
12th International Symposium
on Parameterized and Exact
Computation

IPEC 2017, September 6–8, 2017, Vienna, Austria

Edited by

Daniel Lokshtanov
Naomi Nishimura

LIPIcs – Vo l . 89 – IPEC 2017 www.dagstuh l .de/ l i p i c s

Editors
Daniel Lokshtanov Naomi Nishimura
Department of Informatics David R. Cheriton School of Computer Science
University of Bergen University of Waterloo
Daniel.Lokshtanov@uib.no nishi@uwaterloo.ca

ACM Classification 1998
F.1.3 Complexity Measures and Classes, F.2 Analysis of Algorithms and Problem Complexity, G.2 Discrete
Mathematics

ISBN 978-3-95977-051-4

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-051-4.

Publication date
February, 2018

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.IPEC.2017.

ISBN 978-3-95977-051-4 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-051-4
http://www.dagstuhl.de/dagpub/978-3-95977-051-4
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.
http://www.dagstuhl.de/dagpub/978-3-95977-051-4
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Susanne Albers (TU München)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Anca Muscholl (University Bordeaux)
Catuscia Palamidessi (INRIA)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)
Thomas Schwentick (TU Dortmund)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

IPEC 2017

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents

On the Parameterized Complexity of Contraction to Generalization of Trees
Akanksha Agrawal, Saket Saurabh, and Prafullkumar Tale . 1:1–1:12

Finding Small Weight Isomorphisms with Additional Constraints is
Fixed-Parameter Tractable

Vikraman Arvind, Johannes Köbler, Sebastian Kuhnert, and Jacobo Torán 2:1–2:13

Parameterized Complexity of Finding a Spanning Tree with Minimum Reload
Cost Diameter

Julien Baste, Didem Gözüpek, Christophe Paul, Ignasi Sau, Mordechai Shalom, and
Dimitrios M. Thilikos . 3:1–3:12

Optimal Algorithms for Hitting (Topological) Minors on Graphs of Bounded
Treewidth

Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos . 4:1–4:12

Contraction-Bidimensionality of Geometric Intersection Graphs
Julien Baste and Dimitrios M. Thilikos . 5:1–5:13

Generalized Kakeya Sets for Polynomial Evaluation and Faster Computation of
Fermionants

Andreas Björklund, Petteri Kaski, and Ryan Williams . 6:1–6:13

Generalized Feedback Vertex Set Problems on Bounded-Treewidth Graphs:
Chordality Is the Key to Single-Exponential Parameterized Algorithms

Édouard Bonnet, Nick Brettell, O-joung Kwon, and Dániel Marx 7:1–7:13

On the Parameterized Complexity of Red-Blue Points Separation
Édouard Bonnet, Panos Giannopoulos, and Michael Lampis . 8:1–8:13

Relativization and Interactive Proof Systems in Parameterized Complexity Theory
Ralph Christian Bottesch . 9:1–9:12

How Much Does a Treedepth Modulator Help to Obtain Polynomial Kernels
Beyond Sparse Graphs?

Marin Bougeret and Ignasi Sau . 10:1–10:13

Solving and Sampling with Many Solutions: Satisfiability and Other Hard Problems
Jean Cardinal, Jerri Nummenpalo, and Emo Welzl . 11:1–11:12

Odd Multiway Cut in Directed Acyclic Graphs
Karthekeyan Chandrasekaran and Sahand Mozaffari . 12:1–12:12

A Fixed-Parameter Perspective on #BIS
Radu Curticapean, Holger Dell, Fedor V. Fomin, Leslie Ann Goldberg, and
John Lapinskas . 13:1–13:13

The Dominating Set Problem in Geometric Intersection Graphs
Mark de Berg, Sándor Kisfaludi-Bak, and Gerhard Woeginger . 14:1–14:12

Tight Conditional Lower Bounds for Longest Common Increasing Subsequence
Lech Duraj, Marvin Künnemann, and Adam Polak . 15:1–15:13

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:vi Contents

K-Best Solutions of MSO Problems on Tree-Decomposable Graphs
David Eppstein and Denis Kurz . 16:1–16:13

DynASP2.5: Dynamic Programming on Tree Decompositions in Action
Johannes K. Fichte, Markus Hecher, Michael Morak, and Stefan Woltran 17:1–17:13

Finding Connected Secluded Subgraphs
Petr A. Golovach, Pinar Heggernes, Paloma T. Lima, and Pedro Montealegre 18:1–18:13

FO Model Checking of Geometric Graphs
Petr Hliněný, Filip Pokrývka, and Bodhayan Roy . 19:1–19:12

Smaller Parameters for Vertex Cover Kernelization
Eva-Maria C. Hols and Stefan Kratsch . 20:1–20:12

Polynomial-Time Algorithms for the Longest Induced Path and Induced Disjoint
Paths Problems on Graphs of Bounded Mim-Width

Lars Jaffke, O-joung Kwon, and Jan Arne Telle . 21:1–21:13

Optimal Data Reduction for Graph Coloring Using Low-Degree Polynomials
Bart M. P. Jansen and Astrid Pieterse . 22:1–22:12

Turing Kernelization for Finding Long Paths in Graph Classes Excluding a
Topological Minor

Bart M. P. Jansen, Marcin Pilipczuk, and Marcin Wrochna . 23:1–23:13

An Exponential Lower Bound for Cut Sparsifiers in Planar Graphs
Nikolai Karpov, Marcin Pilipczuk, and Anna Zych-Pawlewicz . 24:1–24:11

An Improved Fixed-Parameter Algorithm for One-Page Crossing Minimization
Yasuaki Kobayashi, Hiromu Ohtsuka, and Hisao Tamaki . 25:1–25:12

Treewidth with a Quantifier Alternation Revisited
Michael Lampis and Valia Mitsou . 26:1–26:12

An Output Sensitive Algorithm for Maximal Clique Enumeration in Sparse Graphs
George Manoussakis . 27:1–27:8

Merging Nodes in Search Trees: an Exact Exponential Algorithm for the Single
Machine Total Tardiness Scheduling Problem

Lei Shang, Michele Garraffa, Federico Della Croce, and Vincent T’Kindt 28:1–28:12

Computing Treewidth on the GPU
Tom C. van der Zanden and Hans L. Bodlaender . 29:1–29:13

The PACE 2017 Parameterized Algorithms and Computational Experiments
Challenge: The Second Iteration

Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller 30:1–30:12

Preface

This volume contains the papers presented at IPEC 2017: the 12th International Symposium
on Parameterized and Exact Computation held during September 6–8, 2017, in Vienna,
Austria. IPEC was held together with five other algorithms conferences and a summer school
as part of the annual ALGO congress.

The International Symposium on Parameterized and Exact Computation (IPEC, formerly
IWPEC) is a series of international symposia covering research in all aspects of parameterized
and exact algorithms and complexity. Started in 2004 as a biennial workshop, it became an
annual event in 2009.

In response to the call for papers, 68 papers were submitted. Each submission was
reviewed by at least 3 reviewers. The reviews came from the 14 members of the program
committee, and from 100 external reviewers contributing 132 external reviews. The program
committee held electronic meetings through the EasyChair.

Previous IPECs
2004 Bergen, Norway
2006 Zürich, Switzerland
2008 Victoria, Canada
2009 Copenhagen, Denmark
2010 Chennai, India
2011 Saarbrücken, Germany
2012 Ljubljana, Slovenia
2013 Sophia Antipolis, France
2014 Wrocław, Poland
2015 Patras, Greece
2016 Aarhus, Denmark

The program committee felt that the median
submission quality was very high, and in the end
selected 29 of the submissions for presentation at
the symposium and for inclusion in this proceedings
volume. The Best Paper Award was presented to
Radu Curticapean, Holger Dell, Fedor Fomin, Leslie
Ann Goldberg and John Lapinskas for the paper
A Fixed-Parameter Perspective on #BIS and the
Excellent Student Paper Award was presented to
Bart M. P. Jansen and Astrid Pieterse for the paper
Optimal Data Reduction for Graph Coloring Using
Low-Degree Polynomials.

IPEC invited one plenary speaker to the ALGO
meeting, Fabrizio Grandoni, as part of the award
ceremony for the 2017 EATCS-IPEC Nerode Prize
for outstanding papers in the area of multvariate
algorithmics. The award was given by a committee consisting of David Eppstein, Daniel
Marx, and Jianer Chen to Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch for their
paper A Measure & Conquer Approach for the Analysis of Exact Algorithms [Journal of
the ACM 65 (5): Article 25, 2009]. We thank Fabrizio for accepting our invitation and for
contributing an excellent talk to IPEC 2017.

IPEC also invited Mikołaj Bojańczyk to present a tutorial “On Courcelle’s conjecture
about recognisable graph classes.”

We would like to thank the program committee, together with the external reviewers, for
their commitment in the difficult paper selection process. We also thank all the authors who
submitted their work for consideration. Finally, we are grateful to the local organizers of
ALGO, chaired by Stefan Szeider, for their efforts, which made chairing IPEC an enjoyable
experience.
Daniel Lokshtanov and Naomi Nishimura
Bergen and Waterloo, October 2017

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

List of External Reviewers

Faisal Abu-Khzam

Isolde Adler

Akanksha Agrawal

Antonios Antoniadis

Aritra Banik

Rémy Belmonte

Matthias Bentert

Olaf Beyersdorff

Ivona Bezakova

Arindam Biswas

Andreas Björklund

Markus Bläser

Hans L. Bodlaender

Greg Bodwin

Edouard Bonnet

Robert Bredereck

Jonathan Buss

Leizhen Cai

Katrin Casel

Jiehua Chen

Yijia Chen

Fabio Cunial

Konrad Kazimierz Dabrowski

Ronald de Haan

Holger Dell

William E. Devanny

Vida Dujmovic

David Eppstein

Till Fluschnik

Vincent Froese

Kyle Fox

Robert Ganian

Serge Gaspers

Panos Giannopoulos

Petr Golovach

Samuel Haney

Danny Hermelin

Eva-Maria Hols

Ashwin Jacob

Bart M. P. Jansen

Andrzej Kaczmarczyk

Petteri Kaski

Steven Kelk

Eun Jung Kim

Johannes Köbler

Martin Koutecky

Lukasz Kowalik

Sebastian Krinninger

R. Krithika

Alan Kuhnle

Marvin Künnemann

Foram Lakhani

Michael Lampis

Hung Le

Bingkai Lin

Maarten Löffler

Diptapriyo Majumdar

David Manlove

Till Miltzow

Pranabendu Misra

Matthias Mnich

Hendrik Molter
12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:x External Reviewers

N.S. Narayanaswamy

Rian Neogi

André Nichterlein

Joanna Ochremiak

Sebastian Ordyniak

Fahad Panolan

Christophe Paul

Daniel Paulusma

Marcin Pilipczuk

Vinod Reddy

Fernando Sanchez Villaamil

Ignasi Sau

Saket Saurabh

Kevin Schewior

Ildi Schlotter

Pascal Schweitzer

Anil Shukla

Sebastian Siebertz

Matthew Skala

Arkadiusz Socala

Manuel Sorge

Srikanth Srinivasan

Ulrike Stege

Ondrej Suchy

Prafullkumar Tale

Jacobo Torán

Rene van Bevern

Tom van der Zanden

Erik Jan van Leeuwen

Mathias Weller

Marcin Wrochna

Meirav Zehavi

Chihao Zhang

List of Authors

Akanksha Agrawal

Vikraman Arvind

Julien Baste

Andreas Björklund

Hans L. Bodlaender

Édouard Bonnet

Ralph Bottesch

Marin Bougeret

Nick Brettell

Jean Cardinal

Karthekeyan Chandrasekaran

Radu Curticapean

Mark de Berg

Holger Dell

Federico Della Croce

Lech Duraj

David Eppstein

Johannes Klaus Fichte

Fedor Fomin

Michele Garraffa

Panos Giannopoulos

Didem Gözüpek

Leslie Ann Goldberg

Petr Golovach

Markus Hecher

Pinar Heggernes

Petr Hliněný

Eva-Maria C. Hols

Lars Jaffke

Bart M. P. Jansen

Nikolai Karpov

Petteri Kaski

Sandor Kisfaludi-Bak

Yasuaki Kobayashi

Johannes Köbler

Christian Komusiewicz

Stefan Kratsch

Marvin Künnemann

Sebastian Kuhnert

Denis Kurz

O-joung Kwon

Michael Lampis

John Lapinskas

Paloma Lima

George Manoussakis

Dániel Marx

Valia Mitsou

Pedro Montealegre

Michael Morak

Sahand Mozaffari

Jerri Nummenpalo

Hiromu Ohtsuka

Christophe Paul

Astrid Pieterse

Marcin Pilipczuk

Filip Pokrývka

Adam Polak

Bodhayan Roy

Ignasi Sau

Saket Saurabh

Mordechai Shalom

Lei Shang
12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:xii Authors

Vincent T’Kindt

Prafullkumar Tale

Nimrod Talmon

Hisao Tamaki

Jan Arne Telle

Dimitrios M. Thilikos

Jacobo Torán

Tom C. van der Zanden

Mathias Weller

Emo Welzl

Ryan Williams

Gerhard Woeginger

Stefan Woltran

Marcin Wrochna

Anna Zych-Pawlewicz

On the Parameterized Complexity of Contraction
to Generalization of Trees∗

Akanksha Agrawal1, Saket Saurabh2, and Prafullkumar Tale3

1 Department of Informatics, University of Bergen, Bergen, Norway
akanksha.agrawal@uib.no

2 Department of Informatics, University of Bergen, Bergen, Norway and
The Institute of Mathematical Sciences, HBNI, Chennai, India
saket@imsc.re.in

3 The Institute of Mathematical Sciences, HBNI, Chennai, India
pptale@imsc.res.in

Abstract
For a family of graphs F , the F-Contraction problem takes as an input a graph G and
an integer k, and the goal is to decide if there exists S ⊆ E(G) of size at most k such that
G/S belongs to F . Here, G/S is the graph obtained from G by contracting all the edges in S.
Heggernes et al. [Algorithmica (2014)] were the first to study edge contraction problems in the
realm of Parameterized Complexity. They studied F-Contraction when F is a simple family
of graphs such as trees and paths. In this paper, we study the F-Contraction problem, where
F generalizes the family of trees. In particular, we define this generalization in a “parameterized
way”. Let T` be the family of graphs such that each graph in T` can be made into a tree by
deleting at most ` edges. Thus, the problem we study is T`-Contraction. We design an FPT
algorithm for T`-Contraction running in time O((2

√
` + 2)O(k+`) · nO(1)). Furthermore, we

show that the problem does not admit a polynomial kernel when parameterized by k. Inspired
by the negative result for the kernelization, we design a lossy kernel for T`-Contraction of size
O([k(k + 2`)](d

α
α−1 e+1)).

1998 ACM Subject Classification G.2.2 Graph Algorithms, I.1.2 Analysis of Algorithms

Keywords and phrases Graph Contraction, Fixed Parameter Tractability, Graph Algorithms,
Generalization of Trees

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.1

1 Introduction

Graph editing problems are one of the central problems in graph theory that have been
extensively studied in the realm of Parameterized Complexity. Some of the important graph
editing operations are vertex deletion, edge deletion, edge addition, and edge contraction. For
a family of graphs F , the F -Editing problem takes as an input a graph G and an integer k,
and the goal is to decide whether or not we can obtain a graph in F by applying at most k edit
operations on G. In fact, the F-Editing problem, where the edit operations are restricted
to one of vertex deletion, edge deletion, edge addition, or edge contraction have also received
a lot of attention in Parameterized Complexity. When we restrict the operations to only
deletion operation (vertex/edge deletion) then the corresponding problem is called F -Vertex

∗ A full paper containing all the proofs and explanations can be found at https://arxiv.org/abs/1708.
00622

© Akanksha Agrawal, Saket Saurabh, and Prafullkumar Tale;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 1; pp. 1:1–1:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.1
https://arxiv.org/abs/1708.00622
https://arxiv.org/abs/1708.00622
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Contraction to Generalization of Trees

(Edge) Deletion problem. On the other hand if we only allow edge contraction then the
corresponding problem is called F-Contraction. The F-Editing problem generalizes
several NP-hard problems such as Vertex Cover, Feedback vertex set, Planar
F-Deletion, Interval Vertex Deletion, Chordal Vertex Deletion, Odd cycle
transversal, Edge Bipartization, Tree Contraction, Path Contraction, Split
Contraction, Clique Contraction, etc. Most of the studies in the Parameterized
Complexity or the classical Complexity Theory have been restricted to combination of
vertex deletion, edge deletion or edge addition. Only recently, edge contraction as an
edit operation has started to gain attention in the realm of Parameterized Complexity.
In this paper, we add another family of graphs F – a parameterized generalization of
trees – such that F-Contraction is fixed parameter tractable (FPT). We also explore
the problem from the viewpoints of Kernelization Complexity as well as its new avatar the
Lossy Kernelization. For more details on Parameterized Complexity we refer to the books of
Downey and Fellows [11, 12], Flum and Grohe [13], Niedermeier [21], and Cygan et al. [8].

Our starting point is the result of Heggernes et al. [17] who studied F-Contraction
when F is the family of paths (P) and trees (T). To the best of our knowledge these were
the first results concerning Parameterized Complexity of F-Contraction problems. They
showed that P-Contraction and T-Contraction are FPT. Furthermore, they showed that
T-Contraction does not admit a polynomial kernel. On the other hand P-Contraction
admits a polynomial kernel with at most 5k + 3 vertices (see [18] for an improved bound
of 3k + 4 on the number of vertices). Moreover, F-Contraction is not FPT(unless some
unlikely collapse in Parameterized Complexity happens) even for simple family of graphs
such as Pt-free graphs for some t ≥ 5, the family of Ct-free graphs for some t ≥ 4 [6, 19], and
the family of split graphs [2]. Here, Pt and Ct denotes the path and cycle on t vertices. In
light of these mixed answers, two natural questions are:
1. What additional parameter we can associate with T-Contraction such that it admits a

polynomial kernel?
2. What additional parameter we can associate with T-Contraction such that an FPT al-

gorithm with combination of these parameterizations leads to an algorithm that generalizes
the FPT algorithm on trees?

In our earlier paper (a superset of authors) we addressed the first question [1]. In particular
we studied F-Contraction, where F is the family of trees with at most ` leaves (together
with some other problems), and designed a polynomial kernel (hence an FPT algorithm) with
O(k`) vertices. This was complimented by a matching kernel lower bound result. In this
paper we focus on the second question.

Our Problem and Results. To define our problem formally let us define T` to be the family
of graphs such that each graph in T` can be made into a tree by deleting at most ` edges.
Thus the problem we study will be called T`-Contraction.

T`-Contraction Parameter: k

Input: A graph G and an integer k.
Question: Does there exist S ⊆ E(G) of size at most k such that G/S ∈ T`?

Observe that for ` = 0, T`-Contraction is the usual T-Contraction. We design
an FPT algorithm for T`-Contraction running in time O((2

√
`+ 2)O(k+`) · nO(1)). Our

algorithm follows the general approach of Heggernes et al. [17] for designing the algorithm for
T-Contraction. Also, we show that the problem does not admit a polynomial kernel, when
parameterized by k, for any (fixed) ` ∈ N. Inspired by the negative result on kernelization,
we design a lossy kernel for T`-Contraction.

A. Agrawal, S. Saurabh, and P. Tale 1:3

Related Works. For several families of graphs F , early papers by Watanabe et al. [22, 23]
and Asano and Hirata [3] showed that F-Contraction is NP-complete. From the viewpoint
of Parameterized Complexity these problems exhibit properties that are quite different
from the problems where the edit operations are restricted to deleting or adding vertices
or edges. For instance, deleting k edges from a graph such that the resulting graph is
a tree is polynomial time solvable. On the other hand, Asano and Hirata showed that
T-Contraction is NP-hard [3]. Furthermore, a well-known result by Cai [5] states that
when F is a hereditary family of graphs with a finite set of forbidden induced subgraphs then
the graph modification problem defined by F and the edit operations restricted to vertex
deletion, edge deletion, or edge addition admits an FPT algorithm. Moreover, this result
does not hold when the edit operation is edge contraction. Lokshtanov et al. [19] and Cai
and Guo [6] independently showed that if F is either the family of P`-free graphs for some
` ≥ 5 or the family of C`-free graphs for some ` ≥ 4 then F-Contraction is W[2]-hard.
Golovach et al. [14] proved that if F is the family of planar graphs then F-Contraction is
FPT. Belmonte et al. [4] proved that the problem is FPT for F being the family of degree
constrained graphs like bounded degree, (constant) degenerate and (constant) regular graphs.
Moreover, Cai and Guo [6] showed that in case F is the family of cliques, F-Contraction
is solvable in time 2O(k log k) · nO(1), while in case F is the family of chordal graphs, the
problem is W[2]-hard. Heggernes et al. [16] developed an FPT algorithm for the case where
F is the family of bipartite graphs (see [15] for a faster algorithm).

2 Preliminaries

In this section, we state some basic definitions and introduce terminologies from graph theory
and algorithms. We also establish some of the notations that will be used throughout. We
denote the set of natural numbers by N. For k ∈ N, by [k] we denote the set {1, 2, . . . , k}.

Graphs. We use standard terminologies from the book of Diestel [10] for the graph related
terms which are not explicitly defined here. We consider simple graphs. For a graph G,
by V (G) and E(G) we denote the vertex and edge sets of G, respectively. For a vertex
v ∈ V (G), we use degG(v) to denote the degree of v in G, i.e. the number of edges in G that
are incident to v. For v ∈ V (G), by NG(v) we denote the set {u ∈ V (G) | vu ∈ E(G)}. We
drop the subscript G from degG(v) and NG(v) whenever the context is clear. For a vertex
subset S ⊆ V (G), by G[S] we denote the graph with the vertex set S and the edge set as
{vu ∈ E(G) | v, u ∈ S}. By G− S we denote the graph G[V (G) \ S]. We say S, S′ ⊆ V (G)
are adjacent if there is v ∈ S and v′ ∈ S′ such that vv′ ∈ E(G). Further, an edge uv ∈ E(G)
is between S and S′ if u ∈ S and v ∈ S′. For E′ ⊆ E(G), by G/E′ we denote the graph
obtained from G by contracting the edges in E′. For ` ∈ N, by T` we denote the family of
graphs from which we can obtain a tree using at most ` edge deletions. Observe that for any
graph G ∈ T`, we have |E(G)| ≤ |V (G)| − 1 + `. Moreover, for any connected graph G, if
|E(G)| ≤ |V (G)| − 1 + ` then G ∈ T`.

A graph G is contractible to a graph H, if their exists E′ ⊆ E(G) such that G/E′ is
isomorphic to H. In other words, G is contractible to H if there exists a surjective function
ϕ : V (G) → V (H) with W (h) = {v ∈ V (G) | ϕ(v) = h}, for h ∈ V (H) and the following
property holds.

For all h, h′ ∈ V (H), hh′ ∈ E(H) if and only if W (h),W (h′) are adjacent in G.
For all h ∈ V (H), G[W (h)] is connected.

IPEC 2017

1:4 Contraction to Generalization of Trees

Let W = {W (h) | h ∈ V (H)}. Observe that W defines a partition of vertices in G. We
call W as an H-witness structure of G. The sets in W are called witness sets. If a witness set
contains more than one vertex then we will call it a big witness-set, otherwise it is a small
witness set. A graph G is said to be k-contractible to a graph H if there exists E′ ⊆ E(G)
such that G/E′ is isomorphic to H and |E′| ≤ k.

For a subset S ⊆ V (G) and a k-coloring φ of G, S is said to be monochromatic with
respect to φ if for all s, s′ ∈ S, φ(s) = φ(s′). Observe that φ partitions V (G) into (at most)
k pairwise disjoint sets. A subset S ⊆ V (G) is said to be monochromatic component with
respect to φ if S is monochromatic and G[S] is connected.

3 FPT Algorithm for T`-Contraction

In this section, we design an FPT algorithm for T`-Contraction. Our algorithm proceeds
as follows. We start by applying some simple reduction rules. Then by branching we ensure
that the resulting graph is 2-connected. Finally, we give an FPT algorithm running in
time O((2

√
`+ 2)O(k+`) · nO(1)) on 2-connected graphs. The approach we use for designing

the algorithm for the case when the input graph is 2-connected follows the approach of
Heggernes et al. [17] for designing an FPT algorithm for contracting to trees. Also, whenever
we are dealing with an instance of T`-Contraction we assume that we have an algorithm
running in time O((2

√
`′ + 2)O(k+`′) · nO(1)) for T`′-Contraction, for every `′ < `. That

is, we give family of algorithms inductively for each `′ ∈ N, where the algorithm for Tree
Contraction by Heggernes et al. forms the base case of our inductive hypothesis.

We start with few observation regarding the graph class T`, which will be useful while
designing the algorithm.

I Observation 1. For each T ∈ T` the following statements hold.
1. The chromatic number of T is at most 2

√
`+ 2.

2. If T ′ is a graph obtained by subdividing an edge in T then T ′ ∈ T`.
3. If T ′ is a graph obtained by contracting an edge in T then T ′ ∈ T`.

Let (G, k) be an instance of T`-Contraction. The measure we use for analysing the
running time of our algorithm is µ = µ(G, k) = k. We start by applying some simple
reduction rules.

I Reduction Rule 3.1. If k < 0 then return that (G, k) is a no instance of T`-Contraction.

I Reduction Rule 3.2. If k = 0 and G ∈ T` then return that (G, k) is a yes instance of
T`-Contraction.

I Reduction Rule 3.3. If G is a disconnected or k = 0 and G /∈ T` then return that (G, k)
is a no instance.

We assume that the input graph is 2-connected, and design an algorithm for input
restricted to 2-connected graphs. Later, we will show how we can remove this constraint.
The key idea behind the algorithm is to use a coloring of V (G) with at most 2

√
`+ 2 colors

to find a T -witness structure (if it exists) of G, where G is contractible to T ∈ T` using at
most k edge contractions (see Observation 1). Moreover, if such a T does not exist then we
must correctly conclude that (G, k) is a no instance of T`-Contraction. Towards this, we
introduce the following notion.

I Definition 2. Let G be a 2-connected graph, T be a graph in T`, W be a T -witness
structure of G, and φ : V (G)→ [2

√
`+ 2] be a coloring of V (G). Furthermore, let TS be a

A. Agrawal, S. Saurabh, and P. Tale 1:5

(fixed) spanning tree of T , M = {t, t′ | tt′ ∈ E(T) \ E(TS)} ∪ {t ∈ V (T) | dT (t) ≥ 3}, and
B = {t ∈ V (T) | |W (t)| ≥ 2}. We say that φ is W-compatible if the following conditions are
satisfied.
1. For all W ∈ W, and w,w′ ∈W we have φ(w) = φ(w′).
2. For all t, t′ ∈M ∪B such that tt′ ∈ E(T) we have φ(W (t)) 6= φ(W (t′)).
We refer to the set M ∪B as the set of marked vertices.

Assume that (G, k) is a yes instance of T`-Contraction, and F be one of its (inclusion-
wise) minimal solution. Furthermore, let T = G/F , and W be the T -witness structure of
G. Suppose we are given G and a W compatible coloring φ : V (G)→ [2

√
`+ 2] of G, but

we are neither given W nor T . We will show how we can compute a T ′ witness structure
W ′ of G such that |V (T ′)| ≥ |V (T)|, where T ′ ∈ T`. Informally, we will find such a witness
structure by either concluding that none of the edges are part of the solution, some specific
set of edges are part of the solution, or finding a star-like structure of the monochromatic
components of size at least 2 in G, with respect to φ. Towards this, we will employ the
algorithm for Connected Vertex Cover (CVC) by Cygan [7].

I Proposition 3 ([7]). CVC admits an algorithm running in time 2knO(1). Here, k is the
size of a solution and n is the number of vertices in the input graph.

We note that we use the algorithm of Cygan [7] instead of the algorithm by Cygan et
al. [9], because the latter algorithm is a randomized algorithm. Also, the algorithm given by
Proposition 3 can be used to output a solution.

Consider the case when G is k-contractable to a graph, say T ∈ T`, and let W be a
T -witness structure of G. Furthermore, let φ : V (G)→ [2

√
`+ 2] be a W-compatible coloring

of G, and X be the set of monochromatic components of φ. We prove some lemmata showing
useful properties of X .

I Lemma 4. Let T ′ be the graph with X as the T ′-witness structure of G. Then T ′ ∈ T`
and |V (T ′)| ≤ |V (T)|.

Next, we proceed to show how we can partition each X ∈ X into many smaller witness
sets such that either we obtain W or a T ′-witness structure of G for some T ′ ∈ T` which has
at least as many vertices as T . Towards this, we introduce the following notions.

For X ∈ X , by X̂ we denote the set of vertices that have a neighbor outside of X, i.e.
X̂ = N(V (G) \X). A shatter of X is a partition of X into sets such that one of them is a
connected vertex cover C of G[X] containing all the vertices in X̂ and all other sets are of
size 1. The size of a shatter of X is the of size of C. Furthermore, a shatter of X is minimum
if there is no other shatter with strictly smaller size.

From Lemma 4 (and Definition 2) it follows that for each X ∈ X there is WX ⊆ W such
that X = ∪Y ∈WX

Y . In the following lemma, we prove some properties of sets in WX , which
will be useful in the algorithm design.

I Lemma 5. Consider X ∈ X with |X| ≥ 2, WX ⊆ W such that X = ∪Y ∈WX
Y , and all of

the following conditions are satisfied.
G[X] = (u, v1, . . . , vq, v) is an induced path, where q ∈ N.
For each i ∈ [q] we have deg(vi) = 2.
There exists X ′ ∈ X \ {X} such that N(u) ∩X ′ 6= ∅ and N(v) ∩X ′ 6= ∅.

Then |WX | = 1.

I Lemma 6. Consider X ∈ X with |X| ≥ 2, WX such that X = ∪Y ∈WX
Y , and all the

following conditions are satisfied.

IPEC 2017

1:6 Contraction to Generalization of Trees

G[X] = (v0, v1, . . . , vq, v) is an induced path, where q ∈ N.
For each i ∈ [q] we have deg(vi) = 2.
There exists no X ′ ∈ X such that N(u) ∩X ′ 6= ∅ and N(v) ∩X ′ 6= ∅.

Then |WX | = |X|.

Next, we show that each X ∈ X for which Lemma 5 and 6 are not applicable must
contain exactly one big witness set. Moreover, the unique big witness set (together with
other vertices as singleton sets) forms one of its shatters.

I Lemma 7. For X ∈ X with |X| ≥ 2, let WX ⊆ W such that X = ∪Y ∈WX
Y . Furthermore,

the set X does not satisfy the conditions of Lemma 5 or 6. Then there is exactly one big
witness set in WX .

I Lemma 8. Consider X ∈ X such that |X| ≥ 2 and it contains a big witness set, and it
does not satisfy conditions of Lemma 5 or 6. Let WX ⊆ W such that X = ∪Y ∈WX

Y , and
W ∗ be the (unique) big witness set in X. Then W ∗ is a connected vertex cover of G[X] and
it contains X̂.

Using Lemma 6 to Lemma 8 we show how we can replace each X ∈ X with the sets of
its shatter. Recall that we are given only G and φ, and therefore we know X , but we do not
know W. In the Lemma 9, we show how we can find a T ′-witness structure of G for some
T ′ ∈ T`, which has at least as many vertices as T (without knowing W).

I Lemma 9. Given X , we can obtain a T ′-witness structure of G in time 2knO(1) time,
where T ′ ∈ T` and |V (T ′)| ≥ |V (T)|.

Now we are ready to present our randomized algorithm for T`-Contraction when input
graph is 2-connected.

I Theorem 10. There is a Monte Carlo algorithm for solving T`-Contraction on 2-
connected graphs running in time O((2

√
` + 2)O(k+`) · nO(1)), where n is the number of

vertices in the input graph. It does not return false positive and returns correct answer with
probability at least 1− 1/e.

Proof. Let (G, k) be an instance of T`-Contraction, where G is a 2-connected graph.
Furthermore, the Reduction Rules 3.1 and 3.3 are not applicable, otherwise we can correctly
decide whether or not (G, k) is a yes instance. The algorithm starts by computing a random
coloring φ : V (G)→ [2

√
`+2], by choosing a color for each vertex uniformly and independently

at random. Let X be the set of monochromatic connected components with respect to φ
in G. The algorithm applies Lemma 9 in time 2knO(1) and tries to compute T ′ such that
T ′ ∈ T` and G is k-contractible to T ′. It runs (2

√
`+ 2)6k+8` many iterations of two steps

mentioned above. If for any such iteration it obtains a desired T ′-witness structure of G
then it returns yes. If none of the iterations yield yes then the algorithm returns no. This
completes the description of the algorithm.

Observe that the algorithm returns yes only if it has found a T ′ ∈ T` such that G is
contractible to T ′ using at most k edge contractions. Therefore, when it outputs yes, then
indeed (G, k) is a yes instance of T`-Contraction. We now argue that if (G, k) is a yes
instance then using a random coloring the algorithm (correctly) returns the answer with
sufficiently high probability. Let T be a graph in T`, such that G is k-contractible to T , and
W be a T -witness structure of G. Furthermore, let TS be a (fixed) spanning tree of T , and
vertex set M , B are set of vertices defined in Definition 2. Let ψ : V (G)→ [2

√
`+ 2] be a

coloring where colors are chosen uniformly at random for each vertex. The total number

A. Agrawal, S. Saurabh, and P. Tale 1:7

of vertices contained in big witness sets of W is at most 2k. By our assumption, every leaf
is a singleton witness set and it is adjacent to a big witness set. Here, we assume that the
number of vertices in T is at least 3, otherwise we can solve the problem in polynomial time.
This implies that no leaf is in M ∪B. Consider graph T ′ obtained from T by deleting all the
leaves and deleting edges in E(T`) \ E(TS). All the marked vertices of T` and all the paths
connecting two marked vertices are also present in T ′. Notice that T ′ is tree with at most
k + 2` leaves. Since the number of vertices of degree three is at most the number of leaves in
any tree, there are at most k + 2` vertices of degree at least 3. There are at most k vertices
in T which are big witness sets and at most 2` vertices incident to edges in E(T`) \ E(TS).
Hence the total number of marked vertices is at most 2k+ 4`. Since T ′ is a tree, there are at
most 2k + 4` vertices which lie on a path between two vertices in M ∪B and are adjacent to
one of these. The number of vertices of G which are marked vertices or vertices which are
adjacent to it in T ′ is at most 2(2k+4`)+2k. Therefore, the probability that ψ is compatible
withW is at least 1/(2

√
`+2)6k+8`. Since the algorithm runs (2

√
`+2)6k+8` many iterations,

probability that none of these colorings which is generated uniformly at random is compatible
with W is at most (1 − 1/(2

√
` + 2)6k+8`)(2

√
`+2)6k+8`

< 1/e. Hence, algorithm returns a
solution on positive instances with probability at least 1− 1/e. Each iteration takes 2k ·nO(1)

time and hence the total running time of the algorithm is O((2
√
`+ 2)O(k+`) · nO(1)). J

Next, we design reduction rules and a branching rule whose (exhaustive) application will
ensure that the instance of T`-Contraction we are dealing with is 2-connected. Either we
apply one of these reduction rules or branching rule, or we resolve the instance using the
algorithm for T`′ -Contraction, where `′ < `. This together with Theorem 10 gives us an
algorithm for T`-Contraction on general graphs.

I Lemma 11. If for some 0 ≤ `′ < `, (G, k) is a yes instance of T`′-Contraction then
return that (G, k) is a yes instance of T`-Contraction.

Our next reduction rule deals with vertices of degree of 1.

I Reduction Rule 3.4. If there is v ∈ V (G) such that d(v) = 1 then delete v from G. The
resulting instance is (G− {v}, k).

If a connected graph G is not 2-connected graph then there is a cut vertex say, v in G.
Let C1, C2, . . . , Ct be the components of G − {v}. Furthermore, let G1 = G[V (C1) ∪ {v}]
and G2 = G− V (C1). Next, we try to resolve the instance (if possible) using the following
lemma.

I Lemma 12. If there exists `1 and `2 with `1 + `2 = `, where `1, `2 > 0, and k1 and k2 with
k1 + k2 = k such that (G1, k1) is a yes instance of T`1-Contraction and (G2, k2) is a yes
instance of T`2-Contraction then return that (G, k) is a yes instance of T`-Contraction.

Notice that if Lemma 12 is not applicable then one of G1 or G2 must be contracted to a
tree. Let k1 be the smallest integer such that (G1, k1) is a yes instance of T-Contraction,
and k2 be the smallest integer such that (G2, k2) is a yes instance of T-Contraction. Notice
that k1 and k2 can be computed in (deterministic) time 4knO(1) using the algorithm for
T-Contraction [17]. We next proceed with the following branching rule.

I Branching Rule 3.1. We branch depending on which of the graphs among G1 and G2 are
contracted to a tree. Therefore, we branch as follows.

Contract G1 to a tree, and the resulting instance is (G2, k − k1).
Contract G2 to a tree, and the resulting instance is (G1, k − k2).

IPEC 2017

1:8 Contraction to Generalization of Trees

Note that the measure strictly decreases in each of the branches of the Branching Rule 3.1
since Reduction Rule 3.4 is not applicable. If we are unable to resolve the instance using
Lemma 11 and 12, and Reduction Rules 3.3 and 3.4 and Branching Rule 3.1 are not applicable
then the input graph is 2-connected. And, then we resolve the instance using Theorem 10.

I Theorem 13. For each ` ∈ N, there is a Monte Carlo algorithm for solving T`-Contrac-
tion with running in time O((2

√
`+ 2)O(k+`) · nO(1)). It does not return false positive and

returns correct answer with probability at least 1− 1/e.

4 Derandomization

In this section, we derandomize the algorithm presented in Section 3. Before proceeding
forward we define the following important object of this section.

I Definition 14 (Universal Family). A (n, k, q)-universal family is a collection F , of functions
from [n] to [q] such that for each S ⊆ [n] of size k and a function φ : S → [q], there exists
function f ∈ F such that f |S ≡ φ.

Here, f |S denotes the function f when restricted to the elements of S. For q = 2, the
universal family defined above is called an (n, k)-universal set [20]. Hence, (n, k, q)-universal
family is a generalization of (n, k)-universal set. The main result of this section is the
following theorem (Theorem 15), which we use to derandomize the algorithm presented in
Section 3.

I Theorem 15. For any n, k, q ≥ 1, one can construct an (n, k, q)-universal family of size
O(qk · kO(k) · logn) in time O(qk · kO(k) · n logn).

Before proceeding to the proof of Theorem 15, we state how we use it to derandomize the
algorithm presented in Section 3. Let (G, k) be an instance of T`-Contraction. Assume that
(G, k) is a yes instance of T`-Contraction, and let F be one of its solution. Furthermore, let
T = G/F , where T ∈ T` and W be the T -witness structure of G, and φ : V (G)→ [2

√
`+ 2]

be a W-compatible coloring of G. Recall that our randomized algorithm starts by coloring
vertices in G uniformly and independently at random, and then uses this coloring to extract
a witness structure out of each color classes. We then argued that any random coloring is
“equally good” as that of φ with sufficiently high probability, which is given by a function of
k (and `). To derandomize this algorithm, we construct a family F of (coloring) functions
from [n] to [2

√
`+ 2]. We argue that one of the colorings in the family that we compute is

“equally good” as that of φ. Recall that the number of vertices which we need to be colored
in a specific way for a coloring to be W-compatible is bounded by 6k + 8` (see Definition 2
and Theorem 10). Let S be the set of vertices in G which needs to be colored in a specific
way as per the requirements of Definition 2. We can safely assume that |S| = 6k+ 8`. If this
is not the case we can add arbitrary vertices in S to ensure this. Notice that any coloring
f of G such that f |S = φ|S also satisfies the requirements of Definition 2. Let F be an
(n, 6k+ 8`, 2

√
`+ 2)-universal family constructed using Theorem 15. Instead of using random

coloring in the algorithm presented in Section 3, we can iterate over functions in F . Notice
that we do not know S but for any such S, we are guaranteed to find an appropriate coloring
in one of the functions in F , which gives us the desired derandomization of the algorithm.

In rest of the section, we focus on the prove of Theorem 15. Overview of the proof is as
follows: Let S be a set of size k in an n-sized universe U . We first reduce this universe U
to another universe U ′ whose size is bounded by k2. We ensure that all elements of S are
mapped to different elements of U ′ during this reduction. Let Y be the range of S in U ′.

A. Agrawal, S. Saurabh, and P. Tale 1:9

We further partition U ′ into log k parts such that Y is almost equally divided among these
partition. In other words, each partition contains (roughly) k/ log k many elements of Y . For
each of these parts, we explicitly store functions which represents all possible q-coloring of
elements of Y in this partition. Finally, we “pull back” these functions to obtain a coloring
of S.

I Definition 16 (Splitter [20]). An (n, k, q)-splitter F is a family of functions from [n] to [q]
such that for every set S ⊆ [n] of size k there exists a function f ∈ F that splits S evenly.
That is, for every 1 ≤ z, z′ ≤ q, |f−1(z) ∩ S| and |f−1(z′) ∩ S| differ by at most 1.

I Lemma 17. For every 1 ≤ k, q ≤ n there is a family of (n, k, q)-splitter of size O(nO(q))
which can be constructed in the same time.

Following is another well known result for construction of splitter when q = k2. We use
this result to reduce the size of the universe.

I Proposition 18 ([8, 20]). For any n, k ≥ 1 one can construct an (n, k, k2)-splitter of size
O(kO(1) logn) in time O(kO(1)n logn).

Next, we look at the k-Restriction problem defined by Naor et al. [20]. Before defining
the problem, we define some terminologies that will be useful. For a fixed set of alphabets,
say {1, 2, . . . , b} and a vector vector V , which is an ordered collection of alphabets, the length
of V is the size of the collection. We represent n length vector V as (v1, v2, . . . , vn). For a
positive integer i ∈ [n], V [i] denotes the alphabet at the ith position of V . Similarly, for an
(index) set S ⊆ [n], V [S] denotes the |S| sized vector obtained by taking alphabet at ith
position in V , for each i ∈ S. In other words, if S = {i1, i2, . . . , ik} for i1 < i2 < · · · < ik,
then V [S] = (V [i1], V [i2], . . . , V [ik]). An input to the k-Restriction problem is a set
C = {C1, C2, . . . , Cm} called as a k-restrictions, where Cj ⊆ [b]k for j ∈ [m] and an integer
n. Here, [b]k denotes the set of all possible vectors of length k over [b], and m denotes the
size of the k-restrictions. We say that a collection V of vectors obeys C if for all S ⊆ [n]
which is of size k and for all Cj ∈ C, there exists V ∈ V such that V [S] ∈ Cj . The goal of
k-Restriction problem is to find a collection V of as small cardinality as possible, which
obeys C. Let c = minj∈[m] |Ci|, and let T be the time needed to check whether or not the
vector V is in Cj . We next state the result of Naor et al. [20], which will be useful for proving
Theorem 15.

I Proposition 19 (Theorem 1 [20]). For any k-Restriction problem with b ≤ n, there is a
deterministic algorithm that outputs a collection obeying k-restrictions, which has size at most
(k logn+ logm)/ log(bk/(bk− c)). Moreover, the algorithm runs in time O

(
bk

c

(
n
k

)
·m ·T ·nk

)
.

Here, b is the size of the alphabet set, m is the size of the k-restrictions, n is the size of the
vectors in the output set, and c is the size of the smallest collection in the k-restrictions.

Notice that a function from [n] to [q] can be seen as an n-length vector over the alphabet
set [q]. Consider the case when each Cj contains exactly one vector of length k over [q], i.e.
C = {{C} | C ∈ [q]k}, m = qk, c = 1, and T = O(n). The output of k-Restriction on this
input is exactly an (n, k, q)-universal family. Therefore, we obtain the following corollary.

I Corollary 20. For any n, k, q ≥ 1, one can construct an (n, k, q)-universal family of size
O(qk · k · (logn+ log q)) in time O(qk · nO(k)).

Notice that we can not directly employ Corollary 20 to construct the desired family,
since its running time is O(qk · nO(k)). Therefore, we carefully use splitter to construct an
(n, k, q)-universal family to obtain the desired running time.

IPEC 2017

1:10 Contraction to Generalization of Trees

Proof of Theorem 15. For the sake of clarity in the notations, we assume that log k and
k/ log k are integers. Let A be a (n, k, k2)-splitter obtained by Proposition 18. Let B be
a (k2, k, log k)-splitter obtained by Lemma 17. Let D be a (k2, k/ log k, q)-universal family
obtained by Corollary 20. We construct F as follows. For every function fa in A, fb in B,
and log k functions g1, g2, . . . , glog k in D, we construct a tuple f = (fa, fb, g1, g2, . . . , glog k),
and add it to F . We note here that g1, g2, . . . , glog k need not be different functions. For
f ∈ F , we define f : [n]→ [q] as follows. For x ∈ [n], we have f(x) = gr(fb(fa(x))), where
r = fb(fa(x)).

We first argue about the size of F and the time needed to construct it. Notice that |F| ≤
|A||B||D|log k. We know |A| ≤ kO(1) logn, |B| ≤ O(kO(log k)) and |D| ≤ qk/ log kkO(k/ log k)

by Proposition 18, Lemma 17, and Corollary 20, respectively. This implies that |F| ∈
O(qk · kO(log k) · logn). Note that A,B,D can be constructed in time O(kO(1)n logn),
O(kO(log k)), and O(qk ·kO(k/ log k)), respectively. This implies that time required to construct
F is bounded by O(qk · kO(k) · n logn).

It remains to argue that F has the desired properties. Consider S ⊆ [n] of size k and
φ : S → [q]. We prove that there exists a function f ∈ F such that f |S ≡ φ. By the definition
of splitter, there exists fa ∈ A such that fa evenly splits S (see Definition 16). Since |S| < k2,
for every y ∈ [k2], |f−1

a (y) ∩ S| is either 0 or 1. Let Y = {y1, y2, . . . , yk} be a subset of [k2]
such that y1 < y2 < · · · < yk and |f−1

a (yi) ∩ S| = 1, for all i ∈ [k]. For j = k/ log k, we mark
every jth element in set Y marking log k − 1 indices altogether. In other words, construct
a subset Y ′ of Y of cardinality log k − 1 such that Y ′ = {y1j , y2j , y3j . . . , y(log k−1)j}. We
use the set Y ′ to partition [k2] in a way that every partition contains almost k/ log k many
elements of Y . Let y0 = 0 and y(log k)j = k2 and define set Yr = {y ∈ Y | yr−1 < y ≤ yr}
for r ∈ [log k]. Recall that a B is (k2, k, log k)-splitter family obtained by Lemma 17. By
construction, there exists a function fb which corresponds to subset Y ′ of log k − 1 many
indices. In other words, there is a function fb such that f−1

b (r) contains all the elements in
Yr, for each r in [log k]. We note that size of f−1

b (r) could be as large as k2. Recall that D
is a (k2, k/ log k, q)-universal family. Therefore, for every r ∈ [log k] there exists gr ∈ D such
that gr|Yr ≡ φ|Yr . Consider a function f = (fa, fb, g1, g2, . . . , glog k) in F where fa, fb and
gr satisfies the property mentioned above. The function fa is bijective on S and f(S) = Y .
The function fb partitions Y into log k many parts by mapping Y into Y1, Y2, . . . , Ylog k. For
each Yr there exists a function gr which gives the desired coloring of elements in Yr and
hence for the elements in S. Since we considering all possible combinations of fa, fb and log k
functions in D, there exists a function f such that f |S ≡ φ, which proves the theorem. J

5 Non-existence of a Polynomial Kernel for T`-Contraction

In this section, we show that T`-Contraction does not admit a polynomial kernel unless
NP ⊆ coNP/poly. We note that T-Contraction (Tree Contraction) does not admit a
polynomial kernel unless NP ⊆ coNP/poly [17]. We give a reduction from T-Contraction
to T`-Contraction as follows.

Let (G, k) be an instance of T-Contraction. We create an instance (G′, k′) of T`-
Contraction as follows. Initially, we have G = G′. Let v∗ be an arbitrarily chosen vertex
in V (G). For each i ∈ [`], we add a cycle (v∗, wi1, wi2, . . . , wik+1) on k+ 2 vertices to G′, which
pairwise intersect at v∗, and we set k′ = k. It is easy to see that (G, k) is a yes instance of
T-Contraction if and only if (G′, k′) is a yes instance of T`-Contraction.

I Theorem 21. T`-Contraction does not admit a polynomial kernel unless NP ⊆ coNP/-
poly.

A. Agrawal, S. Saurabh, and P. Tale 1:11

6 PSAKS for T`-Contraction

In this section, we design a PSAKS for T`-Contraction, which complements the result that
T`-Contraction does not admit a polynomial kernel assuming NP 6⊆ coNP/poly (Section 5).

Let (G, k) be an instance of T`-Contraction. The algorithm starts by applying
Reduction Rules 3.1 to 3.4 (if applicable, in that order). Next, we state the following lemma
which will be useful in designing a reduction rule which will be employed for bounding the
sizes of induced paths.

I Lemma 22. Let (G, k) be an instance of T`-Contraction and P = (u0, u1, . . . , uq, uq+1)
be a path in G, where q ≥ k + 2, and for each i ∈ [q + 1] we have deg(ui) = 2. Then no
minimal solution F to T`-Contraction in (G, k) with |F | ≤ k contains an edge incident to
V (P) \ {u0, uq+1}.

I Reduction Rule 6.1. If G has a path P = (u0, u1, . . . , uq, uq+1) such that q > k + 2 and
for all i ∈ [q], we have deg(ui) = 2. Then contract the edge uq−1uq, i.e. the resulting instance
is (G/{uq−1uq}, k).

Note that Reduction Rule 6.1 can be applied in polynomial time by searching for such a
path (if it exists) in the subgraph induced on the vertices of degree 2 in G.

I Lemma 23. Consider an instance (G, k) of T`-Contraction on which Reduction Rule
6.1 is not applicable. If (G, k) is a yes instance of T`-Contraction then G has a connected
vertex cover of size at most 2(k + 3)(k + 2`).

Before describing the next reduction rule, we define a partition of V (G) into the following
sets. Let H = {u ∈ V (G) | deg(u) ≥ 2(k + 3)(k + 2`) + 1}, I = {v ∈ V (G) \H | N(v) ⊆ H},
and R = V (G) \ (H ∪ I). Vertices v, u are said to be false twins if N(v) = N(u). We use
Lemma 24 to reduce the number of vertices in I which have many false twins. Let G be
k-contractible to a graph T in T` and W be the T -witness structure of G.

I Lemma 24. Consider sets X,U ⊆ V (G) such that U is an independent set in G and for
all v ∈ U we have X ⊆ N(v). If |U | ≥ k + `+ 2 then there is a vertex t ∈ V (T) such that
X ⊆W (t).

I Reduction Rule 6.2. If there is a vertex v ∈ I that has at least k + `+ 2 false twins in I
then delete v, i.e. the resulting instance is (G− {v}, k).

For α > 1, we let d = d α
α−1e. Next, we state our last reduction rule.

I Reduction Rule 6.3. If there are vertices v1, v2, · · · , vk+`+2 ∈ I and h1, h2, · · · , hd ∈ H
such that for all i ∈ [k + ` + 2], we have {h1, . . . , hd} ⊆ N(vi) then contract all edges in
Ẽ = {v1hi | i ∈ [d]}, and decrease k by d− 1. The resulting instance is (G/Ẽ, k − d+ 1).

We note that the lossy-ness is introduced only in the Reduction Rule 6.3. We have
determined that H ′ = {h1, h2, . . . , hd} need to be in one witness bag but G[H ′] may not
be connected. To simplify the graph, we introduce additional vertex v1 to the bag which
contains H ′. By doing this we are able to contract H ′ ∪ {v1} into a single vertex. In the
following lemma, we argue that the number of extra edge contracted in this process is α
factor of the optimum solution.

I Lemma 25. Let (G, k) be an instance of T`-Contraction where none of the Reduction
Rules 6.1 to 6.3 are applicable. If (G, k) is a yes of T`-Contraction then |V (G)| ≤
c[k(k + 2`)]d+1, where c is some fixed constant.

I Theorem 26. T`-Contraction admits a strict PSAKS, where the number of vertices is
bounded by c[k(k + 2`)](d

α
α−1 e+1), where c is some fixed constant.

IPEC 2017

1:12 Contraction to Generalization of Trees

References
1 Akanksha Agrawal, Lawqueen Kanesh, Saket Saurabh, and Prafullkumar Tale. Paths to

trees and cacti. In CIAC, pages 31–42, 2017.
2 Akanksha Agrawal, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Split contrac-

tion: The untold story. In STACS, volume 66 of LIPIcs, pages 5:1–5:14, 2017.
3 Takao Asano and Tomio Hirata. Edge-Contraction Problems. Journal of Computer and

System Sciences, 26(2):197–208, 1983.
4 Rémy Belmonte, Petr A. Golovach, Pim Hof, and Daniël Paulusma. Parameterized complex-

ity of three edge contraction problems with degree constraints. Acta Informatica, 51(7):473–
497, 2014.

5 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters, 58(4):171–176, 1996.

6 Leizhen Cai and Chengwei Guo. Contracting few edges to remove forbidden induced sub-
graphs. In IPEC, pages 97–109, 2013.

7 Marek Cygan. Deterministic parameterized connected vertex cover. In Scandinavian Work-
shop on Algorithm Theory, pages 95–106. Springer, 2012.

8 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

9 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In FOCS, pages 150–159, 2011.

10 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

11 Rod G. Downey and Michael R. Fellows. Parameterized complexity. Springer-Verlag, 1997.
12 Rod G. Downey and Michael R. Fellows. Fundamentals of Parameterized complexity.

Springer-Verlag, 2013.
13 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical

Computer Science. An EATCS Series. Springer, 2006.
14 Petr A. Golovach, Pim van ’t Hof, and Daniel Paulusma. Obtaining planarity by contracting

few edges. Theoretical Computer Science, 476:38–46, 2013.
15 Sylvain Guillemot and Dániel Marx. A faster FPT algorithm for bipartite contraction. Inf.

Process. Lett., 113(22–24):906–912, 2013.
16 Pinar Heggernes, Pim van ’t Hof, Daniel Lokshtanov, and Christophe Paul. Obtaining

a bipartite graph by contracting few edges. SIAM Journal on Discrete Mathematics,
27(4):2143–2156, 2013.

17 Pinar Heggernes, Pim van ’t Hof, Benjamin Lévêque, Daniel Lokshtanov, and Christophe
Paul. Contracting graphs to paths and trees. Algorithmica, 68(1):109–132, 2014.

18 Wenjun Li, Qilong Feng, Jianer Chen, and Shuai Hu. Improved kernel results for some
FPT problems based on simple observations. Theor. Comput. Sci., 657:20–27, 2017.

19 Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. On the hardness of eliminating
small induced subgraphs by contracting edges. In IPEC, pages 243–254, 2013.

20 Moni Naor, Leonard J Schulman, and Aravind Srinivasan. Splitters and near-optimal
derandomization. In FOCS, pages 182–191. IEEE, 1995.

21 Rolf Niedermeier. Invitation to fixed-parameter algorithms. Oxford Lecture Series in Math-
ematics and Its Applications. Oxford University Press, 2006.

22 Toshimasa Watanabe, Tadashi Ae, and Akira Nakamura. On the removal of forbidden
graphs by edge-deletion or by edge-contraction. Discrete Applied Mathematics, 3(2):151–
153, 1981.

23 Toshimasa Watanabe, Tadashi Ae, and Akira Nakamura. On the NP-hardness of edge-
deletion and-contraction problems. Discrete Applied Mathematics, 6(1):63–78, 1983.

Finding Small Weight Isomorphisms with
Additional Constraints is Fixed-Parameter
Tractable∗†

Vikraman Arvind1, Johannes Köbler‡2, Sebastian Kuhnert§3, and
Jacobo Torán¶4

1 Institute of Mathematical Sciences (HBNI), Chennai, India
arvind@imsc.res.in

2 Institut für Informatik, Humboldt-Universität zu Berlin, Germany
koebler@informatik.hu-berlin.de

3 Institut für Informatik, Humboldt-Universität zu Berlin, Germany
kuhnert@informatik.hu-berlin.de

4 Institut für Theoretische Informatik, Universität Ulm, Germany
toran@uni-ulm.de

Abstract
Lubiw showed that several variants of Graph Isomorphism are NP-complete, where the solutions
are required to satisfy certain additional constraints [12]. One of these, called Isomorphism
With Restrictions, is to decide for two given graphs X1 = (V,E1) and X2 = (V,E2) and a
subset R ⊆ V × V of forbidden pairs whether there is an isomorphism π from X1 to X2 such
that iπ 6= j for all (i, j) ∈ R. We prove that this problem and several of its generalizations are in
fact in FPT:

The problem of deciding whether there is an isomorphism between two graphs that moves
k vertices and satisfies Lubiw-style constraints is in FPT, with k and |R| as parameters. The
problem remains in FPT even if a CNF of such constraints is allowed. As a consequence of
the main result it follows that the problem to decide whether there is an isomorphism that
moves exactly k vertices is in FPT. This solves a question left open in [1].
When the number of moved vertices is unrestricted, finding isomorphisms that satisfy a CNF
of Lubiw-style constraints is in FPTGI.
Checking if there is an isomorphism between two graphs that has complexity t is also in FPT
with t as parameter, where the complexity of a permutation π is the Cayley measure defined
as the minimum number t such that π can be expressed as a product of t transpositions.
We consider a more general problem in which the vertex set of a graph X is partitioned into
Red and Blue, and we are interested in an automorphism that stabilizes Red and Blue and
moves exactly k vertices in Blue, where k is the parameter. This problem was introduced
in [5], and in [1] we showed that it is W[1]-hard even with color classes of size 4 inside Red.
Now, for color classes of size at most 3 inside Red, we show the problem is in FPT.

In the non-parameterized setting, all these problems are NP-complete. Also, they all generalize
in several ways the problem to decide whether there is an isomorphism between two graphs that
moves at most k vertices, shown to be in FPT by Schweitzer [13].

∗ Some proofs are omitted from this extended abstract; see https://arxiv.org/abs/1709.10063 for the
full version.

† This work was supported by the Alexander von Humboldt Foundation in its research group linkage
program.

‡ The author is supported by DFG grant KO 1053/7-2.
§ The author is supported by DFG grant KO 1053/7-2.
¶ The author is supported by DFG grant TO 200/3-2.

© Vikraman Arvind, Johannes Köbler, Sebastian Kuhnert, and Jacobo Torán;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 2; pp. 2:1–2:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://arxiv.org/abs/1709.10063
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2 Finding Constrained Small Weight Isomorphisms in FPT

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.2 Analysis of Al-
gorithms and Problem Complexity

Keywords and phrases Parameterized algorithms, hypergraph isomorphism, mislabeled graphs

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.2

1 Introduction

The Graph Isomorphism problem (GI) consists in deciding whether two given input graphs
are isomorphic, i.e., whether there is a bijection between the vertex sets of the two graphs
that preserves the adjacency relation. It is an intensively researched algorithmic problem for
over four decades, culminating in Babai’s recent quasi-polynomial time algorithm [2].

There is also considerable work on the parameterized complexity of GI. For example,
already in 1980 it was shown [7] that GI, parameterized by color class size, is fixed-parameter
tractable (FPT). It is also known that GI, parameterized by the eigenvalue multiplicity of
the input graph, is in FPT [3]. More recently, GI, parameterized by the treewidth of the
input graph, is shown to be in FPT [11].

In a different line of research, Lubiw [12] has considered the complexity of GI with
additional constraints on the isomorphism. Exploring the connections between GI and the
NP-complete problems, Lubiw defined the following version of GI.
Isomorphism With Restrictions: Given two graphs X1 = (V1, E1) and X2 = (V2, E2)

and a set of forbidden pairs R ⊆ V1 × V2, decide whether there is an isomorphism π

from X1 to X2 such that iπ 6= j for all (i, j) ∈ R.
When X1 = X2, the problem is to check if there is an automorphism that satisfies these
restrictions. Lubiw showed that the special case of testing for fixed-point-free automorphisms
is NP-complete. Klavík et al. recently reexamined Isomorphism With Restrictions [10].
They show that it remains NP-complete when restricted to graph classes for which GI is
as hard as for general graphs. Conversely, they show that it can be solved in polynomial
time for several graph classes for which the isomorphism problem is known to be solvable
in polynomial time by combinatorial algorithms, e.g. planar graphs and bounded treewidth
graphs. However, they also show that the problem remains NP-complete for bounded color
class graphs, where an efficient group theoretic isomorphism algorithm is known.

A different kind of constrained isomorphism problem was introduced by Schweitzer [13].
The weight (or support size) of a permutation π ∈ Sym(V) is |{i ∈ V | iπ 6= i}|. Schweitzer
showed that the problem of testing if there is an isomorphism π of weight at most k between
two n-vertex input graphs in the same vertex set can be solved in time kO(k) poly(n). Hence,
the problem is in FPT with k as parameter. Schweitzer’s algorithm exploits interesting
properties of the structure of an isomorphism π. Based on Lubiw’s reductions [12], it is not
hard to see that the problem is NP-complete when k is not treated as parameter.

In this paper we consider the problem of finding isomorphisms with additional constraints
in the parameterized setting. In our main result we formulate a graph isomorphism/automor-
phism problem with additional constraints that generalizes Lubiw’s setting as follows. For a
graph X = (V,E), let π ∈ Aut(X) be an automorphism of X. We say that a permutation
π ∈ Sym(V) satisfies a formula F over the variables in Var(V) = {xu,v | u, v ∈ V } if F is
satisfied by the assignment that has xu,v = 1 if and only if uπ = v. For example, the
conjunction

∧
u∈V ¬xuu expresses the condition that π is fixed-point-free. We define:

Exact-CNF-GI: Given two graphs X1 = (V,E1) and X2 = (V,E2), a CNF formula F over
Var(V), and k ∈ N, decide whether there is an isomorphism from X1 to X2 that has

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.2

V. Arvind, J. Köbler, S. Kuhnert, and J. Torán 2:3

weight exactly k and satisfies F . The parameter is |F |+ k, where |F | is the number of
variables used in F .

In Section 4, we first give an FPT algorithm for Exact-CNF-GA, the automorphism
version of this problem. The algorithm uses an orbit shrinking technique that allows us to
transform the input graph into a graph with bounded color classes, preserving the existence
of an exact weight k automorphism that satisfies the formula F. The bounded color class
version is easy to solve using color coding; see Section 3 for details. Building on this, we
show that Exact-CNF-GI is also in FPT. In particular, this allows us to efficiently find
isomorphisms of weight exactly k, a problem left open in [1], and extends Schweitzer’s result
mentioned above to the exact case. In our earlier paper [1] we have shown that the problem of
exact weight k automorphism is in FPT using a simpler orbit shrinking technique which does
not work for exact weight k isomorphisms. In this paper, we use some extra group-theoretic
machinery to obtain a more versatile orbit shrinking.

In Section 5, we consider the problem of computing graph isomorphisms of complexity
exactly t: The complexity of a permutation π ∈ Sym(V) is the minimum number of
transpositions whose product is π. Checking for automorphisms or isomorphisms of complexity
exactly t is NP-complete in the non-parameterized setting. We show that the problem is
in FPT with t as parameter. Again, the “at most t” version of this problem was already
shown to be in FPT by Schweitzer [13] as part of his algorithmic strategy to solve the weight
at most k problem. Our results in Sections 4 and 5 also hold for hypergraphs when the
maximum hyperedge size is taken as additional parameter.

In Section 6, we examine a different restriction on the automorphisms being searched for.
Consider graphs X = (V,E) with vertex set partitioned into Red and Blue. The Colored
Graph Automorphism problem (defined in [5]; we denote it Col-GA), is to check if X has
an automorphism that respects the partition and moves exactly k Blue vertices. We showed
in [1] that this problem is W[1]-hard. In our hardness proof the orbits of the vertices in the
Red part of the graph have size at most 4, while the ones for the Blue vertices have size 2.
We show here that this cannot be restricted any further: If the input graph has Red further
partitioned into color classes of size at most 3 each, then the problem to test whether there is
an automorphism moving exactly k Blue vertices can be solved in FPT (with parameter k).
The Blue part of the graph remains unconstrained. Observe that Schweitzer’s problem [13]
coincides with the special case of this problem where there are no Red vertices. This implies
that the non-parameterized version of Col-GA is NP-complete (even when X has only Blue
vertices). Similarly, finding weight k automorphisms of a hypergraph reduces to Col-GA by
taking the incidence graph, where the original vertices become Blue and the vertices for
hyperedges are Red; note that this yields another special case, where both Red and Blue
induce the empty graph, respectively.

2 Preliminaries

We use standard permutation group terminology, see e.g. [4]. Given a permutation σ ∈
Sym(V), its support is supp(σ) = {u ∈ V | uσ 6= u} and its (Hamming) weight is |supp(σ)|.
The complexity of σ (sometimes called its Cayley weight) is the minimum number t such that
σ can be written as the product of t transpositions.

Let G ≤ Sym(V) and π ∈ Sym(V); this includes the case π = id. A permutation
σ ∈ Gπ \ {id} has minimal complexity in Gπ if for every way to express σ as the product of
a minimum number of transpositions σ = τ1 · · · τcompl(σ) and every i ∈ {2, . . . , compl(σ)} it
holds that τi · · · τcompl(σ) /∈ Gπ. The following lemma observes that every element of Gπ can
be decomposed into minimal-complexity factors.

IPEC 2017

2:4 Finding Constrained Small Weight Isomorphisms in FPT

I Lemma 2.1 [1, Lemma 2.2]. Let Gπ be a coset of a permutation group G and let σ ∈
Gπ \ {id}. Then for some ` ≥ 1 there are σ1, . . . , σ`−1 ∈ G with minimal complexity in G

and σ` ∈ Gπ with minimal complexity in Gπ such that σ = σ1 · · ·σ` and supp(σi) ⊆ supp(σ)
for each i ∈ {1, . . . , `}.

An action of a permutation group G ≤ Sym(V) on a set V ′ is a group homomorphism
h : G → Sym(V ′); we denote the image of G under h by G(V ′). For u ∈ V , we denote
its stabilizer by Gu = {π ∈ G | uπ = u}. For U ⊆ V , we denote its pointwise stabilizer
by G[U] = {π ∈ G | ∀u ∈ U : uπ = u} and its setwise stabilizer by G{U} = {π ∈ G | Uπ = U}.
For S ⊆ P(V), we let GS = {π ∈ G | ∀U ∈ S : Uπ = U}.

A hypergraph X = (V,E) consists of a vertex set V and a hyperedge set E ⊆ P(V). Graphs
are the special case where |e| = 2 for all e ∈ E. The degree of a vertex v ∈ V is |{e ∈ E |v ∈ e}|.
A (vertex) coloring of X is a partition of V into color classes C = (C1, . . . , Cm). The color
classes C are b-bounded if |Ci| ≤ b for all i ∈ [m]. An isomorphism between two hypergraphs
X = (V,E) and X ′ = (V ′, E′) (with color classes C = (C1, . . . , Cm) and C′ = (C ′1, . . . , C ′m)) is
a bijection π : V → V ′ such that E′ =

{
{π(v)|v ∈ e}

∣∣e ∈ E} (and C ′i =
{
π(v)

∣∣v ∈ Ci}). The
isomorphisms from X to X ′ form a coset that we denote by Iso(X,X ′). The automorphisms
of a hypergraph X are the isomorphisms from X to itself; they form a group which we denote
by Aut(X).

3 Bounded color class size

To show that Exact-CNF-GA for hypergraphs with b-bounded color classes can be solved
in FPT, we recall our algorithm for exact weight k automorphisms of bounded color class
hypergraphs [1] and show how it can be adapted to the additional constraints given by the
input formula.

IDefinition 3.1. LetX = (V,E) be a hypergraph with color class set C = {C1, . . . , Cm}.
(a) For a subset C′ ⊆ C, we say that a color-preserving permutation π ∈ Sym(V) C′-satisfies

a CNF formula F over Var(V) if every clause of F contains a literal xu,v or ¬xu,v with
u ∈

⋃
C′ that is satisfied by π.

(b) For a color-preserving permutation π ∈ Sym(V), let C[π] = {Ci ∈ C | ∃v ∈ Ci : vπ 6= v}
be the subset of color classes that intersect supp(π). For a subset C′ ⊆ C[π], we define
the permutation πC′ ∈ Sym(V) as

πC′(v) =
{
vπ, if v ∈

⋃
C′,

v, if v 6∈
⋃
C′.

Note that πC[π] = π.
(c) A color-preserving automorphism σ 6= id of X is said to be color-class-minimal, if for

every set C′ with ∅ (C′ (C[σ], the permutation σC′ is not in Aut(X).

I Lemma 3.2. Let X = (V,E) be a hypergraph with color class set C = {C1, C2, . . . , Cm}.
For ∅ 6= C′ ⊆ C and a CNF formula F over Var(V), the following statements are equivalent:

There is a nontrivial automorphism σ of X with C[σ] = C′ that satisfies F.
C′ can be partitioned into C1, . . . , C` and F (seen as a set of clauses) can be partitioned into
CNF formulas F0, . . . , F` such that F0 is (C \C′)-satisfied by id and for each i ∈ {1, . . . , `}
there is a color-class-minimal automorphism σi of X with C[σi] = Ci that Ci-satisfies Fi.

Moreover, the automorphisms σ and σi can be chosen to satisfy σi = σCi for 1 ≤ i ≤ `,
respectively.

V. Arvind, J. Köbler, S. Kuhnert, and J. Torán 2:5

In [1] an algorithm is presented that, when given a hypergraph X on vertex set V with
b-bounded color classes and k ∈ N, computes all color-class-minimal automorphisms of X
that have weight exactly k in O

(
(kb!)O(k2) poly(N)

)
time. We use it as a building block for

the following algorithm (see line 5).

Algorithm 1 Color-Exact-CNF-HGAb(X, C, k, F)

1 Input: A hypergraph X = (V,E) with b-bounded color classes C = {C1, . . . , Cm},
a parameter k ∈ N, and a CNF formula F over Var(V)

2 Output: A color-preserving automorphism σ of X with |supp(σ)| = k that satisfies F,
or ⊥ if none exists

3 A0 = {id}
4 for i ∈ {1, . . . , k} do
5 Ai ← {σ ∈ Aut(X) | σ is color-class-minimal and has weight i} // see [1]
6 for h ∈ HC,k do // HC,k is the perfect family of hash functions h : C → [k] from [6]
7 for ` ∈ {1, . . . , k}, h′ : [k]→ [`] do
8 for (k1, . . . , k`) ∈ {0, . . . , k}` with

∑
`
i=1ki = k do

9 for each partition of the clauses of F into F0, . . . , F` do
10 if ∀i ∈ {1, . . . , `} : ∃σi ∈ Aki : supp(σi) ⊆

⋃
(h′ ◦ h)−1(i) and Fi is

C[σi]-satisfied by σi, and F0 is (C \
⋃
`
i=1C[σi])-satisfied by id then

11 return σ = σ1 · · ·σ`
12 return ⊥

I Theorem 3.3. Given a hypergraph X = (V,E) with b-bounded color classes C, a CNF for-
mula F over Var(V), and k ∈ N, the algorithm Color-Exact-CNF-HGAb(X, C, k, F) computes a
color-preserving automorphism σ of X of weight k that satisfies F in (kb!)O(k2)kO(|F |) poly(N)
time (where N is the size of X), or determines that none exists.

Proof. If the algorithm returns σ = σ1 · · ·σ`, we know σi ∈ Aki
and supp(σi) ⊆

⋃
(h′◦h)−1(i).

As these sets are disjoint, we have |supp(σ)| =
∑`
i=1|supp(σi)| = k, and Lemma 3.2 implies

that σ satisfies F.
We next show that the algorithm does not return ⊥ if there is an automorphism π of X

that has weight k and satisfies F. By Lemma 3.2, we can partition C[π] into C1, . . . , C` and
the clauses of F into F0 . . . , F` such that F0 is (C \ C[π])-satisfied by id and, for 1 ≤ i ≤ `,
the permutation πi = πCi is a color-class-minimal automorphism of X that C[πi]-satisfies F .
Now consider the iteration of the loop where h is injective on C[π]; such an h must exist as it
is chosen from a perfect hash family. Now let h′ : [k]→ [`] be a function with h′

(
h(C)

)
= i

if C ∈ C[πi]; such an h′ exists because h is injective on C[π]. In the loop iterations where
h′ and the partition of F into F0 . . . , F` is considered, the condition on line 10 is true (at
least) with σi = πi, so the algorithm does not return ⊥.

Line 5 can be implemented by using the algorithm ColoredAutk,b(X) from [1] which
runs in O

(
(kb!)O(k2) poly(N)

)
time, and this also bounds |Ai|. As |C| ≤ n, the perfect hash

family HC,k has size 2O(k) log2 n, and can also be computed in this time. The inner loops
take at most kk, kk and (k + 1)|F | iterations, respectively. Together, this yields a runtime of
(kb!)O(k2)kO(|F |) poly(N). J

4 Exact weight

In this section, we show that finding isomorphisms that have an exactly prescribed weight
and satisfy a CNF formula is fixed parameter tractable. In fact, we show that this is true
even for hypergraphs, when the maximum hyperedge size d is taken as additional parameter.

IPEC 2017

2:6 Finding Constrained Small Weight Isomorphisms in FPT

Exact-CNF-HGI: Given two hypergraphs X1 = (V,E1) and X2 = (V,E2) with hyperedge
size bounded by d, a CNF formula F over Var(V), and k ∈ N, decide whether there is an
isomorphism from X1 to X2 of weight k that satisfies F . The parameter is |F |+ k + d.

Our approach is to reduce Exact-CNF-HGI to Exact-CNF-HGA (the analogous
problem for automorphisms), which we solve first.

We require some permutation group theory definitions. Let G ≤ Sym(V) be a permutation
group. The group G partitions V into orbits: V = Ω1 ∪ Ω2 · · · ∪ Ωr. On each orbit Ωi,
the group G acts transitively. A subset ∆ ⊆ Ωi is a block of the group G if for all π ∈ G
either ∆π = ∆ or ∆π ∩∆ = ∅. Clearly, Ωi is itself a block, and so are all singleton sets.
These are trivial blocks. Other blocks are nontrivial. If G has no nontrivial blocks it is
primitive. If G is not primitive, we can partition Ωi into blocks Ωi = ∆1∪∆2∪· · ·∪∆s, where
each ∆j is a maximal nontrivial block. Then the group G acts primitively on the block system
{∆1,∆2, . . . ,∆s}. In this action, a permutation π ∈ G maps ∆i to ∆π

i = {uπ | u ∈ ∆i}.
The following two theorems imply that every primitive group on a sufficiently large set V

contains the alternating group Alt(V) = {π ∈ Sym(G) | compl(π) is even}.

I Theorem 4.1 [4, Theorem 3.3A]. Suppose G ≤ Sym(V) is a primitive subgroup of Sym(V).
If G contains an element π such that |supp(π)| = 3 then G contains Alt(V). If G contains
an element π such that |supp(π)| = 2 then G = Sym(V).

I Theorem 4.2 [4, Theorem 3.3D]. If G ≤ Sym(V) is primitive with G /∈ {Alt(V), Sym(V)}
and contains an element π such that |supp(π)| = m (for some m ≥ 4) then |V | ≤ (m− 1)2m.

The following lemma implies that the alternating group in a large orbit survives fixing
vertices in a smaller orbit.

I Lemma 4.3. Let G ≤ Sym(Ω1 ∪ Ω2) be a permutation group such that Ω1 is an orbit
of G, and |Ω1| ≥ 5. Recall that G(Ωi) denotes the image of G under its action on Ωi.
Suppose G(Ω1) ∈ {Alt(Ω1), Sym(Ω1)} and |G(Ω1)| > |G(Ω2)|. Then for some subgroup H of
G(Ω2), the group G contains the product group Alt(Ω1) ×H. In particular, the pointwise
stabilizer G[Ω2] contains the subgroup Alt(Ω1)× {id}.

The effect of fixing vertices of some orbit on other orbits of the same size depends on
how the group relates these orbits to each other.

I Definition 4.4. Two orbits Ω1 and Ω2 of a permutation group G ≤ Sym(V) are linked if
there is a group isomorphism σ : G(Ω1)→ G(Ω2) with G(Ω1∪Ω2) =

{
(ϕ, σ(ϕ))

∣∣ϕ ∈ G(Ω1)
}
.

(This happens if and only if both G(Ω1) and G(Ω2) are isomorphic to G(Ω1 ∪ Ω2).)

We next show that two large orbits where the group action includes the alternating group
are (nearly) independent unless they are linked.

I Lemma 4.5. Suppose G ≤ Sym(V) where V = Ω1 ∪ Ω2 is its orbit partition such that
|Ωi| ≥ 5 and G(Ωi) ∈ {Alt(Ωi), Sym(Ωi)} for i = 1, 2. Then either Ω1 and Ω2 are linked
in G, or G contains Alt(Ω1)×Alt(Ω2).

The last ingredient for our algorithm is the observation that when there are two linked
orbits where the group action includes the alternating group, fixing a vertex in one orbit is
equivalent to fixing some vertex of the other orbit.

I Lemma 4.6 [4, Theorem 5.2A]. Let n = |V | > 9. Suppose G is a subgroup of Alt(V)
of index strictly less than

(
n
2
)
. Then, for some point u ∈ V , the group G is the pointwise

stabilizer subgroup Alt(V)u.

V. Arvind, J. Köbler, S. Kuhnert, and J. Torán 2:7

I Corollary 4.7. Let Ω1 and Ω2 be two linked orbits of a permutation group G ≤ Sym(V)
with Alt(Ω1) ≤ G(Ω1) and |Ω1| = |Ω2| > 9. Then for each u ∈ Ω1 there is a v ∈ Ω2 such
that Gu = Gv.

Algorithm 2 Exact-CNF-HGAd(X, k, F)

1 Input: A hypergraph X with hyperedge size bounded by d, a parameter k and a formula F
2 Output: An automorphism σ of X with |supp(σ)| = k that satisfies F , or ⊥ if none exists
3 T ← the vertices of X that are mentioned in F
4 G←

〈{
σ ∈ Aut(X)

∣∣ σ has minimal complexity in Aut(X) and |supp(σ)| ≤ k
}〉

// see [1, Algorithm 3]
5 b← k

2 · max{(k − 1)2k, |T |+ k, 9}
6 while G contains an orbit of size more than b do
7 repeat
8 O ← the set of all G-orbits
9 for Ω ∈ O do

10 B(Ω)← a maximal block system of Ω in G
11 if ∃∆ ∈ B(Ω) : |∆| > k

2 or |B(Ω)| > (k − 1)2k ∧Alt
(
B(Ω)

)
� G

(
B(Ω)

)
then

12 G← GB(Ω) // the setwise stabilizer of all ∆ ∈ B(Ω)
13 until G remains unchanged
14 choose Ωmax ∈ O such that |B(Ωmax)| ≥ |B(Ω)| for all Ω ∈ O
15 if |B(Ωmax)| > max{(k − 1)2k, |T |+ k, 9} then
16 H ← G[T] // the pointwise stabilizer of T
17 ΩH ← the largest H-orbit that is contained in Ωmax
18 BH ←

{
∆ ∈ B(Ωmax)

∣∣∆ ⊆ ΩH
}

19 choose ∆ ∈ BH
20 G← G{∆} // the setwise stabilizer of ∆
21 O ← the set of all G-orbits
22 return Color-Exact-CNF-HGAb(X,O, k, F) // see Algorithm 1

I Theorem 4.8. Algorithm 2 solves Exact-CNF-HGA in time
(
d(kk+ |F |)!

)O(k2) poly(N).

Proof sketch. Suppose there is some π ∈ Aut(X) of weight exactly k that satisfies F . By
Lemma 2.1, the automorphism π can be decomposed as a product of minimal-complexity
automorphisms of weight at most k, which implies π ∈ G after line 4. To show that whenever
the algorithm shrinks G, some weight k automorphism of X that satisfies F survives, we
first consider the shrinking in line 12: If Ω is an orbit with |∆| > k/2 for some (and thus all)
∆ ∈ B(Ω), then no block of Ω is moved by π. If |B(Ω)| > (k − 1)2k and G

(
B(Ω)

)
does not

contain Alt
(
B(Ω)

)
, then Theorems 4.1 and 4.2 imply that π setwise stabilizes all ∆ ∈ B(Ω)

and thus survives the shrinking. The other shrinking of G, which occurs in line 20, can only
happen if Alt

(
B(Ωmax)

)
≤ G

(
B(Ωmax)

)
. Let T =

⋃
Ω∈O{∆ ∈ B(Ω) |∆ ∩ T 6= ∅} be the set

of all blocks with vertices from T and let R = GT be the setwise stabilizer of these blocks.
Note that H ≤ R ≤ G. Using Lemmas 4.3 and 4.5 and Corollary 4.7, it can be shown that a
sufficiently large part of Alt

(
B(Ωmax)

)
survives in R and also in H.

I Claim. BH is a maximal block system for the orbit ΩH in H. Moreover, |BH | > k and
Alt(BH) ≤ H(BH).

Building on this, it can be shown that when G and ∆ are as in line 20, then for any π ∈ G
of weight k that satisfies F , there is a π′ ∈ G{∆} of weight k that satisfies F . J

IPEC 2017

2:8 Finding Constrained Small Weight Isomorphisms in FPT

We now turn to Exact-CNF-HGI. Given a formula F over Var(V) and ψ ∈ Sym(V),
let ψ(F) denote the formula obtained from F by replacing each variable xuv by xuψ(v).

I Lemma 4.9. A product σ = ϕπ ∈ Sym(V) satisfies a formula F over Var(V) if and only
if ϕ satisfies π−1(F).

Algorithm 3 Exact-CNF-HGId(X1, X2, k, F)

1 Input: Two hypergraphs X1 and X2 on vertex set V with hyperedge size bounded by d,
a parameter k ∈ N and a CNF formula F over Var(V)

2 Output: An isomorphism σ from X1 to X2 with |supp(σ)| = k that satisfies F ,
or ⊥ if none exists

3 π ← some isomorphism from X1 to X2 with |supp(π)| ≤ k // see [1, Theorem 3.8]
4 for U ⊆ supp(π) do // we will force u /∈ supp(ϕπ) for u ∈ U
5 for M ⊆ supp(π) \ U do // we will force u ∈ supp(ϕ) ∩ supp(ϕπ) for u ∈M
6 I ← supp(π) \ (U ∪M) // we will force u /∈ supp(ϕ) for u ∈ I
7 F ′ ← π−1(F) ∧

∧
u∈U xuπ−1(u) ∧

∧
u∈M (¬xuπ−1(u) ∧ ¬xu,u) ∧

∧
u∈I xuu

8 k′ ← k − |I|+ |U |
9 ϕ← Exact-CNF-HGAd(X1, k

′, F ′) // see Algorithm 2
10 if ϕ 6= ⊥ then return σ = ϕπ

11 return ⊥

I Theorem 4.10. Algorithm 3 solves Exact-CNF-HGI in time
(
d(kk+|F |)!

)O(k2) poly(N).

Proof. Suppose Algorithm 3 returns a permutation σ = ϕπ. Then π is an isomorphism
from X1 to X2 and ϕ is an automorphism of X1 that satisfies F ′ and has weight k′. As
ϕ satisfies π−1(F), Lemma 4.9 implies that σ satisfies F . The additional literals in F ′ ensure
supp(σ) = (supp(ϕ) \ U) ∪ I and thus

∣∣supp(σ)
∣∣ = k′ − |U |+ |I| = k.

Now suppose there is an isomorphism σ from X1 to X2 that satisfies F and has weight k.
Let π be the isomorphism computed on line 3. Then ϕ = σπ−1 is an automorphism
of X1; it satisfies π−1(F) by Lemma 4.9. In the iteration of the loops where U =

{
u ∈

supp(π)∩supp(ϕ)
∣∣uϕπ = u

}
andM =

(
supp(π)∩supp(ϕ)

)
\U , it holds that ϕ has weight k′

and satisfies F ′. Thus Exact-CNF-HGAd(X1, k
′, F ′) does not return ⊥.

The isomorphism π can be found in (dk)O(k2) poly(N) time [1, Theorem 3.8]. The loops
have at most 3k iterations, and Exact-CNF-HGAd takes

(
d(kk + |F |)!

)O(k2) poly(N) time. J

5 Exact complexity

The complexity of a permutation π ∈ Sym(V) can be bounded by functions of its weight:∣∣supp(π)
∣∣− 1 ≤ compl(π) ≤ 2 ·

∣∣supp(π)
∣∣. However, there is no direct functional dependence

between these two parameters. And while the algorithms of Sections 3 and 4 can be modified
to find isomorphisms of exactly prescribed complexity, we give an independent and more
efficient algorithm in this section.

The main ingredient is an analysis of decompositions σ = σ1 · · ·σ` of σ ∈ Sym(V)
into σi ∈ Sym(V) \ {id} (for 1 ≤ i ≤ `) with compl(σ) =

∑`
i=1 compl(σi); we call such

decompositions complexity-additive. For example, the decomposition into complexity-minimal
permutations provided by Lemma 2.1 is complexity-additive.

For a sequence of permutations σ1, . . . , σ` ∈ Sym(V) and a coloring c : V → [k], its colored
cycle graph CGc(σ1, . . . , σ`) is the incidence graph between

⋃`
i=1 supp(σi) and the σi-orbits

V. Arvind, J. Köbler, S. Kuhnert, and J. Torán 2:9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 101 2

3

1 3

Figure 1 The colored cycle graph CGid
(
(1, 2, 3)(5, 6, 7), (3, 4), (3, 5)(8, 9, 10)

)
; the colors are

depicted next to the vertices.

of size at least 2, i.e., the cycles of σi, for 1 ≤ i ≤ `. We call the former primal vertices and
the latter cycle-vertices. Each primal vertex v ∈ V is colored by c(v), and each cycle-vertex
that corresponds to a cycle of σi is colored by i. (Note that a vertex of this graph is a
cycle-vertex if and only if it has odd distance to some leaf.) See Figure 1 for an example.

I Lemma 5.1. Let σ ∈ Sym(V), let σ = σ1 · · ·σ` be a complexity-additive decomposition,
and let c : V → [k] be a coloring. Then CGc(σ1, . . . , σ`) is a forest.

A cycle pattern P is a colored cycle graph CGc(σ1, . . . , σ`) where all primal vertices have
different colors. A complexity-additive decomposition σ′ = σ′1 · · ·σ′` of a permutation σ′ ∈
Sym(V) weakly matches P if there is a coloring c′ : V → [k] and a surjective color-preserving
homomorphism ϕ from CGc′(σ′1, . . . , σ′`) to P where ϕ(u) = ϕ(v) for u 6= v implies that
u and v are both primal vertices and belong to different σ′-orbits.

I Lemma 5.2. For any t ∈ N, there is a set Pt of tO(t) cycle patterns such that a permuta-
tion σ ∈ Sym(V) has complexity t if and only if it has a complexity-additive decomposition
σ = σ1 · · ·σ` that weakly matches a pattern in Pt. Moreover, Pt can be computed in tO(t) time.

For a pattern P , let Pi denote the subgraph of P induced by the cycle-vertices of color i
and their neighbors. A permutation σ ∈ Sym(V) and a coloring c : V → [k] realize color i
of P if there is an isomorphism ϕ from CGc(σ) to Pi that preserves colors of primal vertices.

Algorithm 4 Exact-Complexity-HGId(X, Y, t)

1 Input: Two hypergraphs X and Y on vertex set V with hyperedge size bounded by d,
and t ∈ N

2 Output: An isomorphism σ from X to Y with compl(σ) = t, or ⊥ if none exists
3 A←

{
σ ∈ Aut(X)

∣∣ σ has minimal complexity in Aut(X) and |supp(σ)| ≤ 2t
}

// see [1, Algorithm 3]
4 if X = Y then I ← A else
5 I ←

{
σ ∈ Iso(X,Y)

∣∣ σ has minimal complexity in Iso(X,Y) and |supp(σ)| ≤ 2t
}

// see [1, Algorithm 2]
6 for P ∈ Pt do // see Lemma 5.2
7 k ← the number of primal vertices in P
8 `← the number of colors of cycle-vertices in P
9 for h ∈ HV,k do // HV,k is the perfect family of hash functions h : V → [k] from [6]

10 if there are σ1, . . . , σ`−1 ∈ A and σ` ∈ I s.t. (σi, h) realize color i of P then
11 return σ = σ1 · · ·σ`
12 return ⊥

I Theorem 5.3. Given two hypergraphs X and Y of hyperedge size at most d and t ∈ N,
the algorithm Exact-Complexity-HGId(X,Y, t) finds σ ∈ Iso(X,Y) with compl(σ) = t (or
determines that there is none) in O

(
(dt)O(t2) poly(N)

)
time.

IPEC 2017

2:10 Finding Constrained Small Weight Isomorphisms in FPT

Proof. Suppose there is some σ ∈ Iso(X,Y) with compl(σ) = t. Lemma 2.1 gives the
complexity-additive decomposition σ = σ1 · · ·σ` into minimal-complexity permutations
σ1, . . . , σ`−1 ∈ Aut(X) and σ` ∈ Iso(X,Y); all of them have complexity at most t. By the
correctness of the algorithms from [1], we have σ1, . . . , σ`−1 ∈ A and σ` ∈ I. As HV,k is a
perfect hash family, it contains some function h whose restriction to supp(σ) is injective.
Then CGh(σ1, . . . , σ`) is isomorphic to some P ∈ Pt by Lemma 5.2. Thus (σi, h) realize
color i of P , for 1 ≤ i ≤ `, so the algorithm does not return ⊥.

Now suppose that the algorithm returns σ = σ1 · · ·σ` with σ1, . . . , σ`−1 ∈ A ⊆ Aut(X)
and σ` ∈ I ⊆ Iso(X,Y). This clearly implies σ ∈ Iso(X,Y). To show compl(σ) = t, we
observe that the algorithm only returns σ if there is a pattern P ∈ Pt whose cycle-vertices
have ` colors and which contains k primal vertices such that there is a hash function h ∈ HV,k
with the property that σi and h realize color i of P , for i ∈ [`]. In particular, there is an
isomorphism ϕi from CGh(σi) to Pi that preserves colors of primal vertices. As the primal
vertices of P all have different colors and as P is a forest by Lemma 5.1, it follows that the
decomposition σ = σ1 · · ·σ` is complexity-additive. Now consider the function ϕ =

⋃`
i=1 ϕi;

it is well-defined, as v ∈ supp(ϕi) ∩ supp(ϕj) implies ϕi(v) = ϕj(v) because P contains only
one primal vertex of color h(v). It is surjective, as every vertex of P occurs in at least
one Pi. It is a homomorphism from Pσ = CGh(σ1, . . . , σ`) to P , as every edge occurs in the
support of one of the isomorphisms ϕi. Also, ϕ(u) = ϕ(v) for u 6= v implies that u and v
are in different connected components of Pσ, as P is a forest; consequently u and v are in
different orbits of σ. Thus σ = σ1 · · ·σ` weakly matches P . By Lemma 5.2 it follows that
compl(σ) = t.

It remains to analyze the runtime. The algorithms used to compute A and I each
take O

(
(dt)O(t2) poly(N)

)
time [1]. The pattern set Pt can be computed in tO(t) time by

Lemma 5.2. As k ≤ 2t, the perfect hash family HV,k has size 2O(t) log2 n. As ` ≤ t, this gives
a total runtime of O

(
(dt)O(t2) poly(N)

)
. J

6 Colored Graph Automorphism

In [1] we showed that the following parameterized version of Graph Automorphism is
W[1]-hard. It was first defined in [5] and is a generalization of the problem studied by
Schweitzer [13].

Col-GA: Given a graph X with its vertex set partitioned as Red∪Blue, and a parameter k,
decide if there is a partition-preserving automorphism that moves exactly k Blue vertices.

For an automorphism π ∈ Aut(X), we will refer to the number of Blue vertices moved
by π as the Blue weight of π. In this section, we show that Col-GA is in FPT when
restricted to colored graphs where the color classes inside Red have size at most 3.

Given an input instance X = (V,E) with vertex partition V = Red ∪Blue such that
Red is refined into color classes of size at most 3 each, our algorithm proceeds as follows.

Step 1: color-refinement. X already comes with a color classification of vertices (Red and
Blue, and within Red color classes of size at most 3 each; within Blue there may be
color classes of arbitrary size). The color refinement procedure keeps refining the coloring
in steps until no further refinement of the vertex color classes is possible. In a refinement
step, if two vertices have identical colors but differently colored neighborhoods (with the
multiplicities of colors counted), then these vertices get new different colors.
At the end of this refinement, each color class C induces a regular graph X[C], and each
pair (C,D) of color classes induces a semiregular bipartite graph X[C,D].

V. Arvind, J. Köbler, S. Kuhnert, and J. Torán 2:11

Step 2: local complementation. We complement the graph induced by a color class if this
reduces the number of its edges; this does not change the automorphism group of X.
Similarly, we complement the induced bipartite graph between two color classes if this
reduces the number of its edges.
Now each color class within Red induces the empty graph. Similarly, for b ∈ {2, 3}, the
bipartite graph between any two color classes of size b is empty or a perfect matching.
(Note that this does not necessarily hold for b ≥ 4.) Color refinement for graphs of color
class size at most 3 has been used in earlier work [8, 9].
Let C ⊆ Red and D ⊆ Blue be color classes after Step 1. Because of the complementa-
tions we have applied, |C| = 1 implies that X[C,D] is empty, and if |C| ∈ {2, 3} then
X[C,D] is either empty or the degree of each D-vertex in X[C,D] is 1.

Step 3: fix vertices that cannot move. For a color class C ⊆ Red whose elements have
more than k Blue neighbors, give different new colors to each vertex in C (because
of Step 2, each non-isolated Red vertex is in a color class with more than one vertex).
Afterwards, rerun Steps 1 and 2 so we again have a stable coloring.
Fixing the vertices in C does not lose any automorphism of X that has Blue-weight at
most k. Indeed, as every Blue vertex has at most one neighbor in C, any automorphism
that moves some v ∈ C has to move all (more than k) Blue neighbors of v.

Step 4: remove edges in the red part. We already observed that each color class in Red
induces the empty graph. Let X be the graph whose vertices are the color classes in Red,
where two of them are adjacent iff there is a perfect matching between them in X. For
each b ∈ {1, 2, 3}, the color classes in Red of size b get partitioned into components of X .
We consider each connected component C of X that consists of more than one color class.
Let X ′ be the subgraph of X induced by vertices in

⋃
C and their neighbors in Blue.

Because of Step 3, the graph X ′ has color class size at most 3k, so we can compute its
automorphism group H = Aut(X ′) in 2O(k2) poly(N) time [7]. We distinguish several
cases based on the action of H on an arbitrary color class C ∈ C:
Case 1: If H(C) is not transitive, we split the color class C into the orbits of H(C) and

start over with Step 1.
Case 2: If H(C) = Sym(C), we drop all vertices in

(⋃
C
)
\ C from X. And for each

color class D within Blue that has neighbors in at least one C ′ ∈ C, we replace the
edges between a vertex u ∈ D and

⋃
C by the single edge (u, v), where v is the vertex

in C that is reachable via the matching edges from the neighbor of u in C ′.
Case 3: If H(C) is generated by a 3-cycle (v1v2v3), we first proceed as in Case 2.

Additionally, we add directed edges within each color class D within Blue that now
has neighbors in C. Let Di ⊆ D be the neighbors of vi. We add directed edges from
all vertices in Di to all vertices in D(i+1) mod 3 and color these directed edges by C.

After this step, there are no edges induced on the Red part of X. Moreover, we have not
changed the automorphisms on the induced subgraph, so the modified graph X still has
the same automorphism group as before.

Step 5: turn red vertices into hyperedges. We encode X as a hypergraph X ′ = (Blue ∪
New, E′) in which each vertex in Red is encoded as a hyperedge on the vertex set
Blue∪New. Let New = {vC |C ⊆ Red is a color class}. Let v ∈ C ⊆ Red be any red
vertex. We encode v as the hyperedge ev =

{
vC
}
∪
{
u ∈ Blue

∣∣ (v, u) ∈ E(X)
}
.

In the hypergraph X ′ we give distinct colors to each vertex in New in order to ensure
that each color class {vC,1, vC,2, vC,3} in Red is preserved by the automorphisms of X ′.
Clearly, there is a 1-1 correspondence between the color-preserving automorphisms of X
and those of X ′. Note that the hyperedges of X ′ have size bounded by k + 1, as each
Red vertex in X has at most k Blue neighbors after Step 3.

IPEC 2017

2:12 Finding Constrained Small Weight Isomorphisms in FPT

Step 6: bounded hyperedge size automorphism. We seek a weight k automorphism of X ′
using the algorithm of [1, Corollary 6.4];1 this is possible in dO(k)2O(k2) poly(N) time.

This algorithm gives us the following.

I Theorem 6.1. The above algorithm solves Col-GA when the Red part of the input graph
is refined into color classes of size at most 3. It runs in dO(k)2O(k2) poly(N) time.

Acknowledgements. We thank the anonymous referees for their valuable comments.

References
1 Vikraman Arvind, Johannes Köbler, Sebastian Kuhnert, and Jacobo Torán. Parameterized

complexity of small weight automorphisms. In Heribert Vollmer and Brigitte Vallée, editors,
34th Symposium on Theoretical Aspects of Computer Science, STACS 2017, March 8-11,
2017, Hannover, Germany, volume 66 of LIPIcs, pages 7:1–7:13. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.STACS.2017.7.

2 László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Daniel
Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Sym-
posium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016,
pages 684–697. ACM, 2016. doi:10.1145/2897518.2897542.

3 László Babai, D. Yu. Grigoryev, and David M. Mount. Isomorphism of graphs with bounded
eigenvalue multiplicity. In Harry R. Lewis, Barbara B. Simons, Walter A. Burkhard, and
Lawrence H. Landweber, editors, Proceedings of the 14th Annual ACM Symposium on
Theory of Computing, May 5-7, 1982, San Francisco, California, USA, pages 310–324.
ACM, 1982. doi:10.1145/800070.802206.

4 John D. Dixon and Brian Mortimer. Permutation groups. Springer, 1996. doi:10.1007/
978-1-4612-0731-3.

5 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999. doi:10.1007/978-1-4612-0515-9.

6 Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with 0(1)
worst case access time. J. ACM, 31(3):538–544, 1984. doi:10.1145/828.1884.

7 Merrick L. Furst, John E. Hopcroft, and Eugene M. Luks. Polynomial-time algorithms
for permutation groups. In 21st Annual Symposium on Foundations of Computer Science,
Syracuse, New York, USA, 13-15 October 1980, pages 36–41. IEEE Computer Society, 1980.
doi:10.1109/SFCS.1980.34.

8 Neil Immerman and Eric Lander. Describing Graphs: A First-Order Approach to Graph
Canonization, pages 59–81. Springer, 1990. doi:10.1007/978-1-4612-4478-3_5.

9 Birgit Jenner, Johannes Köbler, Pierre McKenzie, and Jacobo Torán. Completeness re-
sults for graph isomorphism. J. Comput. Syst. Sci., 66(3):549–566, 2003. doi:10.1016/
S0022-0000(03)00042-4.

10 Pavel Klavík, Dušan Knop, and Peter Zeman. Graph Isomorphism restricted by lists, 2016.
URL: https://arxiv.org/abs/1607.03918.

11 Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Fixed-
parameter tractable canonization and isomorphism test for graphs of bounded treewidth.
SIAM J. Comput., 46(1):161–189, 2017. doi:10.1137/140999980.

12 Anna Lubiw. Some np-complete problems similar to graph isomorphism. SIAM J. Comput.,
10(1):11–21, 1981. doi:10.1137/0210002.

1 There is a caveat that in addition to hyperedges in the graph X ′[Blue] we also have colored directed
edges. However, the algorithm of [1, Corollary 6.4] needs only minor changes to handle this.

http://dx.doi.org/10.4230/LIPIcs.STACS.2017.7
http://dx.doi.org/10.1145/2897518.2897542
http://dx.doi.org/10.1145/800070.802206
http://dx.doi.org/10.1007/978-1-4612-0731-3
http://dx.doi.org/10.1007/978-1-4612-0731-3
http://dx.doi.org/10.1007/978-1-4612-0515-9
http://dx.doi.org/10.1145/828.1884
http://dx.doi.org/10.1109/SFCS.1980.34
http://dx.doi.org/10.1007/978-1-4612-4478-3_5
http://dx.doi.org/10.1016/S0022-0000(03)00042-4
http://dx.doi.org/10.1016/S0022-0000(03)00042-4
https://arxiv.org/abs/1607.03918
http://dx.doi.org/10.1137/140999980
http://dx.doi.org/10.1137/0210002

V. Arvind, J. Köbler, S. Kuhnert, and J. Torán 2:13

13 Pascal Schweitzer. Isomorphism of (mis)labeled graphs. In Camil Demetrescu and Mag-
nús M. Halldórsson, editors, Algorithms - ESA 2011 - 19th Annual European Symposium,
Saarbrücken, Germany, September 5-9, 2011. Proceedings, volume 6942 of Lecture Notes in
Computer Science, pages 370–381. Springer, 2011. doi:10.1007/978-3-642-23719-5_32.

IPEC 2017

http://dx.doi.org/10.1007/978-3-642-23719-5_32

Parameterized Complexity of Finding a Spanning
Tree with Minimum Reload Cost Diameter∗†

Julien Baste1, Didem Gözüpek2, Christophe Paul3, Ignasi Sau4,
Mordechai Shalom5, and Dimitrios M. Thilikos6

1 Université de Montpellier, LIRMM, Montpellier, France
baste@lirmm.fr

2 Department of Computer Engineering, Gebze Technical University, Kocaeli,
Turkey
didem.gozupek@gtu.edu.tr

3 AlGCo project team, CNRS, LIRMM, France
paul@lirmm.fr

4 Departamento de Matemática, Universidade Federal do Ceará, Fortaleza,
Brazil and AlGCo project team, CNRS, LIRMM, France
sau@lirmm.fr

5 TelHai College, Upper Galilee, Israel and Department of Industrial
Engineering, Boǧaziçi University, Istanbul, Turkey
cmshalom@telhai.ac.il

6 Department of Mathematics, National and Kapodistrian University of Athens,
Greece and AlGCo project team, CNRS, LIRMM, France
sedthilk@thilikos.info

Abstract
We study the minimum diameter spanning tree problem under the reload cost model (Diameter-
Tree for short) introduced by Wirth and Steffan (2001). In this problem, given an undirected
edge-colored graph G, reload costs on a path arise at a node where the path uses consecutive
edges of different colors. The objective is to find a spanning tree of G of minimum diameter with
respect to the reload costs. We initiate a systematic study of the parameterized complexity of
the Diameter-Tree problem by considering the following parameters: the cost of a solution,
and the treewidth and the maximum degree ∆ of the input graph. We prove that Diameter-
Tree is para-NP-hard for any combination of two of these three parameters, and that it is FPT
parameterized by the three of them. We also prove that the problem can be solved in polynomial
time on cactus graphs. This result is somehow surprising since we prove Diameter-Tree to be
NP-hard on graphs of treewidth two, which is best possible as the problem can be trivially solved
on forests. When the reload costs satisfy the triangle inequality, Wirth and Steffan (2001) proved
that the problem can be solved in polynomial time on graphs with ∆ = 3, and Galbiati (2008)
proved that it is NP-hard if ∆ = 4. Our results show, in particular, that without the requirement
of the triangle inequality, the problem is NP-hard if ∆ = 3, which is also best possible. Finally,
in the case where the reload costs are polynomially bounded by the size of the input graph, we
prove that Diameter-Tree is in XP and W[1]-hard parameterized by the treewidth plus ∆.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, C.2.1 Network
Architecture and Design, G.2.2 Graph Theory

∗ This work has been supported by the bilateral research program of CNRS and TUBITAK under grant
no.114E731, PASTA project of Université de Montpellier, TUBITAK 2221 programme, and by project
DEMOGRAPH (ANR-16-CE40-0028).

† A full version of this article is permanently available at https://arxiv.org/abs/1703.01686.

© Julien Baste, Didem Gözüpek, Christophe Paul, Ignasi Sau, Mordechai Shalom,
and Dimitrios M. Thilikos;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 3; pp. 3:1–3:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://arxiv.org/abs/1703.01686
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2 Complexity of Finding a Spanning Tree with Minimum Reload Cost Diameter

Keywords and phrases reload cost problems, minimum diameter spanning tree, parameterized
complexity, FPT algorithm, treewidth, dynamic programming

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.3

1 Introduction

Numerous network optimization problems can be modeled by edge-colored graphs. Wirth
and Steffan introduced in [28] the concept of reload cost, which refers to the cost that arises
in an edge-colored graph while traversing a vertex via two consecutive edges of different
colors. The value of the reload cost depends on the colors of the traversed edges. Although
the reload cost concept has many important applications in telecommunication networks,
transportation networks, and energy distribution networks, it has surprisingly received
attention only recently.

In heterogeneous communication networks, routing requires switching among different
technologies such as cables, fibers, and satellite links. Due to data conversion between
incompatible subnetworks, this switching causes high costs, largely outweighing the cost
of routing the packets within each subnetwork. The recently popular concept of vertical
handover [9], which allows a mobile user to have undisrupted connection during transitioning
between different technologies such as 3G (third generation) and wireless local area network
(WLAN), constitutes another application area of the reload cost concept. Even within
the same technology, switching between different service providers incurs switching costs.
Another paradigm that has received significant attention in the wireless networks research
community is cognitive radio networks (CRN), a.k.a. dynamic spectrum access networks.
Unlike traditional wireless technologies, CRNs operate across a wide frequency range in the
spectrum and frequently requires frequency switching; therefore, the frequency switching
cost is indispensable and of paramount importance. Many works in the CRNs literature
focused on this frequency switching cost from an application point of view (for instance, see
[3, 19, 4, 5, 11, 1, 26]) by analyzing its various aspects such as delay and energy consumption.
Operating in a wide range of frequencies is indeed a property of not only CRNs but also other
5G technologies. Hence, applications of the reload cost concept in communication networks
continuously increase. In particular, the energy consumption aspect of this switching cost is
especially important in the recently active research area of green networks, which aim to
tackle the increasing energy consumption of information and communication technologies
[6, 8].

The concept of reload cost also finds applications in other networks such as transportation
networks and energy distribution networks. For instance, a cargo transportation network
uses different means of transportation. The loading and unloading of cargo at junction points
is costly and this cost may even outweigh the cost of carrying the cargo from one point to
another [12]. In energy distribution networks, reload costs can model the energy losses that
occur at the interfaces while transferring energy from one type of carrier to another [12].

Recent works in the literature focused on numerous problems related to the reload cost
concept: the minimum reload cost cycle cover problem [14], the problems of finding a path,
trail or walk with minimum total reload cost between two given vertices [17], the problem
of finding a spanning tree that minimizes the sum of reload costs of all paths between all
pairs of vertices [15], various path, tour, and flow problems related to reload costs [2], the
minimum changeover cost arborescence problem [13, 22, 20, 18], and problems related to
finding a proper edge coloring of the graph so that the total reload cost is minimized [21].

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.3

J. Baste, D. Gözüpek, C. Paul, I. Sau, M. Shalom, and D.M.Thilikos 3:3

The work in [28], which introduced the concept of reload cost, focused on the following
problem, called Minimum Reload Cost Diameter Spanning Tree (Diameter-Tree
for short), and which is the one we study in this paper: given an undirected graph G = (V,E)
with a (non necessarily proper) edge-coloring χ : E(G) → X and a reload cost function
c : X2 → N0, find a spanning tree of G with minimum diameter with respect to the reload
costs (see Section 2 for the formal definitions).

This problem has important applications in communication networks, since forming a
spanning tree is crucial for broadcasting control traffic such as route update messages. For
instance, in a multi-hop cognitive radio network where a frequency is assigned to each wireless
link depending on availabilities of spectrum bands, delay-aware broadcasting of control traffic
necessitates the forming of a spanning tree by taking the delay arising from frequency
switching at every node into account. Cognitive nodes send various control information
messages to each other over this spanning tree. A spanning tree with minimum reload cost
diameter in this setting corresponds to a spanning tree in which the maximum frequency
switching delay between any two nodes on the tree is minimized. Since control information
is crucial and needs to be sent to all other nodes in a timely manner, ensuring that the
maximum delay is minimum is vital in a cognitive radio network.

Wirth and Steffan [28] proved that Diameter-Tree is inapproximable within a factor
better than 3 (in particular, it is NP-hard), even on graphs with maximum degree 5. They
also provided a polynomial-time exact algorithm for the special case where the maximum
degree is 3 and the reload costs satisfy the triangle inequality. Galbiati [12] showed stronger
hardness results for this problem, by proving that even on graphs with maximum degree 4,
the problem cannot be approximated within a factor better than 2 if the reload costs do not
satisfy the triangle inequality, and cannot be approximated within any factor better than
5/3 if the reload costs satisfy the triangle inequality. The complexity of Diameter-Tree
(in the general case) on graphs with maximum degree 3 was left open.

Our results. In this article we initiate a systematic study of the complexity of the Diameter-
Tree problem, with special emphasis on its parameterized complexity for several choices
of the parameters. Namely, we consider any combination of the parameters k (the cost
of a solution), tw (the treewidth of the input graph), and ∆ (the maximum degree of the
input graph). We would like to note that these parameters have practical importance in
communication networks. Indeed, besides the natural parameter k, whose relevance is clear,
many networks that model real-life situations appear to have small treewidth [24]. On the
other hand, the degree of a node in a network is related to its number of transceivers, which
are costly devices in many different types of networks such as optical networks [25]. For this
reason, in practice the maximum degree of a network usually takes small values.

Before elaborating on our results, a summary of them can be found in Table 1.
We first prove, by a reduction from 3-Sat, that Diameter-Tree is NP-hard on outer-

planar graphs (which have treewidth at most 2) with only one vertex of degree greater than
3, even with three different costs that satisfy the triangle inequality, and k = 9. Note that,
in the case where the costs satisfy the triangle inequality, having only one vertex of degree
greater than 3 is best possible, as if all vertices have degree at most 3, the problem can be
solved in polynomial time [28]. Note also that the bound on the treewidth is best possible as
well, since the problem is trivially solvable on graphs of treewidth 1, i.e., on forests.

Toward investigating the border of tractability of the problem with respect to treewidth,
we exhibit a polynomial-time algorithm on a relevant subclass of the graphs of treewidth
at most 2: cactus graphs. This algorithm is quite involved and, in a nutshell, processes in

IPEC 2017

3:4 Complexity of Finding a Spanning Tree with Minimum Reload Cost Diameter

Table 1 Summary of our results, where k, tw, ∆ denote the cost of the solution, the treewidth,
and the maximum degree of the input graph, respectively. NPh stands for NP-hard. The symbol ‘X’
denotes that the result above still holds for polynomial costs.

Problem Parameterized complexity with parameter Polynomial
k + tw k + ∆ tw + ∆ k + tw + ∆ cases

NPh for NPh for NPh for FPT in P on
Diameter-Tree k = 9, tw = 2 k = 0, ∆ = 3 tw = 3, ∆ = 3 (Thm 7) cacti

(Thm 1) (Thm 2) (Thm 4) (Thm 6)
Diameter-Tree XP (Thm 7)
with poly costs X X W[1]-hard X X

(Thm 9)

a bottom-up manner the block tree of the given cactus graph, and uses at each step of the
processing an algorithm that solves 2-Sat as a subroutine.

Back to hardness results, we also prove, by a reduction from a restricted version of 3-Sat,
that Diameter-Tree is NP-hard on graphs with ∆ ≤ 3, even with only two different costs,
k = 0, and a bounded number of colors. In particular, this settles the complexity of the
problem on graphs with ∆ ≤ 3 in the general case where the triangle inequality is not
necessarily satisfied, which had been left open in previous work [28, 12]. Note that ∆ ≤ 3 is
best possible, as Diameter-Tree can be easily solved on graphs with ∆ ≤ 2.

As our last NP-hardness reduction, we prove, by a reduction from Partition, that the
Diameter-Tree problem is NP-hard on planar graphs with tw ≤ 3 and ∆ ≤ 3.

The above hardness results imply that the Diameter-Tree problem is para-NP-hard
for any combination of two of the three parameters k, tw, and ∆. On the positive side, we
show that Diameter-Tree is FPT parameterized by the three of them, by using a (highly
nontrivial) dynamic programming algorithm on a tree decomposition of the input graph.

Since our para-NP-hardness reduction with parameter tw + ∆ is from Partition, which
is a typical example of a weakly NP-complete problem [16], a natural question is whether
Diameter-Tree, with parameter tw + ∆, is para-NP-hard, XP, W[1]-hard, or FPT when
the reload costs are polynomially bounded by the size of the input graph. We manage to
answer this question completely: we show that in this case the problem is in XP (hence not
para-NP-hard) and W[1]-hard parameterized by tw + ∆. The W[1]-hardness reduction is
from the Unary Bin Packing problem parameterized by the number of bins, proved to be
W[1]-hard by Jansen et al. [23].

Altogether, our results provide an accurate picture of the (parameterized) complexity of
the Diameter-Tree problem.

Further research. In the hardness result of Theorem 4, the bound ∆ ≤ 3 is tight, but the
bound tw ≤ 3 might be improved to tw ≤ 2. A relevant question is whether the problem
admits polynomial kernels parameterized by k+ tw + ∆ (recall that it is FPT by Theorem 7).
Theorem 9 motivates the following question: when all reload costs are bounded by a constant,
is the Diameter-Tree problem FPT parameterized by tw + ∆? It also makes sense to
consider the color-degree as a parameter (cf. [20]). Finally, we may consider other relevant
width parameters, such as pathwidth (note that the hardness results of Theorems 1, 4, and 9
also hold for pathwidth), cliquewidth, treedepth, or tree-cutwidth.

J. Baste, D. Gözüpek, C. Paul, I. Sau, M. Shalom, and D.M.Thilikos 3:5

Organization of the paper. We start in Section 2 with some preliminaries about the
Diameter-Tree problem. Basic definitions about graphs, parameterized complexity, and
tree decompositions can be found in the full version. In Section 3 we provide the para-NP-
hardness results, and in Section 4 we present the polynomial-time algorithm on cactus graphs
and the FPT algorithm on general graphs parameterized by k + tw + ∆. In Section 5 we
focus on the case where the reload costs are polynomially bounded. Due to lack of space, the
proof of the results marked with ‘[?]’ can be found in the full version.

2 Reload costs and definition of the problem

For reload costs, we follow the notation and terminology defined by [28]. We consider
edge-colored graphs G = (V,E), where the colors are taken from a finite set X and the
coloring function is χ : E(G) → X. The reload costs are given by a nonnegative function
c : X2 → N0, which we assume for simplicity to be symmetric. The cost of traversing
two incident edges e1, e2 is c(e1, e2) := c(χ(e1), χ(e2)). By definition, reload costs at the
endpoints of a path equal zero. Consequently, the reload cost of a path with one edge
also equals zero. The reload cost of a path P of length ` ≥ 2 with edges e1, e2, . . . , e` is
defined as c(P) :=

∑`
i=2 c(ei−1, ei). The induced reload cost distance function is given

by distc
G(u, v) = min{c(P) | P is a path from u to v in G}. The diameter of a tree T is

diam(T) := maxu,v∈V distc
T (u, v), where for notational convenience we assume that the

edge-coloring function χ and the reload cost function c are clear from the context.
The problem we study in this paper can be formally defined as follows:

Minimum Reload Cost Diameter Spanning Tree (Diameter-Tree)
Input: A graph G = (V,E) with an edge-coloring χ and a reload cost function c.
Output: A spanning tree T of G minimizing diam(T).

If for every three distinct edges e1, e2, e3 of G incident to the same node, it holds that
c(e1, e3) ≤ c(e1, e2) + c(e2, e3), we say that the reload cost function c satisfies the triangle
inequality. This assumption is sometimes used in practical applications [28].

Throughout the paper, we let n, ∆, and tw denote the number of vertices, the maximum
degree, and the treewidth of the input graph, respectively. When we consider the (paramet-
erized) decision version of the Diameter-Tree problem, we also let k denote the desired
cost of a solution.

3 Para-NP-hardness results

We start with the para-NP-hardness result with parameter k + tw.

I Theorem 1. The Diameter-Tree problem is NP-hard on outerplanar graphs with only
one vertex of degree greater than 3, even with three different costs that satisfy the triangle
inequality, and k = 9. Since outerplanar graphs have treewidth at most 2, in particular,
Diameter-Tree is para-NP-hard parameterized by tw and k.

Proof. We present a simple reduction from 3-Sat. Given a formula ϕ with n variables and
m clauses, we create an instance (G,χ, c) of Diameter-Tree as follows. We may assume
that there is no clause in ϕ that contains a literal and its negation. The graph G contains
a distinguished vertex r and, for each clause cj = (`1 ∨ `2 ∨ `3), we add a clause gadget
Cj consisting of three vertices vj

`1
, vj

`2
, vj

`3
and five edges {r, vj

`1
}, {r, vj

`2
}, {r, vj

`3
}, {vj

`1
, vj

`2
},

and {vj
`2
, vj

`3
}. This completes the construction of G. Note that G does not depend on the

IPEC 2017

3:6 Complexity of Finding a Spanning Tree with Minimum Reload Cost Diameter

Cj

vj`1

vj`2

vj`3

r

Figure 1 Example of the graph G built in the reduction of Theorem 1.

formula ϕ except for the number of clause gadgets, and that it is an outerplanar graph with
only one vertex of degree greater than 3; see Figure 1 for an illustration.

Let us now define the coloring χ and the cost function c. For simplicity, we associate a
distinct color with each edge of G, and thus, with slight abuse of notation, it is enough to
describe the cost function c for every pair of incident edges of G, as we consider symmetric
cost functions. We will use just three different costs: 1, 5 and 10. We set

c(e1, e2) =


10 if e1 = {r, vj1

`i1
}, e2 = {r, vj2

`i2
} and `i1 = `i2 ,

5 if e1 = {r, vj1
`i1
}, e2 = {r, vj2

`i2
} and `i1 6= `i2 , and

1 otherwise.

Note that this cost function satisfies the triangle inequality since the reload costs between
edges incident to r are 5 and 10, and the reload costs between edges incident to other vertices
are 1.

We claim that ϕ is satisfiable if and only if G contains a spanning tree with diameter at
most 9. Since r is a cut vertex and every clause gadget is a connected component of G− r,
in every spanning tree, the vertices of Cj together with r induce a tree with four vertices.
Moreover the reload cost associated with a path from r to a leaf of this tree is always at
most 2. Therefore, the diameter of any spanning tree is at most 4 plus the maximum reload
cost incurred at r by a path of T .

Assume first that ϕ is satisfiable, fix a satisfying assignment ψ of ϕ, and let us construct
a spanning tree T of G with diameter at most 9. For each clause cj , the tree T j is the tree
spanning Cj and containing the edge between r and an arbitrarily chosen literal of cj that is
set to true by ψ. T is the union of all the trees Tj constructed in this way. The reload cost
incurred at r by any path of T traversing it is at most 5, since we never choose a literal and
its negation. Therefore, it holds that diam(T) ≤ 9.

Conversely, let T be a spanning tree of G with diam(T) ≤ 9. Then, the reload cost
incurred at r by any path traversing it is at most 5 since otherwise diam(T) ≥ 10. For every
j ∈ [m], let Tj be the subtree of T induced by Cj and let {r, vj

`ij
} be one of the edges incident

to r in Tj . We note that for any pair of clauses cj1 , cj2 we have `ij1
6= `ij2

, since otherwise a
path using these two edges would incur a cost of 10 at r. The variable in the literal `ij is set
by ψ so that `ij

is true. All the other variables are set to an arbitrary value by ψ. Note that
ψ is well-defined, since we never encounter a literal and its negation during the assignment
process. It follows that ψ is a satisfying assignment of ϕ. J

We proceed with the para-NP-hardness result with parameter k + ∆.

J. Baste, D. Gözüpek, C. Paul, I. Sau, M. Shalom, and D.M.Thilikos 3:7

I Theorem 2. The Diameter-Tree problem is NP-hard on graphs with ∆ ≤ 3, even with
two different costs, k = 0, and a bounded number of colors. In particular, it is para-NP-hard
parameterized by k and ∆.

Proof. We present a reduction from the restriction of 3-Sat to formulas where each variable
occurs in at most three clauses; this problem was proved to be NP-complete by Tovey [27]. It
is worth mentioning that one needs to allow for clauses of size two or three, as if all clauses
have size exactly three, then it turns out that all instances are satisfiable [27].

We may assume that each variable occurs at least once positively and at least once
negatively, as otherwise we may set such a variable x to the value that satisfies all clauses
in which it appears, and delete x together with those clauses from the formula. We may
also assume that each variable occurs exactly three times in the given formula ϕ. Indeed,
let x be a variable occurring exactly two times in the formula. We create a new variable
y and we add to ϕ two clauses (x ∨ y) and (y ∨ y). Let ϕ′ be the new formula. Clearly ϕ
and ϕ′ are equivalent, and both x and y occur three times in ϕ′. Applying these operations
exhaustively clearly results in an equivalent formula where each variable occurs exactly three
times. Summarizing, we may assume the following property:

z Each variable occurs exactly three times in the given formula ϕ of 3-Sat. Moreover, each
variable occurs at least once positively and at least once negatively in ϕ.

Given a formula ϕ with n variables and m clauses, we create an instance (G,χ, c) of
Diameter-Tree with ∆(G) ≤ 3 as follows. Let the variables in ϕ be x1, . . . , xn. For
every i ∈ [n], we add to G a variable gadget consisting of five vertices ui, vi, pi, ri, ni and
five edges {ui, vi}, {vi, pi}, {pi, ri}, {ri, ni}, and {ni, vi}. For every i ∈ [n − 1], we add the
edge {ui, ui+1}. For every j ∈ [m], the clause gadget in G consists of a single vertex cj .
We now proceed to explain how we connect the variable and the clause gadgets. For each
variable xi, we connect vertex pi (resp. ni) to one of the vertices corresponding to a clause
of ϕ in which xi appears positively (resp. negatively). Finally, we connect vertex ri to the
remaining clause in which xi appears (positively or negatively). Note that these connections
are well-defined because of property z. This completes the construction of G, and note that
it indeed holds that ∆(G) ≤ 3; see Figure 2(a) for an example of the construction of G for a
specific satisfiable formula ϕ with n = 4 and m = 5.

Let us now define the coloring χ and the cost function c. We use nine colors 1, 2, . . . , 9
associated with the edges of G as follows. For i ∈ [n], we set χ({pi, ri}) = 1 and χ({ri, ni}) =
2, and all edges incident to ui or vi have color 3. Finally, for j ∈ [m], we color the edges
containing cj with colors in {4, 5, 6, 7, 8, 9}, so that incident edges get different colors, and
edges corresponding to positive (resp. negative) occurrences get colors in {4, 5, 6} (resp.
{7, 8, 9}); note that such a coloring always exists as each clause contains at most three
variables; see Figure 2(b). We will use only two costs, namely 0 and 1, and recall that we
consider only symmetric cost functions. We set c(1, 2) = 1, c(1, i) = 1 for every i ∈ {4, 5, 6},
c(2, i) = 1 for every i ∈ {7, 8, 9}, and c(i, j) = 1 for every distinct 4 ≤ i, j ≤ 9. All other
costs are set to 0. The following claim concludes the proof.

I Claim 3. [?] ϕ is satisfiable if and only if G contains a spanning tree with diameter 0. J

Note that in the above reduction the cost function c does not satisfy the triangle inequality
at vertices pi or ni for i ∈ [n], and recall that this is unavoidable since otherwise the problem
would be polynomial [28].

Finally, we present the para-NP-hardness result with parameter tw + ∆.

I Theorem 4. The Diameter-Tree problem is NP-hard on planar graphs with tw ≤ 3 and
∆ ≤ 3. In particular, it is para-NP-hard parameterized by tw and ∆.

IPEC 2017

3:8 Complexity of Finding a Spanning Tree with Minimum Reload Cost Diameter

p1 r1 n1

v1

u1

p2 r2 n2

v2 v3 v4

u2 u3 u4

p3 r3 n3 p4 r4 n4

c1 c2 c3 c4 c5

(a) (b)

ui

vi

pi ri ni

3

33

33

1 2

4,5,6
4,5,6
7,8,9

7,8,9

Figure 2 (a) Graph G described in the reduction of Theorem 2 for the formula ϕ = (x1 ∨ x2 ∨
x3) ∧ (x1 ∨ x4) ∧ (x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x4). The vertices pi, ri, ni corresponding to positive
(resp. negative) occurrences are depicted with circles (resp. squares). An assignment satisfying ϕ is
given by x1 = x2 = 1 and x3 = x4 = 0, and a solution spanning tree T with diameter 0 is emphasized
with thicker edges. (b) The (possible) colors associated with each edge of G are depicted in blue.

Proof. We present a reduction from the Partition problem, which is a typical example
of a weakly NP-complete problem [16]. An instance of Partition is a multiset S =
{a1, a2, . . . , an} of n positive integers, and the objective is to decide whether S can be
partitioned into two subsets S1 and S2 such that

∑
x∈S1

x =
∑

x∈S2
x = B

2 where B =∑
x∈S x.
Given an instance S = {a1, a2, . . . , an} of Partition, we create an instance (G,χ, c)

of Diameter-Tree as follows. The graph G contains a vertex r, called the root, and
for every integer ai where i ∈ [n], we add to G six vertices ui, u

′
i,mi,m

′
i, di, d

′
i and seven

edges {ui, u
′
i}, {mi,m

′
i}, {di, d

′
i}, {ui,mi}, {u′i,m′i}, {mi, di}, and {m′i, d′i}. We denote

by Hi the subgraph induced by these six vertices and seven edges. We add the edges
{r, u1}, {r, d1} and, for i ∈ [n − 1], we add the edges {u′i, ui+1} and {d′i, di+1}. Let G′
be the graph constructed so far. We then define G to be the graph obtained from two
disjoint copies of G′ by adding an edge between both roots. Note that G is a planar
graph with ∆(G) = 3 and tw(G) = 3. (The claimed bound on the treewidth can be
easily seen by building a path decomposition of G with consecutive bags of the form
{u′i−1, d

′
i−1, ui, di}, {ui, di,mi, u

′
i}, {di,mi, u

′
i,m

′
i}, {di, u

′
i,m

′
i, d
′
i},)

Let us now define the coloring χ and the cost function c. Again, for simplicity, we
associate a distinct color with each edge of G, and thus it is enough to describe the cost
function c for every pair of incident edges of G. We define the costs for one of the copies of
G′, and the same costs apply to the other copy. For every edge e being either {u′i, ui+1} or
{d′i, di+1}, for 1 ≤ i ≤ n− 1, we set c(e, e′) = 0 for each of the four edges e′ incident with e.
For every edge e = {mi,m

′
i}, for 1 ≤ i ≤ n, we set c({ui,mi}, e) = c({di,mi}, e) = ai and

c(e, {m′i, u′i}) = c(e, {m′i, d′i}) = 0. All costs associated with the two edges containing r in
one of the copies G′ are set to 0. For e = {r1, r2}, where r1 and r2 are the roots of the two
copies of G′, we set c(e, e′) = 0 for each of the four edges e′ incident to e. The cost associated
with any other pair of edges of G is equal to B + 1; see Figure 3 for an illustration, where
(some of) the reload costs are depicted in blue, and a typical solution spanning tree of G is
drawn with thicker edges. The following claim concludes the proof.

I Claim 5. [?] The instance S of Partition is a Yes-instance if and only if G has a
spanning tree with diameter at most B. J

J. Baste, D. Gözüpek, C. Paul, I. Sau, M. Shalom, and D.M.Thilikos 3:9

r1 a1
a1

a1
a1

an
an

r2

u2u′
2

d2d′2

m′
2 m2

an
an

a2
a2

0

0

0

0

00

0

0

B+1 B+1

B+1 B+1

0

0

00

0

0B+1B+1

H2

Pd

Pu

Figure 3 Graph G built in the reduction of Theorem 4, where the reload costs are depicted in
blue at the angle between the two corresponding edges. For better visibility, not all costs and vertex
labels are depicted. The typical shape of a solution spanning tree is highlighted with thicker edges.

4 Polynomial and FPT algorithms

We start this section by presenting the polynomial-time algorithm to solve the Diameter-
Tree problem on cactus graphs, equivalently called cacti. We first need some definitions.

A biconnected component, or block, of a graph is a maximal biconnected induced subgraph
of it. The block tree of a graph G is a tree T whose nodes are the cut vertices and the blocks
of G. Every cut vertex is adjacent in T to all the blocks that contain it. Two blocks share at
most one vertex. The block tree of a graph is unique and can be computed in polynomial
time [10]. A graph is a cactus graph if every block of it is either a cycle or a single edge. We
term these blocks cycle blocks and edge blocks, respectively. It is well-known that cacti have
treewidth at most 2. Given a forest F and two vertices x and y, we define costF (x, y) to
be distc

T (x, y) if x and y are in the same tree T of F and where c is the given reload cost
function, and ⊥ otherwise. Given a tree T and a vertex v ∈ V (T), we define the eccentricity
of v in T to be maxv′∈V (T) costT (v, v′).

We present a polynomial-time algorithm that solves the decision version of the problem,
which we call Diameter-Tree*: the input is an edge-colored graph G and an integer k, and
the objective is to decide whether the input graph G has a spanning tree with reload cost
diameter at most k. The algorithm to solve Diameter-Tree* uses dynamic programming
on the block tree of the input graph.

As we aim at a strongly polynomial-time algorithm to solve Diameter-Tree, we cannot
afford to solve the decision version for all values of k. To overcome this problem, we perform
a double binary search on the possible solution values and two appropriate eccentricities,
resulting (skipping many technical details) in an extra factor of (log opt)2 in the running
time of the algorithm, where opt is the diameter of a minimum cost spanning tree. This
yields a polynomial-time algorithm solving Diameter-Tree in cactus graphs.

Roughly speaking, the algorithm first fixes an arbitrary non-cut vertex r of G and the
block Br that contains it. Then it processes the block tree of G in a bottom-up manner
starting from its leaves, proceeding towards Br while maintaining partial solutions for each
block. At each step of the processing, it uses an algorithm that solves an instance of the
2-Sat problem as a subroutine. The intuition behind the instances of 2-Sat created by the
algorithm is the following.

Suppose that we are dealing with a cycle block B of the block tree of G (the case of an
edge block being easier). Note that any spanning tree of G contains all edges of B except one.
Let GB be the graph processed so far (including B). For each potential partial solution Q in
GB, we associate, with each edge e of B, a variable that indicates that e is the non-picked
edge by the solution in B. Now, for any two such variables corresponding to intersecting
blocks, we add to the formula of 2-Sat essentially two types of clauses: the first set of

IPEC 2017

3:10 Complexity of Finding a Spanning Tree with Minimum Reload Cost Diameter

clauses, namely φ1, guarantees that the non-picked edges (corresponding to the variables set
to true in the eventual assignment) indeed define a spanning tree of GB , while the second
one, namely φ2, forces this solution to have diameter and eccentricity not exceeding the
given budget k. The fact the G is a cactus allows to prove that these constraints containing
only two variables are enough to compute an optimal solution in GB. Full details can be
found in the full version.

I Theorem 6. [?] The Diameter-Tree problem can be solved in polynomial time on cacti.

In the following theorem we prove that the Diameter-Tree problem is FPT on general
graphs parameterized by k, tw, and ∆. The proof is based on standard, but nontrivial,
dynamic programming on graphs of bounded treewidth. It should be mentioned that we can
assume that a tree decomposition of the input graph G of width O(tw) is given together
with the input. Indeed, by using for instance the algorithm of Bodlaender et al. [7], we can
compute in time 2O(tw) · n a tree decomposition of G of width at most 5tw. Note that this
running time is clearly dominated by the running time stated in Theorem 7.

I Theorem 7. [?] The Diameter-Tree problem can be solved in time (k∆·tw ·∆ · tw)O(tw) ·
nO(1). In particular, it is FPT parameterized by k, tw, and ∆.

5 Polynomially bounded costs

So far, we have completely characterized the parameterized complexity of the Diameter-
Tree problem for any combination of the three parameters k, tw, and ∆. In this section we
focus on the special case when the maximum cost value is polynomially bounded by n. The
following corollary is an immediate consequence of Theorem 7.

I Corollary 8. If the maximum cost value is polynomially bounded by n, the Diameter-Tree
problem is in XP parameterized by tw and ∆.

From Corollary 8, a natural question is whether the Diameter-Tree problem is FPT
or W[1]-hard parameterized by tw and ∆, in the case where the maximum cost value is
polynomially bounded by n. The next theorem provides an answer to this question.

I Theorem 9. When the maximum cost value is polynomially bounded by n, the Diameter-
Tree problem is W[1]-hard parameterized by tw and ∆.

Proof. We present a parameterized reduction from the Bin Packing problem parameterized
by the number of bins. In Bin Packing, we are given n integer item sizes a1, . . . , an and an
integer capacity B, and the objective is to partition the items into a minimum number of bins
with capacity B. Jansen et al. [23] proved that Bin Packing is W[1]-hard parameterized by
the number of bins in the solution, even when all item sizes are bounded by a polynomial of
the input size. Equivalently, this version of the problem corresponds to the case where the
item sizes are given in unary encoding; this is why it is called Unary Bin Packing in [23].

Given an instance ({a1, a2, . . . , an}, B, k) of Unary Bin Packing, where k is the number
of bins in the solution and where we can assume that k ≥ 2, we create an instance (G,χ, c)
of Diameter-Tree as follows. The graph G contains a vertex r and, for i ∈ [n] and j ∈ [k],
we add to G vertices vi, `

i
j , r

i
j and edges {r, `1j}, {vi, `

i
j}, {vi, r

i
j}, and {`i

j , r
i
j}. Finally, for

i ∈ [n− 1] and j ∈ [k], we add the edge {ri
j , `

i+1
j }. Let G′ be the graph constructed so far;

see Figure 4 for an illustration.
Similarly to the proof of Theorem 4, we define G to be the graph obtained by taking two

disjoint copies of G′ and identifying vertex r of both copies. Note that G can be clearly built in

J. Baste, D. Gözüpek, C. Paul, I. Sau, M. Shalom, and D.M.Thilikos 3:11

v2 vi vn

r

`i1

`i2

`ik

ri1

ri2

rik

`11

`12

`1k

`21

`22

`2k

`n1

`n2

`nk

rn1

rn2

rnk

r21

r22

r2k

r11

r12

r1k

v1

Figure 4 Graph G′ built in the reduction of Theorem 9. The reload costs are not depicted.

polynomial time, and that tw(G) ≤ k+ 1 and ∆(G) = 2k (since we assume k ≥ 2). Therefore,
tw(G)+∆(G) is indeed bounded by a function of k, as required. (Again, the claimed bound on
the treewidth can be easily seen by building a path decomposition ofG with consecutive bags of
the form {vi, `

i
1, `

i
2, . . . , `

i
k, r

i
1}, {vi, `

i
1, `

i
2, . . . , `

i
k−1, r

i
1, r

i
2}, {vi, `

i
1, `

i
2, . . . , `

i
k−2, r

i
1, r

i
2, r

i
3},)

Let us now define the coloring χ and the cost function c. Once more, for simplicity,
we associate a distinct color with each edge of G, and thus it is enough to describe the
cost function c for every pair of incident edges of G. The cost function is symmetric for
both copies of G′, so we just focus on one copy. For i ∈ [n], let e1, e2 be two distinct edges
containing vertex vi. We set c(e1, e2) = 2B + 1 unless e1 = {vi, `

i
j} and e2 = {vi, r

i
j} for

some j ∈ [k], in which case we set c(e1, e2) = ai. The cost associated with any other pair of
edges of G is set to 0. Note that, as ({a1, a2, . . . , an}, B, k) is an instance of Unary Bin
Packing, the reload costs of the instance (G,χ, c) of Diameter-Tree are polynomially
bounded by |V (G)|. Again, the following claim concludes the proof.

I Claim 10. [?] ({a1, a2, . . . , an}, B, k) is a Yes-instance of Unary Bin Packing if and
only if G has a spanning tree with diameter at most 2B. J

References
1 Satyam Agarwal and Swades De. Dynamic spectrum access for energy-constrained cr: single

channel versus switched multichannel. IET Communications, 10(7):761–769, 2016.
2 E. Amaldi, Giulia Galbiati, and Francesco Maffioli. On minimum reload cost paths, tours,

and flows. Networks, 57(3):254–260, 2011.
3 Stamatios Arkoulis, Evangelos Anifantis, Vasileios Karyotis, Symeon Papavassiliou, and

Nikolaos Mitrou. On the optimal, fair and channel-aware cognitive radio network reconfig-
uration. Computer Networks, 57(8):1739–1757, 2013.

4 Suzan Bayhan and Fatih Alagoz. Scheduling in centralized cognitive radio networks for
energy efficiency. IEEE Transactions on Vehicular Technology, 62(2):582–595, 2013.

5 Suzan Bayhan, Salim Eryigit, Fatih Alagoz, and Tuna Tugcu. Low complexity uplink
schedulers for energy-efficient cognitive radio networks. IEEE Wireless Communications
Letters, 2(3):363–366, 2013.

6 Aruna Prem Bianzino, Claude Chaudet, Dario Rossi, and Jean-Louis Rougier. A survey of
green networking research. IEEE Communications Surveys & Tutorials, 14(1):3–20, 2012.

7 Hans L. Bodlaender, Pral Grønras Drange, Markus S. Dregi, Fedor V. Fomin, Daniel
Lokshtanov, and Michal Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM
Journal on Computing, 45(2):317–378, 2016.

8 Abdulkadir Celik and Ahmed E Kamal. Green cooperative spectrum sensing and scheduling
in heterogeneous cognitive radio networks. IEEE Transactions on Cognitive Communica-
tions and Networking, 2(3):238–248, 2016.

9 Claude Desset, Noman Ahmed, and Antoine Dejonghe. Energy savings for wireless ter-
minals through smart vertical handover. In Proc. of IEEE International Conference on
Communications, pages 1–5, 2009.

IPEC 2017

3:12 Complexity of Finding a Spanning Tree with Minimum Reload Cost Diameter

10 Reinhard Diestel. Graph Theory, volume 173. Springer-Verlag, 4th edition, 2010.
11 Salim Eryigit, Suzan Bayhan, and Tuna Tugcu. Channel switching cost aware and energy-

efficient cooperative sensing scheduling for cognitive radio networks. In Proc. of IEEE
International Conference on Communications (ICC), pages 2633–2638, 2013.

12 Giulia Galbiati. The complexity of a minimum reload cost diameter problem. Discrete
Applied Mathematics, 156(18):3494–3497, 2008.

13 Giulia Galbiati, Stefano Gualandi, and Francesco Maffioli. On minimum changeover cost
arborescences. In Panos M. Pardalos and Steffen Rebennack, editors, Experimental Al-
gorithms - 10th International Symposium, SEA 2011, Kolimpari, Chania, Crete, Greece,
May 5-7, 2011. Proceedings, volume 6630 of Lecture Notes in Computer Science, pages
112–123. Springer, 2011. doi:10.1007/978-3-642-20662-7_10.

14 Giulia Galbiati, Stefano Gualandi, and Francesco Maffioli. On minimum reload cost cycle
cover. Discrete Applied Mathematics, 164:112–120, 2014.

15 Ioannis Gamvros, Luis Gouveia, and S Raghavan. Reload cost trees and network design.
Networks, 59(4):365–379, 2012.

16 M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
completeness. Freeman, San Francisco, 1979.

17 Laurent Gourvès, Adria Lyra, Carlos Martinhon, and Jérôme Monnot. The minimum reload
s-t path, trail and walk problems. Discrete Applied Mathematics, 158(13):1404–1417, 2010.

18 D. Gözüpek, S. Özkan, C. Paul, I. Sau, and M. Shalom. Parameterized complexity of the
MINCCA problem on graphs of bounded decomposability. In Proc. of the 42nd Interna-
tional Workshop on Graph-Theoretic Concepts in Computer Science (WG), volume 9941 of
LNCS, pages 195–206, 2016. Full version available at arXiv:1509.04880.

19 Didem Gözüpek, Seyed Buhari, and Fatih Alagöz. A spectrum switching delay-aware
scheduling algorithm for centralized cognitive radio networks. IEEE Transactions on Mobile
Computing, 12(7):1270–1280, 2013.

20 Didem Gözüpek, Hadas Shachnai, Mordechai Shalom, and Shmuel Zaks. Constructing
minimum changeover cost arborescenses in bounded treewidth graphs. Theor. Comput.
Sci., 621:22–36, 2016. doi:10.1016/j.tcs.2016.01.022.

21 Didem Gözüpek and Mordechai Shalom. Edge coloring with minimum reload/changeover
costs. Preprint available at arXiv:1607.06751, 2016.

22 Didem Gözüpek, Mordechai Shalom, Ariella Voloshin, and Shmuel Zaks. On the complexity
of constructing minimum changeover cost arborescences. Theor. Comput. Sci., 540:40–52,
2014. doi:10.1016/j.tcs.2014.03.023.

23 Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin packing with fixed
number of bins revisited. J. Comput. Syst. Sci., 79(1):39–49, 2013. doi:10.1016/j.jcss.
2012.04.004.

24 Finn V. Jensen. Bayesian Networks and Decision Graphs. Springer, 2001.
25 Vijay R Konda and Timothy Y Chow. Algorithm for traffic grooming in optical networks

to minimize the number of transceivers. In Proc. of IEEE Workshop on High Performance
Switching and Routing, pages 218–221, 2001.

26 Nasser Shami and Mehdi Rasti. A joint multi-channel assignment and power control scheme
for energy efficiency in cognitive radio networks. In Proc. of IEEE Wireless Communications
and Networking Conference (WCNC), pages 1–6, 2016.

27 Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied Math-
ematics, 8:85–89, 1984.

28 Hans-ChristophWirth and Jan Steffan. Reload cost problems: minimum diameter spanning
tree. Discrete Applied Mathematics, 113(1):73–85, 2001.

http://dx.doi.org/10.1007/978-3-642-20662-7_10
http://dx.doi.org/10.1016/j.tcs.2016.01.022
http://dx.doi.org/10.1016/j.tcs.2014.03.023
http://dx.doi.org/10.1016/j.jcss.2012.04.004
http://dx.doi.org/10.1016/j.jcss.2012.04.004

Optimal Algorithms for Hitting (Topological)
Minors on Graphs of Bounded Treewidth∗†

Julien Baste1, Ignasi Sau2, and Dimitrios M. Thilikos3

1 Université de Montpellier, LIRMM, Montpellier, France
baste@lirmm.fr

2 AlGCo project-team, CNRS, LIRMM, France and Departamento de
Matemática, Universidade Federal do Ceará, Fortaleza, Brazil
ignasi.sau@lirmm.fr

3 AlGCo project-team, CNRS, LIRMM, France and Department of
Mathematics, National and Kapodistrian University of Athens, Greece
sedthilk@thilikos.info

Abstract
For a fixed collection of graphs F , the F-M-Deletion problem consists in, given a graph G

and an integer k, decide whether there exists S ⊆ V (G) with |S| ≤ k such that G \ S does not
contain any of the graphs in F as a minor. We are interested in the parameterized complexity
of F-M-Deletion when the parameter is the treewidth of G, denoted by tw. Our objective is
to determine, for a fixed F , the smallest function fF such that F-M-Deletion can be solved
in time fF (tw) · nO(1) on n-vertex graphs. Using and enhancing the machinery of boundaried
graphs and small sets of representatives introduced by Bodlaender et al. [J ACM, 2016], we
prove that when all the graphs in F are connected and at least one of them is planar, then
fF (w) = 2O(w·logw). When F is a singleton containing a clique, a cycle, or a path on i vertices,
we prove the following asymptotically tight bounds:

f{K4}(w) = 2Θ(w·logw).

f{Ci}(w) = 2Θ(w) for every i ≤ 4, and f{Ci}(w) = 2Θ(w·logw) for every i ≥ 5.

f{Pi}(w) = 2Θ(w) for every i ≤ 4, and f{Pi}(w) = 2Θ(w·logw) for every i ≥ 6.
The lower bounds hold unless the Exponential Time Hypothesis fails, and the superexponential
ones are inspired by a reduction of Marcin Pilipczuk [Discrete Appl Math, 2016]. The single-
exponential algorithms use, in particular, the rank-based approach introduced by Bodlaender et
al. [Inform Comput, 2015]. We also consider the version of the problem where the graphs in F
are forbidden as topological minors, and prove essentially the same set of results holds.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases parameterized complexity, graph minors, treewidth, hitting minors, to-
pological minors, dynamic programming, Exponential Time Hypothesis

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.4

∗ This work has been supported by project DEMOGRAPH (ANR-16-CE40-0028).
† A full version of this article is permanently available at https://arxiv.org/abs/1704.07284.

© Julien Baste, Ignasi Sau and Dimitrios M. Thilikos;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 4; pp. 4:1–4:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.4
https://arxiv.org/abs/1704.07284
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 Optimal Algorithms for Hitting Minors on Graphs of Bounded Treewidth

1 Introduction

Let F be a finite non-empty collection of non-empty graphs. In the F-M-Deletion (resp.
F-TM-Deletion) problem, we are given a graph G and an integer k, and the objective
is to decide whether there exists a set S ⊆ V (G) with |S| ≤ k such that G \ S does not
contain any of the graphs in F as a minor (resp. topological minor). These problems have
a big expressive power, as instantiations of them correspond to several notorious problems.
For instance, the cases F = {K2}, F = {K3}, and F = {K5,K3,3} of F-M-Deletion (or
F-TM-Deletion) correspond to Vertex Cover, Feedback Vertex Set, and Vertex
Planarization, respectively.

For the sake of readability, we use the notation F-Deletion in statements that apply to
both F-M-Deletion and F-TM-Deletion. Note that if F contains a graph with at least
one edge, then F-Deletion is NP-hard by the classical result of Lewis and Yannakakis [15].

In this article we are interested in the parameterized complexity of F-Deletion when
the parameter is the treewidth of the input graph. Since the property of containing a graph
as a (topological) minor can be expressed in Monadic Second Order logic (see [14] for explicit
formulas), by Courcelle’s theorem [5], F-Deletion can be solved in time O∗(f(tw)) on
graphs with treewidth at most tw, where f is some computable function1. Our objective is
to determine, for a fixed collection F , which is the smallest such function f that one can
(asymptotically) hope for, subject to reasonable complexity assumptions.

This line of research has attracted some interest during the last years in the parameterized
complexity community. For instance, Vertex Cover is easily solvable in time O∗(2O(tw)),
called single-exponential, by standard dynamic-programming techniques, and no algorithm
with running time O∗(2o(tw)) exists unless the Exponential Time Hypothesis (ETH)2 fails [12].

For Feedback Vertex Set, standard dynamic programming techniques give a running
time of O∗(2O(tw·log tw)), while the lower bound under the ETH [12] is again O∗(2o(tw)). This
gap remained open for a while, until Cygan et al. [6] presented an optimal algorithm running
in time O∗(2O(tw)), using the celebrated Cut&Count technique. This article triggered several
other techniques to obtain single-exponential algorithms for so-called connectivity problems
on graph of bounded treewidth, mostly based on algebraic tools [2, 8].

Concerning Vertex Planarization, Jansen et al. [13] presented an algorithm of time
O∗(2O(tw·log tw)) as a crucial subroutine in an FPT algorithm parameterized by k. Marcin
Pilipczuk [19] proved that this running time is optimal under the ETH, by using the framework
introduced by Lokshtanov et al. [17] for proving superexponential lower bounds.

Our results. We present a number of upper and lower bounds for F-Deletion parameter-
ized by treewidth, several of them being tight. Namely, we prove the following results, all
the lower bounds holding under the ETH:
1. For every F , F-Deletion can be solved in time O∗

(
22O(tw·log tw)

)
.

2. For every connected3 F containing at least one planar graph (resp. subcubic planar graph),
F-M-Deletion (resp. F-TM-Deletion) can be solved in time O∗

(
2O(tw·log tw)).

3. For any connected F , F-Deletion cannot be solved in time O∗(2o(tw)).
4. When F = {Ki}, the clique on i vertices, {Ki}-Deletion cannot be solved in time
O∗(2o(tw·log tw)) for i ≥ 4. Note that {Ki}-Deletion can be solved in time O∗(2O(tw))
for i ≤ 3 [6], and that the case i = 4 is tight by item 2 above (as K4 is planar).

1 We use the notation O∗(·) that suppresses polynomial factors depending on the size of the input graph.
2 The ETH states that 3-SAT on n variables cannot be solved in time 2o(n); see [12] for more details.
3 A connected collection F is a collection containing only connected graphs.

J. Baste, I. Sau and D.M.Thilikos 4:3

Table 1 Summary of our results when F equals {Ki}, {Ci}, or {Pi}. If only one value ‘x’ is
written in the table (like ‘tw’), it means that the corresponding problem can be solved in time
O∗(2O(x)), and that this bound is tight. An entry of the form ‘x ? y’ means that the corresponding
problem cannot be solved in time O∗(2o(x)) and that it can be solved in time O∗(2O(y)). We interpret
{C2}-Deletion as Feedback Vertex Set. Grey cells correspond to known results.

HH
HHHF

i 2 3 4 5 ≥ 6

Ki tw tw tw · log tw tw · log tw ? 2O(tw·log tw) tw · log tw ? 2O(tw·log tw)

Ci tw tw tw tw · log tw tw · log tw
Pi tw tw tw tw ? tw · log tw tw · log tw

5. When F = {Ci}, the cycle on i vertices, {Ci}-Deletion can be solved in time O∗(2O(tw))
for i ≤ 4, and cannot be solved in time O∗(2o(tw·log tw)) for i ≥ 5. Note that, by items 2
and 3 above, this settles completely the complexity of {Ci}-Deletion for every i ≥ 3.

6. When F = {Pi}, the path on i vertices, {Pi}-Deletion can be solved in time O∗(2O(tw))
for i ≤ 4, and cannot be solved in time O∗(2o(tw·log tw)) for i ≥ 6. Note that, by items 2
and 3 above, this settles completely the complexity of {Pi}-Deletion for every i ≥ 2,
except for i = 5, where there is still a gap.

The results discussed in the last three items are summarized in Table 1. Note that the
cases with i ≤ 3 were already known [6,12], except when F = {P3}.

Our techniques. The algorithm running in time O∗
(

22O(tw·log tw)
)
uses and, in a sense,

enhances, the machinery of boundaried graphs, equivalence relations, and representatives
originating in the seminal work of Bodlaender et al. [3], and which has been subsequently
used in [9, 10, 14]. For technical reasons, we use branch decompositions instead of tree
decompositions, whose associated widths are equivalent from a parametric point of view [20].

In order to obtain the faster algorithm running in time O∗
(
2O(tw·log tw)) when F is a

connected collection containing at least a (subcubic) planar graph, we combine the above
ingredients with additional arguments to bound the number and the size of the representatives
of the equivalence relation defined by the encoding that we use to construct the partial
solutions. Here, the connectivity of F guarantees that every connected component of a
minimum-sized representative intersects its boundary set (cf. the full version). The fact that
F contains a (subcubic) planar graph is essential in order to bound the treewidth of the
resulting graph after deleting a partial solution (cf. Lemma 11).

We present these algorithms for the topological minor version and then it is easy to adapt
them to the minor version within the claimed running time (cf. Lemma 9).

The single-exponential algorithms when F ∈ {{P3}, {P4}, {C4}} are ad hoc. Namely, the
algorithms for {P3}-Deletion and {P4}-Deletion use standard (but nontrivial) dynamic
programming techniques on graphs of bounded treewidth, exploiting the simple structure of
graphs that do not contain P3 or P4 as a minor (or as a subgraph, which in the case of paths
is equivalent). The algorithm for {C4}-Deletion is more involved, and uses the rank-based
approach introduced by Bodlaender et al. [2], exploiting again the structure of graphs that
do not contain C4 as a minor (cf. Lemma 14). It might seem counterintuitive that this
technique works for C4, and stops working for Ci with i ≥ 5 (see Table 1). A possible reason
for that is that the only cycles of a C4-minor-free graph are triangles and each triangle is
contained in a bag of a tree decomposition. This property, which is not true anymore for
Ci-minor-free graphs with i ≥ 5, permits to keep track of the structure of partial solutions
with tables of small size.

IPEC 2017

4:4 Optimal Algorithms for Hitting Minors on Graphs of Bounded Treewidth

As for the lower bounds, the general lower bound of O∗(2o(tw)) for connected collections
is based on a simple reduction from Vertex Cover. The superexponential lower bounds,
namely O∗(2o(tw·log tw)), are strongly based on the ideas presented by Marcin Pilipczuk [19]
for Vertex Planarization. We present a general hardness result (cf. Theorem 20) that
applies to wide families of connected collections F . Then, our superexponential lower bounds,
as well as the result of Marcin Pilipczuk [19] itself, are corollaries of this general result.
Combining Theorem 20 with 2, it easily follows that the running time O∗(2O(tw·log tw)) is
tight for a wide family of F , for example, when all graphs in F are planar and 3-connected.

Further research. In order to complete the dichotomy for cliques and paths (see Table 1),
it remains to settle the complexity when F = {Ki} with i ≥ 5 and when F = {P5}. An
ultimate goal is to establish the tight complexity of F-Deletion for all collections F , but
we are still very far from it. In particular, we do not know whether there exists some F
for which a double-exponential lower bound can be proved, or for which the complexities of
F-M-Deletion and F-TM-Deletion differ.

Note that the connectivity of F was relevant in previous work on the F-M-Deletion
problem taking as the parameter the size of the solution [7, 14]. Getting rid of connectivity
in both the lower and upper bounds we presented is an interesting avenue. We did not focus
on optimizing either the degree of the polynomials involved or the constants involved in our
algorithms. Concerning the latter, one could use the framework presented by Lokshtanov et
al. [16] to prove lower bounds based on the Strong Exponential Time Hypothesis.

Finally, let us mention that Bonnet et al. [4] recently studied generalized feedback vertex
set problems parameterized by treewidth, and obtained independently that excluding C4
plays a fundamental role in the existence of single-exponential algorithms, similarly to our
dichotomy for cycles summarized in Table 1.

Organization of the paper. In Section 2 we provide some preliminaries. The algorithms
based on boundaried graphs are presented in Section 3, and the single-exponential algorithms
for hitting paths and cycles are presented in Section 4. The superexponential lower bounds
are presented in Section 5. The general lower bound for connected collections and the proofs
of all the results marked with ‘(?)’ can be found in the full version.

2 Preliminaries

In this section we provide some preliminaries to be used in the following sections. We include
here only the “non-standard” definitions; the other ones can be found in the full version.

Block-cut trees. A connected graph G is biconnected if for any v ∈ V (G), G \ {v} is
connected (notice that K2 is the only biconnected graph that it is not 2-connected). A
block of a graph G is a maximal biconnected subgraph of G. We name block(G) the set of
all blocks of G and we name cut(G) the set of all cut vertices of G. If G is connected, we
define the block-cut tree of G to be the tree bct(G) = (V,E) such that V = block(G)∪ cut(G)
and E = {{B, v} | B ∈ block(G), v ∈ cut(G) ∩ V (B)}. Note that L(bct(G)) ⊆ block(G).
The block-cut tree of a graph can be computed in linear time using depth-first search [11].
Let F be a set of connected graphs such that for each H ∈ F , |V (H)| ≥ 2. Given H ∈ F
and B ∈ L(bct(H)), we say that (H,B) is an essential pair if for each H ′ ∈ F and each
B′ ∈ L(bct(H ′)), |E(B)| ≤ |E(B′)|. Given an essential pair (H,B) of F , we define the
first vertex of (H,B) to be, if it exists, the only cut vertex of H contained in V (B), or an

J. Baste, I. Sau and D.M.Thilikos 4:5

arbitrarily chosen vertex of V (B) otherwise. We define the second vertex of (H,B) to be an
arbitrarily chosen vertex of V (B) that is a neighbor in H[B] of the first vertex of (H,B).
Note that, given an essential pair (H,B) of F , the first vertex and the second vertex of
(H,B) exist and, by definition, are fixed. Moreover, given an essential pair (H,B) of F , we
define the core of (H,B) to be the graph H \ (V (B) \ {a}) where a is the first vertex of
(H,B). Note that a is a vertex of the core of (H,B).

Topological minors and graph separators. For the statement of our results, we need to
consider the class K containing every connected graph G such that for each B ∈ L(bct(G))
and for each r ∈ N, B 6�tm K2,r (or equivalently, B 6�m K2,r). Let H be a graph. We define
the set of graphs tpm(H) as follows: among all the graphs containing H as a minor, we
consider only those that are minimal with respect to the topological minor relation.

I Observation 1. There is a function f1 : N → N such that for every h-vertex graph H,
every graph in tpm(H) has at most f1(h) vertices.

I Observation 2. Given two graphs H and G, H is a minor of G if and only if some of the
graphs in tpm(H) is a topological minor of G.

Let G be a graph and S ⊆ V (G). Then for each connected component C of G \ S, we
define the cut-clique of the triple (C,G, S) to be the graph whose vertex set is V (C)∪ S and
whose edge set is E(G[V (C) ∪ S]) ∪

(
S
2
)
.

I Lemma 3 (?). Let i ≥ 2 be an integer, let H be an i-connected graph, let G be a graph,
and let S ⊆ V (G) such that |S| ≤ i− 1. If H is a topological minor (resp. a minor) of G,
then there exists a connected component G′ of G \ S such that H is a topological minor (resp.
a minor) of the cut-clique of (G′, G, S).

I Lemma 4 (?). Let G be a connected graph, let v be a cut vertex of G, and let V be the
vertex set of a connected component of G \ {v}. If H is a connected graph such that H �tm G

and for each leaf B of bct(H), B 6�tm G[V ∪ {v}], then H �tm G \ V .

Graph collections. Let F be a collection of graphs. From now on instead of “collection
of graphs” we use the shortcut “collection”. If F is a collection that is finite, non-empty,
and all its graphs are non-empty, then we say that F is a proper collection. For any proper
collection F , we define size(F) = max{{|V (H)| | H ∈ F} ∪ {|F|}}. Note that if the size of
F is bounded, then the size of the graphs in F is also bounded. We say that F is a planar
collection (resp. planar subcubic collection) if it is proper and at least one of the graphs in F
is planar (resp. planar and subcubic). We say that F is a connected collection if it is proper
and all the graphs in F are connected. We say that F is an (topological) minor antichain if
no two of its elements are comparable via the (topological) minor relation.

Let F be a proper collection. We extend the (topological) minor relation to F such that,
given a graph G, F �tm G (resp. F �m G) if and only if there exists a graph H ∈ F such
that H �tm G (resp. H �m G). We also denote extm(F) = {G | F �tm G}, i.e., extm(F)
is the class of graphs that do not contain any graph in F as a topological minor. The set
exm(F) is defined analogously.

Definition of the problems. Let F be a proper collection. We define the parameter tmF
as the function that maps graphs to non-negative integers as follows:

tmF (G) = min{|S| | S ⊆ V (G) ∧G \ S ∈ extm(F)}. (1)

IPEC 2017

4:6 Optimal Algorithms for Hitting Minors on Graphs of Bounded Treewidth

The parameter mF is defined analogously. The main objective of this paper is to study
the problem of computing the parameters tmF and mF for graphs of bounded treewidth
under several instantiations of the collection F . Note that in both problems, we can always
assume that F is an antichain with respect to the considered relation. Indeed, this is the case
because if F contains two graphs H1 and H2 where H1 �tm H2, then tmF (G) = tmF ′(G)
where F ′ = F \ {H2} (similarly for the minor relation).

Throughout the article, we let n and tw be the number of vertices and the treewidth of
the input graph of the considered problem, respectively. In some proofs, we will also use
w to denote the width of a (nice) tree decomposition that is given together with the input
graph (which will differ from tw by at most a factor 5).

3 Dynamic programming algorithms for computing tmF

The purpose of this section is to prove the following results.

I Theorem 5. If F is a proper collection, where d = size(F), then there exists an algorithm
that solves F-TM-Deletion in 22Od(tw·log tw) · n steps.

I Theorem 6. If F is a connected and planar subcubic collection, where d = size(F), then
there exists an algorithm that solves F-TM-Deletion in 2Od(tw·log tw) · n steps.

I Theorem 7. If F is a proper collection, where d = size(F), then there exists an algorithm
that solves F-M-Deletion in 22Od(tw·log tw) · n steps.

I Theorem 8. If F is a connected and planar collection, where d = size(F), then there exists
an algorithm that solves F-M-Deletion in 2Od(tw·log tw) · n steps.

The following lemma is a direct consequence of Observation 2.

I Lemma 9. Let F be a proper collection. Then, for every graph G, it holds that mF (G) =
tmF ′(G) where F ′ =

⋃
F∈F tpm(F).

It is easy to see that for every (planar) graph F , the set tpm(F) contains a subcubic
(planar) graph. Combining this observation with Lemma 9 and Observation 1, Theorems 7
and 8 follow directly from Theorems 5 and 6, respectively. The rest of this section is dedicated
to the proofs of Theorems 5 and 6. For this, we need a number of definitions about boundaried
graphs, their equivalence classes, and their branch decompositions. Many of these definitions
were introduced in [3, 9] (see also [10, 14]), and can be found in the full version. We present
here only the most fundamental definitions in order to be able to state our results.

Basic definitions about boundaried graphs. Let t ∈ N. A t-boundaried graph is a triple
G = (G,R, λ) where G is a graph, R ⊆ V (G), |R| = t, and λ : R → N+ is an injective
function. We call R the boundary of G and we call the vertices of R the boundary vertices of
G. We also call G the underlying graph of G. Moreover, we call t = |R| the boundary size of
G and we define the label set of G as Λ(G) = λ(R). We also say that G is a boundaried graph
if there exists an integer t such that G is an t-boundaried graph. We say that a boundary
graph G is consecutive if Λ(G) = [1, |R|]. We define B(t) as the set of all t-boundaried graphs.

Let G1 = (G1, R1, λ1) and G2 = (G2, R2, λ2) be two t-boundaried graphs. We define the
gluing operation ⊕ such that (G1, R1, λ1)⊕ (G2, R2, λ2) is the graph G obtained by taking
the disjoint union of G1 and G2 and then, for each i ∈ [1, t], identifying the vertex ψ−1

G1
(i)

and the vertex ψ−1
G2

(i).

J. Baste, I. Sau and D.M.Thilikos 4:7

Let F be a proper collection and let t be a non-negative integer. We define an equivalence
relation ≡(F,t) on t-boundaried graphs as follows: Given two t-boundaried graphs G1 and
G2, we write G1 ≡(F,t) G2 to denote that ∀G ∈ B(t), F �tm G⊕G1 ⇐⇒ F �tm G⊕G2.
We set up a set of representatives R(F,t) as a set containing, for each equivalence class C
of ≡(F,t), some consecutive t-boundaried graph in C with minimum number of edges and
no isolated vertices out of its boundary (if there are more than one such graphs, pick one
arbitrarily). Given a t-boundaried graph G we denote by rep(F)(G) the t-boundaried graph
B ∈ R(F,t) where B ≡(F,t) G and we call B the F-representative of G.

Given t, r ∈ N, we define A(t)
F,r as the set of all pairwise non-isomorphic boundaried graphs

that contain at most r non-boundary vertices, whose label set is a subset of [1, t], and whose
underlying graph belongs in extm(F). Given a t-boundaried graph B and an integer r ∈ N,
we define the (F , r)-folio of B, denoted by folio(B,F , r), as the set containing all boundaried
graphs in A(t)

F,r that are topological minors of B.

I Lemma 10 (?). There exists a function h1 : N×N→ N such that if F is a proper collection
and t ∈ N, then |R(F,t)| ≤ h1(d, t) where d = size(F). Moreover h1(d, t) = 22Od(t·log t) .

I Lemma 11 (?). There exists a function µ : N → N such that for every planar subcubic
collection F , every graph in extm(F) has branchwidth at most y = µ(d) where d = size(F).

We already have all the main ingredients to prove Theorem 5; the proof can be found in
the full version. In order to prove Theorem 6, we need Lemma 13 below, which should be
contrasted with Lemma 10. Its proof, which can be found in the full version, uses, among
others, the following result of Baste et al. [1] on the number of labeled graphs of bounded
treewidth.

I Proposition 12 (Baste et al. [1]). Let n, y ∈ N. The number of labeled graphs with at most
n vertices and branchwidth at most q is 2Oq(n·logn).

I Lemma 13 (?). Let t ∈ N and F be a connected and planar collection, where d = size(F),
and let R(F,t) be a set of representatives. Then |R(F,t)| = 2Od(t·log t). Moreover, there exists
an algorithm that given F and t, constructs a set of representatives R(F,t) in 2Od(t·log t) steps.

The proof of Theorem 6 can be found in the full version. The main difference with
respect to the proof of Theorem 5 is an improvement on the size of the tables of the dynamic
programming algorithm, namely |Pe|, where the fact that F is a connected and planar
subcubic collection is exploited.

4 Single-exponential algorithms for hitting paths and cycles

In this section we show that if F ∈ {{P3}, {P4}, {C4}}, then F-TM-Deletion can also
be solved in single-exponential time. It is worth mentioning that the {Ci}-TM-Deletion
problem has been studied in digraphs from a non-parameterized point of view [18].

The algorithms we present for {P3}-TM-Deletion and {P4}-TM-Deletion use stand-
ard dynamic programming techniques, and can be found in the full version. The definition
of nice tree decomposition can also be found there.

We proceed to use the dynamic programming techniques introduced by Bodlaender et
al. [2] to obtain a single-exponential algorithm for {C4}-TM-Deletion. The algorithm we
present solves the decision version of {C4}-TM-Deletion: the input is a pair (G, k), where
G is a graph and k is an integer, and the output is the boolean value tmF (G) ≤ k.

Given a graph G, we denote by n(G) = |V (G)|, m(G) = |E(G)|, c3(G) the number of
C3’s that are subgraphs of G, and cc(G) the number of connected components of G. We

IPEC 2017

4:8 Optimal Algorithms for Hitting Minors on Graphs of Bounded Treewidth

say that G satisfies the C4-condition if G does not contain the diamond as a subgraph
and n(G)−m(G) + c3(G) = cc(G). As in the case of P3 and P4, we state in Lemma 14 a
structural characterization of the graphs that exclude C4 as a (topological) minor.

I Lemma 14 (?). Let G be a graph. C4 6�tm G if and only if G satisfies the C4-condition.

I Lemma 15 (?). If G is a non-empty graph such that C4 6�tm G, then m(G) ≤ 3
2 (n(G)− 1).

We are now going to restate the tools introduced by Bodlaender et al. [2] that we need
for our purposes. Let U be a set. We define Π(U) to be the set of all partitions of U . Given
two partitions p and q of U , we define the coarsening relation v such that p v q if for each
S ∈ q, there exists S′ ∈ p such that S ⊆ S′. (Π(U),v) defines a lattice with minimum
element {{U}} and maximum element {{x} | x ∈ U}. On this lattice, we denote by u the
meet operation and by t the join operation. Let p ∈ Π(U). For X ⊆ U we denote by
p↓X = {S ∩X | S ∈ p, S ∩X 6= ∅} ∈ Π(X) the partition obtained by removing all elements
not in X from p, and analogously for U ⊆ X we denote p↑X = p∪ {{x} | x ∈ X \U} ∈ Π(X)
the partition obtained by adding to p a singleton for each element in X \U . Given a subset S
of U , we define the partition U [S] = {{x} | x ∈ U \S}∪{S}. A set of weighted partitions is a
set A ⊆ Π(U)× N. We also define rmc(A) = {(p, w) ∈ A | ∀(p′, w′) ∈ A : p′ = p⇒ w ≤ w′}.

We now define some operations on weighted partitions. Let U be a set and A ⊆ Π(U)×N.

Union. Given B ⊆ Π(U)× N, we define A ∪↓ B = rmc(A ∪ B).
Insert. Given a set X such that X ∩U = ∅, we define ins(X,A) = {(p↑U∪X , w) | (p, w) ∈ A}.
Shift. Given w′ ∈ N, we define shft(w′,A) = {(p, w + w′) | (p, w) ∈ A}.
Glue. Given a set S, we define Û = U ∪ S and glue(S,A) ⊆ Π(Û)× N as

glue(S,A) = rmc({(Û [S] u p↑Û , w | (p, w) ∈ A}).
Given w : Û × Û → N , we define gluew({u, v},A) = shft(w(u, v), glue({u, v},A)).

Project. Given X ⊆ U , we define X = U \X and proj(X,A) ⊆ Π(X)× N as
proj(X,A) = rmc({(p↓X , w) | (p, w) ∈ A,∀e ∈ X : ∀e′ ∈ X : p v U [ee′]}).

Join. Given a set U ′, B ⊆ Π(U)× N, and Û = U ∪ U ′, we define join(A,B) ⊆ Π(Û)× N as
join(A,B) = rmc({(p↑Û u q↑Û , w1 + w2) | (p, w1) ∈ A, (q, w2) ∈ B}).

I Proposition 16 (Bodlaender et al. [2]). Each of the operations union, insert, shift, glue, and
project can be carried out in time s · |U |O(1), where s is the size of the input of the operation.
Given two weighted partitions A and B, join(A,B) can be computed in time |A| · |B| · |U |O(1).

Given a weighted partition A ⊆ Π(U)×N and a partition q ∈ Π(U), we define opt(q,A) =
min{w | (p, w) ∈ A, p u q = {U}}. Given two weighted partitions A,A′ ⊆ Π(U) × N, we
say that A represents A′ if for each q ∈ Π(U), opt(q,A) = opt(q,A′). Given a set Z and a
function f : 2Π(U)×N × Z → 2Π(U)×N, we say that f preserves representation if for each two
weighted partitions A,A′ ⊆ Π(U)× N and each z ∈ Z, it holds that if A′ represents A then
f(A′, z) represents f(A, z).

I Proposition 17 (Bodlaender et al. [2]). The union, insert, shift, glue, project, and join
operations preserve representation.

I Theorem 18 (Bodlaender et al. [2]). There exists an algorithm reduce that, given a set of
weighted partitions A ⊆ Π(U)× N, outputs in time |A| · 2(ω−1)|U | · |U |O(1) a set of weighted
partitions A′ ⊆ A such that A′ represents A and |A′| ≤ 2|U |, where ω denotes the matrix
multiplication exponent.

J. Baste, I. Sau and D.M.Thilikos 4:9

We now have all the tools needed to describe our algorithm. This algorithm is based on
the one given in [2, Section 3.5] and E0 = {{v0, v} | v ∈ V (G)}. The role of v0 is to artificially
guarantee the connectivity of the solution graph, so that the machinery of Bodlaender et
al. [2] can be applied. In the following, for each subgraph H of G, for each Z ⊆ V (H), and
for each Z0 ⊆ E0 ∩ E(H), we denote by H〈Z,Z0〉 the graph

(
Z,Z0 ∪

(
E(H) ∩

(
Z\{v0}

2
)))

.
Given a nice tree decomposition of G of width w, we define a nice tree decomposition

((T,X), r,G) of G0 of width w + 1 such that the only empty bags are the root and the
leaves and for each t ∈ T , if Xt 6= ∅ then v0 ∈ Xt. Note that this can be done in linear
time. For each bag t, each integers i, j, and `, each function s : Xt → {0, 1}, each function
s0 : {v0} × s−1(1) → {0, 1}, and each function r : E(Gt

〈
s−1(1), s−1

0 (1)
〉
) → {0, 1}, if

C4 6�tm Gt
〈
s−1(1), s−1

0 (1)
〉
, we define:

Et(p, s, s0, r, i, j, `) = {(Z, Z0) | (Z, Z0) ∈ 2Vt × 2E0∩E(Gt)

|Z| = i, |E(Gt〈Z, Z0〉)| = j, c3(Gt〈Z, Z0〉) = `,

Gt〈Z, Z0〉 does not contain the diamond as a subgraph,
Z ∩Xt = s−1(1), Z0 ∩ (Xt ×Xt) = s−1

0 (1), v0 ∈ Xt ⇒ s(v0) = 1,

∀u ∈ Z \Xt : either t is the root or
∃u′ ∈ s−1(1) : u and u′ are connected in Gt〈Z, Z0〉,

∀v1, v2 ∈ s−1(1) : p v Vt[{v1, v2}]⇔ v1 and v2 are
connected in Gt〈Z, Z0〉,

∀e ∈ E(Gt〈Z, Z0〉) ∩
(

s−1(1)
2

)
: r(e) = 1⇔ e is an

edge of a C3 in Gt〈Z, Z0〉}
At(s, s0, r, i, j, `) = {p | p ∈ Π(s−1(1)), Et(p, s, s0, r, i, j, `) 6= ∅}.

Otherwise, i.e., if C4 �tm Gt
〈
s−1(1), s−1

0 (1)
〉
, we define At(s, s0, r, i, j, `) = ∅.

Note that we do not need to keep track of partial solutions if C4 �tm Gt
〈
s−1(1), s−1

0 (1)
〉
, as

we already know they will not lead to a global solution. Moreover, if C4 6�tm Gt

〈
s−1(1), s−1

0 (1)
〉
,

then by Lemma 15 it follows that m(Gt
〈
s−1(1), s−1

0 (1)
〉
) ≤ 3

2 (n(Gt
〈
s−1(1), s−1

0 (1)
〉
)− 1).

Using the definition of Ar, Lemma 14, and Lemma 15 we have that tm{C4}(G) ≤ k if and
only if for some i ≥ |V (G)∪{v0}|−k and some j ≤ 2

3 (i−1), we haveAr(∅,∅,∅, i, j, 1+j−i) 6=
∅. For each t ∈ V (T), we assume that we have already computed At′ for each children t′ of t,
and in the full version we show how to compute At, distinguishing several cases depending on
the type of node t. The proof of the following theorem can also be found in the full version.

I Theorem 19 (?). {C4}-TM-Deletion can be solved in time 2O(tw) · n7.

5 Superexponential lower bound for specific cases

In this section, we focus on the graph classes P = {Pi | i ≥ 6} and K, and we show the
following theorem. Let us recall that K is the set containing every connected graph G such
that for each leaf B ∈ L(bct(G)) and r ∈ N, B 6�tm K2,r (or B 6�m K2,r, which is equivalent).

I Theorem 20. Let F be a proper collection such that F ⊆ P or F ⊆ K. Unless the ETH
fails, neither F-TM-Deletion nor F-M-Deletion can be solved in time 2o(tw log tw) ·nO(1).

In particular, this theorem implies the result of Pilipczuk [19] as a corollary. Indeed,
Vertex Planarization corresponds to F-Deletion where F = {K5,K3,3}, and note that
{K5,K3,3} ⊆ K. Note also that Theorem 20 also implies the results stated in items 4 and 5
of the introduction, as all these graphs are easily seen to belong in K.

IPEC 2017

4:10 Optimal Algorithms for Hitting Minors on Graphs of Bounded Treewidth

I Corollary 21. Unless the ETH fails, for each F ∈ {{Ci} | i ≥ 5} ∪ {{Ki} | i ≥ 4}, neither
F-TM-Deletion nor F-M-Deletion can be solved in time 2o(tw log tw) · nO(1).

In the following we prove Theorem 20 for F-TM-Deletion , and we explain in the
full version how to modify the proof to obtain the result for F-M-Deletion. To prove
Theorem 20, we reduce from k × k Permutation Clique (k × k P. Clique for short),
defined by Lokshtanov et al. [17]. In this problem, we are given an integer k and a graph G
with vertex set [1, k]× [1, k]. The question is whether there is a k-clique in G with exactly
one element from each row and exactly one element from each column. Lokshtanov et al. [17]
proved that k × k P. Clique cannot be solved in time 2o(k log k) unless the ETH fails.

We now present the common part of the construction for both P and K. Let F be a
proper collection such that F ⊆ P or F ⊆ K. Note that if F ⊆ P, then |F| = 1. Let us fix
(H,B) to be an essential pair of F . We first define some gadgets that generalize the K5-edge
gadget and the s-choice gadget introduced in [19]. Given a graph G and two vertices x and y
of G, by introducing an H-edge gadget between x and y we mean that we add a copy of H
where we identify the first vertex of (H,B) with y and the second vertex of (H,B) with x.
Using the fact that an H-edge gadget between two vertices x and y is a copy of H and that
{x, y} is a cut set, we have that the H-edge gadgets clearly satisfy the following.

I Proposition 22. If F-TM-Deletion has a solution on (G, k) then this solution intersects
every H-edge gadget, and there exists a solution S such that for each H-edge gadget A
between two vertices x and y, V (A) ∩ S ⊆ {x, y} and {x, y} ∩ S 6= ∅.

In the following, we will always assume that the solution that we take into consideration
is a solution satisfying the properties given by Proposition 22. Moreover, we will restrict the
solution to contain only vertices of H-edge gadgets by setting an appropriate budget to the
number of vertices we can remove from the input graph G.

Given a graph G and two vertices x and y of G, by introducing a B-edge gadget between
x and y we mean that we add a copy of B where we identify the first vertex of (H,B) with
y and the second vertex of (H,B) with x. Given a graph G and three vertices x, y, and z
of G, by introducing a double H-edge gadget between x and z through y we mean that we
introduce an H-edge gadget between z and y, and a B-edge gadget between x and y.

Given a set of s vertices {xi | i ∈ [1, s]}, by introducing an H-choice gadget connecting
{xi | i ∈ [1, s]}, we mean that we add 2s + 2 vertices zi, i ∈ [0, 2s+ 1], for each i ∈ [0, 2s],
we introduce an H-edge gadget between zi and zi+1, and for each i ∈ [1, s], we introduce
a B-edge gadget between xi and z2i−1 and another one between xi and z2i. We see the
H-choice gadget as a graph induced by {xi | i ∈ [1, s]}∪{zi | i ∈ [0, 2s]}, the B-edge gadgets,
and the H-edge gadgets. The following proposition is similar to [19, Lemma 5].

I Proposition 23 (?). For every H-choice gadget C connecting {xi | i ∈ [1, s]}, any solution
S of F-TM-Deletion satisfies |S ∩V (C)| ≥ 2s, for every i ∈ [1, s] there exists a solution S
such that xi 6∈ S, and for every solution S with |S ∩ V (C)| = 2s, ∃i ∈ [1, s] such that xi 6∈ S.

We now start the description of the general construction. Given an instance (G, k) of
k × k P. Clique, we construct an instance (G′, `) of F-TM-Deletion, which we call the
general H-construction of (G, k). We first introduce k2 + 2k vertices, namely {ci | i ∈ [1, k]},
{ri | i ∈ [1, k]}, and {ti,j | i, j ∈ [1, k]}. For each i, j ∈ [1, k], we add the edges {rj , ti,j} and
{ti,j , ci}. For each j ∈ [1, k], we introduce an H-choice gadget connecting {ti,j | i ∈ [1, k]}.
This part of the construction is illustrated in the full version.

We now describe how we encode the edges of G in G′. For each e ∈ E(G), we define
the integers p(e), γ(e), q(e), and δ(e) in [1, k], such that e = {(p(e), γ(e)), (q(e), δ(e))} with

J. Baste, I. Sau and D.M.Thilikos 4:11

p(e) ≤ q(e). Note that the edges e with p(e) = q(e) are not relevant to our construction
and hence we safely forget them. For each e ∈ E(G), we add to G′ three new vertices, d`e,
dme , and dre, and four edges {d`e, cp(e)}, {d`e, rγ(e)}, {dre, cq(e)}, and {dre, rδ(e)}. We introduce a
double H-edge gadget between d`e and dre through dme . The encoding of an edge e ∈ E(G) is
also illustrated in the full version. For each 1 ≤ p < q ≤ k, we define E(p, q) = {e ∈ E(G) |
(p(e), q(e)) = (p, q)} and we introduce an H-choice gadget connecting {d`e | e ∈ E(p, q)}.

For each e ∈ E(G), we increase the size of the requested solution in G′ by one, the initial
budget being the sum of the budget given by Proposition 23 over all the H-choice gadgets
introduced in the construction. Because of the double H-edge gadget, we need to take in
the solution either dme or both d`e and dre. The extra budget given for each edge permits to
include dme in the solution. If the H-choice gadget connected to d`e already chooses d`e to be
in the solution, then we can use the extra budget given for the edge e to choose dre instead of
dme . In the case dme is chosen, in the resulting graph cp(e) remains connected to rγ(e) and
cq(e) remains connected to rδ(e). In the following, we consider only a solution S such that
either {d`e, dme , dre} ∩ S = {d`e, dre} or {d`e, dme , dre} ∩ S = {dme } for each e ∈ E(G).

We set ` = 3|E(G)|+ 2k2. By construction, this budget is tight and permits to take only
a minimum-size solution in every H-choice gadget and one endpoint of each H-edge gadget
between dre and dme , e ∈ E(G). This concludes the general H-construction (G′, `) of (G, k).

Let us now discuss about the treewidth of G′. By deleting 2k vertices, namely the vertices
{ci | i ∈ [1, k]} and the vertices {rj | j ∈ [1, k]}, we obtain a graph where each connected
component is an H-choice gadget, with eventually some pendant H-edge gadgets or double
H-edge gadgets. As the treewidth of the H-choice gadget, the H-edge gadget, and the double
H-choice gadget is linear in |V (H)|, we obtain that tw(G) = Od(k) (recall that d = size(F)).

We explain in the full version that, given a permutation σ : [1, k] → [1, k] defining a
solution of k × k P. Clique on (G, k), we can define a so-called σ-general H-solution S

having nice properties. Conversely, given a set S ⊆ V (G′) of size at most 3|E(G)| + 2k2

satisfying the so-called permutation property, we can define (cf. the full version) a unique
permutation σ that defines a k-clique in G; we call σ the associated permutation of S.

To conclude the reduction, we deal separately with the cases F ⊆ P and F ⊆ K. For
each such F , we assume w.l.o.g. that F is a topological minor antichain, we fix (H,B) to be
an essential pair of F , and given an instance (G, k) of k × k P. Clique, we start from the
general H-construction (G′, `) and add some edges and vertices in order to build an instance
(G′′, `) of F-TM-Deletion. We show that if k × k P. Clique on (G, k) has a solution
σ, then the σ-general H-solution is a solution of F-TM-Deletion on (G′′, `). Conversely,
we show that if F-TM-Deletion on (G′′, `) has a solution S, then this solution satisfies
the permutation property. This allows to prove that the associated permutation σ of S is a
solution of k × k P. Clique on (G, k). The details can be found in the full version.

References

1 Julien Baste, Marc Noy, and Ignasi Sau. On the number of labeled graphs of bounded
treewidth. CoRR, abs/1604.07273, 2016. To appear in Proc. of WG 2017.

2 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth.
Information and Computation, 243:86–111, 2015.

3 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M. Thilikos. (meta) kernelization. Journal of the ACM, 63(5):44:1–44:69,
2016.

IPEC 2017

4:12 Optimal Algorithms for Hitting Minors on Graphs of Bounded Treewidth

4 Édouard Bonnet, Nick Brettell, O-joung Kwon, and Dániel Marx. Generalized feedback ver-
tex set problems on bounded-treewidth graphs: chordality is the key to single-exponential
parameterized algorithms. CoRR, abs/1704.06757, 2017.

5 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

6 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van
Rooij, and Jakub Onufry Wojtaszczyk. Solving Connectivity Problems Parameterized by
Treewidth in Single Exponential Time. In Proc. of the 52nd Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 150–159, 2011.

7 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-
Deletion: Approximation, Kernelization and Optimal FPT Algorithms. In Proc. of the
53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 470–
479, 2012.

8 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient compu-
tation of representative families with applications in parameterized and exact algorithms.
Journal of the ACM, 63(4):29:1–29:60, 2016.

9 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimen-
sionality and kernels. In Proc. of the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 503–510, 2010. Full version available at CoRR, abs/1606.05689,
2016.

10 Valentin Garnero, Christophe Paul, Ignasi Sau, and Dimitrios M. Thilikos. Explicit linear
kernels via dynamic programming. SIAM Journal on Discrete Mathematics, 29(4):1864–
1894, 2015.

11 John E. Hopcroft and Robert Endre Tarjan. Efficient algorithms for graph manipulation.
Communations of ACM, 16(6):372–378, 1973.

12 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

13 Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planarization
algorithm. In Proc. of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1802–1811, 2014.

14 Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi
Sau, and Somnath Sikdar. Linear kernels and single-exponential algorithms via protrusion
decompositions. ACM Transactions on Algorithms, 12(2):21:1–21:41, 2016.

15 J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary properties is
NP-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980.

16 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the expo-
nential time hypothesis. Bulletin of the EATCS, 105:41–72, 2011.

17 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential parameter-
ized problems. In Proc. of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 760–776, 2011.

18 Doowon Paik, Sudhakar M. Reddy, and Sartaj Sahni. Deleting vertices to bound path
length. IEEE Trans. Computers, 43(9):1091–1096, 1994. doi:10.1109/12.312117.

19 Marcin Pilipczuk. A tight lower bound for Vertex Planarization on graphs of bounded
treewidth. Discrete Applied Mathematics, 231:211–216, 2017.

20 Neil Robertson and Paul D. Seymour. Graph minors. X. Obstructions to tree decomposition.
Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991.

http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://dx.doi.org/10.1109/12.312117

Contraction-Bidimensionality of Geometric
Intersection Graphs∗

Julien Baste1 and Dimitrios M. Thilikos2

1 Université de Montpellier, LIRMM, Montpellier, France
baste@lirmm.fr

2 AlGCo project team, CNRS, LIRMM, Montpellier, France and Department of
Mathematics, National and Kapodistrian University of Athens, Greece
sedthilk@thilikos.info

Abstract
Given a graph G, we define bcg(G) as the minimum k for which G can be contracted to the
uniformly triangulated grid Γk. A graph class G has the SQGC property if every graph G ∈ G
has treewidth O(bcg(G)c) for some 1 ≤ c < 2. The SQGC property is important for algo-
rithm design as it defines the applicability horizon of a series of meta-algorithmic results, in the
framework of bidimensionality theory, related to fast parameterized algorithms, kernelization,
and approximation schemes. These results apply to a wide family of problems, namely problems
that are contraction-bidimensional. Our main combinatorial result reveals a general family of
graph classes that satisfy the SQGC property and includes bounded-degree string graphs. This
considerably extends the applicability of bidimensionality theory for several intersection graph
classes of 2-dimensional geometrical objects.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases Grid exlusion theorem, Bidimensionality, Geometric intersection graphs,
String Graphs

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.5

1 Introduction

Treewidth is one of most well-studied parameters in graph algorithms. It serves as a measure
of how close a graph is to the topological structure of a tree (see Section 2 for the formal
definition). Gavril is the first to introduce the concept in [28] but it obtained its name in the
second paper of the Graph Minors series of Robertson and Seymour in [36]. Treewidth has
extensively used in graph algorithm design due to the fact that a wide class of intractable
problems in graphs becomes tractable when restricted on graphs of bounded treewidth [1, 4, 5].
Before we present some key combinatorial properties of treewidth, we need some definitions.

1.1 Graph contractions and minors
Our first aim is the define some parameterized versions of the contraction relation on graphs.
Given a non-negative integer c, two graphs H and G, and a surjection σ : V (G)→ V (H) we
write H ≤cσ G if

∗ This work has been supported by project DEMOGRAPH (ANR-16-CE40-0028).

© Julien Baste and Dimitrios M. Thilikos;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 5; pp. 5:1–5:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 Contraction-Bidimensionality of Geometric Intersection Graphs

for every x ∈ V (H), the graph G[σ−1(x)] is a non-empty graph (i.e., a graph with at
least one vertex) of diameter at most c and
for every x, y ∈ V (H), {x, y} ∈ E(H) ⇐⇒ G[σ−1(x) ∪ σ−1(y)] is connected.

We say that H is a c-diameter contraction of G if there exists a surjection σ : V (G)→ V (H)
such that H ≤cσ G and we write this H ≤c G. Moreover, if σ is such that for every x ∈ V (G),
|σ−1(x)| ≤ c′ + 1, then we say that H is a c′-size contraction of G, and we write H ≤(c′) G.

1.2 Combinatorics of treewdith
One of the most celebrated structural results on treewidth is the following:

I Proposition 1. There is a function f : N→ N such that every graph excluding a (k×k)-grid
as a minor has treewidth at most f(k).

A proof of Proposition 1 appeared for the first time by Robertson and Seymour in [37].
Other proofs, with better bounds to the function f , appeared in [38] and later in [17] (see
also [31, 33]). Currently, the best bound for f is due to Chuzhoy, who proved in [3] that
f(k) = k19 · logO(1) k. On the other hand, it is possible to show that Proposition 1 is not
correct when f(k) = O(k2 · log k) (see [41]).

The potential of Proposition 1 on graph algorithms has been capitalized by the theory
of bidimensionality that was introduced in [9] and has been further developed in [12, 13, 8,
15, 22, 25, 30, 21, 16, 27, 23]. This theory offered general techniques for designing efficient
fixed-parameter algorithms and approximation schemes for NP-hard graph problems in broad
classes of graphs (see [10, 14, 20, 7, 11]). In order to present the result of this paper we first
give a brief presentation of this theory and of its applicability.

1.3 Optimization parameters and bidimensionality
A graph parameter is a function p mapping graphs to non-negative integers. We say that p is a
minimization graph parameter if p(G) = min{k | ∃S ⊆ V (G) : |S| ≤ k and φ(G,S) = true},
where φ is a some predicate on G and S. Similarly, we say that p is a maximization
graph parameter if in the above definition we replace min by max and ≤ by ≥ respectivelly.
Minimization or maximization parameters are briefly called optimization parameters.

Given two graphs G and H, if there exists an integer c such that H ≤c G, then we say
that H is a contraction of G, and we write H ≤ G. Moreover, if there exists a subgraph G′
of G such that H ≤ G′, we say that H is a minor of G and we write this H � G. A graph
parameter p is minor-closed (resp. contraction-closed) when H � G⇒ p(H) ≤ p(G) (resp.
H ≤ G⇒ p(H) ≤ p(G)). We can now give the two following definitions:

p is minor-bidimensional if
p is minor-closed, and
∃k0 ∈ N : ∀k ≥ k0,

p(�k)
k2 ≥ δ

p is contraction-bidimensional if
p is contraction-closed, and
∃k0 ∈ N : ∀k ≥ k0,

p(Γk)
k2 ≥ δ

for some δ > 0. In the above definitions, we use �k for the (k×k)-grid and Γk for the uniformly
triangulated (k × k)-grid (see Figure 1). If p is a minimization (resp. maximization) graph
parameter, we denote by Πp the problem that, given a graph G and a non-negative integer
k, asks whether p(G) ≤ k (resp. p(G) ≥ k). We say that a problem is minor/contraction-
bidimensional if it is Πp for some bidimensional optimization parameter p.

A (non exhaustive) list of minor-bidimensional problems is: Vertex Cover, Feedback
Vertex Set, Longest Cycle, Longest Path, Cycle Packing, Path Packing, Dia-
mond Hitting Set, Minimum Maximal Matching, Face Cover, and Max Bounded

J. Baste and D.M. Thilikos 5:3

Figure 1 The graph Γ9.

Degree Connected Subgraph. Some problems that are contraction-bidimensional (but
not minor-bidimensional) are Connected Vertex Cover, Dominating Set, Connected
Dominating Set, Connected Feedback Vertex Set, Induced Matching, Induced
Cycle Packing, Cycle Domination, Connected Cycle Domination, d-Scattered
Set, Induced Path Packing, r-Center, connected r-Center, Connected Diamond
Hitting Set, Unweighted TSP Tour.

1.4 Subquadratic grid minor/contraction property

In order to present the meta-algorithmic potential of bidimensionality theory we need to
define some property on graph classes that defines the horizon of its applicability. Let G be
a graph class. We say that G has the subquadratic grid minor property (SQGM property for
short) if there exist a constant 1 ≤ c < 2 such that every graph G ∈ G which excludes �t as
a minor, for some integer t, has treewidth O(tc). In other words, this property holds for G if
Proposition 1 can be proven for a sub-quadratic f on the graphs of G.

Similarly, we say that G has the subquadratic grid contraction property (SQGC property
for short) if there exist a constant 1 ≤ c < 2 such that every graph G ∈ G which excludes
Γt as a contraction, for some integer t, has treewidth O(tc). For brevity we say that
G ∈ SQGM(c) (resp. G ∈ SQGC(c)) if G has the SQGM (resp SQGC) property for c. Notice
that SQGC(c) ⊆ SQGM(c) for every 1 ≤ c < 2.

1.5 Algorithmic implications

The meta-algorithmic consequences of bidimensionality theory are summarised as follows.
Let G ∈ SQGM(c), for 1 ≤ c < 2, and let p be a minor-bidimensional-optimization parameter.
[A] As it was observed in [9], the problem Πp can be solved in 2o(k) · nO(1) steps on G, given

that the computation of p can be done in 2tw(G) ·nO(1) steps (here tw(G) is the treewidth
of the input graph G). This last condition can be implied by a purely meta-algorithmic
condition that is based on some variant of Modal Logic [35]. There is a wealth of results
that yield the last condition for various optimization problems either in classes satisfying
the SQGM propety [40, 19, 18, 18, 39] or to general graphs [6, 2, 24].

[B] As it was shown in [25] (see also [26]), when the predicate φ can be expressed in Counting
Monadic Second Order Logic (CMSOL) and p satisfies some additional combinatorial
property called separability, then the problem Πp admits a linear kernel, that is a
polynomial-time algorithm that transforms (G, k) to an equivalent instance (G′, k′) of
Πp where G′ has size O(k) and k′ ≤ k.

IPEC 2017

5:4 Contraction-Bidimensionality of Geometric Intersection Graphs

SQGM

Algorithmic applications

Subexponential FPT

Kernelization

EPTAS

[A]

[B]

[C]

Minor bidimensional Contraction bidimensional

SQGC
Condition on the class G of the instances of Π

Condition on problem Π

Figure 2 The applicability of bidimensionality theory.

[C] It was proved in [22], that the problem of computing p(G) for G ∈ G admits a Efficient
Polynomial Approximation Scheme (EPTAS) — that is an ε-approximation algorithm
running in f(1

ε) · nO(1) steps — given that G is hereditary and p satisfies the separability
property and some reducibility property (related to CMSOL expresibility).

All above results have their counterparts for contraction-bidimensional problems with
the difference that one should instead demand that G ∈ SQGC(c). Clearly, the applicability
of all above results is delimited by the SQGM/SQGC property. This is schematically
depicted in Figure 2, where the green-triangles triangles indicate the applicability of minor-
bidimensionality and the red triangle indicate the applicability of contraction-bidimensionality.
The aforementioned Ω(k2 · log k) lower bound to the function f of Proposition 1, indicates
that SQGM(c) does not contain all graphs (given that c < 2). The emerging direction of
research is to detect the most general classes in SQGM(c) and SQGC(c). We denote by GH the
class of graphs that exclude H as a minor. Concerning the SQGM property, the following
result was proven in [14].

I Proposition 2. For every graph H, GH ∈ SQGM(1).

A graph H is an apex graph if it contains a vertex whose removal from H results to a
planar graph. For for the SQGC property, the following counterpart of Proposition 2 was
proven in [21].

I Proposition 3. For every apex graph H, GH ∈ SQGC(1).

Notice that both above results concern graph classes that are defined by excluding some
graph as a minor. For such graphs, Proposition 3 is indeed optimal. To see this, consider
Kh-minor free graphs where h ≥ 6 (these graphs are not apex graphs). Such classes do not
satisfy the SQGC property: take Γk, add a new vertex, and make it adjacent, with all its
vertices. The resulting graph excludes Γk as a contraction and has treewidth > k.

1.6 String graphs
An important step extending the applicability of bidimensionality theory further than H-
minor free graphs, was done in [23]. Unit disk graphs are intersections graphs of unit disks
in the plane and map graphs are intersection graphs of face boundaries of planar graph
embeddings. We denote by Ud the set of unit disk graphs (resp. of Md map graphs) of
maximum degree d. The following was proved in [23].

I Proposition 4. For every positive integer d, Ud ∈ SQGM(1) andMd ∈ SQGM(1).

J. Baste and D.M. Thilikos 5:5

Proposition 4 was further extended for intersection graphs of more general geometric objects
(in 2 dimensions) in [30]. To explain the results of [30] we need to define a more general
model of intersection graphs.

Let L = {L1, . . . , Lk} be a collection of lines in the plane. We say that L is normal if
there is no point belonging to more than two lines. The intersection graph GL of L, is the
graph whose vertex set is L and where, for each i, j where 1 ≤ i < j ≤ k, the edge {Li, Lj}
has multiplicity |L1 ∩ L2|. We denote by Sd the set containing every graph GL where L is a
normal collection of lines in the plane and where each vertex of GL has edge-degree at most
d. i.e., is incident to at most d edges. We call Sd string graphs with edge-degree bounded by d.
It is easy to observe that Ud ∪Md ⊆ Sf(d) for some quadratic function f . Moreover, apart
from the classes considered in [23], Sd includes a much wider variety of classes of intersection
graphs [30]. As an example, consider Cd,α as the class of all graphs that are intersection
graphs of α-convex 2-dimensional bodies1 in the plane and have degree at most d. In [30], it
was proven that Cd,α ⊆ Sc where c depends (polynomially) on d and α (see [34] for other
examples of classes included in Sd).

Given a class of graph G and two integers c1 and c2, we define G(c1,c2) as the set
containing every graph H such that there exist a graph G ∈ G and a graph J that satisfy
G ≤(c1) J and H ≤c2 J . Keep in mind that G(c1,c2) and G(c2,c1) are different graph classes.
We also denote by P the class of all planar graphs. Using this notation, the two combinatorial
results in [30] can be rewritten as follows:

I Proposition 5. Let c1 and c2 be two positive integers. If G ∈ SQGC(c) for some 1 ≤ c < 2,
then G(c1,c2) ∈ SQGM(c).

I Proposition 6. For every d ∈ N, Sd ⊆ P(1,d).

Proposition 2, combined with Proposition 5, provided the wider, so far, framework on the
applicability of minor-bidimensionality: SQGM(1) contains G(c1,c2)

H for every apex graph H
and positive integers c1, c2. As P ∈ SQGC(1) (by, e.g., Proposition 3), Propositions 5 and 6
directly classifies in SQGM(1) the graph class Sd, and therefore a large family of bounded
degree intersection graphs (including Ud andMd). As a result of this, the applicability of
bidimensionality theory for minor-bidimensional problems has been extended to much wider
families (not necessarily minor-closed) of graph classes of geometric nature.

1.7 Our contribution

Notice that Proposition 5 exhibits some apparent “lack of symmetry” as the assumption
is “qualitatively stronger” than the conclusion. This does not permit the application of
bidimensionality for contraction-bidimensional parameters on classes further than those of
apex-minor free graphs. In other words, the results in [30] covered, for the case of Sd, the
green triangles in Figure 2 but left the red triangles open. The main result of this paper is
to fill this gap by proving the following extension of Proposition 5:

I Theorem 7. Let c1 and c2 be two positive integers. If G ∈ SQGC(c) for some 1 ≤ c < 2,
then G(c1,c2) ∈ SQGC(c).

1 We call a set of points in the plane a 2-dimensional body if it is homeomorphic to the closed disk
{(x, y) | x2 + y2 ≤ 1}. A 2-dimensional body B is a α-convex if every two points can be the extremes of
a line L consisting of α straight lines and where L ⊆ B.

IPEC 2017

5:6 Contraction-Bidimensionality of Geometric Intersection Graphs

a

Figure 3 The uniformly triangulated grid Γ̂9.

Combining Proposition 3 and Theorem 7 we extend the applicability horizon of contraction-
bidimensionality further than apex-minor free graphs: SQGC(1) contains G(c1,c2)

H for every
apex graph H and positive integers c1, c2. As a special case of this, we have that Sd ∈ SQGC(1).
Therefore, on Sd, the results described in Subsection 1.5 apply for contraction-bidimensional
problems as well (such as those enumerated in the end of Subsection 1.3).

This paper is organized as follows. In Section 2, we give the necessary definitions and
some preliminary results. Section 3 is dedicated to the proof of Theorem 7. We should stress
that this proof is quite different than the one of Proposition 5 in [30]. Finally, Section 4
contains some discussion and open problems.

2 Definitions and preliminaries

All graphs in this paper are undirected, loop-less, and may have multiple edges. If a graph
has no multiple edges, we call it simple. Given a graph G, we denote by V (G) its vertex
set and by E(G) its edge set. Let x be a vertex or an edge of a graph G and likewise for y;
their distance in G, denoted by distG(x, y), is the smallest number of vertices of a path in
G that contains them both. Moreover if G is a graph and x ∈ V (G), we denote by N c

G(x)
the set {y | y ∈ V (G), distG(x, y) ≤ c+ 1}. For any set of vertices S ⊆ V (G), we denote by
G[S] the subgraph of G induced by the vertices from S. If G[S] is connected, then we say
that S is a connected vertex set of G. We define the diameter of a connected subset S as
the maximum pairwise distance between any two vertices of S. The edge-degree of a vertex
v ∈ V (G) is the number of edges that are incident to it (multi-edges contribute with their
multiplicity to this number).

For our proofs, we also need the graph Γ̂k that is the variant of Γk, depicted in Figure 3.
Notice that Γk and Γ̂k are both triangulated plane graphs, i.e., all their faces are triangles.
In Γ̂k, we refer to the vertex a (as in Figure 3) as the apex vertex of Γ̂k. (We avoid the formal
definitions of �k, Γk, Γ̂k in this extended abstract – see [21] for a more precise formalism.)
In each of these graphs we denote the vertices of the underlying grid by their coordinates
(i, j) ∈ [0, k − 1]2 agreeing that the upper-left corner is the vertex (0, 0).

2.1 Treewidth
A tree-decomposition of a graphG, is a pair (T,X), where T is a tree and X = {Xt : t ∈ V (T)}
is a family of subsets of V (G), called bags, such that the following three properties are satisfied:⋃

t∈V (T)Xt = V (G),
for every edge e ∈ E(G) there exists t ∈ V (T) such that e ⊆ Xt, and

J. Baste and D.M. Thilikos 5:7

∀v ∈ V (G), the set Tv = {t ∈ V (T) | v ∈ Xt} is a connected vertex set of T .

The width of a tree-decomposition is the cardinality of the maximum size bag minus 1
and the treewidth of a graph G is the minimum width over all the tree-decompositions of G.
We denote the treewidth of G by tw(G).

I Lemma 8. Let G be a graph and let H be a c-size contraction of G. Then tw(G) ≤
(c+ 1) · (tw(H) + 1)− 1.

3 Proof of Theorem 7

Let H and G be graphs and c be a non-negative integer. If H ≤cσ G, then we say that H is
a σ-contraction of G, and denote this by H ≤σ G.

Before we proceed the the proof of Theorem 7 we make first the following three observations.
(In all statements, we assume that G and H are two graphs and σ : V (G)→ V (H) such that
H is a σ-contraction of G.)

I Observation 9. Let S be a connected subset of V (H). Then the set
⋃
x∈S σ

−1(x) is
connected in G.

I Observation 10. Let S1 ⊆ S2 ⊆ V (H). Then σ−1(S1) ⊆ σ−1(S2) ⊆ V (G).

I Observation 11. Let S be a connected subset of V (G). Then the diameter of σ(S) in H
is at most the diameter of S in G.

Given a graph G and S1, S2 ⊆ V (G) we say that S1 and S2 touch if either S1 ∩ S2 6= ∅ or
there is an edge of G with one endpoint in S1 and the other in S2.

We say that a collection R of paths of a graph is internally disjoint if none of the internal
vertices, i.e., none of the vertex of degree 2, of some path in R is a vertex of some other path
in R. Let A be a collection of subsets of V (G). We say that A is a connected packing of G if
its elements are connected and pairwise disjoint. If additionally A is a partition of V (G),
then we say that A is a connected partition of G and if, additionally, all its elements have
diameter bounded by some integer c, then we say that A is a c-diameter partition of G.

3.1 Λ-state configurations
Let G be a graph. Let Λ = (W, E) be a graph whose vertex set is a connected packing of G,
i.e., its vertices are connected subsets of V (G). A Λ-state configuration of a graph G is a
quadruple S = (X , α,R, β) where
1. X is a connected packing of G,
2. α is a bijection from W to X such that for every W ∈ W, W ⊆ α(W),
3. R is a collection of internally disjoint paths of G, and
4. β is a bijection from E to R such that if {W1,W2} ∈ E then the endpoints of β({W1,W1})

are in W1 and W2 and V (β({W1,W2})) ⊆ α(W1) ∪ α(W2).
A Λ-state configuration S = (X , α,R, β) of G is complete if X is a partition of V (G). We
refer to the elements of X as the states of S and to the elements of R as the freeways of S.
We define indep(S) = V (G) \

⋃
X∈X X. Note that if S is a Λ-state configuration of G, S is

complete if and only if indep(S) = ∅.
Let A be a c-diameter partition of G. We refer to the sets of A as the A-clouds of G. We

define frontA(S) as the set of all A-clouds of G that are not subsets of some X ∈ X . Given a
A-cloud C and a state X of S we say that C shadows X if C ∩X 6= ∅. The coverage covS(C)
of an A-cloud C of G is the number of states of S that are shadowed by C. A Λ-state
configuration S = (X , α,R, β) of G is A-normal if its satisfies the following conditions:

IPEC 2017

5:8 Contraction-Bidimensionality of Geometric Intersection Graphs

Figure 4 A visualization of the proof of Lemma 12. In this whole graph Γk, we initialize our
reaserch of Γ̂k′ such that every internal red hexagon will become a vertex of Γ̂k′ and correspond
to a state and the border, also circle by a red line will become the vertex bout. The blue edges
correspond to the freeways. Red cycles correspond to the boundaries of the starting countries. Blue
paths between big-black vertices are the freeways. Big-black vertices are the capitals.

(A) If a A-cloud C intersects some W ∈ W, then C ⊆ α(W).
(B) If a A-cloud over S intersects the vertex set of at least two freeways of S, then it shadows

at most one state of S.
We define costA(S) =

∑
C∈frontA(S) covS(C). Given S1 ⊆ S2 ⊆ V (G) where S1 is connected,

we define ccG(S2, S1) as the (unique) connected component of G[S2] that contains S1.

3.2 Triangulated grids inside triangulated grids
I Lemma 12. Let G and H be graphs and c, k be non-negative integers such that H ≤c G
and Γk ≤ G. Then Γk′ ≤ H where k′ = b k−1

2c+1c − 1.

Proof. Let k∗ = 1 + (2c+ 1) · (k′ + 1) and observe that k∗ ≤ k, therefore Γk∗ ≤ Γk ≤ G. For
simplicity we use Γ = Γk∗ . Let φ : V (G)→ V (H) such thatH ≤cφ G and let σ : V (G)→ V (Γ)
such that Γ ≤σ G. We define A = {φ−1(a) | a ∈ V (H)}. Notice that A is a c-diameter
partition of G.

For each (i, j) ∈ J0, k′ + 1K2
, we define bi,j to be the vertex of Γ with coordinate

(i(2c + 1), j(2c + 1)). We set Qin = {bi,j | (i, j) ∈ J1, k′K2} and Qout = {bi,j | (i, j) ∈
J0, k′ + 1K2} \Qin. Let also Q = Qin ∪{bout} were bout is a new element that does not belong
in Qin. Here bout can be seen as a vertex that “represents” all vertices in Qout.

Let q, p be two different elements of Q. We say that q and p are linked if they both belong
in Qin and their distance in Γ is 2c + 1 or one of them is bout and the other is bi,j where
i ∈ {1, k′} or j ∈ {1, k′}.

For each q ∈ Qin, we define Wq = σ−1(q). Wq is connected by the definition of σ. In
case q = bout we define Wq =

⋃
q′∈Qout

σ−1(q′). Note that as Qout is a connected set of Γ,
then, by Observation 9, Wbout is connected in G. We also define W = {Wq | q ∈ Q}. Given

J. Baste and D.M. Thilikos 5:9

some q ∈ Q we call Wq the q-capital of G and a subset S of V (G) is a capital of G if it is
the q-capital for some q ∈ Q. Notice that W is a connected packing of V (G).

Let q ∈ Q. If q ∈ Qin then we set Nq = N c
Γ(q). If q = bout, then we set Nq =⋃

q′∈Qout
N c

Γ(q′). Note that for every q ∈ Q, Nq ⊆ V (Γ). For every q ∈ Q, we define
Xq = σ−1(Nq). Note that Xq ⊆ V (G). We also set X = {Xq | q ∈ Q}. Let q and p we two
linked elements of Q. If both q and p belong to Qin, and therefore are vertices of Γ, then we
define Zp,q as the unique shortest path between them in Γ. If p = bout and q ∈ Qin, then
we know that q = bi,j where i ∈ {1, k′} or j ∈ {1, k′}. In this case we define Zp,q as any
shortest path in Γ between bi,j and the vertices in Qout. In both cases, we define Pp,q by
picking some path between Wp and Wq in G[σ−1(V (Zp,q))] such that |V (Pp,q)∩Wq| = 1 and
|V (Pp,q) ∩Wp| = 1.

Let E = {{Wp,Wq} | p and q are linked} and let Λ = (W, E). Notice that Λ is isomorphic
to Γ̂k′ and consider the isomorphism that correspond each vertex q = bi,j , i, j ∈ J1, k′K2 to
the vertex with coordinates (i, j). Moreover bout corresponds to the apex vertex of Γ̂k′ .

Let α : W → X such that for every q ∈ Q, α(Wq) = Xq. Let also R = {Pp,q |
p, q ∈ Q, p and q are linked}. We define β : E → R such that if q and p are linked, then
β(Wq,Wp) = Pp,q. We use notation S = (X , α,R, β).

I Claim 13. S is an A-normal Λ-state configuration of G.

The proof of Claim 13 is omitted in this extended abstract.
We define bellow three ways to transform a Λ-state configuration of G. In each of them,

S = (X , α,R, β) is an A-normal Λ-state configuration of G and C is an A-cloud in frontA(S).

1. The expansion procedure applies when C intersects at least two freeways of S. Let X be
the state of S shadowed by C (this state is unique because of property (B) of A-normality).
We define (X ′, α′,R′, β′) = expand(S, C) such that
X ′ = X \ {X} ∪ {X ∪ C},
for each W ∈ W, α′(W) = X ′ where X ′ is the unique set of X ′ such that W ⊆ X ′,
R′ = R, and β′ = β.

2. The clash procedure applies when C intersects exactly one freeway P of S. Let X1, X2
be the two states of S that intersect this freeway. Notice that P = β(α−1(X1), α−1(X2)),
as it is the only freeway with vertices in X1 and X2. Assume that (C ∩ V (P)) ∩X1 6= ∅
(if, not, then swap the roles of X1 and X2). We define (X ′, α′,R′, β′) = clash(S, C) as
follows:
X ′ = {X1 ∪C} ∪

⋃
X∈X\{X1}{ccG(X \C,α−1(X))} (notice that α−1(X) ⊆ X \C, for

every X ∈ X , because of property (A) of A-normality),
for each W ∈ W, α′(W) = X ′ where X ′ is the unique set of X ′ such that W ⊆ X ′,
R′ = R \ {P} ∪ {P ′}, where P ′ = P1 ∪ P ∗ ∪ P2 is defined as follows: let si be the
first vertex of C that we meet while traversing P when starting from its endpoint that
belongs in Wi and let Pi the subpath of P that we traversed that way, for i ∈ {1, 2}.
We define P ∗ by taking any path between s1 and s2 inside G[C], and
β′ = β \ {({W1,W2}, P)} ∪ {{W1,W2}, P ′}.

3. The annex procedure applies when C intersects no freeway of S and touches some country
X ∈ X . We define (X ′, α′,R′, β′) = anex(S, C) such that
X ′ = {X1 ∪C} ∪

⋃
X∈X\{X1}{ccG(X \C,α−1(X))} (notice that α−1(X) ⊆ X \C, for

every X ∈ X , because of property (A) of A-normality),
for each W ∈ W, α′(W) = X ′ where X ′ is the unique set of X ′ such that W ⊆ X ′,
R′ = R, and β′ = β.

IPEC 2017

5:10 Contraction-Bidimensionality of Geometric Intersection Graphs

I Claim 14. Let S = (X , α,R, β) be an A-normal Λ-state configuration of G, and C ∈
frontA(S). Let S ′ = action(S, C) where action ∈ {expand, clash, anex}. Then S ′ is an A-
normal Λ-state configuration of G where cost(S ′,A) ≤ cost(S,A). Moreover, if covS(C) ≥ 1,
then cost(S ′,A) < cost(S,A) and if covS(C) = 0 (which may be the case only when action =
anex), then |indep(S ′)| < |indep(S)|.

The proof of Claim 14 is omitted in this extended abstract.
To continue with the proof of Lemma 12 we explain how to transform the A-normal

Λ-state configuration S of G to a complete one. This is done in two phases. First, as long
as there is an A-cloud C ∈ front(S) where covS(C) ≥ 1, we apply one of the above three
procedures depending on the number of freeways intersected by C. We again use S to denote
the A-normal Λ-state configuration of G that is created in the end of this first phase. Notice
that, as there is no A-cloud with covS(C) ≥ 1, then costA(S) = 0. The second phase is the
application of anex(S, C), as long as some C ∈ frontA(S) is touching some of the countries
of S. We claim that this procedure will be applied as long as there are vertices in indep(S).
Indeed, if this is the case, the set frontA(S) is non-empty and by the connectivity of G, there
is always a C ∈ frontA(S) that is touching some country of S. Therefore, as costA(S) = 0
(by Claim 14), procedure anex(S, C) will be applied again.

By Claim 14, |indep(S)| is strictly decreasing during the second phase. We again use S
for the final outcome of this second phase. We have that indep(S) = ∅ and we conclude that
S is a complete A-normal Λ-state configuration of G such that |frontA(S)| = 0.

We are now going to create a graph isomorphic to Λ only by doing contractions in G. For
this we use S, a complete A-normal Λ-state configuration of G such that |frontA(S)| = 0,
obtained as describe before. We contract in G every country of S into a unique vertex. This
can be done because the countries of S are connected. Let G′ be the resulting graph. By
construction of S, G′ is a contraction of H. Because of Condition 4 of Λ-state configuration,
every freeway of S becomes an edge in G′. This implies that there is a graph isomorphic to
Λ that is a subgraph of G′. So Γ̂k′ is isomorphic to a subgraph of G′ with the same number
of vertices. Let see Γ̂k′ as a subgraph of G′ and let e be an edge of G′ that is not an edge of
Γ̂k′ . As e is an edge of G′, this implies that in G, there is two states of S such that there is
no freeway between them but still an edge. This is not possible by construction of S. We
deduce that G′ is isomorphic to Γ̂k′ . Moreover, as |frontA(S)| = 0, then every cloud is a
subset of a country. This implies that G′ is also a contraction of H. By contracting in G′
the edge corresponding to {a, (k′ − 1, k′ − 1)} in Γ̂k′ , we obtain that Γk′ is a contraction of
H. Lemma 12 follows. J

Proof of Theorem 7. Given a graph G, we define bcg(G) as the minimum k for which G
can be contracted to the uniformly triangulated grid Γk. Let λ, c, c1, and c2 be integers. It
is enough to prove that there exists an integer λ′ = O(λ · c1 · (c2)c) such that for every graph
class G ∈ SQGC(c), the following holds:

∀G ∈ G tw(G) ≤ λ · (bcg(G))c ⇒ tw(G) ≤ λ′ · (bcg(G))c.

Let G ∈ SQGC(c) be a class of graph such that ∀G ∈ G tw(G) ≤ λ · (bcg(G))c. Let
H ∈ G(c1,c2) and let G and J be two graphs such that G ∈ G, G ≤(c1) J , and H ≤c2 J . G
and J exist by definition of G(c1,c2). By definition of H and J , tw(H) ≤ tw(J). By Lemma 8,
tw(J) ≤ (c1 + 1)(tw(G) + 1)− 1. By definition of G, tw(G) ≤ λ · bcg(G)c. By Lemma 12,
bcg(G) ≤ (2c2 + 1)(bcg(H) + 2) + 1. If we combine these four statements, we obtain that
tw(H) ≤ (c1 + 1)(λ · [(2c2 + 1)(bcg(H) + 2) + 1]c + 1)− 1. As this formula is independent of
the graph class, the Theorem 7 follows. J

J. Baste and D.M. Thilikos 5:11

4 Conclusions and open problems

The main combinatorial result of this paper is that, for every d, the class Sd of string graphs
with multi-degree at most d has the SQGC property for c = 1. This means that, for fixed
d, if a graph in Sd excludes as a contraction the uniformly triangulated grid Γk, then its
treewidth is bounded by a linear function of k. Recall that string graphs are intersection
graphs of lines in the plane. It is easy to extend our results for intersection graphs of lines
in some orientable (or non-orientable) surface of genus γ. Let Sd,γ be the corresponding
class. To prove that Sd,γ ∈ SQGC(1) we need first to extend Proposition 6 for Sd,γ (which is
not hard) and then use Theorem 7 and the fact that the class of graphs of bounded genus
belongs in SQGC(1) (see e.g., [16]).

Of course, the main general question is to detect wide graph classes with the SQGM/SQGC
property. In this direction, some insisting open issues are the following:
(1) Is the bound on the degree (or multi-degree) necessary? Are there classes of intersection
graphs with unbounded or “almost bounded” maximum degree that have the SQGM/SQGC
property?
(2) All so far known results classify graph classes in SQGM(1) or SQGC(1). Are there (interesting)
graph classes in SQGM(c) or SQGC(c) for some 1 < c < 2 that do not belong in SQGM(1) or
SQGC(1) respectively? An easy (but trivial) example of such a class is the class Qd of the
q-dimensional grids, i.e., the cartesian products of q ≥ 2 equal length paths. It is easy to see
that the maximum k for which an n-vertex graph G ∈ Qq contains a (k × k)-grid as a minor
is k = Θ(n 1

2). On the other size, it can also be proven that tw(G) = Θ(n
q−1

q). These two
facts together imply that Qq ∈ SQGM(2− 2

q) while Qq 6∈ SQGM(2− 2
q − ε) for every ε > 0.

(3) Usually the graph classes in SQGC(1) are characterised by some “flatness” property. For
instance, see the results in [29, 32] for H-minor free graphs, where H is an apex graph. Can
SQGC(1) be useful as an intuitive definition of the “flatness” concept? Does this have some
geometric interpretation?

References

1 Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable
graphs. Journal of Algorithms, 12:308–340, 1991.

2 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth.
Information and Computation, 243:86–111, 2015.

3 Julia Chuzhoy. Improved bounds for the excluded grid theorem. CoRR, abs/1602.02629,
2016.

4 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Information and Computation, 85(1):12–75, 1990.

5 Bruno Courcelle. The expression of graph properties and graph transformations in monadic
second-order logic. Handbook of Graph Grammars, pages 313–400, 1997.

6 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van
Rooij, and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by
treewidth in single exponential time. In Proceedings of the IEEE 52nd Annual Symposium
on Foundations of Computer Science (FOCS 2011), pages 150–159, 2011.

7 Erik D. Demaine. Algorithmic Graph Minors and Bidimensionality. In Proceedings of
the 36th International Conference on Graph-theoretic Concepts in Computer Science (WG
2010), pages 2–2, 2010.

IPEC 2017

5:12 Contraction-Bidimensionality of Geometric Intersection Graphs

8 Erik D. Demaine, Fedor V. Fomin, MohammadTaghi Hajiaghayi, and Dimitrios M. Thilikos.
Bidimensional parameters and local treewidth. SIAM Journal on Discrete Mathematics,
18(3):501–511, 2005.

9 Erik D. Demaine, Fedor V. Fomin, MohammadTaghi Hajiaghayi, and Dimitrios M. Thi-
likos. Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free
graphs. Journal of the ACM, 52(6):866–893, 2005.

10 Erik D. Demaine, Fedor V. Fomin, MohammadTaghi Hajiaghayi, and Dimitrios M. Thilikos.
Bidimensional structures: Algorithms, combinatorics and logic. Dagstuhl Reports, 3(3):51–
74, 2013.

11 Erik D. Demaine and MohammadTaghi Hajiaghayi. Fast algorithms for hard graph prob-
lems: Bidimensionality, minors, and local treewidth. In Proceedings of the 12th Interna-
tional Symposium on Graph Drawing (GD 2004), volume 3383 of LNCS, pages 517–533,
2004.

12 Erik D. Demaine and MohammadTaghi Hajiaghayi. Bidimensionality: New connections
between FPT algorithms and PTASs. In Proceedings of the 16th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2005), pages 590–601, 2005.

13 Erik D. Demaine and MohammadTaghi Hajiaghayi. The bidimensionality theory and its
algorithmic applications. The Computer Journal, 51(3):292–302, 2008.

14 Erik D. Demaine and MohammadTaghi Hajiaghayi. Linearity of grid minors in treewidth
with applications through bidimensionality. Combinatorica, 28(1):19–36, 2008.

15 Erik D. Demaine, MohammadTaghi Hajiaghayi, and Dimitrios M. Thilikos. The bidimen-
sional theory of bounded-genus graphs. SIAM Journal on Discrete Mathematics, 20(2):357–
371, 2006.

16 Erik D. Demaine, MohammadTaghi Hajiaghayi, and Dimitrios M. Thilikos. The bidimen-
sional theory of bounded-genus graphs. SIAM Journal on Discrete Mathematics, 20(2):357–
371, 2006.

17 Reinhard Diestel, Tommy R. Jensen, Konstantin Yu. Gorbunov, and Carsten Thomassen.
Highly connected sets and the excluded grid theorem. Journal of Combinatorial Theory.
Series B, 75(1):61–73, 1999.

18 Frederic Dorn, Fedor V. Fomin, and Dimitrios M. Thilikos. Fast subexponential algorithm
for non-local problems on graphs of bounded genus. In Proceedings of the 10th Scandinavian
Workshop on Algorithm Theory (SWAT 2006), volume 4059 of LNCS, pages 172–183, 2006.

19 Frederic Dorn, Fedor V. Fomin, and Dimitrios M. Thilikos. Catalan structures and dynamic
programming in H-minor-free graphs. In Proceedings of the 19th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 2008), pages 631–640, 2008.

20 Fedor V. Fomin, Erik D. Demaine, and MohammadTaghi Hajiaghayi. Bidimensionality. In
Encyclopedia of Algorithms. Springer, 2015.

21 Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. Contraction obstructions
for treewidth. Journal of Combinatorial Theory. Series B, 101(5):302–314, 2011.

22 Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. Bidimension-
ality and EPTAS. In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2011), pages 748–759, 2011.

23 Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Bidimensionality and geometric
graphs. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2012), pages 1563–1575, 2012.

24 Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Efficient computation of represen-
tative sets with applications in parameterized and exact algorithms. In Proceedings of the
25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2014), pages 142–151,
2014.

J. Baste and D.M. Thilikos 5:13

25 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidi-
mensionality and kernels. In Proceedings of the 21th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2010), pages 503–510, 2010.

26 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimen-
sionality and kernels. CoRR, abs/1606.05689, 2016.

27 Fedor V. Fomin and Dimitrios M. Thilikos Petr Golovach and. Contraction bidimensionality:
the accurate picture. In 17th Annual European Symposium on Algorithms, volume 5757 of
LNCS, pages 706–717. Springer, 2009.

28 Fanica Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.
Journal of Combinatorial Theory, Series B, 16(1):47–56, 1974.

29 Archontia C. Giannopoulou and Dimitrios M. Thilikos. Optimizing the graph minors weak
structure theorem. SIAM Journal on Discrete Mathematics, 27(3):1209–1227, 2013.

30 Alexander Grigoriev, Athanassios Koutsonas, and Dimitrios M. Thilikos. Bidimensionality
of Geometric Intersection Graphs. In Proceedings of the 40th International Conference on
Current Trends in Theory and Practice of Computer Science (SOFSEM 2014), volume 8327
of LNCS, pages 293–305, 2014.

31 Ken-ichi Kawarabayashi and Yusuke Kobayashi. Linear min-max relation between the
treewidth of H-minor-free graphs and its largest grid. In Proceedings of the 29th Interna-
tional Symposium on Theoretical Aspects of Computer Science (STACS 2012), volume 14
of LIPIcs, pages 278–289, 2012.

32 Ken-ichi Kawarabayashi, Robin Thomas, and Paul Wollan. New proof of the flat wall
theorem. Journal of Combinatorial Theory, Series B, 2017. To appear.

33 Alexander Leaf and Paul D. Seymour. Tree-width and planar minors. Journal of Combi-
natorial Theory. Series B, 111:38–53, 2015.

34 Jiří Matoušek. String graphs and separators. In Geometry, Structure and Randomness in
Combinatorics, pages 61–97. Springer, 2014.

35 Michal Pilipczuk. Problems parameterized by treewidth tractable in single exponential time:
A logical approach. In Proceedings of the 36th International Conference on Mathematical
Foundations of Computer Science (MFCS 2011), pages 520–531, 2011.

36 Neil Robertson and Paul D. Seymour. Graph Minors. II. Algorithmic aspects of tree-width.
Journal of Algorithms, 7:309–322, 1986.

37 Neil Robertson and Paul D. Seymour. Graph minors. V. Excluding a planar graph. Journal
of Combinatorial Theory. Series B, 41(1):92–114, 1986.

38 Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly excluding a planar graph.
Journal of Combinatorial Theory. Series B, 62(2):323–348, 1994.

39 Juanjo Rué, Ignasi Sau, and Dimitrios M. Thilikos. Dynamic programming for H-minor-
free graphs. In Proceedings of Computing and Combinatorics - 18th Annual International
Conference, (COCOON 2012), pages 86–97, 2012.

40 Juanjo Rué, Ignasi Sau, and Dimitrios M. Thilikos. Dynamic programming for graphs on
surfaces. ACM Transactions on Algorithms, 10(2):1–8, 2014.

41 Dimitrios M. Thilikos. Graph minors and parameterized algorithm design. In The Multi-
variate Algorithmic Revolution and Beyond - Essays Dedicated to Michael R. Fellows on
the Occasion of His 60th Birthday, pages 228–256, 2012.

IPEC 2017

Generalized Kakeya Sets for Polynomial
Evaluation and Faster Computation of
Fermionants∗

Andreas Björklund1, Petteri Kaski2, and Ryan Williams3

1 Department of Computer Science, Lund University, Lund, Sweden
2 Department of Computer Science, Aalto University, Helsinki, Finland
3 Department of Electrical Engineering and Computer Science & CSAIL, MIT,

Cambridge, USA

Abstract
We present two new data structures for computing values of an n-variate polynomial P of degree
at most d over a finite field of q elements. Assuming that d divides q− 1, our first data structure
relies on (d+ 1)n+2 tabulated values of P to produce the value of P at any of the qn points using
O(nqd2) arithmetic operations in the finite field. Assuming that s divides d and d/s divides q−1,
our second data structure assumes that P satisfies a degree-separability condition and relies on
(d/s+ 1)n+s tabulated values to produce the value of P at any point using O(nqssq) arithmetic
operations. Our data structures are based on generalizing upper-bound constructions due to
Mockenhaupt and Tao (2004), Saraf and Sudan (2008), and Dvir (2009) for Kakeya sets in finite
vector spaces from linear to higher-degree polynomial curves.

As an application we show that the new data structures enable a faster algorithm for com-
puting integer-valued fermionants, a family of self-reducible polynomial functions introduced by
Chandrasekharan and Wiese (2011) that captures numerous fundamental algebraic and combin-
atorial invariants such as the determinant, the permanent, the number of Hamiltonian cycles in a
directed multigraph, as well as certain partition functions of strongly correlated electron systems
in statistical physics. In particular, a corollary of our main theorem for fermionants is that the
permanent of an m×m integer matrix with entries bounded in absolute value by a constant can
be computed in time 2m−Ω

(√
m/ log logm

)
, improving an earlier algorithm of Björklund (2016)

that runs in time 2m−Ω
(√

m/ logm
)
.

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems, F.2.2 Nonnumer-
ical Algorithms and Problems, G.2.1 Combinatorics, G.2.2 Graph Theory

Keywords and phrases Besicovitch set, fermionant, finite field, finite vector space, Hamiltonian
cycle, homogeneous polynomial, Kakeya set, permanent, polynomial evaluation, tabulation

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.6

∗ This research was funded by the Swedish Research Council grant VR 2016-03855 “Algebraic Graph
Algorithms” (A.B.), the European Research Council under the European Union’s Seventh Framework
Programme (FP/2007-2013) / ERC Grant Agreement 338077 “Theory and Practice of Advanced Search
and Enumeration” (P.K.), and the U.S. National Science Foundation under grants CCF-1741638 and
CCF-1741615 (R.W.).

© Andreas Björklund, Petteri Kaski, and Ryan Williams;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 6; pp. 6:1–6:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 Generalized Kakeya Sets and Faster Fermionants

1 Introduction

The protagonist of this paper is the following task. We want an efficient representation of an
n-variate degree-d polynomial P over a finite field Fq of order q, that permits us to evaluate
P on arbitrary points a ∈ Fnq . What kind of resource trade-offs can be achieved between
space (for representing P) and query time (for computing P (a) at a given a)?

The study of data structures that enable fast “polynomial evaluation” queries for mul-
tivariate polynomials was initiated by Kedlaya and Umans [11] for polynomials with bounded
individual variable degrees, motivated by applications to fast polynomial factorization. (For
univariate polynomial evaluation, cf. von zur Gathen and Gerhard [24].) Here we focus on
the case when P has (total) degree d, in particular, when d is less than n.1

We seek data structures consisting of a set K ⊆ Fnq and an associated list ((a, P (a)) : a ∈
K) of evaluations. There are two extremes for such designs. At one extreme, we can set
K = Fnq , put all evaluations in a sorted array, and binary search achieves O(n log q) query
time. At the other extreme, to uniquely identify P we must tabulate Ω(

(
n+d
d

)
) points, as this

is the dimension of the monomial basis. However, when K is this small, we are only aware of
brute-force (nO(d)-time) algorithms to evaluate the polynomial in any other point. Between
these two extremes, we seek constructions for sets K that suffice for evaluating P at any
point outside K in time that scales sub-exponentially in d. Our motivation is to accelerate
the best known algorithms for canonical #P-hard problems (cf. Section 1.2).

1.1 Polynomial evaluation based on generalized Kakeya sets
Let Fq[x] be the ring of polynomials over indeterminates x = (x1, x2, . . . , xn) with coefficients
in Fq. Our first main theorem constructs an explicit set K ⊆ Fnq of cardinality at most
(d+ 1)n+2 which allows for relatively quick evaluation of any degree-d P at all points in Fnq .

I Theorem 1. Let d divide q − 1. There is a set K ⊆ Fnq of size |K| ≤ (d + 1)n+2 along
with functions g1, g2, . . . , g(q−1)(d+1)2 : Fnq → K and scalars γ1, γ2, . . . , γ(q−1)(d+1)2 ∈ Fq such
that for every polynomial P ∈ Fq[x] of degree at most d and every vector a ∈ Fnq ,

P (a) =
(q−1)(d+1)2∑

j=1
γjP (gj(a)) .

I Remark. Let us write M(q) for the time complexity2 of multiplication and division in Fq.
The construction in Theorem 1 is explicit in the sense that (a) there is an algorithm that
in time O(|K|nqM(q)) lists the elements of K; and (b) there is an algorithm that in time
O
(
nqd2M(q)

)
computes the values gj(a) ∈ Fnq and γj ∈ Fq for all j = 1, 2, . . . , (q− 1)(d+ 1)2

when given a ∈ Fnq as input. The quadratic dependence on d has not been optimized.
The size of K can be further reduced for polynomials P satisfying a certain (natural)

restriction which holds for several well-studied polynomials. Suppose we partition the variable
setX = {x1, x2, . . . , xn} intoX = X1∪X2∪· · ·∪Xd such that |X1| = |X2| = · · · = |Xd| = n/d.
Let us say that a degree-d polynomial P ∈ Fq[x] is degree-separable relative to X1, X2, . . . , Xd

if every monomial of P contains one variable from each Xi. Note a degree-separable P is

1 In contrast, Kedlaya and Umans [11] focus on the case n ≤ do(1); cf. [11, Corollaries 4.3, 4.5, and 6.4].
Notational caveat: Kedlaya and Umans use “m” for the number of variables.

2 For example, M(q) = O
(
(log q)1+ε

)
holds for any constant ε > 0; we refer to e.g. von zur Gathen and

Gerhard [24] for sharper bounds.

A. Björklund, P. Kaski, and R. Williams 6:3

in particular both multilinear and homogeneous of degree d. Degree-separability enables a
trade-off between the size of K and the query time for evaluation:

I Theorem 2. Let s divide d and d/s divide q − 1. There is a set K ⊆ Fnq of size
|K| ≤

(
d/s+ 1

)n+s along with g1, g2, . . . , g(q−1)s : Fnq → K and γ1, γ2, . . . , γ(q−1)s ∈ Fq such
that for every degree-separable degree-d P ∈ Fq[x] relative to a fixed partition X1, X2, . . . , Xd

and every vector a ∈ Fnq ,

P (a) =
(q−1)s∑
j=1

γjP (gj(a)) .

I Remark. The construction in Theorem 2 is explicit in the sense that (a) there is an algorithm
that in time O(|K|nqM(q)) lists the elements of K; and (b) there is an algorithm that in time
O(n(q − 1)ssqM(q)) computes the values gj(a) ∈ Fnq and γj ∈ Fq for all j = 1, 2, . . . , (q− 1)s
when given a ∈ Fnq as input.

We need K to contain enough points that “interpolation” at all the other points is possible.
One intuition for designing a small K ⊆ Fnq for polynomial evaluation is that such a set must
enable “localization” of any target polynomial inside the set. At one extreme, we may think
of the simplest non-constant family of polynomials, namely lines. In Euclidean spaces, this
line of thought leads to the study of dimensionality of sets that contain a unit line segment
in every direction, or the Kakeya problem, which has been extensively studied since the 1920s
and the seminal work of Besicovitch [2]. We refer to Wolff [26], Mockenhaupt and Tao [18],
and Dvir [9, 10] for surveys both in the continuous and finite settings. In what follows we
focus on finite vector spaces.

I Definition 3. A Kakeya set (or Besicovitch set) in a vector space of dimension n over Fq
is a subset K ⊆ Fnq together with a function f : Fnq → Fnq such that for every vector a ∈ Fnq
and every scalar τ ∈ Fq it holds that

f(a) + τa ∈ K . (1)

That is, a Kakeya set K has the property that for any possible direction of a line in
Fnq (that is, any nonzero vector a ∈ Fnq), the set K contains an entire line (through f(a))
with this direction. To support our objective of polynomial evaluations for higher-order
curves than lines, an intuition is now to generalize (1) to polynomials of higher degree in
the indeterminate τ . This is the methodological gist of our main contribution in this paper,
which will be described further in Section 2.

As an illustrative application of our new data structures, we use Theorem 2 to derive a
faster algorithm for computing fermionants, which are a family of self-reducible and degree-
separable polynomials introduced by Chandrasekharan and Wiese [7] to generalize various
fundamental polynomials. We start with a brief introduction to fermionants to motivate
their study from a computational perspective.

1.2 Fermionants

We continue to work over Fq. As usual, Sm is the symmetric group over [m] = {1, 2, . . . ,m}.
We write c(σ) for the number of cycles in a permutation σ ∈ Sm, where each fixed point of σ is

IPEC 2017

6:4 Generalized Kakeya Sets and Faster Fermionants

counted as a cycle of length 1. Let A = (aij : i, j ∈ [m]) be anm×m matrix of indeterminates.
The fermionant of A with (indeterminate) parameter t is the (m2 + 1)-variable polynomial

fertA = (−1)m
∑
σ∈Sm

(−t)c(σ)
m∏
i=1

ai,σ(i) . (2)

The fermionant is multilinear and homogeneous of degree m with respect to the variables
{ai,j}, and of degree m with respect to t. Furthermore, note that with respect to {ai,j} the
fermionant is degree-separable under the partition {{aij : j ∈ [m]} : i ∈ [m]}.

The fermionant captures several extensively studied algebraic and combinatorial invariants,
such as the determinant of a matrix

detA = (−1)m
∑
σ∈Sm

(−1)c(σ)
m∏
i=1

ai,σ(i) ,

the permanent of a matrix

perA =
∑
σ∈Sm

m∏
i=1

ai,σ(i) ,

the generating function for directed Hamiltonian cycles

hcA =
∑
σ∈Sm

c(σ)=1

m∏
i=1

ai,σ(i) ,

as well as certain partition functions of strongly correlated electron systems in statistical
physics (see Chandrasekharan and Wiese [7]). It is immediate that the aforementoined
invariants can be obtained as special cases of the fermionant via

detA = fer1A , perA = (−1)m fer−1A , and hcA = (−1)m−1 {t} fertA ,

where in the last equality we write {tk}P for the coefficient of tk in the polynomial P .
The invariants captured by the fermionant have received such substantial attention that

is not possible to discuss the literature exhaustively here. For example, the permanent and
the determinant are central to arithmetic circuit complexity [22] and geometric complexity
theory [15]. Similarly, the numerous symmetries and self-reducibility properties of fermionants
enable their use in e.g. interactive proof systems [5, 16, 25]. We restrict our present discussion
of earlier work mostly to algorithms for the permanent.

Computing the permanent of a given m ×m matrix appears to be an extremely hard
problem. Indeed, the best known general algorithm is over 50 years old, given by Ryser [19]
in 1963, and it uses O(2mm) arithmetic operations. Valiant [23] proved that the permanent
for {0, 1}-matrix inputs is #P-hard, even if the number of ones per row is at most three. In
the more general setting of fermionants, Mertens and Moore [17] showed that the fermionant
is #P-hard for any τ > 2 and ⊕P-hard for τ = 2, even for the adjacency matrices of
planar graphs. For the permanent, no less-than-2m-sized arithmetic circuit is known despite
substantial efforts (for example, it is a prominent open problem in the Art of Computer
Programming [12]).

However, there are faster ways to compute the permanent if we allow random-access
tabulation along with arithmetic operations. Most notably, there are modest speed-ups for
{0, 1}-matrices over the integers. Bax and Franklin [1] gave an 2m−Ω(m1/3/ logm) expected

A. Björklund, P. Kaski, and R. Williams 6:5

time algorithm. Recently, Björklund [3] presented a deterministic 2m−Ω(
√
m/ log q) time

algorithm over any finite field of order q ≥ m2 + 1, by exploiting the self-reducibility of the
permanent. Applying the Chinese Remainder Theorem, he also obtains a 2m−Ω(

√
m/ logm)-

time algorithm for integer matrices with entries whose absolute value is bounded from above
by a constant. There are also faster algorithms for sparse matrices. Cygan and Pilipczuk [8]
gave a 2m−Ω(m/r) time algorithm for matrices with at most r non-zero entries per row.
Very recently, Björklund, Husfeldt, and Lyckberg [4] and Björklund, Kaski, and Koutis [6]
show that if the result is bounded in absolute value by cm for a constant c > 1, then
there are 2m(1−1/cΩ(1))mO(1)-time algorithms for the permanent and the number of directed
Hamiltonian cycles, respectively. Both algorithms work by computing the permanent and the
number of directed Hamiltonian cycles modulo small primes. In particular, the algorithms
over Fp run in time 2m(1−1/pΩ(1)), faster than the algorithms of this paper for small p.

Our main technical result for fermionants is that, given mild technical conditions on the
order of the field, we can compute obtain a faster algorithm over finite fields:

I Theorem 4. There is an algorithm that computes the fermionant fertA ∈ Fq[t] of a given
m×m matrix A with entries in Fq in time 2m−Ω

(√
m/ log log q

)
O(M(q)), provided that q − 1

has a divisor in the interval (1.1 log q, 10 log q), q ≥ m2 + 1, and m = ω
(
log2 q log log q

)
.

The Chinese Remainder Theorem and a uniform variant of the Prime Number Theorem
for arithmetic progressions yield the following corollary for integer-valued fermionants.

I Corollary 5. Let τ be an integer with |τ | ≤ O(m) and let M be a constant. The fermionant
ferτ A can be computed in time 2m−Ω

(√
m/ log logm

)
, for all m×m matrices A with integer

values in [−M,M].

The idea behind Theorem 4 is to apply our polynomial evaluation results to a self-
reduction for fermionants. Following Björklund’s results for the permanent [3], we show how
to compute a fermionant on an m ×m matrix via 2m−kmO(1) calls to the fermionant on
k × k matrices. Applying Theorem 2, we set k so that it is possible to evaluate the k × k
fermionant polynomial over all points of K in 20.999m time. Once we know the polynomial
on all points in K, we can then evaluate the fermionant on any m×m matrix in time about
2m−Ω(k)mO(1). We show k ≈

√
m/ log log q suffices.

Organisation. In Section 2, we present our generalization of Kakeya sets in finite vector
spaces, together with explicit constructions. Next in Section 3 we prove our main evaluation
theorems, Theorem 1 and Theorem 2. In Section 4 we use the self-reducibility of the
fermionant to prove Theorem 4 and Corollary 5, showing how to compute fermionants faster.

2 Generalized Kakeya sets in finite vector spaces

Here we study the following generalization of Kakeya sets for lines (Definition 3) to higher-
degree polynomial curves:

I Definition 6. A Kakeya set of degree r in a vector space of dimension n over Fq consists
of a set K ⊆ Fnq together with functions f0, f1, . . . , fr−1 : Fnq → Fnq such that for every vector
a ∈ Fnq and every scalar τ ∈ Fq it holds that

F (a, τ) = f0(a) + f1(a)τ + f2(a)τ2 + . . .+ fr−1(a)τ r−1 + aτ r ∈ K . (3)

IPEC 2017

6:6 Generalized Kakeya Sets and Faster Fermionants

We say that a construction for Kakeya sets is explicit if
(i) there is an algorithm that outputs K (given q, r, and n) in O

(
|K|nrM(q)

)
time, and

(ii) there is an algorithm that given a ∈ Fnq outputs the values f0(a), f1(a), . . . , fr−1(a) ∈ Fnq
in O

(
nrM(q)

)
time.

The following construction of sparse Kakeya sets of degree r generalizes the design of the
best known Kakeya sets (cf. Mockenhaupt and Tao [18], Saraf and Sudan [20], Dvir [9, §2.4],
Kopparty, Lev, Saraf, and Sudan [13], and Kyureghyan, Müller, and Wang [14]).

I Lemma 7. For every r + 1 that divides q − 1 there is an explicit Kakeya set K ⊆ Fnq of

degree r and size |K| ≤
(
q−1
r+1 + 1

)n+1
.

Proof. We begin with three simple observations. First, since r + 1 divides q − 1, we have
that r + 1 has a multiplicative inverse in Fq.3 Second, for all α, τ ∈ Fq from the Binomial
Theorem we have(

α

r + 1 + τ

)r+1
− τ r+1 =

r−1∑
i=0

(
r + 1
i

)(
α

r + 1

)r+1−i
τ i + ατ r . (4)

Third, since the multiplicative subgroup F×q is cyclic of order q − 1, the subgroup consisting
of (r + 1)th powers of elements of F×q has size exactly q−1

r+1 . Including the zero element, we
observe that |{βr+1 : β ∈ Fq}| = q−1

r+1 + 1.
Let us now define K ⊆ Fnq to consist of all vectors of the form((

α1

r + 1 + τ

)r+1
− τ r+1,

(
α2

r + 1 + τ

)r+1
− τ r+1, . . . ,

(
αn
r + 1 + τ

)r+1
− τ r+1

)
(5)

with α1, α2, . . . , αn, τ ∈ Fq. It follows immediately from (5) and our third observation

that |K| ≤
(
q−1
r+1 + 1

)n+1
. Furthermore, (4) and (5) imply that the generalized Kakeya

property (3) holds when we define the functions fi : Fnq → Fnq for all i = 0, 1, . . . , r − 1 and
a = (α1, α2, . . . , αn) ∈ Fnq by

fi(a) =
((

r + 1
i

)(
α1

r + 1

)r+1−i
,

(
r + 1
i

)(
α2

r + 1

)r+1−i
, . . . ,

(
r + 1
i

)(
αn
r + 1

)r+1−i)
. (6)

It is immediate from the definitions (5) and (6) that the construction is explicit. J

3 Polynomial evaluation

This section proves our two main theorems for polynomial evaluation. The key idea is
Mellin-transform-like sieving (8) enabled by an elementary observation about sums over finite
fields (7) below, which we then extend to an s-fold product form in (12).

Let us start with a homogeneous version of Theorem 1.

3 Indeed, q = pa for a prime p and positive integer a. Note r+ 1 has a multiplicative inverse if and only if
p does not divide r + 1. By assumption we have (r + 1)Q = pa − 1 for an integer Q and thus r + 1 = pb
for an integer b would lead to a contradiction p(bQ− pa−1) = −1.

A. Björklund, P. Kaski, and R. Williams 6:7

I Lemma 8. Let d divide q − 1. There is a set K ⊆ Fnq of size |K| ≤ (d+ 1)n+1 together
with functions g1, g2, . . . , gq−1 : Fnq → K and coefficients γ1, γ2, . . . , γq−1 ∈ Fq such that for
every homogeneous polynomial P ∈ Fq[x] of degree h ≤ d and every vector a ∈ Fnq ,

P (a) =
q−1∑
j=1

γjP (gj(a)) .

Proof. Let d divide q−1. Set r = (q−1)/d−1, and note that r+1 divides q−1. Apply Lemma 7
to obtainK and the functions f0, f1, . . . , fr−1. Let P ∈ Fq[x] be a homogeneous polynomial of
degree h ≤ d over the indeterminates x = (x1, x2, . . . , xn), and let a = (α1, α2, . . . , αn) ∈ Fnq
be an assignment of values to the indeterminates. Our goal is to compute the value P (a) ∈ Fq
using evaluations of P at K. Recalling the function F (a, τ) from (3), we will rely on values
of the composition P (F (a, τ)) for τ ∈ Fq to obtain P (a).

Towards this end, we first observe that

∑
τ∈F×

q

τe =
{
−1 if q − 1 divides e,
0 otherwise.

(7)

To see this, let g be a generator of the multiplicative subgroup F×q . If q − 1 divides e then
τe = 1 for all τ , and thus the sum is |F×q | = q − 1 (modulo the characteristic). Otherwise,
ge 6= 1, and we have

∑
τ∈F×

q
τe =

∑
τ∈F×

q
(gτ)e = ge

∑
τ∈F×

q
τe, so the sum must be 0.

Let t = q − 1− rh and observe that t ≥ 1. We now claim that

P (a) = −
∑
τ∈F×

q

τ tP (F (a, τ)) . (8)

By linearity, it suffices to consider the case when P is a single monomial P = xh1
1 xh2

2 · · ·xhn
n

of degree h = h1 + h2 + . . .+ hn ≤ d. Recalling (3) and (7), we observe that the right-hand
side of (8) expands to

−
∑
τ∈F×

q

τ tP (F (a, τ))

= −
∑
τ∈F×

q

τ q−1−rh
(
τ rhαh1

1 αh2
2 · · ·αhn

n + τ rh−1(· · ·)+ τ rh−2(· · ·)+ . . .+ τ0(· · ·))
= −

∑
τ∈F×

q

(
τ q−1αh1

1 αh2
2 · · ·αhn

n + τ q−2(· · ·)+ τ q−3(· · ·)+ . . .+ τ q−1−rh(· · ·))
= αh1

1 αh2
2 · · ·αhn

n

= P (a) .

That is, by multiplying each term by τ t, we ensure that all other terms appearing inside of
P (F (a, τ)) cancel, except for the desired term αh1

1 αh2
2 · · ·αhn

n which is the coefficient of τ rh.
Now let β1, β2, . . . , βq−1 be an enumeration of the elements of F×q . For all j = 1, 2, . . . , q−1,

set gj(a) = F (a, βj) and γj = −βtj . The lemma now follows from (8). J

3.1 Proof of Theorem 1
We are now ready to prove Theorem 1. Our strategy is to interpolate the homogeneous
components of our given polynomial, then apply Lemma 8. Towards this end, let P ∈ Fq[x]

IPEC 2017

6:8 Generalized Kakeya Sets and Faster Fermionants

have degree at most d and let P =
∑d
h=0 Ph where Ph ∈ Fq[x] is either zero or homogeneous

of degree h, for all h = 0, 1, . . . , d. Let ν0, ν1, . . . , νd be any d + 1 distinct elements of Fq.
Recalling the definition of K in (5), let K̂ ⊆ Fnq be the set of all vectors of the form

ν

((
α1

r + 1 + τ

)r+1
− τ r+1,

(
α2

r + 1 + τ

)r+1
− τ r+1, . . . ,

(
αn
r + 1 + τ

)r+1
− τ r+1

)
(9)

where α1, α2, . . . , αn, τ ∈ Fq, and ν ∈ {ν0, ν1, . . . , νd}.
In particular, from (9) and (5) we have that |K̂| ≤ (d+ 1)|K|.
Assuming we have constant-time access to P (a) for all a ∈ K̂, we can access each Ph

at k ∈ K by univariate interpolation over the d + 1 distinct values of ν, via the identity
P (νk) =

∑d
h=0 Ph(k)νh. That is, for h, j = 0, 1, . . . , d, let λhj ∈ Fq be the Lagrange

interpolation coefficients that satisfy Ph(k) =
∑d
j=0 λhjP (νjk) for all k ∈ K. Observe in

particular that the coefficients λhj depend only on ν0, ν1, . . . , νd. With access to values of Ph
at K, given a query a ∈ Fnq we can use Lemma 8 to sieve for Ph(a) for each h = 0, 1, . . . , d.
That is, we have P (a) =

∑d
h=0 Ph(a) = −

∑d
h=0

∑
τ∈F×

q

∑d
j=0 τ

q−1−rhλhjP (νjF (a, τ)). J

3.2 Proof of Theorem 2
Suppose s divides d and d/s divides q − 1. Let X1, X2, . . . , Xd be the partition of variables
for degree-separability. For i = 1, 2, . . . , s, take

Yi = X(i−1)d/s+1 ∪X(i−1)d/s+2 ∪ · · · ∪Xid/s

and observe that |Yi| = n/s for all i. Furthermore, observe that every monomial of a
polynomial P ∈ Fq[x] that is degree-separable relative to X1, X2, . . . , Xd has degree exactly
d/s when restricted to the variables of Yi.

Let us extend the construction in Lemma 7 into an s-fold product form over the partition
Y1, Y2, . . . , Ys. Accordingly, we work with a multivariate polynomial over s indeterminates
τ1, τ2, . . . , τs instead of a univariate polynomial (3) over τ . Let a = (α1, α2, . . . , αn) ∈ Fnq and
let us write aYi

∈ Fns/dq for the restriction of a to coordinates in Yi. Set r = (q − 1)s/d− 1.
Let us write FYi

(aYi
, τi) ∈ Fnq for the vector obtained by applying the construction given by

(3) and (6) to the vector aYi and τi, thereby obtaining a vector of length ns/d indexed by Yi,
followed by padding with 0-entries outside the indices Yi to obtain a vector of length n. Let
us now define the (vector-valued) multivariate polynomial

F (a, τ1, τ2, . . . , τs) = FY1(aY1 , τ1) + FY2(aY2 , τ2) + . . .+ FYs
(aYs

, τs) . (10)

We observe by (3), (6), and (4) that F (a, τ1, τ2, . . . , τs) ranges over all vectors of the form((
α1

r + 1 + τ1

)r+1
− τ r+1

1 ,

(
α2

r + 1 + τ1

)r+1
− τ r+1

1 , . . . ,

(
αn/s

r + 1 + τ1

)r+1
− τ r+1

1 ,(
αn/s+1

r + 1 + τ2

)r+1
− τ r+1

2 ,

(
αn/s+2

r + 1 + τ2

)r+1
− τ r+1

2 , . . . ,

(
α2n/s

r + 1 + τ2

)r+1
− τ r+1

2 ,

· · · ,(
αn−n/s+1

r + 1 + τs

)r+1
− τ r+1

s ,

(
αn−n/s+2

r + 1 + τs

)r+1
− τ r+1

s , . . . ,

(
αn
r + 1 + τs

)r+1
− τ r+1

s

)
(11)

with α1, α2, . . . , αn, τ1, τ2, . . . , τs ∈ Fq. We define K to be the set of all such vectors. By
similar reasoning as in the proof of Theorem 1, note that |K| ≤

(
q−1
r+1 + 1

)n+s
=
(
d
s + 1

)n+s.

A. Björklund, P. Kaski, and R. Williams 6:9

Let t = q − 1 − rd/s and observe that t ≥ 1. From (7) and proceeding analogously as
with the reasoning for (8) in the proof of Theorem 1, we thus have

P (a) = (−1)s
∑

τ1,τ2,...,τs∈F×
q

τ t1τ
t
2 · · · τ tsP (F (a, τ1, τ2, . . . , τs)) . (12)

Let β1, β2, . . . , βq−1 be an enumeration of the elements of F×q . For all j = (j1, j2, . . . , js) ∈
{1, 2, . . . , q − 1}s take

gj(a) = F (a, βj1 , βj2 , . . . , βjs
) and γj = (−1)sβtj1β

t
j2 · · ·β

t
js
.

The theorem now follows from (12). J

4 Fermionants

This section proves our two main theorems for evaluating fermionants. We start by noting that
the fermionant is self-reducible, a result that easily follows from earlier work by Björklund [3],
followed by the proofs of our present main theorems.

4.1 Self-reducibility of the fermionant
This subsection reviews how Björklund’s [3] self-reducibility for permanents can be extended
to fermionants. In essence, his methodology can be used to reduce the task of computing one
fermionant of size m×m to the task of computing 2m−kmO(1) fermionants of size k× k. We
stress that this subsection is provided for ease of exposition only and no claim of originality
is made.

Let r, t, and aij for i, j ∈ [m] be polynomial indeterminates and let F be the coefficient
field. For S ⊆ [m], i, j ∈ S, and ` = 0, 1, . . . ,m, consider the inductively-defined family of
polynomials:

WS
`,i,j(r) =


1 if ` = 0 and i = j;
0 if ` = 0 and i 6= j;∑
u∈S aiurW

S
`−1,u,j(r) if ` ≥ 1.

(13)

The polynomial WS
`,i,j can be viewed as a multivariate generating function for (edge-multisets

of) walks of length ` inside S ⊆ [m] that start at i and end at j, on the complete graph
of m vertices. The degree of each monomial in the indeterminate r is equal to `. The
indeterminates auv track the edges (u, v) traversed by the walk, with degree indicating the
multiplicity, that is, how many times each edge was traversed.

For S ⊆ [m] and i ∈ [m], let us write S≥i = {u ∈ S : i ≤ u}. For S ⊆ [m], i ∈ S, and
` = 0, 1, . . . ,m, introduce the following bivariate polynomial

CSi (r, t) = 1− t
m∑
`=1

W
S≥i

`,i,i (r) . (14)

This polynomial forms a multivariate generating function for (edge-multisets of) closed walks
inside S and “anchored” at i, including the possibility of no walk at all. Here, by “anchored”
at i we mean that the lowest-numbered vertex of the closed walk is i. Let

CS(r, t) =
∏
i∈S

CSi (r, t) . (15)

IPEC 2017

6:10 Generalized Kakeya Sets and Faster Fermionants

Let k = 0, 1, . . . ,m. For i, j ∈ [k] and S ⊆ [m] \ [k], introduce the univariate polynomial

ãSi,j(r) = aij +
m−1∑
`=0

∑
u,v∈S

aiuW
S
`,u,vavjr . (16)

This polynomial is a multivariate generating function for representing the (edge-multisets
of) walk segments that traverse [m] so that the first vertex of the segment is i and the last
vertex of the segment is j; the walk can either proceed directly from i to j, or perform a
walk of length ` in S before ending at j. Let us arrange the coefficients ãSi,j(r) into a k × k
matrix ÃS(r).

For a polynomial P in the indeterminate r, let us write
{
rj
}
P for the coefficient (polyno-

mial) of the monomial rj . By the principle of inclusion and exclusion, we have:

I Theorem 9. For all k = 0, 1, . . . ,m, we have the polynomial identity

fertA =
{
rm−k

} ∑
S⊆[m]\[k]

(−1)|S|CS(r, t) fert ÃS(r) . (17)

Observing that the right-hand side of (17) has degree at most m2 in r, and using Lagrange
interpolation together with dynamic programming on the recurrences (13), (14), (15), and
(16), we have:

I Theorem 10. Suppose |F| ≥ m2 + 1 and let k = 0, 1, . . . ,m. Then, there is a value
L = 2m−kmO(1) computable in time polynomial in m, and an algorithm that given as input
a matrix A ∈ Fm×m, τ ∈ F, and an integer j = 1, 2, . . . , L, runs in time mO(1), executes
mO(1) arithmetic operations in F, and outputs a matrix Ãj ∈ Fk×k together with a coefficient
αj ∈ F such that:

ferτ A =
L∑
j=1

αj ferτ Ãj . (18)

In particular, the fermionant ferτ A of a given A ∈ Fm×m at τ ∈ F can be computed in
2mmO(1) time and arithmetic operations in F.

4.2 Proof of Theorem 4
Let A ∈ Fm×mq be given together with τ ∈ Fq. We seek to compute ferτ A and will deploy
the self-reducibility enabled by Theorem 10 towards this end. By assumption we have that
q − 1 has a divisor u with 1.1 log q ≤ u ≤ 10 log q. Since m = ω(log2 q log log q), for all large
enough m we can let k be a multiple of u with

0.98
√
m/ log log q ≤ k ≤ 0.99

√
m/ log log q .

With the objective of applying Theorem 2, take n = k2, d = k, and s = k/u. Observe
that the fermionant (2) of a k × k matrix A at τ ∈ Fq is a degree-separable polynomial P of
degree d over the n variables in A. Furthermore, s divides d and d/s divides q − 1, so the
assumptions of Theorem 2 hold. By Theorem 10 we can evaluate this P at any given point
(that is, for any given k × k matrix) in time 2kkO(1) and operations in Fq. The tabulation of
P for Theorem 2 thus can be done in time

2kkO(1)
(
d

s
+ 1
)n+s

M(q) ≤ 2kkO(1) (u+ 1)0.99m/ log log q+
√
m M(q)

≤ 2kkO(1) (20 log q)0.999m/ log log q M(q)
≤ 20.9999mM(q) .

A. Björklund, P. Kaski, and R. Williams 6:11

Once the tabulation of P is complete, we can use the algorithms in Theorem 2 to query the
2m−kmO(1) fermionants of size k × k required by (18) in time O(n(q − 1)ssM(q)) per query.
Thus, the total time is at most

2m−kqsmO(1)M(q) ≤ 2m−0.98
√
m/ log log q2(log q)0.99

√
m/ log log q/(1.1 log q)mO(1)M(q)

≤ 2m−0.07
√
m/ log log qmO(1)M(q) . J

4.3 Proof of Corollary 5
Here we show how to extend the algorithm to integers, via the Chinese Remainder Theorem.
Let A be an integer matrix of size m×m with entries in [−M,M] for M = O(1). Let τ be an
integer with |τ | = O(m). By Bertrand’s postulate (e.g. [21, §I.1]) for all large enough m we
can select a prime u with 5 logm ≤ u ≤ 10 logm. Let us study the number of primes p in the
intervalMm2 < p < Mm4 such that u divides p−1. Let us write ϕ for Euler’s totient function
and recall the uniform variant of the Prime Number Theorem for arithmetic progressions [21,
Corollary 8.31]. Namely, there is a constant γ > 0 such that, for any function h(x) tending
to infinity with x, and uniformly for x ≥ 3 and 1 ≤ u ≤ (ln x)2/

(
h(x)2(ln ln x)6), we have

∑
p≤x

p≡1 (mod u)

1 = x

ϕ(u) ln x

(
1 +O

(
1

(ln x)γh(x)

))
. (19)

Here the left-hand side sum in (19) is over all primes p at most x congruent to 1 modulo u.
Since u is prime, we have ϕ(u) = u− 1 = Θ(logm). Thus from (19) we conclude that for

all large enough m there exist at least 2m distinct primes p such that bothMm2 < p < Mm4

and u divides p − 1. With the objective of satisfying the assumptions of Theorem 4, we
conclude u is in the interval (1.1 log p, 10 log p) for these 2m primes p. Indeed, since M is
a constant, for all large enough m we have 1.99 logm ≤ log p ≤ 4.01 logm, which implies
(5/4.01) log p ≤ 5 logm ≤ u ≤ 10 logm ≤ (10/1.99) log p.

From (2) we observe that | ferτ A| ≤ m! ·O(m)mMm < 1
2m

4mM2m. Applying the Chinese
Remainder Theorem together with Theorem 4 on A and τ over Fp for each of the 2m primes
p in turn, we recover ferτ A over the integers, in time 2m−Ω

(√
m/ log logm

)
. J

References
1 Eric T. Bax and Joel Franklin. A finite-difference sieve to count paths and cycles by length.

Inf. Process. Lett., 60(4):171–176, 1996. doi:10.1016/S0020-0190(96)00159-7.
2 A. S. Besicovitch. On Kakeya’s problem and a similar one. Math. Z., 27(1):312–320, 1928.

doi:10.1007/BF01171101.
3 Andreas Björklund. Below all subsets for some permutational counting problems. In

Rasmus Pagh, editor, 15th Scandinavian Symposium and Workshops on Algorithm Theory,
SWAT 2016, June 22-24, 2016, Reykjavik, Iceland, volume 53 of LIPIcs, pages 17:1–17:11.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.SWAT.
2016.17.

4 Andreas Björklund, Thore Husfeldt, and Isak Lyckberg. Computing the permanent modulo
a prime power. Inf. Process. Lett., 125:20–25, 2017. doi:10.1016/j.ipl.2017.04.015.

5 Andreas Björklund and Petteri Kaski. How proofs are prepared at camelot: Extended
abstract. In George Giakkoupis, editor, Proceedings of the 2016 ACM Symposium on Prin-
ciples of Distributed Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016, pages
391–400. ACM, 2016. doi:10.1145/2933057.2933101.

IPEC 2017

http://dx.doi.org/10.1016/S0020-0190(96)00159-7
http://dx.doi.org/10.1007/BF01171101
http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.17
http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.17
http://dx.doi.org/10.1016/j.ipl.2017.04.015
http://dx.doi.org/10.1145/2933057.2933101

6:12 Generalized Kakeya Sets and Faster Fermionants

6 Andreas Björklund, Petteri Kaski, and Ioannis Koutis. Directed hamiltonicity and out-
branchings via generalized laplacians. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian
Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages,
and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs,
pages 91:1–91:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/
LIPIcs.ICALP.2017.91.

7 Shailesh Chandrasekharan and Uwe-Jens Wiese. Partition functions of strongly correlated
electron systems as “fermionants”. cond-mat.str-el, abs/1108.2461, 2011. arXiv:1108.
2461v1.

8 Marek Cygan and Marcin Pilipczuk. Faster exponential-time algorithms in graphs of
bounded average degree. In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska,
and David Peleg, editors, Automata, Languages, and Programming - 40th International
Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I, volume
7965 of Lecture Notes in Computer Science, pages 364–375. Springer, 2013. doi:10.1007/
978-3-642-39206-1_31.

9 Zeev Dvir. From randomness extraction to rotating needles. Electronic Colloquium on Com-
putational Complexity (ECCC), 16:77, 2009. URL: http://eccc.hpi-web.de/report/
2009/077.

10 Zeev Dvir. Incidence theorems and their applications. CoRR, abs/1208.5073, 2012. arXiv:
1208.5073.

11 Kiran S. Kedlaya and Christopher Umans. Fast polynomial factorization and modular
composition. SIAM J. Comput., 40(6):1767–1802, 2011. doi:10.1137/08073408X.

12 Donald E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Al-
gorithms. Addison-Wesley, 3rd edition, 1998.

13 Swastik Kopparty, Vsevolod F. Lev, Shubhangi Saraf, and Madhu Sudan. Kakeya-type
sets in finite vector spaces. J. Algebraic Combin., 34(3):337–355, 2011. doi:10.1007/
s10801-011-0274-8.

14 Gohar Kyureghyan, Peter Müller, and Qi Wang. On the size of Kakeya sets in finite vector
spaces. Electron. J. Combin., 20(3):#P36, 2013. URL: http://www.combinatorics.org/
ojs/index.php/eljc/article/view/v20i3p36.

15 J. M. Landsberg. An introduction to geometric complexity theory. Eur. Math. Soc. Newsl.,
99:10–18, 2016.

16 Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. J. ACM, 39(4):859–868, 1992. doi:10.1145/146585.146605.

17 Stephan Mertens and Cristopher Moore. The complexity of the fermionant, and immanants
of constant width. CoRR, abs/1110.1821, 2011. arXiv:1110.1821.

18 Gerd Mockenhaupt and Terence Tao. Restriction and Kakeya phenomena for finite fields.
Duke Math. J., 121(1):35–74, 2004. doi:10.1215/S0012-7094-04-12112-8.

19 H. J. Ryser. Combinatorial Mathematics. Number 14 in The Carus Mathematical Mono-
graphs. Mathematical Association of America, 1963.

20 Shubhangi Saraf and Madhu Sudan. An improved lower bound on the size of Kakeya sets
over finite fields. Anal. PDE, 1(3):375–379, 2008. doi:10.2140/apde.2008.1.375.

21 Gérald Tenenbaum. Introduction to Analytic and Probabilistic Number Theory, volume 163
of Graduate Studies in Mathematics. American Mathematical Society, 3rd edition, 2015.

22 Leslie G. Valiant. Completeness classes in algebra. In Michael J. Fischer, Richard A.
DeMillo, Nancy A. Lynch, Walter A. Burkhard, and Alfred V. Aho, editors, Proceedings
of the 11h Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1979,
Atlanta, Georgia, USA, pages 249–261. ACM, 1979. doi:10.1145/800135.804419.

23 Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci.,
8:189–201, 1979. doi:10.1016/0304-3975(79)90044-6.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.91
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.91
http://arxiv.org/abs/1108.2461v1
http://arxiv.org/abs/1108.2461v1
http://dx.doi.org/10.1007/978-3-642-39206-1_31
http://dx.doi.org/10.1007/978-3-642-39206-1_31
http://eccc.hpi-web.de/report/2009/077
http://eccc.hpi-web.de/report/2009/077
http://arxiv.org/abs/1208.5073
http://arxiv.org/abs/1208.5073
http://dx.doi.org/10.1137/08073408X
http://dx.doi.org/10.1007/s10801-011-0274-8
http://dx.doi.org/10.1007/s10801-011-0274-8
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i3p36
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i3p36
http://dx.doi.org/10.1145/146585.146605
http://arxiv.org/abs/1110.1821
http://dx.doi.org/10.1215/S0012-7094-04-12112-8
http://dx.doi.org/10.2140/apde.2008.1.375
http://dx.doi.org/10.1145/800135.804419
http://dx.doi.org/10.1016/0304-3975(79)90044-6

A. Björklund, P. Kaski, and R. Williams 6:13

24 Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge
University Press, Cambridge, third edition, 2013. doi:10.1017/CBO9781139856065.

25 Richard Ryan Williams. Strong ETH breaks with merlin and arthur: Short non-interactive
proofs of batch evaluation. In Ran Raz, editor, 31st Conference on Computational Com-
plexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, volume 50 of LIPIcs, pages
2:1–2:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.
CCC.2016.2.

26 Thomas Wolff. Recent work connected with the Kakeya problem. In Prospects in Mathem-
atics (Princeton, NJ, 1996), pages 129–162. Amer. Math. Soc., Providence, RI, 1999.

IPEC 2017

http://dx.doi.org/10.1017/CBO9781139856065
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.2
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.2

Generalized Feedback Vertex Set Problems on
Bounded-Treewidth Graphs: Chordality Is the Key
to Single-Exponential Parameterized Algorithms∗†

Édouard Bonnet1, Nick Brettell2, O-joung Kwon3, and
Dániel Marx4

1 Department of Computer Science, Middlesex University, London, UK
2 School of Mathematics and Statistics, Victoria University of Wellington,

Wellington, New Zealand
3 Logic and Semantics, Technische Universität Berlin, Berlin, Germany
4 Institute for Computer Science and Control, Hungarian Academy of Sciences,

(MTA SZTAKI), Budapest, Hungary

Abstract
It has long been known that Feedback Vertex Set can be solved in time 2O(w log w)nO(1) on
graphs of treewidth w, but it was only recently that this running time was improved to 2O(w)nO(1),
that is, to single-exponential parameterized by treewidth. We investigate which generalizations
of Feedback Vertex Set can be solved in a similar running time. Formally, for a class of
graphs P, Bounded P-Block Vertex Deletion asks, given a graph G on n vertices and
positive integers k and d, whether G contains a set S of at most k vertices such that each block
of G−S has at most d vertices and is in P. Assuming that P is recognizable in polynomial time
and satisfies a certain natural hereditary condition, we give a sharp characterization of when
single-exponential parameterized algorithms are possible for fixed values of d:

if P consists only of chordal graphs, then the problem can be solved in time 2O(wd2)nO(1),
if P contains a graph with an induced cycle of length ` > 4, then the problem is not solvable
in time 2o(w log w)nO(1) even for fixed d = `, unless the ETH fails.

We also study a similar problem, called Bounded P-Component Vertex Deletion, where
the target graphs have connected components of small size instead of having blocks of small size,
and present analogous results.

1998 ACM Subject Classification G.2.1 Combinatorial Algorithms, G.2.2 Graph Algorithms

Keywords and phrases fixed-parameter tractable algorithms, treewidth, feedback vertex set

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.7

1 Introduction

Treewidth is a measure of how well a graph accommodates a decomposition into a tree-like
structure. In the field of parameterized complexity, many NP-hard problems have been shown
to have FPT algorithms when parameterized by treewidth; for example, Coloring, Vertex
Cover, Feedback Vertex Set, and Steiner Tree. In fact, Courcelle [6] established a

∗ All authors were supported by ERC Starting Grant PARAMTIGHT (No. 280152) and ERC Consolidator
Grant SYSTEMATICGRAPH (No. 725978). The third author was also supported by the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(ERC consolidator grant DISTRUCT, agreement No. 648527).

† The full version can be found in [5], https://arxiv.org/abs/1704.06757.

© Édouard Bonnet, Nick Brettell, O-joung Kwon, and Dániel Marx;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 7; pp. 7:1–7:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.7
https://arxiv.org/abs/1704.06757
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 Generalized Feedback Vertex Set Problems on Bounded-Treewidth Graphs

meta-theorem that every problem definable in MSO2 logic can be solved in linear time on
graphs of bounded treewidth. While Courcelle’s Theorem is a very general tool for obtaining
algorithmic results, for specific problems dynamic programming techniques usually give
algorithms where the running time f(w)nO(1) has better dependence on treewidth w. There
is some evidence that careful implementation of dynamic programming (plus maybe some
additional ideas) gives optimal dependence for some problems (see, e.g., [12]).

For Feedback Vertex Set, standard dynamic programming techniques give 2O(w log w)

nO(1)-time algorithms and it was considered plausible that this could be the best possible
running time. Hence it was a remarkable surprise when it turned out that 2O(w)nO(1)

algorithms are also possible for this problem by various techniques: Cygan et al. [7] obtained
a 3wnO(1)-time randomized algorithm by using the so-called Cut & Count technique, and
Bodlaender et al. [2] showed there is a deterministic 2O(w)nO(1)-time algorithm by using a
rank-based approach and the concept of representative sets. This was also later shown in the
more general setting of representative sets in matroids by Fomin et al. [11].

Generalized feedback vertex set problems. We explore the extent to which these results
apply for generalizations of Feedback Vertex Set. The Feedback Vertex Set problem
asks for a set S of at most k vertices such that G−S is acyclic, or in other words, every block
of G− S is a single edge or vertex. We consider generalizations where we allow the blocks to
be some other type of small graph, such as triangles, small cycles, or small cliques; these
generalizations were first studied in [4]. The main result of this paper is that the existence of
single-exponential algorithms is closely linked to whether the small graphs we are allowing
are all chordal or not. Formally, we consider the following problem:

Bounded P-Block Vertex Deletion Parameter: d, w

Input: A graph G of treewidth at most w, and positive integers d and k.
Question: Is there a set S of at most k vertices in G such that each block of G− S has at most
d vertices and is in P?

The result of Bodlaender et al. [2] implies that when d = 2, Bounded P-Block Vertex
Deletion can be solved in time 2O(w)nO(1). Our main question is for which graph classes P
can this problem be solved in time 2O(w)nO(1), when we regard d as a fixed constant. A
graph is chordal if it has no induced cycles of length at least 4. We show that if P consists
of only chordal graphs, then we can solve this problem in single-exponential time for fixed d.

I Theorem 1. Let P be a class of graphs that is block-hereditary, recognizable in polynomial
time, and consists of only chordal graphs. Then Bounded P-Block Vertex Deletion
can be solved in time 2O(wd2)k2n on graphs with n vertices and treewidth w.

The condition that P is block-hereditary ensures that the class of graphs with blocks
in P is hereditary; a formal definition is given in Section 2. We complement this result by
showing that if P contains a graph that is not chordal, then single-exponential algorithms
are not possible (assuming ETH), even for fixed d. Note that if P is block-hereditary and
contains a graph that is not chordal, then this graph contains a chordless cycle on ` > 4
vertices and consequently the cycle graph on ` vertices is also in P.

I Theorem 2. If P contains the cycle graph on ` > 4 vertices, then Bounded P-Block
Vertex Deletion is not solvable in time 2o(w log w)nO(1) on graphs of treewidth at most w
even for fixed d = `, unless the ETH fails.

Baste et al. [1] recently studied the complexity of a similar problem, where the task is to
find a set of vertices whose deletion results in a graph with no minor in a given collection

É. Bonnet, N. Brettell, O. Kwon, and D. Marx 7:3

of graphs F , parameterized by treewidth. When F = {C4}, this is equivalent to Bounded
P-Block Vertex Deletion where P = {K2,K3}, and the complexity they obtain in this
case is consistent with our result.

Whether this lower bound of Theorem 2 is best possible when P contains a cycle on
` > 4 vertices remains open. However, as partial evidence towards this, we note that when
P contains all graphs, the result by Baste et al. [1] implies that that Bounded P-Block
Vertex Deletion can be solved in time 2O(w log w)nO(1) when d is fixed, as the minor
obstruction set F consists of all of 2-connected graphs with d+ 1 vertices.

Bounded-size components. Using a similar technique, we can obtain analogous results
for a slightly simpler problem, that we call Bounded P-Component Vertex Deletion,
where we want to remove at most k vertices such that each connected component of the
resulting graph has at most d vertices and belongs to P. If we have only the size constraint
(i.e., P contains every graph), then this problem is known as Component Order Connec-
tivity [9]. Drange et al. [9] studied the parameterized complexity of a weighted variant of
the Component Order Connectivity problem; their results imply, in particular, that
Component Order Connectivity can be solved in time 2O(k log d)n, but is W [1]-hard
parameterized by only k or d. The corresponding edge-deletion problem, parameterized by
treewidth, was studied by Enright and Meeks [10].

I Theorem 3. Let P be a class of graphs that is hereditary, recognizable in polynomial time,
and consists of only chordal graphs. Then Bounded P-Component Vertex Deletion
can be solved in time 2O(wd2)k2n on graphs with n vertices and treewidth w.

I Theorem 4. If P contains the cycle graph on ` > 4 vertices, then Bounded P-Component
Vertex Deletion is not solvable in time 2o(w log w)nO(1) on graphs of treewidth at most w
even for fixed d = `, unless the ETH fails.

The result of Baste et al. [1] implies that when P contains all graphs, Bounded P-
Component Vertex Deletion can be solved in time 2O(w log w)nO(1). When d is not
fixed, one might ask whether Bounded P-Component Vertex Deletion admits an
f(w)nO(1)-time algorithm; that is, an FPT algorithm parameterized only by treewidth. We
provide a negative answer: the problem is W [1]-hard when P contains all chordal graphs,
even parameterized by both treewidth and k. Furthermore, two stronger lower bound results
hold, under the assumption of the ETH.

I Theorem 5. Let P be a hereditary class containing all chordal graphs. Then Bounded
P-Component Vertex Deletion is W [1]-hard parameterized by the combined parameter
(w, k). Moreover, unless the ETH fails, (1) this problem has no f(w)no(w)-time algorithm;
and (2) it has no f(k′)no(k′/ log k′)-time algorithm, where k′ = w + k.

Techniques. A pair (G,S) consisting of a graph G and a vertex subset S of G will be
called a boundaried graph, and an S-block of G is a block of G containing an edge with
both endpoints in S. The algorithm for Bounded P-Block Vertex Deletion uses
several lemmas on S-blocks of boundaried graphs (G,S), which appear in Section 3. The
key property is the following: (*) when we merge two boundaried graphs (G,S) and (H,S)
into a graph G′, to decide whether each S-block of G′ is some fixed target graph that is
chordal, it is sufficient to know, for each non-trivial block B of G[S] or H[S], some local
information about B in the S-block containing B in G or H, respectively. We think of target
graphs as labeled graphs where any two vertices in the same block have distinct labels in

IPEC 2017

7:4 Generalized Feedback Vertex Set Problems on Bounded-Treewidth Graphs

{1, . . . , d}, and the local information referred to in (*) is the set of labels of neighbors of B
in the S-block containing B. The related result is stated as Proposition 6. This will be used
to determine whether each of the S-blocks of G′ is one of the target graphs in P . After then,
to decide whether G′ is a required graph, it remains to check that the whole graph has no
chordless cycle, since there is a possibility of linking two controlled blocks by a sequence of
uncontrolled blocks in both sides G and H, and thus creating a chordless cycle in G′. This
second part can be dealt with in a similar manner to the single-exponential time algorithm
for Feedback Vertex Set, using representative-set techniques.

2 Preliminaries

We follow the terminology of Diestel [8], unless otherwise specified. A vertex v of G is a cut
vertex if the deletion of v from G increases the number of connected components. We say G
is biconnected if it is connected and has no cut vertices. Note that every connected graph on
at most two vertices is biconnected. A block of G is a maximal biconnected subgraph of G.
We say G is 2-connected if it is biconnected and |V (G)| > 3. An induced cycle of length at
least four is called a chordless cycle. A graph is chordal if it has no chordless cycles. For a
class of graphs P, a graph is called a P-block graph if each of its blocks is in P. A class C
of graphs is block-hereditary if for every G ∈ C and every biconnected induced subgraph H
of G, H ∈ C. For two integers d1, d2 with d1 6 d2, let [d1, d2] be the set of all integers i
with d1 6 i 6 d2, and for a positive integer, let [d] := [1, d]. For a function f : X → Y and
X ′ ⊆ X, the function f ′ : X ′ → Y where f ′(x) = f(x) for all x ∈ X ′ is called the restriction
of f on X ′, and is denoted f |X′ . We also say that f extends f ′ to the set X.

Block d-labeling. A block d-labeling of a graph G is a function L : V (G)→ [d] such that for
each block B of G, L|V (B) is an injection. If G is equipped with a block d-labeling L, then
it is called a (block) d-labeled graph, and we call L(v) the label of v. Two d-labeled graphs
G and H are label-isomorphic if there is a graph isomorphism from G to H that is label
preserving. For biconnected block d-labeled graphs G and H, H is partially label-isomorphic
to G if H is label-isomorphic to the subgraph of G induced by the vertices with labels in H.

Treewidth. A tree decomposition of a graph G is a pair (T,B) consisting of a tree T and
a family B = {Bt}t∈V (T) of sets Bt ⊆ V (G), called bags, satisfying the following three
conditions: (1) V (G) =

⋃
t∈V (T) Bt, (2) for every edge uv of G, there exists a node t of T

such that u, v ∈ Bt, (3) for t1, t2, t3 ∈ V (T), Bt1 ∩Bt3 ⊆ Bt2 whenever t2 is on the path from
t1 to t3 in T . The width of a tree decomposition (T,B) is max{|Bt| − 1 : t ∈ V (T)}. The
treewidth of G is the minimum width over all tree decompositions of G. A tree decomposition
(T,B = {Bt}t∈V (T)) is nice if T is a rooted tree with root node r, and every node t of T is
one of the following: (1) a leaf node: t is a leaf of T and Bt = ∅; (2) an introduce node: t
has exactly one child t′ and Bt = Bt′ ∪ {v} for some v ∈ V (G) \Bt′ ; (3) a forget node: t has
exactly one child t′ and Bt = Bt′ \ {v} for some v ∈ Bt′ ; or (4) a join node: t has exactly
two children t1 and t2, and Bt = Bt1 = Bt2 .

Boundaried graphs. For a graph G and S ⊆ V (G), the pair (G,S) is a boundaried graph.
When G is a d-labeled graph, we simply say that (G,S) is a d-labeled graph. Two d-labeled
graphs (G,S) and (H,S) are said to be compatible if V (G−S)∩V (H−S) = ∅, G[S] = H[S],
and G and H have the same labels on S. For two compatible d-labeled graphs (G,S) and
(H,S), the sum of two graphs (G,S)⊕ (H,S) is the graph obtained from the disjoint union of

É. Bonnet, N. Brettell, O. Kwon, and D. Marx 7:5

G and H by identifying each vertex in S and removing an edge if multiple edges appear. We
denote by LG ⊕ LH the function from V ((G,S)⊕ (H,S)) to [d] where for v ∈ V (G) ∪ V (H),
(LG⊕LH)(v) = LG(v) if v ∈ V (G) and (LG⊕LH)(v) = LH(v) otherwise. For two unlabeled
boundaried graphs, we define the sum in the same way, but ignoring the label condition.

A block of a graph is non-trivial if it has at least two vertices. For a boundaried graph
(G,S), a block B of G is called an S-block if it contains an edge of G[S]. Note that every
non-trivial block of G[S] is contained in a unique S-block of G because two distinct blocks
share at most one vertex. Let (G,S) be a boundaried graph. We define Aux(G,S) as the
bipartite boundaried graph with bipartition (C1, C2) and boundary C2 such that (1) C1 is the
set of components of G, and C2 is the set of components of G[S], (2) for C1 ∈ C1 and C2 ∈ C2,
C1C2 ∈ E(Aux(G,S)) if and only if C2 is contained in C1. When (G,S) and (H,S) are two
compatible d-labeled graphs, Aux(G,S)⊕Aux(H,S) is well-defined, as G and H have the
same set of components on S. For a set S and a set X of subsets of S, let Inc(S,X) be the
bipartite graph on the bipartition (S,X) where for v ∈ S and X ∈ X , v and X are adjacent
in Inc(S,X) if and only if v ∈ X. For a boundaried graph (G,S), when P is the partition of
the set C of components of G[S] such that two components of G[S] are in the same part if
and only if they are in the same component of G, we denote by Inc(C,P) ∼ Aux(G,S).

3 Lemmas about S-blocks

We present several lemmas regarding S-blocks. For a biconnected d-labeled graph Q, a
d-labeled graph (G,S) is block-wise partially label-isomorphic to Q if every S-block B of G is
partially label-isomorphic to Q. For two compatible d-labeled graphs (G,S) and (H,S) with
labelings LG and LH respectively, we say (G,S) and (H,S) are block-wise Q-compatible if
1. (G,S) and (H,S) are block-wise partially label-isomorphic to Q; and
2. for every non-trivial block B of G[S], letting B1 and B2 be the S-blocks of G and H

that contain B, respectively, LG(NB1(V (B)) \ S) ∩ LH(NB2(V (B)) \ S) = ∅, and, for
`1 ∈ LG(NB1(V (B)) \ S) and `2 ∈ LH(NB2(V (B)) \ S), the vertices in Q with labels `1
and `2 are not adjacent.

We describe sufficient conditions for when, given a chordal labeled graph Q, the sum
of two given labeled graphs (G,S) and (H,S), each partially label-isomorphic to Q, is also
partially label-isomorphic to Q.

I Proposition 6. Let Q be a biconnected d-labeled chordal graph. Let (G,S) and (H,S)
be two block-wise Q-compatible d-labeled graphs such that Aux(G,S)⊕Aux(H,S) has no
cycles. Then (G,S)⊕ (H,S) is block-wise partially label-isomorphic to Q.

We use the following essential property of chordal graphs.

I Lemma 7. Let F be a connected graph and let Q be a connected chordal graph. Let
µ : V (F)→ V (Q) be a function such that for every induced path p1 · · · pm in F of length at
most two, µ(p1), . . . , µ(pm) are pairwise distinct and µ(p1) · · ·µ(pm) is an induced path of Q.
Then µ is an injection and preserves the adjacency relation.

I Lemma 8. Let (G,S) and (H,S) be two compatible d-labeled graphs such that Aux(G,S)⊕
Aux(H,S) has no cycles. (1) If F is an S-block of (G,S)⊕ (H,S) and uv is an edge in F ,
then uv is contained in some S-block of G or H. (2) Suppose each S-block of G or H is
chordal. If F is an S-block of (G,S)⊕ (H,S) and uvw is an induced path in F such that u
and w are not contained in the same S-block of G or H, then v ∈ S, and there is an induced
path q1q2 · · · q` from u = q1 to w = q` in F − v such that each qi is a neighbor of v.

IPEC 2017

7:6 Generalized Feedback Vertex Set Problems on Bounded-Treewidth Graphs

Proof of Proposition 6. Let F be an S-block of (G,S)⊕(H,S). Let LG and LH be labelings
of G and H, respectively, and let L := LG ⊕ LH . We may assume |V (F)| > 3. By Lemma 8,
every edge of F is contained in some S-block of G or H. Thus, for uv ∈ E(F), we have L(u) 6=
L(v) and the vertices with labels L(u) and L(v) are adjacent in Q. Moreover, since (G,S)
and (H,S) are block-wise partially label-isomorphic to Q, we have L(V (F)) ⊆ LQ(V (Q)).
Let µ : V (F)→ V (Q) such that for each v ∈ V (F), L(v) = LQ(µ(v)).

To apply Lemma 7, it is sufficient to prove that if uvw is an induced path in F , then
L(u) 6= L(w) and µ(u)µ(v)µ(w) is an induced path in Q. Since (G,S) and (H,S) are
block-wise partially label-isomorphic to Q, if all of u, v, w are contained in an S-block of G
or H, then it follows from the given condition. We may assume u and w are not contained
in the same S-block of G or H. Then by (2) of Lemma 8, v ∈ S, and there is an induced
path q1q2 · · · q` from u = q1 to w = q` in F − v such that each qi is a neighbor of v.

We show that for i ∈ {1, . . . , ` − 2}, L(qi), L(qi+1), L(qi+2) are pairwise distinct, and
µ(qi)µ(qi+1)µ(qi+2) is an induced path of Q. If all of qi, qi+1, qi+2 are contained in G or H,
then they are contained in the same S-block as v, and the claim follows. We may assume qi

and qi+2 are in distinct graphs of G− S and H − S. Then the S-block containing qi, qi+1, v

and the S-block containing qi+1, qi+2, v share the edge qi+1v. Since (G,S) and (H,S) are
block-wise Q-compatible, L(qi) 6= L(qi+2) and µ(qi) is not adjacent to µ(qi+2) in Q.

We verify that µ(q1)µ(q2) · · ·µ(q`) is an induced path of Q. Suppose this is false, and
choose i1, i2 ∈ {1, 2, . . . , `} with i2 − i1 > 1 and minimum i2 − i1 such that µ(qi1) is adjacent
to µ(qi2) in Q. By minimality, µ(qi1) · · ·µ(qi2−1) and µ(qi1+1) · · ·µ(qi2) are induced paths
and have length at least 2. Thus µ(qi1) · · ·µ(qi2) is an induced cycle of length at least 4,
contradicting the assumption that Q is chordal. Therefore, µ(q1)µ(q2) · · ·µ(q`) is an induced
path of Q, and, in particular, L(u) 6= L(w) and µ(u) and µ(w) are not adjacent in Q, as
required. By Lemma 7, we conclude that F is partially label-isomorphic to Q. J

Using Lemma 8, we can also prove the following.

I Lemma 9. Let A be a set, let (G,S) and (H,S) be two compatible d-labeled graphs, and let
B be the set of non-trivial blocks in G[S]. Suppose g : B → A is a function where each S-block
of G or H is chordal, Aux(G,S) ⊕ Aux(H,S) has no cycles, and for every B1, B2 ∈ B
where B1 and B2 are contained in an S-block of G or H, g(B1) = g(B2). If F is an S-block
of (G,S)⊕ (H,S) and B1, B2 ∈ B where V (B1), V (B2) ⊆ V (F), then g(B1) = g(B2).

I Proposition 10. Let (G,S) and (H,S) be two compatible d-labeled graphs such that
every S-block of (G,S)⊕ (H,S) is chordal. Then (G,S)⊕ (H,S) is chordal if and only if
Aux(G,S)⊕Aux(H,S) has no cycles.

Proof. We briefly sketch the proof of one direction. Suppose that Aux(G,S)⊕Aux(H,S)
has a cycle C1 − A1 − C2 − A2 − · · · − Cn − An − C1 where C1, . . . , Cn are components
of G[S]. For each i ∈ {1, . . . , n}, let Pi be the shortest path from Ci to Ci+1 in Ai, and
let vi, wi be the end vertices of Pi where vi ∈ V (Ci) and wi ∈ V (Ci+1). Let Qi be the
shortest path from wi to vi+1 in Ci+1. We may assume n > 3; it is easy when n = 2. Then
v1P1 −Q1 −P2 −Q2 − · · · −Pn −Qnv1 is a cycle in (G,S)⊕ (H,S), but is not necessarily a
chordless cycle. We claim that it contains a chordless cycle. Let x be the vertex following
v2 in P2, and let y be the vertex preceding wn in Pn. Take a shortest path P from x

to y in the path y − Qn − P1 − Q1 − x. Clearly P has length at least 2, as x and y are
contained in distinct connected components of G or H. Also, every internal vertex of P has
no neighbors in the other path of the cycle v1P1 −Q1 − P2 −Q2 − · · · − Pn −Qnv1 between
x and y. So, if we take a shortest path P ′ from x to y along the other part of the cycle
v1P1 −Q1 − P2 −Q2 − · · · − Pn −Qnv1, then P ∪ P ′ is a chordless cycle. J

É. Bonnet, N. Brettell, O. Kwon, and D. Marx 7:7

4 Bounded P-Block Vertex Deletion

We prove Theorem 1. We first focus on S-blocks of boundaried graphs (G,S). For each
non-trivial block of G[S], we guess its final shape, as a d-labeled biconnected graph, and
store the labelings of the vertices and their neighbors in the S-block of G containing it.
Collectively, we call this information a characteristic of (G,S). Using characteristics, we
control S-blocks in (G,S)⊕ (H,S), where (H,S) is a compatible d-labeled graph. By the
previous step, we may assume that every S-block of (G,S)⊕ (H,S) is in P and has at most
d vertices. Note that (G,S)⊕ (H,S) still may have a chordless cycle. By Proposition 10, if
we assume that every S-block of (G,S)⊕ (H,S) is in P, then (G,S)⊕ (H,S) is chordal if
and only if Aux(G,S) ⊕Aux(H,S) has no cycles. So, instead of keeping Aux(G,S), we
store the corresponding partition of the set of components of G[S].

For convenience, we fix an integer d > 2 and a class P of graphs that is block-hereditary,
recognizable in polynomial time, and consists of only chordal graphs. Let Ud be the set
of all d-labeled biconnected P-block graphs, where each H in Ud has labeling LH . For a
boundaried graph (G,S), we denote by Block(G,S) the set of all non-trivial blocks in G[S].

For a d-labeled graph (G,S) with a labeling L, a characteristic of (G,S) is a pair (g, h)
of functions g : Block(G,S) → Ud and h : Block(G,S) → 2[d] satisfying the following, for
each B ∈ Block(G,S) and the unique S-block H of G containing B,
1. (label-isomorphic condition) H is partially label-isomorphic to g(B);
2. (coincidence condition) for every B′ ∈ Block(G,S) with V (B′) ⊆ V (H), g(B′) = g(B);
3. (neighborhood condition) h(B) = L(NH(V (B)) \ S); and
4. (complete condition) for every w where w ∈ V (H) \ S or {w} = V (H) ∩ V (C) for some

component C of G[S], H[NH [w]] is label-isomorphic to g(B)[Ng(B)[z]] where z is the
vertex in g(B) with label L(w).

We say that the sum (G,S)⊕ (H,S) respects (g, h) if for each B ∈ Block(G,S), the S-block
of (G,S) ⊕ (H,S) containing B is label-isomorphic to g(B). The following is the main
combinatorial result regarding characteristics.

I Theorem 11. Let (G1, S), (G2, S), (H,S) be d-labeled P-block graphs such that each
(Gi, S) is compatible with (H,S), (G1, S) and (G2, S) have the same characteristic (g, h),
and Aux(G2, S)⊕Aux(H,S) has no cycles. If (G1, S)⊕ (H,S) is a d-labeled P-block graph
that respects (g, h), then (G2, S)⊕ (H,S) is a d-labeled P-block graph that respects (g, h).

Proof. We show (G2, S)⊕ (H,S) respects (g, h). Choose a non-trivial block B of G2[S], let
Q := g(B), let F be the S-block of (G2, S)⊕ (H,S) containing B, LF be the function from
V (F) to [d] that sends each vertex to its label from G2 or H, and LQ be the labeling of Q.

We claim that F is label-isomorphic to Q. We regard F as the sum of (F ∩G2, V (F)∩S)
and (F ∩H,V (F)∩ S) and verify the conditions of Proposition 6. Using Lemma 9, for every
B′ ∈ Block(G2, S) with V (B′) ⊆ V (F), g(B′) = Q. We also observe that Aux(F ∩G2, SF)⊕
Aux(F ∩H,SF) has no cycles as Aux(G2, S) ⊕Aux(H,S) has no cycles. Since (g, h) is
a characteristic of (G2, S) and (G1, S) ⊕ (H,S) respects (g, h), we can confirm that both
F ∩G and F ∩H are block-wise partially label-isomorphic to Q. The second condition of
being block-wise Q-compatible follows from the fact that (G1, S) and (G2, S) have the same
characteristic (g, h). Thus, F ∩G2 and F ∩H are block-wise Q-compatible, and this implies
that F is partially label-isomorphic to Q by Proposition 6. By the ‘complete condition’ of a
characteristic, we can show that LQ(V (Q)) ⊆ LF (V (F)), so F is label-isomorphic to Q.

Lastly, we can confirm that (G2, S) ⊕ (H,S) is a d-labeled P-block graph by showing
that every non S-block of (G2, S)⊕ (H,S) is fully contained in G2 or H. We can argue this
using the fact that (G2, S)⊕ (H,S) is chordal, which is implied by Proposition 10. J

IPEC 2017

7:8 Generalized Feedback Vertex Set Problems on Bounded-Treewidth Graphs

Proof of Theorem 1. We obtain a nice tree decomposition (T,B = {Bt}t∈V (T)) of G with
root node r and width at most 5w + 4 in time O(cw · n) for some constant c using the
approximation algorithm by Bodlaender et al. [3]. For t ∈ V (T), let Gt be the subgraph of
G induced by the union of all bags Bt′ where t′ is a descendant of t. Let Comp(t,X) be the
set of all components of G[Bt \X], and Part(t,X) be the set of all partitions of Comp(t,X).

For each node t of T , X ⊆ Bt, and a function L : Bt \X → [d], we define F(t,X, L) as the
set of all pairs (g, h) consisting of functions g : Block(t,X)→ Ud and h : Block(t,X)→ 2[d].
We say that (g, h) is valid, if (1) L is a d-labeling of G[Bt\X], (2) for each B ∈ Block(t,X), B
is partially label-isomorphic to g(B), and (3) for each B ∈ Block(t,X), L(V (B)) ∩ h(B) = ∅.
For i ∈ {0, 1, . . . , k} and (g, h) ∈ F(t,X, L), let c[t, (X,L, i, (g, h))] be the family of all
partitions X ∈ Part(t,X) satisfying the following property: there exist S ⊆ V (Gt) \Bt with
|S| = i and a d-labeling L′ of Gt−(X∪S) where (1) L = L′|Bt\X , (2) Gt−(X∪S) is a P-block
graph, (3) (g, h) is a characteristic of (Gt − (X ∪ S), Bt \X), and (4) Inc(Comp(t,X),X) ∼
Aux(Gt − (X ∪ S), Bt \X). Such a pair (S,L′) is a partial solution with respect to X .

The main idea is that instead of fully computing c[t,M] for M = (X,L, i, (g, h)), we
recursively enumerate a set r[t,M] that may represent partial solutions for c[t,M]. Formally,
for a subset r[t,M] ⊆ c[t,M], we denote r[t,M] ≡ c[t,M] if for every X ∈ c[t,M] and a
partial solution (S,L′) with respect to X and Sout ⊆ V (G) \V (Gt) where G− (S ∪X ∪Sout)
is a d-labeled P-block graph respecting (g, h), there exists X1 ∈ r[t,M] and a partial solution
(S′, L′′) with respect to X1 such that G−(S′∪X∪Sout) is a d-labeled P-block graph respecting
(g, h). By the definition of r[t,M], the problem is a Yes-instance if and only if there exists
(X,L, i, (g, h)) for the root node r with |X|+ i 6 k such that r[r, (X,L, i, (g, h)] 6= ∅.

Whenever we update r[t,M], we confirm that |r[t,M]| 6 w · 2w−1. This will be the
application of the representative set technique developed by Bodlaender et al. [2]. For a
set S and a set A of partitions of S, a subset A′ of A is called a representative set if for
every X1 ∈ A and every partition Y of S where Inc(S,X1 ∪ Y) has no cycles, there exists a
partition X2 ∈ A′ such that Inc(S,X2 ∪ Y) has no cycles.

I Proposition 12. Given a family A of partitions of a set S, one can output a representative
set of A of size at most |S| · 2|S|−1 in time AO(1)2O(|S|).

We sketch how to update families r[t,M] when t is an introduce node with child node t′. We
may assume (g, h) is valid, otherwise c[t,M] = ∅.

Let v be the vertex in Bt \ Bt′ . If v ∈ X, then Gt − X = Gt′ − (X \ {v}) and
Bt \X = Bt′ \ (X \ {v}). Thus, we can set r[t,M] := r[t′, (X \ {v}, L, i, (g, h))]. We assume
v /∈ X, and let Lres := L|Bt′\X . For (g, h) ∈ F(t,X, L), a pair (g′, h′) ∈ F(t′, X, Lres)
is called the restriction of (g, h) if (1) for B1 ∈ Block(t′, X) and B2 ∈ Block(t,X) with
V (B1) ⊆ V (B2), g′(B1) = g(B2), and if v ∈ V (B2), then every vertex in g′(B1) with label
in h′(B1) is not adjacent to the vertex in g′(B1) with label L(v), (2) for B1 ∈ Block(t′, X)
and B2 ∈ Block(t,X) with V (B1) ⊆ V (B2) and v /∈ V (B2), h′(B1) = h(B2), and (3) for
B2 ∈ Block(t,X) containing v, h(B2) =

⋃
B1∈Block(t′,X),V (B1)⊆V (B2) h(B1).

I Claim 13. For X ∈ Part(t,X), X ∈ c[t,M] if and only if there exist a restriction (g′, h′)
of (g, h) and Y ∈ c[t′, (X,Lres, i, (g′, h′))] such that (1) v has neighbors on at most one
component in each part of Y, and (2) if v has at least one neighbor in G[Bt \X], then X is
the partition obtained from Y by, for parts Y1, . . . , Ym of Y containing components having a
neighbor of v, removing all of Y1, . . . , Ym and adding a part that consists of all components
of G[Bt \X] not contained in parts of Y \ {Y1, . . . , Ym}; and otherwise, X = Y ∪ {{v}}.

É. Bonnet, N. Brettell, O. Kwon, and D. Marx 7:9

We update r[t,M] as follows. Set K := ∅. For a pair of functions (g′, h′), we test
whether (g′, h′) is a restriction of (g, h). Assume (g′, h′) is a restriction of (g, h). For each
Y ∈ r[t′, (X,Lres, i, (g′, h′))], we check the two conditions for (g′, h′) and Y in Claim 13, and
if they are satisfied, then add the set X described in Claim 13 to K; otherwise, skip it. The
whole procedure can be done in time 2O(wd2). After we do this for all possible candidates, we
take a representative set of K using Proposition 12, and assign the resulting set to r[t,M].

We claim that r[t,M] ≡ c[t,M]. Let Gout := G− (V (Gt) \Bt), X ∈ c[t,M], and (S,L′)
be a partial solution with respect to X , and suppose there exists Sout ⊆ V (G) \ V (Gt) where
(Gt − (X ∪ S), Bt \X)⊕ (Gout − (X ∪ Sout), Bt \X) is a d-labeled P-block graph respecting
(g, h). Every (Bt′ \X)-block of G−(S∪X∪Sout) is chordal as such a block is a (Bt\X)-block
of G− (S∪X∪Sout). Since G− (S∪X∪Sout) is chordal, by Proposition 10, Aux(Gt′− (X∪
S), Bt′ \X)⊕Aux(Gout− (X ∪Sout), Bt′ \X) has no cycles. Let Mres := (X,Lres, i, (g′, h′)).
As r[t′,Mres] ≡ c[t′,Mres], there exist Y ∈ r[t′,Mres] and a partial solution (S′, L′′) with
respect to Y such that Inc(Comp(t′, X),Y) ∼ Aux(Gt′ − (X ∪ S′), Bt′ \X) has no cycles.
By Theorem 11, G− (S′ ∪X ∪ Sout) is a d-labeled P-block graph respecting (g, h).

By the procedure, X1 where Inc(Comp(t,X),X1) ∼ Aux(Gt− (X ∪S′), Bt \X) is added
to K. And there exist X2 ∈ r[t,M] and a partial solution (S′′, L′′′) with respect to X2 such
that G− (S′′ ∪X ∪ Sout) is a d-labeled P-block graph. Thus, r[t,M] ≡ c[t,M].

Total running time. We denote |V (G)| by n. Note that the number of nodes in T is O(wn).
For fixed t ∈ V (T), there are at most 2w+1 possible choices for X ⊆ Bt, and for fixed
X ⊆ Bt, there are at most dw+1 possible functions L. Furthermore, the size of F(t,X, L) is
bounded by 2O(wd2). Thus, there are O(n · k ·max(2, d)w+1 · 2O(wd2)) tables. In summary,
the algorithm runs in time O(n · k ·max(2, d)w+1) · 2O(wd2) · k = 2O(wd2)k2n. J

5 Lower bound for fixed d

We showed that Bounded P-Component Vertex Deletion and Bounded P-Block
Vertex Deletion admit single-exponential time algorithms parameterized by treewidth,
whenever P is a class of chordal graphs. We now establish that, assuming the ETH, this is
no longer the case when P contains a graph that is not chordal.

In the k× k Independent Set problem, one is given a graph G = ([k]× [k], E) over the
k2 vertices of a k-by-k grid. We denote by 〈i, j〉 with i, j ∈ [k] the vertex of G in the i-th row
and j-th column. The goal is to find an independent set of size k in G that contains exactly
one vertex in each row. The Permutation k × k Independent Set problem is similar
but with the additional constraint that the independent set should also contain exactly one
vertex per column.

I Theorem 14. If P contains the cycle graph on ` > 4 vertices, then Bounded P-
Component Vertex Deletion, or Bounded P-Block Vertex Deletion, is not
solvable in time 2o(w log w)nO(1) on graphs of treewidth at most w even for fixed d = `, unless
the ETH fails.

Proof. To prove this theorem, we reduce from Permutation k×k Independent Set which,
like Permutation k × k Clique, cannot be solved in time 2o(k log k)kO(1) unless the ETH
fails [13]. Let G = ([k]× [k], E) be an instance of Permutation k × k Independent Set.
We assume that ∀h, i, j ∈ [k] with h 6= i, 〈i, j〉〈h, j〉 ∈ E. Adding these edges does not change
the Yes- and No-instances, but has the virtue of making Permutation k×k Independent
Set equivalent to k×k Independent Set. We also assume that ∀h, i, j ∈ [k], 〈i, j〉〈i, h〉 /∈ E,

IPEC 2017

7:10 Generalized Feedback Vertex Set Problems on Bounded-Treewidth Graphs

Se1 He1 Se2 He2 Se3 He3 Sem Hem

Figure 1 A high-level schematic of G′ and G′′. The Heis only differ by a constant number of
edges (in red/light gray) that encode their edge ei of G.

since at most one of 〈i, j〉 and 〈i, h〉 can be in a given solution. Let m := |E| = O(k4) be the
number of edges of G.

Outline. We build two graphs G′ = (V ′, E′) and G′′ = (V ′, E′′) with treewidth at most
(3d+4)k+6d−5 = O(k), and ((3d−2)k2 +2k)m vertices, where the following are equivalent:
1. G has an independent set of size k with one vertex per row of G.
2. There is a set S ⊆ V ′ of size at most (3d − 2)k(k − 1)m such that each connected

component of G′ − S has size at most d and belongs to P.
3. There is a set S ⊆ V ′ of size at most (3d− 2)k(k − 1)m such that each block of G′′ − S

has size at most d and belongs to P.
The overall construction of G′ and G′′ will display m almost copies of the encoding of an
edgeless G arranged in a cycle. Each copy embeds one distinct edge of G. The point of
having the information of G distilled edge by edge in G′ and G′′ is to control the treewidth.
This general idea originates from a paper of Lokshtanov et al. [12].

Construction. We first describe G′. As a slight abuse of notation, a gadget (and, more
generally, a subpart of the construction) may refer to either a subset of vertices or to an
induced subgraph. For each e = 〈ie, je〉〈i′e, j′e〉 ∈ E, we detail the internal construction of
He and Se of Figure 1 and how they are linked to one another. Each vertex v = 〈i, j〉 of G
is represented by a gadget He(v) on 3d− 2 vertices in G′: a path on d− 3 vertices whose
endpoints are ve

−a and ve
−b, an isolated vertex ve

+, and two disjoint cycles of length d. Observe
that if d = 4, then ve

−a and ve
−b is the same vertex. We add all the edges between He(〈i, j〉)

and He(〈i, j′〉) for i, j, j′ ∈ [k] with j 6= j′. We also add all the edges between He(〈ie, je〉)
and He(〈i′e, j′e〉). We call He the graph induced by the union of every He(v), for v ∈ V (G).
The row/column selector gadget Se consists of a set Se

r of k vertices with one vertex re
i for

each row index i ∈ [k], and a set Se
c of k vertices with one vertex ce

j for each column index
j ∈ [k]. The gadget Se forms an independent set of size 2k. We arbitrarily number the edges
of G: e1, e2, . . . , em. For each h ∈ [m] and v = 〈i, j〉 ∈ V , we link veh

−a to reh
i (the row index

of v) and veh

−b to ceh
j (the column index of v). We also link, for every h ∈ [m− 1], veh

+ to reh+1
i

and to ceh+1
j , and vem

+ to re1
i and to ce1

j . That concludes the construction (see Figure 2). To
obtain G′′ from G′, we add the edges ceh

j ceh
j+1 for every h ∈ [m] and j ∈ [k− 1]. We ask for a

deletion set S of size s := (3d− 2)k(k − 1)m.

Treewidth of G′ and G′′. For any edge e ∈ E, we set H(e) := He(〈ie, je〉) ∪He(〈i′e, j′e〉).
For any i ∈ [m− 1], we set S̃i := Se1 ∪ Sei ∪ Sei+1 , and S̃m := Se1 ∪ Sem . For each e ∈ E,
and i ∈ [k], He(i) denotes the union of the He(v) for all vertices v of the i-th row. Here is a
path decomposition of G′ and G′′:

S̃1 ∪H(e1) ∪He1(1)→ S̃1 ∪H(e1) ∪He1(2)→ . . .→ S̃1 ∪H(e1) ∪He1(k)→
...

S̃m ∪H(em) ∪Hem(1)→ S̃m ∪H(em) ∪Hem(2)→ . . .→ S̃m ∪H(em) ∪Hem(k).

É. Bonnet, N. Brettell, O. Kwon, and D. Marx 7:11

row index column index
Se1

r Se1
c

He1

row index column index
Se2

r Se2
c

He2

...

Figure 2 The overall picture of G′ and G′′ with k = 3. Dotted edges are subdivided d− 4 times;
if d = 4, they are simply edges. Dashed edges are subdivided d− 5 times; if d = 4, the two endpoints
are in fact a single vertex. Edges between two boxes link each vertex of one box to each vertex of
the other box. The gray edges in the column selectors S

eh
c are only present in G′′.

As, for any h ∈ [m], |S̃h| 6 6k, |H(eh)| = 2(3d− 2), and |Heh(i)| 6 (3d− 2)k for any i ∈ [k],
the size of a bag is bounded by maxh∈[m],i∈[k] |S̃h∪H(eh)∪Heh(i)| 6 6k+2(3d−2)+(3d−2)k =
(3d+ 4)k + 6d− 4.

Correctness. If there is an independent set I of size k in G, a solution to a Bounded
P-Component Vertex Deletion or Bounded P-Block Vertex Deletion instance
can be obtained by deleting from each He every He(v) such that v /∈ I.

We show that 2 ⇒ 1 and 3 ⇒ 1. We assume that there is a set S ⊆ V ′ of size at
most s such that all the blocks of G′′ − S (resp. G′ − S) have size at most d. We note
that this corresponds to assuming condition 3 (resp. a weaker assumption than condition 2)
holds. We show that there are at most 3d − 2 vertices of He(i) remaining in G′′ − S (or
G′ − S). Assume, for the sake of contradiction, that He(i) − S contains at least 3d − 1
vertices. Observe that He(i) − S cannot contain at least one vertex from three distinct
He(u), He(v), and He(w) (with u, v and w in the i-th row of G), since then He(i) − S
would be 2-connected (and of size > d). For the same reason, He(i) − S cannot contain
at least two vertices in He(u) and at least two vertices in another He(v). Therefore, the
only way of fitting 3d− 1 vertices in He(i)− S is the 3d− 2 vertices of an He(u) plus one
vertex from some other He(v). But then, this vertex of He(v) would form, together with
one Cd of He(u), a 2-connected subgraph of G′′ − S (or G′ − S) of size d+ 1. Now, we know
that |He(i) ∩ S| > (3d− 2)(k − 1). As there are precisely mk sets He(i) in G′ (and they are
disjoint), it further holds that |He(i)∩ S| = (3d− 2)(k− 1), since otherwise S would contain
strictly more than s = (3d− 2)k(k − 1)m vertices. Thus, He(i)− S contains exactly 3d− 2
vertices. By the previous remarks, He(i)− S can only consist of the 3d− 2 vertices of the
same He(u) or 3d − 3 vertices of He(u) plus one vertex from another He(v). In fact, the
latter case is not possible, since the vertex of He(v) would form, with at least one remaining
Cd of the 3d − 3 vertices of He(u), a 2-connected subgraph of G′′ − S (or G′ − S) of size
d+ 1. This is why we needed two disjoint Cds in the construction instead of just one. So far,
we have proved that, assuming condition 2 or condition 3 holds, for any e ∈ E and i ∈ [k],
He(i)∩S = He(vi,e) for some vertex vi,e of the i-th row of G, and for any e ∈ E, Se ∩S = ∅.

IPEC 2017

7:12 Generalized Feedback Vertex Set Problems on Bounded-Treewidth Graphs

In what follows, we show that vi,e does not depend on e. Formally, we want to show that
there is a vi such that, for any e ∈ E, vi,e = vi. Observe that it is enough to derive that, for
any h ∈ [m], vi,eh

= vi,eh+1 (with em+1 = e1). Let j ∈ [k] (resp. j′ ∈ [k]) be the column of
vi,eh

(resp. vi,eh+1) in G. We first assume condition 2 holds. For any h ∈ [m], vi,eh
eh
+ , reh+1

i ,
c

eh+1
j′ , ceh+1

j plus the path P eh+1
vi,eh+1

(between vi,eh+1
eh+1
−a and vi,eh+1

eh+1
−b) induces a path (in

particular, a connected subgraph) of size d+ 1 in G′′ − S, unless j = j′ (with em+1 = e1).
Therefore, j = j′. As vi,eh

and vi,eh+1 have the same column j and the same row i in G,
vi,eh

= vi,eh+1 . Showing the same property under 3 is done similarly. We can now safely
define vi := vi,e and conclude by proving that {v1, v2, . . . , vk} is a clique. J

References

1 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Optimal algorithms for hitting
(topological) minors on graphs of bounded treewidth. CoRR, abs/1704.07284, 2017.
arXiv:1704.07284.

2 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth.
Inf. Comput., 243:86–111, 2015. doi:10.1016/j.ic.2014.12.008.

3 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Loksh-
tanov, and Michal Pilipczuk. A ck n 5-approximation algorithm for treewidth. SIAM J.
Comput., 45(2):317–378, 2016. doi:10.1137/130947374.

4 Édouard Bonnet, Nick Brettell, O-joung Kwon, and Dániel Marx. Parameterized vertex
deletion problems for hereditary graph classes with a block property. In Graph-Theoretic
Concepts in Computer Science, volume 9941 of Lecture Notes in Comput. Sci., pages 233–
244, 2016.

5 Édouard Bonnet, Nick Brettell, O-joung Kwon, and Dániel Marx. Generalized feedback ver-
tex set problems on bounded-treewidth graphs: chordality is the key to single-exponential
parameterized algorithms. ArXiv e-prints, 2017. arXiv:1704.06757.

6 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

7 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25,
2011, pages 150–159. IEEE Computer Society, 2011. doi:10.1109/FOCS.2011.23.

8 Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer,
Heidelberg, fourth edition, 2010. doi:10.1007/978-3-642-14279-6.

9 Pål Grønås Drange, Markus S. Dregi, and Pim van ’t Hof. On the computational complexity
of vertex integrity and component order connectivity. Algorithmica, 76(4):1181–1202, 2016.
doi:10.1007/s00453-016-0127-x.

10 Jessica Enright and Kitty Meeks. Deleting edges to restrict the size of an epidemic: A
new application for treewidth. In Zaixin Lu, Donghyun Kim, Weili Wu, Wei Li, and
Ding-Zhu Du, editors, Combinatorial Optimization and Applications - 9th International
Conference, COCOA 2015, Houston, TX, USA, December 18-20, 2015, Proceedings, volume
9486 of Lecture Notes in Computer Science, pages 574–585. Springer, 2015. doi:10.1007/
978-3-319-26626-8_42.

11 Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Efficient computation of represen-
tative sets with applications in parameterized and exact algorithms. In Chandra Chekuri,
editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algo-

http://arxiv.org/abs/1704.07284
http://dx.doi.org/10.1016/j.ic.2014.12.008
http://dx.doi.org/10.1137/130947374
http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://dx.doi.org/10.1109/FOCS.2011.23
http://dx.doi.org/10.1007/978-3-642-14279-6
http://dx.doi.org/10.1007/s00453-016-0127-x
http://dx.doi.org/10.1007/978-3-319-26626-8_42
http://dx.doi.org/10.1007/978-3-319-26626-8_42

É. Bonnet, N. Brettell, O. Kwon, and D. Marx 7:13

rithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 142–151. SIAM,
2014. doi:10.1137/1.9781611973402.10.

12 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs on
bounded treewidth are probably optimal. In Dana Randall, editor, Proceedings of the
Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San
Francisco, California, USA, January 23-25, 2011, pages 777–789. SIAM, 2011. doi:10.
1137/1.9781611973082.61.

13 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential parameter-
ized problems. In Dana Randall, editor, Proceedings of the Twenty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA,
January 23-25, 2011, pages 760–776. SIAM, 2011. doi:10.1137/1.9781611973082.60.

IPEC 2017

http://dx.doi.org/10.1137/1.9781611973402.10
http://dx.doi.org/10.1137/1.9781611973082.61
http://dx.doi.org/10.1137/1.9781611973082.61
http://dx.doi.org/10.1137/1.9781611973082.60

On the Parameterized Complexity of Red-Blue
Points Separation∗†

Édouard Bonnet1, Panos Giannopoulos2, and Michael Lampis3

1 Middlesex University, Department of Computer Science, London, UK
edouard.bonnet@dauphine.fr

2 Middlesex University, Department of Computer Science, London, UK
p.giannopoulos@mdx.ac.uk

3 Université Paris-Dauphine, PSL Research University, CNRS, LAMSADE,
Paris, France
michail.lampis@dauphine.fr

Abstract
We study the following geometric separation problem: Given a set R of red points and a set B
of blue points in the plane, find a minimum-size set of lines that separate R from B. We show
that, in its full generality, parameterized by the number of lines k in the solution, the problem is
unlikely to be solvable significantly faster than the brute-force nO(k)-time algorithm, where n is
the total number of points. Indeed, we show that an algorithm running in time f(k)no(k/ log k),
for any computable function f , would disprove ETH. Our reduction crucially relies on selecting
lines from a set with a large number of different slopes (i.e., this number is not a function of k).

Conjecturing that the problem variant where the lines are required to be axis-parallel is FPT
in the number of lines, we show the following preliminary result. Separating R from B with a
minimum-size set of axis-parallel lines is FPT in the size of either set, and can be solved in time
O∗(9|B|) (assuming that B is the smallest set).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases red-blue points separation, geometric problem, W[1]-hardness, FPT al-
gorithm, ETH-based lower bound

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.8

1 Introduction

We study the parameterized complexity of the following Red-Blue Separation problem:
Given a set R of red points and a set B of blue points in the plane and a positive integer
k, find a set of at most k lines that together separate R from B (or report that such a set
does not exist). Separation here means that each cell in the arrangement induced by the
lines in the solution is either monochromatic, i.e., contains points of one color only, or empty.
Equivalently, R is separated from B if every straight-line segment with one endpoint in R
and the other one in B is intersected by at least one line in the solution. Note here that we
opt for strict separation that is, no point in R∪ B is on a separating line. Let n := |R ∪ B|.

The variant where the separating lines sought must be axis-parallel will be simply referred
to as Axis-Parallel Red-Blue Separation.

∗ Research partially supported by EPSRC grant EP/N029143/1.
† A full version of the paper is available at https://arxiv.org/abs/1710.00637.

© Édouard Bonnet, Panos Giannopoulos, and Michael Lampis;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 8; pp. 8:1–8:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.8
https://arxiv.org/abs/1710.00637
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 On the Parameterized Complexity of Red-Blue Points Separation

Apart from being interesting in its own right, Red-Blue Separation is also directly
motivated by the problem of univariate discretization of continuous variables in the context of
machine learning [4, 8]. For example, its two-dimensional version models problem instances
with decision tables of two real-valued attributes and a binary decision function. The lines
to be found represent cut points determining a partition of the values into intervals and one
opts for a minimum-size set of cuts that is consistent with the given decision table. The
problem is also known as minimum linear classification; see [9] for an application in signal
processing. For the case where k = 1 and k = 2, Red-Blue Separation is solvable in
O(n) and O(n logn) time respectively [7]. When k is part of the input, it is known to be
NP-hard [10] and APX-hard [2] even for the axis-parallel variant. The latter also admits a
2-approximation [2].

Results. We first show that Red-Blue Separation is W[1]-hard in the solution size k and
that it cannot be solved in f(k)no(k/ log k) time (for any computable function f) unless ETH
fails. Our reduction is from Structured 2-Track Hitting Set, see Section 2, which
has been recently used for showing hardness for another classical geometric optimization
problem [1]. Then, in Section 3, we show that Axis-Parallel Red-Blue Separation is
FPT in the size of either of R and B. Our algorithm is simple and is based on reducing the
problem to 9|B|+2 instances of 2-SAT (assuming, w.l.o.g., that B is the smallest set).

Related work. The following monochromatic points separation problem has also been
studied: Given a set of points in the plane, find a smallest set of lines that separates every
point from every other point in the set (i.e., each cell in the induced arrangement must
contain at most one point). It has been shown to be NP-hard [5], APX-hard [2] and, in the
axis-parallel case, to admit a 2-approximation [2]. Very recently, the problem has been also
shown to admit an OPT logOPT-approximation [6]. Note here that it is trivially FPT in
the number of lines, as the number of cells in the arrangement of k lines is at most Θ(k2).
For results on several other related separation problems, see [7, 3].

2 Parameterized hardness for arbitrary slopes

We show that Red-Blue Separation is unlikely to be FPT with respect to the number
of lines k and establish that, unless the ETH fails, the nO(k)-time brute-force algorithm is
almost optimal. We reduce from Structured 2-Track Hitting Set [1], see below.

For positive integers x, y, let [x] be the set of integers between 1 and x, and [x, y] the set
of integers between x and y. For a totally ordered (finite) set X, an X-interval is any subset
of X of consecutive elements. In the 2-Track Hitting Set problem, the input consists
of an integer k, two totally ordered ground sets A and B of the same cardinality, and two
sets SA of A-intervals and SB of B-intervals. The elements of A and B are in one-to-one
correspondence φ : A→ B and each pair (a, φ(a)) is called a 2-element. The goal is to decide
if there is a set S of k 2-elements such that the first projection of S is a hitting set of SA,
and the second projection of S is a hitting set of SB. We will refer to the interval systems
(A,SA) and (B,SB) as track A and track B.

Structured 2-Track Hitting Set (S2-THS for short) is the same problem with
color classes over the 2-elements and a restriction on the one-to-one mapping φ. Given two
integers k and t, A is partitioned into (C1, C2, . . . , Ck) where Cj = {aj1, a

j
2, . . . , a

j
t} for each

j ∈ [k]. A is ordered: a1
1, a

1
2, . . . , a

1
t , a

2
1, a

2
2, . . . , a

2
t , . . . , a

k
1 , a

k
2 , . . . , a

k
t . We define C ′j := φ(Cj)

and bji := φ(aji) for all i ∈ [t] and j ∈ [k]. We now impose that φ is such that, for each

É. Bonnet, P. Giannopoulos, and M. Lampis 8:3

j ∈ [k], the set C ′j is a B-interval. That is, B is ordered: C ′σ(1), C
′
σ(2), . . . , C

′
σ(k) for some

permutation on [k], σ ∈ Sk. For each j ∈ [k], the order of the elements within C ′j can be
described by a permutation σj ∈ St such that the ordering of C ′j is: b

j
σj(1), b

j
σj(2), . . . , b

j
σj(t).

In what follows, it will be convenient to see an instance of S2-THS as a tuple I = (k ∈
N, t ∈ N, σ ∈ Sk, σ1 ∈ St, . . . , σk ∈ St,SA,SB), where SA is a set of A-intervals and SB is a
set of B-intervals. We denote by [aji , a

j′

i′] (resp. [bji , b
j′

i′]) all the elements a ∈ A (resp. b ∈ B)
such that aji ≤A a ≤A a

j′

i′ (resp. bji ≤B b ≤B bj
′

i′).
If one deconstructs S2-THS, one finds intervals, a permutation of the color classes

σ, and k permutations σj ’s of the elements within the classes. Intervals, thanks to their
geometric nature, can be realized by two red points which have to be separated from a
diagonal of blue points (see Figure 2), while permutation σ, being on k elements, can be
designed straightforwardly without blowing-up the size of the solution (see Figure 3). For
these gadgets, we would like to force the chosen lines to be axis-parallel. We obtain this by
surrounding them with long alleys made off long red paths parallel and next to long blue
paths (see Figure 1). The main challenge is to get the permutations σj ’s on t elements. To
attain this, we match a selected line Li (corresponding to an element of index i ∈ [t]) to a
specific angle αi, which leads to the intended position of the element of index σj(l) = i, for
some l ∈ [t] (see Figure 4). Note that the depicted gadget actually links the element of index
i to elements equal to or smaller than the element indexed at σj(l). By combining two of
these gadgets we can easily obtain only the intended position (see Figure 5).

I Theorem 1. Red-Blue Separation is W [1]-hard w.r.t. the number of lines k, and
unless ETH fails, cannot be solved in time f(k)no(k/ log k) for any computable function f .

Proof. We reduce from S2-THS, which is W [1]-hard and has the above lower bound under
ETH [1]. Let I = (k ∈ N, t ∈ N, σ ∈ Sk, σ1 ∈ St, . . . , σk ∈ St,SA,SB) be an instance of
S2-THS. We build an instance J = (R,B, 6k + 14) of Red-Blue Separation such that I
is a YES-instance for S2-THS if and only if R and B can be separated with 6k + 14 lines.

The points in R and B will have rational coordinates. More precisely, most points
will be pinned to a z-by-z grid where z is polynomial in the size of I. The rest will have
rational coordinates with nominator and denominator polynomial in z. Let Γ be the z-by-z
grid corresponding to the set of points with coordinates in [z] × [z]. We call horizontally
(resp. vertically) consecutive points a set of points of Γ with coordinates (a, y), (a+1, y), . . . (b−
1, y), (b, y) for a, b, y ∈ [z] and a < b (resp. (x, a), (x, a+ 1), . . . (x, b− 1), (x, b) for a, b, x ∈ [z]
and a < b). We denote those points by C(a→ b, y) (resp. C(x, a→ b)).

Long alley gadgets. In the gadgets encoding the intervals (see next paragraph), we will
need to restrict the selected separating lines to be almost horizontal or almost vertical. To
enforce that, we use the long alley gadgets. A horizontal long alley gadget is made of `
horizontally consecutive red points C(a→ a+ `− 1, y) and ` horizontally consecutive blue
points C(a → a + ` − 1, y′) with a, a + ` − 1, y 6= y′ ∈ [z] (see Figure 1a). A vertical long
alley is defined analogously. Long alleys are called so because `� |y − y′| thus, separating
the red points from the blue points of a horizontal (resp. vertical) long alley with a budget
of only one line, requires the line to be almost horizontal (resp. vertical). The use of the
long alleys will be the following. Let G be a gadget for which we wish the separating lines to
be almost horizontal or vertical. Say, G occupies a g-by-g subgrid of Γ (with g � z). We
place four long alley gadgets to the left, top, right, and bottom of G: horizontal ones to
the left and right, vertical ones to the top and bottom (as depicted in Figure 1c). The left
horizontal (resp. bottom vertical) long alley starts at the x-coordinate (resp. y coordinate)

IPEC 2017

8:4 On the Parameterized Complexity of Red-Blue Points Separation

(a) A horizontal long alley. Separating this
subset of points with one line requires the line
to be almost horizontal.

G

(b) Zoom in gadget G. The horizontal (resp.
vertical) lines are entering the gadget to the
left (resp. at the top) and exiting it to the
right (resp. at the bottom) with almost
the same y-coordinates (resp. x-coordinates).
Possible lines are thin dotted while an actual
choice of two lines is shown in bold.

G

(c) We put four long alleys to the left, top,
right, and bottom of gadget G where we want
the selected lines to be almost axis parallel.

Figure 1 The long alley gadget and its use in combination with another gadget.

of 1, whereas the right horizontal (resp. top vertical) long alley ends at the x-coordinate
(resp. y coordinate) of z; see Figure 5, where the long alleys are depicted by thin rectangles.

Note that we will not surround each and every gadget of the construction by four long
alleys. At some places, it will indeed be crucial that the lines can have arbitrary slopes.

Interval gadgets and encoding track A. The elements of A are represented by a diagonal
of kt−1 blue points. More precisely, we add the points (xA0 , yA0), (xA0 +4, yA0 +4), (xA0 +8, yA0 +
8), . . . , (xA0 + 4kt− 8, yA0 + 4kt− 8) to B for some offset xA0 , yA0 ∈ [z] that we will specify later.
We think those points as going from the first (xA0 , yA0) to the last (xA0 + 4kt− 8, yA0 + 4kt− 8).
An almost horizontal (resp. vertical) line just below (resp. just to the left of) the s-th blue
point of this diagonal translates as selecting the s-th element of A in the order fixed by ≤A.
The almost horizontal (resp. vertical) line just above (resp. just to the right of) the last blue
point corresponds to selecting the kt-th, i.e., last, element of A.

For each interval [aji , a
j′

i′] in SA (for some i, i′ ∈ [k], j, j′ ∈ [t]), that is, the interval
between the s := ((j − 1)t+ i)-th and the s′ := ((j′ − 1)t+ i′)-th elements of A, we add two
red points: one at (xA0 + 4s − 7, yA0 + 4s′ − 5) and one at (xA0 + 4s′ − 5, yA0 + 4s − 7) (see
Figure 2a for one interval gadget and Figure 2b for track A). Let R([aji , a

j′

i′]) be this pair of
red points. Informally, one red point has its projection along the x-axis just to the left of
the s-th blue point and its projection along the y-axis just above the s′-th blue point; the
other one has its projection along the x-axis just to the right of the s′-th blue point and its
projection along the y-axis just below the s-th blue point. For technical reasons, we add,
for every j ∈ [k], the pair R([aj1, a

j
t]) encoding the interval formed by all the elements of the

j-th color class of A. Adding these intervals to SA does not constrain the problem more.
We surround this encoding of track A, which we denote by G(A), with 4k long alleys,

whose width is 4t − 4, from x-coordinates xA0 + 4(j − 1)t − 2 to xA0 + 4jt − 6 for vertical
alleys (from y-coordinates yA0 + 4(j − 1)t − 2 to yA0 + 4jt − 6 for horizontal alleys). We

É. Bonnet, P. Giannopoulos, and M. Lampis 8:5

a1
a2
a3
a4
a5
a6
a7
a8
a9

(a) The interval gadget corresponding to
[a1, a9] = {a1, . . . , a9}. In thin dotted, the
mapping between elements and potential lines.
In bold, the choice of the lines corresponding
to picking a4. If one wants to separate these
points with two lines, one almost horizontal
and one almost vertical, the choice of the
former imposes the latter.

(b) The interval gadgets put together. A rep-
resentation of one track. Separating these
points with the fewest axis-parallel lines re-
quires taking the horizontal and vertical lines
associated to a minimum hitting set.

Figure 2 To the left, one interval. To the right, several put together to form one track.

alternate red-blue1 alleys and blue-red alleys for two contiguous alleys so that there is no
need to separate one from the other. We start with a red-blue alley for the left horizontal and
top vertical groups of alleys, and with a blue-red alley for the right horizontal and bottom
vertical. This last detail is not in any way crucial but permits the construction to be defined
uniquely and consistently with the choices of Figure 1c. This, together with the description
of long alleys in the previous paragraph, fully defines the 4k long alleys (see Figure 5).

The general intention is that in order to separate those two red points from the blue
diagonal with a budget of two almost axis-parallel lines, one should take two lines (one almost
horizontal and one almost vertical) corresponding to the selection of the same element of
A which hits the corresponding interval. In particular, taking two almost horizontal lines
(resp. two almost vertical lines) is made impossible due to those vertical (resp. horizontal) long
alleys. More precisely, the intended pairs of lines separating the red points R([aji , a

j′

i′]) from
the blue diagonal are of the form x = xA0 + 4ŝ−6, y = yA0 + 4ŝ−6 for ŝ ∈ [s, s′]. Furthermore,
the 4k long alleys force a pair of (almost) horizontal and vertical lines corresponding to one
element per color class to be taken.

For any s ∈ [tk], i ∈ [t], and j ∈ [k], such that s = (j− 1)t+ i, let HL(s) be the horizontal
line of equation y = yA0 + 4s − 6 and VL(s) the vertical line of equation x = xA0 + 4s − 6.
They correspond to selecting aji , the i-th element in the j-th color class of A. The goal of the
remaining gadgets is to ensure that when the lines HL(s) and VL(s) (with s = (j − 1)t+ i)
are chosen, additional lines corresponding to selecting element bji of B have to be expressly
selected. We define HL := {HL(s) | s ∈ [tk]} and VL := {VL(s) | s ∈ [tk]}.

Encoding inter-class permutation σ. To encode the permutation σ of the k color classes
of I, we allocate a square subgrid of the same dimension as the space used for the encoding
of track A, roughly 4tk-by-4tk, and we place it to the right of A right as depicted in Figure 5.
This square subgrid is naturally and regularly split into k2 smaller square subgrids of equal
dimension (roughly 4t-by-4t). This decomposition can be seen as the k color classes of

1 i.e., for horizontal (resp. vertical) alleys, the red points are above (resp. to the left of) the blue points.

IPEC 2017

8:6 On the Parameterized Complexity of Red-Blue Points Separation

1

2

3

4

5

3 1 4 5 2

Figure 3 Encoding permutation σ = 31452. The choices within the five color classes are
transferred from almost horizontal lines to almost vertical ones. This way, we obtain the desired
reordering of the color classes.

I, or equivalently, the k-by-k crossing2 obtained by drawing horizontal lines between two
contiguous horizontal long alleys and vertical lines between two contiguous vertical long
alleys. We only put points in exactly one smaller square subgrid per column and per row.
Let σ := σ(1)σ(2) . . . σ(k) and Cell(a, b) be the smaller square subgrid in the a-th row and
b-th column of the k-by-k crossing. For each j ∈ [k], we put in Cell(j, σ(j)) a diagonal of
t− 1 blue points and two red points corresponding to the full interval [aj1, a

j
t] (see Figure 3).

We denote by G(σ) those sets of red and blue points in the encoding of σ. We surround G(σ)
by 2k vertical long alleys similar to the 2k long alleys surrounding G(A). Notice that G(σ)
and G(A) share the same 2k surrounding horizontal long alleys.

The way the gadget G(σ) works is quite intuitive. Given k choices of horizontal lines
originating from a separation in G(A) and a budget of k extra lines for the separation within
G(σ), the only option is to copy with the vertical line the choice of the horizontal line. It
results in a vertical propagation of the initial choices accompanied by the desired reordering
of the color classes. The vertical line matching the choice of HL(s) in the corresponding cell
of G(σ) is denoted by VL′(s). Let VL′ := {VL′(s) | s ∈ [tk]}. Note that corresponding lines
in VL and in VL′ have a different order from left to right.

Encoding of the intra-class permutations σj ’s and track B. If the encoding of permutation
σ is conceptually simple, the number of intended lines separating red and blue points in G(σ)
has to be linear in the number of permuted elements. Since we wish to encode a permutation
σj (for every j ∈ [k]) on t elements, we cannot use the same mechanism as it would blow-up
our parameter dramatically and would not result in an FPT reduction.

For the gadget G≈v(σj) partially encoding the permutation σj , we will crucially use the
fact that separating lines can have arbitrary slopes. Slightly to the right (at distance at
least `) of the vertical line bounding the right end of G(σ) and far in the south direction,
we place a gadget G(B) encoding track B similarly to the encoding of track A up to some
symmetry that we will make precise later. We also incline the whole encoding of track B with
a small, say 5, degree angle, in a way that its top-left corner is to the right of its bottom-left
corner. We round up the real coordinates that this rotation incurs to rationals at distance

2 we use this term informally to avoid confusion with what we have been calling grids so far.

É. Bonnet, P. Giannopoulos, and M. Lampis 8:7

less than, say, (kt)−10. We denote by v̂ the distance along the y-axis between G(σ) and G(B).
Eventually v̂ will be chosen much larger than Θ(kt), which is the size of G(A), G(B), G(σ).
Below G(σ) at a distance 2v̂ along the y-axis, we place gadgets G≈v(σj)’s; from left to right,
we place G≈v(σσ(1)), G≈v(σσ(2)), . . . , G≈v(σσ(k)) such that for every i ∈ [k], G≈v(σσ(i)) falls
below the i-th column of the k-by-k crossing of G(σ). Gadgets G≈v(σj)’s are represented by
small round shapes in Figure 5. Notwithstanding what is drawn on the overall picture, the
G≈v(σj)’s can be all placed at the same y-coordinates. Let y1 := y0 − 2v̂ (the exact value of
y1 is not crucial). Also, we represent track B slanted by a 45 degree angle, instead of the
actual 5 degree angle, to be able to fit everything on one page and convey the main ideas
of the construction. In general, for the figure to be readable, the true proportions are not
respected. The size of every gadget is much smaller than the distance between two different
groups of gadgets, so that every line entering a gadget traverses it in an axis-parallel fashion.

Gadget G≈v(σj) is built as follows. For each i ∈ [t] and j ∈ [k], we draw a fictitious
points pji corresponding to the intersection of a close to vertical line corresponding to picking
element bji in gadget G(B) with the bottom end of G(B). From left to right, the pji ’s have
the same order as the bji ’s in (B,≤B). For every s = (j − 1)t+ i (with j ∈ [k] and i ∈ [t]),
let qji be the point of y-coordinate y1 on the line VL′(s). We define the line SL(s) as going
through pji and qji , and set SL := {SL(s) | s ∈ [tk]}. We add two blue points just to the left
and just to the right of qji at distance ε := z−10. We add two blue points on line SL(s), one
to the left of qji and one to the right of qji . Finally, we place two red points for each G≈v(σj)
at the bottom-left and top-right of the gadget (see Figure 4). In the figure, the lines in SL
form a large angle with the y-axis, while in fact they are quite close to a 5 degree angle and
behave like relatively vertical3 lines within G(B) (since G(B) is also inclined by 5 degrees).

Assuming that line VL′(s = (j − 1)t + i) has been selected, it can be observed from
Figure 4 that separating the red points from the blue points in G≈v(σj) with a budget of
one additional line requires to take a line crossing VL′(s) at (or very close to) qji and with a
higher or equal slope to SL(s). It is not quite what we wanted. What we achieved so far is
only to link the choice of aji with the choice of an element smaller or equal to bji . We will
use a symmetry G≈h(σj) of gadget G≈v(σj) to get the other inequality so that choosing some
lines corresponding to aji actually forces to take some lines corresponding to bji .

We add a gadget G(id) below the G≈v(σj)’s. G(id) is obtained by mimicking G(σ)
for the identity permutation. We surround G(id) by 2k new horizontal long alleys. The
horizontal line matching the choice of VL′(s) in G(id) is denoted by HL′(s). At a distance
ĥ ≈ v̂/(cos(5◦) · sin(5◦)) to the right of G(id) we place gadgets G≈h(σj)’s analogously to the
G≈v(σj)’s. The fictitious points p′ji , p

j
i used for the construction of the lines SL′(s), SL(s)

are located at the right end of G(B) and ordered as B when read from top to bottom. The
difference in the construction of G(B) from the B-intervals (compared to G(A) from the
A-intervals) is that the diagonal of blue points go from the top-left corner to the bottom-right
corner (instead of bottom-left to top-right). Similarly to our previous definitions, we define
HL′ := {HL′(s) | s ∈ [tk]} and SL′ := {SL′(s) | s ∈ [tk]}. The choice of ĥ makes the lines of
SL′ form a close to 5 degree angle with the x-axis and so enter G(B) relatively horizontal.

Putting the pieces together. We already hinted at how the different gadgets are combined
together. We choose the different typical values so that: kt � v̂ < ĥ � z. For instance,
v̂ := 100((kt)2 + 1) and z := 100(ĥ5 + 1). An important and somewhat hidden consequence of
z being much greater than v̂ and ĥ is that the bulk of the construction (say, all the gadgets

3 By that, we mean that the lines are close to vertical for axes aligned with the encoding of track B.

IPEC 2017

8:8 On the Parameterized Complexity of Red-Blue Points Separation

1 2 3 4 5 6 7 8 123 45 67 8

Figure 4 Half-encoding of permutation σj = 73285164 of the j-th color class. Observe that the
choice of the, say, sixth almost horizontal candidate line only forces to take the slanted line depicted
in bold or a line having the same intersection with the almost horizontal line but a larger slope. For
the sake of legibility, the angles between the vertical lines and the slanted lines are exaggerated.

which are not long alleys) occupies a tiny space in the top-left corner of Γ. We set the length
` of the long alleys to 100(k2 + 1). Point (xA0 , yA0) corresponds to the bottom-left corner of
the square in bold with a diagonal close to the overall top-left corner.

Slightly outside grid Γ we place 14 pairs of long alleys (7 horizontal and 7 vertical) of
width, say, (kt)−10 to force the 14 lines in bold in Figure 5. Note that, on the figure, we do
not explicitly represent those long alleys but only the lines they force. The purpose of those
new long alleys is to separate groups of gadgets from each other. Going clockwise all around
the grid Γ, we alternate red-blue and blue-red alleys so that two consecutive long alleys do
not need a further separation. The even parity of those alleys make this alternation possible.
Each one of the 64 faces that those 14 lines define is called a super-cell.

The four lines in bold surrounding G(B) are close (say, at distance 10t) to the north,
south, west, and east ends of that gadget. On the four super-cells adjacent to the super-cell
containing G(B), shown in gray, we place 4k long alleys each of width 4t− 4, analogously to
what was done for G(A), but slanted by a 5 degree angle (as the gadget G(B)). As for track
A, these alleys force, relatively to the orientation of G(B), one close to horizontal line and
one close to vertical line per color class. The long alleys are placed just next to G(B) and
are not crossed by any other candidate lines.

This finishes the construction. We ask for a separation of R and B with 6k + 14 lines.
The correctness of the reduction is deferred to the long version of the paper. J

3 FPT Algorithm Parameterized by Size of Smaller Set

We present a simple FPT algorithm for Axis-Parallel Red-Blue Separation para-
meterized by min{|R|, |B|}. In the following, w.l.o.g., we assume that B is the smaller
set.

I Theorem 2. An optimal solution of Axis-Parallel Red-Blue Separation can be
computed in O(n logn+ n|B|9|B|) time.

É. Bonnet, P. Giannopoulos, and M. Lampis 8:9

Figure 5 The overall picture. The thin rectangles are long alleys, the bold large squares with a
diagonal are the encoding of track A, in the top left corner, and track B, slanted by 45 degrees (for
the sake of fitting the whole construction on one page; in reality the encoding of B is only inclined
by 5 degrees). The smaller squares with a diagonal are simple interval gadgets and the small round
gadgets are half-encodings of the permutations σi’s. The four super-cells filled with grey contain 4k
long alleys slanted by 5 degrees. The (super-)cells filled with red and blue match their color, and
are monochromatic once the 14 lines imposed by the outermost long alleys have been selected.

We first give a high-level description of the algorithm. It begins by subdividing the plane
into at most |B|+ 1 vertical strips, each consisting of the area “between” two horizontally
successive blue points, and at most |B| + 1 horizontal strips, each consisting of the area
“between” two vertically successive blue points (see Figure 6a). Since each strip can contain
only red points in its interior, an optimal solution uses at most two lines inside a single
strip (Lemma 5(a)). We can therefore guess (by exhaustive enumeration) the number of
lines used in each strip in an optimal solution. This gives a running time of roughly 9|B|.
A second observation is that if an optimal solution uses two lines in a strip, these can be
placed as far away from each other as possible (Lemma 5(b)). To complete the solution
we must decide where to place the lines in strips that contain only one line of an optimal
solution. We consider every pair of blue and red points whose separation may depend on the
exact placement of these lines. The key idea is that the separation of two such points can
be expressed as a 2-CNF constraint. If the upcoming formal exposition seems a bit more
complicated than this informal idea, it is because we have to deal with points sharing the
same x- or y-coordinates.

IPEC 2017

8:10 On the Parameterized Complexity of Red-Blue Points Separation

pb

p

(a) The cell decomposition (solid lines), a guess of how
S intersects it (dashed lines), and an interesting cell
(in gray) for a point pb (bottom-right corner). The red
point p cannot be in the south-east quadrant of this
cell which translates to the 2-clause y2

p ∨ ¬x4
p. Indeed,

it should be that the horizontal line of S is below it or
that the vertical line is to its right.

p
p′

(b) Two consecutive red points in a
horizontal strip Rh(i). If the corres-
ponding line of S is below p, then it
is also below p′ which translates to
yi

p → yi
p′ .

p

p′

(c) Two consecutive red points in a
vertical strip Rv(j). If the correspond-
ing line of S is to the left of p, then it
is also to the left of p′ which translates
to xi

p → xi
p′ .

Figure 6 Illustration of the algorithm and the two kinds of clauses of the 2-SAT instance.

We now proceed to a formal description of our algorithm, beginning with some definitions.
For a point p ∈ R2, let p(x) and p(y) be its x-coordinate and y-coordinate, respectively. Also,
let X,Y be the sets of x, y coordinates of the points in B. In order to ease presentation later
on, with a slight terminology abuse, we add −∞,+∞ to both X and Y . Let X(i), Y (i) be
the respective i-th elements of these sets in increasing order with 0 6 i, and let k = |X| − 2
and l = |Y | − 2; k 6 |B| and l 6 |B|.

I Definition 3. The vertical strips are defined as Vi = {p ∈ R2 | X(i) 6 p(x) 6 X(i+ 1)}
for i ∈ [0, k].

I Definition 4. The horizontal strips are defined as Hi = {p ∈ R2 | Y (i) 6 p(y) 6 Y (i+ 1)}
for i ∈ [0, l].

The horizontal and vertical strips defined above essentially partition the plane into open
monochromatic (red) or empty regions, while the boundaries of the strips may contain both
red and blue points. As a result, we have the following properties of an optimal solution.

I Lemma 5. (a) An optimal solution of Axis-Parallel Red-Blue Separation contains
at most two lines in each horizontal or vertical strip. (b) In the case where a strip has two
lines, these lines can be assumed to be placed in a way such that all red points in the interior
of the strip lie between them.

Proof of Theorem 2. We describe an FPT algorithm which first guesses how many lines an
optimal solution uses in each strip and then produces a 2-SAT instance of size O(|B|n) in
order to check if its guess is feasible. We assume that we have access to two lists containing
the input points sorted lexicographically by their (x, y) and (y, x) coordinates.

Let S be some optimal solution. We first guess how many lines of S are in each horizontal
and each vertical strip. Since, by Lemma 5, S contains at most two lines per strip, and there

É. Bonnet, P. Giannopoulos, and M. Lampis 8:11

are l + 1 6 |B| + 1 horizontal strips and k + 1 6 |B| + 1 vertical strips, there are at most
3|B|+1 possibilities to guess from for each direction thus, O(9|B|) in total.

In what follows, we assume that we have fixed how many lines of S are in each strip. We
give an algorithm deciding in polynomial time if such a specification gives a feasible solution.
Since a specification fully determines the number of lines of a solution, the algorithm simply
goes through all specifications and selects one with minimum cost among all feasible ones.

We produce a 2-SAT instance, which will be satisfiable if and only if a given specification
is feasible. We first define the variables: for each horizontal strip Hi that contains exactly
one line from S and for each red point p ∈ Hi, we define a variable yip. Its informal meaning
is “the line of S in Hi is below point p”. When p lies on the upper (lower) boundary of Hi, yip
is set to true (false) by default. Similarly, for each vertical strip Vj that contains exactly one
line from S and for each red point p ∈ Vj , we define a variable xjp. Its meaning is “the line of
S in Vj is to the left of p”. It is set to true (false) when p lies on the right (left) boundary of
Vj . We have constructed O(n) variables (at most four for each point of R).

Next, we construct 2-CNF clauses imposing the informal meaning described. For each
strip Hi that contains exactly one horizontal line from S and each pair of red points p, p′ ∈ Hi

that are consecutive in lexicographic (y, x) order, we add the clause (yip → yip′). We can skip
pairs that have a point lying on the upper or lower boundary of Hi as the corresponding
variable has been already set to true or false respectively and the clause is satisfied; see the
description in the previous paragraph. Similarly, for each strip Vj that contains exactly one
vertical line from S and each pair of red points p, p′ ∈ Vj that are consecutive in lexicographic
(x, y) order, we add the clause (xjp → xjp′); pairs that have a point lying on the left or right
boundary of Vj do not produce any clauses. Given any solution, we can construct from its
lines an assignment following the informal meaning described above that satisfies all clauses
added so far, while from any satisfying assignment we can find lines according to the informal
meaning. We call the O(n) clauses constructed so far the coherence part of our instance.

What remains is to add some further clauses to our instance to ensure also that the
solution is feasible, that is, it separates all pairs of red and blue points.

Consider a cell Cij = Hi ∩ Vj , where i ∈ [0, l] and j ∈ [0, k]. A red point p ∈ Cij is called
Cij-separable for a point pb ∈ B, if p can be separated from pb by a vertical or horizontal line
running through the interior of Cij . We will sometimes call p just separable when Cij and pb
are obvious from the context. We say that Cij is interesting for a point pb ∈ B if the following
conditions hold: (i) Cij contains at least one red point that is Cij-separable for pb; (ii) at
least one of Hi or Vj contains at most one horizontal or one vertical line from S respectively;
(iii) if X(j + 1) < pb(x) or pb(x) < X(j), then there is no vertical line from S in a strip
between pb and Vj ; and (iv) if Y (i+ 1) < pb(y) or pb(y) < Y (i), then there is no horizontal
line from S in a strip between pb and Hi. Note that even if Cij is interesting for pb, it may
contain a red point p that is already separated from pb by a line going through Cij : this
happens exactly when Hi or Vj contains two horizontal or vertical lines from S respectively
and p lies either in the interior of Cij or on its boundary but not on the same side of Hi

or Vj as pb. The motivation for these definitions is that the cells that are interesting for pb
contain exactly the red points that need to be separated from pb by lines going through the
cells and whose positions cannot be predetermined. We therefore have to add some clauses
to express these constraints.

For each pb ∈ B and each cell Cij that is interesting for pb we construct a clause for every
red point p ∈ Cij that is separable and not already separated from pb. Initially, the clause is
empty. If the specification says that there is exactly one line from S in Hi, we add to the
clause a literal as follows: if y(pb) > Y (i+ 1), we add ¬yip (meaning that the horizontal line

IPEC 2017

8:12 On the Parameterized Complexity of Red-Blue Points Separation

is above p, and hence separates p from pb); if y(pb) 6 Y (i), we add yip. Furthermore, if the
specification says that there is exactly one line from S in Vj , we add to the clause a literal as
follows: if x(pb) > X(i + 1), we add the literal ¬xjp; if x(pb) 6 X(i), we add xjp. Observe
that this process produces clauses of size at most two. It may produce an empty clause,
rendering the 2-SAT unsatisfiable, in the case where there is no line of S in Hi or Vj , but
this is desirable since in this case no feasible solution matches the specification. Note that we
have constructed O(|B||R|) clauses in this way (at most four for each pair of a blue with a
red point). Hence, the 2-SAT formula we have constructed has O(n) variables and O(|B|n)
clauses. Since 2-SAT can be solved in linear time, we obtain the promised running time.

To complete the proof we rely on the informal correspondence between assignments to
the 2-SAT instance and Axis-Parallel Red-Blue Separation solutions. If there exists
a solution that agrees with the guessed specification, this solution can easily be translated
to an assignment that satisfies the coherence part of the 2-SAT formula. Furthermore, for
any blue point pb and any separable and not already separated red point p in a cell Cij
that is interesting for pb, the solution must be placing at least one line going through Cij
in a way that separates pb from p (this follows from the fact that the cell is interesting).
Hence, the corresponding 2-SAT clauses are also satisfied. Conversely, given an assignment
to the 2-SAT instance, we construct an Axis-Parallel Red-Blue Separation solution
following the informal meaning of the variables. Note that for every blue point pb, every red
point is Cij-separable for pb for at least one cell Cij . For any cell Cij that is not interesting
for pb and contains at least one separable point, we have that either all red points in the
cell are separated from pb by lines outside the cell or all separable red points in the cell are
separated from pb by the four lines running through the cell. If Cij is interesting for pb, then
all separable (and not already separated) red points in the cell are separated from pb because
of the additional 2-SAT clauses we added in the second part of the construction. J

4 Open problems

The most intriguing open problem is settling the complexity of Axis-Parallel Red-Blue
Separation w.r.t. the number of lines. We conjecture it to be FPT. Other problems include
the complexity of Red-Blue Separation when the lines can have three different slopes
and of Axis-Parallel Red-Blue Separation in 3-dimensions.

Acknowledgements. We thank Sergio Cabello and Christian Knauer for fruitful discussions.

References

1 Édouard Bonnet and Tillmann Miltzow. Parameterized hardness of art gallery problems.
In Piotr Sankowski and Christos D. Zaroliagis, editors, 24th Annual European Symposium
on Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark, volume 57 of LIPIcs,
pages 19:1–19:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/
LIPIcs.ESA.2016.19.

2 G. Calinescu, A. Dumitrescu, H.J. Karloff, and P. Wan. Separating points by axis-parallel
lines. Int. J. Comput. Geometry Appl., 15(6):575–590, 2005.

3 O. Devillers, F. Hurtado, M. Mora, and C. Seara. Separating several point sets in the plane.
In Proc. of the 13th Canad. Conf. Comput. Geom., pages 81–84, 2001.

4 U.M. Fayyad and K.B. Irani. Multi-interval discretization of continuous-valued attributes
for classification learning. In Proc. of 13th Int. Joint Conf. on Artificial Intelligence, pages
1022–1029, 1993.

http://dx.doi.org/10.4230/LIPIcs.ESA.2016.19
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.19

É. Bonnet, P. Giannopoulos, and M. Lampis 8:13

5 R. Freimer, J.S.B. Mitchell, and C.D. Piatko. On the complexity of shattering using ar-
rangements. TR 91-1197, Dept. Comput. Sci., Cornell Univ., NY, 1991.

6 S. Har-Peled and M. Jones. On separating points by lines. arXiv:1706.02004v1, 2017.
7 Ferran Hurtado, Mercè Mora, Pedro A. Ramos, and Carlos Seara. Separability by two lines

and by nearly straight polygonal chains. Discrete Applied Mathematics, 144(1-2):110–122,
2004. doi:10.1016/j.dam.2003.11.014.

8 J. Kujala and T. Elomaa. Improved algorithms for univariate discretization of continuous
features. In Proc. of the 11th PKDD, volume 4702 of LNCS, pages 188–199, 2007.

9 B. Lu, H. Du, X. Jia, Y. Xu, and B. Zhu. On a minimum linear classification problem. J.
of Global Optimization, 35(1):103–109, 2006.

10 N. Megiddo. On the complexity of polyhedral separability. Discr. & Comput. Geom, 3:325–
337, 1988.

IPEC 2017

http://dx.doi.org/10.1016/j.dam.2003.11.014

Relativization and Interactive Proof Systems in
Parameterized Complexity Theory∗†

Ralph Christian Bottesch

QuSoft, CWI, Amsterdam, The Netherlands
bottesch@cwi.nl

Abstract
We introduce some classical complexity-theoretic techniques to Parameterized Complexity. First,
we study relativization for the machine models that were used by Chen, Flum, and Grohe (2005)
to characterize a number of parameterized complexity classes. Here we obtain a new and non-
trivial characterization of the A-Hierarchy in terms of oracle machines, and parameterize a famous
result of Baker, Gill, and Solovay (1975), by proving that, relative to specific oracles, FPT and
A[1] can either coincide or differ (a similar statement holds for FPT and W[P]). Second, we
initiate the study of interactive proof systems in the parameterized setting, and show that every
problem in the class AW[SAT] has a proof system with “short” interactions, in the sense that
the number of rounds is upper-bounded in terms of the parameter value alone.

1998 ACM Subject Classification F.1.2 Modes of Computation, F.1.3 Complexity Measures and
Classes

Keywords and phrases Parameterized complexity, Relativization, Interactive proofs

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.9

1 Introduction

In Parameterized Complexity Theory, the complexity of computational problems is measured
not only in terms of the size of the input, |x|, but also in terms of a parameter k which
measures some additional structure of the input. The main advantage of this approach is
that the class of problems which are considered computationally tractable can be expanded
considerably by requiring that the running time of algorithms be polynomial only in |x|,
while allowing some other dependence of the running time on the parameter value. Problems
that can be solved by such algorithms are said to be fixed-parameter tractable. To this relaxed
notion of computational tractability there corresponds a matching notion of intractability.

The complexity classes capturing parameterized intractability were originally defined as
closures, under suitably defined parameterized reductions, of specific problems that were
conjectured to not have fpt-algorithms (see [8], or the more recent [9]). This approach ensured
that most of these “hard” classes contained an interesting or somewhat natural complete
problem, and, in the case of W[1], produced a “web of reductions” similar to the one for
NP-complete problems in classical complexity.

However, defining complexity classes only via reductions to specific problems means that
the resulting classes may not have characterizations in terms of computing machines, or,
indeed, any natural characterizations except the definition. This in turn can mean that
many proof techniques from classical complexity are not usable in the parameterized setting,

∗ This work is supported by the ERC Consolidator Grant QPROGRESS 615307.
† A full version of the paper is available at https://arxiv.org/abs/1706.09391.

© Ralph C. Bottesch;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 9; pp. 9:1–9:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.9
https://arxiv.org/abs/1706.09391
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 Relativization and Interactive Proof Systems in Parameterized Complexity Theory

because they rely on different characterizations that do not apply to any one parameterized
complexity class. To give an example, in the proof of IP = PSPACE ([15], see also
[16]), both the definition of PSPACE in terms of space-bounded computation, and the
characterization of this class in terms of alternating polynomial-time computation are used.
In the parameterized world, this equivalence between space and alternating time seems to
break down [6], and parameterized interactive proof systems do not appear to have been
studied at all, so no similar theorem is known in this setting.

Surprisingly (given the way they were originally defined), many of the classes capturing
parameterized intractability turned out to have characterizations in terms of computing
machines: In three papers, Chen [5, 6, 7], Flum [5, 6, 7], and Grohe [6, 7] showed that certain
kinds of nondeterministic random access machines (RAMs) exactly define some important
parameterized classes:

W[P] and AW[P] are characterized by RAMs that can nondeterministically 1 guess
integers, but the number of guesses they can make throughout the computation is bounded
by a computable function of the parameter value of the input instance. We refer to this
as parameter-bounded nondeterminism (a term used similarly in [6]).
The classes of the A-Hierarchy, as well as AW[∗], are obtained by further restricting
the (alternating) nondeterminism of the machines to tail-nondeterminism, meaning that
the machines can only make nondeterministic guesses among the last h(k) steps of a
computation, where h is a computable function and k is the parameter.
Finally, the classes of the W-Hierarchy are characterized by tail-nondeterministic ma-
chines which are not allowed to access the guessed integers directly (they can make
nondeterministic decisions based on them, but not use them in arithmetic operations).

The main reason why the characterizations in [5, 6, 7] were given in terms of RAMs, rather
than Turing machines (TMs), is that a TM may need to traverse the entire used portion
of its tape in order to read a particular bit, so a tail-nondeterministic TM would not be
able to make use of its entire memory during the nondeterministic phase of the computation.
The classes W[P] and AW[P] also have characterizations in terms of TMs with restricted
nondeterminism [6], but we consistently use random access machines throughout this work.

The machine characterizations of some of the above-mentioned classes can be rewritten
in such a way that they strongly resemble definitions of some familiar classes from classical
complexity. For example, A[1] can be defined as the class of parameterized problems that
are decided by tail-nondeterministic RAMs in fpt-time, which at least formally looks like the
definition of NP. Similarly, W[P] can also be defined in a way that is similar to NP (using
parameter-bounded nondeterminism), the levels of the A-Hierarchy have characterizations
that match the definitions of the Σ-levels of the Polynomial Hierarchy, and AW[P] and AW[∗]
both correspond to AP (the class of problems that are decidable in alternating polynomial-
time). Given the similar definitions, it seems reasonable to expect that parameterized
complexity classes also inherit some properties from their classical counterparts. However,
replacing the machine model in a definition is a significant change, so it is by no means
obvious which theorems will still hold for a parameterized version of a complexity class.

Our goal in this paper is to show that having machine-based characterizations of pa-
rameterized complexity classes opens up a largely unexplored, but possibly very fruitful,
path toward understanding parameterized intractability. To that end we extend the work

1 Throughout this paper, nondeterminism will mean alternating nondeterminism with a number of
alternations that will be clear from the context. This should not cause any confusion, since simple
nondeterminism is just 1-alternating nondeterminism.

R. C. Bottesch 9:3

of Chen, Flum, and Grohe [5, 6, 7] in two directions: relativization and interactive proofs.
The key insight is that parameterized versions of these two concepts can be defined in such
a way that some important classical theorems can be recovered in this setting. The proofs
of our theorems follow along the same lines as their classical counterparts, with only some
technical obstacles to be overcome, but it is a remarkable fact that parameterized versions
of these proofs can be made to work at all: For example, it is not a priori clear whether
parameterized oracle computation can be even in principle defined in a way that makes the
A-Hierarchy have an oracle characterization that is similar to that of PH. We show, among
other things, that this is indeed the case, and furthermore, that the restrictions that must be
placed on the access to the oracle in order to obtain this result are quite natural (at least, in
the context of the machine characterization of A[1] from [7]).

1.1 Our results
Parameterized relativization. Theorems involving oracles have been given before in Pa-
rameterized Complexity, but it is almost always Turing machines that are endowed with
access to an oracle (see, for example, [13]). In order to relativize the hard parameterized
complexity classes for which machine characterizations are known, we define oracle RAMs
with the different forms of restricted nondeterminism mentioned above. It turns out that in
order for oracle access and nondeterminism to interact in a useful way, both of these features
must, roughly speaking, have the same restrictions (tail-nondeterministic machines should
have tail-restricted oracle access, etc.)2. We show that these restrictions lead to a natural
type of oracle access for each type of machine, by proving parameterized versions of two
fundamental results from classical complexity, both for the tail-nondeterministic and the
parameter-bounded version of nondeterministic RAMs.

First, we give a new characterization of the classes of the A-Hierarchy, in terms of oracle
machines (resembling the oracle characterization of the levels of the Polynomial Hierarchy
(see [3], Section 5.5)), by proving that

∀t ≥ 1 : A[1]Ot = A[t+ 1],

but only for a specific oracle Ot that is complete for A[t] (Theorem 13). We also explain
why tail-nondeterminism appears to be too weak to allow for this theorem to be proved for
an arbitrary A[t]-complete problem. The situation is much better when the nondeterminism
is only parameter-bounded, and we have (Theorem 16) that

∀t ≥ 1 : W[P]Σ
[P]
t = Σ[P]

t+1,

where Σ[P]
t (t ≥ 1) are the Σ-levels of the analogue of the Polynomial Hierarchy for the

machine model with parameter-bounded nondeterminism (so Σ[P]
1 = W[P]). We emphasize

that both of these theorems seem to hold only if the oracle A[1]- and W[P]-machines have
exactly the right restrictions placed on their oracle access, and even then, tail-nondeterminism
causes a number of non-trivial technical issues (see the proof of Theorem 13).

2 Placing restrictions on the access to an oracle is a fairly common practice even in classical complexity.
For example, the oracle tape of a LOGSPACE-machine is write-only, in order to allow the machine to
make polynomial-sized queries while preventing it from using the tape for computations that avoid the
space restriction. Another example can be found in [1], where, in order to prove that the statement
NEXP ⊂MIP algebrizes, the authors restrict machines that run in exponential time so that they can
only make oracle queries of polynomial size.

IPEC 2017

9:4 Relativization and Interactive Proof Systems in Parameterized Complexity Theory

Second, we recover a parameterized version of a well-known oracle separation result of
Baker, Gill, and Solovay [4], by showing (Theorem 14) that there exist parameterized oracles
A and B such that

FPTA = A[1]A and FPTB 6= A[1]B .

It is worth noting that here the FPT-machine may be given completely unrestricted access
to the oracle B, whereas the A[1]-machine only has tail-restricted access (which is the most
restricted form of oracle access we consider), so in some sense this separation is stronger
than expected. A similar theorem holds when replacing A[1] with W[P] (Theorem 18).

These results are, of course, only the first steps toward understanding relativization for
parameterized complexity classes beyond FPT. To illustrate the importance of investigating
relativization in this setting, let us briefly consider the long-standing open problem of proving
a parameterized version of Toda’s Theorem [17], which states that PH ⊆ PPP. It is not clear
which parameterized classes would be involved in such a theorem, but, presumably, P would
be replaced by FPT, which can easily be described in terms of Turing machines, so it should
be possible to at least state the theorem without further considerations about the type of
oracle access being used. Furthermore, it could be argued that since only the larger of the
two classes in the theorem statement is obtained via relativization, placing no restrictions on
the access to the oracle can only make the inclusion easier to prove. However, both Toda’s
original proof [17] and Fortnow’s simplified version of it [12] make heavy use of relativized
versions of classes such as BPP and PH, so following either one of these proofs would
involve relativized versions of parameterized counterparts of such classes. Our Theorems
13 and 16 only deal with oracle access and alternating nondeterminism, but this already
requires a careful balancing of the restrictions placed on both features. Toda’s Theorem, on
the other hand, involves an interplay between relativization, alternating nondeterminism,
randomization, and counting complexity, so it seems unlikely that a parameterized version
of it can be proved without a better understanding of parameterized relativization and its
relation to other complexity-theoretic concepts.

Interactive proof systems for parameterized complexity classes. The levels of the A-
Hierarchy were originally defined as fpt-closures ofmodel checking problems, where a relational
structure A and a first-order formula φ without free variables are given, and the task is to
decide whether A satisfies φ. In [7], model checking problems are used in a very interesting
way in the proof of the machine characterization of the classes A[t]: Specifically, a pair
(A, φ) is used to encode the computation of a tail-nondeterministic RAM, in a way that
is strongly reminiscent of how the computation of a nondeterministic TM is encoded as a
quantified Boolean formula in the proof of the Cook-Levin Theorem (see [3], Chap. 2). This
suggests that by generalizing classical techniques that involve quantified Boolean formulas,
it may be possible to apply them to parameterized complexity classes for which a model
checking problem is complete. In Section 4 we continue this line of thought by generalizing
arithmetization of quantified Boolean formulas (see [3], Section 8.3) to pairs of relational
structures and first-order formulas.

We also initiate the study of interactive proof systems in this setting. Using generalized
arithmetization, we show that all problems in AW[SAT] have proof systems with a number
of rounds depending only on the parameter value of the input instance (Theorem 19). The
goal (which, unfortunately, is not achieved here) is to precisely characterize either AW[∗]
or AW[P] in terms of IPs, as this would recover a parameterized version of the fact that
IP = AP, even without a notion of space that corresponds to alternation in the parameterized
setting. At the end of Section 4 we give a possible candidate for a characterization of AW[∗].

R. C. Bottesch 9:5

Note that theorem proofs and other details can be found in the full version of paper
(arXiv:1706.09391).

2 Preliminaries

We refer to [3] and to [11], respectively, for the necessary background in classical and
Parameterized Complexity. By N we mean the set of non-negative integers, and by N∗ the
set of finite sequences of non-negative integers.

2.1 Random access machines and parameterized complexity classes
We give only a general overview of RAMs, and refer to Section 2.6 of [14] for the details.
A random access machine is specified by its program (a finite sequence of instructions),
which operates on an infinite sequence of standard registers, r0, r1, . . ., that contain integers.
Instructions access registers either directly, by referencing their numbers, or indirectly, by
taking the number of a register to be the current content of another register (in other words,
the machine can access rri , i ∈ N). We follow [6] in assuming that the registers store only
non-negative integers. Except instructions which copy the contents of one register to another,
a RAM also has conditional and unconditional jump instructions, as well as instructions
which perform the operations addition, subtraction, and integer division by 2 (these suffice
to efficiently perform all arithmetic operations on signed integers). The input of a RAM is a
finite sequence of non-negative integers, each stored in a separate register, and we define the
problems solved by such machines accordingly.

I Definition 1. A parameterized problem Q is a subset of N∗ × N. When dealing with the
problem of deciding whether (x, k) ∈ N∗ × N is an element of Q, (x, k) is referred to as an
instance; the second element of such a pair is called the parameter.

I Remark 2. When an instance of a parameterized problem is given as input to a RAM, we
assume that the parameter is given in unary encoding, meaning that if the parameter value
is k ∈ N, then k registers, each containing the value 1, are used to encode the parameter
value. The size of x, the main part of the input, is taken as the sum of the sizes of the binary
encodings of the integers that make up x. A RAM can therefore efficiently convert between
a reasonable encoding using integers, and any reasonable encoding using a finite alphabet.

I Definition 3. A random access machine M is parameter-restricted if there is a computable
function f and a polynomial function p, such that on any input (x, k):

M terminates after executing at most f(k)p(|x|) instructions;
throughout any computation, the registers contain only numbers that are ≤ f(k)p(|x|).

The above definition replaces the “polynomial-time” restriction on the running time in
the classical setting, and is similar to the definition of “κ-restricted” in Chap. 6 of [11]. Note
that the second condition is a bound on the numbers stored in the registers, not on the
number of bits that would be needed for the binary encoding of these numbers.

The next definition is easily seen to be equivalent to the usual definition of FPT [11].

I Definition 4. We define FPT as the class of parameterized problems that are decidable
by parameter-restricted (deterministic) RAMs.

An alternating random access machine (ARAM) is a RAM with additional existential
and universal guess instructions, EXISTS and FORALL, both of which place a nondeter-
ministically chosen integer from the interval [0, r0] into r0 (the difference between the two

IPEC 2017

9:6 Relativization and Interactive Proof Systems in Parameterized Complexity Theory

instructions is in how the acceptance of the input is defined). We may assume that the
upper end of the range of each nondeterministic guess is the largest number that the machine
can store in its registers, given the input, because the machine can first guess a number in
the maximum range, and then trim the result by computing the remainder of a division
by the size of the intended range. For ARAMs, the notions of computation (on an input),
configuration, computation path, t-alternation, and acceptance/rejection of an input are
defined in the standard way (see [11], section 8.1, pp. 168-170). Following [7], we mean by
“t-alternating” that the first guess instruction is existential.

We give the definitions of some complexity classes in terms of nondeterministic RAMs.
These are not the original definitions, but characterizations proved in [6] and [7].

I Definition 5. A parameterized problem Q is in AW[P] [in W[P]] if it is decided by an
ARAM [a 1-alternating ARAM] A which, for some computable function h, on any input
(x, k), executes at most h(k) nondeterministic instructions on any computation path.

I Definition 6. An ARAM A is tail-nondeterministic if there is a computable function
g such that, on any input (x, k), A executes nondeterministic instructions only among
the last g(k) steps of any computation path. For every t ≥ 1, A[t] denotes the class of
parameterized problems that are decidable by parameter-restricted tail-nondeterministic
t-alternating ARAMs. AW[∗] denotes the class of parameterized problems that are decidable
by parameter-restricted tail-nondeterministic ARAMs.

An oracle (A)RAM or (A)RAM with access to an oracle is a machine with an additional
set of oracle registers that store non-negative integers, as well as instructions that copy the
contents of r0 to an arbitrary oracle register and vice-versa, and a QUERY instruction, which
queries the oracle with the contents of the oracle registers, and causes the register r0 to
contain the values 1 or 0 (representing the oracle’s answer). Note that we only work with
oracles that decide parameterized problems, and that the parameter of a query instance must
be encoded in unary (see Remark 2). Most previous results involving oracles in Parameterized
Complexity place the following restriction on oracle machines. We will consider additional
restrictions to oracle access in the next section.

I Definition 7. An oracle (A)RAM A has balanced access to an oracle if there is a computable
function g such that, on input (x, k), any query (y, k′) made to the oracle, on any computation
path, satisfies k′ ≤ g(k).

2.2 Relational structures and first-order formulas
A relational vocabulary τ is a set of pairs of symbols and positive integers, called relational
symbols and arities, respectively. A relational structure A with vocabulary τ is a set containing:
a set A, called the universe of A, and for each pair (s, r) ∈ τ , a relation Rs ⊆ Ar. We only
use relational structures with finite universes and finite vocabularies, so we assume that
A = {0, . . . , n}, n ∈ N. A first-order formula φ with vocabulary τ is constructed in the same
way as a quantified Boolean formula, except that the atomic formulas are not variables, but
expressions of the form x1 = x2 or Rsx1 . . . xr, where x1, . . . , xr are variables and (s, r) ∈ τ .

Whenever a pair (A, φ) is given, it is assumed implicitly that A and φ share the same
relational vocabulary. We say that A satisfies φ if φ is true when all atomic formulas are
evaluated based on the relations in A and all variables are taken as ranging over A.

We define some important classes of first-order formulas with relational vocabularies. For
every t ∈ N, let Σt be the set of all first-order formulas of the form

∃x1,1 . . . ∃x1,k1∀x2,1 . . . ∀x2,k2 Qxt,1 . . . Qxt,kt
: ψ(x1, . . . , xt),

R. C. Bottesch 9:7

where ψ(x1, . . . , xt) is a quantifier-free formula (Q means ∃ if t is odd, ∀ if t is even). For all
t, r ∈ N, let Σt[r] be the set of all Σt-formulas with vocabularies in which all arities are ≤ r.
Finally, let PNF be the set of all first-order formulas in prenex normal form, meaning that
they are of the form Q1x1 . . . Qtxt : ψ(x1, . . . , xt), where ψ(x1, . . . , xt) is a quantifier-free
formula and Q1, . . . , Qt ∈ {∃,∀}.

For certain classes of formulas F , the following parameterized model checking problems
are complete for various important complexity classes.

p-MC(F)
Input: (A, φ), where A is a relational structure, φ ∈ F .

Parameter: |φ|.
Problem: Decide whether A satisfies φ.

p-var-MC(F)
Input: (A, φ), where A is a relational structure, φ ∈ F .

Parameter: The number of variables in φ.
Problem: Decide whether A satisfies φ.

I Remark 8. A relational structure can be represented by listing the elements of its universe,
followed by the tuples in each relation. However, for a RAM to check whether some tuple
(a1, . . . , ar) is an element of some r-ary relation Rs may then take a number of steps that
depends on ‖A‖ := |A|+ |τ |+

∑
(s,r)∈τ |Rs| · r (even if the elements of each relation are listed

in lexicographic order, and binary search is used). To avoid this, we will assume, whenever
A contains only relations of arity at most some fixed number l, that each r-ary relation
(r ≤ l) is stored as an |A|r-size array of ones and zeroes, each number representing whether
or not some element of Ar is a member of the relation. Furthermore, we will assume that
the location of every such array is stored in a look-up table. This way, checking whether
(a1, . . . , ar) ∈ Rs only takes a constant number of operations for a RAM, at the cost of
increasing the size of the representation of A in memory to O(poly(‖A‖)) (since l is constant).
This also means that adding and removing elements requires only constant time.

I Definition 9. Let Q and Q′ be parameterized problems. An algorithm R is an fpt-reduction
from Q to Q′ if there exist computable functions f and g, and a polynomial function p, such
that for any instance (x, k) of Q we have a) (y, k′) := R(x, k) ∈ Q′ if and only if (x, k) ∈ Q;
b) R runs in time f(k)p(|x|); and c) k′ ≤ h(k).

For any parameterized problem Q, we denote by [Q]fpt the set of parameterized problems
that are ≤fpt Q, meaning fpt-reducible to Q.

I Fact 10 ([6, 10],[2]). For every t ∈ N, A[t] = [p-MC(Σt)]fpt = [p-MC(Σt[3])]fpt.
AW[SAT] = [p-var-MC(PNF)]fpt.

I Remark 11. In the proof of their machine-based characterization of A[t], Chen, Flum,
and Grohe [7] show how the parameter-restricted computation of a t-alternating tail-
nondeterministic RAM can be encoded as a pair (A, φ). We refer the interested reader
to [7] for the details, and recall only some facts about this reduction that we use here. Let
f(k)p(|x|) be an upper bound on the running time, the largest number of a register used,
and the largest integer stored during the computation of the machine A on input (x, k). The
relational structure A has universe {0, . . . , f(k)p(|x|)} and contains relations representing
the instructions of A’s program and the contents of the accessed registers at the end of the
deterministic part of the computation (a relation Reg is defined so that (y, z) ∈ Reg if and

IPEC 2017

9:8 Relativization and Interactive Proof Systems in Parameterized Complexity Theory

only if ry = z right before the first nondeterministic instruction is executed). All relations
in A have arity ≤ 3. The first-order formula φ has the same vocabulary as A and encodes
the nondeterministic computation of A (the last h(k) steps). The formula is constructed in
such a way that changes to the contents of the registers are kept track of, and access to the
contents of the registers at the start of the nondeterministic computation are encoded using
the relation Reg. A close look at the construction in [7] reveals that part of it is oblivious to
the input x, in the sense that computing the formula φ only requires knowledge of k, A.

3 Parameterized relativization

The guiding principle in our approach to defining nondeterministic oracle RAMs will be that
all of the special resources of a machine (nondeterminism, oracle queries, random guesses –
everything beyond the basic deterministic operations) should be restricted in the same way,
in order for these resources to interact well with each other.

I Definition 12. An oracle (A)RAM A has parameter-bounded access to an oracle if it has
balanced access to the oracle, and there is a computable function h such that, on input
(x, k), A makes at most h(k) queries to the oracle on any computation path. A is said to
have tail-restricted access to an oracle if it has balanced access to the oracle, and there is a
computable function h such that, on input (x, k), A makes queries to the oracle only among
the last h(k) steps of any computation path.

Because we will use different kinds of oracle machines, and the exponent notation for
the relativization of a complexity class is difficult to customize, we will also use the (older)
parenthesis notation: If C is a complexity class that is characterized by machines, we denote
by C(O) the class characterized by oracle machines of the same type as the ones characterizing
C, with unrestricted access to the oracle O. Similarly, C(O)bal denotes the class defined
by oracle machines with balanced access to the parameterized oracle, C(O)para denotes the
class defined by oracle machines with parameter-bounded access to the oracle, and C(O)tail
denotes the class defined by tail-nondeterministic oracle machines with the same restrictions
as the machines that define C. The exponent notation is only used when the type of oracle
access is the “natural” one for the type of machine being considered (so A[1]O = A[1](O)tail
and W[P]O = W[P](O)para). For FPT we always specify the type of oracle access.

Relativization results for tail-nondeterministic random access machines. We give an
informal overview of the proof that A[1]p-MC(Σt[3]) = A[t+ 1], to highlight the role played
by the choice of the oracle and by the restrictions made to the tail-nondeterministic oracle
machines (for a comparison with the proof that NPΣiSat = ΣP

i+1, see [3], Section 5.5).
For the “⊇”-inclusion, we have that an A[1]-machine with a p-MC(Σt[3])-oracle (which

is complete for A[t]) can first deterministically simulate the deterministic part of the com-
putation of an A[t+ 1]-machine on input (x, k). The oracle A[1]-machine then enters the
nondeterministic phase of its computation, and uses its own nondeterministic guesses to
simulate the first block of existential guesses of the simulated machine (until a universal
instruction is encountered). The computation of the A[t+ 1]-machine from this point onward
(which starts with a universal guess instruction and has ≤ t− 1 alternations) can be encoded
as an instance ((A, φ), |φ|) of p-MC(Σt[3]) (see Remark 11), but the size of A depends on |x|.
Therefore, A must (for the most part) be computed by the oracle A[1]-machine and written
to the oracle registers ahead of time, during the deterministic phase of the computation, with
only the formula φ left to be computed during the nondeterministic phase. This is why it
is necessary to allow tail-nondeterministic oracle machines access to their oracle registers
throughout the entire computation.

R. C. Bottesch 9:9

For the reverse inclusion, we have that an A[t + 1]-machine can simulate an oracle
A[1]-machine on input (x, k), by first simulating the deterministic part of the computation
deterministically, and then using (t+ 1)-alternating nondeterminism to simulate both the
oracle A[1]-machine’s existential guesses, as well as all of the p-MC(Σt[3])-queries (this is
accomplished in the same way as in the classical proof). In order to evaluate the queried
instances, however, the A[t + 1]-machine’s computation must be in its nondeterministic
phase, so it is essential that:

the simulated oracle machine can not make queries outside of the last h(k) steps of its
computation, for some computable function h;
the size of the formulas in the queried instances is ≤ g(k), for some computable function
g (balanced oracle access);
the quantifier-free part of a formula can be evaluated efficiently (relational structures
must be encoded in such a way that expressions involving relations can be evaluated by a
RAM in time independent of the size of the relational structure; see Remark 8).

I Theorem 13. For every t ≥ 1, A[1]p-MC(Σt[3]) = A[t+ 1].

Since, for every t ≥ 1, the problem used as an oracle in Theorem 13 is complete for A[t], it
would be tempting to now state that A[1]A[t] = A[t+1], because this would imply a “collapse
theorem” for this hierarchy, namely that ∀t ≥ 1 : A[t] = A[t+ 1]⇒ (∀t′ ≥ t : A[t] = A[t′]).
Unfortunately, tail-nondeterminism appears to be too weak for such a collapse theorem to
be proved in this fashion. In fact, it is not even certain whether A[1]FPT ⊆ A[2]: This is
because an A[2]-machine trying to simulate an A[1]-machine that has oracle access to some
non-trivial problem in FPT, on some input (x, k), may have to enter the nondeterministic
phase of its computation before it even knows the instance to be queried (the simulated
machine may write a large instance to its oracle registers, and then nondeterministically
make some changes to it before querying the oracle). The size of this instance may depend
on |x|, and although it can be decided in fpt-time, it may not be possible to decide it in
time h(k), for some computable function h, even with 2-alternating nondeterminism. Thus,
the property of p-MC(Σt[3]) that, with the right encoding, an instance ((A, φ), |φ|) can be
decided by a t-alternating tail-nondeterministic ARAM in time depending computably only
on |φ|, appears to have been crucial for our oracle characterization of the A-Hierarchy.

The next theorem is the parameterized analogue of a famous classical result of Baker, Gill,
and Solovay [4]. The construction of a parameterized oracle B relative to which FPT and
A[1] differ, is done via diagonalization and uses similar ideas as the classical proof in [4], but
with two noteworthy differences:

First, when diagonalizing against all FPT-machines, we can not computably list all such
machines, because the f(k)-term in their running times can be any computable function.
We must therefore proceed more carefully with the construction in order to obtain an oracle
which is computable.

Second, when running each RAM on larger and larger inputs for an increasing number of
steps while constructing the oracle, we are free to increase both the size of the main part of
the input and the parameter value. Having this additional dimension of the input works in
our favor, and allows us to “kill” the f(k)-term in the running time of any FPT-machine by
increasing |x| so that |x| > f(k), at which point we can treat f(k)|x|c as a polynomial in |x|.

I Theorem 14. There exist parameterized oracles A and B such that

FPT(A)tail = A[1]A and FPT(B)tail (A[1]B (and even A[1]B \ FPT(B) 6= ∅).

IPEC 2017

9:10 Relativization and Interactive Proof Systems in Parameterized Complexity Theory

Relativization results for RAMs with parameter-bounded nondeterminism. For this ma-
chine model, we first need to define the analogue of the Polynomial Hierarchy.

I Definition 15. For each t ≥ 1, let Σ[P]
t be the class of parameterized problems that can

be decided by a parameter-restricted t-alternating ARAM A such that, for some computable
function h, on any input (x, k), A executes at most h(k) nondeterministic instructions on
any computation path. Furthermore, we define W[P]H :=

⋃∞
t=1 Σ[P]

t .

Clearly, W[P] = Σ[P]
1 ⊆ W[P]H ⊆ AW[P]. For t ≥ 2, Σ[P]

t -complete problems can be
obtained by modifying known W[P]- or AW[P]-complete problems appropriately (see [6, 11]).

We turn to the oracle characterization of this hierarchy. Since a W[P]-machine can
compute fpt-reductions at any point in the computation, the choice of the complete problem
given as an oracle is no longer important. Now the proof of the theorem proceeds in the same
way as the characterization of PH in terms of oracle machines (see [3], Section 5.5), but note
that for the “⊆”-inclusion, the restrictions on the oracle access are nevertheless essential:
balanced access ensures that the Σ[P]

t+1-machine can nondeterministically decide the instances
queried by the oracle machine, and parameter-bounded access ensures that the number of
queries made by the oracle machine is not too large for a Σ[P]

t+1-machine to simulate.

I Theorem 16. For each t ≥ 1, we have W[P]Σ
[P]
t = Σ[P]

t+1.

I Corollary 17. For any t, u ≥ 1, if Σ[P]
t = Σ[P]

t+u, then W[P]H = Σ[P]
t .

Finally, we have the oracle separation result for this machine model, as in [4]:

I Theorem 18. There exist parameterized oracles A and B such that

FPT(A)para = W[P]A and FPT(B)para (W[P]B (and even W[P]B \FPT(B) 6= ∅).

For the proof, it suffices to use the same two oracles as in the proof of Theorem 14.

4 Interactive proof systems for parameterized complexity classes

A classical interactive proof system consists of a verifier and a prover who exchange messages
in order for the verifier to decide whether a given input is a ‘yes’-instance of a problem. The
verifier is a probabilistic TM, meaning that he can guess random bits, but his computation
throughout the entire interaction is time-bounded polynomially in terms of the size of the
input instance (and therefore so is the length of the messages he can send or receive). The
prover is computationally all-powerful, but he only sees the input and the messages sent
by the verifier (not the verifier’s random bits), and his goal is to convince the verifier to
accept. A proof system is said to decide a problem Q if every x ∈ Q is accepted by the
verifier with probability (over the verifier’s random bits) ≥ 2/3 for some prover, and every
x /∈ Q is accepted by the verifier with probability ≤ 1/3 for any prover (see [3], Chap. 8).

Here we make a slight change to this definition, in order to apply the concept to
parameterized complexity classes, by letting the verifier be a probabilistic RAM (meaning
that he can guess non-negative integers of bounded size in a single step), and allowing the
messages between verifier and prover to be strings of non-negative integers of bounded size.
This change does not affect the (classical) class IP (see Remark 2), but allows us to apply
separate bounds to different aspects of the proof systems.

R. C. Bottesch 9:11

Arithmetization of first-order formulas with relational vocabularies. Before we can give
interactive proof systems for parameterized complexity classes, we need to adapt the main
technical tool used in such results, namely arithmetization. The main idea behind the
original version of this technique is that a quantified Boolean formula can be replaced by a
multivariate polynomial which coincides with the formula on all assignments of values to
the non-quantified variables, if the Boolean truth values are identified with the elements
of GF (2) (in other words, the Boolean formula is encoded as a polynomial). Once this is
accomplished, the polynomial can also be evaluated over some larger field, which is a key
ingredient of the proof that PSPACE ⊆ IP [15].

We wish to encode a pair (φ,A) as a polynomial, where φ is an FO formula, A is a
relational structure with the same vocabulary as φ, and the universe A of A is {0, . . . , n},
n ∈ N \ {0}. The main obstacle here is that the atomic formulas in φ are not Boolean
variables, but relational expressions of the form Rx1 . . . xl, which evaluate to Boolean values
whenever the variables are assigned values from A. We need a way to encode such a relational
expression as a polynomial PR that takes the values 0 or 1 whenever x1, . . . , xl ∈ A, in
accordance with the relation in A corresponding to R. To do this, we first choose a prime
q > n+ 1 and identify A with a subset of {0, . . . , q − 1}. We then take PR as the sum over
all terms of the form (1− (X − a1)q−1) · . . . · (1− (X − al)q−1), where (a1, . . . , al) is in the
relation corresponding to R in A, and argue via Fermat’s Little Theorem that whenever PR
is evaluated over values from GF (q), at most one such term is 1, the rest being 0, and that
PR therefore encodes the expression Rx1 . . . xl. (See the full version of the paper for details.)

With arithmetization generalized in this way, we are now in a position to construct an IP
similar to the one used in [16] to show that PSPACE ⊆ IP, and prove the following:

I Theorem 19. For every problem Q ∈ AW[SAT], there is an interactive proof system
deciding Q such that, for some computable functions f and h, and a polynomial p, on any
input (x, k), the verifier runs in time f(k)p(|x|), guesses at most h(k) random numbers, and
the interaction has at most h(k) rounds.

The IP in Theorem 19 has both the number of rounds and the number of random guesses
made by the verifier bounded computably in terms of the parameter, but the length of the
prover’s messages and of the verifier’s computations between rounds are “fpt-bounded”. In
order for an AW[∗]-machine to simulate an interactive proof, it would presumably need to
nondeterministically guess the prover’s messages, as well as the random guesses made by the
verifier, so the entire interaction would have to be simulated in the last h(k) steps of the
computation (due to tail-nondeterminism). In other words, the proof system would have
to be such that the verifier only performs an fpt-bounded pre-computation, followed by an
interaction that is entirely bounded in the parameter alone. We conjecture that the class
of problems with such IPs, which we call IPtail, is precisely AW[∗]. The evidence for this
conjecture is that when the size of the FO formula is bounded in terms of the parameter,
it seems that the IP from Theorem 19 can be improved so that at least the length of the
prover’s messages depends only on the parameter, by using only symbols for the polynomials
representing the atomic relations, rather than expanding them into algebraic expressions.
Getting the same bound for the verifier’s computations between rounds is more challenging.

5 Conclusions

We have shown that, with some degree of effort, certain classical methods can be put to
use in the parameterized setting, although some theorems only partially transfer over. The

IPEC 2017

9:12 Relativization and Interactive Proof Systems in Parameterized Complexity Theory

fact that different aspects of the computation of a RAM are bounded differently, and that
some computational resources can be tail-restricted, ensures that the machine-based theory
of parameterized intractability is by no means just “complexity theory with RAMs”.

One can now attempt to make some progress on the problem of separating matching levels
of the A- and the W-Hierarchy by proving oracle separations when reasonable restrictions
are placed on the oracle access of the respective machines. Another question is related to
the fact that the implication NP 6= P ⇒ A[1] 6= FPT is not known to hold: It would be
interesting to show that this implication fails to hold relative to some oracle.

Acknowledgments The author is grateful to Yijia Chen and Sándor Kisfaludi-Bak for
helpful discussions, to Martin Bottesch, Sándor Kisfaludi-Bak, and Ronald de Wolf for
comments on a draft of this paper, and to two anonymous reviewers for their detailed
suggestions on improvements to the version submitted to IPEC 2017.

References
1 S. Aaronson and A. Wigderson. Algebrization: A new barrier in complexity theory. ACM

Trans. Comput. Theory, 1(1), 2009.
2 K.A. Abrahamson, R.G. Downey, and M.R. Fellows. Fixed-parameter tractability and

completeness IV: On completeness for W[P] and PSPACE analogs. Annals of Pure and
Applied Logic, 73:235–276, 1995.

3 S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge, 2009.
4 T. Baker, J. Gill, and R. Solovay. Relativizations of the P=?NP question. SIAM J. Comput.,

4(4):431–442, 1975.
5 Y. Chen and J. Flum. Machine characterizations of the classes of the W-hierarchy. Pro-

ceedings of the 17th International Workshop on Computer Science Logic, Lecture Notes in
Computer Science, 2803:114–127, 2003.

6 Y. Chen, J. Flum, and M. Grohe. Bounded nondeterminism and alternation in param-
eterized complexity theory. Proceedings of the 18th IEEE Conference on Computational
Complexity, pages 13–29, 2003.

7 Y. Chen, J. Flum, and M. Grohe. Machine-based methods in parameterized complexity
theory. Theor. Comput. Sci., 339:167–199, 2005.

8 R.G. Downey and M.R. Fellows. Parameterized Complexity. Springer, Berlin, 1999.
9 R.G. Downey and M.R. Fellows. Fundamentals of Parameterized Complexity. Springer,

2013.
10 J. Flum and M. Grohe. Fixed-parameter tractability, definability, and model checking.

SIAM J. Comput., 31(1):113–145, 2001.
11 J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, Berlin, 2006.
12 L. Fortnow. A simple proof of Toda’s theorem. Theory of Computing, 5:135–140, 2009.
13 J.A. Montoya and M. M’́uller. Parameterized random complexity. Theory. Comput. Syst.,

52:221–270, 2013.
14 C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
15 A. Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.
16 A. Shen. IP = PSPACE: simplified proof. J. ACM, 39(4):878–880, 1992.
17 S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–877,

1991.

How Much Does a Treedepth Modulator Help to
Obtain Polynomial Kernels Beyond Sparse
Graphs?∗†

Marin Bougeret1 and Ignasi Sau2

1 LIRMM, Montpellier, France
bougeret@lirmm.fr

2 CNRS, LIRMM, Montpellier, France, and
Departamento de Matemática, UFC, Fortaleza, Brazil
ignasi.sau@lirmm.fr

Abstract
In the last years, kernelization with structural parameters has been an active area of research
within the field of parameterized complexity. As a relevant example, Gajarskỳ et al. [ESA 2013]
proved that every graph problem satisfying a property called finite integer index admits a linear
kernel on graphs of bounded expansion and an almost linear kernel on nowhere dense graphs,
parameterized by the size of a c-treedepth modulator, which is a vertex set whose removal results
in a graph of treedepth at most c for a fixed integer c ≥ 1. The authors left as further research
to investigate this parameter on general graphs, and in particular to find problems that, while
admitting polynomial kernels on sparse graphs, behave differently on general graphs.

In this article we answer this question by finding two very natural such problems: we prove
that Vertex Cover admits a polynomial kernel on general graphs for any integer c ≥ 1, and
that Dominating Set does not for any integer c ≥ 2 even on degenerate graphs, unless NP ⊆
coNP/poly. For the positive result, we build on the techniques of Jansen and Bodlaender [STACS
2011], and for the negative result we use a polynomial parameter transformation for c ≥ 3 and
an or-cross-composition for c = 2. As existing results imply that Dominating Set admits a
polynomial kernel on degenerate graphs for c = 1, our result provides a dichotomy about the
existence of polynomial problems for Dominating Set on degenerate graphs with this parameter.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases parameterized complexity, polynomial kernels, structural parameters,
treedepth, treewidth, sparse graphs

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.10

1 Introduction

Motivation. There is a whole area of parameterized algorithms and kernelization invest-
igating the complexity ecology (see for example [18]), where the objective is to consider a
structural parameter measuring how “complex” is the input, rather than the size of the
solution. For instance, parameterizing a problem by the treewidth of its input graph has
been a great success for FPT algorithms, triggered by Courcelle’s theorem [4] stating that

∗ This work has been supported by project DEMOGRAPH (ANR-16-CE40-0028).
† A full version of this article is permanently available at https://arxiv.org/abs/1609.08095.

© Marin Bougeret and Ignasi Sau;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 10; pp. 10:1–10:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.10
https://arxiv.org/abs/1609.08095
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 How Much Does Treedepth Mod. Help to Obtain Poly. Kernels byd. Sparse Graphs?

any problem expressible in MSO logic is FPT parameterized by treewidth. However, the
situation is not as good for kernelization, as many problems do not admit polynomial kernels
when parameterized by treewidth unless NP ⊆ coNP/poly [2].

Of fundamental importance within structural parameters are parameters measuring the
so-called “distance from triviality” of the input graphs (a term that was first coined by
Guo et al. [13]), like the size of a vertex cover (distance to an independent set) or of a
feedback vertex set (distance to a forest). Unlike treewidth, these parameters may lead to
both positive and negative results for polynomial kernelization. An elegant way to generalize
these parameters is to consider a parameter allowing to quantify the triviality of the resulting
instance, measured in terms of its treewidth. More precisely, for a positive integer c, a
c-treewidth modulator of a graph G is a set of vertices X such that the treewidth of G−X
is at most c. Note that for c = 0 (resp. c = 1), a c-treewidth modulator corresponds to a
vertex cover (resp. feedback vertex set).

Treewidth modulators have been extensively studied in kernelization, especially on classes
of sparse graphs, where they have been at the heart of the recent developments of meta-
theorems for obtaining linear and polynomial kernels on graphs on surfaces [3], minor-free
graphs [8], and topological-minor-free graphs [12, 15], all based in a generic technique known
as protrusion replacement. However, as observed in [11, 15], if one tries to move further
in the families of sparse graphs by considering, for instance, graphs of bounded expansion,
for several natural problems such as Treewidth-t Vertex Deletion (minimizing the
number of vertices to be removed to get a graph of treewidth at most t), parameterizing by
a treewidth modulator is as hard as on general graphs.

This observation led Gajarskỳ et al. [11] to consider another type of modulators, namely
c-treedepth modulators (defined analogously to c-treewidth modulators), where treedepth is
a graph invariant – which we define in Section 2 – that plays a crucial structural role on
graphs of bounded expansion and nowhere dense graphs [17]. Gajarskỳ et al. [11] proved that
any graph problem satisfying a property called finite integer index admits a linear kernel on
graphs of bounded expansion and an almost linear kernel on nowhere dense graphs when
parameterized by the size of a c-treedepth modulator. Shortly afterwards this result was
obtained, the authors asked [5] to investigate this parameter on general graphs, namely to
find natural problems that admit and that do not admit polynomial kernels parameterized
by the size of a c-treedepth modulator. More precisely, are there natural problems Π1 and
Π2 fitting into the framework of [11] such that Π1/c-tdmod admits a polynomial kernel on
general graphs, but Π2/c-tdmod does not? (As defined in Section 2, “/c-tdmod” means
“parameterized by the size of a c-treedepth modulator”.)

Our results. In this article we answer the above question by proving that Vertex Cover
and Dominating Set are such problems Π1 and Π2, respectively. Let us now elaborate a
bit more on our results, the techniques we use to prove them, and how do they compare to
previous work in the area (see the preliminaries of Section 2 for any undefined terminology).

Note first that both VC/c-tdmod and DS/c-tdmod (where VC and DS stand for Vertex
Cover and Dominating Set, respectively) are FPT on general graphs, as they are FPT by
treewidth [4], which is a smaller parameter than c-tdmod, as for any graph G and any integer
c ≥ 0, it holds that tw(G) ≤ td(G)− 1 ≤ c-tdmod(G) + c− 1. Thus, asking for polynomial
kernels is a pertinent question.

In Section 3 we prove that VC/c-tdmod admits a polynomial kernel on general graphs.
Our approach is based on the techniques introduced by Jansen and Bodlaender [14] to prove
that VC/1-twmod (or equivalently, VC/FVS, where FVS stands for Feedback Vertex
Set) admits a polynomial kernel. More precisely, we use three reduction rules inspired from

M. Bougeret and I. Sau 10:3

the rules given in [14], and we present a recursive algorithm that, starting from a c-treedepth
modulator, constructs an appropriate (c− 1)-treedepth modulator and calls itself inductively.
The kernel obtained in this manner has x2O(c2) vertices, where x is the size of the c-treedepth
modulator. This result completes the following panorama of structural parameterization for
Vertex Cover, which has been a testbed for structural parameterizations in the last years:

VC/1-twmod (or equivalently, VC/FVS) admits a polynomial kernel [14].
VC/c-twmod for c ≥ 2 does not admit a polynomial kernel unless NP ⊆ coNP/poly [6].
VC/2-degmod (distance to a graph of maximum degree 2) and VC/c-CVD (distance to a
disjoint collection of cliques of size at most c) admit a polynomial kernel [16]. Note that
our result generalizes the latter kernel, as a disjoint collection of cliques of size at most c
is a particular case of a graph having treedepth at most c.
VC/pfm (distance to a pseudoforest, a graph in which every connected component has at
most one cycle) admits a polynomial kernel [9].

In Section 4 we turn to negative results for Dominating Set. We provide a characteriz-
ation, according to the value of c, of the existence of polynomial kernels for DS/c-tdmod on
degenerate graphs. Indeed, using the results of Philip et al. [19] it is almost immediate to
prove that DS/1-tdmod (or equivalently, DS/VC) admits a polynomial kernel on degenerate
graphs. For c ≥ 3, we rule out the existence of polynomial kernels for DS/c-tdmod on
2-degenerate graphs by a simple polynomial parameter transformation from DS/1-tdmod on
general graphs, which does not admit polynomial kernels unless NP ⊆ coNP/poly [7]. The
remaining case, namely DS/2-tdmod, turns out to be more interesting, and we rule out the
existence of polynomial kernels on 4-degenerate graphs by providing an or-cross-composition
from 3-Sat. This dichotomy for the existence of polynomial kernels for DS/c-tdmod on
degenerate graphs is to be compared with the dichotomy for VC/c-twmod on general graphs
discussed above [14, 6].

As mentioned before, it is commonly admitted that almost no natural problem admits
a polynomial kernel parameterized by tw, or even with td. However, to the best of our
knowledge the only published negative results are those in [2], which together with [10] imply
that IS/tw and DS/tw do not admit a polynomial kernel unless NP ⊆ coNP/poly. As this
result only holds for general graphs, for the sake of completeness we complete it in the full
version, by showing that a large majority of the problems considered in [11] having an almost
linear kernel parameterized by c-tdmod on nowhere dense graphs do not admit polynomial
kernels parameterized by td, even on planar graphs of bounded maximum degree.

Due to space limitations, the proofs of the results marked with ‘(?)’ have been moved to
the full version. We also refer the reader to the full version for the definition and acronyms
of problems considered in the paper.

2 Preliminaries

We present here just some preliminaries about graphs. The basic definitions about paramet-
erized complexity can be found in the full version.

Unless explicitly mentioned, all graphs considered here are simple and undirected. Given
a graph G = (V,E) and X ⊆ V , we denote NX(v) = N(v) ∩ X, where N(v) = {u ∈ V |
{u, v} ∈ E}. We denote by α(G) the size of a maximum independent set of G. For any
function f defined on any induced subgraph of a given graph G, given a subset of vertices V ′
of G, we denote f(V ′) = f(G[V ′]) (for example, α(V ′) = α(G[V ′])). For any integer n, we
denote [n] = {i ∈ N | 1 ≤ i ≤ n}.

For the following definitions related to treedepth, bounded expansion, and nowhere dense
graph classes, we refer the reader to [17] for more details, and we only recall here some basic

IPEC 2017

10:4 How Much Does Treedepth Mod. Help to Obtain Poly. Kernels byd. Sparse Graphs?

notations and facts. The treedepth of a graph G (denoted td(G)) is the minimum height of a
rooted forest F (called a treedepth decomposition) such that G is a subgraph of the closure
of F , where the closure of a rooted tree is the graph obtained by adding an edge between
any internal vertex and all its ancestors, and the height of a rooted tree is the number of
vertices in a longest path from the root to a leaf. Let c ≥ 1 be an integer. A c-treedepth
modulator is a subset of vertices X ⊆ V such that td(G[V \ X]) ≤ c, and we denote by
c-tdmod(G) the size of a smallest c-treedepth modulator of G. A c-treewidth modulator is
defined in the same way. Recall that as these parameters are greater than their associated
measure (i.e., tw(G) ≤ c-twmod(G) + c) the negative results for kernelization by treewidth
and treedepth do not immediately apply, but the positive FPT results do.

Concerning graph classes, we recall that in the sparse graph hierarchy, graphs of bounded
expansion (BE) and nowhere dense graphs (ND) are related to classic sparse families as
follows (see [17] for the definitions): planar graphs ⊆ minor-free graphs ⊆ BE ⊆ ND. Note
also that the class of graphs of bounded degeneracy is a natural superclass of BE (intuitively,
BE also requires the shallow minors to be degenerate), and is incomparable with ND.

3 A polynomial kernel for VC/c-tdmod on general graphs

In this section we prove that for any positive integer c, VC/c-tdmod admits a polynomial
kernel on general graphs. Recall that this was only known for VC/1-tdmod and VC/2-tdmod,
as for c = 1 this corresponds to the standard parameterization and we can use the linear
kernel of [1], and for c = 2 we have 1-twmod ≤ 2-tdmod (as a 1-twmod corresponds to the
distance to a forest, while 2-tdmod corresponds to the distance to a star forest), and thus we
can use the polynomial kernel of [14] for VC/1-twmod. We also recall that we cannot expect
to extend our result to VC/c-twmod for any c ≥ 2 [6].

As VC/c-tdmod and IS/c-tdmod are clearly equivalent for this parameterization, we
provide the result for IS/c-tdmod. More specifically, in Subsection 3.1 we provide a polynomial
kernel for a-c-tdmod-IS, an annotated version of our problem on hypergraphs defined below,
and in Subsection 3.2 we derive a polynomial kernel for IS/c-tdmod.

3.1 A polynomial kernel for a-c-tdmod-IS/(|X| + |H|)

Working with hypergraphs is useful because we will use a reduction rule identifying a subset
X ′ of the modulator that cannot be entirely contained in a solution; this will be modeled by
adding a hyperedge on the set X ′.

Annotated c-treedepth modulator Independent Set (a-c-tdmod-IS)
Instance: (G,X, k) where

•G = (V,E,H) is a hypergraph structured as follows: V = X]R,
E = EX,R] ER,R is a set of edges where edges in EA,B have one endpoint
in A and the other in B, and H ⊆ 2X is a set of hyperedges where each
H ∈ H is entirely contained in X.

•X is a c-treedepth modulator (as G[V \X] is no longer a hypergraph,
its treedepth is correctly defined and we have td(V \X) ≤ c).

•k is a positive integer.
Question: Decide whether α(G) ≥ k (where an independent set in a hypergraph is a

subset of vertices that does not contain any hyperedge, corresponding here
to a subset S ⊆ V such that for every h ∈ E ∪H, h * S).

M. Bougeret and I. Sau 10:5

Throughout this subsection I = (G,X, k) denotes the input of a-c-tdmod-IS with G =
(V,E,H) and V = X]R. Note that G[X] is a hypergraph and that G[R] is a graph, and
that the parameter we consider here is |X|+ |H|. For any X ′ ⊆ X and R′ ⊆ R, observe that
the notation NR′(X ′) is not ambiguous and denotes {v ∈ R′ | ∃x ∈ X ′ with {x, v} ∈ E}.

We use the following definition that was introduced in [14] for VC/1-twmod.

I Definition 1 ([14]). Given X ′ ⊆ X and R′ ⊆ R, let confR′(X ′) = α(R′)− α(R′ \NR′(X ′))
be the conflicts induced by X ′ on R′.

Intuitively, confR′(X ′) measures the loss in the size of a maximum independent set of R′
due to X ′. We extend the previous definition in the following way: for any R′ ⊆ R and any
Y ′ ⊆ R′, let confR′(Y ′) = α(R′)− α(R′ \ Y ′). We can see that confR′(Y ′) = 0 is equivalent
to the existence of an independent set S∗ ⊆ R′ such that |S∗| = α(R′) and S∗ ∩ Y ′ = ∅.

I Lemma 2. Let R′ ⊆ R be a connected component of R and let Y ′ ⊆ R′. If confR′(Y ′) > 0,
there exists Ȳ ′ ⊆ Y ′ such that confR′(Ȳ ′) > 0 and |Ȳ ′| ≤ f(c) with f(c) = 2c.

Proof. As it holds that td(R′) ≤ c, let us consider a treedepth decomposition of R′ with
root r and t ≥ 1 subtrees, where Ai, i ∈ [t] is the vertex set of subtree i. We can partition
Y ′ =

⋃
i∈[t+1] Y

′
i with Y ′i ⊆ Ai for i ∈ [t], Y ′t+1 ⊆ {r}, where the Y ′i ’s are possibly empty. We

will prove the lemma by induction on c. Observe that
∑
i∈[t] α(Ai) ≤ α(R′) ≤ 1+

∑
i∈[t] α(Ai),

and thus we distinguish two cases according to the value of α(R′).

Case 1. α(R′) = 1 +
∑
i∈[t] α(Ai). In this case any maximum independent set S∗ of R′

contains r. Hence for every i ∈ [t], S∗ ∩ Ai is a maximum independent set in Ai \NAi(r),
and thus α(Ai \NAi

(r)) = α(Ai). Indeed, if we had α(Ai \NAi
(r)) < α(Ai) for some i, then

|S∗| would be strictly smaller than 1 +
∑
i∈[t] α(Ai).

If r ∈ Y ′ (i.e., if Y ′t+1 6= ∅) then we can take Ȳ ′ = {r} (as any optimal solution of R′ must
contain r we get α(R′ \ {r}) < α(R′), and |Ȳ ′| = 1 ≤ 2c), and thus we suppose henceforth
that Y ′t+1 = ∅.

We claim that there exists i0 ∈ [t] such that confAi0\NAi0
(r)(Y ′i0) > 0. Indeed, otherwise

we could define for any i ∈ [t] an independent set Si ⊆ Ai\NAi(r) with |Si| = α(Ai\NAi(r)) =
α(Ai) and Si∩Y ′i = ∅. Thus, S∗ = {r}∪i∈[t]Si would be an independent set of size α(R′), and
as Y ′t+1 = ∅ we would have S∗∩Y ′ = ∅, a contradiction to the hypothesis that confR′(Y ′) > 0.
Thus, there exists i0 ∈ [t] such that confAi0\NAi0

(r)(Y ′i0) > 0, and as td(Ai0 \NAi0
(r)) < c,

by induction hypothesis there exists Ȳ ′i0 ⊆ Y ′i0 such that confAi0\NAi0
(r)(Ȳ ′i0) > 0 and

|Ȳ ′i0 | ≤ 2c−1. Let us verify that Ȳ ′ = Ȳ ′i0 satisfies confR′(Ȳ ′) > 0. Let S∗ be an independent
set of R′ with S∗ ∩ Ȳ ′ = ∅. If r /∈ S∗ then clearly |S∗| < α(R′). Otherwise, |S∗| =
(
∑
i∈[t] |S∗∩(Ai\NAi(r))|)+1 ≤ α(Ai0\NAi0

(r))−1+(
∑
i∈[t],i6=i0 α(Ai\NAi(r)))+1 < α(R′).

Case 2. α(R′) =
∑
i∈[t] α(Ai). In this case there exists i0 ∈ [t] such that confAi0

(Y ′i0) > 0.
Indeed, otherwise we could define for any i ∈ [t] an independent set Si ⊆ Ai with |Si| = α(Ai)
and Si∩Y ′i = ∅, and the existence of S∗ = ∪i∈[t]Si would be a contradiction to the hypothesis
that confR′(Y ′) > 0. Thus, by the induction hypothesis there exists Ȳ ′i0 ⊆ Y ′i0 such that
confAi0

(Ȳ ′i0) > 0 and |Ȳ ′i0 | ≤ 2c−1.
If r ∈ Y ′ (i.e., if Y ′t+1 6= ∅) then we can take Ȳ ′ = Ȳ ′i0 ∪ {r}. Let us verify that

confR′(Ȳ ′) > 0. Let S∗ be an independent set of R′ with S∗ ∩ Ȳ ′ = ∅. As S∗ cannot contain
r we have |S∗| =

∑
i∈[t] |S∗ ∩Ai| < α(Ai0) +

∑
i∈[t],i6=i0 |S

∗ ∩Ai| = α(R′). Thus, we suppose
from now on property p1 : Y ′t+1 = ∅.

IPEC 2017

10:6 How Much Does Treedepth Mod. Help to Obtain Poly. Kernels byd. Sparse Graphs?

b1 b3

v2

c1 ci0 c3 c4

a2a1v1

b2

a4a3

b4

(b)

v2a2a1v1

b2b1

c1 c2

a1

v1 c1

b2

a2

c2 v2

A2

b1

A1

(a)

Figure 1 (a) Example of a graph G[R′] (left) with an associated treedepth decomposition (right)
as used in Lemma 2, with Y ′ = {c1, c2}. This case corresponds to one of the subcases treated in
Case 2 of Lemma 2, as α(R′) = α(A1) + α(A2) = 4, confA1 (Y ′

1) > 0, confA2 (Y ′
2) = 0. Moreover, p2

and p′
2 are true, while p3 is false (but p′

3 is true). (b) Example for t = 2 of the construction of
Lemma 3, where the circled vertices belong to S.

Note that in this case (when p1 is true) we cannot simply set Ȳ ′ = Ȳ ′i0 , as shown in
the example depicted in Figure 1. Indeed, in this example we would have Ȳ ′ = Ȳ ′i0 = {c1},
however confR′({c1}) = 0 as S∗ = {b1, v1, c2, v2} verifies |S∗| = α(R′) and S∗ ∩ {c1} = ∅.

Properties related to α. We claim that we can assume property p2 : for every i 6= i0,
α(Ai \ NAi

(r)) = α(Ai). Indeed, if p2 is not true, then there exists i1 6= i0, i1 ∈ [t]
such that α(Ai1 \ NAi1

(r)) < α(Ai1), and we set Ȳ ′ = Ȳ ′i0 . Let S∗ be an independent
set of R′ with S∗ ∩ Ȳ ′ = ∅. If r /∈ S∗ then as previously |S∗| < α(R′), otherwise we get
|S∗| ≤ α(Ai0)− 1 + α(Ai1)− 1 + (

∑
i∈[t],i6=i0,i6=i1 α(Ai)) + 1 < α(R′). Thus, we now assume

p2.
Let us now prove the following property p′2 : α(Ai0 ∪ {r}) = α(Ai0). By contradiction,

suppose that there exists an independent set S∗1 of Ai0 ∪ {r} containing r such that |S∗1 | =
α(Ai0)+1. According to p2, for every i 6= i0 there exists an independent set Si of Ai \NAi

(r)
of size α(Ai), and thus α(R′) >

∑
i∈[t] α(Ai), a contradiction. Thus, we now assume p′2.

Properties related to confAi
(Y ′i). Let us prove than we can assume the following property

p3 : for every i 6= i0, confAi\NAi
(r)(Y ′i) = 0. Indeed, if p3 is not true we can get the

desired result as follows. Let i1 6= i0, i1 ∈ [t] such that confAi1\NAi1
(r)(Y ′i1) > 0. We use

the same arguments as in the previous paragraph and define Ȳ ′ = Ȳ ′i0 ∪ Ȳ
′
i1
. Note that

|Ȳ ′| ≤ |Ȳ ′i0 |+ |Ȳ
′
i1
| ≤ 2c. Using the same notation, if r /∈ S∗ then |S∗| = (

∑
i∈[t] |S∗ ∩Ai|) ≤

α(Ai0)−1+(
∑
i∈[t],i6=i0 α(Ai)) < α(R′), and otherwise |S∗| = (

∑
i∈[t] |S∗∩(Ai\NAi

(r))|)+1 ≤
α(Ai0) − 1 + α(Ai1) − 1 + (

∑
i∈[t],i6=i0,i6=i1 α(Ai)) + 1 < α(R′). Thus, we now assume p3.

Note that p2 and p3 imply property p′3 : for every i 6= i0, confAi
(Y ′i) = 0.

Case 2a. @S∗ maximum independent set of R′ such that r ∈ S∗. In this case, we set
Ȳ ′ = Ȳ ′i0 . Let us prove that confR′(Ȳ ′) > 0. Let S∗ be a maximum independent set of R′ with
S∗∩Ȳ ′ = ∅. As r /∈ S∗, we get |S∗| =

∑
i∈[t] |S∗∩Ai| ≤ α(Ai0)−1+

∑
i∈[t],i6=i0 α(Ai) < α(R′).

Case 2b. ∃S∗ maximum independent set of R′ such that r ∈ S∗. This implies that
α(Ai0 \NAi0

(r)) = α(Ai0)− 1. Let us prove that confAi0\NAi0
(r)(Y ′i0) > 0. If it was not the

case, there would exist an independent set S∗i0 of Ai0 \NAi0
(r) of size α(Ai0 \NAi0

(r)) =
α(Ai0)− 1 such that S∗i0 ∩Y

′
i0

= ∅. By p3, there would exist, for every i 6= i0, an independent
set S∗i of Ai \NAi(r) of size α(Ai \NAi(r)) = α(Ai) (by p2) such that S∗i ∩ Y ′i = ∅. Thus,
S∗ = {r}∪ (

⋃
i∈[t] S

∗
i) would be an independent set of size α(R′) such that S∗∩Y ′ = ∅ (recall

that by p1, r /∈ Y ′), a contradiction. Thus, we know that both confAi0\NAi0
(r)(Y ′i0) > 0

M. Bougeret and I. Sau 10:7

and confAi0
(Y ′i0) > 0 (which was established at the beginning of Case 2). Using twice the

induction hypothesis we get that there exists Ȳ ′i0
1
⊆ Y ′i0 such that confAi0\NAi0

(r)(Ȳ ′i0
1) > 0

and there exists Ȳ ′i0
2
⊆ Y ′i0 such that confAi0

(Ȳ ′i0
2) > 0, with both |Ȳ ′i0

1
| and |Ȳ ′i0

2
| bounded

by 2c−1. Thus, we set Ȳ ′ = Ȳ ′i0
1
∪ Ȳ ′i0

2. Let us verify that confR′(Ȳ ′) > 0. Let S∗ be an
independent set of R′ with S∗∩Ȳ ′ = ∅. If r ∈ S∗, then |S∗| =

∑
i∈[t] |S∗∩(Ai\NAi

(r))|+1 =
α(Ai0 \ NAi0

(r)) − 1 +
∑
i∈[t],i6=i0 α(Ai) + 1 = α(Ai0) − 2 +

∑
i∈[t],i6=i0 α(Ai) + 1 < α(R′).

Otherwise, |S∗| =
∑
i∈[t] |S∗ ∩Ai| = α(Ai0)− 1 +

∑
i∈[t],i6=i0 α(Ai) < α(R′). J

A first lower bound on the function f of Lemma 2 can be obtained by considering a
clique R′ on c vertices (hence, with td(R′) = c) and Y ′ = R′, as any Ȳ ′ (Y ′ satisfies
confR′(Ȳ ′) = 0. However, as shown in Lemma 3 below, we can even obtain an exponential
lower bound, showing that the function f(c) = 2c of Lemma 2 is almost tight.

I Lemma 3 (?). There exists a constant λ such that for any c ≥ λ there exists a graph
G = (R,E) and Y ⊆ R such that td(G) = c, |Y | ≥ 2c−3, confR(Y) > 0, and for every
Ȳ (Y , confR(Ȳ) = 0.

I Remark. Lemma 2 was proven in [14] when R′ is a forest and with |Ȳ ′| ≤ 2. Even if we
already know that IS/2-twmod does not admit a polynomial kernel unless NP ⊆ coNP/poly [6],
it remains interesting to observe that, in particular, this lemma becomes false for 2-twmod,
as the graph of Lemma 3 has treewidth 2. This points out one crucial difference between
c-treewidth and c-treedepth modulators.

Let us now start the description of the kernel for a-c-tdmod-IS/(|X|+ |H|). Given an
input (G,X, k) of a-c-tdmod-IS, we define the following three rules. Note that these rules
and definitions (and the associated safeness proofs) correspond to Rules 1, 2, and 3 of [14],
except that we now bound the sizes of the subsets by a function f(c) instead of by 2.

I Definition 4. Given an input (G,X, k) of a-c-tdmod-IS (with td(G[R]) ≤ c where R = V \
X), the chunks of the input are defined by X = {X ′ ⊆ X | there is no H ∈ H such that H ⊆
X ′, and 0 < |X ′| ≤ f(c)}, where f(c) = 2c.

Intuitively, the chunks correspond to all possible small traces of an independent set of G in
X. We are now ready to define the first two rules.

Reduction Rule 1: If there exists u ∈ X such that confR({u}) > |X|, remove u from X.

Reduction Rule 2: If there exists X ′ ∈ X such that confR(X ′) > |X|, add X ′ to H.

I Lemma 5 (?). Rule 1 and Rule 2 are safe: if I = (G,X, k) is the original input of
a-c-tdmod-IS and I1 = (G1, X1, k) is the input after the application of Rule 1 or Rule 2,
then I and I1 are equivalent.

Reduction Rule 3: If R contains a connected component R′ such that for every X ′ ∈ X ,
confR′(X ′) = 0, delete R′ from the graph and decrease k by α(R′).

To prove that Rule 3 is safe we need the following lemma. Recall that we say that X ′ ⊆ X
is an independent set if and only if there is no H ∈ H such that H ⊆ X ′.

I Lemma 6 (?). Let I = (G,X, k) be an instance of a-c-tdmod-IS. Let R′ be a connected
component of R. If there exists an independent set X ′ ⊆ X such that confR′(X ′) > 0, then
there exists X̄ ′ ∈ X such that confR′(X̄ ′) > 0.

IPEC 2017

10:8 How Much Does Treedepth Mod. Help to Obtain Poly. Kernels byd. Sparse Graphs?

I Lemma 7 (?). Rule 3 is safe: if I = (G,X, k) is the original input of a-c-tdmod-IS and
I ′ = (G′, X ′, k′) is the input after the application of Rule 3, then I and I ′ are equivalent.

I Lemma 8 (?). Let I = (G,X, k) be an instance of a-c-tdmod-IS, and let s be the number
of connected components of R = V \X. If none of Rule 1, Rule 2, or Rule 3 can be applied,
then s = O(|X|f(c)+2), where f is the function of Lemma 2.

We are now ready to present our polynomial kernel for a-c-tdmod-IS in Algorithm A
below, which receives as input (I, c), where I = (G,X, k) and X is a c-treedepth modulator.

A(I, c):
1. If c = 0, return X. Otherwise:
2. While it is possible, apply Rule 1 (this rule suppresses vertices of X).
3. While it is possible, apply Rule 2 (this rule adds hyperedges of size at most f(c) to H).
4. Define the set X , and while it is possible, apply Rule 3 (this rule suppresses some

connected components of R and decreases k accordingly). Let I3 = (G3, X3, k3) be the
obtained instance, where G3 = (V3, E3) and R3 = V3 \X3.

5. For every connected component R′ ⊆ R3, compute an optimal treedepth decomposition
of root rR′ . Let Xr = ∪R′⊆R3,R′ connected{rR′} be the set of roots.

6. Let I ′ = (G′ = (V ′, E′, H ′), X ′, k′) be defined as follows. Let V ′ = V3, X ′ = X3 ∪Xr,
and Z = {e ∈ E3 | e ∩ Xr 6= ∅ and e ∩ X3 6= ∅}. Let E′ = E3 \ Z,H′ = H3 ∪ Z and
k′ = k3 (I ′ corresponds to I3 where we added Xr to the modulator, and consequently
removed edges Z from E3 and added them as hyperedges included in X ′. Note that X ′
is now a (c− 1)-treedepth modulator).

7. Return A(I ′, c− 1).

I Theorem 9. For any fixed c ≥ 0, Algorithm A is a polynomial kernel for a-c-tdmod-
IS/(|X| + |H|). More precisely, for any input I = (G,X, k) (with G = (V,E,H), R =
V \X) where X is a c-treedepth modulator, Algorithm A produces an equivalent instance
Ĩ = (G̃, X̃, k̃) (with G̃ = (Ṽ , Ẽ, H̃), R̃ = Ṽ \ X̃) where |X̃| ≤ O(|X|2(c+1)(c+2)/2), |H̃| ≤
|H|+O(|X|2(c+1)(c+2)/2), and R̃ = ∅.

Proof. Observe first that Algorithm A is polynomial for fixed c. Indeed, computing
confR′(X ′) is polynomial (as tw(R′) ≤ td(R′) and it is well-known that IS/tw is FPT [4])
and there are at most O(|X|c) applications of Rules 1 and 2, and O(s|X|c) applications of
Rule 3. Moreover, an optimal treedepth decomposition of each connected component can
be computed in FPT time parameterized by c, using [17] or [20]. Let us prove the result by
induction on c. The result is trivially true for c = 0. Let us suppose that the result holds for
c− 1 and prove it for c. Observe that X ′ is now a (c− 1)-treedepth modulator, and thus we
can apply the induction hypothesis on A(I ′, c− 1). For any ` ∈ [3], let I` = (G`, X`, k`) with
G` = (V`, E`,H`) and R` = V` \X` denote the instance after exhaustive application of Rule
`, respectively.

Equivalence of the output. By Lemma 5 and Lemma 7, we know that Rules 1, 2, and 3
are safe, and thus that I and I3 are equivalent. Note that I3 is equivalent to I ′ as the
underlying input is the same (except that some vertices were added to the modulator). As
using induction hypothesis A(I ′, c − 1) outputs an instance Ĩ equivalent to I ′, we get the
desired result.

Size of the output. We have |X1| ≤ |X|, |H1| = |H|, |X2| = |X1|, |H2| ≤ |H1| + |X1|f(c),
|X3| = |X2|, |H3| = |H2| (by Lemma 8, s, the number of connected components of R3,
verifies s = O(|X3|f(c)+2)), and |X ′| ≤ |X3|+ s, and |H′| ≤ |H3|+ s|X3|.

M. Bougeret and I. Sau 10:9

Thus we get |X ′| = O(|X|f(c)+2) = O(|X|2c+1) and |H′| = |H| + O(|X|f(c)+3). Using
induction hypothesis we get that |X̃| = O(|X ′|2c(c+1)/2) = O(|X|2(c+1)(c+2)/2), and that |H̃| =
|H′|+O(|X ′|2c(c+1)/2) = |H|+O(|X|2c+3)+O(|X|2(c+1)(c+2)/2) = |H|+O(|X|2(c+1)(c+2)/2). J

3.2 Deducing a polynomial kernel for IS/c-tdmod
Observe first that we can suppose that the modulator is given in the input, i.e., that
IS/c-tdmod ≤ppt c-tdmod-IS/|X| (≤ppt is defined in the full version). Indeed, given an
input (G, x, k) of IS/c-tdmod (where x denotes the size of a c-treedepth modulator), using
the 2c-approximation algorithm of [11] for computing a c-treedepth modulator, wet get in
polynomial time a set X such that |X| ≤ 2c · x and td(R) ≤ c, where R = V \X.

Observe also that IS/|X| ≤ppt a-c-tdmod-IS/(|X|+ |H|) using the same set X and with
|H| ≤ |X|2. Now, as usual when using bikernels, we could claim that as IS is Karp NP-hard
and as a-c-tdmod-IS is in NP, there exists a polynomial reduction from a-c-tdmod-IS, implying
the existence of a polynomial kernel for IS/c-tdmod. However, let us make such a reduction
explicit to provide an explicit bound on the size of the kernel.

I Lemma 10 (?). Let I = (G, k) with G = (X,H) be an instance of a-c-tdmod-IS as
produced by Theorem 9 (as R = ∅ the set of vertices is reduced to X, and H is a set of
hyperedges on X). We can build in polynomial time an equivalent instance I ′ = (G′, k′) of
IS with G′ = (V ′, E′) where |V ′| ≤ O(|X| · |H|).

Putting pieces together we immediately get the main theorem of this section.

I Theorem 11. For every integer c ≥ 1, IS/c-tdmod (or equivalently, VC/c-tdmod) admits
a polynomial kernel on general graphs with O(x2

1
2 (c+1)(c+2)+1

) vertices, where x is the size of
a c-treedepth modulator.

4 Excluding polynomial kernels for DS/c-tdmod on degenerate
graphs

Given a graph G, we define Gc-sub as the graph obtained from G by subdividing each edge c
times. In other words, we add a set Xe = {x`e | ` ∈ [c]} of c vertices of degree 2 for every
edge e ∈ E of G.

I Observation 12 (?). For any c ≥ 0 and any k ≥ 0, G has a dominating set of size k if
and only if G3c-sub has a dominating set of size k+mc, where m is the number of edges of G.

Let us start with the following proposition, which follows from existing negative results
for Dominating Set parameterized by the size of a vertex cover [7].

I Proposition 13 (?). DS/c-tdmod does not admit a polynomial kernel on 2-degenerate
graphs for any c ≥ 3 unless NP ⊆ coNP/poly.

I Observation 14. DS/1-tdmod (or equivalently DS/VC) admits a polynomial kernel on
degenerate graphs. Indeed, given an instance (G, k) of DS/VC, we compute in polynomial
time a 2-approximate vertex cover X of G. If |X| ≤ k then we output a trivial Yes-instance,
otherwise VC(G) ≥ k

2 and we can apply the polynomial kernel for DS/k on degenerate graphs
of Philip et al. [19].

Thus, by Proposition 13 and Observation 14, the only remaining case for degenerate
graphs is DS/2-tdmod. We would like to point out that the composition of [7] for DS/(k+VC)

IPEC 2017

10:10 How Much Does Treedepth Mod. Help to Obtain Poly. Kernels byd. Sparse Graphs?

x1

x̄1

a1

α ri

cim

ci1
ciℓ

∈ E iff xiℓ ∈ C i
ℓ

x̄ℓ

aℓ

xℓ

∈ E iff x̄iℓ ∈ C i
ℓ

rt

ctm

ct1

x̄n

an

xn

r1

c1m

c11
y1

yi

yt

Figure 2 Example of the or-cross-composition of Theorem 15.

on general graphs cannot be easily adapted to DS/2-tdmod on degenerate graphs, as for
example subdividing each edge also leads to a result for DS/3-tdmod. Thus, we treat the
case DS/2-tdmod on degenerate graphs using an ad-hoc reduction.

I Theorem 15. DS/2-tdmod does not admit a polynomial kernel on 4-degenerate graphs
unless NP ⊆ coNP/poly.

Proof. We use an or-cross-composition (see the full version for the definition) from 3-
Sat. We consider t instances of 3-Sat, where for every i ∈ [t], instance Ii has mi clauses
{Cij | j ∈ [mi]} and ni variables Xi = {xi` | ` ∈ [ni]}, each clause containing three variables.
We can safely assume that for every i ∈ [t], we have mi = m and ni = n.

Let us now construct a graph G = (V,E) as follows; see Figure 2 for an illustration.
We start by adding to V the set of vertices X =

⋃
`∈[n]{x`, x̄`} (and thus |X | = 2n) and

Ci = {ci` | ` ∈ [m]} for every i ∈ [t]. Let C =
⋃
i∈[t] C

i. For every i ∈ [t], ` ∈ [n], j ∈ [m], we
set {x`, cij} ∈ Ei (resp. {x̄`, cij} ∈ Ei) if and only if Cij contains xi` (resp. x̄i`). We add to
E the set

⋃
i∈[t] E

i. Then, we add to V the set A = {a` | ` ∈ [n]}, and create n triangles
by adding to E edges {x`, x̄`}, {a`, x`}, and {a`, x̄`} for every ` ∈ [n]. Finally, we add to V
the set Y = {yi | i ∈ [t]}, R = {ri | i ∈ [t]}, and a vertex α. Then, for every i ∈ [t], we add
to E edges {ri, ci`} for every ` ∈ [m], edges {ri, yi}, and edges {yi, α}. This concludes the
construction of G. To summarize, G has 3n+ t(m+ 2) + 1 vertices (vertices are partitioned
into V = (X ∪A) ∪ (C ∪ Y ∪R) ∪ {α}) and, in particular, for every i ∈ [t], G[{ri} ∪Ci ∪ yi]
is a star, and G[{α} ∪ Y] is also a star.

The or-equivalence. Let us prove that there exists i ∈ [t] such that Ii is satisfiable if and only
if G has a dominating set of size at most k = n+ t. Suppose first, without loss of generality,
that I1 is satisfiable, and let SX ⊆ X be the set of n literals corresponding to this assignment
(thus for every ` ∈ [n] we have |SX ∩ {x`, x̄`}| = 1). Let S = SX ∪ y1 ∪ (R \ {r1}). We have
|S| = n+ t, and S is a dominating set of G as
X ∪A is dominated by SX ,
C1 is dominated by SX as it corresponds to an assignment satisfying I1, and for every
i ∈ [t], i ≥ 2, Ci is dominated by ri,
y1 ∈ S, and for every i ∈ [t], i ≥ 2, yi is dominated by ri,
r1 is dominated by y1, and for any i ∈ [t], r ≥ 2, ri ∈ S, and
α is dominated by y1.

For the other direction, let S = S1 ∪ S2, with S1 = S ∩ (X ∪A), be a dominating set of
G of size at most k = n+ t. Without loss of generality, we can always suppose that S1 ⊆ X ,
as if a` ∈ S we can always remove a` from S and add (arbitrarily) x` or x̄`.

M. Bougeret and I. Sau 10:11

Let us first prove that |S1| = n. Observe first that |S1| ≥ n as dominating A requires at
least n vertices. Suppose now by contradiction that |S1| > n. Then, there would remain at
most t− 1 vertices to dominate R, which is not possible. Note that we even have that for
any ` ∈ [n], |S1 ∩ {x`, x̄`}| = 1, as every a` must be dominated and |S2| = t.

Let us now analyze S2 (recall that, by definition, S2 ⊆ (C ∪ Y ∪R) ∪ {α}). We cannot
have that for every i ∈ [t], |S2 ∩ (Ci ∪ ri)| ≥ 1, as otherwise there would be no remaining
vertex to dominate α. Thus, there exists i0 such that |S2 ∩ (Ci0 ∪ ri0)| = 0. This implies
that Ci0 is dominated by S1. As for every ` ∈ [n], |S1 ∩ {x`, x̄`}| = 1, S1 corresponds to a
valid truth assignment that satisfies all the Ci`’s, ` ∈ [m], and the instance Ii0 is satisfiable.

Size of the parameter. Let M = X ∪A∪ {α}. As G[V \M] contains t disjoint stars, we have
that 2-tdmod (G) ≤ |M | ≤ poly(n), as required.

Degeneracy. Let us prove that G is 4-degenerate. Observe that any vertex in C has degree
at most 4 (three neighbors in X and one in R). Thus, any ordering of V (G) of the form
(C,R, Y, α,X , A) (with arbitrary order within each set) is a 4-elimination order of G. J

Note that for DS/c-tdmod with c ≥ 3, the bound in the degeneracy given by Proposition 13
is best possible, as DS can be easily solved in polynomial time on 1-degenerate graphs, i.e.,
forests. On the other hand, for c = 2, in view of Theorem 15 only the existence of polynomial
kernels for DS/2-tdmod on 2-degenerate and 3-degenerate graphs remains open.

5 Concluding remarks and further research

In this article we studied the existence of polynomial kernels for problems parameterized
by the size of a c-treedepth modulator, on graphs that are not sparse. On the positive side,
we proved that Vertex Cover (or equivalently, Independent Set) parameterized by the
size x of a c-treedepth modulator admits a polynomial kernel on general graphs with x2O(c2)

vertices, for every c ≥ 1. A natural direction is to improve the size of this kernel. Since
Vertex Cover parameterized by the distance to a disjoint collection of cliques of size at
most c does not admit a kernel with O(xc−ε) vertices unless NP ⊆ coNP/poly [16], and since
a clique of size c has treedepth c, the same lower bound applies to our parameterization; in
particular, this rules out the existence of a uniform kernel. However, there is still a large gap
between both bounds, hence there should be some room for improvement.

On the negative side, we proved that Dominating Set parameterized by the size of a
c-treedepth modulator does not admit a polynomial kernel on degenerate graphs for any c ≥ 2.
As Dominating Set with this parameterization admits a polynomial kernel on nowhere dense
graphs [11], it follows that sparse graphs constitute the border for the existence of polynomial
kernels. This leads us to the following natural question: are there smaller parameters for
which Dominating Set still admits polynomial kernels on sparse graphs? Since considering
as parameter the treedepth of the input graph does not allow for polynomial kernels (see
the full version), we may consider as parameter the size x of a vertex set whose removal
results in a graph of treedepth at most b(x), for a function b that is not necessarily constant.
We prove in the full version that Dominating Set does not admit polynomial kernels on
graphs of bounded expansion for b(x) = Ω(log x), unless NP ⊆ coNP/poly. On the other
hand, by combining the approach of Garnero et al. [12] to obtain explicit kernels via dynamic
programming with the techniques of Gajarskỳ et al. [11] on graphs of bounded expansion,
it can be shown – we omit the details here – that Dominating Set admits a polynomial
kernel for b(x) = O(log log log x) on graphs of bounded expansion whose expansion function
f is not too “large” (that is, the function F that bounds the grad with rank d of the graphs

IPEC 2017

10:12 How Much Does Treedepth Mod. Help to Obtain Poly. Kernels byd. Sparse Graphs?

in the family, see [17]), namely f(d) = 2O(d). While this result is somehow anecdotal, we
think that it may be the starting point for a systematic study of this topic.

References
1 Faisal N Abu-Khzam, Michael R Fellows, Michael A Langston, and W Henry Suters. Crown

structures for vertex cover kernelization. Theory of Computing Systems, 41(3):411–430,
2007.

2 Hans L Bodlaender, Rodney G Downey, Michael R Fellows, and Danny Hermelin. On
problems without polynomial kernels. Journal of Computer and System Sciences, 75(8):423–
434, 2009.

3 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M. Thilikos. (Meta) Kernelization. In Proc. of the 50th IEEE Symposium on
Foundations of Computer Science (FOCS), pages 629–638. IEEE Computer Society, 2009.

4 B. Courcelle. The monadic second-order theory of graphs I: recognisable sets of finite
graphs. Information and Computation, 85(12-75):663, 1990.

5 Marek Cygan, Lukasz Kowalik, and Marcin Pilipczuk. Open problem session of the
Workshop on Kernelization (WorKer), Warsaw, Poland, 2013. Summary available at
http://worker2013.mimuw.edu.pl/slides/worker-opl.pdf.

6 Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh.
On the hardness of losing width. Theory of Computing Systems, 54(1):73–82, 2014.

7 Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Kernelization lower bounds through
colors and ids. ACM Transactions on Algorithms, 11(2):13, 2014.

8 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimen-
sionality and kernels. In Proc. of the 21st ACM-SIAM Symp. on Disc. Algorithms (SODA),
pages 503–510, 2010.

9 Fedor V. Fomin and Torstein J. F. Strømme. Vertex cover structural parameterization
revisited. CoRR, abs/1603.00770, 2016. arXiv:1603.00770.

10 L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct PCPs for
NP. Journal of Computer and System Sciences, 77(1):91–106, 2011.

11 Jakub Gajarský, Petr Hlinený, Jan Obdrzálek, Sebastian Ordyniak, Felix Reidl, Peter Ross-
manith, Fernando Sánchez Villaamil, and Somnath Sikdar. Kernelization using structural
parameters on sparse graph classes. Journal of Computer and System Sciences, 84:219–242,
2017.

12 Valentin Garnero, Christophe Paul, Ignasi Sau, and Dimitrios M. Thilikos. Explicit linear
kernels via dynamic programming. SIAM Journal on Discrete Mathematics, 29(4):1864–
1894, 2015.

13 Jiong Guo, Falk Hüffner, and Rolf Niedermeier. A Structural View on Parameterizing Prob-
lems: Distance from Triviality. In Proc. of the 1st International Workshop on Parameterized
and Exact Computation (IWPEC), volume 3162 of LNCS, pages 162–173, 2004.

14 Bart Jansen and Hans Bodlaender. Vertex cover kernelization revisited: Upper and lower
bounds for a refined parameter. In Proc. of the 28th Symposium on Theoretical Aspects of
Computer Science (STACS), volume 9 of LIPIcs, pages 177–188, 2011.

15 Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi
Sau, and Somnath Sikdar. Linear kernels and single-exponential algorithms via protrusion
decompositions. ACM Transactions on Algorithms, 12(2):21, 2016.

16 Diptapriyo Majumdar, Venkatesh Raman, and Saket Saurabh. Kernels for structural para-
meterizations of vertex cover - case of small degree modulators. In Proc. of the 10th
International Symposium on Parameterized and Exact Computation (IPEC), volume 43 of
LIPIcs, pages 331–342, 2015.

http://worker2013.mimuw.edu.pl/slides/worker-opl.pdf
http://arxiv.org/abs/1603.00770

M. Bougeret and I. Sau 10:13

17 Jaroslav Nesetril and Patrice Ossona De Mendez. Sparsity: Graphs, Structures, and
Algorithms. Algorithms and Combinatorics. Springer, 2012. URL: https://hal.
archives-ouvertes.fr/hal-00768681.

18 Rolf Niedermeier. Reflections on multivariate algorithmics and problem parameterization.
In Proc. of the 27th International Symposium on Theoretical Aspects of Computer Science
(STACS), volume 5 of LIPIcs, pages 17–32, 2010.

19 Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar. Solving dominating set in
larger classes of graphs: FPT algorithms and polynomial kernels. In Proc. of the 17th
Annual European Symposium on Algorithms (ESA), volume 5757 of LNCS, pages 694–705,
2009.

20 Felix Reidl, Peter Rossmanith, Fernando Sánchez Villaamil, and Somnath Sikdar. A faster
parameterized algorithm for treedepth. In Proc. of the 41st International Colloquium on
Automata, Languages, and Programming (ICALP), volume 8572 of Lecture Notes in Com-
puter Science, pages 931–942, 2014.

IPEC 2017

https://hal.archives-ouvertes.fr/hal-00768681
https://hal.archives-ouvertes.fr/hal-00768681

Solving and Sampling with Many Solutions:
Satisfiability and Other Hard Problems∗†

Jean Cardinal1, Jerri Nummenpalo2, and Emo Welzl3

1 Université Libre de Bruxelles (ULB), Computer Science Department, Brussels,
Belgium
jcardin@ulb.ac.be

2 ETH Zürich, Department of Computer Science, Zürich, Switzerland
njerri@inf.ethz.ch

3 ETH Zürich, Department of Computer Science, Zürich, Switzerland
emo@inf.ethz.ch

Abstract
We investigate parameterizing hard combinatorial problems by the size of the solution set com-
pared to all solution candidates. Our main result is a uniform sampling algorithm for satisfying
assignments of 2-CNF formulas that runs in expected time O∗(ε−0.617) where ε is the fraction
of assignments that are satisfying. This improves significantly over the trivial sampling bound
of expected Θ∗(ε−1), and on all previous algorithms whenever ε = Ω(0.708n). We also consider
algorithms for 3-SAT with an ε fraction of satisfying assignments, and prove that it can be solved
in O∗(ε−2.27) deterministic time, and in O∗(ε−0.936) randomized time. Finally, to further demon-
strate the applicability of this framework, we also explore how similar techniques can be used for
vertex cover problems.

1998 ACM Subject Classification F.2.2 Theory of Computation, Nonnumerical Algorithms and
Problems, Computations on discrete structures, G.2.1. Discrete Mathematics, Combinatorics,
Combinatorial algorithms

Keywords and phrases Satisfiability, Sampling, Parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.11

1 Introduction

In order to cope with the computational complexity of combinatorial optimization and
satisfiability problems without sacrificing correctness guarantees, one can consider a family of
instances for which a certain parameter is bounded, and analyze the complexity of algorithms
as a function of this parameter. While it is now commonplace in combinatorial optimization to
define the parameter as the size of a solution, we here consider computationally hard problems
parameterized by the number of solutions. More precisely, we will consider satisfiability
problems in which we are promised that a fraction at least ε of all possible assignments are
satisfying, and graph covering problems in which a fraction at least ε of all vertex subsets of
a certain size are solutions.

Counting and sampling solutions to CNF formulas and more generally to CSP formulas has
important practical applications. For example, in verification and artificial intelligence [12];

∗ This work started at the 2016 Gremo Workshop on Open Problems (GWOP), on June 6-10 at St.
Niklausen, OW, Switzerland.

† A full version of this paper is available on arXiv [2], https://arxiv.org/abs/1708.01122.

© Jean Cardinal, Jerri Nummenpalo and Emo Welzl;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 11; pp. 11:1–11:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.11
https://arxiv.org/abs/1708.01122
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Solving and Sampling with Many Solutions: Satisfiability and Other Hard Problems

and Bayesian inference [13]. Recent algorithmic developments have made possible practical
algorithms that can tackle industrial scale problems [10].

In contrast to that line of work we focus on the exact complexity of sampling, in particular
to sampling solutions for 2-CNF formulas, and show that we can significantly improve on
the trivial sampling algorithm that repeatedly samples uniformly in the search space and
terminates after ε−1 steps on average. A few previous works have also considered satisfiability
problems under the promise that there are many solutions, most notably from Hirsch [6],
and more recently from Kane and Watanabe [9]. Their focus has been on deterministic
algorithms and we extend their work while also adding the consideration of randomized
algorithms for k-SAT.

Before detailing our contributions more precisely, we briefly summarize the current state
of knowledge regarding this family of questions.

1.1 Background and previous work on satisfiability
Hirsch [6] developed a deterministic algorithm that finds a satisfying assignment for a k-CNF
formula F with an ε fraction of satisfying assignments in time O∗(ε−δk) where (δk)∞k=2 is a
positive increasing sequence defined by the roots of the characteristic polynomials of certain
recurrence relations. The constant obtained for k = 3 is δ3 ≈ 7.27. The main idea in his
algorithm is that such formulas F have short implicants which are satisfying assignments that
need to fix only few variables – in this case only O(log ε−1) many – and such assignments
can be found relatively fast with a branching algorithm. Trevisan [17] proposed a similar
algorithm to that of Hirsch but with an explicit running time of O∗(ε−(ln 4)k2k). Although
his algorithm is slightly simpler, the performance guarantees, at least for small k, are worse.

Kane and Watanabe [9] looked at general CNF formulas in a similar setting. They assume
that ε ≥ 2−nδ , that the number of clauses is bounded by n1+δ′ and that δ + δ′ < 1. Under
these conditions they show that the formula has a short implicant that only fixes a linear
fraction of the variables and they provide a O∗(2nβ) time algorithm for finding a solution
with β < 1.

Classical derandomization tools naturally apply in this context. For arbitrary CNF
formulas on n variables with ε2n satisfying assignments, one can obtain a deterministic
algorithm by using a pseudorandom generator that ε-fools depth-2 circuits. A result by De et
al. [3] provides such pseudorandom generators with seed length O

(
logn+ log2 m

ε log log m
ε

)
.

By enumerating over all seeds, we obtain a running time of O∗
((

n
ε

)c·log n
ε

)
for some constant

c (assuming there are poly(n) clauses). A recent result of Servedio and Tan improves this
running time to nÕ(log logn)2 for any ε ≥ 1/poly log(n) [16].

We let Sample-2-SAT denote the problem of sampling exactly and uniformly a satisfying
assignment. Due to self-reducibility of satisfiability, any algorithm for the counting problem
#2-SAT can be used to solve Sample-2-SAT with only a multiplicative polynomial loss
in runtime. In fact, so far the best algorithm for Sample-2-SAT is Wahlström’s #2-SAT
algorithm [18] that runs in time O(1.238n). In contrast to the exponential time algorithms,
2-SAT can be solved in linear time with the classical algorithm of Aspvall et al. [1]. We
note that while Sample-2-SAT is between 2-SAT and #2-SAT in complexity, under the
assumption RP 6= NP it is not possible to uniformly or even almost uniformly sample
satisfying assignments in polynomial time. We can use a simple threefold reduction to prove
this:

The constraints for an independent set in a graph can be modeled as a 2-SAT formula.
Therefore a polynomial time algorithm for Sample-2-SAT would give a polynomial time

J. Cardinal, J. Nummenpalo, and E. Welzl 11:3

algorithm for Sample-IS. (sampling uniformly among independent sets of any size). The
same holds for approximate versions of the problems.
Such sampling algorithms would yield a fully polynomial randomized approximation
scheme (FPRAS) for #IS. See for example the article of Jerrum et al. [8].
Lastly, such an FPRAS exists only if RP = NP . For details see for example the book by
Jerrum [7, Chapter 7, Proposition 7.7].

Even when relaxing Sample-2-SAT to almost uniform sampling, the best algorithm is still
the one based on Wahlström’s counting algorithm. This is in contrast to k-CNF formulas
with k ≥ 3 which have an exponential gap between exact and almost uniform sampling. More
precisely, the gap is between exact and approximate counting. See Schmitt and Wanka [14]
for a table of the best algorithms.

1.2 Our results
In Section 2 we recall Hirsch’s [6] algorithm for finding a satisfying assignment for a k-CNF
F with a fraction ε of satisfying assignments. We slightly generalize his analysis to also
cover improved branching rules for k-SAT. The resulting deterministic algorithms have
running times of O∗(ε−λk) for some positive increasing sequence (λk)∞k=2, where for instance
λ3 ≤ 2.27. We demonstrate how similar techniques can be used for finding vertex covers and
we give a deterministic algorithm running in time sublinear in ε−1 for instances of k-vertex
cover with at least ε

(
n
k

)
solutions and k bounded by some fraction of n.

In Section 3 we prove our main result, Theorem 7, which describes an algorithm for Sample-
2-SAT that runs in expected time O∗(ε−0.617). It therefore improves on the algorithm based
on Wahlström’s algorithm [18] when ε = Ω(0.708n), or equivalently when F has Ω(1.415n)
satisfying assignments. We leave it as an open problem to decide whether sampling solutions
to 3-CNF formulas can be done in time O∗(ε−δ) with δ < 1 and discuss why the 2-CNF case
does not generalize. In Proposition 8 we show how to solve 3-SAT in time O(ε−0.936(m+ n))
using similar ideas.

1.3 Notation
For a Boolean variable x we denote its negation by x̄ and for a set V of Boolean variables let
V be the set of negated variables. A literal is either a Boolean variable or its negation and in
the former case we call the literal positive and in the latter we call it negative. We think of a
CNF formula, or simply a formula, F over a variable set V as a set F = {C1, C2, . . . , Cm}
of clauses where each clause Ci ⊂ V ∪ V is a set of literals without both x and x̄ in the
same clause for any variable x ∈ V . By a k-CNF formula and by a (≤ k)-CNF we denote
CNF formulas in which every clause has cardinality exactly k or at most k, respectively. We
let vbl(F) ⊆ V denote the set of variables that appear in F either as a positive or negative
literal. The empty formula is denoted by {} and the empty clause by �. An assignment
to the variables in the formula F is a function α : V → {0, 1} and it is said to satisfy F if
every clause C ∈ F is satisfied, namely, if the clause contains a literal whose value is set
to 1 under the assignment. A satisfying assignment is also called a solution. The empty
formula is satisfied by any assignment to the variables and the empty clause by none. The
set of all satisfying assignments of a formula F over V is denoted satV (F), and we omit
the subscript V when it is clear from the context. A partial assignment to F is a function
β : W → {0, 1} with W ⊆ V and we let F [β] be the formula over the variables V \W which
is attained from F by removing each clause of F that is satisfied under β and then removing
all literals assigned to 0 from the remaining clauses. If u ∈ V ∪ V is a literal and i ∈ {0, 1}

IPEC 2017

11:4 Solving and Sampling with Many Solutions: Satisfiability and Other Hard Problems

we let F [u 7→i] denote F [β] where β is the partial assignment that maps only u to i. By unit
clause reduction we refer to the process of repeatedly setting variables to satisfy the unit
clauses until finishing the process by exhausting the unit clauses or finding the empty clause.

All the logarithms are in base 2 unless noted otherwise.

2 Deterministic algorithms and Hirsch’s method

In this section we consider Hirsch’s method [6] for finding a satisfying assignment to a k-CNF
formula, and extend the analysis to accommodate any branching rule.

We first briefly recall basic definitions on branching algorithms. A complexity measure µ
is a function that assigns a nonnegative value µ(F) to every instance F of some particular
problem. Given a problem and a complexity measure µ for it, we say that an algorithm
correctly solving the problem is a branching algorithm (with respect to µ) if for every instance
F the algorithm computes a list (F1, . . . , Ft) of instances of the same problem, recursively
solves the Fi’s, and finally combines the results to solve F . Finding the list (F1, . . . , Ft) and
recursively solving each of them is called a branching. Letting bi = µ(F)− µ(Fi) we call the
vector (b1, . . . , bt) the branching vector associated to the branching. Lastly, the branching
number τ(b1, . . . , bt) is defined as the smallest positive solution of the equation

∑t
i=1 x

−bi = 1.
If λ is the largest branching number of any possible branching in the algorithm and T (F) is
the time used to find the branching and to combine the results after the recursive calls, then
the running time of the algorithm can be bounded by O(T (F)λµ(F)).

Following Hirsch [6], we consider a breadth-first version of such a branching algorithm,
taking a k-CNF Boolean formula F as input. We use the number of variables as a measure,
and branch on partial assignments βi, each fixing exactly bi variables. The set Φ` in the
algorithm below eventually contains the formulas constructed from input F after fixing
exactly ` variables.
1. set `← 0, Φ0 ← {F}, and Φ` ← ∅ for all ` > 0.
2. if {} ∈ Φ`, then stop and return the so far fixed variables
3. for each F ∈ Φ` such that � 6∈ F :

a. find a collection of t partial assignments of the form βi : Wi → {0, 1}, where Wi ⊆
vbl(F)

b. for each i ∈ [t]:
i. Φ`+bi ← Φ`+bi ∪ {F [βi]}

4. `← `+ 1; if ` ≤ n then go to step 2

For this algorithm to be correct, the partial assignments in 3a have to of course be chosen
according to a correct branching rule. The complete collection Φ` can be seen as a collection
of nodes of the search tree of the recursive algorithm, and is referred to as the `th floor of
the tree. The following lemma holds [6].

I Lemma 1. |Φ`| ≤ λ` where λ is the maximum branching number of the recursion tree.

The following result was proved by Hirsch in the special case of the simple Monien-
Speckenmeyer algorithm [11], in which the branching vector was (1, 2, . . . , k). We generalize
it to arbitrary branching vectors. The proof is left for the full version of this paper [2].

I Theorem 2. Consider a k-CNF formula F with n variables and m clauses, and suppose
it has at least ε2n satisfying assignments. Then any breadth-first branching algorithm for
k-SAT with maximum branching number λk < 2 runs in time O∗(ε−B) on this instance,
where B := 1/(logλk 2− 1).

J. Cardinal, J. Nummenpalo, and E. Welzl 11:5

To get concrete bounds from Theorem 2 it remains to find good branching rules for
k-SAT. The improved algorithm by Monien and Speckenmeyer [11] for k-SAT uses the notion
of autarkies and the branching vectors appearing in the algorithm are (1) and (1, 2, . . . , k− 1)
of which the latter has the worse branching number. This directly yields the following result
for k = 3.

I Theorem 3. Given a 3-CNF formula F on n variables and an ε > 0 with the guarantee that
|sat(F)| ≥ ε2n, one can find a satisfying assignment for F in deterministic time O∗

(
ε−2.27).

2.1 Vertex cover
The technique we have seen is not unique to satisfiability but extend easily to known graph
problems. As an example, we now consider the vertex cover problem: given a graph G and
an integer k, does there exist a subset S ∈

(
V (G)
k

)
such that ∀e ∈ E(G), e ∩ S 6= ∅? The

optimization version consists of finding a smallest subset S satisfying the condition. We
consider exact algorithms, hence the problem is equivalent to the maximum independent set
problem (consider V (G) \ S). This is naturally related to the previous results on 2-SAT: the
vertex cover problem can be cast as finding a minimum-weight satisfying assignment for a
monotone 2-CNF formula.

We first briefly recall a standard algorithm for finding a minimum vertex cover in a graph
G on n vertices, if one exists, in time O∗(1.3803n). First note that if the maximum degree of
the graph is 2, then the problem can be solved in polynomial time. Otherwise, pick a vertex v
of degree at least 3, and return the minimum of 1+V C(G−v) and V C(G−v−N(v)), where
V C are recursive calls, and N(v) is the set of neighbors of v in G. The running time T (n)
obeys the recurrence T (n) = T (n− 1) + T (n− 4), solving to the claimed bound. We can also
analyze it with respect to the size k of the sought cover, yielding T (k) = T (k− 1) + T (k− 3),
solving to 1.4656k. In the latter, we do not count the total number of vertices that are
processed, but only those that are part of the solution. Hence we can distinguish the
branching number λ related to the number of vertices processed and the branching number
ρ related to the number of vertices included in the vertex cover (equivalently, the weight of
the current partial assignment). In our case, we have ρ < 1.4656.

We now consider instances of the vertex cover problem in which we are promised that
there are at least ε

(
n
k

)
vertex covers. Given a branching algorithm, we can parse its search

tree in breadth-first order, by associating with each node the number of vertices included in
S so far (that is, the weight of the partial assignment). We define Φ` as the set of nodes
with such value `, and call it the `th floor. The following lemma is similar to Lemma 1.

I Lemma 4. |Φ`| ≤ ρ`.

After generating the `th floor Φ`, there are at most ρ`
(
n−`
k−`
)
remaining covers to check. If

this is less than the total number of solutions of size k, we are done. The following statement
gives an upper bound on the number of levels of the tree we need to parse. We leave the
proof to the full version of this paper [2].

I Lemma 5. Let `∗ := ln(1
ε)/ ln(nρk). Then for k, n >> `∗ and k ≤ n/ρ, we have

ρ`
(
n− `
k − `

)
≥ ε
(
n

k

)
⇒ ` ≤ `∗.

For n large enough, Lemma 5 implies that if ` > `∗ then the number of remaining solutions
is smaller than the promised number ε

(
n
k

)
, and either we have found one already, or greedily

IPEC 2017

11:6 Solving and Sampling with Many Solutions: Satisfiability and Other Hard Problems

completing any partial solution leads to a solution. Hence the running time is within a linear
factor of ρ`∗ , which simplifies as follows.

I Theorem 6. Given a Vertex Cover instance composed of a graph G on n vertices, a number
k < n/ρ, and an ε > 0 with the guarantee that G has at least ε

(
n
k

)
vertex covers of size k,

one can find such a vertex cover in deterministic time

O∗
(
ε
− log ρ

log(n
ρk

)

)
,

where ρ is the branching number of an exact branching algorithm for k-vertex cover. In
particular, this holds for ρ = 1.4656.

Note that the running time remains sublinear in 1/ε for all values of k such that
log ρ

log(nρk) < 1⇔ k < n/ρ2. Hence for those values of k, and in particular when k = o(n), we
have a deterministic algorithm for k-vertex cover whose complexity improves on the trivial
sampling algorithm.

3 Randomized algorithms for Sample-2-SAT and for 3-SAT

In this section we present our algorithm for Sample-2-SAT with an expected running time of
O
(
ε−0.617(m+ n)

)
on 2-CNF formulas with more than ε fraction of satisfying assignments.

The parameter ε does not need to be a constant and the algorithms can be easily modified
so that they do not need to know ε in advance. Before stating and proving our main result
we consider a warm-up algorithm that gives a weaker bound but already highlights some
of the main ideas. In the end we discuss the complications of generalizing our method to
Sample-3-SAT and see how to solve 3-SAT in expected time O

(
ε−0.940(m+ n)

)
using similar

techniques as for Sample-2-SAT.
Schmitt and Wanka [14] have used analogous ideas to approximately count the number

of solutions in k-CNF formulas.

3.1 A warm-up algorithm for Sample-2-SAT
We will start with a warm-up algorithm that we then improve. Let F be a 2-CNF formula
over the variable set V with n := |V | and with m clauses. Let S ⊆ F be a greedily chosen
maximal set of variable disjoint clauses. We make the following remarks.

Any satisfying full assignment for F must in particular satisfy S and is therefore an
extension of one of the 3|S| partial assignments to vbl(S) that satisfy all clauses in S.
Because of maximality any partial assignment of the form α : vbl(S) → {0, 1} has the
property that F [α] is a (≤ 1)-CNF.
Counting and sampling of solutions of a (≤ 1)-CNF is easily done in linear time.

The set S allows us on one hand to do improved rejection sampling and on the other
hand to device a branching based sampling. More concretely, consider the following two
algorithms that use S.

1. Sample uniformly among all full assignments for F that satisfy all the clauses in S until
finding one that satisfies F .

2. Go through all 3|S| partial assignments α : vbl(S)→ {0, 1} that satisfy S and for each
α compute Aα := |satV \vbl(S)(F [α])|, i.e., the number of satisfying assignments in F [α].
Then A :=

∑
αAα is the number of satisfying assignments in F . Draw one partial

J. Cardinal, J. Nummenpalo, and E. Welzl 11:7

assignment α∗ at random so that Pr(α∗ = α) = Aα/A. For the remaining variables
choose an assignment β∗ : V \vbl(S)→ {0, 1} uniformly among all assignments satisfying
F [α∗]. Output the full assignment which when restricted to vbl(S) is α∗ and when
restricted to V \ vbl(S) is β∗.

The correctness of the first algorithm is clear since any assignment satisfying F must
also satisfy S. One sample can also be drawn in linear time. Because the clauses of S are
variable disjoint, the pool of assignments we are sampling from has (3

4)|S|2n assignments and
it contains all the at least ε2n satisfying assignments. Therefore the probability of one sample
being satisfying is at least (4

3)|S|ε, implying an expected runtime of O
(
ε−1(3

4)|S|(m+ n)
)

for the first algorithm.
We need the second algorithm to balance the first one when |S| is small. For the

correctness we observe that the partial assignments α partition the solution space in the sense
that A =

∑
αAα = |satV (F)| and a simple calculation shows that the output distribution is

uniform over satV (F). With the remarks made before the algorithm description we conclude
that the runtime of the second algorithm is O(3|S|(m+n)). If space is a concern, the sampling
of α∗ can be done in linear space without storing the numbers Aα as follows: Sample a
uniform number r from {1, . . . , A} and go through the partial assignments α again in the
same order and output the first α for which the total number of assignments counted up to
that point reaches at least r.

For any given S we can choose the better of the two algorithms which gives an expected
runtime guarantee of

O

(
max
|S|

{
3|S|, ε−1

(
3
4

)|S|}
· (m+ n)

)
= O

(
ε− log4 3(m+ n)

)
(1)

where log4 3 < 0.793. Note that we do not need to know ε in advance to get the same runtime
guarantee as we can simulate running both of the algorithms in parallel until one finishes.

3.2 A faster algorithm for Sample-2-SAT

In the warm-up algorithm we used the set S on the one hand to reduce the size of the
set of assignments we are sampling from and on the other hand we used it as a small size
hitting set for the clauses in F : every clause in F contained at least one variable from vbl(S).
To improve we will do two things. Firstly, we will consider more complicated independent
structures that improve on both aspects above, giving us both a smaller size sampling pool
and a better hitting set. Secondly, we notice that it is not necessary to always use an exact
hitting set in the counting procedure but an “almost hitting set” is enough. Namely, if some
small set of variables hits almost all clauses we can count the number of solutions to the
remaining relatively small (≤ 2)-SAT with a good exponential time algorithm for #2-SAT.

We introduce first some notation. For i ∈ N we call a set of clauses S an i-star if |S| = i

and if there exists a variable x such that for any pair of distinct clauses C,D ∈ S we have
{x} = vbl(C) ∩ vbl(D). A star is an i-star for some i. For i ≥ 2 we call the variable x the
center of the star and any other variable is called a leaf. For 1-stars we consider both of the
variables as centers and neither of them as leaves. A star is called monotone if the center
appears as the same literal in every clause of the star. We call a set T of exactly three clauses
a triangle if every 2-element subset of T is a star and T is not itself a star. Finally, we call a
familyM of CNF formulas independent if no two formulas inM share common variables.

IPEC 2017

11:8 Solving and Sampling with Many Solutions: Satisfiability and Other Hard Problems

Figure 1 A possible construction ofM4 for a formula F that is displayed as a graph with the
variables as vertices and edges between variables appearing in the same clause. The subformulas of
F that make upM4 are given by the components defined by the black bold edges. The edges that
form upM0 are the horizontal black bold edges. There is one non-monotone 2-star inM4 and it is
denoted by the square center vertex.

I Theorem 7. Let F be a 2-CNF formula on n variables and m clauses and let ε > 0 be
such that |sat(F)| ≥ ε2n. A uniformly random satisfying assignment for F can be found in
expected time O

(
ε−δ(m+ n)

)
where δ < 0.617.

Proof. Let V be the variable set of F and let k ≥ 2 be a constant independent of ε that
we fix later. We start by constructing a sequence (M0,M1, . . . ,Mk) of k + 1 independent
families of formulas where every family consists of subformulas of F .

Let M0 be any independent 1-maximal family of 1-stars (clauses) in F . That is, in
addition to maximality we require further that there is no clause in the family whose removal
would allow the addition of two clauses in its place. We can findM0 with a greedy algorithm
in linear time1.

To constructM1 fromM0, we add clauses of F to the 1-stars ofM0 greedily to update
them into non-monotone 2-stars or triangles while maintaining independence. As a result
M1 is an independent family of subformulas of F that consists of 1-stars, non-monotone
2-stars, and triangles and no 1-star can be turned into the other two types by adding clauses
of F to it without revoking independence.

For i = 2, . . . , k we construct Mi from Mi−1 by greedily adding clauses of F to the
monotone (i − 1)-stars to turn them into monotone i-stars while ensuring independence.
Since k is a constant, and all since greedily adding clauses can be done in linear time, the
total time taken to construct the families is O(m+ n). An example ofM4 can be seen in
Figure 1. We describe the structural properties of the families later in the proof.

Analogously to the warm-up algorithm in the previous section we describe two different
algorithms that both make use of the independent families we have constructed and that
complement each other in terms of their running times. The second algorithm describes in
fact k different algorithms, determined by the choice of a parameter ` ∈ {1, . . . , k}. For each
i = 1, . . . , k we let si denote the number of monotone i-stars inMk. By construction the
parameter ri :=

∑k
j=i sj then denotes the number of monotone i-stars in Mi. We further

let t be the number of triangles and q be the number of non-monotone 2-stars inMk, and
therefore in everyMi with i = 1, . . . , k. The two algorithms we consider are:

1. Sample uniformly among all full assignments for F that satisfy all the clauses in Mk

until finding one that satisfies F .

1 This is equivalent to finding a 1-maximal matching in a graph: first find a maximal matching and then
find a maximal set of independent augmenting paths of length 3 and augment them.

J. Cardinal, J. Nummenpalo, and E. Welzl 11:9

2. Fix ` ∈ {1, . . . k}. Define further the variable set W := vbl(M`) and let W ′ ⊆ W be
the set of variables ofM` that appear in a clause of F that has exactly one variable of
M` in them. Go through all 2|W ′| partial assignments α : W ′ → {0, 1} and compute
Aα := |satV \W ′(F [α])| by using Wahlström’s #2-SAT algorithm [18]. Let A :=

∑
αAα

and choose one partial assignment α∗ at random so that Pr(α∗ = α) = Aα/A. For
the remaining variables choose an assignment β∗ : V \W ′ → {0, 1} uniformly among
all assignments satisfying F [α∗]. This can be done by branching on a variable, using
Wahlström’s algorithm to count the number of assignments in the two branches, flipping
a biased coin weighed by the counts to decide on the branch and repeating the same on
the resulting formula until all variables have been set. Output the full assignment which
when restricted to W ′ is α∗ and when restricted to V \W ′ is β∗.

The correctness analysis for both of these two algorithms is essentially the same as in our
warm-up in Section 3.1 and it remains to discuss the running times.

Starting with the first algorithm we note that the stars and triangles inMk have constant
size so the sampling of an assignment can be done in linear time in each iteration. Out of the
2i+1 possible assignments to the variables in any monotone i-star it can be easily checked
that 2i + 1 satisfy all the clauses in the star. Both for a triangle or for a non-monotone 2-star
there are 8 possible assignments out of which at most 4 are satisfying. Therefore from the
independence ofMk we know that there are at most

2−t−q
k∏
i=1

(
2i + 1
2i+1

)si
2n (2)

full assignments to the variables in F that satisfy everything inMk. Since F has at least
ε2n satisfying assignments and the size of the universe we are sampling from is given by (2)
we conclude that the first algorithm takes expected time

O

(
ε−12−t−q

k∏
i=1

(
2i + 1
2i+1

)si
(m+ n)

)
(3)

until returning a uniform satisfying assignment.
Consider now the runtime of the second algorithm. This is the more intricate part of

the analysis and we will make use of the structure of the families that we have set up. It
may be helpful to consider Figure 1. Let F ′ ∈M` be one of the subformulas in the family
M`. We claim that |vbl(F ′) ∩W ′| ≤ 1 and that if vbl(F ′) ∩W ′ = {x}, then F ′ is either an
`-star or a non-monotone 2-star and x is the center of the star. Towards showing the claim
let {u, v} be a clause with vbl(u) ∈ W and vbl(v) ∈ V \W so that {u, v} is a witness for
vbl(u) ∈W ′. If vbl(u) was a leaf of a star ofM`, then we could have madeM0 larger which
would contradict the 1-maximality when vbl(u) ∈ vbl(M0) or just maximality in the case of
vbl(u) 6∈ vbl(M0). For the same reasons the variable vbl(u) can not appear in any triangle.
For any j < ` the variable vbl(u) can also not be the center of a j-star as otherwise we would
have updated that star into a monotone (j + 1)-star when constructingMj+1 or we would
have created a non-monotone 2-star already in the beginning while constructingM1. The
options for vbl(u) that remain are the centers of `-stars and the centers of the non-monotone
2-stars. In the case of ` = 1 we still have to argue that at most one center may appear in W ′.
If both of the centers appeared in W ′, it would either violate the 1-maximality ofM0 or we
could have turned the 1-star into a triangle which proves the claim. Therefore we have the
bound |W ′| ≤ r` + q.

IPEC 2017

11:10 Solving and Sampling with Many Solutions: Satisfiability and Other Hard Problems

We can observe from the argumentation above that if α : W ′ → {0, 1} is a partial
assignment for F , then doing unit clause reduction on the formula F [α] results in a 2-CNF
formula over some variable set Wα ⊆W \W ′. Computing Aα with Wahlström’s algorithm
takes time O(c|Wα|) [18]. Therefore we want to bound |Wα| as tightly as possible. If the
assignment α sets the center literal of a monotone `-star to 0, then the values of the `
remaining variables in the star are determined and will be set to their required values with
unit clause reduction. For a non-monotone 2-star either assignment of the center will force
the value of one of the leaves and one leaf stays undetermined. If α sets i of the r` literals in
the centers of the monotone `-stars to 0 we get the bound

|Wα| ≤ q + 3t+ `(r` − i) +
`−1∑
j=1

(j + 1)sj . (4)

Among the assignments α that we consider there are
(
r`
i

)
2q different ones that set i of the

central literals of the monotone `-stars to 0. Using formula (4) we conclude that the runtime
cost of going over the assignments α and computing the numbers Aα is

O

(
r∑̀
i=0

(
r`
i

)
2q · cq+3t+`(r`−i)+

∑`−1
j=1

(j+1)sj · (m+ n)
)

=O

c3t(2c)q
(
1 + c`

)r` `−1∏
j=1

c(j+1)sj

 · (m+ n)

 (5)

where we used the binomial theorem. We can again use the same trick as in the warm-up
algorithm to sample α∗ without storing all the values of Aα to keep the space require-
ment linear. The running time of finding β∗ with the branching procedure takes time
O(c|Wα∗ ||Wα∗ |+ (m+ n)) which is subsumed by (5).

We have now one algorithm with running time given by (3) and for any ` ∈ {1, . . . , k}
we have an algorithm with running time given by (5). Given the sequence (M1, . . . ,Mk)
we choose the algorithm with the best runtime. To find a worst case upper bound on the
runtime we look for the runtime in the form

O
(
ε−δ(m+ n)

)
(6)

and compute the nonnegative parameters s1, . . . , sk; t and q that maximize the minimum of
the different runtimes. Write σi := si/ log 1

ε , τ := t/ log 1
ε , ρ := q/ log 1

ε . By taking logarithms
of the runtimes (3), (5) and (6) we can write the problem of finding δ and the worst case
parameters σi, τ, ρ as the linear program

max
δ, σi,τ,ρ

δ

s.t. − τ − ρ+
∑k

i=1 σi log
(

2i+1
2i+1

)
≥ δ − 1

3τ log c+ ρ log(2c) +
∑`−1

i=1 σi log
(
ci+1)+

∑k

i=` σi log
(
1 + c`

)
≥ δ for all ` = 1, . . . , k

δ, σi, τ, ρ ≥ 0 for all i = 1, . . . , k .

It turns out that we only need to consider k = 7 due to the fact that cj+1 > 1 + cj in the
integers when j ≥ 7 which implies that the running time for higher values of k no longer
improves. For k = 7 the linear program has in the optimum δ < 0.61618. The approximate
values of the other variables in the optimum are σ1 ≈ 0.131, σ2 ≈ 0.127, , σ3 ≈ 0.111, σ4 ≈
0.084, σ5 ≈ 0.051, σ6 ≈ 0.022, σ7 ≈ 0.004 and exact values of τ = 0 and ρ = 0. This finishes
the proof. J

J. Cardinal, J. Nummenpalo, and E. Welzl 11:11

We attempted to improve the analysis by constructing families that do not consist only of
stars and triangles but the runtimes we achieved were not better. In some sense stars seem
particularly good for the efficient use of Wahlström’s #2-SAT algorithm as a subroutine
because the set W ′ is not too big. We also note that while we could consider adding the
option of choosing ` = 0 in the second algorithm, it is easily verified that choosing ` = 1
instead gives a better performance.

3.3 A randomized algorithm for 3-SAT
One could say that our Sample-2-SAT algorithm works because counting and sampling
solutions for a (≤ 1)-CNF is trivial. Direct generalizations of our method to Sample-3-SAT
do not work because the same is not true for (≤ 2)-CNF formulas. Instead of solving
Sample-3-SAT we apply our method for 3-SAT.

I Proposition 8. Let F be a 3-CNF formula on n variables and m clauses and let ε > 0
be such that |sat(F)| ≥ ε2n. A satisfying assignment for F can be found in expected time
O
(
ε− log8 7(m+ n)

)
.

Proof. Let S be a maximal set of variable disjoint clauses in F . Either sample among those
assignments that satisfy S until finding a satisfying assignment or go through all the 7|S|
partial assignments to vbl(S) and check the satisfiability of the resulting (≤ 2)-CNF.

Checking through the partial assignments takes time O(7|S| · (m+ n)) because each of
the 7|S| instances of (≤ 2)-SAT can be solved in linear time [1]. The rejections sampling
takes expected time O

(
ε−1 (7

8
)|S| (m+ n)

)
because we are sampling from a pool of

(7
8
)|S| 2n

assignments that contain all the at least ε2n many satisfying assignments. Choosing always
the better of the two methods, depending on |S|, gives a worst case running time of
O
(
ε− log8 7(m+ n)

)
. J

Proposition 8 gives an algorithm that works for any ε, but there exist better algorithms for
certain ranges of ε. The PPSZ algorithm for 3-SAT runs in expected time O(1.308n) [5] which
is faster in the case that ε = O(0.750n). It is also possible to analyze Schöning’s algorithm [15]
for 3-SAT to get a dependence on ε by using an isoperimetric inequality for the hypercube
by Frankl and Füredi [4]. The runtime guarantee that results is O

((
4
3 · 2

−H−1(δ)
)n)

in
expectation where δ is the solution to ε = 2(δ−1)n and where H : (0, 1/2] → (0, 1] is the
bijective binary entropy function defined by H(x) = −x log2(x)− (1−x) log2(1−x). We will
include a proof in the full version of this paper [2]. The range where Schöning’s algorithm is
better than Proposition 8 is when ε = O(0.929n).

4 Conclusion

An interesting open problem is whether Sample-3-SAT can be solved time O∗
(
ε−δ
)
for

some δ < 1. Similarly, can we achieve such a running time for 3-SAT with a deterministic
algorithm?

We also believe that parameterizing by the number of solutions should be a fruitful
approach to other problems besides satisfiability or vertex cover.

Acknowledgments. We would like to thank Noga Alon and József Solymosi for discussions
on the problem. We also thank the reviewers of IPEC 2017 for valuable remarks that
improved the exposition.

IPEC 2017

11:12 Solving and Sampling with Many Solutions: Satisfiability and Other Hard Problems

References
1 Bengt Aspvall, Michael F Plass, and Robert Endre Tarjan. A linear-time algorithm for

testing the truth of certain quantified boolean formulas. Information Processing Letters,
8(3):121–123, 1979.

2 Jean Cardinal, Jerri Nummenpalo, and Emo Welzl. Solving and Sampling with Many
Solutions: Satisfiability and Other Hard Problems. ArXiv e-prints, 2017. arXiv:1708.
01122.

3 Anindya De, Omid Etesami, Luca Trevisan, and Madhur Tulsiani. Improved pseudorandom
generators for depth 2 circuits. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, 13th International Workshop, APPROX, and
14th International Workshop, RANDOM, pages 504–517, 2010.

4 Peter Frankl and Zoltán Füredi. A short proof for a theorem of Harper about hamming-
spheres. Discrete Mathematics, 34(3):311–313, 1981.

5 Timon Hertli. 3-SAT faster and simpler—unique-SAT bounds for PPSZ hold in general.
SIAM Journal on Computing, 43(2):718–729, 2014.

6 Edward A Hirsch. A fast deterministic algorithm for formulas that have many satisfying
assignments. Logic Journal of IGPL, 6(1):59–71, 1998.

7 Mark R Jerrum. Counting, sampling and integrating: algorithms and complexity. Springer
Science & Business Media, 2003.

8 Mark R Jerrum, Leslie G Valiant, and Vijay V Vazirani. Random generation of combina-
torial structures from a uniform distribution. Theoretical Computer Science, 43:169–188,
1986.

9 Daniel M Kane and Osamu Watanabe. A short implicant of cnfs with relatively many
satisfying assignments. In Electronic Colloquium on Computational Complexity (ECCC),
volume 20, page 176, 2013.

10 Kuldeep S Meel, Moshe Y Vardi, Supratik Chakraborty, Daniel J Fremont, Sanjit A Se-
shia, Dror Fried, Alexander Ivrii, and Sharad Malik. Constrained sampling and counting:
Universal hashing meets sat solving. In AAAI Workshop: Beyond NP, 2016.

11 Burkhard Monien and Ewald Speckenmeyer. Solving satisfiability in less than 2n steps.
Discrete Applied Mathematics, 10(3):287–295, 1985.

12 Yehuda Naveh, Michal Rimon, Itai Jaeger, Yoav Katz, Michael Vinov, Eitan s Marcu, and
Gil Shurek. Constraint-based random stimuli generation for hardware verification. AI
magazine, 28(3):13, 2007.

13 Tian Sang, Paul Beame, and Henry A Kautz. Performing bayesian inference by weighted
model counting. In AAAI, volume 5, pages 475–481, 2005.

14 Manuel Schmitt and Rolf Wanka. Exploiting independent subformulas: A faster approxi-
mation scheme for #k-SAT. Information Processing Letters, 113(9):337–344, 2013.

15 Uwe Schöning. A probabilistic algorithm for k-SAT based on limited local search and
restart. Algorithmica, 32(4):615–623, 2002.

16 Rocco Servedio and Li-Yang Tan. Deterministic search for CNF satisfying assignments in
almost polynomial time. Unpublished manuscript, 2016.

17 Luca Trevisan. A note on approximate counting for k-DNF. In Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques, pages 417–425.
Springer, 2004.

18 Magnus Wahlström. A tighter bound for counting max-weight solutions to 2SAT in-
stances. In International Workshop on Parameterized and Exact Computation, pages 202–
213. Springer, 2008.

http://arxiv.org/abs/1708.01122
http://arxiv.org/abs/1708.01122

Odd Multiway Cut in Directed Acyclic Graphs∗

Karthekeyan Chandrasekaran1 and Sahand Mozaffari2

1 University of Illinois, Urbana-Champaign, USA
karthe@illinois.edu

2 University of Illinois, Urbana-Champaign, USA
sahandm2@illinois.edu

Abstract
We investigate the odd multiway node (edge) cut problem where the input is a graph with a
specified collection of terminal nodes and the goal is to find a smallest subset of non-terminal
nodes (edges) to delete so that the terminal nodes do not have an odd length path between
them. In an earlier work, Lokshtanov and Ramanujan showed that both odd multiway node cut
and odd multiway edge cut are fixed-parameter tractable (FPT) when parameterized by the size
of the solution in undirected graphs. In this work, we focus on directed acyclic graphs (DAGs)
and design a fixed-parameter algorithm. Our main contribution is an extension of the shadow-
removal framework for parity problems in DAGs. We complement our FPT results with tight
approximability as well as polyhedral results for 2 terminals in DAGs. Additionally, we show
inapproximability results for odd multiway edge cut in undirected graphs even for 2 terminals.

1998 ACM Subject Classification G.2.2 Graph Theory, I.1.2 Algorithms

Keywords and phrases Odd Multiway Cut, Fixed-Parameter Tractability, Approximation Algo-
rithms

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.12

1 Introduction

In the classic {s, t}-cut problem, the goal is to delete the smallest number of edges so that
the resulting graph has no path between s and t. A natural generalization of this problem
is the multiway cut, where the input is a graph with a specified set of terminal nodes and
the goal is to delete the smallest number of non-terminal nodes/edges so that the terminals
cannot reach each other in the resulting graph. In this work, we consider a parity variant
of this problem. A path1 is an odd-path (even-path) if the number of edges in the path is
odd (even). In the OddMultiwayNodeCut (similarly, OddMultiwayEdgeCut), the
input is a graph with a collection of terminal nodes and the goal is to delete the smallest
number of non-terminal nodes (edges) so that the resulting graph has no odd-path between
the terminals. This is a generalization of {s, t}-OddPathNodeBlocker (and similarly,
{s, t}-OddPathEdgeBlocker), which is the problem of finding a minimum number of
nodes that are disjoint from s and t (edges) that cover all s− t odd-paths.

Covering and packing paths has been a topic of intensive investigation in graph theory
as well as polyhedral theory. Menger’s theorem gives a perfect duality relation for min

∗ A full version of the paper is available at https://arxiv.org/abs/1708.02323.
1 We emphasize that the term paths refers to simple paths and not walks. This distinction is particularly

important in parity-constrained settings, because the existence of a walk with an odd number of edges
between two nodes s and t does not imply the existence of an odd-path between s and t. This is in
contrast to the non-parity-constrained settings where the existence of a walk between s and t implies
the existence of a path between s and t.

© Karthekeyan Chandrasekaran and Sahand Mozaffari;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 12; pp. 12:1–12:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.12
https://arxiv.org/abs/1708.02323
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Odd Multiway Cut in DAGs

{s, t}-cut: the minimum number of nodes (edges) that cover all s− t paths is equal to the
maximum number of node-disjoint (edge-disjoint) s− t paths. However, packing paths of
restricted kinds is a difficult problem. One special case is when the paths are required to be
of odd-length for which many deep results exist [4, 17, 5]. In this work, we study the problem
of covering s− t odd-paths and more generally all odd-paths between a given collection of
terminals.

Covering s− t odd-paths in undirected graphs has been explored in the literature from the
perspective of polyhedral theory—we refer to Chapter 29 in Schrijver’s book [17]. Given an
undirected graph G = (V,E) with distinct nodes s, t ∈ V and non-negative edge-lengths, we
may find a shortest length s−t odd-path in polynomial time. Edmonds gave a polynomial-time
algorithm for this by reducing the shortest s− t odd-path problem to the minimum-weight
perfect matching problem [13, 7, 8]. However, as observed by Schrijver and Seymour [18], his
approach of reducing to a matching problem does not extend to address other fundamental
problems about s − t odd-paths. One such fundamental problem is the {s, t}-OddPath-
EdgeBlocker problem. Towards investigating {s, t}-OddPathEdgeBlocker, Schrijver
and Seymour [18] considered the following polyhedron:

Podd-cover :=
{
x ∈ RE

+ :
∑
e∈P

xe ≥ 1 ∀ s− t odd-path P in G
}
.

This leads to a natural integer programming formulation of {s, t}-OddPathEdgeBlocker:
min

{∑
e∈E xe : x ∈ Podd-cover ∩ ZE

}
. By Edmonds’ algorithm, we have an efficient sepa-

ration oracle for Podd-cover and hence there exists an efficient algorithm to optimize over
Podd-cover using the Ellipsoid algorithm [10]. It was known that the extreme points of
Podd-cover are not integral. Cook and Sebö conjectured that all extreme points of Podd-cover

are half-integral which was later shown by Schrijver and Seymour [18]. Schrijver and Sey-
mour’s work also gave a min-max relation for the max fractional packing of s− t odd-paths.
However their work does not provide algorithms or address the computational complexity of
{s, t}-OddPathEdgeBlocker. In this work, we show NP-hardness and an inapproximabil-
ity result for {s, t}-OddPathEdgeBlocker in undirected graphs.

The main focus of this work is OddMultiwayNodeCut in directed acyclic graphs
(DAGs). Before describing the reason for focusing on the subfamily of DAGs among directed
graphs, we mention that OddMultiwayNodeCut and OddMultiwayEdgeCut are
equivalent in directed graphs by standard reductions. The reason we focus on the subfamily
of DAGs and not all directed graphs is the following: consider the (s→ t)-OddPathEdge-
Blocker problem where the input is a directed graph with nodes s, t and the goal is to
find a minimum number of edges to delete so that the resulting graph has no odd-path from
s to t. There is a stark contrast in the complexity of {s, t}-OddPathEdgeBlocker in
undirected graphs and (s → t)-OddPathEdgeBlocker in directed graphs: while there
exists a polynomial time algorithm to verify if a given undirected graph has an s− t odd-path
(e.g., by Edmonds’ reduction to a matching problem), it is NP-complete to verify if a given
directed graph has an s→ t odd-path (e.g., see Lapaugh-Papadimitriou [13]). Thus verifying
feasibility of a solution to OddMultiwayEdgeCut is already NP-complete in directed
graphs. However, there exists a polynomial time algorithm to verify if a given directed acyclic
graph (DAG) has an s→ t odd-path. For this reason, we restrict our focus to DAGs.

Our main contribution is a fixed-parameter algorithm for OddMultiwayNodeCut
in DAGs. We complement the fixed-parameter algorithm by showing NP-hardness and
tight approximability results for the two terminal variant, namely (s→ t)-OddPathNode-
Blocker, in DAGs.

K. Chandrasekaran and S. Mozaffari 12:3

In addition to approximation algorithms, fixed-parameter algorithms have served as
an alternative approach to address NP-hard problems [9]. A problem is said to be fixed-
parameter tractable (FPT), if it can be solved in time f(k)nc, where k is the parameter, f is a
computable function, n is the size of the input and c is a universal constant. Fixed-parameter
algorithms for cut problems have provided novel insights into the connectivity structure of
graphs [6]. The notion of important separators and the shadow-removal technique have served
as the main ingredients in the design of fixed-parameter algorithms for numerous cut problems
[6]. Our work also builds upon the shadow-removal technique to design fixed-parameter
algorithms but differs from known applications substantially owing to the parity constraint.

Related Work. We are not aware of any prior work on this problem in directed graphs. We
describe the known results in undirected graphs. A simple reduction from vertex cover2 shows
that {s, t}-OddPathNodeBlocker in undirected graphs is NP-hard and does not admit a
(2− ε)-approximation for ε > 0 assuming the Unique Games Conjecture [11]. These hardness
results also hold for OddMultiwayNodeCut. The most relevant results to this work are
that of Lokshtanov and Ramanujan [15, 16]. They showed a parameter-preserving reduction
from OddMultiwayEdgeCut to OddMultiwayNodeCut and designed a fixed-parameter
algorithm for OddMultiwayNodeCut. However, their algorithmic techniques work only for
undirected graphs and do not extend immediately for OddMultiwayNodeCut in directed
acyclic graphs.

Lokshtanov and Ramanujan also showed that OddMultiwayEdgeCut is NP-hard in
undirected graphs for three terminals. However, their reduction is not an approximation-
preserving reduction. Hence the approximability of OddMultiwayEdgeCut in undirected
graphs merits careful investigation. In particular, the complexity of OddMultiwayEdge-
Cut in undirected graphs even for the case of two terminals is open in spite of existing
polyhedral work in the literature [18] for this problem.

1.1 Results
Directed acyclic graphs. We recall that OddMultiwayNodeCut and OddMultiway-
EdgeCut are equivalent in DAGs by standard reductions. Hence, all of the following results
for DAGs hold for both problems. The following is our main result.

I Theorem 1. OddMultiwayNodeCut in DAGs can be solved in 2O(k2)poly(n) time,
where k is the size of the optimal solution and n is the number of nodes in the input graph.

We briefly remark on the known techniques to illustrate the challenges in designing
the fixed-parameter algorithm for OddMultiwayNodeCut in DAGs. To highlight the
challenges, we will focus on the case of 2 terminals, namely (s→ t)-OddPathNodeBlocker
in DAGs.

Remark 1. It is tempting to design a fixed-parameter algorithm for (s → t)-OddPath-
NodeBlocker by suitably modifying the definition of important separators to account for
parity and using the shadow-removal technique for directed graphs [3]. However, the main
technical challenge lies in understanding and exploiting the acyclic property of the input
directed graph.

2 Given an instance G of vertex cover, introduce two new nodes s and t that are adjacent to all nodes in
G to obtain a graph H. A set S ⊆ V (G) is a feasible vertex cover in G if and only if S is a feasible
solution to {s, t}-OddPathNodeBlocker in H.

IPEC 2017

12:4 Odd Multiway Cut in DAGs

Remark 2. The next natural attempt is to rely on the fixed-parameter algorithm for multicut
in DAGs by Kratsch et al. [12]. However, their technique crucially relies on reducing the
degrees of the source terminals by suitably branching to create a small number of instances.
On the one hand, applying their branching rule directly to reduce the degree of s in (s→ t)-
OddPathNodeBlocker will blow up the number of instances in the branching. On the
other hand, it is unclear how to modify their branching rule to account for parity.

Given the difficulties mentioned in the above two remarks, our algorithm builds upon the
shadow-removal technique and exploits the acyclic property of the input directed graph to
reduce the instance to minimum odd cycle transversal (remove the smallest number of nodes
to make an undirected graph bipartite) which in turn, has a fixed-parameter algorithm when
parameterized by the number of removed nodes. Our technique is yet another illustration of
the broad-applicability of the shadow-removal framework.

We complement our fixed-parameter algorithm in Theorem 1 with tight approximability
results for 2 terminals. We refer the reader to Table 1 for a summary of the complexity
and approximability results. Unlike the case of undirected graphs where there is still a
gap in the approximability of both {s, t}-OddPathEdgeBlocker and {s, t}-OddPath-
NodeBlocker, we present tight approximability results for both (s→ t)-OddPathEdge-
Blocker and (s→ t)-OddPathNodeBlocker.

I Theorem 2. We have the following inapproximability and approximability results:
(i) (s→ t)-OddPathNodeBlocker in DAGs is NP-hard, and has no efficient (2− ε)-

approximation for any ε > 0 assuming the Unique Games Conjecture.
(ii) There exists an efficient 2-approximation algorithm for (s → t)-OddPathNode-

Blocker in DAGs.

We emphasize that our 2-approximation for (s→ t)-OddPathEdgeBlocker mentioned
in Theorem 2 is a combinatorial algorithm and not LP-based. We note that Schrijver and
Seymour’s result [18] that all extreme points of Podd-cover are half-integral holds only in
undirected graphs and fails in DAGs—see Theorem 3 below. Consequently, we are unable
to design a 2-approximation algorithm using the extreme point structure of the natural
LP-relaxation of the path-blocking integer program. Instead, our approximation algorithm
is combinatorial in nature. The correctness argument of our algorithm also shows that the
integrality gap of the LP-relaxation of the path-blocking integer program is at most 2 in
DAGs.

I Theorem 3. The following odd path cover polyhedron is not necessarily half-integral:
Podd-cover-dir:=

{
x ∈ RE

+ :
∑

e∈P xe ≥ 1 ∀ s→ t odd-path P in D
}
.

Undirected graphs. We next turn our attention to undirected graphs. As mentioned earlier,
{s, t}-OddPathNodeBlocker is NP-hard and does not admit a (2 − ε)-approximation
assuming the Unique Games Conjecture. We are unaware of a constant factor approximation
for {s, t}-OddPathNodeBlocker. For {s, t}-OddPathEdgeBlocker, the results of
Schrijver and Seymour [18] show that the LP-relaxation of a natural integer programming
formulation of {s, t}-OddPathEdgeBlocker is half-integral and thus leads to an efficient
2-approximation for {s, t}-OddPathEdgeBlocker. However, the complexity of {s, t}-
OddPathEdgeBlocker was open. We address this gap in complexity by showing the
following NP-hardness and inapproximability results.

I Theorem 4. {s, t}-OddPathEdgeBlocker is NP-hard and has no efficient (6/5− ε)-
approximation assuming the Unique Games Conjecture.

K. Chandrasekaran and S. Mozaffari 12:5

Table 1 Complexity and Approximability. Text in gray refers to known results while text in
black refers to the results from this work.

Problem Undirected graphs DAGs
{s, t}-OddPathNodeBlocker (2− ε)-inapprox [Equiv. to edge-deletion]
{s, t}-OddPathEdgeBlocker LP is half-integral [18] LP is NOT half-integral

(Thm 3)
2-approx [18] 2-approx (Thm 2)

(6
5 − ε)-inapprox (Thm 4) (2− ε)-inapprox (Thm 2)

OddMultiwayEdgeCut NP-hard for 3 terminals [15]
(6

5 − ε)-inapprox for 2 terminals
(Thm 4)

Organization. We summarize the preliminaries in Section 1.2. We prove the FPT for DAGs
(Theorem 1) in Section 2. We refer the reader to the full version of the paper [1] for all
missing proofs.

1.2 Preliminaries
For ease of notation, we will frequently use v instead of {v}. Let G be a (directed) graph
and W be a subset of V (G). A W -path in G is a path with both of its end-nodes in W . We
restate the problem of OddMultiwayNodeCut in DAGs to set the notation.

I Problem 5 (Minimum Odd Multiway Cut in DAGs). Given a directed acyclic graph G = (V,E)
with sets T , V∞ ⊆ V where T ⊆ V∞, an odd multiway cut in G is a set M ⊆ V (G) \ V∞
of nodes that intersects every odd T -path in G. We refer to T as terminals, V \ T as
non-terminals and V∞ as protected nodes. In DagOddMultiwayNodeCut, the input
is specified as (G,V∞, T, k), where k ∈ Z+ and the goal is to verify if there exists an odd
multiway cut in G of size at most k.

For subsets X and Y of V (G) we say that M ⊆ V (G) \ V∞ is an X → Y separator in
G when G \M has no path from X to Y . The set of nodes that can be reached from a
node set X in G is denoted by RG(X). We note that RG(X) always includes X. We define
the forward shadow of a node set M to be fG(M) := V (G \M) \ RG\M (T), i.e., the set
of nodes v such that there is no T → v path in G disjoint from M . Similarly, the reverse
shadow of M , denoted rG(M), is the set of nodes v from which there is no path to T in
G \M . Equivalently, the reverse shadow is fGrev(M), where Grev is the graph obtained from
G by reversing all the edge orientations. We refer to the union of the forward and the reverse
shadow of M in G, as shadow of M in G and denote it by sG(M). An X → Y separator M ′
is said to dominate another X → Y separator M , if |M ′| ≤ |M | and RG\M (X) (RG\M ′(X).
A minimal X → Y separator that is not dominated by any other separator is called an
important X → Y separator. A set M ⊆ V (G) is thin, if every node v ∈ M is not in
rG(M \ {v}).

For a directed graph G, we define the underlying undirected graph of G, denoted by G∗,
as the undirected graph obtained from G by dropping the orientations. In an undirected
graph H with protected nodes V∞, an odd cycle transversal is a set U ⊆ V (H) \ V∞ of
nodes such that H \ U is bipartite. The problem of finding the minimum such set in a given
instance of the problem is called the minimum odd cycle transversal problem and is denoted by
MinOddCycleTransversal. Although this problem is NP-hard, it is fixed-parameter tractable
when parameterized by the size of the solution. The current-best fixed-parameter algorithm

IPEC 2017

12:6 Odd Multiway Cut in DAGs

for MinOddCycleTransversal runs in time O(2.32kpoly(n)) [14]. The problem addressed in
[14] does not allow for protected nodes, but MinOddCycleTransversal with protected nodes,
can easily be reduced to MinOddCycleTransversal without protected nodes by iteratively
replacing each protected node with k + 1 nodes and connecting them to the same set of
neighbors as the original node. We will use MinOddCycleTransversal(H,V∞, k) to denote
the procedure that implements this fixed-parameter algorithm for the input graph H with
protected nodes V∞ and parameter k.

2 FPT of OddMultiwayNodeCut in DAGs

We will use the shadow-removal technique introduced in [3]. We will reduce the problem
to MinOddCycleTransversal problem in an undirected graph, which is a fixed-parameter
tractable problem when parameterized by the solution size.

2.1 Easy instances

I Theorem 6. Suppose the instance (G,V∞, T, k) of DagOddMultiwayNodeCut has
a solution M of size at most k with the following property: every node v ∈ sG(M) has
total degree at most one in G \M . There exists an algorithm that given one such instance
(G,V∞, T, k) as input, finds a solution of size at most k in time O(2.32kpoly(n)), where n is
the number of nodes in the input graph G.

Proof. Let (G,V∞, T, k) be an instance of DagOddMultiwayNodeCut. We recall that
G∗ denotes the undirected graph obtained by dropping the orientations of the edges in G.
We show the following equivalence: a set M ⊆ V \ V∞ with the property as in the statement
is a solution if and only if G∗ \M is bipartite with a bipartition (A,B) such that T ⊆ A.

Suppose G∗ \M is bipartite with a bipartition (A,B) such that T ⊆ A. In a bipartite
graph, every two end-nodes of any odd path are necessarily in different parts. Hence, there
is no odd T -path in G∗ \M . Thus, there is no odd T -path in G \M . Hence, M is a solution
for the odd multiway cut instance (G,V∞, T, k).

Suppose the solution M has the property mentioned in the statement of the theorem. Let
U := V (G \M) \ sG(M). Define A := {x ∈ U : there is an even T → x path in G \M} and
B := {x ∈ U : there is an odd T → x path in G \M}. It follows from the definition of the
shadow that every node in U has a path P1 from T in G \M . Therefore, every node of U is
in A ∪B. Also by definition, every node v in U has a path P2 to T in G \M . The parity of
every T → v path has to be the same as the parity of P2, because the concatenation of a
T → v path and a v → T path in G \M is a T -path in G \M and therefore must be even.
We note that such a concatenation cannot be a cycle since G is acyclic. Thus, no node of U
is in both A and B. Hence, (A,B) is a partition of U .

We observe that there cannot be an edge from a node v in A to a node u in A, as otherwise
the concatenation of the even T → v path Q1 with the edge v → u is an odd T → u path in
G \M which means u ∈ B. This contradicts our conclusion about A and B being disjoint.
By a similar argument, there is no edge between any pair of nodes in B. Thus, the subgraph
of G induced by A and B are independent sets respectively. Hence G∗[A ∪B] is a bipartite
graph. Furthermore, (A,B) is a bipartition of G∗[A ∪ B] with every node of T in A. By
assumption, the degree of every node x ∈ sG(M) is at most one. Therefore, x has neighbors
in at most one of A and B. Thus, we can extend the bipartition (A,B) of G∗[A ∪B] to a
bipartition (A′, B′) of G∗ \M as follows: denote H := G∗[A ∪ B]; repeatedly pick a node

K. Chandrasekaran and S. Mozaffari 12:7

Algorithm 1 SolveEasyInstance
Given: DAG G with terminal set T , a set V∞ of protected nodes containing T , k ∈ Z+,
where (G,V∞, T, k) has the property specified in the statement of Theorem 6

1: G1 ← the underlying undirected graph of G.
2: Let G2 be the graph obtained from G1 by introducing a new node x and connecting it

to every node in T .
3: N ← MinOddCycleTransversal(G2, V

∞ ∪ {x} , k)
4: return N

x ∈ sG(M) \ V (H) with a neighbor in H, include x in a part (A or B) in which x has no
neighbor and update A, B and H.

Hence, if the given instance has a solution M of size at most k such that every node
v ∈ sG(M) has total degree at most one, then such a solution can be found by the fixed-
parameter algorithm for MinOddCycleTransversal. To ensure that the terminal nodes will
be in the same part, we introduce a new protected node into the graph and connect it to
every terminal node. This approach is described in Algorithm 1. All steps in Algorithm 1
can be implemented to run in polynomial time except Step 3. The running time of Step 3 is
O(2.32kpoly(n)) [14]. J

We will use the name SolveEasyInstance to refer to the algorithm of Theorem 6. Our
aim now is to reduce the given arbitrary instance (G,V∞, T, k) to another instance that has
a solution with the property mentioned in Theorem 6 or determine that no solution of size
at most k exists. We need the notion of parity-preserving torso operation on DAGs.

2.2 Parity-Preserving Torso
The parity preserving torso operation was introduced by Lokshtanov and Ramanujan [15]
for undirected graphs. We extend it in a natural fashion for DAGs.

I Definition 7 (Parity-Preserving Torso). Let G be a DAG and Z be a subset of V (G). We
define Parity-Torso(G,V∞, Z) as (G′, V ′∞), where G′ is the DAG obtained from G \ Z by
adding an edge from node u to v, for every pair of nodes u, v ∈ V (G) \ Z such that there
is an odd-path from u to v in G all of whose internal nodes are in Z, and including a new
node xuv and edges u→ xuv and xuv → v for every pair of nodes u, v ∈ V (G) \ Z such that
there is an even path from u to v in G all of whose internal nodes are in Z. The set V ′∞ is
defined to be the union of V∞ \ Z and all the new nodes xuv.

We emphasize that the acyclic nature of the input directed graph allows us to im-
plement the parity-preserving torso operation in polynomial time. Moreover, applying
parity-preserving torso on a DAG results in a DAG as well. In what follows, we state the
properties of the Parity-Torso operation that are exploited by our algorithm. The parity-
preserving torso operation, has the property that it maintains u→ v paths along with their
parities between any pair of nodes u, v ∈ V (G) \ Z. More precisely:

I Lemma 8. Let G be a DAG and Z, V∞ ⊆ V (G). Define (G′, V ′∞) :=
Parity-Torso(G,V∞, Z). Let u, v be nodes in V (G) \ Z. There is a u → v path P in
G if and only if there is a u → v path Q of the same parity in G′. Moreover, the path Q
can be chosen so that the nodes of P in G \ Z are the same as the nodes of Q in G \ Z, i.e.
V (P) ∩ (V (G) \ Z) = V (Q) ∩ (V (G) \ Z).

IPEC 2017

12:8 Odd Multiway Cut in DAGs

Algorithm 2 Minimum odd multiway cut in DAGs
Given: DAG G with terminal set T , a set V∞ of protected nodes containing T , and k ∈ Z+

1: for Z ∈ ShadowContainer(G,V∞, k) do
2: (G1, V

∞
1)← Parity-Torso(G,V∞, Z)

3: N ← SolveEasyInstance(G1, V
∞

1 , T, k)
4: if N is a solution in G then
5: return N

6: return No solution

I Corollary 9. Let I = (G,V∞, T, k) be an instance of DagOddMultiwayNodeCut
and let Z ⊆ V (G) \ T . Let (G′, V ′∞) := Parity-Torso(G,V∞, Z) and denote the instance
(G′, V ′∞, T, k) by I ′. The instance I admits a solution S of size at most k that is disjoint
from Z if and only if the instance I ′ admits a solution of size at most k.

Therefore, we are interested in finding a set Z of nodes that is disjoint from some solution
of size at most k, and moreover, the instance (Parity-Torso(G,V∞, Z), T, k) satisfies the
property mentioned in Theorem 6. The following lemma summarizes our key observation: it
shows that it is sufficient to find a set Z that contains the shadow of a solution.

I Lemma 10. Let G be a DAG and M,Z, V∞ ⊆ V (G). Suppose M intersects every odd
T -path in G and sG(M) ⊆ Z ⊆ V (G) \M . Define (G′, V ′∞) := Parity-Torso(G,V∞, Z).
Then every node in sG′(M) has total degree at most one in G′ \M .

2.3 Difficult instances
Corollary 9 and Lemma 10 show that if we find a set Z such that for some solution
M , the set Z is disjoint from M and contains the shadow of M in G, then considering
Parity-Torso(G,V∞, Z) will give a new instance that satisfies the conditions of Theorem 6.
Our goal now is to obtain such a set Z. We will show the following lemma. We emphasize
that the lemma holds for arbitrary digraphs.

I Lemma 11. There is an algorithm ShadowContainer that given an instance (G,V∞, T, k)
of DagOddMultiwayNodeCut, where G is a digraph, returns a family Z of subsets of
V (G) with |Z| = 2O(k2), with the property that if the problem has a solution of size at most
k, then for some solution M of size at most k, there exists a set Z ∈ Z that is disjoint
from M and contains sG(M). Moreover, the algorithm can be implemented to run in time
2O(k2) poly(|V (G)|).

We defer the proof of Lemma 11 to first see its implications.

I Theorem 12. There exists an algorithm that given an instance (G,V∞, T, k) of DagOdd-
MultiwayNodeCut, runs in 2O(k2) poly(|V (G)|) time and either finds a solution of size at
most k or determines that no such solution exists.

Proof. We use Algorithm 2. Let (G,V∞, T, k) be an instance of DagOddMultiwayNode-
Cut, where G is a DAG. Suppose there exists a solution of size at most k. By Lemma 11,
the procedure ShadowContainer(G,V∞, k) in Line 1 returns a family Z of subsets of V (G)
with |Z| = 2O(k2) containing a set Z such that there is a solution M of size at most k that is
disjoint from Z and Z contains sG(M). Let (G1, V

∞
1) be the result of applying Parity-Torso

operation to the set Z in G (i.e., the result of Step 2 in Algorithm 2). By Lemma 10, every
node in sG1(M) has total degree at most one in G1 \M . Therefore, by Theorem 6, the set

K. Chandrasekaran and S. Mozaffari 12:9

N returned in Line 3 is a solution to the instance (G1, V
∞

1 , T, k). By Corollary 9, the set N
is also a solution to the original instance of the problem.

If there is no solution of size at most k, the algorithm will not find any. Therefore, the
algorithm is correct. The runtime of the algorithm is dominated by Line 2 which can be
implemented to run in 2O(k2)poly(|V (G)|) time by Lemma 11. J

In order to prove Lemma 11, we will use the following result.

I Theorem 13 (Chitnis et al. [2]). There is an algorithm that given a digraph G, a subset of
protected nodes V∞ ⊆ V (G), terminal nodes T ⊆ V∞ and an integer k, returns a family Z
of subsets of V (G) \ V∞ with |Z| = 2O(k2) such that for every S, Y ⊆ V (G) satisfying
(i) S is a thin set with |S| ≤ k, and
(ii) for every v ∈ Y , there exists an important v → T separator contained in S,
there exists Z ∈ Z with Y ⊆ Z ⊆ V (G) \ S. Moreover, the algorithm can be implemented to
run in time 2O(k2) poly(|V (G)|).

To invoke Theorem 13, we need to guarantee that there exists a solution S of size at most
k such that S is thin and its reverse shadow Y in G has the property that for every v ∈ Y
there is an important v → T separator contained in S. Towards obtaining such a solution,
we prove the following.

I Lemma 14. Let (G,V∞, T, k) be an instance of DagOddMultiwayNodeCut, where G
is a DAG. Let M be a solution for this instance. If there exists v ∈ rG(M) such that M does
not contain an important v → T separator, then there exists another solution M ′ of size at
most |M |, such that rG(M) ∪ fG(M) ∪M ⊆ rG(M ′) ∪ fG(M ′) ∪M ′, and rG(M) (rG(M ′).

Proof. Let M0 be the set of nodes u ∈ M for which there is a v → u path in G that
is internally disjoint from M . Since v ∈ rG(M), every v → T path intersects M . For a
v → T path P , the first node u ∈ P ∩M is in M0. Hence, every v → T path intersects M0.
Therefore, the set M0 is a v → T separator in G. Therefore, it contains a minimal separator
M1. Since we assumed that there is no important v → T separator contained in M , the
set M1 is not an important v → T separator. Suppose M1 is dominated by another v → T

separator and let M2 be an important v → T separator that dominates M1. Define M ′ as
(M \M1) ∪M2. We recall that a separator is by definition, disjoint from the protected node
set. Therefore, M ′ ∩ V∞ = ∅. We will show that M ′ contradicts the choice of M . We need
the following claims.

I Claim 15. M \M ′ ⊆ rG(M ′).

Proof. We observe that M \ M ′ = M1 \ M2. Let u be an arbitrary node in M1 \ M2.
Since u ∈ M1 and M1 is a minimal v → T separator, there is a v → u path P1 that is
internally disjoint from M1. Since M2 dominates M1, therefore, RG\M1(v) ⊆ RG\M2(v).
Thus, V (P1) ⊆ RG\M2(v). Hence, P1 is disjoint from M2. Suppose P2 is an arbitrary u→ T

path in G. Concatenation of P1 and P2 is a v → T path in G and therefore, has to intersect
M2. Since P1 is disjoint from M2, the path P2 has to intersect M2. Hence, every u → T

path in G intersects M2 and in particular, intersects M ′. Equivalently, u ∈ rG(M ′). J

We next show that M ′ is a feasible solution for the problem and is no larger than M .

I Claim 16. The set M ′ intersects every odd T -path in G and |M ′| ≤ |M |.

IPEC 2017

12:10 Odd Multiway Cut in DAGs

Proof. By assumption, every odd T -path P intersects M . If P intersects M ∩M ′, then it
also intersects M ′. If P intersects M \M ′, then by Claim 15 it also intersects M ′. Thus,
every odd T -path in G intersects M ′. Furthermore, by definition of M ′, we have

|M ′| = |M |+ (|M2 \M | − |M1 \M2|) ≤ |M |+ (|M2| − |M1|) ≤ |M | . J

I Claim 17. rG(M) ⊆ rG(M ′).

Proof. Let u be an arbitrary node in rG(M). The set M is a u→ T separator. Therefore,
every u→ T path intersects M . We need to show that every u→ T path also intersects M ′.
Let P be a u→ T path. If P intersects M ∩M ′, then it also intersects M ′. If P does not
intersect M ∩M ′, then it has to intersect M \M ′. By Claim 15, every M \M ′ → T path
intersects M ′. Therefore, u ∈ rG(M ′). J

I Claim 18. rG(M) ∪ fG(M) ∪M ⊆ rG(M ′) ∪ fG(M ′) ∪M ′.

Proof. By Claim 15, we have M \M ′ ⊆ rG(M ′) and by Claim 17, we have rG(M) ⊆ rG(M ′).
Thus, it remains to prove that fG(M) ⊆ rG(M ′)∪ fG(M ′)∪M ′. Let u be an arbitrary node
in fG(M) \ (rG(M ′)∪ fG(M ′)∪M ′). Since u /∈ fG(M ′), there is a T → u path P1 in G that
is disjoint from M ′. But u ∈ fG(M). Thus P1 has to intersect M , particularly it has to
intersect M \M ′. Let P2 be a subpath of P1 from M \M ′ to u. Since u /∈ rG(M ′), there is
a u→ T path P3 in G that is disjoint from M ′. The concatenation of P2 and P3 is a path
from M \M ′ to T that is disjoint from M ′. But by Claim 15, every M \M ′ → T path in G
must intersect M ′. This contradiction shows that fG(M) ⊆ (rG(M ′) ∪ fG(M ′) ∪M ′). J

I Claim 19. rG(M) (rG(M ′).

Proof. By Claim 17, rG(M) ⊆ rG(M ′). We need to prove rG(M) 6= rG(M ′). We recall
that M \M ′ = M1 \M2. Since M2 is an important v → T separator, it follows that the
v → T separator M1 is not contained in M2. Therefore M \M ′ is non-empty. Furthermore,
by definition of reverse shadow, M \M ′ is not contained in rG(M), but by Claim 15, it is
contained in rG(M ′). J

By Claim 16, M ′ is a solution and is no larger than M . Therefore, the set M ′ has the
properties claimed in Lemma 14. J

We recall that a set M ⊆ V (G) is thin, if every node v ∈M is not in rG(M \ {v}). The
next result follows from Lemma 14.

I Corollary 20. Let (G,V∞, T, k) be an instance of DagOddMultiwayNodeCut, where
G is a DAG. Let M∗ be an optimal solution that maximizes the size of |rG(S) ∪ fG(S) ∪ S|
among all optimal solutions S. If more than one optimal solution maximizes this quantity,
choose the one with largest |rG(S)|. The set M∗ is thin and for every node v ∈ rG(M∗) there
is an important v → T separator in M∗.

We will use Corollary 20 to prove Lemma 11.

Proof of Lemma 11. Let us use ReverseShadowContainer(G,V∞, k) to denote the algo-
rithm from Theorem 13. We will show that Algorithm 3 generates the desired set.

In Algorithm 3 we use procedure ReverseShadowContainer introduced in Theorem 13.
By Theorem 13, the cardinality of Z returned by the algorithm is 2O(k2). The runtime of the
algorithm follows from the runtime of the procedure ReverseShadowContainer in Theorem
13. To prove the correctness of this algorithm, we argue that at least one of the sets in the
returned family Z has the desired properties.

K. Chandrasekaran and S. Mozaffari 12:11

Algorithm 3 ShadowContainer
Given: DAG G with terminal set T , a set V∞ of protected nodes containing T , and k ∈ Z+

1: Let Grev denote the graph obtained from G by reversing the orientation of all edges
2: Z1 ← ReverseShadowContainer(G,V∞, k)
3: for Z1 ∈ Z1 do
4: Z2 ← ReverseShadowContainer(Grev, V∞ ∪ Z1, k)
5: for Z2 ∈ Z2 do
6: Z ← Z ∪ {Z1 ∪ Z2}
7: return Z

Suppose there exists a solution of size at most k and let M∗ be an optimal solution
that maximizes the size of |rG(S) ∪ fG(S) ∪ S| among all optimal solutions S. If more than
one solution maximizes this quantity, choose the one with largest |rG(S)|. By Corollary 20,
the solution M∗ is thin and has the property that every node v in the reverse shadow of
M∗ has an important v → T separator contained in M∗. By Theorem 13, the procedure
ReverseShadowContainer(G,V∞, k) in Line 2 will return a family Z1 of sets containing a set
Z1 that is disjoint from M∗ and contains its reverse shadow. Let us fix such a Z1.

We note that a solution for the DagOddMultiwayNodeCut instance (Grev, V∞ ∪
Z1, T, k) is also a solution for the instance (G,V∞, T, k). Conversely, a solution for the
instance (G,V∞, T, k) that is disjoint from Z1 is also a solution for the instance (Grev, V∞ ∪
Z1, T, k). Therefore, the set M∗ is also an optimal solution to the instance (Grev, V∞ ∪
Z1, T, k). We observe that fG(S) = rGrev(S) and rG(S) = fGrev(S) for all S ⊆ V (G) \ V∞.
Therefore, M∗ maximizes the size of rGrev(S) ∪ fGrev(S) ∪ S among all optimal solutions S
to (Grev, V∞ ∪ Z1, T, k). We have the following claim.

I Claim 21. If for an optimal solution M ′ for the instance (Grev, V∞ ∪ Z1, T, k) of Dag-
OddMultiwayNodeCut, we have rGrev(M∗)∪fGrev(M∗)∪M∗ ⊆ rGrev(M ′)∪fGrev(M ′)∪M ′
and rGrev(M∗) ⊆ rGrev(M ′), then M ′ = M∗.

Proof. As M∗ maximizes |rGrev(S) ∪ fGrev(S) ∪ S| among all the optimal solutions for the
instance (G,V∞, T, k) and as rGrev(M∗) ∪ fGrev(M∗) ∪M∗ ⊆ rGrev(M ′) ∪ fGrev(M ′) ∪M ′,
hence, the two sets rGrev(M∗) ∪ fGrev(M∗) ∪M∗ and rGrev(M ′) ∪ fGrev(M ′) ∪M ′ must be
equal. Therefore, the set M ′ \M∗ is contained inside rGrev(M∗) ∪ fGrev(M∗) ∪M∗. Since
nodes in fGrev(M∗) are protected in Grev by construction, the solution M ′ cannot contain
any node from fGrev(M∗). Since rGrev(M∗) ⊆ rGrev(M ′) and by definition of reverse shadow,
M ′ is disjoint from rGrev(M∗). Thus, the set M ′ \M∗ is disjoint from M∗ and rGrev(M∗)
and fGrev(M∗), while being contained in rGrev(M∗) ∪ fGrev(M∗) ∪M∗. Hence, M ′ \M∗ = ∅
or equivalently M ′ ⊆M∗. Therefore, M ′ = M∗, because |M ′| = |M∗|. J

Suppose there is a node v ∈ rGrev(M∗) such that no important v → T separator in Grev

is contained in M∗. Then by Lemma 14, there is another optimal solution M ′ such that
rGrev(M∗)∪ fGrev(M∗)∪M∗ ⊆ rGrev(M ′)∪ fGrev(M ′)∪M ′ and rGrev(M∗) (rGrev(M ′). By
Claim 21, the set M ′ = M∗, which contradicts rGrev(M∗) (rGrev(M ′). This contradiction
shows that for every node v ∈ rGrev(M∗), there is an important v → T separator inGrev that is
contained in M∗. Thus, by Theorem 13, the procedure ReverseShadowContainer(Grev, V∞∪
Z1, k) from Line 4 will return a family Z2 of sets containing a set Z2 that is disjoint from
M∗ and contains rGrev(M∗) = fG(M∗). Hence Z1 ∪ Z2 is disjoint from M∗ and contains
sG(M∗). J

IPEC 2017

12:12 Odd Multiway Cut in DAGs

References
1 Karthekeyan Chandrasekaran and Sahand Mozaffari. Odd Multiway Cut in Directed

Acyclic Graphs. https://arxiv.org/abs/????.????, 2017.
2 Rajesh Hemant Chitnis, Marek Cygan, Mohammad Taghi Hajiaghayi, and Dániel Marx.

Directed subset feedback vertex set is fixed-parameter tractable. ACM Trans. Algorithms,
11(4):28:1–28:28, 2015. doi:10.1145/2700209.

3 Rajesh Hemant Chitnis, MohammadTaghi Hajiaghayi, and Dániel Marx. Fixed-parameter
tractability of directed multiway cut parameterized by the size of the cutset. SIAM J.
Comput., 42(4):1674–1696, 2013. doi:10.1137/12086217X.

4 Maria Chudnovsky, Jim Geelen, Bert Gerards, Luis A. Goddyn, Michael Lohman, and
Paul D. Seymour. Packing non-zero a-paths in group-labelled graphs. Combinatorica,
26(5):521–532, 2006. doi:10.1007/s00493-006-0030-1.

5 Ross Churchley, Bojan Mohar, and Hehui Wu. Weak duality for packing edge-disjoint
odd (u, v)-trails. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’16, pages 2086–2094, 2016.

6 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

7 Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of
Research of the National Bureau of Standards, 69(1-2):125–130, 1965.

8 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17(3):449–467,
1965.

9 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.

10 Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and
Combinatorial Optimization. Springer, 1988. doi:10.1007/978-3-642-78240-4.

11 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2-
epsilon. J. Comput. Syst. Sci., 74(3):335–349, 2008. doi:10.1016/j.jcss.2007.06.019.

12 Stefan Kratsch, Marcin Pilipczuk, Michal Pilipczuk, and Magnus Wahlström. Fixed-
parameter tractability of multicut in directed acyclic graphs. SIAM J. Discrete Math.,
29(1):122–144, 2015. doi:10.1137/120904202.

13 Andrea S. LaPaugh and Christos H. Papadimitriou. The even-path problem for graphs and
digraphs. Networks, 14(4):507–513, 1984. doi:10.1002/net.3230140403.

14 Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Trans. Algo-
rithms, 11(2):15:1–15:31, 2014. doi:10.1145/2566616.

15 Daniel Lokshtanov and M. S. Ramanujan. Parameterized tractability of multiway cut
with parity constraints. In Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger
Wattenhofer, editors, Automata, Languages, and Programming - 39th International Collo-
quium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I, volume 7391
of Lecture Notes in Computer Science, pages 750–761. Springer, 2012. doi:10.1007/
978-3-642-31594-7_63.

16 Sridharan Ramanujan. Parameterized Graph Separation Problems: New Techniques and
Algorithms. PhD thesis, The Institute of Mathematical Sciences, Chennai, 2013.

17 Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Algorithms
and Combinatorics. Springer, 2003.

18 Alexander Schrijver and Paul D. Seymour. Packing odd paths. J. Comb. Theory, Ser. B,
62(2):280–288, 1994. doi:10.1006/jctb.1994.1070.

https://arxiv.org/abs/????.????
http://dx.doi.org/10.1145/2700209
http://dx.doi.org/10.1137/12086217X
http://dx.doi.org/10.1007/s00493-006-0030-1
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/3-540-29953-X
http://dx.doi.org/10.1007/978-3-642-78240-4
http://dx.doi.org/10.1016/j.jcss.2007.06.019
http://dx.doi.org/10.1137/120904202
http://dx.doi.org/10.1002/net.3230140403
http://dx.doi.org/10.1145/2566616
http://dx.doi.org/10.1007/978-3-642-31594-7_63
http://dx.doi.org/10.1007/978-3-642-31594-7_63
http://dx.doi.org/10.1006/jctb.1994.1070

A Fixed-Parameter Perspective on #BIS∗†

Radu Curticapean1, Holger Dell2, Fedor V. Fomin3,
Leslie Ann Goldberg4, and John Lapinskas5

1 Institute for Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI), Budapest, Hungary
radu.curticapean@gmail.com

2 Saarland University and Cluster of Excellence (MMCI), Saarbrücken,
Germany
hdell@mmci.uni-saarland.de

3 University of Bergen, Norway
fomin@ii.uib.no

4 University of Oxford, UK
leslie.goldberg@cs.ox.ac.uk

5 University of Oxford, UK
john.lapinskas@cs.ox.ac.uk

Abstract
The problem of (approximately) counting the independent sets of a bipartite graph (#BIS) is
the canonical approximate counting problem that is complete in the intermediate complexity
class #RHΠ1. It is believed that #BIS does not have an efficient approximation algorithm but
also that it is not NP-hard. We study the robustness of the intermediate complexity of #BIS by
considering variants of the problem parameterised by the size of the independent set. We map the
complexity landscape for three problems, with respect to exact computation and approximation
and with respect to conventional and parameterised complexity. The three problems are counting
independent sets of a given size, counting independent sets with a given number of vertices in
one vertex class and counting maximum independent sets amongst those with a given number
of vertices in one vertex class. Among other things, we show that all of these problems are NP-
hard to approximate within any polynomial ratio. (This is surprising because the corresponding
problems without the size parameter are complete in #RHΠ1, and hence are not believed to
be NP-hard.) We also show that the first problem is #W[1]-hard to solve exactly but admits
an FPTRAS, whereas the other two are W[1]-hard to approximate even within any polynomial
ratio. Finally, we show that, when restricted to graphs of bounded degree, all three problems
have efficient exact fixed-parameter algorithms.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics, G.2.2 Graph Theory

Keywords and phrases approximate counting, parameterised complexity, independent sets

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.13

∗ Part of this work was done while the authors were visiting the Simons Institute for the Theory of
Computing. RC is supported by ERC grant PARAMTIGHT (No. 280152). The research leading to
these results has received funding from the European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007-2013) ERC grant agreement no. 334828. The paper reflects
only the authors’ views and not the views of the ERC or the European Commission. The European
Union is not liable for any use that may be made of the information contained therein.

† The full version containing detailed proofs is available at http://arxiv.org/abs/1702.05543. The
theorem numbering here matches the full version.

© Radu Curticapean, Holger Dell, Fedor V. Fomin, Leslie Ann Goldberg, and John Lapinskas;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 13; pp. 13:1–13:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.13
http://arxiv.org/abs/1702.05543
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 A Fixed-Parameter Perspective on #BIS

1 Introduction

The problem of (approximately) counting the independent sets of a bipartite graph, called
#BIS, is one of the most important problems in the field of approximate counting. This
problem is known [6] to be complete in the intermediate complexity class #RHΠ1. Many
approximate counting problems are equivalent in difficulty to #BIS, including those that
arise in spin-system problems [10, 11] and in other domains. These problems are not believed
to have efficient approximation algorithms, but they are also not believed to be NP-hard.

In this paper we study the robustness of the intermediate complexity of #BIS by
considering relevant fixed parameters. It is already known that the complexity of #BIS
is unchanged when the degree of the input graph is restricted (even if it is restricted to
be at most 6) [2] but there is an efficient approximation algorithm when a stronger degree
restriction (degree at most 5) is applied, even to the vertices in just one of the parts of the
vertex partition of the bipartite graph [14].

We consider variants of the problem parameterised by the size of the independent set.
We first show that all of the following problems are #P-hard to solve exactly and NP-hard
to approximate within any polynomial factor.

#Size-BIS: Given a bipartite graph G and a non-negative integer k, count the size-k
independent sets of G.
#Size-Left-BIS: Given a bipartite graph G with vertex partition (U, V) and a non-negative
integer k, count the independent sets of G that have k vertices in U , and
#Size-Left-Max-BIS: Given a bipartite graph G with vertex partition (U, V) and a non-
negative integer k, count the maximum independent sets amongst all independent sets
of G with k vertices in U .

The NP-hardness of these approximate counting problems is surprising given that the
corresponding problems without the parameter k (that is, the problem #BIS and also the
problem #Max-BIS, which is the problem of counting the maximum independent sets of a
bipartite graph) are both complete in #RHΠ1, and hence are not believed to be NP-hard.
Therefore, it is the introduction of the parameter k that causes the hardness.

To gain a more refined perspective on these problems, we also study them from the
perspective of parameterised complexity, taking the number of vertices, n, as the size of the
input and k as the fixed parameter. Our results are summarised in Table 1, and stated in
detail later in the paper. Rows 1 and 3 of the table correspond to the conventional (exact
and approximate) setting that we have already discussed. Rows 2 and 4 correspond to the
parameterised complexity setting, which we discuss next. As becomes apparent from the
table, we have mapped the complexity landscape for the three problems in all four settings.

In parameterised complexity, the central goal is to determine whether computational
problems have fixed-parameter tractable (FPT) algorithms, that is, algorithms that run
in time f(k) · nO(1) for some computable function f . Hardness results are presented using
the W -hierarchy [8], and in particular using the complexity classes W[1] and W[2], which
constitute the first two levels of the hierarchy. It is known (see [8]) that FPT ⊆W[1] ⊆W[2]
and these classes are widely believed to be distinct from each other. It is also known [4,
Chapter 14] that the Exponential Time Hypothesis (see [12]) implies FPT 6= W[1]. Analogous
classes #W[1] and #W[2] exist for counting problems [7].

As can be seen from the table, we prove that all of our problems are at least W[1]-hard
to solve exactly, which indicates that they cannot be solved by FPT algorithms. Moreover,
#Size-Left-BIS and #Size-Left-Max-BIS are W[1]-hard to solve even approximately. It is
known [16] that each parameterised counting problem in the class #W[i] has a randomised

R. Curticapean, H. Dell, F. V. Fomin, L. A. Goldberg, and J. Lapinskas 13:3

Table 1 Our results. Each of the three problems that we consider (#Size-BIS, #Size-Left-BIS,
#Size-Left-Max-BIS) has one column here, in which we list our results in all four settings (exact
polynomial-time, exact FPT-time, approximate polynomial-time, approximate FPT-time).

#Size-BIS #Size-Left-BIS #Size-Left-Max-BIS
Exact poly #P-complete even in

graphs of max-degree 3.
(Thm 1 full version)

#P-complete even in
graphs of max-degree 3.
(Thm 1 full version)

#P-hard even in graphs
of max-degree 3. (Thm
2 full version)

Exact FPT #W[1]-complete. (Thm 4
full version)

#W[2]-hard. (Thm 5) W[1]-hard. (Thm 6)

FPT for bounded-degree
graphs. (Thm 14(i))

FPT for bounded-degree
graphs. (Thm 14(ii))

FPT for bounded-degree
graphs. (Thm 14(iii))

Approx
poly

NP-hard to approximate
within any polynomial
factor. (Thm 9)

NP-hard to approximate
within any polynomial
factor. (Thm 7)

NP-hard to approximate
within any polynomial
factor. (Thm 6)

Approx
FPT

Has FPTRAS. (Thm 11) W[1]-hard to approxim-
ate within any polyno-
mial factor. (Thm 7)

W[1]-hard to approxim-
ate within any polyno-
mial factor. (Thm 6)

FPT approximation algorithm using a W[i] oracle, so W[i]-hardness is the appropriate
hardness notion for parameterised approximate counting problems. By contrast, we show
that #Size-BIS can be solved approximately in FPT time. In fact, it has an FPT randomized
approximation scheme (FPTRAS).

Motivated by the fact that #BIS is known to be #P-complete to solve exactly even on
graphs of degree 3 [19], we also consider the case where the input graph has bounded degree.
While the conventional problems remain intractable in this setting (Row one of the table),
we prove that all three of our problems admit linear-time fixed-parameter algorithms for
bounded-degree instances (Row two). Note that Theorem 14(i) is also implicit in independent
work by Patel and Regts [17].

2 Preliminaries

For a positive integer n, we let [n] denote the set {1, . . . , n}. We consider graphs G to be
undirected. For a vertex set X ⊆ V (G), denote by G[X] the subgraph induced by X. For a
vertex v ∈ V (G), we write Γ(v) for its open neighbourhood (that is, excluding v itself).

Given a graph G, we denote the size of a maximum independent set of G by µ(G).
We denote the number of all independent sets of G by IS(G), the number of size-k in-
dependent sets of G by ISk(G), and the number of size-µ(G) independent sets of G by
MIS(G). A bipartite graph G is presented as a triple (U, V,E) in which (U, V) is a par-
tition of the vertices of G and E is a subset of U × V . If G = (U, V,E) is a bipartite
graph then an independent set S of G is said to be an “`-left independent set of G” if
|S ∩ U | = `. The size of a maximum `-left independent set of G is denoted by µ`-left(G).
An `-left independent set of G is said to be “`-left-maximum” if and only if it has size
µ`-left(G). Finally, IS`-left(G) denotes the number of `-left independent sets of G and
IS`-left-max(G) denotes the number of `-left-maximum independent sets of G. Using these
definitions, we now give formal definitions of #BIS and of the three problems that we study.

IPEC 2017

13:4 A Fixed-Parameter Perspective on #BIS

Name: #BIS.
Input: Bipartite graph G.
Output: IS(G).

Name: #Size-BIS Name: #Size-Left-BIS Name: #Size-Left-Max-BIS
Input: Bipartite G and k ∈ N. Input: Bipartite G and ` ∈ N. Input: Bipartite G and ` ∈ N.
Output: ISk(G). Output: IS`-left(G). Output: IS`-left-max(G).
Parameter: k. Parameter: `. Parameter: `.

For each of our computational problems, we add “[∆]” to the end of the name of the
problem to indicate that the input graph G has degree at most ∆. For example, the input of
#BIS[∆] is a bipartite graph G with degree at most ∆, and the desired output is IS(G).

When stating quantitative bounds on running times of algorithms, we assume the standard
word-RAM machine model with logarithmic-sized words.

3 Exact computation: fixed-parameter intractability

Our #P-hardness results (from Row 1 of Table 1) are in the full version. For the rest of the
paper, we use standard definitions of reductions and complexity classes which are in Flum
and Grohe [8] and in the full version. We defer the proof of Theorem 4, which shows that
#Size-BIS is #W[1]-complete, to the full version. We give the following, stronger, hardness
result for #Size-Left-BIS.

I Theorem 5. #Size-Left-BIS is #W[2]-hard.

Proof. Recall that if G is a graph, a set D ⊆ V (G) is called a dominating set of G if every
vertex v ∈ V (G) is either contained in D or adjacent to a vertex of D. We reduce from #Size-
Dominating-Set, which is the problem of computing the number of size-k dominating sets
given a graph G = (U,E) and a positive integer k. (The parameter of #Size-Dominating-Set
is k.) Note that #Size-Dominating-Set is #W[2]-complete, as proved in Flum and Grohe [7,
Theorem 19].

Write U = {u1, . . . , un}. The reduction computes the bipartite split graph of G; formally,
let V = {v1, . . . , vn}, let E′ = {(ua, vb) | a = b or {ua, ub} ∈ E}, and let G′ = (U, V,E′).

For non-negative integers ` and r, we define an (`, r)-set of G′ to be a size-` subset X of
U that has exactly r neighbours in V . Let Z`,r be the number of (`, r)-sets of G′. Note that
a size-k subset X of U is a dominating set of G if and only if it is a (k, n)-set of G′, so there
are precisely Zk,n size-k dominating sets of G.

The algorithm applies polynomial interpolation to determine Zk,r for all r ∈ {0, . . . , n}.
For every positive integer i, let Vi = V × [i], let E′i = {(u, (v, b)) ∈ U × Vi | (u, v) ∈ E′}, and
let G′i = (U, Vi, E′i). For each (k, r)-set X of G′, there are exactly 2i(n−r) k-left independent
sets S of G′i with S ∩ U = X. Thus for all i ∈ [n+ 1],

ISk-left(G′i) =
n∑
r=0

2i(n−r)Zk,r. (1)

Let M be the (n+ 1)× (n+ 1) matrix whose rows are indexed by [n+ 1] and columns
are indexed by {0, . . . , n} such that Mi,r = 2i(n−r) holds. Then (1) can be viewed as a
linear equation system w = Mz, where w = (ISk-left(G′1), . . . , ISk-left(G′n+1))T and z =
(Zk,0, . . . , Zk,n)T . The oracle for #Size-Left-BIS can be used to compute w, and M is
invertible since it is a (transposed) Vandermonde matrix. Thus the reduction can compute
z, and in particular Zk,n, as required. J

R. Curticapean, H. Dell, F. V. Fomin, L. A. Goldberg, and J. Lapinskas 13:5

We defer the proof of the remaining hardness result in Row 2 of Table 1 (W[1]-hardness of
#Size-Left-Max-BIS) to the next section, as it is implied by the corresponding approximation
hardness result.

4 Approximate computation: Hardness results

In this section, we prove the hardness results in Rows 3 and 4 of Table 1. Note that the
reductions from the first row of the table cannot be used here, since they are ultimately from
#BIS, which is not known to be NP-hard to approximate. In order to state our hardness
results formally, we introduce approximation versions of the problems that we consider.

Name: Deg-c-#ApxSizeLeftMaxBIS. Parameter: `.
Input: A bipartite graph G on n vertices and a non-negative integer `.
Output: A number z such that n−c · IS`-left-max(G) ≤ z ≤ nc · IS`-left-max(G).

Name: Deg-c-#ApxSizeLeftBIS. Parameter: `.
Input: A bipartite graph G on n vertices and a non-negative integer `.
Output: A number z such that n−c · IS`-left(G) ≤ z ≤ nc · IS`-left(G).

Name: Deg-c-#ApxSizeBIS. Parameter: k.
Input: A bipartite graph G on n vertices and a non-negative integer k.
Output: A number z such that n−c · ISk(G) ≤ z ≤ nc · ISk(G).

We also require the following problem for reductions.

Name: Size-Clique. Parameter: k.
Input: A graph G and a positive integer k.
Output: True if G contains a k-clique, false otherwise.

We first prove our #Size-Left-Max-BIS results, then establish the others by reduction.

I Theorem 6. For all c ≥ 0, Deg-c-#ApxSizeLeftMaxBIS is both NP-hard and W[1]-hard.

Proof. Let c be any non-negative integer. We will give a reduction from Size-Clique to
Deg-c-#ApxSizeLeftMaxBIS which is both an FPT Turing reduction and a polynomial-time
Turing reduction. The claim then follows from the fact that Size-Clique is both NP-hard [18,
Theorem 7.32]) and W[1]-hard [5, Theorem 21.3.4].

Let (G, k) be an instance of Size-Clique with G = (V,E) and n = |V |. We use a
standard powering construction to produce an intermediate instance (G′, k) of Size-Clique
with G′ = (V ′, E′). More precisely, let t = n2c, let C be a set of k new vertices, and let
V ′ = (V × [t]) ∪ C. We define E′ such that

E′ =
{
{(u, i), (v, j)} | {u, v} ∈ E, i, j ∈ [t]

}
∪
{
{u, v} | u, v ∈ C, u 6= v

}
.

From (G′, k), we construct an instance (G′′, `) of Deg-c-#ApxSizeLeftMaxBIS with
G′′ = (U, V ′, E′′) and ` =

(
k
2
)
. For this, let U = {ue | e ∈ E′} be a set of vertices and let

E′′ = {(ue, v) | e ∈ E′, v ∈ e}. The reduction queries the oracle for (G′′, `), which yields an
approximate value z for the number IS`-left-max(G′′). If z ≤ nc, the reduction returns ‘no’,
there is no k-clique in G, and otherwise it returns ‘yes’. It is obvious that the reduction runs
in polynomial time.

It remains to prove the correctness of the reduction. Let CLk(G) be the number of
k-cliques in G. The `-left-maximum independent sets X of G′′ correspond bijectively to
the size-` edge sets {e | ue ∈ X ∩ U} of G′ which span a minimum number of vertices.

IPEC 2017

13:6 A Fixed-Parameter Perspective on #BIS

Note that any set of ` =
(
k
2
)
edges must span at least k vertices, with equality only in

the case of a k-clique. Since G′ contains at least one k-clique (induced by C), we have
IS`-left-max(G′′) = CLk(G′). Moreover, each k-clique X in G corresponds to a size-tk family
of k-cliques in G′. Each k-clique in the family consists of exactly one vertex from each set
{x} × [t] such that x ∈ V (X). This accounts for all k-cliques in G′ except G′[C]. Thus
IS`-left-max(G′′) = CLk(G′) = tkCLk(G) + 1.

Let z be the result of applying our oracle to (G′′, `). If G contains no k-cliques, then
we have z ≤ nc · IS`-left-max(G′′) = nc and the reduction returns ‘no’. Otherwise, we have
z ≥ n−c · IS`-left-max(G′′) ≥ n−c(tk + 1) > nc and the reduction returns ‘yes’. Thus the
reduction is correct and the claim follows. J

I Theorem 7. For all c ≥ 0, Deg-c-#ApxSizeLeftBIS is both NP-hard and W[1]-hard.

Proof. Let c ≥ 0 be an integer. We will give a reduction from the problem Deg-(c + 1)-
#ApxSizeLeftMaxBIS to the problem Deg-c-#ApxSizeLeftBIS which is both an FPT Turing
reduction and a polynomial-time Turing reduction. The result then follows by Theorem 6.

Let (G, `) be an instance of Deg-c-#ApxSizeLeftMaxBIS. Write G = (U, V,E), let
n = |V (G)|, and let t = 6n. Without loss of generality, suppose n ≥ 5 and n is sufficiently
large that nc2−n ≤ 1. Let V ′ = V × [t], let E′ = {(u, (v, i)) | (u, v) ∈ E, i ∈ [t]}, and let
G′ = (U, V ′, E′). Let µ = µ`-left(G), and let z be the result of applying our oracle to (G′, `).

For any non-negative integers i and j, we define ISi, j(G) to be the number of independent
sets X ⊆ V (G) with |X ∩ U | = i and |X ∩ V | = j. Each `-left independent set X of G
corresponds to the family of `-left independent sets of G′ consisting of X ∩ U together with
at least one vertex from each set {x}× [t] such that x ∈ X ∩ V . Thus by the definition of µ,

IS`-left(G′) =
µ−∑̀
r=0

IS`, r(G)(2t − 1)r. (2)

Since G contains at most 2n independent sets and IS`, µ−`(G) ≥ 1, we have (2t − 1)µ−` ≤
IS`-left(G′) ≤ 2n(2t − 1)µ−`. Since nc ≤ 2n ≤ (2t − 1)1/5, it follows that (2t − 1)µ−`−1/5 ≤
z ≤ (2t − 1)µ−`+2/5, and hence the algorithm can obtain µ by rounding `+ lg(z)/ lg(2t − 1)
to the nearest integer. Moreover, by (2) we have

IS`-left(G′) ≤ IS`, µ−`(G)(2t − 1)µ−` + 2n(2t − 1)µ−`−1 ≤ 2IS`, µ−`(G)(2t − 1)µ−`.

It follows that IS`, µ−`(G) ≤ IS`-left(G′)/(2t−1)µ−` ≤ 2IS`, µ−`(G). Hence n−c−1IS`, µ−`(G) ≤
z/(2t − 1)µ−` ≤ nc+1IS`, µ−`(G). The algorithm therefore outputs z/(2t − 1)µ−`. J

I Theorem 9. For all c ≥ 0, Deg-c-#ApxSizeBIS is NP-hard.

Proof. For all c ≥ 0, we give a polynomial-time Turing reduction from the problem Deg-
(c + 1)-#ApxSizeLeftBIS to the problem Deg-c-#ApxSizeBIS. The former is NP-hard by
Theorem 7.

Fix c ≥ 0 and let (G, `) be an instance of Deg-(c+ 1)-#ApxSizeLeftBIS. Suppose that
G = (U, V,E) where U = {u1, . . . , up}. Note from the problem definition that n = |U ∪ V |
and suppose without loss of generality that ` ∈ [p] and that n ≥ 40 (otherwise, (G, `) is an
easy instance of Deg-(c+ 1)-#ApxSizeLeftBIS, so the answer can be computed, even without
using the oracle).

Let s = 2n6 and t = bs log2 3c − s. For each i ∈ [p], let Ui, Vi and U ′i be disjoint sets of
vertices with |U ′i | = |Vi| = s and |Ui| = t. Write U ′i = {ui,1, . . . , ui,s} and Vi = {vi,1, . . . , vi,s}.

R. Curticapean, H. Dell, F. V. Fomin, L. A. Goldberg, and J. Lapinskas 13:7

u1

u2

v1

v2

s

s

s

s

t

t

v1

v2

U ′1 V1
U1

U ′2 V2
U2

Figure 1 An example of the reduction from Deg-(c + 1)-#ApxSizeLeftBIS to Deg-c-
#ApxSizeLeftBIS used in the proof of Theorem 9 when G = P3. Each vertex ui ∈ U is replaced
by three vertex sets U ′

i , Vi and Ui in the resulting graph G′. Note that G′ does not depend on the
input parameter `.

Then let U ′ =
⋃
i∈[p](Ui ∪ U ′i), V ′ =

⋃
i∈[p] Vi ∪ V , and

E′ =
⋃
i∈[p]

(
(Ui × Vi) ∪ {(ui,j , vi,j) | j ∈ [s]}

)
∪

⋃
(uj ,v)∈E(G)

(Uj × {v}).

Let G′ = (U ′, V ′, E′), as depicted in Figure 1.
Intuitively, the proof will proceed as follows. We will map independent sets X ′ of G′ to

independent sets X of G by taking X ∩V = X ′ ∩V and adding each ui ∈ U to X if and only
if Ui∩X ′ 6= ∅. We will show that roughly half the independent sets of each gadget U ′i ∪Vi∪Ui
have this form. We will also show that within each gadget, almost all independent sets with
vertices in Ui have size roughly (s+ t)/2, and almost all others have size roughly 2s/3. Thus
the independent sets in G with ` vertices in U roughly correspond to the independent sets in
G′ of size roughly ` · (s+ t)/2 + (p− `) · 2s/3, which we count using a #Size-BIS oracle.

We start by defining disjoint sets of independent sets of G′. For x ∈ {0, . . . , p}, let
E(x) = 2s

3 (p− x) + s+t
2 x and let

Ax =
{
X ′ ⊆ V (G′)

∣∣∣ X ′ is an independent set of G′ and
∣∣|X ′| − E(x)

∣∣ ≤ s
20 + n

}
.

Note that since n ≥ 3, we have t > 17s/30 and 120n ≤ s. Thus, if x′ > x,

E(x′)− E(x) = (t/2− s/6) (x′ − x) > (17/60− 1/6) s = s/10 + s/60 ≥ s/10 + 2n.

We conclude that the sets A0, . . . ,Ap are disjoint.
Next, we connect the independent sets of G′ with those of G. Each independent set

X ′ of G′ projects onto the independent set (X ′ ∩ V) ∪ {ui | X ′ ∩ Ui 6= ∅} of G. Given an
independent set X of G, let ϕ(X) be the set of independent sets X ′ of G′ which project onto
X. If ui ∈ X, then there are 2t − 1 possibilities for X ′ ∩ Ui and 2s possibilities for X ′ ∩ U ′i ,
but X ′ ∩ Vi is empty. If ui /∈ X, then X ′ ∩ Ui is empty and there are 3s possibilities for
X ′ ∩ (U ′i ∪ Vi). For x ∈ {0, . . . , p}, let F (x) = (2s+t − 2s)x · 3(p−x)s. It follows that, for any
x-left independent set X of G, |ϕ(X)| = F (x), which establishes the first of the following
claims.

Claim 1. For any `-left independent set X of G, |ϕ(X) ∩ A`| ≤ F (`).

IPEC 2017

13:8 A Fixed-Parameter Perspective on #BIS

Claim 2. For any `-left independent set X of G, |ϕ(X) ∩ A`| ≥ F (`)/2.
Claim 3. For any x ∈ {0, . . . , p} \ {`} and any x-left independent set X of G, |ϕ(X)∩A`| ≤

F (`)/2n.

The proofs of Claims 2 and 3 are mere calculation, so before proving them we use the
claims to complete the proof of the lemma. Recall that (G, `) is an instance of Deg-(c+ 1)-
#ApxSizeLeftBIS with ` ∈ [p] and n ≥ 2. Together, the claims imply

(F (`)/2) · IS`-left(G) ≤ |A`| ≤ F (`)IS`-left(G) + F (`), (3)

where the final F (`) comes from the contribution to |A`| corresponding to the (at most
2n) independent sets of G that are not `-left independent sets. Since ` ∈ [p], the quantity
IS`-left(G) is at least 1, which means that the right-hand side of (3) is at most 2F (`)IS`-left(G).
Also, F (`) > 0. Thus, (3) implies IS`-left(G)/2 ≤ |A`|/F (`) ≤ 2IS`-left(G).

The oracle for Deg-c-#ApxSizeBIS can be used to compute a number z such that
n−c|A`| ≤ z ≤ nc|A`|. (To do this, just call the oracle repeatedly with input G′ and with
every non-negative integer k such that |k − E(`)| ≤ s

20 + n, adding the results.) Thus,

n−cIS`-left(G)/2 ≤ n−c|A`|/F (`) ≤ z/F (`) ≤ nc|A`|/F (`) ≤ 2ncIS`-left(G),

so the desired approximation of IS`-left(G) can be achieved by dividing z by F (`). We now
complete the proof by proving Claims 2 and 3.

Claim 2: Consider any x ∈ {0, . . . , p} and let X be an x-left independent set of G. We
will show |ϕ(X) ∩ Ax| ≥ F (x)/2, which implies the claim by taking ` = x. In fact, we will
establish the much stronger inequality

|ϕ(X) ∩ Ax| ≥ (1− 3ne−n
2
)F (x), (4)

which will also be useful in the proof of Claim 3. To establish Equation (4) we will show
that the probability that a random element Y of ϕ(X) satisfies

∣∣|Y | − E(x)
∣∣ ≤ s

20 + n is at
least 1− 3ne−n2 .

So let Y be a uniformly random element of ϕ(X). We will show that, with probability at
least 1− 3ne−n2 , the following bullet points hold.

For all i ∈ [p] with ui /∈ X, we have
∣∣|Y ∩ (Ui ∪ Vi ∪ U ′i)| − 2s

3
∣∣ ≤ s

n2 , and
for all i ∈ [p] with ui ∈ X, we have

∣∣|Y ∩ (Ui ∪ Vi ∪ U ′i)| − s+t
2
∣∣ ≤ s+t

n2 ,
Since n ≥ 40, we have (p− x)s/n2 + x(s+ t)/n2 ≤ 2ps/n2 ≤ s/20 and |Y ∩ V | ≤ n, so the
claim follows. To obtain the desired failure probability, we will show that, for any i ∈ [p], the
probability that the relevant bullet point fails to hold is at most 3e−n2 (so the total failure
probability is at most 3ne−n2 , by a union bound).

First, consider any i ∈ [p] with ui /∈ X. In this case, Y ∩ (Ui ∪ Vi ∪ U ′i) is generated by
including (independently for each j ∈ [s]) one of three possibilities: (i) ui,j but not vi,j , (ii)
vi,j but not ui,j , or (iii) neither ui,j nor vi,j . Each of the three choices is equally likely. Thus
|Y ∩ (Ui ∪ Vi ∪ U ′i)| is distributed binomially with mean 2s/3, so by a Chernoff bound (see
Janson, Łuczak and Rucinski [13, Corollary 2.3]), the probability that the first bullet point
fails for i is at most 2e−s/2n4

< 3e−n2 , as desired.
Second, consider any i ∈ [p] with ui ∈ X. In this case, Y ∩(Ui∪Vi∪U ′i) is chosen uniformly

from all subsets of Ui ∪ U ′i that contain at least one element of Ui. The total variation
distance between the uniform distribution on these subsets and the uniform distribution on
all subsets of Ui ∪ U ′i is at most 2−t. Also, again by [13, Corollary 2.3]), the probability that
a uniformly-random subset of Ui ∪ U ′i has a size that differs from its mean, (s+ t)/2, by at

R. Curticapean, H. Dell, F. V. Fomin, L. A. Goldberg, and J. Lapinskas 13:9

least (s+ t)/n2 is at most 2e−2(s+t)/(3n4). Thus, the probability that the second bullet point
fails for i is at most 2−t + 2e−2(s+t)/(3n4) ≤ 3e−n2 , as desired.

Claim 3: Suppose that x ∈ {0, . . . , p} \ {`} and that X is an x-left independent set of G.
We know from Equation (4) that |ϕ(X) ∩ A`| ≤ 3ne−n2

F (x). We wish to show that this is
at most F (`)/2n. Note that t ≥ 1 and 3s−1 ≤ 2s+t ≤ 3s, so for all y ∈ {0, . . . , p},

F (y) = (2s+t − 2s)y · 3ps−ys ≤ 2y(s+t) · 3ps−ys ≤ 3ps, and

F (y) ≥ 2y(s+t)−y · 3ps−ys ≥ 3ps−2y ≥ 3ps−2n.

The claim follows from F (x) ≤ 3ps ≤ 32nF (`) and from the fact that n ≥ 40. J

5 Algorithms

In this final section, we give our algorithmic results: An FPT randomized approximation
scheme (FPTRAS) for #Size-BIS, and an exact FPT-algorithm for all three problems in
bounded-degree graphs. The definition below follows Arvind and Raman [1].

I Definition 10. An FPTRAS for #Size-BIS is a randomised algorithm that takes as input
a bipartite graph G, a non-negative integer k, and a real number ε ∈ (0, 1) and outputs a
real number z. With probability at least 2/3, the output z must satisfy (1− ε)ISk(G) ≤ z ≤
(1 + ε)ISk(G). Furthermore, there is a function f : R→ R and a polynomial p such that the
running time of the algorithm is at most f(k) p(|V (G)|, 1/ε).

I Theorem 11. There is an FPTRAS for #Size-BIS with time complexity O
(
2k · k2/ε2)

for input graphs with n vertices.

Note that the running time in Theorem 11 does not depend on n, as various logarithmic
factors are absorbed by the word-RAM model. We defer the proof to the full version. We
now turn to our algorithms for bounded-degree graphs. We require the following definitions.
For any positive integer s, an s-coloured graph is a tuple (G, c) where G is a graph and
c : V (G) → [s] is a map. Suppose G = (G, c) and G′ = (G′, c′) are coloured graphs with
G = (V,E) and G′ = (V ′, E′).

We say a map φ : V → V ′ is a homomorphism from G to G′ if φ is a homomorphism from
G to G′ and, for all v ∈ V , c(v) = c′(φ(v)). If φ is also bijective, we say φ is an isomorphism
from G to G′, that G and G′ are isomorphic, and write G ' G′. For all X ⊆ V , we define
G[X] = (G[X], c|X), and say G[X] is an induced subgraph of G. Given coloured graphs H
and G, we denote the number of sets X ⊆ V (G) with G[X] ' H by #Ind(H → G). Finally,
we define V (G) = V and E(G) = E and we define ∆(G) to be the maximum degree of G.

For each positive integer ∆, we consider a counting version of the induced subgraph
isomorphism problem for coloured graphs of degree at most ∆.

Name: #Induced-Coloured-Subgraph[∆]. Parameter: |V (H)|.
Input: Two coloured graphs H and G, each with maximum degree bounded by ∆.
Output: #Ind(H → G).

We will later reduce our bipartite independent set counting problems to #Induced-
Coloured-Subgraph[∆]. Note that this problem can be expressed as a first-order model-
counting problem in bounded-degree structures. A well-known result of Frick [9, Theorem 6]
yields an algorithm for #Induced-Coloured-Subgraph[∆] with running time g(k) · n, where
k = |V (H)| and n = |V (G)|. However, the function g of Frick’s algorithm may grow faster

IPEC 2017

13:10 A Fixed-Parameter Perspective on #BIS

than any constant-height tower of exponentials. In the following, we provide an algorithm for
#Induced-Coloured-Subgraph[∆] that is substantially faster: It runs in time O(nk(2∆+3)k).

The algorithm follows the strategy of [3] to count small subgraphs: Instead of counting
(coloured) induced subgraphs, we can count (coloured) homomorphisms and recover the
number of induced subgraphs via a simple basis transformation. Given coloured graphs H
and G, we denote the number of homomorphisms from H to G by #Hom(H → G).

I Lemma 12. There is an algorithm to compute #Hom(H → G) in time O(nkk(∆ + 1)k),
where G is a coloured graph with n vertices, H is a coloured graph with k vertices, and both
graphs have maximum degree at most ∆.

Proof. The algorithm works as follows: If H is not connected, let H1, . . . ,H` be its connected
components. Then it is straightforward to verify that #Hom(H → G) =

∏`
i=1 #Hom(Hi →

G) . Thus it remains to describe the algorithm for connected pattern graphs H.
Let H be connected. A sequence of vertices v1, . . . , vk in a graph F is a traversal if,

for all i ∈ {1, . . . , k − 1}, the vertex vi+1 is contained in {v1, . . . , vi} ∪ Γ({v1, . . . , vi}). Let
u1, . . . , uk be an arbitrary traversal of H with {u1, . . . , uk} = V (H); the latter property can
be satisfied since H is a connected graph with k vertices. Note that if f : V (H)→ V (G) is a
homomorphism fromH to G, then f(u1), . . . , f(uk) is a traversal in G, and this correspondence
is injective. Thus the algorithm computes the number of traversals v1, . . . , vk in G for which
the mapping f with f(ui) = vi for all i is a homomorphism from H to G. This number is
equal to #Hom(H → G), which the algorithm seeks to compute.

Since the maximum degree of G is ∆, any set S ⊆ V (G) satisfies |Γ(S)| ≤ ∆|S|. Thus there
are at most n · (∆k + k)k−1 traversal sequences in G, which can be generated in linear time
in the number of such sequences. For each traversal sequence, verifying whether the sequence
corresponds to a homomorphism takes time O(k∆) (in the word-RAM model with incidence
lists for H already prepared). Overall, we obtain a running time of O(n · kk · (∆ + 1)k). J

I Theorem 13. For all positive integers ∆, there is a fixed-parameter tractable algorithm for
#Induced-Coloured-Subgraph[∆] with time complexity O(n · k(2∆+3)·k) for n-vertex coloured
graphs G and k-vertex coloured graphs H.

Proof. Let (H,G) be an instance of #Induced-Coloured-Subgraph[∆], write G = (G, c) and
H = (H, c′), and let k = |V (H)|. Without loss of generality, suppose that the ranges of c
and c′ are [q] for some positive integer q ≤ k. Namely, if any vertices of G receive colours
not in the range of c′, then our algorithm may remove them without affecting #Ind(H → G);
if any vertices of H receive colours not in the range of c, then #Ind(H → G) = 0.

For coloured graphs K and B, let #Surj(K → B) be the number of vertex-surjective
homomorphisms from K to B, i.e., the number of those homomorphisms from K to B that
contain all vertices of B in their image.

Let S be the set of all q-coloured graphs K such that ∆(K) ≤ ∆ and, for some t ∈ [k],
V (K) = [t]. Let S′ be a set of representatives of (coloured) isomorphism classes of S.

Let x be the vector indexed by S′ such that xK = #Ind(K → G) for all K ∈ S′. This
vector contains the number of induced subgraph copies of H in G, but it also contains the
number of subgraph copies of all other graphs in S′ in G. Let b be the vector indexed by S′
such that bK = #Hom(K → G) for all K ∈ S′; each entry of this vector can be computed via
the algorithm of Lemma 12. Then we will show that x and b can be related to each other
via an invertible matrix A such that Ax = b. By calculating A and b, we can then output
#Ind(H → G) = (A−1b)H.

R. Curticapean, H. Dell, F. V. Fomin, L. A. Goldberg, and J. Lapinskas 13:11

To elaborate on this linear relationship between induced subgraph and homomorphism
numbers, let us first consider some arbitrary graph K ∈ S′. By partitioning the homomorph-
isms from K to G according to their image, we have

#Hom(K → G) =
∑

X⊆V (G)
|X|≤k

#Surj(K → G[X]).

In the right-hand side sum, we can collect terms with isomorphic induced subgraphs G[X],
since we clearly have #Surj(K → B) = #Surj(K → B′) if B ' B′. Hence, we obtain

#Hom(K → G) =
∑
K′∈S′

#Surj(K → K′) ·#Ind(K′ → G). (5)

Thus let A be the matrix indexed by S′ with AK,K′ = #Surj(K → K′) for all K,K′ ∈ S′.
Then (5) implies that Ax = b. (An uncoloured version of this linear system is folklore, and
originally due to Lovász [15].)

We next prove that A is invertible. Indeed, given K,K′ ∈ S′, write K . K′ if K admits a
vertex-surjective homomorphism to K′. Since . is a partial order, as is readily verified, it
admits a topological ordering π. Permuting the rows and columns of A to agree with π does
not affect the rank of A, and it yields an upper triangular matrix with non-zero diagonal
entries, so it follows that A is invertible.

The algorithm is now immediate. It first determines S by listing all q-coloured graphs
on at most k vertices with at most b∆k/2c edges, then checking each one to see whether it
satisfies the degree condition. It then determines S′ from S by testing every pair of coloured
graphs in S for isomorphism (by brute force). It then determines each entry AK,K′ of A (by
brute force) by listing the vertex-surjective maps K → K′. It then determines b by invoking
Lemma 12 to compute each entry bK = #Hom(K → G) for K ∈ S′. Finally, it outputs
#Ind(H → G) = (A−1b)H. We defer the running time analysis to the full version. J

We note that the above algorithm can be generalised to any host graph class for which
counting homomorphisms from (vertex-coloured) patterns with k vertices has an f(k) · nO(1)

time algorithm. To this end, simply use this algorithm as a sub-routine instead of Lemma 12
in the algorithm constructed in the proof of Theorem 13. Examples for such classes of host
graphs are planar graphs or, more generally, any graph class of bounded local treewidth [9].

Recent independent work by Patel and Regts [17] implicitly contains an algorithm for
counting independent sets of size k in graphs of maximum degree ∆ in time O(ckn), where c
is a constant depending on ∆. This implies Theorem 14(i).

I Theorem 14. For all positive integers ∆:
(i) #Size-BIS[∆] has an algorithm with time complexity O(|V (G)| · k(2∆+3)k);
(ii) #Size-Left-BIS[∆] has an algorithm with time complexity O(|V (G)| · `(2∆2+8∆+4)`);
(iii) #Size-Left-Max-BIS[∆] has an algorithm with time complexity O(|V (G)| · `(2∆2+8∆+4)`).

Proof. Part (i) of the result is immediate from Theorem 13, since #Size-BIS[∆] is a special
case of #Induced-Coloured-Subgraph[∆] (taking G to be monochromatic and H to be a
monochromatic independent set of size k).

For any bipartite graph G = (U, V,E) with degree at most ∆ and any non-negative
integers ` and r, let N`,r(G) be the number of sets X ⊆ U with |X| = ` and |Γ(X)| = r.
Let N ′`,r(G) be the number of pairs of sets X ⊆ U , Y ⊆ V such that |X| = `, |Y | = r and
Y ⊆ Γ(X). Then we have

N`,r(G) = N ′`,r(G)−
∆∑̀

i=r+1

(
i

r

)
N`,i(G). (6)

IPEC 2017

13:12 A Fixed-Parameter Perspective on #BIS

For any bipartite graph J = (UJ , VJ , EJ), we define the corresponding 2-colouring by
cJ(v) = 1 for all v ∈ UJ and cJ(v) = 2 for all v ∈ VJ . We define the corresponding
coloured graph by φ(J) = ((UJ ∪ VJ , {{u, v} | (u, v) ∈ EJ}), cJ). Let S`,r be the set of all
bipartite graphs J = (UJ , VJ , EJ) with UJ = [`], VJ = {` + 1, . . . , ` + r}, degree at most
∆ and no isolated vertices in VJ . Let S`,r be the corresponding set of coloured graphs,
and let S ′`,r be a set of representatives of (coloured) isomorphism classes in S`,r. Then
N ′`,r(G) =

∑
K∈S′

`,r
#Ind(K → φ(G)), and hence by (6) we have

N`,r(G) =
∑
K∈S′

`,r

#Ind(K → φ(G))−
∆∑̀

i=r+1

(
i

r

)
N`,i(G). (7)

Now suppose that (G, `) is an instance of #Size-Left-BIS[∆]. Then we have

IS`-left(G) =
∑
X⊆U
|X|=`

2|V |−|Γ(X)| =
∑

0≤r≤∆`

N`,r(G)2|V |−r. (8)

To compute N`,∆`(G), . . . , N`,0(G), our algorithm applies (7). For each r ∈ {∆`, . . . , 0}, it
determines the #Ind(K → φ(G)) terms of (7) using the #Induced-Coloured-Subgraph[∆]
algorithm of Theorem 13, and the remaining terms of (7) recursively with dynamic program-
ming. Finally, it computes IS`-left(G) using (8). Thus part (ii) of the result follows, except
for the running time analysis which we defer to the full version.

Finally, suppose that (G, `) is an instance of #Size-Left-Max-BIS[∆]. Let µ = min{r |
N`,r(G) 6= 0}, and note that IS`-left-max(G) = N`,µ(G). As above, our algorithm determines
N`,∆`(G), . . . , N`,0(G) using (7), and thereby determines and outputs N`,µ(G). The overall
running time is again O(|V (G)| · `(2∆2+8∆+4)`), so part (iii) of the result follows. J

References
1 V. Arvind and V. Raman. Approximation Algorithms for Some Parameterized Counting

Problems, pages 453–464. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.
2 Jin-Yi Cai, Andreas Galanis, Leslie Ann Goldberg, Heng Guo, Mark Jerrum, Daniel

Stefankovic, and Eric Vigoda. #bis-hardness for 2-spin systems on bipartite bounded
degree graphs in the tree non-uniqueness region. J. Comput. Syst. Sci., 82(5):690–711,
2016. doi:10.1016/j.jcss.2015.11.009.

3 R. Curticapean, H. Dell, and D. Marx. Homomorphisms are a good basis for counting
small subgraphs. In Proc. STOC 2017, pages 210–213, 2017.

4 M. Cygan, F. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer, Berlin Heidelberg, 2015.

5 R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Springer
Publishing Company, Incorporated, 2013.

6 Martin E. Dyer, Leslie Ann Goldberg, Catherine S. Greenhill, and Mark Jerrum. The
relative complexity of approximate counting problems. Algorithmica, 38(3):471–500, 2004.
doi:10.1007/s00453-003-1073-y.

7 J. Flum and M. Grohe. The parameterized complexity of counting problems. SIAM J.
Comput., 33(4):892–922, 2004.

8 J. Flum and M. Grohe. Parameterized complexity theory. Springer-Verlag, Berlin Heidel-
berg, 2006.

9 M. Frick. Generalized model-checking over locally tree-decomposable classes. Theory of
Computing Systems, 37(1):157–191, 2004.

http://dx.doi.org/10.1016/j.jcss.2015.11.009
http://dx.doi.org/10.1007/s00453-003-1073-y

R. Curticapean, H. Dell, F. V. Fomin, L. A. Goldberg, and J. Lapinskas 13:13

10 Andreas Galanis, Daniel Stefankovic, Eric Vigoda, and Linji Yang. Ferromagnetic potts
model: Refined #bis-hardness and related results. SIAM J. Comput., 45(6):2004–2065,
2016. doi:10.1137/140997580.

11 L. A. Goldberg and M. Jerrum. A complexity classification of spin systems with an external
field. Proceedings of the National Academy of Sciences, 112(43):13161–13166, 2015.

12 R. Impagliazzo and R. Paturi. On the complexity of k-SAT. J. Comput. Syst. Sci.,
62(2):367–375, 2001.

13 S. Janson, T. Łuczak, and A. Rucinski. Random Graphs. John Wiley & Sons, Inc., 2000.
14 Jingcheng Liu and Pinyan Lu. FPTAS for #bis with degree bounds on one side. In Rocco A.

Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015,
pages 549–556. ACM, 2015. doi:10.1145/2746539.2746598.

15 László Lovász. Large Networks and Graph Limits, volume 60 of Colloquium Publications.
American Mathematical Society, 2012. URL: http://www.ams.org/bookstore-getitem/
item=COLL-60.

16 M. Müller. Randomized approximations of parameterized counting problems. In
Proc. IWPEC 2006, pages 50–59, Berlin, Heidelberg, 2006. Springer-Verlag.

17 Viresh Patel and Guus Regts. Deterministic polynomial-time approximation algorithms
for partition functions and graph polynomials. CoRR, abs/1607.01167, 2016. arXiv:1607.
01167.

18 M. Sipser. Introduction to the Theory of Computation. International Thomson Publishing,
1st edition, 1996.

19 M. Xia, P. Zhang, and W. Zhao. Computational complexity of counting problems on
3-regular planar graphs. Theoretical Computer Science, 384(1):111–125, 2007.

IPEC 2017

http://dx.doi.org/10.1137/140997580
http://dx.doi.org/10.1145/2746539.2746598
http://www.ams.org/bookstore-getitem/item=COLL-60
http://www.ams.org/bookstore-getitem/item=COLL-60
http://arxiv.org/abs/1607.01167
http://arxiv.org/abs/1607.01167

The Dominating Set Problem in Geometric
Intersection Graphs∗†

Mark de Berg1, Sándor Kisfaludi-Bak2, and Gerhard Woeginger3

1 Department of Mathematics and Computer Science, TU Eindhoven,
Eindhoven, the Netherlands

2 Department of Mathematics and Computer Science, TU Eindhoven,
Eindhoven, the Netherlands

3 Department of Computer Science, RWTH Aachen University, Aachen,
Germany

Abstract
We study the parameterized complexity of dominating sets in geometric intersection graphs.

In one dimension, we investigate intersection graphs induced by translates of a fixed pattern
Q that consists of a finite number of intervals and a finite number of isolated points. We
prove that Dominating Set on such intersection graphs is polynomially solvable whenever Q
contains at least one interval, and whenever Q contains no intervals and for any two point
pairs in Q the distance ratio is rational. The remaining case where Q contains no intervals
but does contain an irrational distance ratio is shown to be NP- complete and contained in
FPT (when parameterized by the solution size).
In two and higher dimensions, we prove that Dominating Set is contained in W[1] for inter-
section graphs of semi-algebraic sets with constant description complexity. This generalizes
known results from the literature. Finally, we establish W[1]-hardness for a large class of
intersection graphs.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, F.1.3 Com-
plexity Measures and Classes

Keywords and phrases dominating set, intersection graph, W-hierarchy

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.14

1 Introduction

A dominating set in a graph G = (V,E) is a subset D ⊆ V of vertices such that every node in
V is either contained in D or has some neighbor in D. The decision version of the dominating
set problem asks for a given graph G and a given integer k, whether G admits a dominating
set of size at most k. Dominating set is a popular and classic problem in algorithmic graph
theory. It has been studied extensively for various graph classes; we only mention that it
is polynomially solvable on interval graphs, strongly chordal graphs, permutation graphs
and co-comparability graphs and that it is NP-complete on bipartite graphs, comparability
graphs, and split graphs. We refer the reader to the book [9] by Hales, Hedetniemi and Slater
for lots of comprehensive information on dominating sets.

∗ This research was supported by the Netherlands Organization for Scientific Research (NWO) under
project no. 024.002.003.

† See full version at https://arxiv.org/abs/1709.05182

© Mark de Berg, Sándor Kisfaludi-Bak, and Gerhard Woeginger;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 14; pp. 14:1–14:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.14
https://arxiv.org/abs/1709.05182
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 The Dominating Set Problem in Geometric Intersection Graphs

Dominating set is also a model problem in parameterized complexity, as it is one of
the few natural problems known to be W[2]-complete (with the solution size k as natural
parameterization); see [5]. In the parameterized setting, dominating set on a concrete graph
class typically is either in P, FPT, W[1]-complete, or W[2]-complete. (Note that the problem
cannot be on higher levels of the W-hierarchy, as it is W[2]-complete on general graphs.)

In this paper we study the dominating set problem on geometric intersection graphs:
Every vertex in V corresponds to a geometric object in Rd, and there is an edge between
two vertices if and only if the corresponding objects intersect. Well-known graph classes
that fit into this model are interval graphs and unit disk graphs. In R1, Chang [3] has given
a polynomial time algorithm for dominating set in interval graphs and Fellows, Hermelin,
Rosamond and Vialette [6] have proven W[1]-completeness for 2-interval graphs (where the
geometric objects are pairs of intervals). In R2, Marx [10] has shown that dominating set is
W[1]-hard for unit disk graphs as well as for unit square graphs. For unit square graphs the
problem is furthermore known to be contained in W[1] [10], whereas for unit disk graphs this
was previously not known.

Our contribution

We investigate the dominating set problem on intersection graphs of 1- and 2-dimensional
objects, thereby shedding more light on the borderlines between P and FPT and W[1] and
W[2].

For 1-dimensional intersection graphs, we consider the following setting. There is a fixed
pattern Q, which consists of a finite number of points and a finite number of closed intervals
(specified by their endpoints). The objects corresponding to the vertices in the intersection
graph simply are a finite number of translates of this fixed pattern Q. More formally, for a
real number x we define Q(x) := x+Q to be the pattern Q translated by x, and for the input
{x1, . . . , xn}, we consider the intersection graph defined by the objects {x1 +Q, . . . , xn +Q}.
The class of unit interval graphs arises by choosing Q = [0, 1]. Our model of computation
is the word RAM model, where real numbers are restricted to a field K which is a finite
extension of the rationals.

I Remark (Machine representation of numbers). As finite extensions of Q are finite dimensional
vector spaces over Q, there exists a basis b1, . . . , bk with k = [K : Q], so that any real x ∈ K
is representable in the form x = q1b1 + q2b2 + · · · + qkbk for some q1, . . . , qk ∈ Q. As k is
fixed, any arithmetic operation that takes O(1) steps on the rationals will also take O(1)
steps on elements of K.

We define the distance ratio of two point pairs (x1, x2), (x3, x4) ∈ R× R as |x1−x2|
|x3−x4| . We

derive the following complexity classification for Q-Intersection Dominating Set.

I Theorem 1. Q-Intersection Dominating Set has the following complexity:
(i) It is in P if the pattern Q contains at least one interval.
(ii) It is in P if the pattern Q does not contain any intervals, and if for any two point pairs

in Q the distance ratio is rational.
(iii) It is NP-complete and in FPT if pattern Q is a finite point set which has at least one

irrational distance ratio.

In the final version we show that any graph can be obtained as a 1-dimensional pattern
intersection graph for a suitable choice of pattern Q. Consequently Q-Intersection
Dominating Set is W[2]-complete if the pattern Q is part of the input.

M. de Berg, S. Kisfaludi-Bak, and G. Woeginger 14:3

For 2-dimensional intersection graphs, our results are inspired by a question that was not
resolved in [10]: “Is dominating set on unit disk graphs contained in W[1]?” We answer this
question affirmatively (and thereby fully settle the complexity status of this problem). Our
result is in fact far more general: We show that dominating set is contained in W[1] whenever
the geometric objects in the intersection graph come from a family of semi-algebraic sets that
can be described by a constant number of parameters. We also show that this restriction
to shapes of constant-complexity is crucial, as dominating set is W[2]-hard on intersection
graphs of convex polygons with a polynomial number of vertices. On the negative side, we
generalize the W[1]-hardness result of Marx [10] by showing that for any non-trivial simple
polygonal pattern Q, the corresponding version of dominating set is W[1]-hard.

The full version of this paper is available as a preprint [4].

2 1-dimensional patterns

In this section, we study the Q-Intersection Dominating Set problem in R1. If Q
contains an unbounded interval, then all translates are intersecting; the intersection graph
is a clique and the minimum dominating set is a single vertex. In what follows, we assume
that all intervals in Q are bounded. We define the span of Q to be the distance between its
leftmost and rightmost point. We prove Theorem 1 by studying each claim separately.

I Lemma 2. Q-Intersection Dominating Set can be solved in O(n6w+4) time if Q
contains at least one interval, where w is the ratio of the span of Q and the length of the
longest interval in Q.

Note that since Q is a fixed pattern, the value of w does not depend on the input size
and so Lemma 2 implies Theorem 1(i). We translate Q so that its leftmost endpoint
lies at the origin, and we rescale Q so that its longest interval has length 1. Consider an
intersection graph G of a set of translates of Q. The vertices of G are Q(xi) for the given
values xi. We call xi the left endpoint of Qi. Let + also denote the Minkowski sum of sets:
A+B = {a+ b | a ∈ A, b ∈ B}. If A or B is a singleton, then we omit the braces, i.e., we let
a+B denote {a}+B. In order to prove Lemma 2, we need the following lemma first.

I Lemma 3. Let D ⊆ V (G) be a minimum dominating set and let X(D) be the set of left
endpoints corresponding to the patterns in D. Then for all y ∈ R it holds that |X(D)∩ [y, y+
w]| 6 3w.

Proof. We prove this lemma first for unit interval graphs (where Q consists of a single
interval). The following observation is easy to prove.

I Observation 4. In any unit interval graph there is a minimum dominating set whose
intervals do not overlap.

Notice that the lemma immediately follows from this claim in case of unit interval graphs
since then |X(D) ∩ [y, y + 1]| 6 1 < 3 = 3w. Let Q be any other pattern, and suppose that
|X(D) ∩ [y, y +w]| > 3w + 1. The patterns starting in [y, y +w] can only dominate patterns
with a left endpoint in [y − w, y + 2w], a window of width 3w. Let H be the set of patterns
starting in [y − w, y + 2w] (see Figure 1. Let I be a unit interval of Q, and let U the set of
unit intervals that are the translates of I in the patterns of H. Notice that X(U) is a point
set that is also in a window of length 3w. By the claim above, we know that the interval
graph G(U) defined by U has a dominating set that contains non-overlapping intervals, in
particular, a dominating set DU of size at most 3w. Since G(U) corresponds to a spanning

IPEC 2017

14:4 The Dominating Set Problem in Geometric Intersection Graphs

y y + w y + 2wy − w

H v1
v2

v3

v4

v5

v1

v3

v2
v4

v5

G(H) G(U)

v1

v3

v2
v4

v5

Figure 1 Patterns in a window [y − w, y + 2w]. Intervals of U are red.

subgraph of G(H), the patterns DH
U corresponding to DU in H form a dominating set of

G(H). Thus, (D \H) ∪DH
U is a dominating set of our original graph that is smaller than D,

which contradicts the minimality of D. J

We can now move on to the proof of Lemma 2.

Proof. We give a dynamic programming algorithm. We translate our input so that the left
endpoint of the leftmost pattern is 0. Moreover, we can assume that the graph induced by
our pattern is connected, since we can apply the algorithm to each connected component
separately. The connectivity implies that the left endpoint of the rightmost pattern is at
most (n− 1)w. Let 0 < k 6 n be an integer and let G(k) be the intersection graph induced
by the patterns with left endpoints in [0, kw]. Let I(k) be the set of input patterns with
left endpoints in [(k − 1)w, kw) and let S ⊆ I(k). Let A(k, S) be the size of a minimum
dominating set D of G(k) for which D ∩ I(k) = S. By Lemma 3 it follows that |S| 6 3w.

The following recursion holds for A(k, S) if we define A(0, S) := 0:

A(k, S) = min
{
A(k − 1, S′) + |S|

∣∣∣S′ ⊂ I(k − 1), |S′| 6 3w, S ∪ S′ dominates I(k)
}
.

The inequality “6” is easy to see, we are only minimizing over the sizes of feasible dominating
sets of G(k). For the other direction (“>”), Lemma 3 implies that there is a minimum
dominating set containing at most 3w left endpoints from both I(k − 1) and I(k), therefore
its size is A(k− 1, S′) + |S| for some S′ ⊂ I(k− 1), |S′| 6 3w that together with S dominates
I(k). The number of subproblems for a fixed value of k is

∑3w
j=0

(
n
j

)
= O(n3w); thus the

number of subproblems is O(n3w+1). Computing the value of a subproblem requires looking
at O(n3w+1) potential subsets S′, and O(n2) time is sufficient to check whether S ∪ S′
dominates I(k). Overall, the running time of our algorithm is O(n6w+4). J

I Lemma 5. If Q is a point pattern so that the distance ratios of any two point pairs of Q
are rational, then Q-Intersection Dominating Set can be solved in polynomial time.

Proof. By shifting and rescaling, we may assume without loss of generality that the leftmost
point in Q is in the origin and that all points in Q have integer coordinates. (Note that this
could not be done if the pattern contained an irrational distance ratio.) We define a new
pattern Q′ that results from Q by replacing point 0 by the interval [0, 1/3].

Now consider an intersection graph whose vertices are associated with xi + Q where
x1 ≤ x2 ≤ · · · ≤ xn. We assume without loss of generality that the graph is connected
and that all xi are integers. It can be seen that the intersection graph does not change, if
every object xi +Q is replaced by the object xi +Q′. Since pattern Q′ contains the interval
[0, 1/3], we may simply apply Lemma 2 to compute the optimal dominating set in polynomial
time. J

M. de Berg, S. Kisfaludi-Bak, and G. Woeginger 14:5

I Lemma 6. If Q is a point pattern that contains two point pairs with an irrational distance
ratio, then Q-Intersection Dominating Set is NP-complete.

Proof. The containment in NP is trivial; we show the hardness by reducing from dominating
set on induced triangular grid graphs. (These are finite induced subgraphs of the triangular
grid, which is the graph with vertex set V = Z2 and edge set E =

{(
(a, b), (a+ α, b+ β)

)
:

|α| 6 1, |β| 6 1, α 6= β
}
.) The NP-hardness of dominating set in induced triangular grid

graphs is proven in the final version. Note that the dominating set problem is known to be
NP-hard on induced grid graphs, but this does not imply the hardness on triangular grids,
because triangular grid graphs are not a superclass of grid graphs.

We show that the infinite triangular grid can be realized as a Q-intersection graph,
where the Q-translates are in a bijection with the vertices of the triangular grid. Therefore,
any induced triangular grid graph is realized as the intersection graph of the Q-translates
corresponding to its vertices.

Rescale Q so that it has span 1. It cannot happen that all the points are rational,
because it would make all distance ratios rational as well. Let x∗ ∈ Q be the smallest
irrational point. Let a ∈ Z, and consider the intersection of the translate ax∗ +Q with the
set Z +Q. We claim that this intersection is non-empty only for a finite number of values
a ∈ Z. Suppose the opposite. Since Q is a finite pattern, there must be a pair z, z′ ∈ Q such
that ax∗ + z = b+ z′ has infinitely many solutions (a, b) ∈ Z2. In particular, there are two
solutions (a1, b1) and (a2, b2) such that a1 6= a2 and b1 6= b2. Subtracting the two equations
we get (a1 − a2)x∗ = b1 − b2, which implies x∗ = b1−b2

a1−a2
. This is a contradiction since x is

irrational.
Let y∗ = a′x∗, where a′ is the largest value a for which ax∗ + Q intersects Z + Q. It

follows that
{
j ∈ Z

∣∣ (jy∗ +Q) ∩ (Z +Q) 6= ∅
}

=
{
−1, 0, 1

}
.

Consider the intersection graph induced by the sets
{
jy∗+k+Q

∣∣ (j, k) ∈ Z2}. The above
shows that a fixed translate jy∗+k+Q is not intersected by the translates (j+α)y∗+(k+β)+Q
if |α| ≥ 2. It is easy to see that |β| ≥ 2 does not lead to an intersection either. Also note that
α = β = ±1 does not give an intersection; however all the remaining cases are intersecting,
i.e., if

(α, β) ∈
{

(−1, 0), (−1, 1), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0)
}

then (j +α)y∗ + (k+ β) +Q intersects jy∗ + k+Q. Thus, the intersection graph induced by{
jy∗ + k +Q

∣∣ (j, k) ∈ Z2} is a triangular grid. J

I Lemma 7. If Q is a point pattern that has point pairs with an irrational distance ratio,
then Q-Intersection Dominating Set has an FPT algorithm parameterized by solution
size.

Proof. In polynomial time, we can remove all duplicate translates, since a minimum domi-
nating set contains at most one of these objects, and any minimum dominating set of the
resulting graph is a dominating set of the original graph. Suppose our pattern consists of t
points. In the duplicate-free graph, point i of the pattern translate may intersect point j of
another translate, for some i 6= j, so the maximum degree is t2 − t. Therefore we are looking
for a dominating set in a graph of bounded degree. Hence, a straightforward branching
approach gives an FPT algorithm: choose any undominated vertex v; either v or one of
its at most t2 − t neighbors is in the dominating set, so we can branch t2 − t+ 1 ways. If
all vertices are dominated after choosing k vertices, then we have found a solution. This
branching algorithm has depth k, with linear time required at each branching, so the total
running time is O

(
t2k(|V |+ |E|)

)
. J

IPEC 2017

14:6 The Dominating Set Problem in Geometric Intersection Graphs

Figure 2 Two faces of a vertical decomposition.

I Remark. In our handling of the problem, the pattern was part of the problem definition.
Making the pattern part of the input leads to an NP-complete problem: Lemma 6 can be
adapted to this scenario. If we also allow the size of the pattern to depend on the input, then
the problem is W[2] complete (when parameterized by solution size): see the final version,
where we show that for any graph G there is a finite pattern whose translates can produce G
as an intersection graph.

We propose the following problem for further study, where the pattern depends on the
input, but has fixed size.

Open question. Let Q be the pattern defined by two unit intervals on a line at distance `.
Is there an FPT algorithm (either with parameter k or k + `) on intersection graphs defined
by translates of Q, that can decide if such a graph has a dominating set of size k? It can be
shown that this problem is NP-complete, and Theorem 10 below shows that it is contained
in W[1].

3 Higher dimensional shapes: W[1] vs. W[2]

In this section we show that dominating set on intersection graphs of 2-dimensional objects
is contained in W[1] if the shapes have a constant size description. First, we demonstrate
the method on unit disk graphs, and later we state a much more general version where
the shapes are semi-algebraic sets. In order to show containment, it is sufficient to give
a non-deterministic algorithm that has an FPT time deterministic preprocessing, then a
nondeterministic phase where the number of steps is only dependent on the parameter. More
precisely, we use the following theorem.

I Theorem 8 ([7]). A parameterized problem is in W[1] if and only if it can be computed by
a nondeterministic RAM program accepting the input that
1. performs at most f(k)p(n) deterministic steps;
2. uses at most f(k)p(n) registers;
3. contains numbers smaller than f(k)p(n) in any register at any time;
4. for any run on any input, the nondeterministic steps are among the last g(k) steps.
Here n is the size of the input, k is the parameter, p is a polynomial and f, g are computable
functions. The non-deterministic instruction is defined as guessing a natural number between
0 and the value stored in the first register, and storing it in the first register. Acceptance of
an input is defined as having a computation path that accepts.

I Theorem 9. The dominating set problem on unit disk graphs is contained in W[1].

M. de Berg, S. Kisfaludi-Bak, and G. Woeginger 14:7

Proof. Let P be the set of centers of the unit disks that form the input instance. For a
subset D ⊆ P , let C2(D) and D2(D) be the set of circles and disks of radius 2, respectively,
centered at the points of D. (Note that D is a dominating set if and only if

⋃
D2(D), the

union of the disks in D2(D), covers all points in P .) Shoot a vertical ray up and down
from each of the O(k2) intersection points between the circles of C2(D), and also from the
leftmost and rightmost point of each circle. Each ray is continued until it hits a circle (or to
infinity). The arrangement we get is a vertical decomposition [2] (see Fig. 2). Each face of this
decomposition is defined by at most four circles. This is not only true for the 2-dimensional
faces, but also for the 1-dimensional faces (the edges of the arrangement) and 0-dimensional
faces (the vertices). We consider the faces to be relatively open, so that they are pairwise
disjoint.

In our preprocessing phase, we compute all potential faces of a vertical decomposition of
any subset D ⊆ P by looking at all 4-tuples of circles from C2(P). We create a lookup table
that contains the number of input points covered by each potential face in O(n4) time.

Next, using nondeterminism we guess k integers, representing the points of our solution;
let D be this point set. The rest of the algorithm deterministically checks if D is dominating.
We need to compute the vertical decomposition of C2(D); this can be done in O(k2) time [2].
Finally, for each of the O(k2) resulting faces of

⋃
D2(D), we can get the number of input

points covered from the lookup table in constant time. We accept if these numbers sum to n.
By Theorem 8 we can thus conclude that dominating set on unit disk graphs is in W[1]. J

In order to state the general version of this theorem, we introduce semi-algebraic sets.
A semi-algebraic set is a subset of Rd obtained from a finite number of sets of the form
{x ∈ Rd | g(x) > 0}, where g is a d-variate polynomial with integer coefficients, by Boolean
operations (unions, intersections, and complementations). Let Γd,∆,s denote the family of
all semi-algebraic sets in Rd defined by at most s polynomial inequalities of degree at most
∆ each. If d,∆, s are all constants, we refer to the sets in Γd,∆,s as constant-complexity
semi-algebraic sets.

Let F be a family of constant complexity semi-algebraic sets in Rd that can be specified
using t parameters a1, . . . , at. If the expressions defining F are also polynomials in terms of
the parameters, then we call F a t-parameterized family of semi- algebraic sets. For example,
the family of all balls in the R3 is a 4-parameterized family of semi- algebraic sets, since any
ball can be specified using an inequality of the form (x1−a1)2+(x2−a2)2+(x3−a3)2−a2

4 6 0.
As another example, the family of all triangles in the plane is a 6-parameterized algebraic
set, since any triangle is the intersection of three half-planes, and any half- plane can be
specified using two parameters.

We only give a sketch of the proof, the complete proof can be found in the final version.

I Theorem 10. Let F be a t-parameterized family of semi-algebraic sets, for some constant t.
Then dominating set is in W[1] for intersection graphs defined by F .

Proof sketch of Theorem 10. By definition, any set S ∈ F can be specified using t parame-
ters a1, . . . , at. Thus we can represent S by the point p(S) := (a1, . . . , at) in Rt. Conversely,
for a point (a1, . . . , at) ∈ Rt, let S(a1, . . . , at) be the corresponding semi-algebraic set. Now
we define, for any set S ∈ F , a region R(S) as follows:

R(S) := {(a1, . . . , at) ∈ Rt : S(a1, . . . , at) ∩ S 6= ∅}.

Thus for any two sets S1, S2 ∈ F we have that S1 ∩ S2 6= ∅ if and only if p(S1) ∈ R(S2).
Now consider a set S ⊂ F of n sets from the family F . We proceed in a similar way as in

the proof of Theorem 9, where the sets R(S) for S ∈ S play the same role as the radius-2

IPEC 2017

14:8 The Dominating Set Problem in Geometric Intersection Graphs

disks in that proof. Consider any subset D ⊆ S, and note that D is a dominating set if and
only if

⋃
S∈DR(S) contains the point set {p(S)|S ∈ S}.

Now we can decompose the arrangement defined by {R(S) : S ∈ D} into polynomially
many cells using a so-called cylindrical decomposition [1]; note that such a decomposition is
made possible by the fact that the regions R(S) are semi-algebraic. (This decomposition
plays the role of the vertical decomposition in the proof for unit disks.) Each cell of the
cylindrical decomposition is defined by at most t′ regions R(S), for some t′ = O(1). Thus,
for each subset of at most t′ regions R(S), we compute all cells that arise in the cylindrical
decomposition of the subset. The number of possible cells is polynomial in n.

In the preprocessing phase, we compute for each possible cell the number of points p(S)
contained in it, and store the results in a lookup table. The next phase of the algorithm is the
same as for unit disks: we guess a solution, compute the cells in the cylindrical decomposition
of the corresponding arrangement, and check using the lookup table if the guessed solution
is a dominating set. J

W[1]-hardness for simple polygon translates

We generalize a proof by Marx [10] for the W[1]-hardness of dominating set in unit square/unit
disk graphs. Our result is based on the observation that many 2-dimensional shapes share
the crucial properties of unit squares when it comes to the type of intersections needed for
this specific construction. We prove the following theorem.

I Theorem 11. The dominating set problem is W[1]-hard for intersection graphs of the
translates of a simple polygon in R2.

Our proof uses the same global strategy as Marx’s proof [10] for the W[1]-hardness of
dominating set for intersection graphs of squares. (We give an overview of the proof in the
final version.) To apply this proof strategy, all we need to prove is that the family of shapes
for which we want to prove W[1]-hardness has a certain property, as defined next.

We say that a shape S ⊆ R2 is square-like if there are two base vectors b1 and b2 and
for any n there are two small offset vectors u1 = u1(n) and u2 = u2(n) with the following
properties. Define S(i, j) := S + iu1 + ju2 for all −n2 6 i, j 6 n2, and consider the set
K := {S(i, j) : −n2 6 i, j 6 n2}. Note that K consists of (2n2 + 1)2 translated copies of S
whose reference points from a (2n2 + 1)× (2n2 + 1) grid. Also note that S = S(0, 0). For the
shape S to be square-like, we require the following properties:
K is a clique in the intersection graph, i.e.,

for all− n26 i,j6n2 we have: S ∩ S(i, j) 6= ∅.
“Horizontal” neighbors intersect only when close:

for all− n26j6n2 we have: S ∩ (b1 + S(i, j)) 6= ∅ ⇐⇒ i 6 0.
“Vertical” neighbors intersect only when close:

for all− n26 i6n2 we have: S ∩ (b2 + S(i, j)) 6= ∅ ⇐⇒ j 6 0.
Distant copies of K are disjoint:

for all−n26 i,j,i′,j′6n2 we have: |k|+|`| > 2⇒ S(i, j)∩(kb1+`b2+S(i′, j′)) = ∅.
Moreover, we require that each of the vectors can be represented on O(logn) bits. It is
helpful to visualize a square grid, with unit side lengths b1 and b2, where we place the
centers of unit squares with small offsets compared to the grid points. We are requiring a
very similar intersection structure here. See Figure 5 for an example of a good choice of
vectors.

Since the above properties are sufficient for the construction given by Marx [10], we only
need to prove the following theorem.

M. de Berg, S. Kisfaludi-Bak, and G. Woeginger 14:9

b1 + PP

b2 + P

q′ + iu1 + ju2

q + iu1 + ju2

s2
s1

Figure 3 A good choice of b1, b2 and offsets.

p

q

sq
sp

P

b0

b0 − εsp + P

εsp
P

b1

−b1 + P b1 + P

p′

q′ µ

µ

b′0

Figure 4 Left: Defining b1. Right: Defining b2.

I Theorem 12. Every simple polygon is square-like.

Before giving a formal proof, we give a short overview. First, we would like to define a
“horizontal” direction, i.e., a good vector b1. A natural choice would be to select a diameter
of the polygon (see b0 on the left of Figure 4), however that would result in S and b1 + S

intersecting each other at vertices. That would pose a severe restriction on the offset vectors;
therefore, we use a perturbed version of a diameter, making sure that the intersection of
S and b1 + S is realized by a polygon side from at least one party. The direction of this
polygon side also defines a suitable direction of the offset vector u2: because of the second
property, choosing u2 to be parallel to this direction ensures the independence with respect
to the choice of j.

Next, we define the other base vector b2. This definition is based on laying out an infinite
sequence of translates horizontally next to each other (right side of Figure 4). We want a
translate of this sequence to touch the original sequence in a “non-intrusive” way: small
perturbations of b2 + S should only intersect S, but stay disjoint from b1 + S or −b1 + S.
This is fairly easy to achieve; again with a small perturbation of our first candidate vector we
can also ensure that the intersection between b2 +S and S is not a vertex-vertex intersection.
Finally, a suitable direction for the offset vector u1 is given by the polygon side taking part
in the intersection between b2 + S and S.

Proof of Theorem 12. Let P be a simple polygon, and let p and q be two endpoints of a
diameter of P . Let b0 = q − p. Since P is a polygon, both p and q are vertices. Let sp and
sq be unit vectors in the direction of the side of P that follows vertex p and q in the counter-
clockwise order. Let ε > 0 be a small number to be specified later. Consider the intersection
of P and the translate b0 + εsq + P . If ε is small enough, then depending on the angle of sp
and sq, this intersection is either the point b0 + εsq, or part of the side with direction sq, or
it is an intersection of positive area. The left of Figure 4 illustrates the third case. In the
first case, let b1 = b0 + εsp; in the second and third case, let b1 = b0 − εsq. Furthermore, let
s1 = b1 − b0. We will later use s1 to define the offset vector u2.

Imagine that b1 is the horizontal direction, and consider the set P∞ = {kb1 +P | k ∈ Z}
(right side of Figure 4). Its top and bottom boundary are infinite periodic polylines, with

IPEC 2017

14:10 The Dominating Set Problem in Geometric Intersection Graphs

P b1 + P

b1 + b2 + P

R0 R

b1 + b2 +R

b2 + P

µ

Figure 5 Part of the grid kb1 + `b2 + P .

period length |b1|. Take a pair of horizontal lines that touch the top and bottom boundary.
By manipulating ε in the definition of b1, we can achieve a general position in the sense that
both of these lines touch the respective boundaries exactly once in each period, moreover,
there is a value µ, such that there are no vertices other than the touching points in the
µ
2 -neighborhood of the touching lines. Let p′ and q′ be vertices touched by the bottom and
top lines inside P , and let b′0 = q′−p′. Similarly as before, the direction of the sides following
p′ and q′ counter-clockwise are denoted by sp′ and sq′ . If the intersection of P and the
translate b′0 + εsq′ + P has zero area, then let b2 = b′0 − εsq′ ; otherwise, (if the area of the
intersection is positive), let b2 = b′0 + εsp′ . We denote by s2 the difference b2 − b′0. If s2 and
s1 are parallel, then we can define s2 similarly, by replacing the sides sp′ and sq′ with the
sides that follow p′ and q′ in clockwise direction. The new direction of s2 will not be parallel
to the old one, therefore it will not be parallel to s1.

We need to choose the values of u1 and u2. Let u1 = ε
2n2 s2 and let u2 = ε

2n2 s1. We
claim that if ε is small enough, then P is square-like for the vectors b1,b2,u1,u2. It is
easy to check that for a small enough value of ε, the first condition is satisfied, namely that
P ∩ P (i, j) 6= ∅ for all − n2 6 i, j 6 n2.

Next, we show that for i 6 0, the intersection of P and b1 +P (i, j) is non-empty. Consider
the small grid of points q − iu1 − ju2, −n2 6 i, j 6 n2 (see Figure 3). This grid fits into a
parallelogram whose sides are parallel to s2 and s1. Notice that if ε is small enough, then
q − iu1 − ju2 for all −n2 6 i < 0 and −n2 6 j 6 n2 is contained in b1 + P , thus the
intersection P ∩ (b1 + iu1 + ju2 + P) is non-empty if i 6 0. Moreover, (if ε is small enough),
then no other type of intersection can happen by moving b1 + P slightly: the only sides that
can intersect b1 + P (i, j) from P are adjacent to q. Therefore, if q is outside b1 + P (i, j),
then the intersection is empty – which is true for i > 0. A similar argument works for the
intersection of P and b2 + P (i, j).

Let R0 be a minimum area parallelogram containing P whose sides are parallel to b1 and
b2 (see Figure 5). Notice that the side lengths of this parallelogram are at most |b1|+ ε and
|b2|+ ε respectively. Let P̄ =

⋃
K =

⋃
−n26i,j6n2 P (i, j). Notice that P̄ is contained in the

slightly larger rectangle R that we get by extending all sides of R0 by 2ε.
Now consider the rectangle translates kb1 +`b2 +R. Since ε is small enough, if either k or

` is at least two then R∩ (kb1 +`b2 +R) = ∅, so specifically, P̄ is disjoint from kb1 +`b2 + P̄ .
It remains to show that P̄ is disjoint from kb1 + `b2 + P̄ if |k| = |`| = 1. Consider P̄ and
b1 + b2 + P̄ for example. They could only intersect inside R ∩ (b1 + b2 +R); however, if
ε < µ

4 , then this is contained in the µ wide horizontal strip defined earlier. By the definition
of this strip, it also means that there is an intersection point q that is within distance O(ε)
from both q′ and b1 + b2 +p′. This would mean that |b1| = O(ε), and thus it can be avoided
by choosing a small enough ε.

M. de Berg, S. Kisfaludi-Bak, and G. Woeginger 14:11

Finally, we note that all restrictions on the value of ε are dependent on the polygon P
itself, thus the length of the short vectors u1 and u2 is Ω(n−2), and a precision of O(n−2) is
sufficient for all the vectors, thus the vectors can be represented on O(logn) bits. J

We remark that it is fairly easy to further generalize the above theorem to other families
of objects, we can allow objects with certain curved boundaries for example. A simple
example of an object that is not square-like is a pair of perpendicular disjoint unit segments:
for any choice of offset vectors, the set K does not form a clique (as required by the first
property of square-like objects).

W[2]-hardness for convex polygons

We conclude with the following hardness result; the reduction uses a basic geometric idea
that has been used for hardness proofs before [8, 11]. Note the crucial difference between the
setting in this theorem, where the polygons defining the intersection graph can be different
and have description complexity dependent on n, versus the previous settings (where we had
constant description complexity and some uniformity among the object descriptions).

I Theorem 13. The dominating set problem is W[2]-hard for intersection graphs of convex
polygons.

Proof. A split graph is a graph that has a vertex set which can be partitioned into a clique
C and an independent set I. It was shown by Raman and Saurabh [12] that dominating
set is W[2]-hard on split graphs. Thus it is sufficient to show that any split graph can be
represented as the intersection graph of convex polygons.

Let G = (C ∪ I, E) be an arbitrary split graph. Let Q′ be a regular 2|I|-gon and let Q
be the regular I-gon defined by every second vertex of Q′. Notice that Q′ \ Q consists of
small triangles, any subset of which together with Q forms a convex polygon.

The polygons corresponding to I are small equilateral triangles, placed in the interior
of each small triangle of Q′ \ Q. The polygon corresponding to a vertex v ∈ C whose
neighborhood in I is NI(v) is the union of Q and the small triangles corresponding to the
vertices of NI(v).

In this construction, the polygons corresponding to C all intersect (they all contain Q),
and the polygons corresponding to I are all disjoint. Finally, for any pair of vertices u ∈ C
and v ∈ I the polygon of u contains the polygon of v if and only if uv ∈ E. J

4 Conclusion

We have classified the parameterized complexity of dominating set in intersection graphs
defined by sets of various types in R1 and R2. More precisely, in R1, we gave a classification
for the case when the intersection graph is defined by the translates of a fixed pattern
that consists of points and intervals that is independent of the input. In R2, we have
identified a fairly large class of W[1]-complete instances, namely, if our intersection graph is
defined by a subset of a constant description complexity family of semi-algebraic sets. Even
though our results hold for a large class of geometric intersection graphs, there are still some
open problems. In particular, the complexity of dominating set on the following types of
intersections graphs is unknown.

translates of a 1-dimensional pattern that contains two unit intervals at some distance `
(given by the input) (FPT vs. W[1]?)

IPEC 2017

14:12 The Dominating Set Problem in Geometric Intersection Graphs

translates of a 2-dimensional pattern that contains two disjoint perpendicular unit intervals
(FPT vs. W[1]?)
n translates of a regular n-gon (W[1] vs. W[2]?)

References
1 Dennis S. Arnon, George E. Collins, and Scott McCallum. Cylindrical algebraic decomposi-

tion I: the basic algorithm. SIAM J. Comput., 13(4):865–877, 1984. doi:10.1137/0213054.
2 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational

Geometry: Algorithms and Applications. Springer-Verlag, 3rd edition, 2008.
3 Maw-Shang Chang. Efficient algorithms for the domination problems on interval

and circular-arc graphs. SIAM J. Comput., 27(6):1671–1694, 1998. doi:10.1137/
S0097539792238431.

4 Mark de Berg, Sándor Kisfaludi-Bak, and Gerhard Woeginger. The dominating set problem
in geometric intersection graphs. CoRR, abs/1709.05182, 2017. URL: http://arxiv.org/
abs/1709.05182.

5 Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and com-
pleteness I: basic results. SIAM J. Comput., 24(4):873–921, 1995. doi:10.1137/
S0097539792228228.

6 Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On
the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci.,
410(1):53–61, 2009. doi:10.1016/j.tcs.2008.09.065.

7 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.

8 Sariel Har-Peled. Being fat and friendly is not enough. arXiv preprint arXiv:0908.2369,
2009.

9 Teresa W. Haynes, Stephen T. Hedetniemi, and Peter J. Slater. Domination in Graphs:
Advanced Topics. Pure and Applied Mathematics. Marcel Dekker, Inc., 1998.

10 Dániel Marx. Parameterized complexity of independence and domination on geometric
graphs. In Hans L. Bodlaender and Michael A. Langston, editors, Parameterized and
Exact Computation, Second International Workshop, IWPEC 2006, Zürich, Switzerland,
September 13-15, 2006, Proceedings, volume 4169 of Lecture Notes in Computer Science,
pages 154–165. Springer, 2006. doi:10.1007/11847250_14.

11 Dániel Marx and Michał Pilipczuk. Optimal parameterized algorithms for planar facility
location problems using Voronoi diagrams. arXiv preprint arXiv:1504.05476, 2015.

12 Venkatesh Raman and Saket Saurabh. Short cycles make W -hard problems hard: FPT
algorithms for W -hard problems in graphs with no short cycles. Algorithmica, 52(2):203–
225, 2008. doi:10.1007/s00453-007-9148-9.

http://dx.doi.org/10.1137/0213054
http://dx.doi.org/10.1137/S0097539792238431
http://dx.doi.org/10.1137/S0097539792238431
http://arxiv.org/abs/1709.05182
http://arxiv.org/abs/1709.05182
http://dx.doi.org/10.1137/S0097539792228228
http://dx.doi.org/10.1137/S0097539792228228
http://dx.doi.org/10.1016/j.tcs.2008.09.065
http://dx.doi.org/10.1007/3-540-29953-X
http://dx.doi.org/10.1007/11847250_14
http://dx.doi.org/10.1007/s00453-007-9148-9

Tight Conditional Lower Bounds for Longest
Common Increasing Subsequence∗

Lech Duraj†1, Marvin Künnemann2, and Adam Polak‡3

1 Theoretical Computer Science, Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland
duraj@tcs.uj.edu.pl

2 Max Planck Institute for Informatics, Saarland Informatics Campus,
Saarbrücken, Germany
marvin@mpi-inf.mpg.de

3 Theoretical Computer Science, Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland
polak@tcs.uj.edu.pl

Abstract
We consider the canonical generalization of the well-studied Longest Increasing Subsequence
problem to multiple sequences, called k-LCIS: Given k integer sequences X1, . . . , Xk of length at
most n, the task is to determine the length of the longest common subsequence of X1, . . . , Xk

that is also strictly increasing. Especially for the case of k = 2 (called LCIS for short), several
algorithms have been proposed that require quadratic time in the worst case.

Assuming the Strong Exponential Time Hypothesis (SETH), we prove a tight lower bound,
specifically, that no algorithm solves LCIS in (strongly) subquadratic time. Interestingly, the
proof makes no use of normalization tricks common to hardness proofs for similar problems such
as LCS. We further strengthen this lower bound to rule out O

(
(nL)1−ε) time algorithms for

LCIS, where L denotes the solution size, and to rule out O
(
nk−ε

)
time algorithms for k-LCIS.

We obtain the same conditional lower bounds for the related Longest Common Weakly Increasing
Subsequence problem.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases fine-grained complexity, combinatorial pattern matching, sequence align-
ments, parameterized complexity, SETH

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.15

1 Introduction

The longest common subsequence problem (LCS) and its variants are computational primitives
with a variety of applications, which includes, e.g., uses as similarity measures for spelling
correction [36, 42] or DNA sequence comparison [38, 5], as well as determining the differences
of text files as in the UNIX diff utility [27]. LCS shares characteristics of both an easy and
a hard problem: (Easy) A simple and elegant dynamic-programming algorithm computes an
LCS of two length-n sequences in time O

(
n2) [42], and in many practical settings, certain

properties of typical input sequences can be exploited to obtain faster, “tailored” solutions

∗ The full version of this paper is available at: http://arxiv.org/abs/1709.10075.
† Partially supported by Polish National Science Center grant 2016/21/B/ST6/02165.
‡ Partially supported by Polish Ministry of Science and Higher Education program Diamentowy Grant.

© Lech Duraj, Marvin Künnemann, and Adam Polak;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 15; pp. 15:1–15:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.15
http://arxiv.org/abs/1709.10075
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 Tight Conditional Lower Bounds for Longest Common Increasing Subsequence

(e.g., [26, 28, 7, 37]; see also [13] for a survey). (Hard) At the same time, no polynomial
improvements over the classical solution are known, thus exact computation may become
infeasible for very long general input sequences. The research community has sought for a
resolution of the question “Do subquadratic algorithms for LCS exist?” already shortly after
the formalization of the problem [20, 4].

Recently, an answer conditional on the Strong Exponential Time Hypothesis (SETH;
see Section 2 for a definition) could be obtained: Based on a line of research relating the
satisfiability problem to quadratic-time problems [43, 40, 14, 3] and following a breakthrough
result for Edit Distance [9], it has been shown that unless SETH fails, there is no (strongly)
subquadratic-time algorithm for LCS [1, 15]. Subsequent work [2] strengthens these lower
bounds to hold already under weaker assumptions and even provides surprising consequences
of sufficiently strong polylogarithmic improvements.

Due to its popularity and wide range of applications, several variants of LCS have been
proposed. This includes the heaviest common subsequence (HCS) [31], which introduces
weights to the problem, as well as notions that constrain the structure of the solution,
such as the longest common increasing subsequence (LCIS) [45], LCSk [12], constrained
LCS [41, 19, 8], restricted LCS [25], and many other variants (see, e.g., [18, 6, 32]). Most
of these variants are (at least loosely) motivated by biological sequence comparison tasks.
To the best of our knowledge, in the above list, LCIS is the only LCS variant for which (1)
the best known algorithms run in quadratic time in the worst case and (2) its definition
does not include LCS as a special case (for such generalizations of LCS, the quadratic-time
SETH hardness of LCS [1, 15] would transfer immediately). As such, it is open to determine
whether there are (strongly) subquadratic algorithms for LCIS or whether such algorithms
can be ruled out under SETH. The starting point of our work is to settle this question.

1.1 Longest Common Increasing Subsequence (LCIS)
The Longest Common Increasing Subsequence problem on k sequences (k-LCIS) is defined
as follows: Given integer sequences X1, . . . , Xk of length at most n, determine the length
of the longest sequence Z such that Z is a strictly increasing sequence of integers and
Z is a subsequence of each Xi, i ∈ {1, . . . , k}. For k = 1, we obtain the well-studied
longest increasing subsequence problem (LIS; we refer to [21] for an overview), which has
an O (n logn) time solution and a matching lower bound in the decision tree model [24].
The extension to k = 2, denoted simply as LCIS, has been proposed by Yang, Huang, and
Chao [45], partially motivated as a generalization of LIS and by potential applications in
bioinformatics. They obtained an O

(
n2) time algorithm, leaving open the natural question

whether there exists a way to extend the near-linear time solution for LIS to a near-linear
time solution for multiple sequences.

Interestingly, already a classic connection between LCS and LIS combined with a recent
conditional lower bound of Abboud, Backurs and Vassilevska Williams [1] yields a partial
negative answer assuming SETH.
I Observation 1 (Folklore reduction, implicit in [28], explicit in [31]). After O

(
kn2) time

preprocessing, we can solve k-LCS by a single call to (k − 1)-LCIS on sequences of length at
most n2.
Note that by the above reduction, an O

(
n

3
2−ε
)
time LCIS algorithm would give an O

(
n3−2ε)

time algorithm for 3-LCS, which would refute SETH by a result of Abboud et al. [1].

I Corollary 2. Unless SETH fails, there is no O
(
n

3
2−ε
)
time algorithm for LCIS for any

constant ε > 0.

L. Duraj, M. Künnemann, and A. Polak 15:3

While this rules out near-linear time algorithms, still an unsatisfying large polynomial gap
between best upper and conditional lower bounds persists.

1.2 Our Results
Our first result is a tight SETH-based lower bound for LCIS.

I Theorem 3. Unless SETH fails, there is no O
(
n2−ε) time algorithm for LCIS for any

constant ε > 0.

We extend our main result in several directions.

1.2.1 Parameterized Complexity I: Solution Size
Subsequent work [17, 34] improved over Yang et al.’s algorithm when certain input parameters
are small. Here, we focus particularly on the solution size, i.e., the length L of the LCIS.
Kutz et al. [34] provided an algorithm running in time O (nL log logn+ n logn). If L is small
compared to its worst-case upper bound of n, say L = n

1
2±o(1), this algorithm runs in strongly

subquadratic time. Interestingly, exactly for this case, the reduction from 3-LCS to LCIS of
Observation 1 already yields a matching SETH-based lower bound of (Ln)1−o(1) = n

3
2−o(1).

However, for smaller L, this reduction yields no lower bound at all and only a non-matching
lower bound for larger L. We remedy this situation by the following result.1

I Theorem 4. Unless SETH fails, there is no O
(
(nL)1−ε) time algorithm for LCIS for any

constant ε > 0. This even holds restricted to instances with L = nγ±o(1), for arbitrarily
chosen 0 < γ 6 1.

1.2.2 Parameterized Complexity II: k-LCIS
For constant k > 3, we can solve k-LCIS in O

(
nkpolylog(n)

)
time [17, 34], or even O

(
nk
)

time (see the appendix in the full version). While it is known that k-LCS cannot be computed
in time O

(
nk−ε

)
for any constant ε > 0, k > 2 unless SETH fails [1], this does not directly

transfer to k-LCIS, since the reduction in Observation 1 is not tight. However, by extending
our main construction, we can prove the analogous result.

I Theorem 5. Unless SETH fails, there is no O
(
nk−ε

)
time algorithm for k-LCIS for any

constant k > 3 and ε > 0.

1.2.3 Longest Common Weakly Increasing Subsequence (LCWIS)
We consider a closely related variant of LCIS called the Longest Common Weakly Increasing
Subsequence (k-LCWIS): Here, given integer sequences X1, . . . , Xk of length at most n, the
task is to determine the longest weakly increasing (i.e. non-decreasing) integer sequence
Z that is a common subsequence of X1, . . . , Xk. Again, we write LCWIS as a shorthand
for 2-LCWIS. Note that the seemingly small change in the notion of increasing sequence
has a major impact on algorithmic and hardness results: Any instance of LCIS in which
the input sequences are defined over a small-sized alphabet Σ ⊆ Z, say |Σ| = O

(
n1/2),

can be solved in strongly subquadratic time O (nL logn) = O
(
n3/2 logn

)
[34], by using the

fact that L 6 |Σ|. In contrast, LCWIS is quadratic-time SETH hard already over slightly

1 We mention in passing that a systematic study of the complexity of LCS in terms of such input
parameters has been performed recently in [16].

IPEC 2017

15:4 Tight Conditional Lower Bounds for Longest Common Increasing Subsequence

superlogarithmic-sized alphabets [39]. We give a substantially different proof for this fact
and generalize it to k-LCWIS.

I Theorem 6. Unless SETH fails, there is no O
(
nk−ε

)
time algorithm for k-LCWIS for any

constant k > 3 and ε > 0. This even holds restricted to instances defined over an alphabet of
size |Σ| 6 f(n) logn for any function f(n) = ω(1) growing arbitrarily slowly.

1.3 Discussion, Outline and Technical Contributions
Apart from an interest in LCIS and its close connection to LCS, our work is also motivated
by an interest in the optimality of dynamic programming (DP) algorithms2. Notably, many
conditional lower bounds in P target problems with natural DP algorithms that are proven
to be near-optimal under some plausible assumption (see, e.g., [14, 3, 9, 10, 1, 15, 11, 22, 33]
and [44] for an introduction to the field). Even if we restrict our attention to problems
that find optimal sequence alignments under some restrictions, such as LCS, Edit Distance
and LCIS, the currently known hardness proofs differ significantly, despite seemingly small
differences between the problem definitions. Ideally, we would like to classify the properties
of a DP formulation which allow for matching conditional lower bounds.

One step in this direction is given by the alignment gadget framework [15]. Exploiting
normalization tricks, this framework gives an abstract property of sequence similarity measures
to allow for SETH-based quadratic lower bounds. Unfortunately, as it turns out, we cannot
directly transfer the alignment gadget hardness proof for LCS to LCIS – some indication for
this difficulty is already given by the fact that LCIS can be solved in strongly subquadratic
time over sublinear-sized alphabets [34], while the LCS hardness proof already applies
to binary alphabets. By collecting gadgetry needed to overcome such difficulties (that
we elaborate on below), we hope to provide further tools to generalize more and more
quadratic-time lower bounds based on SETH.

1.3.1 Technical Challenges
The known conditional lower bounds for global alignment problems such as LCS and
Edit Distance work as follows. The reductions start from the quadratic-time SETH-hard
Orthogonal Vectors problem (OV), that asks to determine, given two sets of (0, 1)-vectors
U = {u0, . . . , un−1},V = {v0, . . . , vn−1} ⊆ {0, 1}d over d = no(1) dimensions, whether there
is a pair i, j such that ui and vj are orthogonal, i.e., whose inner product (ui · vj) :=∑d−1
k=0 ui[k] · vj [k] is 0 (over the integers). Each vector ui and vj is represented by a

(normalized) vector gadget VGx(ui) and VGy(vj), respectively. Roughly speaking, these
gadgets are combined to sequences X and Y such that each candidate for an optimal
alignment of X and Y involves locally optimal alignments between n pairs VGx(ui),VGy(vj)
– the optimal alignment exceeds a certain threshold if and only if there is an orthogonal pair
ui, vj .

An analogous approach does not work for LCIS: Let VGx(ui) be defined over an alphabet
Σ and VGx(ui′) over an alphabet Σ′. If Σ and Σ′ overlap, then VGx(ui) and VGx(ui′) cannot
both be aligned in an optimal alignment without interference with each other. On the other
hand, if Σ and Σ′ are disjoint, then each vector vj should have its corresponding vector
gadget V Gy(vj) defined over both Σ and Σ′ to enable to align VGx(ui) with VGy(vj) as well
as VGx(ui′) with VGy(vj). The latter option drastically increases the size of vector gadgets.

2 We refer to [46] for a simple quadratic-time DP formulation for LCIS.

L. Duraj, M. Künnemann, and A. Polak 15:5

Thus, we must define all vector gadgets over a common alphabet Σ and make sure that only
a single pair VGx(ui),VGy(vj) is aligned in an optimal alignment (in contrast with n pairs
aligned in the previous reductions for LCS and Edit Distance).

1.3.2 Technical Contributions and Proof Outline
Fortunately, a surprisingly simple approach works: As a key tool, we provide separator
sequences α0 . . . αn−1 and β0 . . . βn−1 with the following properties: (1) for every i, j ∈
{0, . . . , n− 1} the LCIS of α0 . . . αi and β0 . . . βj has a length of f(i+ j), where f is a linear
function, and (2)

∑
i |αi| and

∑
j |βj | are bounded by n1+o(1). Note that existence of such a

gadget is somewhat unintuitive: condition (1) for i = 0 and j = n− 1 requires |α0| = Ω(n),
yet still the total length

∑
i |αi| must not exceed the length of |α0| significantly. Indeed, we

achieve this by a careful inductive construction that generates such sequences with heavily
varying block sizes |αi| and |βj |.

We apply these separator sequences as follows. We first define simple vector gadgets
VGx(ui),VGy(vj) over an alphabet Σ such that the length of an LCIS of VGx(ui) and
VGy(vj) is d− (ui ·vj). Then we construct the separator sequences as above over an alphabet
Σ< whose elements are strictly smaller than all elements in Σ. Furthermore, we create
analogous separator sequences α′0 . . . α′n−1 and β′0 . . . β′n−1 which satisfy a property like (1)
for all suffixes instead of prefixes, using an alphabet Σ> whose elements are strictly larger
than all elements in Σ. Now, we define

X = α0VGx(u0)α′0 . . . αn−1VGx(un−1)α′n−1,

Y = β0VGy(v0)β′0 . . . βn−1VGy(vn−1)β′n−1.

As we will show in Section 3, the length of an LCIS of X and Y is C −mini,j(ui · vj) for
some constant C depending only on n and d.

In contrast to previous such OV-based lower bounds, we use heavily varying separators
(paddings) between vector gadgets.

1.4 Paper organization
After setting up conventions and introducing our hardness assumptions in Section 2, we give
the main construction, i.e., the hardness of LCIS in Section 3. The proofs of Theorems 4, 5
and 6 can be found in the full version. We conclude with some open problems in Section 4.

2 Preliminaries

As a convention, we use capital or Greek letters to denote sequences over integers. Let X,Y be
integer sequences. We write |X| for the length of X, X[k] for the k-th element in the sequence
X (k ∈ {0, . . . , |X| − 1}), and X ◦ Y = XY for the concatenation of X and Y . We say that
Y is a subsequence of X if there exist indices 0 6 i1 < i2 < · · · < i|Y | 6 |X| − 1 such that
X[ik] = Y [k] for all k ∈ {0, . . . , |Y | − 1}. Given any number of sequences X1, . . . , Xk, we say
that Y is a common subsequence of X1, . . . , Xk if Y is a subsequence of each Xi, i ∈ {1, . . . , k}.
X is called strictly increasing (or weakly increasing) if X[0] < X[1] < · · · < X[|X| − 1]
(or X[0] 6 X[1] 6 · · · 6 X[|X| − 1]). For any k sequences X1, . . . , Xk, we denote by
lcis(X1, . . . , Xk) the length of their longest common subsequence that is strictly increasing.

All of our lower bounds hold assuming the Strong Exponential Time Hypothesis (SETH),
introduced by Impagliazzo and Paturi [29, 30]. It essentially states that no exponential
speed-up over exhaustive search is possible for the CNF satisfiability problem.

IPEC 2017

15:6 Tight Conditional Lower Bounds for Longest Common Increasing Subsequence

I Hypothesis 7 (Strong Exponential Time Hypothesis (SETH)). There is no ε > 0 such that
for all d > 3 there is an O

(
2(1−ε)n) time algorithm for d-SAT.

This hypothesis implies tight hardness of the k-Orthogonal Vectors problem (k-OV),
which will be the starting point of our reductions: Given k sets U1, . . . ,Uk ⊆ {0, 1}d, each
with |Ui| = n vectors over d = no(1) dimensions, determine whether there is a k-tuple
(u1, . . . , uk) ∈ U1 × · · · × Uk such that

∑d−1
`=0

∏k
i=1 ui[`] = 0. By exhaustive enumeration, it

can be solved in time O
(
nkd

)
= nk+o(1). The following conjecture is implied by SETH by

the well-known split-and-list technique of Williams [43] (and the sparsification lemma [30]).

I Hypothesis 8 (k-OV conjecture). Let k > 2. There is no O
(
nk−ε

)
time algorithm for

k-OV, with d = ω(logn), for any constant ε > 0.

For the special case of k = 2, which we simply denote by OV, we obtain the following
weaker conjecture.

I Hypothesis 9 (OV conjecture). There is no O
(
n2−ε) time algorithm for OV, with d =

ω(logn), for any constant ε > 0. Equivalently, even restricted to instances with |U1| = n and
|U2| = nγ , 0 < γ 6 1, there is no O

(
n1+γ−ε) time algorithm for OV, with d = ω(logn), for

any constant ε > 0.

A proof of the folklore equivalence of the statements for equal and unequal set sizes can
be found, e.g., in [15].

3 Main Construction: Hardness of LCIS

In this section, we prove quadratic-time SETH hardness of LCIS, i.e., prove Theorem 3. We
first introduce an inflation operation, which we then use to construct our separator sequences.
After defining simple vector gadgets, we show how to embed an Orthogonal Vectors instance
using our vector gadgets and separator sequences.

3.1 Inflation
We begin by introducing the inflation operation, which simulates weighing the sequences.

I Definition 10. For a sequence A = 〈a0, a1, . . . , an−1〉 of integers we define:

inflate(A) = 〈2a0 − 1, 2a0, 2a1 − 1, 2a1, . . . , 2an−1 − 1, 2an−1〉 .

I Lemma 11. For any two sequences A and B, lcis(inflate(A), inflate(B)) = 2 · lcis(A,B).

Proof. Let C be the longest common increasing subsequence of A and B. Observe that
inflate(C) is a common increasing subsequence of inflate(A) and inflate(B) of length 2 · |C|,
thus lcis(inflate(A), inflate(B)) > 2 · lcis(A,B).

Conversely, let Ā denote inflate(A) and B̄ denote inflate(B). Let C̄ be the longest
common increasing subsequence of Ā and B̄. If we divide all elements of C̄ by 2 and
round up to the closest integer, we end up with a weakly increasing sequence. Now, if
we remove duplicate elements to make this sequence strictly increasing, we obtain C, a
common increasing subsequence of A and B. At most 2 distinct elements may become equal
after division by 2 and rounding, therefore C contains at least

⌈
lcis(Ā, B̄)/2

⌉
elements, so

2 · lcis(A,B) > lcis(Ā, B̄). This completes the proof. J

L. Duraj, M. Künnemann, and A. Polak 15:7

1 2 3 4 5 6 11 12 7 8 9 1011 13 11 1211 13

tail gadget︷ ︸︸ ︷inflate(α0
1)︷ ︸︸ ︷

1 2

α0
1

3 4 5

α1
1

inflate(α1
1)︷ ︸︸ ︷ tail gadget︷ ︸︸ ︷

α0
2 α1

2 α2
2 α3

2

1

inflate(α0
0)︷ ︸︸ ︷ tail gadget︷ ︸︸ ︷

α0
0

A1

A2

A0

1

β0
0

B0 1 2

β0
1

4 3 5

β1
1

inflate(β0
0)︷ ︸︸ ︷ tail gadget︷ ︸︸ ︷

B1

1 2 3 4 7 8 11 11 5 6 9 1012 13 11 1112 13

tail gadget︷ ︸︸ ︷inflate(β0
1)︷ ︸︸ ︷ inflate(β1

1)︷ ︸︸ ︷ tail gadget︷ ︸︸ ︷
β0

2 β1
2 β2

2 β3
2

B2

x x+ 2
x+ 1

x+ 1

· · · 2sk + 2 2sk + 1 2sk + 3

· · · 2sk + 1 2sk + 2 2sk + 3︸ ︷︷ ︸
β

2j+1
k+1

Ak+1

Bk+1

lcis

︸ ︷︷ ︸
β

2j
k+1

α2i+1
k+1︷ ︸︸ ︷α2i

k+1︷ ︸︸ ︷

x = 2i + 2j + 2k+1

Figure 1 Initial steps of inductive construction of separator sequences (left), and intuition behind
tail gadgets (right).

3.2 Separator sequences
Our goal is to construct two sequences A and B which can be split into n blocks, i.e.
A = α0α1 . . . αn−1 and B = β0β1 . . . βn−1, such that the length of the longest common
increasing subsequence of the first i blocks of A and the first j blocks of B equals i+ j, up to
an additive constant. We call A and B separator sequences, and use them later to separate
vector gadgets in order to make sure that only one pair of gadgets may interact with each
other at the same time.

We construct the separator sequences inductively. For every k ∈ N, the sequences
Ak and Bk are concatenations of 2k blocks (of varying sizes), Ak = α0

kα
1
k . . . α

2k−1
k and

Bk = β0
kβ

1
k . . . β

2k−1
k . Let sk denote the largest element of both sequences. As we will soon

observe, sk = 2k+2 − 3.
The construction works as follows: for k = 0, we can simply set A0 and B0 as one-

element sequences 〈1〉. We then construct Ak+1 and Bk+1 inductively from Ak and Bk
in two steps. First, we inflate both Ak and Bk, then after each (now inflated) block
we insert 3-element sequences, called tail gadgets, 〈2sk + 2, 2sk + 1, 2sk + 3〉 for Ak+1 and
〈2sk + 1, 2sk + 2, 2sk + 3〉 for Bk+1. Formally, we describe the construction by defining
blocks of the new sequences. For i ∈ {0, 1, . . . , 2k − 1},

α2i
k+1 = inflate(αik) ◦ 〈2sk + 2〉 , α2i+1

k+1 = 〈2sk + 1, 2sk + 3〉 ,
β2i
k+1 = inflate(βik) ◦ 〈2sk + 1〉 , β2i+1

k+1 = 〈2sk + 2, 2sk + 3〉 .

Note that the symbols appearing in tail gadgets do not appear in the inflated sequences.
The largest element of both new sequences sk+1 equals 2sk + 3, and solving the recurrence
gives indeed sk = 2k+2 − 3.

Now, let us prove two useful properties of the separator sequences.

I Lemma 12. |Ak| = |Bk| =
(3

2k + 1
)
· 2k = O

(
k2k
)
.

Proof. Observe that |Ak+1| = 2|Ak|+ 3 · 2k. Indeed, to obtain Ak+1 first we double the size
of Ak and then add 3 new elements for each of the 2k blocks of Ak. Solving the recurrence
completes the proof. The same reasoning applies to Bk. J

IPEC 2017

15:8 Tight Conditional Lower Bounds for Longest Common Increasing Subsequence

I Lemma 13. For every i, j ∈
{

0, 1, . . . , 2k − 1
}
, lcis(α0

k . . . α
i
k, β

0
k . . . β

j
k) = i+ j + 2k.

Proof. The proof is by induction on k. Assume the statement is true for k and let us prove
it for k + 1.

The “>” direction. First, consider the case when both i and j are even. Ob-
serve that inflate(α0

k . . . α
i/2
k) and inflate(β0

k . . . β
j/2
k) are subsequences of α0

k+1 . . . α
i
k+1 and

β0
k+1 . . . β

j
k+1, respectively. Thus, using the induction hypothesis and inflation properties,

lcis(α0
k+1 . . . α

i
k+1, β0

k+1 . . . β
j
k+1) > lcis(inflate(α0

k . . . α
i/2
k), inflate(β0

k . . . β
j/2
k)) =

= 2 · lcis(α0
k . . . α

i/2
k , β0

k . . . β
j/2
k) = 2 · (i/2 + j/2 + 2k) = i+ j + 2k+1.

If i is odd and j is even, refer to the previous case to get a common increasing subsequence
of α0

k+1 . . . α
i−1
k+1 and β0

k+1 . . . β
j
k+1 of length i− 1 + j + 2k+1 consisting only of elements less

than or equal to 2sk, and append the element 2sk + 1 to the end of it. Analogously, for i
even and j odd, take such an LCIS of α0

k+1 . . . α
i
k+1 and β0

k+1 . . . β
j−1
k+1, and append 2sk + 2.

Finally, for both i and j odd, take an LCIS of α0
k+1 . . . α

i−1
k+1 and β0

k+1 . . . β
j−1
k+1, and append

2sk + 1 and 2sk + 3.
The “6” direction. We proceed by induction on i + j. Fix i and j, and let L be a

longest common increasing subsequence of α0
k+1 . . . α

i
k+1 and β0

k+1 . . . β
j
k+1.

If the last element of L is less than or equal to 2sk, L is in fact a common increasing sub-
sequence of inflate(α0

k . . . α
bi/2c
k) and inflate(β0

k . . . β
bj/2c
k), thus, by the induction hypothesis

and inflation properties, |L| 6 2 · (bi/2c+ bj/2c+ 2k) 6 i+ j + 2k+1.
The remaining case is when the last element of L is greater than 2sk. In this case, consider

the second-to-last element of L. It must belong to some blocks αi′k+1 and βj
′

k+1 for i′ 6 i and
j′ 6 j, and we claim that i = i′ and j = j′ cannot hold simultaneously: by construction of
separator sequences, if blocks αik+1 and βjk+1 have a common element larger than 2sk, then
it is the only common element of these two blocks. Therefore, it cannot be the case that
both i = i′ and j = j′, because the last two elements of L would then be located in αik+1
and βjk+1. As a consequence, i′ + j′ < i+ j, which lets us apply the induction hypothesis
to reason that the prefix of L omitting its last element is of length at most i′ + j′ + 2k+1.
Therefore, |L| 6 1 + i′ + j′ + 2k+1 6 i+ j + 2k+1, which completes the proof. J

Observe that if we reverse the sequences Ak and Bk along with changing all elements
to their negations, i.e. x to −x, we obtain sequences Âk and B̂k such that Âk splits into 2k
blocks α̂0

k . . . α̂
2k−1
k , B̂k splits into 2k blocks β̂0

k . . . β̂
2k−1
k , and

lcis(α̂ik . . . α̂2k−1
k , β̂jk . . . β̂

2k−1
k) = 2 · (2k − 1)− i− j + 2k. (1)

Finally, observe that we can add any constant to all elements of the sequences Ak and Bk
(as well as Âk and B̂k) without changing the property stated in Lemma 13 (and its analogue
for Âk and B̂k, i.e. Equation (1)).

3.3 Vector gadgets

Let U = {u0, . . . , un−1} and V = {v0, . . . , vn−1} be two sets of d-dimensional (0, 1)-vectors.

L. Duraj, M. Künnemann, and A. Polak 15:9

For i ∈ {0, 1, . . . , n − 1} let us construct the vector gadgets Ui and Vi as 2d-element
sequences, by defining, for every p ∈ {0, 1, . . . , d− 1},

(Ui[2p− 1], Ui[2p]) =
{

(2p− 1, 2p) if ui[p] = 0,
(2p− 1, 2p− 1) if ui[p] = 1,

(Vi[2p− 1], Vi[2p]) =
{

(2p, 2p− 1) if vi[p] = 0,
(2p, 2p) if vi[p] = 1.

Observe that at most one of the elements 2p− 1 and 2p may appear in the LCIS of Ui
and Vj , and it happens if and only if ui[p] and vj [p] are not both equal to one. Therefore,
lcis(Ui, Vj) = d − (ui · vj), and, in particular, lcis(Ui, Vj) = d if and only if ui and vj are
orthogonal.

3.4 Final construction
To put all the pieces together, we plug vector gadgets Ui and Vj into the separator sequences
from Section 3.2, obtaining two sequences whose LCIS depends on the minimal inner product
of vectors ui and vj . We provide a general construction of such sequences, which will be
useful for proving further results in the full version of the paper.

I Lemma 14. Let X0, X1, . . . , Xn−1, Y0, Y1, . . . , Yn−1 be integer sequences such that none
of them has an increasing subsequence longer than δ. Then there exist sequences X and Y of
length O (δ · n logn) +

∑
|Xi|+

∑
|Yj |, constructible in linear time, such that:

lcis(X,Y) = max
i,j

lcis(Xi, Yj) + C

for a constant C that only depends on n and δ and is O (nδ).

Proof. We can assume that n = 2k for some positive integer k, adding some dummy sequences
if necessary. Recall the sequences Ak, Bk, Âk and B̂k constructed in Section 3.2. Let
A,B, Â, B̂ be the sequences obtained from Ak, Bk, Âk, B̂k by applying inflation dlog2 δe times
(thus increasing their length by a factor of ` = 2dlog2 δe > δ). Each of these four sequences
splits into (now inflated) blocks, e.g. A = α0α1 . . . αn−1, where αi = inflatedlog2 δe(αik).

We subtract from A and B a constant large enough for all their elements to be smaller
than all elements of every Xi and Yj . Similarly, we add to A′ and B′ a constant large enough
for all their elements to be larger than all elements of every Xi and Yj . Now, we can construct
the sequences X and Y as follows:

X = α0X0α̂0α1X1α̂1 . . . αn−1Xn−1α̂n−1,

Y = β0Y0β̂0β1Y1β̂1 . . . βn−1Yn−1β̂n−1.

We claim that

lcis(X,Y) = ` · (4n− 2) +M , where M = max
i,j

lcis(Xi, Yj).

Let Xi and Yj be the pair of sequences achieving lcis(Xi, Yj) = M . Recall that
lcis(α0 . . . αi, β0 . . . βj) = ` · (i+ j + n), with all the elements of this common subsequence
preceding the elements of Xi and Yj in X and Y , respectively, and being smaller than
them. In the same way lcis(α̂i . . . α̂n−1, β̂j . . . β̂n−1) = ` · (2 · (n − 1) − (i + j) + n) with
all the elements of LCIS being greater and appearing later than those of Xi and Yj . By

IPEC 2017

15:10 Tight Conditional Lower Bounds for Longest Common Increasing Subsequence

concatenating these three sequences we obtain a common increasing subsequence of X and
Y of length ` · (4n− 2) +M .

We defer the simple remainder of the proof, i.e., proving lcis(X,Y) 6 ` · (4n− 2) +M to
the full version of the paper. J

Proof of Theorem 3. Let U = {u0, . . . , un−1}, V = {v0, . . . , vn−1} be two sets of binary
vectors in d dimensions. In Section 3.3 we constructed vector gadgets Ui and Vj , for
i, j ∈ {0, 1, . . . , n − 1}, such that lcis(Ui, Vj) = d − (ui · vj). To these sequences we apply
Lemma 14, with δ = 2d, obtaining sequences X and Y of length O (n lognpoly(d)) such that
lcis(X,Y) = C + d − mini,j(ui · vj) for a constant C. This reduction, combined with an
O
(
n2−ε) time algorithm for LCIS, would yield an O

(
n2−εpolylog(n)poly(d)

)
algorithm for

OV, refuting Hypothesis 9 and, in particular, SETH. J

4 Conclusion and Open Problems

We prove a tight quadratic lower bound for LCIS, ruling out strongly subquadratic-time al-
gorithms under SETH. It remains open whether LCIS admits mildly subquadratic algorithms,
such as the Masek-Paterson algorithm for LCS [35]. Furthermore, we give tight SETH-based
lower bounds for k-LCIS.

For the related variant LCWIS that considers weakly increasing sequences, strongly
subquadratic-time algorithms are ruled out under SETH for slightly superlogarithmic alphabet
sizes ([39] and Theorem 6). On the other hand, for binary and ternary alphabets, even
linear time algorithms exist [34, 23]. Can LCWIS be solved in time O

(
n2−f(|Σ|)) for some

decreasing function f that yields strongly subquadratic-time algorithms for any constant
alphabet size |Σ|?

Finally, we can compute a (1 + ε)-approximation of LCIS in O
(
n3/2ε−1/2polylog(n)

)
time by an easy observation (see the appendix in the full version). Can we improve upon this
running time or give a matching conditional lower bound? Note that a positive resolution
seems difficult by the reduction in Observation 1: Any nα, α > 0, improvement over this
running time would yield a strongly subcubic (1 + ε)-approximation for 3-LCS, which seems
hard to achieve, given the difficulty to find strongly subquadratic (1 + ε)-approximation
algorithms for LCS.

References

1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Quadratic-time hard-
ness of LCS and other sequence similarity measures. In Proc. 56th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’15), pages 59–78, 2015.

2 Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Willi-
ams. Simulating branching programs with edit distance and friends or: A polylog shaved
is a lower bound made. In Proc. 48th Annual ACM Symposium on Symposium on Theory
of Computing (STOC’16), pages 375–388, 2016.

3 Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster
alignment of sequences. In Proc. of 41st International Colloquium on Automata, Languages,
and Programming (ICALP’14), pages 39–51, 2014.

4 Alfred V. Aho, Daniel S. Hirschberg, and Jeffrey D. Ullman. Bounds on the complexity of
the longest common subsequence problem. Journal of the ACM, 23(1):1–12, 1976.

5 Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman.
Basic local alignment search tool. Journal of Molecular Biology, 215(3):403–410, 1990.

L. Duraj, M. Künnemann, and A. Polak 15:11

6 Hsing-Yen Ann, Chang-Biau Yang, and Chiou-Ting Tseng. Efficient polynomial-time al-
gorithms for the constrained LCS problem with strings exclusion. Journal of Combinatorial
Optimization, 28(4):800–813, 2014.

7 Alberto Apostolico and Concettina Guerra. The longest common subsequence problem
revisited. Algorithmica, 2(1):316–336, 1987.

8 Abdullah N. Arslan and Ömer Egecioglu. Algorithms for the constrained longest com-
mon subsequence problems. International Journal of Foundations of Computer Science,
16(6):1099–1109, 2005.

9 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquad-
ratic time (unless SETH is false). In Proc. 47th Annual ACM Symposium on Theory of
Computing (STOC’15), pages 51–58, 2015.

10 Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match?
In Proc. 57th Annual Symposium on Foundations of Computer Science, (FOCS’16), pages
457–466, 2016.

11 Arturs Backurs and Christos Tzamos. Improving viterbi is hard: Better runtimes imply
faster clique algorithms. In Proc. 34th International Conference on Machine Learning
(ICML’17), 2017. To appear.

12 Gary Benson, Avivit Levy, S. Maimoni, D. Noifeld, and B. Riva Shalom. Lcsk: A refined
similarity measure. Theoretical Computer Science, 638:11–26, 2016.

13 Lasse Bergroth, Harri Hakonen, and Timo Raita. A survey of longest common subsequence
algorithms. In Proc. 7th International Symposium on String Processing and Information
Retrieval (SPIRE’00), pages 39–48, 2000.

14 Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly
subquadratic algorithms unless SETH fails. In Proc. 55th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’14), pages 661–670, 2014.

15 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Proc. 56th Annual IEEE Symposium on Founda-
tions of Compu ter Science (FOCS’15), pages 79–97, 2015.

16 Karl Bringmann and Marvin Künnemann. Multivariate fine-grained complexity of longest
common subsequence. In Proc. 29th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA’18), 2018. To appear.

17 Wun-Tat Chan, Yong Zhang, Stanley P. Y. Fung, Deshi Ye, and Hong Zhu. Efficient
algorithms for finding a longest common increasing subsequence. Journal of Combinatorial
Optimization, 13(3):277–288, 2007.

18 Yi-Ching Chen and Kun-Mao Chao. On the generalized constrained longest common sub-
sequence problems. Journal of Combinatorial Optimization, 21(3):383–392, 2011.

19 Francis Y. L. Chin, Alfredo De Santis, Anna Lisa Ferrara, N. L. Ho, and S. K. Kim. A
simple algorithm for the constrained sequence problems. Inf. Process. Lett., 90(4):175–179,
2004. doi:10.1016/j.ipl.2004.02.008.

20 Vaclav Chvatal, David A. Klarner, and Donald E. Knuth. Selected combinatorial research
problems. Technical Report CS-TR-72-292, Stanford University, Department of Computer
Science, 6 1972.

21 Maxime Crochemore and Ely Porat. Fast computation of a longest increasing subsequence
and application. Information & Computation, 208(9):1054–1059, 2010.

22 Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems
equivalent to (min,+)-convolution. In Proc. 44th International Colloquium on Automata,
Languages, and Programming (ICALP’17), pages 22:1–22:15, 2017.

23 Lech Duraj. A linear algorithm for 3-letter longest common weakly increasing subsequence.
Information Processing Letters, 113(3):94–99, 2013.

IPEC 2017

http://dx.doi.org/10.1016/j.ipl.2004.02.008

15:12 Tight Conditional Lower Bounds for Longest Common Increasing Subsequence

24 Michael L. Fredman. On computing the length of longest increasing subsequences. Discrete
Mathematics, 11(1):29–35, 1975.

25 Zvi Gotthilf, Danny Hermelin, Gad M. Landau, and Moshe Lewenstein. Restricted LCS.
In Proc. 17th International Symposium on String Processing and Information Retrieval
(SPIRE’10), pages 250–257, 2010.

26 Daniel S. Hirschberg. Algorithms for the longest common subsequence problem. Journal
of the ACM, 24(4):664–675, 1977.

27 J. W. Hunt and M. D. McIlroy. An algorithm for differential file comparison. Computing
Science Technical Report 41, Bell Laboratories, 1975.

28 James W. Hunt and Thomas G. Szymanski. A fast algorithm for computing longest sub-
sequences. Communications of the ACM, 20(5):350–353, 1977.

29 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001.

30 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

31 Guy Jacobson and Kiem-Phong Vo. Heaviest increasing/common subsequence problems.
In Combinatorial Pattern Matching, Third Annual Symposium, CPM 92, Tucson, Arizona,
USA, April 29 - May 1, 1992, Proceedings, pages 52–66, 1992.

32 Tao Jiang, Guohui Lin, Bin Ma, and Kaizhong Zhang. The longest common subsequence
problem for arc-annotated sequences. Journal of Discrete Algorithms, 2(2):257–270, 2004.

33 Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the Fine-grained Com-
plexity of One-Dimensional Dynamic Programming. In Proc. 44th International Colloquium
on Automata, Languages, and Programming (ICALP’17), pages 21:1–21:15, 2017.

34 Martin Kutz, Gerth Stølting Brodal, Kanela Kaligosi, and Irit Katriel. Faster algorithms
for computing longest common increasing subsequences. Journal of Discrete Algorithms,
9(4):314–325, 2011.

35 William J. Masek and Mike Paterson. A faster algorithm computing string edit distances.
Journal of Computer and System Sciences, 20(1):18–31, 1980.

36 Howard L. Morgan. Spelling correction in systems programs. Communications of the ACM,
13(2):90–94, 1970.

37 Eugene W. Myers. An O(ND) difference algorithm and its variations. Algorithmica,
1(2):251–266, 1986.

38 Saul B. Needleman and Christian D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,
48(3):443–453, 1970.

39 Adam Polak. Why is it hard to beat O(n2) for longest common weakly increasing sub-
sequence? CoRR, abs/1703.01143, 2017.

40 Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the
diameter and radius of sparse graphs. In Proc. 45th Annual ACM Symposium on Symposium
on Theory of Computing (STOC’13), pages 515–524, 2013.

41 Yin-Te Tsai. The constrained longest common subsequence problem. Information Pro-
cessing Letters, 88(4):173–176, 2003.

42 Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. Journal
of the ACM, 21(1):168–173, 1974.

43 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoretical Computer Science, 348(2):357–365, 2005.

44 Virginia Vassilevska Williams. Hardness of easy problems: Basing hardness on popular
conjectures such as the strong exponential time hypothesis (invited talk). In Proc. 10th
International Symposium on Parameterized and Exact Computation (IPEC’15), pages 17–
29, 2015.

L. Duraj, M. Künnemann, and A. Polak 15:13

45 I-Hsuan Yang, Chien-Pin Huang, and Kun-Mao Chao. A fast algorithm for computing
a longest common increasing subsequence. Information Processing Letters, 93(5):249–253,
2005.

46 Daxin Zhu, Lei Wang, Tinran Wang, and Xiaodong Wang. A simple linear space algorithm
for computing a longest common increasing subsequence. CoRR, abs/1608.07002, 2016.

IPEC 2017

K-Best Solutions of MSO Problems on
Tree-Decomposable Graphs∗

David Eppstein†1 and Denis Kurz‡2

1 Computer Science Department, UC Irvine, USA
eppstein@uci.edu

2 Department of Computer Science, TU Dortmund, Germany
denis.kurz@tu-dortmund.de

Abstract
We show that, for any graph optimization problem in which the feasible solutions can be expressed
by a formula in monadic second-order logic describing sets of vertices or edges and in which the
goal is to minimize the sum of the weights in the selected sets, we can find the k best solution
values for n-vertex graphs of bounded treewidth in time O(n+k logn). In particular, this applies
to finding the k shortest simple paths between given vertices in directed graphs of bounded
treewidth, giving an exponential speedup in the per-path cost over previous algorithms.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases graph algorithm, k-best, monadic second-order logic, treewidth

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.16

1 Introduction

Finding multiple alternative routes between two vertices in a network, formalized as the
k shortest paths problem, has many applications including biological sequence alignment,
metabolic pathway reconstruction, hypothesis generation in natural language processing,
computer network routing, and vehicle routing [15]. It can be solved in constant time per
path, after near-linear preprocessing time [14]. However, for graphs with cycles, its paths
may have repeated vertices, which are often undesirable. A variant of the problem, the k
shortest simple paths problem, disallows these repetitions, but for the past 45 years there
have been no asymptotic improvements to an algorithm of Yen, which takes quadratic time
per path [23]. Indeed, Vassilevska Williams and Williams show that, at least for k = 2, no
substantial improvement to this algorithm is likely [22]. Even for undirected graphs, known
algorithms for k shortest simple paths take at least linear time per path [21], far from the
constant time per path for non-simple paths.

This situation suggests studying parameterized classes of graphs for which faster k-best
optimization algorithms are possible. In this paper we provide a first result of this type,
showing that the lengths of the k shortest simple paths can be found in logarithmic time per
path (exponentially faster than the polynomial per-path time of previous algorithms) for
graphs of bounded treewidth. Our results are based on general algorithmic metatheorems

∗ A full version of the paper is available at https://arxiv.org/abs/1703.02784.
† The research of David Eppstein was supported in part by NSF grants CCF-1228639, CCF-1618301, and

CCF-1616248.
‡ This research was performed in part during a visit of Denis Kurz to UC Irvine, supported by DFG GRK

1855 (DOTS).

© David Eppstein and Denis Kurz ;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 16; pp. 16:1–16:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.16
https://arxiv.org/abs/1703.02784
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 K-Best Solutions of MSO Problems on Tree-Decomposable Graphs

and in particular Courcelle’s theorem according to which decision and optimization problems
expressible in the monadic second-order logic of graphs (MSO) can be solved in linear time
on graphs of bounded treewidth. MSO is a form of logic in which the variables of a formula
represent vertices, edges, sets of vertices, and sets of edges of a graph, one can test set
membership and vertex–edge incidence, and variables can be existentially or universally
quantified. For instance the property that an edge set P represents a simple path from s to t
can be expressed in MSO as a formula

(∀v, e, f, g)
[(
I(v, e) ∧ e ∈ P ∧ I(v, f) ∧ f ∈ P ∧ I(v, g) ∧ g ∈ P

)
⇒
(
e = f ∨ e = g ∨ f = g

)]
∧ (∃e)

[
I(s, e) ∧ e ∈ P ∧ (∀f)

[(
I(s, f) ∧ f ∈ P)⇒ e = f

)]]
∧ (∃e)

[
I(t, e) ∧ e ∈ P ∧ (∀f)

[(
I(t, f) ∧ f ∈ P)⇒ e = f

)]]
∧ (∀S)

[
¬(∃v, e)

[
v ∈ S ∧ e ∈ P ∧ I(v, e)

]
∨ ¬(∃v, e)

[
¬(v ∈ S) ∧ e ∈ P ∧ I(v, e)

]
∨

(∃v, w, e)
[
v ∈ S ∧ ¬(w ∈ S) ∧ I(v, e) ∧ I(w, e)

]]
(where s, t, v and w are vertex variables, e, f , and g are edge variables, S is a vertex-set
variable, and I is the vertex–edge incidence predicate). This formula expresses the constraints
that each vertex is incident to at most two edges of P , s and t are each incident to exactly
one edge of P , and every partition of the vertices that is not crossed by P has P only on one
of its two sides.

Courcelle’s theorem translates MSO formulas to tree automata, allowing graphs of
bounded treewidth that satisfy the formula to be recognized in linear time by a bottom-up
dynamic programming algorithm that executes the tree automaton on a tree-decomposition
of the graph. Extensions of this method also solve optimization problems for MSO predicates
(formulas with one unbound set-variable) that seek the minimum weight vertex or edge set
obeying the predicate [3, 10]. For instance, it can find shortest simple paths on bounded-
treewidth graphs with negative edges and negative cycles, an NP-hard problem on arbitrary
graphs.

In this paper, we show that, for any MSO predicate, the weights of the k minimum-weight
sets satisfying the predicate can be found on graphs of bounded treewidth in logarithmic time
per set. In particular, using the formula given above, we can find the k shortest simple paths
in logarithmic time per path. Other previously-studied graph optimization problems to which
our method applies (with an exponential per-solution speedup) include finding the k smallest
spanning trees [16], the k best matchings [8], and (with a doubly exponential speedup) the
k best solutions to the traveling salesperson problem [11]. Although the example formula
above describes simple paths in undirected graphs, our method applies as well to directed
graphs whose underlying undirected graph has bounded treewidth.

To prove this we use a special tree-decomposition with bounded width, logarithmic depth,
and bounded degree. We translate the dynamic program for finding the minimum weight set
satisfying an MSO predicate into a fully persistent dynamic graph algorithm for the same
optimization problem, one that can report the minimum weight solution after modifying the
given graph by changing the weights of some of its edges or vertices. We apply this method
to find the second-best (rather than best) solution, and to detect a feature of the graph (a
vertex or edge) at which the best and second-best solution differ. By branching on this
feature we can recursively decompose the original problem into a hierarchy of subproblems
whose second-best solutions (together with the global best solution) include all of the k best

D. Eppstein and D. Kurz 16:3

solutions to the input problem. To find the k best solutions, we perform a best-first search
of this hierarchy.

For space reasons, we defer some proofs to the full version, online at arXiv:1703.02784.

2 Preliminaries

In this section, we establish most of our notation and definitions, and review algorithmic
components from previous research that we will use to establish our results.

We denote by [i] the set {1, . . . , i} for i ∈ N. The cardinality of a set M is denoted by
|M |, and its power set by 2M . For a function f : M → N , we write f(M ′) = {f(a) | a ∈M ′}
for M ′ ⊆M . For an n-element sequence S and i ∈ [n], Si denotes the i-th element of S.

Our algorithms assume a RAM model of computation in which addition and comparison
operations on input weights or sums of weights can be performed in constant time per
operation.

2.1 Binary heap of subproblems
We adopt the following technique for finding the k best solutions to a combinatorial optimiza-
tion problem [20, 15], which was first used by Gabow for the k smallest spanning trees [19].
We assume that the problem’s solutions can be represented as sets of edges or vertices in
a weighted graph, and that the goal is to minimize total weight. We form subproblems by
forcing certain edges or vertices to be included in the solution and preventing other edges or
vertices from being included; these constraints can be simulated without changing the graph
by changing some weights to large positive and negative numbers. We say that a subproblem
is feasible if it has a solution consistent with its constraints. If S is any subproblem, then we
may consider two solutions to S, its best solution (the one with minimum weight, subject to
the constraints) and its second-best solution (the one that differs from the best solution and
otherwise has the minimum possible weight), with ties broken in any consistent way. We say
that an edge or vertex is a pivot feature if it is present in the best solution but absent in the
second-best solution, or vice versa. If a subproblem has only one solution, we say that it is
uniquely solvable.

We then form a binary tree of feasible subproblems, as follows. The root of the tree
is the subproblem with no constraints (the one whose solutions are all solutions to the
given problem on the whole graph G). Then, for each subproblem S in the tree that is not
uniquely solvable, the two children of S are determined by choosing (arbitrarily) a pivot
feature of S, constraining that pivot feature to be included in the solutions for one child,
and constraining the same pivot feature to be excluded from the solutions for the other
child. These two children of S have solution sets that partition the solutions of S into two
nonempty subsets, one containing the best solution and the other containing the second-best
solution. A uniquely solvable subproblem in this tree of subproblems forms a leaf, with no
children.

Each solution of the input problem appears as second-best in exactly one subproblem
in this tree, except for the global best solution which is never second-best anywhere. The
tree is ordered as a binary min-heap: each subproblem’s second-best solution is better
than the second-best solutions of its children. Therefore, the k-best solutions of the input
problem can be listed by finding the best solution and then using a best-first search in the
tree of subproblems to find the k − 1 subproblems whose second-best solutions have the
smallest values. This search creates an active set consisting of the tree root, and then (for
k − 1 iterations) uses a priority queue to find the smallest second-best solution value in

IPEC 2017

https://arxiv.org/abs/1703.02784

16:4 K-Best Solutions of MSO Problems on Tree-Decomposable Graphs

the active set, outputs that solution, and replaces that node in the active set by its two
children. Alternatively, the added time from the priority queue can be avoided by using a
heap-selection algorithm of Frederickson [18] which runs in O(k) time, plus the time for O(k)
evaluations of subproblems.

Using this method, the main remaining task is to find the second-best solution values
and pivot features of each subproblem in this tree of subproblems, as efficiently as possible.

2.2 Path-copying persistence

We will develop a data structure that allows us to add a new constraint to a subproblem,
forming one of its child subproblems, and efficiently compute the new second-best solution
value of the new child subproblem. However, without additional techniques such a data
structure would allow us to follow only a single branch of the tree of subproblems. We use ideas
from persistent data structures, following Sarnak et al. [12], to extend these data structures
to ones that let us explore multiple branches of the tree of subproblems concurrently.

An ephemeral data structure is one that has only a single version, which is changed by
certain update operations and accessed but not changed by additional query operations. In
the corresponding fully persistent data structure, each operation takes an additional argument,
the version of the data structure, and operates on that version. Persistent queries return
the result of the query on that version, and do not change it. Persistent updates create and
return a new version of the data structure, in which the given change has been made to the
version given as an argument. The previous version is left intact, allowing future updates
and queries to it.

Path copying is a technique introduced by Sarnak et al. for making any tree-based
ephemeral data structure (such as a binary heap or binary search tree) fully persistent. The
underlying ephemeral data structure must form a tree of nodes, with each node pointing to
its children but without pointers to parents or other non-child nodes. Every operation in the
ephemeral data structure should be performed by starting at the tree root, following child
pointers to find additional nodes reachable by paths from the root, and then (in case of a
query) collecting information from those nodes or (for updates) changing or replacing some
of the reached nodes.

To make such a data structure fully persistent, we represent each version of the data
structure by the root of its tree. Persistent queries follow the same algorithm as ephemeral
queries, starting from the root node representing the desired version. When an ephemeral
update would change or replace some nodes, the persistent structure creates new nodes for
all of these changed or replaced nodes and all of their ancestors, without changing to the
existing nodes. In this way, the space and time of each persistent update are proportional to
the time for an ephemeral update.

Path-copying persistence was used in the k-shortest paths algorithm of Eppstein [14], to
construct certain persistent heap structures that represent sets of detours. Here, we apply
the same technique in a different way, to make persistent an ephemeral data structure for
second-best solutions. We will associate a version of the second-best solution data structure
with each subproblem in the binary tree of subproblems described in the previous section.
Then, when we expand a subproblem (finding its pivot feature and using that feature to
define two new child subproblems) the data structure versions of the two child subproblems
can be found by applying two different persistent updates to the version of their parent.

D. Eppstein and D. Kurz 16:5

2.3 Shallow tree decompositions
The data structure to which we will apply the path-copying persistence technique will be
based on a tree decomposition of the given graph. However, in order to make the path-copying
efficient, we need to use a special kind of tree decomposition, one with low depth.

A tree decomposition of a graph G = (V,E) is a pair (T = (U,F), bag), where T is a tree,
bag : U → 2V maps tree nodes to subsets of V (“bags”), each vertex belongs to a nonempty
collection of bags that induce a connected subtree of T , and for each edge at least one bag
contains both edge endpoints. The width of a tree decomposition is one less than the size
max{|bag(u)| | u ∈ U} of its largest bag. The treewidth of G is the smallest w such that
G has a tree decomposition of width w. For any fixed w, one can recognize the graphs of
treewidth at most w and compute a tree decomposition of optimal width for these graphs, in
linear time [6].

We define the depth of a tree decomposition to be the longest distance from a leaf to a
root node chosen to minimize this distance. A shallow tree decomposition of a graph G of
bounded treewidth w is a tree decomposition with width O(w) and depth O(log |G|) whose
tree is binary. Shallow tree decompositions always exist [5], and can be constructed by a
parallel algorithm whose sequential version takes linear time [7].

2.4 Hypergraph algebra
We adopt much of the following notation from Courcelle and Mosbah [10].

Let A be a ranked alphabet consisting of edge labels, and let τ : A→ N map labels to their
orders. A hypergraph G = (V,E, lab, vert, src) of order r consists of a set of vertices V and a
set of hyperedges E, an edge labeling function lab : E → A, a function vert : E → V ∗ that
maps edges to node sequences, and a sequence src of r source nodes. The order of a hyperedge
e ∈ E is the length |vert(e)| of its vertex sequence, and must match the order of its label:
τ(lab(e)) = |vert(e)|. A graph of order r is a hypergraph of order r with τ(lab(E)) = {2}, so
every hyperedge has order 2. Hyperedges of a graph may be called edges.

We define, for an edge label alphabet A, a hypergraph algebra with a possibly infinite set
of hypergraph operators and the following finite set of constants. The constant 0 denotes
the empty hypergraph of order 0. The constant 1 denotes the hypergraph of order 1 with
a single source vertex and no hyperedges. For each a ∈ A, the constant a denotes the
hypergraph of order τ(a) with node set {v1, . . . , vτ(a)}, a single hyperedge e with lab(e) = a

and vert(e) = (vi)i∈[τ(a)], and src = vert(e).
Let G be a hypergraph of order r and let G′ be a hypergraph of order r′. The hypergraph

algebra has the following operators. The (r + r′)-order hypergraph G ⊕r,r′ G′ consists of
the disjoint union of the vertex and edge sets of G and G′, and the concatenation of their
source sequences. For each i, j ∈ [r], θi,j,r(G) is the hypergraph of order r obtained from
G by replacing every occurence of srcj with srci in the source sequence of G and in every
vertex sequence of a hyperedge of G. This is equivalent to fusing srcj into srci. For a
mapping α : [p]→ [r], σα(G) is the hypergraph of order p obtained from G by replacing its
r-element source sequence src with the p-element sequence src′, with src′i = srcα(i). This
infinite family of operators can generate any hypergraph. For each family of hypergraphs
L that only contains hypergraphs of bounded treewidth and bounded order, a finite subset
of these operators generates a superset of L [2, 4, 9]. We denote by Gw a finite hypergraph
algebra as above that generates all r-order hypergraphs over a fixed label set of treewidth at
most w and r < R for some fixed but arbitrary R.

IPEC 2017

16:6 K-Best Solutions of MSO Problems on Tree-Decomposable Graphs

Let A be an alphabet of edge labels, and let G = (V,E, lab, vert, src) be a hypergraph over
A. A formula in counting monadic second-order logic (CMS formula) is a formula in monadic
second-order logic, extended by predicates Cardm,p(X) for m, p ∈ N, with X |= Cardm,p(X)
iff |X| ≡ m mod p, and by incidence predicates edga(e, v1, . . . , vτ(a)) for a ∈ A, with
(G, e, v1, . . . , vτ(a)) |= edga(e, v1, . . . , vτ(a)) iff lab(e) = a and vert(e) = (v1, . . . , vτ(a)). The
finite set Φh,q

A,R(W) consists of exactly one representative of every class of equivalent CMS
formulas for hypergraphs of order at most R over edge labels A on variables W whose depth
of nested quantification is at most h and p < q for all subformulas of the form Cardm,p(X).
Since h, q, A and W are fixed in most contexts, we use the short form ΦR = Φh,q

A,R(W).
We require variable alphabets W that include constants for all the source nodes of the
hypergraphs, i.e., {si | i ∈ [R]} ⊂ W and (G, v) |= (v = si) iff v = srci. Every other variable
X inW is assumed to be either a vertex set variable, denoted as type(X) = V , or a hyperedge
set variable, denoted as type(X) = E. This can be enforced by only considering formulas
that include subformulas ∀x : x ∈ X ⇒ x ∈ V if X is supposed to model a set of vertices,
and ∀x : x ∈ X ⇒ x ∈ E otherwise. Variables representing single elements can be emulated
by a subformula ∃x : ∀y : x ∈ X ∧ (y ∈ X ⇒ x = y).

Our algorithms work on parse trees of hypergraphs with respect to some fixed hypergraph
algebra Gw. A parse tree T = (U,F) is a directed rooted tree, with edges being directed
away from the root r. Leaves of T are associated with a constant of Gw; inner nodes are
associated with an operator of Gw. The hypergraph represented by T is the hypergraph
constant associated with r if r is a leaf. Otherwise, T represents the hypergraph obtained by
applying the operator associated with r to the hypergraphs represented by the parse subtrees
rooted in the children of r. For u ∈ U , the hypergraph represented by the parse subtree
of T rooted in u is denoted by G(u). Sometimes it is convenient to have exactly two child
nodes for each inner node of the parse tree. We can think of σα operators as having a second
operand that is always the empty hypergraph. Likewise, θi,j,r operators can be viewed as
having a second operand that is always the one-vertex hypergraph. These modified operators
can even be derived from the original ones. Instead of σα, we can use σ′α = σα ◦⊕0,r(0).
The composition θ′i,j,r = θi,j,r ◦σα ◦ θi,r+1,r+1 ◦⊕1,r(1) with σ : [r]→ [r + 1], σ(i) = i, can
replace θi,j,r. All operators of this derived algebra are binary. We call a respective parse tree
a full parse tree. The proper child of a θ or σ node is the one that does not represent the
one-vertex or empty hypergraph, respectively.

Let G be a hypergraph, and T = (U,F) a parse tree of G. We consider combinatorial
problems on G that can be characterized by a CMS formula ϕ ∈ ΦR. Let n be the number of
free variables of ϕ, and let X = (Xi)i∈[n] be the free variables themselves. For example, we
need n = 1 edge set to describe a (simple) path, or n = c−1 node sets to describe a c-coloring
of a graph. An assignment maps every Xi to a subset of type(Xi). A satisfying assignment
is an assignment f such that (f(X), G) |= ϕ. A solution is the sequence (f(Xi))i∈[n] for
some assignment f . Two solutions S, S′, are considered distinct if there is a j ∈ [n] with
Sj 6= S′j . For S1 6= S2, (S1, S2) is also distinct from (S2, S1) regardless of ϕ, even if ϕ is a
formula on two free variables, and symmetric on these free variables. For a parse tree node
u ∈ U , S(u) denotes the subsolution of S at u, which is obtained from S be removing every
graph feature from every set Si that is not present in G(u). A solution is feasible if the
corresponding assignment is satisfying. We denote by sat(G,ϕ) the set of feasible solutions,
i.e., Y ∈ sat(G,ϕ)⇔ (Y,G) |= ϕ.

Sets of solutions, and sat(G,ϕ) in particular, are sets of n-tuples of sets. We write M tN
for the disjoint union of sets M and N (undefined if M ∩N 6= ∅). Let X, Y be solutions,
and A, B sets of solutions. We say that X and Y interfere if there are i, j ∈ [n] such that

D. Eppstein and D. Kurz 16:7

Xi ∩ Yj 6= ∅. By extension, A and B interfere if some X ∈ A interferes with some Y ∈ B.
If A and B do not interfere, A]B denotes the set of all combinations of each X ∈ A and
Y ∈ B, i.e.,

A]B = {(Xi t Yi)i∈[n] | X ∈ A, Y ∈ B}.

Note that the above operators are not defined for every combination of operands. A
semi-homomorphism from 〈S,],t,∅, ∅〉 to some evaluation structure 〈R,⊕,⊗,0,1〉 is a
mapping f : S → R that acts like a homomorphism where applicable, i.e., f(∅) = 0,
f(∅) = 1, f(A]B) = f(A)⊕ f(B) if A and B do not interfere, and f(AtB) = f(A)⊗ f(B)
if A ∩B = ∅.

Values of solution sets are expressed in terms of evaluation structures. An evaluation
structure is an algebra 〈R,⊕,⊗,0,1〉 such that 〈R,⊕,0〉 and 〈R,⊗,1〉 are monoids. An
evaluation v is a function that maps hypergraphs generated by Gw to an (ordered) evaluation
structure R. An evaluation v is an MS-evaluation if there exists a semi-homomorphism h

and a CMS formula ϕ ∈ ΦR such that v(G) = h(sat(G,ϕ)) for every hypergraph G.
A linear CMS minimization problem P consists of a formula ϕ = ϕ(P) ∈ ΦR with n free

variables X that characterizes feasible solutions, and an instance of the problem consists of
an r-order hypergraph G and a sequence c of n cost functions with ci : type(Xi)→ R. The
value c(Y) of a solution Y for P is defined as

∑
i∈[n]

∑
y∈Yi

ci(y). An optimal solution of P
is a feasible solution Y ∗ such that for each feasible solution Y ′ of P , we have c(Y ∗) ≤ c(Y ′).
Our task is to find the value of an optimal feasible solution of P , or equivalently, to compute
the value of v(G) = min{c(Y) | Y ∈ sat(G,ϕ)}. This evaluation can be expressed as v(G) =
h(sat(G,ϕ)) with h(A) = min{c(Y) | Y ∈ A}, and is thus an MS-evaluation. Note that h is
a semi-homomorphism, and the corresponding evaluation structure is 〈R∪{∞},+,min, 0,∞〉.
The class of all linear CMS minimization problems is called LinCMS. Let m = |sat(G,ϕ)|,
and sat(G,ϕ) = {Y 1, . . . , Y m}. Let Π = Π(G,ϕ) ⊆ Sn([m]) be the set of permutations
such that (c(Y π(i)))i∈[m] is nondecreasing for π ∈ Π. For a problem P ∈ LinCMS, k-val(P)
is again a problem that gets the same input as P itself, plus some k ∈ N. It asks for the
sequence (c(Y π(i)))i∈[k′] for some π ∈ Π, where k′ = min{k,m}. The problem k-sol(P)
gets the same input as k-val(P), but asks for (Y π(i))i∈[k′] for any π ∈ Π. Depending on π,
different outputs for k-sol(P) are possible, but there is only one valid output for k-val(P).
Also note that 1-val(P) is equivalent to P itself. For simplicity, we assume k ≤ m for the
remainder of this article.

3 The second-best solution

In the following section, we describe how to solve 2-sol(P) in linear time for each P in
LinCMS. In a later section we generalize these results to an arbitrary (constant) number of
solutions, and to LOGSPACE and PRAM models of computation.

A hypergraph G generated by Gw, and a formula ϕ ∈ ΦR, sat(G,ϕ) can be evaluated by
a tree automaton on a parse tree of G [10, 17]. Our notion of full parse trees enables us to
unify Lemmas 2.4 to 2.6 from Courcelle and Mosbah [10] as follows.

I Lemma 1. Let ϕ ∈ ΦR, and let T be a full parse tree rooted in r that represents a
hypergraph G. If r is not a leaf, it has two child nodes u1, u2 representing G1 = G(u1),
G2 = G(u2), respectively, and there exist l ∈ N and ψk1 , ψk2 ∈ ΦR for each k ∈ [l] such that

sat(G,ϕ) =
⊔{

sat(G1, ψ
k
1)] sat(G2, ψ

k
2) | k ∈ [l]

}
, (1)

where l only depends on the hypergraph operator associated with r.

IPEC 2017

16:8 K-Best Solutions of MSO Problems on Tree-Decomposable Graphs

In the situation of Lemma 1, we call ψki a child formula of ϕ with respect to the
corresponding operator. For k ∈ [l], we call (ψk1 , ψk2) a fitting pair of child formulas. A solution
S ∈ sat(G,ϕ) has a unique fitting pair (ψ1, ψ2) of child formulas with S ∈ (sat(G1, ψ1) t
sat(G2, ψ2)), which follows from the fact that all unions in Equation (1) are disjoint. All
child formulas ψ with respect to a θi,j,m node u can be chosen such that srci /∈ Sk for
any S ∈ sat(G(u′), ψ), where u′ is the proper child of u. Further, Courcelle and Mosbah
demonstrated that every MS-evaluation v can be computed by a similar tree automaton.
The running time required to compute v on the entire hypergraph G is O(|G| · µ), where µ is
the time required to compute f(A)⊕ f(B) and f(A)⊗ f(B) for valid combinations A, B. In
the uniform cost model, the operators of the evaluation structure 〈R ∪ {∞},+,min, 0,∞〉,
addition and selecting the smaller of two real numbers, require O(1) time. Problems in
LinCMS can therefore be solved in linear time. Applying the semi-homomorphism h with
v(G) = h(sat(G,ϕ)) to Equation (1) yields

v(G) = h(sat(G,ϕ)) = min
{
h(sat(G1, ψ

k
1)) + h(sat(G2, ψ

k
2)) | k ∈ [l]

}
. (2)

A different linear-time approach for this special case had been proposed earlier by Arn-
borg, Lagergren and Seese [3]. The basic algorithm of Courcelle and Mosbah computes
h(sat(G(u), ψ)) for every parse tree node u in a bottom-up manner, and every ψ ∈ ΦR.
Conceptually, we perform a depth-first search on T , starting at its root r. Every time we
finish a node v, we evaluate it, i.e., we compute the evaluation h(sat(G(v), φ)) for every
formula ψ ∈ ΦR based on the child formulas of ψ by Equation (2). Since the number of
formulas and the number of child formulas per formula are fixed, the overall running time is
linear in the size of T .

Courcelle and Mosbah also propose an improved algorithm, called the CM algorithm in
this article, that determines in a top-down preprocessing phase the set of formulas that are
reachable from ϕ at r via the child formula relation. We call these the relevant formulas of a
parse tree node u.

Let x be a graph feature that is part of at least one solution for ϕ at r, and let v1, v2 be
the child nodes of r. If r is an ⊕ or σ node, the graph features of G(v1), G(v2) are disjoint,
so exactly one of them contains x. If r is a θ node that fuses srcj into srci, let v2 be the the
child node such that G(v2) only consists of srci. As can be seen from the proof of Lemma 2.5
in [10], subformulas of ϕ can be chosen such that srci is not part of any solution at v1. Taken
together, x is part of some solutions at either v1 or v2, but not both. Applying the argument
iteratively to this child node, there is exactly one leaf of the full parse tree where some
solutions contain x. We denote this leaf by u(x).

Let u be a parse tree node, ψ1, ψ2 two formulas relevant for u. The CM algorithm only
computes h(G(u), ψ1) and h(G(u), ψ2), which correspond to the values of optimal solutions
on G(u) for the problems characterized by ψ1 and ψ2, respectively. We do not have any
information about the solutions themselves besides their values. In particular, we do not
know for any hypergraph feature if it appears in one of those solutions. Since we do not
require optimal solutions to be unique, we also do not know if they represent the same
solution even in the case h(sat(G(u), ψ1)) = h(sat(G(u), ψ2)).

In the next section, we need to test if optimal solutions for ψ1 and ψ2 are the same by
only looking at their evaluations. To do so, we establish for each parse tree node u a mapping
from the relevant formulas of u to solution IDs in [|ΦR|] , with the following discriminating
property. Each relevant formula ψ of u is mapped to an optimal solution for ψ on G(u) such
that two formulas are assigned the same solution if and only if they are assigned the same
solution ID. Solution IDs can be computed along with solution values while keeping the
linear time bound:

D. Eppstein and D. Kurz 16:9

I Lemma 2. Given solution IDs for all relevant formulas of all child nodes of a parse tree
node u, solution IDs for u can be computed in constant time.

Proof. Deferred to the full version. J

The compression function can be stored with u, and a mapping from solution ID to
solution at leaf nodes, requiring only constant space. Even if sat(G(u), ψ) contains multiple
optimal solutions, it is now possible to refer to the optimal solution, which is the one defined
recursively in terms of matching solution IDs. This particular optimal solution can be found
by a simple depth-first search based algorithm in linear time, starting at ϕ at the root of the
parse tree. For each (u, ψ), we find a fitting pair of child formulas ρ1, ρ2 for child nodes v1,
v2 of u, respectively, such that the assigned solution IDs match, process (v1, ρ1) and (v2, ρ2)
independently, and output the associated subsolution at leaf nodes.

To solve 2-val(P), we adapt the evaluation structure. Instead of values in R ∪ {∞},
we use pairs (x, y) ∈ R = (R ∪ {∞})2, where x and y represents the values of an optimal
and second-best solution. We define two new binary operators +2 and min2 over R, with
(x1, y1)+2(x2, y2) = (x1+x2,min(x1+y2, x1+y1)) and min2((x1, y1), (x2, y2)) = (a, b), where
a, b are the smallest and second-smallest element of the multiset {x1, y1, x2, y2}, respectively.

I Lemma 3. Let P be a LinCMS problem characterized by the formula ϕ ∈ ΦR and cost func-
tions c. Given a parse tree T of a hypergraph G, the CM algorithm solves 2-val(P) in linear
time when used in conjunction with the evaluation structure 〈R,+2,min2, (0, 0), (∞,∞)〉.

Proof. For each leaf u of T , we solve 2-val(P) on G(u) directly. Let S1 ∈ sat(G,ϕ) be
optimal. The mapping v(G) = (c(S1),min(c(sat(G,ϕ)\{S1})) can be written as h(sat(G,ϕ))
with h(A]B) = h(A)min2 h(B) and h(AtB) = h(A) +2 h(B). The operators min2 and +2
can be evaluated in constant time, resulting in linear total time using the CM algorithm. J

Solution IDs can be trivially generalized to the new evaluation structure, allowing us to
refer to the optimal and second-best solution, and to reconstruct these two solutions in linear
time.

I Corollary 4. Let P be a LinCMS problem, and let w ∈ N be fixed. Given a parse tree T of
a hypergraph G with bounded treewidth, we can solve 2-sol(P) on G in time O(|G|).

4 Dynamizing the second-best solution

In this section, we introduce the evaluation tree data structure that stores intermediate
results of the algorithm from the previous section. The data structure allows for a trivial
query for the values of the two best solutions in constant time, and a query for the solutions
themselves in linear time. We demonstrate how to perform a query for a pivot feature,
and how to update an evaluation tree to match the two subproblems with respect to this
pivot feature as described in Section 2.1. Both operations start in the root of the given tree,
enabling us to use the path persistence technique described in Section 2.2.

An evaluation tree is a tree with the same structure as the parse tree. We store with every
node of the evaluation tree the result of all evaluations of the CM algorithm as described
in Section 3, as well as all solution ID information. In addition, we also store the solution
sets sat(G(u), ψ) themselves for each leaf node u. We first describe the query and update
procedures for problems characterized by CMS formulas with exactly one free variable. For
this purpose, we identify solutions (S1) with their first set S1. For the sake of simplicity, we
also identify nodes of the parse tree with their twins in the evaluation tree of the current
subproblem. We assume that the hypergraph G is represented as a full parse tree T .

IPEC 2017

16:10 K-Best Solutions of MSO Problems on Tree-Decomposable Graphs

Let ϕ ∈ ΦR be a CMS formula that characterizes a subproblem P , and let x be a pivot
feature of P . If x is a source vertex of G, the two subproblems of P can again be characterized
by formulas in ΦR, namely ϕ ∧ (x ∈ X1) and ϕ ∧ (x /∈ X1), respectively. However, if x is a
hyperedge or a vertex that is not a source vertex of G, there are no such formulas in general.
Therefore, not all subproblems can be characterized by a CMS formula, and we have to
generalize the mapping sat to cover those subproblems. We define the set satP (G(u), ψ)
to contain all solutions in sat(G(u), ψ) that satisfy the constraints imposed by the binary
subproblem tree. Note that h(satP (G,ϕ)) is the solution of 2-val(P).

Let S1 and S2 be the optimal and second-best solution of P , respectively. To find a
pivot feature x for P , we maintain a current parse tree node uj , two formulas ψ1

j , ψ2
j , and

the invariant that the subsolutions S1(uj), S2(uj) of S1, S2 at uj are in satP (G(uj), ψ1
j),

satP (G(uj), ψ2
j), respectively, and that S1(uj) 6= S2(uj). In the j-th iteration, we choose

uj+1 to be a child node of uj in the parse tree. Initially, u1 is the root of T , and ψ1
1 = ψ2

1 = ϕ.
The invariant holds trivially because of h(satP (G(u1), ϕ)) = h(satP (G,ϕ)), and because the
optimal solution differs from the second-best one by definition.

If uj is a leaf, we construct the fixed-size subsolutions S1(u) and S2(u) explicitly. If the
invariant holds, these solutions are distinct, and we can find a pivot feature in constant
time. Otherwise, uj is an inner node with children v1 and v2. Let ρ1 (ρ2) be a fitting pair of
child formulas for ψ1

j (ψ2
j) for which solution IDs match. If the invariant holds for j, the

subsolutions S1(uj) and S2(uj) differ, so their subsolutions at v1 (S1(v1) and S2(v1)) or
those at v2 have to differ as well. We choose uj+1, ψ1

j+1 and ψ2
j+1 accordingly. The invariant

for j + 1 then holds by construction.

I Lemma 5. Given an evaluation tree of depth d for a subproblem P , the above algorithm
finds a pivot feature for P in time O(d).

Proof. Deferred to the full version. J

Next, we describe the update process to transform the evaluation tree for P into the
evaluation tree for one of its two subproblems. The process is symmetric for both subproblems,
so we only describe it for the subproblem P ′ that requires solutions to contain the pivot
feature.

First, we execute the query algorithm to find a pivot feature x, and push each node it
visits to a stack. The pivot query algorithm can only terminate at leaf nodes, so the last
node u that is pushed to the stack is a leaf. Recall that for each leaf node u and each relevant
formula ψ, we store satP (G(u), ψ) explicitly. We enumerate this solution set and remove
every solution that does not contain x to obtain S(ψ) = satP ′(G(u), ψ). To re-evaluate ψ,
we apply h to S(ψ).

Any other node u on the stack is an inner node of the full parse tree, and an ancestor
of u(x). Re-evaluation works the same as the original evaluation in the CM algorithm, by
evaluating Equation (2) with operators min2, +2 instead of min, + as in Lemma 3.

I Lemma 6. Given an evaluation tree of depth d for a subproblem P , the above algorithm
updates the evaluation tree to match a subproblem P ′ of P in time O(d).

Proof. Deferred to the full version. J

Let S be the optimal or second-best solution of P , whichever remains feasible in P ′. We
do not require optimal solutions for subproblems to be unique, so we might find two optimal
solutions for P ′ that both differ from S. Alternatively, S might turn up as the second-best
solution for P ′. Although these results would be valid outcomes of the update procedure, they

D. Eppstein and D. Kurz 16:11

would break the k-best algorithm of Section 2.1: If we lose track of S by choosing two other
solutions as optimal and second-best, we cannot detect whether we find S in a subproblem
of P ′ again, leading to (the value of) S being output twice. This happens because solution
IDs are not suitable to efficiently check two solutions with respect to different evaluation
trees for equality. Therefore, we need to make sure that S is the optimal solution of P ′ as
encoded by the solution IDs for P and P ′. Fortunately, the update procedure can trivially
enforce this property.

Now consider a problem characterized by N free variables, with N > 1. We may consider
N to be constant, as it only depends on the problem definition. Recall that solutions S
and S′ are distinct when there is a discriminating index i with Si 6= S′i. The pivot query
algorithm has to take this into account. For inner nodes, it relies only on solution IDs to
choose a successor of the current parse tree node. Leaf nodes still have a fixed number of
feasible solutions for a fixed-size hypergraph. The same arguments as above yield running
time O(d). Similarly, we only have to adapt the processing of nodes for the update algorithm.
For N = 1, we always imposed the new subproblem constraint on the first and only set of
a solution, because the discriminating index was always the same. Now, we have to take
into account the discriminating index as determined during the pivot query phase. Using the
same arguments, updates can still be performed in time O(d). We now state our main result.

I Theorem 7. Let P be a LinCMS problem. Then computing the values of the k best
solutions for P on a graph G requires O(|G|+ k log |G|) time and space.

Proof. In linear time, we compute a shallow tree decomposition, transform it into a parse
tree T of depth O(log |G|), and apply the CM algorithm to T by Lemma 3. With the results,
we initialize a binary subproblem tree. We perform a best-first search to find the k best
subproblems with respect to their second-best solution as described in Section 2.1, which
requires us to solve O(k) subproblems. Using the persistent tree technique from Section 2.2
in conjunction with the update operation above, we need O(d) additional time and space
per subproblem. J

5 Fixed numbers of solutions

We generalize here our algorithm for the second best solution to any fixed number of
solutions, and to low-space and parallel complexity classes. Similar results could be obtained
by expressing the k-best solution problem (for a constant k) in MSO with k set variables,
all constrained to be solutions, to be distinct, and with minimum total weight; however,
this would give a significantly worse dependence on k than our solution and would require
additional complication to recover the differences between the solutions.

For fixed k ∈ N, operators mink and +k can be defined analogously to min2 and +2,
respectively. Evaluating mink(x, y) and x+k y for k-tuples x, y ∈ Rk still requires constant
time. Hence, the CM algorithm with the evaluation structure 〈(R∪∞)k,+k,mink, (0, . . . , 0),
(∞, . . . ,∞)〉 solves k-val(P) for any problem P in LinCMS. Let T be a parse tree with depth
d, and let ≤post be a postordering of T . To solve k-val(P), we evaluate the nodes of T
according to ≤post. As soon as a parse tree node has been evaluated, the evaluations of its
children can be dropped. Thus, the number of stored evaluations never exceeds d+ 1.

I Theorem 8. Let P be a LinCMS problem, and let k,w ∈ N be fixed. Given a graph G
with treewidth w, the problem k-val(P) on G can be solved using logarithmic memory space.

Proof. A shallow tree decomposition T can be computed with logarithmic memory space [13].
We use a depth-first search from an arbitrarily chosen root node to process the bags of T in

IPEC 2017

16:12 K-Best Solutions of MSO Problems on Tree-Decomposable Graphs

postorder, processing each bag by replacing it with its fixed-size portion of the parse tree,
which is then evaluated bottom-up. The evaluations of all parse tree nodes corresponding to
a bag require constant space, and we store O(log |G|) of them at a time. J

In the PRAM model (see e.g. [1]), the CM algorithm can be parallelized as follows.

I Theorem 9. Let P be a LinCMS problem, and let k,w ∈ N be fixed. In the EREW
PRAM model, given a shallow tree decomposition T of graph G with treewidth w, the problem
k-val(P) on G can be solved in time O(log |G|) by O(|G|) processors.

Proof. We allocate one processor p(u) for each node u of T , which computes the portion of
the parse tree corresponding to its bag and evaluates all nodes of that portion. Processor
p(u) waits until all processors p(v) of child nodes v of u have finished. The processor of the
root node of T therefore waits O(log |G|) time. Only processor p(u) writes solutions for node
u, and only the parent u′ of u reads them, according to the EREW model. J

Finally, using the algorithm of Bodlaender [5] on O(|G|3w+4) processors to compute a
shallow tree decomposition, we obtain the following.

I Corollary 10. Let P be a LinCMS problem, and let k,w ∈ N be fixed. In the CRCW
PRAM model, given a graph G with treewidth w, the problem k-val(P) on G can be solved in
time O(log |G|) by O(|G|3w+4) processors.

References
1 Selim G. Akl. Design and analysis of parallel algorithms. Prentice Hall, 1989.
2 Stefan Arnborg, Bruno Courcelle, Andrzej Proskurowski, and Detlef Seese. An algebraic

theory of graph reduction. J. ACM, 40(5):1134–1164, 1993. doi:10.1145/174147.169807.
3 Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable

graphs. J. Algorithms, 12(2):308–340, 1991. doi:10.1016/0196-6774(91)90006-K.
4 Michel Bauderon and Bruno Courcelle. Graph expressions and graph rewritings. Mathe-

matical Systems Theory, 20(2-3):83–127, 1987. doi:10.1007/BF01692060.
5 Hans L. Bodlaender. Nc-algorithms for graphs with small treewidth. In Jan van Leeuwen,

editor, Graph-Theoretic Concepts in Computer Science, 14th International Workshop, WG
’88, Amsterdam, The Netherlands, June 15-17, 1988, Proceedings, volume 344 of Lecture
Notes in Computer Science, pages 1–10. Springer, 1988. doi:10.1007/3-540-50728-0_32.

6 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.

7 Hans L. Bodlaender and Torben Hagerup. Parallel algorithms with optimal speedup
for bounded treewidth. SIAM J. Comput., 27(6):1725–1746, 1998. doi:10.1137/
S0097539795289859.

8 Chandra R. Chegireddy and Horst W. Hamacher. Algorithms for finding k-best per-
fect matchings. Discrete Applied Mathematics, 18(2):155–165, 1987. doi:10.1016/
0166-218X(87)90017-5.

9 Bruno Courcelle. Graph rewriting: An algebraic and logic approach. In Handbook of The-
oretical Computer Science, Vol. B: Formal Models and Semantics, pages 193–242. Elsevier,
1990.

10 Bruno Courcelle and Mohamed Mosbah. Monadic second-order evaluations on tree-
decomposable graphs. Theor. Comput. Sci., 109(1&2):49–82, 1993. doi:10.1016/
0304-3975(93)90064-Z.

http://dx.doi.org/10.1145/174147.169807
http://dx.doi.org/10.1016/0196-6774(91)90006-K
http://dx.doi.org/10.1007/BF01692060
http://dx.doi.org/10.1007/3-540-50728-0_32
http://dx.doi.org/10.1137/S0097539793251219
http://dx.doi.org/10.1137/S0097539795289859
http://dx.doi.org/10.1137/S0097539795289859
http://dx.doi.org/10.1016/0166-218X(87)90017-5
http://dx.doi.org/10.1016/0166-218X(87)90017-5
http://dx.doi.org/10.1016/0304-3975(93)90064-Z
http://dx.doi.org/10.1016/0304-3975(93)90064-Z

D. Eppstein and D. Kurz 16:13

11 Edo S. Van der Poort, Marek Libura, Gerard Sierksma, and Jack A. A. van der Veen.
Solving the k-best traveling salesman problem. Computers & OR, 26(4):409–425, 1999.
doi:10.1016/S0305-0548(98)00070-7.

12 James R. Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert Endre Tarjan. Mak-
ing data structures persistent. J. Comput. Syst. Sci., 38(1):86–124, 1989. doi:10.1016/
0022-0000(89)90034-2.

13 Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace versions of the theorems of
bodlaender and courcelle. In 51th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 143–152. IEEE
Computer Society, 2010. doi:10.1109/FOCS.2010.21.

14 David Eppstein. Finding the k shortest paths. SIAM J. Comput., 28(2):652–673, 1998.
doi:10.1137/S0097539795290477.

15 David Eppstein. K-best enumeration. Bull. EATCS, 115, 2015. URL: http://eatcs.org/
beatcs/index.php/beatcs/article/view/322.

16 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. Sparsification
- a technique for speeding up dynamic graph algorithms. J. ACM, 44(5):669–696, 1997.
doi:10.1145/265910.265914.

17 S. Feferman and R. L. Vaught. The first order properties of products of algebraic systems.
Fund. Math., 47:57–103, 1959.

18 Greg N. Frederickson. An optimal algorithm for selection in a min-heap. Inf. Comput.,
104(2):197–214, 1993. doi:10.1006/inco.1993.1030.

19 Harold N. Gabow. Two algorithms for generating weighted spanning trees in order. SIAM
J. Comput., 6(1):139–150, 1977. doi:10.1137/0206011.

20 H. W. Hamacher and M. Queyranne. K best solutions to combinatorial optimization
problems. Ann. Oper. Res., 4(1-4):123–143, 1985. doi:10.1007/BF02022039.

21 Naoki Katoh, Toshihide Ibaraki, and Hisashi Mine. An efficient algorithm for K shortest
simple paths. Networks, 12(4):411–427, 1982. doi:10.1002/net.3230120406.

22 Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path,
matrix and triangle problems. In 51th Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 645–654.
IEEE Computer Society, 2010. doi:10.1109/FOCS.2010.67.

23 Jin Y. Yen. Finding the K shortest loopless paths in a network. Manag. Sci., 17(11):712–
716, 1971. URL: http://www.jstor.org/stable/2629312.

IPEC 2017

http://dx.doi.org/10.1016/S0305-0548(98)00070-7
http://dx.doi.org/10.1016/0022-0000(89)90034-2
http://dx.doi.org/10.1016/0022-0000(89)90034-2
http://dx.doi.org/10.1109/FOCS.2010.21
http://dx.doi.org/10.1137/S0097539795290477
http://eatcs.org/beatcs/index.php/beatcs/article/view/322
http://eatcs.org/beatcs/index.php/beatcs/article/view/322
http://dx.doi.org/10.1145/265910.265914
http://dx.doi.org/10.1006/inco.1993.1030
http://dx.doi.org/10.1137/0206011
http://dx.doi.org/10.1007/BF02022039
http://dx.doi.org/10.1002/net.3230120406
http://dx.doi.org/10.1109/FOCS.2010.67
http://www.jstor.org/stable/2629312

DynASP2.5: Dynamic Programming on Tree
Decompositions in Action∗†

Johannes K. Fichte1, Markus Hecher2, Michael Morak3, and
Stefan Woltran4

1 Institut für Informationssysteme, TU Wien, Vienna, Austria and
Universität Potsdam, Potsdam, Germany
fichte@dbai.tuwien.ac.at

2 Institut für Informationssysteme, TU Wien, Vienna, Austria and
Universität Potsdam, Potsdam, Germany
hecher@dbai.tuwien.ac.at

3 Institut für Informationssysteme, TU Wien, Vienna, Austria
morak@dbai.tuwien.ac.at

4 Institut für Informationssysteme, TU Wien, Vienna, Austria
woltran@dbai.tuwien.ac.at

Abstract
Efficient, exact parameterized algorithms are a vibrant theoretical research area. Recent solving
competitions, such as the PACE challenge, show that there is also increasing practical interest
in the parameterized algorithms community. An important research question is whether such al-
gorithms can be built to efficiently solve specific problems in practice, that is, to be competitive
with established solving systems. In this paper, we consider Answer Set Programming (ASP), a
logic-based declarative modeling and problem solving framework. State-of-the-art ASP solvers
generally rely on Sat-based algorithms. In addition, DynASP2, an ASP solver that is based on a
classical dynamic programming on tree decompositions, has recently been introduced. DynASP2
outperforms modern ASP solvers when the goal is to count the number of solutions of programs
that have small treewidth. However, for quickly finding one solutions, DynASP2 proved uncom-
petitive. In this paper, we present a new algorithm and implementation, called DynASP2.5, that
shows competitive behavior compared to state-of-the-art ASP solvers on problems like Steiner
tree for low-treewidth graphs, even when the task is to find just one solution. Our implementation
is based on a novel approach that we call multi-pass dynamic programming.

1998 ACM Subject Classification I.2.8 Problem Solving, Control Methods, and Search, D.1.6
Logic Programming, F.4.1 Mathematical Logic, I.2.3 Deduction and Theorem Proving, I.2.4
Knowledge Representation Formalisms and Methods

Keywords and phrases Parameterized algorithms, Fixed-parameter linear time, Tree decompo-
sitions, Multi-pass dynamic programming

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.17

1 Introduction

Answer set programming (ASP) is a logic-based declarative modeling language and problem
solving framework [13], where a program is defined by a set of rules over propositional atoms

∗ Research was supported by the Austrian Science Fund (FWF), Grant Y698.
† For an extended version see [9], https://arxiv.org/abs/1706.09370.

© Johannes Klaus Fichte, Markus Hecher, Michael Morak, and Stefan Woltran;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 17; pp. 17:1–17:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.17
https://arxiv.org/abs/1706.09370
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 DynASP2.5: Dynamic Programming on Tree Decompositions in Action

and is interpreted under an extended stable model semantics [15]. Problems are usually
modeled in ASP in such a way that the solutions (called answer sets) of a program directly
correspond to the solutions of the considered problem instance. Computational problems
for disjunctive, propositional ASP, such as deciding whether a program has an answer set,
are complete for the second level of the polynomial hierarchy [8]. In consequence, finding
answer sets usually involves a Sat part (finding a model of the program) and an Unsat part
(minimality check). A variety of ASP solvers based on techniques of Sat solvers are readily
available [3, 11] and have proven to be very successful in solving competitions.

Recently, a dynamic programming based solver (DynASP2) that builds upon ideas from
parameterized algorithms has been proposed [10]. The running time of the underlying
algorithm is double exponential in the treewidth of the input program and linear in its size
(a so-called fixed-parameter linear algorithm). DynASP2 roughly works as follows. First, it
computes a tree decomposition of the incidence graph of the given input program. Second, it
solves the program via dynamic programming (DP) on the tree decomposition, traversing
the tree exactly once bottom-up. Both the Sat and Unsat tasks are considered in a single
pass. Once the root node has been reached, complete solutions for the input program can
be constructed, if any exist. The exhaustive nature of DP algorithms, where all potential
solutions are computed locally for each node of the tree decomposition, works well when all
solutions are indeed needed, e.g., for counting answer sets. However, this approach is not
competitive when the task is to construct just one answer set, since space requirements can
be quite extensive, resulting in long running times. Another downside is the fact that DP
algorithms on tree decompositions may exhibit running times that vary considerably, even
on tree decompositions of the exact same width [2].

In this paper, we propose a multi-pass algorithm, called M-DPSINC, for dynamic program-
ming on tree decompositions, as well as a new implementation (DynASP2.5). In contrast to
classical DP algorithms for problems on the second level of the polynomial hierarchy, M-DPSINC
traverses the given tree decomposition multiple times in a bottom-up fashion. During the
first pass, it computes and stores sets of atoms that are relevant for the Sat part (finding a
model of the program) up to the root. In the second pass, it computes and stores sets of
atoms that are relevant for the Unsat part (checking for minimality). Finally, in the third
pass, it links those sets from past two passes together that might lead to an answer set. This
allows us to discard candidates that do not lead to answer sets early on.

In addition, we present technical improvements (including working on non-nice tree
decompositions) and employ dedicated customization techniques for selecting tree decompo-
sitions. These improvements are the main ingredients to speed up the solving process for DP
algorithms. Experiments indicate that DynASP2.5 is competitive, even for quickly finding
some answer set, when solving the Steiner tree problem on graphs of low treewidth. In
particular, DynASP2.5 are able to solve instances that have an upper bound on the incidence
treewidth of 14 (whereas DynASP2 could solve instances of treewidth at most 9) on our
benchmark set1.

Contributions. Our main contributions can be summarized as follows:
1. We establish a novel fixed-parameter linear algorithm (M-DPSINC), which works in multiple

passes and computes Sat and Unsat parts separately.
2. We present an implementation (DynASP2.5)2 and an experimental evaluation.

1 The set is available at https://github.com/daajoe/dynasp_experiments/tree/ipec2017.
2 The sources of our solver are available at https://github.com/daajoe/dynasp/releases/tag/v2.5.0.

https://github.com/daajoe/dynasp_experiments/tree/ipec2017
https://github.com/daajoe/dynasp/releases/tag/v2.5.0

J. K. Fichte, M. Hecher, M. Morak, and S. Woltran 17:3

Related Work. An ASP solver (DynASP2) that is based on single pass DP on tree
decompositions was recently introduced [10]. The solver is dedicated to counting answer sets
for the full ground ASP language. The present paper extends these results by a multi-pass DP
algorithm. In contrast to systems that use encodings in Monadic Second-Order (MSO) [14],
our approach directly treats ASP. Bliem et al. [5] introduced a multi-pass approach and an
implementation (D-FLATˆ2) for DP on tree decompositions solving subset minimization
tasks. Their approach allows to specify DP algorithms by means of ASP. In D-FLATˆ2 one
can see ASP as a meta-language to describe what needs to be done at each node of the tree
decomposition, whereas our work presents an algorithm dedicated to find some answer set
of a program. Further, we require specialized adaptations to the ASP problem semantics,
including three valued evaluation of atoms, handling of non-nice tree decompositions, and
optimizations in join nodes to be competitive. We use in our solver the heuristic tree
decomposition library htd [1]. For other systems we refer to the PACE challenge [7].

2 Formal Background

Tree Decompositions. Let G = (V,E) be a graph, T = (N,F, n) a rooted tree, and
χ : N → 2V a function that maps each node t ∈ N to a set of vertices. We call the sets
χ(·) bags and N the set of nodes. Then, the pair T = (T, χ) is a tree decomposition (TD)
of G if the following conditions hold: (i) for every vertex v ∈ V there is a node t ∈ N with
v ∈ χ(t); (ii) for every edge e ∈ E there is a node t ∈ N with e ⊆ χ(t); and (iii) for any three
nodes t1, t2, t3 ∈ N , if t2 lies on the unique path from t1 to t3, then χ(t1) ∩ χ(t3) ⊆ χ(t2).
We call max{|χ(t)| − 1 | t ∈ N} the width of the TD. The treewidth tw(G) of a graph G is
the minimum width over all possible TDs of G. For some arbitrary but fixed integer k and a
graph of treewidth at most k, we can compute a TD of width 6 k in time 2O(k3) · |V | [6].
Given a TD (T, χ) with T = (N, ·, ·), for a node t ∈ N we say that type(t) is leaf if t has
no children; join if t has children t′ and t′′ with t′ 6= t′′ and χ(t) = χ(t′) = χ(t′′); int
(“introduce”) if t has a single child t′, χ(t′) ⊆ χ(t) and |χ(t)| = |χ(t′)|+ 1; rem (“removal”) if
t has a single child t′, χ(t′) ⊇ χ(t) and |χ(t′)| = |χ(t)|+ 1. If every node t ∈ N has at most
two children, type(t) ∈ {leaf, join, int, rem}, and bags of leaf nodes and the root are empty,
then the TD is called nice. For every TD, we can compute a nice TD in linear time without
increasing the width [6]. Later, we traverse a TD bottom up. Therefore, let post-order(T, t)
be the sequence of nodes in post-order of the induced subtree T ′ = (N ′, ·, t) of T rooted at t.

Answer Set Programming (ASP). ASP is a declarative modeling and problem solving
framework that combines techniques of knowledge representation and database theory. Two
of the main advantages of ASP are its expressiveness and, when using non-ground programs,
its advanced declarative problem modeling capability. Prior to solving, non-ground programs
are usually compiled into ground ones by a grounder. There are classes of non-ground
programs that preserve the treewidth of the input instance after grounding [4]. In this
paper, we restrict ourselves to ground ASP programs. For a comprehensive introduction,
see, e.g., [13]. Let `, m, n be non-negative integers such that ` ≤ m ≤ n, a1, . . . , an

distinct propositional atoms, and l ∈ {a1,¬a1}. A choice rule is an expression of the form
{a1; . . . ; a`} ← a`+1, . . . , am,¬am+1, . . . ,¬an with the intuitive meaning that some subset of
{a1, . . . , a`} is true if all atoms a`+1, . . . , am are true and there is no evidence that any atom
of am+1, . . . , an is true. A disjunctive rule is of the form a1∨· · ·∨a` ← a`+1, . . . , am,¬ am+1,
. . ., ¬an, which, intuitively, means that at least one atom of a1, . . . , a` must be true if all atoms
a`+1, . . . , am are true and there is no evidence that any atom of am+1, . . . , an is true. A rule r

IPEC 2017

17:4 DynASP2.5: Dynamic Programming on Tree Decompositions in Action

is either a disjunctive or a choice rule. Let Hr := {a1, . . . , a`}, B+
r := {a`+1, . . . , am}, and

B−r := {am+1, . . . , an}. Usually, for a rule r, if B−r ∪B+
r = ∅, we simply write Hr instead of

Hr ← . For a rule r, let at(r) := Hr∪B+
r ∪B−r denote its atoms and Br := B+

r ∪{¬b | b ∈ B−r }
its body. A program P is a set of rules, where at(P) :=

⋃
r∈P at(r) denotes its atoms. A

set M ⊆ at(P) satisfies a rule r if (i) r is a disjunctive rule and (Hr ∪ B−r) ∩M 6= ∅ or
B+

r 6⊆ M or (ii) r is a choice rule. Note that choice rules are always satisfied. M is a
(classical) model of P , denoted by M � P , if M satisfies every rule r ∈ P . The reduct
of a rule r with respect to M , denoted by rM , is defined (i) for a choice rule r as the set
{a← B+

r | a ∈ Hr ∩M,B−r ∩M = ∅} of rules and (ii) for a disjunctive rule r as the singleton
{Hr ← B+

r | B−r ∩M = ∅}. PM :=
⋃

r∈P r
M is called the (GL) reduct of P with respect

to M . A set M ⊆ at(P) is an answer set of a program P , if M � P and there does not exist
a proper subset M ′ (M , such that M ′ � PM .

I Example 1. Consider program P , consisting of the following nine rules:

P = {

rab︷ ︸︸ ︷
{eab};

rbc︷︸︸︷
{ebc};

rcd︷ ︸︸ ︷
{ecd};

rad︷ ︸︸ ︷
{ead};

rb︷ ︸︸ ︷
ab ← eab;

rd︷ ︸︸ ︷
ad ← ead;

rc1︷ ︸︸ ︷
ac ← ab, ebc;

rc2︷ ︸︸ ︷
ac ← ad, ecd;

r¬c︷ ︸︸ ︷
← ¬ac}. The

set A = {eab, ebc, ab, ac} is an answer set of P , as {eab, ebc, ab, ac} is a minimal model of the
reduct PA = {eab ←; ebc ←; ab ← eab; ad ← ead; ac ← ab, ebc; ac ← ad, ecd}. Now, consider
program R = {a ∨ c← b; b← c,¬g; c← a; b ∨ c← e; h ∨ i← g,¬c; a ∨ b; g ← ¬i; c; {d} ← g}.
The set B = {b, c, d, g} is an answer set of R, since B is a minimal model of the reduct RB =
{a ∨ c← b; c← a; b ∨ c← e; a ∨ b; g; c; d← g}.

In this paper, we mainly consider the output answer set problem, that is, output an
answer set for an ASP program. The decision version of this problem is Σp

2-complete.

Graph Representations of Programs. In order to use TDs for ASP solving, we need
dedicated graph representations of programs. The incidence graph I(P) of P is the bipartite
graph that has the atoms and rules of P as vertices and an edge a r if a ∈ at(r) for some
rule r ∈ P [10]. The semi-incidence graph S(P) of P is a graph that has the atoms and
rules of P as vertices and (i) an edge a r if a ∈ at(r) for some rule r ∈ P as well as
(ii) an edge a b for distinct atoms a, b ∈ Hr where r ∈ P is a choice rule. Since, for every
program P , the incidence graph I(P) is a subgraph of the semi-incidence graph, we have that
tw(I(P)) ≤ tw(S(P)). Further, by definition of TDs and the construction of a semi-incidence
graph, head atoms of each choice rule occur together in at least one bag of the TD.

Sub-programs. Let T = (T, χ) be a nice TD of the semi-incidence graph S(P) of a program
P . Also, let T = (N, ·, n) and t ∈ N . The bag-program is defined as Pt := P ∩ χ(t). The
set at≤t := {a | a ∈ at(P) ∩ χ(t′), t′ ∈ post-order(T, t)} is called atoms below t, the program
below t is defined as P≤t := {r | r ∈ Pt′ , t′ ∈ post-order(T, t)}, and the program strictly below
t is P<t := P≤t \ Pt. Since χ(n) = ∅, it holds that P≤n = P<n = P and at≤n = at(P).

3 A Single Pass DP Algorithm

DynASP2 [10], a dynamic programming-based ASP solver, splits the input program P into
bag-programs based on the structure of a given nice tree decomposition for P and evaluates
each bag-program in turn, storing results in tables for each TD node. The algorithm works
as shown in Figure 1 (following the red DynASP2 arrow) and executes the following steps:
1. Construct a graph representation G(P) of the given input program P .
2. Compute a TD T of the graph G(P) by means of some heuristic, thereby decomposing P

into several smaller bag-programs and fixing an ordering in which P will be evaluated.

J. K. Fichte, M. Hecher, M. Morak, and S. Woltran 17:5

Solve local
probl. A(t, . . .)

Store results
in A-Tabs[t] 1. Construct graph G

Store witnesses
in W-Tabs[t]

Compute wit-
nesses of W(t, . . .)

Visit next node
t in post-order Done?

no

yes

2. Comp. TD T of G 3.I done?
no

yes

Visit next node
t in post-order

Purge non-witnesses
Store counter-wit-
nesses in C-Tabs[t]

Compute counter-
wits. of C(t, . . .)

3.II done?
no

yes

Visit next node
t in post-order

Purge non-
counter-witnesses

Store result in
W,C-Tabs[t]

Link counter-wits.
to witnesses

4. Print solution 3.III done?
no

yes
Visit next node
t in post-order

3.I. DPW(T)

3.II. DPC(T)

3.III. DPLW,C(T ,W-Tabs,C-Tabs)

3. DPA(T)

←−DynASP2 DynASP2.5−→

Figure 1 Control flow for DP-based ASP solvers DynASP2 (left) and DynASP2.5 (right).

Listing 1: Algorithm DPA(T) for Dynamic Programming on TD T for ASP [9].
In: Table algorithm A, nice TD T = (T, χ) with T = (N, ·, n) of G(P) according to A.
Out: A-Tabs: maps each TD node t ∈ T to some computed table τt.

1 for iterate t in post-order(T,n) do
2 Child-Tabst := {A-Tabs[t′] | t′ is a child of t in T}
3 A-Tabs[t]← A(t, χ(t), Pt, at≤t,Child-Tabst)

3. Algorithm DPA(T) (see Listing 1 above) specifies the general scheme for this step, assuming
that an algorithm A, which strongly depends on the graph representation, is given. Such
an algorithm A is called a table algorithm that specifies, how the individual bag-programs
for each tree node are evaluated. DPA(T) works as follows: Traverse the tree decomposition
T in post-order. For every node t ∈ T in the tree decomposition T = ((T,E, n), χ),
run A to compute the table for node t (denoted A-Tabs[t]). Intuitively, each tuple, which
we refer to as row, in the table represents a witness for the existence of a solution for
the bag-program at node t. A-Tabs[t] is computed by taking, as input, the tables of
the child nodes of t, and extending them according to the bag-program Pt. Each row
in A-Tabs[t] consists of a witness set (a set of atoms relevant for the Sat part of the
problem), and a family of counter-witness sets (sets of atoms relevant for the Unsat
part) [10]. This directly follows the definition of answer sets, namely, being models of P
and subset-minimal with respect to PM .

4. For root node n, check if a “solution row” exists in table A-Tabs[n] and print the solution
to the output ASP problem.

With the above general algorithm in mind, we are now ready to propose SINC, a new
table algorithm for solving ASP on the semi-incidence graph (see Listing 2). DPSINC merges
two earlier algorithms for the primal and incidence graph [10].

As in the general approach, SINC computes and stores witness sets, and their correspond-
ing counter-witness sets. However, in addition, for each witness set and counter-witness set,
respectively, we need to store so-called satisfiability states (or sat-states, for short), since the
atoms of a rule may no longer be contained in one single bag of the TD of the semi-incidence
graph. Therefore, we need to remember in each TD node, how much of a rule is already
satisfied. The following describes this in more detail.

IPEC 2017

17:6 DynASP2.5: Dynamic Programming on Tree Decompositions in Action

Listing 2: Table algorithm SINC(t, χt, Pt, at≤t,Child-Tabst).
In: Bag χt, bag-program Pt, atoms-below at≤t, child tables Child-Tabst of t. Out: Tab. τt.

1 if type(t) = leaf then τt ← {〈∅, ∅, ∅〉} ; /* For Abbreviations see below. */
2 else if type(t) = int, a ∈ χt \ Pt is introduced and τ ′ ∈ Child-Tabst then
3 τt ← {〈M+

a , σ ∪ SatPr(Ṗ (t)
t ,M+

a), {〈C+
a , ρ ∪ SatPr(Ṗ (t,M+

a)
t , C+

a)〉 | 〈C, ρ〉 ∈ C} ∪
4 {〈C, ρ ∪ SatPr(Ṗ (t,M+

a)
t , C)〉 | 〈C, ρ〉 ∈ C} ∪ {〈M,σ ∪ SatPr(Ṗ (t,M+

a)
t ,M)〉}〉 | 〈M,σ, C〉 ∈ τ ′}

5 ∪ {〈M,σ ∪ SatPr(Ṗ (t)
t ,M), {〈C, ρ ∪ SatPr(Ṗ (t,M)

t , C)〉 | 〈C, ρ〉 ∈ C} 〉 | 〈M,σ, C〉 ∈ τ ′}
6 else if type(t) = int, r ∈ χt ∩ Pt is introduced and τ ′ ∈ Child-Tabst then
7 τt ← {〈M,σ ∪ SatPr({ṙ}(t),M), {〈C, ρ ∪ SatPr({ṙ}(t,M), C)〉 | 〈C, ρ〉 ∈ C}〉 | 〈M,σ, C〉 ∈ τ ′}
8 else if type(t) = rem, a 6∈ χt is removed atom and τ ′ ∈ Child-Tabst then
9 τt ← {〈M−a , σ, {〈C−a , ρ〉 | 〈C, ρ〉 ∈ C}〉 | 〈M,σ, C〉 ∈ τ ′}

10 else if type(t) = rem, r 6∈ χt is removed rule and τ ′ ∈ Child-Tabst then
11 τt ← {〈M,σ−r ,

{
〈C, ρ−r 〉 | 〈C, ρ〉 ∈ C, r ∈ ρ

}
〉 | 〈M,σ, C〉 ∈ τ ′, r ∈ σ}

12 else if type(t) = join and τ ′, τ ′′ ∈ Child-Tabst with τ ′ 6= τ ′′ then
13 τt ← {〈M,σ′ ∪ σ′′, {〈C, ρ′ ∪ ρ′′〉 | 〈C, ρ′〉 ∈ C′, 〈C, ρ′′〉 ∈ C′′} ∪ {〈M,ρ ∪ σ′′〉 | 〈M,ρ〉 ∈ C′} ∪
14 {〈M,σ′ ∪ ρ〉 | 〈M,ρ〉 ∈ C′′}〉 | 〈M,σ′, C′〉 ∈ τ ′, 〈M,σ′′, C′′〉 ∈ τ ′′}

For set S and element s, we denote S+
s ←S ∪ {s} and S−s ←S \ {s}.

By definition of TDs and the semi-incidence graph, for every atom a and every rule r of
a program, it is true that if atom a occurs in rule r, then a and r occur together in at least
one bag of the TD. As a consequence, the table algorithm encounters every occurrence of an
atom in any rule. In the end, on removal of r, we have to ensure that r is among the rules
that are already satisfied. However, we need to keep track of whether a witness set satisfies
a rule, because not all atoms that occur in a rule occur together in a bag. Hence, when
our algorithm traverses the TD and an atom is removed we still need to store this sat-state,
as setting this atom to a certain truth value influences the satisfiability of the rule. Since
the semi-incidence graph contains a clique on every set A of atoms that occur together in a
choice rule head, those atoms A occur together in a bag in every TD of the semi-incidence
graph. For that reason, we do not need to incorporate choice rules into the satisfiability
state, in contrast to the algorithm for the incidence graph [10].

In Algorithm SINC (detailed in Listing 2), a row u in the table τt is a triple 〈M,σ, C〉.
The set M ⊆ at(P) ∩ χ(t) represents a witness set. The family C of rows represents counter-
witnesses, which we will discuss in more detail below. The sat-state σ for M represents
rules of χ(t) satisfied by a superset of M . Hence, M witnesses a model M ′ ⊇ M where
M ′ � P<t ∪ σ. For that reason, a witness set together with its sat-state is called a witness.
We use the binary operator ∪ to combine sat-states, which ensures that rules satisfied in at
least one operand remain satisfied. For a node t, our algorithm considers a local-program
depending on the bag χ(t). Intuitively, this provides a local view on the program.

I Definition 2. Let P be a program, T = (·, χ) a TD of S(P), t a node of T and R ⊆ Pt.
The local-program R(t) is obtained from R ∪ {← Br | r ∈ R is a choice rule, Hr (at≤t}3 by
removing all literals a and ¬a from every rule where a 6∈ χ(t).

I Example 3. Observe P (t4)
t4

= {← ebc, rb} and P (t5)
t5

= {c←} for Pt4 and Pt5 of Figure 2.

Since the local-program P (t) depends on the considered node t, we may have different
local-programs for for node t and its child t′. In particular, the programs {r}(t) and {r}(t′)

might already differ for a rule r ∈ χ(t) ∩ χ(t′). In consequence for satisfiability with respect

3 We require to add {← Br | r ∈ R is a choice rule, Hr (at≤t} in order to decide satisfiability for corner
cases of choice rules involving counter-witnesses of Line 3 in Listing 2.

J. K. Fichte, M. Hecher, M. Morak, and S. Woltran 17:7

∅ t1

eab t2

rab, eab t3

eab t4

rb, eab t5

rb, eab, ab
t6

rbc, ebc, ab

t10

rc1, ebc, ab

t12

rc1, act15

∅ t18

rad, ead t20

rd, ead, ad t23

rcd, ecd, ad t27

rc2, ecd, ad t29

rc2, ac t32

r¬c, ac

t34

∅ t36T:

〈M3.i, σ3.i〉 τ3
〈{eab}, {rab}〉
〈∅, {rab}〉

〈M32.i, σ32.i〉
〈{ac}, {rc2}〉
〈∅, {rc2}〉
〈∅, ∅〉

τ32

〈M6.i, σ6.i〉 τ6

〈{eab, ab}, {rb}〉
〈{eab}, ∅〉
〈{ab}, {rb}〉
〈∅, {rb}〉

〈M12.i, σ12.i〉
〈{ebc, ab}, ∅〉
〈{ebc}, {rc1}〉
〈{ab}, {rc1}〉
〈∅, {rc1}〉

τ12

〈M1.i, σ1.i〉 τ1
〈∅, ∅〉

〈M3.i, σ3.i, C3.i〉 τ3

〈{eab}, {rab}, {〈∅, ∅〉}〉
〈∅, {rab}, ∅〉
〈M1.i, σ1.i, C1.i〉 τ1

〈∅, ∅, ∅〉

〈M6.i, σ6.i, C6.i〉 τ6

〈{eab, ab}, {rb}, {
〈{eab}, ∅〉}〉
〈{eab}, ∅, ∅〉
〈{ab}, {rb}, {〈∅, {rb}〉}〉
〈∅, {rb}, ∅〉

〈M12.i, σ12.i, C12.i〉 τ12

〈{ebc, ab}, ∅, {〈{ebc}, {rc1}〉}〉
〈{ebc, ab}, ∅, ∅〉
〈{ebc}, {rc1}, ∅〉
〈{ab}, {rc1}, {〈∅, {rc1}〉}〉
〈{ab}, {rc1}, ∅〉
〈∅, {rc1}, ∅〉

〈M32.i, σ32.i, C32.i〉
〈{ac}, {rc2}, {
〈{ac}, {rc2}〉,
〈∅, {rc2}〉}〉
〈{ac}, {rc2}, {
〈∅, {rc2}〉}〉
〈∅, {rc2}, {
〈∅, {rc2}〉}〉
〈∅, {rc2}, ∅〉
〈∅, ∅, {〈∅, {rc2}〉}〉
〈∅, ∅, ∅〉

τ32

Figure 2 A TD T of the semi-incidence graph S(P) for program P from Example 1 (center).
Selected DP tables after DPMOD (left) and after DPSINC (right) for nice TD T .

to sat-states, we need to keep track of a representative of a rule. We achieve this by a
function Ṙ(t) : R → 2R(t) that maps a rule in R ⊆ Pt for bag-program Pt to its local-
program, i.e., Ṙ(t)(r) :={r}(t) for r ∈ R. When we compute newly satisfied rules for witness
set M and a set R of rules, we use the function Ṙ(t). Formally, SatPr(Ṙ(t),M) :={r | (r, S) ∈
Ṙ(t),M � S} for M ⊆ χ(t) \ Pt using program S = Ṙ(t)(r) constructed by Ṙ(t) and r ∈ R.

Example 4 provides an explanation of the part of SINC that deals with witnesses only.
Therefore, the resulting algorithm MOD computes only models and is obtained from SINC,
by taking only the first two row positions into account (red and green text in Listing 2).
The remaining position (blue text) can be seen as an algorithm CMOD that computes
counter-witnesses (see [9, Ex. 4]). Note that we discuss selected cases, and we assume that
each row in a table τt is identified by a number, i.e., row i corresponds to ut.i = 〈Mt.i, σt.i〉.

I Example 4. Consider program P from Example 1, TD T = (·, χ) in Figure 2, and the
tables τ1, . . . , τ34, which illustrate computation results obtained during post-order traversal
of T by DPMOD. Figure 2 (left) does not show every intermediate node of TD T . Table
τ1 = {〈∅, ∅〉} as type(t1) = leaf (see Line 1 in Listing 2). Table τ3 is obtained via introducing
rule rab, after introducing atom eab (type(t2) = type(t3) = int). It contains two rows due to
two possible truth assignments using atom eab (Line 3–5). Observe that rule rab is satisfied
in both rows M3.1 and M3.2, since the head of choice rule rab is in at≤t3 (see Line 7 and
Definition 2). Intuitively, whenever a rule r is proven to be satisfied, sat-state σt.i marks r
as satisfied since an atom of a rule of S(P) might only occur in one TD bag. Consider
table τ4 with type(t4) = rem and rab ∈ χ(t3) \ χ(t4). By definition of TDs of S(P), we have
encountered every occurrence of any atom in rab. Thus, MOD enforces that only rows where
rab is marked satisfied in τ3, are considered for table τ4. The resulting table τ4 consists of
rows of τ3 with σ4.i = ∅, where rule rab is proven satisfied (rab ∈ σ3.1, σ3.2, see Line 11).
Note that between nodes t6 and t10, an atom and rule remove as well as an atom and rule
introduce node is placed. Observe that the second row u6.2 = 〈M6.2, σ6.2〉 ∈ τ6 does not
have a “successor row” in τ10, since rb 6∈ σ6.2. Intuitively, join node t34 joins only common
witness sets in τ17 and τ33 with χ(t17) = χ(t33) = χ(t34). In general, a join node marks rules
satisfied, which are marked satisfied in at least one child (see Line 13–14).

IPEC 2017

17:8 DynASP2.5: Dynamic Programming on Tree Decompositions in Action

Listing 3: Algorithm DPLW,C(T ,W-Tabs,C-Tabs) for linking counter-witnesses to witnesses.
In: Nice TD T = (T, χ) with T = (N, ·, n) of a graph S(P), mappings W-Tabs[·], C-Tabs[·].
Out: W,C-Tabs: maps t ∈ T to some pair (τWt , τCt) with τWt ∈W-Tabs[t], τCt ∈ C-Tabs[t].

1 Child-Tabst :={W,C-Tabs[t′] | t′ is a child of t in T}
/* Get for a node t tables of (preceding) combined child rows (CCR) */

2 CCRt :=Π̂τ ′∈Child-Tabstτ
′ /* For Abbreviations see below. */

/* Get for a row ~u its combined child rows (origins) */
3 origt(~u) :={S | S ∈ CCRt, ~u ∈ τ, τ = W(t, χ(t), Pt, at≤t, fw(S))}

/* Get for a table S of combined child rows its successors (evolution) */
4 evolt(S) :={~u | ~u ∈ τ, τ = C(t, χ(t), Pt, at≤t, τ ′), τ ′ ∈ S}
5 for iterate t in post-order(T,n) do

/* Compute counter-witnesses (≺-smaller rows) for a witness set M */
6 subs≺(f,M, S) :={~u | ~u ∈ C-Tabs[t], ~u ∈ evolt(f(S)), ~u = 〈C, · · · 〉, C ≺M}

/* Link each witness ~u to its counter-witnesses and store the results */
7 W,C-Tabs[t]← {(~u, subs((fw,M, S) ∪ subs⊆(fcw,M, S))

| ~u∈W-Tabs[t], ~u= 〈M, · · · 〉, S ∈ origt(u)}
For set I = {1, . . . , n} and sets Si, we define Πi∈ISi :=S1 × · · · × Sn = {(s1, . . . , sn) : si ∈ Si}. Moreover,
for Πi∈ISi, let Π̂i∈ISi :={{{s1}, . . . , {sn}} | (s1, . . . , sn) ∈ Πi∈ISi}. If for each S ∈ Π̂i∈ISi and
{si} ∈ S, si is a pair with a witness and a counter-witness part, let fw(S) :=

⋃
{(Wi,Ci)}∈S{{Wi}} and

fcw(S) :=
⋃
{(Wi,Ci)}∈S{{Ci}} restrict S to the witness or counter-witness parts, respectively.

Since we already explained how to obtain models, we only briefly describe how to compute
counter-witnesses. Family C consists of rows (C, ρ), where C ⊆ at(P) ∩ χ(t) is a counter-
witness set to M . Similar to the sat-state σ, the sat-state ρ for C under M represents
whether rules of the GL reduct PM

t are satisfied by a superset of C. A counter-witness set
together with its sat-state is called a counter-witness. Thus, C witnesses the existence of
C ′ (M ′ satisfying C ′ � (P<t ∪ ρ)M ′ since M witnesses a model M ′ ⊇M where M ′ � P<t.
In consequence, there exists an answer set of P if the root table contains 〈∅, ∅, ∅〉.

In order to decide the satisfiability of counter-witness sets, we require local-reducts similar
to local-programs (see Definition 2 and below).

I Definition 5. Let P be a program, T = (·, χ) be a TD of S(P), t be a node of T , R ⊆ Pt

and M ⊆ at(P). We define local-reduct R(t,M) as [R(t)]M and Ṙ(t,M) : R → 2R(t,M) as
Ṙ(t,M)(r) :={r}(t,M) for any r ∈ R.

Note that one can now easily refine SatPr(·, ·) such that it takes as first argument
arbitrary functions mapping from rules to programs. In particular, one can then pass the
function Ṙ(t,M) for a set R of rules, and a witness set M ⊆ χ(t) \ Pt, as used in Listing 2.

I Proposition 6 (?, c.f. [10]). Let P be a program and k :=tw(S(P)). Then, the algorithm
DPSINC runs in time O(22k+2 · ‖S(P)‖) and is correct.

4 DynASP2.5: Implementing a III Pass DP Algorithm

The classical DP algorithm DPSINC (Step 3 of Figure 1) follows a single pass approach. It
computes both witnesses and counter-witnesses in one step by traversing the given TD
exactly once. In particular, it exhaustively stores all potential counter-witnesses, even those
where the associated witness does not lead to a solution at the root node. In addition, there

5 Due to space limitations, proofs of statements marked with “?” have been omitted.

J. K. Fichte, M. Hecher, M. Morak, and S. Woltran 17:9

can be a high number of duplicates among the counter-witnesses, which are stored separately.
In this section, we propose a multi-pass algorithm, M-DPSINC, for DP on TDs and a new
implementation (DynASP2.5), which tackles this issue by adapting and extending concepts
for DP on TDs presented in [5]. Our novel algorithm allows for an early cleanup (purging)
of witnesses that do not lead to answer sets. As a consequence, this (i) avoids to construct
expendable counter-witnesses. Moreover, multiple passes enable us to store witnesses and
counter-witnesses separately which, in turn, (ii) avoids storing duplicates of counter-witnesses
and (iii) allows for highly space-efficient data structures (pointers) in practice when linking
witnesses and counter-witnesses together. Figure 1 (following the blue arrows) presents the
control flow of the new multi-pass approach DynASP2.5, where M-DPSINC introduces a much
more elaborate computation in Step 3 (cf. Figure 1).

4.1 The Algorithm
Algorithm M-DPSINC executed as Step 3 runs DPMOD, DPCMOD and new Algorithm DPLMOD,CMOD
in three respective passes (3.I, 3.II, and 3.III) as follows:

3.I. First, we run the algorithm DPMOD, which computes, via a bottom-up traversal, a table
MOD-Tabs[t] of witnesses for every node t in the tree decomposition. Then, via a top-
down traversal, it purges those witnesses from tables MOD-Tabs[t] that do not extend to
a witness in the table for the parent node; these witnesses can never be used to construct
a model (nor answer set) of the program.

3.II. For this step, let CMOD be a table algorithm computing only counter-witnesses of
SINC (blue parts of Listing 2). We execute DPCMOD, which computes all counter-witnesses
for all the witnesses at once and stores the resulting tables in CMOD-Tabs[·]. For every
node t, table CMOD-Tabs[t] contains possible counter-witnesses for subset-minimality.
Again, irrelevant rows are purged.

3.III. Finally, via a bottom-up traversal, for every node t in the TD, witnesses and counter-
witnesses are linked using algorithm DPLMOD,CMOD (see Listing 3). DPLMOD,CMOD takes
previous results and maps rows in MOD-Tabs[t] to a set of rows in CMOD-Tabs[t].

We already explained the table algorithms DPMOD and DPCMOD in the previous section. The
main part of our multi-pass algorithm is the algorithm DPLMOD,CMOD based on the general
algorithm DPLW,C (Listing 3) with W = MOD, C = CMOD, which links those separate
tables together. Before we quickly discuss the core of DPLW,C in Line 5–7, note that Line 2–4
introduce auxiliary definitions. Line 2 combines rows of the child nodes of given node t, which
is achieved by a product over sets where we drop the order and keep sets only. For a row ~u,
Line 3 determines its preceding combined rows that lead to ~u, using table algorithm W. Via
algorithm C, Line 4 derives the succeeding rows (called evolution rows) of a certain child row
combination τ ′ (called origin row). In the actual implementation, origin and evolution rows
are not computed, but represented via pointer data structures, directly linking to W-Tabs[·]
and C-Tabs[·], respectively. Then, the table algorithm DPLW,C applies a post-order traversal
and links witnesses to counter-witnesses in Line 7. DPLW,C searches for origins (orig) of a
witness ~u, uses the counter-witnesses (fcw) linked to these origins, and then determines the
evolution (procedure evol) in order to derive counter-witnesses (procedure subs) of ~u.

I Example 7. Let k be some integer and Pk be the program that consists of the rules
rc :={a1, · · · , ak} ← f , r2 :=← ¬a2, . . ., rk :=← ¬ak, and rf :=← ¬f and rcf :={f} ← .
The rules r2, . . . , rk simulate that only specific subsets of {a1, · · · , ak} are allowed. Rules rf

and rcf enforce that f is set to true. Let T = (T, χ, t3) be a TD of the semi-incidence
graph S(Pk) of program Pk where T = (V,E) with V = {t1, t2, t3}, E = {(t1, t2), (t2, t3)},

IPEC 2017

17:10 DynASP2.5: Dynamic Programming on Tree Decompositions in Action

〈M3.i, σ3.i, C3.i〉 τ3

〈{a1, a2, f}, ∅, ∅〉
〈{a2, f}, ∅, ∅〉
〈M2.i, σ2.i, C2.i〉 τ2

〈{a1, a2, f}, {rf , r2}, ∅〉
〈{a1, a2}, {r2}, {
〈{a1}, ∅〉,
〈{a2}, {r2}〉, 〈∅, ∅〉}〉
〈{a1, f}, {rf}, ∅〉
〈{a1}, ∅, {〈∅, ∅〉}〉
〈{a2, f}, {rf , r2}, ∅〉
〈{a2}, {r2}, {〈∅, ∅〉}〉
〈{f}, {rf}, ∅〉
〈∅, ∅, ∅〉

〈M1.i, σ1.i, C1.i〉 τ1

〈{a1, a2, f}, {rc, rcf}, {
〈{a1, f}, {rcf}〉, 〈{a2, f}, {rcf}〉,
〈{f}, {rcf}〉, 〈{a1, a2}, {rc}〉,
〈{a1}, {rc}〉, 〈{a2}, {rc}〉, 〈∅, {rc}〉}〉
〈{a1, a2}, {rc, rcf}, {〈{a1}, {rc, rcf}〉,
〈{a2}, {rc, rcf}〉, 〈∅, {rc, rcf}〉}〉
〈{a1, f}, {rc, rcf}, {〈{f}, {rcf}〉,
〈{a1}, {rc}〉, 〈∅, {rc}〉}〉
〈{a1}, {rc, rcf}, {〈∅, {rc, rf}〉}〉
〈{a2, f}, {rc, rcf}, {〈{a2}, {rc}〉,
〈{f}, {rcf}〉}〉
〈{a2}, {rc, rcf}, {〈∅, {rc, rcf}〉}〉
〈{f}, {rc, rcf}, {〈∅, {rc}〉}〉
〈∅, {rc, rcf}, ∅〉

〈C1.i, ρ1.i〉 τCMOD
1

〈{a1, f}, {rcf}〉, 〈{a2, f}, {rcf}〉,
〈{f}, {rcf}〉, 〈{a1, a2}, {rc}〉, 〈{
a1}, {rc}〉, 〈{a2}, {rc}〉, 〈∅, {rc}〉

〈M1.i, σ1.i, C1.i〉 τ1

〈{a1, a2, f}, {rc, rcf}, ∅
〈{a2, f}, {rc, rcf}, ∅〉

〈M2.i, σ2.i, C2.i〉 τ2

〈{a1, a2, f}, {rf , r2}, ∅〉
〈{a2, f}, {rf , r2}, ∅〉

〈M3.i, σ3.i, C3.i〉 τ3

〈{a1, a2, f}, ∅, ∅〉
〈{a2, f}, ∅, ∅〉

Figure 3 Selected DP tables after DPSINC (left) and after M-DPSINC (right) for TD T .

χ(t1) = {a1, · · · , ak, f, rc, rcf}, χ(t2) = {a1, · · · , ak, r2, · · · , rk, rf}, and χ(t3) = ∅. Figure 3
(left) illustrates the tables for program P2 after DPSINC, whereas Figure 3 (right) presents
tables after M-DPSINC was run, which, mainly due to cleanup, are exponentially smaller
in k. Observe that in Pass 3.II, M-DPSINC “temporarily” materializes counter-witnesses for τ1
only, presented in table τCMOD

1 . Hence, using multi-pass algorithm M-DPSINC results in an
exponential speedup. Note that we can extend the program such that we have the same
effect for a TD of minimum width and even if we take the incidence graph. The program Pk

and the TD T also reveal that a different TD of the same width, where f occurs very early
in the bottom-up traversal, would result in a smaller table τ1 even when running DPSINC.

I Theorem 8 (?). For a program P of semi-incidence treewidth k = tw(S(P)), the algo-
rithm M-DPSINC is correct and runs in time O(22k+2 · ‖P‖).

4.2 Implementation Details
Efficient implementations of dynamic programming algorithms on TDs are not a by-product of
computational complexity theory and involve tuning and sophisticated algorithm engineering.
For that reason, we present additional details about implementing the M-DPSINC algorithm
into our prototypical multi-pass solver DynASP2.5.

Even though normalizing a TD (computing a nice TD) can be achieved without increasing
its width, a normalization may artificially introduce additional atoms. Normalization causes
several additional intermediate join nodes among such artificially introduced atoms requiring
a significant amount of total unnecessary computation in practice. That is why, we use
non-nice tree decompositions. In order to still ensure the theoretical runtime bounds, we
limit the number of children per node to a constant. Moreover, linking counter-witnesses to
witnesses efficiently is crucial. The main challenge is to deal with situations where a witness
might be linked to a different family of counter-witnesses depending on different predecessors
of the row (hidden in set notation of Line 9 in Listing 3). In these cases, DynASP2.5 eagerly
creates a “clone” in form of a very light-weighted proxy to the original row and ensures that
only the original row (if at all required) serves as a counter-witness during Pass 3. Together
with efficient caches of counter-witnesses, DynASP2.5 reduces the overhead caused by clones
in practice.

Dedicated data structures are vital. In DynASP2.5, sets of witnesses and satisfied rules
are represented via constant-size bit vectors. We use 32-bit integers to represent whether

J. K. Fichte, M. Hecher, M. Morak, and S. Woltran 17:11

1250

0 20 40 60

instances

[s
]

C
P

U

C
P

U
 ti

m
e St (best TD)

250

500

750

1000

Clasp 3.3.0
DynASP2.5
DynASP2.5 depgraph
DynASP2.5 joinsize

250

500

750

1000

1250

0 20 40 60

[s
]

Clasp 3.3.0
DynASP2.5
DynASP2.5 depgraph
DynASP2.5 joinsize# instances

C
P

U

C
P

U
 ti

m
e St (avg TD)

solver\time
Avg solved runtime

TO TD 3.I 3.II 3.III Σ

Clasp 3.3.0 34 - - - - 334.5

DynASP2 68 - - - - -

DynASP2.5 28 0.5 3.5 16.6 264.4 285.0

...depgraph 24 10.9 3.4 15.3 251.3 280.9

...joinsize 32 0.7 3.5 16.5 278.3 299.0

Figure 4 Cactus plots showing best and average runtime among five TDs (left). Number of
Timeouts (TO) and average runtime among solved instances (right).

an atom is set to true or a rule is satisfied in the respective bit positions according to the
bag. A restriction to 32-bit integers seems reasonable as we assume, because of practical
memory limitations, that our approach works well on TDs of width ≤ 20. Since state-of-
the-art computers handle constant-sized integers extremely efficiently, DynASP2.5 allows for
efficient projections and joins of rows, as well as subset checks. In order to not recompute
counter-witnesses (in Pass 3.II) for different witnesses, we use a three-valued notation of
counter-witness sets consisting of atoms set to true (T), false (F), or false but true in the
witness set (TW) to build the reduct. Note that only atoms occurring in negations or choice
rules are among the (TW)-atoms, since only these atoms “affect” the corresponding reducts.

Minimum width is not the only optimization goal when computing TDs by means of
heuristics. Instead, using customized TDs that not only optimize the width, but also some
other, relevant feature, works seemingly well in practice [2]. While DynASP2.5 (M-DPSINC)
does not take additional TD features into account, we also implemented a variant (DynASP2.5
depgraph), which prefers one out of ten TDs that intuitively speaking avoids to introduce
head atoms of some rule r in node t, without having encountered every body atom of r
below t, similar to atom dependencies in the program [12]. The variant DynASP2.5 joinsize
minimizes bag sizes of child nodes of join nodes, c.f. [1].

4.3 Experimental Evaluation
We performed experiments to investigate the runtime behavior of DynASP2.5 and its variants,
in order to evaluate whether our multi-pass approach can be beneficial and has practical
advantages over the classical single pass approach (DynASP2). Further, we considered the
dedicated ASP solver clasp 3.3.0. Clearly, we cannot hope to solve programs with graph
representations of high treewidth. However, programs involving real-world graphs such as
graph problems on transit graphs admit TDs of acceptable width to perform DP on TDs.
To get a first intuition, we focused on the Steiner tree problem (St) for our benchmarks.

We mainly inspected the CPU time using the average over five runs per instance (five
fixed seeds allow for some variance in the heuristic TD computation). For each run, we
limited the environment to 16 GB RAM and 1200 seconds CPU time. We used clasp with
improvements for unsatisfiable cores [3] enabled and solution printing/recording disabled.
We also benchmarked clasp with branch-and-bound, which, however, timed out on almost
every instance. The left plot in Figure 4 shows the result of always selecting the best among
five TDs, whereas the right plot shows the average running time. The table in Figure 4
reports average running times (TD computation and Passes 3.I, 3.II, 3.III) among the solved
instances and the total number of timeouts (TO). We consider an instance to time out
when all five TDs exceeded the limit. For the variants depgraph and joinsize, runtimes for

IPEC 2017

17:12 DynASP2.5: Dynamic Programming on Tree Decompositions in Action

computing and selecting among ten TDs are included. Our empirical benchmark results
confirm that DynASP2.5 exhibits competitive runtime behavior even for TDs of treewidth
around 14. Compared to clasp, DynASP2.5 is capable of additionally delivering the number
of optimal solutions. In particular, the depgraph variant shows promising runtimes.

5 Conclusion

In this paper, we presented a novel approach for ASP solving based on ideas from parameter-
ized complexity. Our algorithms run in linear time assuming bounded treewidth of the input
program. Our solver applies DP in three passes, thereby avoiding redundancies. Experimental
results indicate that our ASP solver is competitive for certain classes of instances with small
treewidth, where the latest version of the well-known solver clasp hardly keeps up. An
interesting question for future research is whether a linear amount of passes (incremental
DP) can improve the runtime behavior.

References
1 Michael Abseher, Nysret Musliu, and Stefan Woltran. htd - A free, open-source framework

for (customized) tree decompositions and beyond. In Domenico Salvagnin and Michele
Lombardi, editors, Integration of AI and OR Techniques in Constraint Programming -
14th International Conference, CPAIOR 2017, Padua, Italy, June 5-8, 2017, Proceedings,
volume 10335 of Lecture Notes in Computer Science, pages 376–386. Springer, 2017. doi:
10.1007/978-3-319-59776-8_30.

2 Michael Abseher, Nysret Musliu, and Stefan Woltran. Improving the efficiency of dynamic
programming on tree decompositions via machine learning. J. Artif. Intell. Res., 58:829–
858, 2017. doi:10.1613/jair.5312.

3 Mario Alviano and Carmine Dodaro. Anytime answer set optimization via unsatisfiable
core shrinking. TPLP, 16(5-6):533–551, 2016. doi:10.1017/S147106841600020X.

4 B. Bliem, M. Moldovan, M. Morak, and S. Woltran. The impact of treewidth on ASP
grounding and solving. In IJCAI’17, The AAAI Press, pages 852–858, 2017.

5 Bernhard Bliem, Günther Charwat, Markus Hecher, and Stefan Woltran. D-flat2: Sub-
set minimization in dynamic programming on tree decompositions made easy. Fundam.
Inform., 147(1):27–61, 2016. doi:10.3233/FI-2016-1397.

6 Hans L. Bodlaender and Arie M. C. A. Koster. Combinatorial optimization on graphs of
bounded treewidth. Comput. J., 51(3):255–269, 2008. doi:10.1093/comjnl/bxm037.

7 Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller. The pace 2017
parameterized algorithms and computational experiments challenge: The second iteration.
In IPEC’17, LIPIcs, pages 30:1—-30:13, 2017. doi:10.4230/LIPIcs.IPEC.2017.30.

8 Thomas Eiter and Georg Gottlob. On the computational cost of disjunctive logic pro-
gramming: Propositional case. Ann. Math. Artif. Intell., 15(3-4):289–323, 1995. doi:
10.1007/BF01536399.

9 J. K. Fichte, M. Hecher, and S. Woltran. DynASP2.5: Dynamic Programming on Tree
Decompositions in Action. CoRR, arXiv:1706.09370, 2017.

10 Johannes Klaus Fichte, Markus Hecher, Michael Morak, and Stefan Woltran. Answer set
solving with bounded treewidth revisited. In Marcello Balduccini and Tomi Janhunen,
editors, Logic Programming and Nonmonotonic Reasoning - 14th International Conference,
LPNMR 2017, Espoo, Finland, July 3-6, 2017, Proceedings, volume 10377 of Lecture Notes
in Computer Science, pages 132–145. Springer, 2017. doi:10.1007/978-3-319-61660-5_
13.

http://dx.doi.org/10.1007/978-3-319-59776-8_30
http://dx.doi.org/10.1007/978-3-319-59776-8_30
http://dx.doi.org/10.1613/jair.5312
http://dx.doi.org/10.1017/S147106841600020X
http://dx.doi.org/10.3233/FI-2016-1397
http://dx.doi.org/10.1093/comjnl/bxm037
http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.30
http://dx.doi.org/10.1007/BF01536399
http://dx.doi.org/10.1007/BF01536399
http://dx.doi.org/10.1007/978-3-319-61660-5_13
http://dx.doi.org/10.1007/978-3-319-61660-5_13

J. K. Fichte, M. Hecher, M. Morak, and S. Woltran 17:13

11 Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Conflict-driven answer set
solving: From theory to practice. Artif. Intell., 187:52–89, 2012. doi:10.1016/j.artint.
2012.04.001.

12 Georg Gottlob, Francesco Scarcello, and Martha Sideri. Fixed-parameter complexity
in AI and nonmonotonic reasoning. Artif. Intell., 138(1-2):55–86, 2002. doi:10.1016/
S0004-3702(02)00182-0.

13 T. Janhunen and I. Niemelä. The answer set programming paradigm. AI Magazine,
37(3):13–24, 2016. doi:10.1609/aimag.v37i3.2671.

14 Joachim Kneis, Alexander Langer, and Peter Rossmanith. Courcelle’s theorem - A game-
theoretic approach. Discrete Optimization, 8(4):568–594, 2011. doi:10.1016/j.disopt.
2011.06.001.

15 Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and implementing the stable
model semantics. Artif. Intell., 138(1-2):181–234, 2002. doi:10.1016/S0004-3702(02)
00187-X.

IPEC 2017

http://dx.doi.org/10.1016/j.artint.2012.04.001
http://dx.doi.org/10.1016/j.artint.2012.04.001
http://dx.doi.org/10.1016/S0004-3702(02)00182-0
http://dx.doi.org/10.1016/S0004-3702(02)00182-0
http://dx.doi.org/10.1609/aimag.v37i3.2671
http://dx.doi.org/10.1016/j.disopt.2011.06.001
http://dx.doi.org/10.1016/j.disopt.2011.06.001
http://dx.doi.org/10.1016/S0004-3702(02)00187-X
http://dx.doi.org/10.1016/S0004-3702(02)00187-X

Finding Connected Secluded Subgraphs∗

Petr A. Golovach1, Pinar Heggernes2, Paloma T. Lima3, and
Pedro Montealegre4

1 Department of Informatics, University of Bergen, Norway
petr.golovach@ii.uib.no

2 Department of Informatics, University of Bergen, Norway
pinar.heggernes@ii.uib.no

3 Department of Informatics, University of Bergen, Norway
paloma.lima@ii.uib.no

4 Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
p.montealegre@uai.cl

Abstract
Problems related to finding induced subgraphs satisfying given properties form one of the most
studied areas within graph algorithms. Such problems have given rise to breakthrough results and
led to development of new techniques both within the traditional P vs NP dichotomy and within
parameterized complexity. The Π-Subgraph problem asks whether an input graph contains an
induced subgraph on at least k vertices satisfying graph property Π. For many applications, it
is desirable that the found subgraph has as few connections to the rest of the graph as possible,
which gives rise to the Secluded Π-Subgraph problem. Here, input k is the size of the desired
subgraph, and input t is a limit on the number of neighbors this subgraph has in the rest of the
graph. This problem has been studied from a parameterized perspective, and unfortunately it
turns out to be W[1]-hard for many graph properties Π, even when parameterized by k + t. We
show that the situation changes when we are looking for a connected induced subgraph satisfying
Π. In particular, we show that the Connected Secluded Π-Subgraph problem is FPT when
parameterized by just t for many important graph properties Π.

1998 ACM Subject Classification G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases Secluded subgraph, forbidden subgraphs, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.18

1 Introduction

Vertex deletion problems are central in parameterized algorithms and complexity, and they
have contributed hugely to the development of new algorithmic methods. The Π-Deletion
problem, with input a graph G and an integer `, asks whether at most ` vertices can be
deleted from G so that the resulting graph satisfies graph property Π. Its dual, the Π-
Subgraph problem, with input G and k, asks whether G contains an induced subgraph on
at least k vertices satisfying Π. The problems were introduced already in 1980 by Yannakakis
and Lewis [11], who showed their NP-completeness for almost all interesting graph properties
Π. During the last couple of decades, these problems have been studied extensively with
respect to parameterized complexity and kernelization, which has resulted in numerous new
techniques and methods in these fields [4, 5].

∗ This work is supported by Research Council of Norway via project “CLASSIS”.

© Petr A. Golovach, Pinar Heggernes, Paloma T. Lima, and Pedro Montealegre;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 18; pp. 18:1–18:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 Finding Connected Secluded Subgraphs

In many network problems, the size of the boundary between the subgraph that we are
looking for and the rest of the graph makes a difference. A small boundary limits the
exposure of the found subgraph, and notions like isolated cliques have been studied in this
respect [7, 8, 10]. Several measures for the boundary have been proposed; in this work we
use the open neighborhood of the returned induced subgraph. For a set of vertices U of a
graph G and a positive integer t, we say that U is t-secluded if |NG(U)| ≤ t. Analogously, an
induced subgraph H of G is t-secluded if the vertex set of H is t-secluded. For a given graph
property Π, we get the following formal definition of the problem Secluded Π-Subgraph.

Input: A graph G and nonnegative integers k and t.
Task: Decide whether G contains a t-secluded induced subgraph H on at least k vertices,

satisfying Π.

Secluded Π-Subgraph

Lewis and Yannakakis [11] showed that Π-Subgraph is NP-complete for every hereditary
nontrivial graph property Π. This immediately implies that Secluded Π-Subgraph is
NP-complete for every such Π. As a consequence, the interest has shifted towards the
parameterized complexity of the problem, which has been studied by van Bevern et al. [14]
for several classes Π. Unfortunately, in most cases Secluded Π-Subgraph proves to be
W[1]-hard, even when parameterized by k+t. In particular, it is W[1]-hard to decide whether
a graph G has a t-secluded independent set of size k when the problem is parameterized by
k + t [14]. In this extended abstract, we show that the situation changes when the secluded
subgraph we are looking for is required to be connected, in which case we are able to obtain
positive results that apply to many properties Π. In fact, connectivity is central in recently
studied variants of secluded subgraphs, like Secluded Path [2, 9] and Secluded Steiner
Tree [6]. However, in these problems the boundary measure is the closed neighborhood
of the desired path or the steiner tree, connecting a given set of vertices. The following
formal definition describes the problem that we study in this extended abstract, Connected
Secluded Π-Subgraph. For generality, we define a weighted problem.

Input: A graph G, a weight function ω : V (G)→ Z>0, a nonnegative integer t and a positive
integer w.

Task: Decide whether G contains a connected t-secluded induced subgraph H with
ω(V (H)) ≥ w, satisfying Π.

Connected Secluded Π-Subgraph

Observe that Connected Secluded Π-Subgraph remains NP-complete for all hered-
itary nontrivial graph properties Π, following the results of Yannakakis [15]. It can be also
seen that Connected Secluded Π-Subgraph parameterized by w is W[1]-hard even for
unit weights, if it is W[1]-hard with parameter k to decide whether G has a connected
induced subgraph on at least k vertices, satisfying Π (see, e.g., [5, 13]).

It is thus more interesting to consider parameterization by t. We consider Connected
Secluded Π-Subgraph for all graph properties Π that are characterized by finite sets F
of forbidden induced subgraphs and refer to this variant of the problem as Connected
Secluded F-Free Subgraph. We show that the problem is fixed parameter tractable
when parameterized by t by proving the following theorem.

I Theorem 1. Connected Secluded F-Free Subgraph can be solved in time 222O(t log t)

·
nO(1).

In this extended abstract, we only sketch the proofs and omit some of them due to space
constraints.

P.A. Golovach, P. Heggernes, P. Lima, and P. Montealegre 18:3

2 Preliminaries

We consider only finite undirected graphs. We use n to denote the number of vertices and
m the number of edges of the considered graphs unless it creates confusion. A graph G is
identified by its vertex set V (G) and edge set E(G). For U ⊆ V (G), we write G[U] to denote
the subgraph of G induced by U . We write G − U to denote the graph G[V (G) \ U]; for a
single-element U = {u}, we write G−u. A set of vertices U is connected if G[U] is a connected
graph. For a vertex v, we denote by NG(v) the (open) neighborhood of v in G, i.e., the set
of vertices that are adjacent to v in G. For a set U ⊆ V (G), NG(U) = (∪v∈U NG(v)) \ U .
We denote by NG[v] = NG(v) ∪ {v} the closed neighborhood of v; respectively, NG[U] =
∪v∈U NG[v]). The degree of a vertex v is dG(v) = |NG(v)|. A set of vertices S ⊂ V (G) of a
connected graph G is a separator if G− S is disconnected. A vertex v is a cut vertex if {v}
is a separator.

A graph property is hereditary if it is preserved under vertex deletion, or equivalently,
under taking induced subgraphs. A graph property is trivial if either the set of graphs
satisfying it, or the set of graphs that do not satisfy it, is finite. Let F be a graph. We
say that a graph G is F -free if G has no induced subgraph isomorphic to F . For a set of
graphs F , a graph G is F-free if G is F -free for every F ∈ F . Let Π be the property of
being F-free. Then, depending on whether F is a finite or an infinite set, we say that Π is
characterized by a finite / infinite set of forbidden induced subgraphs.

We use the recursive understanding technique introduced by Chitnis et al. [3] for graph
problems to solve Connected Secluded Π-Subgraph when Π is defined by forbidden
induced subgraphs or Π is the property to be a forest. This powerful technique is based on
the following idea. Suppose that the input graph has a vertex separator of bounded size that
separates the graph into two sufficiently big parts. Then we solve the problem recursively
for one of the parts and replace this part by an equivalent graph such that the replacement
keeps all essential (partial) solutions of the original part. By such a replacement we obtain a
graph of smaller size. Otherwise, if there is no separator of bounded size separating graphs
into two big parts, then either the graph has bounded size or it is highly connected, and we
exploit these properties. We need the following notions and results from Chitnis et al. [3].

Let G be a graph. A pair (A, B), where A, B ⊆ V (G) and A∪B = V (G), is a separation
of G of order |A ∩ B| if G has no edge uv with u ∈ A \ B and v ∈ B \ A, i.e., A ∩ B is an
(A, B)-separator. Let q and k be nonnegative integers. A graph G is (q,k)-unbreakable if
for every separation (A, B) of G of order at most k, |A \B| ≤ q or |B \A| ≤ q. Combining
Lemmas 19, 20 and 21 of [3], we obtain the following.

I Lemma 2 ([3]). Let q and k be nonnegative integers. There is an algorithm with running
time 2O(min{q,k} log(q+k)) · n3 log n that, for a graph G, either finds a separation (A, B) of
order at most k such that |A \ B| > q and |B \ A| > q, or correctly reports that G is
((2q + 1)q · 2k, k)-unbreakable.

We conclude this section by noting that the following variant of Connected Secluded
Π-Subgraph is FPT when parameterized by k + t. We will rely on this result in the
subsequent sections, however we believe that it is also of interest on its own.

Input: A graph G, coloring c : V (G)→ N, a weight function ω : V (G)→ Z≥0 and nonnegat-
ive integers k, t and w.

Task: Decide whether G contains a connected t-secluded induced subgraph H such that
(H, c′), where c′(v) = c|V (H)(v), satisfies Π, |V (H)| = k and ω(V (H)) ≥ w.

Connected Secluded Colored Π-Subgraph of Exact Size

IPEC 2017

18:4 Finding Connected Secluded Subgraphs

We say that a mapping c : V (G)→ N is a coloring of G; note that we do not demand a
coloring to be proper. Analogously, we say that Π is a property of colored graphs if Π is a
property on pairs (G, c), where G is a graph and c is a coloring. Notice that if some vertices
of the input graph have labels, then we can assign to each label (or a combination of labels if
a vertex can have several labels) a specific color and assign some color to unlabeled vertices.
Then we can redefine a considered graph property with the conditions imposed by labels
as a property of colored graphs. Observe that we allow zero weights. Our next theorem
presents two possible running times for the mentioned cases. The latter running times will
be useful when k � t.

I Theorem 3. If property Π can be recognized in time f(n), then Connected Secluded
Colored Π-Subgraph of Exact Size can be solved both in time 2k+t · f(k) · nO(1), and
in time 2O(min{k,t} log(k+t)) · f(k) · nO(1).

In particular, the theorem implies that if Π can be recognized in polynomial time, then
Connected Secluded Colored Π-Subgraph of Exact Size can be solved both in
time 2k+t · nO(1), and in time 2O(min{k,t} log(k+t)) · nO(1).

3 Solving Connected Secluded F-Free Subgraph

In this section we prove Theorem 1. Throughout this section, we assume that we are given
a fixed finite set F of graphs.

Recall that to apply the recursive understanding technique introduced by Chitnis et
al. [3], we should be able to recurse when the input graph contains a separator of bounded
size that separates the graph into two sufficiently big parts. To do this, we have to combine
partial solutions in both parts. A danger in our case is that a partial solution in one part
might contain a subgraph of a graph in F . We have to avoid creating subgraphs belonging
to F when we combine partial solutions. To achieve this goal, we need some definitions and
auxiliary combinatorial results.

Let p be a nonnegative integer. A pair (G, x), where G is a graph and x = (x1, . . . , xp)
is a p-tuple of distinct vertices of G, is called a p-boundaried graph or simply a boundaried
graph. Respectively, x = (x1, . . . , xp) is a boundary. Note that a boundary is an ordered
set. Hence, two p-boundaried graphs that differ only by the order of the vertices in theirs
boundaries are distinct. Observe also that a boundary could be empty. We say that (G, x) is
a properly p-boundaried graph if each component of G has at least one vertex of the boundary.
Slightly abusing notation, we may say that G is a (p-) boundaried graph assuming that a
boundary is given.

Two p-boundaried graphs (G1, x(1)) and (G2, x(2)), where x(h) = (x(h)
1 , . . . , x

(h)
p) for

h = 1, 2, are isomorphic if there is an isomorphism of G1 to G2 that maps each x
(1)
i to x

(2)
i

for i ∈ {1, . . . , p}. We say that (G1, x(1)) and (G2, x(2)) are boundary-compatible if for any
distinct i, j ∈ {1, . . . , p}, x

(1)
i x

(1)
j ∈ E(G1) if and only if x

(2)
i x

(2)
j ∈ E(G2).

Let (G1, x(1)) and (G2, x(2)) be boundary-compatible p-boundaried graphs and let x(h) =
(x(h)

1 , . . . , x
(h)
p) for h = 1, 2. We define the boundary sum (G1, x(1))⊕b (G2, x(2)) (or simply

G1 ⊕b G2) as the (non-boundaried) graph obtained by taking vertex disjoint copies of G1
and G2 and identifying x

(1)
i and x

(2)
i for each i ∈ {1, . . . , p}.

Let G be a graph and let y = (y1, . . . , yp) be a p-tuple of vertices of G. For an s-
boundaried graph (H, x) with the boundary x = (x1, . . . , xs) and pairwise distinct i1, . . . , is ∈
{1, . . . , p}, we say that H is an induced boundaried subgraph of G with respect to (yi1 , . . . , yis

)
if G contains an induced subgraph H ′ isomorphic to H such that the corresponding isomorph-
ism of H to H ′ maps xj to yij

for j ∈ {1, . . . , s} and V (H ′) ∩ {y1, . . . , yp} = {yi1 , . . . , yis
}.

P.A. Golovach, P. Heggernes, P. Lima, and P. Montealegre 18:5

We construct the set of boundaried graphs Fb as follows. For each F ∈ F , each separation
(A, B) of F and each p = |A ∩ B|-tuple x of the vertices of (A ∩ B), we include (F [A], x)
in Fb unless it already contains an isomorphic boundaried graph. We say that two properly
p-boundaried graphs (G1, x(1)) and (G2, x(2)), where x(h) = (x(h)

1 , . . . , x
(h)
p) for h = 1, 2, are

equivalent (with respect to Fb) if
(i) (G1, x(1)) and (G2, x(2)) are boundary-compatible,
(ii) for any i, j ∈ {1, . . . , p}, x

(1)
i and x

(1)
j are in the same component of G1 if and only if

x
(2)
i and x

(2)
j are in the same component of G2,

(iii) for any pairwise distinct i1, . . . , is ∈ {1, . . . , p}, G1 contains an s-boundaried induced
subgraph H ∈ Fb with respect to the s-tuple (x(1)

i1
, . . . , x

(1)
is

) if and only if H is an
induced subgraph of G2 with respect to the s-tuple (x(2)

i1
, . . . , x

(2)
is

).
It is straightforward to verify that the introduced relation is indeed an equivalence relation
on the set of properly p-boundaried graphs. The following property of the equivalence with
respect to Fb is crucial for our algorithm.

I Lemma 4. Let (G, x), (H1, y(1)) and (H2, y(2)) be boundary-compatible p-boundaried
graphs, x = (x1, . . . , xp) and y(h) = (y(h)

1 , . . . , y
(h)
p) for h = 1, 2. If (H1, y(1)) and (H2, y(2))

are equivalent with respect to Fb, then (G, x)⊕b (H1, y(1)) is F-free if and only if (G, x)⊕b

(H2, y(2)) is F-free.

It also should be noted that the equivalence of two properly p-boundaried graphs can be
checked in polynomial time.

For each nonegative integer p, we consider a set Gp of properly p-boundaried graphs
obtained by picking a graph with minimum number of vertices in each equivalence class.
We show that the size of Gp and the size of each graph in the set is upper bounded by some
functions of p, and this set can be constructed in time that depends only on p assuming that
Fb is fixed.

I Lemma 5. For every positive integer p, |Gp| = 2O(p2), and for every H ∈ G′p, |V (H)| =
pO(1), where the constants hidden in the O-notations depend on F only. Moreover, for every
p-boundaried graph G, the number of p-boundaried graphs in Gp that are compatible with G

is 2O(p log p).

Consider now the class C of p-boundaried graphs, such that a p-boundaried graph
(G, (x1, . . . , xp}) ∈ C if and only if it holds that for every component H of G−{x1, . . . , xp},
NG(V (H)) = {x1, . . . , xp}. We consider our equivalence relation with respect to Fb on C
and define G′p as follows. In each equivalence class, we select a graph (G, (x1, . . . , xp}) ∈ C
such that both the number of components of G−{x1, . . . , xp} is minimum and the number of
vertices of G is minimum subject to the first condition, and then include it in G′p. Similarly
to Lemma 5 we show the following.

I Lemma 6. For every positive integer p, |G′p| = 2O(p2), and for each H ∈ Gp, |V (H)| =
pO(1), and the constants hidden in the O-notations depend on F only. Moreover, for any
p-boundaried graph G, the number of p-boundaried graphs in G′p that are compatible with G

is pO(1).

Lemmas 5 and 6 immediately imply that Gp and G′p can be constructed by brute force.

I Lemma 7. The sets Gp and G′p can be constructed in time 2pO(1) .

To apply the recursive understanding technique, we also have to solve a special variant of
Connected Secluded Π-Subgraph tailored for recursion. First, we define the following
auxiliary problem for a positive integer w.

IPEC 2017

18:6 Finding Connected Secluded Subgraphs

Input: A graph G, sets I, O, B ⊆ V (G) such that I ∩O = ∅ and I ∩B = ∅, a weight function
ω : V (G)→ Z≥0 and a nonnegative integer t.

Task: Find a t-secluded F-free induced connected subgraph H of G of maximum weight or
weight at least w such that I ⊆ V (H), O ⊆ V (G) \ V (H) and NG(V (H)) ⊆ B and
output ∅ if such a subgraph does not exist.

Maximum or w-Weighted Connected Secluded F-Free Subgraph

Notice that Maximum or w-Weighted Connected Secluded F-Free Subgraph
is an optimization problem and a solution is either an induced subgraph H of maximum
weight or of weight at least w, or ∅. Observe also that we allow zero weights for technical
reasons.

We recurse if we can separate graphs by a separator of bounded size into two big parts
and we use the vertices of the separator to combine partial solutions in both parts. This
leads us to the following problem. Let (G, I, O, B, ω, t) be an instance of Maximum or
w-Weighted Connected Secluded F-Free Subgraph and let T ⊆ V (G) be a set
of border terminals. We say that an instance (G′, I ′, O′, B′, ω′, t′) is obtained by a border
complementation if there is a partition (X, Y, Z) of T (some sets could be empty), where
X = {x1, . . . , xp}, such that Y = ∅ if X = ∅, I ∩ T ⊆ X, O ∩ T ⊆ Y ∪ Z and Y ⊆ B,
and there is a p-boundaried graph (H, y) ∈ Gp such that (H, y) and (G, (x1, . . . , xp)) are
boundary-compatible, and the following holds:
(i) G′ is obtained from (G, (x1, . . . , xp))⊕b (H, y) (we keep the notation X = {x1, . . . , xp}

for the set of vertices obtained by the identification in the boundary sum) by adding
edges joining every vertex of V (H) with every vertex of Y ,

(ii) I ′ = I ∪ V (H),
(iii) O′ = O ∪ Y ∪ Z,
(iv) B′ = B \X,
(v) ω′(v) = ω(v) for v ∈ V (G) and ω′(v) = 0 for v ∈ V (H) \X,
(vi) t′ ≤ t.
We also say that (G′, I ′, O′, B′, w′, t′) is a border complementation of (G, I, O, B, w, t) with
respect to (X = {x1, . . . , xp}, Y, Z, H). We say that (X = {x1, . . . , xp}, Y, Z, H) is feasible if
it holds that Y = ∅ if X = ∅, I ∩ T ⊆ X, O ∩ T ⊆ Y ∪Z and Y ⊆ B, and the p-boundaried
graph H ∈ Gp and (G, (x1, . . . , xp)) are boundary-compatible.

Input: A graph G, sets I, O, B ⊆ V (G) such that I ∩O = ∅ and I ∩B = ∅, a weight function
ω : V (G)→ Z≥0, a nonnegative integer t, and a set T ⊆ V (G) of border terminals of
size at most 2t.

Task: Output a solution for each instance (G′, I ′, O′, B′, w′, t′) of Maximum or w-
Weighted Connected Secluded F-Free Subgraph that can be obtained from
(G, I, O, B, w, t) by a border complementation distinct from the border complement-
ation with respect to (∅, ∅, T, ∅), and for the border complementation with respect
to (∅, ∅, T, ∅) output a nonempty solution if it has weight at least w and output ∅
otherwise.

Bordered Maximum or w-Weighted Connected Secluded F-Free Subgraph

Two instances (G1, I1, O1, B1, ω1, t, T) and (G2, I2, O2, B2, ω2, t, T) of Bordered Max-
imum or w-Weighted Connected Secluded F-Free Subgraph (note that t and T

are the same) are said to be equivalent if
(i) T ∩ I1 = T ∩ I2, T ∩O1 = T ∩O2 and T ∩B1 = T ∩B2,
(ii) for the border complementations (G′1, I ′1, O′1, B′1, ω′1, t′) and (G′2, I ′2, O′2, B′2, ω′2, t′) of the

instances (G1, I1, O1, B1, ω1, t′) and (G2, I2, O2, B2, ω2, t′) respectively of Maximum or

P.A. Golovach, P. Heggernes, P. Lima, and P. Montealegre 18:7

w-Weighted Connected Secluded F-Free Subgraph with respect to every feas-
ible (X = {x1, . . . , xp}, Y, Z, H) and t′ ≤ t, it holds that
(a) if (G′1, I ′1, O′1, B′1, ω′1, t′) has a nonempty solution R1, then (G′2, I ′2, O′2, B′2, ω′2, t′) has

a nonempty solution R2 with w′2(V (R2)) ≥ min{ω′1(V (R1)), w} and, vice versa,
(b) if (G′2, I ′2, O′2, B′2, ω′2, t′) has a nonempty solution R2, then (G′1, I ′1, O′1, B′1, ω′1, t′)

has a nonempty solution R1 with ω′1(V (R1)) ≥ min{ω′2(V (R2)), w}.
Strictly speaking, if (G1, I1, O1, B1, ω1, t, T) and (G2, I2, O2, B2, ω2, t, T) are equivalent, then
a solution of the first problem is not necessarily a solution of the second. Nevertheless,
Bordered Maximum or w-Weighted Connected Secluded F-Free Subgraph is
an auxiliary problem and in the end we use it to solve an instance (G, ω, t, w) of Connec-
ted Secluded F-Free Subgraph by calling the algorithm for Bordered Maximum
or w-Weighted Connected Secluded F-Free Subgraph for (G, ∅, ∅, V (G), ω, t, ∅).
Clearly, (G, ω, t, w) is a yes-instance if and only if a solution for the corresponding instance
of Bordered Maximum or w-Weighted Connected Secluded F-Free Subgraph
contains a connected subgraph R with ω(V (R)) ≥ w. It allows us to not distinguish equival-
ent instances of Bordered Maximum or w-Weighted Connected Secluded F-Free
Subgraph and their solutions.

3.1 High connectivity phase
In this section we solve Bordered Maximum or w-Weighted Connected Secluded
F-Free Subgraph for (q, t)-unbreakable graphs. The following lemma shows that we
can separately lists all graphs R in a solution of Bordered Maximum or w-Weighted
Connected Secluded F-Free Subgraph with |V (R)∩V (G)| ≤ q and all graphs R with
|V (G) \ V (R)| ≤ q + t.

I Lemma 8. Let (G, I, O, B, ω, t, T) be an instance of Bordered Maximum or
w-Weighted Connected Secluded F-Free Subgraph where G is a (q, t)-unbreakable
graph for a positive integer q. Then for each nonempty graph R in a solution of Bordered
Maximum or w-Weighted Connected Secluded F-Free Subgraph, either |V (R)∩
V (G)| ≤ q or |V (G) \ V (R)| ≤ q + t.

To list R with |V (R)∩V (G)| ≤ q, we use Theorem 3. To list R with |V (G)\V (R)| ≤ q+t,
we use important separators defined by Marx in [12]. The main observation in this second
case is that if |V (G) \V (R)| ≤ q + t, then there is a hitting set S of size at most q + t for all
copies of graphs of F that lies outside R in the corresponding graph. Moreover, hitting sets
of size at most q + t can be enumerated in FPT time. Then we can use important separators
between the closed neighborhood of I and S ∪O to find R. It gives us the following crucial
lemma.

I Lemma 9. Bordered Maximum or w-Weighted Connected Secluded F-Free
Subgraph for (q, t)-unbreakable graphs can be solved in time 2(q+t log(q+t))) ·nO(1) if the sets
Gp for p ≤ 2t are given.

3.2 The FPT algorithm for Connected Secluded F-Free Subgraph
In this section we construct an FPT algorithm for Connected Secluded F-Free Sub-
graph parameterized by t. We do this by solving Bordered Maximum or w-Weighted
Connected Secluded F-Free Subgraph in FPT-time for general case.

I Lemma 10. Bordered Maximum or w-Weighted Connected Secluded F-Free
Subgraph can be solved in time 222O(t log t)

· nO(1).

IPEC 2017

18:8 Finding Connected Secluded Subgraphs

Sketch of the Proof. Given F , we construct the set Fb. Then we use Lemma 7 to construct
the sets Gp for p ∈ {0, . . . , t} in time 2tO(1) .

By Lemma 5, there is a constant c that depends only on F such that for every nonnegative
p and for any p-boundaried graph G, there are at most 2cp log p p-boundaried graphs in Gp

that are compatible with G and there are at most pc p-boundaried graphs in G′p that are
compatible with G. We define

q = 2((t+1)t32t2c2t log(2t)+2t) · 2((t + 1)t32t2c2t log(2t) + 2t)ctc + (t + 1)t32t2c2t log(2t) + 2t. (1)

The choice of q will become clear later in the proof. Notice that q = 22O(t log t) .
Consider an instance (G, I, O, B, ω, t, T) of Bordered Maximum or w-Weighted

Connected Secluded F-Free Subgraph.
We use the algorithm from Lemma 2 for G. This algorithm in time 22O(t log t) ·nO(1) either

finds a separation (U, W) of G of order at most t such that |U \W | > q and |W \ U | > q

or correctly reports that G is ((2q + 1)q · 2t, t)-unbreakable. In the latter case we solve
the problem using Lemma 9 in time 222O(t log t)

· nO(1). Assume from now that there is a
separation (U, W) of order at most t such that |U \W | > q and |W \ U | > q.

Recall that |T | ≤ 2t. Then |T ∩ (U \W)| ≤ t or |T ∩ (W \ U)| ≤ t. Assume without
loss of generality that |T ∩ (W \ U)| ≤ t. Let G̃ = G[W], Ĩ = I ∩W , Õ = O ∩W , ω̃ is the
restriction of ω to W , and define T̃ = (T ∩W) ∪ (U ∩W). Since |U ∩W | ≤ t, |T̃ | ≤ 2t.

If |W | ≤ (2q + 1)q · 2t, then we solve Bordered Maximum or w-Weighted Con-
nected Secluded F-Free Subgraph for the instance (G̃, Ĩ, Õ, B̃, ω̃, t, T̃) by brute force
in time 222O(t log t)

trying all possible subset of W and at most t + 1 values of 0 ≤ t′ ≤ t.
Otherwise, we solve (G̃, Ĩ, Õ, B̃, ω̃, t, T̃) recursively. Let R be the set of nonempty induced
subgraphs R that are included in the obtained solution for (G̃, Ĩ, Õ, B̃, ω̃, t, T̃).

For R ∈ R, define SR to be the set of vertices of W \ V (R) that are adjacent to the
vertices of R in the graph obtained by the border complementation for which R is a solution
of the corresponding instance of Maximum or w-Weighted Connected Secluded F-
Free Subgraph. Note that |SR| ≤ t. If R 6= ∅, then let S = T̃ ∪R∈R SR, and S = T̃ if
R = ∅. Since Maximum or w-Weighted Connected Secluded F-Free Subgraph
is solved for at most t + 1 of values of t′ ≤ t, at most 32t three-partitions (X, Y, Z) of T̃

and at most 2c2t log(2t) choices of a p-boundaried graph H ∈ Fb for p = |X|, we have that
|R| ≤ (t + 1)32t2c2t log(2t). Taking into account that |T ′| ≤ 2t,

|S| ≤ (t + 1)t32t2c2t log(2t) + 2t. (2)

Let B̂ = (B ∩ U) ∪ (B ∩ S). We claim that the instances (G, I, O, B, ω, t, T) and
(G, I, O, B̂, ω, t, T) of Bordered Maximum or w-Weighted Connected Secluded
F-Free Subgraph are equivalent.

Since, (G, I, O, B, ω, t, T) and (G, I, O, B̂, ω, t, T) of Bordered Maximum or
w-Weighted Connected Secluded F-Free Subgraph are equivalent, we can consider
(G, I, O, B̂, ω, t, T). Now we apply some reduction rules that produce equivalent instances
of Bordered Maximum or w-Weighted Connected Secluded F-Free Subgraph
or report that we have no solution. The ultimate aim of these rules is to reduce the size of
G.

Let Q be a component of G[W]−S. Notice that for any nonempty graph R in a solution
of (G, I, O, B̂, w, t, T), either V (Q) ⊆ V (R) or V (Q) ∩ V (R) = ∅, because NG[W](V (R)) ⊆
S. Moreover, if V (Q) ∩ V (R) = ∅, then NG[W][V (Q)] ∩ V (R) = ∅. Notice also that if
v ∈ NG[W](V (Q)) is a vertex of R, then V (Q) ⊆ V (R). These observation are crucial for
the following reduction rules.

P.A. Golovach, P. Heggernes, P. Lima, and P. Montealegre 18:9

I Reduction Rule 3.1. For a component Q of G[W]−S do the following in the given order:
if NG[W][V (Q)] ∩ I 6= ∅ and V (Q) ∩O 6= ∅, then return ∅ and stop,
if NG[W][V (Q)] ∩ I 6= ∅, then set I = I ∪ V (Q),
if V (Q) ∩O 6= ∅, then set O = O ∪NG[W][V (Q)].

The rule is applied to each component Q exactly once. Notice that after application of
the rule, for every component Q of G[W]− S, we have that either V (Q) ⊆ I or V (Q) ⊆ O

or V (Q) ∩ (I ∪O ∪ B̂) = ∅.
Suppose that Q1 and Q2 are components of G[W] − S such that NG[W](V (Q1)) =

NG[W](V (Q2)) and |NG[W](V (Q1))| = |NG[W](V (Q2))| > t. Then if V (Q1) ⊆ V (R)
for a nonempty graph R in a solution of (G, I, O, B̂, ω, t, T), then at least one vertex of
NG[W](V (Q1)) is in R as R have at most t neighbors outside R. This gives the next rule.

I Reduction Rule 3.2. For components Q1 and Q2 of G[W]−S such that NG[W](V (Q1)) =
NG[W](V (Q2)) and |NG[W](V (Q1))| = |NG[W](V (Q2))| > t do the following in the given
order:

if (V (Q1) ∪ V (Q2)) ∩ I 6= ∅ and (V (Q1) ∪ V (Q2)) ∩O 6= ∅, then return ∅ and stop,
if (V (Q1) ∪ V (Q2)) ∩ I 6= ∅, then set I = I ∪ (V (Q1) ∪ V (Q2)),
if (V (Q1) ∪ V (Q2)) ∩O 6= ∅, then set O = O ∪NG[W][V (Q1) ∪ V (Q2)].

We apply the rule for all pairs of components Q1 and Q2 with NG[W](V (Q1)) =
NG[W](V (Q2)) and |NG[W](V (Q1))| = |NG[W](V (Q2))| > t, and for each pair the rule is
applied once.

If V (Q) ⊆ O for a component Q of G[W]− S, then NG[W](V (Q)) ⊆ O. It immediately
implies that the vertices of Q are irrelevant and can be removed.

I Reduction Rule 3.3. If there is a component Q of G[W]−S such that NG[W](V (Q)) ⊆ O,
then set G = G− V (Q), W = W \ V (Q) and O = O \ V (Q).

Notice that for each component Q, we have that either V (Q) ⊆ I or V (Q) ⊆ W \ (I ∪
O ∪ B̂).

To define the remaining rules, we construct the sets G′p for p ∈ {0, . . . , |S|} in time
22O(t log t) using Lemma 7.

Let Q be a component of G[W]− S and let NG[W](V (Q)) = {x1, . . . , xp}. Let G′ be the
graph obtained from G by the deletion of the vertices of V (Q) and let x = (x1, . . . , xp). Let
(H, y) be a connected p-boundaried graph of the same weight as G[NG[W][V (Q)]]. Then by
Lemma 4, we have that the instance of Bordered Maximum or w-Weighted Connec-
ted Secluded F-Free Subgraph obtained from (G, I, O, B̂, ω, t, T) by the replacement
of G by (G′, x) ⊕b (H, y) is equivalent to (G, I, O, B̂, ω, t, T). We use it in the remaining
reduction rules.

Suppose again that Q1 and Q2 are components of G[W]−S such that NG[W](V (Q1)) =
NG[W](V (Q2)) and |NG[W](V (Q1))| = |NG[W](V (Q2))| > t. Then, as we already noticed, if
V (Q1)∪V (Q2) ⊆ V (R) for a nonempty graph R in a solution of (G, I, O, B̂, ω, t, T), then at
least one vertex of NG[W](V (Q1)) is in R. It means that if we are constructing a solution R,
then the restriction of the size of the neighborhood of R ensures the connectivity between
Q1 and Q2 if we decide to include these components in R. Together with Lemma 4 this
shows that the following rule is safe.

I Reduction Rule 3.4. Let L = {x1, . . . , xp} ⊆ S, p > t, and let x = (x1, . . . , xp). Let
also Q1, . . . , Qr,r ≥ 1, be the components of G[W] − S with NG[W](V (Qi)) = L for all i ∈
{1, . . . , r}. Let Q = G[∪r

i=1NG[W][V (Qi)]] and w′ =
∑r

i=1 ω(V (Qi)). Find a p-boundaried

IPEC 2017

18:10 Finding Connected Secluded Subgraphs

graph (H, y) ∈ G′p that is equivalent to (Q, x) with respect to Fb and denote by A the set of
nonboundary vertices of H. Then do the following.

Delete the vertices of V (Q1), . . . , V (Qr) from G and denote the obtained graph G′.
Set G = (G′, x)⊕b (H, y) and W = (W \ ∪r

i=1V (Qi)) ∪A.
Select arbitrarily u ∈ A and modify ω as follows:

keep the weight same for every v ∈ V (G′) including the boundary vertices x1, . . . , xp,
set ω(v) = 0 for v ∈ A \ {u},
set ω(u) = w′.

If V (Q1) ⊆ I, then set I = I \ (∪r
i=1V (Qi)) ∪A.

The rule is applied exactly once for each inclusion maximal sets of components {Q1, . . . ,

Qr} having the same neighborhood of size at least t + 1.
We cannot apply this trick if we have several components Q1, . . . , Qr of G[W]− S with

the same neighborhood NG[W](V (Qi)) if |NG[W](V (Qi))| ≤ t. Now it can happen that there
are i, j ∈ {1, . . . , r} such that V (Qi) ⊆ V (R) and NG[W][V (Qj)] ∩ V (R) = ∅ for R in a
solution of (G, I, O, B̂, ω, t, T). But if NG[W][V (Qj)] ∩ V (R) = ∅ , then by the connectivity
of R and the fact that G[W]− S does not contain border terminals, we have that R = Qi.
Notice that I = ∅ in this case and, in particular, it means that R is a solution for an instance
of Maximum or w-Weighted Connected Secluded F-Free Subgraph obtained by
the border complementation with respect to (∅, ∅, T, ∅). Recall that we output R in this
case only if its weight is at least w. Still, we can modify Reduction Rule 3.4 for the case
when there are components Q of G[W] − S such that V (Q) ⊆ I. Notice that if there are
components Q0, . . . , Qr of G[W]− S with the same neighborhood and V (Q0) ⊆ I, then for
any nonempty R in a solution of (G, I, O, B̂, ω, t, T), either R = Q0 or ∪r

i=0V (Qi) ⊆ V (R).
Applying Lemma 4, we obtain that the following rule is safe.

I Reduction Rule 3.5. Let L = {x1, . . . , xp} ⊆ S, p ≤ t, and let x = (x1, . . . , xp). Let
also Q0, . . . , Qr,r ≥ 0, be the components of G[W] − S with NG[W](V (Qi)) = L for all i ∈
{0, . . . , r} such that V (Q0) ⊆ I. Let Q = G[∪r

i=1NG[W][V (Qi)]] and w′ =
∑r

i=1 ω(V (Qi)).
Find a p-boundaried graph (H0, y) ∈ G′p that is equivalent to (Q0, x) with respect to Fb

and denote by A0 the set of nonboundary vertices of H0, and find a p-boundaried graph
(H, y) ∈ G′p that is equivalent to (Q, x) with respect to Fb and denote by A the set of
nonboundary vertices of H. Then do the following.

Delete the vertices of V (Q0), . . . , V (Qr) from G and denote the obtained graph G′.
Set G = (((G′, x)⊕b (H0, y)), y)⊕b (H, y) and W = (W \ ∪r

i=0V (Qi)) ∪A0 ∪A.
Select arbitrarily u ∈ A0 and v ∈ A and modify ω as follows:

keep the weight same for every z ∈ V (G′) including the boundary vertices x1, . . . , xp,
set ω(z) = 0 for z ∈ (A0 \ {u}) ∪ (A \ {v}),
set ω(u) = ω(V (Q0)) and ω(v) = w′.

If V (Qi) ⊆ I for some i ∈ {1, . . . , r}, then set I = I \ (∪r
i=1V (Qi)) ∪A.

Assume now that we have an inclusion maximal set of components {Q1, . . . ,Qr} of
G[W] − S with the same neighborhoods NG[W] = {x1, . . . , xp} such that the p-boundaried
graphs (G[NG[W][V (Qi)]], (x1, . . . , xp)) and (G[NG[W][V (Qj)]], (x1, . . . , xp)) are equivalent
with respect to Fb for each i, j ∈ {1, . . . , p}. Suppose also that V (Qi) ∩ I = ∅ for i ∈
{1, . . . , r}. Let ω(V (Q1)) ≥ ω(V (Qi)) for every i ∈ {1, . . . , r}. Recall that if R is a nonempty
graph in a solution, then either R = Qi for some i ∈ {1, . . . , r} or ∪r

i=1V (Qi) ⊆ V (R). Recall
also that R is a solution for the instance of Maximum or w-Weighted Connected
Secluded F-Free Subgraph obtained by a border complementation with respect to
(∅, ∅, T, ∅) and we output it only if ω(V (R)) ≥ w. Since all (G[NG[W][V (Qi)]], (x1, . . . , xp))

P.A. Golovach, P. Heggernes, P. Lima, and P. Montealegre 18:11

are equivalent, we can assume that if R = Qi, then i = 1, because Q1 has maximum weight.
Then by Lemma 4, our final reduction rule is safe.

I Reduction Rule 3.6. Let L = {x1, . . . , xp} ⊆ S, p ≤ t, and let x = (x1, . . . , xp). Let
also Q0, . . . , Qr,r ≥ 0, be the components of G[W] − S with NG[W](V (Qi)) = L for all
i ∈ {0, . . . , r} such that ω(V (Q0)) ≥ ω(V (Qi)) for every i ∈ {1, . . . , r} and the p-boundaried
graphs (G[NG[W][V (Qi)]], (x1, . . . , xp)) are pairwise equivalent with respect to Fb for i ∈
{0, . . . , r}. Let Q = G[∪r

i=1NG[W][V (Qi)]] and w′ = min{w − 1,
∑r

i=1 ω(V (Qi))}. Find a
p-boundaried graph (H0, y) ∈ G′p that is equivalent to (Q0, x) with respect to Fb and denote
by A0 the set of nonboundary vertices of H0, and find a p-boundaried graph (H, y) ∈ G′p that
is equivalent to (Q, x) with respect to Fb and denote by A the set of nonboundary vertices
of H. Then do the following.

Delete the vertices of V (Q0), . . . , V (Qr) from G and denote the obtained graph G′.
Set G = (((G′, x)⊕b (H0, y)), y)⊕b (H, y) and W = (W \ ∪r

i=0V (Qi)) ∪A0 ∪A.
Select arbitrarily u ∈ A0 and v ∈ A and modify ω as follows:

keep the weight same for every z ∈ V (G′) including the boundary vertices x1, . . . , xp,
set ω(z) = 0 for z ∈ (A0 \ {u}) ∪ (A \ {v}),
set ω(u) = ω(V (Q0)) and ω(v) = w′.

The Reduction Rule 3.6 is applied for each inclusion maximal sets of components
{Q0, . . . , Qr} satisfying the conditions of the rule such that Reduction Rule 3.5 was not
applied to these components before.

Denote by (G∗, I∗, O∗, B∗, ω∗, t, T) the instance of Bordered Maximum or w-Weight-
ed Connected Secluded F-Free Subgraph obtained from (G, I, O, B̂, ω, t, T) by Re-
duction Rules 3.1-3.6. Notice that all modifications were made for G[W]. Denote by W ∗

the set of vertices of the graph obtained from the initial G[W] by the rules. Observe that
there are at most 2|S| subsets L of S such that there is a component Q of G[W] − S with
NG[W](V (Q)) = L. If |L| > t, then all Q with NG[W](V (Q)) = L are replaced by one
graph by Reduction Rule 3.4 and the number of vertices of this graph is at most |L|c by
Lemma 5 and the definition of c. If |L| ≤ t, then we either apply Reduction Rule 3.5 for
all Q with NG[W](V (Q)) = L and replace these components by two graph with at most
|L|c vertices or we apply Reduction Rule 3.6. For the latter case, observe that there are
at most tc partitions of the components Q with NG[W](V (Q)) = L into equivalence classes
with respect to Fb by Lemma 5. Then we replace each class by two graphs with at most
|L|c vertices. Taking into account the vertices of S, we obtain the following upper bound for
the size of W ∗: |W ∗| ≤ 2|S|2|S|ctc + |S|. By (1) and (2), |W ∗| ≤ q. Recall that |W \U | > q.
Therefore, |V (G∗)| < |V (G)|. We use it and solve Bordered Maximum or w-Weighted
Connected Secluded F-Free Subgraph for (G∗, I∗, O∗, B∗, ω∗, t, T) recursively.

Following the general scheme from [3], we show that the total running time is 222O(t log t)

·
nO(1). J

It remains to observe that Lemma 10 immediately implies Theorem 1.

4 Concluding remarks

In addition to our general result from the previous section, we are also able to show that
Connected Secluded Π-Subgraph is FPT parameterized by t, when Π is defined by an
infinite set of forbidden induced subgraphs, namely, the set of all cycles. In other words,
a graph has the property Π considered if it is a forest. Using the recursive understanding
technique, we proved that the problem can be solved in time 22O(t log t) · nO(1). We believe

IPEC 2017

18:12 Finding Connected Secluded Subgraphs

that the same approach can be used for other graph properties Π as well. Nevertheless, the
drawback of applying the recursive understanding technique is that we get double or even
triple-exponential dependence on the parameter in our FPT algorithms. It is natural to ask
whether we can do better for some properties Π. This can in fact be done when Π is the
property of being a complete graph, a star, a path or a d-regular graph.

Finally, we conclude by briefly touching upon the kernelization question. For Con-
nected Secluded Π-Subgraph, we hardly can hope to obtain polynomial kernels as
it could be easily proved by applying the results of Bodlaender et al. [1] that, unless
NP ⊆ coNP /poly, Connected Secluded Π-Subgraph has no polynomial kernel when
parameterized by t if Connected Secluded Π-Subgraph is NP-complete. Nevertheless,
Connected Secluded Π-Subgraph can have a polynomial Turing kernel. In particular,
we are able to show that Connected Secluded Π-Subgraph has a polynomial Turing
kernel if Π is the property of being a star.

References
1 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On

problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009. doi:
10.1016/j.jcss.2009.04.001.

2 Shiri Chechik, Matthew P. Johnson, Merav Parter, and David Peleg. Secluded connectivity
problems. In ESA 2013, volume 8125 of LNCS, pages 301–312. Springer, 2013.

3 Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk, and Michal
Pilipczuk. Designing FPT algorithms for cut problems using randomized contractions.
SIAM J. Comput., 45(4):1171–1229, 2016. doi:10.1137/15M1032077.

4 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

5 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

6 Fedor V. Fomin, Petr A. Golovach, Nikolay Karpov, and Alexander S. Kulikov. Parameter-
ized complexity of secluded connectivity problems. Theory Comput. Syst., 61(3):795–819,
2017. doi:10.1007/s00224-016-9717-x.

7 Falk Hüffner, Christian Komusiewicz, Hannes Moser, and Rolf Niedermeier. Isolation con-
cepts for clique enumeration: Comparison and computational experiments. Theor. Comput.
Sci., 410(52):5384–5397, 2009. doi:10.1016/j.tcs.2009.05.008.

8 Hiro Ito and Kazuo Iwama. Enumeration of isolated cliques and pseudo-cliques. ACM
Trans. Algorithms, 5(4):40:1–40:21, 2009. doi:10.1145/1597036.1597044.

9 Matthew P. Johnson, Ou Liu, and George Rabanca. Secluded path via shortest path. In
SIROCCO 2014, volume 8576 of LNCS, pages 108–120. Springer, 2014.

10 Christian Komusiewicz, Falk Hüffner, Hannes Moser, and Rolf Niedermeier. Isolation con-
cepts for efficiently enumerating dense subgraphs. Theor. Comput. Sci., 410(38-40):3640–
3654, 2009. doi:10.1016/j.tcs.2009.04.021.

11 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary
properties is np-complete. J. Comput. Syst. Sci., 20(2):219–230, 1980. doi:10.1016/
0022-0000(80)90060-4.

12 Dániel Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394–
406, 2006. doi:10.1016/j.tcs.2005.10.007.

13 Christos H. Papadimitriou and Mihalis Yannakakis. On limited nondeterminism and the
complexity of the V-C dimension. J. Comput. Syst. Sci., 53(2):161–170, 1996. doi:10.
1006/jcss.1996.0058.

http://dx.doi.org/10.1016/j.jcss.2009.04.001
http://dx.doi.org/10.1016/j.jcss.2009.04.001
http://dx.doi.org/10.1137/15M1032077
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-1-4471-5559-1
http://dx.doi.org/10.1007/s00224-016-9717-x
http://dx.doi.org/10.1016/j.tcs.2009.05.008
http://dx.doi.org/10.1145/1597036.1597044
http://dx.doi.org/10.1016/j.tcs.2009.04.021
http://dx.doi.org/10.1016/0022-0000(80)90060-4
http://dx.doi.org/10.1016/0022-0000(80)90060-4
http://dx.doi.org/10.1016/j.tcs.2005.10.007
http://dx.doi.org/10.1006/jcss.1996.0058
http://dx.doi.org/10.1006/jcss.1996.0058

P.A. Golovach, P. Heggernes, P. Lima, and P. Montealegre 18:13

14 René van Bevern, Till Fluschnik, George B. Mertzios, Hendrik Molter, Manuel Sorge,
and Ondrej Suchý. Finding secluded places of special interest in graphs. In Jiong Guo
and Danny Hermelin, editors, 11th International Symposium on Parameterized and Exact
Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark, volume 63 of LIPIcs,
pages 5:1–5:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/
LIPIcs.IPEC.2016.5.

15 Mihalis Yannakakis. The effect of a connectivity requirement on the complexity of max-
imum subgraph problems. J. ACM, 26(4):618–630, 1979. doi:10.1145/322154.322157.

IPEC 2017

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.5
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.5
http://dx.doi.org/10.1145/322154.322157

FO Model Checking of Geometric Graphs∗

Petr Hliněný †1, Filip Pokrývka‡2, and Bodhayan Roy3

1 Faculty of Informatics, Masaryk University Brno, Czech Republic
hlineny@fi.muni.cz

2 Faculty of Informatics, Masaryk University Brno, Czech Republic
xpokryvk@fi.muni.cz

3 Faculty of Informatics, Masaryk University Brno, Czech Republic
b.roy@fi.muni.cz

Abstract
Over the past two decades the main focus of research into first-order (FO) model checking al-
gorithms has been on sparse relational structures – culminating in the FPT algorithm by Grohe,
Kreutzer and Siebertz for FO model checking of nowhere dense classes of graphs. On contrary
to that, except the case of locally bounded clique-width only little is currently known about FO
model checking of dense classes of graphs or other structures. We study the FO model checking
problem for dense graph classes definable by geometric means (intersection and visibility graphs).
We obtain new nontrivial FPT results, e.g., for restricted subclasses of circular-arc, circle, box,
disk, and polygon-visibility graphs. These results use the FPT algorithm by Gajarský et al. for
FO model checking of posets of bounded width. We also complement the tractability results by
related hardness reductions.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.4.1 Mathematical
Logic – Model theory, G.2.2 Graph Theory – Graph algorithms

Keywords and phrases first-order logic, model checking, fixed-parameter tractability, intersec-
tion graphs, visibility graphs

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.19

1 Introduction

Algorithmic meta-theorems are results stating that all problems expressible in a certain
language are efficiently solvable on certain classes of structures, e.g. of finite graphs. Note
that the model checking problem for first-order logic – given a graph G and an FO formula
φ, we want to decide whether G satisfies φ (written as G |= φ) – is trivially solvable in
time |V (G)|O(|φ|). “Efficient solvability” hence in this context often means fixed-parameter
tractability (FPT); that is, solvability in time f(|φ|) · |V (G)|O(1) for some computable
function f .

In the past two decades algorithmic meta-theorems for FO logic on sparse graph classes
received considerable attention. While the algorithm of [5] for MSO on graphs of bounded
clique-width implies fixed-parameter tractability of FO model checking on graphs of locally
bounded clique-width via Gaifman’s locality, one could go far beyond that. After the
result of Seese [26] proving fixed-parameter tractability of FO model checking on graphs of
bounded degree there followed a series of results [6, 10,12] establishing the same conclusion

∗ The full version of this paper is made public as arXiv:1709.03701., https://arxiv.org/abs/1709.03701
† P. Hliněný is supported by the Czech Science Foundation project No. 17-00837S.
‡ F. Pokrývka is supported by the Czech Science Foundation project No. 17-00837S.

© Petr Hliněný, Filip Pokrývka, and Bodhayan Roy;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 19; pp. 19:1–19:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.19
https://arxiv.org/abs/1709.03701
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 FO Model Checking of Geometric Graphs

for increasingly rich sparse graph classes. This line of research culminated in the result of
Grohe, Kreutzer and Siebertz [20], who proved that FO model checking is FPT on nowhere
dense graph classes.

While the result of [20] is the best possible in the following sense – if a graph class
D is monotone (closed on taking subgraphs) and not nowhere dense, then the FO model
checking problem on D is as hard as that on all graphs; this does not exclude interesting
FPT meta-theorems on somewhere dense non-monotone graph classes. Probably the first
extensive work of the latter dense kind, beyond locally bounded clique-width, was that of
Ganian et al. [16] studying subclasses of interval graphs for which FO model checking is
FPT (when only bounded number of interval lengths is used). Another approach has been
taken in the works of Bova, Ganian and Szeider [3] and Gajarský et al. [13], which studied
FO model checking on posets – posets can be seen as typically quite dense special digraphs.
Altogether, however, only very little is known about FO model checking of somewhere dense
graph classes (except perhaps specialised [15]).

The result of Gajarský et al. [13] claims that FO model checking is FPT on posets of
bounded width (size of a maximum antichain), and it happens to imply [16] in a stronger
setting (see below). One remarkable message of [13] is the following (citation): The result may
also be used directly towards establishing fixed-parameter tractability for FO model checking
of other graph classes. Given the ease with which it ([13]) implies the otherwise non-trivial
result on interval graphs [16], it is natural to ask what other (dense) graph classes can be
interpreted in posets of bounded width. Inspired by the geometric case of interval graphs, we
propose to study dense graph classes defined in geometric terms, such as intersection and
visibility graphs, with respect to tractability of their FO model checking problem.

The motivation for such study is a two-fold. First, intersection and visibility graphs
present natural examples of non-monotone somewhere dense graph classes to which the great
“sparse” FO tractability result of [20] cannot be (at least not easily) applied. Second, their
supplementary geometric structure allows to better understand (as we have seen already
in [16]) the boundaries of tractability of FO model checking on them, which is, to current
knowledge, terra incognita for hereditary graph classes in general.

Our results mainly concern graph classes which are related to interval graphs. Namely,
we prove (Theorem 3.1) that FO model checking is FPT on circular-arc graphs (these are
interval graphs on a circle) if there is no long chain of arcs nested by inclusion. This directly
extends the result of [16] and its aforementioned strengthening in [13] (with bounding chains
of nested intervals instead of their lengths). We similarly show tractability of FO model
checking of interval-overlap graphs, also known as circle graphs, of bounded independent
set size (Theorem 4.1), and of restricted subclasses of box and disk graphs which naturally
generalize interval graphs to two dimensions (Theorem 5.1).

On the other hand, for all of the studied cases we also show that whenever we relax our
additional restrictions (parameters), the FO model checking problem becomes as hard on
our intersection classes as on all graphs (Corollary 6.2). Some of our hardness claims hold
also for the weaker ∃FO model checking problem (Proposition 6.3).

Another well studied dense graph class in computational geometry are visibility graphs of
polygons, which have been largely explored in the context of recognition, partition, guarding
and other optimization problems [17,25]. We consider some established special cases, involving
weak visibility, terrain and fan polygons. We prove that FO model checking is FPT for the
visibility graphs of a weak visibility polygon of a convex edge, with bounded number of reflex
(non-convex) vertices (Theorem 7.2). On the other hand, without bounding reflex vertices,
FO model checking remains hard even for the much more special case of polygons that are
terrain and convex fans at the same time (Theorem 7.1).

P. Hliněný, F. Pokrývka, and B. Roy 19:3

As noted above, our fixed-parameter tractability proofs use the strong result [13] on FO
model checking of posets of bounded width. We refer to Section 2 for a detailed explanation
of the technical terms used here. Briefly, for a given graph G from the respective class and a
formula φ, we show how to efficiently construct a poset PG of bounded width and a related
FO formula φI such that G |= φ iff PG |= φI , and then solve the latter problem.

With respect to the previously known results, we remark that our graph classes are not
sparse, as they all contain large complete or complete bipartite subgraphs. For some of them,
namely unit circular-arc graphs, circle graphs of bounded independence number, and box
graphs (with parameter k = 2 as in Theorem 5.1), it can be shown that they are of locally
unbounded clique-width by an adaptation of the corresponding argument from [16].

Lastly, we particularly emphasize the seemingly simple tractable case (Corollary 4.2) of
permutation graphs of bounded clique size: in relation to so-called stability notion (cf. [1]),
already the hereditary class of triangle-free permutation graphs has the n-order property (i.e.,
is not stable), and yet FO model checking of this class is FPT. This example presents a natural
hereditary and non-stable graph class with FPT FO model checking other than, say, graphs
of bounded clique-width. We suggest that if we could fully understand the precise breaking
point(s) of FP tractability of FO model checking on simply described intersection classes like
the permutation graphs, then we would get much better insight into FP tractability of FO
model checking of general hereditary graph classes.

Due to space restrictions, most of the proofs and some illustrating pictures have had to
be removed from this short paper. The statements with removed proofs are marked by *
and they can be found, for example, in the arXiv version.

2 Preliminaries

Graphs and intersection graphs. We work with finite simple undirected graphs and use
standard graph theoretic notation. We refer to the vertex set of a graph G as to V (G) and
to its edge set as to E(G), and we write shortly uv for an edge {u, v}. As it is common in
the context of FO logic on graphs, vertices of our graphs can carry arbitrary labels.

Considering a family of sets S (in our case, of geometric objects in the plane), the
intersection graph of S is the simple graph G defined by V (G) := S and E(G) := {AB :
A,B ∈ S, A ∩ B 6= ∅}. In respect of algorithmic questions, it is important to distinguish
whether an intersection graph G is given on the input as an abstract graph G, or alongside
with its intersection representation S.

One folklore example of a widely studied intersection graph class are interval graphs – the
intersection graphs of intervals on the real line. Interval graphs enjoy many nice algorithmic
properties, e.g., their representation can be constructed quickly, and generally hard problems
like clique, independent set and chromatic number are solvable in polynomial time for them.

For a general overview and extensive reference guide of intersection graph classes we
suggest to consult the online system ISGCI [7].

FO logic. The first-order logic of graphs (abbreviated as FO) applies the standard language
of first-order logic to a graph G viewed as a relational structure with the domain V (G)
and the single binary (symmetric) relation E(G). That is, in graph FO we have got the
standard predicate x = y, a binary predicate edge(x, y) with the usual meaning xy ∈ E(G),
an arbitrary number of unary predicates L(x) with the meaning that x holds the label L,
usual logical connectives ∧,∨,→, and quantifiers ∀x, ∃x over the vertex set V (G).

IPEC 2017

19:4 FO Model Checking of Geometric Graphs

For example, φ(x, y) ≡ ∃z
(
edge(x, z) ∧ edge(y, z) ∧ red(z)

)
states that the vertices x, y

have a common neighbour in G which has got label ‘red’. One can straightforwardly express in
FO properties such as k-clique ∃x1, . . . , xk

(∧k
i<j=1(edge(xi, xj)∧xi 6= xj)

)
and k-dominating

set ∃x1, . . . , xk∀y
(∨k

i=1(edge(xi, y) ∨ y = xi)
)
. Specially, an FO formula φ is existential

(abbreviated as ∃FO) if it can be written as φ ≡ ∃x1, . . . , xk ψ where ψ is quantifier-free. For
example, k-clique is ∃FO while k-dominating set is not.

Likewise, FO logic of posets treats a poset P = (P,v) as a finite relational structure
with the domain P and the (antisymmetric) binary predicate x v y (instead of the predicate
edge) with the usual meaning. Again, posets can be arbitrarily labelled by unary predicates.

Parameterized model checking. Instances of a parameterized problem can be considered
as pairs 〈I, k〉 where I is the main part of the instance and k is the parameter of the instance;
the latter is usually a non-negative integer. A parameterized problem is fixed-parameter
tractable (FPT) if instances 〈I, k〉 of size n can be solved in time O(f(k) · nc) where f is a
computable function and c is a constant independent of k. In parameterized model checking,
instances are considered in the form 〈(G,φ), |φ|〉 where G is a structure, φ a formula, the
question is whether G |= φ and the parameter is the size of φ.

When speaking about the FO model checking problem in this paper, we always implicitly
consider the formula φ (precisely its size) as a parameter. We shall use the following result:

I Theorem 2.1 ([13]). The FO model checking problem of (arbitrarily labelled) posets, i.e.,
deciding whether P |= φ for a labelled poset P and FO φ, is fixed-parameter tractable with
respect to |φ| and the width of P (this is the size of the largest antichain in P).

We also present, for further illustration, a result on FO model checking of interval graphs
with bounded nesting. A set A of intervals (interval representation) is called proper if there
is no pair of intervals in A such that one is contained in the other. We call A a k-fold proper
set of intervals if there exists a partition A = A1 ∪ · · · ∪ Ak such that each Aj is a proper
interval set for j = 1, . . . , k. Clearly, A is k-fold proper if and only if there is no chain of
k+ 1 inclusion-nested intervals in A. From Theorem 2.1 one can, with help of relatively easy
arguments (Lemma 3.2), derive the following:

I Theorem 2.2 ([13], cf. Proposition 2.4 and Lemma 3.2). Let G be an interval graph given
alongside with its k-fold proper interval representation A. Then FO model checking of G is
FPT with respect to the parameters k and the formula size.

Parameterized hardness. For some parameterized problems, like the k-clique on all graphs,
we do not have nor expect any FPT algorithm. To this end, the theory of parameterized
complexity of Downey and Fellows [8] defines complexity classes W [t], t ≥ 1, such that the
k-clique problem is complete for W [1] (the least class). Furthermore, theory also defines a
larger complexity class AW [∗] containing all of W [t]. Problems that are W [1]-hard do not
admit an FPT algorithm unless the established Exponential Time Hypothesis fails.

I Theorem 2.3 ([9]). The FO model checking problem (where the formula size is the
parameter) of all simple graphs is AW [∗]-complete.

Dealing with parameterized hardness of FO model checking, one should also mention
the related induced subgraph isomorphism problem: for a given input graph G, and a graph
H as the parameter, decide whether G has an induced subgraph isomorphic to H. Note
that this includes the clique and independent set problems. Induced subgraph isomorphism

P. Hliněný, F. Pokrývka, and B. Roy 19:5

(parameterized by the subgraph size) is clearly a weaker problem than parameterized FO
model checking, since one may “guess” the subgraph with |V (H)| existential quantifiers and
then verify it edge by edge. Consequently, every parameterized hardness result for induced
subgraph isomorphism readily implies same hardness results for ∃FO and FO model checking.

FO interpretations. Interpretations are a standard tool of logic and finite model theory.
To keep our paper short, we present here only a simplified description of them, tailored
specifically to our need of interpreting geometric graphs in posets.

An FO interpretation is a pair I = (ν, ψ) of poset FO formulas ν(x) and ψ(x, y) (of one
and two free variables, respectively). For a poset P , this defines a graph G := I(P) such that
V (G) = {v : P |= ν(v)} and E(G) = {uv : u, v ∈ V (G), P |= ψ(u, v) ∨ ψ(v, u)}. Possible
labels of the elements are naturally inherited from P to G. Moreover, for a graph FO formula
φ the interpretation I defines a poset FO formula φI recursively as follows: every occurrence
of edge(x, y) is replaced by ψ(x, y)∨ψ(y, x), every ∃xσ is replaced by ∃x (ν(x)∧σ) and ∀xσ
by ∀x (ν(x)→ σ). Then, obviously, P |= φI ⇐⇒ G |= φ.

Usefulness of the concept is illustrated by the following trivial claim:

I Proposition 2.4.* Let P be a class of posets such that the FO model checking problem of
P is FPT, and let G be a class of graphs. Assume there is a computable FO interpretation I,
and for every graph G ∈ G we can in polynomial time compute a poset P ∈ P such that
G = I(P). Then the FO model checking problem of G is in FPT.

3 Circular-arc Graphs

Circular-arc graphs are intersection graphs of arcs (curved intervals) on a circle. They clearly
form a superclass of interval graphs, and they enjoy similar nice algorithmic properties as
interval graphs, such as efficient construction of the representation [24], and easy computation
of, say, maximum independent set or clique.

Since the FO model checking problem is AW [∗]-complete on interval graphs [16], the
same holds for circular-arc graphs in general. Furthermore, by [21,23] already ∃FO model
checking is W [1]-hard for interval and circular-arc graphs. A common feature of these
hardness reductions (see more discussion in Section 6) is their use of unlimited chains of
nested intervals/arcs. Analogously to Theorem 2.2, we prove that considering only k-fold
proper circular-arc representations (the definition is the same as for k-fold proper interval
representations) makes FO model checking of circular-arc graphs tractable.

I Theorem 3.1. Let G be a circular-arc graph given alongside with its k-fold proper circular-
arc representation A. Then FO model checking of G is FPT with respect to the parameters k
and the formula size.

Note that we can (at least partially) avoid the assumption of having a representation A
in the following sense. Given an input graph G, we compute a circular-arc representation A
using [24], and then we easily determine the least k′ such that A is k′-fold proper. However,
without further considerations, this is not guaranteed to provide the minimum k over all
circular-arc representations of G, and not even k′ bounded in terms of the minimum k.

Our proof will be based on the following extension of the related argument from [13]:

I Lemma 3.2 (parts from [13, Section 5]).* Let B be a k-fold proper set of intervals for some
integer k > 0, such that no two intervals of B share an endpoint. There exist formulas ν, ψ, ϑ
depending on k, and a labelled poset P of width k + 1 computable in polynomial time from B,
such that all the following hold:

IPEC 2017

19:6 FO Model Checking of Geometric Graphs

0

Figure 1 An illustration; a proper circular-arc representation A (ordinary black and thick blue
arcs), giving raise to a 2-fold proper interval set B (ordinary black and dashed red arcs), as in the
proof of Theorem 3.1. The red arcs are complements of the corresponding blue arcs.

The domain of P includes (the intervals from) B, and P |= ν(x) iff x ∈ B,
P |= ψ(x, y) for intervals x, y ∈ B iff x ∩ y 6= ∅ (edge relation of the interval graph of B),
P |= ϑ(x, y) for intervals x, y ∈ B iff x ⊆ y (containment of intervals).

Proof of Theorem 3.1. We consider each arc of A in angular coordinates as [α, β] clockwise,
where α, β ∈ [0, 2π). By standard arguments (a “small perturbation”), we can assume that
no two arcs share the same endpoint, and no arc starts or ends in (the angle) 0. Let A0 ⊆ A
denote the subset of arcs containing 0. Note that for every arc [α, β] ∈ A0 we have α > β,
and we subsequently define A1 :=

{
[β, α] : [α, β] ∈ A0

}
as the set of their “complementary”

arcs avoiding 0. For a ∈ A0 we shortly denote by ā ∈ A1 its complementary arc.
Now, the set B := (A \ A0) ∪ A1 is an ordinary interval representation contained in the

open line segment (0, 2π). See Figure 1. Since each of A \A0 and A1 is k-fold proper by the
assumption on A, the representation B is 2k-fold proper. Note the following facts; every two
intervals in A0 intersect, and an interval a ∈ A0 intersects b ∈ A \ A0 iff b 6⊂ ā.

We now apply Lemma 3.2 to the set B, constructing a (labelled) poset P of width at
most 2k+1. We also add a new label red to the elements of P which represent the arcs in A1.
The final step will give a definition of an FO interpretation I = (ν, ψ1) such that I(P) will
be isomorphic to the intersection graph G of A. Using the formulas ψ, ϑ from Lemma 3.2,
the latter is also quite easy. As mentioned above, intersecting pairs of intervals from A can
be described using intersection and containment of the corresponding intervals of B:

ψ1(x, y) ≡
(
red(x)∧ red(y)

)
∨
(
¬red(x)∧¬red(y)∧ψ(x, y)

)
∨
(
red(x)∧¬red(y)∧¬ϑ(y, x)

)
It is routine to verify that, indeed, G ' I(P) (using the obvious bijection of A0 to A1).

We then finish simply by Theorem 2.1 and Proposition 2.4. J

4 Circle graphs

Another graph class closely related to interval graphs are circle graphs, also known as interval
overlap graphs. These are intersection graphs of chords of a circle, and they can equivalently
be characterised as having an overlap interval representation C such that a, b ∈ C form an
edge, if and only if a ∩ b 6= ∅ but neither a ⊆ b nor b ⊆ a hold (see Figure 2). A circle
representation of a circle graph can be efficiently constructed [2].

Related permutation graphs are defined as intersection graphs of line segments with the
ends on two parallel lines, and they form a complementation-closed subclass of circle graphs.

P. Hliněný, F. Pokrývka, and B. Roy 19:7

0
b1

b2d1

d2
f1

f2

a1

a2

c1

c2
e1

e2

g1

g2
0 a1 b1 c1 a2 d1 e1 c2 f1 d2 b2 g1 e2 f2 g2 2π

Figure 2 “Opening” a circle representation (left; an intersecting system of chords of a circle) into
an overlap representation (right; the depicted arcs to be flattened into intervals on the line).

Note another easy characterization: let G be a graph and G1 be obtained by adding one
vertex adjacent to all vertices of G; then G is a permutation graph if and only if G1 is a circle
graph. We will see in Section 6 that the ∃FO model checking problem is W [1]-hard for circle
graphs, and the FO model checking problem is AW [∗]-complete already for permutation
graphs. However, there is also a positive result using a natural additional parameterization.
The proof of it uses arguments similar to those of Theorem 3.1.

I Theorem 4.1.* The FO model checking problem of circle graphs is FPT with respect to
the formula and the maximum independent set size.

An interesting question is whether ‘independent set size’ in Theorem 4.1 can also be
replaced with ‘clique size’. We think the right answer is ‘yes’, but we have not yet found the
algorithm. At least, the answer is positive for the subclass of permutation graphs:

I Corollary 4.2.* The FO model checking problem of permutation graphs is FPT with respect
to the formula size, and either the maximum clique or the maximum independent set size.

I Corollary 4.3.* The subgraph isomorphism (not induced) problem of permutation graphs
is FPT with respect to the subgraph size.

5 Box and Disk graphs

Box (intersection) graphs are graphs having an intersection representation by rectangles in
the plane, such that each rectangle (box) has its sides parallel to the x- and y-axes. The
recognition problem of box graphs is NP-hard [28], and so it is essential that the input of
our algorithm would consist of a box representation. Unit-box graphs are those having a
representation by unit boxes.

The ∃FO model checking problem is W [1]-hard already for unit-box graphs [22], and we
will furthermore show that it stays hard if we restrict the representation to a small area in
Proposition 6.3. Here we give the following slight extension of Theorem 2.2:

I Theorem 5.1.* Let G be a box intersection graph given alongside with its box representation
B such that the following holds: the projection of B to the x-axis is a k-fold proper set of
intervals, and the projection of B to the y-axis consists of at most k distinct intervals. Then
FO model checking of G is FPT with respect to the parameters k and the formula size.

IPEC 2017

19:8 FO Model Checking of Geometric Graphs

Figure 3 Constructing witnesses of the consecutive neighbourhood representation property – as
permutation graphs (left) and as unit-box graphs (right); cf. Corollary 6.2.

Furthermore, disk graphs are those having an intersection representation by disks in the
plane. Their recognition problem is NP-hard already with unit disks [4], and the ∃FO model
checking problem is W [1]-hard again for unit-disk graphs by [22]. Similarly to Theorem 5.1,
we have identified a tractable case of FO model checking of unit-disk graph, based on
restricting the y-coordinates of the disks. Due to space restrictions, we leave this case only
for the full paper.

6 Hardness for intersection classes

Our aim is to provide a generic reduction for proving hardness of FO model checking (even
without labels on vertices) using only a simple property which is easy to establish for many
geometric intersection graph classes. We will then use it to derive hardness of FO for quite
restricted forms of intersection representations studied in our paper (Corollary 6.2).

We say that a graph G represents consecutive neighbourhoods of order `, if there exists a
sequence S = (v1, v2, . . . , v`) ⊆ V (G) of distinct vertices of G and a set R ⊆ V (G), R∩S = ∅,
such that for each pair i, j, 1 ≤ i < j ≤ `, there is a vertex w ∈ R whose neighbours in S are
precisely the vertices vi, vi+1 . . . , vj . (Possible edges other than those between R and S do
not matter.) A graph class G has the consecutive neighbourhood representation property if,
for every integer ` > 0, there exists an efficiently computable graph G ∈ G such that G or its
complement G represents consecutive neighbourhoods of order `.

Note that our notion of ‘representing consecutive neighbourhoods’ is related to the
concepts of “n-order property” and “stability” from model theory (mentioned in Section 1).
This is not a random coincidence, as it is known [1] that on monotone graph classes stability
coincides with nowhere dense (which is the most general characterization allowing for FPT
FO model checking on monotone classes). In our approach, we stress easy applicability of
this notion to a wide range of geometric intersection graphs and, to certain extent, to ∃FO
model checking.

The main result is as follows. A duplication of a vertex v in G is the operation of adding
a true twin v′ to v, i.e., new v′ adjacent to v and precisely to the neighbours of v in G.

I Theorem 6.1.* Let G be a class of unlabelled graphs having the consecutive neighbourhood
representation property, and G be closed on induced subgraphs and duplication of vertices.
Then the FO model checking of G is AW [∗]-complete with respect to the formula size.

Graphs witnessing the consecutive neighbourhood representation property can be easily
constructed within our intersection classes, even with strong further restrictions. See some
illustrating examples in Figure 3. So, we obtain the following hardness results:

P. Hliněný, F. Pokrývka, and B. Roy 19:9

I Corollary 6.2. * The FO model checking problem is AW [∗]-complete with respect to the
formula size, for each of the following geometric graph classes (all unlabelled):
(a) circular-arc graphs with a representation consisting or arcs of lengths from [π − ε, π + ε]

on the circle of diameter 1, for any fixed ε > 0,
(b) connected permutation graphs,
(c) unit-box graphs with a representation contained within a square of side length 2 + ε, for

any fixed ε > 0,
(d) unit-disk graphs (that is of diameter 1) with a representation contained within a rectangle

of sides 1 + ε and 2, for any fixed ε > 0.

It is worthwhile to notice that for each of the classes listed in Corollary 6.2, the k-clique
and k-independent set problems are all easily FPT, and yet FO model checking is not.

Finally, we return to the weaker ∃FO model checking problem. In fact, this problem can
be treated “the same” as the aforementioned parameterized induced subgraph isomorphism
problem: precisely, one of them admits an FPT algorithm on any given (unlabelled) graph
class if and only if the other does so.

The hardness construction in the proof of Theorem 6.1 can be turned into ∃FO, but
only if vertex labels are allowed. Though, we can modify some of the constructions from
Corollary 6.2 to capture also ∃FO without labels.

I Proposition 6.3. * The ∃FO model checking problem is W [1]-hard with respect to the
formula size, for both the following unlabelled geometric graph classes:
(a) circle graphs,
(b) unit-box graphs with a representation contained within a square of side length 3.

One complexity question that remains open after Proposition 6.3 is about ∃FO on
unlabelled permutation graphs (for labelled ones, this is W [1]-hard by the remark after
Corollary 6.2). While induced subgraph isomorphism is generally NP-hard on permutation
graphs by [21], we are not aware of results on the parameterized version, and we currently
have no plausible conjecture about its parameterized complexity.

7 Polygonal visibility graphs

Given a polygon W in the plane, two vertices pi and pj of W are said to be mutually visible
if the line segment pipj does not intersect the exterior of W . The visibility graph G of W is
defined to have vertices vi corresponding to each vertex pi of W , and edge (vi, vj) if and only
if pi and pj are mutually visible. Our aim is to study the visibility graphs of some special
established classes of polygons with respect to FO model checking.

If there is an edge e of the polygon W , such that for any point p of W , there is a point
on e that sees p, then W is called a weak visibility polygon, and e is called a weak visibility
edge of W (Figure 4a) [17, 18]. A vertex vi of W is called a reflex vertex if the interior angle
of W formed at vi by the two edges of W incident to vi is more than π. Otherwise, vi is
called a convex vertex. If both of the end vertices of an edge of W are convex vertices, then
the edge is called a convex edge.

If the boundary of W consists only of an x-monotone polygonal arc touching the x-axis
at its two extreme points, and an edge contained in the x-axis joining the two points, then it
is called a terrain (Figure 4b) [11, 17]. All terrains are weak visibility polygons with respect
to their edge that lies on the x-axis. If all points of a W are visible from a single vertex v
of the polygon, then W is called a fan (Figure 4c) [17,19]. If W is a fan with respect to a

IPEC 2017

19:10 FO Model Checking of Geometric Graphs

vvu vu

Figure 4 From left to right: (a) a weak visibility polygon with respect to edge uv; (b) a terrain;
(c) a convex fan visible from the vertex v.

convex vertex v, then W is called a convex fan [25]. If W is a convex fan with respect to a
vertex v, then both of the edges of W incident to v are convex edges, and W is also a weak
visibility polygon with respect to any of them.

In this section we identify some interesting tractable and hard cases of the FO model
checking problem on these visibility classes.

We first argue that the FO model checking problem of polygon visibility graphs stays
hard even when the polygon is a terrain and a convex fan. Our approach is very similar to
that in Theorem 6.1 above, that is, we show that a given FO model checking instance of
general graphs can be interpreted in another instance of the visibility graph of a specially
constructed polygon which is a terrain and a convex fan at the same time.

I Theorem 7.1. * The FO model checking problem of unlabelled polygon visibility graphs
(given alongside with the representing polygon) is AW [∗]-complete with respect to the formula
size, even when the polygon is a terrain and a convex fan at the same time.

Second, we prove that FO model checking of the visibility graph of a given weak visibility
polygon of a convex edge is FPT when additionally parameterized by the number of reflex
vertices. We remark that, for example, the independent set problem is NP-hard on polygonal
visibility graphs [27], but Ghosh et al. [18] showed that the maximum independent set of
the visibility graph of a given weak visibility polygon of a convex edge, is computable in
quadratic time. In Theorem 7.1, we have seen that the latter result does not generalise
to arbitrary FO properties, since FO model checking remains hard even for a very special
subcase of weak visibility polygons. So, an additional parameterization is necessary.

I Theorem 7.2.* Let W be a given polygon weakly visible from one of its convex edges, with
k reflex vertices, and let G be the visibility graph of W . Then FO model checking of G is
FPT with respect to the parameters k and the formula size.

While we cannot fit the whole algorithm in the short paper, we at least give an informal
overview of how the algorithm works. As in the previous intersection graph cases, our aim is
to construct, from given W , a poset P such that the width of P is bounded by a function
of k and that we have an FO interpretation of the visibility graph of W in this P.

LetW be weakly visible from its convex edge uv, and denote by Cuv the clockwise sequence
of the vertices of W from u to v. The subsequence of Cuv between two reflex vertices va and
vb, such that all vertices in it are convex, is called an ear of W . The length of this sequence
can be 0 as well. Additionally, the first (last) ear of W is defined as the subsequence between
u and the first reflex vertex of Cuv (between the last reflex vertex and v, respectively). We
have got k + 1 ears in W . With a slight abuse of terminology at u, v, we may simply say
that an ear is a sequence of convex vertices between two reflex vertices.

The crucial idea of our construction of the poset P (which contains all vertices of W , in
particular) is that the visibility edges between the internal (convex) vertices of the ears are

P. Hliněný, F. Pokrývka, and B. Roy 19:11

nicely structured: withing one ear Ea, they form a clique, and between two ears Ea, Eb, the
visibility edges exhibit a “shifting pattern” not much different from the left and right ends of
intervals in a proper interval representation (cf. Lemma 3.2). Consequently, we may “encode”
all the edges between Ea and Eb with help of an extra subposet of P of fixed width, and
since we have got only k + 1 ears, this together gives a poset of width bounded in k.

The last step concerns visibility edges incident with one of the k reflex vertices or u, v.
These can be easily encoded in P with only 2(k+2) additional labels, without any assumption
on the structure of P: for each reflex vertex x of Cuv, or x ∈ {u, v}, we assign one new
label L0

x to x itself and another new label L1
x to all the neighbours of x. Altogether, we can

efficiently construct an FO interpretation of G in P such that the formulas depend only on k.
Then we may finish by Theorem 2.1.

8 Conclusions

We have identified several FP tractable cases of the FO model checking problem of geometric
graphs, and complemented these by hardness results showing quite strict limits of FP
tractability on the studied classes. Overall, this presents a nontrivial new contribution
towards understanding on which (hereditary) dense graph classes can FO model checking be
FPT.

All our tractability results rely on the FO model checking algorithm of [13], which is
mainly of theoretical interest. However, in some cases one can employ, in the same way, the
simple and practical ∃FO model checking algorithm of [14]. We would also like to mention
the possibility of enhancing the result of [13] via interpreting posets in posets. While this
might seem impossible, we actually have one positive indication of such an enhancement.
It is known that interval graphs are C4-free complements of comparability graphs (i.e., of
posets) – the width of which is the maximum clique size of the original interval graph. Then,
among k-fold proper interval graphs there are ones of unbounded clique size, which have FPT
FO model checking by Theorem 2.2. This opens a promising possibility of an FP tractable
subcase of FO model checking of posets of unbounded width, for future research.

Finally, we list two concrete open problems related to our results. We conjecture that
FO model checking is FPT for

circle graphs additionally parameterized by the maximum clique size,
visibility graphs of weak visibility polygons additionally parameterized by the maximum
independent set size.

References
1 H. Adler and I. Adler. Interpreting nowhere dense graph classes as a classical notion of

model theory. Eur. J. Comb., 36:322–330, 2014.
2 A. Bouchet. Reducing prime graphs and recognizing circle graphs. Combinatorica, 7:243–

254, 1987.
3 S. Bova, R. Ganian, and S. Szeider. Model checking existential logic on partially ordered

sets. ACM Trans. Comput. Log., 17(2):10:1–10:35, 2016.
4 H. Breu and D. G. Kirkpatrick. Unit disk graph recognition is NP-hard. Computational

Geometry, 9(1-2):3–24, 1998.
5 B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems

on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000.
6 A. Dawar, M. Grohe, and S. Kreutzer. Locally excluding a minor. In LICS’07, pages

270–279. IEEE Computer Society, 2007.

IPEC 2017

19:12 FO Model Checking of Geometric Graphs

7 H. N. de Ridder et al. Information System on Graph Classes and their Inclusions (ISGCI).
http://www.graphclasses.org.

8 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

9 Rodney G. Downey, Michael R. Fellows, and Udayan Taylor. The parameterized complexity
of relational database queries and an improved characterization of W[1]. In First Conference
of the Centre for Discrete Mathematics and Theoretical Computer Science, DMTCS 1996,
New Zealand, December, 9-13, 1996, pages 194–213. Springer-Verlag, Singapore, 1996.

10 Z. Dvořák, D. Kráľ, and R. Thomas. Deciding first-order properties for sparse graphs. In
FOCS’10, pages 133–142. IEEE Computer Society, 2010.

11 S. Eidenbenz. In-approximability of finding maximum hidden sets on polygons and terrains.
Computational Geometry: Theory and Applications, 21:139–153, 2002.

12 M. Frick and M. Grohe. Deciding first-order properties of locally tree-decomposable struc-
tures. J. ACM, 48(6):1184–1206, 2001.

13 J. Gajarský, P. Hliněný, D. Lokshtanov, J. Obdržálek, S. Ordyniak, M. S. Ramanujan, and
S. Saurabh. FO model checking on posets of bounded width. In FOCS’15, pages 963–974.
IEEE Computer Society, 2015. Full paper arXiv:1504.04115.

14 J. Gajarský, P. Hliněný, J. Obdržálek, and S. Ordyniak. Faster existential FO model
checking on posets. In ISAAC’14, volume 8889 of LNCS, pages 441–451. Springer, 2014.

15 J. Gajarský, P. Hliněný, J. Obdržálek, D. Lokshtanov, and M. S. Ramanujan. A new
perspective on FO model checking of dense graph classes. In LICS ’16, pages 176–184.
ACM, 2016.

16 R. Ganian, P. Hliněný, D. Kráľ, J. Obdržálek, J. Schwartz, and J. Teska. FO model
checking of interval graphs. Log. Methods Comput. Sci., 11(4:11):1–20, 2015.

17 S. K. Ghosh. Visibility Algorithms in the Plane. Cambridge University Press, 2007.
18 S. K. Ghosh, A. Maheshwari, S. P. Pal, S. Saluja, and C. E. Veni Madhavan. Charac-

terizing and recognizing weak visibility polygons. Computational Geometry: Theory and
Applications, 3:213–233, 1993.

19 S. K. Ghosh, T. Shermer, B. K. Bhattacharya, and P. P. Goswami. Computing the max-
imum clique in the visibility graph of a simple polygon. Journal of Discrete Algorithms,
5:524–532, 2007.

20 M. Grohe, S. Kreutzer, and S. Siebertz. Deciding first-order properties of nowhere dense
graphs. In STOC’14, pages 89–98. ACM, 2014.

21 P. Heggernes, P. van ’t Hof, D. Meister, and Y. Villanger. Induced subgraph isomorphism on
proper interval and bipartite permutation graphs. Theoretical Computer Science, 562:252–
269, 2015.

22 D. Marx. Efficient approximation schemes for geometric problems? In Algorithms - ESA
2005, 13th Annual European Symposium, Proceedings, volume 3669 of Lecture Notes in
Computer Science, pages 448–459. Springer, 2005.

23 D. Marx and I. Schlotter. Cleaning interval graphs. Algorithmica, 65(2):275–316, 2013.
24 R. M. McConnell. Linear-time recognition of circular-arc graphs. Algorithmica, 37(2):93–

147, 2003.
25 J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, New York,

1987.
26 D. Seese. Linear time computable problems and first-order descriptions. Math. Structures

Comput. Sci., 6(6):505–526, 1996.
27 T. Shermer. Hiding people in polygons. Computing, 42:109–131, 1989.
28 M. Yannakakis. The complexity of the partial order dimension problem. SIAM J. Algebraic

Discrete Methods, 3:351–358, 1982.

http://www.graphclasses.org
http://dx.doi.org/10.1007/978-1-4471-5559-1

Smaller Parameters for Vertex Cover
Kernelization∗

Eva-Maria C. Hols1 and Stefan Kratsch2

1 Department of Computer Science, University of Bonn, Germany
hols@cs.uni-bonn.de

2 Department of Computer Science, University of Bonn, Germany
kratsch@cs.uni-bonn.de

Abstract
We revisit the topic of polynomial kernels for vertex cover relative to structural parameters.
Our starting point is a recent paper due to Fomin and Strømme [WG 2016] who gave a kernel
with O(|X|12) vertices when X is a vertex set such that each connected component of G − X
contains at most one cycle, i.e., X is a modulator to a pseudoforest. We strongly generalize this
result by using modulators to d-quasi-forests, i.e., graphs where each connected component has
a feedback vertex set of size at most d, and obtain kernels with O(|X|3d+9) vertices. Our result
relies on proving that minimal blocking sets in a d-quasi-forest have size at most d + 2. This
bound is tight and there is a related lower bound of O(|X|d+2−ε) on the bit size of kernels.

In fact, we also get bounds for minimal blocking sets of more general graph classes: For
d-quasi-bipartite graphs, where each connected component can be made bipartite by deleting at
most d vertices, we get the same tight bound of d + 2 vertices. For graphs whose connected
components each have a vertex cover of cost at most d more than the best fractional vertex cover,
which we call d-quasi-integral, we show that minimal blocking sets have size at most 2d + 2,
which is also tight. Combined with existing randomized polynomial kernelizations this leads
to randomized polynomial kernelizations for modulators to d-quasi-bipartite and d-quasi-integral
graphs. There are lower bounds of O(|X|d+2−ε) and O(|X|2d+2−ε) for the bit size of such kernels.

1998 ACM Subject Classification G.2.2 Graph Algorithms

Keywords and phrases Vertex Cover, Kernelization, Structural Parameterization

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.20

1 Introduction

The vertex cover problem plays a central role in parameterized complexity. In particular,
it has been very important for the development of new kernelization techniques and the study
of structural parameters. As a result of this work, there is now a solid understanding of which
parameterizations of vertex cover lead to fixed-parameter tractability or existence of a
polynomial kernelization. This is motivated by the fact that parameterization by solution
size leads to large parameter values on many types of easy instances. Thus, while there is a
well-known kernelization for instances of vertex cover(k) to at most 2k vertices, it may
be more suitable to apply a kernelization with a size guarantee that is a larger function but
depends on a smaller parameter.

Jansen and Bodlaender [13] were the first to study kernelization for vertex cover under
different, smaller parameters. Their main result is a polynomial kernelization to instances

∗ A full version of the paper is available at http://arxiv.org/abs/1711.04604.

© Eva-Maria C. Hols and Stefan Kratsch;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 20; pp. 20:1–20:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.20
http://arxiv.org/abs/1711.04604
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 Smaller Parameters for Vertex Cover Kernelization

with O(|X|3) vertices when X is a feedback vertex set of the input graph, also called a
modulator to the class of forests. Clearly, the size of X is a lower bound on the vertex
cover size (as any vertex cover is a modulator to an independent set). Since then, their
result has been generalized and complemented in several ways. The two main directions of
follow-up work are to use modulators to other tractable cases instead of forests (see below)
and parameterization above lower bounds (see related work).

For any graph class C, we can define a parameterization of vertex cover by distance
to C, i.e., by the minimum size of a modulator X such that G − X belongs to C. For
fixed-parameter tractability and kernelization of the arising parameterized problem it is
necessary that vertex cover is tractable on inputs from C. For hereditary classes C, this
condition is also sufficient for fixed-parameter tractability but not necessarily for the existence
of a polynomial kernelization. Interesting choices for C are various well-studied hereditary
graph classes, like forests, bipartite, or chordal graphs, and graphs of bounded treewidth,
bounded treedepth, or bounded degree.

Majumdar et al. [16] studied vertex cover parameterized by (the size of) a modulator
X to a graph of maximum degree at most d. For d ≥ 3 this problem is NP-hard but for d = 2
and d = 1 they obtained kernels with O(|X|5) and O(|X|2) vertices, respectively. Their
result motivated Fomin and Strømme [9] to investigate a parameter that is smaller than both
a modulator to degree at most two and the size of a feedback vertex set: They consider X
being a modulator to a pseudoforest, i.e., with each connected component of G−X having
at most one cycle. For this they obtain a kernelization to O(|X|12) vertices, generalizing
(except for the size) the results of Majumdar et al. [16] and Jansen and Bodlaender [13].
They also prove that the parameterization by a modulator to so-called mock forests, where
no cycles share a vertex, admits no polynomial kernelization unless NP ⊆ coNP/poly.

For their kernelization, Fomin and Strømme [9] prove that minimal blocking sets in a
pseudoforest have size at most three, which requires a lengthy proof. (A minimal blocking set
is a set of vertices whose deletion decreases the independence number by exactly one.)1 This
allows to reduce the number of components of the pseudoforest such that one can extend
the modulator X to a sufficiently small feedback vertex set by adding one (cycle) vertex
per component to X. At this point, the kernelization of Jansen and Bodlaender [13] can be
applied to get the result.

The results of Fomin and Strømme [9] suggest that the border for existence of polynomial
kernels for feedback vertex set-like parameters may be much more interesting than expected
previously. Arguably, there is still quite some room between allowing a single cycle per
component and allowing an arbitrary number of cycles so long as they share no vertices. Do
larger numbers of cycles per component still allow a polynomial kernelization? Similarly,
cycles in the lower bound proof have odd length and it is known that absence of odd cycles
is sufficient, i.e., a kernelization for modulators to bipartite graphs is known. Could this be
extended to allowing bipartite graphs with one or more odd cycles per connected component?

Our work. We show that the answers to the above questions are largely positive and provide,
essentially, a single elegant proof to cover them. To this end, it is convenient to take the
perspective of feedback sets rather than the maximum size of a cycle packing. Say that a
d-quasi-forest is a graph such that each connected component has a feedback vertex set of
size at most d, whereas in a d-quasi-bipartite graph each connected component must have an
odd cycle transversal (a feedback set for odd cycles) of size at most d.

1 Like previous work [13, 9] we prefer to work with independent set rather than vertex cover, but
this makes no important difference.

E. C. Hols and S. Kratsch 20:3

We show that vertex cover admits a kernelization with O(|X|3d+9) vertices when X is
a modulator to a d-quasi-forest (Section 3). The case for d = 1 strengthens the result of Fomin
and Strømme [9] (as one cycle per component is stricter than feedback vertex set size one).
For every fixed larger value of d we obtain a polynomial kernelization, though of increasing
size. The result is obtained by proving that minimal blocking sets in a d-quasi-forest have size
at most d+2 (and then applying [13]). Intuitively, having a large minimal blocking set implies
getting a fairly small maximum independent set because there are optimal independent sets
that avoid all but any chosen vertex of a minimal blocking set. In contrast, a d-quasi-forest
always has a large independent set because each connected component is almost a tree.

The value d+ 2 is tight already for cliques of size d+ 2, which are permissible connected
components in a d-quasi-forest. Such cliques also imply that our parameterization inherits a
lower bound of O(|X|d+2−ε) from the lower bound of O(|X ′|r−ε) (assuming NP * coNP/poly)
for X ′ being a modulator to a cluster graph with component size at most r [16].

It turns out that our proof directly extends also to d-quasi-bipartite graphs, proving
that their minimal blocking sets similarly have size at most d+ 2 (Section 4). Thus, when
given a modulator X such that G−X is d-quasi-bipartite, we can extend it to an odd cycle
transversal X ′ of size at most d · |X|d+3 + |X|, which directly yields a randomized polynomial
kernel by using a randomized polynomial kernelization for vertex cover parameterized by
an odd cycle transversal [15]. Motivated by this, we explore also modulators to graphs in
which each connected component has vertex cover size at most d plus the size of a minimum
fractional vertex cover, which we call d-quasi-integral (Section 4). This is stronger than
the previous parameter because it allows connected components that have an odd cycle
transversal of size at most d. We show that minimal blocking sets in any d-quasi-integral
graph have size at most 2d+ 2. This bound is tight, as witnessed by the cliques with 2d+ 2
vertices, and the problem inherits a lower bound of O(|X|2d+2−ε) from the lower bound for
modulators to cluster graphs with clique size at most r = 2d+ 2 [16]. Using the upper bound
of 2d+ 2 one can remove redundant connected components until the obtained instance has
vertex cover size at most d · |X|2d+3 + |X| more than the best fractional vertex cover. In
other words, one can reduce to an instance of vertex cover parameterized above LP with
parameter value d · |X|2d+3 + |X| and apply the randomized polynomial kernelization of
Kratsch and Wahlström [15] to get a randomized polynomial kernel.

Related work. Recent work of Bougeret and Sau [5] shows that vertex cover admits a
kernel of size O(|X|f(c)) when X is a modulator to a graph of treedepth at most c. Their
result is incomparable to ours: Already the kernelization by feedback vertex set size [13],
which we generalize, allows arbitrarily long paths in G−X; such paths are forbidden in a
graph of bounded treedepth. Conversely, taking a star with d leaves and appending a 3-cycle
at each leaf yields a graph with feedback vertex set and odd cycle transversal size equal to d
but constant treedepth; d can be chosen arbitrarily large.

The fact that deciding whether a graph G has a vertex cover of size at most k is
trivial when k is lower than the size MM(G) of a largest matching in G has motivated
the study of above lower bound parameters like ` = k −MM(G). The strongest lower
bound employed so far is 2LP (G)−MM(G), where LP (G) denotes the minimum cost of
a fractional vertex cover, and Garg and Philip [10] gave an O∗(3k−(2LP (G)−MM(G))) time
algorithm. Randomized polynomial kernels are known for parameters k −MM(G) and
k − LP (G) [15] and for parameter k − (2LP (G)−MM(G)) [14]. Our present kernelizations
are not covered even by the strongest parameter k − (2LP (G)−MM(G)) because already
d-quasi-forests for any d ≥ 2 can have a vertex cover size that is arbitrarily larger than
k − (2LP (G)−MM(G)): Consider, for example, a disjoint union of cliques K4 with four
vertices each, where 2LP (K4)−MM(K4) = 2 but vertex cover size is three per component.

IPEC 2017

20:4 Smaller Parameters for Vertex Cover Kernelization

Regarding lower bounds for kernelization (all assuming NP * coNP/poly), it is of course
well known that there are no polynomial kernels for vertex cover when parameterized by
width parameters like treewidth, pathwidth, or treedepth (cf. [2]). Lower bounds similar to
the one for modulators to mock forests by Fomin and Strømme [9] were already obtained
by Cygan et al. [7] (modulators to treewidth at most two) and Jansen [12] (modulators to
outerplanar graphs). Bodlaender et al. [3] showed that there is no polynomial kernelization
in terms of the vertex deletion distance to a single clique, which is stronger than distance
to cluster or perfect graphs for example. Majumdar et al. [16] ruled out kernels of size
O(|X|r−ε) when X is a modulator to a cluster graph with cliques of size bounded by r.

Due to space limitations several proofs are deferred to the full version.

2 Preliminaries and notation

Graphs. We use standard notation mostly following Diestel [8]. Let G = (V,E) be a graph.
For a set X ⊆ V , let NG(X) denote the neighborhood of X in G, i.e., NG(X) = {v ∈ V \X |
∃u ∈ X : {u, v} ∈ E} and let NG[X] denote the neighborhood of X in G including X, i.e.,
NG[X] = NG(X) ∪X. We omit the subscript whenever the underlying graph is clear from
the context. Furthermore, we use G − X as shorthand for G[V \ X]. For a graph G we
denote by vc(G) the vertex cover number of G and by α(G) the independence number of
G. Let Y ⊆ V , we call Y a blocking set of G, if deleting the vertex set Y from the graph G
decreases the size of a maximum independent set, hence if α(G) > α(G− Y). A blocking set
Y is minimal, if no proper subset Y ′ (Y of Y is a blocking set of G. We denote by Kn the
clique of size n.

Linear Programming. We denote the linear program relaxation for vertex cover resp.
independent set for a graph G = (V,E) by LPVC(G) resp. LPIS(G). Recall that
LPVC(G) = min{

∑
v∈V xv | ∀{u, v} ∈ E : xu + xv ≥ 1 ∧ ∀v ∈ V : 0 ≤ xv ≤ 1} and

LPIS(G) = max{
∑
v∈V xv | ∀{u, v} ∈ E : xu + xv ≤ 1 ∧ ∀v ∈ V : 0 ≤ xv ≤ 1}. A feasible

solution to one of the above linear program relaxations is an assignment to the variables
xv for all vertices v ∈ V which satisfies the conditions of the linear program. An optimum
solution to LPVC(G) resp. LPIS(G) is a feasible solution x which minimizes resp. maximizes
the objective function value w(x) :=

∑
v∈V xv. It follows directly from the definition that x

is a feasible solution to LPVC(G) if and only if x′ = 1− x is a feasible solution to LPIS(G);
thus w(x′) = |V | − w(x). It is well known that there exists an optimum feasible solution x
to LPVC(G) with xv ∈ {0, 1

2 , 1}; we call such a solution half integral. The same is, of course,
true for LPIS(G). Given a half integral solution x (to LPVC(G) or LPIS(G)), we define
V xi = {v ∈ V | xv = i} for each i ∈ {0, 1

2 , 1}. Note that if x is an optimum half integral
solution to LPVC(G), then it holds that N(V x0) = V x1 , whereas, it holds that N(V x1) = V x0 ,
when x is an optimum half integral solution to LPIS(G). We omit the subscript x, when the
solution x is clear from the context.

3 Vertex Cover parameterized by a modulator to a d-quasi-forest

In this section we present a polynomial kernel for vertex cover parameterized by a modu-
lator to a d-quasi-forest. More precisely, we develop a polynomial kernel for independent
set parameterized by a modulator to a d-quasi-forest which, by the relation between these
two problems, directly yields a polynomial kernel for vertex cover parameterized by a
modulator to a d-quasi-forest.

E. C. Hols and S. Kratsch 20:5

Consider an instance (G,X, k) of the problem, which asks whether graph G, with G−X
is a d-quasi-forest, has an independent set of size k. Like Fomin and Strømme [9], we reduce
the input instance (G,X, k) until the d-quasi-forest G−X has at most polynomially many
connected components in terms of |X|; see Rule 1. By adding for each component of the
d-quasi-forest a feedback vertex set of size d to the modulator X, we polynomially increase
the size of the modulator X. The resulting modulator is a feedback vertex set, hence we can
apply the polynomial kernelization for independent set parameterized by a modulator to
a feedback vertex set from Jansen and Bodlaender [13].

Let (G,X, k) be an instance of independent set parameterized by a modulator to
a d-quasi-forest. Since d is a constant we can compute in polynomial time a maximum
independent set in G−X. Choosing some vertices from the set X to be in an independent
set will prevent some vertices in G − X to be part of the same independent set; thus it
may be that we can add less than α(G − X) vertices from G − X to an independent set
that contains some vertices of X. To measure this difference, we use the term of conflicts
introduced by Jansen and Bodlaender [13]. Our definition is more general in order to use it
also for modulators to d-quasi-bipartite resp. d-quasi-integral graphs.

I Definition 1 (Conflicts). Let G = (V,E) be a graph and X ⊆ V be a subset of V , such
that we can compute a maximum independent set in G−X in polynomial time. Let F be
a subgraph of G −X and let X ′ ⊆ X. We define the number of conflicts on F which are
induced by X ′ as ConfF (X ′) := α(F)− α(F −N(X ′)).

Now we can state our reduction rule, which deletes some components of the d-quasi-forest
G−X. More precisely, we delete componentsH of which we know that there exists a maximum
independent set in G that contains a maximum independent set of the component H.

Rule 1: If there exists a connected component H of G−X such that for all independent sets
XI ⊆ X of size at most d+2 with ConfH(XI) > 0 it holds that ConfG−H−X(XI) ≥ |X|,
then delete H from G and reduce k by α(H).

The proof of safeness will be given in the sequel. In particular, we delete connected
components that have no conflicts. The goal of Rule 1 is to delete connected components
of the d-quasi-forest G−X such that we can bound the number of connected components
by a polynomial in the size of X. Thus, if we cannot apply this reduction rule any more
we should be able to find a good bound for the number of connected components in the
d-quasi-forest G−X. The following lemma yields such a bound.

I Lemma 2. Let (G,X, k) be an instance of independent set parameterized by a modulator
to a d-quasi-forest where Rule 1 is not applicable. Then the number of connected components
in G−X is at most |X|d+3.

Proof. Let H be a connected component of the d-quasi-forest G − X. Since Rule 1 is
not applicable, there exists an independent set XI ⊆ X of size at most d + 2 such that
ConfH(XI) > 0 and ConfG−H−X(XI) < |X|; otherwise Rule 1 would delete H (or another
connected component with the same properties).

Observe, that there are at most |X| connected components of the d-quasi-forest G−X
that have a conflict with an independent set XI ⊆ X, when XI is the reason that we cannot
apply Rule 1 to one of these connected components: Assume for contradiction that there
are p > |X| connected components H1, H2, . . . ,Hp of the d-quasi-forest G−X that have a
conflict with the same independent set XI ⊆ X of size at most d+ 2; therefore it holds that

IPEC 2017

20:6 Smaller Parameters for Vertex Cover Kernelization

ConfHi
(XI) > 0 for all i ∈ {1, 2, . . . , p}. But now, for all i ∈ {1, 2, . . . , p}

ConfG−Hi−X(XI) ≥
p∑

j=1
j 6=i

ConfHj
(XI) ≥ p− 1 ≥ |X|,

where the first inequality corresponds to summing over some connected components of
G−Hi−X. Thus, XI could not be the reason why the connected components H1, H2, . . . ,Hp

are not reduced during Rule 1.
This leads to the claimed bound of at most

(|X|
≤d+2

)
· |X| ≤ |X|d+3 connected components

in G−X, because for every independent set XI ⊆ X of size at most d+ 2 there are at most
|X| connected components for which XI is the reason that we cannot apply Rule 1. J

It remains to show that Rule 1 is safe; i.e. that there exists a solution for (G,X, k) if and
only if there exists a solution for (G′, X, k′), where G′ = G−H, k′ = k−α(H) and H is the
connected component of G−X we delete during Rule 1. The main ingredient for this is to
prove that any minimal blocking set has size at most d+ 2 (Lemma 6). To bound the size
of minimal blocking sets we need the existence of a half integral solution x to LPIS(G− Y)
for which every maximum independent set I in G − Y fulfills V1 ⊆ I ⊆ V 1

2
∪ V1. This is

similar to the result of Nemhauser and Trotter [17] and other results about the connection
between maximum independent sets (resp. minimum vertex covers) and their fractional LP
solutions [1, 4, 6, 11].

I Lemma 3. Let G = (V,E) be an undirected graph. There exists an optimum half integral
solution x ∈ {0, 1

2 , 1}
|V | to LPIS(G) such that for all maximum independent sets I in G it

holds that V x1 ⊆ I ⊆ V \ V x0 .

Proof. Let x ∈ {0, 1
2 , 1}

|V | be an optimum half integral solution to LPIS(G), such that V x1
2
is

maximal; this means, that there exists no optimum half integral solution x′ 6= x to LPIS(G)
such that V x1

2
(V x

′
1
2
. We will show that every independent set I in G with V x1 * I or

V x0 ∩ I 6= ∅ is not a maximum independent set in G.
First, we observe that for all subsets V ′0 ⊆ V x0 it must hold that the size of the neighborhood

of V ′0 in V x1 is larger than the size of V ′0 , i.e. |V x1 ∩ N(V ′0)| > |V ′0 |; if this is not the case,
then we can construct an optimum half integral solution x′ to LPIS(G) with V x1

2
(V x

′
1
2

(which contradicts the fact that V x1
2
is maximal), by assigning a value of 1

2 to all vertices in
(V x1 ∩N(V ′0)) ∪ V ′0 . Obviously, it holds that V x1

2
(V x

′
1
2

and that

w(x′) = w(x)− |V x1 ∩N(V ′0)|+ 1
2(|V x1 ∩N(V ′0)|+ |V ′0 |) ≥ w(x).

In order to show that x′ is indeed a feasible solution to LPIS(G), it suffices to consider edges
{u, v} of G that have at least one endpoint in V ′0 , say v ∈ V ′0 , because these are the only
vertices for which we increase the value of the half integral solution x to obtain x′. Since
x′v = 1

2 , the constraint x′u + x′v ≤ 1 can only be violated if x′u = 1. But then xu = 1 must
hold since the only changed values are 1

2 in x′. This of course means that u ∈ V x1 ∩N(V ′0)
and x′u = 1

2 ; a contradiction.
Now, we assume that there exists a maximum independent set I that contains a vertex of

the set V x0 . Let V ′0 = V x0 ∩ I 6= ∅. We will show that deleting the set V ′0 from the independent
set I and adding the set N(V ′0) ∩ V x1 to the independent set I leads to a larger independent
I ′ of G, i.e. I ′ = I \ V ′0 ∪ (N(V ′0) ∩ V x1). First we show that I ′ has larger cardinality than
I. Since I is an independent set, we know that (N(V ′0) ∩ V x1) ∩ I = ∅ and hence that the

E. C. Hols and S. Kratsch 20:7

cardinality of I ′ is |I| − |V ′0 | + |N(V ′0) ∩ V x1 |. From the above observation, we know that
|N(V ′0)∩V x1 | > |V ′0 | and it follows that I ′ has larger cardinality than I. To prove that I ′ is an
independent set in G, it is enough to show that any vertex v ∈ N(V ′0) ∩ V x1 has no neighbor
in I ′; this holds because V x1 is an independent set, N(V x1) ⊆ V x0 and V x0 ∩ I ′ = ∅. Thus, I ′
is an independent set which has larger cardinality than I; this contradicts the assumption
that I is a maximum independent set.

It remains to show that there exists no maximum independent set I in G with V x1 *
I ⊆ V x1 ∪ V x1

2
. Let v ∈ V x1 \ I. Since I is a maximum independent set, there exists a vertex

w ∈ N(V x1)∩ I (otherwise I ∪{v} would be a larger independent set in G). But N(V x1) ⊆ V x0
and hence w ∈ V x0 ∩ I, which contradicts the assumption that I ⊆ V x1 ∪ V x1

2
. J

Using the above lemma, we can show that every minimal blocking set in a d-quasi-forest
has size at most d+ 2. This generalizes the result of Fomin and Stromme [9], who showed
that a minimal blocking set in a pseudoforest has size at most three. Furthermore, we can
show that this bound is tight.

I Theorem 4. Minimal blocking sets have a tight upper bound of d+ 2 in d-quasi-forests.

The crucial part of Theorem 4 is to prove the upper bound.

I Lemma 5. Let H = (V,E) be a d-quasi-forest and let Z be a feedback vertex set in H of
size at most d. Then it holds that a minimal blocking set Y in the d-quasi-forest H has size
at most |Z|+ 2 ≤ d+ 2.

Proof. We consider an optimum half integral solution x to LPIS(H − Y) which fulfills the
properties of Lemma 3; let Vi = {v ∈ V (H − Y) | xv = i} for i ∈ {0, 1

2 , 1}. We know that
every maximum independent set I of H − Y contains the set V1 and no vertex of the set V0
(because x fulfills the properties of Lemma 3).

Observe that for all vertices y ∈ Y it holds that α(H − (Y \ {y})) = α(H); otherwise,
the set Y would not be a minimal blocking set. Furthermore, from the above observation it
follows that α(H) = α(H − Y) + 1, because

α(H − Y) < α(H) = α(H − (Y \ {y})) ≤ α(H − Y) + 1 for all y ∈ Y .

The key observation of our proof is that NH(Y) ⊆ V0 ∪ V 1
2
; this follows from the fact that

Y is minimal: As observed above, we know that α(H − (Y \ {y})) = α(H). Thus, for all
vertices y ∈ Y there exists a maximum independent set Iy in H that contains the vertex y
and no other vertex from the set Y . Consider the sets I ′y = Iy \ {y} for all vertices y ∈ Y .
Obviously, the sets I ′y are independent sets in H − Y for all vertices y ∈ Y , because y ∈ Y is
the only vertex of the set Y that is contained in Iy. Furthermore, we know that the sets I ′y
are maximum independent sets in H − Y because

|I ′y|+ 1 = |Iy| = α(H) = α(H − Y) + 1.

The fact that I ′y is a maximum independent set for all vertices y ∈ Y implies that
V1 ⊆ I ′y = Iy \ {y} ⊆ Iy (by the choice of the solution x to LPIS(H − Y)). Thus, for all
vertices y ∈ Y it holds that V1 ⊆ Iy and therefore that NH(Iy) ∩ V1 = ∅ which implies that
NH({y}) ∩ V1 = ∅ (because V1 ∪ {y} ⊆ Iy). Since this holds for all vertices y ∈ Y it follows
that NH(Y) ∩ V1 = ∅, hence NH(Y) ⊆ V0 ∪ V 1

2
.

To bound the size of Y we try to find an upper bound for the size of a maximum
independent set in H − Y and a lower bound for the size of a maximum independent set
in H. An obvious upper bound for the size of a maximum independent set in H − Y is the

IPEC 2017

20:8 Smaller Parameters for Vertex Cover Kernelization

optimum value of LPIS(H − Y) which is equal to |V1|+ 1
2 |V 1

2
|. This leads to an upper bound

for α(H − Y):

α(H − Y) ≤ w(x) = |V1|+
1
2 |V

1
2
| = |V1|+

1
2 |H − V0 − V1 − Y |

= |V1|+
|H − V0 − V1|

2 − |Y |2 , (1)

because V0 ∪ V1 ⊆ H − Y .
Next, we try to find a lower bound for the size of a maximum independent set in H. We

will construct an independent set IH in H and the size of this independent set is a lower
bound for the size of a maximum independent set in H. First of all, we add all vertices
from the independent set V1 to IH ; this will prevent every vertex from NH(V1) to be part of
the independent set IH . Now, we can extend the independent V1 by an independent set in
H−NH [V1]. First, observe that NH [V1]∩Y = ∅, because V1 ⊆ (H−Y) and NH(Y)∩V1 = ∅.
From this follows that H−NH [V1] = H−V0−V1, because N(V1) = V0. Instead of adding an
independent set of H − V0 − V1 to IH , we add a maximum independent set IF of the forest
H − V0 − V1 − Z to IH ; such an independent set IF has size at least 1

2 |H − V0 − V1 − Z|.
This leads to the following lower bound for α(H):

α(H) ≥ |IH | = |V1|+ |IF | ≥ |V1|+
|H − V0 − V1 − Z|

2

= |V1|+
|H − V0 − V1|

2 − |Z \ (V0 ∪ V1)|
2 ≥ |V1|+

|H − V0 − V1|
2 − |Z|2 (2)

Using the equation α(H) = α(H − Y) + 1 together with the upper bound for α(H − Y)
and the lower bound for α(H) leads to the requested upper bound for the size of Y :

|V1|+
|H − V0 − V1|

2 − |Z|2
(2)
≤ α(H) = α(H − Y) + 1

(1)
≤ |V1|+

|H − V0 − V1|
2 − |Y |2 + 1

=⇒ |Y | ≤ |Z|+ 2. J

We showed that every minimal blocking set in a d-quasi-forest has size at most d+ 2. To
proof Theorem 4 it remains to show that the bound is tight:

Proof of Theorem 4. We show the remaining part of Theorem 4, namely that the bound
is tight. Consider the connected graph H = Kd+2. It holds that H is a d-quasi-forest,
because any d vertices from H are a feedback vertex set. It holds that the size of a maximum
independent set in a clique is 1, hence α(H − Y ′) = 1 for all subsets Y ′ (V (H). Therefore,
Y = V (H) is the only, and hence a minimal, blocking set in H. J

Recall that Rule 1 considers the conflicts that a connected component H of the d-quasi-
forest G − X has with subsets of X. So far, we only talked about the size of minimal
blocking sets instead of the size of minimal subset of X that leads to a conflict. Since every
independent set XI ⊆ X that has a conflict with H, has some neighbors in this component,
we know that these vertices are a blocking set of H. Using Lemma 5 we can argue that
only a subset of at most d+ 2 vertices (of the neighborhood of XI in H) is important. Like
Jansen and Bodlaender [13] resp. Fomin and Strømme [9] we show how a smaller subset
of V (H) ∩ N(XI) leads to a smaller subset of XI that has a conflict with the connected
component H.

I Lemma 6. Let (G,X, k) be an instance of independent set parameterized by a modulator
to a d-quasi-forest. Let H be a connected component of G − X and let XI ⊆ X be an
independent set in G. If ConfH(XI) > 0, then there exists a set X ′ ⊆ XI of size at most
d+ 2 such that ConfH(X ′) > 0.

E. C. Hols and S. Kratsch 20:9

We showed that if a component H of G−X has a conflict with a subset X ′ ⊆ X of the
modulator, then there always exists a set X ′′ ⊆ X ′ of size at most d+ 2 that has a conflict
with the component H. Knowing this, we can show that Rule 1 is safe using Lemma 6 as
well as some observations that where already used in earlier work [9, 13].

I Lemma 7. Rule 1 is safe; let (G,X, k) be the instance before applying Rule 1 and let
(G′, X, k′) be the reduced instance. Then there exists a solution for (G,X, k) if and only if
there exists a solution for (G′, X, k′).

Recall that if we have an instance (G,X, k) of independent set parameterized by a
modulator to a d-quasi-forest where Rule 1 is not applicable then G−X has at most |X|d+3

connected components. To apply the kernelization for independent set parameterized by
a modulator to a forest from Jansen and Bodlaender [13], we have to add vertices from each
connected component of the d-quasi-forest G−X to the modulator X, getting a set X ′ ⊇ X,
such that the connected components of G−X ′ are trees.

We know that every connected component of the d-quasi-forest G−X has a feedback
vertex set of size at most d, which we can find in polynomial time, since d is a constant. Let
Z ⊆ V (G−X) be the union of these feedback vertex sets; it holds that |Z| ≤ d · |X|d+3. Now,
the instance (G′, X ′, k′) with G′ = G, X ′ = X ∪Z and k′ = k is an instance of independent
set parameterized by a modulator to feedback vertex set. Obviously, it holds that (G,X, k)
has a solution if and only if (G′, X ′, k′) has a solution. Applying the following result of
Jansen and Bodlaender [13] will finish our kernelization.

I Proposition 8 ([13, Theorem 2]). independent set parameterized by a modulator to a
feedback vertex set has a kernel with a cubic number of vertices: there is a polynomial-
time algorithm that transforms an instance (G,X, k) into an equivalent instance (G′, X ′, k′)
such that |X ′| ≤ 2|X| and |V (G′)| ≤ 2|X|+ 28|X|2 + 56|X|3.

I Theorem 9. independent set parameterized by a modulator to a d-quasi-forest admits
a kernel with O(d3|X|3d+9) vertices.

I Corollary 10. vertex cover parameterized by a modulator to a d-quasi-forest admits a
kernel with O(d3|X|3d+9) vertices.

4 Two other graph classes with small blocking sets

In this section we consider vertex cover parameterized by a modulator to a d-quasi-
bipartite graph and by a modulator to a d-quasi-integral graph. As in the case of vertex
cover parameterized by a modulator to a d-quasi-forest, we prove that the size of a minimal
blocking set is bounded linearly in d to reduce the number of connected components in
the d-quasi-bipartite graph resp. the d-quasi-integral graph. Having only polynomial in
the modulator many connected components we show that we can apply the randomized
polynomial kernelizations for vertex cover parameterized by a modulator to a bipartite
graph, resp. vertex cover above LPVC.

The proof that there exists a kernelization for vertex cover parameterized by a
modulator to a d-quasi-bipartite graph works just the same as the kernelization for vertex
cover parameterized by a modulator to a d-quasi-forest, except for the last step. Here we
apply the kernelization of vertex cover parameterized by a modulator to a bipartite graph.

I Corollary 11. In a d-quasi-bipartite graph the size of a minimal blocking set has a tight
upper bound of d+ 2.

IPEC 2017

20:10 Smaller Parameters for Vertex Cover Kernelization

I Corollary 12. vertex cover parameterized by a modulator to a d-quasi-bipartite graph
admits a randomized polynomial kernel.

In contrast to d-quasi-forests and d-quasi-bipartite graphs, where every minimal blocking
set is of size at most d+ 2, d-quasi-integral graphs have minimal blocking sets of size up to
2d + 2. Nevertheless, all proofs, to show that there exists a polynomial kernel, still work,
because we only need the existence of a small blocking set.

I Lemma 13. Let H = (V,E) be a d-quasi-integral graph. Then it holds that a minimal
blocking set Y in the d-quasi-integral graph H has size at most 2d+ 2.

Proof. Like in the proof of Lemma 5 we consider an optimum half integral solution x to
LPIS(H − Y) which fulfills the properties of Lemma 3. Let Vi = {v ∈ V (H − Y) | xv = i}
for i ∈ {0, 1

2 , 1}.

Note that the upper bound α(H − Y)
(1)
≤ |V1|+ 1

2 |H − V0 − V1| − 1
2 |Y | also holds in this

case, because the value of an optimum half integral solution is always a valid upper bound.
In this case the lower bound for α(H) works slightly differently. Instead of constructing

an independent set in H we construct a feasible solution to LPIS(H). We first use the
fact that H is a d-quasi-integral graph, hence vc(H) ≤ LPVC(H) + d, which is equivalent
to α(H) ≥ LPIS(H) − d, because α(H) = |H| − vc(H) and |H| − LPVC(H) = LPIS(H).
Now, we construct a feasible solution x′ to LPIS(H). First, we assign every vertex v in the
independent set V1 the value 1 and every vertex w in NH(V0) the value 0. Like in the proof
of Lemma 5, it holds that NH [V1] = H − V0 − V1, because NH [V1] ∩ Y = ∅. Finally, we
assign the value 1

2 to every vertex in H − V0 − V1. Obviously, x′ is a feasible solution to
LPIS(H). This leads to the following lower bound for α(H):

α(H) ≥ LPIS(H)− d ≥ |V1|+ LPIS(H − V0 − V1)− d ≥ |V1|+
|H − V0 − V1|

2 − d (3)

Again, using the equation α(H) = α(H − Y) + 1 together with the upper bound for
α(H − Y) and the lower bound for α(H) leads to the requested bound for the size of Y :

|V1|+
|H − V0 − V1|

2 − d
(3)
≤ α(H) = α(H − Y) + 1

(1)
≤ |V1|+

|H − V0 − V1|
2 − |Y |2 + 1

=⇒ |Y | ≤ 2d+ 2. J

I Theorem 14. In a d-quasi-integral graph the size of a minimal blocking set has a tight
upper bound of 2d+ 2.

I Theorem 15. vertex cover parameterized by a modulator to a d-quasi-integral graph
admits a randomized polynomial kernel.

Proof sketch. Let (G,X, k) be an instance of vertex cover parameterized by a modulator
to a d-quasi-integral graph. We can obtain in polynomial time an equivalent instance (G̃,X, k̃)
of vertex cover parameterized by a modulator to a d-quasi-integral graphs by applying
Rule 1 exhaustively, but instead of decreasing k by α(H) we decrease k by vc(H). Now,
G̃−X has at most |X|2d+3 connected components, because Lemma 2 uses only the fact that
a minimal blocking set in G−X has size at most d+ 2 (we only have to replace d+ 2 by
2d+2). These instances are equivalent, since we only delete connected components H (during
Rule 1) of which we know that there exists a minimum vertex cover in G that contains a
minimum vertex cover of H. We can assume that vc(G̃−X) + |X| > k̃. If this is not the
case, then we can compute in polynomial time a vertex cover in G̃−X of size vc(G̃−X)
which together with the set X is a vertex cover in G̃ of size at most k̃.

E. C. Hols and S. Kratsch 20:11

Finally, we apply the kernelization algorithm for vertex cover above LPVC to the
instance (G̃, k̃) and obtain an instance (G′, k′) in polynomial time. Note that we can bound
the parameter k̃ − LPVC(G̃) by a polynomial in the size of X as follows:

k̃ − LPVC(G̃) ≤ k̃ − LPVC(G̃−X)

= k̃ −
∑

H c.c of G̃−X

LPVC(H)

≤ k̃ −
∑

H c.c of G̃−X

(vc(H)− d)

= k̃ + |X|2d+3d− vc(G̃−X)
≤ |X|+ |X|2d+3d

Since (G′, k′) is polynomially bounded in the size of k̃−LPVC(G̃), which is bounded by a
polynomial in the size of |X|, we know that the instance (G′, X ′ = V (G′), k′) is an equivalent
instance of vertex cover parameterized by a modulator to a d-quasi-integral graph. J

5 Conclusion

Starting from the work of Fomin and Strømme [9] we have presented new results for
polynomial kernels for vertex cover subject to structural parameters. Our results for
modulators to d-quasi-forests show that bounds on the feedback vertex set size are more
meaningful for kernelization than the treewidth of G −X (recalling that there is a lower
bound for treewidth of G−X being at most two). By extending our kernelization to work for
modulators to (d-quasi-bipartite and) d-quasi-integral graphs, we have encompassed existing
kernelizations for parameterization by distance to forests [13], distance to max degree two [16]
(both previously subsumed by), distance to pseudoforests [9], and parameterization above
fractional optimum [15]. It would be interesting whether there is a single positive result that
encompasses all parameterizations with polynomial kernels.

To obtain our results we have established tight bounds for the size of minimal blocking
sets in d-quasi-forests, d-quasi-bipartite graphs, and d-quasi-integral graphs. Tightness comes
from the fact that cliques of size d + 2 respectively 2d + 2 are contained in these classes.
The presence of these cliques also implies lower bounds ruling out kernels of size O(|X|r−ε),
assuming NP * coNP/poly, when r = r(d) is the maximum size of minimal blocking sets as
a consequence of a lower bound by Majumdar et al. [16]. It would be interesting whether
there are matching upper bounds for kernelization, e.g., whether the kernelization of Jansen
and Bodlaender [13] for modulators to forests can be improved to size O(|X|2).

References
1 Faisal N. Abu-Khzam, Michael R. Fellows, Michael A. Langston, and W. Henry Suters.

Crown structures for vertex cover kernelization. Theory Comput. Syst., 41(3):411–430,
2007. doi:10.1007/s00224-007-1328-0.

2 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On
problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009. doi:
10.1016/j.jcss.2009.04.001.

3 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds
by cross-composition. SIAM J. Discrete Math., 28(1):277–305, 2014. doi:10.1137/
120880240.

IPEC 2017

http://dx.doi.org/10.1007/s00224-007-1328-0
http://dx.doi.org/10.1016/j.jcss.2009.04.001
http://dx.doi.org/10.1016/j.jcss.2009.04.001
http://dx.doi.org/10.1137/120880240
http://dx.doi.org/10.1137/120880240

20:12 Smaller Parameters for Vertex Cover Kernelization

4 Endre Boros, Martin Charles Golumbic, and Vadim E. Levit. On the number of vertices
belonging to all maximum stable sets of a graph. Discrete Applied Mathematics, 124(1-
3):17–25, 2002. doi:10.1016/S0166-218X(01)00327-4.

5 Marin Bougeret and Ignasi Sau. How much does a treedepth modulator help to obtain
polynomial kernels beyond sparse graphs? CoRR, abs/1609.08095, 2016. arXiv:1609.
08095.

6 Miroslav Chlebík and Janka Chlebíková. Crown reductions for the minimum weighted
vertex cover problem. Discrete Applied Mathematics, 156(3):292–312, 2008. doi:10.1016/
j.dam.2007.03.026.

7 Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh.
On the hardness of losing width. Theory Comput. Syst., 54(1):73–82, 2014. doi:10.1007/
s00224-013-9480-1.

8 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

9 Fedor V. Fomin and Torstein J. F. Strømme. Vertex cover structural parameterization
revisited. In Pinar Heggernes, editor, Graph-Theoretic Concepts in Computer Science -
42nd International Workshop, WG 2016, Istanbul, Turkey, June 22-24, 2016, Revised Se-
lected Papers, volume 9941 of Lecture Notes in Computer Science, pages 171–182, 2016.
doi:10.1007/978-3-662-53536-3_15.

10 Shivam Garg and Geevarghese Philip. Raising the bar for vertex cover: Fixed-parameter
tractability above A higher guarantee. In Robert Krauthgamer, editor, Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
Arlington, VA, USA, January 10-12, 2016, pages 1152–1166. SIAM, 2016. doi:10.1137/
1.9781611974331.ch80.

11 Peter L. Hammer, Pierre Hansen, and Bruno Simeone. Vertices belonging to all or to no
maximum stable sets of a graph. SIAM Journal on Algebraic Discrete Methods, 3(4):511–
522, 1982.

12 Bart M. P. Jansen. The power of data reduction: Kernels for fundamental graph problems.
PhD thesis, Utrecht University, 2013.

13 Bart M. P. Jansen and Hans L. Bodlaender. Vertex cover kernelization revisited - upper
and lower bounds for a refined parameter. Theory Comput. Syst., 53(2):263–299, 2013.
doi:10.1007/s00224-012-9393-4.

14 Stefan Kratsch. A randomized polynomial kernelization for vertex cover with a smaller
parameter. In Piotr Sankowski and Christos D. Zaroliagis, editors, 24th Annual European
Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark, volume 57
of LIPIcs, pages 59:1–59:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.
doi:10.4230/LIPIcs.ESA.2016.59.

15 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New
tools for kernelization. In 53rd Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 450–459. IEEE
Computer Society, 2012. doi:10.1109/FOCS.2012.46.

16 Diptapriyo Majumdar, Venkatesh Raman, and Saket Saurabh. Kernels for structural
parameterizations of vertex cover - case of small degree modulators. In Thore Hus-
feldt and Iyad A. Kanj, editors, 10th International Symposium on Parameterized and
Exact Computation, IPEC 2015, September 16-18, 2015, Patras, Greece, volume 43 of
LIPIcs, pages 331–342. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. doi:
10.4230/LIPIcs.IPEC.2015.331.

17 George L. Nemhauser and Leslie E. Trotter Jr. Vertex packings: Structural properties and
algorithms. Math. Program., 8(1):232–248, 1975. doi:10.1007/BF01580444.

http://dx.doi.org/10.1016/S0166-218X(01)00327-4
http://arxiv.org/abs/1609.08095
http://arxiv.org/abs/1609.08095
http://dx.doi.org/10.1016/j.dam.2007.03.026
http://dx.doi.org/10.1016/j.dam.2007.03.026
http://dx.doi.org/10.1007/s00224-013-9480-1
http://dx.doi.org/10.1007/s00224-013-9480-1
http://dx.doi.org/10.1007/978-3-662-53536-3_15
http://dx.doi.org/10.1137/1.9781611974331.ch80
http://dx.doi.org/10.1137/1.9781611974331.ch80
http://dx.doi.org/10.1007/s00224-012-9393-4
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.59
http://dx.doi.org/10.1109/FOCS.2012.46
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.331
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.331
http://dx.doi.org/10.1007/BF01580444

Polynomial-Time Algorithms for the Longest
Induced Path and Induced Disjoint Paths
Problems on Graphs of Bounded Mim-Width∗†

Lars Jaffke‡1, O-joung Kwon§2, and Jan Arne Telle3

1 Department of Informatics, University of Bergen, Norway
lars.jaffke@uib.no

2 Logic and Semantics, Technische Universität Berlin, Berlin, Germany
ojoungkwon@gmail.com

3 Department of Informatics, University of Bergen, Norway
jan.arne.telle@uib.no

Abstract
We give the first polynomial-time algorithms on graphs of bounded maximum induced matching
width (mim-width) for problems that are not locally checkable. In particular, we give nO(w)-time
algorithms on graphs of mim-width at most w, when given a decomposition, for the following
problems: Longest Induced Path, Induced Disjoint Paths andH-Induced Topological
Minor for fixed H. Our results imply that the following graph classes have polynomial-time
algorithms for these three problems: Interval and Bi-Interval graphs, Circular Arc, Per-
mutation and Circular Permutation graphs, Convex graphs, k-Trapezoid, Circular
k-Trapezoid, k-Polygon, Dilworth-k and Co-k-Degenerate graphs for fixed k.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, Computations
on discrete structures, G.2.2 Graph Theory, Graph algorithms

Keywords and phrases graph width parameters, dynamic programming, graph classes, induced
paths, induced topological minors

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.21

1 Introduction

Ever since the definition of the tree-width of graphs emerged from the Graph Minors project
of Robertson and Seymour, bounded-width structural graph decompositions have been a
successful tool in designing fast algorithms for graph classes on which the corresponding
width-measure is small. Over the past few decades, many more width-measures have been
introduced, see e.g. [8] for an excellent survey and motivation for width-parameters of
graphs. In 2012, Vatshelle [18] defined the maximum induced matching width (mim-width for
short) which measures how easy it is to decompose a graph along vertex cuts with bounded
maximum induced matching size on the bipartite graph induced by edges crossing the cut.
One interesting aspect of this width-measure is that its modeling power is much stronger than

∗ The work was done while the authors were at Polytechnic University of Valencia, Spain.
† A full version of the paper is available at https://arxiv.org/abs/1708.04536.
‡ Lars Jaffke is supported by the Bergen Research Foundation (BFS).
§ O-joung Kwon is Supported by the European Research Council (ERC) under the European Union’s

Horizon 2020 research and innovation programme (ERC consolidator grant DISTRUCT, agreement No.
648527).

© Lars Jaffke, O-joung Kwon, and Jan Arne Telle;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 21; pp. 21:1–21:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.21
https://arxiv.org/abs/1708.04536
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Longest Induced Path and Induced Disjoint Paths on Graphs of Bounded Mim-Width

tree-width and clique-width and many well-known and deeply studied graph classes such as
Interval graphs and Permutation graphs have (linear) mim-width 1, with decompositions
that can be found in polynomial time [2, 18], while their clique-width can be proportional to
the square root of the number of vertices. Hence, designing an algorithm for a problem Π
that runs in XP time parameterized by mim-width yields polynomial-time algorithms for Π
on several interesting graph classes at once.

For Locally Checkable Vertex Subset and Vertex Partitioning (LC-VSVP)
problems, a class introduced [17] to capture many well-studied algorithmic problems in a
unified framework, Belmonte and Vatshelle [2] and Bui-Xuan et al. [3] provided XP-algorithms
on graphs of bounded mim-width. LC-VSVP problems include many NP-hard problems
such as Maximum Independent Set, Minimum Dominating Set, and q-Coloring. A
common feature of these problems is that they (as the name suggests) can be checked locally:
Take q-Coloring for example. Here, we want to determine whether there is a q-partition
of the vertex set of an input graph such that each part induces an independent set. The
latter property can be checked individually for each vertex by inspecting only its direct
neighborhood.

Until now, the only problems known to be XP-time solvable on graphs of bounded mim-
width were of the type LC-VSVP. It is therefore natural to ask whether similar results can be
shown for problems concerning graph properties that are not locally checkable. In this paper,
we study problems related to finding induced paths in graphs, namely Longest Induced
Path, Induced Disjoint Paths and H-Induced Topological Minor. Although their
‘non-induced’ counterparts are more deeply studied in the literature, also these induced
variants have received considerable attention. Below, we briefly survey results for exact
algorithms to these three problems on graph classes studied so far.

For the first problem, Gavril [5] showed that Longest Induced Path can be solved
in polynomial time for graphs without induced cycles of length at least q for fixed q (the
running time was improved by Ishizeki et al. [9]), while Kratsch et al. [13] solved the problem
on AT-free graphs in polynomial time. Kang et al. [11] recently showed that those classes
have unbounded mim-width. However, graphs of bounded mim-width are not necessarily
graphs without cycles of length at least k or AT-free graphs. The second problem derives
from the well-known Disjoint Paths problem which is solvable in O(n3) time if the number
of paths k is a fixed constant, as shown by Robertson and Seymour [15], while if k is part
of the input it is NP-complete on graphs of linear mim-width 1 (interval graphs) [14]. In
contrast, Induced Disjoint Paths is NP-complete already for k = 2 paths [12]. In this
paper we consider the number of paths k as part of the input. Under this restriction Induced
Disjoint Paths is NP-complete on claw-free graphs, as shown by Fiala et al. [4], while
Golovach et al. [7] gave a linear-time algorithm for circular-arc graphs. For the third problem,
H-Induced Topological Minor, we consider H to be a fixed graph. This problem, and
also Induced Disjoint Paths, were both shown solvable in polynomial time on chordal
graphs by Belmonte et al. [1], and on AT-free graphs by Golovach et al. [6].

We show that Longest Induced Path, Induced Disjoint Paths and H-Induced
Topological Minor for fixed H can be solved in time nO(w) given a branch decomposition
of mim-width w. Since bounded mim-width decompositions, usually mim-width 1 or 2, can be
computed in polynomial-time for all well-known graph classes having bounded mim-width [2],
our results thus provide unified polynomial-time algorithms for these problems on the following
classes of graphs: Interval and Bi-Interval graphs, Circular Arc, Permutation and
Circular Permutation graphs, Convex graphs, k-Trapezoid, Circular k-Trapezoid,
k-Polygon, Dilworth-k and Co-k-Degenerate graphs for fixed k, all graph classes of
bounded mim-width [2].

L. Jaffke, O. Kwon, and J. A. Telle 21:3

The problem of computing the mim-width of general graphs was shown to be W[1]-
hard [16] and no algorithm for computing the mim-width of a graph in XP time is known.
Furthermore, there is no polynomial-time constant-factor approximation for mim-width
unless NP = ZPP [16].

What makes our algorithms work is an analysis of the structure induced by a solution to
the problem on a cut in the branch decomposition. There are two ingredients. First, in all
the problems we investigate, we are able to show that for each cut induced by an edge of the
given branch decomposition of an input graph, it is sufficient to consider induced subgraphs
of size at most O(w) as intersections of solutions and the set of edges crossing the cut, where
w is the mim-width of the branch decomposition. For instance, in the Longest Induced
Paths problem, an induced path is a target solution. We argue that an induced path cannot
cross a cut many times if there is no large induced matching between vertex sets A and B of
the cut (A,B). Such an intersection is always a disjoint union of paths. Thus, we enumerate
all subgraphs of size at most O(w), which are disjoint unions of paths, and these will be used
as indices of our table.

However, a difficulty arises if we recursively ask for a given cut and such an intersection
of size at most O(w), whether there is an induced disjoint union of paths of certain size in
the union of one part and edges crossing the cut, whose intersection on the crossing edges
is the given subgraph. The reason is that there are unbounded number of vertices in each
part of the cut that are not contained in the given subgraph of size O(w) but still have
neighbors in the other part. We need to control these vertices in such a way that they do
not further create an edge in the solution. We control these vertices using vertex covers of
the bipartite graph induced by edges crossing the cut. Roughly speaking, if there is a valid
partial solution, then there is a vertex cover of such a bipartite graph, which meets all other
edges not contained in the given subgraph. The point is that there are only nO(w) many
minimal vertex covers of such a bipartite graph with maximum matching size w. We discuss
this property in Section 2. Based on these two results, each table will consist of a subgraph
of size O(w) and a vertex cover of the remaining part of the bipartite graph, and we check
whether there is a (valid) partial solution to the problem with respect to given information.
We can argue that we need to store at most nO(w) table entries in the resulting dynamic
programming scheme and that each of them can be computed in time nO(w) as well.

The strategy for Induced Disjoint Paths is very similar to the one for Longest
Induced Path. The only thing to additionally consider is that in the disjoint union of paths,
which is guessed as the intersection of a partial solution and edges crossing a cut, we need to
remember which path is a subpath of the path connecting a given pair. We lastly provide
a one-to-many reduction from H-Induced Topological Minor to Induced Disjoint
Paths, that runs in polynomial time, and show that it can be solved in time nO(w). Similar
reductions have been shown earlier (see e.g. [1, 6]) but we include it here for completeness.

Throughout the paper, proofs of statements marked with ‘F’ are deferred to the full
version [10].

2 Preliminaries

For integers a and b with a ≤ b, we let [a..b] ..= {a, a+ 1, . . . , b} and if a is positive, we define
[a] ..= [1..a]. Throughout the paper, a graph G on vertices V (G) and edges E(G) ⊆

(
V (G)

2
)

is assumed to be finite, undirected and simple. For graphs G and H we say that G is a
subgraph of H, if V (G) ⊆ V (H) and E(G) ⊆ E(H) and we write G ⊆ H. For a vertex set
X ⊆ V (G), we denote by G[X] the subgraph induced by X, i.e. G[X] ..= (X,E(G) ∩

(
X
2
)
). If

IPEC 2017

21:4 Longest Induced Path and Induced Disjoint Paths on Graphs of Bounded Mim-Width

H ⊆ G and X ⊆ V (G) then we let H[X] ..= H[X ∩ V (H)]. We use the shorthand G −X
for G[V (G) \ X]. For two (disjoint) vertex sets X,Y ⊆ V (G), we denote by G[X,Y] the
bipartite subgraph of G with bipartition (X,Y) such that for x ∈ X, y ∈ Y , x and y are
adjacent in G if and only if they are adjacent in G[X,Y]. A cut of G is a bipartition (A,B)
of its vertex set. For a vertex v ∈ V (G), we denote by N [v] the set of neighbors of v in G,
i.e. N [v] ..= {w ∈ V (G) | {v, w} ∈ E(G)}. A set M of edges is a matching if no two edges
in M share an end vertex, and a matching {a1b1, . . . , akbk} is induced if there are no other
edges in the subgraph induced by {a1, b1, . . . , ak, bk}. For an edge e = {v, w} ∈ E(G), the
operation of contracting e is to remove the edge e from G and merging its endpoints v and w.

Branch Decompositions and Mim-Width. A pair (T,L) of a subcubic tree T and a bijection
L from V (G) to the set of leaves of T is called a branch decomposition. For each edge e of
T , let T e1 and T e2 be the two connected components of T − e, and let (Ae1, Ae2) be the vertex
bipartition of G such that for each i ∈ {1, 2}, Aei is the set of all vertices in G mapped to
leaves contained in T ei by L. The mim-width of (T,L), denoted by mimw(T,L), is defined
as maxe∈E(T) mim(Ae1), where for a vertex set A ⊆ V (G), mim(A) denotes the maximum
size of an induced matching in G[A, V (G) \ A]. The minimum mim-width over all branch
decompositions of G is called the mim-width of G. If |V (G)| ≤ 1, then G does not admit a
branch decomposition, and the mim-width of G is defined to be 0.

To avoid confusion, we refer to elements in V (T) as nodes and elements in V (G) as
vertices throughout the rest of the paper. Given a branch decomposition, one can subdivide
an arbitrary edge and let the newly created vertex be the root of T , in the following denoted
by r. Throughout the following we assume that each branch decomposition has a root
node of degree two. For two nodes t, t′ ∈ V (T), we say that t′ is a descendant of t if t
lies on the path from r to t′ in T . For t ∈ V (T), we denote by Gt the subgraph induced
by all vertices that are mapped to a leaf that is a descendant of t, i.e. Gt = G[Xt], where
Xt = {v ∈ V (G) | L−1(t′) = v where t′ is a descendant of t in T}. We use the shorthand
‘Vt’ for ‘V (Gt)’ and let V̄t ..= V (G) \ Vt.

The following definitions which we relate to branch decompositions of graphs will play a
central role in the design of the algorithms in Section 3.

I Definition 1 (Boundary). Let G be a graph and A,B ⊆ V (G) such that A ∩B = ∅. We
let bdB(A) be the set of vertices in A that have a neighbor in B, i.e. bdB(A) ..= {v ∈ V (A) |
N(v) ∩B 6= ∅}. We define bd(A) ..= bdV (G)\A(A) and call bd(A) the boundary of A in G.

I Definition 2 (Crossing Graph). Let G be a graph and A,B ⊆ V (G). If A ∩ B = ∅, we
define the graph GA,B ..= G[bdB(A),bdA(B)] to be the crossing graph from A to B.

If (T,L) is a branch decomposition of G and t1, t2 ∈ V (T) such that the crossing graph
GVt1 ,Vt2

is defined, we use the shorthand Gt1,t2 ..= GVt1 ,Vt2
. We use the analogous shorthand

notations Gt1,t̄2 ..= GVt1 ,V̄t2
and Gt̄1,t2 ..= GV̄t1 ,Vt2

(whenever these graphs are defined). For
the frequently arising case when we consider Gt,t̄ for some t ∈ V (T), we refer to this graph
as the crossing graph w.r.t. t.

We furthermore use the following notation. Let G be a graph, v ∈ V (G) and A ⊆ V (G).
We denote by NA[v] the set of neighbors of v in A, i.e. NA[v] ..= N [v] ∩A. For X ⊆ V (G),
we let NA[X] ..=

⋃
v∈X NA[v]. If (T,L) is a branch decomposition of G and t ∈ V (T), we

use the shorthand notations Nt[X] ..= NVt [X] and Nt̄[X] ..= NV̄t
[X].

The Minimal Vertex Covers Lemma. Let G be a graph. We now prove that given a set
A ⊆ V (G), the number of minimal vertex covers in G[A, V (G) \A] is bounded by nmim(A).

L. Jaffke, O. Kwon, and J. A. Telle 21:5

This observation is crucial to argue that we only need to store nO(w) entries at each node
in the branch decomposition in all algorithms we design, where w is the mim-width of the
given branch decomposition.

I Corollary 3 (Minimal Vertex Covers Lemma, F). Let H be a bipartite graph on n vertices
with a bipartition (A,B). The number of minimal vertex covers of H is at most nmim(A),
and the set of all minimal vertex covers of H can be enumerated in time nO(mim(A)).

3 Algorithms

In all algorithms presented in this section, we assume that we are given as input an undirected
graph G together with a branch decomposition (T,L) of G of mim-width w, rooted at a
degree two vertex obtained from subdividing an arbitrary edge in T . We do bottom-up
dynamic programming over (T,L). To obtain our algorithms, we study the structure a
solution induces across a cut in the branch decomposition and argue that the size of this
structure is bounded by a function only depending on the mim-width. The table entries at
each node t ∈ V (T) are then indexed by all possible such structures and contain the value
1 if and only if the structure used as the index of this entry constitutes a solution for the
respective problem. After applying the dynamic programming scheme, the solution to the
problem can be obtained by inspecting the table values associated with the root of T .

The rest of this section is organized as follows. In Section 3.1 we present an nO(w)-time
algorithm for Longest Induced Path, and in Section 3.2 we give an algorithm for Induced
Disjoint Paths with the same asymptotic runtime bound. We give a polynomial-time
one-to-many reduction from H-Induced Topological Minor (for fixed H) to Induced
Disjoint Paths in Section 3.3, yielding an nO(w) for the former problem as well.

3.1 Longest Induced Path
For a disjoint union of paths P , we refer to its size as the number of its vertices, i.e. |P | ..=
|V (P)|. If P has only one component, we use the terms ‘size’ and ‘length’ interchangeably.
We now give an nO(w) time algorithm for the following parameterized problem.

Longest Induced Path (LIP)/Mim-Width
Input: A graph G with branch decomposition (T,L) and an integer k
Parameter: w ..= mimw(T,L)
Question: Does G contain an induced path of length at least k?

Before we describe the algorithm, we observe the following. Let G be a graph and
A ⊆ V (G) with mim(A) = w and let P be an induced path in G. Then the subgraph induced
by edges of P in GA,Ā and vertices incident with these edges has size linearly bounded by w.
The following lemma provides a bound of this size.

I Lemma 4. Let p be a positive integer and let F be a disjoint union of paths such that each
component of F contains an edge. If |V (F)| ≥ 4p, then F contains an induced matching of
size at least p.

Proof. We prove the lemma by induction on p. If p = 1, then it is clear. We may assume
p ≥ 2. Suppose F contains a connected component C with at most 4 vertices. Then F −V (C)
contains at least 4(p− 1) vertices, and thus it contains an induced matching of size at least
p−1 by the induction hypothesis. As C contains an edge, F contains an induced matching of
size at least p. Thus, we may assume that each component of F contains at least 5 vertices.

IPEC 2017

21:6 Longest Induced Path and Induced Disjoint Paths on Graphs of Bounded Mim-Width

P

I

Vt

V̄t

Figure 1 The intersection of an induced path P with G[Vt ∪ bd(V̄t)], which is an induced disjoint
union of paths I. The subgraph S to be used as an index for the corresponding table entry consists
of the boldface vertices and edges in I.

Let us choose a leaf v of F , and let v1 be the neighbor of v, and v2 be the neighbor of v1
other than v. Since each component of F − {v, v1, v2} contains at least one edge, we can
apply induction to conclude that F −{v, v1, v2} contains an induced matching of size at least
p− 1. Together with vv1, F contains an induced matching of size at least p. J

Before we give the description of the dynamic programming algorithm, we first observe
how a solution P, i.e. an induced path in G, interacts with the graph G[Vt ∪ bd(V̄t)], for
some t ∈ V (T). The intersection of P with G[Vt ∪ bd(V̄t)] is an induced disjoint union of
paths which we will denote by I in the following. To keep the number of possible table
entries bounded by nO(w), we have to focus on the interaction of I with the crossing graph
Gt,t̄ w.r.t. t, in particular the intersection of I with its edges. Note that after removing
isolated vertices, I induces a disjoint union of paths on Gt,t̄ which throughout the following
we will denote by S. For an illustration see Figure 1. There cannot be any additional edges
crossing the cut (Vt, V̄t) between vertices in I on opposite sides of the boundary that are
not contained in V (S). This property of I can be captured by considering a minimal vertex
cover M of the bipartite graph Gt,t̄ − V (S). We remark that the vertices in M play different
roles, depending on whether they lie in M ∩ Vt or M ∩ V̄t. We therefore define the following
two sets.

M in
t

..= M ∩ Vt is the set of vertices that must be avoided by I.
Mout
t

..= M ∩ V̄t is the set of vertices that must be avoided by a partial solution (e.g. the
intersection of P with G[V̄t]) to be combined with I to ensure that their combination
does not use any edges in Gt,t̄ − V (S).

Furthermore, I also indicates how the vertices in S[Vt] that have degree one in S are joined
together in the graph Gt (possibly outside bd(Vt)). This gives rise to a collection of vertex
pairs Q, which we will refer to as pairings, with the interpretation that (s, t) ∈ Q if and only
if there is a path from s to t in I[Vt].

The description given above immediately tells us how to index the table entries in the
dynamic programming table T to keep track of all possible partial solutions in the graph
G[Vt ∪ bd(V̄t)]: We set the table entry T [t, (S,M,Q), i, j] = 1, where i ∈ [0..n] and j ∈ [0..2],
if and only if the following conditions are satisfied. For an illustration of the table indices,
see Figure 2.
(i) There is a set of induced paths I of total size i in G[Vt ∪ bd(V̄t)] such that I has j

degree one endpoints in Gt.
(ii) E(I) ∩ E(Gt,t̄) = E(S).
(iii) M is a minimal vertex cover of Gt,t̄ − V (S) such that V (I) ∩M = ∅.
(iv) Let D denote the vertices in S[Vt] that have degree one in S. Let Q = (s1, t1), . . . , (s`, t`)

be a partition of all but j vertices of D into pairs, throughout the following called a

L. Jaffke, O. Kwon, and J. A. Telle 21:7

Mout
t

M in
tQ

S V̄t

Vt

Figure 2 A crossing graph Gt,t̄ and the structures associated with the table indices of the
algorithm for Longest Induced Path. Note that by (1) and (4) it follows that if the table entry
corresponding to the above structures is 1, then j = 0: Since both degree one endpoints in S[Vt] are
paired, the corresponding set of induced paths I has zero degree one endpoints in G[Vt].

pairing, such that if we contract all edges in I − E(Gt,t̄) from I incident with at least
one vertex not in S (we denote the resulting graph as S �Q) we obtain the same graph
as when adding {sk, tk} to S, for each k ∈ [`].
Regarding (4), observe that |D| = 2` + j and that there are j unpaired vertices in Q,

each of which is connected to a degree one endpoint of I in Gt. For notational convenience,
we will denote by Tt all table entries that have the node t ∈ V (T) as the first index.

We now show that the solution to Longest Induced Path can be obtained from a
table entry corresponding to the root r of T and hence ensure that the information stored in
T is sufficient.

I Proposition 5 (F). G contains an induced path of length i if and only if T [r, (∅, ∅, ∅), i, 2] =
1.

Throughout the following, we denote by St the set of all sets of induced disjoint paths in
Gt,t̄ on at most 4w vertices (which includes all possible intersections of partial solutions with
Gt,t̄ by Lemma 4), for S ∈ St byMt,S the set of all minimal vertex covers of Gt,t̄ − V (S)
and by Qt,S the set of all pairings of degree one vertices in S[bd(Vt)]. We now argue that
the number of such entries is bounded by a polynomial in n whose degree is O(w).

I Proposition 6. For each t ∈ V (T), there are at most nO(w) table entries in Tt and they
can be enumerated in time nO(w).

Proof. Note that each index is an element of St×Mt,S ×Qt,S × [0..n]× [0..2]. Since the size
of each maximum induced matching in Gt,t̄ is at most w, we know by Lemma 4 that the size
of each index S is bounded by 4w, so |St| ≤ O(n4w). By the Minimal Vertex Covers Lemma
(Corollary 3), |Mt,S | ≤ nO(w). Since the number of vertices in S is bounded by 4w, we know
that |Qt,S | ≤ wO(w) and since i ∈ [0..n] and j ∈ [0..2], we can conclude that the number of
table entries for each t ∈ V (T) is at most O(n4w) ·nO(w) ·wO(w) · (n+ 1) · 3 = nO(w). Clearly,
all elements in St and Qt,S can be enumerated in time nO(w) and by the Minimal Vertex
Covers Lemma, we know that all elements inMt,S can be enumerated in time nO(w) as well.
The claimed time bound on the enumeration of the table indices follows. J

In the remainder of the proof we will describe how to fill the table entries from the
leaves of T to its root, asserting the correctness of the updates in the table. Together with
Proposition 5, this will yield the correctness of the algorithm. The description of how the
tables are filled at a leaf node are deferred to the full version [10].

Internal nodes of T . Let t ∈ V (T) be an internal node of T , let (S,M,Q) ∈ St×Mt,S×Qt,S ,
let i ∈ [0..n] and j ∈ [0..2]. We show how to compute the table entry T [t, (S,M,Q), i, j] from

IPEC 2017

21:8 Longest Induced Path and Induced Disjoint Paths on Graphs of Bounded Mim-Width

table entries corresponding to the children a and b of t in T . To do so, we have to take into
account the ways in which partial solutions for G[Va ∪ bd(V̄a)] and G[Vb ∪ bd(V̄b)] interact.
We therefore try all pairs of indices Ia = ((Sa,Ma, Qa), ia, ja), Ib = ((Sb,Mb, Qb), ib, jb) and
for each such pair, first check whether it is ‘compatible’ with It: We say that Ia and Ib are
compatible with It if and only if any partial solution Ia represented by Ia for G[Va ∪ bd(V̄a)]
and Ib represented by Ib for G[Vb ∪ bd(V̄b)] can be combined to a partial solution It for
G[Vt ∪ bd(V̄t)] that is represented by the index It. We then set Tt[It] ..= 1 if and only if we
can find a compatible pair of indices Ia, Ib as above such that Ta[Ia] = 1 and Tb[Ib] = 1.

Step 0 (Valid Index). We first check whether the index It can represent a valid partial
solution of G[Vt ∪ bd(V̄t)]. The definition of the table entries requires that S�Q is a disjoint
union of paths, so if S �Q is not a disjoint union of paths, we set Tt[It] ..= 0 and skip the
remaining steps. In general, the number of degree one vertices in V (S �Q) ∩ Vt has to be
equal to j and we can proceed as described in Steps 1-4, except for the following special
cases, the details of which can be found in the full version [10].
Special Case 1 (j = 2, V (S �Q) ∩ Vt has 0 deg. 1 vertices).
Special Case 2 (j = 2, V (S �Q) ∩ Vt has 2 deg. 1 vertices in same component).
Special Case 3 (j = 0 and S = ∅).
Step 1 (Induced disjoint unions of paths). We now check whether Sa and Sb are compat-
ible with S. We have to ensure that S ∩ Ga,t̄ = Sa ∩ Ga,t̄, S ∩ Gb,t̄ = Sb ∩ Gb,t̄ and
Sa ∩Ga,b = Sb ∩Ga,b. If these conditions are not satisfied, we skip the current pair of indices
Ia, Ib. In the following, we use the notation R = Sa ∩Ga,b (= Sb ∩Ga,b).
Step 2 (Pairings of degree one vertices and j). First, we deal with Special Case 1, i.e.
j = 2 and S = ∅. We then check whether the graph obtained from taking R and adding an
edge (and, if not already present, the corresponding vertices) for each pair in Qa and Qb is
a single induced path. Note that we require the values of the integers ja and jb to be the
number of endpoints of the resulting path in Va and Vb, respectively.
Since the case j = 0 and S = ∅ is dealt with in Special Case 3 and S cannot be empty
whenever j = 1, we may from now on assume that S 6= ∅ and hence S �Q 6= ∅.1
Consider the graph on vertex set V (S) ∪ V (R) whose edges consist of the edges in S and R
together with the pairs in Qa and Qb. We then contract all edges in R and all edges that
were added due to the pairings Qa and Qb and incident with a vertex not in S, and denote
the resulting graph by H. Then, Qa and Qb are compatible if and only if H = S �Q. By
the definition of the table entries (and since by Step 0, S �Q is a disjoint union of paths) we
can then see that Qa, Qb together with the edges of R connect the paired degree one vertices
of Q as required. We furthermore need to ensure that the values of the integers ja and jb
are the number of degree one endpoints in H[Va] and H[Vb], respectively. For an illustration
see Figure 3.
Step 3 (Minimal vertex covers). We now describe the checks we have to perform to ensure
that Ma and Mb are compatible with M , which from now on we will denote by Mt to avoid
confusion. For ease of exposition, we denote by It, Ia and Ib (potential) partial solutions
corresponding to It, Ia and Ib, respectively.
Recall that the purpose of the minimal vertex cover Mt is to ensure that no unwanted
edges appear between vertices used by the partial solution It and any partial solution of
G[V̄t \ bd(V̄t)] that can be combined with It. Hence, when checking whether Ia and Ib can

1 Note that it could still happen that Q = ∅ but since this does not essentially influence the following
argument, we assume that Q 6= ∅.

L. Jaffke, O. Kwon, and J. A. Telle 21:9

R

Sa \R Sb \R

V̄t

Va Vb
Q

Qa Qb

Figure 3 Step 3 of the join operation. Recall that Sa ∩ Ga,b = Sb ∩ Ga,b = R by Step 1.

be combined to It without explicitly having access to these sets of induced disjoint paths,
we have to make sure that the indices Ia and Ib assert the absence of unwanted edges — for
any intersection of a partial solution with Ga,ā and Gb,b̄, as well as with Ga,b. Recall that
Ga,ā = Ga,t̄ ∪Ga,b and Gb,b̄ = Gb,t̄ ∪Ga,b.
We distinguish several cases, depending on where the unwanted edge might appear: First,
between two intermediate vertices of partial solutions and second, between a vertex in Sa or
Sb and an intermediate vertex. Step 3.1 handles the former and Step 3.2 the latter. In Step
3.1, we additionally have to distinguish whether the edge might appear in Ga,b or in Ga,t̄
(respectively, in Gb,t̄). In the following, we letMout(b)

a
..= Mout

a ∩Vb andMout(a)
b

..= Mout
b ∩Va.

Step 3.1.1 (intermediate-intermediate, Ga,b). Mout(b)
a ⊆M in

b and Mout(a)
b ⊆M in

a : A ver-
tex v ∈Mout(b)

a can have a neighbor w ∈ Va which is used as an intermediate vertex in Ia.
Hence, to avoid that the unwanted edge {v, w} appears in the combined solution Ia ∪ Ib, we
have to make sure that v is not used by Ib, which is asserted if v ∈M in

b . By a symmetric
argument we justify that Mout(a)

b ⊆M in
a .

Step 3.1.2 (intermediate-intermediate, Ga,t̄ or Gb,t̄). We have to check the following two
conditions, the first one regarding M in

t and the second one regarding Mout
t .

(a) M in
t ⊆M in

a ∪M in
b : By the definition of M in

t , It has to avoid the vertices in M in
t . Hence,

Ia and Ib have to avoid the vertices in M in
t as well, which is ensured if for v ∈M in

t ∩ Va,
we have that v ∈M in

a and for w ∈M in
t ∩ Vb, we have that w ∈M in

b .
(b) For each vertex v ∈ Mout

t having a neighbor x in Va such that x is also contained in
Va \ (V (Sa) ∪M in

a), we have that v ∈ Mout
a : Recall that by the definition of Mout

t ,
It could use the vertex x as an intermediate vertex. If x /∈ V (Sa) ∪M in

a , this means
that x might be used by Ia as an intermediate vertex as well. Now, in a table entry
representing a partial solution Ia using x, this is signalized by having v ∈ Mout

a . We
check the analogous condition for Mout

b .
Step 3.2 (intermediate-(Sa or Sb)). Na[V (Sb) \ V (Sa)] ⊆ M in

a and Nb[V (Sa) \ V (Sb)] ⊆
M in
b : We justify the first condition and note that the second one can be argued for symmetric-

ally. Clearly, Ia cannot have a neighbor x of any vertex v ∈ V (Sb) as an intermediate vertex,
if Ia is to be combined with Ib. However, if v ∈ V (Sa), then Ia does not use x by Part (2)
of the definition of the table entries. Note that this includes all vertices in V (R) ⊆ V (Sa). If
on the other hand, v ∈ V (Sb) \ V (Sa) then the neighbors of v have not been accounted for
earlier, since v is not a vertex in the partial solution Ia. Hence, we now have to assert that
Ia does not use x, the neighbor of v, and so we require that x ∈M in

a .

Step 4 (i). We consider all pairs of integers ia, ib such that i = ia + ib − |V (R)|. By Step 2,
all vertices in R are used in the partial solution It. They are counted twice, since they are
both accounted for in Ia and in Ib.

IPEC 2017

21:10 Longest Induced Path and Induced Disjoint Paths on Graphs of Bounded Mim-Width

Now, we let Tt[It] = 1 if and only if there is a pair of indices Ia = ((Sa,Ma, Qa), ia, ja)
and Ib = ((Sb,Mb, Qb), ib, jb) passing all checks performed in Steps 1-4 above, such that
Ta[Ia] = 1 and Tb[Ib] = 1. This finishes the description of the algorithm.

I Proposition 7 (F). Let t ∈ V (T). The table entries Tt[It] computed according to Steps
0-4 above are correct.

By Propositions 5 and 7 and the fact that in the leaf nodes of T , we enumerate all
possible partial solutions, we know that the algorithm we described is correct. Since by
Proposition 6, there are at most nO(w) table entries at each node of T (and they can be
enumerated in time nO(w)), the value of each table entry in Tt as above can be computed in
time nO(w) · nO(w) · nO(1) = nO(w), since each check described in Steps 0-4 can be done in
time polynomial in n. Since additionally, |V (T)| = O(n), the total runtime of the algorithm
is nO(w) · nO(w) · O(n) = nO(w) and we have the following theorem.

I Theorem 8. There is an algorithm that given a graph G on n vertices and a branch
decomposition (T,L) of G, solves Longest Induced Path in time nO(w), where w denotes
the mim-width of (T,L).

3.2 Induced Disjoint Paths
In this section, we build upon the ideas of the algorithm for Longest Induced Path
presented above to obtain an nO(w)-time algorithm for the following parameterized problem.

Induced Disjoint Paths (IDP)/Mim-Width
Input: A graph G with branch decomposition (T,L) and pairs of vertices (x1, y1),
. . ., (xk, yk) of G.
Parameter: w ..= mimw(T,L)
Question: Does G contain a set of vertex-disjoint induced paths P1, . . . , Pk, such
that for i ∈ [k], Pi is a path from xi to yi and for i 6= j, Pi does not contain a vertex
adjacent to a vertex in Pj?

Throughout the remainder of this section, we refer to the vertices {xi, yi}, where i ∈ [k] as
the terminals and we denote the set of all terminals by X ..=

⋃
i∈[k]{xi, yi}. We furthermore

use the following notation: We denote by C(G) the set of all connected components of G and
for a vertex v ∈ V (G), CG(v) refers to the connected component containing v.

We observe how a solution P = (P1, . . . ,Pk) interacts with the graph G[Vt ∪ bd(V̄t)], for
some t ∈ V (T). In this case, for each i ∈ [k], Pi is an (xi, yi)-path and additionally for j 6= i,
there is no vertex in Pi adjacent to a vertex of Pj . The intersection of P with G[Vt ∪ bd(V̄t)]
is a subgraph I = (I1, . . . , Ik), where each Ii is a (possibly empty) induced disjoint union of
paths which is the intersection of the (xi, yi)-path Pi with G[Vt ∪ bd(V̄t)]. Note that each
terminal vi ∈ {xi, yi} that is contained in Vt ∪ bd(V̄t) is also contained in V (Ii).

Again our goal is to bound the number of table entries at each node t ∈ V (T) by nO(w),
so we focus on the intersection of I with the crossing graph Gt,t̄. There are several reasons
why Ii can have a nonempty intersection with the crossing graph Gt,t̄: If precisely one of xi
and yi is contained in Vt, then the path Pi must cross the boundary of Gt. If both xi and yi
are contained in Vt (V̄t), yet Pi uses a vertex of V̄t (Vt), then it crosses the boundary of Gt.

We now turn to the definition of the table indices. Let us first point out what table
indices in the resulting algorithm for Induced Disjoint Paths have in common with the
indices in the algorithm for Longest Induced Path and we refer to Section 3.1 for the
motivation and details. These similarities arise since in both problems, the intersection of a
solution with a crossing graph Gt,t̄ is an induced disjoint union of paths.

L. Jaffke, O. Kwon, and J. A. Telle 21:11

The intersection of I with the edges of Gt,t̄ is S, an induced disjoint union of paths where
each component contains at least one edge.
M is a minimal vertex cover of Gt,t̄ − V (S) such that M ∩ V (S) = ∅.

The first important observation to be made is that by Lemma 4, the number of components
of S is linearly bounded in w and hence at most O(w) paths of P can have a nonempty
intersection with Gt,t̄. We need to store information about which path Pi (resp., to which
Ii) the components of S correspond to. To do so, another part of the index will be a labeling
function λ : C(S) → [k], whose purpose is to indicate that each component C ∈ C(S) is
contained in Iλ(C). We just observed that each such λ contains at most O(w) entries.

Let i ∈ [k]. Again, we need to indicate how (some of) the components of S are connected
via Ii in G[Vt]. As before, we do so by considering a pairing of the vertices in S[Vt] that
have degree one in S, however in this case we also have to take into account the labeling
function λ. That is, two such vertices s and t can only be paired if they belong to the same
induced disjoint union of paths Ii.

In accordance with the above discussion, we define the table entries as follows. We let
T [t, (S,M, λ,Qλ)] = 1 if and only if the following conditions are satisfied.
(i) There is an induced disjoint union of paths I = (I1, . . . , Ik) in G[Vt ∪ bd(V̄t)], such that

for i 6= j, Ii does not contain a vertex adjacent (in G) to a vertex in Ij . For each i ∈ [k],
we have that if vi ∈ {xi, yi} ∩ Vt, then vi ∈ Ii. Furthermore, vi has degree one in Ii.

(ii) (a) E(I) ∩ E(Gt,t̄) = E(S).
(b) λ : C(S)→ [k] is a labeling function of the connected components of S, such that

for each component C ∈ C(S), λ(C) = i if and only if C ⊆ Ii.
(iii) M is a minimal vertex cover of Gt,t̄ − V (S) such that V (I) ∩M = ∅.
(iv) Let D denote the set of vertices in S[Vt] that have degree one in S and let Xt = X ∩ Vt.

Then, Qλ is a pairing (i.e. a partition into pairs) of the vertices in D4Xt with the
following properties.2
1. (s, t) ∈ Qλ if and only if there is a path from s to t in I[Vt]. Note that this implies

that (s, t) ∈ Qλ only if both s and t belong to the same Ii for some i ∈ [k] and in
particular only if s, t ∈ V (λ−1(i)) ∪ {xi, yi}.

2. For each i ∈ [k], (xi, yi) ∈ Qλ only if λ−1(i) = ∅, i.e. no component of S has label i.
Using this definition of the table indices, one can design an algorithm solving Induced

Disjoint Paths in time nO(w) analogously to the algorithm for Longest Induced Path.
We give further details in the full version [10] and we have the following theorem.

I Theorem 9. There is an algorithm that given a graph G on n vertices, pairs of ter-
minal vertices (x1, y1), . . . , (xk, yk) and a branch decomposition (T,L) of G, solves Induced
Disjoint Paths in time nO(w), where w denotes the mim-width of (T,L).

3.3 H-Induced Topological Minor
Let G be a graph and uv ∈ E(G). We call the operation of replacing the edge uv by a new
vertex x and edges ux and xv the edge subdivision of uv. We call a graph H a subdivision
of G if it can be obtained from G by a series of edge subdivisions. We call H an induced
topological minor of G if a subdivision of H is isomorphic to an induced subgraph of G.

2 We denote by ‘4’ the symmetric difference, i.e. D4Xt = (D ∪ Xt) \ (D ∩ Xt). Qλ is a pairing on
D4Xt, since if a terminal vi is contained in D, it is supposed to be paired ‘with itself’: Since vi has
degree one in Ii by (1) and is incident to an edge in S, vi cannot be paired with another vertex.

IPEC 2017

21:12 Longest Induced Path and Induced Disjoint Paths on Graphs of Bounded Mim-Width

H-Induced Topological Minor/Mim-Width
Input: A graph G with branch decomposition (T,L)
Parameter: w ..= mimw(T,L)
Question: Does G contain H as an induced topological minor?

I Theorem 10 (F). There is an algorithm that given a graph G on n vertices and a branch
decomposition (T,L) of G, solves H-Induced Topological Minor in time nO(w), where
H is a fixed graph and w the mim-width of (T,L).

References
1 Rémy Belmonte, Petr A. Golovach, Pinar Heggernes, Pim van ’t Hof, Marcin Kaminski,

and Daniël Paulusma. Detecting fixed patterns in chordal graphs in polynomial time.
Algorithmica, 69(3):501–521, 2014. doi:10.1007/s00453-013-9748-5.

2 Rémy Belmonte and Martin Vatshelle. Graph classes with structured neighborhoods and
algorithmic applications. Theor. Comput. Sci., 511:54–65, 2013. doi:10.1016/j.tcs.2013.
01.011.

3 Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. Fast dynamic programming
for locally checkable vertex subset and vertex partitioning problems. Theoret. Comput. Sci.,
511:66–76, 2013.

4 Jirí Fiala, Marcin Kaminski, Bernard Lidický, and Daniël Paulusma. The k-in-a-path
problem for claw-free graphs. Algorithmica, 62(1-2):499–519, 2012. doi:10.1007/
s00453-010-9468-z.

5 Fanica Gavril. Algorithms for maximum weight induced paths. Inf. Process. Lett.,
81(4):203–208, 2002. doi:10.1016/S0020-0190(01)00222-8.

6 Petr A. Golovach, Daniël Paulusma, and Erik Jan van Leeuwen. Induced disjoint paths in
at-free graphs. In Fedor V. Fomin and Petteri Kaski, editors, Algorithm Theory - SWAT
2012 - 13th Scandinavian Symposium and Workshops, Helsinki, Finland, July 4-6, 2012.
Proceedings, volume 7357 of Lecture Notes in Computer Science, pages 153–164. Springer,
2012. doi:10.1007/978-3-642-31155-0_14.

7 Petr A. Golovach, Daniël Paulusma, and Erik Jan van Leeuwen. Induced disjoint paths in
circular-arc graphs in linear time. Theor. Comput. Sci., 640:70–83, 2016. doi:10.1016/j.
tcs.2016.06.003.

8 Petr Hlinený, Sang-il Oum, Detlef Seese, and Georg Gottlob. Width parameters beyond
tree-width and their applications. Comput. J., 51(3):326–362, 2008. doi:10.1093/comjnl/
bxm052.

9 Tetsuya Ishizeki, Yota Otachi, and Koichi Yamazaki. An improved algorithm for the longest
induced path problem on k-chordal graphs. Discrete Applied Mathematics, 156(15):3057–
3059, 2008. doi:10.1016/j.dam.2008.01.019.

10 Lars Jaffke, O-joung Kwon, and Jan Arne Telle. Polynomial-time algorithms for the longest
induced path and induced disjoint paths problems on graphs of bounded mim-width. ArXiv
e-prints, 2017. arXiv:1708.04536.

11 Dong Yeap Kang, O-joung Kwon, Torstein J. F. Strømme, and Jan Arne Telle. A
width parameter useful for chordal and co-comparability graphs. In Sheung-Hung Poon,
Md. Saidur Rahman, and Hsu-Chun Yen, editors, WALCOM: Algorithms and Computa-
tion, 11th International Conference and Workshops, WALCOM 2017, Hsinchu, Taiwan,
March 29-31, 2017, Proceedings., volume 10167 of Lecture Notes in Computer Science,
pages 93–105. Springer, 2017. doi:10.1007/978-3-319-53925-6_8.

12 Ken-ichi Kawarabayashi and Yusuke Kobayashi. The induced disjoint paths problem. In
Andrea Lodi, Alessandro Panconesi, and Giovanni Rinaldi, editors, Integer Programming
and Combinatorial Optimization, 13th International Conference, IPCO 2008, Bertinoro,

http://dx.doi.org/10.1007/s00453-013-9748-5
http://dx.doi.org/10.1016/j.tcs.2013.01.011
http://dx.doi.org/10.1016/j.tcs.2013.01.011
http://dx.doi.org/10.1007/s00453-010-9468-z
http://dx.doi.org/10.1007/s00453-010-9468-z
http://dx.doi.org/10.1016/S0020-0190(01)00222-8
http://dx.doi.org/10.1007/978-3-642-31155-0_14
http://dx.doi.org/10.1016/j.tcs.2016.06.003
http://dx.doi.org/10.1016/j.tcs.2016.06.003
http://dx.doi.org/10.1093/comjnl/bxm052
http://dx.doi.org/10.1093/comjnl/bxm052
http://dx.doi.org/10.1016/j.dam.2008.01.019
http://dx.doi.org/10.1007/978-3-319-53925-6_8

L. Jaffke, O. Kwon, and J. A. Telle 21:13

Italy, May 26-28, 2008, Proceedings, volume 5035 of Lecture Notes in Computer Science,
pages 47–61. Springer, 2008. doi:10.1007/978-3-540-68891-4_4.

13 Dieter Kratsch, Haiko Müller, and Ioan Todinca. Feedback vertex set and longest induced
path on at-free graphs. In Hans L. Bodlaender, editor, Graph-Theoretic Concepts in Com-
puter Science, 29th International Workshop, WG 2003, Elspeet, The Netherlands, June
19-21, 2003, Revised Papers, volume 2880 of Lecture Notes in Computer Science, pages
309–321. Springer, 2003. doi:10.1007/978-3-540-39890-5_27.

14 Sridhar Natarajan and Alan P. Sprague. Disjoint paths in circular arc graphs. Nordic J.
of Computing, 3(3):256–270, 1996. URL: http://dl.acm.org/citation.cfm?id=642150.
642154.

15 Neil Robertson and Paul D. Seymour. Graph minors .xiii. the disjoint paths problem. J.
Comb. Theory, Ser. B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006.

16 Sigve Hortemo Sæther and Martin Vatshelle. Hardness of computing width parameters
based on branch decompositions over the vertex set. Theor. Comput. Sci., 615:120–125,
2016.

17 Jan Arne Telle and Andrzej Proskurowski. Algorithms for vertex partitioning prob-
lems on partial k-trees. SIAM J. Discrete Math., 10(4):529–550, 1997. doi:10.1137/
S0895480194275825.

18 Martin Vatshelle. New Width Parameters of Graphs. PhD thesis, University of Bergen,
2012.

IPEC 2017

http://dx.doi.org/10.1007/978-3-540-68891-4_4
http://dx.doi.org/10.1007/978-3-540-39890-5_27
http://dl.acm.org/citation.cfm?id=642150.642154
http://dl.acm.org/citation.cfm?id=642150.642154
http://dx.doi.org/10.1006/jctb.1995.1006
http://dx.doi.org/10.1137/S0895480194275825
http://dx.doi.org/10.1137/S0895480194275825

Optimal Data Reduction for Graph Coloring Using
Low-Degree Polynomials∗

Bart M. P. Jansen1 and Astrid Pieterse2

1 Eindhoven University of Technology, Eindhoven, The Netherlands
b.m.p.jansen@tue.nl

2 Eindhoven University of Technology, Eindhoven, The Netherlands
a.pieterse@tue.nl

Abstract
The theory of kernelization can be used to rigorously analyze data reduction for graph coloring
problems. Here, the aim is to reduce a q-Coloring input to an equivalent but smaller input
whose size is provably bounded in terms of structural properties, such as the size of a minimum
vertex cover. In this paper we settle two open problems about data reduction for q-Coloring.
First, we use a recent technique of finding redundant constraints by representing them as low-
degree polynomials, to obtain a kernel of bitsize O(kq−1 log k) for q-Coloring parameterized
by Vertex Cover for any q ≥ 3. This size bound is optimal up to ko(1) factors assum-
ing NP 6⊆ coNP/poly, and improves on the previous-best kernel of size O(kq). Our second result
shows that 3-Coloring does not admit non-trivial sparsification: assuming NP 6⊆ coNP/poly,
the parameterization by the number of vertices n admits no (generalized) kernel of size O(n2−ε)
for any ε > 0. Previously, such a lower bound was only known for coloring with q ≥ 4 colors.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases graph coloring, kernelization, sparsification

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.22

1 Introduction

The q-Coloring problem asks whether the vertices of a graph can be properly colored using q
colors. It is one of many colorability problems on graphs that have been widely studied.
Since these are often NP-hard, they are good candidates to study from a parameterized
perspective [2, 5]. Here we use additional parameters, other than the size of the input, to
describe the complexity of the problem. In this paper we study preprocessing algorithms
(called kernelizations or kernels) that aim to reduce the size of an input graph in polynomial
time, without changing its colorability status.

The natural choice for a parameter for q-Coloring is the number of colors q. How-
ever, since even 3-Coloring is NP-hard, this parameter does not give interesting results.
Therefore the problem is studied using different parameters, that often try to capture the
complexity of the input graph. For example, Fiala et. al. [6] compared the parameterized
complexity of several coloring problems when parameterized by vertex cover, to the complex-
ity when parameterized by treewidth. Jansen and Kratsch [8] studied graph coloring when
parameterized by a hierarchy of different parameters.

∗ This work was supported by NWO Veni grant “Frontiers in Parameterized Preprocessing” and NWO
Gravitation grant “Networks”.

© Bart M.P. Jansen and Astrid Pieterse;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 22; pp. 22:1–22:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 Optimal Data Reduction for Graph Coloring Using Low-Degree Polynomials

In this earlier work [8], Jansen and Kratsch provided a kernel for q-Coloring param-
eterized by Vertex Cover with O(kq) vertices that can be encoded in O(kq) bits.
Furthermore they showed that for q ≥ 4, a kernel of bitsize O(kq−1−ε) is unlikely to exist.
Unfortunately, these bounds left a gap of a factor k and it remained unclear whether the
upper or the lower bound had to be strengthened. As our first main result, we close this
gap. We show in Theorem 7 that the kernel for q-Coloring parameterized by Vertex
Cover can be further improved to have O(kq−1) vertices and a bitsize of O(kq−1 log k).
This matches the previously known lower bound up to ko(1) factors.

To obtain this improvement, we use a recent result by the current authors [9] about
the kernelization of constraint satisfaction problems when parameterized by the number of
variables. A non-trivial data reduction can be achieved when the constraints are given by
equalities of low-degree polynomials on boolean variables. The size of the resulting instance
then depends on the maximum degree of the given polynomials. Suppose now we are given
a 3-Coloring instance G with vertex cover S and let I = V (G) \ S be the corresponding
independent set. One can think of each vertex v ∈ I as a constraint of the form “my neighbors
use at most 2 different colors”, such that a remaining color can be used to color v. We write
these constraints as polynomial equalities and apply our previous result to find out which ones
are redundant. Since vertices of the independent set can be colored independently, a vertex
that corresponds to a redundant constraint can be removed from G, without changing the
3-colorability of G. To apply this idea to obtain a kernel for q-Coloring parameterized
by Vertex Cover, the key technical step is to build a polynomial of degree q − 1 that
captures the desired constraint.

Our second main result concerns the parameterization by the number of vertices n.
The current authors showed in earlier work [10] that for a number of graph problems it is
impossible to give a kernel of size O(n2−ε), unless NP ⊆ coNP/poly. This implies that the
number of edges cannot efficiently be reduced to a subquadratic amount without changing
the answer, a task that is also known as sparsification. For example, q-Coloring was
shown to have no non-trivial sparsification for any q ≥ 4, unless NP ⊆ coNP/poly. The
case for q = 3 remained open. One might think that 3-Coloring is so restrictive, that a
3-colorable instance is likely to either be sparse, or have a very specific structure. Exploiting
this structure could then allow for a non-trivial sparsification. In Theorem 12 we show that
this is not the case: 3-Coloring allows no kernel of size O(n2−ε), unless NP ⊆ coNP/poly.

From this bound it follows that the Ω(kq−1−ε) lower bound for the parameterization by
vertex cover also holds for q = 3, since the size of a vertex cover is at most the total number
of vertices in the graph. This completely settles the kernelization complexity of q-Coloring
parameterized by Vertex Cover, up to ko(1) factors.

Related work

Dell and Van Melkebeek showed that d-CNF-Satisfiability with n variables has no kernel
of size O(nd−ε), unless NP ⊆ coNP/poly [4]. Continuing this line of research, precise kernel
lower bounds were shown for a variety of problems. For example, it was shown that Vertex
Cover is unlikely to have a kernel of size O(k2−ε) [4], while a kernel with O(k2) edges and
O(k) vertices is known. Furthermore, the Point-Line cover problem, which asks to cover
a set of n points in the plane with at most k lines, was proven to have a tight kernel lower
bound of size O(k2−ε) [11], assuming NP 6⊆ coNP/poly. Dell and Marx [3] proved polynomial
kernelization lower bounds for several packing problems. They showed how a table structure
can help realize the reduction that is needed for such a lower bound. We will also use this
table structure in this paper.

B.M.P. Jansen and A. Pieterse 22:3

2 Preliminaries

To denote the set of numbers 1 to n, we use the following notation: [n] := {i ∈ N | 1 ≤ i ≤ n}.
For x, y ∈ Z we write x ≡2 y to denote that x and y are congruent modulo 2. For a finite set
X and non-negative integer k, let

(
X
k

)
be the collection of all subsets of X of size exactly k.

A graph G has vertex set V (G) and edge set E(G). All graphs considered in this paper
are simple and undirected. For a vertex u ∈ V (G), let NG(u) := {v ∈ V (G) | {u, v} ∈ E(G)}
denote its open neighborhood. Let G[S] for S ⊆ V (G) denote the subgraph of G induced
by S. A vertex cover of a graph G is a set S ⊆ V (G) such that each edge has at least one
endpoint in S (equivalently, V (G) \ S is an independent set in G). A proper q-coloring of G
is a function c : V (G)→ [q] such that for all {u, v} ∈ E(G) : c(u) 6= c(v).

A parameterized problem Q is a subset of Σ∗ × N, where Σ is a finite alphabet. Let
Q,Q′ ⊆ Σ∗ × N be parameterized problems and let h : N→ N be a computable function. A
generalized kernel for Q into Q’ of size h(k) is an algorithm that, on input (x, k) ∈ Σ∗ × N,
takes time polynomial in |x|+ k and outputs an instance (x′, k′) such that:
1. |x′| and k′ are bounded by h(k), and
2. (x′, k′) ∈ Q′ if and only if (x, k) ∈ Q.
The algorithm is a kernel for Q if Q = Q′. It is a polynomial (generalized) kernel if h(k) is
a polynomial. Since a polynomial-time reduction to an equivalent sparse instance yields a
generalized kernel, a lower bound for the size of a generalized kernel can be used to prove
the non-existence of sparsification algorithms.

We use the framework of cross-composition [1] to establish kernelization lower bounds,
requiring the definitions of polynomial equivalence relations and or-cross-compositions. We
repeat them here for completeness:

I Definition 1 (Polynomial equivalence relation, [1, Def. 3.1]). An equivalence relation R
on Σ∗ is called a polynomial equivalence relation if the following conditions hold.

There is an algorithm that, given two strings x, y ∈ Σ∗, decides whether x and y belong
to the same equivalence class in time polynomial in |x|+ |y|.
For any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements of S into a
number of classes that is polynomially bounded in the size of the largest element of S.

I Definition 2 (Cross-composition, [1, Def. 3.3]). Let L ⊆ Σ∗ be a language, let R be
a polynomial equivalence relation on Σ∗, let Q ⊆ Σ∗ × N be a parameterized problem,
and let f : N → N be a function. An or-cross-composition of L into Q (with respect to
R) of cost f(t) is an algorithm that, given t instances x1, x2, . . . , xt ∈ Σ∗ of L belonging
to the same equivalence class of R, takes time polynomial in

∑t
i=1 |xi| and outputs an

instance (y, k) ∈ Σ∗ × N such that:
The parameter k is bounded by O(f(t)·(maxi |xi|)c), where c is some constant independent
of t, and
instance (y, k) ∈ Q if and only if there is an i ∈ [t] such that xi ∈ L.

I Theorem 3 ([1, Theorem 6]). Let L ⊆ Σ∗ be a language, let Q ⊆ Σ∗×N be a parameterized
problem, and let d, ε be positive reals. If L is NP-hard under Karp reductions, has an
or-cross-composition into Q with cost f(t) = t1/d+o(1), where t denotes the number of
instances, and Q has a polynomial (generalized) kernelization with size bound O(kd−ε), then
NP ⊆ coNP/poly.

We will refer to an or-cross-composition of cost f(t) =
√
t log(t) as a degree-2 cross-

composition. By Theorem 3, a degree-2 cross-composition can be used to rule out generalized
kernels of size O(k2−ε).

IPEC 2017

22:4 Optimal Data Reduction for Graph Coloring Using Low-Degree Polynomials

3 Kernel for q-Coloring parameterized by Vertex Cover

In this section we develop a kernel for q-Coloring parameterized by Vertex Cover.
The main tool is an earlier result [9] on constraint satisfaction problems (CSPs). In the right
conditions, it can be used to reduce the number of constraints without changing the answer.
We recall the required terminology. Define d-Polynomial Root CSP over the integers
modulo 2 as the problem whose input consists of a set L of polynomial equalities over a
set of boolean variables V = {x1, . . . , xn}. Each equality is of the form p(x1, . . . , xn) ≡2 0,
where each polynomial has degree at most d. The question is whether all equalities can be
satisfied by setting the input variables to 0 or 1. The following theorem follows directly from
Theorem 2 together with Claim 3 in [9], where n is the total number of used variables.

I Theorem 4. There is a polynomial-time algorithm that, given an instance (L, V) of d-
Polynomial root CSP over an efficient field F , outputs L′ ⊆ L with at most nd + 1
constraints such that any 0/1-assignment to V satisfies L′ if and only if it satisfies L.

A field F is efficient if the field operations and Gaussian elimination can be done in polynomial
time in the size of a reasonable input encoding. For our purposes it is only relevant that the
integers modulo 2 form an efficient field.

To apply this machinery, we need to show how the coloring constraints expressed by an
independent set of vertices can be encoded as polynomial equalities. To encode the color of a
vertex vi in this context we will use q boolean variables yi,1, . . . , yi,q, one per possible color.
The variable yi,k is set to true if vertex vi has color k. We now define a choice assignment to
the variables, to express that each vertex gets exactly one color.

I Definition 5. Let {yi,k | i ∈ [n], k ∈ [q]} be a set of boolean variables and let y be the
vector containing all these variables. We say y is given a choice assignment if for all i ∈ [n]:

q∑
k=1

yi,k = 1.

Note that a choice assignment always sets exactly n variables to true. The following
lemma gives a polynomial that can be used to express the constraint that out of exactly q
neighbors of a given vertex u, there are at least two that have the same color. This constraint
has to be satisfied to allow u to be properly q-colored. We will later apply such constraints
to all possible subsets of q neighbors of u to obtain a safe reduction.

I Lemma 6. Let q > 0 be an integer and let yi,k for i ∈ [q], k ∈ [q] be boolean variables.
Then there exists a polynomial p of degree q− 1 such that for any choice assignment to y, we
have p(y) ≡2 0 if and only if there are i, j, k ∈ [q] such that yi,k = yj,k = 1.

Before proving Lemma 6, we give the polynomial p corresponding to q = 3 as an example.

p(y) :=
∑

i1 6=i2∈[3]

2∏
k=1

yik,k = y1,1 ·y2,2 +y1,1 ·y3,2 +y2,1 ·y1,2 +y2,1 ·y3,2 +y3,1 ·y1,2 +y3,1 ·y2,2.

Verify for this example that letting y1,1 = y2,1 = y3,1 = 1 and all other variables be
zero, gives p(y) = 0 ≡2 0. Setting y1,1 = y2,2 = y3,2 = 1 and all other variables to zero,
gives p(y) = 2 ≡2 0. Choosing y1,1 = y2,2 = y3,3 = 1 and all other variables zero, gives
p(y) = 1 ≡2 1, as desired. We now proceed with the general construction.

B.M.P. Jansen and A. Pieterse 22:5

Proof of Lemma 6. Define the multivariate polynomial p as

p(y) :=
∑

i1,...,iq−1∈[q]
distinct

q−1∏
k=1

yik,k.

To understand this polynomial and facilitate the remainder of the proof, it is useful to think
of an associated set of variables x1, . . . , xq that take values from [q] and represent a color.
For each color variable xi, the corresponding boolean variables yi,1, . . . , yi,q encode the value
taken by xi. In this notation, each monomial of p corresponds to a permutation of all but
one of the color variables x1, . . . , xq. The monomial evaluates to 1 if the i’th variable in this
permutation has value i for all i ∈ [q − 1], and to 0 otherwise.

We proceed to show that p has the desired properties. It is easy to see the degree of
p is q − 1. It remains to prove the claim on the values of p(y) for choice assignments. So
consider a choice assignment to y, and for each i ∈ [q] let xi := k exactly when yi,k = 1. This
is well-defined as there is exactly one k ∈ [q] such that yi,k = 1. In these terms, we have to
show that p(y) ≡2 0 if and only if there are distinct color variables xi, xj such that xi = xj .

Suppose there do not exist i, j ∈ [q] such that xi = xj , implying that x1, . . . , xq take q
distinct values. For k ∈ [q − 1], let jk be the unique index such that xjk

= k, implying
that yjk,k = 1. Then,

∏q−1
k=1 yjk,k = 1. For any other choice of distinct indices i1, . . . , iq−1 ∈ [q],

there exists m ∈ [q − 1] such that im 6= jm. This implies that yim,m = 0 and thereby∏q−1
k=1 yik,k = 0. Thus, p(y) = 1 ≡2 1.
For the other direction, suppose there exist i, j ∈ [q], such that xi = xj . We do a case

distinction, where we consider the following cases: One color is used at least thrice, or there
exist two colors that are both used more than once, or one color is used more than once and
color q is used, or all colors except color q are used. More formally:

There exist distinct i, j, ` ∈ [q] such that xi = xj = x`. Then p(y) = 0, because there
do not exist distinct i1, . . . , iq−1 ∈ [q] such that xik

= k (and thus yik,k = 1) for all
k ∈ [q − 1]. Hence all monomials of p evaluate to 0 and p(y) = 0.
There exist distinct i, j, i′, j′ ∈ [q] such that xi = xj and xi′ = xj′ . Then p(y) = 0,
because there do not exist distinct i1, . . . , iq−1 ∈ [q] such that xik

= k for all k ∈ [q − 1].
There exist distinct i, j ∈ [q] and there exists ` ∈ [q] such that xi = xj and x` = q. If
xi = xj = q, it is not possible to find distinct i1, . . . , iq−1 ∈ [q] \ {i, j} such that xik

= k

for all k ∈ [q − 1], thereby p(y) = 0. If xi 6= q, it is again not possible to find distinct
i1, . . . , iq−1 ∈ [q] \ {`} such that xik

= k for all k ∈ [q − 1] since xi and xj are equal.
Otherwise, there are distinct i, j ∈ [q] and k ∈ [q − 1] such that xi = xj = k and there
is no ` ∈ [q] such that x` = q. Furthermore, there are no distinct i′, j′ ∈ [q] \ {i, j} such
that xi′ = xj′ . In other words, each value from [q − 1] is assigned to exactly one color
variable, except for the value k which occurs twice. For all c ∈ [q − 1] with c 6= k, let ic
be the unique index such that xic = c and thus yic,c = 1. Then

yi,k ·
q−1∏
c=1
c6=k

yic,c = yj,k ·
q−1∏
c=1
c 6=k

yic,c = 1.

However,
∏q−1

c=1 yic,c = 0 for any other choice of i1, . . . , iq−1. Thereby, p(y) = 2 ≡2 0. J

We now give a kernel for the q-Coloring problem parameterized by the size of a vertex
cover. The problem is defined as follows:

IPEC 2017

22:6 Optimal Data Reduction for Graph Coloring Using Low-Degree Polynomials

q-Coloring parameterized by Vertex Cover Parameter: |S|
Input: A graph G with a vertex cover S ⊆ V (G).
Question: Does G have a proper q-coloring?

We remark that in settings where no vertex cover of G is known, one can simply apply
the kernelization using a 2-approximate vertex cover for S.

I Theorem 7. For any constant q ≥ 3, q-Coloring parameterized by the size of a ver-
tex cover has a kernel with O(kq−1) vertices, which can be encoded in O(kq−1 log k) bits.
Furthermore, the resulting instance is a subgraph of the original input graph.

Proof. Let input graph G with vertex cover S be given, where |S| = k. For each vertex
v ∈ S, create boolean variables Cv,i for i ∈ [q]. These variables can describe the color of v,
by choosing Cv,i = 1 if v has color i and zero otherwise, which will give them a proper choice
assignment. Let C contain all q · k constructed variables.

For each vertex u ∈ V (G) \ S, for each X ∈
(

NG(u)
q

)
, let Cu,X contain the variables

constructed for set X in NG(u) ⊆ S. Use Lemma 6 to obtain a polynomial pu,X of degree
q − 1, such that for any choice assignment to the variables we have pu,X(Cu,X) ≡2 0 if and
only if there exist i ∈ [q] and v, w ∈ X such that Cv,i = Cw,i = 1.

Let L be the set of created polynomial equalities, thus L := {pu,X(Cu,X) ≡2 0 | u ∈
V (G) \ S ∧X ∈

(
NG(u)

q

)
}. It is easy to see that L is an instance of (q − 1)-Polynomial

root CSP over the integers modulo 2. Use Theorem 4 in order to find L′ ⊆ L with
|L′| ≤ (qk)q−1 + 1, such that a boolean assignment to the variables in C satisfies L′ if and
only if it satisfies L. To obtain the kernel G′, start with graph G[S]. For every equality
pu,X(Cu,X) ≡2 0 ∈ L′, add u to G′ if u is not yet present in G′. Furthermore, connect u to
all vertices in X that u is not already adjacent to. It is easy to see that by this procedure,
G′ is a subgraph of G.

I Claim 8. G′ is q-colorable if and only if G is q-colorable.

Proof. Since G′ is a subgraph of G, graph G′ is q-colorable if G is q-colorable.
For the opposite direction, let c′ be a proper q-coloring of G′. For vertex v ∈ S and color

i ∈ [q], define Cv,i = 1 if c′(v) = i and Cv,i = 0 otherwise. By this definition,
∑q

i=1 Cv,i = 1
for all v, so all variable sets Cu,X are given a choice assignment. We will first show that this
assignment satisfies all equalities in L′. Let pu,X(Cu,X) ≡2 0 ∈ L′. Then u ∈ V (G′) \ S and
u is connected to all vertices in X in G′. Since u is colored by c′, its neighbors do no have
color c′(u), thus c′(u) is unused in the coloring of X. Since |X| = q and we have exactly q
colors, this implies that there exist v, w ∈ X and color i ∈ [q] such that Cv,i = Cw,i = 1. By
Lemma 6, this implies pu,X(Cu,X) ≡2 0 as required.

From the choice of L′ and Theorem 4 it now follows that all equalities in L are satisfied
by this assignment. Let c denote the coloring c′ restricted to the vertices in G[S] = G′[S].
We prove that c can be extended to a proper coloring of G. Since V (G) \S is an independent
set, such an extension is possible if for each vertex v ∈ V (G) \ S there exists a color that is
not used on any vertex of NG(v).

Now assume for a contradiction that c cannot be extended to properly color some vertex u
in V (G) \ S. Then for each color i ∈ [q], there exists a vertex v ∈ NG(u) with c(v) = i (or
else we could use color i for u). Since V (G) \ S is an independent set, NG(u) ⊆ S. Pick
a set X ⊆ NG(u) containing exactly one vertex of each color, thus |X| = q. By Lemma 6,
pu,X(Cu,X) ≡2 1 since there do not exist v, w ∈ X and color i ∈ [q] such that Cv,i = Cw,i = 1.

B.M.P. Jansen and A. Pieterse 22:7

But this contradicts the fact that all polynomial equalities in L are satisfied by the given
assignment, since pu,X(Cu,X) ≡2 0 ∈ L. Hence c can be extended to properly color G. J

I Claim 9. G′ has at most O(kq−1) vertices and can be encoded in O(kq−1 log k) bits.

Proof. Theorem 4 guarantees that |L′| ≤ (qk)q−1 + 1 since there are qk boolean variables in
total, and the polynomials have degree q− 1. Thereby, |V (G′)| ≤ k+ (qk)q−1 + 1 = O(kq−1),
since q is a constant. Furthermore, |E(G′)| ≤ |E(G′[S])|+ q · |L′| ≤ k2 + q · ((qk)q−1 + 1) =
O(kq−1). An adjacency list encoding of the graph has size O(|E| log |V | + |V |), which
is O(kq−1 · log kq−1) = O(kq−1 log k) for constant q. J

It is easy to see that the kernel can be computed in polynomial time. Thereby, it follows
from Claims 8 and 9 that we have given a kernel for q-Coloring of bitsize O(kq−1 log k). J

4 Sparsification lower bound for 3-Coloring

In this section we provide a sparsification lower bound for 3-Coloring. We show that
3-Coloring does not have a (generalized) kernel of size O(n2−ε), unless NP ⊆ coNP/poly.
This will also provide a kernel lower bound for 3-Coloring parameterized by vertex cover
size, that matches the upper bound given in the previous section up to ko(1) factors.

For ease of presentation, we will prove the lower bound by giving a degree-2 cross-
composition from a tailor-made problem to 3-List Coloring. The input to 3-List Color-
ing is a graph G together with a function L that assigns to each vertex v a list L(v) ⊆ {1, 2, 3}.
The problem asks whether there exists a proper coloring of G, such that each vertex is
assigned a color from its list. Before presenting the cross-composition, we introduce an
important gadget that will be used. It was constructed by Jaffke and Jansen [7]. The gadget,
which we will call a blocking-gadget, will be used to forbid one specific coloring of a given
vertex set. The following Lemma is a rephrased version of Lemma 15 in [7].

I Lemma 10. There is a polynomial-time algorithm that, given c = (c1, . . . , cm) ∈ [3]m, out-
puts a 3-List-Coloring instance with O(m) vertices called blocking-gadget(c) that contains
distinguished vertices (π1, . . . , πm). A coloring f : {πi | i ∈ [m]} → [3] can be extended to a
proper list coloring of blocking-gadget(c) if and only if f(πi) = ci for some i ∈ [m].

The blocking-gadget can be used to forbid one specific coloring given by the tuple c of
a set of vertices v1, . . . , vm, by adding a blocking-gadget(c) and connecting πi to vi for all
i ∈ [m]. If the color of vi is ci for all i, then the inserted edges prevent all πi to receive the
corresponding color ci, and by Lemma 10 the coloring cannot be extended to the gadget. If
however the color of vi differs from ci for some i, the gadget can be properly colored.

Having presented the gadget we use in our construction, we define the source problem
for the cross-composition. This problem was also used as the starting problem for a cross-
composition in our earlier sparsification lower bound for 4-Coloring [10].

2-3-Coloring with Triangle Split Decomposition [10]
Input: A graph G with a partition of its vertex set into U ∪ V such that G[U] is an
edgeless graph and G[V] is a disjoint union of triangles.
Question: Is there a proper 3-coloring c : V (G)→ {1, 2, 3} of G, such that c(u) ∈ {1, 2}
for all u ∈ U? We will refer to such a coloring as a 2-3-coloring of the graph G, since
two colors are used to color U , and three to color V .

IPEC 2017

22:8 Optimal Data Reduction for Graph Coloring Using Low-Degree Polynomials

I Lemma 11 ([9, Lemma 3]). 2-3-Coloring with Triangle Split Decomposition is
NP-complete.

To establish a quadratic lower bound on the size of generalized kernels, it suffices to give a
degree-2 cross-composition from this special coloring problem into 3-Coloring. Effectively,
we have to show that for any t, one can efficiently embed a series of t size-n instances indexed
as Xi,j for i, j ∈ [

√
t], into a single 3-Coloring instance with O(

√
t · nO(1)) vertices that

acts as the logical or of the inputs. To achieve this composition, a common strategy is to
construct vertex sets Si and Ti of size nO(1) for i ∈ [

√
t], such that the graph induced by

Si ∪ Tj encodes input Xi,j . The fact that the inputs can be partitioned into an independent
set and a collection of triangles facilitates this embedding; we represent the independent set
within sets Si and the triangles in sets Ti. To embed t inputs into a graph on O(

√
t · nO(1))

vertices, each vertex will have incident edges corresponding to many different input instances.
The main issue when trying to find a cross-composition into 3-Coloring, is to ensure that
when there is one 2-3-colorable input graph, the entire graph becomes 3-colorable. This is
difficult, since the neighbors that a vertex in Si has among the many different sets Tj should
not invalidate the coloring. For vertices in some set Tj , we have a similar issue. Our choice of
starting problem ensures that if some combination Si∗ , Tj∗ corresponding to input Xi∗,j∗ has
a 2-3-coloring, then the remaining sets Tj can be safely colored 3, since vertices in Si∗ will
use only two of the available colors. The key insight to ensure that vertices in the remaining
Si can also be colored, is to split them into multiple copies that each have at most one
neighbor in any Tj . There will be at most one vertex in the neighborhood of a copy that
is colored using color 1 or 2, thereby we can always color it using the other available color.
Finally, additional gadgets will ensure that in some Si all these copies get equal colors, and
in some Tj the vertices that correspond to a triangle in the inputs are properly colored as
such. With this intuition, we give the construction.

I Theorem 12. 3-Coloring parameterized by the number of vertices n does not have a
generalized kernel of size O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Proof. To prove this statement, we give a degree-2 cross-composition from 2-3-Coloring
with triangle split decomposition to 3-List Coloring and then show how to change
this instance into a 3-Coloring instance. We start by defining a polynomial equivalence
relation R on instances of 2-3-Coloring with triangle split decomposition. Let two
instances be equivalent under R, when the sets U have the same size and sets V consist of
the same number of triangles. It is easy to verify that R is a polynomial equivalence relation.

By duplicating one of the inputs several times if needed, we ensure that the number of
inputs to the cross-composition is a square. This increases the number of inputs by at most
a factor four and does not change the value of the or. Therefore, assume we are given t
instances of 2-3-Coloring with Triangle Split Decomposition such that t′ :=

√
t is

integer. Enumerate these instances as Xi,j for i, j ∈ [t′] and let instance Xi,j have graph Gi,j .
For input instance Xi,j , let U and V be such that U is an independent set with |U | = m

and V consists of n vertex-disjoint triangles. Enumerate the vertices in U as u1, . . . , um and
in V as v1, . . . , v3n such that v3k−2, v3k−1, v3k form a triangle for k ∈ [n]. We now create
an instance of the 3-List Coloring problem, consisting of a graph G′ together with a list
function L that assigns a subset of the color palette {1, 2, 3} to each vertex.

Refer to Figure 1 for a sketch of G′.

1. Initialize G′ as the graph containing t′ sets of m · 3n vertices each, called Si for i ∈ [t′].
Label the vertices in each of these sets as si

k,` for i ∈ [t′], k ∈ [3n] and ` ∈ [m]. Define
L(si

k,`) := {1, 2}. The vertices si
1,`, s

i
2,`, . . . , s

i
3n,` together represent a single vertex of

B.M.P. Jansen and A. Pieterse 22:9

S

T

s12,1 s13,1

s15,3

t16t14t13t11

(a) Constructed graph G′

v1 v3 v4 v6

v5v2

u1 u2 u3

(b) Instance X1,1

Figure 1 Construction of graph G′ for t′ = 4, m = 3, and n = 2. Edges between vertices in S

and T are shown for instance X1,1. All blocking-gadgets and the vertex sets A and B are left out.

the independent set of an input instance, which is split into copies to ensure that every
copy has at most one neighbor in each cell of T (the bottom row in Figure 1a).

2. Add t′ sets of 3n vertices each, labeled Tj for j ∈ [t′]. Label the vertices in Tj as tjk for
k ∈ [3n] and let L(tjk) := {1, 2, 3}. Vertices tj3k−2, t

j
3k−1, t

j
3k correspond to a triangle in

an input graph. They are not connected, so that we can safely color all vertices that do
not correspond to a 3-colorable input with color 3.

3. Connect vertex si
k,` to vertex tjk if in graph Gi,j vertex u` is connected to vk, for k ∈ [3n]

and ` ∈ [m]. By this construction, the graph Gi,j is isomorphic to the graph obtained
from G′[Si ∪ Tj] by replacing each triple tj3k−2, t

j
3k−1, t

j
3k by a triangle for k ∈ [n] and

merging all 3n vertices si
k,` in Si that have the same value for ` ∈ [m].

4. Add vertex sets A = {a1, . . . , at′} and B := {b1, . . . , bt′}. These are used to choose indices
i and j such that Gi,j is 3-colorable. Let L(ai) := L(bi) := {1, 2} for all i ∈ [t′].

5. Let c be defined by ci := 2 for all i ∈ [t′]. Add a blocking-gadget(c) to G′. Connect
vertex ai to the distinguished vertex πi of this blocking-gadget for all i ∈ [t′].

6. Let c again be defined by ci := 2 for all i ∈ [t′]. Add a blocking-gadget(c) to G′. Connect
vertex bj to πj for all j ∈ [t′]. Together with the previous step, this ensures that in any
proper list coloring at least one vertex in A and at least one vertex in B has color 1.

7. For every i ∈ [t′], ` ∈ [m], and k ∈ [3n − 1], for every c1, c2 ∈ [2] with c1 6= c2, add a
blocking-gadget((c1, c2, 1)) to G′. Connect si

k,` to π1, si
k+1,` to π2, and ai to π3. This

ensures that when ai has color 1, vertices si
k,` and si

k′,` have the same color for all
k, k′ ∈ [3n].

8. For every j ∈ [t′], k ∈ [n], for every c1, c2, c3 ∈ [3] that are not all pairwise distinct, add a
blocking-gadget((c1, c2, c3, 1)) to G′. Connect tj3k−2 to π1, tj3k−1 to π2, tj3k to π3, and bj

to π4. This construction ensures that if bj is colored 1, all “triangles” in Tj are properly
colored. If bj is colored 2 however, the gadgets add no additional restrictions to the
coloring of vertices in Tj .

This concludes the construction of G′; we proceed with the analysis.

I Claim 13. Let c be a proper 3-list coloring of G′. Then there exists i ∈ [t′] such that for
all ` ∈ [m] and for all k, k′ ∈ [3n] we have c(si

k,`) = c(si
k′,`).

Proof. By the blocking-gadget added in Step 5, there exists i ∈ [t′] such that c(ai) 6= 2.
Since L(ai) = {1, 2}, this implies that c(ai) = 1. We show that i has the required property.

Suppose there exist k, k′ ∈ [3n] and ` ∈ [m] such that c(si
k,`) 6= c(si

k′,`). Then there
must also exist k ∈ [3n − 1] such that c(si

k,`) 6= c(si
k+1,`), or else they would all be

IPEC 2017

22:10 Optimal Data Reduction for Graph Coloring Using Low-Degree Polynomials

equal. Let (c1, c2, c3) correspond to the coloring of si
k,`,si

k+1,`, and ai as given by c. Then
blocking-gadget((c1, c2, c3)) was added in Step 7 and connected to these three vertices. But
by Lemma 10, it follows that any list-coloring of this blocking-gadget must assign color ci to
some πi for i ∈ [3]. By the way they are connected to si

k,`,si
k+1,` and ai, one edge has two

endpoints of equal color, which is a contradiction. J

We will say a triple of vertices v1, v2, v3 is colorful (under coloring c), if they receive
distinct colors, meaning c(v1) 6= c(v2) 6= c(v3) 6= c(v1).

I Claim 14. Let c be a proper 3-list coloring of G′. Then there exists j ∈ [t′] such that for
all k ∈ [n] the triple tj3k, t

j
3k−1, t

j
3k−2 is colorful.

Proof. By the blocking-gadget added in Step 6, there exists j ∈ [t′] such that c(bj) 6= 2.
Since L(bj) = {1, 2}, this implies that c(bj) = 1. We show that j has the desired property.

Suppose there exists k ∈ [n], such that tj3k, t
j
3k−1, and t

j
3k−2 are not a colorful triple. Let

(c1, c2, c3, c4) ∈ [3]4 correspond to the coloring given to tj3k, t
j
3k−1, t

j
3k−1, and bj . In Step 8,

blocking-gadget((c1, c2, c3, c4)) was added, together with connections to these four vertices.
But by Lemma 10, any list-coloring of this blocking-gadget must assign color ci to some πi

for i ∈ [4]. By the way they are connected to tj3k, t
j
3k−1, t

j
3k−2, and bj , one edge has two

endpoints of equal color, which is a contradiction. J

I Claim 15. The graph G′ is 3-list colorable ⇔ some input instance Xi∗j∗ is 2-3-colorable.

Proof. (⇒) Suppose we are given a 3-list coloring c of G′. By Lemmas 13 and 14 there
exist integers i∗ and j∗ ∈ [t′] such that for all ` ∈ [m] and for all k, k′ ∈ [3n] we have
c(si∗

k,`) = c(si∗

k′,`) and furthermore for all k ∈ [n] the triple tj
∗

3k, t
j∗

3k−1, t
j∗

3k−2 is colorful. We
show that this implies that Gi∗,j∗ has a valid 2-3-coloring c′, which we define as follows. Let
c′(u`) := c(si∗

1,`) for ` ∈ [m] and let c′(vk) := c(tj
∗

k) for k ∈ [3n]. It remains to verify that c′
is a valid coloring of Gi∗,j∗ . For any edge {u`, vk} ∈ E(Gi∗,j∗) with ` ∈ [m], k ∈ [3n], the
endpoints receive different colors since

c′(vk) = c(tj
∗

k) 6= c(si∗

k,`) = c(si∗

1,`) = c′(u`).

For an edge {vk, v
′
k} ∈ Gi∗,j∗ , its coloring corresponds to the coloring of tj

∗

k and tj
∗

k′ , which
are colored differently by choice of j∗ in Lemma 14. Furthermore, u` is always colored with
color 1 or 2 as L(si∗

1,`) = {1, 2}. Thereby, c′ is a proper 2-3-coloring of Gi∗,j∗ .
(⇐) Suppose c is a 2-3-coloring of Gi∗,j∗ , such that the U -partite set of Gi∗,j∗ is colored

using only the colors 1 and 2. We will construct a 3-list coloring c′ for graph G′. For ` ∈ [m]
let c′(si∗

k,`) := c(u`) for all k ∈ [3n]. For k ∈ [3n] let c′(tj
∗

k) := c(vk). For j 6= j∗ and k ∈ [3n]
let c′(tjk) := 3. For i 6= i∗ ∈ [t′], k ∈ [3n] and ` ∈ [m], pick c′(si

k,`) ∈ {1, 2} \ {c′(t
j∗

k)}. Let
c′(ai∗) := 1 and let c′(bj∗) := 1. For i 6= i∗ let c′(ai) := 2, similarly for j 6= j∗ let c′(bj) := 2.
Before coloring the vertices in blocking-gadgets, we will show that c′ is proper on G′[S ∪ T].
This will imply that the coloring defined so far is proper, as vertices in A and B only connect
to blocking-gadgets.

Note that all edges in G′[S ∪ T] go from S to T . Consider an edge {s, t} for s ∈ S, t ∈ T .
Since c′(s) 6= 3, if t ∈ Tj for j 6= j∗ ∈ [t′], it follows immediately that c′(s) 6= c′(t).
Furthermore, if s ∈ Si for i 6= i∗ ∈ [t′], c′(s) 6= c′(t) by the definition of c′(s). Otherwise,
s ∈ Si∗ and t ∈ Tj∗ and there exist {u, v} ∈ E(Gi∗,j∗) such that c′(s) = c(u) and c′(t) = c(v).
Since c is a proper coloring, it follows that c′(s) 6= c′(t).

To complete the proof, extend c′ to also properly color all blocking-gadgets. This is
possible for the blocking-gadgets added in Steps 5 and 6, since c′(ai∗) = 1 and c′(bj∗) = 1.

B.M.P. Jansen and A. Pieterse 22:11

Furthermore we show that this is possible for all blocking-gadgets introduced in Step 7. A
blocking-gadget((c1, c2, c3)) introduced in Step 7 either has π3 connected to ai for i 6= i∗

with c′(ai) = 2 6= c3, or it is connected to ai∗ and in this case the vertices si∗

k,` and si∗

k+1,`

are assigned equal colors and thus at least one of them has a coloring different from the
coloring given by c1 and c2 as these colors are distinct. Thus, the colors that are forbidden
on vertices πi by the connections to the rest of the graph, do not correspond to (c1, c2, c3)
and c′ can be extended to color the entire blocking-gadget by Lemma 10.

Similarly, coloring c′ can be extended to blocking-gadgets(c) added in Step 8, as either
π4 in the gadget is connected to bj for j 6= j∗ and c(bj) = 2 6= c4, or the three vertices from
T connected to this gadget are colored with three different colors. J

The claim above shows that we have given a cross-composition into 3-List Coloring.
To obtain an instance of 3-Coloring, we add a triangle consisting of vertices {C1, C2, C3}
to the graph. We connect a vertex v in G′ to Ci if i /∈ L(v) for i ∈ [3]. This graph now has
a proper 3-coloring if and only if the original graph had a proper 3-list coloring. Thus, by
Claim 15, the resulting 3-Coloring instance acts as the logical or of the inputs.

It remains to bound the number of vertices of G′. In Step 1 we add |S| = m · 3n · t′
vertices and in Step 2 we add another |T | = 3n · t′ vertices. Then in Step 4 we add
|A|+ |B| = 2t′ additional vertices. The two blocking-gadgets added in Steps 5 and 6 each
have size O(t′). The blocking-gadgets added in Step 7 have constant size, and we add six
of them for each i ∈ [t′], ` ∈ [m], k ∈ [3n − 1], thus adding O(t′ ·m · n) vertices. Similarly,
the blocking-gadgets added in Step 8 have constant size, and we add a constant number
of them for each j ∈ [t′], ` ∈ [n], thus adding O(t′ · n) vertices. This gives a total of
O(t′ · n ·m) = O(

√
t · (maxi,j |Xi,j |)O(1)) vertices. Theorem 12 now follows from Theorem 3

and Lemma 11. J

The set of all vertices of a graph is always a valid vertex cover for that graph. Thereby,
it follows from Theorem 12 that the lower bound also holds when parameterized by vertex
cover. In [8, Theorem 3], it was shown that for any q ≥ 4, q-Coloring parameterized by
vertex cover does not have a generalized kernel of size O(kq−1−ε), unless NP ⊆ coNP/poly.
Combining these results gives a lower bound for q-Coloring that matches the kernel size
presented in the first section.

I Corollary 16. For any q ≥ 3, q-Coloring parameterized by vertex cover does not have a
generalized kernel of bitsize O(kq−1−ε) for any ε > 0, unless NP ⊆ coNP/poly.

5 Conclusion

We have given a kernel for q-Coloring parameterized by Vertex Cover with O(kq−1)
vertices and bitsize O(kq−1 log k), improving on the previously known kernel by almost a
factor k. Furthermore, 3-Coloring when parameterized by the number of vertices has
no kernel of size O(n2−ε), unless NP ⊆ coNP/poly. It was already known that for q ≥ 4,
q-Coloring parameterized by Vertex Cover was unlikely to yield a kernel of size
O(kq−1−ε). Combining these results allows us to give the same lower bound for q = 3, under
the assumption that NP 6⊆ coNP/poly. Thereby we have provided an upper and lower bound
on the kernel size of q-Coloring parameterized by Vertex Cover for any q ≥ 3, that
match up to ko(1) factors.

It is easy to see that the kernel lower bounds also hold for q-List Coloring, where every
vertex v in the graph has a list L(v) ⊆ [q] of allowed colors. Furthermore, we can also apply
our kernel, by first reducing an instance of q-List Coloring to an instance of q-Coloring

IPEC 2017

22:12 Optimal Data Reduction for Graph Coloring Using Low-Degree Polynomials

using q additional vertices, and adding these q vertices to the vertex cover of the graph. This
only changes the size of the obtained kernel by a constant factor.

In this paper we gave a first example where applying the known results for sparsification
of CSPs gives an improved kernel for a graph problem. It would be interesting to see if this
technique can be applied to obtain smaller kernels for other graph problems as well. To
apply this idea, one needs to first identify which constraints should be modeled. When the
constraints are found, they need to be written as equalities of low-degree polynomials over
a suitably chosen field. This requires the clever construction of polynomials that have a
sufficiently low degree, in order to obtain a good bound on the kernel size.

Another direction for future research consists of obtaining optimal kernel bounds for q-
Coloring with different structural parameters. For example, one could look at q-Coloring
parameterized by a modulator to a cograph. This parameterization admits a polynomial
kernel [8, Corollary 3], but tight bounds are not known.

References
1 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds

by cross-composition. SIAM J. Discrete Math., 28(1):277–305, 2014. doi:10.1137/
120880240.

2 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

3 Holger Dell and Dániel Marx. Kernelization of packing problems. In Proc. 23th SODA,
SODA ’12, pages 68–81, 2012.

4 Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification
unless the polynomial-time hierarchy collapses. J. ACM, 61(4):23:1–23:27, 2014. doi:
10.1145/2629620.

5 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

6 Jirí Fiala, Petr A. Golovach, and Jan Kratochvíl. Parameterized complexity of coloring
problems: Treewidth versus vertex cover. Theor. Comput. Sci., 412(23):2513–2523, 2011.
doi:10.1016/j.tcs.2010.10.043.

7 Lars Jaffke and Bart M. P. Jansen. Fine-grained parameterized complexity analysis of
graph coloring problems. In Dimitris Fotakis, Aris Pagourtzis, and Vangelis Th. Paschos,
editors, Algorithms and Complexity - 10th International Conference, CIAC 2017, Athens,
Greece, May 24-26, 2017, Proceedings, volume 10236 of Lecture Notes in Computer Science,
pages 345–356, 2017. doi:10.1007/978-3-319-57586-5_29.

8 Bart M. P. Jansen and Stefan Kratsch. Data reduction for graph coloring problems. Inf.
Comput., 231:70–88, 2013. doi:10.1016/j.ic.2013.08.005.

9 Bart M. P. Jansen and Astrid Pieterse. Optimal sparsification for some binary csps using
low-degree polynomials. In Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier, editors,
41st International Symposium on Mathematical Foundations of Computer Science, MFCS
2016, August 22-26, 2016 - Kraków, Poland, volume 58 of LIPIcs, pages 71:1–71:14. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.MFCS.2016.71.

10 Bart M. P. Jansen and Astrid Pieterse. Sparsification upper and lower bounds for
graph problems and not-all-equal SAT. Algorithmica, 79(1):3–28, 2017. doi:10.1007/
s00453-016-0189-9.

11 Stefan Kratsch, Geevarghese Philip, and Saurabh Ray. Point line cover: The easy kernel is
essentially tight. ACM Trans. Algorithms, 12(3):40:1–40:16, 2016. doi:10.1145/2832912.

http://dx.doi.org/10.1137/120880240
http://dx.doi.org/10.1137/120880240
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1145/2629620
http://dx.doi.org/10.1145/2629620
http://dx.doi.org/10.1007/978-1-4471-5559-1
http://dx.doi.org/10.1016/j.tcs.2010.10.043
http://dx.doi.org/10.1007/978-3-319-57586-5_29
http://dx.doi.org/10.1016/j.ic.2013.08.005
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.71
http://dx.doi.org/10.1007/s00453-016-0189-9
http://dx.doi.org/10.1007/s00453-016-0189-9
http://dx.doi.org/10.1145/2832912

Turing Kernelization for Finding Long Paths
in Graph Classes Excluding a Topological Minor∗†

Bart M. P. Jansen1, Marcin Pilipczuk‡2, and Marcin Wrochna§3

1 Eindhoven University of Technology, The Netherlands
2 University of Warsaw, Poland
3 University of Warsaw, Poland

Abstract
The notion of Turing kernelization investigates whether a polynomial-time algorithm can solve an
NP-hard problem, when it is aided by an oracle that can be queried for the answers to bounded-
size subproblems. One of the main open problems in this direction is whether k-Path admits
a polynomial Turing kernel: can a polynomial-time algorithm determine whether an undirected
graph has a simple path of length k, using an oracle that answers queries of size kO(1)?

We show this can be done when the input graph avoids a fixed graph H as a topological minor,
thereby significantly generalizing an earlier result for bounded-degree and K3,t-minor-free graphs.
Moreover, we show that k-Path even admits a polynomial Turing kernel when the input graph
is not H-topological-minor-free itself, but contains a known vertex modulator of size bounded
polynomially in the parameter, whose deletion makes it so. To obtain our results, we build on
the graph minors decomposition to show that any H-topological-minor-free graph that does not
contain a k-path has a separation that can safely be reduced after communication with the oracle.

1998 ACM Subject Classification G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases Turing kernel, long path, k-path, excluded topological minor, modulator

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.23

1 Introduction

Suppose that Alice is a polynomial-time agent faced with an input to an NP-hard problem
that she wishes to solve exactly. To facilitate her in this process, she can ask questions to
an all-knowing oracle. These will be answered truthfully and instantly, but the oracle is
memory-less and will not take previous questions into account when answering the next
one. How large do these questions have to be, to allow Alice to find the answer to her
problem? Clearly, the answer can be established by sending the entire input to the oracle,
who determines the answer and sends it to Alice. Could there be a more clever strategy?
Alice can attempt to isolate a small but meaningful question about the behavior of her input,

∗ This work was supported by the Netherlands Organization for Scientific Research (NWO) Veni grant
639.021.437 “Frontiers in Parameterized Preprocessing” and Gravitation grant 024.002.003 “Networks”.

† A full version of the paper is available at [18], https://arxiv.org/abs/1707.01797.
‡ Marcin Pilipczuk is supported by the “Recent trends in kernelization: theory and experimental evaluation”

project, carried out within the Homing programme of the Foundation for Polish Science co-financed by
the European Union under the European Regional Development Fund.

§ Marcin Wrochna is supported by the National Science Centre of Poland grant number
2013/11/D/ST6/03073 and by the Foundation for Polish Science (FNP) via the START stipend
programme.

© Bart M.P. Jansen, Marcin Pilipczuk, and Marcin Wrochna;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 23; pp. 23:1–23:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.23
https://arxiv.org/abs/1707.01797
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Turing Kernelization for Finding Long Paths in Graphs Excluding a Topological Minor

such that after learning its answer, she can reduce to a smaller input without changing the
outcome. Iterating this process solves her problem: when it has become sufficiently small, it
can be posed to the oracle in its entirety.

Such problem-solving strategies can be rigorously analyzed using the notion of Turing
kernelization that originated in parameterized algorithmics. The parameter makes it possible
to express how the size of the questions that Alice asks, depends on properties of the input
that she is given. (See Section 3 for a formal definition.)

Understanding the power of Turing kernelization is one of the main open research horizons
in parameterized algorithmics. There is a handful of problems for which a nontrivial Turing
kernelization is known [1, 2, 3, 5, 12, 15, 17, 19, 22, 24]. On the other hand, there is a
hierarchy of parameterized complexity classes which are conjectured not to admit polynomial
Turing kernels [14]. Arguably, the main open problem (cf. [4, 3, 14]) in this direction is
to determine whether the k-Path problem (determine whether an undirected graph has a
simple path of length k) has a polynomial Turing kernel. In earlier work [16], the first author
showed that k-Path indeed admits polynomial Turing kernels on several graph classes. In
this work, we develop Turing kernels for k-Path in a much more general setting.

Our results. Our algorithmic contributions are twofold. First of all, we extend the Turing
kernelization for k-Path to much broader families of sparse graphs. Whereas the earlier work
could only deal with K3,t-minor-free graphs, claw-free graphs, and bounded-degree graphs,
we show that a Turing kernelization exists on H-minor-free graphs for all fixed graphs H. We
even lift the kernelization to H-topological-minor-free graphs, thereby capturing a common
generalization of the bounded-degree and K3,t-minor-free cases.

I Theorem 1. For every fixed graph H, the k-Path problem, restricted to graphs excluding
H as a topological minor, admits a polynomial Turing kernel. Furthermore, the kernel runs
in time kOH(1)n2m and invokes kOH(1) · n calls to the oracle.

Our second contribution is the following theorem. By a novel algorithmic approach, we
obtain a Turing kernelization even when the input graph does not belong to the desired
restricted graph class itself, but contains a small known vertex modulator whose deletion
places the graph in such a graph class.

I Theorem 2. For every fixed graph H, the k-Path problem, on instances consisting of a
graph G, integer k, and a modulator M ⊆ V (G) such that G−M is H-topological-minor-free,
admits a polynomial Turing kernel, when parameterized by k and |M |.

Techniques. To explain our approach, we briefly recall the idea behind the Turing kernel-
ization for k-Path on planar graphs. At the core lies a win/win: there is a polynomial-time
algorithm that either (i) establishes that a planar graph G has a k-path (a simple path on k

vertices), or (ii) finds a separation (A, B) in G with the following property: the size of A is
polynomially bounded in k, but large enough that after marking a witness structure for each
reasonable way in which a k-path might intersect A, some vertex remains unmarked. Using
bounded-size oracle queries to mark the witness structures, this allows the problem to be
simplified by removing an unmarked vertex from A without changing the answer.

Theorem 1 is established by lifting this win/win approach to H-(topological)-minor-
free graphs. This requires an adaptation of the decomposition theorems of Robertson and
Seymour [21] (for minors) and of Grohe and Marx [13] (for topological minors), to obtain
the following. Every H-free graph that does not have a k-path, has a tree decomposition of
constant adhesion and width poly(k). A reducible separation can be found by inspecting

B.M.P. Jansen, M. Pilipczuk, and M. Wrochna 23:3

this tree decomposition. To establish this result, we exploit known theorems stating that
triconnected n-vertex graphs that exclude K3,t as a minor for some t [7], contain paths of
length Ω(nε) for some ε > 0. Roughly speaking, this allows us to infer the existence of a
k-path if there is a large embedded part in the nearly-embeddable graph corresponding to a
bag of the graph minors decomposition, since graphs embeddable in a fixed surface are K3,t-
minor-free for some t. We use lower bounds on the circumference of graphs of bounded
degree [6, 23] to achieve a similar conclusion from the existence of a large bounded-degree bag
in the topological-minor-free decomposition. Several technical steps are needed to translate
this into the desired win/win, due to the existence of vortices, virtual edges, and the lack of
a direct polynomial-time algorithm to compute the decomposition.

To prove Theorem 2, we introduce a new algorithmic tool for finding irrelevant vertices
for the k-Path problem in the presence of a modulator M in the input graph G. Since
Theorem 1 can be applied to find a k-path in G−M if one exists, the challenge is to detect
a k-path in G that jumps between M and G−M several times. The absence of a k-path
in G−M implies it has a tree decomposition of width poly(k) and constant adhesion. Using
Theorem 1 as a subroutine, along with a packing argument, we can compute a vertex set X

of size polynomial in k + |M | with the following guarantee. If there is a k-path, then there
is a guarded k-path P in which each successive pair of vertices in M ∩ P are connected by
a subpath through G−M that intersects X. Using the tree decomposition of G−M , the
standard ancestor-marking technique allows us to identify a vertex subset C of G− (M ∪X)
that is adjacent to constantly many vertices from X. Unless G is already small, we can find
such a set C that is sufficiently large to be reducible but small enough that we may invoke
the oracle for questions about it. We can then reduce the graph without losing the existence
of a guarded k-path, by marking a witness for each sensible way in which a constant-size
subset from M can connect to prescribed vertices in X through C. The fact that C only
has constantly many neighbors in X implies that there are only polynomially many relevant
choices. We may then safely remove the unmarked vertices.

Organization. After preliminaries in Section 2, we give a generic Turing-style reduction rule
for k-Path in Section 3. In Section 4 we show that an H-minor-free graph either has a k-path
or a separation that is suitable for reduction. In Section 5 we extend this to topological
minors. Finally, in Section 6 we present a Turing kernel applicable when the input graph has
a small modulator to a suitable graph class. Proofs of statements marked with ♠ can be
found in the full version [18].

2 Preliminaries

All graphs we consider are finite, simple, and undirected. A separation of a graph G is a
pair (A, B), A, B ⊆ V (G) such that A ∪ B = V (G) and there are no edges between A \ B

and B \ A. The order of the separation (A, B) is |A ∩ B|. A graph is triconnected if it is
connected and cannot be disconnected by deleting fewer than three vertices. When referring
to the size of a graph in our statements, we mean the number of vertices.

A tree decomposition of a graph G is a pair (T,X) where T is a rooted tree and X is a
function that assigns to every node t ∈ V (T) a subset X (t) of V (G) called a bag such that:⋃

t∈V (T) X (t) = V (G);
for each edge uv ∈ E(G), there is a node t ∈ V (T) with u, v ∈ X (t);
for each v ∈ V (G), the nodes {t | v ∈ X (t)} induce a (connected) subtree of T .

IPEC 2017

23:4 Turing Kernelization for Finding Long Paths in Graphs Excluding a Topological Minor

The width of (T,X) is maxt∈V (T) |X (t)| − 1. Its adhesion is maxtt′∈E(T) |X (t) ∩ X (t′)|. We
also call the set X (t)∩X (t′) the adhesion of tt′, for every edge tt′ of T . For a decomposition
(T,X) of G and a node t ∈ V (T), the torso, denoted torso(G,X (t)), is the graph obtained
from G[X (t)] by adding an edge between each pair of vertices in X (t) ∩ X (t′), for every
neighbor t′ of t in T (so each adhesion induces a clique in the torso). Added edges not
present in G are called virtual edges. For a subtree T ′ ⊆ T we write X (T ′) for the union⋃

t∈V (T ′) X (t) of bags in T ′.
For an edge t1t2 ∈ E(T), let Ti be the connected component of T − {t1t2} that contains

ti. Let Vi = X (Ti). Observe that the properties of a tree decomposition imply that (V1, V2)
is a separation with V1 ∩ V2 = X (t1) ∩X(t2).

A decomposition (T,X) is connected if for every t ∈ V (T) and its child t′, if Tt′ is the
subtree of T rooted at t′, we have (i) that G[X (Tt′)\X (t)] is connected, and (ii) that X (Tt′)\
X (t) has edges to every vertex of the adhesion X (t) ∩ X (t′). It is straightforward to turn
any decomposition into a connected one without increasing its width nor adhesion.

We will also need the following non-standard complexity measure of a tree decomposition
(T,X). For every t ∈ V (T), the number of distinct adhesions X (t) ∩ X (t′) for t′ ∈ NT (t)
is called the adhesion degree of t. The maximum adhesion degree over all nodes t is the
adhesion degree of the decomposition (T,X). Observe that if a tree decomposition (T,X)
has width less than ` and adhesions of size at most h, then its adhesion degree is at most

h∑
i=0

(
`

i

)
≤ (1 + `)h.

However, in sparse graph classes we can prove a much better bound on the adhesion degree
due to linear bounds on the number of cliques in such graphs; cf. Lemma 17.

3 Turing kernels

In this section we introduce a general toolbox and notation for our Turing kernel bounds.

3.1 Definitions and the auxiliary problem
For a parameterized problem Π and a computable function f , a Turing kernel of size f is an
algorithm that solves an input instance (x, k) of Π in polynomial time, given access to an
oracle that solves instances (x′, k′) of Π with |x′|, k′ ≤ f(k). A Turing kernel is a polynomial
one if f is a polynomial.

If we are only interested in distinguishing between NP-complete problems admitting a
polynomial Turing kernel from the ones that do not admit such a kernel, we can assume
that the oracle solves an arbitrary problem in NP, not necessarily the k-Path problem.
Indeed, note that by the definition of NP-completeness, an oracle to a problem in NP can
be implemented with an oracle to k-Path with only polynomial blow-up in the size of the
passed instances.

In our work, it will be convenient to reduce to the Auxiliary Linkage problem, defined
as follows. The input consists of an undirected graph G′, an integer k′, a set of terminals
S ⊆ V (G′), and a number of requests R1, R2, . . . , Rr; a request is a set of at most two
terminals. A path Pi in G is said to satisfy a request Ri if V (Pi) ∩ S = Ri and every vertex
of V (Pi) ∩ S is an endpoint of Pi. With such an input, the Auxiliary Linkage problem
asks for a sequence of r paths P1, P2, . . . , Pr such that Pi satisfies Ri for every 1 ≤ i ≤ r,
|
⋃r

i=1 V (Pi)| = k′, and every vertex of V (G) \ S is contained in at most one path Pi (i.e.,

B.M.P. Jansen, M. Pilipczuk, and M. Wrochna 23:5

N(A)

A
1

2

3

Z

Figure 1 A set A (blue) and a path with three A-traverses (bold). The path is guarded
w.r.t. Z ⊆ N(A) (the red set), since each A-traverse has an endpoint in it. (A path fully contained
in A (with one A-traverse) or disjoint from A (with no A-traverses) would also be guarded.)

the paths Pi are vertex-disjoint, except that they may share an endpoint, but only if the
requests ask them to do so).

We remark that Auxiliary Linkage is a more general problem than k-Path: an instance
with G′ = G, k′ = k, S = ∅, r = 1, and R1 = ∅ asks precisely for a k-path in G.

Clearly, the decision version of the Auxiliary Linkage problem belongs to the class
NP. By using its self-reducibility (cf. [16, Lemma 2]), we assume that the oracle returns a
sequence of paths (Pi)r

i=1 in case of a positive answer. That is, in all subsequent bounds
on the number of Auxiliary Linkage oracle calls, the bound adheres to the number of
calls to an oracle that returns the actual paths Pi; if one wants to use a decision oracle, one
should increase the bound by the blow-up implied by the self-reducibility application (i.e.,
at most |E(H)| for calls on a graph H).

3.2 Generic reduction rule
We now show a generic reduction rule for the k-Path problem. We start with a few definitions.

I Definition 3. For a graph G, a subset A ⊆ V (G), and a simple path P in G, an A-traverse
of P is a maximal subpath of P that contains at least one vertex of A and has all its internal
vertices in A.

Note that if Q is an A-traverse of P , then every endpoint of Q is either an endpoint of P

or lies in NG(A). See Figure 1.

I Definition 4. Let G be a graph, A ⊆ V (G), and let k be an integer. A set Z ⊆ N(A) is
called a k-guard of A if the following implication holds: if G admits a k-path, then there
exists a k-path P in G that is either contained in A or such that every A-traverse of P has
at least one endpoint in Z.

Given a graph G, a set A ⊆ V (G), and a k-guard Z ⊆ N(A) of A, a k-path P satisfying
properties as in the above definition is called guarded (w.r.t. k, A, and Z). If the integer k

and the set A are clear from the context, we call such a set Z simply a guard.
Observe that Z = N(A) is always a guard, but sometimes we will be able to find smaller

ones. Of particular interest will be guards of constant size, as our kernel sizes will depend
exponentially on the guard size. To describe our single reduction rule, we show how solutions
to Auxiliary Linkage can be used to preserve the existence of guarded k-paths.

Assume we are given a graph G, a set A ⊆ V (G), an integer k, and a k-guard Z ⊆ N(A)
of A. Let h = |Z| and ` = |N(A)|. Furthermore, assume that G admits a k-path, and
let P be a guarded one w.r.t. A and Z. Let (Q1, Q2, . . . , Qr) be the A-traverses of P , let

IPEC 2017

23:6 Turing Kernelization for Finding Long Paths in Graphs Excluding a Topological Minor

Ri = V (Qi) \ A = V (Qi) ∩ N(A) for 1 ≤ i ≤ r, let G′ = G[N [A]], S = N(A), and let
k′ = |

⋃r
i=1 V (Qi)|. Observe that (Q1, Q2, . . . , Qr) is a feasible solution to the Auxiliary

Linkage instance IP := (G[N [A]], k′, S, (Ri)r
i=1); the instance IP is henceforth called induced

by P and A. Furthermore, it is easy to see that if (Q′1, Q′2, . . . , Q′r) is a different feasible
solution to IP , then a path P ′ obtained from P by replacing every subpath Qi with Q′i is
also a guarded k-path in G.

The crucial observation is that a small guard limits the number of A-traverses.

I Lemma 5. The number r of traverses of the guarded k-path P is bounded by max(1, 2|Z|).

Proof. Every vertex of Z can be an endpoint of at most two traverses. If r > 1, then none
of the traverses Qi are contained in G[A], and thus every traverse has at least one endpoint
in the guard Z. J

Lemma 5 in turn limits the number of possible instances I that can be induced by a guarded
k-path, for a fixed set A and guard Z. Note that we have 0 ≤ k′ ≤ k and 0 ≤ r ≤ max(1, 2|Z|).
Furthermore, unless r = 1 and R1 = ∅, we have Ri ⊆ N(A), |Ri| ∈ {1, 2}, and every set Ri

needs to have at least one element of Z; there are at most |Z| · (|N(A)|+ 1) = h(` + 1) choices
for such a set Ri. Consequently, the number of possibilities for the instance I is at most

(k + 1) ·
(

1 +
2h∑

r=0
hr(` + 1)r

)
≤ (k + 1) · (h(` + 1))2h+1 =: p(k, `, h). (1)

Reduction rule

If |A| > k · p(k, `, h), then we can apply the following reduction rule. For each Auxiliary
Linkage instance I out of at most p(k, `, h) reasonable instances for A-traverses of a guarded
k-path in G, we invoke an oracle on the instance I, and mark the vertices of the solution if
the oracle finds one. The whole process will mark at most k · p(k, `, h) < |A| vertices, thus at
least one vertex of |A| will remain unmarked. We delete any such vertices.

The observation that on a guarded k-path P one can replace a solution to the instance
IP induced by P and A by a different solution provides safeness of this reduction. Finally,
note that the reduction invokes at most p(k, `, h) calls to the oracle; each call operates on a
subgraph of the graph G[N [A]] with k′ ≤ k and r ≤ 2|Z|.

We shall apply the Reduction Rule for a medium-sized set A and a guard set Z of
constant size formed from adhesions of a tree decomposition. For most of the paper we will
use Z = N(A) with ` = h = |Z| a constant (depending on the excluded (topological) minor,
in the results of Sections 4 and 5). Only in Section 6, when dealing with a modulator M such
that G−M has an appropriate structure, it will be important to consider N(A) potentially
containing all of M , with a guard set Z of constant size disjoint from M .

3.3 Separation oracles
The natural way of using our reduction rule is to find in a graph a large (but not too large)
part of the graph with a small (preferably, constant) boundary. Let us first make an abstract
definition of an algorithm finding such a separation.

I Definition 6. For a graph class G, a constant h, and a computable coordinate-wise
nondecreasing function q : Z≥0×Z≥0 → Z≥0, an algorithm S is called a (h, q, TS)-separation
oracle if, given a graph G ∈ G and integers k and p, in time TS(|G|, k, p) it finds a separation
(A, B) in G of order at most h with p < |A| ≤ q(k, p), or correctly concludes that G contains
a k-path.

B.M.P. Jansen, M. Pilipczuk, and M. Wrochna 23:7

For all considered graph classes, we will be able to provide a separation oracle with q

being a polynomial. This, in turn, allows the following generic Turing kernel.

I Lemma 7. Let S be a (h, q, TS)-separation oracle for a hereditary graph class G. Take
ĥ := (2h)4h+3. Then, the k-Path problem restricted to graphs from G can be solved:

in time O
(
TS(|G|, k, k2ĥ) · |V (G)| + kĥ · |V (G)| · |E(G)|

)
,

using at most kĥ · |V (G)| calls to Auxiliary Linkage,
each call on an induced subgraph of the input graph of size at most q(k, k2ĥ).

Proof. Let p = k · p(k, h, h) + h ≤ k(k + 1)(h(h + 1))2h+1 + h ≤ 2k2(2h)4h+2 ≤ k2ĥ.
As long as |V (G)| > p, we proceed as follows. Invoke algorithm S on G. If S claims that G

admits a k-Path, we simply output the answer yes. Otherwise, let (A′, B′) be the separation
output by S. Apply the Reduction Rule for k, A := A′ \ B′, and Z = N(A) ⊆ A′ ∩ B′.
Note that as |Z| ≤ h, the Reduction Rule deletes at least one vertex of A. Furthermore, the
Reduction Rule invokes at most p(k, h, h) ≤ kĥ calls to the oracle, each call on an induced
subgraph of G of size at most |A′| ≤ q(k, p) ≤ q(k, k2ĥ).

Once we obtain |V (G)| ≤ p, we solve the instance using a single call to Auxiliary
Linkage with k′ = k, r = 1, and R1 = ∅. The bounds follow, as there are at most |V (G)|
applications of the Reduction Rule, and each call to the oracle takes O(|E(G)|) time to
prepare the instance and parse the output. J

Note that for any graph class where separations as in Definition 6 exist, there exists a
trivial separation oracle which finds them, running in time nh+O(1): one iterates over every
candidate for A ∩ B and, for fixed set A ∩ B, a straightforward knapsack-type dynamic
programming algorithm checks if one can assemble A\B of the desired size from the connected
components of G− (A ∩B).

However, this running time bound is unsatisfactory, as it greatly exceeds the number of
used oracle calls. For all considered graph classes we prove a much stronger property than
just merely the prerequisites of Lemma 7, in particular providing a more efficient separation
oracle. We provide necessary definitions in the next section.

3.4 Decomposable graph classes
I Definition 8. For a constant h and a computable nondecreasing function w : Z≥0 → Z≥0,
a graph class G is called (w, h)-decomposable if for every positive integer k and every G ∈ G
that does not admit a k-path, the graph G admits a tree decomposition of width less than
w(k) and adhesions of size at most h.

A standard argument shows that in a decomposable graph class, given the decomposition
with appropriate parameters, it is easy to provide a separation oracle.

I Lemma 9. Assume we are given a graph G and a tree decomposition (T,X) of G of width
less than w, adhesion at most h, and adhesion degree at most a ≥ 2. Then, given an integer p

such that |V (G)| > p, one can in time hO(1) · (|V (G)|+ |E(G)|+ |V (T)|+
∑

t∈V (T) |X (t)|)
find a separation (A, B) of order at most h such that

p < |A| ≤ w + p · a.

Proof. Root the tree T in an arbitrary node, and for t ∈ V (T) let Tt be the subtree of T

rooted in t. Let t0 be the lowest node of T such that |X (V (Tt0))| > p; such a node can be
computed in linear time in the size of G and (T,X).

IPEC 2017

23:8 Turing Kernelization for Finding Long Paths in Graphs Excluding a Topological Minor

Group the children t′ of t0 according to their adhesions X (t′) ∩ X (t0). Due to the bound
on the adhesion degree, there are at most a groups. For every adhesion S, let Xt0,S be the
set of the children of t0 with S = X (t′) ∩ X (t0). Define VS =

⋃
t′∈Xt0,S

X (Tt′).
We consider now two cases. First, assume that |VS | ≤ p for every adhesion S. Then, by

the adhesion degree bound, we have |X (Tt0)| ≤ |X (t0)|+ ap ≤ w + ap. Consequently, we can
return the separation (A, B) with A = X (Tt0) and B = X (T − V (Tt0)).

In the other case, there exists an adhesion S with |VS | > p. We greedily take a minimal
subset Yt0,S ⊆ Xt0,S such that V ′S :=

⋃
t′∈Yt0,S

X (Tt′) is of size greater than p. By the mini-
mality of t0, for every t′ ∈ Xt0,S we have |X (Tt′)| ≤ p and, consequently |V ′S | ≤ 2p. Thus, we
can return the separation (A, B) for A = V ′S and B = NG[V (G)\V ′S], as then A∩B ⊆ S. J

A critical insight is that the decomposition used by Cygan et al. [8] to solve the Minimum
Bisection problem in fact provides an approximate decomposition in a decomposable graph
class. Let us first recall the main technical result of [8].

I Definition 10. A vertex set X ⊆ V (G) of a graph G is called (q, h)-unbreakable if every
separation (A, B) of order at most h satisfies |(A \B) ∩X| ≤ q or |(B \A) ∩X| ≤ q.

I Theorem 11 ([8]). There is an algorithm that given a graph G and integer h runs in
time 2O(h2)|V (G)|2|E(G)| and outputs a connected tree decomposition (T,Y) of G such that:
(i) for each t ∈ V (T), the bag Y(t) is (2O(h), h)-unbreakable in G, and (ii) for each tt′ ∈ E(T)
the adhesion Y(t) ∩ Y(t′) has at most 2O(h) vertices and is (2h, h)-unbreakable in G.

An unbreakable set can be bounded using only the existence of an appropriate tree decom-
position. Thus, the decomposition computed by Theorem 11 approximates the decomposition
required in a decomposable graph class:

I Lemma 12 (♠). Let G be a graph and suppose there exists a decomposition (T,X) of G

of width less than w, adhesion h, and adhesion degree a. Let (T ′,Y) be a tree decomposition
of G such that for each t ∈ V (T ′), the bag Y(t) is (2O(h), h)-unbreakable in G. Then
|Y(t)| ≤ w + a · 2O(h).

I Corollary 13. Let G be a (w, h)-decomposable graph class. Then, for every G ∈ G and
k ∈ N, one can in 2O(h2)|V (G)|2|E(G)| time either correctly conclude that G admits a k-path,
or find a tree decomposition of G of width at most (w(k) + 1)O(h) and adhesion at most 2O(h).

Let us now combine all the above. That is, given an integer k and a graph G from a
hereditary (w, h)-decomposable graph class G, we start by computing the tree decomposition
of Corollary 13 (or conclude there is a k-path). In general this approximated decomposition
has adhesion degree (w(k) + 1)2O(h) . We use this decomposition to find separations of any
induced subgraphs of G using the algorithm of Lemma 9 in time 2O(h) times linear in the
size of G and the computed decomposition. This gives a (h, q, T)-separation oracle with
q(k, p) = p · (w(k) + 1)2O(h) and T (n, k, p) = 2O(h) · n · (w(k) + 1)O(h), for any hereditary
(w, h)-decomposable graph class. By plugging it into Lemma 7, we obtain the following.

I Corollary 14. Let G be a hereditary (w, h)-decomposable graph class. Then, the k-Path
problem, restricted to graphs from G, can be solved in time 22O(h) |V (G)|2|E(G)| using 22O(h)

kn

calls to Auxiliary Linkage on induced subgraphs of the input graph of size k2(1+w(k))2O(h) .

We would like to remark that we do not want to claim in this paper the idea that, in the
context of H-(topological)-minor-free graphs, the decomposition of Theorem 11 should be
related to the decomposition of the Global Structure Theorem via an argument as in the
proof of Lemma 12. In particular, this observation appeared previously in a work of the
second author with Daniel Lokshtanov, Michał Pilipczuk, and Saket Saurabh [20].

B.M.P. Jansen, M. Pilipczuk, and M. Wrochna 23:9

4 Excluding a minor

In this section we tackle proper minor-closed graph classes, that is, we prove Theorem 1 for
graph classes excluding a fixed minor, by proving the following.

I Theorem 15. For every fixed graph H, the k-Path problem restricted to H-minor-free
graphs can be solved in time OH(n2m) using OH(kn) calls to Auxiliary Linkage on
instances being induced subgraphs of the input graph of size OH(k24).

Our main technical result is the following:

I Theorem 16 (♠). For every H, the class of H-minor-free graphs is (w, h)-decomposable
for w(k) = OH(k22) and h = OH(1).

By plugging the above into Corollary 14, we obtain the desired polynomial Turing kernel,
but with worse bounds than promised by Theorem 15. To obtain better bounds, we need to
recall the folklore bound on the adhesion degree in sparse graph classes.

I Lemma 17 (♠). Let G be a graph not containing H as a topological minor, and let (T,X)
be a connected tree decomposition of G of width less than ` and adhesion h. Then the adhesion
degree of (T,X) is bounded by f(h, H) ·` for some integer f(h, H) depending only on h and H.

This way, we conclude that H-minor-free graphs without k-paths have tree decompositions
of width OH(k22), adhesion OH(1) and adhesion degree OH(k22), which we can approximate
with Theorem 11. Then Theorem 15 follows from Lemma 7 if we find separations applying
Lemma 9 to this decomposition.

Thus, it remains to prove Theorem 16. For the proof, we use the graph minors structure
theorem, decomposing an H-minor-free graph G into parts ‘nearly embeddable’ in surfaces
(precise definitions are given in the full version). By carefully analyzing details of the
structure, we either find a large triconnected embedded part, which must contain a long
path by the following theorem of Chen et al. [7], or we tighten the graph structure to give a
tree decomposition where all parts are small (polynomial in k) and adhesions (‘boundaries’)
between them are of constant size.

I Theorem 18 ([7]). There is a constant ε > 0 such that for every integer t, every triconnected
graph on n ≥ 3 vertices embeddable in a surface of (Euler) genus g contains a cycle of length
at least nε/2(2g+3)2 .

Two intertwined problems that arise with this approach is that torsos of decompositions
are not necessarily triconnected, and long paths in them do not necessarily imply long
paths in the original graph, because of virtual edges added in torsos. Torsos can be made
triconnected if their near-embeddings include cycles or paths around each vortex, but these
may use virtual edges in essential ways. On the other hand, the decomposition can be
modified so that virtual edges can be replaced with paths in the original graph, but this
requires changes that remove virtual edges, hence potentially removing paths around vortices
and destroying triconnectedness.

Because of that, we need to go a little deeper and use a local, strong version of the
structure theorem from Graph Minors XVII [21]. For the same reason we cannot use existing
algorithms for finding the graph minors decompositions. Instead, we only prove the existence
of a tree decomposition of bounded adhesion, small width, and with nearly embeddable bags.

The statements of [21] (as exposed in [10]) allow us to assume that: (i) any virtual edges
in torsos coming from distinct adhesions (from distinct parts of the decomposition) can be

IPEC 2017

23:10 Turing Kernelization for Finding Long Paths in Graphs Excluding a Topological Minor

replaced by paths, (ii) every large vortex has a path of at least the same length, (iii) a torso
of the decomposition is triconnected, even if each vortex is replaced by a wheel (a cycle plus
a universal vertex). These ingredients allow us to use Theorem 18 on this variant of the
torso. Thus, if it contains a long path, we prove the original graph must also contain one,
otherwise we conclude the bound required in Theorem 16.

5 Excluding a topological minor

In this section we tackle graph classes excluding a topological minor, that is, we prove
Theorem 1 by proving the following.

I Theorem 19. For every fixed graph H, the k-Path problem restricted to H-topological-
minor-free graphs can be solved in time OH(n2m) using OH(kn) calls to Auxiliary Linkage
on instances being induced subgraphs of the input graph of size kOH(1).

This follows as before from the following decomposability theorem. Note the exponent in
the polynomial bound on width (bag size) now depends on H.

I Theorem 20 (♠). For every graph H, the class of H-topological-minor-free graphs is
(w, h)-decomposable for w(k) = kOH(1) and h = OH(1).

To prove the above theorem, we use the structure theorem of Grohe and Marx [13]: when
excluding a topological minor, graphs admit a similar structure as for excluding a minor, but
apart from nearly embeddable parts, one needs to consider parts that have bounded degree
except for a bounded number of vertices. By appropriately contracting everything outside
such a part, we obtain a single graph of almost bounded degree. We remove the few vertices
of high degree, find the Tutte decomposition into triconnected components, which can be
bounded using the following theorem by Shan [23] (see also Chen et al. [6]).

I Theorem 21 ([23]). If G is a triconnected graph with maximum degree at most ∆ ≥ 425,
then G has a cycle of length at least n1/ log2(∆−1)/4 + 2.

Such a small-width Tutte decomposition can then be lifted back to a decomposition of the
part we originally considered. Finally, arguments involving tangles allow us to conclude that
such a part can be assumed to be small itself. Together with the bound for nearly-embeddable
parts, this proves Theorem 20.

6 Adding a modulator

In this section we prove Theorem 2 in a more general setting of Section 3. More precisely,
Theorem 2 follows directly from the following theorem via Theorems 16 and 20.

I Theorem 22. One can solve in polynomial time a given k-Path instance (G, k), given
access to a set M ⊆ V (G) such that G−M admits a tree decomposition of width less than
w and adhesion h = O(1), and an oracle that solves the Auxiliary Linkage problem for
instances (G′, k′, S, (Ri)r

i=1) with G′ being a subgraph of G, r, k′ ≤ k, |S| ≤ |M |+O(1), and
|V (G′)| being bounded polynomially in k, w, and |M |.

Here the exponent in the polynomial bound on the size of oracle calls substantially depends
on h = O(1). Therefore, the result of this section is a purely theoretical result classifying the
aforementioned parameterization as admitting a polynomial Turing kernel. Let us sketch how,
after approximating a tree decomposition of G−M , we find a set A with a guard Z of constant

B.M.P. Jansen, M. Pilipczuk, and M. Wrochna 23:11

size, to which we can apply the Reduction Rule. For each u, v ∈ M , we mark up to k + 1
disjoint u−v paths within G−M . We mark all their vertices, the bags that contain them, and
the lowest-common-ancestor closure of these bags in the decomposition. In total, this still gives
polynomially many marked vertices and polynomially many components of the decomposition
between marked bags. Using the tree decomposition we can find a medium sized part A of such
a component, with a boundary Z contained in at most two adhesions of the decomposition.
Now N(A) ⊆ Z ∪M , but additionally it is easy to check that any A-traverse of any k-path
with endpoints u, v ∈M can be replaced with a marked u− v path. Hence Z guards A.

7 Conclusions

We significantly extended the graph classes on which k-Path has a polynomial Turing kernel.
In addition, we showed that even an instance that does not belong to such a class, but has
a small vertex modulator whose deletion makes it so, can be solved efficiently using small
queries to an oracle. A subdivision-based argument (cf. [11]) shows that we cannot generalize
much beyond H-topological-minor-free graphs without settling the problem in general. In
particular, the existence of a polynomial Turing kernel for graphs of bounded expansion
implies its existence in general graphs.

While our narrative focused on k-Path, after small modifications our techniques can also
be applied to prove analogues of Theorems 1 and 2 for the k-Cycle problem of detecting a
simple cycle of length at least k. The main difficulty in adapting our arguments to k-Cycle is
the fact that, a priori, the only cycles of length at least k may be arbitrarily much larger than k.
However, this issue can easily be resolved in the following way. Since a cycle is contained
within a single biconnected component, a Turing kernelization can decompose its input into
biconnected components and solve the problem independently in each of them. We then start
by testing for the existence of a path with k2 vertices using the algorithms developed in the
paper. If there is a path of length k2 in a biconnected component, then by a classic theorem
of Dirac [9] there is a cycle of length at least k, and we are done. If no such path exists, then
the longest cycle in G has length less than 2k, and we can continue under the guarantee
that the cycle we are looking for has length at least k and less than 2k. In this setting, our
arguments can be easily adapted. In particular, the absence of a path of length k2 implies the
existence of suitable tree decompositions from which reducible separations can be extracted.

A significant portion of the technical work in this paper was devoted to modifying the
graph minors decomposition to obtain the win/win that either answers the problem or finds
a reducible separation. In this way, the algorithmic question has driven a challenging graph-
theoretic project. It would be interesting to find more problems amenable to such an approach.
We conclude with some concrete open problems. Does k-Path have a polynomial Turing
kernel on chordal graphs? How about Induced or Directed k-Path, on planar graphs?

References

1 Abhimanyu M. Ambalath, Radheshyam Balasundaram, Chintan Rao H., Venkata Koppula,
Neeldhara Misra, Geevarghese Philip, and M. S. Ramanujan. On the kernelization complex-
ity of colorful motifs. In Venkatesh Raman and Saket Saurabh, editors, Parameterized and
Exact Computation - 5th International Symposium, IPEC 2010, Chennai, India, December
13-15, 2010. Proceedings, volume 6478 of Lecture Notes in Computer Science, pages 14–25.
Springer, 2010. doi:10.1007/978-3-642-17493-3_4.

IPEC 2017

http://dx.doi.org/10.1007/978-3-642-17493-3_4

23:12 Turing Kernelization for Finding Long Paths in Graphs Excluding a Topological Minor

2 Florian Barbero, Christophe Paul, and MichałPilipczuk. Exploring the complexity of layout
parameters in tournaments and semi-complete digraphs. In Proc. 44th ICALP, 2017. In
press.

3 Daniel Binkele-Raible, Henning Fernau, Fedor V. Fomin, Daniel Lokshtanov, Saket
Saurabh, and Yngve Villanger. Kernel(s) for problems with no kernel: On out-trees
with many leaves. ACM Trans. Algorithms, 8(4):38:1–38:19, 2012. doi:10.1145/2344422.
2344428.

4 Hans L. Bodlaender, Erik D. Demaine, Michael R. Fellows, Jiong Guo, Danny Hermelin,
Daniel Lokshtanov, Moritz Müller, Venkatesh Raman, Johan van Rooij, and Frances A.
Rosamond. Open problems in parameterized and exact computation - IWPEC 2008. Tech-
nical Report UU-CS-2008-017, Utrecht University, 2008.

5 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds
by cross-composition. SIAM J. Discrete Math., 28(1):277–305, 2014.

6 Guantao Chen, Zhicheng Gao, Xingxing Yu, and Wenan Zang. Approximating longest
cycles in graphs with bounded degrees. SIAM J. Comput., 36(3):635–656, 2006.

7 Guantao Chen, Xingxing Yu, and Wenan Zang. The circumference of a graph with no
K3,t-minor, II. J. Comb. Theory, Ser. B, 102(6):1211–1240, 2012.

8 Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh.
Minimum bisection is fixed parameter tractable. In David B. Shmoys, editor, Symposium
on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014,
pages 323–332. ACM, 2014. doi:10.1145/2591796.2591852.

9 G. A. Dirac. Some theorems on abstract graphs. Proceedings of the London Mathematical
Society, s3-2(1):69–81, 1952. doi:10.1112/plms/s3-2.1.69.

10 Jan-Oliver Fröhlich and Theodor Müller. Linear connectivity forces large complete bipartite
minors: An alternative approach. J. Comb. Theory, Ser. B, 101(6):502–508, 2011. doi:
10.1016/j.jctb.2011.02.002.

11 Jakub Gajarský, Petr Hlinený, Jan Obdrzálek, Sebastian Ordyniak, Felix Reidl, Peter
Rossmanith, Fernando Sánchez Villaamil, and Somnath Sikdar. Kernelization using
structural parameters on sparse graph classes. J. Comput. Syst. Sci., 84:219–242, 2017.
doi:10.1016/j.jcss.2016.09.002.

12 Valentin Garnero and Mathias Weller. Parameterized certificate dispersal and its variants.
Theor. Comput. Sci., 622:66–78, 2016. doi:10.1016/j.tcs.2016.02.001.

13 Martin Grohe and Dániel Marx. Structure theorem and isomorphism test for graphs with
excluded topological subgraphs. SIAM J. Comput., 44(1):114–159, 2015. doi:10.1137/
120892234.

14 Danny Hermelin, Stefan Kratsch, Karolina Soltys, Magnus Wahlström, and Xi Wu. A
completeness theory for polynomial (turing) kernelization. Algorithmica, 71(3):702–730,
2015. doi:10.1007/s00453-014-9910-8.

15 Falk Hüffner, Christian Komusiewicz, and Manuel Sorge. Finding highly connected sub-
graphs. In Proc. 41st SOFSEM, pages 254–265, 2015.

16 Bart M. P. Jansen. Turing kernelization for finding long paths and cycles in restricted
graph classes. J. Comput. Syst. Sci., 85:18–37, 2017. doi:10.1016/j.jcss.2016.10.008.

17 Bart M. P. Jansen and Dániel Marx. Characterizing the easy-to-find subgraphs from the
viewpoint of polynomial-time algorithms, kernels, and turing kernels. In Piotr Indyk, editor,
Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 616–629. SIAM, 2015. doi:
10.1137/1.9781611973730.42.

18 Bart M. P. Jansen, Marcin Pilipczuk, and Marcin Wrochna. Turing kernelization for finding
long paths in graph classes excluding a topological minor. ArXiv e-prints, 2017. arXiv:
1707.01797.

http://dx.doi.org/10.1145/2344422.2344428
http://dx.doi.org/10.1145/2344422.2344428
http://dx.doi.org/10.1145/2591796.2591852
http://dx.doi.org/10.1112/plms/s3-2.1.69
http://dx.doi.org/10.1016/j.jctb.2011.02.002
http://dx.doi.org/10.1016/j.jctb.2011.02.002
http://dx.doi.org/10.1016/j.jcss.2016.09.002
http://dx.doi.org/10.1016/j.tcs.2016.02.001
http://dx.doi.org/10.1137/120892234
http://dx.doi.org/10.1137/120892234
http://dx.doi.org/10.1007/s00453-014-9910-8
http://dx.doi.org/10.1016/j.jcss.2016.10.008
http://dx.doi.org/10.1137/1.9781611973730.42
http://dx.doi.org/10.1137/1.9781611973730.42
http://arxiv.org/abs/1707.01797
http://arxiv.org/abs/1707.01797

B.M.P. Jansen, M. Pilipczuk, and M. Wrochna 23:13

19 Sudeshna Kolay and Fahad Panolan. Parameterized algorithms for deletion to (r, ell)-
graphs. In Prahladh Harsha and G. Ramalingam, editors, 35th IARCS Annual Conference
on Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2015,
December 16-18, 2015, Bangalore, India, volume 45 of LIPIcs, pages 420–433. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.FSTTCS.2015.
420.

20 Daniel Lokshtanov, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Manuscript,
2017.

21 Neil Robertson and Paul D. Seymour. Graph minors: XVII. taming a vortex. J. Comb.
Theory, Ser. B, 77(1):162–210, 1999. doi:10.1006/jctb.1999.1919.

22 Alexander Schäfer, Christian Komusiewicz, Hannes Moser, and Rolf Niedermeier. Param-
eterized computational complexity of finding small-diameter subgraphs. Optimization Let-
ters, 6(5):883–891, 2012. doi:10.1007/s11590-011-0311-5.

23 Songling Shan. Homeomorphically Irreducible Spanning Trees, Halin Graphs, and Long
Cycles in 3-connected Graphs with Bounded Maximum Degrees. PhD thesis, Georgia State
University, 2015. URL: http://scholarworks.gsu.edu/math_diss/23/.

24 Stéphan Thomassé, Nicolas Trotignon, and Kristina Vuskovic. A polynomial Turing-kernel
for weighted independent set in bull-free graphs. In Proc. 40th WG, pages 408–419. Springer,
2014.

IPEC 2017

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.420
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.420
http://dx.doi.org/10.1006/jctb.1999.1919
http://dx.doi.org/10.1007/s11590-011-0311-5
http://scholarworks.gsu.edu/math_diss/23/

An Exponential Lower Bound for Cut Sparsifiers in
Planar Graphs∗

Nikolai Karpov†1, Marcin Pilipczuk2, and Anna Zych-Pawlewicz3

1 St. Petersburg Department of V.A. Steklov Institute of Mathematics of the
Russian Academy of Sciences, St. Petersburg, Russia and Institute of
Informatics, University of Warsaw, Warsaw, Poland
kimaska@gmail.com.

2 Institute of Informatics, University of Warsaw, Warsaw, Poland
malcin@mimuw.edu.pl

3 Institute of Informatics, University of Warsaw, Warsaw, Poland
anka@mimuw.edu.pl

Abstract
Given an edge-weighted graph G with a set Q of k terminals, a mimicking network is a graph
with the same set of terminals that exactly preserves the sizes of minimum cuts between any
partition of the terminals. A natural question in the area of graph compression is to provide
as small mimicking networks as possible for input graph G being either an arbitrary graph or
coming from a specific graph class.

In this note we show an exponential lower bound for cut mimicking networks in planar
graphs: there are edge-weighted planar graphs with k terminals that require 2k−2 edges in any
mimicking network. This nearly matches an upper bound of O(k22k) of Krauthgamer and Rika
[SODA 2013, arXiv:1702.05951] and is in sharp contrast with the O(k2) upper bound under the
assumption that all terminals lie on a single face [Goranci, Henzinger, Peng, arXiv:1702.01136].
As a side result we show a hard instance for the double-exponential upper bounds given by
Hagerup, Katajainen, Nishimura, and Ragde [JCSS 1998], Khan and Raghavendra [IPL 2014],
and Chambers and Eppstein [JGAA 2013].

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases mimicking networks, planar graphs

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.24

1 Introduction

One of the most popular paradigms when designing effective algorithms is preprocessing.
These days in many applications, in particular mobile ones, even though fast running
time is desired, the memory usage is the main limitation. The preprocessing needed for
such applications is to reduce the size of the input data prior to some resource-demanding
computations, without (significantly) changing the answer to the problem being solved. In
this work we focus on this kind of preprocessing, known also as graph compression, for flows

∗ This research is a part of projects that have received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme under grant
agreements No 714704 (Marcin Pilipczuk and Anna Zych-Pawlewicz).

† Nikolai Karpov has been supported by the Warsaw Centre of Mathematics and Computer Science and
the Government of the Russian Federation (grant 14.Z50.31.0030).

© Nikolai Karpov, Marcin Pilipczuk, and Anna Zych-Pawlewicz;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 24; pp. 24:1–24:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 An Exponential Lower Bound for Cut Sparsifiers in Planar Graphs

and cuts. The input graph needs to be compressed while preserving its essential flow and cut
properties.

Central to our work is the concept of a mimicking network, introduced by Hagerup,
Katajainen, Nishimura, and Ragde [6]. Let G be an edge-weighted graph with a set Q ⊆ V (G)
of k terminals. For a partitionQ = S]S̄, a minimum cut between S and S̄ is called aminimum
S-separating cut. A mimicking network is an edge-weighted graph G′ with Q ⊆ V (G′) such
that the weights of minimum S-separating cuts are equal in G and G′ for every partition
Q = S] S̄. Hagerup et al [6] observed the following simple preprocessing step: if two vertices
u and v are always on the same side of the minimum cut between S and S̄ for every choice of
the partition Q = S] S̄, then they can be merged without changing the size of any minimum
S-separating cut. Such a procedure always leads to a mimicking network with at most 22k

vertices.
The above upper bound can be improved to a still double-exponential bound of roughly

2(k−1
b(k−1)/2c), as observed both by Khan and Raghavendra [7] and by Chambers and Eppstein [2].

In 2013, Krauthgamer and Rika [10] observed that the aforementioned preprocessing step can
be adjusted to yield a mimicking network of size O(k222k) for planar graphs. Furthermore,
they introduced a framework for proving lower bounds, and showed that there are (non-
planar) graphs, for which any mimicking network has 2Ω(k) edges; a slightly stronger lower
bound of 2(k−1)/2 has been shown by Khan and Raghavendra [7]. On the other hand, for
planar graphs the lower bound of [10] is Ω(k2). Furthermore, the planar graph lower bound
applies even in the special case when all the terminals lie on the same face.

Very recently, two improvements upon these results for planar graphs have been announced.
In a sequel paper, Krauthgamer and Rika [11] improve the polynomial factor in the upper
bound for planar graphs to O(k22k) and show that the exponential dependency actually
adheres only to the number of faces containing terminals: if the terminals lie on γ faces, one
can obtain a mimicking network of size O(γ22γk4). In a different work, Goranci, Henzinger,
and Peng [5] showed a tight O(k2) upper bound for mimicking networks for planar graph
with all terminals on a single face.

Our results

We complement these results by showing an exponential lower bound for mimicking networks
in planar graphs.

I Theorem 1.1. For every integer k ≥ 3, there exists a planar graph G with a set Q of k
terminals and edge cost function under which every mimicking network for G has at least
2k−2 edges.

This nearly matches the upper bound of O(k22k) of Krauthgamer and Rika [11] and is in
sharp contrast with the polynomial bounds when the terminals lie on a constant number of
faces [5, 11]. Note that it also nearly matches the improved bound of O(γ22γk4) for terminals
on γ faces [11], as k terminals lie on at most k faces.

As a side result, we also show a hard instance for mimicking networks in general graphs.

I Theorem 1.2. For every integer k ≥ 1, there exists a graph G with a set Q of 3k + 1
terminals and 22Ω(k) vertices such that no two vertices can be identified without strictly
increasing the size of some minimum S-separating cut.

The example of Theorem 1.2, obtained by essentially reiterating the construction of
Krauthgamer and Rika [10], shows that the doubly exponential bound is natural for the
preprocessing step of Hagerup et al [6], and one needs different techniques to improve upon
it.

N. Karpov, M. Pilipczuk, and A. Zych-Pawlewicz 24:3

Related work

Apart from the aforementioned work on mimicking networks [5, 6, 7, 10, 11], there has
been substantial work on preserving cuts and flows approximately, see e.g. [1, 4, 12]. If one
wants to construct mimicking networks for vertex cuts in unweighted graphs with deletable
terminals (or with small integral weights), the representative sets approach of Kratsch and
Wahlström [8] provides a mimicking network with O(k3) vertices, improving upon a previous
quasipolynomial bound of Chuzhoy [3].

We prove Theorem 1.1 in Section 2 and show the example of Theorem 1.2 in Section 3.

2 Exponential lower bound for planar graphs

In this section we present the main result of the paper. We provide a construction that
proves that there are planar graphs with k terminals whose mimicking networks are of size
Ω(2k).

In order to present the desired graph, for the sake of simplicity, we describe its dual
graph (G, c). We let Q = {fn, fs, f1, f2, . . . , fk−2} be the set of faces in G corresponding to
terminals in the primal graph G∗.1 There are two special terminal faces fn and fs, referred
to as the north face and the south face. The remaining faces of Q are referred to as equator
faces.

A set S ⊂ Q is important if fn ∈ S and fs /∈ S. Note that there are 2k−2 important sets;
in what follows we care only about minimum cuts in the primal graph for separations between
important sets and their complements. For an important set S, we define its signature as a
bit vector χ(S) ∈ [2]|Q|−2 whose i’th position is defined as χ(S)[i] = 1 iff fi ∈ S. Graph G
will be composed of 2k−2 cycles referred to as important cycles, each corresponding to an
important subset S ⊂ Q. A cycle corresponding to S is referred to as Cχ(S) and it separates
S from S. Topologically, we draw the equator faces on a straight horizontal line that we call
the equator. We put the north face fn above the equator and the south face fs below the
equator. For any important S ⊂ Q, in the plane drawing of G the corresponding cycle Cχ(S)
is a curve that goes to the south of fi if fi ∈ S and otherwise to the north of fi. We formally
define important cycles later on, see Definition 2.1.

We now describe in detail the construction of G. We start with a graph H that is almost
a tree, and then embed H in the plane with a number of edge crossings, introducing a new
vertex on every edge crossing. The graph H consists of a complete binary tree of height k− 2
with root v and an extra vertex w that is adjacent to the root v and every one of the 2k−2

leaves of the tree. In what follows, the vertices of H are called branching vertices, contrary
to crossing vertices that will be introduced at edge crossings in the plane embedding of H.

To describe the plane embedding of H, we need to introduce some notation of the vertices
of H. The starting point of our construction is the edge e = {w, v}. Vertex v is the first
branching vertex and also the root of H. In vertex v, edge e branches into e0 = {v, v0}
and e1 = {v, v1}. Now v0 and v1 are also branching vertices. The branching vertices are
partitioned into layers L0, . . . , Lk−2. Vertex v is in layer L0 = {v}, while v0 and v1 are in
layer L1 = {v0, v1}. Similarly, we partition edges into layers EH0 , . . . EHk−1. So far we have
EH0 = {e} and EH1 = {e0, e1}.

1 Since the argument mostly operates on the dual graph, for notational simplicity, we use regular symbols
for objects in the dual graph, e.g., G, c, fi, while starred symbols refer to the dual of the dual graph,
that is, the primal graph.

IPEC 2017

24:4 An Exponential Lower Bound for Cut Sparsifiers in Planar Graphs

v0

v1

v01

v00

v10

v11

v1

f1 f2 f3v

e00

e 00
0

e11

e111

e0

e1

fk−2 w

e

fn

fs

L0 L1 L2 L3

E0 E1 E2 E3

e11

e111

e0

e1

fk−2 w

e

fn

fs

L0 L1 L2 L3

E0 E1 E2 E3

Figure 1 The graph G.

The construction continues as follows. For any layer Li, i ∈ {1, . . . , k−3}, all the branching
vertices of Li = {v00...0 . . . v11...1} are of degree 3. In a vertex va ∈ Li, a ∈ [2]i, edge ea ∈ EHi
branches into edges e0a = {va, v0a}, e1a = {va, v1a} ∈ EHi+1, where v0a, v1a ∈ Li+1. We
emphasize here that the new bit in the index is added as the first symbol. Every next layer is
twice the size of the previous one, hence |Li| = |EHi | = 2i. Finally the vertices of Lk−2 are
all of degree 2. Each of them is connected to a vertex in Lk−3 via an edge in EHk−2 and to
the vertex w via an edge in EHk−1.

We now describe the drawing of H, that we later make planar by adding crossing vertices,
in order to obtain the graph G. As we mentioned before, we want to draw equator faces
f1, . . . fk−2 in that order from left to right on a horizontal line (referred to as an equator).
Consider equator face fi and vertex layer Li for some i > 0. Imagine a vertical line through
fi perpendicular to the equator, and let us refer to it as an i’th meridian. We align the
vertices of Li along the i’th meridian, from the north to the south. We start with the vertex
of Li with the (lexicographically) lowest index, and continue drawing vertices of Li more and
more to the south while the indices increase. Moreover, the first half of Li is drawn to the
north of fi, and the second half to the south of fi. Every edge of H, except for e, is drawn
as a straight line segment connecting its endpoints. The edge e is a curve encapsulating the
north face fn and separating it from fs-the outer face of G.

N. Karpov, M. Pilipczuk, and A. Zych-Pawlewicz 24:5

e
1
0a

e
2
0a
· · ·

e
dec(

a)

0a

c
i+1

c
i+1

e 1
1a

e 2
1a

· · ·
e 2 i
−dec(a)

1a

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Li Li+1

Ei+1

v0a

va

v1a

Figure 2 The layer Ei+1. The vertex and edge names are black, their weights are blue.

The crossing vertices are added whenever the line segments cross. This way the edges of
H are subdivided and the resulting graph is denoted by G. This completes the description
of the structure and the planar drawing of G. We refer to Figure 1 for an illustration of the
graph G. The set Ei consists of all edges of G that are parts of the (subdivided) edges of EHi
from H, see Figure 2. We are also ready to define important cycles formally.

I Definition 2.1. Let S ⊂ Q be important. Let π be a unique path in the binary tree
H − {w} from the root v to v←−−

χ(S), where
←−· operator reverses the bit vector. Let π′ be the

path in G corresponding to π. The important cycle Cχ(S) is composed of e, π′, and an edge
in Ek−1 adjacent to v←−−

χ(S).

We now move on to describing how weights are assigned to the edges of G. The
costs of the edges in G admit k − 1 values: c1, c2, . . . ck−2, and C. Let ck−2 = 1. For
i ∈ {1 . . . k − 3} let ci =

∑k−2
j=i+1 |Ej |cj . Let C =

∑k−2
j=1 |Ei|ci. Let us consider an arbitrary

edge eba = {va, vba} for some a ∈ [2]i, i ∈ {0 . . . k − 3}, b ∈ {0, 1} (see Figure 2 for an
illustration). As we mentioned before, eba is subdivided by crossing vertices into a number of
edges. If b = 0, then edge eba is subdivided by2 dec(a) crossing vertices into dec(a) + 1 edges:
e1
ba = {va, x1

ba}, e2
ba = {x1

ba, x
2
ba} . . . e

dec(a)+1
ba = {xdec(a)

ba , vba}. Among those edges edec(a)+1
ba is

assigned cost C, and the remaining edges subdividing eba are assigned cost ci. Analogically,
if b = 1, then edge eba is subdivided by 2i − 1 − dec(a) crossing vertices into 2i − dec(a)
edges: e1

ba = {va, x1
ba}, e2

ba = {x1
ba, x

2
ba} . . . e

2i−dec(a)
ba = {x2i−1−dec(a)

ba , vba}. Again, we let

2 For a bit vector a, dec(a) denotes the integral value of a read as a number in binary.

IPEC 2017

24:6 An Exponential Lower Bound for Cut Sparsifiers in Planar Graphs

f ∗n

f ∗s

f ∗1 f ∗k−2

C

C

C

C

C

C

C

C

C

2C

2C

Figure 3 Primal graph G∗.

edge e2i−dec(a)
ba have cost C, and the remaining edges subdividing eba are assigned cost ci.

Finally, all the edges connecting the vertices of the last layer with w have weight ck−2 = 1.
The cost assignment within an edge layer is presented in Figure 2.

This finishes the description of the dual graph G. We now consider the primal graph G∗
with the set of terminals Q∗ consisting of the k vertices of G∗ corresponding to the faces Q
of G. In the remainder of this section we show that there is a cost function on the edges
of G∗, under which any mimicking network for G∗ contains at least 2k−2 edges. This cost
function is in fact a small perturbation of the edge costs implied by the dual graph G.

In order to accomplish this, we use the framework introduced in [10]. In what follows,
mincutG,c(S, S′) stands for the minimum cut separating S from S′ in a graph G with cost
function c. Below we provide the definition of the cutset-edge incidence matrix and the Main
Technical Lemma from [10].

I Definition 2.2 (Incidence matrix between cutsets and edges). Let (G, c) be a k-terminal
network, and fix an enumeration S1, . . . Sm of all 2k−1− 1 distinct and nontrivial bipartitions
Q = Si ∪ Si. The cutset-edge incidence matrix of (G, c) is the matrix AG,c ∈ {0, 1}m×E(G)

given by

(AG,c)i,e =
{

1 if e ∈ mincutG,c(Si, Si)
0 otherwise.

I Lemma 2.3 (Main Technical Lemma of [10]). Let (G, c) be a k-terminal network. Let AG,c
be its cutset-edge incidence matrix, and assume that for all S ⊂ Q the minimum S-separating
cut of G is unique. Then there is for G an edge cost function c̃ : E(G) 7→ R+, under which
every mimicking network (G′, c′) satisfies |E(G′)| ≥ rank(AG,c).

Recall that G∗ is the dual graph to the graph G that we constructed. By slightly
abusing the notation, we will use the cost function c defined on the dual edges also on the
corresponding primal edges. Let Q∗ = {fn∗, fs∗, f1

∗, . . . fk−2
∗} be the set of terminals in G∗

corresponding to fn, fs, f1, . . . fk−2 respectively. We want to apply Lemma 2.3 to G∗ and Q∗.
For that we need to show that the cuts in G∗ corresponding to important sets are unique
and that rank(AG∗,c) is high.

As an intermediate step let us argue that the following holds.

N. Karpov, M. Pilipczuk, and A. Zych-Pawlewicz 24:7

I Claim 1. There are k edge disjoint simple paths in G∗ from fn
∗ to fs∗: π0, π1, . . . , πk−2,

πk−1. Each πi is composed entirely of edges dual to the edges of Ei whose cost equals C. For
i ∈ {1 . . . k − 2}, πi contains vertex fi∗. Let πni be the prefix of πi from fn

∗ to fi∗ and πsi be
the suffix from fi

∗ to fs∗. The number of edges on πi is 2i, and the number of edges on πni
and πsi is 2i−1.

Proof. The primal graph G∗ together with paths π0, π1 . . . πk−2, πk−1 is pictured in Figure 3.
The paths πk−2, πk−1 visit the same vertices in the same manner, so for the sake of clarity
only one of these paths is shown in the picture. This proof contains a detailed description of
these paths and how they emerge from in the dual graph G.

Consider a layer Li. Recall that for any ba ∈ [2]i edge eba of the almost tree is subdivided in
G, and all the resulting edges are in Ei. If b = 0, then edge eba is subdivided by dec(a) crossing
vertices into dec(a) + 1 edges: e1

ba = {va, x1
ba}, e2

ba = {x1
ba, x

2
ba} . . . e

dec(a)+1
ba = {xdec(a)

ba , vba},
where c(edec(a)+1

ba) = C. Analogically, if b = 1, then edge eba is subdivided by 2i − 1− dec(a)
crossing vertices into 2i − dec(a) edges: e1

ba = {va, x1
ba}, e2

ba = {x1
ba, x

2
ba} . . . e

2i−dec(a)
ba =

{x2i−1−dec(a)
ba , vba}. Again, c(e2i−dec(a)

ba) = C. Consider the edges of Ei incident to vertices
in Li. If we order these edges lexicographically by their lower index, then each consecutive
pair of edges shares a common face. Moreover, the first edge e1

00...0 is incident to fn and the
last edge e1

11...1 is incident to fs. This gives a path πi from fn to fs through fi in the primal
graph where all the edges on πi have cost C. Path πk−1 is given by the edges of Ek−1 in a
similar fashion and path π0 is composed of a single edge dual to e. J

We move on to proving that the condition in Lemma 2.3 holds. We extend the notion of
important sets S ⊆ Q to sets S∗ ⊆ Q∗ in the natural manner.

I Lemma 2.4. For every important S∗ ⊂ Q∗, the minimum cut separating S∗ from S∗ is
unique and corresponds to cycle Cχ(S) in G.

Proof. Let C be the set of edges of G corresponding to some minimum cut between S∗

and S∗ in G∗. Let S ⊆ Q be the set of faces of G corresponding to the set S∗. We start
by observing that the edges of G∗ corresponding to Cχ(S) form a cut between S∗ and S∗.
Consequently, the total weight of edges of C is at most the total weight of the edges of Cχ(S).

By Claim 1, C contains at least k edges of cost C, at least one edge of cost C per edge
layer (it needs to hit an edge in every path π0, . . . πk−1). Note that Cχ(S) contains exactly k
edges of cost C. We assign the weights in a way that C is larger than all other edges in the
graph taken together. This implies that C contains exactly one edge of cost C in every edge
layer Ei. In particular, C contains the edge e = {v, w}.

Furthermore, the fact that fi∗ lies on πi implies that the edge of weight C in Ei ∩ C lies
on πni if fi∗ /∈ S and lies on πsi otherwise. Consequently, in G∗ − C there is one connected
component containing all vertices of S∗ and one connected component containing all vertices
of S∗. By the minimality of C, we infer that G∗ −C contains no other connected components
apart from the aforementioned two components. By planarity, since any minimum cut in a
planar graph corresponds to a collection of cycles in its dual, this implies that C is a single
cycle in G.

Let ei be the unique edge of Ei ∩ C of weight C and let e′i be the unique edge of Ei ∩ Cχ(S)
of weight C. We inductively prove that ei = e′i and that the subpath of C between ei and
ei+1 is the same as on Cχ(S). For the base of the induction, note that e0 = e′0 = e.

Consider an index i > 0 and the face fi. If fi ∈ S, i.e., fi belongs to the north side, then
ei lies south of fi, that is, lies on πsi . Otherwise, if fi /∈ S, then ei lies north of fi, that is,
lies on πni .

IPEC 2017

24:8 An Exponential Lower Bound for Cut Sparsifiers in Planar Graphs

Let va and vba be the vertices of Cχ(S) that lie on Li−1 and Li, respectively. By the
inductive assumption, va is an endpoint of e′i−1 = ei−1 that lies on C. Let ei = xvbc, where
vbc ∈ Li and let e′i = x′vba. Since C is a cycle in G that contains exactly one edge on each
path πi, we infer that C contains a path between va and vbc that consists of ei and a number
of edges of Ei of weight ci. A direct check shows that the subpath from va to vba on Cχ(S) is
the unique such path with minimum number of edges of weight ci. Since the weight ci is
larger than the total weight of all edges of smaller weight, from the minimality of C we infer
that vba = vbc and C and Cχ(S) coincide on the path from va to bba.

Consequently, C and Cχ(S) coincide on the path from the edge e = vw to the vertex
v←−−
χ(S) ∈ Lk−2. From the minimality of C we infer that also the edge {w, v←−−

χ(S)} lies on the
cycle C and, hence, C = Cχ(S). This completes the proof. J

I Claim 2. rank(AG,c) ≥ 2k−2.

Proof. Recall Definition 2.1 and the fact that Cχ(S) is defined for every important S ⊆ Q.
This means that the only edge in Ek−1 that belongs to Cχ(S) is the edge adjacent to v←−−χ(S). Let
us consider the part of adjacency matrix where rows correspond to the cuts corresponding to
Cχ(S) for important S ⊂ Q and where columns correspond to the edges in Ek−1 of weight
C. Let us order the cuts according to

←−−
χ(S) and the edges by the index of the adjacent

vertex in Lk−2 (lexicographically). Then this part of AG,c is an identity matrix. Hence,
rank(AG,c) ≥ 2k−2. J

Lemma 2.4 and Claim 2 provide the conditions necessary for Lemma 2.3 to apply. This
proves our main result stated in Theorem 1.1.

3 Doubly exponential example

In this section we show an example graph for which the compression technique introduced by
Hagerup et al [6] does indeed produce a mimicking network on 22Ω(k) vertices. Our example
relies on doubly exponential edge costs. Note that an example with single exponential
costs can be compressed into a mimicking network of size single exponential in k using the
techniques of [8].

Before we go on, let us recall the technique of Hagerup et al [6]. Let G be a weighted
graph and Q be the set of terminals. Observe that a minimum cut separating S ⊂ Q from
S = Q \ S, when removed from G, divides the vertices of G into two sides: the side of S
and the side of S. The side is defined for each vertex, as all connected components obtained
by removing the minimum cut contain a terminal. Now if two vertices u and v are on the
same side of the minimum cut between S and S for every S ⊂ Q, then they can be merged
without changing the size of any minimum S-separating cut. As a result there is at most 22k

vertices in the graph. After this brief introduction we move on to describing our example.
Our construction builds up on the example provided in [10] in the proof of Theorem 1.2.

Without loss of generality, assume that k is divisible by 3 and that l :=
(
k
2
3k

)
is even. Their

graph is a complete bipartite graph G = (Q,U,E), where one side of the graph consists
of the k terminals Q = {q1, . . . , qk}, and the other side of the graph consists of l =

(
k
2
3k

)
non-terminals U = {uS1 , . . . , uSl

}, with S1, . . . , Sl denoting the different subsets of terminals
of size 2/3k. The costs of the edges of G are as follows: every non-terminal uSi

is connected
by edges of cost 1 to every terminal in Si , and by edges of cost 2 + ε to every terminal in
Si = Q \Si, for ε = 1/k. We modify the cost function defined in this example by multiplying
each edge cost by a constant α that we define later. We also need to be more careful with

N. Karpov, M. Pilipczuk, and A. Zych-Pawlewicz 24:9

x

Si

Si uSi

α

α

α

α

(2 + ε
)α

(2 + ε)α

Zj

wZj

l
2 l2 −

1

1

1
1

x

Si

Si uSi

α

α

α

α

(2 + ε
)α

(2 + ε)α

Zj
wZj

l 2
−

1

1
1
1

Figure 4 Illustration of the construction. The two panels correspond to two cases in the proof,
either uSi ∈ Zj (top panel) or uSi /∈ Zj (bottom panel).

ε. We set ε = 3
k + 6

k2 . In addition to that we build a third layer of m =
(
l
l/2
)
vertices

W = {wZ1 , . . . , wZm
}, where Z1, . . . , Zm denote different subsets of U of size l/2. There is

a complete bipartite graph between U and W . An edge {uSi
, wZj

} has cost 0 if uSi
∈ Zj

and has cost 1 otherwise. We add one more vertex to the graph which we refer to as x and
connect it with edges of cost l/2− 1 to each vertex in W . Let us refer to the resulting graph
as G′. We let Q′ = Q ∪ {x} be the corresponding terminal set; a set S ⊆ Q′ is important if
x /∈ S and |S| = 2

3k.

I Lemma 3.1. Let S′i ⊂ Q be important. For α = 22k · 2k, the vertex wZj
is on the Si-side

of the minimum cut between Si and Si if and only if uSi ∈ Zi.

Proof. In [9] it is proven that the unique minimum cut separating Si from Si inG, |Si| = 2/3k,
partitions vertices into Si side: Y = {uSi}∪Si and Si side: V (G)\Y = {uSj : j 6= i}∪Si. We

IPEC 2017

24:10 An Exponential Lower Bound for Cut Sparsifiers in Planar Graphs

refer to [9] for the proof details, but the reason why this holds is the following. The terminals
are connected only via vertices of U . Every vertex uSj

can either cut the edges E(uSj
, Si)

connecting uSj
with Si (choosing Si side) or cut the edges E(uSj

, Si) connecting uSj
with

Si (choosing Si side). For j = i it holds that c(E(USj , Si)) = 2/3k while c(E(uSj , Si)) =
(2 + ε)k/3, so it is better for uSi

to join Si side. Moreover, the difference between these two
values is greater than 1 for ε = 3

k + 6
k2 . For j 6= i it holds that c(E(uSj , Si)) ≥ 2/3k + (1 + ε)

while c(E(uSj
, Si)) ≤ k/3(2 + ε) − (1 + ε). It is easy to verify that for ε = 3

k + 6
k2 it is

better for uSj to join Si side and that the difference between the two alternative cut values is
greater than 1. The bottom line is that uSi

picks Si side, whereas all other uSj
vertices pick

Si side. If a vertex switches sides, the value of the minimum cut increases by more than 1.
In our example we multiply all the edge weights in this example by α, so the increase in

the cut value is more than α. Let us now consider graph G′ with terminal set Q′. Consider the
cut between Si and Si = Q′ \Si (so Si contains x). Graph G′ contains G as a subgraph, so to
disconnect Si from Q\Si, each vertex uSj

again has to cut either E(uSj
, Si) or E(uSj

, Q\Si).
Set α = 22k · 2k. Consider the minimum cut in G. The minimum cut in G′ restricted to G
uses the same edges. It does not pay of to flip sides for any vertex in U , as we can never
make up for the difference α with no more than |U | · |W | edges of cost 1. Now fix a vertex
wZj
∈W . We consider two cases: uSi

∈ Zj and uSi
/∈ Zj ; see also Figure 4.

Case 1: uSi ∈ Zj.

As argued above, all vertices of U choose their side according to what is best in G, so uSi is
the only vertex in U on the Si side. To join the Si side, wZj

has to cut edges {x,wZj
} and

{uSi , wZj} of total cost l/2− 1. To join the Si side, wZj needs to cut l/2 edges of cost 1 to
vertices uSi′ for uSi′ /∈ Zj , i

′ 6= i. Thus, it is less costly if wZj
joints the Si side.

Case 2: uSi /∈ Zj.

Again all vertices of U choose their side according to what is best in G, so uSi is the only
vertex in U on the Si side. To join the Si side, wZj

has to cut edges {x,wZj
} and {uSi

, wZj
}

of total cost l/2. To join the Si side, wZj
needs to cut l/2− 1 edges of cost 1 to vertices uSi′

for uSi′ /∈ Zj , i
′ 6= i. Thus, it is less costly for wZj

to join the Si side. J

Lemma 3.1 shows that G′ cannot be compressed using the technique presented in [6]. To see
that let us fix two vertices wZj and wZj′ and let Si ∈ Zj \ Zj′ . Then, Lemma 3.1 shows that
wZj

and wZj′ lie on different sides of the minimum cut between Si and Si. Thus, wZj
and

wZj′ cannot be merged. Similar but simpler arguments show that no other pair of vertices in
G′ can be merged, finishing the proof of Theorem 1.2.

References

1 Alexandr Andoni, Anupam Gupta, and Robert Krauthgamer. Towards (1 + ε)-approximate
flow sparsifiers. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January
5-7, 2014, pages 279–293. SIAM, 2014. doi:10.1137/1.9781611973402.20.

2 Erin W. Chambers and David Eppstein. Flows in one-crossing-minor-free graphs. J. Graph
Algorithms Appl., 17(3):201–220, 2013. doi:10.7155/jgaa.00291.

3 Julia Chuzhoy. On vertex sparsifiers with steiner nodes. In Howard J. Karloff and Toniann
Pitassi, editors, Proceedings of the 44th Symposium on Theory of Computing Conference,

http://dx.doi.org/10.1137/1.9781611973402.20
http://dx.doi.org/10.7155/jgaa.00291

N. Karpov, M. Pilipczuk, and A. Zych-Pawlewicz 24:11

STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 673–688. ACM, 2012. doi:
10.1145/2213977.2214039.

4 Matthias Englert, Anupam Gupta, Robert Krauthgamer, Harald Räcke, Inbal Talgam-
Cohen, and Kunal Talwar. Vertex sparsifiers: New results from old techniques. SIAM J.
Comput., 43(4):1239–1262, 2014. doi:10.1137/130908440.

5 Gramoz Goranci, Monika Henzinger, and Pan Peng. Improved guarantees for vertex spar-
sification in planar graphs. CoRR, abs/1702.01136, 2017. arXiv:1702.01136.

6 Torben Hagerup, Jyrki Katajainen, Naomi Nishimura, and Prabhakar Ragde. Character-
izing multiterminal flow networks and computing flows in networks of small treewidth. J.
Comput. Syst. Sci., 57(3):366–375, 1998. doi:10.1006/jcss.1998.1592.

7 Arindam Khan and Prasad Raghavendra. On mimicking networks representing minimum
terminal cuts. Inf. Process. Lett., 114(7):365–371, 2014. doi:10.1016/j.ipl.2014.02.
011.

8 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New
tools for kernelization. In 53rd Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 450–459. IEEE
Computer Society, 2012. doi:10.1109/FOCS.2012.46.

9 Robert Krauthgamer and Inbal Rika. Mimicking networks and succinct representations of
terminal cuts. CoRR, abs/1207.6246, 2012. arXiv:1207.6246.

10 Robert Krauthgamer and Inbal Rika. Mimicking networks and succinct representations of
terminal cuts. In Sanjeev Khanna, editor, Proceedings of the Twenty-Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA,
January 6-8, 2013, pages 1789–1799. SIAM, 2013. doi:10.1137/1.9781611973105.128.

11 Robert Krauthgamer and Inbal Rika. Refined vertex sparsifiers of planar graphs. CoRR,
abs/1702.05951, 2017. arXiv:1702.05951.

12 Konstantin Makarychev and Yury Makarychev. Metric extension operators, vertex spar-
sifiers and lipschitz extendability. In 51th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 255–
264. IEEE Computer Society, 2010. doi:10.1109/FOCS.2010.31.

IPEC 2017

http://dx.doi.org/10.1145/2213977.2214039
http://dx.doi.org/10.1145/2213977.2214039
http://dx.doi.org/10.1137/130908440
http://arxiv.org/abs/1702.01136
http://dx.doi.org/10.1006/jcss.1998.1592
http://dx.doi.org/10.1016/j.ipl.2014.02.011
http://dx.doi.org/10.1016/j.ipl.2014.02.011
http://dx.doi.org/10.1109/FOCS.2012.46
http://arxiv.org/abs/1207.6246
http://dx.doi.org/10.1137/1.9781611973105.128
http://arxiv.org/abs/1702.05951
http://dx.doi.org/10.1109/FOCS.2010.31

An Improved Fixed-Parameter Algorithm for
One-Page Crossing Minimization
Yasuaki Kobayashi1, Hiromu Ohtsuka2, and Hisao Tamaki3

1 Kyoto University, Kyoto, Japan
kobayashi@iip.ist.i.kyoto-u.ac.jp

2 Meiji University, Kanagawa, Japan
ohtsuka_yumecs.meiji.ac.jp

3 Meiji University, Kanagawa, Japan
tamaki@cs.meiji.ac.jp

Abstract
Book embedding is one of the most well-known graph drawing models and is extensively studied
in the literature. The special case where the number of pages is one is of particular interest: an
embedding in this case has a natural circular representation useful for visualization and graphs
that can be embedded in one page without crossings form an important graph class, namely that
of outerplanar graphs.

In this paper, we consider the problem of minimizing the number of crossings in a one-page
book embedding, which we call one-page crossing minimization. Here, we are given a graph G
with n vertices together with a non-negative integer k and are asked whether G can be embedded
into a single page with at most k crossings. Bannister and Eppstein (GD 2014) showed that
this problem is fixed-parameter tractable. Their algorithm is derived through the application of
Courcelle’s theorem (on graph properties definable in the monadic second-order logic of graphs)
and runs in f(L)n time, where L = 2O(k2) is the length of the formula defining the property that
the one-page crossing number is at most k and f is a computable function without any known
upper bound expressible as an elementary function. We give an explicit dynamic programming
algorithm with a drastically improved running time of 2O(k log k)n.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases Book Embedding, Fixed-Parameter Tractability, Graph Drawing, Tree-
width

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.25

1 Introduction

In book embeddings, a graph is drawn in such a way that the vertices are aligned on a straight
line, called the spine, as distinct points and each edge is drawn as a semicircle in a half plane
defined by the spine. We call this half plane a page. In general, multiple pages are required
to draw a graph without introducing any edge crossings, where a crossing is defined by a pair
of edges that has a non-empty intersection distinct from their end vertices. The minimum
number of pages we need to draw a graph without edge crossings, called page number or book
thickness, is extensively studied in the literature (e.g. [3, 23]). The problem of computing
page number is known to be NP-hard. More precisely, deciding if a given graph can be drawn
in two pages without any crossing is NP-complete [7].

An optimization problem with an objective function different from the crossing number
has also been studied. In this problem, given a graph G and a small integer p, the objective

© Yasuaki Kobayashi, Hiromu Ohtsuka, and Hisao Tamaki;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 25; pp. 25:1–25:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 An Improved Fixed-Parameter Algorithm for One-Page Crossing Minimization

Figure 1 A one-page drawing and a circular drawing of a graph.

is to minimize the total number of crossings in a drawing of G with at most p pages.
This optimization problem is known as p-page crossing minimization and is introduced by
Shahrokhi et al. [20]. Since the problem of deciding whether the page number of a graph
is at most two is NP-complete [7], two-page crossing minimization is NP-hard. Indeed, the
simplest case of one-page crossing minimization is already interesting. One-page crossing
number is studied under various names such as circular crossing number, convex crossing
number, and outerplanar crossing number. See [15] for example. In circular drawings, each
vertex is placed on the circumference of a circular disk and each edge is drawn inside of
the disk as a straight line segment. A one-page drawing may be turned into a circular
drawing by topologically mapping the spine into a circle, identifying the positive and negative
infinities, and mapping the half-plane into the disc enclosed by the circle. (See Figure 1, for
an example). This mapping clearly preserves crossings.

One-page drawing (and hence circular drawing) with fewer crossings is important in
several fields. This drawing style is frequently studied in the graph drawing community.
Some well-known graph drawing software such as Graphviz1 and yFiles2 can produce good
circular drawings. Blin et al. [4] suggested to use one-page crossing number for computing a
similarity of mRNA sequences that have some secondary structures. In their paper, they
asked for a fast algorithm to compute a one-page drawing with the fewest crossings.

Unfortunately, the problem of computing one-page crossing number is NP-hard as shown
by Masuda et al. [18]. There are some results for special graph classes [12, 13] and some
heuristics [2, 17, 21]. Bannister and Eppstein [1] tackled this problem from the perspective
of parameterized complexity. They showed that the treewidth of graphs with at most k
crossings is O(

√
k) and that the graph property of having at most k crossings can be defined

by a formula of length L = 2O(k2) in monadic second-order logic of graphs. These results are
sufficient for the application of Courcelle’s theorem [8, 9] to obtain an f(L)n time algorithm
for deciding if the one-page crossing number of a given graph is at most k, where n is
the number of vertices and f is a computable function without any known upper bound
expressible as an elementary function [11].

This situation is in contrast to that in the related research area of layered graph drawings,
where vertices are placed on h parallel lines and each edge is drawn as a straight line segment
between two adjacent parallel lines. Dujmović et al. [10] gave an explicit 2O(h+k)3

n time
dynamic programming algorithm based on path-decompositions to decide if a given graph
has h-layer drawing with at most k crossings.

In this paper, we give an explicit tree decomposition based dynamic programming
algorithm for one-page crossing minimization.

1 http://www.graphviz.org/
2 https://www.yworks.com/

http://www.graphviz.org/
https://www.yworks.com/

Y. Kobayashi, H. Ohtsuka, and H. Tamaki 25:3

I Theorem 1. There is an algorithm which, given a graph G and a non-negative integer
k, decides whether G has a one-page drawing with at most k crossings in 2O(k log k)n time,
where n is the number of vertices of G. Moreover, if the answer is affirmative, the algorithm
produces an optimal one-page drawing within the same running time.

We would like to mention that this and the algorithm of Bannister and Eppstein [1] run
in linear time, which generalize linear time algorithms recognizing and drawing outerplanar
graphs [19, 22].

We borrow two tools from Bannister and Eppstein [1]. One is the upper bound on the
treewidth of a graph of one-page crossing number k mentioned above. The other is the
concept of “crossing diagrams” which are used to classify YES-instances of the decision
problem. For each such diagram, they construct a formula of length kO(1) for recognizing
YES-instances conforming to the diagram and then take a disjunction of the formulas for all
the diagrams. There are 2O(k2) crossing diagrams and therefore the total formula length is
2O(k2). We use a similar structure, which we call a “sketch”, in our dynamic programming
algorithm and obtain an upper bound of 2O(k log k) on the number of sketches through a
similar but indeed somewhat finer analysis (see the proof of Lemma 14). We, however, remark
that there is a fundamental difference between crossing diagrams and sketches. A crossing
diagram represents a “type” of YES-instances and, for each fixed type, we need to examine
each given instance for acceptance by a formula or an algorithm. On the other hand, a sketch
is a succinct summary of a drawing of a subgraph. We define the “validity” of a sketch in
such a way that a valid sketch of the entire graph is an immediate certificate for the positive
answer to the instance and the validity of sketches can be efficiently determined by dynamic
programming on a tree decomposition. We also remark that such a succinct representation
is made possible by our observation on one-page drawings of biconnected graphs, which we
call the chain lemma (see Section 2).

2 Preliminaries

Let G be a graph. The set of vertices of G is denoted by V (G) and the set of edges of G
by E(G). For each v ∈ V (G), NG(v) denotes the set of neighbors of v in G: NG(v) = {u ∈
V (G) | {u, v} ∈ E(G)}. For X ⊆ V (G), G[X] denotes the subgraph of G induced by X and
NG(X) = (

⋃
v∈X NG(v)) denotes the set of neighbors of X.

As we have mentioned, a one-page drawing and a circular drawing are equivalent for our
purposes. Therefore, we will work on circular drawings, and whenever we refer to drawings,
we always refer to circular drawings. For a drawing D of G, we write cr(D) to denote the
number of crossings in D. The one-page crossing number cr1(G) of G is the minimum integer
k such that G has a circular drawing of k crossings.

LetD be a drawing ofG. We write V (D) and E(D) to denote V (G) and E(G), respectively.
We denote by cycle(D) the cycle on V (D) induced by the circle on which the vertices are
drawn: two vertices are adjacent to each other in cycle(D) if they are consecutively placed on
this circle. As special cases, if V (D) is empty then cycle(D) is an empty graph; if V (D) is a
singleton, then cycle(D) is a self-loop; if |V (D)| = 2, then cycle(D) is a multigraph consisting
of two parallel edges between the two vertices. Note that D is essentially determined by
V (D), E(D), and cycle(D). For X ⊆ V (D), we denote by D|X the subdrawing of D induced
by X, that is, the drawing obtained from D by deleting all vertices in V (D)\X. An extension
of D is a drawing obtained by adding some vertices and edges to D.

I Definition 2. A tree decomposition of G is a tree T where each t ∈ V (T) is associated
with Xt ⊆ V (G), called a bag, such that

IPEC 2017

25:4 An Improved Fixed-Parameter Algorithm for One-Page Crossing Minimization

⋃
t∈V (T) Xt = V (G),

for each {u, v} ∈ E(G), there is t ∈ V (T) with {u, v} ⊆ Xt, and
for each u ∈ V (G), the subgraph of T induced by {t ∈ V (T) : u ∈ Xt} is connected.

The width of a tree decomposition (T, {Xt : t ∈ V (T)}) is the maximum size of a bag minus
one. The treewidth of G is the minimum integer w such that G has a tree decomposition of
width w.

To distinguish between vertices of G and those of T , we call the vertices of T nodes. We
assume, in the rest of the paper, that tree decompositions are rooted. For a node t ∈ V (T),
we define Vt =

⋃
t′∈V (Tt) Xt′ , where Tt is the subtree of T rooted at t.

I Definition 3. A tree decomposition T is nice if for each node t of T , exactly one of the
following conditions is satisfied.

t is a leaf of T with Xt = ∅,
t has exactly one child t′ with Xt = Xt′ \ {v} for some v ∈ Xt′ ,
t has exactly one child t′ with Xt = Xt′ ∪ {v} for some v /∈ Xt′ , or
t has exactly two children t1 and t2 with Xt = Xt1 = Xt2 .

We respectively call nodes that satisfy the above conditions, leaf nodes, forget nodes, introduce
nodes, and join nodes.

I Lemma 4 ([16]). Suppose we are given a graph G and its tree decomposition of width w.
Then, there is a nice tree decomposition of G of width at most w such that it has O(wn)
nodes, where n is the number of vertices of G. Moreover, such a nice tree decomposition can
be computed in O(w2n) time.

The following lemma is a well-known characterization of crossing-free drawings.

I Lemma 5 (Theorem 2.5 in [3]). For every graph G, cr1(G) = 0 if and only if G is
outerplanar.

Since every outerplanar graph has treewidth at most 2, we immediately have an upper
bound on the treewidth with respect to its one-page crossing number: tw(G) = O(cr1(G)).
Bannister and Eppstein [1] gave a tighter bound.

I Lemma 6 (Lemma 5 in [1]). For every graph G, tw(G) = O(
√

cr1(G)).

The following simple lemma is used in some previous results (see [1], for example).

I Lemma 7. Let G1, G2, . . . , Gt be the biconnected components of G. Then, cr1(G) =∑
1≤i≤t cr1(Gi).

Owing to this lemma, we will henceforth assume that the given graph is biconnected. We
prove below a lemma crucial in exploiting the biconnectivity in our algorithm. This lemma
generalizes the Hamiltonicity of biconnected outerplanar graphs with at least three vertices
[6].

Let D be a drawing of G. A path in G is a chain in D if it is also a path in cycle(D).
We say that a vertex is chained in D if it is an internal vertex of a chain.

I Lemma 8 (Chain lemma). Let G be a biconnected graph with at least three vertices and let
D be a drawing of G. Then every vertex not incident to any crossing edge in D is chained
in D.

Y. Kobayashi, H. Ohtsuka, and H. Tamaki 25:5

Proof. Let u be a vertex of G not incident to any crossing edge. Let v1 and v2 be the two
neighbors of u in cycle(D). As G is biconnected, u has at least two neighbors in G. If u has
no neighbor distinct from both v1 and v2, we are done. Suppose otherwise: u has a neighbor
x with x /∈ {v1, v2}. Let P1 and P2 be internally disjoint paths between v1 and v2, which
exist since G is biconnected. Since {u, x} is not a crossing edge, one of the path, say P1,
contains u and the other one, say P2, contains x. Suppose P1 does not go through edge
{v1, u}. Let y be the vertex adjacent to u on the subpath of P1 between v1 and u. Then,
the edge {y, u} must cross an edge in P2, contradicting the assumption that u is not incident
to a crossing edge. Hence P1 must go through edge {v1, u}. A symmetric argument shows
that P1 also goes through {v2, u}. Therefore, u is chained in D. J

3 Colored drawings and sketches

In our dynamic programming algorithm, for each node t of a given tree decomposition, we
enumerate structures we call “sketches" which succinctly describe drawings of G[Vt]. To
establish recurrences among sketches, it turns out necessary for the drawings described by
sketches to carry some information on our plan on how to extend those drawings to the final
drawing of G.

We use colors on vertices, black, white, and gray, to represent this information. A colored
drawing of graph H is a triple (D,B,W) where B and W are disjoint subsets of V (H) and
D is a drawing of H, such that every vertex incident to a crossing edge in D belongs to B.
We call the vertices in B black, those in W white, and all others gray. If C is the colored
drawing (D,B,W), then we write V (C), E(C), and cycle(C) to denote V (D), E(D), and
cycle(D), respectively. We use B(C) and W (C) to denote the set of black vertices and the
set of white vertices of C, respectively. For U ⊆ V (C), we write C|U to denote the colored
drawing (D|U,B ∩ U,W ∩ U).

In the above definition, both ends of a crossing edge must be black in a colored drawing,
but not vice versa: a black vertex is not necessarily incident to any crossing edge. A vertex
being black rather indicates our plan that it can be incident to any crossing edges in the
extension of the drawing of a subgraph of G into the drawing of the entire G. We need some
more definitions to explain the intention of the other two colors.

Let C be a colored drawing. We say that C respects X ⊆ V (C) if V (C) = B(C)∪W (C)∪X
and W (C) ∩X = ∅. Note that if C respects X then every vertex in X is either black or
gray, while every vertex not in X is either black or white. We will often consider a colored
drawing of an induced subgraph G[U] of the given graph G, where U is accompanied with
a boundary X of U , a subset of U such that NG(U \X) ⊆ X. In those situations, we will
require each colored drawing of U to respect X. This ensures that there is no edge between
white vertices in U and the vertices in V (G) \ U . Thus, white vertices will never be adjacent
to vertices introduced in the extensions.

Let C and C ′ be colored drawings of graphs H and H ′ respectively, such that |V (H)| =
|V (H ′)|. A bijection φ : V (H) → V (H ′) is an isomorphism from C to C ′ if it is an
isomorphism from H to H ′ (u, v ∈ V (H) are adjacent to each other in H if and only if φ(u)
and φ(v) are adjacent to each other in H ′), is an isomorphism of cycle(C) to cycle(C ′), and
preserves the coloring (φ(B) = B′, and φ(W) = W ′). Suppose V (H) and V (H ′) intersect
each other and let X ⊆ V (H) ∩ V (H ′). We call an isomorphism φ from C to C ′ an X-
isomorphism if φ fixes each vertex of x ∈ X, that is, φ(x) = x. If there is an isomorphism
(X-isomorphism) from C to C ′, then we say C and C ′ are isomorphic (X-isomorphic) to
each other and that each of them is an isomorph (X-isomorph) of each other.

IPEC 2017

25:6 An Improved Fixed-Parameter Algorithm for One-Page Crossing Minimization

Let C be a colored drawing. We say that C is well-formed if every white vertex of C
is chained in C. It will turn out in Section 4 that to inductively construct drawings of G
(which we are assuming is biconnected), it suffices to consider only well-formed drawings.

We now define “sketches” which describe colored drawings. Let C be a well-formed
colored drawing. A chain in C is white if every vertex in the chain is white. The contraction
of C is the colored drawing obtained from C by contracting each maximal white chain into a
single white vertex (which inherits all neighbors from the vertices of the chain). Let us note
that the contraction of C is unique up to isomorphism. The contraction of C is well-formed
since we are assuming that C is well-formed. Moreover, the contraction operation preserves
crossings: it does not introduce any new crossings or, since the vertices contracted are white
(and hence are not incident any crossing edges), does not remove any crossings. We say that
C is contracted if it does not contain any white chain with at least two vertices and hence is
the contraction of itself.

Let X be a vertex set. A sketch on X is a well-formed and contracted colored drawing that
respects X. Let C be a well-formed colored drawing of graph H that respects some vertex
set X ⊆ V (H). Let S be a sketch on X. We say that S describes C if S is X-isomorphic to
the contraction of C.

4 Recurrences

In this section, we fix a nice tree decomposition T of G, and use the notation Xt and Vt,
where t is a node of T , introduced in Section 2.

We say that a sketch S on Xt is valid for Vt if there is a well-formed colored drawing C
of G[Vt] that respects Xt and is described by S. For brevity, we say a sketch on t to mean a
sketch on Xt and also say that a sketch is valid on t, or simply valid if t is clear from the
context, to mean that it is valid for Vt.

Our dynamic programming algorithm enumerates, for each t, all valid sketches on t that
are small in the sense defined later. In the following lemmas, we establish recurrences that
can be used to inductively decide if a given sketch on t is valid, based on the validity of
sketches on t′ for child nodes t′ of t.

Leaf node
I Observation 9. Let t be a leaf node of T . Then, the empty sketch (D∅, ∅, ∅) on Xt = ∅,
where D∅ is an empty drawing, is valid.

Forget node
Let t be a forget node in T and t′ the unique child of t. Let v ∈ Vt′ be the vertex forgotten:
Xt = Xt′ \ {v}. Let S be a sketch on Xt and S′ a sketch on Xt′ . We say that S is the parent
of S′ if either
F1 v ∈ B(S′) and S = S′ or
F2 v 6∈ B(S′), v is chained in S′, and S is the contraction of the colored drawing obtained

from S′ by changing the color of v from gray to white (which is well-formed since v is
chained).

We say that S′ is a child of S if S is the parent of S′. Note that the parent of a sketch
on Xt′ is unique if one exists, while a sketch on Xt may have any number of children: zero,
one, or more.

Y. Kobayashi, H. Ohtsuka, and H. Tamaki 25:7

Figure 2 The figure shows an example of a sketch on a forget node t. The top figure depicts a
sketch on Xt and the bottom figures depict some of its children. Here, Xt = {a, b, c, d, e, f, g} and
v ∈ Xt′ \ Xt is the vertex forgotten.

I Lemma 10. Let t be a forget node and t′ its unique child node. Then, a sketch on t is
valid if and only if it has a child that is valid on t′.

Proof. Let v the vertex forgotten at node t: Xt = Xt′ \ {v}.
Let S be a valid sketch on t. Let C denote the well-formed colored drawing of G[Vt] that

respects Xt and is described by S. Since v ∈ Vt \ Xt and C respects Xt, we have either
v ∈ B(C) or v ∈W (C).

Suppose first that v ∈ B(C). Then, since sketch S describes C, we have v ∈ B(S). Then,
S is a sketch on t′ and, by Case F1, it is a child of S itself. Moreover, as W (C) ∩Xt′ =
W (C) ∩ (Xt ∪ {v}) = W (C) ∩Xt = ∅, C respects Xt′ as well. Since S is a sketch on t′ and
describes a colored drawing C for G[Vt′] = G[Vt] that respects Xt′ , it is valid on t′. Therefore,
we are done in this case.

Suppose next that v ∈ W (C). Let C ′ be the colored drawing of G[Vt′] = G[Vt] that
is identical to C except that the color of v is gray instead of white. Since every white
vertex of C ′ is chained as it is chained in C, C ′ is well-formed. Since W (C ′) ∩ Xt′ =
(W (C) \ {v}) ∩ (Xt ∪ {v}) = W (C) ∩Xt = ∅, C ′ respects Xt′ . Let S′ be the sketch on Xt′

that describes C ′, which is unique up to Xt′-isomorphisms. Then, as v /∈ B(C ′) and the
Xt′ -isomorphism from S′ to the contraction of C ′ fixes v ∈ Xt′ , we have v 6∈ B(S′). Since v
is white in C and C is well-formed, v is chained in C and hence in C ′. As v is gray in C ′ the
contraction of C ′ keeps v chained in S′. Therefore, Case F2 applies and we obtain the parent
S′′ of S′ by turning the gray vertex v white and then contracting the result. We may view
the relationship between C and S′′ as follows: we first turn the color of v in C from white to
gray and contract the result C ′ to obtain S′ through an Xt′-isomorphism; then, we turn v
white and further contract the result into S′′. The contraction of C in one step gives us an
Xt-isomorph of S′′ which, since S describes C by assumption, is an Xt-isomorph of S as well.
As S′′ is the parent of S′ and is Xt-isomorphic to S, S has a child that is Xt′ -isomorphic to
S′. Since S′ describes C ′, this child of S is valid and we are done in this case as well.

For the converse, suppose that S has a valid child S′. Let C ′ be a well-formed colored
drawing of G[Vt′] that respects Xt′ and is described by S′. First suppose v ∈ B(C ′). Since
v ∈ Xt′ , the Xt′-isomorphism from S′ to the contraction of C ′ fixes v. Therefore, we have
v ∈ B(S′). Case F1 applies and we have S = S′. Since S describes C ′ and C ′ respects
Xt ⊆ Xt′ , S is valid on t and we are done in this case.

IPEC 2017

25:8 An Improved Fixed-Parameter Algorithm for One-Page Crossing Minimization

Figure 3 The figures show an example of sketches on an introduce node t. The bottom figure
depicts a sketch on Xt′ and the top figures depict some of its parents. Here, Xt = {a, b, c, d, e, f, g, v}
and v ∈ Xt \ Xt′ is the vertex introduced.

So suppose that v /∈ B(C ′). Then we have v /∈ B(S′) and Case F2 must apply since S′ is
a child of S. Let C be the colored drawing of G[Vt] = G[Vt′] which is identical to C ′ except
that the color of v is turned white from gray. Since v is chained in S′ by the condition of
Case F2 and the Xt′ -isomorphism from S′ to the contraction of C ′ fixes v, v is chained in C ′
and hence in C. We may obtain an Xt-isomorph of S from C by turning the color of v gray,
contracting the result C ′ into an Xt′-isomorph of S′, turning the color of v back to white,
and then contracting the result. Since v is chained in C, we may perform the contraction in
one step, which shows that S describes C and hence is valid on t. J

Introduce node
Let t be an introduce node in T and t′ the unique child of t. Let v ∈ Xt be the vertex
introduced: Xt = Xt′ ∪ {v}. Let S be a sketch on Xt and S′ a sketch on Xt′ . We say that
S′ is the child of S if either
1. |Xt| = 1 and S′ is an unique empty sketch, or
2. |Xt| > 1, S′ = S|Vt′ , and neither of the two vertices in Ncycle(S)(v), which are not

necessarily distinct, are white in S.
Note that Vt′ = Vt \ {v} and hence S′ is obtained from S by removing v. We say that S is a
parent of S′ if S′ is the child of S. Note that the child of a sketch on Xt is unique up to
isomorphism if one exists, while a sketch on Xt′ may have more than one parent in general.

I Lemma 11. Let t be an introduce node and t′ a unique child of t. A sketch S on t is valid
if and only if it has a child that is valid on t′.

Proof. Let v be the vertex introduced in t: Xt = Xt′ ∪ {v}. We only prove the case 2, since
the case 1 is straightforward.

Suppose that S is a valid sketch on t such that |Xt| > 1. Let C be a well-formed colored
drawing of G[Vt] that respects Xt and is described by S. Since v ∈ Xt and C respects Xt,
v is either black or gray in C. Let C ′ = C|Vt′ . Since Vt = Vt′ ∪ {v}, C ′ is obtained from
C by removing v. Let u be a vertex adjacent to v in cycle(C). If u ∈ W (C) then u must
be chained in C since C is well-formed. But this is a contradiction, since v 6∈ Vt′ has no
neighbor in W (C) = W (C ′) ⊆ Vt′ \ Xt′ . Therefore, we conclude that neither of the two
vertices in Ncycle(C)(v) are white in C. Since the contraction of C does not change this local

Y. Kobayashi, H. Ohtsuka, and H. Tamaki 25:9

structure around v, the vertices in Ncycle(C)(v) correspond to those in Ncycle(S)(v) through
the Xt-isomorphism from S to the contraction of C. Therefore, S satisfies the condition for
having a child. Let S′ be the child of S. Since C and C ′ have the same set of maximal white
chains, the Xt-isomorphism from S to the contraction of C gives an Xt′-isomorphism from
S′ to the contraction of C ′, when restricted to V (S′) = V (S) \ {v}. Therefore, S′ is valid.

For the converse, suppose S has a child S′ that is valid on t′. Let C ′ be a well-formed
colored drawing of G[Vt′] that respects Xt′ and is described by S′. Let v1 and v2 be the two
vertices in Ncycle(S)(v). Each of v1 and v2 is either black or gray in S, since S has a child.
Since S respects Xt and v ∈ Xt, v is also either black or gray. Since v1 and v2 are adjacent
to each other in cycle(S′), the Xt′-isomorphism from S′ to the contraction of C ′ maps v1
and v2 to vertices v′1 and v′2 of C ′ that are either black or gray in C ′ and are adjacent to
each other in cycle(C ′). Let D be the drawing of G[Vt] obtained from the drawing of C ′ by
adding v between v′1 and v′2. Let C = (D,B,W (C ′)), where B = B(C ′) ∪ {v} if v ∈ B(S)
and B = B(C ′) otherwise.

We claim that C is a colored drawing. To see this, let e and f be edges of G[Vt] that
cross each other in D. If neither e nor f is incident to v, then the crossing is in C ′ and
hence all the ends of e and f are black in C ′ and hence in C. So suppose one of e and f ,
say e, is incident with v. Let u1 be the other end of e and let u2 and u3 be the ends of f .
For i = 1, 2, 3, ui has a vertex u′i in S′ corresponding to ui: the Xt′-isomorphism from S′

to the contraction of C ′ maps u′i to either ui or the contraction of a white maximal chain
containing ui. Since e and f cross each other in C, the edge between v and u′1 and the edge
between u′2 and u′3 must cross each other in S. As sketch S is a colored drawing, v, u′1, u′2,
and u′3 are black in S. By the definition of C, v is in C. Moreover, from the definition of the
contraction, we see that u1, u2, and u3 must be black in C ′ and hence in C. Therefore, C
satisfies the condition for being a colored drawing. C is well-formed, since every white vertex
in C is a white vertex in C ′ and therefore is chained in C ′ and hence in C.

Since C ′ is obtained from C by removing v and neither of the two vertices in Ncycle(C)(v)
are white, C is contracted in the same way as C ′ is contracted into an Xt′-isomorph of S′,
resulting in an Xt-isomorph of S. Therefore S describes C and hence is valid. J

Join Node
Let t be a join node with child nodes t1 and t2. From the definition of join node, we have
Xt = Xt1 = Xt2 and (Vt1 \Xt) ∩ (Vt2 \Xt) = ∅. We may assume that neither Vt1 \Xt nor
Vt2 \Xt is empty and hence |Vt| ≥ 3.

Let S be a sketch on t. Let S1 and S2 be sketches on t1 and t2, respectively. We say that
S is the parent of the pair (S1, S2) if
1. V (S1) \Xt and V (S2) \Xt partition V (S) \Xt,
2. there is no edge in E(S) between V (S1) \Xt and V (S2) \Xt,
3. S1 = S|V (S1), and
4. S2 = S|V (S2).

I Lemma 12. Let t be a join node with child nodes t1 and t2. A sketch S on t is valid if
and only if there are valid sketches S1 on t1 and S2 on t2 such that S is the parent of the
pair (S1, S2).

Proof. Suppose first that S is a valid sketch on t. Let C be a well-formed colored drawing of
G[Vt] that respects Xt and is described by S. Let Ci = C|Vti for i = 1, 2. Then, for i = 1, 2,
Ci is well-formed, since each white vertex v ∈ Ci is chained in C and, since v ∈ Vti

\Xt, NG(v)

IPEC 2017

25:10 An Improved Fixed-Parameter Algorithm for One-Page Crossing Minimization

Figure 4 The figures show an example of a sketch on a join node t. The top figure depicts a
sketch on Xt and the bottom figures depict a pair of sketches whose parent is the sketch in the top
figure. Here, Xt = {a, b, c, d, e, f, g}.

are in Vti
, is chained in Ci as well. Moreover, for i = 1, 2, Ci respects Xti

. To confirm this,
fix i. Since W (C)∩Xt = ∅ as C respects Xt, we have W (Ci)∩Xti = (W (C)∩Vti)∩Xt = ∅.
We also have V (Ci) = B(Ci)∪W (Ci)∪Xti

, since V (Ci) = V (C)∩ Vti
, B(Ci) = B(C)∩ Vti

,
and W (Ci) = W (C) ∩ Vti . Therefore, Ci respects Xti .

Observe that each chain in C is either entirely contained in C1 or entirely contained
in C2, as there is no edge of G between Vt1 \ Xt and Vt2 \ Xt. Therefore, the partition
(Vt1 \ Xt, Vt2 \ Xt) of Vt \ Xt induces a partition (R1, R2) of V (S) \ Xt through the Xt-
isomorphism from S to the contraction of C. There is no edge in E(S) between R1 and R2,
since such an edge would correspond to an edge between Vt1 \Xt and Vt2 \Xt, contradicting
the definition of a join node. Therefore, S is the parent of the pair (S1, S2), where Si for
i = 1, 2 is defined by Si = S|(Ri ∪Xt). The contraction of C to an Xt-isomorph of S induces
the contraction of Ci to an Xt-isomorph of Si, for i = 1, 2. Therefore, Si describes Ci and
hence is valid, for i = 1, 2.

For the converse, suppose S is the parent of a pair (S1, S2) where Si is a valid sketch on
ti, for i = 1, 2. For i = 1, 2, let Ci be a well-formed colored drawing of G[Vti] that respects
Xti

and is described by Si. We combine C1 and C2 into a colored drawing C of G[Vt] as
follows. We take the sketch S and replace each vertex v ∈ V (S) as follows. If v ∈ Xt then
we keep v as it is. If v ∈ B(S1) \Xt, then we replace v by the vertex of C1 to which v is
mapped by the Xt-isomorphism from S1 to the contraction of C1; the case v ∈ B(S2) \Xt is
similar. If v ∈W (S1), then we replace v by the maximal white chain of C1, the contraction
of which v is mapped to by the Xt-isomorphism from S1 to the contraction of C1; the case
v ∈W (S2) is similar. We let the resulting colored drawing be C. All edges of the drawing
except for those in the maximal white chains correspond to edges in S and edges in white
chains are not crossing. Therefore, every vertex incident to a crossing edge is colored black
in C as it is in S and hence C is indeed a colored drawing. That C respects Xt is trivial. To
see that C is well-formed, let w be a white vertex of C. Then, either w corresponds to a
white vertex of S or w is in a white chain that corresponds to a white vertex of S. Since this
white vertex in S is chained since S is well-formed, w is chained in C. Finally, combining
the contractions of Ci into Xt-isomorphs of Si for i = 1, 2, we get the contraction of C into
an Xt-isomorph of S. Therefore, S describes C and hence is valid. J

Y. Kobayashi, H. Ohtsuka, and H. Tamaki 25:11

5 Algorithm

By Lemma 7, we can solve our problem independently for each biconnected component of
G. Moreover, the biconnected components can be computed in linear time [14]. When the
treewidth of G is larger than c

√
k for some constant c > 0, by Lemma 6, we can conclude

cr1(G) > k. Thus, in the following, we can assume that the given graph G is biconnected
and its treewidth is at most c

√
k. Applying the algorithm of Bodlaender et al. [5], we can

obtain a tree decomposition of G whose width is O(
√
k) in 2O(

√
k)n time and its nice tree

decomposition by Lemma 4.
We say that a sketch is small if it has at most 4k black vertices and contains at most

k crossings. Our dynamic programming algorithms inductively enumerates the set of all
valid sketches on t that are small, for each node t of the nice tree decomposition, using
the recurrences established in the previous section. The dynamic programming table for t
contains one representative sketch from each Xt-isomorphism class. It is straightforward
to verify that, to decide if a small sketch on t is valid or not, only small sketches on child
node(s) of t need to be examined. Thus, the computation gives us the set of all small and
valid sketches on the root of the tree decomposition. Therefore, the proof of the correctness
of our algorithm lies in showing the following lemma.

I Lemma 13. G has a drawing with at most k crossings if and only if there is a small sketch
on ∅ that is valid for V (G).

Proof. Suppose first that there is a small sketch S on ∅ that is valid for V (G). Then, since
S is valid, there is a colored drawing C of G described by S. The number of crossings of C
is equal to the number of crossings in S and is at most k.

For the converse, suppose that G has a drawing with at most k crossings. Turn this
drawing into a colored drawing C of G by making the ends of all crossing edges black and all
other vertices white. We have at most 4k black vertices and C respects ∅. Moreover, C is
well-formed by the chain lemma (Lemma 8). Contracting C (with respect to boundary ∅),
we obtain a small sketch on ∅ that describes C and hence is valid for V (G). J

For the running time, we prove the following:

I Lemma 14. For each t ∈ V (T), the number of small sketches on t, counting one from
each Xt-isomorphism class, is 2O(k log k).

Proof. The number of non-isomorphic graphs with p vertices and q edges is upper bounded
by p2q. For such a graph, the number of different colorings is at most 3p, and the number
of different drawings is at most (p− 1)!. Observe that every small sketch of p vertices has
2p+ k − 3 edges. This follows from the fact that we can obtain an outerplanar drawing by
removing at most k edges from an arbitrary small sketch. Since the color of the two vertices
in Ncycle(S)(v) for every white vertex v in an arbitrary sketch S is either black or gray, the
number of white vertices is at most 4k +O(

√
k). Therefore, each small sketch has at most

8k+O(
√
k) vertices and at most 17k+O(

√
k) edges, and hence the number of such drawings

is 2O(k log k). J

References
1 M. J. Bannister and D. Eppstein. Crossing minimization for 1-page and 2-page drawings

of graphs with bounded treewidth. In Proc. of GD 2014, pages 210–221. Springer, 2014.
2 M. Baur and U. Brandes. Crossing reduction in circular layouts. WG, 3353:332–343, 2004.

IPEC 2017

25:12 An Improved Fixed-Parameter Algorithm for One-Page Crossing Minimization

3 F. Bernhart and P. C. Kainen. The book thickness of a graph. Journal of Combinatorial
Theory, Series B, 27(3):320–331, 1979.

4 G. Blin, G. Fertin, D. Hermelin, and S. Vialette. Fixed-parameter algorithms for pro-
tein similarity search under mRNA structure constraints. Journal of Discrete Algorithms,
6(4):618–626, 2008.

5 H. L. Bodlaender, P. G. Drange, M. S. Dregi, F. V. Fomin, D. Lokshtanov, and M. Pilipczuk.
A ckn 5-Approximation Algorithm for Treewidth. SIAM Journal on Computing, 45(2):317–
378, 2016.

6 G. Chartrand and F. Harary. Planar Permutation Graphs. Annales de l’I.H.P. Probabilités
et statistiques, 3(4):433–438, 1967.

7 F. R. K. Chung, F. Thomson Leighton, and A. L. Rosenberg. Embedding graphs in books:
a layout problem with applications to VLSI design. SIAM Journal on Algebraic Discrete
Methods, 8(1):33–58, 1987.

8 B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Information and computation, 85(1):12–75, 1990.

9 B. Courcelle and M. Mosbah. Monadic second-order evaluations on tree-decomposable
graphs. Theoretical Computer Science, 109(1):49–82, 1993.

10 V. Dujmović, M. R. Fellows, M. Kitching, G. Liotta, C. McCartin, N. Nishimura, P. Ragde,
F. Rosamond, S. Whitesides, and D. R. Wood. On the parameterized complexity of layered
graph drawing. Algorithmica, 52(2):267–292, 2008.

11 M. Frick and M. Grohe. The complexity of first-order and monadic second-order logic
revisited. Annals of Pure and Applied Logic, 130(1):3–31, 2004.

12 R. Fulek, H. He, O. Sỳkora, and I. Vrt’o. Outerplanar crossing numbers of 3-row meshes,
Halin graphs and complete p-partite graphs. SOFSEM 2005: Theory and Practice of
Computer Science, pages 376–379, 2005.

13 H. He, A. Sălăgean, and E. Mäkinen. One-and two-page crossing numbers for some types
of graphs. International Journal of Computer Mathematics, 87(8):1667–1679, 2010.

14 J. Hopcroft and R. Tarjan. Algorithm 447: efficient algorithms for graph manipulation.
Communications of the ACM, 16(6):372–378, 1973.

15 P. C. Kainen. The book thickness of a graph II. Congressus Numerantium, 71:121–132,
1990.

16 T. Kloks. Treewidth: computations and approximations, volume 842. Springer Science &
Business Media, 1994.

17 E. Mäkinen. On circular layouts. International Journal of Computer Mathematics, 24(1):29–
37, 1988.

18 S. Masuda, T. Kashiwabara, K. Nakajima, and T. Fujisawa. On the NP-completeness of
a computer network layout problem. In Proceedings of the 1987 IEEE International Symp.
on Circuits and Systems, pages 292–295, 1987.

19 S. L. Mitchell. Linear algorithms to recognize outerplanar and maximal outerplanar graphs.
Information Processing Letters, 9(5):229–232, 1979.

20 F. Shahrokhi, O. Sỳkora, L. A. Székely, and I. Vrt’o. Book embeddings and crossing
numbers. In International Workshop on Graph-Theoretic Concepts in Computer Science,
pages 256–268. Springer, 1994.

21 J. M. Six and I. G. Tollis. Circular drawings of biconnected graphs. In ALENEX, volume 99,
pages 57–73. Springer, 1999.

22 M. M. Sysło. Characterizations of outerplanar graphs. Discrete Mathematics, 26(1):47–53,
1979.

23 M. Yannakakis. Embedding planar graphs in four pages. Journal of Computer and System
Sciences, 38(1):36–67, 1989.

Treewidth with a Quantifier Alternation Revisited
Michael Lampis1 and Valia Mitsou∗2

1 Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243,
LAMSADE, Paris, France
michail.lampis@dauphine.fr

2 Université de Lyon, LIRIS, CNRS, UMR 5205, Université Lyon 1,
Villeurbanne, Lyon, France
vmitsou@liris.cnrs.fr

Abstract
In this paper we take a closer look at the parameterized complexity of ∃∀SAT, the prototypical
complete problem of the class Σp2, the second level of the polynomial hierarchy. We provide a
number of tight fine-grained bounds on the complexity of this problem and its variants with
respect to the most important structural graph parameters. Specifically, we show the following
lower bounds (assuming the ETH):

It is impossible to decide ∃∀SAT in time less than double-exponential in the input formula’s
treewidth. More strongly, we establish the same bound with respect to the formula’s primal
vertex cover, a much more restrictive measure. This lower bound, which matches the perform-
ance of known algorithms, shows that the degeneration of the performance of treewidth-based
algorithms to a tower of exponentials already begins in problems with one quantifier alterna-
tion.
For the more general ∃∀CSP problem over a non-boolean domain of size B, there is no
algorithm running in time 2Bo(vc) , where vc is the input’s primal vertex cover.
∃∀SAT is already NP-hard even when the input formula has constant modular treewidth (or
clique-width), indicating that dense graph parameters are less useful for problems in Σp2.
For the two weighted versions of ∃∀SAT recently introduced by de Haan and Szeider, called
∃k∀SAT and ∃∀kSAT, we give tight upper and lower bounds parameterized by treewidth (or
primal vertex cover) and the weight k. Interestingly, the complexity of these two problems
turns out to be quite different: one is double-exponential in treewidth, while the other is
double-exponential in k.

We complement the above negative results by showing a double-exponential FPT algorithm
for QBF parameterized by vertex cover, showing that for this parameter the complexity never
goes beyond double-exponential, for any number of quantifier alternations.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.2.2 Nonnumerical
Algorithms and Problems, G.2.1 Combinatorics, G.2.2 Graph Theory

Keywords and phrases Treewidth, Exponential Time Hypothesis, Quantified SAT

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.26

1 Introduction

The main goal of this paper is to provide a fine-grained complexity analysis of ∃∀SAT, the
prototypical complete problem for the second level of the polynomial hierarchy, with respect
to the most important structural graph parameters, and especially treewidth.

∗ Valia Mitsou was supported by the ANR-14-CE25-0006 project of the French National Research Agency.

© Michael Lampis and Valia Mitsou;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 26; pp. 26:1–26:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 Treewidth with a Quantifier Alternation Revisited

Treewidth, a graph parameter that roughly measures how tree-like a graph is, is one
of the central notions of parameterized complexity theory. Its popularity and success
rest largely on the fact that when a graph’s treewidth is small a very large variety of
problems which are normally intractable can be solved efficiently (often in linear time [3]).
This success has strongly motivated research that seeks to apply the ideas of treewidth
to other domains, such as satisfiability problems. This can be done by defining a graph
that (partially) encodes the structure of the input instance, and then using this graph’s
structure to design efficient algorithms. Much work has been devoted in this direction, and
by now the complexity of satisfiability and related constraint satisfaction problems (counting,
maximization, etc.) is well-understood not only with respect to treewidth, but also other
related structural graph parameters such as clique-width, modular treewidth, vertex cover,
and others [8, 19, 21, 23, 25, 24].

Despite this success, one notable weakness of the treewidth approach is that its effectiveness
rapidly deteriorates once one starts considering problems outside NP. Indeed, it has long
been known that as one considers problems that need more and more quantifier alternations
to be expressed, the “hidden constants” in treewidth-based algorithms become towers of
exponentials [10, 16, 20] and for an unbounded number of alternations, even constant
treewidth does not help [1]. One response to this weakness has been the search for other
graph measures which are more robust in the face of alternating quantifiers [9, 11, 12, 15].
Our goal in this paper on the other hand is to more closely examine whether we can hope to
evade this deteriorating performance not necessarily by changing the graph parameter, but
by restricting ourselves to problems with only one quantifier alternation, that is, problems in
Σp2, the second level of the polynomial hierarchy.

Given the current state of the art, one would probably expect the typical Σp
2-complete

problem to have double-exponential complexity when parameterized by treewidth, as a result
of the extra quantifier alternation, and indeed the best currently known algorithms typically
do have this complexity. Nevertheless, almost no concrete lower bounds are known showing
that natural problems in this class need a double-exponential dependence on treewidth. The
lower bounds given in [10, 16, 20] are either asymptotic or only give concrete tight bounds
for the odd levels of the polynomial hierarchy. Perhaps the only tight double-exponential
lower bound for the complexity of a Σp

2-complete problem parameterized by treewidth is
given in [17], which proves such a result for Choosability. To the best of our knowledge no
such bounds are known for other concrete problems, and in particular, no such tight bounds
are known for perhaps the most basic problem in this class: ∃∀SAT.

Our contribution: Our main conceptual contribution is a simple direct reduction showing
that the complexity of ∃∀SAT when parameterized by the treewidth of the input formula has
to be double-exponential, unless the ETH is false (Theorem 1). This essentially matches the
running time of the best currently known algorithm [2]. Before this work similar bounds were
only known for satisfiability problems complete for odd levels of the polynomial hierarchy
[20], and thus this fills a natural hole in the literature. However, beyond advancing our
understanding of the complexity of quantified satisfiability, we believe the main value of this
result is in providing the first “textbook” example of a double-exponential lower bound for
treewidth. Unlike currently known lower bounds of somewhat similar flavor ([15, 17, 20]),
our result is a completely self-contained reduction that essentially does not need any gadgets.
Furthermore, because of the central role of ∃∀SAT in the class Σp2 we expect that our lower
bound may serve as a starting point to prove similar bounds for various other problems
in Σp2.

M. Lampis and V. Mitsou 26:3

Building and extending on the above result we give a number of tight upper and lower
bounds on ∃∀SAT and related problems. Specifically, we observe that we are able to give
a similar double-exponential lower bound on the treewidth dependence for ∃∀3-SAT, and
that our reduction shows that ∃∀SAT is NP-hard even for formulas of constant modular
treewidth or clique-width (meaning that dense graph parameters are likely to be much less
useful for ∃∀SAT than they are for SAT). We also observe that the main lower bound for
∃∀SAT applies not only when the problem is parameterized by treewidth, but much more
strongly, when it is parameterized by vertex cover.

Finding this latter fact surprising, since most problems are significantly easier when
parameterized by vertex cover than by treewidth, we investigate vertex cover as a parameter
more closely. We show that, despite matching closely the complexity of treewidth for
∃∀SAT, this parameter is indeed much more algorithmically amenable in other ways: first, it
allows a double-exponential algorithm for QBF with any number of quantifier alternations (a
problem PSPACE-complete for constant treewidth); and second, it allows a single-exponential
algorithm for ∃∀3-SAT. We note that QBF was already known to be FPT parameterized
by vertex cover [9] as a corollary of an algorithm for a much more general parameter (prefix
pathwidth), but since we concentrate on vertex cover we are able to give an algorithm that
is both faster and significantly simpler.

Having analyzed the complexity of ∃∀SAT with respect to some of the most important
graph parameters, we move towards two more recently introduced variations with special
interest for parameterized complexity: ∃k∀SAT and ∃∀kSAT. In these problems, introduced
in the works of de Haan and Szeider [6, 5, 7], one of the two quantifiers is weighted, that is,
we only consider assignments that set k out of its variables to true. Though both problems
are FPT parameterized by treewidth we show that their complexity is quite different: one
is double-exponential with respect to treewidth, while the other is double-exponential with
respect to k (and single-exponential in the treewidth). Both lower bounds match algorithms
that follow from simple adaptations of [2].

Finally, we consider a more general version of our problem: ∃∀CSP where variables are no
longer necessarily boolean. The question here is how the complexity of the problem changes
not only with respect to treewidth, but also with the size of the domain of a non-boolean CSP.
Once again we show a double-exponential bound that essentially matches the performance of
the best known algorithm.

2 Definitions and Preliminaries

2.1 Problem Definitions
We recall some standard definitions related to satisfiability problems: a literal is a boolean
variable, or its negation; a clause is a disjunction of literals; a term is a conjunction of
literals; a formula is in conjunctive normal form (CNF) if it is a conjunction of clauses; it is
in disjunctive normal form (DNF) if it is a disjunction of terms. We will sometimes overload
notation and view clauses and terms as sets of literals.

The main problem we study in this paper is ∃∀SAT, the prototypical complete problem
for the second level of the polynomial hierarchy [26]. In this problem we are given a quantified
formula of the form ∃x∀yφ(x,y), where x,y are disjoint tuples of boolean variables and φ is
a DNF formula. The question is to decide whether there exists an assignment to the variables
of x so that for all assignments to y, φ evaluates to True. We refer to x as the existential
variables and y as the universal variables. When all terms of φ have size at most d we refer to
this problem as ∃∀d-SAT. We also consider two weighted versions: in ∃k∀SAT we are asked

IPEC 2017

26:4 Treewidth with a Quantifier Alternation Revisited

if there exists an assignment that sets exactly k existential variables to True, such that for all
assignments to y, φ evaluates to True; in ∃∀kSAT we are asked if there exists any assignment
to x such that for all assignments that set exactly k of the variables of y to True, φ evaluates
to True. A more general version of ∃∀SAT allows the input formula to have any number of
quantifiers, that is, we are given a formula of the form ∃x1∀x2∃x3 . . . Qxnφ(x1, x2, . . . , xn),
where φ is in CNF, and are asked if it evaluates to True. We call this problem QBF.

We will also consider the more general ∃∀CSP problem. Here we are given a CSP instance
again involving two tuples of variables x,y, which can now take values from some finite
domain Σ. Furthermore, we are given a set of constraints: a constraint of arity r involves
r variables from x ∪ y, and we are given a list of assignments that satisfy the constraint,
that is, a subset of Σr which determines which combinations of assignments to the involved
variable satisfy the constraint. We say that an ∃∀CSP instance is a Yes instance if there
exists an assignment to x such that for all assignments to the variables of y at least one
constraint is satisfied.

2.2 Graph Parameters

Given a propositional formula φ we consider two types of graphs associated with it. The
primal graph, denoted Gp(φ) contains a vertex for each variable of φ; two vertices of Gp(φ) are
connected if and only if the corresponding variables of φ appear in a constraint together. The
incidence graph, denoted Gi(φ) contains a vertex for each variable and for each constraint of φ;
two vertices of Gi(φ) are connected if the corresponding variable appears in the corresponding
constraint.

In this paper we study various structural restrictions on formulas by considering graph
parameters restricting the structure of Gi(φ) or Gp(φ). The parameters we consider are
the treewidth of Gi(φ) and Gp(φ) denoted twi(φ) and twp(φ) respectively; the vertex cover
of Gp(φ), denoted vc(φ); and the modular treewidth and clique-width of Gi(φ), denoted
mtw(φ) and cw(φ) respectively. We refer the reader to standard textbooks for the definitions
of treewidth, clique-width and vertex cover [4]. Modular treewidth is the treewidth of a
graph after contracting all vertices that share the same neighborhood into single vertices
[22]. We recall the following well-known relationships between these parameters. For all
formulas φ we have vc(φ) ≥ twp(φ) ≥ twi(φ) ≥ mtw(φ). Because of this inequality, hardness
results which apply for vertex cover automatically carry over to the other (more general)
parameters, while algorithmic results which apply to modular treewidth also apply to the
other (less general) parameters. We recall that it is also known that cw(φ) is bounded by
some function of mtw(φ).

2.3 Binary Representations

Let x be a tuple of variables, and i be an integer such that i < 2|x|. We define the function
B(i,x) which produces a set of literals, that is, a set which contains for each variable
of x either the variable itself or its negation. Negations will be added according to the
binary representation of i. More formally, if x = (x1, x2, . . . , xn) we define inductively
B(i, x) = B(bi/2c,x \ {xn}) ∪ ln, where ln = xn if i is even, and ln = ¬xn otherwise. For
the base case (n = 0) we set B(0, ∅) = ∅.

M. Lampis and V. Mitsou 26:5

3 Tight Bounds for ∃∀SAT

In this section we consider the complexity of the prototypical Σp2-complete problem ∃∀SAT.
Our first result is a fine-grained lower bound which states that any algorithm for ∃∀SAT
must either use time exponential in the number of variables of the formula, or run in time
double-exponential in the input formula’s primal vertex cover (assuming the ETH). This
result is obtained through a direct reduction from an n-variable instance of 3-SAT that
produces an instance of ∃∀SAT with roughly the same number of variables, but vertex cover
O(logn). In other words, our reduction trades the additional complexity of the problem
(caused by the extra level of quantification), to encode the formula in such a way that its
structure is significantly simplified. We note that this lower bound is tight, not only for
vertex cover, but even for much more general parameters, such as treewidth, for which
double-exponential algorithms for ∃∀SAT are known [2].

We then go on to give a second version of the same reduction that gives a similar running-
time bound for ∃∀3-SAT parameterized by the input formula’s primal treewidth. Here we
use a standard trick to reduce the size of all terms to 3; the non-trivial part is to prove that
this does not significantly increase the primal treewidth of the instance. Interestingly, the
lower bound for ∃∀3-SAT does not apply for primal vertex cover. As we show in Section 4
there is a good reason for this, as ∃∀3-SAT is solvable in single-exponential time for this
parameter.

We also observe that our main reduction produces instances with constant modular
treewidth (and hence clique-width), indicating that these two dense parameters (for which
SAT is in XP) are unlikely to be of help with satisfiability problems in Σp2.

I Theorem 1. There is no algorithm which, given an ∃∀SAT instance φ with n variables,
can decide if φ is True in time 22o(vc(φ))2o(n), unless the ETH is false.

Proof. We consider an instance of 3-SAT ψ with n variables and m clauses. Recall that the
ETH states that there is no 2o(n+m) algorithm that decides 3-SAT[13, 14]. We will construct
a quantified DNF formula ∃x∀yφ(x,y), whose primal vertex cover will be O(logn).

Let x = {x1, . . . , xn} be the set of variables of ψ. We retain the same variables as
the existential variables of φ, and we introduce logm universally quantified variables y =
(y1, . . . , ylogm). We assume here without loss of generality that m is a power of 2, otherwise
some clauses of ψ can be repeated.

Suppose that the clauses of ψ are numbered C0, C1, . . . , Cm−1. Let Ci be a clause of ψ of
length l ≤ 3. We construct l terms in φ as follows: each term contains one distinct literal of
Ci, and all the literals of B(i,y) (the binary encoding defined in Section 2.3). This completes
the construction.

To see the correctness of the reduction, suppose that ψ is satisfiable. We take a satisfying
assignment and use the same values for the x variables in φ. Now, for any assignment of the
y variables there will be an i such that all the literals in B(i,y) are true. Consider the terms
we added representing the clause Ci. One of them contains a true literal from the original
clause, so it is a satisfied term. For the other direction, if ∃x∀yφ(x,y) is true, we use the
same assignment for x in ψ. If some clause Ci of ψ is not satisfied, this would imply that
setting y to the assignment that agrees with B(i,y) would also make φ false, a contradiction.

Observe that the primal graph of the formula φ becomes an independent set if we remove
the logm vertices corresponding to the variables of y. Thus, vc(φ) = O(logm) = O(logn).
Furthermore, the size of φ is linear in the size of ψ. Thus, if there exists an algorithm which
can solve ∃∀SAT in time 22o(vc(φ))2o(|φ|) then, with the above reduction, this implies a 2o(n)

algorithm for 3-SAT. J

IPEC 2017

26:6 Treewidth with a Quantifier Alternation Revisited

I Corollary 2. ∃∀SAT is NP-hard when restricted to instances with incidence graphs of
constant modular treewidth or clique-width.

Proof. We observe that in the incidence graph of the instances of Theorem 1 the universal
variables form a class of false twins. Contracting them to a single vertex results in a graph
with constant treewidth. J

I Theorem 3. There is no algorithm which, given an ∃∀3-SAT instance φ with n variables
can decide if φ is True in time 22o(twp(φ))2o(n), unless the ETH is false.

Proof. We build on the proof of Theorem 1. Recall that in that reduction we started from a
3-SAT instance ψ with n variables and m clauses and constructed an ∃∀SAT instance φ
with n existential variables, logm universal variables, such that all terms contain all universal
variables and exactly one existential variable. We will edit this instance to make the size
of each term at most 3, without affecting the value of φ and without increasing its primal
treewidth.

We perform the following modification: as long as there exists a term t of φ with size
greater than 3, we introduce to φ a new universally quantified variable z, remove t from φ

and replace it with two new terms. The first contains z and two of the literals of t, while
the second contains ¬z and the remaining literals of t. We repeat this until all terms have
size at most 3. It is not hard to see that this transformation does not affect the answer
(we performed the standard reduction from SAT to 3-SAT). Furthermore, it is not hard to
perform this transformation in such a way that every term of the resulting instance contains
at most 2 of the new z variables, or at most one existential variable and one z variable.

Let us now examine the primal treewidth of the modified instance. As previously, we
remove all the logm universal variables of φ. What remains is made up of the existential
variables and the universal z variables added while breaking up large terms. We observe
however, that all vertices corresponding to z variables have degree at most 2, because each
appears in only two terms, and each term may only contain either at most one other z
variable or one existential variable. Furthermore, among the z variables introduced while
breaking up a term t, there must now exist one with degree one, since one of them appears
in the same term as an existential variable. We now use the fact that deleting a leaf does not
change the value of a graph’s treewidth, and applying this rule repeatedly we can eventually
delete all the z variables. This only leaves the existential variables in the primal graph, and
these form an independent set. J

4 Algorithms

One surprising aspect of the lower bound given in Theorem 1 is that, if one takes into
account known double-exponential algorithms for ∃∀SAT parameterized by treewidth [2],
it indicates that ∃∀SAT has the same complexity parameterized by incidence treewidth,
primal treewidth, or primal vertex cover. This is unexpected, because primal vertex cover is
a significantly more restrictive measure than treewidth, and hence we would expect things to
be significantly easier for this parameter. One indication in this direction is given by the fact
that the lower bound for ∃∀3-SAT given in Theorem 3 does not apply to vertex cover.

In this section we give two algorithmic results that confirm that vertex cover is indeed
a much more algorithmically amenable parameter. We first show in Theorem 4 that the
complexity of QBF is double-exponential in the formula’s vertex cover for any number of
quantifier alternations. This is in sharp contrast with the case of treewidth, where it is known
that (under the ETH) the complexity of solving QBF rapidly degenerates into a tower of

M. Lampis and V. Mitsou 26:7

exponentials as the number of quantifier alternations increases [20]. Second, we show that
there is a good reason why Theorem 3 cannot be extended to vertex cover, as the complexity
of ∃∀d-SAT for any fixed d is “only” single-exponential in the input formula’s vertex cover
raised to the d-th power.

Both of the algorithms we give are quite simple, and rely on the standard branching
procedure which can decide QBF in exponential time (hence both algorithms only need
polynomial space), together with the elementary observation that when working with a
CNF formula we can always discard a clause that is a proper superset of another clause
(or a term that is a superset of another term for DNFs). The key idea in both cases is to
measure progress as a function of the number of clauses the formula contains that use only
variables from the vertex cover. Let us also recall that the fixed-parameter tractability of
QBF parameterized by vertex cover was already shown in [9] as a corollary of a more general
algorithm using the notion of prefix pathwidth. However, the algorithm following from these
results is triple-exponential in the input formula’s vertex cover [18], while here we give an
algorithm which is much simpler and whose running time is optimal (under Theorem 1).

I Theorem 4. There is an algorithm that, given a QBF instance φ, decides φ in time
O∗(22O(vc(φ))).

Proof. We run the standard branching algorithm for quantified boolean formulas, where we
branch on the variables of φ in the order that they appear quantified. We prove that the
branching depth can be bounded by 3k + k, where k is the size of the primal vertex cover.
We assume that we are given an optimal vertex cover of the primal graph (otherwise, we can
find one in time 2k).

Let V be the set of variables and S ⊆ V be the variables corresponding to a vertex cover
of the primal graph (|S| = k). Let further C ′ be a set containing all possible clauses that
can be constructed using only variables from S. We observe that |C ′| ≤ 3k, as each variable
might appear positive, negative, or not appear in such a clause.

The essential reason that the standard branching algorithm works is that branching on
a variable x either decreases the size of the vertex cover (if x ∈ S) or adds to the formula
clauses of C ′ which are not already there. Indeed, since each clause of φ is represented by a
clique in the primal graph, for every clause c of φ there can be at most one variable that
doesn’t belong in S, so branching on a variable that doesn’t belong in S creates clauses in
C ′. The key observation now is that we should only branch on a variable x 6∈ S if it is going
to create clauses of C ′ that do not already belong in φ:

I Observation 5. If c, c′ are clauses that both belong in φ and c ⊇ c′, then the formula φ′
created by deleting c from φ is equivalent to φ.

Let us now describe the algorithm more formally. Let our quantified formula be φ =
Q1x1Q2x2 . . . Qnxnψ, where Qi is the ith quantifier. We define φT = φ[x1 = T] and
φF = φ[x1 = F]. In order to evaluate φ we shall first evaluate at least one of φT , φF
(recursively) and take their disjunction if Q1 = ∃ or conjunction if Q1 = ∀. We consider the
following cases.

If x1 appears only positive (resp. negative) in ψ then there is no need to branch on x1
as setting it to the suitable truth value depending on whether Q1 is existential or universal
simplifies the formula: if Q1 = ∃ then φ ≡ φT (resp. φ ≡ φF), whereas if Q1 = ∀ then
φ ≡ φF (resp. φ ≡ φT).

On the other hand, if x1 appears both positive and negative, we argue that we only
branch if x1 ∈ S or if doing so creates at least one clause c′ of C ′ that doesn’t already belong
in ψ. It is clear that the branching depth should be bounded by 3k + k.

IPEC 2017

26:8 Treewidth with a Quantifier Alternation Revisited

Let us describe the branching for Q1 = ∃ (the case Q1 = ∀ is similar). Step 1 is to remove
all the clauses c ∈ ψ which are supersets of some other clause c′ ∈ ψ (we can do this because
of Observation 5). Now, if x1 appears positive (resp. negative) in some clause c of ψ, setting
x1 = T (resp. x1 = F) makes c true. In this case c doesn’t appear in φT (resp. φF) at all.
If x1 appears negative (resp. positive) in c and we set x1 = T (resp. x1 = F), then c is
replaced in φT (resp. φF) by an equivalent clause c′, where c = c′ ∨ (¬)x.

Observe that none of φT , φF contains x1, so if x1 ∈ S then the primal vertex cover of ψ
is decreased by one. If x1 6∈ S, both branches φT , φF contain at least one positive and one
negative appearance of x1, thus they should each contain at least one clause c′ ∈ C ′ \ ψ (if
c = (¬)x1 ∨ c′ for some c′ ∈ C ′ ∩ ψ then Step 1 removes c from ψ).

Since the branching depth is 3k + k, the algorithm will run in time O∗(23k+k). J

I Theorem 6. For all fixed d ≥ 3 there exists an algorithm that decides an input ∃∀d-SAT
formula φ in time O∗(2O(vc(φ)d)).

Proof. The proof uses similar arguments as the proof of Theorem 4. There are two important
observations that need to be added: first, during the course of the execution of the standard
branching algorithm we never increase the size of any clause. Hence, if we started with an
instance of ∃∀d-SAT, we always maintain an instance of ∃∀d-SAT. Second, the set C ′ that
contains all terms that only use variables from the vertex cover now has size at most O(kd),
where k = vc(φ). To see this, observe that there are at most 2d

(
k
d

)
clauses of size exactly d

that use only variables from the vertex cover. Hence, whenever the algorithm is forced to
branch, it either decreases the vertex cover or increases the number of terms from C ′ in the
formula, giving the promised running time. J

5 Tight Bounds for Weighted Problems

In this section we consider two variations of ∃∀SAT that have recently attracted attention
in the parameterized complexity community: ∃k∀SAT and ∃∀kSAT. Our main results are
ETH-based lower bounds which provide evidence that the complexity of these two problems
is quite different.

We first consider ∃k∀SAT. This is a problem that easily admits an algorithm running in
time nk2O(twi(φ)): one could simply guess a weight k assignment for the existential variables
and then solve the remaining (single-quantifier) instance with standard algorithms. The
problem also admits an algorithm running in time (roughly) 22twi(φ) , simply by adapting the
algorithms given in [2] to only consider existential assignments of weight k. Our first result
is that neither of these algorithms can be significantly improved: any algorithm that runs
in time no(k) must have complexity double-exponential in treewidth (in fact, more strongly,
double-exponential in primal vertex cover). We also extend this result to ∃k∀3-SAT, as in
Section 3.

We then move on to ∃∀kSAT. For this problem it is possible to adapt the algorithm of [2]
to run in time (roughly) 2twi(φ)k . Informally, the reason for this is that the double-exponential
running time in the algorithm of [2] comes from the need to consider all subsets of all possible
assignments to universal variables in a bag. Here we only need to worry about assignments
of weight (at most) k, hence there are at most

(
twi(φ)
k

)
of them to consider. We prove that

obtaining a running time better than this would contradict the ETH, again even in the case
of vertex cover. Interestingly, we note that it is not immediate here to obtain similar bounds
for ∃∀k3-SAT, because the standard method to break down terms by introducing universal
variables does notnecessarily preserve the weight of universal assignments.

M. Lampis and V. Mitsou 26:9

I Theorem 7. There is no algorithm which, given an ∃k∀SAT instance φ, can decide if φ
is True in time 22o(vc(φ)) |φ|o(k), unless the ETH is false.

Proof. We begin with a 3-SAT instance ψ with n variables and m clauses, and we first
explain how to produce from this an equivalent ∃kSAT instance ψ′ with k2n/k variables
and m + k clauses, for any k. We partition the variables x into k sets x1,x2, . . . ,xk of
n/k variables each (suppose without loss of generality that k divides n). Now, for each
i ∈ {1, . . . , k}, for each assignment of truth values to the variables of xi we construct a
variable that will appear in ψ′. Call the set of such variables x′, and we have |x′| = k2n/k.
For every clause Ci of ψ we construct a clause C ′i of ψ′ which contains all the variables of
x′ that agree with at least one of the literals of Ci. Finally, for each i ∈ {1, . . . , k} we add
a clause that contains all the variables that represent an assignment of xi. This completes
the construction, and we observe that ψ′ has m+ k clauses in total. It is not hard to see
how a satisfying assignment of ψ can be transformed into a satisfying assignment of ψ′ that
sets exactly k variables to true: for each xi we set to true the unique variable of x′ that
represents its partial assignment, and set all other variables of x′ to false. The m clauses
that were constructed from clauses of ψ are satisfied, because we started with a satisfying
assignment of ψ, while the k remaining clauses are satisfied by definition. For the other
direction, suppose that we have a satisfying assignment to ψ′ which sets exactly k of the
x′ variables to True. The k additional clauses ensure that any satisfying assignment to ψ′
that sets at most k variables to true must select exactly one partial assignment for each
xi. We can therefore obtain an assignment to the variables of ψ from a weight-k satisfying
assignment to ψ′, and it is not hard to see that this assignment will satisfy ψ.

We now apply the construction of Theorem 1 to the weighted formula ψ′. Namely, we
introduce a set y of log(m+ k) universal variables (assume without loss of generality that
m+ k is a power of two), and construct for each clause C ′i of ψ′, for each of its literals lj
a term that contains lj and the literals of B(i,y). This completes the construction of the
∃k∀SAT instance φ. As in Theorem 1, there exists a satisfying assignment of weight k for ψ′
if and only if the same assignment to the existential variables of φ makes the formular true
for all assignments to the universal variables.

We observe that, if the original 3-SAT formula had n variables, then |φ| = 2O(n/k) and
vc(φ) = O(logn). Thus, if there was an algorithm running in 22o(vc(|φ|) |φ|o(k) for ∃k∀SAT,
then this would give a 2o(n) algorithm for 3-SAT. J

I Corollary 8. There is no algorithm which, given an ∃k∀3-SAT instance φ, can decide if φ
is True in time 22o(twp(φ)) |φ|o(k), unless the ETH is false.

Proof. The proof is identical to that of Theorem 3, except we start with an instance produced
by the reduction of Theorem 7. In particular, we again introduce a new universal variable for
each term of size larger than 3 and use it to break it down into two terms. The arguments
that we used to bound the primal treewidth in Theorem 3 also apply here. J

I Theorem 9. There is no algorithm which, given an ∃∀kSAT instance φ with n variables,
can decide if φ is True in time 2vc(φ)o(k)2o(n), unless the ETH is false.

Proof. We begin with a 3-SAT formula ψ with n variables and m clauses. Our aim is to
construct an ∃∀kSAT formula φ with vc(φ) = mO(1/k) and |φ| = O(n+m). Let M = m1/k,
and we assume without loss of generality that M is an integer.

We construct φ as follows: let x be the set of variables of ψ; we retain these as the
existential variables of φ. We also introduce k disjoint sets of universal variables, each of which

IPEC 2017

26:10 Treewidth with a Quantifier Alternation Revisited

contains exactly M distinct variables. We label these variables yj1,j2 , with j1 ∈ {0, . . . , k−1}
and j2 ∈ {0, . . . ,M − 1}.

Suppose that the clauses of ψ are numbered C0, . . . , Cm−1. For each clause Ci we do the
following: for each of its literals l we construct a term in φ that contains l. Consider now
the integer i written in base M ; this representation of i contains k digits, each between 0
and M − 1. We add to the term that contains l all variables yj1,j2 such that the j1-th digit
of i written in base M is j2. We repeat this process for all literals of Ci, and clauses of ψ.

To complete the construction, we add to ψ k additional terms: for each j1 ∈ {0, . . . , k−1}
we add the term (∧M−1

j2=0¬yj1,j2).
Let us now argue for the correctness of the reduction. If ψ has a satisfying assignment, we

use the same assignment to the existential variables of φ. We claim that any assignment of
weight k to the universal variables must make a term true. To see this, observe that because
of the k additional terms, we can assume that the assignment to the universal variables sets
for each j1 ∈ {0, . . . , k − 1} exactly one j2 ∈ {0, . . . ,M − 1} with yj1,j2 = 1. Consider now
any assignment to the universal variables with this property. We can now find an integer i
with the following property: when i is written in base M , for all j1 ∈ {0, . . . , k − 1}, if the
j1-th digit of i has value j2, then the assignment has set yj1,j2 = 1. The terms we constructed
for clause Ci have all their universal variables set to true, and each contains one literal from
Ci, hence at least one of these terms is true. It is not hard to see that the converse direction
follows with a similar reasoning.

For the running time bound, we note that the primal graph of φ becomes an independent
set if we remove the km1/k universal variables, hence vc(φ) = O(m1/k) and the lower bound
follows. J

6 Non-binary ∃∀CSP

In this section we consider the more general ∃∀CSP problem. The difference between this
problem and ∃∀SAT is that in ∃∀CSP the variables don’t necessarily have a boolean domain,
but may take values from some finite set Σ. As a result, that size of Σ must be factored
into the complexity. The algorithm of [2] runs in time (roughly) 2|Σ|twi(I) , for an ∃∀CSP
instance I, because it considers all possible subsets of all possible |Σ|twi(I) assignments to
the variables of a bag. In other words, the second exponent is linear in tw(I) log |Σ|. Our
main result is that this dependence is optimal, even for the more restricted case of vertex
cover, unless the ETH is false.

I Theorem 10. There is no algorithm which, given an ∃∀CSP instance I with n variables
and domain Σ, can decide if I is a Yes instance in time 2|Σ|o(vc(I)) |Σ|o(n), unless the ETH is
false.

Proof. We give a reduction in two steps, beginning from a 3-SAT formula ψ. First, we
construct from ψ a CSP instance I1 with alphabet Σ, and show that this instance cannot be
solved in time |Σ|o(n), where n is the number of variables of I1. We then construct from I1
an instance I2 of ∃∀CSP for which we obtain the promised lower bound.

Suppose that ψ has n1 variables and m1 clauses. We partition its clauses into n =
dm1/ log7 |Σ|e groups, each containing at most log7 |Σ| clauses. For each one of these groups
we construct a variable in I1. Consider now a group of clauses and list all assignments of
the variables that appear in this group and satisfy all clauses of the group. There are at
most 7log7 |Σ| such assignments, since each clause has size at most three, and therefore at
most 7 satisfying assignments. As a result, we can make an injective mapping to values in

M. Lampis and V. Mitsou 26:11

the domain Σ for the variable that represents this group of clauses in I1, from the set of
partial assignments that satisfy all the clauses. We now add some constraints to our CSP
instance to ensure that the assignment to ψ must be consistent. In particular, let x1, x2 be
two variables of I that represents groups of clauses of ψ that share some variables. We add a
constraint to I which only allows the variables x1, x2 to receive a pair of values from Σ such
that the corresponding partial assignments to the variables of ψ is consistent and satisfies
all the clauses of the two groups. This completes the construction. Since the new instance
has n = O(m1/ log |Σ|) variables, if there was an algorithm solving CSP in time |Σ|o(n) the
ETH would be false.

Let us now use I1 to produce an instance I2 of ∃∀CSP. We note that I1 has n variables
and therefore, since all constraints have arity two, at most m = O(n2) constraints. We retain
all variables of I1 as existential variables, and introduce a set of dlog(m|Σ|2)/ log |Σ|e universal
variables y. The main observation now is that the total number of distinct assignments to y
is at least m|Σ|2. We can therefore define an injective mapping which, given a constraint of I1
and an assignment to the variables of this constraint that falsifies the constraint, produces an
assignment to the variables of y. We now define the constraints of I2 as follows: let x1, x2 be
two variables involved in a constraint C of I1 and let (v1, v2) be an assignment to x1, x2 that
is not allowed by the constraint. Let v be the assignment to v to which we have mapped the
constraint C and its falsifying assignment (v1, v2). We add to I2 the two following constraints:
(x1 6= v1∧y = v) and (x2 6= v2∧y = v). We perform this step for every falsifying assignment
of every constraint. To complete the construction, for every assignment v to y that is not
mapped to, we add the constraint (y = v). We finally note that, because every constraint
involves at most dlog(m|Σ|2)/ log |Σ|e+ 1 variables, all constraints can be explicitly described
in polynomial time by listing all of their at most O(m|Σ|2) satisfying assignments.

Let us now argue for correctness. If there is a satisfying assignment to I1, we select the
same assignment for the existential variables of I2. If the universal variables receive some
assignment that is not mapped to by a constraint of I1, then the new instance has a satisfied
constraint, because of the constraints of the form (y = v). Otherwise, the assignment to y
corresponds to a falsifying assignment (v1, v2) to a constraint C of I1. However, since we
started with a satisfying assignment to I1, either x1 6= v1 or x2 6= v2, so again at least one
constraint is satisfied. It is not hard to see that the converse direction follows with similar
arguments.

For the running time lower bound, we note that the primal graph of I2 has vertex cover
at most |y| = O(logm/ log |Σ|), from which the bound follows. J

References

1 Albert Atserias and Sergi Oliva. Bounded-width QBF is pspace-complete. J. Comput. Syst.
Sci., 80(7):1415–1429, 2014.

2 Hubie Chen. Quantified constraint satisfaction and bounded treewidth. In ECAI, pages
161–165. IOS Press, 2004.

3 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990.

4 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

5 Ronald de Haan and Stefan Szeider. Compendium of parameterized problems at higher
levels of the polynomial hierarchy. Electronic Colloquium on Computational Complexity
(ECCC), 21:143, 2014.

IPEC 2017

26:12 Treewidth with a Quantifier Alternation Revisited

6 Ronald de Haan and Stefan Szeider. Fixed-parameter tractable reductions to SAT. In SAT,
volume 8561 of Lecture Notes in Computer Science, pages 85–102. Springer, 2014.

7 Ronald de Haan and Stefan Szeider. Parameterized complexity classes beyond para-np. J.
Comput. Syst. Sci., 87:16–57, 2017.

8 Holger Dell, Eun Jung Kim, Michael Lampis, Valia Mitsou, and Tobias Mömke. Complexity
and approximability of parameterized max-csps. In IPEC, volume 43 of LIPIcs, pages 294–
306. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

9 Eduard Eiben, Robert Ganian, and Sebastian Ordyniak. Using decomposition-parameters
for QBF: mind the prefix! In AAAI, pages 964–970. AAAI Press, 2016.

10 Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order
logic revisited. Ann. Pure Appl. Logic, 130(1-3):3–31, 2004.

11 Robert Ganian. Twin-cover: Beyond vertex cover in parameterized algorithmics. In IPEC,
volume 7112 of Lecture Notes in Computer Science, pages 259–271. Springer, 2011.

12 Robert Ganian, Petr Hlinený, Jaroslav Nesetril, Jan Obdrzálek, Patrice Ossona de Mendez,
and Reshma Ramadurai. When trees grow low: Shrubs and fast MSO1. In MFCS, volume
7464 of Lecture Notes in Computer Science, pages 419–430. Springer, 2012.

13 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 62(2):367–375, 2001.

14 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

15 Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica,
64(1):19–37, 2012.

16 Michael Lampis. Model checking lower bounds for simple graphs. Logical Methods in
Computer Science, 10(1), 2014.

17 Dániel Marx and Valia Mitsou. Double-exponential and triple-exponential bounds for choos-
ability problems parameterized by treewidth. In ICALP, volume 55 of LIPIcs, pages 28:1–
28:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

18 Sebastian Ordyniak. Private communication, 2017.
19 Sebastian Ordyniak, Daniël Paulusma, and Stefan Szeider. Satisfiability of acyclic and

almost acyclic CNF formulas. Theor. Comput. Sci., 481:85–99, 2013.
20 Guoqiang Pan and Moshe Y. Vardi. Fixed-parameter hierarchies inside PSPACE. In LICS,

pages 27–36. IEEE Computer Society, 2006.
21 Daniël Paulusma, Friedrich Slivovsky, and Stefan Szeider. Model counting for CNF formulas

of bounded modular treewidth. Algorithmica, 76(1):168–194, 2016.
22 Daniël Paulusma, Friedrich Slivovsky, and Stefan Szeider. Model counting for CNF formulas

of bounded modular treewidth. Algorithmica, 76(1):168–194, 2016.
23 Sigve Hortemo Sæther, Jan Arne Telle, and Martin Vatshelle. Solving #sat and MAXSAT

by dynamic programming. J. Artif. Intell. Res., 54:59–82, 2015.
24 Marko Samer and Stefan Szeider. Algorithms for propositional model counting. J. Discrete

Algorithms, 8(1):50–64, 2010.
25 Marko Samer and Stefan Szeider. Constraint satisfaction with bounded treewidth revisited.

J. Comput. Syst. Sci., 76(2):103–114, 2010.
26 Larry J. Stockmeyer. The polynomial-time hierarchy. Theor. Comput. Sci., 3(1):1–22, 1976.

An Output Sensitive Algorithm for Maximal
Clique Enumeration in Sparse Graphs
George Manoussakis

LRI-CNRS, Université Paris Sud, Université Paris Saclay, France
george@lri.fr

Abstract
The degeneracy of a graph G is the smallest integer k such that every subgraph of G contains
a vertex of degree at most k. Given an n-order k-degenerate graph G, we present an algorithm
for enumerating all its maximal cliques. Assuming that α is the number of maximal cliques of
G, our algorithm has setup time O(n(k2 + s(k+ 1))) and enumeration time αO((k+ 1)f(k+ 1))
where s(k + 1) (resp. f(k + 1)) is the preprocessing time (resp. enumeration time) for maximal
clique enumeration in a general (k + 1)-order graph. This is the first output sensitive algorithm
whose enumeration time depends only on the degeneracy of the graph.

1998 ACM Subject Classification G.2.2 Graph Theory, Graph Algorithms

Keywords and phrases Enumeration algorithms, maximal cliques, k-degenerate graphs

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.27

1 Introduction

Degeneracy, introduced by Lick et al. [12], is a common measure of the sparseness of a
graph and is closely related to other sparsity measures such as arboricity and thickness.
Degenerate graphs often appear in practice. For instance, the World Wide Web graph,
citation networks, and collaboration graphs have low arboricity, and therefore have low
degeneracy [18]. Furthermore, planar graphs have degeneracy at most five [12] and the
Barabàsi-Albert model of preferential attachment [9], frequently used as a model for social
networks, produces graphs with bounded degeneracy.

Cliques are complete subgraphs of a graph. The problem of listing all maximal cliques in
general and k-degenerate graphs has been extensively studied. We can essentially distinguish
between two families of algorithms. On one side, worst-case output size algorithms have been
proposed. Their complexities match the maximal number of maximal cliques one can find
in the considered graphs. For instance, Tomita et al. [16] propose an algorithm enumerating
all maximal cliques of a general n-order graph in time O(3n/3). This is worst-case output
size optimal in general graphs as for instance the Moon-Moser graphs have Θ(3n/3) cliques
[3, 15]. Thus, even printing the cliques of these graphs would require at least Ω(3n/3)
time. Similarly, for k-degenerate graphs, Eppstein et al. [8] prove a O((n − k)3k/3) bound
on the maximal number of maximal cliques and then show an algorithm running in time
O(k(n − k)3k/3). The two algorithms described above rely on ideas of the Bron-Kerbosch
algorithm [2]. These results are summarized in the first three rows of Table 1. This table is
largely inspired by the one provided by Conte et al. [7].

Another family is the one of polynomial delay output sensitive algorithms. Their time
complexities can be divided into a preprocessing phase followed by an enumeration phase.
During the enumeration phase, maximal cliques of the graph are outputted with polynomial
delay: the wait between the output of two maximal cliques is bounded by some polynomial

© George Manoussakis;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 27; pp. 27:1–27:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 An Output Sensitive Algorithm for Maximal Clique Enumeration in Sparse Graphs

Table 1 Bounds for maximal clique enumeration where q − 1 ≤ k ≤ ∆ ≤ n − 1. + : these
are polynomial time delay algorithms. Their delay is equal to their enumeration time divided by
the number of maximal cliques α. The space bounds do not include the space needed to store the
graph.

Algorithm Setup Enumeration Space

Bron-Kerbosch [2] O(m) unbounded O(n+ q∆)
Tomita et al. [16] O(m) O(3n/3) O(n+ q∆)
Eppstein et al. [8] O(m) O(k(n− k)3k/3) O(n+ k∆)

Johnson et al. [11]+ O(mn) αO(mn) O(αn)
Tsukiyama et al. [17]+ O(n2) αO((n2 −m)n) O(n2)

Chiba et al. [5]+ O(m) αO(mk) O(m)
Makino et al. [13]+ O(mn) αO(∆4) O(m)
Chang et al. [4]+ O(m) αO(∆h3) O(m)

Makino et al. [13]+ O(n2) αO(n2.37) O(n2)
Comin et al. [6]+ O(n5.37) αO(n2.09) O(n4.27)
Conte et al. [7]+ O(m logO(1) (m+ n)) αO(qd(∆ + qd) logO(1)(m+ n)) O(q)
Conte et al. [7]+ O(m logO(1) (m+ n)) αO(min{mk, qk∆} logO(1) (m+ n)) O(k)

∆ = max degree k = degeneracy q = maximum clique size
α = number of maximal cliques
h = smallest integer such that |{v ∈ V : |N(v)| ≥ h}|, where k ≤ h ≤ ∆.

in the parameters of the graph. For example, the algorithm of Johnson et al. [11] has
setup time O(mn) and polynomial time delay O(mn). Thus, after the setup phase, this
algorithm requires αO(mn) time, α being the number of maximal cliques, to output all the
maximal cliques of the graph. It is output sensitive since the enumeration time depends on
the number of maximal cliques of the graph. All the algorithms that fall into this category
are listed in the last nine rows of Table 1. For these specific algorithms, the time delay is
equal to the enumeration time divided by α, the number of maximal cliques.

Our contribution. Given a k-degenerate graph, we present an output sensitive algorithm
with setup time O(n(k2 + s(k + 1))) and enumeration time αO((k + 1)f(k + 1)), where
s(k + 1) (resp. f(k + 1)) is the preprocessing time (resp. enumeration time) for maximal
clique enumeration in a general (k + 1)-order graph. For example, using the algorithm of
Makino et al. [13] which has setup time O((k+1)2) and enumeration time O((k+1)2.37) for
a (k+1)-order graph, our algorithm has setup time O(n(k2+(k+1)2)) and enumeration time
αO((k + 1)(k + 1)2.37). Since in a (k + 1)-order graph all the graph parameters (number of
edges and vertices, the maximum degree, the clique size, etc.) are bounded by some function
of k, our algorithm will always have enumeration time depending only on the degeneracy
of the graph, whatever output sensitive algorithm of Table 1 we use. This is the first such
algorithm.

On the downside, we were not able to prove that our algorithm has polynomial time
delay. It also requires that the maximum cliques be stored. Thus, since the maximal cliques
of a k-degenerate graph are of size at most k + 1, our algorithm needs O((k + 1)α) space,
besides the space needed to store the graph (in our case, the graph can be stored using
adjacency lists). Further improvements are discussed in the conclusion.

G. Manoussakis 27:3

The organization of the document is as follows. In Section 2 we introduce some notations
and definitions. In Section 3 we prove basic results. These results are used in Section 4 to
prove the correctness and time complexity of Algorithm 1, which is the main contribution
of the paper.

2 Definitions

2.1 Graph terminologies
We consider graphs of the form G = (V,E) which are simple, undirected, connected, with
n vertices and m edges. We assume that they are stored in memory using adjacency lists.
If X ⊂ V , the subgraph of G induced by X is denoted by G[X]. The vertex set of G
will be denoted by V (G). The set N(x) is called the open neighborhood of the vertex x

and consists of the vertex adjacent to x in G. The closed neighborhood of x is defined as
N [x] = N(x) ∪ x. Given an ordering v1, ..., vn of the vertices of G, Vi is the set of vertices
following vi including itself in this ordering, that is, the set {vi, vi+1, ..., vn}. By Gi we
denote the induced subgraph G[N [vi] ∩ Vi]. A graph is k-degenerate if there is an ordering
v1, ..., vn of its vertices such that for all i, 1 ≤ i ≤ n, |N(vi) ∩ Vi| ≤ k. The degeneracy
ordering can be computed in O(m) time [1]. Given a graph G we will denote by σG its
degeneracy ordering and if x ∈ V (G) then σG(x) will be the ranking of x in σG.

2.2 Word terminologies
Let Σ be an alphabet, that is, a non-empty finite set of symbols. Let a string s be any finite
sequence of symbols from Σ; s will be a substring of a string t if there exists strings u and
v such that t = usv. If u or v is not empty then s is a proper substring of t. It will be a
suffix of t if there exists a string u such that t = us. If u is not empty, s is called a proper
suffix of t.

3 Basic results

When not specified, we always assume that, given a k-degenerate graph G, we have its
degeneracy ordering, denoted by σG. When referring to an ordering of the vertices, we
always refer to σG. The family of subgraphs Gi, i ∈ [n] described in Section 2.1 will always
be constructed following the degeneracy ordering of G. Thus, these graphs have at most
k + 1 vertices, since in a degeneracy ordering v1, ..., vn of the vertices of G, the inequality
|N [vi] ∩ Vi| ≤ k + 1 holds.

We want to show in this section that, roughly, given some k-degenerate graph G, it is
enough to compute all the maximal cliques of the induced subgraphs Gi, i ∈ [n] to get all
the maximal cliques of G. We first start by proving that the induced subgraphs Gi, i ∈ [n]
can be easily computed. To prove that we first introduce a special adjacency structure, in
the following definition.

I Definition 1. Let G = (V,E) be a k-degenerate graph. Assume that G is given by the
adjacency lists for each vertex. The degenerate adjacency list of a vertex x ∈ V is its
adjacency list in which every vertex that has lower ranking that x in σG has been deleted.

I Lemma 2. The degenerate adjacency lists of a n-order k-degenerate graph G can be
computed in time O(m).

IPEC 2017

27:4 An Output Sensitive Algorithm for Maximal Clique Enumeration in Sparse Graphs

Proof. Compute the degeneracy ordering σG of G. As described before this can be done
in O(m) time. Assume that we have the adjacency lists of G. Let x ∈ V and let dx be its
degree. In time O(dx) remove all vertices from its adjacency lists that have lower ranking
in σG. Repeat the procedure for all the vertices of the graph. This is done in total time
O(m). J

I Lemma 3. Given a k-degenerate graph G, there is an algorithm constructing the induced
subgraphs Gi, i ∈ [n] in time O(nk2) and O(m) space.

Proof. Compute the degenerate adjacency lists ofG. This is done in timeO(m) by Lemma 2.
Observe first that the vertex set of graph Gi, i ∈ [n] corresponds to i-th vertex of σG plus all
the vertices of its degenerate adjacency list. Thus it only remains to show how to compute the
adjacency lists of each of these graphs. We proceed as follows. For every vertex x ∈ V (Gi),
go through its degenerate adjacency list and remove vertices which are not in the vertex set
V (Gi). Observe that this can be done in O(k) by coloring the vertices of V (Gi) blue and
removing non blue vertices from the degenerate adjacency list of x. This procedure takes
time O(k2) for each graph Gi, i ∈ [n], thus in total, we need time O(nk2 +m) = O(nk2), as
m = O(nk). J

Now that we have seen how the induced subgraphs Gi, i ∈ [n] can be constructed, we
want to characterize their maximal cliques with respect to the maximal cliques of the graph.
We show in the next two lemmas that the maximal cliques of graphs Gi, i ∈ [n] which are
not maximal in G can be easily described.

I Lemma 4. Let G be a k-degenerate graph, σG its degeneracy ordering, and let K be a
maximal clique of an induced subgraph Gi, i ∈ [n]. Clique K is not a maximal clique of G if
and only if there exists a maximal clique C of G which is an induced subgraph of a Gj with
j < i and such that K is a strict induced subgraph of C.

Proof. Let σG be the degeneracy ordering of G. Assume that K is a maximal clique of
an induced graph Gi for i = 1, ..., n − k but is not a maximal clique of G. Observe that
vi ∈ V (K) since, by definition, vi is connected to all the vertices of V (Gi)\vi. Since Ki is a
clique which is not maximal, then there exists a set A of vertices such that A ∩ V (K) = ∅
and the graph induced on V (K)∪A is a maximal clique of G. Let vj be the vertex of A with
lower ranking in σG. We have that σG(vj) < σG(vi) since vj is connected to vi but does
not appear in V (Gi). (It does not appear otherwise A ∩ V (K) 6= ∅). Let C be the maximal
clique induced on V (K) ∪ A. Clique C is an induced subgraph of Gj with j < i. Observe
that K does not have vj in its vertex set. Therefore K is a strict induced subgraph of C.

Conversely, assume that K is a maximal clique of Gi and C a maximal clique of Gj , j < i

such that K is an induced subgraph of C. Since K is a strict induced subgraph of a maximal
clique of G then K cannot be a maximal clique of G. J

I Corollary 5. Let G be a k-degenerate graph and let K be a maximal clique of an induced
subgraph Gi, i ∈ [n] such that K is not maximal in G. Let C be a maximal clique of G which
is a subgraph of some graph Gj , j < i and such that K is a subgraph of C. Let W (K) and
W (C) be the words obtained from the vertices of cliques K and C which have been ordered
following σG. Then W (K) is a proper suffix of W (C).

Proof. Observe first that by Lemma 4, clique C is well defined. Since K is a strict subgraph
of C then V (K) ⊂ V (C). Recall that by definition, graph Gi = G[N [vi] ∩ Vi] where vi
is the i-th vertex of the degeneracy ordering. Observe that since vi is the vertex of V (K)

G. Manoussakis 27:5

with smallest ranking in σG then vi appears first in W (K). We also have that vi ∈ V (C).
Assume now by contradiction that W (K) is not a proper suffix of W (C). This implies that
there exists at least a vertex x ∈ V (C)\V (K) that appears after vertex vi in W (C). If that
was not the case then W (K) would have been a proper suffix of W (C). This implies that
vertex x appears after vertex vi in σG. Observe now that x is connected to all the vertices
of K since x ∈ V (C) and V (K) ⊂ V (C). Thus G[V (K) ∪ {x}] is a maximal clique of Gi,
which is a contradiction by maximality of K. J

To conclude the section, we prove some additional results regarding the maximal cliques
of graphs Gi, i ∈ [n], in the next three lemmas.

I Lemma 6. Let G be a k-degenerate graph. Every clique which is maximal in some subgraph
Gi, i ∈ [n] is not maximal in any subgraph Gj with j 6= i.

Proof. Let K be a maximal clique of some subgraph Gi, i ∈ [n]. Assume by contradiction
that there exists a j ∈ [n] with j 6= i such that K is maximal in Gj . Assume first that i < j.
Since vertex vi is connected to all the vertices of graph Gi then necessarily vi ∈ V (K) or K
is not maximal in Gi. Since we assumed i < j then vi /∈ V (Gj). This implies that K cannot
be a subgraph of Gj , which gives a contradiction in that case. Thus assume now that j < i.
The proof is similar. Vertex vj which is connected to all the vertices of Gj does not belong
to graph Gi. Since K is maximal in Gi and since vj /∈ V (K) then K cannot be maximal in
Gj . J

I Lemma 7. Let G be a k-degenerate graph, σG its degeneracy ordering. Every maximal
clique of G is a subgraph of exactly one graph Gi, i ∈ [n].

Proof. let K be some maximal clique of G. We first prove that K is a subgraph of at least
a subgraph Gi, i ∈ [n]. Let x ∈ V (K) be the vertex of K which has minimum ranking in
σG. Observe now that clique K is subgraph of graph GσG(x). The fact that clique K is a
subgraph of at most a graph Gi, i ∈ [n] is a consequence of Lemma 6. J

I Lemma 8. Let G be a k-degenerate graph. Let Gi, i ∈ [n] be the family of induced
subgraphs as defined in Section 2.1 and constructed in Lemma 3. Let α denote the number
of maximal cliques of G and αi the number of maximal cliques of graph Gi. We have that
n∑
j=1

αj ≤ α(k + 1).

Proof. Let maxi denotes the number of maximal cliques of Gi, i ∈ [n] which are maximal
in G and Nmaxi the number of maximal cliques of Gi, i ∈ [n] which are not maximal in
G. We have that αi = maxi + Nmaxi. By Lemma 7, every maximal clique of G is a
subgraph of exactly one graph Gi, i ∈ [n]. This implies that

∑n
j=1 maxj = α. Let X be the

set of cliques which are maximal in some graph Gi, i ∈ [n] but not maximal in G and let
x ∈ X. By Lemma 5, the word obtained from the vertices of x which have been ordered
following σG is a proper suffix of the word obtained from ordering the vertices, following σG,
of some maximal clique of G. This implies that X is of size at most kα since a maximum
clique of a k-degenerate has at most k + 1 vertices and that a word with k + 1 letters
has at most k proper suffixes. To conclude the proof, Lemma 6 implies that clique x is
maximal in an unique graph Gi, i ∈ [n] which implies that

∑n
j=1 Nmaxj ≤ kα. Thus in

total
∑n
j=1 αj ≤ α+ αk = α(k + 1). J

IPEC 2017

27:6 An Output Sensitive Algorithm for Maximal Clique Enumeration in Sparse Graphs

Algorithm 1:
Data: A graph G.
Result: All the maximal cliques of G.

1 Compute k the degeneracy of G and σG.
2 Construct the graphs Gi, i ∈ [n].
3 Initialize T an empty generalized suffix tree.
4 for j = 1 to n do
5 Compute all maximal cliques of graph Gj .
6 for every maximal clique K of graph Gj do
7 Order the vertices of K following σG
8 Search for K in T .
9 if there is a match then

10 Reject it.
11 else
12 Insert the proper suffixes of K in T .
13 Output K.

4 Algorithm for maximal clique enumeration

Before we describe the algorithm, we introduce suffix trees. We need a data structure to
store the proper suffixes of all maximal cliques. Given a word of size n, we can construct a
suffix tree containing all its suffixes in space and time O(n), see [14, 18, 19]. For a set of
words X = {x1, x2, ..., xr}, it is possible to construct a generalized suffix tree containing all
the suffixes of the words in X, in an online fashion, in space and time O(

∑r
i=1 |xi|), see [10,

chapter 6] and [18] for instance.
The outline of the algorithm is the following. We start by computing the induced sub-

graphs Gi, i ∈ [n]. Then we consider each such subgraph, starting from G1 up to Gn. We
find all its maximal cliques and try to find them in a generalized suffix tree. If there is a
match, the clique is rejected, otherwise it is outputted and its proper suffixes are inserted
into the generalized suffix tree. The procedure is described in Algorithm 1. Its correctness
is proved in Theorem 9 and its time complexity in Theorem 10.

I Theorem 9. Given a k-degenerate graph G, Algorithm 1 outputs exactly all its maximal
cliques, without duplication.

Proof. By Lemma 7, every maximal clique of the graph is a subgraph of exactly one graph
Gi, i ∈ [n]. Thus, every maximal clique K of the graph is considered exactly once in Line 6
of the algorithm. If K is matched in the generalized suffix tree at Line 7 then the vertices of
K ordered following σG form a proper suffix of some clique of the graph. This contradicts
the fact that K is maximal in G. Thus, every maximal clique is outputted exactly once.
Moreover, all the proper suffixes of all the maximal cliques are stored in the generalized tree.
By Corollary 5 the word obtained from a maximal clique in some graph Gi, i ∈ [n] which is
not maximal in G form a proper suffix of the world obtained from some maximal clique of
G. Thus, all such cliques will be rejected in Line 9 of Algorithm 1. In conclusion, we proved
that only the maximum cliques of G are outputted, without duplication. J

G. Manoussakis 27:7

I Theorem 10. Given a k-degenerate graph G, Algorithm 1 has setup time O(n(k2 + s(k+
1))) and enumeration time αO((k + 1)f(k + 1)) where α is the number of maximal cliques
of G and s(k + 1) (resp. f(k + 1)) is the preprocessing time (resp. enumeration time) of
maximal clique enumeration in a general (k + 1)-order graph.

Proof. Computing the degeneracy of G in Line 1 is done in O(m) time. Constructing the
graphs Gi, i ∈ [n] in Line 2 is done in O(nk2), by Lemma 3. To compute all the maximal
cliques of every graph Gi, i ∈ [n], we can use any output sensitive algorithm of Table 1.
The chosen algorithm has preprocessing time s(|V (Gi)|) = O(s(k + 1)) and enumeration
time f(|V (Gi)|) = O(f(k + 1)) for each graph Gi, i ∈ [n] since these graphs have at most
k + 1 vertices. We first preprocess every such graph Gi in total time O(n ∗ s(k + 1)).
Thus the preprocessing phase takes time O(nk2 + m + n ∗ s(k + 1)) = O(n(k2 + s(k +
1))). Then we enumerate all the maximal cliques of the graphs Gi, i ∈ [n] in total time
(
∑n
j=1 αj) ∗ O(f(k + 1)) where αj is the number of maximal cliques of graph Gj . By

Lemma 8,
∑n
j=1 αj ≤ (k + 1)α. Thus enumerating all the maximal cliques of the graphs

Gi, i ∈ [n] takes total time αO((k+1)f(k+1)). Searching and inserting the generated cliques
in the suffix tree takes total time αO((k+1)2). In conclusion, Algorithm 1 has preprocessing
time O(n(k2 + s(k + 1))) and enumeration time αO((k + 1)f(k + 1)), as claimed. J

5 Conclusion

We presented the first output sensitive algorithm for maximal clique enumeration whose
enumeration time depends only on the degeneracy of the graph. We were not able to prove
that it has polynomial time delay. Our intuition is that in its current state, our algorithm
has time delay O(kα). Thus, we first ask whether this is true or not and if yes, if there is
a way to modify our approach as to get a polynomial time delay. The second question that
we ask is whether or not we can improve the space complexity. In its current state, our
algorithm requires that the maximal cliques be stored. Can we modify our approach as to
avoid that?

References
1 V. Batagelj and M. Zaversnik. An O(m) algorithm for cores decomposition of networks.

CoRR, cs.DS/0310049, 2003. URL: http://arxiv.org/abs/cs.DS/0310049.
2 C. Bron and J. Kerbosch. Algorithm 457: Finding all cliques of an undirected graph.

Commun. ACM, 16(9):575–577, 1973. doi:10.1145/362342.362367.
3 F. Cazals and C. Karande. A note on the problem of reporting maximal cliques. Theoretical

Computer Science, 407(1-3):564–568, 2008.
4 L. Chang, J. X. Yu, and L. Qin. Fast maximal cliques enumeration in sparse graphs.

Algorithmica, 66(1):173–186, 2013.
5 N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM Journal on

Computing, 14(1):210–223, 1985.
6 C. Comin and R. Rizzi. An improved upper bound on maximal clique listing via rectangular

fast matrix multiplication. arXiv preprint arXiv:1506.01082, 2015.
7 A. Conte, R. Grossi, A. Marino, and L. Versari. Sublinear-space bounded-delay enumeration

for massive network analytics: Maximal cliques. In 43rd International Colloquium on
Automata, Languages, and Programming (ICALP 2016), volume 148, pages 1–148, 2016.

8 David Eppstein, Maarten Löffler, and Darren Strash. Listing all maximal cliques in large
sparse real-world graphs. ACM Journal of Experimental Algorithmics, 18, 2013. doi:
10.1145/2543629.

IPEC 2017

http://arxiv.org/abs/cs.DS/0310049
http://dx.doi.org/10.1145/362342.362367
http://dx.doi.org/10.1145/2543629
http://dx.doi.org/10.1145/2543629

27:8 An Output Sensitive Algorithm for Maximal Clique Enumeration in Sparse Graphs

9 M. Farach. Optimal suffix tree construction with large alphabets. In Proceedings of the 38th
Annual Symposium on Foundations of Computer Science, FOCS ’97, pages 137–, Washing-
ton, DC, USA, 1997. IEEE Computer Society. URL: http://dl.acm.org/citation.cfm?
id=795663.796326.

10 D. Gusfield. Algorithms on strings, trees and sequences: computer science and computa-
tional biology. Cambridge University Press, 1997.

11 David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. On generating
all maximal independent sets. Inf. Process. Lett., 27(3):119–123, 1988. doi:10.1016/
0020-0190(88)90065-8.

12 D. R. Lick and A. T. White. d-degenerate graphs. Canad. J. Math., 22:1082–1096, 1970.
URL: http://www.smc.math.ca/cjm/v22/p1082.

13 K. Makino and T. Uno. New algorithms for enumerating all maximal cliques. In Scand-
inavian Workshop on Algorithm Theory, pages 260–272. Springer, 2004.

14 Edward M. McCreight. A space-economical suffix tree construction algorithm. J. ACM,
23(2):262–272, 1976. doi:10.1145/321941.321946.

15 J. W Moon and L. Moser. On cliques in graphs. Israel journal of Mathematics, 3(1):23–28,
1965.

16 Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. The worst-case time complexity
for generating all maximal cliques and computational experiments. Theor. Comput. Sci.,
363(1):28–42, 2006. doi:10.1016/j.tcs.2006.06.015.

17 S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. A new algorithm for generating all
the maximal independent sets. SIAM Journal on Computing, 6(3):505–517, 1977.

18 Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.
doi:10.1007/BF01206331.

19 Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching
and Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973, pages 1–11. IEEE
Computer Society, 1973. doi:10.1109/SWAT.1973.13.

http://dl.acm.org/citation.cfm?id=795663.796326
http://dl.acm.org/citation.cfm?id=795663.796326
http://dx.doi.org/10.1016/0020-0190(88)90065-8
http://dx.doi.org/10.1016/0020-0190(88)90065-8
http://www.smc.math.ca/cjm/v22/p1082
http://dx.doi.org/10.1145/321941.321946
http://dx.doi.org/10.1016/j.tcs.2006.06.015
http://dx.doi.org/10.1007/BF01206331
http://dx.doi.org/10.1109/SWAT.1973.13

Merging Nodes in Search Trees: an Exact
Exponential Algorithm for the Single Machine
Total Tardiness Scheduling Problem∗

Lei Shang1, Michele Garraffa2, Federico Della Croce3, and
Vincent T’Kindt4

1 Université François Rabelais de Tours, Laboratoire d’Informatique (EA 6300),
ERL CNRS OC 6305, Tours, France
shang@univ-tours.fr

2 Politecnico di Torino, DAUIN, Torino, Italy
michele.garraffa@polito.it

3 Politecnico di Torino, DIGEP, Torino, Italy
federico.dellacroce@polito.it

4 Université François Rabelais de Tours, Laboratoire d’Informatique (EA 6300),
ERL CNRS OC 6305, Tours, France
tkindt@univ-tours.fr

Abstract
This paper proposes an exact exponential algorithm for the problem of minimizing the total
tardiness of jobs on a single machine. It exploits the structure of a basic branch-and-reduce
framework based on the well known Lawler’s decomposition property. The proposed algorithm,
called branch-and-merge, is an improvement of the branch-and-reduce technique with the em-
bedding of a node merging operation. Its time complexity is O∗(2.247n) keeping the space
complexity polynomial. The branch-and-merge technique is likely to be generalized to other
sequencing problems with similar decomposition properties.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, F.2.0 General
(Analysis of Algorithms and Problem Complexity), G.2.1 Combinatorics

Keywords and phrases Exact exponential algorithm, Single machine total tardiness, Branch-
and-merge

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.28

1 Introduction

The challenge of designing exact exponential algorithms for NP-hard problems is attracting
more and more researchers, particularly since the beginning of this century. For a survey on
the most effective techniques in designing exact exponential algorithms, readers are kindly
referred to Woeginger’s paper [13] and to the book by Fomin and Kratsch [4]. In spite of the
growing interest on exact exponential algorithms, few results are yet known on scheduling
problems, see the survey of Lenté et al. [8].1 This paper focuses on a pure sequencing
problem, the single machine total tardiness problem, denoted by 1||

∑
Tj . In this problem, a

∗ A full version of the paper is available at [5], https://hal.archives-ouvertes.fr/hal-01477835.
1 Recent results on Parameterized Algorithms of scheduling problems can be found at http://fpt.

wikidot.com/operations-research.

© Lei Shang, Michele Garraffa, Federico Della Croce, and Vincent T’Kindt;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 28; pp. 28:1–28:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.28
https://hal.archives-ouvertes.fr/hal-01477835
http://fpt.wikidot.com/operations-research
http://fpt.wikidot.com/operations-research
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28:2 Branch-and-Merge for 1||
∑
Tj

jobset N = {1, 2, . . . , n} of n jobs must be scheduled on a single machine. For each job j, a
processing time pj and a due date dj are given. The problem asks for arranging the jobset in
a sequence S so as to minimize T (N,S) =

∑n
j=1 Tj =

∑n
j=1 max{Cj − dj , 0}, where Cj is

the completion time of job j in sequence S. The 1||
∑
Tj problem is NP-hard in the ordinary

sense [2]. It has been extensively studied in the literature. The current state-of-the-art
exact method [11] solves to optimality problems with up to 500 jobs. Its complexity was
not discussed in [11] but will be analyzed in this paper. In [7] an exact pseudo-polynomial
dynamic programming algorithm was proposed with complexity O(n4 ∑

pi). Also, the
standard technique of doing dynamic programming across the subsets (see, for instance, [4])
applies and runs with complexity O(n22n) both in time and in space. We refer to [6]
for a comprehensive survey on the problem. In the rest of the paper, the O∗(·) notation
[13], commonly used in the context of exact exponential algorithms, is used. Let T (·) be a
super-polynomial and p(·) be a polynomial, both on integers. In what follows, for an integer n,
we express running-time bounds of the form O(p(n) ·T (n))) as O∗(T (n)). As an example, the
complexity of dynamic programming across the subsets for the total tardiness problem can be
expressed as O∗(2n). The aim of this work is to design a faster exact exponential algorithm
running in O∗(cn) (c being a constant) and polynomial space, exploiting known decomposition
properties of the problem. The designed algorithm, making use of a new technique called
branch-and-merge that avoids the solution of several equivalent subproblems in the branching
tree, is shown to have a complexity O∗(2.247n) in time and requires polynomial space. We
also provide a complexity analysis of the state-of-the-art exact algorithm [11], which runs in
O∗(2.4143n) in time.

2 Preliminaries

We recall some basic properties of the total tardiness problem and related notation. Given a
jobset N = {1, 2, . . . , n}, let (1, 2, . . . , n) be a LPT (Longest Processing Time first) sequence,
where i < j whenever pi > pj (or pi = pj and di ≤ dj). Let also ([1], [2], . . . , [n]) be an EDD
(Earliest Due Date first) sequence, where i < j whenever d[i] < d[j] (or d[i] = d[j] and
p[i] ≤ p[j]). The order of jobs having identical processing time and due date should be fixed
arbitrarily. Jobs are processed with no interruption starting from time zero. Let Bj and Aj
be the sets of jobs that precede and follow job j in an optimal sequence being constructed.
Correspondingly, the completion time of job j, Cj =

∑
k∈Bj

pk + pj . Also, if job j is assigned
to position k, Cj(k) denotes the corresponding completion time and Bj(k) and Aj(k) the sets
of predecessors and successors of j, respectively. The following known theoretical properties
hold.

I Property 1. [3] Consider two jobs i and j with pi < pj. Then, in at least one optimal
schedule, i precedes j if di ≤ max{dj , Cj}, otherwise j precedes i if di + pi > Cj.

I Property 2. [7] Let job 1 in LPT order correspond to job [k] in EDD order. Then, job 1
can be set only in positions h ≥ k and the jobs preceding and following job 1 are uniquely
determined as B1(h) = {[1], [2], . . . , [k − 1], [k + 1], . . . , [h]} and A1(h) = {[h+ 1], . . . , [n]}.

I Property 3. [7, 9, 10] Consider C1(h) for h ≥ k. Job 1 cannot be set in position h ≥ k
if:
(a) C1(h) ≥ d[h+1], h < n;
(b) C1(h) < d[r] + p[r], for some r = k + 1, . . . , h.

I Property 4. ([12]) For any pair of adjacent positions (i, i+ 1) that can be assigned to job
1, at least one of them is eliminated by Property 3.

L. Shang et. al. 28:3

Algorithm 1 Total Tardiness Branch-and-Reduce (TTBR)
Input: N = {1, ..., n} is the problem to be solved
1: function TTBR(S, t)
2: seqOpt← a random sequence of jobs
3: l← the longest job in N
4: for i = 1 to n do
5: Branch by assigning job l to position i if not discarded by Property 3
6: seqLeft← TTBR(Bl(i), t)
7: seqRight← TTBR(Al(i), t +

∑
k∈Bl(i) pk + pl)

8: seqCurrent← concatenation of seqLeft, l and seqRight
9: seqOpt← best solution between seqOpt and seqCurrent
10: end for
11: return seqOpt
12: end function

A basic branch-and-reduce algorithm TTBR (Total Tardiness Branch-and-Reduce) can
be designed by exploiting Property 2, which allows to decompose the problem into two
smaller subproblems when the position of the longest job l is given and by taking into
account Property 4 which states that for each pair of adjacent positions (i, i+ 1), at least
one of them can be discarded. The basic idea is to iteratively branch by assigning job l to
every possible position {1, ..., n}, discarding ineligible positions by means of the elimination
rules of Property 3, and correspondingly decompose the problem. Each time a certain
position i is selected for job l, two different subproblems are generated, corresponding to
schedule the jobs before l (inducing subproblem Bl(i)) and after l (inducing subproblem
Al(i)), respectively. The algorithm operates by applying to any given jobset S starting at
time t function TTBR(S, t) that computes the corresponding optimal solution. With this
notation, the original problem is indicated by N = {1, ..., n} and the optimal solution is
reached when function TTBR(N, 0) is computed. The algorithm proceeds by solving the
subproblems along the branching tree according to a depth-first strategy and runs until all
the leaves of the search tree have been reached. Finally, it provides the best solution found
as an output. Algorithm 1 summarizes the structure of this approach, while Proposition 5
states its worst-case complexity.

I Proposition 5. Algorithm TTBR runs in O∗((1 +
√

2)n) = O∗(2.4143n) time and polyno-
mial space in the worst case.

Proof. We refer to problems where n is odd, but the analysis for n even is substantially the
same. Whenever the longest job 1 is assigned to the first and the last position of the sequence,
two subproblems of size n− 1 are generated. For each 2 ≤ i ≤ n− 1, two subproblems with
size i− 1 and n− i are generated. Hence, the total number of generated subproblems is at
most 2n− 2. This would induce the following recurrence for the running time T (n):

T (n) = 2T (n− 1) + 2T (n− 2) + ...+ 2T (2) + 2T (1) +O(p(n)) (1)

However, Property 4 indicates that the elimination rules of Property 3 discard at least
one position for every pair of adjacent positions. The worst case occurs when the largest
possible subproblems are kept that is when subproblems with size n− 1, n− 3, n− 5, . . . (that
arise by branching on positions i and n − i + 1 with i odd) are kept and correspondingly
subproblems with size n− 2, n− 4, n− 6, . . . are discarded. This induces a recurrence of the
type:

T (n) = 2T (n− 1) + 2T (n− 3) + ...+ 2T (4) + 2T (2) +O(p(n)) (2)

IPEC 2017

28:4 Branch-and-Merge for 1||
∑
Tj

By replacing n with n− 2, the following expression is derived:

T (n− 2) = 2T (n− 3) + 2T (n− 5) + ...+ 2T (4) + 2T (2) +O(p(n− 2)) (3)

Plugging expression 3 into expression 2, we get:

T (n) = 2T (n− 1) + T (n− 2) +O(p(n)) (4)

that induces as complexity O∗((1 +
√

2)n) = O∗(2.4143n). The space requirement is
polynomial since the branching tree is explored according to a depth-first strategy. J

The current state-of-the-art algorithm described in [11], noted hereafter as BB2001, is
a branch and bound algorithm having a similar structure as that of TTBR. The main
difference is that in BB2001, besides of the decomposition rule given in Property 2, another
decomposition rule, based on Property 6, is applied simultaneously on each branching. We
provide in Proposition 7 our analysis on the time complexity of BB2001, since this is not
discussed in [11]. Notice that even though the time complexity of TTBR is the same as
BB2001, the former one serves as a basis of the final algorithm branch-and-merge.

I Property 6. [1] Let job k in LPT sequence correspond to job [1] in EDD sequence.
Then, job k can be set only in positions h ≤ (n − k + 1) and the jobs preceding job k are
uniquely determined as Bk(h), where Bk(h) ⊆ {k + 1, k + 2, . . . , n} and ∀i ∈ Bk(h), j ∈
{n, n− 1, . . . , k + 1}rBk(h), di ≤ dj

I Proposition 7. Algorithm BB2001 runs in O∗(2.4143n) time and polynomial space in the
worst case.

Proof. Before branching on a node, BB2001 first computes the possible positions for the
longest job and the job with smallest due date. Then a new branch is created by assigning a
pair of compatible positions to these two jobs. We consider two cases as follows.

Firstly, consider the case where job 1 = [n]. The two decomposition rules become
identical and if this condition is also verified in all subproblems, then the time complexity is
O∗(2.4143n) as proved in Proposition 5.

In the case where 1 6= [n], the worst case occurs when 1 = [2] and [n] = 2, since in this
case we have maximum available branching positions: job [n] can be branched on position
i ∈ {1, ..., n − 1} and job 1 can be branched on position j ∈ {2, ..., n}, with i < j for each
branching. Moreover, we recall that the Property 4 is also valid.

Three subproblems (left, middle and right) are created on each double branching (zero-
sized problems are counted). For the sake of simplicity, we note T (l,m, r) = T (l)+T (m)+T (r).

L. Shang et. al. 28:5

The following recurrence holds.

T (n) =
n−1∑
i=1

i is odd

n∑
j=i+1

j is even

(T (i− 1, j − i− 1, n− j)) +O(p(n)) (5)

= T (0, 0, n− 2) + T (0, 2, n− 4) + T (0, 4, n− 6) + ...+ T (0, n− 2, 0)+ (6)
T (2, 0, n− 4) + T (2, 2, n− 6) + ...+ T (2, n− 4, 0)+ (7)

... (8)
T (n− 4, 0, 2) + T (n− 4, 2, 0)+ (9)

T (n− 2, 0, 0)+ (10)
O(p(n)) (11)

= 3 ∗ (T (n− 2) + 2T (n− 4) + 4T (n− 6) + ...+ n

2T (0)) (12)

(13)

By applying a similar process of simplification as in the proof of Proposition 5, the following
result is finally derived:

T (n) = 5T (n− 2)− T (n− 4). (14)

Correspondingly, we have T (n) = O∗(
√

5+
√

21
2

n

) = O∗(2.1890n). Therefore the worst case
occurs when the two decomposition rules overlap, and the resulting time complexity is the
same as TTBR, namely O∗(2.4143n).

In terms of space complexity, BB2001 applies an extra technique called Memorization
which makes use of exponential memory space for accelerating the solution. When this
extra technique is not considered, the space complexity of BB2001 is also polynomial since
depth-first exploration is adopted. J

3 Merging nodes in the search tree

In this section, we describe how to get an algorithm running with complexity O∗(2.247n)
in time and polynomial space by integrating a node-merging procedure into TTBR. The
resulting algorithm will be called branch-and-merge. We recall that in TTBR the branching
scheme is defined by assigning the longest unscheduled job to each available position and
accordingly divide the problem into two subproblems. To facilitate the description of the
algorithm, we focus on the worst-case scenario where the LPT sequence (1, ..., n) coincides
with the EDD sequence ([1], ..., [n]): in this case no position can be eliminated by Property 2
at each branching.

Figure 1 shows how an input problem {1, ..., n} is decomposed by the branching scheme
of TTBR. Each node is labelled by the corresponding subproblem Pj (P denotes the input
problem) and it is assumed in this example that Property 3 is not applied (for convenience
purpose). Notice that from now on Pj1,j2,...,jk

, 1 ≤ k ≤ n, denotes the problem (node in the
search tree) induced by the branching scheme of TTBR when the largest processing time job
1 is in position j1, the second largest processing time job 2 is in position j2 and so on till the
k-th largest processing time job k being placed in position jk.

To roughly illustrate the guiding idea of the merging technique introduced in this section,
consider Figure 1. Noteworthy, nodes P2 and P1,2 are identical except for the initial
subsequence (21 vs 12). This fact implies, in this particular case, that the problem of

IPEC 2017

28:6 Branch-and-Merge for 1||
∑
Tj

P1 :1{2, ..., n}
P2 :21{3, ..., n}

P : {1, ..., n}

Pn

P3 :{2, 3}1{4, ..., n}
Pn :{2, ..., n}1

P3P2

P1

P1,n

. . .

P1,4P1,3P1,2

. . .

P1,2 :12{3, ..., n}
P1,3 :132{4, ..., n}
P1,4 :1{3, 4}2{5, ..., n}
P1,n :1{3, ..., n}2

Figure 1 The branching scheme of TTBR at the root node.

scheduling jobset {3, ..., n} at time p1 + p2 is solved twice. This kind of redundancy can
however be eliminated by merging node P2 with node P1,2 and creating a single node in which
the best sequence among 21 and 12 is scheduled at the beginning and the jobset {3, ..., n},
starting at time p1 + p2, remains to be branched on. Furthermore, the best subsequence
(starting at time t = 0) between 21 and 12 can be computed in constant time. Hence, the
node created after the merging operation involves a constant time preprocessing step plus the
search for the optimal solution of jobset {3, ..., n} to be processed starting at time p1 + p2.
We remark that, in the branching scheme of TTBR, for any constant k ≥ 3, the branches
corresponding to Pi and Pn−i+1, with i = 2, ..., k, are decomposed into two problems where
one subproblem has size n− i and the other problem has size i− 1 ≤ k. Correspondingly,
the merging technique presented on problems P2 and P1,2 can be generalized to all branches
inducing problems of sizes less than k. Notice that, by means of algorithm TTBR, any
problem of size less than k requires, to be solved, at most O∗(2.4143k) time (that is constant
time when k is fixed). In the remainder of the paper, for any constant k, we denote by
left-side branches the search tree branches corresponding to problems P1, ..., Pk.

With respect to algorithm TTBR, the basic idea is to applying merging on the left-side
branches (nodes P1 to Pk) while Property 3 is applied on the remaining branches (nodes
Pk+1 to Pn).

3.1 Merging left-side branches

We first illustrate the merging operations at the root node. The following lemma highlights
two properties of the pairs of problems Pj and P1,j with 2 ≤ j ≤ k.

I Lemma 8. For a pair of problems Pj and P1,j with 2 ≤ j ≤ k, the following conditions
hold:
1. The solution of problems Pj and P1,j involves the solution of a common subproblem which

consists in scheduling jobset {j + 1, ..., n} starting at time t =
∑
i=1,...,j pi.

2. Both in Pj and P1,j, at most k jobs have to be scheduled before jobset {j + 1, ..., n}.

Proof. As problems Pj and P1,j are respectively defined by {2, ..., j}1{j + 1, ..., n} and
1{3, ..., j}2{j + 1, ..., n}, the first part of the property is straightforward.
The second part can be simply established by counting the number of jobs to be scheduled
before jobset {j+1, ..., n} when j is maximal, i.e. when j = k. In this case, jobset {k+1, ..., n}
has (n− k) jobs which implies that k jobs remain to be scheduled before that jobset. J

L. Shang et. al. 28:7

P1 :1{2, ..., n}
P2 :21{3, ..., n}

P : {1, ..., n}

Pn

Pk :{2, ..., k}1{k + 1, ..., n}

PkP2

P1

P1,n

. . .

P1,kP1,2

. . .

P1,2 :12{3, ..., n}
P1,3 :132{4, ..., n}
P1,k :1{3, ..., k}2{k + 1, ..., n}

. . .

. . .

Pn :{2, ..., n}1

P1,n :1{3, ..., n}2

(a) Left-side branches of P before performing the merging operations.

P : {1, ..., n}

PnPkP2

P1

P1,n

. . .

Pσ1,kPσ1,2

. . .

Pσ1,2 :BEST(12, 21){3, ..., n}
Pσ1,k :BEST({2, ..., k}1, 1{3, ..., k}2){k + 1, ..., n}

. . .

. . .

(b) Left-side branches of P after performing the merging operations.

Figure 2 Left-side branches merging at the root node.

Each pair of problems indicated in Lemma 8 can be merged as soon as they share the
same subproblem to be solved. More precisely, (k − 1) problems Pj (with 2 ≤ j ≤ k) can be
merged with the corresponding problems P1,j .

Figure 2 illustrates the merging operations performed at the root node. For any given
2 ≤ j ≤ k, problems Pj and P1,j share the same subproblem {j + 1, ..., n} starting at time
t =

∑j
i=1 pi. Hence, by merging the left part of both problems which is constituted by jobset

{1, ..., j} having size j ≤ k, we can delete node Pj and replace node P1,j in the search tree
by the node Pσ1,j which is defined as follows (Figure 2b):

Jobset {j + 1, ..., n} is the set of jobs on which it remains to branch.
Let σ1,j be the sequence of branching positions on which the j longest jobs 1, ..., j are
branched, that leads to the best jobs permutation between {2, ..., j}1 and 1{3, ..., j}2
when these two are solved. This involves the solution of two problems of size at most
k − 1 (in O∗(2.4143k) time by TTBR) and the comparison of the total tardiness value of
the two sequences obtained.

In the following, we describe how to apply analogous merging operations on any node
of the tree. With respect to the root node, the only additional consideration is that the
children nodes of a generic node may have already been concerned by previous merging
operations. Let us refer to LEFT_MERGE as the procedure which, for any node of the search
tree, perform merging operations on its leftmost child branches. The LEFT_MERGE procedure
operates based on a modified branching scheme, with respect to TTBR.

Let Lσ be a data structure associated to a problem Pσ. It represents a list of k − 1
subproblems that result from a previous merging and are now the first k − 1 children nodes
of Pσ. When Pσ is created by branching, Lσ = ∅. When a merging operation sets the first

IPEC 2017

28:8 Branch-and-Merge for 1||
∑
Tj

k − 1 children nodes of Pσ to Pσ1 , ..., Pσk−1 , we set Lσ = {Pσ1 , ..., Pσk−1}. As a conclusion,
the following branching scheme for a generic node of the tree holds.

I Definition 9. The branching scheme for a generic node Pσ is defined as follows:
If Lσ = ∅, use the branching scheme of TTBR;
If Lσ 6= ∅, extract problems from Lσ as the first k − 1 branches, then branch on the
longest job in the available positions from the k-th to the last according to Property 2.

This branching scheme, whenever necessary, will be referred to as improved branching.

Before describing how merging operations can be applied on a generic node Pσ, we
highlight its structural properties by means of Proposition 10.

I Proposition 10. Let Pσ be a problem to branch on, and σ be the permutation of positions
assigned to jobs 1, . . . , |σ|, with σ empty if no positions are assigned. The following properties
hold:
1. j∗ = |σ|+ 1 is the job to branch on,
2. j∗ can occupy in the branching process, positions {`b, `b + 1, . . . , `e}, where

`b =
{
|σ|+ 1 if σ is a permutation of 1, . . . , |σ| or σ is empty
ρ1 + 1 otherwise

with ρ1 = max{i : i > 0, positions 1, . . . , i are in σ} and

`e =
{
n if σ is a permutation of 1, . . . , |σ| or σ is empty
ρ2 − 1 otherwise

with ρ2 = min{i : i > ρ1, i ∈ σ}

Proof. According to the definition of the notation Pσ, σ is a sequence of positions that are
assigned to the longest |σ| jobs. Since we always branch on the longest unscheduled job, the
first part of the proposition is straightforward. The second part aims at specifying the range
of positions that job j∗ can occupy. Two cases are considered depending on the content of σ:

If σ is a permutation of 1, . . . , |σ|, it means that the longest |σ| jobs are set on the first
|σ| positions, which implies that the job j∗ should be branched on positions |σ|+ 1 to n
If σ is not a permutation of {1, . . . , |σ|}, it means that the longest |σ| jobs are not
set on consecutive positions. As a result, the current unassigned positions may be
split into several ranges. As a consequence of Property 2, the longest job j∗ should
necessarily be branched on the first range of free positions, that goes from ρ1 to ρ2.
Under the worst-case scenario, let us consider as an example P1,9,2,8, whose structure
is 13{5, . . . , 9}42{10, . . . , n} and the job to branch on is 5. In this case, we have: σ =
(1, 9, 2, 8), `b = 3, `e = 7. It is easy to verify that 5 can only be branched on positions
{3, . . . , 7} since 5 must stay before 4 as a direct result of Property 2. J

Corollary 11 emphasizes the fact that even though a node may contain several ranges of
free positions, only the first range is the current focus since we only branch on the longest
job in eligible positions.

I Corollary 11. Problem Pσ has the following structure:

π{j∗, . . . , j∗ + `e − `b}Ω

with π the subsequence of jobs on the first `b − 1 positions in σ and Ω the remaining subset
of jobs to be scheduled after position `e (some of them can have been already scheduled). The
merging procedure is applied on jobset {j∗, . . . , j∗ + `e − `b} starting at time tπ =

∑
i∈Π pi

where Π is the jobset of π.

L. Shang et. al. 28:9

Pσ

PσkPσ2

Pσ1 . . .

Pσ1,`b+k����Pσ1,`b+1

. . .

. . .

�����
Pσ1,`b+k−1

. . .

Pσ1,j∗+1 Pσ1,j∗+k−1

Figure 3 Merging for a generic left-side branch.

The validity of merging on a general node still holds as indicated in Proposition 12, which
extends the result stated in Proposition 8.

I Proposition 12. Let Pσ be a generic problem and let π, j∗, `b, `e,Ω be computed relatively
to Pσ according to Corollary 11. If Lσ=∅ the j-th child node Pσj is Pσ,`b+j−1 for 1≤j≤k.
Otherwise, the j-th child node Pσj is extracted from Lσ for 1≤j≤k−1, while it is created as
Pσ,`b+k−1 for j=k. For any pair of problems Pσj and Pσ1,`b+j−1 with 2≤j≤k, the following
conditions hold:
1. Problems Pσj and Pσ1,`b+j−1 with 2≤j≤k have the following structure:

Pσj :
πj{j∗+j, . . . , j∗+`e−`b}Ω 1≤j≤k−1 and Lσ 6=∅

π{j∗+1, . . . , j∗+j−1}j∗{j∗+j, . . . , j∗+`e−`b}Ω (1≤j≤k−1;Lσ=∅)
or j=k

Pσ1,`b+j−1:
π1{j∗+2, . . . , j∗+j−1}(j∗+1){j∗+j, . . . , j∗+`e−`b}Ω

2. By solving all the problems of size less than k, that consist in scheduling the jobset
{j∗+1, . . . , j∗+j−1} between π and j∗ and in scheduling {j∗+2, . . . , j∗+j−1} between π1

and j∗+1, both Pσj and Pσ1,`b+j−1 consist in scheduling {j∗+j, ..., j∗+`e−`b}Ω starting
at time tπj =

∑
i∈Πj pi where Πj is the jobset of πj.

Proof. The first part of the statement follows directly from Definition 9 and simply defines
the structure of the children nodes of Pσ. The problem Pσj is the result of a merging
operation with the generic problem Pσ,`b+j−1 and it could possibly coincide with Pσ,`b+j−1,
for each j=1, ..., k−1. Furthermore, Pσj is exactly Pσ,`b+j−1 for j=k. The generic structure
of Pσ,`b+j−1 is π{j∗+1, . . . , j∗+j−1}j∗{j∗+j, . . . , j∗+`e−`b}Ω, and the merging operations
preserve the jobset to schedule after j∗. Thus, we have Πj=Π∪{j∗, ..., j∗+j−1} for each
j=1, ..., k−1, and this proves the first statement. Analougosly, the structure of Pσ1,`b+j−1 is
π1{j∗+2, . . . , j∗+j−1}(j∗+1){j∗+j, . . . , j∗+`e−`b}Ω. Once the subproblem before j∗+1 of
size less than k is solved, Pσ1,`b+j−1 consists in scheduling the jobset {j∗+j, ..., j∗+`e−`b}
at time tπj =

∑
i∈Πj pi. In fact, we have that Πj=Π1∪{j∗+2, . . . , j∗+j−1}∪{j∗+1}=Π∪

{j∗, . . . , j∗+j−1} . J

Analogously to the root node, each pair of problems indicated in Proposition 12 can be
merged. Again, (k−1) problems Pσj (with 2 ≤ j ≤ k) can be merged with the corresponding

IPEC 2017

28:10 Branch-and-Merge for 1||
∑
Tj

Algorithm 2 LEFT_MERGE Procedure
Input: Pσ an input problem of size n, with `b, j∗ accordingly computed
Output: Q: a list of problems to branch on after merging
1: function LEFT_MERGE(Pσ)
2: Q←∅
3: for j=1 to k do
4: Create Pσj (j-th child of Pσ) by the improved branching with the subproblem induced by

jobset {j∗+1, . . . , j∗+j−1} solved if Lσ=∅ or j=k
5: end for
6: for j=1 to k−1 do
7: Create Pσ1j (j-th child of Pσ1) by the improved branching with the subproblem induced by

jobset {j∗+2, . . . , j∗+j−1} solved if Lσ1 =∅ or j=k
8: Lσ1←Lσ1∪BEST(Pσj+1 , Pσ1j)
9: end for
10: Q←Q∪Pσ1

11: return Q
12: end function

problems Pσ1,`b+j−1. Pσj is deleted and Pσ1,`b+j−1 is replaced by Pσ1,j∗+j−1 (Figure 3),
defined as follows:

Jobset {j∗ + j, ..., j∗ + `e − `b}Ω is the set of jobs on which it remains to branch on.
Let σ1,j∗+j−1 be the sequence of positions on which the j∗ + j − 1 longest jobs 1, ..., j∗ +
j − 1 are branched, that leads to the best jobs permutation between πj and π1{j∗ +
2, . . . , j∗ + j − 1}(j∗ + 1) for 2 ≤ j ≤ k − 1, and between π{j∗ + 1, . . . , j∗ + j − 1}j∗ and
π1{j∗ + 2, . . . , j∗ + j − 1}(j∗ + 1) for j = k. This involves the solution of one or two
problems of size at most k − 1 (in O∗(2.4143k) time by TTBR) and the finding of the
sequence that has the smallest total tardiness value knowing that both sequences start at
time 0.

The LEFT_MERGE procedure is presented in Algorithm 2. Notice that this algorithm takes
as input one problem and produces as an output its first children nodes to branch on, which
replace all its k left-side children nodes.

I Lemma 13. The LEFT_MERGE procedure returns one node to branch on in O(n) time and
polynomial space. The corresponding problem is of size n− 1.

Proof. The creation of problems Pσ1,`b+j−1, ∀j = 2, . . . , k, can be done in O(n) time. The
call of TTBR costs constant time. The BEST function called at line 8 consists in computing
then comparing the total tardiness value of two known sequence of jobs starting at the same
time instant: it runs in O(n) time. The overall time complexity of LEFT_MERGE procedure is
then bounded by O(n) time as k is a constant. Finally, as only node Pσ1 is returned, its size
is clearly n− 1 when Pσ has size n. J

3.2 Algorithm and complexity analysis
The main procedure TTBM (Total Tardiness Branch-and-Merge) is stated in Algorithm 3.
It has a similar recursive structure as TTBR. However, each time a node is opened, the
sub-branches required for the merging operations are generated, the subproblems of size less
than k are solved and the procedure LEFT_MERGE is called. Then, the algorithm proceeds
recursively by extracting the next node from Q with a depth-first strategy and terminates
when Q is empty.

I Proposition 14. Algorithm TTBM runs in O∗(2.247n) time and polynomial space.

L. Shang et. al. 28:11

Algorithm 3 Total Tardiness Branch-and-merge (TTBM)
Input: P : {1, ..., n}: input problem of size n

k ≥ 2: an integer constant
Output: seqOpt: an optimal sequence of jobs
1: function TTBM(P ,k)
2: Q← P
3: seqOpt← a random sequence of jobs
4: while Q 6= ∅ do
5: P ∗ ← extract next problem from Q (depth-first order)
6: if (the size of P ∗ < k) then Solve P ∗ by calling TTBR
7: end if
8: if all jobs {1, ..., n} are fixed in P ∗ then
9: seqCurrent← the solution defined by P ∗

10: seqOpt← best solution between seqOpt and seqCurrent
11: else
12: Q← Q ∪ LEFT_MERGE(P ∗)
13: for i = k + 1, ..., n do
14: Create child node Pi like in TTBR
15: if Pi is not eliminated by Property 3 then Q← Q ∪ Pi
16: end if
17: end for
18: end if
19: end while
20: return seqOpt
21: end function

Proof. Starting from Algorithm 3, we can derive that for a given problem P of size n, the
(k − 1) first children nodes P2 to Pk are merged with children nodes of P1. Consequently,
among these nodes, only node P1 remains as a child node of P . For the other (n−k) children
nodes, Property 3 is applied eliminating by the way one node over two. The worst-case is
achieved when n is odd and k is even and we have the following recurrence:

T (n) = T (n− 1) + (T (n− k − 1) + T (k)) + (T (n− k − 3) + T (k + 2)) + ...

+(T (2) + T (n− 3)) + T (n− 1) +O(p(n))

which can be reformulated as

T (n) = 2T (n− 1) + T (n− 3) + ...+ T (n− k + 1) + 2T (n− k − 1) + ...+ 2T (2) +O(p(n))

Following the same approach used in the proof of Proposition 5, we plug T (n− 2) into the
formula and we have

T (n) = 2T (n− 1) + T (n− 2)− T (n− 3) + T (n− k − 1) +O(p(n))−O(p(n− 2))

The solution of this recurrence is T (n) = O∗(cn) with c the largest root of

1 = 2
x

+ 1
x2 −

1
x3 + 1

xk+1

When k is large enough, the last term in the equation can be ignored, leading to a value of
c which tends towards 2.24698 as k increases. More concretely, TTBM runs in O∗(2.247n)
when k ≥ 14. J

4 Conclusions

In this paper an exact exponential algorithm for the single machine total tardiness
problem was provided. By exploiting some inherent properties of the problem, we first

IPEC 2017

28:12 Branch-and-Merge for 1||
∑
Tj

proposed a branch-and-reduce algorithm, denoted by TTBR running in O∗(2.4143n) time
and polynomial space. This algorithm is then improved by means of a merging technique
leading to a time complexity O∗(2.247n) and polynomial space. The resulting algorithm is
named branch-and-merge. The merging technique is shown here on left-side branches only.
However, at the price of a very long and technical study, also merging right-side branches
can be considered leading to a general branch-and-merge algorithm converging to a O∗(2n)
worst-case time complexity (and still polynomial in space). The presentation of the right-side
merging operation is omitted here due to paper length limitation. A complete description
can be found in [5].

As a future development of this work, our aim is twofold. First, we aim at applying
the branch-and-merge approach to other combinatorial optimization problems in order to
establish its potential generalizability. Second, we want to explore the practical efficiency
of branch-and-merge for the single machine total tardiness problem and check whether
the merging mechanism and related memorization techniques may improve in practice the
performances of known approaches such as the one in [11].

References
1 Federico Della Croce, R Tadei, P Baracco, and A Grosso. A new decomposition approach for

the single machine total tardiness scheduling problem. Journal of the Operational Research
Society, pages 1101–1106, 1998.

2 Jianzhong Du and Joseph Y-T Leung. Minimizing total tardiness on one machine is NP-
hard. Mathematics of Operations Research, 15(3):483–495, 1990.

3 Hamilton Emmons. One-machine sequencing to minimize certain functions of job tardiness.
Operations Research, 17(4):701–715, 1969.

4 Fedor V Fomin and Dieter Kratsch. Exact exponential algorithms. Springer Science &
Business Media, 2010.

5 Michele Garraffa, Lei Shang, Federico Della Croce, and Vincent T’Kindt. An Exact Ex-
ponential Branch-and-Merge Algorithm for the Single Machine Total Tardiness Problem.
submitted to TCS, 2017. URL: https://hal.archives-ouvertes.fr/hal-01477835.

6 Christos Koulamas. The single-machine total tardiness scheduling problem: review and
extensions. European Journal of Operational Research, 202(1):1–7, 2010.

7 Eugene L Lawler. A “pseudopolynomial” algorithm for sequencing jobs to minimize total
tardiness. Annals of Discrete Mathematics, 1:331–342, 1977.

8 Christophe Lenté, Mathieu Liedloff, Ameur Soukhal, and Vincent T’Kindt. Exponential
Algorithms for Scheduling Problems. HAL, https://hal.archives-ouvertes.fr/hal-00944382,
2014. URL: https://hal.archives-ouvertes.fr/hal-00944382.

9 C.N Potts and L.N Van Wassenhove. A decomposition algorithm for the single machine
total tardiness problem. Operations Research Letters, 1(5):177–181, 1982.

10 Wlodzimierz Szwarc. Single machine total tardiness problem revisited. Creative and In-
novative Approaches to the Science of Management, Quorum Books, pages 407–419, 1993.

11 Wlodzimierz Szwarc, Andrea Grosso, and Federico Della Croce. Algorithmic paradoxes of
the single-machine total tardiness problem. Journal of Scheduling, 4(2):93–104, 2001.

12 Wlodzimierz Szwarc and Samar K Mukhopadhyay. Decomposition of the single machine
total tardiness problem. Operations Research Letters, 19(5):243–250, 1996.

13 Gerhard J. Woeginger. Exact Algorithms for NP-hard Problems: A Survey. In Michael
Jünger, Gerhard Reinelt, and Giovanni Rinaldi, editors, Combinatorial Optimization —
Eureka, You Shrink!, volume 2570 of Lecture Notes in Computer Science, pages 185–207.
Springer Berlin Heidelberg, 2003.

https://hal.archives-ouvertes.fr/hal-01477835
https://hal.archives-ouvertes.fr/hal-00944382

Computing Treewidth on the GPU∗

Tom C. van der Zanden1 and Hans L. Bodlaender2

1 Department of Computer Science, Utrecht University, Utrecht, The
Netherlands
T.C.vanderZanden@uu.nl

2 Department of Mathematics and Computer Science, Eindhoven University of
Technology, Eindhoven and Department of Computer Science, Utrecht
University, Utrecht, The Netherlands
H.L.Bodlaender@uu.nl

Abstract
We present a parallel algorithm for computing the treewidth of a graph on a GPU. We implement
this algorithm in OpenCL, and experimentally evaluate its performance. Our algorithm is based
on an O∗(2n)-time algorithm that explores the elimination orderings of the graph using a Held-
Karp like dynamic programming approach. We use Bloom filters to detect duplicate solutions.

GPU programming presents unique challenges and constraints, such as constraints on the use
of memory and the need to limit branch divergence. We experiment with various optimizations
to see if it is possible to work around these issues. We achieve a very large speed up (up to 77×)
compared to running the same algorithm on the CPU.

1998 ACM Subject Classification G.2.2 Graph algorithms

Keywords and phrases treewidth, GPU, GPGPU, exact algorithms, graph algorithms, algorithm
engineering

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.29

1 Introduction

Treewidth is a well known graph parameter that measures how ‘tree-like’ a graph is. The
fact that many otherwise hard graph problems are linear time solvable on graphs of bounded
treewidth [6] has been exploited in many theoretical and practical applications. For such
applications, it is important to have efficient algorithms, that given a graph, determine the
treewidth and find tree decompositions with optimal (or near-optimal) width.

The interest in practical algorithms to compute treewidth and tree decompositions is also
illustrated by the fact that both the PACE 2016 and PACE 2017 challenges [12] included
treewidth as one of the two challenge topics. Remarkably, while most tracks in the PACE
2016 challenge attracted several submissions [13], there were no submissions for the call
for GPU-based programs for computing treewidth. Current sequential exact algorithms for
treewidth are only practical when the treewidth is small (up to 4, see [17]), or when the graph
is small (see [16, 4, 26, 14, 25]). As computing treewidth is NP-hard, an exponential growth
of the running time is to be expected; unfortunately, the exact FPT algorithms that are
known for treewidth are assumed to be impractical; e.g., the algorithm of [3] has a running

∗ Due to space constraints, several tables in this paper have been abridged or omitted. The complete
set of results is presented in the full version of this paper, available on arXiv [23], https://arxiv.org/
abs/1709.09990.

© Tom C. van der Zanden and Hans L. Bodlaender;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 29; pp. 29:1–29:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.29
https://arxiv.org/abs/1709.09990
https://arxiv.org/abs/1709.09990
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

29:2 Computing Treewidth on the GPU

time of 2O(k3)n. This creates the need for good parallel algorithms, as parallelism can help
to significantly speed up the algorithms, and thus deal with larger graph sizes.

In this paper, we consider a practical parallel exact algorithm to compute the treewidth
of a graph and a corresponding tree decomposition. The starting point of our algorithm is a
sequential algorithm by Bodlaender et al. [4]. This algorithm exploits a characterization of
treewidth in terms of the width of an elimination ordering, and gives a dynamic programming
algorithm with a structure that is similar to the textbook Held-Karp algorithm for TSP [18].

Prior work on parallel algorithms for treewidth is limited to one paper, by Yuan [25],
who implements a branch and bound algorithm for treewidth on a CPU with a (relatively)
small number of cores. With the advent of relatively inexpensive consumer GPUs that offer
more than an order of magnitude more computational power than their CPU counterparts, it
is very interesting to explore how exact and fixed-parameter algorithms can take advantage
of the unique capabilities of GPUs. We take a first step in this direction, by exploring how
treewidth can be computed on the GPU.

Our algorithm is based on the elimination ordering characterization of treewidth. Given
a graph G = (V,E), we may eliminate a vertex v ∈ V from G by removing v and turning its
neighborhood into a clique, thus obtaining a new graph. One way to compute treewidth is
to find an order in which to eliminate all the vertices of G, such that the maximum degree of
each vertex (at the time it is eliminated) is minimized. This formulation is used by e.g. [16]
to obtain a (worst-case) O∗(n!)-time algorithm. However, it is easy to obtain an O∗(2n)-time
algorithm by applying Held-Karp style dynamic programming as first observed by Bodlaender
et al. [4]: given a set S ⊆ V , eliminating the vertices in S from G will always result in
the same intermediate graph, regardless of the order in which the vertices are eliminated
(and thus, the order in which we eliminate S only affects the degrees encountered during its
elimination). This optimization is used in the algorithms of for instance [15] and [25].

We explore the elimination ordering space in a breadth-first manner. This enables efficient
parallelization of the algorithm: during each iteration, a wavefront of states (consisting of
the sets of vertices S of size k for which there is a feasible elimination order) is expanded to
the wavefront of the next level, with each thread of the GPU taking a set S and considering
which candidate vertices of the graph can be added to S. Since multiple threads may end up
generating the same state, we then use a bloom filter to detect and remove these duplicates.

To reduce the number of states explored, we experiment with using the minor-min-width
heuristic [16], for which we also provide a GPU implementation. Whereas normally this
heuristic would be computed by operating on a copy of the graph, we instead compute it using
only the original graph and a smaller auxiliary data structure, which may be more suitable
for the GPU. We also experiment with several techniques unique to GPU programming,
such as using shared/local memory (which can best be likened to the cache of a CPU) and
rewriting nested loops into a single loop to attempt to improve parallelism.

We provide an experimental evaluation of our techniques, on a platform equipped with a
Intel Core i7-6700 CPU (3.40GHz) with 32GB of RAM (4x8GB DDR4), and an NVIDIA
GeForce GTX 1060 with 6GB GDDR5 memory (Manufactured by Gigabyte, Part Number
GV-N1060WF2OC-6GD). Our algorithm is implemented in OpenCL (and thus highly portable).
We achieve a very large speedup compared to running the same algorithm on the CPU.

T.C. van der Zanden and H. L. Bodlaender 29:3

2 Preliminaries

Treewidth

For a detailed description of treewidth and its characterization, we refer to [11]. Our algorithm
is based on the O(2nnm)-time algorithm of Bodlaender et al. [4]. Though the characterization
in terms of tree decomposition is more common, we recall only the characterization in terms
of elimination orderings that is used by this algorithm:

Let G = (V,E) be a graph with vertices v1, . . . vn. An elimination ordering is a per-
mutation π : V → {1, . . . , n} of the vertices of G. The treewidth of G is defined as
minπ maxv |Q({u ∈ V | π(u) < π(v)}, v)|, where Q(S, v) is the set of vertices {u ∈ V \ S |
there is a path v, p1, . . . , pm, u such that p1, . . . , pm ∈ S}, i.e., Q(S, v) is the subset of ver-
tices of V \ S reachable from v by paths whose internal vertices are in S.

An alternative view of this definition is that given a graph G, we can eliminate a vertex
v by removing it from the graph, and turning its neighborhood into a clique. The treewidth
of a graph is at most k, if there exists an elimination order such that all vertices have degree
at most k at the time they are eliminated.

GPU Terminology

Parallelism on a GPU is achieved by executing many threads in parallel. These threads are
grouped into warps of 32 threads. The 32 threads that make up a warp do not execute
independently: they share the same program counter, and thus must always execute the
same “line” of code (thus, if different threads need to execute different branches in the code,
this execution is serialized - this phenomenon, called branch divergence, should be avoided).
The unit that executes a single thread is called a CUDA core.

We used a GTX1060 GPU, which is based on the Pascal architecture [20]. The GTX1060
has 1280 CUDA cores, which are distributed over 10 Streaming Multiprocessors (SMs). Each
SM thus has 128 CUDA cores, which can execute up to 4 warps of 32 threads simultaneously.
However, a larger number of warps may be assigned to an SM, enabling the SM to switch
between executing different warps, for instance to hide memory latency.

Each SM has 256KiB1 of register memory (which is the fastest, but which registers are
addressed must be known at compile time, and thus for example dynamically indexing an
array stored in register memory is not possible), 96KiB of shared memory (which can be
accessed by all threads executing within the thread block) and 48KiB of L1 cache.

Furthermore, we have approximately 6GB of global memory available which can be
written to and read from by all threads, but is very slow (though this is partially alleviated
by caching and latency hiding). Shared memory can, in the right circumstances, be read
and written much faster, but is still significantly slower than register memory. Finally, there
is also texture memory (which we do not use) and constant memory (which is a cached
section of the global memory) that can be used to store constants that do not change over
the kernel’s execution (we use constant memory to store the adjacency lists of the graph).

Shared memory resides physically closer to the SM than global memory, and it would
thus make sense to call it “local” memory (in contrast to the more remote global memory).
Indeed, OpenCL uses this terminology. However, NVIDIA/CUDA confusingly use “local
memory” to indicate a portion of the global memory dedicated to a single thread.

1 A kibibyte is 210 bytes.

IPEC 2017

29:4 Computing Treewidth on the GPU

3 The Algorithm

3.1 Computing Treewidth
Our algorithm works with an iterative deepening approach: for increasing values of k, it
repeatedly runs an algorithm that tests whether the graph has treewidth at most k. This
means that our algorithm is in practice much more efficient than the worst-case O∗(2n)
behavior shown by [4], since only a small portion of the 2n possible subsets may be feasible
for the target treewidth k. A similar approach (of solving the decision version of the problem
for increasing values of k) was also used by Tamaki [22], who refers to it as positive-instance
driven dynamic programming.

This algorithm lends itself very well to paralellization, since the subsets can be evaluated
(mostly) independently in parallel. This comes at the cost of slightly reduced efficiency (in
terms of the number of states expanded) compared to a branch and bound approach (e.g.
[14, 25, 26]) since the states with treewidth < k − 1 are expanded more than once. However,
even a branch and bound algorithm needs to expand all of the states with treewidth k − 1
before it can conclude that treewidth k is optimal, so the main advantage of branch and
bound is that it can settle on a solution with treewidth k without expanding all such solutions
(of width k).

Listing 1 Algorithm for computing treewidth. Note that lines 7–19 compute the degree of v in
the graph that remains after eliminating the vertices in S.

1 for k:=0 to n-1 do
2 inp :={∅};
3 for i:= 0 to n-k-2 do
4 outp = {};
5 foreach set S in inp do
6 foreach vertex v 6∈ S do
7 stack := {};
8 degree := 0;
9 push v to stack;

10 while stack 6= ∅ do
11 pop vertex u from stack;
12 foreach unvisited neighbor w of u do
13 mark w as visited ;
14 if w ∈ S

15 push w to stack;
16 else
17 degree := degree +1;
18 endforeach
19 endwhile
20 if degree ≤ k

21 outp := outp ∪ {S ∪ {v}};
22 endforeach
23 endforeach
24 inp := outp
25 endfor
26 if inp 6= ∅
27 report the treewidth of G is k;
28 endfor

To test whether the graph has treewidth at most k, we consider subsets S ⊆ V of increasing
size, such that the vertices of S can be eliminated in some order without eliminating a vertex
of degree > k. For each k, the algorithm starts with an input list (that initially contains just

T.C. van der Zanden and H. L. Bodlaender 29:5

the empty set) and then forms an output list by for each set S in the input list, attempting
to add every vertex v 6∈ S to S, which is feasible only if the degree of v in the graph that
remains after eliminating the vertices in S is not too large. This is tested using a depth first
search. Then, the input and output lists are swapped and the process is repeated. If after
n iterations the output list is not empty, we can conclude that the graph has treewidth at
most k. Otherwise, we proceed to test for treewidth k + 1. Pseudocode for this algorithm is
given in Listing 1.

We include three optimizations: first, if C ⊆ V induces a clique, there is an elimination
order that ends with the vertices in C [4]. We can thus precompute a maximum clique C,
and on line 7 of Lisiting 1, skip any vertices in C. Next, if G has treewidth at most k and
there are at least k + 1 vertex-disjoint paths between vertices u and v, we may add the edge
uv to G without increasing its treewidth [10]. Thus, we precompute for each pair of vertices
u, v the number of vertex-disjoint paths between them, and when testing whether the graph
has treewidth at most k we add edges between all vertices which have at least k + 1 disjoint
paths (note that this has diminishing returns, since in each iteration we can add fewer and
fewer edges). Finally, if the graph has treewidth at least k, then the last k + 1 vertices can
be eliminated in any order so we can terminate execution of the algorithm earlier.

We note that our algorithm does not actually compute a tree decomposition or elimination
order, but could easily be modified to do so. Currently, the algorithm stores with each
(partial) solution one additional integer, which indicates which four vertices were the last to
be eliminated. To reconstruct the solution, one could either store a copy of (one in every
four of) the output lists on the disk, or repeatedly add the last four vertices to C and rerun
the algorithm to obtain the next four vertices (with each iteration taking less time than the
previous, since the size of C has increased).

3.2 Duplicate Elimination using Bloom Filters
Each set S may be generated in multiple ways by adding different vertices to subsets S′ ⊆ S;
if we do not detect whether a set S is already in the output list when adding it, we risk
the algorithm generating Ω(n!) sets. To detect whether a set S is already in the output, we
use a Bloom filter [2]: Bloom filters are a classical data structure in which an array A of
m bits can be used to encode the presence of n elements by means of k hash functions. To
insert an element S, we compute k independent hash functions {Hi|1 ≤ i ≤ k} each of which
indicates one position in the array, A[Hi(S)], which should be set to 1. If any of these bits
was previously zero, then the element was not yet present in the filter, and otherwise, the
probability of a false positive is approximately (1− e−kn/m)k.

In our implementation, we compute two 32-bit hashes h1(S), h2(S) using Murmur3 [1],
which we then combine linearly to obtain hashes Hi(S) = h1(S) + i · h2(S) (which is nearly
as good as using k independent hash functions [19]).

In our experiments, we have used m
n ≥ 24 and k = 17 to obtain a low (theoretical) false

positive probability of around 1 in 100.000. We note that the possibility of false positives
results in a Monte Carlo algorithm (the algorithm may inadvertently decide that the treewidth
is higher than it really is). Indeed, given that many millions of states are generated during
the search we are guaranteed that the Bloom filter will return some false positives, however,
this does not immediately lead to incorrect results: it is still quite unlikely that all of the
states leading to an optimal solution are pruned, since there are often multiple feasible
elimination orders.

The Bloom filter is very suitable for implementation on a GPU, since our target architec-
ture (and indeed, most GPUs) offers a very fast atomic OR operation [21]. We note that
addressing a Bloom filter concurrently may also introduce false negatives if multiple threads

IPEC 2017

29:6 Computing Treewidth on the GPU

attempt to insert the same element simultaneously. To avoid this, we use the initial hash
value to pick one of 65.536 mutexes to synchronize access (this allows most operations to
happen wait-free, and only a collision on the initial hash value causes one thread to wait for
another).

3.3 Minor-Min-Width
Search algorithms for treewidth are often enhanced with various heuristics and pruning
rules to speed up the computation. One very popular choice (used by e.g. [16, 25, 26]) is
minor-min-width (MMW) [16] (also known as MMD+(min-d)) [7]). MMW is based on the
observation that the minimum degree of a vertex is a lower bound on the treewidth, and that
contracting edges (i.e. taking minors) does not increase the treewidth. MMW repeatedly
selects a minimum degree vertex, and then contracts it with a neighbor of minimum degree,
in an attempt to obtain a minor with large minimum degree (if we encounter a minimum
degree that exceeds our target treewidth, we know that we can discard the current state).
As a slight improvement to this heuristic, the second smallest vertex degree is also a lower
bound on the treewidth [7].

Given a subset S ⊆ G, we would like to compute the treewidth of the graphs that remains
after eliminating S from G. The most straightforward method is to explicitly create a copy
of G, eliminate the vertices of S, and then repeatedly perform the contraction as described
above. However, storing e.g. an adjacency list representation of these intermediate graphs
would exceed the available shared memory and size of the caches. As we would like to avoid
transferring large amounts of data to and from global memory, we implemented a method to
compute MMW without explicitly storing the intermediate graphs.

Our algorithm tracks the current degrees of the vertices (which, conveniently, we already
have computed to determine which vertices can be eliminated). It is thus easy to select
a minimum degree vertex v. Since we do not know what vertices it is adjacent to (in the
intermediate graph), we must select a minimum degree neighbor by using a depth-first search,
similarly to how we compute the vertex degrees in Listing 1. Once we have found a minimum
degree neighbor u, we run a second dept-first search to compute the number of neighbors u
has in common with v, allowing us to update the degree of v. To keep track of which vertices
have been contracted, we use a disjoint set data structure.

The disjoint set structure and list of vertex degrees together use only two bytes per
vertex (for a graph of up to 256 vertices), thus, they fit our memory constraints whereas an
adjacency matrix or adjacency list (for dense graphs, noting that the graphs in question can
quickly become dense as vertices are eliminated) would readily exceed it.

4 Experiments

4.1 Instances
We selected a number of instances from the PACE 2016 dataset [12] and libtw [24].

All instances were preprocessed using the preprocessing rules of our PACE submission
[8], which split the graph using safe separators: we first split the graph into its connected
components, then split on articulation points, then on articulation pairs (making the remaining
components 3-connected) and finally - if we can establish that this is safe - on articulation
triplets (resulting in the 4-connected components of the graph). We then furthermore try
to detect (almost) clique separators in the graph, and split on those. For a more detailed
treatment of these preprocessing rules, we refer to [5].

T.C. van der Zanden and H. L. Bodlaender 29:7

Table 1 Performance of the algorithm on several benchmark graphs, using global memory and a
work size of 128.

Name |V | tw Time (sec.) Exp
GPU CPU

1e0b_graph 55 24 779 - 1730 ×106

1fjl_graph* 57 26 1730 - 3680 ×106

1igd_graph 59 25 107 5120 261 ×106

1ubq* 47 11 1130 - 2300 ×106

8x6_torusGrid* 48 7 1110 - 2100 ×106

BN_98 47 21 689 - 1590 ×106

contiki_dhcpc_handle_dhcp* 39 6 1490 - 2930 ×106

DoubleStarSnark 30 6 34,5 873 87,6 ×106

KneserGraph_8_3* 56 24 1710 - 4130 ×106

myciel5* 47 19 2000 70.600 4000 ×106

NonisotropicUnitaryPolarGraph_3_3 63 53 1,16 60,4 1,56 ×106

queen8_8 64 45 26,3 2040 57,9 ×106

RandomBarabasiAlbert_100_2* 41 12 1610 - 3280 ×106

RandomBoundedToleranceGraph_60 59 30 0,274 0,635 0,0560 ×106

SylvesterGraph 36 15 248 - 632 ×106

te* 62 7 1170 - 2160 ×106

4.2 General Benchmark

We first present an experimental evaluation of our algorithm (without using MMW) on a
set of benchmark graphs. Table 1 shows the number of vertices, computed treewidth, time
taken (in seconds) on the GPU and the number of sets S explored. Note that the time
does not include the time taken for preprocessing, and that the vertex count is that of the
preprocessed graph (and thus, the original graph may have been larger).

The size of the input and output lists were limited by the memory available on our GPU.
With the current configuration (limited to graphs of at most 64 vertices - though the code
is written to be flexible and can easily be changed to support up to 256 vertices), these
lists could hold at most 180 million states (i.e., subsets S ⊆ V that have a feasible partial
elimination order) each. If at any iteration this number was exceeded, the excess states were
discarded. The algorithm was allowed to continue execution for the current treewidth k, but
was terminated when trying the next higher treewidth (since we might have discarded a state
that would have lead to a solution with treewidth k, the answer would no longer be exact).
The states were the capacity of the lists was exceed are marked with *, if the algorithm was
terminated then the treewidth is stricken through (and represents the candidate value for
treewidth at which the algorithm was terminated, and not the treewidth of the graph, which
is likely higher).

For instance, for graph 1ubq the capacity of the lists was first exceeded at treewidth
10, and the algorithm was terminated at treewidth 11 (and thus the actual treewidth is at
least 10, but likely higher). For graph myciel5, the capacity of the lists was first exceeded
at treewidth 19, but still (despite discarding some states) a solution of treewidth 19 was
nevertheless found (which we thus know is the exact treewidth).

For several graphs (those where the GPU version of the algorithm took at most 5 minutes),
we also benchmarked a sequential version of the same algorithm on the CPU. In some cases,

IPEC 2017

29:8 Computing Treewidth on the GPU

Table 2 Running time (sec.) for various work group sizes (W), using shared (S) or global (G)
memory. Each cell lists the average result of 4 test runs, where the complete set of runs was executed
in a randomized order.

Name |V | tw Time (sec.)
W = 32 W = 64 W = 128 W = 256

1igd_graph (G) 59 25 109 107 107 107
1igd_graph (S) 59 25 94,8 95,6 98,2 103
1ku3_graph (G) 60 22 238 235 235 235
1ku3_graph (S) 60 22 214 217 222 230
queen8_8 (G) 64 45 29,5 26,6 26,3 26,0
queen8_8 (S) 64 45 25,1 24,1 24,5 25,0

the algorithm achieves a very large speedup compared to the CPU version (up to 77×, in the
case of queen8_8). Additionally, for myciel5, we also ran the CPU-based algorithm, which
took more than 19 hours to finish. The GPU version only took 34 minutes.

The GPU algorithm can process a large amount of states in a very short time. For
example, for the graph 1fjl, 3680 million states were explored in just 1730 seconds, i.e., over
2 million states were processed each second (and for each state, a Θ(|V ||E|)-time algorithm is
executed). The highest throughput (2.5 million states/sec.) is achieved on SylvesterGraph,
but this graph has relatively few vertices.

We caution the reader that the graph names are somewhat ambiguous. For instance, the
queen7_7 instance is from libtw and has treewidth 35. The 2016 PACE instances include
a graph called dimacs_queen7_7 which only has treewidth 28. The instances used in our
evaluation are available from our GitHub repository [9].

4.3 Work Size and Global v.s. Shared Memory

In this section, we study the effect of work size and whether shared or global memory is used
on the running time of our implementation.

Recall that shared memory is a small amount (in our case, 96KiB) of memory that is
physically close to each Streaming Multiprocessor, and is therefore in principle faster than the
(much larger, off-chip) global memory. We would therefore expect that our implementation
is faster when used with shared memory.

Each SM contains 128 CUDA cores, and thus 4 warps of 32 threads each can be executed
simultaneously on each SM. The work size (which should be a multiple of 32), represents
the number of threads we assign to each SM. If we set the work size larger than 128, more
threads than can physically be executed at once are assigned to one SM. The SM can then
switch between executing different warps, for instance to hide latency of memory accesses. If
the work size is smaller than 128, a number of CUDA cores will be unutilized.

In Table 2, we present some experiments that show running times on several graphs,
depending on whether shared memory or global memory is used, for several sizes of work
group (which is the number of threads allocated to a single SM).

There is not much difference between running the program using shared or global memory.
In most instances, the shared memory version is slightly faster. Surprisingly, it also appears
that the work size used does not affect the running time significantly. This suggests that our
program is limited by the throughput of memory, rather than being computationally-bound.

T.C. van der Zanden and H. L. Bodlaender 29:9

Table 3 The effect of using the Minor-Min-Width Heuristic. Time is in seconds. Global memory,
work size 128.

Name |V | tw With MMW Without MMW
Time Exp Time Exp

1e0b_graph 55 24 2750 1660 ×106 779 1730 ×106

1fjl_graph* 57 26 timeout 3260 ×106 1730 3680 ×106

1igd_graph 59 25 471 235 ×106 107 261 ×106

1ubq* 47 11 2010 1500 ×106 1130 2300 ×106

8x6_torusGrid* 48 7 1350 1300 ×106 1110 2100 ×106

BN_98 47 21 1480 1440 ×106 689 1590 ×106

contiki_dhcpc_handle_dhcp* 39 6 2670 2900 ×106 1490 2930 ×106

DoubleStarSnark 30 6 38,3 76,0 ×106 34,5 87,6 ×106

KneserGraph_8_3* 56 24 1330 1220 ×106 1730 4130 ×106

myciel5* 47 19 2550 3200 ×106 2000 4000 ×106

NonisotropicUnitaryPolarGraph_3_3 63 53 3,36 1,30 ×106 1,16 1,56 ×106

queen8_8 64 45 83,5 51,1 ×106 26,3 57,9 ×106

RandomBarabasiAlbert_100_2* 41 12 2390 2840 ×106 1610 3280 ×106

RandomBoundedToleranceGraph_60 59 30 0,630 0,0478 ×106 0,274 0,0560 ×106

SylvesterGraph 36 15 274 503 ×106 248 632 ×106

te* 62 10 2260 1690 ×106 1170 2160 ×106

4.4 Minor-Min-Width

In Table 3, we list results obtained when using Minor-Min-Width to prune states.
The computational expense of using MMW is comparable to that of the initial computation

(for determining the degree of vertices): the algorithm does a linear search for a minimum
degree vertex (using the precomputed degree values), and then does a graph traversal (using
BFS) to find a minimum degree neighbour (recall that we do not store the intermediate
graph, and use only a single copy of the original graph). Once such a neighbour is found, the
contraction is performed (by updating the disjoint set data structure) and another graph
traversal is required (to compute the number of common neighbours, and thus update the
degree of the vertex).

The lower bound given by MMW does not appear to be very strong, at least for the
graphs considered in our experiment: the reduction in number of states expanded is not very
large (for instance, from 1730 million states to 1660 million for 1e0b, or from 1590 million to
1480 million for BN_98). The largest reductions are visible for graphs on which we run out of
memory (for instance, from 4130 million to 1330 million for KneserGraph_8_3), but this is
likely because the search is terminated before we reach the actual treewidth (so we avoid the
part of our search where using a heuristic is least effective) and there are no graphs on which
we previously ran out of memory for which MMW allows us to determine the treewidth (the
biggest improvement is that we are able to determine that te has treewidth at least 10, up
from treewidth at least 7).

Consistent with the relatively low reduction in the number of states expanded, we see
the computation using MMW typically takes around 2 − 3 times longer. On the graphs
considered here, the reduction in search space offered by MMW does not offset the additional
cost of computing it.

Again, the GPU version is significantly faster than executing the same algorithm on the
CPU: we observed a 55× speedup for queen8_8. Still, given what we observed in Section

IPEC 2017

29:10 Computing Treewidth on the GPU

4.3, it is not clear whether our approach of not storing the intermediate graphs explicitly is
indeed the best approach. Our main motivation for taking this approach was to be able to
store the required data structures entirely in shared memory, but our experiments indicate
that for MMW, using global memory gives better performance than using shared memory.
However, the relatively good performance of global memory might be (partially) due to
caching and the small amount of data transferred, so it is an interesting open question to
determine whether the additional memory costs of using more involved data structures is
compensated by the potential speedup.

4.5 Loop Unnesting
Finally, we experimented with another technique, which aims to increase parallelism (and
thus speedup) by limiting branch divergence. However, as the results were discouraging, we
limit ourselves to a brief discussion.

The algorithm of Listing 1 consists of a loop (lines 5–22) over the (not yet eliminated)
vertices, inside of which is a depth-first search (which computes the degree of the vertex,
to determine whether it can be eliminated). The depth-first search in turn consists of a
loop which runs until the stack becomes empty (lines 10–19) inside of which is a final loop
over the neighbours of the current vertex (lines 12–18). This leads to two sources of branch
divergence:

First, if the graph is irregular, all threads in a warp have to wait for the thread that is
processing the highest degree vertex, even if they only have low-degree vertices.
Second, all threads in a warp have to wait for the longest of the BFS searches to finish
before they can start processing the next vertex.

To alleviate this, we proposed a technique which we call loop unnesting: rather than have
3 nested loops, we have only one loop, which simulates a state machine with 3 states: (1)
processing the adjacency list of a vertex, (2) having finished processing of an adjacency list
and being ready to pop a new vertex off the queue, or (3) having finished a BFS, and being
ready to begin computing the degree of a new vertex.

We considered a slightly more general version of this idea: in an (x, y)-unnesting of our
program, after every x iterations of the inner loop (exploring neighbours of the current vertex)
one iteration of the middle loop is executed (if exploring the adjacency list is finished, get a
new vertex from the queue), and for every y iterations of the middle loop, one iteration of
the outer loop is executed (begin processing an entirely new vertex). Thus, a (1, 1)-unrolling
corresponds to the state machine simulation described above, and an (∞,∞)-unrolling
corresponds to the original program.

Picking the right values for x, y means finding the right trade-off between checking
frequently enough whether a thread is ready to start working on another vertex, and the cost
of performing those checks. What we observed was surprising: while (1, 1), (3, 2) and (1,∞)-
unrollings gave reasonable results, the best results were obtained with (∞,∞)-unrollings (i.e.
the original, unmodified algorithm) and the performance of (∞, 1)-unrollings was abysmal.

We believe that a possible explanation may be that loop unnesting does work to some
extent, but not unnesting the loops has the advantage that all BFS searches running
simultaneously start from the same initial vertex, and (up to differences caused by different
sets S being used) will access largely the same values from the adjacency lists at the same time,
which may increase the efficiency of read operations. On the other hand, (∞, 1)-unnesting
can not take advantage of either phenomenon: different initial vertices may be processed
at any given time (so there is little consistency in memory accesses) and the inner loop

T.C. van der Zanden and H. L. Bodlaender 29:11

is not unnested at all so there is no potential to gain speedup there either. Perhaps for
larger graphs, where the difference in length of adjacency lists may be more pronounced,
or the amount of time a BFS takes varies more strongly with the initial vertes and S, loop
unnesting does provide speed up, but for the graphs considered here it does not appear to be
a beneficial choice.

5 Conclusions

We have presented an algorithm that computes treewidth on the GPU, achieving a very large
speedup over running the same algorithm on the CPU. Our algorithm is based on the classical
O∗(2n)-time dynamic programming algorithm [4] and our results represent (promising) first
steps in speeding up dynamic programming for treewidth on the GPU. The current best
known practical algorithm for computing treewidth is the algorithm due to Tamaki [22].
This algorithm is much more complicated, and porting it to the GPU would be a formidable
challenge but could offer an extremely efficient implementation for computing treewidth.

Given the large speedup achieved, we are no longer mainly limited by computation time.
Instead, our ability to solve larger instances is hampered by the memory required to store the
very large lists of partial solutions. Using minor-min-width did not prove effective in reducing
the number of states considerably, so it would be interesting to see how other heuristics and
pruning rules (such as simplicial vertex detection) could be implemented on the GPU.

GPUs are traditionally used to solve easy (e.g. linear time) problems on very large inputs
(such as the millions of pixels rendered on a screen, or exploring a graph with millions of
nodes), but clearly, the speedup offered by inexpensive GPUs would also be very welcome in
solving hard (NP-complete) problems on small instances. Exploring how techniques from
FPT and exact algorithms can be used on the GPU raises many interesting problems - not
only practical ones, but also theoretical: how should we model complex devices such as
GPUs, with their many types of memory and branch divergence issues?

Acknowledgements. We thank Jacco Bikker for discussions on the architecture of GPUs,
and Gerard Tel for discussions on hash functions.

Source Code and Instances. We have made our source code, as well as the graphs used
for the experiments, available on GitHub [9].

References
1 Austin Appleby. SMHasher. Accessed 2017-04-12. URL: https://github.com/aappleby/

smhasher.
2 Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.

ACM, 13(7):422–426, 1970.
3 Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions of small

treewidth. SIAM J. Comput., 25:1305–1317, 1996.
4 Hans L. Bodlaender, Fedor V. Fomin, Arie M. C. A. Koster, Dieter Kratsch, and Di-

mitrios M. Thilikos. On exact algorithms for treewidth. ACM Trans. Algorithms, 9(1):12:1–
12:23, 2012.

5 Hans L. Bodlaender and Arie M.C.A. Koster. Safe separators for treewidth. Discrete
Mathematics, 306(3):337–350, 2006.

6 Hans L. Bodlaender and Arie M.C.A. Koster. Combinatorial optimization on graphs of
bounded treewidth. The Computer Journal, 51(3):255–269, 2008.

IPEC 2017

https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher

29:12 Computing Treewidth on the GPU

7 Hans L. Bodlaender and Arie M.C.A. Koster. Treewidth computations II. Lower bounds.
Information and Computation, 209(7):1103–1119, 2011.

8 Hans L. Bodlaender and T. C. van der Zanden. BZTreewidth. Accessed 2017-04-11. URL:
https://github.com/TomvdZanden/BZTreewidth.

9 Hans L. Bodlaender and T. C. van der Zanden. GPGPU treewidth. Accessed 2017-04-21.
URL: https://github.com/TomvdZanden/GPGPU-Treewidth.

10 François Clautiaux, Jacques Carlier, Aziz Moukrim, and Stéphane Nègre. New lower and
upper bounds for graph treewidth. In Klaus Jansen, Marian Margraf, Monaldo Mastrolilli,
and José D. P. Rolim, editors, Experimental and Efficient Algorithms: Second International
Workshop, WEA 2003, pages 70–80. Springer, 2003.

11 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms. Springer, 1st
edition, 2015.

12 Holger Dell, Thore Husfeldt, Bart M. P. Jansen, Petteri Kaski, Christian Komusiewicz,
and Frances A. Rosamond. The parameterized algorithms and computational experiments
challenge (PACE). Accessed 2017-04-05. URL: https://pacechallenge.wordpress.com/
pace-2016/track-a-treewidth/.

13 Holger Dell, Thore Husfeldt, Bart M. P. Jansen, Petteri Kaski, Christian Komusiewicz, and
Frances A. Rosamond. The first parameterized algorithms and computational experiments
challenge. In Jiong Guo and Danny Hermelin, editors, 11th International Symposium on
Parameterized and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark,
volume 63 of LIPIcs, pages 30:1–30:9. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2016. doi:10.4230/LIPIcs.IPEC.2016.30.

14 P. Alex Dow. Search Algorithms for Exact Treewidth. PhD thesis, 2010.
15 P. Alex Dow and Richard E. Korf. Best-first search for treewidth. In Proceedings of the

22nd National Conference on Artificial Intelligence - Volume 2, AAAI’07, pages 1146–1151.
AAAI Press, 2007.

16 Vibhav Gogate and Rina Dechter. A complete anytime algorithm for treewidth. In Pro-
ceedings of the 20th Conference on Uncertainty in Artificial Intelligence, UAI ’04, pages
201–208. AUAI Press, 2004.

17 Alexander Hein and Arie M. C. A. Koster. An experimental evaluation of treewidth at
most four reductions. In Panos M. Pardalos and Steffen Rebennack, editors, Proceedings
of the 10th International Symposium on Experimental and Efficient Algorithms, SEA 2011,
volume 6630 of LNCS, pages 218–229. Springer, 2011.

18 M. Held and R. Karp. A dynamic programming approach to sequencing problems. Journal
of the Society for Industrial and Applied Mathematics, 10:196–210, 1962.

19 Adam Kirsch and Michael Mitzenmacher. Less hashing, same performance: Building a
better bloom filter. In Yossi Azar and Thomas Erlebach, editors, Algorithms – ESA 2006:
14th Annual European Symposium, pages 456–467. Springer, 2006.

20 NVIDIA. NVIDIA GeForce GTX 1080 Whitepaper. Accessed 2017-04-10. URL:
http://international.download.nvidia.com/geforce-com/international/pdfs/
GeForce_GTX_1080_Whitepaper_FINAL.pdf.

21 NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture: FERMI. Accessed
2017-04-12. URL: http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_
fermi_compute_architecture_whitepaper.pdf.

22 Hisao Tamaki. Positive-instance driven dynamic programming for treewidth. In Kirk Pruhs
and Christian Sohler, editors, 25th Annual European Symposium on Algorithms, ESA 2017,
September 4-6, 2017, Vienna, Austria, volume 87 of LIPIcs, pages 68:1–68:13. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.ESA.2017.68.

https://github.com/TomvdZanden/BZTreewidth
https://github.com/TomvdZanden/GPGPU-Treewidth
https://pacechallenge.wordpress.com/pace-2016/track-a-treewidth/
https://pacechallenge.wordpress.com/pace-2016/track-a-treewidth/
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.30
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://dx.doi.org/10.4230/LIPIcs.ESA.2017.68

T.C. van der Zanden and H. L. Bodlaender 29:13

23 Tom C. van der Zanden and Hans L. Bodlaender. Computing Treewidth on the GPU.
Preprint, 2017. arXiv:arXiv:1709.09990.

24 Thomas C. van Dijk, Jan-Pieter van den Heuvel, and Wouter Slob. Computing treewidth
with libtw, 2006. Accessed 2017-06-16. URL: http://www.treewidth.com/treewidth.

25 Y. Yuan. A fast parallel branch and bound algorithm for treewidth. In 2011 IEEE 23rd
International Conference on Tools with Artificial Intelligence, pages 472–479, 2011.

26 Rong Zhou and Eric A. Hansen. Combining breadth-first and depth-first strategies in
searching for treewidth. In Proceedings of the 21st International Joint Conference on Ar-
tifical Intelligence, IJCAI’09, pages 640–645. Morgan Kaufmann Publishers Inc., 2009.

IPEC 2017

http://arxiv.org/abs/arXiv:1709.09990
http://www.treewidth.com/treewidth

The PACE 2017 Parameterized Algorithms and
Computational Experiments Challenge: The
Second Iteration∗

Holger Dell1, Christian Komusiewicz2, Nimrod Talmon3, and
Mathias Weller4

1 Saarland University and Cluster of Excellence (MMCI), Saarbrücken,
Germany
hdell@mmci.uni-saarland.de

2 Friedrich-Schiller-University Jena, Germany
christian.komusiewicz@uni-jena.de

3 Weizmann Institute of Science, Rehovot, Israel
nimrod.talmon@weizmann.ac.il

4 Laboratory of Informatics, Robotics, and Microelectronics of Montpellier
(LIRMM), France
weller@lirmm.fr

Abstract
In this article, the Program Committee of the Second Parameterized Algorithms and Computa-
tional Experiments challenge (PACE 2017) reports on the second iteration of the PACE challenge.
Track A featured the Treewidth problem and Track B the Minimum Fill-In problem. Over 44
participants on 17 teams from 11 countries submitted their implementations to the competition.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, K.7.2 Organi-
zations

Keywords and phrases treewidth, minimum fill-in, contest, implementation challenge, FPT

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.30

1 Introduction

The Parameterized Algorithms and Computational Experiments Challenge (PACE) was
conceived in Fall 2015 to help deepen the relationship between parameterized algorithmics
and practice. In particular, it aims to:
1. Bridge between algorithm design and analysis theory and algorithm engineering practice.
2. Inspire new theoretical developments.
3. Investigate the competitiveness of analytical and design frameworks developed in the

communities.
4. Produce universally accessible libraries of implementations and repositories of benchmark

instances.
5. Encourage dissemination of the findings in scientific papers.

∗ The PACE challenge was supported by Networks, an NWO Gravitation project of the University of
Amsterdam, Eindhoven University of Technology, Leiden University, and the Center for Mathematics
and Computer Science (CWI).

© Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 30; pp. 30:1–30:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

30:2 PACE 2017

The first iteration of PACE was held in 2016 [10] and has met many of its aims. For instance,
PACE is mentioned as inspiration in numerous papers [1, 2, 12, 13, 17, 19, 23, 31, 34, 35].
Here, we report on the second iteration of PACE.

The PACE 2017 challenge was announced on December 1, 2016 with two tracks: Track A
(Treewidth) and Track B (Minimum Fill-In). The final version of the submissions was due
on May 1, 2017. We informed the participants of the result on June 1, 2017, and announced
them to the public on September 6, 2017, during the award ceremony at the International
Symposium on Parameterized and Exact Computation (IPEC 2017) in Vienna.

2 Competition track A: Treewidth

The objective of this track is to compute a minimum tree-decomposition of a given graph:
Input: An undirected graph.
Output: A minimum-width tree-decomposition of the graph.

The treewidth, which is the width of a minimum-width tree-decomposition, is one of the
most important graph parameters in parameterized algorithms. Treewidth implementations
are used in various contexts, for example in register allocation (e.g. [33]), shortest path
computation (e.g. [9]), probabilistic inference (e.g. [21]), graph theory (e.g. [22]), and low-
dimensional topology (e.g. [7]).

Last year’s PACE challenge achieved the first systematic comparison between different
implementations that compute minimum tree decompositions [10]. Since treewidth is such
a central problem, we wanted to see more improvement. We required all submission to
be single-threaded (with the exception of wrapper threads forced by limitations of the
programming language). The PACE 2017 treewidth track consisted of the following two
independent competitions.
Exact competition: Compute a tree-decomposition of minimum width. You have 30 minutes

per instance. Win by solving more instances than the other participants.
Heuristic competition: Compute some tree-decomposition. You have 30 minutes per in-

stance. Win by printing solutions of smaller width than the other participants.
All instances used in the competition of PACE 2017 were derived from the following sources:
transit and road networks that were submitted to PACE 2016, instances from the SAT
competition, instances from the UAI 2014 inference competition, and some instances from
treedecomposition.com. In contrast to the treewidth competition of PACE 2016, no
randomly generated instances were used. We cleaned up all instances as follows. We deleted
vertices of degree one. For vertices v with exactly two non-adjacent neighbors u and w, we
deleted v and added the edge uw. Finally, we kept only the largest connected component
and deleted all other connected components. The base pool and all derived competition
instances can be downloaded from github.com/PACE-challenge/Treewidth.

For the heuristic competition, we selected 200 instances he001.gr, . . . , he200.gr from the
base pool, ordered by file size and anonymized. For the exact competition, we systematically
derived 200 instances ex001.gr, . . . , ex200.gr from the base pool, roughly ordered by their
believed hardness. We made the odd-numbered instances public when PACE 2017 was
announced, and we kept the even-numbered instances secret until the submission deadline.
The final competition and ranking was based only on the secret instances. Figure 1 shows
some statistics for the two secret instance sets.

treedecomposition.com
https://github.com/PACE-challenge/Treewidth

H. Dell, C. Komusiewicz, N. Talmon, and M. Weller 30:3

102 103

102

103

104

105

Vertices

Ed
ge
s

102 103 104 105 106 107

102

103

104

105

106

107

Vertices

Ed
ge
s

Figure 1 The PACE 2017 secret instance sets consist of the even-numbered instances ex002.gr,
. . . , ex200.gr (left) and he002.gr, . . . , he200.gr (right). We plot the number n of vertices and the
number m of edges. The exact competition contained instances whose treewidth was between 6
and 540, with a median of 11 and a mean of 31; the median best treewidth found for the heuristic
competition was 93, and the mean was 13,038.

2.1 Exact competition: Compute an optimal tree decomposition
Three implementations were submitted to the exact treewidth competition of PACE 2017.
Let us compare the three submissions to PACE 2017 and the winning submission from last
year on a particular instance ex196.gr, which has 242 vertices, 443 edges, and treewidth 11:

winner of PACE 2017

second place of PACE 2017

third place of PACE 2017
winner of PACE 2016

17

27

71

4,921

Running time on input ex196.gr (in seconds)

All three PACE 2017 submissions are two orders of magnitude faster than last year!
The instance ex196.gr was generated as follows: We started with the MMAP instance

Promedas_30 from the UAI 2014 inference competition. Since many probabilistic inference
algorithms first compute a good tree decomposition of the input, instances like Promedas_30
are great to include in the base pool for the treewidth competition. Exact treewidth solvers
don’t scale enough yet to solve the entire instance, which has 1155 vertices and 2290 edges.
It took the winning submission for the PACE 2017 heuristic treewidth challenge about 7
days to compute an upper bound of 51 on the treewidth of Promedas_30. Thus for the exact
treewidth competition, we had to make the instance more tractable. To do so; a random
center vertex was chosen and the graph induced by all vertices at distance at most r from
this center was kept. The instance generated this way was then cleaned again by taking care
of vertices of degree one and two. The radius r was increased as much as possible so that
last year’s winning submission can solve the instance in just under two hours. The setting
r = 5 gives rise to the graph ex196.gr.

All PACE 2017 instances for the exact treewidth competition were derived in a similar
fashion from the base pool of instances and it took several CPU months to choose the radii
appropriately. While the instances were chosen to be hard, we were surprised by the fantastic

IPEC 2017

30:4 PACE 2017

Figure 2 For each competition instance ex002.gr, . . . , ex200.gr (on the horizontal axis), we plot
the running time in seconds (on the vertical axis). The instances are sorted by increasing running
time for the winning solver of Larisch and Salfelder.

improvements seen in treewidth implementations when compared to last year: most of the
instances we generated can now be solved in a few seconds. The mean running time on the
secret instances ex002.gr, . . . , ex200.gr was only 12 seconds, and the slowest was an instance
solved in 162 seconds. As a consequence, the best two submissions solved all PACE 2017
competition instances within the allotted time of 30 minutes. In the announcement of the
PACE 2017 competition, we defined the following tie-breaker rule for this situation: The
winning solver is the one which is faster on most instances. The winning submission solved
about 67% of the instances faster than the one we ranked second. Here is the final ranking:

1st place: Lukas Larisch (King-Abdullah University of Science and Engineering) and
Felix Salfelder (University of Leeds) solved all 100 instances
github.com/freetdi/p17
2nd place: Hiromu Ohtsuka and Hisao Tamaki (Meiji University) solved all 100 instances
github.com/TCS-Meiji/PACE2017-TrackA
3rd place: Max Bannach (University of Lübeck), Sebastian Berndt (University of
Lübeck), and Thorsten Ehlers (University of Kiel) solved 89 instances
github.com/maxbannach/Jdrasil

While the solver by Larisch and Salfelder is fastest on most instances, its running time has
a large variance and there are some instances where its running time almost reaches the
allowed 30 minutes. The cumulative total time to solve all 100 instances was 4478 seconds
for Larisch and Salfelder and 2747 seconds for Ohtsuka and Tamaki.

2.2 Heuristic competition: Compute some tree decomposition
There were six participating teams in the heuristic challenge. The selected instances were
chosen from the largest few instances from each category in the base pool.

For the ranking, each instance was considered to be a “voter” where smaller width leads to
a better rank for the submission; outputting no solution was ranked the same as outputting a
trivial solution. To avoid misguided micro-optimization incentives, a solution was considered

https://github.com/freetdi/p17
https://github.com/TCS-Meiji/PACE2017-TrackA
https://github.com/maxbannach/Jdrasil

H. Dell, C. Komusiewicz, N. Talmon, and M. Weller 30:5

Approx. Ratio Diff. to best Sol.[%]
Competitor Avg. Max. = 0 ≤ 1 ≤ 2 <∞

tamaki_tw-heuristic 1.30 9.61 51 52 52 92
strasser_flow_cutter_pace17 1.08 1.55 42 50 56 100
abseher_htd_gr2td_exhaustive.sh 1.11 2.37 25 37 46 95
bannach_tw-heuristic 1.19 3.90 21 29 32 93
terrioux1_minfill_mrs 1.30 2.43 9 13 17 81
terrioux2_minfillbg_mrs 4.68 139.70 10 14 18 71
larisch_tw-heuristic 1.56 3.74 6 8 13 54

Figure 3 This table lists statistics on the solution quality for each competitor, across the even-
numbered instances he002.gr, . . . , he200.gr. The approximation ratio that a solver achieves on an
instance is the fraction of the treewidth upper bound achieved by the solver divided by the best
width achieved by any solver. The average approximation ratio takes the average across all 100
instances, while the maximum approximation ratio is the worst approximation ratio achieved across
the instances. The four columns on the right display additive errors. For example, Tamaki et al.
achieve the best treewidth upper bound on 51 of the instances, achieve at most the best plus one
on 52 instances, achieve the best plus two on 52 instances, and obtain a non-trivial solution (width
≤ n− 5) on 92 instances. The best result in each column is highlighted in bold.

“non-trivial” if its width is at most the number of vertices of the input graph minus 5. The
preference lists for each instance are then combined using the Schulze method. Since there is
a Concordet winner, most sensible voting schemes would have given the same result. The
final ranking for the PACE 2017 heuristic treewidth challenge is this:

1st place: Keitaro Makii, Hiromu Ohtsuka, Takuto Sato, Hisao Tamaki (Meiji University)
github.com/TCS-Meiji/PACE2017-TrackA
2nd place: Ben Strasser (Karlsruhe Institute of Technology)
github.com/kit-algo/flow-cutter-pace17
3rd place: Michael Abseher, Nysret Musliu, Stefan Woltran (TU Wien, Institute of
Information Systems)
github.com/mabseher/htd
4th place: Max Bannach (University of Lübeck), Sebastian Berndt (University of
Lübeck), and Thorsten Ehlers (University of Kiel)
github.com/maxbannach/Jdrasil
5th place: Philippe Jégou, Hanan Kanso, Cyril Terrioux (Aix-Marseille Université,
LSIS)
github.com/td-mrs/minfill_mrs.git, github.com/td-mrs/minfillbg_mrs.git
6th place: Lukas Larisch (King-Abdullah University of Science and Engineering) and
Felix Salfelder (University of Leeds)
github.com/freetdi/p17

The solver by Tamaki et al. dominates the one of Strasser on 51.65% of the instances.
This means that, after subtracting the 9 instances on which they produce the same width,
just a bit more than half of the remaining instances (namely, 47) are solved better by the first
solver, and a bit less than half (namely, 44) are solved better by the second (see Figure 4).
Strasser’s submission dominates the one of Abseher et al. on 52.05% of the non-tied instances.
The top 3 submissions dominate the submission of Bannach et al. with 62%, and the top 4
submissions each dominate the remaining two submission by 90% or more.

The solver of Tamaki et al. is particularly good at small instances, where it is able to avoid
off-by-one errors well. In fact, as can be seen from Figure 3, the Schulze method ranking

IPEC 2017

https://github.com/TCS-Meiji/PACE2017-TrackA
https://github.com/kit-algo/flow-cutter-pace17
https://github.com/mabseher/htd
https://github.com/maxbannach/Jdrasil
https://github.com/td-mrs/minfill_mrs.git
https://github.com/td-mrs/minfillbg_mrs.git
https://github.com/freetdi/p17

30:6 PACE 2017

Figure 4 Comparison between Tamaki et al. and Strasser (top) and Strasser and Abseher et al.
(bottom). For each even-numbered instance he002.gr, . . . , he200.gr (on the horizontal axis), we
plot its number of edges in logscale (yellow line) and the best upper bound on the treewidth achieved
during the competition (red line), also in logscale. It can be observed that the treewidth upper
bound grows with the number of edges in our instance set. The blue bars depict the advantage for the
first solver over the second (negative bars represent a disadvantage). More precisely, the advantage
is ε if T = (1− ε)S holds, where T is the width produced by the first and S is the width produced
by the second solver. Interestingly, the solver of Tamaki et al. appears to do consistently well on the
smaller instances, many of which were derived from the UAI 2014 inference competition and from
treewidth.com, while Strasser’s submission performs consistently better on larger instance.

system has, in this case, punished off-by-one errors quite a bit. On very large instances, a
more meaningful measure of quality would be the average or maximum approximation ratio
achieved, where the solver of Strasser et al. excels.

treewidth.com

H. Dell, C. Komusiewicz, N. Talmon, and M. Weller 30:7

3 Competition track B: Minimum fill-in

The objective of this track was to solve the NP-hard Minimum Fill-In problem, defined as
follows.
Input: An undirected simple graph G = (V, E).
Output: A minimum-size set of edges such that adding these edges to G results in a simple

chordal graph, that is, a graph in which every induced cycle has length exactly three.

Minimum Fill-In has applications in optimizing Gaussian elimination on sparse sym-
metric matrices and in computational phylogenetics [6, 18] and it is notorious for being
one of the open problems in the first edition of Garey and Johnson’s monograph on NP-
completeness [16]. Yannakakis later proved that the problem is NP-complete [36]. Minimum
Fill-In is fixed-parameter tractable when parameterized by the number k of edges that need
to be added to make the graph chordal [8, 4, 15, 20]. The fastest parameterized algorithm
for this parameter has a subexponential running time of 2o(k) + O(k2nm) [15]. The problem
also admits a polynomial problem kernel with respect to this parameter [20, 26], the current
best bound on the kernel size is O(k2) [26]. The best exact algorithms for solving Minimum
Fill-In are based on the technique of dynamic programming over so-called potential maximal
cliques [5, 14, 15].

Test Instances

The test instances were derived from several sources. In light of the application of optimizing
Gaussian elimination, several instances were taken as-is from the Matrix Market [24] and the
Network Repository [27]. In context of phylogenetic tree reconstruction, we used 39 alignments
of different mammalian DNA markers obtained from the OrthoMaM database [30, 11]. Each
alignment is then interpreted as a character-state matrix. Buneman’s theorem [6] states
that each such character-state matrix allows reconstructing a perfect phylogeny if and only
if the “character-state intersection graph1” has a chordal supergraph with some specific
properties. Thus, we wrote a program to convert the character-state matrices to character-
state intersection graphs [25] and used these graphs for the competition. To allow for a
smooth transition from easy to hard instances, we sampled connected subgraphs of the
real-world instances whose density did not deviate too much from the density of the original
instance. An overview of the number of vertices and edges in the set of hidden instances is
shown in Figure 5. The 200 resulting graphs were divided into 100 public instances (that
the participants could test their implementations on), and 100 hidden instances (used to
determine the ranking of the submissions).

Rules

The PACE 2017 Minimum Fill-In track was a competition to solve as many test instances of
Minimum Fill-In within the allowed time limit of 30 minutes per instance. The winners were
selected based on the number of solved hidden instances. Concentrating on fixed-parameter
tractability, we disallowed the use of SAT solvers, ILP solvers, or similar general solvers for
NP-hard problems. Further, as the competition should be about exact solvers, submissions
producing at least one incorrect or suboptimal solution were ranked below any other solvers
producing only optimal solutions.

1 For each species s, the character-state intersection graph contains a clique of the vertices (c, i) such that
character c has state i in species s.

IPEC 2017

30:8 PACE 2017

102 103 104

102

103

104

Vertices

Ed
ge
s

25 50 100 500 1000 3000

102

103

Vertices

Fi
ll-
In

Figure 5 Left: Distribution of vertex and edge numbers for the hidden benchmark instances of
Track B. Blue dots indicate that the instance was solved by the winning submission, the yellow dot
indicates the one instance among all solved instances that was not solved by the winning submission
(but by the runner-up), red dots indicate instances that have not been solved by any submission.
Right: Instance size vs. solution size for the instances solved by the winning submission.

Submissions

Eight implementations were submitted to the Minimum Fill-in competition of PACE 2017.
Their ranking is given below, while we provide a brief explanation on the solutions of the
three top-ranked submissions.

1st place: Yasuaki Kobayashi (Kyoto University) and Hisao Tamaki (Meiji University).
Their submission is written in Java and solved 54 of 100 instances (indeed, all but
one instances that could not be solved by their submission could also not be solved by
any other submission returning only optimal solutions). The submission first uses data
reduction where some of the reduction rules are generalizations of rules developed by
Bodlaender et al. [4]. Then the instance is decomposed using Tarjan’s clique decomposition
algorithm [32]. The resulting instances are solved by adapting Tamaki’s modification [31]
of Bouchitté and Todinca’s dynamic programming algorithm [5]. The source code is
available at github.com/TCS-Meiji/PACE2017-TrackB.
2nd place: Jeremias Berg, Matti Järvisalo, and Tuukka Korhonen (University of Hel-
sinki). Their submission is written in C++ and solved 45 of 100 instances. The general
idea of the submission is to use Tarjan’s clique decomposition [32], then to apply parts
of the known kernelization algorithms, and finally to use dynamic programming over
potential maximal cliques [5]. The source code is available at
github.com/Laakeri/PACE2017-min-fill.
3rd place: Édouard Bonnet (University Paris-Dauphine), R.B. Sandeep (Hungarian
Academy of Sciences), and Florian Sikora (University Paris-Dauphine). Their submission
is written in Python and solved 23 of 100 instances. The submission uses Tarjan’s
clique decomposition followed by kernelization and dynamic programming over potential
maximal cliques [5]. The source is available at bitbucket.org/Florian_dauphine/mfi.
4th place: Anders Wind Steffensen and Mikael Lindemann (IT University of Copen-
hagen). Their submission is written in Java and solved 13 out of 100 instances.
5th place: Kaustubh Joglekar, Akshay Kamble, and Rajesh Pandian (Indian Institute
Of Technology, Madras). Their submission is written in C++ and solved 10 of 100
instances.
6th place: Saket Saurabh and Prafullkumar Tale (Institute of Mathematical Sciences,

https://github.com/TCS-Meiji/PACE2017-TrackB
https://github.com/Laakeri/PACE2017-min-fill
https://bitbucket.org/Florian_dauphine/mfi

H. Dell, C. Komusiewicz, N. Talmon, and M. Weller 30:9

Chennai). Their submission is written in Python and solved 19 of 100 instances. For 28
instances the provided solution was suboptimal. For 13 instances, the submission was the
only one to output any solution. The suboptimal solutions are usually quite close to the
optimal solutions. Hence, this submission can be viewed as a good heuristic.
7th place: Mani Ghahremani (University of Portsmouth). Their submission is written
in Java and solved 5 of 100 instances. For one instance, the provided solution was
suboptimal.
8th place: Frederik Madsen, Mikkel Gaub, and Malthe Kirkbro (IT University of
Copenhagen). Their submission is written in C++ and solved 3 of 100 instances. For 3
instances, the provided solution was suboptimal.

We remark that the hidden instances were chosen to be especially challenging, hence the
organizers expected that submissions would solve only a minority of the instances. Thus,
solving more than 50% of the instances seems to be a remarkable contribution. All three
winning contributions were faster than our naïve ILP formulation. An implementation we
obtained of a more involved ILP formulation [3] was proven incorrect by the submissions;
it remains to evaluate whether the error is due to the formulation itself or the scripts that
generate the ILP from the graph data.

4 PACE organization

In September 2017, Frances Rosamond transferred the Steering Committee Chair to Bart
Jansen. The Steering Committee and the PACE 2017 Program Committee are as follows.

Steering
committee:

Holger Dell Saarland University & Cluster of Excellence
Thore Husfeldt ITU Copenhagen & Lund University
Bart M. P. Jansen (chair) Eindhoven University of Technology
Petteri Kaski Aalto University
Christian Komusiewicz Friedrich-Schiller-University Jena
Frances A. Rosamond University of Bergen

Track A: Holger Dell Saarland University & Cluster of Excellence

Track B:
Christian Komusiewicz Friedrich-Schiller-University Jena
Nimrod Talmon Weizmann Institute of Science
Mathias Weller Laboratory of Informatics, Robotics, and

Microelectronics of Montpellier (LIRMM)

The Program Committee of PACE 2018 will be chaired by Édouard Bonnet (Middlesex
University, London) and Florian Sikora (Université Paris Dauphine).

5 Conclusion

As organizers, we consider the second iteration of PACE to be a huge success. We had great
submissions building on existing and new theoretical ideas, which led to fast programs that
performed well on the real-word inputs to which they were applied. The award ceremony at
IPEC was very well attended, and many of the ALGO 2017 participants showed an interest
in the competition. Tamaki [31] won a best paper award at ESA 2017 for ideas that led to
his three PACE 2017 submissions, and his paper was directly inspired by PACE.

We thank all the participants for their enthusiasm and look forward to many interesting
iterations of the challenge in the future. We also thank all members of the community for

IPEC 2017

30:10 PACE 2017

their input in formulating the goals and setup of the challenge. We welcome anyone who is
interested to add their name to the mailing list on the website [29] to receive PACE updates
and join the discussion. In particular, plans for PACE 2018 will be posted there.

Acknowledgments. We are grateful to Szymon Wasik for the fruitful collaboration and for
hosting the competition at optil.io . Prize money and travel grants were given through the
generosity of Networks [28], an NWO Gravitation project of the University of Amsterdam,
Eindhoven University of Technology, Leiden University, and the Center for Mathematics and
Computer Science (CWI). We thank Ben Strasser for suggesting Figure 3.

References

1 Michael Abseher, Nysret Musliu, and Stefan Woltran. htd - A free, open-source framework
for (customized) tree decompositions and beyond. In Domenico Salvagnin and Michele
Lombardi, editors, Integration of AI and OR Techniques in Constraint Programming -
14th International Conference, CPAIOR 2017, Padua, Italy, June 5-8, 2017, Proceedings,
volume 10335 of Lecture Notes in Computer Science, pages 376–386. Springer, 2017. doi:
10.1007/978-3-319-59776-8_30.

2 Max Bannach, Sebastian Berndt, and Thorsten Ehlers. Jdrasil: A modular library for
computing tree decompositions. In Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi,
and Rajeev Raman, editors, 16th International Symposium on Experimental Algorithms,
SEA 2017, June 21-23, 2017, London, UK, volume 75 of LIPIcs, pages 28:1–28:21. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.SEA.2017.28.

3 David Bergman and Arvind U. Raghunathan. A benders approach to the minimum chordal
completion problem. In Laurent Michel, editor, Integration of AI and OR Techniques in
Constraint Programming - 12th International Conference, CPAIOR 2015, Barcelona, Spain,
May 18-22, 2015, Proceedings, volume 9075 of Lecture Notes in Computer Science, pages
47–64. Springer, 2015. doi:10.1007/978-3-319-18008-3_4.

4 Hans L. Bodlaender, Pinar Heggernes, and Yngve Villanger. Faster parameterized
algorithms for minimum fill-in. Algorithmica, 61(4):817–838, 2011. doi:10.1007/
s00453-010-9421-1.

5 Vincent Bouchitté and Ioan Todinca. Treewidth and minimum fill-in: Grouping the minimal
separators. SIAM J. Comput., 31(1):212–232, 2001. doi:10.1137/S0097539799359683.

6 Peter Buneman. A characterisation of rigid circuit graphs. Discrete Mathematics, 9(3):205–
212, 1974. doi:10.1016/0012-365X(74)90002-8.

7 Benjamin A. Burton, Ryan Budney, William Pettersson, et al. Regina: Software for low-
dimensional topology, 1999–2016. URL: http://regina-normal.github.io.

8 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett., 58(4):171–176, 1996. doi:10.1016/0020-0190(96)00050-6.

9 Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. Optimal reach-
ability and a space-time tradeoff for distance queries in constant-treewidth graphs. In
Piotr Sankowski and Christos D. Zaroliagis, editors, 24th Annual European Symposium
on Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark, volume 57 of LIPIcs,
pages 28:1–28:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/
LIPIcs.ESA.2016.28.

10 Holger Dell, Thore Husfeldt, Bart M. P. Jansen, Petteri Kaski, Christian Komusiewicz, and
Frances A. Rosamond. The first parameterized algorithms and computational experiments
challenge. In Jiong Guo and Danny Hermelin, editors, 11th International Symposium on
Parameterized and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark,

https://www.optil.io
http://dx.doi.org/10.1007/978-3-319-59776-8_30
http://dx.doi.org/10.1007/978-3-319-59776-8_30
http://dx.doi.org/10.4230/LIPIcs.SEA.2017.28
http://dx.doi.org/10.1007/978-3-319-18008-3_4
http://dx.doi.org/10.1007/s00453-010-9421-1
http://dx.doi.org/10.1007/s00453-010-9421-1
http://dx.doi.org/10.1137/S0097539799359683
http://dx.doi.org/10.1016/0012-365X(74)90002-8
http://regina-normal.github.io
http://dx.doi.org/10.1016/0020-0190(96)00050-6
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.28
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.28

H. Dell, C. Komusiewicz, N. Talmon, and M. Weller 30:11

volume 63 of LIPIcs, pages 30:1–30:9. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2016. doi:10.4230/LIPIcs.IPEC.2016.30.

11 Emmanuel J. P. Douzery, Celine Scornavacca, Jonathan Romiguier, Khalid Belkhir, Nicolas
Galtier, Frédéric Delsuc, and Vincent Ranwez. OrthoMaM v8: A database of orthologous
exons and coding sequences for comparative genomics in mammals. Molecular Biology and
Evolution, 31(7):1923–1928, 2014. doi:10.1093/molbev/msu132.

12 Johannes Klaus Fichte, Markus Hecher, Michael Morak, and Stefan Woltran. Answer set
solving with bounded treewidth revisited. In Marcello Balduccini and Tomi Janhunen,
editors, Logic Programming and Nonmonotonic Reasoning - 14th International Conference,
LPNMR 2017, Espoo, Finland, July 3-6, 2017, Proceedings, volume 10377 of Lecture Notes
in Computer Science, pages 132–145. Springer, 2017. doi:10.1007/978-3-319-61660-5_
13.

13 Johannes Klaus Fichte, Markus Hecher, Michael Morak, and Stefan Woltran. DynASP2.5:
Dynamic programming on tree decompositions in action. In Proceedings of the 12th
International Symposium on Parameterized and Exact Computation (IPEC 2017), Leib-
niz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, 2017. doi:
10.4230/LIPIcs.IPEC.2017.17.

14 Fedor V. Fomin, Dieter Kratsch, Ioan Todinca, and Yngve Villanger. Exact algorithms for
treewidth and minimum fill-in. SIAM J. Comput., 38(3):1058–1079, 2008. doi:10.1137/
050643350.

15 Fedor V. Fomin and Yngve Villanger. Subexponential parameterized algorithm for mini-
mum fill-in. SIAM J. Comput., 42(6):2197–2216, 2013. doi:10.1137/11085390X.

16 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

17 Serge Gaspers, Joachim Gudmundsson, Mitchell Jones, Julián Mestre, and Stefan Rümmele.
Turbocharging treewidth heuristics. In Jiong Guo and Danny Hermelin, editors, 11th
International Symposium on Parameterized and Exact Computation, IPEC 2016, August
24-26, 2016, Aarhus, Denmark, volume 63 of LIPIcs, pages 13:1–13:13. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.IPEC.2016.13.

18 Rob Gysel, Kristian Stevens, and Dan Gusfield. Reducing problems in unrooted tree
compatibility to restricted triangulations of intersection graphs. In Benjamin J. Raphael
and Jijun Tang, editors, Algorithms in Bioinformatics - 12th International Workshop,
WABI 2012, Ljubljana, Slovenia, September 10-12, 2012. Proceedings, volume 7534
of Lecture Notes in Computer Science, pages 93–105. Springer, 2012. doi:10.1007/
978-3-642-33122-0_8.

19 Yoichi Iwata. Linear-time kernelization for feedback vertex set. In Ioannis Chatzigiannakis,
Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on
Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland,
volume 80 of LIPIcs, pages 68:1–68:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2017. doi:10.4230/LIPIcs.ICALP.2017.68.

20 Haim Kaplan, Ron Shamir, and Robert Endre Tarjan. Tractability of parameterized com-
pletion problems on chordal and interval graphs: Minimum fill-in and physical mapping.
In 35th Annual Symposium on Foundations of Computer Science, Santa Fe, New Mex-
ico, USA, 20-22 November 1994, pages 780–791. IEEE Computer Society, 1994. doi:
10.1109/SFCS.1994.365715.

21 Kalev Kask, Andrew Gelfand, Lars Otten, and Rina Dechter. Pushing the power of stochas-
tic greedy ordering schemes for inference in graphical models. In Wolfram Burgard and Dan
Roth, editors, Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2011, San Francisco, California, USA, August 7-11, 2011. AAAI Press, 2011. URL:
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3771.

IPEC 2017

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.30
http://dx.doi.org/10.1093/molbev/msu132
http://dx.doi.org/10.1007/978-3-319-61660-5_13
http://dx.doi.org/10.1007/978-3-319-61660-5_13
http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.17
http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.17
http://dx.doi.org/10.1137/050643350
http://dx.doi.org/10.1137/050643350
http://dx.doi.org/10.1137/11085390X
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.13
http://dx.doi.org/10.1007/978-3-642-33122-0_8
http://dx.doi.org/10.1007/978-3-642-33122-0_8
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.68
http://dx.doi.org/10.1109/SFCS.1994.365715
http://dx.doi.org/10.1109/SFCS.1994.365715
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3771

30:12 PACE 2017

22 Masashi Kiyomi, Yoshio Okamoto, and Yota Otachi. On the treewidth of toroidal grids.
Discrete Applied Mathematics, 198:303–306, 2016. doi:10.1016/j.dam.2015.06.027.

23 Neha Lodha, Sebastian Ordyniak, and Stefan Szeider. Sat-encodings for special treewidth
and pathwidth. In Serge Gaspers and Toby Walsh, editors, Theory and Applications of Sat-
isfiability Testing - SAT 2017 - 20th International Conference, Melbourne, VIC, Australia,
August 28 - September 1, 2017, Proceedings, volume 10491 of Lecture Notes in Computer
Science, pages 429–445. Springer, 2017. doi:10.1007/978-3-319-66263-3_27.

24 Matrix market. URL: http://math.nist.gov/MatrixMarket/.
25 Multiple-alignment to character-state intersection graph converter, 2017. URL: https:

//github.com/PACE-challenge/phylo_converter.
26 Assaf Natanzon, Ron Shamir, and Roded Sharan. A polynomial approximation algorithm

for the minimum fill-in problem. SIAM J. Comput., 30(4):1067–1079, 2000. doi:10.1137/
S0097539798336073.

27 Network repository. URL: http://networkrepository.com/.
28 Networks project, 2017. URL: http://www.thenetworkcenter.nl.
29 Parameterized Algorithms and Computational Experiments website, 2015–2017. URL:

https://pacechallenge.wordpress.com.
30 Vincent Ranwez, Frédéric Delsuc, Sylvie Ranwez, Khalid Belkhir, Marie-Ka Tilak, and Em-

manuel JP Douzery. OrthoMaM: A database of orthologous genomic markers for placental
mammal phylogenetics. BMC Evolutionary Biology, 7(1):241, Nov 2007. Database accessed
2017 at http://orthomam.univ-montp2.fr. doi:10.1186/1471-2148-7-241.

31 Hisao Tamaki. Positive-instance driven dynamic programming for treewidth. In Kirk Pruhs
and Christian Sohler, editors, 25th Annual European Symposium on Algorithms, ESA 2017,
September 4-6, 2017, Vienna, Austria, volume 87 of LIPIcs, pages 68:1–68:13. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.ESA.2017.68.

32 Robert Endre Tarjan. Decomposition by clique separators. Discrete Mathematics,
55(2):221–232, 1985. doi:10.1016/0012-365X(85)90051-2.

33 Mikkel Thorup. All structured programs have small tree-width and good register allocation.
Inf. Comput., 142(2):159–181, 1998. doi:10.1006/inco.1997.2697.

34 Tom C. van der Zanden and Hans L. Bodlaender. Computing treewidth on the GPU. In
Proceedings of the 12th International Symposium on Parameterized and Exact Computa-
tion (IPEC 2017), Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl,
Germany, 2017. doi:10.4230/LIPIcs.IPEC.2017.29.

35 Rim van Wersch and Steven Kelk. Toto: An open database for computation, storage
and retrieval of tree decompositions. Discrete Applied Mathematics, 217:389–393, 2017.
doi:10.1016/j.dam.2016.09.023.

36 Mihalis Yannakakis. Computing the minimum fill-in is NP-complete. SIAM Journal on
Algebraic Discrete Methods, 2(1):77–79, 1981. doi:10.1137/0602010.

http://dx.doi.org/10.1016/j.dam.2015.06.027
http://dx.doi.org/10.1007/978-3-319-66263-3_27
http://math.nist.gov/MatrixMarket/
https://github.com/PACE-challenge/phylo_converter
https://github.com/PACE-challenge/phylo_converter
http://dx.doi.org/10.1137/S0097539798336073
http://dx.doi.org/10.1137/S0097539798336073
http://networkrepository.com/
http://www.thenetworkcenter.nl
https://pacechallenge.wordpress.com
http://orthomam.univ-montp2.fr
http://dx.doi.org/10.1186/1471-2148-7-241
http://dx.doi.org/10.4230/LIPIcs.ESA.2017.68
http://dx.doi.org/10.1016/0012-365X(85)90051-2
http://dx.doi.org/10.1006/inco.1997.2697
http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.29
http://dx.doi.org/10.1016/j.dam.2016.09.023
http://dx.doi.org/10.1137/0602010

	p000-Frontmatter
	Preface

	p001-Agrawal
	Introduction
	Preliminaries
	FPT Algorithm for T_ell-Contraction
	Derandomization
	Non-existence of a Polynomial Kernel for T_ell-Contraction
	PSAKS for T_ell-Contraction

	p002-Arvind
	Introduction
	Preliminaries
	Bounded color class size
	Exact weight
	Exact complexity
	Colored Graph Automorphism

	p003-Baste
	Introduction
	Reload costs and definition of the problem
	Para-NP-hardness results
	Polynomial and FPT algorithms
	Polynomially bounded costs

	p004-Baste
	Introduction
	Preliminaries
	Dynamic programming algorithms for computing tm_F
	Single-exponential algorithms for hitting paths and cycles
	Superexponential lower bound for specific cases

	p005-Baste
	Introduction
	Graph contractions and minors
	Combinatorics of treewdith
	Optimization parameters and bidimensionality
	Subquadratic grid minor/contraction property
	Algorithmic implications
	String graphs
	Our contribution

	Definitions and preliminaries
	Treewidth

	Proof of Theorem 7
	Lambda-state configurations
	Triangulated grids inside triangulated grids

	Conclusions and open problems

	p006-Bjorklund
	Introduction
	Polynomial evaluation based on generalized Kakeya sets
	Fermionants

	Generalized Kakeya sets in finite vector spaces
	Polynomial evaluation
	Proof of Theorem 1
	Proof of Theorem 2

	Fermionants
	Self-reducibility of the fermionant
	Proof of Theorem 4
	Proof of Corollary 5

	p007-Bonnet
	Introduction
	Preliminaries
	Lemmas about S-blocks
	Bounded P-Block Vertex Deletion
	Lower bound for fixed d

	p008-Bonnet
	Introduction
	Parameterized hardness for arbitrary slopes
	FPT Algorithm Parameterized by Size of Smaller Set
	Open problems

	p009-Bottesch
	Introduction
	Our results

	Preliminaries
	Random access machines and parameterized complexity classes
	Relational structures and first-order formulas

	Parameterized relativization
	Interactive proof systems for parameterized complexity classes
	Conclusions

	p010-Bougeret
	Introduction
	Preliminaries
	A polynomial kernel for VC/c-tdmod on general graphs
	A polynomial kernel for a-c-tdmod-IS/(|X|+|H|)
	Deducing a polynomial kernel for IS/c-tdmod

	Excluding polynomial kernels for DS/c-tdmod on degenerate graphs
	Concluding remarks and further research

	p011-Cardinal
	Introduction
	Background and previous work on satisfiability
	Our results
	Notation

	Deterministic algorithms and Hirsch's method
	Vertex cover

	Randomized algorithms for Sample-2-SAT and for 3-SAT
	A warm-up algorithm for Sample-2-SAT
	A faster algorithm for Sample-2-SAT
	A randomized algorithm for 3-SAT

	Conclusion

	p012-Chandrasekaran
	Introduction
	Results
	Preliminaries

	FPT of OddMultiwayNodeCut in DAGs
	Easy instances
	Parity-Preserving Torso
	Difficult instances

	p013-Curticapean
	Introduction
	Preliminaries
	Exact computation: fixed-parameter intractability
	Approximate computation: Hardness results
	Algorithms

	p014-deBerg
	Introduction
	1-dimensional patterns
	Higher dimensional shapes: W[1] vs. W[2]
	Conclusion

	p015-Duraj
	Introduction
	Longest Common Increasing Subsequence (LCIS)
	Our Results
	Parameterized Complexity I: Solution Size
	Parameterized Complexity II: k-LCIS
	Longest Common Weakly Increasing Subsequence (LCWIS)

	Discussion, Outline and Technical Contributions
	Technical Challenges
	Technical Contributions and Proof Outline

	Paper organization

	Preliminaries
	Main Construction: Hardness of LCIS
	Inflation
	Separator sequences
	Vector gadgets
	Final construction

	Conclusion and Open Problems

	p016-Eppstein
	Introduction
	Preliminaries
	Binary heap of subproblems
	Path-copying persistence
	Shallow tree decompositions
	Hypergraph algebra

	The second-best solution
	Dynamizing the second-best solution
	Fixed numbers of solutions

	p017-Fichte
	Introduction
	Formal Background
	A Single Pass DP Algorithm
	DynASP2.5: Implementing a III Pass DP Algorithm
	The Algorithm
	Implementation Details
	Experimental Evaluation

	Conclusion

	p018-Golovach
	Introduction
	Preliminaries
	Solving Connected Secluded F-Free Subgraph
	High connectivity phase
	The FPT algorithm for Connected Secluded F-Free Subgraph

	Concluding remarks

	p019-Hlineny
	Introduction
	Preliminaries
	Circular-arc Graphs
	Circle graphs
	Box and Disk graphs
	Hardness for intersection classes
	Polygonal visibility graphs
	Conclusions

	p020-Hols
	Introduction
	Preliminaries and notation
	Vertex Cover parameterized by a modulator to a d-quasi-forest
	Two other graph classes with small blocking sets
	Conclusion

	p021-Jaffke
	Introduction
	Preliminaries
	Algorithms
	Longest Induced Path
	Induced Disjoint Paths
	H-Induced Topological Minor

	p022-Jansen
	Introduction
	Preliminaries
	Kernel for q-Coloring parameterized by Vertex Cover
	Sparsification lower bound for 3-Coloring
	Conclusion

	p023-Jansen
	Introduction
	Preliminaries
	Turing kernels
	Definitions and the auxiliary problem
	Generic reduction rule
	Separation oracles
	Decomposable graph classes

	Excluding a minor
	Excluding a topological minor
	Adding a modulator
	Conclusions

	p024-Karpov
	Introduction
	Exponential lower bound for planar graphs
	Doubly exponential example

	p025-Kobayashi
	Introduction
	Preliminaries
	Colored drawings and sketches
	Recurrences
	Algorithm

	p026-Lampis
	Introduction
	Definitions and Preliminaries
	Problem Definitions
	Graph Parameters
	Binary Representations

	Tight Bounds for EASAT
	Algorithms
	Tight Bounds for Weighted Problems
	Non-binary EACSP

	p027-Manoussakis
	Introduction
	Definitions
	Graph terminologies
	Word terminologies

	Basic results
	Algorithm for maximal clique enumeration
	Conclusion

	p028-Shang
	Introduction
	Preliminaries
	Merging nodes in the search tree
	Merging left-side branches
	Algorithm and complexity analysis

	Conclusions

	p029-vanderZanden
	Introduction
	Preliminaries
	The Algorithm
	Computing Treewidth
	Duplicate Elimination using Bloom Filters
	Minor-Min-Width

	Experiments
	Instances
	General Benchmark
	Work Size and Global v.s. Shared Memory
	Minor-Min-Width
	Loop Unnesting

	Conclusions

	p030-Dell
	Introduction
	Competition track A: Treewidth
	Exact competition: Compute an optimal tree decomposition
	Heuristic competition: Compute some tree decomposition

	Competition track B: Minimum fill-in
	PACE organization
	Conclusion

