25th European Symposium on

Algorithms

ESA 2017, September 4-6, 2017, Vienna, Austria

Edited by

Kirk Pruhs
Christian Sohler

\\v LIPICS

LIPlcs — Vol. 87 — ESA 2017

www.dagstuhl.de/lipics

Editors

Kirk Pruhs Christian Sohler

Department of Computer Science Department of Computer Science
University of Pittsburgh, USA Technische Universitdt Dortmund, Germany
krp2@pitt.edu christian.sohler@tu-dortmund.de

ACM Classification 1998

E.1 Data Structures, F.2.2 Nonnumerical Algorithms and Problems, G.1.6 Optimization, G.2 Discrete
Mathematics, G.4 Mathematical Software, 1.1.2 Algorithms, 1.2.8 Problem Solving, Control Methods,
and Search, 1.3.5 Computational Geometry and Object Modeling

ISBN 978-3-95977-049-1

Published online and open access by
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik GmbH, Dagstuhl Publishing, Saarbriicken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-049-1.

Publication date
September, 2017

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPlcs.ESA.2017.0

ISBN 978-3-95977-049-1 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-049-1
http://www.dagstuhl.de/dagpub/978-3-95977-049-1
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.ESA.2017.0
http://www.dagstuhl.de/dagpub/978-3-95977-049-1
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

O:iii

LIPlcs — Leibniz International Proceedings in Informatics

LIPlcs is a series of high-quality conference proceedings across all fields in informatics. LIPlcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board
Luca Aceto (Reykjavik University)
Susanne Albers (TU Miinchen)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Anca Muscholl (University Bordeaux)
Catuscia Palamidessi (INRIA)
Raimund Seidel (Saarland University and Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik)
Thomas Schwentick (TU Dortmund)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

ESA 2017

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents

Preface
Kirk Pruhs and Christian Sohler i 0:xi

Invited Papers

Sketching for Geometric Problems
David P. Woodruff 1:1-1:5

Regular Papers

Permuting and Batched Geometric Lower Bounds in the I/O Model
Peyman Afshani and Ingo van Duijn, 2:1-2:13

Independent Range Sampling, Revisited
Peyman Afshani and Zhewei Weio 3:1-3:14

Approximate Nearest Neighbor Search Amid Higher-Dimensional Flats
Pankaj K. Agarwal, Natan Rubin, and Micha Sharirc.ccoiiii... 4:1-4:13

Output Sensitive Algorithms for Approximate Incidences and Their Applications
Dror Aiger, Haim Kaplan, and Micha Sharir iiiiiiiiiiiia... 5:1-5:13

Randomized Contractions for Multiobjective Minimum Cuts
Hassene Aissi, Ali Ridha Mahjoub, and R. Raviccciiiiiiiiiiin.n.. 6:1-6:13

Tight Bounds for Online Coloring of Basic Graph Classes
Susanne Albers and Sebastian Schraink 7:1-7:14

Combinatorics of Local Search: An Optimal 4-Local Hall’s Theorem for Planar
Graphs
Daniel Antunes, Claire Mathieu, and Nabil H. Mustafa 8:1-8:13

In-Place Parallel Super Scalar Samplesort (IPS*o)
Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders 9:1-9:14

Online Bin Packing with Cardinality Constraints Resolved
Jdnos Balogh, Jozsef Békési, Gyorgy Ddsa, Leah Epstein, and Asaf Levin 10:1-10:14

Modeling and Engineering Constrained Shortest Path Algorithms for Battery
Electric Vehicles
Moritz Baum, Julian Dibbelt, Dorothea Wagner, and Tobias Zindorf 11:1-11:16

A Quasi-Polynomial-Time Approximation Scheme for Vehicle Routing on Planar
and Bounded-Genus Graphs
Amariah Becker, Philip N. Klein, and David Saulpic 12:1-12:15

The Directed Disjoint Shortest Paths Problem
Kristof Bérczi and Yusuke Kobayashi 13:1-13:13

Triangle Packing in (Sparse) Tournaments: Approximation and Kernelization
Stéphane Bessy, Marin Bougeret, and Jocelyn Thiebaut 14:1-14:13

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:vi Contents

Improved Algorithm for Dynamic b-Matching
Sayan Bhattacharya, Manoj Gupta, and Divyarthi Mohan 15:1-15:13

Fast Dynamic Arrays
Philip Bille, Anders Roy Christiansen, Mikko Berggren Elttienne,
and Inge Li GOTTz ..o 16:1-16:13

On the Impact of Singleton Strategies in Congestion Games
Vittorio Bilo and Cosimo VINCT 17:1-17:14

Tight Lower Bounds for the Complexity of Multicoloring
Marthe Bonamy, tukasz Kowalik, Michal Pilipczuk, Arkadiusz Socala,
and Marcin Wrochnag 18:1-18:14

Exploring the Tractability of the Capped Hose Model
Thomas Bosman and Neil Ooer i 19:1-19:12

Sampling Geometric Inhomogeneous Random Graphs in Linear Time
Karl Bringmann, Ralph Keusch, and Johannes Lengler 20:1-20:15

Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees
Gerth Stglting Brodal and Konstantinos Mampentzidisccccoooon... 21:1-21:14

Online Algorithms for Maximum Cardinality Matching with Edge Arrivals
Niv Buchbinder, Danny Segev, and Yevgeny Tkach, 22:1-22:14

Computing Optimal Homotopies over a Spiked Plane with Polygonal Boundary
Benjamin Burton, Erin Chambers, Marc van Kreveld, Wouter Meulemans,
Tim Ophelders, and Bettina Speckmann oo 23:1-23:14

Online Submodular Maximization Problem with Vector Packing Constraint
T.-H. Hubert Chan, Shaofeng H.-C. Jiang, Zhihao Gavin Tang, and Xiaowei Wu . 24:1-24:14

Faster Approximate Diameter and Distance Oracles in Planar Graphs
Timothy M. Chan and Dimitrios SKTepetoscooiiiiiiiiiiiiiiinio... 25:1-25:13

Stability and Recovery for Independence Systems
Vaggos Chatziafratis, Tim Roughgarden, and Jan Vondrak 26:1-26:15

On the Complexity of Bounded Context Switching
Peter Chini, Jonathan Kolberg, Andreas Krebs, Roland Meyer,
and Prakash Saivasam 27:1-27:15

Improved Approximate Rips Filtrations with Shifted Integer Lattices
Aruni Choudhary, Michael Kerber, and Sharath Raghvendra 28:1-28:13

The Sparse Awakens: Streaming Algorithms for Matching Size Estimation in
Sparse Graphs
Graham Cormode, Hossein Jowhari, Morteza Monemizadeh,
and S. Muthukrishnan 29:1-29:15

Improving TSP Tours Using Dynamic Programming over Tree Decompositions
Marek Cygan, Lukasz Kowalik, and Arkadiusz Socala 30:1-30:14

On Minimizing the Makespan When Some Jobs Cannot Be Assigned on the Same
Machine
Syamantak Das and Andreas Wieseoooiiiii i, 31:1-31:14

Contents

Optimal Stopping Rules for Sequential Hypothesis Testing

Constantinos Daskalakis and Yasushi Kawasecccccccoiiiiii ...

The Online House Numbering Problem: Min-Max Online List Labeling
William E. Devanny, Jeremy T. Fineman, Michael T. Goodrich,

and Tsvi Kopelowitz

Temporal Clustering

Tamal K. Dey, Alfred Rossi, and Anastasios Sidiropoulos

Pricing Social Goods

Alon Eden, Tomer Ezra, and Michal Feldmanccccoiiiiiiiiii ..

Half-Integral Linkages in Highly Connected Directed Graphs

Katherine Edwards, Irene Muzi, and Paul Wollan

Bounds on the Satisfiability Threshold for Power Law Distributed Random SAT
Tobias Friedrich, Anton Krohmer, Ralf Rothenberger, Thomas Sauerwald,

and Andrew M. SUtton

An Encoding for Order-Preserving Matching

Travis Gagie, Giovanni Manzini, and Rossano Venturini

Distance-Preserving Subgraphs of Interval Graphs

Kshitij Gajjar and Jaikumar Radhakrishnan i iian..

Dispersion on Trees

Pawel Gawrychowski, Nadav Krasnopolsky, Shay Mozes, and Oren Weimann

Real-Time Streaming Multi-Pattern Search for Constant Alphabet

Shay Golan and Ely Porato e

Improved Bounds for 3SUM, k-SUM, and Linear Degeneracy

Omer Gold and Micha Sharir o e

Profit Sharing and Efficiency in Utility Games

Sreenivas Gollapudi, Kostas Kollias, Debmalya Panigrahi, and Venetia Pliatsika .

Improved Guarantees for Vertex Sparsification in Planar Graphs

Gramoz Goranci, Monika Henzinger, and Pan Peng oo,

The Power of Vertex Sparsifiers in Dynamic Graph Algorithms

Gramoz Goranci, Monika Henzinger, and Pan Peng

Single-Sink Fractionally Subadditive Network Design

Guru Guruganesh, Jennifer Iglesias, R. Ravi, and Laura Sanita

Path-Contractions, Edge Deletions and Connectivity Preservation

Gregory Gutin, M. S. Ramanujan, Feliz Reidl, and Magnus Wahlstrom

Dynamic Clustering to Minimize the Sum of Radii

Monika Henzinger, Dariusz Leniowski, and Claire Mathieu

Shortest Paths in the Plane with Obstacle Violations

John Hershberger, Neeraj Kumar, and Subhash Suri

0:vii

32:1-32:14

33:1-33:15

34:1-34:14

35:1-35:14

36:1-36:12

37:1-37:15

38:1-38:15

39:1-39:13

40:1-40:13

41:1-41:15

42:1-42:13

43:1-43:14

44:1-44:14

45:1-45:14

46:1-46:14

47:1-47:13

48:1-48:10

49:1-49:14

ESA 2017

0:viii

Contents

Contracting a Planar Graph Efficiently
Jacob Holm, Giuseppe F. Italiano, Adam Karczmarz, Jakub Lgcki, Eva Rotenberg,
and Piotr Sankowski 50:1-50:15

Minimizing Maximum Flow Time on Related Machines via Dynamic Posted Pricing
Sungjin Im, Benjamin Moseley, Kirk Pruhs, and Clifford Stein 51:1-51:10

Finding Axis-Parallel Rectangles of Fixed Perimeter or Area Containing the
Largest Number of Points
Haim Kaplan, Sasanka Roy, and Micha Sharir o i ... 52:1-52:13

LZ-End Parsing in Linear Time
Dominik Kempa and Dmitry Kosolobov 53:1-53:14

Combinatorial n-fold Integer Programming and Applications
Dusan Knop, Martin Koutecky, and Matthias Mnich 54:1-54:14

Local Search Algorithms for the Maximum Carpool Matching Problem
Gilad Kutiel and Dror RaWitzo.oii e 55:1-55:14

Computing Maximum Agreement Forests without Cluster Partitioning is Folly
Zhigiang Li and Norbert Zeh e 56:1-56:14

A Linear-Time Parameterized Algorithm for Node Unique Label Cover
Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh 57:1-57:15

Dynamic Space Efficient Hashing
Tobias Maier and Peter Sanders 58:1-58:14

Subexponential Parameterized Algorithms for Graphs of Polynomial Growth
Ddniel Marz and Marcin Pilipczuk 59:1-59:15

Benchmark Graphs for Practical Graph Isomorphism
Daniel Neuen and Pascal SChweitzero i aeans 60:1-60:14

On the Tree Augmentation Problem
Zet INULOU ..ot e 61:1-61:14

Prize-Collecting TSP with a Budget Constraint
Alice Paul, Daniel Freund, Aaron Ferber, David B. Shmoys,
and David P. Williamsonuuue e 62:1-62:14

Counting Restricted Homomorphisms via M&bius Inversion over Matroid Lattices
Marc Roth 63:1-63:14

Clustering in Hypergraphs to Minimize Average Edge Service Time
Ori Rottenstreich, Haim Kaplan, and Avinatan Hassidim 64:1-64:14

K-Dominance in Multidimensional Data: Theory and Applications
Thomas Schibler and Subhash Suri oo e 65:1-65:13

New Abilities and Limitations of Spectral Graph Bisection
Martin R. Schuster and Maciej Liskiewicz, 66:1-66:15

A Space-Optimal Grammar Compression
Yoshimasa Takabatake, Tomohiro I, and Hiroshi Sakamoto 67:1-67:15

Contents 0:ix

Positive-Instance Driven Dynamic Programming for Treewidth
Hisao Tamaki o 68:1-68:13

Exponential Lower Bounds for History-Based Simplex Pivot Rules on Abstract
Cubes
ANLOnis TROMGS ..ottt e e et e et e 69:1-69:14

Maxent-Stress Optimization of 3D Biomolecular Models
Michael Wegner, Oskar Taubert, Alexander Schug, and Henning Meyerhenke 70:1-70:15

ESA 2017

Preface

This volume contains the extended abstracts selected for presentation at ESA 2017, the
25th European Symposium on Algorithms, held in Vienna, Austria, on 4-6 September
2017, as part of ALGO 2017. ESA scope includes original research on both theoretical and
applied algorithmics. Since 2002, it has had two tracks, the Design and Analysis Track
(Track A), intended for papers on the design and mathematical analysis of algorithms, and
the Engineering and Applications Track (Track B), for submissions dealing with real-world
applications, engineering, and experimental analysis of algorithms. Information on past
symposia, including locations and proceedings, is maintained at http://esa-symposium.org.
In response to the call for papers for ESA 2017, 271 papers were submitted, 229 for Track A
and 42 for Track B. Paper selection was based on originality, technical quality, interestingness,
exposition quality, and relevance. Each paper received at least three reviews. After extensive
discussions, the two program committees selected 69 papers for inclusion in the program,
58 from track A and 11 from track B. Thus the acceptance rate was about 25% for both
tracks. The symposium featured two invited lectures: The first by David P. Woodruff
(Carnegie Mellon University) and the second by David Mount (University of Maryland). The
European Association for Theoretical Computer Science (EATCS) sponsored a best paper
award and a best student paper award. A submission was eligible for the best student paper
award if all authors were doctoral, master, or bachelor students at the time of submission.
The best student paper award was given to Marc Roth for the paper “Counting restricted
homomorphisms via Mébius inversion over matroid lattices”.

The best paper award for track A was given to Marek Cygan, Lukasz Kowalik and
Arkadiusz Socala for the paper “Improving TSP tours using dynamic programming over tree
decompositions”. The best paper award for track B was given to Hisao Tamaki for the paper
“Positive-instance driven dynamic programming for treewidth”.

We wish to thank all the authors who submitted papers for consideration, the invited
speakers, the members of the Program Committees for their hard work, and all the external
reviewers who assisted the Program Committees in the evaluation process. Special thanks go
to the Local Organizing Committee, who helped us with the organization of the conference.
Finally, we would like to thank Nicole Funk and Marvin Bocker for their valuable help in
editing these proceedings.

Kirk Pruhs
Christian Sohler
July 2017

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://esa-symposium.org
http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Program Committees

Design and Analysis (Track A) Program Committee

Christian Sohler (chair) Technische Universitiat Dortmund, Germany

Stephen Alstrup University of Copenhagen, Denmark
Yossi Azar Tel-Aviv University, Israel

Jaroslaw Byrka University of Wroclaw, Poland

Amit Chakrabarti Dartmouth College, USA

Vincent Cohen-Addad University of Copenhagen, Denmark
Anne Driemel TU Eindhoven, Netherlands

Alina Ene Boston University, USA

Matthias Englert University of Warwick, United Kingdom
Fedor Fomin University of Bergen, Norway

Dimitris Fotakis National Technical University of Athens, Greece
Shayan Oveis Gharan University of Washington, USA

Fabrizio Grandoni University of Lugano, Switzerland
Martin Grohe RWTH Aachen University, Germany
Sudipto Guha University of Pennsylvania, USA
Martin Hoefer Goethe Universitat Frankfurt, Germany
Jochen Koenemann University of Waterloo, Canada

Robert Krauthgamer Weizmann Institute of Science, Israel
Stefan Kratsch Universitat Bonn, Germany

Stefano Leonardi Sapienza University of Rome, Italy

Edo Liberty Amazon, USA

Wolfgang Mulzer Freie Universitat Berlin, Germany

Tan Munro University of Waterloo, Canada
Alantha Newman CNRS, Grenoble, France

Ilan Newman University of Haifa, Israel

Evdokia Nikolova University of Texas at Austin, USA
Erik Jan van Leeuwen Max-Planck Institute for Informatics, Germany
Yuichi Yoshida National Institute of Informatics, Japan

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:xiv Program Committees

Engineering and Applications (Track B) Program Committee

Kirk Pruhs (chair)
Kunal Agrawal
Eyjélfur Ingi Asgeirsson
Hannah Bast
Carola Doerr

Kurt Mehlhorn
Rolf Mohring

Ben Moseley
Martin Noéllenburg
Jeff Phillips
Rajeev Raman
Christian Schulz
Frits Spieksma
Cliff Stein

Sabine Storandt

University of Pittsburgh, USA

Washington University, St. Louis, USA
Reykjavik University, Iceland

Albert-Ludwigs Universitat Freiburg, Germany
Université Pierre et Marie Curie — Paris 6, France
Max-Planck Institute for Informatics, Germany
Beijing Institute for Scientific and Engineering Computing, China
Washington University, St. Louis, USA

TU Wien, Austria

University of Utah, USA

University of Leicester, United Kingdom
Karlsruhe Institute of Technology, Germany

KU Leuven, Belgium

Columbia University, USA

Universitat Wiirzburg, Germany

List of External Reviewers

Aaron Bernstein
Abhinav Srivastav
Adi Vardi

Adrian Vladu
Agnes Cseh
Ahmad Abdi
Akanksha Agrawal
Alan Roytman

Alberto Marchetti-Spaccamela

Alek Vainshtein
Alexander May
Alexandr Andoni
Ali Khodabakhsh
Alkida Balliu

Allan Grgnlund
Amin Gheibi

Amir Abboud

Amir Nayyeri
Amirali Abdullah
Anak Yodpinyanee
Anastasios Sidiropoulos
André Nichterlein
André van Renssen
Andreas Emil Feldmann
Andreas Galanis
Andreas Wiese
Andrew McGregor
Angelo Fanelli

Anil Maheshwari
Anna Adamaszek
Antonios Antoniadis
Antonis Thomas
Anupam Gupta
Aounon Kumar
Aparna Das

Arash Haddadan
Arindam Khan
Arnaud De Mesmay
Arne Schmidt
Arnold Filtser
Artur Kraska
Ashish Chiplunkar
Ashley Montanaro
Aurélien Ooms
Avinatan Hassidim

Ayumi Shinohara
Bahareh Banyassady
Bart De Keijzer
Bart M. P. Jansen
Ben Strasser
Benjamin Miller
Benjamin Raichel
Bernd Gaértner
Bingkai Lin

Birgit Vogtenhuber
Bojana Kodric

Boris Klemz
Brendan Lucier
Bruce Shepherd
Bundit Laekhanukit
Charilaos Efthymiou
Chen Attias
Chien-Chung Huang
Chinmay Hegde
Chris Schwiegelshohn
Christian Komusiewicz
Christian Scheffer
Christian Sommer
Christian Wulff-Nilsen
Christina Biising
Christoph Berkholz
Christoph Diirr
Christopher Musco
Christos Tzamos
Claire Mathieu
Claudia Dieckmann
Clément Canonne
Corey Sinnamon
Corwin Sinnamon
Damian Straszak
Daniel Lokshtanov
Danny Hermelin
Danny Vainstein
David Adjiashvili
David Kirkpatrick
David Manlove
David Peleg
Debmalya Panigrahi
Dennis Olivetti

Dima Kogan

25th Annual European Symposium on Algorithms (ESA 2017).

Editors: Kirk Pruhs and Christian Sohler

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:xvi

External Reviewers

Dimitrios Skrepetos
Dimitris Achlioptas
Dimitris Tsipras
Dirk Oliver Theis
Dirk Sudholt

Don Sheehy

Dror Fried

Elmar Langetepe
Ely Porat

Emmanouil Pountourakis

Enrico Nardelli
Eric Allender

Erik D. Demaine
Erik Lindgren
Erin Chambers
Eva Rotenberg
Eva-Maria Hols
Evangelos Bampas
Evangelos Markakis
Evripidis Bampis
Fabian Stehn
Fahad Panolan
Felix Reidl
Francois Le Gall
Frank Hoffmann
Frederic Magniez
Friedrich Eisenbrand
Ge Nong

George Giakkoupis
Ger Yang

Gerard Tel
Giuseppe F. Italiano
Gonzalo Navarro
Gordon Wilfong
Graham Cormode
Gramoz Goranci
Greg Bodwin
Gilnter Rote

Guy Even

Haim Kaplan
Haitao Wang
Hang Zhou

Haris Angelidakis
Helmut Alt
Hendrik Molter
Herman Haverkort
Hicham El-Zein
Holger Dell

Hong Wei

Hossein Esfandiari
Hsien-Chih Chang
Huacheng Yu

Hubie Chen

Huy Nguyen

Tan Mertz

Ignasi Sau

Ilan Cohen

Ilya Razenshteyn
Inbal Rika

Inbal Talgam-Cohen
Toannis Koutis

Ivkin Nikita

Jacob Holm
Jagadish M

Jakub backi

Jakub Radoszewski
Jan Marcinkowski
Jan Vondrak

Jannik Matuschke
Jayadev Acharya
Jean-Florent Raymond
Jeff Erickson

Jelani Nelson

Jesper Nederlof
Jesper Sindahl Nielsen
Jir{ Sgall

Jittat Fakcharooenphol
Joachim Spoerhase
Joan Boyar

Joanna Ochremiak
Johannes Blomer
Johannes Fischer
Johannes Lengler
José A. Soto

José Verschae

Josh Alman

Julia Komjathy
Justin Ward

Kaiyu Wu
Kanstantsin Pashkovich
Karl Bringmann
Kasturi Varadarajan
Katarzyna Paluch
Katharina Klost
Kazuo Iwama

Keerti Choudhary

External Reviewers

Kent Quanrud
Kevin Schewior
Kevin Verbeek
Kim-Manuel Klein
Kiril Solovey
Klaus Kriegel

Konrad Kazimierz Dabrowski

Konstantinos Mampentzidis
Konstantinos Panagiotou
Krzysztof Fleszar
Krzysztof Nowicki
Krzysztof Onak
Kunihiko Sadakane
Kyriakos Axiotis
Laszlo Vegh

Laura Sanita

Laurent Bulteau
Leah Epstein

Lena Schlipf

Lene Favrholdt

Liam Roditty

Lin Yang

Louxin Zhang

Lucas Pastor

Ludwig Schmidt
YLukasz Jez

Lukasz Kowalik
Maarten LofHer
Magnus Bordewich
Magnus M. Halldorsson
Magnus Wahlstrom
Manoj Gopalkrishnan
Manoj Gupta
Manuel Penschuck
Marcel Roeloffzen
Marcin Bienkowski
Marcin Mucha
Marcin Pilipczuk
Marcin Wrochna
Marek Adamczyk
Markus Blaeser
Marthe Bonamy
Martin B6hm

Martin Dietzfelbinger
Martin Dyer

Martin Gairing
Masaki Yamamoto
Mateusz Lewandowski

Matias Korman
Matt Weinberg
Matthew Johnson
Matthias Mnich
Matis Mihalak
Max Klimm

Max Willert

Maxim Sviridenko
Meirav Zehavi
Melanie Schmidt
Miao Qiao

Michael Goodrich
Michael Hamann
Michael Kerber
Michael Lampis
Michael Saks
Michael Walter
Michal Kotrbcik
Michatl Pilipczuk
Michal Wlodarczyk
Michal Ziv-Ukelson
Mikkel Abrahamsen
Mohammad Ali Abam
Mohammad Salavatipour
Monika Henzinger
Moran Feldman
Mordecai J. Golin
Morgan Chopin
Moritz Baum
Moritz Muehlenthaler
Morten Stockel
Nadja Scharf
Naonori Kakimura
Natan Rubin
Naveen Garg

Neal Young

Neil Olver

Nicolas Bousquet
Niklas Hjuler
Nikolai Gravin

Niv Buchbinder
Noah Stephens-Davidowitz
Nodari Vakhania
Norbert Zeh

Ofir Geri

Ohad Trabelsi
0O-Joung Kwon

Ola Svensson

0:xvii

ESA 2017

0:xviii

External Reviewers

Oliver Schaudt
Olivier Devillers
Oren Weimann
Oswin Aichholzer
Pan Peng

Pankaj Agarwal
Panos Giannopoulos
Paresh Nakhe
Pascal Lenzner
Patrick K. Nicholson
Paul Duetting

Paul Wollan

Pavel Kolev

Pavel Vesely

Pawel Gawrychowski
Pawel Schmidt
Peter Jonsson

Petr Golovach

Petr Kolman

Philip Lazos
Philipp Kindermann
Philippe Gambette
Pinar Heggernes
Piotr Krysta
Pranabendu Misra
Prosenjit Bose
Rajesh Chitnis
Ramanujan M. S.
Rasmus Pagh

Ravi Boppana

Ravishankar Krishnaswamy

Rebecca Hoberg
Rémy Belmonte
Rephael Wenger
Reut Levi
Riccardo Colini Baldeschi
Robbie Weber
Robert Ganian
Robert Kleinberg
Roei Tov

Roland Glantz
Roman Rabinovich
Ronald de Wolf
Ruben Becker

S. Muthukrishnan
Sagar Kale

Sahil Singla

Saket Saurabh

Salvatore Ingala
Sam Buss

Samuel Taggart
Sara Cohen

Sariel Har-Peled
Sascha Witt
Satoru Iwata
Saurabh Ray
Sayan Bhattacharya
Sebastian Lamm
Sebastian Ordyniak
Sebastian Siebertz
Sepideh Mahabadi
Serge Gaspers
Seth Pettie
Shashwat Garg
Shay Mozes

Shay Solomon
Sheung-Hung Poon
Shmuel Onn
Shuichi Miyazaki
Simina Branzei
Simon Gog

Sivaramakrishnan Natarajan Ramamoorthy

Soeren Laue
Solomon Eyal Shimony
Sgren Dahlgaard
Soumya Basu
Srinivasa Rao Satti
Stavros Kolliopoulos
Stefan Mengel
Stephan Friedrichs
Stephen Fenner
Subhas Nandy
Suguru Tamaki
Sumedha Uniyal
Sushmita Gupta
Takunari Miyazaki
Takuro Fukunaga
Tasuku Soma
Telikepalli Kavitha
Thanasis Lianeas
Thomas Blésius
Thomas Dueholm Hansen
Thomas Erlebach
Thomas Kesselheim
Till Fluschnik

Till Tantau

External Reviewers

Timo Koétzing

Tjark Vredeveld

Tobias Christiani

Tobias Harks

Tobias Maier

Tom van der Zanden

Tomas Balyo

Tomasz Kociumaka

Tomaz Hodevar

Travis Gagie

Troy Lee

Tsvi Kopelowitz

Ulrich Bauer

Ulrich Meyer

Valerie King
Vasileios-Orestis Papadigenopoulos
Vasilis Gkatzelis

Venkatesh Raman

Victor Verdugo

Virginia Vassilevska Williams

0:xix

Viswanath Nagarajan
Waldo Galvez
Wanchote Jiamjitrak
William Harvey
Xiaohui Bei

Xin Han

Yakov Nekrich

Yann Disser

Yasushi Kawase
Yoichi Iwata

Yutaro Yamaguchi
Yuval Emek

Yuval Filmus

Yuyi Wang

Zachary Frenette
Zachary Friggstad
Zahed Rahmati
Zohar Karnin

ESA 2017

Sketching for Geometric Problems

David P. Woodruff

Carnegie Mellon University, Pittsburgh, PA, USA
dpwoodru@gmail.com

—— Abstract

In this invited talk at the European Symposium on Algorithms (ESA), 2017, I will discuss a
tool called sketching, which is a form of data dimensionality reduction, and its applications to
several problems in high dimensional geometry. In particular, I will show how to obtain the
fastest possible algorithms for fundamental problems such as projection onto a flat, and also
study generalizations of projection onto more complicated objects such as the union of flats
or subspaces. Some of these problems are just least squares regression problems, with many
applications in machine learning, numerical linear algebra, and optimization. I will also discuss
low rank approximation, with applications to clustering. Finally I will mention a number of other
applications of sketching in machine learning, numerical linear algebra, and optimization.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases dimensionality reduction, low rank approximation, projection, regression,
sketching

Digital Object ldentifier 10.4230/LIPIcs.ESA.2017.1

Category Invited Talk

1 Projection

Formally, in the projection problem, we are given a point b € R™ and a d-dimensional flat
(affine subspace) H, and would like to compute the distance of b to H. In a typical setting,
n is very large, and d, while much smaller than n, is also fairly large. Thus we cannot afford
algorithms that say, are exponential in d. One way of being presented H is in its coordinate
representation, so we can think of H as being the set of points y of the form y = Ax + v,
where A is an n x d matrix and v is a point in R™, which we think of as an offset. Note that A
is a tall and thin matrix. Letting dist(b, H) denote the Euclidean distance of b to H, we have
that dist(b, H) = dist(b — v, H — v) by translation, where H — v is the set of points y of the
form y = Az. Thus we can write dist(b — v, H — v) = mingcpa ||[Az — (b — v)||2, which is just
a regression problem. If A has linearly independent columns, i.e., represents a d-dimensional
flat instead of a lower-dimensional flat, then the solution z* = (AT A)~*AT(b — v). One can
compute z* in O(nd?) time, or faster by using fast matrix multiplication algorithms, but for
large n and d this is too slow.

In the sketch and solve paradigm, one first relaxes the problem to a randomized approx-
imation problem, instead allowing for one to output an 2’ € R? for which [|Az’ — b|j2 <
(1 + €)||Az* — b||2 with large probability. We refer the reader to the survey [21] for more
details and proofs of claims, but we describe the basic idea below. The crux of the sketch
and solve paradigm is to first choose S from a random family of matrices, and many such
families of matrices work, with the important property that S is wide and fat, that is, it has
k rows and n columns for & < n. One then computes S - A and S -b. Then one replaces
the original regression problem with min, |[(SA)z — (Sb)||2. For small k, which we should

© David P. Woodruff;
37 licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 1; pp. 1:1-1:5

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2

Sketching for Geometric Problems

think of as being poly(d/e), this problem does not even depend on the large dimension n.
Therefore, one can now afford to compute the minimizer x’ to this small regression problem
using the closed form expression above, in only poly(d/e) time. The goal is to choose S from
an appropriate random family of matrices so that if one does this, then the minimizer z’ is
such that ||Az" — bll2 < (1 4 €)||Az* — b||2 with large probability.

It turns out that a number of families of random matrices work, such as a k x n matrix
S of i.i.d. normal random variables, where k = O(d/€?), and the entries in S are scaled by
1/vk. The main difficulty with such matrices is that computing S - A is slow. That is, S
is a dense matrix, and computing S - A naively takes at least nd?/e? time, which is even
slower than the exact algorithm for computing =*, which just took nd? time. Note that for
the exact algorithm, the bottleneck was in the computation of AT A, and note that both
algorithms can be sped up with fast matrix multiplication. While this is too slow for our
purposes, in a very nice paper of Sarlos [19], he showed that one could choose S from a much
more structured random family of matrices called Fast Johnson Lindenstrauss transforms.
This reduces the time for computing S - A to ndlogn, and using the connection to regression
described above, gives an overall algorithm in ndlogn + poly(d/e) time for least squares
regression. While this is optimal in the matrix dimensions, often A is itself a sparse matrix
and one would like algorithms which run in time proportional to the number nnz(A) of
non-zero entries of A. In work with Clarkson [7] we show this is in fact possible by using the
so-called CountSketch matrices from the data stream literature, where we achieve an overall
running time of O(nnz(A)) + poly(d/e) for regression. The key property of CountSketch
matrices is that they are extremely sparse, having only a single non-zero entry per column.
This enables the matrix-matrix product S - A to be computed in only nnz(A) time. This is
easily shown to be optimal, as any algorithm achieving relative error for general matrices
A needs to read a constant fraction of the non-zero entries, as otherwise it might miss a
very large entry. A number of interesting tradeoffs between the number of rows of S and its
sparsity are possible, see also the followup works [15, 17].

In many settings one does not only want to project a point to a flat, but rather to a much
more complicated object, such as the union of flats. A natural question is what properties
of the object allow for sparse, low-dimensional sketching matrices S. A natural concept
that arises is the sphereical mean width, or equivalently, the Gaussian mean width of the
object. Intuitively this measures the average fatness of an object, over all directions on the
unit sphere. While the sphere is very fat, a line is not. The less fat the object, the fewer
dimensions one needs to preserve the norms of points in the object by a sketching matrix. In
recent work of Bourgain, Dirksen, and Nelson, sparse sketching matrices for projecting onto
general objects were developed [4]. One application of this is to tensor regression [14].

2 Low Rank Approximation

I will also discuss the low rank approximation problem, where the goal is to approximate a
high rank matrix by a matrix of much lower rank. Low rank matrices have fewer parameters,
and consequently can be stored much more efficiently in factored form and applied to vectors
very quickly. Also, in many instances one has an underlying matrix which is of low rank,
which then becomes high rank because of noise that was added. Hence in some settings, low
rank approximation can also be viewed as a tool for noise removal.

Formally, one is given an n X d matrix A, and think of the n rows of A as being points
in R%. The goal is to find a rank k matrix A’ such that ||[A — A'||r < (1 + €)|[|A — Ax||F,

1/2
where for a matrix B, ||B||r = (Zie[n],je[d] sz) is the Frobenius norm, and Ay, is the

D. P. Woodruff

best rank-k approximation to A under Frobenius norm. A natural way of solving low rank
approximation is via the truncated singular value decomposition (SVD). Recalling that any
matrix A can be expressed as USV”, where U and V have orthonormal columns, and ¥ is a
diagonal matrix with non-negative non-increasing values as one moves down the diagonal, we
have that Ay is given by zero-ing out all but the top k diagonal entries of X, obtaining Y.
This effectively selects the k leftmost vectors of U and k uppermost vectors of V7, which are
also known as the principal components.

While the SVD gives an exact solution, it runs in time min(nd?, dn?), which can be sped
up using fast matrix multiplication, but is still much slower than what we would like. As
in the case of least squares regression, we can use sketching to obtain significantly faster
algorithms if we allow randomization and approximation. Namely, if we allow for outputting
a rank-k matrix A’ for which [|[A— A’||r < (14 ¢€)||A — Ag||F, then we can solve this problem
in nnz(A) 4 (n+d)poly(k/e) time [7]. To get some perspective on this, even when A is dense,
the time, up to poly(k/e€) factors, is nd, which is significantly faster than what is achievable
by the SVD. For sparse matrices, we obtain even larger speedups.

The basic idea behind using sketching for low rank approximation is to first compute
S A, where S is one of the random matrices discussed above with a small number of rows, on
the order of poly(k/e). One then argues that there is a (1 + €)-approximate rank-k solution
in the span of the rows of SA. It follows that by projecting each of the rows of A onto the
rowspan of SA, and then working in the coordinate representation of SA, one effectively
reduces the dimension from d to poly(k/e). Since the running time of the SVD is O(nd?),
this smaller value of d allows one to now compute the SVD in only n - poly(k/e) time. One
argues by the Pythagorean theorem that by first projecting the rows of A onto the rowspan
of SA, and then performing an SVD, that one still obtains a (14 €)-approximation. Choosing
S to be a CountSketch matrix, this whole procedure, except for the projection of the rows
of A onto the rowspan of SA, can be executed in nnz(A) + (n + d)poly(k/e) time. The
bottleneck is the projection of the rows of A onto the rowspan of S A, but this can be done
in nnz(A) + (n + d)poly(k/e) time by using the approximate projection algorithms discussed
above.

I will also discuss applications of low rank approximation to k-means clustering. Here
the general idea is, if given n points in R?, to form an n x d matrix A and then compute a
so-called projection-cost preserving sketch of A, which can then be used to prove a low rank
approximation with certain strong properties [10, 11, 12]. One then replaces the original
dimension d with a much smaller dimension depending on only k and 1/e. Given such a
small dimension, one then runs standard algorithms from the coreset literature to reduce the
number n of points to poly(k/e).

3 Additional Applications

Finally, I will conclude by mentioning a number of other problems sketching has been applied
to, such as special kinds of low rank approximations callled CUR decompositions, in which
the goal is to approximate a matrix A by a low rank matrix in which the factors of the
low rank matrix consist of actual rows and columns of A. Thus, if A has sparse rows or
columns, then so do its factors. Sketching has been applied successfully to obtain nnz(A)
time algorithms for CUR decompositions [5, 20].

Another interesting use of sketching is to high precision regression. One might complain
that the natural sketch and solve algorithm producing a vector 2’ € R? for which || Az’ —b||s <

(14 ¢€)||Az* — b2 has running time nnz(A) + poly(d/e) and is undesirable if € is very small.

1:3

ESA 2017

1:4

Sketching for Geometric Problems

By using sketching it is possible to obtain algorithms running in roughly nnz(A)log(1/e)
time [7]. The main idea is to use sketching to obtain an O(1)-approximate initialization to
gradient descent as well as an O(1)-approximate preconditioner.

Other applications include robust low rank approximation [8, 20], kernelized problems
[1], distributed and streaming computation [2, 3, 6, 13], tensor low rank approximation
[20], weighted low rank approximation [18], structure-preseving low rank approximation
[9, 16], etc. I refer the reader to my recent monograph for many of the details and additional
applications of sketching [21]. While this accompanying article to my ESA talk is primarily
focused on my own work, this is just due to the nature of the talk, and please see the above
monograph for many other references on these and related topics.

—— References

1 Haim Avron, Kenneth L. Clarkson, and David P. Woodruff. Sharper bounds for regression
and low-rank approximation with regularization. In RANDOM, 2017.

2 Maria-Florina Balcan, Vandana Kanchanapally, Yingyu Liang, and David Woodruff. Im-
proved distributed principal component analysis. In Advances in Neural Information Pro-
cessing Systems (NIPS), 2014. URL: https://arxiv.org/pdf/1408.5823.

3 Maria-Florina Balcan, Yingyu Liang, Le Song, David Woodruff, and Bo Xie. Commu-
nication efficient distributed kernel principal component analysis. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD), pages 725-734. ACM, 2016. URL: https://arxiv.org/pdf/1503.06858.

4 Jean Bourgain, Sjoerd Dirksen, and Jelani Nelson. Toward a unified theory of sparse
dimensionality reduction in euclidean space. In Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June
14-17, 2015, pages 499-508, 2015.

5 Christos Boutsidis and David P. Woodruff. Optimal CUR matrix decompositions. In
Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC), pages
353-362. ACM, https://arxiv.org/pdf/1405.7910, 2014.

6 Christos Boutsidis, David P. Woodruff, and Peilin Zhong. Optimal principal component
analysis in distributed and streaming models. In Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing (STOC), pages 236-249. ACM, 2016. URL:
https://arxiv.org/pdf/1504.06729.

7 Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression in
input sparsity time. In Symposium on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 81-90, 2013. URL: https://arxiv.org/pdf/1207.
6365.

8 Kenneth .L Clarkson and David P. Woodruff. Input sparsity and hardness for robust sub-
space approximation. In 2015 IEEE 56th Annual Symposium on Foundations of Computer
Science (FOCS), pages 310-329. IEEE, 2015. URL: https://arxiv.org/pdf/1510.06073.

9 Kenneth L. Clarkson and David P. Woodruff. Low-rank PSD approximation in input-
sparsity time. In Proceedings of the Twenty-FEighth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages
20612072, 2017.

10 Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu.
Dimensionality reduction for k-means clustering and low rank approximation. In Proceed-
ings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing (STOC),
pages 163-172. ACM, 2015. URL: https://arxiv.org/pdf/1410.6801.

11 Michael B. Cohen, Jelani Nelson, and David P. Woodruff. Optimal approximate matrix
product in terms of stable rank. In Proceedings of the 43rd International Colloguium

https://arxiv.org/pdf/1408.5823
https://arxiv.org/pdf/1503.06858
https://arxiv.org/pdf/1405.7910
https://arxiv.org/pdf/1504.06729
https://arxiv.org/pdf/1207.6365
https://arxiv.org/pdf/1207.6365
https://arxiv.org/pdf/1510.06073
https://arxiv.org/pdf/1410.6801

D. P. Woodruff

12

13

14

15

16

17

18

19

20

21

on Automata, Languages and Programming (ICALP), Rome, Italy, July 12-15, 2016,
volume 55 of Leibniz International Proceedings in Informatics (LIPIcs), pages 11:1-11:14.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2015. URL: https://arxiv.org/pdf/
1507.02268, doi:10.4230/LIPIcs.ICALP.2016.11.

Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data:
Constant-size coresets for k-means, PCA and projective clustering. In Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New
Orleans, Louisiana, USA, January 6-8, 2013, pages 1434-1453, 2013.

Ravindran Kannan, Santosh S Vempala, and David P. Woodruff. Principal component
analysis and higher correlations for distributed data. In Proceedings of The 27th Conference
on Learning Theory (COLT), pages 1040-1057, 2014.

Xingguo Li and David P. Woodruff. Near optimal sketching of low-rank tensor regression,
2017. Manuscript.

Xijangrui Meng and Michael W. Mahoney. Low-distortion subspace embeddings in input-
sparsity time and applications to robust linear regression. In Proceedings of the forty-
fifth annual ACM symposium on Theory of computing, pages 91-100. ACM, 2013. URL:
https://arxiv.org/pdf/1210.3135.

Cameron Musco and David P. Woodruff. Sublinear time low-rank approximation of positive
semidefinite matrices. CoRR, abs/1704.03371, 2017.

Jelani Nelson and Huy L. Nguyén. OSNAP: Faster numerical linear algebra algorithms via
sparser subspace embeddings. In 2013 IEEE 5/th Annual Symposium on Foundations of
Computer Science (FOCS), pages 117-126. IEEE, 2013. URL: https://arxiv.org/pdf/
1211.1002.

Ilya Razenshteyn, Zhao Song, and David P. Woodruff. Weighted low rank approximations
with provable guarantees. In Proceedings of the 48th Annual Symposium on the Theory of
Computing (STOC), 2016.

Tamés Sarlés. Improved approximation algorithms for large matrices via random projec-
tions. In 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
21-24 October 2006, Berkeley, California, USA, Proceedings, pages 143-152, 2006.

Zhao Song, David P. Woodruff, and Peilin Zhong. Low rank approximation with entrywise
£1-norm error. In Proceedings of the 49th Annual Symposium on the Theory of Computing
(STOC). ACM, 2017. URL: https://arxiv.org/pdf/1611.00898.

David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and
Trends in Theoretical Computer Science, 10(1-2):1-157, 2014.

1:5

ESA 2017

https://arxiv.org/pdf/1507.02268
https://arxiv.org/pdf/1507.02268
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.11
https://arxiv.org/pdf/1210.3135
https://arxiv.org/pdf/1211.1002
https://arxiv.org/pdf/1211.1002
https://arxiv.org/pdf/1611.00898

Permuting and Batched Geometric Lower Bounds
in the 1/0 Model

Peyman Afshani' and Ingo van Duijn?

1 MADALGO*, Department of Computer Science, Aarhus University, Aarhus,
Denmark
peyman@cs.au.dk

2 MADALGO, Department of Computer Science, Aarhus University, Aarhus,
Denmark
ivd@cs.au.dk

—— Abstract

We study permuting and batched orthogonal geometric reporting problems in the External

Memory Model (EM), assuming indivisibility of the input records. Our main results are two-
fold. First, we prove a general simulation result that essentially shows that any permutation
algorithm (resp. duplicate removal algorithm) that does «N/B I/Os (resp. to remove a fraction
of the existing duplicates) can be simulated with an algorithm that does « phases where each
phase reads and writes each element once, but using a factor o smaller block size.

Second, we prove two lower bounds for batched rectangle stabbing and batched orthogonal
range reporting queries. Assuming a short cache, we prove very high lower bounds that currently
are not possible with the existing techniques under the tall cache assumption.

1998 ACM Subject Classification F.2.2. Nonnumerical Algorithms and Problems, G.2.1. Com-
binatorics

Keywords and phrases I/O Model, Batched Geometric Queries, Lower Bounds, Permuting

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.2

1 Introduction

The I/O model [7] is the well-established model to design and analyze algorithms for massive
data. In this model, the internal memory has size M and the input data is stored in a disk of
infinite size that is divided into blocks of size B. The transfer of data between disk and the
memory is done via I/Os where each I/O can read or write one block. We define m = M/B.
All computation must take place in the internal memory. The goal is to minimize the total
number of I/Os. This is an elegant model for problems where the size of the input data far
exceeds the size of the available memory. Sometimes, algorithms require that M > B'*¢ for
a constant € and this is known as the tall cache assumption (and the converse as the short
cache assumption).

Batched Input with Constrained Output. The I/O model has been extensively studied [9,
8, 24]. In this paper, we will focus on proving lower bounds for batched geometric problems as
well as engaging in a more in-depth study of the permutation algorithms. The two important
batched problems that we study are the following.

* MADALGO Center for Massive Data Algorithmics is supported in part by the Danish National Research
Foundation grant DNRF 84.

© Peyman Afshani and Ingo van Duijn;

oY licensed under Creative Commons License CC-BY
25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 2; pp. 2:1-2:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2

Permuting and Batched Geometric Lower Bounds in the 1/0 Model

» Problem 1 (Batched rectangle stabbing (BRS)). The input comprises a set I of N axis-
aligned rectangles and a query set Q of N points in R?.

» Problem 2 (Batched orthogonal range reporting (BORR)). The input comprises a set P of
N points and a query set R of N axis-aligned rectangles in R?.

In a batched query problem, it is often required that the output should consist of all the
pairs (e;, ¢;) where e; is an input element that matches the query ¢;. In this case, which we
call the paired output format, the two problems stated above are equivalent; both output the
set of incidence between an input set of points and rectangles.

In this paper, we consider a different query output format: for every query g¢;, we require
that all the input elements that match g; must be placed consecutively in the output. In
other words, the algorithm should list the answer to g; fully before answering any other
query. However, there is no restriction on the order in which the queries are answered nor on
the order of elements reported for each query. We call this query output format. Thus, BRS
and BORR are equivalent when we consider the paired output format but they could behave
differently if we consider the query output format.

As we shall see shortly, a very connected research direction is in-depth study of algorithms
that permute a given set of input elements in the I/O model. A major or interesting (in our
opinion) rather open-ended unsolved questions are the following.

» Question 3. Can one prove an w(N/B) lower bound assuming M > B? for
(i) explicit permutations
(ii) or general permuting using any proof technique that is not based on counting?

» Question 4. Let A be an algorithm that can compute some permutation © of a given N
input elements in aN/B I/0s, for some parameter a. Can we transform A into another
algorithm A’ that computes the same permutation m using O(aN/B) I/0s, such that A" has
a “usefully structured canonical” form, e.g., it uses simple permutation algorithms as building
blocks?

Previous work. Sorting and permuting are possibly the two most fundamental problems in
the area of I/O algorithms, with permuting being one of the first problems studied in an
I/O setting [19]. Sorting N elements requires O(Sort(N)) = O(% log,, &) I/Os and this
bound is tight [7]. The permutation problem is very similar to the sorting problem where
the goal is to produce (possibly an implicitly defined) permutation of the input elements. It
is also known that any permutation can be performed in O(Sort(N)) I/Os and there exists
permutations that require asymptotically that many I/Os; however, the proof is existential
and no such explicit permutation is known to this date [7]. This lower bound (as well as
many of the lower bounds in the I/O model) are proved in the so-call Indivisibility Model:
the data elements are assumed to be indivisible and atomic and each block can store B data
elements and the only computation allowed on the atomic elements is to move, delete, or
copy them (to or from memory). All other information or computation (unless explicitly
mentioned) is free. In the rest of this article, we will only focus on algorithms that work in
the indivisibility model. Within the context of permutations in the indivisibility model, there
has been attempts to answer Question 3 (or alternatively, to study “easy” permutations) but
all the known explicit permutations can be shown to be easier [7, 16, 21] and in particular,
they all can be done in O(N/B) I/0s when we do not have a short cache.

Additionally, there has been a lot of interest in batched problems. For example, in a
survey Vitter [24] cites 12 different problems that can be answered in O(Sort(N) + K/B)

P. Afshani and I. van Duijn

I/Os where N is the total input size and K is the total output size. See also [10, 13, 17, 18, 20].
In particular Arge et al. [11] show that a slightly less restrictive version of Problem 2 can be

solved in O(N /Blogh ' N/B + K/ B) I/Os. These results produce paired output format.

For the lower bounds, the permutation and sorting lower bounds as well as a problem
known as “proximate neighbors” [15], provide a basis of (Sort(N)) lower bounds for a lot
of problems, including problems with batches of N input elements and N queries. Showing
a lower bound of roughly Q(Sort(N)) for smaller batches is more difficult but some such
results are also known [4, 6] (although not explicitly stated in these papers). Lower bounds
for dynamic batched queries have also been proved [5]. In general, Q(Sort(N)) is the only
lower bound available for all of these problems, in particular because in the indivisibility
model we can consider any algorithm that solves a batched problem as an algorithm that
computes an implicitly defined permutation of the input elements (possibly with duplicates).

Our results. In relation to Question 4, we prove a simulation result that shows any algorithm
in the indivisibility model that performs an I/Os such that it reads and writes each element
O(a) times, can be “simplified” into an algorithm that performs O(«) rounds where in each
round each element is read and written once, using « factor smaller blocks.

In relation to the batched problems and assuming query output format, we prove that
if a data structure answers BRS queries in f(N) + ¢oK/B I/Os, for a constant cg, then

d—1
f(N) = Tog B+IJL\)’g Ty (717?5(];7)) , assuming m < B¢ for a small enough constant ¢. For
B

the BORR problem, then we prove f(N) = Q(% logfn_l(N)). Interestingly, this might mean
that BRS is a more difficult problem than BORR in the query output format.

1.1 Preliminaries

Technical barriers. The indivisibility model has been extremely successful in proving lower
bounds for algorithmic and data structure problems. However, despite the considerable
attention, there are still some very natural questions left open. For instance, we consider
Question 3 as a major open question. The situation becomes more exasperating when one
considers that the known existential proof in fact shows that almost all permutations should
require Q(Sort(N)) I/Os to permute but yet, we do not know of a single permutation that
even requires w(N/B) I/Os. Furthermore, the existential proof (as well as the comparison-
based lower bounds for sorting) only can show a Q(log,,(N!)) = Q(Sort(N)) lower bound
for any reasonably defined batched problem. For example, we can only obtain a Q(Sort(N))
lower bound for the d-dimensional BORR problem (for a constant d) since the total number
of “combinatorially” different point sets of size N in R? is at most N!¢ and log,,(N!?) =
©(Sort(N)) for a constant d. Obviously, it is extremely unlikely that this bound is tight and
that the d-dimensional BORR problem can be solved in O(Sort(N)) I/Os.

However, if we assume a short cache, then both of these obstacles go away: we can in fact
show lower bounds for explicit permutations such as the matrix transpose permutation and
using a different proof strategy [7]. So the natural question becomes, can we actually prove
meaningful lower bounds for batched geometric queries under the short cache assumption?
Apart from the above considerations, this is also motivated by the desire to understand the
effects of short cache on the performance of the algorithms.

Hong-Kung’s rounds. While trying to prove a lower bound for the complexity of fast
Fourier transform, Hong and Kung [23] presented a general transformation of any I/0

2:3

ESA 2017

2:4

Permuting and Batched Geometric Lower Bounds in the 1/0 Model

algorithm into a more standard form that works in rounds. While their transformation is
originally presented for B = 1, it is easily generalizable to larger block sizes. We can thus
present their transformation as follow.

» Theorem 5. An I/0 algorithm A that runs in a machine with memory size M can be
transformed into an equivalent algorithm A’ with the same asymptotic running time on a
machine with memory size 2M and the same block size such that A" runs in rounds and
during each round, A’ first reads 2M /B blocks, performs some computation and then writes
2M/B blocks and clears the memory.

The increase in the block size of the machine in the above theorem is not consequential.
It is easy to show that two machines where the block sizes and memory sizes differ only by a
constant amount are equivalent, up to constant factors.

» Corollary 6. Let A be an algorithm that works in Hong and Kung’s rounds that creates a
permutation m of a set of N input elements using «N/B I/Os. At least half of the elements
are written at most O(«) times. Therefore, every such element occurring in an output block
can be traced back to one of mA® possible input blocks.

Proof. By an averaging argument, not more than half of the elements can be written more
than 2« times, thus at least half of the elements are written at most 2« times. Since A works
in Hong-Kung rounds, we can trace the elements in an output block to 2m other blocks
written previously by the algorithm. Those elements, subsequently can be traced back to
(2m)? other blocks. For the elements that are written O(a) times, the output block is traced

back to m(® input blocks. |

2 Universal External Permuting Algorithm

To study the hardness of permuting, we need to consider arbitrary algorithms that perform
a specific permutation. That is, the hardness of a permutation is determined by the optimal
algorithm performing it. Often, one admirable goal towards this end is to reduce any
permuting algorithm into a “canonical” permuting algorithm that is simpler and easier to
study. In fact, Hong and Kung’s rounds is one such attempt. However, we would like to
probe much deeper. Our basic building block is the following.

2.1 Blocked Shuffle Exchange

To simplify analysing external memory permuting lower bounds, we only consider a single
type of algorithm that we call a Blocked Shuffle Exchange (BSE).

» Definition 7. In a machine with block size B and memory size M, a blocked shuffie
exchange with o phases is an algorithm with the following structure.

(i) it runs in o phases

(ii) in each phase, the algorithm does the following until
all elements are read and written once: read at most m = M/B blocks into the memory,
write some permutation of the read elements to the disk, and then clear the memory.

The goal is to show that we can (partially) simulate any permuting algorithm with a
BSE. In particular, the goal is to simulate an algorithm A that uses at most «N/B 1/Os,
with a BSE containing O(«) phases. We can in fact do this but under two caveats. The
first caveat is that we only simulate the permutation of the elements that are written O(«)

P. Afshani and I. van Duijn

Block B with |B| = B

RN
B

[}

aN/B blocks

Figure 1 The write history of A consists of aN/B blocks of size B. Sparse layer blocks can be
compactified using blocks of size B/« (2 in this example). Note that all columns contain at most
one element.

times. This is necessary because of some (rather uninteresting) bad examples: an algorithm
that sorts the first O(N/log N) elements of an input using N/B 1/Os, obviously cannot be
simulated with O(1) phases of a BSE. However, the algorithm reads and writes a small
portion of the elements many times while not touching the rest. So it is only meaningful to
demand a simulation on the subset of the input elements that are not read or written many
times. This is what we demand with the first caveat. For the second caveat (that we do not
know if it is necessary or not) we define work as block size times number of I/Os performed;
for an optimal simulation in terms of work, we need to run our simulation BSE on a smaller
block size. The exact formulation of our result is the following.

» Theorem 8. Let A be an algorithm that creates a permutation m of a set of N input
elements using aN/B 1/Os. Furthermore, we assume that A writes any element O(a) times.

Then, we can create a BSE that creates m using O(«) phases and either (i) uses «>N/B
I/0s or (ii) uses the same amount of work but using blocks of size B/« .

Proof. Observe that we can assume A writes every element exactly & := ca times for a
constant ¢; if some elements are written fewer times, we can just read them and perform
dummy writes.

To describe a BSE, we model the sequential write history of A. That is, all the writes
that A makes laid out sequentially in the order in which they are written. Now conceptually
imagine having & copies of this array stacked on top of each other, where each copy forms
a layer. Every write performed by A thus corresponds to a column that is composed of &
layer-blocks stacked on top of each other. Assume the layer-blocks in one block are numbered
from one to &, so that the ith block the kth column contains all elements written for the ith
time at the kth write. Thus, simulating an I/O by algorithm A corresponds to reading or
writing in the corresponding column.

The observation is that in the simulation, we can compute the i + 1st layer by only
reading from the ith layer. This follows from the fact that every read A makes is from a
previously written block (or input block), and to produce all the i + 1st writes only requires
reading elements written 7 times. Thus, to compute the next layer, we run A but replace
every read with a read to the corresponding block in the ith layer (and similar for writing to
the ¢ + 1st layer). Since A uses aN/B 1/0s, computing the next layer also takes at most

that many I/Os. Since layer-blocks can be very sparse, this gives a work of GalN = O(azN).
To achieve O(aN) work, the layer blocks are tightly packed in smaller B/a-sized blocks.

Every simulated I/O is now a sequence of densely filled B/a-sized blocks and one additional
sparse block. Since every element occurs exactly once per layer, there are at most N/(B/a) =

2:5

ESA 2017

2:6

Permuting and Batched Geometric Lower Bounds in the 1/0 Model

aN/B dense 1/0s per layer. The same bound holds for sparse I/Os, since there are & N/B
columns, and at most one sparse I/O per column. Together, this yields &aN/B 1/Os and
(&aN/B)(B/a) = &N work. <

The factor a reduction in block size in this result might not be optimal. For small
block size, it might happen that o = Q(B), and thus the simulation essentially becomes an
internal memory simulation. However, for simulations where « is a constant, the theorem is
particularly useful.

» Corollary 9. To prove that an explicit permutation m requires w(N/B) I/Os (and thus
w(N) work), it is sufficient to prove that permuting © with a BSE requires w(N) work.

2.2 Abstract Duplicate Removal

As we show in Section 3, creating the output of a batched problem is not modelled as a
permutation problem, but as a duplicate removal problem. Essentially, we can think of the
algorithm as an algorithm that runs “backwards” and given the output of the batched problem,
it is trying to remove all the duplicates and produce the input set of elements. Because of
this, we prove a different simulation result that shows a duplicate removal algorithm can
be manipulated to produce a particular permutation of a subset of the elements with some
nice properties. Before stating our simulation result, we need to introduce some definitions
pertaining to duplicate removal.

» Definition 10. Consider a set S of K atomic elements together with an equivalence relation
= defined on S. An element ey is a duplicate of an element es if and only if e; = e5. The
duplicate removal problem is the problem of finding the quotient set or specifically, it is
the problem of finding a subset S’ C S of N elements such that no two elements in S’ are
equivalent but for every element in S there is an equivalent element in S’.

The duplicate removal problem is trivial if the algorithm has full knowledge of which
elements are duplicates and if we only care about the movement of the elements. However,
such an algorithm is highly unrealistic. To tie up the algorithm into a more realistic behavior,
we force the algorithm into duplicate elimination framework (DEF).

1: The algorithm starts with an input of K atomic elements, but with no knowledge of the
equivalent relation =.

At cost of one I/0, the algorithm can read or write a block.

The algorithm can move or delete elements in the main memory.

The algorithm works in the Hong-Kung’s rounds.

LA

The algorithm can detect all elements €1, es in the main memory s.t., e; = es. From now
on, the algorithm remembers this for free, for all copies of e; and es.

Crucially, an algorithm A can actually delete all copies of an element, if it detects that
it is a duplicate of another element. This is a problem for showing lower bounds for the
batched problem since this operation can shrink the input size of the duplicate removal
algorithm, leaving an easier instance of the problem. In the following theorem, we overcome
this difficulty.

» Theorem 11. Consider an algorithm A that works in the DEF and given an input S of
size K it detects a subset S’ C S of K/2 duplicate pairs in a«K/B 1/Os.

Then, using O(aK/B) I1/0s, and using a machine with M’ = M + B memory, we can
create a permutation of a subset S” C S such that S” contains K/4 pairs of elements (e, €’)
of S where e is a duplicate of ¢’ and e and €' are placed in the same block.

P. Afshani and I. van Duijn

Proof. Our overall proof strategy is as follows. We allocate a special buffer of size B in
the memory where we collect pairs of elements (e, e’) such that e is a duplicate of €’. Once
the special buffer is full, we write them to the disk. To fill the special buffer we simulate
A two times: once forward and once backwards. During the backwards execution of A we
make some modifications where instead of writing an element e into a block B, we may write
an element e’ instead. This means that, in the future, when we read the block B, we will
have the element ¢’ instead of e. We continue the backwards execution of A while treating
e’ the same way e was treated; this is possible since A only moves or copies the element e
and both can be applied obliviously to €’ instead. It is important to observe that A might
copy elements (consider it bookkeeping), even though it is a duplicate removal algorithm.
Ultimately, what we want to show is that by using the sequence of I/Os that A performs, we
can create an algorithm that produces a permutation of the input such that at least half of
the elements reside in a block with at least one equivalent element. In order to show this, we
define two notions.

Consider the original execution of A. First, every element e defines a copy tree C(e),
which is a rooted tree, as follows. There is a node in C(e) for every time e was loaded
into a Hong-Kung round. The root of C(e) is the first time the element e is loaded into
memory. More than one copy of e could be in memory in a specific round. Therefore, pick
one arbitrarily to be the representative that round. Two nodes u and v in C(e) are connected
if the block wu is loaded from was written in the round where v was the representative. Note
that this implies that C(e) is a path if e is only ever moved around and never duplicated.

Second, for every equivalence class £ we define an equivalence tree T(E). Two elements
e; and e; in T'(€) are connected if the algorithm discovered their equivalence. This implies
in particular that (some copies of) e; and e; were in the memory at the same time. It
is therefore easy to write all edges of T(€) to a special buffer during the execution of A.
However, this would not be a permutation since every element of the equivalence tree is
written as many times as its degree.

The basic idea is to output siblings of T'(£) in pairs, so that in the at least half of the
elements of T'(£) are output as disjoint pairs. There are two obstacles with this approach.
The most important is that siblings might not reside in memory at the same time. The other
obstacle is that nodes might not have an even number of children.

First we show how to handle the second obstacle with the following grouping scheme
(the algorithm does not actually perform these operations, but it is considered known by the
algorithm). Consider the deepest internal node e. If it has an even number of children they
are marked to belong to the same group, meaning that they will be paired up later. If e has
an odd number of children, then e is grouped together with its children. In either case, e and
its children are discarded and the scheme is repeated until there are no nodes left to group.
Note that some elements are not grouped (i.e. those that had an even number of children),
but at least half of the elements will be grouped. The goal now is to pair each element with
exactly one member of its group.

We first run A with a memory of size M + B. The special buffer is used to write discovered
pairs to disk, and it is written to the output section on disk when it is full. If an element
meets a member of its group in the memory, we write the pair to the buffer. The two elements
are now disregarded for the rest of the procedure, meaning they will not be paired up with
other elements anymore. Note that all nodes that were grouped with their children have
been written to disk. What is left is to show how to pair up the remaining unpaired siblings.

We do this by performing the I/Os of A backwards by considering writes as reads and
vice versa. Elements that have already been paired up will not be used to form new pairs,
but are still moved around in the backwards run. Consider the situation where the algorithm

2:7

ESA 2017

2:8

Permuting and Batched Geometric Lower Bounds in the 1/0 Model

€; €;

NS -

S O S|

i €k

Figure 2 An element e; and its children in the equivalence tree (left), and e; as a supernode
showing the underlying copy tree C/(e;) (right).

“discovers” an equivalence between e; and e;, where e; is the parent in the equivalence tree
and e; is still unpaired. Since e; is either already paired in the forward run, or will not
be paired at all, we can safely substitute it with e;. That means that for the rest of the
backwards run, every copy of this e; upwards in the copy tree is now replaced by e;. The
claim is that all unpaired siblings will be paired up in this way.

Figure 2 depicts part of the equivalence tree of e;. The two children e; and ey, were never
in memory at the same time. However, if we replace the copy of e; (call it a) that discovers e;
by e; (and similarly for the copy b that discovers ey) the following happens. The substituted
elements will end up in the memory at the same time, namely at the round where some copy
of e; wrote copies a and b to disk. At this point the elements are written to the buffer and
ignored for the rest of the backwards run as usual. If more than two substituted elements
meet in memory, then at most one (namely the one that was not written to the buffer) will
propagate up the copy tree of e;. By construction, an even number of siblings were left, so
all of them will eventually be paired and written to the buffer.

Thus, all elements that were grouped are written to disk exactly once, and always paired.
Since at least half of the elements were grouped, the proof is complete. <

3 Batched Lower Bounds for Short Cache

In this section, we describe our lower bounds for offline problems under the short cache
assumption. As discussed earlier, a major open problem is to obtain some non-trivial lower
bound of w(Sort(N)) for some offline problem without the short cache assumption and
unfortunately, none of the known techniques seem capable of doing that.

In general, proving lower bounds for geometric problems involves first building a “difficult”
input set and then proving that the input is indeed difficult. For our problems, this first part
is now considered standard since there have been plenty of lower bounds that have been
using similar set of basic constructions of points and rectangles [2, 3, 12, 14, 22].

These standard constructions have been summarized in the following theorems.

» Theorem 12. [2, 3, 1}] For any parameter n, we can place a set P of n points inside the
unit cube U in R such that for any two points p,q € P, the rectangle created by p and q has
volume Q(1/n). Furthermore, any rectangle of volume v contains Q(vn — O(1)) points.

» Theorem 13. /3, 14, 12] For any two parameters n and £, 2 < { < n'/3, we can place a
set R of n rectangles inside the unit cube U in R with the following properties. There are
t == c¢(log, n)?~1 types of rectangles, for a constant c;, with each type having the dimensions
(%)“ X (%)12 X o (%)Zd’l X w, for some integers i, € {0,...,log,(n/t)}. The set
R has the following properties:

P. Afshani and I. van Duijn

(i) each rectangle has volume *,

(ii) ©(%) rectangles of each type are sufficient to tile U,
(iii) every two rectangles of same type are disjoint, and
(iv) r rectangles that have distinct types intersect at a volume at most #.

3.1 Batched rectangle stabbing problem

In BRS we are given an input set I of NV rectangles and a query set @) of N points. The goal
is to find for every point ¢ in @, the set of rectangles that contain ¢. For every query point g,
the algorithm is required to output the set of rectangles that contain ¢ in contiguous blocks.
However, the algorithm is given freedom to choose the order in which to report the queries,
and within each query, the order of the rectangles that contain q.

» Theorem 14. Let A be an algorithm that given the input sets I and Q for the BRS problem,
answers the queries in query order format and in f(N)+ coK/B I/0s for a constant c¢y. We

d—1
prove that f(N) = o8 B+ﬁglogn . (;L‘gg(ﬁ)) , assuming B = Q(loglog N).

The first step is to construct the difficult input sets. First, we create a set QQ of N points
using T'heorem 12. Then, using Theorem 13, we create a set I; of n initial rectangles for a
parameter n. Next, we “clone” each initial rectangle 8 times, where [is a parameter. This
is inspired by a data structure lower bound of [1]. Specifically, we create 8 copies of each
initial rectangle and then place the copies in the input set I. Thus, we can construct a set
I of N = nf rectangles. One should think of the clones as slightly perturbed copies of the
original rectangles, meaning, the cloned rectangles are distinct atomic rectangles. However,
for simplicity we consider them to cover the same area. If an initial rectangle is stabbed by
k query points, all its clones are said to have multiplicity k.

Thus, we have a set Q of query points, and a set I of rectangles. Assume that the
algorithm decides to answer the set of queries in the order < ¢i,---,qn >. For each g;, let
1,, refer to the subset of I that contains the point ¢;. By Theorem 13 and because of our
cloning, I,, contains ¢ rectangles where t = (log, n)?~1. The output of the algorithm can
therefore be described as O := I, ..., I, . Thus, O is a sequence of atomic elements, where
each atomic element is a rectangle from I. Let K be the total length of O. With the input
and output formalised, we have the necessary tools to prove the theorem.

Proof of Theorem ?7. Consider the input (Q,) and the output O as described above. O is
generated from the sequence in which I is presented to the algorithm. Multiple query points
might stab the same rectangle, so O can contain many duplicates. Since the operations of
the algorithm are reversible in the indivisibility model, we can consider the algorithm in

reverse. In this setting, the sequence O is the input and the goal is to remove duplicates.

Observe that we have many duplicates; by Theorem 13, each rectangle € I has volume
t/n, and therefore by Theorem 12 it contains @(%N) = ©(tf3) points. This means r appears
O(tp) times among the query answers, and thus it is duplicated O(¢3) times. By assumption
the algorithm spends at most f(N) + ¢oK/B I/Os to remove all the duplicates. We claim it
is enough to prove that this duplicate removal requires more than (co + 1)K/B I/Os. Most
of this proof is devoted to proving this main claim, and in the end we show how it implies

that f(N) > K/B.

By contradiction, assume the duplicate removal can be done in aK/B 1/0s, for a = ¢o+1.

If there are more than K/10 elements of O that are written more than 10« times, then it
follows that the algorithm has spent more than (10« - K/10)/B = «K/B 1/0s, which is
not possible. Thus, let O’ be the subset of O where each element of O’ is written at most

2:9

ESA 2017

2:10

Permuting and Batched Geometric Lower Bounds in the 1/0 Model

10« times and now we know that O’ contains at least 9K /10 elements. Since O contains N
unique elements, it follows that O’ contains 9K /10 — N > 8K /10 duplicates. Now ignore any
element that is not in O’ (or assume the algorithm can just remove the duplicates for free
outside O’). This means, the algorithm has an input of size at least 9K/10 and it remove at
least 8 /10 duplicates.

By Theorem 11, we can do a simulation of the duplicate removal with an « (i.e. constant)
factor overhead on the number of I/Os. Let O be the sequence of elements produced by the
simulation, and consider a block B in O. By Theorem 11, we know B is filled with pairs
of elements that are duplicates and by Corollary 6, B can be traced back to w = m©(®)
blocks of size B in the sequence O’ and in particular to blocks in the sequence I, , ..., I,
Each block of size B can store answers for max{1, %} queries and thus w blocks of size B

correspond to u = w - max{1, %} queries. Since every rectangle is stored in the same block
with at most § of its clones, there are at least % un-cloned (initial) rectangles in I; with
multiplicity > 1. That means that there exists a subset S C @ of queries (where |S| < u), so
that in the set of rectangles in I; stabbed by S, there are at least % rectangles stabbed by
at least two query points.

We show that for the right choice of parameters, this is impossible which would in turn
prove our main claim above. To do this, it is enough to show that two query points ¢; and
g; cannot stab r = Cﬂ% common initial rectangles; if that holds, then the total of common

initial rectangles over all u? pairs in S cannot amount to %.
By an area argument, we show that two query points ¢; and ¢; cannot stab r = Cﬁ% +1

initial rectangles. If the area of the intersection of r initial rectangles, which is %, is
smaller than the area spanned by ¢; and g;, which is at least Q(%) = Q(%) by Theorem 12,
C,;ﬁ, (i.e. Bt < £771) for some

constant ¢/. By substituting ¢ = ¢;(log, n)?~! and r we get:

then we are done. Thus, we must ensure that ﬁ <

deif(logyn)?t < (7 M)
Blogt

(d—1)loglog,n +log 8+ O(1) < Bu? @
Blogt

B((d=1)loglog,n +log f + O(1)) < Cuzg @

We set 8 = B/(log B + loglogn) and thus we get u = w since St > B. We assume
B = Q(loglog N) and thus this implies § > 1 and thus it is a valid choice for 5. Then, we
observe that setting the value log ¢ = m©P(® satisfies the inequality 3. We thus we obtain
a lower bound of f(N) = Q(K/B). Since each query point hits exactly ¢ rectangles, the
output size is K = Ntf3. For our choice of ¢, we have t = (::%&)d 1. Using the notation
f>gfor f =Q(g), we get

d—1
K log N 1
N — =N. 4
F(N) > B (mo(a)) log B + loglogn)

<

This lower bound is higher than the upper bound shown in [11] for the paired output
format. One trivial approach to achieve the query output format is sorting the paired
output format. This yields (’)(N/B log"* N/B + K/Blog,, K/B) I/Os, which of course
does not match our lower bound. Besides, our theorem only applies to algorithms that use
O(f(N)+ aK/B) I/Os. It would be interesting to see if our lower bounds can be matched
by a specialised algorithm tailored for the query output format.

P. Afshani and I. van Duijn

3.2 Batched Orthogonal Range Reporting

» Theorem 15. Let A be an algorithm that given the input sets P and R for the BORR
problem, answers the queries in f(N)+coK/B I/0s. And assume B > m® for some small
enough constant €. We prove that

f(N) = Q<g log? 1 (N) + K/B) .

Proof. The proof of this theorem follows the same reasoning as the proof of Theorem 14,
but the input objects (points) are not cloned. Consider an input (P, R) where P is a set of
N points as in Theorem 12 and R is set of n query ranges as in Theorem 13. The value of n
is determined by a parameter 5 so that 8 = N/n. Note that we create fewer rectangles than
points.

As before, we look at the problem as a duplicate removal problem, define the sequence O
of size K and observe that it is sufficient to prove that removal of duplicates from O requires
at least a /B I/Os where o = ¢o + 1. As before, we assume otherwise, meaning, we assume
that the algorithm can remove duplicates in «K/B 1/Os. We then define the sequence o’
and use Theorem 11 to define the sequence O. We know that every block in O contains
B/c duplicates for some constant c. However, here the role of the rectangles and points are

swapped and proofs start to diverge.
t

The volume of a rectangle is £, so by Theorem 12 it contains ©(N L) = ©(¢3) points.

Since the points contained in a rectangle are reported consecutively, a block of size B can
store answers to max{1, 77} queries. Thus, setting § to be max{1,©(F)}, every block can
store the answers to O(1) queries. As before, every block in O can be traced back to only
mO(@) blocks in the sequence O and since very block in the sequence O stores answers of
at most O(1) queries, it follows that every block in O can be traced back to w = m°(@
rectangles that contains B/c points that are contained in at least two of the rectangles. This
means, for some pair of rectangles g1, g2, we must have B/(cu?) common points. Observe
that the area of ¢ N ¢z is at most O(-5) and thus by Theorem 12, ¢; N g2 can contain at
most 14+ N -O(-5) =1+ c’% points, for some constant ¢'.
Thus, we can get a contradiction by satisfying the inequality
/18

177
+€<

Observe that 1f > > 1, then we can pick ¢ large enough such that it satisfies the inequality.

In particular, we set ¢ = Q(w?). The assumption of % > 1 translates to B® > m® which is
satisfied by our short cache assumption. Thus, we get a lower bound

F(N) :Q(ﬁ) :Q<t€:> :sz(tg) :Q(W) —Q(glogm N) <

—— References

1 Peyman Afshani. Improved pointer machine and I/O lower bounds for simplex range
reporting and related problems. In Symposium on Computational Geometry (SoCG), pages
339-346, 2012.

2 Peyman Afshani, Lars Arge, and Kasper Dalgaard Larsen. Orthogonal range reporting in
three and higher dimensions. In Proceedings of Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 149-158, 2009.

2:11

ESA 2017

2:12

Permuting and Batched Geometric Lower Bounds in the 1/0 Model

10

11

12

13

14

15

16

17

18

19

20

21

Peyman Afshani, Lars Arge, and Kasper Dalgaard Larsen. Orthogonal range reporting:
query lower bounds, optimal structures in 3-d, and higher-dimensional improvements. In
Symposium on Computational Geometry (SoCG), pages 240-246, 2010.

Peyman Afshani, Gerth Stolting Brodal, and Norbert Zeh. Ordered and unordered top-k
range reporting in large data sets. In Proceedings of the Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 390-400, 2011.

Peyman Afshani and Nodari Sitchinava. I/O-efficient range minima queries. In Scand-
inavian Workshop on Algorithms Theory, pages 1-12, 2014.

Peyman Afshani and Norbert Zeh. Lower bounds for sorted geometric queries in the I/0
model. In ESA 12: Proceedings of the 20th Annual European Symposium, pages 48-59,
2012.

Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM (CACM), 31(9):1116-1127, 1988.

L. Arge. External memory data structures. In J. Abello, P. M. Pardalos, and M. G.C.
Resende, editors, Handbook of Massive Data Sets, pages 313-358. Kluwer Academic Pub-
lishers, 2002.

Lars Arge. Efficient external-memory data structures and applications. PhD thesis, Aarhus
University, 1996.

Lars Arge. The buffer tree: A technique for designing batched external data structures.
Algorithmica, 37(1):1-24, 2003.

Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy, Torsten Suel, and Jeffrey Scott Vitter.
Theory and practice of I/O efficient algorithms for multidimensional batched searching
problems. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 685—694, 1998.

Lars Arge, Vasilis Samoladas, and Ke Yi. Optimal external-memory planar point enclosure.
In Proceedings of Furopean Symposium on Algorithms (ESA), pages 40-52, 2004.

Lars Arge, Darren Erik Vengroff, and Jeffrey Scott Vitter. External-memory algorithms
for processing line segments in geographic information systems. In Proceedings of Furopean
Symposium on Algorithms (ESA), pages 295-310. Springer, 1995.

Bernard Chazelle. Lower bounds for orthogonal range searching: I. the reporting case.
Journal of the ACM (JACM), 37(2):200-212, 1990.

Yi-Jen Chiang, Michael T. Goodrich, Edward F. Grove, Roberto Tamassia, Darren Erik
Vengroff, and Jeffrey Scott Vitter. External-memory graph algorithms. In Proceedings of
the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 139-149, 1995.
T.H. Cormen. Fast permuting on disk arrays. Journal of Parallel and Distributed Com-
puting, 17(1):41-57, 1993.

Andreas Crauser, Paolo Ferragina, Kurt Mehlhorn, Ulrich Meyer, and Edgar A Ramos.
I/O-optimal computation of segment intersections. External Memory Algorithms and Visu-
alization, pages 131-138, 1999.

Andreas Crauser, Paolo Ferragina, Kurt Mehlhorn, Ulrich Meyer, and Edgar A. Ramos.
Randomized external-memory algorithms for line segment intersection and other geometric
problems. International Journal of Computational Geometry € Applications, 11(03):305—
337, 2001.

Robert W. Floyd. Permuting information in idealized two-level storage. In Complexity of
computer computations, pages 105-109. Springer, 1972.

Michael T. Goodrich, Jyh-Jong Tsay, Darren Erik Vengroff, and Jeffrey Scott Vitter.
External-memory computational geometry. In Proceedings of Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 714-723, 1993.

Gero Griener. Sparse Matriz Computations and their 1/0 Complexity. PhD thesis, Tech-
nische Universitat Miinchen, 2012.

P. Afshani and I. van Duijn

22

23

24

Joseph M. Hellerstein, Elias Koutsoupias, Daniel P. Miranker, Christos H. Papadimitriou,
and Vasilis Samoladas. On a model of indexability and its bounds for range queries. Journal
of the ACM (JACM), 49(1):35-55, 2002.

Hong T. Kung. Computational models for parallel computers. Philosophical Transac-
tions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
326(1591):357-371, 1988.

J.S. Vitter. Algorithms and data structures for external memory. Foundations and Trends
in Theoretical Computer Science, 2(4):305-474, 2008. doi:10.1561/0400000014.

2:13

ESA 2017

http://dx.doi.org/10.1561/0400000014

Independent Range Sampling, Revisited*!

Peyman Afshani! and Zhewei Weit?

1 MADALGOS, Department of Computer Science, Aarhus University, Aarhus,
Denmark
peyman@cs.au.dk

2 School of Information, Renmin University of China, Beijing, China
zhewei@ruc.edu.cn

—— Abstract

In the independent range sampling (IRS) problem, given an input set P of n points in R?, the
task is to build a data structure, such that given a range R and an integer ¢ > 1, it returns
t points that are uniformly and independently drawn from P N R. The samples must satisfy
inter-query independence, that is, the samples returned by every query must be independent of
the samples returned by all the previous queries. This problem was first tackled by Hu et al. [15],
who proposed optimal structures for one-dimensional dynamic IRS problem in internal memory
and one-dimensional static IRS problem in external memory.

In this paper, we study two natural extensions of the independent range sampling problem.
In the first extension, we consider the static IRS problem in two and three dimensions in internal
memory. We obtain data structures with optimal space-query tradeoffs for 3D halfspace, 3D
dominance, and 2D three-sided queries. The second extension considers weighted IRS problem.
Each point is associated with a real-valued weight, and given a query range R, a sample is drawn
independently such that each point in PN R is selected with probability proportional to its weight.
Walker’s alias method is a classic solution to this problem when no query range is specified. We
obtain optimal data structure for one dimensional weighted range sampling problem, thereby
extending the alias method to allow range queries.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Geometrical
Problems and Computations

Keywords and phrases data structures, range searching, range sampling, random sampling

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.3

1 Introduction

Range searching is a fundamental problems in computational geometry.. The input is a
set P of n data points in d-dimensional real space, R? (possibly weighted). The goal is to
preprocess the points into a data structure, s.t., given a query range R, the points in PN R
can be counted or reported efficiently. Range searching has been studied extensively and we
refer the reader to the survey by Agarwal and Erickson [5] for a broad overview of the area.

Sampling is one of the most natural operations to deal with large data, making efficient
and robust sampling vital in many applications. Here, we consider the range sampling

* A full version of the paper is available at http://weizhewei.com/papers/esal7-full.pdf.

T This work was partly supported by the Partially supported by the National Natural Science Foundation
of China (NSFC. 61502503).

¥ Corresponding author.

§ A center of Danish National Research Foundation.

© Peyman Afshani and Zhewei Wei;

oY licensed under Creative Commons License CC-BY
25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 3; pp. 3:1-3:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.3
http://weizhewei.com/papers/esa17-full.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2

Independent Range Sampling, Revisited

problem, where the goal is to design a data structure to support efficient methods to sample
from data in the query range. These queries do not fit in the traditional range searching
frameworks (such as, the semi-group range searching framework). However, the ability to
generate random samples for a given range is useful in many database applications, such
as online aggregation [14], interactive queries [6] and query optimization [10]. Within the
context of database systems, the importance of sampling queries were identified early on.
Olken and Roten’s survey from 1995 [20] presents various possible sampling strategies as well
as attempts to solve them (see also [19]). However, for spatial queries, i.e., range queries,
most of the existing solutions have shortcomings. In one category of solutions, the idea is
to use R-trees or Quadtrees where the performance of the data structures depend on input
parameters such as “density” and “coverage” [19]. Thus, the worst-case performance of such
solutions could be very bad. In another category of solutions, one can select a random sample
of the points, preprocess and store them in a data structure (see [15] for more details) but
this does not guarantee independence between future and past queries (i.e., asking the same
query twice will return the same set of samples).

Hu et al. [15] studied the independent range sampling problem for the first time using
the worst-case analysis. In this variant, it is required that the results of every query
must be independent from those returned by the previous queries. Thus, issuing the same
query multiple times will fetch different samples, which is desirable in many data analytic
applications [12, 26, 17], For example, in interactive spatial exploration and analytics [12, 26],
the user specifies a query range on the map, and the goal is to continuously generating
samples from that range for analytic purpose. The query process is interactive since the
user can terminate the query whenever s/he finds the precision of the analysis is acceptable.
Independence among the sampling results of all queries is crucial in interactive spatial
exploration and analytics, since the user may issue queries with similar query ranges and
expect to get independent estimations. Hu et al. [15] studied the problem in one dimension
for unweighted points, and proposed a data structure that consumes O(n) space, can be
updated in O(logn) time and can answer queries in O(logn + t) time, where t is the number
of samples. In this paper, we study the problem in two and three dimensions, and obtain
optimal data structures for some important categories of queries: three dimensional halfspaces
and by extension, three-dimensional dominance queries, and two-dimensional three-sided
queries. We also propose optimal data structure for one-dimensional weighted range sampling
problem, in which the sampling probability is defined by the weights of the points.

We focus on the space-query time trade-off for static data structures that solve the
independent range sampling problem. We focus on the with-replacement sampling, in which
each sample is independent selected from the query range. We defer the discussion on
without-replacement sampling to the full version of the paper [1]. For the unweighted case,
the input is a set P = {p1,--- ,pn} of n points in R? where U is the domain size, and a
range space R. Given a range R € R and an integer ¢t > 1, the query returns a sequence of
t points, where each element of the sequence is a random point of P N R that is sampled
uniformly and independently (i.e., with probability ﬁ). We impose the constraint that
the sampling result must be independent from those returned by the previous queries.

For the weighted case, each input point p; is associated with a real-valued weight w;.
The query returns a sequence of ¢ points, where each element of the sequence is a point
p; € PN R sampled independently and with probability wy/ ije pagr Wj- Note that if
range R is omitted in each query, such sampling oracle can be implemented with a classic
data structure called Walker’s alias method, which uses linear space and returns a weighted
sample in constant time. Alias method has been successfully adapted in many data mining

P. Afshani and Z. Wei

algorithms [16, 7], so it is also of theoretical interest to see if it can be extended to support
range queries. We assume the existence of an oracle that can generate random real numbers
or integers in O(1) time. We assume real RAM model of computation: a machine that is
equipped with w-bit integer registers, for w = Q(logn), as well as real-valued registers that
can store any real number. Arithmetic operations take constant time but storing the contents
of a real-valued register into an integer register (via the “floor” function) is only allowed
when the result has at most w bits 1.

Our results. We obtain an optimal data structure for three dimensional halfspace ranges
for the unweighted independent range sampling problem. Given a query halfspace h, it

can extract ¢ independent uniform random samples from h in O(logn + t) expected time.

The structure uses O(n) space. This also implies optimal data structures for two-sided and
three-dimensional dominance queries. For weighted range sampling problem, we obtain an
optimal data structure for one dimensional point sets in the real RAM model. More precisely,
we assume the coordinate of each point can fit in a word of ©(log U) bits, and the real value
weights are stored in real registers. The reason we make this assumption is to assure that

the space used to store the weights cannot be charged to the space used to store the points.

The query is given as an interval [a, b], where a and b are indices. The goal is to extract
t independent samples from the indices in [a, b], such that each index i € [a,]] is selected
independently with probability proportional to its weight w;. Our solution uses O(n) space
and answers a query in O(Pred(U, w, n) + t) time, where Pred(U,w,n) is the query time of
a predecessor search data structure that uses O(n) space on an input of size n from the
universe [U] and on a machine with w-bit integers [22].

1.1 Related Work

In the database community, the problem has a long history and it dates back to the 80’s
when it was introduced as the random sampling queries problem. For a database and a given
query (range, relational operator, etc.), the goal is to return a random sample set in the query
result rather than the entire query result itself. Olken and Rotem considered the problem of
independently returning random samples from a query range on B-trees [20], and obtained
a structure that returns a sample with O(loggz n) cost. Olken and Rotem also studied the
range sampling problem in high dimensional space using R-tree based structures [21]. We
refer the readers to see an excellent survey in [20].

This problem has regained attention recently, due to the “big query” phenomenon where
a query result may contain a huge number of elements, and thus it is infeasible to list them
all. As mentioned, Hu et al. [15] studied the range sampling problem for one dimensional
points, with insertions and deletions. They proposed a dynamic RAM structure of O(n)
space that answers a range sampling query in O(logn + t) expected time, and supports an
update in O(logn) time. The static unweighted range sampling problem is trivial for one
dimensional point sets, since given a query with range R = [a, b] and parameter ¢, one can
perform two predecessor queries to identify the boundaries of the points in R, and one range
counting query with constant cost to obtain P N R, the number of points in R. Then, we
can simply sample from P N R by generating ¢ random integers between 1 and |P N R| and
accessing the corresponding ¢ points.

1 We actually don’t need a “floor” instruction since we can simulate it using binary search in O(w) time.
As this is used during the preprocessing phase, the query cost can still be kept constant.

3:3

ESA 2017

3:4

Independent Range Sampling, Revisited

Walker’s Alias Method. In the weighted sampling problem, the input is a set of non-
negative real numbers wy,...,w,, and the goal is to build a data structure, such that a
query extracts an index ¢ with probability p; = w;/ Z?Zl wj. The indices returned by
different queries should be independent. The classic solution to this problem is Walkers’ alias
method [25], which uses O(1) query time and O(n) preprocessing time. See the full version
of th paper [1] for short description of this method.

Another problem very related to halfspace range sampling is the halfspace range reporting
problem where the goal is to simply report all the points in the query halfspace. To see this
relationship, observe that extracting ¢t random samples from a query range that contains
only ¢ points should extract a faction of the points in the range with constant probability.
Halfspace range reporting has been extensively studied for over 30 years, and various results
were obtained on this problem. In 2D, the problem was optimally solved in 1985 by Chazelle,
Guibas, and Lee [11] but in contrast, the first optimal solution in 3D was obtained relatively
recently in 2009 by Afshani and Chan [3], where they showed that one can report the set of
points in a query halfspace in O(logn + t) time using O(n) space where t is the output size.
The 3D solution is based on powerful tools created by Matousek [24, 18] which have been a
vital part of all the previous attempts to solve halfspace range reporting problems in three
and higher dimensions [8, 24, 23]. Note that the fact that we can match the performance of
the best reporting data structures for the queries considered is very desirable.

2 Unweighted Range Sampling in Three Dimensions

Let p1,--- ,pn be a set of three-dimensional points. The main result of this section is an
optimal data structure that given a query halfspace h, it can extract ¢t independent uniform
random samples from h in O(logn + t) expected time.

We will use most of the known tools in range reporting: shallow cutting, shallow partition,
and partition theorems together with new ideas that take advantage of the structure of the
range sampling queries. The rough summary of our approach is as follows: we first build a
“core” data structure to sample from query halfspaces that contain many points; later by
using shallow cuttings we can extend this to all query halfspaces. To build the core data
structure, we create a hierarchy of shallow cuttings and then for each cell in the resulting
cuttings, we build data structures that can sample a point uniformly randomly from inside
the cell. This part is the main technical contribution since without additional ideas, this
approach is not going to give us a linear-space solution?. To use only linear space, we build
one “global” data structure which is an array that stores the point set in some order, and
then for each cell in a shallow cutting, we store a data structure of sublinear size that can be
used to generate one “random” entry point per sample, into the global array; the final sample
point is obtained through this random entry point in constant time. A careful analysis shows
that the space complexity of the data structure is indeed linear and that each sample is
picked with the correct probability.

2 An expert reader can verify that this approach can easily give us a solution that uses O(nlogn) space, if
we spend O(n) space per each shallow cutting level. By using another classical idea, that is, building the
shallow cuttings every loglogn levels and bootstrapping using simplex range searching data structures,
this can be reduced to O(nloglogn). However, this approach seems hopeless to get to O(n) space.

P. Afshani and Z. Wei

Figure 1 (left) For a k-shallow cutting F, a triangle 7 € A(F) is shown. For every point on 7,
there are at least k and at most O(k) hyperplanes passing below it (not shown here). H, is the set
of hyperplanes h that are below at least one of the vertices of 7. (right) In dual space, A is a point
that is below at least one of the hyperplanes corresponding to the vertices of 7.

2.1 Preliminaries and Definitions

We present the dual of a hyperplane h (resp. point p) with h (resp. p): a point p that is below
a hyperplane h is mapped to a hyperplane p that passes below the point h. An zy-monotone
function in R3 is a surface, s.t., any line parallel to the z-axis intersects the surface exactly
once. Given an zy-monotone surface F in 3D and a point ¢ = (¢4, gy, q.) € R?, we say ¢ is
above F iff the “downward” ray (¢, gy) X [¢-, —00) intersects F. The below relationship is
defined analogously. Let P be a set of points in 3D and let H be a set of n hyperplanes dual
to points in P. A k-shallow cutting F for H is an zy-monotone surface that is a piece-wise
linear function composed of O(n/k) vertices, edges, and triangles, s.t., there are at least k
and at most O(k) hyperplanes passing below every point of F. The conflict list of a point p
on F is defined as the set of all the hyperplanes in H that pass below p and it is denoted by
H,. The conflict list of a triangle 7 € A(F) is the set of hyperplanes that pass below 7 and
is denoted by H.. The set of points dual to H;, is denoted by P,. See Figure 1.

» Theorem 1 (Shallow Cutting Theorem [24]). For any given set H of n hyperplanes in 3D
and an integer 1 < k < n/2, k-shallow cuttings exist. Furthermore, for k; = 2¢, 0 < i < logn,
k;-shallow cuttings F;, together with the conflict lists of all their vertices, can be constructed
in O(nlogn) total time.

» Lemma 2. Given a shallow cutting F; and its set A(F;) of O(n/k;) triangles, we can
build a data structure of size O(n/k;) s.t., given a point p € R, we can decide if p is below
Fi or not. In the first case, the triangle T € A(F;) that lies directly above p can be found in
O(logn) time.

Proof. Simply project all the triangles onto the zy-plane. Since F; is xy-monotone, we
obtain a decomposition of the plane into O(n/k;) triangles. Build a point location data
structure on the planar decomposition [13]. Given the query point p, project it onto the
xy-plane, find the triangle 7 whose projection contains the projection of p, and decide if p is
below 7 or not. |

» Theorem 3 (Partition Theorem [18]). Given a set P of n points in 3D and an integer
0 < r < n/2, there exists a partition of P into r subsets Py,--- , P,, each of size ©(n/r), s.t.,
each subset P; is enclosed by a tetrahedron T;, s.t., any hyperplane crosses O(r2/3) tetrahedra.

» Theorem 4 (Shallow Partition Theorem [24]). Given a set P of n points in 3D and an
integer 0 < r < n/2, there exists a partition of P into r subsets Py,--- , P, each of size
O(n/r), s.t., each subset P; is enclosed by a tetrahedron T;, s.t., any halfspace that has at
most n/r points of P crosses O(logr) tetrahedra.

We also need the following known optimal data structures for halfspace range reporting
(Theorem 5) and approximate halfspace range counting (Theorem 6).

3:5

ESA 2017

3:6

Independent Range Sampling, Revisited

» Theorem 5 ([3]). Given a set P of n points in R3, one can build a data structure of linear
size s.t., given a query halfspace h, it can list the points in P N h in O (logn + |P N k) time.

» Theorem 6 ([4, 2]). Given a set P of n points in R3, and a constant € > 0, one can build
a data structure of linear size s.t., given a halfspace h, in O(logn) time, one can produce an
integer k s.t., k/(1+¢) <|hNP|<k.

2.2 The Overall Data Structure

We now return to our original problem. Our input is a set P of n points in R3. Let H be
the set of hyperplanes dual to P. Define k; = 2¢,0 < i < logn. We say an integer m is large
if it is greater than 2¢(°glog ”)2, for a global constant C' to be set later. The following lemma
will be proved in the next subsection.

» Lemma 7. Given a set P of n points, we can build a structure of linear size to answer the
following queries. Given any query halfspace h in which |P N h| is large, we can extract t
independent random samples from PN h in O(logn +t) time.

Furthermore, the query can be carried over in an “online” fashion. After the initial search
time of O(logn), the data structure can fetch each subsequent sample in O(1) expected time,
until interrupted by the user.

By standard techniques, this gives us our main theorem. See the full version of the
paper [1] for the proof.

» Theorem 8. Given a set P of n points in R®, we can build a data structure of size O(n)
s.t., given a halfspace h and a parameter t, we can extract t samples from the subset PN h
in O(logn +t) expected time.

Furthermore, the query can be carried over in an “online” fashion, without knowledge
of t: After the initial search time of O(logn), the data structure can fetch each subsequent
sample in O(1) expected time, until interrupted by the user.

The above theorem easily extends to sampling from dominance queries as well. Given two
points p and ¢ in d-dimensional space, g dominates p if every coordinate of ¢ is greater than
that of p. In dominance reporting, the goal is to preprocess a set of n points s.t., given a
query point ¢ all the points dominated by ¢ can be reported efficiently. As observed by Chan
et al. [9], three-dimensional dominance queries can be solved using halfspace queries. It is
also known that a dominance query can solve two-dimensional a three-sided query, that is, a
query region [a,b] X (—o0, c] given by three values a, b, and c.

2.3 Proof of Lemma 7

As previously mentioned, this is the heart of the problem and this is where we significantly
deviate from the previous techniques (even though we use similar building blocks): To obtain
optimal halfspace range reporting, Afshani and Chan [3] rely heavily on the fact that if a
halfspace h contains too many points, then the data structure is allowed to spend a lot of
time on the query, since we will spend a lot of time producing the output; in other words, the
search time can be charged to the output size. In our case, we might be interested only in a
small subset of points in A and thus the search cost cannot be charged to the output size.
Our idea is to build two main components: a global array and a number of local structures.
The global array will store each point once in an array of size n, in some carefully selected
order. The array compactly stores a number of “canonical sets” of total size O(nlogn). We

P. Afshani and Z. Wei

use shallow cuttings to build the local structures. The important point is that the local
structures in total will have sublinear size and their utility is to find entry points into the
global structure: given a query, using the local structures we locate a subarray of the global

array and then uniformly sample from the subarray. We present the technical details below.

Using Shallow Cutting Theorem, we build a k;-shallow cutting F; (as well as its set of
triangles A(F;)), for each large k; where k; = 2¢,0 < i < logn, We have |A(F;)| = O(n/k;)
by the Shallow Cutting theorem. For a triangle 7 € A(F;), the conflict lists H, and P, are
defined as before. Observe that for each triangle 7 € A(F;), with vertices p1,p2 and ps, H.
is the union of H,,, Hp,, and Hy, (with duplicates removed). In this subsection, h will refer
to the query halfspace in the primal space. In dual space we will denote h with ¢. Thus, our
objective is to either sample a random point of P below h, or a random member of H, (a
random hyperplane of H that passes below ¢).

The Global Structure. Using Shallow Partition Theorem, we build a partition tree T, a1
as follows. The root of T},.,. represents P. Consider a node of T}, that represents a
subset S C P. We use Shallow Partition Theorem with parameter r = |S|° to obtain subsets
S1,-++, Sy, for a small enough constant € > 0. If a subset S; contains at most b points, for a
parameter b to be defined later, we call it a base subset. Unlike the approach in [3], we only

recurse on subsets S; that are not base subsets. Thus, the leaves of T},,.,., are base subsets.

For each base subset B, we build a secondary data structure that is another partition tree
Tp: The root of T represents B. At a node of T that represents a subset S C B, we
use Partition Theorem (not the shallow version) with parameter r = |S|° to obtain subsets
S1,-++,Sr. We recurse on each subset S; until we reach subproblems of constant size. We
store an in-order traversal of the leaves of Tz, in an array Ap; the size of Ap is exactly
equal to |B| and for every internal node v € T the points in the subtree of v are mapped
to a contiguous interval of array Ag. We build our global array A by concatenating all the
arrays Ap over all base subsets B. Finally, we build a data structure for approximate range
counting queries (Theorem 6).

The Local Structure for 7. Consider a triangle 7 € A(F;) and let p1, p2, and ps be the
vertices of 7. Remember that H, was defined as the union of conflict lists of p1, p2, and p3
after duplicate removal (Figure 1). We will store a local structure for 7 that consumes o(|H|)
space (O(|HT|/logO(1) n) to be more precise). p1,p2 and ps correspond to three different
hyperplanes, Py, pz and p3 in the primal space; a hyperplane h € H, corresponds to a point
h € P that is below one of the hyperplanes p1, Pz or P3. Let P, be the set of such points (in
other words, P is the set of points dual to hyperplanes in H,). Let By,--- , B, be the base
subsets that are intersected by or are below at least one hyperplane p;, 1 < < 3. We will
store a data structure of size O(mb®/*) at triangle 7: For each base subset B;, we consider
the partition tree T'z,. For every node v € T'g,, the subset of points in the subtree of v defines
a canonical subset of B;. By the properties of partition trees (see e.g., [18]), we can write

P, N B; as the union of O(|B;]?/?log | B;|°M) = O(| B;|>/*) = O(b/*) canonical subsets of B;.

However, as each subtree of Tz, maps to a contiguous interval of Ap,, it follows that we can
represent P, N B; as the union of O(|B;|?/4) intervals from Ap,. We collect all these intervals,

over all base subsets By, --- , B,,. Let I1,--- , I); be the set of all such intervals. Observe that

we have |I1| + |Is| + - - - 4 |Ins| = | P, since the intervals partition P,. Also, M = O(mb>/%).

We store the numbers |I1], |2, -, |[In]| in a data structure T.,,....(7) for weighted sampling,

using the Alias method; the data structure consumes O(M) = O(ml‘)j’/“l) space arllldl in O(1)
j

time can produce a pointer to an interval I; with probability m = 1Bl

3:7

ESA 2017

3:8

Independent Range Sampling, Revisited

Answering Queries. Using approximate halfspace range counting data structure, we can
produce an integer k s.t., 15/2 <k< k. Let i be the smallest index s.t., k < k;. We can
find % and 7 in O(logn) time, by Theorem 6. Clearly, ¢ is below k;-shallow cutting F;. Let
7 € A(F;) be the triangle that lies above the query point ¢. 7 can be found in O(logn) time
using a point location query. We claim it is sufficient to be able to sample from H,: to
sample a hyperplane that passes below ¢, we repeat extracting independent uniform samples
from the set H, until we find one that passes below ¢. Since H, is a subset of H,, this
guarantees independent uniform sampling. On the other hand, since |H,| > k/2 we get
that |H,| = O(k), and thus on average we need to extract O(t) random samples from H.,
to produce ¢ random samples from H,3. Note that after initial O(logn) time to find 7, we
spend O(1) expected time per sample and thus we can continue without knowledge of ¢.

Sampling from H... Consider the intervals Iy, --- , I stored for the triangle 7; by construc-
tion, the points stored in these intervals form a partition of P,. Using structure T,,..,..(7),

in O(1) time, we can select an interval I; with probability ‘llljf ||. Next, we generate a random

integer ¢ between 1 and |I;| and output the ¢-th point in the interval I;. Clearly, the
probability of outputting an element of P; is exactly equal to ﬁ and query time is O(1)

per sample.

Space Analysis. This is the main part of the proof. First, observe that the global structure
clearly consumes linear space since points in every base subset B are stored only once in
the array Ag. Thus it remains to bound the space usage of the local structures. Consider a
triangle 7 € A(F;) with its three vertices p1,p2, and ps. Let Hy, be the set of hyperplanes
of H below p1, or equivalently, let Py be the subset of points of P below the hyperplane pr.
Let k = |Hp,|. Let f(n,k) be the maximum number of base subsets of T},.,. intersected by
any hyperplane h that lies above k point of P. Remember that we have used the Shallow
Partition theorem with parameter r = n°. If n < b, then we are already at a base subset
so f(b,k) = 1. Otherwise, depending on the value of k, we might intersect either all the r
subsets or only O(logr) subsets. So we get the following recurrence, which is a generalization
of the one found in [3] (we must note that the recurrence in [3] bounds the query time where
here we are only bounding the crossing number):

1 ifn<b

f(n k) < Ez‘oz(:ltogn) (en'=% ki) ifk<n'™* =2 where k = > ki
S fent e k) ik >l =

<

=3

We solve the recurrence by guessing that it solves to the “correct” bound, that is, it solves
to f(n, k) = 2¢08108m)* 4 Lo(p)/bl=3¢ where g(n) is a monotonously increasing function
that is always upper bounded by a constant and ¢ is a constant. This is similar to the
analysis done in [3], so we postpone the details to the full version of the paper [1].

The analysis shows that the total number of the base sets intersected by three hyperplanes
P1, Dz, or P3 is at most 3f(n, O(k;)). Thus, the value m in the local structure of 7 is bounded
by 3f(n,O(k;)). The local structure of 7 consumes O(mb*/*) space. Remember that we are
aiming to build the data structure for halfspace containing large number of points. Thus,

3 This is the only part that breaks down for the weighted range sampling problem. This is also the only
hurdle that makes the query time “expected”. All the other parts of the data structure work with a
worst-case query time.

P. Afshani and Z. Wei

k; = Q(2C¢(loglog ”)2). We set the constant C' in the definition of a large integer to 2¢, which
means k; = ((22¢(loglog ”)2). We also set b = log” n for a large enough constant C’. We
plug the values in f(n, k), and thus space used by the local structure of 7 is bounded by

O(mbi) =0 (f(n, O(k‘i))b%> =0 ((ZC(loglog")z + blkge) bi>

’ k k
<(&) (]an)(%_?’s) IOan

if we set C’ large enough and set € < 1/4. The number of triangles 7 in A(F;) is O(n/k;)
and thus the total amount of space used by the triangles is O(n/log?n) and over all the
indices this sums up to o(n). This proves all the local data structures consume sublinear
space and concludes the proof of Lemma 7.

3 Weighted Range Sampling in One Dimensions

In this section, we address the one-dimensional range sampling problem. Let U be an integer
that denotes the universe size of the coordinates. We assume the word size w = O(logU),
such that the coordinate of each point can fit in a word. The input is a set P = {p1, -+ ,pn}
of n points on grid [u], and each point p; is associated with a non-negative real-valued weight
w;. Given an interval R = [a,b] and an integer ¢ > 1, the query returns a sequence of ¢
points, where each element of the sequence is random point p; € P N R that is sampled
independently and with probability wy/ ij cpPnRr Wj-

Note that the coordinate of a point can be stored in a word of w = ©(log U) bits, but a
weight is a real number and cannot be stored in an integer word. We say the space usage of
a data structure is S(n) if it uses at most S(n) words and at most S(n) real registers.

Weighted vs. Uniform IRS. We first offer some intuition to show that weighted independent
range sampling is a non-trivial problem, even in one-dimension. Consider one-dimensional
uniform independent range sampling problem. There is a simple solution: we store the points
of P in ascending order using an array A. Given a query range [a,b] and an integer t, we
perform predecessor/successor search to identify the subsequence in A that consists of the
elements covered by ¢. Then, we can simply sample from the subsequence by generating ¢
random ranks and accessing ¢ points. The total query cost is O(Pred(U,w,n) + t) where
Pred(U,w,n) is the query time of a predecessor search data structure that uses O(n) space
on an input of size n from the universe [U] and on a machine with w-bit integers [22]. For
the weighted IRS problem, the above approach does not work. The main issue is that
sampling from the identified subsequence requires an alias structure designed specifically to
that subsequence. Since there are 2(n?) difference subsequences, one needs (n?) space to
make this approach work.

Notations. We begin by defining some notations. Given a set S, we use W(.S) to denote
its weight. With a slight abuse of notation, we also use W (.S) to denote the set S. Given two
integers 1 < a < b < u, [a, b] is the range from a to b. With a slight abuse of notation, we will
also use [a, b] to denote the points in range [a,b], and W(a,b) = 3>, c(oy
total weights in [a,b]. We use P,,.(a) to denote the predecessor of a in P, and Psy.(a) to de-
note the successor of ¢ in P. Given a point p; € [a,b], we use Wy,e(pi,a,b) =
to denote the prefix sum of point p; in [a, b], and Wsy.(pi,a,b) = >
the suffix sum of point p; in [a, b], respectively.

wy, to denote the

pj€la,b],j<i Wi

pyclap].j>i Wi to denote

3:9

ESA 2017

3:10

Independent Range Sampling, Revisited

At most 1/s poured out

i
e Less than 1/s*

Rational probability 7/

X\ , T~ s=Nog?n A
Wase Pre(a), Gur) W(R(u, Gur)) W(L(w, Gy) Wye(Pase(b), Gy) Maximum rg-
Figure 2 A schematic illustration of the Figure 3 A schematic illustration of the
fat points and partial sums. rounding process.

Let 7 denote a balanced binary tree on the n points, with height h = logn. Given
an internal node u, we use W(u) to denote the total weight of the subtree rooted by w.
Fixing an internal node u and a leaf v in u’s subtree, let P(u,v) be the set of nodes on
the path from u to v, excluding node u. We define the left canonical set of P(u,v) to be
L(u,v) ={w € P(u,v) | wis a left child} U {v}, and similarly the right canonical set to be
R(u,v) = {w € P(u,v) | wis aright child} U {v}. It is easy to see that the point set in
range [a, b] is made up by the subtrees rooted at the nodes in R(u, Ppre(a)) U L(u, Psyc(b)).
Here we define P,c(a) = Psyc(a) if a isin S.

A baseline structure. We will use the following baseline structure, which uses O(n log? n)
space draws sample with constant cost. The proof of Lemma 9 is deferred to the ful version
of the paper.

» Lemma 9. For the one-dimensional weighted IRS problem, there is a structure of O(n log? n)
space that can answer a weighted sampling query in O(Pred(U,w,n) + t) time.

3.1 A structure with linear space and O(log" n) query cost

In this subsection, we improve the space of our structure to linear by sacrificing the per-sample
query cost.

Structure. We group the points into m = n/s fat points, Gy, -+, G,,, where each fat
point G; includes s = log?n consecutive points. The weight of G; is defined to be the
summation of weights in G;. Then we build the baseline structure, denoted by 7T, on the
fat points. Since the number of fat points is n/s = n/ log® n, the space usage is reduced to
O(n). Inside each fat point G;, we bootstrap a baseline structure, denoted by T (G;), for all s
points contained in G;. This takes O(slog? s) = O(log? nlog® logn) space for each fat point,
and O(nlog®logn) space for all n/logn fat points. For each point p, € Gj, we also store
Wore(Dk, Gi) and Wy (pr, G;), the prefix and suffix sums of point py in G;, respectively.
Finally, we store n global prefix sums, W, (p;, P), for i = 1,...,n. It is easy to see the total
space usage is O(nlog®logn).

Answering Queries. Given a query range [a, b], we first find P,,.(a), the predecessor of a
and Py,.(b), the successor of b in P, in Pred(U, w,n) time. Then we locate the fat points
G and Gy that contains Pp,.(a) and Ps,.(b), respectively. Figure 2 illustrates that W (a, b)
can be decomposed into the summation of partial weights in fat leaves G, and Gy, and
weights of subtrees in canonical sets R(u, G4/) and L(u, Gy). More precisely, we have

W(a7 b) :Wsuc(Ppre(a)7 Ga/) + Wpre(Psuc(b)a Gb’) + W(R(U, Ga/)) + W(‘C(u; Gb’))-

P. Afshani and Z. Wei

We retrieve these four weights and sample one of the weights. If W(R(u,G,)) or
W (L(u,Gy)) is selected, we sample a fat leaf G; from G, ..., Gy using baseline solution
T, and then sample a point p;, from G; using the alias structure A(G;). Otherwise, assume
that the partial sum Wiye(Ppre(a), Gor) is selected. We simply query the baseline structure
in T(Gg4) with range [a, 00) to retrieve a sample as the query result.

Analysis. To see that above sampling procedure gives the correct probability distribution,
note that a point py, in fat point G is selected if and only if the partial sum Wyo(Ppre(a), Gor)
is sampled from W (a,b), and py, is sampled from Wyc(Ppre(a), Gor). Thus the probability is

Wi) unc(Ppre(a)a Ga’) _ W
Wsuc(Ppre (a)a Ga’) W((l, b) W(aﬂ b) .

On the other hand, consider a point py in fat point G; that lies completely in (a,b). Without
loss of generality, we assume G; is in left canonical set R(u,Gy/) of the baseline structure
T. Observe that py is selected if and only if the following events happen: 1. W (R(u, G4/))
is selected from W(a,b); 2. W(G;) is selected from alias structure A(R(u,Gq)); 3. Dk
is selected from alias structure A(G;). Thus the probability for py being picked can be
computed as

W(R(u7 Ga’))

w
W (a,b) W(R(u,Gye)) WI(G;) Wila,b)

(Gy) o w W

Bootstrap. Now that we have a structure that uses O(n log? log n) space and answers
weighted IRS queries in O(Pred(U, w,n) + t) time, we can bootstrap this structure to reduce
the space usage. More precisely, we note that the extra log?logn factor comes from the
baseline structure in each fat point. Thus, we can group the points in a fat point into
secondary fat point of size log? logn and build the baseline structure in the secondary fat
point to reduce the space usage to O(nlog®loglogn). Repeat the bootstrap process log* n
times and we will have a structure with O(n) space and O(log™ n) per-sample query time.
The number of predecessor queries need to be performed is O(log™ n). However, for dataset
with size O(loglogn), a predecessor query can be answered in constant time, which implies
that the time for performing predecessor queries is still bounded by O(PredU, w,n).

» Lemma 10. There is a structure of O(n) space that can answer a one-dimensional weighted
IRS query in O(Pred(U,w,n) + tlog* n) time.

3.2 A structure with linear space and constant query cost.

In this subsection, we show how to obtain constant query cost by using RAM tricks to pack
multiple integers into a single word.

Packing weights. We first apply the fat point technique twice to reduce the size of a fat
point to s = log?logn. Note that if there is a linear size structure for s points with constant
per-sample query time, we can apply it to each fat point, and achieve a linear size structure
and constant per-sample query time for arbitrary number of weights.

Consider point sequence p1, ..., ps with weights wy, - - ,w,, where s = log®logn. If we
maintain an alias structure for point sequence {w, ..., w;}, for any pair 1 < ¢ < j <'s, then
we can answer weighted IRS queries with constant time per sample. The problem is that
there are O(s?) such pairs, so it requires 2(s%) space to store these structures.

3:11

ESA 2017

3:12

Independent Range Sampling, Revisited

To reduce the space cost, we round the probabilities to rational numbers with precision
up to 1/s2, and pack multiple rational numbers into a single word. While constructing O(s?)
alias structures for real weights is costly, constructing O(s?) alias structures for rational
weights can be made space-efficient.

More precisely, given index pair 1 < i < j < s, let 1, = wi/W(pi,pj), k =14,...,7,
be the probability that py is sampled from {p;,...,p;}, and let r4~ denote the maximum
probability in {r;,...,7;}. We conceptually perform the following probability transfers: for
every index ¢ € [i,j], £ # k*, we define rational probability v, = [r¢s*]/s*, and deviation
oy = 7“2 —rp < 1/32. We then pour ay probability mass from 7« to r¢, to form the rational
probability 77, for £ # k*. Note that the probability mass left for k* is

1 1
/ e - —_ D — _— —
Tk*—rk*—Zaj>rk* S SQZrk* S>0.
J#i1
See figure 3. Then we build an alias structure A’ (i, j) for 7, ... ,r;. Here A’ indicates that we

build the alias structure on the rational probabilities rather than on the original probabilities.
The key insight for this probability transfer is that we can store each rational probability 7
with 2log s bits, thus the alias structure A’(a,b) can be represented by O(slog s) bits. Over
all possible pairs (i,7), this sums up to O(s®logs) = O(log®lognlogloglogn) = o(logn)
bits. Thus, we only need one word to store all rational alias structures. We also record the
index k* for each pair (4, j), which takes s - logs = o(logn) bits and fits in a word. Finally,
we maintain all s prefix sums W(1,p;), ¢ =1...,s and this requires O(s) real-valued storage.
It is easy to see that the structure takes O(s) space.

Answering queries. We focus on query ranges of form [p;, p;], 1 < i < j < s. Recall that s
is the size of the secondary fat leaves. Note that each query visits at most two fat leaves of size
s, so if we can generate a sample in constant time from ranges of form [p;,p;], 1 <i < j <s,
we can answer weighted IRS queries on n points in O(Pred(U, w,n) + t) time.

Given such a query [p;, p;], we first compute W(p;, p;) by subtracting two prefix sums
W (p1,pj) —W(p1,pi—1). Then we retrieve wy~, the maximum weight in [p;, p;], and compute
probability ri« = wgx /W (a,b). We then sample an point py from the rational alias structure
A'(a,b). If k = k*, we return pg~ as a sample. Otherwise, we compute r, = wy/W(a,b)
and roll a random dice z uniformly chosen in [0,r}]. If z < r;, we return p; as the sample,
otherwise, we return py+ as the sample.

Analysis. Since W(p;,p;) and k* can be supplied in constant time, the total query cost is
constant. To verify the probability distribution, first consider a point py € [p;, p;], k # k*.
Observe that pj, is sampled if and only if its rational probability r}, is sampled from A’(a,b),
and the random dice z from [0, 77] is smaller than 7. The probability is r} - & = 7;. On the

i

other hand, this also implies that k* is returned with probability 1 — Epke[pi ps)okioth Th = The-
Thus the sampling probability distribution is correct, and we obtain the following theorem.

» Theorem 11. Given a set P = {p1, -+ ,pn} of n points on grid [U], such that each point
pi 1s associated with an non-negative real-valued weight w;, we can build a data structure
of size O(n), such that given a interval [a,b] and a parameter t, we can extract t weighted
random samples from the subset P N [a,b] in O(Pred(U,w,n) +t) time.

P. Afshani and Z. Wei

4

Conclusions

In this paper we considered the range sampling queries where the goal is to store a given set
of points in a data structure such that given a geometric range, a query returns a random
sample of the points contained in the query range. We optimally solved some of the important
cases of the problem: 3D halfspace queries for unweighted points, 3D dominance queries and
2D three-sided queries, and 1D two-sided (interval) queries for weighted points.

There are still a number of interesting open problems left to consider. For example, we

have not investigated weighted 2D orthogonal queries at all. Also, while we solve three-sided
and two-sided queries for the unweighted case, 2d four-sided queries for the unweighted case
is still unsolved. Another direction is to consider weighted 3D halfspace queries.

—— References

1
2

10

11

12

13

14

15

http://weizhewei.com/papers/esal7-full.pdf.

Peyman Afshani and Timothy M. Chan. On approximate range counting and depth. Dis-
crete and Computational Geometry, 42:3-21, 2009. doi:10.1007/s00454-009-9177~z.
Peyman Afshani and Timothy M. Chan. Optimal halfspace range reporting in three di-
mensions. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 180-186, 2009.

Peyman Afshani, Chris Hamilton, and Norbert Zeh. A general approach for cache-oblivious
range reporting and approximate range counting. Computational Geometry: Theory and
Applications, 43:700-712, 2010. preliminary version at SoCG’09.

Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and its relatives. Advances
in Discrete and Computational Geometry, pages 1-56, 1999.

Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, and Ton
Stoica. Blinkdb: queries with bounded errors and bounded response times on very large
data. In Proceedings of the 8th ACM FEuropean Conference on Computer Systems, pages
29-42. ACM, 2013.

Arnab Bhadury, Jianfei Chen, Jun Zhu, and Shixia Liu. Scaling up dynamic topic models.
In Proceedings of International World Wide Web Conferences (WWW), pages 381-390.
International World Wide Web Conferences Steering Committee, 2016.

Timothy M. Chan. Random sampling, halfspace range reporting, and construction of (<=
k)-levels in three dimensions. SIAM Journal of Computing, 30(2):561-575, 2000.

Timothy M. Chan, Kasper Green Larsen, and Mihai Patrascu. Orthogonal Range Searching
on the RAM, Revisited. arXiv preprint arXiv:1103.5510, 2011.

Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. Random sampling for histogram
construction: How much is enough? In ACM SIGMOD Record, pages 436-447. ACM, 1998.
Bernard Chazelle, Leonidas J. Guibas, and D. T. Lee. The power of geometric duality. BIT
Numerical Mathematics, 25(1):76-90, 1985.

Robert Christensen, Lu Wang, Feifei Li, Ke Yi, Jun Tang, and Natalee Villa. Storm: Spatio-
temporal online reasoning and management of large spatio-temporal data. In Proceedings
of ACM Management of Data (SIGMOD), pages 1111-1116. ACM, 2015.

Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 3 edition, 2008.

Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. Online aggregation. ACM
SIGMOD Record, 26(2):171-182, 1997.

Xiaocheng Hu, Miao Qiao, and Yufei Tao. Independent range sampling. In Proceedings of
ACM Symposium on Principles of Database Systems (PODS), pages 246-255. ACM, 2014.

3:13

ESA 2017

http://weizhewei.com/papers/esa17-full.pdf
http://dx.doi.org/10.1007/s00454-009-9177-z

3:14

Independent Range Sampling, Revisited

16

17

18

19

20

21

22

23

24

25

26

Aaron Q. Li, Amr Ahmed, Sujith Ravi, and Alexander J. Smola. Reducing the sampling
complexity of topic models. In Proceedings of ACM Knowledge Discovery and Data Mining
(SIGKDD), pages 891-900. ACM, 2014.

Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. Wander join: Online aggregation via random
walks. In Proceedings of the 2016 International Conference on Management of Data, pages
615-629. ACM, 2016.

Jif{ Matousek. Efficient partition trees. Discrete & Computational Geometry, 8(3):315-334,
1992.

Frank Olken. Random sampling from databases. PhD thesis, University of California at
Berkeley, 1993.

Frank Olken and Doron Rotem. Random sampling from databases: a survey. Statistics
and Computing, 5(1):25-42, 1995.

Frank Olken and Doron Rotem. Sampling from spatial databases. Statistics and Computing,
5(1):43-57, 1995.

Mihai Patrascu and Mikkel Thorup. Time-space trade-offs for predecessor search. In
Proceedings of ACM Symposium on Theory of Computing (STOC), pages 232-240, 2006.
Edgar A. Ramos. On range reporting, ray shooting and k-level construction. In Symposium
on Computational Geometry (SoCG), pages 390-399, 1999.

Jifi Matousek. Reporting points in halfspaces. Computational Geometry, Theory and
Applications, 2(3):169-186, 1992.

Alastair J. Walker. New fast method for generating discrete random numbers with arbitrary
frequency distributions. FElectronics Letters, 10(8):127-128, 1974.

Lu Wang, Robert Christensen, Feifei Li, and Ke Yi. Spatial online sampling and aggregation.
Proceedings of the VLDB Endowment, 9(3), 2015.

Approximate Nearest Neighbor Search Amid
Higher-Dimensional Flats*

Pankaj K. Agarwall, Natan Rubin?, and Micha Sharir3

1 Department of Computer Science, Duke University, Durham, NC, USA
pankaj@cs.duke.edu

2 Department of Computer Science, Ben-Gurion University of the Negev,
Beer-Sheva, Israel
rubinnat.ac@gmail.com

3 School of Computer Science, Tel Aviv University, Tel Aviv, Israel
michas@tau.ac.il

—— Abstract

We consider the approzimate nearest neighbor (ANN) problem where the input set consists of
n k-flats in the Euclidean R, for any fixed parameters 0 < k < d, and where, for each query
point ¢, we want to return an input flat whose distance from ¢ is at most (1 +) times the
shortest such distance, where € > 0 is another prespecified parameter. We present an algorithm
that achieves this task with n*+1(log(n)/e)°(") storage and preprocessing (where the constant of
proportionality in the big-O notation depends on d), and can answer a query in O(polylog(n))
time (where the power of the logarithm depends on d and k). In particular, we need only near-
quadratic storage to answer ANN queries amid a set of n lines in any fixed-dimensional Euclidean
space. As a by-product, our approach also yields an algorithm, with similar performance bounds,
for answering ezact nearest neighbor queries amid k-flats with respect to any polyhedral distance
function. Our results are more general, in that they also provide a tradeoff between storage and
query time.

1998 ACM Subject Classification E.1 Data Structures, F.2.2 Nonnumerical Algorithms and
Problems, 1.3.5 Computational Geometry and Object Modeling

Keywords and phrases Approximate nearest neighbor search, k-flats, Polyhedral distance func-
tions, Linear programming queries

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.4

1 Introduction

Nearest neighbor search is one of the most fundamental problems in computational geometry
and has been studied extensively in many different fields, including computational geometry,

* Work by P. A. and M. S. was supported by Grant 2012/229 from the U.S.-Israel Binational Science
Foundation. Work by P. A. was also supported by NSF under grants CCF-11-61359, 11S-14-08846, and
CCF-15-13816, and by an ARO grant W911NF-15-1-0408. Work by N.R. was supported by grant
1452/15 from Israel Science Foundation by grant 2014384 from the U.S.-Israeli Binational Science
Foundation, and by Ralph Selig Career Development Chair in Information Theory; the project leading
to this application has received funding from European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme under grant agreement No. 678765. Work by
M. S. has also been supported by Grant 892/13 from the Israel Science Foundation, by the Blavatnik
Research Fund in Computer Science at Tel Aviv University, by the Israeli Centers of Research Excellence
(I-CORE) program (Center No. 4/11), and by the Hermann Minkowski-MINERVA Center for Geometry
at Tel Aviv University.

© Pankaj K. Agarwal, Natan Rubin, and Micha Sharir;

licensed under Creative Commons License CC-BY
25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 4; pp. 4:1-4:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2

Approximate Nearest Neighbor Search Amid Higher-Dimensional Flats

databases, machine learning, and data mining; see [4, 11] for comprehensive surveys. The very
basic scenario, referred to as the post-office problem in [23], asks to preprocess a collection S
of n points in R? (called sites), where d is a fixed parameter, into a data structure, so that
the site in S nearest to a query point ¢ € R%, i.e., the site NN(g, S) = arg minseg dist(q, s),
where dist(-, -) is the Euclidean distance, can be reported quickly.! This basic version has
been extended in numerous ways over the last four decades. Most notably, in such extensions
the sites and/or the queries can be chosen from richer families of geometric objects (say, lines,
k-flats, or even convex polyhedra, not to mention curved objects like balls), and dist(-,) can
be another distance function, such as an [,-norm, a polyhedral distance function, or the
Hausdorff distance (for non-point sites or queries) [4, 11]. The best known solution for the
post-office problem requires roughly /%21 storage in the worst case, for answering queries in
O(logn) time, in any fixed dimension d > 2. The extended versions of the problem, for non-
point sites and/or for other metrics/distance-functions, are naturally even more challenging.
In the search for more efficient data structures, we therefore give up the goal of finding the
exact nearest neighbor, and settle for structures that can answer efficiently approximate
nearest neighbor (or, shortly, ANN) queries. That is, given a prespecified error parameter
e > 0, an e-ANN query returns a site s € S satisfying dist(q, s) < (1 4 ¢)dist(q, NN(g, S)). In
what follows we use ANN(g, S) to denote the set of all sites with this property, i.e.,

ANN(g, S) = {s | dist(g, s) < (1 + €)dist(q,NN(g, S))}.

This paper focuses on the scenario in which S is a collection of n k-flats lying in the
Euclidean space R?, of any fixed dimension d > k (where d and k are treated as constants),
and the queries are points ¢ € R%. For a point ¢ € R? and a site s € S (assumed to
be closed), dist(g, s) is the minimum Fuclidean distance between ¢ and a point of s, i.e.,
dist(g, s) = minye, distyes(g, p). Given S and a parameter € > 0, the goal is to preprocess
S into a data structure so that, for any query point ¢ € R?, a k-flat s € ANN(q, S) can be
reported quickly.

Related work. As mentioned above, nearest-neighbor (NN) searching, especially when the
input sites are points, has been studied extensively. It is beyond the scope of this paper to
review all the related work on nearest-neighbor searching, so we focus on the most relevant
work, and refer the reader to [4, 11, 30] for more comprehensive reviews.

The most obvious approach to answering NN queries is to construct the Voronoi diagram
of the set S of input objects, and perform point location in the diagram with the query point.
Recall that the Voronoi diagram of S is the decomposition of space into cells, where each
cell, associated with one of the input sites, consists of all points whose nearest site in §' is
that site. It is well known that the complexity of the Euclidean Voronoi diagram of a set
of n points in R? is ©(n!%/?1) in the worst case. Better bounds on the complexity of the
diagram are known, though, in some special cases. For example, the expected complexity of
the Voronoi diagram of a set of n random points chosen uniformly in [0, 1]¢ is linear; see [19].

Recently, there has been some work on Voronoi diagrams of non-point sites. For example,
Chew et al. [17] have shown that the complexity of the Voronoi diagram of a set of n lines
in R3 under the polyhedral metric (or distance function) defined by a convex polytope Q
of constant complexity (see Section 2 for the definition of polyhedral distance functions)
is O(n?a(n)logn), where the constant of proportionality depends on the complexity of

L The site NN(g, S) is uniquely defined, unless ¢ belongs to a set of measure zero (namely, if ¢ lies on the
boundaries of two or more cells in the Voronoi diagram of S).

P. K. Agarwal, N. Rubin, and M. Sharir

Q. The near-quadratic bound was subsequently extended to the case when the input sites
are constant-complexity convex polyhedra in R? [25]. It is an open question whether the
complexity of the Euclidean Voronoi diagram of a set of lines in R3 is nearly quadratic; so
far, the near-quadratic upper bound has been confirmed only for lines with constantly many
orientations [24]. See the book by Aurenhammer et al. [13] for comprehensive studies of
Voronoi diagrams.

Because of the potentially large complexity of the Voronoi diagram, there has also been
work on constructing a data structure for answering NN queries directly, that does not require
the construction of the Voronoi diagram. For example, an NN query amid a set of n points
in R? can be answered in 5(n1*1/ [d/ 21) time using linear space.?2 More generally, for a given
parameter n < m < n/%/21 a query can be answered in O(n/m/[4/21) time using O(m)
space. The known lower-bound results on range searching [2] suggest that this is the best
bound one can hope for.

Consequently, attention has focused on answering ANN queries, as described above (see,
e.g., [7, 12, 15, 20, 22], to name a few works that follow this paradigm). Earlier methods for
answering ANN queries stored the input points in a (compressed) quad tree, k-tree, or their
variants, and performed a spiral search to return a point in ANN(q, S) for a given query point
q; see, e.g., [21]. More recently, the notion of an approzimate Voronoi diagram (AVD for
short) has been introduced; similar to a Voronoi diagram, AVD is a decomposition of space
into cells, each associated with a site s, so that s is an approximate nearest neighbor for all
query points in that cell. Har-Peled [20] constructed an approximate Voronoi diagram (AVD)
of a set of n points in R? of size 9] (E%n) Another AVD was proposed by Arya, Malamitos
and Mount [8, 9]; its size is linear in n, and it can be constructed in near-linear time.

A more elaborate approach yields a data structure for ANN queries that can answer an
e-ANN query in O(log(n/c)) time using O(n/e%/?) space; more generally, for a parameter
logé <0< a query can be answered in O(logn + 05+/2) time using O(n#)
space [7].

1
€d/2log(1/e)’

The performance of these and of many earlier data structures for answering ANN queries
depends exponentially on d, so they are not efficient for large values of d. This has lead to
extensive work on data structures for ANN-queries whose query time and size have polynomial
dependence on d, most notably using the locality-sensitive-hashing (LSH) technique and its
variants [3, 6]. The best-known data structure of this kind computes in n7/ (8e)+0(1/<") time
a (¢ — 1)-ANN with high probability, for ¢ > 1, using nl+7/(8e)+0(1/¢*) gpace. See [4] for a
survey of higher-dimensional NN problems and techniques.

Relatively little is known about ANN-queries for non-point input sites (e.g., lines, k-flats,
or even convex polyhedra); see, e.g., [5, 27, 29]. The best structures obtained for ANN-search
in such extended setups are typically more expensive than those obtained for the point-to-
point problem. The result of Koltun and Sharir [25] implies that an AVD for a set of n
pairwise disjoint triangles in R?, of size 5(712), can be constructed in near-quadratic time,
and thus an ANN-query for this setting can be answered in O(logn) time using 5(n2) space.
A simple grid-like construction shows that any AVD for a set of n lines in any dimension
d > 2 has Q(n?) complexity [20], which suggests that a near-linear-size data structure with
O(logn) query time is unlikely. For higher dimensions, the best known data structure for
lines is by Mahabadi [27]; it answers an e-ANN query for lines in R? in (d + logn + 1/¢)°)
time, using (n + d)©(/=") space; see also [14, 26].

2 Throughout this paper, we use 5(f(n)) to denote O(f(n) polylog(n)).

4:3

ESA 2017

4:4

Approximate Nearest Neighbor Search Amid Higher-Dimensional Flats

There is also some work on the dual problem, in which the input sites are points
but the query objects are k-flats. For the case when the query is a line, i.e., a 1-flat,
Andoni et al. [5] proposed a data structure that answers an e-ANN query in O (d?’nl/ 2+6)
time, using d2n0(1/e°+1/6%) space, for any constant ¢ > 0. Later, Mulzer et al. [29] proposed
a data structure for the case where the query objects are k-flats. Assuming there is an ANN
data structure, when both input sites and query objects are points in R%, with O(n?) query
time and O(n?) space, for some parameters p, o > 0, their data structure answers a query

with a k-flat in time O (n*/(*+1=2)%9) 'using O (n”"k/(kﬂfp) + nlog?/9) n) space, for

any constant § > 0.

Our results. We present an efficient data structure for answering ANN-queries when the
input sites are k-flats in R?. The main results are summarized in the following theorem.

» Theorem 1. Let d be a constant, let 0 < k < d — 1 be an integer, let € > 0 be a given

a=1 min(dk,k+1)>

error parameter, and let v = O ((1/5) For a given parameter m with

n<m < nFtl a given set S of n k-flats in RY can be preprocessed in (5('ym) expected time
into a data structure of O(ym) size, so that, for a query point ¢ € R, a flat f € ANN(q, S),
1

with respect to the Fuclidean metric, can be reported in 0] yn/mk+1 | time.

In particular, in the high-storage/ fast—que~ry regime, choosing m = nF*1, we can perform,

in any dimension d > k, ANN search with O(1) query cost (a) amid points (k = 0), using
a near-linear structure, or (b) amid k-flats, for k£ > 1, using a structure of size 9] ('yn’““).
For k = 1, i.e., for lines in R? (d > 2), our data structures requires storage that is nearly
quadratic in n in order to answer a query in 5(1) time. For d = 3, our bound nearly coincides
with that obtained from the three-dimensional AVD construction of Chew et al. [17], but no
near-quadratic data structure was known for d > 3.

Unlike some of the recent ANN data structures for point sites [8, 9], we do not explicitly
maintain the AVD of S. Instead, we approximate the Euclidean distance by a suitable
polyhedral metric (see Section 2 for the definition), and use multi-level partition trees
(designed for simplex range searching) [2] to answer (exact) NN-queries amid the flats of S
with respect to the approximating polyhedral metric. As a byproduct, we obtain a simple
and efficient data structure for answering exact NN queries amid k-flats with respect to
a polyhedral distance function; see Theorem 2. An advantage of this approach is that it
allows a trade-off between the size of the data structure and the query time, as stated in
Theorem 1. In particular, an ANN query amid k-flats can be answered in O (nt=1/(+1))
time with near-linear storage.

2 Warm-up: Lines in R3
In this section we establish Theorem 1 for a set of lines in R3. Let L be a set of n lines in R?,
and let € > 0 be a parameter. We wish to preprocess L into a data structure that answers
efficiently queries of the form: given a point ¢ € R?, find a line £ € L such that

dist(q,¢) < (1 + e)dist(q, L), where dist(q, L) := gnirleist(q,E’),
‘e

and where dist denotes the Euclidean distance.

P. K. Agarwal, N. Rubin, and M. Sharir

Figure 1 The Q-distance distg(q, ¢) is the scaling factor A for which the line ¢ touches ¢ + AQ, at
some edge g + Ae (and misses the interior of ¢ + AQ).

Polyhedral distance functions. In the general d-dimensional case, given a centrally sym-
metric convex polytope @ C R%, the polyhedral distance (with respect to Q) distg(p, q), for a
pair of points p, ¢ € R?, is defined as®

distg(p,q) =sup {t | ¢ & p +tQ},

and, more generally, for a point ¢ and a convex object ¢ not containing q,

distg(gq,c) =sup {t | cN (¢ +tQ) = 0}.

The classical result of Dudley [18] implies that, for any ¢ > 0, there exists a convex polytope
@, which is an intersection of O (ﬁ) halfspaces, or, alternatively, the convex hull of
a similar number of vertices, such that distg_ approximates the Euclidean metric up to a
factor of 1+ ¢; that is, for any pair of points p, g, we have

dist(p, q) < distq. (p,q) < (1 + €)dist(p, q). (1)

The advantage of using polyhedral distance functions for answering ANN-queries is that,
when ¢ is a point and f is a k-flat, distg(q, f) can be characterized as the smallest expansion
factor ¢ for which f makes contact with some (d— k —1)-face of the expanding polytope g+tQ.
This allows us to process each of the O(1) (d — k — 1)-faces o of Q for fast face-shooting
queries, in which, given a query point ¢, we seek the smallest ¢ for which g + to hits a flat
in S, and return that flat. For example, for the case of line sites in R?, the case studied in
this section, each such query shoots a fixed segment from the query point ¢; the expanding
segment traces a flat (two-dimensional) wedge that emanates from ¢ and is a translate of
some fixed wedge (that depends on the edge of @) that we shoot). We seek the first time at
which the expanding wedge hits an input line and return that line.* Hence, in the general
case of k-flats in R?, we prepare a constant number of face-shooting structures, one for each
face of @ of the appropriate dimension, search with the query point ¢ in each of them, and
return the smallest expansion factor that the queries output, and the corresponding flat of S
as the nearest neighbor.

In what follows we return to the special case of lines in R®. Given the error parameter
€ > 0, we approximate the Euclidean unit ball by a centrally symmetric convex polytope
Q = Q., of complexity O(1/¢) (using Dudley’s bound). We then solve the exact NN problem

3 In fact, the polyhedral metric also can be defined for non-centrally-symmetric polytopes (or, for that
matter, for any compact convex body @), but, to simplify matters in this presentation and to ensure
that the distance function is a metric, we take @) to be centrally symmetric.

4 Note that the wedge might miss the line completely, in which case we output +oo.

4:5

ESA 2017

4:6

Approximate Nearest Neighbor Search Amid Higher-Dimensional Flats

Aclq, E)Jk

Figure 2 The wedge We(q) is the union of all the copies ¢+ AA., for A > 0. Ac(q, £) is the scaling
factor A for which the triangle g + AA. touches ¢ at its edge ¢ + Ae, and A¢(q,£) is that triangle.
For each boundary edge e of @, we seek the line ¢ € L which minimizes the scaling distance Ac(q, £).

for the lines of L with respect to distg, that is, for any query point g, the algorithm computes
distg(g, L), and returns the line of L that is nearest to ¢ under this metric. In fact, the
procedure presented next solves the exact NN problem for any convex polytope @, not even
assuming that it is centrally symmetric with respect to the origin.

Exact NN-search for L with respect to an arbitrary polytope Q. Given a point g and a
line £, there exists at least one edge e of @ (that depends on ¢ and ¢), such that the distance
distg (g, ¢) is the scaling factor A for which (i) ¢ + Ae and ¢ touch one another, and (ii) £ does
not meet the interior of ¢ + AQ. See Figure 1.

To decompose the problem, we consider, for each edge e of @, the triangle A, C @
spanned by the origin o and e. Assume with no loss of generality that no ¢ € L is parallel
to A..5 Thus, for each £ € L there exists a unique scaling factor (g, ¢) € RU {oo}, such
that the homothetic placement g + A.(q,£)A, touches ¢ at a point of ¢ + Ac(g, £)e (we put
Ae(q,€) := +00 when there is no such placement). We have A\.(q,¢) < oo if and only if £
intersects the planar wedge W, (q) which is the union of all the copies ¢ + A\A., for A > 0. In
what follows, we denote the resulting placement g + A.(q, {)A. by Ac(q, £); see Figure 2.

As already noted, our strategy for computing distg(q, L) is to design a separate data
structure D, for each edge e of @), which answers efficiently queries of the form: Given a point
q, find the smallest scaling factor A.(q) := minger, Ac(g, £), and report the corresponding line
£* that attains A.(q) = (g, £%).

With this machinery available, we return to our approximating polytope Q., query each
of its O(1/e) edge-structures D, with ¢, and report the minimum of the corresponding output
values A.(¢), and the line attaining that minimum. As is easily checked, the output gives a
(1 + e)-approximation to the Euclidean dist(q, L).

The edge structures D.. Let e be a fixed edge of Q. Given a point ¢, we wish to return
Ae(q) := mingep (g, £) as well as the corresponding line £ that attains A.(q) = Ae(g, €*).
To simplify the presentation, and with no loss of generality, assume that e is the edge z = 0,
=1, —a <y <a, for some a > 0.

Let us express a query in algebraic terms. Recall that we assume no line in L to be
parallel to A, i.e., no line in L is normal to the z-axis. Hence, we parametrize such a line ¢

5 If L contains lines that are parallel to A, we apply an infinitesimally small rotation to () which preserves
all of its essential properties.

P. K. Agarwal, N. Rubin, and M. Sharir

in R? by the pair of equations
x = u,(0)z + v, (0), y = uy(0)z + vy (€),

for a suitable quadruple of real parameters (u;(£),v4(€), uy(£), vy (£)).

Let ¢ = (x0,y0,20) be the query point, and let £ be a line in L with the parameters
(uz(€),v3(€),uy(£),vy(£)). Notice that We(q) is contained in the plane z = zy, and this plane
meets £ at the point

pe = (uz(€)z0 + v (L), uy(€)zo +vy(€), 20).
The condition that py lies in the wedge W.(q) can be expressed as

—a (ug(€)z0 + vz (€) — m0) < uy(£)zo + vy (£) — yo < +a (uz(l)z0 + v2(€) — To) ,

or (i (€) + auy(0))z0 + (v, (€) + avs(£)) > yo + az 2)
(1 (€) — aus(€))z0 + (v,(€) — avs (6)) < yo — azo.

Both constraints in (2) are linear in u, (¢), v (), uy (€), vy (¢), with coefficients depending on
the query ¢ and the constant a (that is, on the edge e). Among the lines that satisfy these
inequalities, our goal is to return the one that minimizes the scaling factor A.(g,¢), given by

Ae(q,£) = ug(£)20 + v () — 0,

which is also linear in the chosen parameterization of /.

In view of the above observations, we construct a three-level partition tree (see [1, 2, 16, 28])
on the lines of L. The first two levels are used to collect, for any given query point
q = (20, Yo, 20), the lines that satisfy both conditions in (2), as the (disjoint) union of a small
number of pre-stored “canonical” subsets, and the third level supports linear-programming-
like queries, where each query specifies a linear objective function and asks for the point in
the canonical subset that attains its minimum.

In more detail, we represent each line £ € L, parametrized by (us(£),v(€), uy(£),vy(£)),
by the triple of points p* (£), p~(£), p°(¢) € R?, where

pH(0) = (uy(0) + aug(0), vy (0) + avy(0))
p~(0) := (uy(£) — aua(€), vy(f) — avy(£)), and
p°(€) = (uz(£), vz(£)),

and put

Pt={pt(0)|teL}, P ={p (O)|teLl}, P :={p°(0)[LeL}.

A line / satisfies (2) if and only if p*(¢) lies above the line 2oz +y = yo + axo and p~(£) lies
below the line zpx + y = yo — axg.

Following the standard methodology of multi-level data structures, each of the three
levels of our partition tree, each of whose levels supports halfplane range searching queries
amid points of one of the planar sets Pt, P~ or P°. This is done as follows. We fix a
parameter n < m < n?. The first level is a partition tree T, as described in [16], over the set
P*. Each node of T is associated with some canonical subset PS. For a query halfplane
h, h N PT can be represented as the disjoint union of O(n/\/m + logn) canonical subsets
(those stored at the nodes of T' that the query with h reaches). Next, for each node v of T

4:7

ESA 2017

4:8

Approximate Nearest Neighbor Search Amid Higher-Dimensional Flats

we construct a similar partition tree T(%), as a second-level structure, on the corresponding
subset P, = {p~(¢) | pT(¢) € P} of P~. Again, each node z € T(") is associated with a
suitable canonical subset P, C P,". Finally, at the third level, we preprocess the point set
P2, ={p°(€) | p~(¢) € P;,} into a data structure so that, for a query vector u € R?, the
point of P, that is minimal in direction u can be computed efficiently. Using a linear-size
halfplane range reporting data structure® (see, e.g., [2]), such an extremal query can be
answered in O(logn) time. Putting everything together, we obtain a data structure of 6(m)
size, so that, for a query point ¢ € R?, \.(¢), and the corresponding line ¢* € L, can be
computed in O(1 4 n/\/m) time. The further details, omitted here, can be found in the
aforementioned papers.

Hence, for any choice of n < m < n?, and for each of the O(1/¢) edges e of Q., we
construct, in O(m) time, the data structure D,, as just described. This takes a total of
O(m/e) storage and preprocessing. Given a query point ¢ € R, we query with ¢ in each of
these structures, and output the smallest scaling factor A.(q), over all edges e, and the line
¢ € L that attains this minimum. The total cost of a query is O(L(n/m!/?)).

In particular, we can answer ANN queries amid a set of n lines in R? under the Euclidean
distance, in O(1) time using a data structure that requires only O(n2/e) storage and
preprocessing time.

3 Proof of Theorem 1

The preceding algebraic approach can be extended, in a fairly straightforward manner, to
nearest-neighbor problems involving k-flats, for & > 1, in R?, for d > 3 (and d > k). This is
done as follows.

Let F be a collection of n k-flats, in general position, in R¢, for some fixed d > k > 1 and
d > 3. We approximate the Euclidean unit ball by a fixed convex polytope Q = @Q., which is
centrally symmetric with respect to the origin o, so that the resulting Q-distance function
dg, satisfies (1). By Dudley’s theorem [18], this can be achieved by a polytope Q. that has

either O (1/€%> vertices, or O (1/€%> facets.

As in Section 2, we next present a solution of the (exact) NN search problem for F with
respect to the @)-distance function distg, for an arbitrary fixed convex polytope), not even
requiring it to be centrally symmetric.

Exact nearest neighbor search with respect to Q. For a k-flat f € F' and a point ¢, the
distance A = distg(g, f) is attained at a point v € f such that v lies on a (d — k — 1)-face
of ¢ + A@. Thus, in complete analogy to the preceding treatment, we construct, for each
(d — k — 1)-face o of @, a data structure that supports queries of the form: given a query
point ¢, find the smallest A such that ¢ + Ao touches a flat of F.

By triangulating @, if necessary, we may assume that o is a simplex. Let E, be the
(d — k)-dimensional affine space spanned by o and o, and let K, :=J -, Ao be the (d — k)-
dimensional wedge contained in F,. N

The region K,(q) := q+ K, = Uy>((q + Ao) is a (d — k)-dimensional simplicial wedge
whose (also (d — k)-dimensional) affine hull E,(q) is ¢ 4+ E,. Assuming general position, each
flat f of F intersects F,(q) at a unique point, denoted as f,(q).

6 In this very special case, the structure is simply the convex hull of the underlying set.

P. K. Agarwal, N. Rubin, and M. Sharir

For each (d — k)-face o of @, we collect those points f,(q) that lie in K,(g), and choose
among them a point that minimizes the scaling factor A\,(q) = A,(q, f) at which g + Ao
touches the point f,(g). As in Section 2, this is done by constructing a separate data
structure D, for each (d — k — 1)-face o of Q.

The face structures D,. Without loss of generality, assume that the coordinate system
is such that the linear subspace E, spanned by o is the 2125 - - - 24_p-space R4™* (given by
Td—k+1 = Ta—g+2 = -+ = 4 = 0). Regard K, as the intersection of d — k fixed halfspaces
(through the origin) h, k3 ..., h} , within R9=% and write h;‘ ={x€E,|x-u; >0}, for
fixed respective vectors uq,...,uq_g in F,.

We now cast the preceding observations in algebraic form. In general position, each k-flat
f € F can be expressed by d — k linear equations of the form

k
2i =Y aii(f)Ta ks + bi(f), (3)
i=1

fori=1,...,d—k. Let A(f) denote the (d — k) x k matrix of the coefficients a;;(f), and let
b(f) denote the (d — k)-dimensional vector (b1(f),...,ba—r(f))-

For each flat f € F, the condition that f,(q) lies in K,(q) is equivalent to the condition
that f,(¢) — ¢ lies in K, (within E,). The point f,(q) is obtained by substituting in (3)
the last k coordinates of ¢q. To simplify the notation, add the vector b(f) as a last column
of A(f) (and continue to denote the matrix as A(f)). Then f,(q) = A(f)q*, where ¢* is
the (k 4 1)-dimensional vector whose first k coordinates are the last k coordinates of ¢, and
whose last coordinate is 1.

Hence, the condition that f,(g) — ¢ lies in K, is

ul (A(f)g" —q) >0, forj=1,...,d—k. (4)

Let ug—_r+1 denote the outward normal of ¢ within E,. In analogy with Section 2, we
construct a (d — k 4 1)-level partition tree, whose first d — k levels are used to collect the set
F, of k-flats f that satisfy (4), and whose bottommost level is used to determine the flat
f € F, that minimizes the linear function fy(q) - ug—k+1 = ul_, . A(f) - ¢* in F.

Notice that the intrinsic dimension at each level is only k + 1, as we represent each f € F
by the d — k + 1 (k + 1)-dimensional vectors:

¢i(f) =uj A(f), forj=1,....d—k+1.

Since the vectors u;, for 1 < j < d — k + 1, are fixed, each vector ¢;(f) is a linear expression
in A(f), independent of the query q.

We thus prepare a (d — k + 1)-level (k + 1)-dimensional partition tree, each of whose
levels corresponds to a (k + 1)-dimensional halfspace range-searching data structure. Again,

k+1

we fix a parameter m with n < m < n""! and construct a partition tree of size O(m) in

O(mlogm) expected time, using Chan’s algorithm [16] over the set {c;(f) | f € F} C RF+L.

Suppose we have constructed j — 1 levels of the data structure, for 2 < j < d — k. For
each canonical subset F” of the (j — 1)-level of the data structure, we construct a partition
tree, using Chan’s algorithm, over the set {c;(f) | f € F'} C R¥*!. Finally, for each
canonical node F’ of level d — k, we again construct a partition tree on the point set
{ca—r1(f) | f € F'} C R¥! 50 that, for a query vector u € R¥*! the minimal point in
direction u, i.e., f, = argminseps c4—k+1(f) - w is returned. The overall preprocessing time
and size of the data structure are O(m) [2, 16].

4:9

ESA 2017

4:10

Approximate Nearest Neighbor Search Amid Higher-Dimensional Flats

Answering queries. Given a query point ¢, we query with ¢, for each (d — k — 1)-face o of
Q, the corresponding structure D, so as to find the flat f € F that satisfies (4) and (among
all such flats) attains the minimum value ¢q_11(f) - ¢* — Ug—k+1 - G-

Specifically, at each level 1 < j < d — k, we access each of its structures, built over the
canonical sets that the query retrieved at the preceding level 57 — 1, and query it with the
halfspace ¢;(f) - ¢* > u; - q. As a result, after accessing all levels j = 1,...,d — k, we obtain
a compact representation of the above set Fy, of flats f € F that satisfy (4), as a union of
canonical sets that are stored at the (d — k)-level. We then query, for each of these canonical
sets F' C Fy, its (d — k + 1)-level structure, so as to find the flat f € F’ that minimizes
the objective function cg—gk+1(f) - ¢* — ug—r+1 - ¢, and return the flat f, that attains the
overall minimum value, along with that value, which is in fact equal to A\, (q) = As(q, fs), as
defined above. Note that f, exists if and only if (4) is satisfied for at least one f € F. If this
process has failed to find any flat f € Fj,, we make f, undefined, and return A\, (¢q) = +oc.
Nevertheless, there always exists at least one (d — k — 1)-face o of @ for which f, exists, so
at least one of the output values \,(q, f,) will be finite.

We iterate this process for each (d — k — 1)-face o of @, and return the flat f, with the
minimum corresponding scaling factor A, (g, f5); as just observed, this minimum is always
finite, so the output flat is always well defined (and is unique for a generic query q).

Using the standard results on multi-level partition-trees and on halfspace range search-
ing [2, 16, 28], the overall size and preprocessing time of the data structure are 5(m) and a
query can be answered in 6(71 / mt/ 4) for every face of Q. Summing this bound over all faces
of @, we obtain the following general result for exact NN-search with respect to a polyhedral
distance functions.

» Theorem 2. Let d > 2 be a constant, let 0 < k < d — 1, let Q be a convex polytope in RY

with 7y faces of dimension d — k — 1. For a given parameter m with n < m < nF*1

, a given
set F' of n k-flats in R can be preprocessed in O(ym) expected time into a data structure

of 5('ym) size, so that, for a query point ¢ € R?, a flat f € F that attains the smallest
Q-distance dg(q, f) can be reported in O (’y (n/mﬁ)) time.

Back to Euclidean ANN-search. We now apply the machinery just derived to obtain an
efficient solution to the Euclidean ANN-search problem. Given € > 0, we take a convex
centrally symmetric polytope Q. that approximates the Euclidean ball, in the sense that its
corresponding Q.-distance function satisfies (1). Recall that, using Dudley’s bound, we can

d—1 d—1

take Q)¢ to have either O ((1/5) z) vertices or O ((1/5)7) facets.

The maximum number v of (d — k — 1)-faces of such a polytope Q. satisfies
N=0 ((1/5)% min(d—k,k-ﬁ-l)) '

In this bound, we use a polytope Q. with a small number of facets (resp., vertices) when
kE+1<d—k (resp., k+1>d—k).
Plugging this into Theorem 2 finally yields Theorem 1. [J

4 Discussion and Open Problems

Our data structure answers ANN queries amid a set I’ of k-flats in R? by answering exact NN
queries amid F' with respect to a suitable polyhedral @-metric. The most obvious direction
towards further improving the bounds of Theorem 1 is to replace the exact NN-search under
the @-norm by some approximate version. Ideally, this would allow us to avoid the use of the

P. K. Agarwal, N. Rubin, and M. Sharir

fairly expensive halfspace range searching structures. Unfortunately, our parametrization of
k-flats by (k + 1)-dimensional points does not preserve distances, so the existing machinery
of approximate range searching, such as in [10], does not directly apply.

The most interesting instance of the problem involves lines in R%. Notice that our fast
structure, using only nearly quadratic storage in n, does not yield an approximate Voronoi
diagram whose description complexity is also nearly quadratic. A challenging open problem
is whether an approximate Voronoi diagram of near-quadratic size exists for a set of lines in
R?, for d > 3. More generally, does an approximate Voronoi diagram of size O(n*+1) exist
for a set of k-dimensional flats in R%, for d > k?

Acknowledgement. The authors thank Sariel Har-Peled for helpful discussions. We also
thank ESA referees for the helpful suggestions which will be incorporated into the full version
of the paper.

—— References

1 Pankaj K. Agarwal. Geometric range searching. In J. E. Goodman, J. O’Rourke, and Cs. D.
Toth, editors, Handbook of Discrete and Computational Geometry. CRC Press LLC, Boca
Raton, FL, 3rd edition, 2017 (to appear).

2 Pankaj K. Agarwal. Simplex range searching. In M. Loebl, J. Nesetril, and R. Thomas,
editors, Journey Through Discrete Mathematics. Springer, Heidelberg, to appear.

3 Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. Commun. ACM, 51(1):117-122, January 2008.
doi:10.1145/1327452.1327494.

4 Alexandr Andoni and Piotr Indyk. Nearest neighbors in high-dimensional spaces. In J. E.
Goodman, J. O’Rourke, and Cs. D. Téth, editors, Handbook of Discrete and Computational
Geometry. CRC Press LLC, Boca Raton, FL, 3rd edition, 2017 (to appear).

5 Alexandr Andoni, Piotr Indyk, Robert Krauthgamer, and Huy L. Nguyen. Approximate
line nearest neighbor in high dimensions. In Proceedings of the Twentieth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA’09, pages 293-301, Philadelphia, PA,
USA, 2009. Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/
citation.cfm?id=1496770.1496803.

6 Alexandr Andoni, Piotr Indyk, Huy L. Nguyen, and Ilya Razenshteyn. Beyond locality-
sensitive hashing. In Proceedings of the Twenty-fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA’14, pages 1018-1028, Philadelphia, PA, USA, 2014. Society
for Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=
2634074 .2634150.

7 Sunil Arya, Guilherme D. da Fonseca, and David M. Mount. Optimal approximate poly-
tope membership. In Proceedings of the Twenty-Fighth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA’17, pages 270-288, Philadelphia, PA, USA, 2017. Society
for Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=
3039686 .3039704.

8 Sunil Arya and Theocharis Malamatos. Linear-size approximate voronoi diagrams. In
Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA’02, pages 147-155, Philadelphia, PA; USA, 2002. Society for Industrial and Applied
Mathematics. URL: http://dl.acm.org/citation.cfm?id=545381.545400.

9 Sunil Arya, Theocharis Malamatos, and David M. Mount. Space-efficient approximate
voronoi diagrams. In Proceedings of the Thiry-fourth Annual ACM Symposium on Theory
of Computing, STOC’02, pages 721-730, New York, NY, USA, 2002. ACM. doi:10.1145/
509907.510011.

4:11

ESA 2017

http://dx.doi.org/10.1145/1327452.1327494
http://dl.acm.org/citation.cfm?id=1496770.1496803
http://dl.acm.org/citation.cfm?id=1496770.1496803
http://dl.acm.org/citation.cfm?id=2634074.2634150
http://dl.acm.org/citation.cfm?id=2634074.2634150
http://dl.acm.org/citation.cfm?id=3039686.3039704
http://dl.acm.org/citation.cfm?id=3039686.3039704
http://dl.acm.org/citation.cfm?id=545381.545400
http://dx.doi.org/10.1145/509907.510011
http://dx.doi.org/10.1145/509907.510011

4:12

Approximate Nearest Neighbor Search Amid Higher-Dimensional Flats

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Sunil Arya and David M. Mount. Approximate range searching. Computational Geometry,
17(3):135-152, 2000. doi:10.1016/S0925-7721(00)00022-5.

Sunil Arya and David M. Mount. Computational geometry: Proximity and location. In
D. P. Mehta and S. Sahni, editors, Handbook of Data Structures and Applications, chapter 3.
Chapman and Hall/CRC, Boca Raton, FL, 2004.

Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y. Wu.
An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J.
ACM, 45(6):891-923, November 1998. doi:10.1145/293347.293348.

Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. Voronoi Diagrams and Delaunay Tri-
angulations. World Scientific Publishing Co., Inc., River Edge, NJ, USA, 1st edition, 2013.
Ronen Basri, Tal Hassner, and Lihi Zelnik-Manor. Approximate nearest subspace search.
IEEFE Trans. Pattern Anal. Mach. Intell., 33(2):266-278, February 2011. doi:10.1109/
TPAMI.2010.110.

Marshall Bern. Approximate closest-point queries in high dimensions. Information Pro-
cessing Letters, 45(2):95-99, 1993. doi:10.1016/0020-0190(93)90222-U.

Timothy M. Chan. Optimal partition trees. Discrete Comput. Geom., 47(4):661-690, June
2012. d0i:10.1007/s00454-012-9410-z.

L. Paul Chew, Klara Kedem, Micha Sharir, Boaz Tagansky, and Emo Welzl. Voronoi dia-
grams of lines in 3-space under polyhedral convex distance functions. Journal of Algorithms,
29(2):238-255, 1998. doi:10.1006/jagm.1998.0957.

R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. Journal
of Approzimation Theory, 10(3):227-236, 1974. doi:10.1016/0021-9045(74)90120-8.
Rex A. Dwyer. Higher-dimensional voronoi diagrams in linear expected time. Discrete &
Computational Geometry, 6(3):343-367, Sep 1991. doi:10.1007/BF02574694.

S. Har-Peled. A replacement for voronoi diagrams of near linear size. In Proceedings of the
42Nd IEEE Symposium on Foundations of Computer Science, FOCS’01, pages 94—, Wash-
ington, DC, USA, 2001. IEEE Computer Society. URL: http://dl.acm.org/citation.
cfm?i1d=874063.875592.

Sariel Har-Peled. Geometric Approximation Algorithms. American Mathematical Society,
Boston, MA, USA, 2011.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing
the curse of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing, STOC’98, pages 604613, New York, NY, USA, 1998. ACM. doi:
10.1145/276698.276876.

Donald E. Knuth. The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting and
Searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1998.
Vladlen Koltun and Micha Sharir. 3-dimensionall euclidean voronoi diagrams of lines with
a fixed number of orientations. SIAM J. Comput., 32(3):616-642, March 2003. doi:10.
1137/80097539702408387.

Vladlen Koltun and Micha Sharir. Polyhedral voronoi diagrams of polyhedra in three
dimensions. Discrete & Computational Geometry, 31(1):83-124, Jan 2004. doi:10.1007/
s00454-003-2950-5.

Avner Magen. Dimensionality reductions in ℓ2 that preserve volumes and dis-
tance to affine spaces. Discrete Comput. Geom., 38(1):139-153, July 2007. doi:10.1007/
s00454-007-1329-4.

Sepideh Mahabadi. Approximate nearest line search in high dimensions. In Proceedings of
the Twenty-sizth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’15, pages
337-354, Philadelphia, PA, USA, 2015. Society for Industrial and Applied Mathematics.
URL: http://dl.acm.org/citation.cfm?id=2722129.2722154.

http://dx.doi.org/10.1016/S0925-7721(00)00022-5
http://dx.doi.org/10.1145/293347.293348
http://dx.doi.org/10.1109/TPAMI.2010.110
http://dx.doi.org/10.1109/TPAMI.2010.110
http://dx.doi.org/10.1016/0020-0190(93)90222-U
http://dx.doi.org/10.1007/s00454-012-9410-z
http://dx.doi.org/10.1006/jagm.1998.0957
http://dx.doi.org/10.1016/0021-9045(74)90120-8
http://dx.doi.org/10.1007/BF02574694
http://dl.acm.org/citation.cfm?id=874063.875592
http://dl.acm.org/citation.cfm?id=874063.875592
http://dx.doi.org/10.1145/276698.276876
http://dx.doi.org/10.1145/276698.276876
http://dx.doi.org/10.1137/S0097539702408387
http://dx.doi.org/10.1137/S0097539702408387
http://dx.doi.org/10.1007/s00454-003-2950-5
http://dx.doi.org/10.1007/s00454-003-2950-5
http://dx.doi.org/10.1007/s00454-007-1329-4
http://dx.doi.org/10.1007/s00454-007-1329-4
http://dl.acm.org/citation.cfm?id=2722129.2722154

P. K. Agarwal, N. Rubin, and M. Sharir

28

29

30

Jifi Matousek. Range searching with efficient hierarchical cuttings. Discrete Comput.

Geom., 10(1):157-182, December 1993. doi:10.1007/BF02573972.
Wolfgang Mulzer, Huy L. Nguyén, Paul Seiferth, and Yannik Stein. Approximate k-flat
nearest neighbor search. In Proceedings of the Forty-seventh Annual ACM Symposium

on Theory of Computing, STOC’15, pages 783-792, New York, NY, USA, 2015. ACM.

doi:10.1145/2746539.2746559.

Gregory Shakhnarovich, Trevor Darrell, and Piotr Indyk. Nearest-Neighbor Methods in
Learning and Vision: Theory and Practice (Neural Information Processing). The MIT
Press, 2006.

4:13

ESA 2017

http://dx.doi.org/10.1007/BF02573972
http://dx.doi.org/10.1145/2746539.2746559

Output Sensitive Algorithms for Approximate
Incidences and Their Applications”

Dror Aiger!, Haim Kaplan?, and Micha Sharir®

1 Google Inc., Mountain View, CA, USA
aigerd@google.com

2 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
haimk@tau.ac.il

3 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
michas@tau.ac.il

—— Abstract

An e-approximate incidence between a point and some geometric object (line, circle, plane, sphere)
occurs when the point and the object lie at distance at most € from each other. Given a set of
points and a set of objects, computing the approximate incidences between them is a major step
in many database and web-based applications in computer vision and graphics, including robust
model fitting, approximate point pattern matching, and estimating the fundamental matrix in
epipolar (stereo) geometry.

In a typical approximate incidence problem of this sort, we are given a set P of m points
in two or three dimensions, a set S of n objects (lines, circles, planes, spheres), and an error
parameter € > 0, and our goal is to report all pairs (p,s) € P x S that lie at distance at most
¢ from one another. We present efficient output-sensitive approximation algorithms for quite a
few cases, including points and lines or circles in the plane, and points and planes, spheres, lines,
or circles in three dimensions. Several of these cases arise in the applications mentioned above.
Our algorithms report all pairs at distance < e, but may also report additional pairs, all of which
are guaranteed to be at distance at most ae, for some problem-dependent constant o > 1. Our
algorithms are based on simple primal and dual grid decompositions and are easy to implement.
We note that (a) the use of duality, which leads to significant improvements in the overhead cost
of the algorithms, appears to be novel for this kind of problems; (b) the correct choice of duality
in some of these problems is fairly intricate and requires some care; and (c¢) the correctness and
performance analysis of the algorithms (especially in the more advanced versions) is fairly non-
trivial. We analyze our algorithms and prove guaranteed upper bounds on their running time
and on the “distortion” parameter «.

1998 ACM Subject Classification F.2.2 Geometrical problems and computations

Keywords and phrases Approximate incidences, near-neighbor reporting, duality, grid-based
approximation

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.5

Work by Haim Kaplan has been supported by Grant 1161/2011 from the German-Israeli Science
Foundation and by Grant 1841-14 from the Israel Science Foundation. Work by Micha Sharir has been
supported by Grant 2012/229 from the U.S.-Israel Binational Science Foundation, by Grant 892/13
from the Israel Science Foundation, by the Blavatnik Research Fund in Computer Science at Tel Aviv
University, and by the Hermann Minkowski-MINERVA Center for Geometry at Tel Aviv University.
Both Kapalan and Sharir have also been supported by the Israeli Centers for Research Excellence
(I-CORE) program (center no. 4/11).

© Dror Aiger, Haim Kaplan, and Micha Sharir;

37 licensed under Creative Commons License CC-BY
25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 5; pp. 5:1-5:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2

Output Sensitive Algorithms for Approximate Incidences and Their Applications

1 Introduction

Approximate incidences. Given a finite point set S; and finite set Sy of geometric primitives
(e.g., lines, planes, circles, or spheres in R? or R3), and some € > 0, we define the set of
e-incidences (also referred to as e-approximate incidences, or just approzimate incidences)
between S; and S5 to be

IE(Sl,SQ) = {(81782) | 81 € 51752 S Sg,dist(81,52) < 6},

where dist(sy, s2) = inf{dist(s1,y) | y € s2} is the Euclidean distance between s; and ss.
We are interested in efficient algorithms for computing I. (S, S2), ideally in time linear in
|S1] + |Sa| + |I:(S1, S2)|- Most classical work in discrete and computational geometry is
focused on exact incidences (¢ = 0). When S5 is a set of lines in the plane and e = 0, detecting
whether I5(S1, S2) is empty or not is the well studied Hopcroft’s problem (see, e.g., [8]). In
contrast, the notion of approximate incidences, as we define here, probably received less
theoretical attention, but has many important applications which we review below. We
consider the problem of reporting all pairs in I.(S1, S2). Our algorithms, though, can also
estimate |I.(S1, S2)|, rather than report its members, and do it faster when |I.(S1, S2)| is
small.

This problem can be viewed as a range searching problem. Specifically, we treat each
member sy of Sy as the range sa(€) = {p € R? | dist(p,s2) < e},d = 2,3, which is the
Minkowski sum of s, with a disk (ball in R?) of radius € (centered at the origin); thus points
become disks, lines become slabs (in R?) or cylinders (in R?), circles become annuli (in R?)
or tori (in R?), and so on. The goal now is to report all pairs (s1,s2) € S; X Sz such that
s1 € s2(€). As mentioned, the known algorithms for such tasks have a rather large overhead.
For example, when S is a set of m points and S is a set of n lines in the plane, i.e., the
ranges so(e) are fixed-width slabs, the best known algorithms for solving the problem have
an overhead close to m?/3n?/3, and there are matching lower bounds in certain models of
computation. The overhead is larger when the objects in Sy are of more complex shapes
(e.g., arbitrary circles) or when we move to three (or higher) dimensions; see [1]. In addition,
these algorithms, while interesting and sophisticated from a theoretical point of view, are a
nightmare to implement in practice.

Instead, with the goal of obtaining algorithms that are really simple to implement (and
therefore with good performance in practice), and that run in time linear in the input and
output sizes, we adopt the approach of using approximation schemes, in which we still
report all the pairs (s1, s2) that satisfy dist(sy, s2) < &, but are willing to report additional
pairs, provided that all pairs that we report satisfy dist(s1, s2) < ag, for some constant
problem-dependent parameter o > 1. To be more precise, assuming that the test whether
dist(s1, s2) < ¢ is cheap, we can filter the reported pairs by such a test, and actually report
only the pairs that pass it. The actual number of pairs that we have to inspect will typically
be larger than |I.(S7,S2)], but it will always be at most |I,:(S1,52)| (and in practice
considerably less than that), and the hope is that the number of inspected pairs will not
be much larger than those that we actually report. (We expect it to be larger by only a
constant factor, which depends on « and on the geometry of the setup under consideration.)

Our results. We present simple and efficient output-sensitive algorithms (in the above sense)
for approximate-incidence reporting problems between points and various simple geometric
shapes, in two and three dimensions.

To calibrate the merits of our solutions, we first note that these approximate incidence
reporting problems can also be solved by naive grid-based algorithms, as follows. Consider,

D. Aiger, H. Kaplan, and M. Sharir

for example, the problem of reporting approximate incidences between a set S; of m points
and a set Sy of n lines in the plane. We assume that all the incidences that we seek occur
in the unit disk (ball in R?). We partition the unit disk by a uniform grid, each of whose
cells is a square of side length . We store each point in .S in a bucket corresponding to the
grid cell that contains it, and, for each line £ € Sy, we report all the pairs involving ¢ and
the points in the grid cells that ¢ crosses, and in their neighboring cells. The running time
is O(m + n/e + k), where k is the number of reported approximate incidences. Clearly, all
pairs (p,£) € S1 x Sy with dist(p, ¢) < € are reported, and each reported pair (p, ¢) satisfies
dist(p, £) < 2v/2¢, as is easily checked. If n is much larger than m, we can use duality (where
some care is needed to preserve point-line distances), to map the points to lines and the lines
to points, and thereby reduce the complexity to O(n + m + min{m, n}/e + k). This method
can also be applied in three dimensions, and yields the same time bounds as in the preceding
primal-only approach (duality is much trickier in these situations), namely, O(m + n/e + k),
when Sy consists of one-dimensional objects (e.g., lines or circles), but the running time
deteriorates to O(m + n/e? + k) when S, consists of surfaces (e.g., planes or spheres). In
these latter cases (involving planes or congruent spheres) duality can be applied, to improve
the time bound to O(n + m + min{m,n}/e? + k).

While superficially these simple solutions might look ideal, as they are linear in m, n,
and k, their dependence on € is too naive and weak, and when m and n are large and ¢ small
(as is typically the case in practice), the algorithms are rather slow in practice.

In this paper we address this issue, and develop a series of “primal-dual” grid-based
algorithms for several approximate incidence reporting problems, that are faster than this
naive scheme for suitable ranges of the parameters m, n, and e (which cover most of the
practical instances of these problems). Specifically, we present the following results. In all of
them, S7 is a set of m points, contained in the unit ball in two or three dimensions.

(a) In the plane, for a set So of n lines, all k£ approximate incidences can be reported in
time O (m +n + v/mn/+/e + k). (The dependency of the complexity on ¢ is improved
by a factor of y/¢ compared to the naive scheme when n and m are comparable.)

(b) In three dimensions, for a set Sy of n planes, all k approximate incidences can be reported
in time O (m + n + /mn/e + k). (The dependency of the complexity on ¢ is improved
by a factor of € compared to the naive scheme, when n and m are comparable.)

(c) In the plane, for a set Sy of n congruent circles, all k approximate incidences can be
reported in time O (m +n + /mn/\/c + k).

(d) In the plane, for a set Sy of n arbitrary circles, all k approximate incidences can be
reported in time O (m +n+ml/3n2/3 /213 4 k)

(e) In three dimensions, for a set Sy of n congruent spheres, all k approximate incidences
can be reported in time O ((m +n)/e + k).

(f) In three dimensions, for a set Ss of n lines, all k& approximate incidences can be reported
in time O (m +n + m'/3n2/3 [2/3 4 k).

(g) In three dimensions, for a set Sy of n congruent circles, all k approximate incidences
can be reported in time O ((m +n)/e'/2 + m'/3n2/3 /7/6 4 k).

In Section 4, we use the algorithms in (e) and (g), to obtain an efficient algorithm to find
nearly congruent triangles which is the first step in solving the approximate point pattern
matching problem in R3.

A comparison with the naive solutions sketched above clearly shows the superiority of
our technique. For example, for lines or congruent circles in the plane, assuming that n < m,
our algorithms (in (a) and (c), respectively) are asymptotically faster than the naive method
when y/mn/e < n/e, that is, when ¢ < n/m, an assumption that holds in most practical
applications.

5:3

ESA 2017

5:4

Output Sensitive Algorithms for Approximate Incidences and Their Applications

To recap, we show that, by allowing to report some additional approximate incidences
between pairs that are at most ae apart, one can obtain substantially better bounds than the
naive ones. Our methods are based on grids and on duality — they construct much coarser
primal grids, and pass each subproblem, consisting of the points in a grid cell and of the
objects that pass through or near that cell, to a secondary dual stage, in which another
coarse grid is constructed in a suitably defined dual space. The output pairs are obtained
from the cells of these secondary grids, and the gain is in the overhead, as each primal or dual
object crosses much fewer grid cells than in the naive solutions. Although this primal-dual
paradigm is fairly standard, its power in the approximate incidences context, as considered
here, has not been demonstrated before (to the best of our knowledge). The analysis (and
the particular duality one has to use) for some of the three-dimensional variants is fairly
challenging, but the algorithms all remain simple to describe and to implement.

Motivation and applications. Approximate incidence reporting and counting problems
arise in several basic practical applications, in computer vision, pattern recognition, and
related areas. Three major applications of this sort are robust model fitting, approximate point
pattern matching under rigid motions, and estimating the fundamental matrix in (stereo)
epipolar geometry. All three problems share a common paradigm, which we first explain
for model fitting. In this problem, we are given a set P of n points, say in R? (typically,
these are so-called interest points, extracted from some image or 3D sensors), and we want
to fit objects (called models) from some given family, such as lines, circles, planes, or spheres,
so that each model passes near (i.e., is approximately incident to) many points of P; the
quality of the model is measured in terms of the number of approximately incident points.
The standard approach is to construct (usually, by repeated random sampling) a sufficiently
rich collection of candidate models. (For example, for line models, one can simply sample
pairs of points of P, and for each pair construct the line passing through its points.) One
then counts, for each candidate line, the number of approximately incident points (for some
specified error parameter £ > 0), and reports the models that have sufficiently many such
points.

Similar reductions arise in the other problems. In approximate point pattern matching,
we are given two sets A, B of points, and want to find rigid motions that map sufficiently
large subsets of A to sets whose (unidirectional) Hausdorff distance to B is at most . Here
too we construct candidate rigid motions, and test the quality of each of them. For example,
in the plane, we sample pairs of points from A, and find, for each sampled pair, the pairs of
points of B that are nearly at the same distance. For each such pair of pairs we construct a
rigid motion that maps the first pair to near the other pair, and then test the quality of each
of these motions, namely, the number of points of A that lie, after the motion, near points of
B. The first step can be reduced to approximate incidence counting involving circles (whose
radii correspond to the distances between the sampled points of A, and which are centered
at the points of B) and the points of B. In three dimensions, we need to sample triples of
points of A, and for each triple a, b, ¢, we need to find those triples of B that span triangles
that are nearly congruent to Aabe (because to determine a rigid motion in R? we need to
specify how it maps three (noncollinear) source points to three respective image points).
This step is described in detail in Section 4.

In epipolar geometry, we have two stereo images A, B of the same scene, and we want
to estimate the fundamental matrix F' that best matches A to B, where a point p € A
is (exactly) matched to a point ¢ € B if p? Fqg = 0. We construct a sample of candidate
matrices, by repeatedly sampling O(1) interest points from both images, and test the quality

D. Aiger, H. Kaplan, and M. Sharir

of each matrix. To do so for a candidate matrix F', we left-multiply each point p € A by F,
interpret the resulting vectors p F, for p € A, as lines, and count the approximate incidences
of each line with the points of B. If sufficiently many lines have sufficiently high counts, we
regard F' as a good fit and output it.

To recap, in each of these applications, and in other applications of a similar nature, we
generate a random sample of candidate models, motions, or matrices, and need to test the
quality of each candidate. Approximate incidence reporting and counting arises either in the
generation step, or in the quality testing step, or in both. Improving the efficiency of these
steps is therefore a crucial ingredient of successful solutions for these problems. The standard
approach, used “all over” in computer vision in practice, is the RANSAC technique [6, 9],
which checks in brute force each model against each point. Replacing it by efficient methods
for approximate incidence counting, which is our focus here, can drastically improve the
running time of these applications.

To support the claim that this is indeed the case in practice, we have conducted preliminary
experiments (not reported here) with some of our algorithms, tested them on real and random
data, and compared them with other existing methods. Roughly, they demonstrate that our
approach is significantly faster than the other approaches. Our experiments also support
our feeling that the cost of reporting more pairs than really needed (pairs that might be at
most ae apart, rather than just ¢), is negligible compared to the cost of the other steps (in
themselves much more efficient than the competing techniques). We leave the project of
conducting a through experimental study for future work, and focus this paper on developing
the algorithms and establishing their worst-case guarantees.

Related work. Model fitting and point pattern matching have been the focus of many
studies, both theoretical and practical; see for example [2, 3, 4, 5, 7, 10, 11, 12, 14].

We first note that many of the common approaches used in practice (e.g., RANSAC
for model fitting [6, 9]), reporting or counting approximate incidences between models and
points is done using brute force, examining every pair of a model and a point. Some heuristic
improvements have also been proposed (see, e.g., [5] and the references therein). A similar
brute-force technique is commonly used for approximate point pattern matching too (e.g., in
the Alignment method [12] and its many variants).

The use of (exact) geometric incidences in algorithms for ezact point pattern matching is
well established; see, e.g., Brass [4] for details. Similar connections have also been used for
the more practical problem of approximate point pattern matching. Gavrilov et al. [10] gave
efficient algorithms for approximate pattern matching in two and three dimensions (where
the entire sets A and B are to be matched), that use algorithms for reporting approximate
incidences. One of the main results in [10] is that in the plane, all pairs of points at distance
in [(1 — &)r, (1 4 €)r] can be reported in O(n+/7/¢) time, using a grid-based search. (In a
way, part of the study in this paper formalizes, extends, and improves this method.)

Aiger et al. [3] proposed a method for point pattern matching in R?, called 4PCS (4-Points
Congruent Sets), which iterates over all coplanar pairs of quadruples of points, one from
A and one from B, that can be matched via an affine transformation, and then tests the
quality of each pair, focusing on pairs where the transformation is rigid. This algorithm does
not use approximate incidences, and assumes the existence of coplanar tuples.

In a more recent work, Aiger and Kedem [2] describe another algorithm for computing
approximate incidences of points and circles, following a similar approach by Fonseca and
Mount [7] for points and lines, which is better than the one of [10] for n = Q(1/£%/?), and
use this for approximate point pattern matching. This algorithm has been used in Mellado

5:5

ESA 2017

5:6

Output Sensitive Algorithms for Approximate Incidences and Their Applications

et al. [14], to reduce the running time of the 4PCS algorithm in [3] to be asymptotically
linear in n and in the output size.

The method of [2, 7] provides an alternative approach to approximate incidence reporting,
for the cases of points and lines or congruent circles (the analysis in [2] is rather sketchy,
though). This technique runs in O(m + n + log(1/¢)/e? + k) time. For the case of lines in
the plane, the scheme exploits the fact that we can approximate (up to an error of O(¢))
all lines in the plane that cross the unit disk, by O(1/e?) representative lines, such that if a
point in the unit disk is close to a representative line £, then it is also close to all the lines in
the input that ¢ represents (and vice versa). Assuming, for example, that m is constant, this
alternative scheme is better than our new algorithm (for these restricted scenarios) when
Vn//e > 1/€2, that is, when n > 1/¢® (we ignore the factor log(1/¢) in this calculation).
(This technique seems to be extendible to three dimensions, and to surfaces, but the formal
details have not yet been worked out, as far as we know.)

Paper organization. The full version of the paper presents seven algorithms for various
instances of approximate incidence reporting, as listed in (a)—(g) above. Although the
high-level structure of the algorithms is fairly uniform, the specific details are rather different,
and each case requires careful analysis to ensure its correctness and efficiency. Working out
the details, including the appropriate form of duality (which, in some cases, is rather intricate
and requires extra care), the choice of the various parameters, and the analysis that makes
everything work, turned out to be fairly demanding and nontrivial. Due to lack of space,
this version contains full details of only the first algorithm (for points and lines in the plane),
and of the last one (finding all nearly congruent triangles in R?), and then describes, briefly
and informally, the main features of the rest.

2 Approximate incidences in point-line configurations

We consider the approximate incidences problem between a set P of m points in the unit disk
B in R?, and a set L of n lines that cross B, with a given accuracy parameter 0 < ¢ < 1/2.

We approximate the distance dist(p, £) by the vertical distance between p € P and ¢ € L,
which we denote by dist,(p, ¢). For this approximation to be good, the angle between ¢ and
the z-direction should not be too large. To ensure this, we partition L into two subfamilies,
one consisting of the lines with positive slopes, and one of the lines with negative slopes. We
fix one subfamily, rotate the plane by 45°, and get the desired property.

Without loss of generality, we replace the unit disk B by the unit square S = [0,1]2, and
apply the following two-stage partitioning procedure. First we partition S into 1/6? pairwise
openly disjoint smaller squares, each of side length 01, where §; is a parameter whose exact
value will be set later. See Figure 1.

Enumerate these squares as S1, 5, ..., 51/55. Fori=1,...,1/62, let P; denote the set
of all points of P that lie either in S; or in one of the two squares that are directly above
and below S; (if they exist), and let L; be the set of all the lines of L that cross S;. Put
m; := |P;| and n; := |L;|. We have), m; < 3m and), n; < 2n/d;, because each line of L
crosses at most 2/0; squares S;.

We now apply a duality transformation to each small square S; separately. For nota-
tional simplicity, and without loss of generality, we may assume that S; = [—81/2,81/2]°.
(Technically, this means that we shift the cells by §;/2 in both coordinate directions, so
that the grid vertices now represent the centers of the cells.) We map each point p = (£,7)
in P; to the line p* : y = £x — 7, and each line ¢ : y = cx + d in L; to the point

D. Aiger, H. Kaplan, and M. Sharir

6

=

Figure 1 The partition of S into sub- Figure 2 The reference triangle Aabc
squares, and the subproblem associated with aligned with Apgo. The shaded region is
the middle highlighted subsquare. K. The circle is the a cross section of Tj 4.

¢* = (¢,—d). This duality preserves the vertical distance dist, between a point p and

a line ¢; that is, dist,(p,¢) = dist,(¢*,p*). Note that the slope condition ensures that
dist(p, ¢) < dist,(p, £) < +/2dist(p, £).
Let £: y = cx + d be a line in L;, that is, £ crosses S;. By the slope condition we have

—1<c¢<1land—d; <d <, so the dual point £* lies in the rectangle R := [—1, 1] x [—47, 01].

Each point p = (§,n) € P; satisfies —1/2 < £ < 01/2 and —361/2 < n < 341/2 so the
coefficients of the dual line p* : y = £x — n satisfy these inequalities.

We now partition R into 1/83 small rectangles, each of width 20, and height 26;d,, where
o is another parameter that we will shortly specify. Each dual line p* crosses at most 2/09
small rectangles. To facilitate the following analysis, we choose 01, d2 so that they satisfy
0162 = ¢; we still have one degree of freedom in choosing them, which we will exploit later.

» Lemma 1. For each small rectangle R', if £* is a dual point in R’ and p* is a dual line that
crosses either R’ or one of the small rectangles directly above or below R’ (in the y-direction,
if they exist), then the vertical distance dist,(€*,p*) (which is the same as dist,(p,£)) is at
most 50109 = be.

Proof. Indeed, if p* crosses a small rectangle R”, which is either R’ or one of the two adjacent
rectangles, as above, then, since the slope of p* is in [—d1/2,071/2], its maximum vertical
deviation from R” is at most 245 - (61/2) = §162. Adding the heights 2§, of R”, and of R’
when R” # R’ the claim follows. <

» Lemma 2.

(a) Let (p,£) € P x L be such that dist(p,¢) < e. Let S; be the small square containing p. If
81 > ev/2, then £ must cross either S; or one of the two squares directly above and below
S;. In other words, there exists a j such that (p,¢) € P; x L;.

(b) Continue to assume that dist(p,£) < e, let i be such that (p,¢) € P; x L;, and let R be
the dual small rectangle (that arises in the dual processing of S;) that contains €*. Then
the dual line p* must cross either R' or one of the two small rectangles lying directly
above and below R' (in the y-direction, if they exist).

Proof. Both claims are obvious; in (a) we use the fact that dist,(p,#) < ev/2, and the
assumption that £v/2 < §1; see below how this is enforced. In (b) we use the fact that
dist, (p, £) = dist, (¢*,p*) and that the height of a small rectangle is 2619, = 2¢ > v/2. <

5:7

ESA 2017

5:8

Output Sensitive Algorithms for Approximate Incidences and Their Applications

The algorithm. We first compute, for each point p € P, the square S; it belongs to; this
can be done in O(1) time, assuming a model of computation in which we can compute the
floor function in constant time. Similarly, we find, for each line ¢ € L the squares that it
crosses, in O(1/41) time. This gives us all the sets P;, L;, in overall O(m + n/d;) time.

We then iterate over the small squares in the partition of S. For each such square .S;, we
construct the dual partitioning of the resulting dual rectangle R into the smaller rectangles
R’. As above, we find, for each dual point ¢*, for £ € L;, the small rectangle that contains
it, and, for each dual line p*, for p € P;, the small rectangles that it crosses. This takes
O(nz + ml/ég) time.

We now report, for each small rectangle R/, all the pairs (p,£) € P; x L; for which £* lies
in R’ and p* crosses either R’ or one of the small rectangles lying directly above or below R’
(if they exist). We repeat this over all small squares S; and all respective small rectangles R'.
Note that a pair (p,£) may be reported more than once in this procedure, but its multiplicity
is at most some small absolute constant. The running time of this algorithm is

1/582
n m; n m
@) m+—+§ ni+— | +k|=0(—+—+k),
o1 i—l(52) (51 02)

where k is the number of pairs that we report. Lemma 1 guarantees that each reported pair
is at distance < 5¢ and Lemma 2 guarantees that every pair (p,¢) at distance at most ¢ is
reported.

We optimize the running time by choosing d1, d2 to satisfy m/dy = n/d; and 6102 = €.
That is, we want to choose §;1 = \/ne/m and d = /me/n. These choices are effective,
provided that both §;, d5 are at most 1, for otherwise the primal partition or the dual
partitions does not exist. If §; > 1, that is, if n < me, we simply choose d; = ¢, and run
only the primal part of the algorithm, outputting all the pairs in (J; P; x L;. The cost is now
O(m+n/e+k)=0(m+k). (This is the naive implementation, which is now efficient since
n is so small.) If §; > 1, we pass directly to the dual plane, flip the roles of P and L, and
solve the problem in the naive manner just described, at the cost of O(n + k). Otherwise
(when both §; and d2 are < 1), the cost is O (y/mn/\/e + k). The cost of the algorithm is
therefore always bounded by O (n +m + /mn/\/e + k).

Recall also that in the proof of Lemma 2 we needed the inequality £v/2 < §;. This will
hold when m < n (and € < 1/2, as we assume). In the complementary case m > n, we
simply flip the roles of points and lines (that is, we start the analysis in the dual plane).

In conclusion, we have obtained the following main result of this section.

» Theorem 3. Let P be a set of m points in the unit disk B in the plane, let L be a set of n
lines that cross B, and let 0 < ¢ < 1/2 be a prescribed parameter. We can report all pairs
(p,€) € P x L, for which dist(p,{) < e, in time O (n+m + vmn/\e + k), where k is the
actual number of pairs that we report; all pairs at distance at most € are reported, and every
reported pair lies at distance at most 5e.

3 Review of the other algorithms

Near neighbors in point-plane configurations. Here we are given a set P of m points in
the unit ball B in R3, a set II of n planes crossing B, and a prescribed error parameter
0 < e <1/2, We solve the approximate incidences problem for P and IT with accuracy e.
As in the planar case, we approximate the point-plane distance dist(p,) by the z-vertical
distance dist, (p, 7). We partition IT into O(1) subfamilies, according to the directions of the

D. Aiger, H. Kaplan, and M. Sharir

normals, and treat each family separately, assuming that all the normal directions in this
family are close to the z-direction, making the distance approximation behave well.

We assume that P C S = [0,1]3, and apply a two-stage partitioning, one in the primal
space and one in the dual space, with a suitable choices for the corresponding parameters 1,
02, similar to the way it was done in the plane. We obtain an approximate incidence reporting
algorithm that runs in O (n +m+mn/e + k:) time, where k is the actual number of pairs
that we report.

Nearly congruent pairs in the plane. We are given two point sets P, @, of respective sizes
m and n, and parameters r, £, and present an algorithm that reports all pairs (p,q) € P X Q
in the unit disk B, such that |pq| € [r — &, + €], and each pair that it reports lie at distance
in [r — ag,r + ag], for some constant « > 1. The problem is equivalent to an approximate
incidences problem between P and the set of congruent circles C' := {c¢, | ¢ € Q} where ¢, is
the circle of radius r centered at a point q. We assume that r is bounded away from 0 and
that e < r < 1/2.

We present two different solutions. The first one, inspired by an idea of Indyk et al. [13],
does not use duality, so it is insensitive to cases where m and n differ significantly. The
second solution does use duality, and is sensitive to such differences; it is more similar to the
preceding solutions for the point-line and point-plane approximate incidences problems. We
review here only the first solution.

We take the circle ¢, of radius r centered at the origin o, and partition it into 27/+/c
equal canonical arcs, each with a central angle /. We replace each arc v by a sector of
an annulus A, of radii 7 £ € that has v as its ‘midline’, and enclose A, by a rectangle R,.
Simple calculations show that the sides of R, are at most /& x 3e.

We fix v, and for each ¢ €) we translate R, to R,(q) := ¢+ R,. We get a collection
of n isothetic rectangles, and the m points of P. We tile up the unit disk by a grid whose
cells are isothetic to R, partition the points of P among the grid cells, and, for each R,(q),
report all pairs (p, ¢) such that p lies in one of the at most four cells that R, (g) overlaps.
We repeat this for each of the O(1/1/€) canonical arcs. The resulting algorithm runs in
time O ((m + n)/v/e + k), where k is the actual number of pairs that we report. Our second
approach, which uses duality, yields runs in O (m +n + v/mn/\/ + k) time, which is an
improvement when m and n differ significantly.

Near-neighbor point-circle configurations. The duality-based approach can be extended
to handle the approximate incidence reporting problem for points and arbitrary (rather than
congruent) circles in the plane. The main difference is that general circles can be dualized
into points in three dimensions, so our algorithm uses a standard grid decomposition in the
primal plane, as in the cases of lines and congruent circles, but the dual partitionings take
place in three dimensions, as in the case of planes.

To facilitate the second dual decomposition step, we replace the standard distance
between points and circles by the power of a point with respect to a disk. We show that
the distortion caused by this change is small, and our gain is that in the dual setup the
points of P become planes (and the circles become points), so the machinery used for points
and planes can be easily adapted to handle this case too. The algorithm runs in time
0] (m +n 4 m!/3p2/3 /23 4 k), where k is the actual number of pairs that we report.

Reporting all nearly congruent pairs in three dimensions. Here we consider the three-
dimensional version of the problem of nearly congruent pairs, where we are given sets P and

5:9

ESA 2017

5:10

Output Sensitive Algorithms for Approximate Incidences and Their Applications

Q of m and n points, respectively, in the unit ball B in R3, and parameters 0 < ¢ < r < 1/2,
and wish to report all pairs (p,q) € P x @ such that dist(p, q) € [r — &, 7 +], ensuring that
each pair (p, ¢) that we report satisfies dist(p, ¢) € [r — ae, r + ae], for some absolute constant
«a > 1. This is an approximate incidence reporting problem between P and spheres of radius
r centered at the points of Q.

As before, we have two alternative solutions, one using the technique of Indyk et al. [13],
and one using duality. Both extensions are reasonably routine, although some nontrivial
technical issues have to be faced when extending the techniques to three dimensions. The
first approach, runs in time O ((m + n)/e + k). By using duality one can get a better bound
(replacing (m + n)/e by v/mn/e) when the sizes of P and @ differ substantially.

Reporting all point-line neighbors in three dimensions. Let P be a set of m points in the
unit ball B in three dimensions, let L be a set of n lines that cross B, and let ¢ > 0 be a
given error parameter. We present an algorithm for the approximate incidence reporting
problem involving P and L.

We represent each line in R? by the pair of equations y = ax + b, z = cx + d. Let £ be
the line y = ax + b, z = cx + d, and let p = (£,7,¢) € R®. We approximate dist(p, ¢) by
slicing space by the plane 7, : x = &, and by computing the distance between the points
pand £, :=LNm, = (£ af +b,c€ +d). As before, for this approximation to be good, the
angle between ¢ and the z-direction should not be too large, say at most 7/4, and we ensure
this by partitioning L into O(1) subfamilies, such that each subfamily has this property with
respect to some direction u’. We focus on a single family, keep calling it L, and assume that
u' is the z-axis. We show that dist(p, £,) < v/2dist(p,) for all p € P and ¢ € L.

We assume that P is contained in the unit cube S = [0,1], and apply the following
two-stage partitioning procedure. For a pair of parameters d1, d2, whose values will be set
later we partition S into 1/} pairwise openly disjoint smaller cubes, each of side length
01. For each small cube S;, let P; denote the set of all points of P that lie in S; or in one
of the (at most) eight cubes that surround S; and have the same z-projection as S;, and
let L; denote the set of all the lines of L that cross S;. For each such small cube S;, we
pass to a parametric dual four-dimensional space, in which we represent each line ¢ € L;,
given by y = az + b, z = cx + d, by the point ¢* = (a,b,c,d), and represent each point
p=(&n,¢) € P; by the 2-plane (in R*) p* = {(a,b,c,d) | aé +b=1n, c€ +d = (}; p* is the
locus of all points dual to lines that pass through p.

We define the distance in the dual space between a point £* = (a, b, ¢, d) and a plane p*, for
a primal point p = (£,7, (), to be the distance between £* and the point (a,n — af, ¢, { — c€),
which is the intersection of p* with the plane defined by x = a and z = c¢. It follows that the
distance between ¢* and p*, as defined above, is equal to dist(p, £,) in the primal space.

Fix a small cube S;, and assume without loss of generality that S; = [0,5;]3. Let ¢ be a
line in L;, given by y = ax + b, z = cx + d. One can show that ¢* lies in the box R given
by —1 <a, c<1and —6; <b, d <26;. We now partition R into 1/55 smaller boxes, each
of which is a homothetic copy of R scaled down by d2. Concretely, each smaller box R’ is
congruent to the box [0,2d5] x [0,381d2] x [0,2d5] x [0, 351 d2].

We then show that, for each small box R’, if £* = (ag, bs, ce,dy) is a dual point (of some
¢ € L;)in R and p* is a dual plane (of some point p = (£,7n,{) € F;) that crosses R’ or
one of its surrounding boxes of the same zz-range, then dist(p,£) < 8y/26,65. Conversely,
if dist(p, £) < 162 then (p,¢) belong to some subproblem P; x L;, and p* crosses the small
dual region R’ containing £* or one of its nearby regions.

The algorithm is now immediate: We compute the sets P;, L;, for i = 1,...,1/8}, in
overall O(m + n/d;) time. Then, for each small cube S;, we consider the partitioning of the

D. Aiger, H. Kaplan, and M. Sharir

resulting dual box R into the smaller boxes R’. As above, we find, for each £ € L;, the small
region that contains the dual point £*, and, for each p € P;, the small regions that the dual
plane p* crosses. We report, for each small region R’, all the pairs (p,¢) € P; x L; for which
¢* lies in R’ and p* crosses either R’ or one of the at most eight small regions that surround
R’ and have the same zz-range. We repeat this over all small cubes S; and all respective
small regions R’. With a suitable optimization of the values of §; and d2, the running time

is O (m+n+m1/3n2/3/€2/3 +k).

Reporting all point-circle neighbors in three dimensions. In preparation for the final
algorithm, that finds all nearly congruent copies of a given triangle in a set of n points in R3,
we first solve the following problem. Let P be a set of m points in the unit ball B in R3, let
C be a set of n congruent circles in R? of radius r < 1/2 that cross B, and let e < 7 be a
prescribed error parameter. We present an efficient algorithm for the approximate incidence
reporting problem for P and C.

This is perhaps the most complex algorithm in our collection. We slice each circle into
canonical arcs, replace each arc by a sector of a torus of width ¢ around it, enclose each
torus sector by a suitable (bounded) cylinder, and reduce our problem to that of reporting
point-cylinder containments. We further reduce the problem by cutting space by parallel
slabs of width /¢ in some suitable direction, say the z-direction, by partitioning the points
of P among the slabs, and by considering only those toric/cylindrical pieces that form
sufficiently small angle with the x-direction. For each such slab o, we take the points in
o, replace each cylinder that intersects o, or a nearby slab, by the full line that supports
its axis, and run the approximate incidence reporting algorithm involving the points in the
slab and the lines associated with the slab, repeating this over all slabs and tori sectors.
The resulting algorithm runs in time O ((m +n)/et? 4 m/3n?/3)T/0 4 k), where k is the

number of (distinct) reported pairs.

4 Reporting all nearly congruent triangles

In this section we put to work the algorithms in (e) and (g) (see Section 1), to obtain an
efficient solution of the first step in solving the approximate point pattern matching problem
in R? (see its review in the introduction), where we are given a sampled “reference” triangle
Aabc, for a triple of points a, b, ¢ in the first set A, and a prescribed error parameter € > 0.
Our goal is to report all triples p,q,o in the second set B that span a triangle “nearly
congruent” to A; that is, triples that satisfy

|lpal = labl| < e, [lpo| — lac|| <&, and |lgo| —[bc|| <e. (1)

We allow to report triples that satisfy (1) with ae on the right-hand sides rather than ¢, for
some fixed constant .. Let ab be the longest edge of A. We require that 8 < |ab| < 1/2 for
some fixed constant 5. We also require that the height h of A from ¢ (perpendicular to ab) is
larger than some fixed constant s. We assume that 3,s > e. Our approximation guarantee
« increases as and s decrease.

We first report all pairs (p,q) € B? such that Hpq| — \abH < ¢, using the algorithm
specified in (e) (incidences between congruent spheres and points). This takes O(n/e + N)
time, where N is the number of pairs that we report. Let II denote the set of reported pairs.
We know that all the desired pairs are included in II, and that every pair (p, ¢) in II satisfies
|\pq| - |ab\| < o'e, for some absolute constant o’. We prune II, leaving in it only pairs (p, q)
satisfying ||pg| — |ab|| < e. We continue to denote the resulting set as II, and its size by N.

5:11

ESA 2017

5:12

Output Sensitive Algorithms for Approximate Incidences and Their Applications

Let (p,q) be a pair in II. Any point o that satisfies |[po| — |ac|| < ¢ and ||qo| — |be|| < &
lies in the intersection K = K, , of two spherical shells, one centered at p with radii |ac| £ ¢,
and one centered at ¢ with radii |bc| & . The following lemma allows us to replace K by a
torus that is congruent to a fixed torus that depends only on A. See Figure 2.

» Lemma 4. Assume that A is sufficiently fat, in the sense that 8 < |ab] < 1/2 and h > s,
for some absolute positive constants B, s that satisfy e < [3,s. Then there exists a circle vyp q
of radius h such that K is contained in the torus T), 4 that is the Minkowski sum of vp 4 and
a ball of radius € < de around the origin, where the constant 6 depends on 3 and s.

Proof. Denote the lengths of the edges of the triangle Aabc by v = |ab|, v = |ac| and
w = |bc|. Let g the point where h meets ab and let z = |ag|. We have 22 + h? = v? and
(u— 2)? + h? = w?, from which we obtain that z = W, and we denote this expression
as z = z(u, v, w). Consider an alignment of A within the plane of Apgo, such that a coincides
with p and ab overlaps pq. Let g now be a point on pq at distance z from p = a. Then c lies
on the circle v, , of radius h, centered at g, and contained in the plane perpendicular to pgq
through g. See Figure 2(b).

Fix some point 0 € K. We claim that o must be at distance < de from =, 4, for some
fixed constant ¢ that depends on § and s. Indeed, since (p,q) € Il and o € K, we can write
Ipg| = u + €1, |po| = v + €2, and |go| = w + €3, where |g;| < e for i =1,2,3.

Consider the alignment of A with Apqo, as above, and imagine that we perturb the edges
ab, ac, and be of A by €1, €9, and €3, respectively, so that A is continuously deformed into
Apqgo. We claim that o cannot move too far as a result of this deformation so the distance
between o and ¢ must be small.

To see this, let A’ be the height of Apgo from o, let ¢’ be the point at which i’ meets
pq, and let 2/ = |pg’|. We claim that |z’ — z| < de and |h" — h| < de for some absolute
constant 0. To see this, using the function z = z(u,v,w) defined above, we have 2/ =
z(u+e1,v 4+ 9, w + €3), and routine calculations show that, for e sufficiently small, we have
|z — z| = O(|Vz(u,v,w) - (€1, €2,€3)|) < d’e, where ¢’ depends on /.

Similarly, by Heron’s formula, we can think of A as a function h(u,v,w), given by

h(u, v, w) = 2Af€;<ﬁ> _2/r(r - u)(; o —w)

where 7 = Z(u+ v+ w). Then h' = h(u + €1,v + £2,w + €3), and, by another routine
calculation, |h' — h| = O(|]Vh(u,v,w) - (e1,€2,€3)|) < "¢, for another constant ¢” that
depends on S and s. Take 6 = 4/(6")%2 4 (6”)?, and the lemma follows. <

We have thus reached the following scenario. We have a set 7 of N congruent tori 7T}, 4, for
(p,q) € 11, and a set B (the original one) of n points. By construction, each triple (p, ¢, 0) that
defines a triangle for which (1) holds, satisfies o € T}, ;. Using our algorithm for point-circle
near neighbors in R3, as reviewed in Section 3, we can report all the triples (p, ¢, 0) such that
0 € Tpq, in time O (n+ N/e¥/2 +nl/3N2/3/c7/6 4 k), where k is the number of (distinct)
triples that we report; each of the desired triples is reported, and each triple that we report
is such that the distance from o to 7,4 is at most ae for some other fixed constant o > 6.
Therefore each triple which we report satisfies (1) with ae on the right-hand sides, rather
than e. In summary, we have:

» Theorem 5. Let B be a set of n points in the unit ball in R3. Let Aabc be o fized reference
triangle and let € an error parameter, so that A and ¢ satisfy the constraints specified in
Lemma 4. We can then report all triples (p, q,0) € B3 that span a triangle nearly congruent to

D. Aiger, H. Kaplan, and M. Sharir

A, in the sense of (1), in time (n + N/et/? 4 nl/3N2/3)T/6 4 k) , where N is the number of
pairs reported by our algorithm for approzimate congruent pairs in R® (reviewed in Section 3),
applied to P with distance |ab|, the largest edge length of A, and k is the number of (distinct)
triples that the algorithm in this section reports; each of the desired triples is reported, and
each triple that we report satisfies (1) with ae replacing €, where « is a suitable absolute
constant. Each pair is reported at most O(1) times.

—— References

1

10

11

12

13

14

P.K. Agarwal and J. Erickson. Geometric range searching and its relatives. In B. Chazelle,
J. E. Goodman, and R. Pollack, editors, Advances in Discrete and Computational Geometry,
Contemp. Math. 223, Amer. Math. Soc. Press, Providence, RI, pages 1-56, 1999.

D. Aiger and K. Kedem. Approximate input sensitive algorithms for point pattern matching.
Pattern Recognition, 43(1):153-159, 2010.

D. Aiger, N.J. Mitra, and D. Cohen-Or. 4-points congruent sets for robust pairwise surface
registration. ACM Trans. Graphics, 27(3):Article 85, 2008.

P. Brass. Combinatorial geometry problems in pattern recognition. Discrete Comput.
Geom., 28(4):495-510, 2002.

O. Chum and J. Matas. Optimal randomized RANSAC. IEEFE Trans. Pattern Anal. Mach.
Intell., 30(8):1472-1482, 2008.

IEEE Int’'l Workshop “25 Years of RANSAC” in conjunction with CVPR’06
(RANSAC25°06). IEEE Computer Society, 2006.

G.D. da Fonseca and D.M. Mount. Approximate range searching: The absolute model.
Comput. Geom. Theory Appls., 43(4):434-444, 2010.

J. Erickson. New lower bounds for Hopcroft’s problem. Discrete Comput. Geom., 16(4):389-
418, 1996.

M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model fitting
with applications to image analysis and automated cartography. Commun. ACM, 24(6):381—
395, 1982.

M. Gavrilov, P. Indyk, R. Motwani, and S. Venkatasubramanian. Combinatorial and ex-
perimental methods for approximate point pattern matching. Algorithmica, 38(1):59-90,
2003.

P. J. Heffernan and S. Schirra. Approximate decision algorithms for point set congruence.
Comput. Geom. Theory Appls., 1(4):137-156, 1994.

D.P. Huttenlocher and S. Ullman. Recognizing solid objects by alignment with an image.
Internat. J. Computer Vision, 5(2):195-212, 1990.

P. Indyk, R. Motwani, and S. Venkatasubramanian. Geometric matching under noise: Com-
binatorial bounds and algorithms. Proc. 10th ACM-SIAM Sympos. Discrete Algorithms,
pages 457465, 1994.

N. Mellado, D. Aiger, and N.J. Mitra. Super 4pcs: fast global pointcloud registration via
smart indexing. Comput. Graphics Forum, 33(5):205-215, 2014.

5:13

ESA 2017

Randomized Contractions for Multiobjective
Minimum Cuts

Hassene Aissi', Ali Ridha Mahjoub?, and R. Ravi*3

1 Univ. Paris-Dauphine, PSL Research University, CNRS, UMR 7243,
LAMSADE, Paris, France
aissi@lamsade.dauphine.fr

2 Univ. Paris-Dauphine, PSL Research University, CNRS, UMR 7243,
LAMSADE, Paris, France
mahjoub@lamsade.dauphine.fr

3 Carnegie Mellon University, Pittsburgh, USA
ravi@andrew.cmu.edu

—— Abstract

We show that Karger’s randomized contraction method [7] can be adapted to multiobjective
global minimum cut problems with a constant number of edge or node budget constraints to give
efficient algorithms.

For global minimum cuts with a single edge-budget constraint, our extension of the ran-
domized contraction method has running time O(n?) in an n-node graph improving upon the
best-known randomized algorithm with running time O(n?*) due to Armon and Zwick [1]. Our
analysis also gives a new upper bound of O(n?) for the number of optimal solutions for a single
edge-budget min cut problem. For the case of (k — 1) edge-budget constraints, the extension
of our algorithm saves a logarithmic factor from the best-known randomized running time of
O(n?k log® n). A main feature of our algorithms is to adaptively choose, at each step, the appro-
priate cost function used in the random selection of edges to be contracted.

For the global min cut problem with a constant number of node budgets, we give a randomized
algorithm with running time O(n2), improving the current best determinisitic running time of
O(n?) due to Goemans and Soto [5]. Our method also shows that the total number of distinct
optimal solutions is bounded by (g) as in the case of global min-cuts. Our algorithm extends
to the node-budget constrained global min cut problem excluding a given sink with the same
running time and bound on number of optimal solutions, again improving upon the best-known
running time by a factor of O(n). For node-budget constrained problems, our improvements arise
from incorporating the idea of merging any infeasible super-nodes that arise during the random
contraction process.

In contrast to cuts excluding a sink, we note that the node-cardinality constrained min-cut
problem containing a given source is strongly NP-hard using a reduction from graph bisection.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases minimum cut, multiobjective optimization, budget constraints, graph
algorithms, randomized algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.6

* This material is based upon research supported in part by the U.S. Office of Naval Research under award
number N00014-12-1-1001, the U.S. National Science Foundation under award number CCF-1527032,
and a visiting professorship at LAMSADE, Paris Dauphine University.

© Hassene Aissi, Ali Ridha Mahjoub, and R. Ravi;

37 licensed under Creative Commons License CC-BY
25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 6; pp. 6:1-6:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2

Randomized Contractions for Multiobjective Minimum Cuts

1 Introduction

Cut problems play a central role in combinatorial optimization and arise routinely in many
practical areas such as telecommunications, project networks and databases [7] as well as
the bottleneck computation in the separation routine for important network optimization
problems such as the TSP [12]. Let G = (V, E) be an undirected simple graph with n nodes
and m edges, and ¢!,...,cf: E — Zt (w!,...,wF"1:V — ZT) be k (k — 1) non-negative
cost functions defined on the set of edges (nodes), where k is a constant. A cut X in G is
a subset of nodes X C V such that) # X # V, and it determines the set §(X) of edges
with exactly one end in X. The cost of cut X in criterion j is ¢/(§(X)) := Dees(X) A (e)
(W (X) ==Y ,ex w'(v)). Given k — 1 cost bounds by,...,bs—1, we study the following
multiobjective versions of the minimum cut problem.

Edge-budget constraints: find a cut C* minimizing edges cost c* subject to the constraints
A6(C*) <bifori=1,....k—1.

Node-budget constraints: find a cut C* minimizing edges cost c* subject to the constraints
wi(C*) <b;fori=1,....,k—1.

Node-budget constraints including a source s (excluding a sink ¢): given a specific node
s € V (t € V), find a cut C* minimizing edges cost c* such that w'(C*) < b; for
t=1,...,k—1,and s € C* (t £ C*).

1.1 Previous Work

Randomized contraction: Karger [7] gave an elegant randomized contraction algorithm
that finds a global minimum cut with high probability. A consequence of its probabilistic
analysis is a strongly polynomial bound on the number of (near-) optimal global minimum
cuts. Karger and Stein [8] improve its running time using a recursive construction that
carefully traded off the probability of success with the size of the recursive subproblems. Our
work builds on these methods and extends them to budgeted versions of the global minimum
cut problem.

Edge-budget constraints: While most budgeted versions of standard combinatorial optim-
ization problems are NP-hard [4], Armon and Zwick [1] give an efficient strongly polynomial
time algorithm for solving the minimum cut problem with a constant number k of edge-budget
constraints. Their algorithm guesses the optimal value by performing a binary search using
O(logn) calls to a subproblem called the min-maz cut problem. Here, the goal is to find a cut
C for which max;—1,.. k ci((j') is minimized, ¢.e., a cut C whose largest cost is the smallest
possible. This problem is in turn reduced to enumerating all cuts that are at most at factor
of k larger than the global minimum cut for a single cost function. Karger and Stein [8] show
that every graph contains at most O(n2*) such cuts. In order to enumerate them, Armon
and Zwick use either the O(mn2*) deterministic algorithm of Nagamochi et al. [11] or the
O(n?*log® n) randomized algorithm of Karger and Stein [8]. Thus, their approach leads
to an O(mn?*logn) time deterministic algorithm and an O(n?*log®n) time randomized
one. The minimum cut problem with edge-budget constraints may be of interest in itself
but also arises as a subproblem in other fields, e.g., interdiction problems. Zenklusen [16]
shows the link between the problem of maximally decreasing the optimal value of the global
minimum cut by removing a limited set of edges and the minimum cut problem with a single
edge-budget constraint.

H. Aissi, A. R. Mahjoub, and R. Ravi

Node-Budget Constraints: Armon and Zwick [1] consider the problem of finding a cut of
minimum cost with at most b vertices on its smaller side. This problem corresponds to a
special case of the single node-budget constraint (k = 2) with w(v) =1 for all node v € V.
The authors reduce this problem to the problem of minimum cut with a single edge-budget
constraint and give deterministic and randomized algorithms running in O(mn*logn) and
O(n*log® n) times respectively. Goemans and Soto [5] consider the more general problem of
minimizing a symmetric submodular functions (SSF) f over a family of sets Z that are closed
under inclusion. Note that the cut function over the node set of a graph G = (V, E) is a SSF.
Moreover, the family of all subset of nodes X C V satisfying the node-budget constraints is a
typical example of sets closed under inclusion. Goemans and Soto [5] extended Queyranne’s
algorithm [13] (which in turn is based on the work of Nagamochi and Ibaraki [10]) in order
to enumerate all the O(n) minimal minimizers using O(n?) oracle calls to function f and Z.
In the particular case of graphs, their result implies that the minimum cut problem with
node-budget constraints can be solved in O(n3) running time. Interestingly, Goemans and
Soto’s algorithm does not introduce any slowdown with respect to the running time of solving
the global minimum cut problem.

Cardinality Constraints: Bruglieri et al. [2] study the version of minimum cut problem
where the cardinality of the edge cut must be exactly the given bound k, or at least the
given bound k, and show NP-hardness via reduction from MAX-CUT. The node-cardinality
constrained version on the side containing a given source has been studied by Hayrapetyan et
al. [6] under the name MINSBCC (Minimum-size bounded-capacity cut): their version bounds
the cost of the cut and minimizes the node cardinality of the cut. They show NP-hardness
of the problem on general graphs with uniform node weights and on trees (with non-uniform
node weights), and provide bicriteria approximation algorithms with ratio (%, ﬁ) for any
0 < A < 1. The s —t separating version of this unbalanced cut problem was studied by Li
and Zhang [9], and by Zhang [17]. The node-cardinality constrained version of this problem
generalizes the famous graph bisection problem. For the exact version of the problem where
the side containing s must have exactly k nodes, an O(logn)-approximation was given by
Récke [14].

1.2 OQur contributions

The main contribution of our paper is to extend the Karger’s randomized contraction
algorithm [7] to handle node or edge budget constraints.

Edge-budget Constraints. The original randomized contraction algorithm for a single edge
cost solves the global minimum cut problem by repeatedly picking a random edge with
probability proportional to its cost and contracting it, until only two vertices remain. Karger
shows that with high probability the cut formed by the edges joining these (super-)nodes
is a minimum cut. The key ingredient in the proof of the success probability of Karger’s
algorithm is that the optimal value of the minimum cut problem is at most the cost of any
cut formed by a singleton node. However, if budget constraints are added to the original
problem, some of these singleton cuts may be infeasible (for the budget constraint) and hence
may have a cost smaller than the optimal value of the budgeted problem. On the other hand,
the cost of a feasible cut formed by a singleton node is larger than the optimal value but the
current graph may contain few such nodes. Our main result uses new ideas to overcome this
difficulty.

6:3

ESA 2017

6:4

Randomized Contractions for Multiobjective Minimum Cuts

» Theorem 1. For the global minimum cut problem with a single edge-budget constraint
in a graph on n nodes, a randomized contraction algorithm returns any particular optimal
solution in O(n®log® nloglogn) time with probability 1 — ﬁ

For the case of a single edge-budget constraint, our randomized contraction algorithm
decides to contract, at each step, edges based on either the budget-cost function ¢! or the
objective-cost function ¢2, depending on whether the number of feasible cuts (obeying the
budget) formed by the current singletons is sufficiently “large” or not. This modification is
crucial to ensure the high success probability of returning at the end an optimal cut, and
represents our main technical contribution.

Our final algorithm for this problem is presented in Section 2 and runs with high
probability in O(n?) time. This result improves upon the current best running time of O(n*)
given in [1]. As a byproduct of our analysis, we save a factor of O(n) from the best-known
upper bound on the number of optimal solutions of this problem given in [1].

In the general case, multiple edge-budget constraints make the problem harder because
the number of infeasible cuts formed by a singleton may increase. With more than two budget
constraints, a cut satisfying the i** budget constraint may violate the j** one. Therefore, even
though the number of cuts formed by a singleton node satisfying the i*" budget constraint
may be large (the property we used with a single budget constraint), few of them may satisfy
all the budget constraints. Therefore, we need a different idea to tackle multiple budget
constraints. For this case, we extend Karger’s algorithm [7] differently by first sampling
the cost function that is then used to randomly choose an edge to be contracted. Our final
algorithm (Theorem 13) saves a logarithmic factor from the best-known running time of
O(n?*log® n) given in [1].

Node-budget Constraints. We derive in Section 3 faster randomized algorithms for finding
global minimum cuts with a constant number of node budget constraints.

» Theorem 2. For the global minimum cut problem with a constant number of node-budget
constraint in a graph on n nodes, a randomized contraction algorithm returns any particular
optimal solution in O(n?logn) time with probability 2(1/logn). Furthermore, all the optimal
solutions can be computed with high probability in O(n? log®n) time.

For this case, we use an observation similar to that of Goemans and Soto [5]: whenever
the contraction produces two (node-budget) infeasible super-nodes, we merge them into
one. Adding this idea to Karger’s random contraction gives an algorithm with a randomized
running time of O(n?) (Theorem 17). This considerably improves their current best running
time of O(n?) [5] even though their algorithm is deterministic. As a byproduct, we show that
the total number of distinct optimal global minimum cuts in the node-budget constrained
case is also bounded by (}) as in the non-budgeted case.

Our algorithm can be adapted to the node-budget constrained global min cut problem
excluding a given sink ¢t € V' with the same running time and bound on number of optimal
solutions (Theorem 18). In this case, the running time of our algorithm improves upon the
previous deterministic running time of Goemans and Soto by a factor of O(n).

Our results indicate that for the global minimum cut problem, the node-budget constraints
are easier to handle than edge-budget ones, even though both are efficiently solvable. In
contrast to the above results, we note that even the node-cardinality constrained global
minimum cut problem containing a given source is strongly NP-hard using a reduction from
graph bisection (Theorem 19).

H. Aissi, A. R. Mahjoub, and R. Ravi

Algorithm 1 Random edge contraction for a single edge-budget constraint.

Input: a simple graph G = (V, E) with two nonnegative edge costs ¢!, ¢?, a bound by, and
integer ¢ > 10
Output: a cut) # C* C V minimizing cost ¢? subject to edge-budget constraint c!(§(C*)) <
by
Llet BEg E, Vo« V,Gog+ G, r+0
2: while |V;| > 4 do
3: let Er — 0

4. if (B, < % then

5: pick an edge e € E, with probability p(e) = CE?SSZ) and add it to E,

6: else

7 for 1 =1to g do

8: for each edge e € E,. \ E, do

9: add e to E, with probability p/(e) = %

10: end for

11: end for

12: end if

13: if E, # 0 then

14: contract all the edges in E, by merging their endpoints

15: replace all resulting parallel edges ey, ..., e, joining any pair of nodes u,v € V,. by a
single edge e such that c"(e) = Y-0_, ¢"(e;), h = 1,2, and remove self-loops

16: end if

17: r+nr+1

18: let G, = (V,., E,.) denote the resulting graph

19: end while

20: randomly partition the nodes in the final graph G’ and return the cut C* in G associated
with this partition

2 Edge-budget constrained Global Minimum cuts

We discuss in Sections 2.1 and 2.2 our randomized algorithms for the single budget constraint
and for multiple ones, respectively.

2.1 Single edge-budget constraint

The algorithm consists of two steps. The first reduces the graph by doing edge contractions
until a minor graph G’ with at most four nodes is obtained. In the second step, we randomly
pick a cut in the resulting four-node graph.

Starting from Gy = (Vp, Ey) = G = (V, E), the first step of each iteration r > 1 consists of
a possible reduction of graph G, = (V;., E,.) to a graph G,4+1 = (V,4+1, Er+1) by contracting
a sample edge set E, C E,. The construction of E, is performed as follows. First we set
E, = (. Then two cases are considered: (i) If ¢'(E,) < %7 then we randomly pick

an edge e € E, with probability p(e) = %, and add it to E,. (ii) If this is not the

C
A 1
case, then we add each edge e € E, to E, with probability p’(e) = #@1) Note that the
resulting sample edge set E, may be empty. In order to boost the probability that E, is
non-empty, the process of random sampling is repeated g times, where ¢ is a constant that
will be specified later. If E, # () at the end of the q trials, then we contract E, and obtain a
smaller graph G,+1 = (V,41, Er11). Otherwise, we set G141 = G,..

6:5

ESA 2017

6:6

Randomized Contractions for Multiobjective Minimum Cuts

An iteration r of the algorithm where condition c!(E,) > % holds and E, = 0
is called wvoid. Note that at most |V| — 4 non void iterations are performed but the total
number of iterations may be large.

As a result of the edge contractions, parallel edges may join some pairs of vertices. Note
that parallel edges are in the same cuts. Therefore, they can be replaced by a single edge
with a cost equal to the sum of their costs. In contrast to Karger’s algorithm [7], we need to
consider only simple graphs at each step of Algorithm 1 in order to get the claimed running
time (Lemma 10). This step is not essential for the analysis of Algorithm 1 but since it will
be implemented recursively (Algorithm 2), |E,.| must be bounded by O(|V,.|*) at each step r.
All these details are summarized in Algorithm 1.

The following result gives a lower bound on the success probability that a particular
optimal cut is returned by Algorithm 1.

» Proposition 3. Any fized optimal cut C* is returned by Algorithm 1 with probability
3
Qn =),

Our strategy to prove Proposition 3 is to handle separately the two cases in each iteration
of the algorithm depending on whether ¢! (E,) < % or not. In the following two
lemmas, we prove that the success probability of not contracting an edge in the optimal cut
is at least 1 — (|\/T,|71)(137exp(7g)) in each of these cases respectively.

Any edge in the current graph G,. = (V,., E,) represents one or more edges in the original
graph G. On the contrary, any edge in E is associated to at most one edge in E,.. Let E !
denote the set of all the edges in F that are associated to the edges in F,.. For any set S of
edges in E, let E,.(S) denote, if any, the set of edges in E, associated to the edges in S. An
edge e € E has survived in graph G, if e € E7 1.

» Lemma 4. Fiz a particular optimal solution C* and suppose that all the edges in 6(C*)
have survived in graph G,(V,,E,). If ¢{(E,) < w, then the success probability of

contracting an edge not in E,.(6(C*)) is at least 1 — ﬁ

Proof. Let V.= C V, denote the set of feasible nodes v € V,, i.e., c!(6({v})) < b; for all
v € V,=. Observe that after replacing any parallel edges by a single one, the cost of any cut in
the current graph G, is the same as in the original graph G. Therefore, ¢?(6(C*)) < c2(§({v}))
for all node v € V,;=. Moreover, we have Y- i ¢'(6({v})) = 2¢'(E,) < w, and

S, O{vN) = Ty iz G{p)) > bafV \ V| Thus, [V, \ VE| < BUEED =

V-1
%, and hence,

VEIZ 2Vl - 1), (1)

Since all the edges in §(C*) have survived in G,., we have c(E,.(6(C*)) = c2(§(C*)).

Therefore, the error probability of randomly picking an edge e € E,.(§(C*)) is
A(E(8(C7)) _ *(0(CY))
P ET‘ 6 * = =
e B(3(C) = LS - S

oevs COH0) Yiev, @(0({0})

Vi | (E) ViE|e2(Ey)

2 3

= ﬁ < m (by (1)). <

<

» Lemma 5. Fiz a particular optimal solution C* and suppose that all the edges in §(C*) have
survived in graph G, (Vy, E.). If ¢*(E,) > %, then Pr(E.(6(C*))NE, #0) <

3
Vil-1°

H. Aissi, A. R. Mahjoub, and R. Ravi

Proof. Let E,ﬁ denote the set of edges in E, added to E, intrial i =1,... ,q. Let p denote
the expected cardinality of E,(6(C*)) N E,.. We have

p=> X 0=PETes > e

i=1 ¢cE, (5(0*))@1‘ e€E.(6(C*))

= (all the edges in §(C™) have survived)
% | R

36y 3
bi(IVe[1) = Vo[=1

The last inequality comes from that C* is a feasible cut, and thus ¢!(§(C*)) < b;. Con-
sequently,

Pr(BS(C)NE, £0) = Pr(|E,((C)NE | 2 1) < Pr{E(G(C)N B > 1)
By Markov’s inequality, Pr(|E,(6(C*)) N E,| > lv"?lflu) < |VT?|’_1 and thus

PHE((C) 1 By #0) < e)

<

» Lemma 6. In graph G, = (V,., E,.), if ¢/ (E,) > %g‘fl), then Pr(E, # 0) > 1—exp(—1).

Proof. If ¢}(E,) > %, then Algorithm 1 constructs E, by randomly sampling all

edges. Let F' denote the event that the sample set Eﬁ obtained during trial ¢ is non-empty
and F! be the complementary event, i = 1,...,q. We have

Pr(E, #0)=Pr(U_, F\)=1-Pr(n{_, F})
= 1~ Pr(F| =} Fi)Pr(FSY N2 F) - - Pr(F2|) Pr(FY)
1) =1 g
=1 (H@GEr(l p (e))) =1 (HﬁGEr (1 bi(|V,] — 1)))

301(6) q_ q
v —1)) L (el Zzn |V|—1)

>1-— (HeEET exp(—

c(E,
:1—exp(—lM) >1—exp(—%).

The last inequality comes from the fact that c!(E,.) > %. <
Proof of Proposition 3: If the condition of Lemma 4 holds, then the success probability at
iteration r is Pr(E,.(6(C*))N E, = 0y >1- ﬁ Otherwise, we need to consider two cases
depending on whether iteration r is void or not. In the former case, the success probability
is Pr(E.(6(C*))NE. =0|E, = Q)) =1. Now if iteration r is non void, then by Lemma 5 we

have Pr(E,(5(C*)) N E, £ 0) <

Pr(E.(6(C*)) N E. #0) 3
Pr(E, #0) (IVel = D)(1 — exp(—14))’

where the last equality follows from Lemma 6. Therefore, the success probability satisfies
Pr(E.(0(C*))NE, =0|E, #0) > 1 - (\VT\71)(137exp(—g))'

Pr(E(3(C%) N By # 0B, #0) =

6:7

ESA 2017

6:8

Randomized Contractions for Multiobjective Minimum Cuts

Algorithm 2 Recursive random edge contraction for a single edge-budget constraint.
2

Input: a graph G = (V, E) with two nonnegative edge costs c!,c?, a bound by, and a =

#(7%) for ¢ = Q(log(log2 n)) (this implies & = O(1))
Output: a cut () # C* C V minimizing cost ¢? subject to edge-budget constraint ¢! (5(C*)) <
by
if |V| < 6 then
randomly partition the nodes in G and return the cut C* defined by this partition
else
t < (% +1]
repeat twice
apply the while loop in Line 2 of Algorithm 1 and contract at each iteration r all
the edges in E, until obtaining a graph G’ = (V’, E’) with at most ¢ nodes
7: recursively solve the problem on graph G’
8: return the best of the two cuts (obtained from the two different runs)

9: end if

By taking the product of all the success probabilities over all the iterations, the probability
that all the edges in §(C*) have survived in the final graph G’ is at least

3/ —exp(-9), . 3/(1-exp(-). . 3/(1—exp(-$)

V- ! vi—2 0])= (V] D),

(1

The probability of picking uniformly a cut in the final graph, formed by at most four
nodes, is 274, Therefore, multiplying both probabilities gives the desired result.

Using the same probabilistic argument to bound the number of minimum cuts as in
Karger [7] and setting ¢ = O(log(log® n)) in Proposition 3, we get the following result.

» Corollary 7. The number of optimal solutions of the single edge-budget constrained global
minimum cut problem is bounded by O(n?).

The number of iterations required to have a nonempty sample set is a geometric random
variable, which by Lemma 6, has an expected value bounded by ﬁ(_g). Observe that the
2

O(m) = O(n?) running time of the random sampling is bottleneck in Algorithm 1. Therefore,
the expected running time of the algorithm is O(q - n3).
In order to amplify the success probability given by Proposition 3, one needs to perform

3
O(n'~*2 logn) runs of Algorithm 1, which is excessive. Hence, we embed it in the
recursive framework of Karger and Stein’s [8] algorithm.

Our recursive algorithm can be represented using a binary tree where the root corresponds
to graph G. And for every node of the tree, associated with some graph H = (W, F), the
algorithm constructs two graphs H; = (W1, F1) and Hy = (Ws, F5) obtained by performing
two sequences of contractions as in Algorithm 1. However, in contrast to Algorithm 1, these
contractions are stopped when the number of nodes in W is reduced by a factor {/2, where
o= #(7%) and ¢ = Q(log(log? n)). It is known that the depth of such tree is bounded
by [log ¢57] and the number of leaves is at most

O(2Uog%nj) < O(zlog%n) _ O(nlog %2) _ O(na) _ O(nm) — O(TLS)

See Cormen et al. [3] for more details. This procedure is summarized in Algorithm 2.
The following result (restatement of Theorem 1) gives bounds on the probability of success
and the running time of Algorithm 2.

H. Aissi, A. R. Mahjoub, and R. Ravi

» Theorem 8. Algorithm 2 returns any particular optimal solution in O(n? log® nloglog n)
1

time with probability 1 — a0

The proof of Theorem 8 will be a consequence of the following lemmas (the proofs are
omitted due to space limitations). The first one shows that Algorithm 2 has the same success
probability as the recursive algorithm of Karger and Stein [8].

» Lemma 9. A fized optimal solution C* is returned by Algorithm 2 with probability Q(L)

logn
» Lemma 10. For ¢ = O(log(log® n)), the expected running time is O(n®logn loglogn).

Using the observation that the running time of Algorithm 2 can be analyzed as a sum
of several sums of geometric random variables, we provide an upper bound that holds with
high probability.

» Lemma 11. The probability that the running time of Algorithm 2 exceeds O(n® log® nloglogn)

is bounded by O(1/n).

By Lemmas 9 and 10, a particular optimal solution C* is returned with high probability
by performing O(log2 n) calls to Algorithm 2, with each call to this algorithm taking expected
O(n®lognloglogn) time. By using the same argument as in Lemma 11, the running times
of all these calls is O(n® log* nloglogn) with high probability. This shows Theorem 8.

2.2 Multiple edge-budget constraints

We consider in this section the more general case where we have a constant number k of

edge-budget constraints. Note that if k is variable, the problem is strongly NP-hard [1].

In the case of a single edge-budget constraint, Lemmas 4 and 5 show that the edges of an
optimal cut form a small fraction of all the edges. Algorithm 1 exploits this crucial property
in order to return an optimal cut with high probability. If the condition of Lemma 4 holds,
then the number of feasible cuts formed by a singleton node is large. With more than

two budget constraints, a cut satisfying the i** budget constraint may violate the ;" one.

Therefore, even though the number of cuts formed by a singleton node satisfying the i‘"
budget constraint may be large, few of them may satisfy all the budget constraints. Therefore,
we need a different idea to tackle the difficulties raised by multiple constraints.

The basic idea of the following algorithm is to repeat contracting randomly chosen edges
until obtaining a graph formed by 2k nodes. At this point, the algorithm returns a cut
uniformly chosen at random in this graph. The main difference with Algorithm 1 lies in the
way how the random selection is done.

In graph G, = (V,., E,.) obtained at iteration r of the algorithm, a node v € V;. is called
feasible if the cut §({v}) satisfies all the edge-budget constraints. Otherwise, it is called
infeasible. Let V,! for i = 1,...,k — 1 denote a subset of infeasible nodes in V,. violating the
edge-budget constraint associated to cost ¢’ and V,* denote the subset of feasible nodes in
V,.. We partition the nodes in V, by assigning all the feasible nodes to V,* and assigning
arbitrary any infeasible node v to one of the subsets V! such that c*(§({v})) > b;. Let E!

denote the subset of edges in E, incident to at least a node in Vifori=1...,k. We choose
randomly a set V,? with probability p; = ll“;i || and then pick an edge e € E! with probability

cf((EEL)) and contract it. This procedure is summarized in Algorithm 3.

The following result gives a lower bound on the success probability of Algorithm 3

following arguments similar to Proposition 3 (the proof is omitted due to space limitation).

» Lemma 12. Algorithm 3 outputs any fized optimal cut C* with probability £2(n=2%).

6:9

ESA 2017

6:10

Randomized Contractions for Multiobjective Minimum Cuts

Algorithm 3 Random edge contraction for the edge-budget constrained minimum cut
problem.

Input: a graph G = (V, E) with k nonnegative edges cost ¢!, ..., c* and k — 1 nonnegative
bounds bq,...,br_1
Output: a cut () # C* C V minimizing edges cost c* subject to the constraints ¢!(C*) < b;,
fori=1,...,k—1
Llet By« E, Vi<V, G+ G, r+1
2: while |V;| > 2k do

3: flip a biased coin and choose set E! with probability p; = “‘VZ “

4: pick randomly an edge e € E’ with probability p(e) = cf((Ee;))

5. contract e by merging its vertices and removing self-loops

6: r+r+1

7. let G, = (V;, E,.) denote the resulting graph

8: end while

9: randomly partition the nodes in the final graph and return the cut C* in G associated

to this partition

Note that the lower bound given in Lemma 12 is the same as the one given in [8, Theorem
8.5] for the success probability of computing a specific k-approximate cut, i.e. a cut within
a multiplicative factor k£ of the minimum. Therefore, by embedding Algorithm 3 in the
recursive algorithm of Karger and Stein, one can show the following result.

» Theorem 13. Algorithm 3 returns all optimal solutions for the edge-budget constrained
min cut problem with k — 1 budgets in O(n** log® n) with high probability.

3 Node-Constrained Cut Problems

3.1 Node Budget-constrained Global Minimum Cut Problem

We discuss in this section a randomized algorithm for the minimum cut problem with node-
budget constraints based on an extension of Karger’s randomized contraction algorithm [7].
The algorithm exploits an observation given by Goemans and Soto [5] for solving the problem
of minimizing a SSF f over a family of sets Z that are closed under inclusion over a ground
set V. A typical example of such a family is the knapsack family: Given a weight function
w:V — RT, consider the family Z={ACV : > _, w(v) < 1}. Let us first briefly review
Goemans and Soto’s algorithm which is based on an extension of Queyranne’s algorithm [13].

Queyranne gave a combinatorial algorithm for minimizing a SSF f by extending the
deterministic minimum cut algorithm of Nagamochi and Ibaraki [10]. The basic idea of
Queyranne’s algorithm is to construct an ordering (v1,...,v,) of the elements of the ground
set V such that f(v,) < f(X) for all X C V that separates v, and v,_1. Note that the
element v; may be chosen arbitrary in this algorithm. The ordered pair (v,—1,v,,) is called a
pendant pair. The algorithm stores {v,} as a candidate solution and merges v, and v,_;.
The process continues until only two elements are left. The best among all the stored
candidates is an optimal solution.

In order to handle the knapsack constraint, Goemans and Soto [5] construct first a new
element v; obtained by merging all the infeasible elements of V' (not in Z) and compute an
ordering (v1,...,v,). The authors observed that as in Queyranne’s algorithm [13], (vy—1,vy)

H. Aissi, A. R. Mahjoub, and R. Ravi

Algorithm 4 Random edge contraction for the node-budget constrained min cut problem.

Input: a graph G = (V, E) with nonnegative edges cost ¢, nonnegative node weights w® for
i=1,...,k—1, and node budgets b* fori =1,...,k—1
Output: a feasible cut § # C* C V with minimum cost
Llet By « E, Vi « V,r« 1, V>« {v e Vw(v) > b for somei € {1,...,k—1}},
G1 + G ®V~, ie. G with all nodes of V> merged into a single infeasible supernode.
2: while |V;| > 3 do
choose an arbitrary edge e € E,. with probability CE(E?,).)

contract e by merging its endpoints and removing self-loops

if there exists two supernodes v and v’ in V,. that are infeasible then
merge v and v’

end if

r—r+1

9: let G, = (V,, E,.) denote the resulting graph

10: end while

11: return a feasible cut C* in the final graph G’ with minimum cost

is still a pendant pair. Our approach uses the same idea but our starting point is the random
contraction algorithm of Karger.

Denote a cut X or a supernode representing a cut infeasible if its shore exceeds any of the
node budget constraints, i.e. w*(X) > b® for some i € {1,...,k — 1}. Algorithm 4 maintains
at most one infeasible supernode (denoting the contraction of many vertices) at any time
and repeatedly tries to contract a randomly chosen edge. After a random contraction if
a new infeasible supernode is formed, it is merged with the previously existing infeasible
supernode deterministically. This process continues until the final graph G, formed by only
three supernodes. At this point, the algorithm selects a feasible cut C* in G, with minimum
cost and outputs it as a candidate optimal solution. The full algorithm is described in
Algorithm 4.

If V.. contains at least two infeasible nodes then any feasible cut does not separate them.

In this case, these supernodes are merged safely in Step 6. Otherwise, V,. contains at most
one infeasible supernode and in this case, Algorithm 4 randomly contracts, in Step 4, an edge
in E,. The following results show that the algorithm always find a feasible cut in the final
graph G’ and returns any fixed optimal cut with high probability (the proofs are omitted
due to space limitation).

» Lemma 14. The final graph G’ always contain a feasible cut.
» Lemma 15. Algorithm 4 outputs any fized optimal cut C* with probability 2(n=2).

Using the same probabilistic argument to bound the number of minimum cuts as in
Karger [7], Lemma 15 implies the following result.

» Corollary 16. The number of optimal solutions of the node-budget constrained global
minimum cut problem is bounded by (72’)

Note that Algorithm 4 has the same error probability and running time as the original
contraction algorithm [8, Theorem 2.2]. Therefore, we can embed it in the sophisticated
recursive algorithm [8, Section 4] in order to produce an optimal cut with the same success
probability and the same running time as for the global minimum cut problem (without the
budget constraints). Furthermore, similarly to [8, Theorem 4.4], by executing the recursive

6:11

ESA 2017

6:12

Randomized Contractions for Multiobjective Minimum Cuts

algorithm O(log2 n) times, all the optimal solutions can be computed with high probability.
The following result (restatement of Theorem 2) summarizes the resulting running times.

» Theorem 17. An optimal cut of the node-budget constrained global minimum cut prob-
lem on an n-node graph can be computed in O(n?logn) time with probability £2(1/logn).
Furthermore, all the optimal solutions can be computed with high probability in O(n> log3 n)
time.

3.2 Node Budget-constrained sink-excluding Global Minimum Cut
Problem

It is not hard to adapt Algorithm 4 for the node-budget constrained global minimum cut
problem excluding a given sink ¢ € V| where we have a set of k — 1 node-weight budget
constraints on the shore of the cut excluding ¢. We obtain the following result (the full
algorithm description is given in the full paper).

» Theorem 18. An optimal cut of the node-budget constrained global minimum cut problem
excluding a given sink in an n-node graph can be computed in O(n?logn) time with probability
2(1/logn). Furthermore, all the optimal solutions can be computed with high probability in
O(n?log®n) time.

3.3 Node-cardinality constrained Source-including Min-cuts

In contrast to the sink-excluding case, we show that even the node-cardinality constrained
minimum cut problem containing a given source is strongly NP-hard using a reduction from
graph bisection. Note that Hayrapetyan et al. [6] study the version that bounds the edge
costs of the cut and minimizes the node-cardinality of the cut, and show NP-hardness of
that version via a reduction from max-clique. We provide a direct hardness proof for our
version (omitted due to space limitation) by reducing from graph bisection.

» Theorem 19. The node-cardinality constrained minimum cut containing a given source is
strongly NP-hard.

On the other hand, for the exact version of the problem where the side containing s must
have exactly k nodes, an O(logn)-approximation was given by Récke [14] using his approach
for the graph bisection problem.

4 Conclusion

Our results show that beyond the running time improvement, Karger’s randomized contraction
algorithm is sufficiently flexible to tackle efficiently budget constraints. An important open
question is whether the exact algorithms of Nagamochi and Ibaraki [10] and Stoer and
Wagner [15] can be extended in order to handle these budget constraints, since they are based
on similar observations but have the potential to lead to better deterministic algorithms for
the problems we study.

—— References

1 Amitai Armon and Uri Zwick. Multicriteria global minimum cuts. Algorithmica, 46(1):15—
26, 2006.

H. Aissi, A. R. Mahjoub, and R. Ravi

10

11

12

13

14

15

16

17

Maurizio Bruglieri, Francesco Maffioli, and Matthias Ehrgott. Cardinality constrained min-
imum cut problems: complexity and algorithms. Discrete Applied Mathematics, 137(3):311—
341, 2004.

Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

Matthias Ehrgott. Multicriteria optimization. Springer Science & Business Media, 2006.
Michel X. Goemans and José A. Soto. Algorithms for symmetric submodular function
minimization under hereditary constraints and generalizations. SIAM Journal on Discrete
Mathematics, 27(2):1123-1145, 2013.

Ara Hayrapetyan, David Kempe, Martin P4l, and Zoya Svitkina. Unbalanced graph cuts.
In Algorithms — ESA 2005: 15th Annual European Symposium, Proceedings, pages 191-202,
2005.

D.R. Karger. Global min-cuts in RNC, and other ramifications of a simple min-cut al-
gorithm. In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA’93, pages 21-30, 1993.

D.R. Karger and C. Stein. A new approach to the minimum cut problem. Journal of the
ACM, 43(4):601-640, 1996.

Angsheng Li and Peng Zhang. Unbalanced graph partitioning. In Algorithms and Com-
putation: 21st International Symposium, ISAAC 2010, Proceedings, Part I, pages 218-229,
2010.

Hiroshi Nagamochi and Toshihide Ibaraki. Computing edge-connectivity in multigraphs
and capacitated graphs. SIAM Journal on Discrete Mathematics, 5(1):54—66, 1992. doi:
10.1137/0405004.

Hiroshi Nagamochi, Kazuhiro Nishimura, and Toshihide Ibaraki. Computing all small cuts
in an undirected network. SIAM Journal on Discrete Mathematics, 10(3):469-481.

M. Padberg and G. Rinaldi. An efficient algorithm for the minimum capacity cut problem.
Mathematical Programming, 47(1):19-36, 1990.

Maurice Queyranne. Minimizing symmetric submodular functions. Mathematical Program-
ming, 82(1):3-12, 1998.

Harald Réacke. Optimal hierarchical decompositions for congestion minimization in net-
works. In Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing,
STOC 08, pages 255-264. ACM, 2008.

Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. Journal of the ACM,
44(4):585-591, 1997.

Rico Zenklusen. Connectivity interdiction. Operations Research Letters, 42(6):450-454,
2014.

Peng Zhang. A new approximation algorithm for the unbalanced min s—t cut problem.
Theoretical Computer Science, 609:658-665, 2016.

6:13

ESA 2017

http://dx.doi.org/10.1137/0405004
http://dx.doi.org/10.1137/0405004

Tight Bounds for Online Coloring of Basic Graph
Classes*

Susanne Albers! and Sebastian Schraink?
1 Technical University of Munich, Garching, Germany
albers@in.tum.de

2 Technical University of Munich, Garching, Germany
schraink@in.tum.de

—— Abstract

We resolve a number of long-standing open problems in online graph coloring. More specific-
ally, we develop tight lower bounds on the performance of online algorithms for fundamental
graph classes. An important contribution is that our bounds also hold for randomized online
algorithms, for which hardly any results were known. Technically, we construct lower bounds
for chordal graphs. The constructions then allow us to derive results on the performance of
randomized online algorithms for the following further graph classes: trees, planar, bipartite,
inductive, bounded-treewidth and disk graphs. It shows that the best competitive ratio of both
deterministic and randomized online algorithms is ©(log n), where n is the number of vertices of
a graph. Furthermore, we prove that this guarantee cannot be improved if an online algorithm
has a lookahead of size O(n/logn) or access to a reordering buffer of size n! =€, for any 0 < e < 1.
A consequence of our results is that, for all of the above mentioned graph classes except bipartite
graphs, the natural First Fit coloring algorithm achieves an optimal performance, up to constant
factors, among deterministic and randomized online algorithms.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases graph coloring, online algorithms, lower bounds, randomization

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.7

1 Introduction

Online graph coloring is a classical problem in graph theory and online computation. It
has applications in job scheduling, dynamic storage allocation and resource management
in wireless networks [19, 23, 24]. A problem instance is defined by an undirected graph
G = (V, E), consisting of a vertex set V and an edge set E. Let |V| = n. The vertices arrive
one by one in a sequence o = v, ..., v, that may be determined by an adversary. Whenever
a new vertex vy arrives, 1 <t < n, its edges to previous vertices vy with s < t are revealed.
An online algorithm A4 has to immediately assign a feasible color to vy, i.e. a color that is
different from those assigned to the neighbors of v; presented so far. The goal is to minimize
the total number of colors used.

For a graph G, let A(G) be the number of colors used by A. Let x(G) be the chromatic
number of GG, which is the minimum number of colors needed to color G offline. An online
algorithm A is c-competitive if A(G) < c¢- x(G) holds for every graph G [25]. If A is a

* A full version of this paper is available at https://arxiv.org/abs/1702.07172.
T Work supported by the European Research Council, Grant Agreement No. 691672, project APEG.

© Susanne Albers and Sebastian Schraink;

37 licensed under Creative Commons License CC-BY
25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 7; pp. 7:1-7:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.7
https://arxiv.org/abs/1702.07172
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2

Tight Bounds for Online Coloring of Basic Graph Classes

randomized algorithm, then E[A(G)] is the expected number of colors used by A. The
algorithm is c-competitive against oblivious adversaries if E[A(G)] < ¢- x(G) holds for every
G [5]. An oblivious adversary, when determining o, does not know the outcome of the
random choices made by A. We always evaluate randomized online algorithms against this
type of adversary. When considering specific graph classes, for a deterministic or randomized
algorithm, the competitive factor of ¢ must hold for every graph from the given class.

The framework defined above is the standard online one. It is also interesting to explore
settings where an algorithm is given more power. An online algorithm A has lookahead [if,
upon the arrival of vertex v, the algorithm also sees the next [vertices viy1,...,vey; along
with their adjacencies to vertices in {v1,...,v;4;}. Alternatively, an algorithm might have a
buffer of size b in which vertices can be stored temporarily. The requirement is that at the
end of step ¢ the algorithm must have colored at least ¢t — b vertices. A buffer is more powerful
than lookahead because it allows the algorithm to partially reorder the input sequence and
delay coloring decisions. The value of a buffer has recently been explored for a variety of
online problems, see e.g. [1, 11] and references therein.

Previous work: For general graphs, the competitive ratios are high compared to the trivial
upper bound of n. Lovasz, Saks and Trotter [22] developed a deterministic online algorithm
that achieves a competitive factor of O(n/log* n). Vishwanathan [26] devised a randomized
algorithm that attains a competitiveness of O(n/v/logn). This bound was improved to
O(n/logn) by Halldorsson [16]. Halldorsson and Szegedy [17] proved that the competitive
ratio of any deterministic online algorithm is (n/log®n). This lower bound also holds for
randomized algorithms. Moreover, it holds if a randomized algorithm has a lookahead or a
buffer of size O(log®n) [17].

There has also been considerable research interest in online coloring for various graph
classes. An early and celebrated result proved by Bean [4] in 1976 is that, for trees, every
deterministic online algorithm can be forced to use Q(logn) colors. The First Fit algorithm
colors every tree with O(logn) colors [15]. The natural strategy First Fit assigns the lowest-
numbered feasible color to each incoming vertex. Since trees have a chromatic number
of 2, the best competitive ratio achievable by deterministic online algorithms is ©(logn).
For bipartite graphs, there also exists a deterministic online algorithm that uses O(logn)
colors [22], implying that the best competitiveness of deterministic strategies is again ©(logn).
However, First Fit performs poorly, as there are bipartite graphs for which it requires (n)
colors. Kierstead and Trotter [20] proved that, for interval graphs, the best competitive ratio
of deterministic online algorithms is equal to 3.

A paper directly related to our work is by Irani [18]. She examined d-inductive graphs, also
referred to as d-degenerate graphs. They are defined as the graphs which admit a numbering
of the vertices such that each vertex is adjacent to at most d higher-numbered vertices. Every
planar graph is 5-inductive and every chordal graph G is (x(G) — 1)-inductive. Irani [18§]
proved that First Fit colors every d-inductive graph with O(d - logn) colors. Furthermore,
for every deterministic online algorithm A, there exist graphs such that A uses Q(d - logn)
colors [18]. Since d-inductive graphs have a chromatic number of at most d + 1, the best
competitive ratio achieved by deterministic online algorithms is Q(logn). For planar graphs
a tight bound of ©(logn) holds because trees are planar. However, it was an open problem
if a tight competitiveness of ©(logn) holds for general chordal graphs. In fact, Irani [1§]
raised the question if, for every deterministic online algorithm A and every d, there exists
a chordal graph with chromatic number d such that A uses (d - logn) colors. Finally, for
d-inductive graphs, Irani [18] analyzed deterministic online algorithms with lookahead ! and

S. Albers and S. Schraink

showed that the best competitiveness is ©(min{logn,n/l}). A lower bound of Q(loglogn)
on the competitive ratio of randomized online algorithms for d-inductive graphs was given
by Leonardi and Vitaletti [21].

We address two further graph classes. Downey and McCartin [10] studied online coloring
of bounded treewidth graphs. For an introduction to treewidth see [7]. For any graph of
treewidth d, First Fit uses O(d - logn) colors. This is a consequence of Irani’s work [18]
because a graph of treewidth d is d-inductive [10, 18]. Downey and McCartin [10] showed
that, on graphs of treewidth d, First Fit can be forced to use Q(m
not least, a disk graph is the intersection graph of a set of disks in the Euclidean plane. Each

logn) colors. Last but

vertex represents a disk; two vertices are adjacent if the two corresponding disks intersect.

Online coloring of disk graphs has received quite some attention because it models frequency
assignment problems in wireless communication networks, see [13] for a survey. The best
competitiveness achieved by a deterministic online algorithm is ©(min{logn,log p}), where
p is the ratio of the largest to smallest disk radius [9, 12]. The result relies on the common
assumption that an online algorithm does not use the disk representation, when making
coloring decisions [9, 12, 13]. It has been repeatedly raised as an open problem if the bound
of ©(min{logn,log p}) can be improved using randomization [9, 12, 13].

Recent work on online graph coloring has studied scenarios where an online algorithm can
query oracle information about future input [8, 6]. Moreover, online coloring of hypergraphs
has been explored [2, 3].

Our Contribution: In this paper we settle the performance of online coloring algorithms
for fundamental and widely studied graph classes. More precisely, we prove lower bounds on
the performance of online algorithms. These bounds match the best upper bounds known in
the literature. An important contribution is that our bounds also hold for randomized online
algorithms, for which very few results were known.

First, in Sections 2 and 3 we investigate chordal graphs. They have been studied
extensively, cf. textbook [27]. We remind the reader that a graph is chordal if every induced
cycle with four or more vertices has a chord. For a chordal graph G, the chromatic number
X(G) is equal to the largest clique size w(G). Interval graphs are a subfamily of chordal
graphs. Chordal graphs in turn are perfect graphs, for which the offline coloring, maximum
clique and independent set problems can be solved in polynomial time.

In Section 2 we examine deterministic online coloring algorithms. We prove that, for
every deterministic algorithm A and every integer d > 2, there exists a family of chordal
graphs G with x(G) = d such that A uses Q(d - logn) colors. This resolves the open problem
raised by Irani [18]. In Section 3 we extend this result to randomized online algorithms. The
statement is identical to the one for deterministic algorithms, except that a randomized
online algorithm uses an expected number of Q(d - logn) colors. Although the result for
randomized algorithms is more general, we give proofs for both deterministic and randomized
policies. Our lower bound construction for deterministic algorithms exhibits an adversarial
strategy for generating worst-case graphs. Given this strategy, we show how to define a
probability distribution on graphs so that Yao’s principle [28] can be applied. First Fit
colors every chordal graph G with x(G) = d using O(d - logn) colors. Hence, the optimal
competitiveness of deterministic and randomized online algorithms is ©(logn).

In Section 4 we derive lower bounds for further graph classes, focusing on randomized

online algorithms. For d = 2, our lower bound construction for chordal graphs generates trees.

It follows that, for any randomized online algorithm A, there exists a family of trees such
that A needs an expected number of Q(logn) colors. This complements the fundamental and

7:3

ESA 2017

7:4

Tight Bounds for Online Coloring of Basic Graph Classes

early result by Bean [4] for deterministic algorithms. To the best of our knowledge, no lower
bound on the performance of randomized online coloring algorithms for trees was previously
known. Recall that trees have a chromatic number of 2. Vishwanathan [26] gave a lower
bound of Q2(logn) on the expected number of colors used by randomized online algorithms for
graphs of chromatic number 2, i.e. bipartite graphs. However, the graphs in his construction
have cycles. Thus, Vishwanathan’s lower bound does not apply to trees. Obviously, trees
are planar and bipartite. Hence, our result for trees directly implies that every randomized
online algorithm can be forced to use Q(logn) colors in expectation for graphs of these two
classes. The lower bounds are tight because known deterministic online algorithms color
trees, planar and bipartite graphs with O(logn) colors [15, 18, 22].

Section 4 also addresses inductive and bounded-treewidth graphs. Since every chordal
graph G is (x(G) — 1)-inductive and has treewidth x(G) — 1, we derive the following results.
For every randomized online algorithm A and every d > 1, there exists a family of d-inductive
graphs such that 4 uses Q(d-logn) colors. The same statement holds for graphs of treewidth
d. We further show that the statement also holds for strongly chordal graphs with chromatic
number d. A chordal graph is strongly chordal if every cycle of even length consisting of at
least six vertices has an odd chord, i.e. an edge connecting two vertices that have an odd
distance from each other in the cycle [14]. First Fit colors any d-inductive graph and any
graph of treewidth d using O(d - logn) colors. We conclude that, for all the graph classes
considered so far, ©(log n) is the best competitiveness of deterministic and randomized online
algorithms. Finally, in Section 4 we study disk graphs. We prove that, for d = 2, every graph
of the probability distribution defined in Section 3 translates to a disk graph. We then show
that, for every randomized online algorithm A that does not use the disk representation, there
exists a family of disk graphs forcing A to use an expected number of 2(min{logn,log p})
colors, where p is again the ratio of the largest to smallest disk radius. Hence randomization
does not improve the asymptotic performance of online coloring algorithms for disk graphs,
cf. [9, 12, 13].

In Section 5 we explore the settings where an online algorithm has lookahead or is
equipped with a reordering buffer. We show that a lookahead of size O(n/logn) does not
improve the asymptotic performance of randomized online algorithms. We prove the result
for chordal graphs and then derive analogous results for all the other graph classes. Irani [18]
gave a similar result for deterministic algorithms, considering inductive graphs. As a final
result of this paper we demonstrate that a reordering buffer of size n' ¢, for any 0 < € < 1,
does not yield an improvement in the asymptotic performance guarantees of deterministic
online algorithms. Again, we develop the result for chordal graphs and derive corollaries for
the other graph classes.

Our Proof Technique: We devise a technique for proving lower bounds that is relatively
simple; we view this as a strength of our results. The main idea is to recursively construct
trees of cliques, which in turn form forests. In a recursive step the construction combines
forests by adding or not adding a new clique in a specific way. Our construction resembles
the one by Bean [4] but differs in an important aspect that allows us to obtain lower bounds
for randomized algorithms. The construction by Bean builds a tree Ty, k& € N, by joining
trees T}, for j < k, so that any deterministic online algorithm must use a k-th new color for
some vertex of Tj. This vertex then becomes the root of Tj. An oblivious adversary, playing
against a randomized online algorithm, cannot identify with sufficiently high probability
such vertices exhibiting a new color. Instead, our construction maintains the invariant that
the root vertices of each forest use a large number of colors, given any deterministic online

S. Albers and S. Schraink

algorithm. For randomized algorithms, a corresponding invariant holds with probability of
at least 1/2.

Convention: Unless otherwise stated, logarithms are base 2.

2 Deterministic online algorithms for chordal graphs

We establish a lower bound on the performance of any deterministic online coloring algorithm.

» Theorem 1. Let d € N with d > 2 be arbitrary. For every deterministic online algorithm
A and every n € N with n > 2d?, there exists a n-vertex chordal graph G with chromatic
number x(G) = d such that A uses Q(d - logn) colors to color G.

The proof of Theorem 1 relies on Lemma 2, which we prove first.

» Lemma 2. Let d € N with d > 2 be arbitrary. For every deterministic online algorithm A
and every k € N, there exists a chordal graph Gy having chromatic number x(Gy) = d and
consisting of ny, < d2¥ vertices such that A is forced to use at least cx, > (d — 1)k /4 colors to
color Gy,.

Proof. We describe how an adversary constructs a chordal graph G, k € N. Such a graph is
built up recursively and consists of graphs G, where j < k. We assume that d is even. The
construction of G can be adapted easily if d is odd; details will be given later. On a high
level Gy, is a forest, i.e. a collection of disjoint trees, each having a distinguished root node.
In every tree T of Gy, each tree node represents a clique of size d/2 in Gy. If two tree nodes
up and vy are connected by a tree edge in 7', then any two vertices u € ur and v € vy are
connected by an edge in Gy. Hence ur and vy form a clique of size d in G. Since Gy, is a
forest, it consists of several connected components. One can add a final vertex and edges in
order to connect the various trees; details will be given at the end of the proof.

We proceed with the concrete construction of Gy, for increasing values of £ € N. As
mentioned above, each tree T' of G has a distinguished root node consisting of d/2 vertices
in Gg. Let 7(T') be the set of these d/2 vertices. Moreover, let r(G}) be the union of these
sets 7(T"), taken over all T' of Gj. We refer to the elements of r(G},) as the root vertices of
G. They are important because the online algorithm A will be forced to use a large number
of colors for r(Gy). For any subset V' of the vertices of Gy, let C4(V”) be the set of colors
used by A to color V.

The strategy of the adversary to generate a graph Gy, is adaptive, i.e. the exact structure
of the graph depends on the coloring decisions of A. Nevertheless, during the bottom-up
construction of Gy, for increasing k € N, the following invariants will be maintained.

(1) Algorithm A uses at least ¢ - k colors for the root vertices of Gy, i.e. |[Ca (r(Gk))| > 4 - k.

(2) Gy is a union of connected components, each of which can be represented by a tree
T. Each tree node is a clique of size d/2. Every tree T has a distinguished root node
containing a set r(T) of d/2 root vertices in Gj.

(3) Gy is chordal.

(4) The maximum clique size is w(Gy) = d.

(5) The number of vertices satisfies ny, < 4 - (2841 — 1).

Invariants (3) and (4) together imply that x(Gy) = w(Gx) = d holds. In invariant (1) and

the following technical exposition integer values are compared to expressions of the form % -k,

which might not be integer. We remark that the statements, comparisons and calculations

hold without considering the rounded expressions.

7:5

ESA 2017

7:6

Tight Bounds for Online Coloring of Basic Graph Classes

Gia
R
Figure 1 The tree T representing G. Figure 2 The general structure of G,_, and

G._; restricted to the root vertices.

Construction of the base graph G1: G is a clique of size d. The adversary may present

the corresponding vertices in an arbitrary order. The set of root vertices r(G1) is an arbitrary

subset R of size d/2 of the vertices of G;. The remaining d/2 vertices form a second tree

node. The resulting tree T is depicted in Figure 1. We can easily verify properties (1-5).

(1) Since R = r(G1) is a clique of size d/2, A uses d/2 colors for it, i.e. [Ca(r(G1))| > 4.

(2) G; consists of one connected component which represents a tree, as described above and
shown in Figure 1.

(3) G, is a clique and thus chordal.

(4) The maximum clique size w(G1) is exactly d.

(5) There holds n; =d < 2 -d=4%.(2!*1 —1).

Construction of the graph G, k > 1: Assume that the adversary can generate graphs
G;, for any j < k, satisfying invariants (1-5). The construction of Gy proceeds as follows.
First the adversary recursively generates two independent graphs of type G_1, i.e. it twice
executes the strategy for generating a graph G_1. Let G}, and G%_| be these two graphs.
They are created one after the other. We remark that G§€71 and Gj,_; need not be identical
because A’s coloring decision in one graph can affect its decisions in the other one.

In the following we focus on the root vertices of Gﬁg_l and GJ,_;. In particular, we
consider the colors used by A. Invariant (1) implies that [C4(r(G}_,))| > 4(k —1) and
ICA(r(G_1))| > 4(k—1). We distinguish two cases depending on the total number of colors
used, i.e. the cardinality of C4(r(GL_,) Ur(G%_,)). To this end we introduce some notation.
Assume that Gﬁﬁ_l consists of s connected components, which we number in an arbitrary way.
Each component/tree T} has a distinguished root containing a set 7(T}) of d/2 root vertices.
‘We abbreviate Ré = 7“(Til)7 1 <i < 's. Similarly, assume that G,_; consists of ¢ connected
components. Set r(77) is the set of root vertices in the component 77. Let Ré =r(1T7),
1 < j <t. There holds r(G},_;) = U;i_, R and r(G},_;) = U;zl R}. Figure 2 shows the
general structure of G}, and G%,_, by focusing on the roots. The left-hand side of the figure
depicts ch—l as a union of connected components rooted at R}, ..., R\, respectively. The
right-hand side shows G}, _; as a collection of components rooted at Rf,..., R.

Case 1: Assume that }CA(T(GLl) Ur(Gy_y))| > 4 - k. In this case the adversary defines

Gy as the union of G{_| and G%_,. No further vertices or edges are added. It is easy to

verify the five invariants because GY_, and G%_, satisfy them by inductive assumption.

(1) The condition of Case 1 ensures |C4(r(Gk))| = [Ca(r(GL_) Ur(G}_4))| > 4. k.

(2) The invariant is satisfied since Gy, is the union of G% and GY.

(3) Gy is chordal because G, and G7, are, and no further vertices or edges have been added.

(4) There holds w(Gy) =d, as w(G,_,) = w(G%_,) =d.

(5) Let n}_, and n}_, be the number of vertices in G},_, and G}_,, respectively. There
holds ny =nl_, +nj_, <2-(4.(2F-1)) = 4. (2k+1 —2) < 4. (2k+1 —1). The first
inequality follows because (5) holds for n},_ | and n}_,.

S. Albers and S. Schraink

A

Figure 3 The graph G with the new addition of R.

Case 2: Next assume that [Ca(r(G}_;) Ur(G}_)))| < 4. k. In this case the adversary
adds a set R of d/2 vertices that form a clique. Moreover, for every vertex of R there is
an edge to every vertex in Ré, fori =1,...,s. In other words, every vertex of R has edges
to all root vertices of r(Gé_l). The vertices of R together with their adjacent edges may
be presented by the adversary in an arbitrary order. The resulting structure is depicted in
Figure 3. Set R and the connected components of ch_l rooted at RY,..., R\ form a single
component rooted at R. There is a tree edge between R and every Rﬁ», 1 <4 <s. The newly
created component forms a tree rooted at R because the components of ch—1 represent trees
rooted at R, ..., RL. Graph Gj, is the union of the new component and the components of
G._1- The set of root vertices of G, consists of R and the root vertices of G},_;. Formally,
r(Gr) = RURJ U...,UR]. Tt remains to verify the five invariants.

(1) We analyze the number of colors that A uses for the root vertices in Gj. In a first
step, among the colors C4(r(GY_,)) U Ca(r(G%_,)) for the roots of G%_, and Gf_,,
we upper bound the number q of colors occurring in C4(r(G}_,)) only. By assump-

tion |CA (GL_))UCA(r(Gr_y))| = [Calr(Gh_1)Ur(Gy_)))| < 4 - k. There holds
Calr (G)) §(k—1). We Obtaln q=[Calr(Gk D\ Calr(Gl_1))| = [Calr (G
Ca(r(GL_, ’—‘CA (GL_ 1))| < %. Next consider the vertices in R. We upper bound the

number of colors from C 4(r (GZ—l)) that A can use for R. Observe that C4(r(Gj,_,)) is the
disjoint union of Ca(r(G%_,))NCa(r(Gs_,)) and CA(r(G%_,))\Ca(r(G'_,)). Every ver-
tex of R is adjacent to every vertex in r(G%_,). Hence, A cannot apply a color occurring in
Ca(r(Gr_1))NCA(r(GL_,)) to a vertex in R. Only a color of C4(r(G5_,))\Ca(r(GL_))
is feasible, and the latter set has cardinality ¢ < d/4. Since R is a clique of size d/2 al-
gorithm .4 must use at least d/2—¢q > d/4 colors not contained in C(r(G%_;)) to color the
vertices of R As r(Gr) = RUT(G},_,), we conclude |[C4(r(Gy))| = [CA(RUT(G}_)))| =
CA(r(GE_D))| + [Ca(B)\ Ca(r(GE_)| = §(k = 1) + § = k.

(2) By construction Gy, is a collection of connected components, forming trees rooted at R
and RY,..., R}, respectively.

(3) In Gy, consider a simple cycle C' with at least four vertices and assume that at least one
vertex is in R. If three or more vertices of C are in R, then there is a chord because R
is a clique. If C' contains one or two vertices of R, then C' can visit only one connected
component of chil. Suppose that it visits the one rooted at R.. Cycle C must contain
two vertices of R.. Each of these two vertices has an edge to every vertex of R in C. Hence
C has a chord. Since G§%1 and Gj,_,, and thus the components rooted at Ri,... R
and RY,..., R}, are chordal, so is G.

(4) Set R and each Rl 1 <i < s, form a clique of size d. The vertices of R are not connected
to any vertices outside Rﬁ, 1 < i < s. Hence no other cliques are formed by the addition
of R. Since w(GY_,|) = w(G5_,) = d it follows w(Gy) = d.

(5) Again, let “56—1 and nj_, be the number of vertices in Gﬁc_l and Gﬁg_l. We have
ng=nl_ +nj_+4<2- (- 2F-1)+4=4. 2k _2)+d=d. 2kl _1)

The construction and analysis of G, is complete.

17

ESA 2017

7:8

Tight Bounds for Online Coloring of Basic Graph Classes

Graph Gy, consists of several connected components if k£ > 1. The adversary can create a
connected graph by adding a final vertex vy that has an edge to exactly one root vertex in
each of the components. The resulting graph remains chordal because there is no simple cycle
containing vy. By the addition of v; the maximum clique size does not change. Including vy
the total number of vertices is upper bounded by %(2’”‘1 -1)+1< d2* because d > 2. The
lemma follows from invariants (1) and (3-5) because x(Gy) = w(Gy) = d.

We finally address the case that d is odd. In this case the adversary executes the graph
construction described above for parameter d — 1, which is even. In the end when Gy, is
generated for the desired k, the adversary adds a final vertex to each base graph G;. This
vertex has edges to every other vertex of the corresponding G;. This increases the maximum
clique size from d — 1 to d. The new graph remains chordal. The number of colors used
by algorithm A is at at least %k. We observe that the number of base graphs G in Gy
is 28=1. Hence, in the extended graph the total number of vertices is upper bounded by
doL 2kl — 1) 4 2k=1 < (21 — 1) If k > 1, the adversary can add a final vertex to link
the various components. Again the lemma follows. |

Proof of Theorem 1. Given d and n, let & = |log(n/d)|. There holds k € N because
n > 2d? > 2d. For every deterministic online algorithm, by Lemma 2, there exists a chordal
graph G}, with chromatic number x(Gj) = d such that A uses at least ¢ > (d — 1)k/4
colors. Graph G}, has ny < d2F vertices. By the choice of k = |log(n/d)|, we have
nk < n. To Gy we add n — ny, vertices, all of which have one edge to an arbitrary vertex
of G. The resulting n-vertex graph remains chordal and x(G) = d. Since d > 2, there
holds ¢; > dk/8. We have k > logn — logd — 1. Inequality n > 2d? is equivalent to
d < +/n/2. Thus, k > log(n/2) —1/2-log(n/2) = 1/2-log(n/2). As n > 2d? > 4, there holds
log(n/2) > 1/2-logn. Hence, the number of colors used by A is at least ¢, > dlogn/32. <«

In Theorem 1 the lower bound on n can be reduced from 2d? to 2d'*¢, for any 0 < € < 1.
Then the number of colors used by A is Q(e - d-logn).

3 Randomized online algorithms for chordal graphs

We extend the result of Theorem 1 to randomized algorithms against oblivious adversaries.

» Theorem 3. Let d € N with d > 2 be arbitrary. For every randomized online algorithm
A and every n € N with n > 12d?, there exists a n-vertex chordal graph G with chromatic
number x(G) = d, presented by an oblivious adversary, such that the expected number of
colors used by A to color G is Q(d - logn).

In order to prove Theorem 3 we resort to Yao’s principle [28] and show the following Lemma 4.

» Lemma 4. Let d € N with d > 2 be arbitrary. For every k € N, there exists a probability
distribution on a set Gy, of chordal graphs with the following properties. For every Gy € Gy,
X(Gr) = d and the number of vertices is at most d - 12¥. The expected number of colors used
by any deterministic online algorithm to color a graph drawn according to the distribution is
at least (d — 1)k/8.

Proof. For every k € N we define a set G;, of chordal graphs Gy, each having a chromatic
number of d. Moreover, we specify the order in which the vertices of any G € Gy are
presented to a deterministic online algorithm A. The distribution on Gy, is the uniform one,
i.e. each Gy € Gi is chosen with the same probability. We assume that d is even. The
definition of Gy can be adapted easily if d is odd; details are given at the end of the proof.

S. Albers and S. Schraink

The set Gy, is built recursively based on Gi_1. The construction of graphs Gy € G is a
generalization of the one presented in the proof of Lemma 2. A major difference is that any
G} € Gy contains twelve graphs of G, 1, which are grouped into six pairs. For each pair a
clique of size d/2 may or may not be added. As before, every G}, € Gy, is a union of connected
components. Each such component can be represented by a tree with a distinguished root
vertex. Every tree vertex is a set of d/2 vertices forming a clique in Gj. We reuse the
notation of the proof of Lemma 2. Given Gy, € Gy, for any component/tree T' of Gy, r(T) is
the set of d/2 vertices in the root of T. Set r(Gy) is the union of all (T, taken over all T
of G. Finally C4(r(Gy)) is the set of colors used by A for the vertices of r(Gy).

During the recursive construction of Gy, for increasing k£ € N, the following invariants
are maintained. Compared to the proof of Lemma 2, (1) and (5) differ. Invariant (1) states
that, for a randomly chosen Gy, every deterministic online algorithm needs, with probability
greater than 1/2, at least dk/4 colors for the root vertices r(Gy). Invariant (5) gives an
adjusted bound on the size of any Gj.

(1) If Gy is chosen uniformly at random from G, then for any deterministic online al-
gorithm A, Pr[|Ca (r(Gk))| > dk/4] > 1/2. This holds independently of other connected
components 4 might have already colored.

(2) Every G € Gy is a union of connected components, each of which can be represented by
a tree T. Each tree node is a clique of size d/2. Every tree T has a distinguished root
containing a set 7(T) of d/2 root vertices in Gj.

(3) Every Gj, € Gy is chordal.

(4) For every Gy € Gy, the maximum clique size is w(Gg) = d.

(5) For every Gy € Gi, the number ny of vertices satisfies ng, < d(12F — 1).

Graph set Gy: The set only contains G1, the base graph used in the proof of Lemma 2,
which is a clique of size d. The vertices of G; may be presented in any order to a deterministic
online algorithm. Again, the set 7(G1) of root vertices is an arbitrary subset of size d/2 of
the vertices of G;1. The remaining d/2 vertices form a second tree node. Every deterministic
online algorithm, with probability 1, needs d/2 colors for r(G1), which implies (1). Invariants
(2-4) are obvious. As for (5), there holds ny = d < d(12 — 1).

Graph set G, k > 1: Assume that the set G, satisfying (1-5) has been constructed.
First, in order to build Gy, all possible 12-tuples of graphs of G;_; are formed. In assigning
tuple entries, graphs of Gi_1 are selected with replacement. Hence, a total of \Qk,1|12 tuples
are built. For each tuple, 26 graphs are added to G, in the following way. Let 7 be any
fixed tuple. Six graph pairs are formed. For i =1,...,6, let ch’l_l and Gz’il be the graphs
in tuple entries 2¢ — 1 and 2i, respectively. To the i-th pair a clique R; of size d/2 may or
may not be added. The possible additions, over the six pairs, can be represented by a bit
vector b = (b1,...,bs). More specifically, given 7 and any such bit vector g, a graph Gy is
constructed as follows. For i = 1,...,6, a subgraph G is generated. If b; = 0, then G% is the
union of Gi* | and G¥7 . The set r(G%) of root vertices is the union of #(G%L') and (GL").
If b, = 1, then a clique R; of size d/2 is added to Gf{’l_l and ch’il. Every vertex of R; has
an edge to every vertex of r(G;;l_). Subgraph G;C consists of the newly created component
rooted at R; and 7(G}",), i.e. 7(G%_,) = R; Ur(GL",). Graph G}, is the union of the Gi
and the set 7(Gy,) is the union of the r(G%), 1 < i < 6. When Gy is presented to A, the
subgraphs Gi are revealed one by one, 1 <1i < 6. For each G% the graphs GZ{I and GZ{I

7:9

ESA 2017

7:10

Tight Bounds for Online Coloring of Basic Graph Classes

are presented recursively. Finally, the vertices of R;, if they exist, are shown. It remains to
verify the invariants.

(1) Let G be a graph drawn uniformly at random from Gj. Consider any subgraph
Gi, 1 < i < 6, containing G and Gi". By the construction of Gi, both G and G}"
represent graphs drawn uniformly at random from Gi_;. Let A be any deterministic online
algorithm. Invariant (1) for k£ — 1 implies Pr[|CA(r(GZ’l_1))\ > d(k—1)/4] > 1/2 and
Prl|Ca(r(GL7)| > d(k — 1)/4] > 1/2. Moreover it implies Pr[|Ca(r(GE',))| > d(k —
1)/4 and |C4(r(Gy")| > d(k—1)/4] > 1/4. Let € be the latter event that |CA(T(GZJ_1))| >
d(k —1)/4 and [CA(r(G}",))| > d(k — 1)/4 hold.

Assume that £¢ holds. There are two cases, which correspond to those analyzed in the
proof of Lemma 2. If |C4(r(G2) Ur(GEL)| > dk/4, then |Ca(r(GL))| > dk/4 if R; is
not added to G?l and Gz’r, which happens with probability 1/2. On the other hand, if
‘CA(T(G;;l_l) Ur(Gi",))| < dk/4, then the addition of R; ensures that [Ca(r(G%))| > dk/4.
Again, R; is added with probability 1/2. In either case, given &%, Pr[|Ca(r(G}))| > dk/4] >
1/2. We obtain Pr[|Ca(r(G}))| > dk/4] > Pr[|Ca(r(GY))| > dk/4 |] -Pr[€] > - 1 = 1.
Equivalently, Pr[|Ca(r(G%))| < dk/4] < 7/8. If [Ca(r(Gy))| < dk/4, then [Ca(r(GL))| < dk/4
must hold true for i = 1,...,6. The latter event occurs with probability at most (7/8)°.
We conclude Pr[|C4(7(Gy))| > dk/4] > 1 — (7/8)% > 1/2. This holds independently of A’s
coloring decisions made in other components.

Invariants (2-4) are immediate, based on the arguments given in the proof of Lemma 2.
As for the number of vertices of any Gy € Gy, we observe that it is upper bounded by
12-d-(12F"1 —1)+6-d/2 < d-(12F - 1).

If d is odd, the above construction of sets Gi, k > 1, is performed for parameter d — 1.
In Gy, graph G; is extended by a single vertex having edges to all other vertices in Gj.
Invariant (5) holds because any graph G}, € Gy contains 12¥~! copies of G.

The lemma follows from (1) and (3-5). In particular, (1) implies that the expected number
of colors used by any deterministic online algorithm is at least 1/2-(d—1)k/4 = (d—1)k/8. <

Proof of Theorem 3. For the given d and n, choose k = |log(n/d)|. In this proof, logarithms
are base 12. There holds k € N, because n > 12d?> > 12d. By Lemma 4, there exists a
probability distribution on a set Gy, of chordal graphs with chromatic number d such that
the expected number of colors used by every deterministic online algorithm is at least
(d — 1)k/8. The number of vertices of any graph in Gy is at most d12*. Hence, by the
choice of k, it is upper bounded by n. For every Gy € Gk, we add a suitable number
of vertices so that the total number of vertices is equal to n. Every new vertex has one
edge to an arbitrary vertex in the original graph Gy. Hence, there exists a probability
distribution on a set of n-vertex graphs with chromatic number d such that the expected
number of colors used by any deterministic online algorithm is at least (d — 1)k/8. By Yao’s
principle [28], for every randomized online algorithm, there exists an n-vertex chordal graph
G with x(G) = d such that the expected number of color is ¢, > (d — 1)k/8 > dk/16. We
have k > logn —logd — 1 = log(n/12) —logd > 1/2-log(n/12), because 12d? < n, and hence
d < \/n/12. Since 12d? < n, we have log(n/12) > 1/3 - logn and thus ¢, € Q(d -logn). =

Again, in Theorem 3 we can reduce the lower bound on n from 12d? to 12d'*¢, for any
0 < € < 1. The expected number of colors used by A is Q(e - d - logn).

S. Albers and S. Schraink

4 Further graph classes

Given Theorem 3, we can derive lower bounds on the performance of randomized online
coloring algorithms for other important graph classes.

4.1 Trees, planar, bipartite, d-inductive and bounded-treewidth graphs

» Corollary 5. For every randomized online algorithm A and every n € N with n > 48, there
exists a n-verter tree T, presented by an oblivious adversary, such that the expected number
of colors used by A to color T is Q(logn).

The proof is given in the full version of the paper. Since trees are planar and bipartite graphs,
we obtain the following two corollaries.

» Corollary 6. For every randomized online algorithm A and every n € N with n > 48, there
exists a n-vertex planar graph G, presented by an oblivious adversary, such that the expected
number of colors used by A to color G is Q(logn).

» Corollary 7. For every randomized online algorithm A and every n € N with n > 48,
there exists a n-vertex bipartite graph G, presented by an oblivious adversary, such that the
expected number of colors used by A to color G is Q(logn).

Every chordal graph G is (x(G) — 1)-inductive and has treewidth w(G) — 1 = x(G) — 1 [7].

Hence, Theorem 3 gives the following two results.

» Corollary 8. Let d € N be an arbitrary positive integer. For every randomized online
algorithm A and every n € N with n > 12d?, there exists a n-vertex d-inductive graph G,
presented by an oblivious adversary, such that the expected number of colors used by A to
color G is Q(d - logn).

» Corollary 9. Let d € N be an arbitrary positive integer. For every randomized online
algorithm A and every n € N with n > 12d?, there exists a n-vertex graph G of treewidth d,
presented by an oblivious adversary, such that the expected number of colors used by A to
color G is Q(d - logn).

The graphs used in the proof of Theorem 3 are strongly chordal, which yields the following
corollary. The proof can be found in the full version of the paper.

» Corollary 10. Let d € N be an arbitrary positive integer. For every randomized online
algorithm A and every n € N with n > 12d?, there exists a n-vertex strongly chordal graph G
with chromatic number x(G) = d, presented by an oblivious adversary, such that the expected
number of colors used by A to color G is Q(d -logn).

4.2 Disk graphs

A disk graph is the intersection graph of disks in the Euclidean plane. Every vertex corresponds
to a disk; two vertices are connected by an edge if the respective disks intersect. The following
theorem implies that it is not possible to improve on the performance of deterministic online
coloring algorithms by using randomization. We use the common assumption that when an

online algorithm makes coloring decisions, it does not use the disk representation [9, 12, 13].

The proof of Theorem 11 is presented in the full version of the paper.

» Theorem 11. Let A be an arbitrary randomized online algorithm. For every n € N and
p € R with min{n, p} > 25, there exists a n-vertex disk graph G with chromatic number
X(G) = 2, presented by an oblivious adversary, in which the ratio of the largest to smallest
disk radius is p, such that the expected number of colors used by A is Q(min{logn,log p}).

7:11

ESA 2017

7:12

Tight Bounds for Online Coloring of Basic Graph Classes

5 Lookahead and buffer reordering

Lookahead: We first assume that a randomized online coloring algorithm A has lookahead I.
Theorem 12 below shows that, for chordal graphs, a lookahead of size O(n/logn) leads to
no improvement. The proof is given in the full version of the paper.

» Theorem 12. Let d € N and ¢ € R be arbitrary numbers with d > 2 and ¢ > 1. For every
randomized online algorithm A with lookahead | and every n € N with n > max{12d?,d-122¢}
andl < en/log(n/d), there exists a n-vertex chordal graph G with chromatic number x(G) = d,
presented by an oblivious adversary, such that the expected number of colors used by A to
color G is Q(L - d - logn).

Based on Theorem 12 we can derive analogous results for all the other graph classes
considered in Section 4. Loosely speaking, a lookahead of size O(n/logn) is of no help. The
next Corollary 13 addresses trees. Exactly the same statement holds for planar and bipartite
graphs, respectively. For brevity, we omit the corresponding corollaries.

» Corollary 13. Let ¢ > 1 be an arbitrary real number. For every randomized online algorithm
A with lookahead | and every n € N with n > max{48,2 - 12%¢} and | < cn/log(n/2), there
exists a n-vertex tree G, presented by an oblivious adversary, such that the expected number
of colors used by A to color G is Q(% -logn).

For d-inductive graphs, graphs of treewidth d and strongly chordal graphs with chromatic
number d, the formulation of Theorem 12 directly carries over. In fact, the result holds for
all integers d > 1. For disk graphs, Theorems 11 and 12 give the following corollary.

» Corollary 14. Let ¢ € R with ¢ > 1 be arbitrary. For every randomized online algorithm A
with lookahead 1, every n € N and p € R with min{n, p} > 2-12%¢ and | < cn/log(n/2), there
exists a n-vertex disk graph G with chromatic number x(G) = 2, presented by an oblivious
adversary, in which the ratio of the largest to smallest disk radius is p, such that the expected
number of colors used by A to color G is Q(% -logn).

Buffer reordering: Next we examine the setting in which a deterministic online coloring
algorithm .4 has a reordering buffer. We prove that a buffer of size n'=¢, for any 0 < € < 1,
does not improve the asymptotic performance of the algorithms.

» Theorem 15. Let d € N and ¢ € R be arbitrary numbers with d > 2 and 0 < € < 1.
For every deterministic online algorithm A having a buffer of size b and every n € N with
b<nl=¢andn > max{2d2, 27/6}, there exists a n-vertex chordal graph G with chromatic
number x(G) = d such that the number of colors used by A is Q(e - d -logn).

The proof of Theorem 15 is presented in the full version of the paper. Given Theorem 15, we
derive analogous results for the other graph classes. Corollary 16 shows a result for trees.
Identical statements hold for planar and bipartite graphs. Again, for brevity, we omit the
corresponding corollaries.

» Corollary 16. Let ¢ € R with 0 < ¢ < 1 be arbitrary. For every deterministic online
algorithm A having a buffer of size b and every n € N with b < n'~¢ and n > 27/¢, there
exists a n-vertex tree G such that the number of colors used by A is Q(e - logn).

For d-inductive graphs, graphs of treewidth d and strongly chordal graphs with chromatic
number d, the statement of Theorem 15 directly carries over. In this case it holds for any
d > 1. The corollaries are omitted here. Finally, we give a result for disk graphs.

S. Albers and S. Schraink

» Corollary 17. Let A be an arbitrary deterministic online algorithm having a buffer of size
b and let ¢ € R be an arbitrary real number with 0 < ¢ < 1. For everyn € N and p € R
with b < min{n'=¢, p'=¢} and min{n, p} > 27/¢, there exists a n-vertex disk graph G with
chromatic number x(G) = 2, in which the ratio of the largest to smallest disk radius is p,
such that the number of colors used by A is (e - min{logn,log p}).

Acknowledgments. We thank anonymous referees for their valuable comments.

—— References

1

10

11

12

13

14

15

16
17

18

19

N. Avigdor-Elgrabli and Y. Rabani. An optimal randomized online algorithm for reordering
buffer management. In Proc. 54th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 1-10, 2013.

A. Bar-Noy, P. Cheilaris, S. Olonetsky, and S. Smorodinsky. Online conflict-free colouring
for hypergraphs. Combinatorics, Probability & Computing, 19(4):493-516, 2010.

A. Bar-Noy, P. Cheilaris, and S. Smorodinsky. Deterministic conflict-free coloring for inter-
vals: From offline to online. ACM Trans. Algorithms, 4(4):44:1-44:18, 2008.

D. Bean. Effective coloration. J. Symbolic Logic, 41(2):469-480, 1976.

S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson. On the power of
randomization in on-line algorithms. Algorithmica, 11(1):2-14, 1994.

M. P. Bianchi, H.-J. Béckenhauer, J. Hromkovic, and L. Keller. Online coloring of bipartite
graphs with and without advice. Algorithmica, 70(1):92-111, 2014.

H.L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11(1-2):1-21, 1993.
E. Burjons, J. Hromkovic, X. Mufioz, and W. Unger. Online graph coloring with advice
and randomized adversary. In Proc. 42nd International Conference on Current Trends in
Theory and Practice of Computer Science (SOFSEM’16), pages 229-240. Springer LNCS
9587, 2016.

I. Caragiannis, A.V. Fishkin, C. Kaklamanis, and E. Papaioannou. A tight bound for
online colouring of disk graphs. Theoretical Computer Science, 384(2):152-160, 2007.
R.G. Downey and C. McCartin. Online promise problems with online width metrics.
Journal of Computer and System Sciences, 73(1):57-72, 2007.

M. Englert, D. Ozmen, and M. Westermann. The power of reordering for online minimum
makespan scheduling. STAM J. Comput., 43(3):1220-1237, 2014.

T. Erlebach and J. Fiala. On-line coloring of geometric intersection graphs. Computational
Geometry, 23(2):243-255, 2002.

T. Erlebach and J. Fiala. Independence and coloring problems on intersection graphs
of disks. In E. Bampis, K. Jansen, and C. Kenyon, editors, Efficient Approzimation and
Online Algorithms: Recent Progress on Classical Combinatorial Optimization Problems and
New Applications, pages 135-155. Springer LNCS 3484, 2006.

Martin Farber. Characterizations of strongly chordal graphs. Discrete Mathematics, 43(2-
3):173-189, 1983.

A. Gyarfas and J. Lehel. On-line and first fit colorings of graphs. Journal of Graph Theory,
12(2):217-227, 1988.

M. M. Halldérsson. Parallel and on-line graph coloring. J. Algorithms, 23(2):265-280, 1997.
M. M. Halldérsson and M. Szegedy. Lower bounds for on-line graph coloring. Theoretical
Computer Science, 130(1):163-174, 1994.

S. Irani. Coloring inductive graphs on-line. Algorithmica, 11(1):53-72, 1994. Preliminary
version in FOCS’90.

H. A. Kierstead. Coloring graphs on-line. In A. Fiat and G.J. Woeginger, editors, Online
Algorithms, pages 281-305. Springer LNCS 1442, 1998.

7:13

ESA 2017

7:14

Tight Bounds for Online Coloring of Basic Graph Classes

20

21

22

23

24

25

26

27
28

H. A. Kierstead and W. A. Trotter. An extremal problem in recursive combinatorics. Con-
gressus Numerantium, 33:143-153, 1981.

S. Leonardi and A. Vitaletti. Randomized lower bounds for online path coloring. In Proc.
2nd International Workshop on Randomization and Approxzimation Techniques in Computer
Science (RANDOM’98), pages 232-247. Springer LNCS 1518, 1998.

L. Lovéasz, M. Saks, and W.T. Trotter. An on-line graph coloring algorithm with sublinear
performance ratio. Annals of Discrete Mathematics, 43:319-325, 19809.

D. Marx. Graph colouring problems and their applications in scheduling. Periodica Poly-
technica, Electrical Engineering, 48(1-2):11-16, 2004.

L. Narayanan. Channel assignment and graph multicoloring. Handbook of Wireless Net-
works and Mobile Computing, pages 71-94, 2004.

D.D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Com-
mun. ACM, 28(2):202-208, 1985.

S. Vishwanathan. Randomized online graph coloring. J. Algorithms, 13(4):657-669, 1992.
Preliminary version in FOCS’90.

D.B. West. Introduction to Graph Theory, 2nd Edition. Pearson, 2001.

A. C.C. Yao. Probabilistic computations: Toward a unified measure of complexity. In Proc.
18th Annual Symposium on Foundations of Computer Science, pages 222-227, 1977.

Combinatorics of Local Search: An Optimal
4-Local Hall’'s Theorem for Planar Graphs*

aniel Antunes”, Claire Mathieu®, an abi . Mustafa
Daniel A 1, Claire Mathieu? d Nabil H. M fa3

1 Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge,
Equipe A3SI, ESIEE, Paris, France
daniel.antunes@esiee.fr
2 Department of Computer Science, CNRS, Ecole Normale Supérieure and PSL
Research University, Paris, France
Claire.Mathieu@ens.fr
3 Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge,
Equipe A3SI, ESIEE, Paris, France
mustafan@esiee.fr

—— Abstract

Local search for combinatorial optimization problems is becoming a dominant algorithmic paradigm,
with several papers using it to resolve long-standing open problems. In this paper, we prove the
following ‘4-local’ version of Hall’s theorem for planar graphs: given a bipartite planar graph
G = (B,R,E) such that [N(B’)] > |B’| for all |B’| < 4, there exists a matching of size at
least % in G; furthermore this bound is tight. Besides immediately implying improved bounds

for several problems studied in previous papers, we find this variant of Hall’s theorem to be of
independent interest in graph theory.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Combinatorial Optimization, Planar Graphs, Local Search, Hall’s The-
orem, Expansion

Digital Object ldentifier 10.4230/LIPIcs.ESA.2017.8

1 Introduction

One of the exciting developments in the field of geometric algorithms in recent years has
been the use of local search techniques to resolve several open problems in combinatorial
optimization. Remarkably, all these following NP-hard problems are approximately solved
by the same meta-algorithm:

1. Minimum hitting set problem for pseudo-disks' [16]. Given a set X of points and a
set D of pseudo-disks in the plane, compute a minimum size subset of X that hits all
pseudo-disks in D.

2. Mazimum independent set in the intersection graph of pseudo-disks [1, 8. Given a set D
of pseudo-disks in the plane, compute a maximum size pairwise disjoint subset of D.

3. Terrain guarding problem [10]. Given a 1.5D terrain? T' and two subsets X,G C T,
compute a minimum size subset of G such that every point of X is visible from some
point of G.

* This work was supported by the grant ANR SAGA (JCJC-14-CE25-0016-01).

LA set of geometric objects in the plane are called pseudo-disks if the boundary of every pair of objects
intersect at most twice.

2 A 1.5D terrain T is an z-monotone chain of line segments in RZ.

© Daniel Antunes, Claire Mathieu, and Nabil H. Mustafa;

licensed under Creative Commons License CC-BY
25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 8; pp. 8:1-8:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2

Combinatorics of Local Search: An Optimal 4-Local Hall’s Thm. for Planar Graphs

4. Minimum dominating set in disk intersection graphs [11]. Given a set D of disks in the
plane, compute a minimum size subset D’ C D such that each D € D is either in D’ or
intersects some disk in D’.

5. Minimum dominating set in pseudo-disk intersection graphs [12]. Given a set D of
pseudo-disks in the plane, compute a minimum size subset D’ of D such that each D € D
is either in D’ or intersects some pseudo-disk in D’.

6. Minimum set-cover problem for disks in the plane [7, 15]. Given a set of points X and a
set of disks D in the plane, compute the minimum sized subset of D that covers all the
points of X. This problem can be reduced to the minimum hitting set problem for disks.

The Meta-Algorithm: Local Search

The meta-algorithm can be parameterized by an integer k representing the search radius.
Abstractly, let X be a set of given base elements, and II : 2%X — {0, 1} be a function that
assigns feasibility to each subset of X with respect to the specific problem. Then the goal is
to find a minimum/maximum sized subset of X for which II(-) is feasible. The local-search
algorithm proceeds as follows: start with any feasible solution & C X, and iteratively improve
S by changing® subsets of S of size at most k, as long as the new solution is also feasible.
We restrict the discussion below to instances of minimization problems; the maximization
case is similar.

Local-Search Method With Search Radius k (minimization instance).

Let S C X be any feasible solution.
while there exists S’ with w(S’) feasible and where |S"\ S| < |S\ S| <k do
L setS=8".
return §

The analysis of the approximation factor of a local search algorithm, assuming the problem
has some planar features, usually proceeds as follows.

Recall that for a graph G = (V, E) and a subset V' of V, Ng(V') = {v € V : Ju €
V', {u,v} € E} denotes the set of neighbors of V' in G.

» Definition 1. Let & > 1 be given. A bipartite graph G = (B, R, F) satisfies a local expansion
property if, for every subset B’ of B of cardinality at most k, we have |[Ng(B’)| > |B’|. Then
G is called a k-expanding graph. If k£ = |B| then G is called an expanding graph.

» Lemma 2 ([8, 16]). There is an absolute constant cy such that any planar bipartite
k-expanding graph G = (B, R, E) satisfies |R| > (1 — %)|B\

The analysis of local-search algorithm with search radius k& proceeds by first constructing
a certain bipartite planar graph G = (§,0, E) on § and O, where S is the local-search
solution with radius k& and O is an (unknown) optimal solution, such that G is k-expanding.

Now setting k = @(E%) and applying Lemma 2 to G implies that the local optimum S
has size (1 + O(e)) times the optimal size |O|, hence near-optimality. A straightforward
implementation of the local-search algorithm gives a running time of no(e%), so this is a PTAS
(polynomial-time approximation scheme). Note that as most of the problems listed earlier
are W[1]-hard [13, 14], it is unlikely that algorithms exist that do not have a dependency on
1/e in the exponent of n.

3 In case of a minimization problem, replace some k elements of S with some k — 1 elements of X; for a
maximization problem replace some k elements of S with some k + 1 elements of X.

D. Antunes, C. Mathieu, and N. H. Mustafa

Combinatorics of Local Search: Hall’'s Theorem for Planar Graphs

The reader will notice the resemblance between the Local Expansion Property and pre-
conditions of Hall’s theorem — Local Expansion Property is simply the pre-condition of Hall’s
theorem restricted to subsets of size at most k. And indeed, the statement of Lemma 2 can
be re-cast as a ‘local’ version of Hall’s theorem for planar graphs, as follows. One of the
cornerstones of graph theory, Hall’s theorem, can be rephrased as:

» Theorem 3 (Hall's Theorem). Let G = (B, R, E) be a | B|-expanding bipartite graph. Then
there exists a matching in G of size |B.

Note that if we restrict the expanding subsets to be of size at most k for some integer k,
then the theorem fails, as one cannot guarantee a matching of size more than k — e.g., take
G to be the complete bipartite graph K)p| . Interestingly, Lemma 2 implies that unlike the
general graph case, a ‘local’ version of Hall’s theorem is indeed true for planar graphs. We
first observe that Lemma 2 can be used to get a local variant of Hall’s theorem for planar
graphs:

» Theorem 4 (k-local Hall's Theorem for Planar Graphs). Let G = (B, R, E) be a k-expanding
bipartite planar graph. Then there exists a matching in G of size at least (— %)|B|

Proof. Let B’ C B for any subset of B. Observing that the subgraph of G induced by

B’ U Ng(B') is planar, bipartite and k-expanding, we have |[Ng(B')| > (1 — %)|B’| by

Lemma 2. Let S be a new set of ﬁfl dummy vertices. Construct a bipartite graph

G' = (B,RUS,EUE’), where E’ is the set of all |B|-|S| edges between B and S. Then G’
satisfies the conditions of Hall’s theorem, as for any B’ C B, we have

INo:(B)] = INa(B)| + 181> (1~) 3] + U2

- Vi Vi

Thus there is a matching of size |B| in G’ by Hall’s theorem. Removing the vertices of S

from this matching still leaves a matching of size at least (1 — %) |B|. <

> |B|.

Note that Theorem 4 is more general than Lemma 2, so it can be interpreted as a
strengthening of Lemma 2. Summarizing this discussion, the above local version of Hall’s
theorem for planar graphs is the key combinatorial reason why local-search works for a wide
variety of geometric optimization problems. The proof of Lemma 2 relies on separators in
planar graphs, and there has been work in generalizing these ideas to classes of non-planar
graphs which still have small separators (see [6, 2, 5]).

Our Results

While local-search with search radius k = @(}2) theoretically gives the best possible result

in terms of approximation factors, these problems are far from being solved satisfactorily:
As stated earlier, most of these problems are Wl]-hard [13, 14]: therefore unless W([1] =
FTP, there is no efficient polynomial-time approximation scheme for most of the listed
problems; i.e., algorithms with running time O(n¢), where ¢ is a constant independent of
%. This effectively restricts local search to small constant values of k.
Furthermore, local-search is often the only approach known for these problems that yields
good approximations. For example, the best approximation ratio for the hitting set
problem for disks without using local-search is 13.4 [4] via the theory of e-nets (see the
chapter [17] for details); or O(log n)-approximation for dominating sets in disk intersection

8:3

ESA 2017

8:4 Combinatorics of Local Search: An Optimal 4-Local Hall’s Thm. for Planar Graphs

graphs [11]. Any effective solution to these problems entails examining closely the limits
of efficiency and quality of local search for small values of k.

While the construction of the graph is specific to the problem at hand, all these algorithms
rely on the same Local Expansion Property of planar graphs, and thus the quantitative
approximation bounds are the same across all the problems. The constants involved in
Theorem 4 unfortunately make this result inefficient even for small values of k; e.g., the
current best work shows that setting k£ to get a 3-approximation implies a running time
of Q(n%9) for the hitting set problem for disks [9].

Thus the natural way forward is to explore the limits of local search for small values
of k. In this paper, we will consider the combinatorial aspect, and evaluate the quality of
local-search — alternatively, the precise statement of local Hall’s theorem for planar graphs:

k =1,2. The local Hall’s theorem fails (and so does local search) for the same reason as

for general graphs — K| 2 is a 2-expanding planar graph, but with a matching of size

only 2.

k = 3. An optimal local Hall’s theorem was shown in [3] by a short argument: any planar

bipartite 3-expanding graph has a matching of size % and this is tight.

The next fundamental case of local search that is open is for k = 4; the previous-best

bound was % and the resolution of the optimal bound was the main problem left open in [3].
In this paper we settle this question by presenting an optimal bound for local Hall’s theorem

for 4-expanding planar graphs.

» Theorem 5 (Main Theorem). Let G = (B, R, E) be a bipartite planar graph on vertex sets
R and B, such that G is 4-expanding; i.e., for all B' C B with |B’| < 4, |[Ng(B")| > |B’|.
Then there ezists a matching in G of size at least %. Furthermore, this bound is tight up to

lower-order terms.

» Corollary 6. The local search algorithm with parameter k = 4 gives a 4-approximation to
these problems in geometric combinatorial optimization:

1. Minimum hitting set problem for pseudo-disks in the plane.

Mazimum independent set problem in the intersection graph of pseudo-disks.

Terrain guarding problem.

Minimum dominating set in the pseudo-disk intersection graphs.

G wn

Minimum set-cover problem for disks in the plane.

Tightness

The optimality of the bound follows from the example shown in Figure 1, where R consists
of n vertices of a /n x v/n grid, and each ‘grid cell’ contains 4 vertices of B connected to the
four red vertices of that cell. It is easy to verify that there is no matching of size greater than
% + O(+/|B]) (this is trivial, as |B| = 4n — O(y/n)), and the graph is planar and bipartite.

Finally, the fact that it is 4-expanding follows from the observation that, except at the
grid boundary, any set of two vertices of B of degree 3 or any set of three vertices of B of
degree 2 has at least 4 neighbors in R.

The proof of the upper-bound relies on the following key lemma, presented in Section 2:

» Lemma 7. Let G = (B, R, E) be a bipartite planar graph on vertex sets R and B, such
that G is 4-expanding. Then |R| > %.

Lemma 7 can be seen as a version of Lemma 2 for k =4 and ¢y = %, leading to the Main
Theorem via an argument identical to the proof of Theorem 4.

D. Antunes, C. Mathieu, and N. H. Mustafa

Figure 1 A lower-bound construction for 4-expanding bipartite planar graphs.

G H
r by N
by b3
T2 bybs "3

Figure 2 A bipartite planar graph G(B, R, E') and its corresponding graph H(R, E).

2 Proof of Lemma 7

The proof, at its core, uses the discharging method [18] of combinatorial geometry. Henceforth,
a graph satisfying 4-expanding property is said to satisfy 4L.

First note that no vertex in B can have degree zero, as otherwise the neighborhood of
such a vertex would violate 4L.. Moreover, it can be assumed that every vertex in B has
degree at least two, since it is always possible to add edges to all vertices of B which have
degree one in G while maintaining the planarity and bipartiteness of the graph (as any such
vertex v must lie in a face which has at least two vertices of R, at least one of which is not
adjacent to v).

Let B—; C B be the subset of vertices of B of degree exactly i, and B>; C B the set of
vertices of degree at least 1.

For the remainder of the proof, we fix a planar embedding of G.

Let H(R, E) be a planar graph on R constructed from G as follows: two vertices r; € R
and 7o € R are adjacent in H iff there is at least one vertex b € B_y which is adjacent to
both 71 and r3 in G. Note that H is planar since G is planar, and the edges between r; and
r9 can be routed via one such vertex b. Note also that vertices in B_3 lie in the interior of
faces of H. Vertices of R will be called the red vertices, and vertices of B the blue vertices.

Note that for a fixed pair {r1,r2} C R, there cannot be three distinct vertices by, ba,
bs € B_s adjacent to both r1 and ro, since in this case the neighborhood of set {by, ba, b3} is
of size two and the graph G would violate 4L. Therefore, each edge of H corresponds to one
or two vertices in B_y. Edges corresponding to a single vertex in B_o are called single edges
and the set of all such edges is denoted by FE7, while edges mapped to two vertices in B_q
are called double edges and its set is denoted by Fs. In Figure 2, {r1,r2} is a single edge
and {rq,rs} is a double edge. In later figures, the numbers 1 and 2 will be used to indicate
whether an edge is single or double. When referring to a particular face f, df will denote its

set of edges while E{ and E{ will denote the set of single and double edges of f, respectively.

8:5

ESA 2017

8:6

Combinatorics of Local Search: An Optimal 4-Local Hall’s Thm. for Planar Graphs

For the rest of the proof, fix an embedding of H as well as the counter-clockwise ordering
on Oy f for each f € F, where dy f denotes the vertices of f. Let F; be the set of faces of H
with exactly i edges on its boundary, and let F' be the set of all faces of H. A face in Fj3
will be called a triangular face and a face in Fy a rectangular face. If 9f is a cycle then f is
called a face cycle. An edge e on the boundary of two different faces is called a boundary
edge; it is called a cut edge otherwise.

In proceeding with the proof, we now encounter a technical difficulty: H need not be
2-connected, and so the structure of the faces can be arbitrarily complex. We first prove, in
the next subsection, Lemma, 7 for the case when H is 2-connected. Then we show how to
handle the general case by reducing it to the 2-connected case.

2.1 Case: H(R, E) is 2-connected

If H is 2-connected then all its faces are face cycles; in particular, each edge of H is a
boundary edge, and there are no cut edges.

2.1.1 Structural properties of H

» Claim 8. Fori>4, let f € F;. Then |E}| < L%J A triangular face has no double edges.

Proof. Let f be a triangular face with vertices {ri,r2,r3}, and with, say, {ri,r2} € Eg
Recall that edges of H are associated with vertices of B_s. Thus the two single edges and
one double edge of f correspond to a set B’ C B of four vertices, with N(B') = {r1,ra,rs},

violating 4L. For i > 4, if a face f € F; has |EJ| > L%J, then there must exist two double

edges incident to the same vertex of f and 4L is again violated. |

For a face f € F;, f is called a full face if |Eg| = L%J Let BiS denote the set of B_3

vertices lying in the interior of f. Note that due to planarity, for a fixed face f in the
embedding of H, each vertex v € Bi3 can be written uniquely (up to rotation) as an ordered
triple v = (11, r2,73), where r1,7r2,73 € R are vertices of f in counter-clockwise order with
{v,r;} € E(G) for i =1,2,3.

» Claim 9. Fori >4, let f € F;. Then |BLy| < (i —2).

Proof. Note that we can assume that |Eg | =0, as a double edge can only make it harder to
pack’ more vertices of B_3 into f. Define a chain 7 of f to be a consecutive set of vertices
of dv f. The size |7| of a chain is equal to its number of vertices, and define BZ, in the
natural way, as the set of vertices of Big with edges only to vertices of 7. We show that for a
chain 7 of size n, |BZ| < n — 2. The proof will be by induction on the size of 7. For || = 2,
|BZ4| = 0, trivially. For |7| = j, any fixed v € BL; divides 7 into three distinct sub-chains,
T1, T2, T3, With |71| 4 |72| 4+ |73] = 7 + 3. Applying the induction hypothesis on each sub-chain,

¢

1BZs| < (I =2) + (Im2| =2) + (I73| =2) +1=j+3-6+1=j—2. <
For the next steps, we will need the list of ‘forbidden’ substructures in graphs satisfying 4L.
» Claim 10. H satisfies 4L if and only if it does not contain the structures shown in Figure 3.

For the next claim, we will need the following independent property for planar graphs.

D. Antunes, C. Mathieu, and N. H. Mustafa

AALSS

T3 T2
Ty I's

Figure 3 Forbidden structures for a graph H satisfying 4L.

Figure 4 The vertex vg divides the graph in Figure 5 An odd full face. There exist two
two regions. consecutive single edges.

» Claim 11. Let G be a planar graph consisting of one (external) cycle C = (ry,...,7;)
of i vertices and a set V of internal vertices, such that each vertex of V has exactly three

neighbors, all in C, with these three neighbors not being consecutive vertices of C'. Then
V| <i—4

Proof. The proof is inductive. For i = 4, we have |V| = 0 = ¢ — 4, as there cannot exist

a vertex not adjacent to three consecutive vertices of C'. Consider the case where ¢ > 5.

By an extremal argument, there must exist a vertex vy € V, say connected to {r;,,7:,, 7, }
where we can assume without loss of generality that 1 = i; < i3 < i3, such that the two
regions — one with boundary vertices (vg,7;,, 73, +1,---,7i,) and the other with boundary
vertices (Vo,Tiy, Tig+1,-- -5 Tiz) — are both empty of vertices of V' (see Figure 4). Furthermore,
by the assumption that v does not have edges to three consecutive vertices of C, we have
(i3 — 1) > 3. If there exists a vertex, other than v, in V' with edges to both r;, and r;,, call
it v1 (note that due to planarity, there can exist only one such vertex). Consider a new cycle
C' = (r1,Tig, Tig41,---,7i) Of size i — (i3 — 1) + 1 < (i — 2), and set V' =V \ {vg,v1} to be
a subset of vertices lying inside C’. It is easy to see that no vertex of V'’ can have edges to
three consecutive vertices of C’, and thus by induction, we have |V'| < |C'| —4 < (i —2) — 4,
and thus |[V| < |[V/|+2 < (i —4). <

» Claim 12. Fori > 4, let f € F; be a full face. If i is even then |Bi3\ < (i—4). Ifiis
odd then |BL 3] < (i —3).

8:7

ESA 2017

8:8

Combinatorics of Local Search: An Optimal 4-Local Hall’s Thm. for Planar Graphs

Proof. Let f € F; and |EL,| = L%J Label the vertices of Oy f as (r1,...,7;) in the assumed

counter-clockwise ordering.

i is even: Note that as f is full, the edges around f alternate between single and double
edges. Therefore 4L implies that there does not exist a v € Bi3 with edges to three
consecutive vertices of 9y f. Claim 11 applied to f shows that \BiS\ <i-—4.

©is odd: For ¢ > 5, as f is a full face, the edges around f alternate between single and
double edges — with one exception where two adjacent edges are both single. Say these
adjacent single edges are {ry, 2} and {rq,r3} (see Figure 5). 4L implies that there does not
exist a v € Bi3 with edges to three consecutive vertices of Oy f, except possibly there could
exist a single vertex vio3 € Bi?, with edges to {rq,r2,73}. Claim 11 applied to f shows that
|BL,\ {v123}] < i —4, and thus |BL,| <i—3. <

2.1.2 Bounding |B|

We first observe that to bound the size of B, it suffices to bound the number of vertices of
degree 2 and 3 in B. We will need the following fact on planar graphs.

» Fact 13. Let G = (V, E) be a simple, connected, planar bipartite graph. Then |E| < 2|V|—4.
| B=s|
2

» Claim 14. |B| < |B_s| + + |R|.

Proof. We count the number of edges in G in two ways — first by summing up the degrees of
the vertices in B (recall that G is a bipartite graph), and secondly by using the upper-bound
on the number of edges of planar bipartite graphs from Fact 13:

2. |Boo| +3-[Bs|+ Y i-|B=il= |B(G)| <2(|R|+|B|) -4
=4
Simplifying,
2-|B_g| +3-|Bs|+ Y i |Bo| <2 (|R| + |B_a| + [Bos| + Y Bl)
=4 =4
Re-arranging the terms,
D (i=2)-|B=| <2|R| - |B=s| =2 |B=i| <2|R| — |B=s|
=4 i=4

| B3|

B>4| < |R| —
|B2a| < |R| = —5
Now one can get an upper-bound on |B| from inequality (1):

| B=s|
2

| B=s|
2

|B| = |B=2| + |B=3| 4+ |B>4| < |B=2| + |B=3| + |R| — = |B=a| + +I|R|. <«

Thus it remains to bound |B_z| + @. Towards this, a charging intuition leads one to

s
classify the contribution of a face f € F as 2- \Eg | + |E1f |+ %. It turns out that the right
discharging function is slightly different; define the weight of a face f € F to be

|EB{| |BLy|

w(f) = Bf |+ == + =52,

D. Antunes, C. Mathieu, and N. H. Mustafa

and the weight of the graph H to be

| B=s|

w(H) = |B| + =5

Note that as each edge is part of the boundary of precisely two faces and each vertex of B_3

lies in precisely one face, we have

Ef| |BL B B
S () = 3 (1B B) g B2l g Bl g,
feF feF

. 1 , 1 1 1
» Claim 15. w(H) < ZZ (5i — 6)|Fi| — i > IR - 51 Fal = 51 F3.

>3 i is odd

(2)

Proof. Let I; € {0,1} be an indicator variable such that Iy = 1 if and only if f is a full face.
For f € F; and 7 an even number, by applying the upper bounds in Claims 8, 9 and 12,

Bl B j i_(i_1+1f) | —2) — 21
| E] | |—3|_(3—1+If)+ 2 L =2 =2l
2 2 2 2 2
5 —6—2I; _5i—6
< .
4 !

w(f) = |Bj|+=E

A

For i = 4, a better bound is possible. For a face f € Fy, let af = |EJ|. Then

4—af (4-2-af 44-4 5.4-6 1 _ 5i—6 1
< f = = - < = a
wif)sal 45—+ 1 1 27 4 2

For i an odd number,

w(f)g(i211+[f)+i(i_212l+jf) +(i*22)*1f:5i477.

(3)

(4)

For i = 3, note that for a face f € Fj, \Eg\ =0, |E{| = 3 and \B£3| = 0, since f
cannot have neither a B_3 vertex in its interior nor a double edge, as otherwise the forbidden

structures I's or I'y would be present. Then,

By 3 5i-7 1

2 27 4 2

1
w(f) = [B]| + 5| B | +

By Equations (2)—(5),

wH) =Y w(f)=> wH)+ > wHh+ Y Y whH+ Y Y wf)

feF fEF3 fEFy i>5 feF; i>6 feF;
i is odd i is even
5-3—-7 1 5-4—-6 1 51 — 51 — 6
< — —)| F: — — || F. F;
—(4 2>|3|+(4 2>|4|+Z()' I+ 2 (4
i>5 i>6
i is odd i is even
1 . 1 . 1 1
=1 > (si-7)IRl+ g Y (5i-6)IRI- IRl - 1R
i>3 i>4
i is odd i is even
= (5i — IFl—* > IR - |F4—*|F3\
>3 i is odd

Finally we can bound the number of vertices of B of degree 2 and 3.

()

)I7

8:9

ESA 2017

8:10

Combinatorics of Local Search: An Optimal 4-Local Hall’s Thm. for Planar Graphs

| B=s]
2

» Lemma 16. w(H) = |B=3| + <3|R).

Proof. Let F°dd be the set of faces of H with an odd number of edges. By Claim 15,

1 1
w(H)S*Z (51 — 6)|Fy| — yi Z B3| = 5 Faf = 5| E5
i>3 4 is odd
5 . 3 1 1 1
:ZZZ|Fi|_§Z|Fi|_Z > \Fi\—§\F4|—§|F3|
>3 >3 i is odd
_ 5 3 1 odd 1 1 .

Now note that the last quantity — w(H) as defined in Equation (6) — is maximized when H
is a triangulation. To see this, consider an index 7 and a face f € F; of H. Then decompose
f into a face f’ € F;_; and a triangular face, resulting in a graph H’. Then comparing the
bounds of Equation (6) for H and H":
Casei=4: W(H') > w(H)+1-2
Case i > 5 and ¢ is odd: w(H') > w(H) + .
Case i > 6 and i is even: W(H') > w(H)+1— 2 — 1 = w(H).

|
N
I

3 1 1 5 9
7E/77F/77F/77F,:7E/77F,
o(H') = |H| Fw| = 31 Fw] = 51Fu| = 5Bl — 5 |Fa]
9 2 3
——|Eyg/| = =|Eyg/|— =|Eg|=|Egy|.
1 31Eml= |H| 5| Enr| = Bl
By using Euler’s formula for planar graphs,

2 1

Therefore,

w(H) _ |Ew|
— 1 pa—)
B~ 2+ LB

implying that w(H) < 3|R| and we’re done. <

Now, Claim 14 and Lemma 16 imply the proof of the required Lemma 7.

2.2 Case: H(R, E) is not 2-connected

Now we deal with the case when H is not 2-connected. The general idea will be to transform
each such planar graph H to a 2-connected planar graph H’ while respecting the 4L property
as well as planarity. Consider a straight-line embedding of H in the plane. If H is not
2-connected, there exists a cut edge e, say e = {r;,,r}. Let I = {r; ,7i,,...} be the vertices
in the connected component of r;, once e is removed. These vertices are called the inner
vertices. Let O = {r,74,,70y,.-.,70,, } be the vertices in the connected component of r.
These vertices are called the outer vertices. Further assume that r,, € O is the first vertex
after r;,, in the clockwise order, that is adjacent to r (see Figure 6).

Our goal is to connect an inner vertex in I to an outer vertex in O iteratively until H
becomes 2-connected. In order to achieve that, we will apply the following transformation:

D. Antunes, C. Mathieu, and N. H. Mustafa

P2
P1

Figure 6 Inner vertices component and outer Figure 7 Gadget used for the clustering op-
vertices component connected by cut edge e. eration.

Clustering operation on {pi1, p2}, where p; is an inner vertex and p is an outer vertex:
Add a set @ of two new red vertices to H. Furthermore, add sets BY of 5 new degree-2 and
BY of 2 new degree-3 blue vertices. Connect these vertices as shown in Figure 7. Note that
p1 and po are not adjacent in H.

We are going to argue that it is always possible to execute this while respecting planarity
and 4L.

First we show that upper-bounding w(-) after a clustering operation gives an upper-bound
for the original problem.

» Claim 17. Let H'(B’, R', E’) be the graph resulting from an application of the clustering
operation on a graph H(B, R, E). If w(H') < 3|R’| then w(H) < 3|R].

Proof. More generally, assume we add by new degree-two vertices to H’, by degree-three
vertices and 7 red vertices. Then from assumption, we have
|B=s| , bs

3 <
5 + > < 3(|R| +),

w(H') = |B=a| + by +

which implies that

B b
w(H) =Bl + B2 < 3R 30—y - 2 <31

assuming 3r < by + %3. This condition is satisfied for the clustering operation, where r = 2,
b2:5andb3:2. <

Next we show that a clustering operation does not violate the 4L condition.

» Claim 18. The clustering operation preserves the 4L property.

Proof. Let p; be any inner and po be any outer vertex. Then add a set Q of two red vertices,

a set BY of 5 blue degree-2 vertices and a set Bj of 2 blue degree-3 vertices (see Figure 8).

Let B’ U B” be any subset of size at most 4, where B’ C B and B” C BY U BY. We need to

show that then |N(B’UB")| > |B’U B"|.

1. |B"| =0. Then |N(B'UB")| = |N(B’)| > |B’|, as H satisfies 4L.

2. |B”| = 1. As any vertex of B” has at least one neighbor in @), we have |N(B" U B")| >
IN(B)|+1>|B'|+1=|B"UB"|.

3. |B"”] =2,3. As any two vertices of B” have at least three neighbors in Q U {p1,p2}, and
any vertex of B’ must have at least one neighbor not in @ U {p1, p2} (recall that p; and
pe are not adjacent in H!), we get that |[N(B'U B")| > |[N(B")|+ 1 > 4.

4. |B”| = 4. It can be verified that any set of 4 vertices of B” have the set Q U {p1,pa} of
size 4 as its neighbor. <

8:11

ESA 2017

8:12

Combinatorics of Local Search: An Optimal 4-Local Hall’s Thm. for Planar Graphs

Figure 8 Clustering operation on p; and pa. Figure 9 A planar path between r;* to 7ox.

Finally, we show that there exists an inner and an outer vertex which can be connected
via a clustering operation while maintaining planarity.

» Claim 19. [t is always possible to find an inner vertex ri= and an outer vertex ro~ such
that there exists a path that connects them without violating planarity.

Proof. Denote by BL; the set of degree-3 vertices adjacent to vertex r. If BL; is empty,
then clearly there exists a path from the inner vertex r;, to the outer vertex r,,. Similarly, if
there exists a vertex w € BL; with one edge to an inner vertex and one to an outer vertex
(other than the edge to r), then there exists a planar path between these inner and outer
vertices by following the path along the edges of w.

Otherwise, sort the vertices in B4 clockwise by the order of their edges around r, say
labeled wq, ..., ws. If wy has both edges (other than to r) to outer vertices, then clearly
there is a planar path from r;, to one of these outer vertices (see Figure 9). Similarly, if w;
has both edges (other than to r) to inner vertices, then there is a planar path from r,, to
one of these inner vertices. Now by a parity argument, there must exist two vertices, say wy
and w41, such that wy has both neighbors to inner vertices, and wg1 has both neighbors
to outer vertices. Then there exists a path from one of inner vertices adjacent to wy to one
of the outer vertices adjacent to wi41. <

» Lemma 20. Let H be a 1-connected planar graph. Then w(H) < 3|R).

Proof. Claim 19 implies that — as long as the current graph H is not 2-connected — it is
always possible to do a clustering operation between an inner vertex and an outer vertex
while maintaining planarity. By Claim 18, the resulting graph H'’ still satisfies the condition
4L. Crucially, note that each new edge introduced by the clustering operation is not a cut
edge in the derived graph H’, and further, the edge e which was a cut edge in H is no longer
a cut edge in H’. Thus the clustering operation reduces the total number of cut edges, and
so the process terminates after a finite number of steps. Apply this iteratively to get a
2-connected graph H', which, by Lemma 16, satisfies w(H') < 3|R/|. Then w(H) < 3|R|
follows by Claim 17. |

—— References

1 Pankaj K. Agarwal and Nabil H. Mustafa. Independent set of intersection graphs of convex
objects in 2D. Comput. Geom., 34(2):83-95, 2006.

2 Rom Aschner, Matthew J. Katz, Gila Morgenstern, and Yelena Yuditsky. Approximation
schemes for covering and packing. In Proceedings of the 7th International Workshop on
Algorithms and Computation (WALCOM), pages 89-100, 2013.

D. Antunes, C. Mathieu, and N. H. Mustafa

10

11

12

13

14

15

16

17

18

Norbert Bus, Shashwat Garg, Nabil H. Mustafa, and Saurabh Ray. Limits of local search:
Quality and efficiency. Discrete & Computational Geometry, 57(3):607-624, 2017.
Norbert Bus, Nabil H. Mustafa, and Saurabh Ray. Geometric hitting sets for disks: Theory
and practice. In Proceedings of the 23rd Annual European Symposium on Algorithms (ESA),
pages 903-914, 2015.

Sergio Cabello and David Gajser. Simple PTAS’s for families of graphs excluding a minor.
Discrete Applied Mathematics, 189:41-48, 2015.

Timothy M. Chan. Polynomial-time approximation schemes for packing and piercing fat
objects. J. Algorithms, 46(2):178-189, 2003.

Timothy M. Chan and Elyot Grant. Exact algorithms and APX-hardness results for geo-
metric packing and covering problems. Comput. Geom., 47(2):112-124, 2014.

Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum inde-
pendent set of pseudo-disks. Discrete & Computational Geometry, 48(2):373-392, 2012.
Robert Fraser. Algorithms for Geometric Covering and Piercing Problems. PhD thesis,
University of Waterloo, 2012.

Matt Gibson, Gaurav Kanade, Erik Krohn, and Kasturi R. Varadarajan. Guarding terrains
via local search. JoCG, 5(1):168-178, 2014.

Matt Gibson and Imran A. Pirwani. Algorithms for dominating set in disk graphs: Breaking
the logn barrier. In Proceedings of the 18th Annual Furopean Symposium on Algorithms
(ESA), pages 243-254, 2010.

Sathish Govindarajan, Rajiv Raman, Saurabh Ray, and Aniket Basu Roy. Packing and
covering with non-piercing regions. In Proceedings of the 22nd Annual European Symposium
on Algorithms (ESA), pages 47:1-47:17, 2016.

Déniel Marx. Efficient approximation schemes for geometric problems? In Proceedings of
the 13th Annual European Symposium on Algorithms (ESA), pages 448-459, 2005.

Déniel Marx. Parameterized complexity of independence and domination on geometric
graphs. In Proceedings of the 2nd International Workshop on Parameterized and Exact
Computation (IWPEC), pages 154-165, 2006.

Nabil H. Mustafa, Rajiv Raman, and Saurabh Ray. Quasi-polynomial time approximation
scheme for weighted geometric set cover on pseudodisks and halfspaces. STAM J. Comput.,
44(6):1650-1669, 2015.

Nabil H. Mustafa and Saurabh Ray. Improved results on geometric hitting set problems.
Discrete & Computational Geometry, 44(4):883-895, 2010.

Nabil H. Mustafa and K. Varadarajan. Epsilon-approximations and Epsilon-nets. In J. E.
Goodman, J. O’'Rourke, and C. D. Téth, editors, Handbook of Discrete and Computational
Geometry. CRC Press LLC, 2017.

Rados Radoici¢ and Géza Toth. The discharging method in combinatorial geometry and
the Pach-Sharir conjecture. In Contemporary Mathematics: Surveys on Discrete and Com-
putational Geometry, pages 319-342. American Mathematical Society, 2008.

8:13

ESA 2017

In-Place Parallel Super Scalar Samplesort (IPS*0)*

Michael Axtmann!, Sascha Witt?, Daniel Ferizovic®, and
Peter Sanders?

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
michael.axtmann@kit.edu

2 Karlsruhe Institute of Technology, Karlsruhe, Germany
sascha.witt@kit.edu

w

Karlsruhe Institute of Technology, Karlsruhe, Germany
4 Karlsruhe Institute of Technology, Karlsruhe, Germany
sanders@kit.edu

—— Abstract

We present a sorting algorithm that works in-place, executes in parallel, is cache-efficient, avoids
branch-mispredictions, and performs work O(nlogn) for arbitrary inputs with high probabil-
ity. The main algorithmic contributions are new ways to make distribution-based algorithms
in-place: On the practical side, by using coarse-grained block-based permutations, and on the
theoretical side, we show how to eliminate the recursion stack. Extensive experiments show that
our algorithm IPS%o scales well on a variety of multi-core machines. We outperform our closest
in-place competitor by a factor of up to 3. Even as a sequential algorithm, we are up to 1.5 times
faster than the closest sequential competitor, BlockQuicksort.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases shared memory, parallel sorting, in-place algorithm, comparison-based
sorting, branch prediction

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.9

1 Introduction

Sorting an array A[l..n] of n elements according to a total ordering of their keys is a
fundamental subroutine used in many applications. Sorting is used for index construction,
for bringing similar elements together, or for processing data in a “clever” order. Indeed,
often sorting is the most expensive part of a program. Consequently, a huge amount
of research on sorting has been done. In particular, algorithm engineering has studied
how to make sorting practically fast in presence of complex features of modern hardware
like multi-core (e.g., [30, 29, 5, 28]), instruction parallelism (e.g., [27]), branch prediction
(e.g., [27, 19, 18, 10]), caches (e.g., [27, 7, 11, 5]), or virtual memory (e.g., [24, 17]). In
contrast, the sorting algorithms used in the standard libraries of programming languages like
Java or C++ still use variants of quicksort — an algorithm that is more than 50 years old. A
reason seems to be that you have to outperform quicksort in every respect in order to replace
it. This is less easy than it sounds since quicksort is a pretty good algorithm — it needs
O(nlogn) expected work, it can be parallelized [30, 29], it can be implemented to avoid
branch mispredictions [10], and it is reasonably cache-efficient. Perhaps most importantly,

* A full version of the paper is available at https://arxiv.org/abs/1705.02257.

© Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders;
37 licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).

Editors: Kirk Pruhs and Christian Sohler; Article No.9; pp.9:1-9:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.9
https://arxiv.org/abs/1705.02257
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2

In-Place Parallel Super Scalar Samplesort (IPS%o)

quicksort works (almost) in-place! which is of crucial importance for very large inputs. This
feature rules out many contenders. Further algorithms are eliminated by the requirement to
work for arbitrary data types and input distributions. This makes integer sorting algorithms
like radix sort (e.g., [21]) or using specialized hardware (e.g., GPUs or SIMD instructions)
less attractive, since these algorithms cannot be used in a reusable library where they have to
work for arbitrary data types. Another portability issue is that the algorithm should use no
code specific to the processor architecture or the operating system like non-temporal writes
or overallocation of virtual memory (e.g. [26]). One aspect of making an algorithm in-place
is that such “tricks” are not needed. Hence, this paper focuses on portable comparison-based
algorithms and also considers how the algorithms can be made robust for arbitrary inputs,
e.g., with a large number of repeated keys.

The main contribution of this paper is to propose a new algorithm — In-place Parallel
Super Scalar Samplesort (IPS*0)? — that combines enough advantages to become an attractive
replacement of quicksort. Our starting point is super scalar samplesort (s3-sort) [27] which
already provides a very good sequential non-in-place algorithm that is cache-efficient, allows
considerable instruction parallelism, and avoids branch mispredictions. s3-sort is a variant
of samplesort, which in turn is a generalization of quicksort to multiple pivots. The main
operation is distributing elements of an input sequence to k output buckets of about equal
size. We parallelize this algorithm using ¢ threads and make it more robust by taking
advantage of inputs with many identical keys. Our main innovation is to make the algorithm
in-place. The first phase of IPS%o distributes the elements to k buffer blocks. When a
buffer becomes full, it is emptied into a block of the input array that has already been
distributed. Subsequently, the memory blocks are permuted into the globally correct order.
A cleanup step handles empty blocks and half-filled buffer blocks. The distribution phase is
parallelized by assigning disjoint pieces of the input array to different threads. The block
permutation phase is parallelized using atomic fetch-and-add operations for each block move.
Once subproblems are small enough, they can be solved independently in parallel.

After discussing related work in Section 2 and introducing basic tools in Section 3, we
describe our new algorithm IPS%o in Section 4. Section 5 makes an experimental evaluation.
An overall discussion and possible future work is given in Section 6. The full paper [3] gives
further experimental data and proofs.

2 Related Work

Variants of Hoare’s quicksort [15, 23] are generally considered some of the most efficient
general purpose sorting algorithms. Quicksort works by selecting a pivot element and
partitioning the array such that all elements smaller than the pivot are in the left part and all
elements larger than the pivot are in the right part. The subproblems are solved recursively.
A variant of quicksort (with a fallback to heapsort to avoid worst case scenarios) is currently
used in the C++ standard library of GCC [23]. Some variants of quicksort use two or three
pivots [31, 22] and achieve improvements of around 20% in running time over the single-pivot
case. Dual-pivot quicksort [31] is the default sorting routine in Oracle Java 7 and 8. The basic
principle of quicksort remains, but elements are partitioned into three or four subproblems

! In algorithm theory, an algorithm works in-place if it uses only constant space in addition to its input.
We use the term strictly in-place for this case. In algorithm engineering, one is sometimes satisfied if
the additional space is sublinear in the input size. We adopt this convention but use the term almost
in-place when we want to make clear what we mean. Quicksort needs logarithmic additional space.

2 The Latin word “ipso” means “by itself”, referring to the in-place feature of IPS%o.

M. Axtmann, S. Witt, D. Ferizovic, and P. Sanders

instead of two. Increasing the number of subproblems (from now on called buckets) even
further leads to samplesort [6, 5]. Unlike single- and dual-pivot quicksort, samplesort is
usually not in-place, but it is well-suited for parallelization and more cache-efficient.

Super scalar samplesort [27] (s®-sort) improves on samplesort by avoiding inherently hard-
to-predict conditional branches linked to element comparisons. Branch mispredictions are very
expensive because they disrupt the pipelined and instruction-parallel operation of modern
processors. Traditional quicksort variants suffer massively from branch mispredictions [19].
By replacing conditional branches with conditionally executed machine instructions, branch
mispredictions can be largely avoided. This is done automatically by modern compilers if only
a few instructions depend on a condition. As a result, s3-sort is up to two times faster than
quicksort (std::sort), at the cost of O(n) additional space. BlockQuicksort [10] applies
similar ideas to single-pivot quicksort, resulting in a very fast in-place sorting algorithm.

Super scalar samplesort has also been adapted for efficient parallel string sorting [4]. Our
implementation is influenced by that work with respect to parallelization and handling equal
keys. Moreover, we were also influenced by an implementation of s3-sort written by Lorenz
Hiibschle-Schneider. A prototypical implementation of sequential non-blocked in-place s3-sort
in a student project by our student Florian Weber motivated us to develop IPS%o.

The best practical comparison-based multi-core sorting algorithms we have found are
based on multi-way mergesort [29] and samplesort [28], respectively. The former algorithm is
used in the parallel mode of the C++ standard library of GCC. Parallel in-place algorithms
are based on quicksort so far. Intel’s Thread Building Blocks library [25] contains a variant
that uses only sequential partitioning. The MCSTL library [29] contains two implementations
of the more scalable parallel quicksort by Tsigas and Zhang [30].

There is a considerable amount of work by the theory community on (strictly) in-place
sorting (e.g., [11, 12]). However, there are few — mostly negative — results on transferring
these results into practice. Katajainen and Teuhola [20] report that in-place mergesort is
slower than heapsort, which is quite slow for big inputs due to its cache-inefficiency. Chen [8]
reports that in-place merging takes about six times longer than non-in-place merging. There
is previous work on (almost) in-place multi-way merging or data distribution. However, few
of these papers seem to address parallelism. There are also other problems. For example, the
multi-way merger in [14] needs to allocate very large blocks to become efficient. In contrast,
the block size of IPS*0 does not depend on the input size. In-place data distribution, e.g.,
for radix sort [9], is often done element by element. Using this for samplesort would require
doing the expensive element classification twice and would also make parallelization difficult.

3 Preliminaries

(Super Scalar) Samplesort. Samplesort [13] can be viewed as a generalization of quicksort
which uses multiple pivots to split the input into k buckets of about equal size. A robust
way for determining the pivots is to sort ak — 1 randomly sampled input elements. The
pivots s1,...Sk—1 are then picked equidistantly from the sorted sample. Element e goes to
bucket b; if s;_1 < e < s; (with sg = —o0 and s; = 00). The main contribution of s*-sort [27]
is to eliminate branch mispredictions for element classification. Assuming k is a power of two,
the pivots are stored in an array a representing a complete binary search tree: a; = sy /2,
a2 = Sk/4, A3 = S3/4, - - - More generally, the left successor of a; is ag; and its right successor
is ag;4+1. Thus, navigating this tree is possible by performing a conditional instruction for
incrementing an array index. We adopt (and refine) this approach to element classification
but change the organization of buckets in order to make the algorithm in-place.

9:3

ESA 2017

9:4

In-Place Parallel Super Scalar Samplesort (IPS%o)

1)
bD D -1
1

Figure 1 Local classification. Blue elements have already been classified, with different shades
indicating different buckets. Unprocessed elements are green. Here, the next element (in dark green)
has been determined to belong to bucket bs. As that buffer block is already full, we first write it
into the array A, then write the new element into the now empty buffer.

Thread ¢t — 1 Thread ¢
- Buffers I:II:I.:I | || |I |I |
bl b2 b3 b1 b2 b3 b4

Figure 2 Input array and block buffers of the last two threads after local classification.

4 In-Place Parallel Super Scalar Samplesort (IPS*0)

IPS*0 is based on the ideas of s3-sort. It is a recursive algorithm, where each step divides the
input into k buckets, such that each element of bucket b; is smaller than all elements of b; 1.
As long as problems with at least 3% elements exist, we partition those problems one after
another with ¢ threads in parallel. Here, 3 is a tuning parameter. Then we assign remaining
problems in a balanced way to threads, which sort them sequentially.

The partitioning consists of four phases. Sampling determines the bucket boundaries.
Local classification groups the input into blocks such that all elements in each block belong
to the same bucket. Block permutation brings the blocks into the globally correct order.
Finally, we perform some cleanup around the bucket boundaries. The following sections
will explain each of these phases in more detail.

Sampling. The sampling phase is similar to the sampling in s3-sort. The main difference is
that we swap the sample to the front of the input array to keep the in-place property even if
the oversampling factor o depends on n.

4.1 Local Classification

The input array A is viewed as an array of blocks each containing b elements (except possibly
for the last one). For parallel processing, we divide the blocks of A into ¢ stripes of equal
size — one for each thread. Each thread works with a local array of k buffer blocks — one for
each bucket. A thread then scans its stripe. Using the search tree created in the previous
phase, each element in the stripe is classified into one of the k buckets, then moved into the
corresponding local buffer block. If this buffer is already full, it is first written back into the
local stripe, starting at the front. It is clear that there is enough space to write b elements
into the local stripe, since at least b more elements have been scanned from the stripe than
have been written back — otherwise no full buffer could exist.

In this way, each thread creates blocks of b elements belonging to the same bucket.
Figure 1 shows a typical situation during this phase. To achieve the in-place property, we

M. Axtmann, S. Witt, D. Ferizovic, and P. Sanders

WML T b O T

A A
y~~~7i*1 di di+1

Figure 3 Invariant during block permutation. In each bucket b;, blocks in [d;, w;) are already
correct (blue), blocks in [w;, 7] are unprocessed (green), and blocks in [max(w;, r; + 1), dit1) are
empty (white).

do not track which bucket each block belongs to. However, we do keep count of how many
elements are classified into each bucket, since we need this information in the following
phases. This information can be obtained almost for free as a side effect of maintaining the
buffer blocks. Figure 2 depicts the input array after local classification. Each stripe contains
a number of full blocks, followed by a number of empty blocks. The remaining elements are
still contained in the buffer blocks.

4.2 Block Permutation

In this phase, the blocks in the input array will be rearranged such that they appear in the
correct order. From the previous phase we know, for each stripe, how many elements belong
to each bucket. We perform a prefix sum operation to compute the exact boundaries of the
buckets in the input array. In general, these will not coincide with the block boundaries. For
the purposes of this phase, we will ignore this: We mark the beginning of each bucket b;
with a delimiter pointer d;, rounded up to the next block. We similarly mark the end of the
last bucket b, with a delimiter pointer d41. Adjusting the boundaries may cause a bucket
to “lose” up to b — 1 elements; this doesn’t affect us, since this phase only deals with full
blocks, and any elements not constituting a full block remain in the buffers. Additionally, if
the input size is not a multiple of b, some of the d;s may end up outside the bounds of A.
To avoid overflows, we allocate a single empty overflow block which the algorithm will use
instead of writing to the final (partial) block.

For each b;, a write pointer w; and a read pointer r; is introduced; these will be set such
that all unprocessed blocks, i.e., blocks that still need to be moved into the correct bucket,
are found between w; and r;. During the block permutation, we maintain the following
invariant for each bucket b;, visualized in Figure 3:

Blocks to the left of w; (exclusive) are correctly placed, i.e., contain only elements

belonging to b;.

Blocks between w; and r; (inclusive) are unprocessed, i.e., may need to be moved.

Blocks to the right of max(w;,r; + 1) (inclusive) are empty.

In other words, each bucket follows the pattern of correct blocks followed by unprocessed
blocks followed by empty blocks, with w; and r; determining the boundaries. In the parallel
case, we may need to establish this invariant by moving some empty blocks to the end of
a bucket (see the full paper [3] for details); in the sequential algorithm, the result of the
classification phase already has this pattern. The read pointers r; are then set to the first
non-empty block in each bucket, or d; — 1 if there are none.

We are now ready to start the block permutation. Fach thread maintains two local swap
buffers. We define a primary bucket b, for each thread; whenever both its buffers are empty,
a thread tries to read an unprocessed block from its primary bucket. To do so, it decrements
the read pointer r,, (atomically) and reads the block it pointed to into one of its swap buffers.

9:5

ESA 2017

9:6

In-Place Parallel Super Scalar Samplesort (IPS%o)

T3 ry wp 1) 3) 7o ws
v v v > < |

Al 1 [

Uisi)
) 3) 2) 4)
Swap buffers

(a) Swapping a block into its correct position. (b) Moving a block into an empty position, fol-
lowed by refilling the swap buffer.

N

Figure 4 Block permutation examples.

If b, contains no more unprocessed blocks (i.e., r, < wy), it switches its primary bucket
to the next bucket (cyclically). If it completes a whole cycle and arrives back at its initial
primary bucket, there are no more unprocessed blocks and this phase ends. The starting
points for the threads are distributed across that cycle to reduce contention.
Once it has a block, each thread classifies the first element of that block to find its
destination bucket bgest. There are now two possible cases, visualized in Figure 4:
As long as Wyest < T'dest, Write pointer wyegy still points to an unprocessed block in bucket
baest- In this case, the thread increases wgqest, reads the unprocessed block into its empty
swap buffer, and writes the other one into its place.
If Waest > Tdest, NO unprocessed block remains in bucket bges; but wqesy NOW points to an
empty block. In this case, the thread increases wqest, writes its swap buffer to the empty
block and then reads a new unprocessed block from its primary bucket.

We repeat these steps until all blocks are processed. We can skip unprocessed blocks
which are already correctly placed: We simply classify blocks before reading them into a
swap buffer, and skip as needed. We omitted this from the above description for the sake of
clarity. In some cases, this reduces the number of block moves significantly.

It is possible that one thread wants to write to a block that another thread is currently
reading from (when the reading thread has just decremented the read pointer, but has not
yet finished reading the block into its swap buffer). To avoid data races, we keep track of
how many threads are reading from each bucket. Threads are only allowed to write to empty
blocks if no other threads are currently reading from the bucket in question, otherwise they
wait. Note that this situation occurs at most once for each bucket, namely when wgqesy and
Tdest Cross each other. In addition, we store each w; and r; in a single 128-bit word which we
read and modify atomically. This ensures a consistent view of both pointers for all threads.

4.3 Cleanup

After the block permutation, some elements may still be in incorrect positions. This is due to
the fact that we only moved blocks, which may span bucket boundaries. We call the partial
block at the beginning of a bucket its head and the partial block at its end its tail.

We assign consecutive buckets evenly to threads; if t > k, some threads will not receive
any buckets, but those that do only need to process a single bucket each. Each thread reads
the head of the first bucket of the next thread into one of its swap buffers. Then, each
thread processes its buckets from left to right, moving incorrectly placed elements into empty
array entries. The incorrectly placed elements of bucket b; consist of the elements in the
head of b;y1 (or the swap buffer, for the last bucket), the partially filled buffers from the
local classification phase (of all threads), and, for the corresponding bucket, the overflow

M. Axtmann, S. Witt, D. Ferizovic, and P. Sanders

bi—1 b; bit1 bit2
head tail
- == ~ ¥ pa—
A [T] ﬁ
Buffer blocks of b; bit1 |:|

Thread 1 Thread 2 Thread 1 Thread 2

Figure 5 An example of the steps performed during cleanup.

buffer. Empty array entries consist of the head of b; and any (empty) blocks to the right
of w; (inclusive). Although the concept is relatively straightforward, the implementation is
somewhat involved, due to the many parts that have to be brought together. Figure 5 shows
an example of the steps performed during this phase. Afterwards, all elements are back in
the input array and correctly partitioned, ready for recursion.

4.4 The Case of Many ldentical Keys

Having inputs with many identical keys can be a problem for samplesort, since this might
move large fractions of the keys through many levels of recursion. We turn such inputs into
easy instances by introducing separate buckets for elements identical to pivots (keys occurring
more then 7 times are likely to become pivots). Finding out whether an element has to
go into an equality bucket (and which one) can be implemented using a single additional
comparison [4] and, once more, without a conditional branch. Equality buckets can be
skipped during recursion and thus are not a load balancing problem.

4.5 Analysis

Algorithm IPS*0 inherits from s3-sort that it has virtually no branch mispredictions (this

includes the comparisons for placing elements into equality buckets discussed in subsection 4.4).

More interesting is the parallel complexity. Here, the main issue is the number of accesses to
main memory. We analyze this aspect in the parallel external memory (PEM) model [1],
where each of the t threads has a private cache of size M and access to main memory happens
in blocks of size B. In the full paper [3], we prove:

» Theorem 1. Assuming b = O(tB) (buffer block size), M = Q(ktB), ng = O(M) (base
case size), a € Qlogt) N O(t) (oversampling factor), and n = Q(max(k,t)t*B), IPS*o has
an I/O-complezity of (9(% log,, nio) block transfers with high probability.

Basically, Theorem 1 tells us that IPS%o is asymptotically I/O efficient if certain rather steep
assumptions on cache size and input size hold. In particular, the blocks need to have size
b = O(¢tB) in order to amortize contention on shared block pointers. Lifting those could
be an interesting theoretical question and we would have to see how absence of branch

mispredictions and the in-place property can be combined with previous techniques [1, 5].

However, it is likely that the constant factors involved are much larger than for our simple
implementation. Thus, the constant factors will be the main issue in bringing theory and
practice further together. To throw some light on this aspect, let us compare the constant
factors in I/O-volume (i.e., data flow between cache and main memory) for the sequential
algorithms IS*o (IPS*o with ¢ = 1) and s*-sort. To simplify the discussion, we assume a single

9:7

ESA 2017

9:8

In-Place Parallel Super Scalar Samplesort (IPS%o)

level of recursion, k = 256 and 8-byte elements. In the full paper [3], we show that 1S*o needs
about 48n bytes of 1/O volume, whereas s3-sort needs (more than) 86n — almost twice that
of 1S*0. This is surprising since on first glance, the partitioning algorithm of 1S*o writes the
data twice, whereas s3-sort does this only once. However, this is more than offset by “hidden”
overheads of s3-sort like memory management, allocation misses, and associativity misses.
Finally, we consider the memory overhead of IPS*o. In the full paper [3], we show:

» Theorem 2. IPS*0 requires additional space O(kbt + log;, %)

In practice, the term O(kbt) (mostly for the distribution buffers) will dominate. However,
for a strictly in-place algorithm in the sense of algorithm theory, we need to get rid of the
O(logn) term which depends on the input size. We discuss this separately in subsection 4.6.

4.6 From Almost In-Place to Strictly In-Place

We now explain how the space consumption of IPS%o can be made independent of n in a
rather simple way. We can restrict ourselves to the sequential case, since only O(log t) levels
of parallel recursion are needed to arrive at subproblems that are solved sequentially. We
require the partitioning operation to mark the beginning of each bucket by storing the largest
element of a bucket in its first entry. By searching the next larger element, we can then find
the end of the bucket. Note that this is possible in time logarithmic in the bucket size using
exponential /binary search. We assume that the corresponding function searchNextLargest
returns n 4 1 if no larger elements exists — this happens for the last bucket. The following
pseudocode uses this approach to emulate recursion in constant space for sequential 1S%o.

i:=1 —— first element of current bucket
ji=n+1 —— first element of next bucket
while i < n do
if j —i < ng then smallSort(a,i,j —1); i:=j —— base case
else partition(a,i,j — 1) —— partition first unsorted bucket
j = searchNextLargest(A[i], A,i + 1,n) —— find beginning of next bucket

4.7 Implementation Details

The strategy for handling identical keys described in subsection 4.4 is enabled conditionally:
After the splitters have been selected from the initial sample, we check for and remove
duplicates. Equality buckets are only used if there were duplicate splitters.

For buckets under a certain base case size ng, we stop the recursion and fall back on
insertion sort. Additionally, we use an adaptive number of buckets on the last two levels
of the recursion, such that the expected size of the final buckets remains reasonable. For
example, instead of performing two 256-way partitioning steps to get 2'6 buckets of 2 elements,
we might perform two 64-way partitioning steps to get 2'2 buckets of about 32 elements.
Furthermore, on the last level, we perform the base case sorting immediately after the bucket
has been completely filled in the cleanup phase, before processing the other buckets. This is
more cache-friendly, as it eliminates the need for another pass over the data.

IPS%0 has several parameters that can be used for tuning and adaptation. We performed
our experiments using (up to) k = 256 buckets, an oversampling factor of a = 0.2logn, an
overpartitioning factor of 3 = 1, a base case size of ng = 16 elements, and a block size of
about 2 KiB, or b = max (1,2111719825)) elements, where s is the size of an element in bytes.
In the sequential case, we avoid the use of atomic operations on pointers. All algorithms
are written in C4++ and compiled with version 6.2.0 of the GNU compiler collection, using

M. Axtmann, S. Witt, D. Ferizovic, and P. Sanders

the optimization flags “~march=native -03”. For parallelization, we employ OpenMP. Our
implementation can be found at https://github.com/SaschaWitt/ips4do.

5 Experimental Results

We present the results of our in-place parallel sorting algorithm IPS%*0. We compare
the results of IPS%*o with its in-place competitors, parallel sort from the Intel® TBB lib-
rary [25] (TBB), parallel unbalanced quicksort from the GCC STL library (MCSTLubq),
and parallel balanced quicksort from the GCC STL library (MCSTLbq). We also give
results on the parallel non-in-place sorting algorithms, parallel samplesort from the prob-
lem based benchmark suite [28] (PBBS) and parallel multiway mergesort from the GCC
STL library [29] (MCSTLmwm). We also ran sequential experiments and present the results
of 1S%0, the sequential implementation of IPS*o. We compare the results of 1S%*o with its
sequential competitors, a recent implementation [16] of non-in-place Super Scalar Sample-
sort [27] (s3-sort) optimized for modern hardware, BlockQuicksort [10] (BlockQ), Dual-Pivot
Quicksort [31] (DualPivot), and introsort from the GCC STL library (std-sort).

We ran benchmarks with nine input distributions: Uniformly distributed (Uniform),
exponentially distributed (Ezponential), and almost sorted (AlmostSorted), proposed by
Shun et. al. [28]; RootDup, TwoDup, and EightDup from Edelkamp et. al. [10]; and Sorted
(sorted Uniform input), ReverseSorted, and Ones (just ones). The input distribution RootDup
sets A[i] =i mod |/n], TwoDup sets Ali] = i*+% mod n, and EightDup sets A[i] = i®+ %
mod n. We ran benchmarks with 64-bit floating point elements and Pair, Quartet, and
100Bytes data types. Pair (Quartet) consists of one (three) 64-bit floating point elements as
key and one 64-bit floating point element of associated information. 100Bytes consists of
10 bytes as key and 90 bytes of associated information. Quartet and 100Bytes are compared
lexicographically. For n < 239, we perform each measurement 15 times and for n > 230, we
perform each measurement twice. Unless stated otherwise, we report the average over all
runs and use 64-bit floating point elements.

We ran our experiments on machines with one AMD Ryzen +1800 8-core processor
(AMD15S), two Intel Xeon E5-2683 v4 16-core processors (Intel2S), and four Intel Xeon
E5-4640 8-core processors (Intel4S). Intel2S and InteldS are equipped with 512 GiB of
memory, AMDIS is equipped with 32 GiB of memory. We use the taskset tool to set the
CPU affinity for speedup benchmarks. We tested all parallel algorithms on Uniform input
with and without hyper-threading. Hyper-threading did not slow down any algorithm. Thus,
we give results of all algorithms with hyper-threading. Overall, we executed more than 12 000
combinations of different algorithms, input distributions and sizes, data types and machines.
We now present a selection of our measurements and discuss our results. For the remaining
(detailed) running time and hardware counter measurements, we refer to the full paper [3].

Sequential Algorithms. Figure 6 shows the running times of sequential algorithms on
Uniform input executed on machine Intel2S. We see that IS%o is faster than its closest
competitor, BlockQ, by a factor of 1.14 for n = 232, On machine Intel4dS (AMD1S), IS%o
outperforms BlockQ even by a factor of 1.22 (1.57). DualPivot and std-sort, which do not
avoid branch mispredictions, are at least a factor of 1.86 slower than IS%o for n = 232. The
number of branch mispredictions of these algorithms for this input size is about 10 times
larger than that of 1S%o. s3-sort is the slowest sequential sorting algorithm avoiding branch
mispredictions and has fluctuations in running time for varying input sizes. Due to the initial
overhead, 1S%o is slower than BlockQ for n < 2'°.

9:9

ESA 2017

https://github.com/SaschaWitt/ips4o

9:10

In-Place Parallel Super Scalar Samplesort (IPS%o)

_ Intel2S-Uniform Intel2S-Uniform
0w
% " IPS*o —= MCSTLmwm —= MCSTLubq
o 304
0 :1’ —— PBBS —+ MCSTLbq TBB
g , =
= & 20+
5]
e =
ey '-8 10 .
bgb IS0 —= BlockQ std-sort g
g n
g —— s3-sort —— DualPivot _
a1 0 T T T T T 0= T T T
910 915 920 925 930 10 20 30
Item count n Core count
Figure 6 Running times of sequential al- Figure 7 Speedup of parallel algorithms with
gorithms on input distribution Uniform executed different number of cores relative to our sequen-
on machine Intel2S. tial implementation 1S*o on Intel2S, sorting 23°

elements of input distribution Uniform.

As expected, the running times for inputs with a moderate number of different keys
(TwoDup) are similar to the running times for Uniform. When the number of different keys
decreases (Exponential, EightDup, and RootDup in decreasing order), IS*o becomes even
faster by a factor of up to two on all machines. The running times of the competitors also
decrease. However, only DualPivot on Intel2S with RootDup distributed input comes close
for n > 228, Only input Ones and (almost) sorted input are hard for 1S*o; for example,
DualPivot outperforms 1S*o on AlmostSorted input by a factor of 1.70 for n = 232 (Intel2S).

Parallel Algorithms. Figure 8 (a—c) presents experiments of parallel algorithms on different
machines for Uniform input. We see that IPS%o outperforms its closest competitors, e.g., for
n = 232 on Intel2S (AMDI1S) by a factor of 2.13 (1.75), and all but TBB and IPS%o fail to
sort this input size on AMD1S due to memory limitations. For n > 226, IPS%o outperforms
its closest non-in-place competitors on Intel2S (AMD1S) on average by a factor of 2.26 (1.69)
and its closest in-place competitors by a factor of 2.78 (1.98). For the same input sizes, IPS%o
outperforms its closest competitors on InteldS in average just by a factor of 1.41. We believe
that the small difference in running time between IPS*o and its competitors on Intel4S is
caused by two factors: The slower memory modules (DDR4 vs. DDR3), and the long load
delays due to a ring interconnect between four sockets.

In Figure 8 (d—e), we present running times of parallel algorithms on input distributions
with duplicates (TwoDup and RootDup) on machine Intel2S. For n > 226 and a moderate
number of different keys (TwoDup), IPS%o still outperforms its in-place competitors on average
by a factor of at least 2.88 and its non-in-place competitors on average by a factor of at least
1.91. Experiments have shown that the running times on EightDup and Exponential are
similar to the running times on TwoDup. We also see that the non-in-place algorithms become
almost as fast as IPS%0 if we sort inputs which contain few different keys (RootDup). However,
IPS*o still outperforms its in-place competitors by a factor of at least 3.43 on this input
for n > 229, Figure 8 (f) depicts the running times of parallel algorithms on AlmostSorted
distributions on Intel2S. On AlmostSorted and ReverseSorted, the fastest non-in-place
algorithm, PBBS, performs similarly to IPS*o for large input sizes. Only on Sorted and Ones,
IPS%0 is outperformed by TBB, an in-place competitor. This is because TBB detects these
pre-sorted input distributions and terminates immediately. Further benchmarks on machines

M. Axtmann, S. Witt, D. Ferizovic, and P. Sanders

Running time / nlog, n [ns]

(a) AMD1S-Uniform

(b) Intel4S-Uniform

0.0

2I16 2I18 2I20 2I22 2I24 2I26 2I28 2!}0 2!}2 234

0.0

J6 o o0 22 g0 o 2% oW g g

(c) Intel2S-Uniform

(d) Intel2S-AlmostSorted

0.6 1

0.4+

0.2+

A

0.0

2‘16 2‘18 2‘20 2‘22 2‘2-1 2‘2() 2‘28 2!§[] 2!52 234

0.0

2‘16 2‘18 2‘2[) 2‘22 2‘24 2‘2()‘ 2‘28 2;%0 2;‘}2 234

(e) Intel2S-TwoDup

(f) Intel2S-RootDup

040 T . T T |[T T i T ! ! ! 0.0 T i T T T T ! X ! ! !‘ !
216 218 220 222 224 226 228 230 232 25/1 216 218 220 222 22'1 226 228 25() 252 251
(g) Intel2S-Uniform-Pairs (h) Intel2S-Uniform-100Bytes
¢ F T T~ 3
0.6 1
2_
0.4+
0.2+ 1
0.0

T R S P PR

2I16 2I18 2!20 2!22 2I24 2I26 2I28 2!30 2!32 234

Item count n

— |PS%0 — PBBS —= MCSTLmwm —— MCSTLbq — MCSTLubq —+ TBB

Figure 8 Running times of parallel algorithms on different input distributions executed on
different machines.

9:11

ESA 2017

9:12

In-Place Parallel Super Scalar Samplesort (IPS%o)

Intel4S and AMDI1S show that IPS%o also outperforms its non-in-place competitors on any
machine and that IPS%o is much faster than its in-place competitors except in the case of
Sorted and Ones inputs.

In Figure 8 (g-h), we give running times of Pair and 100Bytes data types on machine
Intel2S with uniformly distributed keys. We see that IPS*o outperforms its competitors, e.g.,
by a factor of 1.33 (non-in-place competitor) and by a factor of 2.67 (its in-place competitor)
for 229 100Bytes elements. Further benchmarks on machines Intel4S and AMD1S show
similar running times.

Figure 7 depicts the speedup of parallel algorithms executed on different numbers of cores
relative to our sequential implementation 1S*o on Intel2S, sorting Uniform input (n = 23°0).
We see that IPS*o outperforms its competitors on any number of cores. IPS*o outperforms
IS*o on 32 cores by a factor of 28.71, whereas its fastest non-in-place competitor, PBBS,
outperforms 1S%o just by a factor of 14.54. The in-place algorithms, MCSTLubq and MCSTLbq,
scale similarly to PBBS up to 16 cores but begin lagging behind for larger numbers of cores.
Further measurements show that IPS%o scales similarly on AMD1S. On Intel4S, IPS%o scales
well on the first processor. However, as the input data is stored in the memory of the first
processor, adding the second, third and fourth processors speeds up IPS*o by an additional
factor of only 1.45; again caused by the slower memory modules (DDR4 vs. DDR3) and the
long load delays due to a ring interconnect between four sockets.

6 Conclusion and Future Work

In-place super scalar samplesort (IPS%0) is among the fastest comparison-based sorting
algorithms both sequentially and on multi-core machines. The algorithm can also be used
for data distribution and local sorting in distributed memory parallel algorithms (e.g., [2]).
Somewhat surprisingly, there is even an advantage over non-in-place algorithms because
IPS*0 saves on overhead for memory allocation, associativity misses and write allocate misses.
Compared to previous parallel in-place algorithms, improvements by more than a factor of
two are possible. The main case where IPS%0 is slower than the best competitors (s3-sort
and BlockQuicksort) is for sequentially sorting large objects (Quartet and 100Bytes, see the
full paper [3]) because IPS*o moves elements twice in one distribution step. In this case, the
overhead for the oracle information of s*-sort is small and we could try an almost-in-place
variant of s3-sort with element-wise in-place permutation.

Several improvements of IPS%o can be considered. Besides careful adaptation of parameters
like k, b, o, and the choice of base case algorithm, one would like to avoid contention on the
bucket pointers in the block permutation phase when t is large. Perhaps the most important
improvement would be to make IPS%o aware of non-uniform memory access costs (NUMA)
depending on the memory module holding a particular piece of data. This can be done by
preferably assigning pieces of the input array to “close-by” cores both for local classification
and when switching to sequential sorting. In situations with little NUMA effects, we could
ensure that our data blocks correspond to pages of the virtual memory. Then, one can replace
block permutation with relabelling the virtual memory addresses of the corresponding pages.

Coming back to the original motivation for an alternative to quicksort variants in standard
libraries, we see IPS*o as an interesting candidate. The main remaining issue is the code
complexity. When code size matters (e.g., as indicated by a compiler flag like -0s), quicksort
should still be used. Formal verification of the correctness of the implementation might help
to increase trust in the remaining cases.

M. Axtmann, S. Witt, D. Ferizovic, and P. Sanders

Acknowledgements. We would like to thank the authors of [28, 10] for sharing their code
for evaluation. Timo Bingmann and Lorenz Hiibschle-Schneider [16] kindly provided code
that was used as a starting point for our implementation.

—— References

1

10

11

12

13

14

15
16

17

Lars Arge, Michael T Goodrich, Michael Nelson, and Nodari Sitchinava. Fundamental par-
allel algorithms for private-cache chip multiprocessors. In 20th Symposium on Parallelism
in Algorithms and Architectures (SPAA), pages 197-206. ACM, 2008.

Michael Axtmann, Timo Bingmann, Peter Sanders, and Christian Schulz. Practical
massively parallel sorting. In 27th ACM Symposium on Parallelism in Algorithms and
Architectures, (SPAA), 2015. doi:10.1145/2755573.2755595.

Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders. In-place parallel
super scalar samplesort (IPSSSSo). arXiv preprint arXiv:1705.02257, 2017. URL: https:
//arxiv.org/abs/1705.02257.

Timo Bingmann and Peter Sanders. Parallel string sample sort. In Furopean Symposium
on Algorithms, pages 169-180. Springer, 2013.

Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan Simhadri. Low depth cache-
oblivious algorithms. In Proceedings of the twenty-second annual ACM symposium on
Parallelism in algorithms and architectures, pages 189-199. ACM, 2010.

Guy E. Blelloch, Charles E. Leiserson, Bruce M Maggs, C. Greg Plaxton, Stephen J. Smith,
and Marco Zagha. A comparison of sorting algorithms for the connection machine CM-2. In
Proceedings of the third annual ACM symposium on Parallel algorithms and architectures,
pages 3-16. ACM, 1991.

G. S. Brodal, R. Fagerberg, and K. Vinther. Engineering a cache-oblivious sorting algorithm.
In 6th Workshop on Algorithm Engineering and Experiments, 2004.

Jing-Chao Chen. A simple algorithm for in-place merging. Information Processing Letters,
98(1):34-40, 2006. doi:10.1016/j.ipl.2005.11.018.

Minsik Cho, Daniel Brand, Rajesh Bordawekar, Ulrich Finkler, Vincent Kulandaisamy, and
Ruchir Puri. PARADIS: an efficient parallel algorithm for in-place radix sort. Proceedings
of the VLDB Endowment, 8(12):1518-1529, 2015.

Stefan Edelkamp and Armin Weiss. BlockQuicksort: Avoiding branch mispredictions in
quicksort. In 24th Furopean Symposium on Algorithms (ESA), volume 57 of LIPIcs, 2016.
Gianni Franceschini. Proximity mergesort: Optimal in-place sorting in the cache-oblivious
model. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA’04, pages 291-299, Philadelphia, PA, USA, 2004. Society for Industrial
and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=982792.982833.
Gianni Franceschini and Viliam Geffert. An in-place sorting with O(N log N) comparisons
and O(N) moves. J. ACM, 52(4):515-537, July 2005. doi:10.1145/1082036.1082037.
W.D. Frazer and A.C. McKellar. Samplesort: A sampling approach to minimal storage
tree sorting. J. ACM, 17(3):496-507, July 1970. doi:10.1145/321592.321600.

Viliam Geffert and Jozef Gajdos. Multiway in-place merging. In Mirostaw Kutylowski,
Witold Charatonik, and Maciej Gebala, editors, 17th Symposium on Fundamentals of
Computation Theory (FCT), volume 5699 of LNCS, pages 133—144. Springer, 2009. doi:
10.1007/978-3-642-03409-1_13.

Charles A.R. Hoare. Quicksort. The Computer Journal, 5(1):10-16, 1962.

Lorenz Hiibschle-Schneider. Super scalar sample sort. https://github.com/lorenzhs/
ssssort, retrieved September 15, 2016.

Tomasz Jurkiewicz and Kurt Mehlhorn. On a model of virtual address translation. Journal
of Experimental Algorithmics (JEA), 19, 2015.

9:13

ESA 2017

http://dx.doi.org/10.1145/2755573.2755595
https://arxiv.org/abs/1705.02257
https://arxiv.org/abs/1705.02257
http://dx.doi.org/10.1016/j.ipl.2005.11.018
http://dl.acm.org/citation.cfm?id=982792.982833
http://dx.doi.org/10.1145/1082036.1082037
http://dx.doi.org/10.1145/321592.321600
http://dx.doi.org/10.1007/978-3-642-03409-1_13
http://dx.doi.org/10.1007/978-3-642-03409-1_13
https://github.com/lorenzhs/ssssort
https://github.com/lorenzhs/ssssort

9:14

In-Place Parallel Super Scalar Samplesort (IPS%o)

18

19

20

21

22

23

24

25

26

27

28

29

30

31

K. Kaligosi and P. Sanders. How branch mispredictions affect quicksort. In 14th Furopean
Symposium on Algorithms (ESA), volume 4168 of LNCS, pages 780-791, 2006.

Kanela Kaligosi and Peter Sanders. How branch mispredictions affect quicksort. In
European Symposium on Algorithms, pages 780-791. Springer, 2006.

Jyrki Katajainen, Tomi Pasanen, and Jukka Teuhola. Practical in-place mergesort. Nord.
J. Comput., 3(1):27-40, 1996.

Marek Kokot, Sebastian Deorowicz, and Maciej Dlugosz. Even faster sorting of (not only)
integers. arXiv preprint arXiv:1703.00687, 2017.

Shrinu Kushagra, Alejandro Lépez-Ortiz, J. Ian Munro, and Aurick Qiao. Multi-pivot
quicksort: Theory and experiments. In Meeting on Algorithm Engineering € Experiments
(ALENEX), pages 47-60, Philadelphia, PA, USA, 2014. AMS. URL: http://dl.acn.org/
citation.cfm?id=2790174.2790180.

David R. Musser. Introspective sorting and selection algorithms. Softw., Pract. Exper.,
27(8):983-993, 1997.

N. Rahman. Algorithms for Memory Hierarchies, volume 2625 of LNCS, chapter Algorithms
for Hardware Caches and TLB, pages 171-192. Springer, 2003.

James Reinders. Intel threading building blocks: outfitting C++ for multi-core processor
parallelism. O’Reilly Media, Inc., 2007.

Peter Sanders and Jan Wassenberg. Engineering a multi-core radix sort. In 17th Euro-Par
Conference, volume 6853 of LNCS, pages 160-169. Springer, 2011.

Peter Sanders and Sebastian Winkel. Super scalar sample sort. In 12th European Sym-
posium on Algorithms (ESA), volume 3221 of LNCS, pages 784-796. Springer, 2004.
Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Aapo Kyrola,
Harsha Vardhan Simhadri, and Kanat Tangwongsan. Brief announcement: the problem
based benchmark suite. In Proceedings of the twenty-fourth annual ACM symposium on
Parallelism in algorithms and architectures, pages 68-70. ACM, 2012.

J. Singler, P. Sanders, and F. Putze. MCSTL: The multi-core standard template library.
In 13th Euro-Par Conference, volume 4641 of LNCS, pages 682—-694. Springer, 2007. doi:
10.1007/978-3-540-74466-5_72.

P. Tsigas and Y. Zhang. A simple, fast parallel implementation of quicksort and its per-
formance evaluation on SUN Enterprise 10000. In PDP, pages 372-381. IEEE Computer
Society, 2003. doi:10.1109/EMPDP.2003.1183613.

Vladimir Yaroslavskiy. Dual-pivot quicksort. Research Disclosure, 2009.

http://dl.acm.org/citation.cfm?id=2790174.2790180
http://dl.acm.org/citation.cfm?id=2790174.2790180
http://dx.doi.org/10.1007/978-3-540-74466-5_72
http://dx.doi.org/10.1007/978-3-540-74466-5_72
http://dx.doi.org/10.1109/EMPDP.2003.1183613

Online Bin Packing with Cardinality Constraints
Resolved

Janos Balogh!, Jézsef Békési2, Gyorgy Doésa®, Leah Epstein?, and
Asaf Levin®

1 Department of Applied Informatics, Gyula Juhasz Faculty of Education,
University of Szeged, Hungary
balogh@jgypk.u-szeged.hu

2 Department of Applied Informatics, Gyula Juhasz Faculty of Education,
University of Szeged, Hungary
bekesi@jgypk.u-szeged.hu

3 Department of Mathematics, University of Pannonia, Veszprém, Hungary
dosagy@almos.vein.hu

4 Department of Mathematics, University of Haifa, Haifa, Israel
lea@math.haifa.ac.il

5 Faculty of Industrial Engineering and Management, The Technion, Haifa,
Israel
levinas@ie.technion.ac.il

—— Abstract

Cardinality constrained bin packing or bin packing with cardinality constraints is a basic bin

packing problem. In the online version with the parameter k£ > 2, items having sizes in (0, 1]
associated with them are presented one by one to be packed into unit capacity bins, such that the
capacities of bins are not exceeded, and no bin receives more than k items. We resolve the online
problem in the sense that we prove a lower bound of 2 on the overall asymptotic competitive
ratio. This closes the long standing open problem of finding the value of the best possible overall
asymptotic competitive ratio, since an algorithm of an absolute competitive ratio 2 for any fixed
value of k is known. Additionally, we significantly improve the known lower bounds on the
asymptotic competitive ratio for every specific value of k. The novelty of our constructions is
based on full adaptivity that creates large gaps between item sizes. Thus, our lower bound inputs
do not follow the common practice for online bin packing problems of having a known in advance
input consisting of batches for which the algorithm needs to be competitive on every prefix of the
input. Last, we show a lower bound strictly larger than 2 on the asymptotic competitive ratio
of the online 2-dimensional vector packing problem, and thus provide for the first time a lower
bound larger than 2 on the asymptotic competitive ratio for the vector packing problem in any
fixed dimension.

1998 ACM Subject Classification F.2.2 Sequencing and Scheduling, G.2.1 Combinatorial Algo-
rithms

Keywords and phrases Online algorithms, bin packing, cardinality constraints, lower bounds

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.10

1 Introduction

Bin packing with cardinality constraints (CCBP, also called cardinality constrained bin
packing) is a well-known variant of bin packing [18, 19, 17, 9, 10, 11, 15]. In this problem, a
parameter k is given. Items of indices 1,2, ...,n, where item ¢ has a size s; € (0, 1] are to be
© J4nos Balogh, Jézsef Békési, Gyérgy Désa, Leah Epstein, and Asaf Levin;

37 licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 10; pp. 10:1-10:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2

Online Bin Packing with Cardinality Constraints Resolved

split into subsets called bins, such that the total size of items packed into each bin is at most
1, and no bin has more than k items. In the standard bin packing problem, only the first
condition is required.

CCBP is a special case of vector packing (VP) [14]. In VP with dimension d > 2, a set of
items, where every item is a non-zero d-dimensional vector whose components are rational
numbers in [0, 1], are to be split into subsets (called bins in this case as well) such that the
vector sum of every subset does not exceed 1 in any component. Given an input for CCBP,
an input for VP is created as follows. For every item, let the first component be %, the
second component is s;, and the remaining components are equal to zero (or to %)

In this paper we study online algorithms, which receive input items one by one, and pack
each new item irrevocably before the next item is presented, into an empty (new) bin or
non-empty bin. Such algorithms receive an input as a sequence, while offline algorithms
receive an input as a set. By the definition of CCBP, an item 7 can be packed into a
non-empty bin B if the packing is feasible both with respect to the total size of items already
packed into that bin and with respect to the number of packed items (i.e., the bin contains
items of total size at most 1 — s; and it contains at most k — 1 items). An optimal offline
algorithm, which uses a minimum number of bins for packing the items, is denoted by OPT'.
For an input L and algorithm A, we let A(L) denote the number of bins that A uses to pack
L. We also use OPT(L) to denote the number of bins that OPT uses for a given input L.
The absolute competitive ratio of an algorithm A is the supremum ratio over all inputs L
between the number of its bins A(L) and the number of the bins of OPT, OPT(L). The
asymptotic approximation ratio is the limit of absolute approximation ratios Rgx when K
tends to infinity and Ry takes into account only inputs for which OPT uses at least K bins,
that is the asymptotic competitive ratio of A is

li s AL)
im up —_— .
K—o0 opr(ny>kx OPT(L)

The term competitive ratio is used for online algorithms instead of approximation ratio and
it is equivalent. In this paper we mostly deal with the asymptotic competitive ratio, and
also refer to it by the term competitive ratio. When we discuss the absolute competitive
ratio, we use this last term explicitly.

In this paper, we resolve the long standing open problem of online CCBP, in the sense
that we find the best overall asymptotic competitive ratio and the best overall absolute
competitive ratio. An algorithm with an asymptotic competitive ratios of 2 has been designed
by Babel et al. [4], and a similar algorithm was shown to have an absolute competitive ratio
of 2 [6] (earlier, it was known that the competitive ratio of a suitable variant of First Fit
is below 2.7 for any k [18]). However, prior to this work, all lower bounds were strictly
smaller than the best lower bounds for standard bin packing [23, 5]. With the exception of
the case k = 2 for which simple algorithms have competitive ratios of 1.5 [18, 10], and a
more sophisticated algorithm has a competitive ratio of at most 1.44721 [4], all lower bounds
on the competitive ratio were implied by partial inputs of ones used to prove lower bounds
for standard bin packing [24, 23, 5] (such lower bounds can be used for k > % when all
items have sizes no smaller than §, for a fixed value § > 0), and modifications of such inputs
[4, 12, 6]. That is, all lower bounds had the form where a number of lists may be presented,
each list has a large number of items of a certain size (the sequence of sizes of the different
lists is increasing, and the numbers of items in the lists are not necessarily equal). The
unknown factor is the number of presented lists, that is, the input can stop after any of the
lists. See Table 1 for values of previously known lower bounds (and note that for k = 3,4,5,6
algorithms with competitive ratios strictly below 2 are known [10]).

J. Balogh, J. Békési, Gy. Désa, L. Epstein, and A. Levin

Table 1 Bounds for 2 < k < 10. The middle column contains the previously best known
asymptotic lower bounds on the asymptotic competitive ratio for CCBP with parameter k. The
right column contains our improved lower bounds.

Value of k | previous lower bound ‘ new lower bound

2 1.42764 [12] 10 ~ 1.42857
3 3=15 [4] 1.55642
4 3=15 [12] 1.63330
5 3=15 6] 1.69776
6 3=15 [24] 1.74093
7 2T ~ 151748 [6] 1.77223
8 22 ~1.52381 [6] 1.79634
9 189 ~ 1.524194 [6] 1.81563
10 235 ~1.52597 [6] 1.83148
200000 1.54037 [5] 1.99999
k— oo 218 ~ 1.54037 [5] 2

In this work, we take a different approach for proving lower bounds, where many of the
item sizes are based on the complete and precise action of the algorithm up to the time it is
presented. While some ingredients of our approach were used for the very limited special
case of k = 2 in the past [7, 4, 12], it was unclear how and if it could be used for k£ > 2. In a
nutshell, in these lower bound sequences for & = 2, sub-inputs were constructed such that
items packed in certain ways (for example, as the second item of a bin) had much larger sizes
than items of the same sub-input packed in other ways. Here, we generalize the approach
for larger values of k by defining careful constructions where sufficiently large multiplicative

gaps are created. This requires much more delicate procedures where item sizes are defined.

Additionally, we improve the lower bounds for all values of k, and in particular, prove
lower bounds above the best known lower bound on the competitive ratio for standard online
bin packing, 1.54037 [5] for & > 3. Already for k = 3 our lower bound is above 1.55, and
already for k = 4, our lower bound is above the competitive ratio of many algorithms for
standard online bin packing (see for example [21, 22]).

Our result for CCBP provides, in particular, a lower bound of 2 for the asymptotic
competitive ratio of VP in two dimensions. The previously known lower bounds for VP are
as follows. The best results for constant dimensions are fairly low, and tending to 2 as the
dimension d grows to infinity [13, 8, 7], while a lower bound of Q(d*~¢) was given by Azar et
al. [2] for the case where both d and the optimal cost are functions of a common parameter
n that grow to infinity when n grows to infinity, and thus this result does not give any lower
bound on the competitive ratio for constant values of d (see also [1, 3] for results on vectors
with small components). In particular, the best lower bound for d = 2 prior to this work was
1.67117 [13, 8, 7]. An upper bound of d + 0.7 on the competitive ratio is known [14]. We
conclude this work by establishing a lower bound strictly larger than 2 on the competitive
ratio of 2-dimensional VP, and thus we show here for the first time that the 2-dimensional
VP is provably harder for online algorithms than its special case of CCBP.

Note that the offline CCBP problem is NP-hard in the strong sense, and approximation
schemes are known for it [9, 11, 15]. We note that for online CCBP, it is sometimes the

10:3

ESA 2017

10:4

Online Bin Packing with Cardinality Constraints Resolved

case that the competitive ratio for some specific algorithms for CCBP is larger by 1 with
comparison to that of the corresponding algorithms for standard bin packing [18, 16, 20, 10].
Interestingly, this is not the case with respect to the results shown in this paper.

1.1 Paper outline

We discuss general properties in Section 2, and we define procedures for constructing sub-
inputs in Section 3. Our main result, an overall lower bound of 2 on the competitive ratio of
any online algorithm for CCBP is proved in Section 4, and improved lower bounds for fixed
values of k are given in Section 5. Our result for VP is established in Section 6. Omitted
proofs appear in the full version of this work.

2 Preliminaries

The analysis of the lower bounds on the asymptotic competitive ratio of online algorithms
will be based on the following lemma that basically allows us to disregard a constant number
of bins in the costs of the optimal solution and the solution returned by the algorithm.

» Lemma 1. Consider an algorithm ALG, such that the asymptotic competitive ratio of the
algorithm ALG is at most R, where R > 1 is a fixed value, and let f(n) denote a positive
function such that f(n) = o(n) and for any input, ALG(I) < R-OPT(I)+ f(OPT(I)). Let
C, >0, Cp > 0 be constants. Assume that for a given integer Ny, for any integer n > Ny
there is an input I™ for which OPT(I™) = Q(n), then we have

. ALG(I™) + C,
> _—
=1 5 b1y — 6
Proof. We have
ALG(I™) + C, <R. OPT(I™) — Cy n Co+R-Cy L f(OPT(I™))

n n n n

for any n > Np.
Since ALG(I") + C, > OPT(I™) — C, and OPT(I"™) — C, = Q(n) while C, + R - Cp +
f(OPT(I™)) = o(n), letting n grow to infinity implies that
ALG(I™) + C,
R>limsup ———%—— . <
=Y oPT(IN) - G,

In what follows, we will use Lemma 1 as follows. We construct inputs whose size depends
on a parameter IV, so that the costs of optimal solutions increase with the input size. We
will compare the cost of a fixed online algorithm ALG plus a suitable non-negative constant
to the optimal cost minus a suitable non-negative constant by considering their ratio.

3 Constructions of sub-inputs

In this section we introduce the core of our lower bound constructions. In such constructions,
we adaptively present inputs that are based on the behavior of the algorithm. More specifically,
we define several procedures that construct sub-inputs according to certain conditions.
Similarly to [4, 12, 7] (and other work on online problems), a new input item is presented
at each time, where its size is based on the action of the algorithm on previous items. For
example, if the previous item was packed into an empty bin, the size of the next item is

J. Balogh, J. Békési, Gy. Désa, L. Epstein, and A. Levin

different from the size that would be used if the previous item is added to a non-empty bin.

In order to ensure that the properties are satisfied, we will define invariants, and we will
prove the specific properties that we need in the sequel via induction. The constructions
use k as a parameter since they are defined to be used for CCBP. However, they can be
used for any packing problem of items into bins and the property that k is the cardinality
constraint is not used in the constructions of sub-inputs (it is used later in the analysis of
inputs constructed using these sub-inputs). Thus, if the constructions are used for other
problems like we do for VP, the parameter k£ should be specified.

In the first procedure, the most important property is that there will be a gap between
two types of items constructed by applying the procedure, in the sense that the procedure
creates items that will be called small and items that will be called large, any large item is
larger than any small item, and there is a requirement on the size ratio that will be satisfied

(a multiplicative gap between the size of the smallest large item and the largest small item).
Such constructions differ from previous work [4, 12, 7] where only an additive gap was created.

The gap was always positive, but it could be arbitrarily small. In particular, one limitation
was that it was unknown how such an approach could be used for CCBP with parameter
k> 2.

We will also use this method to construct sub-inputs with large items, such that there
is a multiplicative gap in the differences between 1 and the items sizes. This new method
will allow us to provide a tight overall result for CCBP, new and significantly improved
lower bounds on the asymptotic competitive ratio for CCBP with fixed values of k, and our
improved lower bound for VP.

3.1 Procedure SMALL

In this first procedure called SMALL, a rational value 0 < € < 1, and an integer upper bound
N on the number of items to be presented are given. The goal is to present (at most) N
items of sizes in (0, €], such that every item will be seen as either a small item or a large
item, and such that any large item is more than k times larger than any small item. In fact,

a stronger requirement on the item sizes will hold. Moreover, all item sizes will be rational.

Given two logical conditions, C; and Cj specified for each construction (such that for every
packed item, exactly one of them holds), a new item will be defined as small if C; holds and
it will be defined as large if Cy holds. There is a third condition Cs that is based on the
packing of the prefix of items introduced so far, and the sub-input is stopped if C3 holds.

Let NV be an upper bound on the number of items that will be created by the procedure.

Let N’ < N be the actual number of items (where N is known in advance and used for
the sequence construction, while N’ is not necessarily known in advance and it becomes
known when C3 holds for the first time). The item sizes a1, ag, ..., ans will be defined based
on another sequence x1,Ts,...,xy/, such that a; = ¢ - k=% for 1 <1 < N’. The values z;
will be integral in order to ensure that the values a; will be rational. There will also be
two sequences of values 71,...,7ys and p1,..., pns, representing thresholds on item sizes of
further items.

Let 7o = 2V*%2, pg = 2¥*3 and i = 1. The process is defined as follows for any given
value of i (such that 1 < i < N’). Let z; = T‘ﬁ% (we will show that these values are
integers). After the algorithm packs item ¢, if Cy holds, let 7; = 7,1 and p; = z; and if Cy
holds, let , = x; and p; = p;—1. If C3 holds or i = N, stop and otherwise increase i by 1.

Intuitively, the process is as follows. The interval (7, p;) contains the x; values of all
further items (with j > 4), and for j <4, all items satisfying Cy have x; values in [p;, po) and
all items satistying Cy have x; values in (79, 7;]. In each iteration 4, the new values 7;, p; are

10:5

ESA 2017

10:6

Online Bin Packing with Cardinality Constraints Resolved

defined such that these requirements are satisfied. In particular, the x; values of any item
satisfying C are larger than those of items satisfying C5. Next, we establish the invariants
of this procedure.

» Lemma 2. Let N’ be the number of items. For any i such that 1 <i < N', p; < p;_1
and T; > T;,—1. Additionally, we have p; — 7; = 2N+2=1 il x; values are integral, if item i
satisfies C1, x; > pns and otherwise x; < Tnv.

Proof. We start with showing that the x; values as well as p; and 7; are integral and
pi — 7 = 2VT27% We prove this by induction. Indeed py = 2V*3 that is integral, 7o = 2V+?2
that is an integer as well. Furthermore, pg — 70 = 2V%2, and z; = 3-2V+! that is an integer,
and no matter if the first item satisfies C; or C3, we have that both p; and 71 are integers,
and p1 — 11 = 2N+1 Thus, the cases i = 0 and ¢ = 1 for the induction claim hold. Assume
that p;_1 — 71 = 2¥™37% holds for some i where 1 < i < N’ — 1. Then,

Ti— i— i—1 — Ti— .
T = % — 7+ % — iy 2N

which is an integer for 1 < ¢ < N, since 7;,_; is an integer. Moreover, if 7; = 7,_1 and

pi = x;, then p; — 7, = x; — 7,1 = 2=57=1 and otherwise 7; = z; and p; = p;_1, then

pi — T = pi—1 — x; = P=2T=L In both cases, p; — 7 = 2N+2=% and both 7; and p; are
integers. Since, in particular, for any i, p; > 7; holds and x;;1 is their average, we find
T < xiy1 < p;. Thus, p; < p;—1 and 7; > 7;_1 holds for any 7.

Finally, since in the case that item 4 satisfies C, we let p; = z;, and in the case that
item i satisfies Co, we let 7; = x;, we get x; = p; > pir1 > ... > pnv in the first case, and

i =7; < Tip1 < ... < 7nv in the second case. |
» Corollary 3. For any item i, a; € (E . k’zNH, €- k72N+2>, and in particular a; < 1714 For
any item i1 satisfying C1 and any item iy satisfying Ca, it holds that Z—z > k.
i1
Note that it is possible that the constructed input is such that there are only items

satisfying C'y or only items satisfying Cs.

Proof. The first claim holds by definition. Since we have x;, > pys and z;, < 7n/, we get
Z—z > kPN TN Using py: — TN: = 2N+2-N" > 4 a5 N’ < N, we find 22 > k4 > k. <
1

Qg

3.2 Procedure LARGE

The second type of input is such that all items have sizes in (1 — ¢, 1) for a given value ¢ > 0.
The construction is the same as before, but the size of the ith item is b; = 1 — a;. The terms
“small” and “large” refer to the difference between the size of the item and 1.

» Corollary 4. Allb; for 1 <i< N arein (1 —¢-k~ ,1—¢e-k
small item is and any large item iy satisfy 1 —b;, > k- (1 —b;_).

oN+2

72N+3). The sizes of any

3.3 Procedure SMALLandLARGE

We will also use a procedure where the conditions C7 and C5 are not fixed, and they are
based on additional properties of the packing and the input that has been presented so
far. Moreover, in this case the size of each item is based on a;, but it is fixed for each
item separately (it will be either a; or 1 — a;). In this construction the sub-input will be
decomposed into parts where for an item of an odd indexed part the size of the item will
be 1 — a;, whereas for an item of an even indexed part the size of the item will be a;. The
definitions of C; and C5 will also depend on the parity of the index of the part containing
the item. This procedure is called SMALLandLARGE.

J. Balogh, J. Békési, Gy. Désa, L. Epstein, and A. Levin

4 A lower bound of 2 for CCBP

The general structure of inputs constructed in this section is as follows. There are a large
number of very small items, such that the first item packed into a bin by the algorithm is
significantly larger than small items packed as a second item or later. Afterwards, there
are two cases. In the first case there are very large items (of sizes almost 1) that can be
combined with k£ — 1 items that arrived earlier, but only with those that are smaller. Thus,
an optimal solution can pack all items densely except for those items that are first in their
bins (for the algorithm). The algorithm cannot use its previously packed bins again to pack
new items, and therefore the best approach is to pack a large number of items into each bin
(otherwise the percentage of larger small items is larger, which makes the optimal packing
more sparse, but the algorithm has an even larger number of bins, and the effect of the last
property is more significant). Another option is that instead of the very large items, items
slightly larger than % will arrive, in which case it turns out that the algorithm should have
packed k — 1 items into each bin (so that a new item could be still packed there). For very
large values of k, the two values k — 1 and k are not very different, and since the algorithm
does not know which items will arrive, packing k — 1 items into each bin (if k is very large)
is a good strategy. The result of packing k — 1 items into each bin is that in the first case
the very large items increase the number of bins roughly by a factor of 2, while an optimal
solution has relatively few bins with k£ small items. Note that the order of options in the
construction below is reversed for the sake of convenience.

Let N be a large integer. Apply procedure SMALL with ¢ = 1 for the construction of N
items (i.e., condition C5 never happens). The condition Cs is that the item is packed as the
first item of some bin (into an empty bin), and the condition C} is that the item is packed
into a non-empty bin. The item sizes are no larger than ;—4 The multiplicative gap between
the smallest large item and the largest small item is larger than k. The N items presented
so far will be called the first phase items. Let § > 0 denote the largest size of any first phase
item packed not as a first item of a bin (the largest small item). Let « = k- d. Any first

phase item that is packed as the first item of a bin (a large item) has size strictly above «.

Let A < 1%3 be the largest size of any first phase item. Obviously, 1 — kA > 1 — k—lz > %

For the first phase items, let X denote the number of bins packed by the algorithm that
contain k items, and let Y denote the number of other bins (such that there are X +Y bins
in total after N items have been presented).

The first phase items are followed by another set of items called the second phase items.

This set of items is selected out of two possible options. The first option is that [%W items
of size 1 — kA arrive, and the second option is that (% items of size 1 —a=1—kd
arrive. In both cases it is possible to create an offline solution such that each bin (except
for possibly two bins) has k items. In the first case, an offline solution has [] bins, each
with one item of size 1 — kA and an arbitrary subset of k — 1 first phase items (the last bin
may have a smaller number of such items). Such a solution is optimal. In the second case,

an offline solution has [%] bins, each with one item of size 1 — ké and k — 1 small

first phase items, and [%] bins with k large first phase items (for each one of these two
bin types, the last bin may have a smaller number of such items). Indeed the last solution is

an optimal solution though we will only use that it is a feasible solution.

In the first case, the algorithm cannot use the bins that already have k items for packing
second phase items, and its cost is at least X + “%11 > X+ T]Xl In the second case, the
algorithm cannot use any of its bins to pack any second phase item, as each bin has a large

10:7

ESA 2017

10:8

Online Bin Packing with Cardinality Constraints Resolved

first phase item of size above «, so its cost is

N-X,-Y
k—1

N-X,-Y

Xk‘f‘Y‘i"r y—

-‘ZX;C-FY-F

We call the two inputs (of the two cases) I; and I. Obviously, since each input consists
of more than N items, OPT(I;) = Q(%) and OPT(Iz) = Q(%) hold. Letting N = kn
provides an input I™ as required. By Lemma 1, we will analyze modified competitive ratios

% for fixed constants C, and Cj.

For the input I;, OPT(I;) — 1 < % and ALG(I) > Xy + TIL For the input Io,

OPT(Ip) —2 < N=Xu=¥ 4 XY and ALG(I) > Xp + V + ¥=Xe=Y
First, we analyze the competitive ratio r for input I and show that it tends to 2 as k grows
to infinity. Let Z = Xy + Y. We have OPT(Iy) —2 < ¥=Z 1 Z and ALG(I,) > Z + N=Z.

k—1
Thus,

of the form

kZ(k — 1)+ k(N —2) Z(k* — 2k) + kN

"SUN-2)+(k—-1)Z kN-Z

Since Z > % and the last lower bound on r is a ratio between an increasing function of Z and

a decreasing function of Z, we conclude that by substituting % instead of Z in the last bound,

. . N(k—2)+kN _ 2-2/k _ 2k
we achieve a valid lower bound on r. Thus, we have r > IN-X = 11/ — Rl and

the last bound tends to 2 when k grows to infinity. By Lemma 1, the overall (asymptotic)
competitive ratio is at least 2. Since there is a 2-competitive algorithm for any value of k [4]
(even for the absolute competitive ratio [6]), we establish the following.

» Theorem 5. The overall best possible asymptotic and absolute competitive ratios for bin
packing with cardinality constraints are equal to 2.

To obtain a better lower bound on the asymptotic competitive ratio r for a fixed value of
k > 3, we use I; as well. By r > 012’36(;1(1[)111 > Xk:z;['l‘/]:k/ikljl) we have (k—1)X, < (r—1)-N.
By counting arguments, N < kX + (k — 1)Y holds, and we get X, > N — (k —1)Z, and

(r—1)N>(k-1)X,>(k—1)(N-(k—1)Z)=(k—1)N — (k—1)?- Z. Rearranging gives

(k—r)N
7w

Z(k*—2k)+EN

n—z > which is equivalent to

As we saw earlier, by using I, we have r >
Z(k* =2k +7) < kN(r —1).
Combining the lower bound and upper bound on Z results in

(k—7r)N(k? -2k +r
(k—1)?

or equivalently
r? 4+ r(k® — k? —2k) — (2k® —4k* + k) > 0.

Since k3 —k? —2k > 0 holds for k£ > 2 and 2k* —4k% 4k > 0 holds for k > 2, it is sufficient to

. " Lo k+k?—k3 k3 —k2—2k)?2 k3 —4k2+k
find the (unique) positive root which is equal to 2kt V/(5 2k)7 AR —ARPTR) e

last expression is a lower bound on r and thus the following holds.

J. Balogh, J. Békési, Gy. Désa, L. Epstein, and A. Levin

» Theorem 6. For any k > 3, the asymptotic competitive ratio for bin packing with cardinality
constraints is at least

2k 4+ k2 — k3 + VK6 — 2k5 — 3k4 + 12k3 — 12k2 + 4k
5 .

The last lower bound is equal to approximately 1.54983 for & = 3, 1.63330 for k = 4,
1.69047 for k =5, 1.73214 for k = 6, 1.76388 for k =7, 1.78888 for k = 8, 1.80909 for k = 9,
and 1.82575 for k = 10. For k = 2 the resulting lower bound is v/2 and the construction (for
the case k = 2) is indeed similar to that of [7, 4].

5 Better lower bounds for CCBP for some small values of &k

In this section we prove the next theorem that improves the resulting bounds of Theorem 6
for these values of k.

» Theorem 7. The following approximate values are lower bounds on the asymptotic com-
petitive ratio: The value 1.42857 for k = 2 (the exact value of this lower bound is %), 1.55642
for k =3, 1.69776 for k = 5, 1.74093 for k = 6, 1.77223 for k = 7, 1.79634 for k = 8,
1.81563 for k =9, and 1.83148 for k = 10.

6 Vector packing

As explained in the introduction, vector packing is a generalization of CCBP, and thus the
results of the previous sections imply, in particular, a lower bound of 2 on the asymptotic
competitive ratio for VP in two or more dimensions. In this section we show that VP is more
general, by improving the result, and showing a lower bound above 2 for VP with constant
dimensions. Our result is the first lower bound strictly above 2 for any fixed dimension VP
(recall that currently, the best known upper bound for d-dimensional VP is d 4+ 0.7 and for
2-dimensional VP 2.7 [14]). We prove the result for two dimensions (and the result for higher
dimensions follows since the asymptotic competitive ratio is monotone in the dimension, as
any d-dimensional vector can be augmented by d’ — d zeroes to become a d’-dimensional
vector). Once again we consider a fixed deterministic online algorithm ALG, but this time it
is an algorithm for VP. Let R be the asymptotic competitive ratio.

The main idea of the lower bound is at follows. First, there are items whose first
component is % for an appropriately chosen integer k, while the second components are very
small. The items are such that the second components are sufficiently larger for items packed
first into their bins by the algorithm compared to those that are not packed first. Afterwards,
one option is that the following items have a very large second component and their first
component is zero (this is equivalent to the items in the construction for CCBP). Every such
item could be packed with k items that arrived earlier, but never with the first item of a bin
of the algorithm, and thus the new items require new bins, while an optimal solution can
pack almost everything densely. For this option it is most profitable for the algorithm to
pack k items in each bin. In the other cases, it turns out that it is better to pack much less
than k items per bin, as further items will have first components of # for an integer value

of a (which is selected based on the action of the algorithm). Those items will have second
1 1

components above z, and there may be further items whose second components are above 3.

37
Let & > 10 be a large integer. The set of inputs we define will consist of at most

three phases (where a phase is a sub-input). The first phase of the input is based on the
construction for CCBP as follows. For a large integer N > 1000, there are N items whose

10:9

ESA 2017

10:10

Online Bin Packing with Cardinality Constraints Resolved

first component is % The second components of items are constructed using procedure

SMALL with ¢ = k*QNH, such that SMALL is applied for the construction of N elements
(i.e., condition C5 never happens). The condition C5 is that the item is packed as the first
item of some bin (i.e., it is packed into an empty bin), and the condition C; is that the item
is packed into a non-empty bin. The N (two-dimensional) items presented so far will be
called the first phase items. The second components of the first phase items are no larger
than k=2" " < 1714 Due to the value of the first component, in any packing every bin has at
most k first phase items. A first phase item packed as the first item of a bin will be called
large and any other first phase item will be called small.

The multiplicative gap between the smallest second component of any large item and the
largest second component of any small item is greater than k. Let § > 0 denote the largest
second component of any small first phase item. Let o = k- §. Any large first phase item
has a second component strictly above a. Let A < k% be the largest second component of
any first phase item. Obviously, 1 —a=1—kd > 1 — 1%3 > (0.999.

(o, X0
N ’
where ©® < 1 as every bin has at least one item out of the N items. Let the input of

Let X; denote the number of bins packed with 4 first phase items and let © =

first phase items be denoted by I. At this time, any k items can be packed into a bin,
and thus OPT(I) < [§]. Tt ALG(I) = ON > 3 we get R > gpmiriey > 3. Thus, we
assume in what follows that © < % Since every bin of the algorithm contains exactly one
large item and the remaining items are small, there are ON < % large items and at least

N —-ON > w > % small items.

The first option for the second part of the input is similar to the construction for CCBP
(the second part of the input will also be the last part of the input in this specific case). The
next phase of items will consist of [N%?NW items called second phase items, whose first
component is zero and the second component is 1 — «a = 1 — kd. This input (consisting of
the first phase items and the second phase items) is called I’. By the following lemma we

have 14+ (k —1)© < R.

» Lemma 8. We have ALG(I') = ON + [¥=8N] > QN 4 N=ON _ N+(k;1)®N and

k k
OPT(I') -2 < 2N 8N = [

Proof. It is possible to create a feasible solution for I’ where each bin (except for possibly
two bins) has k first phase items. This solution has [¥=2%7 bins, each with one second
phase item and k small first phase items, and f%} bins with k large first phase items
(for each one of these two bin types, the last bin may have a smaller number of first phase
items). Indeed the last solution is an optimal solution (since second phase items cannot be
packed with large first phase items), though we will only use that it is a feasible solution.
We conclude that OPT(I') —2 < w + % = % The algorithm uses a different new bin
for each second phase item, since every such item has a second component larger than %,
and every bin with first phase items has a total size above « in its second component. Thus,

we get ALG(I') = ©ON + [w] > ON + N—kGN _ N+(k;1)®N. <

Let b be an integer such that b < %. For any integer a such that 1 < a < b, there will
be two possible inputs I} and I2. All inputs start with the first phase items defined above.
The second phase of items is identical for the two inputs I! and I? (but it is different for

different values of a). Let Ty = fj\;g:ga@] Intuitively, when considering an optimal packing of
the small first phase items in I} and I2, most of the bins will contain k — 2a small first phase

items, and thus I', is approximately their number. The second phase items are constructed

J. Balogh, J. Békési, Gy. Désa, L. Epstein, and A. Levin

using SMALL with the same value of k as for the first phase items as follows. The number
of items is N, = I', (and once again C3 never happens and all items are presented). The
sizes are built using ¢ = 1, and the conditions C; and Cs are as follows. We let C5 be the
condition that the item is packed into a bin that does not have a second phase item, and

(1 is the condition that the item is packed into a bin that already has a second phase item.

The first component of each item is . Given the ith output of SMALL denoted by z, for
the ith item, the second component is defined as % + z. If z is defined when C5 holds, we say
that the item whose vector is (%, % + 2) is large, and otherwise it is small. Since 0 < z < 77
for any item, the items satisfy that their second components are strictly larger than %, and
they are not larger than % + k% < 0.3335. Furthermore, we conclude that the difference
between the smallest second component of a large second phase item and the largest second
component of a small second phase item is at least 2

Obviously, since second phase items have second components above %, no bin can have
more than two such items. Let Y{* and Y3' denote the numbers of bins with one second
phase item and two second phase items, respectively (note that there may be such bin that
contain first phase items and bins that do not, and both kinds are included in these two
values according to their numbers of second phase items, while bins with only first phase
items are not included). There are Y5 small second phase items and Y* 4+ Y3* large second
phase items (and Y +2Y* = T',). Note that since the first component of second phase items
is %, they could not have been packed into bins with at least £ —a + 1 first phase items.

Input I! continues with T', items, each of the form (%,0.6). Let % + ¢’ be the largest
second component of a small second phase item (such that for any large second phase item,
its second component is larger than % + 28’), and observe that since ¢’ > k*2N+3, the total
sum of second component of a set of at most k first phase items is at most ¢’. Input I?2
continues with the third phase items as follows. (%1 items, each of the form (%, 2 —24§'),

k3
and [4%] items, each of the form (0,1 — a). Let A, = Zf:c X;.
» Lemma 9. The costs of the algorithm satisfy
ALG(I;) > Apgr1 + Y3 + 1,

and

ALG(I2) > Apasr + Y0 4 Y 4 Lo TH5 N

4 4k
Proof. For I}, the algorithm cannot use any bin with at least k — a + 1 first phase items
to pack any other items (as second phase and third phase items afterwards have a first
component of value #), and the algorithm cannot pack an item of the form (%, 0.6) into a
bin with two second phase items. Thus, using A, = Zf:c X;, the total number of bins of
the algorithm is at least Ap_q4+1 + Yy + La.

For I2, the algorithm cannot use any bin with at least k — a + 1 first phase items to pack
items whose first component is 7, and it cannot use any bins with first phase items to pack
items whose second component is 1 — «. Moreover, since every bin with second phase items
has a large second phase item, the algorithm cannot pack any third phase item into a bin
containing at least one second phase item (and each bin with a third phase item will contain
exactly one third phase item). The only bins that can possibly be used for third phase items
are those with at most k — a first phase items and no other items. Thus, the number of bins
is at least Ap_q11 + Y + Y5 + F“Ziw; + & <

We next analyze optimal solutions for I} and I2.

10:11

ESA 2017

10:12

Online Bin Packing with Cardinality Constraints Resolved

» Lemma 10. The cost of the optimal solutions for I} and I? satisfy

NO
OPT(If) < T+ [—=]
and
N YP+Yy T,+2Y8 9N N 30, ON
2y 1Y 1 2 a 2 IV _ a 4V)
OPT() s o+ ——— +——— tm tid= g+ + 5 +4

Proof. For I} consider the following feasible solution. There are I', bins, each with a second

phase item (whose first component is £ and its second component is in (%70.3335)), one

item of the form (¢,0.6), and k — 2a first phase items where each such item has a first
component of % and its second component is no larger than k% (the last bin may contain
a smaller number of first phase items). The first component of the sum of the vectors of
these items is 1, and the second component is at most 0.3335 + 0.6 + k—ls < 1. The remaining
first phase items (there are at most N©O such items) are packed k in a bin. We find that
OPT(If) <T, + [¥€].

For I2, there are [bins, each with one item of the form (0,1 — «) and k small first
phase items (recall that the number of small first phase items is larger than & +k), (%]
bins with at most two large second phase items and at most k — 2a first phase items, [%]
bins with one item of the form (¢, 2
most k — 2a first phase items. The remaining first phase items are packed into additional

—2¢"), and at most one small second phase item, and at

bins, such that every bin has k such items. All items are packed since the number of small

second phase items, Yy, is no larger than FQ—“, SO F“Zﬁ > Y5, The total space for first
phase items in the first three kinds of bins is at least
N YP+YSE T, +2YF N k—2a
o k—292 1 2 a 2 _ . Fa
pTk=20) < 2 T 1 FEREER
N 3 3
>—+-N(1-0)=N--N
2 +,N1-9) Ve
so the number of bins of the last kind is at most %] < % + 1 since © < % We find that
N Yf+YS) T,+2Y3 9N N 3D 9N
PT 1'2 < 1 2 a 2 T 4= a g4V 4.
OPTU) <t =% =1ttt gt3 tpt <

We get

R ALGUY) Aian Y5 Lo

= OPT(If)—2~ AN-Ne [Xe »
S +2Yy
R> ALG(Ig) > Ak7a+1 +Y1a+}/2a+ %2 + % .

= OPT(I$)—5

gN-_N©
k—2a + IN
4 4k2

N

ot
We let f§ = b/k and let k grows to infinity. Choosing S =~ 0.192806 and using the

inequalities we showed, we find R > 2.03731129, and thus we conclude the following theorem.

» Theorem 11. The asymptotic competitive ratio of any online algorithm for vector packing
with d > 2 is at least 2.03731129.

J. Balogh, J. Békési, Gy. Désa, L. Epstein, and A. Levin

—— References

1

10

11

12

13

14

15

16

17

18

19

Y. Azar, I.R. Cohen, A. Fiat, and A. Roytman. Packing small vectors. In Proc. of the
27th Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA’16), pages 1511-1525,
2016.

Y. Azar, I.R. Cohen, S. Kamara, and F.B. Shepherd. Tight bounds for online vector bin
packing. In Proc. of the 45th ACM Symposium on Theory of Computing (STOC’13), pages
961-970, 2013.

Y. Azar, I.R. Cohen, and A. Roytman. Ounline lower bounds via duality. In Proc. of the
28th Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA’17), pages 1038-1050,
2017.

L. Babel, B. Chen, H. Kellerer, and V. Kotov. Algorithms for on-line bin-packing problems
with cardinality constraints. Discrete Applied Mathematics, 143(1-3):238-251, 2004.

J. Balogh, J. Békési, and G. Galambos. New lower bounds for certain bin packing algo-
rithms. Theoretical Computer Science, 1:1-13, 2012.

J. Békési, Gy. Dosa, and L. Epstein. Bounds for online bin packing with cardinality con-
straints. Information and Computation, 249:190-204, 2016.

David Blitz. Lower bounds on the asymptotic worst-case ratios of on-line bin packing
algorithms. Technical Report 114682, University of Rotterdam, 1996. M.Sc. thesis.

David Blitz, Andre van Vliet, and Gerhard J. Woeginger. Lower bounds on the asymptotic
worst-case ratio of online bin packing algorithms. Unpublished manuscript, 1996.

A. Caprara, H. Kellerer, and U. Pferschy. Approximation schemes for ordered vector pack-
ing problems. Nawval Research Logistics, 92:58-69, 2003.

L. Epstein. Online bin packing with cardinality constraints. SIAM Journal on Discrete
Mathematics, 20(4):1015-1030, 2006.

L. Epstein and A. Levin. AFPTAS results for common variants of bin packing: A new
method for handling the small items. SIAM Journal on Optimization, 20(6):3121-3145,
2010.

H. Fujiwara and K.M. Kobayashi. Improved lower bounds for the online bin packing
problem with cardinality constraints. Journal of Combinatorial Optimization, 29(1):67-87,
2015.

G. Galambos, H. Kellerer, and G.J. Woeginger. A lower bound for online vector packing
algorithms. Acta Cybernetica, 10:23-34, 1994.

M. R. Garey, R. L. Graham, D. S. Johnson, and A. C. C. Yao. Resource constrained schedul-
ing as generalized bin packing. Journal of Combinatorial Theory Series A, 21(3):257-298,
1976.

K. Jansen, M. Maack, and M. Rau. Approximation schemes for machine scheduling with
resource (in-)dependent processing times. In Proc. of the 27th Annual ACM-SIAM Sympo-
stum on Discrete Algorithms, (SODA’16), pages 1526-1542; 2016.

D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey, and R.L. Graham. Worst-case
performance bounds for simple one-dimensional packing algorithms. SIAM Journal on
Computing, 3:256-278, 1974.

H. Kellerer and U. Pferschy. Cardinality constrained bin-packing problems. Annals of
Operations Research, 92:335-348, 1999.

K.L. Krause, V.Y. Shen, and H.D. Schwetman. Analysis of several task-scheduling algo-
rithms for a model of multiprogramming computer systems. Journal of the ACM, 22(4):522—
550, 1975.

K.L. Krause, V.Y. Shen, and H.D. Schwetman. Errata: “Analysis of several task-
scheduling algorithms for a model of multiprogramming computer systems”. Journal of
the ACM, 24(3):527-527, 1977.

10:13

ESA 2017

10:14

Online Bin Packing with Cardinality Constraints Resolved

20

21

22
23

24

C.C. Lee and D.T. Lee. A simple online bin packing algorithm. Journal of the ACM,
32(3):562-572, 1985.

P. Ramanan, D.J. Brown, C.C. Lee, and D.T. Lee. Online bin packing in linear time.
Journal of Algorithms, 10:305-326, 1989.

S.S. Seiden. On the online bin packing problem. Journal of the ACM, 49(5):640-671, 2002.
A. van Vliet. An improved lower bound for online bin packing algorithms. Information
Processing Letters, 43(5):277-284, 1992.

A.C.C. Yao. New algorithms for bin packing. Journal of the ACM, 27:207-227, 1980.

Modeling and Engineering Constrained Shortest
Path Algorithms for Battery Electric Vehicles

Moritz Baum?!, Julian Dibbelt?, Dorothea Wagner®, and
Tobias Ziindorf *4

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
moritz.baum@kit.edu@kit.edu

2 Mountain View, CA, USA
algo@dibbelt.de

3 Karlsruhe Institute of Technology, Karlsruhe, Germany
dorothea.wagner@kit.edu

4 Karlsruhe Institute of Technology, Karlsruhe, Germany
tobias.zuendorf@kit.edu

—— Abstract
We study the problem of computing constrained shortest paths for battery electric vehicles. Since
battery capacities are limited, fastest routes are often infeasible. Instead, users are interested
in fast routes where the energy consumption does not exceed the battery capacity. For that,
drivers can deliberately reduce speed to save energy. Hence, route planning should provide
both path and speed recommendations. To tackle the resulting A'P-hard optimization problem,
previous work trades correctness or accuracy of the underlying model for practical running times.
In this work, we present a novel framework to compute optimal constrained shortest paths for
electric vehicles that uses more realistic physical models, while taking speed adaptation into
account. Careful algorithm engineering makes the approach practical even on large, realistic
road networks: We compute optimal solutions in less than a second for typical battery capacities,
matching performance of previous inexact methods. For even faster performance, the approach
can easily be extended with heuristics that provide high quality solutions within milliseconds.

1998 ACM Subject Classification G.2.2 Graph Theory, G.2.3 Applications
Keywords and phrases electric vehicles, constrained shortest paths, algorithm engineering

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.11

1 Introduction

Battery electric vehicles (EVs) have matured, giving the prospect of high powertrain efficiency
and independence of fossil fuels, but a major hindrance of their adoption remains the limited
battery capacity of most vehicles combined with a lengthy recharge time. To overcome range
anxiety, careful route planning that prevents battery depletion during a ride is paramount.
Besides a limited cruising range, another substantial difference to vehicles run by combustion
engines is the ability to recuperate energy when braking. Naturally, such aspects have to be
reflected in any kind of route planning application for EVs.

Classic route planning approaches make use of a graph-based representation of the consid-
ered transportation network, where scalar edge weights correspond to, e. g., travel times. A
shortest path is then found by Dijkstra’s algorithm [15]. A wide range of speedup techniques [3)

* Supported by DFG Research Grant WA 654/23-1.

© Moritz Baum, Julian Dibbelt, Dorothea Wagner, and Tobias Ziindorf;
37 licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).

Editors: Kirk Pruhs and Christian Sohler; Article No. 11; pp. 11:1-11:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2

Constrained Shortest Path Algorithms for Battery Electric Vehicles

enable provably correct but faster queries in practice. For instance, A* Search [27] uses
vertex potentials to guide the search towards the target. Contraction Hierarchies (CH) [23],
on the other hand, employs a preprocessing step to obtain a directed acyclic search graph
that allows to skip vast parts of the network at query time. For that, it iteratively contracts
vertices according to a heuristic vertex ranking, while adding shortcut edges to maintain
distances within the remaining graph. Extensions to multicriteria scenarios exist for both
A* [17, 32, 33, 36] and CH [21, 22, 38]. Moreover, CH and A* can be combined to Core-
ALT [6], where all but the highest-ranked vertices are contracted, which form the core graph.
On that, a variant of A* uses precomputed distances to landmark vertices [24].

Route planning for EVs requires handling battery capacity constraints and negative edge
weights (due to recuperation), which is tractable when optimizing energy consumption as a
single criterion [9, 16, 35]. However, energy-optimal routes often exhibit disproportionate
detours, as using minor, slow roads can save energy due to less air drag [9]. Variants of the
NP-hard Constrained Shortest Path (CSP) problem [26] overcome this by minimizing energy
consumption without exceeding a given time limit [37] or finding the fastest route that does not
exceed battery constraints [7, 41]. Yet, time—consumption tradeoffs are not only affected by
choice of route but also by driving behavior. Assuming a single, fixed speed per road segment
neglects attractive solutions that may still use major roads (e. g., motorways), saving energy
by deliberately driving below posted speed limits, instead. Sampling such alternative speeds,
tradeoffs can be modeled by parallel edges [8, 25], but this yields too many nondominated
intermediate solutions, growing exponentially even for chains of vertices. Accordingly, only
heuristics offer acceptable performance for common vehicle ranges [8, 25]. By discretizing
a continuous range of possible speeds, the approach has further undesirable effects: The
majority of its many intermediate solutions offers insignificant tradeoffs [8], while interesting
solutions are lost to the discretization; adding degree-two vertices (commonly included for
visualization) affects the solution space, even when distributing speeds and consumption
evenly. Instead, Hartmann and Funke [28] model tradeoffs as continuous functions per edge,
assuming the driver can go at any speed within limits. Yet, for that model they propose
only a heuristic extension of CH that requires minutes to answer queries on large networks.
Lv et al. [31] use dynamic programming to plan the speed of a solar-powered EV, but their
approach aims at simulation and is too slow for interactive applications.

Contribution and Outline. We study a generalization of the CSP problem to capture the
characteristics of EVs, considering continuous, adaptive speeds: We allow the EV to adjust
its speed to reach its target quickly and with sufficient state of charge (SoC). Using realistic
consumption models, we obtain for each road segment a function mapping travel time to
energy consumption, yielding a challenging, more precise problem setting (Section 2). As a
first solution, we propose an exponential-time extension of Dijkstra’s algorithm: By propa-
gating continuous consumption functions during network exploration, we greatly improve
performance and solution quality over previous discretized approaches (Section 3). We
also incorporate techniques based on A* and CH, for which a particular challenge is the
computation of shortcuts that represent bivariate functions to capture the constraints of our
model (Section 4). Our experimental evaluation (Section 5) reveals that we can compute
optimal solutions in well below a second for typical battery capacities and less than a minute
for large battery capacities, on par or faster than previous heuristic algorithms. Our own
heuristic variant provides high-quality solutions and is fast enough for interactive applications.

M. Baum, J. Dibbelt, D. Wagner, and T. Ziindorf

2 Model and Problem Statement

We use directed graphs G = (V, E) to model road networks, where edges e € E represent
road segments. For each, we assume that a given tradeoff function g.: R<o — R maps desired
driving time x € R+ along e to energy consumption g.(x). Consumption can be negative,
due to recuperation. In reality, driving time cannot be chosen arbitrarily: Lower bounds are
induced by speed limits and the vehicle’s maximum speed. On the other hand, driving slower
than a reasonable minimum speed would mean to become an obstacle for other drivers. This
yields minimum and maximum driving times 7 € Ry and 7 € Ry, respectively, for g.. We
incorporate them into a consumption function c.: R>o — R U {oco} with

0 ifx <7,
Ce() := ¢ go(T) ifx>T,

ge(x) otherwise.

Thus, driving times below 7 are infeasible (modeled as infinite consumption) and driving
times above 7 become unprofitable. In the special (degenerate) case of 7 = 7, the function
ce represents a constant pair (7,c.(7)) of driving time and consumption. We then call ¢,
constant, as the edge e allows no speed adaptation.

Further, the EV is equipped with a battery that has a capacity M € R>y. The SoC
must not drop below 0 nor exceed M. Incorporating these constraints, we obtain a bivariate
SoC function fo: R>q x [0, M]U {—o00} — [0, M] U {—o0} for every e = (u,v) € E, mapping
SoC at u to SoC at v when traversing e with a specific driving time. It is given by

—00 if b —c.(x) <0,
fe(z,b) == M if b —ce(z) > M,

b— ce(x) otherwise,

where an SoC of —oo denotes an empty battery. Hence, f.(z,b) = —oo means that the edge
cannot be traversed at the corresponding speed (as the battery would run empty).

An s—t path in G is a sequence P = [s = v1,vy...,v; = t] of vertices with (v;,v;41) € E
for1 <i<k—1. If s =t, we call P a cycle. Given the SoC b € [0, M] at s, we obtain
a corresponding SoC at ¢ by iteratively picking driving times x; € R>q (starting at s) and
evaluating the SoC function f,, v..,)
we presume that for cycles this procedure never increases the SoC at s = t. For paths

for z; and the SoC at v;. Due to physical constraints,

P=vy,...v;Jand Q = [v,...,v], Po @ :=[v1,...,0;,...,0;] is their concatenation.
Given a source s € V, a target t € V, and an initial SoC b, € [0, M], the Electric Vehicle
Constrained Shortest Path (EVCSP) Problem is to find an s— path P = [s = vy, va...,v; =]
together with driving times z;,7 € {1,...,k — 1}, for every edge in P that respect battery
constraints and minimize overall travel time z := Zi:_f x; in G. This yields an A'P-hard
problem by reduction from CSP [26]. An instance of CSP corresponds to an instance of
EVCSP where all functions are degenerate constant tuples with nonnegative consumption.

A Simplified Model. We illustrate SoC functions in an example using simplistic but vivid
tradeoff functions. For now, let tradeoff functions be decreasing and linear, i.e., g.(x) = ax+f
for every e € E, where a € R<g and 8 € R are constant coefficients. The values o and
may differ between edges to reflect different road types or other relevant factors [12, 42].
Figures la and 1b show consumption functions (plugging in limits 7 and 7 on driving time)
for two edges (u,v) and (v, w). We are interested in the consumption function of the path

11:3

ESA 2017

11:4 Constrained Shortest Path Algorithms for Battery Electric Vehicles

1 2 3
4 C(u,v)(x) 0 1T \
x x
3 -1 0
2 \3 4 5 6
2 \ -2 -1
1 -3 -2
0 A g 41c (x) 3lep(x)
- - v,w - P
1 2 3 (o)
(a) (b) (o)

Figure 1 Consumption functions based on a simple model. (a) Function c(,) of an edge (u,v)
with 7 =1 and 7 = 3. (b) Function c(, ., of an edge (v,w) with 7 =1 and 7 = 2. (c) The function
cp of P = [u,v,w]. The shaded area indicates possible pairs of driving time and consumption.

4 fP(va 4 fP(x,b)
=bh=4
3 =3 3 — =4
b=2 r=3
2 =h=1 2 — =2
1 1
x
0+—+—+—+— 0 +—F—+—+——
2 3 4 5 1 2 3 4
—OOLO_O —00 +—0-0-0
(a) (b)

Figure 2 The bivariate SoC function of the path P from Figure 1, for M = 4. (a) The SoC fp
at v, subject to driving time z on P for different fixed values b of initial SoC. (b) The SoC fp at v,
subject to initial SoC b for different fixed values x of driving time.

P = [u,v,w], i.e., a function cp that maps driving time x spent on P to minimum energy
consumption cp(z). Formally, to get cp(x) for a driving time z € Rx(, we must pick values
r1 € Ryp and z3 € R, such that 2 = 21 + 22 and ¢,) (1) + ¢(p,w)(22) is minimized.
Figure 1c shows possible distributions of driving times among the two edges and the resulting
energy consumption. Their lower envelope yields the desired function cp. Intuitively, we
want to spend as much of the available time as possible on the edge that provides the better
tradeoff for saving the most energy, i.e., the function with steeper slope. As a result, the
consumption function of a path is always conver on its finite imaginary part. Moreover,
while tradeoff functions of edges are linear in the interval [r, 7] of admissible driving times,
the tradeoff function of a path is piecewise linear within its corresponding interval.

When considering battery constraints, energy consumption depends not only on driving
time but also on initial SoC. Note that consumption is positive on (u, v) and negative on (v, w).
As before, the edge (v, w) provides the better tradeoff. However, for low initial SoC, we must
ensure that (u,v) can be traversed first, spending additional time on this edge in order to
obtain a feasible solution at all. In contrast, high initial SoC values may prevent recuperation
along (v, w), limiting the payoff of driving slower. Figure 2 illustrates the resulting bivariate
SoC function fp for specific values of initial SoC and driving time.

A Realistic Model. In this work, we use a more realistic model, detailed below. Both
driving time and energy consumption depend on the vehicle’s speed. In accordance with
realistic physical models [1, 2, 10, 18, 28, 30, 31], we assume that energy consumption on a

M. Baum, J. Dibbelt, D. Wagner, and T. Ziindorf

oo +—0 O =0
4 tca(x) 5 te(x)
3 4
2 ’ A(J.?:J 41 3
P 2 ~
x X 0.5 |
01 1 22 (w—52 79
2 3 4 5 \> —
_1 0 ~ (x 2) €T
4 5 6 7 8 9
(a) (b) (c)
Figure 3 Linking consumption functions. (a) Function ¢; with oy =4, g1 =1, 1 = -1, 7 = 2,

and 71 = 4. (b) Function ¢z with oy = 0.5, 1 =1, v1 = 1, 1 = 2, and 71 = 5. (c¢) Function
¢ = link(cicz), with ¢(x) = c1(Aopt (7)) + c2(z — Aopt(x)). It is defined by three subfunctions with
subdomains [4, 5], [5,6.5], [6.5,9]. Values Agpt(z) and z — Agpe(x) indicate the share of ¢; and c;.

road segment e € E is expressed by a function h.: Rsg — R with he(v) = A10? + Aase + A3,
where v € Ry is the (constant) vehicle speed, s, € R is the (constant) slope of the road
segment, and A\; € R>g, A2 € R>g, and A3 € R>(are constant nonnegative coefficients of the
consumption model (all values may vary for different edges). Note that assuming constant
speed and slope per edge is not a restriction, as intermediate vertices can be added to model
changing conditions. Further, one can show that varying the speed on a single road segment
(with constant slope and speed limit) never pays off in our model [28, Corollary 1].

As we are interested in functions mapping driving time x € Rsg to energy consump-
tion g.(z), we substitute v = £./x, where £, is the length of the road segment. Slope and
length of an edge are fixed, so we simplify this by setting a := A\ /€2 and 7 := \as. + As3.
Observe that a € R>(is nonnegative, while v € R may be negative (for downhill edges).
We introduce a third constant 5 € R>g, needed later to shift functions along the time axis.
Altogether, we obtain the tradeoff function g.: Rsg — R with

@

ge(T) = m +7. (1)

For single edges, we always obtain 8 = 0 and assume driving time x to be strictly positive.
Thus, the denominator x — § is strictly positive and g.(z) is finite. Further, g. is decreasing
and conver on R in this case. In the simplistic model discussed above, we have seen that
tradeoff functions of paths may be piecewise linear. Similarly, we allow tradeoff functions in
the realistic model to be defined piecewise, so they may consist of multiple subfunctions of
the form in Equation 1. Tradeoff functions of paths may also use values 0 < 8 < z to reflect
additional time spent on previous edges. Plugging in the values 7 € Ry and 7 € Ry, we
obtain the consumption function c.: R>g — R U {oo}.

3 Basic Approach

We generalize the (exponential-time) bicriteria variant [34] of Dijkstra’s algorithm [15] to
solve EVCSP. As a crucial ingredient, the algorithm requires a link operation: For two
consumption functions ¢; and ¢, modeling consumption on two paths P; and Ps, the function
¢ := link(eq, ¢o) maps driving time spent on P := P; o Py to minimum possible energy
consumption (bar battery constraints). Let 11, 71, T2, and 7o denote the respective minimum

11:5

ESA 2017

11:6

Constrained Shortest Path Algorithms for Battery Electric Vehicles

and maximum driving times of ¢; and c;. We obtain ¢(z) = oo for all x < 71 + 72 and
c(x) =c1(71) + ca(T2) for & > 7y + To. For all x € [11 + 1,71 + T2], we have to compute

c(z) = Aen[lin_ | c1(A) + ca(z — A).
AE[JC—;Z:;C_IQ]

In other words, we have to divide the amount of time that exceeds the minimum possible
total driving time among the two paths such that consumption is minimized; see Figure 3 for
an example. Although realistic functions require a more technical analysis, many observations
made for our simplistic (linear) model from the previous section carry over to the more
realistic (nonlinear) tradeoff functions. In fact, the function ¢ can be computed in linear time
in the number of subfunctions defining ¢; and cs.

Algorithm Description. Given a source s € V, a target ¢ € V, and initial SoC b, € [0, M],
the tradeoff function propagating (TFP) algorithm solves EVCSP. It propagates labels
consisting of consumption functions (defined piecewise, by sequences of tradeoff functions)
and applies battery constraints on-the-fly. Hence, it does not have to maintain bivariate
SoC functions explicitly. The algorithm starts with the constant label ¢; = M — b at s.
The label is also added to a priority queue, which uses minimum driving time of a label as
key. In each step of its main loop, the algorithm extracts and settles a label ¢, (at some
vertex u € V') with minimum key from the queue. For every edge (u,v) € E, the function
¢ := link(cy, €(u,)) is computed. Note that ¢ may violate battery constraints, so we set
c(x) := oo for all x € R>¢ with ¢(z) > M and ¢(x) := 0 for all x € Ry with ¢(z) < 0. The
resulting function is added to the priority queue, unless it is dominated by existing labels
at v; we say that a label ¢; dominates another label ¢; if ¢ () < co(x) for all z € Rxq.

To keep the number of label comparisons low, each vertex v € V maintains a set Lget(v)
and a heap Luns(v) containing its settled and unsettled labels, respectively. We maintain
the invariant that for each v € V, the unsettled label in Lyns(v) with ménimum key is not
dominated by any settled label in Lget(v). Labels (at v) added to the priority queue are
also pushed into Lyus(v). Every time the minimum element of Ly,s(v) changes (because an
element is added or extracted), we check whether the new minimum element is dominated
by any settled label in Lget(v) and discard it in this case [7]. Dominance is tested as follows.
For two subfunctions (with the form of Equation 1), we can test in constant time whether
one dominates the other (by evaluating extreme points of their difference and subdomain
borders). For piecewise-defined consumption functions, we exploit that we only need to
compare subfunctions whose subdomains intersect. This allows us to test for dominance
in a linear scan (comparing subfunctions in increasing order of driving time). Given a
consumption function ¢ in the set Lyns(v) of some vertex v € V, a naive implementation then
performs pairwise comparisons to functions in Lget(v) to determine whether ¢ is dominated
by any of them. In doing so, the algorithm may miss cases where ¢ is merely partially
dominated, or dominated only by the lower envelope of several functions. Although including
dominated labels in Lyt (v) does not affect correctness, it may lead to unnecessary vertex
scans and increases the label size. Instead of pairwise dominance checks, we therefore identify
dominated parts of ¢ in a single coordinated scan over ¢ and all functions in Lge (v).

TFP is label setting, i.e., labels extracted from the queue are never dominated later on.
An optimal (constrained) path is found once a label at ¢ is extracted, which gives the optimal
driving time. It is also possible to retrieve the optimal path and driving speeds.

A Polynomial-Time Heuristic. To improve running times, TFP can easily be extended to a
heuristic search, at the cost of inexact results. We propose a polynomial-time approach based
on e-dominance [4]. When testing dominance of a label ¢ € Lyns(v) at some vertex v € V|

M. Baum, J. Dibbelt, D. Wagner, and T. Ziindorf

it is kept in Lyns(v) only if it yields an improvement (over labels in Ly (v)) by at least a
certain fraction e M, with € € (0, 1], for some driving time. Hence, we test for every x € R>q
whether ¢(z) + eM < cget () holds for all settled functions cset € Lget(v). Then, the number
of settled labels per set can become at most [1/e], which yields polynomial running time.

4 Speedup Techniques

We propose speedup techniques based on A* and CH for TFP (and its heuristic variant).
Combining both techniques, we obtain our fastest variant, CHAsp (CH, A*, Adaptive Speeds).
Our techniques do not alter the output of the algorithm, so correctness of TFP is maintained.

A* Search. This well-known technique [27, 33] uses a potential function 7: V' — R>g. The
potential m(v) of a vertex v € V is added to all keys of labels when running TFP, so labels
are extracted in a different order. We compute the potential function at query time.

Our first variant uses a cost functions d: E — R>¢ with d(e) = ce(7e), i. e., minimum
driving time on an edge. Before running TFP, a backward search (i.e., Dijkstra’s algorithm
traversing edges in backward direction) from the target ¢ computes, for each vertex v € V,
the minimum unconstrained driving time d(v,t) from v to the t. We obtain a consistent
potential function m4: V' — R by setting mq(v) := d(v,) [40]. Similarly, we compute lower
bounds on energy consumption, which allow us to prune the TFP search [8].

The potential function 74(v) may be too conservative if consumption on the optimal path
is very high. In such cases, it pays off to use a potential function 7;: V' x [0, M] — R>¢
that incorporates current SoC at a vertex [7]. We represent 7 (v, b) with a convex, piecewise
linear function that maps SoC b € [0, M] at a vertex v € V to a lower bound on remaining
driving time. The functions are determined in a label-correcting backward search from t.

Contraction Hierarchies. We propose an adaptation of CH to our scenario, which adds a
preprocessing step for faster queries. As in plain CH [23], vertices are contracted iteratively
(ordered by heuristic rank) during preprocessing and shortcut edges are added to maintain
distances. However, we contract only a subset of the vertices, leaving an uncontracted
core graph — a common approach in complex scenarios [7, 14, 28, 37]. Since the SoC at a
vertex u € V is only known at query time in our setting, any shortcut (u,v) has to store
a bivariate SoC function f(, .). Figure 4 illustrates how the initial SoC influences energy
consumption in our model. Their bivariate nature makes explicit construction and comparison
of SoC functions rather challenging. We discuss simple representations of SoC functions in
certain cases, exploiting that most consumption values are positive in realistic instances. We
say that a path P is discharging if the SoC on P never exceeds the (arbitrary) initial SoC,
i.e., there is no prefix of P that has negative minimum consumption for arbitrary driving
times (subpaths with negative consumption are allowed, though). Hence, it is not necessary
to explicitly check whether the SoC exceeds M on a discharging path. We show how the
SoC function of a discharging path is represented by at most two consumption functions.
As a first example, assume we are given a path P = P; o P, consisting of two subpaths P;
and P, with respective consumption functions c¢; and co, as in Figure 4. Let 71,7, 72, T2
denote their corresponding minimum and maximum driving times. Assume that c¢1(x) > 0 is
positive for all x € R>g, while co(x) < 0 is nonpositive for all z € [12,00). Finally, assume
that |e1(71)] > |ea(T2)], 1. e., the cost of Py is higher than the gain of P for any driving time,
so P is discharging. To derive the SoC function of P we introduce two auxiliary functions: a
positive part ¢ with ¢™(x) := c1(x — 12), and a negative part ¢~ with ¢ (z) := ca(x + 12).

11:7

ESA 2017

11:8

Constrained Shortest Path Algorithms for Battery Electric Vehicles

OO,CO oo =0 o0
8 tci(x) 6
7 5
6 4 4 4 4

z2 9
5 \ 3
4 2
3 1
€T
2 3 4 5
(a) (b)

Figure 4 Constructing a consumption function depending on initial SoC. (a) Function ¢; of a
path Pi. (b) Function ¢z of a path P». (c) Due to battery constraints, the minimum driving time on
P = P10 P, is 5 for an initial SoC b = 5. This yields the consumption function ¢ = link(c;",¢™). The
shaded area indicates possible values of consumption functions for different values of initial SoC.

The original functions are shifted along the x-axis to simplify the analysis (note that the
minimum feasible driving time of ¢~ is 0). Given some initial SoC b € [0, M], the positive
part ¢, and the negative part ¢~, we first define the constrained positive part c;’ as

ot (2) i= 00 if b<ch(x)
c¢t(z) otherwise,

which applies battery constraints along P; for an initial SoC of b; see Figure 4. Then, the
SoC function fp of the path P evaluates to fp(z,b) = b — link(c;,c¢™)(z) for arbitrary
z € R>p and b € [0, M]. The function first applies battery constraints on the positive part
and links the resulting function with the negative part.

We now describe how SoC functions representing general discharging paths are constructed
from two given SoC functions of discharging paths. Assume we are given a discharging
path P; whose SoC function is defined by two consumption functions ¢ and ¢; , as described
above. Similarly, we are given a discharging path P, with respective consumption functions
C; and c; . Observe that the path P := P; o P, must be discharging as well. Apparently,
if we know the initial SoC, we can compute energy consumption on P by computing
link(link(link(c, ¢;)eg)e;) and applying battery constraints before each link operation,
like in the TFP algorithm. However, we want to represent P with only two consumption
functions ¢ and ¢~. Recall that the only constraint we have to check for discharging paths
is whether the SoC drops below 0. Thus, we identify a new positive part ¢ as follows. Since
both ¢ and c¢; are nonpositive for all admissible driving times, the constraint needs only
to be checked for ¢ and cj (i.e., before the first and third link operation). To integrate
these checks into a single positive part ¢, we first compute the function h := link(cy, c2+)
Clearly, the battery can only run empty on P; if this consumption function is positive for
some admissible driving time. To distinguish this case, we split h into a positive part h*
with At (z) := max{h(z),0} and a negative part h~ with h~(z) := h(x) if h(z) < 0
and h~(x) := oo otherwise. Since h is a decreasing consumption function, so are h™ and h~.
We obtain the positive part ¢t of P by setting ¢t () := link(c", h*)(z — 7) and the negative
part ¢~ by setting ¢~ (x) := link(h ™, ¢5)(x + 7), where 7 is the minimum driving time of h~.
The SoC function of P is obtained from ¢ and ¢~ as described above.

During preprocessing, we only allow a vertex v € V' to be contracted if all new shortcuts
created as part of its contraction are discharging. We call v active in this case. Note that
the number of active vertices grows as contraction proceeds, as contraction produces longer

M. Baum, J. Dibbelt, D. Wagner, and T. Ziindorf

Table 1 Benefits of our approach (Eur-PG, 2kWh). For TFP and TFP-dom. (improved dominance
tests), we report the number of settled labels (# Lbls.), number of label comparisons during the
forward search (# Dom.), average and maximum running times, and relative driving time savings
over the constrained path found by BSP on discretized speeds.

Query Path Savings
Algo. # Lbls. #Dom. avg.[ms| max.[ms] avg.[%] max.[%)]
BSP 30990276 21300657 522 47755 779756 - -
TFP 103119 4399002 444 14 347 2.7% 9.4%
TFP-dom. 46 228 700 546 103 3851 2.7% 9.4%

shortcuts, which are more likely to consist of long positive parts. Since we deal with a
bicriteria scenario, vertex contraction may produce multi-edges. In such cases, we only want
to keep shortcuts whose SoC functions are not dominated by parallel shortcuts. Hence, after
contraction of a vertex, we delete (parts of) SoC functions of shortcut candidates that are
dominated by existing functions between the same pair of vertices (and vice versa). To
this end, we derive efficient dominance checks for (simple) bivariate SoC functions that

can be performed in linear time (in the number of subfunctions of all involved functions).

Finally, before adding a (nondominated) shortcut candidate to the graph, we run a witness
search [23] to test if the shortcut is necessary to maintain distances. As an exact approach
would require propagation and comparison of bivariate SoC functions, our witness search
computes univariate upper bounds on energy consumption instead. This does not violate
correctness, but may result in unnecessary shortcuts.

Queries. Plain CH uses a bidirectional search, which scans only edges to vertices of higher
rank in the input graph enriched with shortcuts obtained during preprocessing. In our case,
however, the SoC at the target vertex ¢ € V is not known at query time, which makes
backward search difficult. Instead, we extract the search space in a (backward) BFS from ¢,
scanning and marking only edges to vertices of higher rank. Afterwards, we execute TFP from
the source vertex s, scanning upward edges (with respect to ranks of incident vertices), core
edges, and marked downward edges. For faster queries, we can combine this search with A*.

5 Experiments

We implemented all approaches in C++, using g++ 4.8.3 (-O3) as compiler. Experiments
were conducted on a single core of a 4-core Intel Xeon E5-1630v3 clocked at 3.7 GHz, with
128 GiB of DDR4-2133 RAM, 10 MiB of L3 cache, and 256 KiB of L2 cache.

We consider road networks of Europe with 22198 628 vertices and 51088095 edges
and Germany with 4692091 vertices and 10805429 edges, provided by PTV AG (http:
//ptvgroup.com). Combining reasonable minimum speeds for different road types (e.g.,
80km/h on motorways and 30 km/h in residential areas) with the posted speed limits (if
higher), we get intervals of allowed speeds per road segment, resulting in 25 % and 38 % of
nonconstant edges for Germany and Europe, respectively. Applying elevation data from
the Shuttle Radar Topography Mission, v4.1 (srtm.csi.cgiar.org), we derived realistic
energy consumption from two detailed micro-scale emission models [29]: one based on a
Peugeot iOn and one artificial model [39] that additionally accounts for auxiliary consumers
(e.g., air conditioning). These data sources are proprietary, but enable evaluation on

11:9

ESA 2017

http://ptvgroup.com
http://ptvgroup.com
srtm.csi.cgiar.org

11:10

Constrained Shortest Path Algorithms for Battery Electric Vehicles

5 T T T T T T T T T ‘ T T
10° £ £
ol g |
0 yd
s]]
— 107 ¢ o / /o/o 03
£ B ® o]
v 102} ° / ./ /0/ —0— BSP i
£ g o _—e o— ~© —@— TFP &
= 0 - /'/ %0 TFP-dom. | |
g o /././8 -Q— A*—ﬂ'd g
| 3 ® 8/ —@— CHAsp-m b
10° D 4
_e ./8 ~®— CHAsp-ma |
—1 | ;4./ —0— CHAsp-e-mq |
107" | | | | | | | | | 1 1]

0.25 0.5 1 2 4 8 16 32 64 128 256 512

Battery capacity [kWh]

Figure 5 Scalability of BSP, our TFP algorithm, TFP with improved dominance tests (TFP-dom.),
speedup techniques (A*-mq, CHAsp-mq, and CHAsp-7y), and our heuristic approach CHAsp-e-mq
with € := 0.1. A capacity of 512kWh corresponds to a range of roughly 3 000 km.

detailed and realistic input data. We denote our instances by Germany-Aux (Ger-AX),
Germany-Peugeot (Ger-PG), Europe-Aux (Eur-AX), and Europe-Peugeot (Eur-PG). They
have negative consumption (for at least some driving times) on 7.8 % (Ger-AX) to 12.9 % (Eur-
PG) of their edges.

For comparison, we consider parallel edges and bicriteria shortest paths (BSP) [34]
to model adaptive speeds, as was best practice in previous approaches [8]. We generate
multi-edges by sampling consumption functions at discrete velocity steps of 10 km/h.

We evaluate random in-range queries, i.e., we pick a source vertex s € V uniformly at
random. Among all vertices in range from s with an initial SoC by = M, we pick the target
vertex t € V uniformly at random. Since unreachable targets are easily detected by backward
search phases of A* (or any algorithm for computing energy-optimal routes [9, 16, 35]), this
yields more challenging and interesting queries for us.

Model Validation and Scalability. We have argued that an approach based fully on con-
sumption functions unlocks both better tractability and improved solution quality compared
to discrete speeds and BSP. Indeed, we observe a significant speedup by simply switching to
our more realistic model, as Table 1 shows. TFP is up to two orders of magnitudes faster than
BSP and finds paths that are up to 9.4 % quicker (within SoC constraints), since it evaluates
speed—consumption tradeoffs more fine-granularly while maintaining less query state (labels
of continuous functions expressed by few parameters instead of large, discrete Pareto sets).
This is interesting, as sampling was expressly considered to manage tractability [8, 25, 28].
In fact, even though atomic operations (linking and comparing labels) are more expensive
for TFP, a drastic reduction in the number of vertex scans explains the speedup.

Figure 5 gives an overview of our approaches and their scalability across increasing battery
capacities. For each capacity, we ran 100 random in-range queries, reporting median running
time if all 100 queries terminated within one hour. Beyond the previously discussed BSP,
TFP, and TFP-dom., A* enables reasonable running times for capacities of up to 32kWh,
without any preprocessing. Adding preprocessing, CHAsp-74 provides further speedup by
about an order of magnitude. In comparison, median running times of CHAsp-7; are slower
for all ranges up to 32kWh. However, this algorithm is more robust against outliers and

M. Baum, J. Dibbelt, D. Wagner, and T. Ziindorf

Table 2 Impact of core size on performance (Ger-PG, 16 kWh). Vertex contraction stopped once
the average degree of active vertices in the core reached a given threshold (@ Deg). We report the
resulting core size (# Vertices), preprocessing time, and average query times for 1000 queries using
CHAsp with potential functions mq and 7¢, respectively.

Core size Prepr. Query [ms]
O Deg. # Vertices [h:m:s] Td Ty
0 - - 3326.0 4861.5

8 720514 (15.36%) 5:07 737.2 798.3
16 400174 (8.53%) 13:25 496.2 485.0
32 305301 (6.51%) 31:44 451.8 4340
64 268436 (5.72%) 1:11:13 5055 473.1
128 251410 (5.36%) 2:37:23 649.1 586.1

Table 3 Preprocessing and exact query performance for the potential functions 74 and 7¢. For
the ranges 16 kWh and 85 kWh, we show number of labels settled during the forward search (# Lbls.),
number of label comparisons during the forward search (# Dom.) and total query times.

Prepro. 16 kWh 85 kWh
Inst. [h:m:s] Algo. #Lbls. #Dom. Query[ms] #Lbls. #Dom. Query [ms]
Ger-AX 30:34 CHAsp-mq 152 3788 4.2 24715 4312923 552.3
Ger-AX 30:34 CHAsp-7y 61 448 17.0 406 11813 1236.7
Ger-PG 31:44 CHAsp-wq 32773 6352488 451.8 2272350 2130447427 131562.0
Ger-PG 31:44 CHAsp-my 6008 491173 434.0 32182 6 836 380 14 873.5
Eur-AX 3:10:43 CHAsp-mq 124 2175 4.0 27358 12159 343 960.9
Eur-AX 3:10:43 CHAsp-7y 73 1006 15.8 871 46 529 1174.7
Eur-PG 3:13:01 CHAsp-wqg 23304 5024403 346.1 - - -
Eur-PG 3:13:01 CHAsp-7y 6629 800430 341.7 105792 44986 403 34617.4

is the only exact method that terminates within an hour for all queries at 64 kWh and up.

Finally, our heuristic variant scales very well with vehicle range: Query times actually bottom
out for large battery capacities, as the vehicle range gets close to the graph diameter.

Detailed Experiments. We evaluate different variants of our fastest approach, CHAsp.

Table 2 shows CH preprocessing effort and query performance subject to core size on Ger-PG,
for a common battery capacity of 16 kWh (corresponding to a range of 100km). Contraction
becomes much slower beyond a core degree of 32, which is explained by the small number of
remaining active (i.e., contractable) vertices in the core. This also explains why speedup
compared to the baseline () deg = 0 is equivalent to plain TFP combined with A*) is much
smaller than in simpler applications, where CH typically improves the baseline by several
orders of magnitude [23]. Similar observations were made in other complex settings, including
time-dependent [5, 11] and multicriteria [21, 22] scenarios. Nevertheless, CH still yields an
improvement by up to an order of magnitude in our case. In our subsequent experiments, we
pick an average core degree of 32 as stopping criterion of CH preprocessing.

Table 3 reports performance of CHAsp on all instances for capacities of 16 kWh and
85 kWh (as in Tesla models, with a range of 400-500km). Figures are average values for 1000
in-range queries. For 16 kWh, our techniques find the optimal solution in well below a second

on average. For Ger-AX and Eur-AX, we even achieve query times in the order of milliseconds.

11:11

ESA 2017

11:12

Constrained Shortest Path Algorithms for Battery Electric Vehicles

Table 4 Performance of the heuristic variant of CHAsp-m4, for different choices of the parameter
(see Section 3) on the hard instances Ger-PG and Eur-PG. We show figures on query performance for
1000 random queries with a range of 16 kWh, as in Table 3. Additionally, we report the percentage
of feasible and optimal results, as well as the average and maximum relative error.

Query Result Quality

Inst. Prepro. 5 # Lbls. #Dom. T.[ms] Feas. Opt. Avg. Max.
o 31:43 0.00 32773 6352488 451.8 100.0% 100.0% 1.0000 1.0000
= 30:41 0.01 19922 1949458 225.6 100.0% 89.4% 1.0001 1.0047
(% 25:49 0.10 6891 208 058 75.6 98.9% 62.8% 1.0013 1.0502

17:48 1.00 1742 11149 30.7 95.1% 476% 1.0144 1.2294
U 3:09:22 0.00 23304 5024403 346.1 100.0% 100.0% 1.0000 1.0000
A 3:04:48 0.01 12803 1132685 151.6 100.0% 82.8% 1.0001 1.0145
m; 2:47:09 0.10 5045 126 662 60.9 99.5% 57.5% 1.0020 1.0418

2:14:03 1.00 1428 7641 28.2 92.7% 45.8% 1.0203 1.3960

This gap in running time is explained by the difference in the number of edges with negative
cost, caused by the underlying consumption model. One could even argue that the instances
Ger-PG and Eur-PG are actually rather excessive in this regard, by not accounting for any
auxiliary consumers at all. As a result, these instances are significantly more difficult to solve.
Regarding the potential functions 74 and 7, the search space is consistently smaller when
using 7y, but the backward search is more expensive. In fact, it becomes the major bottleneck
for a battery capacity of 16 kWh on the easier instances. Consequently, query times are slower
by about a factor of 4. For harder scenarios, however, the potential function 7, provides
better results due to better scalability. Note that when using 74, at least one query exceeded
our threshold of one hour in computation time on Eur-PG. In summary, we can solve EVCSP
optimally for typical ranges in less than a second, even on hard instances. For very long
ranges, our algorithm computes the optimum in well below a minute on average (using 7y),
despite its exponential running time.

In Table 4, we evaluate our heuristic approach for different choices of € (in % of total SoC).
During preprocessing, new shortcuts are included only if they significantly improve on the
existing ones. Thus, preprocessing becomes faster and core sizes (not reported in the table)
decrease by up to 30 %. Regarding queries, we achieve a speedup by an order of magnitude.
However, the choice of € clearly matters. For ¢ = 0.01, the decrease in quality is negligible,
but speedup (about a factor of 2) is rather limited as well. For ¢ = 0.1, on the other hand,
the optimal solution is still found very often. The average error is roughly 0.2 %, while the
overall maximum error is 5%, which is acceptable in practice. Finally, for ¢ = 1.0, both
the average and maximum error increase significantly. Given that speedup is also limited
compared to € = 0.1, we conclude that the latter provides the best tradeoff in terms of
quality and query performance: providing high-quality solutions, it enables query times of
well below 100 ms, which is fast enough even for interactive applications. Moreover, note
that in cases where no path is found (about 1% of all queries for € = 0.1), a simple fallback
solution could return the energy-optimal path, which can be computed quickly [9, 16, 35].

6 Conclusion

We introduced a novel framework for computing constrained shortest paths for EVs in
practice, using realistic consumption models. Our base algorithm TFP respects battery

M. Baum, J. Dibbelt, D. Wagner, and T. Ziindorf

constraints and accounts for adaptive speeds in a mathematically sounder way that unlocks
both better query performance and improved solution quality when compared to previous
approaches using discretized, sampled speeds. Nontrivial speedup techniques based on A*
and CH make the algorithm practical. For typical EV ranges, it computes optimal solutions
in less than a second, making it the first practical exact approach — with running times
similar to previous inexact methods [8, 25, 28]. Our own heuristic enables even faster queries
while retaining high-quality solutions.

The result of our computations is not only the suggested route from source to target but
also optimal driving speeds along that route. In practice, these can be passed to the driver as
recommendations or directly to a cruise control unit. With the advent of autonomous vehicles,
the output of our algorithms can also be used for speed planning of self-driving EVs, either
directly or after further refinement [19]. For future work, a next step would be the integration
of planned charging stops [7, 37]. From a practical point of view, it might also be interesting
to consider adaptive speeds only on the fastest roads (e.g., motorways), where going below
the speed limit really pays off the most. Then, contracting vertices incident to constant
edges in CH might be a promising approach. Finally, we are interested in the integration of
variable speed limits imposed by, e. g., historic knowledge of traffic patterns [5, 13, 20].

—— References

1 Shubham Agrawal, Hong Zheng, Srinivas Peeta, and Amit Kumar. Routing Aspects of
Electric Vehicle Drivers and their Effects on Network Performance. Transportation Research
Part D: Transport and Environment, 46:246-266, 2016.

2 Johannes Asamer, Anita Graser, Bernhard Heilmann, and Mario Ruthmair. Sensitivity
Analysis for Energy Demand Estimation of Electric Vehicles. Transportation Research
Part D: Transport and Environment, 46:182-199, 2016.

3 Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Miiller-Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route Planning in
Transportation Networks. In Algorithm Engineering: Selected Results and Surveys, volume
9220 of Lecture Notes in Computer Science, pages 19-80. Springer, 2016.

4 Lucas S. Batista, Felipe Campelo, Frederico G. Guimaraes, and Jaime A. Ramirez. A
Comparison of Dominance Criteria in Many-Objective Optimization Problems. In Proceed-
ings of the 13th IEEE Congress on Evolutionary Computation (CEC’11), pages 2359-2366.
1IEEE, 2011.

5 Gernot V. Batz, Robert Geisberger, Peter Sanders, and Christian Vetter. Minimum Time-
Dependent Travel Times with Contraction Hierarchies. ACM Journal of Experimental
Algorithmics, 18:1.4:1-1.4:43, 2013.

6 Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik Schultes,
and Dorothea Wagner. Combining Hierarchical and Goal-Directed Speed-up Techniques for
Dijkstra’s Algorithm. ACM Journal of Experimental Algorithmics, 15:2.3:1-2.3:31, 2010.

7 Moritz Baum, Julian Dibbelt, Andreas Gemsa, Dorothea Wagner, and Tobias Ziindorf.
Shortest Feasible Paths with Charging Stops for Battery Electric Vehicles. In Proceed-
ings of the 23rd ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems (GIS’15), pages 44:1-44:10. ACM, 2015.

8 Moritz Baum, Julian Dibbelt, Lorenz Hiibschle-Schneider, Thomas Pajor, and Dorothea
Wagner. Speed-Consumption Tradeoff for Electric Vehicle Route Planning. In Pro-
ceedings of the 14th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems (ATMOS’14), volume 42 of OpenAccess Series in Informat-
ics (OASIcs), pages 138-151. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2014.
doi:10.4230/0ASIcs.ATMOS.2014.138.

11:13

ESA 2017

http://dx.doi.org/10.4230/OASIcs.ATMOS.2014.138

11:14

Constrained Shortest Path Algorithms for Battery Electric Vehicles

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. Energy-Optimal
Routes for Electric Vehicles. In Proceedings of the 21st ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems (GIS’13), pages 54-63. ACM,
2013.

Luca Bedogni, Luciano Bononi, Marco Di Felice, Alfredo D’Elia, Randolf Mock, Francesco
Morandi, Simone Rondelli, Tullio Salmon Cinotti, and Fabio Vergari. An Integrated Simu-
lation Framework to Model Electric Vehicles Operations and Services. IEEE Transactions
on Vehicular Technology, 65(8):5900-5917, 2016.

Marco Blanco, Ralf Borndorfer, Nam-Dung Hoang, Anton Kaier, Adam Schienle, Thomas
Schlechte, and Swen Schlobach. Solving Time Dependent Shortest Path Problems on Air-
way Networks Using Super-Optimal Wind. In Proceedings of the 16th Workshop on Algo-
rithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’16),
volume 54 of OpenAccess Series in Informatics (OASIcs), pages 12:1-12:15. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2016. doi:10.4230/0ASIcs.ATM0S.2016.12.
Karin Brundell-Freij and Eva Ericsson. Influence of Street Characteristics, Driver Cate-
gory and Car Performance on Urban Driving Patterns. Transportation Research Part D:
Transport and Environment, 10(3):213-229, 2005.

Daniel Delling and Dorothea Wagner. Time-Dependent Route Planning. In Robust and
Online Large-Scale Optimization, volume 5868 of Lecture Notes in Computer Science, pages
207-230. Springer, 2009.

Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. User-Constrained Multi-Modal
Route Planning. ACM Journal of Experimental Algorithmics, 19:3.2:1-3.2:19, 2015.
Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1(1):269-271, 1959.

Jochen Eisner, Stefan Funke, and Sabine Storandt. Optimal Route Planning for Electric
Vehicles in Large Networks. In Proceedings of the 25th AAAI Conference on Artificial
Intelligence (AAATI’11), pages 1108-1113. AAAT Press, 2011.

Stephan Erb, Moritz Kobitzsch, and Peter Sanders. Parallel Bi-Objective Shortest Paths
Using Weight-Balanced B-Trees with Bulk Updates. In Proceedings of the 13th Interna-
tional Symposium on Experimental Algorithms (SEA’14), volume 8504 of Lecture Notes in
Computer Science, pages 111-122. Springer, 2014.

Chiara Fiori, Kyoungho Ahn, and Hesham A. Rakha. Power-Based Electric Vehicle Energy
Consumption Model: Model Development and Validation. Applied Energy, 168:257-268,
2016.

Carlos Flores, Vicente Milanés, Joshué Pérez, David Gonzélez, and Fawzi Nashashibi. Op-
timal Energy Consumption Algorithm Based on Speed Reference Generation for Urban
Electric Vehicles. In Proceedings of the 11th IEEFE Intelligent Vehicles Symposium (IV’15),
pages 730-735. IEEE, 2015.

Luca Foschini, John Hershberger, and Subhash Suri. On the Complexity of Time-Dependent
Shortest Paths. Algorithmica, 68(4):1075-1097, 2014.

Stefan Funke and Sabine Storandt. Polynomial-Time Construction of Contraction Hier-
archies for Multi-Criteria Objectives. In Proceedings of the 15th Meeting on Algorithm
Engineering € Experiments (ALENEX’13), pages 31-54. STAM, 2013.

Robert Geisberger, Moritz Kobitzsch, and Peter Sanders. Route Planning with Flexible
Objective Functions. In Proceedings of the 12th Workshop on Algorithm Engineering €
Ezperiments (ALENEX’10), pages 124-137. SIAM, 2010.

Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact Routing
in Large Road Networks Using Contraction Hierarchies. Transportation Science, 46(3):388—
404, 2012.

http://dx.doi.org/10.4230/OASIcs.ATMOS.2016.12

M

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

. Baum, J. Dibbelt, D. Wagner, and T. Ziindorf

Andrew V. Goldberg and Chris Harrelson. Computing the Shortest Path: A* Search Meets
Graph Theory. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’05), pages 156-165. STAM, 2005.

Michael T. Goodrich and Pawel Pszona. Two-Phase Bicriterion Search for Finding Fast
and Efficient Electric Vehicle Routes. In Proceedings of the 22nd ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems (GIS’14), pages
193-202. ACM, 2014.

Gabriel Y. Handler and Israel Zang. A Dual Algorithm for the Constrained Shortest Path
Problem. Networks, 10(4):293-309, 1980.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A Formal Basis for the Heuris-
tic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100-107, 1968.

Frederik Hartmann and Stefan Funke. Energy-Efficient Routing: Taking Speed into Ac-
count. In Proceedings of the 37th Annual German Conference on Advances in Artificial
Intelligence (KI’14), volume 8736 of Lecture Notes in Computer Science, pages 86-97.
Springer, 2014.

Stefan Hausberger, Martin Rexeis, Michael Zallinger, and Raphael Luz. Emission Factors
from the Model PHEM for the HBEFA Version 3. Technical report 1-20/2009, University
of Technology, Graz, 2009.

James Larminie and John Lowry. Electric Vehicle Technology Explained, 2nd Edition. John
Wiley & Sons, Ltd., 2012.

Mingsong Lv, Nan Guan, Ye Ma, Dong Ji, Erwin Knippel, Xue Liu, and Wang Yi. Speed
Planning for Solar-Powered Electric Vehicles. In Proceedings of the 7th International Con-
ference on Future Energy Systems (e-Energy’16), pages 6:1-6:10. ACM, 2016.

Enrique Machuca and Lawrence Mandow. Multiobjective Heuristic Search in Road Maps.
Ezxpert Systems with Applications, 39(7):6435-6445, 2012.

Lawrence Mandow and José-Luis Pérez-de-la-Cruz. Multiobjective A* Search with Consis-
tent Heuristics. Journal of the ACM, 57(5):27:1-27:24, 2010.

Ernesto Q.V. Martins. On a Multicriteria Shortest Path Problem. FEuropean Journal of
Operational Research, 16(2):236-245, 1984.

Martin Sachenbacher, Martin Leucker, Andreas Artmeier, and Julian Haselmayr. Efficient
Energy-Optimal Routing for Electric Vehicles. In Proceedings of the 25th AAAI Conference
on Artificial Intelligence (AAAI’11), pages 1402-1407. AAAT Press, 2011.

Peter Sanders and Lawrence Mandow. Parallel Label-Setting Multi-Objective Shortest Path
Search. In Proceedings of the 27th IEEE International Parallel and Distributed Processing
Symposium (IPDPS’13), pages 215-224. IEEE, 2013.

Sabine Storandt. Quick and Energy-Efficient Routes: Computing Constrained Shortest
Paths for Electric Vehicles. In Proceedings of the 5th ACM SIGSPATIAL International
Workshop on Computational Transportation Science (IWCTS’12), pages 20-25. ACM, 2012.

Sabine Storandt. Route Planning for Bicycles — Exact Constrained Shortest Paths Made
Practical via Contraction Hierarchy. In Proceedings of the 22nd International Conference
on Automated Planning and Scheduling (ICAPS’12), pages 234-242. AAAI Press, 2012.

Tessa Tielert, David Rieger, Hannes Hartenstein, Raphael Luz, and Stefan Hausberger.
Can V2X Communication Help Electric Vehicles Save Energy? In Proceedings of the 12th
International Conference on ITS Telecommunications (ITST’12), pages 232-237. IEEE,
2012.

Chi Tung Tung and Kim Lin Chew. A Multicriteria Pareto-Optimal Path Algorithm.
European Journal of Operational Research, 62(2):203-209, 1992.

11:15

ESA 2017

11:16

Constrained Shortest Path Algorithms for Battery Electric Vehicles

41

42

Yan Wang, Jianmin Jiang, and Tingting Mu. Context-Aware and Energy-Driven Route Op-
timization for Fully Electric Vehicles via Crowdsourcing. IEEE Transactions on Intelligent
Transportation Systems, 14(3):1331-1345, 2013.

Enjian Yao, Zhigiang Yang, Yuanyuan Song, and Ting Zuo. Comparison of Electric Vehi-
cle’s Energy Consumption Factors for Different Road Types. Discrete Dynamics in Nature
and Society, 2013.

A Quasi-Polynomial-Time Approximation Scheme
for Vehicle Routing on Planar and Bounded-Genus
Graphs*

Amariah Becker!, Philip N. Klein?, and David Saulpic3

1 Department of Computer Science, Brown University, Providence, RI, USA
becker@cs.brown.edu

2 Department of Computer Science, Brown University, Providence, RI, USA
klein@cs.brown.edu

3 Department of Computer Science, Ecole Normale Supérieure, Paris, France
david.saulpic@ens.fr

—— Abstract

The CAPACITATED VEHICLE ROUTING problem is a generalization of the TRAVELING SALESMAN
problem in which a set of clients must be visited by a collection of capacitated tours. Each
tour can visit at most @ clients and must start and end at a specified depot. We present the
first approximation scheme for CAPACITATED VEHICLE ROUTING for non-Euclidean metrics.
Specifically we give a quasi-polynomial-time approximation scheme for CAPACITATED VEHICLE
RouTING with fixed capacities on planar graphs. We also show how this result can be extended
to bounded-genus graphs and polylogarithmic capacities, as well as to variations of the problem
that include multiple depots and charging penalties for unvisited clients.

1998 ACM Subject Classification G.2.2 Graph Algorithms
Keywords and phrases Capacitated Vehicle Routing, Approximation Algorithms, Planar Graphs

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.12

1 Introduction

Vehicle routing refers to a class of problems in which one selects routes for a vehicle that
must make deliveries or pickups at specified locations. Irnich et al., in the introductory
chapter [14, p. 3] of a book on vehicle routing, define the CAPACITATED VEHICLE ROUTING
problem (CVRP) as follows: there is a (directed or undirected) graph G with edge costs, a
distinguished vertex r called the depot, and for each vertex v, a demand ¢g(v). Finally, there
is a number @, which is the capacity of the vehicle(s). A solution is a set of tours, where
each tour starts and ends at the depot and serves the demands of some of the vertices it
visits. Each tour must serve a total demand of at most @), and every demand must be served
by one of the tours. The goal is to find a solution whose total cost is minimum.

To be consistent with the algorithms literature, we use a slightly different definition
of CAPACITATED VEHICLE ROUTING: we assume that the demands are all O or 1, i.e. that
there is a set Z of vertices, called the clients, where the demand is 1, and demands at other
vertices are zero. (One can model multiple clients located at the same vertex v by introducing
artificial vertices, adjacent to v via artificial edges of cost zero.)

* This research was supported by National Science Foundation grant CCF-1409520.

© Amariah Becker, Philip N. Klein, and David Saulpic;

licensed under Creative Commons License CC-BY
25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 12; pp. 12:1-12:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2

A QPTAS for Vehicle Routing on Planar and Bounded-Genus Graphs

The problem is APX-hard for an arbitrary graph when @ > 3 [5], and to approximate it
within a factor 1.5 is NP-complete even in a tree when @ is unbounded [10]. We are interested
in finding solutions that are within a factor 1 + € of optimal for any given €. However, despite
the fact that the problem is often described as a problem in road networks, theoretical
work on algorithms achieving 1 4 € approximation has been restricted to the Euclidean case.

Since the family of planar graphs (or more generally graphs of bounded genus) are
useful for modeling road networks,! it is desirable to find an algorithm that achieves a 1 + €
approximation on such graphs with arbitrary nonnegative edge costs. Before this work, no
such approximation scheme was known for any graph class (except trees, where the problem
is polynomial-time-solvable for fixed capacity).

» Theorem 1. For any ¢ > 0 and any Q > 0, there is a quasi-polynomial-time algorithm
that, given an instance of CAPACITATED VEHICLE ROUTING in which the capacity is Q and
the graph is planar, finds a solution whose cost is at most 1 + € times optimum.

A family of algorithms of this form, where for each € > 0 there is an algorithm that achieves
a 1+ e approximation, is an approzimation scheme. By quasi-polynomial is meant a function
f(n) that is O(n'°&" ") for some constant c.

As pointed out in [14], with a limited fleet, it may be impossible to service all requests,
and there is an advantage in simultaneously optimizing both routing and request selection.
We model this using a natural generalization of the capacitated-vehicle-routing problem: an
instance specifies also a penalty for each client; the solution is allowed to miss some clients
and the goal is to find a solution that minimizes the sum of cost plus penalties. We call this
CAPACITATED VEHICLE ROUTING WITH PENALTIES.

This generalization can handle the vehicle routing problem with private fleet and common
carrier (VRPPC), “where customers may either be served by using owned vehicles with
traditional routes or be assigned to a common carrier, which serves them directly at a prefixed
cost” [14, p. 13].

Our quasi-polynomial-time approximation scheme can also be extended to handle Ca-
PACITATED MULTIPLE-DEPOT VEHICLE ROUTING. In this version, several vertices are
designated as depots, and tours can start and end at different depots.

The algorithm can also handle a graph of bounded genus and a capacity @ that is
polylogarithmic. (Q is considered constant in Theorem 1.)

» Theorem 2. For any e > 0, any g > 0, any R > 0 and any ¢ > 0, there is a quasi-
polynomial-time algorithm that, given an instance of CAPACITATED MULTIPLE-DEPOT
VEHICLE ROUTING WITH PENALTIES in which the capacity Q is O(log®n) and the graph has
genus g with R designated depots, finds a solution whose cost is at most 1+ € times optimum.

1.1 Related work

CAPACITATED VEHICLE ROUTING is a generalization of TRAVELING SALEMAN PROBLEM
(for TSP @Q = n).
Haimovich and Rinnoy Kan [12] showed the following:

» Lemma 3. For CAPACITATED VEHICLE ROUTING with capacity Q and client set Z,

OPT > %Z{d(c,r) L ceZ}). (1)

L Aside from highways, the nonplanarities in road networks tend to be localized, and informally approx-
imation schemes for planar graphs can often “work around” these localized nonplanarities.

A. Becker, P. N. Klein, and D. Saulpic

This lemma implies a constant-factor approximation in general metrics, where the constant
depends on the approximation ratio for TSP. CAPACITATED VEHICLE ROUTING in general
graphs is APX-hard for every fixed @ > 3 [4, 5]. Haimovich and Rinnoy Kan [12] gave a
polynomial-time approximation scheme (PTAS) for the Euclidean plane for the case when
the capacity @ is constant. Asano et al. [5] gave an algorithm that was a PTAS when Q
is O(logn/loglogn). Mathieu and Das [7] gave a quasi-polynomial-time approximation
scheme that handles arbitrary @. Building on [7], Adamaszek, Czumaj, and Lingas [1] give a
polynomial-time approximation scheme that for any € > 0 can handle @ up to 2108 1 where &
is a positive number that depends on €. There has been some work on approximation schemes
to R3 [16] and R [15] but these require that Q be O(log'/%logn). No polynomial-time
approximation scheme is known for arbitrary Q, even for R2.

There is little known about approximation of vehicle routing in special metrics other
than low-dimensional Euclidean metrics. Hamaguchi and Katoh [13] and Asano, Katoh, and
Kawashima [3] gave better constant-factor approximation algorithms for the case where the
graph is a tree.

1.2 Our Approach

Our algorithm uses a recursive decomposition of the graph via shortest-path separators. That
is, there is a recursive clustering in which the vertices on the boundary of each cluster lie
on a small number of shortest paths. This general idea has been used in several previous
approximation schemes for planar and bounded-genus graphs [2, 6, 8, 11]. The closest
previous use was in addressing the k-center problem [8], and we use a lemma from that paper
stating that such a recursive decomposition exists that has logarithmic depth.?

This paper introduces several new ideas in order to apply the recursive decomposition
to vehicle routing. Before finding the recursive decomposition, the algorithm must prune

the graph to eliminate vertices too far from the depot to participate in an optimal solution.

The shortest paths bounding each cluster are subpaths of shortest paths from the depot. This
ensures that if one vertex of a bounding shortest path is farther along the bounding shortest
path than another, it is also farther from the depot. This in turn is useful since, as we saw
in Section 1.1, there is a lower bound (3) on OPT that is based on the distance of clients
from the depot.

Some of the vertices of these bounding shortest paths are designated as portals, and
(some) paths of the solution are restricted to entering and leaving clusters via portals. This
in itself is not novel; portals have been used before. We introduce two new ideas. In previous
use of portals in approximation schemes for planar graphs, portals are selected uniformly
along a path. In this paper, it is essential that the portals be selected in a nonuniform
fashion: the farther from the depot, the greater the spacing between portals. This introduces
more error in areas of the graph farther from the depot but such error can be tolerated due
to the lower bound (3).

Second, requiring the entire solution to pass in and out of clusters via portals would
introduce too much error. Instead, we only require a tour to use portals in between picking
up clients. That way, we can bound the error in terms of clients and their distance from the
depot. (This error also depends on the depth of nesting of the recursion, since in the process

2 Such a decomposition was earlier described by Thorup [17] in the context of approximate distance
oracles. However, in addressing the generalization to multiple depots we use a generalization of the
decomposition that follows from slight modification of the proof in [8].

12:3

ESA 2017

12:4

A QPTAS for Vehicle Routing on Planar and Bounded-Genus Graphs

of picking up a client the tour might pass through many clusters at different levels of nesting,
but the depth of nesting is merely logarithmic.)

Having shown that an (approximately) optimal solution can be assumed to use clusters in
this way, we reduce the problem to one we can address using dynamic programming. In most
previous work on approximation schemes for planar graphs, this consists in simply finding an
optimal solution in a graph of bounded branchwidth (or treewidth) but because the solution
can pass through the boundary without using portals, that does not quite suffice in our case;
the dynamic program must also make use of the metric on the entire graph as well.?

Paper Qutline. Section 2 provides preliminary definitions. In Section 3 we describe the
graph decomposition and portal selection. In Section 4 we prove a structure theorem that
shows a near-optimal solution with the restricted structure exists. Section 5 provides the
dynamic program that finds such a near optimal solution in quasi-polynomial time. Finally
in Section 6 we describe several generalizations of our result.

2 Preliminaries

Let G = (V, E) be a graph. We denote the vertex set of G by V(G). G is planar if it can be
embedded on the surface of a sphere without any edge crossings. We let n = |V|. A planar
graph with n vertices and no parallel edges has O(n) edges.

For any edge set F' C E the boundary of F, denoted O(F), is the set of vertices that are
incident both to edges in F' and edges in £ — F.

We use d(u, v) to denote the (shortest path) distance from u to v. We can easily compute
all-pairs shortest paths in polynomial time, so we assume throughout the paper that we have
access to all (precomputed) distances. Additionally we assume that the cost of any edge
(u,v) is d(u,v); if not, it would not be used and can be removed from the graph. We use
d(P) =3 (4 v)ep (1, v) to denote the cost of a path P.

For a graph G and vertex r, an r-rooted shortest path tree T is an r-rooted tree in which
for all v in V the r-to-v path in T is a shortest path. For any vertex u on a shortest r-to-v
path, we call the u-to-v subpath a from-r shortest subpath. Such a subpath must also be a
shortest u-to-v path.

A triangulated planar graph is one in which every face has exactly three incident edges.
A planar graph can easily be triangulated in linear time by adding edges that recursively
subdivide faces with more than three incident edges. Each new edge (u,v) is given cost
d(u,v). Triangulating a planar graph requires adding O(n) edges.

A recursive partition of a set Y is a rooted binary tree in which each node is labeled with
a cluster C C'Y such that the root node is labeled with C =Y, and for any node labeled
with cluster Cqy the children nodes are labeled with clusters C; and Co that form a partition
of Cy [8].

A recursive clustering of a graph G is a rooted binary tree in which

each node is labeled with a cluster C C V(G),

If x is a child of y then the cluster associated with = is a subset of the cluster associated

with y, and

there is a mapping ¢(-) that maps each vertex v of G to a leaf cluster ¢(v) that contains v.
Each vertex v is considered to be assigned to each cluster containing ¢(v).

3 A similar technique was used in [8].

A. Becker, P. N. Klein, and D. Saulpic

A vertex v of a cluster C is a boundary vertex of the cluster if v also belongs to a cluster
C’ that neither contains nor is contained in C. An edge uv of G is a boundary edge of the
cluster if w is in the cluster and v is not. The depth of a recursive clustering is the depth of
the rooted binary tree.

For an instance of CAPACITATED VEHICLE ROUTING, Z is the set of clients, r is the
depot, and @ is the capacity. A solution is a collection of tours, each starting and ending at
r and visiting at most @ clients.

3 Decomposing the Graph

3.1 Graph Pruning

As a preprocessing step, the algorithm prunes from the graph those vertices that have no
clients and are very far from the depot. Specifically, the algorithm deletes each vertex that
does not lie on some u-to-v shortest path with u,v € ZU {r}. Since the optimal solution is
composed of such paths, pruning does not increase OPT'.

» Lemma 4. For all vertices w that remain after the preprocessing step, d(r,w) < OPT

Proof. Since w survived the pruning step, it must lie on some wu-to-v shortest path with
u,v € Z U {r}. Without loss of generality, assume that the optimal solution visits u before
visiting v. Therefore OPT > d(r,u) + d(u,v) > d(r,u) + d(u,w) > d(r,w) where the final
inequality comes from the triangle inequality. |

3.2 Cluster Decomposition

The following lemma is a slight generalization of a lemma in [8] (though it is probably
folklore):

» Lemma 5 (Generalization of Lemma 3.1 in [8]). Let T be a tree of degree at most three. Let
Y be a subset of the vertices. There is a depth-O(log |Y'|) recursive clustering of T such that
there are no boundary vertices,
each leaf cluster is assigned only one vertex of Y, and
each cluster C' has at most four boundary edges.

Let G be a planar embedded graph and let T be a spanning tree of G. Let G’ be obtained
from G by adding artificial edges to triangulate G. Let G* be the planar dual of G’. Let
T* be the set of edges of G* corresponding to edges of G’ that are not in 7. Then T* is
a spanning tree of G* (the interdigitating tree). Each edge of T* corresponds to a nontree
edge in G, which in turn defines a cycle consisting of that nontree edge together with a path
through T'. Since G’ is triangulated, G* has degree at most three. Map each vertex of G’
to one of the faces to which it is incident. Let Y be the faces to which elements of Z are
mapped. By choosing T to be an r-rooted shortest-path tree of G and applying Lemma 5,
we obtain the following generalization of a corollary of [8].

» Lemma 6 (Generalization of Corollary 3.1 of [8]). Let G be a planar embedded triangulated
graph with edge costs, let Z be a subset of the vertices, and let r be a vertex of G. There is a
depth-O(log | Z|) recursive clustering of G with the following properties:

there are no boundary edges,

for each cluster, there are at most eight from-r shortest paths such that the boundary

vertices of the cluster are the vertices that lie on these paths, and

at most three vertices of Z are assigned to each leaf cluster.

The algorithm computes a recursive clustering as described in Lemma 6.

12:5

ESA 2017

12:6

A QPTAS for Vehicle Routing on Planar and Bounded-Genus Graphs

3.3 Choosing Portals

The algorithm designates portals along each cluster boundary in a two-step process. First it
designates some of the vertices as spacers. Second, for each cluster it designates as portals a
subset of the cluster’s boundary vertices, including those boundary vertices that are spacers
and also some additional vertices.

The choice of spacers depends on a parameter 6. We will choose

€

"= @t Delog(Z] ¥
where c¢ is an absolute constant to be determined in the proof of Theorem 11.

We first describe spacer selection. Let T' be the shortest-path tree. Let © be the vertex
farthest from r that remains after the pruning step and let § > 0. Consider the unpruned
vertices in increasing order of distance from r. For each vertex v in turn, designate v
as a spacer if no ancestor in T of v within distance 6 max(d(r,s;_1), ﬁd(n@)) has been
designated a spacer.

» Lemma 7. Each from-r shortest path has at most 2+ log, s % spacers.
Proof. Let P be a from-r shortest path, and let r=sg, s1,...,S¢ be the spacers on P in

increasing order of distance from r. We bound ¢ as follows. For each i > 0, d(s;-1,s;) >
d d(r,si—1), so

d(r,s;) =d(r,si-1) + d(si—1,8:) > (1 +6)d(r,si—1) .
By induction,
d(r,sg) > (1+ 5)271d(r7 s1) -

Since d(r, 1) > 5‘—éld(r,ﬁ), we infer d(r, s¢) > (1 + 5)Z71%d(r,ﬁ), which implies

1 | Z]d(rse) _ 2]
1 6[1 ‘) <
A+ <5 ama =5
which shows
Z
éfl<log1+5|7‘. |

The algorithm then designates some of each cluster’s boundary vertices as portals. For
each cluster C, the boundary vertices of C lie on O(1) from-r shortest subpaths. For each
such from-r subpath P, designate as portals the first vertex of P and all the vertices of P
that are spacers.

By Lemma 7, each path P contributes O(6~!log(6~!|Z])) portals. Using the definition
of § in Equation 2, we obtain

» Lemma 8. For each cluster boundary, the above algorithm designates O(Qe'log?|Z|)
portals.

We also show a bound on the distance along the boundary to the nearest portal.

» Lemma 9. For every cluster C and boundary vertex v € 9(C), there is a portal p of C and
a p-to-v path of cost at most § (d(r,v) + OPT/|Z|).

A. Becker, P. N. Klein, and D. Saulpic

Proof. By Lemma 6, v must lie on some from-r shortest subpath of a from-r shortest path P.
Let s be v’s closest ancestor in T that is a spacer. By the algorithm for designating spacers,

d(s,v) <6 max(d(r,s), %d(r,ﬁ)) < ¢ max(d(r,v),OPT/|Z]).

If s belongs to P then s is a boundary vertex of C and hence a portal of C. In this case, we
take p = s. If not, then let p be the first vertex of P and note that d(p,v) < d(s,v). <

4 Structure Theorem

Consider a solution to CAPACITATED VEHICLE ROUTING. It consists of a set of tours.
Associated with each tour P is a set of vertices in V/(P) N Z that the tour is considered to
visit. For a cluster C, a tour fragment with respect to C is a maximal subpath of a tour all of
whose vertices are in C'. Every tour starts and ends at the depot r. If r is in C then it is
a boundary vertex of C. Therefore, by maximality, each endpoint of a tour fragment with
respect to C is a boundary vertex of C.

A tour fragment is wvisiting if it visits clients and passing if it does not. The endpoints of
a visiting fragment are called gates.

» Lemma 10. Any solution to CAPACITATED VEHICLE ROUTING crosses through O(log|Z|)
gates between two consecutive visits to clients.

Proof. Consider a solution to CAPACITATED VEHICLE ROUTING. Let u and v be two
consecutive clients visited by the solution, and let P be the subpath of the tour between its
visit to u and its visit to v. Let C be a cluster and let S be a visiting tour segment with an
endpoint x on P. Since S is a visiting segment, it visits some vertex. Since no visits occur
on P between u and v, the other endpoint y of P must not be an internal vertex of P. Thus
either u or v must be assigned to the cluster C. If u is assigned to C then all edges on the
u-to-z subpath of P belong to C, and the edge of P after = does not. If v is assigned to C
then all edges on the z-to-v subpath of P belong to C, and the edge of P before x does not.

Let Cy 0 C Cyun C ... CCyye be the clusters that are assigned u, and let C,, 0 C Cy 1 C ... C
Cy 1 be the clusters that are assigned v.

Fori=10,1,...,¢, let t, ; be the last vertex x of P such that the u-to-z subpath of P

consists of edges of cluster C, ;. For ¢ =0,1,...,k, let ¢, ; be the first vertex = of P such
that the z-to-u subpath of P consists of edges of cluster C, ;.

Since the clusters are non-crossing, P visits ty,0,tu,15 -« s tu.e, to ks to,k—1, -, to,0 iDL Order
(See Figure 1la). The argument above shows that every gate is one of ¢, g,...,%, 0.

By Lemma 6, the depth of the decomposition is O(log|Z|), so k + ¢ is O(log | Z]). <

Now we break up tours in a different way. Again consider a solution to CAPACITATED
VEHICLE ROUTING. It consists of a set of tours. For a cluster C, a tour segment P with
respect to C is portal-respecting if P has a portal-to-portal subpath P’ such that every vertex
not in P’ is a boundary vertex of C.

» Theorem 11. There exists a portal-respecting solution with cost at most (1 + €)OPT.

Proof. Let §* be an optimal solution to CAPACITATED VEHICLE ROUTING. To prove the
theorem, we show how to modify S* to construct a portal-respecting solution S by introducing
detours at every gate, and bound the cost incurred by these detours.

Consider a tour fragment P with respect to some cluster C, and let ¢ be an endpoint
of P. The corresponding detour is the subpath of a from-r shortest subpath from ¢ to the

12:7

ESA 2017

12:8

A QPTAS for Vehicle Routing on Planar and Bounded-Genus Graphs

I~ J
<@

(a) Gates (b) Detour

Figure 1 (a) Gates are depicted by large, hollow circles at crossings. Non-gate crossings enclose
passing segments (b) Boundary portals are denoted by squares. The double-line paths depict a
detour.

nearest portal, and back. (See Figure 1b.) Splicing such a detour into the solution at each
gate ensures that the solution is still feasible and is portal-respecting. It remains to show
that the cost of these detours is small.

Let v and v be two consecutive clients visited by S*. By Lemma 10 there is some constant
¢ such that there are at most clog|Z| gates between u and v where detours will be added.
We use this constant ¢ in the definition of § given in Equation 2. By Lemma 9 the distance
from any crossing ¢ to the nearest portal is at most ¢ (d(r,t) + OPT/|Z]), so the cost of each
detour is at most 2§ (d(r,t) + OPT/|Z|).

Since §* is optimal, the path that &* takes from u to v must be a shortest path. By
the triangle inequality, d(r,t) < d(r,v) + d(v,t) < d(r,v) + d(v,u). Therefore, the cost
of each detour is at most 20 (d(u,v) + d(r,v) + OPT/|Z|). Summing over all gates gives
20clog |Z|(d(u,v) + d(r,v) + OPT/|Z|), and summing over all pairs of consecutive clients
and using Lemma 3,

Z 26clog | Z|(d(u,v) + d(r,v) + OPT/|Z|) < 26clogn(OPT + %
(u,v)ES™

OPT + OPT)

= dclog |Z|(Q +4)OPT .

The definition of § given in Equation 2 ensures that the total detour cost is at most
eOPT. <

The notion of portal-respecting can be applied not just to a solution but to a partial

solution as well. This is used in the next section.

5 Dynamic Program

We present two dynamic programs: the first is slow but is the basis of the second, which
gives a QPTAS. Both have the same configurations but enumerate the transitions in different
ways.

5.1 Configurations

For each cluster, the dynamic program computes the minimal cost of a portal-respecting
solution that visits all the clients assigned to the cluster. A configuration for a cluster C

A. Becker, P. N. Klein, and D. Saulpic

N b,

=1
r q\\\ _e_1,_> +
(\\“~_.
\ﬂbEN\\\
o 2 \\
& \SL‘.O v

Figure 2 The segment (4,0, q) of the parent cluster is shown in red (short-dashed line). The
green path (long-dashed line) shows one way to map this segment onto the child clusters: segment
(b1, e1) visits ¢ clients and (be, e2) visits g2 clients with g1 + g2 = ¢. Segments (3, b1), (e1, b2), and
(e2,0) are passing segments and visit no clients

describes the tour segments formed by the intersection of C with a solution. Recall that if
the depot r is contained in a cluster, it is a portal of its boundary. Additionally, since each
client is assigned to exactly one leaf cluster, we avoid overcounting any client’s demand. For
a client z, let D¢ . be the demand of z inside the cluster C. D¢ . =1 if z is assigned to C,
otherwise D¢ . = 0.

A configuration X for cluster C specifies, for each pair of portals (i,0) of the cluster
and for each ¢ € {1,...,Q}, a number &;,, of segments that enter C at portal ¢, visit
exactly ¢ clients in C, and leave C at portal o. A configuration for cluster C is admissible if
Yi0q9Xi0,q = YzecDe 2

A partial solution S for cluster C is a set of tour segments that stays inside the cluster.

We say that a partial solution S for cluster C induces the configuration X if every visiting
segment of S corresponds to a segment described in X' (recall that a visiting segment is one
that visits a client).

Our dynamic program computes, for each cluster C and admissible configuration X, the
weight DP(C, X) of the minimum-weight, portal-respecting partial solution that induces the
configuration X.

5.2 Compatibility

To compute the minimal cost of a partial solution for a cluster Cy that induces the configuration
XY, the algorithm determines possible configurations for the two child clusters of Cy, namely
C; and Cy. Let Cy be a cluster, with two child clusters C; and Cs, and let X0, X!, and X2 be
three configurations such that X* is admissible for C,. We say that X' and X2 are compatible
with XY if each segment (i, 0, q) described in X° can be mapped to a tuple of segments of
X1 and A2, ((bl,el,jl,ql),n- ,(bK7eK,jK,qK)), where j, € {1,2}, b, and e, are portals
of C;,, and such that 0 < ¢, < @ and XX g, = ¢. We use (X', X?) ~ X° to denote that
X1 and X? are compatible with X°. To ensure that partial solutions are portal-respecting,
configurations only need to describe the segments that visit clients. The other segments
need not cross boundaries at portals, so we assume them to be shortest paths in the original

graph.

Conversely, every segment of X' and X? must correspond to exactly one segment of X°.

Intuitively, this means that every segment in X° can be broken into subsegments that respect
the portals of C; and Cy. The path from i to o can be divided into a shortest path from 7 to
b1, segments from b, to e, visiting g, clients in the cluster C;,, and shortest paths from e, to
b,+1 and from eg to o visiting 0 clients.

12:9

ESA 2017

12:10

A QPTAS for Vehicle Routing on Planar and Bounded-Genus Graphs

We define the price, P, of the compatible configurations to be the cost of connecting
the segments: P(Co, X0, X', X?) = d(i,by) + X5 d(e,,b,41) + d(ex,0). Therefore, the
minimal cost of a partial solution for a cluster Cy that induces the configuration X° is
DP(Cy, X°) = min(x1 x2yx0 DP(Cy, X') + DP(Cy, X?) + P(Co, X°, X1, X2).

The algorithm enumerates all possible configurations X! and X2 that are compatible with
X0, As in the above definitions, the algorithm breaks every segment of X0 into subsegments,
each visiting some clients in Cy or in Cy. It then adds each subsegment to the corresponding
subconfiguration: the subsegment is added to X7. As ¢, >0and ©X ¢, =¢<Q, K <Q.
The algorithm enumerates all possibilities and calculates the value of DP(Cy, XY).

5.3 Base Cases

Each base case is a cluster in which there are at most three clients. It is therefore straight-
forward to find the minimal cost of a configuration.

5.4 Final Output and correctness

Since the topmost cluster has r as its only portal, all configurations will consist of r-to-r
segments visiting at most @ clients, and collectively visiting all clients of Z. These are
exactly the feasible CAPACITATED VEHICLE ROUTING solutions. The algorithm returns the
minimum over all admissible configurations of the top-level cluster, which is the cost of the
optimal portal-respecting solution.

» Theorem 12. The dynamic programming algorithm described above outputs the minimal
weight of a portal-respecting solution to CAPACITATED VEHICLE ROUTING.

The proof is omitted here due to space limitations.

5.5 Complexity Analysis

The complexity is determined by the number of compatible configurations. For each cluster
and each admissible configuration for this cluster, the algorithm computes

|{ways of breaking a segment }|/{scsments}|
compatible subconfigurations. We first count the number of admissible configurations for a
cluster.

» Lemma 13. The number of admissible configurations X for a given cluster C is

|Z|O(@% " log” | 2]) |

Proof. An admissible configuration is a vector X indexed by two portals (i,0) and a number
of clients q. Xj,q is the number of segments going from i to o visiting ¢ clients. As
the configuration is admissible, ¥;, qqX; 0 ¢ = X.ccDe,. < |Z]| (because D¢, € {0,1}).
Therefore X; , 4 < |Z|. Moreover, ¢ < Q and because by Lemma 8 there are O(Qe ' log |Z])
portals for C the number of choices of (i,0) is less than O(Q?*¢~?log? | Z|). The number of
admissible configurations X for a given cluster is thus |Z \O(Qse_g log? | Z]) |

We now count the number of compatible subconfigurations for a given configuration X.

» Lemma 14. There are O((2Q% 2 log? |Z|)@I1Z1) compatible subconfiguration pairs for a
given configuration.

A. Becker, P. N. Klein, and D. Saulpic

Proof. Using the same argument as in Lemma 13, ¥, , ¢X; 04 < |Z], and as ¢ > 0 we can
bound the number of segments of a configuration: %; , ;X 0.4 < |Z|. To break a segment,
the algorithm chooses at most) subsegments, each one consisting of a boolean, a pair
of portals and a number of clients visited by the segment (see Section 5.2). As there are
O(Qe t1og|Z|) child-cluster portals by Lemma 8 and the capacity is bounded by Q, there
are O((2 - Q - Q% 2log? |Z|)?) ways of breaking a single segment. As there are fewer
than |Z| segments, we have O((2Q%¢~2log? | Z|)?!#!) compatible subconfiguration pairs per
configuration. |

» Lemma 15. The overall complezity of the dynamic program is

IZIO(%) ’O(Q?’ 1054 \Z|)Q‘Z|.
€

Proof. As stated above, the dynamic program computes for each cluster and each admissible
configuration, all compatible subconfigurations. As the decomposition is a binary tree with at
most one leaf per client, the number of clusters is O(Z). Combining this with Lemma 13 and
Lemma 14, the total complexity is therefore O(|Z]-]Z]|0(@"¢ 18" 12]) (2Q3¢ =2 log® |Z|)Q‘Z|).

<4

5.6 QPTAS

The slowest operation in the DP is generating all compatible subconfigurations for a given
cluster. But this is very redundant: two different segments can be broken into the same
subsegments. We present a preprocessing step that computes, for every cluster and every
triplet of configurations for parent and children clusters, the minimal price P(Cy, X0, X1, X'?)
of passing segments needed to make the configurations compatible. Recall that a passing
segment is one that visits no clients and that they are necessary to connect the wvisiting
segments of the subconfigurations.

5.6.1 Preprocessing Algorithm

We describe a recursive algorithm. The entries are a cluster Cy, a configuration X° of Cy and
two configurations X' and X2 of the children of Cy. To determine the price for connecting
these three configurations, the algorithm considers the first segment appearing in X° and
breaks it into subsegments belonging to the children. It then deletes this segment from X
(giving a new configuration X) and deletes the subsegments from the children configurations,
to obtain the subconfigurations X1 and X2, Tt tries all possibilities for breaking this segment
and returns the cheapest one :

P[Co, X°, X!, X?) = min (P(Co, X°, X1, X%) + d(i, b1) + Sd(e,, bt1) + d(brc, 0)) -

The base case is when there are no segments in X° (i.e. Xfoﬂ =0, Vi,o,q). Here the
algorithm just checks that there are no remaining segments in X' and X2. It returns 0 if
there are none and oo otherwise. This algorithm can be memoized because the number of

segments in the first configuration is strictly decreasing.

5.6.2 Correctness

We prove the correctness of this algorithm by induction. The base case is an empty
configuration for the parent cluster. The two subconfigurations are therefore compatible

12:11

ESA 2017

12:12

A QPTAS for Vehicle Routing on Planar and Bounded-Genus Graphs

with it only if they are also empty. If X° is compatible with X' and X2, then the chosen
segment of XC corresponds by definition to at most @ subsegments in X! and X2. The
algorithm enumerates all possible ways to break the segment, so at least one will result in a
compatible configuration. Reciprocally, if X9 is not compatible with X! and X2, the first
segment cannot be broken in such a way that results in three compatible configurations, so
the algorithm avoids false positives.

5.6.3 Complexity

The complexity of this preprocessing step is
O(|{clusters}| - |{configurations}|* - |{ways of breaking a segment}|).

We showed in Lemma 13 that there is |Z\O(Qg572 log* |Z]) configurations and we showed in
the proof of Lemma 14 that there are O((2Q3¢%log* |Z|)?) ways of breaking a segment,

so the preprocessing can be achieved in O(|Z] - |Z|O(Q36721°g1 171) (2Q3%21og" |Z|)9) =
O(2P10&121.Q:c7") where P is some polynomial.

We can use this preprocessing step to improve the complexity of the main DP. Instead of
breaking segments we try all compatible configurations for the children clusters, of which
there are at most O(|{configuration}|?). The complexity of this improved DP is therefore
O(|{clusters}| x |{configuration}|?) and is dominated by the preprocessing step. Combining
this analysis with Theorem 11 gives a QPTAS for planar graphs, proving Theorem 1.

6 Generalizations

6.1 Multiple depots

The techniques presented in this paper can be extended to address the multiple-depot version
of VEHICLE ROUTING, assuming a constant number of depots. In this variation, each tour
can start and end at different depots. Let R denote the set of depots, and for v € Z let r,
denote the closest depot to v (note that the tour that visits v does not necessarily visit r,,).
The generalization relies on two key observations.

First, the recursive clustering can be slightly modified in the following way. Let a from-R
shortest path be a from-r shortest path for some r € R.

» Lemma 16. Let G be a planar embedded graph with edge costs, and let R and Z be subsets
of the vertices. There is a depth-O(log|Z|) recursive clustering of G with the following
properties:

there are no boundary edges,

for each cluster, there are O(|R)|) from-R shortest subpaths such that the boundary vertices

of the cluster are the vertices that lie on these paths, and

at most three vertices of Z are assigned to each leaf cluster.

Proof. We sketch the proof. It follows the proof of Lemma 6, which in turn follows that
of [8]. Consider the R-rooted shortest-path forest F'. Each tree is rooted at some r € R, and
consists of those vertices v for which r, = r. Construct a tree T' by arbitrarily linking the
trees of F'; and then use the construction of Lemma 6. This gives a decomposition such that
each cluster is bounded by four fundamental cycles of the tree T'. Since a fundamental cycle
in T consists of at most 2|R| from-R shortest paths, this concludes the proof. <

A. Becker, P. N. Klein, and D. Saulpic

Figure 3 Here, u and v are depots. The forest is in black, the plain lines are the shortest-path
trees from u and v and the dashed one is the connecting edge. The dashed, grey lines are edges not
in T. The arrow is the boundary of a cluster: there is one fundamental cycle in T', and thus two
from-R shortest paths.

Portals in this decomposition are designated the same way as in Section 3. The cost
of a detour becomes §(d(v,r,) + OPT/Z) (using the notation of Section 3), and therefore
Lemma 3 has to be adapted in order to obtain an approximate solution.

Each tour P in the optimal solution contains a trip between one depot and the farthest
client in P, so the cost of P is at least max{d(c,r.) : ¢ is a client of P}, which in turn is at
least

1
0 Z{d(c, re) : ¢ is a client of P}

by averaging over the at-most @ clients in P.

Using these modified bounds, we can prove a multiple-depot version of the structure
theorem, analogous to Theorem 11. Assuming that |R| is constant, we can adapt the dynamic
program for this decomposition to get a QPTAS.

6.2 Bounded genus

To extend our algorithm to handle the case when G is embedded on a surface of genus g > 0,
we adapt a technique previously used by Eistenstat et al. [8]. Let T be any spanning tree of
G, in our case the shortest-path tree rooted at the depot. The algorithm selects [9] 2¢g edges
not in T such that cutting the surface along the corresponding cycles (each edge forms a
cycle with the corresponding simple path in T') yields a surface (with boundary) of genus 0,
and a graph embedded on this surface. The vertices of these cycles lie on shortest from-r
paths where r is the depot. The algorithm then cuts along these cycles, duplicating the
vertices (an edge belonging to such a cycle ends up on one side or the other). The resulting
graph is planar. Next the algorithm forms the cluster decomposition for that graph. Finally,
the algorithm merges duplicate vertices together. Merging the duplicates can result in those
merged vertices being boundary vertices of the clusters, but fortunately all of those merged
vertices lie on at most 2¢g from-r shortest paths, so designation of portals can continue as in
Section 3.3 and in total the number of portals per cluster will be O(Qge " log? |Z|).

6.3 Handling penalties

The dynamic program of Section 5 computes, for each cluster and each admissible configura-
tion of that cluster, the minimum cost partial solution that induces that configuration. To
handle penalties, we change the definition of solution, of admissible and of cost. A solution
is now allowed to not visit all the clients, an admissible configuration is allowed to not

12:13

ESA 2017

12:14

A QPTAS for Vehicle Routing on Planar and Bounded-Genus Graphs

visit all the clients, and the cost includes the penalties of unvisited clients. The base cases
change slightly to accommodate these changes, but otherwise the dynamic program is mostly
unchanged.

One other change to the algorithm is needed. As described in Section 3.1, the algorithm
needs to prune the graph, removing vertices that are too far to be included. To handle
penalties, we need a more complicated pruning step. The algorithm computes an upper bound
b on the value of the optimum that is at most @) times the value of the optimum, and then
prunes away every vertex whose distance from the depot is greater than b/2. This ensures
that, for any cluster found in the pruned graph, the value d(r,9) is at most (Q/2)OPT, and
our analysis can be adapted to show that the number of portals is not too large.

» Lemma 17. There exist a polynomial-time algorithm that computes a Q-approximation of
the penalty variant of vehicle routing.

Proof. Consider an instance of the penalty version with capacity @, and a modified version
in which the capacity is 1. Solving the modified instance is easy: for each client, include
a depot-to-client round-trip if the cost of this trip is no more than the client’s penalty. It
remains to show that the optimum value for the original instance is at most @ times the
optimum value for the modified instance.

Consider an optimal solution for the original instance. For each tour T in that solution,
the cost of T' is at least the cost of a round-trip from the depot to the farthest client visited
by T. Replace T by a collection of tours, one visiting each of the clients visited by 7. Each
of these tours is a round trip, and there are () of them, so their total cost is at most () times
the cost of T. The set of unvisited clients has not changed so the sum of their penalties
remains unchanged. Thus the total value of the solution thus obtained is at most @ times
the optimum value for the original instance. |

—— References

1 Anna Adamaszek, Artur Czumaj, and Andrzej Lingas. PTAS for k-tour cover problem on
the plane for moderately large values of k. Algorithms and Computation, pages 994-1003,
2009.

2 Sanjeev Arora, M. Grigni, D. R. Karger, Philip N. Klein, and A. Woloszyn. A polynomial-
time approximation scheme for weighted planar graph TSP. In Proceedings of the 9th
Symposium on Discrete Algorithms, pages 33-41, 1998.

3 Tetsuo Asano, Naoki Katoh, and Kazuhiro Kawashima. A new approximation algorithm for
the capacitated vehicle routing problem on a tree. Journal of Combinatorial Optimization,
5(2):213-231, 2001.

4 Tetsuo Asano, Naoki Katoh, Hisao Tamaki, and Takeshi Tokuyama. Covering points in
the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research
Laboratory Research Report RT0162, 1996.

5 Tetsuo Asano, Naoki Katoh, Hisao Tamaki, and Takeshi Tokuyama. Covering points in
the plane by k-tours: towards a polynomial time approximation scheme for general k. In
Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, pages
275-283. ACM, 1997.

6 Vincent Cohen-Addad, Eric Colin de Verdiere, Philip N. Klein, Claire Mathieu, and
David Meierfrankenfeld. Approximating connectivity domination in weighted bounded-
genus graphs. In Proceedings of the 48th Annual ACMSymposium on Theory of Computing
(STOC, pages 584-597, 2016. doi:10.1145/2897518.2897635.

7 Aparna Das and Claire Mathieu. A quasipolynomial time approximation scheme for euc-
lidean capacitated vehicle routing. Algorithmica, 73(1):115-142, 2015.

http://dx.doi.org/10.1145/2897518.2897635

A. Becker, P. N. Klein, and D. Saulpic

10

11

12

13

14

15

16

17

David Eisenstat, Philip N. Klein, and Claire Mathieu. Approximating k-center in planar
graphs. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 617-627. Society for Industrial and Applied Mathematics, 2014.

David Eppstein. Dynamic generators of topologically embedded graphs. In Proceedings
of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, pages 599—608.
Society for Industrial and Applied Mathematics, 2003.

Bruce L. Golden and Richard T. Wong. Capacitated arc routing problems. Networks,
11(3):305-315, 1981.

M. Grigni, E. Koutsoupias, and C. Papadimitriou. An approximation scheme for planar
graph TSP. In Proceedings of the 36th Annual Symposium on Foundations of Computer
Science, pages 640-645, 1995.

Mark Haimovich and A.H. G. Rinnooy Kan. Bounds and heuristics for capacitated routing
problems. Mathematics of operations Research, 10(4):527-542, 1985.

Shin-ya Hamaguchi and Naoki Katoh. A capacitated vehicle routing problem on a tree. In
International Symposium on Algorithms and Computation, pages 399-407. Springer, 1998.
Stefan Irnich, Paolo Toth, and Daniele Vigo. Chapter 1: The family of vehicle routing
problems. In Paolo Toh and Daniele Vigo, editors, Vehicle Routing: Problems, Methods,
and Applications. STAM, 2014.

Michael Khachay and Roman Dubinin. PTAS for the Euclidean Capacitated Vehicle Rout-
ing Problem in R?. In Proceedings of the 9th International Conference on Discrete Optim-
ization and Operations Research (DOOR 2016), pages 193-205. Springer, 2016.

Michael Khachay and Helen Zaytseva. Polynomial time approximation scheme for single-
depot euclidean capacitated vehicle routing problem. In Combinatorial Optimization and
Applications, pages 178-190. Springer, 2015.

Mikkel Thorup. Compact oracles for reachability and approximate distances in planar
digraphs. Journal of the ACM, 51(6):993-1024, 2004.

12:15

ESA 2017

The Directed Disjoint Shortest Paths Problem*

Krist6f Bérczil and Yusuke Kobayashi?

1 Eotvos University, Budapest, Hungary
berkri@cs.elte.hu

2 University of Tsukuba, Tsukuba, Japan
kobayashi@sk.tsukuba.ac. jp

—— Abstract

In the k disjoint shortest paths problem (k-DSPP), we are given a graph and its vertex pairs
(s1,t1), -+, (Sk,tr), and the objective is to find k pairwise disjoint paths P, ..., P such that
each path P; is a shortest path from s; to ¢;, if they exist. If the length of each edge is equal to
zero, then this problem amounts to the disjoint paths problem, which is one of the well-studied
problems in algorithmic graph theory and combinatorial optimization. Eilam-Tzoreff [5] focused
on the case when the length of each edge is positive, and showed that the undirected version of
2-DSPP can be solved in polynomial time. Polynomial solvability of the directed version was
posed as an open problem in [5]. In this paper, we solve this problem affirmatively, that is, we
give a first polynomial time algorithm for the directed version of 2-DSPP when the length of each
edge is positive. Note that the 2 disjoint paths problem in digraphs is NP-hard, which implies
that the directed 2-DSPP is NP-hard if the length of each edge can be zero. We extend our result
to the case when the instance has two terminal pairs and the number of paths is a fixed constant
greater than two. We also show that the undirected k-DSPP and the vertex-disjoint version of
the directed k-DSPP can be solved in polynomial time if the input graph is planar and & is a
fixed constant.

1998 ACM Subject Classification G.2.2 [Graph Theory] Graph Algorithms
Keywords and phrases Disjoint paths, shortest path, polynomial time algorithm

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.13

1 Introduction

1.1 Disjoint paths problem and disjoint shortest paths problem

The vertex-disjoint paths problem is one of the classic and well-studied problems in algorithmic
graph theory and combinatorial optimization. In the problem, the input is a graph (or a
digraph) G = (V, E) and k pairs of vertices (s1,%1), ..., (Sk, tx), and the objective is to find
k pairwise vertex-disjoint paths from s; to t;, if they exist. If k is part of the input, the
vertex-disjoint paths problem is NP-hard [9], and it remains NP-hard even if the input graph
is constrained to be planar [12]. The vertex-disjoint paths problem in undirected graphs can
be solved in polynomial time when k = 2 [17, 19, 22], and Robertson and Seymour’s graph
minor theory gives an O(|V|?)-time algorithm for the problem when k is a fixed constant [15].
The running time of this algorithm is improved to O(|V|?) in [10]. The vertex-disjoint paths
problem in digraphs is much harder than the undirected version. Indeed, the directed version
is NP-hard even when k = 2 [6]. The vertex-disjoint paths problem in planar digraphs can

* This work is partially supported by JST ERATO Grant Number JPMJER1305 and by JSPS KAKENHI
Grant Numbers JP16K16010 and JP16H03118.

© Kristéf Bérezi and Yusuke Kobayashi;
oY licensed under Creative Commons License CC-BY
25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 13; pp. 13:1-13:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2

The Directed Disjoint Shortest Paths Problem

be solved in polynomial time for fixed k [16], and it is fixed parameter tractable with respect
to parameter k [3].

The vertex-disjoint paths problem has many applications, for example in transportation
networks, VLSI-design [7, 14], or routing in networks [13, 20]. When we deal with such
practical applications, it is natural to generalize the problem to finding short or cheap vertex-
disjoint paths. There are many results on the problem to find disjoint paths minimizing a
given objective function such as the total length of the paths or the length of the longest path
(see Section 1.2). In this paper, we consider the disjoint shortest paths problem introduced
in [5], in which each path has to be a shortest path from s; to ;. Note that, in contrast to
the other problems, the length of each path appears in the constraint of the problem. For an
integer k, our problem is formally described as follows.

k Disjoint Shortest Paths Problem (k-DSPP)
Input. A digraph (or a graph) G = (V, E) with a length function ¢ : E — R, and k pairs of
vertices (s1,%1), ..., (Sk, tx) in G.

Find. Pairwise disjoint (vertex-disjoint or edge-disjoint) paths Pi, ..., Py such that P; is a
shortest path from s; to t; for i = 1,2,...,k, if they exist.

Note that R4 denotes the set of non-negative real numbers. We can consider both directed
and undirected variants of this problem, which we call the directed k-DSPP and the undirected
k-DSPP, respectively. For each problem, we can consider vertex-disjoint and edge-disjoint
versions. If the length of each edge is equal to zero, then these problems amount to the
directed or the undirected version of the k disjoint paths problem. With this observation,
most hardness results on the k disjoint paths problem can be extended to the directed (or
undirected) k-DSPP. In particular, since the k disjoint paths problem in digraphs is NP-hard
even when k = 2 [6], almost all variants of the directed k-DSPP are hard.

Only few positive results are known for k-DSPP. An important positive result is a
polynomial time algorithm of Eilam-Tzoreff [5] for the undirected 2-DSPP, in which the
length of each edge is positive. It is interesting to note that the algorithm in [5] is completely
different from the algorithms for the 2 disjoint paths problem in [17, 19, 22]. This means
that properties or tractability of k&-DSPP will be different from those of the k disjoint paths
problem by assuming that the length of each edge is positive. This fact motivates us to study
polynomial solvability of the directed k-DSPP under this assumption. Indeed, for the case
when £k is a fixed constant and the length of each edge is positive, polynomial solvability of
the directed k-DSPP was posed as an open problem in [5].

1.2 Related work

There are many results on the problem in which we find & disjoint paths minimizing a given
objective function. Such a problem is sometimes called the shortest disjoint paths problem. A
natural objective function is the total length of the paths. That is, the aim of the problem is
to find disjoint paths Pi, ..., P, that minimize), ¢(P;) when we are given a length function
¢: E — R, which we call the min-sum k disjoint paths problem. Here, ¢(P;) denotes the
length of P;. We note that a solution of the k disjoint shortest paths problem must be an
optimal solution of the corresponding min-sum & disjoint paths problem, which shows that if
we can solve the min-sum & disjoint paths problem, then we can also solve the k disjoint
shortest paths problem. Another objective function is the length of the longest path. That is,
the aim of the problem is to find disjoint paths Py, ..., Px that minimize max; £(F;), which
we call the min-maz k disjoint paths problem.

K. Bérczi and Y. Kobayashi

Table 1 Results on the k disjoint paths problem and the k-DSPP. In the results with (x), we
assume that the length of each edge is positive.

Conditions Disjoint Paths Disjoint Shortest Paths
k=2 undirected P [17, 19, 22] P [5] (%)
directed NP-hard [6] NP-hard (Proposition 1)
P (Theorem 2) (x)
k: fixed undirected P [14] OPEN
planar, vertex-disjoint P (Corollary 11)
planar, edge-disjoint P (Theorem 5)
directed NP-hard [6] OPEN () / NP-hard
planar, vertex-disjoint P [16] P (Theorem 4)
planar, edge-disjoint OPEN OPEN
acyclic P [6] P (Proposition 10)
k: general undirected/directed NP-hard [9] NP-hard

Since the min-sum or min-max & disjoint paths problem is a generalization of the k disjoint
paths problem, hardness results on the k disjoint paths problem can be extended to the
optimization problem. See [11] for classical results on the min-sum and min-max k disjoint
paths problems. We now describe several positive results on the min-sum & disjoint paths
problem. Colin de Verdiére and Schrijver [4] presented a polynomial time algorithm for the
case when the input digraph (or graph) is planar, si,. .., s, are on the boundary of a common
face, and t1, ..., t; are on the boundary of another face. Kobayashi and Sommer [11] gave a
polynomial time algorithm for the case when the graph is planar, k = 2, and the terminals
are on at most two faces. Borradaile et al. [2] gave a polynomial time algorithm for the case
when the graph is planar, the terminals are ordered nicely on a common face. Bjorklund and
Husfeldt [1] gave a randomized polynomial time algorithm for the case when k = 2 and each
edge has a unit length, which is based on interesting algebraic techniques. This result was
recently generalized to the case with two terminal pairs by Hirai and Namba [8].

1.3 Our results

In this subsection, we describe our results, which are summarized in Table 1.
As mentioned in Section 1.1, it is not difficult see that the directed k-DSPP is NP-hard
even when k = 2 if the length of each edge can be zero.

» Proposition 1. Both vertez-disjoint and edge-disjoint versions of the directed k-DSPP are
NP-hard even when k = 2.

Proof. Suppose that the length of each edge is equal to zero. In this case, since any path
is a shortest path, the directed k-DSPP is equivalent to finding two vertex-disjoint (or
edge-disjoint) paths P; and P, such that P; is from s; to ¢;. This problem is known to be
NP-hard [6], and hence the directed k-DSPP is NP-hard even when k = 2. <

The main result of this paper is to show that the directed k-DSPP can be solved in
polynomial time when the length of each dicycle (directed cycle) is positive and k = 2.

» Theorem 2. If the length of each dicycle is positive, both vertez-disjoint and edge-disjoint
versions of the directed 2-DSPP can be solved in polynomial time. In particular, the directed
2-DSPP can be solved in polynomial time if each edge has a positive length.

13:3

ESA 2017

13:4

The Directed Disjoint Shortest Paths Problem

Figure 1 Reduction to the directed case.

The proof of this theorem is given in Section 3. It is posed as an open problem by Eilam-
Tzoreff [5] to determine whether or not the directed k-DSPP can be solved in polynomial
time when each edge has a positive length and k is a fixed constant. Theorem 2 answers this
problem affirmatively for the case of k = 2. It is interesting to note that the assumption on
the edge length affects the polynomial solvability of the problem as we can see in Proposition 1
and Theorem 2. We also note that a polynomial time algorithm for the undirected version
can be derived from Theorem 2, that is, we obtain an alternative elementary proof for the
following result.

» Corollary 3 (Eilam-Tzoreff [5]). If each edge has a positive length, both vertex-disjoint and
edge-disjoint versions of the undirected 2-DSPP can be solved in polynomial time.

Proof. Suppose we are given an instance of the undirected 2-DSPP in which ¢(e) > 0
for every e € E. Replace each edge e = wv with two new vertices z.,y. and five new
directed edges uxe,vxe, Tele,Yelt, yev (see Fig. 1). Define a new length function ¢ by
U(uze) = U (vee) = O(weye) = € (yeu) = €' (yev) = é(lg'u)' Then, each edge has a positive
length in the obtained digraph. In this way, we can reduce the undirected 2-DSPP to the

directed 2-DSPP, which shows the corollary by Theorem 2. |

Theorem 2 can be extended to the case when the input digraph contains two terminal
pairs and k is a fixed constant, which is discussed in Section 4.

We also discuss the case when the input (di)graph is restricted to be planar in Section 5.
We first show that the vertex-disjoint version of the directed k-DSPP can be solved in
polynomial time in planar digraphs.

» Theorem 4. If k is a fized constant and the input digraph is planar, the vertez-disjoint
version of the directed k-DSPP can be solved in polynomial time.

The proof is given in Section 5. Our proof is based on the reduction technique used in
the proof of Theorem 2 and the algorithm for the disjoint paths problem in planar digraphs
proposed in [16]. Note that this result implies that we can also solve the undirected version
in polynomial time. Since Schrijver’s algorithm for the disjoint paths problem [16] works only
for the vertex-disjoint case, the proof of Theorem 4 cannot be extended to the edge-disjoint
case directly. However, when the graph is undirected, we can show the following theorem,
whose proof is given in Section 5.

» Theorem 5. If k is a fized constant and the input graph is planar, the edge-disjoint version
of the undirected k-DSPP can be solved in polynomial time.

2 Preliminary

For a digraph G = (V, E), a directed edge from u to v is denoted by wwv. For a directed edge
e in G, the head and the tail of e are denoted by headg(e) and tailg(e), respectively, that is,

K. Bérczi and Y. Kobayashi

o

Figure 2 Reduction to the edge-disjoint version.

e is a directed edge from tailg(e) to headg(e). A dipath (or a directed path) is a sequence
(vo,€1,v1,€2,...,€p,vp) such that vy, v1,...,v, € V are distinct vertices and e; = v;_1v; € E
for each i. If vy = v, in the definition of a dipath, the sequence is called a dicycle (or a
directed cycle). If no confusion may arise, a dicycle, a dipath, and a directed edge are simply
called a cycle, a path, and an edge, respectively. For a dipath, a dicycle, or a subgraph @Q, its
vertex set and edge set are denoted by V(Q) and E(Q), respectively. For a length function
¢:E — Ry and for an edge set F' C E, we denote {(F) = > . {(e). For a dipath or a
dicycle @, we identify Q with its edge set, and ¢(E(Q)) is simply denoted by £(Q).

3 Proof of Theorem 2

In this section, we give a proof of Theorem 2, that is, we show that the directed 2-DSPP
can be solved in polynomial time if the length of each dicycle is positive. To solve this

problem, we will efficiently reduce it to a set of 2 disjoint paths problem in acyclic digraphs.

Although the original digraph is not necessarily acyclic, we decompose the digraph into
smaller subgraphs and modify each subgraph to an acyclic digraph.

We first note that the vertex-disjoint version of the directed 2-DSPP can be reduced to
the edge-disjoint version of the directed 2-DSPP by the following procedure: replace each
vertex v with two vertices v and v, replace each edge uv with an edge utv™ of the same
length, and add an edge v~ v™ of length zero for each v (see Fig. 2). Therefore, it suffices to
give a polynomial time algorithm for the edge-disjoint version of the problem.

Suppose we have an instance of the edge-disjoint version of the directed 2-DSPP in which
each dicycle is of positive length. For ¢ = 1,2, let E; C E be the set of edges that are
contained in some shortest path from s; to t;. By the definition, an s;-t; path is a shortest
s;-t; path if and only if it consists of edges in F;. Note that we can compute F; in polynomial
time as follows. We first apply a shortest path algorithm (e.g., Dijkstra’s algorithm) and
obtain the distance d;(v) from s; to v for every v € V. Let E! C E be the set of all the edges
wv with d;(v) — d;(u) = (uwv). Then, {uv € E! | E! contains a v-t; path} is the desired set
E;. With this observation, the edge-disjoint version of the directed 2-DSPP can be reduced
to the following problem: given a digraph G = (V, E), subsets E1, E; C E, and two pairs of
vertices (s1,t1) and (s9,t2) in G, find edge-disjoint paths P; and P, such that E(P;) C E;
and P; is a path from s; to t; for ¢ = 1,2. We now show some properties of E;.

» Lemma 6. The edge set E; forms no dicycle for i =1,2.

Proof. Assume that E; forms a dicycle C. By the definition of d; and E;, d;(v) —d;(u) = £(uv)
for each uv € E(C). This shows that £(C) =3_,,cp(c) Luv) =3, ,cp(c)(di(v) —di(u)) = 0,
which contradicts that the length of each dicycle is positive. |

For a set I of directed edges, let ' be the set of directed edges obtained from F by
reversing all the edges, that is, ' = {vu | uv € F}. Then, we have the following lemma.

13:5

ESA 2017

13:6

The Directed Disjoint Shortest Paths Problem

» Lemma 7. Suppose that C' is a dicycle in EyUEy. Then, EyNE(C) C Ey and E;NE(C) C
E;.

Proof. Since C is a dicycle in E; U Es, it can be decomposed into subpaths P;, Q1, Ps, Q2,
..., P.,Q, such that P; is a dipath from u; to v; with E(P;) C E; and Q; is a dipath from
;11 to v; with E(Q;) C Ey for i = 1,...,r, where we denote u,11 = uy. By the definition
of dl and El, dl(UZ‘) — dl(uz) = E(Pz) and dl(vi) — dl(uH_l) < g(Qz) for i = 1, ceay T By
combining them, we obtain >\, £(P;) < >°!_, £(Q;). Similarly, by the definition of dy and
EQ, dQ(UZ‘) — dQ(Uz’) S E(Pz) and dg(’Uz’) — dg(ui+1) = Z(QZ) for i = 1, ceey Ty which shows that
Sl U(P) > 300, 6(Q;). Therefore, >0, £(P;) = >_._, £(Q;) and all the above inequalities
are tlght That iS, dl(vi) — dl(ui+1) = é(Ql) and dg(l}i) — dg(uz) = E(Pz) for i = 17 ceey Ty
which shows that F(Q;) C E} and E(F;) C Ej. Since E(FP;) C Ey for i =1,...,r, there is a
v;-t; path in Ej. This implies that E{ contains a v-t; path for any v € V(Q;), and hence
E(Q;) C E;. Similarly, since F(Q;) C Fy for i = 1,...,r, there is a v;-t; path in E}, which
shows that E(P;) C Es. <

We add four vertices s, sh,t], and t5, and four edges s|si1, shse, t1t], and toth. We
update E; < E; U {s}s;,t;t;} for i = 1,2. Then, a path from s; to ¢; is corresponding to a
path whose first and last edges are ss; and t;t}, respectively. By using this correspondence,
we can rephrase the problem to the following: find edge-disjoint paths P, and P such that
E(P;) C E; and P, is a path whose first and last edges are ss; and ¢;t}, respectively.

Let Ey := E1 N Ey, Ef = Ey \ Ey, and Ej = E; \ Eg. We remove all the edges in
E\ (E1 U Ey) from G, contract all the edges in Ey, and reverse all the edges in F3. Then,
we obtain a digraph G* = (V*, E*). Let Vj C V* be the set of all the vertices in V* that
are newly created by contracting Fy. In other words, V*\ Vj C V is the set of all original
vertices. For v € Vj, let G, be the subgraph of G — (F \ (E; U E»)) induced by the vertex
set corresponding to v. For any edge e in G, by the definition of G, either e € Ey or there
exist edges f1, fo,..., fr € Ey such that e, fi, fo,..., fr form a cycle when we ignore the
direction of the edges. In the latter case, these edges induce a dicycle C in E; U Eo, which
shows that e € Ey by Lemma 7. Thus, every edge in G, is in Ey, which implies that we can
identify E* with E} U Ej. Furthermore, since every edge in G, is in Ey, G, is an acyclic
digraph by Lemma 6.

We can also see that, by Lemma 7, G* is an acyclic digraph. In what follows, roughly,
we find two disjoint paths in G* such that one is from s to t] and the other is from #} to
sh. Our algorithm is based on the algorithm for finding disjoint paths in digraphs proposed
in [6].

We define a new digraph G whose vertex set is W = E} x B as follows. For (e1, e2), (€], ¢5) €
W, G has a directed edge from (eq, e3) to (e}, e4) if one of the following holds.

€] = ey, headg-(e2) = tailg~(e) =: v, and there is no path in G* from headg-(e1) to v.

Furthermore, if v € Vp, then G, contains a path from tailg(e}) to headg(ez).

ey, = eq, headg~(e1) = tailg=(e]) =: v, and there is no path in G* from headg-~(e2) to v.

Furthermore, if v € Vg, then G, contains a path from headg(eq) to tailg(e}).

headg~(e1) = headg»(e2) = tailg=(€}) = tailg«(e}) =: v. Furthermore, if v € V;, then

G, contains two edge-disjoint paths such that one is from headg(e1) to tailg(e)) and the

other is from tailg(e5) to headg(es).

To construct G, it suffices to solve the two disjoint paths problem in each acyclic digraph G,
which can be done in polynomial time by [6]. We now show that we can solve the edge-disjoint
version of the directed 2-DSPP by finding a path in G from (s]s1, thta) to (t1t], s255).

K. Bérczi and Y. Kobayashi

» Lemma 8. There is a path in G from (s)s1,thta) to (t1t), s2s5) if and only if G has two
edge-disjoint paths Py and Py such that P; is from s; to t; and E(P;) C E; fori=1,2.

Proof. Sufficiency (“if” part). Suppose that G has two edge-disjoint paths P; and P, such
that P; is from s; to t; and E(P;) C F; for i = 1,2. E(Py)\ Ep forms a path P;* from s; to t;
in G*, and E(P,) \ Ey forms a path Py from t3 to so in G*. Suppose that P} traverses edges

. . 1 o e
el,e?, ..., el in this order, and let €9 := s} s; and ezf+ = t1t]. Slnmll&urly7 suppose that Py
traverses edges e}, e3,..., e} in this order, and let €3 1= thty and eg+ := 898%. It is obvious

that e} € Ef for i =0,1,...,p+ 1 and €} € Fj for j =0,1,...,q+ 1. Since G* is acyclic,
for any ¢ =0,1,...,p+ 1 and for any j =0,1,...,¢g+ 1, at least one of the following holds.
(1) There is no dipath in G* from headg-(e%) to headg- ().

(2) There is no dipath in G* from headg-(€}) to headg- ().

(3) headg-(e}) = headg-(e2).

For each case, we obtain the following by the definition of the edge set of G.

If (1) holds and j # ¢ + 1, then G has an edge from (ei,¢}) to (ei,e}™). Note that

if v := headg-(e}) € Vo, then E(Py) N E(G,) forms a path in G, from tailg(el™) to

headg(€).

If (2) holds and i # p+ 1, then G has an edge from (e, e}) to (ei*!,el). Note that

if v := headg:(e%) € Vy, then E(P1) N E(G,) forms a path in G, from headg(e}) to

tailg (el ™).

If (3) holds, then G has an edge from (e},el) to (ei*! el™'). Note that if v :=

headg-(e}) = headg-(e}) € Vo, then E(P) N E(G,) and E(Py) N E(G,) form two

edge-disjoint paths in G, such that one is from headg(e}) to tailg(ei™) and the other is
from tailg (e} ™) to head(e)).
By observing that (1) holds if i = p+ 1 and (2) holds if j = ¢+ 1, we can see that G has an
edge from (e%,el) to (ei,el™), (i1, ed), or (it el ™) unless (i,5) = (p+1,q+1). We
begin with (i,) = (0,0) and find an edge leaving (e, e%) in G as above, repeatedly. Then,
we obtain a path in G from (9, €9) = (551, thta) to (21!, ed™) = (118}, s2s}), which shows
the sufficiency.

Necessity (“only if” part). Suppose that there is a path in G from (fY, f9) := (s}s1,tht2)
to (f7, f5) := (t1t}, s2sh) that traverses vertices (fY, f3), (fi, f3), ---, (fT, f3) of G in this
order. In this proof, we regard a path in G as a sequence of edges, and the concatenation of
two paths P and @ is denoted by P - Q. We define two paths P, and P, as follows.

1. SetPlzPQ:(Z).

2. Fori=0,1,2,...,r, we update P; as follows.
Suppose that fiT' = fi, headg-(f3) = tailg-(fat!) =: v, and there is no dipath in
G* from headg-(f}) to v. In this case, let Q be the path in G,, from tailg(f3™) to
headg(f3) if v € Vg and let Q = 0 if v € V. Then, update P, as Py < fé“ Q- Ps.
Suppose that fit! = fi, headg-(f}) = tailg-(fi™') =: v, and there is no dipath in
G* from headg-(f4) to v. In this case, let @ be the path in G, from headg(fi) to
tailg (f“) ifveVyandlet Q=0if v &Vy. Then, update P, as Py < P, - Q - ff“.
Suppose that headg-(fi) = headg-(fi) = tailg- (fi™') = tailg-(fi™') =: v. In this
case, if v € Vj, then G, contains two edge-disjoint paths Q1 and Q)5 such that @ is from
headg(ff) to tailg(fit!) and Qs is from tailg(fi™') to headg(fi). Let Q1 = Q2 =0
if v € V. Then, update P; and P, as P; + Py - Q1 - f“ and P, + f§+1 - Qs - Ps.

Then, P; and P, are edge-disjoint paths in G such that P; is from s; to ¢t; and E(P;) C F;

for ¢ = 1,2, which shows the necessity. |

13:7

ESA 2017

