edges with positive integer costs {ce : e ∈ E}. The goal is to augment T by a minimum cost edge
set J ⊆ E such that T ∪ J is 2-edge-connected. We obtain the following results.

Recently, Adjiashvili [SODA 17] introduced a novel LP for the problem and used it to break
the 2-approximation barrier for instances when the maximum cost M of an edge in E is
bounded by a constant; his algorithm computes a 1.96418 + ε approximate solution in time
n(M/ε2)O(1)

. Using a simpler LP, we achieve ratio 12
7 + ε in time 2O(M/ε2). This also gives

ratio better than 2 for logarithmic costs, and not only for constant costs. In addition, we will
show that (for arbitrary costs) the problem admits ratio 3/2 for trees of diameter ≤ 7.
One of the oldest open questions for the problem is whether for unit costs (when M = 1) the
standard LP-relaxation, so called Cut-LP, has integrality gap less than 2. We resolve this
open question by proving that for unit costs the integrality gap of the Cut-LP is at most
28/15 = 2 − 2/15. In addition, we will suggest another natural LP-relaxation that is much
simpler than the ones in previous work, and prove that it has integrality gap at most 7/4.

1998 ACM Subject Classification G.2.2 [Graph Theory] Graph Algorithms

Keywords and phrases Tree augmentation, Logarithmic costs, Approximation algorithm, Half-
integral extreme points, Integrality gap

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.61

1 Introduction

We consider the following problem:

Tree Augmentation
Input: A tree T = (V, F ) and an additional set E ⊆ V × V of edges with positive
integer costs c = {ce : e ∈ E}.
Output: A minimum cost edge set J ⊆ E such that T ∪ J is 2-edge-connected.

The problem was studied extensively, cf. [11, 15, 3, 21, 8, 9, 4, 19, 5, 17, 2, 16]. For a long
time the best known ratio for the problem was 2 for arbitrary costs [11] and 1.5 for unit
costs [8, 17]; see also [9] for a simple 1.8-approximation algorithm. It is also known that the
integrality gap of a standard LP-relaxation for the problem, so called Cut-LP, is at most 2
[11] and at least 1.5 [4]. Several other LP and SDP relaxations were introduced to show that
the algorithm in [8, 9, 17] achieves ratio better than 2 w.r.t. these relaxations, cf. [2, 16]. For
additional algorithms with ratio better than 2 for restricted versions see [5, 19].

Let M denote the maximum cost of an edge in E. Recently, Adjiashvili [1] introduced a
novel LP for the problem – so called the k-Bundle-LP, and used it to break the natural
2-approximation barrier for instances when M is bounded by a constant. To introduce this
result we need some definitions.

The edges of T will be called T -edges to distinguish them from the edges in E. Tree
Augmentation can be formulated as a problem of covering the T -edges by paths. Let Tuv
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Figure 1 (a) complete rooted subtree; (b) full rooted subtree; (c) branch of a full rooted subtree.

denote the unique uv-path in T . We say that an edge uv covers a T -edge f if f ∈ Tuv.
Then T ∪J is 2-edge-connected if and only if J covers T . For a set B ⊆ F of T -edges let ψ(B)
denote the set of edges in E that cover some f ∈ B, and τ(B) the minimum cost of an edge
set in E that covers B. For J ⊆ E let x(J) =

∑
e∈J xe. The standard LP for the problem

which we call the Cut-LP seeks to minimize cTx =
∑
e∈E cexe over the Cut-Polyhedron

ΠCut =
{
x ∈ RE : x(ψ(f)) ≥ 1 ∀f ∈ F, x ≥ 0

}
.

The k-Bundle-LP of Adjiashvili [1] adds over the standard Cut-LP the constraints∑
e∈ψ(B) cexe ≥ τ(B) for any forest B in T that has at most k leaves, where k = Θ(M/ε2).

The algorithm of [1] computes a 1.96418 + ε approximate solution w.r.t. the k-Bundle-LP
in time nkO(1) . For unit costs, a modification of the algorithm achieves ratio 5/3 + ε.

Here we observe that it is sufficient to consider just certain subtrees of T instead of forests.
Root T at some node r. The choice of r defines an ancestor/descendant relation on V . The
leaves of T are the nodes in V \ {r} that have no descendants. For any subtree S of T , the
node s of S closest to r is the root of S, and the pair S, s is called a rooted subtree of
T, r; we will not mention the roots of trees if they are clear from the context. We say that S
is a complete rooted subtree if it contains all descendants of s in T , and a full rooted
subtree if for any non-leaf node v of S the children of v in S and T coincide; see Fig. 1(a,b).
A branch of S, or a branch hanging on s, is a rooted subtree B of S induced by the root
s of S and the descendants in S of some child s′ of s; see Fig. 1 (c). We say that a subtree
B of T is a branch if it is a branch of a full rooted subtree, or if it is a full rooted subtree
with root r. Equivalently, a branch is a union of a full rooted subtree and its parent T -edge.

Let Bk denote the set of all branches in T with less than k leaves. The k-Branch-LP
seeks to minimize cTx =

∑
e∈E cexe over the k-Branch-Polyhedron ΠBr

k ⊆ RE defined
by the constraints:∑

e∈ψ(f)

xe ≥ 1 ∀f ∈ F ,

∑
e∈ψ(B)

cexe ≥ τ(B) ∀B ∈ Bk ,

xe ≥ 0 ∀e ∈ E .

The set of constrains of the k-Branch-LP is a subset of constraints of the k-Bundle-LP of
Adjiashvili [1], hence the k-Branch-LP is both more compact and its optimal value is no
larger than that of the k-Bundle-LP. The first main result in this paper is:

I Theorem 1. For any 1 ≤ λ ≤ k − 1, Tree Augmentation admits a 4k · poly(n) time
algorithm that computes a solution of cost at most ρ+ 8

3
λM

k−λM + 2
λ times the optimal value

of the k-Branch-LP, where ρ = 12
7 for arbitrary costs and ρ = 1.6 for unit costs.
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For a given ε, choosing properly λ = Θ(1/ε) and k = Θ(M/ε2) gives ratio ρ+ ε in time
2O(M/ε2) · poly(n).

We note that in parallel to our work Fiorini, Groß, Könemann, and Sanitá [10] augmented
the k-Bundle LP of [1] by additional constraints – {0, 1

2}-Chvátal-Gomory Cuts, to achieve
ratio 1.5 + ε in n(M/ε2)O(1)

time, thus almost matching the best known ratio for unit costs
[17]. Our result in Theorem 1, done independently, shows that already the k-Bundle LP
has integrality gap closer to 1.5 than to 2. Our version of the algorithm of [1] is also simpler
than the one in [10]. In fact, combining our approach with [10] enables to achieve ratio
1.5 + ε in 2O(M/ε2) · poly(n) time. Note that this allows to achieve this ratio for logarithmic
costs, and not only for constant costs.

Let diam(T ) denote the diameter of T . Tree Augmentation admits a polynomial time
algorithm when diam(T ) ≤ 3. If diam(T ) = 2 then T is a star and we get the Edge-Cover
problem, while the case diam(T ) = 3 is reduced to the case diam(T ) = 2 by “guessing”
some optimal solution edge that covers the central T -edge. The problem is NP-hard when
diam(T ) = 4 even for unit costs [11]. We prove that for arbitrary costs Tree Augmentation
with trees of diameter ≤ 7 admits ratio 3/2.

Our second main result resolves one of the oldest open questions concerning the problem –
whether for unit costs the integrality gap of the Cut-LP is less than 2. This was conjectured
in the 90’s by Cheriyan, Jordán & Ravi [3] for arbitrary costs, but so far there was no real
evidence for this even for unit costs. Our second main result resolves this old open question.

I Theorem 2. For unit costs, the integrality gap of the Cut-LP is at most 28/15 = 2−2/15.

In addition, we will suggest another natural LP-relaxation that is much simpler than the
ones in previous work, and prove that for unit costs it has integrality gap at most 7/4.

2 The algorithm (Theorem 1)

The Theorem 1 algorithm is a modification of the algorithm of Adjiashvili [1]. We emphasize
some differences. We use the k-Branch-LP instead of the k-Bundle-LP of [1]. But, unlike
[1], we do not solve our LP at the beginning. Instead, we combine binary search with the
ellipsoid algorithm as follows. We start with lower and upper bounds p and q on the value of
the k-Branch-LP, e.g., p = 0 and q is the cost of some feasible solution to the problem.
Given a “candidate” x with q ≤ cTx ≤ p, the outer iteration (see Algorithm 1) of the entire
algorithm either returns a solution of cost at most (ρ+ 8

3
λM

k−λM + 2
λ )cTx or a constraint of the

k-Branch-LP violated by x; we show that this can be done in time 4k · poly(n), rather than
in time nkO(1) as in [1]. We set p← p+q

2 in the former case and q ← p+q
2 in the latter case

and continue to the next iteration, terminating when p− q is small enough. This essentially
gives a 4k · poly(n) time separation oracle for the k-Branch-LP (if a violated k-branch
constraint is found). Since the ellipsoid algorithm uses a polynomial number of calls to the
separation oracle, the running time is 4k · poly(n). Note that checking whether x ∈ ΠCut is
trivial, hence for simplicity of exposition we will assume that the “candidate” x is in ΠCut.

For a set S of T -edges we denote by T/S the tree obtained from T by contracting every
T -edge of S. This defines a new Tree Augmentation instance, where contraction of
a T -edge uv leads to shrinking u, v into a single node in the graph (V,E) of edges. In
the algorithm, we repeatedly take a certain complete rooted subtree Ŝ, and either find a
k-branch-constraint violated by some branch in Ŝ, or a “cheap” cover JS of a subset S of the
T -edges of Ŝ; in the latter case, we add JS to our partial solution J , contract Ŝ, and iterate
on the instance T ← T/Ŝ. At the end of the loop, the edges that are still not covered by the
partial solution J are covered by a different procedure, by a total cost 2

λ · c
Tx, as follows.

ESA 2017
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Figure 2 Branches hanging on s after contracting S′; λ-thick T -edges are shown by thick lines.

We call a T -edge f ∈ F λ-thin if x(ψ(f)) ≤ λ, and f is λ-thick otherwise. We need the
following lemma from [1], for which we provide a proof for completeness of exposition.

I Lemma 3 ([1]). There exists a polynomial time algorithm that given x ∈ ΠCut, λ > 1, and
a set F ′ ⊆ F of λ-thick T -edges computes a cover J ′ of F ′ of cost ≤ 2

λ · c
Tx.

Proof. Since all T -edges in F ′ are λ-thick, x/λ is a feasible solution to the Cut-LP for
covering F ′. Thus any polynomial time algorithm that computes a solution J ′ of cost at
most 2 times the optimal value of the Cut-LP for covering F ′ has the desired property.
There are several such algorithms, see [11, 12, 14]. J

We say that a complete rooted subtree S of T is a (k, λ)-subtree if S has at least k leaves
and if either the parent T -edge f of S is λ-thin or s = r. For λ = Θ(1/ε) and k = Θ(M/ε2)
we choose Ŝ to be an inclusionwise minimal (k, λ)-subtree. Let us focus on the problem of
covering such Ŝ. Let S′ be the set of T -edges of the inclusionwise maximal subtree of Ŝ that
contains the root s of Ŝ and has only λ-thick T -edges (possibly S = ∅); see Fig. 2(a). We
postpone covering the T -edges in S′ to the end of the algorithm, so we contract S′ into s and
consider the tree S ← Ŝ/S′; see Fig. 2(b). In S, every branch B hanging on s has less than k
leaves, by the minimality of S, hence it has a corresponding constraint in the k-Branch-LP.
We will show that for a k-branch B an optimal set of edges that covers B can be computed
in time 4k · poly(n). If

∑
e∈ψ(B) cexe < τ(B) for some branch B hanging on s in S, then we

return the corresponding k-branch constraint violated by x; otherwise, we will show how to
compute a “cheap” cover of S. More formally, in the next section we will prove:

I Lemma 4. Suppose that we are given an instance of Tree Augmentation and x ∈ ΠCut

such that any complete rooted proper subtree of the input tree has less than k leaves. Then
there exists a 4k · poly(n) time algorithm that either finds a k-branch constraint violated by x,
or computes a solution of cost ≤ ρ

∑
e∈E\R cexe + 4

3
∑
e∈R cexe, where ρ is as in Theorem 1

and R is the set of edges in E incident to the root.

To find a cheap covers of S, we consider the Tree Augmentation instance obtained from
T/S′ by contacting into s all nodes not in S. Note that every edge that was in ψ(S) ∩ ψ(f)
is now incident to the root. Thus since ρ ≥ 4

3 , Lemma 4 implies:

I Corollary 5. There exists a 4k · poly(n) time algorithm that either finds a k-branch-
constraint violated by x, or a cover JS of S of cost c(JS) ≤ ρ

∑
e∈γ(S)

cexe + 4
3
∑

e∈ψ(f)

cexe,

where ρ is as in Theorem 1 and γ(S) denotes the set of edges with both endnodes in S.

The outer iteration of the algorithm is as follows:
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Algorithm 1: Outer-Iteration(T = (V, F ), E, x, c, k, r, λ)
1 J ← ∅, F ′ ← ∅
2 while do
3 T has at least 2 nodes
4 let Ŝ be an inclusionwise minimal (k, λ)-subtree of T
5 let S′ be the edge-set of the inclusionwise maximal subtree of Ŝ that contains the

root s of Ŝ and has only λ-thick edges
6 apply the algorithm from Corollary 5 on S ← Ŝ/S′

7 if the algorithm returns a cover JS of S do: F ′ ← F ′ ∪ S′, J ← J ∪ JS , T ← T/Ŝ

8 else, return a k-branch constraint violated by x and STOP compute a cover J ′ of F ′
of cost c(J ′) ≤ 2

λ · c
Tx using the algorithm from Lemma 3

9 return J ∪ J ′

Note that at step 7 the T -edges in F ′ are all λ-thick and thus Lemma 3 applies. We will now
analyze the performance of the algorithm assuming than no k-branch-constraint violated by
x was found. Let δ(S) denote the set of edges with exactly one endnode in S and γ(S) the
set of edges with both endnodes in S. Let f be the parent T -edge of S. Since f is λ-thin∑

e∈ψ(f)

cexe ≤
∑

e∈ψ(f)

Mxe ≤M · x(ψ(f)) ≤Mλ .

Since x(δ(v)) ≥ 1 for every leaf v of S, ce ≥ 1 for every e ∈ E, and since S is a (k, λ)-subtree

2
∑

e∈γ(Ŝ)

cexe =
∑
v∈Ŝ

∑
e∈δ(v)

cexe −
∑

e∈ψ(f)

cexe ≥
∑

v∈Ŝ\{s}

x(δ(v))− λM ≥ k − λM .

Consider a single iteration in the while-loop. Let ∆(cTx) denote the decrease in the
LP-solution value as a result of contracting Ŝ. Then

∆(cTx) =
∑

e∈γ(Ŝ)

cexe ≥
k − λM

2 .

On the other hand, by Lemma 4, the partial solution cost increase is bounded by

c(JS) ≤ ρ
∑

e∈γ(S)

cexe + 4
3
∑

e∈ψ(f)

cexe ≤ ρ
∑

e∈γ(Ŝ)

cexe + 4
3λM .

Thus
c(JS)

∆(cTx) ≤ ρ+ 8
3

λM

k − λM
.

The while-loop terminates when the LP-solution value becomes 0, hence by a standard local-
ratio/induction argument we get that at the end of the while-loop c(J) ≤

(
ρ+ 8

3
λM

k−λM

)
cTx.

At step 7 we add an edge set of cost ≤ 2
λc

Tx, and Theorem 1 follows. It only remains to
prove Lemma 4, which we will do in the subsequent sections.

2.1 Proof of Lemma 4
Assume that we are given an instance T = (V, F ), E, c, r of Tree Augmentation and x as
in Lemma 4. It is known that Tree Augmentation instances when T is a path can be
solved in polynomial time. This allows us to assume that the graph (V,E) is a complete
graph and that cuv = τ(Tuv) for all u, v ∈ V . Note that we use this assumption only in the
proof of Lemma 4, where the running time does not depend on the maximum cost M of an
edge in E. Let us say that an edge uv ∈ E is:
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a cross-edge if r is an internal node of Tuv;
an in-edge if r does not belong to Tuv;
an r-edge if r = u or r = v;
an up-edge if one of u, v is an ancestor of the other.

For a subset E′ ⊆ E of edges the E′-up vector of x is obtained from x as follows: for
every non-up edge e = uv ∈ E′ increase xua and xva by xe and then reset xe to 0, where a
is the least common ancestor of u and v. The fractional cost of a set J of edges w.r.t. c
and x is defined by

∑
e∈J cexe. Let C in

x , Ccr
x , and Crx denote the fractional cost of in-edges,

cross-edges, and r-edges, respectively, w.r.t. c and x. We fix some x∗ ∈ ΠCut and denote
by C in, Ccr, and Cr the fractional cost of in-edges, cross-edges, and r-edges, respectively,
w.r.t. c and x∗. We give two rounding procedures, given in Lemmas 6 and 7. The rounding
procedure in Lemma 6 is similar to that of Adjiashvili [1], for which we present an improved
running time analysis.

I Lemma 6. There exists a 4k ·poly(n) time algorithm that either finds a k-branch inequality
violated by x∗, or returns an integral solution of cost at most C in + 2Ccr + Cr.

Proof. Let B be the set of branches hanging on r. For every B ∈ B compute an optimal
solution JB. If for some B ∈ B we have τ(B) >

∑
e∈ψ(B) cex

∗
e then a k-branch inequality

violated by x∗ is found. Else, the algorithm returns the union J =
⋃
B∈B JB of the computed

edge sets. As every cross-edge has its endnodes in two distinct branches, while every in-edge
or r-edge has its both endnodes in the same branch, we get

c(J) ≤
∑
B∈B

τ(B) ≤
∑
B∈B

∑
e∈ψ(B)

cex
∗
e =

∑
B∈B

 ∑
e∈δ(B)

cex
∗
e +

∑
e∈γ(B)

cex
∗
e

 = 2Ccr + C in + Cr .

It remains to show that an optimal solution in each branch of r can be computed in time
4k · poly(n). More generally, we will show that Tree Augmentation instances with k leaves
can be solved optimally within this time bound. Recall that we may assume that the graph
(V,E) is a complete graph and that cuv = τ(Tuv) for all u, v ∈ V . We claim that then we
can assume that T has no node v with degT (v) = 2. This is a well known reduction, cf. [20].
In more details, we show that any solution J can be converted into a solution of no greater
cost that has no edge incident to v, and thus v can be “shortcut”. If J has edges uv, vw then
it is easy to see that (J \ {uv, vw}) ∪ {uw} is also a feasible solution, of cost at most c(J),
since cuw ≤ cuv + cvw. Applying this operation repeatedly we may assume that degJ (v) ≤ 1.
If degJ (v) = 0, we are done. Suppose that J has a unique edge e = vw incident to v. Let vu
and vu′ be the two T -edges incident to v, where assume that vu′ is not covered by e. Then
there is an edge e′ ∈ J that covers vu′. Since e′ is not incident to v, it must be that e′ covers
vu. Replacing e by the edge wu gives a feasible solution without increasing the cost.

Consequently, we reduce our instance to an equivalent instance with at most 2k − 1
tree edges. Now recall that Tree Augmentation is a particular case of the Min-Cost
Set-Cover problem, where the set F of T -edges are the elements and {Te : e ∈ E} are the
sets. The Min-Cost Set-Cover problem can be solved in 2n · poly(n) time via dynamic
programming, where n is the number of elements; such an algorithm is described in [7, Sect.
6.1] for unit costs, but the proof extends to arbitrary costs [6]. Thus our reduced Tree
Augmentation instance can be solved in 22k−1 · poly(n) ≤ 4k · poly(n) time. J

For the second rounding procedure Adjiashvili [1] proved that for any λ > 1 one can
compute in polynomial time an integral solution of cost at most 2λC in + 4

3
λ
λ−1C

cr . We prove:
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I Lemma 7. There exists a polynomial time algorithm that computes a solution of cost
4
3 (2C in + Ccr + Cr), and a solution of size 2C in + 4

3C
cr + Cr in the case of unit costs.

Consider the case of arbitrary bounded costs. If C in ≥ 2
5C

cr we use the rounding procedure
from Lemma 6 and the rounding procedure from Lemma 7 otherwise. In both cases we get
c(J) ≤ 12

7 (C in + Ccr) + 4
3C

r. In the case of unit costs, if C in ≥ 2
3C

cr we use the rounding
procedure from Lemma 6, and the procedure from Lemma 7 otherwise. In both cases we get
c(J) ≤ 1.6(C in + Ccr) + Cr.

Lemma 7 is proved in the next section. The proof relies on properties of extreme points
of the Cut-Polyhedron ΠCut that are of independent interest.

2.2 Properties of extreme points of the Cut-Polyhedron (Lemma 7)
W.l.o.g., we augment the Cut-LP by the constraints xe ≤ 1 for all e ∈ E, while using the
same notation as before. Then (the modified) Cut-LP always has an optimal solution x
that is an extreme point or a basic feasible solution of ΠCut. Geometrically, this means
that x is not a convex combination of other points in ΠCut; algebraically this means that
there exists a set of |E| inequalities in the system defining ΠCut such that x is the unique
solution for the corresponding linear equations system. These definitions are known to be
equivalent and we will use both of them, cf. [18].

A set family L is laminar if any two sets in the family are either disjoint or one contains
the other. Note that Tree Augmentation is equivalent to the problem of covering the
laminar family of the node sets of the complete rooted proper subtrees of T , where an edge
covers a node set S if it has exactly one endnode in S. In particular, note that the constraint∑
e∈ψ(f) xe ≥ 1 is equivalent to the constraint x(δ(S)) ≥ 1 where S is the node set of the

complete rooted subtree with parent T -edge f .

I Lemma 8. Let (V,E) be a graph, L a laminar family on V , and b ∈ NL. Suppose that for
every A ∈ L there is no edge between two distinct children of S and that the equation system
{x(δ(S)) = bS : S ∈ L} has a unique solution 0 < x∗ < 1. Then x∗e = 1/2 for all e ∈ E.
Furthermore, each endnode of every e ∈ E belongs to some S ∈ L.

Proof. For every uv ∈ E put one token at u and one token at v. The total number of tokens
is 2|E|. For S ∈ L let t(S) be the number of tokens placed at nodes in S that belong to
no child of S. Since L is laminar, every token is placed in at most one set in L, and thus∑
S∈L t(S) ≤ 2|E|. Let S ∈ L and let C(S) be the set of children of S in L. Let ES be the

set of edges in δ(S) that cover no child of S, and EC(S) the set of edges not in δ(S) that cover
some child of S. Note that no e ∈ EC(S) connects two distinct children of S. Observe that

x∗(ES)− x∗(EC(S)) = x∗(δ(S))−
∑

C∈C(S)

x∗(δ(C)) = bS −
∑

C∈C(A)

bC ≡ b′S .

Thus x∗(ES) − x∗(EC(S)) is an integer. We cannot have |ES | = |EC(S)| = 0 by linear
independence, and we cannot have |ES |+ |EC(S)| = 1 by the assumption 0 < x < 1. Thus
|ES | + |EC(S)| ≥ 2. Since no e ∈ E goes between children of S, t(S) ≥ |ES | + |EC(S)|.
Consequently, since

∑
S∈L t(S) ≤ 2|E|, we get: t(S) = |ES | + |EC(S)| = 2 ∀S ∈ L.

Moreover, if an endnode of some e ∈ E belongs to no S ∈ L, then we get the contra-
diction

∑
S∈L t(S) ≥ 2|E|+ 1. Now we replace our equation system by an equivalent one{

x(ES)− x(EC(S)) = b′S : S ∈ L
}
obtained by elementary operations on the rows of the coef-

ficients matrix. Note that x∗ is also a unique solution to this new equation system. Moreover,
this equation system has exactly two variables in each equation and all its coefficients are
integral. By [13], the solution of such systems is always half-integral. J
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Let us say that Tree Augmentation instance is spider-shaped if every in-edge in
E is an up-edge. By a standard “iterative rounding” argument (cf. [18]), and using the
correspondence between rooted trees and laminar families, we get from Lemma 8:

I Corollary 9. Suppose that we are given a spider-shaped Tree Augmentation instance and
b ∈ NF . Let x be an extreme point of the polytope {x ∈ RE : x(ψ(f)) ≥ bf ∀f ∈ F, 0 ≤ x ≤ 1}.
Then x is half-integral (namely, xe ∈ {0, 1

2 , 1} for all e ∈ E) and xe ∈ {0, 1} for every e ∈ δ(r).

The algorithm that computes an integral solution of cost 4
3 (2C in +Ccr +Cr) is as follows.

We obtain a spider-shaped instance by removing all non-up in-edges and compute an optimal
extreme point solution x to the Cut-LP. By Corollary 9, x is half-integral and xe ∈ {0, 1}
for every e ∈ δ(r). We take into our solution every edge e with xe = 1 and round the
remaining 1/2 entries using the algorithm of Cheriyan, Jordán & Ravi [3], that showed how
to round a half-integral solution to the Cut-LP to integral solution within a factor of 4/3.
Thus we can compute a solution J of cost at most c(J) ≤ 4

3c
Tx ≤ 4

3c
Tx∗. We claim that

cTx ≤ 2C in + Ccr + Cr. To see this let E in be the set of in-edges and let x′ be the E in-up
vector of x∗. Then x′ is a feasible solution to the Cut-LP of value 2C in + Ccr + Cr, in the
obtained Tree Augmentation instance with all non-up in-edges removed. But since x is
an optimal solution to the same LP, we have cTx ≤ cTx′ = 2C in + Ccr + Cr. This concludes
the proof of Lemma 7 for the case of arbitrary costs.

Note that Corollary 9 implies a 4/3-approximation algorithm for spider-shaped Tree
Augmentation instances. Parallel to our work, a stronger result was proved in [10].

I Lemma 10 (Fiorini, Groß, Könemann & Sanitá [10]). Spider-shaped Tree Augmentation
instances can be solved optimally in polynomial time.

The following theorem illustrates an application of Lemma 10.

I Corollary 11. Tree Augmentation admits ratio 3/2 for trees of diameter ≤ 7.

Proof. The case diam(T ) = 7 is reduced to the case diam(T ) ≤ 6 by “guessing” some optimal
solution edge that covers the central T -edge. So assume that diam(T ) ≤ 6. Let r be a center
of T . Fix some optimal solution and let C in and Ccr denote the fractional cost of in-edges
and cross-edges in this solution. As before, apply the following two procedures.
1. Each branch B hanging on r is a tree of diameter ≤ 3, hence an optimal cover JB of B

can be computed in polynomial time. The union of the edge sets JB gives a solution of
cost at most C in + 2Ccr.

2. Compute an optimal solution of the spider-shaped instance obtained by removing all
non-up in-edges using Lemma 10; the cost of this solution is 2C in + Ccr.

Choosing the better among the two computed solutions gives a solution of cost at most
min{C in + 2Ccr, 2C in + Ccr}, while the optimal solution cost is C in + Ccr. It is easy to see
that the approximation ratio is bounded by 3/2; if C in ≤ Ccr then C in + 2Ccr ≤ 3

2 (C in +Ccr),
while if C in > Ccr then 2C in + Ccr < 3

2 (C in + Ccr). J

Corollary 11 can be used further to obtain ratio 9/5 for trees of diameter ≤ 15. In a
similar way, one can further obtain ratio better than 2 for trees of diameter ≤ 31, and so on,
but the ratio approaches 2 when the diameter becomes higher.

In the rest of this section we consider the case of unit costs. For this case we prove:

I Lemma 12. Let x be an extreme point of the polytope Π = {x ∈ ΠCut : C in
x = a,Ccr

x = b}
where a, b ≥ 0, such that xe > 0 for every cross-edge e. Then the graph (V,Ecr) of cross-edges
has no even cycle and each one of its connected components has at most one cycle.
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The proof of Lemma 12 will be given in the full version. From Lemma 12 we also get:

I Corollary 13. In the case of unit costs there exists a polynomial time algorithm that
computes x ∈ Π such that the graph (V,Ecr) of cross edges of positive x-value is a forest and
such that and C in

x = C in, Crx = Cr, and Ccr
x ≤ 4

3C
cr.

Proof. Let Π be as in Lemma 12 where a = C in and b = Cr and let x be an optimal extreme
point solution to the LP min{

∑
e∈E xe : x ∈ Π}. Let Q be a cycle of cross-edges and e the

minimum x-value edge in Q. We update x by adding xe to each of xe′ , xe′′ and setting xe = 0.
The increase in the value of x is at most 1

3
∑
e∈Q xe, and it is easy to see that x remains a

feasible solution. In this way we can eliminate all cycles, ending with x ∈ Π as required. J

Let x be as in Corollary 13 and let x′ be an E in-up vector of x. Note that x′ ∈ ΠCut, since
x ∈ ΠCut. We will show how to compute a solution J of size c(J) ≤ x′(E) ≤ 2C in + 4

3C
cr +Cr.

While there exists a pair of edges e = uv and e′ = u′v′ such that x′e, x′e′ > 0 and Tu′v′ ⊂ Tuv
we do x′e ← x′e + x′e′ and x′e′ ← 0. Then x′ remains a feasible solution to the Cut-LP
without changing the value (since we are in the case of unit costs). Hence we may assume
that there is no such pair of edges. Let E′ be the support of x′. If every leaf of T has some
cross-edge in E′ incident to it, then by the assumption above there are no up-edges. In this
case, since E′ is a forest, xe ≥ 1 for every e ∈ E′ and E′ is a solution as required.

Otherwise, there is a leaf v of T such that no cross-edge in E′ is incident to v. Then there
is a unique up-edge e incident to v, and x′e ≥ 1. We take such e into our partial solution,
updating x′ and E′ accordingly. Note that some cross-edges may become r-edges, but no
up-edge can become a cross-edge, and the set of cross-edges remains a forest. Applying this
as long as such leaf v exists, we arrive at the previous case, where adding E′ to the partial
solution gives a solution as required. This concludes the proof of Lemma 7.

3 An upper bound on the integrality gap of the Cut-LP (Theorem 2)

Let us write the Cut-LP as well as its dual LP explicitly:

min
∑
e∈E

xe max
∑
f∈F

yf

s.t.
∑

e∈ψ(f)

xe ≥ 1 ∀f ∈ F s.t.
∑

ψ(f)3e

yf ≤ 1 ∀e ∈ E

xe ≥ 0 ∀e ∈ E yf ≥ 0 ∀f ∈ F

To prove that the integrality gap of the Cut-LP is at most 28/15 = 2−2/15 we will show
that a simplified version from [16] of the algorithm of [9] has the desired performance. For
the analysis, we will use the dual fitting method. We will show how to construct a (possibly
infeasible) dual solution y ∈ RF+, that has the following two properties:
Property 1. y fully pays for the constructed solution J , namely, |J | ≤

∑
f∈F yf .

Property 2. y may violate the dual constraints by a factor of at most ρ = 28/15.
From the second property we get that y/ρ is a feasible dual solution, hence by weak duality
the value of y is at most ρ times the optimal value of the Cut-LP. Combining with the first
property we get that |J | is at most ρ times the optimal value of the Cut-LP.

The algorithm of [9, 16] iteratively finds a pair T ′, J ′ where T ′ is a subtree of the
current tree and J ′ covers T ′, contracts T ′, and adds J ′ to J . We refer to nodes created by
contractions as compound nodes and denote by C the set of non-leaf compound nodes of
the current tree. Non-compound nodes are referred to as original nodes. For technical
reasons, the root r is considered as a compound node, hence initially C = {r}.
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a b’b a

(ii)

b’

(i)

b

w

Figure 3 Dangerous trees. T -edges are shown by bold lines, edges in M by dashed lines, other
existing edges by thin solid lines, and edges that cannot exist by dotted lines. Original nodes are
shown by black circles, while nodes that may be compound are shown by gray circles. Some of the
edges may be paths, possibly of length 0. A dangerous tree of type (i) has two nodes with 2 children
each, and contracting the path between these two nodes results in a dangerous tree of type (ii).

To identify a pair T ′, J ′ as above, the algorithm maintains a matching M on the original
leaves. We denote by U the leaves of the current tree unmatched by M . A subtree T ′ of T is
M-compatible if for any bb′ ∈M either both b, b′ belong to T ′ or none of b, b′ belongs to
T ′; in this case we will also say that a contraction of T ′ is M -compatible. Assuming that
all compound nodes were created by M -compatible contractions, then the following type of
contractions is also M -compatible.

I Definition 14 (greedy contraction). Adding to the partial solution J an edge e with both
endnodes in U and contracting Te is called a greedy contraction.

Given a complete rooted M -compatible subtree T ′ of T let us use the following notation:
M ′ = M(T ′) is the set of edges in M with both endnodes in T ′.
U ′ = U(T ′) is the set of unmatched leaves of T ′.
C ′ = C(T ′) is the set of non-leaf compound nodes of T ′.

I Definition 15 (semi-closed tree). Let T ′ be a complete rooted subtree of T . For a subset
A of nodes of T ′ we say that T ′ is A-closed if there is no edge from A to a node outside
T ′, and T ′ is A-open otherwise. Given a matching M on the leaves of T , we say that T ′ is
semi-closed if it is M -compatible and U ′-closed.

The following definition characterizes semi-closed subtrees that we want to avoid. We
will say that T ′ with 3 leaves is of type (i) if it has two nodes with exactly two children each
(see the node w and its father in Fig. 3(i)) and T ′ is of type (ii) otherwise (see Fig. 3(ii)).

I Definition 16 (dangerous semi-closed tree). A semi-closed subtree T ′ of T is dangerous
if it is as in Fig. 3. Namely, |M ′| = 1, |U ′| = 1, |C ′| = 0, and if a is the leaf of T ′ unmatched
by M then: T ′ is a-closed and there exists an ordering b, b′ of the matched leaves of T ′ such
that ab′ ∈ E, the contraction of ab′ does not create a new leaf, and T ′ is b-open.

In [9, 17] the following is proved:

I Lemma 17 ([9, 17]). Suppose that the current tree T was obtained from the initial tree by
sequentially applying a greedy contraction or a semi-closed tree contraction, and that T has no
greedy contraction. Then there exists a polynomial time algorithm that finds a non-dangerous
semi-closed subtree T ′ of T and a cover J ′ of T ′ of size |J ′| = |M ′|+ |U ′|.

I Definition 18 (twin-edge, stem). An edge on L is a twin-edge if its contraction results in
a new leaf. The least common ancestor of the endnodes of a twin-edge is a stem.

Let L(M) denote the set of leaves matched by M . The algorithm is as follows:
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M M

(b)

4/5
load=28/15

(a)

load=28/15

4/5

1

14/15
load=28/15

2/15

2/15
1 1 1

4/5 4/514/15

Figure 4 (a) Initial duals at step 1 of Algorithm 3 and the initial loads. Here there is one stem
and |M | = 1. (b) After contracting the twin-edge, the new compound node has credit 1.

Algorithm 2: Iterative-Contraction(T = (V, F ), E)
1 initialize: M ← inclusionwise maximal matching on L among non-twin edges

J ← inclusionwise maximal matching on L \ L(M)
2 while do
3 T has at least 2 nodes
4 exhaust greedy contractions
5 if T has at least 2 nodes then for T, J ′ as in Lemma 17 do: J ← J ∪ J ′, T ← T/T ′

return J

We now describe how to construct y satisfying Properties 1 and 2. For simplicity of exposition,
we use the notation yv and yT ′ to denote the dual variable of the parent edge of v and of T ′,
respectively. With this notation, Algorithm 3 incorporates into Algorithm 2 the steps of the
construction of the dual (possibly infeasible) solution y.

Algorithm 3: Dual-Construction(T = (V, F ), E)
1 Initialize: M ← inclusionwise maximal matching on L among non-twin edges

J ← inclusionwise maximal matching on L \ L(M) (see Fig. 4)
• yv ← 1 if v ∈ L \ L(M ∪ J)
• yv ← 4/5 if v ∈ L(M)
• yv ← 14/15 if v ∈ L(J)
• yv ← 2/15 if v is a stem of an edge in J

2 while do
3 T has at least 2 nodes
4 exhaust greedy contractions
5 if T has at least 2 nodes then for T, J ′ as in Lemma 17 do: J ← J ∪ J ′, T ← T/T ′

Case 1: |C ′| = 0 and either: |M ′| = 0 or |M ′| = 1, |U ′| ≥ 2
• yT ′ ← 2/5
• yv ← yv + 2/5 if v ∈ U ′ and yv ← yv − 2/5 if v ∈ L′ \ U ′

Case 2: |C ′| = 0 and |M ′| = |U ′| = 1
• update y as shown in Fig. 5 return J

We now define certain quantities that will help us to prove that at the end of the algorithm
|J | ≤

∑
f∈F yf and that y violates the dual constraints by a factor of at most 28/15.

I Definition 19 (load of an edge). Given y ∈ RF+ and an edge e = uv, the load σ(e) of e is
the sum of the dual variables in the constraint of e in the dual LP, namely σe =

∑
ψ(f)3e yf .

I Definition 20 (credit of a node). Consider a constructed dual solution y and a node c
of T/J during the algorithm, where c is obtained by contracting the subtree T ′ of T . The
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Figure 5 Non-dangerous trees with |M ′| = |U ′| = 1 and duals updates in Case 2 of Algorithm 3.
Here “+” means increasing the dual variable by 2/5 and “−” means decreasing the dual variable by
2/5. All trees are a-closed. The trees in (a,b) are non-dangerous trees of type (i), and the trees in
(c,d,e) are non-dangerous trees of type (ii). In (a) the edge ab′ is missing and in (b) ab′ is present
and T ′ is b-closed. In (c) both ab and ab′ are present, hence to be non-dangerous the tree must be
both b′-closed and b-closed. In (d) ab′ is present hence the tree must be b-closed; the case when ab
present and the tree is b′-closed is identical. In (e) both ab and ab′ are missing.

credit π(c) is defined as follows. Let π′(c) be the sum of the dual variables y of the edges of
T ′ and the parent edge of v minus the number of edges used by the algorithm to contract T ′
into c. Then π(c) = π′(c) + 1 if r ∈ T ′ and π(c) = π′(c) otherwise.

We need to prove that at the end of the algorithm, σ(e) ≤ 28/15 for all e ∈ E and that
the unique node of T has credit ≥ 1. For an edge e = uv the level `(e) of e is the number of
endnodes of e in the leaves and compound nodes of T . Clearly, `(e) ∈ {0, 1, 2} and if both
endnodes of e lie in the same compound node then `(e) = 2. In the full version we prove:

I Lemma 21. At the end of step 1 of the algorithm, and then at the end of every iteration
in the “while” loop, the following holds.

For any edge e: σ(e) ≤ 28
15 if `(e) = 2, σ(e) ≤ 16

15 if `(e) = 1, and σ(e) = 0 if `(e) = 0.
π(c) ≥ 1 if c is an unmatched leaf or a compound node of T .

The following LP-relaxation was suggested by the author several years ago. We call an
odd size set B of T -edges a bunch if no two edges of B lie on the same path in T . Let B
denote the set of bunches in T . For any B ∈ B at least wB = (|B|+ 1)/2 edges are needed
to cover B. The corresponding Bunch-LP and its dual LP are:

min
∑
e∈E

xe max
∑
B∈B

wByB

s.t.
∑

e∈ψ(B)

xe ≥ wB ∀B ∈ B s.t.
∑

ψ(B)3e

yB ≤ 1 ∀e ∈ E

xe ≥ 0 ∀e ∈ E yB ≥ 0 ∀B ∈ B

A k-bunch is a bunch of size k. Let k-Bunch-LP be the restriction of the Bunch-LP to
bunches of size ≤ k. Note that Theorem 1 says that the integrality gap of the 1-Bunch-LP
is at most 28/15. We can easily prove a much netter bound for the 3-Bunch-LP.

I Theorem 22. For unit costs, the integrality gap of the 3-Bunch-LP is at most 7/4.

Proof. We use the same algorithm but define the dual variables slightly differently. In the
initialization step we set yv ← 1 if v ∈ L \ L(M ∪ J), yv ← 3/4 if v ∈ L(M), yv ← 1/2 if
v ∈ L(J), and yB ← 1/2 if B is the set of the 3 T -edges incident to a stem of an edge in J .

In Case 1 we update yT ′ ← 1/2, yv ← yv + 1/2 if v ∈ U ′ and yv ← yv − 1/2 if v ∈ L′ \U ′.
In Case 2 we update y as shown in Fig. 5, where here “−” means decreasing the dual

variable by 1/2 and:
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In (a), yB ← yB + 1/2 where B is the 3-bunch formed by the parent edges of a, b, w.
In (b,c,d,e) “+” means increasing the dual variable by 1/2.

The rest of the proof of Theorem 22 is similar to that of Theorem 2, and will be presented in
the full version of the paper. J
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Abstract
We consider constrained versions of the prize-collecting traveling salesman and the minimum span-
ning tree problems. The goal is to maximize the number of vertices in the returned tour/tree
subject to a bound on the tour/tree cost. We present a 2-approximation algorithm for these
problems based on a primal-dual approach. The algorithm relies on finding a threshold value for
the dual variable corresponding to the budget constraint in the primal and then carefully con-
structing a tour/tree that is just within budget. Thereby, we improve the best-known guarantees
from 3 + ε and 2 + ε for the tree and the tour version, respectively. Our analysis extends to the
setting with weighted vertices, in which we want to maximize the total weight of vertices in the
tour/tree subject to the same budget constraint.
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1 Introduction

In the classical traveling salesman problem, we are given an undirected graph G = (V,E)
with edge costs ce ≥ 0 for all e ∈ E. The goal is to construct a tour visiting all vertices
in the graph while minimizing the cost of edges in the tour. If, however, we are given a
bound on the cost of the tour, then we may not be able to visit all vertices. In particular,
suppose that we are given a budget D ≥ 0. In the budgeted prize-collecting traveling
salesman problem, a valid tour is a multiset of edges F such that (a) F specifies a tour
on a subset S ⊆ V and (b) the cost of the edges in F is at most D. The goal is to find a
valid tour F that maximizes |S|, the number of vertices visited. Here, we do not require
the graph to be complete and allow a tour to visit nodes more than once. Similarly, in the
budgeted prize-collecting minimum spanning tree problem, a valid tree is a set of
edges T such that (a) T specifies a spanning tree on a subset S ⊆ V and (b) the cost of the
edges in T is at most D. Again, the goal is to find a valid tree T that maximizes |S|.
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The budgeted version of the traveling salesman problem arises naturally in many routing
problems that have a distance or time constraint. For example, a bikeshare system has
bike stations located around a city that may need repair. Throughout the day, the system
operator wants to route a repairman over his work period while maximizing the number of
stations that receive maintenance (in fact, this precise question emerged from our ongoing
work with New York City Bikeshare [11]). We can represent this problem as a budgeted
prize-collecting traveling salesman problem. Further, we can also capture the setting where
stations have varying importance; we discuss in Section 6 how to extend our algorithm to
a setting in which vertices have weights and the goal is to maximize the weight of vertices
visited. In Section 7, we apply our algorithm to instances using Citi Bike data in New
York City. The budgeted version of the minimum spanning tree also arises in a range of
applications, including telecommunication network design problems where an infrastructure
budget is weighed against the number of customers served.

In this paper, we present a 2-approximation algorithm for both problems. Our algorithm
is based on a primal-dual subroutine which uses a linear programming relaxation of this
problem. First, we search for a “good” value for the dual variable corresponding to the
budget constraint in the primal. Having set this variable, we can then increase the other
dual variables and form a forest of edges whose corresponding dual constraint is tight. For
the tour problem, we then choose a tree in this forest and carefully prune it so that doubling
this tree forms a tour that will be just within budget. For the tree problem, we prune edges
such that the tree itself is just within budget. Lastly, we show that either our constructed
tour/tree is within a factor of 2 of optimal or we can identify a subgraph to recurse on.

Literature Review

There have been many prize-collecting variants of both the traveling salesman problem
(TSP) and the minimum spanning tree problem (MST) that seek to balance the number of
vertices in the tree or tour with the cost of edges used. Johnson, Minkoff, and Phillips [16]
characterize four main variants of prize-collecting MST problems: the Goemans-Williamson
Minimization problem that minimizes the cost of edges plus a penalty for vertices not in the
tree, the Net Worth Maximization problem that maximizes the weight of vertices in the tree
minus the cost of used edges, the Quota problem that minimizes the cost of a tree containing
at least Q vertices, and, finally, the Budget problem that maximizes the number of vertices
in the tree subject to the cost of the tree being at most D. All of the variants above can be
extended to a corresponding TSP version that constructs a tour rather than a tree.

Our algorithm is most similar to that of Garg [13], who presents a 2-approximation
algorithm for the Quota problem for MST, improving upon the previous results of Garg [12],
Arya and Ramesh [2], and Blum, Ravi, and Vempala [4]. Johnson et al. [16] observe that a
2-approximation algorithm to the Quota problem yields a (3 + ε)-approximation algorithm
to the corresponding Budget problem. To our knowledge this was the previously best-known
guarantee for the MST variant. Prior to this result, Levin [18] proved a (4+ ε)-approximation
algorithm. Our 2-approximation algorithm for the budgeted prize-collecting MST thus
improves upon the best known approximation ratio. While our algorithm is similar to that
of Garg [13], our analysis differs in how we find the threshold value for the dual variable;
further, our overall proof relies on more precise accounting.

For the Goemans-Williamson Minimization problem for MST, Archer et al. [1] obtain a
(2− ε)-approximation guarantee, improving upon the long-standing bound of 2 obtained by
Goemans and Williamson [14] in 1995. Further, Archer et al. [1] successfully applied this
algorithm to telecommunication network problems. Lastly, Feigenbaum et al. [9] show the
Net Worth Maximization problem for MST is NP-hard to approximate within any constant.
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To the best of our knowledge, the previous best approximation guarantee for the budgeted
prize-collecting TSP arises from a special case of a result by Chekuri, Korula, and Pál [6].
Their work provides a (2 + ε)-approximation algorithm for the more general orienteering
problem, where the goal is to find an s− t path, where s and t are given, with bounded cost
that maximizes the number of vertices visited on the path. By setting s = t and iterating over
all vertices, this yields a (2 + ε)-approximation algorithm for the budgeted prize-collecting
TSP. The orienteering problem itself has attracted much attention within the combinatorial
optimization community, with other variants studied by [21], [5], [8], [7], and [15].

There exist other adaptations of prize-collecting problems not discussed above. Specifically,
Ausiello, Demange, Laura, and Paschos [3] present a 2-approximation algorithm for an on-line
variant of the Quota problem for the TSP. Frederickson and Wittman [10] study the so-called
traveling repairmen problem, in which each vertex can only be visited within a specific time
window and the goal is to either maximize the number of vertices visited within a certain time
period or to minimize the time visiting all vertices; they give constant-factor approximation
algorithms for both variations of this problem. Lastly, Nagarajan and Ravi [19] study the
problem of minimizing the number of tours to cover all vertices subject to each tour having
bounded distance. They give a 2-approximation algorithm for tree metric distances.

The paper is structured as follows. In Section 2, we present the linear programming (LP)
relaxation for the budgeted prize-collecting traveling salesman problem. In Section 3, we use
this LP to present the primal-dual subroutine that will inform our decisions and develop
some intuition behind what types of tours will be near optimal. In Section 4, we show how
to set the dual variable corresponding to the budget constraint, and in Section 5, we show
how to construct our proposed tour. In Section 6, we prove that our overall algorithm is a
2-approximation algorithm and present computational experiments in Section 7. For ease of
presentation, we present only our result for the budgeted prize-collecting traveling salesman
problem but the analysis extends easily to the corresponding MST case.

2 Notation

For each S ⊆ V , let zS ∈ {0, 1} be a variable representing whether or not we choose to tour
the vertices in S, and for each edge e ∈ E, let xe ∈ Z+ be a variable representing how many
copies of e to include in the tour. Then, the following is a linear programming relaxation for
the budgeted prize-collecting traveling salesman problem.

maximize
∑
S⊆V

|S|zS

subject to
∑

e:e∈δ(S)

xe ≥ 2
∑

T :S⊂T
zT ∀S ⊂ V

∑
e∈E

cexe ≤ D∑
S⊆V

zS ≤ 1

zS , xe ≥ 0

The first constraint states that if we choose to tour a subset T such that S ⊂ T then we
must have at least two edges across the cut S. The dual of this linear program is given by
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the following.

minimize Λ1D + Λ2

subject to (2
∑

T :T⊂S
yT ) + Λ2 ≥ |S| ∀S ⊆ V∑

S:e∈δ(S)

yS ≤ Λ1ce ∀e ∈ E

Λ1,Λ2, yS ≥ 0

In order to construct a tour, we will rely on a primal-dual subroutine. We first note in
Theorem 2 that if we find Λ1 ≥ 0 and yS ≥ 0 that satisfy the dual constraint for every edge,
then we can always set Λ2 such that we have a full feasible dual solution. Suppose that we
first set the value of Λ1. The primal-dual subroutine will use this set value to construct a
full dual solution and corresponding potential tours. These tours may or may not be feasible
with respect to the budget constraint. Therefore, we will adjust Λ1 to find a feasible solution
with bounded approximation ratio.

3 Primal-Dual Subroutine

The primal-dual subroutine for a fixed Λ1 is similar to the 2-approximation algorithm for
the prize-collecting traveling salesman problem without a budget constraint presented by
Goemans and Williamson [14]. Initially, we set all yS to be 0 and set our collection of active
sets to be all singleton nodes. Then, in each iteration, we increase yS corresponding to all
S ⊂ V in the collection of active sets until either a dual constraint for an edge between two
sets becomes tight, or a set becomes neutral.

I Definition 1. We say a subset S ⊆ V is neutral if 2
∑
T :T⊆S yT = |S|.

If an edge becomes tight between two subsets S1 and S2, we add the edge to our solution
and remove both S1 and S2 from the collection of active sets and add S1 ∪ S2 to it. If a set
becomes neutral, we mark the set as inactive and remove it from the collection of active sets.
Once the collection of active sets is empty, we prune inactive sets of degree 1 and return the
remaining edges in our solution (cf. Algorithm 1).

Algorithm 1 Primal-Dual Algorithm (PD(λ1))
1: procedure PD(λ1 ≥ 0)
2: yS ← 0, Λ1 ← λ1, T ← {}.
3: mark all i ∈ V as active.
4: while there exists an active subset do
5: raise yS uniformly for all active subsets S until either
6: if an active set S becomes neutral then
7: mark S as inactive.
8: else if the dual constraint for edge e between S1 and S2 becomes tight then
9: T ← T ∪ {e}.

10: mark S = S1 ∪ S2 as active, remove S1 and S2 from the active subsets.
11: T ′ ← T .
12: while there exists a set S marked inactive such that |δ(S) ∩ T ′| = 1 do
13: remove all edges with at least one endpoint in S from T ′.

return two of each edge in T ′.
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Properties of the algorithm PD(λ1) (by construction)

1. The algorithm terminates in polynomial time.
2. Throughout the algorithm, T is a forest, and by extension T ′ is a forest.
3. For all edges, the corresponding dual constraint is satisfied.
4. For all e ∈ T , the dual constraint for e is tight.

I Theorem 2. Given λ1 ≥ 0, let y be as created by the algorithm. Then, there exists a value
λ2 ≥ 0 such that (y, λ1, λ2) is a feasible dual solution.

Proof. Since all edge constraints are satisfied, we may set λ2 to the maximum of zero and

min
S⊆V

[
|S| − (2

∑
T :T⊂S

yT )
]
.

By construction, all dual constraints will be satisfied. J

3.1 Analysis
In this section, we assume that we have set Λ1 = λ1 in the primal-dual subroutine such that
we produced a feasible dual solution (y, λ1, λ2) (where we may not know the actual value of
λ2). We let S be the collection of sets that were active in some iteration of the algorithm
and let S+ = S ∪ {V }. Since any set in S is either a single node or the union of other sets in
S, this is a laminar collection.

I Lemma 3. For any S ⊆ V , (2
∑
T :T⊆S yT ) ≤ |S|.

Proof. Any set S can be divided into maximal disjoint laminar sets S1, S2, . . . , Sc ∈ S.
Therefore,

2
∑

T :T⊆S
yT = 2

c∑
i=1

∑
T :T⊆Si

yT ≤
c∑
i=1
|Si| = |S|,

where the inequality comes from the fact that we make inactive any neutral subset. J

We first define a potential π(S) for each subset S ⊆ V . These values will help us find an
upper bound on the size of a feasible tour.

I Definition 4. For any subset S ⊆ V , we define the potential of S to be

π(S) := |S| − (2
∑

T :T⊂S
yT ).

For a set S ∈ S, π(S) is exactly equal to twice the amount that we could have increased yS
until S went neutral. In particular, if S was formed by the union of S1 and S2, then

π(S) = π(S1) + π(S2)− 2yS1 − 2yS2 .

If S2 went inactive before merging with S1, then this simplifies to π(S) = π(S1)− 2yS1 .
Given these potentials and our constructed dual solution, we give a bound on the size of

an optimal solution.

I Theorem 5. Let O? be an optimal subset of vertices to tour and F ? be the edges in an
optimal tour on O?. Further, let O be the minimal set in S+ that contains O?. Since V ∈ S+,
such a set always exists. Then,

|O?| ≤ λ1D + π(O).

Proof. We provide the proof in the full version of the paper. J

ESA 2017



62:6 Prize-Collecting TSP with a Budget Constraint

Given the bound in Theorem 5, we argue that to construct a good tour we should try to
find a tree T̄ with cost close to 1

2D such that the set S̄ of spanned vertices has high potential.
Then, doubling this tree will give a feasible tour close to optimal. In order to find such a
tree, we first rely on finding a good value of Λ1.

4 Setting Λ1

Our goal is to set Λ1 so as to find a tree with cost very close to 1
2D. Note that Λ1 controls

the cost of the edges, and as Λ1 increases, edges become more expensive yielding smaller
connected components in the primal-dual subroutine. In particular, for Λ1 = 0 all edges
go tight immediately and for Λ1 > n/(2 mine:ce>0 ce) all vertices go neutral before a single
non-zero edge goes tight. When edges go tight and subsets go neutral at the same time,
we may assume that subset events are considered first. Further, we assume that we break
edge/subset ties using cost/size and then some known ordering (e.g. lexicographical).

If a minimum spanning tree on the graph has cost ≤ 1
2D, then we double this tree to get

a feasible and optimal tour. Otherwise, suppose that we have found values l and r (l < r)
such that when we run PD(l+) the largest component in T ′ has cost ≥ 1

2D and when we
run PD(r−) the largest component in T ′ has cost < 1

2D. Here, x− = x− ε and x+ = x+ ε

where ε is infinitesimally small.

I Lemma 6. In polynomial time, we can find a threshold value λ1 such that when we run
PD(λ−1 ) the largest component in T ′ has cost ≥ 1

2D and when we run PD(λ+
1 ) the largest

component in T ′ has cost < 1
2D.

Proof. We refer to an edge going tight during the primal-dual subroutine as an edge event
and we refer to a subset going neutral as a subset event. Assume we have values l and r
such that the first k events are the same when running the subroutine for any Λ1 between l+
and r−. Further, assume that for each subset S we can find values αS and βS such that at
the end of the first k events y(S) = Λ1αS + βS for any Λ1 between l+ and r−. Note that
this is trivially true for the base case with l and r defined above and k = 0 since all y values
will be zero.

To find the next event to occur, we need to find the time after the kth event that each
subset will go neutral and each edge will go tight. Observe that an active set S will go
neutral at time

1
2 |S| −

∑
T⊆S

yT = 1
2 |S| −

∑
T⊆S

[Λ1αT + βT ],

an edge with exactly one endpoint in an active component will go tight at time

Λ1ce −
∑

T :e∈δ(T )

yT = Λ1ce −
∑

T :e∈δ(T )

[Λ1αT + βT ],

and an edge with both endpoints in different active components will go tight at time 1
2 the

above amount. The minimum of these values will determine the next event to occur. Since
all these times are affine in Λ1, we can divide the interval between l+ and r− into smaller
subintervals such that the first k + 1 events will be identical on these subintervals. See
Figure 1.

By looking at these subintervals, either we identify a threshold point λ1 or there exists a
subinterval between l+new and r−new such that when we run PD(l+new) the largest component
in T ′ has cost ≥ 1

2D and when we run PD(r−new) the largest component in T ′ has cost < 1
2D.
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Figure 1 Finding the subintervals between l and r where the time of the next event is in bold.

Further, since the time of the (k + 1)th event is an affine function in Λ1, we can add this
function to the affine function y(S) for each active set S to get the new affine function for
this y value, updating the α’s and β’s accordingly. Thus, the inductive hypothesis holds and
eventually we can find a threshold point λ1. J

We use this threshold point λ1 to understand the subroutine for PD(λ1). Consider
running the subroutine for λ+

1 and λ−1 and comparing event by event. We let y+ correspond
to the y variables when running PD(λ+

1 ) and y− to the y variables when running PD(λ−1 ).

I Lemma 7. Throughout the two subroutines, the following two properties hold:
All active components in (V, T ) are the same.
For all S ⊆ V , the difference between y+

S and y−S is infinitesimally small.

Proof. At the start of the subroutines this is true since all y+ and y− variables are zero.
Now assume that this is true at some time t into the subroutines. As argued above, the next
event to occur depends on the minimum of functions linear in Λ1. Further, since the current
active components are the same, the possible subset and edge events are the same.

In particular, the time for each subset to go neutral in PD(λ+
1 ) is 1

2 |S| −
∑
T⊆S y

+
T , and

is infinitesimally different from the time for that subset to go neutral in PD(λ−1 ). Similarly,
the time for each edge to go tight is infinitesimally different between the two subroutines.
Therefore, the next event to occur is only different between the two subroutines if two events
occur at the same time for PD(λ1).

If the next event is the same for the two subroutines, then the active components will
remain the same and we raise all active components by an infinitesimally different amount.
Therefore, the inductive properties will continue to hold. Otherwise, suppose the next event
is different. We consider four cases:
1. Subset X goes neutral for PD(λ−1 ) and subset Y goes neutral for PD(λ+

1 ).
2. Edge e goes tight for PD(λ−1 ) and edge f goes tight for PD(λ+

1 ).
3. Edge e goes tight for PD(λ−1 ) and subset X goes neutral for PD(λ+

1 ).
4. Subset X goes neutral for PD(λ−1 ) and edge e goes tight for PD(λ+

1 ).

In the first case, the times for both X and Y to go neutral must be infinitesimally different
and the other subset will go neutral immediately after the first. Therefore, after both X and
Y go neutral, the amount that we have raised all y variables will be infinitesimally different
and the current active components will be the same. Thus, the two inductive properties will
continue to hold.

Similarly for the second case, if e and f are not between the same two components, the
other edge will go tight immediately after, and the inductive properties will continue to hold.
Otherwise, e and f are between the same components. Thus, when e goes tight, f is no
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longer eligible to go tight but the newly merged active component will be the same for both
subroutines. Again, the inductive properties will continue to hold.

In the third case, if edge e has an endpoint in an active component that is not X, then e
will go tight immediately after X goes neutral for PD(λ+

1 ) and the components will remain
the same, maintaining the inductive properties. Otherwise, one endpoint of e must be in
X and the other endpoint of e is in an inactive component, and right after e goes tight for
PD(λ−1 ), the newly merged subset will have infinitesimally small remaining potential and
will go inactive immediately. Again, this maintains the inductive properties.

Lastly, note that the time for a subset to go neutral has a negative slope in Λ1 and the
time for an edge to go tight has a positive slope in Λ1. Since λ+

1 > λ−1 and the y variables are
infinitesimally different, the fourth case cannot occur. In all cases, the inductive properties
continue to hold and the lemma holds. J

The proof of Lemma 7 exactly exhibits the differences between the two subroutines. First,
there may be subsets that are neutral and marked inactive in PD(λ+

1 ) but have infinitesimally
small potential in PD(λ−1 ). Second, there may be pairs of edges that went tight between
the same components. Lastly, there may be edges in PD(λ−1 ) that do not exist in PD(λ+

1 ).
However, these edges are between inactive components and components with infinitesimally
small potential. Therefore, these edges will be pruned in PD(λ−1 ) and will not contribute to
the component of size ≥ 1

2D.
Since we assume we break ties by considering subsets before edges and lower weight edges

first, PD(λ1) will behave the same as PD(λ+
1 ). Therefore, the largest component in T ′ when

running PD(λ1) has cost < 1
2D. However, we can think about reversing these ties one by

one. In particular, consider breaking the first i ties according to PD(λ−1 ) and then the rest
by PD(λ+

1 ). By the analysis in Lemma 7, reversing these ties will not change the y variables
or active components. The only difference will be going into the pruning phrase.

Thus, eventually we find the smallest k such that breaking the first k ties according to
PD(λ−1 ) yields a component of size ≥ 1

2D. In other words, we have either identified a neutral
subset S such that marking S active rather than inactive changes the largest component to
have size ≥ 1

2D or we have identified two edges e and f that tie such that adding e instead
of f changes the largest component to have size ≥ 1

2D. From here on, we assume that we
always run PD(λ1) according to these tie-breaking rules.

5 Constructing a Tour

Let y be all of the dual variables for PD(λ1), let T ′ be the set of edges after the pruning
phase, and let S be defined as before. Lastly, let π(S) be the potential of S ⊆ V given y.
By construction, the largest component returned by PD(λ1) has size ≥ 1

2D. Recall from
Section 4 that either
1. there exists a neutral subset X ∈ S such that if X is marked inactive then the largest

component in T ′ has cost < 1
2D or

2. there exist tight edges e ∈ T and f /∈ T such that if we swap e with f in T then the
largest component has size < 1

2D.
In the first case, whenX is marked inactive, then a path of neutral subsetsN1, N2, . . . , Nr = X

is pruned yielding a component S1 with cost < 1
2D. Similarly, in the second case, having the

edge e prevented some neutral subsets N1, N2, . . . , Nr from being pruned that had degree
> 1. However, by removing e and replacing it with f , these subsets are pruned and we are
left with component S1 with cost < 1

2D. See Figures 2a and 2b.
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S1

N1 N2 Nr = X
. . .

(a) Case 1: Marking X as inactive.

S1f

e
N1 N2 Nr

(b) Case 2: Replacing e with f .

Figure 2 Neutral subsets pruned in each case to yield component S1 with cost < 1
2 D.

For both cases, we will use this threshold event to produce a tree TA on a subset of
vertices SA of cost ≤ 1

2D. In doing so, we will also find another tree T̄ on a subset of vertices
S̄ of cost ≥ 1

2D such that |SA| ≥ |S̄| − 1. Then, doubling TA will yield a feasible tour FA
that visits almost as many vertices as in S̄. The tree T̄ will be helpful in obtaining a lower
bound for |SA|.

We start by setting TA to be the edges in T ′ that span S1. By construction, these edges
have cost < 1

2D. We will then try to grow TA as much as possible along the path from S1
to N1, N2, . . . , Nr. First, suppose that we can add this full path and the edges that span
each Ni to TA without going over cost 1

2D. Then, we set TA to be this expanded tree and
SA = S1 ∪ N1 ∪ . . . ∪ Nr. Further, we set T̄ to be the edges in T ′ in the corresponding
component at the end of PD(λ1). By construction, the cost of T̄ is ≥ 1

2D and |SA| ≥ |S̄|.

Otherwise, we continue to add N1, N2, . . . to our tree until we reach a component X̄ ∈
{N1, N2, . . . , Nr} such that adding the edges that span X̄ to TA implies that

∑
e∈TA

ce >
1
2D.

In other words, we cannot add this whole subset to our tree without going over budget. Let
e = (u, v) be the edge that connects X̄ to TA in T ′. If adding e to TA already brings the
cost of TA strictly over 1

2D, then we stop growing TA and set T̄ = TA ∪ {e}. Otherwise, we
add e to TA and run a procedure pick(X̄, v, T̄ ) that will pick a subset of the edges spanning
X̄ including v.

Specifically, the procedure pick(X,w, TA) adds to TA a set of edges in T ′ that span a
subset of component X including w. We denote by X1, X2 ∈ S the two components that
merged to form X and by e′ = (u, v) the edge that connects X1 and X2 in T ′. Without loss
of generality, u ∈ X1, v ∈ X2. Further, let T ′1 and T ′2 be the edges in T ′ with both endpoints
in X1 and X2, respectively. See Figure 3.

If the total cost of edges in TA ∪ T ′1 is greater than 1
2D, then we know we should only

add edges in this subtree to TA and we recursively invoke pick(X1, w, TA). If instead the
total cost of edges in TA ∪ T ′1 ∪ {e′} is less than 1

2D, then we can feasibly add all edges in
T ′1 and e′ without going over budget. Thus, the procedure adds all these edges to TA and
recursively invokes pick(X2, v, TA) to pick the remaining edges in T ′2. Finally, if the cost of
edges in TA ∪ T ′1 is less than or equal to 1

2D, but greater than 1
2D − ce′ , then we cannot

quite make it to T ′2 without going over budget. In this case, the procedure adds all edges in
T ′1 to TA and sets T̄ = TA ∪ {e′}.

At the end of the procedure, we produce a tree TA of cost ≤ 1
2D that spans a subset SA

along with a tree T̄ of cost ≥ 1
2D that spans a subset S̄ where |S̄| ≤ |SA|+ 1. Further, if

|S̄| = |SA|+ 1, then T̄ has cost > 1
2D.
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u v
w

T ′1 T ′2

X̄

Figure 3 Illustration of the pick procedure.

5.1 Properties of T̄
We have now constructed a tree TA of cost ≤ 1

2D that spans a subset SA along with a tree
T̄ of cost ≥ 1

2D that spans a subset S̄ containing at most one more vertex than SA. Further,
if |S̄| = |SA|+ 1, then T̄ has cost > 1

2D. We will use T̄ to prove a bound on |S̄|, which in
turn will give a bound on |SA|.

Let Q ∈ S be a subset containing S̄. Since S̄ is a subset of an active set, such a set will
always exist. Our goal will be to show that

|SA| ≥
1
2λ1D + π(Q)− 1.

Let v̄ = S̄ − SA (possibly equal to ∅). We first state the following useful lemma. Since the
proof closely resembles that of Goemans and Williamson [14] for the Prize-Collecting Steiner
Tree Problem, we defer the proof to the full version of the paper.

I Lemma 8.∑
e∈T̄

∑
S:e∈δ(S)

yS ≤ 2
∑

T :T ∩S̄ 6=∅
v̄ /∈T

yT . (1)

I Theorem 9. Let Q be any set in S containing S̄. Then,

|SA| >
1
2λ1D + π(Q)− 1.

Proof. Vertices in Q− S̄ are either in a neutral subset N (the combination of pruned subsets
and Ni not reached) or are in the set X̄ ∈ {N1, N2, . . . , Nr} that we started our pick routine
on. Let SN be all subsets in S that are subsets of N . By the definition of neutral subsets,

|N | = 2
∑

T :T∈SN

yT .

Similarly, let SX be all subsets in S that are subsets of X̄ and contain vertices in X̄ − S̄.
These are all the previously active subsets T such that yT > 0 and T contains vertices in
X̄ − S̄ before the set X̄ went neutral. Thus,

|X̄ − S̄| ≤ 2
∑

T :T∈SX

yT .

Any subset in S that contains vertices in S̄ and X̄ − S̄ must contain v. Therefore, the only
subsets of Q that are not in SN or SX are those that contain a subset of S̄ but do not
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contain v̄. In other words,

|Q| = 2
∑

T :T⊆Q
yT + π(Q)

≥ 2
∑

T :T ∩S̄ 6=∅
v̄ /∈T

yT + 2
∑
T∈SN

yT + 2
∑

T :T∈SX

yT + π(Q) ≥ 2
∑

T :T ∩S̄ 6=∅
v̄ /∈T

yT + |Q− S̄|+ π(Q)

Rearranging,

|S̄| ≥ 2
∑

T :T ∩S̄ 6=∅
v̄ /∈T

yT + π(Q) ≥
∑
e∈T̄

∑
S:e∈δ(S)

yS + π(Q) = λ1 ·
∑
e∈T̄

ce + π(Q).

The second inequality follows from Lemma 8 and the third from property 4 of the algorithm.
If |S̄| = |SA|, then we are done. Otherwise, suppose that |S̄| = |SA|+1. Then,

∑
e∈T̄ ce >

1
2D.

In either case, the theorem holds. J

6 Approximation Ratio

The previous sections show that we can produce a feasible tour FA on a subset SA such that
|SA| > 1

2λ1D + π(Q) − 1, where Q is the set in S of maximum potential that contains S̄.
Recall from Theorem 5, that for an optimal subset of vertices O?, |O?| ≤ λ1D+ π(O), where
O is the minimal subset in S+ that contains O?. Suppose that π(Q) ≥ π(O). In this case,

|SA|+ 1 > 1
2 [λ1D + π(O)] ≥ 1

2 |O
?|.

Without loss of generality, assume |O?| is even (we can always make a copy of each vertex
that has an edge of cost zero incident to the original). This implies that |SA| ≥ 1

2 |O
?|.

On the other hand, suppose that π(Q) < π(O). By the definition of Q, Q 6⊆ O since Q
was the set of maximum potential that contained S̄. Thus, either O is contained in a laminar
set that is a strict subset of Q (and does not contain all vertices in S̄) or O is disjoint from
Q. By looking at the maximal sets with potential higher than π(Q), we can recurse on each
disjoint subgraph and return the best solution found. Overall, this shows that we can find a
feasible tour FA on a subset SA such that |SA| ≥ 1

2 |O
?|.

I Theorem 10. The described algorithm is a 2-approximation for the budgeted prize-collecting
traveling salesman problem.

To see that this algorithm extends to the weighted version, imagine creating copies of
each vertex v with zero cost edges to v. Since all these edges will go tight instantaneously in
the primal-dual subroutine, we can actually just begin the algorithm with these weighted
“clusters” as our initial active sets with potential equal to the weight of v.

7 Computational Experiments

In this section, we complete computational experiments in order to better understand the
performance of our algorithm in practice. The primal-dual algorithm as detailed in this
paper was implemented in C++11 using binary search to find λ1. The experiments were
conducted on a Dell R620 with two Intel 2.70GHz 8-core processors and 96GB of RAM.

The first set of graphs we used for the experiments are the 37 symmetric TSP instances
with at most 400 nodes in the TSPLIB data set [20]. The second set of graphs are 37 weighted
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Table 1 Graph statistics for each group of graphs averaged over all instances.

Instance Type |V | |E| Total Vertex Weight
TSPLIB 158.14 15658.43 158.14

Bike 319.54 4634.77 1302.51

Table 2 Computational results of the primal-dual algorithm for each group of graphs and budget
with results averaged over all instances.

Instance Type f Time (s) # Recursions % Opt. Gap % Weight % Budget
TSPLIB 0.25 74.16 0.59 46.67 33.06 77.38
TSPLIB 0.5 72.61 0.14 41.89 58.08 69.89
TSPLIB 0.75 71.24 0.22 18.62 81.38 68.80

Bike 0.25 25.15 0.28 45.74 43.37 66.90
Bike 0.5 33.21 0.28 25.89 74.01 67.13
Bike 0.75 30.46 0.05 8.29 91.68 67.37

instances constructed using the Citi Bike network of bikesharing stations in New York City.
Each instance corresponds to a week of usage data at these stations, and the weight of a
vertex corresponds to the number of broken docks at that station during that week. The
number of broken docks was estimated from the usage data using a similar probabilistic
method to that of Kaspi, Raviv, and Tzur [17]. Details about both types of constructed
instances are given in Table 1.

For each test graph G, we first found an upper bound on the cost of a tour by computing
2 times the cost of a minimum spanning tree in G. We then set the budget for our tour to
be f = 25%, 50%, or 75% of this upper bound. W denotes the total weight of the vertices,
for TSPLIB instances, the number of vertices. After finding our solution of weight A, we
compute an upper bound on the weight of visited vertices U = min(λ1D + maxS∈S π(S),W )
and record the percent optimality gap as 100 × (U − A)/U . Results are given in Table 2.
Column 6 gives the percentage of the total weight W captured by the constructed tour, and
Column 7 gives the percentage of the distance budget used after shortcutting the tree.

We report several interesting structural results. First, the average time seems to be
heavily influenced by the number of edges; the bike instances were quicker to complete even
though the average number of nodes was higher. However, the average time does not seem to
grow with the budget (and hence with the size of the outputted solution) since most of the
time is spent finding the value of Λ1. The average optimality gap, on the other hand, does
improve with the budget. This is likely due to the fact that for larger budgets the upper
bound is given by W . Also of interest is that maxS∈S π(S) contributed little to our upper
bound U . As a result, our optimality gaps depend mostly on the value of Λ1, rather than the
potentials, and may be far from tight. However, the fact that on average we only use around
2/3 of the distance budget implies that the solutions could be improved as well. To ensure
that we use a larger part of the budget, we ran further experiments on the Citi Bike instances;
in these, we ran binary search over possible virtual budgets in the input until finding one with
which the resulting tour uses at least 90% of the actual budget. This reduced our optimality
gaps from 45.74%, 25.89%, and 8.29% to 27.96%, 11.87%, and 0.17%, respectively. Lastly, it
is interesting that the algorithm rarely ever needs to recurse on a subgraph.
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8 Conclusion and Future Work

In this paper, we provide a 2-approximation algorithm for the budgeted prize-collecting
traveling salesman problem that has at its base a classic primal-dual approach. The key
insights are to use constructed potentials to evaluate potential subsets to tour and to identify
the structure of a good tour. In particular, we construct a tree that closely follows the
structure of the laminar collection of subsets with positive dual value. Further, we ensure
this tree is just within budget in that adding one extra edge will make doubling the tree an
infeasible tour. An obvious open question seeks to improve the approximation guarantee or
prove the current guarantee is the best possible. Specifically, it would be interesting to know
whether or not a (3/2)-approximation algorithm is possible given that that is the current best
guarantee for the unconstrained traveling salesman problem. Another interesting direction
would be to see if one can avoid recursing by inferring more from the potentials.
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Abstract
We present a framework for the complexity classification of parameterized counting problems that
can be formulated as the summation over the numbers of homomorphisms from small pattern
graphs H1, . . . ,H` to a big host graph G with the restriction that the coefficients correspond to
evaluations of the Möbius function over the lattice of a graphic matroid. This generalizes the idea
of Curticapean, Dell and Marx [STOC 17] who used a result of Lovász stating that the number
of subgraph embeddings from a graph H to a graph G can be expressed as such a sum over the
lattice of partitions of H.

In the first step we introduce what we call graphically restricted homomorphisms that, inter
alia, generalize subgraph embeddings as well as locally injective homomorphisms. We provide
a complete parameterized complexity dichotomy for counting such homomorphisms, that is, we
identify classes of patterns for which the problem is fixed-parameter tractable (FPT), including
an algorithm, and prove that all other pattern classes lead to #W[1]-hard problems. The main
ingredients of the proof are the complexity classification of linear combinations of homomorphisms
due to Curticapean, Dell and Marx [STOC 17] as well as a corollary of Rota’s NBC Theorem
which states that the sign of the Möbius function over a geometric lattice only depends on the
rank of its arguments.

We apply the general theorem to the problem of counting locally injective homomorphisms
from small pattern graphs to big host graphs yielding a concrete dichotomy criterion. It turns out
that – in contrast to subgraph embeddings – counting locally injective homomorphisms has “real”
FPT cases, that is, cases that are fixed-parameter tractable but not polynomial time solvable
under standard complexity assumptions. To prove this we show in an intermediate step that the
subgraph counting problem remains #P-hard when both the pattern and the host graphs are
restricted to be trees. We then investigate the more general problem of counting homomorphisms
that are injective in the r-neighborhood of every vertex. As those are graphically restricted as
well, they can also easily be classified via the general theorem.

Finally we show that the dichotomy for counting graphically restricted homomorphisms read-
ily extends to so-called linear combinations.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Count-
ing Problems, G.2.2 Graph Theory

Keywords and phrases homomorphisms, matroids, counting complexity, parameterized complex-
ity, dichotomy theorems

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.63

∗ A full version of the paper is available at https://arxiv.org/abs/1706.08414.
† Part of this work was done while the author was visiting the Simons Institute for the Theory of

Computing

© Marc Roth;
licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 63; pp. 63:1–63:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.63
https://arxiv.org/abs/1706.08414
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


63:2 Counting Restricted Homomorphisms via Möbius Inversion over Matroid Lattices

1 Introduction

In his seminal work about the complexity of computing the permanent Valiant [29] introduced
counting complexity which has since then evolved into a well-studied subfield of computational
complexity. Despite some surprising positive results like polynomial time algorithms for
counting perfect matchings in planar graphs by the FKT method [27, 17], counting spanning
trees by Kirchhoff’s Matrix Tree Theorem or counting Eulerian cycles in directed graphs
using the “BEST”-Theorem (see e.g. [2]), most of the interesting problems turned out to
be intractable. Therefore, several relaxations such as restrictions of input classes [33] and
approximate counting [16, 11] were introduced. Another possible relaxation, the one this
work deals with, is to consider parameterized counting problems as introduced by Flum
and Grohe [14]. Here, problems come with an additional parameter k and a problem is
fixed-parameter tractable (FPT) if it can be solved in time g(k) ·poly(n) where n is the input
size and g is a computable function, which yields fast algorithms for large instances with
small parameters. On the other hand, a problem is considered intractable if it is #W[1]-hard.
This stems from the fact that #W[1]-hard problems do not allow an FPT algorithm unless
standard assumptions such as the exponential time hypothesis (ETH) are wrong.

When investigating a family of related (counting) problems one could aim to simultaneously
solve the complexity of as many problems as possible, rather than tackling a (possibly infinite)
number of problems by hand. For example, instead of proving that counting paths in a
graph is hard, then proving that counting cycles is hard and then proving that counting
stars is easy, one should, if possible, find a criterion that allows a classification of those
problems in hard and easy cases. Unfortunately, there are results like Ladner’s Theorem
[18], stating that there are problems neither in P nor NP-hard (assuming P 6= NP), which
give a negative answer to that goal in general. However, there are families of problems that
have enough structure to allow so-called dichotomy results. One famous example, and to
the best of the authors knowledge this was the first such result, is Schaefer’s dichotomy [25],
stating that every instance of the generalized satisfiability problem is either polynomial time
solvable or NP-complete. Since then much work has been done to generalize this result,
culminating in recent announcements ([3],[34],[23]) of a proof of the Feder-Vardi-Conjecture
[12]. This question was open for almost twenty years and indicates the difficulty of proving
such dichotomy results, at least for decision problems. In counting complexity, however, it
seems that obtaining such results is less cumbersome. One reason for this is the existence of
some powerful techniques like polynomial interpolation [28], the Holant framework [30, 31, 4]
as well as the principle of inclusion-exclusion which all have been used to establish very
revealing dichotomy results such as [5, 9].

Examples of dichotomies in parameterized counting complexity are the complete clas-
sifications of the homomorphism counting problem due to Dalmau and Jonsson [10]1 and
the subgraph counting problem due to Curticapean and Marx [9]. For the latter, one is
given graphs H and G and wants to count the number of subgraphs of G isomorphic to H,
parameterized by the size of H. It is known that this problem is polynomial time solvable if
there is a constant upper bound on the size of the largest matching of H and #W[1]-hard
otherwise2. The first step in this proof was the hardness result of counting matchings of size
k of Curticapean [6], which turned out to be the “bottleneck” problem and was then reduced
to the general problem.

1 Ultimately, the results of [7] and this work rely on the dichotomy for counting homomorphisms.
2 On the other hand the complexity of the decision version of this problem, that is, finding a subgraph

of G isomorphic to H, is still unresolved. Only recently it was shown in a major breakthrough that
finding bicliques is hard [19].
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This approach, first finding the hard obstructions and then reducing to the general case,
seemed to be the canonical way to tackle such problems. However, recently Curticapean, Dell
and Marx [7] discovered that a result of Lovász [20] implies the existence of parameterized
reductions that, inter alia, allow a far easier proof of the general subgraph counting problem.
Lovász result states that, given simple graphs H and G, it holds that

#Emb(H,G) =
∑
ρ≥∅

µ(∅, ρ) ·#Hom(H/ρ,G) , (1)

where the sum is over the elements of the partition lattice of V (H), Emb(H,G) is the set of
embeddings3 from H to G and Hom(H/ρ,G) is the set of homomorphisms from the graph
H/ρ obtained from H by identifying vertices along ρ to G. Furthermore µ is the Möbius
function. In their work Curticapean, Dell and Marx showed in a general theorem that a
summation

∑`
i=1 ci ·#Hom(Hi, G) for pairwise non-isomorphic graphs Hi is #W[1]-hard

if there is no upper bound on the treewidth of the pattern graphs Hi and fixed-parameter
tractable otherwise, using a dichotomy for counting homomorphisms due to Dalmau and
Jonsson [10]. Having this, one only has to show two properties of (1) to obtain the dichotomy
for #Emb. First, one has to show that a high matching number of H implies that one of the
graphs H/ρ has high treewidth and second, that two (or more) terms with high treewidth
and isomorphic graphs H/ρ and H/σ do not cancel out (note that the Möbius function can
be negative). As there is a closed form for the Möbius function over the partition lattice it
was possible to show that whenever H/ρ and H/σ are isomorphic the sign of the Möbius
function is equal.

1.1 Our results
The motivation of this work is the question whether the result of Curticapean, Dell and Marx
can be generalized to construct a framework for the complexity classification of counting
problems that can be expressed as the summation over homomorphisms and it turns out
that this is possible whenever the summation is over a the lattice of a graphic matroid and
the coefficients are evaluations of the Möbius function over the lattice, capturing not only
embeddings but also locally injective homomorphisms.

In Section 3 we introduce what we call graphically restricted homomorphisms: Intuitively,
a graphical restriction τ(H) of a graph H is a set of forbidden binary vertex identifications
of H, modeled as a graph with vertex set V (H) and edges along the binary constraints. We
write τ -M(H) as the set of all graphs obtained from H by contracting vertices along edges
in τ(H) and deleting multiedges, excluding those that contain selfloops. Now a graphically
restricted homomorphism from H to G with respect to τ is a homomorphism from H to G
that maps every pair of vertices u, v ∈ V (H) that are adjacent in τ(H) to different vertices
in G. We write Homτ (H,G) for the set of all graphically restricted homomorphisms w.r.t.
τ from H to G and provide a complete complexity classification for counting graphically
restricted homomorphisms:

I Theorem 1 (Intuitive version). Computing #Homτ (H,G) is fixed-parameter tractable when
parameterized by |V (H)| if the treewidth of every graph in τ -M(H) is small. Otherwise the
problem is #W[1]-hard.

3 Note that embeddings and subgraphs are equal up to automorphisms, that is, counting embeddings and
counting subgraphs are essentially the same problem.
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In particular, we obtain the following algorithmic result:

I Theorem 2. There exists a deterministic algorithm that computes #Homτ (H,G) in time
g(|V (H)|) · |V (G)|tw(τ-M(H))+1, where g is a computable function and tw(τ -M(H)) is the
maximum treewidth of every graph in τ -M(H).

Having established the general dichotomy we observe that there exist graphical restrictions
τclique and τLi such that Homτclique(H,G) is the set of all subgraph embeddings from H to G
and HomτLi(H,G) is the set of all locally injective homomorphisms from H to G.

As a consequence we obtain a full complexity dichotomy for counting locally injective
homomorphisms from small pattern graphs H to big host graphs G. To the best of the
author’s knowledge, this is the first result about the complexity of counting locally injective
homomorphisms.

I Corollary 3 (Intuitive version). Computing the number of locally injective homomorphisms
from H to G is fixed-parameter tractable when parameterized by |V (H)| if the treewidth of
every graph in τLi-M(H) is small. Otherwise the problem is #W[1]-hard.

Furthermore, there exists a deterministic algorithm that computes this number in time
g(|V (H)|) · |V (G)|tw(τLi-M(H))+1, where g is a computable function and tw(τLi-M(H)) is the
maximum treewidth of every graph in τLi-M(H).

We then observe that – in contrast to subgraph embeddings – counting locally injective
homomorphisms has “real” FPT cases, that is, cases that are fixed-parameter tractable but
not polynomial time solvable under standard assumptions. We show this by restricting the
pattern graph to be a tree:

I Corollary 4. Computing the number of locally injective homomorphisms from a tree T
to a graph G can be done in deterministic time g(|V (T )|) · |V (G)|2, that is, the problem is
fixed-parameter tractable when parameterized by |V (T )|. On the other hand, the problem is
#P-hard.

To prove #P-hardness, we prove in an intermediate step that the subgraph counting prob-
lem remains hard when both graphs are restricted to be trees, which may be of independent
interest:

I Lemma 5. The problem of, given trees T1 and T2, computing the number of subtrees of T2
that are isomorphic to T1 is #P-hard.

After that we generalize locally injective homomorphisms to homomorphisms that are
injective in the r-neighborhood of every vertex and observe that those are also graphically
restricted and consequently obtain a counting dichotomy as well. Due to space constraints,
the corresponding section is deferred to the full version of the paper.

Finally, it turns out that all results can easily be extended to so-called linear combinations
of graphically restricted homomorphisms. Here one gets as input graphs H1, . . . ,H` together
with positive coefficients c1, . . . , c` and a graph G and the goal is to compute

∑̀
i=1

ci ·#Homτi
(Hi, G) ,

for graphical restrictions τ1, . . . , τ`. This generalizes for example problems like counting all
trees of size k in G or counting all locally injective homomorphisms from all graphs of size
k to G or a combination thereof. We find out that, under some conditions, the dichotomy
criteria transfer immediately to linear combinations:
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I Theorem 6 (Intuitive version). Computing
∑`
i=1 ci · #Homτi(Hi, G) is fixed-parameter

tractable when parameterized by maxi{|V (Hi)|} if the maximum treewidth of every graph
in

⋃`
i τi-M(Hi) is small. Otherwise, if additionally |V (Hi)| has the same parity for every

i ∈ [`], the problem is #W[1]-hard.

Furthermore we observe that this theorem is not true on the #W[1]-hardness side if
we omit the parity condition. Due to space constraints, the section dealing with linear
combinations is deferred to the full version as well.

1.2 Techniques
The main ingredients of the proofs of Theorem 1 and Theorem 2 are the complexity clas-
sification of linear combinations of homomorphisms due to Curticapean, Dell and Marx
(see Lemma 3.5 and Lemma 3.8 in [7]) as well as a corollary of Rota’s NBC Theorem (see
e.g. Theorem 4 in [24]). In the first step we prove the following identity for the number of
graphically restricted homomorphisms via Möbius inversion:

#Homτ (H,G) =
∑
ρ≥∅

µ(∅, ρ) ·#Hom(H/ρ,G) ,

where the sum is over elements of the lattice of flats of the graphical matroid given by τ(H)
and H/ρ is the graph obtained by contracting the vertices of H along the flat ρ. After that
we use Rota’s Theorem to prove that none of the terms cancel out4, despite the fact that the
Möbius function can be negative. More precisely we show that whenever H/ρ ∼= H/σ, we
have that rk(ρ) = rk(σ) and therefore, by Rota’s Theorem, sgn(µ(∅, ρ)) = sgn(µ(∅, σ)).

The dichotomies for locally injective homomorphisms and homomorphisms that are
injective in the r-neighborhood of every vertex are mere applications of the general theorem.
For #P-hardness of the subgraph counting problem restricted to trees, we adapt the idea of
the “skeleton graph” by Goldberg and Jerrum [15] and reduce directly from computing the
permanent. To transfer this result to locally injective homomorphisms we use the well-known
observation that locally injective homomorphisms from a tree to a tree are embeddings.

Finally, we prove the dichotomy for linear combinations of graphically restricted homo-
morphisms by taking a closer look at the proof of Theorem 1. Here, the parity constraint of
the vertices of the graphs in the linear combination assures that there are no graphs Hi and
Hj and elements ρi and ρj of the matroid lattices of τi(Hi) and τj(Hj) such that Hi/ρi and
Hj/ρj are isomorphic but ρi and ρj have ranks of different parities. Using this observation,
Theorem 6 can be proven in the same spirit as Theorem 1.

2 Preliminaries

First we will introduce some basic notions: Given a finite set S, we write |S| or #S for the
cardinality of S. Given a natural number ` we let [`] be the set {1, . . . , `}. Given a real
number r we define the sign sgn(r) of r to be 1 if r > 0, 0 if r = 0 and −1 if r < 0.

A poset is a pair (P,≤) where P is a set and ≤ is a binary relation on P that is reflexive,
transitive and anti-symmetric. Throughout this paper we will write y ≥ x if x ≤ y. A lattice
is a poset (L,≤) such that every pair of elements x, y ∈ L has a least upper bound x ∨ y and
a greatest lower bound x ∧ y that satisfy:

4 Here “cancel out” means that it could be possible that H/ρ and H/σ are isomorphic, but µ(∅, ρ) =
−µ(∅, σ) and all other H/ρ′ are not isomorphic to H/ρ. In this case, the term #Hom(H/ρ,G) would
vanish in the above identity.
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x ∨ y ≥ x, x ∨ y ≥ y and for all z such that z ≥ x and z ≥ y it holds that z ≥ x ∨ y.
x ∧ y ≤ x, x ∧ y ≤ y and for all z such that z ≤ x and z ≤ y it holds that z ≤ x ∧ y.

Given a finite set S, a partition of S is a set ρ of pairwise disjoint subsets of S such that⋃̇
s∈ρs = S. We call the elements of ρ blocks. For two partitions ρ and σ we write ρ ≤ σ if

every element of ρ is a subset of some element of σ. This binary relation is a lattice and
called the partition lattice of S. We will in particular encounter lattices of graphic matroids
in our proofs.

2.1 Matroids
We will follow the definitions of Chapt. 1 of the textbook of Oxley [22].

I Definition 7. A matroid M is a pair (E, I) where E is a finite set and I ⊆ P(E) such
that
(1) ∅ ∈ I,
(2) if A ∈ I and B ⊆ A then B ∈ I, and
(3) if A,B ∈ I and |B| < |A| then there exists a ∈ A \B such that B ∪ {a} ∈ I.
We call E the ground set and an element A ∈ I an independent set. A maximal independent
set is called a basis. The rank rk(M) of M is the size of its bases5.

Given a subset X ⊆ E we define I|X := {A ⊆ X | A ∈ I}. Then M |X := (X, I|X) is
also a matroid and called the restriction of M to X. Now the rank rk(X) of X is the rank of
M |X. Equivalently, the rank of X is the size of the largest independent set A ⊆ X.

Furthermore we define the closure of X as follows:

cl(X) := {e ∈ E | rk(X ∪ {e}) = rk(X)} .

Note that by definition rk(X) = rk(cl(X)). We say that X is a flat if cl(X) = X. We denote
L(M) as the set of flats of M . It holds that L(M) together with the relation of inclusion
is a lattice, called the lattice of flats of M . The least upper bound of two flats X and Y is
cl(X ∪ Y ) and the greatest lower bound is X ∩ Y . It is known that the lattices of flats of
matroids are exactly the geometric lattices6 and we denote the set of those lattices as L.

In Section 3 we take a closer look at (lattices of flats of) graphic matroids:

I Definition 8. Given a graph H = (V,E) ∈ G, the graphic matroid M(H) has ground set
E and a set of edges is independent if and only if it does not contain a cycle.

If H is connected then a basis of H is a spanning tree of H. If H consists of several connected
components then a basis of M(H) induces spanning trees for each of those. Every subset
X of E induces a partition of the vertices of H where the blocks are the vertices of the
connected components of H|X and it holds that

rk(X) = |V (H)| − c(H|X) . (2)

In particular, the flats of M(H) correspond bijectively to the partitions of vertices of H into
connected components as adding an element to X such that the rank does not change will
not change the connected components, too. For convenience we will therefore abuse notation

5 This is well-defined as every maximal independent set has the same size due to (3).
6 For the purpose of this paper we do not need the definition of geometric lattices but rather the equivalent

one in terms of lattices of flats and therefore omit it. We recommend e.g. Chapt. 3 of [32] and Chapt. 1.7
of [22] to the interested reader.
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and say, given an element ρ of the lattice of flats of M(H), that ρ partitions the vertices
of H where the blocks are the vertices of the connected components of H|ρ. The following
observation will be useful in Section 3:

I Lemma 9. Let ρ, σ ∈ L(M(H)) for a graph H ∈ G. If the number of blocks of ρ and σ
are equal then rk(ρ) = rk(σ).

Proof. Immediately follows from Equation (2). J

We denote H/ρ as the graph obtained from H by contracting the vertices of H that are
in the same component of ρ and deleting multiedges (but keeping selfloops). As the vertices
of H/ρ partition the vertices of H, we think of the vertices of H/ρ as subsets of vertices of
H and call them blocks. Furthermore we write [v] for the block containing v.

2.2 Graphs and homomorphisms
In this work all graphs are considered unlabeled and simple but may allow selfloops unless
stated otherwise. We denote the set of all those graphs as G◦. Furthermore we denote G as
the set of all unlabeled and simple graphs without selfloops.

For a graph G we write n for the number of vertices V (G) of G and m for the number of
edges E(G) of G. We denote c(G) as the number of connected components of G. Furthermore,
given a subset X of edges, we denote G|X as the graph with vertices V (G) and edges X.
Given a partition of vertices ρ of a graph H, we write H/ρ as the graph obtained from H by
contracting the vertices of H that are in the same component of ρ and deleting multiedges
(but keeping selfloops). As the vertices of H/ρ partition the vertices of H, we think of the
vertices as subsets of vertices of H and call them blocks. Furthermore we write [v] for the
block containing v.

Given graphs H and G, a homomorphism from H to G is a mapping ϕ : V (H)→ V (G)
such that {u, v} ∈ E(H) implies that {ϕ(u), ϕ(v)} ∈ E(G). We denote Hom(H,G) as the set
of all homomorphisms from H to G. A homomorphism is called embedding if it is injective
and we denote Emb(H,G) as the set of all embeddings from H to G. An embedding from H

to H is called an automorphism of H. We denote Aut(H) as the set of all automorphisms of
H. Furthermore we let Sub(H,G) be the set of all subgraphs of G that are isomorphic to H.
Then it holds that #Aut(H) ·#Sub(H,G) = #Emb(H,G) (see e.g. [20]).

Given a set S and a function α : S → Q, we define the support of α as follows:

supp(α) := {s ∈ S | α(s) 6= 0} .

A graph parameter that will be of quite some importance to define the dichotomy criteria
is the treewidth of a graph, capturing how “tree-like” a graph is. We do not need the explicit
definition of treewidth which is therefore, together with some examples, deferred to the full
version. However, throughout this paper we will often say that a set C of graphs has bounded
treewidth meaning that there is a constant B such that the treewidth of every graph H ∈ C
is bounded by B.

2.3 Parameterized counting
We will mainly follow the definitions of Chapt. 14 of the textbook of Flum and Grohe [14].
A parameterized counting problem is a function F : {0, 1}∗ → N together with a polynomial-
time computable parameterization k : {0, 1}∗ → N. A parameterized counting problem is
fixed-parameter tractable if there exists a computable function g such that it can be solved
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in time g(k(x)) · |x|O(1) for any input x. A parameterized Turing reduction from (F, k) to
(F ′, k′) is an FPT algorithm w.r.t. parameterization k with oracle (F ′, k′) that on input x
computes F (x) and additionally satisfies that there exists a function g′ such that for every
oracle query y it holds that k′(y) ≤ g(k(x)). A parameterized counting problem (F, k) is
#W[1]-hard if there exists a parameterized Turing reduction from #k-clique to (F, k), where
#k-clique is the problem of, given a graph G and a parameter k, computing the number
of cliques of size k in G7. Under standard assumptions (e.g. under the exponential time
hypothesis) #W[1]-hard problems are not fixed-parameter tractable.
The following two parameterized counting problems will be of particular importance in this
work: Given a class of graphs C ⊆ G, #Hom(C) (#Emb(C)) is the problem of, given a graph
H ∈ C and a graph G ∈ G, computing #Hom(H,G) (#Emb(H,G)). Both problems are
parameterized by #V (H). Their complexity has already been classified:

I Theorem 10 ([10]). Let C be a recursively enumerable class of graphs. If C has bounded
treewdith then #Hom(C) can be solved in polynomial time. Otherwise #Hom(C) is #W[1]-
hard.

I Theorem 11 ([9]). Let C be a recursively enumerable class of graphs. If C has bounded
matching number then #Emb(C) can be solved in polynomial time. Otherwise #Emb(C) is
#W[1]-hard.

Recall that “bounded treewidth (matching number)” means that there is a constant B
such that the treewidth (size of the largest matching) of any graph in C is bounded by B.

2.4 Linear combinations of homomorphisms and Möbius inversion
Curticapean, Dell and Marx [7] introduced the following parameterized counting problem:

I Definition 12 (Linear combinations of homomorphisms). Let A be a set of functions
a : G → Q with finite support8. We define the parameterized counting problem #Hom(A)
as follows:

Given a ∈ A and G ∈ G, compute∑
H∈supp(a)

a(H) ·#Hom(H,G) , parameterized by max
H∈supp(a)

#V (H) .

Note that this problem generalizes #Hom(C). The following theorem will be the foundation
of all complexity results in this paper:

I Theorem 13 ([7], Lemma 3.5 and Lemma 3.8). If A has bounded treewidth then #Hom(A)
can be solved in time g(|supp(α)|) · nO(1) on input (α,G) where n = |V (G)| and g is a
computable function. Otherwise the problem is #W[1]-hard.

In their paper, the authors show how this result can be used to give a much simpler
proof of Theorem 11. The idea is that every problem #Emb(C) is equivalent to a problem
#Hom(A). As all proofs in this work are in the same flavour, we will outline the technique
here, using #Emb(C) as an example. Therefore, we first need to introduce the so called
Möbius inversion (we recommend reading [26] for a more detailed introduction):

7 For a more detailed introduction to #W[1] we recommend [14] to the interested reader.
8 We can also think of A being a set of lists.
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I Definition 14. Let (P,≤) be a poset and h : P → C be a function. Then the zeta
transformation ζh is defined as follows:

ζh(σ) :=
∑
ρ≥σ

h(ρ) .

I Theorem 15 (Möbius inversion, see [26] or [24]). Let (P,≤) and h as in Definition 14.
Then there is a function µP : P × P → Z such that for all σ ∈ P it holds that

h(σ) =
∑
ρ≥σ

µP (σ, ρ) · ζh(ρ) .

µP is called the Möbius function.

The following identity is due to Lovász [20]:

#Hom(H/σ,G) =
∑
ρ≥σ

#Emb(H/ρ,G) ,

where σ and ρ are partitions of vertices of H and ≥ is the partition lattice of H. Now Möbius
inversion yields the following identity [20]:

#Emb(H,G) =
∑
ρ≥∅

µ(∅, ρ) ·#Hom(H/ρ,G) ,

where µ is the Möbius function over the partition lattice. Therefore, for every class of graphs
C, there is a family of functions with finite support A such that #Emb(C) and #Hom(A) are
the same problems. Now Curticapean, Dell and Marx show that C has unbounded matching
number if and only if A has unbounded treewidth. The critical point in this proof was to
show that the sign of µ(∅, ρ) only depends on the number of blocks of ρ, which implies that
for two isomorphic graphs H1 and H2, the terms #Hom(H1, G) and #Hom(H2, G) have
the same sign in the above identity and therefore do not cancel out in the homomorphism
basis. As there is a closed form for µ(∅, ρ)9, the information about the sign could easily be
extracted.

The motivation of this work is the question whether this can be made more general and
it turns out that a corollary of Rota’s NBC Theorem [24] (see also [1]) captures exactly what
we need:

I Theorem 16 (See e.g. Theorem 4 in [24]). Let L be a geometric lattice with unique minimal
element ⊥ and let ρ be an element of L. Then it holds that

sgn(µL(⊥, ρ)) = (−1)rk(ρ) .

In the following we will show that combining Rota’s Theorem and the dichotomy for
counting linear combinations of homomorphisms yields complete complexity classifications for
the problems of counting those restricted homomorphisms that induce a Möbius inversion over
the lattice of a graphic matroid, which are known to be geometric, when transformed into the
homomorphism basis. Those include embeddings as well as locally injective homomorphisms.

9 Here it is crucial that µ is the Möbius function over the (complete) partition lattice.
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3 Graphically restricted homomorphisms

In the following we write ∅ for the minimal element of a matroid lattice.

I Definition 17. A graphical restriction is a computable mapping τ that maps a graph
H ∈ G to a graph H ′ ∈ G such that V (H) = V (H ′), that is, τ only modifies edges of H. We
denote the set of all graphical restrictions as T. Given graphs H and G and a graphical
restriction τ , we define the set of graphically restricted homomorphisms w.r.t. τ from H to
G as follows:

Homτ (H,G) := {ϕ ∈ Hom(H,G) | ∀u, v ∈ V (H) : {u, v} ∈ E(τ(H))⇒ ϕ(u) 6= ϕ(v)} .

Given a recursively enumerable class of graphs C ⊆ G, we define the parameterized counting
problem #Homτ (C) as follows: Given a graph H ∈ C and a graph G ∈ G, we parameterize
by |V (H)| and wish to compute #Homτ (H,G).

Assume for example that τclique maps a graph H to the complete graph with vertices
V (H). Then one can easily verify that Homτclique(H,G) = Emb(H,G).

The following lemma is an application of Möbius inversion (and slightly generalizes [20]).
Due to space constraints, the proof is deferred to the full version.

I Lemma 18. Let τ be a graphical restriction. Then for all graphs H ∈ G◦ and G ∈ G it
holds that

#Homτ (H,G) =
∑
ρ≥∅

µ(∅, ρ) ·#Hom(H/ρ,G) , (3)

where ≤ and µ are the relation and the Möbius function of the lattice L(M(τ(H))).

Intuitively, we will now show that counting graphically restricted homomorphisms from
H to G is hard if we can ”glue” vertices of H together along edges of τ(H) such that the
resulting graph has no selfloops and high treewidth. We will capture this intuition formally:

I Definition 19. Let H ∈ G be a graph and let τ be a graphical restriction. A graph H ′ ∈ G◦
obtained from H by contracting pairs of vertices u and v such that {u, v} ∈ E(τ(H)) and
deleting multiedges (but keeping selfloops) is called a τ -contraction of H. If additionally
H ′ ∈ G, that is, the contraction did not yield selfloops, we call H ′ a τ -minor of H. We
denote the set of all τ -minors of H as τ -M(H) and given a class of graphs C ⊆ G we denote
the set of all τ -minors of all graphs in C as τ -M(C).

Finally, we can classify the complexity of counting graphically restricted homomorphisms
along the treewidth of their τ -minors:

I Theorem 20 (Theorem 1 and Theorem 2, restated). Let τ be a graphical restriction and let
C ⊆ G be a recursively enumerable class of graphs. Then #Homτ (C) is FPT if τ -M(C) has
bounded treewidth and #W[1]-hard otherwise. Furthermore, given H,G ∈ G, there exists a
deterministic algorithm that computes #Homτ (H,G) in time

g(|V (H)|) · |V (G)|tw(τ-M(H))+1 ,

where g is a computable function.
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Proof. By Lemma 18 we have that

#Homτ (H,G) =
∑
ρ≥∅

µ(∅, ρ) ·#Hom(H/ρ,G) .

Now, as G has no selfloops, a term #Hom(H/ρ,G) is zero whenever H/ρ has a selfloop.
Consequently, for every non-zero term #Hom(H/ρ,G), it holds that H/ρ ∈ τ -M(H). There-
fore, by Lemma 3.5 in [7], we obtain an algorithm computing #Homτ (H,G) in time
g(|V (H)|) · |V (G)|tw(τ -M(H))+1 , for a computable function g. This immediately implies
that the problem #Homτ (C) is fixed-parameter tractable if τ -M(C) has bounded treewidth.
It remains to show that #Homτ (C) is #W[1]-hard otherwise. By condensing all terms
#Hom(H/ρ,G) and #Hom(H/σ,G) where H/ρ and H/σ are isomorphic, it follows that
there exist coefficients cH [H ′] for every H ′ ∈ τ -M(H) such that

#Homτ (H,G) =
∑

H′∈τ -M(H)

cH [H ′] ·#Hom(H ′, G) .

We will now show that none of the cH [H ′] is zero: It holds that

cH [H ′] =
∑
ρ≥∅

H′∼=H/ρ

µ(∅, ρ) . (4)

Consider ρ and ρ′ such that H/ρ ∼= H/ρ′ ∼= H ′. It follows that rk(ρ) = |V (H)| − c(H/ρ) =
|V (H)|−c(H ′) = |V (H)|−c(H/ρ′) = rk(ρ′) . Now, as the lattice ofM(τ(H)) is geometric, we
can apply the corollary of Rota’s NBC Theorem (Theorem 16) and obtain that sgn(µ(∅, ρ)) =
(−1)rk(ρ) = (−1)rk(ρ′) = sgn(µ(∅, ρ′)). Consequently every term in Equation (4) has the same
sign and therefore cH [H ′] 6= 0. Now we define a function aH : G → Q as follows

aH(F ) :=
{
cH [F ] if F ∈ τ -M(H)
0 otherwise

and we set AC = {aH | H ∈ C}. Then the problems #Hom(AC) and #Homτ (C) are
equivalent w.r.t. parameterized turing reductions. As cH [H ′] 6= 0 for every H ′ ∈ τ -M(H) it
follows that AC has unbounded treewidth if and only if τ -M(C) has unbounded treewidth.
We conclude by Theorem 13 that #Homτ (C) is #W[1]-hard in this case. J

4 Locally injective homomorphisms

In this section we are going to apply the general dichotomy theorem to the concrete case of
counting locally injective homomorphisms. A homomorphism ϕ fromH toG is locally injective
if for every v ∈ V (H) it holds that ϕ|N(v) is injective. We denote Li-Hom(H,G) as the set of
all locally injective homomorphisms from H to G and we define the corresponding counting
problem #Li-Hom(C) for a class of graphs C ⊆ G as follows: Given graphs H ∈ C and G ∈ G,
compute #Li-Hom(H,G). The parameter is |V (H)|. Locally injective homomorphisms have
already been studied by Nešetřil in 1971 [21] and were applied in the context of distance
constrained labelings of graphs (see [13] for an overview). As well as subgraph embeddings,
locally injective homomorphisms are graphically restricted homomorphisms. Due to space
constraints, the proofs of this section are deferred to the full version.

I Lemma 21. Let H ∈ G be a graph and let τLi(H) = (V (H), ELi(H)) be a graphical
restriction defined as follows: ELi(H) = {{u,w} | u 6= w ∧∃v : {u, v}, {w, v} ∈ E(H)}. Then
for all G ∈ G it holds that HomτLi(H,G) = Li-Hom(H,G).
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We continue by stating the dichotomy for counting locally injective homomorphisms.

I Corollary 22 (Corollary 3, restated). Let C ⊆ G be a recursively enumerable class of graphs.
Then #Li-Hom(C) is FPT if τLi-M(C) has bounded treewidth and #W[1]-hard otherwise.
Furthermore, there exists a computable function g and a deterministic algorithm that computes
#Li-Hom(H,G) in time

g(|V (H)|) · |V (G)|tw(τLi-M(H))+1 .

We give an example for a hard instance of the problem: Let Wk be the “windmill” graph
of size k, i.e., the graph with vertices a, v1, . . . , vk, w1, . . . , wk and edges {a, vi}, {vi, wi} and
{wi, a} for each i ∈ [k]. Furthermore we let W be the set of all Wk for k ∈ N.

I Corollary 23. #Li-Hom(W) is #W[1]-hard.

In contrast to embeddings where every FPT case is also polynomial time solvable, there are
“real” FPT cases when it comes to locally injective homomorphisms. Let T ⊆ G be the class
of all trees. Counting locally injective homomorphisms from those graphs is fixed-parameter
tractable:

I Corollary 24. #Li-Hom(T ) is FPT. In particular, there is a deterministic algorithm that
computes #Li-Hom(T,G) for a tree T in time

g(|V (T )|) · |V (G)|2 ,

where g is a computable function.

On the other hand #Li-Hom(T ) is unlikely to have a polynomial time algorithm.

I Lemma 25. #Li-Hom(T ) is #P-hard.

The proof of this theorem as well as a brief introduction to classical counting complexity can
be found in the full version. Corollary 4 follows then from Corollary 24 and Lemma 25.

5 Conclusion and further work

We have shown that various parameterized counting problems can be expressed as a linear
combination of homomorphisms over the lattice of graphic matroids, implying immediate
complexity classifications along with fixed-parameter tractable algorithms for the positive
cases. These results can be obtained without using often cumbersome tools like “gadgeting”
or interpolation and relies only on the knowledge of the problem of counting homomorphisms
and the comprehension of the cancellation behaviour when transforming a problem into this
“homomorphism basis”. The latter, in turn, was nothing more than a question about the sign
of the Möbius function, which was answered by Rota’s Theorem.

This framework, however, still has limits: It seems that, e.g., neither induced subgraphs
nor edge-injective homomorphisms [8] are graphically restricted. Indeed, both can be
expressed as a sum of homomorphisms over (non-geometric) lattices but the problem is
that there are isomorphic terms with different signs in both cases. This suggests that a
better understanding of the Möbius function over those lattices could yield even more general
complexity classifications of parameterized counting problems.
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Abstract
We study the problem of clustering the vertices of a weighted hypergraph such that on average
the vertices of each edge can be covered by a small number of clusters. This problem has many
applications such as for designing medical tests, clustering files on disk servers, and placing
network services on servers. The edges of the hypergraph model groups of items that are likely
to be needed together, and the optimization criteria which we use can be interpreted as the
average delay (or cost) to serve the items of a typical edge. We describe and analyze algorithms
for this problem for the case in which the clusters have to be disjoint and for the case where
clusters can overlap. The analysis is often subtle and reveals interesting structure and invariants
that one can utilize.
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1 Introduction

Between 15% and 20% of the population suffers from some form of allergic contact dermatitis
[26]. One of the most common ways to treat this is to find the allergen, and avoid it. In
order to find the allergen the doctor applies patch tests to the patient. Each patch test is
applied by attaching a patch containing a cluster of several different allergens to the patient’s
back. The doctor first decides which allergens to test based on anamnesis. Then she picks a
set of clusters that contains all suspected allergens and applies the corresponding patch tests.
The study of this paper answers the question how to cluster different allergens together such
that common anamnesis require a small number of patch tests. This is in order to reduce the
cost and patient’s discomfort. Such an abstraction is relevant of course in any scenario in
which tests (medical or other) are performed in clusters and one has to design the clusters.1

∗ Work by Haim Kaplan has been supported by Grant 1161/2011 from the German-Israeli Science
Foundation, by Grant 1841-14 from the Israel Science Foundation, and by the Israeli Centers for
Research Excellence (I-CORE) program (center no. 4/11).

1 This medical setting may remind the reader of group testing. In group testing we want to locate
individuals who have a certain property by testing the individuals against groups of properties, rather
than against individual ones, and we want to minimize the number of groups. Here we also group
properties into tests, but we may have different properties that we try to locate among different subsets
and our objective is different.
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A similar clustering problem arises in several other application areas. For example,
in network design when a network operator has to apply a subset of functions (services
such as Deep Packet Inspection, Network Address Translation, etc.) to the packets of each
flow. In networks supporting Network Function Virtualization (NFV) these functions are
implemented in software on general-purpose servers, where each server can run a limited
number of functions [10, 27]. Here we need to assign the functions to servers (a cluster is a
set of functions assigned to the same server) such that heavy flows can be served by a small
number of servers to minimize delay. Unlike the medical setting, for NFV it is often the case
that we need to apply the functions to the packets within a prescribed order.2

For a different application consider the task of assigning papers to sessions in a conference
with a single track. We would like to construct the program such that attendees interested in
particular topics can hear all talks on these topics by attending a small number of sessions.

Another application is in disk servers where one would like to cluster on the same server
files that are often read together for minimizing the number of servers that have to be
accessed.

1.1 Formal definition of our clustering problem
Our input is a hypergraph G = (V,E) where |V | = n. Each edge e ∈ E has a positive weight
(“frequency”) w(e) satisfying

∑
e w(e) = 1. Our goal is to partition V into a collection P

of α = dn/ce disjoint clusters, P = {B(1), B(2), . . . , B(α)}, B(i) ⊆ V , where each cluster
is of size no larger than c. For each edge e ∈ E we define the service time of e to be
t(e) = |{B ∈ P | B ∩ e 6= ∅}|. Our objective is to compute a clustering that minimizes3 the
average service time

∑
e w(e)t(e).

We also consider the variant of this problem in which the clusters can overlap. For a
given number of clusters α and cluster size c such that α ≥ dn/ce we want to compute a
collection of clusters P = {B(1), B(2), . . . , B(α)} such that each cluster is of size at most
c and ∪B∈PB = V . In this case we may be able to cover e with a subset of the clusters
{B ∈ P | B ∩ e 6= ∅}. So, our clustering algorithm is also required to compute a small
cover P (e) ⊆ {B ∈ P | B ∩ e 6= ∅}, such that e ⊆ ∪B∈P (e)B, for each edge e. We define
t(e) = |P (e)| and our goal is to compute a clustering and edge covers P (e) that minimize
the average service time

∑
e w(e)t(e).

Last we consider the version of this problem in which each edge e ∈ E is an ordered tuple
of vertices (rather than a subset of the vertices), say e = (v1, . . . , v|e|). In this case P (e) has
to be a sequence of clusters B1, B2, . . . , Bt(e), possibly with repetitions4 such that there exist
i1, i2, . . . it(e) where {v1, . . . , vi1} ⊆ B1, {vi1+1, . . . , vi2} ⊆ B2, etc.

We denote the optimal average service time by TOPT . In the above applications, the
average time can describe the number of patch tests that have to be applied on average for
an anamnesis, the average number of servers a flow has to visit to implement its required
functions, the number of sessions one has to attend or the number of disk servers required
to be accessed. The maximal allowed cluster size c models a restriction on the number of
examined allergens in a patch test, the maximal number of functions that can be implemented
in a server, the number of papers in a conference session or the number of files a disk server
can save.

2 In this setting the maximum load on a processor is also a relevant metric, which is not a part of this
treatment.

3 We assume without loss of generality that |e| > 1 for every e ∈ E since edges of size 1 just contribute
their weight to the cost of any clustering.

4 That is we may have Bi = Bj for i 6= j, t(e) is the size of P (e) counting repetitions.
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Table 1 Summary of the results.

# Clusters Cluster size Hypergraph edges Result
α c e

Unordered edges
n/c 2 – Optimal algo.
– 2 |e| = 2 Optimal algo.
n/c – |e| = 2 2c+1

c+2 Approx. algo.
n/c 3 |e| ≤ 3 5/3 Approx. algo.
– 2 |e| = 3 NP-hardness
n/c 3 |e| = 2 NP-hardness
n/c n/2 |e| = 2 NP-hardness
– – – Bi-criteria approx. algo.

Ordered edges
n/c – – Approx. algo.

1.2 Our results
We give an algorithm that computes an optimal clustering for the case of disjoint clusters of
size c = 2. We also give an optimal algorithm for the case of overlapping clusters of size 2
when our hypergraph is in fact a graph (all edges are of size 2). These algorithms compute
the optimal clustering by finding maximum matchings in related graphs. In case of disjoint
clusters the construction of the graph is relatively straightforward whereas for overlapping
clusters the reduction is more sophisticated and requires solving multiple matching problems
(see Section 2 and Section 3.1).

In contrast with these positive results we show that when clusters are allowed to overlap,
c = 2, and the edges of the hypergraph are of size 3 the problem is already NP-hard. Moreover,
when the clusters are required to be disjoint the problem becomes NP-hard for c = 3 even if
|e| = 2 for all e ∈ E, so we cannot hope for polynomial algorithms that compute the optimal
clustering in a more general setting. This motivates the design of approximation algorithms.

To understand which approximation ratios we are targeting, notice that for any e ∈ E,
t(e) ≤ |e| and since each cluster is of size at most c, t(e) ≥ d|e|/ce. This implies that
the average service time of any two clusterings is within a factor of c from each other. In
particular an arbitrary clustering gives a c-approximation. (Clearly an approximation ratio
of max{|e| | e ∈ E} is also achieved by an arbitrary clustering.) Getting an approximation
ratio strictly better than c is not trivial.

For disjoint clusters and hypergraphs with edges of size 2 or 3 we describe and analyze a
greedy strategy. If all edges are of size 2 we show that this algorithm obtains a clustering of
cost at most (2c+ 1)/(c+ 2) times the cost of the optimal clustering. When edges are of size
2 or 3 and c = 3 we prove that the approximation ratio is at most 5/3. We can generalize the
greedy algorithm (in several ways) for hypergraphs with larger edges and for larger values of
c but these variants are more complicated to analyze (see Section 2.1 and Section 2.2).

Our analysis (for hypergraphs of edges of size 2 and 3) is subtle and relies on the fact that
a clustering has to pay more for edges that cannot be covered by a single cluster. We show
that when the optimal clustering is much better than the greedy one, then the subsets of the
edges that they cover are almost disjoint. Since they are almost disjoint, it must be that the
optimal clustering covers many edges by more than a single cluster (those that are covered
by a single cluster in the greedy clustering), and hence it has to pay for them. Interestingly,
we observe that for hyperedges with edges of size 3 or more, a stronger phenomena occurs: If
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64:4 Clustering in Hypergraphs to Minimize Average Edge Service Time

the optimal clustering covers many more edges than the greedy clustering then it must be
the case that there are edges which are not covered by neither the greedy nor the optimal
clustering. We do not know exactly how to exploit this phenomenon, and leave it as an open
question. We hope that this observation would lead to a tighter analysis of a generalization
of the greedy for hypergraphs with larger edges.

We give a bi-criteria approximation algorithm to compute overlapping clusters in any
hypergraph for any value of c. This algorithm produces a clustering of O(α logM log c)
clusters whose average service time is larger than the optimal service time with α clusters
by a factor of O(logM log c). Here M denotes the maximum cardinality of an edge (see
Section 3.2).

We use our approximation algorithm for disjoint clusters in the case where all edges are of
size 2 to develop an approximation algorithm for the case of disjoint clustering in an ordered
hypergraph with edges of arbitrary sizes (see Section 3.3).

Our results are summarized in Table 1.

1.3 Related work
Clustering has always been an important problem, and a lot of research has been done on this
topic. Clustering has applications in many different fields, including machine learning, vision,
information retrieval and bioinformatics. Different applications have different metrics for the
quality of the clustering, and consequently use different algorithms [16]. Some of the more
common quality measures include various distance metrics (e.g., the Davies-Bouldin index
[12] or the Dunn index [14]), spectral properties [25, 31, 29], and correlation (in correlation
clustering [5]).

Clustering is usually a partition of the data (often represented as a graph), but overlapping
clusters have also been studied for at least 45 years [11]. Recent applications include solving
partial differential equations [6, 18], analysis of social networks [24, 3], wireless networks [1]
and solving algorithmic problems on large graphs [7, 4]. One of the challenges in this case is
to define the right measure for the quality of the clustering. Taking the standard measure
(e.g., the sum of the weights of the edges crossing clusters over the sum of the weight of edges
inside clusters) does not give any benefit to overlapping clusters.

One way to measure the quality of a partition is to perform a random walk, and see how
long it stays in the same cluster (equivalently how often the random walk crosses clusters).
Anderson et al. generalize this metric to overlapping clusters [4]. Their clustering is composed
of overlapping clusters that cover all the vertices in the graph, and in addition, each vertex
has its primary cluster (one of the clusters it belongs to). To evaluate a clustering and a
choice of primary clusters, they start a random walk at a random vertex v1. Let t1 denote
the number of steps the walk stays in the primary cluster of v1. Let v2 denote the first vertex
outside that cluster the walk visits. Let t2 denote the number of steps the walk stays in the
primary cluster of v2, etc. The clustering is good if the expected value of t1 + t2 + t3 + . . . is
large.

There has been many works that deal with non overlapping hypergraph clustering
problems. Motivated by applications in computer vision, Agarwal et al. [2] proposed a
two phased approach, which first projects the hypergraph to a weighted graph, and then
uses graph clustering techniques. Zhou et al. [32] generalize the spectral techniques to
work directly on hypergraphs, without the projection stage. Shashua et al. [28] use tensor
factorization instead of spectral methods. Lately, Leordeanu and Sminchisescu [22] used
an iterative method based on solving a series of LPs, to obtain faster clustering algorithms.
Finally, Bulò and Pelillo [8] apply a game theoretic approach, in which every cluster is being
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controlled by an agent who tries to maximize the size of her cluster, and the equilibrium
status determines the partition. We note that the classical work on hypergraph clustering
deal with non overlapping clusters, and that the used metrics differ from ours.

After the selection of clusters, the decision which of them to use to cover each of the
edges is an instance of the minimum set cover problem. In the set cover problem the input is
a universe U of n = |U | elements and k sets S1, . . . , Sk ⊆ U . The goal is to find a collection
with a minimal number of sets such that its union equals the universe U . Set cover is
NP-hard as shown in Karp’s seminal paper [21]. A greedy algorithm, selecting as the next
set one that covers a maximal number of elements that have not been covered, gives a lnn
approximation. Feige showed that assuming P 6= NP , no polynomial-time algorithm can
obtain an approximation ratio better than lnn [17]. Furthermore, if the cardinality of each
set is at most c, the greedy algorithm obtains roughly a 1 + ln c approximation [20, 23, 9].
Trevisan [30] adjusted the parameters in Feige’s reduction, to show that if the largest set
is of size c, no polynomial-time algorithm can obtain an approximation ratio better than
ln c−O(ln ln c), assuming P 6= NP .

2 Disjoint clusters

In this section we study the case that α = n/c, i.e., the clusters are disjoint.
We start with the case of c = 2 for which we can find the optimal clustering as follows.

We construct a weighted complete (undirected) simple graph Λ = (V, F ) over the vertices
of our input hypergraph G = (V,E) and set the weight c(u, v) of an edge (u, v) ∈ F to
be

∑
e∈E|{u,v}⊆e w(e). We claim that a maximum perfect matching in Λ gives an optimal

clustering. Correctness of this algorithm follows from the observation that the average service
time of a clustering P = {B(1), B(2), . . . , B(n/c)} is exactly∑

e∈E
w(e) (|e| − |{B ∈ P | B ⊆ e}|) =

∑
e∈E

w(e)|e| −
∑
B∈P

∑
e|B⊆e

w(e).

This holds since we can trivially serve an edge e with |e| clusters – one per vertex. Each
cluster Bi with |Bi| = 2 and Bi ⊆ e can be used to serve two of the vertices of e and
thereby reduces by one the total number of required clusters. Since clusters are disjoint their
contributions add up. We note that in the special case where |e| = 2 for each e ∈ E and E
connects every pair of vertices from V then Λ and G are identical, and the optimal solution
is given by a maximum matching in G.

2.1 The greedy algorithm for a graph
We start with the case where |e| = 2 for every e ∈ E, meaning that our input hypergraph
G = (V,E) is in fact a graph. The value of c is arbitrary, and assume for simplicity that |V |
is a multiple of c.

A solution is a partition of V into disjoint clusters of c vertices. We refer to a partition
of the vertices in which every cluster is of size at most c as a partial solution. We define
the score s(B) of a cluster B (of size at most c) to be the sum of the weights of the edges
contained in B, i.e., s(B) =

∑
e∈E|e⊆B w(e).

We analyze a simple greedy algorithm that at every step, chooses as the next cluster the
set B of maximum score among all possible clusters of size c consisting of uncovered vertices.

I Theorem 1. The greedy algorithm results in an average service time of at most 2c+1
c+2 TOPT .

For c = 3 the approximation ratio is 7/5, and for c = 4 it is 3/2.
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We need the following definitions for the proof of Theorem 1. Given a solution or a partial
solution X, we define its score s(X) as the sum of the scores of its clusters. In particular, we
consider the optimal and the greedy partitions denoted by OPT and GREEDY with scores
of s(OPT ) and s(GREEDY ), respectively. Finally, let W denote the sum of the weights of
the edges in the graph G. We begin with the following lemma that relates s(GREEDY ),
s(X) for some solution X, and W.

I Lemma 2. For every graph G = (V,E) and every solution X and c ≥ 2, the following
relations hold:
(i) s(GREEDY ) ≥ s(X)/c,
(ii) (c− 1) · s(GREEDY ) +W ≥ 2s(X).

Proof Outline. The proof is by induction on the number of vertices in the graph. The
basis is the case where |V | ≤ c. In this case GREEDY selects one cluster containing all
vertices of G so s(GREEDY ) = W. It follows that s(GREEDY ) ≥ s(X) ≥ s(X)/c and
(c− 1)s(GREEDY ) +W ≥ s(GREEDY ) +W ≥ 2 · s(X).

Induction step: We assume the lemma holds for any graph with less than |V | vertices.
Let B1 ⊆ V be the first cluster of size c that GREEDY chooses in G. Let s(B1) be the score
of this cluster, that is s(B1) =

∑
v,v′∈B1,(v,v′)∈E w(v, v′).

Let G′ = (V ′, E′) be the graph generated by deleting from G the vertices in B1 and all the
edges incident to these vertices. That is, V ′ = V \B1 and E′ = {(u, v) ∈ E | {u, v}∩B1 = ∅}.

We derive from the clustering X of G, a clustering X ′ of G′, by removing from each
cluster in X the vertices in B1, and keeping only clusters with at least two remaining elements
following the removal. Formally, the clusters of X ′ are {A \B1 | |A \B1| ≥ 2, A ∈ X}. Let
GREEDY ′ be the solution obtained by running the greedy algorithm in G′, which is the
same as GREEDY \B1. We have that s(GREEDY ) = s(B1) + s(GREEDY ′).

The inductive hypothesis applied to G′ gives that s(GREEDY ′) ≥ s(X ′)/c, and that
(c− 1)s(GREEDY ′) +W ′ ≥ 2s(X ′), where W ′ is the total weight of the edges in G′.

Let E−X be the set of edges in E that are covered by a cluster of X but not covered
by a cluster of X ′ and let w(E−X) be the sum of the weights of the edges in E−X . Clearly,
E−X ⊆ E \ E′ and we have that s(X) = w(E−X) + s(X ′) and

W ≥W ′ + w(E−X) . (1)

Let X1 ⊆ X be the set of clusters in X covering the edges in E−X . Since |B1| = c we must
have that |X1| ≤ c. Since B1 was selected by GREEDY it follows that s(B1) ≥ s(A) for
every cluster A ∈ X and in particular for every cluster A ∈ X1. So it follows that

s(B1) ≥ s(X1)
|X1|

≥
w(E−X)
|X1|

≥
w(E−X)
c

. (2)

We can now show that s(GREEDY ) ≥ s(X)/c by combining the induction hypothesis with
Equation (2) as follows.

s(GREEDY ) = s(B1) + s(GREEDY ′) ≥ w(E−X)/c+ s(X ′)/c = s(X)/c .

To show that (c− 1)s(GREEDY ) +W ≥ 2s(X), we distinguish between the cases where
(i) |X1| ≤ c− 1 and
(ii) |X1| = c.
We establish case (ii) by a stronger version of inequality (1) that holds in case and says that
W ≥W ′ + w(E−X) + s(B1). J
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Figure 1 Illustration of the graph Gc,ε for c = 4 in Lemma 3. It consists of n = c2 vertices
{v1, . . . , vc} ∪ {ui,j | 1 ≤ i ≤ c, 1 ≤ j ≤ c− 1} and c2 − 1 edges of two types. For every 1 ≤ i ≤ c− 1
we have an edge (vi, vi+1) of weight 1 + δ where δ = ε/c(c − 1). For every 1 ≤ i ≤ c, and every
1 ≤ j ≤ c− 1 there is an edge (vi, ui,j) of weight 1.

We now use Lemma 2 to prove Theorem 1.

Proof Outline of Theorem 1. The service time for an edge is 1 if it is contained in one of
the clusters of the partition, and 2 otherwise. So we can bound the ratio of the average
service time of GREEDY, denoted by TGREEDY , and the average service time of OPT by

TGREEDY
TOPT

= 2W − s(GREEDY )
2W − s(OPT ) ≤ 2c+ 1

c+ 2 .

The last inequality follows from the bounds in Lemma 2 applied with X = OPT and some
algebraic manipulations. J

Lemma 2 is tight for any fixed value of c and therefore the approximation ratio of
Theorem 1 is also tight. To show this we use the graph Gc,ε (for any ε > 0 and c) illustrated
in Figure 1 for which we prove the following lemma.

I Lemma 3. In the graph Gc,ε, we have (c − 1)s(GREEDY ) +W ≤ 2s(OPT ) + ε, and
simultaneously s(GREEDY ) ≤ s(OPT )/c + ε. In particular for this graph TGREEDY /
TOPT ≥ (2c+ 1)/(c+ 2)− ε.

2.2 The case of a hypergraph
Having established tight bounds on the approximation ratio for the case |e| = 2, we now
move to the more difficult case where |e| ≤ 3 and c = 3. We again describe a simple greedy
algorithm and bound its approximation ratio.

For G = (V,E), let E2 ⊆ E and E3 ⊆ E be the subsets of the edges of size 2 and 3,
respectively. A solution is a partition of V into triplets. We also refer to a partition of
the elements in which every part is of size at most 3 vertices as a partial solution. Given
a solution or a partial solution X, we denote by X3 the set of edges e ∈ E3 that are also
triplets in X; by X2 the set of edges e ∈ E2 which are contained in a triplet or pair of X;
and by X2,3 the set of edges e ∈ E3 such that |e ∩B| = 2 for some pair or triplet B ∈ X.

We define the score, s(X), of a solution (or a partial solution) X to be s(X) = 2w(X3) +
w(X2) + w(X2,3). In particular, we define the score s(B) of a pair or a triplet B ∈ X to be
twice the weight of B if B ∈ E3, plus the sum of the weights of the edges e ∈ E such that
|e ∩B| = 2. Intuitively, this is the contribution of B to the reduction in the average service
time. The average service time TX of a solution X equals 3w(E3) + 2w(E2)− s(X).

We consider a greedy algorithm, denoted by GREEDY that at each step picks a triplet B
with maximum score and then removes the vertices of B, and all the edges whose restriction
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to the remaining graph is of size at most one. The following analog of Lemma 2 is the main
technical lemma of this subsection.

I Lemma 4. For any solution X the following relations hold
(i) s(GREEDY ) ≥ s(X)/3.
(ii) 3w(E3) + 1.5w(E2) + 3s(GREEDY ) ≥ 3s(X).

Applying this Lemma to X = OPT we prove the following bound on the approximation
ratio of GREEDY .

I Theorem 5. For hypergraphs with |e| ≤ 3 for all e and c = 3, the average service time of
the greedy algorithm is at most 5

3 · TOPT .

I Remark. Our upper bound in Section 2.1 for the case where the input graph G is a graph
is tight as Lemma 3 shows. This follows since both parts of Lemma 2 are tight for the graph
Gc,ε. On the other hand, we believe that our result in Theorem 5 for the case in which G
is a multigraph is not tight as we suspect that there is no graph for which both parts of
Lemma 4 are tight. Lemma 4 can be extended for the case of hyperedges of size even larger
than 3, but we believe that this approach is unlikely to provide tight bounds. An obvious
open problem is to find a way to strengthen Lemma 4 and improve our bounds for the case
where G is a hypergraph.

3 Overlapping clusters

In this section we study the scenario of a general number α ≥ n/c of clusters that can overlap
and are not necessarily disjoint. In the first part of the section we focus on the case where
c = 2, that is each cluster can include two vertices from V . We give a polynomial-time
algorithm that finds an optimal clustering for the case where |e| = 2 for all e ∈ E, i.e., the
input is a graph. (We recall that without loss of generality we assumed |e| > 1 for every
e ∈ E.) In the full version of this paper we show that the problem is NP-hard for hypergraphs
in which |e| = 3 for all e ∈ E (and c = 2). This motivates the second part of this section
in which we describe an approximation algorithm that applies to a general instance of the
problem.

3.1 Optimal algorithm for a graph
We consider the case where c = 2 and |e| = 2 for all e ∈ E. Notice that in Section 2, we
gave an algorithm that finds an optimal clustering for the case where c = 2 and α = n/c but
without any assumption on |e|. When c = 2, α = n/c and |e| = 2 for all e, the algorithm we
give here and the algorithm of Section 2 are identical.

To simplify the presentation we assume that the input graph G contains all the edges (some
may have weight 0) and thereby a clustering P is just a subset of E. Edges of P are served
by a single cluster and each other edge is served by two clusters. Let w(P ) =

∑
e∈P w(e). It

follows that the service time of P is 2 ·
∑
e∈E w(e)−w(P ). The following characterization of

an an optimal clustering now easily follows.

I Theorem 6. Let c = 2 and α be an arbitrary value. For any weighted graph G = (V,E),
a clustering P = {e(1), e(2), . . . , e(α)} minimizes the average service time if and only if P
maximizes w(P ) while satisfying

⋃
i∈[1,α] e(i) = V .

Assume without loss of generality that w(e) 6= w(e′) by some consistent tie breaking
scheme. Let e1, e2, . . . , e(n

2) be the edges of G in decreasing order of weight (by our tie
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breaking). Let P be an optimal clustering that includes the longest prefix of e1, e2, . . . , e(n
2)

(among all optimal clusterings). Let x be the length of this prefix and let e(1), e(2), . . . , e(α)
be the edges of P in non-increasing order of weight. By the choice of P , e(i) = ei for
1 ≤ i ≤ x and e(x + 1) 6= ex+1 if x < α. Here are a few observations about P that follow
from Theorem 6.

We say that a cluster e(j) ∈ P first covers a vertex v, if it is the first (according to the
order defined above) among the clusters of P that contains v. Each vertex is first covered by
exactly one of the clusters and each of the clusters e(x+ 1), . . . , e(α) must first cover either
one or two vertices. Indeed, if, say, e(i) for some x+ 1 ≤ i ≤ α, does not first cover any of its
vertices, we can replace it in P by ex+1 and get a clustering P ′ such that, w(P ′) ≥ w(P ), P ′
covers all vertices, and P ′ contains a longer prefix of edges in the sequence e1, e2, . . . , e(n

2),
contradicting the choice of P .

Let y1 (resp. y2) be the number of clusters among e(x + 1), . . . , e(α) that first cover a
single vertex (resp. two vertices). Clearly we have that α = x+y1 +y2. Let αx be the number
of distinct vertices in the first x pairs, i.e. αx = |

⋃x
i=1 e(i)|. Since there are n vertices and

each is first covered exactly once, then n = αx + y1 + 2y2. The two equalities imply that

y2 = n− αx − α+ x and y1 = α− x− y2 = 2α− 2x− n+ αx. (3)

Consider a vertex v that is first covered by a cluster e(j), which first covers only v.
We claim that e(j) is the edge of largest weight (first in e1, e2, . . . , e(n

2) ) that covers v, as
otherwise we can replace it in P by an edge of larger weight, while still covering all vertices
of G, contradicting the maximality of P .

We now turn to describe the algorithm. We first sort the pairs of vertices by their weight
and compute the order e1, e2, . . . , e(n

2). Then we iterate over all possible values of x ∈ [0, α].
For each value x, we construct a clustering P = {e(1), e(2), . . . , e(α)} with e(i) = ei for
1 ≤ i ≤ x that maximizes w(P ) among all such clusterings. We compute αx and the values
of y1 and y2 given by Equation (3). To find the y1 + y2 = α − x additional clusters, we
consider the induced subgraph Λ of G on the n− αx vertices not covered by the largest x
edges of G. We add to this induced subgraph, y1 additional dummy vertices d1, . . . , dy1 , and
obtain a graph Λ′ with n− αx + y1 = 2(α− x) = 2(y1 + y2) vertices. In Λ′ we add an edge
(di, v) for each 1 ≤ i ≤ y1 if the edge of largest weight covering v is ej for some j > x+ 1.
We set w(di, v) = w(ej). A maximum perfect matching in Λ′ gives us the n− x remaining
clusters as argued by the following lemma.

I Lemma 7. A perfect matching in Λ′ corresponds to the y1 + y2 edges among ex+2, . . . , e(n
2)

of largest weight containing the n− αx vertices of G that are not in e1, . . . , ex. An edge of Λ
corresponds to itself and an edge (di, v), where di is a dummy vertex, corresponds to the edge
incident to v of largest weight in G.

The total weight of the clustering defined by a perfect matching in Λ′ is given by the
sum of the weights of e1, . . . , ex and the weight of the matching. The optimal clustering is
selected as the one with the maximum total weight among the clusterings that we get for
the various values of x. An example demonstrating the algorithm is illustrated in Figure 2.
Finding a maximum weight perfect matching in a general (not necessarily bipartite) graph
is a classical combinatorial optimization problem that can be solved in polynomial-time by
various implementations of Edmond’s algorithm [15] (see also [13] and the references there).
The current best strongly polynomial bound is O(qr+r2 log r) by Gabow [19] (here q denotes
the number of edges and r denotes the number of vertices). Since the number of vertices in
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{3,5} 0.23, {1,3} 0.15, {1,5} 0.11, {3,4} 0.10, {2,5} 0.09, {4,6} 0.08, {5,6} 0.06, {1,6}
0.05, {2,3} 0.04, {1,4} 0.03, {1,2} 0.02, {2,4} 0.01, {4,5} 0.01, {2,6} 0.01, {3,6} 0.01.
(a) The graph edges, sorted by weight.

(b) The corresponding constructed graph Λ′. (c) The complete weighted graph.

Figure 2 Illustration of the optimal algorithm for c = 2 in a graph (edges of two vertices) (for
the described edge weights with α = 5, n = 6). (a) shows the graph edges sorted in a non-increasing
order of their edge weights, shown next to each edge. The first x = 3 pairs appear in bold with
αx = |{1, 3, 5}| = 3 and n− αx = 3. (b) presents the constructed graph Λ′ with vertices 2, 4, 6 that
do not appear in the x = 3 pairs and a single additional dummy vertex. (c) shows the complete
weighted graph for all vertices in which dashed edges represent clusters in an optimal clustering.

any of the graphs in which we compute a perfect matching is O(α), each maximum matching
problem is solved in O(α3) time. In total we solve at most α matching problems in O(α4)
time. Since α ≥ n/2, this clearly dominates the time it take to sort the O(n2) edges. The
following theorem summarizes the result of this section.

I Theorem 8. The algorithm described above computes an optimal assignment for the case
of c = 2, |e| ≤ 2, and runs in O(α4) time.

In the special case where α = n/c = n/2 the optimal solution corresponds to a maximum
perfect matching in G. Indeed, for x = 0 we have αx = 0, y2 = n−αx−α+x = n−0−α = n/2,
and y1 = α− x− y2 = 0. So for this value of x there are no dummy vertices in Λ′ and an
optimal assignment is given by a maximum matching in G. There is no need to try other
values of x.

3.2 A Bi-Criteria Approximation Algorithm
We describe an approximation algorithm that applies to a general instance of the problem.
Let c denote the maximum cluster size and α the number of clusters as before, and let
M = maxe∈E |e|. We assume that the algorithm has an estimate β of TOPT , the optimal
average service time with α clusters, such that TOPT ≤ β < 2TOPT . In case such an
estimate is not available, we can run the algorithm with β = M/2i for i = 0, 1 . . . , blogMc.
Since 1 ≤ TOPT ≤ M , one of these values of β must be in the required range. Our
approximation algorithm is bi-criteria, it computes a clustering with an average service time
O(TOPT logM log c) and O(α logM log c) clusters.

Our algorithm adds a single cluster per iteration. At each iteration we compute a
score for each tentative cluster D, denoted by φ(D), and we pick the cluster of maximum
score. To compute φ(D) for each cluster D, we maintain for each edge e, the subset



O. Rottenstreich, H. Kaplan, and A. Hassidim 64:11

A(e) of the uncovered (by clusters picked at previous iterations) vertices of e. For each
edge e we compute the fraction of e covered by D. We define this fraction to be large
if it is at least 1

4β . The score φ(D), is the weighted sum of the large fractions that D
covers. That is, φ(D) =

∑
e w(e)|A(e) ∩D|/|A(e)|, where the sum is over all e such that

|A(e) ∩D|/|A(e)| ≥ 1
4β .

We prove that after a phase consisting of at most 8α(logM + 1) iterations we completely
cover edges of total weight at least a 1/4 (using 8α(logM + 1) clusters), where each edge
which is completely covered is covered by ≤ 8TOPT (logM + 1) clusters. The optimal service
time of the remaining (not completely covered) edges (of total weight at most 3/4) is at most
4/3TOPT . In the next phase we apply the same procedure to these remaining edges with
their new value of TOPT (and estimate β). By the same argument, in the next phase we
cover edges whose weights sum to 1/4 of the total weight of the remaining edges (that were
not covered in the first phase) using ≤ 8 · (4/3TOPT )(logM + 1) clusters. It follows that each
phase adds O(α logM) clusters and increases the average service time by O(TOPT logM).

After O(log c) phases the leftover uncovered edges are of total weight ≤ 1/c. We cover
these remaining 1/c fraction of the edges arbitrarily using at most dn/ce ≤ α additional
clusters including all functions. The following theorem summarizes our result.

I Theorem 9. The algorithm described above computes a solution with an average service
time O(TOPT logM log c) that uses O(α logM log c) clusters.

The running time of our algorithm is exponential in c since we have to compute the scores
of all (unused) clusters of size c in each iteration.

3.3 Directed Hypergraphs
In some applications demands have to be served according to a specific order. In this case
our input is a directed hypergraph meaning that each edge is an ordered tuple of vertices.
We show how to use our approximation algorithm for graphs (all edges are of size 2 and
unordered) specified in Theorem 1 to obtain a clustering with small average service time for
directed hypergraphs. We only consider the case where α = n/c (disjoint clusters).

Recall that in the directed case which we consider here P (e) is a sequence of clusters
(possibly with repetitions) that cover the vertices of e in order consistent with the order of e.
The service time t(e) is the length of the sequence P (e).

For an ordered hyperedge e = (v1, v2, . . . , vk) let U(e) be the set of the k − 1 edges
{{v1, v2}, {v2, v3}, . . . , {vk−1, vk}}. We have the following lemma.

I Lemma 10. Let α = n/c and let B be a clustering of the vertices of a directed hypergraph
H into α disjoint clusters. Let t(e) be the service time for serving an ordered edge e by B.
Consider the set U(e) of |e|−1 (unordered) edges, each equals to a consecutive pair of vertices
in e as defined above. Then the total service time of serving U(e) by B is t′ = t(e) + |e| − 2.

Consider for example the edge e = (8, 2, 1, 7, 3) and the clusters B(1) = {1, 2, 3}, B(2) =
{4, 5, 6}, B(3) = {7, 8, 9}. With this clustering, the edge e must be covered first by cluster 3
(to cover vertex 8), then cluster 1 (covering vertices 2 and 1), then cluster 3 again (to cover
vertex 7), and finally cluster 1 again (to cover vertex 3), so t(e) = 4. The set U(e) consists
of the four edges {8, 2}, {2, 1}, {1, 7}, {7, 3}. Each of these edges but {2, 1} requires two
clusters to be covered for a total of 7 which is indeed t(e) + |e| − 2.

Lemma 10 suggests the following reduction from the ordered problem to an unordered
problem in which |e| = 2 for all e.
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Given a directed hypegraph H = (V,E) we construct a graph G = (V,E′) on the same
vertex set V and with E′ = ∪e∈EU(e). We set the weight of an edge e′ ∈ U(e) to be
w(e′) = w(e)/(W − 1) where W =

∑
e∈E w(e)|e|. Note that W − 1 =

∑
e∈E w(e)(|e| − 1) is

a normalization factor that makes the weights of the edges in U sum to 1.5

Consider a clustering B of n vertices into α = n/c clusters. Then by Lemma 10

∑
e∈E′

w(e)t(e) =
∑
e∈E

w(e)
W − 1(t(e) + |e| − 2).

So if T ′ is the average service time of G by B and T is the average service time of H by B
then T ′ = (T +W − 2)/(W − 1). By rearranging we get that T = (W − 1)T ′ −W + 2.

Since all edges in G are of size 2 then we can apply to G the approximation algorithm of
Theorem 1 which guarantees an approximation ratio of 2c+1

c+2 . The resulting clustering has
the following guarantee for H.

I Theorem 11. The clustering obtain for G by the algorithm of Theorem 1 has an average
service time T ≤ 2c+1

c+2 TOPT (H) when applied to serve the hyperedges of H, where TOPT (H) is
the smallest possible average service time for H.

Proof. The average service time T of the obtained clustering satisfies that T ≤ (W − 1) ·
2c+1
c+2 · TOPT (G) −W + 2, where TOPT (G) is the average service time of the optimal solution
to G. The optimal solution of H induces a solution of G with a service time T ′ such that
T ′ = (TOPT (H) + W − 2)/(W − 1). It follows that TOPT (G) ≤ T ′ = TOP T (H)+W−2

W−1 . By
substituting the last equation into the previous we get T ≤ 2c+1

c+2 TOPT (H). J

4 Conclusions and Open Problems

We introduce the problem of clustering vertices of a weighted hypergraph to minimize the
average service time of its edges. For disjoint clusters we described a natural greedy algorithm
and analyzed it in two cases: when edges are of size 2, and when edges are of size at most 3
and clusters are of size 3. The latter analysis is subtle and uses an interesting set of invariants.
This greedy algorithm can be naturally generalized for larger edges and cluster sizes. Our
analysis, however, gets complicated and the number of cases seems to get out of control.
Is there an alternative simpler way to analyze such a generalization? One can also try to
deal with larger clusters via an hierarchical approach: First cluster the vertices into smaller
clusters, then contract these small clusters, and cluster the contracted hypergraph into small
clusters again. Finding a way to analyze this hierarchical approach is an open problem.
An interesting problem for an experimental research is to compare the performance of the
hierarchical and non-hierarchical approaches on some interesting data sets. To conclude,
finding a general algorithm for disjoint clusters which is amenable to analysis, and has good
approximation ratio is a very interesting challenge (or alternatively proving inapproximability
results). Such an algorithm, if practical, will find numerous applications. For overlapping
clusters we gave a bicriteria approximation algorithm. A natural open question is to find an
algorithm with a guaranteed approximation ratio with respect to the optimal clustering with
α clusters that does not require more than α clusters.

5 Notice that in the constructed unordered instance U we may have identical edges.
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Abstract
We study the problem of k-dominance in a set of d-dimensional vectors, prove bounds on the
number of maxima (skyline vectors), under both worst-case and average-case models, perform
experimental evaluation using synthetic and real-world data, and explore an application of k-
dominant skyline for extracting a small set of top-ranked vectors in high dimensions where the
full skylines can be unmanageably large.
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1 Introduction

In multi-criteria optimization and decision-making applications, there is often no single best
answer, and a popular approach is to use pareto optimality. The set of pareto optimal points,
which are the coordinate-wise undominated solutions, is called the skyline. Unfortunately as
the dimension of the data grows,1 the size of the skyline tends to explode and most, if not all,
of the input vectors can appear on the skyline [4, 7, 8]. A database query for a car or a smart
phone, for instance, can easily produce an overwhelming number of incomparable choices. In
the National Basketball Association’s (NBA) database of 21, 961 players in 17 dimensions
(scoring attributes), more than 1400 players appear on the skyline (see Figure 2 for real-world
datasets with large skylines). The problem is even more pronounced in crowdsourced data
such as movies or consumer product ratings – each input vector is the rating profile of a
product by the users – where virtually every product can be highly ranked by some user,
potentially elevating it to the skyline. While the classical result of Bentley et al [4] shows
that the expected size of the skyline of n random vectors, whose components are chosen
independently, is O((log n)d−1) in d-dimensions, the exponential dependence on d renders
the skyline useless even in theory except in very low dimensions.

The k-dominant skyline KDS was introduced recently as a way to tame this curse of
dimensionality, where by relaxing d-dominance to k-dominance, for k < d, many more points
can be eliminated from the skyline, resulting in a smaller, more manageable, set of maxima.
Formally, given a finite set of points V in Rd, a point u is said to k-dominate another point

1 Although in theory all input points can appear on the skyline even in two dimensions, this pathological
behavior is rarely observed in low-dimensional real-world data.
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v if ui ≥ vi holds for k of the dimensions, i = 1, 2, . . . , d, with strict inequality in at least
one dimension. We use the notation u �k v to indicate k-domination of v by u, and write
u 6�k v when u does not k-dominate v. The k-dominant skyline of V , denoted KDS(V, k), is
the set of points that are not k-dominated:

KDS(V, k) = {v ∈ V | u 6�k v, ∀ u ∈ V \ {v}}.

In this paper we make both theoretical and applied contributions to the study of k-dominant
skylines.

1.1 Main Contributions
We derive the first non-trivial (poly-logarithmic) upper bound on the average size of KDS
for random vectors, and in the process generalize the result of Bentley et al. [4]. Our
experiments on synthetic and real-world data show that KDS size conforms to these bounds.
We then use movie ratings and NBA basketball datasets to show that KDS is an effective
tool for high-dimensional ranking queries. The full-dimensional skylines of these data sets are
unmanageably large, but KDS consistently finds top vectors using purely pareto property,
without the need for ad hoc preference (utility) functions. (We discuss these issues further in
Section 6.) Specifically, our paper makes the following contributions:
1. Average Case Bound: Let V be a set of n vectors in d dimensions where the components

of each vector are distributed independently of each other, and for each component the
magnitudes form a random permutation of {1, 2, . . . , n}. We show that the expected
number of vectors appearing on the k-dominant skyline is{

O
(
(log n)2k−d−1) for k > d+1

2

O(1) otherwise

Our result smoothly interpolates the cardinality of KDS for all values of k, and subsumes
the classical result of Bentley et al. [4] as a special case for k = d.

2. Efficient Algorithm: The k-dominance relation does not obey transitivity, which is needed
for the efficient (sub-quadratic) computation of skylines. We show that KDS can be
computed from the (traditional) skylines of all k-dimensional projections of the input
vectors. Our algorithm runs in worst-case time O

(
dd−kn logk−1 n

)
, which is subquadratic

even for non-constant dimensions as long as d ≤ c log n/ log log n, for some constant c.
3. Experiments: Our average case analysis assumes attribute distinctness and statistical

independence of input vectors. While there is no reason to believe that real-world datasets
meet these conditions, our experiments on a variety of data show that the KDS size
follows the exponential growth predicted by our analysis.

4. Applications: We show that KDS is a useful tool for robust ranking in high dimensions.
For instance, which players should be called the “10 most dominant NBA players” when
more than 1400 are pareto optimal (undominated)? Our experiments show that the
vectors (NBA players or movies) that are the first ones to populate the k-dominant skyline,
and therefore have the most longevity because k-dominance is a monotone property, are
indeed the natural candidates for top ranking.

1.2 Related Work
The skyline or maxima problem has a long history in computational geometry, databases,
and mathematical optimization [3, 4, 13, 6, 5, 9, 15, 19, 20, 21, 27, 28, 14, 22, 25], and the
quest for efficient algorithms that scale to high dimensions and large input continues to this
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day. It has also been observed that as the dimension grows, the skylines can quickly lose their
data-reduction utility because most of the input vectors may appear on the skyline [7, 10].

A number of approaches have been considered for identifying a smaller size representation
of the full skyline in high dimensions. One simple method aggregates all the dimensions
into a single utility function, and uses the ranking defined by this function. This approach
while computationally attractive is problematic because it simply transfers all the burden to
the “designer” of the utility function. Indeed, one of the important benefits of skyline-based
approaches is to let the users explore various tradeoffs across different components such
as price, location, brand etc. [7, 8]. Another approach is to compute a small set of input
vectors that approximates the skyline over all preference functions. Unfortunately, these
approaches are computationally intractability even for linear preference functions, as in the
case of k-regret set [10, 24, 26, 1], or approximate-skyline [18].

The focus of our paper is to both prove an upper bound on the size of the KDS and to
explore its applications for ranking high dimensional data. There exists a substantial and
rich literature on estimating the cardinality of (conventional) skylines [4, 6, 14, 15, 21, 28],
under a variety of data models, including in-memory, distributed, and data streams. However,
very little is known about the cardinality of k-dominant skylines. The k-dominant skyline
was introduced in [7] but the primary goal of that paper is to design efficient heuristics for
computing the KDS scalably in practice. (In a related work, Chan et al. [8] compute vectors
that appear in many k-dominant skylines, but again the paper is concerned with the design
and evaluation of an efficient heuristic.) In [17], Hwang et al. consider certain threshold
phenomena in k-dominant skylines under a continuous probability model, and derive limit
bounds as n, d→∞. By contrast, we establish parametric upper bounds on the cardinality
of KDS under both random and worst-case inputs, similar to those for the conventional
skylines obtained by Bentley et al. [4] or Buchta [6].

2 K-Dominance and the Worst-Case Bound

Let V be a set of n vectors in d-dimensional space. We will use the letters u and v to denote
generic vectors of V, and vi as the ith coordinate of v ∈ V. That is, v = (v1, v2, . . . , vd)
is the coordinate representation of vector v. We will use the terms vectors and points
interchangeably since vectors are commonly viewed as points in d-dimensional space. Given
two vectors u, v ∈ V , we say that u dominates v, denoted u � v, if ui ≥ vi for i = 1, 2, . . . , d,
with strict inequality in at least one dimension. We say that a vector u k-dominates v if
ui ≥ vi for at least k of the d possible dimensions, with strict inequality in at least one. We
write this as u �k v, generalizing the original definition of domination, which is equivalent to
d-domination �d. The k-dominant skyline of V is the set of vectors that are not k-dominated
by any other vector. That is,

KDS(V, k) = {v ∈ V | u 6�k v, ∀ u ∈ V \ {v}}.

The k dimensions involved in k-dominance u �k v need not be the same as those involved
in u′ �k v′, and so the k-dominant skyline does not equal the skyline of V after projection
onto some fixed k-dimensional subspace. It also means that the k-dominance relation is not
transitive: if u �k v and v �k w, then we do not necessarily have u �k w.

Given a set of input vectors V in d dimensions, we define a directed graph Gk, called the
k-dominant graph, as follows: the vertices of Gk correspond to the vectors of V , and its edges
correspond to k-dominance relationships between pairs of vectors. That is, the graph Gk has
a directed edge (u, v) whenever u �k v, for u, v ∈ V. The in-degree of a node v in Gk is the
number of edges directed into v, namely, in-degree(v) = |{(u, v) ∈ Gk}|. The following two
facts are easy to establish, whose proofs are omitted from this abstract due to lack of space.
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1
2
... Va

i− 1
i

i + 1
... Vb

n

Figure 1 Average case analysis of KDS. The vector v is the ith vector. The first (i− 1) vectors
form the subset Va, and the last (n− i) vectors form the subset Vb.

I Lemma 1. A vector v belongs to KDS(V, k) if and only if v has in-degree zero in Gk.

I Lemma 2. KDS(V, k′) ⊆ KDS(V, k), for k′ < k.

With these preliminaries, we can now prove the following bound for the size of the KDS
in the worst-case. Due to lack of space, the proof is omitted from this abstract.

I Theorem 3. The worst-case cardinality of KDS obeys the following bound:
1. Given any set of n vectors in d-space and any k with k ≤ (d + 1)/2, |KDS(V, k)| ≤ 1.
2. For any n ≥ 1, and k, d such that k > (d + 1)/2, there exists a set V of n vectors in

d-space for which |KDS(V, k)| = n.

3 Average Case Analysis

We now analyze the size of the k-dominant skylines when the input vectors are drawn
randomly from a distribution. Our analysis uses the standard “attribute distinctness and
statistical independence” model [4, 6, 14], which only assumes that the vector components
are distributed independently of each other, and for each component the magnitudes form
a random permutation of {1, 2, . . . , n}, namely, a total rank ordering. While not all data
sets necessarily satisfy these assumptions, the model is sufficiently general, elegant and
mathematically tractable for deriving non-trivial bounds.

We interpret the input set of n vectors as an n × d array, whose rows are the vectors
and whose columns are permutations of {1, 2, . . . , n}. The set of all possible permutations
produces exactly (n!)d distinct vectors. We analyze the complexity of the k-dominant skyline
for an input array V chosen uniformly at random from this set. What is the expected size of
the k-dominant skyline for such an input V?

We analyze the average size of KDS by setting up a recurrence. In order to aid that
derivation, let A(n, d, k) denote the average size of the k-dominant skyline for a set of n

vectors in d dimensions, where the vectors are chosen under the random model described
above. We assume, without loss of generality, that the first column of the input n× d array
is sorted in the ascending order (1, 2, . . . , n) – that is, the first coordinate of the ith vector
is i, which if necessary can be realized by simply relabeling the vectors. See Figure 1 for
illustration.

Let us focus on a single but arbitrary vector v, and derive the probability that it belongs
to the k-dominant skyline. Suppose the vector v is represented as the ith row, which means
its first coordinate is v1 = i. We partition the remaining set of input vectors into two groups:
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Va = {u ∈ V | u1 < v1} and Vb = {u ∈ V | u1 > v1} (1)

That is, Va is the set of vectors that v dominates on the first coordinate, and Vb is the set of
vectors that dominate v on the first coordinate. The key observation is that for v to be a
KDS vector both of the following two events must occur:
1. None of the vectors in Va k-dominates v among dimensions {2, 3, . . . , d}, and
2. none of the vectors in Vb (k − 1)-dominates v among dimensions {2, 3, . . . , d}.

This follows because v can fail to be on the KDS only if either some vector in Va or
some vector in Vb k-dominates it. If some vector in Va were to k-dominate v, it has to do so
using all k dimensions from the set {2, 3, . . . , d} since v already dominates each vector of
Va on dimension 1. Condition (1) computes the probability that no u ∈ Va k-dominates v.
On the other hand, since each vector u ∈ Vb already dominates v on the first coordinate, it
needs to only find k − 1 other dimensions among {2, 3, . . . , d} to achieve k-domination of
v. Condition (2) computes the probability that no u ∈ Vb k-dominates v. The two events
are independent because the remaining d− 1 dimensions are independent of the first, and
so the probability that v belongs to the KDS is the product of these two probabilities. The
following two lemmas derive these probabilities.

I Lemma 4. The probability of event (1) is A(i,d−1,k)
i .

Proof. Consider the i× (d−1) array consisting of the first i rows and the last (d−1) columns
of V. This is a random set of i vectors in (d− 1)-dimensional space, which for convenience
we call the reduced space. By induction, the expected KDS size for this set is A(i, d− 1, k).
The probability that v is one of these skyline vectors is A(i, d− 1, k)/i, by symmetry. Since
v already dominates all the vectors of Va in the first coordinate, it is on the KDS of Va ∪{v}
with the same probability. J

I Lemma 5. The probability of event (2) is A(n−i+1,d−1,k−1)
n−i+1 .

Proof. The proof is similar to (1), and omitted from the abstract due to space. J

By combining the preceding two lemmas, we get the probability that v lies on the KDS:

Pr[v ∈ KDS] = A(i, d− 1, k)
i

× A(n− i + 1, d− 1, k − 1)
n− i + 1 .

By summing over all n points, we get

A(n, d, k) =
n∑

i=1

(
A(i, d− 1, k)

i
× A(n− i + 1, d− 1, k − 1)

n− i + 1

)
(2)

Since A(i,d−1,k)
i is a probability in this recurrence, we can replace it with 1 and derive the

following upper bound with a change of index:

A(n, d, k) ≤
n∑

i=1

(
A(n− i + 1, d− 1, k − 1)

n− i + 1

)
≤

n∑
i=1

A(i, d− 1, k − 1)
i

(3)

The function A(n, d, k) is monotone non-decreasing with n because

A(n, d, k) = A(n− 1, d, k) + A(n, d− 1, k)
n

× A(1, d− 1, k − 1)
1 (4)
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where the second term is non-negative. Therefore, we have the following upper bound:

A(n, d, k) ≤
n∑

i=1

A(i, d− 1, k − 1)
i

≤ A(n, d− 1, k − 1)×
n∑

i=1

1
i

(5)

Since the harmonic number Hn =
∑n

i=1
1
i ≈ ln n [11], after j iterations, we get:

A(n, d, k) ≤ A(n, d− j, k − j)× (Hn)j

The stopping condition for the recurrence is reached when 2(k − j) becomes less than or
equal to (d− j) + 1, at which point the skyline size drops to at most 1 by Theorem 3. We
can show that the maximum number of iterations j is j = 2k − (d + 1), which leads to the
following theorem.

I Theorem 6. Let V be a set of n random points in d-dimensional space under the attribute
distinctness and statistical independence model. Then, the expected cardinality of their
k-dominant skyline is{

O
(
(log n)2k−d−1) for k > d+1

2 ,

O(1) otherwise .

Remarks

Theorem 6 smoothly interpolates between the two extreme cardinality bounds for KDS
previously known, namely, O(1) for k ≤ (d + 1)/2, and O(logd−1 n) for k = d, and the
classical result of Bentley et al. [4] emerges as a special case of this theorem for k = d. In
database systems, a constructive way to utilize this result could be this: by reducing the
value of k by one, we can expect the KDS to shrink by a significant fraction, namely, a factor
of O(log2 n). A query engine can therefore tune the parameter k to predictably control the
(expected) number of skyline vectors that appear on KDS.

4 Computing KDS in Subquadratic Time

Unlike full-dimensional dominance, the k-dominance relation is not transitive: that is, a �k b

and b �k c does not guarantee a �k c. The failure of transitivity means that the algorithms
for traditional skylines [3, 15] cannot be used for computing KDS. In fact, to the best of
our knowledge, no subquadratic time algorithm is known for k-dominant skylines even for a
constant dimension.

Let Ik ⊂ {1, 2, . . . , d} be an index set of size k, namely, |Ik| = k. There are
(

d
k

)
size k

distinct index sets, and each such set defines a subset of k dimensions. The projection of the
input set of points V along any particular set Ik is called a k-projection of V . A k-projection
is a set of k-dimensional points, and we refer to its skyline as the skyline of the k-projection.
Then, the following simple observation is the key to our algorithm.

I Lemma 7. A point v ∈ V belongs to KDS(V, k) if and only if v belongs to the skylines of
all distinct k-projections of V.

We can, therefore, compute KDS(V, k) by computing the skylines of all distinct k-projections
of V and taking their common intersection.

I Theorem 8. Let V be a set of n points in d dimensions, where d = O(log n/ log log n).
The k-dominant skyline KDS(V, k) is precisely the common intersection of the skylines of all
possible k-projections of V, and it can be computed in worst-case time O(n logd−1 n).
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Data Size n Dim d Full Skyline

NBA Career 4051 17 80
NBA Season 21961 17 1466
Movie Lens 1 1682 943 1330
Movie Lens 2 3952 6040 3475
Wine Quality 4898 12 3094
Human Activity 7352 561 7352
Internet Ads 3279 1558 1976
Particle Signal 130065 50 129596

Figure 2 Data sets used in experiments and the size of their d-dimensional skyline.

Proof. The number of distinct k-projections of V is
(

d
k

)
=
(

d
d−k

)
. We can compute the skyline

of each of these projections in time O(n logk−1 n) using the divide-and-conquer algorithm
of [3]. The size of each of these skylines is at most n, and therefore we can compute their
common intersection in O(nd) time. The total running time of the algorithm is therefore
O
((

d
d−k

)
n logk−1 n

)
. Since

(
d

d−k

)
≤ ( ed

d−k )d−k = O(dd−k), we can upper bound the running

time as O
(

dd−kn logk−1 n
)
, which is sub-quadratic as long as d ≤ c log n/ log log n, for an

appropriate constant c. J

Finding a worst-case subquadratic algorithm in dimensions higher than Θ(log n) remains
a challenging open problem, even for conventional skylines.

5 Experimental Evaluation

Our theoretical bounds on the expected size of the KDS are predicated on certain properties
of random data (attribute distinctness and statistical independence), which may or may not
be satisfied by real-world datasets. In our experiments, we chose a number of diverse data
sets to evaluate how their KDS size behaves in practice. We also generated synthetic data
sets, following our theoretical distribution, to establish a baseline. (Since time complexity
was not an important concern, we implemented a simple algorithm, which constructs an
O(dn) space data structure in O(dn2) time from which the KDS for any value of k ≤ d can
be extracted in O(n) time explicitly.)

Data Sets

The synthetic data sets are produced by generating random permutations with n ≈ 105 and
d = 20 or 30. For the real-world data, we use a number of popular high-dimensional data
sets, as shown in Figure 2. The NBA basketball data is available at [2], the Movie Lens data
at [23, 16], and all the remaining datasets are available from the UCI repository [12]. They
vary in size from a few thousand points to more than hundred thousand points in dimensions
ranging from 10 to several thousand. Altogether these data sets allow us to evaluate the
behavior of KDS under highly diverse conditions. In addition, for many of these sets, nearly
all the input vectors show up on the full-dimensional skyline, providing a useful test for the
utility of the KDS. In all the experimental plots, the x-axis is the value of k and y-axis the
size of KDS.
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Figure 3 KDS size scaling for n = 105 random vectors in 20 (left) and 30 (right) dimensions.
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Figure 4 Results for the NBA player data sets, NBA-Career (left) and NBA-Season (right).

5.1 KDS Size for Synthetic Data
We generated a number of random data sets in moderate dimensions d ≤ 30, which proved
sufficient to show the exponential growth rate of the k-dominant skylines. Figure 3 shows
the results for n = 100K, with d = 20 and d = 30; the plots for other values of n and d were
found to be similar. (When the plots flatten out near the end, it means that the KDS size
has reached the total number of input vectors.)

5.2 KDS Size for Real-World Data
The NBA data sets [2] include scores in 17 different categories for 4051 basketball players. A
higher score indicates better performance in each skill (dimension). The NBA-Career set has
data aggregated over each player’s entire career, while the NBA-Season set has a separate
vector for each season in which a player was active (a total of 21961 vectors). Figure 4
shows the KDS size as a function of increasing k, for both NBA data sets, confirming a clear
exponential rate of growth.

Figure 5 shows the results for the Movie Lens data [23, 16], in which each entry is a movie
rating. We used first 100, 000 and first 1, 000, 000 ratings to generate two different data sets.
The former (Movie Lens 1) has n = 1682 distinct movies with d = 943 distinct reviewers,
and the latter (Movie Lens 2) has n = 3952 movies with d = 6040 reviewers. (Each movie is
rated on the scale of 1 (worst) to 5 (best), and we use the default value of 3 (average) for all
blank entries.)

Finally, the following figure shows the results for the remaining four data sets: wine
quality, human activity, Internet ads, and particle signal.
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Figure 5 Results for Movie Lens 1 (left) and Movie Lens 2 (right) data sets.
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Figure 6 Results for wine quality, human activity, Internet Ads, and particle signal data sets.

In summary, across a diverse collection of data sets, the k-dominant skylines follow the
exponential curve shown by our average case analysis, suggesting that the model of random
data with attribute distinctness and statistical independence is potentially useful in practice.

6 Application of KDS in Ranking of High-Dimensional Vectors

In multi-criteria decision problems, there is typically no single best answer and often too
many incomparable answers are possible. For instance, in the NBA basketball data, almost
1500 players are undominated, and thus arguably the best players. One approach, exemplified
by the top-k operator in databases, is to define a utility function that aggregates the user
preferences across multiple dimensions, for instance, as a linear combination. Formulating
an appropriate utility function, however, is quite challenging because it requires users to
accurately quantify their preferences, and also requires different dimensions to be similar in
scale. (In Section 6.3, we also compare simple aggregation-type rankings with the KDS-based
ranking.) The alternative approach of skylines uses the easier-to-apply principle of pareto
optimality – no rational user prefers a solution that is dominated by another on all dimensions
– but is stymied by the explosion of skyline size in higher dimensions.

The KDS suggests a natural approach for pruning the skyline using the control knob
of parameter k, based on the following insight: many vectors may be undominated in
high dimensions, but some are undominated only because they score highly in one or
few dimensions, while others are undominated because they score highly in most of the
dimensions. Intuitively, the second kind are the more significant ones. The KDS based
approach automatically selects the vectors that remain undominated on most dimensions, and
thus appear on the early skyline when k is small. Using the asymptotic expected growth rate
of KDS (cf. Theorem 6), a user can control the skyline to a desired size with parameter k.

In order to test this hypothesis, we carried out the following experiment. Suppose we
consider a random subset of dimensions for the data, compute the KDS of the reduced set,
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and repeat this trial multiple times. How similar are the KDS in these trials? Intuitively, if
KDS vectors lacked any intrinsic significance, then these skylines should not have much in
common. On the other hand, if KDS vectors were fundamentally dominant, then they would
persist in many subsets of dimensions, and show a high Jaccard index of similarity. We chose
the Movie Lens and NBA data sets for these experiments because their “top vectors” are
familiar names, and easy to interpret.

6.1 Top Movies and NBA Players
For the movies, we use the Movie Lens 2 data set, and drop about 10% of the dimensions at
random, obtaining a set with 5426 dimensions out of the original 6040. We chose k = 4800,
for which we are assured to get a small KDS size, based on Figure 5. We repeated this
experiment 5 times, producing 5 different k-dominant skyline sets. The resulting skylines
had size between 27 and 29. We then counted how many times each KDS vector (movie)
appeared among these 5 skylines. Figure 7 shows the result: remarkably, the top 27 movies
are common to all five KDS sets. Arguably, all of these movies have claims to be considered
“top fan favorites,” demonstrating the consistency and utility of KDS as an automatic data
exploration tool.

For the basketball data, we use the NBA-Season data where we randomly dropped 2
of the 17 dimensions, and chose k = 12. We performed 5 trials of this experiment, and
counted how many times each KDS vector appears among these 5 skylines. Figure 8 shows
the results. Once again, most of the names found by the algorithm are all-time greats.

6.2 Jaccard Similarity
Among the five random trials of the Movie Lens data, the smallest KDS had 27 vectors, and
the largest one had 29 vectors. To quantify the pairwise similarity among these 5 sets, we
use the Jaccard similarity measure, which is defined as ‖A∩B‖

‖A∪B‖ , for two sets A and B. The
Jaccard index of 1 indicates a perfect match. As the following table shows, the similarity
index is between 0.93 and 1 in all cases. Among the five random trials of the NBA-Season
data, the smallest KDS for k = 12 had 49 vectors, and the largest one had 68 vectors. The
table below shows the Jaccard index of similarity among these 5 sets.

6.3 KDS vs. Aggregation-based Ranking
As a point of comparison, we now discuss some pitfalls suffered by alternative ranking
methods based on simple utility functions. We use the movie database because the results are
easier to interpret. We recall that in this dataset each vector represents a movie, with each
dimension being one user’s ratings on a 1–5 scale. The movie data, however, is incomplete
since not all users rate all movies, and so we use the following two (natural) scoring functions
to compare different vectors.
1. the weighted average of each movie’s ratings, and
2. the raw sum of each movie’s ratings.

We observe that, as expected, the first method tends to highly rank those movies that
have high scores but very few ratings. In fact, none of the movies ranked in the top 10 would
be considered popular – each had an average score of 5 but rated by at most five users! Our
second method corrects for this bias, and steers the ranking towards more popular movies by
summing the scores of all the users for each movie. However, this method leads to movies
that are widely known but not necessarily top rated candidates for many users. For instance,
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Movie Occur

Toy Story 5
The Usual Suspects 5
Braveheart 5
Star Wars: Ep. IV 5
Pulp Fiction 5
Shawshank Redemption 5
Forrest Gump 5
Schindler’s List 5
Terminator 2 5
Silence of the Lambs 5
Fargo 5
The Godfather 5
Casablanca 5
One Flew Over Cuckoo’s Nest 5
Star Wars: Episode V 5
The Princess Bride 5
Raiders of the Lost Ark 5
Groundhog Day 5
Back to the Future 5
L.A. Confidential 5
Saving Private Ryan 5
Shakespeare in Love 5
The Matrix 5
The Sixth Sense 5
American Beauty 5
Being John Malkovich 5
Gladiator 5

Figure 7 Occurrence frequency of top
movies in 5 random trials of KDS.

NBA Player Occur

Wilt Chamberlain 1961 5
Artis Gilmore 1974 5
Bob Mcadoo 1974 5
George Mcginnis 1974 5
K. Abdul-jabbar 1975 5
Julius Erving 1975 5
Artis Gilmore 1975 5
Moses Malone 1978 5
Michael Jordan 1984 5
Michael Jordan 1986 5
Charles Barkley 1987 5
Michael Jordan 1987 5
Michael Jordan 1988 5
Karl Malone 1988 5
Hakeem Olajuwon 1988 5
Karl Malone 1989 5
David Robinson 1990 5
Hakeem Olajuwon 1992 5
Shaquille O’neal 1993 5
David Robinson 1993 5
Dwight Howard 2007 5
Allen Iverson 2007 5
LeBron James 2007 5
Al Jefferson 2007 5
Amare Stoudemire 2007 5
Dwight Howard 2008 5
Dwyane Wade 2008 5
Kevin Durant 2009 5
Dwight Howard 2009 5
David Lee 2009 5
Charles Barkley 1987 4
Karl Malone 1988 4

Figure 8 Occurrence frequency of top
NBA players in 5 random trials.

1 2 3 4 5

1 1 0.931 0.966 0.966 0.931
2 0.931 1 0.964 0.964 1
3 0.966 0.964 1 1 0.964
4 0.966 0.964 1 1 0.964
5 0.931 1 0.964 0.964 1

Figure 9 Jaccard Similarity for top
movies.

1 2 3 4 5

1 1 0.603 0.716 0.638 0.776
2 0.603 1 0.459 0.493 0.568
3 0.716 0.459 1 0.718 0.658
4 0.638 0.493 0.718 1 0.585
5 0.776 0.568 0.658 0.585 1

Figure 10 Jaccard Similarity for top NBA
players.
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the original 3 Star Wars movies appeared in the top 4, however the lowest had an average
rating of roughly 4/5, which is significantly lower than that of many movies appearing much
later in the list. The NBA data set reveals another problem with aggregation-based ranking:
different dimensions have vastly different scales, making it difficult to combine them into a
single meaningful utility function.

By comparison, as the preceding experiments have shown, the KDS-based ranking gives
sensible and robust results without the need for a domain-specific and difficult to formulate
utility function. When the full skyline has far too many points, the tunable parameter k of
the KDS automatically acts as a proxy for the importance of skyline vectors: the earlier a
point appears on KDS the more significant it is.

7 Concluding Remarks

In this paper, we made both theoretical and applied contributions to the study of k-dominance
in multidimensional data. On the theoretical front, we derived an upper bound on the average
case complexity of KDS, which generalizes a classical result of Bentley et al. [4]. We also
showed that while k-dominance does not satisfy transitivity, one can still compute the KDS
in roughly the same time as the conventional skyline (worst-case sub-quadratic) as long
as the dimension is d = O(log n/ log log n). Our experiments show that the size of KDS
in many real-world multi-dimensional data sets follows the same exponential trend of our
average case analysis, suggesting that our theoretical bounds can be helpful predictors in
practice. Finally, we validate the usefulness of k-dominant skylines as a tool for selecting a
small set of top-ranked vectors when the full skyline contains far too many.
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Abstract
Spectral based heuristics belong to well-known commonly used methods which determines prov-
ably minimal graph bisection or outputs “fail” when the optimality cannot be certified. In this
paper we focus on Boppana’s algorithm which belongs to one of the most prominent methods of
this type. It is well known that the algorithm works well in the random planted bisection model
– the standard class of graphs for analysis minimum bisection and relevant problems. In 2001
Feige and Kilian posed the question if Boppana’s algorithm works well in the semirandom model
by Blum and Spencer. In our paper we answer this question affirmatively. We show also that the
algorithm achieves similar performance on graph classes which extend the semirandom model.

Since the behavior of Boppana’s algorithm on the semirandom graphs remained unknown,
Feige and Kilian proposed a new semidefinite programming (SDP) based approach and proved
that it works on this model. The relationship between the performance of the SDP based al-
gorithm and Boppana’s approach was left as an open problem. In this paper we solve the
problem in a complete way by proving that the bisection algorithm of Feige and Kilian provides
exactly the same results as Boppana’s algorithm. As a consequence we get that Boppana’s al-
gorithm achieves the optimal threshold for exact cluster recovery in the stochastic block model.
On the other hand we prove some limitations of Boppana’s approach: we show that if the density
difference on the parameters of the planted bisection model is too small then the algorithm fails
with high probability in the model.
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1 Introduction

The minimum graph bisection problem is one of the classical NP-hard problems [22]: for an
undirected graph G the aim is to partition the set of vertices V = {1, . . . , n} (n even) into
two equal sized sets, such that the number of cut edges, i.e. edges with endpoints in different
bisection sides, is minimized. The bisection width of a graph G, denoted by bw(G), is then the
minimum number of cut edges in a bisection of G. Due to practical significance in VLSI design,
image processing, computer vision and many other applications (see [30, 5, 46, 29, 31, 38])
and its theoretical importance, the problem has been the subject of a considerable amount
of research from different perspectives: approximability [37, 4, 20, 19, 28], average-case
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66:2 New Abilities and Limitations of Spectral Graph Bisection

complexity [10], and parameterized algorithms [33, 44] including the seminal paper in this
field by Cygan et al. [15] showing that the minimum bisection is fixed parameter tractable.

In this paper we consider polynomial-time algorithms that for an input graph either
output the provable minimum-size bisection or “fail” when the optimality cannot be certified.
The methods should work well for all (or almost all, depending on the model) graphs of
particular classes, i.e. provide for them a certified optimum bisection, while for irregular,
worst case instances the output can be “fail”, what is justifiable. We investigate two well-
studied graph models: the planted bisection model and its extension the semirandom model
which are widely used to analyze and benchmark graph partitioning algorithms. We refer
to [10, 16, 9, 6, 14, 18, 11, 34, 8, 12, 32] to cite some of the relevant works. Moreover, we
consider the regular graph model introduced of Bui et al. [10] and a new extension of the
semirandom model. For a (semi)random model we say that some property is satisfied with
high probability (w.h.p.) if the probability that the property holds tends to 1 as the number
of vertices n→∞.

In the planted bisection model, denoted as Gn(p, q) with parameters 1 > p = p(n) ≥
q(n) = q > 0, the vertex set V = {1, . . . , n} is partitioned randomly into two equal sized sets
V1 and V2, called the planted bisection. Then for every pair of vertices do independently:
if both vertices belong to the same part of the bisection (either both belong to V1 or both
belong to V2) then include an edge between them with probability p; If the two vertices
belong to different parts, then connect the vertices by an edge with probability q. In the
semirandom model for graph bisection [18], initially a graph G is chosen at random according
to model Gn(p, q). Then a monotone adversary is allowed to modify G by applying an
arbitrary sequence of the following monotone transformations: (1) The adversary may remove
from the graph any edge crossing a minimum bisection; (2) The adversary may add to the
graph any edge not crossing the bisection. Finally, in the regular random model, denoted as
Rn(r, b), with r = r(n) < n and b = b(n) ≤ (n/2)2, the probability distribution is uniform
on the set of all graphs on V that are r-regular and have bisection width b.

The planted bisection model was first proposed in the sociology literature [27] under the
name stochastic block model to study community detection problems in random graphs. In
this setting, the planted bisection V1, V2 (as described above) models latent communities in
a network and the goal here is to recover the communities from the observed graph. In the
general case, the model allows some errors by recovering, multiple communities, and also
that p(n) < q(n). The community detection problem on the stochastic block model has been
subject of a considerable amount of research in physics, statistics and computer science (see
e.g. [1, 35] for current surveys). In particular, an intensive study has been carried out on
providing lower bounds on |p− q| to ensure recoverability of the planted bisection.

The main focus of our work is the bisection algorithm proposed by Boppana [9]. Though
introduced almost three decades ago, the algorithm belongs still to one of the most important
heuristics in this area. However, several basic questions concerning the algorithm’s perform-
ance remain open. Using a spectral based approach, Boppana constructs an implementable
algorithm which, assuming the density difference

p− q ≥ c
√
p lnn/

√
n for a certain constant c > 0 (1)

bisects Gn(p, q) optimally w.h.p. (certifying the optimality of the solutions). Remarkably, for
a long time this was the largest subclass of graphs Gn(p, q) for which a minimum bisection
could be found. Since under the assumption (1) the planted bisection is minimum w.h.p.,
Boppana’s algorithm solves the recovery problem for the stochastic block model with two
communities. Boppana’s algorithm works well also on the regular graph model Rn(r, b),
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assuming that

r ≥ 6 and b ≤ o(n1−1/b(r/2+1)/2c). (2)

In this paper we investigate the problem if, under assumption (1), Boppana’s algorithm works
well for the semirandom model. This question was posed by Feige and Kilian in [18] and
remained open so far. In our work we answer the question affirmatively. We show also that
Boppana’s algorithm provides the same results as the algorithm proposed currently by Hajek,
Wu, and Xu [25]. As a consequence we get that Boppana’s algorithm achieves the optimal
threshold for exact recovery in the stochastic block model with parameters p = α log(n)/n
and q = β log(n)/n. On the other hand we show some limitations of the algorithm. One of
the main results in this direction is that the density difference (1) is tight: we prove that if
p− q ≤ o(

√
p · lnn/

√
n) then the algorithm fails on Gn(p, q) w.h.p.

Our Results. The motivation of our research was to systematically explore graph properties
which guarantee that Boppana’s algorithm outputs a certified optimum bisection. Due to [9]
we know that random graphs from Gn(p, q) and Rn(r, b) satisfy such properties w.h.p. under
assumptions (1) and (2) on p, q, r, and b as discussed above. But, as we will see later, the
algorithm works well also for instances which deviate significantly from such random graphs.

Our first technical contribution is a modification of the algorithm to cope with graphs of
more than one optimum bisection, like e.g. hypercubes. The algorithm proposed originally
by Boppana does not manage to handle such cases. Our modification is useful to work on
wider classes of graphs.

In this paper we introduce a natural generalization of the semirandom model of Feige and
Kilian [18]. Instead of Gn(p, q), we start with an arbitrary initial graph model Gn, and then
apply a sequence of the transformations by a monotone adversary as in [18]. We denote such
a model by A(Gn). One of our main positive results is that if Boppana’s algorithm outputs
the minimum-size bisection for graphs in Gn w.h.p., then the algorithm finds a minimum
bisection w.h.p. for the adversarial graph model A(Gn), too. As a corollary, we get that
under assumption (1), Boppana’s algorithm works well in the semirandom model, denoted
here as A(Gn(p, q)), and, assuming (2), in A(Rn(r, b)) – the semirandom regular model. This
solves the open problem posed by Feige and Kilian in [18]. To the best of our knowledge,
Boppana’s algorithm is the only method known so far, that finds (w.h.p.) provably optimum
bisections on all of the above random graph classes.

Since the behavior of the algorithm on the (common) semirandom model A(Gn(p, q))
remained unknown so far, Feige and Kilian proposed in [18] a new semidefinite programming
(SDP) based approach which works for semirandom graphs, assuming (1). The relationship
between the performance of the SDP based algorithm and Boppana’s approach was left
in [18] as an open problem. Feige and Kilian conjecture that for every graph G, their
objective function hp(G) to certify the bisection optimality and the lower bound computed in
Boppana’s algorithm give the same value. In our paper we answer this question affirmatively.
To compare the algorithms, we provide a primal SDP formulation for Boppana’s approach
and prove that it is equivalent to the dual SDP of Feige and Kilian. Next we give a dual
program to the primal formulation of Boppana’s algorithm and prove that the optima of the
primal and dual programs are equal to each other. Note that unlike linear programming, for
semidefinite programs there may be a duality gap. Thus, we show that the bisection algorithm
of Feige and Kilian provides exactly the same results as Boppana’s algorithm. However,
an important advantage of the spectral method by Boppana over the SDP based approach
by Feige and Kilian is that the spectral method is practically implementable reducing the
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bisection problem for graphs with n vertices to computing minima of a convex function of n
variables while the algorithm in [18] needs to solve a semidefinite program over n2 variables.

From the result that the method by Feige and Kilian is equivalent to Boppana’s we
get, as a consequence, that Boppana’s algorithm achieves the sharp threshold for exact
cluster recovery in the stochastic block model which has been obtained recently by Abbe
et al. [2] and independently by Mossel et al. [36]. In [2, 36] it is proved that in the (binary)
stochastic block model, with p = α log(n)/n and q = β log(n)/n for fixed constants α 6= β,
if (
√
α−
√
β)2 > 2, the planted clusters can be exactly recovered (up to a permutation of

cluster indices) with probability converging to one; if (
√
α −
√
β)2 < 2, no algorithm can

exactly recover the clusters with probability converging to one. Note, that the choice of p
and q is well justified: Mossel et al. show that if q < p = log(n)/n then the exact recovery is
impossible for these parameters. In [25] Hajek et al. proved that the SDP of Feige and Kilian
achieves the optimal threshold, i.e. if (

√
α−
√
β)2 > 2 the SDP reconstructs communities

w.h.p. From our result we get, that Boppana’s algorithm achieves the threshold, too.
To analyze limitations of the spectral approach we provide structural properties of the

space of feasible solutions searched by the algorithm. This allows us to prove that if an
optimal bisection contains some forbidden subgraphs, then Boppana’s algorithm fails. Using
these tools, we were able to show that if the density difference p− q is asymptotically smaller
than

√
p · lnn/

√
n then Boppana’s algorithm fails to determine a certified optimum bisection

on Gn(p, q) w.h.p. Note that our impossibility result is not a direct consequence of the lower
bound for the exact cluster recovery discussed above. For example, for q = O(1)/n and
p =
√

logn/n from Mossel et al. [36] we know that for these parameters the exact recovery
is impossible but obviously this does not imply that determining of a certified optimum
bisection is impossible either.

Related Works. Spectral partitioning goes back to Fiedler [21], who first proposed to use
eigenvectors to derive partitions. Spielman and Teng e.g. showed, that spectral partitioning
works well on planar graphs [40, 41], although there are also graphs on which purely spectral
algorithms perform poorly, as shown by Guattery and Miller [24].

Also other algorithms have been proven to work on the planted bisection model. Condon
and Karp [14] developed a linear time algorithm for the more general l-partitioning problem.
Their algorithm finds the optimal partition with probability 1− exp(−nΘ(ε)) in the planted
bisection model with parameters satisfying p−q = Ω(1/n1/2−ε). Carson and Impagliazzo [11]
show that a hill-climbing algorithm is able to find the planted bisection w.h.p. for parameters
p− q = Ω((ln3 n)/n1/4). Dyer and Frieze [16] provide a min-cut via degrees heuristic that,
assuming n(p− q) = Ω(n) finds and certifies the minimum bisection w.h.p. Note, that the
density difference (1) assumed by Boppana still outperforms the above ones. Moreover a
disadvantage of the methods against Boppana’s algorithm, except for the last one, is that
they do not certify the optimality of the solutions. In [34] McSherry describes a spectral
based heuristic that applied to G(p, q) finds a minimum bisection w.h.p if p and q satisfy
assumption (1) but it does not certify the optimality. Importantly, the algorithms above,
similarly as Boppana’s method, solve the recovery problem for the stochastic block model
with two communities.

In [12] Coja-Oghlan developed a new spectral-based algorithm which, on the planted
partition model Gn(p, q), enables for a wider range of parameters than (1), certifying the
optimality of its solutions. The algorithm [12] assumes that p− q ≥ Ω(

√
p ln(np)/

√
n). If

the parameters p and q describe non-sparse graphs, this condition is essentially the same as
Boppana’s assumption. For sparse graphs, however, Coja-Oghlan’s constraint allows a larger
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subclass. For example, the algorithm works in Gn(p, q) for q = O(1)/n and p =
√

logn/n.
Due to results presented in our paper we know that Boppana’s algorithm fails w.h.p. for such
graphs. Interestingly, the condition on the density difference by Coja-Oghlan allows graphs
for which the minimum bisection width is strictly smaller than the width of the planted
bisection w.h.p. However, a drawback of Coja-Oghlan’s algorithm is that to work well in
the planted bisection model with unknown parameters p and q, the algorithm has to learn
the parameters since it is based on the knowledge of values p and q. Also the performance
of the algorithm on other families, like e.g. semirandom graphs and the regular random
graphs Rn(r, b), is unknown. Recent research by Coja-Oghlan et al. [13] contributes to a
better understanding of the planted bisection model and average case behavior of a minimum
bisection.

The paper is organized as follows. The next section contains an overview over Boppana’s
algorithm. In Section 3 we define the adversarial graph model and show, that Boppana’s
algorithm works well on this class. In Section 4 we compare the algorithm to the SDP
approach of Feige and Kilian. Next, in Section 5 we propose a modification of the algorithm
to deal with non-unique optimum bisections. Finally, we develop a new analysis of the
algorithm and use it to show some limitations of the method. We conclude the paper with a
discussion. The proofs of most of the propositions presented in Sections 2 through 6 can be
found in the full version [39].

2 Boppana’s Graph Bisection Algorithm

In this section we fix definitions and notations used in our paper and we recall Boppana’s
algorithm and known facts on its performance. We need the details of the algorithm to
describe its extension in the next section. For a given graph G = (V,E), with V = {1, . . . , n},
Boppana defines a function f for all real vectors x, d ∈ Rn as

f(G, d, x) =
∑
{i,j}∈E

1−xixj

2 +
∑

i∈V di(x2
i − 1). (3)

Call by S ⊂ Rn the subspace of all vectors x ∈ Rn, with
∑

i xi = 0. Based on f , the function
g′ is defined as follows

g′(G, d) = min
‖x‖2=n,x∈S

f(G, d, x), (4)

where ‖x‖ denotes the L2 norm of x. Note that g′ is invariant under shifting d, i. e.
g′(G, d+ β(1, . . . , 1)T ) = g′(G, d) for every β ∈ R. Vector x is named a bisection vector if
x ∈ {+1,−1}n and

∑
i xi = 0. Such x determines a bisection of G of the cut width denoted

as cw(x) =
∑
{i,j}∈E

1−xixj

2 . For a bisection vector x the function f takes the value (3)
regardless of d. Minimization over all such x would give the minimum bisection width. Since
g′ uses a relaxated constraint we get g′(G, d) ≤ bw(G) where, recall, bw(G) denotes the
bisection width of G. To improve the bound, Boppana tries to find some d which leads to a
minimal decrease of the function value of g′ compared to the bisection width:

h(G) = max
d∈Rn

g′(G, d). (5)

It is easy to see that for every graph G we have h(G) ≤ bw(G).
In order to compute g′ efficiently, Boppana expresses the function in spectral terms. To

describe this we need some definitions. Let I denote the n-dimensional identity matrix and
let P = I − 1

nJ be the projection matrix which projects a vector x ∈ Rn to the projection
Px of vector x into the subspace S. Here, J denotes an n× n matrix of ones. For a matrix
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66:6 New Abilities and Limitations of Spectral Graph Bisection

B ∈ Rn×n, the matrix BS = PBP projects a vector x ∈ Rn to S, then applies B and
projects the result again into S. Further, for B ∈ Rn×n and d ∈ Rn we denote the sum of
B’s elements as sum(B) =

∑
ij Bij and by diag(d) we denote the n× n diagonal matrix D

with the entries of the vector d on the main diagonal, i. e. Dii = di.
Now assume B ∈ Rn×n is symmetric and let BS = PBP . Denote by Rn

6=c1 the real space
Rn without the subspace spanned by the identity vector 1, i. e. Rn

6=c1 = Rn \ {c1 : c ∈ R}.
We define λ(BS) = maxx∈Rn

6=c1
xT BSx
‖x‖2 . It is easy to see that if λ(BS) ≥ 0 then

λ(BS) = max
x∈Rn

xTBSx

‖x‖2
(6)

i. e. λ(BS) is the largest eigenvalue of the matrix BS . Vectors x that attain the maximum
are exactly the eigenvectors corresponding to the largest eigenvalue λ(BS) of BS .

Let G be an undirected graph with n vertices and adjacency matrix A. Let further d ∈ Rn

be some vector and let B = A+ diag(d), then we define

g(G, d) = sum(B)− nλ(BS)
4 .

In [9] it is shown that function g′ can be expressed as g′(G, d) = g(G,−4d). Since in the
definition of h in (5) we maximize over all d, we can conclude that

h(G) = max
d∈Rn

g(G, d) = max
d∈Rn

sum(A+ diag(d))− nλ((A+ diag(d))S)
4 . (7)

Boppana’s algorithm that finds and certifies an optimal bisection, works as follows:

Algorithm 1: Boppana’s Algorithm
1 Compute h(G): Numerically find a vector dopt which maximizes g(G, d). Let

D = diag(dopt). Use constraint
∑

i d
opt
i = 2|E| to ensure λ((A+D)S) > 0;

2 Construct a bisection: Let x be an eigenvector corresponding to the eigenvalue
λ((A+D)S). Construct a bisection vector x̂ by splitting at the median x̄ of x,
i.e. let x̂i = +1 if xi ≥ x̄ and x̂i = −1 if xi < x̄. If

∑
i x̂i > 0, move (arbitrarily)

1
2
∑

i x̂i vertices i with xi = x̄ to part −1 letting x̂i = −1;
3 Output x̂; If cw(x̂) = h(G) output “optimum bisection” else output “fail”.

One can prove that g is concave and hence, the maximum in Step 1 can be found in
polynomial time with arbitrary precision [23]. To analyze the algorithm’s performance,
Boppana proves the following, for a sufficiently large constant c > 0:

I Theorem 1 (Boppana [9]). Let G be a random graph from Gn(p, q), and let p − q ≥
c(
√
p lnn/

√
n). Then with probability 1−O(1/n), the bisection width of G equals h(G).

From this result one can conclude that the value h(G) computed by the algorithm is,
w.h.p., equal to the optimal bisection width of G. However, to guarantee that the algorithm
works well one needs additionally to show that it also finds an optimal bisection:

I Theorem 2. For random graphs G from Gn(p, q), with p− q ≥ c(
√
p lnn/

√
n), Boppana’s

algorithm certifies the optimality of h(G) revealing w.h.p. bisection vector x̂ of cw(x̂) = h(G).

To prove this theorem one first has to revise carefully the proof of Theorem 1 in [9] and
show that w.h.p. the multiplicity of the largest eigenvalue of the matrix (A+D)S in Step 1
is 1. This was observed already in [7]. Next we need the following property:
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I Lemma 3. Let G be a graph with h(G) = bw(G) and let dopt ∈ Rn s. t. g(G, dopt) = bw(G)
and

∑
i d

opt
i ≥ 4 bw(G)−2|E|. Denote further by Bopt = A+diag(dopt). Then every optimum

bisection vector y is an eigenvector of Bopt
S corresponding to the largest eigenvalue λ(Bopt

S ).

(The proof of Lemma 3, as the proofs of most of the remaining propositions presented in this
paper, can be found in the full version [39].) This completes the proof that the algorithm
works well on random graphs from Gn(p, q).

3 Bisections in Adversarial Models

We introduce the adversarial model, denoted by A(Gn), as a generalization of the semirandom
model in the following way. Let Gn be a graph model, i.e. a class of graphs with distributions
over graphs of n nodes (n even). In the model A(Gn), initially a graph G is chosen at random
according to Gn. Let (Y1, Y2) be a fixed, but arbitrary optimal bisection of G. Then, similarly
as in [18], a monotone adversary is allowed to modify G by applying an arbitrary sequence
of the following monotone transformations: The adversary may
1. remove from the graph any edge {u, v} crossing the bisection (u ∈ Y1 and v ∈ Y2);
2. add to the graph any edge {u, v} not crossing the bisection (u, v ∈ Y1 or u, v ∈ Y2).
For example, A(Gn(p, q)) is the semirandom model as defined in [18].

We will prove that Boppana’s algorithm works well for graphs from adversarial model
A(Gn) if the algorithm works well for Gn. First we show that, if the algorithm is able to find
an optimal bisection size of a graph, we can add edges within the same part of an optimum
bisection and that we can remove cut edges, and the algorithm will still work. This solves
the open question of Feige and Kilian [18].

Note that the result follows alternatively from Corollary 11 (presented in Section 4) that
the SDPs of [18] are equivalent to Boppana’s optimization function and form the property
proved in [18] that the objective function of the dual SDP of Feige and Kilian preserves
minimal bisection regardless of monotone transformations. The aim of this section is to give
a direct proof of this property for Boppana’s algorithm.

I Theorem 4. Let G = (V,E) be a graph with h(G) = bw(G). Consider some optimum
bisection Y1, Y2 of G.
1. Let u and v be two vertices within the same part, i.e. u, v ∈ Y1 or u, v ∈ Y2, and let

G′ = (V,E ∪ {{u, v}}). Then h(G′) = bw(G′).
2. Let u and v be two vertices in different parts, i.e. u ∈ Y1 and v ∈ Y2, with {{u, v}} ∈ E

and let G′ = (V,E \ {{u, v}}). Then h(G′) = bw(G)− 1 = bw(G′).

Sketch of Proof. In order to prove the first part of the theorem, i.e. when we add an
edge {u, v}, let A and A′ denote the adjacency matrices of G and G′, respectively. It holds
A′ = A+A∆ with A∆

uv = A∆
vu = 1 and zero everywhere else. The main idea is now, that we

can derive a new optimal correction vector d′ for G′ based on the optimal correction vector

dopt for G. We set d′ = dopt + d∆ with d∆
i =

{
−1 if i = u or i = v,

0 else.
The known changes in the adjacency matrix as well as the derived correction vector allow

us to compute g(G′, d′) and to show that g(G′, d′) = bw(G′). The proof of the second part of
the theorem works analogously. The complete proof can be found in the full version [39]. J

I Theorem 5. If Boppana’s algorithm finds a minimum bisection for a graph model Gn

w.h.p., then it finds a minimum bisection w.h.p. for the adversarial model A(Gn), too.
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As a direct consequence, we obtain the following corollary regarding the semirandom
graph model considered by Feige and Kilian:

I Corollary 6. Under assumption (1) on p and q, Boppana’s algorithm computes the minimum
bisection in A(Gn(p, q)), i.e. in the semirandom model, w.h.p.

In [9], Boppana also considers random regular graphs Rn(r, b), where a graph is chosen
uniformly over the set of all r-regular graphs with bisection width b. He shows that his
algorithm works w.h.p. on this graph under the assumption that b = o(n1−1/b(r+1)/2c).
We can now define the semirandom regular graph model as adversarial model A(Rn(r, b)).
Applying Theorem 5, we obtain

I Corollary 7. Under assumption (1) on p and q, Boppana’s algorithm computes the minimum
bisection in the semirandom regular model w.h.p.

4 SDP Characterizations of the Graph Bisection Problem

Feige and Kilian express the minimum-size bisection problem for an instance graph G as a
semidefinite programming problem (SDP) with solution hp(G) and prove that the function
hd(G), which is the solution to the dual SDP, reaches bw(G) w.h.p. Since bw(G) ≥ hp(G) ≥
hd(G), they conclude that hp(G) as well reaches bw(G) w.h.p. The proposed algorithm
computes hp(G) and reconstructs the minimum bisection of G from the optimum solution of
the primal SDP. The authors conjecture in [18, Sec. 4.1.] the following: "Possibly, for every
graph G, the function hp(G) and the lower bound h(G) computed in Boppana’s algorithm
give the same value, making the lemma that hp(G) = bw(G) w.h.p. a restatement of the
main theorem of [9]. In this section we answer this question affirmatively.

The semidefinite programming approach for optimization problems was studied by Aliza-
deh [3], who as first provided an equivalent SDP formulation of Boppana’s algorithm. Before
we give an SDP introduced by Feige an Kilian, we recall briefly some basic definitions and
provide an SDP formulation for Boppana’s approach. On the space Rn×m of n×mmatrices, we
denote by A•B an inner product of A and B defined as A•B = tr(AB) =

∑n
i=1
∑m

j=1AijBij ,
where tr(C) is the trace of the (square) matrix C. Let A be an n× n symmetric real matrix,
then A is called symmetric positive semidefinite (SPSD) if A is symmetric, i.e. AT = A, and
for all real vectors v ∈ Rn we have vTAv ≥ 0. This property is denoted by A � 0. Note that
the eigenvalues of a symmetric matrix are real.

For given real vector c ∈ Rn and m+ 1 symmetric matrices F0, . . . , Fm ∈ Rn×n an SDP
over variables x ∈ Rn is defined as

min
x
cTx subject to F0 +

m∑
i=1

xiFi � 0. (8)

The dual program associated with the SDP (for details see e.g. [45]) is the program over the
variable matrix Y = Y T ∈ Rn×n:

max
Y
−F0 • Y subject to ∀i : Fi • Y = ci and Y � 0. (9)

It is known that the optimal value of the maximization dual SDP is never larger than the
optimal value of the minimization primal counterpart. However, unlike linear programming,
for semidefinite programs there may be a duality gap, i.e. the primal and/or dual might not
attain their respective optima.
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To prove that for any graph G Boppana’s function h(G) gives the same value as hp(G)
we formulate the function h as a (primal) SDP. We provide also its dual program and prove
that the optimum solutions of primal and dual are equal in this case. Then we show that the
dual formulation of the Boppana’s optimization is equivalent to the primal SDP defined by
Feige and Kilian [18].

Below, G = (V,E) denotes a graph, A the adjacency matrix of G and for a given vector
d, as usually, let D = diag(d), for short. We provide the SDP for the function h (Eq. (7))
that differ slightly from that one given in [3].

I Proposition 8. For any graph G = (V,E), the objective function

h(G) = max
d∈Rn

sum(A+D)− nλ((A+D)S)
4

maximized by Boppana’s algorithm can be characterized as an SDP as follows: p(G) = min
z∈R,d∈Rn

(nz − 1T d) subject to

zI −A+ JA+AJ
n − sum(A)J

n2 −D + 1dT +d1T

n − sum(D)J
n2 � 0,

(10)

with the relationship h(G) = |E|
2 −

1
4p(G). The dual program to the program (10) can be

expressed as follows:

d(G) = max
Y ∈Rn×n

(
A • Y − 1

n

∑
j deg(j)

∑
i yij − 1

n

∑
i deg(i)

∑
j yij + 1

n2

∑
i,j yij

)
subject to ∑

i yii = n,

∀i yii − 1
n

∑
j yji − 1

n

∑
j yij + 1

n2

∑
k,j ykj = 1,

Y � 0.

(11)

Using these formulations we prove that the primal and dual SDPs attain the same optima.

I Theorem 9. For the semidefinite programs of Proposition 8 the optimal value p∗ of the
primal SDP (10) is equal to the optimal value d∗ of the dual SDP (11). Moreover, there
exists a feasible solution (z, d) achieving the optimal value p∗.

Proof. Consider the primal SDP (10) of Boppana in the form

min
z∈R,d∈Rn

z s.t. zI −M(d) � 0,

with M(d) = P (A+ diag(d))P − 1T d
n I and, recall, P = I − J

n . Note that this formulation is
equivalent to (10), as we have shown in the proof of Proposition 8. We show that this primal
SDP problem is strictly feasible, i.e. that there exists an z′ and an d′ with z′I −M(d′) � 0.
To this aim we choose an arbitrary d′ and then some z′ > λ(M(d′)). From [45, Thm. 3.1], it
follows that the optima of primal and dual obtain the same value.

To prove the second part of the theorem, i.e. there exists a feasible solution achieving the
optimal value p∗, consider the following. The function h(G) maximizes g(G, d) over vectors
d ∈ Rn, while d can be restricted to vectors of mean zero. The function g is convex and
goes to −∞ for vectors d with some component going to ∞. Thus, g reaches its maximum
at some finite dopt. Now we choose d = dopt and z = λ(M(dopt)). Clearly, this solution is
feasible and obtains the optimal value p∗. J
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For a graph G = (V,E), Feige and Kilian express the minimum bisection problem as an
SDP over an n× n matrix Y as follows:

hp(G) = min
Y ∈Rn×n

hY (G) s.t. ∀i yii = 1,
∑
i,j

yij = 0, and Y � 0, (12)

where hY (G) =
∑
{i,j}∈E

i<j

1−yij

2 . For proving that the SDP takes as optimum the bisection

width w.h.p. on Gn(p, q), the authors consider the dual of their SDP:

hd(G) = max
x∈Rn

(
|E|
2 + 1

4
∑

i

xi

)
s.t. M = −A− x0J − diag(x) � 0, (13)

where A is the adjacency matrix of G. They show that the dual takes the value of the
bisection width w.h.p. and bounds the optimum of the primal SDP. Although we know that
their SDP and Boppana’s algorithm both work well on Gn(p, q), it was open so far how they
are related to each other. Below we answer this question showing that the formulations are
equivalent. We start with the following:

I Theorem 10. The primal SDP (12) is equivalent to the dual SDP (11), with the relationship
hp(G) = |E|

2 −
1
4d(G).

From Theorems 9 and 10 we get

I Corollary 11. Let G be an arbitrary graph. Then for the lower bound h(G) of Boppana’s
algorithm and for the objective functions hp(G) of the primal SDP (12), resp. hd(G) of the
dual SDP (12) of Feige and Kilian [18] it is true

h(G) = hp(G) = hd(G).

Thus, the both algorithms provide for any graph G the same objective value. We want
to point out another important fact: the bisection algorithm proposed in [18] use an SDP
formulation, where the variables are a matrix with dimension n × n. Thus, there are n2

variables for a graph with n vertices. In contrast, Boppana’s algorithm uses n variables in
the convex optimization problem. If we consider the dual SDP, we again have only n + 1
variables. However, due to Corollary 11, we can’t be better than Boppana’s algorithm.

Abbe et al. [2] and independently Mossel et al. [36] have shown, that there is a sharp
threshold phenomenon when considering the Gn(p, q) model with p = α log(n)/n and q =
β log(n)/n for fixed constants α, β, α > β. Exact recovery of the planted bisection is possible
if and only if (

√
α−
√
β)2 > 2 (see e.g. [36] for a formal definition of exact cluster recovery

problem). Hajek et al. [25] show, than an SDP equivalent to the one of Feige and Kilian
achieves this bound. Since, due to Corollary 11, we know that the SDP is equivalent to
Boppana’s algorithm, we conclude that also Boppana’s algorithm achieves the optimal
threshold for finding and certifying the optimal bisection in the considered model. We get:

I Theorem 12. Let α and β, α > β, be constants. Consider the graph model Gn(p, q) with
p = α log(n)/n and q = β log(n)/n. Then, as n → ∞, if (

√
α −
√
β)2 > 2, Boppana’s

algorithm recovers the planted bisection w.h.p. If (
√
α−
√
β)2 < 2, no algorithm is able to

recover the planted bisection w.h.p.

Proof. The second part of the theorem is exactly the statement from [2]. The first part,
i.e. that Boppana’s algorithm is able to recover the bisection, follows from [25, Thm. 2].
Hajek et al. show, that for (

√
α−
√
β)2 > 2 the SDP of Feige and Kilian obtain the optimal

solution. Due to Theorem 10, the same holds for Boppana’s algorithm. J
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5 Certifying Non-Unique Optimum Bisections

From Section 2 we know that if the bound h(G) is tight and the bisection of minimum size is
unique, or more precisely the multiplicity of the largest eigenvector of BS is 1, Boppana’s
algorithm is able to certify the optimality of the resulting bisection. We say that a graph G
has a unique optimum bisection if there exists a unique, up to the sign, bisection vector x
such that cw(x) = cw(−x) = bw(G). In this paper we also investigate families of graphs,
different than random graphs Gn(p, q), for which Boppana’s approach works well. To this aim
we show a modification which handles cases such that h(G) = bw(G) but for which no unique
bisection of minimum size exists. As we will see later hypercubes satisfy these two conditions.
We present our algorithm below. Note that if the multiplicity of the largest eigenvalue of Bopt

S

is 1, then the algorithm outputs the same result as in the original algorithm by Boppana.
1. Perform Step 1 of Algorithm 1; Let x be an eigenvector corresponding to the eigenvalue

λ((A+D)S) and let k be the multiplicity of the largest eigenvalue of (A+D)S

2. If k = 1 then construct a bisection vector x̂ by splitting at the median x̄ as in Step 2 of
Algorithm 1; Next output x̂ and if cw(x̂) = h(G) output “optimum bisection” else output
“fail”; If k > 1 then perform the steps below

3. Let M ∈ Rn×k be the matrix with k linear independent eigenvectors corresponding to
this largest eigenvalue; Transform the matrix to the reduced column echelon form, i. e.
there are k rows which form an identity matrix, s.t. M still spans the same subspace

4. Brute force: for every combination of k coefficients from {+1,−1} take the linear
combination of the k vectors of M with the coefficients and verify if the resulting vector
x is a bisection vector, i.e. x ∈ {+1,−1}n with

∑
i xi = 0. If yes and if cw(x) = h(G)

then output x and continue. This needs 2k iterations
5. If in Step 4 no bisection vector x is given then output “fail”.
I Theorem 13. If h(G) = bw(G) then the algorithm above reconstructs all optimal bisections.
Every achieved bisection vector corresponds to an optimal bisection.

The eigenvalues for the family of hypercubes are explicitly known [26]. Hence, we
can verify that the bound h(G) is tight and Boppana’s algorithm with the modification
above works, i.e. finds an optimal bisection. For a hypercube Hn with n vertices we have
h(Hn) = g(Hn, (2− logn)1) = n/2 = bw(Hn). Since the hypercube with n vertices has logn
optimal bisections and the largest eigenspace of BS has multiplicity logn, the brute force
part in our modification of Boppana’s algorithm results in a linear factor of n for the overall
runtime. Thus, the algorithm runs in polynomial time. With the results from Section 3 we
can extend this result and obtain, that Boppana’s algorithm with our modification works on
adversarially modifieded hypercubes as well.

6 The Limitations of the Algorithm

Boppana shows, that his algorithm works well on some classes of random graphs. However,
we do not know which graph properties force the algorithm to fail. For example, for the
considered planted bisection model, we require a small bisection width. On the other hand,
as we have seen in Section 5 Boppana’s algorithm works for the hypercubes and their
semirandom modifications – graphs that have large minimum bisection sizes.

In the following, we present newly discovered structural properties from inside the
algorithm, which provide a framework for a better analysis of the algorithm itself. Let y be
a bisection vector of G. We define

d(y) = −diag(y)Ay. (14)
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. . . u′ u w w′ . . .

. . . u′1 u1 w1 w′1 . . .

. . . u′2 u2 w2 w′2 . . .

Figure 1 Forbidden graph structures as in Corollary 17 (left) and in Corollary 18 (right).

An equivalent but more intuitive characterization of d(y) is the following: d(y)
i is the difference

between the number of adjacent vertices in other partition as vertex i and the number of
adjacent vertices in same partition as i.

I Lemma 14. Let G be a graph with h(G) = bw(G) and assume there is more than
one optimum bisection in G. Then (up to constant translation vectors c1) there exists a
unique vector dopt with g(G, dopt) = bw(G). Additionally, for every bisection vector y of an
arbitrary optimum bisection in G there exists a unique α(y) and the corresponding d(y), with
g(G, d(y) + α(y)y) = bw(G).

Thus, if there are two optimum bisections represented by y and y′ with d(y) 6= d(y′), then
the difference of the d-vectors in component i is only dependent on yi and y′i, since we have
d(y) − d(y′) = β′y′ − βy for some constants β and β′. This structural property allows us to
show the following limitation for the sparse planted partition model Gn(p, q).

I Theorem 15. The algorithm of Boppana fails w.h.p. in the subcritical phase from [12],
defined as n(p− q) =

√
np · γ lnn, for real γ > 0.

In the planted partition model Gn(p, q), if the graphs are dense, e.g. p = 1/nc for a
constant c with 0 < c < 1, the constraints for the density difference p − q assumed in
Boppana’s [9] and Coja-Oghlan’s [12] algorithms are essentially the same. However for sparse
graphs, e.g. such that q = O(1)/n, the situation changes drastically. Now, e.g. p =

√
logn/n

satisfy Coja-Oghlan’s constraint p−q ≥ Ω(
√
p ln(pn)/

√
n) but the condition on the difference

p−q assumed by Boppana is not true any more. Theorem 15 shows that Boppana’s algorithm
indeed fails under this setting. The proof of this theorem relies on the following observation,
which can be derived from our newly discovered structural properties from above.

I Lemma 16. Let G be a graph with h(G) = bw(G) and let (Y1, Y−1) be an arbitrary optimal
bisection. Then, for each pair of vertices vi ∈ Yi, i ∈ {1,−1}, not connected by an edge
({vi, v−i} 6∈ E), we have: If e(vi, Yi) = e(vi, Y−i) for i ∈ {1,−1} (the vertices have balanced
degree), then N(vi) = N(v−i), i.e. both vertices have the same neighbors.

I.e. if we have two balanced vertices in different parts of an optimal bisection, not connected
by an edge, then the two vertices must have the same neighborhood as a necessary criterion
for Boppana’s algorithm to work. In the subcritical phase in Theorem 15, there exist most
likely many of such pairs of vertices, but they are unlikely to have all even the same degree.

We can also provide forbidden substructures, which make Boppana’s algorithm fail. This
is e.g. the case, when the graph contains a path segment located on an optimal bisection:

I Corollary 17. Let G be a graph, as illustrated in Fig. 1 (left), with n ≥ 10 vertices
containing a path segment {u′, u}, {u,w}, {w,w′}, where u and w have no further edges. If
there is an optimal bisection y, s. t. yu = yu′ = +1 and yw = yw′ = −1 (i. e. {u,w} is a cut
edge), then h(G) < bw(G).

To prove this corollary, we use the more general but more technical Lemma 22 (Appendix
of the full version [39]) with parameters C̃+1 = {u} and C̃−1 = {w}. The result can also be
applied for 2× c lattices:
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I Corollary 18. Let G be a graph with n ≥ 10c vertices containing a 2×c lattice with vertices
ui and wi, as illustrated in Fig. 1 (right). (The construction is similar to the corollary above,
but now we have a lattice instead of a single cut edge.) If there is an optimal bisection y, s. t.
yui = yu′

i
= +1 and ywi = yw′

i
= −1, then h(G) < bw(G).

The algorithm fails if there are isolated vertices in both parts of an optimal bisection:

I Theorem 19. Let G be a graph with h(G) = bw(G). Let G′ be the graph G with two
additional isolated vertices, then h(G′) ≤ h(G)− 4 bw(G)

n2 .

7 Discussion and Open Problems

Boppana’s spectral method is a practically implementable heuristic. Computing eigenvalues
and eigenvectors is well-studied and can be done very efficiently. Falkner, Rendl andWolkowicz
[17] show in a numerical study that using spectral techniques for graph partitioning is very
robust and upper and lower bounds for the bisection width can be obtained such that the
relative gap is often just a few percentage points apart. In [43] and [42], Tu, Shieh and Cheng
present numerical experiments including results for Boppana’s algorithm. They verify that
the algorithm indeed has good average case behavior over certain probability distributions
on graphs. We conducted further experiments on the graph model Rn(r, b) which indicated,
that Boppana’s algorithm also works for r = 5, but not for r = 3 and r = 4. An interesting
question arising is, which properties of 3- and 4-regular graphs from the planted bisection
model let the algorithm fail.
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Abstract
A grammar compression is a context-free grammar (CFG) deriving a single string deterministic-
ally. For an input string of length N over an alphabet of size σ, the smallest CFG is O(lgN)-
approximable in the offline setting and O(lgN lg∗N)-approximable in the online setting. In
addition, an information-theoretic lower bound for representing a CFG in Chomsky normal form
of n variables is lg(n!/nσ) + n + o(n) bits. Although there is an online grammar compression
algorithm that directly computes the succinct encoding of its output CFG with O(lgN lg∗N)
approximation guarantee, the problem of optimizing its working space has remained open. We
propose a fully-online algorithm that requires the fewest bits of working space asymptotically
equal to the lower bound in O(N lg lgn) compression time. In addition we propose several tech-
niques to boost grammar compression and show their efficiency by computational experiments.
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1 Introduction

1.1 Motivation
Data never ceases to grow. Especially, we have witnessed so-called highly-repetitive text
collections are rapidly increasing. Typical examples are genome sequences collected from
similar species, version controlled documents and source codes in repositories. As such
datasets are highly-compressible in nature, employing the power of data compression is the
right way to process and analyze them. In order to catch up the speed of data increase, there
is a strong demand for fully online and really scalable compression methods.

In this paper, we focus on the framework of grammar compression, in which a string is
compressed into a context-free grammar (CFG) that derives the string deterministically [23].
In the last decade, grammar compression has been extensively studied from both theoretical
and practical points of view: While it is mathematically clean, it can model many practical
compressors such as LZ78 [48], LZW [47], LZD [13], repair [22], sequitor [33], and so on.
Furthermore, there are wide varieties of algorithms working on grammar compressed strings,
e.g., self-indexes [3, 9, 21, 25, 34, 38, 45, 46], pattern matching [10, 17], pattern mining [12, 8],
machine learning [41], edit-distance computation [14, 43], and regularities detection [29, 15].
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67:2 A Space-Optimal Grammar Compression

Table 1 Improvement of FOLCA: the fully-online grammar compression. Here N is the length
of the input string received so far, σ and n are the numbers of alphabet symbols and generated
variables, respectively, and 1

α
≥ 1 is the load factor of the hash table.2 For any input string, these

algorithms construct the same SLP, which has O(lgN lg∗ N) approximation guarantee.

algorithm compression time working space (bits)
FOLCA ([28]) O( N lgn

α lg lgn ) expected (1 + α)n lg(n+ σ) + n(3 + lg(αn)) + o(n)
SOLCA (ours) O(N lg lgn) expected n lg(n+ σ) + o(n lg(n+ σ))

Note that in order to take full advantage of these applications, a text should be compressed
globally, that is, typical workarounds to memory limitation such as setting window-size or
reusing variables (by forgetting previous ones) are prohibitive. This further motivates us to
design really scalable grammar compression methods that can compress huge texts.

The primary goal of grammar compression is to build a small CFG that derives an
input string only. The problem to build the smallest grammar is known to be NP-hard, but
approximable within a reasonable ratio, e.g., O(lgN)-approximable in the offline setting [23]
and O(lgN lg∗N)-approximable1 in the online setting [28], where N is input size and lg∗ is
the iterative logarithms.

On the other hand, to get a scalable grammar compression we have to seriously consider
reducing the working space to fit into RAM. First of all, the algorithm should work in space
comparable to the output CFG size. This has a great impact especially when we deal with
highly-repetitive texts because output CFG size grows much slower than input size. We
are aware of several work (including other compression scheme than grammar compression)
addressing this [28, 13, 7, 20, 36, 35], but very few care about a constant factor hidden in
big-O notation. More extremely and ideally, the output CFG should be encoded succinctly
in an online fashion, and the algorithm should work in “succinct space”, i.e., the encoded
size plus lower order terms. To the best of our knowledge, fully-online LCA (FOLCA) [28]
(and its variants) is the only existing algorithm addressing this problem. Whereas FOLCA
achieved a significant improvement in memory consumption, there is still a gap between the
memory consumption and its theoretical lower bound because FOLCA requires extra space
for a hash table other than the succinct encoding of the CFG. Therefore the problem of
optimizing the working space of FOLCA has been a challenging open problem.

In this paper, we tackle the above mentioned problem, resulting in the first space-optimal
fully-online grammar compression. In doing so, we propose a novel succinct encoding that
allows us to simulate the hash table of FOLCA in a dynamic environment. We further
introduce two techniques to speed up compression. We call this improved algorithm Space-
Optimal FOLCA (SOLCA). See Table 1 for the improved time and space complexities.
Experimental results show that both working space and running time are significantly
improved from original FOLCA. We also compare our algorithm with other state-of-the-arts,
and see that ours outperforms others in memory consumption, while the compression time is
four to seven times slower than the fastest opponent.

1 The authors in [28] only claimed O(lg2 N) approximation, but it can be improved to O(lgN lg∗ N)
adopting edit sensitive parsing (ESP) technique [4], which was pointed out in [40]. Naively the use of
ESP adds lg∗ N factor to computation time, but it can be eliminated by a neat trick of table lookup
(e.g., see Theorem 6 of [8]). In practice, we have observed that the use of ESP does not improve the
compression ratio much (or often even worsens), so our implementation still uses the algorithm with
O(lg2 N) approximation guarantee.

2 In the previous papers, the inverse of the load factor is mistakenly referred to as the load factor. Here
we fix the misuse.



Y. Takabatake, T. I, and H. Sakamoto 67:3

1.2 Our Contribution in More Details
In the framework of grammar compression, an algorithm must refer to two data structures,
the dictionary D (a set of production rules) and the reverse dictionary D−1. Considering
any symbol Zi to be identical to integer i, D is regarded as an array such that D[i] stores
the phrase β if the production rule Zi → β exists. Without loss of generality, we can
assume that G is a straight-line program (SLP) [19] such that any β is a bigram, i.e., a
pair of symbols (each symbol is a variable or an alphabet symbol). It follows that a naive
representation of D occupies 2n lg(n+σ) bits for n variables and σ alphabet symbols. Because
an information-theoretic lower bound of SLP is lg((n+ σ)!/nσ) + 2(n+ σ) + o(n) bits [42],
the naive representation is highly redundant. Fully-online LCA (FOLCA) [28] is the first
fully-online algorithm that directly outputs an encoded e(D) whose size is asymptotically
equal to the size of the optimal one.

On the other hand, given a phrase β, D−1 is required to return Z if Z → β exists. Using
D−1, a grammar compression algorithm can remember the existing name Z associated with
β, i.e., we can avoid generating a useless Z ′ → β for the same β. In previous compression
algorithms [26, 44, 42, 28], the reverse dictionary was simulated by a hash table whose size
is comparable to the size of e(D). This is the reason that the space optimization problem
has remained open.

To solve this problem, we introduce a novel mechanism that allows FOLCA to directly
compute D−1 by e(D) with an auxiliary data structure in a dynamic environment. We
develop a very simple data structure satisfying those requirements, and then we improve
the working space of FOLCA. Note that the new data structure itself is independent from
FOLCA/SOLCA, and applicable to any SLP for which fast access to both D and D−1 is
required. Thus, it can be a new standard of succinct SLP encoding for such purposes.

FOLCA and SOLCA share the same idea to encode the topology of the derivation tree
of the SLP by a succinct indexable dictionary, and heavily use it for simulating several
navigational operations on the tree. As its operation time is the theoretical bottleneck of
FOLCA, appearing as O(lgn/ lg lgn) factor, we show that we can improve it to constant
time. We then propose a practical implementation. Experimental results show that the
improved version runs about 30% faster than original FOLCA.

Finally, we introduce a customized cache structure to grammar compression. The idea
is inspired by the work [27] that proposed a variant of FOLCA working in constant space,
in which only a constant number of frequently used variables are maintained to build SLP.
Although the algorithm of [27] cannot make use of infrequent variables, it runs very fast as
it is quite cache friendly. On the basis of this idea, we introduce a hash table (of size fitting
into L3 cache) to lookup reverse dictionary for self-maintained frequent variables. Unlike [27],
infrequent variables are looked up by the SOLCA’s reverse dictionary. Experimental results
show that this simple cache structure significantly improves the running time of plain SOLCA
with a small overhead in space.

1.3 Related Work
There are compression algorithms with smaller space. For example, Maruyama and Tabei [27]
proposed a variant of FOLCA working in constant space where the reverse dictionary with a
fixed size is reset when the vacancy for a new entry runs out. We can find similar algorithms
in constant space, e.g., repair, gzip, bzip, and etc. On the other hand, restricting the
memory size not only saturates the compression ratio but also interferes with an important
application like self-indexes [3, 9, 21, 25, 34, 38, 45, 46] because the memory is reset according
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to the increase of input for the constant memory model. In fact, the SLP produced by
FOLCA/SOLCA can be used for self-indexes [46], and for this application it is important
that the whole text is globally compressed.

2 Framework of Grammar Compression

2.1 Notation
We assume finite sets Σ and V of symbols where Σ ∩ V = ∅. Symbols in Σ and V are called
alphabet symbols and variables, respectively. Σ∗ is the set of all strings over Σ, and Σq the
set of strings of length just q over Σ. The length of a string S is denoted by |S|. The i-th
character of a string S is denoted by S[i] for i ∈ [1, |S|]. For a string S and interval [i, j]
(1 ≤ i ≤ j ≤ |S|), let S[i, j] denote the substring of S that begins at position i and ends at
position j. Throughout this paper, we set σ = |Σ|, n = |V | and N = |S|.

2.2 SLPs
We consider a special type of CFG G = (Σ, V,D,Xs) where V is a finite subset of X , D is a
finite subset of V × (V ∪ Σ)∗, and Xs ∈ V is the start symbol. A grammar compression of
a string S is a CFG that derives only S deterministically, i.e., for any X ∈ V there exists
exactly one production rule in D and there is no loop.

We assume that G is an SLP [19]: any production rule is of the form Xk → XiXj , where
Xi, Xj ∈ Σ ∪ V , and 1 ≤ i, j < k ≤ n + σ. The size of an SLP is the number of variables,
i.e., |V |, and we let n = |V |. For variable Xi ∈ V , val(Xi) denotes the string derived from
Xi. Also for c ∈ Σ, let val(c) = c. For w ∈ (V ∪ Σ)∗, let val(w) = val(w[1]) · · · val(w[|w|]).

The parse tree of G is a rooted ordered binary tree such that (i) the internal nodes are
labeled by variables and (ii) the leaves are labeled by alphabet symbols. In a parse tree, any
internal node Z corresponds to a production rule Z → XY , where X (resp. Y ) is the label
of the left (resp. right) child of Z.

The set D of production rules is regarded as the data structure, called the dictionary, for
accessing the phrase XiXj for any Xk, if Xk → XiXj exists. On the other hand, the reverse
dictionary D−1 is the data structure for accessing Xk for XiXj , if Xk → XiXj exists.

2.3 Succinct Data Structures
Here we introduce some succinct data structures, which we will use for encoding an SLP.

A rank/select dictionary for a bit string B [16] is a data structure supporting the following
queries: rankc(B, i) returns the number of occurrences of c ∈ {0, 1} in B[1, i]; selectc(B, i)
returns the position of the i-th occurrence of c ∈ {0, 1} in B; access(B, i) returns the i-th bit
in B. There is a rank/select dictionary for B that uses |B|+o(|B|) bits of space and supports
the queries in O(1) time [37]. In addition, the rank/select dictionary can be constructed
from B in O(|B|) time and |B|+ o(|B|) +O(1) bits of space.

It is natural to generalize the queries for a string T over an alphabet of size > 2. In
particular, we consider the case where the alphabet size is Θ(|T |). Using a data structure
called GMR [11], we obtain rank/select dictionary that occupies |T | lg |T |+ o(|T | lg |T |) bits
of space and supports both rank and access queries in O(lg lg (|T |)) time and select queries
in O(1) time. Here we introduce the ingredients of the GMR for T (we remark that we
use a simplified GMR as we consider only Θ(|T |)-size alphabets), each of which we refer
to as GMRDS1–4. Note that each query uses a distinct subset of them: selectc(T, i) uses
GMRDS1–2; rankc(T, i) uses GMRDS1–3; and access(T, i) uses GMRDS1–2 and GMRDS4.
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(i) POSLP.

Σ={a , b }
V={X 1, X 2, X 3, X 4, X 5, X 6}
D={X 1→ba ,

X 2→a X 1,

X 3→bb ,
X 4→ X 2 X 3,

X 5→ X 1 X 1,

X 6→ X 4 X 5}
X S=X 6

b a b b b aa b a

X 1

X 2 X 1

X 1

X 1

X 4 X 1

X 5

X 6

b b b a b aa b a

X 1

X 2 X 3

X 1

X 4

X 1 X 1

X 5

X 6

(ii) Parse tree of the POSLP. (iii) POPPT of the parse tree. (iv) Succinct representation 
of the POPPT and hash table
 for the reverse dictionary. 

B=00011001100111
L=ababb X 1 X 1¿

H={ba→ X 1,

a X 1→ X 2,

bb→ X 3,

X 2 X 3→ X 4,

X 1 X 1→ X 5,

X 4 X 5→ X 6}a b a

X 1

X 2 X 3

X 1

X 1

X 1

X 5

X 6

b ba b a

X 1

X 2

X 1

X 4 X 5

X 6

X 1

Figure 1 Example of post-order SLP (POSLP), parse tree, post-order partial parse tree (POPPT),
and succinct representation of POPPT.

GMRDS1: A permutation πT of [1, |T |] obtained by stably sorting [1, |T |] according to the
values of T [1, |T |]. It is stored naively, and thus, occupies |T | lg |T | bits of space.

GMRDS2: A unary encoding of T [πT [1]]T [πT [2]] · · ·T [πT [|T |]] to support rank/select opera-
tions on GBT = 0T [πT [1]]10T [πT [2]]−T [πT [1]]1 . . . 0T [πT [|T |]]−T [πT [|T |−1]]1. The space usage
is O(|T |) bits.

GMRDS3: A data structure to support predecessor queries on sub-ranges of πT [1, |T |]. Note
that for any character c appearing in T there is a unique range [ic, jc] s.t. T [πT [k]] = c iff
k ∈ [ic, jc]. Also, the sequence πT [ic], πT [ic + 1], . . . , πT [jc] is non-decreasing. The task
is, given such a range and an integer x, to compute the largest position k ∈ [ic, jc] with
πT [k] < x if such exists. We can employ y-fast trie to support the queries in O(lg lg |T |)
time by adding extra O(|T |) bits on top of πT (note that the search on bottom trees of
y-fast trie can be implemented by simple binary search on a sub-range of πT as we only
consider static GMR).

GMRDS4: A data structure to support fast access to π−1
T [i] for any 1 ≤ i ≤ |T |. We

can use the data structure of [31] to compute π−1
T [i] in O(lg lg |T |) time. It adds extra

O(|T |+ lg |T |/ lg lg |T |) bits on top of πT .

2.4 Online Construction of Succinct SLP
I Definition 1 (POSLP and post-order partial parse tree (POPPT) [39, 26]). A partial parse
tree is a binary tree built by traversing a parse tree in a depth-first manner and pruning
all of the descendants under every node of a previously appearing nonterminal symbol. A
POPPT is a partial parse tree whose internal nodes have post-order variables. A POSLP is
an SLP whose partial parse tree is a POPPT.

Figures 1(i) and (iii) show an example of a POSLP and POPPT, respectively. The
resulting POPPT (iii) has internal nodes consisting of post-order variables. FOLCA [28]
is a fully-online grammar compression for directly computing the succinct POSLP (B,L)
of a given string, where B is the bit string obtained by traversing POPPT in post-order,
and putting ‘0’, if a node is a leaf, and ‘1’, otherwise, and L is the sequence of leaves of
the POPPT. B encodes the topology of POPPT in 2n bits by taking advantage of the fact
that POPPT is a full binary tree (note that for general trees we need 4n bits instead). By
enhancing B with a data structure supporting some primitive operations considered in [32]
(fwdsearch and bwdsearch on the so-called excess array of B), we can support some basic
navigational operations (like move to parent/child) on the tree as well as rank/select queries
on B. Using the dynamic data structure proposed in [32], we can support these operations
as well as dynamic updates on B in O(lgn/ lg lgn) time. In theory, FOLCA uses this result
to get Theorem 2 (though its actual implementation uses a simplified version, which only
has O(lgn)-time guarantee).
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I Theorem 2 ([28]). Given a string of length N over an alphabet of size σ, FOLCA computes a
succinct POSLP of the string in O( N lgn

α lg lgn ) expected time using (1+α)n lg(n+σ)+n(3+lg(αn))
bits of working space, where 1

α ≥ 1 is the load factor of the hash table.

In Section 3 we improve FOLCA in two ways: First, we improve the running time for
operations on B from both theoretical and practical points of view in Subsection 3.1. Second,
we slash O(αn lg(n+ σ)) bits of working space of FOLCA needed for implementing D−1 by
hash table. In Subsection 3.2, we propose a novel dynamic succinct POSLP to remove the
redundant working space.

3 Improved Algorithm

3.1 Improving and Engineering Operations on B

Recall that FOLCA uses the dynamic tree data structure of [32], for which improving
O(lgn/ lg lgn) operation time is unlikely due to known lower bound. However, in our
problem fully dynamic update operations are not needed as new tree topologies (bits) are
always “appended”. Therefore, in theory it is not difficult to get constant time operations:
While appending bits, we mainly manage to update range min-max trees (RmM-trees in
short) and a weighted level-ancestor data structure. For the former, it is fairly easy to
fill up the min/max values for nodes of RmM-trees incrementally in worst case constant
time per addition. For the latter, we can use the data structure of [1] supporting weighted
level-ancestor queries and updates under adding leaf/root in worst case constant time. As a
result, the running time of FOLCA can be improved to O(N/α) expected time.

Next we present a more practical implementation utilizing the fact that our B is well-
balanced: Because FOLCA produces a well-balanced grammar, the resulting POPPT has
height of at most 2 lgN . In our actual implementation, we allow the following overhead in
space: We use some precomputed tables that occupy 28 bytes each so that some operations
(like rank/select) on a single byte can be performed by a table lookup in constant time.
Such tables are commonly used in modern implementations of succinct data structures (e.g.,
sdsl-lite https://github.com/simongog/sdsl-lite).

Now we briefly review the static data structure of [32]. Let E denote the excess array
of B, i.e., for any 1 ≤ i ≤ n, E[i] is the difference of rank0(B, i) and rank1(B, i). Note
that E is conceptual and we do not have a direct access to E. We consider a primitive
query fwdsearch(E, i, d) that returns the minimum j > i such that E[j] = E[i] + d, where
we assume d ≤ 0 (it is simplified from the original fwdsearch, but enough for our problem).
The data structure consists of three layers. The lowest layer partitions B into equal length
mini-blocks of β = Θ(lgN) bits. If query can be answered in a mini-block, it is processed by
O(β/8) table lookups, otherwise the query is passed to the middle layer. The middle layer
partitions B into equal length block of β′ = Θ(lg3 N) bits. Each block contains O(lg2 N)
mini-blocks and is managed by an RmM-tree. If the answer exists in a block, the RmM-tree
identifies the right mini-block where the answer exists, otherwise the query is passed to the
top layer. The task of the top layer is, given a block and target excess value e (= E[i] +d), to
find the nearest block (to the right for fwdsearch) whose minimum excess value is no greater
than e, which is exactly the block where the answer exists.

Our ideas for a practical implementation are listed below:
Since all excess values are in [0, 2 lgN ], each node of RmM-trees can hold absolute excess
value using 1 + lg lgN bits. (Note that in general case we only afford to store relative
values, and thus, we have to retrieve absolute values by traversing from the root of the

https://github.com/simongog/sdsl-lite
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tree when needed.) In particular, we can directly access absolute excess values at every
ending position of mini-block by storing them in an array E′[1, dn/βe], which only uses
O(n lg lgN/β) = O(n lg lgN/ lgN) bits.
Since rank0(B, i) = (i−E[i])/2 and rank1(B, i) = (i+E[i])/2, rank queries are answered
by computing E[i], which can be now computed by accessing E′[di/βe] and O(lgN/8)
table lookups.
For select query select0(B, j) whose answer is i, we remark that rank0(B, i) = j =
(i − E[i])/2 holds. Since i = 2j + E[i] and E[i] ∈ [0, 2 lgN ], the answer i exists in
[2j, 2j + 2 lgN ]. Thus, select0(B, j) can be computed by accessing E′[d2j/βe] and
O(lgN/8) table lookups. Similarly, select1(B, j) can be answered by screening the range
[2j − 2 lgN, 2j].
For the top layer, we can simply remember, for every combination of block and target
excess value, the answer for fwdsearch query. Since the number of possible combinations
is O(n lgN/β′), it takes O(n lg2 N/β′) = O(n/ lgN) bits.

3.2 Improved Dynamic Succinct POSLP
We propose a novel space-efficient representation of POSLP that occupies n lg(n + σ) +
o(n lg(n + σ)) bits of space including the reverse dictionary. The concept of a succinct
representation of POSLP is unchanged, but now we consider integrating the reverse dictionary
into it.

We start with categorizing every production rule into two groups. A production rule
Z → XY ∈ (V ∪ Σ)2 (or variable Z) is said to be outer, if both children of the node
corresponding to Z in the POPPT are leaves, and inner, otherwise. The reverse dictionaries
for inner and outer variables are implemented differently. Particularly, the reverse dictionary
for inner variables can be implemented without having any other data structures than (B,L)
(see Section 3.2.1). Although we do not know which dictionary is to be used when looking
up a phrase, it is sufficient to try them both.

The proposed dynamic succinct POSLP consists of the same (B,L) as the previous
POSLP. The difference is the encoding of L: We partition L into L1, L2, and L3 such that
L2 (resp. L3) consists of every element of L that is a left (resp. right) child of an outer
variable (preserving their original order), and L1 consists of the remaining elements. In
addition, we add functions rank001(B, i) and select001(B, i) to B, which return the number
of occurrences of 001 in B[1, i + 2] and the position of the i-th occurrence of 001 in B,
respectively. Note that each occurrence of 001 corresponds to an occurrence of outer variable,
and rank001/select001 enables us to map any leaf to the corresponding entry distributed to one
of L1, L2 and L3. More precisely, given any position i in B representing a leaf (i.e., B[i] = 0),
the corresponding label is retrieved as follows: return L2[rank001(B, i)], if B[i, i+ 2] = 001;
return L3[rank001(B, i)], if B[i− 1, i+ 1] = 001; and return L1[rank0(B, i)− 2rank001(B, i)],
otherwise. While storing L1 in a standard variable length array that supports pushback of
elements, we store L2 and L3 implicitly in a data structure that provides the functionality of
the reverse dictionary for outer variables.

Let nin and nout be the numbers of inner and outer variables, respectively, i.e., nin = |L1|
and nout = |L2| = |L3|. Each of L2 and L3 is further partitioned into the prefix of length n′out
and the suffix of length nout − n′out for some n′out satisfying nout − n′out <

nout
lg lgnout

, that is, the
suffixes are relatively short. Let π2 be the permutation of [1, n′out] obtained by sorting [1, n′out]
stably according to the values of L2[1, n′out], and let L̂2 = L2[π2[1]]L2[π2[2]] · · ·L2[π2[n′out]]
and L̂3 = L3[π2[1]]L3[π2[2]] · · ·L3[π2[n′out]]. Roughly we consider a two-stage GMR, the
first for L2[1, n′out] and the second for L̂3 (although we only use select/access queries for
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(i) Example of the POPPT.

b b a a b a

X1 X2 X6X1 X1 X2

X3 X5 X7X3

X4 X8

X9

(ii) Succinct representation of the POPPT.

B = 00100110100100011111

L = b, b, a, a,X3, X1, X1, X2, b, a

(iii) Decomposition of L: if the parent of L[i] is inner, L[i] ∈ L1, else if L[i] is the left child, L[i] ∈ L2, and
otherwise, L[i] ∈ L3.

L1 = X3, X2

L2 = b, a,X1, b

L3 = b, a,X1, a

(iv) Encode of L: L1 is represented by the integer array. The prefix L2[1, n
′
out] is represented by the bit array GB2

and the permutation π2 in GMR. The remaining short suffix of L2 is represented by the integer array GA2 (iv-1).
In the GMR encoding of L2[1, n

′
out], L2[1, n

′
out] is sorted in lexicographical order and each L3[i] is sorted by the rank

of L2[i] (iv-2). Then, L3 is similarly encoded with n′out dividing them into the suffix and prefix (iv-3). Additionally,
the hash table h returns i (i > n′out) if L2[i] = Xj and L3[i] = Xk for the query XjXk (iv-4).

(iv-1) Data structure for L2 (n
′
out = 2).

GB2 = 101, π2 = 2, 1

GA2 = X1, b

(iv-2) Sort L2[1, n
′
out] and L3[1, n

′
out] to

L̂2[1, n
′
out] and L̂3[1, n

′
out], respectively.

L̂2[1, n
′
out] = a, b

L̂3[1, n
′
out] = a, b

(iv-3) Data structure for L3.

GB3 = 101, π3 = 1, 2

GA3 = X1, a

(iv-4) Hash table for L2[i] and L3[i] (i > n′out).

h = {X1X1 → 3, ba→ 4}

(v) The proposed dynamic succinct POPPT is formed by L1 of (iii), (iv-1), (iv-3), and (iv-4).

Figure 2 Example of the proposed data structure for dynamic succinct POSLP.

L2[1, n′out]). By the data structures, fitting in 2n′out lg(n + σ) + o(n′out lg(n + σ)) bits of
space in total, we can lookup a phrase of outer variables in [1, n′out] in O(lg lgn) time (see
Section 3.2.2).

The reverse dictionary for the remaining outer variables (that are in short suffix) is
implemented by dynamic perfect hashing [5] that occupies O(nout lgnout

lg lgnout
) = o(nout lgnout) bits

of space and supports lookup and addition in O(1) expected time.
Note that we use “static” GMRs for L2[1, n′out] and L̂3. Since most dynamic updates

of POSLP are supported by the hash (adding variables in the short suffix one by one),
we do nothing to GMRs. When the short suffix becomes too long, i.e., nout − n′out reach
nout

lg lgnout
, we increase n′out (i.e., the number of variables managed by GMRs) by nout

lg lgnout
and

just “reconstruct” the static GMRs from scratch (and clear all variables in the hash). Since
the GMR for a string can be constructed in linear time to the length of the string, the total
cost of reconstruction is O( n

lg lgn
∑lg lgn
i=1 i) = O(n lg lgn).

Figure 2 shows an example of our POSLP.
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In what follows we show how to implement the reverse dictionaries as well as access to
the production rules of outer variables.

3.2.1 Reverse dictionary for inner variables
If there is an inner variable deriving XY , at least one of the following conditions holds, where
vX (resp. vY ) is the corresponding node of X (resp. Y ) in the POPPT:
(i) vX is a left child of its parent, and the parent has a right child (regardless of whether

an internal node or leaf) representing Y , and
(ii) vY is a right child of its parent, and the parent has a left child (regardless of whether an

internal node or leaf) representing X.
Therefore, D−1(XY ) can be looked up by a constant number of parent/child queries on B
and access to L1. Moreover, the next lemma suggests that we do not need to check both
conditions (i) and (ii); check (ii), if X < Y , and check (i), otherwise.

I Lemma 3. Let Z be an inner variable deriving XY ∈ (V ∪Σ)2, and vZ be the corresponding
node of Z in the POPPT. If X < Y , the right child of vZ is an internal node. Otherwise the
left child of vZ is an internal node.

Proof. X < Y : Assume for the sake of contradiction that the right child of vZ is a leaf (which
represents Y ). As Z is inner, the left child of vZ must be the internal node corresponding to
X. Since Y is larger than X and smaller than Z, the internal node corresponding to Y must
be in the subtree rooted at the right child of vZ , which contradicts the assumption.

X ≥ Y : Assume for the sake of contradiction that the left child of vZ is a leaf (which
represents X). As Z is inner, the right child of vZ must be the internal node corresponding
to Y . Since the internal node corresponding to X appears before the left child of vZ , X < Y

holds, a contradiction. J

Due to Lemma 3 and the above discussions, we get the following lemma.

I Lemma 4. We can implement the reverse dictionary for inner variables that supports
lookup in O(1) time.

3.2.2 Reverse dictionary for outer variables
I Lemma 5. We can implement the reverse dictionary for outer variables to support lookup
in O(lg lgn) expected time.

Proof. Recall that for any 1 ≤ i ≤ n′out the pair L2[i]L3[i] is the right-hand side of the i-th
outer production rule (in post-order). Given i, we can compute the post-order number of the
variable deriving L2[i]L3[i] by rank1(B, select001(B, i)) + 1. Hence, the task of our reverse
dictionary is, given XY ∈ (V ∪ Σ)2, to return integer i such that L2[i] = X and L3[i] = Y ,
if such exists. If a phrase is found in the short suffix, the query is answered in O(1) expected
time by using hash table. Thus, in what follows, we focus on the case where the answer is
not found in the short suffix.

By the GMRDS2 GB2 for L2[1,m′], we can compute in constant time, given an in-
teger X, the range [iX , jX ] in π2 such that the occurrences of X in L2 is represented
by π2[iX , jX ] in increasing order, namely, iX = rank1(GB2, select0(GB2, X)) + 1 and
jX = rank1(GB2, select0(GB2, X + 1)). Note that Y occurs in L̂3[iX , jX ] (the occurrence
is unique) iff there is an outer variable deriving XY . In addition, if k ∈ [iX , jX ] is the
occurrence of Y , then π2[k] is the post-order number of the variable we seek. Hence, the
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Table 2 Detail of memory consumption (MB).

Wikipedia genome
method B L H CRD B L H CRD

FOLCA 17.63 180.06 1342.43 − 141.00 1247.67 9442.64 −
FOLCA+ 17.26 180.06 1342.43 − 138.09 1247.67 9442.64 −
SOLCA 17.26 523.85 − − 138.09 3856.84 − −
SOLCA+CRD 17.26 523.85 − 22.00 138.09 3856.84 − 22.00

problem reduces to computing selectY (L̂3, rankY (L̂3, iX − 1) + 1), which can be performed
in O(lg lgn) time by using the GMR for L̂3. J

3.2.3 Access to the production rules of outer variables
Since L2 and L3 are stored implicitly, here we show how to access the production rules of
outer variables.

I Lemma 6. Given 1 ≤ i ≤ nout, we can access L2[i]L3[i] in O(lg lgn) time.

Proof. If i > n′out, L2[i]L3[i] is in the short suffixes. As we can afford to store L2[i]L3[i] in a
plain array of O(nout lgnout

lg lgnout
) = o(nout lgnout) bits of space, we can access it in O(1) time.

If i ≤ n′out, L2[i]L3[i] is represented by GMRs for L2[1, nout] and L̂3. Using GMRDS4
for L2[1, nout], we can compute j = π−1

2 [i] in O(lg lgn) time. Then, we can obtain L2[i] by
rank0(GB2, select1(GB2, j)) in O(1) time. In addition, L3[i] can be retrieved by accessing
L̂3[j], which is supported in O(lg lgn) time by GMR for L̂3. J

To tell the truth, SOLCA does not access the production rules of outer variables during
compression, and hence, the implementation of SOLCA is further simplified by deleting
GMRDS4 for both L2[1, nout] and L̂3, needed to support access queries on the GMRs.

3.3 SOLCA
Plugging our new succinct representation of POSLP into FOLCA, we get a space-optimal
grammar compression algorithm, SOLCA.

I Theorem 7. Given a string of length N over an alphabet of size σ, SOLCA computes a
succinct POSLP of the string in O(N lg lgn) expected time using n lg(n+ σ) + o(n lg(n+ σ))
bits of working space.

Proof. SOLCA processes the input string online exactly the same as FOLCA does. During
compression, it is required to lookup a phrase by the reverse dictionary and append new
variables to POSLP if the phrase does not exist so far. By Lemmas 4 and 5, this is done
in O(lg lgn) expected time. Our dynamic succinct POSLP including the reverse dictionary
takes only n lg(n+ σ) + o(n lg(n+ σ)) bits of space as described in Section 3.2. J

4 Experiments

We implement FOLCA applying the dynamic succinct tree representation introduced in
Section. 3.1 called FOLCA+ and the SOLCA proposed in Section 3.3.3 Furthermore, as

3 Currently we do not implement the last idea of Section 3.1 for fwdsearch queries. Instead we answer
queries by traversing up a tree (so called 2D-Min-Heap [6]) built on the minimum excess values of
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Figure 3 Working space for Wikipedia (left) and genome (right).
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Figure 4 Compression time for Wikipedia (left) and genome (right).

a practical method for the fast computation of SOLCA, we implement the SOLCA with
the constant space reverse dictionary (CRD) storing frequent production rules. We call it
SOLCA+CRD4. The CRD is proposed in [27] and it supports the reverse dictionary query
in constant expected time while keeping a constant space by constant space algorithms
for finding frequent items [18, 24, 30]. The reverse dictionary query of SOLCA+CRD is
performed by two phases: (1) we check if a given XiXj exists in the CRD and (2) if the
XiXj is not found in phase (1), we check the reverse dictionary of SOLCA. Although the
worst case time of the reverse dictionary query of SOLCA+CRD is the same as SOLCA’s
O(lg lg(n+σ)) time, if the query rule exists in the CRD, we can support the query in constant
expected time. Our implementation of CRD is based on [18] and restricts the space to 22MB
that is almost the same cache size of experimental machine. We compare the time/space
consumption of these variants of FOLCA with that of existing three grammar compression
algorithms: FOLCA, LZD 5 [13] and Re-Pair 6 [2]. The Re-Pair is a space-efficient version
of the original algorithm [22]. The experiments perform on Intel Xeon Processor E7-8837

blocks. In the worst case it requires an O(lgN)-long traversal, but it works well enough in practice as
performing such a long traversal is rare.

4 This implementation is downloadable from https://github.com/tkbtkysms/solca. We will show
additional experiments in this web site.

5 The patricia trie space computation (the compress function of the class STree::Tree) in https://github.
com/kg86/lzd

6 https://github.com/nicolaprezza/Re-Pair

ESA 2017

https://github.com/tkbtkysms/solca
https://github.com/kg86/lzd
https://github.com/kg86/lzd
https://github.com/nicolaprezza/Re-Pair


67:12 A Space-Optimal Grammar Compression

Table 3 Statistical information of input strings.

dataset length of string (N) alphabets (σ) compression ratio (%)
SOLCA LZD Re-Pair

Wikipedia 5, 368, 709, 120 210 3.65 3.46 0.629

genome 3, 273, 481, 150 20 41.38 36.34 9.0510

(2.67GHz, 24MB cache, 8 cores) and 1TB RAM. Here, the load factor of the hash table used
in FOLCA is fixed to 1

α = 1.
We use two large-scale datasets: Wikipedia7 (5GB) and genome8 (3GB). The detail is

shown in Table 3 where we note that POSLP by SOLCA is exactly the same as FOLCA’s.
The difference is only their succinct representations.

Figure 3 shows a comparison of the memory consumption of each method for Wikipedia
and genome. The points are displayed for every length of 5× 108. FOLCA and FOLCA+
maintain data structure (B,L,H); B is the skeleton of POSLP T , L is the sequence of the
leaves of T , and H is the reverse dictionary. When α = 1, H occupies almost 2n lg(n+ σ)
bits. Since the size of B and L is n lg(n + σ) bits and 2n bits, respectively, the total
space of FOLCA’s variants is about 3n lg(n + σ) bits. On the other hand, SOLCA and
SOLCA+CRD maintains (B,L′) supporting the reverse dictionary; L′ is the representation
of L in Section 3.2. The size is almost the same as L. Thus, it is expected that the memory
consumption of SOLCA and SOLCA+CRD is about 1

3 of FOLCA’s. The experimental result
confirms this prediction on both datasets. Furthermore, the memory consumption of each
data structure is shown in Table 2. Comparing with other methods, the space of SOLCA
and SOLCA+CRD is significantly small for each string.

Figure 4 shows a comparison of the construction time for the input. Our succinct tree
representation used in FOLCA+ improves the time consumption of FOLCA. The difference
of SOLCA from FOLCA+ comes from the use of L′ (queries to L′ and reconstruction
of L′). SOLCA+CRD is fastest in FOLCA’s and SOLCA’s variants for Wikipedia and
competitive with FOLCA+ for genome. By this result, we can confirm the efficiency of the
fast computation of CRD. SOLCA’s and FOLCA’s variants are faster than Re-pair and
slower than LZD.

5 Conclusion

We have presented SOLCA: a space-optimal version of fully-online LCA (FOLCA) [28]. Since
FOLCA is extended to its self-index in [46], our future work is developing a self-index based
on our SOLCA while preserving the optimal working space.
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Abstract
Consider a dynamic programming scheme for a decision problem in which all subproblems in-
volved are also decision problems. An implementation of such a scheme is positive-instance
driven (PID), if it generates positive subproblem instances, but not negative ones, building each
on smaller positive instances.

We take the dynamic programming scheme due to Bouchitté and Todinca for treewidth
computation, which is based on minimal separators and potential maximal cliques, and design
a variant (for the decision version of the problem) with a natural PID implementation. The
resulting algorithm performs extremely well: it solves a number of standard benchmark instances
for which the optimal solutions have not previously been known. Incorporating a new heuristic
algorithm for detecting safe separators, it also solves all of the 100 public instances posed by the
exact treewidth track in PACE 2017, a competition on algorithm implementation.

We describe the algorithm and prove its correctness. We also perform an experimental ana-
lysis counting combinatorial structures involved, which gives insights into the advantage of our
approach over more conventional approaches and points to the future direction of theoretical and
engineering research on treewidth computation.
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1 Introduction

Suppose we design a dynamic programming algorithm for some decision problem, formulating
subproblems, which are decision problems as well, and recurrences among those subproblems.
A standard approach is to list all subproblem instances from “small" ones to “large" and
scan the list, deciding the answer, positive or negative, to each instance by means of these
recurrences. When the number of positive subproblem instances are expected to be much
smaller than the total number of subproblem instances, a natural alternative is to generate
positive instances only, using recurrences to combine positive instance to generate a “larger"
positive instance. We call such a mode of dynamic programming execution positive-instance
driven or PID for short. One goal of this paper is to demonstrate that PID is not simply
a low-level implementation strategy but can be a paradigm of algorithm design for some
problems.

The decision problem we consider is that of deciding, given graph G and positive integer
k, if the treewidth of G is at most k. This graph parameter was introduced by Robertson and
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Seymour [17] and has had a tremendous impact on graph theory and on the design of graph
algorithms (see, for example, a survey [7].) The treewidth problem is NP-complete [1] but
fixed-parameter tractable: it has an f(k)nO(1) time algorithm for some fixed function f(k) as
implied by the graph minor theorem of Robertson and Seymour [18], and explicit O(f(k)n)
time algorithm is given by Bodlaender [3]. A classical dynamic programming algorithm due
to Arnborg, Corneil, and Proskurowsky (ACP algorithm) [1] runs in nk+O(1) time. Bouchitté
and Todinca [9] developed a more refined dynamic programming algorithm (BT algorithm)
based on the notions of minimal separators and potential maximal cliques, which lead to
algorithms running in O(1.7549n) time or in O(n5(d(2n+k+8)/3e

k+2
)
) time [11, 12].

Another important approach to treewidth computation is based on the perfect elimination
order (PEO) of a minimal chordal completion of the given graph. PEO-based dynamic
programming algorithms run in O∗(2n) time with exponential space and in O∗(4n) time with
polynomial space [5], where O∗(f(n)) means O(ncf(n)) for some constant c.

There has been a considerable amount of effort on implementing treewidth algorithms to
be used in practice and, prior to this work, the most successful implementations for exact
treewidth computation are all based on PEO. The authors of [5] implemented the O∗(2n)
time dynamic programming algorithm and experimented on its performance, showing that it
works well for small instances. For larger instances, PEO-based branch-and-bound algorithms
are known to work well in practice [14]. Recent proposals for reducing treewidth computation
to SAT solving are also based on PEO [19, 2].

From the PID perspective, this situation is somewhat surprising, for the following reasons.
Let us first review the PEO approach. See [5], for example, for details. Let G be the
input graph. Recall that a PEO of G is a total order v1, . . . , vn on V (G) such that, for
1 ≤ i ≤ n, vi is simplicial in G[Vi], where Vi = {vi, . . . , vn} and a vertex is simplicial
in a graph if its neighbors form a clique. A graph is chordal if it has no induced cycle
of length four or greater. A chordal completion of G is a chordal supergraph of G with
vertex set V (G). The above PEO-based algorithms utilizes two facts: that every chordal
graph has a PEO and that, for chordal graphs, the optimal tree-decomposition consists of
all maximal cliques as bags. Thus, these algorithms look for a total order of V (G) that
is a PEO of a chordal completion of G whose optimal tree-decomposition is an optimal
tree-decomposition of G. The dynamic programming algorithm reduces the search space size
from the naive O(n!) to O(2n) applying the Held-Karp paradigm for sequencing problems
[4]. In the decision problem version, it consists in defining the “feasibility” of each subset
of V (G), to be inductively decided by dynamic programming. Informally, S ⊆ V (G) is
feasible if it has a total ordering that qualifies as a prefix of a total ordering of V (G) that
gives a chordal completion with the clique number k or smaller. This feasibility notion,
however, has a more direct interpretation in terms of tree-decompositions: S is feasible if
each connected component of G[S] is feasible and each connected vertex set C is feasible
if G[C ∪ N(C)], where N(C) is the open neighborhood of S, has a tree-decomposition of
width k or smaller that has a bag containing N(C). This feasibility of connected sets is
nothing but the feasibility considered in the classical ACP algorithm. Thus, each positive
subproblem instance in the PEO-based dynamic programming scheme corresponds to a
combination of an indefinite number of positive subproblem instances in the ACP algorithm,
and hence the number of positive subproblem instances can be exponentially larger than
that in the ACP algorithm. Indeed, a PID variant of the ACP algorithm was implemented
by the present author and has won the first place in the exact treewidth track of PACE 2016
[10], a competition on algorithm implementations, outperforming other submissions based on
PEO. Given this success, a natural next step is to design a PID variant of the BT algorithm,
which is tackled in this paper.
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The resulting algorithm performs extremely well, as reported in Section 7. It is tested on
DIMACS graph-coloring instances [15], which have been used in the literature as standard
benchmark instances [14, 8, 16, 19, 5, 2]. Our implementation of the algorithm solves all the
instances that have been previously solved (that is, with matching upper and lower bounds
known) within 10 seconds per instance on a typical desktop computer and solves 13 out of the
42 previously unsolved instances. For nearly half of the instances which it leaves unsolved, it
significantly reduces the gap between the lower and upper bounds. It is interesting to note
that this is done by improving the lower bound. Since the number of positive subproblem
instances are much smaller when k is below the treewidth than when k equals the treewidth,
the PID approach is particularly good at establishing strong lower bounds.

We also adopt the notion of safe separators due to Bodlaender and Koster [6] in our
preprocessing and design a new heuristic algorithm for detecting safe separators. With this
preprocessing, our implementation also solves all of the 100 public instances posed by PACE
2017 [21], the successor of PACE 2016. It should be noted that these test instances of PACE
2017 are much harder than those of PACE 2016: the winning implementation of PACE 2016
mentioned above, which solved 199 of the 200 instances therein, solves only 62 of these 100
instances of PACE 2017 in the given time of 30 minutes per instance.

Adapting the BT algorithm to work in PID mode has turned out non-trivial. It requires
concepts and observations not present in [9]. We describe these concepts and observations,
formulate our variant in full details, and prove its correctness.

We also perform an experimental analysis in which we count combinatorial structures
involved in both PID and non-PID approaches, namely minimal separators, potential maximal
cliques, and related objects. The analysis reveals that the practical bottleneck of the original
BT algorithm lies in listing potential maximal cliques. Let Pk(G) denote the set of all
potential maximal cliques of cardinality of k + 1 or smaller of graph G. Although there
are theoretical upper bounds of O(1.7549n) and nO(1)(d(2n+k+8)/3e

k+2
)
on the time to compute

Pk(G) [12], where n is the number of vertices, huge gaps between these bounds and |Pk(G)|
are observed in the experiments. This motivates the need of output sensitive algorithms
that run fast when |Pk(G)| is small. Our PID algorithm is a first step in this direction.
Although it does not compute |Pk(G)| in an output sensitive manner, it does compute the
set of positive subproblem instances, whose size is empirically comparable to |Pk(G)|, in an
output sensitive manner.

Due to the space limitation, we omit proofs of lemmas and theorems, all of which can
be found in the full paper. Our implementation in source code is available at our GitHub
repository [13].

2 Preliminaries

In this paper, all graphs are simple, that is, without self loops or parallel edges. Let G be a
graph. We denote by V (G) the vertex set of G and by E(G) the edge set of G. For each
v ∈ V (G), NG(v) denote the set of neighbors of v in G: NG(v) = {u ∈ V (G) | {u, v} ∈ E(G).
For U ⊆ V (G), the open neighbor set of U in G, denoted by NG(U), is the set of vertices
adjacent to some vertex in U but not belonging to U itself: NG(U) = (

⋃
v∈U NG(v)) \ U .

The closed neighbor set of U in G, denoted by NG[U ], is defined by NG[U ] = U ∪NG(U). We
also write NG[v] for NG[{v}] = NG(v)∪ {v}. We denote by G[U ] the subgraph of G induced
by U : V (G[U ]) = U and E(G[U ]) = {{u, v} ∈ E(G) | u, v ∈ U}. In the above notation, as
well as in the notation further introduced below, we will often drop the subscript G when
the graph is clear from the context.

ESA 2017
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We say that vertex set C ⊆ V (G) is connected in G if, for every u, v ∈ C, there is a
path in G[C] between u and v. It is a connected component of G if it is connected and
is inclusion-wise maximal subject to this condition. A vertex set C in G is a component
associated with S ⊆ G, if C is a connected component of G[V (G) \ S]. For each S ⊆ V (G),
we denote by CG(S) (or C(S) when G is clear from the context) the set of all components
associated with S. A vertex set S ⊆ V (G) is a separator of G if |CG(S)| ≥ 2. A component
C is a full component associated with separator S if N(C) = S. A separator S is a minimal
separator if there are at least two full components associated with S. This term is justified
by this fact: if S is a minimal separator and a, b vertices belonging to two distinct full
components associated with S, then for every proper subset S′ of S, a and b belong to the
same component associated with S′; S is a minimal set of vertices that separates a from b.

Graph H is chordal if every induced cycle of H has length exactly three. H is a minimal
chordal completion of G if it is chordal, V (H) = V (G), E(G) ⊆ E(H), and E(H) is minimal
subject to these conditions. A vertex set Ω ⊆ V (G) is a potential maximal clique of G, if Ω
is a clique in some minimal chordal completion of G.

A tree-decomposition of G is a pair (T,X ) where T is a tree and X is a family {Xi}i∈V (T )
of vertex sets of G such that the following three conditions are satisfied. We call members of
V (T ) nodes of T and each Xi the bag at node i.
1.
⋃

i∈V (T ) Xi = V (G).
2. For each edge {u, v} ∈ E(G), there is some i ∈ V (T ) such that u, v ∈ Xi.
3. For each v ∈ V (G), the set of nodes Iv = {i ∈ V (T ) | v ∈ Xi} of V (T ) induces a

connected subtree of T .
The width of this tree-decomposition is maxi∈V (T ) |Xi| − 1. The treewidth of G, denoted by
tw(G) is the minimum width of all tree-decompositions of G. We may assume that the bags
Xi and Xj are distinct from each other for i 6= j and, under this assumption, we will often
regard a tree-decomposition as a tree T in which each node is a bag.

We call a tree-decomposition T of G canonical if each bag of T is a potential maximal
clique of G and, for every pair X, Y of adjacent bags in T , X ∩ Y is a minimal separator of
G. The following fact is well-known. It easily follows, for example, from Proposition 2.4 in
[9].

I Lemma 1. Let G be an arbitrary graph. There is a tree-decomposition T of G of width
tw(G) that is canonical.

The following local characterization of a potential maximal clique is crucial. We say that
a vertex set S ⊆ V (G) is cliquish in G if, for every pair of distinct vertices u and v in S,
either u and v are adjacent to each other or there is some C ∈ C(S) such that u, v ∈ N(C).
In other words, S is cliquish if completing N(C) for every C ∈ C(S) into a clique makes S a
clique.

I Lemma 2 (Theorem 3.15 in [9]). A separator S of G is a potential maximal clique of G if
and only if (1) S has no full-component associated with it and (2) S is cliquish.

It is also shown in [9] that if Ω is a potential maximal clique of G and S is a minimal
separator contained in Ω, then there is a unique component CS associated with S that
contains Ω \ S. We need an explicit way of forming CS from Ω and S.

Let K ⊆ V (G) be an arbitrary vertex set and S an arbitrary proper subset of K. We
say that a component C ∈ C(K) is confined to S if N(C) ⊆ S; otherwise it is unconfined to
S. Let unconf(S, K) denote the set of components associated with K that are unconfined
to S. Define crib(S, K) = (K \ S) ∪

⋃
C∈unconf(S,K) C. The following lemma relies only on
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the second property of potential maximal cliques, namely that they are cliquish, and will be
applied not only to potential maximal cliques but also to separators with full components,
which are trivially cliquish.

I Lemma 3. Let K ⊆ V (G) be a cliquish vertex set. Let S be an arbitrary proper subset of
K. Then, crib(S, K) is a full component associated with S.

I Remark. As crib(S, K) contains K \ S, it is clearly the only component associated with S

that intersects K. Therefore, the above mentioned assertion on potential maximal cliques is
a corollary of this Lemma.

3 Recurrences on oriented minimal separators

In this section, we fix graph G and positive integer k that are given in the problem instance:
we are to decide if the treewidth of G is at most k.

For connected set C ⊆ V (G), we denote by G〈C〉 the graph obtained from G[N [C]] by
completing N(C) into a clique: V (G〈C〉) = N [C] and E(G〈C〉) = E(G[N [C]]) ∪ {{u, v} |
u, v ∈ N(C), u 6= v}. We say C is feasible if tw(G〈C〉) ≤ k. Equivalently, C is feasible if
G[N [C]] has a tree-decomposition of width k or smaller that has a bag containing N(C).

Let us first review the BT algorithm [9] adapting it to our decision problem. We first
list all minimum separators of cardinality k or smaller and all potential maximal cliques
of cardinality k + 1 or smaller. Then, for each pair of a potential maximal clique Ω and
a minimal separator S such that S ⊂ Ω, place a link from S to Ω. To understand the
difficulty of formulating a PID variant of the algorithm, it is important to note that the
pair (Ω, S) to be linked is easy to find from the side of Ω, but not the other way round.
Then, we scan the full blocks (N(C), C) of minimal separators in the increasing order of |C|
to decide if C is feasible, using the following recurrence: C is feasible if and only if there
is some potential maximal clique Ω such that N(C) ⊂ Ω, C = crib(N(C), Ω), and every
component D ∈ unconf(N(C), Ω) is feasible. Finally, we have tw(G) ≤ k if and only if there
is a potential maximal clique Ω with |Ω| ≤ k + 1 such that every component associated with
Ω is feasible.

To facilitate the PID construction, we orient minimal separators as follows. We assume a
total order < on V (G). For each vertex set U ⊆ V (G), the minimum element of U , denoted
by min(U), is the smallest element of U under <. For vertex sets U and W , we say U

precedes W and write U ≺W if min(U) < min(W ).
We say that a connected set C is inbound if there is some full block associated with

N(C) that precedes C; otherwise, it is outbound. Observe that if C is inbound then
N(C) is a minimal separator, since N(C) has another full component associated with it.
Contrapositively, if N(C) is not a minimal separator then C is necessarily outbound. We say
a full block (N(C), C) is inbound (outbound) if C is inbound (outbound, respectively).

I Lemma 4. Let K be a cliquish vertex set and let A1, A2 be two components associated with
K. Suppose that A1 and A2 are outbound. Then, either N(A1) ⊆ N(A2) or N(A2) ⊆ N(A1).

Let K be a cliquish vertex set. Based on the above lemma, we define the outlet of K,
denoted by outlet(K), as follows. If no non-full component associated with K is outbound,
then we let outlet(K) = ∅. Otherwise, outlet(K) = N(A), where A is a non-full component
associated with K that is outbound, chosen so that N(A) is maximal. We define support(K) =
unconf(outlet(K), K), the set of components associated with K that are not confined to
outlet(K). By Lemma 4, every member of support(K) is inbound.

ESA 2017
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We call a full block (N(C), C) an I-block if C is inbound and |N(C)| ≤ k. We call it an
O-block if C is outbound and |N(C)| ≤ k.

We say that an I-block (N(C), C) is feasible if C is feasible. We say that an O-block
(N(A), A) is feasible if N(A) =

⋃
C∈C N(C) for some set C of feasible inbound components.

Note that this definition of feasibility of an O-block is somewhat weak in the sense that we
do not require every inbound component associated with N(A) to be feasible.

Let Ω be a potential maximal clique with |Ω| ≤ k + 1. For each C ∈ support(Ω), block
(N(C), C) is an I-block, since C is inbound as observed above and we have |N(C)| ≤ k by
our assumption that |Ω| ≤ k + 1. We say that Ω is feasible if |Ω| ≤ k + 1 and either
1. Ω = N [v] for some v ∈ V (G),
2. there is some subset C of support(Ω) such that Ω =

⋃
D∈C N(D) and every member of C

is feasible, or
3. Ω = N(A) ∪ (N(v) ∩A) for some feasible O-block (N(A), A) and a vertex v ∈ N(A).
We say that Ω is strongly feasible if |Ω| ≤ k + 1 and every C ∈ support(Ω) is feasible. It will
turn out that every strongly feasible potential maximal clique is feasible (Lemma 9). This
implication, however, is not immediate from the definitions.

I Lemma 5. We have tw(G) ≤ k if and only if G has a strongly feasible potential maximal
clique Ω with outlet(Ω) = ∅.

I Lemma 6. Let C be a connected set of G such that N(C) is a minimal separator. Let Ω
be a potential maximal clique of G〈C〉. Then, Ω is a potential maximal clique of G.

The following is our oriented version of the recurrence in the BT algorithm described in
the beginning of this section.

I Lemma 7. An I-block (N(C), C) is feasible if and only if there is some strongly feasible
potential maximal clique Ω with outlet(Ω) = N(C) and

⋃
D∈support(Ω) D = C.

I Lemma 8. Let K be a cliquish vertex set, C a non-empty subset of support(K), and
S =

⋃
C∈C N(C). If S is a proper subset of K then crib(S, K) is outbound.

The following lemma is crucial for our PID result: the algorithm described in the next
section generates all feasible potential maximal cliques and we need to guarantee all strongly
feasible maximal cliques to be among them.

I Lemma 9. Let Ω be a strongly feasible potential maximal clique. Then, Ω is feasible.

4 Algorithm

Given graph G and positive integer k, our algorithm generates all I-blocks, O-blocks, and
potential maximal cliques that are feasible. In the following algorithm, variable I is used
for listing feasible I-blocks, O for feasible O-blocks, P for feasible potential maximal cliques,
and S for strongly feasible potential maximal cliques.

Algorithm PID-BT
Input Graph G and positive integer k

Output “YES” if tw(G) ≤ k; “NO” otherwise
Procedure
1. Let I0 = ∅ and O0 = ∅.
2. Initialize P0 and S0 to ∅.
3. Set j = 0.
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4. For each v ∈ V (G), if N [v] is a potential maximal clique with |N [v]| ≤ k + 1 then add
N [v] to P0 and if, moreover, support(N [v]) = ∅ then do the following.
a. Add N [v] to S0.
b. If outlet(N [v]) 6= ∅ then let C = crib(outlet(N [v]), N [v]) and, provided that C 6= Ch

for 1 ≤ h ≤ j, increment j and let Cj = C.
5. Set i = 0.
6. Repeat the following and stop repetition when j is not incremented during the iteration

step.
a. While i < j, do the following.

i. Increment i and let Ii be Ii−1 ∪ {Ci}.
ii. Initialize Oi to Oi−1, Pi to Pi−1, and Si to Si−1.
iii. For each B ∈ Oi−1 such that Ci ⊆ B and |N(Ci) ∪ N(B)| ≤ k + 1, let K =

N(Ci) ∪N(B) and do the following.
A. If K is a potential maximal clique, then add K to Pi.
B. If |K| ≤ k and there is a full component A associated with K (which is unique),

then add A to Oi.
iv. Let A be the full component associated with N(Ci) and add A to Oi.
v. For each A ∈ Oi \Oi−1 and v ∈ N(A), let K = N(A)∪ (n(v)∩A) and if |K| ≤ k + 1

and K is a potential maximal clique then add K to Pi.
vi. For each K ∈ Pi \ Si−1, if support(K) ⊆ Ii then add K to Si and do the following:

if outlet(K) 6= ∅ then let C = crib(outlet(K), K) and, provided that C 6= Ch for
1 ≤ h ≤ j, increment j and let Cj = C.

7. If there is some K ∈ Sj such that outlet(K) = ∅, then answer “YES”; otherwise, answer
“NO”.

I Theorem 10. Algorithm PID-BT, given G and k, answers “YES” if and only if tw(G) ≤ k.

5 Experimental analysis

To identify the practical bottleneck in the BT algorithm, we have performed some experi-
ments. We are interested in the number of combinatorial objects involved in the treewidth
computation: minimal separators, potential maximal cliques, and feasible objects used in our
PID algorithm. In the case of minimal separators and potential maximal cliques, we count
the total numbers of those as well as of those relevant in our decision problem: minimal
separators with cardinality k or smaller and potential maximal cliques with cardinality k + 1
or smaller.

Table 1 shows the results on some random instances, with k set to the treewidth of the
graph: we are not interested in larger k and, for smaller k, the numbers in the columns
dependent on k are smaller. The full paper contains results for more graphs with varying
number of edges. The total number of minimal separators and that of potential maximal
cliques grow much faster than the number of feasible objects in our algorithm, as the size of
the graph grows. However, the growth in the numbers of relevant minimal separators and
relevant potential maximal cliques is similar to the growth in the number of feasible objects.
For example, the number of relevant potential maximal cliques grows only slightly faster
than the number of feasible potential maximal cliques and is within 1.2 times the latter for
the graph with 40 vertices.

Thus, scanning all relevant minimal separators and all relevant potential maximal cliques
as in the original BT algorithm may not be an immediate disadvantage. The bottleneck lies
rather in the time to list all relevant potential maximal cliques. Table 2 shows the number of

ESA 2017



68:8 Positive-Instance Driven Dynamic Programming for Treewidth

Table 1 The numbers of principal objects in treewidth computation.

minimal separators potential maximal cliques feasible objects
|V | |E| tw all ≤ tw all ≤ tw + 1 I-blocks O-blocks PMCs
20 60 8 191 48 796 96 46 108 93
30 90 11 2983 247 20154 682 228 708 618
40 120 14 164773 2356 1740644 10372 2080 8637 8577

Table 2 The number of objects involved in generating principal objects.

≤ tw + 1 vertex feasible objects pairs to be
|V | |E| tw PMCs representations I-blocks O-blocks PMCs examined
20 60 8 96 25263 46 108 93 206
30 90 11 682 3480559 228 708 618 1351
40 120 14 10372 167700496 2080 8637 8577 17906

additional combinatorial objects, called vertex representations, which needs to be generated
in the algorithm in [12] in order to list all relevant potential maximal cliques.

The figures in the table suggests that a more output sensitive algorithm for listing
relevant potential maximal cliques is desirable and that some method not relying on vertex
representation is needed to achieve this goal.

In our PID approach, each feasible potential maximal clique, except in the base case,
is generated from a combination of a feasible O-block and a feasible I-block. Each feasible
O-block in turn is generated also from a combination of a feasible O-block and a feasible
I-block. Let I be the set of feasible I-blocks and O the set of feasible O-blocks of the given
graph. The crucial fact to our advantage is that most of the pairs in I × O are easily seen
not to generate a new O-block or a potential maximal clique. The last column in Table 2
shows that the number of pairs in I ×O that remain to be examined seriously is quite small.
The data structure we called block sieves, described in the next section, is used to quickly
filter out those simply rejectable pairs.

Algorithm PID-BT has a trivial output-sensitive upper bound of nO(1)|I| · |O| on the
time to generate necessary objects. A tighter analysis of our algorithm would be of great
interest. It is also interesting to study if our approach can be applied to the problem of
listing relevant potential maximal cliques.

6 Implementation

In this section, we sketch two important ingredients of our implementation. Although both
are crucial in obtaining the result reported in Section 7, our work on this part is preliminary
and improvements are the subject of future research.

6.1 Data structures
The crucial elementary operation in our algorithm is the following. We have a set O of
feasible O-blocks obtained so far and, given a new feasible I-block (N(C), C), need to find all
members (N(A), A) of O such that C ⊆ A and |N(C)∪N(A)| ≤ k + 1. As the experimental
analysis in the previous section shows, there is only a few such A on average for the tested
instances even though O is usually huge. To support an efficient query processing, we
introduce an abstract data structure we call block sieve.
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Let G be a graph and k a positive integer. A block sieve for graph G and width k is a
data structure storing vertex sets of V (G) which supports the following operations.
store(U) : store vertex set U in in the block sieve.
supersets(U) : return the list of entries W stored in the block sieve such that U ⊆W and
|N(U) ∪N(W )| ≤ k + 1.

Data structures for superset query have been studied [20]. The second condition above on
the retrieved sets, however, appears to make this data structure new. For each U ⊆ V (G), we
define the margin of U to be k + 1− |N(U)|. Our implementation of block sieves described
below exploits an upper bound on the margins of vertex sets stored in the sieve.

We first describe how such block sieves with upper bounds on margins are used in
our algorithm. Let O be the current set of O-blocks. We use t block sieves B1, . . . , Bt,
each Bi having a predetermined upper bound mi on the margins of the sets stored. We
have 0 < m1 < m2 < . . . < mt = k. We set m0 = 0 for notational ease below. In our
implementation, we choose roughly t = log2 k and mi = 2i for 0 < i < t. For each (N(A), A)
in O, A is stored in Bi such that the margin k + 1− |N(A)| is mi or smaller but larger than
mi−1. When we are given an I-block (N(C), C) and are to list relevant blocks in O, we query
all of the t blocks with the operations supersets(C). These queries as a whole return the list
of all vertex sets A such that (N(A), A) ∈ O, C ⊆ A, and |(N(A) ∪N(C))| ≤ k + 1.

We implement a block sieve by a trie T . The upper bound m on margin is not used
in the construction of the sieve; it is used in the query time. In the following, we assume
V (G) = {1, . . . , n} and, by an interval [i, j], 1 ≤ i ≤ j ≤ n, we mean the set {v : i ≤ v ≤ j}
of vertices. Each non-leaf node p of T is labelled with a non-empty interval [sp, fp], such
that sr = 0 for the root r, sp = fq + 1 if p is a child of q, and fp = n if p is a parent of a leaf.
Each edge (p, q) which connects node p and a child q of p, is labelled with a subset S(p,q) of
the interval [sp, fp]. Thus, for each node p, the union of the labels of the edges along the
path from the root to p is a subset of the interval [1, sp − 1], or [1, n] when p is a leaf, which
we denote by Sp. The choice of interval [sp, fp] for each node p is heuristic. It is chosen so
that the number of descendants of p is not too large or too small. In our implementation,
the interval size is adaptively chosen from 8, 16, 32, and 64.

Each leaf q of trie T represents a single set stored at this leaf, namely Sq as defined above.
We denote by S(T ) the set of all sets stored in T . Then, for each node p of T , the set of
sets stored under p is {U ∈ S(T ) | U ∩ [1, p] = Sp}.

We now describe how a query is processed against this data structure. Suppose query
U is given. The goal is to visit all leaves q such that U ⊆ Sq and |N(U) ∪N(Sq)| ≤ k + 1.
This is done by a depth-first traversal of the trie T . When we visit node p, we have the
invariant that U ∩ [1, fp] ⊆ Sp, since otherwise no leaf in the subtree rooted at p stores
a superset of U . Therefore, we descend from p to a child p′ of p only if this invariant is
maintained. Moreover, we keep track of the quantity i(p, U) = |N(U) ∩ Sp| in order to
make further pruning of search possible. For each leaf q below p such that U ⊆ Sq, we have
i(q, U) ≥ i(p, U). Combining this with eauality |N(U) \N(Sq)| = |N(U) ∩ Sq| = i(q, U), we
have |N(U) ∪N(Sq)| ≥ |N(Sq)|+ i(p, U). Since we know an upper bound m on the margin
k + 1− |N(Sq)| of Sq, or lower bound k + 1−m on |N(Sq)|, we may prune the search under
node p if i(p, U) > m, since this inequality implies |N(U) ∪N(Sq)| > k + 1 for every leaf q

under p. When we reach a leaf q, we test if |N(U) ∪N(Sq)| ≤ k + 1 indeed holds.

6.2 Safe separators
The notion of safe separators for tree width was introduced by Bodlaender and Koster [6]: a
separator S of G is safe if completing S into a clique does not change the treewidth of G. If
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we find a safe separator S then the problem of deciding tree width of G reduces to that of
deciding the treewidth of G〈C〉 for each component C associated with S. Preprocessing G

into such independent subproblems is highly desirable whenever possible.
The above authors observed that a powerful sufficient condition for safeness can be

formulated based on graph minors. A labelled minor of G is a graph obtained from G by
zero or more applications of the following operations. (1) Edge contraction: choose an edge
{u, v}, replace u and v by a single new vertex and let all neighbors of u and v be adjacent to
this new vertex; name the new vertex as either u or v. (2) Vertex deletion: delete a vertex
together with all incident edges. (3) Edge deletion.

I Lemma 11 (Bodlaender and Koster [6]). A separator S of G is safe if, for every component
C associated with S, G[V (G) \ C] contains clique S as a labelled minor.

Call a separator minor-safe if it satisfies the sufficient condition for safeness stated in this
lemma. Bodlaender and Koster [6] showed that if S is a minimal separator and is an almost
clique (deleting some single vertex makes it a clique) then S is minor-safe and moreover that
the set of all almost clique minimal separators can be found in O(n2m) time, where n is the
number of vertices and m is the number of edges.

We aim at capturing as many minor-safe separators as possible, at the expense of
theoretical running time bounds on the algorithm for finding them. Thus, in our approach,
both the algorithm for generating candidate separators and the algorithm for deciding
minor-safeness are heuristic. For candidate generation, we use greedy heuristic for treewidth
such as min-fill and min-degree: the separators in the resulting tree-decomposition are all
candidates for safe separators.

When we apply our heuristic decision algorithm for minor-safeness to candidate separator
S, one of the following occurs.
1. The algorithm answers “YES”. In this case, the required labelled clique minor has been

found for every component associated S and hence S is minor-safe.
2. The algorithm answers “DON’T KNOW”. In this case, the algorithm has failed to find

a labelled clique minor for at least one component, and hence it is not known if S is
minor-safe or not.

3. The algorithm aborts, after reaching the prescribed number of execution steps.

Our heuristic decision algorithm works in two phases. Let S be a separator, C a component
associated with S, and R = V (G) \ (S ∪ C). In the first phase, we contract edges in R and
obtain a graph B on vertex set S∪R′, where each vertex of R′ is a contraction of some vertex
set of R and B has no edge between vertices in R′. For each pair u, v of distinct vertices
in S, let N(u, v) denote the common neighbors of u and v in graph B. The contractions
are performed with the goal of making |N(u, v) ∩ R′| large for each missing edge {u, v}
in S. In the second phase, for each missing edge {u, v}, we choose a common neighbor
w ∈ N(u, v) ∩R′ and contract either {u, w} or {v, w}. The choice of the next missing edge
to be processed and the choice of the common neighbor are done as follows. Suppose the
contractions in the second phase are done for some missing edges in S. For each missing edge
{u, v} not yet “processed”, let N ′(u, v) be the set of common neighbors of u and v that are
not yet contracted with any vertex in S. We choose {u, v} with the smallest |N ′(u, v) ∩R′|
to be processed next. Tie-breaking when necessary as well as the choice of the common
neighbor w in N ′(u, v) ∩ R′ to be contracted with u or v is done in such a way that the
minimum of |(N ′(x, y)∩R′) \ {w}| is maximized over all remaining missing edges {x, y} in S.

The performance of these heuristics strongly depends on the instances. For PACE 2017
public instances, they work quite well. Table 3 shows the preprocessing result on the last 10
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Table 3 Safe separator preprocessing on PACE 2017 instances.

name |V | |E| tw(G) safe separators found max subproblem time(secs)
ex181 109 732 18 18 89 0.078
ex183 265 471 11 173 76 0.031
ex185 237 793 14 142 52 0.046
ex187 240 453 10 138 81 0.031
ex189 178 4517 70 6 161 0.062
ex191 492 1608 15 184 132 0.171
ex193 1391 3012 10 791 119 3.17
ex195 216 382 10 114 84 0.015
ex197 303 1158 15 176 56 0.062
ex199 310 537 9 157 131 0.046

of those instances. For each instance, the number of safe separators found and the maximum
subproblem size in terms of the number of vertices, after the graph is decomposed by the
safe separators found, are listed. The results show that these instances, which are deemed
the hardest among all the 100 public instances, are quickly decomposed into manageable
subproblems by our preprocessing.

On the other hand, these heuristics have turned out useless for most of the DIMACS
graph coloring instances: no safe separators are found for those instances. We suspect
that this is not the limitation of the heuristics but is simply because those instances lack
minor-safe separators.

7 Performance results

We used our implementation of the PID-BT algorithm to determine the treewidth of bench-
mark instances. For a given instance, we use our decision procedure with k being incremented
one by one, starting from the obvious lower bound, namely the minimum degree of the graph.
Binary search is not used because the cost of overshooting the exact treewidth is huge.

The computing environment for the experiment is as follows. CPU: Intel Core i7-7700K,
4.20GHz; RAM: 32GB; Operating system: Windows 10, 64bit; Programming language: Java
1.8; JVM: jre1.8.0_121. The maximum heap size is 6GB by default and is 24GB where it
is stated so. The implementation is single threaded, except that multiple threads may be
invoked for garbage collection by JVM. The time measured is the CPU time, which includes
the garbage collection time.

Table 4 lists the DIMACS graph coloring instances that are newly solved: the previously
known upper and lower bounds did not match. For all but three of them, the previous best
upper bound has turned out optimal: only the lower bound was weaker. In this experi-
ment, however, no knowledge of previous bounds are used and our algorithm independently
determines the exact treewidth.

The results on “queen" instances illustrate how far our algorithm has extended the
practical limit of exact treewidth computation. Queen7_7 with 49 vertices is the largest
instance previously solved, while queen10_10 with 100 vertices is now solved.

Our implementation also solves all previously solved DIMACS graph coloring instances
within 10 seconds per instance and many of them within a second. Moreover, for many of the
test instances which it leaves unsolved, it significantly improves the previously best known
lower bounds. The details can be found in the full paper.

Table 5 summarizes the result on PACE 2017 public instances. More details can be found
in the full paper. The instance which took the longest time (530 seconds) was “ex169” which
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Table 4 Newly solved DIMACS graph coloring instances.

name |V | |E| tw time(secs) prev UB prev LB
DSJC125.5 125 3891 108 459 108 56
DSJC250.9 250 27897 243 0.44 243 212
DSJC500.9 500 112437 492 14 492 433
DSJR500.5 500 58862 246 546 - -
games120† 120 638 32 94738 32 24

homer† 561 1628 30 2765 31 26
miles750 128 2113 36 0.23 36 35
myciel6 95 755 35 419 35 29

queen8_8 64 728 45 4.16 45 25
queen9_9 81 1056 58 274 58 35

queen8_12 96 1368 65 649 - 39
queen10_10 100 1470 72 20934 72 39

Previous upper bounds from [14] and [16]; previous lower bounds from [14] and [8].
† 24GB heap space is used for these instances.

Table 5 Summary of the results on PACE 2017 public instances.

t ≤ 1 sec 1 sec < t ≤ 1 min 1 min < t ≤ 10 min
the number of instances solved in time t 25 68 7

has 3706 vertices, 42236 edges, and treewidth 22. Considering the fact that this test set
has been designed to be challenging for the second competition on treewidth in PACE and
that the time allocated for each instance is 30 minutes, we can say that our implementation
performs quite well.
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Abstract
The behavior of the simplex algorithm is a widely studied subject. Specifically, the question of
the existence of a polynomial pivot rule for the simplex algorithm is of major importance. Here,
we give exponential lower bounds for three history-based pivot rules. Those rules decide their
next step based on memory of the past steps. In particular, we study Zadeh’s least entered rule,
Johnson’s least-recently basic rule and Cunningham’s least-recently considered (or round-robin)
rule. We give exponential lower bounds on Acyclic Unique Sink Orientations of the abstract cube,
for all of these pivot rules. For Johnson’s rule our bound is the first superpolynomial one in any
context; for Zadeh’s it is the first one for AUSO. Those two are our main results.
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1 Introduction

The existence of a polynomial time pivot rule for the simplex algorithm is a major open
problem in the theory of optimization. Most known rules have superpolynomial lower bounds
by now. For deterministic rules, in particular, it is the case that many of them admit
exponential lower bounds. Klee and Minty with their seminal paper [16], already in 1972,
gave an exponential lower bound for Dantzig’s original pivot rule. Their construction has
been heavily studied ever since (for example [10],[3]) and inspired many later lower bounds.

In this paper, we are interested in a family of deterministic pivot rules known as history-
based (or having memory). For those, superpolynomial lower bounds seemed to be elusive
until recently. Arguably, the most famous history-based rule is due to Zadeh. Known as the
least entered rule, it was described in 1980 with a technical report that was reprinted in 2009
[26]. This rule keeps a history of how many times each improving direction has been used
and, at every step, chooses one that minimizes this history (a tie-breaking rule takes care of
ties). The least entered rule was specifically designed to attack constructions similar to the
Klee-Minty by using the improving directions in a balanced way (note that in this regard, it
is similar to a random walk). With a letter to Klee in the 80s, Zadeh offered a $1000 prize
to anyone who can prove polynomial upper or superpolynomial lower bounds for the least
entered rule. This prize was claimed in 2011, by Friedmann [6], with a superpolynomial lower
bound on actual Linear Programs (LP). No non-trivial upper bounds are known for this rule.

∗ A full version of the paper is available at https://arxiv.org/abs/1706.09380.
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Another interesting rule was suggested by Cunningham [4], known as the least-recently
considered rule. It fixes an initial ordering on all improving directions and then selects one
in a round-robin fashion, starting from the last direction selected. The history here is to
remember which was the last used improving direction. Furthermore, the least-recently basic
rule, which Cunningham attributes to Johnson, was also first discussed in the same paper [4].
That rule selects the improving direction that left the basis least recently (in other words the
direction whose opposite was selected least recently). For a detailed exposition on those and
many other history-based pivot rules, the interested reader should look at Aoshima et al. [1].

We provide exponential lower bounds, by means of Acyclic Unique Sink Orientations, for
all three aforementioned history-based rules.

Unique Sink Orientations. (USO) is an abstract framework that generalizes LP (and other
problems). It was originally described by Stickney and Watson [23] and later revived by
Szabó and Welzl [24]. Such abstract frameworks have received lots of attention since the
discovery of the Random Facet pivot rule: Kalai [15] and, independently, Matoušek, Sharir
and Welzl [19] proved subexponential upper bounds for this rule on LP. It became evident
that their analysis made use only of combinatorial properties of LP and, thus, it was possible
to extend their upper bounds in a much more abstract setting [8].

The most well-studied such framework is that of USO (e.g. [18],[5],[11] and see also below).
Intuitively, a USO is an orientation of the hypercube graph such that every non-empty face has
a unique sink (vertex with only incoming edges). The computational problem is to discover
the unique global sink by performing vertex evaluations (each one reveals the orientation
of the edges incident to the vertex). Commonly, acyclic USO (AUSO) constructions have
served as lower bounds for pivot algorithms (e.g. [17], [22], [20], [14]) and our lower bounds
are also manifested as AUSO.

Prior work and open questions. Aoshima et al. [1] explore the possibility that there exist
AUSO on which history-based pivot rules take a Hamiltonian path. They prove, with the
help of computers, that Zadeh’s pivot rule admits such Hamiltonian paths up to dimension
9 at least. On the contrary, they show that Johnson’s rule (among others) does not admit
Hamiltonian paths and, so, they ask if it admits exponential paths on AUSO.

Recently, Avis and Friedmann [2] gave the first exponential lower bound for history-based
rules. Namely, they prove an exponential lower bound for Cunningham’s rule on binary parity
games (definitions in [2]). Their constructions translate immediately to linear programs and
also AUSO, for which1 the lower bound is Ω(2n/5). However, they are very complicated and,
thus, the authors ask if it is possible to prove exponential lower bounds for this rule, on
AUSO, in a simpler manner.

Moreover, they compare their construction to the one for Zadeh’s rule [6]. The latter gives
a family of non-binary parity games (which correspond to linear programs), where Zadeh’s
rule takes a subexponential number of steps, of the form 2Ω(

√
n) (where n is the number of

variables of the LP). Although binary parity games correspond directly to AUSO, the same
is not known for non-binary ones. Hence, Avis and Friedmann ask [2] if superpolynomial
lower bounds for Zadeh’s rule exist also on AUSO. In addition, Friedmann’s lower bound [6]
is based on a tie-breaking rule which is artificial in the sense that it always works in favor of

1 The exact translation of binary Parity Games to AUSO is explained in [2]. Roughly, their constructed
binary parity game translates to a cube of dimension 5n′, where the path that the algorithm will take is
of length 2n′

. Thus, for n-dimensional AUSO, that is a lower bound of the form Ω(2n/5).
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the lower bound designer. It is not described in the paper because, as the author writes, it
is “not a natural one”. Thus, he raises the question [6] of whether it is possible to obtain a
lower bound with a natural tie-breaking rule.

Finally, Avis and Friedmann write [2]: “More generally it is of interest to determine
whether all of the history based rules mentioned in [1] have exponential behaviour on AUSO”.

Our results. With Theorem 4, we give an exponential lower bound for Johnson’s rule. This
is the first superpolynomial lower bound for this algorithm. Moreover, we give an exponential
lower bound for Zadeh’s rule, with Theorem 8. This has a number of advantages compared
to the known construction: Firstly, it is exponential, whereas Friedmann’s lower bounds [6]
are subexponential (also not known to translate to AUSO). Secondly, our constructions are
much simpler to describe. Finally, it is based on a tie-breaking rule that is essentially as
simple as possible: a fixed ordered list. These two lower bounds constitute the main results
of this paper. With Theorem 3, we give an exponential lower bound for Cunningham’s rule.
The advantage here is that the construction is significantly simpler; the lower bound also
happens to be slightly improved. Theorem 3 serves as a warm-up to the main results by
introducing the techniques and notation we use for our constructions.

Therefore, we answer to the positive all the questions described in the previous paragraph.
Due to space constraints, many details and some proofs are missing from this extended
abstract; a full version with all the details and a more complete analysis can be found at [25].

Our methods. The constructions in this paper are based on the building tools originally
developed by Schurr and Szabó [21]; we do, however, introduce some novel ideas needed
to deal with history-based pivot rules. Most known inductive lower bound constructions
(e.g. [21],[22],[20],[14]) embed copies of the previous construction into the next one, in such a
way that the algorithm gets trapped in the previous construction twice. For Zadeh’s rule this
does not work: it balances the directions being used and it inevitably escapes the second
trap (at the next inductive step). To overcome this, we build a trap that consists of a small
number of copies, being connected in a careful way which ensures that the algorithm uses the
improving directions in a balanced fashion: it follows the path of the previous construction,
up to making additional “balancing moves” between different copies.

Lower bounds on AUSO. It is not clear if AUSO lower bound constructions (including ours)
can be realized as LP. However, the abstract setting allows for simpler proofs that are easy to
communicate. We, thus, believe that such constructions are relevant for understanding the
behavior of the pivot rules; the ideas could be used for the design of LP-based exponential
lower bounds. For example, the first subexponential lower bounds for Random Facet [17]
(tight to the upper bound; see also [9]) and for Random Edge [20] (at every step chooses one
improving direction at random) were both proved by AUSO constructions. Indeed, for these
two rules, subexponential lower bounds have been later proved on actual LP [7]. The most
recent lower bound on AUSO was by Hansen and Zwick in 2016 [14], where they improve the
subexponential lower bound for Random Edge. Note that for this rule non-trivial exponential
upper bounds are known in the general case [13] and under assumptions [12].

2 Preliminaries

Let [n] = {1, . . . , n} and ±[n] = {−n, . . . ,−1, 1, . . . , n}. Let Q[n] = 2[n] be the set of
vertices of the n-dimensional hypercube over coordinates in [n]. Often we write Qn (the
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superscript indicates the dimension). A vertex of the hypercube v ∈ Qn is denoted by
the set of coordinates it contains. Generally, with C ⊆ [n] we denote a set of coordinates.
Consider two vertices v, u ∈ Qn. With v ⊕ u we denote the symmetric difference of the
two sets. Now, let C ⊆ 2[n] and v ∈ Qn. A face of the hypercube, F (C, v), is defined as
the set of vertices that are reached from v over the coordinates defined by any subset of C,
i.e. F (C, v) = {u ∈ Qn|v⊕ u ⊆ C}. The dimension of the face is |C|. We call edges the faces
of dimension 1, e.g. F ({j}, v). For k ≤ n we call a face of dimension k a k-face.

Let ψ denote an orientation of the edges of the hypercube Qn. Consider two vertices
v, u ∈ Qn and a coordinate j ∈ [n]. The notation v j−→ u (w.r.t ψ) means that F ({j}, v) =
{v, u} and that the corresponding edge is oriented from v to u in ψ. Sometimes we write
v → u, when the coordinate is irrelevant. An edge v j−→ u is forward if j ∈ u and otherwise
we say it is backward. We use v  w to denote (that there is) a directed path from v to w.

We now define the concept of direction; the algorithms that we study here have memory
of the directions that have been used so far. A direction is a signed coordinate. Let c ∈ C be
a coordinate; two different directions correspond to c, +c and −c. At a vertex v the direction
+c corresponds to a forward edge incident to v and −c to a backward edge. We say that a
direction is available at vertex v if the corresponding edge is outgoing. Thus, at each vertex
if a coordinate is incoming then none of the directions is available and if a coordinate is
outgoing then exactly one of the directions is available. Similarly to above, we write v d−→ u,
for some direction d. Note that if we have v +c−−→ v′ (similarly −c) then at v′ neither +c
nor −c can be available. Generally, we denote with D ⊆ ±[n] a set of directions. Given a
set of coordinates C, we say that D is the set of directions that corresponds to C to mean
D = {−c,+c | c ∈ C}. Often, we use d to denote a direction without specifying its sign.

Then, ψ is a Unique Sink Orientation (USO) of Qn when every non-empty face has a
unique sink. USO can be either cyclic or acyclic (for these we write AUSO). n-AUSO means
an AUSO over Qn. For a USO ψ, we define sψ, the outmap function: for every v ∈ Qn,
sψ(v) = {j ∈ [n]|v j−→ (v ⊕ {j})}, that is the set of coordinates on which v has an outgoing
edge. A sink of a face F (C, v) is a vertex u ∈ F (C, v), such that sψ(u) ∩ C = ∅. The whole
cube is a face of itself; thus, there is a unique vertex v, the global sink with s(v) = ∅. In the
rest, we write s(v) to denote the outmap of v (ψ will be clear from the context).

The computational problem associated with a USO is to find the global sink. The
computational model is the vertex oracle model. We have access to an oracle such that when
we give it a vertex v, it replies with the outmap s(v) of v. This is the standard computational
model in USO literature and all the lower and upper bounds are with respect to it.

We are now ready to state the Product and Reorientation lemmas (due to [21]) which are
the building tools for our constructions. The following constitutes an intuitive description of
the Product lemma which is relevant to us: Consider an n-AUSO A (oriented hypercube
graph) and take 2m copies of A. For every vertex v ∈ A, take an m-AUSO Av, the connecting
frame for v. Each copy of A corresponds to a vertex of the frame Av and v in this copy of A
is connected according to that vertex of Av. The result is an (n+m)-AUSO. Formally:

I Lemma 1 (Product [21]). Let C be a set of coordinates, C ′ ⊆ C and C̄ ′ = C \ C ′. Let
s̃ be a USO outmap on QC′ . For each vertex u ∈ QC′ we have a USO outmap su on QC̄′ .
Then, the orientation defined by the outmap s(v) = s̃(v ∩ C ′) ∪ sv∩C′(v ∩ C̄ ′) on QC is a
USO. Furthermore, if s̃ and all su are acyclic so is s.

The Reorientation lemma, which follows, can be intuitively explained this way: if we have
a USO and there is a face, such that all the vertices in this face have the same outmap on
the edges external to the face, then we can reorient this face according to any other USO.
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I Lemma 2 (Reorientation [21]). Let C be a set of coordinates, C ′ ⊆ C and C̄ ′ = C \ C ′.
Let s be a USO on QC and let F = F (C ′, u), for some u ∈ QC , be a face of QC . If, for
any two vertices v, w ∈ F , s(v) ∩ C̄ ′ = s(w) ∩ C̄ ′ and s̃ is a USO on QC′ , then the outmap
s′(v) = s̃(v ∩ C ′) ∪ (s(v) ∩ C̄ ′) for v ∈ F and s′(v) = s(v) otherwise is a USO on QC .

3 A warm-up: Cunningham’s Rule

I Theorem 3. There exists n-AUSO such that Cunningham’s rule, with a suitable starting
vertex and list, takes a path of length at least 2n/4.

We will sketch a proof for the above theorem. But let us start with some general comments
and definitions that will apply to all our constructions. Firstly, they are inductive. Let Ai
be the ith step of the induction. The base case is A0. We call Ci a bundle of coordinates;
that is the set of coordinates that was added at the ith step of induction (and C0 are the
coordinates of the base case). We also define C+

i =
⋃i
k=0 Ck. Then, Di denotes the set of

directions that corresponds to Ci and similarly for D+
i . Let vi0 be the starting vertex for Ai.

Consider that there is a token, which is initially on vi0, and at every step moves according to
the direction that the given algorithm chooses. The path that the token takes from vi0 to the
unique sink, on Ai, is denoted with Pi; its length is denoted with |Pi|.

To construct Ai+1 from Ai, we take 2m copies of Ai and connect their vertices with
m-dimensional connecting frames, for some constant m (Lemma 1). Afterwards, we perform
one reorientation (Lemma 2), to install a simple balancing gadget. The token starts at the
starting vertex vi+1

0 and walks on a path P (in Ai+1) until it reaches a vertex that has all
coordinates from C+

i incoming. This vertex corresponds to the sink of Ai. If we project
the path P to only the directions from D+

i we get exactly Pi. In the balancing gadget the
token will be taken back to the vertex that corresponds to the starting vertex for Ai. The
idea is to prove that if we project the rest of the token’s path to the global sink, to only the
directions from D+

i , we get again Pi. Thus, |Pi+1| > 2|Pi|. Let T (n) denote the length of the
corresponding paths on an n-AUSO. The recursion we get then is T (n+m) > 2T (n). This
gives rise to exponential lower bounds of the form 2n/m. For Cunningham’s and Johnson’s
rules the constant is m = 4 and for Zadeh’s m = 6.

The lower bound. Consider that the algorithm runs on an n-AUSO. It has an ordered list
L that contains all 2n directions; let L[k] indicate the kth direction on the list. There is a
marker µ of which direction was used last: if direction L[k] was used at the last step then
µ = k. At the next step the algorithm will start checking the directions on the list from
L[µ+ 1] in a cyclic order (so if it reaches L[2n] it continues from L[1]) and it chooses the first
available one. Initially, µ = 2n so that the first direction that the algorithm checks is L[1].

We will now give a short sketch of the lower bound. Full details can be found in the full
version [25]. Let A0 be the base case and L0 = (+c10,−c20,+c30,−c10,+c40,−c30,+c20,−c40). To
construct Ai+1 from Ai we take 24 copies of Ai which we connect with three different frames.
The two crucial ones F1 and F2 are given in Figure 1; F3 can be found in [25]. The new set
of coordinates will be Ci+1 = {c1i+1, c

2
i+1, c

3
i+1, c

4
i+1}.

Let us define some notation in reference to Figure 1. An AUSO is given as a collection of
2-faces on the first two coordinates. All coordinates are labeled. Each square represents a
face on coordinates C+

i . All of these faces, except B , are internally oriented according to Ai
(correspond to copies). The numbers are indicating in which order the token will visit them.
We refer to these faces in the text; for example, we write 1 to mean the face: F (C+

i , {c2i+1}).
Given a vertex v, we write v⊥ 1 to mean the vertex v′ ∈ 1 , such that v ∩ C+

i = v′ ∩ C+
i .
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1 2

3 4

H

5

c1i+1

c2i+1

c3i+1

c4i+1

B

1

6

H

5

c1i+1

c2i+1

c3i+1

c4i+1

B

7

89

10

F1 : F2 :

Figure 1 The orientations F1 and F2, used as connecting frames, are given in this figure. The
4-dimensional frames are split in 2-faces of coordinates c1

i+1 and c2
i+1. The arrows on the other

coordinates indicate the orientation of all the edges on this coordinate except when noted differently.
For example, in F2 all edges on coordinate c3

i+1 are oriented from left to right except the edge
9 ← 8 . Each · represents a face on C+

i . This notation is valid also for the next figures.

Moreover, we write 1  5 to mean a path from a vertex in 1 to the corresponding vertex
in 5 , using only directions from Di+1. In this case, the exact vertex will be clear from the
context. The face B is the one that contains the balancing gadget, which is installed by use
of Lemma 2. In this construction and the one of Section 4, H is a hypersink (has all edges
external to the face incoming). In the construction of Section 5 there is no hypersink.

Let us give a short description of the behavior of Cunningham’s rule on Ai+1. Firstly,
the starting vertex v0 = vi+1

0 = {c20, . . . , c2i+1}. Thus, the token is initially placed in 1 .
The list Li+1 = Li · (+1,−2,+3,−1,+4,−3,+2,−4), where · represents concatenation. For
simplicity, we write a number ±k instead of ±cki+1. So, the directions from bundle Dk have
priority over the ones from bundle Dk′ , if k < k′. Let IN = D+

i and OUT = Di+1; that is
the set of directions from the previous inductive steps and the current one respectively.

The connecting frame is F1. The algorithm uses directions from IN and the token moves
in 1 . When these are exhausted the token takes a path 1  5 . The directions from
OUT are, then, exhausted. The algorithm uses a direction from IN , in 5 . At the next
vertex the frame changes2 to F2. When the directions from OUT will be used again (after
the ones from IN) the token will take a path 5  10 → 1 . After one step in 1 , on
a direction from IN , the frame changes to F1. The conclusion is that the token will keep
moving between 1 and 5 until it reaches a vertex vsi

, such that s(vsi
) ∩ C+

i = ∅. This is
not a cycle as the token keeps moving toward vsi

on the IN directions (this was once Pi).

When the token is on si the frame will change to F3. The token will walk to B and the
OUT directions will get exhausted exactly there. Inside B , the algorithm will be forced to
take a path back to vertex v0⊥ B (the sink of B ). The next time the directions from OUT

will be used the token will go in the hypersink H . But there, it will be at vertex v0⊥ H ,
the coordinates from Ci+1 will be incoming from there on and, so, it will stay inside H
where it will perform Pi once again. We can conclude that |Pi+1| > 2|Pi| can be proved for
this construction, which also proves Theorem 3. Details in the full version [25].

2 At this point the change of frame can be understood with an adversary argument. We play against the
algorithm and we choose which frame to reveal at which vertex. This is consistent with Lemma 1.
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F1 : F2 :

1 2
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R 5

c1i+1
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c4i+1

1

H

R 5

8

c1i+1

c2i+1

c3i+1

c4i+1

6

7

Figure 2 The orientations F1 and F2, used as connecting frames, are given in this figure.

4 Exponential lower bound for Johnson’s rule

I Theorem 4. There exists n-AUSO such that Johnson’s rule, with a suitable starting vertex,
takes a path of length at least 2n/4.

In this section we will prove the above theorem. Let us define Johnson’s least-recently
basic rule. Consider that the algorithm runs on an n-AUSO. It maintains a history function
h which is defined on all 2n directions. Let v be the current vertex. Intuitively, the algorithm
keeps the following history: Say direction d was used at step x and let −d be the opposite of
that direction. Then, at step x we have h(−d) = x; this will stay intact until −d is used.
On the other hand, h(d) will keep increasing to the current step until −d is used. Formally,
for a direction d, h(d) is the last step number when |d| ∈ v if d is positive and the last step
number when |d| /∈ v if d is negative. Here, |d| denotes the coordinate that corresponds to
direction d. Ties are possible and we assume that they are broken lexicographically. The
algorithm chooses from the set of available directions, direction d which minimizes h(d).

The construction. The construction is inductive. Let Ai denote the ith inductive step. The
base case A0 is the 4-dimensional AUSO F1, shown in Figure 2. The initial set of coordinates
is C0 = {c10, c20, c30, c40}. The starting vertex is v0 = ∅, which is at the vertex labeled 1 in
the figure. Then, the algorithm will go over directions (+c10,+c20,+c30,+c40,−c30,−c20) and
will find the sink at {c10, c40}. Let us now describe how to construct AUSO Ai+1 from AUSO
Ai. Every inductive step adds 4 dimensions. As before, C+

j =
⋃j
k=0 Ck. Let the new bundle

of coordinates be Ci+1 = {c1i+1, c
2
i+1, c

3
i+1, c

4
i+1}. We take 16 copies of Ai and connect them

with the 4-AUSO F1 and F2 that appear in Figure 2. In this section, a reset-AUSO (thus,
the R in the figure) will take the role of the balancing gadget.

Let us define what we mean by lexicographic order here: +ckj comes before −ck′

j for any
k and k′; +ckj comes before +ck′

j and −ckj comes before −ck′

j if k < k′. Finally, dkj comes
before dk′

j′ for any k and k′ and positive/negative sign, if j < j′.
The starting vertex will be v0 = ∅ for every inductive step. Then, every positive direction

+c initially has h(+c) = 0 (until +c is used by the algorithm). At step number 1, one of the
positive directions will be used at which point every negative direction −c has h(−c) = 1.

With this construction we want to force the algorithm to the following behavior: It starts
at 1 using all the positive directions in lexicographic order. Then it is in 5 , where it will
use all the negative directions in lexicographic order. This will continue until the sink of Ai
has been reached. It follows that directions from D+

i are only used when the algorithm is in
1 or 5 , before the sink of Ai has been discovered. We will later show that this is the case.

Then, we consider the construction as an adversary argument. Firstly, the starting vertex
of Ai and the sink of Ai both use F1 as the connecting frame. Every time the algorithm is in
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1 and uses a direction from D+
i , we change (or keep) the connecting frame to F1. Similarly,

when the algorithm arrives in 5 and uses a direction from D+
i , we change the connecting

frame to F2. This operation is consistent with Lemma 1: Every vertex is connected with the
corresponding frame. The result of this operation is A′i+1 which is not the final AUSO.

The final step for the construction of Ai+1 is to use Lemma 2 to embed a reset-AUSO to
the face R . For every i > 0, Ri is a 4i-AUSO (whereas Ai is a 4(i + 1)-AUSO). For the
construction of Ai+1 for Ai we embed Ri+1 to the face R . Ri+1 is designed such that it has
its sink at vertex ∅. In addition, it has a path from vertex {c10, c40, . . . , c1i , c4i } to the vertex ∅
such that every vertex on this path has only one outgoing edge and the path goes through
the negative directions in lexicographic order: (−c10,−c40, . . . ,−c4i ,−c4i ).

This reorientation concludes the construction of Ai+1. It does not introduce any cycles
in Ai+1. A formal description of the reset-AUSO and an argument on the acyclicity of Ai
can be found in the full version [25]. Note that in H we still have Ai.

The behavior of Johnson’s rule. The behavior of Johnson’s rule on the AUSO constructed
as above will be described here. We give as much detail as space allows; the rest can be
found in the full version [25]. Firstly, we define the tools that we are going to use for this
analysis.

Similarly to the previous section, consider a token t. That is a token that starts at the
initial vertex v0 and moves according to the directions that the algorithm chooses. With
slight abuse of notation we also use t to refer to the vertex where the token currently lies on.
Moreover, we write tj to mean the set t ∩ C+

j ; that is, the projection of the vertex t to the
set of coordinates C+

j . Since tj ⊆ t, we call tj a subtoken.
We say that a coordinate bundle Cj is active when s(t) ∩ Cj 6= ∅. Otherwise, we say

that Cj is inactive. Note that for both the 4-dimensional frames that we have used, the sink
is at the same vertex. This implies that Cj is inactive if and only if token t is such that
t ∩ Cj = {c1j , c4j}. Moreover, we say that token t is in 1

j
to mean that t ∩ Cj = ∅; t is in

5
j
when t ∩ Cj = Cj and similarly for the rest of the faces · from Figure 2.
For each subtoken tj , we say that it has reached its sink when all bundles in C+

j are
inactive. This means that tj = {c10, c40, . . . , c1j , c4j}. Resetting C+

j is a process that happens
when subtoken tj is at its sink: It takes token t from a vertex where t∩C+

j = {c10, c40, . . . , c1j , c4j}
to a vertex where t ∩ C+

j = ∅. Moreover, we say that C+
j is resettable when:

tj is at its sink.
h(−c1j′) < h(−c4j′) < h(−c2j+1), for every 0 ≤ j′ ≤ j.

The first bullet in the definition above equivalently means that all bundles in C+
j are inactive.

Resetting C+
j is a process that takes place when (and only when) token t is in the reset-AUSO

in R
j+1. For now assume that C+

j will be reset only when it is resettable; we will prove
this later (with Lemma 7). Thus, tj is on its sink when the resetting process starts. The
second bullet of the definition of resettable ensures that token t will not go out of R

j+1
before C+

j has been reset. During the reset of C+
j , token t will go over negative directions

from D+
j in this order: (−c10,−c40, . . . ,−c1j ,−c4j ). This is because of the construction of the

reset-AUSO Rj+1; the algorithm has no other choice. We are ready to state the following
lemma (a formal proof can be found in the full version [25]).

I Lemma 5. Let t ∩ C+
j = ∅. Then, all the positive directions from C+

j will be used in the
lexicographic order: (+c10,+c20,+c30,+c40, . . . ,+c1j ,+c2j ,+c3j ,+c4j ).

The above lemma defines the path that token t will follow until subtoken tj reaches
its sink. For every bundle Cj , the positive directions are used in lexicographic order
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(+c1j ,+c2j ,+c3j ,+c4j) and the token t goes to 5
j
. After this, we have h(−c1j) < h(−c2j) <

h(−c3j) < h(−c4j) < h(d) for any positive d from Dj . Then, some directions from C+
j−1

will be used and the frame for Cj will change to F2. When it is the turn of the negative
directions from Dj to be used they will be used consecutively and in lexicographic order
(−c1j ,−c2j ,−c3j ,−c4j); that is, assuming tj−1 has not reached its sink yet. Otherwise, the
connecting frame for Cj would be F1 and the directions −c1j and −c4j would not be available.

After this, t will be in 1
j
and, moreover, h(+c1j) < h(+c2j) < h(+c3j) < h(+c4j) < h(d)

for any negative d from Dj . There, after some directions from C+
j−1 are used, the connecting

frame for Cj will be F1. When it is the turn of the positive directions from Dj to be used
they will be used consecutively and in in lexicographic order (+c1j ,+c2j ,+c3j ,+c4j) and the
token t will go back to 5

j
. We can conclude that t will keep moving from 1

j
to 5

j
and

reversely until subtoken tj−1 reaches its sink. The next corollary follows from this discussion.

I Corollary 6. Let Cj+1 be active.
1. If t is in 1

j+1, then the positive directions from Dj+1 will be used (when it is their turn)
consecutively and in lexicographic order (+c1j+1,+c2j+1,+c3j+1,+c4j+1).

2. If t is in 5
j+1 and subtoken tj has not reached its sink, then the negative directions from

Dj+1 will, similarly, be used (when it is their turn) consecutively as (−c1j+1,−c2j+1,−c3j+1,

−c4j+1).
It follows that directions from D+

j are only used when t is in 1
j+1 or in 5

j+1.

The next lemma is the last ingredient needed (proof can be found in the full version [25]).

I Lemma 7. Let Cj+1 be active. When tj reaches its sink, C+
j is resettable.

Now consider the path of the token t from v0 to the sink of Ai+1. This AUSO is of
dimension n = 4(i+ 2). By Corollary 6, t will be moving back and forth between 1 and 5
until ti reaches its sink. When that happens, C+

i is resettable (by Lemma 7) and, when t
enters R , C+

i will be reset. Following, t enters H at vertex v0⊥ H .
When the algorithm started at v0 = ∅, all the positive directions from D+

i+1 where used
in lexicographic order. Since it is deterministic, this defines completely the behavior of t.
Consider the path P that t will follow from v0 until ti reaches its sink, but projected on the
coordinates from C+

i . From Lemma 5, we know that when token t is such that t ∩ C+
i = ∅,

all the positive directions from D+
i will be used in the lexicographic order. At this point

Ci+1 is inactive and t is in H . Therein, it will follow the same path P to the global sink.
Let T (n) denote the length of the path that token t will take from v0 until it reaches

the global sink on a n-AUSO. With the above analysis, we have shown that the recursion
T (n+ 4) > 2T (n) holds. This recursion leads to the proof of Theorem 4.

5 Exponential lower bound for Zadeh’s Rule

I Theorem 8. There exists n-AUSO such that Zadeh’s rule, with a suitable starting vertex
and tie-breaking rule, takes a path of length at least 2n/6.

In this section we will prove the above theorem. Firstly, let us define formally Zadeh’s
least entered rule. Consider that the algorithm runs on an n-AUSO. It maintains a history
function h which is defined on all 2n directions. Given a direction d, h(d) is the number of
times the direction d has been used. At the beginning h(d) = 0, for all d. At every step
the algorithm picks one direction from the set of available ones that minimizes the history
function. In addition, there is a tie-breaking rule: this is an ordering of the directions and is
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invoked only in case more than one have the minimum history size. As we already mentioned
in Section 1, our lower bound construction will have the simplest possible tie-breaking rule,
an ordered list which will be given explicitly. This is in contrast to the lower bounds from [6].

Secondly, let us define some tools that we will use for the analysis of the algorithm. We
have a balance function b, which is also defined on all the 2n directions. Let dmax be the
most used direction; then, b(d) = h(dmax)− h(d). This means that direction d has been used
b(d) less times compared to dmax. We say that a direction d is imbalanced when b(d) > 0
and that D is balanced when b(d) = 0, for all d ∈ D. We also define a balance function
on any subset of directions: Given set D we define b(D, d) to be the balance of direction d
w.r.t. the directions from D, i.e. the defining coordinate is now dmax ∈ D.

Furthermore, we define the concept of saturation. This is with regards to history and
the current vertex in the algorithm run. Given a set of directions D ⊆ [±n] and a vertex
v we say that v is D-saturated when for every d ∈ D with b(d) > 0, the direction d is not
available for v. It follows that if at vertex v set D is balanced, then v is D-saturated.

The construction. The construction is inductive. Let Ai denote the ith inductive step.
The base case, A0, is a 6-AUSO. Due to the lack of space we do not define it here, but we
will mention and utilize some of its properties. A complete description of the base case can
be found in the full version [25]. Every inductive step adds 6 new dimensions. As before the
bundle of coordinates Ci is the one added at the ith step of induction (and C0 are the ones of
the base case). Also, with Di we denote the directions that correspond to Ci and, similarly,
for D+

i . Thus, the AUSO Ai is 6(i+ 1)-dimensional and the coordinates that describe it are
in the set C+

i . For each Ai, the starting vertex is vi0 = {c20, . . . , c2i }.
Let us now describe how to construct AUSO Ai+1 from AUSO Ai. Let the new bundle

of coordinates be Ci+1. We call IN the set of directions D+
i and OUT the set of directions

Di+1. At every inductive step the tie-breaking rule will be formed such that the directions
from IN have priority over the ones from OUT . Thus, directions Dk have priority over the
ones from Dk′ , if k < k′. For simplicity, we write number ±k to mean direction ±cki+1.

The starting vertex for Ai+1 is v0 = vi+1
0 = {c20, . . . , c2i+1}. Assume that Pi (the path the

token takes in Ai) is known to us. Similarly to the previous sections, this can be interpreted
as an adversary argument. To construct Ai+1 we take 26 = 64 copies of Ai and use three
different 6-AUSO as connecting frames, utilizing Lemma 1. The crucial frames are given in
Figure 3. For vertices that are not on Pi it does not matter which frame we use. For vertices
that are on the path Pi we choose the connecting frame according to the following rule:
(1) Vertices that are not D+

i -saturated (w.r.t. Pi) we connect with F1.
(2) Vertices that are D+

i -saturated (w.r.t. Pi) we connect with F2.
(3) For the sink si of Ai we use F3.
The latter is a 6-AUSO that has the same path 1  12 as F1, has its sink in 12 (so
the uppermost edge on coordinate c1i+1 is backward) and all other edges are forward (figure
in [25]).

The result of this operation is A′i+1. It remains to perform one reorientation. Namely, the
balance-AUSO will be embedded in the face B , shown in Figure 3. The balance-AUSO is a
uniform 6(i+ 1)-AUSO which has its sink at the vertex vi0 (all edges are oriented towards vi0).
Formally, the outmap of vertex v = v0⊥ B is such that s(v) ∩ C+

i = ∅. This reorientation
will not introduce cycles; a formal proof can be found in the full version [25].

In reference to Figure 3, let us present the intuitive idea: The token will walk (in a
projected way) along Pi once while walking between 1 and 12 . Then, it will go back to
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12

Figure 3 Both orientations F1 and F2 are given in this figure. For simplicity, only the orientations
of the backward edges are explicitly drawn; every other edge is forward. The frame F1 includes the
dashed backward edges but not the dotted ones; F2 includes the dotted backward edges but not the
dashed ones. The solid backward edges are included in both frames.

the start of Pi in the balance-AUSO B . Then, it will walk the path Pi once again while
walking between 1 and 12 .

Below, we give two crucial properties that will hold for our construction. The first one is
about the base case A0 (of which a detailed description can be found in the full version [25]).
(i) There is at least one (±[6])-saturated vertex, other than the starting vertex v0

0 , in A0. In
addition, the sink s0 is at least two vertices away from the last vertex on the path P0
that was (±[6])-saturated.

Property (i) will be utilized in the proof of Lemma 9. The second property holds for every
inductive step Ak of the construction 0 ≤ k ≤ i+ 1.
(ii) When the token reaches the sink sk of Ak there are exactly 4(k+ 1) negative coordinates

imbalanced. Let IMk = {−c30,−c40,−c50,−c60, . . . ,−c3k,−c4k,−c5k,−c6k}. For every d ∈ IMk

we have b(d) = 1 and for every other d we have b(d) = 0.
Property (ii) holds for the base case (details in the full version [25]). Then, we will argue
in the step-by-step analysis that it also holds for every inductive step of the construction.
Also note that if the token takes the directions in IMk from the sink sk, it will go to the the
starting vertex vk0 . Such a path is not available in any of the connecting frames; however, a
path which spans exactly those directions is available in the balance-AUSO.

We will now analyze the behavior of Zadeh’s rule on AUSO Ai+1. Firstly, let us define
the tie-breaking ordered list Ti+1:

Ti+1 = Ti · (+1,−2,+3,−1,+4,−3,+5,−4,+6,−5,+2,−6).

As before a number ±k indicates the direction ±ck0 . Secondly, we state two lemmas that will
be used in the analysis that comes below. We include proofs for those in the full version [25].

ESA 2017
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I Lemma 9. Let token t be at an IN-saturated vertex v, such that s(v) ∩ C+
i 6= ∅. Then,

∃d ∈ IN such that v d−→ v′ and v′ also has s(v′) ∩C+
i 6= ∅. Moreover, v′ is not IN -saturated.

I Lemma 10. Let the token t be at a vertex v as in the lemma above. Then there is a vertex
v′ that comes after v on Pi+1 and such that v′ is IN -saturated.

Step-by-step analysis. We are ready to give a description for the behavior of the algorithm
on Ai+1, in as much detail as the space allows; a very careful analysis can be found in the
full version [25]. Initially, the token is at the starting vertex v0. Let us denote with dOUTmax

the direction that maximizes history over the OUT directions; similarly, we define dINmax.
Assume that the token is at an IN -saturated vertex and b(dOUTmax ) > 0. Then, the algorithm
will use directions from OUT until it reaches a vertex that is OUT -saturated.

When at 1 , directions from IN will be used, since they have priority in Ti+1. After
some steps, an IN -saturated vertex vs will be reached, by Lemma 10. At vs, we have that
b(dOUTmax ) > 0. The connecting frame will be F2. The directions from OUT will be utilized and
the token will take a path 1  12 , where it will reach vs⊥ 12 . Then, we have b(−6) = 1
and for every other direction d ∈ OUT , b(d) = 0; also, b(dOUTmax ) = 0. Because the frame is F2,
the dashed edge is not available: vs⊥ 12 ← vs⊥ 1 . Thus, vs⊥ 12 is OUT -saturated. One
direction from IN will be used; by Lemma 9 the next vertex is not IN -saturated. The frame
will then be F1, and direction −6 will be used. The token is back to 1 and b(OUT, d) = 0,
for every d ∈ OUT , b(dOUTmax ) = 1 and b(dINmax) = 0. The token will keep moving between 1
and 12 in the way thus described, until it reaches a vertex vsi

, such that s(vsi
) ∩ C+

i = ∅
(vsi

corresponds to the sink of Ai). The latter will be evaluated in 1 , by Lemma 9. Then,
we have that b(d) = 1, for every d ∈ IMi, by Property (ii) (which holds inductively).

The frame for vsi is F3. The token will go over +1 and +3 to B . Therein, it will take a
path vsi⊥ B  v0⊥ B for which it will use exactly the directions from IMi; afterwards, IN
is balanced. The token will take a path v0⊥ B  v0⊥ 8  v0⊥ 12 . All the vertices on this
path are IN -saturated because IN is balanced. The frame will be F2 and, so, the dashed
edge is not available: v0⊥ 12 ← v0⊥ 1 . At this point b(−3) = b(−4) = b(−5) = b(−6) = 1
and for every other d ∈ OUT , b(d) = 0. From now on, all the steps that the token will take
using directions from IN will be consistent with the path Pi. This is because IN is balanced
and the token is at a vertex that corresponds to vi0 (the starting vertex of Ai).

The token will keep moving between 1 and 12 , in a similar way as described
above, until it reaches a vertex vsi

such that s(vsi
)∩C+

i = ∅. The latter will be evaluated in
1 , by Lemma 9. The main difference to the situation of the previous paragraphs is in the
balance vector. After the token reaches an IN -saturated vertex in 1 , the balance vector
will be b(OUT,−4) = b(OUT,−5) = b(OUT,−6) = 1 and b(dOUTmax ) = 1. This is also the case
when vsi

is reached. But then, the connecting frame is F3 and a path vsi
⊥ 1  vsi

⊥ 12
will be taken. The global sink will be exactly at vsi

⊥ 12 . After the sink has been reached,
we have b(dOUTmax ) = 0 and, thus, b(−3) = b(−4) = b(−5) = b(−6) = 1. Thus, Property (ii)
will also be satisfied for the new inductive step.

With the above analysis, we have proved that the path Pi+1 will have length that is
larger than twice the length of path Pi. Therefore, we obtain the recursion T (n+ 6) > 2T (n)
which leads to the proof of Theorem 8.

6 Conclusions

In this paper, we have constructed AUSO on which the three pivot rules of interest can take
exponentially long paths. Several interesting problems remain open: First and foremost
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is settling if Zadeh’s and Johnson’s rules admit exponential lower bounds even on linear
programs. Moreover, it remains open to decide if Zadeh’s rule admits Hamiltonian paths on
AUSO, a direction suggested by the authors of [1]. Finally, we are interested in exponential
lower bounds for all the history-based rules that are discussed in [1]. We believe that our
methods can be used to prove exponential lower bounds on AUSO for all of those rules.
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Abstract
Knowing a biomolecule’s structure is inherently linked to and a prerequisite for any detailed un-
derstanding of its function. Significant effort has gone into developing technologies for structural
characterization. These technologies do not directly provide 3D structures; instead they typically
yield noisy and erroneous distance information between specific entities such as atoms or residues,
which have to be translated into consistent 3D models.

Here we present an approach for this translation process based on maxent-stress optimization.
Our new approach extends the original graph drawing method for the new application’s specifics
by introducing additional constraints and confidence values as well as algorithmic components.
Extensive experiments demonstrate that our approach infers structural models (i. e., sensible 3D
coordinates for the molecule’s atoms) that correspond well to the distance information, can handle
noisy and error-prone data, and is considerably faster than established tools. Our results promise
to allow domain scientists nearly-interactive structural modeling based on distance constraints.
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1 Introduction

Context. Proteins are biomolecular machines that fulfill a large variety of tasks in living
systems, be it as reaction catalysts, molecular sensors, immune responses, or driving muscular
activity [40]. Knowing a protein’s 3D structure is a requirement for any detailed understanding
of its function, and functional or structural disorder can lead to disease. Structure resolution
techniques have made strong progress in recent years: biomolecules that were inaccessible a
decade ago can now be structurally resolved, as exemplified by the rapid growth of structural

∗ The full version of this paper is available at https://arxiv.org/abs/1706.06805.
† The work by MW and HM was partially supported by grant ME 3619/3-1 within German Research

Foundation (DFG) Priority Programme 1736. AS acknowledges support by the Helmholtz Impuls- und
Vernetzungsfonds and a Google Research Award. HM and AS acknowledge support by KIT’s Young
Investigator Network YIN.

© Michael Wegner, Oskar Taubert, Alexander Schug, and Henning Meyerhenke;
licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 70; pp. 70:1–70:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.70
https://arxiv.org/abs/1706.06805
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


70:2 Maxent-Stress Optimization of 3D Biomolecular Models

databases [31]. The resolution techniques, however, do not directly provide structural
information as 3D coordinates. Instead, e. g., X-ray crystallography yields a diffraction
pattern which has to be translated into a structural model. Similarly, Nuclear Magnetic
Resonance (NMR) techniques measure coupled atomic spins, which can be translated into
pairwise distances between specific atoms. These distances are typically incomplete, i. e.,
not all spatially adjacent atom pairs are detected [37]. Also computational tools, such as
co-evolutionary analysis of multiple-sequences alignments of protein [35, 39, 29] or RNA
families [11] can provide distance constraints between residues for biomolecular structure
prediction. Conceptually, one can understand the information provided by these techniques
as incomplete and erroneous parts of the complete distance matrix.

Motivation. Our goal is to provide an efficient and effective method to compute a full
structural 3D model from incomplete and/or noisy distances. For this task, physics-based
approaches are computationally prohibitive. Molecular dynamics-based approaches require
weeks on supercomputers [17] and stochastic global optimization techniques [33] still days
on medium-sized clusters. To lower computational costs, one can use more coarse-grained
force-fields [30], yet the computations still require hours to days depending on the input size.

For interactive or nearly-interactive work, however, running times of a few seconds would
be desirable. This would support a quick back-and-forth between, e. g., assigning NMR
chemical shifts to determine pairwise atomic distances and follow-up structural modeling [37].
These structural models allow then, in turn, improved NMR shift assignment and a repetition
of the loop. One forgoes describing the detailed physics and finds a near-optimal solution
which respects all distance constraints. Exemplary tools which solve this distance geometry
problem are DGSOL [26] and DISCO [23]. Challenges for such tools are efficiency, quality,
and support for variations such as the ability to deal with noise, error, or distance intervals.

Outline and Contribution. In this paper we transfer a maxent-stress optimization approach
from 2D graph drawing [16] to computing a 3D model from (incomplete) distance information.
To this end, we exploit the resemblance of the objective functions (see Section 2), and extend
the basic model and algorithm shown in Section 2.3 by specifics of the biological application.
Our algorithmic adaptations and extensions, as well as details regarding their implementation,
are presented in Section 3. Extensive experiments (see Section 4) reveal that our algorithm is
significantly faster than other competitive algorithms; at the same time its solution quality is
very often better than the results of the best competitor. In particular in our most realistic
instances, we outperform our competitors (i) in terms of quality by providing more accurate
structural models in (ii) consistently high agreement with reference models and requiring
(iii) only about 5–10% of the running time. This stays true even when provided with noisy
input data. We further extend our algorithm to support a weighted problem variant that
allows to specify how certain a distance interval is and obtain very promising experimental
results for this setting as well. To our knowledge, our algorithm is the first to support this
new variant.

2 Preliminaries

2.1 Problem Definition
We model a biomolecule as a graph G = (V,E), where the set V of n vertices models the
atoms and the set E of m edges their relations. Distance information is given separately for
all pairs {u, v} ∈ S ⊆ V × V by a distance matrix D ∈ Rn×n

≥0 . For this purpose dvw denotes
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the distance between vertices v and w – or is set to nil if the distance is unknown (for pairs
/∈ S). We are interested in finding an embedding of G into R3, i. e., 3D coordinates for the
vertices, that respects the distances for S. This problem is known as (3D) distance geometry
problem (DGP). In line with previous work, we account for inexact distance information due
to measurement errors by introducing an interval in which the actual distance is contained.
This modified DGP is called interval distance geometry problem [20]:

I Definition 1 (Interval Distance Geometry Problem (iDGP)). Let a simple undirected graph
G = (V,E), a distance interval function d = [l, u] with d : E → R2, and an integer k > 0 be
given. Then determine whether there is an embedding x : V → Rk such that

∀{v, w} ∈ E : lvw ≤ ‖xv − xw‖ ≤ uvw, (1)

where lvw and uvw are lower and upper bounds for the distance of the edge {v, w}.

Here and in the following, k equals 3. Then DGP is prefixed by an ’M’ for ’molecular’.
Note that the (M)DGP is contained in the i(M)DGP by setting the lower and upper
bound of each interval to be equal to the actual distance. Saxe [32] showed that deciding
whether a valid embedding exists (in the DGP sense) is strongly NP-complete for k = 1
and strongly NP-hard for k > 1. Interestingly, the problem becomes solvable in polynomial
time if all distances are given [6, 9, 12]. Since solving the decision problem (finding a
valid embedding) is difficult and even not always possible, we continue by considering the
embedding task as an optimization problem, to be solved by heuristics. As a measure
of error, one could use the largest distance mean error (LDME) defined as: LDME(x) =√

1
|E|
∑
{v,w}∈E max(lvw − ‖xv − xw‖, ‖xv − xw‖ − uvw, 0)2. An embedding x that has an

LDME value of 0 is obviously a solution of the iDGP as each distance constraint is met. One
could thus minimize the LDME of the embedding found. To be closer to the biophysical
application and real-world data, we actually use the root mean square deviation (RMSD) to
evaluate our solutions. The RMSD compares the embedding against a reference structure:

RMSD(x, x′) = min
√

1
|V |

∑
v∈V

‖xv − x′v‖2, (2)

with xv and x′v being the coordinates of the embedding and the reference structure, respec-
tively. The minimum value is over all possible spatial translations and rotations of both
superimposed structures. RMSD values < 1.5 Å approach the structure resolution limit of
experimental wet-lab techniques (NMR and X-ray) [40]. While error functions that test the
capability of the algorithm to match the constraints (such as LDME) can be useful from
an optimization point of view, a good value does not necessarily mean that the embedding
reproduces the molecular structure. In particular, the algorithm must be able to handle
noisy and erroneous data. In the end, the structure must also be physically meaningful. The
RMSD addresses this challenge and is a standard measure of (dis)similarity in structural
molecular biology by directly assessing the usefulness in a real-life scenario[40]. We will
therefore rely on the RMSD to compare algorithms.

2.2 Related Work
There exist many algorithms for solving the MDGP optimization problem. Yet, for most
algorithms the required running time is either very high or the solution quality is in the
meantime rather low. Also, some algorithms currently do not support iMDGP – which limits
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their use in a real-world scenario. Due to space constraints the description of related work
focuses on two tools, DGSOL and DISCO, which we use in our experimental comparison as
they are publicly available and established in the distance geometry research community – cf.
a book on distance geometry edited by Mucherino et al. [27] and an even more recent survey
by the same authors [20]. For a much broader overview we refer to this book and survey.
Mentioned running times (in seconds) are based on experimental data in previous works and
are thus not necessarily completely comparable.

Liberti et al. [20] found in their survey from 2014 that general-purpose global optimization
solvers like Octave’s fsolve or spatial branch-and-bound techniques are not able to solve the
problem for more than 10 vertices in a reasonable amount of time. One reason is that the
objective function has a large number of local minima.

Moré and Wu [25] implemented an algorithm called DGSOL1 that transforms the objective
function gradually into a smoother function that approximates the original function and has
fewer local minima. The algorithm builds a hierarchy of increasingly smooth functions by
iteratively applying a transformation. In a next step, DGSOL employs Newton’s method as
a local optimization on the smoothest function and then traces this solution back to the
original objective function, applying a local optimization on each level. Liberti et al. state
that the algorithm “has several advantages: it is efficient, effective for small-to-medium-sized
instances, and, more importantly, can be naturally extended to solve iMDGP instances” [20,
p. 23]. On the downside, on large-scale instances the solution quality decreases (while the
running time remains reasonable). An et al. [2, 1] use a different continuation approach
which improves the solution quality compared to DGSOL. In their experiments the running
time of their algorithm for proteins larger than 1 500 atoms lies between 500 and 1 200s. The
double variable neighborhood search with smoothing (DVS) algorithm by Liberti et al. [19]
combines the ideas of DGSOL and variable neighborhood search into one algorithm. In their
comparison to DGSOL the quality of DVS was significantly better, but the running time two
orders of magnitude slower already for small inputs.

Biswas et al. [5] proposed the DAFGL algorithm that decomposes the graph into clusters
by running the symmetric reverse Cuthill-McKee algorithm on the distance matrix. The
subproblems are solved with a semidefinite programming (SDP) formulation. DAFGL is
capable of solving the iMDGP. While its solution quality are mostly reasonable, one has
to consider that as much as 70% of distances smaller than 6 Å were provided with added
noise. Also, larger instances increase the running time rapidly. The two largest molecules
(PDB: 1toa and 1mqq, see Table 1) took already 2 654s and 1 683s with only modest to poor
solution quality (RMSD: 3.2 Å and 9.8 Å) to solve even though the algorithm makes use of
a distributed SDP solver. Leung and Toh [18] proposed the DISCO2 algorithm that is an
advancement to the DAFGL algorithm by Biswas et al. [5]. If the problem is small enough,
DISCO solves the problem with an SDP approach and refines the obtained solution with
regularized gradient descent. Otherwise, DISCO splits the graph into two subgraphs and
solves the problem recursively. DISCO uses the symmetric reverse Cuthill-McKee algorithm
to cluster the vertices initially. In a second step DISCO tries to minimize the edge cut between
different subgraphs by placing a vertex v into the subgraph where most of its neighbors are
placed. The algorithm puts some vertices in both subgraphs (overlapping atoms) to later
stitch the two embedded subgraphs together. Its authors tested DISCO also in the iMDGP
setting (i. e., DISCO supports inexact distances). The results indicate that DISCO is able to

1 Publicly available at http://www.mcs.anl.gov/~more/dgsol/ (accessed on April 4, 2017).
2 Publicly available at http://www.math.nus.edu.sg/~mattohkc/disco.html (accessed on April 4, 2017).

http://www.mcs.anl.gov/~more/dgsol/
http://www.math.nus.edu.sg/~mattohkc/disco.html
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compute the structure of proteins with very sparse distance data and high noise in 412s for a
protein having 3 672 atoms. Fang and Toh [14] presented some enhancements to DISCO for
the iMDGP setting by incorporating knowledge about molecule conformations to improve
the robustness of DISCO. Their experiments show that their changes indeed lead to better
solutions (about 50–70%) with the cost of increased running times (also about 50–70%).

2.3 MaxEnt-Stress Optimization
We aim at developing an algorithm for iMDGP (and its extension wiMDGP, see Section 3.2)
with a significantly lower running time than previous algorithms and with solutions of good
quality. Our main idea is to use an objective function proposed by Gansner et al. [16]
for planar graph drawing, called maxent-stress (short for maximal entropy stress). As the
name suggests, it is composed of two parts, a stress part that penalizes deviations from the
prescribed distances (with a quadratic penalty, possibly weighted) and an entropy part that
penalizes vertices for getting too close to each other (atoms cannot overlap):

min
x

∑
vw∈S

ωvw(‖xv − xw‖ − dvw)2 − αH(x), (3)

where H(x) = − sgn(q)
∑

vw /∈S‖xv − xw‖−q, q > −2, is the entropy term, ωvw a weighting
factor for edge {v, w}, α ≥ 0 a user-defined control parameter, and sgn(q) the signum function
with the special case that sgn(0) = 1.

To minimize function (3), Gansner et al. [16] derive a solution from successively solving
Laplacian linear systems of the form Lx = b for x. A noteworthy feature of this successive
iteration towards a local minimum is that the solution of the current iteration depends on
the solution of the previous iteration, since the current right-hand side is computed from the
solution in the previous iteration. Note that the computation of distances between vertex
pairs not in S is not required for function (3). Instead, vertex pairs not in S are related to
each other via the entropy term, which enters the right-hand side, too. If the parameter q is
set to be smaller than zero, the entropy term of vertex u acts as a sum of attractive forces
on u. Conversely, the term acts as a sum of repulsive forces if q is larger than zero.

The Gansner et al. algorithm typically needs several iterations to converge. In this
process the entropy weighting factor α has a strong influence in the maxent-stress model:
a high value will cause the vertices to expand into space indefinitely while a low value will
cause no entropy influence. The maxent-stress algorithm therefore starts with α = 1 and
gradually reduces this value to α = 0.008 with a rate of 0.3. For each value of α, a maximum
of 50 linear system solves are performed and Gansner et al. set q to 0 except when the
graph has more than 30% degree-1 vertices (then q ← 0.8). Note that in this entropy context
they assume ‖x‖0 = ln ‖x‖. If the relative difference ‖x′ − x‖/‖x‖ between two successive
solutions x and x′ is below 0.001, the algorithm is terminated.

More implementation details (e. g., the approximation of the entropy term in case of
|S| ∈ O(n)) can be found in Section 3.3.

3 New Algorithm and its Implementation

Now we describe the adaptations made to the generic maxent-stress algorithm in order to
deal with iMDGP and an extension called wiMDGP. For more technical details we refer the
interested reader to our code3.

3 https://algohub.iti.kit.edu/parco/NetworKit/NetworKit-MaxentStress, main source folder
networkit/cpp/viz. An updated standalone version is planned to be published in the future.
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3.1 Adapting the Maxent-stress Algorithm for iMDGP
Recall that for iMDGP we are given a graph G = (V,E) and the distance intervals d =
[l, u] : E → R2

≥0. We then want to find an embedding x : V → R3 that respects the intervals
as well as possible. Note that, in line with previous work, we assume the set S of known
distances to be equal to E here. We also assume the edges in E to be unweighted.

As Gansner et al.’s maxent-stress algorithm [16] cannot cope with intervals, we solve
the iMDGP by first running our implementation of the maxent-stress algorithm with an
adapted distance d′ : E → R that is defined by d′vw := (lvw +uvw)/2. One might expect that,
in the resulting embedding, the distances should be roughly in the middle of their interval.
This would already be a valid solution to the iMDGP. However, our preliminary experiments
show that the output of the maxent-stress algorithm still violates distance constraints even
on smaller graphs if called this way. We therefore apply local optimizations to the layout
computed by the maxent-stress algorithm. One optimization is based on simulated annealing,
while the other is a simple local optimization algorithm.

Optimization of the Embedding with Simulated Annealing. Simulated annealing (SA)
is a well-known metaheuristic that can escape local optima by probabilistically accepting
neighbor solutions that are worse than the current one, see e. g. Talbi [38].

Our SA algorithm is sketched as Algorithm 1 in the full version of this paper [41]. The
SA metaheuristic is often especially powerful if the initial solution is randomly chosen and
can then jump between local minima. In our setting we receive an embedding from the
maxent-stress algorithm as input; its global structure should be already quite good and only
some of the given distances are not in their desired intervals. Therefore, our SA algorithm
is only used to overcome rather narrow local minima instead of jumping to a completely
different solution. The constants in Algorithm 1 have been manually chosen in informal
experiments. The outermost loop breaks after a certain number of unsuccessful improvement
attempts or if the SA temperature is really low. The second loop iterates until an equilibrium
w. r. t. the current temperature is reached – here controlled by the number of iterations and
modifications. As we do not want to get completely different solutions for reasons mentioned
above, we choose a low start temperature and decrease it rather quickly.

Within the innermost loop a new neighbor solution is computed. In fact, we use parallelism
here to reduce the running time of the algorithm. While this can lead to some data races
if the position of a vertex is altered by more than one thread, we did not experience any
significant decrease in quality. The number of total iterations, steps with no improvement
and the number of modifications are all chosen rather small to keep the running time low.

The main ingredients of the innermost loop are
(i) the local error criterion,
(ii) the local optimizer that computes a neighbor solution, and
(iii) the acceptance function.

We define errorvw(x) as errorvw(x) := max{lvw − ‖xv − xw‖, ‖xv − xw‖ − uvw, 0}2. and
the local error of an edge {v, w} as:

localError({v, w}, x) := errorvw(x) +
∑

u∈N(v)\{w}

errorvw(x) +
∑

u∈N(w)\{v}

erroruw(x),

where N(v) denotes the neighborhood (i. e. the set of incident vertices) of v.
In each iteration a new neighbor solution is computed for an edge {v, w}. To this end,

we apply a force-based approach that takes the edge lengths to their neighbors and the edge
length of {v, w} into account. The idea is to model the local system similarly to the spring
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embedder model [13] and the force-directed algorithm by Fruchterman and Reingold [15].
The difference to those algorithms is that we have to deal with an interval for the length of
an edge. In our local force optimization step, we only change the positions of v and w while
keeping adjacent vertices fixed. We say an edge {v, w} is violating its distance constraint if
the errorvw(x) is larger than 10−9 (and not exactly 0 due to numerical reasons). In our spring
model only the violating edges account for a repulsive or attractive force, while the other
edges do not take part in the force calculation. In our model each spring has its equilibrium
state in an interval that corresponds to the interval of the respective edge it models.

For an optimization on edge {v, w}, the forces acting on v and w are a combination of
attractive and repulsive forces: f(v) := frep(v) + fattr(v) and f(w) := frep(w) + fattr(w).
The repulsive and attractive forces for a vertex v are defined as frep(v) :=

∑
w∈Nrep(v)(xv −

xw) · l2
wv

‖xw−xv‖2 and fattr(v) :=
∑

w∈Nattr(v)(xw−xv) · u2
wv

‖xw−xv‖2 , where Nrep(v) ⊆ N(v) is the
set of neighbors of v that are too close to v (i. e., the edge is shorter than its lower bound)
and Nattr(v) ⊆ N(v) is the set of neighbors of v that are too far away (i. e., the edge is
longer than its upper bound). Finally, the acceptance function always accepts improving
changes. Error-increasing changes are probabilistically accepted according to the Boltzmann
distribution based on the local error (as in many cases [38]).

A Simple Local Optimization Algorithm. In addition to our SA optimization algorithm,
we propose another simple local optimization algorithm. During one iteration the algorithm
sorts the edges by their error (i. e., the deviation from the edge’s given distance interval)
in descending order. For an edge {v, w} having a length that is not in the given distance
interval, the algorithm either prolongates or shortens the edge length such that it is exactly
as long as the upper or lower bound given by the distance interval, respectively. We only
accept the change if we reduce the local edge error. If we change the length of an edge
{v, w}, we lock the other incident edges of v and w for the remainder of the current iteration
to prevent an oscillating effect. We perform a maximum of 50 iterations or less if there is
no improvement between two successive iterations. Pseudocode of the method is shown as
Algorithm 2 in the full version of this paper [41].

3.2 Intervals with Confidence Values: wiMDGP
Some distances can be measured more accurately than others in common biomolecular
experimental methods. To account for this, we add a confidence to each interval. Such
a confidence states how certain it is that the actual distance is contained in this interval,
leading us to the following problem definition:

I Definition 2 (Weighted Interval Distance Geometry (Optimization) Problem (wiDGP)). Let
a simple undirected graph G = (V,E), a distance interval function d = [l, u], a confidence
function p : E → R, and an integer k > 0 be given. Then minimize the following function:∑
{v,w}∈E

ωvw · error{v,w}(x), (4)

where the weight ωvw depends on the edge’s confidence value cvw.

In order to support wiMDGP, we adapt the maxent-stress algorithm as well as the other
two optimization algorithms. For wiMDGP we can use the weights ωvw from Eq. (3), the
maxent-stress optimization problem, as a penalty that increases the error of an edge if
the confidence that the distance lies in the interval is high. After some manual parameter
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tuning, we have chosen the following function to define the weighting factors: ωvw :=
1 + 5 exp−5(1−cvw), where cvw denotes the confidence for edge {v, w}. This way, the weight of
an edge is roughly in the interval [1, 6] and increases rapidly between 0.7 and 1. A confidence
between 0 and 0.6 only tells us that we cannot be very certain about the distance and thus,
the error term should not vary too much. For higher confidence values, we can be quite
certain that the distance interval is correct, so we need to penalize the errors of such edges
significantly higher. Choosing a larger interval for the weights turned out not to be beneficial
in terms of solution quality in preliminary experiments.

Both our SA and simple local optimization algorithm use an adapted error function
for an edge that includes the weighting function above. In our simple local optimizer, we
additionally change the sorting of the edges such that edges with higher confidence are
considered first. Confidence ties are broken by choosing the edge with larger error first.

3.3 Implementation Details
Initial layout. For computing the initial layout, we implemented three algorithms. In
addition to PivotMDS [7], which was used by Gansner et al. [16], these are two random vertex
placement algorithms. The first one is a very simple method and places the coordinates
randomly in a k-dimensional hypercube with predefined side length.

The second one does include some of the distance information provided by the input.
Given an edge {v, w} and the coordinates of vertex v, we place w at the boundary of a
k-dimensional hypersphere with radius dvw and centered at v. Some more details can be
found in the full version [41].

Finally, PivotMDS is an approximation algorithm for multidimensional scaling that is
based on sampling; for a detailed description the reader is referred to Brandes and Pich [7].

Preliminary experiments indicated that PivotMDS and the random hypersphere approach
fare similarly well. Since PivotMDS turned out to be more robust in terms of solution quality
when applied to protein instances, we use it in all the following experiments. Its slower speed
is more than outweighed by the more expensive maxent-stress algorithm.

Approximating the entropy term. The entropy term in Eq. (3) iterates over all elements
not in S. As the set S is usually sparse, this computation would thus require quadratic
running time. Thus, it is important to approximate the distances required for the entropy
calculations. We implemented both the well-known Barnes-Hut approximation (also used by
Gansner et al.) as well as well-separated pair decomposition (WSPD) [8].

Additionally, we evaluate the entropy lazily: instead of computing the entropy term
in each iteration, we recompute it only when the function b5 log ic changes, where i is the
iteration number. We expect the entropy term to significantly change more frequently at the
beginning of a new iteration; thus, we use a function that causes the algorithm to recompute
the entropy more often at lower iteration numbers. Lipp et al. [21] use the same function for
reducing the running time of their WSPD algorithm. This “lazy” computation of the entropy
term significantly reduces the running time while the quality does not deteriorate much.

Solving the Laplacian linear systems. Recall that Gansner et al. derived an iteration of
subsequent Laplacian linear systems for optimizing maxent-stress. They use the conjugate
gradient method (CG) as a Laplacian solver in their implementation. The conjugate gradient
method has superlinear time complexity. That is why we use lean algebraic multigrid (LAMG)
instead, a fast solver proposed by Livne and Brandt [22] with linear empirical running time.
We use our C++ implementation of LAMG; it is available in NetworKit and has been used
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Table 1 Proteins for distance geometry benchmarks and their basic properties [4]. Listed are
the protein data bank (PDB) code [31], and the size in atoms (vertices), amino acid residues, the
number of edges equivalent to covalent bonds (= bonds edges) and the number of edges with atoms
closer to each other than 5Å without being a covalent bond (= contact edges).

Protein # atom/ vertices # residues bond edges contact edges
1ptq 402 50 412 3987
1lfb 641 78 654 6320

1gpv 735 87 696 7208
1f39 767 101 788 7621
1ax8 1003 130 1016 10527
1rgs 2015 264 2053 20731
1toa 2138 277 2181 23168
1kdh 2846 356 2904 30655

1bpm 3671 481 3744 41027
1mqq 5510 675 5665 62396

for other Laplacian graph problems before [3]. An alternative multilevel approach for solving
the linear systems exists [24], but is harder to adapt to the present scenario.

Optimization Workflow. We combine our two optimization algorithms into one workflow:
the solution found by the SA algorithm can often be further improved by a subsequent run
of our simple local optimization algorithm. Sometimes it happens that the SA algorithm
only finds a slightly worse solution compared to the maxent-stress algorithm. In this case we
ignore the SA solution and only run the simple optimization algorithm.

4 Experiments

In this section we present a representative subset of our experiments and their results. To this
end, we implemented our algorithm in C++ based on NetworKit [36], an open-source toolkit
for graph algorithms and in particular interactive large-scale network analysis. We call our
algorithm MOBi (for Maxent-stress Optimization of Biomolecular models) and compare
it with DGSOL [25] (C/Fortran code) and DISCO [18] (compiled Matlab code), two of the
very few publicly available established tools that can handle inexact inputs with intervals.
Experimental settings are further detailed in the full version of this paper [41].

4.1 Instances

To test the accuracy and efficiency of our approach in a real-world setting, we work on
10 proteins of different sizes [4] taken from the protein data bank (PDB) [31], see Table 1.
These proteins range from small globular proteins with 50 amino acids to large proteins with
about 700 amino acids. We only consider ATOM entries in the file, which provide atomic
coordinates. Also, we only work on the first chain in the case of multiple protein chains.
Based on the coordinates of a protein, we can construct an instance for the various distance
geometry problems. For each experiment we actually create three instances per protein (i. e.,
different contact distance information) to eliminate effects of particularly good/bad sets of
input data. Also, each instance (i. e., same contact distance information) is re-run three
times to eliminate stochasticity effects. The displayed data per protein are averaged over
these three instances and three respective runs.
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We use a percentage p of all atom distances {v, w} ∈
(

V
2
)
for which dvw = ‖xv − xw‖

is below a cut-off distance of 5 Å, where x denotes the coordinates from the protein file.
We use 5 Å because this approximates the distance that can be determined by NMR
experiments [42, 37] and since it is a typical cutoff in determining so-called contact maps
(i. e. binary matrices that store only adjacencies whose length is below the cutoff) [34, 28].
To construct an instance for iMDGP, we introduce the interval [dvw − ε, dvw + ε], where
ε, ε = dvw · N (0, σ2) and σ is the standard deviation. We denote instances created this way
as normal-iMDGP instances.

In contrast, the bonds-iMDGP more closely reflects standard NMR experiments by taking
protein biochemistry into account. As all covalent bonds of a protein are known, instances
can be assumed to have full knowledge of exact distances for these bonds: Chemically, the
length of covalent bonds fluctuates very little, hence the interval for these bonds edges {v, w}
consists of a single distance [dvw, dvw]. In addition to the distance information of the bonds,
we add more distances the same way as for constructing a normal-iMDGP instance.

4.2 Results & Discussion
To quantify the structure determination quality of the different approaches, we compare
them by RMSD. For the normal-iDGP test instances, we observe low RMSD for MOBi and
DISCO, while DGSOL performs significantly worse (cf. Tables 2 and 3 as well as Table 4 in
Appendix A.3 of the full version [41]. As expected, the RMSD gets higher if less distance
information is provided (the instances in Tables 2 and 3 provide only 50% and 30% of the
contact edges, respectively, while the instances in Table 4 provide 70%). The RMSD values
do not increase, as one might expect a priori, necessarily with instance size (number of
atoms/ vertices). Instead, these instances have more edges, which might make the embedding
computationally more demanding but also of good quality. Indeed, MOBi and DISCO yield
good embeddings regardless of system size. DGSOL performs worse for larger systems. Also,
MOBi is more consistent than DISCO and performs best in nearly all instances, in particular
for those with less information (cf. instances 1gpv and 1rgs in Table 3). Similarly, the running
times of MOBi are about an order of magnitude faster than DGSOL and DISCO, with DGSOL
being slightly faster than DISCO. There is an overall trend of increased running times with
system size, but some instances seem particular hard to compute (e. g. instances 1gpv,
1rgs, and 1toa in Table 3). Gaussian noise on the intervals does not significantly alter the
results: given a relatively high amount of distance information, MOBi and DISCO produce
embeddings of very high quality with RMSD < 1 Å (see Tables 4, 5 and 6 in Appendix A.3
in the full version of this paper [41]. It should be noted, though, that in Table 5 DISCO
yields the majority of best results in terms of solution quality – but MOBi is usually not far
behind.

For the bonds-iMDGP instances, we display the results only for MOBi (DISCO and DGSOL
show the same respective trends as above) as a heatmap in Figure 1. For very low amounts of
additional distance information (1–2%) in addition to the bonds, MOBi is unable to provide
high-quality embeddings as displayed by RMSD values > 5 Å. When provided as little as
8–12% distance information in addition to the bonds, the structure determination quality
becomes below 3 Å RMSD, i. e., it approaches the wet-lab resolution. Interestingly, the
amount of Gaussian noise does not strongly influence the embedding quality. Exemplary
structure embeddings are displayed in the full version of this paper [41]. While the overall
quality appears good here as well, one can see that most structural errors are found at the
surface, where fewer edges are available.

The experimental results for wiMDGP are shown in Table 7 in the full version [41]. As
these instances cannot be directly compared against other cases, we merely report that MOBi
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Table 2 Performance results on 50% σ = 0.1 normal-iDGP instances. Best results in bold font.

RMSD / Å time / s
Protein MOBi DGSOL DISCO MOBi DGSOL DISCO
1ptq 0.46 8.05 0.45 1.56 9.85 13.70
1lfb 0.87 10.51 1.00 2.73 22.99 25.29
1gpv 0.68 14.35 0.91 7.51 120.35 128.54
1f39 0.53 16.45 0.69 5.55 70.22 70.80
1ax8 0.51 12.23 0.55 3.91 39.42 48.49
1rgs 0.60 17.56 1.05 7.10 112.49 155.52
1kdh 0.88 19.41 1.06 8.64 173.70 186.00
1toa 0.48 23.72 0.86 14.14 181.96 311.92
1bpm 0.48 21.73 0.50 12.94 221.18 264.02
1mqq 0.34 23.56 0.40 18.22 381.65 519.58

Table 3 Performance results on 30% σ = 0.1 normal-iDGP instances. Best results in bold font.

RMSD / Å time / s
Protein MOBi DGSOL DISCO MOBi DGSOL DISCO
1ptq 1.05 9.29 1.09 1.38 12.39 13.30
1lfb 1.50 11.68 1.53 2.79 26.76 22.86
1gpv 1.29 16.29 3.48 6.64 112.08 114.63
1f39 1.06 17.27 1.74 5.18 82.75 78.07
1ax8 1.07 12.95 1.34 3.85 47.51 44.43
1rgs 1.37 18.03 5.54 40.33 120.89 120.59
1toa 1.00 23.47 1.28 13.10 204.94 325.64
1kdh 1.46 20.33 1.51 8.28 174.67 169.41
1bpm 0.93 22.08 1.37 11.49 237.23 255.87
1mqq 0.82 23.45 0.96 16.36 216.39 529.09

produces high quality solutions, typically with RMSD < 1.0 Å and comparable running times
to the other instances with MOBi. To truly assess the use of this wiMDGP implementation
on real-world data, one would have to work on curated wet-lab experimental data [42, 40] or
co-evolutionary signals [35]. This is clearly outside the scope of this paper.

Overall, in particular for limited and noisy distance information, MOBi provides con-
sistently embeddings with higher quality and does so at significantly lower running times
than both DISCO and DGSOL. On average (geometric means over quotients for each of the
Tables 2 to 6), MOBi is between 13x and 20x faster than DISCO. At the same time its RMSD
values are on average 17% to 41% better – except for Table 5, where DISCO is 12% better.
DGSOL is not competitive in terms of solution quality and also 6x to 13x slower.

For normal-iDGP instances and very high amounts of distance information, the MOBi
embeddings provide RMSD < 1 Å, which is below the typical resolution of NMR or X-ray [40];
even providing only p = 30% leads to high quality embeddings. Both MOBi and DISCO
perform considerably better than older algorithms such as[5], where some RMSD > 5 Å
were reported. In the more realistic scenario of bonds-iMDGP instances with all bond edges
provided, only few contact edges (8–12%) can already lead to high quality embeddings with
MOBi. Thus, we are confident that our algorithm will lead to improved interpretation of
wet-lab experiments in particular in cases with sparse data, such as sparse NMR experiments.
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Figure 1 Quality results for bonds-iDGP instances. The horizontal axis shows the amount of
contact edges in addition to bond edges provided, the vertical axis varies the σ of Gaussian noise.

5 Conclusions

This paper provides a significant step towards nearly-interactive protein structure determina-
tion. To this end, we implemented the maxent-stress algorithm [16] and incorporated first of
all a faster Laplacian solver. Based on this implementation we extended the graph drawing
algorithm to handle distance geometry problems where the distances are either exact or
come in the form of intervals, optionally with some confidence. Comparing our algorithm
with two publicly available competitors shows that we are able to significantly outperform
both of them in terms of running time, while usually providing embeddings with higher
quality. For the more realistic bonds-iDGP instances, our algorithm is able to compute high
quality protein structures with limited and noisy information. Most errors can be found at
the surface of the proteins, where only few edges can guide the optimization process.

While some related work can provide even higher solution quality (e. g. [14]), it can only
do so at the expense of an enormous increase in running time. The strength of our work is
the combination of low running time, good and consistent solution quality, and genericity.

The evaluation of our algorithm on real-world instances whose distance matrices are
derived from chemical bonds and real NMR experiments is ongoing and shows very promising
results, too. In the future it also seems promising to use our algorithm for bootstrapping
more sophisticated and thus more expensive algorithms for protein structure determination
(such as refining the resulting structures in physics-based force fields similar to [35, 10]).
Moreover, further improvements of the resulting structures could be achieved by re-weighting
edges by their density; such an approach would consider surfaces more strongly.

Acknowledgments. The authors thank Michael Kovermann (University of Konstanz) for
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