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Preface

This volume contains the papers presented at IPEC 2017: the 12th International Symposium
on Parameterized and Exact Computation held during September 6-8, 2017, in Vienna,
Austria. IPEC was held together with five other algorithms conferences and a summer school
as part of the annual ALGO congress.

The International Symposium on Parameterized and Exact Computation (IPEC, formerly
IWPEC) is a series of international symposia covering research in all aspects of parameterized
and exact algorithms and complexity. Started in 2004 as a biennial workshop, it became an
annual event in 2009.

In response to the call for papers, 68 papers were submitted. Each submission was
reviewed by at least 3 reviewers. The reviews came from the 14 members of the program
committee, and from 100 external reviewers contributing 132 external reviews. The program
committee held electronic meetings through the EasyChair.

The program committee felt that the median
submission quality was very high, and in the end

selected 29 of the submissions for presentation at Previous IPECs

the symposium and for inclusion in this proceedings 2004 | Bergen, Norway
volume. The Best Paper Award was presented to 2006 | Ziirich, Switzerland
Radu Curticapean, Holger Dell, Fedor Fomin, Leslie 2008 | Victoria, Canada
Ann Goldberg and John Lapinskas for the paper 2009 | Copenhagen, Denmark
A Fized-Parameter Perspective on #BIS and the 2010 | Chennai, India
Excellent Student Paper Award was presented to 2011 | Saarbriicken, Germany
Bart M. P. Jansen and Astrid Pieterse for the paper 2012 | Ljubljana, Slovenia
Optimal Data Reduction for Graph Coloring Using 2013 | Sophia Antipolis, France
Low-Degree Polynomials. 2014 | Wroctaw, Poland
IPEC invited one plenary speaker to the ALGO 2015 | Patras, Greece
meeting, Fabrizio Grandoni, as part of the award 2016 | Aarhus, Denmark

ceremony for the 2017 EATCS-IPEC Nerode Prize

for outstanding papers in the area of multvariate

algorithmics. The award was given by a committee consisting of David Eppstein, Daniel
Marx, and Jianer Chen to Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch for their
paper A Measure & Conquer Approach for the Analysis of Fzact Algorithms [Journal of
the ACM 65 (5): Article 25, 2009]. We thank Fabrizio for accepting our invitation and for
contributing an excellent talk to IPEC 2017.

IPEC also invited Mikotaj Bojanczyk to present a tutorial “On Courcelle’s conjecture
about recognisable graph classes.”

We would like to thank the program committee, together with the external reviewers, for
their commitment in the difficult paper selection process. We also thank all the authors who
submitted their work for consideration. Finally, we are grateful to the local organizers of
ALGO, chaired by Stefan Szeider, for their efforts, which made chairing IPEC an enjoyable
experience.

Daniel Lokshtanov and Naomi Nishimura
Bergen and Waterloo, October 2017
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On the Parameterized Complexity of Contraction
to Generalization of Trees*

Akanksha Agrawal', Saket Saurabh?, and Prafullkumar Tale?

1 Department of Informatics, University of Bergen, Bergen, Norway
akanksha.agrawal@uib.no

2 Department of Informatics, University of Bergen, Bergen, Norway and
The Institute of Mathematical Sciences, HBNI, Chennai, India
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—— Abstract

For a family of graphs F, the F-CONTRACTION problem takes as an input a graph G and
an integer k, and the goal is to decide if there exists S C E(G) of size at most k such that
G/S belongs to F. Here, G/S is the graph obtained from G by contracting all the edges in S.
Heggernes et al. [Algorithmica (2014)] were the first to study edge contraction problems in the
realm of Parameterized Complexity. They studied F-CONTRACTION when F is a simple family
of graphs such as trees and paths. In this paper, we study the 7-CONTRACTION problem, where
F generalizes the family of trees. In particular, we define this generalization in a “parameterized
way”. Let T, be the family of graphs such that each graph in T, can be made into a tree by
deleting at most ¢ edges. Thus, the problem we study is Ty-CONTRACTION. We design an FPT
algorithm for T,~-CONTRACTION running in time O((2v/¢ + 2)°*+0 . n0MW)) " Furthermore, we
show that the problem does not admit a polynomial kernel when parameterized by k. Inspired
by the negative result for the kernelization, we design a lossy kernel for T;-CONTRACTION of size
O([k(k + 20))Ta=7 14Dy,

1998 ACM Subject Classification G.2.2 Graph Algorithms, 1.1.2 Analysis of Algorithms

Keywords and phrases Graph Contraction, Fixed Parameter Tractability, Graph Algorithms,
Generalization of Trees

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.1

1 Introduction

Graph editing problems are one of the central problems in graph theory that have been
extensively studied in the realm of Parameterized Complexity. Some of the important graph
editing operations are vertex deletion, edge deletion, edge addition, and edge contraction. For
a family of graphs F, the F/-EDITING problem takes as an input a graph G and an integer k,
and the goal is to decide whether or not we can obtain a graph in F by applying at most & edit
operations on G. In fact, the F-EDITING problem, where the edit operations are restricted
to one of vertex deletion, edge deletion, edge addition, or edge contraction have also received
a lot of attention in Parameterized Complexity. When we restrict the operations to only
deletion operation (vertex/edge deletion) then the corresponding problem is called F-VERTEX

* A full paper containing all the proofs and explanations can be found at https://arxiv.org/abs/1708.
00622
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(EDGE) DELETION problem. On the other hand if we only allow edge contraction then the
corresponding problem is called F~-CONTRACTION. The F-EDITING problem generalizes
several NP-hard problems such as VERTEX COVER, FEEDBACK VERTEX SET, PLANAR
F-DELETION, INTERVAL VERTEX DELETION, CHORDAL VERTEX DELETION, ODD CYCLE
TRANSVERSAL, EDGE BIPARTIZATION, TREE CONTRACTION, PATH CONTRACTION, SPLIT
CONTRACTION, CLIQUE CONTRACTION, etc. Most of the studies in the Parameterized
Complexity or the classical Complexity Theory have been restricted to combination of
vertex deletion, edge deletion or edge addition. Only recently, edge contraction as an
edit operation has started to gain attention in the realm of Parameterized Complexity.
In this paper, we add another family of graphs F — a parameterized generalization of
trees — such that F-CONTRACTION is fixed parameter tractable (FPT). We also explore
the problem from the viewpoints of Kernelization Complexity as well as its new avatar the
Lossy Kernelization. For more details on Parameterized Complexity we refer to the books of
Downey and Fellows [11, 12], Flum and Grohe [13], Niedermeier [21], and Cygan et al. [8].
Our starting point is the result of Heggernes et al. [17] who studied F-CONTRACTION

when F is the family of paths (P) and trees (T). To the best of our knowledge these were
the first results concerning Parameterized Complexity of F-CONTRACTION problems. They
showed that P-CONTRACTION and T-CONTRACTION are FPT. Furthermore, they showed that
T-CONTRACTION does not admit a polynomial kernel. On the other hand P-CONTRACTION
admits a polynomial kernel with at most 5k + 3 vertices (see [18] for an improved bound
of 3k + 4 on the number of vertices). Moreover, F~-CONTRACTION is not FPT (unless some
unlikely collapse in Parameterized Complexity happens) even for simple family of graphs
such as Pj-free graphs for some ¢ > 5, the family of Ci-free graphs for some ¢ > 4 [6, 19], and
the family of split graphs [2]. Here, P; and C; denotes the path and cycle on ¢ vertices. In
light of these mixed answers, two natural questions are:

1. What additional parameter we can associate with T-CONTRACTION such that it admits a
polynomial kernel?

2. What additional parameter we can associate with T-CONTRACTION such that an FPT al-
gorithm with combination of these parameterizations leads to an algorithm that generalizes
the FPT algorithm on trees?

In our earlier paper (a superset of authors) we addressed the first question [1]. In particular

we studied F-CONTRACTION, where F is the family of trees with at most £ leaves (together

with some other problems), and designed a polynomial kernel (hence an FPT algorithm) with

O(k?) vertices. This was complimented by a matching kernel lower bound result. In this

paper we focus on the second question.

Our Problem and Results. To define our problem formally let us define T, to be the family
of graphs such that each graph in T, can be made into a tree by deleting at most ¢ edges.
Thus the problem we study will be called T,-CONTRACTION.

T¢-CONTRACTION Parameter: k
Input: A graph G and an integer k.
Question: Does there exist S C E(G) of size at most k such that G/S € T,?

Observe that for £ = 0, Ty~-CONTRACTION is the usual T-CONTRACTION. We design
an FPT algorithm for T;-CONTRACTION running in time O((Q\/Z + 2)0(’“‘[) . no(l)). Our
algorithm follows the general approach of Heggernes et al. [17] for designing the algorithm for
T-CONTRACTION. Also, we show that the problem does not admit a polynomial kernel, when
parameterized by k, for any (fixed) ¢ € N. Inspired by the negative result on kernelization,
we design a lossy kernel for Ty-CONTRACTION.
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Related Works. For several families of graphs F, early papers by Watanabe et al. [22, 23]
and Asano and Hirata [3] showed that F-CONTRACTION is NP-complete. From the viewpoint
of Parameterized Complexity these problems exhibit properties that are quite different
from the problems where the edit operations are restricted to deleting or adding vertices
or edges. For instance, deleting k edges from a graph such that the resulting graph is
a tree is polynomial time solvable. On the other hand, Asano and Hirata showed that
T-CONTRACTION is NP-hard [3]. Furthermore, a well-known result by Cai [5] states that
when F is a hereditary family of graphs with a finite set of forbidden induced subgraphs then
the graph modification problem defined by F and the edit operations restricted to vertex
deletion, edge deletion, or edge addition admits an FPT algorithm. Moreover, this result
does not hold when the edit operation is edge contraction. Lokshtanov et al. [19] and Cai
and Guo [6] independently showed that if F is either the family of Pj-free graphs for some

¢ > 5 or the family of Cy-free graphs for some ¢ > 4 then F-CONTRACTION is W[2]-hard.

Golovach et al. [14] proved that if F is the family of planar graphs then F-CONTRACTION is
FPT. Belmonte et al. [4] proved that the problem is FPT for F being the family of degree

constrained graphs like bounded degree, (constant) degenerate and (constant) regular graphs.

Moreover, Cai and Guo [6] showed that in case F is the family of cliques, F-CONTRACTION
is solvable in time 20 1ogk) . nOM) while in case F is the family of chordal graphs, the
problem is W[2]-hard. Heggernes et al. [16] developed an FPT algorithm for the case where
F is the family of bipartite graphs (see [15] for a faster algorithm).

2 Preliminaries

In this section, we state some basic definitions and introduce terminologies from graph theory
and algorithms. We also establish some of the notations that will be used throughout. We
denote the set of natural numbers by N. For k € N, by [k] we denote the set {1,2,... k}.

Graphs. We use standard terminologies from the book of Diestel [10] for the graph related
terms which are not explicitly defined here. We consider simple graphs. For a graph G,
by V(G) and E(G) we denote the vertex and edge sets of G, respectively. For a vertex
v € V(QG), we use degg(v) to denote the degree of v in G, i.e. the number of edges in G that
are incident to v. For v € V(G), by N¢(v) we denote the set {u € V(G) | vu € E(G)}. We
drop the subscript G from degg(v) and Ng(v) whenever the context is clear. For a vertex
subset S C V(G), by G[S] we denote the graph with the vertex set S and the edge set as
{vu € E(G) |v,u € S}. By G — S we denote the graph G[V(G) \ S]. We say 5,5 C V(G)
are adjacent if there is v € S and v' € S’ such that vv’ € E(G). Further, an edge uv € E(G)
is between S and S’ if u € S and v € S’. For E' C E(G), by G/E’ we denote the graph
obtained from G by contracting the edges in E’. For £ € N, by T, we denote the family of
graphs from which we can obtain a tree using at most ¢ edge deletions. Observe that for any
graph G € Ty, we have |E(G)| < |V(G)| — 1+ £. Moreover, for any connected graph G, if
|E(G)| < |V(G)| —1+¢ then G € Ty.

A graph G is contractible to a graph H, if their exists E' C E(G) such that G/E’ is
isomorphic to H. In other words, G is contractible to H if there exists a surjective function
v : V(G) =» V(H) with W(h) = {v € V(G) | ¢(v) = h}, for h € V(H) and the following
property holds.

For all h,h' € V(H), hh' € E(H) if and only if W(h), W(h') are adjacent in G.

For all h € V(H), GIW (h)] is connected.

1:3
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Let W= {W(h) | h € V(H)}. Observe that W defines a partition of vertices in G. We
call W as an H-witness structure of G. The sets in W are called witness sets. If a witness set
contains more than one vertex then we will call it a big witness-set, otherwise it is a small
witness set. A graph G is said to be k-contractible to a graph H if there exists E' C E(G)
such that G/E’ is isomorphic to H and |E’| < k.

For a subset S C V(G) and a k-coloring ¢ of G, S is said to be monochromatic with
respect to ¢ if for all s, 8" € S, ¢(s) = ¢(s’). Observe that ¢ partitions V(G) into (at most)
k pairwise disjoint sets. A subset S C V(QG) is said to be monochromatic component with
respect to ¢ if S is monochromatic and G[S] is connected.

3 FPT Algorithm for T,-Contraction

In this section, we design an FPT algorithm for T,~-CONTRACTION. Our algorithm proceeds
as follows. We start by applying some simple reduction rules. Then by branching we ensure
that the resulting graph is 2-connected. Finally, we give an FPT algorithm running in
time O((2v/¢ + 2)©*+0 . n®M)) on 2-connected graphs. The approach we use for designing
the algorithm for the case when the input graph is 2-connected follows the approach of
Heggernes et al. [17] for designing an FPT algorithm for contracting to trees. Also, whenever
we are dealing with an instance of T,-CONTRACTION we assume that we have an algorithm
running in time O((2v¢ + 2)0*+) . nOM) for T;-CONTRACTION, for every ¢ < £. That
is, we give family of algorithms inductively for each ¢ € N, where the algorithm for TREE
CONTRACTION by Heggernes et al. forms the base case of our inductive hypothesis.

We start with few observation regarding the graph class Ty, which will be useful while
designing the algorithm.

» Observation 1. For each T € T, the following statements hold.

1. The chromatic number of T is at most 2/ + 2.

2. If T' is a graph obtained by subdividing an edge in T then T’ € T,.
3. If T' is a graph obtained by contracting an edge in T then T' € Ty.

Let (G, k) be an instance of Ty,-CONTRACTION. The measure we use for analysing the
running time of our algorithm is p = pu(G,k) = k. We start by applying some simple
reduction rules.

» Reduction Rule 3.1. If k < 0 then return that (G, k) is a no instance of Ty-CONTRACTION.

» Reduction Rule 3.2. If k = 0 and G € Ty then return that (G, k) is a yes instance of
T,-CONTRACTION.

» Reduction Rule 3.3. If G is a disconnected or k =0 and G ¢ T, then return that (G, k)
s a no instance.

We assume that the input graph is 2-connected, and design an algorithm for input
restricted to 2-connected graphs. Later, we will show how we can remove this constraint.
The key idea behind the algorithm is to use a coloring of V(G) with at most 2v/€ + 2 colors
to find a T-witness structure (if it exists) of G, where G is contractible to T' € T, using at
most k edge contractions (see Observation 1). Moreover, if such a T does not exist then we
must correctly conclude that (G, k) is a no instance of T;-CONTRACTION. Towards this, we
introduce the following notion.

» Definition 2. Let G be a 2-connected graph, T be a graph in Ty, W be a T-witness
structure of G, and ¢ : V(G) — [2v/€ + 2] be a coloring of V(G). Furthermore, let T be a
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(fixed) spanning tree of T, M = {t,¢' | tt' € E(T)\ E(Ts)} U{t € V(T) | dr(t) > 3}, and
B={teV(T)||W(t)| > 2}. Wesay that ¢ is W-compatible if the following conditions are
satisfied.

1. For all W e W, and w,w’ € W we have ¢(w) = ¢(w’).

2. For all t,t’ € M U B such that t¢’ € E(T) we have ¢(W (t)) # (W (¢)).

We refer to the set M U B as the set of marked vertices.

Assume that (G, k) is a yes instance of Ty-CONTRACTION, and I be one of its (inclusion-
wise) minimal solution. Furthermore, let T = G/F, and W be the T-witness structure of
G. Suppose we are given G and a W compatible coloring ¢ : V(G) — [2V/Z + 2] of G, but
we are neither given W nor T. We will show how we can compute a T witness structure
W' of G such that |V (T")| > |V(T)|, where T” € T,. Informally, we will find such a witness
structure by either concluding that none of the edges are part of the solution, some specific
set of edges are part of the solution, or finding a star-like structure of the monochromatic
components of size at least 2 in G, with respect to ¢. Towards this, we will employ the
algorithm for CONNECTED VERTEX COVER (CVC) by Cygan [7].

» Proposition 3 ([7]). CVC admits an algorithm running in time 2°n°M) . Here, k is the
size of a solution and n is the number of vertices in the input graph.

We note that we use the algorithm of Cygan [7] instead of the algorithm by Cygan et
al. [9], because the latter algorithm is a randomized algorithm. Also, the algorithm given by
Proposition 3 can be used to output a solution.

Consider the case when G is k-contractable to a graph, say T € T,, and let W be a
T-witness structure of G. Furthermore, let ¢ : V(G) — [2¢/£+2] be a W-compatible coloring
of G, and X be the set of monochromatic components of ¢. We prove some lemmata showing
useful properties of X.

» Lemma 4. Let T’ be the graph with X as the T'-witness structure of G. Then T' € T,
and |V (T")| < [V(T)].

Next, we proceed to show how we can partition each X € X into many smaller witness
sets such that either we obtain W or a T'-witness structure of G for some 7”7 € T, which has
at least as many vertices as T. Towards this, we introduce the following notions.

For X € X, by X we denote the set of vertices that have a neighbor outside of X, i.e.
X = N(V(G)\ X). A shatter of X is a partition of X into sets such that one of them is a
connected vertex cover C' of G[X] containing all the vertices in X and all other sets are of
size 1. The size of a shatter of X is the of size of C'. Furthermore, a shatter of X is minimum
if there is no other shatter with strictly smaller size.

From Lemma 4 (and Definition 2) it follows that for each X € X there is Wx C W such
that X = Uyew, Y. In the following lemma, we prove some properties of sets in Wy, which
will be useful in the algorithm design.

» Lemma 5. Consider X € X with | X| > 2, Wx CW such that X = Uyew, Y, and all of
the following conditions are satisfied.

G[X] = (u,v1,...,vq,v) is an induced path, where ¢ € N.

For each i € [q] we have deg(v;) = 2.

There exists X' € X \ {X} such that N(u) N X’ # 0 and N(v) N X' # 0.
Then Wx| = 1.

» Lemma 6. Consider X € X with |X| > 2, Wx such that X = Uyew, Y, and all the
following conditions are satisfied.
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G[X] = (vo,v1,...,vq,v) is an induced path, where g € N.

For each i € [q] we have deg(v;) = 2.

There exists no X' € X such that N(u) N X' # 0 and N(v) N X' # 0.
Then [Wx| = |X|.

Next, we show that each X € X for which Lemma 5 and 6 are not applicable must
contain exactly one big witness set. Moreover, the unique big witness set (together with
other vertices as singleton sets) forms one of its shatters.

» Lemma 7. For X € X with | X| > 2, let Wx CW such that X = Uyew, Y. Furthermore,
the set X does not satisfy the conditions of Lemma &5 or 6. Then there is exactly one big
witness set in Wx .

» Lemma 8. Consider X € X such that | X| > 2 and it contains a big witness set, and it
does not satisfy conditions of Lemma 5 or 6. Let Wx C W such that X = Uyew, Y, and
W* be the (unique) big witness set in X. Then W* is a connected vertex cover of G[X]| and
it contains X.

Using Lemma 6 to Lemma 8 we show how we can replace each X € X with the sets of
its shatter. Recall that we are given only G and ¢, and therefore we know X', but we do not
know W. In the Lemma 9, we show how we can find a T’-witness structure of G for some
T’ € Ty, which has at least as many vertices as T' (without knowing W).

» Lemma 9. Given X, we can obtain a T’ -witness structure of G in time 25n°M) time,
where T' € Ty and |V(T")| > |V(T)].

Now we are ready to present our randomized algorithm for Ty-CONTRACTION when input
graph is 2-connected.

» Theorem 10. There is a Monte Carlo algorithm for solving T,-CONTRACTION on 2-
connected graphs running in time O((2vV/0 + 2)0*+0 . nOW) “where n is the number of
vertices in the input graph. It does not return false positive and returns correct answer with
probability at least 1 — 1/e.

Proof. Let (G,k) be an instance of T,-CONTRACTION, where G is a 2-connected graph.
Furthermore, the Reduction Rules 3.1 and 3.3 are not applicable, otherwise we can correctly
decide whether or not (G, k) is a yes instance. The algorithm starts by computing a random
coloring ¢ : V(G) — [2\/@—#2]7 by choosing a color for each vertex uniformly and independently
at random. Let X be the set of monochromatic connected components with respect to ¢
in G. The algorithm applies Lemma 9 in time 2¥2°(M and tries to compute 7" such that
T' € Ty and G is k-contractible to T”. It runs (2v/ + 2)%%+8¢ many iterations of two steps
mentioned above. If for any such iteration it obtains a desired T’-witness structure of G
then it returns yes. If none of the iterations yield yes then the algorithm returns no. This
completes the description of the algorithm.

Observe that the algorithm returns yes only if it has found a 77 € T, such that G is
contractible to T using at most k edge contractions. Therefore, when it outputs yes, then
indeed (G, k) is a yes instance of Ty-CONTRACTION. We now argue that if (G, k) is a yes
instance then using a random coloring the algorithm (correctly) returns the answer with
sufficiently high probability. Let T be a graph in Ty, such that G is k-contractible to 7', and
W be a T-witness structure of G. Furthermore, let T's be a (fixed) spanning tree of T', and
vertex set M, B are set of vertices defined in Definition 2. Let ¥ : V(G) — [2v/£ + 2] be a
coloring where colors are chosen uniformly at random for each vertex. The total number
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of vertices contained in big witness sets of W is at most 2k. By our assumption, every leaf
is a singleton witness set and it is adjacent to a big witness set. Here, we assume that the
number of vertices in T is at least 3, otherwise we can solve the problem in polynomial time.
This implies that no leaf is in M U B. Consider graph 7" obtained from T by deleting all the
leaves and deleting edges in E(Ty) \ E(Ts). All the marked vertices of Ty and all the paths
connecting two marked vertices are also present in 7”. Notice that 7" is tree with at most
k 4 2¢ leaves. Since the number of vertices of degree three is at most the number of leaves in
any tree, there are at most k + 2¢ vertices of degree at least 3. There are at most k vertices
in T which are big witness sets and at most 2¢ vertices incident to edges in E(Ty) \ E(Ts).
Hence the total number of marked vertices is at most 2k + 4£. Since T” is a tree, there are at
most 2k + 4/ vertices which lie on a path between two vertices in M U B and are adjacent to
one of these. The number of vertices of G which are marked vertices or vertices which are
adjacent to it in 7" is at most 2(2k +4¢) + 2k. Therefore, the probability that ¢ is compatible
with W is at least 1/(2v/¢+2)%%+8¢. Since the algorithm runs (2v/¢ + 2)%%+8¢ many iterations,
probability that none of these colorings which is generated uniformly at random is compatible
with W is at most (1 — 1/(2V/7 4 2)k+80) V2" 1 /0 Hence, algorithm returns a
solution on positive instances with probability at least 1 —1/e. Each iteration takes 2% -nOW
time and hence the total running time of the algorithm is O((2v/7 + 2)C*+0 . pO0M)) 4

Next, we design reduction rules and a branching rule whose (exhaustive) application will
ensure that the instance of Ty;-CONTRACTION we are dealing with is 2-connected. Either we
apply one of these reduction rules or branching rule, or we resolve the instance using the
algorithm for Ty -CONTRACTION, where ¢/ < £. This together with Theorem 10 gives us an
algorithm for T,-CONTRACTION on general graphs.

» Lemma 11. If for some 0 < ¢’ < ¢, (G,k) is a yes instance of Ty-CONTRACTION then
return that (G, k) is a yes instance of Ty-CONTRACTION.

Our next reduction rule deals with vertices of degree of 1.

» Reduction Rule 3.4. If there is v € V(G) such that d(v) = 1 then delete v from G. The
resulting instance is (G — {v}, k).

If a connected graph G is not 2-connected graph then there is a cut vertex say, v in G.

Let C1,Cs,...,Ct be the components of G — {v}. Furthermore, let G; = G[V(Cy) U {v}]
and Gy = G — V(C1). Next, we try to resolve the instance (if possible) using the following
lemma.

» Lemma 12. If there exists £1 and lo with {1+ o = £, where £1,0> > 0, and ki and ko with
k1 + ko = k such that (G1,k1) is a yes instance of Ty, -CONTRACTION and (Ga, k2) is a yes
instance of Ty,-CONTRACTION then return that (G, k) is a yes instance of T¢-CONTRACTION.

Notice that if Lemma 12 is not applicable then one of G; or G2 must be contracted to a
tree. Let k1 be the smallest integer such that (G1, k1) is a yes instance of T-CONTRACTION,
and ko be the smallest integer such that (G, ko) is a yes instance of T-CONTRACTION. Notice
that k1 and ko can be computed in (deterministic) time 4%n%M) using the algorithm for
T-CONTRACTION [17]. We next proceed with the following branching rule.

» Branching Rule 3.1. We branch depending on which of the graphs among G1 and Go are
contracted to a tree. Therefore, we branch as follows.

Contract Gy to a tree, and the resulting instance is (Go,k — k1).

Contract Gy to a tree, and the resulting instance is (G1,k — k2).
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Note that the measure strictly decreases in each of the branches of the Branching Rule 3.1
since Reduction Rule 3.4 is not applicable. If we are unable to resolve the instance using
Lemma 11 and 12, and Reduction Rules 3.3 and 3.4 and Branching Rule 3.1 are not applicable
then the input graph is 2-connected. And, then we resolve the instance using Theorem 10.

» Theorem 13. For each ¢ € N, there is a Monte Carlo algorithm for solving T,-CONTRAC-
TION with running in time O((2V€ 4 2)°*+0 . nOW) " It does not return false positive and
returns correct answer with probability at least 1 —1/e.

4 Derandomization

In this section, we derandomize the algorithm presented in Section 3. Before proceeding
forward we define the following important object of this section.

» Definition 14 (Universal Family). A (n, k, ¢)-universal family is a collection F, of functions
from [n] to [¢] such that for each S C [n] of size k and a function ¢ : S — [g], there exists
function f € F such that f|s = ¢.

Here, f|s denotes the function f when restricted to the elements of S. For ¢ = 2, the
universal family defined above is called an (n, k)-universal set [20]. Hence, (n, k, ¢)-universal
family is a generalization of (n,k)-universal set. The main result of this section is the
following theorem (Theorem 15), which we use to derandomize the algorithm presented in
Section 3.

» Theorem 15. For any n,k,q > 1, one can construct an (n, k,q)-universal family of size
O(¢" - kK9W) “logn) in time O(¢* - k9% - nlogn).

Before proceeding to the proof of Theorem 15, we state how we use it to derandomize the
algorithm presented in Section 3. Let (G, k) be an instance of Ty-CONTRACTION. Assume that
(G, k) is a yes instance of Ty-CONTRACTION, and let F' be one of its solution. Furthermore, let
T = G/F, where T € T, and W be the T-witness structure of G, and ¢ : V(G) — [2v// + 2]
be a W-compatible coloring of G. Recall that our randomized algorithm starts by coloring
vertices in G uniformly and independently at random, and then uses this coloring to extract
a witness structure out of each color classes. We then argued that any random coloring is
“equally good” as that of ¢ with sufficiently high probability, which is given by a function of
k (and ¢). To derandomize this algorithm, we construct a family F of (coloring) functions
from [n] to [2v/€ + 2]. We argue that one of the colorings in the family that we compute is
“equally good” as that of ¢. Recall that the number of vertices which we need to be colored
in a specific way for a coloring to be W-compatible is bounded by 6k + 8¢ (see Definition 2
and Theorem 10). Let S be the set of vertices in G which needs to be colored in a specific
way as per the requirements of Definition 2. We can safely assume that |S| = 6k 4 8¢. If this
is not the case we can add arbitrary vertices in S to ensure this. Notice that any coloring
f of G such that f|s = ¢|s also satisfies the requirements of Definition 2. Let F be an
(n, 6k 4 8¢, 2v/0 + 2)-universal family constructed using Theorem 15. Instead of using random
coloring in the algorithm presented in Section 3, we can iterate over functions in F. Notice
that we do not know S but for any such .S, we are guaranteed to find an appropriate coloring
in one of the functions in F, which gives us the desired derandomization of the algorithm.

In rest of the section, we focus on the prove of Theorem 15. Overview of the proof is as
follows: Let S be a set of size k in an n-sized universe U. We first reduce this universe U
to another universe U’ whose size is bounded by k2. We ensure that all elements of S are
mapped to different elements of U’ during this reduction. Let Y be the range of S in U’.
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We further partition U’ into log k parts such that Y is almost equally divided among these
partition. In other words, each partition contains (roughly) k/log k many elements of Y. For
each of these parts, we explicitly store functions which represents all possible g-coloring of
elements of Y in this partition. Finally, we “pull back” these functions to obtain a coloring
of S.

» Definition 16 (Splitter [20]). An (n, k, g)-splitter F is a family of functions from [n] to [¢]
such that for every set S C [n] of size k there exists a function f € F that splits S evenly.
That is, for every 1 < 2,2/ < ¢q, |[f~1(2) N S| and |f~1(2") N S| differ by at most 1.

» Lemma 17. For every 1 < k,q < n there is a family of (n, k,q)-splitter of size O(n®(®)
which can be constructed in the same time.

Following is another well known result for construction of splitter when ¢ = k2. We use
this result to reduce the size of the universe.

» Proposition 18 ([8, 20]). For any n,k > 1 one can construct an (n, k, k?)-splitter of size
O(k°Mlogn) in time O(k°Mnlogn).

Next, we look at the k-RESTRICTION problem defined by Naor et al. [20]. Before defining
the problem, we define some terminologies that will be useful. For a fixed set of alphabets,
say {1,2,...,b} and a vector vector V', which is an ordered collection of alphabets, the length
of V' is the size of the collection. We represent n length vector V' as (v1,ve,...,v,). For a
positive integer i € [n], V[i] denotes the alphabet at the i** position of V. Similarly, for an
(index) set S C [n], V[S] denotes the |S| sized vector obtained by taking alphabet at it"

position in V, for each ¢ € S. In other words, if S = {i1,4a,...,0x} for i1 <is < - - < i,
then VI[S] = (V[i1],V]iz],...,V[ix]). An input to the k-RESTRICTION problem is a set
C=1{C1,Cs,...,Cy} called as a k-restrictions, where C; C [b]* for j € [m] and an integer

n. Here, [b]* denotes the set of all possible vectors of length k over [b], and m denotes the
size of the k-restrictions. We say that a collection V of vectors obeys C if for all S C [n]
which is of size k and for all C; € C, there exists V' € V such that V[S] € C;. The goal of
k-RESTRICTION problem is to find a collection V of as small cardinality as possible, which
obeys C. Let ¢ = minj¢[,, |Ci], and let T" be the time needed to check whether or not the
vector V' is in Cj;. We next state the result of Naor et al. [20], which will be useful for proving
Theorem 15.

» Proposition 19 (Theorem 1 [20]). For any k-RESTRICTION problem with b < n, there is a
deterministic algorithm that outputs a collection obeying k-restrictions, which has size at most
k
(klogn+logm)/log(bk/(b* —c)). Moreover, the algorithm runs in time O (& (}) -m-T-n*).
Here, b is the size of the alphabet set, m is the size of the k-restrictions, n is the size of the
vectors in the output set, and c is the size of the smallest collection in the k-restrictions.

Notice that a function from [n] to [¢] can be seen as an n-length vector over the alphabet
set [¢]. Consider the case when each C; contains exactly one vector of length k over [¢], i.e.
c={{C}|Celqf},m=¢" c=1,and T = O(n). The output of k-RESTRICTION on this
input is exactly an (n, k, ¢)-universal family. Therefore, we obtain the following corollary.

» Corollary 20. For any n,k,q > 1, one can construct an (n, k, q)-universal family of size
O(¢* - k- (logn +logq)) in time O(g* - n®®).

Notice that we can not directly employ Corollary 20 to construct the desired family,
since its running time is O(g* - n®®*)). Therefore, we carefully use splitter to construct an
(n, k, g)-universal family to obtain the desired running time.
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Proof of Theorem 15. For the sake of clarity in the notations, we assume that log k and
k/logk are integers. Let A be a (n, k, k?)-splitter obtained by Proposition 18. Let B be
a (k% k,log k)-splitter obtained by Lemma 17. Let D be a (k?, k/log k, q)-universal family
obtained by Corollary 20. We construct F as follows. For every function f, in A, f; in B,
and log k functions g1, g2, ..., glogk in D, we construct a tuple f = (fa, fo, 91,92, -, Glog k),
and add it to F. We note here that g1, go, ..., glogr need not be different functions. For
f € F, we define f : [n] — [g] as follows. For x € [n], we have f(z) = ¢,(fo(fa(x))), where
r= fb(fa(x))

We first argue about the size of F and the time needed to construct it. Notice that |F| <
|A||B||D|'e*. We know |A| < kM logn, |B] < O(kC1gk)) and |D| < ¢F/losk|Ok/logk)
by Proposition 18, Lemma 17, and Corollary 20, respectively. This implies that |F| €
O(¢* - k©Uogk) . logn). Note that A,B,D can be constructed in time O(k®Mnlogn),
O(ECMoek)) “and O(g* - kO*/1°8k)) respectively. This implies that time required to construct
F is bounded by O(¢* - k°®) . nlogn).

It remains to argue that F has the desired properties. Consider S C [n] of size k and
¢ : S — [q]. We prove that there exists a function f € F such that f|s = ¢. By the definition
of splitter, there exists f, € A such that f, evenly splits S (see Definition 16). Since |S| < k2,
for every y € [k?], |f, 1 (y) N S| is either 0 or 1. Let Y = {y1,y2,...,yx} be a subset of [k?]
such that y; < ya < --- < yg and |f; 1 (y;) N S| =1, for all i € [k]. For j = k/logk, we mark
every j element in set Y marking log k — 1 indices altogether. In other words, construct
a subset Y/ of Y of cardinality logk — 1 such that Y’ = {y1;,v25,¥35 - - -, Yogk—1)j }- We
use the set Y’ to partition [k?] in a way that every partition contains almost k/log k many
elements of Y. Let yo = 0 and yqogr); = k? and defineset Y, = {y € Y | yp_1 <y < ¥}
for r € [logk]. Recall that a B is (k?, k,log k)-splitter family obtained by Lemma 17. By
construction, there exists a function f;, which corresponds to subset Y’ of logk — 1 many
indices. In other words, there is a function f; such that f, '(r) contains all the elements in
Y,., for each r in [log k]. We note that size of f, '(r) could be as large as k2. Recall that D
is a (k%, k/log k, q)-universal family. Therefore, for every r € [log k] there exists g, € D such
that gy, = @|y.. Consider a function f = (fa, fv,91,92,- -, Glogk) in F where fq, f and
g satisfies the property mentioned above. The function f, is bijective on S and f(S) =Y.
The function f;, partitions Y into log K many parts by mapping Y into Y3, Y, ..., Yioe . For
each Y, there exists a function g, which gives the desired coloring of elements in Y, and
hence for the elements in S. Since we considering all possible combinations of f,, f, and log k
functions in D, there exists a function f such that f|g = ¢, which proves the theorem. <«

5 Non-existence of a Polynomial Kernel for T,-Contraction

In this section, we show that T,~-CONTRACTION does not admit a polynomial kernel unless
NP C coNP/poly. We note that T-CONTRACTION (TREE CONTRACTION) does not admit a
polynomial kernel unless NP C coNP/poly [17]. We give a reduction from T-CONTRACTION
to T,-CONTRACTION as follows.

Let (G,k) be an instance of T-CONTRACTION. We create an instance (G’,k") of Ty-
CONTRACTION as follows. Initially, we have G = G’. Let v* be an arbitrarily chosen vertex
in V(G). For each i € [(], we add a cycle (v*,w],wh, ..., wj, ) on k+2 vertices to G’, which
pairwise intersect at v*, and we set k' = k. It is easy to see that (G, k) is a yes instance of
T-CONTRACTION if and only if (G', k") is a yes instance of Ty-CONTRACTION.

» Theorem 21. T,-CONTRACTION does not admit a polynomial kernel unless NP C coNP/-
poly.
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6 PSAKS for T,-Contraction

In this section, we design a PSAKS for T,-CONTRACTION, which complements the result that

T,-CONTRACTION does not admit a polynomial kernel assuming NP € coNP /poly (Section 5).

Let (G,k) be an instance of Ty-CONTRACTION. The algorithm starts by applying
Reduction Rules 3.1 to 3.4 (if applicable, in that order). Next, we state the following lemma
which will be useful in designing a reduction rule which will be employed for bounding the
sizes of induced paths.

» Lemma 22. Let (G, k) be an instance of T;-CONTRACTION and P = (ug, u1, ..., Uq, Ug+1)
be a path in G, where ¢ > k + 2, and for each i € [q + 1] we have deg(u;) = 2. Then no
minimal solution F' to T;-CONTRACTION in (G, k) with |F| < k contains an edge incident to
V(P)\ {uo, ugt1}-

» Reduction Rule 6.1. If G has a path P = (ug, u1, ..., Uy, Ugt1) such that ¢ >k + 2 and
for alli € [q], we have deg(u;) = 2. Then contract the edge uq_1ug, i.e. the resulting instance

is (G/{ug—1uq}, k).
Note that Reduction Rule 6.1 can be applied in polynomial time by searching for such a
path (if it exists) in the subgraph induced on the vertices of degree 2 in G.

» Lemma 23. Consider an instance (G, k) of T;-CONTRACTION on which Reduction Rule
6.1 is not applicable. If (G, k) is a yes instance of Ty-CONTRACTION then G has a connected
vertex cover of size at most 2(k + 3)(k + 2¢).

Before describing the next reduction rule, we define a partition of V(G) into the following
sets. Let H = {u € V(G) | deg(u) > 2(k+3)(k+20)+ 1}, I={v e V(G)\H | N(v) C H},
and R =V(G)\ (H UI). Vertices v,u are said to be false twins if N(v) = N(u). We use
Lemma 24 to reduce the number of vertices in I which have many false twins. Let G be
k-contractible to a graph T in T, and W be the T-witness structure of G.

» Lemma 24. Consider sets X,U C V(G) such that U is an independent set in G and for
allv e U we have X C N(v). If |[U| > k + £ + 2 then there is a vertex t € V(T) such that
X CW(t).

» Reduction Rule 6.2. If there is a vertex v € I that has at least k + ¢ + 2 false twins in I
then delete v, i.e. the resulting instance is (G — {v}, k).

For oo > 1, we let d = [ ;%5 ]. Next, we state our last reduction rule.

» Reduction Rule 6.3. If there are vertices vi,va, -+ ,Vktpo42 € I and hy,ha,- -, hg € H
such that for all i € [k + ¢+ 2], we have {h1,...,hq} C N(v;) then contract all edges in
E = {vih; | i € [d]}, and decrease k by d — 1. The resulting instance is (G/E,k —d+1).

We note that the lossy-ness is introduced only in the Reduction Rule 6.3. We have
determined that H' = {hy, ha,...,hq} need to be in one witness bag but G[H’] may not
be connected. To simplify the graph, we introduce additional vertex v, to the bag which
contains H'. By doing this we are able to contract H' U {v;1} into a single vertex. In the
following lemma, we argue that the number of extra edge contracted in this process is «
factor of the optimum solution.

» Lemma 25. Let (G, k) be an instance of T;-CONTRACTION where none of the Reduction
Rules 6.1 to 6.3 are applicable. If (G,k) is a yes of Ty-CONTRACTION then |V (G)| <
clk(k + 20)]%*, where c is some fived constant.

» Theorem 26. T,-CONTRACTION admits a strict PSAKS, where the number of vertices is
bounded by c[k(k + 20)] 15714 where ¢ is some fized constant.
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—— Abstract

Lubiw showed that several variants of Graph Isomorphism are NP-complete, where the solutions
are required to satisfy certain additional constraints [12]. One of these, called ISOMORPHISM
WITH RESTRICTIONS, is to decide for two given graphs X; = (V, E1) and Xo = (V, E2) and a
subset R C V x V of forbidden pairs whether there is an isomorphism 7 from X; to X5 such
that ™ # j for all (¢, j) € R. We prove that this problem and several of its generalizations are in
fact in FPT:
The problem of deciding whether there is an isomorphism between two graphs that moves
k vertices and satisfies Lubiw-style constraints is in FPT, with k and | R| as parameters. The
problem remains in FPT even if a CNF of such constraints is allowed. As a consequence of
the main result it follows that the problem to decide whether there is an isomorphism that
moves exactly k vertices is in FPT. This solves a question left open in [1].
When the number of moved vertices is unrestricted, finding isomorphisms that satisfy a CNF
of Lubiw-style constraints is in FPTEL.
Checking if there is an isomorphism between two graphs that has complexity ¢ is also in FPT
with t as parameter, where the complexity of a permutation 7 is the Cayley measure defined
as the minimum number ¢ such that 7 can be expressed as a product of ¢ transpositions.
We consider a more general problem in which the vertex set of a graph X is partitioned into
RED and BLUE, and we are interested in an automorphism that stabilizes RED and BLUE and
moves exactly k vertices in BLUE, where £ is the parameter. This problem was introduced
in [5], and in [1] we showed that it is W[1]-hard even with color classes of size 4 inside RED.
Now, for color classes of size at most 3 inside RED, we show the problem is in FPT.
In the non-parameterized setting, all these problems are NP-complete. Also, they all generalize
in several ways the problem to decide whether there is an isomorphism between two graphs that
moves at most k vertices, shown to be in FPT by Schweitzer [13].

* Some proofs are omitted from this extended abstract; see https://arxiv.org/abs/1709.10063 for the
full version.
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1 Introduction

The Graph Isomorphism problem (GI) consists in deciding whether two given input graphs
are isomorphic, i.e., whether there is a bijection between the vertex sets of the two graphs
that preserves the adjacency relation. It is an intensively researched algorithmic problem for
over four decades, culminating in Babai’s recent quasi-polynomial time algorithm [2].

There is also considerable work on the parameterized complexity of GI. For example,
already in 1980 it was shown [7] that GI, parameterized by color class size, is fixed-parameter
tractable (FPT). It is also known that GI, parameterized by the eigenvalue multiplicity of
the input graph, is in FPT [3]. More recently, GI, parameterized by the treewidth of the
input graph, is shown to be in FPT [11].

In a different line of research, Lubiw [12] has considered the complexity of GI with
additional constraints on the isomorphism. Exploring the connections between GI and the
NP-complete problems, Lubiw defined the following version of GI.

IsoMORPHISM WITH RESTRICTIONS: Given two graphs X; = (Vi, Ey) and Xy = (Va, Es)
and a set of forbidden pairs R C V; x Vs, decide whether there is an isomorphism 7
from X; to X5 such that i™ # j for all (i,5) € R.

When X; = Xs, the problem is to check if there is an automorphism that satisfies these
restrictions. Lubiw showed that the special case of testing for fized-point-free automorphisms
is NP-complete. Klavik et al. recently reexamined ISOMORPHISM WITH RESTRICTIONS [10].
They show that it remains NP-complete when restricted to graph classes for which GI is
as hard as for general graphs. Conversely, they show that it can be solved in polynomial
time for several graph classes for which the isomorphism problem is known to be solvable
in polynomial time by combinatorial algorithms, e.g. planar graphs and bounded treewidth
graphs. However, they also show that the problem remains NP-complete for bounded color
class graphs, where an efficient group theoretic isomorphism algorithm is known.

A different kind of constrained isomorphism problem was introduced by Schweitzer [13].
The weight (or support size) of a permutation © € Sym(V') is [{i € V' |i™ # i}|. Schweitzer
showed that the problem of testing if there is an isomorphism 7 of weight at most k& between
two n-vertex input graphs in the same vertex set can be solved in time k€ *) poly(n). Hence,
the problem is in FPT with k as parameter. Schweitzer’s algorithm exploits interesting
properties of the structure of an isomorphism 7. Based on Lubiw’s reductions [12], it is not
hard to see that the problem is NP-complete when k is not treated as parameter.

In this paper we consider the problem of finding isomorphisms with additional constraints
in the parameterized setting. In our main result we formulate a graph isomorphism/automor-
phism problem with additional constraints that generalizes Lubiw’s setting as follows. For a
graph X = (V| E), let 7 € Aut(X) be an automorphism of X. We say that a permutation
7w € Sym(V) satisfies a formula F over the variables in Var(V) = {xy, |u,v € V}if F is
satisfied by the assignment that has z,, = 1 if and only if ™ = v. For example, the
conjunction A,y —Ty. expresses the condition that 7 is fixed-point-free. We define:

ExacT-CNF-GI: Given two graphs X; = (V, Ey) and Xs = (V| E3), a CNF formula F over
Var(V), and k € N, decide whether there is an isomorphism from X; to X5 that has
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weight exactly k and satisfies F. The parameter is |F| + k, where |F| is the number of
variables used in F'.

In Section 4, we first give an FPT algorithm for EXACT-CNF-GA, the automorphism
version of this problem. The algorithm uses an orbit shrinking technique that allows us to
transform the input graph into a graph with bounded color classes, preserving the existence
of an exact weight k£ automorphism that satisfies the formula F. The bounded color class
version is easy to solve using color coding; see Section 3 for details. Building on this, we
show that EXxAcT-CNF-GI is also in FPT. In particular, this allows us to efficiently find
isomorphisms of weight exactly k, a problem left open in [1], and extends Schweitzer’s result
mentioned above to the exact case. In our earlier paper [1] we have shown that the problem of
exact weight k automorphism is in FPT using a simpler orbit shrinking technique which does
not work for exact weight k isomorphisms. In this paper, we use some extra group-theoretic
machinery to obtain a more versatile orbit shrinking.

In Section 5, we consider the problem of computing graph isomorphisms of complexity
exactly ¢: The complexity of a permutation 7 € Sym(V) is the minimum number of
transpositions whose product is 7. Checking for automorphisms or isomorphisms of complexity
exactly t is NP-complete in the non-parameterized setting. We show that the problem is
in FPT with ¢ as parameter. Again, the “at most ¢” version of this problem was already
shown to be in FPT by Schweitzer [13] as part of his algorithmic strategy to solve the weight
at most k problem. Our results in Sections 4 and 5 also hold for hypergraphs when the
maximum hyperedge size is taken as additional parameter.

In Section 6, we examine a different restriction on the automorphisms being searched for.
Consider graphs X = (V| E) with vertex set partitioned into RED and BLUE. The Colored
Graph Automorphism problem (defined in [5]; we denote it COL-GA), is to check if X has
an automorphism that respects the partition and moves exactly k BLUE vertices. We showed
in [1] that this problem is W[1]-hard. In our hardness proof the orbits of the vertices in the
RED part of the graph have size at most 4, while the ones for the BLUE vertices have size 2.
We show here that this cannot be restricted any further: If the input graph has RED further
partitioned into color classes of size at most 3 each, then the problem to test whether there is
an automorphism moving exactly & BLUE vertices can be solved in FPT (with parameter k).
The BLUE part of the graph remains unconstrained. Observe that Schweitzer’s problem [13]
coincides with the special case of this problem where there are no RED vertices. This implies
that the non-parameterized version of COL-GA is NP-complete (even when X has only BLUE
vertices). Similarly, finding weight k& automorphisms of a hypergraph reduces to CoL-GA by
taking the incidence graph, where the original vertices become BLUE and the vertices for
hyperedges are RED; note that this yields another special case, where both RED and BLUE
induce the empty graph, respectively.

2 Preliminaries

We use standard permutation group terminology, see e.g. [4]. Given a permutation o €
Sym(V), its support is supp(o) = {u € V | u® # u} and its (Hamming) weight is |supp(c)|.
The complezity of o (sometimes called its Cayley weight) is the minimum number ¢ such that
o can be written as the product of ¢ transpositions.

Let G < Sym(V) and m € Sym(V); this includes the case m = id. A permutation
o € Gr \ {id} has minimal complezity in G if for every way to express o as the product of
a minimum number of transpositions o = 71 - - : Tecompl(s) and every i € {2,...,compl(o)} it
holds that 7; - - - Teompi(s) ¢ G7. The following lemma observes that every element of G'm can
be decomposed into minimal-complexity factors.
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» Lemma 2.1 [1, Lemma 2.2]. Let Gr be a coset of a permutation group G and let o €
Gn \ {id}. Then for some £ > 1 there are o1,...,00—1 € G with minimal complezity in G
and oy € G with minimal complexity in Gm such that o = o1 - - - oy and supp(o;) C supp(o)
for each i € {1,...,4}.

An action of a permutation group G < Sym(V) on a set V' is a group homomorphism
h: G — Sym(V'); we denote the image of G under h by G(V'). For u € V, we denote
its stabilizer by G, = {m € G |u™ = u}. For U C V, we denote its pointwise stabilizer
by Giyp = {m € G|Vu € U : u™ = u} and its setwise stabilizer by Gy = {r € G|U™ =U}.
For SCP(V), welet Gg={r e G|VU €S :U™=U}.

A hypergraph X = (V, E) consists of a vertex set V and a hyperedge set E C P(V). Graphs
are the special case where |e¢| = 2 for all e € E. The degree of a vertex v € V' is |{e € E|v € e}|.
A (vertex) coloring of X is a partition of V' into color classes C = (C4,...,Cy,). The color
classes C are b-bounded if |C;| < b for all i € [m]. An isomorphism between two hypergraphs
X = (V,E)and X' = (V', E') (with color classes C = (C1,...,Cp,) and C' = (CY,...,C},)) is
a bijection m: V' — V'’ such that B’ = {{r(v)|v € e}|e € E} (and C] = {x(v)|v € C;}). The
isomorphisms from X to X’ form a coset that we denote by Iso(X, X’). The automorphisms
of a hypergraph X are the isomorphisms from X to itself; they form a group which we denote
by Aut(X).

3 Bounded color class size

To show that EXACT-CNF-GA for hypergraphs with b-bounded color classes can be solved
in FPT, we recall our algorithm for exact weight & automorphisms of bounded color class
hypergraphs [1] and show how it can be adapted to the additional constraints given by the
input formula.

» Definition 3.1. Let X = (V, E) be a hypergraph with color class set C = {C,...,Cy, }.

(a) For a subset C’ C C, we say that a color-preserving permutation m € Sym(V') C’-satisfies
a CNF formula F' over Var(V) if every clause of F' contains a literal z,,, or =, , with
u € |JC' that is satisfied by .

(b) For a color-preserving permutation = € Sym(V), let C[n] = {C; € C | v € C; : v™ # v}
be the subset of color classes that intersect supp(w). For a subset C' C C[n], we define
the permutation m¢: € Sym(V) as

(v) o™, v eyl
TTer\v) =
¢ v, ifvgJC.

Note that wepr = 7.
(c) A color-preserving automorphism o # id of X is said to be color-class-minimal, if for
every set C' with @ C C’ C C[o], the permutation o¢/ is not in Aut(X).

» Lemma 3.2. Let X = (V, E) be a hypergraph with color class set C = {C1,Ca,...,Cp}.
For @ #C' CC and a CNF formula F over Var(V'), the following statements are equivalent:
There is a nontrivial automorphism o of X with Clo] = C' that satisfies F.
C’ can be partitioned into Cq,...,Co¢ and F (seen as a set of clauses) can be partitioned into
CNF formulas Fy, ..., Fy such that Fy is (C\C’)-satisfied by id and for each i € {1,... ¢}
there is a color-class-minimal automorphism o; of X with Clo;] = C; that C;-satisfies F;.
Moreover, the automorphisms o and o; can be chosen to satisfy o; = o¢, for 1 < i < {,
respectively.
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In [1] an algorithm is presented that, when given a hypergraph X on vertex set V with
b-bounded color classes and k € N, computes all color-class-minimal automorphisms of X
that have weight exactly k in O((kb!)o(kz) poly(N)) time. We use it as a building block for
the following algorithm (see line 5).

Algorithm 1 Color-Exact-CNF-HGA,(X,C, k, F)

Input: A hypergraph X = (V, FE) with b-bounded color classes C = {C4,...,Cp 1},
a parameter k € N, and a CNF formula F' over Var(V)
Output: A color-preserving automorphism o of X with |supp(c)| = k that satisfies F,
or | if none exists
Ao = {id}
for i € {1,...,k} do
A; < {0 € Aut(X) | o is color-class-minimal and has weight i} // see [1]
for h € He i, do // He i is the perfect family of hash functions h: C — [k| from [6]
for £ e {1,...,k},n: [k] = [¢(] do
for (ki,...,k¢) € {0,...,k} with 3¢ _,k; = k do
for each partition of the clauses of F' into Fp,..., F; do
if Vie {1,...,0}:30; € Ag, : supp(o;) CJ(W o h)~1(i) and F; is
Clo;]-satisfied by o;, and Fy is (C \ |J_,C[o:])-satisfied by id then
return o = o1 ---0y
return |

» Theorem 3.3. Given a hypergraph X = (V, E) with b-bounded color classes C, a CNF for-
mula F over Var(V'), and k € N, the algorithm Color-Exact-CNF-HGA,(X,C, k, F') computes a
color-preserving automorphism o of X of weight k that satisfies F in (kb!)o(k2)ko(|p|) poly ()
time (where N is the size of X), or determines that none exists.

Proof. If the algorithm returns o = oy - - - o4, we know o; € A, and supp(o;) C | J(h oh)~1(3).
As these sets are disjoint, we have |supp(o)| = Zle\supp(oiﬂ =k, and Lemma 3.2 implies
that o satisfies F.

We next show that the algorithm does not return L if there is an automorphism 7w of X
that has weight k and satisfies F. By Lemma 3.2, we can partition C[n] into Cy,...,C; and
the clauses of F into Fj ..., Fy such that Fy is (C \ C[x])-satisfied by id and, for 1 <i < ¢,
the permutation m; = 7, is a color-class-minimal automorphism of X that C[m;]-satisfies F.
Now consider the iteration of the loop where h is injective on C[r]; such an h must exist as it
is chosen from a perfect hash family. Now let A’: [k] — [¢] be a function with A’ (h(C)) =i
if C € C[m;]; such an h' exists because h is injective on C[n]. In the loop iterations where
h' and the partition of F into Fy ..., Fy is considered, the condition on line 10 is true (at
least) with ; = m;, so the algorithm does not return L.

Line 5 can be implemented by using the algorithm ColoredAuty ;(X) from [1] which
runs in O((kb))®**) poly(N)) time, and this also bounds |A;]. As |C| < n, the perfect hash
family Hc x has size 20 log® n, and can also be computed in this time. The inner loops
take at most k¥, k¥ and (k + 1)I¥! iterations, respectively. Together, this yields a runtime of
(kb)) OE) LOUFD poly(N). <

4 Exact weight

In this section, we show that finding isomorphisms that have an exactly prescribed weight
and satisfy a CNF formula is fixed parameter tractable. In fact, we show that this is true
even for hypergraphs, when the maximum hyperedge size d is taken as additional parameter.
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ExacT-CNF-HGI: Given two hypergraphs Xy = (V, E1) and X9 = (V, E3) with hyperedge
size bounded by d, a CNF formula F' over Var(V), and k € N, decide whether there is an
isomorphism from X; to X5 of weight k that satisfies F'. The parameter is |F| + k + d.

Our approach is to reduce ExacT-CNF-HGI to EXACT-CNF-HGA (the analogous
problem for automorphisms), which we solve first.

We require some permutation group theory definitions. Let G < Sym(V') be a permutation
group. The group G partitions V into orbits: V = Q; U Qs --- U Q,.. On each orbit 2;,
the group G acts transitively. A subset A C ; is a block of the group G if for all 7 € G
either A™ = A or A" N A = &. Clearly, €; is itself a block, and so are all singleton sets.
These are trivial blocks. Other blocks are nontrivial. If G has no nontrivial blocks it is
primitive. If G is not primitive, we can partition §2; into blocks ; = A UAsU---UA4, where
each A; is a mazimal nontrivial block. Then the group G acts primitively on the block system
{A1,Aq,...,As}. In this action, a permutation 7 € G maps A; to AT = {u”" |u € A;}.

The following two theorems imply that every primitive group on a sufficiently large set V'
contains the alternating group Alt(V) = {m € Sym(G) | compl(r) is even}.

» Theorem 4.1 [4, Theorem 3.3A]. Suppose G < Sym(V') is a primitive subgroup of Sym(V).
If G contains an element w such that |[supp(w)| = 3 then G contains Alt(V). If G contains
an element 7 such that [supp(w)| = 2 then G = Sym(V).

» Theorem 4.2 [4, Theorem 3.3D]. If G < Sym(V) is primitive with G ¢ {Alt(V'), Sym(V)}
and contains an element 7 such that |[supp(w)| = m (for some m > 4) then |V| < (m —1)2™.

The following lemma implies that the alternating group in a large orbit survives fixing
vertices in a smaller orbit.

» Lemma 4.3. Let G < Sym(Qy U Q) be a permutation group such that Qy is an orbit
of G, and |Q1| > 5. Recall that G();) denotes the image of G under its action on ;.
Suppose G(Q1) € {Alt(Q21),Sym(Q)} and |G(1)| > |G(Q2)|. Then for some subgroup H of
G(82), the group G contains the product group Alt(Q1) x H. In particular, the pointwise
stabilizer Gq,) contains the subgroup Alt(2) x {id}.

The effect of fixing vertices of some orbit on other orbits of the same size depends on
how the group relates these orbits to each other.

» Definition 4.4. Two orbits Q7 and Qs of a permutation group G < Sym(V) are linked if
there is a group isomorphism o: G(€1) — G(£) with G(Q,UQs) = {(¢,0(¢)) |¢ € G(1)}.
(This happens if and only if both G(£21) and G(§22) are isomorphic to G(2; U Qs).)

We next show that two large orbits where the group action includes the alternating group
are (nearly) independent unless they are linked.

» Lemma 4.5. Suppose G < Sym(V') where V.= Qq U Qo s its orbit partition such that
1] > 5 and G(£;) € {Alt(;),Sym(9;)} fori = 1,2. Then either Q1 and Qo are linked
in G, or G contains Alt(£21) x Alt(Q).

The last ingredient for our algorithm is the observation that when there are two linked
orbits where the group action includes the alternating group, fixing a vertex in one orbit is
equivalent to fixing some vertex of the other orbit.

» Lemma 4.6 [4, Theorem 5.2A]. Let n = |V| > 9. Suppose G is a subgroup of Alt(V)
of index strictly less than (g) Then, for some point uw € V', the group G is the pointwise
stabilizer subgroup Alt(V),,.
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» Corollary 4.7. Let 1 and Qy be two linked orbits of a permutation group G < Sym(V)
with Alt(Q1) < G(1) and || = [Q2] > 9. Then for each u € 0y there is a v € Qg such
that G, = Gy.

Algorithm 2 Exact-CNF-HGA4 (X, k, F)

Input: A hypergraph X with hyperedge size bounded by d, a parameter k and a formula F’
Output: An automorphism o of X with |supp(c)| = k that satisfies F', or L if none exists
T < the vertices of X that are mentioned in F'
G « ({0 € Aut(X) | o has minimal complexity in Aut(X) and [supp(c)| < k})
// see [1, Algorithm 3]
b+ & max{(k—1)%,|T| + k,9}
while G contains an orbit of size more than b do
repeat
O < the set of all G-orbits
for 2 € O do
B(2) < a maximal block system of €2 in G
if 3A € B(Q) : |A| > £ or [B(Q)] > (k—1)% A AL(B(Q)) £ G(B(R2)) then
G «+ Gp(q) // the setwise stabilizer of all A € B(£2)
until G remains unchanged
choose Qpax € O such that |B(Qmax)| > |B(Q)] for all Q@ € O
if |B(Qmax)| > max{(k — 1)%*|T| + k,9} then
H < Gpy // the pointwise stabilizer of T
Qp < the largest H-orbit that is contained in Q.
B + {A € B(Qmax) | A C Qp}
choose A € By
G < Gyay // the setwise stabilizer of A
O < the set of all G-orbits
return Color-Exact-CNF-HGA,(X, O, k, F') // see Algorithm 1

.2
» Theorem 4.8. Algorithm 2 solves EXACT-CNF-HGA in time (d(k* + \F\)!)O(k )poly(N).

Proof sketch. Suppose there is some 7 € Aut(X) of weight exactly k that satisfies F. By
Lemma 2.1, the automorphism 7 can be decomposed as a product of minimal-complexity
automorphisms of weight at most k, which implies 7 € G after line 4. To show that whenever
the algorithm shrinks G, some weight k& automorphism of X that satisfies F' survives, we
first consider the shrinking in line 12: If © is an orbit with |A| > k/2 for some (and thus all)
A € B(f2), then no block of Q is moved by . If [B(Q)| > (k — 1)?* and G(B(£2)) does not
contain Alt(B(Q)), then Theorems 4.1 and 4.2 imply that 7 setwise stabilizes all A € B(€2)
and thus survives the shrinking. The other shrinking of GG, which occurs in line 20, can only
happen if Alt(B(Qmax)) < G(B(Qmax))- Let T = Uqgeo{A € B(Q) | ANT # @} be the set

of all blocks with vertices from T" and let R = G+ be the setwise stabilizer of these blocks.

Note that H < R < G. Using Lemmas 4.3 and 4.5 and Corollary 4.7, it can be shown that a
sufficiently large part of Alt (B(Qmax)) survives in R and also in H.

» Claim. By is a mazimal block system for the orbit Qg in H. Moreover, |By| > k and
Alt(Bu) < H(Bu).

Building on this, it can be shown that when G and A are as in line 20, then for any 7 € G
of weight k that satisfies F', there is a ' € Ga} of weight k that satisfies F. <

2:7
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We now turn to EXACT-CNF-HGI. Given a formula F over Var(V) and ¢ € Sym(V),
let 1)(F") denote the formula obtained from F' by replacing each variable 2y, by Ty (w)-

» Lemma 4.9. A product o = o € Sym(V) satisfies a formula F over Var(V) if and only
if ¢ satisfies m=(F).

Algorithm 3 Exact-CNF-HGIq (X1, X2, k, F)

Input: Two hypergraphs X; and X5 on vertex set V with hyperedge size bounded by d,
a parameter k € N and a CNF formula F' over Var(V)
Output: An isomorphism o from X; to X, with |supp(c)| = k that satisfies F,
or L if none exists
7 < some isomorphism from X; to X5 with [supp(w)| < k // see [1, Theorem 3.8]
for U C supp(w) do // we will force u ¢ supp(pm) for u € U
for M C supp(w) \ U do // we will force u € supp(p) Nsupp(en) for u € M
I + supp(m) \ (UU M) // we will force u ¢ supp(p) for u € I
F’ 7T_1(F) N /\ueU Lum—1(u) N /\ueM(—\xuﬂ—l(u) A —‘J,‘uﬂ,,) N /\uel Do
kK <« k—\|I|+|U|
¢ < Exact-CNF-HGA4(X1, k', F') // see Algorithm 2
if ¢ # 1 then return o = o7
return |

2
» Theorem 4.10. Algorithm 3 solves EXACT-CNF-HGI in time (d(kk+|F|)!)o(k )poly(N).

Proof. Suppose Algorithm 3 returns a permutation ¢ = ¢m. Then 7 is an isomorphism
from X; to X5 and ¢ is an automorphism of X; that satisfies F’ and has weight k’. As
¢ satisfies 771 (F), Lemma 4.9 implies that o satisfies F. The additional literals in F’ ensure
supp(c) = (supp(p) \ U) UT and thus |supp(o)| = k' — |U| + |I| = k.

Now suppose there is an isomorphism o from X; to X5 that satisfies F' and has weight k.
Let 7 be the isomorphism computed on line 3. Then ¢ = or~! is an automorphism
of Xi; it satisfies 77*(F) by Lemma 4.9. In the iteration of the loops where U = {u €
supp(m) Nsupp(¢) |uSmr =u} and M = (supp(m) Nsupp(p)) \ U, it holds that ¢ has weight &’
and satisfies F’. Thus Exact-CNF-HGA;(X1, %', F') does not return L.

The isomorphism 7 can be found in (dk)©*) poly(N) time [1, Theorem 3.8]. The loops
have at most 3* iterations, and Exact-CNF-HGA, takes (d(k* + \F\)!)O(’“Q) poly(N) time. <«

5 Exact complexity

The complexity of a permutation 7 € Sym(V') can be bounded by functions of its weight:
’Sllpp(ﬂ')’ —1 < compl(r) < 2- }supp(ﬂ)’. However, there is no direct functional dependence
between these two parameters. And while the algorithms of Sections 3 and 4 can be modified
to find isomorphisms of exactly prescribed complexity, we give an independent and more
efficient algorithm in this section.

The main ingredient is an analysis of decompositions ¢ = o1---0y of o0 € Sym(V)
into 0; € Sym(V) \ {id} (for 1 < ¢ < ¢) with compl(c) = Zle compl(c;); we call such
decompositions complexity-additive. For example, the decomposition into complexity-minimal
permutations provided by Lemma 2.1 is complexity-additive.

For a sequence of permutations o1, ...,0, € Sym(V) and a coloring ¢: V' — [k], its colored
cycle graph CG.(o1,...,04) is the incidence graph between Ule supp(o;) and the o;-orbits
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Figure 1 The colored cycle graph CGid((l,2,3)(5,6,7)7 (3,4),(3,5)(8,9, 10)); the colors are
depicted next to the vertices.

of size at least 2, i.e., the cycles of o;, for 1 <+i < ¢. We call the former primal vertices and
the latter cycle-vertices. Each primal vertex v € V is colored by ¢(v), and each cycle-vertex
that corresponds to a cycle of o; is colored by i. (Note that a vertex of this graph is a
cycle-vertex if and only if it has odd distance to some leaf.) See Figure 1 for an example.

» Lemma 5.1. Let 0 € Sym(V), let 0 = o1+ 0p be a complexity-additive decomposition,
and let c: V — [k] be a coloring. Then CG.(o1,...,0¢) is a forest.

A cycle pattern P is a colored cycle graph CG,(o1,...,0¢) where all primal vertices have
different colors. A complexity-additive decomposition ¢’ = o - - - 0, of a permutation o’ €
Sym(V') weakly matches P if there is a coloring ¢': V' — [k] and a surjective color-preserving
homomorphism ¢ from CGy (o1,...,0;) to P where p(u) = p(v) for v # v implies that
u and v are both primal vertices and belong to different o’-orbits.

» Lemma 5.2. For any t € N, there is a set Py of t°Y) cycle patterns such that a permuta-
tion o € Sym(V') has complexity t if and only if it has a complexity-additive decomposition
o = 0y - - - 0y that weakly matches a pattern in Py. Moreover, P, can be computed in tY time.

For a pattern P, let P; denote the subgraph of P induced by the cycle-vertices of color i
and their neighbors. A permutation o € Sym(V) and a coloring ¢: V' — [k] realize color i
of P if there is an isomorphism ¢ from CG.(c) to P; that preserves colors of primal vertices.

Algorithm 4 Exact-Complexity-HGI,(X,Y,t)

Input: Two hypergraphs X and Y on vertex set V' with hyperedge size bounded by d,
andt € N
Output: An isomorphism o from X to Y with compl(c) = ¢, or L if none exists
A« {0 € Aut(X) | o has minimal complexity in Aut(X) and [supp(c)| < 2t}
// see [1, Algorithm 3]
if X =Y then I + A else
I + {0 €Is0(X,Y) | o has minimal complexity in Iso(X,Y) and |supp(o)| < 2t}
// see [1, Algorithm 2]
for P € P, do // see Lemma 5.2
k < the number of primal vertices in P
£ < the number of colors of cycle-vertices in P
for h € Hy, do // Hy is the perfect family of hash functions h: V — [k] from [6]
if there are o01,...,04—1 € A and oy € I s.t. (03, h) realize color ¢ of P then
return c =oq--- 0y
return |

» Theorem 5.3. Given two hypergraphs X and Y of hyperedge size at most d and t € N,
the algorithm Exact-Complexity-HGI,(X,Y,t) finds o € Iso(X,Y) with compl(c) =t (or
determines that there is none) in (’)((dt)o(t2) poly(N)) time.

2:9
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Proof. Suppose there is some o € Iso(X,Y) with compl(c) = ¢t. Lemma 2.1 gives the
complexity-additive decomposition ¢ = o071 ---0y into minimal-complexity permutations
O1y-..,00—1 € Aut(X) and oy € Iso(X,Y); all of them have complexity at most t. By the
correctness of the algorithms from [1], we have o1,...,00-1 € Aand op € I. As Hy, is a
perfect hash family, it contains some function h whose restriction to supp(o) is injective.
Then CGy (o1, ...,0¢) is isomorphic to some P € P; by Lemma 5.2. Thus (o;, h) realize
color i of P, for 1 <1i < ¢, so the algorithm does not return L.

Now suppose that the algorithm returns o = o1 - -0y with 01,...,00-1 € A C Aut(X)
and oy € I C Iso(X,Y). This clearly implies o € Iso(X,Y). To show compl(c) = ¢, we
observe that the algorithm only returns ¢ if there is a pattern P € P; whose cycle-vertices
have £ colors and which contains k primal vertices such that there is a hash function h € Hy s
with the property that o; and h realize color i of P, for ¢ € [¢]. In particular, there is an
isomorphism ¢; from CGy,(0;) to P; that preserves colors of primal vertices. As the primal
vertices of P all have different colors and as P is a forest by Lemma 5.1, it follows that the
decomposition ¢ = o7 - - - 0y is complexity-additive. Now consider the function ¢ = Ule Vi
it is well-defined, as v € supp(g;) N supp(y;) implies ¢;(v) = ¢;(v) because P contains only
one primal vertex of color h(v). It is surjective, as every vertex of P occurs in at least
one P;. It is a homomorphism from P, = CGy(01,...,0¢) to P, as every edge occurs in the
support of one of the isomorphisms ;. Also, p(u) = ¢(v) for u # v implies that v and v
are in different connected components of P,, as P is a forest; consequently v and v are in
different orbits of o. Thus o = 07 - - - 0y weakly matches P. By Lemma 5.2 it follows that
compl(o) = t.

It remains to analyze the runtime. The algorithms used to compute A and I each
take O((dt)o(tQ) poly(N)) time [1]. The pattern set P; can be computed in t°® time by
Lemma 5.2. As k < 2t, the perfect hash family Hy ;, has size 20() Jog? n. As £ < t, this gives
a total runtime of O((dt)o(t2) poly(N)). <

6 Colored Graph Automorphism

In [1] we showed that the following parameterized version of Graph Automorphism is
W(1]-hard. It was first defined in [5] and is a generalization of the problem studied by
Schweitzer [13].

CoL-GA: Given a graph X with its vertex set partitioned as REDUBLUE, and a parameter k,
decide if there is a partition-preserving automorphism that moves exactly k¥ BLUE vertices.

For an automorphism 7 € Aut(X), we will refer to the number of BLUE vertices moved
by 7 as the BLUE weight of 7. In this section, we show that CoL-GA is in FPT when
restricted to colored graphs where the color classes inside RED have size at most 3.

Given an input instance X = (V, E') with vertex partition V' = RED U BLUE such that
RED is refined into color classes of size at most 3 each, our algorithm proceeds as follows.

Step 1: color-refinement. X already comes with a color classification of vertices (RED and
BLUE, and within RED color classes of size at most 3 each; within BLUE there may be
color classes of arbitrary size). The color refinement procedure keeps refining the coloring
in steps until no further refinement of the vertex color classes is possible. In a refinement
step, if two vertices have identical colors but differently colored neighborhoods (with the
multiplicities of colors counted), then these vertices get new different colors.

At the end of this refinement, each color class C' induces a regular graph X[C], and each
pair (C, D) of color classes induces a semiregular bipartite graph X[C, D].
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Step 2: local complementation. We complement the graph induced by a color class if this
reduces the number of its edges; this does not change the automorphism group of X.
Similarly, we complement the induced bipartite graph between two color classes if this
reduces the number of its edges.

Now each color class within RED induces the empty graph. Similarly, for b € {2, 3}, the

bipartite graph between any two color classes of size b is empty or a perfect matching.

(Note that this does not necessarily hold for b > 4.) Color refinement for graphs of color

class size at most 3 has been used in earlier work [8, 9].

Let C C RED and D C BLUE be color classes after Step 1. Because of the complementa-

tions we have applied, |C| = 1 implies that X[C, D] is empty, and if |C| € {2,3} then

X|[C, D] is either empty or the degree of each D-vertex in X[C, D] is 1.

Step 3: fix vertices that cannot move. For a color class C C RED whose elements have
more than k& BLUE neighbors, give different new colors to each vertex in C' (because
of Step 2, each non-isolated RED vertex is in a color class with more than one vertex).
Afterwards, rerun Steps 1 and 2 so we again have a stable coloring.

Fixing the vertices in C' does not lose any automorphism of X that has BLUE-weight at

most k. Indeed, as every BLUE vertex has at most one neighbor in C, any automorphism

that moves some v € C' has to move all (more than k) BLUE neighbors of v.

Step 4: remove edges in the red part. We already observed that each color class in RED
induces the empty graph. Let X be the graph whose vertices are the color classes in RED,
where two of them are adjacent iff there is a perfect matching between them in X. For
each b € {1,2,3}, the color classes in RED of size b get partitioned into components of X.
We consider each connected component C of X that consists of more than one color class.
Let X’ be the subgraph of X induced by vertices in |JC and their neighbors in BLUE.
Because of Step 3, the graph X’ has color class size at most 3k, so we can compute its
automorphism group H = Aut(X’) in 2°**) poly(N) time [7]. We distinguish several
cases based on the action of H on an arbitrary color class C' € C:

Case 1: If H(C) is not transitive, we split the color class C' into the orbits of H(C') and
start over with Step 1.

Case 2: If H(C) = Sym(C), we drop all vertices in (|JC) \ C from X. And for each
color class D within BLUE that has neighbors in at least one C’ € C, we replace the
edges between a vertex u € D and |JC by the single edge (u,v), where v is the vertex
in C that is reachable via the matching edges from the neighbor of v in C”.

Case 3: If H(C) is generated by a 3-cycle (viv9v3), we first proceed as in Case 2.
Additionally, we add directed edges within each color class D within BLUE that now
has neighbors in C. Let D; C D be the neighbors of v;. We add directed edges from
all vertices in D; to all vertices in D(;11) moq 3 and color these directed edges by C'.

After this step, there are no edges induced on the RED part of X. Moreover, we have not

changed the automorphisms on the induced subgraph, so the modified graph X still has

the same automorphism group as before.

Step 5: turn red vertices into hyperedges. We encode X as a hypergraph X’ = (BLUE U
NEw, E’) in which each vertex in RED is encoded as a hyperedge on the vertex set
BLUEUNEW. Let NEW = {ve |C C RED is a color class}. Let v € C C RED be any red
vertex. We encode v as the hyperedge e, = {vc} U {u € BLUE | (v,u) € E(X)}

In the hypergraph X’ we give distinct colors to each vertex in NEW in order to ensure

that each color class {ve 1, v¢ 2,vc 3} in RED is preserved by the automorphisms of X'

Clearly, there is a 1-1 correspondence between the color-preserving automorphisms of X

and those of X’. Note that the hyperedges of X’ have size bounded by k + 1, as each

RED vertex in X has at most £k BLUE neighbors after Step 3.

IPEC 2017



2:12

Finding Constrained Small Weight Isomorphisms in FPT

Step 6: bounded hyperedge size automorphism. We seek a weight k& automorphism of X’

using the algorithm of [1, Corollary 6.4];! this is possible in dO k)20 (k) poly(N) time.

This algorithm gives us the following.

» Theorem 6.1. The above algorithm solves COL-GA when the RED part of the input graph
is refined into color classes of size at most 3. It Truns in dO k)20 (k?) poly(N) time.
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—— Abstract

We study the minimum diameter spanning tree problem under the reload cost model (DIAMETER-
TREE for short) introduced by Wirth and Steffan (2001). In this problem, given an undirected
edge-colored graph G, reload costs on a path arise at a node where the path uses consecutive
edges of different colors. The objective is to find a spanning tree of G of minimum diameter with
respect to the reload costs. We initiate a systematic study of the parameterized complexity of
the DIAMETER-TREE problem by considering the following parameters: the cost of a solution,
and the treewidth and the maximum degree A of the input graph. We prove that DIAMETER-
TREE is para-NP-hard for any combination of two of these three parameters, and that it is FPT
parameterized by the three of them. We also prove that the problem can be solved in polynomial
time on cactus graphs. This result is somehow surprising since we prove DIAMETER-TREE to be
NP-hard on graphs of treewidth two, which is best possible as the problem can be trivially solved
on forests. When the reload costs satisfy the triangle inequality, Wirth and Steffan (2001) proved
that the problem can be solved in polynomial time on graphs with A = 3, and Galbiati (2008)
proved that it is NP-hard if A = 4. Our results show, in particular, that without the requirement
of the triangle inequality, the problem is NP-hard if A = 3, which is also best possible. Finally,
in the case where the reload costs are polynomially bounded by the size of the input graph, we
prove that DIAMETER-TREE is in XP and W[1]-hard parameterized by the treewidth plus A.
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1 Introduction

Numerous network optimization problems can be modeled by edge-colored graphs. Wirth
and Steffan introduced in [28] the concept of reload cost, which refers to the cost that arises
in an edge-colored graph while traversing a vertex via two consecutive edges of different
colors. The value of the reload cost depends on the colors of the traversed edges. Although
the reload cost concept has many important applications in telecommunication networks,
transportation networks, and energy distribution networks, it has surprisingly received
attention only recently.

In heterogeneous communication networks, routing requires switching among different
technologies such as cables, fibers, and satellite links. Due to data conversion between
incompatible subnetworks, this switching causes high costs, largely outweighing the cost
of routing the packets within each subnetwork. The recently popular concept of vertical
handover [9], which allows a mobile user to have undisrupted connection during transitioning
between different technologies such as 3G (third generation) and wireless local area network
(WLAN), constitutes another application area of the reload cost concept. Even within
the same technology, switching between different service providers incurs switching costs.
Another paradigm that has received significant attention in the wireless networks research
community is cognitive radio networks (CRN), a.k.a. dynamic spectrum access networks.
Unlike traditional wireless technologies, CRNs operate across a wide frequency range in the
spectrum and frequently requires frequency switching; therefore, the frequency switching
cost is indispensable and of paramount importance. Many works in the CRNs literature
focused on this frequency switching cost from an application point of view (for instance, see
[3, 19, 4, 5, 11, 1, 26]) by analyzing its various aspects such as delay and energy consumption.
Operating in a wide range of frequencies is indeed a property of not only CRNs but also other
5G technologies. Hence, applications of the reload cost concept in communication networks
continuously increase. In particular, the energy consumption aspect of this switching cost is
especially important in the recently active research area of green networks, which aim to
tackle the increasing energy consumption of information and communication technologies
6, §].

The concept of reload cost also finds applications in other networks such as transportation
networks and energy distribution networks. For instance, a cargo transportation network
uses different means of transportation. The loading and unloading of cargo at junction points
is costly and this cost may even outweigh the cost of carrying the cargo from one point to
another [12]. In energy distribution networks, reload costs can model the energy losses that
occur at the interfaces while transferring energy from one type of carrier to another [12].

Recent works in the literature focused on numerous problems related to the reload cost
concept: the minimum reload cost cycle cover problem [14], the problems of finding a path,
trail or walk with minimum total reload cost between two given vertices [17], the problem
of finding a spanning tree that minimizes the sum of reload costs of all paths between all
pairs of vertices [15], various path, tour, and flow problems related to reload costs [2], the
minimum changeover cost arborescence problem [13, 22, 20, 18], and problems related to
finding a proper edge coloring of the graph so that the total reload cost is minimized [21].
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The work in [28], which introduced the concept of reload cost, focused on the following
problem, called MINIMUM RELOAD COST DIAMETER SPANNING TREE (DIAMETER-TREE
for short), and which is the one we study in this paper: given an undirected graph G = (V, E)
with a (non necessarily proper) edge-coloring x : E(G) — X and a reload cost function
c: X? = Ny, find a spanning tree of G with minimum diameter with respect to the reload
costs (see Section 2 for the formal definitions).

This problem has important applications in communication networks, since forming a
spanning tree is crucial for broadcasting control traffic such as route update messages. For
instance, in a multi-hop cognitive radio network where a frequency is assigned to each wireless
link depending on availabilities of spectrum bands, delay-aware broadcasting of control traffic
necessitates the forming of a spanning tree by taking the delay arising from frequency
switching at every node into account. Cognitive nodes send various control information
messages to each other over this spanning tree. A spanning tree with minimum reload cost
diameter in this setting corresponds to a spanning tree in which the maximum frequency
switching delay between any two nodes on the tree is minimized. Since control information
is crucial and needs to be sent to all other nodes in a timely manner, ensuring that the
maximum delay is minimum is vital in a cognitive radio network.

Wirth and Steffan [28] proved that DIAMETER-TREE is inapproximable within a factor
better than 3 (in particular, it is NP-hard), even on graphs with maximum degree 5. They
also provided a polynomial-time exact algorithm for the special case where the maximum
degree is 3 and the reload costs satisfy the triangle inequality. Galbiati [12] showed stronger
hardness results for this problem, by proving that even on graphs with maximum degree 4,
the problem cannot be approximated within a factor better than 2 if the reload costs do not
satisfy the triangle inequality, and cannot be approximated within any factor better than
5/3 if the reload costs satisfy the triangle inequality. The complexity of DIAMETER-TREE
(in the general case) on graphs with maximum degree 3 was left open.

Our results. In this article we initiate a systematic study of the complexity of the DIAMETER-
TREE problem, with special emphasis on its parameterized complexity for several choices
of the parameters. Namely, we consider any combination of the parameters k (the cost
of a solution), tw (the treewidth of the input graph), and A (the maximum degree of the
input graph). We would like to note that these parameters have practical importance in
communication networks. Indeed, besides the natural parameter k, whose relevance is clear,
many networks that model real-life situations appear to have small treewidth [24]. On the
other hand, the degree of a node in a network is related to its number of transceivers, which
are costly devices in many different types of networks such as optical networks [25]. For this
reason, in practice the maximum degree of a network usually takes small values.

Before elaborating on our results, a summary of them can be found in Table 1.

We first prove, by a reduction from 3-SAT, that DIAMETER-TREE is NP-hard on outer-
planar graphs (which have treewidth at most 2) with only one vertex of degree greater than
3, even with three different costs that satisfy the triangle inequality, and k£ = 9. Note that,
in the case where the costs satisfy the triangle inequality, having only one vertex of degree
greater than 3 is best possible, as if all vertices have degree at most 3, the problem can be
solved in polynomial time [28]. Note also that the bound on the treewidth is best possible as
well, since the problem is trivially solvable on graphs of treewidth 1, i.e., on forests.

Toward investigating the border of tractability of the problem with respect to treewidth,
we exhibit a polynomial-time algorithm on a relevant subclass of the graphs of treewidth
at most 2: cactus graphs. This algorithm is quite involved and, in a nutshell, processes in
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Table 1 Summary of our results, where k, tw, A denote the cost of the solution, the treewidth,
and the maximum degree of the input graph, respectively. NPh stands for NP-hard. The symbol ‘v’
denotes that the result above still holds for polynomial costs.

Problem Parameterized complexity with parameter Polynomial

k + tw ‘ E+A ‘ tw+ A ‘k—|—tw+A cases
NPh for NPh for NPh for FPT in P on

DIAMETER-TREE || k=9,tw=2 | k=0,A=3 | tw=3,A =3 (Thm 7) cacti
(Thm 1) (Thm 2) (Thm 4) (Thm 6)

DIAMETER-TREE XP (Thm 7)

with poly costs v v W(1]-hard v v

(Thm 9)

a bottom-up manner the block tree of the given cactus graph, and uses at each step of the
processing an algorithm that solves 2-SAT as a subroutine.

Back to hardness results, we also prove, by a reduction from a restricted version of 3-SAT,
that DIAMETER-TREE is NP-hard on graphs with A < 3, even with only two different costs,
k = 0, and a bounded number of colors. In particular, this settles the complexity of the
problem on graphs with A < 3 in the general case where the triangle inequality is not
necessarily satisfied, which had been left open in previous work [28, 12]. Note that A < 3 is
best possible, as DIAMETER-TREE can be easily solved on graphs with A < 2.

As our last NP-hardness reduction, we prove, by a reduction from PARTITION, that the
DI1AMETER-TREE problem is NP-hard on planar graphs with tw < 3 and A < 3.

The above hardness results imply that the DIAMETER-TREE problem is para-NP-hard
for any combination of two of the three parameters k, tw, and A. On the positive side, we
show that DIAMETER-TREE is FPT parameterized by the three of them, by using a (highly
nontrivial) dynamic programming algorithm on a tree decomposition of the input graph.

Since our para-NP-hardness reduction with parameter tw + A is from PARTITION, which
is a typical example of a weakly NP-complete problem [16], a natural question is whether
DIAMETER-TREE, with parameter tw + A, is para-NP-hard, XP, W[1]-hard, or FPT when
the reload costs are polynomially bounded by the size of the input graph. We manage to
answer this question completely: we show that in this case the problem is in XP (hence not
para-NP-hard) and W([1]-hard parameterized by tw + A. The W[1]-hardness reduction is
from the UNARY BIN PACKING problem parameterized by the number of bins, proved to be
W(1]-hard by Jansen et al. [23].

Altogether, our results provide an accurate picture of the (parameterized) complexity of
the DIAMETER-TREE problem.

Further research. In the hardness result of Theorem 4, the bound A < 3 is tight, but the
bound tw < 3 might be improved to tw < 2. A relevant question is whether the problem
admits polynomial kernels parameterized by k + tw + A (recall that it is FPT by Theorem 7).
Theorem 9 motivates the following question: when all reload costs are bounded by a constant,
is the DIAMETER-TREE problem FPT parameterized by tw + A7 It also makes sense to
consider the color-degree as a parameter (cf. [20]). Finally, we may consider other relevant
width parameters, such as pathwidth (note that the hardness results of Theorems 1, 4, and 9
also hold for pathwidth), cliquewidth, treedepth, or tree-cutwidth.
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Organization of the paper. We start in Section 2 with some preliminaries about the
DIAMETER-TREE problem. Basic definitions about graphs, parameterized complexity, and
tree decompositions can be found in the full version. In Section 3 we provide the para-NP-
hardness results, and in Section 4 we present the polynomial-time algorithm on cactus graphs
and the FPT algorithm on general graphs parameterized by k + tw + A. In Section 5 we
focus on the case where the reload costs are polynomially bounded. Due to lack of space, the
proof of the results marked with ‘[x]” can be found in the full version.

2 Reload costs and definition of the problem

For reload costs, we follow the notation and terminology defined by [28]. We consider
edge-colored graphs G = (V, E), where the colors are taken from a finite set X and the
coloring function is x : E(G) — X. The reload costs are given by a nonnegative function
¢ : X? = Ny, which we assume for simplicity to be symmetric. The cost of traversing
two incident edges e1, ez is c¢(e1,e2) := c(x(e1), x(e2)). By definition, reload costs at the
endpoints of a path equal zero. Consequently, the reload cost of a path with one edge
also equals zero. The reload cost of a path P of length ¢ > 2 with edges ey, es,...,¢ep is
defined as ¢(P) := Zf:z c(e;—1,€;). The induced reload cost distance function is given
by distg;(u,v) = min{c(P) | P is a path from u to v in G}. The diameter of a tree T is
diam(T) := maxy vev distp(u,v), where for notational convenience we assume that the
edge-coloring function y and the reload cost function ¢ are clear from the context.
The problem we study in this paper can be formally defined as follows:

MINIMUM RELOAD COST DIAMETER SPANNING TREE (DIAMETER-TREE)
Input: A graph G = (V, FE) with an edge-coloring x and a reload cost function c.
Output: A spanning tree T' of G minimizing diam(7T").

If for every three distinct edges eq, es, e3 of G incident to the same node, it holds that
cler,e3) < c(er,e2) + c(ea, e3), we say that the reload cost function c satisfies the triangle
inequality. This assumption is sometimes used in practical applications [28].

Throughout the paper, we let n, A, and tw denote the number of vertices, the maximum
degree, and the treewidth of the input graph, respectively. When we consider the (paramet-
erized) decision version of the DIAMETER-TREE problem, we also let k& denote the desired
cost of a solution.

3 Para-NP-hardness results

We start with the para-NP-hardness result with parameter k + tw.

» Theorem 1. The DIAMETER-TREE problem is NP-hard on outerplanar graphs with only
one vertex of degree greater than 3, even with three different costs that satisfy the triangle
inequality, and k = 9. Since outerplanar graphs have treewidth at most 2, in particular,
DIAMETER-TREE is para-NP-hard parameterized by tw and k.

Proof. We present a simple reduction from 3-SAT. Given a formula ¢ with n variables and
m clauses, we create an instance (G, x, ¢) of DIAMETER-TREE as follows. We may assume
that there is no clause in ¢ that contains a literal and its negation. The graph G contains
a distinguished vertex r and, for each clause ¢; = (€1 V €2 V {3), we add a clause gadget
C; consistipg of three vertices vgl , vzz, vzg and five edges {r, vzl}, {r, viz}, {r, vzs}, {vzl,vgz},
and {v,, vy }. This completes the construction of G. Note that G' does not depend on the
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Figure 1 Example of the graph G built in the reduction of Theorem 1.

formula ¢ except for the number of clause gadgets, and that it is an outerplanar graph with
only one vertex of degree greater than 3; see Figure 1 for an illustration.

Let us now define the coloring x and the cost function ¢. For simplicity, we associate a
distinct color with each edge of G, and thus, with slight abuse of notation, it is enough to
describe the cost function ¢ for every pair of incident edges of G, as we consider symmetric
cost functions. We will use just three different costs: 1, 5 and 10. We set

10 if ey = {r, vgill tes =A{r, vzl} and £;, = 0;, ,
cler,ea) =< 5 ife; ={r, vZI tes =A{r, vfz} and ¢;, # (;, , and

1  otherwise.

Note that this cost function satisfies the triangle inequality since the reload costs between
edges incident to r are 5 and 10, and the reload costs between edges incident to other vertices
are 1.

We claim that ¢ is satisfiable if and only if G' contains a spanning tree with diameter at
most 9. Since 7 is a cut vertex and every clause gadget is a connected component of G — 7,
in every spanning tree, the vertices of C; together with r induce a tree with four vertices.
Moreover the reload cost associated with a path from r to a leaf of this tree is always at
most 2. Therefore, the diameter of any spanning tree is at most 4 plus the maximum reload
cost incurred at r by a path of T'.

Assume first that ¢ is satisfiable, fix a satisfying assignment ) of ¢, and let us construct
a spanning tree T of G with diameter at most 9. For each clause c;, the tree TV is the tree
spanning C; and containing the edge between r and an arbitrarily chosen literal of c; that is
set to true by . T' is the union of all the trees T} constructed in this way. The reload cost
incurred at r by any path of T traversing it is at most 5, since we never choose a literal and
its negation. Therefore, it holds that diam(7") < 9.

Conversely, let T be a spanning tree of G with diam(7T") < 9. Then, the reload cost
incurred at r by any path traversing it is at most 5 since otherwise diam(T") > 10. For every
j € [m], let T be the subtree of T induced by C; and let {r, vgij } be one of the edges incident

to r in T;. We note that for any pair of clauses c;,, ¢;, we have ¢;, # E, since otherwise a
path using these two edges would incur a cost of 10 at r. The variable in the literal £;; is set
by 1 so that £;, is true. All the other variables are set to an arbitrary value by ¢. Note that
1) is well-defined, since we never encounter a literal and its negation during the assignment
process. It follows that v is a satisfying assignment of . <

We proceed with the para-NP-hardness result with parameter k + A.
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» Theorem 2. The DIAMETER-TREE problem is NP-hard on graphs with A < 3, even with
two different costs, k =0, and a bounded number of colors. In particular, it is para-NP-hard
parameterized by k and A.

Proof. We present a reduction from the restriction of 3-SAT to formulas where each variable
occurs in at most three clauses; this problem was proved to be NP-complete by Tovey [27]. Tt
is worth mentioning that one needs to allow for clauses of size two or three, as if all clauses
have size exactly three, then it turns out that all instances are satisfiable [27].

We may assume that each variable occurs at least once positively and at least once
negatively, as otherwise we may set such a variable x to the value that satisfies all clauses
in which it appears, and delete = together with those clauses from the formula. We may
also assume that each variable occurs exactly three times in the given formula ¢. Indeed,
let « be a variable occurring exactly two times in the formula. We create a new variable
y and we add to ¢ two clauses (z V y) and (y V7). Let ¢’ be the new formula. Clearly ¢
and ¢’ are equivalent, and both x and y occur three times in ¢’. Applying these operations
exhaustively clearly results in an equivalent formula where each variable occurs exactly three
times. Summarizing, we may assume the following property:

Y Fach variable occurs exactly three times in the given formula ¢ of 3-SAT. Moreover, each
variable occurs at least once positively and at least once negatively in .

Given a formula ¢ with n variables and m clauses, we create an instance (G, x,c) of
DIAMETER-TREE with A(G) < 3 as follows. Let the variables in ¢ be z1,...,2,. For
every i € [n], we add to G a variable gadget consisting of five vertices u;,v;, p;, 7, n; and
five edges {u;,vi}, {vi,pi},{pi,r:i},{rs, i}, and {n;,v;}. For every i € [n — 1], we add the
edge {u;,u;41}. For every j € [m], the clause gadget in G consists of a single vertex c;.
We now proceed to explain how we connect the variable and the clause gadgets. For each
variable x;, we connect vertex p; (resp. n;) to one of the vertices corresponding to a clause
of ¢ in which x; appears positively (resp. negatively). Finally, we connect vertex r; to the
remaining clause in which x; appears (positively or negatively). Note that these connections
are well-defined because of property "X. This completes the construction of G, and note that
it indeed holds that A(G) < 3; see Figure 2(a) for an example of the construction of G for a
specific satisfiable formula ¢ with n =4 and m = 5.

Let us now define the coloring x and the cost function ¢. We use nine colors 1,2,...,9
associated with the edges of G as follows. For i € [n], we set x({pi,r:}) = 1 and x({ri,n;}) =
2, and all edges incident to u; or v; have color 3. Finally, for j € [m], we color the edges
containing c¢; with colors in {4,5,6,7,8,9}, so that incident edges get different colors, and

edges corresponding to positive (resp. negative) occurrences get colors in {4,5,6} (resp.

{7,8,9}); note that such a coloring always exists as each clause contains at most three
variables; see Figure 2(b). We will use only two costs, namely 0 and 1, and recall that we
consider only symmetric cost functions. We set ¢(1,2) = 1, ¢(1,7) = 1 for every ¢ € {4,5,6},
¢(2,i) = 1 for every i € {7,8,9}, and c(i,5) = 1 for every distinct 4 < i,5 < 9. All other
costs are set to 0. The following claim concludes the proof.

» Claim 3. [%] ¢ is satisfiable if and only if G contains a spanning tree with diameter 0. <

Note that in the above reduction the cost function ¢ does not satisfy the triangle inequality
at vertices p; or n; for ¢ € [n], and recall that this is unavoidable since otherwise the problem
would be polynomial [28].

Finally, we present the para-NP-hardness result with parameter tw + A.

» Theorem 4. The DIAMETER-TREE problem is NP-hard on planar graphs with tw < 3 and
A < 3. In particular, it is para-NP-hard parameterized by tw and A.
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Figure 2 (a) Graph G described in the reduction of Theorem 2 for the formula ¢ = (z1 VZ2 V
23)AN(TTVT2) A (T3VZTa) AN (T1TV 22 Vas) A(x2Vas). The vertices p;, i, n; corresponding to positive
(resp. negative) occurrences are depicted with circles (resp. squares). An assignment satisfying ¢ is
given by z1 = 22 = 1 and x3 = x4 = 0, and a solution spanning tree 1" with diameter 0 is emphasized
with thicker edges. (b) The (possible) colors associated with each edge of G are depicted in blue.

Proof. We present a reduction from the PARTITION problem, which is a typical example
of a weakly NP-complete problem [16]. An instance of PARTITION is a multiset S =
{a1,as,...,a,} of n positive integers, and the objective is to decide whether S can be
partitioned into two subsets S1 and Sp such that Y g =3 g @ = L where B =
ZwES L.

Given an instance S = {ay,aq,...,a,} of PARTITION, we create an instance (G, x, ¢)
of DIAMETER-TREE as follows. The graph G contains a vertex r, called the root, and
for every integer a; where ¢ € [n], we add to G six vertices w;, u;, m;, m;,d;,d; and seven
edges {u;,u}}, {m;,ml}, {d;,d}, {ui,m;}, {u;,m}}, {mi,d;}, and {m},d}}. We denote
by H; the subgraph induced by these six vertices and seven edges. We add the edges
{r,u1},{r,d1} and, for i € [n — 1], we add the edges {u},u;11} and {d},d;y1}. Let G’
be the graph constructed so far. We then define G to be the graph obtained from two
disjoint copies of G’ by adding an edge between both roots. Note that G is a planar
graph with A(G) = 3 and tw(G) = 3. (The claimed bound on the treewidth can be
easily seen by building a path decomposition of G with consecutive bags of the form
{ul_y,di_y g, di}, {wiy diyma, ul}, {dyy ma, ul, mi}, {dy, wh,ml, di}, .

Let us now define the coloring x and the cost function c. Again, for simplicity, we
associate a distinct color with each edge of GG, and thus it is enough to describe the cost
function ¢ for every pair of incident edges of G. We define the costs for one of the copies of
G’, and the same costs apply to the other copy. For every edge e being either {u}, u;4+1} or
{d},diy1}, for 1 <i <n—1, we set c(e,e’) = 0 for each of the four edges €’ incident with e.
For every edge e = {m;, m}}, for 1 <i < n, we set c({u;,m;},e) = c({di,m;},e) = a; and
cle, {m},u}) = c(e,{ml,d;}) = 0. All costs associated with the two edges containing r in
one of the copies G’ are set to 0. For e = {ry,r2}, where r; and ry are the roots of the two
copies of G', we set c(e, €’) = 0 for each of the four edges e’ incident to e. The cost associated
with any other pair of edges of G is equal to B + 1; see Figure 3 for an illustration, where
(some of) the reload costs are depicted in blue, and a typical solution spanning tree of G is
drawn with thicker edges. The following claim concludes the proof.

» Claim 5. [x] The instance S of PARTITION is a YES-instance if and only if G has a
spanning tree with diameter at most B. <
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Figure 3 Graph G built in the reduction of Theorem 4, where the reload costs are depicted in
blue at the angle between the two corresponding edges. For better visibility, not all costs and vertex
labels are depicted. The typical shape of a solution spanning tree is highlighted with thicker edges.

4 Polynomial and FPT algorithms

We start this section by presenting the polynomial-time algorithm to solve the DIAMETER-
TREE problem on cactus graphs, equivalently called cacti. We first need some definitions.

A biconnected component, or block, of a graph is a maximal biconnected induced subgraph
of it. The block tree of a graph G is a tree T' whose nodes are the cut vertices and the blocks
of G. Every cut vertex is adjacent in 7" to all the blocks that contain it. Two blocks share at
most one vertex. The block tree of a graph is unique and can be computed in polynomial
time [10]. A graph is a cactus graph if every block of it is either a cycle or a single edge. We
term these blocks cycle blocks and edge blocks, respectively. It is well-known that cacti have
treewidth at most 2. Given a forest F' and two vertices x and y, we define costp(z,y) to
be dist7-(x,y) if  and y are in the same tree T of F' and where ¢ is the given reload cost
function, and L otherwise. Given a tree T and a vertex v € V(T'), we define the eccentricity
of v in T to be max, ey (1) costr(v,v’).

We present a polynomial-time algorithm that solves the decision version of the problem,
which we call DIAMETER-TREE*: the input is an edge-colored graph G and an integer k, and
the objective is to decide whether the input graph G has a spanning tree with reload cost
diameter at most k. The algorithm to solve DIAMETER-TREE* uses dynamic programming
on the block tree of the input graph.

As we aim at a strongly polynomial-time algorithm to solve DIAMETER-TREE, we cannot
afford to solve the decision version for all values of k. To overcome this problem, we perform
a double binary search on the possible solution values and two appropriate eccentricities,
resulting (skipping many technical details) in an extra factor of (logopt)? in the running
time of the algorithm, where opt is the diameter of a minimum cost spanning tree. This
yields a polynomial-time algorithm solving DIAMETER-TREE in cactus graphs.

Roughly speaking, the algorithm first fixes an arbitrary non-cut vertex r of G and the
block B, that contains it. Then it processes the block tree of G in a bottom-up manner
starting from its leaves, proceeding towards B, while maintaining partial solutions for each
block. At each step of the processing, it uses an algorithm that solves an instance of the
2-SAT problem as a subroutine. The intuition behind the instances of 2-SAT created by the
algorithm is the following.

Suppose that we are dealing with a cycle block B of the block tree of G (the case of an
edge block being easier). Note that any spanning tree of G' contains all edges of B except one.
Let G p be the graph processed so far (including B). For each potential partial solution Q in
G, we associate, with each edge e of B, a variable that indicates that e is the non-picked
edge by the solution in B. Now, for any two such variables corresponding to intersecting
blocks, we add to the formula of 2-SAT essentially two types of clauses: the first set of
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clauses, namely ¢, guarantees that the non-picked edges (corresponding to the variables set
to true in the eventual assignment) indeed define a spanning tree of G, while the second
one, namely ¢o, forces this solution to have diameter and eccentricity not exceeding the
given budget k. The fact the G is a cactus allows to prove that these constraints containing
only two variables are enough to compute an optimal solution in Gp. Full details can be
found in the full version.

» Theorem 6. [*x] The DIAMETER-TREE problem can be solved in polynomial time on cacti.

In the following theorem we prove that the DIAMETER-TREE problem is FPT on general
graphs parameterized by k, tw, and A. The proof is based on standard, but nontrivial,
dynamic programming on graphs of bounded treewidth. It should be mentioned that we can
assume that a tree decomposition of the input graph G of width O(tw) is given together
with the input. Indeed, by using for instance the algorithm of Bodlaender et al. [7], we can
compute in time 29 . n a tree decomposition of G of width at most 5tw. Note that this
running time is clearly dominated by the running time stated in Theorem 7.

» Theorem 7. [x] The DIAMETER-TREE problem can be solved in time (k™™ - A - tw)©O®W) .
nCW . In particular, it is FPT parameterized by k, tw, and A.

5 Polynomially bounded costs

So far, we have completely characterized the parameterized complexity of the DIAMETER-
TREE problem for any combination of the three parameters k, tw, and A. In this section we
focus on the special case when the maximum cost value is polynomially bounded by n. The
following corollary is an immediate consequence of Theorem 7.

» Corollary 8. If the mazimum cost value is polynomially bounded by n, the DIAMETER-TREE
problem is in XP parameterized by tw and A.

From Corollary 8, a natural question is whether the DIAMETER-TREE problem is FPT
or W[1]-hard parameterized by tw and A, in the case where the maximum cost value is
polynomially bounded by n. The next theorem provides an answer to this question.

» Theorem 9. When the maximum cost value is polynomially bounded by n, the DIAMETER-
TREE problem is W[1]-hard parameterized by tw and A.

Proof. We present a parameterized reduction from the BIN PACKING problem parameterized
by the number of bins. In BIN PACKING, we are given n integer item sizes ai, ..., a, and an
integer capacity B, and the objective is to partition the items into a minimum number of bins
with capacity B. Jansen et al. [23] proved that BIN PACKING is W[1]-hard parameterized by
the number of bins in the solution, even when all item sizes are bounded by a polynomial of
the input size. Equivalently, this version of the problem corresponds to the case where the
item sizes are given in unary encoding; this is why it is called UNARY BIN PACKING in [23].

Given an instance ({a1, a9, ..., an}, B, k) of UNARY BIN PACKING, where k is the number
of bins in the solution and where we can assume that k& > 2, we create an instance (G, x, ¢)
of DIAMETER-TREE as follows. The graph G contains a vertex r and, for ¢ € [n] and j € [k],
we add to G vertices vi,€§, r; and edges {r, Kjl:}, {vi,€§}, {vi,rj-}, and {E;, r;} Finally, for
i€ [n—1] and j € [k], we add the edge {r?,f}“}. Let G’ be the graph constructed so far;
see Figure 4 for an illustration.

Similarly to the proof of Theorem 4, we define G to be the graph obtained by taking two

disjoint copies of G’ and identifying vertex r of both copies. Note that G can be clearly built in
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Figure 4 Graph G’ built in the reduction of Theorem 9. The reload costs are not depicted.

polynomial time, and that tw(G) < k+1 and A(G) = 2k (since we assume k > 2). Therefore,
tw(G)+A(G) is indeed bounded by a function of k, as required. (Again, the claimed bound on
the treewidth can be easily seen by building a path decomposition of G with consecutive bags of
the form {v;, 04,04, ... 00 v}, {v, 04, 0, o 0 i s {v, O, 0, 0 o s i)

Let us now define the coloring x and the cost function ¢. Once more, for simplicity,
we associate a distinct color with each edge of G, and thus it is enough to describe the
cost function c for every pair of incident edges of G. The cost function is symmetric for
both copies of G’, so we just focus on one copy. For i € [n], let e1, e2 be two distinct edges
containing vertex v;. We set c(e1,e2) = 2B + 1 unless e; = {v;, (%} and ey = {v;, %} for
some j € [k], in which case we set c(ey, ea) = a;. The cost associated with any other pair of
edges of G is set to 0. Note that, as ({a1,az,...,a,}, B, k) is an instance of UNARY BIN
PACKING, the reload costs of the instance (G, x,c) of DIAMETER-TREE are polynomially
bounded by |V(G)|. Again, the following claim concludes the proof.

» Claim 10. [x] ({a1,a2,...,a,}, B, k) is a YES-instance of UNARY BIN PACKING if and
only if G has a spanning tree with diameter at most 2B. |
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—— Abstract

For a fixed collection of graphs F, the F-M-DELETION problem consists in, given a graph G
and an integer k, decide whether there exists S C V(G) with |S| < k such that G \ S does not
contain any of the graphs in F as a minor. We are interested in the parameterized complexity
of F-M-DELETION when the parameter is the treewidth of G, denoted by tw. Our objective is
to determine, for a fixed F, the smallest function fz such that F-M-DELETION can be solved
in time fr(tw) - n®M) on n-vertex graphs. Using and enhancing the machinery of boundaried
graphs and small sets of representatives introduced by Bodlaender et al. [J ACM, 2016], we
prove that when all the graphs in F are connected and at least one of them is planar, then
fr(w) = 20(wlogw) When F is a singleton containing a clique, a cycle, or a path on 4 vertices,
we prove the following asymptotically tight bounds:

Fiacay (w) = 200og ),

Jrea(w) = 20() for every i < 4, and Jrea(w) = 20(wlogw) for every i > 5.

Jipy(w) = 29(W) for every i < 4, and fipy(w) = 20(wlogw) for every i > 6.
The lower bounds hold unless the Exponential Time Hypothesis fails, and the superexponential
ones are inspired by a reduction of Marcin Pilipczuk [Discrete Appl Math, 2016]. The single-
exponential algorithms use, in particular, the rank-based approach introduced by Bodlaender et
al. [Inform Comput, 2015]. We also consider the version of the problem where the graphs in F
are forbidden as topological minors, and prove essentially the same set of results holds.
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1 Introduction

Let F be a finite non-empty collection of non-empty graphs. In the F-M-DELETION (resp.
F-TM-DELETION) problem, we are given a graph G and an integer k, and the objective
is to decide whether there exists a set S C V(G) with |S| < k such that G\ S does not
contain any of the graphs in F as a minor (resp. topological minor). These problems have
a big expressive power, as instantiations of them correspond to several notorious problems.
For instance, the cases F = {K»}, F = {K3}, and F = {K5, K33} of F-M-DELETION (or
F-TM-DELETION) correspond to VERTEX COVER, FEEDBACK VERTEX SET, and VERTEX
PLANARIZATION, respectively.

For the sake of readability, we use the notation F-DELETION in statements that apply to
both F-M-DELETION and F-TM-DELETION. Note that if F contains a graph with at least
one edge, then F-DELETION is NP-hard by the classical result of Lewis and Yannakakis [15].

In this article we are interested in the parameterized complexity of F-DELETION when
the parameter is the treewidth of the input graph. Since the property of containing a graph
as a (topological) minor can be expressed in Monadic Second Order logic (see [14] for explicit
formulas), by Courcelle’s theorem [5], F-DELETION can be solved in time O*(f(tw)) on
graphs with treewidth at most tw, where f is some computable function'. Our objective is
to determine, for a fixed collection F, which is the smallest such function f that one can
(asymptotically) hope for, subject to reasonable complexity assumptions.

This line of research has attracted some interest during the last years in the parameterized
complexity community. For instance, VERTEX COVER is easily solvable in time (9*(20(“")),
called single-exponential, by standard dynamic-programming techniques, and no algorithm
with running time O*(2°(")) exists unless the Exponential Time Hypothesis (ETH)? fails [12].

For FEEDBACK VERTEX SET, standard dynamic programming techniques give a running
time of O* (20w 108tW)) "wwhile the lower bound under the ETH [12] is again O*(2°(%)). This
gap remained open for a while, until Cygan et al. [6] presented an optimal algorithm running
in time O*(2°tW)), using the celebrated Cut& Count technique. This article triggered several
other techniques to obtain single-exponential algorithms for so-called connectivity problems
on graph of bounded treewidth, mostly based on algebraic tools [2,8].

Concerning VERTEX PLANARIZATION, Jansen et al. [13] presented an algorithm of time
O* (20(twlogtw)) a5 3 crucial subroutine in an FPT algorithm parameterized by k. Marcin
Pilipczuk [19] proved that this running time is optimal under the ETH, by using the framework
introduced by Lokshtanov et al. [17] for proving superexponential lower bounds.

Our results. We present a number of upper and lower bounds for F-DELETION parameter-
ized by treewidth, several of them being tight. Namely, we prove the following results, all
the lower bounds holding under the ETH:

. . O (tw-log tw)
1. For every F, F-DELETION can be solved in time O* (22 ¢

2. For every connected® F containing at least one planar graph (resp. subcubic planar graph),
F-M-DELETION (resp. F-TM-DELETION) can be solved in time O* (20(tWlogtw)),

3. For any connected F, F-DELETION cannot be solved in time O*(2°()),

4. When F = {K,}, the clique on ¢ vertices, {K;}-DELETION cannot be solved in time
O* (200w logtw)) for j > 4. Note that {K;}-DELETION can be solved in time O*(2°(W))
for i < 3 [6], and that the case i = 4 is tight by item 2 above (as K, is planar).

1 We use the notation O*(-) that suppresses polynomial factors depending on the size of the input graph.
2 The ETH states that 3-SAT on n variables cannot be solved in time 2°("™); see [12] for more details.
3 A connected collection F is a collection containing only connected graphs.
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Table 1 Summary of our results when F equals {K;}, {Ci}, or {P;}. If only one value ‘z’ is
written in the table (like ‘tw’), it means that the corresponding problem can be solved in time
o (20(1)), and that this bound is tight. An entry of the form ‘z (?) y’ means that the corresponding
problem cannot be solved in time O*(2°(*)) and that it can be solved in time O*(2°®)). We interpret
{C>}-DELETION as FEEDBACK VERTEX SET. Grey cells correspond to known results.

1
T 2 3 4 5 >6
K; tw | tw | tw-logtw | tw-logtw (7) 2006W10stw) | v o tw (7) 20(Ewlogtw)
C; tw | tw tw tw - log tw tw - logtw
P, tw | tw tw tw (2) tw - log tw tw - log tw

5. When F = {C;}, the cycle on i vertices, {C; }-DELETION can be solved in time O* (20 ®%))
for i < 4, and cannot be solved in time O*(2°(W1°8tW)) for j > 5. Note that, by items 2
and 3 above, this settles completely the complexity of {C;}-DELETION for every i > 3.

6. When F = {P;}, the path on i vertices, { P;}-DELETION can be solved in time O*(20(*"))
for i < 4, and cannot be solved in time (’)*(20(“’"'log t"")) for i > 6. Note that, by items 2
and 3 above, this settles completely the complexity of {P;}-DELETION for every i > 2,
except for ¢ = 5, where there is still a gap.

The results discussed in the last three items are summarized in Table 1. Note that the
cases with i < 3 were already known [6,12], except when F = {Ps}.

Our techniques. The algorithm running in time O* (QQO“W'IOMW)

) uses and, in a sense,
enhances, the machinery of boundaried graphs, equivalence relations, and representatives
originating in the seminal work of Bodlaender et al. [3], and which has been subsequently
used in [9, 10, 14]. For technical reasons, we use branch decompositions instead of tree
decompositions, whose associated widths are equivalent from a parametric point of view [20].

In order to obtain the faster algorithm running in time O* (2O(tw'1°gtw)) when F is a
connected collection containing at least a (subcubic) planar graph, we combine the above
ingredients with additional arguments to bound the number and the size of the representatives
of the equivalence relation defined by the encoding that we use to construct the partial
solutions. Here, the connectivity of F guarantees that every connected component of a
minimum-sized representative intersects its boundary set (cf. the full version). The fact that
F contains a (subcubic) planar graph is essential in order to bound the treewidth of the
resulting graph after deleting a partial solution (cf. Lemma 11).

We present these algorithms for the topological minor version and then it is easy to adapt
them to the minor version within the claimed running time (cf. Lemma 9).

The single-exponential algorithms when F € {{Ps},{Ps},{C4}} are ad hoc. Namely, the
algorithms for {P;}-DELETION and {P,}-DELETION use standard (but nontrivial) dynamic
programming techniques on graphs of bounded treewidth, exploiting the simple structure of
graphs that do not contain P3 or P4 as a minor (or as a subgraph, which in the case of paths
is equivalent). The algorithm for {C,}-DELETION is more involved, and uses the rank-based
approach introduced by Bodlaender et al. [2], exploiting again the structure of graphs that
do not contain Cy as a minor (cf. Lemma 14). It might seem counterintuitive that this
technique works for Cy, and stops working for C; with ¢ > 5 (see Table 1). A possible reason
for that is that the only cycles of a C4-minor-free graph are triangles and each triangle is
contained in a bag of a tree decomposition. This property, which is not true anymore for
C;-minor-free graphs with ¢ > 5, permits to keep track of the structure of partial solutions
with tables of small size.
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As for the lower bounds, the general lower bound of O*(2°*")) for connected collections
is based on a simple reduction from VERTEX COVER. The superexponential lower bounds,
namely O*(2°(tW108tW)) " are strongly based on the ideas presented by Marcin Pilipczuk [19]
for VERTEX PLANARIZATION. We present a general hardness result (cf. Theorem 20) that
applies to wide families of connected collections F. Then, our superexponential lower bounds,
as well as the result of Marcin Pilipczuk [19] itself, are corollaries of this general result.
Combining Theorem 20 with 2, it easily follows that the running time O*(20W-logtw)) jg
tight for a wide family of F, for example, when all graphs in F are planar and 3-connected.

Further research. In order to complete the dichotomy for cliques and paths (see Table 1),
it remains to settle the complexity when F = {K;} with ¢ > 5 and when F = {P5}. An
ultimate goal is to establish the tight complexity of F-DELETION for all collections F, but
we are still very far from it. In particular, we do not know whether there exists some F
for which a double-exponential lower bound can be proved, or for which the complexities of
F-M-DELETION and F-TM-DELETION differ.

Note that the connectivity of F was relevant in previous work on the F-M-DELETION
problem taking as the parameter the size of the solution [7,14]. Getting rid of connectivity
in both the lower and upper bounds we presented is an interesting avenue. We did not focus
on optimizing either the degree of the polynomials involved or the constants involved in our
algorithms. Concerning the latter, one could use the framework presented by Lokshtanov et
al. [16] to prove lower bounds based on the Strong Exponential Time Hypothesis.

Finally, let us mention that Bonnet et al. [4] recently studied generalized feedback vertex
set problems parameterized by treewidth, and obtained independently that excluding C,
plays a fundamental role in the existence of single-exponential algorithms, similarly to our
dichotomy for cycles summarized in Table 1.

Organization of the paper. In Section 2 we provide some preliminaries. The algorithms
based on boundaried graphs are presented in Section 3, and the single-exponential algorithms
for hitting paths and cycles are presented in Section 4. The superexponential lower bounds
are presented in Section 5. The general lower bound for connected collections and the proofs
of all the results marked with ‘(x)’ can be found in the full version.

2 Preliminaries

In this section we provide some preliminaries to be used in the following sections. We include
here only the “non-standard” definitions; the other ones can be found in the full version.

Block-cut trees. A connected graph G is biconnected if for any v € V(G), G \ {v} is
connected (notice that K5 is the only biconnected graph that it is not 2-connected). A
block of a graph G is a maximal biconnected subgraph of G. We name block(G) the set of
all blocks of G and we name cut(G) the set of all cut vertices of G. If G is connected, we
define the block-cut tree of G to be the tree bct(G) = (V, E) such that V' = block(G) U cut(G)
and E = {{B,v} | B € block(G),v € cut(G) N V(B)}. Note that L(bct(G)) C block(G).
The block-cut tree of a graph can be computed in linear time using depth-first search [11].
Let F be a set of connected graphs such that for each H € F, |V(H)| > 2. Given H € F
and B € L(bct(H)), we say that (H, B) is an essential pair if for each H' € F and each
B’ € L(bct(H")), |E(B)| < |E(B’)|]. Given an essential pair (H, B) of F, we define the
first vertex of (H, B) to be, if it exists, the only cut vertex of H contained in V(B), or an
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arbitrarily chosen vertex of V(B) otherwise. We define the second vertex of (H, B) to be an
arbitrarily chosen vertex of V(B) that is a neighbor in H[B] of the first vertex of (H, B).
Note that, given an essential pair (H, B) of F, the first vertex and the second vertex of
(H, B) exist and, by definition, are fixed. Moreover, given an essential pair (H, B) of F, we
define the core of (H, B) to be the graph H \ (V(B) \ {a}) where a is the first vertex of
(H, B). Note that a is a vertex of the core of (H, B).

Topological minors and graph separators. For the statement of our results, we need to
consider the class K containing every connected graph G such that for each B € L(bct(G))
and for each r € N, B Aim K2, (or equivalently, B Am K2 ,). Let H be a graph. We define
the set of graphs tpm(H) as follows: among all the graphs containing H as a minor, we
consider only those that are minimal with respect to the topological minor relation.

» Observation 1. There is a function fi : N — N such that for every h-vertex graph H,
every graph in tpm(H) has at most f1(h) vertices.

» Observation 2. Given two graphs H and G, H is a minor of G if and only if some of the
graphs in tpm(H) is a topological minor of G.

Let G be a graph and S C V(G). Then for each connected component C of G \ S, we
define the cut-clique of the triple (C, G, S) to be the graph whose vertex set is V/(C) U S and
whose edge set is E(G[V(C)U S]) U (g)

» Lemma 3 (%). Let i > 2 be an integer, let H be an i-connected graph, let G be a graph,
and let S C V(G) such that |S| <i—1. If H is a topological minor (resp. a minor) of G,
then there exists a connected component G' of G\ S such that H is a topological minor (resp.
a minor) of the cut-clique of (G',G,S).

» Lemma 4 (). Let G be a connected graph, let v be a cut vertex of G, and let V' be the

vertex set of a connected component of G\ {v}. If H is a connected graph such that H <im G
and for each leaf B of bct(H), B Zwm G[V U{v}], then H Zim G\ V.

Graph collections. Let F be a collection of graphs. From now on instead of “collection
of graphs” we use the shortcut “collection”. If F is a collection that is finite, non-empty,
and all its graphs are non-empty, then we say that F is a proper collection. For any proper
collection F, we define size(F) = max{{|V(H)| | H € F} U {|F|}}. Note that if the size of
F is bounded, then the size of the graphs in F is also bounded. We say that F is a planar
collection (resp. planar subcubic collection) if it is proper and at least one of the graphs in F
is planar (resp. planar and subcubic). We say that F is a connected collection if it is proper
and all the graphs in F are connected. We say that F is an (topological) minor antichain if
no two of its elements are comparable via the (topological) minor relation.

Let F be a proper collection. We extend the (topological) minor relation to F such that,
given a graph G, F =<m G (resp. F =i, G) if and only if there exists a graph H € F such
that H <im G (resp. H <y G). We also denote exim(F) = {G | F £wm G}, ie., exem(F)
is the class of graphs that do not contain any graph in F as a topological minor. The set
exm(F) is defined analogously.

Definition of the problems. Let F be a proper collection. We define the parameter tmx
as the function that maps graphs to non-negative integers as follows:

tmr(G) = min{|S||SCV(G)AG\ S € exym(F)}. (1)
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The parameter mx is defined analogously. The main objective of this paper is to study
the problem of computing the parameters tmz and mz for graphs of bounded treewidth
under several instantiations of the collection F. Note that in both problems, we can always
assume that F is an antichain with respect to the considered relation. Indeed, this is the case
because if F contains two graphs Hy and Hy where Hy =iy Ha, then tmx(G) = tmz (G)
where F' = F \ {H} (similarly for the minor relation).

Throughout the article, we let n and tw be the number of vertices and the treewidth of
the input graph of the considered problem, respectively. In some proofs, we will also use
w to denote the width of a (nice) tree decomposition that is given together with the input
graph (which will differ from tw by at most a factor 5).

3 Dynamic programming algorithms for computing tm r

The purpose of this section is to prove the following results.

» Theorem 5. If F is a proper collection, where d = size(F), then there exists an algorithm
(@] w-log tw
that solves F-TM-DELETION in 227%™ . steps.

» Theorem 6. If F is a connected and planar subcubic collection, where d = size(F), then
there exists an algorithm that solves F-TM-DELETION in 202(tW1ogtwW) . stens.

» Theorem 7. If F is a proper collection, where d = size(F), then there exists an algorithm
that solves F-M-DELETION in 227%™ . i steps.

» Theorem 8. If F is a connected and planar collection, where d = size(F), then there exists
an algorithm that solves F-M-DELETION in 204w 10gtW) .y gtens.

The following lemma is a direct consequence of Observation 2.

» Lemma 9. Let F be a proper collection. Then, for every graph G, it holds that mz(G) =
tmz (G) where F' = Jprtpm(F).

It is easy to see that for every (planar) graph F, the set tpm(F') contains a subcubic
(planar) graph. Combining this observation with Lemma 9 and Observation 1, Theorems 7
and 8 follow directly from Theorems 5 and 6, respectively. The rest of this section is dedicated
to the proofs of Theorems 5 and 6. For this, we need a number of definitions about boundaried
graphs, their equivalence classes, and their branch decompositions. Many of these definitions
were introduced in [3,9] (see also [10,14]), and can be found in the full version. We present
here only the most fundamental definitions in order to be able to state our results.

Basic definitions about boundaried graphs. Let t € N. A t-boundaried graph is a triple
G = (G,R,\) where G is a graph, R C V(G), |[R| = t, and XA : R — NT is an injective
function. We call R the boundary of G and we call the vertices of R the boundary vertices of
G. We also call G the underlying graph of G. Moreover, we call t = |R| the boundary size of
G and we define the label set of G as A(G) = A\(R). We also say that G is a boundaried graph
if there exists an integer ¢ such that G is an ¢-boundaried graph. We say that a boundary
graph G is consecutive if A(G) = [1,|R|]. We define B®) as the set of all -boundaried graphs.

Let G1 = (G1, Ry, A1) and Gy = (Ga, Ra, A2) be two t-boundaried graphs. We define the
gluing operation @® such that (G1, Ry, A1) ® (G2, Ra, A2) is the graph G obtained by taking
the disjoint union of G; and G and then, for each ¢ € [1,¢], identifying the vertex ¢ai (4)
and the vertex ¢(_;1 (7).
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Let F be a proper collection and let ¢ be a non-negative integer. We define an equivalence
relation =Y on t-boundaried graphs as follows: Given two t-boundaried graphs G; and
G,, we write G; =1 G4 to denote that VG € B, F < G G, <= F <im G ® Go.
We set up a set of representatives R ") as a set containing, for each equivalence class C
of =) some consecutive t-boundaried graph in C with minimum number of edges and
no isolated vertices out of its boundary (if there are more than one such graphs, pick one
arbitrarily). Given a t-boundaried graph G we denote by rep”)(G) the t-boundaried graph
B € R where B =" G and we call B the F-representative of G-

Given t,r € N, we define AS—?T as the set of all pairwise non-isomorphic boundaried graphs
that contain at most 7 non-boundary vertices, whose label set is a subset of [1, ], and whose
underlying graph belongs in exym(F). Given a t-boundaried graph B and an integer r € N,
we define the (F,r)-folio of B, denoted by folio(B, F,r), as the set containing all boundaried
graphs in Ag?r that are topological minors of B.

» Lemma 10 (%). There exists a function hy : NxN — N such that if F is a proper collection
and t € N, then |RFH| < hy(d,t) where d = size(F). Moreover hy(d,t) = 227"

» Lemma 11 (x). There exists a function p : N — N such that for every planar subcubic
collection F, every graph in exin(F) has branchwidth at most y = p(d) where d = size(F).

We already have all the main ingredients to prove Theorem 5; the proof can be found in
the full version. In order to prove Theorem 6, we need Lemma 13 below, which should be
contrasted with Lemma 10. Its proof, which can be found in the full version, uses, among
others, the following result of Baste et al. [1] on the number of labeled graphs of bounded
treewidth.

» Proposition 12 (Baste et al. [1]). Let n,y € N. The number of labeled graphs with at most
n vertices and branchwidth at most q is 2Ca(mlogn)

» Lemma 13 (x). Lett € N and F be a connected and planar collection, where d = size(F),
and let RV be a set of representatives. Then |R\D| = 20at1o8t) - Moreover, there exists
an algorithm that given F and t, constructs a set of representatives R\t in 20a(t10gt) spepg.

The proof of Theorem 6 can be found in the full version. The main difference with
respect to the proof of Theorem 5 is an improvement on the size of the tables of the dynamic
programming algorithm, namely |P.|, where the fact that F is a connected and planar
subcubic collection is exploited.

4 Single-exponential algorithms for hitting paths and cycles

In this section we show that if F € {{Ps},{Ps},{C4s}}, then F-TM-DELETION can also
be solved in single-exponential time. It is worth mentioning that the {C;}-TM-DELETION
problem has been studied in digraphs from a non-parameterized point of view [18].

The algorithms we present for {P3}-TM-DELETION and {P4}-TM-DELETION use stand-
ard dynamic programming techniques, and can be found in the full version. The definition
of nice tree decomposition can also be found there.

We proceed to use the dynamic programming techniques introduced by Bodlaender et
al. [2] to obtain a single-exponential algorithm for {Cy}-TM-DELETION. The algorithm we
present solves the decision version of {Cy}-TM-DELETION: the input is a pair (G, k), where
G is a graph and k is an integer, and the output is the boolean value tmz(G) < k.

Given a graph G, we denote by n(G) = |V(G)|, m(G) = |E(G)|, c3(G) the number of
C3’s that are subgraphs of G, and cc(G) the number of connected components of G. We
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say that G satisfies the Cy-condition if G does not contain the diamond as a subgraph
and n(G) — m(G) + c3(G) = cc(G). As in the case of P; and Py, we state in Lemma 14 a
structural characterization of the graphs that exclude Cy as a (topological) minor.

» Lemma 14 (). Let G be a graph. Cy Aim G if and only if G satisfies the Cy-condition.
» Lemma 15 (x). If G is a non-empty graph such that Cy Zim G, then m(G) < 3(n(G) —1).

We are now going to restate the tools introduced by Bodlaender et al. [2] that we need
for our purposes. Let U be a set. We define II(U) to be the set of all partitions of U. Given
two partitions p and ¢ of U, we define the coarsening relation C such that p C ¢ if for each
S € ¢, there exists S’ € p such that S C 5’. (II(U),C) defines a lattice with minimum
element {{U}} and maximum element {{z} | x € U}. On this lattice, we denote by M the
meet operation and by LI the join operation. Let p € II(U). For X C U we denote by
pix ={SNX|Sep,SNX #0} € II(X) the partition obtained by removing all elements
not in X from p, and analogously for U C X we denote prx =pU{{z} |z € X\ U} € II(X)
the partition obtained by adding to p a singleton for each element in X \ U. Given a subset S
of U, we define the partition U[S] = {{z} | x € U\ STU{S}. A set of weighted partitions is a
set A CII(U) x N. We also define rmc(A) = {(p,w) € A |V, w')eA:p =p=>w < w'}.

We now define some operations on weighted partitions. Let U be a set and A C II(U) x N.

Union. Given B CII(U) x N, we define A WY B = rmc(AU B).
Insert. Given a set X such that X NU = 0, we define ins(X, A) = {(prvux,w) | (p,w) € A}.
Shift. Given w’ € N, we define shft(w’, A) = {(p,w + w’) | (p,w) € A}.
Glue. Given a set S, we define U = U U S and glue(S, A) C II(U) x N as
glue(S, A) = rmc({(U[S] M pyg,w | (p,w) € A}).
Given w: U x U = N, we define glue,,({u, v}, A) = shft(w(u,v), glue({u, v}, A)).
Project. Given X C U, we define X = U \ X and proj(X, A) C II(X) x N as
proj(X, A) = rmc({(p, %, w) | (p,w) € A,Ve € X : V€' € X :pCUlee']}).
Join. Given a set U’, BC II(U) x N, and U = U U U’, we define join(A, B) C II(U) x N as
join(A, B) = rmc({(pg M ¢y w1 +w2) | (p,w1) € A, (q,w2) € B}).

» Proposition 16 (Bodlaender et al. [2]). Each of the operations union, insert, shift, glue, and
project can be carried out in time s - |U|O(1), where s is the size of the input of the operation.
Given two weighted partitions A and B, join(A,B) can be computed in time |A| - |B| - |U|®™).

Given a weighted partition A C II(U) x N and a partition ¢ € II(U), we define opt(g,.A) =
min{w | (p,w) € A, pMNq={U}}. Given two weighted partitions A, A" C II(U) x N, we
say that A represents A’ if for each ¢ € II(U), opt(q, A) = opt(g,.A’). Given a set Z and a
function f : 2N o 7 5 oWUIXN "we say that f preserves representation if for each two
weighted partitions A, A’ C TI(U) x N and each z € Z, it holds that if A’ represents A then
F(A, 2) represents f(A, z).

» Proposition 17 (Bodlaender et al. [2]). The union, insert, shift, glue, project, and join
operations preserve representation.

» Theorem 18 (Bodlaender et al. [2]). There exists an algorithm reduce that, given a set of
weighted partitions A C TI(U) x N, outputs in time |A| - 2= DIV |719M) ¢ set of weighted
partitions A’ C A such that A’ represents A and |A’| < 2!V, where w denotes the matriz
multiplication exponent.
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We now have all the tools needed to describe our algorithm. This algorithm is based on
the one given in [2, Section 3.5] and Ey = {{vp, v} | v € V(G)}. The role of v is to artificially
guarantee the connectivity of the solution graph, so that the machinery of Bodlaender et
al. [2] can be applied. In the following, for each subgraph H of G, for each Z C V(H), and
for each Zy C Eo N E(H), we denote by H(Z, Zo) the graph (Z, Zo U (E(H) N (Moh)).

Given a nice tree decomposition of G of width w, we define a nice tree decomposition
(T, X),r,G) of Gy of width w + 1 such that the only empty bags are the root and the
leaves and for each t € T, if X; # () then vy € X;. Note that this can be done in linear

time. For each bag t, each integers i, j, and ¢, each function s : X; — {0, 1}, each function
so @ {vo} x s71(1) — {0,1}, and each function r : E(G¢(s™(1),s;"'(1))) — {0,1}, if
Cy Zim Gi(s™1(1),5, ' (1)), we define:

Eup,s,s0,1,0,5,0) = {(Z,20)|(Z,Zo) € 2" x 250"F(GV)
|Z] =i, |[E(Gi(Z, Z0))| = 4, c3(G(Z, Zo)) = ¢,
G+(Z, Zy) does not contain the diamond as a subgraph,
ZNXe=s"(1), ZoN(Xe x X¢) =s5 (1), vo € Xy = s(vo) =1,
VYu € Z\ X; : either ¢ is the root or
Ju' € s7"(1) : wand v are connected in G¢(Z, Zo),
Yui,v2 € sfl(l) :p C Vi[{v1,v2}] © v1 and vz are
connected in G¢(Z, Zy),
Ve € E(Gi(Z, Zop)) N <Sl2(1)) ir(e) =14 eisan
edge of a C3 in G(Z, Zp)}
Ai(s,s0,1,4,5,0) = {p|pell(s™ (1), &(p,s,s0,1,i,],¢) # 0}.

Otherwise, i.e., if Cy =im G¢(s™(1),s55 (1)), we define A;(s, s, 1,4, j,¢) = 0.

Note that we do not need to keep track of partial solutions if Cy <¢m Gy(s™1(1),s5" (1)), as
we already know they will not lead to a global solution. Moreover, if Cs Zw Gi(s™'(1),s," (1)),
then by Lemma 15 it follows that m(G¢(s7(1),s5'(1))) < 2(n(Ge(s71(1),8, ' (1))) — 1).

Using the definition of A,, Lemma 14, and Lemma 15 we have that tm¢,}(G) < k if and
only if for some i > [V (G)U{vo}|—k and some j < 2(i—1), we have A, (&, @, 3,1, j, 1+j—i) #
(). For each t € V(T), we assume that we have already computed A for each children ¢’ of ¢,
and in the full version we show how to compute A;, distinguishing several cases depending on
the type of node t. The proof of the following theorem can also be found in the full version.

» Theorem 19 (x). {C4}-TM-DELETION can be solved in time 2°®W) . n7.

5 Superexponential lower bound for specific cases

In this section, we focus on the graph classes P = {P; | ¢ > 6} and K, and we show the
following theorem. Let us recall that IC is the set containing every connected graph G such
that for each leaf B € L(bct(G)) and r € N, B Aym Ka, (or B Am Ka,, which is equivalent).

» Theorem 20. Let F be a proper collection such that F C P or F C K. Unless the ETH
fails, neither F-TM-DELETION nor F-M-DELETION can be solved in time 2°0(tWlogtw) . nO(1)

In particular, this theorem implies the result of Pilipczuk [19] as a corollary. Indeed,
VERTEX PLANARIZATION corresponds to F-DELETION where F = { K5, K3 3}, and note that
{K5, K33} C K. Note also that Theorem 20 also implies the results stated in items 4 and 5
of the introduction, as all these graphs are easily seen to belong in K.
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» Corollary 21. Unless the ETH fails, for each F € {{C;} | i > 5} U{{K;} | i > 4}, neither
F-TM-DELETION nor F-M-DELETION can be solved in time 2°(W1ogtw) . nOQ1),

In the following we prove Theorem 20 for F-TM-DELETION, and we explain in the
full version how to modify the proof to obtain the result for F~-M-DELETION. To prove
Theorem 20, we reduce from k x k& PERMUTATION CLIQUE (k x k P. CLIQUE for short),
defined by Lokshtanov et al. [17]. In this problem, we are given an integer k and a graph G
with vertex set [1, k] x [1, k]. The question is whether there is a k-clique in G with exactly
one element from each row and exactly one element from each column. Lokshtanov et al. [17]
proved that k x k P. CLIQUE cannot be solved in time 2°(¥1°8%) ynless the ETH fails.

We now present the common part of the construction for both P and K. Let F be a
proper collection such that 7 C P or F C K. Note that if 7 C P, then |F| = 1. Let us fix
(H, B) to be an essential pair of . We first define some gadgets that generalize the K5-edge
gadget and the s-choice gadget introduced in [19]. Given a graph G and two vertices x and y
of G, by introducing an H-edge gadget between x and y we mean that we add a copy of H
where we identify the first vertex of (H, B) with y and the second vertex of (H, B) with x.
Using the fact that an H-edge gadget between two vertices x and y is a copy of H and that
{z,y} is a cut set, we have that the H-edge gadgets clearly satisfy the following.

» Proposition 22. If F-TM-DELETION has a solution on (G, k) then this solution intersects
every H-edge gadget, and there exists a solution S such that for each H-edge gadget A
between two vertices x and y, V(A) NS C {x,y} and {z,y} NS # 0.

In the following, we will always assume that the solution that we take into consideration
is a solution satisfying the properties given by Proposition 22. Moreover, we will restrict the
solution to contain only vertices of H-edge gadgets by setting an appropriate budget to the
number of vertices we can remove from the input graph G.

Given a graph G and two vertices = and y of G, by introducing a B-edge gadget between
2 and y we mean that we add a copy of B where we identify the first vertex of (H, B) with
y and the second vertex of (H, B) with z. Given a graph G and three vertices z, y, and z
of G, by introducing a double H-edge gadget between x and z through y we mean that we
introduce an H-edge gadget between z and y, and a B-edge gadget between x and y.

Given a set of s vertices {x; | i € [1, s]}, by introducing an H-choice gadget connecting
{z; |7 € [1,s]}, we mean that we add 2s + 2 vertices z;, ¢ € [0,2s + 1], for each ¢ € [0, 2s],
we introduce an H-edge gadget between z; and z;11, and for each i € [1, s], we introduce
a B-edge gadget between x; and 29,1 and another one between x; and z9;. We see the
H-choice gadget as a graph induced by {z; | ¢ € [1,s]} U{z | i € [0,2s]}, the B-edge gadgets,
and the H-edge gadgets. The following proposition is similar to [19, Lemma 5].

» Proposition 23 (x). For every H-choice gadget C connecting {z; | i € [1, s|}, any solution
S of F-TM-DELETION satisfies |[SNV(C)| > 2s, for every i € [1,s] there exists a solution S
such that x; € S, and for every solution S with |SNV(C)| = 2s, Ji € [1,s] such that x; ¢ S.

We now start the description of the general construction. Given an instance (G, k) of
k x k P. CLIQUE, we construct an instance (G', ) of F-TM-DELETION, which we call the
general H-construction of (G, k). We first introduce k2 + 2k vertices, namely {c; | i € [1,k]},
{ri |t € [1,k]}, and {t; ; | 4,7 € [1,k]}. For each ¢,5 € [1,k], we add the edges {r;,¢; ;} and
{ti j,c;}. For each j € [1, k], we introduce an H-choice gadget connecting {¢; ; | ¢ € [1, k]}.
This part of the construction is illustrated in the full version.

We now describe how we encode the edges of G in G’. For each e € E(G), we define
the integers p(e), y(e), q(e), and d(e) in [1, k], such that e = {(p(e),v(e)), (¢(e),d(e))} with
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p(e) < g(e). Note that the edges e with p(e) = g(e) are not relevant to our construction
and hence we safely forget them. For each e € E(G), we add to G’ three new vertices, d’,
d?, and df, and four edges {d’, cp(e)}, {dE, ey}, {d, cq(e)}, and {dZ, r5(¢)}. We introduce a
double H-edge gadget between d’ and d’ through d™. The encoding of an edge e € E(G) is
also illustrated in the full version. For each 1 < p < ¢ < k, we define E(p,q) = {e € E(G) |
(p(e),q(e)) = (p,q)} and we introduce an H-choice gadget connecting {d’ | e € E(p,q)}.

For each e € E(G), we increase the size of the requested solution in G’ by one, the initial
budget being the sum of the budget given by Proposition 23 over all the H-choice gadgets
introduced in the construction. Because of the double H-edge gadget, we need to take in
the solution either d” or both d’ and d’. The extra budget given for each edge permits to
include d™ in the solution. If the H-choice gadget connected to d’ already chooses d’ to be
in the solution, then we can use the extra budget given for the edge e to choose d instead of
dy*. In the case d* is chosen, in the resulting graph c,) remains connected to r, () and
Cq(e) Temains connected to 75(c). In the following, we consider only a solution S such that
either {d%,d™, d’} NS = {d’,d"} or {d’,d™,d"} NS = {d™} for each e € E(G).

We set ¢ = 3|E(G)| + 2k?. By construction, this budget is tight and permits to take only
a minimum-size solution in every H-choice gadget and one endpoint of each H-edge gadget
between d. and d7*, e € E(G). This concludes the general H-construction (G’,¥) of (G, k).

Let us now discuss about the treewidth of G’. By deleting 2k vertices, namely the vertices
{ci | i € [1,k]} and the vertices {r; | j € [1,k]}, we obtain a graph where each connected
component is an H-choice gadget, with eventually some pendant H-edge gadgets or double
H-edge gadgets. As the treewidth of the H-choice gadget, the H-edge gadget, and the double
H-choice gadget is linear in |V (H)|, we obtain that tw(G) = Og4(k) (recall that d = size(F)).

We explain in the full version that, given a permutation o : [1,k] — [1,%] defining a
solution of k x k P. CLIQUE on (G, k), we can define a so-called o-general H-solution S
having nice properties. Conversely, given a set S C V(G’) of size at most 3|E(G)| + 2k>
satisfying the so-called permutation property, we can define (cf. the full version) a unique
permutation o that defines a k-clique in G; we call o the associated permutation of S.

To conclude the reduction, we deal separately with the cases 7 C P and F C K. For
each such F, we assume w.l.o.g. that F is a topological minor antichain, we fix (H, B) to be
an essential pair of F, and given an instance (G, k) of k x k P. CLIQUE, we start from the
general H-construction (G, ¢) and add some edges and vertices in order to build an instance
(G",¢) of F-TM-DELETION. We show that if £ x &k P. CLIQUE on (G, k) has a solution
o, then the o-general H-solution is a solution of F-TM-DELETION on (G”, ). Conversely,
we show that if F~TM-DELETION on (G”,{) has a solution S, then this solution satisfies
the permutation property. This allows to prove that the associated permutation o of S is a
solution of k x k P. CLIQUE on (G, k). The details can be found in the full version.

—— References

1 Julien Baste, Marc Noy, and Ignasi Sau. On the number of labeled graphs of bounded
treewidth. CoRR, abs/1604.07273, 2016. To appear in Proc. of WG 2017.

2 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic

single exponential time algorithms for connectivity problems parameterized by treewidth.

Information and Computation, 243:86-111, 2015.

3 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M. Thilikos. (meta) kernelization. Journal of the ACM, 63(5):44:1-44:69,
2016.

4:11

IPEC 2017



4:12

Optimal Algorithms for Hitting Minors on Graphs of Bounded Treewidth

10

11

12

13

14

15

16

17

18

19

20

Edouard Bonnet, Nick Brettell, O-joung Kwon, and Déniel Marx. Generalized feedback ver-
tex set problems on bounded-treewidth graphs: chordality is the key to single-exponential
parameterized algorithms. CoRR, abs/1704.06757, 2017.

Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite
graphs. Inf. Comput., 85(1):12-75, 1990. doi:10.1016/0890-5401(90)90043-H.

Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van
Rooij, and Jakub Onufry Wojtaszczyk. Solving Connectivity Problems Parameterized by
Treewidth in Single Exponential Time. In Proc. of the 52nd Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 150-159, 2011.

Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-
Deletion: Approximation, Kernelization and Optimal FPT Algorithms. In Proc. of the
53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 470~
479, 2012.

Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient compu-
tation of representative families with applications in parameterized and exact algorithms.
Journal of the ACM, 63(4):29:1-29:60, 2016.

Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimen-
sionality and kernels. In Proc. of the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 503-510, 2010. Full version available at CoRR, abs/1606.05689,
2016.

Valentin Garnero, Christophe Paul, Ignasi Sau, and Dimitrios M. Thilikos. Explicit linear
kernels via dynamic programming. SIAM Journal on Discrete Mathematics, 29(4):1864—
1894, 2015.

John E. Hopcroft and Robert Endre Tarjan. Efficient algorithms for graph manipulation.
Communations of ACM, 16(6):372-378, 1973.

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512-530, 2001.
Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planarization
algorithm. In Proc. of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 18021811, 2014.

Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi
Sau, and Somnath Sikdar. Linear kernels and single-exponential algorithms via protrusion
decompositions. ACM Transactions on Algorithms, 12(2):21:1-21:41, 2016.

J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary properties is
NP-complete. Journal of Computer and System Sciences, 20(2):219-230, 1980.

Daniel Lokshtanov, Déniel Marx, and Saket Saurabh. Lower bounds based on the expo-
nential time hypothesis. Bulletin of the EATCS, 105:41-72, 2011.

Daniel Lokshtanov, Daniel Marx, and Saket Saurabh. Slightly superexponential parameter-
ized problems. In Proc. of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 760-776, 2011.

Doowon Paik, Sudhakar M. Reddy, and Sartaj Sahni. Deleting vertices to bound path
length. IEEE Trans. Computers, 43(9):1091-1096, 1994. doi:10.1109/12.312117.
Marcin Pilipczuk. A tight lower bound for Vertex Planarization on graphs of bounded
treewidth. Discrete Applied Mathematics, 231:211-216, 2017.

Neil Robertson and Paul D. Seymour. Graph minors. X. Obstructions to tree decomposition.
Journal of Combinatorial Theory, Series B, 52(2):153-190, 1991.


http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://dx.doi.org/10.1109/12.312117

Contraction-Bidimensionality of Geometric
Intersection Graphs*

Julien Baste! and Dimitrios M. Thilikos?

1  Université de Montpellier, LIRMM, Montpellier, France
baste@lirmm.fr

2 AlGCo project team, CNRS, LIRMM, Montpellier, France and Department of
Mathematics, National and Kapodistrian University of Athens, Greece
sedthilk@thilikos.info

—— Abstract

Given a graph G, we define beg(G) as the minimum & for which G can be contracted to the
uniformly triangulated grid T'x. A graph class G has the SQGC property if every graph G € G
has treewidth O(bcg(G)¢) for some 1 < ¢ < 2. The SQGC property is important for algo-
rithm design as it defines the applicability horizon of a series of meta-algorithmic results, in the
framework of bidimensionality theory, related to fast parameterized algorithms, kernelization,
and approximation schemes. These results apply to a wide family of problems, namely problems
that are contraction-bidimensional. Our main combinatorial result reveals a general family of
graph classes that satisfy the SQGC property and includes bounded-degree string graphs. This
considerably extends the applicability of bidimensionality theory for several intersection graph
classes of 2-dimensional geometrical objects.
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1 Introduction

Treewidth is one of most well-studied parameters in graph algorithms. It serves as a measure
of how close a graph is to the topological structure of a tree (see Section 2 for the formal
definition). Gavril is the first to introduce the concept in [28] but it obtained its name in the
second paper of the Graph Minors series of Robertson and Seymour in [36]. Treewidth has
extensively used in graph algorithm design due to the fact that a wide class of intractable
problems in graphs becomes tractable when restricted on graphs of bounded treewidth [1, 4, 5].
Before we present some key combinatorial properties of treewidth, we need some definitions.

1.1 Graph contractions and minors

Our first aim is the define some parameterized versions of the contraction relation on graphs.
Given a non-negative integer ¢, two graphs H and G, and a surjection o : V(G) — V(H) we
write H <§ G if
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for every x € V(H), the graph G[o~!(z)] is a non-empty graph (i.e., a graph with at

least one vertex) of diameter at most ¢ and

for every z,y € V(H), {z,y} € E(H) < G[o~!(z) Uo!(y)] is connected.
We say that H is a c-diameter contraction of G if there exists a surjection o : V(G) — V(H)
such that H <¢ G and we write this H <¢ G. Moreover, if o is such that for every z € V(G),
lo=1(z)| < ¢ + 1, then we say that H is a ¢/-size contraction of G, and we write H <(¢) G.

1.2 Combinatorics of treewdith
One of the most celebrated structural results on treewidth is the following:

» Proposition 1. There is a function f : N — N such that every graph excluding a (kx k)-grid
as a minor has treewidth at most f(k).

A proof of Proposition 1 appeared for the first time by Robertson and Seymour in [37].
Other proofs, with better bounds to the function f, appeared in [38] and later in [17] (see
also [31, 33]). Currently, the best bound for f is due to Chuzhoy, who proved in [3] that
flk) =k logo(l) k. On the other hand, it is possible to show that Proposition 1 is not
correct when f(k) = O(k? - logk) (see [41]).

The potential of Proposition 1 on graph algorithms has been capitalized by the theory
of bidimensionality that was introduced in [9] and has been further developed in [12, 13, 8,
15, 22, 25, 30, 21, 16, 27, 23]. This theory offered general techniques for designing efficient
fixed-parameter algorithms and approximation schemes for NP-hard graph problems in broad
classes of graphs (see [10, 14, 20, 7, 11]). In order to present the result of this paper we first
give a brief presentation of this theory and of its applicability.

1.3 Optimization parameters and bidimensionality

A graph parameter is a function p mapping graphs to non-negative integers. We say that p is a
minimization graph parameter if p(G) = min{k | 3S C V(G) : |S| < k and ¢(G, S) = true},
where ¢ is a some predicate on G and S. Similarly, we say that p is a mazimization
graph parameter if in the above definition we replace min by max and < by > respectivelly.
Minimization or maximization parameters are briefly called optimization parameters.

Given two graphs G and H, if there exists an integer ¢ such that H <°¢ G, then we say
that H is a contraction of G, and we write H < G. Moreover, if there exists a subgraph G’
of G such that H < G’, we say that H is a minor of G and we write this H < G. A graph
parameter p is minor-closed (resp. contraction-closed) when H < G = p(H) < p(G) (resp.
H <G = p(H) <p(G)). We can now give the two following definitions:

P is minor-bidimensional if P is contraction-bidimensional if
p is minor-closed, and p is contraction-closed, and
ko € N : Vk > ko, 238 > § ko € N : Wk > ko, BE2) > 6

for some § > 0. In the above definitions, we use By, for the (kx k)-grid and T'y, for the uniformly
triangulated (k x k)-grid (see Figure 1). If p is a minimization (resp. maximization) graph
parameter, we denote by Il the problem that, given a graph G and a non-negative integer
k, asks whether p(G) < k (resp. p(G) > k). We say that a problem is minor/contraction-
bidimensional if it is I, for some bidimensional optimization parameter p.

A (non exhaustive) list of minor-bidimensional problems is: VERTEX COVER, FEEDBACK
VERTEX SET, LONGEST CYCLE, LONGEST PATH, CYCLE PACKING, PATH PACKING, DiA-
MOND HITTING SET, MINIMUM MAXIMAL MATCHING, FACE COVER, and MAX BOUNDED
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Figure 1 The graph T'g.

DEGREE CONNECTED SUBGRAPH. Some problems that are contraction-bidimensional (but
not minor-bidimensional) are CONNECTED VERTEX COVER, DOMINATING SET, CONNECTED
DOMINATING SET, CONNECTED FEEDBACK VERTEX SET, INDUCED MATCHING, INDUCED
CYCLE PACKING, CYCLE DOMINATION, CONNECTED CYCLE DOMINATION, d-SCATTERED
SET, INDUCED PATH PACKING, r-CENTER, CONNECTED r-CENTER, CONNECTED DIAMOND
HirTring SET, UNWEIGHTED TSP TOUR.

1.4 Subgquadratic grid minor/contraction property

In order to present the meta-algorithmic potential of bidimensionality theory we need to
define some property on graph classes that defines the horizon of its applicability. Let G be
a graph class. We say that G has the subquadratic grid minor property (SQGM property for
short) if there exist a constant 1 < ¢ < 2 such that every graph G € G which excludes H; as
a minor, for some integer ¢, has treewidth O(t¢). In other words, this property holds for G if
Proposition 1 can be proven for a sub-quadratic f on the graphs of G.

Similarly, we say that G has the subquadratic grid contraction property (SQGC property
for short) if there exist a constant 1 < ¢ < 2 such that every graph G € G which excludes
T'; as a contraction, for some integer ¢, has treewidth O(t¢). For brevity we say that
G € SQGM(c) (resp. G € SQGC(c)) if G has the SQGM (resp SQGC) property for c. Notice
that SQGC(c) C SQGM(c) for every 1 < ¢ < 2.

1.5 Algorithmic implications

The meta-algorithmic consequences of bidimensionality theory are summarised as follows.

Let G € SQGM(c), for 1 < ¢ < 2, and let p be a minor-bidimensional-optimization parameter.

[A] As it was observed in [9], the problem IIj, can be solved in 20(k) . n©) steps on G, given
that the computation of p can be done in 28%(%) .nO() steps (here tw(G) is the treewidth
of the input graph G). This last condition can be implied by a purely meta-algorithmic
condition that is based on some variant of Modal Logic [35]. There is a wealth of results
that yield the last condition for various optimization problems either in classes satisfying
the SQGM propety [40, 19, 18, 18, 39] or to general graphs [6, 2, 24].

[B] As it was shown in [25] (see also [26]), when the predicate ¢ can be expressed in Counting
Monadic Second Order Logic (CMSOL) and p satisfies some additional combinatorial
property called separability, then the problem II, admits a linear kernel, that is a
polynomial-time algorithm that transforms (G, k) to an equivalent instance (G', k') of
II, where G’ has size O(k) and &’ < k.

5:3
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Condition on problem II

Minor bidimensional |Contraction bidimensional

Algorithmic applications
[A] Subexponential FPT
[B] Kernelization

[C] EPTAS

Figure 2 The applicability of bidimensionality theory.

[C] It was proved in [22], that the problem of computing p(G) for G € G admits a Efficient
Polynomial Approximation Scheme (EPTAS) — that is an e-approximation algorithm
running in f (%) -nPM) steps — given that G is hereditary and p satisfies the separability
property and some reducibility property (related to CMSOL expresibility).

All above results have their counterparts for contraction-bidimensional problems with
the difference that one should instead demand that G € SQGC(c). Clearly, the applicability
of all above results is delimited by the SQGM/SQGC property. This is schematically
depicted in Figure 2, where the green-triangles triangles indicate the applicability of minor-
bidimensionality and the red triangle indicate the applicability of contraction-bidimensionality.
The aforementioned Q(k? - log k) lower bound to the function f of Proposition 1, indicates
that SQGM(c) does not contain all graphs (given that ¢ < 2). The emerging direction of
research is to detect the most general classes in SQGM(c) and SQGC(c). We denote by Gp the
class of graphs that exclude H as a minor. Concerning the SQGM property, the following
result was proven in [14].

» Proposition 2. For every graph H, G € SQGM(1).

A graph H is an apex graph if it contains a vertex whose removal from H results to a
planar graph. For for the SQGC property, the following counterpart of Proposition 2 was
proven in [21].

» Proposition 3. For every apex graph H, Gy € SQGC(1).

Notice that both above results concern graph classes that are defined by excluding some
graph as a minor. For such graphs, Proposition 3 is indeed optimal. To see this, consider
Kj,-minor free graphs where h > 6 (these graphs are not apex graphs). Such classes do not
satisfy the SQGC property: take I'y, add a new vertex, and make it adjacent, with all its
vertices. The resulting graph excludes I'y, as a contraction and has treewidth > k.

1.6 String graphs

An important step extending the applicability of bidimensionality theory further than H-
minor free graphs, was done in [23]. Unit disk graphs are intersections graphs of unit disks
in the plane and map graphs are intersection graphs of face boundaries of planar graph
embeddings. We denote by Uy the set of unit disk graphs (resp. of My map graphs) of
maximum degree d. The following was proved in [23].

» Proposition 4. For every positive integer d, Uy € SQGM(1) and My € SQGM(1).
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Proposition 4 was further extended for intersection graphs of more general geometric objects
(in 2 dimensions) in [30]. To explain the results of [30] we need to define a more general
model of intersection graphs.

Let £ = {L1,...,L} be a collection of lines in the plane. We say that £ is normal if
there is no point belonging to more than two lines. The intersection graph G, of L, is the
graph whose vertex set is £ and where, for each ¢, j where 1 <14 < j < k, the edge {L;, L;}
has multiplicity |L; N La|. We denote by S, the set containing every graph G, where L is a
normal collection of lines in the plane and where each vertex of GG, has edge-degree at most

d. i.e., is incident to at most d edges. We call S; string graphs with edge-degree bounded by d.

It is easy to observe that Uy U My C Sy(q) for some quadratic function f. Moreover, apart
from the classes considered in [23], Sy includes a much wider variety of classes of intersection
graphs [30]. As an example, consider Cq4, as the class of all graphs that are intersection
graphs of a-convex 2-dimensional bodies! in the plane and have degree at most d. In [30], it
was proven that Cqo C S, where ¢ depends (polynomially) on d and « (see [34] for other
examples of classes included in Sy).

Given a class of graph G and two integers ¢; and ¢, we define G(¢1:¢2) as the set
containing every graph H such that there exist a graph G € G and a graph J that satisfy

G <(©) Jand H <% J. Keep in mind that G(¢1:¢2) and G(¢2:1) are different graph classes.

We also denote by P the class of all planar graphs. Using this notation, the two combinatorial
results in [30] can be rewritten as follows:

» Proposition 5. Let ¢; and c2 be two positive integers. If G € SQGC(c) for some 1 < ¢ < 2,
then G(¢1°2) € SQGM(c).

» Proposition 6. For every d € N, Sg C P14,

Proposition 2, combined with Proposition 5, provided the wider, so far, framework on the
applicability of minor-bidimensionality: SQGM(1) contains g};l’”) for every apex graph H
and positive integers ¢, ca. As P € SQGC(1) (by, e.g., Proposition 3), Propositions 5 and 6
directly classifies in SQGM(1) the graph class Sy, and therefore a large family of bounded
degree intersection graphs (including Uy and M,). As a result of this, the applicability of
bidimensionality theory for minor-bidimensional problems has been extended to much wider
families (not necessarily minor-closed) of graph classes of geometric nature.

1.7 Our contribution

Notice that Proposition 5 exhibits some apparent “lack of symmetry” as the assumption
is “qualitatively stronger” than the conclusion. This does not permit the application of
bidimensionality for contraction-bidimensional parameters on classes further than those of
apex-minor free graphs. In other words, the results in [30] covered, for the case of Sy, the
green triangles in Figure 2 but left the red triangles open. The main result of this paper is
to fill this gap by proving the following extension of Proposition 5:

» Theorem 7. Let ¢1 and co be two positive integers. If G € SQGC(c) for some 1 < ¢ < 2,
then G(¢1°2) € SQGC(c).

1 We call a set of points in the plane a 2-dimensional body if it is homeomorphic to the closed disk
{(z,y) | #* +y*® < 1}. A 2-dimensional body B is a a-convez if every two points can be the extremes of
a line L consisting of « straight lines and where L C B.
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Figure 3 The uniformly triangulated grid I'g.

Combining Proposition 3 and Theorem 7 we extend the applicability horizon of contraction-
bidimensionality further than apex-minor free graphs: SQGC(1) contains gf;l“) for every
apex graph H and positive integers ¢1, co. As a special case of this, we have that Sy € SQGC(1).
Therefore, on Sy, the results described in Subsection 1.5 apply for contraction-bidimensional
problems as well (such as those enumerated in the end of Subsection 1.3).

This paper is organized as follows. In Section 2, we give the necessary definitions and
some preliminary results. Section 3 is dedicated to the proof of Theorem 7. We should stress
that this proof is quite different than the one of Proposition 5 in [30]. Finally, Section 4

contains some discussion and open problems.

2 Definitions and preliminaries

All graphs in this paper are undirected, loop-less, and may have multiple edges. If a graph
has no multiple edges, we call it simple. Given a graph G, we denote by V(G) its vertex
set and by E(G) its edge set. Let x be a vertex or an edge of a graph G and likewise for y;
their distance in G, denoted by distg(x,y), is the smallest number of vertices of a path in
G that contains them both. Moreover if G is a graph and z € V(G), we denote by N&(z)
the set {y |y € V(G), distg(x,y) < c+ 1}. For any set of vertices S C V(G), we denote by
G|[S] the subgraph of G induced by the vertices from S. If G[S] is connected, then we say
that S is a connected verter set of G. We define the diameter of a connected subset S as
the maximum pairwise distance between any two vertices of S. The edge-degree of a vertex
v € V(G) is the number of edges that are incident to it (multi-edges contribute with their
multiplicity to this number).

For our proofs, we also need the graph I, that is the variant of Iy, depicted in Figure 3.
Notice that 'y and 'y are both triangulated plane graphs, i.e., all their faces are triangles.
In '), we refer to the vertex a (as in Figure 3) as the apex vertex of I'. (We avoid the formal
definitions of By, I'y, I') in this extended abstract — see [21] for a more precise formalism.)
In each of these graphs we denote the vertices of the underlying grid by their coordinates
(i,4) € [0,k — 1]? agreeing that the upper-left corner is the vertex (0,0).

2.1 Treewidth

A tree-decomposition of a graph G, is a pair (T, X), where T isatreeand X = {X; : t € V(T)}
is a family of subsets of V' (G), called bags, such that the following three properties are satisfied:
UtEV(T) Xy =V(G),
for every edge e € E(G) there exists t € V(T') such that e C Xy, and
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Vv € V(G), the set T, = {t € V(T') | v € X,} is a connected vertex set of T

The width of a tree-decomposition is the cardinality of the maximum size bag minus 1

and the treewidth of a graph G is the minimum width over all the tree-decompositions of G.

We denote the treewidth of G by tw(G).

» Lemma 8. Let G be a graph and let H be a c-size contraction of G. Then tw(G) <
(c+1) - (tw(H)+1) — 1.

3 Proof of Theorem 7

Let H and G be graphs and ¢ be a non-negative integer. If H <¢ G, then we say that H is
a o-contraction of G, and denote this by H <, G.

Before we proceed the the proof of Theorem 7 we make first the following three observations.

(In all statements, we assume that G and H are two graphs and o : V(G) — V(H) such that
H is a o-contraction of G.)

» Observation 9. Let S be a connected subset of V(H). Then the set |J,cq0 ' (z) is
connected in G.

» Observation 10. Let S; C So C V(H). Then o= 1(S1) C o 1(S2) CV(G).

» Observation 11. Let S be a connected subset of V(G). Then the diameter of o(S) in H
s at most the diameter of S in G.

Given a graph G and 57,52 C V(G) we say that Sy and Sy touch if either S; NSy # @ or
there is an edge of G with one endpoint in S; and the other in Ss.

We say that a collection R of paths of a graph is internally disjoint if none of the internal
vertices, i.e., none of the vertex of degree 2, of some path in R is a vertex of some other path
in R. Let A be a collection of subsets of V(G). We say that A is a connected packing of G if
its elements are connected and pairwise disjoint. If additionally A is a partition of V(G),
then we say that A is a connected partition of G and if, additionally, all its elements have
diameter bounded by some integer ¢, then we say that A is a c-diameter partition of G.

3.1 A-state configurations

Let G be a graph. Let A = (W, £) be a graph whose vertex set is a connected packing of G,

i.e., its vertices are connected subsets of V(G). A A-state configuration of a graph G is a

quadruple § = (X, «, R, ) where

1. X is a connected packing of G,

2. «is a bijection from W to X such that for every W e W, W C (W),

3. R is a collection of internally disjoint paths of G, and

4. fis a bijection from & to R such that if {W;, W5} € £ then the endpoints of S({W1, W1})
are in Wy and Wy and V(B({W1,W3})) C a(W7) U a(Ws).

A A-state configuration S = (X, a, R, 3) of G is complete if X is a partition of V(G). We

refer to the elements of X' as the states of S and to the elements of R as the freeways of S.

We define indep(S) = V(G) \ Uxcx X. Note that if S is a A-state configuration of G, S is
complete if and only if indep(S) = 0.

Let A be a c-diameter partition of G. We refer to the sets of A as the A-clouds of G. We
define front 4(S) as the set of all A-clouds of G that are not subsets of some X € X. Given a
A-cloud C and a state X of S we say that C' shadows X if C N X # (). The coverage covs(C)
of an A-cloud C of G is the number of states of S that are shadowed by C. A A-state
configuration S = (X, o, R, ) of G is A-normal if its satisfies the following conditions:
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S

Figure 4 A visualization of the proof of Lemma 12. In this whole graph I'y, we initialize our
reaserch of 'y such that every internal red hexagon will become a vertex of 'y and correspond
to a state and the border, also circle by a red line will become the vertex bout. The blue edges
correspond to the freeways. Red cycles correspond to the boundaries of the starting countries. Blue
paths between big-black vertices are the freeways. Big-black vertices are the capitals.

(A) If a A-cloud C intersects some W € W, then C C a(W).

(B) If a A-cloud over S intersects the vertex set of at least two freeways of S, then it shadows
at most one state of S.

We define costa(S) = X ceqont 4 (s) CoVs(C). Given S1 € S; € V(G) where Sy is connected,

we define ccg(S2,51) as the (unique) connected component of G[S3] that contains Sj.

3.2 Triangulated grids inside triangulated grids

» Lemma 12. Let G and H be graphs and c, k be non-negative integers such that H <¢ G

and Ty, < G. Then Ty < H where k' = L2kc:-11 _1

Proof. Let k* =1+ (2c+ 1) - (K + 1) and observe that k* < k, therefore I'y« < T, < G. For
simplicity we use I' = I'y+. Let ¢ : V(G) — V(H) such that H <{ G andlet o : V(G) — V(T
such that T' <, G. We define A = {¢~%(a) | @« € V(H)}. Notice that A is a c-diameter
partition of G.

For each (i,j) € [0,k +1]°, we define b;; to be the vertex of I' with coordinate
(1(2¢ +1),j(2c+1)). We set Qi = {bi; | (i,)) € [1,57%} and Qou = {bi; | (i,5) €
[0,k + 1]]2} \ Qin- Let also Q = Qin U {bout } were boyt, is a new element that does not belong
in Qin. Here byt can be seen as a vertex that “represents” all vertices in Qous.

Let g, p be two different elements of (). We say that ¢ and p are linked if they both belong
in Qin and their distance in I' is 2c + 1 or one of them is boy¢ and the other is b; ; where
ie{l,k'}orje{l,k}.

For each ¢ € Qin, we define W, = 071(gq). W, is connected by the definition of o. In
case ¢ = boyy we define W, = |J '€ Qo o7 (q'). Note that as Quy is a connected set of T,
then, by Observation 9, W, , is connected in G. We also define W = {W, | ¢ € Q}. Given

out
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some ¢ € @ we call W, the g-capital of G and a subset S of V(G) is a capital of G if it is
the g¢-capital for some ¢ € Q). Notice that W is a connected packing of V(G).

Let ¢ € Q. If ¢ € Qin then we set N; = NE(q). If ¢ = bout, then we set Ny, =
Uyequ.. Ni(¢'). Note that for every ¢ € Q, Ny € V(I'). For every ¢ € Q, we define
X, =0"Y(N,). Note that X, C V(G). We also set X = {X, | ¢ € Q}. Let ¢ and p we two
linked elements of @. If both ¢ and p belong to Qi,, and therefore are vertices of I, then we
define Z, , as the unique shortest path between them in I'. If p = boys and ¢ € Qin, then
we know that ¢ = b; ; where i € {1,k'} or j € {1,k’}. In this case we define Z, , as any
shortest path in I' between b; ; and the vertices in Qout. In both cases, we define P, , by
picking some path between W, and W, in G[o=*(V(Z, ,))] such that |V (P, ,) N W,| = 1 and
[V (Bp,q) N Wp| =1.

Let £ = {{W,,W,} | pand ¢ are linked} and let A = (W, £). Notice that A is isomorphic
to I'ys and consider the isomorphism that correspond each vertex ¢ = b; j, 4,7 € [1, k:’]]2 to
the vertex with coordinates (i, 7). Moreover by, corresponds to the apex vertex of Dw.

Let o : W — X such that for every ¢ € @, a(W,) = X,. Let also R = {F, |
p,q € @, p and q are linked}. We define 5 : £ — R such that if ¢ and p are linked, then
B(Wy, W,) = P, 4. We use notation S = (X, o, R, ).

» Claim 13. S is an A-normal A-state configuration of G.

The proof of Claim 13 is omitted in this extended abstract.
We define bellow three ways to transform a A-state configuration of G. In each of them,

S=(X,a,R,[) is an A-normal A-state configuration of G and C' is an A-cloud in front 4(S).

1. The expansion procedure applies when C intersects at least two freeways of S. Let X be

the state of S shadowed by C (this state is unique because of property (B) of A-normality).

We define (X', o/, R’, ') = expand(S, C') such that
X =x\{X}u{Xxucy,
for each W e W, o/ (W) = X’ where X' is the unique set of X’ such that W C X’
R' =R,and 8 = §.

2. The clash procedure applies when C' intersects exactly one freeway P of S. Let X, Xo
be the two states of S that intersect this freeway. Notice that P = f(a™!(X1),a 1 (X2)),
as it is the only freeway with vertices in X7 and X5. Assume that (CNV(P))N X; # 0
(if, not, then swap the roles of X; and X5). We define (X', o/, R/, 5') = clash(S,C) as
follows:

X' = {X1 UCHUUxer [x,yicca(X \ Cra (X))} (notice that o~ '(X) € X\ C, for
every X € X, because of property (A) of A-normality),

for each W e W, o/ (W) = X’ where X’ is the unique set of X’ such that W C X’
R' = R\ {P}U{P'}, where P/ = P, U P* U P, is defined as follows: let s; be the
first vertex of C that we meet while traversing P when starting from its endpoint that
belongs in W; and let P; the subpath of P that we traversed that way, for ¢ € {1,2}.
We define P* by taking any path between s; and so inside G[C], and

B = BNA{W, Wa}, P)} U {{Wy, Wa}, P'.

3. The annex procedure applies when C' intersects no freeway of S and touches some country

X € X. We define (X’,a/,R’, ") = anex(S, C) such that
X' = {X1 UCHUUxex x,yicca(X \ C a (X))} (notice that o™ '(X) € X\ C, for
every X € X, because of property (A) of A-normality),
for each W e W, o/ (W) = X’ where X' is the unique set of X’ such that W C X’
R' =R,and 8 = §.
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» Claim 14. Let S = (X,a, R, ) be an A-normal A-state configuration of G, and C €
front 4(S). Let 8’ = action(S,C') where action € {expand, clash, anex}. Then &' is an A-
normal A-state configuration of G where cost(S’, A) < cost(S, A). Moreover, if covs(C) > 1,
then cost(S’, A) < cost(S, . A) and if covs(C) = 0 (which may be the case only when action =
anex), then |indep(S’)| < |indep(S)|.

The proof of Claim 14 is omitted in this extended abstract.

To continue with the proof of Lemma 12 we explain how to transform the .A-normal
A-state configuration S of G to a complete one. This is done in two phases. First, as long
as there is an A-cloud C € front(S) where covs(C) > 1, we apply one of the above three
procedures depending on the number of freeways intersected by C. We again use S to denote
the A-normal A-state configuration of G that is created in the end of this first phase. Notice
that, as there is no A-cloud with covs(C) > 1, then cost 4(S) = 0. The second phase is the
application of anex(S, (), as long as some C € front 4(S) is touching some of the countries
of §. We claim that this procedure will be applied as long as there are vertices in indep(S).
Indeed, if this is the case, the set front 4(S) is non-empty and by the connectivity of G, there
is always a C € front 4(S) that is touching some country of S. Therefore, as cost 4(S) =0
(by Claim 14), procedure anex(S,C) will be applied again.

By Claim 14, |indep(S)| is strictly decreasing during the second phase. We again use S
for the final outcome of this second phase. We have that indep(S) = ) and we conclude that
S is a complete A-normal A-state configuration of G such that |front4(S)| = 0.

We are now going to create a graph isomorphic to A only by doing contractions in G. For
this we use S, a complete A-normal A-state configuration of G such that |front4(S)| = 0,
obtained as describe before. We contract in G every country of § into a unique vertex. This
can be done because the countries of S are connected. Let G’ be the resulting graph. By
construction of S, G’ is a contraction of H. Because of Condition 4 of A-state configuration,
every freeway of S becomes an edge in G’. This implies that there is a graph isomorphic to
A that is a subgraph of G’. So I} is isomorphic to a subgraph of G’ with the same number
of vertices. Let see Iy as a subgraph of G’ and let e be an edge of G’ that is not an edge of
[, As e is an edge of G/, this implies that in G, there is two states of S such that there is
no freeway between them but still an edge. This is not possible by construction of S. We
deduce that G’ is isomorphic to T'y. Moreover, as |front4(S)| = 0, then every cloud is a
subset of a country. This implies that G’ is also a contraction of H. By contracting in G’
the edge corresponding to {a, (k' — 1,k’ — 1)} in ['s/, we obtain that Iy is a contraction of
H. Lemma 12 follows. |

Proof of Theorem 7. Given a graph G, we define beg(G) as the minimum k for which G
can be contracted to the uniformly triangulated grid I'y. Let A, ¢, ¢1, and co be integers. It
is enough to prove that there exists an integer A’ = O(A - ¢; - (c2)¢) such that for every graph
class G € SQGC(c), the following holds:

VG € G tw(G) < X~ (beg(G))° = tw(G) < X - (beg(G))°.

Let G € SQGC(c) be a class of graph such that VG € G tw(G) < A - (bcg(G))°. Let
H e Glere2) and let G and J be two graphs such that G € G, G <(¢1) J, and H < J. G
and J exist by definition of G(¢1-¢2). By definition of H and .J, tw(H) < tw(J). By Lemma 8,
tw(J) < (1 + 1)(tw(G) + 1) — 1. By definition of G, tw(G) < A - beg(G)¢. By Lemma 12,
bcg(G) < (2¢2 + 1)(beg(H) + 2) + 1. If we combine these four statements, we obtain that
tw(H) < (c1 +1)(A-[(2c2 4+ 1)(beg(H) +2) + 1]+ 1) — 1. As this formula is independent of
the graph class, the Theorem 7 follows. <
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4 Conclusions and open problems

The main combinatorial result of this paper is that, for every d, the class S; of string graphs
with multi-degree at most d has the SQGC property for ¢ = 1. This means that, for fixed
d, if a graph in S; excludes as a contraction the uniformly triangulated grid T'y, then its
treewidth is bounded by a linear function of k. Recall that string graphs are intersection
graphs of lines in the plane. It is easy to extend our results for intersection graphs of lines
in some orientable (or non-orientable) surface of genus 7. Let Sq be the corresponding
class. To prove that Sz € SQGC(1) we need first to extend Proposition 6 for Sy, (which is
not hard) and then use Theorem 7 and the fact that the class of graphs of bounded genus
belongs in SQGC(1) (see e.g., [16]).

Of course, the main general question is to detect wide graph classes with the SQGM/SQGC
property. In this direction, some insisting open issues are the following:
(1) Is the bound on the degree (or multi-degree) necessary? Are there classes of intersection
graphs with unbounded or “almost bounded” maximum degree that have the SQGM/SQGC
property?
(2) All so far known results classify graph classes in SQGM(1) or SQGC(1). Are there (interesting)
graph classes in SQGM(c) or SQGC(c) for some 1 < ¢ < 2 that do not belong in SQGM(1) or
SQGC(1) respectively? An easy (but trivial) example of such a class is the class Q4 of the
g-dimensional grids, i.e., the cartesian products of g > 2 equal length paths. It is easy to see
that the maximum k for which an n-vertex graph G € Q, contains a (k x k)-grid as a minor

is k = ©(n2). On the other size, it can also be proven that tw(G) = @(n%l) These two
facts together imply that Q, € SQGM(2 — %) while Q, ¢ SQGM(2 — % —¢) for every € > 0.

(3) Usually the graph classes in SQGC(1) are characterised by some “flatness” property. For
instance, see the results in [29, 32] for H-minor free graphs, where H is an apex graph. Can
SQGC(1) be useful as an intuitive definition of the “flatness” concept? Does this have some
geometric interpretation?
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1 Introduction

The protagonist of this paper is the following task. We want an efficient representation of an
n-variate degree-d polynomial P over a finite field IF, of order ¢, that permits us to evaluate
P on arbitrary points a € Fy. What kind of resource trade-offs can be achieved between
space (for representing P) and query time (for computing P(a) at a given a)?

The study of data structures that enable fast “polynomial evaluation” queries for mul-
tivariate polynomials was initiated by Kedlaya and Umans [11] for polynomials with bounded
individual variable degrees, motivated by applications to fast polynomial factorization. (For
univariate polynomial evaluation, cf. von zur Gathen and Gerhard [24].) Here we focus on
the case when P has (total) degree d, in particular, when d is less than n.!

We seek data structures consisting of a set K’ C Fy and an associated list ((a, P(a)) : a €
K) of evaluations. There are two extremes for such designs. At one extreme, we can set
K =Ty, put all evaluations in a sorted array, and binary search achieves O(nlogq) query
time. At the other extreme, to uniquely identify P we must tabulate Q((”j;d)) points, as this
is the dimension of the monomial basis. However, when K is this small, we are only aware of
brute-force (n?(@-time) algorithms to evaluate the polynomial in any other point. Between
these two extremes, we seek constructions for sets K that suffice for evaluating P at any
point outside K in time that scales sub-exponentially in d. Our motivation is to accelerate
the best known algorithms for canonical #P-hard problems (cf. Section 1.2).

1.1 Polynomial evaluation based on generalized Kakeya sets

Let Fg4[z] be the ring of polynomials over indeterminates « = (x1, 9, . .., Z,) with coefficients
in Fy. Our first main theorem constructs an explicit set K C Fy of cardinality at most
(d + 1)"*2 which allows for relatively quick evaluation of any degree-d P at all points in Fy-

» Theorem 1. Let d divide ¢ — 1. There is a set K CF} of size |K| < (d+1)"** along
with functions g1, ga; - -, gq—1)a+1)2 : Fqg = K and scalars v1,72, ..., Y(g-1)(d+1)2 € Fq such
that for every polynomial P € Fy[x] of degree at most d and every vector a € Fy,

(q—1)(d+1)?

P(a)= Y 7;P(gj(a)).
j=1

» Remark. Let us write M(g) for the time complexity? of multiplication and division in F,.
The construction in Theorem 1 is ezplicit in the sense that (a) there is an algorithm that
in time O(|K|ngM(q)) lists the elements of K; and (b) there is an algorithm that in time
O(ngd®>M(q)) computes the values g;(a) € F' and v; € Fy forall j =1,2,...,(¢—1)(d+1)?
when given a € Fy as input. The quadratic dependence on d has not been optimized.

The size of K can be further reduced for polynomials P satisfying a certain (natural)
restriction which holds for several well-studied polynomials. Suppose we partition the variable
set X = {x1,x9,...,2,}into X = X7UX,U- - -UXy such that | X, | = | Xa| = -+ = | X4| = n/d.
Let us say that a degree-d polynomial P € F,[z] is degree-separable relative to X1, Xa, ..., X4
if every monomial of P contains one variable from each X;. Note a degree-separable P is

! In contrast, Kedlaya and Umans [11] focus on the case n < d°W; of. [11, Corollaries 4.3, 4.5, and 6.4].
Notational caveat: Kedlaya and Umans use “m” for the number of variables.

2 For example, M(q) = O((log q)1+€) holds for any constant ¢ > 0; we refer to e.g. von zur Gathen and
Gerhard [24] for sharper bounds.
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in particular both multilinear and homogeneous of degree d. Degree-separability enables a
trade-off between the size of K and the query time for evaluation:

» Theorem 2. Let s divide d and d/s divide ¢ — 1. There is a set K C Fy of size
K| < (d/s + l)nJrS along with g1, 92, ..., gq-1)s : Fy = K and 1,72, ..., Y(q-1)s € Fq such
that for every degree-separable degree-d P € F,[z] relative to a fized partition X1, Xa, ..., X4
and every vector a € Fy,

(g—1)°

Pa)= Y Plgi(a).

» Remark. The construction in Theorem 2 is explicit in the sense that (a) there is an algorithm
that in time O(|K|ngM(q)) lists the elements of K; and (b) there is an algorithm that in time
O(n(q — 1)*sq¢M(q)) computes the values g;(a) € Fy and v; € Fy forall j =1,2,...,(¢—1)°
when given a € Fy as input.

We need K to contain enough points that “interpolation” at all the other points is possible.
One intuition for designing a small K C Fy for polynomial evaluation is that such a set must
enable “localization” of any target polynomial inside the set. At one extreme, we may think
of the simplest non-constant family of polynomials, namely lines. In Euclidean spaces, this
line of thought leads to the study of dimensionality of sets that contain a unit line segment
in every direction, or the Kakeya problem, which has been extensively studied since the 1920s
and the seminal work of Besicovitch [2]. We refer to Wolff [26], Mockenhaupt and Tao [18],
and Dvir [9, 10] for surveys both in the continuous and finite settings. In what follows we
focus on finite vector spaces.

» Definition 3. A Kakeya set (or Besicovitch set) in a vector space of dimension n over Fy
is a subset K C Fy together with a function f : Fy — F} such that for every vector a € Fy
and every scalar 7 € F, it holds that

fla)+Ta€e K. (1)

That is, a Kakeya set K has the property that for any possible direction of a line in
[y (that is, any nonzero vector a € Fy), the set K contains an entire line (through f(a))
with this direction. To support our objective of polynomial evaluations for higher-order
curves than lines, an intuition is now to generalize (1) to polynomials of higher degree in
the indeterminate 7. This is the methodological gist of our main contribution in this paper,
which will be described further in Section 2.

As an illustrative application of our new data structures, we use Theorem 2 to derive a
faster algorithm for computing fermionants, which are a family of self-reducible and degree-
separable polynomials introduced by Chandrasekharan and Wiese [7] to generalize various
fundamental polynomials. We start with a brief introduction to fermionants to motivate
their study from a computational perspective.

1.2 Fermionants

We continue to work over F,. As usual, S,, is the symmetric group over [m] = {1,2,...,m}.
We write ¢(o) for the number of cycles in a permutation o € S,,, where each fixed point of ¢ is
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counted as a cycle of length 1. Let A = (a;; : i, j € [m]) be an m x m matrix of indeterminates.
The fermionant of A with (indeterminate) parameter ¢ is the (m? + 1)-variable polynomial

fer, A= (=1)" Y (-1)" [ aso0) - (2)
=1

oESm

The fermionant is multilinear and homogeneous of degree m with respect to the variables
{a;,;}, and of degree m with respect to ¢. Furthermore, note that with respect to {a; ;} the
fermionant is degree-separable under the partition {{a;; : j € [m]} : 7 € [m]}.

The fermionant captures several extensively studied algebraic and combinatorial invariants,
such as the determinant of a matrix

det A= (-1)" Z (—1)°@) ﬁai,a(i) )
i=1

UES’V‘H/

the permanent of a matrix

per A = Z Hai,a(i)a

0ES, i=1

the generating function for directed Hamiltonian cycles

hcA = Z ﬁai’g(i),

€S, i=1

c(o)=1
as well as certain partition functions of strongly correlated electron systems in statistical
physics (see Chandrasekharan and Wiese [7]). It is immediate that the aforementoined
invariants can be obtained as special cases of the fermionant via

det A = fer; A, per A= (—1)"fer_1 A, and he A = (=1)""1 {t} fer, A,

where in the last equality we write {¢*} P for the coefficient of t* in the polynomial P.

The invariants captured by the fermionant have received such substantial attention that
is not possible to discuss the literature exhaustively here. For example, the permanent and
the determinant are central to arithmetic circuit complexity [22] and geometric complexity
theory [15]. Similarly, the numerous symmetries and self-reducibility properties of fermionants
enable their use in e.g. interactive proof systems [5, 16, 25]. We restrict our present discussion
of earlier work mostly to algorithms for the permanent.

Computing the permanent of a given m X m matrix appears to be an extremely hard
problem. Indeed, the best known general algorithm is over 50 years old, given by Ryser [19]
in 1963, and it uses O(2™m) arithmetic operations. Valiant [23] proved that the permanent
for {0, 1}-matrix inputs is #P-hard, even if the number of ones per row is at most three. In
the more general setting of fermionants, Mertens and Moore [17] showed that the fermionant
is #P-hard for any 7 > 2 and ®P-hard for 7 = 2, even for the adjacency matrices of
planar graphs. For the permanent, no less-than-2™-sized arithmetic circuit is known despite
substantial efforts (for example, it is a prominent open problem in the Art of Computer
Programming [12]).

However, there are faster ways to compute the permanent if we allow random-access
tabulation along with arithmetic operations. Most notably, there are modest speed-ups for
{0, 1}-matrices over the integers. Bax and Franklin [1] gave an 2m—%(m"/?/logm) expected



A. Bjorklund, P. Kaski, and R. Williams

time algorithm. Recently, Bjorklund [3] presented a deterministic gm—2(ym/logq) time
algorithm over any finite field of order ¢ > m? + 1, by exploiting the self-reducibility of the
permanent. Applying the Chinese Remainder Theorem, he also obtains a 2™~ (yv/m/logm)_
time algorithm for integer matrices with entries whose absolute value is bounded from above
by a constant. There are also faster algorithms for sparse matrices. Cygan and Pilipczuk [8]
gave a 2"~ "/7) time algorithm for matrices with at most 7 non-zero entries per row.
Very recently, Bjorklund, Husfeldt, and Lyckberg [4] and Bjorklund, Kaski, and Koutis [6]
show that if the result is bounded in absolute value by ¢ for a constant ¢ > 1, then
there are 2m(1=1/¢"®);,0(1)_time algorithms for the permanent and the number of directed
Hamiltonian cycles, respectively. Both algorithms work by computing the permanent and the
number of directed Hamiltonian cycles modulo small primes. In particular, the algorithms
over [F, run in time 27"(1_1/1’Q<1))7 faster than the algorithms of this paper for small p.

Our main technical result for fermionants is that, given mild technical conditions on the
order of the field, we can compute obtain a faster algorithm over finite fields:

» Theorem 4. There is an algorithm that computes the fermionant fer, A € Fy[t] of a given

m x m matriz A with entries in F, in time 2m79( /m/log log q) O(M(q)), provided that ¢ — 1
has a divisor in the interval (1.1logq,10logq), ¢ > m? + 1, and m = w(10g2 qloglog q).

The Chinese Remainder Theorem and a uniform variant of the Prime Number Theorem
for arithmetic progressions yield the following corollary for integer-valued fermionants.

» Corollary 5. Let 7 be an integer with |T| < O(m) and let M be a constant. The fermionant

fer, A can be computed in time 2m70( Vm/loglog m) , for all m x m matrices A with integer
values in [—M, M].

The idea behind Theorem 4 is to apply our polynomial evaluation results to a self-
reduction for fermionants. Following Bjorklund’s results for the permanent [3], we show how
to compute a fermionant on an m x m matrix via 27 *mPD calls to the fermionant on
k x k matrices. Applying Theorem 2, we set k so that it is possible to evaluate the k x k
fermionant polynomial over all points of K in 20999™ time. Once we know the polynomial
on all points in K, we can then evaluate the fermionant on any m x m matrix in time about

2m=k)mOM)  We show k ~ y/m/loglog q suffices.

Organisation. In Section 2, we present our generalization of Kakeya sets in finite vector
spaces, together with explicit constructions. Next in Section 3 we prove our main evaluation
theorems, Theorem 1 and Theorem 2. In Section 4 we use the self-reducibility of the
fermionant to prove Theorem 4 and Corollary 5, showing how to compute fermionants faster.

2 Generalized Kakeya sets in finite vector spaces

Here we study the following generalization of Kakeya sets for lines (Definition 3) to higher-
degree polynomial curves:

» Definition 6. A Kakeya set of degree r in a vector space of dimension n over I, consists
of a set K C Fy together with functions fo, f1,..., fr—1 : F§ — Fj such that for every vector
a € Fy and every scalar 7 € Fy it holds that

F(a,7) = fola) + fi(a) + f2(a)7* + ...+ fro1(a)7 P +ar” € K. (3)
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We say that a construction for Kakeya sets is explicit if
(i) there is an algorithm that outputs K (given ¢, r, and n) in O(\K|m‘M(q)) time, and
(ii) there is an algorithm that given a € I}’ outputs the values fo(a), fi(a), ..., fr-1(a) € Fy
in O(nrM(q)) time.
The following construction of sparse Kakeya sets of degree r generalizes the design of the
best known Kakeya sets (cf. Mockenhaupt and Tao [18], Saraf and Sudan [20], Dvir [9, §2.4],
Kopparty, Lev, Saraf, and Sudan [13], and Kyureghyan, Miiller, and Wang [14]).

» Lemma 7. For every r + 1 that divides ¢ — 1 there is an explicit Kakeya set K C Fy of

. 1 n+1
degree v and size |K| < (:{H + 1) .

Proof. We begin with three simple observations. First, since r + 1 divides ¢ — 1, we have
that r + 1 has a multiplicative inverse in F,.?> Second, for all o, 7 € F, from the Binomial
Theorem we have

r4+1 r—1 r+1—1
« r+1 7’+1 « 7 r
_ — . 4
(r+1+7) ’ Z( i )<r+1> T @

=0

Third, since the multiplicative subgroup Fy is cyclic of order ¢ — 1, the subgroup consisting
of (7 + 1)th powers of elements of ;X has size exactly ﬁ;—}. Including the zero element, we
-1
observe that [{3"T: g € F}| = 45 + 1.
Let us now define K C JF? to consist of all vectors of the form

r+1 r+1 r+1
YU s — 2 L — n_ 4 . (5)
r+1 r+1 r+1

with aq,a9,...,0,, 7 € Fy. It follows immediately from (5) and our third observation
n+1
that |K| < (g; + 1) . Furthermore, (4) and (5) imply that the generalized Kakeya

property (3) holds when we define the functions f; : Fy — Fp for all 4 =0,1,...,7r — 1 and
a=(a1,az,...,a,) € FY by

fia) = <(r—:1) (roﬁl)uli’ <TJ;1> <T0f1)r+”""’ <7”Jir1> (rojgll)rﬂi) . (6)

It is immediate from the definitions (5) and (6) that the construction is explicit. <

3 Polynomial evaluation

This section proves our two main theorems for polynomial evaluation. The key idea is
Mellin-transform-like sieving (8) enabled by an elementary observation about sums over finite
fields (7) below, which we then extend to an s-fold product form in (12).

Let us start with a homogeneous version of Theorem 1.

3 Indeed, g = p? for a prime p and positive integer a. Note r + 1 has a multiplicative inverse if and only if
p does not divide r + 1. By assumption we have (r +1)Q = p® — 1 for an integer @ and thus r + 1 = pb
for an integer b would lead to a contradiction p(bQ — p*~*) = —1.
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» Lemma 8. Let d divide g — 1. There is a set K CF? of size |[K| < (d+ 1)"*" together
with functions g1, 92,...,9¢4-1 : Fy — K and coefficients v1,72,...,7q-1 € Fy such that for
every homogeneous polynomial P € F,[z] of degree h < d and every vector a € Fy,

Pla) =) vP(gi(a)).

Proof. Let d divide ¢g—1. Set r = (4—1)/d—1, and note that r+1 divides ¢g—1. Apply Lemma 7
to obtain K and the functions fy, f1,..., fr—1. Let P € F4[z] be a homogeneous polynomial of
degree h < d over the indeterminates x = (r1,%2,...,2,), and let a = (a1, ag, ..., a,) € Fy
be an assignment of values to the indeterminates. Our goal is to compute the value P(a) € F,
using evaluations of P at K. Recalling the function F(a,7) from (3), we will rely on values
of the composition P(F(a,7)) for 7 € F, to obtain P(a).

Towards this end, we first observe that

ZTe:

TEF;

(7)

—1 if ¢ — 1 divides e,
0 otherwise.
To see this, let g be a generator of the multiplicative subgroup Fy. If ¢ — 1 divides e then
7¢ =1 for all 7, and thus the sum is [F,‘| = ¢ — 1 (modulo the characteristic). Otherwise,
g° # 1, and we have ZTGF; T¢ = ZTE]F; (g7)¢ = ¢° ZTE]F; 7¢, so the sum must be 0.
Let t = q— 1 —rh and observe that ¢ > 1. We now claim that

P(a)=- Y 7'P(F(a,7)). (8)
TEFY
By linearity, it suffices to consider the case when P is a single monomial P = z/z}2 ... z/n

of degree h = hy + ha + ...+ hy, < d. Recalling (3) and (7), we observe that the right-hand
side of (8) expands to

- > r'P(F(a,7))

TGF;

_ Z qulfrh (Trho/flalgw"'OK,Z"—FTThil("')+7'Th72(~'~)+...+7'0("')>

TEF;
== 3 (Ftaltale al () ) )
TEF;
ZZQTIQZQ"'QZ"
= P(a).
That is, by multiplying each term by 7%, we ensure that all other terms appearing inside of
P(F(a, 7)) cancel, except for the desired term o' a}? - .- al'» which is the coefficient of 77"

Now let 1, B2, . .., Bg—1 be an enumeration of the elements of F*. Forall j =1,2,...,g—1,
set gj(a) = F(a, 8;) and v; = —f5. The lemma now follows from (8). <

3.1 Proof of Theorem 1

We are now ready to prove Theorem 1. Our strategy is to interpolate the homogeneous
components of our given polynomial, then apply Lemma 8. Towards this end, let P € F[x]
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have degree at most d and let P = ZZ:O Py, where P, € Fy[z] is either zero or homogeneous
of degree h, for all h = 0,1,...,d. Let vy,v1,...,vq be any d 4 1 distinct elements of F,.
Recalling the definition of K in (5), let K C [y be the set of all vectors of the form

a r+1 o r+1 o r+1
v LI — > 47 —m, i — (9)
r+1 r+1 r+1

where aq, ag, ..., an, 7 € Fy, and v € {vp,v1,...,v4}.

In particular, from (9) and (5) we have that |K| < (d +1)|K]|.

Assuming we have constant-time access to P(a) for all a € K , we can access each Py
at k € K by univariate interpolation over the d + 1 distinct values of v, via the identity
P(vk) = ZZ:O Pu(k)v". That is, for h,j = 0,1,...,d, let A\s; € F, be the Lagrange
interpolation coefficients that satisfy P, (k) = ijo An;P(vjk) for all k € K. Observe in
particular that the coefficients Ap,; depend only on vy, vy, ..., vq. With access to values of P,
at K, given a query a € Fy we can use Lemma 8 to sieve for Py, (a) for each h =0,1,...,d.

That is, we have P(a) = Y5 Pa(@) = = X_o Xrerr oo 70 "My P(v;F(a, 7). <

3.2 Proof of Theorem 2

Suppose s divides d and d/s divides ¢ — 1. Let X1, X5, ..., X4 be the partition of variables
for degree-separability. For i =1,2,..., s, take

Yi=X-1)a/s+1 Y X—1)ays42 U U Xiqys

and observe that |Y;| = n/s for all 4. Furthermore, observe that every monomial of a
polynomial P € F,[z] that is degree-separable relative to X1, Xs, ..., Xy has degree exactly
d/s when restricted to the variables of Y;.

Let us extend the construction in Lemma 7 into an s-fold product form over the partition
Y1,Ys, ..., Y. Accordingly, we work with a multivariate polynomial over s indeterminates
Ti,T2,. .., Ts instead of a univariate polynomial (3) over 7. Let a = (a1, az,...,ay,) € Fy and
let us write ay, € IFZS/d for the restriction of a to coordinates in Y;. Set r = (¢ — 1)s/d — 1.
Let us write Fy, (ay;, ;) € Fy for the vector obtained by applying the construction given by
(3) and (6) to the vector ay, and 7;, thereby obtaining a vector of length ns/d indexed by ¥;,
followed by padding with 0-entries outside the indices Y; to obtain a vector of length n. Let
us now define the (vector-valued) multivariate polynomial

F(a77_137_27'~-a7_s) :Fyl(aYuTl) +FY2(CLY277_2)+"'+FY.<(aYSaTS>' (10)

We observe by (3), (6), and (4) that F'(a,71,72,...,7s) ranges over all vectors of the form

r+1 r+1 r+1
aq 1 a2 1 On/s 1
<(T+1+T1> —T1T+,<T+1+T1> —T{+,...,<T+1+T1) —7'1”,

a Jst1 r4+1 a /42 r+1 Qs / r+1
n/s+ n/s+ n/s
(—&—7'2) —7'2T+1,<+7'2) —T2T+1,...,<T+1 +7'2) .

(07% n/s+1 s (07% n/s+2 s (0% s
— n
(5 ) o (B ) St (S em) S)

with a1, a9,...,ay,71,7,...,7s € F;. We define K to be the set of all such vectors. By

. . . g—1 n+ts d n+s
similar reasoning as in the proof of Theorem 1, note that |K| < (r+1 + 1) = (g + 1) .



A. Bjorklund, P. Kaski, and R. Williams

Let t = g — 1 — rd/s and observe that ¢ > 1. From (7) and proceeding analogously as
with the reasoning for (8) in the proof of Theorem 1, we thus have

P(a) =(-1)° Z it rtP(F(a, 71,72,y Ts)) - (12)

X
T1,T2,...,Ts €EFg

Let 81,52, .., Bq-1 be an enumeration of the elements of F,<. For all j = (j1,j2,---,Js) €
{1,2,...,q— 1}* take

gj(a) :F<a’ﬁj1’5j27"'7ﬁjs) and V= (_1)8 §1 ;2 th

The theorem now follows from (12). <

4 Fermionants

This section proves our two main theorems for evaluating fermionants. We start by noting that
the fermionant is self-reducible, a result that easily follows from earlier work by Bjorklund [3],
followed by the proofs of our present main theorems.

4.1 Self-reducibility of the fermionant

This subsection reviews how Bjorklund’s [3] self-reducibility for permanents can be extended
to fermionants. In essence, his methodology can be used to reduce the task of computing one
fermionant of size m x m to the task of computing 2™ *m®W) fermionants of size k x k. We
stress that this subsection is provided for ease of exposition only and no claim of originality
is made.

Let r, t, and a;; for ¢, j € [m] be polynomial indeterminates and let F be the coefficient
field. For S C [m], i,j € S, and £ =0, 1,...,m, consider the inductively-defined family of
polynomials:

1 if ¢ =0andi=j;
W;id(r) =140 if =0 and i # j; (13)
Zues aiuTWgS_LuJ (7") if £>1.

The polynomial WZS:L ; can be viewed as a multivariate generating function for (edge-multisets
of) walks of length ¢ inside S C [m] that start at ¢ and end at j, on the complete graph
of m vertices. The degree of each monomial in the indeterminate r is equal to ¢. The
indeterminates a,, track the edges (u,v) traversed by the walk, with degree indicating the
multiplicity, that is, how many times each edge was traversed.

For S C [m] and i € [m], let us write S>; = {u € S:i <u}. For § C [m], i € S, and

£=0,1,...,m, introduce the following bivariate polynomial
Co(rt)=1-t> W, 7i(r). (14)
=1

This polynomial forms a multivariate generating function for (edge-multisets of) closed walks
inside S and “anchored” at ¢, including the possibility of no walk at all. Here, by “anchored”
at ¢ we mean that the lowest-numbered vertex of the closed walk is i. Let

Cco(rty =[] Cfrn ). (15)

€S
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Let k=0,1,...,m. For i,j € [k] and S C [m] \ [k], introduce the univariate polynomial

m—1
S (r) =ai; + Z Z amquyvavjr. (16)
=0 u,veS
This polynomial is a multivariate generating function for representing the (edge-multisets
of) walk segments that traverse [m] so that the first vertex of the segment is ¢ and the last
vertex of the segment is j; the walk can either proceed directly from ¢ to j, or perform a
walk of length ¢ in S before ending at j. Let us arrange the coefficients a; j( r)into a k X k
matrix A5 (r).
For a polynomial P in the indeterminate r, let us write {rj }P for the coefficient (polyno-
mial) of the monomial 7. By the principle of inclusion and exclusion, we have:

» Theorem 9. For all k =0,1,...,m, we have the polynomial identity

fer, A= {rm %} > (=1)¥1C5(r,t) fer, A%(r). (17)
SClmI\[K]

Observing that the right-hand side of (17) has degree at most m? in r, and using Lagrange
interpolation together with dynamic programming on the recurrences (13), (14), (15), and
(16), we have:

» Theorem 10. Suppose |F| > m? + 1 and let k = 0,1,...,m. Then, there is a value
L = 2"k mOW computable in time polynomial in m, and an algorithm that given as input
Fmxm e F, and an integer j = 1,2,...,L, runs in time m®M)
mOPW arithmetic operations in F, and outputs a matriz flj € FF*k together with a coefficient
oj € F such that:

a matriz A € , executes

L
fer, A = Z o fer, A; . (18)
j=1
In particular, the fermionant fer; A of a given A € F"*™ at 7 € F can be computed in
2mmOW) time and arithmetic operations in F.

4.2 Proof of Theorem 4

Let A € F"*™ be given together with 7 € F;. We seek to compute fer; A and will deploy
the self-reducibility enabled by Theorem 10 towards this end. By assumption we have that
q — 1 has a divisor u with 1.1logg < u < 10logg. Since m = w(log2 qloglog q), for all large
enough m we can let £ be a multiple of u with

0.98y/m/loglogq < k < 0.99y/m/loglogq.

With the objective of applying Theorem 2, take n = k?, d = k, and s = k/u. Observe
that the fermionant (2) of a k x k matrix A at 7 € F, is a degree-separable polynomial P of
degree d over the n variables in A. Furthermore, s divides d and d/s divides g — 1, so the
assumptions of Theorem 2 hold. By Theorem 10 we can evaluate this P at any given point
(that is, for any given k x k matrix) in time 2¥4°() and operations in F,. The tabulation of
P for Theorem 2 thus can be done in time

n+s
2kk0(1) (d 4 1) M(q) S 2kk0(1) (U + 1)0.99m/ loglog g+vm M(q)
S

< 2k;ko(1) (20 IOg q)0.999m/ loglog q M(q)
S 20.9999mM(q) .
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Once the tabulation of P is complete, we can use the algorithms in Theorem 2 to query the
27~ kmO0) fermionants of size k x k required by (18) in time O(n(q — 1)*sM(q)) per query.
Thus, the total time is at most

2m—kqsm0(1)M(q) < 2m—0.98\/m/ log log q2(10g q)0.994/m/loglogq/(1.1log q)mO(l)M(q)
< 2m—0.07\/m/ log log qu(l)M(q) ) <

4.3 Proof of Corollary 5

Here we show how to extend the algorithm to integers, via the Chinese Remainder Theorem.
Let A be an integer matrix of size m x m with entries in [—M, M] for M = O(1). Let 7 be an
integer with |7| = O(m). By Bertrand’s postulate (e.g. [21, §1.1]) for all large enough m we
can select a prime u with 5logm < u < 10logm. Let us study the number of primes p in the
interval Mm? < p < Mm?* such that v divides p—1. Let us write ¢ for Euler’s totient function
and recall the uniform variant of the Prime Number Theorem for arithmetic progressions [21,
Corollary 8.31]. Namely, there is a constant v > 0 such that, for any function h(x) tending
to infinity with 2, and uniformly for z > 3 and 1 < u < (Inx)?/ (h(z)?(Inlnz)®), we have

Yo1= m(HO(W)) . (19)

p<z
p=1 (mod u)

Here the left-hand side sum in (19) is over all primes p at most 2 congruent to 1 modulo u.

Since u is prime, we have ¢(u) = u — 1 = O(logm). Thus from (19) we conclude that for
all large enough m there exist at least 2m distinct primes p such that both Mm? < p < Mm?*
and u divides p — 1. With the objective of satisfying the assumptions of Theorem 4, we
conclude u is in the interval (1.1logp, 10logp) for these 2m primes p. Indeed, since M is
a constant, for all large enough m we have 1.991logm < logp < 4.01logm, which implies
(5/4.01)logp < 5logm < u < 10logm < (10/1.99) log p.

From (2) we observe that | fer, A| < m!-O(m)™M™ < im*™M?™. Applying the Chinese
Remainder Theorem together with Theorem 4 on A and 7 over [F,, for each of the 2m primes

. . S —Q(4/m/ logl
p in turn, we recover fer, A over the integers, in time 2™ ( m/ loglog m). |
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—— Abstract

It has long been known that FEEDBACK VERTEX SET can be solved in time 20108 w)n0(1) on
graphs of treewidth w, but it was only recently that this running time was improved to 20(®) ™)
that is, to single-exponential parameterized by treewidth. We investigate which generalizations
of FEEDBACK VERTEX SET can be solved in a similar running time. Formally, for a class of
graphs P, BOUNDED P-BLOCK VERTEX DELETION asks, given a graph G on n vertices and
positive integers k and d, whether G contains a set S of at most k vertices such that each block
of G — S has at most d vertices and is in P. Assuming that P is recognizable in polynomial time
and satisfies a certain natural hereditary condition, we give a sharp characterization of when
single-exponential parameterized algorithms are possible for fixed values of d:

if P consists only of chordal graphs, then the problem can be solved in time QO(wdQ)no(l),

if P contains a graph with an induced cycle of length ¢ > 4, then the problem is not solvable

in time 20(w10gw) O even for fixed d = ¢, unless the ETH fails.
We also study a similar problem, called BOUNDED P-COMPONENT VERTEX DELETION, where
the target graphs have connected components of small size instead of having blocks of small size,
and present analogous results.
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1 Introduction

Treewidth is a measure of how well a graph accommodates a decomposition into a tree-like
structure. In the field of parameterized complexity, many NP-hard problems have been shown
to have FPT algorithms when parameterized by treewidth; for example, COLORING, VERTEX
COVER, FEEDBACK VERTEX SET, and STEINER TREE. In fact, Courcelle [6] established a
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meta-theorem that every problem definable in MSQOs logic can be solved in linear time on
graphs of bounded treewidth. While Courcelle’s Theorem is a very general tool for obtaining
algorithmic results, for specific problems dynamic programming techniques usually give
algorithms where the running time f (w)no(l) has better dependence on treewidth w. There
is some evidence that careful implementation of dynamic programming (plus maybe some
additional ideas) gives optimal dependence for some problems (see, e.g., [12]).

For FEEDBACK VERTEX SET, standard dynamic programming techniques give 20(w1ogw)
n®M_time algorithms and it was considered plausible that this could be the best possible
running time. Hence it was a remarkable surprise when it turned out that 20(®)nO)
algorithms are also possible for this problem by various techniques: Cygan et al. [7] obtained
a 3“n®M_time randomized algorithm by using the so-called Cut & Count technique, and
Bodlaender et al. [2] showed there is a deterministic 2°(*)n®(M_time algorithm by using a
rank-based approach and the concept of representative sets. This was also later shown in the
more general setting of representative sets in matroids by Fomin et al. [11].

Generalized feedback vertex set problems. We explore the extent to which these results
apply for generalizations of FEEDBACK VERTEX SET. The FEEDBACK VERTEX SET problem
asks for a set .S of at most k vertices such that G — S is acyclic, or in other words, every block
of G — S is a single edge or vertex. We consider generalizations where we allow the blocks to
be some other type of small graph, such as triangles, small cycles, or small cliques; these
generalizations were first studied in [4]. The main result of this paper is that the existence of
single-exponential algorithms is closely linked to whether the small graphs we are allowing
are all chordal or not. Formally, we consider the following problem:

BoUNDED P-BLOCK VERTEX DELETION Parameter: d, w
Input: A graph G of treewidth at most w, and positive integers d and k.

Question: Is there a set S of at most k vertices in G such that each block of G — S has at most
d vertices and is in P?

The result of Bodlaender et al. [2] implies that when d = 2, BOUNDED P-BLOCK VERTEX
DELETION can be solved in time 2°(*)n®M) - Our main question is for which graph classes P
can this problem be solved in time 2°(nPM)  when we regard d as a fixed constant. A
graph is chordal if it has no induced cycles of length at least 4. We show that if P consists
of only chordal graphs, then we can solve this problem in single-exponential time for fixed d.

» Theorem 1. Let P be a class of graphs that is block-hereditary, recognizable in polynomial
time, and consists of only chordal graphs. Then BOUNDED P-BLOCK VERTEX DELETION
can be solved in time 204 ) k2 on graphs with n vertices and treewidth w.

The condition that P is block-hereditary ensures that the class of graphs with blocks
in P is hereditary; a formal definition is given in Section 2. We complement this result by
showing that if P contains a graph that is not chordal, then single-exponential algorithms
are not possible (assuming ETH), even for fixed d. Note that if P is block-hereditary and
contains a graph that is not chordal, then this graph contains a chordless cycle on ¢ > 4
vertices and consequently the cycle graph on ¢ vertices is also in P.

» Theorem 2. If P contains the cycle graph on ¢ > 4 vertices, then BOUNDED P-BLOCK
VERTEX DELETION is not solvable in time 2°(1°8®)nOW) on graphs of treewidth at most w
even for fized d = £, unless the ETH fails.

Baste et al. [1] recently studied the complexity of a similar problem, where the task is to
find a set of vertices whose deletion results in a graph with no minor in a given collection



E. Bonnet, N. Brettell, 0. Kwon, and D. Marx

of graphs F, parameterized by treewidth. When F = {C4}, this is equivalent to BOUNDED
P-BLOCK VERTEX DELETION where P = { K5, K3}, and the complexity they obtain in this
case is consistent with our result.

Whether this lower bound of Theorem 2 is best possible when P contains a cycle on
¢ > 4 vertices remains open. However, as partial evidence towards this, we note that when
P contains all graphs, the result by Baste et al. [1] implies that that BOUNDED P-BLOCK
VERTEX DELETION can be solved in time 20(w108w)nO() when d is fixed, as the minor
obstruction set F consists of all of 2-connected graphs with d + 1 vertices.

Bounded-size components. Using a similar technique, we can obtain analogous results
for a slightly simpler problem, that we call BOUNDED P-COMPONENT VERTEX DELETION,
where we want to remove at most k vertices such that each connected component of the
resulting graph has at most d vertices and belongs to P. If we have only the size constraint
(i.e., P contains every graph), then this problem is known as COMPONENT ORDER CONNEC-
TIVITY [9]. Drange et al. [9] studied the parameterized complexity of a weighted variant of
the COMPONENT ORDER CONNECTIVITY problem; their results imply, in particular, that
COMPONENT ORDER CONNECTIVITY can be solved in time 20*1°8d)y but is W[1]-hard
parameterized by only k or d. The corresponding edge-deletion problem, parameterized by
treewidth, was studied by Enright and Meeks [10].

» Theorem 3. Let P be a class of graphs that is hereditary, recognizable in polynomial time,
and consists of only chordal graphs. Then BOUNDED P-COMPONENT VERTEX DELETION
can be solved in time 20w ) 2 on graphs with n vertices and treewidth w.

» Theorem 4. IfP contains the cycle graph on £ > 4 vertices, then BOUNDED P-COMPONENT
VERTEX DELETION is not solvable in time 2°(®108®)nOM) on graphs of treewidth at most w
even for fired d = £, unless the ETH fails.

The result of Baste et al. [1] implies that when P contains all graphs, BOUNDED P-
COMPONENT VERTEX DELETION can be solved in time 20(w1e®)pO()  When d is not
fixed, one might ask whether BOUNDED P-COMPONENT VERTEX DELETION admits an
f (w)no(l)—time algorithm; that is, an FPT algorithm parameterized only by treewidth. We
provide a negative answer: the problem is W{[1]-hard when P contains all chordal graphs,
even parameterized by both treewidth and k. Furthermore, two stronger lower bound results
hold, under the assumption of the ETH.

» Theorem 5. Let P be a hereditary class containing all chordal graphs. Then BOUNDED
P-COMPONENT VERTEX DELETION is W[1]-hard parameterized by the combined parameter
(w, k). Moreover, unless the ETH fails, (1) this problem has no f(w)n°™)-time algorithm;
and (2) it has no f(k')yn°* /196%) _time algorithm, where k' = w + k.

Techniques. A pair (G, S) consisting of a graph G and a vertex subset S of G will be
called a boundaried graph, and an S-block of G is a block of G containing an edge with
both endpoints in S. The algorithm for BOUNDED P-BLOCK VERTEX DELETION uses
several lemmas on S-blocks of boundaried graphs (G, S), which appear in Section 3. The
key property is the following: (*) when we merge two boundaried graphs (G, S) and (H,.S)
into a graph G’, to decide whether each S-block of G’ is some fixed target graph that is
chordal, it is sufficient to know, for each non-trivial block B of G[S] or H[S], some local
information about B in the S-block containing B in G or H, respectively. We think of target
graphs as labeled graphs where any two vertices in the same block have distinct labels in
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{1,...,d}, and the local information referred to in (*) is the set of labels of neighbors of B
in the S-block containing B. The related result is stated as Proposition 6. This will be used
to determine whether each of the S-blocks of G’ is one of the target graphs in P. After then,
to decide whether G’ is a required graph, it remains to check that the whole graph has no
chordless cycle, since there is a possibility of linking two controlled blocks by a sequence of
uncontrolled blocks in both sides G and H, and thus creating a chordless cycle in G’. This
second part can be dealt with in a similar manner to the single-exponential time algorithm
for FEEDBACK VERTEX SET, using representative-set techniques.

2 Preliminaries

We follow the terminology of Diestel [8], unless otherwise specified. A vertex v of G is a cut
vertez if the deletion of v from G increases the number of connected components. We say G
is biconnected if it is connected and has no cut vertices. Note that every connected graph on
at most two vertices is biconnected. A block of G is a maximal biconnected subgraph of G.
We say G is 2-connected if it is biconnected and |V(G)| > 3. An induced cycle of length at
least four is called a chordless cycle. A graph is chordal if it has no chordless cycles. For a
class of graphs P, a graph is called a P-block graph if each of its blocks is in P. A class C
of graphs is block-hereditary if for every G € C and every biconnected induced subgraph H
of G, H € C. For two integers dq,ds with d; < da, let [dq,ds] be the set of all integers i
with dy < i < da, and for a positive integer, let [d] := [1,d]. For a function f: X — Y and
X' C X, the function f': X' — Y where f/(x) = f(z) for all x € X’ is called the restriction
of f on X', and is denoted f|x/. We also say that f extends f’ to the set X.

Block d-labeling. A block d-labeling of a graph G is a function L : V(G) — [d] such that for
each block B of G, L]y (p) is an injection. If G is equipped with a block d-labeling L, then
it is called a (block) d-labeled graph, and we call L(v) the label of v. Two d-labeled graphs
G and H are label-isomorphic if there is a graph isomorphism from G to H that is label
preserving. For biconnected block d-labeled graphs G and H, H is partially label-isomorphic
to G if H is label-isomorphic to the subgraph of G induced by the vertices with labels in H.

Treewidth. A tree decomposition of a graph G is a pair (T, B) consisting of a tree T and
a family B = {B;}icv (1) of sets By C V(G), called bags, satisfying the following three
conditions: (1) V(G) = U,ev(r) Bt, (2) for every edge uv of G, there exists a node ¢ of T
such that u,v € By, (3) for t1,ta,t3 € V(T), By, N By, C By, whenever t5 is on the path from
t1 to tz in T. The width of a tree decomposition (T, B) is max{|B;| —1:t € V(T)}. The
treewidth of G is the minimum width over all tree decompositions of G. A tree decomposition
(T, B = {Bt}iev(r)) is nice if T is a rooted tree with root node r, and every node t of T" is
one of the following: (1) a leaf node: t is a leaf of T and B; = 0; (2) an introduce node: t
has exactly one child ¢ and By = By U {v} for some v € V(G) \ By; (3) a forget node: ¢ has
exactly one child ¢’ and By = By \ {v} for some v € By; or (4) a join node: t has exactly
two children ¢; and to, and By = By, = By,.

Boundaried graphs. For a graph G and S C V(QG), the pair (G, S) is a boundaried graph.
When G is a d-labeled graph, we simply say that (G, S) is a d-labeled graph. Two d-labeled
graphs (G, S) and (H, S) are said to be compatible it V(G —S)NV(H —S) =0, G[S] = H|S],
and G and H have the same labels on S. For two compatible d-labeled graphs (G, S) and
(H,S), the sum of two graphs (G, S) @ (H, S) is the graph obtained from the disjoint union of
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G and H by identifying each vertex in S and removing an edge if multiple edges appear. We
denote by Lg @ Ly the function from V((G, S) @ (H, S)) to [d] where for v € V(G) UV (H),
(Le®Ly)(v) =Lg(v)ifve V(G) and (Lg ® Ly)(v) = Ly (v) otherwise. For two unlabeled
boundaried graphs, we define the sum in the same way, but ignoring the label condition.

A block of a graph is non-trivial if it has at least two vertices. For a boundaried graph
(G,S), a block B of G is called an S-block if it contains an edge of G[S]. Note that every
non-trivial block of G[S] is contained in a unique S-block of G because two distinct blocks
share at most one vertex. Let (G, S) be a boundaried graph. We define Aux(G, S) as the
bipartite boundaried graph with bipartition (Cy,C2) and boundary Cs such that (1) C; is the
set of components of G, and Cs is the set of components of G[S], (2) for Cy € C; and C; € Ca,
C10y € E(Aux(G,S)) if and only if Cy is contained in Cy. When (G, S) and (H,.S) are two
compatible d-labeled graphs, Aux(G, S) @ Aux(H, S) is well-defined, as G and H have the
same set of components on S. For a set S and a set X’ of subsets of .S, let Inc(S, X') be the
bipartite graph on the bipartition (S, X) where for v € S and X € X, v and X are adjacent
in Inc(S, X) if and only if v € X. For a boundaried graph (G, S), when P is the partition of
the set C of components of G[S] such that two components of G[S] are in the same part if
and only if they are in the same component of G, we denote by Inc(C,P) ~ Aux(G, S).

3 Lemmas about S-blocks

We present several lemmas regarding S-blocks. For a biconnected d-labeled graph @, a

d-labeled graph (G, S) is block-wise partially label-isomorphic to @ if every S-block B of G is

partially label-isomorphic to ). For two compatible d-labeled graphs (G, .S) and (H, S) with

labelings L and Ly respectively, we say (G, S) and (H,S) are block-wise Q-compatible if

1. (G,S) and (H,S) are block-wise partially label-isomorphic to @; and

2. for every non-trivial block B of G[S], letting By and By be the S-blocks of G and H
that contain B, respectively, Lg(Np, (V(B))\ S) N Ly (Np,(V(B))\ S) = 0, and, for
0y € La(Np,(V(B))\ S) and €2 € Ly (Np,(V(B)) \ S), the vertices in @ with labels ¢4
and ¢, are not adjacent.

We describe sufficient conditions for when, given a chordal labeled graph @, the sum
of two given labeled graphs (G, S) and (H, S), each partially label-isomorphic to @, is also
partially label-isomorphic to Q.

» Proposition 6. Let QQ be a biconnected d-labeled chordal graph. Let (G,S) and (H,S)
be two block-wise Q-compatible d-labeled graphs such that Aux(G,S) ® Aux(H,S) has no
cycles. Then (G,S) @ (H,S) is block-wise partially label-isomorphic to Q.

We use the following essential property of chordal graphs.

» Lemma 7. Let F be a connected graph and let @ be a connected chordal graph. Let
w:V(F) = V(Q) be a function such that for every induced path py---py, in F of length at
most two, p(p1), ..., w(pm) are pairwise distinct and p(p1) - - w(pm) is an induced path of Q.
Then p is an injection and preserves the adjacency relation.

» Lemma 8. Let (G, S) and (H, S) be two compatible d-labeled graphs such that Aux(G,S)®
Aux(H,S) has no cycles. (1) If F is an S-block of (G,S) ® (H,S) and uv is an edge in F,
then wv is contained in some S-block of G or H. (2) Suppose each S-block of G or H is
chordal. If F is an S-block of (G,S) ® (H,S) and wvw is an induced path in F such that u
and w are not contained in the same S-block of G or H, then v € S, and there is an induced
path q1qa - - - q¢ from u = qy to w = qp in F — v such that each q; is a neighbor of v.
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Proof of Proposition 6. Let F be an S-block of (G, S)® (H,S). Let Lg and Ly be labelings
of G and H, respectively, and let L := Lg @ Ly. We may assume |V (F)| > 3. By Lemma 8,
every edge of F' is contained in some S-block of G or H. Thus, for uv € E(F), we have L(u) #
L(v) and the vertices with labels L(u) and L(v) are adjacent in Q. Moreover, since (G, S)
and (H, S) are block-wise partially label-isomorphic to @, we have L(V(F')) C Lo(V(Q)).
Let o : V(F) — V(Q) such that for each v € V(F'), L(v) = Lo(u(v)).

To apply Lemma 7, it is sufficient to prove that if uvw is an induced path in F', then
L(u) # L(w) and p(u)p(v)p(w) is an induced path in Q. Since (G,S) and (H,S) are
block-wise partially label-isomorphic to @, if all of u, v, w are contained in an S-block of G
or H, then it follows from the given condition. We may assume u and w are not contained
in the same S-block of G or H. Then by (2) of Lemma 8, v € S, and there is an induced
path q1q2 -+ - q¢ from u = g1 to w = q¢ in F' — v such that each ¢; is a neighbor of v.

We show that for i € {1,...,¢ — 2}, L(q;), L(qi+1), L(¢i+2) are pairwise distinct, and
1(q:) p1(qix1)14(gi+2) is an induced path of Q. If all of ¢;, ¢;+1,gi+2 are contained in G or H,
then they are contained in the same S-block as v, and the claim follows. We may assume g;
and ¢; 492 are in distinct graphs of G — S and H — S. Then the S-block containing ¢;, g;+1,v
and the S-block containing ¢;41, ¢;+2,v share the edge ¢;+1v. Since (G, S) and (H,S) are
block-wise Q-compatible, L(q;) # L(g;+2) and p(qg;) is not adjacent to p(g;12) in Q.

We verify that u(q1)u(g2) - - pu(ge) is an induced path of Q. Suppose this is false, and
choose 41,12 € {1,2,...,¢} with ig — 47 > 1 and minimum ¢s — 47 such that u(g;,) is adjacent
to u(gi,) in Q. By minimality, p(g;,) - p(gi,—1) and p(qi,+1) - - pu(gi,) are induced paths
and have length at least 2. Thus u(g;,) - 1(g,) is an induced cycle of length at least 4,
contradicting the assumption that @ is chordal. Therefore, p(q1)p(g2) - - - p(ge) is an induced
path of @, and, in particular, L(u) # L(w) and p(u) and p(w) are not adjacent in @, as
required. By Lemma 7, we conclude that F' is partially label-isomorphic to Q. |

Using Lemma 8, we can also prove the following.

» Lemma 9. Let A be a set, let (G, S) and (H,S) be two compatible d-labeled graphs, and let
B be the set of non-trivial blocks in G[S]. Suppose g : B — A is a function where each S-block
of G or H is chordal, Aux(G,S) ® Aux(H,S) has no cycles, and for every B1,Bs € B
where By and By are contained in an S-block of G or H, g(B1) = g(Ba). If F' is an S-block
of (G,S) @ (H,S) and By, Bs € B where V(B1),V(Bs) C V(F), then g(B1) = g(Bs).

» Proposition 10. Let (G,S) and (H,S) be two compatible d-labeled graphs such that
every S-block of (G,S) @ (H,S) is chordal. Then (G,S) ® (H,S) is chordal if and only if
Aux(G,S) ® Aux(H, S) has no cycles.

Proof. We briefly sketch the proof of one direction. Suppose that Aux(G, S) & Aux(H, S)
has a cycle C; — A1 — Cy — Ay — -+ — Cp, — A, — C1 where C1,...,C, are components
of G[S]. For each i € {1,...,n}, let P; be the shortest path from C; to C;;1 in A;, and
let v;,w; be the end vertices of P; where v; € V(C;) and w; € V(C;11). Let Q; be the
shortest path from w; to v;41 in C;1. We may assume n > 3; it is easy when n = 2. Then
vP—Q1—Py—Qa—---— P, —Quuy isacyclein (G,S) ® (H, S), but is not necessarily a
chordless cycle. We claim that it contains a chordless cycle. Let x be the vertex following
ve in P,, and let y be the vertex preceding w, in P,. Take a shortest path P from x
to y in the path y — @, — PL — Q1 — x. Clearly P has length at least 2, as = and y are
contained in distinct connected components of G or H. Also, every internal vertex of P has
no neighbors in the other path of the cycle vi Py — @1 — Po — Q2 — - - - — P, — Q,,v1 between
z and y. So, if we take a shortest path P’ from z to y along the other part of the cycle
nPr—Q1— Py — Qg —---— P, — Qnv1, then PU P’ is a chordless cycle. <
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4 Bounded P-Block Vertex Deletion

We prove Theorem 1. We first focus on S-blocks of boundaried graphs (G, S). For each
non-trivial block of G[S], we guess its final shape, as a d-labeled biconnected graph, and

store the labelings of the vertices and their neighbors in the S-block of G containing it.

Collectively, we call this information a characteristic of (G, S). Using characteristics, we
control S-blocks in (G, S) @ (H, S), where (H, S) is a compatible d-labeled graph. By the
previous step, we may assume that every S-block of (G,S) @ (H,S) is in P and has at most
d vertices. Note that (G, S) @ (H, S) still may have a chordless cycle. By Proposition 10, if
we assume that every S-block of (G, S) @ (H,S) is in P, then (G, S) & (H, S) is chordal if
and only if Aux(G,S) ® Aux(H,S) has no cycles. So, instead of keeping Aux(G, S), we
store the corresponding partition of the set of components of G[S].

For convenience, we fix an integer d > 2 and a class P of graphs that is block-hereditary,
recognizable in polynomial time, and consists of only chordal graphs. Let Uy be the set
of all d-labeled biconnected P-block graphs, where each H in U, has labeling Ly. For a

boundaried graph (G, S), we denote by Block(G, S) the set of all non-trivial blocks in G[S].

For a d-labeled graph (G, .S) with a labeling L, a characteristic of (G, S) is a pair (g, h)
of functions g : Block(G,S) — Uy and h : Block(G, S) — 29 satisfying the following, for
each B € Block(G, S) and the unique S-block H of G containing B,

1. (label-isomorphic condition) H is partially label-isomorphic to g(B);

2. (coincidence condition) for every B’ € Block(G, S) with V(B') C V(H), g(B’) = g(B);

3. (neighborhood condition) h(B) = L(Ng(V(B)) \ S); and

4. (complete condition) for every w where w € V(H)\ S or {w} = V(H)NV(C) for some
component C' of G[S], H[Ny[w]] is label-isomorphic to g(B)[Ny(p)[2]] where z is the

vertex in g(B) with label L(w).

We say that the sum (G, S) @ (H, S) respects (g, h) if for each B € Block(G, S), the S-block
of (G,S) @ (H,S) containing B is label-isomorphic to g(B). The following is the main
combinatorial result regarding characteristics.

» Theorem 11. Let (G4,5), (G2, S), (H,S) be d-labeled P-block graphs such that each
(G;,S) is compatible with (H,S), (G1,S) and (G2, S) have the same characteristic (g,h),
and Aux(G2,S) ® Aux(H, S) has no cycles. If (G1,S) @ (H, S) is a d-labeled P-block graph
that respects (g, h), then (Ga,S) ® (H,S) is a d-labeled P-block graph that respects (g,h).

Proof. We show (G2, S) @ (H,S) respects (g, h). Choose a non-trivial block B of G2[S5], let
Q = g(B), let F' be the S-block of (G2, S) & (H, S) containing B, Lr be the function from
V(F) to [d] that sends each vertex to its label from G2 or H, and L¢ be the labeling of Q.
We claim that F is label-isomorphic to Q. We regard F as the sum of (FN G2, V(F)N.S)
and (FNH,V(F)NS) and verify the conditions of Proposition 6. Using Lemma 9, for every
B’ € Block(G», S) with V(B') C V(F), g(B’') = Q. We also observe that Aux(FNGa, Sp)®
Aux(F N H,SF) has no cycles as Aux(Gs, S) @ Aux(H, S) has no cycles. Since (g,h) is
a characteristic of (G2, S) and (G1,S) @ (H,S) respects (g, h), we can confirm that both
F NG and FN H are block-wise partially label-isomorphic to Q). The second condition of
being block-wise @Q-compatible follows from the fact that (G1,.5) and (Ga, S) have the same
characteristic (g, h). Thus, F N Gy and F N H are block-wise Q-compatible, and this implies
that F' is partially label-isomorphic to @@ by Proposition 6. By the ‘complete condition’ of a
characteristic, we can show that Lo(V(Q)) C Lrp(V(F)), so F is label-isomorphic to Q.
Lastly, we can confirm that (G2, S) @ (H,S) is a d-labeled P-block graph by showing
that every non S-block of (Gs,S) @ (H,S) is fully contained in Gy or H. We can argue this
using the fact that (Ga,S) @ (H,S) is chordal, which is implied by Proposition 10. <
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Proof of Theorem 1. We obtain a nice tree decomposition (T, B = {B;};cv (1)) of G with
root node r and width at most 5w + 4 in time O(c¥ - n) for some constant ¢ using the
approximation algorithm by Bodlaender et al. [3]. For ¢ € V(T'), let G be the subgraph of
G induced by the union of all bags By where ¢’ is a descendant of t. Let Comp(¢, X) be the
set of all components of G[B; \ X], and Part(¢, X) be the set of all partitions of Comp(t, X).

For each node t of T, X C By, and a function L : B;\ X — [d], we define F(¢, X, L) as the
set of all pairs (g, h) consisting of functions g : Block(t, X) — Uy and h : Block(t, X) — 2l
We say that (g, h) is valid, if (1) L is a d-labeling of G[B,\ X], (2) for each B € Block(t, X), B
is partially label-isomorphic to g(B), and (3) for each B € Block(t, X), L(V(B)) N h(B) = 0.
For i € {0,1,...,k} and (g,h) € F(¢t,X,L), let c[t,(X,L,i,(g,h))] be the family of all
partitions X' € Part(¢, X) satisfying the following property: there exist S C V(G;) \ By with
|S| = i and a d-labeling L' of G; — (X US) where (1) L = L'|,\ x, (2) G: — (X US) is a P-block
graph, (3) (g, h) is a characteristic of (G — (X U S), B; \ X), and (4) Inc(Comp(t, X), X) ~
Aux(Gy — (X US),B; \ X). Such a pair (S, L) is a partial solution with respect to X.

The main idea is that instead of fully computing c[t, M| for M = (X, L,i,(g,h)), we
recursively enumerate a set r[t, M] that may represent partial solutions for ¢[t, M]. Formally,
for a subset r[t, M| C c[t, M], we denote r[t, M| = c[t, M] if for every X € ¢[t, M] and a
partial solution (S, L") with respect to X and Syt C V(G) \ V(G;) where G — (SU X U S,ut)
is a d-labeled P-block graph respecting (g, h), there exists X; € r[t, M] and a partial solution
(S’, L") with respect to X; such that G—(S"UXUS,,+) is a d-labeled P-block graph respecting
(g9, h). By the definition of r[¢t, M], the problem is a YEs-instance if and only if there exists
(X, L,i,(g,h)) for the root node r with | X|+ 4 < k such that r[r, (X, L,1, (g, h)] # 0.

Whenever we update r[t, M], we confirm that |r[t, M]| < w-2%~!. This will be the
application of the representative set technique developed by Bodlaender et al. [2]. For a
set S and a set A of partitions of S, a subset A’ of A is called a representative set if for
every X € A and every partition ) of S where Inc(S, X1 UY) has no cycles, there exists a
partition X» € A’ such that Inc(S, X2 UY) has no cycles.

» Proposition 12. Given a family A of partitions of a set S, one can output a representative
set of A of size at most |S| - 215171 in time AC(20USD)

We sketch how to update families 7[¢, M] when ¢ is an introduce node with child node ¢'. We
may assume (g, h) is valid, otherwise c[t, M] = 0.

Let v be the vertex in By \ By. If v € X, then G; — X = Gy — (X \ {v}) and
B\ X = By \ (X \ {v}). Thus, we can set r[t, M] :=r[t', (X \ {v}, L,4, (g, h))]. We assume
v ¢ X, and let Lyes := L|g,,\x. For (g,h) € F(t,X,L), a pair (¢,h') € F(t', X, Lyes)
is called the restriction of (g,h) if (1) for By € Block(t, X) and By € Block(t, X) with
V(B1) CV(Bs), ¢'(B1) = g(B2), and if v € V(Bz), then every vertex in ¢'(B;) with label
in A/(By) is not adjacent to the vertex in ¢'(Bi) with label L(v), (2) for B; € Block(t, X)
and By € Block(t, X) with V(B;1) C V(Bz2) and v ¢ V(Bz), h'(B1) = h(Bs), and (3) for
B; € Block(t, X) containing v, h(B2) = Ug, epiockt,x),v(B1)Cv (B) MB1)-

» Claim 13. For X € Part(t,X), X € c[t, M] if and only if there exist a restriction (¢',h’)
of (g,h) and Y € c[t', (X, Lyes, i, (¢9',h'))] such that (1) v has neighbors on at most one
component in each part of ¥, and (2) if v has at least one neighbor in G[B; \ X]|, then X is
the partition obtained from Y by, for parts Y1,...,Y,, of Y containing components having a

neighbor of v, removing all of Y1,...,Y,, and adding a part that consists of all components
of G|B: \ X| not contained in parts of Y\ {Y1,...,Ym}; and otherwise, X =Y U {{v}}.
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We update r[t, M] as follows. Set K := (). For a pair of functions (¢’,h’), we test
whether (¢', ') is a restriction of (g,h). Assume (¢’,h’) is a restriction of (g, h). For each
Y ert (X, Lyes,i,(g',h'))], we check the two conditions for (¢’,h') and Y in Claim 13, and
if they are satisfied, then add the set X’ described in Claim 13 to IC; otherwise, skip it. The
whole procedure can be done in time 20(wd®) - After we do this for all possible candidates, we
take a representative set of K using Proposition 12, and assign the resulting set to r[t, M].

We claim that r[t, M] = c[t, M]. Let Gy := G — (V(Gy) \ By), X € c[t, M], and (S, L)
be a partial solution with respect to X, and suppose there exists Sout € V(G) \ V(G}) where
(G — (X US), B\ X)® (Gour — (X U Sout), B: \ X) is a d-labeled P-block graph respecting
(g9,h). Every (By \ X)-block of G —(SUXUS,,+) is chordal as such a block is a (B; \ X )-block
of G—(SUXUS,ut). Since G— (SUX US,yt) is chordal, by Proposition 10, Aux(Gy — (X U

S), By \ X) ® Aux(Gout — (X USout), By \ X) has no cycles. Let My.cs :== (X, Lyes, 4, (¢', 1)).

As r[t', Myes] = c[t’, Myes|, there exist Y € r[t’, M,.s] and a partial solution (S’, L") with

respect to Y such that Inc(Comp(¢', X), V) ~ Aux(Gy — (X US’), By \ X) has no cycles.

By Theorem 11, G — (5" U X U S,,;) is a d-labeled P-block graph respecting (g, h).

By the procedure, X; where Inc(Comp(t, X), X1) ~ Aux(G; — (X US"), B, \ X) is added
to K. And there exist Xy € r[t, M] and a partial solution (S, L") with respect to X2 such
that G — (S” U X U Soyue) is a d-labeled P-block graph. Thus, r[t, M] = c[t, M].

Total running time. We denote |V (G)| by n. Note that the number of nodes in T" is O(wn).

For fixed t € V(T), there are at most 2“1 possible choices for X C By, and for fixed
X C By, there are at most d“*! possible functions L. Furthermore, the size of F(t, X, L) is
bounded by 2°(w4*) . Thus, there are O(n -k -max(2,d)**?. 20(wd*)) tables. In summary,
the algorithm runs in time O(n - k - max(2, d)*“*!) - 20(wd) . | — 90(wd*) 2y |

5 Lower bound for fixed d

We showed that BOUNDED P-COMPONENT VERTEX DELETION and BOUNDED P-BLOCK
VERTEX DELETION admit single-exponential time algorithms parameterized by treewidth,
whenever P is a class of chordal graphs. We now establish that, assuming the ETH, this is
no longer the case when P contains a graph that is not chordal.

In the k X k INDEPENDENT SET problem, one is given a graph G = ([k] x [k], E) over the
k? vertices of a k-by-k grid. We denote by (i, j) with i,j € [k] the vertex of G in the i-th row
and j-th column. The goal is to find an independent set of size k in G that contains exactly
one vertex in each row. The PERMUTATION k X k INDEPENDENT SET problem is similar
but with the additional constraint that the independent set should also contain exactly one
vertex per column.

» Theorem 14. If P contains the cycle graph on £ > 4 wvertices, then BOUNDED P-
COMPONENT VERTEX DELETION, or BOUNDED P-BLOCK VERTEX DELETION, is not
solvable in time 20018 W)pO) on graphs of treewidth at most w even for fized d = £, unless
the ETH fails.

Proof. To prove this theorem, we reduce from PERMUTATION k X k INDEPENDENT SET which,
like PERMUTATION k X k CLIQUE, cannot be solved in time 90(klog k) LO(1) ynless the ETH
fails [13]. Let G = ([k] x [k], E)) be an instance of PERMUTATION k X k INDEPENDENT SET.
We assume that Vh, 4, j € [k] with h # i, (i,7)(h,j) € E. Adding these edges does not change
the YES- and No-instances, but has the virtue of making PERMUTATION k x k INDEPENDENT
SET equivalent to k x k INDEPENDENT SET. We also assume that Vh, i, 5 € [k], (i,7)(i,h) ¢ E,
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Figure 1 A high-level schematic of G’ and G”. The H®s only differ by a constant number of
edges (in red/light gray) that encode their edge e; of G.

since at most one of (i, 5) and (i, h) can be in a given solution. Let m := |E| = O(k*) be the
number of edges of G.

Outline. We build two graphs G’ = (V' E’) and G = (V/, E”) with treewidth at most

(3d+4)k+6d—5 = O(k), and ((3d —2)k? + 2k)m vertices, where the following are equivalent:

1. G has an independent set of size k with one vertex per row of G.

2. There is a set S C V' of size at most (3d — 2)k(k — 1)m such that each connected
component of G’ — S has size at most d and belongs to P.

3. There is a set S C V' of size at most (3d — 2)k(k — 1)m such that each block of G’ — S
has size at most d and belongs to P.

The overall construction of G’ and G” will display m almost copies of the encoding of an

edgeless G arranged in a cycle. Each copy embeds one distinct edge of G. The point of

having the information of G distilled edge by edge in G’ and G” is to control the treewidth.

This general idea originates from a paper of Lokshtanov et al. [12].

Construction. We first describe G’. As a slight abuse of notation, a gadget (and, more
generally, a subpart of the construction) may refer to either a subset of vertices or to an
induced subgraph. For each e = (i¢, j¢) (i, j¢) € E, we detail the internal construction of
H¢ and S¢ of Figure 1 and how they are linked to one another. Each vertex v = (i, j) of G
is represented by a gadget H¢(v) on 3d — 2 vertices in G’: a path on d — 3 vertices whose
endpoints are v¢ ; and v¢, an isolated vertex v$, and two disjoint cycles of length d. Observe
that if d = 4, then v° , and v®, is the same vertex. We add all the edges between H°({{, j))
and H¢((i,j")) for 4, 4,7 € [k] with j # 7. We also add all the edges between H€((i¢, j¢))
and He((i'¢, j'¢)). We call H¢ the graph induced by the union of every H¢(v), for v € V(G).
The row/column selector gadget S° consists of a set S¢ of k vertices with one vertex r¢ for
each row index i € [k], and a set S of k vertices with one vertex ¢ for each column index
j € [k]. The gadget S forms an independent set of size 2k. We arbitrarily number the edges
of G: ey,es,...,ey. Foreach h € [m| and v = (i,j) € V, we link v, to r;" (the row index
of v) and v} to ¢§* (the column index of v). We also link, for every h € [m —1], v{" to r;"*!

i
and to ¢;"**, and v§™ to r{* and to ¢}'. That concludes the construction (see Figure 2). To

J

obtain G” from G, we add the edges cj" ¢}, for every h € [m] and j € [k —1]. We ask for a

deletion set S of size s := (3d — 2)k(k — 1)m.

Treewidth of G’ and G”. For any edge e € E, we set H(e) := He({(i¢, j¢)) U He({(i'¢, j'¢)).
For any i € [m — 1], we set S; := S U §¢ U S+, and S,, := S U S°=. For each e € F,
and ¢ € [k], H¢(i) denotes the union of the H¢(v) for all vertices v of the i-th row. Here is a
path decomposition of G’ and G”':

Sy UH(e))UH (1) = S;UH(e1) UH(2) — ... = S UH(e;) UH® (k) —

Sm UH(em)UH (1) = Sp UH(ep) UH™(2) = ... = Sy U H(ep) U Hm ().
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row index (O OF ( column index

Set Se

Figure 2 The overall picture of G’ and G” with k = 3. Dotted edges are subdivided d — 4 times;
if d = 4, they are simply edges. Dashed edges are subdivided d — 5 times; if d = 4, the two endpoints
are in fact a single vertex. Edges between two boxes link each vertex of one box to each vertex of
the other box. The gray edges in the column selectors S¢" are only present in G”.

As, for any h € [m), |Sp| < 6k, |H(en)| = 2(3d — 2), and |H®" (i)
the size of a bag is bounded by maxy, ] ic[x] |SLUH (e, )UH®" (4)]|
(3d+ 4)k + 6d — 4.

< (3d — 2)k for any i € [k],
< 6k+2(3d—2)+(3d—2)k =

Correctness. If there is an independent set I of size k in GG, a solution to a BOUNDED
P-COMPONENT VERTEX DELETION or BOUNDED P-BLOCK VERTEX DELETION instance
can be obtained by deleting from each H® every H¢(v) such that v ¢ I.

We show that 2 = 1 and 3 = 1. We assume that there is a set S C V' of size at
most s such that all the blocks of G” — S (resp. G’ — S) have size at most d. We note
that this corresponds to assuming condition 3 (resp. a weaker assumption than condition 2)
holds. We show that there are at most 3d — 2 vertices of H¢(4) remaining in G” — S (or
G’ — S). Assume, for the sake of contradiction, that H¢(i) — S contains at least 3d — 1
vertices. Observe that H(i) — S cannot contain at least one vertex from three distinct
H¢(u), H¢(v), and H¢(w) (with w, v and w in the i-th row of G), since then H®(i) — S
would be 2-connected (and of size > d). For the same reason, H¢(i) — S cannot contain
at least two vertices in H¢(u) and at least two vertices in another H¢(v). Therefore, the
only way of fitting 3d — 1 vertices in H¢(¢) — S is the 3d — 2 vertices of an H®(u) plus one
vertex from some other H¢(v). But then, this vertex of H¢(v) would form, together with
one Cy of H¢(u), a 2-connected subgraph of G’ — S (or G’ — S) of size d 4+ 1. Now, we know
that |[H(:) NS| = (3d — 2)(k — 1). As there are precisely mk sets H¢(i) in G’ (and they are
disjoint), it further holds that |[H¢(:) N S| = (3d — 2)(k — 1), since otherwise S would contain
strictly more than s = (3d — 2)k(k — 1)m vertices. Thus, H¢(i) — S contains exactly 3d — 2
vertices. By the previous remarks, H¢(i) — S can only consist of the 3d — 2 vertices of the
same H¢(u) or 3d — 3 vertices of H¢(u) plus one vertex from another H¢(v). In fact, the
latter case is not possible, since the vertex of H¢(v) would form, with at least one remaining
Cy of the 3d — 3 vertices of H¢(u), a 2-connected subgraph of G” — S (or G’ — S) of size
d + 1. This is why we needed two disjoint Cys in the construction instead of just one. So far,
we have proved that, assuming condition 2 or condition 3 holds, for any e € E and i € [k],
He¢(i)NS = H¢(v; ) for some vertex v; . of the i-th row of G, and for any e € E, S°NS = (.
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In what follows, we show that v; . does not depend on e. Formally, we want to show that
there is a v; such that, for any e € E, v; . = v;. Observe that it is enough to derive that, for
any h € [m], Vie, = Vie,,, (With e,41 =e€1). Let j € [k] (resp. j' € [k]) be the column of
Ve, (T€SP. Vie,,,) in G. We first assume condition 2 holds. For any h € [m], v; ., <", i
c;jzﬂ7 c§h+1 plus the path Pqi,}ff,jﬂ (between v;, ., " and v, ., ") induces a path (in
particular, a connected subgraph) of size d + 1 in G’ — S, unless j = j' (with e, 11 = e1).
Therefore, j = j'. As v;, and v;,,, have the same column j and the same row i in G,
Ve, = Vieny,- Showing the same property under 3 is done similarly. We can now safely

define v; := v; . and conclude by proving that {vy,vs,..., v} is a clique. |
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—— Abstract

We study the following geometric separation problem: Given a set R of red points and a set B
of blue points in the plane, find a minimum-size set of lines that separate R from B. We show
that, in its full generality, parameterized by the number of lines k in the solution, the problem is
unlikely to be solvable significantly faster than the brute-force n®*)-time algorithm, where n is
the total number of points. Indeed, we show that an algorithm running in time f(k)no(k/log k),
for any computable function f, would disprove ETH. Our reduction crucially relies on selecting
lines from a set with a large number of different slopes (i.e., this number is not a function of k).

Conjecturing that the problem variant where the lines are required to be axis-parallel is FPT
in the number of lines, we show the following preliminary result. Separating R from B with a
minimum-size set of axis-parallel lines is FPT in the size of either set, and can be solved in time
O*(9/B!) (assuming that B is the smallest set).
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Keywords and phrases red-blue points separation, geometric problem, W[1]-hardness, FPT al-
gorithm, ETH-based lower bound
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1 Introduction

We study the parameterized complexity of the following RED-BLUE SEPARATION problem:
Given a set R of red points and a set B of blue points in the plane and a positive integer
k, find a set of at most k lines that together separate R from B (or report that such a set
does not exist). Separation here means that each cell in the arrangement induced by the
lines in the solution is either monochromatic, i.e., contains points of one color only, or empty.
Equivalently, R is separated from B if every straight-line segment with one endpoint in R
and the other one in B is intersected by at least one line in the solution. Note here that we
opt for strict separation that is, no point in R U B is on a separating line. Let n := [R U B|.

The variant where the separating lines sought must be axis-parallel will be simply referred
to as AXIS-PARALLEL RED-BLUE SEPARATION.
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Apart from being interesting in its own right, RED-BLUE SEPARATION is also directly
motivated by the problem of univariate discretization of continuous variables in the context of
machine learning [4, 8]. For example, its two-dimensional version models problem instances
with decision tables of two real-valued attributes and a binary decision function. The lines
to be found represent cut points determining a partition of the values into intervals and one
opts for a minimum-size set of cuts that is consistent with the given decision table. The
problem is also known as minimum linear classification; see [9] for an application in signal
processing. For the case where £k = 1 and k£ = 2, RED-BLUE SEPARATION is solvable in
O(n) and O(nlogn) time respectively [7]. When k is part of the input, it is known to be
NP-hard [10] and APX-hard [2] even for the axis-parallel variant. The latter also admits a
2-approximation [2].

Results. We first show that RED-BLUE SEPARATION is W[1]-hard in the solution size k and
that it cannot be solved in f(k)n°(k/1°8%) time (for any computable function f) unless ETH
fails. Our reduction is from STRUCTURED 2-TRACK HITTING SET, see Section 2, which
has been recently used for showing hardness for another classical geometric optimization
problem [1]. Then, in Section 3, we show that AX1S-PARALLEL RED-BLUE SEPARATION is
FPT in the size of either of R and B. Our algorithm is simple and is based on reducing the
problem to 91812 instances of 2-SAT (assuming, w.l.o.g., that B is the smallest set).

Related work. The following monochromatic points separation problem has also been
studied: Given a set of points in the plane, find a smallest set of lines that separates every
point from every other point in the set (i.e., each cell in the induced arrangement must
contain at most one point). It has been shown to be NP-hard [5], APX-hard [2] and, in the
axis-parallel case, to admit a 2-approximation [2]. Very recently, the problem has been also
shown to admit an OPT log OPT-approximation [6]. Note here that it is trivially FPT in
the number of lines, as the number of cells in the arrangement of k lines is at most O (k?).
For results on several other related separation problems, see [7, 3].

2 Parameterized hardness for arbitrary slopes

We show that RED-BLUE SEPARATION is unlikely to be FPT with respect to the number
of lines k and establish that, unless the ETH fails, the n®*)-time brute-force algorithm is
almost optimal. We reduce from STRUCTURED 2-TRACK HITTING SET [1], see below.

For positive integers x, y, let [z] be the set of integers between 1 and z, and [z, y] the set
of integers between x and y. For a totally ordered (finite) set X, an X -interval is any subset
of X of consecutive elements. In the 2-TRACK HITTING SET problem, the input consists
of an integer k, two totally ordered ground sets A and B of the same cardinality, and two
sets S4 of A-intervals and Sp of B-intervals. The elements of A and B are in one-to-one
correspondence ¢ : A — B and each pair (a, ¢(a)) is called a 2-element. The goal is to decide
if there is a set S of k 2-elements such that the first projection of S is a hitting set of Sa,
and the second projection of S is a hitting set of Sg. We will refer to the interval systems
(A,S84) and (B, Sg) as track A and track B.

STRUCTURED 2-TRACK HITTING SET (S2-THS for short) is the same problem with
color classes over the 2-elements and a restriction on the one-to-one mapping ¢. Given two
integers k and t, A is partitioned into (C1,Cy,...,Cy) where C; = {a{, ag, el a{} for each
j € [k]. Ais ordered: aj,a3,...,af,a3,a3,...,47,...,af,a5,... af. We define C} := ¢(C;)
and b} := ¢(al) for all i € [t] and j € [k]. We now impose that ¢ is such that, for each
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J € [k], the set C’ is a B-interval. That is, B is ordered: C;(l),C;(Q), .. .76’(’,(@ for some
permutation on [k], ¢ € &y. For each j € [k], the order of the elements within C} can be
described by a permutation o; € &; such that the ordering of C'J’- is: bij(l), v '
In what follows, it will be convenient to see an instance of S2-THS as a tuple Z = (k €
N,t e N,0 € Gk,01 € S,...,01 € 6;,854,SB), where S4 is a set of A-intervals and Sp is a
set of B-intervals. We denote by [a, ag,/} (vesp. [b, b{;]) all the elements a € A (resp. b € B)
such that ag <aa <y ag,, (resp. bg <pb<p bf;)

If one deconstructs S2-THS, one finds intervals, a permutation of the color classes
o, and k permutations o;’s of the elements within the classes. Intervals, thanks to their
geometric nature, can be realized by two red points which have to be separated from a
diagonal of blue points (see Figure 2), while permutation o, being on k elements, can be
designed straightforwardly without blowing-up the size of the solution (see Figure 3). For
these gadgets, we would like to force the chosen lines to be axis-parallel. We obtain this by
surrounding them with long alleys made off long red paths parallel and next to long blue
paths (see Figure 1). The main challenge is to get the permutations ¢;’s on t elements. To
attain this, we match a selected line L; (corresponding to an element of index i € [t]) to a
specific angle «;, which leads to the intended position of the element of index o;(I) = i, for
some [ € [t] (see Figure 4). Note that the depicted gadget actually links the element of index
i to elements equal to or smaller than the element indexed at ¢;(l). By combining two of
these gadgets we can easily obtain only the intended position (see Figure 5).

» Theorem 1. RED-BLUE SEPARATION is Wl]-hard w.r.t. the number of lines k, and
unless ETH fails, cannot be solved in time f(k)n°*/1°8%) for any computable function f.

Proof. We reduce from S2-THS, which is W/[1]-hard and has the above lower bound under
ETH [1]. Let Z = (k € N,t € N,o € 6,01 € &4,...,0 € 64,84,Sp) be an instance of
S2-THS. We build an instance J = (R, B, 6k + 14) of RED-BLUE SEPARATION such that 7
is a YES-instance for S2-THS if and only if R and B can be separated with 6k + 14 lines.

The points in R and B will have rational coordinates. More precisely, most points
will be pinned to a z-by-z grid where z is polynomial in the size of Z. The rest will have
rational coordinates with nominator and denominator polynomial in z. Let T be the z-by-z
grid corresponding to the set of points with coordinates in [z] x [z]. We call horizontally
(resp. vertically) consecutive points a set of points of T’ with coordinates (a,y), (a+1,y), ... (b—
1,y), (b,y) for a,b,y € [z] and a < b (vesp. (z,a), (x,a+1),...(z,b—1),(x,b) for a,b,z € 2]
and a < b). We denote those points by C(a — b,y) (resp. C(x,a — b)).

Long alley gadgets. In the gadgets encoding the intervals (see next paragraph), we will
need to restrict the selected separating lines to be almost horizontal or almost vertical. To
enforce that, we use the long alley gadgets. A horizontal long alley gadget is made of £
horizontally consecutive red points C(a — a + ¢ — 1,y) and £ horizontally consecutive blue
points C(a = a+ ¢ — 1,y') with a,a+ ¢ — 1,y # ¢’ € [z] (see Figure 1a). A wvertical long
alley is defined analogously. Long alleys are called so because ¢ > |y — y'| thus, separating
the red points from the blue points of a horizontal (resp. vertical) long alley with a budget
of only one line, requires the line to be almost horizontal (resp. vertical). The use of the
long alleys will be the following. Let G be a gadget for which we wish the separating lines to
be almost horizontal or vertical. Say, G occupies a g-by-g subgrid of I' (with ¢ < z). We
place four long alley gadgets to the left, top, right, and bottom of G: horizontal ones to
the left and right, vertical ones to the top and bottom (as depicted in Figure 1c). The left
horizontal (resp. bottom vertical) long alley starts at the x-coordinate (resp. y coordinate)

] V)
o527 Vo (1)
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(a) A horizontal long alley. Separating this

subset of points with one line requires the line

to be almost horizontal.

]
S|

(b) Zoom in gadget G. The horizontal (resp.
vertical) lines are entering the gadget to the
left (resp. at the top) and eziting it to the
right (resp. at the bottom) with almost
the same y-coordinates (resp. z-coordinates).

(c) We put four long alleys to the left, top,
right, and bottom of gadget G where we want

Possible lines are thin dotted while an actual the selected lines to be almost axis parallel.

choice of two lines is shown in bold.

Figure 1 The long alley gadget and its use in combination with another gadget.

of 1, whereas the right horizontal (resp. top vertical) long alley ends at the z-coordinate
(resp. y coordinate) of z; see Figure 5, where the long alleys are depicted by thin rectangles.

Note that we will not surround each and every gadget of the construction by four long
alleys. At some places, it will indeed be crucial that the lines can have arbitrary slopes.

Interval gadgets and encoding track A. The elements of A are represented by a diagonal
of kt—1 blue points. More precisely, we add the points (g, y3'), (x4 +4, ygt +4), (x5 +8, yi +
8),..., (g 44kt — 8, yi' + 4kt — 8) to B for some offset x4, y¢' € [2] that we will specify later.
We think those points as going from the first (2, yg') to the last (z§ + 4kt — 8, yg' 4 4kt — 8).
An almost horizontal (resp. vertical) line just below (resp. just to the left of) the s-th blue
point of this diagonal translates as selecting the s-th element of A in the order fixed by <4.
The almost horizontal (resp. vertical) line just above (resp. just to the right of) the last blue
point corresponds to selecting the kt-th, i.e., last, element of A.

For each interval [a'g,a'z,/] in S4 (for some 4,i" € [k], 5,j' € [t]), that is, the interval
between the s := ((j — 1)t + ¢)-th and the s’ := ((§/ — 1)t + ¢')-th elements of A, we add two
red points: one at (x§ + 4s — 7,y + 4s’ — 5) and one at (zf + 4s’ —5,y8 +4s — 7) (see
Figure 2a for one interval gadget and Figure 2b for track A). Let R([a/, af// ]) be this pair of
red points. Informally, one red point has its projection along the z-axis just to the left of
the s-th blue point and its projection along the y-axis just above the s’-th blue point; the
other one has its projection along the z-axis just to the right of the s’-th blue point and its
projection along the y-axis just below the s-th blue point. For technical reasons, we add,
for every j € [k], the pair R([a],al]) encoding the interval formed by all the elements of the

j-th color class of A. Adding these intervals to S4 does not constrain the problem more.
We surround this encoding of track A, which we denote by G(A), with 4k long alleys,

whose width is 4¢ — 4, from z-coordinates x§ + 4(j — 1)t — 2 to x{' + 45t — 6 for vertical

alleys (from y-coordinates yg' 4 4(j — 1)t — 2 to yg' + 4jt — 6 for horizontal alleys). We
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(a) The interval gadget corresponding to
[a1,a9] = {a1,...,a9}. In thin dotted, the

mapping between elements and potential lines.

In bold, the choice of the lines corresponding
to picking a4. If one wants to separate these
points with two lines, one almost horizontal
and one almost vertical, the choice of the
former imposes the latter.

(b) The interval gadgets put together. A rep-
resentation of one track. Separating these
points with the fewest axis-parallel lines re-
quires taking the horizontal and vertical lines
associated to a minimum hitting set.

Figure 2 To the left, one interval. To the right, several put together to form one track.

alternate red-blue! alleys and blue-red alleys for two contiguous alleys so that there is no
need to separate one from the other. We start with a red-blue alley for the left horizontal and
top vertical groups of alleys, and with a blue-red alley for the right horizontal and bottom
vertical. This last detail is not in any way crucial but permits the construction to be defined
uniquely and consistently with the choices of Figure 1c. This, together with the description
of long alleys in the previous paragraph, fully defines the 4k long alleys (see Figure 5).

The general intention is that in order to separate those two red points from the blue
diagonal with a budget of two almost axis-parallel lines, one should take two lines (one almost
horizontal and one almost vertical) corresponding to the selection of the same element of
A which hits the corresponding interval. In particular, taking two almost horizontal lines
(resp. two almost vertical lines) is made impossible due to those vertical (resp. horizontal) long
alleys. More precisely, the intended pairs of lines separating the red points R([af , ag,/ ]) from
the blue diagonal are of the form z = x4 +48 — 6,y = yi' +45 — 6 for § € [s, s']. Furthermore,
the 4k long alleys force a pair of (almost) horizontal and vertical lines corresponding to one
element per color class to be taken.

For any s € [tk], ¢ € [t], and j € [k], such that s = (j — 1)t +14, let HL(s) be the horizontal

line of equation y = yg' + 4s —6 and VL(s) the vertical line of equation z = z{' + 4s — 6.

They correspond to selecting a], the i-th element in the j-th color class of A. The goal of the
remaining gadgets is to ensure that when the lines HL(s) and VL(s) (with s = (j — 1)t + %)
are chosen, additional lines corresponding to selecting element bg of B have to be expressly
selected. We define HL := {HL(s) | s € [tk]} and VL := {VL(s) | s € [tk]}.

Encoding inter-class permutation o. To encode the permutation o of the k color classes
of Z, we allocate a square subgrid of the same dimension as the space used for the encoding

of track A, roughly 4tk-by-4tk, and we place it to the right of A right as depicted in Figure 5.

This square subgrid is naturally and regularly split into k% smaller square subgrids of equal
dimension (roughly 4t¢-by-4t). This decomposition can be seen as the k color classes of

! i.e., for horizontal (resp. vertical) alleys, the red points are above (resp. to the left of) the blue points.
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ot

3 1 4 5 2

Figure 3 Encoding permutation ¢ = 31452. The choices within the five color classes are
transferred from almost horizontal lines to almost vertical ones. This way, we obtain the desired
reordering of the color classes.

T, or equivalently, the k-by-k crossing?® obtained by drawing horizontal lines between two
contiguous horizontal long alleys and vertical lines between two contiguous vertical long
alleys. We only put points in exactly one smaller square subgrid per column and per row.
Let 0 :=0(1)0(2)...0(k) and Cell(a,b) be the smaller square subgrid in the a-th row and
b-th column of the k-by-k crossing. For each j € [k], we put in Cell(j,o(j)) a diagonal of
t — 1 blue points and two red points corresponding to the full interval [a], a]] (see Figure 3).
We denote by G(o) those sets of red and blue points in the encoding of o. We surround G(o)
by 2k vertical long alleys similar to the 2k long alleys surrounding G(A). Notice that G(o)
and G(A) share the same 2k surrounding horizontal long alleys.

The way the gadget G(o) works is quite intuitive. Given k choices of horizontal lines
originating from a separation in G(A) and a budget of k extra lines for the separation within
G(0o), the only option is to copy with the vertical line the choice of the horizontal line. It
results in a vertical propagation of the initial choices accompanied by the desired reordering
of the color classes. The vertical line matching the choice of HL(s) in the corresponding cell
of G(o) is denoted by VL/(s). Let VL' := {VL'(s) | s € [tk]}. Note that corresponding lines
in VL and in VL' have a different order from left to right.

Encoding of the intra-class permutations o;'s and track B. If the encoding of permutation
o is conceptually simple, the number of intended lines separating red and blue points in G(0)
has to be linear in the number of permuted elements. Since we wish to encode a permutation
o; (for every j € [k]) on t elements, we cannot use the same mechanism as it would blow-up
our parameter dramatically and would not result in an FPT reduction.

For the gadget G~y (0;) partially encoding the permutation o;, we will crucially use the
fact that separating lines can have arbitrary slopes. Slightly to the right (at distance at
least ¢) of the vertical line bounding the right end of G(¢) and far in the south direction,
we place a gadget G(B) encoding track B similarly to the encoding of track A up to some
symmetry that we will make precise later. We also incline the whole encoding of track B with
a small, say 5, degree angle, in a way that its top-left corner is to the right of its bottom-left
corner. We round up the real coordinates that this rotation incurs to rationals at distance

2 we use this term informally to avoid confusion with what we have been calling grids so far.
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less than, say, (kt)~1°. We denote by © the distance along the y-axis between G(o) and G(B).
Eventually 9 will be chosen much larger than ©(kt), which is the size of G(A), G(B), G(o).
Below G(0) at a distance 20 along the y-axis, we place gadgets G~,(0;)’s; from left to right,
we place Gro(00(1))s Gro(00(2))s - - -5 Grw(To(y) such that for every i € [k], Gau(04(;)) falls
below the i-th column of the k-by-k crossing of G(o). Gadgets Gxy(0;)’s are represented by
small round shapes in Figure 5. Notwithstanding what is drawn on the overall picture, the
G~w(0;)’s can be all placed at the same y-coordinates. Let y; := yo — 20 (the exact value of
y1 is not crucial). Also, we represent track B slanted by a 45 degree angle, instead of the
actual 5 degree angle, to be able to fit everything on one page and convey the main ideas
of the construction. In general, for the figure to be readable, the true proportions are not
respected. The size of every gadget is much smaller than the distance between two different
groups of gadgets, so that every line entering a gadget traverses it in an axis-parallel fashion.

Gadget Gay(o;) is built as follows. For each i € [t] and j € [k], we draw a fictitious
points pg corresponding to the intersection of a close to vertical line corresponding to picking
element b’ in gadget G(B) with the bottom end of G(B). From left to right, the p!’s have
the same order as the b)’s in (B, <p). For every s = (j — 1)t + i (with j € [k] and i € [t]),
let ¢ be the point of y-coordinate y; on the line VL/(s). We define the line SL(s) as going
through p/ and ¢/, and set SL := {SL(s) | s € [tk]}. We add two blue points just to the left
and just to the right of ¢/ at distance ¢ := z71°. We add two blue points on line SL(s), one
to the left of qf and one to the right of q{ . Finally, we place two red points for each G, (0;)
at the bottom-left and top-right of the gadget (see Figure 4). In the figure, the lines in SL
form a large angle with the y-axis, while in fact they are quite close to a 5 degree angle and
behave like relatively vertical® lines within G(B) (since G(B) is also inclined by 5 degrees).

Assuming that line VL'(s = (j — 1)t + 1) has been selected, it can be observed from
Figure 4 that separating the red points from the blue points in Gx,(0;) with a budget of
one additional line requires to take a line crossing VL'(s) at (or very close to) ¢/ and with a
higher or equal slope to SL(s). It is not quite what we wanted. What we achieved so far is
only to link the choice of a{ with the choice of an element smaller or equal to bZ We will
use a symmetry Gup (o) of gadget Gy (0;) to get the other inequality so that choosing some
lines corresponding to af actually forces to take some lines corresponding to bf .

We add a gadget G(id) below the Gx,(0;)’s. G(id) is obtained by mimicking G(o)
for the identity permutation. We surround G(id) by 2k new horizontal long alleys. The
horizontal line matching the choice of VL'(s) in G(id) is denoted by HL'(s). At a distance
h = ©/(cos(5°) - sin(5°)) to the right of G(id) we place gadgets Gan(0;)’s analogously to the
G~v(0;)’s. The fictitious points p'J, p! used for the construction of the lines SL/(s), SL(s)
are located at the right end of G(B) and ordered as B when read from top to bottom. The
difference in the construction of G(B) from the B-intervals (compared to G(A) from the
A-intervals) is that the diagonal of blue points go from the top-left corner to the bottom-right
corner (instead of bottom-left to top-right). Similarly to our previous definitions, we define
HL' := {HL'(s) | s € [tk]} and SL’ := {SL(s) | s € [tk]}. The choice of 7 makes the lines of
SL' form a close to 5 degree angle with the z-axis and so enter G(B) relatively horizontal.

Putting the pieces together. We already hinted at how the different gadgets are combined
together. We choose the different typical values so that: kt < 0 < h < z. For instance,
 := 100((kt)2 +1) and z := 100(h® + 1). An important and somewhat hidden consequence of
z being much greater than ¥ and h is that the bulk of the construction (say, all the gadgets

3 By that, we mean that the lines are close to vertical for axes aligned with the encoding of track B.
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123456738 73285164

Figure 4 Half-encoding of permutation o; = 73285164 of the j-th color class. Observe that the
choice of the, say, sixth almost horizontal candidate line only forces to take the slanted line depicted
in bold or a line having the same intersection with the almost horizontal line but a larger slope. For
the sake of legibility, the angles between the vertical lines and the slanted lines are exaggerated.

which are not long alleys) occupies a tiny space in the top-left corner of I'. We set the length
¢ of the long alleys to 100(k% + 1). Point (z{',yg') corresponds to the bottom-left corner of
the square in bold with a diagonal close to the overall top-left corner.

Slightly outside grid I" we place 14 pairs of long alleys (7 horizontal and 7 vertical) of
width, say, (kt)~10 to force the 14 lines in bold in Figure 5. Note that, on the figure, we do
not explicitly represent those long alleys but only the lines they force. The purpose of those
new long alleys is to separate groups of gadgets from each other. Going clockwise all around
the grid T', we alternate red-blue and blue-red alleys so that two consecutive long alleys do
not need a further separation. The even parity of those alleys make this alternation possible.
Each one of the 64 faces that those 14 lines define is called a super-cell.

The four lines in bold surrounding G(B) are close (say, at distance 10t) to the north,
south, west, and east ends of that gadget. On the four super-cells adjacent to the super-cell
containing G(B), shown in gray, we place 4k long alleys each of width 4¢ — 4, analogously to
what was done for G(A), but slanted by a 5 degree angle (as the gadget G(B)). As for track
A these alleys force, relatively to the orientation of G(B), one close to horizontal line and
one close to vertical line per color class. The long alleys are placed just next to G(B) and
are not crossed by any other candidate lines.

This finishes the construction. We ask for a separation of R and B with 6k + 14 lines.
The correctness of the reduction is deferred to the long version of the paper. |

3 FPT Algorithm Parameterized by Size of Smaller Set

We present a simple FPT algorithm for AXiS-PARALLEL RED-BLUE SEPARATION para-
meterized by min{|R|,|B|}. In the following, w.l.0.g., we assume that B is the smaller
set.

» Theorem 2. An optimal solution of AXiS-PARALLEL RED-BLUE SEPARATION can be
computed in O(nlogn + n|B|9IBl) time.
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it

i
[}

Figure 5 The overall picture. The thin rectangles are long alleys, the bold large squares with a
diagonal are the encoding of track A, in the top left corner, and track B, slanted by 45 degrees (for
the sake of fitting the whole construction on one page; in reality the encoding of B is only inclined

by 5 degrees). The smaller squares with a diagonal are simple interval gadgets and the small round
gadgets are half-encodings of the permutations o;’s. The four super-cells filled with grey contain 4k
long alleys slanted by 5 degrees. The (super-)cells filled with red and blue match their color, and
are monochromatic once the 14 lines imposed by the outermost long alleys have been selected.

We first give a high-level description of the algorithm. It begins by subdividing the plane
into at most |B| 4+ 1 vertical strips, each consisting of the area “between” two horizontally
successive blue points, and at most |B| 4+ 1 horizontal strips, each consisting of the area
“between” two vertically successive blue points (see Figure 6a). Since each strip can contain
only red points in its interior, an optimal solution uses at most two lines inside a single
strip (Lemma 5(a)). We can therefore guess (by exhaustive enumeration) the number of

lines used in each strip in an optimal solution. This gives a running time of roughly 95/,

A second observation is that if an optimal solution uses two lines in a strip, these can be
placed as far away from each other as possible (Lemma 5(b)). To complete the solution
we must decide where to place the lines in strips that contain only one line of an optimal
solution. We consider every pair of blue and red points whose separation may depend on the
exact placement of these lines. The key idea is that the separation of two such points can
be expressed as a 2-CNF constraint. If the upcoming formal exposition seems a bit more
complicated than this informal idea, it is because we have to deal with points sharing the
same x- or y-coordinates.
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N : ,
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| | |
e — (b) Two consecutive red points in a
U U U P [ e _— - =
| | | horizontal strip Ry(7). If the corres-
| | | ponding line of S is below p, then it
| | | is also below p’ which translates to
R L Yp = Yp-
T | op| ‘
| | |
|
1 1 — P
I I I :
] ;
} } } Db |
I I I U
I I I !
| ./
(a) The cell decomposition (solid lines), a guess of how P

S intersects it (dashed lines), and an interesting cell
(in gray) for a point p, (bottom-right corner). The red
point p cannot be in the south-east quadrant of this
cell which translates to the 2-clause yg \Y ﬂwﬁ. Indeed,
it should be that the horizontal line of S is below it or
that the vertical line is to its right.

(c) Two consecutive red points in a
vertical strip R (j). If the correspond-
ing line of S is to the left of p, then it
is also to the left of p’ which translates
to x; — x;,.

Figure 6 Illustration of the algorithm and the two kinds of clauses of the 2-SAT instance.

We now proceed to a formal description of our algorithm, beginning with some definitions.
For a point p € R?, let p(z) and p(y) be its z-coordinate and y-coordinate, respectively. Also,
let X, Y be the sets of x, y coordinates of the points in B. In order to ease presentation later
on, with a slight terminology abuse, we add —oo, 400 to both X and Y. Let X (i), Y (i) be
the respective i-th elements of these sets in increasing order with 0 < 4, and let k = | X| — 2
and = |Y|—2; k< |B|and [ < |B|.

» Definition 3. The vertical strips are defined as V; = {p € R? | X (i) < p(z) < X(i + 1)}
for i € [0, k.

» Definition 4. The horizontal strips are defined as H; = {p € R? | Y (i) < p(y) < Y (i + 1)}
for i € [0,1].

The horizontal and vertical strips defined above essentially partition the plane into open
monochromatic (red) or empty regions, while the boundaries of the strips may contain both
red and blue points. As a result, we have the following properties of an optimal solution.

» Lemma 5. (a) An optimal solution of AX1S-PARALLEL RED-BLUE SEPARATION contains
at most two lines in each horizontal or vertical strip. (b) In the case where a strip has two
lines, these lines can be assumed to be placed in a way such that all red points in the interior
of the strip lie between them.

Proof of Theorem 2. We describe an FPT algorithm which first guesses how many lines an
optimal solution uses in each strip and then produces a 2-SAT instance of size O(|B|n) in
order to check if its guess is feasible. We assume that we have access to two lists containing
the input points sorted lexicographically by their (x,y) and (y, ) coordinates.

Let S be some optimal solution. We first guess how many lines of S are in each horizontal
and each vertical strip. Since, by Lemma 5, S contains at most two lines per strip, and there
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are | + 1 < |B| + 1 horizontal strips and k& + 1 < |B| + 1 vertical strips, there are at most
3IBl+1 possibilities to guess from for each direction thus, O(98!) in total.

In what follows, we assume that we have fixed how many lines of S are in each strip. We

give an algorithm deciding in polynomial time if such a specification gives a feasible solution.

Since a specification fully determines the number of lines of a solution, the algorithm simply
goes through all specifications and selects one with minimum cost among all feasible ones.

We produce a 2-SAT instance, which will be satisfiable if and only if a given specification
is feasible. We first define the variables: for each horizontal strip H; that contains exactly
one line from S and for each red point p € H;, we define a variable y;'). Its informal meaning
is “the line of S in H; is below point p”. When p lies on the upper (lower) boundary of H;, y,,
is set to true (false) by default. Similarly, for each vertical strip V; that contains exactly one
line from S and for each red point p € V;, we define a variable x%. Its meaning is “the line of
S in Vj is to the left of p”. It is set to true (false) when p lies on the right (left) boundary of
V;. We have constructed O(n) variables (at most four for each point of R).

Next, we construct 2-CNF clauses imposing the informal meaning described. For each
strip H; that contains exactly one horizontal line from S and each pair of red points p,p’ € H;
that are consecutive in lexicographic (y, ) order, we add the clause (y;, — y;,). We can skip
pairs that have a point lying on the upper or lower boundary of H; as the corresponding
variable has been already set to true or false respectively and the clause is satisfied; see the
description in the previous paragraph. Similarly, for each strip V; that contains exactly one
vertical line from S and each pair of red points p, p’ € V; that are consecutive in lexicographic
(z,y) order, we add the clause (x;, — zi,); pairs that have a point lying on the left or right
boundary of V; do not produce any clauses. Given any solution, we can construct from its
lines an assignment following the informal meaning described above that satisfies all clauses
added so far, while from any satisfying assignment we can find lines according to the informal
meaning. We call the O(n) clauses constructed so far the coherence part of our instance.

What remains is to add some further clauses to our instance to ensure also that the
solution is feasible, that is, it separates all pairs of red and blue points.

Consider a cell C;; = H; N V;, where i € [0,1] and j € [0,k]. A red point p € Cj; is called
Cj-separable for a point p, € B, if p can be separated from p; by a vertical or horizontal line
running through the interior of C;;. We will sometimes call p just separable when C;; and py
are obvious from the context. We say that C}; is interesting for a point p, € B if the following
conditions hold: (i) C;; contains at least one red point that is C;j-separable for py; (ii) at
least one of H; or V; contains at most one horizontal or one vertical line from .S respectively;
(iii) if X(j + 1) < pp(x) or pp(x) < X(j), then there is no vertical line from S in a strip
between p;, and Vj; and (iv) if Y (i 4+ 1) < py(y) or pp(y) < Y (¢), then there is no horizontal
line from S in a strip between p, and H;. Note that even if C;; is interesting for ps, it may
contain a red point p that is already separated from p, by a line going through Cj;: this
happens exactly when H; or V; contains two horizontal or vertical lines from S respectively
and p lies either in the interior of C;; or on its boundary but not on the same side of H;
or V; as py. The motivation for these definitions is that the cells that are interesting for py
contain exactly the red points that need to be separated from p; by lines going through the
cells and whose positions cannot be predetermined. We therefore have to add some clauses
to express these constraints.

For each p, € B and each cell C;; that is interesting for p, we construct a clause for every
red point p € Cj; that is separable and not already separated from py. Initially, the clause is
empty. If the specification says that there is exactly one line from S in H;, we add to the
clause a literal as follows: if y(py) > Y (i + 1), we add -y}, (meaning that the horizontal line
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is above p, and hence separates p from py); if y(pp) < Y (i), we add y;. Furthermore, if the
specification says that there is exactly one line from S in V;, we add to the clause a literal as
follows: if z(py) > X (i + 1), we add the literal —aJ; if 2(py) < X (i), we add 2J. Observe
that this process produces clauses of size at most two. It may produce an empty clause,
rendering the 2-SAT unsatisfiable, in the case where there is no line of S in H; or Vj;, but
this is desirable since in this case no feasible solution matches the specification. Note that we
have constructed O(|B||R|) clauses in this way (at most four for each pair of a blue with a
red point). Hence, the 2-SAT formula we have constructed has O(n) variables and O(|B|n)
clauses. Since 2-SAT can be solved in linear time, we obtain the promised running time.
To complete the proof we rely on the informal correspondence between assignments to
the 2-SAT instance and AX1S-PARALLEL RED-BLUE SEPARATION solutions. If there exists
a solution that agrees with the guessed specification, this solution can easily be translated
to an assignment that satisfies the coherence part of the 2-SAT formula. Furthermore, for
any blue point p, and any separable and not already separated red point p in a cell Cjy;
that is interesting for py, the solution must be placing at least one line going through Cj;
in a way that separates p, from p (this follows from the fact that the cell is interesting).
Hence, the corresponding 2-SAT clauses are also satisfied. Conversely, given an assignment
to the 2-SAT instance, we construct an AXiS-PARALLEL RED-BLUE SEPARATION solution
following the informal meaning of the variables. Note that for every blue point py, every red
point is C;j-separable for py for at least one cell C;;. For any cell Cj; that is not interesting
for p, and contains at least one separable point, we have that either all red points in the
cell are separated from p; by lines outside the cell or all separable red points in the cell are
separated from py by the four lines running through the cell. If C; is interesting for py, then
all separable (and not already separated) red points in the cell are separated from p, because
of the additional 2-SAT clauses we added in the second part of the construction. <

4 Open problems

The most intriguing open problem is settling the complexity of AX1S-PARALLEL RED-BLUE
SEPARATION w.r.t. the number of lines. We conjecture it to be FPT. Other problems include
the complexity of RED-BLUE SEPARATION when the lines can have three different slopes
and of AXIS-PARALLEL RED-BLUE SEPARATION in 3-dimensions.

Acknowledgements. We thank Sergio Cabello and Christian Knauer for fruitful discussions.
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—— Abstract
We introduce some classical complexity-theoretic techniques to Parameterized Complexity. First,
we study relativization for the machine models that were used by Chen, Flum, and Grohe (2005)
to characterize a number of parameterized complexity classes. Here we obtain a new and non-
trivial characterization of the A-Hierarchy in terms of oracle machines, and parameterize a famous
result of Baker, Gill, and Solovay (1975), by proving that, relative to specific oracles, FPT and
A[1] can either coincide or differ (a similar statement holds for FPT and W[P]). Second, we
initiate the study of interactive proof systems in the parameterized setting, and show that every
problem in the class AW[SAT] has a proof system with “short” interactions, in the sense that
the number of rounds is upper-bounded in terms of the parameter value alone.

1998 ACM Subject Classification F.1.2 Modes of Computation, F.1.3 Complexity Measures and
Classes
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1 Introduction

In Parameterized Complexity Theory, the complexity of computational problems is measured
not only in terms of the size of the input, |z|, but also in terms of a parameter k which
measures some additional structure of the input. The main advantage of this approach is
that the class of problems which are considered computationally tractable can be expanded
considerably by requiring that the running time of algorithms be polynomial only in |z|,
while allowing some other dependence of the running time on the parameter value. Problems
that can be solved by such algorithms are said to be fized-parameter tractable. To this relaxed
notion of computational tractability there corresponds a matching notion of intractability.

The complexity classes capturing parameterized intractability were originally defined as
closures, under suitably defined parameterized reductions, of specific problems that were
conjectured to not have fpt-algorithms (see [8], or the more recent [9]). This approach ensured
that most of these “hard” classes contained an interesting or somewhat natural complete
problem, and, in the case of W[1], produced a “web of reductions” similar to the one for
NP-complete problems in classical complexity.

However, defining complexity classes only via reductions to specific problems means that
the resulting classes may not have characterizations in terms of computing machines, or,
indeed, any natural characterizations except the definition. This in turn can mean that
many proof techniques from classical complexity are not usable in the parameterized setting,
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because they rely on different characterizations that do not apply to any one parameterized
complexity class. To give an example, in the proof of IP = PSPACE ([15], see also
[16]), both the definition of PSPACE in terms of space-bounded computation, and the
characterization of this class in terms of alternating polynomial-time computation are used.
In the parameterized world, this equivalence between space and alternating time seems to
break down [6], and parameterized interactive proof systems do not appear to have been
studied at all, so no similar theorem is known in this setting.

Surprisingly (given the way they were originally defined), many of the classes capturing
parameterized intractability turned out to have characterizations in terms of computing
machines: In three papers, Chen [5, 6, 7], Flum [5, 6, 7], and Grohe [6, 7] showed that certain
kinds of nondeterministic random access machines (RAMs) exactly define some important
parameterized classes:

W/[P] and AW|[P] are characterized by RAMs that can nondeterministically ! guess

integers, but the number of guesses they can make throughout the computation is bounded

by a computable function of the parameter value of the input instance. We refer to this

as parameter-bounded nondeterminism (a term used similarly in [6]).

The classes of the A-Hierarchy, as well as AW[x], are obtained by further restricting

the (alternating) nondeterminism of the machines to tail-nondeterminism, meaning that

the machines can only make nondeterministic guesses among the last h(k) steps of a

computation, where h is a computable function and k is the parameter.

Finally, the classes of the W-Hierarchy are characterized by tail-nondeterministic ma-

chines which are not allowed to access the guessed integers directly (they can make

nondeterministic decisions based on them, but not use them in arithmetic operations).

The main reason why the characterizations in [5, 6, 7] were given in terms of RAMs, rather
than Turing machines (TMs), is that a TM may need to traverse the entire used portion
of its tape in order to read a particular bit, so a tail-nondeterministic TM would not be
able to make use of its entire memory during the nondeterministic phase of the computation.
The classes W[P] and AW|[P] also have characterizations in terms of TMs with restricted
nondeterminism [6], but we consistently use random access machines throughout this work.

The machine characterizations of some of the above-mentioned classes can be rewritten
in such a way that they strongly resemble definitions of some familiar classes from classical
complexity. For example, A[1] can be defined as the class of parameterized problems that
are decided by tail-nondeterministic RAMs in fpt-time, which at least formally looks like the
definition of NP. Similarly, W[P] can also be defined in a way that is similar to NP (using
parameter-bounded nondeterminism), the levels of the A-Hierarchy have characterizations
that match the definitions of the X-levels of the Polynomial Hierarchy, and AW[P] and AW [x]
both correspond to AP (the class of problems that are decidable in alternating polynomial-
time). Given the similar definitions, it seems reasonable to expect that parameterized
complexity classes also inherit some properties from their classical counterparts. However,
replacing the machine model in a definition is a significant change, so it is by no means
obvious which theorems will still hold for a parameterized version of a complexity class.

Our goal in this paper is to show that having machine-based characterizations of pa-
rameterized complexity classes opens up a largely unexplored, but possibly very fruitful,
path toward understanding parameterized intractability. To that end we extend the work

! Throughout this paper, nondeterminism will mean alternating nondeterminism with a number of
alternations that will be clear from the context. This should not cause any confusion, since simple
nondeterminism is just l-alternating nondeterminism.
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of Chen, Flum, and Grohe [5, 6, 7] in two directions: relativization and interactive proofs.
The key insight is that parameterized versions of these two concepts can be defined in such
a way that some important classical theorems can be recovered in this setting. The proofs
of our theorems follow along the same lines as their classical counterparts, with only some
technical obstacles to be overcome, but it is a remarkable fact that parameterized versions
of these proofs can be made to work at all: For example, it is not a priori clear whether
parameterized oracle computation can be even in principle defined in a way that makes the
A-Hierarchy have an oracle characterization that is similar to that of PH. We show, among
other things, that this is indeed the case, and furthermore, that the restrictions that must be
placed on the access to the oracle in order to obtain this result are quite natural (at least, in
the context of the machine characterization of A[1] from [7]).

1.1 Our results

Parameterized relativization. Theorems involving oracles have been given before in Pa-
rameterized Complexity, but it is almost always Turing machines that are endowed with
access to an oracle (see, for example, [13]). In order to relativize the hard parameterized
complexity classes for which machine characterizations are known, we define oracle RAMs
with the different forms of restricted nondeterminism mentioned above. It turns out that in
order for oracle access and nondeterminism to interact in a useful way, both of these features
must, roughly speaking, have the same restrictions (tail-nondeterministic machines should
have tail-restricted oracle access, etc.)2. We show that these restrictions lead to a natural
type of oracle access for each type of machine, by proving parameterized versions of two
fundamental results from classical complexity, both for the tail-nondeterministic and the
parameter-bounded version of nondeterministic RAMs.

First, we give a new characterization of the classes of the A-Hierarchy, in terms of oracle
machines (resembling the oracle characterization of the levels of the Polynomial Hierarchy
(see [3], Section 5.5)), by proving that

vt >1: A1) = At + 1],

but only for a specific oracle O; that is complete for A[t] (Theorem 13). We also explain
why tail-nondeterminism appears to be too weak to allow for this theorem to be proved for
an arbitrary A[t]-complete problem. The situation is much better when the nondeterminism
is only parameter-bounded, and we have (Theorem 16) that

[P]
vi>1: WP =xl

where ELP] (t > 1) are the X-levels of the analogue of the Polynomial Hierarchy for the
machine model with parameter-bounded nondeterminism (so E[1P] = W/[P]). We emphasize
that both of these theorems seem to hold only if the oracle A[1]- and W[P]-machines have
exactly the right restrictions placed on their oracle access, and even then, tail-nondeterminism
causes a number of non-trivial technical issues (see the proof of Theorem 13).

2 Placing restrictions on the access to an oracle is a fairly common practice even in classical complexity.
For example, the oracle tape of a LOGSPACE-machine is write-only, in order to allow the machine to
make polynomial-sized queries while preventing it from using the tape for computations that avoid the
space restriction. Another example can be found in [1], where, in order to prove that the statement
NEXP C MIP algebrizes, the authors restrict machines that run in exponential time so that they can
only make oracle queries of polynomial size.
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Second, we recover a parameterized version of a well-known oracle separation result of
Baker, Gill, and Solovay [4], by showing (Theorem 14) that there exist parameterized oracles
A and B such that

FPT" = A[1]* and FPT? +# A[1]5.

It is worth noting that here the FPT-machine may be given completely unrestricted access
to the oracle B, whereas the A[l]-machine only has tail-restricted access (which is the most
restricted form of oracle access we consider), so in some sense this separation is stronger
than expected. A similar theorem holds when replacing A[1] with W[P] (Theorem 18).

These results are, of course, only the first steps toward understanding relativization for
parameterized complexity classes beyond FPT. To illustrate the importance of investigating
relativization in this setting, let us briefly consider the long-standing open problem of proving
a parameterized version of Toda’s Theorem [17], which states that PH C PFPP. It is not clear
which parameterized classes would be involved in such a theorem, but, presumably, P would
be replaced by FPT, which can easily be described in terms of Turing machines, so it should
be possible to at least state the theorem without further considerations about the type of
oracle access being used. Furthermore, it could be argued that since only the larger of the
two classes in the theorem statement is obtained via relativization, placing no restrictions on
the access to the oracle can only make the inclusion easier to prove. However, both Toda’s
original proof [17] and Fortnow’s simplified version of it [12] make heavy use of relativized
versions of classes such as BPP and PH, so following either one of these proofs would
involve relativized versions of parameterized counterparts of such classes. Our Theorems
13 and 16 only deal with oracle access and alternating nondeterminism, but this already
requires a careful balancing of the restrictions placed on both features. Toda’s Theorem, on
the other hand, involves an interplay between relativization, alternating nondeterminism,
randomization, and counting complexity, so it seems unlikely that a parameterized version
of it can be proved without a better understanding of parameterized relativization and its
relation to other complexity-theoretic concepts.

Interactive proof systems for parameterized complexity classes. The levels of the A-
Hierarchy were originally defined as fpt-closures of model checking problems, where a relational
structure A and a first-order formula ¢ without free variables are given, and the task is to
decide whether A satisfies ¢. In [7], model checking problems are used in a very interesting
way in the proof of the machine characterization of the classes A[t]: Specifically, a pair
(A, @) is used to encode the computation of a tail-nondeterministic RAM, in a way that
is strongly reminiscent of how the computation of a nondeterministic TM is encoded as a
quantified Boolean formula in the proof of the Cook-Levin Theorem (see [3], Chap. 2). This
suggests that by generalizing classical techniques that involve quantified Boolean formulas,
it may be possible to apply them to parameterized complexity classes for which a model
checking problem is complete. In Section 4 we continue this line of thought by generalizing
arithmetization of quantified Boolean formulas (see [3], Section 8.3) to pairs of relational
structures and first-order formulas.

We also initiate the study of interactive proof systems in this setting. Using generalized
arithmetization, we show that all problems in AW[SAT] have proof systems with a number
of rounds depending only on the parameter value of the input instance (Theorem 19). The
goal (which, unfortunately, is not achieved here) is to precisely characterize either AW [x]
or AW[P] in terms of IPs, as this would recover a parameterized version of the fact that
IP = AP, even without a notion of space that corresponds to alternation in the parameterized
setting. At the end of Section 4 we give a possible candidate for a characterization of AW/x].
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Note that theorem proofs and other details can be found in the full version of paper
(arXiv:1706.09391).

2 Preliminaries

We refer to [3] and to [11], respectively, for the necessary background in classical and
Parameterized Complexity. By N we mean the set of non-negative integers, and by N* the
set of finite sequences of non-negative integers.

2.1 Random access machines and parameterized complexity classes

We give only a general overview of RAMs, and refer to Section 2.6 of [14] for the details.
A random access machine is specified by its program (a finite sequence of instructions),
which operates on an infinite sequence of standard registers, rg,r1, ..., that contain integers.
Instructions access registers either directly, by referencing their numbers, or indirectly, by
taking the number of a register to be the current content of another register (in other words,
the machine can access ., i € N). We follow [6] in assuming that the registers store only
non-negative integers. Except instructions which copy the contents of one register to another,
a RAM also has conditional and unconditional jump instructions, as well as instructions
which perform the operations addition, subtraction, and integer division by 2 (these suffice
to efficiently perform all arithmetic operations on signed integers). The input of a RAM is a
finite sequence of non-negative integers, each stored in a separate register, and we define the
problems solved by such machines accordingly.

» Definition 1. A parameterized problem @ is a subset of N* x N. When dealing with the
problem of deciding whether (z, k) € N* x N is an element of Q, (z, k) is referred to as an
instance; the second element of such a pair is called the parameter.

» Remark 2. When an instance of a parameterized problem is given as input to a RAM, we
assume that the parameter is given in unary encoding, meaning that if the parameter value
is k € N, then k registers, each containing the value 1, are used to encode the parameter
value. The size of x, the main part of the input, is taken as the sum of the sizes of the binary
encodings of the integers that make up x. A RAM can therefore efficiently convert between
a reasonable encoding using integers, and any reasonable encoding using a finite alphabet.

» Definition 3. A random access machine M is parameter-restricted if there is a computable
function f and a polynomial function p, such that on any input (z, k):

M terminates after executing at most f(k)p(|x|) instructions;

throughout any computation, the registers contain only numbers that are < f(k)p(|x|).

The above definition replaces the “polynomial-time” restriction on the running time in
the classical setting, and is similar to the definition of “k-restricted” in Chap. 6 of [11]. Note
that the second condition is a bound on the numbers stored in the registers, not on the
number of bits that would be needed for the binary encoding of these numbers.

The next definition is easily seen to be equivalent to the usual definition of FPT [11].

» Definition 4. We define FPT as the class of parameterized problems that are decidable
by parameter-restricted (deterministic) RAMs.

An alternating random access machine (ARAM) is a RAM with additional existential
and undversal guess instructions, EXISTS and FORALL, both of which place a nondeter-
ministically chosen integer from the interval [0, ro] into ¢ (the difference between the two
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instructions is in how the acceptance of the input is defined). We may assume that the
upper end of the range of each nondeterministic guess is the largest number that the machine
can store in its registers, given the input, because the machine can first guess a number in
the maximum range, and then trim the result by computing the remainder of a division
by the size of the intended range. For ARAMs, the notions of computation (on an input),
configuration, computation path, ¢-alternation, and acceptance/rejection of an input are
defined in the standard way (see [11], section 8.1, pp. 168-170). Following [7], we mean by
“t-alternating” that the first guess instruction is existential.

We give the definitions of some complexity classes in terms of nondeterministic RAMs.
These are not the original definitions, but characterizations proved in [6] and [7].

» Definition 5. A parameterized problem @ is in AW[P] [in WIP]] if it is decided by an
ARAM Ja l-alternating ARAM] A which, for some computable function h, on any input
(z, k), executes at most h(k) nondeterministic instructions on any computation path.

» Definition 6. An ARAM A is tail-nondeterministic if there is a computable function
g such that, on any input (z,k), A executes nondeterministic instructions only among
the last g(k) steps of any computation path. For every ¢ > 1, A[t] denotes the class of
parameterized problems that are decidable by parameter-restricted tail-nondeterministic
t-alternating ARAMs. AW x| denotes the class of parameterized problems that are decidable
by parameter-restricted tail-nondeterministic ARAMs.

An oracle (A)RAM or (A)RAM with access to an oracle is a machine with an additional
set of oracle registers that store non-negative integers, as well as instructions that copy the
contents of ry to an arbitrary oracle register and vice-versa, and a QUERY instruction, which
queries the oracle with the contents of the oracle registers, and causes the register ry to
contain the values 1 or 0 (representing the oracle’s answer). Note that we only work with
oracles that decide parameterized problems, and that the parameter of a query instance must
be encoded in unary (see Remark 2). Most previous results involving oracles in Parameterized
Complexity place the following restriction on oracle machines. We will consider additional
restrictions to oracle access in the next section.

» Definition 7. An oracle (A)RAM A has balanced access to an oracle if there is a computable
function g such that, on input (x, k), any query (y, k') made to the oracle, on any computation
path, satisfies k' < g(k).

2.2 Relational structures and first-order formulas

A relational vocabulary T is a set of pairs of symbols and positive integers, called relational
symbols and arities, respectively. A relational structure A with vocabulary T is a set containing;:
a set A, called the universe of A, and for each pair (s,r) € 7, a relation R* C A”. We only
use relational structures with finite universes and finite vocabularies, so we assume that
A=H0,...,n}, n € N. A first-order formula ¢ with vocabulary T is constructed in the same
way as a quantified Boolean formula, except that the atomic formulas are not variables, but
expressions of the form zy = x5 or R%zy ...x,, where x1,...,x, are variables and (s,r) € 7.

Whenever a pair (A, ¢) is given, it is assumed implicitly that A and ¢ share the same
relational vocabulary. We say that A satisfies ¢ if ¢ is true when all atomic formulas are
evaluated based on the relations in A and all variables are taken as ranging over A.

We define some important classes of first-order formulas with relational vocabularies. For
every t € N, let ¥; be the set of all first-order formulas of the form

Jri1.. Fv g, Voo . VEo g, o Q... Queg, Y(z1,...,T¢),
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where (21, ..., 2¢) is a quantifier-free formula (Q means 3 if ¢ is odd, V if ¢ is even). For all

t,r € N, let X;[r] be the set of all ¥;-formulas with vocabularies in which all arities are < r.

Finally, let PNF be the set of all first-order formulas in prenex normal form, meaning that
they are of the form Q121 ... Qs : ¥(x1,...,2¢), where (x1,...,2¢) is a quantifier-free
formula and Q1,...,Q: € {3,V}.

For certain classes of formulas F', the following parameterized model checking problems
are complete for various important complexity classes.

p-MC(F)
Input: (A, ¢), where A is a relational structure, ¢ € F.
Parameter:  |¢|.

Problem: Decide whether A satisfies ¢.

p-var-MC(F)
Input: (A, @), where A is a relational structure, ¢ € F.
Parameter:  The number of variables in ¢.
Problem: Decide whether A satisfies ¢.

» Remark 8. A relational structure can be represented by listing the elements of its universe,
followed by the tuples in each relation. However, for a RAM to check whether some tuple
(ai,...,a,) is an element of some r-ary relation R® may then take a number of steps that
depends on [A[| := |A[+|7[+ >, e, [1°] -7 (even if the elements of each relation are listed
in lexicographic order, and binary search is used). To avoid this, we will assume, whenever
A contains only relations of arity at most some fixed number [, that each r-ary relation
(r <1) is stored as an |A|"-size array of ones and zeroes, each number representing whether
or not some element of A" is a member of the relation. Furthermore, we will assume that
the location of every such array is stored in a look-up table. This way, checking whether
(a1,...,a,) € R® only takes a constant number of operations for a RAM, at the cost of
increasing the size of the representation of A in memory to O(poly(]|.A])) (since [ is constant).
This also means that adding and removing elements requires only constant time.

» Definition 9. Let Q and Q' be parameterized problems. An algorithm R is an fpt-reduction
from @ to Q' if there exist computable functions f and g, and a polynomial function p, such
that for any instance (z, k) of @ we have a) (y, k') := R(z, k) € Q" if and only if (z,k) € Q;
b) R runs in time f(k)p(|z|); and ¢) k' < h(k).

For any parameterized problem @, we denote by [Q]* the set of parameterized problems
that are <* Q, meaning fpt-reducible to Q.

» Fact 10 ([6, 10],[2]). For every t € N, A[t] = [p-MC(X;)]®t = [p-MC(X[3])]".
AWI[SAT] = [p-var-MC(PNF)]Pt.

» Remark 11. In the proof of their machine-based characterization of A[t], Chen, Flum,
and Grohe [7] show how the parameter-restricted computation of a t-alternating tail-
nondeterministic RAM can be encoded as a pair (A, ¢). We refer the interested reader
to [7] for the details, and recall only some facts about this reduction that we use here. Let
f(E)p(|x|) be an upper bound on the running time, the largest number of a register used,
and the largest integer stored during the computation of the machine A on input (x, k). The
relational structure A has universe {0,..., f(k)p(]z|)} and contains relations representing
the instructions of A’s program and the contents of the accessed registers at the end of the
deterministic part of the computation (a relation Reg is defined so that (y, z) € Reg if and
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only if r, = z right before the first nondeterministic instruction is executed). All relations
in A have arity < 3. The first-order formula ¢ has the same vocabulary as .A and encodes
the nondeterministic computation of A (the last h(k) steps). The formula is constructed in
such a way that changes to the contents of the registers are kept track of, and access to the
contents of the registers at the start of the nondeterministic computation are encoded using
the relation Reg. A close look at the construction in [7] reveals that part of it is oblivious to
the input z, in the sense that computing the formula ¢ only requires knowledge of k, A.

3 Parameterized relativization

The guiding principle in our approach to defining nondeterministic oracle RAMs will be that
all of the special resources of a machine (nondeterminism, oracle queries, random guesses —
everything beyond the basic deterministic operations) should be restricted in the same way,
in order for these resources to interact well with each other.

» Definition 12. An oracle (A)RAM A has parameter-bounded access to an oracle if it has
balanced access to the oracle, and there is a computable function A such that, on input
(z,k), A makes at most h(k) queries to the oracle on any computation path. A is said to
have tail-restricted access to an oracle if it has balanced access to the oracle, and there is a
computable function h such that, on input (z, k), A makes queries to the oracle only among
the last h(k) steps of any computation path.

Because we will use different kinds of oracle machines, and the exponent notation for
the relativization of a complexity class is difficult to customize, we will also use the (older)
parenthesis notation: If C' is a complexity class that is characterized by machines, we denote
by C(O) the class characterized by oracle machines of the same type as the ones characterizing
C, with unrestricted access to the oracle O. Similarly, C(O)pq; denotes the class defined
by oracle machines with balanced access to the parameterized oracle, C'(O)paro denotes the
class defined by oracle machines with parameter-bounded access to the oracle, and C(O)tq4
denotes the class defined by tail-nondeterministic oracle machines with the same restrictions
as the machines that define C'. The exponent notation is only used when the type of oracle
access is the “natural” one for the type of machine being considered (so A[1]° = A[1](O)¢ai
and W[P]? = WIPJ(O)pare)- For FPT we always specify the type of oracle access.

Relativization results for tail-nondeterministic random access machines. We give an
informal overview of the proof that A[1]P"MCZB) = A[t 4 1], to highlight the role played
by the choice of the oracle and by the restrictions made to the tail-nondeterministic oracle
machines (for a comparison with the proof that NP¥**" = B | see [3], Section 5.5).

For the “2”-inclusion, we have that an A[l]-machine with a p-MC(%;[3])-oracle (which
is complete for A[t]) can first deterministically simulate the deterministic part of the com-
putation of an At 4+ 1]-machine on input (z, k). The oracle A[l]-machine then enters the
nondeterministic phase of its computation, and uses its own nondeterministic guesses to
simulate the first block of existential guesses of the simulated machine (until a universal
instruction is encountered). The computation of the A[t+ 1]-machine from this point onward
(which starts with a universal guess instruction and has < ¢t — 1 alternations) can be encoded
as an instance ((A, @), |¢]) of p-MC(X4[3]) (see Remark 11), but the size of A depends on |z|.
Therefore, A must (for the most part) be computed by the oracle A[l]-machine and written
to the oracle registers ahead of time, during the deterministic phase of the computation, with
only the formula ¢ left to be computed during the nondeterministic phase. This is why it
is necessary to allow tail-nondeterministic oracle machines access to their oracle registers
throughout the entire computation.
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For the reverse inclusion, we have that an A[t + 1]-machine can simulate an oracle
AJ1]-machine on input (x, k), by first simulating the deterministic part of the computation
deterministically, and then using (¢ + 1)-alternating nondeterminism to simulate both the
oracle A[l]-machine’s existential guesses, as well as all of the p-MC(X,[3])-queries (this is
accomplished in the same way as in the classical proof). In order to evaluate the queried
instances, however, the A[t + 1]-machine’s computation must be in its nondeterministic
phase, so it is essential that:

the simulated oracle machine can not make queries outside of the last h(k) steps of its

computation, for some computable function h;

the size of the formulas in the queried instances is < g(k), for some computable function

g (balanced oracle access);

the quantifier-free part of a formula can be evaluated efficiently (relational structures

must be encoded in such a way that expressions involving relations can be evaluated by a

RAM in time independent of the size of the relational structure; see Remark 8).

» Theorem 13. For every t > 1, A[1]PMCCHBD = At +1].

Since, for every ¢ > 1, the problem used as an oracle in Theorem 13 is complete for A[t], it
would be tempting to now state that A[1]A = A[t+1], because this would imply a “collapse
theorem” for this hierarchy, namely that V¢t > 1: A[t] = At + 1] = (V' > t: Aft] = A[t']).
Unfortunately, tail-nondeterminism appears to be too weak for such a collapse theorem to
be proved in this fashion. In fact, it is not even certain whether A[1]¥PT C A[2]: This is
because an A[2]-machine trying to simulate an A[1]-machine that has oracle access to some
non-trivial problem in FPT, on some input (z, k), may have to enter the nondeterministic
phase of its computation before it even knows the instance to be queried (the simulated
machine may write a large instance to its oracle registers, and then nondeterministically
make some changes to it before querying the oracle). The size of this instance may depend
on |z|, and although it can be decided in fpt-time, it may not be possible to decide it in
time h(k), for some computable function h, even with 2-alternating nondeterminism. Thus,
the property of p-MC(X;[3]) that, with the right encoding, an instance ((A, ¢),|¢|) can be
decided by a t-alternating tail-nondeterministic ARAM in time depending computably only
on |¢|, appears to have been crucial for our oracle characterization of the A-Hierarchy.

The next theorem is the parameterized analogue of a famous classical result of Baker, Gill,
and Solovay [4]. The construction of a parameterized oracle B relative to which FPT and
A[1] differ, is done via diagonalization and uses similar ideas as the classical proof in [4], but
with two noteworthy differences:

First, when diagonalizing against all FPT-machines, we can not computably list all such
machines, because the f(k)-term in their running times can be any computable function.
We must therefore proceed more carefully with the construction in order to obtain an oracle
which is computable.

Second, when running each RAM on larger and larger inputs for an increasing number of
steps while constructing the oracle, we are free to increase both the size of the main part of
the input and the parameter value. Having this additional dimension of the input works in
our favor, and allows us to “kill” the f(k)-term in the running time of any FPT-machine by
increasing |z| so that |z| > f(k), at which point we can treat f(k)|x|® as a polynomial in |z|.

» Theorem 14. There exist parameterized oracles A and B such that

FPT(A)ai = A[1]* and FPT(B)aq C A[1]P (and even A[1]% \ FPT(B) #0).
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Relativization results for RAMs with parameter-bounded nondeterminism. For this ma-
chine model, we first need to define the analogue of the Polynomial Hierarchy.

» Definition 15. For each t > 1, let E£P] be the class of parameterized problems that can
be decided by a parameter-restricted t-alternating ARAM A such that, for some computable
function h, on any input (z, k), A executes at most h(k) nondeterministic instructions on
any computation path. Furthermore, we define W[PJH := [ J;2, ELP}.

Clearly, W[P] = E[1P] C WIPIJH C AWI[P]. For t > 2, ELP]—complete problems can be
obtained by modifying known W[P]- or AW[P]-complete problems appropriately (see [6, 11]).

We turn to the oracle characterization of this hierarchy. Since a W[P]-machine can
compute fpt-reductions at any point in the computation, the choice of the complete problem
given as an oracle is no longer important. Now the proof of the theorem proceeds in the same
way as the characterization of PH in terms of oracle machines (see [3], Section 5.5), but note
that for the “C”-inclusion, the restrictions on the oracle access are nevertheless essential:
balanced access ensures that the Egi]l—machine can nondeterministically decide the instances
queried by the oracle machine, and parameter-bounded access ensures that the number of

queries made by the oracle machine is not too large for a Eﬁ]l-machine to simulate.

»[P] . (P]
» Theorem 16. For cach t > 1, we have W[P]™t =X, .

» Corollary 17. For any t,u > 1, if ELP] = Zl[fi]u, then W[PH = EI[SP].

Finally, we have the oracle separation result for this machine model, as in [4]:
» Theorem 18. There exist parameterized oracles A and B such that

FPT(A)para = WP and FPT(B)pare C W[P]® (and even W[P)” \FPT(B) # ().

=

For the proof, it suffices to use the same two oracles as in the proof of Theorem 14.

4 Interactive proof systems for parameterized complexity classes

A classical interactive proof system consists of a verifier and a prover who exchange messages
in order for the verifier to decide whether a given input is a ‘yes’-instance of a problem. The
verifier is a probabilistic TM, meaning that he can guess random bits, but his computation
throughout the entire interaction is time-bounded polynomially in terms of the size of the
input instance (and therefore so is the length of the messages he can send or receive). The
prover is computationally all-powerful, but he only sees the input and the messages sent
by the verifier (not the verifier’s random bits), and his goal is to convince the verifier to
accept. A proof system is said to decide a problem Q if every x € @ is accepted by the
verifier with probability (over the verifier’s random bits) > 2/3 for some prover, and every
x ¢ @ is accepted by the verifier with probability < 1/3 for any prover (see [3], Chap. 8).

Here we make a slight change to this definition, in order to apply the concept to
parameterized complexity classes, by letting the verifier be a probabilistic RAM (meaning
that he can guess non-negative integers of bounded size in a single step), and allowing the
messages between verifier and prover to be strings of non-negative integers of bounded size.
This change does not affect the (classical) class IP (see Remark 2), but allows us to apply
separate bounds to different aspects of the proof systems.
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Arithmetization of first-order formulas with relational vocabularies. Before we can give
interactive proof systems for parameterized complexity classes, we need to adapt the main
technical tool used in such results, namely arithmetization. The main idea behind the
original version of this technique is that a quantified Boolean formula can be replaced by a
multivariate polynomial which coincides with the formula on all assignments of values to
the non-quantified variables, if the Boolean truth values are identified with the elements
of GF(2) (in other words, the Boolean formula is encoded as a polynomial). Once this is
accomplished, the polynomial can also be evaluated over some larger field, which is a key
ingredient of the proof that PSPACE C IP [15].

We wish to encode a pair (¢, A) as a polynomial, where ¢ is an FO formula, A is a
relational structure with the same vocabulary as ¢, and the universe A of A is {0,...,n},
n € N\ {0}. The main obstacle here is that the atomic formulas in ¢ are not Boolean
variables, but relational expressions of the form Rz ...z;, which evaluate to Boolean values
whenever the variables are assigned values from A. We need a way to encode such a relational
expression as a polynomial Pgr that takes the values 0 or 1 whenever xy,...,x; € A, in
accordance with the relation in A corresponding to R. To do this, we first choose a prime
g > n + 1 and identify A with a subset of {0,...,qg — 1}. We then take Pr as the sum over
all terms of the form (1 — (X —a1)? 1) -...- (1 — (X —a)?!), where (a1,...,q;) is in the
relation corresponding to R in A, and argue via Fermat’s Little Theorem that whenever Pr
is evaluated over values from GF(q), at most one such term is 1, the rest being 0, and that
Pg therefore encodes the expression Rz ...x;. (See the full version of the paper for details.)

With arithmetization generalized in this way, we are now in a position to construct an IP
similar to the one used in [16] to show that PSPACE C IP, and prove the following:

» Theorem 19. For every problem Q € AWI[SAT), there is an interactive proof system
deciding Q such that, for some computable functions f and h, and a polynomial p, on any
input (z, k), the verifier runs in time f(k)p(|z|), guesses at most h(k) random numbers, and
the interaction has at most h(k) rounds.

The IP in Theorem 19 has both the number of rounds and the number of random guesses
made by the verifier bounded computably in terms of the parameter, but the length of the
prover’s messages and of the verifier’'s computations between rounds are “fpt-bounded”. In
order for an AW /[x]-machine to simulate an interactive proof, it would presumably need to
nondeterministically guess the prover’s messages, as well as the random guesses made by the
verifier, so the entire interaction would have to be simulated in the last h(k) steps of the
computation (due to tail-nondeterminism). In other words, the proof system would have
to be such that the verifier only performs an fpt-bounded pre-computation, followed by an
interaction that is entirely bounded in the parameter alone. We conjecture that the class
of problems with such IPs, which we call Pt s precisely AW |[x]. The evidence for this
conjecture is that when the size of the FO formula is bounded in terms of the parameter,
it seems that the IP from Theorem 19 can be improved so that at least the length of the
prover’s messages depends only on the parameter, by using only symbols for the polynomials

representing the atomic relations, rather than expanding them into algebraic expressions.

Getting the same bound for the verifier’s computations between rounds is more challenging.

5 Conclusions

We have shown that, with some degree of effort, certain classical methods can be put to
use in the parameterized setting, although some theorems only partially transfer over. The
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fact that different aspects of the computation of a RAM are bounded differently, and that
some computational resources can be tail-restricted, ensures that the machine-based theory
of parameterized intractability is by no means just “complexity theory with RAMs”.

One can now attempt to make some progress on the problem of separating matching levels
of the A- and the W-Hierarchy by proving oracle separations when reasonable restrictions
are placed on the oracle access of the respective machines. Another question is related to
the fact that the implication NP # P = A[l] # FPT is not known to hold: It would be
interesting to show that this implication fails to hold relative to some oracle.
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—— Abstract

In the last years, kernelization with structural parameters has been an active area of research
within the field of parameterized complexity. As a relevant example, Gajarsky et al. [ESA 2013]
proved that every graph problem satisfying a property called finite integer index admits a linear
kernel on graphs of bounded expansion and an almost linear kernel on nowhere dense graphs,
parameterized by the size of a c-treedepth modulator, which is a vertex set whose removal results
in a graph of treedepth at most ¢ for a fixed integer ¢ > 1. The authors left as further research
to investigate this parameter on general graphs, and in particular to find problems that, while
admitting polynomial kernels on sparse graphs, behave differently on general graphs.

In this article we answer this question by finding two very natural such problems: we prove
that VERTEX COVER admits a polynomial kernel on general graphs for any integer ¢ > 1, and
that DOMINATING SET does not for any integer ¢ > 2 even on degenerate graphs, unless NP C
coNP /poly. For the positive result, we build on the techniques of Jansen and Bodlaender [STACS
2011], and for the negative result we use a polynomial parameter transformation for ¢ > 3 and
an OR-cross-composition for ¢ = 2. As existing results imply that DOMINATING SET admits a
polynomial kernel on degenerate graphs for ¢ = 1, our result provides a dichotomy about the
existence of polynomial problems for DOMINATING SET on degenerate graphs with this parameter.
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1 Introduction

Motivation. There is a whole area of parameterized algorithms and kernelization invest-
igating the complexity ecology (see for example [18]), where the objective is to consider a
structural parameter measuring how “complex” is the input, rather than the size of the
solution. For instance, parameterizing a problem by the treewidth of its input graph has
been a great success for FPT algorithms, triggered by Courcelle’s theorem [4] stating that
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any problem expressible in MSO logic is FPT parameterized by treewidth. However, the
situation is not as good for kernelization, as many problems do not admit polynomial kernels
when parameterized by treewidth unless NP C coNP /poly [2].

Of fundamental importance within structural parameters are parameters measuring the
so-called “distance from triviality” of the input graphs (a term that was first coined by
Guo et al. [13]), like the size of a vertex cover (distance to an independent set) or of a
feedback vertex set (distance to a forest). Unlike treewidth, these parameters may lead to
both positive and negative results for polynomial kernelization. An elegant way to generalize
these parameters is to consider a parameter allowing to quantify the triviality of the resulting
instance, measured in terms of its treewidth. More precisely, for a positive integer ¢, a
c-treewidth modulator of a graph G is a set of vertices X such that the treewidth of G — X
is at most ¢. Note that for ¢ = 0 (resp. ¢ = 1), a c-treewidth modulator corresponds to a
vertex cover (resp. feedback vertex set).

Treewidth modulators have been extensively studied in kernelization, especially on classes
of sparse graphs, where they have been at the heart of the recent developments of meta-
theorems for obtaining linear and polynomial kernels on graphs on surfaces [3], minor-free
graphs [8], and topological-minor-free graphs [12, 15], all based in a generic technique known
as protrusion replacement. However, as observed in [11, 15], if one tries to move further
in the families of sparse graphs by considering, for instance, graphs of bounded expansion,
for several natural problems such as TREEWIDTH-t VERTEX DELETION (minimizing the
number of vertices to be removed to get a graph of treewidth at most ¢), parameterizing by
a treewidth modulator is as hard as on general graphs.

This observation led Gajarsky et al. [11] to consider another type of modulators, namely
c-treedepth modulators (defined analogously to c-treewidth modulators), where treedepth is
a graph invariant — which we define in Section 2 — that plays a crucial structural role on
graphs of bounded expansion and nowhere dense graphs [17]. Gajarsky et al. [11] proved that
any graph problem satisfying a property called finite integer indexr admits a linear kernel on
graphs of bounded expansion and an almost linear kernel on nowhere dense graphs when
parameterized by the size of a c-treedepth modulator. Shortly afterwards this result was
obtained, the authors asked [5] to investigate this parameter on general graphs, namely to
find natural problems that admit and that do not admit polynomial kernels parameterized
by the size of a c-treedepth modulator. More precisely, are there natural problems II; and
I, fitting into the framework of [11] such that II; /c-tdmod admits a polynomial kernel on
general graphs, but IIs/c-tdmod does not? (As defined in Section 2, “/c-tdmod” means
“parameterized by the size of a c-treedepth modulator”.)

Our results. In this article we answer the above question by proving that VERTEX COVER
and DOMINATING SET are such problems II; and Ils, respectively. Let us now elaborate a
bit more on our results, the techniques we use to prove them, and how do they compare to
previous work in the area (see the preliminaries of Section 2 for any undefined terminology).

Note first that both VC/c-tdmod and DS/c-tdmod (where VC and DS stand for VERTEX
COVER and DOMINATING SET, respectively) are FPT on general graphs, as they are FPT by
treewidth [4], which is a smaller parameter than c-tdmod, as for any graph G and any integer
¢ > 0, it holds that tw(G) < td(G) — 1 < c-tdmod(G) + ¢ — 1. Thus, asking for polynomial
kernels is a pertinent question.

In Section 3 we prove that VC/c-tdmod admits a polynomial kernel on general graphs.
Our approach is based on the techniques introduced by Jansen and Bodlaender [14] to prove
that VC/1-twmod (or equivalently, VC/FVS, where FVS stands for FEEDBACK VERTEX
SET) admits a polynomial kernel. More precisely, we use three reduction rules inspired from
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the rules given in [14], and we present a recursive algorithm that, starting from a c-treedepth
modulator, constructs an appropriate (¢ — 1)-treedepth modulator and calls itself inductively.

The kernel obtained in this manner has x20<02) vertices, where x is the size of the c-treedepth

modulator. This result completes the following panorama of structural parameterization for

VERTEX COVER, which has been a testbed for structural parameterizations in the last years:
VC/1-twmod (or equivalently, VC/FVS) admits a polynomial kernel [14].
VC/c-twmod for ¢ > 2 does not admit a polynomial kernel unless NP C coNP /poly [6].
VC/2-degmod (distance to a graph of maximum degree 2) and VC/c-CVD (distance to a
disjoint collection of cliques of size at most ¢) admit a polynomial kernel [16]. Note that
our result generalizes the latter kernel, as a disjoint collection of cliques of size at most ¢
is a particular case of a graph having treedepth at most c.
VC/pfm (distance to a pseudoforest, a graph in which every connected component has at
most one cycle) admits a polynomial kernel [9].

In Section 4 we turn to negative results for DOMINATING SET. We provide a characteriz-
ation, according to the value of ¢, of the existence of polynomial kernels for DS/c-tdmod on
degenerate graphs. Indeed, using the results of Philip et al. [19] it is almost immediate to
prove that DS/1-tdmod (or equivalently, DS/VC) admits a polynomial kernel on degenerate
graphs. For ¢ > 3, we rule out the existence of polynomial kernels for DS/c-tdmod on
2-degenerate graphs by a simple polynomial parameter transformation from DS/1-tdmod on
general graphs, which does not admit polynomial kernels unless NP C coNP /poly [7]. The
remaining case, namely DS/2-tdmod, turns out to be more interesting, and we rule out the
existence of polynomial kernels on 4-degenerate graphs by providing an OR-cross-composition
from 3-SAT. This dichotomy for the existence of polynomial kernels for DS/c-tdmod on
degenerate graphs is to be compared with the dichotomy for VC/c-twmod on general graphs
discussed above [14, 6].

As mentioned before, it is commonly admitted that almost no natural problem admits
a polynomial kernel parameterized by tw, or even with td. However, to the best of our
knowledge the only published negative results are those in [2], which together with [10] imply
that IS/tw and DS/tw do not admit a polynomial kernel unless NP C coNP /poly. As this
result only holds for general graphs, for the sake of completeness we complete it in the full
version, by showing that a large majority of the problems considered in [11] having an almost
linear kernel parameterized by c-tdmod on nowhere dense graphs do not admit polynomial
kernels parameterized by td, even on planar graphs of bounded maximum degree.

Due to space limitations, the proofs of the results marked with ‘(x)’ have been moved to
the full version. We also refer the reader to the full version for the definition and acronyms
of problems considered in the paper.

2 Preliminaries

We present here just some preliminaries about graphs. The basic definitions about paramet-
erized complexity can be found in the full version.

Unless explicitly mentioned, all graphs considered here are simple and undirected. Given
a graph G = (V,F) and X C V, we denote Nx(v) = N(v) N X, where N(v) = {u € V|
{u,v} € E}. We denote by a(G) the size of a maximum independent set of G. For any
function f defined on any induced subgraph of a given graph G, given a subset of vertices V'
of G, we denote f(V') = f(G[V']) (for example, a(V’) = a(G[V'])). For any integer n, we
denote [n] ={i e N|1 <i<n}.

For the following definitions related to treedepth, bounded expansion, and nowhere dense
graph classes, we refer the reader to [17] for more details, and we only recall here some basic
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notations and facts. The treedepth of a graph G (denoted td(G)) is the minimum height of a
rooted forest F' (called a treedepth decomposition) such that G is a subgraph of the closure
of F', where the closure of a rooted tree is the graph obtained by adding an edge between
any internal vertex and all its ancestors, and the height of a rooted tree is the number of
vertices in a longest path from the root to a leaf. Let ¢ > 1 be an integer. A c-treedepth
modulator is a subset of vertices X C V such that td(G[V \ X]) < ¢, and we denote by
c-tdmod(G) the size of a smallest c-treedepth modulator of G. A c-treewidth modulator is
defined in the same way. Recall that as these parameters are greater than their associated
measure (i.e., tw(G) < c-twmod(G) + ¢) the negative results for kernelization by treewidth
and treedepth do not immediately apply, but the positive FPT results do.

Concerning graph classes, we recall that in the sparse graph hierarchy, graphs of bounded
expansion (BE) and nowhere dense graphs (ND) are related to classic sparse families as
follows (see [17] for the definitions): planar graphs C minor-free graphs C BE C ND. Note
also that the class of graphs of bounded degeneracy is a natural superclass of BE (intuitively,
BE also requires the shallow minors to be degenerate), and is incomparable with ND.

3 A polynomial kernel for VC/c-tdmod on general graphs

In this section we prove that for any positive integer ¢, VC/c-tdmod admits a polynomial
kernel on general graphs. Recall that this was only known for VC/1-tdmod and VC/2-tdmod,
as for ¢ = 1 this corresponds to the standard parameterization and we can use the linear
kernel of [1], and for ¢ = 2 we have 1-twmod < 2-tdmod (as a 1-twmod corresponds to the
distance to a forest, while 2-tdmod corresponds to the distance to a star forest), and thus we
can use the polynomial kernel of [14] for VC/1-twmod. We also recall that we cannot expect
to extend our result to VC/c-twmod for any ¢ > 2 [6].

As VC/c-tdmod and IS/c-tdmod are clearly equivalent for this parameterization, we
provide the result for IS /c-tdmod. More specifically, in Subsection 3.1 we provide a polynomial
kernel for a-c-tdmod-IS, an annotated version of our problem on hypergraphs defined below,
and in Subsection 3.2 we derive a polynomial kernel for IS/c-tdmod.

3.1 A polynomial kernel for a-c-tdmod-IS/(| X | + |H|)

Working with hypergraphs is useful because we will use a reduction rule identifying a subset
X'’ of the modulator that cannot be entirely contained in a solution; this will be modeled by
adding a hyperedge on the set X'.

ANNOTATED ¢-TREEDEPTH MODULATOR INDEPENDENT SET (a-c-tdmod-IS)
Instance: (G, X, k) where
«G = (V,E,H) is a hypergraph structured as follows: V = X W R,
E = FEx rW ER, R is a set of edges where edges in F4, g have one endpoint
in A and the other in B, and H C 2% is a set of hyperedges where each
H € H is entirely contained in X.
¢ X is a c-treedepth modulator (as G[V \ X] is no longer a hypergraph,
its treedepth is correctly defined and we have td(V \ X) < ¢).
o k is a positive integer.
Question: Decide whether a(G) > k (where an independent set in a hypergraph is a
subset of vertices that does not contain any hyperedge, corresponding here
to a subset S C V such that for every h € EUH, h ¢ S).
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Throughout this subsection I = (G, X, k) denotes the input of a-c-tdmod-IS with G =
(V,E,H) and V = X W R. Note that G[X] is a hypergraph and that G[R] is a graph, and
that the parameter we consider here is | X| 4 |H|. For any X’ C X and R’ C R, observe that
the notation Ng/(X') is not ambiguous and denotes {v € R’ | 3z € X’ with {z,v} € E}.

We use the following definition that was introduced in [14] for VC/1-twmod.

» Definition 1 (14]). Given X’ C X and R’ C R, let confr/ (X’) = a(R') — a(R'\ Nr/(X"))
be the conflicts induced by X’ on R'.

Intuitively, confr/(X’) measures the loss in the size of a maximum independent set of R’
due to X’. We extend the previous definition in the following way: for any R’ C R and any
Y' C R, let confr/(Y') = a(R') — a(R'\'Y'). We can see that confr/(Y') = 0 is equivalent
to the existence of an independent set S* C R’ such that |[S*| = a(R’) and S*NY’' = 0.

» Lemma 2.7 Let R C R bea connecteii component ng and let Y C R'. If confr/ (Y") > 0,
there exists Y CY' such that confr (Y') > 0 and |Y'] < f(¢) with f(c) = 2¢.

Proof. As it holds that td(R’) < ¢, let us consider a treedepth decomposition of R’ with
root r and ¢ > 1 subtrees, where A;, i € [t] is the vertex set of subtree i. We can partition
Y’ =U,epeq Y7 with Y] C A; for i € [t], Y/,; € {r}, where the Y;"’s are possibly empty. We
will prove the lemma by induction on ¢. Observe that } -, ;) a(4;) < a(R') < 1437, a(Ai),
and thus we distinguish two cases according to the value of a(R’).

Case 1. a(R') =1+ ) ;cy@(A;). In this case any maximum independent set 5™ of R’
contains r. Hence for every ¢ € [t], S* N A; is a maximum independent set in A; \ Ny, (r),
and thus a(4; \ Ny, (r)) = a(A;). Indeed, if we had a(A; \ Na,(r)) < a(4;) for some i, then
|5*| would be strictly smaller than 1+ 3,1, a(4;).

Ifr €Y’ (ie.,if Y/,, # 0) then we can take Y’ = {r} (as any optimal solution of R’ must
contain r we get a(R'\ {r}) < a(R’), and |[Y’| =1 < 2¢), and thus we suppose henceforth
that Y/ , = 0.

We claim that there exists g € [¢] such that coanio\]\;Ai0 o (Y;) > 0. Indeed, otherwise
we could define for any ¢ € [t] an independent set S; C A;\ Ny, (r) with |S;] = a(A;\Na,(r)) =
a(A;) and S;NY{ = 0. Thus, S* = {r}U;c[)S; would be an independent set of size a(R'), and

as Y/, = 0 we would have S*NY” = (), a contradiction to the hypothesis that confr/(Y”) > 0.

f g w) > 0 and
|YZ| < 2¢71 Let us verify that Y/ = Y:’O satisfies confp/(Y”) > 0. Let S* be an independent

K2

set of R’ with S*NY’ = . If r ¢ S* then clearly |S*| < a(R'). Otherwise, |S*| =

Thus, there exists ig € [t] such that coaniO\NAiO m(Y:)) >0, and as td(4;, \ Na, () <c,
by induction hypothesis there exists Y, C Y/ such that confa, \n, () (Y}
i0

(Xicq 15" N(ANNA (M) +1 < alAig \Nay, () =14+ icyizzip (A \Na, (1)) +1 < a(R).

Case 2. () =3_,cya(A;). In this case there exists i € [t] such that conf,, (Y)) > 0.

Indeed, otherwise we could define for any ¢ € [¢] an independent set S; C A; with |S;| = a(4;)
and S;NY; = 0, and the existence of S* = Usef)S: would be a contradiction to the hypothesis
that confr/(Y’) > 0. Thus, by the induction hypothesis there exists Y C Y}/ such that
confa, (Y7) >0 and |Y7 | <2¢7.

If r € Y (e, if Y/,; # 0) then we can take Y/ = Y;’U U {r}. Let us verify that
confr/ (Y’) > 0. Let S* be an independent set of R’ with S* NY’ = (. As S* cannot contain
rwe have |S*| =370 [S™ N Ail < a(Aig) + 351,10, 197 N Ail = a(R'). Thus, we suppose
from now on property py : Y/, = 0.
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Figure 1 (a) Example of a graph G[R'] (left) with an associated treedepth decomposition (right)
as used in Lemma 2, with Y’ = {c1,c2}. This case corresponds to one of the subcases treated in
Case 2 of Lemma 2, as a(R’) = a(A41) + a(Az2) = 4, confa, (Y{) > 0, conf 4, (Y5) = 0. Moreover, p2
and p5 are true, while ps is false (but pj is true). (b) Example for ¢ = 2 of the construction of
Lemma 3, where the circled vertices belong to S.

Note that in this case (when p; is true) we cannot simply set Y/ = Yj’o , as shown in

the example depicted in Figure 1. Indeed, in this example we would have Y’ = Yl’0 ={c1},
however confgr/({c1}) = 0 as S* = {by,v1, ca,va} verifies |S*| = a(R') and S* N {c1} = 0.

Properties related to a. We claim that we can assume property po : for every i # i,
a(A; \ Na,(r)) = a(4;). Indeed, if ps is not true, then there exists iy # ig, i1 € [t]
such that a(A;, \ Na, (1)) < a(A;,), and we set Y = Y;’O Let S* be an independent
set of R’ with S*NY’ = (. If r ¢ S* then as previously |S*| < a(R’), otherwise we get
5™ < a(Aip) =1+ a(Aiy) = 1+ (i iio,iniy @(Ai)) +1 < a(R'). Thus, we now assume
P2.

Let us now prove the following property p5 : a(4;, U{r}) = a(4;,). By contradiction,
suppose that there exists an independent set ST of A;, U {r} containing r such that |ST| =
a(A;,)+1. According to pz, for every i # ig there exists an independent set S; of A; \ Ny, ()
of size a(4;), and thus a(R') > >,y @(A;), a contradiction. Thus, we now assume p5.

Properties related to conf 4,(Y/). Let us prove than we can assume the following property

ps : for every i # io,confs\n, ()(Y/) = 0. Indeed, if ps is not true we can get the

desired result as follows. Let i1 # g, 41 € [t] such that confa, \N4. () (Y{) > 0. We use
i1

the same arguments as in the previous paragraph and define Y’ = Y, U Y;’l . Note that
Y| < |Yz’0| + |Yj’1| < 2¢. Using the same notation, if r ¢ S* then [S™[ = (3 ;¢ [5™ N Ai]) <
o(Aig) =14+ (X 1,120, ¥(Ai)) < a(R'), and otherwise [S*| = (32, ¢y [S"N(Ai\Na, (r))|)+1 <
a(Aig) = 14 a(Aiy) = 1+ (i i, iy ¥(Ai)) +1 < a(R’). Thus, we now assume ps.
Note that p2 and ps imply property pj : for every i # ig, conf 4,(Y;) = 0.

Case 2a. 3S* maximum independent set of R’ such that r € S*. In this case, we set
Y = Y/ . Let us prove that conf g/ (Y’) > 0. Let S* be a maximum independent set of R’ with
S*NY' =0. Asr ¢ 8%, weget [S™] = 320 [STNA] < o Aip) =143 e (1,20 ¢(Ai) < ().

Case 2b. 35* maximum independent set of R’ such that r € S*. This implies that
a(Ai, \ Na,, (1)) = a(A;,) — 1. Let us prove that com‘Aio\]\fAi0 (Yi) > 0. If it was not the
case, there would exist an independent set S of A;, \ Na, (r) of size a(A;, \ Na, (r)) =
a(A;,) — 1 such that Sf NY; = (. By ps, there would exist, for every i # ig, an independent
set S of A;\ Na,(r) of size a(A; \ Na,(r)) = a(4;) (by p2) such that S; NY/ = (. Thus,
§* = {r}U(U;epy S7) would be an independent set of size a(R’) such that S*NY" = 0 (recall
that by p1, r ¢ Y'), a contradiction. Thus, we know that both coaniO\J\;Ai0 (i) >0

0
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and confy, (Y;) > 0 (which was established at the beginning of Case 2). Using twice the

induction hypothesis we get that there exists Y;’Ol C Y} such that confy, \Wa,, (r) (Yz’ol) >0
and there exists }/71’02 C Y} such that conf 4, (}/2’02) > 0, with both \Yj’ol| and |Yj’02| bounded
by 2¢71. Thus, we set Y/ = Y;’Ol U Y;’OQ Let us verify that confg/(Y’) > 0. Let S* be an
independent set of R’ with S*NY” = (. If r € §*, then [S*[ = 37, [S*N(Ai \Na, (r))|+1 =
a(Aj, \NAiO (r) -1+ Zie[t],i;éig a(A;) +1=a(4;,) -2+ Zie[t],iyéio a(4;) +1 < a(R).
Otherwise, |[S™[ = 3=, [S* M A = a(Aiy) — 1+ 3 ez, ¢(4i) < a(RY). <

A first lower bound on the function f of Lemma 2 can be obtained by considering a
clique R’ on c vertices (hence, with td(R') = ¢) and Y/ = R’, as any Y’ C Y’ satisfies
conf R/(Y/ ) = 0. However, as shown in Lemma 3 below, we can even obtain an exponential
lower bound, showing that the function f(c) = 2¢ of Lemma 2 is almost tight.

» Lemma 3 (x). There exists a constant A such that for any ¢ > X there exists a graph
G = (R,E) and Y C R such that td(G) = ¢, |Y| > 2°73, confr(Y) > 0, and for every
Y CY, confr(Y) = 0.

» Remark. Lemma 2 was proven in [14] when R’ is a forest and with |Y’| < 2. Even if we
already know that IS/2-twmod does not admit a polynomial kernel unless NP C coNP/poly [6],
it remains interesting to observe that, in particular, this lemma becomes false for 2-twmod,
as the graph of Lemma 3 has treewidth 2. This points out one crucial difference between
c-treewidth and c-treedepth modulators.

Let us now start the description of the kernel for a-c-tdmod-1S/(|X| + |H|). Given an
input (G, X, k) of a-c-tdmod-IS, we define the following three rules. Note that these rules
and definitions (and the associated safeness proofs) correspond to Rules 1, 2, and 3 of [14],
except that we now bound the sizes of the subsets by a function f(c) instead of by 2.

» Definition 4. Given an input (G, X, k) of a-c-tdmod-IS (with td(G[R]) < ¢ where R = V' \
X), the chunks of the input are defined by X = {X’ C X | there is no H € H such that H C
X', and 0 < |X'| < f(¢)}, where f(c) = 2°.

Intuitively, the chunks correspond to all possible small traces of an independent set of G in
X. We are now ready to define the first two rules.

Reduction Rule 1: If there exists u € X such that confg({u}) > | X]|, remove u from X.

Reduction Rule 2: If there exists X’ € X such that confr(X’) > |X]|, add X' to H.

» Lemma 5 (%). Rule 1 and Rule 2 are safe: if I = (G, X, k) is the original input of
a-c-tdmod-IS and I' = (G, X', k) is the input after the application of Rule 1 or Rule 2,
then I and I' are equivalent.

Reduction Rule 3: If R contains a connected component R’ such that for every X’ € X,
confr/(X’) =0, delete R’ from the graph and decrease k by a(R').

To prove that Rule 3 is safe we need the following lemma. Recall that we say that X’ C X
is an independent set if and only if there is no H € H such that H C X’.

» Lemma 6 (%). Let I = (G, X, k) be an instance of a-c-tdmod-IS. Let R’ be a connected
component of R. If there exists an independent set X' C X such that confr/ (X’) > 0, then
there exists X' € X such that confr/(X') > 0.
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» Lemma 7 (x). Rule 3 is safe: if I = (G, X, k) is the original input of a-c-tdmod-IS and
I' = (G, X', K') is the input after the application of Rule 3, then I and I' are equivalent.

» Lemma 8 (). Let I = (G, X, k) be an instance of a-c-tdmod-IS, and let s be the number
of connected components of R =V \ X. If none of Rule 1, Rule 2, or Rule 3 can be applied,
then s = O(|X|F(©)F2) where f is the function of Lemma 2.

We are now ready to present our polynomial kernel for a-c-tdmod-IS in Algorithm A
below, which receives as input (I, ¢), where I = (G, X, k) and X is a c-treedepth modulator.

A(I,¢):

If ¢ = 0, return X. Otherwise:

While it is possible, apply Rule 1 (this rule suppresses vertices of X).

While it is possible, apply Rule 2 (this rule adds hyperedges of size at most f(c) to H).

Define the set X, and while it is possible, apply Rule 3 (this rule suppresses some

connected components of R and decreases k accordingly). Let Is = (G3, X3, k3) be the

obtained instance, where G3 = (V3, E53) and Rs = V3 \ X3.

5. For every connected component R’ C R3, compute an optimal treedepth decomposition
of root rg/. Let X, = Ur/CRy. R’ connected{T R’} be the set of roots.

6. Let I' = (G' = (V',E',H'), X', k') be defined as follows. Let V' = V3, X' = X5U X,
and Z={ec€ E;|enX, #0anden X3 # 0}. Let B/ = E3\ Z,H = H3 U Z and
k' = ks (I' corresponds to I3 where we added X, to the modulator, and consequently
removed edges Z from E3 and added them as hyperedges included in X’. Note that X’
is now a (¢ — 1)-treedepth modulator).

7. Return A(I',c—1).

Ll

» Theorem 9. For any fixed ¢ > 0, Algorithm A is a polynomial kernel for a-c-tdmod-
IS/(|X| + |H|). More precisely, for any input I = (G, X, k) (with G = (V,E,H), R =
V' \ X) where X is a c-treedepth modulator, Algorithm A produces an equivalent instance
I = (G X,k (with G = (V,E,H), R = V\ X) where |X| < O(IX|*"“"™"), || <
H| +O(X 2 and R = 0.

Proof. Observe first that Algorithm A is polynomial for fixed ¢. Indeed, computing
confpr/ (X’) is polynomial (as tw(R') < td(R’) and it is well-known that IS/tw is FPT [4])
and there are at most O(|X|°) applications of Rules 1 and 2, and O(s|X|¢) applications of
Rule 3. Moreover, an optimal treedepth decomposition of each connected component can
be computed in FPT time parameterized by ¢, using [17] or [20]. Let us prove the result by
induction on c¢. The result is trivially true for ¢ = 0. Let us suppose that the result holds for
¢ — 1 and prove it for ¢. Observe that X’ is now a (¢ — 1)-treedepth modulator, and thus we
can apply the induction hypothesis on A(I’,c—1). For any £ € [3], let I, = (G, Xy, k¢) with
Gy = (Vy, Ey, Hy) and Ry = V3 \ Xy denote the instance after exhaustive application of Rule
¢, respectively.

Equivalence of the output. By Lemma 5 and Lemma 7, we know that Rules 1, 2, and 3
are safe, and thus that I and I3 are equivalent. Note that I3 is equivalent to I’ as the
underlying input is the same (except that some vertices were added to the modulator). As
using induction hypothesis A(I’,c — 1) outputs an instance I equivalent to I’, we get the
desired result.

Size of the output. We have |Xi| < |X|, |Hi| = |H|, |Xz2| = | X1|, [Ha| < [H1| + |X1|f(c)7
| X3| = |X2|, |H3| = |Hz2| (by Lemma 8, s, the number of connected components of Rs,
verifies s = O(|X3|7()+2)) and |X'| < |X3| + s, and |H/| < |H3| + s|X3].
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2:H))/emd H'| = \(7—[\)?— (?/(|X|f(c)+3). Using

et+1)/2 ct+1)(c+2)/2 -

C+1))(:2)(/2(|X|2 )’2<§Eg<f£?}2m‘ B
) = [H|+O(|X )-

Thus we get | X'| = O(|X|/()+2) = O(|X
induction hypothesis we get that | X| = O(|X'|>
[HI+O(X P = [+ O(X P %) +0( | X

3.2 Deducing a polynomial kernel for IS/c-tdmod

Observe first that we can suppose that the modulator is given in the input, i.e., that
IS/c-tdmod <ppyp c-tdmod-IS/| X | (<ppy is defined in the full version). Indeed, given an
input (G, x,k) of IS/c-tdmod (where x denotes the size of a c-treedepth modulator), using
the 2°-approximation algorithm of [11] for computing a c-treedepth modulator, wet get in
polynomial time a set X such that | X| < 2°-z and td(R) < ¢, where R =V \ X.

Observe also that IS/|X| <ppr a-c-tdmod-IS/(| X | + |#H|) using the same set X and with
|H| < |X|?. Now, as usual when using bikernels, we could claim that as IS is Karp NP-hard
and as a-c-tdmod-IS is in NP, there exists a polynomial reduction from a-c-tdmod-IS, implying
the existence of a polynomial kernel for IS/c-tdmod. However, let us make such a reduction
explicit to provide an explicit bound on the size of the kernel.

» Lemma 10 (%). Let [ = (G, k) with G = (X,H) be an instance of a-c-tdmod-IS as
produced by Theorem 9 (as R = () the set of vertices is reduced to X, and H is a set of
hyperedges on X ). We can build in polynomial time an equivalent instance I' = (G', k') of
IS with G' = (V' E') where |[V'| < O(|X]| - |H]|).

Putting pieces together we immediately get the main theorem of this section.

» Theorem 11. For every integer ¢ > 1, IS /e-tdmod (or equivalently, VC /c-tdmod) admits

l c c
a polynomial kernel on general graphs with O(xw( o +2Hl)

a c-treedepth modulator.

vertices, where x is the size of

4  Excluding polynomial kernels for DS/c-tdmod on degenerate
graphs

Given a graph G, we define G as the graph obtained from G by subdividing each edge ¢
times. In other words, we add a set X, = {x% | £ € [c]} of ¢ vertices of degree 2 for every
edge e € F of G.

» Observation 12 (x). For any ¢ > 0 and any k > 0, G has a dominating set of size k if
and only if G3¢5* has a dominating set of size k+me, where m is the number of edges of G.

Let us start with the following proposition, which follows from existing negative results
for DOMINATING SET parameterized by the size of a vertex cover [7].

» Proposition 13 (x). DS /c-tdmod does not admit a polynomial kernel on 2-degenerate
graphs for any ¢ > 3 unless NP C coNP/poly.

» Observation 14. DS /1-tdmod (or equivalently DS/VC) admits a polynomial kernel on
degenerate graphs. Indeed, given an instance (G,k) of DS/VC, we compute in polynomial
time a 2-approxzimate vertex cover X of G. If | X| < k then we output a trivial YES-instance,
otherwise VO(G) > g and we can apply the polynomial kernel for DS /k on degenerate graphs
of Philip et al. [19].

Thus, by Proposition 13 and Observation 14, the only remaining case for degenerate
graphs is DS/2-tdmod. We would like to point out that the composition of [7] for DS/(k+VC)
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Figure 2 Example of the OR-cross-composition of Theorem 15.

on general graphs cannot be easily adapted to DS/2-tdmod on degenerate graphs, as for
example subdividing each edge also leads to a result for DS/3-tdmod. Thus, we treat the
case DS/2-tdmod on degenerate graphs using an ad-hoc reduction.

» Theorem 15. DS/2-tdmod does not admit a polynomial kernel on 4-degenerate graphs
unless NP C coNP /poly.

Proof. We use an OR-cross-composition (see the full version for the definition) from 3-
SAT. We consider ¢ instances of 3-SAT, where for every i € [t], instance I’ has m; clauses
{Ci]j € [mi]} and n; variables X" = {a} | £ € [n,]}, each clause containing three variables.
We can safely assume that for every i € [t], we have m; = m and n; = n.

Let us now construct a graph G = (V, E) as follows; see Figure 2 for an illustration.
We start by adding to V' the set of vertices X = [, {z¢, Z¢} (and thus [X] = 2n) and
C* ={cy [ £ € [m]} for every i € [t]. Let C'= ;¢ C". For every i € [t], £ € [n], j € [m], we
set {z¢,c;} € E' (vesp. {7y, ¢} € E*) if and only if C} contains z (resp. ;). We add to
E the set ;e £°. Then, we add to V' the set A = {a¢ | £ € [n]}, and create n triangles
by adding to E edges {x¢, ¢}, {ae, z¢}, and {ap, 24} for every ¢ € [n]. Finally, we add to V
the set Y = {y*|i € [t]}, R={r'"|i € [t]}, and a vertex . Then, for every i € [t], we add
to E edges {r®,ci} for every ¢ € [m], edges {r’,y'}, and edges {y’,a}. This concludes the
construction of G. To summarize, G has 3n + t(m + 2) + 1 vertices (vertices are partitioned
into V= (XYUA)U(CUY UR)U{a}) and, in particular, for every i € [t], G[{r'} UC* Uy’]
is a star, and G[{a} UY] is also a star.

The OR-equivalence. Let us prove that there exists i € [t] such that I* is satisfiable if and only
if G has a dominating set of size at most k = n 4 ¢. Suppose first, without loss of generality,
that I' is satisfiable, and let Sy C X be the set of n literals corresponding to this assignment
(thus for every ¢ € [n] we have |Sx N {x, @} =1). Let S =Sy Uy U(R\ {r'}). We have
|S| =n+t, and S is a dominating set of G as

X U A is dominated by Sy,

C" is dominated by Sy as it corresponds to an assignment satisfying I', and for every

i €[t],i >2, C"is dominated by r¢,

y! € S, and for every i € [t],i > 2, y* is dominated by r?,

r! is dominated by y', and for any i € [t],7 > 2, r* € S, and

« is dominated by y!.

For the other direction, let S = Sy U Ss, with S; = SN (X U A), be a dominating set of
G of size at most k = n + t. Without loss of generality, we can always suppose that S; C &,
as if ap € S we can always remove ay from S and add (arbitrarily) x, or @.
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Let us first prove that |S;| = n. Observe first that |S;| > n as dominating A requires at
least n vertices. Suppose now by contradiction that |Si| > n. Then, there would remain at
most ¢t — 1 vertices to dominate R, which is not possible. Note that we even have that for
any £ € [n], |S1 N {xy, 7} = 1, as every a’ must be dominated and |Sy| = ¢.

Let us now analyze Sy (recall that, by definition, S2 C (CUY U R) U {a}). We cannot
have that for every i € [t], |[So N (C*Ur?)| > 1, as otherwise there would be no remaining
vertex to dominate c. Thus, there exists i such that |Sy N (C% U ri)| = 0. This implies
that C% is dominated by Si. As for every ¢ € [n], |S1 N {zs, %, }| = 1, S; corresponds to a
valid truth assignment that satisfies all the C}’s, £ € [m], and the instance I is satisfiable.

Size of the parameter. Let M = X U AU {a}. As G[V \ M] contains ¢ disjoint stars, we have
that 2-tdmod (G) < |M| < poly(n), as required.

Degeneracy. Let us prove that G is 4-degenerate. Observe that any vertex in C has degree
at most 4 (three neighbors in X and one in R). Thus, any ordering of V(G) of the form
(C,R,)Y,a, X, A) (with arbitrary order within each set) is a 4-elimination order of G. <

Note that for DS/c-tdmod with ¢ > 3, the bound in the degeneracy given by Proposition 13
is best possible, as DS can be easily solved in polynomial time on 1-degenerate graphs, i.e.,
forests. On the other hand, for ¢ = 2, in view of Theorem 15 only the existence of polynomial
kernels for DS /2-tdmod on 2-degenerate and 3-degenerate graphs remains open.

5 Concluding remarks and further research

In this article we studied the existence of polynomial kernels for problems parameterized
by the size of a c-treedepth modulator, on graphs that are not sparse. On the positive side,
we proved that VERTEX COVER (or equivalently, INDEPENDENT SET) parameterized by the
size x of a c-treedepth modulator admits a polynomial kernel on general graphs with xzo@z)
vertices, for every ¢ > 1. A natural direction is to improve the size of this kernel. Since
VERTEX COVER parameterized by the distance to a disjoint collection of cliques of size at
most ¢ does not admit a kernel with O(2:°~¢) vertices unless NP C coNP /poly [16], and since
a clique of size ¢ has treedepth ¢, the same lower bound applies to our parameterization; in
particular, this rules out the existence of a uniform kernel. However, there is still a large gap
between both bounds, hence there should be some room for improvement.

On the negative side, we proved that DOMINATING SET parameterized by the size of a
c-treedepth modulator does not admit a polynomial kernel on degenerate graphs for any ¢ > 2.
As DOMINATING SET with this parameterization admits a polynomial kernel on nowhere dense
graphs [11], it follows that sparse graphs constitute the border for the existence of polynomial
kernels. This leads us to the following natural question: are there smaller parameters for
which DOMINATING SET still admits polynomial kernels on sparse graphs? Since considering
as parameter the treedepth of the input graph does not allow for polynomial kernels (see
the full version), we may consider as parameter the size = of a vertex set whose removal
results in a graph of treedepth at most b(x), for a function b that is not necessarily constant.
We prove in the full version that DOMINATING SET does not admit polynomial kernels on
graphs of bounded expansion for b(z) = Q(logx), unless NP C coNP/poly. On the other
hand, by combining the approach of Garnero et al. [12] to obtain explicit kernels via dynamic
programming with the techniques of Gajarsky et al. [11] on graphs of bounded expansion,
it can be shown — we omit the details here — that DOMINATING SET admits a polynomial
kernel for b(z) = O(logloglogx) on graphs of bounded expansion whose expansion function
f is not too “large” (that is, the function F' that bounds the grad with rank d of the graphs
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in the family, see [17]), namely f(d) = 2°(4). While this result is somehow anecdotal, we
think that it may be the starting point for a systematic study of this topic.
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—— Abstract

We investigate parameterizing hard combinatorial problems by the size of the solution set com-
pared to all solution candidates. Our main result is a uniform sampling algorithm for satisfying
assignments of 2-CNF formulas that runs in expected time O*(e~%617) where ¢ is the fraction
of assignments that are satisfying. This improves significantly over the trivial sampling bound
of expected ©*(e71), and on all previous algorithms whenever £ = (0.708"). We also consider
algorithms for 3-SAT with an ¢ fraction of satisfying assignments, and prove that it can be solved
in O*(e=227) deterministic time, and in O*(~9936) randomized time. Finally, to further demon-
strate the applicability of this framework, we also explore how similar techniques can be used for
vertex cover problems.
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1 Introduction

In order to cope with the computational complexity of combinatorial optimization and
satisfiability problems without sacrificing correctness guarantees, one can consider a family of
instances for which a certain parameter is bounded, and analyze the complexity of algorithms
as a function of this parameter. While it is now commonplace in combinatorial optimization to
define the parameter as the size of a solution, we here consider computationally hard problems
parameterized by the number of solutions. More precisely, we will consider satisfiability
problems in which we are promised that a fraction at least € of all possible assignments are
satisfying, and graph covering problems in which a fraction at least ¢ of all vertex subsets of
a certain size are solutions.

Counting and sampling solutions to CNF formulas and more generally to CSP formulas has
important practical applications. For example, in verification and artificial intelligence [12];
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and Bayesian inference [13]. Recent algorithmic developments have made possible practical
algorithms that can tackle industrial scale problems [10].

In contrast to that line of work we focus on the exact complexity of sampling, in particular
to sampling solutions for 2-CNF formulas, and show that we can significantly improve on
the trivial sampling algorithm that repeatedly samples uniformly in the search space and
terminates after ¢! steps on average. A few previous works have also considered satisfiability
problems under the promise that there are many solutions, most notably from Hirsch [6],
and more recently from Kane and Watanabe [9]. Their focus has been on deterministic
algorithms and we extend their work while also adding the consideration of randomized
algorithms for k-SAT.

Before detailing our contributions more precisely, we briefly summarize the current state
of knowledge regarding this family of questions.

1.1 Background and previous work on satisfiability

Hirsch [6] developed a deterministic algorithm that finds a satisfying assignment for a k-CNF
formula F with an ¢ fraction of satisfying assignments in time O*(e7%) where (6;)22, is a
positive increasing sequence defined by the roots of the characteristic polynomials of certain
recurrence relations. The constant obtained for k = 3 is d3 =~ 7.27. The main idea in his
algorithm is that such formulas F' have short implicants which are satisfying assignments that
need to fix only few variables — in this case only O(loge™!) many — and such assignments
can be found relatively fast with a branching algorithm. Trevisan [17] proposed a similar
algorithm to that of Hirsch but with an explicit running time of O*(e~("9#2%) " Although
his algorithm is slightly simpler, the performance guarantees, at least for small k, are worse.

Kane and Watanabe [9] looked at general CNF formulas in a similar setting. They assume
that ¢ > 2_"6, that the number of clauses is bounded by n!*9" and that § + &' < 1. Under
these conditions they show that the formula has a short implicant that only fixes a linear
fraction of the variables and they provide a O*(2”B) time algorithm for finding a solution
with 8 < 1.

Classical derandomization tools naturally apply in this context. For arbitrary CNF
formulas on n variables with 2™ satisfying assignments, one can obtain a deterministic
algorithm by using a pseudorandom generator that e-fools depth-2 circuits. A result by De et
al. [3] provides such pseudorandom generators with seed length O (1og n + log? ~loglog %)

. . o log &
By enumerating over all seeds, we obtain a running time of O* ((g)c o8 e ) for some constant

¢ (assuming there are poly(n) clauses). A recent result of Servedio and Tan improves this
running time to nO0°&1e™* for any ¢ > 1/poly log(n) [16].

We let Sample-2-SAT denote the problem of sampling exactly and uniformly a satisfying
assignment. Due to self-reducibility of satisfiability, any algorithm for the counting problem
#2-SAT can be used to solve Sample-2-SAT with only a multiplicative polynomial loss
in runtime. In fact, so far the best algorithm for Sample-2-SAT is Wahlstrom’s #2-SAT
algorithm [18] that runs in time O(1.238"). In contrast to the exponential time algorithms,
2-SAT can be solved in linear time with the classical algorithm of Aspvall et al. [1]. We
note that while Sample-2-SAT is between 2-SAT and #2-SAT in complexity, under the
assumption RP # NP it is not possible to uniformly or even almost uniformly sample
satisfying assignments in polynomial time. We can use a simple threefold reduction to prove
this:

The constraints for an independent set in a graph can be modeled as a 2-SAT formula.

Therefore a polynomial time algorithm for Sample-2-SAT would give a polynomial time
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algorithm for Sample-IS. (sampling uniformly among independent sets of any size). The
same holds for approximate versions of the problems.

Such sampling algorithms would yield a fully polynomial randomized approximation
scheme (FPRAS) for #IS. See for example the article of Jerrum et al. [8].

Lastly, such an FPRAS exists only if RP = N P. For details see for example the book by
Jerrum [7, Chapter 7, Proposition 7.7].

Even when relaxing Sample-2-SAT to almost uniform sampling, the best algorithm is still
the one based on Wahlstrom’s counting algorithm. This is in contrast to k-CNF formulas
with k£ > 3 which have an exponential gap between exact and almost uniform sampling. More
precisely, the gap is between exact and approximate counting. See Schmitt and Wanka [14]
for a table of the best algorithms.

1.2 Our results

In Section 2 we recall Hirsch’s [6] algorithm for finding a satisfying assignment for a k-CNF
F with a fraction € of satisfying assignments. We slightly generalize his analysis to also
cover improved branching rules for k-SAT. The resulting deterministic algorithms have
running times of O*(e=**) for some positive increasing sequence (A\;)$.,, where for instance
Az < 2.27. We demonstrate how similar techniques can be used for finding vertex covers and
we give a deterministic algorithm running in time sublinear in e~! for instances of k-vertex
cover with at least 5(2) solutions and k bounded by some fraction of n.

In Section 3 we prove our main result, Theorem 7, which describes an algorithm for Sample-
2-SAT that runs in expected time O*(~°-617). It therefore improves on the algorithm based
on Wahlstrom’s algorithm [18] when ¢ = £(0.708"), or equivalently when F' has €(1.415")
satisfying assignments. We leave it as an open problem to decide whether sampling solutions
to 3-CNF formulas can be done in time O*(¢7?) with § < 1 and discuss why the 2-CNF case
does not generalize. In Proposition 8 we show how to solve 3-SAT in time O(s7936(m + n))
using similar ideas.

1.3 Notation

For a Boolean variable x we denote its negation by  and for a set V' of Boolean variables let
V be the set of negated variables. A literal is either a Boolean variable or its negation and in
the former case we call the literal positive and in the latter we call it negative. We think of a
CNF formula, or simply a formula, F over a variable set V as a set F' = {C},Cs,...,Cp}
of clauses where each clause C; C V UV is a set of literals without both = and Z in the
same clause for any variable z € V. By a k-CNF formula and by a (< k)-CNF we denote
CNF formulas in which every clause has cardinality exactly k or at most k, respectively. We
let vbI(F') C V denote the set of variables that appear in F' either as a positive or negative
literal. The empty formula is denoted by {} and the empty clause by 0. An assignment
to the variables in the formula F is a function o : V' — {0,1} and it is said to satisfy F if
every clause C € F is satisfied, namely, if the clause contains a literal whose value is set
to 1 under the assignment. A satisfying assignment is also called a solution. The empty
formula is satisfied by any assignment to the variables and the empty clause by none. The
set of all satisfying assignments of a formula F' over V is denoted saty (F'), and we omit
the subscript V' when it is clear from the context. A partial assignment to F' is a function
B:W — {0,1} with W C V and we let F®] be the formula over the variables V' \ W which
is attained from F' by removing each clause of F' that is satisfied under 8 and then removing
all literals assigned to 0 from the remaining clauses. If u € V UV is a literal and i € {0,1}
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we let FI“~i denote F!P! where j is the partial assignment that maps only u to i. By unit

clause reduction we refer to the process of repeatedly setting variables to satisfy the unit

clauses until finishing the process by exhausting the unit clauses or finding the empty clause.
All the logarithms are in base 2 unless noted otherwise.

2 Deterministic algorithms and Hirsch’s method

In this section we consider Hirsch’s method [6] for finding a satisfying assignment to a k-CNF
formula, and extend the analysis to accommodate any branching rule.

We first briefly recall basic definitions on branching algorithms. A complexity measure
is a function that assigns a nonnegative value p(F') to every instance F' of some particular
problem. Given a problem and a complexity measure p for it, we say that an algorithm
correctly solving the problem is a branching algorithm (with respect to u) if for every instance
F the algorithm computes a list (Fi, ..., F;) of instances of the same problem, recursively
solves the F;’s, and finally combines the results to solve F. Finding the list (F,..., F;) and
recursively solving each of them is called a branching. Letting b; = u(F) — pu(F;) we call the
vector (by,...,b;) the branching vector associated to the branching. Lastly, the branching
number 7(by, ..., b:) is defined as the smallest positive solution of the equation 22:1 z7b =
If X is the largest branching number of any possible branching in the algorithm and T'(F) is
the time used to find the branching and to combine the results after the recursive calls, then
the running time of the algorithm can be bounded by O(T(F)M(F)).

Following Hirsch [6], we consider a breadth-first version of such a branching algorithm,
taking a k-CNF Boolean formula F' as input. We use the number of variables as a measure,
and branch on partial assignments ;, each fixing exactly b; variables. The set ®; in the
algorithm below eventually contains the formulas constructed from input F' after fixing
exactly ¢ variables.

1. set £« 0, ®g + {F}, and @y + 0 for all £ > 0.
2. if {} € &y, then stop and return the so far fixed variables
3. for each F' € ®; such that O & F:

a. find a collection of ¢ partial assignments of the form §; : W; — {0,1}, where W; C

vbl(F)

b. for each i € [t]:

i. ®pyp, — Ppyp, U {F[ﬂl]}
4. (+ /+1;if £ <n then go to step 2

For this algorithm to be correct, the partial assignments in 3a have to of course be chosen
according to a correct branching rule. The complete collection ®, can be seen as a collection
of nodes of the search tree of the recursive algorithm, and is referred to as the ¢th floor of
the tree. The following lemma holds [6].

» Lemma 1. |®| < \* where \ is the mazimum branching number of the recursion tree.

The following result was proved by Hirsch in the special case of the simple Monien-
Speckenmeyer algorithm [11], in which the branching vector was (1,2, ...,k). We generalize
it to arbitrary branching vectors. The proof is left for the full version of this paper [2].

» Theorem 2. Consider a k-CNF formula F with n variables and m clauses, and suppose
it has at least €2™ satisfying assignments. Then any breadth-first branching algorithm for
k-SAT with mazimum branching number Ay < 2 runs in time O*(¢~P) on this instance,

where B :=1/(log,, 2 —1).
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To get concrete bounds from Theorem 2 it remains to find good branching rules for
k-SAT. The improved algorithm by Monien and Speckenmeyer [11] for k-SAT uses the notion
of autarkies and the branching vectors appearing in the algorithm are (1) and (1,2,...,k—1)
of which the latter has the worse branching number. This directly yields the following result
for k = 3.

» Theorem 3. Given a 3-CNF formula F' on n variables and an € > 0 with the guarantee that
|sat(F)| > €2", one can find a satisfying assignment for F in deterministic time O* (=227).

2.1 Vertex cover

The technique we have seen is not unique to satisfiability but extend easily to known graph
problems. As an example, we now consider the vertex cover problem: given a graph G and
an integer k, does there exist a subset S € (V(kG)) such that Ve € E(G),en S # 07 The
optimization version consists of finding a smallest subset S satisfying the condition. We
consider exact algorithms, hence the problem is equivalent to the maximum independent set
problem (consider V(G) \ S). This is naturally related to the previous results on 2-SAT: the
vertex cover problem can be cast as finding a minimum-weight satisfying assignment for a
monotone 2-CNF formula.

We first briefly recall a standard algorithm for finding a minimum vertex cover in a graph
G on n vertices, if one exists, in time O*(1.3803™). First note that if the maximum degree of
the graph is 2, then the problem can be solved in polynomial time. Otherwise, pick a vertex v
of degree at least 3, and return the minimum of 1+ VC(G —v) and VC(G —v— N(v)), where
VC are recursive calls, and N (v) is the set of neighbors of v in G. The running time T'(n)
obeys the recurrence T'(n) = T'(n — 1) + T'(n — 4), solving to the claimed bound. We can also
analyze it with respect to the size k of the sought cover, yielding T'(k) = T'(k — 1) + T'(k — 3),
solving to 1.4656%. In the latter, we do not count the total number of vertices that are
processed, but only those that are part of the solution. Hence we can distinguish the
branching number A related to the number of vertices processed and the branching number
p related to the number of vertices included in the vertex cover (equivalently, the weight of
the current partial assignment). In our case, we have p < 1.4656.

We now consider instances of the vertex cover problem in which we are promised that
Z) vertex covers. Given a branching algorithm, we can parse its search
tree in breadth-first order, by associating with each node the number of vertices included in
S so far (that is, the weight of the partial assignment). We define @, as the set of nodes
with such value ¢, and call it the ¢th floor. The following lemma is similar to Lemma 1.

there are at least 5(

» Lemma 4. |®/| < pf.

After generating the ¢th floor ®,, there are at most p* (Z:ﬁ) remaining covers to check. If
this is less than the total number of solutions of size k, we are done. The following statement
gives an upper bound on the number of levels of the tree we need to parse. We leave the
proof to the full version of this paper [2].

> Lemma 5. Let £*:=In(2)/In(1). Then for k,n >>(* and k < n/p, we have

ofn—1 S (" < o
p (k_£>£<k>:>€£.

For n large enough, Lemma 5 implies that if £ > £* then the number of remaining solutions

is smaller than the promised number 5(2), and either we have found one already, or greedily
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completing any partial solution leads to a solution. Hence the running time is within a linear
factor of p* , which simplifies as follows.

» Theorem 6. Given a Vertex Cover instance composed of a graph G on n vertices, a number
k <n/p, and an € > 0 with the guarantee that G has at least E(Z) vertex covers of size k,
one can find such a vertexr cover in deterministic time

_ _logp )
* log (2
O (a Pk > ,

where p is the branching number of an exact branching algorithm for k-vertex cover. In
particular, this holds for p = 1.4656.

Note that the running time remains sublinear in 1/e for all values of k such that
log p
log( %)
have a deterministic algorithm for k-vertex cover whose complexity improves on the trivial

sampling algorithm.

<1 k <n/p?. Hence for those values of k, and in particular when k = o(n), we

3 Randomized algorithms for Sample-2-SAT and for 3-SAT

In this section we present our algorithm for Sample-2-SAT with an expected running time of
O (e7%5(m + n)) on 2-CNF formulas with more than e fraction of satisfying assignments.
The parameter € does not need to be a constant and the algorithms can be easily modified
so that they do not need to know ¢ in advance. Before stating and proving our main result
we consider a warm-up algorithm that gives a weaker bound but already highlights some
of the main ideas. In the end we discuss the complications of generalizing our method to
Sample-3-SAT and see how to solve 3-SAT in expected time O (7°24%(m + n)) using similar
techniques as for Sample-2-SAT.

Schmitt and Wanka [14] have used analogous ideas to approximately count the number
of solutions in k-CNF formulas.

3.1 A warm-up algorithm for Sample-2-SAT

We will start with a warm-up algorithm that we then improve. Let F' be a 2-CNF formula
over the variable set V' with n := |V| and with m clauses. Let S C F be a greedily chosen
maximal set of variable disjoint clauses. We make the following remarks.
Any satisfying full assignment for F' must in particular satisfy S and is therefore an
extension of one of the 3!! partial assignments to vbl(S) that satisfy all clauses in S.
Because of maximality any partial assignment of the form « : vbl(S) — {0,1} has the
property that Fl is a (< 1)-CNF.
Counting and sampling of solutions of a (< 1)-CNF is easily done in linear time.

The set S allows us on one hand to do improved rejection sampling and on the other
hand to device a branching based sampling. More concretely, consider the following two
algorithms that use S.

1. Sample uniformly among all full assignments for F' that satisfy all the clauses in S until
finding one that satisfies F'.

2. Go through all 3/°I partial assignments o : vbl(S) — {0,1} that satisfy S and for each
a compute Ay = [saty\vbi(s) (Fle1)], i.e., the number of satisfying assignments in FJ.
Then A := ) A, is the number of satisfying assignments in F. Draw one partial
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assignment o* at random so that Pr(a* = a) = A,/A. For the remaining variables
choose an assignment 5* : V'\ vbl(S) — {0, 1} uniformly among all assignments satisfying
Flol. Output the full assignment which when restricted to vbl(S) is o and when
restricted to V' \ vbl(S) is *.

The correctness of the first algorithm is clear since any assignment satisfying F' must
also satisfy S. One sample can also be drawn in linear time. Because the clauses of S are
variable disjoint, the pool of assignments we are sampling from has (%)'S 127 assignments and
it contains all the at least 2™ satisfying assignments. Therefore the probability of one sample
being satisfying is at least (%)‘S‘e, implying an expected runtime of O (571(%)|5|(m +n))
for the first algorithm.

We need the second algorithm to balance the first one when |S| is small. For the
correctness we observe that the partial assignments « partition the solution space in the sense
that A =73 A, = [saty (F')| and a simple calculation shows that the output distribution is
uniform over saty (F'). With the remarks made before the algorithm description we conclude
that the runtime of the second algorithm is O(3/%I(m+n)). If space is a concern, the sampling
of a* can be done in linear space without storing the numbers A, as follows: Sample a
uniform number r from {1,..., A} and go through the partial assignments a again in the
same order and output the first a for which the total number of assignments counted up to
that point reaches at least r.

For any given S we can choose the better of the two algorithms which gives an expected
runtime guarantee of

S|
0 <H|1§LX {3'3,5_1 (Z) } : (m—l—n)) =0 (783 (m +n)) (1)

where log, 3 < 0.793. Note that we do not need to know ¢ in advance to get the same runtime
guarantee as we can simulate running both of the algorithms in parallel until one finishes.

3.2 A faster algorithm for Sample-2-SAT

In the warm-up algorithm we used the set S on the one hand to reduce the size of the
set of assignments we are sampling from and on the other hand we used it as a small size

hitting set for the clauses in F: every clause in F' contained at least one variable from vbl(.S).

To improve we will do two things. Firstly, we will consider more complicated independent
structures that improve on both aspects above, giving us both a smaller size sampling pool
and a better hitting set. Secondly, we notice that it is not necessary to always use an exact
hitting set in the counting procedure but an “almost hitting set” is enough. Namely, if some
small set of variables hits almost all clauses we can count the number of solutions to the
remaining relatively small (< 2)-SAT with a good exponential time algorithm for #2-SAT.

We introduce first some notation. For i € N we call a set of clauses S an i-star if [S| =4
and if there exists a variable z such that for any pair of distinct clauses C, D € S we have
{z} = vbl(C) Nvbl(D). A star is an i-star for some i. For i > 2 we call the variable z the
center of the star and any other variable is called a leaf. For 1-stars we consider both of the
variables as centers and neither of them as leaves. A star is called monotone if the center
appears as the same literal in every clause of the star. We call a set T of exactly three clauses
a triangle if every 2-element subset of T' is a star and T is not itself a star. Finally, we call a
family M of CNF formulas independent if no two formulas in M share common variables.
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Al 1 1NV V

Figure 1 A possible construction of My for a formula F' that is displayed as a graph with the
variables as vertices and edges between variables appearing in the same clause. The subformulas of
F' that make up My are given by the components defined by the black bold edges. The edges that
form up M are the horizontal black bold edges. There is one non-monotone 2-star in My and it is
denoted by the square center vertex.

» Theorem 7. Let F' be a 2-CNF formula on n variables and m clauses and let € > 0 be
such that |sat(F)| > e2™. A uniformly random satisfying assignment for F can be found in
expected time O (e7°(m +n)) where § < 0.617.

Proof. Let V be the variable set of F' and let £ > 2 be a constant independent of ¢ that
we fix later. We start by constructing a sequence (Mg, My, ..., My) of k+ 1 independent
families of formulas where every family consists of subformulas of F'.

Let Mg be any independent 1-maximal family of 1-stars (clauses) in F. That is, in
addition to maximality we require further that there is no clause in the family whose removal
would allow the addition of two clauses in its place. We can find M, with a greedy algorithm
in linear time!.

To construct M; from My, we add clauses of F' to the 1-stars of My greedily to update
them into non-monotone 2-stars or triangles while maintaining independence. As a result
M is an independent family of subformulas of F' that consists of 1-stars, non-monotone
2-stars, and triangles and no 1-star can be turned into the other two types by adding clauses
of F to it without revoking independence.

For i = 2,...,k we construct M; from M,;_;1 by greedily adding clauses of F' to the
monotone (i — 1)-stars to turn them into monotone i-stars while ensuring independence.
Since k is a constant, and all since greedily adding clauses can be done in linear time, the
total time taken to construct the families is O(m + n). An example of M, can be seen in
Figure 1. We describe the structural properties of the families later in the proof.

Analogously to the warm-up algorithm in the previous section we describe two different
algorithms that both make use of the independent families we have constructed and that
complement each other in terms of their running times. The second algorithm describes in
fact k different algorithms, determined by the choice of a parameter ¢ € {1,...,k}. For each
i=1,...,k we let s; denote the number of monotone i-stars in M. By construction the
parameter r; := Z?:Z s; then denotes the number of monotone i-stars in M;. We further
let ¢ be the number of triangles and g be the number of non-monotone 2-stars in My, and
therefore in every M; with ¢ = 1,...,k. The two algorithms we consider are:

1. Sample uniformly among all full assignments for F' that satisfy all the clauses in My,
until finding one that satisfies F.

L This is equivalent to finding a 1-maximal matching in a graph: first find a maximal matching and then
find a maximal set of independent augmenting paths of length 3 and augment them.



J. Cardinal, J. Nummenpalo, and E. Welzl

2. Fix £ € {1,...k}. Define further the variable set W := vbl(M,) and let W C W be
the set of variables of M, that appear in a clause of F' that has exactly one variable of
My, in them. Go through all 2/"’| partial assignments a : W’ — {0,1} and compute
Ay = |satV\W/(F[°‘])| by using Wahlstrom’s #2-SAT algorithm [18]. Let A := )" A,
and choose one partial assignment o* at random so that Pr(a* = a) = A,/A. For
the remaining variables choose an assignment * : V' \ W/ — {0, 1} uniformly among
all assignments satisfying F1*. This can be done by branching on a variable, using
Wahlstrom’s algorithm to count the number of assignments in the two branches, flipping
a biased coin weighed by the counts to decide on the branch and repeating the same on
the resulting formula until all variables have been set. Output the full assignment which
when restricted to W’ is o and when restricted to V '\ W' is g*.

The correctness analysis for both of these two algorithms is essentially the same as in our
warm-up in Section 3.1 and it remains to discuss the running times.

Starting with the first algorithm we note that the stars and triangles in M, have constant
size so the sampling of an assignment can be done in linear time in each iteration. Out of the
2+ possible assignments to the variables in any monotone i-star it can be easily checked
that 2 4 1 satisfy all the clauses in the star. Both for a triangle or for a non-monotone 2-star
there are 8 possible assignments out of which at most 4 are satisfying. Therefore from the
independence of M}, we know that there are at most

k ; S;
2+1\°
—t— n
2 qH<2i+1> 2 )

i=1

full assignments to the variables in F' that satisfy everything in M. Since F' has at least
£2" satisfying assignments and the size of the universe we are sampling from is given by (2)
we conclude that the first algorithm takes expected time

0 (2 I1(%5) s n>> ®)

i=1

until returning a uniform satisfying assignment.

Consider now the runtime of the second algorithm. This is the more intricate part of
the analysis and we will make use of the structure of the families that we have set up. It
may be helpful to consider Figure 1. Let F' € M, be one of the subformulas in the family
M. We claim that [vbl(F’) N W’| <1 and that if vbl(F') N W' = {z}, then F’ is either an
{-star or a non-monotone 2-star and x is the center of the star. Towards showing the claim
let {u,v} be a clause with vbl(u) € W and vbl(v) € V' \ W so that {u,v} is a witness for
vbl(u) € W'. If vbl(u) was a leaf of a star of My, then we could have made M larger which
would contradict the 1-maximality when vbl(u) € vbl(My) or just maximality in the case of

vbl(u) € vbl(My). For the same reasons the variable vbl(u) can not appear in any triangle.

For any j < ¢ the variable vbl(u) can also not be the center of a j-star as otherwise we would
have updated that star into a monotone (j + 1)-star when constructing M1 or we would
have created a non-monotone 2-star already in the beginning while constructing M;. The
options for vbl(u) that remain are the centers of ¢-stars and the centers of the non-monotone

2-stars. In the case of £ = 1 we still have to argue that at most one center may appear in W',

If both of the centers appeared in W', it would either violate the 1-maximality of Mg or we
could have turned the 1-star into a triangle which proves the claim. Therefore we have the
bound |[W'| <1y +g.

11:9

IPEC 2017



11:10

Solving and Sampling with Many Solutions: Satisfiability and Other Hard Problems

We can observe from the argumentation above that if « : W/ — {0,1} is a partial
assignment for F', then doing unit clause reduction on the formula FI?! results in a 2-CNF
formula over some variable set W, C W \ W’. Computing A, with Wahlstrom’s algorithm
takes time O(c/"!) [18]. Therefore we want to bound |W,| as tightly as possible. If the
assignment « sets the center literal of a monotone /-star to 0, then the values of the ¢
remaining variables in the star are determined and will be set to their required values with
unit clause reduction. For a non-monotone 2-star either assignment of the center will force
the value of one of the leaves and one leaf stays undetermined. If « sets 7 of the r, literals in
the centers of the monotone ¢-stars to 0 we get the bound

~

—1
Wol <q+3t+L(re—i)+ ) (§+1)s5. (4)
1

J

Among the assignments « that we consider there are (:‘5)2‘1 different ones that set ¢ of the
central literals of the monotone ¢-stars to 0. Using formula (4) we conclude that the runtime
cost of going over the assignments a and computing the numbers A, is

0 722 Ty 94 | q+3t+£(rri)+2§:(j+l)81‘
; c “(m+n)

=0

=0 | (20)7 (1+ ) l_IcJ+1 -(m+n) (5)

where we used the binomial theorem. We can again use the same trick as in the warm-up
algorithm to sample o* without storing all the values of A, to keep the space require-
ment linear. The running time of finding f* with the branching procedure takes time
O(c!Werl|W o | 4+ (m + n)) which is subsumed by (5).

We have now one algorithm with running time given by (3) and for any ¢ € {1,...,k}
we have an algorithm with running time given by (5). Given the sequence (My,..., My)
we choose the algorithm with the best runtime. To find a worst case upper bound on the
runtime we look for the runtime in the form

O (e7°(m+n)) (6)

and compute the nonnegative parameters si, ..., si;t and ¢ that maximize the minimum of
the different runtimes. Write o; := s;/ log %, 7:=1t/log %, p:=q/log é By taking logarithms
of the runtimes (3), (5) and (6) we can write the problem of finding ¢ and the worst case
parameters o;, T, p as the linear program

max 0
8,0:,T,p
s.t. —T—p-i—Zf ailog(z,H) > 6-1
37'logc—|—plog(20)—i—Zf;llailog(ciH)—i—z:i€ Ullog(l—&—c) > 4§ forallt=1,...,k
6,00, 7, p > 0 foralli=1,....k .

It turns out that we only need to consider k = 7 due to the fact that ¢/*! > 1 + ¢/ in the
integers when j > 7 which implies that the running time for higher values of k& no longer
improves. For k = 7 the linear program has in the optimum § < 0.61618. The approximate
values of the other variables in the optimum are o; ~ 0.131, 09 ~ 0.127,,03 ~ 0.111,04 =~
0.084, 05 ~ 0.051, 06 ~ 0.022, 07 ~ 0.004 and exact values of 7 = 0 and p = 0. This finishes
the proof. <
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We attempted to improve the analysis by constructing families that do not consist only of
stars and triangles but the runtimes we achieved were not better. In some sense stars seem
particularly good for the efficient use of Wahlstrom’s #2-SAT algorithm as a subroutine
because the set W' is not too big. We also note that while we could consider adding the
option of choosing ¢ = 0 in the second algorithm, it is easily verified that choosing ¢ = 1
instead gives a better performance.

3.3 A randomized algorithm for 3-SAT

One could say that our Sample-2-SAT algorithm works because counting and sampling
solutions for a (< 1)-CNF is trivial. Direct generalizations of our method to Sample-3-SAT
do not work because the same is not true for (< 2)-CNF formulas. Instead of solving
Sample-3-SAT we apply our method for 3-SAT.

» Proposition 8. Let F' be a 3-CNF formula on n variables and m clauses and let € > 0

be such that |sat(F)| > 2. A satisfying assignment for F can be found in expected time
O (7187 (m +n)).

Proof. Let S be a maximal set of variable disjoint clauses in F'. Either sample among those
assignments that satisfy S until finding a satisfying assignment or go through all the 7!5!
partial assignments to vbl(S) and check the satisfiability of the resulting (< 2)-CNF.
Checking through the partial assignments takes time O(7!5! - (m + n)) because each of
the 7!5 instances of (< 2)-SAT can be solved in linear time [1]. The rejections sampling
1S9
assignments that contain all the at least €2 many satisfying assignments. Choosing always

the better of the two methods, depending on [S|, gives a worst case running time of
O (7187 (m +n)). <

takes expected time O (671 (%) 5] (m+ n)) because we are sampling from a pool of (%)

Proposition 8 gives an algorithm that works for any e, but there exist better algorithms for
certain ranges of . The PPSZ algorithm for 3-SAT runs in expected time O(1.308™) [5] which
is faster in the case that € = O(0.750™). It is also possible to analyze Schéning’s algorithm [15]
for 3-SAT to get a dependence on ¢ by using an isoperimetric inequality for the hypercube

by Frankl and Fiiredi [4]. The runtime guarantee that results is O ((% -2~ H _1(5)> ) in

expectation where § is the solution to ¢ = 20=Y" and where H : (0,1/2] — (0,1] is the
bijective binary entropy function defined by H(z) = —xlog,(z) — (1 — z) logy(1 — ). We will
include a proof in the full version of this paper [2]. The range where Schéning’s algorithm is
better than Proposition 8 is when € = 0(0.929™).

4 Conclusion

An interesting open problem is whether Sample-3-SAT can be solved time O* (5*5) for
some ¢ < 1. Similarly, can we achieve such a running time for 3-SAT with a deterministic
algorithm?

We also believe that parameterizing by the number of solutions should be a fruitful
approach to other problems besides satisfiability or vertex cover.

Acknowledgments. We would like to thank Noga Alon and Jézsef Solymosi for discussions
on the problem. We also thank the reviewers of IPEC 2017 for valuable remarks that
improved the exposition.
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—— Abstract

We investigate the odd multiway node (edge) cut problem where the input is a graph with a
specified collection of terminal nodes and the goal is to find a smallest subset of non-terminal
nodes (edges) to delete so that the terminal nodes do not have an odd length path between
them. In an earlier work, Lokshtanov and Ramanujan showed that both odd multiway node cut
and odd multiway edge cut are fixed-parameter tractable (FPT) when parameterized by the size
of the solution in undirected graphs. In this work, we focus on directed acyclic graphs (DAGs)
and design a fixed-parameter algorithm. Our main contribution is an extension of the shadow-
removal framework for parity problems in DAGs. We complement our FPT results with tight
approximability as well as polyhedral results for 2 terminals in DAGs. Additionally, we show
inapproximability results for odd multiway edge cut in undirected graphs even for 2 terminals.
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Keywords and phrases Odd Multiway Cut, Fixed-Parameter Tractability, Approximation Algo-
rithms
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1 Introduction

In the classic {s,t}-cut problem, the goal is to delete the smallest number of edges so that
the resulting graph has no path between s and ¢. A natural generalization of this problem
is the multiway cut, where the input is a graph with a specified set of terminal nodes and
the goal is to delete the smallest number of non-terminal nodes/edges so that the terminals
cannot reach each other in the resulting graph. In this work, we consider a parity variant
of this problem. A path! is an odd-path (even-path) if the number of edges in the path is
odd (even). In the ODDMULTIWAYNODECUT (similarly, ODDMULTIWAYEDGECUT), the
input is a graph with a collection of terminal nodes and the goal is to delete the smallest
number of non-terminal nodes (edges) so that the resulting graph has no odd-path between
the terminals. This is a generalization of {s,¢}-ODDPATHNODEBLOCKER (and similarly,
{s,t}-ODDPATHEDGEBLOCKER), which is the problem of finding a minimum number of
nodes that are disjoint from s and ¢ (edges) that cover all s — ¢t odd-paths.

Covering and packing paths has been a topic of intensive investigation in graph theory
as well as polyhedral theory. Menger’s theorem gives a perfect duality relation for min

* A full version of the paper is available at https://arxiv.org/abs/1708.02323.

1 We emphasize that the term paths refers to simple paths and not walks. This distinction is particularly
important in parity-constrained settings, because the existence of a walk with an odd number of edges
between two nodes s and t does not imply the existence of an odd-path between s and ¢t. This is in
contrast to the non-parity-constrained settings where the existence of a walk between s and t implies
the existence of a path between s and t.
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{s,t}-cut: the minimum number of nodes (edges) that cover all s — ¢ paths is equal to the
maximum number of node-disjoint (edge-disjoint) s — ¢ paths. However, packing paths of
restricted kinds is a difficult problem. One special case is when the paths are required to be
of odd-length for which many deep results exist [4, 17, 5]. In this work, we study the problem
of covering s — ¢t odd-paths and more generally all odd-paths between a given collection of
terminals.

Covering s —t odd-paths in undirected graphs has been explored in the literature from the
perspective of polyhedral theory—we refer to Chapter 29 in Schrijver’s book [17]. Given an
undirected graph G = (V, F) with distinct nodes s,t € V' and non-negative edge-lengths, we
may find a shortest length s—¢ odd-path in polynomial time. Edmonds gave a polynomial-time
algorithm for this by reducing the shortest s — ¢ odd-path problem to the minimum-weight
perfect matching problem [13, 7, 8]. However, as observed by Schrijver and Seymour [18], his
approach of reducing to a matching problem does not extend to address other fundamental
problems about s — ¢ odd-paths. One such fundamental problem is the {s,¢}-ODDPATH-
EDGEBLOCKER problem. Towards investigating {s, ¢}-ODDPATHEDGEBLOCKER, Schrijver
and Seymour [18] considered the following polyhedron:

podd-cover . _ {x € Rf : Z ZTe > 1V s —t odd-path P in G} .
ecP

This leads to a natural integer programming formulation of {s,¢}-ODDPATHEDGEBLOCKER:
min {Y cpTe : @ € PoddeovrnZEL By Edmonds’ algorithm, we have an efficient sepa-
ration oracle for P°49-c°ver and hence there exists an efficient algorithm to optimize over
podd-cover yyging the Ellipsoid algorithm [10]. It was known that the extreme points of
podd-cover are not integral. Cook and Sebé conjectured that all extreme points of Podd-cover
are half-integral which was later shown by Schrijver and Seymour [18]. Schrijver and Sey-
mour’s work also gave a min-max relation for the max fractional packing of s — ¢ odd-paths.
However their work does not provide algorithms or address the computational complexity of
{s,t}-ODDPATHEDGEBLOCKER. In this work, we show NP-hardness and an inapproximabil-
ity result for {s,¢}-ODDPATHEDGEBLOCKER in undirected graphs.

The main focus of this work is ODDMULTIWAYNODECUT in directed acyclic graphs
(DAGs). Before describing the reason for focusing on the subfamily of DAGs among directed
graphs, we mention that ODDMULTIWAYNODECUT and ODDMULTIWAYEDGECUT are
equivalent in directed graphs by standard reductions. The reason we focus on the subfamily
of DAGs and not all directed graphs is the following: consider the (s — t)-ODDPATHEDGE-
BLOCKER problem where the input is a directed graph with nodes s,t and the goal is to
find a minimum number of edges to delete so that the resulting graph has no odd-path from
s to t. There is a stark contrast in the complexity of {s,t}-ODDPATHEDGEBLOCKER in
undirected graphs and (s — t)-ODDPATHEDGEBLOCKER in directed graphs: while there
exists a polynomial time algorithm to verify if a given undirected graph has an s —t odd-path
(e.g., by Edmonds’ reduction to a matching problem), it is NP-complete to verify if a given
directed graph has an s — t odd-path (e.g., see Lapaugh-Papadimitriou [13]). Thus verifying
feasibility of a solution to ODDMULTIWAYEDGECUT is already NP-complete in directed
graphs. However, there exists a polynomial time algorithm to verify if a given directed acyclic
graph (DAG) has an s — t odd-path. For this reason, we restrict our focus to DAGs.

Our main contribution is a fixed-parameter algorithm for ODDMULTIWAYNODECUT
in DAGs. We complement the fixed-parameter algorithm by showing NP-hardness and
tight approximability results for the two terminal variant, namely (s — ¢)-ODDPATHNODE-
BLOCKER, in DAGs.
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In addition to approximation algorithms, fixed-parameter algorithms have served as
an alternative approach to address NP-hard problems [9]. A problem is said to be fixed-
parameter tractable (FPT), if it can be solved in time f(k)n®, where k is the parameter, f is a
computable function, n is the size of the input and c¢ is a universal constant. Fixed-parameter
algorithms for cut problems have provided novel insights into the connectivity structure of
graphs [6]. The notion of important separators and the shadow-removal technique have served
as the main ingredients in the design of fixed-parameter algorithms for numerous cut problems
[6]. Our work also builds upon the shadow-removal technique to design fixed-parameter
algorithms but differs from known applications substantially owing to the parity constraint.

Related Work. We are not aware of any prior work on this problem in directed graphs. We
describe the known results in undirected graphs. A simple reduction from vertex cover? shows
that {s,t}-ODDPATHNODEBLOCKER in undirected graphs is NP-hard and does not admit a
(2 — €)-approximation for ¢ > 0 assuming the Unique Games Conjecture [11]. These hardness
results also hold for ODDMULTIWAYNODECUT. The most relevant results to this work are
that of Lokshtanov and Ramanujan [15, 16]. They showed a parameter-preserving reduction
from ODDMULTIWAYEDGECUT to ODDMULTIWAYNODECUT and designed a fixed-parameter
algorithm for ODDMULTIWAYNODECUT. However, their algorithmic techniques work only for
undirected graphs and do not extend immediately for ODDMULTIWAYNODECUT in directed
acyclic graphs.

Lokshtanov and Ramanujan also showed that ODDMULTIWAYEDGECUT is NP-hard in
undirected graphs for three terminals. However, their reduction is not an approximation-
preserving reduction. Hence the approximability of ODDMULTIWAYEDGECUT in undirected
graphs merits careful investigation. In particular, the complexity of ODDMULTIWAYEDGE-
CuT in undirected graphs even for the case of two terminals is open in spite of existing
polyhedral work in the literature [18] for this problem.

1.1 Results

Directed acyclic graphs. We recall that ODDMULTIWAYNODECUT and ODDMULTIWAY-
EDGECUT are equivalent in DAGs by standard reductions. Hence, all of the following results
for DAGs hold for both problems. The following is our main result.

» Theorem 1. ODDMULTIWAYNODECUT in DAGs can be solved in 2O(k2)poly(n) time,
where k is the size of the optimal solution and n is the number of nodes in the input graph.

We briefly remark on the known techniques to illustrate the challenges in designing
the fixed-parameter algorithm for ODDMULTIWAYNODECUT in DAGs. To highlight the
challenges, we will focus on the case of 2 terminals, namely (s — ¢)-ODDPATHNODEBLOCKER
in DAGs.

Remark 1. Tt is tempting to design a fixed-parameter algorithm for (s — t)-ODDPATH-
NODEBLOCKER by suitably modifying the definition of important separators to account for
parity and using the shadow-removal technique for directed graphs [3]. However, the main
technical challenge lies in understanding and exploiting the acyclic property of the input
directed graph.

2 @iven an instance G of vertex cover, introduce two new nodes s and ¢ that are adjacent to all nodes in
G to obtain a graph H. A set S C V(G) is a feasible vertex cover in G if and only if S is a feasible
solution to {s,¢}-ODDPATHNODEBLOCKER in H.
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Remark 2. The next natural attempt is to rely on the fixed-parameter algorithm for multicut
in DAGs by Kratsch et al. [12]. However, their technique crucially relies on reducing the
degrees of the source terminals by suitably branching to create a small number of instances.
On the one hand, applying their branching rule directly to reduce the degree of s in (s — t)-
ODDPATHNODEBLOCKER will blow up the number of instances in the branching. On the
other hand, it is unclear how to modify their branching rule to account for parity.

Given the difficulties mentioned in the above two remarks, our algorithm builds upon the
shadow-removal technique and exploits the acyclic property of the input directed graph to
reduce the instance to minimum odd cycle transversal (remove the smallest number of nodes
to make an undirected graph bipartite) which in turn, has a fixed-parameter algorithm when
parameterized by the number of removed nodes. Our technique is yet another illustration of
the broad-applicability of the shadow-removal framework.

We complement our fixed-parameter algorithm in Theorem 1 with tight approximability
results for 2 terminals. We refer the reader to Table 1 for a summary of the complexity
and approximability results. Unlike the case of undirected graphs where there is still a
gap in the approximability of both {s,¢}-ODDPATHEDGEBLOCKER and {s,t}-ODDPATH-
NODEBLOCKER, we present tight approximability results for both (s — ¢)-ODDPATHEDGE-
BLOCKER and (s — t)-ODDPATHNODEBLOCKER.

» Theorem 2. We have the following inapprorimability and approrimability results:

(i) (s = t)-ODDPATHNODEBLOCKER. in DAGs is NP-hard, and has no efficient (2 — €)-
approzimation for any € > 0 assuming the Unique Games Conjecture.

(ii) There exists an efficient 2-approzimation algorithm for (s — t)-ODDPATHNODE-
BLOCKER in DAGS.

We emphasize that our 2-approximation for (s — ¢)-ODDPATHEDGEBLOCKER mentioned
in Theorem 2 is a combinatorial algorithm and not LP-based. We note that Schrijver and

podd-cover are half-integral holds only in

Seymour’s result [18] that all extreme points of
undirected graphs and fails in DAGs—see Theorem 3 below. Consequently, we are unable
to design a 2-approximation algorithm using the extreme point structure of the natural
LP-relaxation of the path-blocking integer program. Instead, our approximation algorithm
is combinatorial in nature. The correctness argument of our algorithm also shows that the
integrality gap of the LP-relaxation of the path-blocking integer program is at most 2 in

DAGs.

» Theorem 3. The following odd path cover polyhedron is not necessarily half-integral:
podd-cover-dir.— {5 ¢ RE : 3" _paxe > 1V s — t odd-path P in D}.

Undirected graphs. We next turn our attention to undirected graphs. As mentioned earlier,
{s,t}-ODDPATHNODEBLOCKER is NP-hard and does not admit a (2 — €)-approximation
assuming the Unique Games Conjecture. We are unaware of a constant factor approximation
for {s,t}-ODDPATHNODEBLOCKER. For {s,¢}-ODDPATHEDGEBLOCKER, the results of
Schrijver and Seymour [18] show that the LP-relaxation of a natural integer programming
formulation of {s,¢}-ODDPATHEDGEBLOCKER is half-integral and thus leads to an efficient
2-approximation for {s,¢}-ODDPATHEDGEBLOCKER. However, the complexity of {s,t}-
ODDPATHEDGEBLOCKER was open. We address this gap in complexity by showing the
following NP-hardness and inapproximability results.

» Theorem 4. {s,t}-ODDPATHEDGEBLOCKER is NP-hard and has no efficient (6/5 — ¢€)-
approximation assuming the Unique Games Conjecture.



K. Chandrasekaran and S. Mozaffari

Table 1 Complexity and Approximability. Text in gray refers to known results while text in
black refers to the results from this work.

Problem Undirected graphs DAGs
{5,t}-ODDPATHNODEBLOCKER (2 — €)-inapprox [Equiv. to edge-deletion]
{s,t}-ODDPATHEDGEBLOCKER LP is half-integral [18] LP is NOT half-integral

(Thm 3)
2-approx [18] 2-approx (Thm 2)
(2 — €)-inapprox (Thm 4) (2 — €)-inapprox (Thm 2)
ODDMULTIWAYEDGECUT NP-hard for 3 terminals [15]
(g — €)-inapprox for 2 terminals
(Thm 4)

Organization. We summarize the preliminaries in Section 1.2. We prove the FPT for DAGs
(Theorem 1) in Section 2. We refer the reader to the full version of the paper [1] for all
missing proofs.

1.2 Preliminaries

For ease of notation, we will frequently use v instead of {v}. Let G be a (directed) graph
and W be a subset of V(G). A W-path in G is a path with both of its end-nodes in W. We
restate the problem of ODDMULTIWAYNODECUT in DAGs to set the notation.

» Problem 5 (Minimum Odd Multiway Cut in DAGs). Given a directed acyclic graph G = (V, E)
with sets T, V°° CV where T C V>, an odd multiway cut in G is a set M CV(G)\ V>
of modes that intersects every odd T-path in G. We refer to T as terminals, V\ T as
non-terminals and V°° as protected nodes. In DAGODDMULTIWAYNODECUT, the input
is specified as (G, V>, T k), where k € Zy and the goal is to verify if there exists an odd
multiway cut in G of size at most k.

For subsets X and Y of V(G) we say that M C V(G)\ V™ is an X — Y separator in
G when G\ M has no path from X to Y. The set of nodes that can be reached from a
node set X in G is denoted by R (X). We note that Rg(X) always includes X. We define
the forward shadow of a node set M to be fo(M) := V(G \ M)\ Re\m(T), i.e., the set
of nodes v such that there is no T — v path in G disjoint from M. Similarly, the reverse
shadow of M, denoted rg (M), is the set of nodes v from which there is no path to 7' in
G\ M. Equivalently, the reverse shadow is fgrev (M), where G™V is the graph obtained from
G by reversing all the edge orientations. We refer to the union of the forward and the reverse
shadow of M in G, as shadow of M in G and denote it by sg(M). An X — Y separator M’
is said to dominate another X — Y separator M, if |M'| < |M|]and Re\a(X) € Ry (X).
A minimal X — Y separator that is not dominated by any other separator is called an
important X — Y separator. A set M C V(G) is thin, if every node v € M is not in
ro(M\ {0)).

For a directed graph G, we define the underlying undirected graph of G, denoted by G*,
as the undirected graph obtained from G by dropping the orientations. In an undirected
graph H with protected nodes V°°, an odd cycle transversal is a set U C V(H) \ V> of
nodes such that H \ U is bipartite. The problem of finding the minimum such set in a given
instance of the problem is called the minimum odd cycle transversal problem and is denoted by
MinOddCycleTransversal. Although this problem is NP-hard, it is fixed-parameter tractable
when parameterized by the size of the solution. The current-best fixed-parameter algorithm
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for MinOddCycleTransversal runs in time O(2.32*poly(n)) [14]. The problem addressed in
[14] does not allow for protected nodes, but MinOddCycleTransversal with protected nodes,
can easily be reduced to MinOddCycleTransversal without protected nodes by iteratively
replacing each protected node with k + 1 nodes and connecting them to the same set of
neighbors as the original node. We will use MinOddCycleTransversal(H, V>, k) to denote
the procedure that implements this fixed-parameter algorithm for the input graph H with
protected nodes V> and parameter k.

2 FPT of OddMultiwayNodeCut in DAGs

We will use the shadow-removal technique introduced in [3]. We will reduce the problem
to MinOddCycleTransversal problem in an undirected graph, which is a fixed-parameter
tractable problem when parameterized by the solution size.

2.1 Easy instances

» Theorem 6. Suppose the instance (G, V>, T, k) of DAGODDMULTIWAYNODECUT has
a solution M of size at most k with the following property: every node v € sg(M) has
total degree at most one in G\ M. There exists an algorithm that given one such instance
(G,V>,T,k) as input, finds a solution of size at most k in time O(2.32Fpoly(n)), where n is
the number of nodes in the input graph G.

Proof. Let (G,V®,T, k) be an instance of DAGODDMULTIWAYNODECUT. We recall that
G* denotes the undirected graph obtained by dropping the orientations of the edges in G.
We show the following equivalence: a set M C V' \ V°*° with the property as in the statement
is a solution if and only if G* \ M is bipartite with a bipartition (A, B) such that T C A.

Suppose G* \ M is bipartite with a bipartition (A, B) such that T C A. In a bipartite
graph, every two end-nodes of any odd path are necessarily in different parts. Hence, there
is no odd T-path in G*\ M. Thus, there is no odd T-path in G \ M. Hence, M is a solution
for the odd multiway cut instance (G, V>, T, k).

Suppose the solution M has the property mentioned in the statement of the theorem. Let
U:=V(G\ M)\ sg(M). Define A := {z € U : there is an even T — z path in G\ M} and
B :={z € U : there is an odd T — x path in G\ M}. It follows from the definition of the
shadow that every node in U has a path P; from T in G \ M. Therefore, every node of U is
in AU B. Also by definition, every node v in U has a path P, to T in G \ M. The parity of
every T'— v path has to be the same as the parity of P, because the concatenation of a
T — v path and a v — T path in G\ M is a T-path in G\ M and therefore must be even.
We note that such a concatenation cannot be a cycle since G is acyclic. Thus, no node of U
is in both A and B. Hence, (A, B) is a partition of U.

We observe that there cannot be an edge from a node v in A to a node u in A, as otherwise
the concatenation of the even T'— v path @1 with the edge v — w is an odd T" — w path in
G\ M which means u € B. This contradicts our conclusion about A and B being disjoint.
By a similar argument, there is no edge between any pair of nodes in B. Thus, the subgraph
of G induced by A and B are independent sets respectively. Hence G*[A U B] is a bipartite
graph. Furthermore, (A, B) is a bipartition of G*[A U B] with every node of T in A. By
assumption, the degree of every node = € sg(M) is at most one. Therefore, x has neighbors
in at most one of A and B. Thus, we can extend the bipartition (4, B) of G*[AU B] to a
bipartition (A’, B") of G*\ M as follows: denote H := G*[A U B]; repeatedly pick a node
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Algorithm 1 SolveEasyInstance
Given: DAG G with terminal set T, a set V*° of protected nodes containing T, k € Z,
where (G, V>, T, k) has the property specified in the statement of Theorem 6

1: G1 + the underlying undirected graph of G.

2: Let G4 be the graph obtained from G by introducing a new node x and connecting it
to every node in T

3: N < MinOddCycleTransversal(Ga, V> U {z}, k)

4: return N

x € s¢(M)\ V(H) with a neighbor in H, include z in a part (4 or B) in which = has no
neighbor and update A, B and H.

Hence, if the given instance has a solution M of size at most k such that every node
v € sg(M) has total degree at most one, then such a solution can be found by the fixed-
parameter algorithm for MinOddCycleTransversal. To ensure that the terminal nodes will
be in the same part, we introduce a new protected node into the graph and connect it to
every terminal node. This approach is described in Algorithm 1. All steps in Algorithm 1
can be implemented to run in polynomial time except Step 3. The running time of Step 3 is
0(2.32kpoly(n)) [14]. <

We will use the name SolveEasylnstance to refer to the algorithm of Theorem 6. Our
aim now is to reduce the given arbitrary instance (G, V>, T, k) to another instance that has
a solution with the property mentioned in Theorem 6 or determine that no solution of size
at most k exists. We need the notion of parity-preserving torso operation on DAGs.

2.2 Parity-Preserving Torso

The parity preserving torso operation was introduced by Lokshtanov and Ramanujan [15]
for undirected graphs. We extend it in a natural fashion for DAGs.

» Definition 7 (Parity-Preserving Torso). Let G be a DAG and Z be a subset of V(G). We
define Parity-Torso(G,V>°, Z) as (G',V'®), where G’ is the DAG obtained from G \ Z by
adding an edge from node u to v, for every pair of nodes u,v € V(G) \ Z such that there
is an odd-path from w to v in G all of whose internal nodes are in Z, and including a new
node z,,, and edges u — @y, and z,, — v for every pair of nodes u,v € V(G) \ Z such that
there is an even path from u to v in G all of whose internal nodes are in Z. The set V'* is
defined to be the union of V°° \ Z and all the new nodes .

We emphasize that the acyclic nature of the input directed graph allows us to im-
plement the parity-preserving torso operation in polynomial time. Moreover, applying
parity-preserving torso on a DAG results in a DAG as well. In what follows, we state the
properties of the Parity-Torso operation that are exploited by our algorithm. The parity-
preserving torso operation, has the property that it maintains u — v paths along with their
parities between any pair of nodes u,v € V(G) \ Z. More precisely:

» Lemma 8. Let G be a DAG and Z, V> C V(G). Define (G',V'*®) =
Parity-Torso(G,V®°,Z). Let u,v be nodes in V(G) \ Z. There is a u — v path P in
G if and only if there is a u — v path Q of the same parity in G'. Moreover, the path Q
can be chosen so that the nodes of P in G\ Z are the same as the nodes of Q in G\ Z, i.e.
VIP)N(V(G)\ Z2) =V(Q)N(V(G)\ 2).
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Algorithm 2 Minimum odd multiway cut in DAGs
Given: DAG G with terminal set T, a set V°° of protected nodes containing 7', and k € Z
1. for Z € ShadowContainer(G, V>, k) do
2 (G1, V®) + Parity-Torso(G, V>, Z)
3 N « SolveEasylInstance(G1, V>, T, k)
4: if N is a solution in G then
5
6:

return N
return No solution

» Corollary 9. Let T = (G,V*>°,T,k) be an instance of DAGODDMULTIWAYNODECUT
and let Z CV(G)\T. Let (G',V'*®) := Parity-Torso(G, V>, Z) and denote the instance
(G, V' T k) by I'. The instance T admits a solution S of size at most k that is disjoint
from Z if and only if the instance I' admits a solution of size at most k.

Therefore, we are interested in finding a set Z of nodes that is disjoint from some solution
of size at most k, and moreover, the instance (Parity-Torso(G,V®>°,Z),T, k) satisfies the
property mentioned in Theorem 6. The following lemma summarizes our key observation: it
shows that it is sufficient to find a set Z that contains the shadow of a solution.

» Lemma 10. Let G be a DAG and M,Z, V> C V(G). Suppose M intersects every odd
T-path in G and s¢(M) C Z C V(G)\ M. Define (G', V') := Parity-Torso(G, V>, 7).
Then every node in sq(M) has total degree at most one in G' \ M.

2.3 Difficult instances

Corollary 9 and Lemma 10 show that if we find a set Z such that for some solution
M, the set Z is disjoint from M and contains the shadow of M in G, then considering
Parity-Torso(G, V*°, Z) will give a new instance that satisfies the conditions of Theorem 6.
Our goal now is to obtain such a set Z. We will show the following lemma. We emphasize
that the lemma holds for arbitrary digraphs.

» Lemma 11. There is an algorithm ShadowContainer that given an instance (G,V>°, T, k)
of DAGODDMULTIWAYNODECUT, where G is a digraph, returns a family Z of subsets of
V(G) with |Z] = QO(kz), with the property that if the problem has a solution of size at most
k, then for some solution M of size at most k, there exists a set Z € Z that is disjoint
from M and contains sq(M). Moreover, the algorithm can be implemented to run in time

2
2005 poly(|V(G))).-
We defer the proof of Lemma 11 to first see its implications.

» Theorem 12. There exists an algorithm that given an instance (G,V*>°,T, k) of DAGODD-
MULTIWAYNODECUT, runs in 20°) poly(|[V(G)|) time and either finds a solution of size at
most k or determines that no such solution exists.

Proof. We use Algorithm 2. Let (G, V> T, k) be an instance of DAGODDMULTIWAYNODE-
CuT, where G is a DAG. Suppose there exists a solution of size at most k. By Lemma 11,
the procedure ShadowContainer(G, V>, k) in Line 1 returns a family Z of subsets of V(G)
with | Z] = 20(K*) containing a set Z such that there is a solution M of size at most k that is
disjoint from Z and Z contains sg(M). Let (G1, V) be the result of applying Parity-Torso
operation to the set Z in G (i.e., the result of Step 2 in Algorithm 2). By Lemma 10, every
node in s, (M) has total degree at most one in Gy \ M. Therefore, by Theorem 6, the set
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N returned in Line 3 is a solution to the instance (G1, V>, T, k). By Corollary 9, the set N
is also a solution to the original instance of the problem.

If there is no solution of size at most k, the algorithm will not find any. Therefore, the
algorithm is correct. The runtime of the algorithm is dominated by Line 2 which can be
implemented to run in 20**) poly(|V(G)|) time by Lemma 11. <

In order to prove Lemma 11, we will use the following result.

» Theorem 13 (Chitnis et al. [2]). There is an algorithm that given a digraph G, a subset of
protected nodes V° C V(G), terminal nodes T C V™ and an integer k, returns a family Z
of subsets of V(G) \ V= with |Z| = 206*) such that for every S| Y C V(Q) satisfying

(i) S is a thin set with |S| <k, and

(ii) for every v € Y, there exists an important v — T separator contained in S,

there exists Z € Z withY C Z C V(G)\ S. Moreover, the algorithm can be implemented to
run, in time 20(°) poly(JV(G))).

To invoke Theorem 13, we need to guarantee that there exists a solution S of size at most
k such that S is thin and its reverse shadow Y in G has the property that for every v € Y
there is an important v — T separator contained in S. Towards obtaining such a solution,
we prove the following.

» Lemma 14. Let (G,V>°,T k) be an instance of DAGODDMULTIWAYNODECUT, where G
is a DAG. Let M be a solution for this instance. If there exists v € rq(M) such that M does
not contain an important v — T separator, then there exists another solution M’ of size at
most |[M|, such that rg(M)U fa(M)UM Cre(M)U fa(M')UM', and ra(M) C rq(M’).

Proof. Let My be the set of nodes u € M for which there is a v — u path in G that
is internally disjoint from M. Since v € rg(M), every v — T path intersects M. For a

v — T path P, the first node uw € PN M is in My. Hence, every v — T path intersects M.

Therefore, the set My is a v — T separator in G. Therefore, it contains a minimal separator
M. Since we assumed that there is no important v — T separator contained in M, the
set M is not an important v — T separator. Suppose M; is dominated by another v — T'
separator and let M5 be an important v — T separator that dominates M;. Define M’ as
(M \ M;y)U M,. We recall that a separator is by definition, disjoint from the protected node
set. Therefore, M’ N V> = (). We will show that M’ contradicts the choice of M. We need
the following claims.

» Claim 15. M\ M’ C rg(M').

Proof. We observe that M \ M’ = M; \ M. Let u be an arbitrary node in M; \ Ma.

Since u € M7 and M is a minimal v — T separator, there is a v — w path P; that is

internally disjoint from M;. Since M, dominates M, therefore, Ry, (v) € Re\ar, (v)-

Thus, V/(P1) € R\, (v). Hence, P is disjoint from My. Suppose P is an arbitrary u — T'
path in G. Concatenation of P; and P, is a v — T path in G and therefore, has to intersect
Ms. Since P; is disjoint from Ms, the path P, has to intersect Ms. Hence, every u — T
path in G intersects M and in particular, intersects M’. Equivalently, u € rg(M'). <

We next show that M’ is a feasible solution for the problem and is no larger than M.

» Claim 16. The set M’ intersects every odd T-path in G and |M'| < |M].

12:9
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Proof. By assumption, every odd T-path P intersects M. If P intersects M N M’, then it
also intersects M’. If P intersects M \ M’, then by Claim 15 it also intersects M’'. Thus,
every odd T-path in G intersects M’. Furthermore, by definition of M’, we have

[M'| = |M| + (|M2\ M| — |My\ Ma|) < [M|+ (|M2] — [Mi]) < [M]. <
» Claim 17. T‘G(M) - Tg(M/).

Proof. Let u be an arbitrary node in rg(M). The set M is a u — T separator. Therefore,
every u — T path intersects M. We need to show that every u — T path also intersects M’.
Let P be a u — T path. If P intersects M N M’, then it also intersects M’. If P does not
intersect M N M’, then it has to intersect M \ M’. By Claim 15, every M \ M’ — T path
intersects M'. Therefore, u € rg(M’). <

» Claim 18. Tc;(M) Ufg(M) UM C Tg(M/) U f(;(M/) UM’

Proof. By Claim 15, we have M \ M’ C rg(M') and by Claim 17, we have rq(M) C rg(M').
Thus, it remains to prove that fo(M) C ra(M’)U fa(M’)UM’. Let u be an arbitrary node
in fa(M)\ (re(M’")U fa(M"YUM’). Since u ¢ fa(M'), there is a T — w path P; in G that
is disjoint from M’'. But u € fg(M). Thus P; has to intersect M, particularly it has to
intersect M \ M’. Let P; be a subpath of P; from M \ M’ to u. Since u ¢ rg(M'), there is
a u— T path P53 in G that is disjoint from M’. The concatenation of P, and Pj is a path
from M \ M’ to T that is disjoint from M’. But by Claim 15, every M \ M’ — T path in G
must intersect M’. This contradiction shows that fo(M) C (rg(M')U fa(M'YUM'). <

» Claim 19. Tg(M) - Tg(M/).

Proof. By Claim 17, rq(M) C rg(M'). We need to prove rg(M) # rqg(M'). We recall
that M \ M’ = M; \ M. Since Ms is an important v — T separator, it follows that the
v — T separator M; is not contained in Ms. Therefore M \ M’ is non-empty. Furthermore,
by definition of reverse shadow, M \ M’ is not contained in rg (M), but by Claim 15, it is
contained in rg(M’). <

By Claim 16, M’ is a solution and is no larger than M. Therefore, the set M’ has the
properties claimed in Lemma 14. |

We recall that a set M C V(G) is thin, if every node v € M is not in rg(M \ {v}). The
next result follows from Lemma 14.

» Corollary 20. Let (G,V>°,T, k) be an instance of DAGODDMULTIWAYNODECUT, where
G is a DAG. Let M* be an optimal solution that maximizes the size of |[rg(S) U fa(S)U S|
among all optimal solutions S. If more than one optimal solution mazimizes this quantity,
choose the one with largest |rc(S)|. The set M* is thin and for every node v € rg(M™*) there
is an important v — T separator in M*.

We will use Corollary 20 to prove Lemma 11.

Proof of Lemma 11. Let us use ReverseShadowContainer(G, V>°, k) to denote the algo-
rithm from Theorem 13. We will show that Algorithm 3 generates the desired set.

In Algorithm 3 we use procedure ReverseShadowContainer introduced in Theorem 13.
By Theorem 13, the cardinality of Z returned by the algorithm is 20(-*) The runtime of the
algorithm follows from the runtime of the procedure ReverseShadowContainer in Theorem
13. To prove the correctness of this algorithm, we argue that at least one of the sets in the
returned family Z has the desired properties.
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Algorithm 3 ShadowContainer
Given: DAG G with terminal set T, a set V°° of protected nodes containing 7', and k € Z

1: Let G**V denote the graph obtained from G by reversing the orientation of all edges
2: Z; + ReverseShadowContainer(G, V>, k)

3: for Z1 € Z, do

4: Z5 < ReverseShadowContainer(G™, V> U Z1, k)

5 for Z; € 25, do

6 Z+ ZU {Zl U Zz}

7

: return Z

Suppose there exists a solution of size at most k£ and let M* be an optimal solution
that maximizes the size of |rg(S) U f¢(S) U S| among all optimal solutions S. If more than
one solution maximizes this quantity, choose the one with largest |rg(S)|. By Corollary 20,
the solution M™ is thin and has the property that every node v in the reverse shadow of
M™ has an important v — T separator contained in M*. By Theorem 13, the procedure
ReverseShadowContainer(G, V°°, k) in Line 2 will return a family Z; of sets containing a set
Z1 that is disjoint from M™ and contains its reverse shadow. Let us fix such a Z;.

We note that a solution for the DAGODDMULTIWAYNODECUT instance (G, V> U
Z1,T, k) is also a solution for the instance (G,V°°,T,k). Conversely, a solution for the
instance (G,V*°°, T, k) that is disjoint from Z; is also a solution for the instance (G**V, V> U
Z1,T, k). Therefore, the set M* is also an optimal solution to the instance (G, V> U
Z1,T, k). We observe that fo(S) = rgrev(S) and r¢(S) = farev(S) for all S C V(G) \ V.
Therefore, M* maximizes the size of rgrev(S) U farev(S) U S among all optimal solutions S
to (G™V, VU Z;,T, k). We have the following claim.

» Claim 21. If for an optimal solution M’ for the instance (G™*, V> U Zy,T, k) of DAG-
ODDMULTIWAYNODECUT, we have rgre(M*)U fares(M*)UM* C rgreo(M")U fres (M) UM’
and rgreo(M*) C rgreo(M'), then M’ = M*.

Proof. As M* maximizes |rgrev(S) U fgrev (S) U S| among all the optimal solutions for the
instance (G, V=, T, k) and as rgrev(M™*) U farev (M*) U M* C rgrev (M) U faorev (M) U M/,
hence, the two sets rgrev (M™*) U farev (M™*) U M™* and rgrev (M) U farev (M) U M’ must be
equal. Therefore, the set M’ \ M* is contained inside rgrev (M*) U fgrev (M™*) U M*. Since
nodes in fgrev (M™*) are protected in G*" by construction, the solution M’ cannot contain
any node from ferev (M™*). Since rgrev(M*) C rgrev (M) and by definition of reverse shadow,
M’ is disjoint from rgrev (M*). Thus, the set M’ \ M* is disjoint from M* and rgrev (M™)
and fgrev (M*), while being contained in rgrev (M*) U fgrev (M*) U M*. Hence, M’ \ M* = ()
or equivalently M’ C M*. Therefore, M’ = M*, because |M'| = |M*|. <

Suppose there is a node v € rgrev (M*) such that no important v — T separator in G**Y
is contained in M*. Then by Lemma 14, there is another optimal solution M’ such that
P ey (M) U fgrew (M*) U M* C rgree (M) U fgrer (M') UM’ and rgres (M*) C rares (M). By
Claim 21, the set M’ = M*, which contradicts rgrev (M*) C rgrev(M'). This contradiction
shows that for every node v € rgrev (M*), there is an important v — T separator in G**V that is
contained in M*. Thus, by Theorem 13, the procedure ReverseShadowContainer(G*V, V> U
Z1,k) from Line 4 will return a family Z5 of sets containing a set Z5 that is disjoint from
M* and contains rgrev (M*) = fo(M*). Hence Z; U Zs is disjoint from M* and contains
Sg(M*) <4
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—— Abstract

The problem of (approximately) counting the independent sets of a bipartite graph (#BIS) is
the canonical approximate counting problem that is complete in the intermediate complexity
class #RHII;. It is believed that #BIS does not have an efficient approximation algorithm but
also that it is not NP-hard. We study the robustness of the intermediate complexity of #BIS by
considering variants of the problem parameterised by the size of the independent set. We map the
complexity landscape for three problems, with respect to exact computation and approximation
and with respect to conventional and parameterised complexity. The three problems are counting
independent sets of a given size, counting independent sets with a given number of vertices in
one vertex class and counting maximum independent sets amongst those with a given number
of vertices in one vertex class. Among other things, we show that all of these problems are NP-
hard to approximate within any polynomial ratio. (This is surprising because the corresponding
problems without the size parameter are complete in #RHII;, and hence are not believed to
be NP-hard.) We also show that the first problem is #W[1]-hard to solve exactly but admits
an FPTRAS, whereas the other two are W[1]-hard to approximate even within any polynomial
ratio. Finally, we show that, when restricted to graphs of bounded degree, all three problems
have efficient exact fixed-parameter algorithms.
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1 Introduction

The problem of (approximately) counting the independent sets of a bipartite graph, called
#BIS, is one of the most important problems in the field of approximate counting. This
problem is known [6] to be complete in the intermediate complexity class #RHII;. Many
approximate counting problems are equivalent in difficulty to #BIS, including those that
arise in spin-system problems [10, 11] and in other domains. These problems are not believed
to have efficient approximation algorithms, but they are also not believed to be NP-hard.

In this paper we study the robustness of the intermediate complexity of #BIS by
considering relevant fixed parameters. It is already known that the complexity of #BIS
is unchanged when the degree of the input graph is restricted (even if it is restricted to
be at most 6) [2] but there is an efficient approximation algorithm when a stronger degree
restriction (degree at most 5) is applied, even to the vertices in just one of the parts of the
vertex partition of the bipartite graph [14].

We consider variants of the problem parameterised by the size of the independent set.
We first show that all of the following problems are #P-hard to solve exactly and NP-hard
to approximate within any polynomial factor.

#Size-BIS: Given a bipartite graph G and a non-negative integer k, count the size-k

independent sets of G.

#Size-Left-BIS: Given a bipartite graph G with vertex partition (U, V') and a non-negative

integer k, count the independent sets of G that have k vertices in U, and

#Size-Left-Max-BIS: Given a bipartite graph G with vertex partition (U, V') and a non-

negative integer k, count the maximum independent sets amongst all independent sets

of G with k vertices in U.

The NP-hardness of these approximate counting problems is surprising given that the
corresponding problems without the parameter &k (that is, the problem #BIS and also the
problem #Max-BIS, which is the problem of counting the mazimum independent sets of a
bipartite graph) are both complete in #RHII;, and hence are not believed to be NP-hard.
Therefore, it is the introduction of the parameter k£ that causes the hardness.

To gain a more refined perspective on these problems, we also study them from the
perspective of parameterised complexity, taking the number of vertices, n, as the size of the
input and k as the fixed parameter. Our results are summarised in Table 1, and stated in
detail later in the paper. Rows 1 and 3 of the table correspond to the conventional (exact
and approximate) setting that we have already discussed. Rows 2 and 4 correspond to the
parameterised complexity setting, which we discuss next. As becomes apparent from the
table, we have mapped the complexity landscape for the three problems in all four settings.

In parameterised complexity, the central goal is to determine whether computational
problems have fixed-parameter tractable (FPT) algorithms, that is, algorithms that run
in time f(k) - n°® for some computable function f. Hardness results are presented using
the W-hierarchy [8], and in particular using the complexity classes W[1] and W[2], which
constitute the first two levels of the hierarchy. It is known (see [8]) that FPT C W[1] C W|[2]
and these classes are widely believed to be distinct from each other. It is also known [4,
Chapter 14] that the Exponential Time Hypothesis (see [12]) implies FPT # W/[1]. Analogous
classes #W/[1] and #W|[2] exist for counting problems [7].

As can be seen from the table, we prove that all of our problems are at least W[1]-hard
to solve exactly, which indicates that they cannot be solved by FPT algorithms. Moreover,
#Size-Left-BIS and #Size-Left-Max-BIS are W[1]-hard to solve even approximately. It is
known [16] that each parameterised counting problem in the class #W/i] has a randomised
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Table 1 Our results. Each of the three problems that we consider (#Size-BIS, #Size-Left-BIS,
#Size-Left-Max-BIS) has one column here, in which we list our results in all four settings (exact
polynomial-time, exact FPT-time, approximate polynomial-time, approximate FPT-time).

#Size-BIS #Size-Left-BIS #Size-Left-Max-BIS
Exact poly | #P-complete even in | #P-complete even in | #P-hard even in graphs
graphs of max-degree 3. | graphs of max-degree 3. | of max-degree 3. (Thm
(Thm 1 full version) (Thm 1 full version) 2 full version)
Exact FPT | #W|1]-complete. (Thm 4 | #W/[2]-hard. (Thm 5) W]1]-hard. (Thm 6)
full version)
FPT for bounded-degree | FPT for bounded-degree | FPT for bounded-degree
graphs. (Thm 14(i)) graphs. (Thm 14(ii)) graphs. (Thm 14(iii))
Approx NP-hard to approximate | NP-hard to approximate | NP-hard to approximate
poly within any polynomial | within any polynomial | within any polynomial
factor. (Thm 9) factor. (Thm 7) factor. (Thm 6)
Approx Has FPTRAS. (Thm 11) W/(1]-hard to approxim- | W[1]-hard to approxim-
FPT ate within any polyno- | ate within any polyno-
mial factor. (Thm 7) mial factor. (Thm 6)

FPT approximation algorithm using a WI[i] oracle, so W[i]-hardness is the appropriate
hardness notion for parameterised approximate counting problems. By contrast, we show
that #Size-BIS can be solved approximately in FPT time. In fact, it has an FPT randomized
approximation scheme (FPTRAS).

Motivated by the fact that #BIS is known to be #P-complete to solve exactly even on
graphs of degree 3 [19], we also consider the case where the input graph has bounded degree.
While the conventional problems remain intractable in this setting (Row one of the table),
we prove that all three of our problems admit linear-time fixed-parameter algorithms for
bounded-degree instances (Row two). Note that Theorem 14(i) is also implicit in independent
work by Patel and Regts [17].

2 Preliminaries

For a positive integer n, we let [n] denote the set {1,...,n}. We consider graphs G to be
undirected. For a vertex set X C V(G), denote by G[X] the subgraph induced by X. For a
vertex v € V(G), we write I'(v) for its open neighbourhood (that is, excluding v itself).

Given a graph G, we denote the size of a maximum independent set of G by u(G).
We denote the number of all independent sets of G by IS(G), the number of size-k in-
dependent sets of G by IS;(G), and the number of size-u(G) independent sets of G by
MIS(G). A bipartite graph G is presented as a triple (U, V, E) in which (U, V) is a par-
tition of the vertices of G and FE is a subset of U x V. If G = (U,V, E) is a bipartite
graph then an independent set S of G is said to be an “/-left independent set of G” if
|SNU| = ¢ The size of a mazimum {-left independent set of G is denoted by e (G).
An /(-left independent set of G is said to be “l-left-maximum” if and only if it has size
teere(G).  Finally, IS, (G) denotes the number of ¢-left independent sets of G and
IS, ere-max (G) denotes the number of ¢-left-maximum independent sets of G. Using these
definitions, we now give formal definitions of #BIS and of the three problems that we study.
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Name: #BIS.
Input: Bipartite graph G.
Output: IS(G).

Name: #Size-BIS Name: #Size-Left-BIS Name: #Size-Left-Max-BIS
Input: Bipartite G and k € N. Input: Bipartite G and £ € N. Input: Bipartite G and ¢ € N.
Output: IS, (G). Output: IS, (G). Output: IS¢ ictimax(G)-
Parameter: k. Parameter: /. Parameter: /.

For each of our computational problems, we add “[A]” to the end of the name of the
problem to indicate that the input graph G has degree at most A. For example, the input of
#BIS[A] is a bipartite graph G with degree at most A, and the desired output is IS(G).

When stating quantitative bounds on running times of algorithms, we assume the standard
word-RAM machine model with logarithmic-sized words.

3 Exact computation: fixed-parameter intractability

Our #P-hardness results (from Row 1 of Table 1) are in the full version. For the rest of the
paper, we use standard definitions of reductions and complexity classes which are in Flum
and Grohe [8] and in the full version. We defer the proof of Theorem 4, which shows that
#Size-BIS is #W/[1]-complete, to the full version. We give the following, stronger, hardness
result for #Size-Left-BIS.

» Theorem 5. #Size-Left-BIS is #W[2]-hard.

Proof. Recall that if G is a graph, a set D C V(G) is called a dominating set of G if every
vertex v € V(G) is either contained in D or adjacent to a vertex of D. We reduce from #Size-
Dominating-Set, which is the problem of computing the number of size-k dominating sets
given a graph G = (U, E) and a positive integer k. (The parameter of #Size-Dominating-Set
is k.) Note that #Size-Dominating-Set is #W[2]-complete, as proved in Flum and Grohe [7,
Theorem 19].

Write U = {uq,...,u,}. The reduction computes the bipartite split graph of G; formally,
let V ={v1,...,0n}, let B/ = {(uq,v) | @ =bor {us,up} € E}, and let G' = (U, V, E').

For non-negative integers ¢ and r, we define an (¢, r)-set of G’ to be a size-¢ subset X of
U that has exactly r neighbours in V. Let Z;, be the number of (¢, r)-sets of G'. Note that
a size-k subset X of U is a dominating set of G if and only if it is a (k,n)-set of G’, so there
are precisely Zy ,, size-k dominating sets of G.

The algorithm applies polynomial interpolation to determine Zj , for all r € {0,...,n}.
For every positive integer 4, let V; =V x [i], let E] = {(u, (v,b)) € U x V; | (u,v) € E'}, and
let G/, = (U, V;, E!). For each (k,r)-set X of G, there are exactly 2("~") k-left independent
sets S of G with SNU = X. Thus for all ¢ € [n + 1],

n
ISk—left(G;) = ZQi(n_T)Zk,r~ (1)
r=0

Let M be the (n+ 1) x (n + 1) matrix whose rows are indexed by [n + 1] and columns
are indexed by {0,...,n} such that M;, = 2" holds. Then (1) can be viewed as a
linear equation system w = Mz, where w = (IS, (G}), ..., ISk 1 (Ghyr))” and z =
(Zkos--+Zkn)T. The oracle for #Size-Left-BIS can be used to compute w, and M is
invertible since it is a (transposed) Vandermonde matrix. Thus the reduction can compute
z, and in particular Zy, ,,, as required. <
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We defer the proof of the remaining hardness result in Row 2 of Table 1 (W[1]-hardness of
#Size-Left-Max-BIS) to the next section, as it is implied by the corresponding approximation
hardness result.

4 Approximate computation: Hardness results

In this section, we prove the hardness results in Rows 3 and 4 of Table 1. Note that the
reductions from the first row of the table cannot be used here, since they are ultimately from
#BIS, which is not known to be NP-hard to approximate. In order to state our hardness
results formally, we introduce approximation versions of the problems that we consider.

Name: Deg-c-#ApxSizeLeftMaxBIS. Parameter: /.
Input: A bipartite graph G on n vertices and a non-negative integer £.
Output: A number z such that n7¢ - IS, g max (G) < 2 < 1€ - IS epromax (G)-

Name: Deg-c-#ApxSizeLeft BIS. Parameter: /.
Input: A bipartite graph G on n vertices and a non-negative integer £.
Output: A number z such that n=¢ - IS, . (G) < z < n€ - IS, (G).

Name: Deg-c-#ApxSizeBIS. Parameter: k.
Input: A bipartite graph G on n vertices and a non-negative integer k.
Output: A number z such that n=¢ - ISk (G) < z < n¢ - ISk(G).

We also require the following problem for reductions.

Name: Size-Clique. Parameter: k.
Input: A graph G and a positive integer k.
Output: True if G contains a k-clique, false otherwise.

We first prove our #Size-Left-Max-BIS results, then establish the others by reduction.
» Theorem 6. For all ¢ > 0, Deg-c-#ApxSizeLeftMaxBIS is both NP-hard and W[1]-hard.

Proof. Let ¢ be any non-negative integer. We will give a reduction from Size-Clique to
Deg-c-#ApxSizeLeftMaxBIS which is both an FPT Turing reduction and a polynomial-time
Turing reduction. The claim then follows from the fact that Size-Clique is both NP-hard [18,
Theorem 7.32]) and W[1]-hard [5, Theorem 21.3.4].

Let (G, k) be an instance of Size-Clique with G = (V,E) and n = |V|. We use a
standard powering construction to produce an intermediate instance (G’, k) of Size-Clique
with G’ = (V', E'). More precisely, let t = n?¢, let C be a set of k new vertices, and let
V' =(V x [t])) UC. We define E’ such that

E = {{(u,i),(v,j)} | {u,v} € E,i,j € [t]} U {{u,v} | u,v e Ciu# U}.

From (G’,k), we construct an instance (G”,¢) of Deg-c-#ApxSizeLeftMaxBIS with
G" = (U, V',E") and ¢ = (g) For this, let U = {u. | e € E'} be a set of vertices and let
E" = {(u,v) | e € E', v € e}. The reduction queries the oracle for (G”, ¢), which yields an
approximate value z for the number IS, max (G”). If 2 < n¢, the reduction returns ‘no’,
there is no k-clique in G, and otherwise it returns ‘yes’. It is obvious that the reduction runs
in polynomial time.

It remains to prove the correctness of the reduction. Let CLg(G) be the number of
k-cliques in G. The f-left-maximum independent sets X of G” correspond bijectively to
the size-¢ edge sets {e | ue € X N U} of G’ which span a minimum number of vertices.
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Note that any set of ¢ = (g) edges must span at least k vertices, with equality only in
the case of a k-clique. Since G’ contains at least one k-clique (induced by C'), we have
IS, 1etemax (G”') = CLx(G"). Moreover, each k-clique X in G corresponds to a size-t* family
of k-cliques in G’. Each k-clique in the family consists of exactly one vertex from each set
{z} x [t] such that € V(X). This accounts for all k-cliques in G’ except G’[C]. Thus
ISl_le“_max(G”) = CL;C(G/) = tkCLk(G) + 1.

Let z be the result of applying our oracle to (G”,¢). If G contains no k-cliques, then
we have 2z < n° - IS, pmax(G”) = n° and the reduction returns ‘no’. Otherwise, we have
2 > 17 IS eteman (G) > n7¢(tF 4+ 1) > n® and the reduction returns ‘yes’. Thus the
reduction is correct and the claim follows. |

» Theorem 7. For all ¢ > 0, Deg-c-#ApxSizeLeftBIS is both NP-hard and W[1]-hard.

Proof. Let ¢ > 0 be an integer. We will give a reduction from the problem Deg-(c + 1)-
#ApxSizeLeftMaxBIS to the problem Deg-c-# ApxSizeLeftBIS which is both an FPT Turing
reduction and a polynomial-time Turing reduction. The result then follows by Theorem 6.
Let (G,¢) be an instance of Deg-c-#ApxSizeLeftMaxBIS. Write G = (U,V, E), let
n = |V(G)|, and let t = 6n. Without loss of generality, suppose n > 5 and n is sufficiently
large that n°2™" < 1. Let V! =V x [t], let E' = {(u, (v,7)) | (u,v) € E, i € [t]}, and let
G' = (U, V'|E"). Let g = pip1e(G), and let z be the result of applying our oracle to (G, ¢).
For any non-negative integers ¢ and j, we define IS; ;(G) to be the number of independent
sets X C V(G) with [ X NU| = ¢ and | X N V]| = j. Each ¢-left independent set X of G
corresponds to the family of ¢-left independent sets of G’ consisting of X N U together with
at least one vertex from each set {x} x [t] such that z € X N V. Thus by the definition of u,

pn—e
IS (G1) = 3_180.,(G)(2 = 1)". (2)
r=0

Since G contains at most 2" independent sets and ISy, ,—¢(G) > 1, we have (2! — Pt <
IS, .en (G7) < 27(2¢ — 1)#¢. Since n® < 2" < (28 — 1)1/5, it follows that (2¢ — 1)*—¢~1/> <
z < (28 — 1)*~*+2/5 and hence the algorithm can obtain p by rounding £ + 1g(z)/1g(2t — 1)
to the nearest integer. Moreover, by (2) we have

ISpen(G7) < TSy, i e(G)(28 — 1)~ E 427 (28 — )P 471 <218, ,o(G) (2" — 1)+

It follows that ISy, ,—¢(G) < IS, (G') /(28 =1)#=¢ < 2IS;, ,—o(G). Hence n=¢71IS, ,—¢(G) <
z/(28 — 1)*=¢ < ntUS, ,_¢(G). The algorithm therefore outputs z/(2¢ — 1)+~

A

» Theorem 9. For all ¢ > 0, Deg-c-#ApxSizeBIS is NP-hard.

Proof. For all ¢ > 0, we give a polynomial-time Turing reduction from the problem Deg-
(¢ + 1)-#ApxSizeLeftBIS to the problem Deg-c-#ApxSizeBIS. The former is NP-hard by
Theorem 7.

Fix ¢ > 0 and let (G, ¥) be an instance of Deg-(c 4 1)-#ApxSizeLeftBIS. Suppose that
G = (U,V,E) where U = {u1,...,u,}. Note from the problem definition that n = |U U V|
and suppose without loss of generality that ¢ € [p] and that n > 40 (otherwise, (G, ¥) is an
easy instance of Deg-(c+ 1)-#ApxSizeLeftBIS, so the answer can be computed, even without
using the oracle).

Let s = 2n% and t = |slogy 3| — s. For each i € [p], let U;, V; and U/ be disjoint sets of
vertices with |U/| = |V;| = s and |U;| = ¢. Write U] = {w;1,...,ui s} and V; = {v;1,...,0i s}
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U @—@ V1

_—

Uz @ V2

Figure 1 An example of the reduction from Deg-(c¢ + 1)-#ApxSizeLeftBIS to Deg-c-
#ApxSizeLeftBIS used in the proof of Theorem 9 when G = Ps. Each vertex u; € U is replaced
by three vertex sets U/, V; and U; in the resulting graph G’. Note that G’ does not depend on the
input parameter £.

Then let U’ = Uiepp (Ui U U, V' = Uiep ViUV, and
B = U <(U7 x Vi) U{(uij,vij) | j € [S]}) u U (U; x {v}).
i€[p] (uj,v)€E(G)

Let G' = (U', V', E'), as depicted in Figure 1.

Intuitively, the proof will proceed as follows. We will map independent sets X’ of G’ to
independent sets X of G by taking X NV = X’ NV and adding each u; € U to X if and only
if U;N X’ # 0. We will show that roughly half the independent sets of each gadget U, UV; UU;
have this form. We will also show that within each gadget, almost all independent sets with
vertices in U; have size roughly (s +t)/2, and almost all others have size roughly 2s/3. Thus
the independent sets in G with ¢ vertices in U roughly correspond to the independent sets in
G’ of size roughly (- (s+t)/2+ (p — £) - 25/3, which we count using a #Size-BIS oracle.

We start by defining disjoint sets of independent sets of G'. For z € {0,...,p}, let
E(z) = ¥ (p— ) + =z and let

A, = {X’ C V(G') | X' is an independent set of G’ and || X'| — E(z)| < & —i—n}.

Note that since n > 3, we have t > 17s/30 and 120n < s. Thus, if 2’ > z,
E(@') — E(x) = (t/2 —5/6) (' —2) > (17/60 — 1/6) s = 5/10 + 5/60 > s/10 + 2n.

We conclude that the sets Ay, ...,.A, are disjoint.

Next, we connect the independent sets of G’ with those of G. Each independent set
X' of G' projects onto the independent set (X' NV)U {u; | X' NU; # 0} of G. Given an
independent set X of G, let ¢(X) be the set of independent sets X’ of G’ which project onto
X. If u; € X, then there are 2¢ — 1 possibilities for X' N U; and 2° possibilities for X' N U},
but X' NV; is empty. If u; ¢ X, then X' NU; is empty and there are 3° possibilities for
X'n(U/UV;). For z € {0,...,p}, let F(x) = (251 — 2%)= . 3(P=®)s_ Tt follows that, for any
a-left independent set X of G, |p(X)| = F(z), which establishes the first of the following
claims.

Claim 1. For any ¢-left independent set X of G, |p(X) N Al < F(¥).
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Claim 2. For any ¢-left independent set X of G, |¢(X) N A > F(£)/2.
Claim 3. For any z € {0,...,p} \ {¢} and any z-left independent set X of G, |p(X) N Ay <
F(e)/2™.

The proofs of Claims 2 and 3 are mere calculation, so before proving them we use the
claims to complete the proof of the lemma. Recall that (G, £) is an instance of Deg-(c + 1)-
#ApxSizeLeftBIS with ¢ € [p] and n > 2. Together, the claims imply

(F(0)/2) 18,06 (G) < |Ag| € F(O)IS,.(G) + F(0), (3)

where the final F'(¢) comes from the contribution to |A4;| corresponding to the (at most
2™) independent sets of G that are not ¢-left independent sets. Since £ € [p], the quantity
IS,...+.(G) is at least 1, which means that the right-hand side of (3) is at most 2F(£)IS,...(G).
Also, F(£) > 0. Thus, (3) implies IS,...+(G)/2 < |Ag|/F(£) < 2IS, 0 (G).

The oracle for Deg-c-#ApxSizeBIS can be used to compute a number z such that
n= Ay < z < n°Agl. (To do this, just call the oracle repeatedly with input G’ and with
every non-negative integer k such that |k — E(¢)| < 55 + n, adding the results.) Thus,

N IS (G) /2 < nTC A /F(€) < z/F(£) < n|Ag|/F () < 2n°1Sp10n (G),

so the desired approximation of IS, (G) can be achieved by dividing z by F'(¢). We now
complete the proof by proving Claims 2 and 3.

Claim 2: Consider any z € {0,...,p} and let X be an z-left independent set of G. We
will show |p(X) N A;| > F(x)/2, which implies the claim by taking ¢ = x. In fact, we will
establish the much stronger inequality

p(X) N Ag| > (1 - 3ne™")F(x), (4)

which will also be useful in the proof of Claim 3. To establish Equation (4) we will show
that the probability that a random element Y of ¢(X) satisfies ||Y'| — E(z)| < & + n is at
least 1 — 3ne™""

So let Y be a uniformly random element of ¢(X). We will show that, with probability at

least 1 — ?me’"z, the following bullet points hold.

For all i € [p] with u; ¢ X, we have ||[Y N (U; UV; UU])| — 2| < %, and
for all i € [p] with u; € X, we have |[Y N (U; UV; UU])| — 55| < =

Since n > 40, we have (p — x)s/n? + z(s +t)/n* < 2ps/n* < s/20 and |Y N V| < n, so the
claim follows. To obtain the desired failure probability, we will show that, for any ¢ € [p], the
probability that the relevant bullet point fails to hold is at most 3¢’ (so the total failure
probability is at most 3ne‘"2, by a union bound).

First, consider any ¢ € [p] with u; ¢ X. In this case, Y N (U; UV; UU]) is generated by
including (independently for each j € [s]) one of three possibilities: (i) u;; but not v, ;, (ii)
v;,; but not w; ;, or (iii) neither w; j nor v; ;. Each of the three choices is equally likely. Thus
Y N (U; UV; UU/)| is distributed binomially with mean 2s/3, so by a Chernoff bound (see
Janson, Luczak and Rucinski [13, Corollary 2.3]), the probability that the first bullet point
fails for 7 is at most 2e—/2n" < 36_”2, as desired.

Second, consider any i € [p] with u; € X. In this case, Y N(U; UV;UU}) is chosen uniformly
from all subsets of U; U U/ that contain at least one element of U;. The total variation
distance between the uniform distribution on these subsets and the uniform distribution on
all subsets of U; U U/ is at most 27*. Also, again by [13, Corollary 2.3]), the probability that
a uniformly-random subset of U; U U/ has a size that differs from its mean, (s +t)/2, by at
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least (s +t)/n? is at most 2e=2(s+)/(3n%), Thus, the probability that the second bullet point
fails for 4 is at most 2~t 4 2e—2(s+1)/(3n") < 36_"2, as desired.

Claim 3: Suppose that « € {0,...,p} \ {¢} and that X is an a-left independent set of G.
We know from Equation (4) that |o(X) N As| < 3ne™™ F(x). We wish to show that this is
at most F(£)/2". Note that ¢t > 1 and 3°~! < 25+t < 3% so for all y € {0,...,p},

F(y) — (25+t _ 29)y . gps—ys < 2y(s+t) . gps—ys < 3;05, and
F(y) > 2y(s+t)7y . gps—ys > 3p572y > 3p572n.

The claim follows from F(z) < 3P% < 3?"F(¢) and from the fact that n > 40. <

5 Algorithms

In this final section, we give our algorithmic results: An FPT randomized approximation
scheme (FPTRAS) for #Size-BIS, and an exact FPT-algorithm for all three problems in
bounded-degree graphs. The definition below follows Arvind and Raman [1].

» Definition 10. An FPTRAS for #Size-BIS is a randomised algorithm that takes as input
a bipartite graph G, a non-negative integer k, and a real number € € (0,1) and outputs a
real number z. With probability at least 2/3, the output z must satisfy (1 — e)ISk(G) < z <
(14 &)ISk(G). Furthermore, there is a function f : R — R and a polynomial p such that the
running time of the algorithm is at most f(k) p(|V(G)|,1/e).

» Theorem 11. There is an FPTRAS for #Size-BIS with time complexity O (2’C . k:2/62)
for input graphs with n vertices.

Note that the running time in Theorem 11 does not depend on n, as various logarithmic
factors are absorbed by the word-RAM model. We defer the proof to the full version. We
now turn to our algorithms for bounded-degree graphs. We require the following definitions.
For any positive integer s, an s-coloured graph is a tuple (G, c) where G is a graph and
¢: V(G) — [s] is a map. Suppose G = (G, ¢) and G’ = (G', ) are coloured graphs with
G=(V,E)and G’ = (V',E').

We say a map ¢ : V — V' is a homomorphism from G to G’ if ¢ is a homomorphism from
G to G’ and, for all v € V, ¢(v) = ¢/(¢(v)). If ¢ is also bijective, we say ¢ is an isomorphism
from G to G’, that G and G’ are isomorphic, and write G ~ G’. For all X C V, we define
G[X] = (G[X],c|lx), and say G[X] is an induced subgraph of G. Given coloured graphs H
and G, we denote the number of sets X C V(G) with G[X] ~ H by #Ind(H — G). Finally,
we define V(G) =V and E(G) = E and we define A(G) to be the maximum degree of G.

For each positive integer A, we consider a counting version of the induced subgraph
isomorphism problem for coloured graphs of degree at most A.

Name: #Induced-Coloured-Subgraph[A].  Parameter: |V (H)|.
Input: Two coloured graphs H and G, each with maximum degree bounded by A.
Output: #Ind(H — G).

We will later reduce our bipartite independent set counting problems to #Induced-
Coloured-Subgraph[A]. Note that this problem can be expressed as a first-order model-
counting problem in bounded-degree structures. A well-known result of Frick [9, Theorem 6]
yields an algorithm for #Induced-Coloured-Subgraph[A] with running time g(k) - n, where
k=|V(H)| and n = |V(G)|. However, the function g of Frick’s algorithm may grow faster
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than any constant-height tower of exponentials. In the following, we provide an algorithm for
#Induced-Coloured-Subgraph[A] that is substantially faster: It runs in time O(nk(A+3)k),

The algorithm follows the strategy of [3] to count small subgraphs: Instead of counting
(coloured) induced subgraphs, we can count (coloured) homomorphisms and recover the
number of induced subgraphs via a simple basis transformation. Given coloured graphs H
and G, we denote the number of homomorphisms from #H to G by #Hom(H — G).

» Lemma 12. There is an algorithm to compute #Hom(H — G) in time O(nk*(A + 1)k),
where G is a coloured graph with n vertices, H is a coloured graph with k vertices, and both
graphs have mazimum degree at most A.

Proof. The algorithm works as follows: If H is not connected, let H1, ..., H, be its connected
components. Then it is straightforward to verify that #Hom(H — G) = Hle #Hom(H; —
G). Thus it remains to describe the algorithm for connected pattern graphs #.

Let H be connected. A sequence of vertices vy,...,v, in a graph F' is a traversal if,
for all i € {1,...,k — 1}, the vertex v;41 is contained in {vy,...,v;} UT({vy,...,v;}). Let
uq,...,ux be an arbitrary traversal of H with {uy,...,ur} = V(H); the latter property can
be satisfied since H is a connected graph with k vertices. Note that if f: V(H) — V(G) is a
homomorphism from H to G, then f(u1),..., f(ux) is a traversal in G, and this correspondence
is injective. Thus the algorithm computes the number of traversals vy, ..., v, in G for which
the mapping f with f(u;) = v; for all 7 is a homomorphism from #H to G. This number is
equal to #Hom(H — G), which the algorithm seeks to compute.

Since the maximum degree of G is A, any set S C V(G) satisfies |I'(S)| < A|S]|. Thus there
are at most n - (Ak + k)*~1 traversal sequences in G, which can be generated in linear time
in the number of such sequences. For each traversal sequence, verifying whether the sequence
corresponds to a homomorphism takes time O(kA) (in the word-RAM model with incidence
lists for H already prepared). Overall, we obtain a running time of O(n - k¥ - (A + 1)¥). <

» Theorem 13. For all positive integers A, there is a fized-parameter tractable algorithm for
#Induced-Coloured-Subgraph[A] with time complexity O(n - kA+3)k) for n-vertex coloured
graphs G and k-vertex coloured graphs H.

Proof. Let (H,G) be an instance of #Induced-Coloured-Subgraph[A], write G = (G, ¢) and
H = (H,d), and let k = |V(H)|. Without loss of generality, suppose that the ranges of ¢
and ¢ are [g] for some positive integer ¢ < k. Namely, if any vertices of G receive colours
not in the range of ¢, then our algorithm may remove them without affecting #Ind(H — G);
if any vertices of H receive colours not in the range of ¢, then #Ind(H — G) = 0.

For coloured graphs K and B, let #Surj( — B) be the number of vertex-surjective
homomorphisms from K to B, i.e., the number of those homomorphisms from K to B that
contain all vertices of B in their image.

Let S be the set of all g-coloured graphs K such that A(K) < A and, for some t € [£],
V(K) = [t]. Let S’ be a set of representatives of (coloured) isomorphism classes of S.

Let « be the vector indexed by S’ such that zx = #Ind(K — G) for all £ € S’. This
vector contains the number of induced subgraph copies of ‘H in G, but it also contains the
number of subgraph copies of all other graphs in S’ in G. Let b be the vector indexed by S’
such that b = #Hom(K — G) for all £ € S’; each entry of this vector can be computed via
the algorithm of Lemma 12. Then we will show that = and b can be related to each other
via an invertible matrix A such that Az = b. By calculating A and b, we can then output
#Ind(H — G) = (A71b)4.
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To elaborate on this linear relationship between induced subgraph and homomorphism
numbers, let us first consider some arbitrary graph K € S’. By partitioning the homomorph-
isms from K to G according to their image, we have

#Hom(K — G) = > #Surj(K — G[X]).
XCV(9)
X<k
In the right-hand side sum, we can collect terms with isomorphic induced subgraphs G[X],
since we clearly have #Surj(K — B) = #Surj(K — B’) if B ~ B’. Hence, we obtain

#Hom(K — G) = Y #Surj(K — £') - #Ind(K' — G). (5)
K'es’
Thus let A be the matrix indexed by S’ with Ak v = #Surj(K — K') for all £, K" € 5.
Then (5) implies that Az = b. (An uncoloured version of this linear system is folklore, and
originally due to Lovasz [15].)

We next prove that A is invertible. Indeed, given K, K’ € §’, write K < K if K admits a
vertex-surjective homomorphism to K’. Since < is a partial order, as is readily verified, it
admits a topological ordering w. Permuting the rows and columns of A to agree with 7 does
not affect the rank of A, and it yields an upper triangular matrix with non-zero diagonal
entries, so it follows that A is invertible.

The algorithm is now immediate. It first determines S by listing all ¢g-coloured graphs
on at most k vertices with at most | Ak/2| edges, then checking each one to see whether it
satisfies the degree condition. It then determines S’ from S by testing every pair of coloured
graphs in S for isomorphism (by brute force). It then determines each entry Ay xv of A (by
brute force) by listing the vertex-surjective maps K — K’. It then determines b by invoking
Lemma 12 to compute each entry bx = #Hom(K — G) for £ € S’. Finally, it outputs
#Ind(H — G) = (A7'b)y. We defer the running time analysis to the full version. <

We note that the above algorithm can be generalised to any host graph class for which
counting homomorphisms from (vertex-coloured) patterns with k vertices has an f(k) - n®®
time algorithm. To this end, simply use this algorithm as a sub-routine instead of Lemma 12
in the algorithm constructed in the proof of Theorem 13. Examples for such classes of host
graphs are planar graphs or, more generally, any graph class of bounded local treewidth [9].

Recent independent work by Patel and Regts [17] implicitly contains an algorithm for
counting independent sets of size k in graphs of maximum degree A in time O(c*n), where ¢
is a constant depending on A. This implies Theorem 14(i).

» Theorem 14. For all positive integers A:

(i) #Size-BIS[A] has an algorithm with time complexity O(|V (G)| - kZAT3k);

(ii) #Size-Left-BIS[A] has an algorithm with time complexity O(|V (G)| - (A" +8A+)¢) .
(iii) #Size-Left-Max-BIS[A] has an algorithm with time complexity O(|V (G)| - (22 +8A+4))

Proof. Part (i) of the result is immediate from Theorem 13, since #Size-BIS[A] is a special
case of #Induced-Coloured-Subgraph[A] (taking G to be monochromatic and H to be a
monochromatic independent set of size k).

For any bipartite graph G = (U,V, E) with degree at most A and any non-negative
integers ¢ and r, let N;,.(G) be the number of sets X C U with |X| = ¢ and |I'(X)| = r.
Let N; .(G) be the number of pairs of sets X C U, Y C V such that [X| =/, |Y[=r and
Y CT(X). Then we have

AL i
Nin(6) =N (6) = 3 (1)) (©

i=r+1
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For any bipartite graph J = (Uj;,V;, E;), we define the corresponding 2-colouring by
cj(v) = 1 for all v € Uy and ¢y(v) = 2 for all v € V;. We define the corresponding
coloured graph by ¢(J) = (U; U Vy, {{u,v} | (u,v) € E;}),cs). Let S¢, be the set of all
bipartite graphs J = (U;,Vy, Ey) with Uy =[], V; = {{+1,...,£ + r}, degree at most
A and no isolated vertices in V;. Let S;, be the corresponding set of coloured graphs,
and let S,ZJ, be a set of representatives of (coloured) isomorphism classes in Sy,. Then
Ny (G) = ZKeSl[ ) #Ind(K — ¢(G)), and hence by (6) we have

AL .
Nip(@)= Y a0~ Y (1)Nei(6) @
K:ESLT i=r+1

Now suppose that (G, ¢) is an instance of #Size-Left-BIS[A]. Then we have

1S, (G) = Z olVI=IPCOl — Z N (G)2VI=r, (8)
XCU 0<r<Al
[X]=¢
To compute Ny a¢(G), ..., Noo(G), our algorithm applies (7). For each r € {Af,...,0}, it
determines the #Ind(K — ¢(G)) terms of (7) using the #Induced-Coloured-Subgraph[A]
algorithm of Theorem 13, and the remaining terms of (7) recursively with dynamic program-
ming. Finally, it computes IS,,.(G) using (8). Thus part (ii) of the result follows, except
for the running time analysis which we defer to the full version.

Finally, suppose that (G, ¥) is an instance of #Size-Left-Max-BIS[A]. Let g = min{r |
Ne,r(G) # 0}, and note that IS, . ma (G) = Np u(G). As above, our algorithm determines
Neae(G), ..., Noo(G) using (7), and thereby determines and outputs Ny, (G). The overall
running time is again O(|V (G)| - £2A*+85+DL) g6 part (iii) of the result follows. <
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—— Abstract

We study the parameterized complexity of dominating sets in geometric intersection graphs.

In one dimension, we investigate intersection graphs induced by translates of a fixed pattern
Q that consists of a finite number of intervals and a finite number of isolated points. We
prove that Dominating Set on such intersection graphs is polynomially solvable whenever Q
contains at least one interval, and whenever Q contains no intervals and for any two point
pairs in Q the distance ratio is rational. The remaining case where Q contains no intervals
but does contain an irrational distance ratio is shown to be NP- complete and contained in
FPT (when parameterized by the solution size).

In two and higher dimensions, we prove that Dominating Set is contained in W[1] for inter-
section graphs of semi-algebraic sets with constant description complexity. This generalizes
known results from the literature. Finally, we establish W[1]-hardness for a large class of
intersection graphs.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, F.1.3 Com-
plexity Measures and Classes

Keywords and phrases dominating set, intersection graph, W-hierarchy
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1 Introduction

A dominating set in a graph G = (V, E) is a subset D C V of vertices such that every node in
V is either contained in D or has some neighbor in D. The decision version of the dominating
set problem asks for a given graph GG and a given integer k, whether G admits a dominating
set of size at most k. Dominating set is a popular and classic problem in algorithmic graph
theory. It has been studied extensively for various graph classes; we only mention that it
is polynomially solvable on interval graphs, strongly chordal graphs, permutation graphs
and co-comparability graphs and that it is NP-complete on bipartite graphs, comparability
graphs, and split graphs. We refer the reader to the book [9] by Hales, Hedetniemi and Slater
for lots of comprehensive information on dominating sets.

* This research was supported by the Netherlands Organization for Scientific Research (NWO) under
project no. 024.002.003.
t See full version at https://arxiv.org/abs/1709.05182

© Mark de Berg, Sdndor Kisfaludi-Bak, and Gerhard Woeginger;
37 licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 14; pp. 14:1-14:12

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.14
https://arxiv.org/abs/1709.05182
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2

The Dominating Set Problem in Geometric Intersection Graphs

Dominating set is also a model problem in parameterized complexity, as it is one of
the few natural problems known to be W[2]-complete (with the solution size k as natural
parameterization); see [5]. In the parameterized setting, dominating set on a concrete graph
class typically is either in P, FPT, W[1]-complete, or W[2]-complete. (Note that the problem
cannot be on higher levels of the W-hierarchy, as it is W[2]-complete on general graphs.)

In this paper we study the dominating set problem on geometric intersection graphs:
Every vertex in V corresponds to a geometric object in R%, and there is an edge between
two vertices if and only if the corresponding objects intersect. Well-known graph classes
that fit into this model are interval graphs and unit disk graphs. In R, Chang [3] has given
a polynomial time algorithm for dominating set in interval graphs and Fellows, Hermelin,
Rosamond and Vialette [6] have proven W[1]-completeness for 2-interval graphs (where the
geometric objects are pairs of intervals). In R?, Marx [10] has shown that dominating set is
WI(1]-hard for unit disk graphs as well as for unit square graphs. For unit square graphs the
problem is furthermore known to be contained in W([1] [10], whereas for unit disk graphs this
was previously not known.

Our contribution

We investigate the dominating set problem on intersection graphs of 1- and 2-dimensional
objects, thereby shedding more light on the borderlines between P and FPT and W[1] and
WI2].

For 1-dimensional intersection graphs, we consider the following setting. There is a fixed
pattern @, which consists of a finite number of points and a finite number of closed intervals
(specified by their endpoints). The objects corresponding to the vertices in the intersection
graph simply are a finite number of translates of this fixed pattern Q. More formally, for a
real number x we define Q(z) := x4+ @ to be the pattern @ translated by z, and for the input
{z1,...,z,}, we consider the intersection graph defined by the objects {z1 + @, ..., z, + Q}.
The class of unit interval graphs arises by choosing @ = [0,1]. Our model of computation
is the word RAM model, where real numbers are restricted to a field K which is a finite
extension of the rationals.

» Remark (Machine representation of numbers). As finite extensions of Q are finite dimensional
vector spaces over Q, there exists a basis by, ..., b, with k = [K : Q], so that any real z € K
is representable in the form x = ¢1b1 + g2bs + - - - + qrby for some q1,...,qx € Q. As k is
fixed, any arithmetic operation that takes O(1) steps on the rationals will also take O(1)
steps on elements of K.

We define the distance ratio of two point pairs (x1,x2), (x3,24) € R x R as % We

derive the following complexity classification for Q-INTERSECTION DOMINATING SET.

» Theorem 1. Q-INTERSECTION DOMINATING SET has the following complexity:
(i) 1t is in P if the pattern QQ contains at least one interval.
(ii) It is in P if the pattern @ does not contain any intervals, and if for any two point pairs
in Q the distance ratio is rational.
(iii) It is NP-complete and in FPT if pattern Q is a finite point set which has at least one
irrational distance ratio.

In the final version we show that any graph can be obtained as a 1-dimensional pattern
intersection graph for a suitable choice of pattern @. Consequently Q-INTERSECTION
DOMINATING SET is W[2]-complete if the pattern @ is part of the input.
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For 2-dimensional intersection graphs, our results are inspired by a question that was not
resolved in [10]: “Is dominating set on unit disk graphs contained in W[1]?” We answer this
question affirmatively (and thereby fully settle the complexity status of this problem). Our
result is in fact far more general: We show that dominating set is contained in W[1] whenever
the geometric objects in the intersection graph come from a family of semi-algebraic sets that
can be described by a constant number of parameters. We also show that this restriction
to shapes of constant-complexity is crucial, as dominating set is W[2]-hard on intersection
graphs of convex polygons with a polynomial number of vertices. On the negative side, we
generalize the W[1]-hardness result of Marx [10] by showing that for any non-trivial simple
polygonal pattern @, the corresponding version of dominating set is W[1]-hard.

The full version of this paper is available as a preprint [4].

2 1-dimensional patterns

In this section, we study the Q-INTERSECTION DOMINATING SET problem in R!. If Q
contains an unbounded interval, then all translates are intersecting; the intersection graph
is a clique and the minimum dominating set is a single vertex. In what follows, we assume
that all intervals in @ are bounded. We define the span of @) to be the distance between its
leftmost and rightmost point. We prove Theorem 1 by studying each claim separately.

» Lemma 2. Q-INTERSECTION DOMINATING SET can be solved in O(nS*+*) time if Q
contains at least one interval, where w is the ratio of the span of Q and the length of the
longest interval in Q.

Note that since @ is a fixed pattern, the value of w does not depend on the input size
and so Lemma 2 implies Theorem 1(i). We translate @ so that its leftmost endpoint
lies at the origin, and we rescale @ so that its longest interval has length 1. Consider an
intersection graph G of a set of translates of ). The vertices of G are Q(x;) for the given
values x;. We call x; the left endpoint of Q);. Let + also denote the Minkowski sum of sets:
A+B={a+bla€ Abe B}. If Aor B is a singleton, then we omit the braces, i.e., we let
a + B denote {a} + B. In order to prove Lemma 2, we need the following lemma first.

» Lemma 3. Let D C V(G) be a minimum dominating set and let X (D) be the set of left
endpoints corresponding to the patterns in D. Then for all y € R it holds that | X (D) N[y, y +
w]| < 3w.

Proof. We prove this lemma first for unit interval graphs (where @ consists of a single
interval). The following observation is easy to prove.

» Observation 4. In any unit interval graph there is a minimum dominating set whose
intervals do not overlap.

Notice that the lemma immediately follows from this claim in case of unit interval graphs
since then |X(D)N[y,y+ 1]| <1 < 3 = 3w. Let @ be any other pattern, and suppose that
|X(D)N[y,y+w]| = 3w+ 1. The patterns starting in [y, y + w] can only dominate patterns
with a left endpoint in [y — w, y + 2w], a window of width 3w. Let H be the set of patterns
starting in [y — w, y + 2w] (see Figure 1. Let I be a unit interval of @, and let U the set of
unit intervals that are the translates of I in the patterns of H. Notice that X (U) is a point
set that is also in a window of length 3w. By the claim above, we know that the interval
graph G(U) defined by U has a dominating set that contains non-overlapping intervals, in
particular, a dominating set Dy of size at most 3w. Since G(U) corresponds to a spanning
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Figure 1 Patterns in a window [y — w, y + 2w]. Intervals of U are red.

subgraph of G(H), the patterns Dg corresponding to Dy in H form a dominating set of
G(H). Thus, (D \ H) U D is a dominating set of our original graph that is smaller than D,
which contradicts the minimality of D. <

We can now move on to the proof of Lemma 2.

Proof. We give a dynamic programming algorithm. We translate our input so that the left
endpoint of the leftmost pattern is 0. Moreover, we can assume that the graph induced by
our pattern is connected, since we can apply the algorithm to each connected component
separately. The connectivity implies that the left endpoint of the rightmost pattern is at
most (n — 1)w. Let 0 < k < n be an integer and let G(k) be the intersection graph induced
by the patterns with left endpoints in [0, kw]. Let Z(k) be the set of input patterns with
left endpoints in [(k — 1)w, kw) and let S C Z(k). Let A(k,S) be the size of a minimum
dominating set D of G(k) for which D NZ(k) = S. By Lemma 3 it follows that |S| < 3w.
The following recursion holds for A(k, S) if we define A(0,S) := 0:

,9) = min -1, + CIZ(k—1), < 3w, SU ominates 7 .
Ak, S Ak s’ S| 1S k S’ Sus’d k

The inequality “<” is easy to see, we are only minimizing over the sizes of feasible dominating
sets of G(k). For the other direction (“>”), Lemma 3 implies that there is a minimum
dominating set containing at most 3w left endpoints from both Z(k — 1) and Z(k), therefore
its size is A(k—1,5")+|S5] for some S’ C Z(k—1), |S’| < 3w that together with S dominates
Z(k). The number of subproblems for a fixed value of k is Z?:O (7) = O(n®"); thus the
number of subproblems is O(n3**1). Computing the value of a subproblem requires looking
at O(n3w*1) potential subsets S’, and O(n?) time is sufficient to check whether S U S’

dominates Z(k). Overall, the running time of our algorithm is O(n%¥+4), <

» Lemma 5. If Q is a point pattern so that the distance ratios of any two point pairs of Q
are rational, then Q-INTERSECTION DOMINATING SET can be solved in polynomial time.

Proof. By shifting and rescaling, we may assume without loss of generality that the leftmost
point in @ is in the origin and that all points in @ have integer coordinates. (Note that this
could not be done if the pattern contained an irrational distance ratio.) We define a new
pattern @ that results from @ by replacing point 0 by the interval [0, 1/3].

Now consider an intersection graph whose vertices are associated with x; + @ where
1 < 9 < -+ < xp,. We assume without loss of generality that the graph is connected
and that all x; are integers. It can be seen that the intersection graph does not change, if
every object x; + @ is replaced by the object z; + Q. Since pattern @' contains the interval
[0,1/3], we may simply apply Lemma 2 to compute the optimal dominating set in polynomial
time. |
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» Lemma 6. If Q is a point pattern that contains two point pairs with an irrational distance
ratio, then Q-INTERSECTION DOMINATING SET is NP-complete.

Proof. The containment in NP is trivial; we show the hardness by reducing from dominating
set on induced triangular grid graphs. (These are finite induced subgraphs of the triangular
grid, which is the graph with vertex set V = Z2? and edge set F = {((a, b),(a+ a,b+ B)) :
la] < 1,|8] < 1,a # B}.) The NP-hardness of dominating set in induced triangular grid
graphs is proven in the final version. Note that the dominating set problem is known to be
NP-hard on induced grid graphs, but this does not imply the hardness on triangular grids,
because triangular grid graphs are not a superclass of grid graphs.

We show that the infinite triangular grid can be realized as a Q-intersection graph,
where the @-translates are in a bijection with the vertices of the triangular grid. Therefore,
any induced triangular grid graph is realized as the intersection graph of the Q-translates
corresponding to its vertices.

Rescale @ so that it has span 1. It cannot happen that all the points are rational,
because it would make all distance ratios rational as well. Let x* € @ be the smallest
irrational point. Let a € Z, and consider the intersection of the translate ax* 4+ Q) with the
set Z + Q. We claim that this intersection is non-empty only for a finite number of values
a € Z. Suppose the opposite. Since @ is a finite pattern, there must be a pair z,2’ € Q such
that az* + z = b + 2’ has infinitely many solutions (a,b) € Z2. In particular, there are two
solutions (a1, b1) and (asz,bse) such that a; # as and by # be. Subtracting the two equations
we get (a1 — ag)z™ = by — by, which implies z* = %. This is a contradiction since x is
irrational.

Let y* = a’z*, where a’ is the largest value a for which axz* + @ intersects Z + Q. It
follows that {j € Z | (jy* + Q)N (Z+ Q) # 0} = {~1,0,1}.

Consider the intersection graph induced by the sets {jy* +k+Q ’ (4, k) € ZQ}. The above
shows that a fixed translate jy*+k+Q is not intersected by the translates (j+a)y*+(k+3)+Q
if || > 2. It is easy to see that |3 > 2 does not lead to an intersection either. Also note that
a = = £1 does not give an intersection; however all the remaining cases are intersecting,
ie., if

(O‘»ﬂ) € {(7170% (717 1)v (07 *1)3 (070)7 (Oa 1)’ (17 71)7 (17 0)}

then (5 + a)y* + (k+ B) + Q intersects jy* + k + Q. Thus, the intersection graph induced by
{jy* +k+Q ’ (4, k) € ZQ} is a triangular grid. <

» Lemma 7. If Q) is a point pattern that has point pairs with an irrational distance ratio,
then Q-INTERSECTION DOMINATING SET has an FPT algorithm parameterized by solution
size.

Proof. In polynomial time, we can remove all duplicate translates, since a minimum domi-
nating set contains at most one of these objects, and any minimum dominating set of the
resulting graph is a dominating set of the original graph. Suppose our pattern consists of ¢
points. In the duplicate-free graph, point i of the pattern translate may intersect point j of
another translate, for some i # j, so the maximum degree is t? — ¢. Therefore we are looking
for a dominating set in a graph of bounded degree. Hence, a straightforward branching
approach gives an FPT algorithm: choose any undominated vertex v; either v or one of
its at most t?> — ¢ neighbors is in the dominating set, so we can branch t? —t + 1 ways. If
all vertices are dominated after choosing k vertices, then we have found a solution. This
branching algorithm has depth k, with linear time required at each branching, so the total
running time is O (t2*(|V| + | E|)). <
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Figure 2 Two faces of a vertical decomposition.

» Remark. In our handling of the problem, the pattern was part of the problem definition.
Making the pattern part of the input leads to an NP-complete problem: Lemma 6 can be
adapted to this scenario. If we also allow the size of the pattern to depend on the input, then
the problem is W[2] complete (when parameterized by solution size): see the final version,
where we show that for any graph G there is a finite pattern whose translates can produce G
as an intersection graph.

We propose the following problem for further study, where the pattern depends on the
input, but has fixed size.

Open question. Let @ be the pattern defined by two unit intervals on a line at distance /.
Is there an FPT algorithm (either with parameter k or k + £) on intersection graphs defined
by translates of @, that can decide if such a graph has a dominating set of size k7 It can be
shown that this problem is NP-complete, and Theorem 10 below shows that it is contained
in W[1].

3 Higher dimensional shapes: W[1] vs. W[2]

In this section we show that dominating set on intersection graphs of 2-dimensional objects
is contained in W([1] if the shapes have a constant size description. First, we demonstrate
the method on unit disk graphs, and later we state a much more general version where
the shapes are semi-algebraic sets. In order to show containment, it is sufficient to give
a non-deterministic algorithm that has an FPT time deterministic preprocessing, then a
nondeterministic phase where the number of steps is only dependent on the parameter. More
precisely, we use the following theorem.

» Theorem 8 ([7]). A parameterized problem is in W[1] if and only if it can be computed by
a nondeterministic RAM program accepting the input that

1. performs at most f(k)p(n) deterministic steps;

2. uses at most f(k)p(n) registers;

3. contains numbers smaller than f(k)p(n) in any register at any time;

4. for any run on any input, the nondeterministic steps are among the last g(k) steps.
Here n is the size of the input, k is the parameter, p is a polynomial and f,g are computable
functions. The non-deterministic instruction is defined as guessing a natural number between
0 and the value stored in the first register, and storing it in the first register. Acceptance of
an input is defined as having a computation path that accepts.

» Theorem 9. The dominating set problem on unit disk graphs is contained in W[1].
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Proof. Let P be the set of centers of the unit disks that form the input instance. For a
subset D C P, let C3(D) and D3(D) be the set of circles and disks of radius 2, respectively,
centered at the points of D. (Note that D is a dominating set if and only if | JD2(D), the
union of the disks in Dy(D), covers all points in P.) Shoot a vertical ray up and down
from each of the O(k?) intersection points between the circles of Co(D), and also from the
leftmost and rightmost point of each circle. Each ray is continued until it hits a circle (or to
infinity). The arrangement we get is a vertical decomposition [2] (see Fig. 2). Each face of this
decomposition is defined by at most four circles. This is not only true for the 2-dimensional
faces, but also for the 1-dimensional faces (the edges of the arrangement) and 0-dimensional
faces (the vertices). We consider the faces to be relatively open, so that they are pairwise
disjoint.

In our preprocessing phase, we compute all potential faces of a vertical decomposition of
any subset D C P by looking at all 4-tuples of circles from Co(P). We create a lookup table
that contains the number of input points covered by each potential face in O(n*) time.

Next, using nondeterminism we guess k integers, representing the points of our solution;
let D be this point set. The rest of the algorithm deterministically checks if D is dominating.
We need to compute the vertical decomposition of C2(D); this can be done in O(k?) time [2].
Finally, for each of the O(k?) resulting faces of |JDa(D), we can get the number of input
points covered from the lookup table in constant time. We accept if these numbers sum to n.
By Theorem 8 we can thus conclude that dominating set on unit disk graphs is in W[1]. <«

In order to state the general version of this theorem, we introduce semi-algebraic sets.
A semi-algebraic set is a subset of R? obtained from a finite number of sets of the form
{x € R?| g(z) > 0}, where g is a d-variate polynomial with integer coefficients, by Boolean
operations (unions, intersections, and complementations). Let I'y o s denote the family of
all semi-algebraic sets in R? defined by at most s polynomial inequalities of degree at most
A each. If d, A, s are all constants, we refer to the sets in I'y o s as constant-complexity
semi-algebraic sets.

Let F be a family of constant complexity semi-algebraic sets in R¢ that can be specified
using t parameters aq,...,a;. If the expressions defining F are also polynomials in terms of
the parameters, then we call F a t-parameterized family of semi- algebraic sets. For example,
the family of all balls in the R? is a 4-parameterized family of semi- algebraic sets, since any
ball can be specified using an inequality of the form (21 —a1)?+ (22 —a2)?+(z3—a3)?—a3 < 0.
As another example, the family of all triangles in the plane is a 6-parameterized algebraic
set, since any triangle is the intersection of three half-planes, and any half- plane can be
specified using two parameters.

We only give a sketch of the proof, the complete proof can be found in the final version.

» Theorem 10. Let F be a t-parameterized family of semi-algebraic sets, for some constant t.
Then dominating set is in W[1] for intersection graphs defined by F.

Proof sketch of Theorem 10. By definition, any set S € F can be specified using ¢ parame-
ters a,...,a;. Thus we can represent S by the point p(S) := (as,...,a;) in RY. Conversely,
for a point (ag,...,a;) € R, let S(ay,...,as) be the corresponding semi-algebraic set. Now
we define, for any set S € F, a region R(S) as follows:

R(S) :={(a1,...,a;) ER": S(ay,...,a;) NS # 0}.

Thus for any two sets S1,S2 € F we have that S; NSy # 0 if and only if p(S1) € R(S>).
Now consider a set S C F of n sets from the family F. We proceed in a similar way as in
the proof of Theorem 9, where the sets R(S) for S € S play the same role as the radius-2
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disks in that proof. Consider any subset D C S, and note that D is a dominating set if and
only if (Jgep R(S) contains the point set {p(S)|S € S}.

Now we can decompose the arrangement defined by {R(S) : S € D} into polynomially
many cells using a so-called cylindrical decomposition [1]; note that such a decomposition is
made possible by the fact that the regions R(S) are semi-algebraic. (This decomposition
plays the role of the vertical decomposition in the proof for unit disks.) Each cell of the
cylindrical decomposition is defined by at most ' regions R(S), for some t' = O(1). Thus,
for each subset of at most ¢’ regions R(.5), we compute all cells that arise in the cylindrical
decomposition of the subset. The number of possible cells is polynomial in 7.

In the preprocessing phase, we compute for each possible cell the number of points p(.59)
contained in it, and store the results in a lookup table. The next phase of the algorithm is the
same as for unit disks: we guess a solution, compute the cells in the cylindrical decomposition
of the corresponding arrangement, and check using the lookup table if the guessed solution
is a dominating set. |

W][1]-hardness for simple polygon translates

We generalize a proof by Marx [10] for the W[1]-hardness of dominating set in unit square/unit
disk graphs. Our result is based on the observation that many 2-dimensional shapes share
the crucial properties of unit squares when it comes to the type of intersections needed for
this specific construction. We prove the following theorem.

» Theorem 11. The dominating set problem is W[1]-hard for intersection graphs of the
translates of a simple polygon in R2.

Our proof uses the same global strategy as Marx’s proof [10] for the W[1]-hardness of
dominating set for intersection graphs of squares. (We give an overview of the proof in the
final version.) To apply this proof strategy, all we need to prove is that the family of shapes
for which we want to prove W/[1]-hardness has a certain property, as defined next.

We say that a shape S C R? is square-like if there are two base vectors b; and by and
for any n there are two small offset vectors u; = u;(n) and uy = ug(n) with the following
properties. Define S(i,5) := S + iuy + juy for all —n? < 4,5 < n?, and consider the set
K :={S(i,7) : —n? < i,j < n?}. Note that K consists of (2n? + 1)? translated copies of S
whose reference points from a (2n? +1) x (2n? + 1) grid. Also note that S = S(0,0). For the
shape S to be square-like, we require the following properties:

K is a clique in the intersection graph, i.e.,

for all —n? <i,j<n? we have: SN S(i,j) # 0.
“Horizontal” neighbors intersect only when close:
for all — n? <j<n? we have: SN (by + S5(i,7)) # 0 < i <0.
“Vertical” neighbors intersect only when close:
for all — n? <i<n? we have: SN (by + S(i,5)) #0 < j <0.
Distant copies of K are disjoint:
for all—n?<i,j,i" 5’ <n? we have: |k|+|¢| > 2 = S(i,7)N (kb1 +fby+S(i’, §')) = 0.
Moreover, we require that each of the vectors can be represented on O(logn) bits. It is
helpful to visualize a square grid, with unit side lengths b; and by, where we place the
centers of unit squares with small offsets compared to the grid points. We are requiring a
very similar intersection structure here. See Figure 5 for an example of a good choice of
vectors.

Since the above properties are sufficient for the construction given by Marx [10], we only

need to prove the following theorem.
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Figure 4 Left: Defining b,. Right: Defining bs.

» Theorem 12. Every simple polygon is square-like.

Before giving a formal proof, we give a short overview. First, we would like to define a
“horizontal” direction, i.e., a good vector b;. A natural choice would be to select a diameter
of the polygon (see by on the left of Figure 4), however that would result in S and by + S
intersecting each other at vertices. That would pose a severe restriction on the offset vectors;
therefore, we use a perturbed version of a diameter, making sure that the intersection of
S and by + S is realized by a polygon side from at least one party. The direction of this
polygon side also defines a suitable direction of the offset vector uy: because of the second
property, choosing us to be parallel to this direction ensures the independence with respect
to the choice of j.

Next, we define the other base vector by. This definition is based on laying out an infinite
sequence of translates horizontally next to each other (right side of Figure 4). We want a
translate of this sequence to touch the original sequence in a “non-intrusive” way: small
perturbations of by 4 .S should only intersect S, but stay disjoint from b; +.5 or —b; + S.
This is fairly easy to achieve; again with a small perturbation of our first candidate vector we
can also ensure that the intersection between by + S and S is not a vertex-vertex intersection.
Finally, a suitable direction for the offset vector u; is given by the polygon side taking part
in the intersection between by + .5 and S.

Proof of Theorem 12. Let P be a simple polygon, and let p and ¢ be two endpoints of a
diameter of P. Let by = ¢ — p. Since P is a polygon, both p and ¢ are vertices. Let s, and
54 be unit vectors in the direction of the side of P that follows vertex p and ¢ in the counter-
clockwise order. Let € > 0 be a small number to be specified later. Consider the intersection
of P and the translate by + es, + P. If € is small enough, then depending on the angle of s,
and s4, this intersection is either the point by + €54, or part of the side with direction s, or
it is an intersection of positive area. The left of Figure 4 illustrates the third case. In the
first case, let by = by + €5p; in the second and third case, let by = by — €s,. Furthermore, let
s1 = by — bg. We will later use s; to define the offset vector us.

Imagine that by is the horizontal direction, and consider the set P, = {kb1 + P | k € Z}
(right side of Figure 4). Its top and bottom boundary are infinite periodic polylines, with
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Figure 5 Part of the grid kb; + ¢bs + P.

period length |by|. Take a pair of horizontal lines that touch the top and bottom boundary.
By manipulating € in the definition of by, we can achieve a general position in the sense that
both of these lines touch the respective boundaries exactly once in each period, moreover,
there is a value p, such that there are no vertices other than the touching points in the
£-neighborhood of the touching lines. Let p" and ¢’ be vertices touched by the bottom and
top lines inside P, and let b, = ¢’ — p’. Similarly as before, the direction of the sides following
p’ and ¢’ counter-clockwise are denoted by s, and s, . If the intersection of P and the
translate by + s, + P has zero area, then let by = b — es4/; otherwise, (if the area of the
intersection is positive), let by = b, + €s,,. We denote by sy the difference by — bj,. If so and
s1 are parallel, then we can define s, similarly, by replacing the sides s,» and s, with the
sides that follow p’ and ¢’ in clockwise direction. The new direction of s; will not be parallel
to the old one, therefore it will not be parallel to s;.

We need to choose the values of u; and us. Let u; = 26?82 and let uy = ﬁsl. We
claim that if € is small enough, then P is square-like for the vectors by, bo, uj,us. It is
easy to check that for a small enough value of ¢, the first condition is satisfied, namely that
PNP(i,j) #0 forall —n?<i,j <n?

Next, we show that for ¢ < 0, the intersection of P and by + P(i, ) is non-empty. Consider
the small grid of points ¢ — iu; — jus, —n? < 4,5 < n? (see Figure 3). This grid fits into a
parallelogram whose sides are parallel to s; and s;. Notice that if € is small enough, then
g —iu; — juy for all —n? < i < 0 and —n? < j < n? is contained in by + P, thus the
intersection P N (by + iu; + jug + P) is non-empty if ¢ < 0. Moreover, (if € is small enough),
then no other type of intersection can happen by moving by + P slightly: the only sides that
can intersect by + P(i,5) from P are adjacent to ¢q. Therefore, if ¢ is outside by + P(4, ),
then the intersection is empty — which is true for ¢ > 0. A similar argument works for the
intersection of P and by + P(i, 7).

Let Ry be a minimum area parallelogram containing P whose sides are parallel to by and
bs (see Figure 5). Notice that the side lengths of this parallelogram are at most |by| 4 ¢ and
|by| + € respectively. Let P = JK = U_n2<i j<n2 P4, 7). Notice that P is contained in the
slightly larger rectangle R that we get by extending all sides of Ry by 2e.

Now consider the rectangle translates kb; +¢bs + R. Since ¢ is small enough, if either &k or
0 is at least two then RN (kb +¢by + R) = (), so specifically, P is disjoint from kb + by + P.
It remains to show that P is disjoint from kb; 4 by + P if |k| = |¢| = 1. Consider P and
by + by + P for example. They could only intersect inside RN (by + by 4+ R); however, if
€ < 4, then this is contained in the y wide horizontal strip defined earlier. By the definition
of this strip, it also means that there is an intersection point ¢ that is within distance O(e)
from both ¢’ and by + by + p’. This would mean that |by| = O(g), and thus it can be avoided
by choosing a small enough €.
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Finally, we note that all restrictions on the value of ¢ are dependent on the polygon P
itself, thus the length of the short vectors u; and uy is Q(n=2), and a precision of O(n=2) is
sufficient for all the vectors, thus the vectors can be represented on O(logn) bits. |

We remark that it is fairly easy to further generalize the above theorem to other families
of objects, we can allow objects with certain curved boundaries for example. A simple
example of an object that is not square-like is a pair of perpendicular disjoint unit segments:
for any choice of offset vectors, the set I does not form a clique (as required by the first
property of square-like objects).

W][2]-hardness for convex polygons

We conclude with the following hardness result; the reduction uses a basic geometric idea
that has been used for hardness proofs before [8, 11]. Note the crucial difference between the
setting in this theorem, where the polygons defining the intersection graph can be different
and have description complexity dependent on n, versus the previous settings (where we had
constant description complexity and some uniformity among the object descriptions).

» Theorem 13. The dominating set problem is W[2]-hard for intersection graphs of convex
polygons.

Proof. A split graph is a graph that has a vertex set which can be partitioned into a clique
C' and an independent set I. It was shown by Raman and Saurabh [12] that dominating
set is W[2]-hard on split graphs. Thus it is sufficient to show that any split graph can be
represented as the intersection graph of convex polygons.

Let G = (C U1, E) be an arbitrary split graph. Let @’ be a regular 2|I|-gon and let Q
be the regular I-gon defined by every second vertex of @'. Notice that Q' \ Q consists of
small triangles, any subset of which together with @ forms a convex polygon.

The polygons corresponding to I are small equilateral triangles, placed in the interior
of each small triangle of @'\ Q. The polygon corresponding to a vertex v € C whose
neighborhood in I is Ny(v) is the union of @ and the small triangles corresponding to the
vertices of Ny(v).

In this construction, the polygons corresponding to C' all intersect (they all contain @),
and the polygons corresponding to I are all disjoint. Finally, for any pair of vertices u € C
and v € I the polygon of u contains the polygon of v if and only if uv € E. |

4  Conclusion

We have classified the parameterized complexity of dominating set in intersection graphs
defined by sets of various types in R' and R2. More precisely, in R', we gave a classification
for the case when the intersection graph is defined by the translates of a fixed pattern
that consists of points and intervals that is independent of the input. In R?, we have
identified a fairly large class of W[1]-complete instances, namely, if our intersection graph is
defined by a subset of a constant description complexity family of semi-algebraic sets. Even
though our results hold for a large class of geometric intersection graphs, there are still some
open problems. In particular, the complexity of dominating set on the following types of
intersections graphs is unknown.

translates of a 1-dimensional pattern that contains two unit intervals at some distance ¢

(given by the input) (FPT vs. W[1]?)
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—— Abstract

We consider the canonical generalization of the well-studied Longest Increasing Subsequence

problem to multiple sequences, called k-LCIS: Given k integer sequences X7, ..., Xy of length at
most n, the task is to determine the length of the longest common subsequence of Xi,..., X
that is also strictly increasing. Especially for the case of k = 2 (called LCIS for short), several
algorithms have been proposed that require quadratic time in the worst case.

Assuming the Strong Exponential Time Hypothesis (SETH), we prove a tight lower bound,
specifically, that no algorithm solves LCIS in (strongly) subquadratic time. Interestingly, the
proof makes no use of normalization tricks common to hardness proofs for similar problems such
as LCS. We further strengthen this lower bound to rule out O ((nL)I*E) time algorithms for
LCIS, where L denotes the solution size, and to rule out O (nk*E) time algorithms for k-LCIS.
We obtain the same conditional lower bounds for the related Longest Common Weakly Increasing
Subsequence problem.
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ments, parameterized complexity, SETH
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1 Introduction

The longest common subsequence problem (LCS) and its variants are computational primitives
with a variety of applications, which includes, e.g., uses as similarity measures for spelling
correction [36, 42] or DNA sequence comparison [38, 5], as well as determining the differences
of text files as in the UNIX DIFF utility [27]. LCS shares characteristics of both an easy and
a hard problem: (Fasy) A simple and elegant dynamic-programming algorithm computes an
LCS of two length-n sequences in time O (n2) [42], and in many practical settings, certain
properties of typical input sequences can be exploited to obtain faster, “tailored” solutions
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(e.g., [26, 28, 7, 37]; see also [13] for a survey). (Hard) At the same time, no polynomial
improvements over the classical solution are known, thus exact computation may become
infeasible for very long general input sequences. The research community has sought for a
resolution of the question “Do subquadratic algorithms for LCS exist?” already shortly after
the formalization of the problem [20, 4].

Recently, an answer conditional on the Strong Exponential Time Hypothesis (SETH;
see Section 2 for a definition) could be obtained: Based on a line of research relating the
satisfiability problem to quadratic-time problems [43, 40, 14, 3] and following a breakthrough
result for Edit Distance [9], it has been shown that unless SETH fails, there is no (strongly)
subquadratic-time algorithm for LCS [1, 15]. Subsequent work [2] strengthens these lower
bounds to hold already under weaker assumptions and even provides surprising consequences
of sufficiently strong polylogarithmic improvements.

Due to its popularity and wide range of applications, several variants of LCS have been
proposed. This includes the heaviest common subsequence (HCS) [31], which introduces
weights to the problem, as well as notions that constrain the structure of the solution,
such as the longest common increasing subsequence (LCIS) [45], LCSk [12], constrained
LCS [41, 19, 8], restricted LCS [25], and many other variants (see, e.g., [18, 6, 32]). Most
of these variants are (at least loosely) motivated by biological sequence comparison tasks.
To the best of our knowledge, in the above list, LCIS is the only LCS variant for which (1)
the best known algorithms run in quadratic time in the worst case and (2) its definition
does not include LCS as a special case (for such generalizations of LCS, the quadratic-time
SETH hardness of LCS [1, 15] would transfer immediately). As such, it is open to determine
whether there are (strongly) subquadratic algorithms for LCIS or whether such algorithms
can be ruled out under SETH. The starting point of our work is to settle this question.

1.1 Longest Common Increasing Subsequence (LCIS)

The Longest Common Increasing Subsequence problem on k sequences (k-LCIS) is defined
as follows: Given integer sequences X1, ..., Xy of length at most n, determine the length
of the longest sequence Z such that Z is a strictly increasing sequence of integers and
Z is a subsequence of each X;,i € {1,...,k}. For k = 1, we obtain the well-studied
longest increasing subsequence problem (LIS; we refer to [21] for an overview), which has
an O (nlogn) time solution and a matching lower bound in the decision tree model [24].
The extension to k = 2, denoted simply as LCIS, has been proposed by Yang, Huang, and
Chao [45], partially motivated as a generalization of LIS and by potential applications in
bioinformatics. They obtained an O (nz) time algorithm, leaving open the natural question
whether there exists a way to extend the near-linear time solution for LIS to a near-linear
time solution for multiple sequences.

Interestingly, already a classic connection between LCS and LIS combined with a recent
conditional lower bound of Abboud, Backurs and Vassilevska Williams [1] yields a partial
negative answer assuming SETH.

» Observation 1 (Folklore reduction, implicit in [28], explicit in [31]). After O (kn?) time
preprocessing, we can solve k-LCS by a single call to (k — 1)-LCIS on sequences of length at
most n?.

Note that by the above reduction, an O (n%*) time LCIS algorithm would give an O (n3*2€)
time algorithm for 3-LCS, which would refute SETH by a result of Abboud et al. [1].

» Corollary 2. Unless SETH fails, there is no O (n%_s) time algorithm for LCIS for any
constant € > 0.
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While this rules out near-linear time algorithms, still an unsatisfying large polynomial gap
between best upper and conditional lower bounds persists.

1.2  Our Results
Our first result is a tight SETH-based lower bound for LCIS.

» Theorem 3. Unless SETH fails, there is no O (n2_5) time algorithm for LCIS for any
constant € > 0.

We extend our main result in several directions.

1.2.1 Parameterized Complexity I: Solution Size

Subsequent work [17, 34] improved over Yang et al’s algorithm when certain input parameters
are small. Here, we focus particularly on the solution size, i.e., the length L of the LCIS.
Kutz et al. [34] provided an algorithm running in time O (nLloglogn + nlogn). If L is small
compared to its worst-case upper bound of n, say L = n3te(l)

subquadratic time. Interestingly, exactly for this case, the reduction from 3-LCS to LCIS of

, this algorithm runs in strongly

Observation 1 already yields a matching SETH-based lower bound of (Ln)l—°() = p3—o(1),

However, for smaller L, this reduction yields no lower bound at all and only a non-matching
lower bound for larger L. We remedy this situation by the following result.!

» Theorem 4. Unless SETH fails, there is no O ((nL)le) time algorithm for LCIS for any
constant € > 0. This even holds restricted to instances with L = nY*°()  for arbitrarily
chosen 0 < v < 1.

1.2.2 Parameterized Complexity Il: k-LCIS

For constant k > 3, we can solve k-LCIS in O (n*polylog(n)) time [17, 34], or even O (n*)
time (see the appendix in the full version). While it is known that k-LCS cannot be computed
in time O (n*~¢) for any constant ¢ > 0,k > 2 unless SETH fails [1], this does not directly
transfer to k-LCIS, since the reduction in Observation 1 is not tight. However, by extending
our main construction, we can prove the analogous result.

» Theorem 5. Unless SETH fails, there is no O (nk’a) time algorithm for k-LCIS for any
constant k > 3 and € > 0.

1.2.3 Longest Common Weakly Increasing Subsequence (LCWIS)

We consider a closely related variant of LCIS called the Longest Common Weakly Increasing
Subsequence (k-LCWIS): Here, given integer sequences X, ..., Xy of length at most n, the
task is to determine the longest weakly increasing (i.e. non-decreasing) integer sequence
Z that is a common subsequence of Xy, ..., Xj. Again, we write LCWIS as a shorthand
for 2-LCWIS. Note that the seemingly small change in the notion of increasing sequence
has a major impact on algorithmic and hardness results: Any instance of LCIS in which
the input sequences are defined over a small-sized alphabet ¥ C Z, say |S| = O (n'/?),
can be solved in strongly subquadratic time O (nLlogn) = O (n*/?logn) [34], by using the
fact that L < |X|. In contrast, LCWIS is quadratic-time SETH hard already over slightly

! We mention in passing that a systematic study of the complexity of LCS in terms of such input
parameters has been performed recently in [16].
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superlogarithmic-sized alphabets [39]. We give a substantially different proof for this fact
and generalize it to k-LCWIS.

» Theorem 6. Unless SETH fails, there is no O (n’“’g) time algorithm for k-LCWIS for any
constant k > 3 and € > 0. This even holds restricted to instances defined over an alphabet of
size |X| < f(n)logn for any function f(n) = w(1) growing arbitrarily slowly.

1.3 Discussion, Outline and Technical Contributions

Apart from an interest in LCIS and its close connection to LCS, our work is also motivated
by an interest in the optimality of dynamic programming (DP) algorithms?®. Notably, many
conditional lower bounds in P target problems with natural DP algorithms that are proven
to be near-optimal under some plausible assumption (see, e.g., [14, 3, 9, 10, 1, 15, 11, 22, 33]
and [44] for an introduction to the field). Even if we restrict our attention to problems
that find optimal sequence alignments under some restrictions, such as LCS, Edit Distance
and LCIS, the currently known hardness proofs differ significantly, despite seemingly small
differences between the problem definitions. Ideally, we would like to classify the properties
of a DP formulation which allow for matching conditional lower bounds.

One step in this direction is given by the alignment gadget framework [15]. Exploiting
normalization tricks, this framework gives an abstract property of sequence similarity measures
to allow for SETH-based quadratic lower bounds. Unfortunately, as it turns out, we cannot
directly transfer the alignment gadget hardness proof for LCS to LCIS - some indication for
this difficulty is already given by the fact that LCIS can be solved in strongly subquadratic
time over sublinear-sized alphabets [34], while the LCS hardness proof already applies
to binary alphabets. By collecting gadgetry needed to overcome such difficulties (that
we elaborate on below), we hope to provide further tools to generalize more and more
quadratic-time lower bounds based on SETH.

1.3.1 Technical Challenges

The known conditional lower bounds for global alignment problems such as LCS and
Edit Distance work as follows. The reductions start from the quadratic-time SETH-hard
Orthogonal Vectors problem (OV), that asks to determine, given two sets of (0, 1)-vectors
U={ug,...,upn_1},V ={vo,...,vn_1} € {0,1} over d = n°Y) dimensions, whether there
is a pair 4,7 such that u; and v; are orthogonal, i.e., whose inner product (u; « v;) :=
Z;é u;[k] - v;[k] is O (over the integers). Each vector u; and v; is represented by a
(normalized) vector gadget VGx(u;) and VGy(v;), respectively. Roughly speaking, these
gadgets are combined to sequences X and Y such that each candidate for an optimal
alignment of X and Y involves locally optimal alignments between n pairs VG (u;), VGy(v;)
— the optimal alignment exceeds a certain threshold if and only if there is an orthogonal pair
U, Vj.
An analogous approach does not work for LCIS: Let VGy(u;) be defined over an alphabet
Y and VGy(uy/) over an alphabet ¥'. If ¥ and X’ overlap, then VGx(u;) and VG (u;/) cannot
both be aligned in an optimal alignment without interference with each other. On the other
hand, if ¥ and ¥’ are disjoint, then each vector v; should have its corresponding vector
gadget VGy (v;) defined over both ¥ and ¥’ to enable to align VG (u;) with VGy(v;) as well
as VGx(uy) with VGy(v;). The latter option drastically increases the size of vector gadgets.

2 We refer to [46] for a simple quadratic-time DP formulation for LCIS.
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Thus, we must define all vector gadgets over a common alphabet ¥ and make sure that only
a single pair VGx(u;), VGy(v;) is aligned in an optimal alignment (in contrast with n pairs
aligned in the previous reductions for LCS and Edit Distance).

1.3.2 Technical Contributions and Proof Outline

Fortunately, a surprisingly simple approach works: As a key tool, we provide separator
sequences qq...an—1 and fy...0Bn,—1 with the following properties: (1) for every i,j €
{0,...,n—1} the LCIS of g ... ; and fy ... 5; has a length of f(i + j), where f is a linear
function, and (2) 3_, [a;| and 3 |B;| are bounded by n'*t°M) Note that existence of such a
gadget is somewhat unintuitive: condition (1) for ¢ = 0 and j = n — 1 requires |ag| = Q(n),
yet still the total length ", |a;| must not exceed the length of |ay| significantly. Indeed, we
achieve this by a careful inductive construction that generates such sequences with heavily
varying block sizes |a;| and |5;].

We apply these separator sequences as follows. We first define simple vector gadgets
VGx(u;), VGy(v;) over an alphabet ¥ such that the length of an LCIS of VGy(u;) and
VGy(v;) is d — (u; +v;). Then we construct the separator sequences as above over an alphabet
Y« whose elements are strictly smaller than all elements in ¥. Furthermore, we create
analogous separator sequences «j ...al,_; and 5 ... 5], _; which satisfy a property like (1)
for all suffixes instead of prefixes, using an alphabet ¥~ whose elements are strictly larger
than all elements in ¥. Now, we define

X = agVGx(ug)ag - .- an—1VGx(tup_1)al, 4,

Y = BoVGy(v0)B5 - - - Brn—1VGy(Un-1)Bs_1-

As we will show in Section 3, the length of an LCIS of X and Y is C — min; ;(u; - v;) for
some constant C' depending only on n and d.

In contrast to previous such OV-based lower bounds, we use heavily varying separators
(paddings) between vector gadgets.

1.4 Paper organization

After setting up conventions and introducing our hardness assumptions in Section 2, we give
the main construction, i.e., the hardness of LCIS in Section 3. The proofs of Theorems 4, 5
and 6 can be found in the full version. We conclude with some open problems in Section 4.

2 Preliminaries

As a convention, we use capital or Greek letters to denote sequences over integers. Let X, Y be
integer sequences. We write | X| for the length of X, X [k] for the k-th element in the sequence
X (kef{0,...,]X|—1}),and X oY = XY for the concatenation of X and Y. We say that
Y is a subsequence of X if there exist indices 0 <4y < iy < --- <4d)y| < |X|—1 such that
Xixg] = Y[k] for all k € {0,...,|Y|—1}. Given any number of sequences Xy, ..., X}, we say

that Y is a common subsequence of X7, ..., X}, if Y is a subsequence of each X;,i € {1,...,k}.

X is called strictly increasing (or weakly increasing) if X[0] < X[1] < --- < X[|X]| — 1]
(or X[0] < X[1] < --- £ X[|X|—1]). For any k sequences Xi,..., Xk, we denote by
leis( X1, ..., Xk) the length of their longest common subsequence that is strictly increasing.

All of our lower bounds hold assuming the Strong Exponential Time Hypothesis (SETH),
introduced by Impagliazzo and Paturi [29, 30]. It essentially states that no exponential
speed-up over exhaustive search is possible for the CNF satisfiability problem.
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» Hypothesis 7 (Strong Exponential Time Hypothesis (SETH)). There is no € > 0 such that
for all d > 3 there is an O (2(1_5)”) time algorithm for d-SAT.

This hypothesis implies tight hardness of the k-Orthogonal Vectors problem (k-OV),
which will be the starting point of our reductions: Given k sets Uy, ..., U C {0,1}4, each
with [U;| = n vectors over d = n°") dimensions, determine whether there is a k-tuple
(uy,...,ur) €Uy X -+ x Uy, such that ZZ;& Hle u;[¢] = 0. By exhaustive enumeration, it
can be solved in time O (nkd) = nFte) The following conjecture is implied by SETH by
the well-known split-and-list technique of Williams [43] (and the sparsification lemma [30]).

» Hypothesis 8 (k-OV conjecture). Let k > 2. There is no O (n*~¢) time algorithm for
k-OV, with d = w(logn), for any constant € > 0.

For the special case of k = 2, which we simply denote by OV, we obtain the following
weaker conjecture.

» Hypothesis 9 (OV conjecture). There is no O (nzfa) time algorithm for OV, with d =
w(logn), for any constant € > 0. Equivalently, even restricted to instances with |U1| = n and
Uz =n7, 0 <y <1, there is no O (nHV*E) time algorithm for OV, with d = w(logn), for
any constant € > 0.

A proof of the folklore equivalence of the statements for equal and unequal set sizes can
be found, e.g., in [15].

3 Main Construction: Hardness of LCIS

In this section, we prove quadratic-time SETH hardness of LCIS, i.e., prove Theorem 3. We
first introduce an inflation operation, which we then use to construct our separator sequences.
After defining simple vector gadgets, we show how to embed an Orthogonal Vectors instance
using our vector gadgets and separator sequences.

3.1 Inflation

We begin by introducing the inflation operation, which simulates weighing the sequences.

» Definition 10. For a sequence A = (ag,a1,...,a,—1) of integers we define:
inflate(A4) = (2ag — 1, 2a9,2a; — 1,2a1,...,2a,-1 — 1,2a,-1) .
» Lemma 11. For any two sequences A and B, lcis(inflate(A), inflate(B)) = 2 - Icis(A, B).

Proof. Let C be the longest common increasing subsequence of A and B. Observe that
inflate(C) is a common increasing subsequence of inflate(A) and inflate(B) of length 2 - |C],
thus lcis(inflate(A), inflate(B)) > 2 - Icis(A, B).

Conversely, let A denote inflate(A) and B denote inflate(B). Let C be the longest
common increasing subsequence of A and B. If we divide all elements of C' by 2 and
round up to the closest integer, we end up with a weakly increasing sequence. Now, if
we remove duplicate elements to make this sequence strictly increasing, we obtain C, a
common increasing subsequence of A and B. At most 2 distinct elements may become equal
after division by 2 and rounding, therefore C contains at least [lcis(A, B)/2] elements, so
2 -lcis(A, B) > lcis(A4, B). This completes the proof. <
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Figure 1 Initial steps of inductive construction of separator sequences (left), and intuition behind
tail gadgets (right).

3.2 Separator sequences

Our goal is to construct two sequences A and B which can be split into n blocks, i.e.
A= qpay...an_1 and B = Bpf...0,_1, such that the length of the longest common
increasing subsequence of the first ¢ blocks of A and the first j blocks of B equals i+ j, up to
an additive constant. We call A and B separator sequences, and use them later to separate
vector gadgets in order to make sure that only one pair of gadgets may interact with each
other at the same time.

We construct the separator sequences inductively. For every k£ € N, the sequences

Aj and By are concatenations of 2F blocks (of varying sizes), A, = aga}c . ..aikfl and
By = BBL... ikil. Let s; denote the largest element of both sequences. As we will soon

observe, s, = 2Ft2 — 3,

The construction works as follows: for £k = 0, we can simply set Ag and By as one-
element sequences (1). We then construct Ayi; and By41 inductively from Ay and By
in two steps. First, we inflate both Ay and By, then after each (now inflated) block
we insert 3-element sequences, called tail gadgets, (2sy + 2,2s;, + 1,28 + 3) for Ap4q and
(28 + 1,28 + 2,285, + 3) for Bi1. Formally, we describe the construction by defining
blocks of the new sequences. For i € {0,1,...,2F — 1},

aplyy = inflate(ag,) o (25 +2) ot = (2sk + 1,28, + 3)

Bi1 = inflate(S}) o (255 + 1), BEAL = (254 + 2,255 + 3) .

Note that the symbols appearing in tail gadgets do not appear in the inflated sequences.
The largest element of both new sequences s;+1 equals 2s; + 3, and solving the recurrence
gives indeed sj, = 2F*2 — 3.

Now, let us prove two useful properties of the separator sequences.

> Lemma 12. |A;| = |By| = (3k +1) - 2% = O (k2").
Proof. Observe that |Ag 1| = 2|Ax| + 3 - 2%. Indeed, to obtain Ay, first we double the size

of A, and then add 3 new elements for each of the 2¥ blocks of A. Solving the recurrence
completes the proof. The same reasoning applies to By. <
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» Lemma 13. For everyi,j € {0,1,...,2’“ — 1}, lcis(ag...a};,ﬂg...ﬁi) =i+ 542k

Proof. The proof is by induction on k. Assume the statement is true for k£ and let us prove
it for k£ + 1.

The “>” direction. First, consider the case when both i and j are even. Ob-
serve that inflate(al . .. a;/z) and inflate(3). .. 2/2) are subsequences of af ...}, and
By y1ee By, 41, respectively. Thus, using the induction hypothesis and inflation properties,

: ; j o i/2y /2
leis(a 1y - yys By .- Blyy) = lcis(inflate(af) . .. ak/ ), inflate(B9 . .. i/ ) =

=2 lcis(a)...al? B0 B3 = 2. (i/2+ /2 +2%) =i 4 j + 2F L,

If 7 is odd and j is even, refer to the previous case to get a common increasing subsequence
of ad,;...ai ) and Y, ... B, of length i — 1+ j + 2¥*! consisting only of elements less
than or equal to 2s, and append the element 2s; + 1 to the end of it. Analogously, for i
even and j odd, take such an LCIS of af, ;... ad,, and BY ... 5,1, and append 25, + 2.
Finally, for both ¢ and j odd, take an LCIS of a2+1 e oﬁ;ll and ,6’2+1 .. .Bjkﬁ, and append
2s; + 1 and 2s; + 3.

The “<” direction. We proceed by induction on ¢ 4+ j. Fix ¢ and j, and let L be a
longest common increasing subsequence of ag_H . a};_H and Bl?+1 e Biﬂ.

If the last element of L is less than or equal to 2sy, L is in fact a common increasing sub-
sequence of inflate(ay . .. ag/%) and inflate(3) ... ,Ej/QJ ), thus, by the induction hypothesis
and inflation properties, |L| < 2 ([i/2] + |j/2] +2%) <i+j + 2k+L.

The remaining case is when the last element of L is greater than 2s;. In this case, consider
the second-to-last element of L. It must belong to some blocks a}; 41 and ,BZH for ¢/ < and
3’ < 7, and we claim that ¢ =4’ and j = j’ cannot hold simultaneously: by construction of
separator sequences, if blocks a}; 41 and ﬂi 41 have a common element larger than 2sy, then
it is the only common element of these two blocks. Therefore, it cannot be the case that
both 7 = i’ and j = 5, because the last two elements of L would then be located in a}‘H_l
and ,6’% 41+ As a consequence, i + 7' < i+ j, which lets us apply the induction hypothesis
to reason that the prefix of L omitting its last element is of length at most i’ + 5’ + 2F+1,
Therefore, |L| < 144"+ j' + 281 < + j + 25+ which completes the proof. <

Observe that if we reverse the sequences Ay and Bj along with changing all elements
to their negations, i.e. « to —z, we obtain sequences Aj and By, such that Ay, splits into 2%
k A A Aok
blocks 072 ... dz -1 B, splits into 2* blocks 52 . ,z 1 and

leis(ad .62 LBl By =2 (28 — 1) —i— j 4 2%, (1)
Finally, observe that we can add any constant to all elements of the sequences Ay and By

(as well as Ay, and Ek) without changing the property stated in Lemma 13 (and its analogue
for Ay and By, i.e. Equation (1)).

3.3 Vector gadgets

Let U = {ug,...,up—1} and V = {vo,...,v,_1} be two sets of d-dimensional (0, 1)-vectors.
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For i € {0,1,...,n — 1} let us construct the vector gadgets U; and V; as 2d-element
sequences, by defining, for every p € {0,1,...,d — 1},

—1,2p) if w;[p] = 0,

(Us2p — 1], U;[2p]) ={ 2p—1,2p—1) ifwlp] =1

2p,2p — 1) if v;[p] =0,

(2p
(
(
(2p,2p) if vifp] = 1.

(Vi[2p — 1], Vi[2p]) = {

Observe that at most one of the elements 2p — 1 and 2p may appear in the LCIS of U;
and V;, and it happens if and only if w;[p] and v;[p] are not both equal to one. Therefore,
leis(U;, V) = d — (u; + v;), and, in particular, lcis(U;, V;) = d if and only if u; and v; are
orthogonal.

3.4 Final construction

To put all the pieces together, we plug vector gadgets U; and Vj into the separator sequences
from Section 3.2, obtaining two sequences whose LCIS depends on the minimal inner product
of vectors u; and v;. We provide a general construction of such sequences, which will be
useful for proving further results in the full version of the paper.

» Lemma 14. Let Xo, X1,..., X1, Yo,Y1,...,Y,_1 be integer sequences such that none
of them has an increasing subsequence longer than 6. Then there exist sequences X and Y of
length O (6 - nlogn) + > | X;| + > |Y;|, constructible in linear time, such that:

leis(X,Y) = maxlcis(X;,Y;) + C

27]
for a constant C' that only depends on n and § and is O (nd).

Proof. We can assume that n = 2" for some pomtlve mteger k, adding some dummy sequences
if necessary. Recall the sequences Ay, By, Ak and Bk constructed in Section 3.2. Let
A, B, A, B be the sequences obtained from Ay, By, Ax, By, by applying inflation [log, d] times
(thus increasing their length by a factor of £ = 2198291 > §). Each of these four sequences
splits into (now inflated) blocks, e.g. A = apoy ... an_1, where a; = inflate!°%2°] (ab).

We subtract from A and B a constant large enough for all their elements to be smaller
than all elements of every X; and Y;. Similarly, we add to A’ and B’ a constant large enough
for all their elements to be larger than all elements of every X; and Y;. Now, we can construct
the sequences X and Y as follows:

X = apXobdoa1 X141 ... ap_1Xp_18p_1,
Y = BoYoBoB1YiBi - .. Bru-1Yn—1Bn—1.

We claim that

leis(X,Y) =4 (4n — 2) + M, where M = max leis(X;,Y5).

Let X; and Y, be the pair of sequences achieving lcis(X;,Y;) = M. Recall that
leis(ag ... @, Bo ... B) = £ (i + j + n), with all the elements of this common subsequence
preceding the elements of X; and Y; in X and Y, respectively, and being smaller than
them. In the same way lcis(&; ... dn_1,5; ... Bn_1) = £-(2-(n — 1) — (i + j) + n) with
all the elements of LCIS being greater and appearing later than those of X; and Y;. By
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concatenating these three sequences we obtain a common increasing subsequence of X and
Y of length - (4n —2) + M.

We defer the simple remainder of the proof, i.e., proving lcis(X,Y) < £ (4dn — 2) + M to
the full version of the paper. |

Proof of Theorem 3. Let U = {ug,...,un-1}, ¥V = {vg,...,0n—1} be two sets of binary
vectors in d dimensions. In Section 3.3 we constructed vector gadgets U; and Vj, for
i,j € {0,1,...,n — 1}, such that lcis(U;,V;) = d — (u; - v;). To these sequences we apply
Lemma 14, with 6 = 2d, obtaining sequences X and Y of length O (nlognpoly(d)) such that
leis(X,Y) = C' + d — min; j(u, - v;) for a constant C'. This reduction, combined with an
O (n?7¢) time algorithm for LCIS, would yield an O (n?~“polylog(n)poly(d)) algorithm for
OV, refuting Hypothesis 9 and, in particular, SETH. <

4 Conclusion and Open Problems

We prove a tight quadratic lower bound for LCIS, ruling out strongly subquadratic-time al-
gorithms under SETH. It remains open whether LCIS admits mildly subquadratic algorithms,
such as the Masek-Paterson algorithm for LCS [35]. Furthermore, we give tight SETH-based
lower bounds for k-LCIS.

For the related variant LCWIS that considers weakly increasing sequences, strongly
subquadratic-time algorithms are ruled out under SETH for slightly superlogarithmic alphabet
sizes ([39] and Theorem 6). On the other hand, for binary and ternary alphabets, even
linear time algorithms exist [34, 23]. Can LCWIS be solved in time O (n?=7(=D) for some
decreasing function f that yields strongly subquadratic-time algorithms for any constant
alphabet size |X|?

Finally, we can compute a (1 + ¢)-approximation of LCIS in O (n3/25_1/2polylog(n))
time by an easy observation (see the appendix in the full version). Can we improve upon this
running time or give a matching conditional lower bound? Note that a positive resolution
seems difficult by the reduction in Observation 1: Any n®, a > 0, improvement over this
running time would yield a strongly subcubic (1 + ¢)-approximation for 3-LCS, which seems
hard to achieve, given the difficulty to find strongly subquadratic (1 + €)-appr